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Abstract

Approximate Computing (AxC) paradigm aims at designing computing systems that
can satisfy the rising performance demands and improve the energy efficiency. AxC
exploits the gap between the level of accuracy required by a given application, and the
actual precision provided by the computing system, for achieving diverse optimizations.
Various AxC techniques have been proposed so far in the literature at different abstrac-
tion levels from hardware to software. These techniques have been successfully utilized
and combined to realize approximate implementations of applications in various do-
mains (e.g., data analytic, scientific computing, multimedia and signal processing,
and machine learning). Unfortunately, state-of-the-art approximation methodologies
focus on a single abstraction level, such as combining elementary components, e.g.,
arithmetic operations, and usually optimize hardware-requirements under error con-
straints, resulting in suboptimal solutions. This hinders the possibility for designers
to explore different approximation opportunities, optimized for different applications
and implementation targets. Therefore, we propose a methodology for the design of
approximate applications which is based on multi-objective optimization and does
not depend on either applications or techniques. We discuss each phase and steps the
methodology breaks into, while devoting the needed relevance to their automation.
In order to validate and evaluate our method, we resort to a vast plethora of applica-
tions, including generic combinational logic, arithmetic circuits, image-processing and
machine-learning applications. For each of them, we report several case studies and
experiments that empirically prove the validity and effectiveness of the methodology,
which allow achieving significant savings both in terms of area and power required by
hardware accelerators, at the cost of very low introduced error.
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“When the night has come
And the land is dark

And the moon is the only light we’ll see
No, I won’t be afraid
Oh, I won’t be afraid

Just as long as you stand, stand by me”

To Francesca,
who shared every day with me, even the gloomiest one,

without ever letting me lack her love, care, and encouragement.
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Chapter 1

Introduction

In the XX century, the human being witnessed an unprecedented amount of world-
changing inventions: the airplane, antibiotics, the jet-engine, the nuclear-reactors, and
so forth. But, unless you live like an eremite, or you are parts of an undiscovered tribe,
there is one single invention that really do changed the life of everyone on the Earth.

Although few seen that directly, it is nowadays the most largely manufactured device
in history, as, in 2018, an impressive 1022 units have been manufactured, with 1013

new ones manufactured every day, on average [7]. Nothing made by humans comes
even close to its manufacturing-rate, neither enabled other world-changing inventions
and discoveries. We are evidently talking about the Metal-Oxide-Semiconductor Field-
Effect Transistor (MOSFET). It is undeniable, in fact, that, looking around us, we
can spot at least one electronic component, and that transistors, by now, are literally
everywhere.

Their main use, at least for the numbers involved, is, however, the realization
of digital computing devices. The first CPU to be commercialized, the Intel 4004
dating back to 1971, was built with a manufacturing process that allowed to integrate
2500 transistors on a silicon wafer of 1 mm2. During that time, Gordon Moore, the
co-founder of the Intel corporation, stated what later became known as the Moore’s
law: “the number of transistors in an integrated circuits doubles every two years”. How

1
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to blame him, since with the current 7 nm manufacturing process we can fit over 134
million transistors for each mm2 of silicon [1].

Nevertheless, silicon-die shrinking is approaching its physical limit: the diameter
of a single atom of silicon is 0.2 nm, meaning a 7 nm transistor requires only 35 silicon
atoms to be manufactured. Moreover, modern computing systems are experimenting
an unprecedented growth of data to be processed, since, on one hand, these systems are
increasingly used to interact with the physical world and, on the other hand, they process
the large amount of data samples coming from all the various sensing sources. Indeed,
the scientific literature is mainly focusing on pattern recognition, machine-learning
and data-classification systems since, from one side, the Big Data domain gives the
possibility to access to heterogeneous and huge datasets, allowing for new applications,
from the other side, researches investigate about technological innovations and new
methodologies to overcome performance issues, in terms of both model accuracy,
throughput, and latency. This lead computing systems requiring a tremendous amount
of energy, at an increasing rate every year, so that it is estimated energy consumption
will exceed the amount of energy produced before 2040 [58].

Therefore, power and energy reduction are critical requirements in the design of
computing systems, especially in pervasive embedded and mobile electronic devices,
where the battery capacity is a limiting factor. Additionally, computationally intensive
tasks, such as machine-learning applications, have found their way into these power-
limited devices, increasing the need for efficient electronics. In this perspective, current
technologies and design approaches are bound to become quite soon inadequate to offer
suitable solutions to these applications requirements; hence, novel design approaches
have to be considered.

Approximate Computing (AxC) term has been introduced to define a computing
paradigm applied at different abstraction levels, spanning from hardware to software
components. Intuitively, instead of performing exact computation, AxC aims to care-
fully violate non-critical specifications, trading accuracy off for efficiency. For several
real-world scenarios, the effectiveness of imprecise computation has been demonstrated
in the literature, for both software and hardware components implementing inexact
algorithms. Indeed, some applications show an inherent resiliency to errors [47].

The inherent resiliency property tightly depends on the application domain. It
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can be observed for algorithms dealing with noisy real-world input data (e.g., image
processing, sensor data processing, speech recognition, etc.), or with outputs that have
to be interpreted by humans, such as digital signal processing of images or audio;
also data analytic, web search and wireless communications exhibit an equivalent
property. Other involved applications are those that iteratively process large amounts
of information, sample data, stop the convergence procedure early, or apply heuristics.

Diverse research articles in the literature explored the opportunities provided by
AxC paradigm. Many of them proposed new methodologies to automatically define the
best trade-off configurations between result quality and performance. However, there
are still open challenges holding AxC back from wider employment.

Since a naive approximation approach is unlikely to be efficient, the target appli-
cation have to be taken into account in order to properly select data or portions of the
application to approximate. This may require the designer to have deep knowledge
of the application, be fully aware of the target domain. Moreover, a vast plethora of
approximate techniques, spanning from software to hardware target implementation,
have been proposed in the scientific literature, and selecting the most appropriate one,
again, may require a deep understanding of the application being approximate [125]. In
addition, complex applications may preclude the manual introduction of approximation,
e.g., through source-code annotation, and developing suitable automatic tools is not
trivial.

Monitoring the output quality varying the introduced approximation degree is
mandatory to guarantee quality-constraints are met [47]. Though, selecting an appro-
priate error metric, or a set of error metric, is not a trivial task, rather it is of major
concern. Some metrics, in fact, are much more sensitive than others. For instance, the
PSNR metric, which is commonly adopted in image-processing applications, is quite
sensitive to noise, since it consider single image-pixels. This may preclude an effective
introduction of approximation w.r.t. some other less-sensitive metrics, such as the
Structural SIMilarity (SSIM). Moreover, the choice concerning the error-assessment
technique must be well-thought-out because some technique, e.g., exhaustive simula-
tions, may be cumbersome when targeting certain applications, requiring a different
technique, e.g., formal methods, to be adopted. Yet, the latter may not be applicable
due to the complexity of the applications themselves. When approximating digital
logic circuits, for example, exhaustive simulations are prohibitive when the number
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of inputs is substantial, so it would be preferable to use a different technique, e.g.,
formal-methods. However, when more complex applications, such as image-processing,
or machine-learning applications, are concerned, the choice on the technique to be used
is almost forced to simulations, since modeling such applications is quite cumbersome.

Defining optimal trade-offs between error due to approximation and corresponding
savings require addressing conflicting design goals. Introducing low error makes the
approximate implementation close to the exact implementation, resulting in low re-
source savings. These last ones can be conspicuous if the error introduced is substantial.
As it easy to recognize, leveraging the AxC requires coping with a Multi-objective
Optimization Problem (MOP). Anyway, almost all the approaches from the scientific
literature either combine multiple design objectives in one weighted single-objective
optimization problem, or optimize for one single parameter while keeping the others
fixed, so resulting solutions are centered around a few dominant design alternatives and
do not cover the whole Pareto-front [56]. Recent works, however, addressed the circuit
design problem by employing MOP to search for Pareto-optimal approximate circuit
implementations. Unfortunately, such approaches did not focus on generic applications,
rather only on basic arithmetic components, such as adders and multipliers [156].

All the mentioned challenges make defining a generic and application-independent
methodology quite difficult, hindering the wide-spread adoption of the AxC.

In this work, we foster an application-independent, unified methodology able to
automatically explore the impact of different approximation techniques on a given
application, while resorting to the AxC design paradigm and MOP-based DSE. We also
devote particular relevance to all the phases and steps of the proposed methodology
which can be automated. When compared to contributions from the scientific literature,
our methodology is neither tailored to a specific application nor to an approximation
technique, it does not require the designer to specify which part(s) of the application
should be approximated and how, and it only requires the definition of the acceptable
output degradation from the user. Moreover, it addresses the circuit design problem as
a MOP, which allows optimizing different figure of metrics, e.g., error and hardware-
requirements, at the same time, providing the designer with a set of equally good
Pareto-optimal solutions, leaving the designer free to choose the one that, according to
his experience, best suits the context or the requirements of the application considered.
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In order to validate and evaluate the proposed metrology, we selected some sig-
nificant and relevant applications in the scope of the AxC paradigm, among which
we include generic combinatorial logic, image-processing applications, and artificial
intelligence applications.

This Thesis work is organized as follows:

• Chapter 2 provides the reader with a brief introduction concerning the AxC
design paradigm, including issues and challenges to be addressed in order to
exploit the AxC full potential. In particular, it discusses approaches to iden-
tify approximable code portion or data within a given application, common
techniques adopted to introduce approximation, methods metrics for assessing
error due to approximation, and, finally, how to pick the approximate configura-
tions providing the best trade-offs between introduced error and gains, i.e., how
to perform DSE. Moreover, it surveys the state-of-the-art concerning approxi-
mation methodologies targeting hardware applications, discussing the adopted
approximation technique, the error assessment and DSE approach.

• Chapter 3 discusses our AxC and MOP-based design methodology, including
the main steps of the method that we propose, and how the method helps in
addressing the challenges that the AxC paradigm poses to the designer. It also
devotes particular emphasis to the steps of the methodology that can be auto-
mated, including the generation of approximate variants for a give application,
and the selection of optimal trade-offs between quality of results and hardware-
requirements through the use of a MOP-based DSE.

• Chapter 4 applies the methodology discussed in Chapter 3 addressing the design
of combinational logic circuits, i.e., those that typically constitute building-blocks
for larger, more complex, designs. In particular, it discusses a novel And-Inverter
Graph (AIG)-rewriting based technique to automatically generate approximate
variants for combinational circuits, and how to select the best trade-offs between
error and savings through the use of a MOP-based DSE.

• Chapter 5 reports the application of our methodology to the design of hardware
accelerators for image-processing processing. Specifically, a Sobel edge-detector,
and several accelerators for the DCT, which is the most demanding step of
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the JPEG, viz. one of the most commonly adopted lossy image and video
compression algorithm.

• The last Chapter discusses the application of our methodology on two of the
most promising classification models in the machine-learning domain, namely
DNNs and DT MCSs. These applications are even more challenging, since
hardware-accelerators are utterly resource intensive, and reducing the amount of
induced error is very critical, because machine-learning systems process a huge
amount of data.



Chapter 2

The Approximate Computing
Design Paradigm and its
Application

This chapter provides the reader with a brief introduction concerning the AxC de-
sign paradigm, including issues and challenges to be addressed in order to exploit
the AxC full potential. In particular, Section 2.2 discusses approaches to identify
approximable code portion or data within a given application in Section 2.2.1, common
techniques adopted to introduce approximation in Section 2.2.2, methods metrics for
assessing error due to approximation in Section 2.2.3, and, finally, how to pick the
approximate configurations providing the best trade-offs between introduced error and
gains, i.e., how to perform DSE, in Section 3.1.2. Moreover, Section 2.3 surveys the
state-of-the-art concerning approximation methodologies targeting hardware applica-
tions, discussing the adopted approximation technique, the error assessment and DSE
approach.

7
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2.1 Overview

The scientific literature demonstrated that inexact computation can be selectively ex-
ploited to enhance computing system performance, defining the AxC paradigm [180].
It is based on the intuitive observation that, while performing exact computation, or
maintaining peak-level service performance, require a high amount of resources, al-
lowing selective approximation or occasional violation of the specification can provide
quite interesting gains in efficiency. For example, for a k-means clustering algorithm,
up to 50× energy saving can be achieved by allowing a classification-accuracy loss of
5% [46]. Indeed, due to redundancy of inner calculations, some applications are char-
acterized by an inherent error resiliency; therefore, by relaxing functional requirements
of a computing system, AxC enables to carefully trade limited quantity of accuracy off
for performance, such as computation speed, throughput and, for integrated circuits,
occupied silicon area.

In other words, the AxC paradigm exploits the gap between the level of accuracy
required by the applications/users and that provided by the computing system, with
the latter being often far lower than the former, for achieving diverse optimizations.
Thus, this design paradigm has the potential to benefit a wide range of applications,
including data analytic, scientific computing, multimedia and signal processing, and
machine learning.

Anyway, exploiting AxC requires coping with

(i) the designation of parts of the considered software or hardware component which
are suitable to be approximate;

(ii) the approach to introduce actual approximation;

(iii) the selection of appropriate error metrics, which generally depend on the particu-
lar application;

(iv) the actual error-assessment procedure, to guarantee output quality constraints
are met [47], and, finally

(v) the DSE, to select the best approximate configurations among those generated
by a certain approximation technique.
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As for the first two of the aforementioned issues, pinpointing approximable code
or data portions may require the designer to have deep insights into the application.
Moreover, since a naive approximation approach – such as the uniform one – is unlikely
to be efficient, and since no approach can be universally applied to all approximable
applications, the approximation approach needs to be determined on a per-application
basis by the designer. Approaches to identify approximable portions within appli-
cations and a survey of approximation techniques are provided in Section 2.2.1 and
Section 2.2.2.

As for error assessment, it typically requires the simulation of both exact and
approximate applications, nevertheless Bayesian inference [165] or machine-learning
based approaches [126] have been proposed in the scientific literature. Metrics and
assessment techniques will be further discussed in Section 2.2.3.1 and Section 2.2.3.

Finally, concerning DSE, initial approaches either combine multiple design ob-
jectives in a single-objective optimization problem or optimize a single parameter
while keeping the others fixed. Therefore, the resulting solutions are centered around
a few dominant design alternatives and do not explore the whole Pareto-front [56].
Recently published works address the circuit design problem by using MOP to search
for Pareto-optimal approximate circuit implementations [156]. Unfortunately, such
approaches did not focus on complex systems, rather on arithmetic components, such
as adders and multipliers, since they are building-blocks for more complex designs.

2.2 Challenges in Approximate Computing

As we outlined before, an effective use of the AxC requires addressing several issues.
Here, some contribution from scientific literature are briefly summarized below.

2.2.1 Identifying approximable portions within applications

Finding approximable portion of an algorithm, or data error-resilient data, is the crucial
initial step in AxC. Although this is straightforward in several cases, in other it may
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require the designer to have deep insights into the application being approximate or even
its implementation. Error-injection is quite common as an approach to find the data or
operation that can be approximated with little impact on quality of result. Nevertheless,
it is not always suitable. Therefore, several approaches have been proposed in scientific
research. These can be roughly classified as: (i) using directives to specify to the
compiler which parts are approximate, (ii) adding support for defining approximate
areas directly in the programming languages, or (iii) automatically identifying which
code/data are approximable.

Although manually annotating, using appropriate directives, the code to approxi-
mate could seem a naive choice, when used in conjunction with an appropriate tech-
nique it allows achieving significant results. Authors of [145], for instance, adopts
OpenMP-style directives to annotate the code at design time. Then, at run time, based
on accurate or approximate directives, the floating-point units are promoted/demoted
to accurate/approximate mode to match program region requirements. This allows
maintaining an acceptable quality loss in error-tolerant applications, and reduces re-
covery overhead in error-intolerant applications, while providing significant energy
savings in both types of applications. In [171] an almost identical approach is adopted
for skipping tasks: depending on the impact of a task on the final output quality, a
programmer can express its significance using compiler directives. The programmer
can also optionally provide a low-overhead inexact version of a task. Further, the
acceptable quality-loss is specified in terms of fraction of tasks to be executed precisely.
Based on this, the run time system employs inexact versions of less-important tasks or
drops them completely.

Instead of using directives, in [152] extends the programming language with ap-
proximate data-types; then, they use type qualifiers for specifying approximate data
and separating precise and approximate portions in the program. For the variables
marked with approximate qualifier, the storage, computing, and algorithm constructs
used can all be approximate. This approach can be successfully adopted not only for
software applications, rather on hardware too. Authors of [184], for instance, present
annotations for providing suitable syntax and semantics for approximate hardware
design in Verilog, allowing the designer to specify both critical (precise) and approx-
imable portions of the design. In addition, such syntax allows reusing approximate
modules in different designs while having different accuracy requirements without
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requiring reimplementation. A different approach is proposed in [38]: authors propose
a programming language, namely Rely, that allows the programmer to quantitatively
specify the reliability of a program. Rely allows associating a measure of the reliability
to variables or to the return values of functions. Then, based on these specifications,
the compiler is able to determine whether or not such data can be processed and stored
using approximate hardware.

Resiliency to error can be generally automatically analyzed while focusing on
small portions of an application. In [47], for instance, authors consider inner loops
of an application as atomic kernels. They introduce random errors into the output
variables while monitoring the latter. If the output does not meet the quality criterion
or if the application crashes, the kernel is marked as sensitive; otherwise, it is marked
as potentially resilient. A subsequent step further explore potentially resilient kernels,
in order to attempt the applicability of various approximation strategies. A similar
approach has been proposed in [149]. Authors first collects the variables of the program
and the range of values that they can take. Then, the values of the variables are
perturbed, and the new output is measured. By comparing this against the correct output,
which fulfills the acceptable quality threshold, the contribution of each variable in the
program output is measured. Based on this, the variables are marked as approximable
or non, approximable. Anyway, injecting error is not the only viable approach. The
spatial or temporal correlation of inputs (e.g., pixels of an image or frames of a
video), for instance, can be exploited to identify computations that are amenable to
approximation [144].

2.2.2 Techniques to introduce approximation

Once portions, or data, to be approximate have been identified, being able to introduce
approximation is not a straightforward matter, and may require coping with several
technical challenges.

Concerning circuit approximation, the scientific literature distinguishes in timing
and functional techniques [147]. The former consists of forcing the circuit to operate
on reduced voltage or higher frequency than nominal ones, while the latter includes al-
tering the logic being implemented. Technology-independent functional approximation
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currently represents the most popular technique on how to introduce approximations to
hardware components. In the following, we briefly discuss several proposals from the
scientific literature, including working with reduced precision, skipping loop iterations,
memory accesses and even tasks, performing operations using inexact hardware and so
forth.

One of the most commonly adopted techniques to introduce approximation is
precision-scaling, or bit-width reduction, which, essentially, reduces the amount of bits
used for representing input data and intermediate operands [164]. Typically, the least
significant bits are masked or neglected in order to save resource, allowing the use of
smaller and faster Floating-Point Units (FPUs) for several computations. Moreover,
it allows using a lookup tables for performing multiplication and add operations,
or event turns a floating-point operation into a trivial one (e.g., multiplication by
one), which would not require use of a dedicated FPU. In addition, precision-scaling
essentially combines close values to a single value, which increases the coverage of the
memoization technique [186].

The memoization approach works by storing the results of functions for later reuse
with identical function/inputs. However, if reusing the results for similar functions/in-
puts is allowed, memoization inherently allows approximation. For instance, authors
of [98] propose a value cache to implement a clumsy hardware memoization mecha-
nism. This is able to perform partial matches, i.e., reducing the arithmetic precision
of the input parameters, thus increasing significantly the volume of successful value
reuses.

Load value approximation, that is another memory-based approximation approach,
has been inspired by observing that on a load miss in a cache, the data must be fetched
from the next-level cache or main memory, which incurs large latency. Load value
approximation leverages the approximable nature of applications to estimate load
values, thus allows a processor to progress without stalling for a response. This hides
the cache-miss latency. Indeed, when compared to traditional load-value predictors,
using load-values approximation implies that fetching a cache block on each cache miss
is not required, which reduces the memory accesses significantly. In [121], authors
prove that the technique provides significant speed-up and energy saving with negligible
degradation in output quality when adopted for graphics applications. In [185] the
technique is adopted for alleviating the bandwidth bottleneck in General Purpose -
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Graphic Processing Unit (GP-GPU) systems. Loads that do not deal with memory
accesses and control flow are identified, and ones that cause the largest fraction of
misses are selected as candidate for approximation. By individually approximating
each of these loads, their impact on quality is measured and the loads leading to smaller
degradation than a threshold are selected for approximation. When these loads miss in
the cache, the requested values are predicted; however, no check for mispredictions
or recovery is performed, which avoids pipeline flush overheads. In order to deal
with Single-Instruction-Multiple-Data (SIMD) and Single-Instruction-Multiple-Thread
(SIMT), which require predicting values for multiple threads, authors leverage the
value similarity across accesses in adjacent threads to design a multi-value predictor,
which significantly reduces the overhead of predicting values separately.

Loop-perforation, that works by skipping some iteration of a loop to reduce the
computational overhead, is also quite a widespread approach. The technique has proven
to be effective when applied to several computational patterns, such as the Monte Carlo
simulation, iterative refinement, and search space enumeration [160]. Furthermore, it
is also suitable on memory-accesses and tasks, as experimentally proven in [151, 71].

The usage of custom approximate hardware to implement basic-blocks of high-
level applications is another quite common technique. Intentionally-approximate
elementary circuits, including different implementations of adders [74, 182, 11] and
multipliers [41, 115], have been proposed in the scientific literature since the early
days of AxC. Moreover, recently many libraries consisting of thousands of elementary
approximate circuits have been proposed in the scientific literature, supplying hundreds
of implementations of even a single arithmetic operation [127, 94].

In [13], a framework relying on inexact computing to perform the DCT computation
for the JPEG has been proposed. The framework acts on three levels: (i) at the applica-
tion level, it exploits human insensitivity to high-frequency variation to use a filter and
discard high-frequency components; (ii) at the algorithmic level, multiplier-less fast
algorithms are employed for the actual DCT computation on integer coefficients; (iii) at
hardware level, rather than using a simple truncation for adder circuits, authors used
inexact adder cells to compute the less significant bits instead of the classic full-adder
cell. Although the topic is investigating the combined effects of these levels on the final
JPEG, the approach paves the way for building a complex accelerator from smaller and
simpler approximate components.
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In [126], circuits from a library of approximate components are selected to generate
an approximate accelerator for a given application. On the basis of contributions
from single components, machine learning techniques are adopted to estimate the
overall quality and hardware cost of the accelerator, without requiring simulations and
synthesis. A similar approach has been presented in [39]. A set of analytical models of
quality and resource requirements are derived for a library of approximate components.
Then these are used to estimate resource needed and accuracy of accelerator designed
through high-level synthesis of C language description.

2.2.3 Assessing error due to approximation

Output monitoring is mandatory to ensure quality constraints are met, and often this
is the most time-consuming phase of an approximation approach, since typically it
requires the simulation of the whole approximate application on a significant data
set [169].

Simulation-based estimation, in facts, is undoubtedly the simplest and, albeit naive,
it is one of the most commonly adopted approach for error estimation. This naive
approach consists of running the approximate application several times while compar-
ing its outcomes with the non-approximate application. The comparison is achieved
through the adoption of an appropriate error metric, and if the accuracy of the approxi-
mate application is not satisfactory, that given approximate configuration is discarded.
The simplicity of the technique is also its main drawback: the general approach has
often to rely on large and computation intensive campaigns of executions and profiling
of the target application; therefore, every time a new approximate configuration is
considered, the application must be executed and the corresponding metric computed
again. Since the above process iterates until a desired level of accuracy is reached,
the cost depends on the final amount of runs to reach it. Besides low scalability, the
simulation-based approach lacks of strong guarantees when simulating the application
for a random subset of the possible inputs only.

An interesting approach to overcome the highlighted issues is discussed in [138].
The authors present a framework for analytically estimating the output quality of
common Digital Signal Processing (DSP) blocks that utilize approximate adders. The
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error is considered as an additive white noise, and its impact on several DSP blocks –
including Finite Impulse Response (FIR) filters, DCT and Fast Fourier Transform (FFT)
– is estimated using a mathematical model. The latter is also compared to simulation
results, by using the Signal-to-Noise Ratio (SNR) as metric, exhibiting, on average, 2.5
dB inaccuracy. Nevertheless, the white noise assumption is not always correct, since
the error is dependent on the input [119].

Authors of [165, 166] proposes a stochastic approach based on a Bayesian predic-
tion model able to estimate the error affecting the result of a complex application when
precision-scaling is applied to different portions of the computation. The application is
modeled in the form of a Bayesian network whose nodes represent data and operators,
while arcs model the data-flow. Overall, the network models the error propagation
along the data-flow of the application. To construct the model, the application is
profiled only once to extract its data-flow. Then, the operators are characterized with
required probabilities to be embedded in the model. Finally, the error distribution of
the application can be quickly estimated exploiting the Bayesian inference theory.

Recently, machine-learning based estimation approaches have spread. Authors
of [126], for instance, exploit computational models developed using machine-learning
to predict both the induced error and savings due to approximation. The models are
constructed independently, using a suitable supervised machine-learning algorithm.
The learning process is based on providing example input-output pairs, i.e., a particular
approximate configuration. The input is represented by a vector containing a subset
of hardware and quality parameters for each of the approximate sub-parts realizing
one of the operations as defined by the configuration. The output is a single value of
either quality or result or hardware cost that is obtained by simulation and synthesis
of the concrete accelerator with the given configuration. For learning, the authors
have to generate a training and a validation set, typically containing from hundreds or
thousands of configurations. Moreover, since the models are used for determining a
relation between two different configurations, authors do not focus on their accuracy,
rather their fidelity. The latter tells how often the estimated values are in the same
relation (<, = or >) as the real values for each pair of configurations.

Probabilistic techniques, those based on Bayesian inference, and those based on
machine-learning are able, however, to provide only an estimate of the error and, as
with non-exhaustive simulations, offer no guarantees as to the maximum value that the
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error can yield. Hence, various analytical and formal approaches have been proposed
and applied for exact quantification of the error. Furthermore, they do not make any
assumption on the structure of the approximate circuits, and they can be applied to
determine almost every error metric [169].

Authors of [172, 146], for instance, use auxiliary circuits, called miters, to quantify
the approximation error using formal verification techniques. Miters combine the
original circuit and the approximate circuit and, in order to check whether a predefined
worst-case error is violated by the candidate approximate circuit, a pseudo-Boolean
SATisfiability (SAT) solver and Integer Linear Programming (ILP) was employed.
Nevertheless, ILP does not scale with circuit complexity. Therefore, formal methods
for error assessment in approximate digital circuits are nowadays based on SAT solvers
and Binary Decision Diagrams (BDDs) [41].

2.2.3.1 Metrics for error assessment

As mentioned, quality metrics bound the type and amount of error that can be introduced
during approximation; therefore, they generally depend on the particular application
being considered.

However, in essence, all of these metrics seek to compare some form of output
(depending on the application, e.g., pixel values, body position, classification decision,
execution time) in the approximate computation with that in the exact computation.

For general logic, where no additional knowledge is available and where there is not
a well-accepted error model, Hamming distance or error-rate are typically employed.
In some cases, neither the Hamming distance nor the arithmetic metrics provide a
satisfactory assessment of the quality of approximate circuits. Hence, various problem
specific error metrics have been introduced.

Therefore, quality metrics are generally classified w.r.t. the application domain,
distinguishing into non-domain-dependent metrics and domain-dependent metrics.
Examples of domain-dependent metrics are, clustering accuracy and mean centroid-
distance, which are common metrics for k-means clustering, or classification-accuracy
for machine-learning predictors.
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Non-domain-dependent metrics are broadly classified in three categories, i.e.:
(i) metrics constraining error magnitude, (ii) metrics bounding error frequency, and
(iii) composite metrics constraining both error magnitude and frequency For the sake of
brevity, this manuscript just discusses the most commonly adopted domain-independent
metrics, although a complete survey is available in [147].

2.2.3.1.1 Metrics constraining error magnitude

The Absolute Worst-Case Error (AWCE) It is defined in Equation (2.1), con-
strains the absolute difference in magnitude between the outputs of the original and
approximate circuits to be less than a specific threshold for each input.

eawce(f, f̂) = max∀x∈Bn
∣∣∣f(x)− f̂(x)

∣∣∣ (2.1)

f(x) and f̂(x)in Equation (2.1) are the output of the original (exact) application
and its approximate counterpart, respectively.

The Relative Error Magnitude (REM) It is defined in Equation (2.2), and it
bounds the absolute value of the difference between 1 and the ratio of the approximate
output to the original output by at most a certain margin for every input.

erem(f, f̂) = max∀x∈Bn

∣∣∣∣∣1− f̂(x)

f(x)

∣∣∣∣∣ (2.2)

The Average Error Magnitude (AEM) It is defined in Equation (2.3). It bounds
the absolute difference in magnitude between the approximate output and the original
output, averaged over all the n possible circuit inputs.

eprob(f, f̂) =
1

2n

∑
∀x∈Bn

∣∣∣f(x)− f̂(x)
∣∣∣ (2.3)
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The Mean Squared Error (MSE) It is defined in Equation (2.4), and it bounds
the mean of the squared difference between the original and the approximate output
across all possible inputs to be less than a given threshold.

eprob(f, f̂) =
1

2n

∑
∀x∈Bn

(
f(x)− f̂(x)

)2

(2.4)

2.2.3.1.2 Metrics bounding the error frequency

The Error Probability It is defined as the fraction of input vectors for which the
approximate circuit output differs from the original circuit output, as in Equation (2.5).

eprob(f, f̂) =
1

2n

∑
∀x∈Bn

Jf(x) 6= f̂(x)K (2.5)

In Equation (2.5), the J·K notation denotes the Iverson bracket, i.e.

JP K =

1 i.f.f. P is true

0 otherwise
(2.6)

with P being a preposition.

The Bit Error Probability It is a slight variant of the error probability metric:
the error probabilities of individual output bits are bounded separately, as defined in
Equation (2.7).

eprob(f, f̂)i =
1

2n

∑
∀x∈Bn

Jf(x)i 6= f̂(x)iK (2.7)
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2.3 Design methodologies targeting hardware applica-
tions

Circuit approximation can be undoubtedly performed manually. However, the current
trend is to develop fully automated functional approximation methods that can be inte-
grated into computer-aided design tools for digital circuits. The goal is to obtain a tool
performing automatic approximation of digital circuits independent of their structure.
In this Section, we review systematic methodologies targeting both combinational and
sequential circuits from the scientific literature, highlighting their main features, and
the innovative contributions brought to the scientific literature.

2.3.1 Achieving power-savings through careful data sizing

One of the first attempt to define a systematic methodology for digital circuits approx-
imation is [135]. The methodology focuses on minimizing power consumption by
making use of the precision-scaling technique. It needs a C/C++ model of the design
to be approximated, a set of error constraints on output variables, and a set of variation
ranges for input variables or, alternatively, an input dataset.

The workflow includes a first static analysis of the given model, during which
arithmetic operations are performed on ranges, instead of single values. This allows to
estimate the variability range of intermediate and output variables, and to determine
the optimal number of fractional bits required for their representation. The latter is
exploited to perform a floating-to-fixed point conversion. A further dynamic analysis,
which includes range analysis, automatic differentiation and branch analysis, is, then,
performed. The first one allows to determine whether the floating-point representation
may be more effective than the fixed-point one when dealing with very small values,
and to detect input patterns, which can be exploited for variable-to-constant conver-
sions. Automatic differentiation is adopted to cope with complex functions, such as
trigonometric ones. These make the error analysis cumbersome, since they are typically
implemented by specific IP-cores, whose actual implementation may be not known
during the analysis. Finally, a branch analysis is performed, by splitting the design
in basic blocks, which are ranked based on their execution frequency. This allows
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Figure 2.1: Quality Constraint Circuit from [172]
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Figure 2.2: Sequential Quality Constraint Circuit from [146]

precision of variables along less frequently executed blocks to be further reduced.

2.3.2 Exploiting Boolean algebra towards functional approxima-
tion

Instead of a C/C++ model, SALSA [172] consider circuit implementations at the Register-
Transfer Level (RTL). SALSA encodes both the type and the amount of approximation
allowed by the considered application in one, or more Boolean logic functions, defining
the Quality Constraint Circuit (QCC), which is depicted in Figure 2.1. The QCC
consists of three blocks: a structural description of the circuit to be approximate, the
approximate circuit and the quality function, that defines error constraints to be sat-
isfied.1 During the synthesis process, the approximate circuit is iteratively evolved
while preserving the Q = 1 invariant. The approximation is introduced by exploiting
the Observability Don’t Care (ODC) set of nodes and External Don’t Care (ExDC) set
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of Primary Outputs (POs). As for the former, it is the set of input values for which POs
are insensitive to the output of the considered node. As for the latter, it is the set
of Primary Input (PI) combinations for which that PO is a don’t care. Hence, the ODC
set for POs of the approximate circuit are firstly identified; then, they are considered
as ExDCs for that POs, in order to simplify the cone of logic generating that output
using standard don’t care based synthesis techniques.

