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Abstract

Anatomical Pathology is living its third revolution, facing a radical transformation from analog-

ical pathology to digital pathology, with the new artificial intelligence applications becoming

part of the clinical practice. Other than classification, detection, and segmentation models,

the spotlight is on predictive models which may impact not only on diagnostic procedures but

also on laboratory activity, reducing the usage of consumables and the turn-around time. In

our study, we aimed to develop a deep learning model capable of generating a synthetic Ki-

67 immunohistochemestry using H&E images as input. To develop our model, we retrieved

175 Oral Squamous Cell Carcinoma from the archives of the Pathology Unit of the University

Federico II, and built four TMAs. We then generated one slide from each TMA which was

in first instance stained with H&E protocol and subsequently destained and restained using

anti-Ki-67 immunohistochemistry. Cores were then dearreyed and tiled to create a dataset to

train a Pix2Pix model to convert H&E images to IHC. Our model resulted in realistic syn-

thetic images, as pathologists were able to recognise the syntetic images only in half of the

cases. Then, we quantified IHC positivity using QuPath, achieving high levels of concordance

between real IHC and synthetic IHC. Moreover, a categorical analysis using three cutoff of

Ki-67 positivity (5%, 10%, and 15%) showed high positive predicted values. Overall, although

these results need be confirmed on a larger dataset in a multicentric environment, our model

represents a promising tool to gather Ki-67 positivity information directly on H&E slides, re-

ducing the laboratory demand and improving the management of patients, being also a valid

opportunity for smaller hospitals which cannot keep up with the raising necessity of several

immunohistochemical staining.
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1 Introduction

1.1 AI: The ”Third Revolution” in Anatomic Pathology

Nowadays, pathology is quite different from its dawn, since it underwent through two major

revolutions and it is living its third revolution, the AI era [1]. Indeed, pathology’s origin

goes back the first half of 19th century with Karl von Rokitansky and Rudolf Virchow, as

the first is supposed to have performed over 30,000 autopsies, while the latter introduced the

microscopical analysis of tissues, leading to the cell theory of disease [2]. At that time, and

for a long time, anatomical pathology was about the morphological evaluation of images to

assess the diagnosis, without any information about proteins or gene expression, until in 1970

Sternberger et al. described the application of immunohistochemistry to tissues, using the

peroxidase/antiperoxidase system in a paper cited more than 6000 times, revolutionising the

anatomical pathology [2], [3].

Then, in 70s, immunohistochemistry rapidly became part of anatomical pathology work-

flow conducing to more accurate diagnosis and enabling the role of pathologists in prognosis

prediction thanks to the analysis of proteins expression, along with the diagnosis itself. Fur-

thermore, in 2001, another milestone has been achieved in anatomical pathology: Imatinib, a

small inhibitor molecule, was granted the FDA approval for the treatment of patient affected by

Chronic Myelogenous Leukemia positive to Philadelphia chromosome [4], paving the way to the

second revolution in anatomical pathology which, through the years, reshaped from morpholog-

ical pathology to morphomolecular pathology, with an increasing interest in molecular analysis

guided by the invention of highly efficient techniques as the Next Generation Sequencing [5].

In that framework, pathologist have been asked to outdo the diagnosis itself and to perform a

comprehensive analysis of patients, enriching the diagnosis with a molecular characterisation

addressing the prognosis and the therapy too.

However, the history of pathology is defined, as anticipated, by another revolution that

changed again the workflow and the activity in anatomical pathology: digital pathology and

whole slide images (WSI), a glass slide through digitised a dedicated scanner.

Paradoxically, digital pathology is far older than expected and the first “Virtual Microscope”

goes back to 1997 and it was a software intended to emulate the behaviour of a physical micro-

scope [6], while in 1994 James Bacus designed the first Whole Slide Scanner and his two patents

were filed in 1997 and 1998 [7]. During following years, several scanners were introduced and

multiple roles for WSI become well established (i.e. telepathology [8] or education [9]), but their

integration in routine workflow was still far away. Then, in 2011, Isaacs et al. presented a valu-

able example of integration of WSI in clinical practise [10], setting a new stage in anatomical

pathology, with many hospital rapidly taking a role as actor in the new panorama of digitised

surgical pathology [11]–[14]. Eventually, thanks to the rapid growth of digitised wards, the
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technological improvement in slides scanners, and the advances in the field of computer science,

anatomical pathology has been hauled by the introduction of artificial intelligence to automati-

cally analyse WSI, with many application to most common cancers (e.g. breast, prostate) and,

recently, even to less common ones, as the Oral Squamous Cell Carcinoma.

1.2 Oral Squamous Cell Carcinoma

1.2.1 Epidemiology and risk factors

Squamous cell carcinoma (SCC) represents 95% of Head and Neck Cancers and the sixth most

common malignancy in the world [15]. Head and Neck Squamous Cell Carcinoma (HNSCC)

mainly occurs in male patients, with a ratio of 3:1 against women, between the fifth and the

sixth decades of live, with a country-related variability [16], while oropharyngeal (OP) cancers

which may occur during the forth decade of life [17]. Moreover, the incidence of OP cancer

appears to be increasing due to the raise of HPV-related cancer, which nowadays accounts for

approximately 70% of all oropharyngeal cancers in the USA [17]. HNSCC results in nearly

640,000 cases/year worldwide among men and 210,000 cases/year for female, with an estimated

incidence of 16.1 cases per 100,000 people per year [18]. Although great advances have been

achieved in surgery and radiotherapy, HNSCC mortality still remains close to 50% [19], and

HNSCC insurgence is highly influenced by environmental factors as tobacco, both smoked and

chewed, alcohol consumption, and viral infection by High-Risk Human Papillomavirus (HPV)

genotypes [20]. Oropharyngeal squamous cell carcinoma are indeed subdivided in HPV-Positive

and HPV-Negative cancers, and their outcome is different among the two groups, with the

HPV-Positive cancers showing a better prognosis compared to negative ones [21].

