
TESI DI DOTTORATO

UNIVERSITÀ DEGLI STUDI DI NAPOLI “FEDERICO II”

DIPARTIMENTO DI INGEGNERIA ELETTRONICA
E DELLE TELECOMUNICAZIONI

DOTTORATO DI RICERCA IN
INGEGNERIA ELETTRONICA E DELLE TELECOMUNICAZIONI

RESOURCE SCHEDULING APPROACHES

FOR PERFORMANCE OPTIMIZATION IN

IOT-FOG NETWORKS

SAEED JAVANMARDI

Il Coordinatore del Corso di Dottorato Il Tutore

Ch.mo Prof. Daniele RICCIO Ch.mo Prof. Antonio PESCAPE

A. A. 2018–2022

“Hurray
Evviva evviva

Hurray.”

Acknowledgments

I’d like to express my heartfelt appreciation to Dr. Valerio Persico for his
constructive advice and assistance.

Saeed Javanmardi

v

Contents

Acknowledgments v

List of Figures ix

Introduction xi

1 FPFTS 1
1.1 Introduction . 1

1.1.1 Goal and contribution 2
1.2 Related work . 3
1.3 FPFTS: Fuzzy PSO Fog Task Scheduler 7

1.3.1 Architecture . 7
1.3.2 Problem Statement 7
1.3.3 Proposed Scheduler 9
1.3.4 Case Study: Smart City 15
1.3.5 Simulation Setup . 17
1.3.6 Problem Statement 18
1.3.7 Results . 22

1.4 Discussion . 29
1.5 Conclusions . 33

2 FUPE 35
2.1 Introduction . 36

2.1.1 Contribution of the paper 38
2.2 Related work . 39

2.2.1 Fog task scheduling approaches 40
2.2.2 TCP DDOS attack in IoT/SDN approaches 41
2.2.3 Security-aware fog task scheduling approaches 42
2.2.4 Evaluating of the background methods 42

vii

viii CONTENTS

2.3 Proposed approach . 45
2.3.1 Reference architecture 45
2.3.2 Problem statement and proposed solution 47
2.3.3 TRW-CB and Rate Limiting concepts 50
2.3.4 FUPE: proposed Security-aware Scheduler 52

2.4 Performance Evaluation . 63
2.4.1 Simulation Setup . 64
2.4.2 Experimental Results 66

2.5 Discussion . 72
2.6 Conclusions . 75

3 S-FOS 77
3.1 Introduction . 78

3.1.1 Motivation . 79
3.1.2 Contribution of the chapter 81

3.2 Related work . 82
3.2.1 DDOS and port-scanning attacks in IoT/SDN approaches 82
3.2.2 Fog task scheduling approaches 85
3.2.3 Security-aware fog task scheduling approaches 86
3.2.4 Evaluating of the background methods 88

3.3 Proposed approach . 89
3.3.1 Reference architecture 89
3.3.2 Problem Statement 91
3.3.3 The SDN switches and controllers functions 93
3.3.4 Anomaly Detection Approaches 93
3.3.5 S-FOS: the security-aware Scheduler 94

3.4 Performance Evaluations . 108
3.4.1 Simulation Setup . 108
3.4.2 Experimental Results 110

3.5 Discussion . 115
3.6 Conclusions . 118

Conclusion 121

A 123

List of Figures

1.1 Proposed architecture . 8
1.2 Fuzzy set parameters. 10
1.3 The sequence diagram of FPFTS activities. 14
1.4 An example of task arrival and assignment to fog devices. . . . 17
1.5 Mobility scenario. FD:= Fog Device. It consists of the delay-

tolerant applications (e.g., apps instantiated on each CCTV de-
vice) that are connected to Fog Gateway and delay-sensitive
apps which are directly connected to FDs. 19

1.6 Application loop delay in (ms) for a) VSOT applications, and
b) EEGBTG applications for various number of moved users
among FCFS, Delay-priority, and FPFTS algorithms. 24

1.7 Network utilization in (KBytes) for various number of moved
users among FCFS, Delay-priority, and FPFTS algorithms. . . 25

1.8 Application loop delay in (ms) for a) VSOT applications,
and b) EEGBTG applications for various bandwidth ranges in
(Kbps) among Delay-priority, FCFS and FPFTS algorithms. . 27

1.9 Total network usage in (KByte) for various bandwidth ranges
in (Kbps) among Delay-priority, FCFS and FPFTS algorithms. 28

1.10 Application loop delay in (ms) for a) VSOT applications and
b) EEGBTG applications for various latency ranges in (ms)
among Delay-priority, FCFS and FPFTS algorithms. 30

1.11 Total network usage in (KByte) for various latency ranges in
(ms) among Delay-priority, FCFS and FPFTS algorithms. . . . 31

2.1 The considered FUPE architecture. 46
2.2 Modules composing the proposed solution. 48
2.3 The sequence diagram of TRW-CB algorithm. 53
2.4 The sequence diagram of Rate limiting algorithm. 54
2.5 Fuzzy sets for security objective. 57

ix

x LIST OF FIGURES

2.6 Fuzzy sets for efficiency objective. 58
2.7 The comparison results for the first scenario in the presence of

different attack rates in (%). 67
2.8 The comparison results for the second scenario in the presence

of different number of fog devices. 69
2.9 The comparison results for the third scenario in the presence

of different number of jobs. 70
2.10 The comparison results for the required CPU and RAM com-

pared to the other solutions. 72

3.1 S-FOS architecture. 92
3.2 The sequence diagram of TRW-CB algorithm. 95
3.3 The sequence diagram of Rate limiting algorithm. 96
3.4 The sequence diagram of Entropy algorithm for TCP packets. . 97
3.5 The sequence diagram of Entropy algorithm for UDP packets. 98
3.6 Fuzzy sets . 101
3.7 The single-point crossover method (i.e., F = 8; numbers of

flows and R = 3; number of fog devices) 105
3.8 The mutation method . 106
3.9 The outcomes for various attack rates. 111
3.10 The outcomes for various fog devices. 112
3.11 The outcomes for various fog devices. 113
3.12 Hierarchical network information distribution architecture. . . 116

Introduction

T he Internet of Things (IoT) has emerged as one of the most notable
technologies in recent years for facilitating new interactions between

matters and humans in order to improve the quality of life. Because of the
rapid growth of IoT, the fog computing paradigm is emerging as an appealing
method for processing data from IoT networks. IoT networks run on inter-
mediate computing nodes within the fog, as well as real servers in cloud data
centers within the fog environment.

Fog computing, like IoT and SDN, is attracting a lot of attention. Between
the cloud data center and user, fog computing adds more fog nodes. user data
may be cached on the fog nodes, and cloud servers may offload duties to these
fog nodes. For numerous reasons, fog computing can be regarded a viable al-
ternative for IoT implementation. First, because the Internet of Things creates
vast amounts of sensor data, transferring it all to the cloud is impractical. The
fog devices can preprocess or aggregate sensor data before transmitting it to the
cloud because they are significantly closer to the IoT devices. This conserves
network bandwidth in the upstream direction. Second, because many IoT ser-
vices require immediate response, the cloud is unsuitable for such applications
due to substantial traffic delay. Some lightweight applications can be moved to
neighboring fog nodes in this circumstance, bringing computational resources
closer to IoT devices. This cuts down on processing time. Because both SDN
and fog nodes are relatively powerful nodes in a typical IoT deployment, they
are frequently coupled, which is a great approach to combine SDN with fog
computing features.

In IoT-Fog networks, the two most important metrics are security and effi-
ciency. The key factor determining IoT-Fog network performance is resource
management. Whereas application scheduling is important in fog computing
for managing resources, application scheduling is the ability to map applica-
tions to the appropriate resources in IoT-Fog networks. The application is the
user request that must be completed as soon as possible. Because fog comput-

xi

xii Introduction

ing uses heterogeneous and distributed resources, application scheduling be-
comes more complicated. To achieve an ideal solution, application scheduling
is an NP-hard problem that requires the use of effective application scheduling
strategies.

The ability of software-defined networking (SDN) to manage network
flows automatically and dynamically is impressive. Furthermore, SDN
switches and SDN controllers are typically powerful devices that can serve
as fog nodes at the same time. As a result, SDN appears to be a viable option
for detecting attacks in IoT-Fog networks. Accordingly, the combination of
SDN and IoT-Fog networks has drawn a lot of attention and has become very
popular. Network administrators have a significant problem managing such a
large number of connections. In addition, IoT objects generally have limited
resources. Both are computationally intensive security approaches that you
cannot use directly. Therefore, IoT devices must be protected with the support
of the network infrastructure. Traditional networks are no longer suitable for
IoT under such conditions, while SDN allows owners to automatically manage
the entire network in a flexible and dynamic way by providing many new fea-
tures such as network planning capability, centralized control, etc. Because of
these benefits, SDN has the potential to become the IoT’s future foundation.

Though employing SDN to construct IoT-Fog networks appears promising,
security concerns are unavoidable. Furthermore, because fog and SDN nodes
are frequently integrated, attackers may exploit vulnerabilities in fog nodes to
compromise the SDN switches/controller they manage. As a result, security
methods are required to better monitor and strengthen the security of SDN
infrastructure in IoT-Fog scenarios. Moreover, though the major goal of the
IoT-Fog network is to provide high performance for all applications, security
measures must be addressed as part of the IoT-Fog architecture to ensure the
Confidentiality, Integrity, and Authentication of all sorts of data.

For application scheduling, metaheuristic-based techniques have been
shown to achieve near-optimal solutions in a reasonable amount of time. We
present performance optimization methods for IoT-Fog environments based
on three popular metaheuristic techniques in this thesis: Particle Swarm Opti-
mization (PSO), Multi Objective Particle Swarm Optimization (MOPSO), and
Nondominated Sorting Genetic Algorithm (NSGA). The creation of a single
objective optimization that considers efficiency metrics is the topic of the first
portion of this thesis. In this part, we offer a new application scheduling tech-
nique in which a fuzzy based PSO algorithm allocates applications to fog re-
sources while striking a balance between application computing requirements

Introduction xiii

and fog resource attributes in its fitness function. Following that, we present
a multi-objective optimization approach that takes security and efficiency into
account by employing a MOPSO algorithm. Finally, we use an NSGA-III al-
gorithm to device a framework that consists of a security access control and
workflow scheduling mechanism that acts as a firewall to protect scheduling
services.

The outline of the thesis is the following:

Chapter 1 lays the groundwork for this thesis, which employs a single
objective optimization approach. In this chapter, we presented FPFTS
(Fuzzy PSO Task Scheduler), a task scheduler that takes advantage of the
benefits of fuzzy logic and PSO. When the FPFTS scheduler assigns a set
of application tasks, it reports the optimal fog devices for processing them
based on the fog devices’ and tasks’ attributes as defined by their fitness values.

Chapter 2 is a continuation of Chapter 1. In this chapter, we suggested
the FUPE approach for task scheduling in SDN-based IoT-fog networks, in
which fog devices are clustered into virtual organizations (each representing a
fog region) and connected via SDN switches. FUPE is a firewall that detects
and mitigates TCP DDOS attack by malicious IoT/fog devices. Furthermore,
by employing a MOPSO technique, it is possible to find a balance between
fog device security and efficiency.

Chapter 3 presents S-FoS, a secure workflow scheduling approach in
SDN-based IoT-Fog networks. To safeguard its scheduling services, S-FoS is
a firewall that identifies and mitigates malicious requests that perform TCP
DDOS, UDP DDOS, and port scanning attacks. It also employs NSGA-III
algorithm to strike a balance between load balancing and delay when selecting
the appropriate fog device.

Chapter 1

FPFTS

I
n the Internet of Things (IoT) scenario, the integration with cloud-based
solutions is of the utmost importance to address the shortcomings result-

ing from resource-constrained things that may fall short in terms of processing,
storing, and networking capabilities. Fog computing represents a more recent
paradigm that leverages the wide-spread geographical distribution of the com-
puting resources and extends the cloud computing paradigm to the edge of the
network, thus mitigating the issues affecting latency-sensitive applications and
enabling a new breed of applications and services. In this context, efficient
and effective resource management is critical, also considering the resource
limitations of local fog nodes with respect to centralized clouds. In this ar-
ticle, we present FPFTS, fog task scheduler that takes advantage of particle
swarm optimization and fuzzy theory, which leverages observations related
to application loop delay and network utilization. We evaluate FPFTS using
an IoT-based scenario simulated within iFogSim, by varying number of mov-
ing users, fog-device link bandwidth, and latency. Experimental results report
that FPFTS compared with first-come first-served (respectively, delay-priority)
allows to decrease delay-tolerant application loop delay by 85.79% (respec-
tively, 86.36%), delay sensitive application loop delay by 87.11% (respec-
tively, 86.61%), and network utilization by 80.37% (respectively, 82.09%),
on average.

1.1 Introduction

The proliferation of sensors, actuators, as well as hand-held devices connected
in a communicating-actuating network has generated the so-called Internet of

1

2 CHAPTER 1. FPFTS

Things (IoT), wherein smart objects blend seamlessly with the environment
around us, allowing the information to be shared across platforms to develop a
common operating picture [1]. To support the requirements of these resource-
constrained devices, the integration of IoT with the cloud paradigm is criti-
cal [2, 3]. Indeed, cloud computing is an enabler of the utmost importance,
providing the IoT devices with the means to gather, process, store, and dis-
tribute the huge amount of information generated by the IoT ecosystem. On
the other hand, the integration with cloud is not trivial. In fact, its inherent
performance and availability limitations [4, 5] make cloud support unsuitable
for specific classes of applications (e.g., real-time applications, gaming, med-
ical apps, etc.) [6, 7]. Although cloud providers are deploying more and more
capillary infrastructures closer to users’ access networks, cloud is proven to be
unsuitable for latency-sensitive applications whose performance is impacted
by cloud-network infrastructural shortcomings.

In order to mitigate cloud limitations, fog computing has been pro-
posed [8]. This paradigm extends cloud to the edge of the network, with
location awareness and low latency infrastructure, also to support mobility.
Accordingly, this allows to enable a new breed of streaming and real-time ap-
plications and services. Fog paradigm makes available nodes close to users to
provide computing resources to run applications or store significant amounts
of data. In detail, user-application requests generate a set of tasks that can be
run by fog devices. Fog task scheduling defines how to properly assign tasks
to the fog devices to satisfy the needs of the specific applications or to reduce
network utilization. In fact, while fog computing provides significant perfor-
mance benefits by design, it introduces resource constraints with respect to
the cloud paradigm and, therefore, the need for effective and efficient resource
management, that may results in even complex and sophisticated scheduling
strategies [9].

1.1.1 Goal and contribution

In this section, we propose FPFTS, a fog task scheduler in which we jointly
employ fuzzy logic in the fitness function of a particle-swarm optimization
(PSO) algorithm to improve its performance. Due to its suitability for global
searching and its guided randomness feature, PSO is expected perform well in
dynamic environments such as fog computing. Moreover, it has fewer param-
eters than either genetic algorithm or swarm intelligence. On the other hand, a
fuzzy optimization has some unique characteristics which make it an appropri-
ate choice for several control problems and suited for environments where the

1.2. RELATED WORK 3

settings are not precisely defined or previously unknown. By using Mamdani
fuzzy rules, we can make a relationship between some parameters by adding
priority to them[10].

This section presents a new approach to optimize the task scheduling prob-
lem in fog computing for both delay-sensitive and delay-tolerant applications.
The goal of the proposed approach is to optimally use fog resources such to
reduce network utilization and application loop delay. To this end, in our pro-
posal we simultaneously consider the computing features of the fog nodes such
as CPU processing capacity, RAM size, and bandwidth, together with the fea-
tures of the tasks such as CPU need, as similar approaches proved to be suitable
for task scheduling in previous works [11, 12]. Moreover, our proposed ap-
proach is designed to work with both delay-sensitive and delay-tolerant appli-
cations: FPFTS benefits from the information about the class each application
belongs to, to refine scheduling decisions in case of fog-layer overloading. We
use fuzzy logic in PSO considering the features of resources and tasks to solve
fog task scheduling problems without being trapped into a local minimum, and
optimally use the fog resources.

The contributions of this paper are as follows: (i) We design a new joint
meta-heuristic method called FPFTS combining PSO and Fuzzy methods to
tackle the fog task scheduling problem. (ii) We implement and test our method
taking into account an IoT-based case study and considering a three-layered
fog-computing architecture. (iii) We evaluate FPFTS leveraging iFogSim, a
widely adopted and well-known fog simulator. To this end, to test our proposal
we take into account both delay-tolerant and delay-sensitive applications. We
test FPFTS against First-Come First Served (FCFS) and Delay-Priority strate-
gies (which are classic methods in this area) by varying the number of users
benefiting from the fog services, as well as the characteristics of the network
infrastructure, in terms of the bandwidth and the latency of its links. The ob-
tained results show that our proposal outperforms FCFS and Delay Priority
approaches in terms of application loop delay and also network utilization. In
details, FPFTS improves by ≈ 86% application loop delay, on average, while
concerning network utilization, FPFTS improves this metric in by ≈ 81%, on
average.

1.2 Related work

In this section, we delineate the existing task scheduling algorithms applied in
the fog systems. Fog task scheduling approaches are divided into two cate-

4 CHAPTER 1. FPFTS

gories: dynamic algorithms and static algorithms. Dynamic strategies calcu-
late the task priorities during their execution, while static approaches assume
to have prior information about fog resources and tasks. Static scheduling
algorithms can be further divided into two main families: heuristic-based and
metaheuristic-based algorithms. To reduce the delay, heuristic algorithms may
return a sub-optimal resource allocation, but still proper to satisfy the users’
requests. Metaheuristic algorithms perform a random search to find a good so-
lution to an optimization scheduling problem [13]. In this section, we briefly
review the static heuristic-based and metaheuristic-based algorithms.

Concerning heuristic-based strategies, Bittencourt et al. [14] design a
mobility-aware fog application scheduling framework which uses application
classification and mobility of the clients as the nature of decision making.
They implement First Come-First Served (FCFS), concurrent strategy, and
Delay-priority as the scheduling algorithms of the framework. Afterwards,
Mahmud et al. [15] introduce a latency-sensitivity application task approach
that considers the different application delivery latency for fog applications.
Gill et al. [16] model a PSO-based resource management approach associating
with scheduling which is suitable for smart home IoT device. Zeng et al. [17]
present a fog-supported resource management framework which consists of a
three-step task scheduling and a task image placement algorithm to minimize
the application delay. The authors focus on computation time and task com-
putation. Hoang et al. [18] present a task scheduling approach called FBRC,
which assigns user tasks to fog-based regions and cloud data centers to mini-
mize the task execution time. The authors try to reduce the application delay
by using a heuristic algorithm. By using a heuristic algorithm, the authors try
to reduce the application delay.

For what concerns metaheuristic-based strategies, Sun et al. [19] present
a two-level task scheduling approach which consists of two steps. In the first
step, the algorithm finds the most proper fog device cluster, and after that it
finds the most proper fog device to execute the applications’ tasks. This ap-
proach implements an improved non-dominated sorting genetic algorithm II
(NSGA-II) to reduce the delay, execution time, and also increase scalability.
The algorithm designed by Bitam et al. [20] implements an optimization algo-
rithm inspired by bees swarm intelligence method which targets run-time tasks
and the allocated memory. Also, the algorithm presented by Luo et al. [21]
forms a fuzzy load balancing strategy associating with real-time scheduling.
Rafique et al. [22] describe a hybrid bio-inspired algorithm, which is a combi-
nation of modified PSO and modified cat swarm optimization (MCSO) named

1.2. RELATED WORK 5

MPSO. Their MPSO schedules the tasks among fog devices and manages the
availability of resources at the fog device level.
Overview on background methods and comparison with FPFTS. The men-
tioned works refer to various IoT scenarios. Moreover, two main strategies for
realizing collaboration among nodes can be identified:

peer-to-peer (P2P) and master-slave [23]. peer-to-peer (P2P) collabora-
tion among the fog devices is very common in fog computing infrastructure.
Through P2P collaboration, a fog device can use the processed output of the
other fog device. Moreover, fog devices can share virtual computing instances
between each other. In master-slave mode, a master fog device controls under-
lying slave fog devices such as processing load, resource management, data
flow, etc. [23]. All of the mentioned methods except the methods presented by
Bitam et al. [20], and Luo et al. [21] implement P2P as the nodal collaboration
strategy between the fog and IoT devices.

Regarding the nature of observations, differently from all of the mentioned
works, we analyze the computing features of resources and tasks altogether.
Therefore, for FCFS and delay-priority strategies [14], if fog devices do not
have free space capacity, they offload tasks to the cloud data center. They
consider availability and CPU capacity of fog node resources for the schedul-
ing. The presented algorithm by Mahmud et al. [15], is based on the placement
time and the percentage of task deadlines. The presented algorithm by Bitam et
al. [20], considers two computing criteria namely, time and the allocated mem-
ory needed by applications for the algorithm decision. The algorithm which
is presented by Luo et al. [21], considers task arrival time, task deadline time,
and task size metrics for their scheduling algorithm. The presented algorithm
by Gill et al. [16] uses various quality of service criteria such as response time,
energy, latency, and network bandwidth. The algorithm presented by Sun et
al. [19], considers the CPU performance and the battery lifetime, the resource
utilization of fog clusters, and also the distance between fog device clusters
and users for decision making. The algorithm presented by Zeng et al. [17],
considers task completion time as the main metric for decision making. Their
algorithm aims to minimize the computation latency of user requests. The al-
gorithm presented by Hoang et al. [18], considers the maximum delay as the
constraint condition to set the upper bound of delay which increases the com-
plexity of the algorithm. In their work, computation Time and transmission
time are the main parameters for making a scheduling decision. Finally, the
algorithm presented by Rafique et al. [22] considers the least loaded device as
a criterion of availability of resources for making a decision.

6 CHAPTER 1. FPFTS

In our proposed approach, differently from the works by Gill et al. [16]
and Rafique et al. [22] we use fuzzy theory in the PSO fitness function. These
works use some weights to prioritize the components of the PSO fitness func-
tion. In this paper—unlike the works by Sun et al. [19], Bitam et al. [20],
Zeng et al. [17], and Hoang et al. [18]—we use iFogSim for simulations and
testing on various metrics. Besides, unlike the works by Mahmud et al. [15],
Bitam et al. [20], and Gill et al. [16], FPFTS uses mobility-aware scenario in
performance evaluation. The algorithm presented by Sun et al. [19], considers
the distance between the fog resources and the service requester. They assume
considering the principle of proximity effects on application delay. It means
that for instance, if a fog device is far away from the requester, the applica-
tion delay will become high. The demerit of this strategy is that they do not
consider link bandwidth. Differently than this work, FPFTS considers link
bandwidth which is a more proper metric than the distance proximity param-
eter to reduce delay. Differently than the work by Zeng et al. [17], FPFTS
has low memory consumption. Differently than the work by Hoang et al. [18],
FPFTS has low time complexity and high efficiency in application processing
rate. Finally, unlike the works by Bitam et al. [20] and Luo et al. [21], in
FPFTS, we use the P2P structure for nodal collaboration.

Table 1.1 presents the comparison of existing task scheduling methods
compared with our proposed FPFTS strategy in summary.

Table 1.1: Comparison of existing scheduling approaches against FPFTS.
NC:= nodal collaboration; P2P:= peer-to-peer; M-s: master-slave; Ctr:= cen-
tralized; Adv.:= Advantages; Disadv.:= Disadvantages.

Refs. Algorithms Tool Observations NC Adv. Disadv.
[14] FCFS/Delay-priority iFogSim Resources availability and CPU capacity P2P + Considering movement based scheduling at cloudlet level - No consider fog device processing capacity

[15] Heuristic method iFogSim
Deployment time, deadline,

#fog node
P2P

+ latency-aware IoT application
+ Reducing the amount of deployment time
+ Deals with varying application

- No Real case study
- No Mobility

[20] Bees swarm C++ CPU execution time, Allocated memory M-s
+ Managing allocated memory
+ Low CPU execution time

- Only fog devices are used
- Static scheduling

[21] Fuzzy-NN iFogSim Arrival Time, Deadline Time, Task size M-s + Reliable real-time applications - High cost

[16] PSO iFogSim
Response time, energy,
latency, and network bandwidth

P2P + Optimizes energy, latency, response time and network bandwidth - No reliability assurance due to a simple fog device

[22] Hybrid MPSO iFogSim least loaded fog device P2P + Consider communication latency & computation latency - No network latency

[19] NSGA-II Matlab
CPU performance
Battery lifetime
Distance between clusters and users

P2P
+ Low application delay
+ high scalability

- High cost

[17] Heuristic-based algorithm Gurobi tool Task completion time P2P + Low computation complexity - High memory consumption

[18] Heuristic-based algorithm NA simulator
Computation time
Transmission time

P2P + Low latency rate
- Low efficiency in service processing rate
- High time complexity

FPFTS Hybrid (PSO-Fuzzy) iFogSim
CPU, RAM bandwidth of fog
devices and task CPU length

P2P
+ Mobility-aware scenario
+ Considering computing capacity of resources
+ Low application loop delay/network utilization

- Reliability relies on fog gateway fault tolerance

1.3. FPFTS: FUZZY PSO FOG TASK SCHEDULER 7

1.3 FPFTS: Fuzzy PSO Fog Task Scheduler

In this section, we describe our proposed scheduler called FPFTS. This sec-
tion presents the proposed architecture, the details of FPFTS, and the system
sequence diagram.

1.3.1 Architecture

In this work, we refer to a cloud-fog-device structure [24] which consists of
three layers. The front-end layer (device layer) consists of user devices (such
as smartphones, laptops, tablets, etc.). They run user applications and may
send requests to fog devices. The fog layer, which is composed by a set of fog
devices (i.e. servers), is located at the edge of the access network. It receives
and processes users’ requests. The cloud layer, which consists of one or more
cloud data center, provides virtually unlimited resources to execute the tasks
which are offloaded from the fog devices [25]. The architecture is presented
in Fig. 1.1. In our architecture, we employ decentralized broker management
strategy [26] for task scheduling. FPFTS runs in the broker (i.e. the fog gate-
way). However, based on different scenarios, the broker can be located in
either the cloud gateway or the fog gateway, or any other intermediate location
between the devices and the cloud. Changing the location of the broker may
impact the performance of the architecture, which in turn depends on network
performance.

According to our model, each fog region has its own fog gateway which is
responsible to coordinate the fog devices located in fog region. The broker is
a node which has the information of the fog devices. It is located between the
fog devices and the users, and acts like a portal for users applications. As for
the most of practical scenarios the cloud data center is far away from the users’
devices, in this work, firstly, FPFTS uses fog devices for task scheduling, and
only in case of fog device overloading, to overcome the fog devices computing
limitations, it offloads tasks to the cloud data center by using offloading agents.
These agents are located in fog devices.