The methodology implemented in SALSA, which was originally intended to work
only on combinational circuits, has been extended to sequential circuits by authors
of [146]. Working on sequential circuits require addressing several challenges, the
estimation of the impact of approximation on the output quality, observed after mul-
tiple cycle of operations. Therefore, authors of [146] exploits the Sequential Quality
Constraint Circuit (SQCC), that is depicted in Figure 2.2, to characterize the impact
of approximation. As its combinational counterpart, the SQCC consists of three com-
ponents, i.e., the original sequential circuit, the approximate circuit, and the Quality
Evaluation Circuit (QEC). The latter encodes the quality constraints to be met while
monitoring both POs and status registers, in order to compute the Q and the V bits.
These, respectively, are set when quality constraints are satisfied, and when operations
performed by the approximate circuit has been completed, therefore its POs are ready
to be evaluated.

Combinational blocks within the considered circuit are identified first; then, a
gradient-descent heuristic searches for their optimal quality-energy operating point,
by taking into account the (i) proportion of energy required by the block w.r.t. the
whole circuit, (ii) the energy saving obtained by approximating the block and (iii) the
error introduced due to the approximation. The best configuration is then selected,
and the quality constraints are checked using a sequential quality constraint circuit.
The process is repeated until no block can be further approximated without violating
constraints.

In order to guarantee output quality, formal verification is performed leveraging the
following properties: (i) safety: in all possible states of the SQCC, if V is true then Q
should be true, and (ii) liveness: V eventually becomes true along all possible paths
through the space state of the SQCC. The former property ensures that whenever both
the original sequential circuit and the approximate one have produced their outputs,
i.e., V is high, the approximate circuit must satisfy the quality constraints encoded by
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Q, i.e., Q must be is high. The second property states that both the original and the
approximate circuits eventually produce their respective outputs.

The process is performed by making use of the time expansion-technique, which
means that the SQCC is iteratively unrolled until the V signal is high; then, quality
constraints are checked.

In [79], Boolean Matrix Factorization (BMF) is exploited to factorize truth tables
of multi-outputs digital circuits. Given a multi-output Boolean logic function, its
truth-table is factorized while using the factorization factor f , in order to produce two
sub-matrices, namely B and C, which correspond to the truth-table of a compressor
and a decompressor circuit. This allows to force any arbitrary circuit to compress as
much information as possible in f intermediate signals. Hence, such information can
be decompressed using the decompression circuit. Approximation can be introduced
by not preserving the equality between the starting truth-table M and the product of
the matrices B and C.

Since BMF is NP-hard, and since its complexity grows exponentially with the size
of the matrix to be factorized, the truth-table is split in a number of smaller tables, each
factorized in isolation. Nevertheless, decomposing a circuit in smaller sub-circuits
does not mean the latter can be tested for error in isolation for error assessment;
thus, the circuit is recomposed, and error assessment is performed using Monte Carlo
simulations.

2.3.3 Approximate circuit by means of evolvable hardware

Authors of [156] pointed out that the circuit design problem can be formulated as
a MOP, and solved by means of a search algorithm. In facts, according to authors, when
compared with other works, a MOP-based approach provides many alternative solutions
showing high-quality trade-offs between key design objectives. This originates in [56].
There, the authors prove that combining multiple design objectives in a single-objective
optimization problem results in solutions centered around a few dominant design
alternatives, that, hence, cover only a portion of the whole Pareto-front.

The approach in [156] is a Cartesian Genetic Programming (CPG)-based general-
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purpose method for automated functional approximation of digital circuits at gate
or RTL level. Every candidate circuit is represented as a special two-dimensional grid
consisting of N = nc × nr nodes, with nc and nr being columns and rows of the
grid, respectively. The amount of primary inputs and primary outputs of the circuit
are ni and no, while each component has up to na inputs and nb outputs. The type of
components on the grid depends on the chosen abstraction level.

In order to enable circuit topology specification, each component is assigned with
a unique index and, in the CPG context, it is represented using na + 1 integers. The
former specify the destination indexes for the component’s inputs, while the latter
specifies the logic function being implemented. Hence, the whole circuit is represented
usingNg = nc×nr×(na+1)+no integers, i.e., genes, which compose a chromosome.

Every chromosome is, in the CPG context, a point in a multidimensional design
space. New designs are created introducing mutations, i.e. random modifications which
can affect either input connections, the implemented function or the component output
connection. The 1 + λ generation strategy is adopted and, in order to converge to the
Pareto-front, the NSGA-II search algorithm is adopted. The approach is evaluated
using several arithmetic circuits as case studies, optimizing for error, circuit delay and
power consumption.

2.3.4 Building approximate circuits from library of approximate
components

Recently, many libraries consisting of thousands of elementary approximate circuits
have been proposed in the scientific literature, supplying hundreds of implementations
of even a single arithmetic operation [127, 94].

Authors of [126] addressed how to effectively combine circuits from libraries to de-
sign complex approximate accelerators. Their proposed methodology aims at providing
designers with a set of Pareto-optimal configurations where the quality of results and
hardware costs are both optimized. It requires a hardware description of the accelerator
to be approximate, the corresponding software model and benchmark data, and it is
structured on three steps: (i) the library of approximate components is preprocessed, se-
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lecting a suitable set of approximate circuits and discarding irrelevant ones, on the basis
of their quality w.r.t. a given application and their hardware cost; (ii) machine-learning
algorithms are employed to build predictors, enabling quality of result and hardware
cost estimation requiring neither simulations nor hardware synthesis of approximate
configurations; (iii) the Pareto-front reflecting quality and hardware cost is iteratively
constructed using a two-phases approach: first, predictors built in the preceding step
are employed to quickly build a pseudo-Pareto-front, which is then refined towards the
final Pareto-front using quality and hardware estimation provided by simulations and
hardware syntheses of approximate configurations. During the library pre-processing
step, the target accelerator is profiled, computing the Weighted Mean Error Distance
(WMED), according to Equation (2.8), for each operation Mk within the Data-Flow
Graph (DFG) of the accelerator, where I is the set of inputs from the benchmark data
and Pk(i) is the probability with which a vector i ∈ I can constitute the input of the
operation Mk. Then, approximate circuits providing Pareto-optimal trade-offs between
hardware costs and WMED are selected for the next step.

WMEDk(M̃) =
∑
∀i∈I

Pk(i)× |Mk(i)− M̃k(i)| (2.8)

The WMED, area, power and delay of all the selected circuits are, then, considered to
build predictors for quality of results and hardware cost estimation. Several learning
algorithms and models are compared, with regression algorithm and random forest
providing the best performance in terms of accuracy and fidelity. During the DSE,
the iterative heuristic, which is basically a hill-climbing, starts from a set of randomly
generated candidate solutions. At each iteration, a candidate solution is selected and
randomly altered: children solutions are derived from parents by picking-up a random
circuit from the library. Then, quality and hardware costs are estimated using predictors,
and whether a child dominate its parent it is selected for further iterations, becoming
part of the archived candidate solutions. As it is easy to grasp, the quality of the so build
Pareto-front strictly depends on the fidelity of predictor models. Therefore, during the
second phase of the DSE, the pseudo-Pareto-front is refined using actual simulations
and hardware syntheses.



Chapter 3

Application-driven,
Multi-Objective Approximate
Design Methodology

This Chapter discusses our AxC and MOP-based design methodology. Specifically, we
will describe main steps of the method that we propose, and how the method helps in
addressing the challenges that the AxC paradigm poses to the designer. We also devote
particular emphasis to the steps of the methodology that can be automated, including
the generation of approximate variants for a give application, and the selection of
optimal trade-offs between quality of results and hardware-requirements through the
use of a MOP-based DSE.

25
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3.1 Application-driven design approach

As mentioned in the previous Chapter, the AxC design paradigm emerged as one of the
most promising breakthroughs to overcome design challenges posed by the design of
modern computing systems, including the slowdown in growth in performance gains
and the increase in energy consumption. Indeed, exploiting the redundancy of data or
inner computations, or even end-user perceptual limitations, allows relaxing functional
requirements of computing systems, and enables trading limited quantity of accuracy
off for performance, such as computation speed, throughput and, for integrated circuits,
occupied silicon area.

Image, video and audio processing applications, for instance, are highly error-
tolerant since human senses cannot often perceive degradation in performance, such
as quality of visual and audio information. Machine-learning applications, including
classification, recognition, mining, and synthesis, exhibit a high level of error resilience,
meaning that such applications are able to produce acceptable outputs despite some
underlying computations being incorrect or approximate. The inherent resilience of
these applications can be attributed to several factors, including: (i) the significant
redundancy which is present in large real-world data sets that these applications process;
(ii) the computational patterns they exploit, such as statistical aggregation, majority
voting and iterative refinement, that intrinsically attenuate or correct errors due to
approximations, and (iii) outputs equivalency, i.e., no unique golden output exists, or
small deviations in the output cannot be perceived by users.

This error-resiliency can be effectively exploited by using the AxC design paradigm,
relaxing the traditional requirement of exact – i.e., numerical or Boolean – equivalence
between the specification and implementation, and allowing applications to produce
outputs of acceptable quality, rather than “correct” output.

Anyway, as discussed in Section 2.1, there are several challenges to cope with in
order to effectively exploit the AxC design paradigm, and though diverse research
works in the scientific literature proposed well-founded approaches addressing the
above-mentioned challenges, there are still plenty of open ones holding AxC back
from wider employment. In particular, the key point is the lack of a general and
automatic DSE methodology. Indeed, existing AxC design tools consider specific
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transformations and specific domains, and they are not fully automatic, providing only
a guided approach for approximation.

Conversely, in the following we discuss a generic, MOP-based and fully automatic
method to design hardware accelerators for error-resilient applications.

When presenting our methodology, we discuss the phases it breaks into, including
(i) how to identify which part of the application is amenable for approximation and
(ii) a suitable approximation technique, (iii) how MOP-based DSE can be defined, and,
finally, (iv) hot to pinpoint suitable fitness-functions for error assessment and savings
estimation in order to effectively drive the DSE toward Pareto-optimal approximate
configurations.

3.1.1 Identifying approximable portions and suitable approxima-
tion techniques

The first challenge to be addressed when dealing with the AxC is identifying error-
resilient – i.e., approximable – data or portions of a given algorithm/application, and,
consequently, a suitable approximation technique. Although it seems trivial, this step
of the methodology is rather quite crucial. Indeed, as we discuss in the following, an
improper design-choice concerning either parts to be approximate, or the technique to
be adopted, impacts all the subsequent phases.

Despite many of the methods from the scientific literature claim to be generic, they
actually require the designer to have deep knowledge of the target application in order
to choose a suitable approximation technique. Unfortunately, this may be cumbersome,
or even not possible: there are plenty of applications for which, albeit conceptually
simple, having deep understanding is very difficult indeed, e.g, DNNs and DT MCSs.
Furthermore, once portions to be approximate have been correctly pinpointed, and a
suitable approximate technique selected, the latter have to be applied to the former in
order to introduce approximation. However, manual introduction of approximation
within applications is definitely inconvenient, due to their complexity or due to the
amount of data/operations amenable for approximation.
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Conversely, on one hand, our methodology requires only minimal knowledge of
the target application and, on the other hand, it provides the designer with a system-
atic approach to automatically generate approximate variants of a given application,
i.e., implementations in which approximable parts are superseded by making use of
approximate components.

In general, given an algorithm implementation, in order to automatically generate
approximate variants while having control on the error, it is needed to collect infor-
mation on the operations suitable for approximation. The gathering process can be
automated by analyzing the AST of the application, while AST manipulation exploiting
mutators [22] allow the automatic generation of approximate variants.

Mutators are defined as a set of rules to search and modify the AST; the rule
definition is generally application-independent, and does not require the designer
to know the algorithm or its specific implementation. Furthermore, mutators do
not depend on the specific approximation technique being adopted, and they allow
to effectively introduce a suitable tuning knobs for approximation, replacing exact
operations within the AST using their approximate counterparts. Consider, for instance,
an approximate multiplier designed using the precision-scaling technique, and let
the Number of Approximate Bit (NAB) be the parameter for such approximation
and suppose the approximate operation truncates the least nab significant bits of
operands, with nab being configurable. Setting a value for the nab parameters tunes
the approximation degree, resulting in an approximate configuration of the algorithm.
Mutators can also be exploited to implement the inexact-component technique. Indeed,
exact multiplications can be automatically replaced using a mutator that allows selecting
which implementation to be adopted among those provided by a given library, e.g., the
EvoApproxLib library [127]. In this case, the configuration parameter would allow
selection of an optimal multiplier implementation with respect to a given error metric,
required silicon area, and power dissipation.

3.1.2 Optimization and design-space exploration

The number of approximate variants and, consequently, the number of approximate
configurations, grow quickly with the number of parts suitable for approximation. Con-
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sider, for instance, an algorithm implementation with n approximable operations, each
allowing k different degrees of approximation:

(
n
j

)
different approximate variants can

be defined by simultaneously approximating j operations, and kj different approximate
configurations can be defined for each of the variants. Therefore, the total number of
approximate configurations is

∑n
i=1 k

i ×
(
n
i

)
. At this point, the main challenge is to

find values for the approximation parameters leading to the Pareto-optimal trade-offs
between performance gains and accuracy losses.

In facts, each one of the introduced approximation parameters impact both accuracy
and savings. Hence, the automated design of approximate circuits is inherently a MOP
in which a circuit satisfying user-defined constraints and showing the desired trade-off
between the quality and other electrical parameters is sought in the space of all possible
implementations [170]. As we mentioned, most of the approximation approaches
either combine multiple design objectives in a single-objective optimization problem
or optimize a single parameter while keeping the others fixed. Therefore, the resulting
solutions are centered around a few dominant design alternatives and do not explore
the whole Pareto-front [56]. We propose to find Pareto optimal configurations for
approximation parameters through an automatic MOP-based DSE, which is not only
tailored to the target application, yet it considers the latter target as a whole. Indeed,
recent works addressing the circuit design problem as MOP, e.g., [156], did not focus
on complex systems, rather on arithmetic components, such as adders and multipliers,
since they are building-blocks for more complex designs.

In the following we provide the reader with the required knowledge concern-
ing MOP.

3.1.2.1 Multi-objective Optimization Problems

Basically, a MOP consists of a set of fitness-functions to minimize/maximize at the
same time and a set of constraints to be met, as reported in (3.1),

Γ = {γi : A→ R, i = 1 · · · k}

Ψ = {ψj : A→ {0, 1}, j = 1 · · · l }

A ⊆ Rn
(3.1)
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where Γ and Ψ are the set of fitness-functions and the set of constraint-functions,
respectively. While the functions of the former set assume values in R, or its subset,
the constraint functions assume either the value 1 or 0 to indicate that the constraint is
or is not met, respectively. Equation (3.2) describes the set of solutions for (3.1). For
non-trivial MOPs, |X| > 1, where | · | expresses the size of the set, i.e., the number of
elements it contains.

X = {x ∈ A : γi(x) ≤ γi(x′), x ` ψj x′ 6= x, i ∈ [1, k] , j ∈ [1, l]} (3.2)

Indeed, since different objectives (i.e., fitness-functions) often represent conflicting
goals, the DSE goal is to seek for a set of equally good solutions being close to the
Pareto-front (3.2). Let us consider two solutions, x, y ∈ X : x 6= y, x is said to
dominate y i.f.f. (3.3) holds, i.e., x shows better or equally good objective values than
y in all objectives and at least better in one objective. If a solution is not dominated by
any others, it is called a Pareto-optimal solution.

x ≺ y ⇐⇒ γi (x) ≤ γi (y)∀i ∈ [1, k] ∧ ∃j ∈ [1, k] : γj (x) < γj (y) (3.3)

Due to the rapid growth of the size of the solution space as the number of decision
variables, fitness-functions and constraints increases, using exact solving algorithms
turns out to be very computation-intensive. Consequently, a variety of heuristics aiming
at producing an approximation of the Pareto-front have been proposed in the scientific
literature. Two of the most commonly adopted ones are the Genetic Algorithm (GA)
and the Archived Multi-Objective Simulated Annealing (AMOSA), which will be
discussed in Section 3.1.2.2 and Section 3.1.2.3, respectively.

3.1.2.2 The Genetic Algorithm heuristic

GAs [120], a subclass of Evolutionary Algorithms (EAs), have been largely used in
the literature to find Pareto-fronts for MOPs: they are inspired by and also borrows
terminology from the evolutionary theory. The evolution process starts from an initial

population, which is typically randomly generated or seeded in areas where optimal
solutions are likely to be found.

One of the most relevant concept behind GA is the phenotype-to-genotype mapping,
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that, for each member of the population being evolved, encodes observable features,
i.e., the element’s phenotype, through the use of a suitable representation. The latter,
which represents the element’s genotype, is commonly referred to as chromosome, and
consists of a set of parameters defining a candidate solution to the problem that theGA
is trying to solve. Borrowing terminology from biology, elements of a chromosome are
called genes, and each element of a population is called an individual.

For what pertains to GA, the design of the chromosome is, by necessity, specific
to the problem to be solved, but, traditionally, chromosomes are represented in binary
as strings of 0s and 1s; however, other encoding are also possible, and almost any
representation which allows individuals to be represented as a finite-length vectors can
be adopted. Nevertheless, finding a suitable representation of the problem domain for
a chromosome is of major concern, since a good representation will make the search
easier by limiting the search space. Conversely, a poorer representation will result in a
larger, or even unfeasible, search space.

The initial population is evolved until either it converges to a set of non-dominated
solutions, or a stop-criterion is reached. At each generation, fitness-functions of
the MOP being solved are evaluated for each individual, and the more fit ones are
selected from the current population, and further evolved to form a new population,
which is used in the next generation. During the evolution process, a new offspring

is generated through mutation and crossover. The former is a genetic operator used
to maintain genetic diversity from one generation of a population to the next. It is
analogous to biological mutation: it alters one or more gene values in a chromosome
from its initial state. The latter, also called recombination, is a genetic operator used to
combine the genetic information of two parents in a new offspring.

One of the most commonly adopted implementations of such operators are the
simulated binary crossover and polynomial mutation [61]. The procedure of computing
the offspring x(1,t+1)

i and x(2,t+1)
i from the parent solutions x(1,t)

i and x(2,t)
i involves

a spread factor βi, which is defined as the ratio of the absolute difference in offspring
values to that of the parents, a random number ui, a specified probability-distribution
function, and an ordinate βqi. The latter has to be found so that the area under the
probability curve from zero to βqi is equal to the chosen random number ui.

The probability distribution used to create an offspring is given by Equation (3.4),



32 CHAPTER 3. MULTI-OBJECTIVE APPROXIMATE DESIGN

where ηc is any non-negative real number and βi is given by Equation (3.5). After
obtaining βqi from the above equations, the offsprings are derived from Equation (3.6).

P (βi) =


(ηc+1)βηci

2 if βi ≤ 1

ηc+1

2βηc+2
i

if βi > 1
(3.4)

βi =

∣∣∣∣∣x(2,t+1)
i − x(2,t+1)

i

x
(2,t)
i − x(2,t)

i

∣∣∣∣∣ (3.5)

x
(1,t+1)
i =

(1 + βqi)x
(1,t)
i + (1− βqi)x(2,t)

i

2

x
(2,t+1)
i =

(1− βqi)x(1,t)
i + (1 + βqi)x

(2,t)
i

2

(3.6)

For what pertains to the polynomial mutation operator, which is adopted to perturb
offsprings, it alters a variable – i.e., a gene within a chromosome representing an
individual – by following the same probability distribution as the simulated binary
crossover discussed above.

3.1.2.2.1 The Non-dominated Sorting Genetic Algorithm - II (NSGA-II) Ini-
tial implementations of GA select the more fit individuals by making use of binary
tournament selection. Nevertheless, this strategy has O(MN3) computational com-
plexity [60], with M being the number of fitness-functions and N the population size.
Nowadays, the most widely employed selection strategy is the NSGA-II [60], which
reduces the computational complexity to O(MN2).

At the beginning, the NSGA-II builds a random initial population P0 of size N ,
and sorts the latter using non-domination sorting, which will be presented below.
Thus, each individual is assigned a rank equal to its non-domination level. At the first
iteration, usual crossover, mutation and binary-tournament selection operator are used
to build the Q0 offspring population. The behavior of the algorithm during a generic
i-th iteration is depicted in Figure 3.1:
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(i) a combined population Ri = Pi ∪ Qi is formed and sorted on the basis of
non-domination;

(ii) individuals from high-rank subsets are preserved in the next iteration;

(iii) in order to select exactly N individuals from the current population, individuals
from the last subset are sorted on the basis of the crowding distance, and selected
using the crowded selection operator.

N

Non-dominated
sorting

Crowding-distance
sorting

Accepted individuals
Rejected individuals

Figure 3.1: The NSGA-II selection strategy.

In order to perform non-domination sorting, for each individual p ∈ P , the NSGA-
II computes

(i) the non-domination count np = |Dp|, Dp = {q ∈ P : q ≺ p}, i.e., the number
of individuals q which dominate p, and

(ii) the set Sp = {q ∈ P : p ≺ q}, i.e., the set of individuals q which are dominated
by p.

Individuals in the highest rank subset of Ri, i.e. F1, have np = 0. Then, for each
p : np = 0, each q ∈ Sp is visited and nq is decremented by one. If nq becomes zero,
q is placed in the second-highest rank subset of Ri, i.e. F2. The procedure is iterated
until each subset is fully identified.

Along with convergence to the Pareto-front, it is also desired that an EA maintains a
good spread in the obtained set of solutions. In order to preserve diversity, the NSGA-II
adopts the crowding distance as a metric for the density of solutions surrounding a
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particular solution. Such distance is the average distance of two points on either side of
the considered solution, along each of the fitness-functions. The computation requires
sorting the population M times, according to each fitness-function, in ascending order.
Each time the population is sorted, the boundary solutions – i.e. solutions with the
smallest and the largest fitness – are assigned an infinite distance, while all other
solutions are assigned with a crowding distance equal to the absolute normalized
difference of fitness of the two adjacent solutions. The overall crowding distance is
the sum of individual distances corresponding to each fitness-function. Using crowded
distance, the usual definition of Pareto dominance (3.3) is slightly modified as in (3.7),
where ≈ denotes x and y do not dominate each other and d(·) is the crowding distance
of a given solution. The crowded distance operator preserves diversity by promoting
solutions located in less crowded areas of the solution space.

x ≺n y ⇐⇒ x ≺ y ∪ (x ≈ y ∧ d(x) > d(y)) (3.7)

3.1.2.3 The Archived Multi-objective Simulated Annealing heuristic

The Simulated Annealing (SA) heuristic [101] is based on the physical metaphor of
the annealing process of metal and glass, mimicking the behavior of atoms when
the “matter” is heated close to its melting point, in order to obtain minimal costs
solutions to large optimization problems, by minimizing energy associated to a “matter”
configuration. In the annealing process, materials have to be first heated close to their
melting point, then the temperature is slowly lowered, and a long time is spent at
temperatures near the hardening point. This yields stable low-energy states.

Since the search-from-a-point approach, there have been only a few attempts aiming
at multi-objective SA. In most of the early attempts, multi-objective were achieved by
combining several single-objective fitness-functions in a single fitness-function, using
weighted sum. Nevertheless, results from such an approach are centered around a few
dominant design alternatives and do not explore the whole Pareto-front [56].

The AMOSA [19] searching algorithm emerged as quite a promising approach,
since the acceptance criterion between the current Pareto-front estimation and new
solutions is based on the amount of domination, rather than plain Pareto-dominance.
Moreover, it incorporates the concept of archive, where all non-dominated solutions
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found so far are stored. Although the size of the Pareto-front is theoretically infinite,
the size of the archive – i.e., the amount of diverse solutions it contains – is limited
since, on one hand, the ultimate purpose of heuristics for solving MOPs is to provide
the user with a set of well-distributed solutions to choose from, and, on the other hand,
too large archive may negatively affect performances.

The algorithm needs the following parameters to be set a-priori:

• HL: the maximum size of the archive on termination, i.e., the size of the final
Pareto-front estimation;

• SL: the soft-limit, i.e., the maximum size to which the archive may be filled
before clustering is used to reduce its size to HL;

• Tmax: the initial temperature;

• Tmin: the final temperature;

• α; the cooling factor;

• I: the number of iterations at each temperature.

The first step of the AMOSA algorithm is the archive building: γ × SL, γ > 1

initial solutions are generated, starting either from random points or from a specific
point in the solution space. Such solutions are first refined using a simple hill-climbing,
accepting new solutions i.f.f. they dominate the archived ones. The hill-climbing
refinement is performed I times, then HL non-dominated solutions are stored in
the archive, using clustering to reduce its size, if needed. Then, Pareto-dominance
relationship between newly generated solutions and the archived ones is evaluated, and
whether a solution is accepted as part of the archive depends not only on the dominance
relationship, but also on the current temperature of the “matter”. Indeed, perturbations
that increase the energy of a particular solution are still accepted at the beginning of
the search procedure. Nevertheless, the probability of accepting such perturbations is
gradually decreased as the temperature decreases; hence, all state transitions are bound
to improve solutions.

As mentioned, the AMOSA heuristic adopts the amount of domination concept
to compute the acceptance probability of new solutions. Given two solutions, say
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x and y, the amount of domination is defined in (3.8), where M is the number of
fitness-functions and Ri is the range of the i-th fitness-function, as defined in (3.9).
Please note that the latter may be not known a-priori.

∆domx,y =

M∏
i=1, fi(x)6=fi(y)

|fi(x)− fi(y)|
Ri

(3.8)

Ri = max{fi(·)} −min{fi(·)} (3.9)

While the “matter” temperature is above Tmin, in order to produce new candidate
solutions η, the heuristic randomly ρ from the archive, and alters its distinctive parame-
ters. Then, the amount of domination of η is checked against its parent and solutions
from the archive. Three different scenarios may arise:

1. η is dominated by its parent ρ, and also by k other solutions from the archive;
in this scenario, η is not discarded, rather accepted as new ρ with a probability
given by Equation (3.10), where T is the current temperature, and ∆domavg is
the average amount of domination.

P =
1

1 + eT×∆domavg

∆domavg =

k∑
i=1

∆domi,η + ∆domρ,η

k + 1

(3.10)

2. η and ρ are non-dominating w.r.t. each other; in this case, based on the amount
of domination with archived solutions, three scenarios may arise:

(a) η is dominated by k, k ≥ 1 different archived solutions; in this scenario,
η is not discarded, rather accepted as new ρ with a probability given by
Equation (3.11);

P =
1

1 + eT×∆domavg

∆domavg =

k∑
i=1

∆domi,η

k

(3.11)
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(b) η is non-dominating w.r.t archived solutions; η is accepted as new ρ and
added to the archive;

(c) η is dominating w.r.t k, k ≥ 1 archived solutions; η is accepted as new ρ

and added to the archive; in addition, dominated solutions are removed
from the archive.

3. η dominates ρ; in this case, based on the amount of domination with archived
solutions, three scenarios may arise:

(a) η is dominated by k, k ≥ 1 different archived solutions; this situation may
arise only if ρ is not part of the archive; a different point, minimizing
Equation (3.12), is selected from the archive as new ρ with probability
given by (3.13); otherwise, η is accepted as new ρ;

∆dommin = min
i
{∆domi,η} (3.12)

P =
1

1 + e∆dommin

(3.13)

(b) η is non-dominating w.r.t archived solutions; if ρ belongs to the archive, it
is discarded, then η is accepted as new ρ and added to the archive;

(c) η is dominating w.r.t k, k ≥ 1 archived solutions; η is accepted as new ρ

and added to the archive; in addition, dominated solutions are removed
from the archive.

The above process is repeated I times for each temperature, then the latter is
reduced according to the cooling factor α until the Tmin is attained.

3.1.2.4 MOP modeling: identifying decision-variables and suitable fitness func-
tions

Modeling a specific optimization problem is not trivial, and no general rules exist.
Anyway, taking into account the technique used to generate the approximate variants
definitely helps in at least identifying the decision variables of the problem. Indeed, the
latter find natural correspondence in the configuration parameters introduced to govern
the degree of approximation.
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As already discussed, the identification of suitable decision-variables is only the
first step to complete to define a MOP-based DSE. Indeed, we need to also define
fitness-function driving the DSE. In particular, we must assess the error entailed by the
approximations. Hence, we need to pinpoint an appropriate error metric in order to
define a suitable error fitness-function to minimize. Unfortunately, when using the AxC
paradigm, defining an appropriate error metric is of major concern, and it is usually
not a trivial task. Therefore, the error-metric is usually selected case-by-case. Anyway,
for some applications, the choice of error metric is obvious, if not outright forced, by
the application-domain. The classification accuracy-loss, for instance, is a meaningful
error metric for either DNNs and DT MCSs applications, while the PSNR or the SSIM
are common error metrics in the image-processing field.

For what pertains to hardware-requirements, in order to accurately take into account
the resource savings in the DSE, we should measure area, power-consumption and max-
imum operating frequency of the explored approximate configurations. Unfortunately,
this would require the synthesis and simulation of each approximate configuration
explored during the DSE, which is definitely a time-consuming process. Therefore,
we propose a model-based hardware-resources estimation to drive the DSE. This has
to take into account the impact of the selected approximation technique on the final
hardware implementation, in order to provide a faithful estimation, albeit not accu-
rate. Defining such a model is not straightforward. Albeit removing some parts of
an arithmetic circuit, for instance, undoubtedly leads to specific gains in terms of
area/energy, model-based hardware-requirement estimation becomes trickier when
the approximation has to be tailored to the application, and savings evaluated in the
application’s context, since they depend on the specific implementation.

3.1.3 Summary

For the reader convenience, Figure 3.2 summarizes the proposed methodology.

Starting from the model of the application to be approximate, an automatic approxi-
mation engine is adopted to generate configurable approximate variants. The latter may
either be generated from scratch starting from the model, or resulting from alterations
of the model itself. Furthermore, for each approximate portions, approximate variants
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allow to selectively adjust the degree of introduced approximation, through the use of
convenient configuration parameters. The value for such parameters leading to optimal
trade-offs between quality of results and performance gains is searched through a
MOP-based DSE. The latter is solved using a suitable heuristic, e.g., either NSGA-II or
AMOSA, while minimizing error entailed by the approximation and, at the same time,
hardware-requirements. At the end of the DSE, resulting non-dominated approximate
configurations are adopted to suitably shape a configurable accelerator implementation.
A synthesis tool can, then, be used to implement the latter on a technology of choice.

In the next chapters we apply the proposed methodology to several applications
from different domain, including generic logic, image-processing and machine-learning
applications.

Figure 3.2: Workflow of the proposed methodology
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Chapter 4

Combinational logic
case-studies

In this Chapter, we apply our methodology to the design of combinational logic circuits,
i.e., those that typically constitute building-blocks for larger, more complex, designs.

Concerning circuits approximation, a variety of techniques has been proposed in
the scientific literature, including both frequency/voltage over-scaling and functional
approximation [147, 154], though the latter are generally application-dependent, their
usage requires designers to have precise insights on the application being approximate,
and most of them tackle the DSE either combining multiple design objectives in a
single-objective optimization problem, or optimizing for a single parameter while
keeping constant the remaining ones. Hence, only a small fraction of the approximate
configurations set is taken into consideration, often yielding results that can certainly
be further improved.

Conversely, the methodology we presented in Chapter 3 is systematic, automatic
and application-independent. In the following, we will discuss how to automatically
generate approximate variants for combinational circuits, and how to select the best
trade-offs between error and savings through the use of a MOP-based DSE. In particular,
in order to generate approximate variants, we exploit the AIG representation of digital

41
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circuits, and we resort to resort recent works concerning SAT and Exact Synthesis (ES)
to build size-optimum approximate AIG cuts replacements. Then, MOP-based DSE
selects k-feasible cuts to be replaced within the AIGs. In order to converge towards
a Pareto-front, we adopt the AMOSA heuristic, with accuracy-loss and silicon-area
minimization being the fitness-functions driving the DSE.

In the following, we first provide the reader with the needed background on AIG
and ES in Section 4.1, then we discuss the generation of approximate variants in
Section 4.2, and several aspects concerning MOP-based DSE in Section 4.3, including
MOP-modeling and fitness-functions to drive the DSE. Finally, in Section 4.4 we
present experimental results.

4.1 Preliminary technical background

In this section, we firstly provide the reader with the needed technical background,
introducing the AIG formalism and discussing the ES problem.

4.1.1 And-Inverter Graphs

An AIG [122] is a direct a-cyclic graph in which there are PI nodes, which have no
incoming edges, and logic-AND nodes, which have two incoming edges. The latter rep-
resent physical connections between nodes, and they can be marked as complemented
or not.