1.2.2 Staging, clinical presentation and therapy

Staging is among the most determinant factors for the prognosis and the treatment choice of

patients diagnosed with HNSCC. tumour staging is performed according to TNM (tumour-

Node-Metastasis), considering the size of the tumour, the lymph nodes involvement, and the

presence of metastases, respectively, according to the last edition of the American Joint Com-

mittee on Cancer (AJCC) guidelines [22].

From a clinical perspective, leukoplakia and erythroplakia represents precancerous lesions

which may progress into invasive cancers [23] and the risk of progression depends on the size of

the lesion and, most importantly, the presence of dysplasia [24]. HNSCC treatment depends on

the stage and the site of occurrence. Stage I and II tumours are treated with surgery and/or

radiotherapy, whole advanced stages (III and IV) need a more aggressive approach, combining

surgery, radiation and chemotherapy [25]. Up to date, we still lack of reliable prognostic and

therapy-response predictive biomarkers, along with effective therapeutic targets, hence much

effort is still needed to fully understand the biology of these tumours in order to improve the
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clinical management of HNSCC patients. To pursue this goal, research in pathological anatomy

makes use of the entire classical repertoire of tools for studying solid tumours, to which Digital

Pathology has recently been added, with the promise to provide a valuable support.

1.3 Digital Pathology

Digital Pathology is defined as “A dynamic, image-based environment that enables the acquisi-

tion, management and interpretation of pathology information generated from a digitised glass

slide. Often used interchangeably with “Virtual Microscopy.”” by the Digital Pathology Asso-

ciation [26], and relies on Whole Slide Images (WSI) acquired using a slide scanner. Whole

Slide Images are extremely-high resolution images, with a typical size if 100,000×100,000 of

pixels and a weight in the order of gigabytes [27], obtained by high-speed scanners which exist

in a wide range of assets, ranging from single slide scanners to 400 and more slides scanners,

or from linear scanning to CCD-camera based scanners. The introduction of WSI in surgical

pathology started a revolution that affected not only slide analysis (i.e. immunohistochemistry

(IHC) signal quantification or cell count) but also routine diagnostic procedures [28]. Indeed,

several hospitals around the world converted to a fully-digital workflow [14] after that various

studies reported the validity of virtual slides as diagnostic tool, confirming the agreement be-

tween pathologists using digital slides and physical slides, and demonstrating the non-inferiority

of WSI compared with physical slides [29]. Moreover, WSI are relatively easily stored and are

easily remotely consulted via a shareable link which facilitates the collaboration between pathol-

ogist settled in different locations [30]. Furthermore, due to their digital nature and the huge

amount of pixels, WSI enabled computer vision approaches to pathological images, allowing

to perform classical computer vision approaches, as cell detection or image classification and

segmentation, and advanced ones, as molecular prediction and 3D reconstruction, applying

Artificial Intelligence to histopathological slides [31].

1.4 Artificial intelligence

Artificial intelligence and “robotics” are, in spite of common sense, among the oldest ideas in

humankind and have their roots in ancient mythology as the Golem, a Judaic traditional being

made of inanimate matter, and many other examples exist all along history [32]. The attempt

to create a machine capable of human thoughts has even lead to crafty methods to exhibit

intelligent machines, as the Turk, a 18th centuries artificial-intelligent chess player that turned

out to be a fake automaton secretly manoeuvred by well trained human player [33]. However,

the first actual instance of artificial intelligence is Enigma, the Turing’s machine [34], that

was subsequently followed by the ideation of the concept of Neural Network (NN) by Walter

Pitts and Warren McCulloch [35]. Then, one of Pitts and McCulloch students, Marvin Minsky,

together with Dean Edmonds, built the first NN, namely Stochastic neural analog reinforcement
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calculator (SNARC) [36].

Years later, John McCarthy organised the event proposed by Minsky, with Rochester and

Shannon, Dartmouth Summer Research Project on Artificial Intelligence, which is considered

the proper birth of the Artificial Intelligence [37]. After this event, AI rapidly developed and

several tasks were approached, with a particular interest in board and video-games due to their

scoring system (as count of won matches or earned points) which facilitate the evaluation of

the AI system learning improvement [38]. Other than games, AI has been used to accomplish

classification, regression, optimisation, and other application as text translation or generation,

with both supervised and unsupervised approaches. [39]

1.4.1 Computer Vision

Following the development of AI, computational approaches has been used to handle with im-

ages, resulting in the birth of the so-called ”Computer Vision”. Computer vision (CV) is the

attempt to retrieve information from images using computers, or, in other words, to automati-

cally analyse images as an human would do, but using a computer. Computer Vision goes back

to late fifties, when Hubel and Wiesel published a paper describing the discovery that simple

cat’s cortical neurons get activated by sharp lines and edges, which is the core principle in CV

and Deep Learning (DL) [40]. Then, in the same years, Russell Kirsch et al. developed the

first image scanner and their first scan, Russell Kirsch’s son, Walden Russel, is now exposed in

the Portland Art Museum. They also applied some basic edge-detection algorithms and later

in seventies Kirsch devised the ”Kirsch operator”, one of the most famous edge detection algo-

rithms [41]. The academic interest to CV raised when Larry Roberts presented the possibility

to derive 3D information from 2D perspective views of objects [42]. Hence, the attention on CV

started getting higher and higher leading to more sophisticated approaches to image analysis

as Machine Learning (ML) and Deep Learning (DL). ML and DL relies on the idea of letting

computer learn information from a dataset in order to perform tasks as classification and seg-

mentation on new images. Moreover, due to the nature of images, a matrix of bytes, every

kind of image (i.e. photos, microscopic or telescopic images, X-Rays, CT, virtual histological

slides, etc.) can be used to develop new algorithms for different aims, attracting the interest

from several field, both medical and non medical. Hence, a brief glossary of terms is shown in

Table 1.

