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In the last twenty years, the study of human microbiome composition and its 

relationship with host health has involved the scientific community with growing 

interest. Current knowledge allows us to predict host phenotype based on the 

microbiome composition. However, most of the studies have been focused on gut 

microbiome characterization, while other biological niches have been less 

characterized. 

Of particular interest is the oral microbiome, widely recognized as resilient and as 

responsible for major oral diseases. 

In the last twenty years, there has been a massive spreading in dental implant use as 

a substitution to lost or heavily diseased teeth. The increasing use of dental implants 

has gone hand in hand with the spreading of implants-related diseases like mucositis 

and peri-implantitis. It has been demonstrated that implant diseases have, at least in 

part, a bacterial origin. Last studies have demonstrated how we can predict disease 

state starting from oral microbiome composition. Oral microbiome characterization has 

been made mainly using 16S sequencing techniques, by limiting the analysis to genus-

level taxonomic resolution and to small cohorts. External factors that may have an 

influence on microbiome composition and expression have been considered only 

marginally.  

Dietary habits influence on oral microbiome composition has been defined marginally 

and with obsolete techniques. The objective of this research project is to fulfil the lack 

in terms of dietary habits influence on oral microbiome using the latest sequencing 

technologies and using statistical, computational and machine learning approaches. 

The study was conducted on a cohort composed of 451 subjects with dental implants, 

acquired thanks to the involvement of 48 dental clinics on the whole italian territory. 

The cohort included healthy (156), peri-implant (152) and mucositis (143) subjects. A 

large set of clinical variables along with the information about dietary habits were 

collected. The dietary information was collected through the administration of a food 

frequency questionnaire (draft by EPIC). A subgingival plaque sample was collected 

and sequenced with shotgun techniques for 121 (healthy) subjects. The study was 

conducted with the following objectives: 1) evaluation of the relationship between 

dietary habits and health status and between dietary habits and clinical variables 



 

  

(chapter 3); 2) oral microbiome characterization and evaluation of its relationship with 

dietary habits (chapter 4); 3) accomplishment of objectives 1) and 2) with the use of 

statistical and machine learning methods optimized in chapter 2. 

In chapter 2, it was conducted an analysis voted to: 1) evaluating the predictive power 

of presence/absence profiles in contrast to more canonical relative abundance 

profiles; 2) evaluating and comparing different classification algorithms to identify the 

best one in terms of classification accuracy. The analysis was conducted on 4128 

shotgun samples from 25 publicly available dataset, and extended to 4026 16S 

samples from 30 publicly available datasets. Relative abundances profiles generated 

through MetaPhlAn3 were converted in presence/absence profiles by considering 

different thresholds and different taxonomic resolution levels. Five different 

classification algorithms (i.e., Random Forest; Lasso; ENet; SVM; LSVM) were 

compared and their accuracies were evaluated in terms of AUC. 

Results showed that classification made on presence/absence profiles has 

comparable results with the ones obtained on relative abundances. The Random 

forest algorithm resulted as the less sensible to data transformation and as the 

classifier able to maximize classification performances. Results were confirmed on the 

considered 16S datasets. 

In chapter 3 an analysis voted to the identification of dietary habits influence on health 

status was conducted. The analysis was done during the Beta Program at PreBiomics 

where I spent 18 months of my research activity. 

Multiple analyses voted to identify the relationship between dietary habits and disease 

state were made:  ordination analysis; correlations coefficient computation; linear 

discriminant analysis; logistic regression; Random forest classification. Results 

highlighted weak correlations between dietary habits and implant disease state. The 

use of dietary habits data did not improve predictive power performances. 

In absence of strong correlations between dietary habits and peri-implant health 

status, possible associations between dietary habits and oral microbiome composition 

were studied. This was limited to healthy subjects. Multiple statistical significant 

correlations were found between dietary habits and microbial species, and more 

specifically between carbohydrates sources and some potentially pathogenic species. 



 

  

The extension of the analysis to metabolic potential allowed us to identify the 

correlations between carbohydrates and fat sources consumption and different 

metabolic pathways involved in different pathogenic processes  

The analysis suggested that dietary habits have a limited effect on the peri-implant 

diseases manifestation. At the same time, dietary habits seemed to influence the oral 

microbial community in a way that can trigger a selective push towards potentially 

pathogenic species involved in different oral pathogenic processes. 

The absence of strong correlations between dietary habits and disease state may 

depend on: 1) site specificity of the metagenomic samples involved in the analysis 

(i.e., sub-gingival plaque); 2) relative low quality of the dietary habits data (the 

collection of questionnaires was strongly impacted by COVID-19); 3) nature of dietary 

data collected via FFQs known to be based on estimations with possible strong 

differences from real consumptions. 

Further investigations may be performed by extending the study to the saliva 

microbiome and by acquiring additional information about the oral environment (such 

as pH and nitrate content). A better definition of the diet effect on microbiome could 

be achieved also by acquiring microbiome information of diseased subjects and by 

sequencing longitudinal metagenomic data. 
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1 Introduction 

1.1 An introduction to the human microbiome 

It has become common knowledge that we are symbiotic creatures, accommodating 

a large number of microbial hosts. Since the discoveries of Leeuwenhoek and de Bary 

on bacteria in human mouths and algal-fungal partnerships that constitute lichens, the 

research on symbiosis has progressed remarkably. We discovered that microbial 

symbionts have been shaping the make-up of the eukaryotic influencing growth, 

development, energy metabolism, nutrition, digestion and defence of eukaryotes [1,2]. 

The set of microorganisms colonising a given biological niche is called microbiome. 

The microbiome, composed by species living in a symbiosis status, establishes with 

the host an endosymbiosis relationship. The endosymbiosis has deeply impacted the 

evolution of life and continues to shape the ecology of countless species. The 

evolution has been traditionally seen as a largely bifurcating pattern, reflecting 

mutations and other changes in existing genetic information and the occasional 

speciation and divergence of lineages. While lineage bifurcation has clearly been 

important in evolution, the endosymbiosis has also made profound contributions to 

evolutionary novelty with the merging of different lineages during the endosymbiosis 

relationship [1,3]. 

 

In the last 20 years, the study of the human microbiome has assumed a central role in 

the scientific community [4–9]. The microbiome, represented by the set of microbial 

species colonising different biological niches of the human body (e.g., skin, gut, mouth, 

and vagina), has been largely studied in terms of its composition and its influence on 

human health and disease. The ever increasing knowledge of the microbiome allowed 

scientists to identify several microbiome traits (e.g., taxonomic-level relative 

abundances of some species) associated with several diseases [10]. This has been 

unlocked also thanks to the possibility of estimating host phenotypes from microbiome 

data using computational approaches involving machine learning techniques [10,11], 

large-scale analyses [12,13], and meta-analyses aiming at integrating multiple cohorts 

and data types. 
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1.2 The oral microbiome and its role in disease 

In the literature, most of the attention has been given to the characterization of the gut 

microbiome (36,000 entries in Scopus as of August 2022), although other biological 

niches of the human body have deserved attention. Of particular interest is the oral 

microbiome (6,00 entries in Scopus as of August 2022) represented by the microbial 

population living in our mouths. Oral microbiome is recognized to be remarkably 

resilient and quite diverse in terms of bacterial, archaeal, viral, and fungal component 

[14–16]. The resilience of the oral microbiome mostly derives from the slow growth 

rate of saliva and crevicular fluid, the two principal substrates available in our mouths. 

 

Study and characterization of the oral microbiome went hand in hand with the linkage 

of its composition with some oral diseases. The use of culture-independent methods 

allied with next generation DNA sequencing methods is providing a far deeper analysis 

than hitherto possible. In contrast to the commensal microbiota found in other body 

sites that typically live in harmony with the host, the normal microbiota of the mouth is 

responsible for the two commonest diseases – dental caries and periodontal diseases 

[17], in addition to multiple other diseases. As example, the dissolution of tooth 

structures by acids produced as a result of the fermentation of dietary carbohydrates 

by oral bacteria [18–20]; endodontic infections or infections and death of the teeth pulp 

[21–23]; periodontitis or the loss of the attachment between gingiva and teeth that can 

bring to the loss of the teeth due to an heavy colonisation of the gap by anaerobic 

bacteria [24–26]. Moreover, the oral microbiome is known as a reservoir of infection 

for other body sites gaining access to the bloodstream through carious lesions. Oral 

microbiome is indeed correlated to infectious endocarditis [27], and brain and liver 

abscesses [28,29]. Oral bacteria have been detected in the lungs in cystic fibrosis 

patients [29]. In addition, it has been suggested that the oral microbiome may be linked 

to diseases that affect other body sites either in a causative way or as a reflection of 

systemic changes in the body [30]. In the latter case, oral microbiome analysis could 

be used as a diagnostic tool to detect other diseases. 
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1.2.1 Oral microbiome and peri-implantitis 

In the last two decades, there has been an increasing use of dental implants to replace 

missing teeth [31]. The growing diffusion of dental implants led to a spread of implant 

diseases such as peri-implantitis, which affects both soft and hard tissues surrounding 

the implant, and mucositis, which precedes peri-implantitis and involves, instead, only 

soft tissues [32–36]. The clinical characterization of these two implant pathologies is 

represented by a continuum of inflammation, tissue destruction, and microbial 

pressure. Such symptoms are also a consequence of host-specific immune-mediated 

responses, genetics, as well as lifestyle and environmental factors [31,37]. The trigger 

of peri-implant disease is still unknown and under investigation. It is still unclear if it is 

the microbial challenge or the hyperinflammatory state itself [38]. The association 

between disease state and oral microbiome composition was and still is largely 

investigated [31,39–57]. Some authors emphasise that the shifting of microbiome 

composition during the pathogenesis of peri-implant diseases own a mutual 

relationship with the hyperinflammatory state typical of the disease in a kind of 

reciprocal causation and tries to shape the typical peri-implant 

microbiome[39,47,51,58,59]. Other authors identify the shifting in microbial 

composition as a cause to the development of peri-implant diseases and underlines 

the possibility to prevent peri-implantitis by looking at oral microbial composition 

[31,49,50,52,53]. 

 

1.3 Metagenomic analyses of the oral microbiome 

In the literature, most of the works that investigated the relationship between peri-

implant diseases and oral microbiome relied on analyses based on 16S rRNAs 

sequencing. Despite the scientific goals that have been reached through such an 

approach in this and other contexts, it basically limits the analysis to taxonomic 

characterization at genus level, preventing finer analyses such as species-level, strain-

level, and functional-potential. Moreover, they rely on a quite small number of samples 

[41–46,48,59–62]. Additionally, external factors that may have an influence on the oral 

microbiome composition have been taken into account only marginally. The human 

microbiome, including the oral one, is an evolving community that responds to the 

push of external factors. Extrinsic host factors refer to external stimuli that have the 
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potential to affect the individual microbiome and can exert an influence on the host 

characteristics. These factors that are not inherent biological characteristics of the host 

can be modulated directly (e.g., lifestyle and behaviour) or not intentionally (e.g., 

environmental factors) [63] by the host. Such factors can contribute to an imbalance 

of the oral environment and potentially lead to a diseased state [64]. Only scattered 

studies have been previously conducted to evaluate effects of lifestyle on the oral 

microbiome composition [65–67].  

 

1.4 The effect of diet on the oral microbiome 

Despite major dietary changes that happened in history, the oral microbiome stayed 

relatively stable, going through a compositional shift and a decrease in diversity [68]. 

Moreover, adaptation of bacteria to these new environmental conditions [69,70] and 

continuous changes in the environment and lifestyle of the host [71] are believed to 

have greatly contributed to the present configuration of the oral microbiome in humans. 

To date, due to the resilient nature of the oral microbiome [14], there are only a few 

studies investigating this relationship. The disentanglement of the effect of the 

consumption of different foods on the oral microbiome composition is still ongoing. 

Some evidence indicates that a frequent consumption of fermentable carbohydrates 

is one of the causes of dental caries, driving the plaque ecology towards a state of 

dysbiosis [65,72,73]. The fermentation of the carbohydrates by the oral microbiota led 

to the formation of organic acids that can lower the oral pH if the buffer effect of the 

saliva is overwhelmed, creating a selective push for the acid tolerant bacteria involved 

in cariogenic process [74]. The differences in oral microbiome between different diet 

regimes (omnivore and vegan diet) were shaped. This kind of variances were 

attributed to the ingestion of specific macro and micronutrients, this evidence is not 

conclusive, and it is not sure these types of diets are able to modulate the oral 

microbiota [75]. Other researchers tried to investigate the shifts in the oral microbiome 

of elite male endurance race walkers from Europe, Asia, the Americas and Australia, 

in response to one of three dietary patterns often used by athletes during a period of 

intensified training: a High Carbohydrate diet, a Periodised Carbohydrate diet or a 

ketogenic Low Carbohydrate High Fat diet [76]. Furthermore, different dietary 

components have been studied in search for modulatory effects on the oral 
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microbiome. Inhibitory properties of short-, medium- and long-chain fatty acids 

consumption on the oral microbiome have been described, suggesting a modulating 

effect on the oral ecology [77]. So far, the available evidence to assess the real impact 

of dietary preferences and different nutrients on the oral microbiome is still insufficient 

and more studies are needed. The lack of coverage in terms of the number of studies 

investigating the relation between oral microbiome and diet goes hand in hand with 

the obsolete technique used to shape the oral microbiome. 

 

The totality of the works aiming at investigating the relationship between oral 

microbiome and diet relies on 16S data, which is limited to genus-level taxonomic 

resolution. With whole-genome sequencing (WGS) techniques such as shotgun 

sequencing it is possible to reach species- and strain- level resolution by enabling a 

more detailed characterization of the oral microbiome and its more in-depth link with 

dietary patterns. 

 

We will fill this gap in the present study by acquiring a new cohort associated with 

dietary information and oral microbiome data and analysing it through state-of-the-art 

techniques involving computational tools, machine learning (ML) approaches, and 

downstream statistical analyses. 

 

1.5 Summary of my doctoral research activity 

My doctoral research activity has been focused on multiple research questions. The 

overall experimental design with generated data and performed analyses is 

summarised in Fig 1.1. In brief, we collected an Italian cohort of 451 subjects involving 

people with dental implants from 48 dental clinics (thanks to the BetaProgram involving 

the PreBiomics company). Such a population spanned healthy people (N = 156) along 

with patients affected by peri-implantitis (N = 152) and mucositis (N = 143). We 

collected a rich set of clinical variables along with dietary habits through the 

administration of the EPIC FFQ validated questionnaire. We also collected the plaque 

sample for 121 out of 156 healthy subjects and sequenced their microbiome through 

shotgun sequencing. Main research questions involved the evaluation of dietary 

patterns in our cohort along with their relationship with clinical variables and health 
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status (Chapter 3). We also characterised the oral microbiome and evaluated their 

potential links with diet in the healthy population (Chapter 4). Such goals were 

accomplished through the involvement of statistical approaches and machine learning 

methods, which were partially optimised in Chapter 2. Finally, conclusions and future 

research lines are drawn in Chapter 5. 

 

 
Fig 1.1. Flowchart of my PhD research project. Graphical representation of the data 

involved in my PhD research project and the analyses made to answer my scientific 

questions.  
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2 Benchmarking of multiple machine learning 

classification methods and feature extraction 

strategies 
This chapter reports the analyses and results described in the article “Host phenotype 

classification from human microbiome data is mainly driven by the presence of 

microbial taxa” that I authored as first author and that was published in PLOS 

Computational Biology on April 21st, 2022  [13]. 

 

2.1 Introduction and scientific rationale 

Evidence has linked the human microbiome, the large set of microorganisms that 

reside in our body, with health and disease conditions [10]. Several diseases have 

been associated with microbiome traits and estimation of host phenotypes from 

microbiome composition has received remarkable attention in the community. In this 

regard, growing attention has been given to predicting host phenotypes using 

machine-learning based approaches, and in which adoption of classification 

methodologies for case-control studies has represented the most investigated 

scenario [11]. Classification represents a practical approach to implicitly integrate 

multiple characteristics (i.e., features, such as the case of combination of hundreds of 

microbial relative abundances) and get evaluation metrics of relatively easy 

interpretation. This is the case of the area under the receiver operating characteristic 

curve (AUC), the most used metric in the microbiome field for binary classification 

problems [11], which ranges in value from 0 to 1 with better accuracy when moving 

towards one. 

 

Focusing on case-control studies, machine learning methods have been involved in 

two main types of analyses. The first has relied on applying established methodologies 

to newly generated data, which has allowed researchers to provide evidence of the 

predictability of host phenotypes from microbiome data for several different diseases 

including inflammatory bowel disease [78], obesity [79], type-2 diabetes [80], 

colorectal cancer [81], and paved the way to the potential use of the microbiome as a 
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diagnostic tool [82,83]. The increasing number of large population studies [84,85] has 

also enabled the implementation of several (large-scale) meta-analyses aiming at 

validating findings across independent cohorts. Besides analyses based on 16S rRNA 

data [86–88], similar efforts have been extended more recently to shotgun data 

[12,89–91], while extension to other-omics data has been more challenging[12]. The 

second group of analyses has been focused on the proposal of new methodologies in 

two main directions: extraction of better feature representations or optimization at 

classifier level [92]. While classification can be applied on the original set of features, 

improvements can be obtained by reducing the dimensionality of the feature space 

(for example by selecting or extracting specific operational taxonomic units (OTUs) or 

microbial taxa). Examples include feature subset selection [93], recursive feature 

elimination [89], and hierarchical feature engineering [94]. Different (supervised) 

methods have been adopted for classification purposes. Some widely used strategies 

are represented by logistic regression [95], support vector machines (SVMs) [78], k-

nearest neighbours [96], and random forests (RFs) [88]. Comparisons among different 

classifiers have also been performed, with ensemble methods such as RFs and 

extreme gradient boosting decision trees that have exhibited in general the best 

performances [97]. Recently, different solutions based on deep learning approaches 

have been also proposed [98,99], including methods to transform high-dimensional 

data into robust low-dimensional representations [100], although challenges still arise 

due to the limited amount of labelled information that is typically available in case-

control microbiome studies [101]. 