Consider a Boolean function f : Bn → Bm and its set of input variables {x1, . . . , xn}.
An AIG is formally defined as the set of nodes {xn+1, . . . , xn+r} combined ac-
cordingly to Equation (4.1), with r being the AIG size i.e. its number of nodes,
s1i < s2i < i being indexes of the nodes and p1i, p2i being the polarity of the incom-
ing edges of the i-th node. Conventionally, the polarity of complemented edges is
0.

xi = xp1is1i ∧ x
p2i
s2i (4.1)

An AIG is said to realize the Boolean function f : Bn → Bm i.f.f. Equation (4.2) is
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satisfied. Nevertheless, being the AIG representation non-canonical, the same Boolean
function can be realized by multiple different AIGs.

fi = xpisi i ∈ [1,m] , si ∈ [n+ 1, n+ r] (4.2)

A set {xi1 , . . . , xik} of nodes is said to be a path of length k if (a) i1 < n, i.e., the
set starts from a PI or from a constant, (b) ij ∈ children(ij+1), i.e., the set is an
ordered sequence of interconnected nodes, and (c) ∃ l ∈ [1,m] : sl = ik, i.e., the
sequence ends in a PO. The longest path is called the critical path. Consider the set
of paths ending in a node xi, described by Equation (4.3): the (i, L) pair – consisting
of the root node xi and the set of leaf nodes L ⊆ {x1, . . . , xn+s} – defines a cut i.f.f.
(a) ∀p ∈ paths(i), p ∧ L 6= ∅ i.e., all paths to xi contain at least a leaf node from L,
and (b) ∀l ∈ L ∃p ∈ paths(i) : l ∈ p i.e. each leaf in L is at least within a path to xi.
A cut is k-feasible if |L| ≤ k, where |L| is the size of L.

paths(i) =
⋃

j∈children(i), j 6=0

{paths(j), i} (4.3)

The set of all k-feasible cuts having xi as the root node is recursively defined by
Equation (4.4).

cutsk (i) =


∅ i = 0

i i ∈ [1, n]

cutsk (s1i)⊕k cutsk (s2i) i ∈ [n+ 1, n+ r]

(4.4)

The ⊕k operator in (4.4) is the saturating union over all the combinations of subsets
extracted from two sets, defined by (4.5).

M1 ⊕kM2 = {m1 ∪m2 : |m1 ∪m2| ≤ k, m1 ∈M1,m2 ∈M2} (4.5)

4.1.2 The Exact Synthesis Problem

Essentially, the ES problem consists of finding a combinational circuit that realizes a
given Boolean function specification, and that turns out optimal w.r.t. some cost criteria,
which is usually the number of nodes and/or the circuit depth. So far, its computational



44 CHAPTER 4. COMBINATIONAL LOGIC CASE-STUDIES

complexity is unknown, although the minimum circuit size problem, of which the ES is
an instance, has been extensively studied and efficient algorithms for it are considered
to be unlikely [131]. Nevertheless, solutions for the ES problem can be efficiently
found by solving the decision problem in Equation (4.6), which asks whether there
exists an AIG of a given size r and a given maximum depth d that realizes a certain
Boolean function f . In the following sections, we refer to Equation (4.6) as HasAIG(f,

r, d): it either returns an AIG of size r and a polarity p for the output node or unsat

whether such an AIG does not exist.

∃{xn+1, . . . , xn+r}, p ∈ [0, 1] :
(
xpn+r = f

)
∧ (ln+r ≤ d) (4.6)

If the AIG depth is not taken into account, then (4.6) gets simplified as follows.

∃{xn+1, . . . , xn+r}, p ∈ [0, 1] :
(
xpn+r = f

)
(4.7)

Progresses made in scientific literature allow SAT problems to be formulated
as Satisfiability-Modulo Theory (SMT) problem, and solved in reasonable time [59].
We adapt the SMT problem formulation from [161] to AIGs and, although we present
a formulation suitable for single-output Boolean function, its generalization to multiple
outputs Boolean functions is effortless.

Consider an n-inputs Boolean function f : Bm → B. In order to formulate the SMT
problem, it is needed (i) introducing {s1i, s2i} indexes and {p1i, p2i} Boolean variables,
for i ∈ [n+ 1, n+ r]; (ii) enforcing constraint in Equation (4.8), in order to both forbid
cycles and to define an ordering between nodes; (iii) encoding the logic-AND behavior
of each node, as stated in Equation (4.9); (iv) encoding PIs connection and enforcing
values propagation through the AIG, using Equation (4.10), and, finally (v) encoding
the equivalence constraint and the actual function semantic (4.11).

s1i < s2i < i i ∈ [n+ 1, n+ r] (4.8)

b
(t)
i = a

(t)
1i ∧ a

(t)
2i (4.9)

sci = j ⇒ a
(t)
ci = b

(t)
j ⊕ pci c = {1, 2} (4.10)

b
(t)
n+r = p⊕ f(t) (4.11)
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This formulation makes use of the explicit function representation – i.e., f is represented
in terms of truth table values, for each of the possible 2n input assignments. Moreover,
in order to encode the behavior of the Boolean function for each input assignment,
each node i ∈ [n+ 1, n+ r] is replicated once for each of the input vectors t ∈
[0, . . . , 2n − 1]. The a(t)

1i , a(t)
2i and b(t)i variables represents, respectively, the value of

input signals for the i-th node and its output while the circuit input is set to the input
vector t ∈ [0, . . . , 2n − 1]. The b(t)n+r node, which is the node having the largest index,
is the root node of the AIG i.e., the output node.

In order to solve the ES problem, we adapt the algorithm proposed in [161] to AIGs.
Consider the (x, p)← HasAig(f, r) procedure, that, given a Boolean function f ,
returns an AIG of size r if the latter exists, with x being the AIG structural description
and p the output node’s polarity. In order to solve the ES problem, a naive approach
would increase r as long as no AIG having that size exists, as shown in Algorithm 1.

Algorithm 1: ES algorithm from [161]

Function ExactAIG(f):
Input: function f
Output: AIG x, polarity p
r← 0;
while true do

aig← HasAig(f, r);
if aig 6= nil then

return aig;
else

r← r + 1;

4.2 Catalog-based AIG rewriting

Consider a certain Boolean function f : Bn → Bm. The Algorithm 1 we discussed
in Section 4.1.2 can effectively be exploited to generate approximate variants for a
Boolean function f , by searching for AIGs that realize a different function f ′ 6= f ,
which is implemented by a smaller AIG w.r.t. f , yet it is acceptable according to
some error metric. This would enable to obtain size-optimum approximates circuits
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which also differ from the exact one in a very controlled way. Unfortunately, this naive
approach is quite resource-intensive, since computational time needed to solve the ES
problem in Equation (4.6) is reasonable only when considering functions with a fairly
small number of inputs. Hence, it is hardly applicable to actual circuits. Nevertheless,
the approach can effectively be applied to k-feasible cuts, since the latter are, in essence,
k-inputs single-output Boolean functions.

Briefly, the general idea behind our approach is to enumerate k-feasible cuts for a
given AIG, and, then, supersede carefully selected cuts with similar ones, exhibiting
better performances. Anyway, a complete enumeration of the set of k-feasible cuts
in Equation (4.4) is not feasible whether k ≥ 6 [124]. Therefore, we exploit partial
cut-enumeration algorithms, which are effectively adopted for FPGA synthesis in
order to compute the graph of interconnected k-cuts or, alternatively, interconnected
k-LUTs [124].

Thus, for each unique k-cut c within the AIG C, we generate a catalog of approx-
imate cuts, each of which is an approximate Boolean function at a predetermined
Hamming distance from the considered cut. Approximate variants’ generation for C
take place by substituting a given cut – or, alternatively, a LUT instance – using one of
its approximate variants, picked from the catalog, and rewriting back the corresponding
AIG. The relationship between an AIG size, in terms of both depth and number of
nodes, and its hardware requirements in terms of critical path and cells suggests that
whether the approximate circuit consists of fewer nodes, then its hardware require-
ments will be lower than the original circuit [124]. The catalog-generation procedure
is detailed in Section 4.2.1.

For the sake of clarity, let us consider the AIG in Figure 4.1, which represents a
4-inputs-4-outputs Boolean function: the 4-LUT technology mapping results in the
implementation depicted in Figure 4.2, which is equivalent to the set of 4-feasible cuts
of the AIG in Figure 4.1. We introduce approximation by superseding a cut, which is
equivalent to a 4-inputs-1-output Boolean function, with a similar Boolean function,
and rewriting back the AIG. Let us consider, for instance, the cut having o[3] as the root
node and PIs as leaf nodes or, alternatively, the LUT12 in Figure 4.2. It implements
the o[3] = a[0] ∧ a[1] ∧ b[0] ∧ b[1] Boolean function, and it can be superseded by
making use of a constant zero, which is a function at Hamming distance 1 w.r.t the
function implemented by LUT12. Then, by rewriting back the AIG, it will result in
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Figure 4.1: AIG of a 4-inputs-4-outputs Boolean function.
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a[0] b[0] b[1]a[1]

o[1] o[2] o[3]

LUT9
11  1

LUT10
-011  1
0-11  1
11-0  1
110-  1

LUT11
-011  1
0-11  1

LUT12
1111  1

Figure 4.2: AIG of Figure 4.1, mapped to 4-LUT.

the Boolean function whose AIG is depicted in Figure 4.3. Now, depending on the final
application, a suitable error metric has to be selected, and error assessment performed.

4.2.1 Catalog generation

The catalog-generation procedure is detailed in Algorithm 2. Starting from f_of(node),
i.e., the exact specification of each LUT in the considered circuit, we progressively
increase the Hamming distance between the function being implemented by original
cut and the approximate one, while performing ES. The procedure stops when, due to
the approximation itself, the synthesis becomes trivial, i.e., it results in a catalog entry
of size zero, meaning the approximate Boolean function requires no AIG nodes to be
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Figure 4.3: Approximate configuration of the AIG of Figure 4.1

implemented.

Algorithm 2: Catalog generation algorithm
Function CreateCatalog(Clut):

Input: Clut: LUT-mapped circuit
Output: catalog: LUT catalog
catalog← ∅;
foreach node ∈ Clut do

if f_of(node) /∈ catalog then
catalog← catalog ∪ node;
d← 0;
do

catalog[f_of(node)][d]← ExactAIG(f_of(node), d);
d← d + 1;

while gates(catalog[f_of(node)][d]) > 0;

return catalog;

The catalog-generation procedure requires the HasAig(f, r) to be slightly mod-
ified, in order to accommodate for the degree of approximation – i.e., the Hamming
distance – d to be introduced. In particular, let us consider a f : Bn → B, we imple-
ment the function semantic defined in Equation (4.12), which means that at most d
distinct elements belonging to the input set do satisfy the inequality or, in other words,
that at least 2n − d input-output correspondences of the exact behavior are preserved.

∃≤dt ∈ {0, . . . , 2n − 1} : b
(t)
n+r 6= p⊕ f(t) (4.12)

Algorithm 3 reports a pseudocode implementation of such a procedure.
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Algorithm 3: ES algorithm for approximate AIGs
Function ExactAIG(f , d):

Input: function f
Output: AIG x, polarity p
r← 0;
while true do

aig← HasAig(f, r, d);
if aig 6= nil then

return aig;
else

r← r + 1;

4.2.2 Scalability issues

Since the catalog-generation procedure does depend neither on the specific circuit
being approximated nor on the output quality constraints, it is possible to enumerate
all the Boolean k-inputs functions – i.e., all the possible configurations of k-LUTs –
in order to pre-compute the catalog. This would dramatically improve the scalability
of our approach, since it allow reusing the catalog several times, avoiding having to
repetitively solve the same ES problem while performing approximation of different
Boolean functions.

However, such a generic catalog-generation procedure may be enormously time-
consuming, depending on the chosen k, since the catalog size, i.e., the number of
k-inputs-1-output Boolean functions, grows rapidly with k. Indeed, for each of the 22k

possible catalog entries, the set of all functions at d ∈ [1, 2k] Hamming distance must
be recorded. Thus, the full size of the catalog is 22k ×

∑2k

i=0

(
2k

i

)
.

Anyway, a pragmatic approach to outflank such an issue would consist of incre-
mentally build the catalog, while considering different circuits.

Concerning the SMT problem formulation, properties of the ES problem can be
exploited to shorten the computational time. Indeed, the HasAig(f, r) ES problem
has a monotonic behavior, i.e., if HasAig(f, r) can be satisfied for a given r, then
HasAig(f, r+1) can also be satisfied [161]. Thus, linear search can ideally be superseded
using binary search, since the upper bound for the number of gates required by the
synthesis of an arbitrary Boolean function always exists [118]. Though, proving that the
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HasAig(f, r) cannot be satisfied is much more time-consuming than proving HasAig(f,

r+1) can be satisfied [161], hence binary search does not necessarily perform better
than linear one. In addition, this observation paves the way for a heuristic approach
to circumvent time-consuming unsatisfiability trials: if HasAIG(f, r) cannot be solved
within a given time budget, the heuristic behaves as if such a problem is unsatisfiable.

4.3 Design-space exploration

For the reader’s convenience, we summarize the variant generation procedure. Since
circuit specifications are typically encoded in Hardware Description Language (HDL)
rather than AIG, a preliminary analysis is carried out in order to obtain an AIG repre-
sentation of the given circuit, according to the implemented Boolean function. Then,
k-LUT mapping is performed, in order to enumerate k-feasible cuts. Thus, for each
unique k-LUT, a catalog of variants is generated as discussed in Section 4.2: con-
straints (4.8), (4.9) and (4.10) are encoded to solve the approximate ES problem (4.12)
while increasing Hamming distance d until, due to the approximation itself, the synthe-
sis becomes trivial.

Once the catalog has been built, the main challenge is to find the combination of
cut-replacements leading to Pareto-optimal trade-offs between error and savings, i.e.,
to perform a DSE. In this case-study, we adopt the AMOSA [19] searching algorithm,
that is deeply discussed in Section 3.1.2.3. The AMOSA heuristic orchestrates the DSE:
k-LUT nodes constitute the set of decision variables of the MOP, their indexes are as-
signed according to the topological ordering defined by the underlying graph, and their
domain is given by catalog entries. Starting from a randomly chosen archived solution,
the AMOSA selects a random LUTs and replace it using a suitable element taken
from the catalog, then fitness-functions are computed to state the Pareto-dominance
relationship between the altered configuration and archived solutions. As discussed in
Section 4.2.2, catalog entries are organized and stored in a database so that they can be
subsequently reused. Moreover, properties of the ES problem are exploited in order to
improve scalability.

As we mentioned, fitness-functions driving the DSE are error and silicon-area
minimization. As far as silicon-area is concerned, we resort to a model-based gain
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estimation to drive the DSE. In particular, we estimate the silicon-area requirements
from the number of AIG nodes, since the relationship between the latter and hard-
ware requirements – in terms of critical path and LUTs or standard cells – has been
empirically proven in [124]. We evaluate both the number of nodes and the depth
for a given approximate configuration on Functionally-Reduced And-Inverter Graphs
(FRAIGs) [123].

For what pertains to error-metrics, the one to be used strictly depends on what
kind of circuits is the final target, since a suitable error metric must be selected. In
the following, we discuss experimental results while targeting generic combinational
logic circuits and arithmetic circuits. In the former case, we adopt the error probability
metric, which is defined by Equation (2.5), while in the latter case we resort to the
AWCE metric, as defined by Equation (2.1). Concerning the error-assessment method,
we resort to simulation-based assessment. Anyway, using exhaustive test patterns
simulation is often prohibitively time-consuming, therefore, we configured our tool
to perform exhaustive simulations only whether the amount of PIs is less or equal to
than 13, since it would involve less than 10000 test vectors. Conversely, for circuits
having more inputs, we resort to an error-sampling method, applying a sequence of
pseudo-random input vectors to each targeted approximate variant. Concerning the
error-probability, in order to estimate the actual error, we resort to Equation (4.13),
which provides a 99.7% confidence-level for the actual error given the number of test
patterns Ns and the measured error RS [87]. During DSE, we do set Ns = 10000.
No error threshold has been set during this experimental campaign, even though our
approach allows us to impose constraints on both maximum error and gate-count.

RE = RS + 4.5
NS
×
(

1±
√

1 + 4
9 ×NS ×RS × (1−RS)

)
(4.13)

4.4 Experimental results

The approach presented in Section 4.2 is implemented as a plug-in of the Yosys
synthesis tool [178], using the Boolector SMT solver [133] to solve the ES problem
during the catalog-generation procedure. The latter is performed targeting 4-feasible
and 6-feasible cuts, since 4-LUT and 6-LUT are currently the most frequent solutions
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adopted in FPGA commercial fabric.

In order to evaluate the proposed methodology, we first considered a subset of the
LGSynt91 benchmark [181], including both logic and arithmetic circuits. We also
considered arithmetic circuits from [2] for further evaluation.

4.4.1 The LGSynt91 benchmark

As mentioned, the LGSynth91 benchmark is quite diversified, and comprises both
generic combinational logic and arithmetic circuits. For this batch of experiments,
we selected the error-probability as error metric and the number of AIG gates to
estimate silicon-area requirements, as mentioned above. At the end of the DSE,
the AMOSA heuristic provided several approximate configurations for each of the
considered benchmark circuits. Figure 4.4 reports the Pareto-front estimation resulting
from DSE for some of the circuits belonging to the considered benchmark.
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Figure 4.4: Pareto-fronts resulting from DSE for some of the circuits from the LGSynt91
benchmark.

In order to state the actual savings, we also performed FPGA synthesis and power
analysis targeting a mid-range Xilinx Artix 7 FPGA. Experimental results are reported
in Table 4.1. Such a table also report the rough computational-time needed to perform
the whole workflow on each of the considered circuits. Experiments have been con-
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ducted on a host PC equipped with 16 GB of RAM and an Intel i7-3770 CPU running
at 3.9 GHz.

For each of the considered benchmark circuits we report: the circuit name and
its type (i.e., whether the circuit is pure logic or arithmetic), the gate count, the LUT
count, the estimated power consumption and related savings for either the exact (i.e.,
non-approximated) circuit, the minimum-error and the minimum area approximate
configurations.

Although circuits in the considered benchmark do not exhibit the same error
resiliency, the proposed methodology is able to exploit relaxed constraints on the
quality of the output, allowing for significant area savings, both for smaller and larger
circuits. In addition, larger circuits in terms of AIG nodes, where the set of k-feasible
cuts is quite large – hence, a larger number of variants and approximate configurations
can be identified – the optimization heuristic has much more room to operate, yielding
substantial savings. The same cannot be said for circuits of modest or small size, where
the results are still substantial, but much less eye-catching.

As it is easy to grasp, a reduction in power consumption is expected a conse-
quence of area savings; therefore, we also performed power analysis while resorting
to workload-based simulations for all the Pareto-optimal solutions of the considered
benchmark circuits. Results, still reported in Table 4.1, show that a significant amount
of savings is achieved for almost all the considered circuits, depending on their error
resiliency and the corresponding approximation degree. Power savings are attributable
to two different contributions: on the one hand, the reduced area of approximate circuits
directly correlate to a reduced static power consumption, while, on the other hand, the
lower switching activity approximate cuts exhibit w.r.t. exact ones – which also reflects
on LUTs implementing the approximate circuits – lead to a reduction of the dynamic
term.

4.4.2 Arithmetic circuits

Being the metric we selected while experimenting on the LGSynt91 benchmark suitable
for generic logic circuits rather than arithmetic ones, the achieved savings for those
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Table 4.1: Experimental result on the LGSynt91 Benchmark

Exact Solution Min. Error Approx. Configuration Min. Area Approx. Configuration
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9symml Count Ones 5s 43 31 0.067 1.95E-03 58.16 3 90.32 0.061 8.96 1.56E-02 80.75 2 93.55 0.059 11.79
alu2 ALU 16m 335 146 0.092 8.00E-03 2.29 112 23.29 0.091 1.09 5.51E-01 49.03 17 88.36 0.082 10.87
alu4 ALU 7m 681 234 0.107 7.89E-04 3.82 230 1.71 0.107 0.00 8.00E-01 34.86 24 89.74 0.080 25.23

apex6 Logic 6m 452 185 0.340 5.00E-03 9.12 169 8.65 0.326 4.12 8.50E-01 24.96 136 26.49 0.301 11.47
b1 Logic 1s 13 3 0.073 1.25E-01 37.50 3 0.00 0.071 2.74 2.50E-01 62.50 2 33.33 0.069 5.48
b9 Logic 10s 125 36 0.111 5.30E-02 55.05 19 47.22 0.093 16.22 3.83E-01 87.16 6 83.33 0.076 31.53

C17 Logic 1s 6 2 0.067 6.25E-02 28.57 2 0.00 0.067 0.00 5.89E-01 77.95 1 50.00 0.065 2.99
C432 Decoder 1m 160 102 0.108 1.40E-02 41.42 22 78.43 0.079 26.85 4.78E-01 69.87 7 93.14 0.067 37.96

C6288 Multiplier 9m 2406 754 0.472 6.48E-03 7.28 731 3.05 0.471 0.21 9.82E-01 34.07 522 30.77 0.298 36.86
c8 Logic 12s 164 26 0.127 1.64E-02 62.99 12 53.85 0.101 20.47 #REF! 77.95 11 57.69 0.095 25.20
cc Logic 9s 47 16 0.107 5.75E-03 24.24 14 12.50 0.105 1.87 5.92E-01 74.24 6 62.50 0.099 7.48

cm138a Logic 12s 17 8 0.090 1.56E-02 23.08 6 25.00 0.090 0.00 3.59E-01 76.92 3 62.50 0.063 30.00
cm150a Logic 7s 69 9 0.066 1.48E-03 4.35 8 11.11 0.066 0.00 2.36E-01 97.83 1 88.89 0.062 6.06
cm151a Logic 8s 33 4 0.068 4.00E-02 3.85 4 0.00 0.068 0.00 3.45E-01 88.46 3 25.00 0.066 2.94
cm152a Logic 6s 30 3 0.066 1.60E-02 58.62 0 100.00 0.059 10.61 1.60E-02 68.97 1 66.67 0.060 9.09
cm162a Logic 1m 43 10 0.075 2.17E-03 23.81 9 10.00 0.075 0.00 1.60E-01 90.48 3 70.00 0.066 12.00
cm163a Logic 5m 42 8 0.074 1.08E-04 19.05 7 12.50 0.073 1.35 3.41E-01 90.48 4 50.00 0.070 5.41
cm42a Logic 3s 17 10 0.071 6.25E-02 30.00 7 30.00 0.067 5.63 3.13E-01 70.00 3 70.00 0.064 9.86
cm82a Logic 3s 27 3 0.076 1.25E-01 10.00 3 0.00 0.076 0.00 6.88E-01 80.00 2 33.33 0.069 9.21
cm85a Logic 2s 38 8 0.069 3.00E-02 45.45 5 37.50 0.067 2.90 3.46E-01 93.18 1 87.50 0.065 5.80
cmb Logic 3s 41 9 0.063 7.89E-04 15.09 9 0.00 0.063 0.00 5.99E-01 96.23 1 88.89 0.063 0.00

count Counter 4min 143 30 0.108 3.50E-02 5.63 29 3.33 0.108 0.00 6.84E-01 87.32 10 66.67 0.098 9.26
cu Logic 3s 48 15 0.074 1.60E-02 9.62 13 13.33 0.071 4.05 4.97E-01 90.38 3 80.00 0.062 16.22

decod Decoder 12s 22 16 0.070 3.13E-02 12.00 14 12.50 0.069 1.43 5.94E-01 88.00 1 93.75 0.061 12.86
des Encription 7.5h 4000 1020 1.104 1.10E-02 9.53 519 49.12 0.888 19.57 9.38E-01 45.49 244 76.08 0.688 37.68

example2 Logic 10s 277 88 0.169 6.48E-03 14.74 79 10.23 0.163 3.55 9.50E-01 48.72 25 71.59 0.126 25.44
f51m Arithmetic 5s 43 12 0.099 3.13E-02 64.52 4 66.67 0.077 22.22 3.75E-01 78.23 4 66.67 0.072 27.27
frg1 Logic 16s 105 120 0.075 2.00E-03 64.18 2 98.33 0.065 13.33 1.63E-01 69.27 2 98.33 0.063 16.00
frg2 Logic 23m 1004 225 0.354 1.70E-02 16.43 214 4.89 0.335 5.37 9.65E-01 48.95 69 69.33 0.203 42.66
i1 Logic 3m 46 16 0.096 3.25E-02 28.21 14 12.50 0.094 2.08 5.52E-01 84.62 6 62.50 0.082 14.58
i3 Logic 10s 90 70 0.093 3.75E-02 42.06 2 97.14 0.065 30.11 5.72E-01 84.92 3 95.71 0.062 33.33
i5 Logic 3m 285 75 0.270 7.20E-02 3.49 74 1.33 0.270 0.00 7.56E-01 26.03 68 9.33 0.250 7.41
i6 Logic 11s 340 67 0.902 8.70E-03 13.31 67 0.00 0.342 62.08 3.52E-01 40.25 52 22.39 0.289 67.96
i7 Logic 5m 471 67 0.367 2.84E-02 27.17 67 0.00 0.299 18.53 6.79E-01 55.51 43 35.82 0.255 30.52
i8 Logic 17m 1831 299 0.443 3.58E-03 17.42 209 30.10 0.349 21.22 2.56E-01 50.43 50 83.28 0.153 65.46
i9 Logic 9m 522 208 0.423 8.00E-03 46.10 77 62.98 0.255 39.72 1.28E-01 58.73 19 90.87 0.099 76.60

pcler8 Logic 1min 84 29 0.105 3.00E-02 34.34 18 37.93 0.103 1.90 5.64E-01 70.71 3 89.66 0.061 41.90
pm1 Logic 22s 39 16 0.083 1.40E-02 16.98 16 0.00 0.083 0.00 5.35E-01 92.45 9 43.75 0.075 9.64
rot Logic 8m 691 204 0.379 3.00E-03 24.93 136 33.33 0.336 11.35 4.05E-01 32.10 112 45.10 0.330 12.93
sct Logic 1m 91 19 0.099 2.51E-02 45.39 15 21.05 0.098 1.01 4.57E-01 76.60 10 47.37 0.088 11.11

term1 Logic 52m 358 52 0.082 1.87E-02 34.15 45 13.46 0.080 2.44 6.66E-01 59.41 8 84.62 0.073 10.98
ttt2 Logic 5m 200 37 0.122 2.01E-01 48.95 23 37.84 0.104 14.75 3.57E-01 56.76 21 43.24 0.101 17.21

unreg Logic 2m 97 16 0.119 9.45E-03 0.89 16 0.00 0.119 0.00 8.72E-01 72.32 14 12.50 0.094 21.01
x2 Logic 7s 42 12 0.077 6.20E-02 50.88 6 50.00 0.073 5.19 4.94E-01 82.46 5 58.33 0.068 11.69
x3 Logic 7m 715 178 0.339 1.17E-02 15.12 137 23.03 0.283 16.52 5.50E-01 24.57 122 31.46 0.306 9.73
x4 Logic 4m 369 86 0.250 3.84E-02 28.16 61 29.07 0.177 29.20 6.51E-01 43.37 57 33.72 0.160 36.00

z4ml Adder 10s 20 6 0.082 1.56E-02 71.29 1 83.33 0.066 19.51 4.69E-01 87.13 1 83.33 0.063 23.17

circuits – such as C6288, f51m and z4ml – are far modest when compared against
pure-logical circuits. For this reason, we performed a second batch of experiments,
using the AWCE defined by Equation (2.1) as metric for error assessment, involving the
above-mentioned circuits and arithmetic circuits from [2]. For the error computation,
each of the output bits was assigned a weight equal to the significance of the bit, i.e.,
the least significant bit has been assigned a weight of 20 = 1, the next one a weight
of 21 = 2, and so on. As done for the LGSynt91, no constraints have been set. The
reward fitness-function we adopted is still the number of AIG nodes.

First and foremost, for each of the circuit being considered, we report exact circuits
requirements in terms of AIG gates, LUTs and power consumption, as provided by
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Table 4.2: Experimental results while using the AWCE metric (2.1) on arithmetic
circuits.

Exact Circuit Minimum Error Configuration Minimum Area Configuration
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C6288 17h 2406 754 0.47 0 1.00 750 0.53 0.467 1.06 4.26E+09 37.00 484 35.81 0.28 41.31
f51m 3m 43 12 0.10 1 30.00 8 33.33 0.09 5.05 7.50E+01 65.00 5 58.33 0.08 24.24
z4ml 2m 20 6 0.08 1 8.00 6 0.00 0.08 0.00 7.00E+00 42.00 1 83.33 0.06 23.17
8x8 bits Dadda multiplier 36m 383 141 0.21 0 19.00 114 19.15 0.17 17.39 2.38E+02 43.00 39 72.34 0.10 51.69
8x8 bits array multiplier 21m 420 163 0.20 1 16.00 155 4.91 0.19 3.57 2.52E+02 45.00 48 70.55 0.10 46.94
8x8 bits Wallace multiplier 40m 398 149 0.20 0 12.00 132 11.41 0.17 13.93 2.50E+02 33.00 69 53.69 0.14 32.34
16 bits carry select adder 3.5h 138 44 0.18 0 2.00 44 0.00 0.17 5.68 4.10E+04 19.00 42 4.55 0.16 6.82
16 bits carry-skip adder 3h 128 39 0.17 0 4.00 39 0.00 0.17 1.16 1.78E+04 22.00 19 51.28 0.14 20.93
16 bits Han-Carlson adder 4h 120 38 0.17 1 1.00 38 0.00 0.16 5.23 6.17E+04 36.00 23 39.47 0.13 22.67
8 bits carry-lookahead adder 6m 54 24 0.61 1 9.00 16 33.33 0.11 81.64 3.43E+02 60.00 4 83.33 0.08 87.21
8 bits ripple carry adder 3m 59 19 0.12 1 4.00 13 31.58 0.12 0.00 1.45E+02 30.00 13 31.58 0.11 6.96
8 bits Han-Carlson adder 4m 53 18 0.12 1 3.00 13 27.78 0.12 0.00 3.77E+02 61.00 6 66.67 0.03 26.09

the Berkeley-ABC tool [29] using the mcnc.genlib library, and while targeting a mid-
range Xilinx Artix 7 FPGA, respectively. For the sake of briefness, from the whole
Pareto-front resulting from the DSE we only report solutions minimizing either one
of the fitness-functions, i.e., the minimum-error and the minimum area approximate
configurations. Furthermore, as done with the LGSynth91 benchmark, we also report
the rough computational-time needed to perform the whole workflow on each fo the
considered circuits.

As foreseeable, the use of a well-suited error metric is undoubtedly beneficial while
considering arithmetic components for approximation. Indeed, concerning circuits
from the LGSynth91 benchmark, using the AWCE rather than the error probability
allows achieving significant savings while keeping the error bounded.

Concerning circuits from benchmark [2], our AIG-rewriting technique allows to
carefully introduce approximation, while the MOP-based DSE provides a large variety
of trade-offs between error and savings. Indeed, our methodology allows achieving
minimum error configurations exhibiting almost no error yet providing savings ranging
between 30-60%, while minimum area configurations provide higher savings, at the
expense, obviously, of higher error.
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Table 4.3: Comparison with results from [42] while using the error probability.

Results from [18] Similar Error Similar gains
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alu2 45 236 32.2 570 0.91 55.1 203 8.9 137 10.5 332 19.4 765
24 231 32.2 566 0.89 25.3 273 17.5 545 N/A
81 8 32.2 16 0.03 82.3 87 7,6 163 N/A

alu4 22 489 40 1172 0.94 24.5 527 20 1106 9.2 640 21.6 1304
22 489 40 1172 0.94 24.5 527 20 1106 9.2 640 21.6 1304
95 239 34 557 0.46 95.6 24 5.7 41 95.6 24 5.7 41

cm163a 43 15 4.1 25 0.44 N/A 3.6 29 5.7 60
21 18 3 36 0.53 23.6 15 3 28 N/A
88 20 4.7 41 0.59 N/A 1.7 31 5.7 71

count 43 104 14.6 220 0.87 41.5 66 5.5 137 16 64 6.4 148
24 53 3 110 0.44 26 48 5.1 118 45 43 4.6 98
97 101 14.4 90 0.84 N/A 16 64 6.4 148

frg1 44 128 27.1 317 0.99 N/A N/A
16 126 27.1 313 0.98 10.5 0 0.9 1 N/A
56 128 27.1 317 0.99 N/A N/A

term1 38 113 11.1 249 0.80 N/A N/A
25 84 8.1 179 0.59 25.3 26 5.8 53 9.9 97 6.9 210
99 73 11.1 150 0.51 N/A 25.3 26 5.8 53

unreg 38 80 3.4 214 0.96 33 85 4.6 182 0.06 88 4.6 189
0 83 3.4 227 1.00 0.9 111 5 224 0.9 111 5 224

99 46 3.4 90 0.55 91 25 3.9 33 72 58 4.3 119
x2 37 23 5.7 53 0.77 38 13 4 20 N/A

12 27 5.7 66 0.90 11 13 4 23 N/A
1 17 5.6 41 0.57 0 15 4 30 N/A

z4ml 50 20 8.7 52 0.65 46 6 2.5 5 N/A
0 31 12.1 84 1.00 1.5 6 3.8 5 N/A

82 5 3.8 13 0.16 N/A 46 5 3.8 3.8

4.4.3 Comparison with previous works

A comparable approach that exploits AIG-rewriting has been proposed by authors
of [42]. Nevertheless, there are several differences between the two approaches:
authors of [42] trivially replaces k-feasible cuts by making use of a stack-at fault with
constant zero value while performing single-objective optimization targeting circuit area
minimization with an error threshold. On the other hand, our approach is MOP-based,
i.e., it simultaneously pursues both error and circuit area minimization, providing the
designer with a comprehensive set of approximate configurations covering diversified
trade-offs between error and gains.