Term Short Meaning

Artificial Intelligence AI The idea that computer can act as human being would

in a certain situation, because programmed or trained

to.
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Term Short Meaning

Computer Vision CV The application of algorithm to allow the computer to

“watch” images, perform specific task (i.e. classification,

detection, segmentation), and predict an output.

Prediction The output of an algorithm. Algorithms use data to

perform an estimation of the output and, then, a pre-

diction.

Machine Learning ML A sub-field of artificial intelligence, consisting in a series

of models which allow the computer to learn how to

accomplish a task from data, without direct instruction

about a specific task.

Deep Learning DL A sub-field of machine learning based on the applica-

tion of artificial neural networks to learn from data and

perform tasks.

Metrics Measures of the effectiveness of a model, used to evalu-

ate its reliability.

Loss The measure of the effectiveness of the training proce-

dure, and it is calculated as the difference between the

predicted and the actual value of an element through a

Loss Function

Datasets In order to learn information from data, datasets must

be provided to machine learning models. A training

datasets is used to provide information to the model,

a test set is to assess the model quality during train-

ing, while an external validation set is used to verify to

generalizability of the model

Training The procedure which allows the model to calculate its

weights to predict an output given input data

Testing The procedure of testing the model during the training

to recalculate its weights and to improve the quality of

the model

Validation The procedure of validation of the model using never-

seen data, to asses how the model accomplish with new

samples and to verify if the model is under- or overfitted

to training and test datasets
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Term Short Meaning

Underfitting The situation in which validation performance are

higher than testing ones. The model is learning less

than it could, hence the model is too simple.

Overfitting The situation in which validation performance are lower

than testing ones. The model is over fitted to training

data and is not generalizable. It may depend by a over-

complex model or a unbalanced dataset

Classification The task of sorting elements in classes

Object Detection The task of identify the bounding box of elements in an

image

Segmentation The task of identify the precise shape of an element of

interest in a image

Regression The task of predicting a continuous value given an input

Artificial Neural Net-

works

ANN Algorithms made of artificial neurons, capable of learn-

ing from data and perform artificial intelligence tasks.

Artificial Neurons They are the fundamental unity of ANN. Each neuron

has an input which is processed by an Activation Func-

tion resulting in an output which can be sent to other

neurons.

Activating Function A mathematical function used to determine the output

of a neuron given an input

Generative Adversarial

Networks

GAN A particular kind of network, made by two adversarial

network (a generator and a discriminator), competing

each other to generate images and to discriminate real

from synthetic images.

Table 1: A glossary of Artificial Intelligence and Deep Learning

terms

1.5 Machine and Deep Learning

Machine and deep learning are the processes allowing machine to learn, with a multi-step and

iterative process. Generally, letting a machine learns means minimising the loss improving

its metrics through the optimisation of its hyper-parameters in order to calculate and define

the correct weight of the algorithm, learning how to perform classification, segmentation, or

regression tasks.
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1.5.1 Classification and Regression

Classification is the attempt to subdivide data in different categories (namely labels), while

regression is meant to predict the value of an element according to its features, and they may

be achieved using both supervised (training with given labels) and unsupervised (without given

labels) algorithms [43]. Supervised algorithms in data classification and regression include K-

Nearest Neighbours, Decision Trees, Random Forests, Support Vector Machines (SVM), Naive

Bayes, and Neural Networks [43].

• K-Nearest Neighbours is a supervised learning algorithm intended to perform class

prediction or regression according to similarity of a data-point to ground truth data

references. It is based on the idea that same class objects share common features and

then it is possible to define a data-point’s class identifying the most similar object, with

the similarity defined as the Euclidean distance between the data-point’s features and the

references one. Each data-point will thus be assigned to the same class of the nearest

object. Other then distance, the algorithms accounts also for the K parameter that

represents the K number of nearest object to compare in order to classify the data-point

as the most represented class among the K elements. [44]

• Decision Tree are non-parametric supervised learning methods. Their aim is to predict

the value of a target variable by decision rules from its features. Decision tree algorithm

recursively iterate and split through all the data-point features calculating the accuracy

cost and keeping the split with the lowest cost. Overall, the model is optimised until all

the splits which cost the least are kept. [45]

• Random Forest algorithms are an ensemble of multiple decision trees and they output

the modal predicted class/value by the back-end decision trees, overcoming their attitude

to overfitting [46]

• Support Vector Machines are supervised classification and regression algorithms in-

tended to identify an hyperplane in N -dimensional space to classify given data-points.

The best separation is achieved with the hyperplane(s) with the largest distance from the

nearest elements of each label. These margin elements are the so called support vectors

which the machine is named after. [47]

• Naive Bayes is a classification algorithm based on the probabilistic assignment of a

label namely the probability p(A|B) of the event A given the event B, defined as the ratio

between the probability p(B|A) of B given A, accounting for the probabilities of the event

A p(A) and B p(B) alone, so that:

p(A|B) =
p(B|A)p(A)

p(B)
(1)
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with A being the classification label and B the features. [48]

• Neural Networks are algorithms that mimic the human neurons behaviour to accom-

plish different tasks as classification, regression along with other more complex applica-

tions and represent the basis for deep learning.

Unsupervised learning is a group of algorithms intended to perform data classification with-

out the need of labelled data, and although less accurate and trustworthy, they are frequently

used because of the difficulty to collect labelled data. Most common unsupervised learning

algorithms are Principal Component Analysis (PCA) and Clustering ones.

• Principal Component Analysis is a statistical method to convert a series of observa-

tions into principal components, namely values of uncorrelated variables.

• Clustering is indeed a class of procedures to group objects on the basis of their similarity.