 

Despite the different methodologies adopted along the classification pipeline, 

classification models have been typically built by considering OTU or relative 

abundance profiles as input features. However, such types of data are intrinsically 

sparse, therefore this potentially enables to make inferences from the 

presence/absence of microbial taxa rather than their relative abundance values. This 

also poses the question whether it is the presence of particular taxa rather their 

abundance values to be relevant for discrimination purposes. Surprisingly, this aspect 

has not been investigated yet. 

 

In this chapter, we aim at filling this gap by presenting a meta-analysis on publicly 

available datasets from both shotgun and 16S rRNA data. Such analysis was carried 
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out for two main reasons: 1) To test the hypothesis that classification on microbiome 

data could be done on presence/absence profiles without loss or even with an 

improvement in terms of classification performances; 2) To evaluation and compare 

different classification algorithms to find the best choice in terms of classification 

performances. Such findings will be beneficial to perform the ML-based analysis 

conducted in Chapter 3 and Chapter 4. 

 

2.2 Materials and methods 

 

2.2.1 Data Availability 

The data and source code used to produce the results and analyses presented in this 

manuscript are available on a GitHub repository at https://github.com/RGilib/giliberti-

meta-analysis-2022. 

 

2.2.2 The considered publicly available metagenomic and 16S rRNA 

datasets 

In this chapter, we conducted a meta-analysis on publicly available human 

metagenomic datasets for host phenotype classification. More specifically, we 

considered 4,128 samples coming from 25 shotgun metagenomic studies/datasets as 

summarised in Table 2.1 and Fig 2.1A. Twenty-one studies were devoted to the 

characterization of the gut microbiome in association with different diseases (i.e., 

case-control studies). Two additional datasets were case-control studies (peri-

implantitis, mucositis, and schizophrenia) from oral metagenomes. We also 

considered a dataset aiming at characterizing changes in the human microbiome due 

to consumption of cephalosporins, while the last dataset was devoted to the 

discrimination between body sites (i.e., stool vs oral) in the Human Microbiome Project 

(HMP) dataset. Metagenomic samples were processed to generate species-level 

taxonomic profiles through MetaPhlAn3 [102]. Species abundances are expressed as 

real numbers in the range [0,1] with values that sum to 1 for each sample. Generation 

of relative abundances at other taxonomic levels (i.e., genus, family, and order) was 

also extracted from the MetaPhlAn3 output. Metadata information in terms of disease 
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status or body site for the HMP dataset are available in the curatedMetagenomicData 

package [103]. 

 

We additionally analysed 4,026 16S rRNA samples coming from 30 publicly available 

case-control studies (S1 Table and Fig 2A). We considered the same set of gut 

samples considered in [88] with metadata information in terms of disease status as 

follows: autism spectrum disorder (ASD), Clostridioides difficile infection (CDI), CRC, 

enteric diarrheal disease (EDD), human immunodeficiency virus (HIV), IBD, liver 

cirrhosis (CIRR), minimal hepatic encephalopathy (MHE), non-alcoholic 

steatohepatitis (NASH), obesity (OB), Parkinson disease, psoriatic arthritis (PSA), 

rheumatoid arthritis (RA), and T1D. 16S rRNA samples were pre-processed following 

the same procedure adopted in [88]. More specifically, we discarded samples with 

fewer than 100 reads and removed OTUs with less than 10 reads and/or present in 

less than 1% of the samples. After calculating the relative abundance of each OTU, 

OTUs were collapsed to genus level by summing their relative abundance values and 

by discarding any OTUs which were un-annotated at the genus level. 
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Table 2.1. Summary of the 25 classification tasks derived from metagenomic 

datasets for case-control prediction. ACDV: Atherosclerotic cardiovascular 

disease, AD: Alzheimer’s disease, BD: Behcet’s disease, CRC: Colorectal cancer, 

IBD: irritable bowel disease, T1D: Type 1 diabetes, T2D: Type 2 diabetes. We 

additionally considered the HMP_2012 dataset [84] for body site discrimination 

between gut (N = 414) and oral (N = 147) samples. 
Dataset name body site # controls Cases # cases Reference 

JieZ_2017 Gut 171 ACVD 214  [104] 

ChngKR_2016 Skin 40 AD 38  [105] 

YeZ_2018 Gut 45 BD 20  [106] 

RaymondF_2016 Gut 36 cephalosporins 36  [107] 

QinN_2014 Gut 114 cirrhosis 123  [108] 

FengQ_2015 Gut 61 CRC 46  [109] 

GuptaA_2019 Gut 30 CRC 28  [110] 

HanniganGD_2017 Gut 28 CRC 27  [111] 

ThomasAM_2018a Gut 24 CRC 29  [112] 

ThomasAM_2018b Gut 28 CRC 32  [112] 

VogtmannE_2016 Gut 52 CRC 52  [113] 

WirbelJ_2018 Gut 65 CRC 60  [114] 

YachidaS_2019 Gut 251 CRC 258  [115] 

YuJ_2015 Gut 53 CRC 75  [116] 

ZellerG_2014 Gut 61 CRC 53  [81] 

LiJ_2017 Gut 41 hypertension 99  [117] 

IjazUZ_2017 Gut 38 IBD 56  [118] 

NielsenHB_2014 Gut 248 IBD 148  [119] 

GhensiP_2019_m Oral 49 mucositis 20  [31] 

GhensiP_2019 Oral 49 peri-implantitis 23  [31] 

Castro-NallarE_2015 Oral 16 schizophrenia 16  [120] 

Heitz-BuschartA_2016 Gut 26 T1D 27  [121] 

KosticAD_2015 Gut 89 T1D 31  [122] 

KarlssonFH_2013 Gut 43 T2D 53  [123] 

QinJ_2012 Gut 174 T2D 170  [124] 
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Fig 2.1. Classification accuracies are robust to degradation from species-level 

relative abundance to presence/absence profiles in shotgun datasets. Results 

obtained on 25 case-control studies for host phenotype classification from human 

microbiomes. (A) Number of case and control samples across the different studies. 

(B) AUC and (C) AUPRC scores using RF as back-end classifiers on species-level 

taxonomic profiles. Comparison between relative abundance (in blue) and 

presence/absence (in red) profiles highlighted negligible differences and no statistical 

differences in none of the studies (see S2.1 Fig for AUC scores and S2.2 Table for p-

values). Metrics of comparison in terms of AUC, AUPRC, precision, recall, and F1 are 

summarised in S2.2 Fig and S2.2 Table is represented a comparison between AUC 

and AUPCR scores. (D) Number of statistically significant taxa from relative 

abundance (in blue) and presence/absence (in red) profiles. 
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Fig 2.2. Classification accuracies are robust to degradation from genus-level 

relative abundance to presence/absence profiles in 16S rRNA datasets. Results 

obtained on 30 case-control studies for host phenotype classification from human 

microbiomes. (A) Number of case and control samples across the different studies. 

(B) AUC and (C) AUPRC scores using RF as back-end classifiers on species-level 

taxonomic profiles. Comparison between relative abundance (in blue) and 

presence/absence (in red) profiles highlighted negligible differences and no statistical 

differences in none of the studies (see S2.5 Table for p-values) as found also in 

shotgun datasets (see Fig 2.1). Metrics of comparison in terms of AUC, AUPRC, 

precision, recall, and F1 are summarised in S2.5 Table. (C) Number of statistically 

significant taxa from relative abundance (in blue) and presence/absence (in red) 

profiles. 
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2.2.3 The adopted machine learning methods 

The classification tasks on both shotgun and 16S rRNA data were carried out by 

considering the already developed and validated MetAML (Metagenomic prediction 

Analysis based on Machine Learning) tool [89]. Main analyses were conducted by 

using Random Forests (RFs) as back-end classifiers, and validations were extended 

to other three classifier types: support vector machines with linear (denoted with LSVM 

in this chapter) and RBF (denoted with SVM in this chapter) kernel, Lasso, and Elastic 

Net (ENet). 

 

Free parameters of the classifiers were set as follows. For RF, i) the number of trees 

was set to 500, ii) the number of features to consider when looking for the best split 

was equal to the root of the number of original features, and iii) the Gini impurity 

criterion was used to measure the quality of a split. For Lasso and ENet, the 

regularisation parameters were obtained using a 5-fold stratified cross-validation 

approach. For Lasso the alpha parameter was found in the set {10!", . . . , 10!#.%} with 

50 uniform steps. For ENet, besides the alpha parameter, also the L1_ratio parameter 

was chosen in the set [0.1, 0.5, 0.7, 0.9, 0.95, 0.99, 1.0]. 

 

2.2.4 Validation and evaluation strategies 

We conducted two main types of analysis: i) cross-validation and ii) cross-study 

analysis. In cross-validation, samples were randomly divided into k (with k = 10 in our 

case) folds by considering a stratified cross-validation approach to preserve the 

percentage of samples of each class. Results were repeated and averaged on 20 

independent runs. Different models were trained on the same cross-validation splits. 

We also considered a cross-study analysis in order to evaluate robustness of the 

prediction when transferring models from a source to a target domain. In this setting, 

the classification model was trained on the source dataset and accuracy was 

evaluated on a different independent dataset. 

Classification accuracies were evaluated in terms of five main metrics: area under the 

curve (AUC), area under the precision-recall curve (AUPRC), precision, recall, and F1. 

We calculated mean difference and standard error for each 10-fold CV and averaged 

across the 20 repetitions. We calculated the 95% confidence interval on the difference 
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in AUC performance between two classifiers as done in [89]using the t-distribution with 

df = 9: 

95%*+ ∶ 	 &'#
&
&#∑ ∑ (01*&() 	− 	01*'()) 	± 	2.26	 ×	

*!
√&#

&#
(,&
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(,&                       (1) 

where AUC1ij and AUC2ij are the AUC of two classifiers in fold i of repetition j, and σj 

is the standard deviation of the AUC1ij−AUC2ij across i = 1…10 folds in repetition j. 

We computed the p-values from the t-statistics from mean difference and standard 

error smoothed over the 20 repetitions: 
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We used a two-tailed t-test with df = 9. 

 

2.2.5 Experimental setting for shotgun datasets 

Most of the analyses on shotgun datasets were conducted by considering a cross-

validation approach. Twenty-four classification tasks were devoted to the 

discrimination of healthy from diseased subjects (i.e., case-control studies), while the 

HMP dataset was used to perform body site discrimination between gut and oral 

samples. We also considered the ten independent datasets associated with CRC and 

evaluated prediction capabilities in a cross-study setting. 

 

Baseline results were obtained by considering the original relative abundance profiles 

at species-level resolution provided by MetaPhlAn3 [102] as features and using RF as 

back-end classifier. This is the setting that was successfully deployed and validated in 

multiple meta-analyses such as the ones presented in [31,89,103,112]. At this point, 

multiple comparisons were performed: i) starting from the original species-level 

relative abundance profiles (one profile for each sample), we generated 

presence/absence profiles by simply thresholding the relative abundance values at 

0%. This generated a set of boolean profiles where 1 indicated the presence of the 

species regardless of its relative abundance in the considered sample, while 0 was 

associated with its absence. The same approach based on RF was applied on this set 

of newly generated profiles and compared with the results obtained on the original 

relative abundances. Results are summarised in Figs 2.1B, 2.1C, S2.1 and S2.2; ii) 
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the same procedure described in i) was applied again by thresholding the relative 

abundance profiles at different values to assess sensitivity of classification to low 

abundant species. We considered these values as threshold levels: 0.0001%, 0.001%, 

0.01%, and 0.1%. Results using RF as classifier are summarised in Figs 2.3A and 

S2.3A; iii) we extended the comparison done at species-level between original relative 

abundance and boolean (with threshold = 0%) profiles to three other taxonomic levels 

(i.e., genus, family, and order) to evaluate sensitivity of classification when moving 

from species to coarser taxonomic resolutions. Results with RF classification are 

summarised in Figs 2.4 and S2.3B; iv) we finally assessed robustness of our findings 

to the choice of the classification method. We compared RF results with the ones 

obtained by other four classifier algorithms (i.e., SVM with linear kernel, SVM with RBF 

kernel, Lasso, ENet) for both relative abundance and presence/absence profiles (Figs 

2.5 and S2.3C). While we report in main figures only comparisons in terms of AUC, 

comparisons for the other three metrics (i.e., precision, recall, and F1) are reported in 

S2.2 Table. 
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Fig 2.3. Classification accuracies are not impacted when relative abundances 

are thresholded up to 0.001%. 

Results on the 25 case-control shotgun studies by comparing the baseline (i.e., 

species-level relative abundance profiles) with the presence/absence profiles 

generated by thresholding at different relative abundance values (ranging from 0% to 

0.1%). (A) Difference in AUC between the presence/absence and the relative 

abundance RF classification result. A positive value indicates that presence/absence 

outperforms relative abundance data. AUC scores at different thresholds are 

summarised in S2.2 Table. (B) Difference in number of statistically significant taxa 

(numbers summarised in S2.7 Table). 
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Fig 2.4. Classification results are more impacted to relative abundance 

degradation at coarser taxonomic resolution. 

Results on the 25 case-control shotgun studies by comparing the baseline (i.e., 

relative abundance profiles) with the presence/absence profile generated by 

thresholding at 0.0% and varying taxonomic resolution from species to order level. 

Difference in AUC between the presence/absence and the relative abundance RF 

classification result. A positive value indicates that presence/absence outperforms 

relative abundance data. 
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2.2.6 Experimental settings for 16S rRNA datasets 

For 16S rRNA datasets we carried out only cross-validation analyses. From the genus-

level profiles generated as described in the section “The considered publicly available 

metagenomic and 16S rRNA datasets”, we generated the boolean profiles (with 

threshold = 0%) as similarly done for shotgun data. We compared the two types of 

profiles using a RF classifier (results in Figs 2.2B, 2.2C and S2.4), and were then 

extended also to the other classifier types (results in S2.3 Table). 

 

2.2.7 Statistical tests 

On the same set of scenarios in which we compared classification accuracies, we 

conducted statistical tests to evaluate to which extent degradation from relative 

abundance to boolean profiles can impact the identification of differentially abundant 

species. We used Mann-Whitney U test to identify the set of significant taxa when 

relative abundance profiles were involved, while we adopted Fisher exact test to deal 

with presence/absence data. Although it is out of the scope of the present study to 

perform a comprehensive evaluation of available statistical tests, further investigation 

taking into account alternatives including methodologies that can deal with 

compositional issues [125,126] is warranted. Finally, false detection rate (FDR) was 

applied for multiple testing correction, and corrected p-values < 0.05 identified 

significant taxa. 
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Fig 2.5. Findings in terms of stability of the classification accuracy are robust to 

the classifier choice. 

Differences in terms of AUC between presence/absence and relative abundance 

profiles for the 25 case-control shotgun datasets at varying classification algorithms. 

ENet: Elastic Net; LSVM: SVM with linear kernel; SVM: SVM with RBF kernel; RFs: 

Random Forests. 
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2.2.8 Rarefaction analysis 

We further performed rarefaction analysis by: i) considering the three datasets having 

the highest number of significant species from relative abundance profiles (i.e., 

JieZ_2017, NielsenHB_2014, and QinN_2014); ii) rarefying raw reads (using 

https://github.com/lh3/seqtk) and considering 1M reads for each metagenome; iii) 

applying the same pipeline to generate taxonomic profiles through MetaPhlAn3; iv) 

applying the same pipeline to build classification models and identifying statistically 

significant species. 

 

2.3 Results and discussion 

In this chapter, we conducted a meta-analysis aiming at evaluating to which extent 

degradation from relative abundance to presence/absence of microbial taxa can 

impact host phenotype classification from human metagenomes. The analysis was 

conducted on 4,128 public available metagenomes coming from 25 datasets (Table 1 

and Fig 2.1A). Metagenomes were uniformly processed to generate species-level 

taxonomic profiles with MetaPhlAn3 [102] (see Materials and Methods) with metadata 

information available in the curatedMetagenomicData package [102]. From relative 

abundance profiles, expressed as real numbers in the range [0, 1], we generated 

presence/absence profiles by simply thresholding the relative abundance values at 

0%. This generated a set of boolean profiles where one indicated the presence of the 

species regardless of its relative abundance in the considered sample, while zero was 

associated with its absence. 

 

2.3.1 Baseline classification results replicate original findings 

As baseline, we considered the classification approach that we originally proposed in 

[89] and that was then used for different tasks such as detection of microbial signatures 

linked to colorectal cancer (CRC) from human metagenomes [112], characterization 

of the oral microbiome in dental implant diseases [31], and identification of changes 

associated with dietary interventional studies [127]. More specifically, we considered 

a RF classifier applied on the species-level relative abundance profiles, and evaluated 

classification accuracies in terms of multiple metrics (i.e., area under the ROC curve 

(AUC), area under the precision-recall curve (AUPRC), precision, recall, and F1) using 
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a cross-validation (CV) approach (see Materials and Methods). We obtained variable 

accuracies ranging from 0.56 (in terms of AUC) for hypertension in the LiJ_2017 

dataset [119] to 0.99 for IBD in the IjazUZ_2017 dataset [118], with an average AUC 

across the 25 case-control studies equal to 0.83 (S2.4 Table). Such values were in 

line with what reported in the original publications, although a fair comparison is difficult 

to be performed due to differences in terms of adopted algorithms and input features. 

On the 17 publications that reported classification results on the same samples here 

considered, we obtained an average AUC of 0.80 in comparison to the average of 0.83 

reported in the original publications (S2.4 Table). 

 

2.3.2 Degradation from species-level relative abundance to 

presence/absence profiles does not worsen classification 

accuracies 
We applied the same classification approach on the same set of samples to the 

presence/absence profiles (Materials and Methods). In this way, we evaluated to 

which extent moving from relative abundance to presence/absence information could 

impact classification accuracies. Surprisingly, we observed negligible differences 

between the two experimental settings (Figs 2.1B, 2.1C and S2.1 and S2.2 Table). In 

both cases (i.e., using presence/absence or relative abundance profiles), we obtained 

an average AUC of 0.83 (AUPRC = 0.83) across the 25 case-control studies, with AUC 

and AUPRC values strongly correlated (S2.2 Fig; Spearman correlation = 0.918). 