For evaluation purpose, also authors of [42] considered a subset of the LGSynt91
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benchmark, reporting approximate synthesis results provided by the Berkeley-ABC
tool [] while using the mcnc.genlib library. Conversely, we consider FPGA synthesis.
Therefore, in order to perform a fair comparison between results, we had to appropri-
ately select, from the Pareto-front, configurations exhibiting error and gains similar to
results from [42]. In addition, we also had to perform synthesis using the Berkeley-
ABC tool [29] and the mcnc.genlib library. Table 4.3 reports results comparison while
using the error probability as metric. Besides the error frequency, the gate count, delay
and area requirements of approximate configurations resulting from [42], we also report
a gate ratio column, i.e., the ratio between the gate count of an approximate config-
uration over the same for its non-approximate counterpart. For comparison purpose,
we report approximate configurations obtained through our approach which present
similar error frequency or similar savings w.r.t. approximate configurations from [42].
As the reader can observe, set the error degree, our method allows achieving better
savings. On the other hand, set the savings, our method allows achieving approximate
configurations exhibiting better quality of results.

Though, our approach allows introducing approximation in a less abrupt way, which
leads to a more gradual degradation of the output quality. Moreover, the MOP-based
approach allows effectively perform the DSE, so resulting solutions are not centered
around a few dominant design alternatives, rather they are diversified and cover the
whole Pareto-front, allowing the designer to choose the trade-off between accuracy and
savings that they feel is appropriate.

Concerning the use of the AWCE on arithmetic circuits, using our methodology
results in minimum-error approximate configurations exhibiting almost negligible
error against savings ranging from 2% to 20%, as reported in Table 4.2, depending
on error resiliency of the particular circuit being considered. Furthermore, savings
provided by minimum-error approximate configurations outclasses the best of the
resulting approximate configurations from [42] Thus, any comparison between the two
approaches is utterly superfluous.

Figure 4.5 reports, for comparison purpose, the Pareto-fronts resulting from our
methodology (represented using dots) and results from [42] (depicted as crosses), while
using the AWCE metric on an 8-bits array (red), Dadda (green) and Wallace (blue)
multipliers. Please kindly note that the x-axis is in semilogarithmic scale.
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Figure 4.5: Comparison of results from [42] while using the AWCE metric on an 8-bits
multipliers. Dots represent Pareto-fronts resulting from our methodology, while results
from [42] are depicted as crosses. Array, Dadda and Wallace multipliers are depicted
in red, green and blue, respectively.

By observing Figure 4.5, we can conclude that the use of our technique allows
for the introduction of approximation into arithmetic circuits in a step-wise fashion,
and that the use of a MOP-based approach for the DSE ensures that the trade-off
between error and savings is carefully chosen, hence resulting in qualitatively better
solutions. Indeed, using naive approximation techniques, such as stuck-at constant,
and single-objective optimization approaches lead to low-end suboptimal approximate
configurations.



Chapter 5

Image-processing case-studies

In this Chapter we discuss the application of our methodology to the design of hardware
accelerators for image processing. In facts, image processing is one of the main fields
of application for AxC, since imperceptible reduction of image quality can lead to
important computational resources savings [47].

Section 5.2 discusses the case study of a hardware accelerator for the Sobel filter
for image processing. This case study is of particular importance because the small
size of the solution space allows the methodology to be compared against exhaustive
exploration of the solution space. Section 5.3, instead, discusses the application of the
method to the design of an accelerator for DCT, which is the most demanding step of
the JPEG, viz. one of the most commonly adopted lossy image and video compression
algorithm.

Before discussing the mentioned case-studies, we introduce and deeply describe the
implementation of the methodology from Chapter 3 as state-of-the-art approximation
framework, i.e., we present the E-IDEA framework [24].

59



60 CHAPTER 5. IMAGE-PROCESSING CASE-STUDIES

5.1 The E-IDEA framework

Existing AxC design tools consider specific transformations and specific domains, as
discussed in Section 2.3. Moreover, they are not fully automatic and simply provide a
guided approach for approximation. Conversely, the E-IDEA defines an automatic and
general approach.

Clang-
Chimera Bellerophon

Application C/C++
source-code

Approximate variants
(Mutated C/C++ source-code)

Mutators
configuration file

AxC Operators

Fitness-functions
specification

Approximate
Configurations

Native
Software

HLSCross
Compilation

HDL

Figure 5.1: E-IDEA flow, which includes Clang-Chimera and Bellerophon tool.

Figure 5.1 sketches the overall flow E-IDEA: it requires

1. the original application, described as C/C++ code;

2. the set of approximate operator, i.e., mutators;

3. the fitness-functions to select the appropriate approximation outcomes.

Concerning mutators, E-IDEA is already provided with a set of mutators implementing
the most common approximation techniques. For what pertains to fitness-functions,
defining an appropriate error fitness-function to quantify the approximate version
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deviation compared to the original outcomes is mandatory. Optionally, the user can
specify an error-threshold, in order to determine whether the approximate outcomes
are acceptable or not, and further fitness-functions, in order to quantify hardware-
requirements.

As main output, E-IDEA produces the mutator configuration of the best approx-
imate application variants obtained (i.e., the non-dominated solutions). Such config-
urations are then used to produce software or hardware implementations, possibly
involving also High Level Synthesis (HLS) tools.

E-IDEA is composed of two phases carried out by two components, Clang-Chimera
and Bellerophon, respectively described in Subsections 5.1.1 and 5.1.2.

5.1.1 Clang-Chimera

The green dotted box in Figure 5.1 reports Clang-Chimera flow. Clang-Chimera is
a mutation engine for C/C++ code. It is based on the Clang compiler [3], used to
rapidly develop source-to-source C/C++ compilers. Clang-Chimera applies the set of
mutators (i.e., AxC Operators) to the input application code, in order to make systematic
modifications to the latter, and produce a set of mutated files, i.e. the configurable
approximate variants of the input application code. In addition, it also provides the
mutators configuration file, which will be subsequently used during the DSE .

Clang-Chimera borrows the terminology from the mutation testing technique, which
is a software testing approach used to evaluate the quality of a test set, in terms of
its ability to detect software faults. Mutation technique consists in using supporting
tools to mutate the original source code – thus emulating programmer mistakes –
to generate erroneous programs. The test set quality is evaluated according to the
number of mutated versions detected. Conversely, in the context of Clang-Chimera,
the mutation is used in order to generate modified (i.e., approximate) versions of
the original code. Here, the concept of software fault is replaced by the concept of
approximation technique. The latter is formalized as a mutator.

Mu = {Match,Mutate} (5.1)
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Equation (5.1) defines the mutator Mu as a pair where: Match identifies where in the
code the mutation has to take place, defined by means of matching rules, and Mutate
indicates how to actually modify the source code, specified by means of mutation rules.

Clang-Chimera analyzes and manipulates the input application source code through
its AST, which is a tree-based representation of the application code, where each
node of the tree denotes a language construct of the analyzed code. A set of AST
nodes defines an AST pattern, which corresponds to a specific structure of the code.
Altering the AST results in introducing constructs through which it is possible to tune
the approximation degree.

Clang-Chimera utilizes Low Level Virtual Machine (LLVM)/Clang facilities, such
as ASTMatcher and Rewriter in order to apply a given mutator Mui. In details,
ASTMatcher searches for all occurrences of the Mui.Match rule and Rewriter
modifies the identified nodes by applying the Mui.Mutate rule.

Clang-Chimera is already provided with a set of mutators implementing com-
mon approximation techniques, such as: (i) two loop-perforation mutators, namely
LOOP1 and LOOP2; (ii) two precision-scaling mutators for the floating-point arith-
metic, namely Variable Precision Arithmetic (VPA) and FLexible Arithmetic Precision
(FLAP); (iii) a precision scaling mutator for the integer arithmetic, namely TRUNC;
(iv) a mutator supporting approximate arithmetic operator models of circuits being part
of the EvoApproxLib [127] and EvoApproxLib-Lite [129] libraries. Moreover, adding
new mutators to this set allows the E-IDEA framework to be easily extended. The next
subsection presents some examples.

5.1.1.1 Loop Perforation Example

The goal of this example is to illustrate the application of the well-known loop perfora-

tion technique to the C/C++ code reported in listing 5.1. The related AST is reported
in Figure 5.2.
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FOR_STMT

i < N
i++

int i = 0

FOR_STMT

j < M

j++
int j = 0

body

FOR_INITFOR_INIT

FOR_INITFOR_INIT

FOR_CONDFOR_COND
FOR_EXPRFOR_EXPR

FOR_BODYFOR_BODY

FOR_BODYFOR_BODYFOR_EXPRFOR_EXPR
FOR_CONDFOR_COND

Figure 5.2: For loop AST example (see Listing5.1)

1 int main (void) {

2 for (int i = 0; i < N; i++) {

3 for (int j = 0; j < M; j++) {

4 body;

5 }

6 }

7 }

Listing 5.1: Precise Code

Basically, we want the loops to skip some iterations. This can be obtained by
altering the stride of the loop variable(s). Therefore, let the Mutator related to the
loop-perforation be defined as follows:

MuLP = {FOR_STMT, var++→ var+=stridei} (5.2)

The application of the mutation described in Equation (5.2) modifies the AST (see
Figure 5.2). For each occurrence of FOR_STMT , the corresponding FOR_EXPR
node is altered. The resulting mutated code, produced by Clang-Chimera, is reported
in the following listing.



64 CHAPTER 5. IMAGE-PROCESSING CASE-STUDIES

1 int main (void) {

2 for (int i = 0; i < N; i+=stride1) {

3 for (int j = 0; j < M; j+=stride2) {

4 body;

5 }

6 }

7 }

Listing 5.2: Precise Code

Finally, the loop perforation effects depend on the actual values of stride1 and
stride2 variables. Indeed, by assigning different values to the variables, different trade-
offs between skipped iterations (thus performance increase) and accuracy reduction
can be obtained.

5.1.1.2 Approximate Circuit Example

With this example we apply mutators to alter an algorithm, such that in Listing 5.4, to be
approximated by replacing every sum operation with a configurable approximated sum.
The Clang-Chimera allows the automatic generation of an approximate variant having
one, or more, addition operations replaced with a call to a function that implements the
approximate counterpart. Let us suppose that the function performing the approximate
addition is the one reported in Listing 5.3, with add1 and add2 being the addends and
ax being the configurable parameters governing the approximation. The exact nature of
the approximation being made by this function is hidden in the function itself: whether
the function implements bit-width reduction, the latter parameter may govern the NAB
of the sum; conversely, whether the function implements a library of approximate
circuits, the ax parameter may allow selecting which particular circuit is to be adopted.
Anyway, from the Clang-Chimera point of view, the particular approximate technique
being implemented does not matter: using the appropriate mutator, the Clang-Chimera
mutates the code in Listing 5.4 and generates the code in Listing 5.5.

As for the loop-perforation technique discussed above, the effects of approximation
depend on the actual value of configuration parameters. Hence, the main problem is to
find an appropriate value for these parameters, in order to achieve the best trade-off
between performance gains and accuracy losses.
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1 int ax_sum(int add1, int add2, int ax);

Listing 5.3: Example of approximate sum

1 ...

2 y = x + 2

3 z = 2 * x + 3 * y + 2;

4 ...

Listing 5.4: Example code to be mutated

1 int ax_0 = 0;

2 int ax_1 = 0;

3 int ax_2 = 0;

4 ...

5 y = ax_sum(x, 2, ax_0);

6 z = ax_sum(ax_sum(2 * x, 3 * y, ax_1), 2, ax_2);

Listing 5.5: Mutated code

As described in the next section, the main goal of Bellerophon is tuning these values
to ultimately find non-dominated solutions in terms of trade-off between performance
gain and accuracy loss.

5.1.2 Bellerophon

Red continuous box in Figure 5.1 depicts the Bellerophon flow. The tool analyzes the
set of mutated files generated by Clang-Chimera and explores the different possible
mutators configurations, i.e. different configurations for the tunable parameters in
mutators, which results in different fitness values. The final result is a set of solu-
tions corresponding to the (sub-)optimal trade-offs between the user-defined objective
functions.

More formally, Bellerophon faces a MOP, which we described in Section 3.1.2.1.
Given a set of decision variables, their values have to be optimized (minimize/maxi-
mize) w.r.t. the specified set of user-defined fitness-functions. Therefore, Bellerophon
explores the different approximate variants while ‘moving’ towards the Pareto front of
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the solutions, in terms of the defined fitness-functions.

Bellerophon models the MOP as follows:

1. Population: each solution (i.e., approximate configuration) represents an indi-
vidual of the population;

2. Chromosomes: each individual is represented using a chromosome, as discussed
in 3.1.2.2, and each of the genes correspond to an approximation parameter that
can be evolved through generations;

3. Variation Operations: the mutation and crossover operations randomly alter
genes, or combines parents’ genes to generate an offspring.

4. Fitness: a single, or multiple user-defined fitness-functions are employed to
select the best individuals;

Fitness-functions might be defined accordingly to the particular exploited AxC
technique. In case of precision-scaling technique, for instance, a feasible fitness-
function could be based on the NAB, since it translates in less hardware resources.

To perform the exploration, Bellerophon creates new populations by tuning the
approximation parameters (i.e., mutator parameters in the code) and evaluates the
corresponding approximate variants according to the fitness-functions, to finally select
the best set. The mutators configuration file (see Figure 5.1) reports the maximum
and minimum possible values for all approximation parameters. The main objective of
Bellerophon is to converge toward optimal solutions, improving fitness-functions as
much as possible.

Since implementing a full-featured NSGA-II may be cumbersome, we resorted to
the ParadisEO framework [110].

In order to be evaluated, each individual has to be compiled and executed. To
speed up the execution time, the compilation strategy adopted by Bellerophon allows
compiling just what it is necessary to retrieve information about approximate variants.
Bellerophon uses the Just-in-Time engine provided by Clang-LLVM [5]: each time the
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software needs to be altered to test a new variant, Bellerophon do not invoke the system
loader, rather it alters the program image which is already loaded into the memory.

The next subsection will show an example of how Bellerophon creates a population
and evaluates the fitness of its individuals to then select the best set.

5.1.2.1 Evolution Example

Let us refer again to the example in subsection 5.1.1.1. Clang-Chimera applied the
mutations to the AST and, consequently, it generated the C/C++ code shown in Listing
5.2 and provided the “mutators configuration” file. In this example, a Mutator (i.e.,
approximation technique) modeling the loop perforation has been used. The technique
has been applied to both the loops in the code (lines 2 and 3 of the code). The mutators

configuration file produced by Clang-Chimera reports the maximum and minimum
values for the two stride variable introduced (i.e., stride1 and stride2). The following
listing reports the mutators configuration file generated by Clang-Chimera for this
example.

Listing 5.6: Mutators configuration file example

s t r i d e 1 , N, 1
s t r i d e 2 , M, 1

Thanks to mutation, crossover and selection operations, Bellerophon moves towards
the Pareto-front. The first population is generated randomly. Within the limits imposed
by the configuration file, Bellerophon is able to mutate the individuals and generate a
non-dominant population as reported in Table 5.1. In this example, k individuals have

Table 5.1: Examples of a population made of k individuals.

Individual Stride1 Stride2 Error Reward
0 3 5 5 8
1 2 9 7 11
...

. . .
...

...
k-1 5 2 3 7

been created. Each individual is characterized by its own chromosomes (i.e. value of
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the stride variables), reported in the table rows. Bellerophon evaluates the individuals
according to the fitness functions and assigns corresponding values to each of them.
For example, here the reward is simply defined as the sum of the stride variable values:
the higher the stride value, the more iterations will be skipped. However, skipping loop
cycles also entails an accuracy loss. Depending on the fitness values measured for each
individual, Bellerophon will select the set of the best candidates to generate the next
population.

The next Section discusses a case-study targeting the design of an hardware-
accelerator for the Sobel-filter edge-detection in image-processing applications. This
case-study is of particular relevance since the small size of the solution space to be
explored allows comparing the methodology against exhaustive exploration.

5.2 The Sobel-filter case-study

In this case study, we targeted the Sobel filter, which is usually employed in image
processing and computer vision applications as edge-detector. As will be detailed in the
following, to perform approximate variants generation and DSE, we use the E-IDEA
framework that we developed and presented in [24], and discussed in Section 5.1.

Aiming at reducing costs of a hardware accelerator for vertical edge detection, both
in terms of silicon area and power consumption, in this experiment we configured
the Clang-Chimera tool to replace exact arithmetic operators using approximate ones,
by adopting implementations from the EvoApproxLib-Lite library of approximate
circuits [129]. Thus, the Clang-Chimera tool generates an approximate version of
the considered application in which it is possible to select, for each addition, an
implementation between either the exact or an approximate implementation from the
mentioned library.

Concerning optimization, during this experiment we considered three different
fitness-functions, i.e. error minimization, silicon-area minimization, and power con-
sumption minimization. We selected the PSNR as error metric, and, during error
assessment, the PSNR is computed by considering images resulting from the exact and
approximate Sobel filter while resorting to a comprehensive data set [6] consisting of
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44 different images. Circuit area and power-consumption are estimated as the sum of
the contributions of each single approximate circuit, as reported in [127].

Please, kindly note that, for this particular application, an exhaustive evaluation
of the whole set of approximate configurations is computationally feasible, since the
moderate amount of operations required by the filter. Indeed, vertical edge detection
requires only five additions and two doubles, with the latter being implementable using
wire-only left-shift, which nullifies hardware costs of multiplications. The total amount
of approximate configurations is about 4.9×107. This gives the opportunity to compare
the actual Pareto-front resulting from the exhaustive evaluation with the estimation
provided by the E-IDEA framework.

In order to also evaluate how the quality of the Pareto-front estimation is affected by
the GA configuration parameters, we performed three different runs of the Bellerophon
tool, varying the effort for the DSE phase while keeping mutation and crossover proba-
bility unmodified. In particular, (i) for the low-effort run, we considered a population
of 500 individuals and 3 iterations, (ii) for the medium-effort run, we considered a
population of 2000 individuals and 11 iterations, and (iii) for the high-effort run, we
considered a population of 20000 individuals and 100 iterations. Table 5.2 summarizes
the experimental setup.

Table 5.2: DSE parameters and relative results for the Sobel vertical edge detector case
study. Note that the normalized distances is computed from fitness-function values
normalized to [0,1].

Absolute Distance Normalized Distance
Effort Pop. Iter. Time Min. Avg Max Min Avg Max
Exh. - - ≈170h - - - - - -
Low 500 3 ≈5min 0.013 1.58 7.6 5.9e-6 2.4e-4 1.7e-3
Med. 2000 11 ≈4h 0.002 1.57 5.8 3.7e-6 6.9e-6 5.6e-4
Hig. 20000 100 ≈22h 0.001 1.5 4.4 3.6e-6 6.8e-6 5.4e-4

For comparison purposes, Figure 5.3 and Figure 5.4 report, respectively, experimen-
tal results in the “PSNR vs. area” and “PSNR vs. power” perspective. Furthermore,
in order to measure how close configurations P provided by our methodology are
w.r.t. the optimal configurations Q resulting from exhaustive evaluation, we measure
the distance from each point p ∈ P to the nearest optimal configuration q ∈ Q, as
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reported in Equation (5.3). The minimum, average and maximum distance are reported
in Table 5.2, along with normalized distances, as done in [126].

dp = min
∀q∈Q

|q − p| ∀p ∈ P (5.3)

As the reader can figure out, results from our methodology are very close to those
resulting exhaustive simulation, while, as reported in Table 5.2, the amount of time
needed by exhaustive evaluation is prohibitively higher than that required by the
high-effort run of the GA.

Figure 5.3: Comparison of results from exhaustive evaluation w.r.t estimation from our
methodology:PSNR vs. estimated silicon area

Figure 5.4: Comparison of results from exhaustive evaluation w.r.t estimation from our
methodology: PSNR vs. estimated power consumption
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5.2.1 Comparison with previous works

A comparable case study is presented in [126], where a Sobel vertical-edge detector
is approximated using circuits from the EvoApproxLib8b library [127], and results
from hill-climbing search, varying the effort, are confronted with those from exhaustive
exploration. Our methodology is capable of providing comparable experimental setup.
In particular, Table 5.3 reports comparison of results from [126] with results from our
method, for comparable effort levels. As the reader can figure out, the NSGA-II allows
achieving better results by at least an order of magnitude. Furthermore, when compared
to the one proposed [126], our method does not require (i) the user to know how the
filter is implemented, (ii) a full characterization of circuits from the library, (iii) the
library pre-processing step to eliminate irrelevant circuits, which significantly reduces
activities demanded to the designer, and simplifies the design process.

Table 5.3: Comparison of results from [126], in terms of normalized distance between
estimated and actual Pareto-front.

Results from [126]
Effort Avg. Max. Avg. Max
Low 2.5e-3 7.5e-3 2.4e-4 1.7e-3
Med. 2.5e-4 1.3e-3 6.9e-6 5.6e-4
High 1e-5 6.5e-3 6.8e-6 5.4e-4

5.3 The DCT case-study

Most of the research work concerning image-processing applications focuses on the
JPEG compression, either considering the algorithms as a whole or its individual com-
putational steps. Concerning the design of hardware accelerators, researchers focused
on the approximation of DCT accelerators, mainly targeting figures of merit such as
circuit complexity, delay, area and power dissipation. Unfortunately, the effect of the
different approximation techniques and relative configurations (i.e., approximation
degrees) are only analyzed individually and without a supporting methodology.

In [13], for instance, a framework relying on inexact computing to perform the DCT
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computation for the JPEG has been proposed. The framework acts on three levels:
(i) at the application level, it exploits human insensitivity to high-frequency variation
to use a filter and discard high-frequency components; (ii) at the algorithmic level,
multiplier-less fast algorithms are employed for the actual DCT computation on integer
coefficients; (iii) at hardware level, rather than using a simple truncation for adder
circuits, authors used Inexact-Adder Cells (IACs) to compute less significant bits
instead of the Full-Adder Cells (FACs). Therefore, firstly the JPEG quantization step is
performed only low-frequency components of an image block; thus the high-frequency
filter implementation comes down to simply setting some DCT coefficients to zero.
Then, at algorithmic level, since the DCT is the most effort-demanding step in JPEG,
fast DCT algorithms have been used, reducing complexity from O(N2) to O(N), and
requiring only integer additions. Finally, at the hardware level, different families ofIAC
are considered to further reduce the power-consumption. The framework in [13] mainly
aims at assessing the joint impact of those three levels of approximation. However, it
presents ta rather important shortcoming, viz. approximation is introduced by manually
tuning the individual approximation parameters.

Conversely, in this case study, we assess the impact of approximation on the DCT
computation by performing a fully automated DSE. Applying our methodology, we
start from the DCT algorithm, and we perform an AST analysis to gather information on
the operations suitable for approximation. Then, we generate parametric approximate
versions which allow the approximation degree to be tuned through approximation
parameters. Finally, we build a MOP to find the Pareto-optimal values for the afore-
mentioned approximation parameters, using the NSGA-II in order to converge towards
the Pareto-front.

After providing the reader with an overview of computing the DCT using fast
algorithms in Section 5.3.1, as done for all the above-discussed case-studies, we discuss
the generation of approximate variants in Section 5.3.2, and several aspects concerning
MOP-based DSE in Section 5.3.3, including MOP-modeling and fitness-functions to
drive the DSE. Finally, in Section 5.3.4 we present experimental results.
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5.3.1 Towards approximate DCT

As we already mentioned, the DCT computation is known to have O(N2) complex-
ity and requires resource-intensive functional units, such as floating-point arithmetic
modules. The algorithm proposed in [116] requires 11 multiplications and 29 additions
to compute the one-dimensional eight-point DCT needed by the JPEG compression,
and it is considered the most efficient exact algorithm, since the lower bound on the
number of multiplications required for such DCT computation has been proven to be
11 [67]. In order to achieve an additional reduction in resource requirements, authors
of [18] moved parts of the DCT computation to the JPEG quantization step. Fur-
thermore, transformed coefficients can be scaled and rounded such that floating-point
operations can be superseded by integer ones: the resulting algorithms are signifi-
cantly faster, and they find extensive use in practical applications. However, integer
multiplication is still complex and resource intensive; thus, many low-complexity
multiplier-less algorithms have been proposed, such as BAS08 [26], BAS09 [27],
BAS11 [28], BC12 [25], CB11 [48], PEA12 [139] and PEA14 [140]. As in [18], all of
these algorithms split the DCT computation into two consecutive steps: the first one
is referred to as approximate-DCT, which involves only integer operations, while the
second step is embedded into the quantization and takes advantages of floating-point
operations the latter requires. Moreover, they all avoid computing DCT coefficients
separately or iteratively. Instead, they extensively use matrix algebra and its properties.
To show how the above-mentioned algorithms work, let X be an input image tile,
which is a 8×8 matrix; its two-dimensional DCT transform, from now on simply DCT,
is described by the following equation:

F = C ·X · C ′, (5.4)

where C is referred to as DCT matrix. C contains the cosine function values at the
needed frequencies. The X and the F matrices have the same dimensions. The
elements in F represent the DCT coefficients as the frequency progressively increases:
low-frequency components are closer to the top-left corner, while high-frequency ones
are placed close to the bottom-right corner. The C matrix can be split into two matrices,
T and D, as reported in Equation (5.5).

F = C ·X · C ′ = D · (T ·X · T ′) ·D (5.5)
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Table 5.4: Comparison among DCT algorithms in terms of number of operations

Method Additions Multiplications Shifts Total operations
DFT (definition) 432 192 0 624

FFT 58 6 0 64
DCT (definition) 56 64 0 120
Arai algorithm 29 5 0 34

BAS08 [26] 18 0 2 20
BAS09 [27] 18 0 0 18

BAS11 [28] (a=0) 16 0 0 16
BAS11 [28] (a=1) 18 0 0 18
BAS11 [28] (a=2) 18 0 2 20

CB11 [48] 22 0 0 22
BC12 [25] 14 0 0 14

PEA12 [139] 24 0 6 30
PEA14 [140] 14 0 0 14

Different algorithms define T and D in different ways, so the number of computation
operations may vary from algorithm to algorithm, as reported in Table 5.4.

Splitting C allows integers-only matrix multiplications. Indeed, T contains only
the values {0,± 1

2 ,±1,±2} and it is orthogonal, i.e. T ′ = T−1 ⇒ TT ′ = T ′T = I ,
where I is the identity matrix. Note that multiplying by 1

2 or 2 comes down to shifting
to the right or to the left, respectively; this, at hardware level, is reduced to simple
wiring. This means T allows computing the DCT using only additions. Nevertheless,
the multiplication of D in (5.5) still requires floating-point operations. In fact, D is
a diagonal matrix consisting of values in the [−1, 1] range, with { 1

2 ,
1√
2
, 1√

8
} being

typical values. For this reason, resorting to properties of diagonal matrices allows
obtaining the following equation:

F = T ·X · T ′ ◦ (diag(D) · diag(D)′), (5.6)

where ◦ is the Hadamard product, i.e. an element-wise multiplication. Thus, the integer
null-multiplicative part T ·X ·T ′ can be isolated from floating-point operations required
by D. Afterwards, floating-point operations can be performed outside the DCT, and
embedded into the JPEG quantization step, as shown in the following equation.

FQ = dF �Qc = dT ·X · T ′ ◦ (diag(D) · diag(D)′)�Qc

= dT ·X · T ′ ◦ Q̂c = d(T · (T ·X ′)′) ◦ Q̂c
(5.7)

Q̂ = (diag(D) · diag(D)′)�Q, (5.8)
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where Q̂ in (5.8) is the complete quantization matrix and the� operator is the Hadamard
division, i.e. an element-wise division. From (5.7), it follows F = (T ·(T ·X ′)′), which
means that the approximate two-dimensional DCT transform can be computed using
the one-dimensional DCT transform twice, reducing the complexity from quadratic to
linear.

The only substantial difference between the different multiplier-less DCT algo-
rithms is the T matrix. Hence, it is straightforward to derive a set of equations to
calculate the single dimensional DCT coefficients. Equations in (5.9), for instance,
refers to the BC12 algorithm [25].

f0 = x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7 f1 = x0 − x7

f2 = x0 − x1 − x2 + x3 + x4 − x5 − x6 + x7 f3 = x4 − x3

f4 = x0 − x3 − x4 + x7 f5 = x5 − x2

f6 = x2 − x1 + x5 − x6 f7 = x6 − x1

(5.9)

Furthermore, some terms – for instance (x0 + x7) – are involved in the computation of
multiple fi coefficients, which allows to further reduce the amount of operations.

5.3.2 Generating of approximate variants

Once the addition-based equations for the DCT coefficients are defined, simple im-
plementations for the DCT computation algorithm can be derived. Within those, we
introduce further approximation by replacing exact sums by configurable approximate
ones. Such approximate sums allow setting two parameters, i.e., the NAB and the type
of adder cell to use (namely, a classic FAC or an IAC). We take into account three dif-
ferent IAC families, i.e., the Approximate Mirror Adder (AMA) [75], the Approximate
XOR-based Adder (AXA) [183] and the IneXact Adder (InXA) [12].

As mentioned, this is the same approach adopted in [13]. However, while in [13]
the approximation was manually introduced, we automate the replacement process by
considering the AST of the algorithm implementation, resorting to E-IDEA [24].

Thus, we model each of the above-mentioned multiplier-less DCT algorithms
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by using C/C++ implementations straightly derived from equations (5.7) and (5.9),
and starting from such implementations, the generation of approximate variants is
performed using the Clang-Chimera tool [24]. For each DCT algorithm, the tool
produces mutated sources which allow configuring, for each of the sums, both the NABs
and type of adder hardware cell to use (i.e., either FAC or IAC).

5.3.3 Design-space exploration

Decision variables of the MOP are parameters introduced during the approximate
variants generation step, i.e., the NAB value and the type of adder hardware cell
to be used for each of the approximate operations. Thus, if Nop is the number of
addition required by a given algorithm, each approximate configuration is identified
through the use of a vector, i.e., a chromosome, which is composed of 2 ·Nop different
elements, viz. genes. Chromosomes are provided with an additional gene representing
the approximation degree for the high-frequency filter. Thus, each chromosome is
composed of 2 ·Nop + 1 genes.

Concerning the error fitness-function, we resort to the SSIM [175] to evaluate
differences among images. Its formal definition is reported in Equation (5.10), where
X and Y are two sets of data (i.e., the images), µX and µY are their mean values, σ2

X

and σ2
Y are their variances, σXY is their co-variance, L is the value range in which

elements of X and Y can vary, and k1 and k2 are tuning parameters (typically equal to
0.01 and 0.03, respectively). Values of SSIM(X,Y ) span in the range [−1, 1]. Values
of SSIM(X,Y ) ≈ 1 mean that X and Y are structurally similar, while values of
SSIM(X,Y ) ≈ 0 mean that there is no similarity between the two images. Values
smaller than zero are meaningless [175].

SSIM(X,Y ) =
(2µxµy + k1) · (2σxy + L · k2)

(µx + µy + k1) · (σ2
x + σ2

y + L · k2)
(5.10)

Since, in practice, a single overall quality measure of the entire image is required,
the Mean SSIM (MSSIM) from Equation (5.11) is adopted. There, X and Y are the
reference and the distorted images, respectively, xj and yj are the image contents at
the j-th local window; and M is the number of local windows in the image. Typically,
the MSSIM index is computed considering 11×11 Gaussian weighted circular windows
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rather than on 8× 8 square tiles [175].

MSSIM(X,Y ) =
1

M

M∑
j=1

SSIM(xj , yj) (5.11)

As SSIM, the lower the MSSIM index the lower the similarity between X and Y
sets; thus, in order to define a suitable fitness-function for the MOEA to minimize
error, we adopt the Structural DISSIMilarity (DSSIM) – DSSIM(X,Y ) = 1 −
MSSIM(X,Y ). In particular, we compute the DSSIM between a standard JPEG
compressed image X and an image Y which is obtained by using a certain approximate
configuration of a given approximate algorithm. Both X and Y originate from the
same non-compressed source image. We perform this operation for several images and
use the average DSSIM as the final error fitness-function. For what pertains to error
assessment, we resort to the whole JPEG compression, performed on a representative
data set, to estimate the error. The considered data set [6], consists of 44 different
images, covering a wide set of common features, including among others a flat gray
scale, foreground subject with a messy background, and high contrast images.