There are several types of clustering tools, i.e. hierarchical, which clusters data-points

grouping closer ones together, or k-means clustering, where objects are classified according

to their closeness to a centroid [49]

All these approaches have been proposed and used for image classification too, but images

may be considered as themselves a repository of complex information, hence the branch of AI

devoted to image analysis is considered as a nearly separated field called Computer Vision,

often using Neural Networks.

1.5.2 Neural Networks

As mentioned beforehand, NN have been conceptualised by Pitts and McCulloch and firstly

realised by Minsky and Edmonds in 1951. Neural Networks resemble the structure of human

neurons having dendrites (inputs), a body (bias), an axon (activating function), and axon

terminals (outputs), repeated for a number N for each layer, which, in turn, are arranged in

a multi-layer organisation composed of an Input layer, one or multiple Hidden layer(s), and an

Output layer [Figure 1].
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Figure 1: A schematic representation of a Neural Networks. The first layer is named the Input

layer and has one neuron for each feature. Inputs are then transmitted to Hidden Neurons in

the Hidden Layer, where a mathematical function computes an output and each neuron send

its output to the Output Neuron. The output neuron weights and combines all its inputs in a

final output, the prediction.

Each neuron represents a mathematical function that takes the inputs and a weight, which

is usually initialised with a value of 1 and is recalculated for each training epoch, and then

translates these value into a single output that is then used as an input for the subsequent layer

of neurons. There are three main layer classes with different roles and each one is necessary to

the functioning of NN. Input layer is defined as a passive layer as it does not modify data but

just copies the inputs and shunts them to each neuron of the first Hidden layer. Here, inputs

are processed and each neuron transmits its outputs to the next layer, repeating this process

for every hidden layer present in the network architecture. Last hidden neurons will then send

their output to the Output layer, where the N neuron will further process data to obtain the

N final outputs corresponding the N probabilities to belong to each of the N classes present in

the training dataset [50]. Overall, the training process mainly depends on the decision of the

proper architecture and the most appropriate loss and metric functions, other than an adequate

dataset.
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1.5.3 Metrics

Different and variegate metrics exist to evaluate machine learning methods, and it is important

to apply the correct one to guarantee a reliability in a real world application. Accuracy is the

most known classification metrics and is defined as the percentage of correct classification over

the total number of classification, but it can be used only for balanced distribution since in case

of highly unbalanced distributed data it could result with a value which nearly matches the most

represented class frequency, not resembling the effectiveness. To overcome this limit, precision

is a class specific metrics allowing to calculate the number of correctly predicted samples over

the total number of samples belonging to the same actual class. Another important metric is

the recall, a measurement of correctly predicted labels among all the same predicted class.

Precision and recall may be combined in a single score, called F1 Score, calculated as:

2 · Precision ·Recall

(Precision+Recall)
(2)

Indeed, picking the correct metric during model development and validation, is fundamental

to guarantee reliability in a real world data, seeing that a tool to foresee the classification label

of a low prevalence element would achieve a close-to-hundred percent accuracy and precision

even missing almost every positive element. To better elucidate the differences between metrics

and provide a clear overview, a fictitious case study is showed in Table 2.

Element

Present Absent Total

Test

Positive 9 1 10

Negative 90 9900 9990

Total 99 9991 10000

Metric Formula Value

Accuracy TP+TN
TP+FP+TN+FN 0.99

Recall (Sensitivity) TP
TP+FN 0.09

Specificity TN
FP+TN 0.99

Precision (PPV) TP
TP+FP 0.90

F1 Score 2·Precision·Recall
(Precision+Recall) 0.165

Table 2: A fictitious case study to investigate how different metrics describe a classifier effec-

tiveness. In a similar situation (i.e. a test to identify patients positive to an infectious disease

with a prevalence of 1%), a test with an accuracy of 0.99 would be totally unreliable as only 9%

of positive patients have been identified (and 90 out of 99 positive ones would act as spreader

of a disease). Hence, recall and F1 score would have better described the (un)reliability of the

test.

The typical output of a model, however, is not a label but indeed a value between 0 and
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1 representing the probability of being of a specific class, hence it is necessary to identify

a threshold for positive/negative definition. Receiver Operating Characteristics curve

analysis shows the True Positive (TP) and False Positive (FP) ratio for all possible threshold

values and the Area Under Curve is a measurement of the effectiveness of the model.

Concerning regression metrics, Mean Squared Error (MSE) and Mean Absolute Error

(MAE) are the most popular metrics. MSE is calculated as:

∑n
i=1 yi − λ(xi)

2

n
(3)

where yi is the truth value of the data-point while xi is the predicted value, for the n number

of instances, while MAE is:

∑n
i=1 |(yi − λ(xi))|

n
(4)

with the MSE being more sensitive to outliers and larger errors, while the MAE is easily

interpretable from a human point of view.

1.5.4 Loss and Gradients

Along with metrics of the networks, it is important to measure the training performances as

well and it is accomplished through the loss function, a function which measures the difference

between the predicted value and the actual one. Several loss functions exist, although the

most used in classification tasks are the Binary, the Categorical, or the Sparse Categorical

crossentropies, while Mean Absolute Error and Mean Squared Error are the most common for

regression models. Binary crossentropy allows to handle with binary classification problems

and its calculates as:

L(y, p) = −(y log(p) + (1− y) log(1− p)) (5)

where y is the real label and p is the predicted one. When there are more than two classes,

categorical crossentropy allows to use one-hot encoded labels while sparse categorical crossen-

tropy is used with integer-labelled data. Categorical crossentropy is similar to binary one and

is calculated as:

L(y) = −
∑
j

yi,j log(pi,j) (6)

that is indeed an extension of the binary crossentropy summing the binary loss for each of

the classes j. Concerning regression metrics, MSE and MAE are computed as the mean of the

absolute or squared errors for each element of the training, defined as the difference between

actual value and the predicted one. Loss function calculates the loss for each vector in the

training set and all the losses are averaged using a cost function which has to be minimised

using an optimizer, an algorithm aiming to optimise the weights of the network in order to
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find the minimise the cost function. When the model is initialised, the weights are typically

randomly assigned and the recalculation starts from a random point of the cost distribution

matrix. It is then possible to compute the gradient of the cost function through the partial

derivative and iteratively update the weights with a step size of η, known as learning rate. In

2014, Kingma and Ba introduced another optimizer called Adam, short for Adaptive Moment

Estimation, an algorithm which adapts individual learning rate for each weight of the network

[51].