Some variations were observed at dataset-level (relative abundance outperformed 

presence/absence at a maximum of 0.06 in terms of AUC in the RaymondF_2016 

dataset [106], while the opposite case was verified in YeZ_2018 [106] for an AUC 

difference of 0.07), however these were likely due to random perturbations and in none 

of the cases they were associated with statistically significant differences (p > 0.05, 

S2.2 Table). This was also confirmed in terms of the other metrics of comparison (i.e., 

precision, recall, and F1), with no significant differences between the two profile types 

(S2.2 Table). In a similar setting, we performed body site discrimination (oral vs stool 

samples) in the HMP dataset [84], with a value of AUC equal to 1.00 for both profile 

types. Therefore, such findings suggested that it was more the presence of same taxa 

rather than their actual relative abundance to be relevant for discrimination purposes. 
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We extended this analysis to 16S rRNA samples. More specifically, we considered the 

same set of 30 case-control studies for a total of 4,026 samples that were originally 

collected and analysed in [88] (Fig 2.2A and S2.1 Table). We applied the same pre-

processing procedure adopted in [88] (Materials and Methods), and performed the 

prediction tasks by adopting the classification pipeline already considered for shotgun 

data. We obtained results similar to the ones presented in [88] on the genus-level 

relative abundance profiles (average AUC across the 30 datasets equal to 0.76 and 

0.74 in our analysis and in [88], respectively) (S5 Table), although some differences 

could occur due to the different code implementations. By degrading relative 

abundance to presence/absence profile, we obtained few differences in the 

classification results between the two profile types (Figs 2.2B, 2.2C and S2.4 and S2.5 

Table). Average AUC across the 30 studies was quite close (0.76 for relative 

abundance and 0.75 for presence/absence profiles), with differences that were 

statistically significant in only 3 out of 30 cases (S2.5 Table). Such differences, albeit 

impacting a limited number of datasets, may be due to the coarser taxonomic 

resolution and the higher noise component associated with 16S data. 

 

2.3.3 Statistically significant taxa are consistent between relative 

abundance and presence/absence profiles 

We extended the analysis from classification to identification of differentially 

abundant/present taxa (i.e., possible biomarkers) through statistical testing (Materials 

and Methods). By comparing the sets of statistically significant species in the different 

case-control studies (q < 0.05; using Mann-Whitney U test for relative abundance and 

Fisher exact test for presence/absence profiles, both corrected through false detection 

rate (FDR), S2.6 Table) we found similar numbers (Fig 2.1D and S2.7 Table), with 

values more driven by disease and dataset types than average number of reads (S2.5 

Fig). On average, we found 39 and 32 significant species from relative abundance and 

presence/absence profiles, respectively. We may hypothesise that diseases that rely 

on rare biomarkers are less affected by degradation to presence/absence profiles than 

the ones that are characterised by stronger community shifts in abundant and 

prevalent taxa. Although this is not sufficiently supported by our data, further 

investigation in this direction is warranted. 
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On a per dataset basis, p-values associated with statistically significant species 

correlated well between relative abundance and presence/absence profiles (S2.6 Fig). 

This was reflected also by the high percentage of taxa (78%) that were detected as 

significant in both cases, which was further confirmed by performing hierarchical 

clustering on the set of statistically significant taxa coming from relative abundance 

and presence/absence profiles (S2.7 Fig). Conversely, we identified discrepancies 

between case-enriched and control-enriched taxa in only 1.74% of the statistically 

significant features, which were coming from just 5 of the 24 analysed datasets (S2.8 

Fig). Moreover, we didn’t identify any taxa for which the two tests disagreed across 

datasets (S2.8 Fig). 

 

Focusing on the gut microbiome datasets, we also identified the species that were 

mostly associated with disease or health (S2.7 Fig). The species most enriched in 

cases was Clostridium bolteae (significant in 78% of the diseases), followed by 

Streptococcus anginosus group (55%), Ruthenibacterium lactatiformans (55%), 

Hungatella hathewayi (55%), and Eisenbergiella tayi (55%) with all of them already 

reported in the literature as possible biomarkers for different disease conditions 

[81,88,112,114,128]. Similarly, species most enriched in controls were Anaerostipes 

hadrus (significant in 66% of the diseases), Roseburia faecis (55%), Roseburia 

intestinalis (55%), Prevotella copri (44%), and Eubacterium hallii (44%) 

[81,84,112,129]. 

 

Consistence between relative abundance and presence/absence outcomes was 

finally obtained on the 16S data, with 20 and 15 genera that were found to be 

significant on average from relative abundance and presence/absence profiles, 

respectively (Fig 2.2D and S2.8 Table). 

 

2.3.4 Relative abundance values lower than 0.001% do not impact 

classification outcomes 

We evaluated how different values in thresholding relative abundance profiles could 

impact classification results. We thresholded the abundances at different values (i.e., 

moving from a threshold equal to 0%—which corresponded to the presence/absence 

scenario discussed in the previous section—to 0.0001%, 0.001%, 0.01%, and 0.1%, 
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Materials and Methods), meaning that values below the chosen threshold were forced 

to zero. We did not observe changes in the classification accuracy when the threshold 

was set to 0.0001% and 0.001% (Figs 2.3A and S2.3A and S2.2 Table). In both cases, 

we got an average AUC = 0.83 across the 25 case-control studies as obtained on the 

relative abundance profiles and using a threshold equal to zero, and no statistically 

significant differences were found. This was reflected by the number of statistically 

significant species (Fig 2.3B and S2.7 Table) that decreased very marginally from 32 

(average value by considering 0% or 0.0001% as threshold) to 31 (threshold = 

0.001%). Although very low abundant species may be actual biomarkers, they did not 

contribute to improving classification accuracies which was likely due to the 

impossibility to estimate their presence and relative abundance properly as being 

below or close to the limit of detection, which we quantified in this setting to be around 

0.001% (with an average number of reads across our considered metagenomes equal 

to 47.5M). Major differences were obtained when thresholding at higher values (i.e., 

0.01% and 0.1%). In these cases, average AUC decreased to 0.81 (threshold = 

0.01%) and 0.78 (threshold = 0.1%), with significant differences in 3 and 6 cases, 

respectively. 

 

Results on rarefied reads (Materials and Methods) showed, as expected, a slight 

decrease in terms of classification accuracies and number of detected biomarkers with 

respect to the original data set, although patterns in function of the thresholding value 

when going from relative abundance to presence/absence data were confirmed (S2.9 

Table). 

 

2.3.5 Coarser taxonomic levels are less robust to profile degradation 

We further tested to which extent classification accuracy was affected by the 

taxonomic resolution level considered to feed the classifier. By considering original 

relative abundance profiles, average AUC moved from 0.83 (species-level resolution) 

to 0.80 (with 3 statistically significant cases), 0.78 (6), and 0.76 (11) for genus, family, 

and order levels, respectively (S2.10 Table). Such differences, albeit not too strong, 

suggested species as “optimal” level to optimise classification accuracies, with further 

improvements that may be obtained—although not tested here due to methodological 

limitations—with sub-species- or strain-level resolutions. 
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Similarly, we compared classification accuracies between relative abundance and 

presence/absence profiles at different taxonomic levels. While no differences were 

obtained at species-level (as already discussed in Fig 2.1), we observed that coarser 

resolutions brought increasing AUC differences (Figs 2.4 and S2.3B and S2.11 Table). 

An average AUC difference of 0.022, 0.041, and 0.061 was obtained for genus, family, 

and order, respectively (with 0, 1, and 2 statistically significant cases, respectively). 

Similar patterns were observed in terms of number of statistically significant features 

(S2.7 Table). 

 

2.3.6 Findings are robust to cross-study analysis and to the classifier 

choice 

We applied the same approach on a cross-study setting. We considered the ten 

independent metagenomics studies associated with CRC for a total of 1313 samples 

(Table 1) and applied a leave-one-dataset-out (LODO) approach in which the model 

was built on all datasets but the single dataset used for testing (Materials and 

Methods). As previously reported [112,114], we observed an overall moderate 

decrease of the accuracy when moving from CV (average AUC equal to 0.80) to LODO 

(average AUC equal to 0.76; S2.9 Fig and S2.12 Table). More importantly, we 

confirmed previous findings in terms of stability of the accuracy when moving from 

relative abundance to presence/absence profiles at species-level resolution (Fig 2.6A). 

The average AUC remained stable at 0.76 for the presence/absence profiles at 

threshold equal to 0%, 0.0001%, and 0.001%, while it decreased to 0.74 and 0.73 

when thresholding at 0.01% and 0.1%, respectively. We also confirmed that the better 

taxonomic resolution was associated with smaller classification performance 

differences between relative abundance and presence/absence data (Fig 2.6B and 

2.6C). 

 

We finally tested if the choice of the classification method could impact the findings 

described in the previous sections in terms of degradation from relative abundance to 

presence/absence profiles. First, we confirmed [89] the superiority of RF with respect 

to other four classification methods (i.e., Lasso [130], Elastic Net [131], and support 

vector machines (SVMs) with linear and RBF kernels [132]) on both relative 

abundance (S2.10A Fig and S2.13 Table) and presence/absence profiles (S2.10B Fig 
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and S2.13 Table), and this was also verified on 16S rRNA data (S2.3 Table). On 

average, thresholding of relative abundance values did not negatively impact 

classification accuracies, instead it generally improved results in a quite unexpected 

way (Figs 2.5 and S2.3C). Higher differences were observed for Lasso, with an 

average AUC equal to 0.79 and 0.72 for presence/absence and relative abundance 

data, respectively, and the same pattern was obtained for the other classifier methods 

(with an average difference in terms of AUC equal to 0.05, 0.03, and 0.02 for ENet, 

LSVM, and SVM, respectively). We observed a greater variability of the classification 

accuracies with respect to what was observed for RF classification. In fact, we 

obtained statistically significant differences in Lasso, ENet, LSVM, and SVM studies 

for 10, 6, 5, and 6, respectively, however always in majority in favour of the 

presence/absence data. We therefore conclude that, despite a few differences 

occurred in a limited number of cases, maximization of classification accuracies was 

generally made possible through presence/absence profiles. 
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Fig 2.6. Degradation of relative abundance profiles does not impact LODO 

classification. 

Results in terms of leave-one-dataset-out (LODO) validation on 10 CRC shotgun 

datasets. (A) AUC scores using RF as back-end classifiers on species-level relative 

abundance (in pink) and presence/absence profiles generated at different threshold 

values. (B) Difference in AUC between species and other taxonomic-level resolutions. 

A negative value indicates that species-level outperforms the comparison level. (C) 

Difference in AUC between presence/absence and relative abundance classification 

results at varying taxonomic levels. 
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2.4 Conclusions 

In the present study, we conducted a meta-analysis on 25 publicly available datasets 

spanning more than 4,000 shotgun metagenomes and associated with different case-

control studies. By applying species-level taxonomic profiling and machine-learning 

based classification approaches based on state-of-the-art methodologies we 

demonstrated that the presence of microbial taxa is sufficient to maximise 

classification accuracies. This was accomplished by degrading original relative 

abundance data to presence/absence profiles by considering different threshold 

values. We estimated a value of 0.001% in terms of relative abundance as limit of 

detection, meaning that although very low abundant species may be actual biomarkers 

they were not useful to improve classification accuracy. Results were robust to the 

choice of the classifier. This was obtained by considering different traditional 

classification algorithms that are designed for continuous data and potentially 

“suboptimal” when applied on binary data. This actually reinforces our findings, 

meaning that accuracies may be even better when models on presence/absence 

profiles are trained using classifiers more designed for binary data. Moreover, although 

doing an extensive evaluation of existing classifiers is out of the scope of the present 

study, maximisation of classification accuracies may be reached by adopting other 

classification approaches including the ones specifically proposed for microbiome data 

analysis [133,134]. Findings were finally extended from cross validation to cross study 

analysis and confirmed on 16S rRNA data associated with a compendium of more 

than 4,000 samples coming from 30 public studies. 

 

The growing literature aiming at identifying microbial biomarkers for different diseases 

opened the possibility to build non-invasive diagnostic tools from microbiome data. To 

this purpose, much superior accuracy can be achieved by considering multi-feature 

rather than single biomarkers diagnostic models, and in which machine learning-based 

classification approaches have a fundamental role in building such models. Moreover, 

maximal accuracy can usually be achieved by using a limited number of features (in 

the order of ten or twenty). Such findings recently presented in the literature in addition 

to outcomes of our study, which suggest that the detection of microbial taxa is sufficient 

to maximise classification accuracies, are important steps toward the development of 

fast and inexpensive tests applied on stool samples for diagnostic purposes. 
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Regarding the specific tasks involved in this doctoral research activity, we found RF 

classifier as the best one for maximising classification accuracies and quite robust to 

multiple data transformation techniques. This classification algorithm will be adopted 

to build the classification models presented in Chapters 3 and 4. 
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3 Collection and evaluation of dietary intakes and 

clinical data in their relationship with the peri-

implant health status 
 

3.1 Introduction and scientific rationale 

Dietary recommendations have changed substantially. In the past, high-carbohydrate 

diets were recommended as heart-friendly. In 2002, sugary items were still 

recommended as heart-healthy snacks because they were free of saturated fats. 

Recommendation of this in the direction of sugar consumption quickly became 

obsolete when in 2009 the WHO recommended restricting sugar intake. Moreover, the 

most recent recommendations advise a restriction of not only added sugars, but also 

refined grains. Such dietary recommendations provide a starting point to an optimum 

diet for preventing dental caries and improving oral health. Studies investigating the 

relationship between oral diseases and diet are limited. To date the relationship 

between oral health and diseases focused on the identification of the dietary effects 

on caries formation [135–137] underlining how fermentable sugar consumption could 

led to the formation of caries and on the protective role of protein consumption and 

reduced vegetable fats assumption on the development of periodontal diseases 

[138,139].  No studies investigated the relationship between dietary habits and peri-

implant diseases. 

In this chapter we have tried to advance the field in this topic by shaping the 

relationship between dietary habits and peri-implant oral health. Such analysis was 

carried out for two main reasons: 1) To evaluate the effects of dietary habits on peri-

implant diseases; 2) To evaluate the potential capabilities to predict the disease state 

from dietary habits. 
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3.2 Materials and methods 

3.2.1 Introduction to the PreBiomics Beta Program 

A pilot study has provided evidence of the link between microbiome composition and 

peri-implantitis diseases [31]. Main results i) identified a site-specific definite microbial 

firm characterising the subgingival plaque of implants affected by peri-implantitis; ii) 

identified Fusobacterium nucleatum as a keystone coloniser in the intermediate 

condition of mucositis; iii) assessed the accuracy of ML-based classification models 

for the identification of peri-implant diseases; iv) detected an uncharacterized sub-

species of F. nucleatum as significantly associated with peri-implant diseases. 

Such research has been expanded by PreBiomics thanks to the BetaProgram with the 

aim of developing a commercial kit for peri-implant diseases based on the microbiome 

composition for diagnostic and prognostic purposes. 

 

In this BetaProgram study (still ongoing) the aim is to collect 2,000 implant subgingival 

plaque samples from more than 40 Italian dental clinics along with a rich set of clinical 

variables. Specific to my doctoral activity, there is also the acquisition of dietary habits 

through FFQ questionnaire and their characterization towards health statuses and 

microbiome composition. 

 

3.2.2 Subject recruitment and collection of clinical variables  

For the purpose of this thesis, we sampled 451 subjects from 28 Italian dental clinics. 

Inclusion criteria of the patients involved in the study were: 

● Being at least 18 years of age; 

● Not being pregnant; 

● Having at least one dental implant; 

● Having not used local or systemic antibiotics in the two weeks before the 

sampling; 

● Not being affected by acquired immune deficiency syndrome.  

 

For each patient, it was collected by clinicians a rich set of clinical metadata about 

patient clinical history and patient condition at the time of sampling:  
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● Demographic data: sex, age, weight, and height; 

● Medical history: smoking habit, diabetes, autoimmune diseases or other 

systemic diseases, alcohol consumption, and medications taken; 

● Dental history: current and past periodontal status, number of remaining teeth, 

number of implants, previous peri-implantitis, frequency of home oral care, 

hours since last toothbrush, and chlorhexidine usage. Clinical parameters 

included implant, site of sampling, diagnosis of implant age (time from 

installation), implant system used and nature of reconstruction (single implant, 

fixed or removable), type of implant retention (screw, cement, conometric), 

radiographic peri-implant bone loss, width of the keratinized mucosa, as well as 

peri-implantitis probing depth (PPD), plaque index (PI), bleeding on probing 

(BOP), and suppuration (SUP). The latter four parameters were measured in 

each patient at the buccal, mesial, lingual, and distal sites of the experimental 

implant. PI, BOP, and SUP were recorded on a binary scale 

(presence/absence) for each surface and PPD was measured to the nearest 

millimetre on the scale. In case of mucositis and peri-implantitis, any eventual 

subsequent therapy was noted. 

 

All patients were anonymized in the clinic by assigning a unique subject ID to each 

subject. Downstream analyses were performed using the anonymized metadata.  

 

Each sampled subject was included in three different groups, depending on her/his 

disease phenotype and oral health status: healthy, mucositis, peri-implantitis. To avoid 

biases across clinics, meetings were organised to instruct dentists on a common 

protocol for the examination, collection, and measurement procedures. Follow-up 

meetings were organised after 6 months to ensure consistency of the sampling and 

the inclusion criteria of the three disease phenotypes. 

 

During my twenty months stay at PreBiomics I contributed to the acquisition of the 

metadata information by checking and reporting errors in their collection. This task 

was accomplished by constant monitoring of the data collected by dentists, by 

generating weekly reports, and by producing and sending warning emails. Finally, 

meetings and phone calls were organised to collect opinions and critical issues 

identified by the dentists.  
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3.2.3 Dietary data collection and characteristics of the FFQ approach 

Analytical studies about diet composition and its link with health status needs 

information about daily dietary intakes on an individual basis [140]. In literature, 

different methods of daily dietary intakes have been assessed. The nature of the data 

itself and the collection techniques, that generally relies on estimates made by the 

interviewed, are the cue of differences between the collected data and the true daily 

dietary intake ranging from 4% to 400% [141]. Even if the amount and the kind of food 

consumed varies between subjects, people rarely perceive what they eat and how 

much they do [141]. Among the available dietary assessment methods, the food 

frequency questionnaire (FFQ) has been widely used in large epidemiological studies. 