1.3.2 Problem Statement

In this paper, we focus on the task scheduling problem which has to be effec-
tively and efficiently addressed in fog platforms, in order to distribute appli-
cation tasks among fog nodes. Task scheduling is a critical part in both cloud
and fog resource management which has significant effects on the performance

8 CHAPTER 1. FPFTS
C

lo
u
d

 L
ay

e
r

F
o

g
 L

ay
er

D
e
v
ic

e L
ay

er

Cloud Gateway

Fog Device

Fog Gateway

Edge

Core

End User Device

Fog Region

End User Device

Cloud Data Center

Figure 1.1: Proposed architecture

1.3. FPFTS: FUZZY PSO FOG TASK SCHEDULER 9

of the overall architecture [26]. The aim of task scheduling is assigning tasks
generated by users’ applications to resources available at the fog layer. Re-
source management strategies may also implement cloud data offloading so as
to overcome resource constraints (e.g., limited computational capacity at fog
nodes): in case of fog device overloading, cloud resources can be leveraged.

In more details, jobs generated by applications/services are decomposed
into a set of atomic tasks to be assigned to fog devices. If the tasks composing
a job are mutually independent, they can be executed on separate fog devices,
with no need of explicit synchronization [20].

The goal is to find the most adequate fog devices to run each application
task so as to have a proper outcome in terms of application loop delay and also
network utilization.

1.3.3 Proposed Scheduler

This subsection describes the presented approach, and the way it assigns ap-
plications’ tasks to the resources. FPFTS implements a bio-inspired approach
that uses fuzzy logic in the PSO fitness function for fog task scheduling.

When the scheduler assigns a set of applications’ tasks, it returns the most
adequate fog devices for executing them, based on both the characteristics of
the tasks and of the fog devices. In detail, FPFTS uses task CPU need, fog-
device processing capacity, fog-device RAM capacity, and fog-device band-
width as the input parameters of the fuzzy-based fitness function. In other
words, FPFTS considers the features of resources and tasks simultaneously.
This enables FPFTS to achieve a proper distribution of the task across devices
such to reduce network utilization and application loop delay.
Fuzzy Based Fitness Function. Most of the PSO-based schedulers use some
predefined weights to prioritize the parameters in the fitness function [16]. Us-
ing fuzzy logic is an efficient alternative. We use a Mamdani fuzzy inference
system to reap the benefits deriving from fuzzy logic in the prioritization of
parameters. Mamdani fuzzy inference engine is one of the common fuzzy
inference engines [27] which uses some fuzzy rules. These fuzzy rules can
be based on either former experience or some assumptions [28]. Concerning
Mamdani fuzzy inference engine, we define some overlapping fuzzy sets—
which make the input parameters possibly lie in several sets at the same time.
Accordingly, an input parameter can have more than one value with different
membership degrees. For example, an input parameter can be defined both as
low and medium with a different membership fitness value (that is a number
between 0 and 1 which is obtained via membership fitness functions). As a

10 CHAPTER 1. FPFTS

0 2000 4000 6000 8000 10000 12000 14000

Processing capacities

0

0.2

0.4

0.6

0.8

1

D
eg

re
e

of
 m

em
be

rs
hi

p LOW
MEDIUM
HIGH

(a) Processing capacities

2000 3000 4000 5000 6000 7000 8000 9000

Memory capacities

0

0.2

0.4

0.6

0.8

1

D
eg

re
e

of
 m

em
be

rs
hi

p LOW
MEDIUM
HIGH

(b) Memory capacities

0 0.5 1 1.5 2 2.5 3 3.5

Bandwidth 104

0

0.2

0.4

0.6

0.8

1

D
eg

re
e

of
 m

em
be

rs
hi

p LOW
MEDIUM
HIGH

(c) Bandwidth

0 500 1000 1500 2000 2500 3000 3500 4000

Task length

0

0.2

0.4

0.6

0.8

1

D
eg

re
e

of
 m

em
be

rs
hi

p LOW
MEDIUM
HIGH

(d) Task length

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Result

0

0.2

0.4

0.6

0.8

1

D
eg

re
e

of
 m

em
be

rs
hi

p LOW
MEDIUM
HIGH

(e) Result

Figure 1.2: Fuzzy set parameters.

consequence, the input parameters may trigger multiple fuzzy rules. As each
fuzzy rule is associated to a specific priority, it increases the degree of prior-
itization. For instance, for task CPU length parameter, a value equal to 1000
belongs to low, medium, high fuzzy sets with the membership value 0.8, 0.4,
and 0.2 respectively.

Figs. 1.2a, 1.2b, 1.2c and 1.2d report fuzzy sets for the fog device pro-
cessing capacities and RAM and bandwidth and task CPU length parameters,
respectively. Fig. 1.2e indicates the fuzzy set for the result parameter.

Table 1.2 reports the rules we used. Based on the input parameters of the
fitness function, the fuzzy inference engine triggers some of them. We refer
to them as the fired rules. These fuzzy rules are then integrated (creating a
fuzzy output graph). Finally, the the fuzzy inference engine defuzzifies this

1.3. FPFTS: FUZZY PSO FOG TASK SCHEDULER 11

fuzzy output into a numeric value via the cetroid method [28]. The obtained
value is the output of fitness function which determines the suitability degree
of resources for assigning them to the tasks.

Table 1.2: Mamdani fuzzy rules.

Computing Capacity Memory Bandwidth Task Length Result
Low Low Low Low High
Low Medium Medium Medium High
Medium High Low High Medium
Medium Low High Low Medium
High Medium Medium Medium High
High High Low High High
Medium medium High medium Medium
High Low Low High Low
High Medium Medium High medium

PSO Based Fog Task Scheduling Algorithm. In our approach we use the
PSO algorithm [29] to find a proper solution. Each particle is an instance in
the search space, and in this work we consider tasks as particles. To start this
algorithm, a population of particles is generated randomly. The position of the
particles (fog devices in this work) represents a potential solution. Each parti-
cle has a position vector and a velocity vector which determines the direction
of movements in the search space. The search space represents the fog regions
which contain fog devices. We define pbest and gbest as the best position for
each task and the best position for the tasks among group based on the fitness
value of all the tasks, respectively.

The PSO algorithm uses Eq. (1.1) for updating position vector, and
Eq. (1.2) for updating velocity vector.

Xi
k+1 = Xi

k + V i
k+1 (1.1)

V i+1
k = WkV

i
k + c1r1(pbest

i
k −Xi

k) + C2r2(gbest−Xk
i) (1.2)

C1 and C2 are the acceleration coefficients, and PSO considers them as
learning factors. Moreover, PSO uses r1 and r2 to control the randomness
of the particles movements in the search space. Besides, W is inertia weight
which indicates the balance between local and global search. This parameter
determines the repeat rate for finding the best solution. In FPFTS number
of iterations is equal in value to the number of fog devices so as to keep the

12 CHAPTER 1. FPFTS

computation time low. FPFTS improves the fitness value of the applications’
tasks in every generation. It rejects a new solution if its fitness value which is
calculated by the fuzzy-based fitness function is less than the current solution.
The final result is the best pbest value (i.e. gbest).

Algorithm 1 FPFTS: proposed algorithm.
INPUT: M , P , v
M: population size
ITE: Iteration number
P: population of particles
v: speed of each particle
OUTPUT: gbest
1: for i = 1 to ITE do

Initialize P [i] randomly
2: Initialize V [i] = 0;
3: pbest[i] = P [i]
4: F = ComputeF itness(P [i]);
5: gbest = best particle found in F ;
6: for i = 1 to M do
7: pbest[i] = F ;
8: end for
9: repeat

10: for i = 1 to M do
11: V [i] = W×V [i] = C1×rand1(pbest[i]−P [i]+C2×rand2(gbest[i]−P [i]);
12: update V [i]
13: Set W , C1 >= 0 and C2 >= 0;
14: P [i] = P [i] + V [i];
15: if a particle goes outside the predefined hypercube then
16: it is reintegrated to its boundaries;
17: end if
18: F = Computefitness(P [i]);
19: if new population is better then
20: pbest[i] = F ;
21: end if
22: gbest=Best particle found in P [i];
23: end for
24: until stopping criterion is satisfied
25: end for
26: return gbest

FPFTS Algorithm Alg. 1 Description. In Alg. 1, first, FPFTS determines
the initial positions and velocity for each particle in the search area randomly
(lines 1, and 2). We save the current solution in pbest (line 3). Then FPFTS
computes the fitness function for all particles (line 4), and we save it as the
best solution (line 5). Then, after defining the fitness value for all of the parti-

1.3. FPFTS: FUZZY PSO FOG TASK SCHEDULER 13

cles, FPFTS compares them, and if the fitness value of the current solution is
better than pbest, it replaces it with the pbest (lines 6 till 8). In FPFTS, Each
task’s movement is influenced by its best known position (pbest). Besides, it
is guided toward the best known positions (gbest) which are found by other
particles. To this end, FPFTS uses Eq. (1.1) and Eq. (1.2). FPFTS updates
gbest value by comparing the pbest value of the current iteration to the value
which is stored in the gbest, and if its satisfaction is more than gbest, the PSO
algorithm replaces it (lines 9 till 24). We repeat these steps to reach the max-
imum number of iterations (line 25). Finally, the updated gbest value is the
final solution and output of this algorithm (line 26).
FPFTS Process Diagram. Fig. 1.3 indicates the process diagram of the pre-
sented approach. In the beginning, users (devices such as smartphones or
cameras) send their requests (applications) to the nearest broker (fog gateway)
which is located in the fog layer and is responsible for task scheduling. FPFTS
instances are located in fog gateways which are responsible to decompose the
applications into a set of tasks, schedule the tasks, and assign the tasks to the
fog devices inside the fog regions. Fog devices execute the tasks, and in case
of fog device overloading, fog devices move tasks to the Cloud Data Cen-
ter which is located in the cloud layer (Cloud data offloading). Fog devices
and cloud data center execute the tasks. They send results to the instances of
FPFTS, and these instances send the results back to the users. When a fog de-
vice becomes overloaded, two different possible data offloading scenarios can
take place: fog device to fog device data offloading, and fog device to cloud
data center data offloading [30]. In this work, we only use fog device to cloud
data center data offloading. Task scheduling and task offloading are the major
parts of resource management approaches. Task schedulers need data offload-
ing to deal with system failure in case of fog device overloading [26]. In this
paper, we implement task scheduling unit and data offloading unit, separately.
In order to move tasks to the cloud data center, first, offloading agents sends
delay-tolerant applications to the cloud data center. Then, they offload delay-
sensitive applications to the cloud data center.
Space Complexity of FPFTS. For calculating the space complexity we con-
sider the space FPFTS instances require for task scheduling. We name this
parameter S, and we consider it (S parameter) in the computational complex-
ity formula. As a result, in general, the total space complexity of the FPFTS
is in order of O(S × (I × F × T)). For a small scale of networks, in which
there is only one fog region (there is only one instance of FPFTS), S param-
eter is 1, and as a result, the total space complexity of FPFTS is in order of

14 CHAPTER 1. FPFTS

Users Broker (FPFTS) Fog Devices Cloud Data-Centers

1-Send requests

2-Decompose requests

into tasks and schedule

them

3- Send tasks

4- Execute tasks

7- Execute tasks

6- Offload tasks to Cloud

Data Center

8- Send response

5- Check finished tasks

6- Send response6- Send response

8- Send response

Figure 1.3: The sequence diagram of FPFTS activities.

1.3. FPFTS: FUZZY PSO FOG TASK SCHEDULER 15

O(I × F × T). For a large scale of networks, in which there is one instance
of FPFTS in each fog region, S parameter is considered equal in value to the
number of fog regions.

1.3.4 Case Study: Smart City

In this subsection, we provide a simple smart-city case study to exemplify the
task scheduling strategies. The presence of IoT devices allows the monitoring
of different activities of the smart city system. In a smart city, improper task
scheduling strategy results in a high delay that is unacceptable to user satis-
faction. Using a proper task scheduling strategy, a significant number of smart
city requests can be performed by nearby Fog devices, resulting in lower delay
and much more user satisfaction [31]. In a smart city, some of the applications
are delay-sensitive while the others are delay-tolerant. For example, a set of
smart camera observations data is collected and saved so that we can prepare
a database about urban traffic. We consider data saving and retrieval activi-
ties as delay-tolerant applications because delay does not harm their results.
On the other hand, in some activities like online gaming, fast processing, and
low response times are required to generate real-time experience for users. We
consider these real-time interactions as delay-sensitive applications, as user
satisfaction is impacted by the delay user perceives. As there is no priority in
FCFS, this strategy assigns applications to the resources based on the arrival
time of the related requests. As this strategy is not oriented to preserve real-
timeliness, users may experiment with bad quality of experience in real-time
gaming. Suppose some online gaming and smart camera applications arrive at
the fog gateway, in this way, priority aware strategies (i.e., delay-priority and
FPFTS) first consider online gaming in both assigning tasks to the resources
and data offloading steps. After that, they consider smart camera applications
in both mentioned steps. These strategies enhance online gaming real-time
experience.

To give a better insight of various strategies, let T = {T1, T2, . . . , Tn}
and S = {S1, S2, . . . , Sn} be two sets of delay-tolerant and delay-sensitive
applications, respectively. We assume T1 and T2 arrive at time t1 and t2 to
the fog gateway, respectively. Besides, we assume S1 arrives at time t3 to the
fog gateway. Finally, we assume each of the applications has three tasks as
follows: T1(1), T1(2), T1(3), T2(1), T2(2), T2(3), S1(1), S1(2), T1(3). FCFS
strategy assigns applications’ tasks to the nearest fog device to the fog gate-
way with no priority based on their arrival time. It also does not consider
other fog devices in the fog region. Although S1 is a delay-sensitive applica-

16 CHAPTER 1. FPFTS

tion, this strategy does not consider it’s priority over T1 and T2. FCFS, first,
schedules T1 tasks and after that T2 tasks, and finally it schedules S1 tasks.
Accordingly, based on this strategy, the nearest fog device executes tasks as
follows: T1(1), T1(2), T1(3), T2(1), T2(2), T2(3), S1(1), S1(2), T1(3). In the
case of fog device overloading, it moves applications to the cloud data cen-
ter based on their arrival time. Suppose in the middle of T2(1) execution,
fog device overloads. Hence, this strategy moves the rest of the tasks to
the cloud data center as follows: T2(2), T2(3), S1(1), S1(2), T1(3). Delay-
priority strategy schedules applications based on their priority, but it does
not consider other fog devices. This strategy schedules T1 tasks, and after
that, it starts to schedule T2 tasks. Suppose in the middle of T2 tasks exe-
cution, S1 arrives at the fog gateway, and we require to schedule it. Since
it is a delay-sensitive application, fog device halts the execution of the rest
of T2 tasks and starts to execute the arrived delay-sensitive application tasks.
After executing S1 tasks, this strategy continues to execute the rest of T2

tasks. Hence, in this strategy, the nearest fog device executes tasks as follows:
T1(1), T1(2), T1(3), T2(1), S1(1), S1(2), T1(3), T2(2), T2(3).

For cloud data offloading, suppose in the middle of T2(1) execution,
fog device overloads; this strategy moves the rest of tasks to the cloud data
center as follow: S1(1), S1(2), T1(3), T2(2), T2(3). When it comes to the
FPFTS, unlike the delay-priority strategy, FPFTS considers all of the fog de-
vices in the same fog region for applications’ task scheduling. Like delay-
priority strategy, FPFTS considers application priority for both task schedul-
ing and cloud data center data offloading steps. Suppose there are two
fog devices in the fog region, FPFTS decomposes applications into a set of
tasks as follow: T1(1), T1(2), T1(3), T2(1), T2(2), T2(3), S1(1), S1(2), T1(3).
Suppose FPFTS makes the first fog device responsible for executing
T1(1), T1(2), T2(1), S1(1); suppose the first fog device is in the middle of ex-
ecuting T1(2); at this time FPFTS assigns T2(1) and S1(1) to the first fog
device. As the priority of S1(1) is higher than T2(1), the first fog device
execute it before T2(1). So, the first fog device execute the tasks as fol-
low: T1(1), T1(2), S1(1), T2(1). Suppose FPFTS makes the second fog de-
vice responsible for executing T1(3), T2(2), T2(3), S1(2), S1(3); suppose the
second fog device is in the middle of executing T2(2); at this time FPFTS
assigns T2(3), S1(2) and S1(3) to the second fog device. As the prior-
ity of S1(2), and S1(3) are higher than T2(3), it executes the tasks as fol-
low: T1(3), T2(2), S1(2), S1(3), T2(3). Suppose in the middle of executing
S1(2), the second fog device overloads; Offloading agent which is located

1.3. FPFTS: FUZZY PSO FOG TASK SCHEDULER 17

in the second fog device moves S1(3), and T2(3) to the cloud data center.
Fig.1.4illustrates tasks arrival and assignment to fog devices based on FCFS
strategy and priority-based strategy. Execution time is the time required by a
task for executing a fog device. We assume T1 comes at time 0, T2 comes at
time 3, and finally S1 comes at time 9 to the fog gateway.

Tasks Arrival times (ms) Execution time (ms) Priority

𝑇1(1) 0 1 2

𝑇1(2) 0 3 2

𝑇1(3) 0 2 2

𝑇2(1) 3 3 2

𝑇2(2) 3 2 2

𝑇2(3) 3 2 2

𝑆1(1) 9 3 1

𝑆1(2) 9 1 1

𝑆1(3) 9 1 1

𝑇1(1) 𝑇1(2) 𝑇1(3) 𝑇2(1) 𝑇2(2) 𝑇2(3) 𝑆1(1) 𝑆1(2) 𝑆1(3)

Priority-based strategy:

𝑇1(1) 𝑇1(2) 𝑇1(3) 𝑇2(1) 𝑆1(1) 𝑆1(2) 𝑆1(3) 𝑇2(2) 𝑇2(3)

FCFS strategy:

0

0 1 4 6 9 12 13 14 16 18

1 4 6 9 11 13 16 17 18

Figure 1.4: An example of task arrival and assignment to fog devices.

1.3.5 Simulation Setup

To analyze the performance of the FPFTS algorithm, we run the simulation
under the iFogSim testbed[32, 33]. Besides, we use JFuzzyLogic [34] for im-
plementing fuzzy-based fitness function of FPFTS. We evaluate the proposed
method via a city automation experiment case study [14] in which we reuse
delay tolerant and delay sensitive applications. For the former, we use a video
application video surveillance/object tracking (VSOT) application, and for the
latter, we use a game application (electroencephalography (EEG) tractor beam
game) or EEGTBG.

18 CHAPTER 1. FPFTS

Performance comparison. To evaluate the performance of the proposed
FPFTS, we compared it against First Come-First Served (FCFS) and Delay-
priority strategies[14]. In detail, FCFS is a classic method which is located
in the second fog device. In FCFS, the system schedules the tasks based on
their arrival time till the fog device becomes overloaded. When it becomes
overloaded it offloads the applications to the cloud data center. On the other
hand, Delay-priority strategy (which is located in the second fog device) first
schedules the delay sensitive applications. Then, it schedules the delay tolerant
applications. Besides, for cloud data offloading, delay sensitive applications
we consider more priorities for scheduling.
Mobility Scenario. In an urban mobility scenario, inside the Smart City
model, several mobile users move to other places. These mobile users send
delay-sensitive applications to fog resources. Initially, the delay-sensitive ap-
plications run on the nearest fog devices. We assume in a city center several
smart cameras run the delay-tolerant applications; we also assume a fog gate-
way is located in the city center. These smart cameras send delay-tolerant
applications to the fog gateway. Moreover, mobile users move to the city cen-
ter and send delay-sensitive applications to the fog gateway. We put the FPFTS
scheduler in the fog gateway. FPFTS schedules the tasks of applications that
arrive at the city center. Fig.1.5presents the mobility scenario.

1.3.6 Problem Statement

This scenario helps us to study the effects of different scheduling strategies for
a mobile scenario. We assume during rush hours, mobile users move towards
the city center. First, we consider application instances in the fog devices.
Then, we move the users from the fog devices outside the city center to the fog
devices inside the city center. Therefore, the fog devices outside the city cen-
ter become underutilized, while the fog devices inside the city center become
overloaded. To overcome this problem, When mobile users arrive at the city
center, they connect to the fog gateway and FPFTS assigns the incoming tasks
to the fog devices in the entire fog region. In this study, we locate the user in-
terface in the cloud data center, while the client and motion detector modules
in mobile devices are located in the device layer. Besides, we place the object
detector, object tracker, concentration calculator and coordinator in fog device
or cloud data center based on the scheduling strategy. Table 1.3 presents the
features of application modules.
Fog device setup and their communications. In this paper, we consider three
fog devices [14]. According to [14], the first fog device has a 5,000 millions

1.3. FPFTS: FUZZY PSO FOG TASK SCHEDULER 19

Figure 1.5: Mobility scenario. FD:= Fog Device. It consists of the delay-
tolerant applications (e.g., apps instantiated on each CCTV device) that are
connected to Fog Gateway and delay-sensitive apps which are directly con-
nected to FDs.

20 CHAPTER 1. FPFTS

Table 1.3: Maximum CPU requirements of the application modules in (MIPS).
OD:= Object Detector; MD:= Motion Detector; OT:= Object Tracker; UI:=
User Interface; CC:= Concentration Calculator; CO:= Coordinator.

VSOT EEGTBG
Module Name OD MD OT UI Client CC CO

Maximum CPU Requirements 550 300 300 200 200 350 100

of instructions per second (MIPS) computing capacity, 5,000 (GB) RAM, and
9,000 (Kbps) bandwidth. The second fog device has a 4,000 (MIPS) comput-
ing capacity, and 4,000 (GB) RAM, and 10,000 (Kbps) bandwidth. The third
fog device has a 5,000 (MIPS) computing capacity, and 5,000 (GB) RAM, and
11,000 (Kbps) bandwidth. The link latency between the cloud gateway and
cloud data center, fog devices and cloud gateway, fog gateway and second fog
device, fog gateway to the first/third fog device and devices connected to the
first/third fog device and fog gateway are 100 (ms), 4 (ms), 2 (ms), 12 (ms),
and 2 (ms), respectively. Table 1.4 indicates simulation setup of fog devices.

Table 1.4: Simulation setup for each fog device and cloud data center. CDC:=
Cloud Data Center.

Fog Devices CPU Capacity RAM Bandwidth Latency to cloud gateway
First 5,000 (MIPS) 5000 (GB) 9,000 (Kbps) 4 (ms)

Second 4,000 (MIPS) 4000 (GB) 10,000 (Kbps) 4 (ms)
Third 5,000 (MIPS) 5000 (GB) 11,000 (Kbps) 4 (ms)
CDC 44800 (MIPS) 40000 (GB) 10000 (Kbps) 100 (ms)

We select these fog devises for our experiments due to some reasons. First,
we set the CPU and RAM capacity of the first/third fog devices higher than the
second device to study the situation in which the second fog device becomes
overloaded and the others are getting underutilized. Second, we set the link
bandwidth of the first fog device lower than the second one. Also, we set
the link bandwidth of the third fog device higher than the second fog device.
The reason is that we want to study the effects of different fog devices links
bandwidth. It also causes fog devices features to be more different to each
other. The benefit of this configuration is to fire more Mamdani fuzzy rules in
PSO fitness function. Third, the delay of communication between the fog gate-
way to the first/third fog device and fog devices among each other are about 2
(ms) and 12 (ms), respectively. It is because of the case by moving from the
fog gateway to the first/third fog nodes it requires at least 2+4+4 (ms) which

1.3. FPFTS: FUZZY PSO FOG TASK SCHEDULER 21

equals 10 (ms) link latency. In other words, it takes 2 (ms) to communicate be-
tween fog gateway and second fog device, 4 (ms) for communication between
second fog device and cloud gateway, and finally takes 4 (ms) to communicate
between cloud gateway and second gateway. As these two links are only used
in FPFTS, to make the simulation setup comparable and fair, we set 12 (ms)
for these links latency.

Evaluation Metrics

To provide a comprehensive evaluations of our algorithm, we use the following
metrics:

• Application Loop Delay: There is a processing loop for running the tasks
of each application (here application is a collection of the same task types),
and the time for executing the application tasks is called the application loop
delay. As the application modules are in user devices, fog devices and cloud
data center, implementing a proper scheduling strategy reduces this metric.
Link latency, link bandwidth and also computing abilities of the resources
impact on the application loop delay.

• Network Utilization: It indicates total amount of data which are transmitted
in the links between network nodes. For calculating this parameter, we use
network latency between the devices that are the origin and the destination
of the requests multiplied by the size of the tasks. Task size is the file size
(in byte) of the task. Each task is characterized by two attributes as follow:
first, processing requirements which is defined as million instructions (MI);
second, the length of data encapsulated in the task. Task size is the length
of data encapsulated in each task. The network utilization is obtained as the
sum of the network usage generated by the requests which is sent during
the simulation time. Eq. (1.3) illustrates how iFogSim calculates network
utilization metric.

NetworkUtilization =

Requests∑
x=1

(Latency (milliseconds) ∗ TaskSize (byte))/

SimulationT ime (milliseconds)

(1.3)

22 CHAPTER 1. FPFTS

1.3.7 Results

In this section, we test our presented algorithm against Delay-priority and
FCFS methods over various moved users, variant of the bandwidth, and vari-
ous link latency.

Comparing methods based on number of users moved

This experiment indicates the mobility-aware scenario of performance evalua-
tion for various number of moved users (IoT tier) in the network. We assume
In the second fog device, there are 4 delay-tolerant applications. We also as-
sume 10 mobile delay-sensitive applications running on the first fog device and
10 mobile delay-sensitive applications running on the third fog device, move
one by one to the second fog device [14].

Loop delay vs.- number of users moved: Fig. 1.6a and Fig. 1.6b indicate
VSOT and EEGBTG applications loop delay for the FPFTS approach com-
pared task scheduling strategies based on the number of users moved from the
first/third fog device to the second fog device, respectively. Both FCFS and
Delay-priority implement a module merging mechanism in which all of the
same kinds of modules are scheduled in the same device. It means they can
not schedule the same kind of modules on different devices. From the arrival
of the second EEGBTG player till the 11th, Delay-priority has the highest de-
lay in the VSOT loop, while it has a low delay in EEGTBG loop. On the
contrary, FCFS has the highest delay in the EEGBTG loop, while it has a low
delay in the VSOT loop. When 12th EEGBTG player arrives, because second
fog device does not have enough processing capacity, the Delay-priority strat-
egy moves EEGTBG modules to the cloud data center and keeps the VSOT
modules in the second fog device. The reason for this behavior is that Delay-
priority schedules all the same kind modules in a specific device. It can not
keep some of the same kind of modules in the second fog device and move
the rest of them to the cloud data center. At this point, both FCFS and Delay-
priority have the same outcomes for both applications. From the arrival of 13th

EEGBTG player till the last one, both FCFS and Delay-priority have almost
the same results. Both these strategies, move the EEGBTG modules to the
cloud data center, while they keep the VSOT modules in the second fog de-
vice. As the bandwidth of the second fog device links is low for moving this
amount of data to the cloud data center, both applications loop are increased
dramatically. We study the effects of bandwidth on application loop delay in
the next experiments. Despite the fact that from the arrival of 13th EEGBTG

1.3. FPFTS: FUZZY PSO FOG TASK SCHEDULER 23

player to the last one, both the strategies keep object tracer and object detector
VSOT modules in the second fog device. Because user interface VSOT mod-
ules are located in cloud data center, it increases the VSOT application loop
delay. When it comes to FPFTS, As it uses the features of resources and tasks,
it has good results in both application loops. Error bar is a representation of
the variability of data and used on graphs to show the uncertainty in a reported
measurement. As FPFTS uses the randomness features of the PSO algorithm,
we run the FPFTS on average 10 times, for several users moved variable val-
ues from 0 to 20. We observed from the arrival of 10th EEGBTG player to
the last one, it moves modules to the cloud data center, on average, about 10%
of simulator running, which causes having a more standard deviation. To put
it another way, because of the randomness features of PSO, for each number
of users moved, FPFTS requires a simulator to run in different numbers to of-
fload modules to the cloud data center. On average, it takes one time Cloud
data offloading process per 10 times running the simulator.