1.5.5 Datasets

Training procedure starts with the setup of a dataset that is indeed divided into three subsets:

a training, a validation and a test set. The training set represents the major subset and usually

it contains 70-80% of available data, and is used to expose examples of the ground-truth to

calculate the weights and to fit a model. The model is then evaluated using the validation

set, which is a set of samples used to evaluate the training process and to fine tune the hyper-

parameters. The training procedure reckons on iterations called epochs, which may be pre-set

or the training may be programmatically interrupted when the model loss is not lowering,

and when the training procedure is finished it is possible to modify some parameters until the

trainer is satisfied with the results. After that phase of fine-tuning, the model is tested on a

test set, a totally independent and unseen dataset. The test set is, indeed, a set composed

of data which have never been exposed to the trainer nor to the network and it is used to

verify the generalisation of the model on unrevealed data. It is the gold standard to asses

model reliability on real world data and it is meant to provide an unbiased evaluation of the

model. The application of different network architectures combined with different loss function

and optimisers, led to an important variety in results and approaches in the field of Artificial

Intelligence and, by reflex, in digital pathology.

1.5.6 Generative networks

Other than classical tasks in AI, one of the most hot-topic in the field of neural networks is

the application of Generative Adversarial Networks (GAN), networks meant to generate data.

This kind of models can be used to handle with several data types, as image synthesis for data

augmentation, super-resolution or even Natural Language Processing or music generation [52].

Concerning their architecture, GANs are indeed the combination of two model, a generator and a

discriminator. The generator is meant to understand the distribution of information in a ground

truth to generate new images, while the discriminator is a binary classifier trying to discern

fake from real images, and these two networks are competing each other [53], hence the training

phase is actually a combined training of two adversarial network training to overwhelm each

other, each one with its respective loss function. Among all the generative networks, Pix2Pix
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network represents one of the most interesting examples, as it is easily adapt to different tasks.

It has been firstly presented by Isola et al. during CVPR in 2017 and since that moment several

application have been proposed, i.e. edge facade prediction [Figure 2], sketch drawing to cats

representation, background removal, sketch to portrait transformation, and photo generation

from sketch [54].

Figure 2: An example of application of Pix2Pix generative model, showing for each row the

labelled image on the left, the ground truth in the middle, and the output of the model on the

right. Image modified from [54]

Thus, this approach represents a valuable method to generate images even with images

hugely different from the ones used in first-place, ranging from labelled images to photography,

or even whole slide images with a direct application in digital pathology
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1.6 Machine/Deep Learning in Digital Pathology

Artificial Intelligence in Surgical Pathology is nowadays worldwide diffused, with more and

more reported results and commercial application. Most of the artificial intelligence algorithms

are intended to cover a large variety of possible application in surgical pathology, e.g., grading

of renal cancer [55], for prostate Gleason score classification [56], or breast cancer molecular sub-

typing [57] and their outcome prediction. Moreover, segmentation is another hot-topic in digital

pathology, with various example of that, as the segmentation of various pathological lesions in

the fields of neuropathology [58], breast cancer [59], hematopathology [60], and nephrology [61]

or Oral Squamous Cell Carcinoma [62].

Moreover, Salehi and Chalechale proposed a stain normalisation method based on a Pix2Pix

network, with impressive results [63] and this kind of tools may be also used to convert H&E

stained slides to other staining, as described by De Haan et al. [64] and Liu et al. [65] in 2021.

De Haan describes a method to convert renal H&E stained slides into three special stains,

Masson’s Trichrome, periodic acid-Schiff, and Jones silver stain, showing a significant increase

in diagnosis accuracy when using H&E images with virtual special stains compared to H&E

alone. Then, Liu describes a method to generate Ki-67 images from H&E stained slides on

neuroendocrine tumour and breast cancer images using an unpaired stain transfer method and

achieving a great concordance between virtual and real images.

Despite several examples of AI application to digital pathology, it is worth to note that there

are some major issues to deal with when approaching to histopathology image analysis. In first

instance, whole slide images are huge images, being each file in the range of gigabytes with a pixel

size in the order of 100,000×100,000 pixels [27]. Hence, it is impossible to process whole slides at

once, and the most common procedure involves image tiling and resizing. Consequently, there

is not a standard procedure and the tiles dimension (representing the Field of View (FOV))

depends on the task, i.e. cell detection may require high magnification and small tiles, while

glands detection can work with low magnification images. Eventually, tiles can be used as final

input images or may need a further resizing (same FOV with a lower resolution), and questions

about the best methodological approach are still open. Furthermore, WSI analysis algorithms

are typically evaluated at three levels, depending on the task:

• Tiles level. As training is performed on tiles, its metrics are measured at tile level, as

well as the validation ones.

• WSI level. Though the algorithms are trained to perform tasks on tiles, the clinical

routine relies on WSI analysis, therefore tiles metrics are not necessarily a trustworthy

measure of algorithm effectiveness. Indeed, it is important to investigate if errors in tiles

classification or segmentation are unspecific or systematically happens with a specific

subset of images (i.e. intensively stained slides, wrong white balancing , etc.) resulting
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in misinterpreted slides.

• Patient level. Multiple slides are generally produced from each patient, so at the end

of the day all slides assessment is combined in a single diagnosis. Is then important to

verify the algorithm’s effectiveness to produce a final diagnosis with the combination of

all the outputs. In fact, it may result that most of the slides which belong to the same

patient are misinterpreted as the can show specific characteristics (i.e. tumour grade,

morphology, etc.), leading to a wrong diagnosis.