A FFQ is an advanced form that asks respondents how often and how much they eat 

over a specific period. A food frequency questionnaire (FFQ) is considered semi-

quantitative if the instrument addresses both the frequency and the amount of each 

food item consumed [142]. The advantages of a food frequency method are: i) 

standardisation of the questionnaire; ii) simple automation of the method; iii) 

cheapness of the method; iv) lack of influence on eating behaviours. FFQs should be 

developed specifically for each study group and research purposes because diet is 

influenced by multiple factors including ethnicity, culture, individual’s preference, 

economic status, etc. [143].  

 

3.2.4 Acquisition and processing of the EPIC questionnaires 

Along with clinical metadata, we acquired daily dietary intakes from subjects involved 

in the study. We relied on a validated FFQ questionnaire designed by EPIC (The 

European Prospective Investigation into Cancer and Nutrition), one of the largest 

cohort studies in the world, with more than half a million (521 000) participants 

recruited across 10 European countries and followed for almost 15 years [144]. The 

EPIC FFQ was designed to investigate the relationships between diet, nutritional 

status, lifestyle and environmental factors, and the incidence of cancer and other 

chronic diseases. EPIC provided an Italian version (written in Italian and 

representative of the more common Italian foods) of the validated FFQ with the 

possibility to fill the questionnaire through a web platform. 
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The EPIC FFQ is composed of 164 questions. Along with an introductory survey, 

questions are organised in different sections related to 16 main food categories: dry 

sauce pasta; soups; meat; fish; raw vegetables; potatoes and cooked vegetables; 

eggs; sandwiches; cured meat and appetiser; cheeses; fruit; bread and wine; coffee, 

milk and sweets; spices; soy products and whole cereals; cooking methods). 

Questions range in three types: i) the usual dimension of the portion for a given food; 

ii) the frequency of consumption of a given food; and iii) the preferences of different 

foods belonging to the same food category (e.g., for the “Pasta” category preferences 

in the consumption of “pasta with tomato sauce”, “white pasta”, “pasta soup”, etc. were 

asked).  

A fac-simile of the questionnaire is available in S3.1 Fig. 

 

The original plan to acquire questionnaires directly in the clinics through tablets was 

reshaped due to COVID-19 pandemic restrictions. We provided a paper version of the 

questionnaire to each subject, which was therefore filled at home, gave back to the 

clinic, and put into the web platform by us. We administered a total of 1,157 

questionnaires (involving 40 dental clinics) and got back 451 questionnaires from 28 

clinics.  

 

The web platform processed raw data provided by users to generate three refined data 

products: i) food daily intakes; ii) weekly frequency in food consumption; iii) daily 

intakes of micro and macro nutrients. 

 

3.2.5 Generation of additional dietary indexes 

In addition to the three data types furnished by the EPIC platforms, we computed a 

new set of indexes to better understand the level of fitness of the subjects to the quality 

of their eating habits. More specifically, we computed two well-recognized indexes: 1) 

the MIDI index [145]. This score is based on intakes of typical Mediterranean foods 

ranging from 0 to 11 (where 11 reflects a “perfect” Mediterranean diet). The score is 

increased when the considered food is in a given range as follows: i) pasta (at least 

73 grams/day), ii) vegetables (at least 162 grams/day), iii) potatoes (less than 17 

grams/day), iv) fruits (at least 392 grams/day), v) legumes (at least 23 grams/day), vi) 

fish (at least 38 grams/day), vii) red meat (less than 70 grams/day), viii) olive oil (at 
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least 30 grams/day), ix) butter (less than 1.7 grams/week), x) sugared/carbonated 

beverages (0 grams/day), xi) alcohol (less than 12 grams/day); 2) the HDI index 

[146]on the dietary recommendations for the prevention of chronic diseases provided 

by the WHO study group [147]. It is in the range between 0 and 9 (where 9 reflects a 

“healthy” diet) and composed of these nine components: i) saturated fatty acids (less 

than 10 % of energy intake), ii) polyunsaturated fatty acids (between 3% and 7% of 

energy intake), iii) proteins (between 10% and 15% of energy intake), iv) simple sugars 

(less than 10% of energy intake), v) complex sugars (between 50% ad 75% of energy 

intake), vi) dietary fibre (between 27 and 40 grams/day), vii) fruit and vegetables (at 

least 400 grams/day), viii) legumes nuts and dried fruit (at least 30 grams/day), ix) 

cholesterol (less than 300 milligrams/day). 

We finally calculated the percentage of daily energy intakes coming from the different 

nutrients categories: carbohydrates, lipids, and proteins. This decomposition was 

made to check adherence of diet habits to the Nutrient Reference Intake Levels 

suggested by the Italian society of human nutrition (Società italiana di nutrizione 

umana S.I.N.U.) in the LARN tables proposed in 2014. 

 

3.2.6 Strategies to deal with missing data in clinical variables 

Despite efforts in getting clinical variables in an exhaustive way, some missing values 

were present in the data collected by dentists. This was especially true for those 

variables for which more than one measurement was required (e.g., for the peri-

implantitis probing depth dentists were asked to take different measurements in four 

different sites: buccal, mesial, lingual, and distal site). In multivariate analyses, the 

naive strategy of dropping observations with missing values would lead to a sensible 

reduction in the sample size, so we investigated alternative solutions to deal with this 

issue: i) substitution of the missing value with the mean value of the considered feature 

(defined as substitution in the rest of the text); ii) iterative imputation of the missing 

value by estimating its value as a function of other features (defined as imputation). 

This was obtained through the sklearn.impute.IterativeImputer python package. 

Iterative imputation may generate negative values for some clinical features that do 

not allow negative values for definition. As an example, the peri-implantitis probing 

depth represents the depth in millimetres of the peri-implant pocket and cannot 
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assume negative values being a measure of length). Features after imputation were 

considered only when building classification models. 

 

3.2.7 Ordination techniques for multivariate analysis 

Multivariate analysis was conducted by considering two popular ordination techniques 

such as principal component analysis (PCA) and principal coordinates analysis 

(PCoA). PCA was computed through the sklearn.decomposition.PCA python package, 

while PCoA using the skbio.stats.ordination.pcoa python package. For PCoA we 

considered and compared four distance metrics: i) Euclidean distance; ii) Manhattan 

distance; iii) Jaccard distance; and iv) Bray-Curtis distance. 

 

3.2.8 Generation of the dietary habits report 

We generated and provided a dietary habits report to each person involved in the study 

to give him/her information about the healthiness of his/her dietary habits. From the 

processed dietary data, we automatically generated the report in PDF format using the 

python module pyfpdf2, a library for simple and fast PDF document generation. The 

report was structured in four main sections:  

● an introductory section that gives information about the data processor and the 

origin of the data. We also provided here a warning message to suggest not to 

use the information given in the report as an indicator to change dietary habits 

since the report is based on information obtained through a self-assessment of 

the eating habits. We also reported the percentage of completeness of the 

questionnaire, calculated as the ratio between the number of answered 

questions and the number of questions on the questionnaire; 

● the MIDI index [145]. In this section, the MIDI index is introduced in terms of 

meaning, way of calculation and foods categories involved in the calculation. 

The score is provided along with the foods categories for which the person 

showed an out-of-range consumption; 

● the HDI index [146]. This section was structured as the previous one related to 

the MIDI index; 

● the SINU LARN table. In this section, we reported the contribution in percentage 

terms to the daily energy intakes for each macronutrient: lipids, sugars, and 



 

  38 

proteins. We also compared the percentage composition with the values 

suggested as healthy intakes by the SINU. 

A fac-simile of the dietary report is available in S3.2 Fig. 

 

3.2.9 Finding correlations between clinical/dietary features and health 

status 

We identified associations between clinical/dietary features and health status by 

computing Spearman correlation coefficients among them. Correlations were 

computed by representing the study condition value as 0 (for healthy), 1 (for 

mucositis), and 2 (for peri-implantitis). This was possible due to the nature of the health 

status variable that can be considered as a categorical ordered variable. Correlations 

were also computed for the different binary settings (i.e., healthy vs peri-implantitis, 

healthy vs mucositis, mucositis vs peri-implantitis). For such binary cases we also 

computed point biserial correlation coefficients. Moreover, we identified the features 

differently abundant among the three health statuses by using Mann-Whitney U (for 

continuous variables) and Fisher exact (for categorical variables) tests. All p-values 

were adjusted for multiple hypothesis testing with false discovery rate (FDR) using the 

statsmodels.stats.multitest.fdrcorrection python module. FDR correction was applied 

separately for the three dietary data types (i.e., food daily intakes, weekly frequency 

of food consumption, and daily nutrient intakes of nutrients) and the clinical variables. 

Q-values < 0.05 identified statistically significant variables. The obtained results were 

compared with the clinical characterisation of the peri-implant diseases available in 

literature [35,36,148–150]. 

 

3.2.10 Dealing with multicollinearity in dietary data 

Quantities and frequencies of consumption generated by the processing of the FFQ 

questionnaires are multicollinear by definition. The multicollinearity is due to the fact 

that some variables are representative of subcategories. For example, the “pasta” 

macro category is also reported as “dry sauce pasta”, “pasta soup”, “white pasta”, etc. 

This can bring distortions in the downstream statistical analyses. We dealt with this 

issue by adopting the variance inflation factor (VIF) approach through the python 

module statsmodels.stats.outliers_influence.variance_inflation_factor. We skimmed 
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features having VIF < 10 [151–153]. Multicollinearity corrected data were considered 

to further identify differentially abundant dietary data based on logistic regression and 

linear discriminant analysis as described in the next paragraphs.  

 

3.2.11 LDA on clinical and dietary data 

We identified the variables characterised by the largest effect sizes in function of the 

health status through a linear discriminant analysis (LDA) implemented in the LefSe 

tool [147]. LDA is a generalisation of Fisher's linear discriminant to find a linear 

combination of variables that separates two or more classes. LDA was applied on 

clinical and dietary data separately, with the latter one pre-processed in advance to 

remove multicollinearity issues as described in the previous section. 

 

3.2.12 Identification of possible confounding factors in dietary data 

We identified possible confounding factors in dietary data by looking at beta diversity 

differences in function of sex, patient age and BMI score. This was accomplished by 

applying a permutational multivariate analysis of variance (PERMANOVA) test through 

the python module skbio.stats.distance.permanova. We considered Euclidean 

distance and 999 permutations. 

For sex, which resulted in the only variable with statistically significant differences, we 

also identified the discriminative features by considering a Mann-Whitney U test with 

FDR correction Q-values <= 0.05 identified statistically significant variables. 

 

3.2.13 Logistic regression on clinical and dietary data  

We applied logistic regression on both clinical and dietary data to identify the effect of 

the variation of variables on the probability to belong to each study group (i.e., healthy, 

mucositis, and peri-implantitis). We considered the python module 

sklearn.linear_model.LogisticRegression. We considered the different binary settings 

of health status (i.e., healthy vs peri-implantitis, healthy vs mucositis, and mucositis vs 

peri-implantitis) as dependent variables. Health conditions were coded as an ordered 

categorical variable by substituting “0” and “1” to the condition in order of condition 

severity. For dietary data, the logistic regression was applied on the multicollinearity-

corrected data as described previously. 
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Evaluation of the portion of variation in the dependent variable predictable from the 

independent variables was made by computing the Efron’s pseudo :' = 1 −
∑ (4%!45%)#)
%&"
∑ (4%!4)#)
%&"

, where n is the number of observations, y is the dependent variable, ; is the 

mean of the y values, and ;< is the value predicted by the model. Statistical significance 

was evaluated by computing the =' test for each involved variable and by adjusting 

using the FDR correction. Q-values < 0.05 identified statistically significant variables. 

Evaluation of the effects of the significant variables was made by looking at the odds 

ratio: >: = 	 6778(9:&)6778(9) = ?;", where @# and @&9 are the linear regression coefficients for 

a given variable and the odds are the outputs generated by the model. 

 

3.2.14 Generation of prediction models through ML-based 

classification 

We considered a ML-based classification approach to build classification models for 

different tasks and multiple data types. The classification tasks were performed using 

the already developed and validated Metagenomic prediction Analysis based on 

Machine Learning (MetAML) tool [89]. More specifically, we considered Random 

Forests (RFs) as classification algorithm, which was the best classifier identified in 

Chapter 2 of this thesis. 

 

All analyses were performed through a cross-validation approach. In cross-validation, 

samples were randomly divided into k (with k = 10 in our case) folds by considering a 

stratified cross-validation approach to preserve the percentage of samples of each 

class. Free parameters of the classifier were set as follows. i) the number of trees was 

set to 500, ii) the number of features to consider when looking for the best split was 

equal to the root of the number of original features, and iii) the Gini impurity criterion 

was used to measure the quality of a split. Results were repeated and averaged on 20 

independent runs. 

 

Evaluation of the classification performances was based on these main metrics: i) area 

under the curve (AUC), ii) area under the precision-recall curve (AUPRC), iii) precision, 

iv) recall and v) F1. 
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The classification process on the two different clinical datasets (clinic substitution data 

and clinic imputation data) was conducted considering the three health conditions at 

once and the different paired combinations of health statuses (healthy vs peri-

implantitis, healthy vs mucositis and mucositis vs peri-implantitis).  

The classification approach was considered to predict the health status from the three 

dietary data separately (i.e., quantities of consumption, frequency of consumption, and 

daily intakes of micro and macro nutrients). As a baseline, we also built models to 

predict the health status from the clinical variables. 

 

3.3 Results and discussion 

 

3.3.1 Overview of the sampled cohort 

The study involved 451 subjects enrolled in the BetaProgram and all having at least 

one dental implant. This cohort was recruited from 28 dental clinics distributed among 

10 Italian regions: Trentino Alto Adige (N = 9 clinics); Veneto (N = 5); Lombardy (N = 

4); Friuli Venezia Giulia (N = 2); Marche (N = 2); Campania (N = 1); Emilia Romagna 

(N = 1); Sicily (N = 1); Piedmont (N = 1); Apulia (N = 1); Lazio (N = 1). Subjects involved 

in the study are evenly distributed between male (46%) and females (54%). Age 

ranged from 23 to 85 with a mean value of 60. 

 

3.3.2 Multiple clinical variables are associated with the health status 

Subjects were grouped in three main categories according to the health of their dental 

implants: i) healthy (subjects with at least one healthy implant and no diseased 

implants; 34.5%), ii) mucositis (patients with at least one implant with mucositis and 

no implants with peri-implantitis; 31.5%), and iii) peri-implantitis (patients with at least 

one implant with peri-implantitis; 33.7%). Inclusion of subjects in one of the groups 

was based on characteristics that are normally adopted by dentists to diagnose 

mucositis and peri-implantitis according to the criteria delineated by the Consensus 

Report on Peri-implant Diseases [33]: marginal bone level, clinical signs of 

inflammation, presence of suppuration. 
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We evaluated to which extent clinical variables were associated with the health status. 

Among the 37 variables, we assessed statistically significant differences (p < 0.05, 

ANOVA test) in 26 cases (Table 3.1). Such variables can be grouped in three main 

groups: i) variables representative of personal data, which resulted non-significant 

apart from the patient age (Fig. 3.1); ii) variables representative of the main clinical 

signs of the disease state (i.e., bleeding on probing; plaque index; suppuration; bone 

loss; peri-implantitis probing depth), which resulted to be all significant (Fig 3.2); iii) 

variables not strictly correlated with the disease state but potentially related to the 

general health conditions. Here we identified as significant the smoking state (p = 

0.010) and the average number of cigarettes per day (p = 0.024), which are largely 

recognized as risk factors for peri-implant diseases [154–158] and overall involved in 

oral health [159–163]. Interestingly, no significance was instead achieved in terms of 

years after quitting smoking. We also detected significant other variables less 

recognized in the literature such as the number of dental implants, the year of 

implantation, the number of teeth left, and having precedent episodes of peri-

implantitis (Fig 3.3). Finally, occasional use of alcohol was not related to the health 

status.  

 

We extended the analysis to the identification of differentially abundant features in the 

binary combinations of health statuses through statistical testing using Mann-Whitney 

U test for continuous features and Fisher exact test for categorical features. We found 

that the clinical data showed a number of significant features going from 29 to 18 for 

the healthy vs peri-implantitis and the mucositis vs peri-implantitis case respectively. 

The results obtained by the tests show the same pattern encountered in computing 

the correlations in terms of statistical significance. A summary of the p-value obtained 

by the tests is available in Table 3.3.  