Network utilization vs.- number of users moved: In Fig. 1.7, we present
network utilization among the scheduling algorithms. As FPFTS has the least
amount of data transmitted to the cloud data center, it has a reasonable out-
come for network utilization. In other words, FPFTS transmits more data in
the second layer (fog layer) rather than the first layer (Cloud layer), decreas-
ing the network utilization. Focusing on FCFS and Delay-priority methods,
these approaches could schedule tasks either in the second fog device or cloud
data center, without considering the another fog device, hence, they increase
network utilization. Also, when number of moved users≥ 2, FCFS algorithm
moves the EEGBTG modules to the cloud data center. Hence, it increases the
network utilization gradually. Moreover, from the arrival of the third EEGBTG
player to the 11th moved user, Delay-priority strategy has a high total network
usage. The reason is that it moves the VSOT modules to the cloud data center
and raises the network usage in this algorithm. Finally, from the arrival of the
12th EEGBTG user to the last one (20th moved user), it keeps objecttracker
and objectdetector VSOT modules in the second fog device, it has the same
results as FCFS.

Precisely, when the second EEGBTG application arrives, the Delay-
priority method moves four objecttracker of VSOT application modules to
the cloud data center. Then, by entering the third VSOT application until
the 11th one, it maintains four objecttracker and four objectdetector VSOT
application modules in cloud data center. Moreover, by arriving at the 9th

EEGTBG application until the 11th one, because of the limitation in second

24 CHAPTER 1. FPFTS

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

D
el

ay
 (

m
s)

Number of users moved

FCFS
Delay-priority

FPFTS

(a) VSOT application

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

D
el

ay
 (

m
s)

Number of users moved

FCFS
Delay-priority

FPFTS

(b) EEGBTG application

Figure 1.6: Application loop delay in (ms) for a) VSOT applications, and
b) EEGBTG applications for various number of moved users among FCFS,
Delay-priority, and FPFTS algorithms.

1.3. FPFTS: FUZZY PSO FOG TASK SCHEDULER 25

 0

 50000

 100000

 150000

 200000

 250000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
ot

al
 n

et
w

or
k

us
ag

e
(K

B
yt

e)

Number of users moved

FCFS
Delay-priority

FPFTS

Figure 1.7: Network utilization in (KBytes) for various number of moved users
among FCFS, Delay-priority, and FPFTS algorithms.

device computing capacity, schedules the concentrationcalculator modules
in the second fog device, and offloads coordinator modules to the cloud data
center. It results from having around 34,330 and 42,820 (KBytes) network
utilization by arriving the first and the second one respectively, and around
191,600 (KBytes) network utilization by arriving the third one till the 8th one.
Besides, the network utilization by arriving the 9th one till 11th one is around
210,700 (KBytes).

Comparing methods based on various bandwidth ranges

This experiment indicates the mobility-aware scenario of performance evalua-
tion for various fog bandwidth capacities. Bandwidth indicates the maximum
data transfer rate of network links. It shows how much data can be sent over
the links.

Application loop delay vs.- various bandwidth ranges: In this part, we
discuss the effects of bandwidth on application loop delay, which we detailed
in the following experiment. In this experiment, we move 20 users from the
first and third fog device to the second one. Fig. 1.8a and Fig. 1.8b indicate
how bandwidth effects on both VSOT and EEGBTG applications loop de-

26 CHAPTER 1. FPFTS

lay, respectively. By changing the second fog device link bandwidth from
10,000 to 20,000 (Kbps), both VSOT and EEGBTG applications loop de-
lay in both FCFS and Delay-priority strategies decrease significantly. The
reason is that 19 modules of concentrationcalculator and 19 modules of
connector(Coordinator) are offloaded to the cloud data center. Thus, in-
creasing the bandwidth causes to decrease the amount of time for moving them
to the cloud data center. When it comes to FPFTS, we can observe that the ef-
fects of bandwidth on FPFTS are much lower than other methods. As FPFTS
uses all fog devices, and only in case of fog device overloading it moves mod-
ules to the cloud data center, link bandwidth has the lowest effects on FPFTS.
It experienced a modest decrease in both VOST and EEGTBG loop delay.

Network utilization vs.- various bandwidth ranges: network utilization
indicates how much bandwidth is used in a specific time period. Thus, chang-
ing link bandwidth has a slight effect on network utilization. Fig. 1.9 indicates
how bandwidth variances influence on network utilization. From this figure we
conclude that there is a moderate rise for both FCFS and Delay-priority strate-
gies, while there is a very slight rise for FPFTS. We run the FPFTS on average
9 times for variable bandwidth values from 10,000 (Kbps) to 20,000 (Kbps).
Based on our observations, FPFTS could offload modules to the cloud data
center on average 11% of simulator running, which causes having a more stan-
dard deviation. To put it another way, because of the randomness features of
PSO, for each bandwidth value, FPFTS requires a simulator to run in different
numbers to offload modules to the cloud data center.

Comparing methods based on various link latency ranges

This experiment indicates the mobility-aware scenario of performance evalu-
ation for various link latency thresholds. Link latency shows the total amount
of time it takes to send data.

Application Loop delay vs.- various link latency ranges: In this exper-
iment, we consider a situation in which 20 users moved from the first and
third fog device to the second one. This experiment aims to study the effects
of changing fog device link latency on application loop delay. Besides, the
second fog device link bandwidth is 20,000 (KByte). In this way, Fig. 1.10a
and Fig. 1.10b illustrate the effects of link latency on both VSOT and EEG-
BTG applications loop delay, respectively. By arriving 20 users, both FCFS
and Delay-priority keep VSOT applications in the second fog device, and they
only move EEGTBG modules to the cloud data center. Considering this ex-
periment, we realize that changing link latency only affects on EEGTBG loop

1.3. FPFTS: FUZZY PSO FOG TASK SCHEDULER 27

 0

 500

 1000

 1500

 2000

 2500

10
00

0

11
00

0

12
00

0

13
00

0

14
00

0

15
00

0

16
00

0

17
00

0

18
00

0

19
00

0

20
00

0

D
el

ay
 (

m
s)

Bandwidth (kbps)

FCFS
Delay-priority

FPFTS

(a) VSOT application

 0

 500

 1000

 1500

 2000

 2500

 3000

10
00

0

11
00

0

12
00

0

13
00

0

14
00

0

15
00

0

16
00

0

17
00

0

18
00

0

19
00

0

20
00

0

D
el

ay
 (

m
s)

Bandwidth (kbps)

FCFS
Delay-priority

FPFTS

(b) EEGBTG application

Figure 1.8: Application loop delay in (ms) for a) VSOT applications, and b)
EEGBTG applications for various bandwidth ranges in (Kbps) among Delay-
priority, FCFS and FPFTS algorithms.

28 CHAPTER 1. FPFTS

 0

 50000

 100000

 150000

 200000

 250000

 300000

10
00

0

11
00

0

12
00

0

13
00

0

14
00

0

15
00

0

16
00

0

17
00

0

18
00

0

19
00

0

20
00

0

T
ot

al
 n

et
w

or
k

us
eg

e
(K

B
yt

es
)

Bandwidth (kbps)

FCFS
Delay-priority

FPFTS

Figure 1.9: Total network usage in (KByte) for various bandwidth ranges in
(Kbps) among Delay-priority, FCFS and FPFTS algorithms.

delay. The effect of a link latency from 4 (ms) to 10 (ms) on the EEGTBG
loop delay is almost negligible, while one from 10 (ms) to 50 (ms) has almost
a considerable effect. Moreover, a link latency ranging from 50 (ms) to 100
(ms), has a more considerable effect on the EEGTBG loop delay which then
sees almost a sharp increase. During this period (see link latency 4 (ms) to
100 (ms) in the figures), the VSOT application loop delay remains constant.
However, as FPFTS offloads modules to the cloud data center in case of fog
device overloading, changing latency has negligible effects on both VSOT and
EEGTBG loops delay for the proposed approach.

Network utilization vs.- various link latency ranges: Link latency has a
considerable effect on network utilization. In Fig. 1.11, we evaluate this matter
among the scheduling algorithms. In this figure, by arriving the 20th EEGTBG
user, both FCFS and Delay-priority algorithms move EEGBTG modules to
the cloud data center, so considerably raises the network utilization. On the
contrary, as FPFTS has the lowest amount of cloud data offloading, changing
link latency has the smallest effect on it, and it increases network utilization
marginally. We run FPFTS on average 16 times for variable link latency values
from 4 (ms) to 100 (ms). As a result, we observe that FPFTS offloads modules
to the cloud data center on average, 12.5% of simulator running, which causes

1.4. DISCUSSION 29

having a more standard deviation. It means for 16 times simulator running,
FPFTS offloads modules to the cloud data center two times. These twice cloud
data offloading processing selects a high application loop delay compared to
the fourteen times FPFTS used fog devices. As there is a huge difference
between them, standard deviation of the average of them are high. To put it
another way, because of the randomness features of PSO, for each link latency
value, FPFTS requires simulator to run in different numbers to offload modules
to the cloud data center. On average it takes twice Cloud data offloading per
16 times simulator running.

1.4 Discussion

The major reason for developing fog computing is to reduce delay, network
utilization, and amount of data transferred to the cloud data center for process-
ing. Resource management plays an essential role in achieving these goals.
The process of scheduling and allocating fog resources to users’ applications
is called resource management. Adopting proper task scheduling is the main
challenge of fog computing, which causes improving efficiency and also user
satisfaction. In this work, we consider application classification and user mo-
bility features for devising the proposed fog task scheduler. Based on the sce-
nario that we used, we only consider two types of user applications and sched-
uled them to run users’ requests. We argue that the task scheduler should strike
a balance between the mentioned two types of applications. It is of interest we
indicate that FPFTS can use in different scenarios by considering different
policies. We can place some instances of the FPFTS method to locally man-
age the service requests for various applications, which can enhance abilities
such as computing capacity, reliability, and availability in the network. In this
paper, we paid close attention to the user mobility, and the designed algorithm
mainly addresses the task scheduling on moving applications. The extended
case can consider local scheduling. FCFS and Delay-priority methods do not
consider the computing capacities of the other fog devices, and the difference
is that FCFS does not consider application classification while Delay-priority
does. We map and run the instances of applications which arrived at the first
and third fog device, respectively. We put one instance of FPFTS in the fog
gateway, which is close to the second fog device, and schedules the tasks to
all fog devices to use the computing capacities of fog layer resources in a fog
region. Only in case of fog device overloading, Offloading agents moves data
to the cloud data center. Although we used a small scale network scenario in

30 CHAPTER 1. FPFTS

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

4 10 20 50 100

D
el

ay
 (

m
s)

Latency (ms)

FCFS
Delay-priority

FPFTS

(a) VSOT application

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

4 10 20 50 100

D
el

ay
 (

m
s)

Latency (ms)

FCFS
Delay-priority

FPFTS

(b) EEGBTG application

Figure 1.10: Application loop delay in (ms) for a) VSOT applications and
b) EEGBTG applications for various latency ranges in (ms) among Delay-
priority, FCFS and FPFTS algorithms.

1.4. DISCUSSION 31

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

4 10 20 50 100

T
ot

al
 n

et
w

or
k

us
e

(K
B

yt
e)

Latency (ms)

FCFS
Delay-priority

FPFTS

Figure 1.11: Total network usage in (KByte) for various latency ranges in (ms)
among Delay-priority, FCFS and FPFTS algorithms.

the experiments, we argue that we can use FPFTS in large scale networks with
the aid of peer-to-peer (P2P) technology. P2P technology could utilize dis-
tributed systems like Web Operating Systems [35], Semantic P2P Grids [36],
Cloud environment [37], and also fog computing [38], and Internet of Things
environment [39]. It has two major benefits. First, FPFTS instances can col-
laborate to assign tasks to the fog devices in the other fog regions. Second, in
the case of fog device overloading, we can use a fog device to data offloading
either in the same fog region or in the different fog regions.

In this work, we only consider fog device to cloud data center data offload-
ing. The reason is that the resource capacities of the fog devices are much
lower than the cloud data center, and the approach requires checking the free
space of the other fog devices. It needs some suitable strategies indeed, which
causes the proposed method more complicated [30]. Moreover, VM live mi-
gration is another good approach to overcome the computational limitation of
the fog devices to improve the load balancing of the network. Because it con-
sumes a large number of CPU cycles and network bandwidth, it is considered
as a resource-intensive strategy. Even though it brings some advantages in
terms of load balancing, transparent mobility, pro-active fault tolerance, and
green computing, it requires sufficient network bandwidth capacity to move

32 CHAPTER 1. FPFTS

the virtual machines from one fog device to another [40]. If we consider fog
device to fog device data offloading, and VM live migration to the FPFTS, it
will be changed as follow: first, the scheduler should be aware of the real-
time changes in other fog devices and the links. It includes the changes in
the available computing capacities, links latency and the availability of links
bandwidth. The instances of the scheduler in different virtual organizations
should collaborate to find the best fog device for fog device to fog device data
offloading/VM live migration. Second, the instances of the scheduler should
decide which fog device is the most suitable target for data offloading/VM live
migration. This decision is made by the availability degree of the fog devices
computing capacity, link latency, and link bandwidth.

The IoT is the foundation of so many states of the art technologies. Adopt-
ing a better resource management strategy in relevant technologies increases
their performance and user satisfaction. For instance, the Industrial Internet
of Things (IIoT) [41] presents novel applications for powerful industrial sys-
tems. It is the implementation of IoT technology in manufacturing systems.
IoT enables interaction and cooperation of physical objects such as sensors,
machines, cars, buildings, and other items to reach specific goals in the indus-
try. Fog computing provides near user processing capability, which has a low
delay to actuators, sensors, and robots in the manufacturing industry. Besides,
as most of the time, industrial big data are unstructured, near user resources
perform the process they need before sending it to the cloud data center[42].
As IIoT machines must connect and communicate in a real-time manner, we
can use a proper fog task scheduling approach to reduce application delays.
To take another example, we can point to smart cities [43]. The smart city
uses different types of Internet of Things devices to collect data and then use
them to manage the resources and services efficiently. To do so, it requires re-
lated skills and the capacity to make the users satisfied. In IoT based smart
cities, the devices (street cameras for observation street traffic, sensors for
urban transportation systems, etc.) interconnect and communicate with each
other through a network infrastructure [44]. Smart surveillance’ is another us-
age of smart cities that provides the ability to monitor human activities. The
strength of real-time video analysis in surveillance applications is the necessity
of this goal [45]. To this end, adopting a proper fog task scheduling approach
decreases the network utilization and application loop delay. Cognitive IoT
(CIoT) is another example of the usage of IoT networks in relevant cutting-
edge technologies. Nowadays, so many healthcare, agriculture, environment
monitoring, and smart metering scenarios are implemented by using Cogni-

1.5. CONCLUSIONS 33

tive Networks (CNs) [46]. The CIoT is the combination of current IoT and
cognitive and cooperative mechanisms to achieve intelligence. Intelligence
sensing is a novel research field. We implement the Intelligence sensing infor-
mation to make people able to contribute data samples for CIoT captured by
sensors, which often performs by smartphones. As in CIoT, sensing informa-
tion shortages/absences results in loss of human life and social unrest, it needs
a sufficient fog resource management approach [47][48].

1.5 Conclusions

In this paper, we proposed FPFTS, a mobility-aware fog task scheduler de-
signed to efficiently assign IoT user’s tasks to fog devices. FPFTS considers
the computing capacity of the resources as well as user’s tasks requirements
as input parameters and implements an algorithm jointly based on PSO and
fuzzy theory to assign applications’ tasks to fog resources. We apply FPFTS
within an IoT based scenario. To evaluate the proposed approach, we assess
the performance of the FPFTS using the iFogSim simulator, considering dif-
ferent numbers of moved users and several configurations for fog-device link
bandwidth and link latency. Results show that FPFTS outperforms both FCFS
and delay-priority algorithm. Compared against the former, FPFTS improves
by 85.79% (resp. 87.11%) delay-tolerant (resp. delay-sensitive) application
loop delay and network utilization by 80.37%. On the other hand, FPFTS im-
proves the performance of delay-priority algorithm, in terms of delay-tolerant
application loop delay by 86.36%, delay-sensitive application loop delay by
86.61%, and network utilization by 82.09%.

Chapter 2

FUPE

F
og computing is a paradigm to overcome the cloud computing limita-
tions which provides low latency to the users’ applications for the In-

ternet of Things (IoT). Software-defined networking (SDN) is a practical net-
working infrastructure that provides a great capability in managing network
flows. SDN switches are powerful devices, which can be used as fog de-
vices/fog gateways simultaneously. Hence, fog devices are more vulnerable to
several attacks. DDoS is an abbreviation for Distributed Denial of Service, and
it refers to a method in which cybercriminals flood a network with so much ma-
licious traffic that it is unable to operate or communicate regularly. Motivated
by this, in this section, we apply SDN concepts to address TCP DDOS attacks
in IoT-Fog networks . We propose FUPE, a security-aware task scheduler in
IoT-fog networks. FUPE puts forward a fuzzy-based multi-objective particle
swarm Optimization approach to aggregate optimal computing resources and
providing a proper level of security protection into one synthetic objective to
find a single proper answer. We perform extensive simulations on IoT-based
scenario to show that the FUPE algorithm significantly outperforms state-of-
the-art algorithms. The simulation results indicate that, by varying the attack
rates, the number of fog devices, and the number of jobs, the average response
time of FUPE improved by 11% and 17%, and the network utilization of FUPE
improved by 10% and 22% in comparison with Genetic and Particle Swarm
Optimization algorithms, respectively.

35

36 CHAPTER 2. FUPE

2.1 Introduction

Recent advances in smart devices and communication technologies are fueling
the Internet of Things (IoT) paradigm [49], which is characterized by the per-
vasive presence around people of (interconnected and uniquely addressable)
things, able to measure and modify the environment and communicate with
each other. Accordingly, technology leaders, governments, and researchers are
putting serious efforts to develop solutions enabling wide IoT deployment in
order to support a variety of applications impacting a number of different sce-
narios (e.g. healthcare [7], industry 4.0 [50], smart home[16]). Often, resource-
constrained things are required to interact with service platforms in order to
benefit from their computation, storage, and networking capability on request.
While on the one hand referring to cloud services is the natural choice [2], on
the other hand, some classes of applications may suffer from the performance
figures that cloud platforms may guarantee in terms of provided QoS (e.g. due
to latency to reach far-away cloud data centers).

To address this issue, fog computing has been proposed [51], which pro-
vide the tools to mitigate cloud QoS shortcomings at the expenses of not having
available virtually infinite resources of cloud data centers. In fact, fog comput-
ing is a cutting edge solution, which leverages near-user (possibly cooperating)
edge devices (fog devices) rather than a single (far-away) cloud data center to
supply computing services to IoT applications. [23]. Hence, fog infrastruc-
tures allow for supporting IoT application requirements to reduce both delay
and network utilization [25]. Usually, cloud data centers still take part in com-
posing the overall fog architectures, but are accessed only in case of need (i.e.
when the fog nodes capabilities are not enough). In the context of fog com-
puting, resource management is a challenging issue to be considered. Task
scheduling is the major part of a resource management unit that aims to assign
a set of tasks to fog devices [52]. To this end, the task scheduler—possibly
located at different places in a fog architecture, such as fog gateways, fog de-
vices, cloud gateway or cloud data center—decompresses the jobs into a set of
(independent) tasks, and then it assigns them to the fog devices [26].

Besides their requirements in terms of QoS, IoT and related fog infras-
tructures are prone to security and privacy concerns due to the critical nature
of the contexts the applications are deployed in and the generated data (e.g.,
smart home, healthcare etc.). These concerns potentially derive from low-cost
hardware and software design choices of IoT devices (e.g. unsafe update mech-
anism, outdated component, etc.) or lack of adequate security protection [53].
Thus, malicious users have shifted the main target of daily-released malware,

2.1. INTRODUCTION 37

now pointing to infect IoT services and make them unavailable, leveraging the
manifold and significant weaknesses generated by the IoT context. IoT and
fog devices are both susceptible to be hacked by malicious users [54]. These
devices may be even incorporated in botnets, thus unwillingly participating
to the attack after they have been compromised [55] (e.g., taking part to Dis-
tributed Denial of Service TCP DDoS attacks which aim at disrupting targeted
server/service by overwhelming the target with a flood of malicious Internet
traffic [56]). As the Software-defined networking (SDN) provides flexible
network programmability and logically centralized control (through a global
view of the network), this paradigm is able to provide the tools for effectively
detecting and containing network security problems that recently is used in
IoT-fog networks [57]. Indeed, SDN represents a good fit for the fog envi-
ronment as fog devices and gateways have the capabilities to implement this
paradigm [58].

A possible solution to detect and mitigate TCP DDOS attack is using fire-
walls deployed at fog gateways. With the firewall filtering out malicious re-
quests, the scheduler can put away the attacker nodes. Firewalls filter the
traffic by using some predefined rules and act like a checkpoint. Firewalls
detect flood attacks in IoT-Fog networks by using different mechanisms such
as a predefined threshold, specifying port addresses, or defining rules to filter
protocols, ports, IP addresses, or network traffic. For instance, in a threshold-
based firewall if the number of TCP SYN exceeds 10 (the justification can
be applied), the firewall detects the node as an attacker. The major limitation
of threshold-based approaches is that they do not provide the sensitivity and
specificity required for precise classification. A threshold-based approach can
not distinguish the flash traffic (i.e., sudden traffic from a legitimate source
node to a particular destination node) from malicious traffic. Moreover, the
difference between 9 and 10 is very smidgen; but a threshold-based firewall de-
tects 9 as a benign request, and 10 as a malicious one. Threshold realization is
a classic technique for firewall malicious behavior detection. However, differ-
ent firewalls nowadays utilizes some cutting edge methods. Recent works on
cutting-edge firewall use hybrid techniques to mitigate malicious traffic using
pattern of machine learning models [59]. On the other side, they have several
gaps especially for real-time stream traffic applications. A typical method is to
use a regular scheduler plus a firewall. With the firewall filtering out malicious
requests, a regular scheduling algorithm can schedule the remaining benign
ones. While this approach is legitimate, in this section we investigate the fea-
sibility and the performance of an integrated solution to meet the requirements

38 CHAPTER 2. FUPE

of real-time applications. In detail, we make use of fuzzy logic capabilities
and consider security in the scheduler deployed at fog gateways. FUPE can be
implemented in firewalls as well.

In accordance with the context above, intelligent and efficient solutions are
required to detect and protect against TCP DDoS attacks in their IoT-fog net-
works [60]. However considering task scheduling efficiency and security poses
a non-trivial challenge to task scheduling algorithms [61] that are required to
strike a balance between these two distinct objectives. As fog environments
have dynamic features in which the characteristics of elements change con-
tinuously, techniques to jointly preserve trust and security in such dynamic
environments are required [62]. Since IoT-fog network provides a shared and
distributed infrastructure for the users, establishing security for the fog devices
must be considered during the scheduling process. Existing IoT scheduling al-
gorithms consider efficiency and disregard security concerns of resources. Re-
cently, more attention has been paid to security-aware IoT-fog task scheduling
algorithms. However, these studies did not touch TCP DDOS attacks issues.
Besides, as security and efficiency are considered separately in their frame-
works, these studies are not suitable for real-time applications. Motivated by
these challenges, in this section we integrate TCP DDoS attack detection tech-
niques in a scheduling algorithm. To the best of our knowledge, FUPE is
the first attempt to perform the security-aware task scheduling in IoT-fog net-
works considered TCP DDOS attack through a multi objective optimization
algorithm. FUPE finds the best place for users’ applications based on security
consideration and resource performance.

2.1.1 Contribution of the paper

In this section, we propose a security-aware task scheduler algorithm tailored
for IoT-fog networks called FUPE, which provides a proper security level.
This scheduler considers the dynamic behavior of distributed systems and
uses two trust degrees obtained from Threshold Random Walk with Credit-
Based connection rate-limiting (TRW-CB) and Rate Limiting algorithms—
i.e. one of the most prominent source-based attack mitigation strategies
available [63]—to deal with TCP DDoS attacks [64]. Our proposal jointly
merges security issues and task scheduling with the aid of multi-objective
PSO [65] and multi-criteria decision-making [66] algorithms. FUPE solves
multi-objective task scheduling problem to jointly maximize security and effi-
ciency of quality of services (QoS) such as delay in IoT-fog networks. It also
leverages SDN programmability and centralized network features to enforce

2.2. RELATED WORK 39

attack mitigation mechanisms against the TCP DDoS attacks: in case of de-
tection of requests from devices identified as malicious, the requests are not
taken into account. In other words, FUPE addresses security issues inside the
scheduler. More specifically, FUPE assigns the most suitable resources to the
tasks based on the current status of the resources and incoming tasks. FUPE
focuses on assigning applications’ tasks among fog devices, considering the
trustworthiness of fog devices, and users’ devices. Thus, FUPE strikes a bal-
ance between efficiency and security objectives.

We evaluate FUPE leveraging Matlab [20], a widely adopted and well-
known programming platform. To this end, we test FUPE against two well-
known metaheuristic approaches Genetic algorithm (GA) and particle swarm
optimization (PSO) strategies, by varying attack rates, number of fog devices,
and number of jobs. The obtained results indicate that our proposal outper-
forms GA and PSO approaches in terms of Response time, and network uti-
lization. In detail, FUPE improves by ≈ 14% Average Response time, ≈ 49%
Maximum Response time, while concerning network utilization, FUPE im-
proves this metric in by ≈ 16%, on average. Thus, the contributions of the
paper are listed below.

• The paper presents an architecture which integrates the SDN and Fog tech-
nology in the presence of the IoT services and tackles the TCP DDoS attacks.

• We design FUPE, a security-aware task scheduler algorithm, dealing with
TCP DDoS attack.

• FUPE combines fuzzy logic and a multi-objective particle swarm optimiza-
tion (MOPSO) algorithms supporting secure IoT task demands in the net-
work.

• FUPE uses Mamdani fuzzy inference system helping the scheduler using a
relationship between the metrics and priority of the IoT demands [67].