Concerning silicon-area requirements, we again resort to model-based estimation to
drive the DSE. In particular, we estimate the silicon-area from the number of transistors
required to implement an inaccurate cell, using the data from [13]. For convenience,
in Table 5.5 we report, from [13], the number of transistors required to implement
inaccurate cells of the mentioned IACs.

Table 5.5: Transistor count from [13] for inexact-adder cells

Cell Full Adder AMA1 AMA2 AMA3 AMA4 AXA1 AXA2 AXA3 InXA1 InXA2 InXA3
Transistors 58 20 14 11 14 8 6 8 6 8 6

Let us detail the reward function. Let Nop be the number of operations required
to compute the single-dimensional DCT and let nabi be the NAB for the i-th addition.
We compute the total number of saved transistors as

Nop−1∑
i=0

nabi · (TFA − TIAi) , (5.12)

where TFA and TIAi are the number of transistors required by the FAC and the i-th IAC,
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respectively. Finally, since the number of additions required by each algorithm varies,
we use a normalized measure, as reported in the following equation:

ρ =
1

2 ·Nbits ·Nop · TFA

Nop−1∑
i=0

nabi · (TFA − TIAi) (5.13)

where Nbits and Nop are the number of bits on which each of the sums is expressed
and the number of sums required for the DCT computation, respectively.

5.3.4 Evaluation and experimental results

In this section, we firstly describe the DCT algorithm hardware implementation, then we
show our experimental setup and related results, and, finally, we perform a comparison
with previous work.

5.3.4.1 Hardware implementation

In order to be able to measure the final gains, we encoded all the above-mentioned DCT
algorithms in VHDL. Such implementations guarantee high flexibility: they handle the
configuration of both the type of adder cells to use for each addition and the number
of bits to approximate (NABs). This allows the synthesis of any solution eventually
found in the DSE process. VHDL implementations follow Equation (5.7), which
allows splitting the two-dimensional DCT into two consecutive one-dimensional DCTs,
separated by a transposition block, which transposes the signals. The transposition
block implementation in hardware comes down to being just wiring. A block schema
of the two consecutive one-dimensional DCTs is depicted in Figure5.5: X1, · · · , X7

represent the rows of the image tile being transformed, while F1, · · · , F7 represent the
rows of the transformed block. A RTL schema of the single dimensional DCT compu-
tation block (DCT1D) is shown in Figure 5.6; without loss of generality, the schema
refers to BC12 [25], since the differences between different algorithms are negligible.
The architecture of the one-dimensional DCT computing block is pipelined, with pipe
registers separating the adders needed for the partial-sums computation. The one-
dimensional DCT has three clock cycles latency, thus the whole two-dimensional DCT
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Figure 5.6: RTL block schema for the BC12-1D hardware implementation

block is six clock cycles latency. Each of the partial sums is performed using a config-
urable approximate adder. The scheme of a configurable approximate adder is depicted
in Figure 5.7: it is a ripple-carry adder whose least significant bits are computed
by IACs, while the most significant ones are computed by classical FACs. The number
of approximate sums, i.e. IACs, is configurable by means of the NAB parameter.
The DCT is computed on 8 × 8 image tiles, each one made of three different color

Figure 5.7: Inexact ripple-carry adder
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channels. Each element’s value spans from 0 to 255. For this reason, each one of
the single-dimensional DCT output terms can be expressed, at most, as the sum of
eight elements. Therefore, the maximum value for the single-dimensional DCT terms
is 8 × 255 = 2040 < 2048 = 211. As a consequence, the two-dimensional DCT
output terms can have a maximum value of 8× 2040 = 16320 < 16384 = 214. As a
result, 14 bits turn out to be sufficient to represent the DCT frequency coefficients. It
is also worth highlighting that replacing FACs with IACs leaves the overall structure
unchanged.

5.3.4.2 Experimental results

As we mentioned above, seven different DCT algorithms and ten types of IACs are con-
sidered during this case study. As for the DCT algorithms, we considered BAS08 [26],
BAS09 [27], BAS11 [28], BC12 [25], CB11 [48], PEA12 [139] and PEA14 [140]. As
for the IACs families, we considered AMA [75], AXA [183] and InXA [12]. All of
these are encoded in the C++ language, and the generation of approximate variants is
performed exploiting the Clang-Chimera tool we discussed in Section 5.1.1. The latter
variants are, then, evolved leveragind the Bellerophon tool.

During DSE we set the Bellerophon tool to use an initial population equals to
2000 individuals, mutation and crossover probabilities set to 0.7 and 0.9, respectively,
and three generations as stop-criterion. We did not set any maximum error threshold.
It is worth noting that exhaustive DSE is undoubtedly unfeasible, even in the case
evaluating a single solution requires negligible time, since the size of solution spaces
ranges between 2.66× 1049 ≈ 2164 and 1.081× 1080 ≈ 2265

Figure 5.8 reports the Pareto-front provided by the NSGA-II for all the considered
algorithms. The reference is, for each algorithm, its non-approximate implementation,
depicted as a gold star. It is important to bear in mind that such algorithms are non-exact
DCT versions (see Section 5.3.1) and that the JPEG implemented with a non-exact DCT
algorithm produces lower-quality images compared to its exact version. For this reason,
the reported non-approximate solutions exhibit already some error. Their reward value
is zero, since they do not use any IACs, so they do not achieve any approximation gain
according to Equation 5.13. As envisioned, the graphs highlight increasing expected
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rewards as the error increases.
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Figure 5.8: Pareto-front estimation provided by the MOEA

After the DSE, to correctly evaluate the final gains, we synthesized the obtained
approximate configurations to both ASIC and FPGA technologies. Over all the al-
gorithms, the total number of obtained non-dominated approximate configurations
to synthesize was 164, i.e., ≈ 24 per each algorithm, on average. For the reader
convenience, in the following figures we plotted the experimental result data along
with the corresponding first-order interpolation to highlight the trend.

5.3.4.2.1 ASIC Synthesis We synthesized all the obtained non-dominated approxi-
mate configurations to ASIC, by using the 65nm FinFET technology and the Cadence
Genus Synthesis Solution tool. We resorted to the synthesis reports for the silicon-die
area of the approximate configurations. In Figure 5.9, we report the result.

Concerning the power consumption, to determine whether the synthesis power
report provides a satisfying accuracy, we simulated the whole workload for two al-
gorithms (BAS08 and BAS09) and collected the resulting power consumption. As a
result, we realized that the difference between the power consumption resulted from
the workload simulation and that estimated by the synthesis tool only differed by 5%,
on average. We considered the synthesis report accuracy sufficient, thus in Figure 5.10
we show the power results from the synthesis report. Please note that the scale on the
left axis (static power) is different from the scale on the right axis (dynamic power).
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Figure 5.9: silicon-die area requirements (in µm2)DCT hardware-resource require-
ments while targeting the 65nm FinFET technology

Power savings are achieved due to both the reduced area and the lower switching
activity that IACs exhibit w.r.t FACs, as also reported in [13]. It is worth highlighting
that the trends shown in Figures 5.9 and 5.10 are perfectly in line with the trend
predicted by our approach (see Figure 5.8). Indeed, higher reward in Figure 5.8
corresponds to lower area/power in Figures 5.9 and 5.10. For the reader convenience,
Table 5.6 reports a summary of the minimum and maximum area/power savings we
achieved during the experimental campaign while targeting ASIC.

Table 5.6: Minimum and maximum savings while targeting ASIC

Algorithm Area Savings (%) Power Savings (%)
min max min max

BAS08 9 25 5 20
BAS09 5 15 5 15
BAS11 5 12 9 13
BC12 6 27 6 25
CB11 5 17 3 10

PEA12 7 17 5 15
PEA14 5 23 4 18

5.3.4.2.2 FPGA Synthesis We synthesized all the obtained non-dominated approxi-
mate configurations to a Xilinx Zynq-7020 MPSoC. To get a fair estimation of hardware
requirements, we used only its embedded FPGA and inhibited DSPs usage. Figure 5.11
reports synthesis result in terms of number of LUTs for all the considered algorithms.
As expected, approximate solutions require less resources than the precise implemen-
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Figure 5.10: Power-consumption requirements (in nW) DCT hardware-resource re-
quirements while targeting the 65nm FinFET technology

tation, as highlighted by the decreasing general trend. In order to correctly evaluate
energy savings, we performed a post-synthesis timing simulation, using the Dynamic
Power Analysis tool provided by the Xilinx Vivado. In this case, since the synthesis
report has a very low confidence level for power consumption estimation, we resorted
to a workload simulation for all the solutions the DSE provided, for all the algorithms.
In this way, we achieved a high confidence level power estimation.

Figure 5.12 shows static and dynamic power consumption for all the algorithms.
The static power of the FPGA is largely caused by the fabric of the device and does
not directly depend on used resources, while dynamic one is directly linked to the
user design, due to the input data pattern and the design internal activity. Being
our hardware implementations of approximate DCT characterized by low overhead,
i.e. device resources usage falls between 6 and 13 %, it is necessary to split power
consumption in static and dynamic since the former turned out to be about an order of
magnitude greater than the latter one for the target FPGA device.

Also in this case, power savings are achieved thanks to both the reduced total area
and the logical structure of IACs: FPGA LUTs implementing IACs have a lower
switching activity than those implementing FACs, as reported in [13].

As in the ASIC case, also for FPGA the trends shown in Figures 5.11 and 5.12 are
perfectly in line with the trend predicted by our approach (see Figure 5.8). Indeed,
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higher reward in Figure 5.8 corresponds to lower area in Figures 5.11.

As done for ASIC, we report a summary of the minimum and maximum area/power
savings we achieved during the experimental campaign while targeting FPGA in
Table 5.7.
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Figure 5.11: LUTs requirements while targeting a Xilinx Zynq-7020 FPGA
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Figure 5.12: Power-consumption (in nW) while targeting a Xilinx Zynq-7020 FPGA

5.3.4.2.3 Visual Test Since JPEG belongs to image processing domain, we also pro-
vide a visual test: Figure 5.13 shows, from left to right, the standard JPEG-compressed
image of Lena and Baboon, the same images compressed using the exact version of the
BC12 algorithm [25] – which exhibit a DSSIM of 0.10, and requires 125473.92 µm2

and 5691946 µW when implemented on ASIC, or 5902 LUTs and 107933980 µW
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Table 5.7: Minimum and maximum savings for FPGA synthesized approximate config-
urations

Algorithm LUTs Savings (%) Dynamic
Power Savings (%)

min max min max
BAS08 27.5 48.2 0.1 3.4
BAS09 32.6 42.5 0.3 1.8
BAS11 30.6 40.4 0 2.5
BC12 31.1 50.8 0 5.2
CB11 30.9 42.7 0.5 2.6

PEA12 31.3 42.7 0.7 4.4
PEA14 29.2 44.5 0.1 2.8

while targeting FPGA – and, finally, the ones compressed with its approximate variant
having 0.33 as DSSIM value and 0.22 of reward, which correspond to 8362.64 µm2

and 352.711µW saved for ASIC and 1846 LUTs and 94506.744µW saved for FPGA.
As the reader can easily figure out, the quality differences are barely perceivable.

(a) Visual test with Lena

(b) Visual test with Baboon

Figure 5.13: Visual test
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5.3.4.3 Comparison with previous work

In this subsection, we compare the results obtained with our approach with those
obtained in the work in [13]. Authors of [13] estimated gains G through the following
equations:

G =
Vi − Ve
Ve

(5.14)

Vi = Pi · nab+ (N − nab) · Pe (5.15)

where Vi and Ve represent the average energy required to perform an addition, by an
inexact N-bits adder and by an exact N-bits adder respectively, Pi and Pe represent
the average energy required by a single IAC and by a full-adder cell, respectively.
Values of Pi and Pe used in [13] were measured by using the 45nm Complementary
Metal-Oxide Semiconductor (CMOS) technology and are reported in Table 5.8. Such

Table 5.8: Energy consumed by a single adder cell from [13]

Cell FullAdd AMA1 AMA2 AMA3 AMA4 AXA InXA1 InXA2 InXA3

Energy(fJ) Avg. 0.9267 0.513 0.6631 0.6649 0.478 0.4042 0.1535 0.0563 0.3409
Max. 2.3668 0.9794 0.7203 0.7116 0.6271 0.8924 0.2096 0.1291 0.4211

equations have the same goal as Equation (5.13), i.e. predicting the gains achieved
thanks to the approximation. While Equations (5.14) and (5.15) take into account the
energy consumption parameters of the individual adder cell, Equation (5.13) takes into
account only the number of transistors.

In [13], authors performed a manual exploration. In particular, firstly they tried
different IACs and decided to always resort to InXA2 in their experiments, based on its
energy delay product. Then, they tried different NAB values for the InXA2 adder and
finally set it to 4 for all the experiments (i.e., for all the DCT algorithms). Besides, they
used the PSNR metric to measure the JPEG error entailed by the approximate DCT
variants. Conversely, we adopted the DSSIM index as error metric – which is more
suitable for image processing – and we let the MOEA decide which inaccurate cell to
use and how many bits to approximate (i.e., the NAB parameter) for each of the sums.
A minor difference concerns the implementation of the adders: while 32-bit adders
were considered in [13], we considered 14-bit adders.
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In order to effectively compare the two studies it is necessary to place them un-
der the same conditions. Thus, we executed the JPEG algorithm on the same four
images considered in [13] – i.e., Lena, Cameraman, Boat and Pepper – by using the
approximate DCT variants obtained with our approach and computed the PSNR metric.
Hence, we computed energy savings according to Equation (5.14), considering 32-bit
adders. Figure 5.14 shows the obtained results. Concerning both energy consumption
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Figure 5.14: Comparison with results from [13]

and PSNR, our approach allowed a significant improvement for all the considered
algorithms compared to the approach adopted in [13]. In detail, our approach allowed
an absolute improvement spanning from 15.69% to 20.15% (average 18.38%) concern-
ing the energy gain and from 5.24 dB to 14.88 dB (average 7.91 dB) concerning the
PSNR. Therefore, with our approach we were able to produce higher quality images,
i.e. with less error, while consuming less energy. This is the result of the thorough DSE
made possible by the proposed approach. Indeed, using a MOEA allows performing a
multi-objective optimization more efficiently and automatically. Moreover, not needing
to synthesize each approximate variant allows exploring more extensively the design
space in a reduced time.
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Chapter 6

Artificial intelligence
case-studies

This Chapter discusses the application of our methodology on two of the most promising
classification models in the machine-learning domain, namely DNNs and DT MCSs.

As we discuss in the following, state-of-the-art hardware accelerators targeting
DNNs and DT MCSs are quite resource intensive, due to the massive amount of
processing elements needed to effectively accelerate computations. In either case, the
high demands in terms of both silicon area and power consumption utterly hinder the
spread of commercial devices. However, performance of computing systems can often
be enhanced by exploiting inexact computation, as discussed in Section 2.1. Indeed,
the AxC design paradigm is effective in a wide range of error-resilient applications,
including data analytic, scientific computing, multimedia and signal processing, and
machine-learning [47].

The desire to reduce the hardware overhead of accelerators, however, cannot
jeopardize more than half a century of efforts to achieve the accuracy that modern
models exhibit. In facts, keeping a reasonably high accuracy level while introducing
approximation to save resources are conflicting design goals; hence, besides challenges
inherently arising while exploiting the AxC paradigm, we must cope with the difficulty

89
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of obtaining substantial resource benefits while sacrificing a minimal, ideally negligible,
amount of classification accuracy.

Imposing error constraints while optimizing for silicon area and/or power con-
sumption in a single-objective optimization fashion typically results in solutions which
are in the neighborhood of local optimums [56]. Conversely, out MOP-based DSE is
able to provide a full Pareto-front consisting of several trade-offs between considered
fitness-functions to optimize.

For the mentioned models, in order to provide the reader with the required knowl-
edge to understand the challenges that accelerating these models poses to the designer,
in addition to a brief history and a few important literature references, the training
methodology by which the models can be trained to solve a particular problem is
covered, the state of the art in hardware accelerator architectures is presented, and
how the AxC paradigm can be leveraged to reduce the cost of these accelerators is
discussed.

6.1 Neural Networks

In recent years, Artificial Neural Network (ANN) have won numerous contests in
pattern-recognition, classification, object-recognition and so forth, imposing themselves
on everyone’s attention as one of the most successful learning technique. However,
the concepts behind them have been circulating since the early 1940s [155], although
early models do not learn, they consisted of only a single processing element, and their
design were based on linear-regression method. This is why these early models are
referred to as linear classifiers.

The first multi-layer stack of simple modules consisting of fully-interconnected
processing elements, each computing non-linear input-output mappings, and some
other embryonic concepts concerning supervised-learning were introduced in the late
1960s, as part of the Group Method of Data Handling (GMDH) family of inductive
algorithms [91, 90]. The observation leading to GMDH was that linear classifiers can
only carve their input space into very simple regions, namely half-spaces separated by
a hyperplane. Conversely, more complex problems require the input-output mapping
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to be not sensitive to irrelevant variations of the input, while being very sensitive to
particular minute ones [106].

Neuroscience-related concepts, which influenced the research concerning DNNs,
also dates back to 1960. The computational model of artificial neurons, for instance,
is inspired by its biological counterpart: neurons receive stimulus from dendrites and
produce an output along the axon, which eventually branch, and connect to other
neurons through synapses. However, this simplified model is quite different from that
of biological neurons. Indeed, biological dendrites do not simply carry signals but, as
well as biological synapses, they perform very complex – and still partially unknown –
non-linear functions [155].

The most commonly adopted computational model of artificial neurons is depicted
in Figure 6.1a, along with its biological counterpart. Input signals are multiplied with
learned weights at synapses, while dendrites carry the weighted input-signals to the
neuron body, where partial-products are summed and biased. An output is produced
along the axon – i.e., the neuron “fires” – if the weighted sum is greater than a threshold,
defined by the neuron’s activation function. Another substantial difference between the
biological and computational model resides in the exact instant in which the neuron
“fires” that encodes the information, not the frequency of firing. Some more details
will be discussed in Section 6.1.1, while activation function will be briefly discussed in
Section 6.1.2.

Also Convolutional Layers (CLs) and Pooling Layers (PLs) are directly inspired by
the classic notions of simple-cells and complex-cells of visual neuroscience, and the
overall architecture of Convolutional Neural Networks (CNNs) is reminiscent of the
hierarchy of cells in the visual cortex of cats [88]. We For now, we postpone presenting
the layered architecture of modern DNNs, since they are discussed in Section 6.1.3.

CLs and PLs were embedded in a learning system for the first time only in the early
1980s, as part of the Neocognitron system [69], along with several other concepts, such
as weight-sharing, which became common in later systems. Although the Neocognitron
was the first system that truly deserved the “deep” attribute, and despite the mentioned
innovations, the actual learning were performed using a non-supervised winner-take-all
approach, rather than the well-known backpropagation algorithm. This is because the
latter algorithm were developed independently by different research group only in late
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(a) Computational model of a neuron. (b) Biological model of a neuron, from [70].

1980s, albeit the error-minimization approach through gradient descend was discussed
since early 1960s in [63]. Nevertheless, backpropagation were initially performed by
computing standard Jacobian matrices, without taking into account neither direct links
between interconnected layers nor sparsity [155].

The first embryo of the backpropagation algorithm dates back to [113], albeit it
was not related to DNN. However, it was soon explicitly adopted to minimize the
cost function by adapting weights during the DNNs training phase [177, 104]. The
algorithm will be briefly discussed in Section 6.1.1.

However, for a while, the backpropagation algorithm seemed to work only for
swallow networks. The reason is that typical DNNs suffer from the famous problem of
vanishing or exploding gradient: cumulative back-propagated error either shrink rapidly
or grow out of bound [83]. This is known as the fundamental problem in deep-learning,
or long-time-lag problem, and, over the years, several ways of partially overcoming it
were explored, including (i) very deep-learners, which alleviate the problem using unsu-
pervised pre-training, (ii) long short-term memory Recurrent Neural Networks (RNNs),
which adopt constant error carousels, i.e., units using the identity function as activation
function, and constant unitary weight in feedback connections [85], (iii) weight search
without relying on gradient descent, such as random weight guessing [84], (iv) the
introduction of Max-Pooling Layers (MPLs) for subsampling [176], and (v) back-prop-
agating the error further layers down. The latter was essentially made possible by the
adoption of GP-GPUs to speed up the backpropagation algorithm [155].

CNNs were soon combined with MPLs, alternating CLs and MPLs [148]. However,
the real breakthrough happened when Max-Pooling Convolutional Neural-Networks
(MP-CNNs) were trained using standard GP-GPU-accelerated backpropagation, orig-
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inating the structure of many modern competition-winning feed-forward deep learn-
ers [155]. In facts, in 2010, the 0.4% error record on the Modified National Institute of
Standards and Technology (MNIST) database of handwritten digits [104] was broken
by an ANN trained using input-distortion and GP-GPU-accelerated backpropaga-
tion [53]. Only one year later, the record was broken again by a MP-CNN trained
with standard GP-GPU-accelerated backpropagation [52]. The latter result suggested
that advances in modern computing hardware were more important than advances in
learning algorithms [155].

Despite these successes, CNNs were largely forsaken by the mainstream computer-
vision and machine-learning communities, until an ensemble of MP-CNNs achieved
super-human performances in visual pattern recognition, during the International
Joint Conference on Neural Networks (IJCNN) 2011 traffic-signs competition [50].
This result is particularly interesting since it paved the way for self-driving cars.
The very same year, another MP-CNNs achieved super-human performances, setting
a new record of 0.2% on the MNIST database of handwritten digits [49]. Also,
the ImageNet object-detection competition was won in 2012 by a MP-CNNs. With
respect to previous contests, the ImageNet significantly raised the challenge, involving
256 × 256 pixels images, far larger than 32 × 32 or 48 × 48 of previous contests.
The winning MP-CNN achieved spectacular results, halving the error rates of the
best competing approaches [102]. This was particularly relevant also because object-
detection has numerous industrial and medical applications, including surveillance and
biomedical diagnosis [51].

These successes came from the efficient use of GP-GPU, the Rectifier Linera
Unit (ReLU) activation function (which will be detailed in Section 6.1.2), a new
regularization technique called dropout [162], and techniques to generate more training
examples by deforming the existing ones. This success has brought about a revolution
in computer vision, and CNNs are now the dominant approach for almost all recognition
and detection tasks [106].
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6.1.1 The backpropagation algorithm

In order to describe the backpropagation algorithm, we resort to the compact event-
oriented notation for activations spreading in DNNs from [155], which is simple and
general enough to accommodate both feed-forward DNNs and RNNs.

Assume i, j, k, t, p, q, r positive integer variables with range from the given context,
and m,n, T positive integer constants. Although the topology of an DNN can vary
over time, it can be described using a set N = {u1, u2, · · · } of units, i.e., neurons,
and a set H = N × N of directed edges, or connections, between neurons. As we
mentioned, instead of being modeled as an amorphous blob of interconnected elements,
the latter are organized in layers, with edges connecting only elements belonging to
adjacent layers.

The firs layer, the one receiving raw input-data, is, precisely, the input layer. In
feed-forward DNNs, the k-th layer is the set Lk ⊂ N of neurons such that there is an
edge-path length of at most k − 1 between an input node and u ∈ Lk. Anyway, there
may be shortcuts such that the edge-path length is less than k − 1, but no longer path
between input neurons and neurons belonging to the k-th layer. This also implies no
cycle is allowed in feed-forward DNN.

The behavior of the network, at runtime, is governed by a set of real-valued learned
weights wi, i = 1 · · ·n. During an episode, i.e., during information processing and
activation spreading in the network, there is a partially causal sequence xt, t = 1 · · ·T
of real values called events, which can be either input-event or the activation of a
unit u ∈ N that directly depends on xk, k < t, through causal connections. Let the υ
function encodes the network topology by mapping the (k, t) pair to weights. During an
episode, the same weights may get reused over and over again, in a topology-dependent
manner, encoded by the υ function. This is called weight-sharing and, as mentioned, it
is exploited to decrease the descriptive complexity of CNNs and RNNs, by reducing
the amount of learned weights.

For non-input events, we may have

xt = f (nett) (6.1)
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where f is typically a non-linear function, i.e. the activation function, and nett can be
either

nett =
∑
k∈int

xk · wυ(k,t) (6.2)

or
nett =

∏
k∈int

xk · wυ(k,t) (6.3)

In supervised learning, some xt events may be associated with teacher-given values
dt, yielding error

et =
1

2
(xt − dt)2 (6.4)

The goal of supervised learning in network training is to find weights that yield
episodes with small error E =

∑
t et in the hope that the network will generalize

well in later episodes, causing only small error when fed with previously-unknown
input-events.

The backpropagation algorithm to compute the gradient of an objective-function
w.r.t. learned weights of a multi-layer stack of modules is nothing more than a practical
application of chain-rules for derivatives. The key insight is that the derivative of the
objective functions w.r.t. inputs of a module can be computed by working backward
from the gradient computed w.r.t. outputs of that module, or the input of the subsequent
module. The backpropagation equations can be applied repeatedly, to propagate
gradients through all modules, starting from the output module all the way back to the
input module. Once these gradients have been computed, computing the gradient w.r.t
weights is straightforward.

The chain rule of derivatives tell us how small effects are composed. Consider a
small change ∆x in x, which gets transformed into a small change ∆y of y by getting
multiplied by the gradient of y = f(x), i.e., by ∂y

∂x , hence

∆y =
∂y

∂x
∆x (6.5)

Similarly, a small change ∆y in y creates a change ∆z in z by getting multiplied with
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Figure 6.2: Example of backpropagation

∂z
∂y , thus

∆z =
∂z

∂y
∆y (6.6)

By substituting Equation (6.5) in Equation (6.6), i.e., by applying chain-rules for
derivative, we obtain a description of how ∆x may affect ∆z

∆z =
∂z

∂y

∂y

∂x
∆x (6.7)

Equation (6.7) also describe how the gradient ∂z∂x can be computed, i.e.

∂z

∂x
=
∂z

∂y

∂y

∂x
(6.8)

Chain rules for derivative work also when x, y, and z are vectors. Consider,
for instance, the network depicted in Figure 6.2, which has two hidden layers, each
constituting a module through which one can back propagate the gradient. During the
forward-pass, at each layer, the total input z is first computed as the weighted sum of
the output of neurons belonging to the previous layer; then, the activation function f(z)

is computed to get the final output.
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During the backward-pass, instead, at each hidden layer the error-derivative w.r.t.
the output of each layer is computed. This is the weighted sum of the error-derivative
w.r.t the total inputs to units in the subsequent layer. For the node k of Figure 6.2, for
instance, it is

∂E

∂yk
=
∑
l∈outk

wkl ·
∂E

∂zl
(6.9)

Then, the error derivative w.r.t. the input ∂E
∂zk

at node k can be computed by
multiplying the derivative of f(z) = ∂yk

∂zk
by the error-derivative w.r.t. the output from

Equation (6.9), hence

∂E

∂zk
=
∂E

∂yk
· ∂yk
∂zk

=
∂yk
∂zk
·
∑
l∈outk

wkl ·
∂E

∂zl
(6.10)

Once the latter is known, the error-derivative for weights wjk on connection from the
neuron j to the previous layer is just

yj
∂E

∂zk
(6.11)

Therefore, in order to minimize the error, weights have to be updated by following the
opposite direction w.r.t the computed gradient.

6.1.2 Activation functions

As we mentioned, neurons compute non-linear mapping between inputs and outputs.
On purpose, suitable activation-functions are suitably adopted. There are several
activation functions: the sigmoid (6.12), for instance, was largely used in the past
because it takes real-valued inputs and squashes it to the [0,1] range. However, it
has some drawbacks: it rapidly saturates, nullifying the gradient during stochastic
gradient-descend algorithm, and its output is not zero-centered, which is utterly less
severe than saturation, though it introduces some undesirable dynamics during the
stochastic gradient-descend algorithm.

σ(x) =
1

1 + e−x
(6.12)
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The tanh function (6.13) is a scaled sigmoid that squashes input in the [-1, 1] range,
therefore output is zero-centered. Anyway, the gradient nullification still persists.

tanh(x) = 2σ(2x)− 1 (6.13)

The ReLU (6.14) has become very popular in the last few years. It simply thresholds
to zero, and it was found to greatly accelerate the stochastic gradient descent algorithm
w.r.t the sigmoid and the tanh, due to its linear and non-saturating form. Unfortunately,
ReLU units can “die” during training and their death is not reversible, since training
data could cause the weights to update in such a way that the neuron will never activate
on any data point again.

relu(x) = max{0, x} (6.14)

The dying neuron issue can be addressed either using a proper learning rate or
using the leaky-ReLU activation function (6.15). The latter employs the α parameter –
which is typically very small – to allow the activation function to have a small negative
slope. In this way, the gradient will be less prone to be zero.

lrelu(x) = 1(x < 0) · α · x+ 1(x ≥ 0) · x (6.15)

A different approach to overcome the mentioned issue involves the adoption of the
maxout activation, that offers the benefits of the ReLU – i.e. linearity – yet does suffer
neither from dying neurons nor from saturation. Nevertheless, it increases the amount
of parameters of the network.

maxout(x) = max
i
{W ′i · x+ bi} (6.16)

6.1.3 Layers in neural networks

As we mentioned, instead of being modeled as an amorphous blob of connected neurons,
DNNs are organized in distinct layers. The number of layers defines the network’s
depth. Neurons belonging to adjacent layers can be either fully or partially connected.
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In Fully-Connected Layers (FCLs), neurons of the layer are connected to all of the
preceding layer, while in CLs, neurons in a layer are connected only to a small region of
the previous layer. In any case, there is no connection between neurons within the same
layer. In RNNs, cycles are allowed, while they are strictly forbidden in feed-forward
ANNs, such as CNNs. Moreover, CNN architecture is constrained to be arranged in
three dimensions, and explicit assumptions are made on the input, which is images,
unveiling a more efficient forward function implementation, and a reduction in the
amount of learned parameters.

Three main types of layers are peculiar to CNNs, namely the CL, the PL and
the FCL. While PLs perform a single function, i.e., sub-sampling, CLs and FCLs
perform computation that are not just function of the inputs, but also of learned synaptic-
weights and biases. PLs are placed in between CLs, to progressively reduce the spatial
size of the intermediate representation. Anyway, it is possible to define parametric CLs
so that the input-volume reduction is performed during the convolution [80]. Thus, PLs
are not always necessary in the networks.

A FCL takes a 3D-input vector, namely a tensor, X ∈ RHin×Win , and multiplies
it with a kernel K ∈ RWin×Wout , producing the output tensor Y ∈ RHin×Wout

according to the following equation:

Yi,j =

Win∑
k

Xi,k ·Kk,j + b (6.17)

A CL takes a tensor X ∈ RHin×Win×Cin as input, it multiplies that tensor with a
tensor K ∈ RHk×Wk×Cin×Cout , and produces Y ∈ RHout×Wout×Cout , according to
the following:

Yk,l,n =

Hk∑
i

Wk∑
j

Cin∑
m

Ki,j,m,n ·Xk+i−1,l+j−1,m + bm (6.18)

where H , W , and C are, respectively, the height, the width and the number of channels
(depth) of each involved tensor.

Since the amount of computation required by modern DNNs, several proposals con-
cerning accelerating such computations have been proposed in the scientific literature.
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Such include using either GP-GPUs or custom hardware targeting the ASIC or FPGA
technology. In the following Section, we provide the reader with a brief summary on
this topic.

6.1.4 Accelerators targeting Neural Networks

Hardware solutions for the development and deployment of ANNs are quite diversified,
and include either general-purpose solutions such as CPUs and GP-GPUs, FPGAs and
even special-purpose ASICs. It is not trivial to recognize which of these solutions is
the best one, since a substantial amount of design constraints could lead to a choice for
one or the other solution.

In the scientific literature, architectures of ANN accelerators are often classified
in two main classes, i.e. temporal and spatial. As for the former, PEs are Arithmetic
Logic Units (ALUs) with no memory capacity and centralized control units. As for the
latter, PEs are typically complex and interconnected units with internal memory and
their own control units [37].