Hence, digital pathology algorithms demand for a multilevel evaluation depending on the

specific purpose of each model, and the development and evaluation of the model need to be

done keeping in mind the different information about the trustworthiness provided by each level

of evaluation.

Another important aspect of machine and deep learning methods in digital pathology regards

datasets. As mentioned beforehand, digitisation of anatomical pathology is a relatively recent

event and there are few hospital with a full digital workflow, albeit increasing in last years

[66], resulting a few public available datasets and in difficulties for research groups interested

in the development of new algorithms. Along with the lack of datasets, there is also a lack of

annotation because of the huge dimension of image and the need for highly specialised figures

(pathologists) to annotate images, strongly limiting the production of AI algorithms. However,

more and more results are published every year, with an exponential growth of new available

algorithms, and many application have been proposed for less diffuse cancer too, as the Oral

Squamous Cell Carcinoma.

1.6.1 AI applications in Oral Squamous Cell Carcinoma analysis

In a recent systematic review, Mahmood et al. showed that there is an increasing interest of

AI applications to OSCC WSI analysis [67]. They reported 11 selected studies about the usage

of AI-based analysis of features in oral lesions. Four papers out of 11, refer to OSCCs, namely

[68]–[71], one is about oral epithelial dysplasia [72], five about oral submucous fibrosis [73]–

[77], and the last one is about oropharyngeal squamous cell carcinoma [70]. Then, in 2020 we

demonstrated the possible prediction of Ki-67 immunohistochemical positivity on OSCC WSI,

using a machine learning approach [78].

Hence, the aim of this project is to evaluate the application of a generative network for the

assessment of Ki-67, a promising biomarker, in OSCC, in continuity with our previous results.
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2 Aim of the study

Ki-67 is a reliable prognostic biomarker in several human solid tumours, with a promising role

as biomarker in Head and Neck Squamous Cell Carcinoma too. However, with the continu-

ous increase in the number of immunohistochemical biomarker, it is hard to keep running the

entire anatomical pathology workflow, especially in smaller or remote-areas’ hospitals. Digital

Pathology may represent an important helper, particularly with the application of genera-

tive networks that may allow the generation of synthetic immunostained whole slide images,

decreasing the need for actual laboratory activity, with a reduction of anatomical pathology

laboratories’ workload. Hence, we collected 175 OSCC FFPE samples from the archive of the

Anatomical Pathology unit of the University of Naples ”Federico II”, aiming to develop a deep

learning model to convert H&E stained Whole Slide Images to anti-Ki-67 IHC stained Whole

Slide Images, in order to reduce turn-around time, laboratory consumables usage and to improve

patients management.
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3 Materials and methods

3.1 Study Population

175 OSCC FFPE tumour samples from surgical resections, from the Pathology Unit’s archive

of the University of Naples “Federico II”, were used to build four tissue microarrays (TMAs),

and the most representative areas from each selected paraffin block were selected, at least in

duplicate. TMAs were built and stained as described in [78], and a total of 349 individual cores

were obtained. WSI were scanned using a Leica Aperio AT2 scanner with a 40x magnifier.

After slide scanning, TMAs slide coverslips were remove by soaking the slides in xylene. The

slides were then rehydrated in decreasing concentrations of ethanol and then destained using

a solution of HCl 0.3% for 4 min. After destaining, the slides were rinsed in tap water and

subsequently immunostained with the antibody anti-Ki-67. Immunohistochemical staining was

performed on a Ventana Benchmark Ultra (Ventana Medical Systems Inc., Tucson, AZ, USA)

using the rabbit monoclonal antibody anti-Ki-67 (clone 30-9, Ventana Medical Systems Inc.)

in accordance with manufacturers’ recommendations. The new IHC-stained slides were then

digitized.

3.2 Virtual Staining

3.2.1 Dataset generation

All the 349 individual cores, for both H&E and IHC images, were dearrayed using QuPath

[79] and the matching cores were manually aligned to achieve a nearly perfect pixel to pixel

correspondence. After a strict quality check phase, which led to the discharge of 184 cores,

the 165 remaining cores where sorted in three different datasets, training (approximately 60%

of cores), test (10%), and validation (30%). Because of the nature of the experiment, the

validation of the algorithm has been performed measuring the verisimilitude of the generated

images and the concordance between real and synthetic images. As each core is on average

4500×4500 pixel, they have been tiled obtaining 31428, 6109, and 16560 tiles for each dataset.

Validation cores were reassembled to obtain virtual cores. A brief summary of the datasets is

illustrated in Table 3.

Train Test Validation

Cores 95 19 51

Tiles 31428 6109 16560

Table 3: Cores and tiles distribution in train, validation, and test set. Tiles are 256×256 patches

extracted from 4500×4500 cores images
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3.2.2 Pix2Pix implementation

A Pix2Pix model has been trained on the training and test dataset to convert H&E images

into anti-Ki-67 Immunostained images for 30 epochs using the default settings as described

by Isola et al. [54]. In particular, the model consists of two part, the discriminator and the

generator. During the training, the generator is trained to generate synthetic IHC images while

the discriminator is trained to tell synthetic images from the actual ones. In our training,

we used Adam optimiser with a learning rate of 2 × 10−4 and a momentum of 0.5 for both

generator and optimiser, while the random initialisr has been set with a mean of 0 and a

standard deviation of 0.02. The model has been training using two GPU Nvidia 2080 Ti. For

each epoch we saved a checkpoint and at the end of the training we restored the best generative

model. Validation set has been used to asses the model efficiency in two ways. In first place,

we tested the ability of two pathologists to discern actual images from synthetic one on a small

subset of the validation set, to evaluate the likelihood of synthetic images. Then, we counted

positive cells for each core (both actual and synthetic) to evaluate the concordance between

real Ki-67-positivity and the predicted one.