• FUPE implemented and tested on various scenarios and compared against
the state-of-the-art.

2.2 Related work

In this section, first, we list fog task scheduling approaches (Section 2.2.1).
Then, we explain the approaches focusing on TCP DDOS attack in IoT/SDN
networks (Section 2.2.2), and finally, we explain the security-aware fog task

40 CHAPTER 2. FUPE

scheduling algorithms (Section 2.2.3). In the end, Table 2.1 summarizes the
comparison of these categories.

2.2.1 Fog task scheduling approaches

In this subsection, we review some of the fog task scheduling algorithms. Bit-
tencourt et al. [14] put forward three scheduling approaches, namely concur-
rent, first-input first-output (FIFO) and delay priority in IoT-Fog network. In
all of these methods, the scheduling algorithms run in fog devices (FD) such
that when a new request arrives at the FD, the scheduler decides either runs
it on the FD or send it to the cloud data center. These algorithms utilize re-
source availability and CPU capacity for decision-making. They validate their
strategies in terms of application loop delay, network usage, and the num-
ber of applications moved to the cloud data center. Afterward, Mahmud et
al. [15] introduced a latency-aware application scheduling algorithm in FD
to assure deadline-satisfied service delivery for users’ demands. They use de-
ployment time, deadline, and some fog devices as the nature of observation and
reduces the applications’ service delivery latency. Similarly, Bitam et al.[20]
performed a bio-inspired method using the Bee life scheduling algorithm to
discover an optimal trade-off between CPU execution time and allocated mem-
ory of the users’ requests in an FD and provides low execution time.

Gill et al. [16] designed a task scheduling in FDs using particle swarm op-
timization (PSO) algorithm to mutually reduce network bandwidth, response
time, latency, and energy consumption. Most recently, the same authors of this
paper (i.e., FUPE) [68] proposed FPFTS, a meta-heuristic method merging
PSO and fuzzy methods to tackle the fog task scheduling problem. They im-
plement and test FPFTS on different scenarios like on various mobile devices
and FD characteristics when faced with various link delays. Nevertheless, none
of these approaches except FPFTS, mutually consider the FD and application
task characteristics to find efficient fog scheduling methods. The proposed
FUPE comparing with FPFTS has three main differences. First, FUPE uses
the remaining amount of RAM and CPU capacity for task scheduling. Sec-
ond, FUPE uses the trust degree of FDs and users’ devices for the scheduling
that enables it to select trustworthy devices in the exact time of utilizing the
devices. Third, FUPE imposes a balance between FDs’ trustworthiness and
efficiency with the aid of multi-objective PSO (MOPSO) features. Sun et al.
[19] devised a two-level application scheduling approach in fog-IoT networks
called RSS-IN. RSS-IN schedules the applications among the fog regions and
then performs scheduling within the same fog region. This approach achieved

2.2. RELATED WORK 41

proper stability and end-to-end delay through a non-dominated sorting genetic
algorithm (NSGA-II).

2.2.2 TCP DDOS attack in IoT/SDN approaches

In this part, several surveys summarize recent attack and defense techniques
targeting TCP DDoS attack, especially TCP DDOS attack in IoT and SDN [60,
69, 70]. In particular, Evmorfos et al. [71] designed a lightweight technique
to detect TCP DDOS attack in IoT network. To this end, the authors apply
the long-short-term-memory and the random neural network to develop the
predictive model mitigating TCP DDOS attack detection. In another work,
Kolias et al. [72] designed Mirai-like bots as the IoT-based TCP DDoS attacks
real examples. The Mirai is a malware that causes severe disruptions in the IoT
network services owing to its sophisticated spreading mechanism. Mirai uses
bot instances that attack the target computational resources with TCP DDOS
attack.

Some other related works mainly focus on TCP DDOS attack/defense in
the SDN network. For example, Yan et al. [73] proposed a TCP DDOS miti-
gation multi-level framework with the aid of SDN to control the Industrial IoT
network. To accamplish this, their method monitors the SDN gateways, gather
the network traffic data and detect the TCP DDoS attack. To confirm their
method, they evaluate it based on time-delay of normal users in the context
of no defense mechanisms is used, and in the context of the presence, SDN to
mitigate the attacks. Alternatively, Kumar et a. [74] proposed, SAFETY, an ap-
proach to detect and mitigate TCP DDOS attack in SDN networks. SAFETY
considers destination IP and a few attributes of TCP flags. The authors im-
plement SAFETY as a module in the Floodlight OpenFlow controller. Mo-
hammadi et al. [64] presented an approach to mitigate TCP DDOS attack in
SDN called SLICOTS. SLICOTS supervises the ongoing TCP connection at-
tempts and detects malicious hosts. It utilizes the programmability features of
the SDN to tackle the TCP DDOS attack. Later on, they [75] proposed, SYN-
Guard, a countermeasure approach to detect and prevent TCP DDOS attack
in an SDN network. They implement SYN-Guard as an extension module on
the SDN controller to monitor the incoming TCP connection attempts. SYN-
Guard is evaluated based on average response time. Recently, Zhou et al. [76]
developed a three-way approach to mitigate TCP DDOS attacks in industrial
IoT-fog networks. This approach considers the prevailing edge devices’ capac-
ities, such as local proxy servers, firewalls, IDS, etc. They take TCP DDOS at-
tacks into consideration in the implementation and show that their method has

42 CHAPTER 2. FUPE

a low detection time. In this paper, unlike the solutions above in this category,
FUPE aims to detect and mitigate TCP DDOS attack by mutually considering
malicious users’ devices and compromised fog devices in task scheduling. It
enhances the balanced task scheduling on available and benign FDs.

2.2.3 Security-aware fog task scheduling approaches

This part is devoted to summarize the fog task scheduling approaches consid-
ering security challenges. Sujana et al. [61] designed a platform that helps
to achieve convincing secure scheduling relying on a stochastic behavior of
workflow in cloud/fog environment. They emphasize direct trust and indirect
reputation metrics for task scheduling to preserve security in the cloud/fog.
This scheme assures that the assigned resource only retain the trusted VMs.
In their implementation, they consider a distinct security guaranteed level to
specify the percentage of security ratio for each VM. Also, they address vari-
ous related attacks, such as VM theft, VM escape, hyper jacking, data leakage
attacks. Besides, Daoud et al. [77] offered a security model for fog resource
management and task scheduling. Their security model integrates access con-
trol to ensure secure cooperation between diverse resources and tasks. The
scheduler assigns user tasks to the resources based on the trust degree of each
users’ devices and the availability of resources. They compute the trust degree
of users’ devices based on the behaviors of each user, and the access control
considers these degrees of trust to permit trustworthy users to access the FDs.

Lately, Auluck et al. [78] introduced a secure fog task scheduling algo-
rithm considering deadline and security constraints of IoT applications. This
algorithm assigns three security labels to the tasks as follow, namely private,
semi-private, and public. Similarly, it assigns three security labels to the re-
sources. The scheduler assigns tasks to the resources based on these labels and
the application deadline. It uses jobs deadlines, spare capacity available on the
resources and job privacy for assigning tasks to them. Unlike these methods,
in this study, FUPE uses the available amount of CPU and RAM space of FDs,
tasks CPU requirements, and also trust degree of devices altogether as the na-
ture of observations. In this way, the scheduler is aware of the current state of
resources’ trust degrees.

2.2.4 Evaluating of the background methods

FUPE, differently from the works by Gill et al. [16] and Li et al. [79], makes
use of fuzzy logic in the MOPSO fitness function. These works utilize the

2.2. RELATED WORK 43

weighted sum approach to prioritize the objectives in the PSO fitness function.
RSS-IN [19] takes the distance between the requester and the fog regions into
account. Unlike this work, FUPE considers link bandwidth to reduce response
time. In this paper, unlike our former work [68] in which we only considered
efficiency objective, we take security and efficiency objectives into considera-
tion. The works by Sujana et al. [61], Daoud et al. [77], Rjoub et al. [80], Li
et al. [79], and Auluck et al. [78] did not propose multi-objective optimiza-
tion solutions. These works proposed single objective optimization algorithms
for response time minimization with security constraints. They utilized opti-
mization models to define security levels for tasks and resources. Based on the
tasks’ security requirements, these algorithms assign resources to applications’
tasks. The work by Gill et al. [81] has presented a single-objective resource
management approach that offers self-protection against security attacks. Dif-
ferent from these works, FUPE utilizes a multi-objective algorithm. The work
by Bittencourt et al. [14] did not consider the processing capacities of the
other fog devices. Different from this work, FUPE considers the processing
capacities of the other fog devices in the same fog region. Unlike the work
by Mahmud et al. [15] which focused on reducing latency, FUPE main aim is
reducing latency and network congestion. Finally unlike the work by Bitam et
al. [20] that provides low scalability, FUPE makes use of the P2P structure for
nodal collaboration to provide high scalability.

The evaluated background methods in the mentioned works focus on var-
ious IoT scenarios except [81, 79, 80] which use cloud task schedulers. All
the mentioned works considered security issues except [14, 15, 20, 16, 68, 19],
which relied on the security unit. Although the works [78, 77, 61] have touched
the security challenges, they are susceptible to be downed by TCP DDOS at-
tack. Unlike all the mentioned works, FUPE integrates TCP DDoS attack
detection technique in a scheduling algorithm. This scheduler is more reliable
for Scheduling real-time applications. Considering security issues in the im-
plementation of task scheduler has two important advantages: first, it prevents
the computation of malicious requests which may lead to overload the fog re-
sources and as a consequence cause the starvation for benign requests. Second,
it allows giving priority to the requests from users exposing legitimate behav-
ior. Moreover, as FUPE utilizes a multi objective optimization algorithm, it
prioritizes efficiency and security as the two different objectives in the sched-
uler.

44 CHAPTER 2. FUPE

Table 2.1: Comparison of existing scheduling approaches against FUPE.

Refs. Algorithms Tool Observations Security Advantages Disadvantages

[14] Concurrent/FIFO/Delay-priority iFogSim Resources availability and CPU capacity No + Movement based scheduling at fog device level - High time complexity
- Relying on security unit

[15] Heuristic iFogSim Deployment time, deadline,
Number of fog devices No

+ latency-aware IoT application
+ Reducing the amount of deployment time
+ Deals with varying application

- No Real case study
- Relying on security unit

[20] Bees swarm C++ CPU execution time, Allocated memory No + Managing allocated memory
+ Low CPU execution time

- Only fog devices are used
- Static scheduling
- Relying on security unit

[16] PSO iFogSim Response time, energy,
latency, and network bandwidth No

+ Energy
+ Latency and response time
+ Network bandwidth

- No reliability assurance
- Relying on security unit

[19] NSGA-II MATLAB

Requester distance to the fog region
Service completion time
Fog device’s capability
Fog device’s reliability

No + Low latency
+ Improved stability

- Not suitable for complex topology
- Relying on security unit

[81] Machine learning Java Anomaly-based/Signature-based detector
Execution time, Execution cost Yes + delivers secure cloud services - Centralized feature and not suitable for IoT

[79] PSO CloudSim Execution cost, deadline and
risk rate Yes + Risk rate constraint of workflow in scheduling - Centralized feature and not suitable for IoT

[80] Multi-criteria task priority CloudSim Resources degree of trust
Tasks priority level Yes + Applying resources degree of trust in scheduling - Centralized feature and not suitable for IoT

[61] Stochastic CloudSim Service Level Agreement (SLA),
The earliest execution start time of tasks Yes + Different levels of trust - Lack of defense mechanisms to deal with attacks

- relying on feedback collected from users

[78] Multi-criteria task priority iFogSim
job deadlines
spare capacity available on the resources
Job privacy

Yes + Assigning security tag to the resources. - Lack of defense mechanisms to deal with attacks

[77] Multi-criteria task priority iFogSim
jobs trust level
jobs arrival time
resources availability

Yes + Assigning security tag to the resources. - Lack of defense mechanisms to deal with attacks
- relying on feedback collected from users

[68] Hybrid (PSO-Fuzzy) iFogSim

Total amount of fog devices’ ram size,
Total amount of fog devices’ CPU capacity,
Total amount of fog-devices’ link bandwidth,
Applications’ Tasks CPU need

No
+ Mobility-aware scenario
+ Considering total computing capacity of resources
+ Low application loop delay/network utilization

- No fog gateways fault tolerance

FUPE Hybrid (MOPSO-Fuzzy) Matlab

Available fog-devices’ processing capacity,
Available fog-devices’ RAM size,
Available fog-devices’ link bandwidth
Applications’ Tasks CPU need
Trust degree of nodes

Yes

+ Security-aware scenario
+ Considering available computing capacity of resources
+ Low average response time/maximum response time
+ Low network utilization

- No SDN switches fault tolerance

2.3. PROPOSED APPROACH 45

2.3 Proposed approach

In this section, we detail the proposed FUPE. To this end, first we describe
the reference architecture in Section 2.3.1. Then, we introduce the security-
aware task scheduling problem we address and the resulting organization in
modules we adopt for our proposal in Section 2.3.2. In Section 2.3.3, we give
an account of TRW-CB and Rate Limiting techniques. Finally, we detail FUPE
in Section2.3.4.

2.3.1 Reference architecture

In this paper, we present a three-layer structure (i.e. consisting of cloud, fog,
and IoT device layers) as that adopted in previous works [82, 24]. The device
layer consists of users’ devices that send requests to fog devices in order to
benefit from their computing resources. The fog layer is composed by a set
of fog devices which are placed at the edge of the access network. Fog de-
vices are grouped in fog regions: when a fog device becomes overloaded, it
can offload requests to other fog devices fog-to-fog offloading) inside the same
fog region. Finally, at the cloud layer virtually unlimited computing resources
are organized in cloud data centers and are available to execute tasks which
are passed from by the fog layer (fog-to-cloud offloading). Fig. 2.1 presents
the architecture of the proposed approach. In our proposed architecture, the
fog devices are clustered into virtual organizations (with each of them rep-
resenting a fog region), and they are interconnected by SDN switches. The
central controller of our scheme is located on the Cloud gateway. In this work,
we consider the fog gateway and the cloud gateway as SDN switch and SDN
controller, respectively.

Fog gateways play a central role as the instances of FUPE are implemented
on them. The FUPE instances in fog gateways act as broker [83, 11] between
users’ devices and fog devices. In fact, they are the interface between users’
applications in IoT device layer and resources in fog layer. In a scenario where
some of the devices/nodes may take part to attacks against the fog infrastruc-
ture, the fog gateways collaborate with the cloud gateway to calculate the trust
degree of the nodes for task scheduling. Indeed, TCP DDOS attacks gener-
ate a waste of resources, which may lead to denial of service. Accordingly,
hereinafter we refer to these attacks as malicious requests.

46 CHAPTER 2. FUPE

C
lo

u
d

 L
ay

er
F

o
g
 L

ay
er

D
e
v
ic

e L
ay

er

Cloud Gateway (SDN Controller/Control Plane)

Fog Device

Fog Gateway (SDN Switch/Data Plane)

Edge

Core

User s Device

Fog Region

User s Device

Cloud Data Center

(a) Three-tier IoT-Fog-Cloud architecture.

C
lo

u
d

 L
ay

er
F

o
g
 L

ay
er

D
e
v

ic
e L

ay
er

End-User Devices,

IOT Applications And

Devices

Fog Resource

Management

Cloud Data-Center &

Big Data Processing

Smart Things Network

Application Placement

Monitoring

Task scheduling

Security

Fog Device

Resource Information

Big Data Analytics

Big Data Processing

Cloud Data Center

Knowledge Base

Fog Gateway (SDN Switch/ Data Plane)

Cloud Gateway (SDN Controller/Controller Plane)

User s Device

User s Device

(b) Task-wise architecture.

Figure 2.1: The considered FUPE architecture.

2.3. PROPOSED APPROACH 47

2.3.2 Problem statement and proposed solution

Security-aware task scheduling is a critical part of IoT-fog networks and signif-
icantly impacts the performance of the overall system. In fact, it is a challeng-
ing NP-hard problem owing to the large-scale, dynamic, and heterogeneous ar-
chitecture it relates to[84]. Indeed, users’ devices and applications can join and
leave the system in a dynamic manner and are both susceptible to be hacked.

The problem we address in this paper consists in efficiently and effectively
assigning applications’ tasks to fog devices, such that the security level con-
straints are met. Since various security threats are a big concern of IoT-fog
networks, it is mandatory to deploy security mechanisms to protect security-
critical users’ applications executing on fog devices from being attacked. The
aim of security-driven task scheduling is assigning tasks generated by trustful
users’ applications to the computing resources available at the trustworthy fog
devices. In other words, applications which have an adequate level of trust-
worthiness are decomposed into a set of tasks to be assigned to the fog devices
that have proper trust values and adequate computational capacity.

Our solution implements security-aware task scheduling at fog gateways
via FUPE and benefits from SDN advantages. SDN infrastructure provides an
efficient solution to mitigate security challenges in IoT-fog networks thanks to
advanced network programmability, dynamic flow control, and network mon-
itoring through centralized visibility. It enables administrators to automati-
cally manage the entire IoT-fog network flexibly and dynamically (e.g. in-
stantly block network traffic anomaly whenever malicious activity is de-
tected) [85] [86] [87]. As shown in Fig. 2.2, our proposal consists of five
modules: Connection Logger, Request Validator, Job Decomposer, Task As-
signer, and Forwarder. Each module provides the functionalities as detailed in
the following.

• Connection Logger: This module monitors the connection attempts from
users’ devices/ fog devices, logs them, and provides the cloud gateway
with this logged information. Based on this information, the cloud gate-
way updates the Credit and Rate values for each user’s device/ fog de-
vice, i.e. the counters related to TRW-CB and Rate Limiting techniques,
respectively, which indicate the trustworthiness likelihood ratio of the
connection attempt requesters. Finally, these values are sent on request
to both Request Validator module and Task Assigner module of the fog
gateways.

• Request Validator: Authentication is one of the major subjects in the

48 CHAPTER 2. FUPE

Request Validator

Job Decomposer

Task Assigner

Forwarder

Connection Logger

Figure 2.2: Modules composing the proposed solution.

2.3. PROPOSED APPROACH 49

security field. It is the process of verifying the identity of a node (fog
device/user’s device) that is a prerequisite to allowing access to the fog
layer/ cloud layer resources. In this work, we assume the nodes have al-
ready been authenticated, and the authentication is not in the area of this
research paper. Request Validator module is in charge of validating only
users’ devices. Upon the fog gateway receives a request from an user’s
device, this module first checks the validity of the requester. To this end,
it asks the Cloud gateway to obtain the Credit and Rate values for the
requester. Then, the module leverages the returned information and im-
plements a Mamdani fuzzy inference system as shown in Fig. 2.5, and
Table 2.2. In detail, this module uses the outcome of security objective
to determine whether the requester is benign or it is an attacker. If the
requester is benign then this module passes the job to the Decomposer
module. Otherwise, this module rejects the request.

• Job Decomposer: This module receives the application jobs sent by the
Request Validator module and then decomposes it into multiple separate
tasks. After decomposition, the tasks are independent of each other and
are ready to process by the assigner module.

• Task Assigner: This module assigns the application’s tasks originated
from the validated users’ devices to the fog devices, with the aim of in-
creasing performance securely. To this end, upon receiving application’s
tasks from the decomposer module, it first gathers required information
regarding fog devices computational features together with their security
conditions. Therefore, it sends a request to the Cloud gateway and asks
the information about the Credit and Rate values for all fog devices in
the fog region. The fog gateways have the information about the fog de-
vices located inside the fog regions. Then, it performs a secure schedul-
ing as described in section 2.3.4. This module uses the outcome of both
security and efficiency objectives to determine a secure and proper fog
device to execute the validated application’s tasks of user’s device. This
module provides the application’s tasks and designated fog device’s ID
to the forwarder module.

• Forwarder: The forwarder module implements the features of the data
plane of the SDN paradigm and, accordingly, provides a set of flow ta-
bles that are managed by the controller (Cloud gateway) [88]. These
flow tables include flow entries containing a header to match the incom-
ing packets and a set of actions to apply to match packets. Because

50 CHAPTER 2. FUPE

preventing an attack is done at the fog gateways, the controller proac-
tively installs flows on the forwarder modules. If a request is recognized
as a legitimate by the Request Validator (and the Task Assigner), then
the forwarder module forwards it toward designated fog device concern-
ing the flows which the controller has installed on the forwarder module.
This ensures more efficiency, because limits the required intervention of
the controller.

2.3.3 TRW-CB and Rate Limiting concepts

Based on TRW-CB, the probability of a successful connection attempt is much
higher for a trustworthy node than a malicious node. TRW-CB calculates the
difference between TCP SYN and TCP ACK packets, just like in a TCP DDOS
attack, where a malicious node creates a large number of half-open TCP con-
nections on the targeted nodes. To counteract TCP DDOS attacks, Rate Limit-
ing recognizes a node as malicious when it sends a large number of TCP SYN
packets in a short period of time. [87]. Whenever the SDN switch receives
a TCP packet, it checks the packet against a list of recently contacted fog de-
vices called the working set. If the TCP packet request belongs to a fog device
presented in the working set, then it forwards the request normally. Otherwise,
it enqueues the request in another data structure called the delay queue. FUPE
separates pairs of working sets and delay queues for every fog device. These
connection-based techniques are scalable and can support a large number of
rules which are suitable to be used in rule-based fuzzy techniques. It is illus-
trated in the literature that these techniques, on the one hand, process only a
small fraction of the total network traffic; and on the other hand, they attain the
same accuracy by inspecting every packet in SDN networks [88, 89, 87]. Rate
limiting and TRW-CB do not create additional overhead at the network level.
So, our approach does not add a packet or header to the network. It only mon-
itors the network traffic to evaluate the received packets; then decides whether
to block them or let them pass.

Figs. 2.3 and 2.4 indicate the process diagram of TRW-CB and rate limiting
approaches, respectively. Alg. 2 and Alg. 3 show TRW-CB and Rate limiting
algorithms as well.

2.3. PROPOSED APPROACH 51

Algorithm 2 TRW-CB
Output: Credit

1: List:= [];
2: if packet.type!= TCP then
3: return;
4: end if
5: if packet.flags != SYN or ACK then
6: return;
7: end if
8: if packet.flags = SYN and not SYNACK then
9: if packet.source not in List then

10: Install flow for forwarding direction;
11: List := packet;
12: Else
13: Malicious Counter++;
14: end if
15: end if
16: if packet is ACK and packet source in list then
17: Install flow for backward direction;
18: Safe Counter++;
19: end if
20: percentage:= The percentage of normal connections;
21: Map the percentage to the credit fuzzy set;
22: return the credit value to the fuzzy inference engine

52 CHAPTER 2. FUPE

Algorithm 3 Rate limiting
Output: Rate

1: if packet.type != TCP then then
2: return;
3: end if
4: if packet.flags = SYN then
5: Install flow for forwarding direction;
6: Counter++;
7: end if
8: if packet.flags = SYNACK then
9: Install flow for backward direction;

10: end if
11: if request not in working set then
12: delayqueue := request;
13: Move the new request from the delay queue to the working set;
14: end if
15: percentage:= The percentage of connection attempts;
16: Map the percentage to the Rate fuzzy set;
17: return the rate value to the fuzzy inference engine;

2.3.4 FUPE: proposed Security-aware Scheduler

As aforementioned, the role of the assigner module is to find the most proper
fog device for processing a requested task that has been previously validated by
request validator module. The designated fog device to the application’s tasks
should be secure and also has a suitable computing capacity. In this work, we
assume both the users’ devices and compromised fog devices can perform TCP
DDOS attacks against other fog devices. Moreover, we assume the behavior
of a benign node can change to become an attacker. We apply TRW-CB in
FUPE due to its continuous monitoring ability to detect malicious network
traffic. FUPE can instantly detect and block anomalies in network traffic when
malicious activity happens. To achieve this, FUPE uses a multi-objective PSO
algorithm to increase the efficiency together with security. Multi-objective
optimization solutions [90] fall into two main categories: (i) those, defining
the objective functions separately and combine them by using the weighted
sum of them; (ii) those, using a single objective function and aggregate the
distinct objectives into one synthetic objective by using Pareto Optimality. In

2.3. PROPOSED APPROACH 53

Node SDN switch SDN controller Fog device

1-Sends TCP SYN packet
2- Forwards TCP SYN

packet

10- Checks the 3-way

TCP handshaking

5- Sends TCP SYNACK/

RST/ Connection times out

7- Sends TCP SYNACK

3- Installs flow for

forwarding direction

4-Sends TCP SYN packet

11- Increments/

decrements Credit

6- Installs flow for

backward direction

11- Provides Controller

with connection attempts

8-Sends TCP ACK packet

9-Sends TCP ACK packet

Figure 2.3: The sequence diagram of TRW-CB algorithm.

54 CHAPTER 2. FUPE

Nodes SDN switch SDN controller Fog device

1-Send TCP SYN packet
2- Forwards TCP SYN

packet

6- Adds the request

to the delay queue

5- Checks the

working set

7- Moves the new

request from the delay

queue to the working

set

11- Increments/

decrements Rate

3- Installs flow for

forwarding direction

8- Sends TCP SYNACK/

Connection times out

10- Sends TCP SYNACK

9- Installs flow for

backward direction

4-Sends TCP SYN packet

11- Provides Controller

with connection attempts

Figure 2.4: The sequence diagram of Rate limiting algorithm.

2.3. PROPOSED APPROACH 55

FUPE, we adopt the former strategy.
Fuzzy Based Fitness Function. As Fuzzy logic is widely used to consider
multiple criteria simultaneously, we use it in both fitness functions. Each of
the fitness functions determines the rank of the two objectives. Our presented
approach has two objectives as detailed in the following.
First Objective (Security): For considering security objective, we use TRW-
CB and Rate Limiting techniques. The cloud gateway gathers the information
regarding the amount of exchanged traffic between fog devices/users’ devices
and the number of successful connections between fog devices/users’ devices
from all fog gateways. Then, it calculates the Credit and the Rate values for
each fog device/user’s device. Finally, it sends these values to fog gateways.
We use them as the input parameters of the fuzzy based fitness function for
security objective. For instance, Low Credit and High Rate indicate a mali-
cious fog device/user’s device, respectively. According to previous researches
such as [87], an anomaly occurs when the value of Credit and Rate exceeds a
predefined threshold. This work considers High Credit and High Rate as the
malicious activity. In other work [89], the authors use Low Credit and High
Rate to indicate malicious nodes. In this paper, we consider Low Credit and
High Rate as the anomaly behavior as well. Defining the fuzzy sets and fuzzy
rules are based on using either learning methods [91, 92] or former experience
/predefined assumptions [10, 89, 11]. We define the range of Credit and Rate
fuzzy sets based on the predefined assumptions (i.e., the fuzzy sets and fuzzy
rules set are predefined and static). A suitable approach to define the fuzzy sets
is in such a way that the end-point of the first fuzzy set is the beginning point of
the third fuzzy set; the second fuzzy set has overlap with both the other fuzzy
sets. The benefit of this approach is that it increases both of the fuzzy features
of the fuzzy sets and the overlapping between the fuzzy sets.
Second Objective (efficiency): It is illustrated in the literature that simultane-
ous consideration of the computing features of the resources and application’s
tasks CPU need, is suitable for task scheduling [11, 93, 68, 94]. So, we use
application’s tasks CPU need, and the features of fog devices (i.e., available
processing capacity, available RAM size, and available fog-device link band-
width) as the input parameters of the fuzzy based fitness function for efficiency
objective. FUPE implements a task merging mechanism where the tasks of the
same application are assigned to the same fog device. Besides, we use the total
amount of tasks CPU needs of an application as the application’s tasks CPU
need parameter.