 

 

Table 3.1 Summary of the statistical tests aiming at discriminating the health 

status from the clinical variables. P-values are obtained through ANOVA test and 

FDR correction. Q-value <= 0.05 denotes a statistically significant variable for which 

we indicate the class of enrichment. Clinical data are grouped as personal, peri-

implantitis related, and health status related 
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Personal data 

Variable P-value Higher in 

patient age when visited 0.010 peri-implantitis 

patient sex 0.855   

patient height 0.680   

patient weight 0.261   

sampled element 0.158   

Peri-implantitis related data 

Variable P-value Higher in 

ppd b 0.000 peri-implantitis 

ppd m 0.000 peri-implantitis 

ppd d 0.000 peri-implantitis 

ppd l 0.000 peri-implantitis 

bone loss m 0.000 peri-implantitis 

bone loss d 0.000 peri-implantitis 

plaque index b 0.000 peri-implantitis 

plaque index m 0.000 peri-implantitis 

plaque index d 0.000 peri-implantitis 

plaque index l 0.000 peri-implantitis 

bleeding on probing b 0.000 mucositis 

bleeding on probing m 0.000 mucositis 

bleeding on probing d 0.000 mucositis 

bleeding on probing l 0.000 mucositis 

suppuration b 0.000 peri-implantitis 

suppuration m 0.000 peri-implantitis 

suppuration d 0.000 peri-implantitis 

suppuration l 0.000 peri-implantitis 

Health status related data 

Feature P-value Higher in 

already had peri-implantitis 0.000 peri-implantitis 

avg cigarettes per day 0.024 peri-implantitis 

avg weekly sport activity 0.238   

electronic toothbrush 0.680   

mucous thickness b 0.991   

mucous thickness l 0.934   

number of dental implants 0.000 peri-implantitis 

number of teeth left 0.000 healthy 

occasional use of alcohol 0.795   

smoking state 0.010 peri-implantitis 

width km b 0.003 healthy 

width km l 0.934   

year of implantation 0.000 healthy 

years quit smoking 0.795  
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Table 3.2 P-values of Mann-Whitney U and Fisher-exact tests on clinical 

features. Summary of the Mann-Whitney U and Fisher-exact tests p-values after FDR 

correction relative to the clinical features. The features were tested in the three 

possible paired combinations of health status (HVSP, MVSP, HVSM). The p-values 

were filtered for p-value <= 0.05, an empty table cell means the non-significant 

difference in the feature distribution between the two tested groups. All: three-class 

scenario with the three health status categories; hvsp: healthy vs peri-implantitis; 

hvsm: healthy vs mucositis; mvsp: mucositis vs peri-implantitis. 
Features hvsp hvsm mvsp 

already had periimplantitis 5E-09 4E-03 3E-03 

avg cigarettes per day 2E-03     

bleeding on probing b 7E-27 3E-18   

bleeding on probing d 3E-29 2E-25   

bleeding on probing l 5E-27 4E-12 1E-04 

bleeding on probing m 3E-26 8E-16 2E-02 

bone loss d 2E-39 1E-06 7E-25 

bone loss m 3E-42 1E-05 2E-29 

mucous thickness b 9E-03 5E-03 2E-02 

mucous thickness l 2E-04 1E-03 5E-04 

number of dental implants 5E-10 6E-05 2E-02 

number of teeth left 5E-15 2E-04 3E-04 

patient age when visited 3E-03     

plaque index b 1E-11 4E-06   

plaque index d 1E-07 2E-06   

plaque index l 4E-10 4E-06   

plaque index m 2E-08 5E-06   

ppd b 6E-35 3E-12 3E-15 

ppd d 1E-34 3E-12 9E-17 

ppd l 1E-32 4E-10 2E-13 

ppd m 4E-33 3E-12 3E-15 

sampled element 4E-02     

smoking state 2E-03     

suppuration b 4E-18 2E-02 3E-12 

suppuration d 8E-11   6E-07 

suppuration l 2E-06   2E-04 

suppuration m 6E-14   4E-10 

width km b 1E-03 5E-02   

width km l 1E-05 1E-06 3E-03 
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Fig 3.1 Differences in the clinical variables in terms of personal data among the 

three health study groups.  Only statistically significant variables according to 

ANOVA test are reported (see Table 3.1 for the complete list of p-values). 
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Fig 3.2 Differences in the clinical variables in terms of peri-implantitis related 

data among the three health study groups. Only statistically significant 

variables according to ANOVA test are reported (see Table 3.1 for the complete 

list of p-values). 
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Fig 3.3 Differences in the clinical variables in terms of general health status 

related data among the three health study groups. Only statistically significant 

variables according to ANOVA test are reported (see Table 3.1 for the complete 

list of p-values). 
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3.3.3 Associations between clinical features and health status are 

confirmed by correlation analyses 

We extended the analysis discussed in the previous section by computing Spearman 

and point biserial correlations between clinical variables and the health status.. Results 

confirmed what was discussed in the previous section, with several clinical variables 

showing associations with the health status. (Table 3.3). We found 27 out of the 37 

clinical variables correlated significantly with the health status. More specifically, 25 

and 2 were enriched in disease and health, respectively. We found such variables 

enriched in diseased subjects, which were already found in the literature as clinically 

relevant for the peri-implantitis disease status [150,164,165]: already had peri-

implantitis (representative of the peri-implant clinical story of the patients); bleeding on 

probing for all the four sites of measurement (representative of the gingival bleeding 

during the sampling procedure); bone loss for the two measurement sites 

(representative of the severity of the gingival bone loss); plaque index for all the four 

measurement sites (representative of the presence of subgingival plaque); 

suppuration for all the four measurement sites (representative of the presence of 

suppuration). 

 

Additionally, we found other variables higher in disease subjects which were not strictly 

representative of peri-implant but more related to the general oral health: number of 

dental implants (representative of a proxy of the general health status); patient age 

when visited (representative of the age of the patients in the moment of the clinical 

evaluation; age is a recognized risk factor for peri-implantitis [150,164–166]); average 

cigarettes per day (representative of the average number of cigarettes smoked in a 

day; also smoke is a risk factor for peri-implantitis [150,154,167]); more general 

smoking state (representative of the appartenance to the smoker group). 

On the other hand, we found few variables enriched in the healthy subjects: 

● number of teeth left (as a proxy of the health status); 

● width km (representative of the width of the keratinized mucosa in the buccal 

site; recognized as an implant health indicator [168]); 

● year of implantation (representative of the age of the implant). 
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We further confirmed Spearman correlation results by considering logistic regression 

to compute the effect of variation of the clinical features on the probability to belong to 

one of the three health statuses. Correctness of the model was evaluated in terms of 

Efron’s :', while variable Statistical significance was computed by =' tests. Results 

obtained by logistic regression (Table 3.4) were inline with findings obtained by 

Spearman correlation. More specifically we found an agreement in terms of statistically 

significant variables in 65% of the cases. The proportion of the variance for the health 

status that was explained in the regression model by the clinical variables was high in 

all settings. More specifically, the models trained on the clinical features showed a 

large portion of variance explained by the dependent variable for the three binary 

combinations healthy vs peri-implantitis (:'= 0.87); mucositis vs peri-implantitis 

(:'=0.57); and healthy vs mucositis :'=0.49. 

 

We finally identified the the effect size of clinical features in discriminating the three 

health categories by considering LDA implemented into the LefSe tool [169]. Results 

confirmed previous findings based on statistical testing and correlation coefficients 

when the three health conditions are considered simultaneously (Fig 3.4) as well for 

the binary combinations (i.e., healthy vs peri-implantitis Fig 3.5; healthy vs mucositis 

Fig 3.6; and mucositis vs peri-implantitis Fig 3.7). 

Results achieved by the different approaches were concordant in finding strong 

associations between multiple clinical variables and the health status, with some 

significant variables already recognized in the literature as well as other more related 

to the general oral health. 
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Table 3.3 Point biserial and Spearman correlation coefficients between clinical 

features and the health status. The health status was codified as a numerical 

ordered categorical feature with values assigned in order of condition severity. Empty 

cells represent correlation coefficients associated with non-significant correlations (p-

value after FRD correction > 0.05). All: three-class scenario with the three health status 

categories; hvsp: healthy vs peri-implantitis; hvsm: healthy vs mucositis; mvsp: 

mucositis vs peri-implantitis. 
 

Correlation 

coefficient Point biserial Spearman 

case hvsp hvsm mvsp all hvsp hvsm mvsp 

feature               

already had periimplantitis 0.340 0.176 0.187 0.287 0.340 0.176 0.187 

avg cigarettes per day 0.179     0.150 0.182     

bleeding on probing b 0.619 0.523 0.116 0.511 0.619 0.523 0.116 

bleeding on probing d 0.648 0.623   0.533 0.648 0.623   

bleeding on probing l 0.622 0.414 0.241 0.512 0.622 0.414 0.241 

bleeding on probing m 0.612 0.483 0.154 0.514 0.612 0.483 0.154 

bone loss d 0.723 0.306 0.588 0.668 0.762 0.297 0.617 

bone loss m 0.744 0.283 0.637 0.691 0.792 0.264 0.674 

number of dental implants 0.331 0.200 0.145 0.307 0.361 0.241 0.154 

number of teeth left -0.412 -0.232 -0.168 -0.374 -0.454 -0.223 -0.226 

patient age when visited 0.181     0.141 0.171     

plaque index b 0.393 0.280 0.123 0.321 0.393 0.280 0.123 

plaque index d 0.305 0.288   0.253 0.305 0.288   

plaque index l 0.364 0.279   0.298 0.364 0.279   

plaque index m 0.325 0.274   0.268 0.325 0.274   

ppd b 0.664 0.433 0.460 0.632 0.711 0.415 0.467 

ppd d 0.668 0.395 0.495 0.629 0.699 0.401 0.495 

ppd l 0.620 0.362 0.427 0.589 0.676 0.364 0.432 

ppd m 0.652 0.378 0.468 0.612 0.682 0.396 0.472 

sampled element 0.119     0.099 0.119     

smoking state 0.173   0.123 0.148 0.178   0.122 

suppuration b 0.503 0.145 0.419 0.458 0.503 0.145 0.419 

suppuration d 0.305 0.117 0.305 0.346 0.378 0.117 0.305 

suppuration l 0.231   0.231 0.258 0.274   0.231 

suppuration m 0.377 0.122 0.377 0.406 0.435 0.122 0.377 

width km b       -0.158 -0.188 -0.123   

year of implantation -0.221   -0.221 -0.276 -0.326   -0.237 
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Table 3.4 Odds ratio obtained by considering the logit model on the clinical 

variables and the health status of the subject Empty cells are associated with odds 

ratio non-statistically significant (p-value >= 0.05 after FDR correction). The health 

status is codified as a numerical ordered categorical variable with values assigned in 

order of condition severity. hvsp: healthy vs peri-implantitis; hvsm: healthy vs 

mucositis; mvsp: mucositis vs peri-implantitis. 

Features odds peri-implantitis 
HVSP 

odds peri-implantitis 
MVSP 

odds mucositis 
HVSM 

avg cigarettes per day 0.989   1.004 

bleeding on probing b 1.069   1.137 

bleeding on probing d 1.079   1.181 

bleeding on probing l 1.075 1.023 1.109 

bleeding on probing m 1.075 1.015 1.136 

bone loss d 1.347 1.208 1.166 

bone loss m 1.426 1.315 1.145 

mucous thickness b 0.992 0.998 0.998 

mucous thickness l 1.011 0.991 0.995 

number of dental implants 1.004     

occasional use of alcohol 1.025 1.018 1.017 

patient height 0.998     

plaque index b 1.040   1.052 

plaque index d 1.033   1.068 

plaque index l 1.038   1.063 

plaque index m 1.039   1.065 

ppd b 1.342 1.112 1.275 

ppd d 1.310 1.125 1.249 

ppd l 1.281 1.101 1.231 

ppd m 1.307 1.106 1.260 

smoking state 0.997     

suppuration b 1.038 1.040 1.012 

suppuration d 1.020 1.019   

suppuration l 1.013 1.012   

suppuration m 1.032 1.037   

width km b 0.937 0.966 0.942 

width km l 0.988 1.010 0.988 

years quit smoking 0.965     
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Fig 3.4 Variables associated with the largest effect size by applying LDA on the 

clinical features by considering simultaneously the three health statuses. Only 

variables having LDA score >= 2 are reported. The three colours are associated with 

the category of enrichment. 

Fig 3.5 Largest effect sizes obtained by LDA on the clinical features by 

comparing healthy with peri-implantitis subjects.Effect sizes were filtered for LDA 

score >= 2. The two colours are associated with the category of enrichment. 
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Fig 3.6 Largest effect sizes obtained by LDA on the clinical features by 

comparing healthy vs peri-implantitis subjects. Effect sizes were filtered for LDA 

score >= 2. The two colours are associated with the category of enrichment. 

 

 
Fig 3.7 Largest effect sizes obtained by LDA on the clinical features by 

comparing combination of health statuses healthy with mucositis subjects. 

Effect sizes were filtered for LDA score >= 2. The two colours are associated with the 

category of enrichment 
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3.3.4 Evaluation of the quality of the FFQ questionnaires 

We extended the analysis to the dietary data which were acquired from the exact set 

of subjects (N = 451) thanks to administration of FFQ. Due to the self-administration 

of the FFQ, some of the questionnaires were returned incomplete with some unfilled 

questions or sections. 133 out of 451 questionnaires (29.5%) were complete, while 

mean value of completeness was equal to 92%; 16.5% of the questionnaires resulted 

in a completeness value < 80% (Fig 3.8). 

 

We evaluated to which extent the completeness level of the returned questionnaires 

was influenced by two main demographic factors such as age and sex, along with the 

information about the dental clinic. No differences were related to the sex of the 

patients (p = 0.503, Mann-WhitneyU test; Fig 3.9), while significant differences were 

assessed in terms of age (p = 0.012, ANOVA test; Fig 3.9). More specifically, mean 

completeness ranged from 99% for young people (< 30 years old) to 90% for elderly 

people (> 80 years old) which was in agreement with expected behaviour and existing 

literature [170,171]. Significant differences were also obtained in terms of dental clinics 

(p = 0.000, ANOVA test; Fig. 3.9) which was likely related to the differences in 

providing support in filling the questionnaires by the different dental clinics. 
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Fig 3.8 Histogram with the level of completeness for the FFQ questionnaires that 

was filled by the 451 subjects included in this analysis. 

Fig 3.9 FFQ questionnaire completeness across different demographic 

characteristics. Statistically significant levels of completeness were assessed across 

different clinics (panel A; p = 0.0 ANOVA test) and age ranges (panel C; p = 0.012 

ANOVA test), while no differences were obtained in terms of sex (panel B; Mann-

Whitney U test).  
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3.3.5 Ordination analysis highlights patterns related to dietary indexes 

We applied ordination analysis to evaluate potential differences in the composition of 

the different dietary datasets across multiple demographic data (i.e., age, sex, and 

BMI), health status, and dietary indexes (i.e., MIDI and HDI). We considered two main 

techniques, PCA and PCoA, and for the latter ones we compared four distance 

metrics: i) Euclidean, ii) Manhattan, iii) Jaccard; and iv) Bray-Curtis. For the different 

tested scenarios, we obtained comparable results across the four distance metrics 

(see an example in Fig. 3.10), so we report only the results using Euclidean distance 

in the following analyses for conciseness. All the analyses were repeated on the three 

main dietary data types, i.e., quantities, frequencies, and nutrients. 

 

We evaluated strong patterns in terms of the two main dietary indexes involved in the 

analysis, i.e., MIDI and HDI. This was something expected since the indexes are 

directly computed from the dietary data. Subjects characterised by different MIDI and 

HDI scores showed differences in dietary habits in terms of quantities (Fig 3.11 A,B; 

Fig 3.12 A,B), frequencies (Fig 3.13 A,B; Fig 3.14 A,B), and daily intakes of micro and 

macronutrients (Fig 3.15 A,B; Fig 3.16 A,B). 

A similar analysis was conducted in terms of age. In this case no differences were 

verified in terms of quantities (Fig 3.11 C; Fig 3.12 C), frequencies (Fig 3.13 C; Fig 

3.14 C) or daily intakes of micro and macro nutrients (Fig 3.15 C; Fig 3.16 C) across 

different ages. This may be related also to the fact that the majority of the individuals 

are elderly (age median value equal to 62), while major shifts in dietary habits in the 

direction of uniformity happen between 40 and 60 years old [172,173]. In the same 

way, also differentiations in terms of BMI were not evident across the three data types: 

Fig 3.11 D and Fig 3.12 D for quantities; Fig 3.13 D and Fig 3.14 D for frequencies; 

Fig 3.15 D and Fig 3.16 D for daily intakes of micro and macro nutrients). This may be 

also due to the simplicity in calculating the BMI score which does not  take into account 

other important factors linked to the health status of the individuals such as 

metabolism, level of physical activity, genetics, drug administration, etc. that can 

induce shifting in subject weight without being correlated to dietary habits [174–176]. 
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Fig 3.10 PCoA applied on dietary data in terms of quantities at varying distance 

matrices and coloured by MIDI. Four distances are considered: (A) Euclidean; (B) 

Manhattan; (C) Jaccard; and (D) Bray-Curtis. 
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Fig 3.11 PCoA applied on dietary data in terms of consumption quantities 

coloured by different subject characteristics. Four subject characteristics are 

considered: A) MIDI score; B) HDI score; C) subject age; D) BMI score. Results are 

obtained using Euclidean distance. 
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Fig 3.12 PCoA applied on dietary data in terms of consumption frequencies 

coloured by different subject characteristics. Four subject characteristics are 

considered: A) MIDI score; B) HDI score; C) subject age; D) BMI score. Results are 

obtained using Euclidean distance. 
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Fig 3.13 PCoA applied on dietary data in terms of daily intakes of micro and 

macro nutrients coloured by different subject characteristics. Four subject 

characteristics are considered: A) MIDI score; B) HDI score; C) subject age; D) BMI 

score. Results are obtained using Euclidean distance. 
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Fig 3.14 PCA applied on dietary data in terms of consumption quantities 

coloured by different subject characteristics. Four subject characteristics are 

considered: A) MIDI score; B) HDI score; C) subject age; D) BMI score.  
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Fig 3.15 PCA applied on dietary data in terms of consumption frequencies 

coloured by different subject characteristics. Four subject characteristics are 

considered: A) MIDI score; B) HDI score; C) subject age; D) BMI score.  
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Fig 3.16 PCA applied on dietary data in terms of daily intakes of micro and macro 

nutrients coloured by different subject characteristics. Four subject 

characteristics are considered: A) MIDI score; B) HDI score; C) subject age; D) BMI 

score.  
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3.3.6 Sex of the subjects as a possible confounding factor in dietary 

habits 

While we did not find patterns in function of subject age and BMI as described in the 

previous section, strong differences were instead found based on the sex of the 

subjects enrolled in the study. Such differences were consistent using both PCA and 

PCoA techniques and across the three dietary data types:  quantities (Fig 3.17 A,D; p 

< 0.001 PERMANOVA Table 3.5), frequencies (Fig 3.17 B,E; p < 0.001 

PERMANOVA), and daily intakes of micro and macro nutrients (Fig 3.17 C,F; p < 0.001 

PERMANOVA). This is consistent with known eating styles between the two sexes, 

with women that generally have eating styles characterised by healthier choices [177].  

 

We went further by identifying differentially distributed variables between the two 

sexes through Mann-Whitney U test. We found 28 and 27 food categories with different 

distribution in terms of quantities (Table 3.5) and frequencies (Table 3.6), respectively, 

between the two sexes. We also detected 14 daily intakes of micro and macro nutrients 

differently distributed between the two groups (Table 3.7). More specifically, food 

categories enriched in males were mainly sources of simple fermentescible sugars 

and fats, consistent with what reported in the literature [178,179]. Instead, categories 

enriched in females comprised mainly vegetables, in both cooked and raw forms, as 

already reported in the literature [180]. 