3.2.3 IHC Quantification

Immunopositivity has been measured using QuPath 0.2.3. After setting image type and defining

stains (H&E, DAB, and Background) values, the Simple Tissue Detector has been used to define

tissue areas in the images. Then, we used the “Positive cell detection” algorithm to detect and

quantify positive cells within the core, and the procedure has been automated using a Groovy

script [Code 1]. As IHC intensity is sometimes highly variable, the positivity threshold has

been manually adjusted for some cores.

//QuPath Groovy Script

//Simple Tissue Detector

runPlugin('qupath.imagej.detect.tissue.SimpleTissueDetection2', '{"threshold": 220,

"requestedDownsample": 50.0, "minAreaPixels": 100000.0, "maxHoleAreaPixels":

500.0, "darkBackground": false, "smoothImage": true, "medianCleanup": true,

"dilateBoundaries": false, "smoothCoordinates": true, "excludeOnBoundary": false,

"singleAnnotation": true}');

//PositiveCellDetection

runPlugin('qupath.imagej.detect.cells.PositiveCellDetection',

'{"detectionImageBrightfield": "Optical density sum", "backgroundRadius": 15.0,

"medianRadius": 6.0, "sigma": 6.0, "minArea": 10.0, "maxArea": 1000.0,

"threshold": 0.1, "maxBackground": 2.0, "watershedPostProcess": true,

"excludeDAB": false, "cellExpansion": 0.0, "includeNuclei": true,

"smoothBoundaries": true, "makeMeasurements": true, "thresholdCompartment":
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"Nucleus: DAB OD mean", "thresholdPositive1": 0.2, "thresholdPositive2": 0.4,

"thresholdPositive3": 0.6000000000000001, "singleThreshold": true}');

Code 1: QuPath Groovy script to perform tissue detection and cell positivity count

3.2.4 Android application

To test the likelihood of the synthetic images, an Android application has been developed. The

test is conducted showing a series of coupled IHC images, A and B, and the pathologists had

to identify the synthetic one clicking on the relative button. On each trial, the pathologist

were shown each image for 5 second, after which the images disappeared and unlimited time to

respond as to which was fake was given. Each session consisted in a brief trial to understand

the functioning of the application followed by the actual survey. The experimental setting has

been adapted from the one used by Isola et al. [54]. The application is made of three activities

(I) Main Activity, (II) Trial Activity, and (III) Survey Activity.

Main Activity The Main Activity is composed of three buttons, namely “Trial”, “Survey”,

and “Settings”, respectively linking to the the activities and to a setting menu. The setting

menu allows to activate/deactivate the hiding of the images and its timer, along with the

number of images for each session. Setting values were saved as SharedPreferences.

Trial Activity The Trial Activity is made of a disclaimer about the survey with an explanation

of the modality, the actual test and a feedback about the test. The trial starts clicking

the “Start” button in the disclaimer, and three images are showed to test the application.

At the end of the test, a feedback is provided.

Survey Activity The Survey Activity is an exact copy of the trial one, but showing a number

of images as fixed in settings. We showed thirty images to each pathologist.

The resulting application has been installed on a Android tablet and the pathologist have

been supported only during the trial phase.

3.2.5 Code and Statistical Analysis

All code and statistical analysis has been performed using Python 3.9 with the packages Seaborn

0.11.1, Matplotlib 3.4.2, Pandas 1.3.0, Scikit-learn 0.241.2, OpenCv 4.5.3.56, and Tensorflow

2.6.0. The android application has been developed using Kotlin with Android Studio. All codes

are available upon request.
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4 Results

To fully elucidate the possible application of generative networks to OSCC as a method to pre-

dict the Ki-67 immunohistochemical positivity of H&E-stained cells, we have identified multiple

project endpoints. The endpoints were:

• Dataset Generation

• Plausible Synthetic Images Generation

• Concordant Synthetic IHC and real IHC positivity

4.1 Dataset Generation

In order to generated a dataset of images of Ki-67 immunostained tumour samples perfectly

matching the corresponding H&E

In first instance, we generated a dataset consisting of 349 cores stained with H&E and,

after a destaining procedured, restained with IHC, they were manually aligned to create a

high-quality matching-images dataset. After a dearray preprocessing, for each core the IHC

image has been manually overlaid to the matching H&E and the images have been precisely

aligned using Adobe Photoshop 2021. Then, the single layers (H&E and IHC) have been saved

as individual images, as shown in Figure 3.

Figure 3: A representative image of two aligned cores, with the H&E in (A) and the IHC in

(B). Cores have been manually annotated to a pixel level

Then, cores were subdivided in tiles and each tile was stitched together with its counterpart,

in order to create the actual training dataset, with some examples shown in Figure 4.
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Figure 4: A grid showing some representative images of tiles. Each couple is made of target

image (immunohistochemistry, left) and input image (H&E, right)
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Finally, images were sorted into three datasets: training, test, and validation, as described in

materials and methods and a Pix2Pix model has been trained. As shown in Figure 5, synthetic

IHC images generated using the trained model appeared very similar to actual immunohisto-

chemical images.

Figure 5: Three representative images of IHC prediction procedure. From left: Input H&E,

Actual IHC, Synthetic IHC.

4.2 Synthetic Images Likelihood

As the proposed method is intended to generate a virtual staining, the output should appear

realistic. Indeed, pathologists are used to work with actual IHC images, so realistic images

(other than accurately predictions) are mandatory to assure pathologists compliance with the

algorithm application. Hence, the likelihood of synthetic images has been assessed asking two

pathologists to tell the synthetic image from the actual one in a side-by-side blinded comparison.