Mamdani fuzzy inference engine is one of the most common fuzzy infer-

56 CHAPTER 2. FUPE

ence engines which uses fuzzy sets and fuzzy rules. These rules are based on
the former experience or predefined assumptions. We define three overlapping
fuzzy sets that make the input values possibly locate in several sets simultane-
ously. Accordingly, each of the input values belongs to several fuzzy sets with
different membership degrees. For instance, consider the fuzzy sets in Figs.
3 and 4. Low and Medium fuzzy sets are overlapped, but there is no overlap
between Low and High fuzzy sets. In this way, an input value which is in the
Low fuzzy set interval is considered as both Low and Medium at the same time
with different degrees of membership (confidence). Besides, if B is the degree
of membership of the input value in the Low fuzzy set, then its membership in
the Medium fuzzy set is 1-B. For the sake of clarity, suppose Credit/Rate fuzzy
sets in Fig. 2.5. If the input value is 0.2, then the degree of membership for
Low and Medium fuzzy sets are 0.8 and 0.2, respectively. In this example, B
and 1-B are 0.8 and 0.2, respectively.

As a consequence, each of the input values can trigger several fuzzy rules
(i.e. rule firing). Then the fuzzy inference engine aggregates rules and com-
bines the fuzzy sets that represent the outputs of each fuzzy rule into a single
fuzzy set. Finally, it interprets the membership degrees of the fuzzy set into a
numeric non-fuzzy value which is the output of each of the objectives. The ob-
tained values are the output of the fitness functions (i.e. security and efficiency
objective). The fuzzy rules are indicated in Table 2.2 for the first objective and
Table 2.3 for the second objective. Figs. 2.5 and 2.6 show the fuzzy sets for
the two objectives as well. The rows in Table 2.2 and Table 2.3 are the fuzzy
rules. The rules consist of the fuzzy sets, and the values of the fuzzy sets are
indicated in Fig. 2.5 and Fig. 2.6. The cells Low, Medium, High, Safe, Poten-
tial, and Attack are the fuzzy sets that are used in the fuzzy rules. For instance,
the third row in Table 3 means: If Credit is Low and Rate is High then Result
is Attack. As it is shown in Fig. 2.5, the values of Credit Low, Rate High, and
Result Attack fuzzy sets are 0.0 to 0.5, 0.5 to 1, and 0.0 to 0.5, respectively.
To take another example, the first rule in the Table 4 means: If Task Length
is Low and Bandwidth is Low and CPU is Low and Ram (memory) is Low
then Result is Inappropriate. Fig. 4 shows the values of the Task length Low,
Bandwidth low, CPU low, Memory low, and Inappropriate fuzzy sets that are
500 to 2750, 10000 to 15000, 10000 to 25000, 0 to 12300, and 0.0 to 0.5, re-
spectively. Result fuzzy set is the output of each of the rules. Mamdani Fuzzy
inference engine utilizes the mentioned fuzzy sets in the aggregation method
to obtain the output of each of the objectives.
MOPSO based IoT-fog security driven task scheduling algorithm. The

2.3. PROPOSED APPROACH 57

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Credit/Rate

0

0.2

0.4

0.6

0.8

1

D
e
g
re

e
 o

f
M

e
m

b
e
rs

h
ip

Low Medium HighLow Medium High

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Result

0

0.2

0.4

0.6

0.8

1

D
e
g
re

e
 o

f
M

e
m

b
e
rs

h
ip

Attack Potential SafeAttack Potential Safe

Figure 2.5: Fuzzy sets for security objective.

Table 2.2: Fuzzy rules for security objective.

Credit Rate Result
Low Low Potential
Low Medium Attack
Low High Attack
Medium Low Safe
Medium Medium Potential
Medium High Attack
High Low Safe
High Medium Safe
High High Potential

58 CHAPTER 2. FUPE

10000 15000 20000 25000 30000 35000 40000

CPU(MIPS)

0

0.2

0.4

0.6

0.8

1

D
e

g
re

e
 o

f
M

e
m

b
e

rs
h

ip

Low Medium HighLow Medium High

8192 9192 10192 11192 12192 13192 14192 15192

Memory(MBytes)

0

0.2

0.4

0.6

0.8

1

D
e
g
re

e
 o

f
M

e
m

b
e
rs

h
ip

Low Medium HighLow Medium High

10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000

Bandwidth(Kbits/s)

0

0.2

0.4

0.6

0.8

1

D
e

g
re

e
 o

f
M

e
m

b
e

rs
h

ip

Low Medium HighLow Medium High

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Task Length(MIPS)

0

0.2

0.4

0.6

0.8

1

D
e

g
re

e
 o

f
M

e
m

b
e

rs
h

ip

Low Medium HighLow Medium High

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Result

0

0.2

0.4

0.6

0.8

1

D
e
g
re

e
 o

f
M

e
m

b
e
rs

h
ip

Inappropriate Medium AppropriateInappropriate Medium Appropriate

Figure 2.6: Fuzzy sets for efficiency objective.

2.3. PROPOSED APPROACH 59

Table 2.3: Fuzzy rules for efficiency Objective. TL= Task length. C/R =
CPU/RAM. I=Inappropriate. A= Appropriate.

TL = Low , BW = Low TL= Medium , BW = Low TL = High , BW = Low
H M L C/R H M L C/R H M L C/R
M I I L I I I L I I I L
M M I M M I I M I I I M
A M M H M M I H M I I H
TL= Low , BW = Medium TL = Medium , BW = Medium TL = High , BW = Medium
H M L C/R H M L C/R H M L C/R
A M I L M I I L I I I L
A A A M A M I M M I I M
A A A H A A M H A M I H

TL = Low , BW = High TL = Medium , BW = High TL = High , BW = High
H M L C/R H M L C/R H M L C/R
A A M L M M I L M I I L
A A A M A M M M M M I M
A A A H A A M H A M M H

PSO algorithm is used to find an optimal solution for optimization problems
which is based on the behavior of a flock of birds to find their way to a spe-
cific destination. To start this algorithm, a population of particles is generated
randomly in which their positions are considered as a potential solution. Each
particle has a position vector and a velocity vector which determine the direc-
tion of movements in search space. In the PSO algorithm, the particles are
initialized randomly. In this work, we consider a request as a particle and the
state of the particle as the particle’s position. We also consider pbest and gbest
as the best position of a job request attains among the job request list, and the
best position of job request as job request attains, respectively. The gbest is the
global optimal state (i.e., the best fog device for each request). For example,
if there are 8 fog devices and 3 requests in the fog region, FUPE assigns the
fog device to the requests based on the gbest value for that request. A possible
solution could resemble {2, 3, 2, 1, 2, 3, 2, 1}. For instance, the first element
of this combination means the first fog device is the best optimal venue for
the second request, and the second fog device is the best optimal venue for the
third request.

In each iteration, fuzzy-based fitness functions are used to assess each par-
ticle’s values so as to replace the position of particle with pbest variable. FUPE
rejects a new solution if its pbest value is less than the current solution. In fact,
it improves the fitness value of the applications’ tasks in every iteration. pbest
of all particles are used to update the Gbest. The current pbest is compared to

60 CHAPTER 2. FUPE

Gbest, and if its satisfaction is more than Gbest, it will be replaced. The final
result is the best pbest value (i.e. gbest). General PSO is defines as follows:

Xi
k+1 = Xi

k + V i
k+1 (2.1)

In this equation, i, X, and V are the particles, the position of the particles, and
the velocity of the particles, respectively. The formula for updating velocity
vector is:

V i+1
k = WkV

i
k + C1r1(Pbestik −Xi

k) + C2r2(Gbest−Xk
i) (2.2)

Where C1 and C2 are the acceleration coefficient which is considered as learn-
ing factors, r1 and r2 are used to control the randomness in the movements
of particles in the search space, and W is inertia weight which indicates the
balance between local and global search. This parameter determines the re-
peat rate for finding the best solution. To aggregate the outcome of the two
objectives into one synthetic objective to obtain a single proper answer, we use
Eq. (2.3).

Aggregation = ((Security ∗ α) + (Efficiency ∗ β)) ∗ (−1) (2.3)

Where Security and Efficiency are the first and second objective outcomes
respectively. We assign priority to the objectives by α and β which are pre-
defined weights. We set these weights in a way that the sum of them equals
1. In this work, we assume the priority of the two objectives is the same. So,
we assign 0.5 to both α and β. PSO is a minimization problem and FUPE is
a maximization problem. As the goal of the PSO algorithm is to minimize the
objective and we aim to maximize the outcome of FUPE, we multiply the out-
come by −1. It is worth highlighting that we use the two fuzzy-based fitness
functions to update the values of security and efficiency variables in Eq. (2.3)
to calculate pbest. Algorithm 4 indicates the proposed algorithm which lever-
ages the benefits of the MOPSO algorithm in order to find an optimal solution
regarding the two aforementioned objective functions.

2.3. PROPOSED APPROACH 61

Algorithm 4 FUPE- Proposed Algorithm
Output: gbest

1: for i = 1 toM = Iterationnumber do
Initialize P [i] randomly; P is population of
particles

2: Initialize v[i] = 0;
v=speed of each particle

3: F = ComputeF itness(p[i]);
4: gbest = best particle found in F ;
5: for i = 1 toM do
6: pbest[i] = F ;
7: end for
8: repeat
9: for i = 1 toM do

10: Set W , C1 >= 0 and C2 >= 0;
11: v[i] = W × v[i] = C1 × rand1(pbest[i] − p[i] + C2 ×

rand2(gbest[i]− P [i]);
12: update speed of each particle
13: P [i] = P [i] + v[i];
14: if a particle goes outside the predefined hypercube then
15: it is reintegrated to its boundaries;
16: end if
17: F = Computefitness(p[i]);
18: if new population is better then
19: pbest[i] = F ;
20: end if
21: gbest=Update it by the best particle found in p[i];
22: end for
23: until stopping criterion is satisfied
24: end for
25: return gbest

Alg. 4 Description. In Alg. 4, first, FUPE defines the initial position and
velocity vector for each particle (tasks) in the search area randomly (line 1).
We save the current solution in pbest (line 2). In lines 3 to 4, FUPE computes
the two fitness functions for the particles. In lines 5 to 7, after assigning the fit-
ness value for all of the particles, FUPE compares them, and if the fitness value
of the current solution is higher than pbest, it replaces it with the pbest. In lines

62 CHAPTER 2. FUPE

9 to 23, after each iteration, FUPE updates gbest value by comparing the pbest
value of the current iteration to the value which is stored in the gbest. FPFTS
calculates the request’s position and request’s velocity by using Eq. (2.1) and
Eq. (2.2). In each iteration, FUPE calculates pbest for the particles with the
aid of Eq. (2.3). FUPE repeats these steps to reach the maximum number of
iterations. Finally, FUPE sets the best pbest value as the gbest value. Gbest is
the output of this algorithm which indicates the most proper fog device for the
application’s tasks. Each fog device has a numerical value as the gbest for the
incoming job tasks. FUPE assigns a fog device which has the greatest gbest
value for the job tasks.

Computational Complexity of FUPE: Computational complexity shows
the number of resources that an algorithm needs to be executed. We make
reference to the work by Arora et al. [95] in which the authors set out a clear
mathematical illustration of computational complexity. In FUPE, as we use
computing features of resources and tasks and the parameters of the TRW-CB
and Rate Limiting simultaneously, we consider the two objectives’ computa-
tional complexity and then multiply them as follow: Firstly, the computational
complexity of efficiency objective is in the order of O(I ×R× P) where I is
the number of iterations, R is the number of resources (i.e. fog devices), and
P is the number of particles. Besides, both of the Rate Limiting and TRW-CB
techniques take the same amount of time to obtain the result irrespective of the
input size. They take the exact time to process one item as well as for example
ten items. So, they have a constant growth rate run time. As we apply both
TRW-CB and Rate Limiting techniques at the same time for the same nodes,
we can say the computational complexity of security objective is in order of
O(1). Finally, FUPE uses Mamdani fuzzy inference engine, so the complexity
of the fitness function is in order of O(1). As Mamdani fuzzy inference en-
gine searches, fires and aggregates the adequate rules in a parallel manner, the
complexity of it is in order of O(1) [36]. As a result, the total computational
complexity of the FUPE is in order of O((I ×R× P)).

Space Complexity of FUPE: For calculating the space complexity of
FUPE, we take the spaces that FUPE needs to be executed into considera-
tion. As the instances of FUPE are located in fog gateways, the number of
fog regions plays a central role in the algorithm space requirements. So to ob-
tain the space complexity of FUPE, we use the number of fog regions and we
name this parameter S. As a result, the total space complexity of the FUPE is
in order of O(S × (I ×R× P)).

An example of scenario for FUPE complexity: As FUPE uses MOPSO

2.4. PERFORMANCE EVALUATION 63

algorithm, more particles, fog devices, and iterations increase complexity.
Defining the number of iterations depends on the environment. For instance,
we can define the number of fog devices or applications as the iteration num-
ber. Suppose a scenario in which the number of particles is 10, the number of
resources is 5, and we define the number of particles as the iteration. Moreover,
we have 2 fog regions in the network. In this way, the Computational Com-
plexity is 500 (10×5×10), and the space complexity is 1000 (2×10×5×10).

2.4 Performance Evaluation

In this section, we conduct a comprehensive simulation study and analyze the
results to compare the performance of FUPE in a fog environment to a single-
objective PSO algorithm [96, 97] and a Genetic algorithm [19] that do not take
security into account. This comparison allows to show the overhead of security
mechanisms in FUPE.

For the evaluation, for each scenario, we run the algorithms ten times. Ap-
plication scheduling in distributed systems is an NP-complete problem [98].
Evolutionary optimization algorithms are proper approaches to find the opti-
mized solutions that generate several solutions. The final solution is the best
answer among the generated solutions. So, in FUPE we have a set of appli-
cations, and FUPE runs while an adequate amount of applications are on the
scheduling list. We performed the simulation study in MATLAB R2018a [99].
Besides, we used Xfuzzy 3.5, which is a fuzzy logic design tool to imple-
ment fuzzy-inference-based systems [100]. Since Matlab does not have inbuilt
features to support the OpenFlow protocol directly, we extended the Matlab
classes to add the OpenFlow protocol specification. We added routing or de-
cision making functionality to Matlab classes. In detail, we defined a node
(SDN switch) with a data structure similar to the flow tables. Then, another
node (SDN controller), fills the flow tables.

iFogSim [33] is a widely accepted IoT-Fog simulator which we also used
to implement our former work, FPFTS [40]. This simulator supports edge pro-
cessing, edge communication, IoT devices, and also cloud processing. The
big disadvantage of this tool is the lack of SDN support, SDN-WAN support,
network communication, also network protocols and the missing possibility to
implement the proposed security objective (e.g., 3-way handshaking). How-
ever, standard network simulators (e.g., ns [101], and OMNeT [102]) or SDN-
aware network simulators (e.g., mininet [103], and SDN-Sim [104]) are not
suitable to implement the presented approach at all. For instance, NS-3 and

64 CHAPTER 2. FUPE

OMNeT++ support network communication and network protocols. Although
they provide the users with proper programming capabilities, SDN and SDN-
WAN features, edge processing, edge communication, also fog computing fa-
cilities and IoT devices are not natively supported by them. To take another
example, Mininet quantifies SDN performance within different network struc-
tures and routing protocols. It only supports SDN-WAN facilities, network
communication, and network protocols. The focus of SDN-Sim is to deploy
SDN-based policies, such as channel modeling, traffic shaping, and QoS de-
mands. The disadvantage of these tools is the lack of edge processing, edge
communication, also fog computing facilities and IoT devices.

FUPE does not consider the actual medium and stack of protocols. Hence,
we do not change or modify the TCP/IP layers to observe the effect of FUPE
on them. We did not use actual network parameters in Matlab. We can define
propagation delay as distance, and not consider Queue delay, transfer delay,
and processing delay. Attacks can occur in both wired or wireless ways. We
are concentrating on the behavior of node requests. It makes no difference
whether they are transmitted via a wired or wireless link. We basically study
the behavior of malicious nodes. In any network environment setting, we ex-
pect the malicious nodes to behave differently than the benign nodes. Our
method catches that abnormality in task scheduling phase. Therefore, using
any network environment for packet request generation does not show any sig-
nificant difference in results than those reported. Finally, it is illustrated in the
work [26] that about 15% of the resource management approaches in fog com-
puting have utilized Matlab simulator. There are also several works in SDN
networks and TCP DDOS attack detection systems that are implemented by
Matlab [105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118].
As there is no corresponding simulator that covers the minutiae of FUPE, we
simplify it into a trade-off problem, and use MATLAB for evaluation. We im-
plement a scalable IoT-fog framework in MATLAB in order to simulate FUPE
as much as possible in a real scenario.

2.4.1 Simulation Setup

To simulate fog devices, we assume each fog device’s configuration can be
one of the items specified in 2.4. Upon creating fog devices, one of these con-
figurations is selected at random. We considered the same random generated
scenarios for each algorithm under test.

To simulate task requirements, we assume that each separate task needs
resources in terms of RAM, CPU, and Bandwidth. Once a task is generated,

2.4. PERFORMANCE EVALUATION 65

Table 2.4: Configuration of fog devices.

Configuration Config 1 Config 2
RAM 8 GB 16 GB
CPU 5000 MIPS 10000MIPS
Core in CPU 2 4
Bandwidth 10 Mbps 20 Mbps

it randomly selects one of the four requirement configurations specified in the
Tab. 2.5.

Table 2.5: Task Requirements.

Requirements REQ 1 REQ 2 REQ 3 REQ 4
RAM 256 MB 512 MB 512 MB 1 GB
CPU 500 MIPS 1000 MIPS 2000 MIPS 5000 MIPS
Bandwidth 5 Mbps 10 Mbps 10 Mbps 10 Mbps

Simulation metrics

To evaluate the proposed solution against the selected baselines we consider
the set of metrics in the following:

• Response time: the amount of time elapsed between the time a task is
sent by a user to fog device and the time the related result is delivered
to the user. It is worth noting that, this time includes network delay,
processing delay, and task scheduling mechanism delay. We focus on
both average and maximum performance figures for this metric.

• Confidence interval (CI): denotes a range of values that is determined
by the margin of error. A confidence interval for the results depends
on sampling the distribution of a corresponding estimator. The goal of
this metric is to indicate the variability of the results. For the perfor-
mance evaluation, we use confidence intervals for plots calculated with
95% confidence level. Focusing on the confidence interval, we refer the
readers to reference [119].

• Network Utilization: It provides a quantification for the data transmitted
in the network links between network nodes (i.e. how much link band-
width is used) during a time interval. We use Eq. (2.4) to calculate this

66 CHAPTER 2. FUPE

metric. In this equation, the length of data that are encapsulated in each
task is calculated in KByte. Moreover, Interval is set to 1000 ms (i.e. we
calculate network utilization every second).

NetworkUtilization = (

Requests∑
x=1

Task length)/Interval (2.4)

Simulation scenarios

To evaluate all aspects of FUPE in terms of performance and security, we have
considered various scenarios with different number of attack rates, different
number of fog devices, and different number of jobs. There are listed below

• Scenario-1: In this scenario, the number of jobs is 60 per second and
the number of fog devices is 10. The attack rate in this scenario varies
from 0% to 50% (e.g. 0 to 50 percent of requests are malicious and TCP
DDOS attack, while the other requests are benign and valid requests).
The aim of this scenario is to investigate whether FUPE can detect at-
tacks and does not assign tasks to malicious fog devices, and also does
not process the task coming from attacker users. Moreover, this scenario
illustrates the overhead of the FUPE itself.

• Scenario-2: In this scenario, the number of fog devices varies from 5
to 25, and the number of jobs is 60 per second. The attack rate is fix
and equal to 30%. In fact, the goal of this scenario is to investigate the
performance of FUPE when increasing the fog devices in the presence
of a moderate attack.

• Scenario-3: In this scenario, the number of fog devices is 60, and the
attack rate is 30%. The number of jobs varies from 20 to 100 per second.
The goal of this scenario is to investigate the scalability of FUPE when
increasing the number of jobs in the presence of a moderate attack.

In all simulation scenarios, we assume one cloud gateway and two fog
gateways.

2.4.2 Experimental Results

In this section, we discuss and analyze the simulation results for the FUPE and
other approaches in different scenarios. First of all, we investigate the results

2.4. PERFORMANCE EVALUATION 67

0 5 10 15 20 25 30 35 40 45 50

Attack Rate(%)

5.5

6

6.5

7

7.5

8

8.5

9

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
(S

e
c
)

GA

PSO

FUPE

(a) Average response time.

0 5 10 15 20 25 30 35 40 45 50

Attack Rate(%)

0

5

10

15

20

25

30

35

M
a
x
 R

e
s
p
o
n
s
e
 T

im
e
(S

e
c
)

GA

PSO

FUPE

(b) Maximum response time.

0 5 10 15 20 25 30 35 40 45 50

Attack Rate(%)

130

140

150

160

170

180

190

N
e

tw
o

rk
 U

ti
liz

a
ti
o

n
(K

B
y
te

s
)

GA

PSO

FUPE

(c) Network utilization.

Figure 2.7: The comparison results for the first scenario in the presence of
different attack rates in (%).

for Scenario-1. Fig. 2.7a and Fig. 2.7b show the average and maximum re-
sponse time against different attack rates for the methods, respectively. In these
two figures, it is obvious that by increasing the attack rate, the response time
grows linearly for Genetic and PSO algorithms. The reason is that in these two
methods, there is no mechanism to detect and mitigate the effect of the attacks.
Therefore, the response time considerably grows. On the other hand, in FUPE,
increasing attack rate does not affect the response time. This is because of
considering Credit and Rate for each request in fog gateways. Applying these
security parameters leads to FUPE significantly outperforms other approaches
and improve better response time for users’ requests. In addition to security
consideration, as aforementioned, FUPE uses a multi-objective model in order
to make efficient use of the network resources by assigning tasks to suitable

68 CHAPTER 2. FUPE

fog devices. This behavior also leads to less response time.
In addition to these achievements, another important benefit of using FUPE

is to reduce resource network bandwidth exhaustion. Fig. 2.7c proves that us-
ing security parameters in FUPE leads to a significant prohibition of the adver-
sary effect of different rates of TCP DDOS attack. In the other two methods,
there is no security mechanism to prevent network utilization by malicious
behaviors, and as a result the network utilization has been linearly increased.

Fig. 2.7 also indicates the CI for plots as indicators over the results. As all
the methods use randomness features, they have almost the same tolerance in
the results. However, the tolerance of the results for FUPE is a bit less. More
specifically, it is more obvious in the 2.7c. The reason behind this is FUPE
uses security parameters in scheduling the tasks to fog devices. Hence, it does
not assign the tasks to malicious fog devices. Consequently, the volume of
assigned tasks for fog devices is not equal. The quota of compromised fog
devices is zero and the quota of non-compromised fog devices is high. This
behavior causes more tolerance in the results.

Fig. 2.8a and Fig. 2.8b illustrate the average and maximum response time
with different number of fog devices in Scenario-2, respectively. From these
two figures, it can be concluded that, in the presence of a 30% attack rate, in-
creasing the number of fog devices (i.e. computational capacity) decreases the
response time in Genetic and PSO algorithms. This result is obvious because
the computational capacity of the network has been increased. Moreover, in
comparison with Fig. 2.7b, the maximum response time for FUPE also has
been decreased. These two figures prove that, unlike Genetic and PSO al-
gorithms, FUPE has not undergone significant changes in terms of response
time. The main conclusion from this result is that since FUPE uses the security
mechanism together with the multi-objective model to assign tasks optimally,
it can provide reasonable response time even in the presence of attacks, and
there is no need to add extra fog devices. In nutshell, FUPE utilizes network
and computational resources optimally and also prohibits TCP DDOS attack
to exhaust the resources.

Fig. 2.8c shows that as the number of fog devices increases the network
utilization in all three methods decreases. The reason behind this is that, in-
creasing the size of the network while the load of the network is constant, leads
to low network utilization. It can be concluded from Fig. 2.8c that, because
of applying performance parameters in task scheduling in FUPE, it assigns the
task in a fair manner in compared to the other methods.

Fig. 2.8 also shows that the Tolerance of FUPE results in task assignment

2.4. PERFORMANCE EVALUATION 69

10 15 20 25 30 35 40 45 50

Number of Fog Devices

6

6.5

7

7.5

8

8.5

9

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

T
im

e
 (

S
e

c
)

GA

PSO

FUPE

(a) Average response time.

10 15 20 25 30 35 40 45 50

Number of Fog Devices

0

5

10

15

20

25

30

35

M
a
x
 R

e
s
p
o
n
s
e
 T

im
e
(S

e
c
)

GA

PSO

FUPE

(b) Maximum response time.

10 15 20 25 30 35 40 45 50

Number of Fog Devices

110

120

130

140

150

160

170

180

190

200

210

N
e

tw
o

rk
 U

ti
liz

a
ti
o

n
(K

B
y
te

s
)

GA

PSO

FUPE

(c) Network utilization.

Figure 2.8: The comparison results for the second scenario in the presence of
different number of fog devices.

for FUPE improves when the number of fog devices increases. In fact, using a
large number of fog devices leads to spreading tasks to more devices, and as a
result the difference between the upper and lower values for CI decreases. The
reason behind this is FUPE uses fog devices features and jobs’ requirements
in the efficiency objective.

Fig. 2.9a and Fig. 2.9b depict average and maximum response time with
different number of jobs in Scenario-3, respectively. From these two figures,
it can be concluded that, in the presence of a 30% attack rate and a fixed num-
ber of fog devices (10 devices), increasing the number of jobs considerably
increases the response time both Genetic and PSO algorithms. This increase is
also true for FUPE. But, in FUPE, the growth of response time is significantly
less than the other two methods. Once more, we note that due to applying the

70 CHAPTER 2. FUPE

20 30 40 50 60 70 80 90 100

Number of Jobs

5.5

6

6.5

7

7.5

8

8.5

9

9.5

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
(S

e
c
)

GA

PSO

FUPE

(a) Average response time.

20 30 40 50 60 70 80 90 100

Number of Jobs

0

5

10

15

20

25

30

35

40

M
a

x
 R

e
s
p

o
n

s
e

 T
im

e
(S

e
c
)

GA

PSO

FUPE

(b) Maximum response time.