CPUs and GP-GPUs are examples of temporal architectures. The former are the
least used for training and inference, since their throughput is limited by the small
number of cores and the small amount of operations executable in parallel. A number
of attempts to tackle with ANNs using CPUs have been made, including the Intel AVX-
512VNNI [92], the bfloat16 reduced bit-width data representation format [35], and the
bigDL software library of optimized algorithms for distributed CPU clusters [55]. The
thousands of cores to work efficiently on parallel algorithms make GP-GPUs the most
widely adopted solution for accelerating neural networks. In particular, for the training
phase. Indeed, the most popular deep-learning frameworks – including TensorFlow,
PyTorch and Caffe – support GP-GPUs, and vendors typically provide highly-optimized
and GP-GPUs-accelerated software libraries for common layers. An example is as
the NVIDIA cuDNN library [45]. Furthermore, recent GP-GPUs from NVIDIA also
provide tensor-cores [134], which are optimized to perform large matrix operations,
mixed-precision multiply-and-accumulate operations, and also exploit sparsity for an
additional performance boost.
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Accelerators implemented on FPGAs and ASICs are typically categorized as
spatial architectures, and they are not only distinguished by more complex and inter-
connected PEs, but also for an accurately designed memory hierarchy. Indeed, DRAM
accesses are the actual bottleneck for computation, since DRAM has a higher latency
and higher energy requirements w.r.t. smaller and faster SRAM adopted for caching;
therefore, many research works focused on data reuse either inputs, weights and biases.
Accelerators from [64, 40] perform partial-sum reuse, while inputs and weights are
distributed to PEs according to the portion of the input activation map being processed.
In [72, 96], synaptic weights and biases are reused, while inputs are distributed to PEs
in order to also reuse partial-sums. Finally, the approach from [43, 44] aims at max-
imizing the reuse of all data, by mapping a row of the convolution to the same PE,
which keeps fixed weights.

In order to further improve performances and energy efficiency, several other strate-
gies than data reuse have been proposed, such as sparsity exploitation, quantization,
and reconfiguration.

Opportunities to exploit sparsity originate from both the weights redundancy and
the widespread use of the ReLU activation function (See Section 6.1.2). As for the
former, it is possible to prune – i.e. nullify – synaptic weights [77], while the use
of the ReLU activation function nullifies all negative values within activation maps.
Both phenomena can be effectively exploited to avoid multiplications whose result is
already known, and to compress activation maps or weights, consequently reducing the
memory overhead of the model.

A variety of solutions exploiting sparsity by combining different compression
schemes have been proposed in the scientific literature. Early approaches either com-
press weights or activations. In [9], for instance, activation maps are compressed,
but sparsity of weights is not considered. Instead, authors of [188] compress weights,
but do not consider sparsity of activation maps. Anyway, both activation and weights
compression are considered in recent works [73, 137]. Authors of [81] go even fur-
ther, exploiting repetitions of any value rather than only null weights. This allows
reusing partial products, partial sums, and also paves the way for reducing the memory
footprint of the model. Nevertheless, compression is not the only available solution:
zero-skipping for null activation is effectively exploited in a number of different ac-
celerators, in order to lower the energy consumption [76, 99, 8, 109, 44]. In particular,
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[109] leverages concise convolution rules to avoid performing operations resulting in
null values, while [44] also perform computations on compressed data in order to avoid
wasting energy in data decompression.

One of the techniques to overcome memory bottleneck is bit-width reduction:
rather than using the IEEE 754 32-bit floating-point arithmetic for both training and
inference, the latter phase can be efficiently performed using fixed-point or even
integer only arithmetic, with a negligible classification-accuracy loss, by exploiting
quantization [93]. In order to take advantage of quantization, not only in terms of
memory but also for energy consumption, several variable bit-width accelerators have
been developed [97, 157, 158, 150, 108]. Almost all of them adopt a serial approach for
the multiply-and-accumulate part of the computation, mitigating the increased latency
by exploiting inherent parallelism of computations to be performed within a layer.

Concerning flexibility and configurability, the increasing interest in deep-learning
lead to the development of a large variety of models and layers exhibiting very different
features. Though, almost all the accelerators are designed and optimized targeting
a specific model. Nevertheless, to allow for more widespread deployment of ASIC
and/or FPGA accelerators, flexible and reconfigurable design are desired. Flexible data
flows for exploiting data reuse in CLs have been proposed in [117, 167], while dedicated
architectures for both CLs and FCLs have been developed in [78]. Reconfigurable
accelerators, such as [103, 141], exploit Network on Chip (NoC) reconfiguration to
adapt the data flow to different layers.

6.1.5 Approximate DNNs

DNN requires intensive computations both during the training and the inference phase.
Concerning the latter phase, hardware accelerators exhibit substantial hardware require-
ments, due to the many processing elements to perform computations. Each processing
element has multiple arithmetic operations, such as multiplications, accumulations and
activation functions, which definitely consume area and power. The multiplication,
in particular, is recognized as the most demanding operation both in terms of silicon
area and power consumption, therefore, several optimizations have been proposed in
the scientific literature, including using binary weights, so multiplications collapse in
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logic-AND [54], or weights in the form of powers of two, so that multiplications can
be performed as left-shifts [112].

As we mentioned, the inner error-resiliency of ANN makes them the ideal field of
application for AxC; consequently, a significant amount of research focused on both
the training and the inference phase, attempting to further reduce resource requirements
of hardware accelerators. In the following, we briefly report some of the most relevant
contributions.

One of the approach to identify approximation-resilient neurons in ANNs is that
discussed in [174]. It leverages the backpropagation algorithm, which has been briefly
discussed in Section 6.1.1, to obtain a measure of the sensitivity of the output of the
considered DNNs, to the output of each neuron. Indeed, backpropagation redistributes
the error at the DNN outputs backward all the way to its inputs, thus, it quantifies
the error contribution of each neuron towards the global error. This allows to identify
neurons that contribute the least to the global error, i.e., neurons that are amenable to
approximation. The latter are sorted based on the magnitude of their average error
contribution, and a whether the latter falls below a predetermined threshold, they are
labeled as resilient or sensitive. Resilient neurons are replaced using approximate ones,
which are designed using the precision-scaling technique, and allow modulating the
bit-widths of both inputs and weights on the basis of resilience. A subsequent retraining
step suitably adjusts the learned parameters, alleviating the impact of approximation-
induced errors, and allowing further approximation. A similar approach has been
proposed in [187], in which error-resiliency is exploited to implement memory-access
skipping techniques.

Albeit it focuses on approximating synapses, rather than neurons, the work in [100]
also leverages the backpropagation algorithm to characterize the error resiliency. Ac-
cording to authors, approximating synapses works on a finer grain w.r.t. approximating
neurons, since approximating neurons implies approximating all synaptic weights the
same way. The precision-scaling technique is adopted to modulate the bit-width of
synaptic weights, while a greedy approach is used to determine a suitable precision,
in order to minimize the power consumption while keeping acceptable accuracy. In
addition, they also employ approximate multipliers in order to further reduce the power
consumption. Working with such a fine grain, however, requires coping with several
issues, including (i) moving data exhibiting different approximation degree back and
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forth from memory, and (ii) the possibility that non-approximate weights may constitute
the input of approximate multipliers.

As mentioned, multipliers are recognized as the most demanding component within
neurons. Therefore, as foreseeable, several contributions focus precisely on them.

Authors of [17] investigated on properties an approximate multiplier should ex-
hibit in order to maintain acceptable classification accuracy and, at the same time,
reduce the use of silicon area. They observed that low values for the variance σED
and Root Mean Squared Error (RMSE), which are reported in Equation (6.20) and
Equation (6.19), respectively, make the multiplier not deteriorate the classification
accuracy. Furthermore, they noted that whether a multiplier underestimate or over-
estimate the exact product with equal probability, the classification accuracy tend to
increase, since such a multiplier prevents the errors from accumulating. However, this
is a necessary-but-not-sufficient condition.

RMSE =
√
E [e2] =

√√√√ 1

N

N∑
i=1

e2
i (6.19)

σe = E [e− E [e]] =
1

N

N∑
i=1

(
ei −

1

N

N∑
i=1

ei

)2

(6.20)

In the same work, the authors also investigated the impact of reduced-precision multipli-
ers on classification-accuracy, observing that using 8-bit multipliers causes negligible
degradation in classification accuracy, and that the smallest multiplier design to provide
an acceptable classification accuracy without requiring network retraining is the 6-bit
multiplier. On the other hand, network retraining allows using 4-bit multipliers with
only 2% degradation in classification accuracy.

In order to alleviate approximation-induced error, the mentioned contributions from
the scientific literature resort to network-retraining. While, on one hand, this even
allow for further approximation, on the other hand it increases the overall design time.
Moreover, retraining is not even possible, e.g., the dataset on which the network has
been trained may not be available. A way to overcome this limitation while using
approximate multipliers has been proposed in [130]: a weight-tuning algorithm adapts
the learned weights to the employed multipliers, allowing accuracy recovering. The
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proposed algorithm exploits the fact that, for each of the multiplications, the value of
the one operand – the one holding the synaptic weight – is constant, while the second
operand varies with the input data. Thus, a map-function can be computed offline, and
exploited during approximation to determine the suitable weight-update.

In [128], the EvoApprox8b library of arithmetic components [127], designed
through CPG as in [156], is further evolved, and employed to conduct a resiliency
analysis targeting CNNs, specifically, different networks belonging to the ResNet [80]
family. In order to preemptively lower resource requirements, 8-bits quantization
is exploited. Further savings are pursued using approximate hardware components,
selected as in [126]. In this regard, the EvoApprox8b is expanded considering both
standard n× n and m× n approximate multipliers, and CNNs are approximate either
considering a single layer at a time or the network as a whole. As for the former, all
exact multipliers of a single layer are replaced using approximate multipliers selected
from the library. As for the former, all multiplications of all layers are replaced using
one particular implementation taken from the mentioned library, regardless of layers’
resiliency.

Reviewing the reported contributions, the following drawbacks can be easily rec-
ognized: (i) they are related to a specific approximation technique; (ii) they typically
require a re-training step to alleviate the impact of approximation on the classification
accuracy, which undoubtedly increases the design time; (iii) they either optimize a
single parameter (silicon area, for instance) under quality constraints, or combine mul-
tiple design objectives in a weighted single-objective optimization problem; therefore,
the resulting solutions may be centered around a few dominant design alternatives
and do not explore the whole Pareto-front [56], and (iv) although they recognize that
each neuron may contribute to error and hardware-requirements differently, depending
on the layer it belongs to, the degree of introduced approximation does not take into
account these differences.

Conversely, as extensively discussed in Chapter 3, our methodology (i) supports
different approximation techniques; (ii) does neither leverage the backpropagation
algorithm nor require retraining, so as to avoid lengthening the design time and make
the method applicable even when retraining is not possible; (iii) allows for the different
degree of error resilience exhibited by different parts of the same application to be
taken into account; and (iv) is based on multi-objective optimization, which allows
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for solutions that simultaneously optimize multiple figures of merit, e.g., classification
accuracy, silicon-area or LUTs, and power-consumption.

6.1.6 Applying the methodology to DNNs applications

In this Section we discuss several case-studies concerning the application of our
methodology to DNNs, along with the hardware accelerator we designed to assess
hardware requirements.

As will be detailed in the following, to perform approximate variants generation
and DSE, we use the E-IDEA framework that we extensively discussed in Section 5.1.
Hence, through a MOP-based DSE, we find the correct approximation degrees leading
to non-dominated solutions exhibiting near-Pareto trade-offs between accuracy-loss
and hardware-efficiency. Indeed, E-IDEA allows specifying multiple fitness-functions;
for our scenario, we define the accuracy-loss and the hardware requirements to be both
minimized. Furthermore, our approach allows to selectively introduce approximation
within layers while considering the network as a whole, contextually analyzing error
resiliency of layers.
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Figure 6.3: Actual workflow for DNNs approximation.

Figure 6.3 sketches our workflow as a whole: given a DNN implementation, the
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first step is approximate variant generation, which is performed by exploiting the
Clang-Chimera tool. From a technical standpoint, we consider C/C++ implementations
of DNNs, designed and trained by making use of the Neural Network Design &
Deployment (N2D2) framework [114], which is an open-source CAD framework
for DNNs design and simulation.

The approximate variants resulting from Clang-Chimera are fed to the Bellerophon DSE
engine: approximate configurations resulting from assigning a value to each config-
uration parameter within variants are evaluated in terms of fitness-functions, and
Pareto-optimal ones are selected using the NSGA-II heuristic. At the end of the DSE,
the latter configurations are exploited to configure the accelerator we expressly de-
signed in order to assess the actual hardware requirements through FPGA synthesis and
simulations. The architecture of such accelerator will be discussed in Section 6.1.6.3.

6.1.6.1 Generating approximate variants

Since the target application – i.e., DNNs – is extensively researched, taking into
account the results presented in the scientific literature is helpful beyond any doubt
while identifying approximable parts and suitable approximation technique. Indeed, as
discussed in Section 6.1.5, the scientific literature identifies multipliers within neurons
as the most demanding component in terms of resource requirements. Therefore, they
can be considered as good candidates a fortiori. The scientific literature also provide
suitable approximation techniques to be adopted, depending on the particular final
implementation being considered. As we discussed above, albeit many other techniques
may be taken into consideration, including the loop-perforation, the memoization and
the load-value approximation, the precision-scaling and inexact mathematical operators
are the most commonly adopted ones.

The precision-scaling technique, for instance, can be applied by carefully manipu-
lating the AST in order to supersede precise multiplications and/or additions in (6.17)
or (6.18) with approximate ones. As discussed, such approximate operations should
allow selecting the appropriate degree of approximation to be introduced, by means of
tunable parameters. Nevertheless, the amount of such parameters can easily explode,
since the amount of operations within layers. Structural properties of layers, how-
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ever, can be exploited in order to reduce the amount of introduced parameters while
effectively introducing approximation. In CLs, for instance, weights-sharing, which
reduces the amount of parameters to be learned during the training phase by sharing
synaptic weights among neurons within the same layer, allows applying the same
approximation degree to all neurons belonging to the same CL. However, operations in
different CLs must have their own approximation degree. Neurons belonging to FCLs
usually do not share synaptic weights, yet they process the same input volume. Thus,
neurons belonging to the same FCL can share the same approximation degree. PLs can
also be subject to approximation. Their contribution in terms of calculation burden
is, however, negligible w.r.t. CLs and FCLs. Moreover, sub-sampling by means of
stride in convolutions is progressively supplanting PLs. Therefore, we do not apply
any approximation to such kind of layers.

We configured Clang-Chimera to truncate input operands and results of multiplica-
tions in CLs and FCLs. Thus, the Clang-Chimera tool produces an approximate version
which allows configuring, for each of the approximate layers, the approximation degree
for the multiplications and additions involved in the weighted sum (6.17) or (6.18),
depending on the considered layer.

6.1.6.2 Design space exploration

In order to estimate the error introduced by the approximation, we configured Bellerophon
to execute the approximate CNN on the training test data set, in order to assess the
classification-accuracy loss. Concerning hardware-requirements, we estimate savings
by taking into account several parameters that definitely have some impact on the
former, such as: (i) the input-volume of a neuron, which impacts the amount of oper-
ations performed within it; (ii) the amount of neurons within a layer, i.e., the output
volume size of a layer, which impacts the hardware requirements of the whole layer.
Nevertheless, the definition of the actual fitness-functions for estimating hardware-
requirements must take into account the adopted approximate technique, and its impact
on requirements themselves. Therefore, for each of the case study we report in the
following, we discuss a suitable reward function.



6.1. NEURAL NETWORKS 109

6.1.6.3 Configurable hardware architecture

In order to evaluate resource requirements and savings resulting from our methodology,
we designed and implemented a configurable accelerator suitable to be used for FPGA
synthesis.

The RTL block schema of our accelerator is depicted in Figure 6.4: PEs (the blue
spheres in Figure 6.4) are organized as two-dimensional grid of r rows and c columns,
with r and c being user-configurable to accommodate different data-reuse necessities.
Indeed, PEs on the same row process the same input volume (red cubes of Figure 6.4),
applying different synaptic weights (green cubes in Figure 6.4), thus computing a
portion of a fiber of the output activation map. On the other hand, PEs on the same
column apply the same synaptic weights to different input volumes, hence computing
a portion of the corresponding channel of the output feature map (white “spaghetti”
in Figure 6.4). Therefore, the amount of rows and columns of the grid controls the
amount of fibers and/or channels of the output features map being simultaneously
computed, respectively. Whether a fiber is computed along the whole depth depends
on the number of columns of the grid, while whether an output channel is computed
along both width and height depends on both the amount of rows of the grid and how
input data are fed to the accelerator. Besides CLs, FCLs can also be implemented,
by using a single-row grid. A RTL block schema of PEs is depicted in Figure 6.5.

i-th output channel (partial)

(i+1)-th output channel (partial)

(i+c-1)-th output channel (partial)

Figure 6.4: RTL block schema of our DNN accelerator

Essentially, one PE implements a whole neuron, and takes advantage from the massive
inner-parallelism hardware provides, performing unrelated operations by exploiting
parallel multipliers and adders. Inputs and weights signals are fed into a multiplier
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block (depicted in light gray) that computes partial-products using d× h× w parallel
multipliers, where d, h and w are, respectively, the depth, height and width of neurons’
input-volume. Partial-products are, then, fed into a binary-tree based sum-reduction
block (depicted in light blue), that consists of log2 (d× h× w) + 1 levels each of
which consists of 2l parallel adders, with l ∈ [0, log2 (d× h× w)] and l = 0 being
the root-node of the reduction tree, i.e. the one computing the final sum. Then, the
activation function is computed on the final sum, in order to compute the final output.
PEs are pipelined, with multipliers consisting of three pipe stages, the sum-reduction
block consisting of log2 (d× h× w) + 1 pipe stages and two further stages are within
the activation function block. Hence, the latency of PEs is log2 (d× h× w) + 6 clock
cycles. In order to guarantee high flexibility, PEs handle the configuration of (i) the

MUL MUL MUL MUL

SUM SUM SUM

MUL MUL

SUM

SUM SUM

SUM

ACT

SUM

Output

Binary-tree sum reduct

Parallel multiplier block

Figure 6.5: RTL block schema of PEs

data-width for inputs, weights, biases, and output; (ii) the input-volume size of the
neuron, in terms of depth, height, and width; (iii) the activation-function to be used;
(iv) the NABs for multiplications between inputs and weights, and the NABs for partial
products sum, in case the precision-scaling technique is adopted; (v) the multiplier
and adder to be picked from the EvoApproxLib-Lite [129], in case the inexact-circuit
technique is adopted. Flexibility originating from such configuration parameters yield
our accelerator generic enough to adapt to several DNN models and approximation
degrees. As for the former, the structural configuration of the grid – i.e., how many
rows and columns it has – is strictly constrained by the model (and hardware resource).
As for the latter, they can be set according to Pareto-optimal configurations resulting
from DSE.
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6.1.6.4 Case-study #1: validating the method

In order to evaluate our method, we consider the LeNet5 [105] network. LeNet5 [105] is
a CNN that perform well in large-scale image processing. It is quite simple CNN when
compared to the state-of-the-art architectures: it consists of only five layers (without
taking pooling into account) whose characteristics are summarized in Table 6.1, and it
requires only 60 thousands parameters to be learned. This makes it the ideal field for
several preliminary experiments.

The network being considered has been trained to classify images from the MNIST
test data set [107], which consists of a training set of 60000 examples, and a test set
of 10000 examples of handwritten digits. The network has been trained using 64
bits floating-point, and exhibits a 99.07% accuracy when classifying images from the
mentioned data set. We performed a 8-bit quantization, witnessing no accuracy loss.

Table 6.1: Structural characteristics of layers of LeNet5 [105]
.

Layer Layer Type Input volume Kernel size Filters Activation Output volume
Conv1 Convolution 1x32x32 1x5x5 6 tanh 6x28x28
Conv2 Convolution 6x14x14 6x5x5 16 tanh 16x10x10
Conv3 Convolution 16x5x5 16x5x5 120 tanh 120x1x1
Full1 Fully Connected 120x1x1 - - tanh 84x1x1
Full2 Fully Connected 84x1x1 - - tanh 10x1x1

In this case-study we configured the Clang-Chimera tool to supersede exact multi-
plications within the three CLs and two FCLs of LeNet5 using approximate multipliers
designed while resorting to the precision-scaling technique. The latter allow selectively
introducing approximation by means of configurable parameters. As discussed in
Chapter 3, such configuration parameters constitute decision variables for MOP-based
DSE; therefore, the Bellerophon tool encodes each approximate configuration, i.e.,
each individual, using a five element long vector, i.e., using a chromosome composed
of five genes. Each of the latter governs the NAB for multiplications within a given
layer.

Concerning fitness-functions, we resort to simulations performed on the test dataset
in order to assess the classification accuracy-loss due to approximation. As far as
hardware-requirements are concerned, we have to take into account

Let us consider CLs. In particular, let di × hi × wi = Ii be the input volume
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size of neurons belonging to the i-th CLs, where di, hi and wi being the depth, the
height and the width of the volume, respectively, as depicted in Figure 6.6. Thus,
according to (6.17), each neuron performs Ii partial products between inputs and
synaptic weights, and the minimum amount of additions required to sum Ii operands is
given by

∑log2Ii+1
j=0

Ii
2j+1 . We estimate savings from the ratio of neglected bits over the

Input
Volume

Figure 6.6: Receptive-field of a neuron and its input volume.

exact representation, as given by (6.21), where S be the data-width for inputs, weights,
biases, and outputs adopted for the non-approximate network.

2×NABmul × Ii +
∑log2Ii+1
j=0

Ii
2j+1 ×NABadd

2× S × Ii + S ×
∑log2Ii+1
j=0

Ii
2j+1

(6.21)

Please kindly note that the same reasoning still apply to neurons belonging to FCLs,
since the latter can be considered as CLs having a mono-dimensional receptive-field.
When considering the whole network, savings for the i-th layer can be computed by
multiplying (6.21) for the number of neurons within the layer, i.e., for the output
volume size Oi = Di ×Hi ×Wi. Let N be the amount of approximate layers, our
proposed reward fitness-function (6.22) is straightly derived from (6.21), taking into
account input and output volumes, and the introduced approximation degree for each
approximate layer.

ρ =

∑N
i=0

[(
2×NABmuli × Ii +

∑log2Ii+1
j=0

Ii
2j+1 ×NABaddi

)
×Oi

]
S ×

∑N
i=0

[(
2× Ii +

∑log2Ii+1
j=0

Ii
2j+1

)
×Oi

] (6.22)
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Please kindly note that properties of the multiplication operation can be leveraged
to slightly simplify Equation (6.22). Indeed, approximating even by a single operand
setting to zero the least significant NAB bits, at least 2×NAB bits of the result will
be zero. This can be exploited to set NABaddi = 2 ×NABmuli , which drastically
reduces the design-space to be searched during DSE. Thus, Equation (6.22) gets
simplified as follows.

ρ =

∑N
i=0

[(
2×NABmuli × Ii +

∑log2Ii+1
j=0

Ii
2j ×NABmuli

)
×Oi

]
S ×

∑N
i=0

[(
2× Ii +

∑log2Ii+1
j=0

Ii
2j+1

)
×Oi

] (6.23)

To find a suitable NSGA-II configuration, we conducted several DSE campaigns
with different parameters. As a result, we deduced two things: (i) to obtain a populous
frontier and avoid local sub-optimum, we need to increase the initial population size as
much as possible, yet without penalizing too much the time required for exploration;
(ii) in order to avoid long-run exploration around local sub-optimum, mutations have
to take place frequently; (iii) the number of generations on the one hand must be
high enough to ensure that the results of the DSE are close to the optimum, but on
the other hand must not be penalizing for the computational time. Hence, we set
our GA parameters as follows: initial population equals to 300 individuals, mutation
and crossover probabilities both set 0.9, and 13 generation epochs. Finally, we set a
maximum error threshold equals to 1% accuracy loss.

Table 6.2 report approximate configurations resulting from the DSE: each row of
the tables report one approximate configuration: besides the corresponding error and
reward fitness values, for each of the layer we approximate the amount of neglected bits.
We can observe that at once the classification accuracy loss is undoubtedly negligible
and the estimated reward is quite substantial, thanks to the large inner error resiliency
of the considered network. Although too small to be considered significant, in some
cases we even obtained an increased accuracy (negative loss).

After the DSE, to correctly evaluate the final gains, we performed FPGA synthesis
of Pareto-optimal configurations while targeting a Xilinx Virtex Ultrascale+. These
syntheses involve only one single neuron, in order to provide a fair estimation of



114 CHAPTER 6. ARTIFICIAL INTELLIGENCE CASE-STUDIES

hardware requirements, viz. as independent as possible from configuration parameters
governing the structure of the accelerator. Furthermore, for the same reason, we
disabled advanced FPGA features, e.g. DSPs, during syntheses.

Figure 6.7 report synthesis results: these stacked-bars graphs show, for each of
the layers, the amount of FPGA LUTs required by a single neuron. The left-most
column refers to the non-approximate configuration, while columns on the right refer
to Pareto-optimal approximate configurations from Table 6.2. A significant reduction,
actually up to 45%, of required resources in terms of FPGA LUTs can be observed.

As foreseeable, savings achieved due to precision-scaling do not only concern
hardware requirements, but also energy consumption. Trivially, the less hardware a
circuit require, the less energy is spent to power it, and since the least significant bits of
inputs, weights, and biases are always set to zero, the whole approximate circuit is also
expected to exhibit a lower switching activity w.r.t. its exact counterpart.

In order to evaluate potential power savings, we performed simulations on the exact
neuron and on approximate ones lying on the Pareto-front resulting from the DSE.
Simulations involve 10000 input combinations, each consisting of an appropriate
amount of inputs, weights and bias vectors, depending on the input volume size of the
considered neuron. Figure 6.8 reports simulation results. Again, up to 35% savings in
terms of power consumption can be observed.

Table 6.2: DSE results for 8-bits LeNet5

Conf# Error (%) Reward (%) Conv.1 Conv.2 Conv.3 F.C.1 F.C.2
1 0.18 32.91 2 3 0 3 2
2 0.34 36.25 3 3 2 0 2
3 0.48 37.31 3 3 2 3 4
4 -0.06 24.60 2 2 0 2 3
5 0.07 28.61 3 2 2 1 3
6 0.35 36.28 3 3 2 0 3
7 0.10 28.86 3 2 2 2 0
8 0.38 36.99 3 3 1 3 0
9 0.12 32.60 2 3 0 2 3

10 -0.02 24.94 2 2 2 2 0
11 -0.07 16.64 0 2 1 1 3

Energy consumption due to memory operations is also affected due to precision-
scaling. Indeed, the lower the data width for inputs, weights and biases, the lower
energy required to move data back and forth from the memory to the accelerator.
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Figure 6.7: Required LUTs for 8-bits LeNet5 while targeting a Xilinx Virtex Ultrascale+
FPGA

Let suppose moving a bit from the computer system memory to the hardware
accelerator will cost 1 Energy Unit (EU). Thus, moving inputs, weights and biases
from the main memory to a hardware accelerator implementing a neuron for a CL layer
in LeNet5 would require 2 × S × I + S EUs, where S is the data width and I the
input volume size. Moving the neuron’s output from the accelerator to memory would
require S EUs. On the other hand, had the precision scaling reduced data width of
NABmul and NABadd, the same operations would require 2 × (S −NABmul) ×
I + (S −NABadd) EUs and S −NABadd EUs, respectively. Thus, savings due to
memory operations can be computed as reported in Equation (6.24).

ρm =
2×

∑N
i [(S −NABmuli)× Ii] +

∑N
i (S −NABaddi)

2× S ×
∑N
i (Ii + 1)

(6.24)

Table 6.3 reports the estimation of potential energy savings due to memory reads
and write operations, estimated using Equation (6.24). For the reader convenience,
the same Table also summarizes savings due to the reduced hardware requirements.
These preliminary results suggest the MOP-based DSE is able to efficiently evaluate
configurations within the design space, and provide the designed with suitable trade-offs
for the design of actual accelerators.
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Figure 6.8: Estimated power consumption for 8-bits LeNet5 while targeting a Xilinx
Virtex Ultrascale+ FPGA

6.1.6.5 Case-study #2: approximating sums with degree independent of multi-
plications

As we discussed in the previous Section, properties of the multiplication operation
can be leveraged to slightly simplify Equation (6.22), i.e., it is possible to impose
NABaddi = 2×NABmuli obtaining Equation (6.23). This drastically reduces the
solution space to be searched during DSE.

Almost spontaneously, the question arises whether the solutions that would be
obtained by setting NABaddi independently w.r.t. NABmuli can be better than those
obtained by setting NABaddi = 2×NABmuli . Thus, we configured Clang-Chimera
to truncate input operands of both multiplications and additions within CLs and FCLs,
and we configured the Bellerophon to vary NABaddi independently w.r.t. NABmuli
within each of the layers, while using Equation (6.22) rather than Equation (6.23), to
estimate savings. Finally, we configured the DSE using the same NSGA-II parameters
we adopted in the previous case-study, for a fair comparison.

Table 6.4 report results from DSE: besides the corresponding error and reward
fitness values, each row reports the amount of neglected bits for additions and multipli-
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Table 6.3: Summary of savings for 8-bits LeNet5

Conf FPGA LUTs FPGA Power
Consumption (mW)

Memory Power
Consumption (EU)

FPGA LUTs
Savings (%)

FPGA Power
Savings (%)

Memory Power
Savings (%)

0 126185 415.48 12504 - - -
1 82895 327.81 10438 34.31 21.10 16.52
2 101777 359.69 9508 19.34 13.43 23.45
3 68770 273.80 8447 45.50 34.10 32.45
4 89173 318.11 10811 29.33 23.44 13.54
5 80890 327.87 9399 35.90 21.09 24.83
6 80894 316.42 9339 35.89 23.84 25.31
7 84458 361.14 9665 33.07 13.08 22.70
8 97252 315.24 9924 22.93 24.13 20.63
9 98059 340.35 10510 22.29 18.08 15.95
10 85064 364.39 9716 32.59 12.30 22.30
11 94211 348.40 10535 25.34 16.14 17.20

cations for each of the layers, respectively in the
∑

and × columns.

At the end of DSE, we performed FPGA synthesis of Pareto-optimal configurations
from Table 6.4 in order to correctly evaluate the final gains. Again, these syntheses
involve only one single neuron. We also performed simulations on the exact neuron
and on the approximate neuron configurations lying on the Pareto-front resulting from
the DSE in order to estimate power consumption. As before, simulations involve 10000
input combinations, each consisting of an appropriate amount of inputs, weights and
bias vectors depending on the input volume size of the considered neuron. Figure 6.9
and 6.10 report results in terms of required FPGA LUTs and power consumption,
respectively.

Table 6.4: DSE results for the 8-bits of LeNet5 while approximating both additions
and multiplications

Neglected Bits
Conv. 1 Conv. 2 Conv. 3 F.C.1 F.C. 2

Conf # Error (%) Reward (%)
∑

×
∑

×
∑

×
∑

×
∑

×
1 -0.09 18 0 0 3 2 2 1 0 0 1 4
2 -0.08 30 2 1 3 2 3 2 4 2 0 4
3 0.02 31 2 2 2 2 4 2 6 1 1 4
4 0.17 32 6 3 6 0 4 2 0 3 6 3
5 0.19 33 1 0 5 3 4 2 5 1 1 3
6 0.22 35 2 2 3 3 4 2 6 1 2 4
7 0.30 36 3 1 4 0 6 2 1 4 5 2
8 0.48 40 5 3 6 3 4 2 5 3 3 4

In order to state which Pareto-front provides better results, we resort to the Coverage

of two sets metric, proposed in [189]. Let A and B be two sets of non-dominated
solutions for a MOP. The function C in Equation (6.25) maps the pair (A, B) to the
interval [0, 1]: where the expression α covers β (α � β) means that the solution α
dominates the solution β or they are the same solution. The value C (A,B) = 1 means



118 CHAPTER 6. ARTIFICIAL INTELLIGENCE CASE-STUDIES

Ex
ac

t

#1 #2 #3 #4 #5 #6 #7 #8

#Approx. Configuration

0

20

40

60

80

100

120

Re
qu

ire
d 

LU
Ts

 (i
n 

th
ou

sa
nd

s)

Conv1 Conv2 Conv3 FC1 FC2

Figure 6.9: Required LUTs for 8-bits LeNet5 while approximating both additions and
multiplications

that all points in B are dominated by or equal to points in A. Conversely, the value
C (A,B) = 0 represents the situation where no points in B are covered by any points in
A. When using this metric, both C (A,B) and C (B,A) have to be considered, as they
are not necessarily equal.

C (A,B) :=
| {∀β ∈ B; ∃ α ∈ A : α � β} |

|B|
(6.25)

We measured C between configurations from Table 6.2 and Table 6.4 while using
classification-accuracy loss and actual hardware requirements – i.e., the actual LUTs
and power consumption resulting from syntheses and simulations – to define the two
Pareto-fronts. As reported in Table 6.5, we obtained 0 and 22% coverage, which means
that varying NABaddi independent w.r.t. NABmuli provides configurations which
never dominate those provided by setting NABaddi = 2 × NABmuli . Vice-versa,
approximate configurations obtained by setting NABaddi = 2×NABmuli dominates
those provided by varying NABaddi independent w.r.t. NABmuli 22% of time. Thus,
we can conclude that, for the same amount of effort spent on the DSE, configuring the
degree of approximation for the sums by exploiting the properties of multiplication –
i.e., setting NABaddi = 2 ×NABmuli , – yields better solutions. This is due to the
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Figure 6.10: Estimated power consumption for 8-bits LeNet5 while approximating
both additions and multiplications

increased size of the design space when NABaddi does not depend on NABmuli .