The differences in dietary habits between males and females may act as a 

confounding factor and could contribute to misidentifying the relationship among 

variables involving dietary data. However, we note the two sexes are evenly distributed 

among the three study groups (Table 3.8), which should reduce biases in other 

analyses [181,182]. 
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Fig 3.17 PCoA and PCA on dietary data coloured by sexes of the subject. A) 

PCoA on quantities; B) PCoA on frequencies; C) PCoA on daily intakes of micro and 

macro nutrients; D) PCA on quantities; E) PCA on frequencies; F) PCA on daily intakes 

of micro and macro nutrients. 

 

 

  

Patient sex 
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Table 3.5 List of the variables in terms of quantities of food consumption 

unevenly distributed between the two sexes. P-values were computed using the 

Mann-Whitney U test and FDR correction. 
Variable P-value Higher in 

OTHER VEGETABLES 0.001 females 

TOMATOES-COOKED 0.003 females 

ROOT VEGETABLES 0.013 females 

CABBAGES 0.009 males 

STALK VEGETABLES, SPROUTS 0.000 females 

MIXED SALAD, MIXED VEGETABLES 0.001 females 

PASTA, OTHER GRAIN 0.000 males 

GRAINS, WHOLEMEAL 0.015 females 

BREAD 0.011 males 

BREAKFAST CEREALS 0.004 females 

BEEF 0.000 males 

PORK 0.001 males 

MUTTON/LAMB 0.012 males 

HORSE 0.014 males 

GOAT 0.012 males 

PROCESSED MEAT 0.000 males 

OFFALS 0.001 males 

OTHER ANIMAL FAT 0.000 males 

CONFECTIONERY NON CHOCOLATE 0.001 males 

CARBONATED/SOFT/ISOTONIC DRINKS, DILUTED SYRUPS 0.001 females 

TEA 0.001 females 

HERBAL TEA 0.001 females 

WINE 0.000 males 

BEER, CIDER 0.000 males 

SPIRITS, BRANDY 0.000 males 

MAYONNAISES AND SIMILARS 0.021 males 

SOUPS 0.000 females 

PIZZA 0.040 females 

 

 

  



 

  67 

Table 3.6 List of the frequencies of food consumption unevenly distributed 

between the two sexes. P-values were computed using the Mann-Whitney U test and 

FDR correction. 
Variable P-value Higher in 

OTHER VEGETABLES 0.001 females 

ROOT VEGETABLES 0.001 females 

CABBAGES 0.001 females 

STALK VEGETABLES, SPROUTS 0.000 males 

MIXED SALAD, MIXED VEGETABLES 0.002 females 

NUTS AND SEEDS (+ NUT SPREAD) 0.019 females 

PASTA, OTHER GRAIN 0.031 males 

GRAINS, WHOLEMEAL 0.016 females 

BREAD 0.012 males 

BREAKFAST CEREALS 0.004 females 

BEEF 0.001 males 

PORK 0.000 males 

MUTTON/LAMB 0.006 males 

HORSE 0.019 males 

GOAT 0.006 males 

PROCESSED MEAT 0.000 males 

OFFALS 0.006 males 

OTHER ANIMAL FAT 0.000 males 

CONFECTIONERY NON CHOCOLATE 0.001 males 

CARBONATED/SOFT/ISOTONIC DRINKS, DILUTED SYRUPS 0.001 females 

TEA 0.001 females 

HERBAL TEA 0.001 females 

WINE 0.000 males 

BEER, CIDER 0.000 males 

SPIRITS, BRANDY 0.000 males 

MAYONNAISES AND SIMILARS 0.013 males 

SOUPS 0.000 females 
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Table 3.7 List of the daily intakes of micro and macro nutrients unevenly 

distributed between the two sexes. P-values were computed using the Mann-

Whitney U test and FDR correction. 
Variable P-value Higher in 

Total proteins 0.001 males 

Animal proteins 0.001 males 

Animal fats 0.003 males 

Other polyunsaturated fats 0.004 males 

Cholesterol 0.011 males 

Simple carbohydrates 0.002 males 

Starch 0.000 females 

Alcohol 0.000 males 

Sodium 0.000 males 

Phosphorus 0.033 females 

Zinc 0.001 females 

Niacin 0.001 females 

Retinol 0.033 females 

beta-Carotene 0.026 females 

 

 

Table 3.8 Percentage of male and female subjects across the three health status 

conditions 
  healthy mucositis peri-implantitis 

male 44.2% 48.3% 46.1% 

females 55.8% 51.7% 53.9% 
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3.3.7 ML-based classification highlights good accuracy in predicting 

sex from dietary data  

We used a ML-based approach to build classification models aiming at predicting sex 

from the dietary data. We used a cross-validation approach based on RF classification. 

The three dietary data types were compared, and results were in agreement with what 

found from ordination analysis (Fig. 3.18). The highest accuracy (AUC = 0.83) was 

achieved using consumption quantities as input features. Frequency of consumption 

gave an AUC = 0.81, while features representative of micro and macro nutrient intakes 

reduced the AUC to 0.73. 

 
 

Fig 3.18 Classification results in terms of AUC obtained by predicting the sex 

from the dietary data. AUC were estimated by applying RF classifier in a cross-

validation approach. The three dietary data types were compared.  
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3.3.8 Dietary habits are weakly associated with the health status 

We finally extended the approaches discussed in the previous sections by evaluating 

differences among health statuses from dietary data. Ordination analysis didn’t show 

differences among subjects characterised by different health statuses in terms of 

quantities (Fig 3.19 A, D), frequencies (Fig 3.19 B,E), or daily intakes of micro and 

macro nutrients (Fig 3.19 D,F). 

 

 
Fig 3.19 PCoA and PCA on dietary data coloured by health status. A) PCoA on 

quantities; B) PCoA on frequencies; C) PCoA on daily intakes of micro and macro 

nutrients; D) PCA on quantities; E) PCA frequencies; F) PCA on daily intakes of micro 

and macro nutrients. 

healthy healthy 

healthy healthy 

healthy healthy 
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We computed correlation coefficients between dietary data and the health status (we 

considered a q-value ≤ 0.1 to identify statistically significant variables). No significant 

correlations were found between health status and daily intakes, while some quantity 

and frequency features resulted to be significantly correlated. Such correlations were 

found when considering the three health conditions simultaneously (Fig 3.20), as well 

as when considering the binary case in comparing healthy and peri-implantitis subjects 

(Fig 3.21). Correlations showed the magnitude of variation in consumption of legumes, 

white yoghurt and white meat; variation in quantity and frequency of consumption of 

seafood and extra virgin olive oil (in cooked not fried foods) were associated with the 

healthy condition. From such results, we can say that  peri-implantitis is not strongly 

driven by the dietary habits of the patients.  
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Fig 3.20 Spearman correlation coefficients between dietary features and 

patient’s health status in the dataset with the three health conditions. Spearman 

correlation coefficients obtained by computing the spearman correlation between the 

clinical features and the health status of the patient. The correlations were computed 

considering the three health conditions codified as a numeric ordered categorical 

variable. The represented coefficients were filtered for p-value of the correlation <= 

0.1. The different colours represent different kinds of features. 
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Fig 3.21 Spearman correlation coefficients between dietary features and 

patient’s health status in the healthy vs peri-implantitis dataset. Spearman 

correlation coefficients obtained by computing the spearman correlation between the 

clinical features and the health status of the patient. The correlations were computed 

considering only the healthy and the peri-implantitis health conditions codified as a 

numeric ordered categorical variable. The represented coefficients were filtered for p-

value of the correlation <= 0.1. The different colours represent different kinds of 

features. 

 

  



 

  74 

3.3.9 Correction of dietary data for multicollinearity led to a sensible 

reduction in the number of variables 

We corrected multicollinearity in frequencies and quantities of consumption data using 

the VIF approach by skimming features with VIF > 10. This correction led to a sensible 

reduction in the number of features by removing features representative of food 

subcategories. The number of features was reduced from 378 to 67 for both data 

types.  

We used the same approach discussed in the previous sections to identify 

discriminatory variables from data corrected from multicollinearity issues. Also in this 

scenario, no micro or macro nutrient variables resulted statistically significant; on the 

other hand some significance was obtained for quantities (Fig 3.22) and frequencies 

(Fig 3.23) of food consumption. More specifically, frequencies and quantities of 

consumption of white meat, fish, and leafy vegetables characterised the dietary habits 

of the healthy subjects, confirming the evidence found in literature about the 

importance of protein consumption in maintaining a good oral health [138,183]. Dietary 

habits of mucositis subjects compared to t peri-implantitis subjects were characterised 

by the consume of sources of available carbohydrates (e.g., confectionery, pizza and 

bread) known as a risk factor for the development of microbial conveyed oral diseases 

[184] and as a main cause of acidification of oral pH with consequent selective push 

to acidophilic species and oral dysbiosis [136,185,186]. 
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Fig 3.22 Largest effect size features obtained by LDA on the quantities of food 

consumption by comparing subjects in function of the health status. 
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Fig 3.23 Largest effect size features obtained by LDA on the frequencies of food 

consumption by comparing subjects in function of the health status. 
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The same approach used in the training of the logistic regression model on the clinical 

features was considered to evaluate effects of dietary features variation on the 

probability to belong to the three health statuses. Also in this case, the model was built 

on the datasets after multicollinearity correction. The logit models trained on the 

different dietary data types did not produce any statistically significant results (Table 

3.9), which further confirmed the weak correlation between dietary habits and peri-

implant disease states. 

 

Table 3.9 R2 relative to the logit model trained on the different binary 

combinations of health statuses from dietary data. hvsp: healthy vs peri-

implantitis; hvsm: healthy vs mucositis; mvsp: mucositis vs peri-implantitis. 
implementation R2 

quantities hvsp 0.23 

quantities hvsm 0.21 

quantities mvsp 0.21 

frequencies hvsp 0.19 

frequencies hvsm 0.18 

frequencies mvsp 0.17 

nutrients hvsp 0.06 

nutrients hvsm 0.05 

nutrients mvsp 0.05 

 

3.3.10 Clinical features guarantee high accuracies for health status 

classification 

We considered the same classification approach based on RF classifier used for sex 

prediction to predict the health status from the set of clinical features. We compared 

the two different strategies to deal with missing values. The results in terms AUC are 

reported in Fig 3.24 and a summary of the other metrics is available in Table 3.10. We 

obtained variable accuracies ranging from 0.91 for classification made on the imputed 

clinical dataset (i.e., when missing value were substituted by iterative imputation) 

between mucositis and peri-implantitis subjects (MVSP) to 0.99 when iterative 

imputation and mean substitution was applied to discriminate healthy and peri-

implantitis subjects (HVSP). Such values were in line with what obtained by the 

correlations analysis previously reported. We used these results as a baseline to 

compare classification models trained from dietary data 
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Fig 3.24 Classification results in terms of AUC scores obtained by predicting the 

health status from the clinical data. Models were built by RF classifier on the clinical 

features by considering the two different missing data management approaches. hvsp: 

healthy vs peri-implantitis; hvsm: healthy vs mucositis; mvsp: mucositis vs peri-

implantitis. 
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Table 3.10 Summary of the classification results obtained by predicting the 

health status from the clinical data. Results obtained by RF classifier on the different 

clinical datasets obtained by the two different missing data management approaches, 

and reported in terms of AUC, AUPCR, F1, precision, and recall. All: three-class 

scenario with the three health status categories; hvsp: healthy vs peri-implantitis; 

hvsm: healthy vs mucositis; mvsp: mucositis vs peri-implantitis. 
AUC 

case all hvsm  hvsp  mvsp  

clinic imputed   0.94 0.99 0.91 

clinic subs   0.98 0.99 0.96 

AUPRC 

clinic imputed   0.93 0.99 0.91 

clinic subs   0.98 0.99 0.97 

F1 

clinic imputed 0.79 0.86 0.95 0.82 

clinic subs 0.88 0.94 0.96 0.90 

Precision 

clinic imputed 0.80 0.86 0.95 0.83 

clinic subs 0.89 0.94 0.96 0.90 

Recall 

clinic imputed 0.79 0.86 0.95 0.82 

clinic subs 0.88 0.94 0.96 0.90 
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3.3.11 Classification on dietary data confirms weak capabilities for 

health state prediction 

Finally, the same approach adopted to predict the health status from the clinical 

features was applied to the dietary datasets. In agreement with statistical testing and 

correlation analysis, we obtained low accuracy values (Fig. 3.25 and Table 3.11). For 

the majority of the cases, we obtained AUC values close to 0.5, which is associated 

with the randomic classification case. Only classifications made on frequency and 

quantity for discriminating between healthy and peri-implantitis subjects exhibited a 

moderate level of prediction with an AUC score of 0.61 and 0.60, respectively. 

Classification on the same set of data and by splitting for patient sex did not produce 

any sensible improvement in the classification performances. 

 

 
Fig 3.25 Classification results in terms of AUC scores obtained by predicting the 

health status from the dietary data.Models were built by RF classifier on the three 

dietary features datasets. hvsp: healthy vs peri-implantitis; hvsm: healthy vs mucositis; 

mvsp: mucositis vs peri-implantitis. 
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Table 3.11 Summary of the classification results obtained by predicting the 

health status from the dietary data. Results obtained by RF classifier on the different 

dietary datasets, and reported in terms of AUC, AUPCR, F1, precision and recall. All: 

three-class scenario with the three health status categories; hvsp: healthy vs peri-

implantitis; hvsm: healthy vs mucositis; mvsp: mucositis vs peri-implantitis. 
AUC 

  all hvsm  hvsp  mvsp  

frequency   0.46 0.61 0.52 

micronutrients   0.50 0.50 0.54 

quantity   0.44 0.60 0.54 

AUPRC 

frequency   0.49 0.61 0.55 

micronutrients   0.50 0.53 0.57 

quantity   0.48 0.60 0.57 

F1 

frequency 0.35 0.48 0.58 0.51 

micronutrients 0.33 0.49 0.50 0.54 

quantity 0.34 0.47 0.57 0.52 

Precision 

frequency 0.36 0.49 0.59 0.52 

micronutrients 0.34 0.49 0.50 0.55 

quantity 0.34 0.47 0.58 0.53 

Recall 

frequency 0.37 0.49 0.59 0.52 

micronutrients 0.34 0.49 0.50 0.55 

quantity 0.35 0.48 0.57 0.53 
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3.3.12 Combination of dietary data with clinical features does not 

improve classification accuracies 

We finally evaluated if classification accuracies could be improved by combining 

dietary data with clinical features. The adding of the dietary features to the 

classification process did not improve the baseline results obtained on clinical data 

only (Fig. 3.26). Differences in classification accuracies occurred for the case in 

discriminating healthy and mucositis subjects (with an AUC worsening from 0.98 to 

0.97), and mucositis and peri-implantitis subjects (with a small AUC improvement from 

0.96 to 0.97). 

 

 

 
Fig 3.26 Classification results in terms of AUC scores obtained by predicting the 

health status from combining  clinical and dietary data. Models were built by RF 

classifier on the three different combinations of dietary and clinical features. Hvsp: 

healthy vs peri-implantitis; hvsm: healthy vs mucositis; mvsp: mucositis vs peri-

implantitis. 
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3.3.13 Conclusions 

From the extensive set of analyses aiming at linking dietary data with health status 

information we found that dietary habits seem to not have a direct effect on the 

manifestation of peri-implant diseases. Such results were obtained by considering 

statistical testing and correlation analysis as well as by building prediction models 

based on cross-validation analysis. 
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4  Linking diet and oral microbiome 
 

4.1 Introduction and scientific rationale 

While the role of diet in the shaping of the gut microbiome was largely investigated, 

showing a strong influence of the dietary habits on the gut microbiome composition 

[187–202], the role of diet on the shaping of the oral microbiome is still under 

investigation. As already debated in the first chapter of this thesis, efforts are given by 

the scientific community to try to disentangle effects of the consumption of different 

foods on the oral microbiome composition. In the literature, findings identified 

relationships between the consumption of foods and nutrients and the pathogenetic 

process of certain oral diseases [203–205]. This was mainly attributed to the creation 

of a prosperous environment for the spreading and the proliferation of microbial 

species involved in the pathogenetic process. However, a proper characterisation of 

the species more linked to food consumption has been scarcely performed. It is still 

unclear if the push of the dietary habits is the primary driver to the proliferation of 

species directly related to the oral diseases or if it is one of the key stimuli to the 

instauration of a metabolic and microbial dysbiosis as a condition favourable to 

promote the spreading of pathogens species, as already hypothesised in periodontitis 

and osteoporosis [206,207], oral candidiasis [208], and pancreatic cancer and liver 

cirrhosis [209]. In this chapter, we gave a first characterisation of the influence of 

dietary intakes on the microbial composition and the metabolic potential of the oral 

microbiome. We also tried to disentangle the effect of the dietary intakes between the 

promotion of pathogenic species and the creation of a favourable scenario for the 

instauration and the proliferation of disease related species through a metagenomic 

analysis of functional metabolic pathways associated with the oral microbiome.  
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4.2 Materials and methods 

4.2.1 Metagenomic sample collection 

For the purposes of this thesis, we collected 121 metagenomic samples from healthy 

subjects (65 females and 56 males) coming from 28 Italian dental clinics. The sampling 

protocol followed in this study was based on the one validated by the Human 

Microbiome Project (HMP) consortium [210]. A single implant was sampled from each 

selected patient even if the patient has more than one implant with the same tested 

condition; in such cases one implant was chosen randomly for the sampling. To access 

submucosal and subgingival plaque samples, saliva was excluded from the selected 

sites using cotton rolls and an air syringe, supramucosal and supragingival plaque was 

removed with sterile cotton pellets. The technician in charge of the sampling had to 

collect the plaque from the deepest probing site with individual sterile titanium Gracey 

curettes. The use of Gracey curettes was preferred to the use of sterile paper points 

according to HMP [210] and to avoid potential contamination [211]. After the collection, 

samples were immediately placed in separate Eppendorf 1.5-mL microcentrifuge 

tubes (Eppendorf, Hamburg, Germany) containing sterile SCF-1 buffer solution 

(50 mM Tris-HCl, pH 7.5; 1 mM EDTA, pH 8.0; 0.5% Tween-20) [212] and preserved 

from the clinics till later retire by PreBiomics for later analysis, clinics were 

acknowledged that samples must be preserved away from heat sources and 

preferentially in fridge to preserve the DNA from thermal decay. Total genomic DNA 

was isolated using the Qiagen Power Soil Pro Kit (Qiagen, Hilden, Germany): an 

additional enzymatic disruption step for complete lysis of Gram-positive and Gram-

negative species was performed, following the manufacturer’s protocol. Isolated DNA 

was stored at −20 °C. Laboratory. Metagenome samples were quantified and the 

libraries were prepared using the Illumina DNA Prep Kit (Illumina Inc., San Diego, CA, 

USA) using the manufacturer’s protocol. Libraries were sequenced on the NovaSeq-

6000 platform (2 x 150bp reads). Shotgun metagenomics generated an initial set of 

942 samples. The raw metagenomes generated by the Illumina sequencing were 

processed with Trim Galore (v. 0.6.6) with the following parameters: “--nextera --

stringency 5 --length 75 --nextseq 20 --max_n 2 --trim-n --dont_gzip --no_report_file -

-suppress_warn”. Human and bacteriophage phiX174 DNA (Illumina spike-in) was 

then removed using BowTie2 [213] (v. 2.3.4.3) by mapping the reads against the 

corresponding reference genomes. We used MetaPhlAn [214] (v. 4) for the taxonomic 
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characterization of the sampled microbial community and by setting “--stat_q 0.2”. We 

used HUMAnN 2.0 [215] for the metabolic potential of the microbiome. HUMAnN 2.0 

is a pipeline for efficiently and accurately profiling the presence/absence and 

abundance of microbial pathways in a community from metagenomic or 

metatranscriptomic sequencing data (typically millions of short DNA/RNA reads). This 

process, referred to as functional profiling, aims to describe the metabolic potential of 

a microbial community and its members.  