20 30 40 50 60 70 80 90 100

Number of Jobs

110

120

130

140

150

160

170

180

190

200

N
e
tw

o
rk

 U
ti
liz

a
ti
o
n
(K

B
y
te

s
)

GA

PSO

FUPE

(c) Network utilization.

Figure 2.9: The comparison results for the third scenario in the presence of
different number of jobs.

security mechanism together with the multi-objective model in FUPE, assign-
ing the tasks is performed optimally. Therefore, network and computational
resources have been used efficiently.

Fig. 2.9c illustrates the impact of increasing the load (number of jobs) in
network utilization. As can be seen in this figure, it is obvious that the network
utilization is increased by holding the network resources constant. But, this
figure clearly shows that FUPE considerably achieves better results in terms
of network utilization. This improvement comes from two mechanisms: First,
using performance parameters such as CPU, RAM, and network bandwidth
in choosing the optimal fog device. Second, FUPE considers the applications’
CPU needs. Moreover, it considers the security conditions of requester and fog
devices and prohibits malicious requests to be processed. It also blocks future

2.4. PERFORMANCE EVALUATION 71

requests from attacker nodes. Unlike FUPE, the other two methods have not
any performance and security mechanism to mitigate TCP DDOS attacks.

Fig. 2.9 also illustrates that the results tolerance in task assignment for
the approaches. In FUPE, assignment of tasks to compromised fog devices
is prohibited and the tasks are assigned to other fog devices. This behavior
separates fog devices into two groups and only non-compromised fog devices
can process the tasks. As a result, the FUPE results tolerance is less than the
other two approaches. AS Genetic algorithm considers resource stability, it
improves the stability of the task execution. As the result, it has a better results
tolerance compared to the PSO algorithm.

In this scenario, we want to show the overhead to execute the proposed
algorithm. We indicate the required CPU and RAM compared to the other
solutions. In this paper, we use an approximation algorithm to mimic (approx-
imate) the behavior of the malicious nodes, and also catch them in the schedul-
ing phase. The approximation method gathers information based on the mode
status and system capabilities, so we need to access the system characteristics.
Consequently, it can take time to gather information unless we ask up it in
the model generations. There is no specific hardware (RAM, CPU) require-
ment for FUPE, and It works for any system without any problem. However,
it needs more processing capacity compared to the other solutions. Fig. 2.10a
and Fig. 2.10b indicate the required processing capacities for the algorithms.
Both Genetic and PSO methods do not have security assurance. For FUPE, we
have some time consumption for the security part (i.e., the security cost). It
includes the number of connection requests, and the number of flows installed
in the fog gateways. Moreover, as MATLAB consumes much CPU and RAM
for fuzzy functions, the overhead of FUPE is more than the other two methods.

According to Fig. 2.7 to Fig. 2.9, it can be concluded that, after FUPE,
Genetic algorithm achieves better results in comparison with pure PSO. This is
because of, in Genetic approach, the objective function is optimized to consider
both latency and stability to assign tasks to the fog devices. Furthermore, Fig.
2.7 to Fig. 2.9 obviously shows that the only side effect of FUPE is that, in the
presence of attacks, it can not equally assign tasks between fog devices. In fact,
this issue is not the weakness of FUPE, because it prohibits compromised fog
devices to process tasks. As a result, the burden of workload in compromised
fog devices is zero while in non-compromised nodes is high.

Finally, we present the accuracy evaluation of the presented approach. For
this evaluation, there are 700 benign requests, and 300 malicious requests (at-
tack). As Genetic and PSO algorithms do not have attack defence mechanisms,

72 CHAPTER 2. FUPE

20 30 40 50 60 70 80 90 100

Number of Jobs

120

140

160

180

200

220

240

260

280

300

320

C
P

U
 U

s
a

g
e

(S
e
c
)

GA

PSO

FUPE

(a) CPU Usage.

20 30 40 50 60 70 80 90 100

Number of Jobs

40

50

60

70

80

90

100

R
A

M
 U

s
a

g
e

(%
)

GA

PSO

FUPE

(b) RAM usage.

Figure 2.10: The comparison results for the required CPU and RAM compared
to the other solutions.

for this evaluation, we only evaluate FUPE in terms of accuracy, precision, and
recall.

Accuracy = ((TP + TN)/(TP + TN + FP + FN)) (2.5)

Precision = (TP)/(TP + FP)) (2.6)

Recall = (TP)/(TP + FN)) (2.7)

where TP denotes true positive, and FN denotes false negative, TN de-
notes true negatives, and FP denotes false positive rates, respectively. Based on
Eq. (2.5), Eq. (2.6), and Eq. (2.7), Accuracy, Precision, and Recall are 0.9820,
0.9608, and 0.9800, respectively. Tab. 2.6 indicates the accuracy detection of
FUPE.

Table 2.6: Accuracy evaluation.

TN TP FN FP Accuracy Precision Recall
Value 688 294 6 12 0.9820 0.9608 0.9800

2.5 Discussion

The scheduling problem of users’ applications is the major challenging re-
search topic in IoT networks. Due to the distributed feature of IoT-fog re-

2.5. DISCUSSION 73

sources, the computational resources are more susceptible to come under at-
tack. FUPE investigates the security-driven scheduling policy. As it is illus-
trated in Section 2.4, multi-objective PSO method is a proper way to achieve a
tradeoff between security and efficiency. We found Mamdani fuzzy inference
system, a method to strike a balance between distinctive parameters in the two
MOPSO fitness functions. Because of randomness feature of PSO, FUPE has
more uneven load distribution among fog nodes. However, from security point
of view, this indicates that FUPE has the ability to detect malicious fog de-
vices. Although in this work we take TCP DDOS attack into consideration,
we argue that FUPE can be extended to tackle the other TCP DDOS flooding
attacks such as UDP flood and ICMP flood attacks.

FUPE can prioritize the distinct objectives based on the organizational pol-
icy. It means it can increase/decrease the objectives’ priorities. For example,
if the priorities of the objectives are the same, we multiply the fitness func-
tion outcomes by the same weight value (see Eq. (2.3) in Section 2.3.4). Thus,
FUPE chooses a computational resource based on the same trustworthiness and
computational capability. In another example, suppose the organizational pol-
icy is to adjust either the security or efficiency of the computational resources.
We can simply increase or decrease the objectives’ weight values which are a
number between 0 and 1. Suppose the organizational management model is
to increase the security level. Thus, we simply adjust the security objective’s
weight value.

In both TRW-CB and Rate Limiting techniques, FUPE uses the request
sender’s ID as their identity. This ID can be the IP address or Mac address
of the request sender. To mask their identity in a TCP DDOS attack, compro-
mised fog devices/malicious users’ devices use IP spoofing/MAC spoofing. To
counteract the aforementioned attacks, we can include IP spoofing and MAC
spoofing detector modules in SDN switches. For the former, the IP spoofing
detector module includes a table that stores the IP and MAC addresses of fog
devices and users’ devices. If the detector module detects an IP address as-
sociated with more than one MAC address, the fog device/end-user device is
considered an attacker [120]. Some works consider the sequence number field
in the link-layer header of each flow for the latter. The MAC spoofing detector
module computes the difference between the current frame’s sequence num-
ber and the last frame received from the same fog device/end-device. user’s
We can use either a threshold-based [121] or a fuzzy-based approach [122] to
make decisions.

Improving accuracy metrics is a critical issue in intrusion detection and

74 CHAPTER 2. FUPE

prevention systems. The work [87] illustrates that by tuning the threshold
parameters of TRW-CB and Rate Limiting, they have proper performance in
terms of accuracy evaluation metrics. The performance of these algorithms
relies on the threshold settings. As FUPE makes use of fuzzy logic for security
objective, we eliminate the problem of threshold approaches (i.e., choosing an
adequate threshold based on the aim of the approach). On the other hand, it
relies on applying an appropriate fuzzy rules set for proper performance. If we
use appropriate fuzzy rules in the Mamdani fuzzy rules set, FUPE can provide
better performance in terms of accuracy metrics for obtaining security objec-
tive. As FUPE utilizes fuzzy logic for obtaining security objective, the results
are perceived based on assumptions for defining fuzzy rules set. So, the accu-
racy of FUPE TCP DDOS attack detection is based on these assumptions that
are tunable. It must be customized and fine-tuned to get the desired accuracy.

FUPE is the first security-driven task scheduler that integrates TCP DDoS
attack detection techniques in a scheduling algorithm in IoT-fog networks. Re-
sponse time and network utilization are the two most critical issues in IoT-
fog networks which affects on users’ satisfaction. To reduce these important
metrics we make use of fog computing in IoT networks. That is the reason
why they are the two common metrics for evaluating IoT-fog scheduling al-
gorithms. To evaluate the security aspect of FUPE, we varied the attack rates
to obtain the mentioned metrics. For evaluating Trust/ security aware big data
task scheduling approaches, it is common to evaluate the methods by consid-
ering the efficiency metrics and varying a security variable. For instance, in
the work [80], response time is calculated by varying the number of untrusted
resources. To take another example from [79] execution cost is calculated by
varying the number of risk rates. So, as FUPE is a security aware IoT-fog task
scheduler, for evaluation we focus on the metrics of time by varying a security
variable.

We argue that FUPE is suitable to be implemented in real examples of
disturbed systems such as Web Operating Systems [35] with the aid of peer-
to-peer (P2P)/semantic P2P Grid architectures [36]. It has two substantial ben-
efits. First, the process of the user applications is done at the fog devices
which are close to the users’ devices. Accordingly, response time is decreased
which causes more user satisfaction. Second, as security is a critical concern
for users’ applications in web OS, FUPE provides a suitable security level for
them on fog devices.

2.6. CONCLUSIONS 75

2.6 Conclusions

This study introduced a security-aware fog task scheduler, called FUPE, that
considers security issues to effectively assign IoT end-user tasks to fog devices
in SDN architecture. FUPE induces the remaining amount of RAM size and
CPU capacity, end-user tasks CPU need, and trust degrees as input parameters
and implements a multi-objective approach jointly based on PSO and fuzzy
theory to assign applications’ tasks to fog devices. FUPE tackles the TCP
DDOS attack as the most common denial of service attacks. Our experiments
using an IoT-based scenario illustrate the effectiveness of the presented ap-
proach. Results show that FUPE outperforms both the metaheuristic methods,
i.e., GA and PSO. Compared against the former bio-inspired method, FUPE
improves average response time by 11% and network utilization by 10%. It
compared against the latter method and improves average response time by
17% and network utilization by 22%.

Chapter 3

S-FOS

F
og computing aims to provide Cloud data center at the edge resources
to support time-sensitive Internet of Things (IoT) applications with low

latency requirements. Software defined networking (SDN) is a novel network-
ing paradigm that decouples the control plane from the data plane, resulting
in a high level of programmability and manageability. In SDN-based IoT-
Fog networks, SDN switches and controllers can serve as fog gateways/cloud
gateways. SDN switches and controllers, on the other hand, are more vul-
nerable to a variety of attacks, making the SDN controller a bottleneck and
thus vulnerable to control plane saturation. IoT devices are inherently inse-
cure, leaving the Internet vulnerable to a range of attacks. In this chapter, we
present S-FoS, an SDN-based security-aware workflow scheduler for IoT-Fog
networks. Our framework is a software application that detects the source
of attacks and monitors IoT devices for malicious activity. The proposed ap-
proach defends scheduling services against Distributed TCP/UDP Denial of
Service (DDoS) and port-scanning attacks. S-FoS is a joint secure and per-
formance optimization approach that employs fuzzy-based anomaly detection
algorithms to identify the source of attacks and block malicious requesters.
Furthermore, it employs an NSGA-III multi objective optimization approach
to the scheduler in order to consider load balancing and delay simultaneously.
We do comprehensive simulations on IoT-based scenarios to show that the
S-FoS outperforms state-of-the-art algorithms by a significant margin. The
simulation results show that by varying the attack rates, the number of fog de-
vices, and the number of flows, the response time of S-FoS improved by 31%
and 18%, the network utilization of S-FoS improved by 9% and 4%, and the
energy consumption of S-FoS improved by 16% and 9%, respectively, when

77

78 CHAPTER 3. S-FOS

compared to the NSGA-II and MOPSO algorithms.

3.1 Introduction

With the rapid growth of Internet of Things (IoT) applications, many novel
approaches to meeting the various performance and security requirements of
IoT networks have been proposed. Because of the importance of IoT security
and application scheduling in the face of challenges imposed by inherent IoT
features such as computation or energy consumption limitations, IoT security
and application scheduling have gotten a lot of attention. Because of these
constraints, the use of strong security protocols to protect scheduling services
is limited [49, 123]. As the number of generated IoT workflows increases,
time-sensitive processing necessitates resources with sufficient computational
capacity. Furthermore, the computational capacity of the cloud data center is
nearly limitless, but it necessitates a higher communication latency. Although
the cloud data center is a powerful and frequently misunderstood silver bul-
let for application execution, its silver lining begins to fade at the network’s
edge, where lower latency, more time-sensitive capabilities, and decentralized
resource management are desired. Response time is critical in time-critical
environments such as traffic control systems. So, in order to reduce response
time, the workflow scheduler should assign applications to network resources
at the network’s edge. Fog computing is a promising IoT paradigm that im-
proves the QoS of time-sensitive applications by redirecting some resources
from cloud data centers to closer edge resources (fog devices). There is no
guarantee that fog devices will always be available in such a distributed en-
vironment. If the fog devices are not protected by defense mechanisms after
they begin processing time-sensitive applications, they are vulnerable to attack
and hacking. As a result, it is critical to ensure that time-sensitive application
schedulers are reliable for successful execution in the resources, regardless of
any attack on fog devices. [78].

The user applications are assigned to the fog devices by a workflow sched-
uler. Following that, fog devices decompose the applications into small tasks
and schedule them to be executed on the resources of the fog devices. The
fog devices, as well as the workflow scheduling services of IoT-fog networks,
are the most vulnerable to attacks such as TCP/UDP DDoS or port scanning
[124, 125, 60, 87]. A TCP/UDP DDoS attack launched by a malicious IoT
device can significantly reduce the performance of scheduling services, caus-
ing user applications to lag. When a fog devices is attacked, it can be brought

3.1. INTRODUCTION 79

down or even used to aid the attacker. Another important attack in SDN-based
IoT-fog network is port scanning. Generally, this attack is performed in the
reconnaissance step and its goal is to determine which ports in the network are
open and may be receiving or sending requests from users. Open ports on a
host may be exploited by attackers to compromise the host in order to launch
future malicious behaviors.

In line with the preceding context, IoT-fog networks require efficient ap-
proaches to security and efficiency requirements. As a result, these approaches
are the most critical in terms of IoT-fog network performance. Security and
performance are two distinct issues. Typically, they are addressed separately.
It is still difficult to use IoT-fog resources securely and efficiently, so solving
this problem requires the use of collaborative efficient algorithms. Further-
more, we can use a multi objective optimization (MOO) algorithm to consider
Quality of Service (QoS) parameters such as load balancing and delay for per-
formance metrics at the same time. These algorithms have been widely used
in IoT-fog networks. [126, 127, 19].

3.1.1 Motivation

Without considering the security of the fog devices, the IoT-fog network can-
not properly execute the users’ time-sensitive applications. The reason for this
is that, as a result of a failure in fog devices or SDN controller caused by an
attack, the user experiences high rates of delay, causing the execution time
to exceed the service-level agreement (SLA). As a result, the time-sensitive
application execution fails. The requirement for a defense mechanism to pro-
tect scheduling services prompted us to apply security defense mechanisms
to the presented approach in order to consider fog devices and SDN switches
security. In the control plane, network functions such as routing, traffic man-
agement, security and resource scheduling are offloaded to the SDN controller.
The data plane SDN switches forward traffic according to the flow rules pro-
vided by the SDN controller. SDN-based IoT-fog networks, while beneficial
in many respects, are subject to a variety of security issues [60, 87]. TCP/UDP
DDOS and port scan attacks on fog devices affect the controller and can bring
the entire network down due to the SDN controller’s logically centralized ar-
chitecture. The malicious IoT device sends TCP/UDP packets to various ports
on the fog devices and evaluates the response packets to determine the avail-
ability of the service on the fog devices in a TCP and UDP port scan attack.
Furthermore, malicious IoT devices flood fog devices with SYN requests in
order to overwhelm them with open connections. In March 2013, a TCP/UDP

80 CHAPTER 3. S-FOS

DDoS attack against Spamhaus caused significant network congestion, result-
ing in a significant loss. The github servers were brought down by TCP/UDP
DDoS assault traffic in February 2018. It also happened once against Ama-
zon’s online service, which caused a 209 million USD loss by disrupting all of
its services for two hours. Approximately 17 TCP/UDP DDoS assaults were
launched against the University of Albany website during February and March
2019. The above examples demonstrate the need to countermeasure these at-
tacks.

Current application schedulers use the security unit to validate fog devices
[16, 128, 14, 126, 20, 19, 68]. The schedulers assign applications to fog de-
vices that have both been approved by the security unit. While this technique
is valid, time-sensitive processes may encounter unforeseen challenges such
as the security unit going down or IoT devices being compromised after they
have been validated by the security unit and before the applications are exe-
cuted. In other words, application execution must take place within a specific
time frame. The applications have time-sensitive requirements that specify the
amount of time the applications must be executed. The failure of the security
unit has disastrous consequences for the workflow scheduling unit. On the one
hand, if it fails, the scheduler considers the malicious IoT devices requests.
When a fog device is attacked, it may engage in other malicious activities such
as abusing users and stealing critical data. Attempting to return to a stable state,
on the other hand, will result in time loss and user dissatisfaction because time
is a critical factor in time-sensitive workflow. A possible solution to overcome
this problem is using security aware application scheduling. Some studies have
been conducted in this area [78, 61, 77]. They primarily attempted to shorten
the makespan while keeping security in mind. Consideration of security and
scheduling together is better suited for real-time applications than considering
them separately. The reason for this is that a delay in communication between
the security unit and the scheduling unit, or even a failure of the security unit,
can result in the user application being executed after the deadline. To that
purpose, these works model the application in such a way that it is not allowed
to execute on all fog devices because those fog devices do not match the ap-
plication’s security requirements or are not risk-free. They provide the level
of security for each application that will be run on fog devices that meet the
security requirements. These works still rely on the security unit, even though
they allocate the applications to fog devices with the specified security level.
The attacks can jeopardize the system’s time-sensitive capabilities as well as
bring the fog device down if the scheduler fails to address security.

3.1. INTRODUCTION 81

3.1.2 Contribution of the chapter

Because IoT-fog architecture contains users’ essential data, it necessitates QoS
and security considerations. To our knowledge, S-FOS is the first attempt to
perform secure workflow scheduling approach for performance optimization
in SDN-based IoT-Fog networks that considers TCP/UDP DDOS, and port
scanning attacks. To secure the IoT-fog scheduling services, it automatically
disables IoT devices that begin to engage in malicious activity. S-FOS vali-
dates users’ applications using the results of the security mechanism. Then it
chooses fog devices that meet the load balancing and delay requirements of the
users’ applications using one of the recently investigated MOO solutions, the
non-dominated sorting genetic algorithm (NSGA-III) [129]. Because it outper-
forms the other MOO algorithms on large-scale problems with a large number
of users, this algorithm is widely used in IoT-fog networks. Furthermore, by
using reference points for the next-generation population, it first reduces the
time it takes to find the final solution; second, it performs better for problems
with more than two objective functions [130, 131]. S-FoS requests that NSGA-
III take load balancing and delay into account for performance optimization. In
this chapter, we assume that the attackers are IoT devices capable of attacking
fog devices, SDN switches and controllers.

We assess S-FoS using IoTSim-Osmosis [132]. To that end, we compare
S-FoS to two well-known metaheuristic approaches, NSGA-II [133] and Multi
objective particle swarm optimization (MOPSO) [124], by varying attack rates,
fog device count, and flow count. According to the results, our proposal out-
performs the NSGA-II and MOPSO approaches in terms of response time,
network utilization, and energy consumption. In particular, S-FoS improves
response time by ≈ 25%, network utilization by ≈ 7%, and energy consump-
tion by ≈ 13% on average. The following are our primary contributions:

• We present a novel framework for workflow scheduling that considers load
balancing and delay while meeting the security requirements of IoT devices.

• When scheduling the workflow, we only take into account the applications
of validated users as determined by our proposed security mechanisms. A
proper flow assigner modules on SDN controllers, as well as some fog de-
vices, are required for efficient application execution.

• The NSGA-III-based scheduling algorithm takes into account fog devices
that can be dynamically acquired and released, and each application is then
mapped into a corresponding fog device while load balancing and delay

82 CHAPTER 3. S-FOS

are taken into account. We propose an NSGA-III approach for workflow
scheduling to solve the multi-dimensional and multi-constraint optimization
problem.

• We conduct experiments to demonstrate the efficacy of the proposed secure
workflow scheduler.

3.2 Related work

In this section, first, we discuss defense mechanisms against the attacks in
IoT/SDN networks. Following that, we describe the fog application scheduling
methods. Then, we investigate security-aware fog task scheduling algorithms.
Table 3.1 summarizes the comparison of the related application scheduling
approaches.

3.2.1 DDOS and port-scanning attacks in IoT/SDN approaches

In this section, we discuss recent defense mechanisms in IoT-fog and SDN
networks against DDOS, and port scanning attacks [60, 70]. Kolias et al.
[72] cited the Mirai botnet and its variants as real-world examples of DDoS
attacks in IoT networks. These botnets demonstrate how DDoS attacks can
take advantage of the lack of security mechanisms in IoT devices, resulting in
equipment failure, production downtime, and reputation damage for IoT sys-
tems. The authors discussed lessons learned from previous real-world DDoS
attacks, but they did not present mitigation strategies for the future. Spilios Ev-
morfos et al. [71] conducted research on the mechanism of SDN against SYN
flood attacks. Such a paper investigates long-short-term memory and random
neural network as two lightweight techniques for mitigating SYN flood attacks
in IoT systems. Zhou et al. [76] proposed a three-level DDoS attack mitiga-
tion strategy in industrial IoT (IIoT)-fog networks. This research provides a
low-latency communication for the cloud center and monitors firewall devices
running real-time traffic filtering, filtering signature botnet DDoS attack pack-
ets. The anomaly traffic is filtered based on the known traffic signature. Ac-
cording to the results of the tests, this work reduces the number of false alarms
and the time it takes to detect an attack compared to using only the local fog
level. Yan et al. [73] proposed a DDoS attack mitigation framework with mul-
tiple levels for the IIoT. It uses SDN technology to manage a large number
of IIoT devices as well as network flows. As they prove, the intrusion detec-
tion system can protect against DDoS attacks in IIoT much more quickly and

3.2. RELATED WORK 83

easily by leveraging SDN capabilities. To accomplish this, SDN controllers
work with SDN switches to collect traffic data. Then, it detects DDOS attacks
using network traffic data. After this, it restrains DDOS attacks based on de-
tection and finally perceives network state using honeypots. Kumar et al. [74]
proposed SAFETY, a method for detecting and mitigating DDOS attacks in
SDN networks. The authors employ the SDN’s flexible programmability and
global visibility in a Normalized Entropy (NE) detector algorithm. To measure
network flows, SAFETY uses Shannon entropy as the NE algorithm. It mon-
itors the entropy value of the packets and detects a DDOS attack if the value
falls below a certain threshold. The authors include SAFETY in the Floodlight
OpenFlow controller, which uses the destination IP address, port, and TCP
flags to calculate NE. SAFETY reduces false positive and false negative rates
by dynamically increasing the thresholds to auto-adapt to the normal fluctu-
ations of the SDN link traffic. When compared to approaches that consider
multiple features, entropy detector methods that only consider a single feature
from the packet header (i.e., source IP or destination IP) do not provide a rea-
sonable detection accuracy rate. To overcome the limitations of single packet
features, Mao et al. [134] employ multiple packet header features based on
the joint-entropy method for DDoS attack detection and mitigation in SDN.
The authors use information theory to achieve greater scalability, detection ac-
curacy, and less complexity. Furthermore, the joint entropy approach covers
flow duration, source IP address, packet length, and destination port to detect
DDOS attacks. Using packet length and source IP, the authors conducted ex-
periments to compare the joint entropy approach with a single entropy method.
In terms of detection accuracy and false-positive rate, the joint entropy method
outperforms the single entropy method. The disadvantage of this work is that
it is not capable of early detection because it takes longer to detect an attack.
SLICOTS, a DDOS attack mitigation approach in SDN, is proposed by Mo-
hammadi et al. [64]. Because of a bottleneck in the control plane, the authors
believe it is vulnerable to saturation DDOS attacks. The authors run SLICOTS
as a dynamic, flexible SDN programmable mechanism. They use SLICOTS
in the SDN controller to validate ongoing TCP connection attempts in order
to determine whether the hosts are benign or malicious. SYN-Guard, a DDOS
attack mitigation approach in SDN, is proposed by Mohammadi et al. [75].
In SYN-Guard, the authors use the SYN proxy technique and implement it as
a module in the SDN controller. The controller keeps track of the number of
SYN packets with the same source MAC address to apply a forwarding rule
or a block rule to the packet on the switches. Birkinshaw et al. [87] proposed

84 CHAPTER 3. S-FOS

an intrusion detection and prevention system (IDPS) in the SDN that detects
and mitigates malicious flows. It countermeasures port-scanning and denial-
of-service (DoS) attacks. As defense mechanisms against DOS attacks, they
employ TRW-CB and rate limiting, and a QoS strategy based on flow statistics
in the IDPS. Furthermore, they propose Port Bingo, a port-scanning detection
technique for port-scanning attacks. Hamza et al. [135] proposed an intrusion
detection system (IDS) for the IoT paradigm that is a combination of Manufac-
turer Usage Description (MUD) and SDN. This work demonstrates the short-
comings of approaches that use MUD-derived flow-rules. They get around it
by sending the exception packets to off-the-shelf intrusion detection systems.
Port scanning, DDoS attacks, and TCP/SSDP/SNMP reflection attacks are all
addressed in this work. Ujjan et al. [136] proposed a snort IDS for SDN-based
IoT networks that use flow and adaptive polling-based traffic sampling. The
authors use deep learning algorithms to detect DDoS attacks. The presented
method results in low processing and network head in SDN switches. To im-
prove DDoS detection accuracy, it analyzes network overhead between the
control and data planes with each sampling implementation. Patil et al. [137]
developed a port scanning-based model to mitigate malicious TCP traffic in
SDN that validates the source IP addresses and port numbers of TCP-SYN es-
tablished connections using customized TCP-FIN packets. This work employs
a separate node with two modules integrated with the POX controller to mon-
itor new SYN packets and scan TCP source ports via which SYN packets are
received. To verify the request, a separate node sends two FIN flag packets to
the source host, using the requested host’s source IP address and port number,
to persuade the requester to accept its packet. It determines whether it is an
attacker or not based on the requester’s response. Based on the NAT penetra-
tion system, Tang et al. [138] suggested a probe delay-based Port Scanning
approach for IoT devices. It adjusts the frequency and techniques of port scan-
ning to balance the IoT network’s performance and security requirements. It
primarily focuses on optimizing routing to capture IoT data, allowing for com-
prehensive probing across a wide IP address range. This method cannot probe
sleeping IoT devices, which not only prolongs scan times but also overloads
the IoT network. S-FOS detects and mitigates port-scanning and DoS attacks
in application scheduling, checking research path. It increases the efficiency
of available and safe IoT-fog resources.