Table 6.5: Coverage of two sets metric between Pareto-fronts in Table 6.2 and Table 6.4

Pareto-fronts C (A,B)
add & mul v.s. mul only 0
mul only v.s.add & mul 0.22

6.1.6.6 Case-study #3: investigating the relationships between data-width and
error-resilience.

From a mathematical standpoint, the quantization can be seen as a mapping between
A ⊂ R → B ⊂ Z, which implies |A| > |B|, where | · | is the cardinality of a set,
i.e., its size in terms of elements it contains. As it is easy to guess, reducing the space
on which weights (and inputs, of course) are represented could negatively affect the
error-resiliency of the network, hence its capability to be approximated. Thus, the less
the size of B, we expect the less the network can be approximate.

Though, in this experiment we compare the resilience to error and the consequent
savings that can be obtained from a different implementation of LeNet5, quantized to
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16 bits, rather than of 8 bits.

As done in Section 6.1.6.4, we configure Clang-Chimera to truncate multiplications
in the three CLs and in the two FCLs of a 16-bits quantized LeNet5 implementation.
Thus, the tool generates an approximate version of the considered CNN in which it is
possible to configure, for each multiplication involved in the weighted sum, the NABs,
in order to tune the introduced approximation degree. In order to estimate the error
due to the approximation, we configured Bellerophon to execute the approximate CNN
on the test data, in order to assess the classification-accuracy loss. Concerning the
reward fitness-function, we estimate the gains by using Equation (6.23). Furthermore,
in order to avoid biasing, we configured the DSE using the same NSGA-II parameters
we adopted in Section 6.1.6.4.

Table 6.6 report approximate configurations resulting from the DSE: each row of
the tables report one approximate configuration, i.e., the amount of neglected bits, along
with the corresponding error and reward fitness values. Then, we performed FPGA
synthesis and simulations in order to estimate hardware requirements both in terms
of LUTs and power consumption, which are reported in Figure 6.11 and Figure 6.12.
As the reader can observe, up to 75% and 55% savings in terms of LUTs and power
consumption, respectively, can be achieved, suggesting the error resiliency, hence the
ability to be approximated, strongly depends on the data size.

Table 6.6: DSE results for the 16-bits implementation of LeNet5

Conf# Error (%) Reward (%) Conv.1 Conv.2 Conv.3 F.C.1 F.C.2
1 -0.06 44 5 9 6 9 11
2 -0.05 51 2 6 9 5 12
3 -0.04 54 2 6 0 6 12
4 0.11 55 9 10 10 6 4
5 0.12 57 9 10 10 7 5
6 0.13 60 1 10 10 5 9

At this point, the question arises whether to approximate a network quantized
on more bits, e.g., 16-bits, can originate approximate configurations that require less
hardware resources than those originating from a network quantized on fewer bits,
e.g., 8-bits. To answer this question, we compare the Pareto-fronts from Table 6.2
and Table 6.6, in order to state which implementation provides better Pareto-front.
Again, we resort to the Coverage of two sets metric [189], reported in Equation (6.25).
We measured C between configurations from Table 6.2 and Table 6.6 while using
classification-accuracy loss and actual hardware requirements – i.e., the actual LUTs
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Figure 6.11: Required LUTs for 16-bits LeNet5 while targeting a Xilinx Virtex Ultra-
scale+ FPGA

and power consumption resulting from syntheses and simulations – to define the two
Pareto-fronts. Table 6.7 reports results of such a comparison: we obtained 1 and
0 coverage, which means solutions from Table 6.2 – i.e., those resulting from the
8-bits implementation of LeNet5 – always dominates those from Table 6.6 – i.e., those
resulting from the 16-bits implementation of LeNet5 – while the vice-versa never
occurs. This suggests that employing implementations quantized to fewer bits results
in lower hardware requirements, albeit implementations using quantization to more
bits brings much more room for approximation.

Table 6.7: Coverage of two sets metric between Pareto-fronts in Table 6.2 and Table 6.6

Pareto-fronts C (A,B)
8b vs. 16b. 1
16b vs. 8b 0

6.1.6.7 Impact of precision-scaling on hardware components

At this point it is natural to wonder what are the reasons for which you can get similar
savings both in terms of area on silicon and in terms of energy consumption. In this
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Figure 6.12: Estimated power consumption for 16-bits LeNet5 while targeting a Xilinx
Virtex Ultrascale+ FPGA

Section we will try to give an explanation to these phenomena, looking at the effects of
the precision-scaling technique on the accelerator hardware implementation that we
discussed earlier.

In order to make PEs easily adaptable to any data-width and any approximation
degree, we chose two of the most commonly adopted hardware implementations for
multipliers and adders, i.e., the MAC-cell multiplier and the ripple-carry adder. In
order to understand the impact of precision scaling on such components, let us consider
a ripple-carry adder first. Suppose the three least significant bits of both operands are
set to zero, i.e., NABadd = 3. So, the output of full-adder cells computing the three
least significant bits of the sum is always zero and, therefore, they can be superseded
by constant-zero, thus reducing hardware costs, as depicted in Figure 6.13. Savings, in
this case, are proportional to NABadd, i.e., ρ ∝ NABadd. Consider, now, the MAC-

FAFAFAFAFAFAFAFA

Figure 6.13: Effect of precision-scaling on a ripple-carry adder. Constant-zero cells are
highlighted in red.
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multiplier, and, again, let us suppose the three least significant bits of both operands
are set to zero, i.e., NABmul = 3: cells producing a value which is always equal to
zero are highlighted in red in Figure 6.14. As we can observe, the MAC-cells on the
first NABmul rows produce always values equal to zero, so they can be superseded
by a constant-zero signal, reducing hardware costs proportionally to S × NABmul,
where S is the data width. Parts of subsequent rows are also affected by approximation,
providing further savings, proportional to the following.

NABmul+NABmul−1+NABmul−2+· · ·+1 =

NABmul∑
i=1

i =
NAB2

mul +NABmul
2

(6.26)
This means ρ ∝ NAB2

mul. Therefore, area requirements of a 16 bits multiplier with
NABmul = 8, for instance, are not halved, indeed the actual size of the multiplier is
one third of that required by its exact counterpart, which significantly boosts savings of
the whole neuron. Nevertheless, the quadratic term is never prominent over the linear
one when 8-bits quantization is performed, since the former is always less than the
latter in the allowed (0, 8) variation range for NABmul.

MACMACMACMACMACMACMACMAC

MACMACMACMACMACMACMACMAC

MACMACMACMACMACMACMACMAC

MACMACMACMACMACMACMACMAC
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0

Figure 6.14: Effect of precision-scaling on a MAC multiplier. Constant-zero cells are
highlighted in red.
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6.1.6.8 Case-study #4: building complex architectures from elementary approx-
imate components

In this case-study we configure the Clang-Chimera is configured to supersede exact
multiplications in the three convolutional and in the two fully connected layers using
approximate circuits taken from the EvoApproxLib-Lite [129]. Thus, the tool generates
an approximate version of the considered CNN in which it is possible to select, for
each multiplication involved in the weighted sum computation within neurons, an
implementation between either the exact or an approximate implementation from the
mentioned library.

Concerning MOP, as done for precision-scaling, one of the objectives of the
Bellerophon is to find approximate solutions minimizing the classification-accuracy
loss. Therefore, in order to perform error assessment, we configured Bellerophon
to execute the approximate CNN to obtain its classification accuracy on the MNIST
test data set [107]. Then, that accuracy is compared against the accuracy of the
non-approximate 16-bits quantized CNN, and the error is computed as the difference
between the two CNNs accuracy.

We estimate the circuit area by taking into account (i) the silicon area of exact
and approximate multipliers, as reported in [129], (ii) the input-volume of a neuron,
which impacts the amount of operations performed within it, and (iii) the amount of
neurons within a layer, i.e. the output volume size of a layer. In details, being: (i) N :
the amount of approximate layers, (ii) Ii = di × hi × wi: the input volume size of
each neuron belonging to the i-th layer, (iii) Oi = Di ×Hi ×Wi: the i-th layer output
volume size, (iv) αi: the silicon area of the multiplier being adopted within i-th layer
as reported in [129], the Bellerophon aims at minimizing Equation (6.27), which is the
sum of the silicon area of multipliers being adopted within each of the layers, weighted
according to input and output volume size of each layer.

ρ =

N∑
i

αi × Ii ×Oi (6.27)

Furthermore, we also aim to minimize the power consumption of the circuit, which
is estimated resorting to the same reasoning as for silicon-area minimization. In
particular, being βi: the power consumption of the multiplier adopted within i-th layer,
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the Bellerophon aims at minimizing Equation (6.28), which is the sum of the power
consumption of multipliers being adopted within each layer, weighted according to the
input and output volume size.

ψ =

N∑
i

βi × Ii ×Oi (6.28)

Resulting approximate configurations are reported in Table 6.8. For each of the
configurations, besides the corresponding fitness-function values, also the multiplier cir-
cuits being adopted are reported. These approximate configurations are, then, employed
to configure the above-mentioned accelerator; then, we performed ASIC synthesis tar-
geting the 65µm FinFET library to measure the actual hardware requirements entailed
by the approximation. Figure 6.15 and Figure 6.16 report silicon-die area requirements

Table 6.8: Bellerophon results for LeNet5 while using approximate circuits from [129]

Conf# Error (%) Silicon area (µm2) Power (W) Conv.1 Conv.2 Conv.3 F.C.1 F.C.2
1 -0.04 1012.24× 106 945.199 Exact HHP Exact GK2 HDG
2 0.15 900.95× 106 736.031 HFZ HDG Exact HDG Exact
3 -0.08 1143.84× 106 1014.180 Exact GK2 G7Z HHP HFZ
4 0.13 950.48× 106 789.560 HFZ G7Z G80 Exact G7Z
5 0.04 970.83× 106 859.568 HDG HEB HHP G7F G7Z
6 0.07 970.17× 106 784.903 G80 G7F G80 HEB G7F
7 0.01 997.27× 106 832.993 G80 HDG Exact GK2 HFZ
8 -0.02 999.64× 106 930.959 Exact HHP HHP GK2 HDG
9 0.22 814.35× 106 648.202 HDG HFZ Exact HFZ HFZ
10 0.34 731.97× 106 563.760 HFZ HFZ GK2 HHP G80

and estimated power consumption provided by the Cadence Genus Synthesis Solution
tool. As discussed above, the third convolutional layer (Conv.3) is the most burdensome,
since its input volume size. Anyway, the predicted savings are still confirmed: using
our methodology results in hardware resources significantly decrease as the introduced
classification error increases. Configuration #8, for instance, allows achieving up to
35% and 30% savings in terms of silicon area and power consumption.

6.1.6.8.1 Comparison with previous works Authors of [129] proposed a com-
parable approach in which basic arithmetic components are first approximate while
considering component-based error and saving metrics, thus employed to design a
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Figure 6.15: Silicon-die area for 16-bits LeNet5 while using multipliers from the
EvoApproxLib-Lite library [129]

hardware accelerator CNNs. In particular, multipliers are employed to perform error-
resiliency estimation of single layers of CNNs, and to reduce figure of merits such as
silicon area and power consumption of hardware accelerators.

Although the results are not directly comparable, those achieved through the use of
our methodology – 0% classification accuracy drop against 35% area and 30% power
savings – are on the same quantitative relation as those obtained using state-of-the-art
approaches – 1.8% accuracy traded for 29% power savings. On the other hand, looking
at the methodological aspect, we deem that our approach provides a significant step
forward. In fact, it allows considering the application as a whole, and to explore, in a
single run, the different degrees of approximation that each of the layers of the network
is able to withstand, allowing to diversify the degree of approximation that can be
exploited during the design of a hardware accelerator. Conversely, the state-of-the-art
studies carry out the analysis of resilience with respect to the error by considering the
layers one at a time, and, as far as the design of an accelerator is concerned, they do
not fully exploit the approximation that is possible to introduce, employing the same
degree of approximation for all the layers. Moreover, they do not allow exploring the
effects of different approximation techniques on the same application.



6.1. NEURAL NETWORKS 127

0 1 2 3 4 5 6 7 8 9 10
#Approx. Configuration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Po
we

r C
on

su
m

pt
io

n 
(n

W
)

1e8
Conv1 Conv2 Conv3 FC1 FC2

Figure 6.16: Power consumption for 16-bits LeNet5 while using multipliers from the
EvoApproxLib-Lite library [129]

6.1.6.8.2 Comparing precision-scaling and approximate-circuits techniques In
this section, we make a comparison between the precision-scaling and the approximate
circuit techniques, while resorting to the case-study discussed above.

Resorting to the 16-bits quantized CNN model we adopted for the approximate cir-
cuit technique case study, here we configure Clang-Chimera to truncate input operands
and results of multiplications in the three convolutional and in the two fully connected
layers of the considered network. As a result, the tool generates an approximate version
of the considered CNN in which it is possible to configure, for each multiplication
involved in the weighted sum, the number of neglected bits, in order to tune the intro-
duced approximation degree. Concerning the DSE phase, we configured Bellerophon
to minimize both the classification-accuracy loss and silicon-die area. In particular,
(i) Bellerophon compares the approximate and the non-approximate networks in terms
of classification accuracy while considering the MNIST test data set, in order to assess
error, and (ii) for what pertains to area minimization, we resort to Equation (6.23).
Finally, we synthesized approximate configurations resulting from Bellerophon while
targeting the 65 µm FinFET technology library – the same we targeted for the approxi-
mate circuit case study – in order to compare actual savings provided by the adopted
approximate techniques, both in terms of silicon area and power consumption.
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Results of such a comparison are reported in the classification-accuracy loss vs
silicon area and power consumption perspectives, respectively in Figure 6.17 and
Figure 6.18. In order to state which Pareto-front provides better results, we again resort
to the Coverage of two sets metric [189], reported in Equation (6.25). We measured C
between the Pareto-fronts resulting from precision-scaling and approximate circuits,
and vice-versa. As reported in Table 6.9, we obtained 90% and 22% coverage, which
means the precision-scaling dominates the approximate circuits techniques 90% of time,
while the opposite occurs only 22% of time. Although the precision-scaling seems to

Table 6.9: Coverage of two sets metric between Pareto-fronts

Pareto-fronts C (A,B)
Ax Circuits v.s. Precision scaling 0.22
Precision scaling v.s. Ax Circuits 0.91

provide better trade-offs w.r.t the approximate-circuits technique, results might differ
whether considering a different application domain, paving the way for future research.
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Figure 6.17: Comparison between precision-scaling and approximate circuits tech-
niques: error v.s. silicon area

6.1.6.9 Case-study #5: applying the loop-perforation technique

The opportunity to attempt applying the loop-perforation technique arise from the
particular C/C++ implementation of CLs and FCLs provided by the N2D2 framework.
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Figure 6.18: Comparison between precision-scaling and approximate circuits tech-
niques: error v.s. power-consumption

Listing 6.1 reports an example code for CLs, albeit the implementation of FCLs follows
the same concept. CLs are implemented by making use of six nested for loops: the
three outermost loops iterate on the three dimensions of the output volume, while the
three innermost loops perform the weighted sum of the inputs for a single neuron.

Depending on which loop is the target, the effect has an easily imaginable physical
interpretation. When applied to outer loops, the effect is to skip the computation of
neurons that are on the same row or column of the same depth-slice, or those that
compose the same fiber of the output volume of the layer under consideration. In the
other case, i.e., when applied to internal cycles, the technique affects the calculation
of the weighted sum of each of the neurons of the layer. Depending on the particular
cycle, the elements of t he receptive-field of a neuron that are on the same row, column,
or fiber are skipped. Obviously, approximating multiple cycles means summing the
effects due to the approximation of each one.
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1 void conv_layer(...) {

2 for (int output = 0; output < output_depth; ++output)

3 for (int oy = 0; oy < output_height; ++oy)

4 for (int ox = 0; ox < output_width; ++ox) {

5 const int ix = (ox * strideX) - paddingX;

6 const int iy = (oy * strideY) - paddingY;

7 SUM_T ws = bias[output];

8 for (int ch = 0; ch < input_depth; ++ch)

9 for (int sy = 0; sy < kernel_height; ++sy)

10 for (int sx = 0; sx < kernel_width; ++sx)

11 ws += W[output][ch][sy][sx] * I[ch][iy + sy][ix + sx];

12 outputs[output][oy][ox] = activation_func(weightedSum);

13 }

14 }

Listing 6.1: Implementation of a CL

The Clang-Chimera tool provides two different mutation-operators implementing
the loop-perforation technique, namely Loop1 and Loop2. Both introduce a configu-
ration parameter that serves to tune the degree of introduced approximation, i.e., the
amount of skipped iterations. Nevertheless, they are slightly different in the introduced
behavior. In facts, the former mutator alters the increment of the loop-counter, which is
incremented depending on the value of the configuration parameter. The latter mutator
alters the body of the loop so that it is executed only when the current value of the loop
counter is a multiple of the configuration parameter. This means the degree of approxi-
mation introduced by Loop1 is directly proportional to the value of the configuration
parameter, while the proportionality is inverse for Loop2. This difference is crucial
during the DSE and must be taken into account in order to properly define the reward
fitness-function. Anyway, the configuration parameter can be freely set during the DSE
for both mutators.

To carry out experiments on loop-perforation, the Clang-Chimera has been config-
ured to perform mutations on CLs only, generating four approximate configurations
while combining loops to approximate – i.e, either outer or inner loops – and mutation
operators – i.e, either the Loop1 or Loop2 mutator. Albeit the error fitness-function
we defined in Section 6.1.6.2 still applies, the reward fitness-function and the MOP-
encoding to drive the DSE have to be adapted to the loop-perforation technique. Con-
cerning the “reward” fitness-function, it is defined as the ratio between the number of
skipped iterations and the total amount of iterations when applying the Loop1 mutator.
Conversely, when applying the Loop2 mutator, the product between the total amount



6.1. NEURAL NETWORKS 131

of iterations and the frequency with which the body of a loop is executed is a good
estimation for the “reward”. As for the MOP encoding, approximate variants can be
described using a chromosome consisting of 9 genes – one gene for each of the pierced
loops within each of the three approximate CLs – each governing the amount of skipped
iterations for the corresponding loop.

Albeit the error fitness-function we defined in Section 6.1.6.2 still applies, the
reward fitness-function and the MOP-encoding to drive the DSE have to be adapted to
the loop-perforation technique. Concerning the “reward” fitness-function, it is defined
as the ratio between the number of skipped iterations and the total amount of iterations
when applying the Loop1 mutator. Conversely, when applying the Loop2 mutator, the
product between the total amount of iterations and the frequency with which the body
of a loop is executed is a good estimation for the “reward”. As for the MOP encoding,
approximate variants can be described using a chromosome consisting of 9 genes – one
gene for each of the pierced loops within each of the three approximate CLs – each
governing the amount of skipped iterations for the corresponding loop.

Table 6.10 and Table 6.12 report DSE results while the Loop1 and the Loop2

mutators on outer loops, respectively. Table 6.11 and Table 6.13, instead, refer to
approximate configuration resulting from piercing inner loops Loop1 and the Loop2

mutators, respectively. As the reader can observe, albeit the amount of skipped itera-
tions is quite modest, the network loses its ability to correctly recognize and classify
the elements.

In further experiments, we apply the loop-perforation technique to a single layer at
a time, obtaining twelve approximate variants of the code reported in Listings 6.1. Nev-
ertheless, we omit DSE results since they are quite similar to those already discussed:
a negligible reward – i.e., skipped iterations – corresponds to a catastrophically high
classification error.

These negative results can be easily understood by bearing in mind the physical
interpretation of the effects of the technique we discussed above: applying the loop-
perforation on one of the external cycles results in not computing elements of the
output-volume along the same dimension (height, width, or depth), as if the neurons
that compute elements of the activations map are dead. Likewise, for internal cycles,
when computing the weighted sum and the activation function the neurons do not take
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into account all the input-volume elements that are along the same dimension, as if the
corresponding weight is zero. The effects of all these small, but numerous, losses of
information add up and dramatically affect the accuracy of classification.

Error (%) Reward (%) Stride 0 Stride 1 Stride 2 Stride 3 Stride 4 Stride 5 Stride 6 Stride 7 Stride 8
87.72 24.5 3 9 0 9 8 9 4 8 6
79.12 8.0 1 1 2 8 2 1 3 9 0

Table 6.10: Outer-loops approximation using the Loop1 operator.

Error (%) Reward (%) Stride 0 Stride 1 Stride 2 Stride 3 Stride 4 Stride 5 Stride 6 Stride 7 Stride 8
75.58 37.5 3 5 1 5 4 4 1 1 9
73.03 17.1 6 4 3 1 7 0 7 2 3

Table 6.11: Inner-loops approximation using the Loop1 operator.

Error (%) Reward (%) Stride 0 Stride 1 Stride 2 Stride 3 Stride 4 Stride 5 Stride 6 Stride 7 Stride 8
87.64 30.61 4 0 8 1 2 0 8 6 2
86.77 18.63 1 1 2 8 2 1 3 9 0

Table 6.12: Outer-loops approximation using the Loop2 operator.

6.2 Decision-Tree based Multiple Classifier Systems

DTs stand out for their simplicity and high interpretability level, placing them as one
of the most widely used classifier model [179]. A DT is a white-box classification
model representing its decisions through a tree-like structure composed of an internal
set of nodes containing test conditions, and leaf nodes which represent class labels [30].
Nodes are joined by arcs symbolizing possible outcomes of each test condition. Classes
can be either categorical or numerical. In the former case, we refer to classification
trees, while in the latter case, we refer to regression trees.

According to the number of attributes evaluated in each test condition – i.e., each
internal node – two DT types can be induced: univariate and multivariate [30]. In the
former, each test condition evaluates a single attribute to split the training set, while a
combination of attributes is used in multivariate DTs. Some of the advantages of uni-
variate DTs are their comprehensibility and the simplicity of their induction algorithms;
however, they may include many internal nodes when the training data set instance
distribution is complex. On the other hand, multivariate DTs classifiers commonly
show better performance, and they are smaller than univariate ones. Nevertheless, they
are less expressive and require more computational effort to induce them.
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Error (%) Reward (%) Stride 0 Stride 1 Stride 2 Stride 3 Stride 4 Stride 5 Stride 6 Stride 7 Stride 8
86.54 88.44 1 1 1 0 0 1 0 6 7
46.48 75.14 1 2 1 0 0 1 0 4 2
26.87 38.72 3 1 3 0 0 2 0 2 0

Table 6.13: Inner-loops approximation using the Loop2 operator.

In univariate DTs, test conditions are defined as xi Q c, where xi is the i-th attribute
value, and c is a threshold value used to define a partition. Therefore, test conditions
represent axis-parallel hyper planes dividing the instance-space, so they are also known
as axis-parallel DTs. Anyway, when a categorical attribute is evaluated, the training set
is split into as many subsets as values exist in the attribute domain.

In the case of a linear combination of attributes, such in Equation (6.29), DTs
are named oblique, as their test conditions represent hyper planes having an oblique
orientation relative to the instance-space axes. Finally, whether non-linear combinations
of attributes are employed, DTs referred to as non-linear.

d∑
i=0

wixi Q c (6.29)

6.2.1 The tree-construction problem

In its essence, the tree-construction problem consists in using the training data set –
that is constituted of historical, labeled data – to determine its best splits. These splits
reduce the data set into smaller and smaller pieces, while aiming at splits that best
emphasizes the differences between data points belonging to the different partitions.
The most widely adopted algorithms to construct DTs are CART and C4.5.

6.2.1.1 Classification and Regression Trees: the CART algorithm

The CART algorithm [30] is a recursive binary-partitioning procedure that is capable
of handling both continuous and categorical attributes. A complete discussion of the
algorithm is undoubtedly burdensome and long, since there are multiple splitting rule
for both classification and regression predictors, separate handling of numerical and
categorical attributes, provision for missing values and so forth. Anyway, we report a
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Figure 6.19: Example of node-splitting in DTs

brief and concise discussion of the method.

CART begins at the root node, i.e., the node including the whole training data set, by
searching the data for the best splitter available, i.e., by testing each attribute-value pair
for its goodness-of-split. The splitting process is repeated producing grand-children of
the root node, and so forth, until no further split is possible. No stopping rule is adopted,
and the resulting maximum-size tree is, then, pruned back to the root, removing subtrees
which contribute the least to the overall performance.

According to [30], binary splitting should be preferred against multi-way splitting,
since it fragments the data set slowly w.r.t. multi-way splitting, and it allows multiple
splits on the same attribute, which may increase the predictive performance. Moreover,
since CART does not discard any of the data points, optimal splits are always invariant
w.r.t. order-preserving transformations of attributes, including logarithmic, square-root
and power transformations.

The effectiveness and expressiveness of a tree are significantly affected by the
adopted splitting criterion. CART splitting rule are always expressed in the form “an
instance goes left if condition is true, otherwise it goes right”. condition is expressed
either in the xj ≤ xRj for continuous numerical attributes, or as xj ∈

{
x1
j , · · · , xnj

}
for categorical values. Here, xj is an attribute, xRj its threshold value for numerical
attributes, and

{
x1
j , · · · , xnj

}
is a list of values for xj if xj is a categorical attribute.

Consider a parent node tp and its left and right child nodes tl and tr, as depicted in
Figure 6.19. The CART algorithm identifies the attribute, and its value, that splits
the data in two portions, with maximum homogeneity. The latter is defined using the
impurity function i(t), and it is achieved by maximizing the change of impurity function

in Equation (6.30), where tp is the parent node, tc the set of child nodes, and E is the
expected value.
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∆i(t) = i(tp)− E [i(tc)] (6.30)

Assuming Pl and Pr the probabilities of a data point to follow the left or the right
node, respectively, the ∆i(t) function can be rewritten as follows.

∆i(t) = i(tp)− Pl · i(tl)− Pr · i(tr) (6.31)

Therefore, for each node, the CART has to solve the optimization problem in
Equation (6.32), which implies the CART has to search through all possible values of
all attributes for the best split, i.e., the split that maximizes ∆i(t).

arg max
xj≤xRj

{i(tp)− Pl · i(tl)− Pr · i(tr)} (6.32)

Author of [30] discussed several definitions for the impurity function. Two of the
most commonly adopted definitions are briefly discussed below.

6.2.1.1.1 The Gini impurity Concerning classification trees, the Gini impurity,
which is named after the Italian mathematician Corrado Gini, is the most commonly
adopted impurity definition. It is reported in Equation (6.33), there k and l are class
indexes, and p(k|t) and p(l|t) are the conditional probability of class k, or l, provided
the current node is t.

i(t) =
∑
k 6=l

p(k|t) · p(l|t) (6.33)

Consider k ∈ [1, · · · ,K], applying the Gini impurity to Equation (6.31) results in
the following.

∆i(t) = −
K∑
k=1

p(k|tp)2 + Pl

K∑
k=1

p2(k|tl) + Pr

K∑
k=1

p2(k|tr) (6.34)
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Therefore, for each node, the CART has to solve the optimization problem in
Equation (6.35).

arg max
xj≤xRj

{
−

K∑
k=1

p(k|tp)2 + Pl

K∑
k=1

p2(k|tl) + Pr

K∑
k=1

p2(k|tr)

}
(6.35)

6.2.1.1.2 The towing impurity Another commonly adopted impurity definition is
the towing impurity that, unlike the Gini one, searches for two classes which make up
together more than 50% of the data, defining the change of impurity as follows.

∆i(t) =
Pl · Pr

4
·

(
K∑
k=1

|p(k|tl)− p(k|tr)|

)2

(6.36)

Then the CART must solve the optimization problem in Equation (6.37). Although
it results in more balanced trees, the towing impurity is slower w.r.t the Gini one.

arg max
xj≤xRj

Pl · Pr4
·

(
K∑
k=1

|p(k|tl)− p(k|tr)|

)2
 (6.37)

6.2.1.2 The C4.5 algorithm

The C4.5 is not a single algorithm, rather a suite of algorithms with different fea-
tures [143]. It is named after the ID3 approach [142] for tree induction.

All algorithms part of the C4.5 suite begin with a root node that represents the
entire given data set, which is recursively split into smaller and smaller subsets by
testing for a give attribute at a time. C4.5 adopts information-theory based splitting
criteria, such as the gain – i.e., the reduction in entropy of the class distribution due to
applying a test – and gain-ratio – which overcomes the tendency of the gain criterion to
favor multi-way tests. The goal of the algorithm is to select the right attribute, and the
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corresponding value, so that the entropy of class distribution is reduced. The spitting
procedure continues until subsets are pure, i.e., all instances in a subset fall into the
same class. C4.5 is not restricted to considering only binary tests, rather it allows tests
with more outcomes. If the attribute type is Boolean, the possible outcomes are only
two, of course, but test for categorical attributes can be multivalued. Conversely, for
numerical attributes, tests can be only binary-valued, and expressed as in the CART
algorithm, i.e., as xj ≤ xRj .

At the end of the splitting procedure, the resulting tree is pruned, in order to reduce
its complexity. The C4.5 algorithm adopts a peculiar pruning technique, namely the
pessimistic pruning. This technique does not require a test data set, rather it estimates
the error that might occur based on the amount of misclassifications in the training data
set. The approach recursively estimate the error-rate associated with a certain node
based on the estimated error-rate of child nodes. Consider a leaf node with N correctly
predicted instances and E instances that do not belong to the class corresponding to
the considered leaf: the pessimistic technique determines the empirical error-rate at the
leaf node as follows.

E + 1
2

N
=

2E + 1

2N
(6.38)

For a subtree having L leaves, ΣN correct prediction and ΣE erroneous predictions,
the error rate is estimated as follows.

ΣE + L
2

ΣN
=

2ΣE + L

2ΣN
(6.39)

Now, suppose a subtree is suppressed using the best leaf node, i.e., the leaf node ex-
hibiting the lowest error-rate, introducing J misclassifications, the pessimistic pruning
will actually replace the considered subtree using the pinpointed leaf i.f.f. Equa-
tion (6.40) is satisfied. There, σ(·) denotes the standard deviation.

J +
1

2
≤ σ(E +

L

2
) (6.40)
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The approach discussed above can be extended to prune based on confidence
intervals, modeling the error-rate at leaves as a Bernoulli random-variable. Thus,
for a given confidence threshold c, an upper bound emax for the error-rate such that
P (e < emax) = 1 − c can be determined. Furthermore, if N – i.e., the amount of
correctly predicted instances – is large, the error-rate distribution can be approximate
using a zero-mean-unitary-variance normal distribution N (0, 1). In this case, an upper-
bound emax for the error-rate can be determined using Equation (6.41), where z is
selected according to the desired confidence interval.

emax =
e+ z2

2N + z
√

e
N −

e2

N + z2

4N

1 + z2

N

(6.41)

6.2.2 Bagging predictors

Bagging, that stands for bootstrap aggregating, is a method for generating multiple
version of a predictor – not necessarily a DT – and using these to get an aggregate
predictor [31].

Consider a training data set T = {(xi, yi) i = 1 · · ·N}, where xi is the vector of
input features and yi either a class label or a numerical response. Assume there is a
procedure, such as the CART or C4.5, for using this training data set to construct a
predictor ϕ (x, T ). Using this predictor, we can predict the class y to which x belongs
to. Now, suppose we have a sequence T = {T1, · · · , Tk} of training data sets, each
consisting ofN independent observation taken from the same underlying distribution as
the above-mentioned T . The sequence T can be exploited to get a better predictor than
ϕ (x, T ), working with the set of predictors {ϕ (x, T1) , · · · , ϕ (x, Tk)}. If predictions
are numerical, then the aggregate predictor outcome can be obtained by averaging over
{ϕ (x, Ti)}, i.e.,

ϕA (x) = ET {ϕ (x, T )} = ET {ϕ (x, Ti) , i = 1, · · · , k} (6.42)

where ϕA (x) denotes the aggregate predictor and ET {ϕ (x, T )} the expectation over
T . Conversely, if predictions are categorical, then, a method for aggregating {ϕ (x, Ti)}
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is by majority-voting, i.e.,

ϕA (x) = arg max
j

nr {k : ϕ (x, Ti) = j} (6.43)

Anyway, learning involves almost always a single training data set. Nevertheless, an imi-
tation of the process leading to ϕA (x) can be defined through bootstrap-sampling [65] a
set of training data sets

{
TBi , i = 1 · · · k

}
from T, to form

{
ϕA
(
x, TBi

)
, i = 1 · · · k

}
.