 

4.2.2 Evaluate sex as a possible confounding factor 

Differences in eating habits between the two sexes, already identified in chapter 3, 

may act as a possible confounding factor in the subsequent analyses. To avoid 

possible distorting effects, we searched for differences between microbiome 

composition and microbiome metabolic potential between the two sexes using two 

different approaches: i) PCoA ordination technique for Multivariate analysis using the 

python package skbio.stats.ordination.pcoa on the Euclidean distance matrix 

computed among samples; ii) PERMANOVA test using the python module 

skbio.stats.distance.permanova on the Euclidean distances matrix and by considering 

999 permutations.  

 

4.2.3 Computing correlations between dietary data and oral 

microbiome 

We identified associations between frequencies of food consumption and the 

microbiome composition/metabolic potential of healthy subjects by computing 

Pearson correlation coefficients between them. We adjusted the p-values with FDR 

for multiple hypothesis testing using the python module 

statsmodels.stats.multitest.fdrcorrection. Q-values < 0.05 identified statistically 

significant variables. We considered only food frequencies since, as already 

demonstrated in gut microbiome analyses, is more the frequency and occurrence of 

external factors to affect microbial composition more than the magnitude of such 

external factors [216,217]. For food frequency data we considered multicollinearity-

corrected data using VIF < 10. In terms of microbiome data, correlations were 

computed by considering taxonomic profiles generated by MetaPhlAn as well function 

profiles generate by HUMAnN as described in the previous paragraph. 
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4.3 Results 

 

4.3.1 Oral microbiome composition is not linked with multiple host 

characteristics 

We considered a subset of the 451 subjects involved in the analysis presented in 

Chapter 3, for which we acquired the oral plaque microbiome through shotgun 

metagenomics. More specifically, we considered 121 subjects, all belonging to the 

“healthy” category, to have their characterization in terms of microbiome composition 

(generated by the MetaPhlAn tool) and functional potential (generated by the 

HuMANN tool). 

In the first set of analyses, we evaluated to which extent microbiome composition could 

be linked to host characteristics. We performed clustering analysis and generated the 

heatmap representing the 50 microbial species having higher mean abundance across 

samples (Fig 4.1). We overimposed metadata information in terms of different host 

characteristics (i.e., subject sex, BMI, HDI score, and MIDI score) and no particular 

patterns were found. No particular patterns were verified clustering was shown 

between patients identified by different characteristics. 
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Fig 4.1 Taxonomic profiles generated from oral plaque microbiomes associated 

with 121 healthy subjects. The heatmap shows the relative abundances generated 

by MetaPhlAn for the 50 most abundant species across the samples. The left-most 

colorbar identifies the sex of the subjects; the three right-most colorbars indicate 

different dietary related features (i.e., BMI, HDI score, MIDI score).  
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4.3.2 Plaque microbiome does not differ for composition and metabolic 

potential in function of the sex 

Given our findings that associated dietary patterns with the sex of the subjects involved 

in the study, we evaluated to which extent the composition of the plaque microbiome 

may be driven by the sex. Ordination analysis based on PCoA on taxonomic 

composition (Fig 4.2 A) and metabolic potential (Fig 4.2 B) did not show any 

differentiation among male and female subjects. These results were confirmed by 

PERMANOVA tests (p-value > 0.05 for both taxonomic and functional profiles). The 

absence of differences in microbiome encountered between the two sexes gives us a 

hint on the uncorrelated nature of dietary habits (that resulted different between the 

two sexes) and sub gingival plaque oral microbiome (that does not show any difference 

between the two sexes). 

 

 

 
Fig 4.2 PCoA on (A) taxonomic and (B) metabolic profiles generated by shotgun 

metagenomes and coloured by sex of the subjects Results are obtained by 

considering Euclidean distance. 
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4.3.3 Sugary foods are main drivers of acidophilic pathogenic microbial 

species  

We evaluated effects of the variation in frequencies of food consumption on the oral 

plaque microbiome composition by computing the Pearson correlation. We identified 

48 microbial species correlated in a significant way with a set of frequencies of food 

consumption (Table 4.1). Among them, we identified multiple species that were 

already reported in the Potentially pathogenic microbial species include i) Bulleidia 

extructa a gram-positive, anaerobic and non-spore-forming bacterium, already 

identified as an etiological factor of the periodontal diseases, dental caries and dental 

abscess  [218,219] correlated with the frequencies of consumption of wine; ii) 

Campylobacter spp. a gram-negative microaerophilic genus of bacteria, identified in 

literature as a possible cause of periodontitis[220], correlated with the frequency of 

consumption of citrus fruit; iii) Capnocytophaga spp. A gram-negative, CO2 dependant 

microbial genus; it is a typical species of oral microbiome with opportunistic pathogenic 

role in periodontal diseases [221] correlated with the frequencies of consumption of 

beef and sugary beverages; iv) Fusobacterium nucleatum a Gram negative, anaerobic 

oral bacterium identified as involved in the pathogenic process of the periodontitis and 

the peri-implantitis [31,222] resulted correlated with the frequency of consumption of 

chocolate and candies and with the frequency of consumption of wholemeal cereals; 

v) Leptotrichia spp. recognized in literature as a genera associated with a large set of 

oral diseases such as peri-implantitis, gingivitis, halitosis, and oral cancer [223,224] 

correlated with the frequencies of consumption of chocolate and candies, breakfast 

cereals, salty biscuits and cracker; vi) Oribacterium spp. A gram-positive strictly 

anaerobic microbial genera identified in literature as involved in caries pathogenic 

process [225] resulted correlated with the frequencies of consumption of sweets; vii) 

Prevotella spp. A gram-negative, anaerobic microbial genera identified in literature as 

etiological agent of peri-implant diseases [31] and as an indicator of general poor oral 

health [226] resulted correlated with the frequencies of consumption of mutton meat, 

pizza, sweets, fruit and spirits; viii) Selenomonas spp. A gram-negative anaerobic 

microbial genera recognized in literature as associated with Fusobacterium spp. in the 

pathogenic process of periodontal diseases[227] resulted correlated with the 

frequency of consumption butter, milk, sweets and vegetables oils not coming from 

olives; ix) Treponema lecithinolyticum a gram negative, facultative anaerobe microbial 
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species identified in literature as etiological agent of peri-implant diseases [31] and 

endodontic infections [228] resulted correlated with the frequency of consumption of 

sugary beverages. All the statistically significant associations were characterised by a 

positive correlation coefficient meaning that an increase in frequencies of food 

consumption are associated with an increase of the relative abundance of the involved 

species. The majority of frequencies of food consumption showing statistically 

significant associations with potentially pathogenic microbial species are relative to 

sources of simple fermentescible carbohydrates. This is in agreement with findings 

that showed how frequent consumption of fermentable carbohydrates could be one of 

the causes of the development of dental caries, driving the plaque ecology towards a 

state of dysbiosis [65,72,73]. The fermentation of the carbohydrates by the oral 

microbiota led to the formation of organic acids that can lower the oral pH if the buffer 

effect of the saliva is overwhelmed, creating a selective push for the acid tolerant 

bacteria involved in the cariogenic process [74]. However, a rise in the saliva pH may 

not necessarily be safe for oral health harbouring several periodontitis-assorted 

species as described in [225]. This suggest how probably there is not a favourable 

general condition to maintain an healthy oral microbiome and that a varied diet rich in 

vegetables could maintain a balance in the pH of saliva also thanks to the provision of 

dietary nitrate able to contrast an acid shifting of the saliva pH [229,230], exerting 

control power on the develop of potentially pathogenic species[231]. The lack of 

information about saliva pH did not allow us to go further in this direction. Moreover, 

the source of our microbiological sample (i.e., the subgingival plaque) represented a 

different biological niche than the saliva and to date few studies focused on the sub 

gingival plaque microbiome have tried to link their composition with the dietary patterns 

[232,233]. 

 

  



 

  92 

Table 4.1 Correlation coefficients between frequencies of food consumption and 

oral plaque microbiome composition. Coefficients are computed through Pearson 

correlation. P-values are FDR corrected. Only statistically significant correlation (Q-

value <= 0.05) are reported.  

Frequencies Species 
Correlation 
value p-value 

MIXED SALAD, MIXED VEGETABLES Actinobaculum_sp_oral_taxon_183_t__SGB15892 0.37 0.01 

VEAL Bifidobacterium_dentium_t__SGB17234 0.45 0.00 

WINE Bulleidia_extructa_t__SGB6820 0.32 0.05 

CITRUS FRUIT Campylobacter_gracilis_t__SGB19300 0.32 0.04 

SOUPS Campylobacter_rectus_t__SGB19315 0.34 0.03 

BEEF Capnocytophaga_sp_oral_taxon_338_t__SGB2478 0.43 0.00 

CARBONATED/SOFT/ISOTONIC 
DRINKS, DILUTED SYRUPS Capnocytophaga_sp_oral_taxon_338_t__SGB2478 0.44 0.00 

SOYA PRODUCTS Cardiobacterium_valvarum_t__SGB9416 0.34 0.03 

MILK Colibacter_massiliensis_t__SGB5869 0.34 0.03 

RABBIT (DOMESTIC) Cutibacterium_acnes_t__SGB16955 0.46 0.00 

GRAINS, WHOLEMEAL Fusobacterium_nucleatum_t__SGB6007 0.34 0.02 

CHOCOLATE, CANDY BARS, PASTE, 
CONFETTI/FLAKES Fusobacterium_nucleatum_t__SGB6011 0.33 0.04 

HORSE GGB12790_SGB19844_t__SGB19844 0.48 0.00 

SOUPS GGB12790_SGB19845_t__SGB19845 0.33 0.04 

FRUIT AND VEGETABLE JUICES Isoptericola_variabilis_t__SGB17153_group 0.40 0.00 

MIXED FRUITS Kytococcus_sedentarius_t__SGB17151 0.36 0.01 

PIZZA Kytococcus_sedentarius_t__SGB17151 0.45 0.00 

BREAD, WHOLEMEAL Lachnoanaerobaculum_sp_ICM7_t__SGB4494_group 0.37 0.01 

SOUPS Lachnoanaerobaculum_sp_ICM7_t__SGB4494_group 0.35 0.02 

SOYA PRODUCTS Lachnoanaerobaculum_sp_ICM7_t__SGB4494_group 0.34 0.02 

CONFECTIONERY NON CHOCOLATE Lancefieldella_parvula_t__SGB964 0.39 0.00 

CONFECTIONERY NON CHOCOLATE Lautropia_dentalis_t__SGB13164 0.42 0.00 

CHOCOLATE, CANDY BARS, PASTE, 
CONFETTI/FLAKES Leptotrichia_hongkongensis_t__SGB6059 0.35 0.02 

SALTY BISCUITS, APERITIF BISCUITS, 
CRACKERS,.. Leptotrichia_sp_oral_taxon_212_t__SGB6070_group 0.33 0.04 

CONFECTIONERY NON CHOCOLATE Leptotrichia_sp_oral_taxon_498_t__SGB6053 0.33 0.03 

BREAKFAST CEREALS Leptotrichia_wadei_t__SGB6055 0.35 0.02 

GRAINS, WHOLEMEAL Mycoplasma_salivarium_t__SGB5934 0.47 0.00 

TOMATOES-RAW Neisseria_subflava_t__SGB9450_group 0.38 0.01 

CONFECTIONERY NON CHOCOLATE Oribacterium_sp_oral_taxon_078_t__SGB7282 0.40 0.00 

RABBIT (DOMESTIC) Paraburkholderia_bryophila_t__SGB32753 0.33 0.04 

RABBIT (DOMESTIC) Paraburkholderia_fungorum_t__SGB13048 0.46 0.00 

CITRUS FRUIT Peptidiphaga_gingivicola_t__SGB15894 0.53 0.00 

ICE CREAM Peptidiphaga_gingivicola_t__SGB15894 0.38 0.01 

LEGUMES Porphyromonas_pasteri_t__SGB2043 0.37 0.01 

VEGETABLE OILS (NO OLIVE) Prevotella_baroniae_t__SGB1533 0.43 0.00 

MUTTON/LAMB Prevotella_intermedia_t__SGB1560 0.38 0.01 
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Frequencies Species Correlation 
value 

p-value 

PIZZA Prevotella_melaninogenica_t__SGB1552 0.35 0.02 

MIXED FRUITS Prevotella_oulorum_t__SGB1520 0.33 0.04 

CONFECTIONERY NON CHOCOLATE Prevotella_oulorum_t__SGB1520 0.35 0.02 

CITRUS FRUIT Prevotella_pleuritidis_t__SGB1526 0.37 0.01 

SPIRITS, BRANDY Prevotella_sp_oral_taxon_376_t__SGB21554 0.37 0.01 

BUTTER Selenomonas_artemidis_t__SGB5878 0.40 0.00 

CONFECTIONERY NON CHOCOLATE Selenomonas_flueggei_t__SGB5882 0.40 0.00 

VEGETABLE OILS (NO OLIVE) Selenomonas_sp_oral_taxon_126_t__SGB5888 0.53 0.00 

MILK Selenomonas_sp_oral_taxon_920_t__SGB25061 0.32 0.05 

PORK Shuttleworthia_satelles_t__SGB7281 0.32 0.05 

BREAKFAST CEREALS Streptococcus_anginosus_t__SGB8028_group 0.40 0.00 

OFFALS Streptococcus_anginosus_t__SGB8028_group 0.32 0.05 

RICE Streptococcus_constellatus_t__SGB8026 0.41 0.00 

MUSHROOMS Streptococcus_gordonii_t__SGB8053 0.41 0.00 

PROCESSED CHEESE Streptococcus_gordonii_t__SGB8053 0.53 0.00 

OFFALS Streptococcus_gordonii_t__SGB8053 0.36 0.01 

SNACKS Streptococcus_gordonii_t__SGB8053 0.37 0.01 

OTHER VEGETABLES Streptococcus_infantis_t__SGB8095 0.36 0.02 

CABBAGES Streptococcus_infantis_t__SGB8095 0.50 0.00 

FISH Streptococcus_infantis_t__SGB8095 0.33 0.04 

PROCESSED CHEESE Streptococcus_mitis_t__SGB8163 0.42 0.00 

HORSE Streptococcus_mitis_t__SGB8163 0.35 0.02 

OFFALS Streptococcus_mitis_t__SGB8163 0.34 0.02 

RABBIT (DOMESTIC) Streptococcus_salivarius_t__SGB8007_group 0.52 0.00 

FRUIT AND VEGETABLE JUICES Streptococcus_sanguinis_t__SGB8047 0.38 0.01 

RABBIT (DOMESTIC) Streptococcus_sp_A12_t__SGB8059_group 0.62 0.00 

SPIRITS, BRANDY Tannerella_sp_oral_taxon_808_t__SGB2047 0.42 0.00 

TOMATOES-COOKED Tannerella_sp_oral_taxon_HOT_286_t__SGB2048 0.33 0.04 

CARBONATED/SOFT/ISOTONIC 
DRINKS, DILUTED SYRUPS 

Treponema_lecithinolyticum_t__SGB3587 0.59 0.00 

SPIRITS, BRANDY Treponema_sp_OMZ_804_t__SGB3607 0.43 0.00 

  



 

  94 

4.3.4 Animal fats and sugary foods are associated with potential 

pathogenic metabolic pathways 

We extended the analysis on linking oral plaque microbiome and diet by finding 

associations with the potential microbial metabolic pathways. We found 22 microbial 

pathways that correlated in a statistically significant way to a set of frequencies of food 

consumption (Table 4.2). Pathways of interest among them are represented by: i) L-

ornithine biosynthesis I and L-arginine degradation XIII correlated with butter 

consumption already identified in literature as associated with Seolmonas spp. and 

involved in the production of malodorous gases characterising the halitosis, gingivitis 

and periodontitis diseases [234]; ii) L-arginine biosynthesis I, L-ornithine biosynthesis 

I and L-arginine degradation XIII correlated with sugary foods consumption and 

already identified in literature as one of the causes of defections in formation of 

Streptococcus spp. biofilm, useful to protect the teeth enamel and contrast the 

formation of caries and the appearance of periodontal diseases [235]; iii) (S)-propane-