3.2. RELATED WORK 85

3.2.2 Fog task scheduling approaches

In this section, we will explain some of the fog task scheduling algorithms.
Gill et al. [16] present ROUTER, a novel resource management approach
for smart home IoT devices that uses particle swarm optimization (PSO) to
improve QoS parameters such as network bandwidth, response time, latency,
and energy consumption simultaneously. The authors use the iFogSim sim-
ulator to compare ROUTER with gateway-based fog computing (GFC) and
virtualization-based resource provisioning (VRP). Stavrinides et al. [128] pro-
posed a hybrid approach in which workflows requiring low communication
overhead are placed on the cloud data center and tasks requiring higher com-
munication overhead are placed on the edge layer. These methods are di-
vided into two stages: task selection and resource selection. Tasks are pri-
oritized based on their earliest deadline. If two or more tasks are assigned the
same priority, the one with the highest average computational cost is assigned
first. When a task is selected, the scheduler assigns it to the resource with
the earliest estimated completion time. All resources in the cloud data cen-
ter and fog layers are considered. While this method has a low percentage of
missed deadlines, it comes at a high cost due to the use of cloud data center
resources. They also did not use an IoT use case scenario. Because of the
use of cloud data center resources, task execution times can be extremely long.
Bittencourt et al. [14] proposed a task scheduling approach that categorizes
applications as delay-tolerant or delay-sensitive. They examine the behav-
ior of three task scheduling strategies (Concurrent, First Come-First Served
(FCFS), and Delay-priority) in a mobility scenario. They employ a module
merging mechanism in strategies that assign tasks from the same application
to the same fog devices. The authors consider user mobility to be the leading
cause of fog device congestion in this work, so they use policy-based load bal-
ancing between the fog devices and the cloud data center to reduce it. Maio
and Kimovski [126] presented a novel multi-objective scheduler that uses a
Pareto-front method to optimize response time, reliability, and cost for task
execution in a fog network. To solve the problem, the authors formulate the
fog task scheduling as a multi-objective optimization problem and apply the
Non-dominated Sorting Genetic Algorithm II (NSGA-II) to the scheduler. The
authors use the NSGA-II algorithm with simulated binary crossover and poly-
nomial mutation to present the solutions as a set of Pareto optimal outcomes.
To simplify the algorithm, the authors assume that each task has a deadline
without taking into account the division of deadlines in the workflow, which
is not consistent with reality. Furthermore, in this work, each task executes

86 CHAPTER 3. S-FOS

immediately after its predecessors have completed. This situation can occur
only when all of the resources are fully utilized, which is difficult to achieve.
Bitam et al. [20] presented a novel fog application scheduler using the Bees
Life Algorithm, a well-known bio-inspired optimization strategy. As the two
performance criteria, they considered time and the allocated memory required
by mobile user requests. In order to find the best solution, the authors employ
a greedy local finding method. They use the C++ programming language to
implement their approach and evaluate it in terms of response time, memory
consumption, and cost. Sun et al. [19] presented a Multi-objective fog task
scheduler based on an improved non-dominated sorting genetic algorithm-II
(NSGA-II). Their method consists of two steps: first, the algorithm selects the
most appropriate cluster, then assigns user requests to the most appropriate
fog device within that cluster. They simultaneously improve service latency
and overall stability as two distinct goals. The algorithm minimizes the former
and maximizes the latter. In another work, the authors proposed FPFTS [68],
a new joint meta-heuristic task scheduler approach, a combination of the PSO
and fuzzy algorithms to address delay and network utilization minimization for
IoT-fog networks. FPFTS classified the applications as delay sensitive or delay
tolerant. For multi-criteria decision-making, the authors apply fuzzy logic to
the PSO algorithm fitness function. Finally, they used the iFogSim simulator
to test FPFTS for a smart city scenario with varying numbers of users moved,
bandwidth ranges, and link latency ranges.

3.2.3 Security-aware fog task scheduling approaches

IoT-fog networks have seen widespread adoption in everyday applications
where efficient resource management and security are critical concerns. Sub-
baraj et al. [139] proposed a multi-objective meta-heuristic scheduler in the
fog environment that employs the crow search algorithm (CSA). In their CSA-
based scheduler, they have two distinct objectives: deadline and security. The
applications require a security level. If fog devices provide the required se-
curity levels for the application, then the fog devices are suitable to execute
the application based on the security objective. This work considered applica-
tion and fog device features such as application CPU and RAM requirements,
application deadline, fog device CPU, RAM, and bandwidth to meet the dead-
line. Auluck et al. [78] proposed (RT-SANE), a non-preemptive security-
aware fog task scheduling method that is suitable for real-time user requests
(e.g., delay-sensitive applications). The authors’ primary focus is on reduc-
ing the number of times users must wait for their applications (i.e., the time

3.2. RELATED WORK 87

it takes to find the most appropriate resources) and providing proper levels of
security protection. To that end, they use security and deadline as two types
of observations when assigning tasks to resources. They categorize the tasks
and resources of applications based on their security level. Private applications
are assigned to trusted resources, semi-private applications to semi-trusted re-
sources and public applications are assigned to non-trusted resources by the
scheduler. Sujana et al. [61] developed the trust-based stochastic scheduling
method, which considers security and task scheduling as the two main fields
of fog networks. Their approach prioritizes the tasks of the applications based
on the stochastic top-level (STL) to find the best task-resource pair for the
application. It creates a trustworthy execution environment by taking both di-
rect trust and indirect reputation metrics into account. This work makes use
of user feedback to build a reputation-based scheduling model. Daoud et al.
[77] proposed a security-driven task scheduling-based distributed trust access
control for IoT-fog networks. The presented framework manages new user ac-
cess by authorizing and calculating their trust level. The trust level is divided
into three categories: highest trust, medium trust, and lowest trust. Follow-
ing authentication, the algorithm assigns scheduling priorities to trusted users.
It prioritizes requests from authorized users based on their trust levels, ser-
vice type, and resource availability. For example, if a user’s a shallow trust
value, the algorithm provides a less powerful resource than the requested priv-
ileges. Shivi et al. [125] describe the duplicate task detection problem for
industrial IoT applications, which reduces storage capacity and latency of fog
resources. In terms of security, the authors use an ECC-based HM algorithm
to encrypt data in the presented method. Over a four-layer fog architecture,
they implement a task allocation strategy and a secure deduplication mecha-
nism. For clustering IoT devices, this scheme employs a multi-objective al-
gorithm that takes into account node degree, residual energy, and distance to
other devices. The authors evaluate their method based on average latency,
energy consumption, user satisfaction, network lifetime, and security strength.
Baniata and colleagues [140] use blockchain as a security solution for task
scheduling optimization in an IoT-fog network. As the blockchain node, the
authors implement blockchain in the device layer (user layer). The fog layer
monitors and controls communications in the form of digital currency between
the two types of blockchain nodes and task requester nodes in the device layer.
They use the Ant Colony Optimization (ACO) algorithm in their presented
task scheduler to protect the privacy of the user while also reducing execution
time and network load. The same authors of this paper (i.e., S-FOS) recently

88 CHAPTER 3. S-FOS

proposed FUPE [124], a security-aware task scheduling algorithm, to protect
fog scheduling services from TCP DDOS attack. To distinguish between be-
nign and malicious applications, FUPE employs TRW-CB and rate-limiting
algorithms. Based on this, FUPE computes a final solution for task scheduling
using multi-object PSO. Using a fuzzy-based multi-objective PSO approach,
FUPE can find a balance point between efficiency and security objectives. To
manage network flows, the authors apply the SDN paradigm to fog architec-
ture. When malicious activity is detected, SDN allows FUPE to immediately
block network traffic anomaly.

3.2.4 Evaluating of the background methods

For the applications in the works [139, 78, 61, 77], the security level is deter-
mined by a probability distribution function or a predetermined random value.
They choose resources to meet the applications’ security level limitation using
a specified amount based on an SLA. Based on a QoS agreement, the SLA is
the degree of service users anticipate from an IoT provider. They also cluster
resources using local, remote, public, semi-private, and private tags. Local or
private resources are assumed to have more robust intrusion detection systems
(IDSs), higher security requirements (e.g., higher availability, authentication,
integrity, and secrecy), and a lower level of accessibility. As a result, their
protection is based on different levels of IDSs that are chosen based on prob-
ability. Shivi et al. [125] discuss the usage of data encryption to ensure the
privacy and security of users’ data. In another paper, Baniata et al. [140]
employed blockchain to enable identity verification and privacy for IoT appli-
cations. S-FoS, in contrast to these works [125, 140], detects and mitigates
the source of assault. Unlike our previous article, FUPE [124], which only
evaluated one type of attack, this paper considers three type of attacks. FUPE
assumes that attackers can compromise fog devices and treats both IoT devices
and fog devices as attackers. Both IoT devices and fog devices are considered
attackers. It uses a multi-objective optimization to balance the security and
efficiency of fog devices. S-FoS, in contrast to previous research, exclusively
considers IoT devices as attackers and employs multi-objective optimization
to find a compromise between load balancing and delay. In contrast to Bitam
et al. [20], Stavrinides et al. [128], and Sun et al. [19], S-FoS analyzes the
network level. The suggested methods are designed for application-level use
without taking into account the overhead of implementing them at the net-
work level. In addition, unlike these methodologies, S-FoS takes energy usage
into account when evaluating. In terms of scalability, these works are likewise

3.3. PROPOSED APPROACH 89

lacking. S-FoS, on the other hand, provided the network with a high level of
scalability. It divides the network into many fog areas and allows new fog
devices to be deployed. The architecture is also designed in such a way that
distributed SDN controllers can be used to augment it. S-FoS, unlike Gill et
al. [16], has a scalable architecture. S-FoS, unlike Bittencourt et al. [14], takes
into account the computing capabilities of all fog devices in each fog region.
S-FoS considers load balancing for scheduling, unlike De Maio et al. [126]
and our previous work [68]. There are no security or privacy safeguards in any
of these works. They are all reliant on the security unit as well as additional
defense devices. Protecting scheduling services from attacks results in remov-
ing of malicious requests, resulting in a decrease in response time, network
utilization, and energy consumption. Furthermore, the scheduling services are
not dependent on the security unit, and any fault in the security unit does not
affect on the scheduling services. This method is helpful for time-sensitive
applications.

3.3 Proposed approach

In this section, we go over the proposed S-FoS in detail. To that end, we
will first describe the reference architecture. The problem statement is then
reviewed. Then we will go over the SDN switches and controllers functions.
Following that, we will go over the TRW-CB, Rate Limiting, and Entropy
methods. Finally, we describe the proposed security-aware Scheduler.

3.3.1 Reference architecture

This section gives an account of the S-FOS architecture, which is used to con-
nect IoT and fog devices and execute user requests with low delay. A three-
level architecture is common in IoT-fog networks [82, 24]. In response to this,
we use a three-layer architecture to address SDN needs for IoT-Fog networks
using S-FoS [141, 142, 124].

It applies SDN features to an IoT-fog network, as shown in fig. 3.1. In the
application layer, also called device layer, there are IoT devices (user devices).
Users submit their applications for execution to fog devices (fog resources at
the edge of the IoT-fog network). The data plane, also known as the infrastruc-
ture layer [143], is made up of fog devices and SDN switches that are grouped
into fog regions. The execution of user applications is handled by fog devices.
IoT devices in the application layer communicate with the SDN switch, which

90 CHAPTER 3. S-FOS

Table 3.1: Comparison of related works.

Refs. Algorithms Tool Observations Security Advantages Disadvantages

[14] Concurrent/FIFO/
Delay-priority iFogSim fog devices’ capacity and applications’ priority No + User mobility

- Unclear prioritization method
for applications
- Relying on security unit

[128] Hybrid heuristic C++
Communication required for tasks,
The cost of communication between the links,
The applications’ tasks deadline,
The estimated completion time of the resource.

No + A proper deadline miss ratio.

- High financial cost,
- Delay can be very high,
- Not considering network level,
- Relying on security unit.

[20] Bees swarm C++ CPU execution time, Allocated memory No + Considering allocated memory
+ Low algorithm execution time

- Cloud computing is not support,
- Static algorithm,
- Not considering network level,
- Relying on security unit.

[16] PSO iFogSim Response time, energy,
latency, and network bandwidth No

+ Energy
+ Latency and response time
+ Network bandwidth

- No fault tolerance assurance,
- High run time,
- Relying on security unit

[126] NSGA-II Monte-Carlo
Total response time of the tasks,
Reliability of the physical devices,
Sum of the execution costs of each task,
The deadline of the tasks

No
+ Considering the reliability for executing a workflow,
+ Considering User cost for a deployment,
+ Considering workload response time

- Not considering tasks’ waiting time,
- Not considering the tasks’ deadline,
- Relying on security unit.

[19] NSGA-II MATLAB
Proximity and the resource utilization of fog clusters,
The required completion time of a service,
Fog devices’ calculation capabilities,
The degree of a fog device’s reliability

No
+ Low execution time,
+ High scalability,
+ Low latency

- Not considering network level,
- Relying on security unit.

[125] multi-objective WOA iFogSim

Node residual energy,
Node degree (no. of neighbor connections),
Distance between nodes,
The hash information of the fog devices,
Task length and processing delay

Yes

+ Enabling detecting duplicate tasks,
+ Reducing the latency of the cloud server,
+ Enabling to encrypt data,
+ Increasing network lifetime,
+ Reducing energy consumption,
+ Improving security strength

- High computational complexity,
- System fails in case of
cluster head failure.

[140] Multi-Objective ACO Python Resources’ computing power,
The length of tasks,
Cost of machines

Yes

+ Low latency,
+ high privacy awareness,
+ Low network load,
+ High scalability

- High time complexity,
- Execution time is not validated,
- Energy conservation is not justified

[61] Stochastic CloudSim Service Level Agreement (SLA),
Tasks with the lowest execution start time Yes + multi levels of trust - Relying on the users’ feedback

[139] Crow search algorithm iFogSim
Security level
applications’ features
fog devices’ features

Yes
+ Considering deadline,
+ Considering privacy,
+ Considering efficiency.

- The definition of security
level is imprecise.

[78] Multi-criteria task priority iFogSim
The deadline of the jobs
Available fog devices’ spare capacity
The privacy of the jobs

Yes + Considering data privacy by applying
security tags to the resources. - No attack defence mechanism

[77] Multi-criteria task priority iFogSim
Level trust of the jobs
Arrival time of the jobs
Availability of the resources

Yes + Assigning security tag to the resources. - No attack defence mechanism,
- Relying on the users’ feedback

[68] Hybrid (PSO-Fuzzy) iFogSim

Fog devices’ ram capacity,
Fog devices’ CPU capacity,
Fog-devices’ link bandwidth,
Computational needs of the applications

No

+ Considering the user’s mobility pattern,
+ Considering fog devices’ computational capacity,
+ Reducing application latency,
+ Reducing network utilization

- Static scheduling,
- Relying on security unit.

FUPE Hybrid (MOPSO-Fuzzy) Matlab

Available computational capacity of the fog devices,
Available memory capacity of the fog devices,
Available link bandwidth of the fog devices,
Computational needs of the applications,
Fog devices’ trust degree

Yes

+ Considering Security patterns in evaluation,
+ Mitigating the attacks by detecting
malicious users’ device,
+ Mitigating the attacks by detecting
compromised fog device,
+ Considering available amount of
fog devices’ computational capacity,
+ Reducing application latency,
+ Reducing network utilization

- Relies on fault tolerance techniques,
- Relies on spoofing defences approaches

S-FOS Hybrid (NSGAIII-Fuzzy) IoTSim-Osmosis

Available computational capacity of the fog devices,
Available memory capacity of the fog devices,
Available link bandwidth of the fog devices,
Computational needs of the applications,
Fog devices’ trust degree

Yes

+ High scability,
+ Considering Security patterns in evaluation,
+ Mitigating the attacks by detecting
malicious users’ device,
+ Dynamic scheduling,
+ Low delay, network usage, and energy consumption

- Relies on fault tolerance techniques,
- Relies on spoofing defences approaches

3.3. PROPOSED APPROACH 91

communicates with the fog devices. We assume that no hosts are connected
to the SDN switch via a hub or a layer 2 switch. Because we are using SDN
abilities, all flows can be managed by SDN switches using flow rules injected
through OpenFlow from the controller. Finally, the Control plane, also known
as the control layer [143], consists of cloud data centers and an SDN controller.
The cloud data center is responsible for running user applications that have
been offloaded by fog devices. In the presented architecture, there is a SDN
controller (i.e. cloud gateway) with a global view of the entire network. The
SDN controller is in charge of the SDN switches’ control and management. On
a regular basis, the SDN switches query the fog devices’ information within the
fog region that controls them in order to gather data directly from them. The
information includes events such as fog device leave/join, fog device up/down,
link up/down, and the status of fog device computational resources (i.e., CPU,
RAM, and the link bandwidth utilization). Furthermore, SDN controller col-
laborates with SDN switches to modify/update their flow tables and flow paths
(forwarding and backward paths) via the OpenFlow protocol which is a central
aspect in SDN networks.

3.3.2 Problem Statement

This work is based on the assumption that malicious IoT devices can perform
attack on fog devices that affects SDN controller in the same fog region to
bring the network down. The attack on the infrastructure layer begins with
reconnaissance of fog devices to discover port vulnerabilities. Probing a po-
tential open ports clears the way for further attacks and is frequently used
as a precursor to TCP/UDP DDOS attacks. The security component of S-
FoS, which employs anomaly detection techniques, serves as a deterrent to
TCP/UDP DDOS-based port scanning attacks. SDN switches and controllers
get resource suffocated as a result of this behavior. Malicious flows reduce
network performance, causing user dissatisfaction. Security mechanisms must
be deployed to protect security-critical users’ applications running on IoT re-
sources from being attacked. The problem we address in this paper is how
to assign validated user requests to fog devices while maintaining efficiency.
We solve this problem by employing a hybrid strategy, which allows the work-
flow scheduler to provide optimal performance in both security and efficiency.
Our proposed approach first validates IoT device requests and then blocks ma-
licious ones. The benign ones are then assigned to fog devices while load
balancing and delay are taken into account.

92 CHAPTER 3. S-FOS

IOT Device

IoT Device

IoT Device

Fog Device

SDN Switch

IoT Device

IOT Device

Fog Device

Fog Device

SDN Switch

SDN Controller

Cloud Data-Center

Fog Device

Fog Region 1

Fog Region 2

Fog DeviceFog Device

Application Layer Infrastructure Layer Control Layer

Figure 3.1: S-FOS architecture.

3.3. PROPOSED APPROACH 93

3.3.3 The SDN switches and controllers functions

In order to handle flows, the SDN switches cooperate with the SDN controller.
The SDN switches have internal flow tables with their own set of flow rules.
The data are forwarded by them in accordance with the flow rule entries spec-
ified by the SDN controller. In fact, the SDN controller proactively calculates
optimal paths from the SDN switches to the fog devices, and then installs the
paths as forwarding rules on the flow table of the SDN switches. Each flow
rule contains headers (i.e., source IP, source MAC, destination IP, destination
MAC, and TCP/UDP port) as well as a set of actions (i.e., forward, and drop)
to handle matched packets. Incoming packets are matched by the packet head-
ers. The SDN controller manages the flow tables in the SDN switches via the
OpenFlow protocol. Security and Performance optimization functions are im-
plemented in our plan in the SDN controllers. The attacks are detected by the
Flooding and Port Scanning Detector module inside the SDN controller. In
addition, with the efficiency metric, the Flow Assigner module assigns flows
to the most proper fog device in the SDN controllers. It is worth mention-
ing that, at the initiation phase, the SDN controller temporarily installs paths
for a short while to enable the flows to be routed through the SDN switches.
Moreover, the SDN controller periodically collects some useful statistics about
each traffic flow associated with an IoT device connection, such as source and
destination IP addresses, source and destination port numbers, the number of
requests made by each device, and so on. It detects TCP/UDP DDOS, and port
scanning attacks using these values. The Flooding and Port Scanning Detec-
tor module, uses a Mamdani fuzzy function to detect attacks and disables the
offending IoT device. If no attack is detected on the requester nodes, the SDN
controller permanently adds the forwarding rule to the SDN switch flow table,
and the Flow Assigner module considers the requests during the scheduling
process. Otherwise, the SDN controller adds the drop rule to the SDN switch
flow table to mitigate future attacks. Finally, the Flow Assigner module is
in charge of assigning validated user requests to fog devices. It employs an
NSGA-III method that takes into account both load balancing and delay when
assigning flows to the fog devices.

3.3.4 Anomaly Detection Approaches

The Fuzzy-based functions of the Flooding and Port Scanning Detector mod-
ule in the SDN controllers require the output values of anomaly detection al-
gorithms. They collect raw data from the SDN switches and then run anomaly

94 CHAPTER 3. S-FOS

detection algorithms such as TRW-CB, Rate Limiting, and Entropy [88, 62].
The functionalities of these three algorithms are as follows:
TRW-CB algorithm To countermeasure TCP DDOS attack, this algorithm
uses the rate of successful/unsuccessful IoT device TCP connection attempts
to the fog devices to detect anomalous behavior [87]. This method detects
TCP DDOS attack when the number of TCP SYN packets sent from an IoT
device (Requester) to a fog device in the infrastructure layer (Requested) is
significantly greater than the number of TCP ACK packets.
Rate Limiting algorithm To countermeasure UDP DDOS attack, this algo-
rithm is based on the assumption that an IoT device does not send a large
number of UDP packets in a short period of time, whereas a malicious IoT
device does [87]. In threshold-based approaches, this technique detects UDP
DDOS behaviour if the rate of UDP packets exceeds a predefined threshold
value. The attack is determined by a high fuzzy set in fuzzy-based approaches
such as S-FoS.
Entropy algorithm In the baseline, this algorithm estimates the maxi-
mum/minimum entropy for benign traffic detection [88, 74]. S-FOS employs
Claude Shannon’s Entropy method[144] to assess the randomness of destina-
tion port numbers associated with random variables [145]. S-FOS generates
output with a uniform distribution in the [0, 1] range using normalized entropy
[74] to detect the probed port numbers. Figs. 3.2 to 3.5 indicate the process
diagram of the TRW-CB, Rate Limiting and Entropy approaches.

3.3.5 S-FOS: the security-aware Scheduler

This section describes the approach that is being presented.

Fuzzy approach

In the security part of our approach, we used the Mamdani fuzzy logic.
Flooding and port scanning attacks S-FOS uses the entropy technique to
prevent port-scanning, which occurs when an attacker sends packets related to
a large number of different ports in order to detect TCP/UDP port probes that
are accessible. For port scanning attacks, attackers typically probe the most
commonly used ports that provide well-known services. The entropy of des-
tination port numbers reveals a diverse set of streams (variety of ports). To
determine the variety of ports probed by requesters, we use the entropy of des-
tination port numbers. During a port scanning attack, the entropy distribution

3.3. PROPOSED APPROACH 95

IoT device SDN switch SDN controller Fog device

1-Sends TCP SYN packet
2- Forwards TCP SYN

packet

10- Checks the 3-way

TCP handshaking

5- Sends TCP SYNACK/

RST/ Connection times out

7- Sends TCP SYNACK

3- Installs flow for

forwarding direction

4-Sends TCP SYN packet

11- Increments/

decrements Credit

6- Installs flow for

backward direction

11- Provides Controller

with connection attempts

8-Sends TCP ACK packet

9-Sends TCP ACK packet

Figure 3.2: The sequence diagram of TRW-CB algorithm.

96 CHAPTER 3. S-FOS

IoT device SDN switch SDN controller Fog device

1-Sends UDP packet

2- Forwards UDP packet

7- Increments/

decrements flows

number

3- Installs flow for

forwarding direction

5- Installs flow for

backward direction

4-Sends UDP packet

6- Provides Controller

with number of flows

8- Calculates the Rate

Figure 3.3: The sequence diagram of Rate limiting algorithm.

3.3. PROPOSED APPROACH 97

IoT device SDN switch SDN controller Fog device

1-Sends TCP SYN packet
2- Forwards TCP SYN

packet

8- Inspects TCP

SYNACK/ RST

5- Sends TCP SYNACK/

RST/ Connection times out

7- Sends TCP SYNACK

3- Installs flow for

forwarding direction

4-Sends TCP SYN packet

10- Increments/

decrements connection

attempts

6- Installs flow for

backward direction

9- Provides Controller

with connection attempts

11- Calculates the entropy

of connection attempts

Figure 3.4: The sequence diagram of Entropy algorithm for TCP packets.

98 CHAPTER 3. S-FOS

IoT device SDN switch SDN controller Fog device

1-Sends UDP packet

2- Forwards UDP packet

7- Increments/

decrements

connection attempts

3- Installs flow for

forwarding direction

5- Installs flow for

backward direction

4-Sends UDP packet

6- Provides Controller

with connection attempts

8- Calculates the entropy

of connection attempts

Figure 3.5: The sequence diagram of Entropy algorithm for UDP packets.

3.3. PROPOSED APPROACH 99

of destination port numbers becomes more random, whereas the randomness
of destination port numbers is very low for benign traffic.

TRW-CB is used to counter TCP DDOS attacks because it is a proper
mechanism for connection-oriented protocols. Furthermore, unlike TCP
DDOS attack, UDP DDOS has a high attack rate, so we use Rate Limiting
to mitigate UDP DDOS attack. For this purpose, the Flooding AND Port
Scanning Detector module examines the packet type. It feeds the TRW-CB
outputs and the entropy of the destination port numbers into a Mamdani fuzzy
inference system for TCP packets. Furthermore, for UDP packets, it uses the
outputs of the entropy of the destination port numbers and Rate Limiting as
input parameters to the Mamdani fuzzy inference system. These are the input
parameters for the fuzzy function, and the output of the fuzzy function is used
to remove malicious IoT devices. It should be noted that the fuzzy feature is
used to countermeasure both flooding and port scanning attacks at the same
time. The following are the fuzzy sets for the aforementioned parameters and
the result parameter:

• Credit: ∈ {Low; Medium; High}

• Rate: ∈ {Low; Medium; High}

• Entropy: ∈ {Low; Medium; High}

• Result: ∈ {Attack; Potential; Safe}

In the above fuzzy rules, we use Credit, Rate, and Entropy to represent the
TRW-CB, Rate Limiting, and SDN switch port numbers entropy, respectively.
Tables 3.2 and 3.3 show the fuzzy rules used in the Flooding And Port Scan-
ning Detector module. Moreover, figs. 3.6a, 3.6b show the fuzzy sets used for
the Credit/Rate and Entropy parameters, as well as the results.