The
{
TBi , i = 1 · · · k

}
set defines multiple data sets, each drawn from the bootstrap-

distribution approximating the one underlying T . Each data set consists of N samples
extracted randomly from T while using replacement, which means each (xi, yi) ∈ T
may appear either more than once or not at all in

{
TBi
}

. If changes in T produces
substantial changes in ϕ (x, T ), i.e., if the induction procedure is unstable, bagging
can give substantial gains in terms of classification accuracy, as proven in [31]. This
is because the bootstrapping procedure builds uncorrelated data sets, which tend to
decrease the variance of the model without affecting its bias. As a result, while a single
predictor may be quite sensitive to noise, the average of many predictors is not, as long
as predictors are uncorrelated.

6.2.3 From bagging to Random-forest predictors

Significant improvements in classification accuracy have resulted from growing an
ensemble of trees and letting them vote for the most popular class. Besides bagging,
several other techniques have been proposed. Some examples are random split selec-
tion [62], where the split at each node is randomly selected among k different “best
splits”, random feature selection, which either does a random selection of a subset
of features to be used to grow trees [82], or searches for over a random selection of
features for the best split at each node [16], and random error injection [33].

According to [34], all these procedures generate random forest classifiers. Extrapo-
lating these techniques to the maximum, in fact, in order to construct the k-th tree, all
the mentioned procedures generate a random vector Θk, which must be independent
w.r.t. Θ1, · · · ,Θk−1 yet drawn from the same distribution, and a tree is grown using
both the training set and Θk, resulting in a classifier ϕ (x,Θk). The nature and the
dimensionality of Θk depend on its use during the construction procedure. In bagging,



140 CHAPTER 6. ARTIFICIAL INTELLIGENCE CASE-STUDIES

for instance, Θk is used to extract TBi from T , while in random feature selection it is
used to randomly chose a feature, or a subset of features.

Random forest classifiers allow a consistently lower error w.r.t. other construction
methodologies, but still exhibit lower accuracy w.r.t. other algorithms performing
adaptive reweighing of training set [68]. Therefore, the author of [34] propose to
inject further randomness in order to minimize the correlation between predictors while
keeping their strength unaffected. To do so, he combined bagging with random feature
selection: each new training set is drawn, with replacement, from the original training
set, and random feature selection is adopted while growing each tree, without using
any pruning technique.

The adoption of bagging provides two relevant advantages: it allows enhancing
accuracy, of course, and it allows constructing out-of-bag classifiers. The latter allow
estimating the generalization error of the combined ensemble of trees. Assume a
method for constructing a classifier from a training set T , form bootstrap training sets
Tk, k = 1 · · ·K, and construct ϕ (x,Θk) , k = 1 · · ·K, letting the latter vote to form a
bagged predictor. For each (x, y) ∈ T , an out-of-bag classifier aggregates the outcome
of ϕ (x,Θk) , k = 1 · · ·K i.f.f. (x, y) /∈ Tk. Studies on bagged classifier empirically
proved that the error-estimation provided by out-of-bag predictor is as accurate as the
estimation obtained by using a test set of the same size of the training set [32].

6.2.4 Hardware accelerators targeting decision-tree based classi-
fiers

As mentioned, their simplicity and understand-ability make DTs one of the most popular
machine-learning algorithms [179]. Though, at the beginning, they were not considered
for hardware accelerator, since they need only comparison to be performed during
the inference phase; thus, they were not viewed as to be computationally expensive.
Nevertheless, the need to accelerate the inference phase emerged inherently in some
application fields. Many real-time tasks require high prediction speed. However, the
software implementation of the inference phase cannot meet the requirement even
if the multi-threading technology is adopted. Hence, attention has been paid to the
hardware-based accelerators [95].
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Authors of [168] compared performances of different implementations of hardware
accelerators for DT-based predictors while using off-line generated models. They
empirically proved that FPGA implementations provide the highest performance,
but may require a multi-chip / multi-board system to execute even modest sized
predictors. GP-GPU implementations offer a more flexible solution with reasonably
high performance that scales with predictor size. Finally, multi-threading via OpenMP
on a shared memory system, which is the simplest solution, is able to provide near linear
performance that scaled with core count, but was still significantly slower than the
GP-GPU and FPGA implementations. This is because classification has an inherently
highly parallelism, since each decision tree processes every sample independently,
and the only synchronization occurring when the results of all the decision tree are
combined to provide a final classification for a sample. However, when the decision
trees within the forest vary significantly in terms of shape and depth, it is challenging
to apply pipelining and SIMD / SIMT parallelization techniques, since the time to
process a sample is data dependent. Additionally, this irregularity in tree size and shape
makes it difficult to provide deterministic memory access into the tree. Furthermore,
the presence of very deep trees within the forest makes it prohibitively expensive to
apply techniques that improve regularity, such as fully populating all trees so that the
processing time for each sample is identical [168, 163, 36].

Authors of [132] further investigate on GP-GPUs and pinpointed three main
reasons why the GP-GPU is an ill-fated choice for accelerating DT-based predictors.
First, in order to perform the inference phase, each node in the tree is evaluated using
an if-then-else statements, which compare input values with constant values, both
represented by a floating-point representation. Although the GP-GPU supports a
double precision floating-point, such highly precision might not be required for the
classification. Therefore, a high-precision arithmetic circuit is inefficient both the
amount of hardware and power consumption. Second, GP-GPU cores are specialized
in data parallel computation. However, the DT-based predictors may consist of trees
with a different size and depth, that causes an unbalanced computation. Hence, the
computation-time would be bound by the tree which has the longest path. Last, but
not least, communication between near processing cores with the same local memory
can be performed at a relatively high speed, while communication-penalty is large for
the all-to-all communications. Since a DT-based predictor requires the whole of the
classification after evaluating all the trees, the all-to-all communication would always
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occur, which is certainly a performance bottleneck.

According to [111], architectures of FPGA-based accelerators for DT-based pre-
dictors can be categorized as comparator-centric and memory-centric. The former
implement the model as a threshold network that consists of a layer of threshold logic
units and a layer of combinational logic units, while the latter accelerate the model by
introducing the pipeline in layers of the tree.

6.2.4.1 Memory-centric architectures

Figure 6.20 depicts the RTL schema of a memory-centric accelerator. Each of the
trees has N “internal ” levels and a final “leaves level”, but if a leaf resides at level
j ≤ N , then the tree is expanded converting the leaf to an internal node, with identical
child nodes. Each of the latter has the same label as its parent, and also bypass the
comparator. This allows to regularize the architecture, even if trees are unbalanced.

Figure 6.21 depicts the RTL schema of an internal level. The attribute-value
pairs to be compared against the data sample are stored in memory. Since each data
sample being classified can traverse a single node of the tree at a given level, a single
memory-read operation is required. The current memory-address is used to select the
appropriate attribute-value pair from the memory block, and the comparator outcome
is, then, exploited to construct the memory-address for the subsequent level. Finally,
leaves levels consist of a look-up table containing class labels.

The whole architecture stands out for its flexibility, since it can be adapted to a
large variety of models [153, 163, 136, 66, 10]. In addition, in order to update the
implemented model, the designer only has to update each memory block. Moreover, it
allows satisfying high throughput demands, since pipelining mechanisms are straight-
forward to implement. On the other hand, this architecture has several drawbacks.
First, trees which do not reach the maximum-depth are expanded in order to allow
synchronization, wasting resources and increasing the power consumption.
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Figure 6.20: RTL architecture of a memory-centric accelerator.
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6.2.4.2 Comparator-based architectures

The overall architecture of comparator-based accelerators resembles the memory-
centric one. It reduces the reliance on memory elements by using custom comparators at
each internal level. This eliminates the ability to quickly update parameters, but benefit
lower area requirements. Conceptually, a custom comparator is a direct representation
of an internal node, which is possible only if it assumes the comparison attribute
and comparison value are constants. The data flow is similar to the memory-centric
architecture: each internal level i processes data sample d in the same way as in the
memory-centric architecture, but with addresses of custom comparators instead of
memory elements. This architecture has been successfully adopted in a large variety of
classification problems [57, 89].

Comparator-centric accelerators could achieve high throughput and low latency as
well; however, since designing such accelerator requires all information of the model
for the logic design, the architecture is tightly coupled with the underlying model,
meaning any change in the model requires the accelerator to be reconfigured. For
application scenarios where the model updates frequently, the application of such
accelerators will undoubtedly introduce significant maintenance costs.

6.2.4.3 A custom processor for accelerating Decision-Treee-based predictors

In order to overcome limitations of both the mentioned architectures, authors of [159]
proposed RF-RISA, a dedicated processor, inspired by the Reduced Instruction-Set
Computer (RISC) architecture. Authors claim it decouples the parameters of the model
from its hardware implementation, employing a set of instructions to encode the nodes
and structure information of the model, hence avoiding hard-coding the parameters
into the hardware. A software driver encodes the structure and node information of
the model into a group of instructions. Meanwhile, a novel hardware architecture is
designed to provide storage resources and support pipelined computing. Then, the
instructions are dynamically mapped into the memory, and executed in parallel. All
parameters of the model are transparent to the hardware until the instructions are
executed in RF-RISA.
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The instruction set encodes the model: it consists of three types of instructions.
Node-operation instructions encode the information of an internal node, including its
relative address, the attribute being compared and the corresponding threshold, the
left and right child-node types, and the left and right child-node information. If the
left or right child-node type is “0”, then the corresponding node is a leaf, and the
corresponding label is stored in the appropriate child-node information field of the
instruction. Conversely, if the node is an actual internal node, the relative address of
the child-node is stored into the corresponding information field of the instruction.
First-layer instructions are encoded as a bit-vector. A “1” in such bit vector indicates
that the corresponding layer consist only of the root node of a tree. Finally, control
instructions control how node-operation instruction and first-layer instructions are
mapped to the FPGA. When the software driver configuring the architecture fetches
a control-instruction, if its type is “node-operation” then its “memory-address” field
dictates where to load all subsequent node-operation instructions. Thereafter, all
subsequent instructions are loader to the FPGA until a new control-instruction is
fetched. On the other hand, if the type of the fetched control-instruction is "first-layer",
then the subsequent first-layer instruction, and the bit-vector it contains, are loaded into
the configuration registers.

A RTL-schema of the accelerator, along with the model it implements, is reported
in Figure 6.22: m RAM blocks are organized as logically connected units to store
the node-operation instructions. If one block is inadequate for storing the instructions
of one layer, the latter instructions can be placed in consecutive blocks. The node-
operation instruction of the same layer of a tree are stored in memory blocks in order
from left to right, and each memory block only stores the instructions of the same layer.
Each RAM block is connected to a processing element, that execute the instruction,
and buffers are set to store the intermediate results.

To predict an instance, RF-RISA starts its execution from the first node-operation
instruction stored in BRAM 0. If the comparison result of the instruction points to
an internal node, the location of the next instruction of the node is obtained, and
subsequent memory blocks are accessed; otherwise, the current instruction output a
class-label. The prediction is finished after all memory-blocks are accessed, and the
prediction result is given by the majority voting. One prediction per clock cycle can be
achieved, with prediction-latency of m+ 1 clock cycles.
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Figure 6.22: Hardware architecture of the RF-RISA accelerator from [159]

This architecture differs from the memory-centric architecture depicted in Fig-
ure 6.20 in the way how the memory and processing elements are organized. In facts,
the memory-centric architecture groups memory blocks into stages, which correspond
to layers in the tree. The sizes of stages are determined in advance, and each stage
shares one processing element, By contrast, in RF-RISA each memory block is an
independent unit and owns a dedicated processing element. Moreover, m is the only
parameter that needs to be set in advance. Nevertheless, the decoupled nature of the
implemented model and the fact that a single parameter governs the entire architecture
may be a major limitation in some applications. Moreover, the general scheme of the
architecture leaves little room for the introduction of approximation.

6.2.4.4 Speculative architectures

The approach proposed in [15, 14, 21] to implement random-forest classifier in hard-
ware is quite interesting. In order to speed-up DTs visiting, it adopts a speculative
approach, which consists in a DT flattening so that the visiting is performed over every
possible path. In particular, each DT node contains a condition that establishes if
the visiting has to continue on left subtree or on right subtree, until a leaf is reached.
Instead, in the speculative approach, predicates are performed concurrently, regardless
of the position and depth at which nodes are located: a Boolean decision variable, that
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indicates whether a condition is fulfilled, is produced for each one of the evaluated
predicates. In order to determine which leaf of the DT is reached, i.e., which class
the input belongs to, a Boolean function, called assertion, is defined for each different
class. Since a path that leads to a specific leaf is obtained by computing the logic-AND
between the Boolean decision variables along that path, and since it is possible to
compute the logic OR between the conditions related to different paths leading to
leaves belonging to the same class, assertions can be defined as a sum of products
Boolean functions.

For the sake of clarity, let us consider the DT depicted in Figure 6.23, which
evaluates two features in order to assess which one of three classes the inputs belong
to. Starting from the root node, descending the DT and visiting nodes from the left
to the right, the Boolean decision variables involved in the classification process are
Q1, which is produced at the root node, Q2 produced at the f2 < 10.9 node, and so
on. Let us consider the α class: an input vector belongs to it if f1 ≥ 4 – Q1 is false –
andf2 ≥ 10.9 – Q2 is false – or f1 < 4 – Q1 is true – and f2 ≥ 27.5 – Q3 is false –
and f1 < 17 – Q4 is true. In Equation 6.44 we report Boolean assertions for all the
classes.

α = (Q1 ∧Q2) ∨ (Q1 ∧Q3 ∧Q4)

β = (Q1 ∧Q2) ∨ (Q1 ∧Q3 ∧Q5) ∨ (Q1 ∧Q3 ∧Q4)

γ = Q1 ∧Q3 ∧Q5

(6.44)

Predicates are evaluated using Decision-BoXs (DBXs), i.e., comparators, while the
visiting algorithm can be performed as a multi-output Boolean function. A comprehen-
sive block schema is depicted in Figure 6.24.

This architecture stands out for its regularity and flexibility, so that it can be
automatically generated starting from the PMML encoding of the model, as shown
in [15, 14]. Moreover, the scalability of this approach has been formally demonstrated
in [20]. In particular, the number of literals in each assertion is always less or equal to
twice the size of the features set.
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Figure 6.23: An example of decision tree.
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Figure 6.25: Decision vectors.

6.2.4.4.1 Implementing majority-voting in hardware The outcome of each assertion-
function corresponding to a certain class, but computed by a different DT are arranged
in an array of N elements, as depicted in Figure 6.25, with N being the number of DTs.
A majority voter is used to state which class is the winner.

Let di,j be the preference expressed by the i− th DT for the j − th class, i.e., di,j
is a Boolean variable being equal to 1 i.f.f. the classifier input has been recognized by
the i− th DT to belong to the j − th class; the following matrix can be defined:

D =


d0,0 d0,1 · · · d0,M−1

d1,0 d1,1 · · · d1,M−1

...
...

. . .
...

dN−1,0 dN−1,1 · · · dN−1,M−1

 (6.45)

We define pj =
∑N−1
i=0 di,j , 0 ≤ j < M . Since each DT expresses just one

preference (i.e.,
∑M−1
j=0 di,j = 1 0 ≤ i < N ), it follows that the class w is the most

voted i.f.f. pw > pj , ∀j 6= w, while we get a draw condition i.f.f. ∃{i, j} s.t. pi =

pj = max0≤k<M{pk}.

Rather than using binary adders to state which class gets the highest score, the
majority voter sorts each column of the matrix D using a parallel sorting algorithm,
pretty much like bubble-sort, by shifting all the high bits at the beginning of each
column. This process is performed by exploiting a Boolean circuit called the sorting

network, which depth is equal to n.

Let us consider a two bits array: Table 6.14 reports the truth table of a two bits
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x1 x0 y1 y0

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

Table 6.14: Truth table of a 1 bit sorting network
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Figure 6.26: A single sorter-cell.

sorting network. It is easy to recognize that y0 = x0∨x1 and y1 = x0∧x1. Conversely,
defining n-bits sorting network is cumbersome. However, such a network can be built
using multiple two-bits sorting networks arranged in a n-stages pipeline, with even
stages consisting in N/2 two-bits sorters – each of which compares array elements
starting from even positions – and odd stages consisting in N/2− 1 two-bits sorters –
each of which compares array elements starting from odd positions [21]. The sorting
networks need at least N/2 clock cycles to provide sorted arrays. An example of such
a network is provided by Figure 6.27, while Figure 6.26 depicts a single sorting-cell.

Once the votes are sorted, the score each class have received needs to be verified.
Let us define a threshold indicator as follows:

τi,j =

1 i ≤ pj
0 i > pj

, 2 ≤ i ≤ N/2 (6.46)

Hence, to detect the most voted class we need to find the τi,j = 1 with the highest i: in
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Figure 6.27: Four-bits sorting network.
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Figure 6.28: Detailed block schema of the rejection module.

case it is unique, we get a voted class, otherwise we got a draw. Exploiting the same
sorting network used before, we can easily detect these two conditions.

Figure 6.28 shows an example of such a module for a three-class classifier.

6.2.5 Approximate DTMCSs

Concerning DT MCSs, the wide-spread adoption of hardware-based accelerators is
actually hindered by scalability issue, as reported in [168]. Nevertheless, there is very
little research on both efficient architectures and methods to reduce their hardware-
resource consumption, as the effort is mainly devoted to other classification systems,
e.g., DNNs.

One of the few contributions from the scientific literature concerning the improve-
ment of energy-efficiency of DT MCSs has been proposed in [173]. Authors noticed
that, usually, only a part of the data of a given data set really needs the full computa-
tional power of a classifier. Therefore, they dynamically configure the classifier making
it more or less accurate, according to the difficulty in classifying the inputs. Hence,
rather than building a single complex model, during the training phase they construct
a set of models with progressively increasing complexity. Then, during the testing
phase, the number of decision models applied to a given input varies depending on the
difficulty of the considered input instance. In order to estimate the difficulty of a certain
input, a confidence level for each classification is computed. If the latter confidence
falls above a certain threshold, the classification process is terminated, otherwise, a
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more accurate classifier is used.

In [23], authors replaces exact comparators using approximate ones, designed using
the precision-scaling technique, in order to reduce the hardware overhead of DT MCSs.
They use the Branch & Bound (B&B) algorithm to introduce approximation while
the constraining the classification-accuracy loss. Despite numerous improvements
that the authors have made to the B&B implementation, such as pre-pruning of the
tree and grouping features by information gain, they have managed to evaluate only a
few classifiers, and for each of them only a few approximate configurations. This has
greatly limited the quality of the solutions obtained.

6.2.6 Applying the methodology to DTMCSs applications

In this Section we discuss case-studies concerning the application of our methodology
to DT MCSs.

As will be detailed in the following, in order to generate approximate variants and to
perform DSE, we again resort to the E-IDEA framework, that we extensively discussed
in Section 5.1. Hence, through a MOP-based DSE, we find the correct approximation
degrees leading to non-dominated solutions exhibiting near-Pareto trade-offs between
accuracy-loss and hardware-efficiency. As for case-studies discussed above, E-IDEA
allows specifying multiple fitness-functions; hence, for our scenario, we define the
accuracy-loss and the hardware requirements to be both minimized.

Resorting to Figure 6.3, given a DT MCS implementation, the first step is approx-
imate variant generation, which is performed by exploiting the Clang-Chimera tool.
Exploiting the regularity and simplicity of DT MCSs, we generate C++ implementa-
tions straight from the PMML. The approximate variants resulting from Clang-Chimera
are fed to the Bellerophon DSE engine: approximate configurations resulting from
assigning a value to each configuration parameter within variants are evaluated in
terms of fitness-functions, and Pareto-optimal ones are selected using the NSGA-II
heuristic. At the end of the DSE, the latter configurations are exploited to configure
the accelerator we discussed in Section 6.2.4.4, in order to assess the actual hardware
requirements through FPGA synthesis and simulations.
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6.2.6.1 Generating approximate variants

The scientific literature is not the only source to draw while identifying approximable
parts of a given application. Indeed, the architecture of the final hardware accelerator
may provide undoubtedly useful suggestions in order to effectively select parts of the
model to approximate, hence a suitable approximation technique.

Several opportunities inherently arise, for instance, from the hardware implementa-
tion which is discussed in Section 6.2.4.4. Both comparators and assertion-functions
are quite good candidates for approximation, albeit the contributions of the former
seem much more substantial w.r.t the latter, meaning their approximation can lead to
significant savings. Furthermore, in order to introduce approximation, a wide plethora
of techniques can be used with respect to comparators, including precision-scaling, in-
exact hardware, and functional approximation. Since the latter is well suited to Boolean
functions, it is also ideal for introducing approximation within assertion-functions.

As mentioned, DT MCSs may consist of hundreds, or even thousands of nodes,
each comparing one of the many features taken into account by the predictive model
with their corresponding threshold value. Consider introducing approximation through
approximate comparators designed using the precision-scaling technique: such approx-
imate comparators allow, by means of a configuration parameter, to govern the degree
of introduced approximation by tuning the amount of neglected mantissa bits ad each
comparison. Hence, the value to be assigned to each one of such parameters constitute
the decision variables of the MOP. Furthermore, the domain of such variables depends
on the particular data-type being adopted for representing features. However, albeit
straightforward, this naive MOP definition may result in an utterly infeasible DSE.
Indeed, hardware implementations of DT MCSs may consist of hundreds, or even
thousands of comparators, resulting in an enormous design-space. Nevertheless, we
can exploit the fact that, albeit against different threshold values, the same feature can
be taken into consideration for comparison several times while visiting trees. This
allows to set the same degree of approximation to all the comparators processing the
same feature, reducing the number of decision variables, and, consequently, the size
of the solution space. Thus, being F the features set, each approximate configuration
– i.e., individual in the GA context – can be represented using a vector consisting
of |F | elements – i.e., genes –, each governing the degree of approximation for the
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corresponding feature.

As we mentioned, the actual generation of approximate variants is performed
while resorting to the E-IDEA framework. The regularity and simplicity of DT MCSs
allow us generating C/C++ implementations straight from the PMML encoding of the
model. The latter encoding resorts to the double-precision floating-point representation
for input and thresholds. Hence, we generate variants exploiting the FLAP mutator
provided by Clang-Chimera, which allow applying the precision-scaling technique on
comparators when using the mentioned double-precision floating-point representation.

6.2.6.2 Design space exploration

For what pertains to hardware-requirements, in order to accurately take into account
the resource savings in the DSE, we should measure area, power consumption and
maximum clock speed of the explored approximate variants. This would require the
hardware synthesis – and also simulations, in the case we are interested in measuring
power consumption, for instance – of each variant explored in the DSE. This is utterly
a time-consuming process. Hence, again, we resort to a model-based gain estimation
to drive the DSE.

Since the purpose of the model is determining the <, = or > relation between two
different approximate configurations, it is not necessary to focus on its accuracy. We
rather focus on its fidelity, i.e., how often the estimated values are in the same relation
as the real values for each pair of configurations. Concerning comparators, it is easy to
recognize the fewer bit to compare, the fewer hardware requirements.

6.2.6.3 Case-study #1: validating the method

To prove the robustness of the proposed methodology, we exploited PMMLGen
tool [20] to provide different workloads, in terms of models, to be approximated.

In particular, we collected 51 different datasets varying on the number of features
(from 1 to 50) and number of classes (from 2 to 20). Then, we trained, for each data set,
a single DT classification model and random-forest classification models with different
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number of DTs, namely 5, 10, 15 and 20. For each of the 255 trained classifiers, we
found several approximate solutions by means of approximate exploration. Then, we
synthesized the ones that belong to the Pareto-frontier bounds, i.e., the ones charac-
terized by best reward value, meant maximum reduction of area overhead, and ones
affected by minimum accuracy loss. We report the amount of resource-occupation gain
(in terms of FPGA LUTs and registers) and the accuracy loss evaluated in percentage
w.r.t. the original synthesized model in Figure 6.29 and 6.30, respectively for maximum
area overhead reduction and minimum accuracy loss synthesized solutions. Please,
kindly note that, although both in percentage, the scale for overhead gains is different
w.r.t the one for accuracy loss.
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Figure 6.29: Amount of resource gain and accuracy loss for 50 different classification
problems for maximum area overhead reduction approximate solutions. Please, kindly
note that the scale on the left differs from the one on the right.
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Figure 6.30: Amount of resource gain and accuracy loss for 50 different classification
problems for minimum accuracy loss approximate solutions. Please, kindly note that
the scale on the left differs from the one on the right.

For both graphs, we can state that accuracy loss decreases on the number of trees
involved into the classification system. This observation confirms that random forest
models are characterized by inherent resiliency property, and the greater the number of
trees involved into models, the lower error introduced by approximation. Then, as for
the reward, significant overhead reduction can be observed for random forest with 5,
10 and 15 trees, while the single DT model and 20 trees random forest exhibit lower
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area reduction values. Indeed, single DT models cannot be conveniently approximate
w.r.t. random forest models for the absence of a combiner that could mitigate the
effect of introduced approximation. Nevertheless, contribution to area overhead of
combiner circuits for random forest models with a significant number of trees makes
the approximate computing technique less effective. As for solutions characterized by
the minimum accuracy loss, we can see that even a small percentage of accuracy loss
corresponds to a significant resource gain. As for synthesis of maximum accuracy loss
solutions, we observe area reduction of more than 50% against about 0.2% of accuracy
loss.

6.2.6.4 Case-study #2: a SPAM detector

Since recognizing emails as SPAM or non-SPAM involves the classification of a large
amount of information, a spam-detector case-study is used to evaluate the approach
introduced in this paper. The data set used for this case-study is Spambase from the
UCI Machine Learning Repository [86], which contains 4601 emails, 1813 of which
are SPAM. This data set is freely available and makes use of 57 different features,
expressed in the floating-point notation, to characterize elements that are part of the
dataset. Each of the features specifies how often a word or a character appears in each
element of the data set, i.e., in an email.

During the training phase, conducted using the KNIME [4] tool, 40 different
random-forest classifiers with a number of DTs ranging from 1 to 40 are trained.

The AxC exploration phase found, for each of the 40 classifiers, a certain number
of approximate configurations on the Pareto-frontier but for each of them only the
configuration with minimum error and the one that requires less silicon area has been
reported.

Figure 6.31a shows the area requirements in terms of LUTs, as the number of DTs
used by the classifier increases. For all the measured quantities, an increasing trend, as
the number of trees grows, is shown for area requirements. The growth, however, is
clearly sublinear. In addition, it can be seen that the difference between requirements
of the exact classifier and the approximate one increases as the number of trees grows.
This is because even if the complexity of single DTs – i.e., the number of nodes of
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which they consist of and the height of DTs themselves – decreases significantly as the
number of trees used by the classifier increases, the total number of nodes increases,
providing more approximation opportunities. This behavior can be observed also
for the amount of FPGA slices and registers, and both when considering solutions
providing minimum error and those requiring the minimum silicon area. Furthermore,
it can be noted that the difference in terms of area requirements between the minimum
error and the minimum area solutions always remains negligible.

Figure 6.31b compares the levels of classification accuracy, as the number of trees
used by the classifier increases, provided by the precise version – without approx-
imation – and by the approximate version that has minimum area requirements. It
is evident, from the graph, that there is only a small difference in accuracy between
the configurations. Moreover, it remains very small as the number of trees used for
classification varies. On the other hand, the increase in the number DTs used in the
classification process makes smaller contribution as the number of DTs grows. This
asymptotic behavior can be seen in exact and approximate classifiers, and it is due to
the fact that, by increasing the number of models, datasets involved for training turn
out simpler and corresponding DTs get less branched, which leads to a saturation of
the accuracy level provided by the classifier model.

(a) Required LUTs (b) Accuracy

Figure 6.31: Resource requirements and accuracy of approximate DT MCSs for
Spambase [86]

6.2.6.5 Comparison with previous works

In [23] a similar approach to the one presented in this paper has been adopted, but
instead of exploring the solutions space with heuristics, the use of an exact algorithm,
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namely B&B, was proposed. While, on the one hand, the use of an exact algorithm for
the resolution of a MOP allows to reach a global optimal solution, on the other hand its
use becomes prohibitive with large solutions spaces. Despite numerous improvements
that the authors have made to the B&B implementation, such as pre-pruning of the
tree and grouping features by information gain, they have managed to evaluate only a
few classifiers, and for each of them only a few approximate configurations. This has
greatly limited the quality of the solutions obtained. Table 6.15 shows classification
error and hardware requirements in terms of LUTs for both approaches. As it can be
observed, when compared to those obtained using NSGA-II, solutions provided by the
B&B approach are worse. The difference in quality does not depend on the search
algorithm itself, but on the amount of approximate configurations that have been taken
into account during the space exploration phase.

Table 6.15: Comparison of results obtained from previous approaches

Approximate Minimum Error Approximate Minimum Area
Error LUTs Error LUTs

DTs B&B GA B&B GA B&B GA B&B GA
1 0 0 635 610 8,692E-4 1,0E-4 630 586
10 0 0 11853 10106 8,692E-4 3,0E-4 9646 9605
20 0 0 18091 18012 0 2,0E-4 18091 16996
30 0 0 23357 23243 4,346E-4 1,0E-4 23330 22243
40 0 0 33811 30544 8,692E-4 0,0E+0 30847 29747
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Conclusion

In this work, we discussed an application-independent, unified methodology able to
automatically explore the impact of different approximation techniques on a given
application, while resorting to the AxC design paradigm and MOP-based DSE. We
discussed the steps the methodology breaks into while devoting particular relevance to
all those that can be automated. In particular, we discussed how to effectively select
parts of an application to be approximate and how to choose a well-suited approxi-
mation technique. Then, we discussed how approximate variants can be generated
automatically, how to identify decision variable and suitable fitness-functions to define
the MOP driving the DSE.

In order to evaluate the proposed metrology, we selected some significant and
relevant applications in the scope of the AxC paradigm, including generic combinatorial
logic, image-processing applications, and artificial intelligence applications.

For what pertains to generic logic, we propose local rewriting of AIG, reducing
the number of nodes and resulting in lower hardware resources requirements, while
resorting to MOP-based DSE to carefully introduce approximation. We evaluate our
approach using different benchmarks, and, in order to measure actual gains, we perform
FPGA synthesis of Pareto-optimal approximate configurations. Experimental results
show our method allows performing a meaningful exploration of the design space to

161
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find the best trade-offs in a reasonable time, thus resulting in approximate circuits
exhibiting lower requirements and restrained error. Furthermore, our approach allows
significant improvements over state-of-the-art works from the scientific literature.

Concerning image processing applications, two case studies are discussed. The first
one aims at designing a Sobel edge-detector hardware accelerator, and it is of particular
importance because the small size of the solution space allows the methodology to be
compared against exhaustive exploration of the solution space. Experiments empirically
proved results from our methodology are very close to those resulting from exhaustive
simulation, while the amount of time needed to perform DSE is significantly lower. The
second case study concerns the design of hardware-accelerators for the DCT, which
is the most demanding step of the JPEG compression algorithm. We analyzed and
modeled several algorithms from the literature to compute a fast and lightweight version
of the DCT, and, for each algorithm, we applied approximation by substituting full-
precise adders with several approximate ones from the literature having configurable
approximation degree. In this way, we can obtain different approximate configurations
of the algorithms, depending on the chosen approximate adders and their approximation
degree. Approximate adders introduce inaccuracy in the computation, but also achieve
gains in terms of area and power consumption. For each algorithm, we performed
a DSE to find the non-dominated approximate designs in terms of trade-off between
inaccuracy and gains. We modeled the DSE as a MOP and we used a GA to solve
it. After the DSE, we synthesized the obtained designs by targeting both FPGA
and ASIC. To do so, we implemented all the algorithms as re-configurable hardware
designs. Finally, we evaluated the actual gains in terms of area and power consumption.
Experimental results clearly showed that, with the proposed approach, it is possible
to perform a meaningful DSE to find the best trade-offs between output accuracy and
resource gains in a reasonable time. Finally, the comparison performed with previous
work clearly showed the advantages of the proposed approach.

Last but not least, we applied our methodology to two of the most promising
classification models in the machine-learning domain, namely DNNs and DT MCSs.
Leveraging the AxC design paradigm, a very limited quantity of classification-accuracy
is traded off for a reduction in the silicon area requirements and power consumption
of hardware-implemented DT MCS and CNN. Concerning DNNs, we exploited our
methodology to investigate the impact of several approximate techniques, including
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precision-scaling, inexact-components and loop-perforation, on classification accuracy
and hardware requirements. Furthermore, we investigated on the correlation between
data-size and error resiliency. Experimental results prove the validity and efficiency
of our methodology, even in applications in which the error has to be minimized as
possible, providing savings up to 75% for silicon area and 50% for power consumption.
Pertaining to DT MCSs, in order to prove the validity of the proposed approach
several classifiers, with a number of trees ranging between 1 and 40, have been trained.
Then, the optimal number of bits to be used to represent each of the features of
the model is searched by means of NSGA-II. Among all Pareto-optimal hardware
configurations, the one providing minimum classification error configuration and the
one requiring the minimum amount of silicon area were taken into account for further
consideration. Experimental results show a significant reduction in area requirements,
for both the minimum error and minimum area configuration. Since the classification
is very resistant to error, those configurations are very similar both in terms of area
requirements and classification error.
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