The test has been performed in a dedicated android application, with a user-friendly GUI,

developed to allow pathologist to evaluate model results [Figure 6].
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Figure 6: Screenshots of the application developed to assess the likelihood of model’s output

images
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Synthetic images likelihood has been measured as the percentage of synthetic images cor-

rectly identified as synthetic (True Positives), hence a percentage of 0.5 means that the pathol-

ogist were not capable to tell synthetic images from actual ones, while a value of 1 means that

synthetic images are always recognisable. It resulted that among 30 images, only 17 and 16

(Pathologist 1 and Pathologist 2) were correctly recognised as synthetic, with a mean ratio of

0.55 (0.57 and 0.53), confirming the likelihood of the images and the quality of the model.

Overall, these results confirm that the images produced by the model appear realistic,

assuring more compliance and confidence from pathologists. Then, we quantitatively evaluated

the immunohistochemical concordance between synthetic and actual images.
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4.3 Synthetic and real IHC concordance

In order to assess the concordance between synthetic and real immunohistochemical concor-

dance, we automatically counted the number of positive cells per each core using QuPath

”Positive Cell detection” as described in Materials and Methods. The comparison between

synthetic and real IHC showed a moderate R2 value (0.558), as shown in Figure 7.

Figure 7: Jointplot showing the correlation between the predicted number of share of IHC

positive cells and the actual one

Moreover, the visual inspection of the digital generated cores confirmed that the distribution

pattern of positive cells matches the actual one, as showed in Figure 8.
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Figure 8: A comparison between actual immunohistochemistry (left) and the respective virtual

one (right). It is clearly visible the close match in positivity and its pattern

Finally, categorical division in the most common used cutoff in the assessment of Ki-67
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showed high accuracy rate. Indeed, when using a 5% positivity cutoff, we were able to achieve

an accuracy of 74.51%, with high sensitivity (76.67%) and specificity (71.43%). With higher

cutoff we had a remarkable reduction in sensitivity, although we observed a remarkable Positive

Predictive Value (79.31%, 77.78%, and 75.00%).

Metric 5% 10% 15%

True Positives 23 7 3

False Positives 6 2 1

True Negatives 15 33 42

False Negatives 7 9 5

Sensitivity 76.67% 43.75% 37.50%

(95% CI) (57.72% - 90.07%) (19.75% - 70.12%) (8.52% - 75.51%)

Specificity 71.43% 94.29% 97.67%

(95% CI) (47.82% - 88.72%) (80.84% - 99.30%) (87.71% - 99.94%)

Accuracy 74.51% 78.43% 88.24%

(95% CI) (60.37% - 85.67%) (64.68% - 88.71%) (76.13% - 95.56%)

Table 4: Summary of model IHC concordance metrics

Overall, although further studies are necessary to improve the algorithms and achieve a

clinical applicable accuracy level, our results paved the way to a promising and reliable tool to

produce immunohistochemical images directly from H&E stained slides.
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5 Discussion and conclusion

During last 20 years pathology underwent through a radical transformation thanks to the

introduction of the Digital Pathology, an innovative approach which merges computer science

with pathology. The first computer science approaches proposed to surgical pathology regarded

the automation of manual procedures as cell counts but during the course of time more and more

algorithms have been developed, ranging from colour normalisation to automatic classification

and segmentation of tumours. Nevertheless, one of the most outstanding application of AI to

pathology is the prediction of molecular or morphological characteristics through the usage of

virtual staining. The expression ”virtual staining” refers to the employment of AI to obtain

synthetic images of a desired target staining (as IHC, Trichrome or other staining) from a source

image (as H&E), without the need of an actual laboratory activity and reducing the reagent

consumption. Among the proposed algorithms, the prediction of immunohistochemistry is one

of the most interesting topic because of the continuous increase in the number of tumoural

biomarkers and the consequent impact on hospital budget and activity, hence we intended to

develop an AI algorithm to predict the immunohistochemical positivity to Ki-67, a well-known

proliferation marker related to a worse prognosis in several tumours.

We collected a series of 175 OSCC FFPE tumour samples arranged in four microarrays,

and after a strict quality check phase we selected 165 individual cores that were dearrayed

and tiled to create our training, validation and test set. Then, we trained a Pix2Pix model

to achieve virtual stained cores from H&E images. The obtained images were assessed for

their likelihood to real ones at a tile-level, while concordance between real and synthetic Ki-67

immunohistochemical expression has been assessed at a core-level with both continuous and

categorical quantification through QuPath.

Virtual images deceived pathologists in 45% of cases, confirming the likelihood of the gen-

erated images. Moreover, the synthetic and real IHC positivity, measured using QuPath al-

gorithms, showed a highly significant concordance (R2 = 0.56, p<0.001). However, Ki-67 is

assessed as low-high expression, although the cutoff value is still not defined and usually ranges

between 5%-15% of positive cells. Hence, we assessed the concordance with three cutoffs (5%,

10%, and 15%), and achieved a remarkable positive predictive value of 79.31%, 77.78% and

75.00%, respectively, confirming the quality of the algorithm.

Overall, our results confirm the feasibility of a valid IHC-prediction algorithm, even with the

limitation of our study. Indeed, we performed our training on TMA cores, which were made with

samples collected in different time period and then with an intrinsic variability in IHC staining.

Moreover, we used a relative small amount of OSCC cores, all coming from our institute, so

further studies are necessary to assess the generalizability of our algorithm. In conclusion,

although larger and wider studies are necessary to fine tune and improve our algorithm, the

results we achieved represent a promising starting point to further develop a virtual staining

30



protocol to reduce the turn-around time and the material and reagents consumption, in order

to achieve an actual digital pathology. Virtual staining protocols may result, in the future, in a

faster and economical way to gather information about protein expression and mutational status

of patients, improving the effectiveness of therapies and also in hospitals in developing countries

as they usually cannot access to immuno-stainers, reagent supplies and adequate trained stuff,

enabling high-level patient-care requiring only a slide scanner.
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