1,2-diol degradation correlated with cereal consumption already identified as involved 

in the carbohydrates fermentation of oral pathogenic species such as Fusobacterium 

nucleatum  [236,237]; iv) heme b biosynthesis correlated with the consumption of lamb 

meat and already identified as involved in the iron metabolism of anaerobic species 

entangled in the pathogenic process of periodontal diseases [238–240]; v) other 

metabolic pathways correlated with frequencies of food consumption are 

characterised by an acidification of the substrate due to the release of organic acids 

as final products. Moreover, the selective push of the acidification of the saliva in 

favour of acidophilic bacteria is one of the main reasons for reduction of biodiversity in 

the oral microbiome, reducing the set of metabolic pathways expressed [14,241].  
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Table 4.2 Correlation coefficients between frequencies of food consumption and 

oral plaque microbiome metabolic potential. Coefficients are computed through 

Pearson correlation. P-values are FDR corrected. Only statistically significant 

correlation (Q-value <= 0.05) are reported. 
Frequency Pathway Correlation P value 

MUTTON/LAMB 1CMET2-PWY: folate transformations III (E. coli) 0.35 0.01 

CONFECTIONERY NON CHOCOLATE ARGSYN-PWY: L-arginine biosynthesis I (via L-ornithine) 0.44 0.00 

CONFECTIONERY NON CHOCOLATE ARGSYNBSUB-PWY: L-arginine biosynthesis II (acetyl cycle) 0.37 0.01 

BUTTER GLUTORN-PWY: L-ornithine biosynthesis I 0.32 0.04 

CONFECTIONERY NON CHOCOLATE GLUTORN-PWY: L-ornithine biosynthesis I 0.47 0.00 

PROCESSED CHEESE GLYCOLYSIS: glycolysis I (from glucose 6-phosphate) 0.35 0.01 

SNACKS GLYCOLYSIS: glycolysis I (from glucose 6-phosphate) 0.50 0.00 

BREAD HEME-BIOSYNTHESIS-II: heme b biosynthesis I (aerobic) 0.37 0.01 

MUTTON/LAMB HEME-BIOSYNTHESIS-II: heme b biosynthesis I (aerobic) 0.71 0.00 

CHICKEN, HEN HEME-BIOSYNTHESIS-II: heme b biosynthesis I (aerobic) 0.33 0.03 

PROCESSED MEAT HEME-BIOSYNTHESIS-II: heme b biosynthesis I (aerobic) 0.31 0.05 

CRUSTACEANS, MOLLUSCS HEME-BIOSYNTHESIS-II: heme b biosynthesis I (aerobic) 0.34 0.02 

OTHER ANIMAL FAT HEME-BIOSYNTHESIS-II: heme b biosynthesis I (aerobic) 0.51 0.00 

BREAD 
PHOSLIPSYN-PWY: superpathway of phospholipid biosynthesis I 
(bacteria) 0.32 0.03 

WINE 
PHOSLIPSYN-PWY: superpathway of phospholipid biosynthesis I 
(bacteria) 0.37 0.01 

MIXED SALAD, MIXED VEGETABLES PWY-2941: L-lysine biosynthesis II 0.49 0.00 

RICE PWY-2941: L-lysine biosynthesis II 0.33 0.03 

PROCESSED CHEESE PWY-3001: superpathway of L-isoleucine biosynthesis I 0.44 0.00 

PIZZA PWY-3001: superpathway of L-isoleucine biosynthesis I 0.32 0.04 

OTHER VEGETABLES PWY-5484: glycolysis II (from fructose 6-phosphate) 0.32 0.05 

SALTY BISCUITS, APERITIF BISCUITS, 
CRACKERS,.. PWY-5484: glycolysis II (from fructose 6-phosphate) 0.40 0.00 

FRUIT AND VEGETABLE JUICES PWY-5484: glycolysis II (from fructose 6-phosphate) 0.36 0.01 

BOUILLON PWY-5667: CDP-diacylglycerol biosynthesis I 0.39 0.00 

VEGETABLE OILS (NO OLIVE) PWY-5981: CDP-diacylglycerol biosynthesis III 0.46 0.00 

CONFECTIONERY NON CHOCOLATE PWY-6630: superpathway of L-tyrosine biosynthesis 0.40 0.00 

GRAINS, WHOLEMEAL PWY-7013: (S)-propane-1,2-diol degradation 0.44 0.00 

BUTTER PWY-7198: pyrimidine deoxyribonucleotides de novo biosynthesis IV 0.32 0.04 

SOYA PRODUCTS 
PWY-7282: 4-amino-2-methyl-5-diphosphomethylpyrimidine 
biosynthesis II 0.35 0.01 

VEAL 
PWY-7357: thiamine phosphate formation from pyrithiamine and 
oxythiamine (yeast) 0.31 0.05 

BUTTER PWY-8187: L-arginine degradation XIII (reductive Stickland reaction) 0.35 0.01 

CONFECTIONERY NON CHOCOLATE PWY-8187: L-arginine degradation XIII (reductive Stickland reaction) 0.36 0.01 

VEAL PWY-I9: L-cysteine biosynthesis VI (from L-methionine) 0.33 0.03 

SALTY BISCUITS, APERITIF BISCUITS, 
CRACKERS,.. PWY0-1296: purine ribonucleosides degradation 0.35 0.01 

PIZZA PWY0-1296: purine ribonucleosides degradation 0.32 0.04 

BOUILLON PWY0-1319: CDP-diacylglycerol biosynthesis II 0.37 0.01 
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Frequency Pathway Correlation P value 

CONFECTIONERY NON 
CHOCOLATE 

PWY0-162: superpathway of pyrimidine ribonucleotides de novo 
biosynthesis 

0.37 0.01 

CITRUS FRUIT THISYNARA-PWY: superpathway of thiamine diphosphate 
biosynthesis III (eukaryotes) 

0.33 0.03 
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4.3.5 Discussion 

This chapter provides one of the firsts diet-oral microbiome studies voted to the 

characterization of the sub gingival plaque microbiome composition and potential in 

association with daily dietary intakes, multiple measures of diet quality and different 

host characteristics. These associations were studied on a newly acquired cohort of 

peri-implant patients on the whole Italian territory. Despite the evidence found in 

literature about the different eating styles characterising the two different sexes[177–

179] and confirmed in the analysis carried on in chapter 3, microbiome did not differ 

between the two sexes in terms of composition and potential. The microbiome was 

particularly unrelated to dietary habits confirming the previous findings stating the oral 

microbiome resilience over different external stimuli [14,15,242]. 

Some already known pathogenic microbial species correlated with the frequencies of 

consumption of main sources of dietary carbohydrates. A high level of consumption of 

carbohydrates was already defined as one of the only external stimuli able to influence 

microbiome composition towards a dysbiosis state [14,184,241,243], enhancing 

acidification of the oral environment. An unbalanced eating style enriched in sugars 

and animal fat was correlated with the expression of some metabolic pathways related 

to some microbial species already identified as involved in the pathogenic process of 

some of the main oral diseases. Dietary habits were identified as not correlated with 

microbiome composition. However unbalanced dietary habits could be the main trigger 

to the disruption of the health-maintaining mechanisms that limit the effect of disease 

drivers including the complex set of metabolic and functional interrelationships that 

develop within dental biofilms and between biofilms and the host.   
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5  Conclusions 
In the present study, we conducted an analysis on a cohort of 451 Italian subjects for 

which there was available information about their dietary habits and their oral peri-

implant clinical conditions. We also collected the oral plaque microbiome for 121 of 

them. By applying different inferential statistics techniques, species-level taxonomic 

and functional profiling and machine-learning based classification approaches based 

on state-of-the-art methodologies we demonstrated that dietary habits are scarcely 

correlated with the presence of the peri-implant diseases and with the composition and 

metabolic potential of the oral microbiome. No further recommendation about a dietary 

regime useful to preserve good oral health can be done beyond those already present 

in literature about a “healthy” eating style [242,243].  

Due to COVID-19 spreading our experimental design changed ongoing during the 

sample collection phase. The collection of dietary data made by the administration of 

a validated FFQ questionnaire provided by EPIC, was planned as a supervised 

procedure. Patients should have answered the questionnaire questions with the 

supervision of the dental clinics involved in the study using a web platform 

implemented with a data capture system not allowing them to skip to the next question 

without an answer. The spreading of covid changed the experimental design, passing 

from a supervised web filling of the questionnaires to an unsupervised filling of a paper 

version of the questionnaire. The questionnaires were given to the patient at the 

moment of the recruitment by the clinic with the direction to fill it at home and deliver 

it back to the clinic at the first possible occasion. The lack of contextuality between the 

moment of the sampling and the filling of the questionnaire led to a high loss in 

observation due to the non-delivery of a large number of questionnaires. Moreover, 

the delivered questionnaires were characterised by large portions of unanswered 

questions. The questionnaires were inserted on the web platform after the delivery of 

the questionnaire without the availability of the patient. The logic of the web platform 

in which the questionnaires were inserted led to a large number of zeros across the 

three dietary datasets. This generated a large amount of noise on the dietary datasets 

and the loss of information. For these reasons together with the nature of the dietary 

data itself and the collection techniques, that generally relies on estimates made by 

the interviewed generating differences between the collected data and the observed 



 

  99 

daily dietary intake ranging from 4% to 400% [141], we were not able neither to identify 

the relationship between dietary habits and oral microbiome already identified in 

literature. 

 

Diet is a major lifestyle related risk factor. Dietary habits have been found correlated 

with incidence of cancer [244] and the dietary composition information has been useful 

to predict cardiovascular diseases risk [245]. It is largely demonstrated that 

fermentescible sugar consumption exert a selective push towards cariogenic species 

and acidification of the oral environment with consequent disruption of the dental 

enamel [136,185,186,246] and that dietary nitrite intakes along with right amount of 

protein assumption play a key role in protection versus periodontal diseases and 

carious lesions [247–252]. The absence of strong correlations between dietary habits 

and composition and metabolic potential of the microbiome could be also given by the 

low quality of the dietary data collected in our study. Moreover the specificity of the 

collection site for oral microbiome (subgingival plaque) characterised by high level of 

stability under external stimuli over time [253] this together with the resilience 

characterising oral microbiome [14,15] could have led to the under identification of 

statistical significant correlations. 

 

The growing attention of the scientific community towards oral microbiome as an 

indicator of the oral and systemic health status together with the always growing 

awareness of the complex interactions between microbiome, host and environment 

are playing a key role in moving the interest of the scientific community towards the 

characterisation of the microbiomes hosted in different biological niches of our body. 

The diet as a major lifestyle related risk factor is being taken into account in the 

characterisation of the interactions. The absence of information regarding the oral 

environment (e.g., oral pH, saliva iron concentration, and saliva nitrate content) 

together with low quality of the dietary data and the specificity of the sample site are a 

major limit to the results reached in this study. Moreover, recent approaches to the 

study of microbiome are considering nonlinear correlation as the best choice to 

investigate intermicrobiome correlations among taxas [254]. This kind of approach is 

promising for the identification of perturbations or changes in the interactions among 

microbiota within and between ecosystem(s) and could be helpful in the fulfilling of the 
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objectives of this work identifying new relationship between food consumption and 

microbiome composition. Further investigations in this direction are needed. 
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6 Supporting informations 
S2.1 Table. Summary of the 30 classification tasks derived from 16S rRNA 

datasets for casecontrol prediction. ASD: Autism spectrum disorder, CD: Crohn 

disease, CDI: Clostridium difficile infection, CIRR: Cirrhosis, MHE: Minimal hepatic 

encephalopathy, CRC: Colorectal cancer, EDD: enteric diarrheal disease, HIV: human 

immunodeficiency virus, NASH: non-alcoholic steatohepatitis, OB: obesity, PAR: 

Parkinson’s disease, PSA: psoriatic arthritis, RA: Rheumatoid arthritis, T1D: type-1 

diabetes, UC: ulcerative colitis. Non-CDI controls are patients with diarrhoea who 

tested negative for C. difficile infection. 

 

S2.2 Table. Results obtained from the classification process done on the 

shotgun datasets. Comparison in terms of AUC, AUPRC, F1, precision, recall 

between relative abundance and presence/absence profiles at different threshold 

levels. Results are obtained using RF classification at the species-level taxonomic 

resolution. 

 

S2.3 Table. Comparison in terms of AUC between relative abundance and 

presence/absence profiles with different classification algorithms (RF: Random 

Forest; Lasso; ENet: Elastic Net; LSVM: SVM with linear kernel; SVM: SVM with 

RBF kernel). 

 

S2.4 Table. Comparison in terms of AUC between our results (using RF 

classification on the relative abundance profiles) and the ones reported in the 

original publications. In most of the cases, different classifier algorithms and/or input 

features were used in the original analysis. Original papers that did not conduct a 

classification analysis are not included in this table. 

 

S2.5 Table. Results obtained from the classification process done on the 16s 

datasets. Comparison in terms of AUC, AUPRC, F1, precision, recall between relative 

abundance and presence/absence profiles at different threshold levels. Results are 

obtained using RF classification at the species-level taxonomic resolution. 
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S2.6 Table. P-values (after FDR correction) obtained by testing differences in 

abundance of each species between controls and cases. 

 

S2.7 Table. Number of statistically significant taxa (q< = 0.05) between cases 

and controls for each shotgun dataset and at varying input features (relative 

abundance vs presence/ absence profiles) and taxonomic level. 

 

S2.8 Table. Number of statistically significant taxa (q< = 0.05) between cases 

and controls for each 16s dataset and at varying input features (relative 

abundance vs presence/absence profiles). 

 

S2.9 Table. Results obtained on three selected shotgun datasets after rarefying 

metagenomes at 1M reads. Comparison in terms of AUC, F1, precision, recall, in 

addition to number of statistically significant taxa (q< = 0.05), between the results 

obtained classifying on the abundances matrix and the classification made on the 

presence/absence boolean matrix at different taxonomic levels (only at species level). 

 

S2.10 Table. Results obtained from the classification process done on the 

shotgun datasets. Comparison in terms of AUC between the results obtained 

classifying at different taxonomic resolution levels. The results are obtained using the 

RF classifier on the relative abundances matrixes 

 

S2.11 Table. Results obtained from the classification process done on the 

shotgun dataset. Comparison in terms of AUC, F1, precision, recall between the 

results obtained classifying on the abundances matrix and the classification made on 

the presence/absence boolean matrix at different taxonomic levels (species, genus, 

etc). 

 

S2.12 Table. Results obtained by the LODO classification for datasets 

associated with CRC. Comparison in terms of AUC obtained classifying thresholding 

the dataset at different levels and at different taxonomic levels 
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S2.13 Table. Comparison in terms of AUC, F1, precision, recall between the 

results obtained from different classifiers on the relative abundances matrix and 

on the presence absence boolean matrix (only at species level). 

 

S2.1 Fig. Classification accuracies are robust to degradation from species-level 

relative abundance to presence/absence profiles in shotgun datasets. 

Comparison in terms of AUC between presence/absence and relative abundance 

profiles for the 25 case-control shotgun datasets. 
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S2.2 Fig. AUC correlates well with AUPRC. Comparison in terms of classification 

accuracies between AUC (area under the curve) and AUPRC (area under the 

precision-recall curve) for the 25 case-control shotgun datasets and by considering 

relative abundance (in blue; Spearman correlation = 0.889) and presence/absence (in 

red; Spearman correlation = 0.918) profiles. 
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S2.3 Fig. Classification accuracies are robust to degradation from species-level 

relative abundance to presence/absence profiles in shotgun datasets. 

Comparison in terms of AUC between presence/absence and relative abundance 

profiles for the 25 case-control shotgun datasets by (A) thresholding at different 

relative abundance values (ranging from 0% to 0.1%), (B) changing taxonomic 

resolution (from species to order level), and (C) changing classification algorithm. 
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S2.4 Fig. Classification accuracies are robust to degradation from species-level 

relative abundance to presence/absence profiles in 16S rRNA datasets. 

Comparison in terms of AUC between presence/absence and relative abundance 

profiles for the 30 case-control 16 rRNA datasets. 
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S2.5 Fig. Number of differentially abundant species has weak correlation with 

the average number of reads. Each dot represents one of the 26 case-control 

shotgun studies. The number of statistically significant species is computed on relative 

abundance profiles. 
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S2.6 Fig. P-values associated with statistically significant species correlate well 

between relative abundance and presence/absence profiles. Each dot represents 

a different taxa (i.e., species) and we report only species significant in at least one of 

the two data types. Only datasets with at least ten data points are shown. 
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S2.7 Fig. Statistically significant taxa are consistent between relative abundance 

and presence/absence data on a per dataset basis. Heatmap generated on the p-

values (after FDR correction; p > 0.05 in grey) obtained by applying statistical tests on 

the case-control metagenomic datasets. Only the 18 datasets with at least one 

discriminative taxa are reported. Left-most colorbar identifies the taxonomic class of 

each taxa. The two right-most colorbars indicate the percentage of diseases for which 

the species resulted to be enriched in controls (in green) and in cases (in red). This 

percentage is computed on a per disease basis, when multiple datasets are available 

for the same disease, the taxa is considered significant when detected as significant 

in at least one dataset. 
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S2.8 Fig. Statistically significant taxa from relative abundance and 

presence/absence profiles did not disagree across datasets. We identified 

discrepancies between case-enriched and control-enriched taxa derived from relative 

abundance and presence/absence data in only 1.74% of the statistically significant 

features, which were coming from just 5 datasets. No taxa disagreed across datasets 
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S2.9 Fig. Degradation of relative abundance profiles has a limited impact on both 

CV and LODO classification. AUC scores using RF as back-end classifiers on 

species-level relative abundance and corresponding presence/absence profiles in CV 

and LODO settings. 



 

  112 

S2.10 Fig. RFs generally outperform other classifiers. Results on the 25 case-

control shotgun studies by considering different classification algorithms. Difference in 

AUC between RFs and other classification methods on (A) the relative abundance and 

(B) the presence/absence profiles. A positive value indicates that the comparison 

method outperforms RFs  
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S3.1 Fig. FFQ questionnaire used to collect dietary data. Fac-simile of the paper 

version of the questionnaire (in Italian) that we administered to the subjects involved 

in the study to collect dietary habit information. This is a version provided by EPIC and 

that we adjusted graphically. 

 

S3.2. Fig. Dietary habits report. Fac-simile of the dietary habits report provided to 

the subjects involved in the study that filled in the FFQ questionnaire. 
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