NSGA-III approach

In the performance optimization part of our approach, we used an NSGA-III
algorithm. In the Flow Assigner module, S-FOS employs the NSGA-III ap-
proach to implement an evolutionary algorithm that optimizes both delay and
load balancing. The Flow Assigner module is in charge of allocating flows to
the best fog device for executing validated user requests. The fog device that
runs the users’ flows should provide a proper response time. The NSGA-III
method is a novel approach to solving multi-objective optimization problems.
The main advantage of NSGA-III over NSGA-II is a significant improvement

100 CHAPTER 3. S-FOS

Table 3.2: Fuzzy rules for TCP flows.

Credit Entropy Result
Low Low Potential
Low Medium Attack
Low High Attack
Medium Low Potential
Medium Medium Potential
Medium High Potential
High Low Safe
High Medium Safe
High High Potential

Table 3.3: Fuzzy rules for UDP flows.

Rate Entropy Result
Low Low Safe
Low Medium Safe
Low High Potential
Medium Low Potential
Medium Medium Potential
Medium High Potential
High Low Potential
High Medium Attack
High High Attack

3.3. PROPOSED APPROACH 101

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

TCP/ UDP Flooding & Port Scanning Attack

0

0.2

0.4

0.6

0.8

1

D
e

g
re

e
 o

f
M

e
m

b
e

rs
h

ip

Low Medium High

(a) Input parameters for Flooding And
port scanning detector module.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

TCP/ UDP Flooding & Port Scanning Attack

0

0.2

0.4

0.6

0.8

1

D
e

g
re

e
 o

f
M

e
m

b
e

rs
h

ip

Attack Potential Safe

(b) Output parameter for Flooding And
port scanning detector module.

Figure 3.6: Fuzzy sets

in its next generation selection mechanism. NSGA-III selects the next genera-
tion chromosomes using a series of reference points rather than the crowding
distance operator used by NSGA-II (i.e., the distance between a solution and
reference points). The crowding distance is the distance between two solutions
(i.e., the distance between two neighboring solutions [130, 131]). Security-
aware workflow scheduling is defined by S-FOS as a multi-objective optimiza-
tion problem that takes into account both the load balancing and delay of fog
devices in IoT-fog networks at the same time. S-FOS encodes the workflow
scheduling strategy first. It then employs the multi-objective fitness function to
achieve both load balancing and delay goals. Then, using crossover and muta-
tion operations, it generates new schedule solutions. Furthermore, it employs
a well-distributed set of reference points in the selection process.

We propose a method in which virtual machines on the resources are
represented as genes, S-FOS assigns user requests to the genes, and sets of
genes form chromosomes. For example, if there are 8 user requests and 5
fog device VMs in a fog region, a possible chromosome might look like this:
{J1(1), J2(3), J3(2), J4(1), J5(1), J6(3), J7(3), J8(2)}. Assume that the par-
ent population of each generation is Pj , and the child population created from
Pj is Cj , with both having N members. NSGA-III uses Bj = Pj ∪ Cj to
make the best choice among N members of the parent and child populations,
allowing the elite members of the parent population to be retained. To this end,
NSGA-III first sorts the Bj population at various levels (LS1, LS2, LS3, · · ·).

102 CHAPTER 3. S-FOS

(LS1, · · ·) is the Various levels of non-dominantly sorted members where LS1

is the Non-dominated members of the last level sorted. Then, for the New Pop-
ulation of Gj , each non-dominant level is generated, starting with LS1, until
the size of Gj is equal or first exceeds N. Consequently, all Bj population solu-
tions from the L+1 level on are refused. Gj is the new genuine non-dominant
population. We refer to the last level as level L.

The length of the chromosome was determined by the number of VMs.
The multi-objective fitness function in S-FOS determines the optimality of a
possible solution. Each chromosome is unique, and each chromosome rep-
resents a scheduling strategy that represents a solution to the multi-objective
optimization problem. The goal of S-FOS is to find the best scheduling strat-
egy for each fog device in order to minimize the two objectives. The fitness of
a solution is determined by achieving the best trade-off between the two objec-
tives. Eq. (3.1) and Eq. (3.2) define the load balancing and delay objectives,
respectively [146, 147].

Load Balance =(

√√√√Resources∑
j=1

(UCPU
j − UCPU)2+

√√√√Resources∑
j=1

(UBW
j − UBW)2)/2

(3.1)

Where UCPU , UCPU , UBW , and UBW represent the amount of CPU used
for each resource, the average amount of CPU used for resources, the amount
of bandwidth used for each resource link, and the average amount of bandwidth
used for resource links.

Delay = ((Flows MIPS)/(Resource MIPS)) (3.2)

Where Flows MIPS and Resource MIPS represent the application’s
(flow’s) CPU requirement and the resource’s available CPU, respectively.

Eq. (3.3) is used to combine the results of the two fitness functions into a
single answer solution..

Outcome = (Load Balance ∗ α) + (Delay ∗ (1− α)) (3.3)

Where Load Balance and Delay are the outcome of the Eq. (3.1) and
Eq. (3.2). We use the two predefined weights α and 1 − α to prioritize the

3.3. PROPOSED APPROACH 103

fitness function results. We assume that the fitness functions have the same
priority and assign 0.5 to both of them.

In principle, S-FOS begins by generating a set of chromosomes known as
the population. It generates several random populations of chromosomes, then
randomly assigns fog devices to their genes, and computes the load balancing
and delay fitness values for all of the chromosomes. The fitness function of
the genes is the weighted sum of the load balancing and delay functions. We
employ the weighted sum approach to arrive at a single optimal solution that
determines the suitability of the current fog device for the user’s request. Then
it generates reference points and associates them with the solutions. To that
end, it compares the solution to a candidate solution’s reference point. The al-
gorithms replace them if the value of the candidate solution is greater than the
value of the current solution. In this step, a normalized scale on a hyperplane
of the (M − 1) − dimension, that exists equally on all objective axes, is as-
signed by NSGA-III. The number of objective functions is denoted by M . The
total number of reference points (NR) in the M-objective problem is provided
by placing the number of divisions (ND) next to each objective by means of
eq. (3.4).

NR =

(
M +ND − 1

ND

)
(3.4)

The perfect population point St is determined by calculating the perfect
point z = (zmin

1 , zmin
2 , zmin

M) and the minimum value of zmin
j for each ob-

jective function j = 1...M in U t
ξ=0St. Normalization is performed for each

chromosome based on the fitness function value. Each objective value of St is
translated by subtracting the objective fj from the objective zmin

j , so that the
ideal point of translated St is a zero vector. Eq. (3.5) indicates the translated
objective.

f ′
j(x) = fj(x)− zmin

j (3.5)

Following that, using the solution (x ∈ St) that minimizes the achievement
scalarizing function generated by f ′

j(x) and a weight vector in close proximity
to the jth objective axis, an extreme point (Zj,max) in the jth objective axis is
discovered. Using eq. (3.6), the algorithm normalized each objective fitness
function.

∀j ∈ J, J = {1, 2, ...,M}
fn
j (x) = f ′

j(x)/ aj
(3.6)

104 CHAPTER 3. S-FOS

The reference points are the averages of CPU, RAM, and storage space
in fog devices, taking into account the associated average (i.e. it determines
the fog devices which have adequate amount of computational and storage
capacity in each generation). S-FOS then compares current solution genes to
reference points that are candidate solutions (possible fog devices). S-FOS
replaces candidate solutions (reference points) if their value is greater than the
current solution. In other words, we filter the fog devices based on a criterion
(i.e., resource capacity) and use them as reference points, and in this way, we
use more suitable fog devices in the initial step and in the next generation.

There are many random populations of chromosomes in each generation.
Each of the genes contains fog devices that are linked to a specific request.
We compare the weighted sum answer obtained by two fitness functions to the
possible request for a specific fog device. The sum of the fitness functions of
each chromosome’s genes yields the overall fitness function. The algorithm
continues by keeping 20% of the chromosomes and using the remainder for
the cross over step. It employs a series of two distinct chromosomes for each
generation based on their overall fitness value. S-FOS performs a single-point
crossover operation to combine the two chosen chromosomes and create a new
individual. Because the length of the two chromosomes and the order of the
genes are the same (e.g., the first genes of both chromosomes contain the same
request, but each has a different fog device), the crossover step produces a
set of one chromosomes. Fig. 3.7 indicates the single-point crossover. In this
figure, the latter part of the chromosomes exchange their indexes. As a result,
the latter gens of chromosome A contain fog devices 2, 3, 2, and 1. While fog
devices 3, 1, 1, and 3 are found in the later gens of chromosome B.

The final operation in each generation is mutation, which changes one of
the gens at random. It causes the gen to be equipped with a different fog de-
vice. Due to the rarity of mutations in genetics, we apply the mutation operator
to 10% of the cross over output chromosomes. The mutation operation is de-
picted in fig. 3.8. The result chromosomes from the previous figure are used in
this figure (i.e., cross-over step). We assume that the mutation occurs on both
outcome chromosomes. As a result, fog devices 2 (R2) are found on chromo-
some A’s second gen, while fog devices 3 (R3) are found on chromosome B’s
seventh gen. S-FOS reintroduces these chromosomes into the current genera-
tion, creating a new population for the next generation. S-FOS perpetuates all
processes on the population for future generations. We set the breaking condi-
tion (i.e., iteration number) to a predetermined number or whenever both of the
crossover’s selected chromosomes are homologous (i.e., the genes of the chro-

3.3. PROPOSED APPROACH 105

Chromosome A

Chromosome B

F1 F2 F3 F4 F5 F6 F7 F8

F1 F2 F3 F4 F5 F6 F7 F8

Chromosome A F1 F2 F3 F4 F5 F6 F7 F8

R2 R3 R1 R2 R3 R1 R1 R3

R1 R1 R3 R2 R2 R3 R2 R1

R2 R3 R1 R2 R2 R3 R2 R1

Chromosome B F1 F2 F3 F4 F5 F6 F7 F8

R1 R1 R3 R2 R3 R1 R1 R3

Figure 3.7: The single-point crossover method (i.e., F = 8; numbers of flows
and R = 3; number of fog devices)

106 CHAPTER 3. S-FOS

Chromosome A

Chromosome B

F1 F2 F3 F4 F5 F6 F7 F8

F1 F2 F3 F4 F5 F6 F7 F8

R2 R3 R1 R2 R2 R3 R2 R1

R1 R1 R3 R2 R3 R1 R1 R3

Chromosome A

Chromosome B

F1 F2 F3 F4 F5 F6 F7 F8

F1 F2 F3 F4 F5 F6 F7 F8

R2 R2 R1 R2 R2 R3 R2 R1

R1 R1 R3 R2 R3 R1 R3 R3

Figure 3.8: The mutation method

3.3. PROPOSED APPROACH 107

mosomes contain the same fog devices). The steps of the S-FOS algorithm are
depicted in 5.

Algorithm 5 NSGA-III based algorithm in Flow Assigner module.
Input: N(PopulationSize),M(IterationNumber),
J(Workflows)
Output: Best− Chromosome

1: P ← GeneratePopulation()
2: P ← InitializePopulation()
3: S ← Non-Dominated-Sort(P)
4: RF ← Generate-Reference-Point()
5: RF ← Initialize-Reference-Point()
6: repeat
7: for i = 1 to M do
8: S ← Non-Dominated-Sort(P)
9: O ← Normalize-objectives(S)

10: Associate(S,O,RF)
11: Compare(RF, S)
12: if RF is better than S then
13: Replace(RF, S)
14: end if
15: SCHR← Select-chromosomes(S)
16: CHR← Cross-Over(SCHR)
17: BestChromosomes← mutation(CHR)
18: NextGeneration← BestChromosomes()
19: end for
20: BestChromosome← BestChromosomes()
21: until stoppingCriterion()
22: return BestChromosome

Alg. 5 Description. In Alg. 5, S-FOS first generates a non-dominated pop-
ulation of chromosomes and randomly initiates them. Following that, it sorts
the population at different levels (lines 1 to 3). Then, for each iteration, it gen-
erates the reference point chromosome based on the mean of the fog devices’
CPU, RAM, and storage (lines 4 to 5). It sorts the population at different
levels and normalizes it using eq. (3.6) in each iteration for the current popu-
lation. The population is then subjected to non-dominated sorting (lines 6 to
10). Thereafter, It compares the current chromosome’s genes to the reference

108 CHAPTER 3. S-FOS

point’s genes for each population, and the one with the higher value is con-
sidered the current solution. It employs eq. (3.3) to accomplish this (lines 11
to 14). Following that, it performs a crossover operation to select a set of two
chromosomes from the current generation (iteration). Thereafter, it executes
the mutation operator and adds the result back to the next generation (lines 15
to 19). S-FOS continues to make the same progress until the stopping criterion
is met. The stopping criterion is the point at which either the input chromo-
somes for the crossover step are homologous (i.e., their genes are completely
identical) or the algorithm reaches the maximum number of iterations (lines 20
to 21). Finally, as the solution, it chooses a chromosome with the best fitness
function outcome (line 22).

3.4 Performance Evaluations

In this section, we present the experiments that were carried out in order to as-
sess the performance of the proposed S-FoS approach. We compared S-FoS to
an improved version of FUPE, which uses a MOPSO algorithm to detect and
mitigate TCP and UDP DDOS attacks [124], as well as a standard NSGA-II
algorithm that does not take security into account. We used IoTSim-Osmosis
[132], a java-based simulator built on the CloudSim framework [148], to im-
plement our approach. In addition, we used a fuzzy logic tool called Xfuzzy
[100] to implement the fuzzy-based functions found in the SDN controller.

3.4.1 Simulation Setup

To simulate the methods, we applied the specific features to the scenarios that
is indicated in the Tab. 3.4. To generate entity requirements, we assume that
each of them requires RAM, CPU, and bandwidth.

Table 3.4: Entity Requirements.

Requirements Cloud data center hosts Fog device Flow
RAM 1000000 MB 20000 MB 10000 MB
CPU 8000000 MIPS 80000 MIPS 250 MIPS

Bandwidth 10000 Mbps 200 Mbps 100 MbPS

3.4. PERFORMANCE EVALUATIONS 109

Table 3.5: Other Configurations.

Cloud hosts number Hosts VM number IoT Device flow size flows’ tasks size
2-6 2-6 50-200 Mb 200-500 MI

Simulation metrics

We use the following metrics to compare the performance of S-Fos to the other
two methods:

• Response time: The total amount of time it takes to respond to a flow
is referred to as response time. It begins when IoT devices send flows
and ends when they receive a response. It’s the sum of the flows’ total
running time.

• Network utilization: This metric refers to the amount of data that is sent
back and forth across links as a result of flows, cloud data center hosts,
SDN controller, fog devices, SDN switches, and IoT devices. Eq. (3.7)
is used to calculate network utilization in Mb. In this equation, flow size
is the length of data encapsulated in the flow, expressed in Mbps. Be-
sides, the time it takes for flows to go from the source to the destination,
measured in seconds, is known as flow transmission time.

Network usage =(

Requests∑
x=1

Flow Transmission T ime∗

FlowSize)/flownumbers

(3.7)

• Energy consumption: The CPU, RAM, and network interface all con-
tribute to the node’s energy usage. Furthermore, when compared to
other system resources, the CPU consumes the most energy. As a re-
sult, the node’s energy usage simply needs to account the CPU’s energy
consumption [149]. It is illustrated in the work [150], a node’s energy
consumption can be defined as a linear function of its CPU use. We
discovered that the energy consumption is computed using the Eq. (3.8)
after reviewing the simulator. Nidle and Nbusy are the average energy
consumption of the node when it is idle and fully utilized, respectively.
The CPU utilization of the jth node is represented by UCPU

j . This met-
ric obtains the total energy consumption of cloud data center hosts, fog

110 CHAPTER 3. S-FOS

devices, SDN controller, SDN switches, and IoT devices.

Energy consumption = Nidle + (Nbusy −Nidle) ∗ UCPU
j (3.8)

• Confidence interval (CI): It is a concept used to assess the accuracy of
the results. The percentage of error in the results is reflected here. In
other words, it is regarded as a measure of correctness in relation to the
results. It reveals the range of population values within a certain level of
correctness. In this work, we obtained the results with a 95 percent CI.
Eq. (3.9) is used to calculate this metric. In this equation, 1.96 equals
95% CI. Besides, n, σ, and η represent the number of samples, standard
deviation, and samples average, respectively.

Confidence interval = η ± (1.96 ∗ (σ/
√
n)) (3.9)

Implementation scenarios

We compare our proposed approach to the FUPE [124] and NSGA-II [133]
approach methods over the following attack rates, various IoT devices, and
various fog devices:

• Scenario-1: Comparing methods based on various attack rates The
number of IoT devices and fog devices in this scenario is 60 and 20,
respectively. The percentage of attacks ranges from 0% to 40%. This
percentage represents the proportion of malicious flows in the workflow
versus benign flows.

• Scenario-2:Comparing methods based on various IoT devices The num-
ber of fog devices and the percentage of attack rates in this scenario are
20 and 30%, respectively.

• Scenario-3: Comparing methods based on various fog devices The num-
ber of IoT devices and the percentage of attack rates in this scenario are
60 and 30%, respectively.

3.4.2 Experimental Results

In this section, we show the implementation results for the presented approach
as well as other approaches in the scenarios mentioned. First, we look at the
results for the first Scenario, which considers the different attack rate. The

3.4. PERFORMANCE EVALUATIONS 111

0 10 20 30 40
2000

3000

4000

5000

Attack Rate

R
es

po
ns

e
T

im
e

[m
s]

FUPE NSGA-IIS-FoS

(a) Average response time.

0 10 20 30 40
400000

420000

440000

460000

480000

Attack Rate

N
et

w
or

k
U

ti
li

za
ti

on
[M

b]

FUPE NSGA-IIS-FoS

(b) Network utilization.

0 10 20 30 40
4500

5000

5500

6000

6500

7000

Attack Rate

E
ne

rg
y

C
on

su
m

pt
io

n
[J

ou
le

]

FUPE NSGA-IIS-FoS

(c) Total Energy consumption.

Figure 3.9: The outcomes for various attack rates.

average response time for the methods is depicted in Fig. 3.9a against various
attack rates. It is obvious that increasing the attack rate notably decreases the
response time for the S-FoS, but at a lower rate for the FUPE. On the other
hand, NSGA-II remains constant. The reason for this is that the NSGA-II
method lacks a mechanism for detecting the effects of attacks. It assigns all
flows to resources, regardless of whether they are malicious or benign. As a
result, it considers both malicious and benign flows, resulting in a response
time that is roughly unchanged with a moderate fluctuation. FUPE can detect
two forms of DDOS attacks: TCP and UDP. As in this scenario, the IoT de-
vices can perform three types of attacks, FUPE exhibits a gradual fall. S-FoS
can detect and block all threats, as well as malicious flows. As a result, it
only assigns benign flows to resources, significantly reducing response time.
S-FoS also reduces network utilization as it is illustrated in Fig. 3.9b. As fewer
flows are executed in S-FoS, its declivity becomes more apparent. The reason
for this experiment is because the S-FoS strategy assigns less flows to edge
resources, resulting in fewer flows being sent via the network links between

112 CHAPTER 3. S-FOS

SDN switches and fog devices. As a result, it is gradually decreasing. In com-
parison to S-FoS, FUPE can detect fewer malicious flows and hence assigns
more flows to fog devices, resulting in higher network utilization. NSGA-II
assigns all flows to fog devices, resulting in a network utilization that is nearly
same. Aside from these accomplishments, another significant advantage of
S-FoS is that it reduces energy consumption that is indicated in 3.9c. S-FoS
experiences the greatest decrease. In comparison to S-FoS, FUPE witnesses a
continuous decrease with a lower rate. However, NSGA-II stays almost uni-
form with a slight fluctuations. Because S-FoS only assigns benign flows, it
blocks malicious requests and schedules fewer flows. As a result, it consumes
the least amount of energy.

20 40 60 80 100
2000

4000

6000

Number of IoT Devices

R
es

po
ns

e
T

im
e

[m
s]

FUPE

NSGA-II

S-FoS

(a) Average Response Time.

20 40 60 80 100
400000

450000

500000

550000

Number of IoT Devices
N

et
w

or
k

U
ti

li
za

ti
on

[M
b]

FUPE

NSGA-II

S-FoS

(b) Network Utilization.

20 40 60 80 100
0

5000

10000

Number of IoT Devices

A
ve

ra
ge

E
ne

gy
C

on
su

m
pt

io
n

[J
ou

le
]

FUPE

NSGA-II

S-FoS

(c) Total Energy consumption.

Figure 3.10: The outcomes for various fog devices.

Following the expression of the first scenario, we examine the results of
the second scenario, which covers the various IoT devices. As illustrated in
3.10a and 3.10b, there is a clear upward trend in response time and network
utilization across all approaches. However, this is a minor trend in S-FoS. By

3.4. PERFORMANCE EVALUATIONS 113

adjusting the number of IoT devices, these two metrics rise as the number of
requests rises. Because S-FoS blocks all malicious requests, the increasing
trend is occurring at a slower rate. When it comes to energy consumption,
S-FoS outperforms the other two approaches. By adjusting the IoT devices,
the resources should be able to execute more requests, increasing the number
of CPUs that are busy. As a result, they are on the rise. As S-FoS blocks
malicious requests, the number of CPUs that are busy decreases, and this trend
in S-FoS is slower. The energy consumption of the approaches is depicted in
3.10c.

5 10 15 25 35
2000

3000

4000

5000

Number of Fog Devices

R
es

po
ns

e
T

im
e

[m
s]

FUPE

NSGA-II

S-FoS

(a) Average Response Time.

5 10 15 25 35
400000

450000

500000

550000

Number of Fog Devices

N
et

w
or

k
U

ti
li

za
ti

on
[M

b]

FUPE

NSGA-II

S-FoS

(b) Network Utilization.

5 10 15 25 35
4000

6000

8000

10000

Number of Fog Devices

E
ne

gy
C

on
su

m
pt

io
n

[J
ou

le
] FUPE

NSGA-II

S-FoS

(c) Total Energy Consumption.

Figure 3.11: The outcomes for various fog devices.

The final scenario we look at is changing the number of fog devices. The
purpose of this scenario is to demonstrate the benefits and drawbacks of in-
creasing the number of fog devices. The response time and network utilization
for each of the methods are depicted in 3.11a and 3.11b, respectively. By
varying the number of fog devices, all methods experience a consistent de-
crease. The reason for this is that as the requests spread to more fog devices,

114 CHAPTER 3. S-FOS

each resource receives fewer requests. S-Fos has the shortest response time
because it applies reference points to its NSGA-III fitness function. The other
two approaches send more requests to the fog devices, resulting in a longer
response time and network usage. As seen in the graphs, increasing the num-
ber of fog devices reduces network utilization and response time until a cer-
tain point is reached. They almost hit a plateau after that. This steadiness is
achieved with a modest fluctuation in the network utilization. This scenario
also depicts the IoT network’s energy consumption. In comparison with the
other two approaches, S-FoS, as shown in 3.11c, has the lowest energy con-
sumption. However, increasing the number of fog devices increases energy
consumption for all approaches. The reason is that the consumption of en-
ergy is a linear function of CPU usage. According to Eq. (3.8), the idle CPU
consumes energy as well. The busy CPU, on the other hand, consumes more
energy. S-FoS consumes the least amount of energy because it puts away ma-
licious requests. This scenario demonstrates how increasing the number of fog
devices is a double-edged sword. On the one hand, it shortens the response
time up to a certain point. After that, keeping the number of requests constant
has no effect on response time, and it plateaus. It also has no effect on network
utilization. However, there is a minor fluctuation in network utilization. On the
other hand, after the specific point, we can see a significant increase in energy
consumption due to connecting more switched on fog devices that are idle but
still consume energy.

According to 3.9 to 3.10, it can be concluded that, after S-FoS, the FUPE
algorithm outperforms the NSGA-II algorithm. The reason for this is that S-
FoS prevents all three types of attacks that cause the resource management sys-
tem to assign fewer requests. Furthermore, S-FoS makes use of the delay and
load balancing objectives’ parameters. S-FoS considers the flow CPU require-
ment, available amount of resources’ computational capacity and bandwidth
in the NSGA-III fitness function to optimize the performance of the scheduler.
The CI for plots as indicators over the results are also indicated in the presented
implementations. Because all of the methods use randomness features, the re-
sults have nearly the same tolerance.S-FoS, FUPE and NSGA-II have uneven
load distribution among fog nodes due to the randomness feature of MOPSO
and Genetic algorithms.

To wrap up this section, we’ll go over the S-FoS accuracy evaluation. To
that end, we classified 30% of the flows as benign requests. Because the
NSGA-II lacks attack defense mechanisms, we only evaluate S-FoS and FUPE
in terms of accuracy, precision, and recall in this evaluation.

3.5. DISCUSSION 115

TPR = (TP/ActualPositive) = TP/(TP + FN) (3.10)

FNR = (FN/ActualPositive) = FN/(TP + FN) (3.11)

TNR = (TN/ActualNegative) = TN/(TN + FP) (3.12)

FPR = (FP/ActualNegative) = FP/(TN + FP) (3.13)

Accuracy = (TP + TN)/(TP + TN + FP + FN) (3.14)

Precision = (TP)/(TP + FP) (3.15)

Recall = (TP)/(TP + FN) (3.16)

where TP denotes true positive, and FN denotes false negative, TN denotes
true negatives, and FP denotes false positive, respectively. Based on Eq. (3.14),
Eq. (3.15), and Eq. (3.16), Accuracy, Precision, and Recall of S-FoS are 0.971,
0.960, and 1.0, respectively. Besides, these metrics for FUPE are 0.865, 0.838,
and 1.0, respectively. Tab. 3.6 summarizes the accuracy evaluation.

Table 3.6: Accuracy evaluation.

TNR FNR TPR FPR Recall Precision Accuracy
S-FoS 0.903 0.00 1.0 0.0966 1.0 0.960 0.971
FUPE 0.55 0.00 1.0 0.45 1.0 0.838 0.865

3.5 Discussion

Network information distribution is a new paradigm for extending logically
centralized controllers, and it is divided into two major categories [151]: hi-
erarchical structure and flat structure. Because the global network state is
only available in the global SDN controller, when the local SDN controller
receives an inter-domain request, it first queries the network information from
the global SDN controller. For the latter, all of the local SDN controllers can
communicate directly with one another. They have a data store to keep track of
the overall network state. They distribute parts of their local network state to
the other local SDN controllers to update their data-store. The changes within
their domains are shared with the other local SDN controllers to update the
global network state. Because each local SDN controller only keeps informa-
tion within its domain in the previous model, the local SDN controllers have

116 CHAPTER 3. S-FOS

IOT Device

IoT Device

IoT Device

Fog Device

SDN Switch

IoT Device

IOT Device

Fog DeviceFog Device

SDN Switch

Local SDN Controller

Cloud Data-Center

Fog Device

Fog Region 1

Fog Region 2

Fog DeviceFog Device

IoT Device

IOT Device

Fog Device

SDN Switch

Fog Device

Fog Region 3

Global SDN Controller

Local SDN Controller

IoT Device

IOT Device

Fog Device

SDN Switch

Fog Device

Fog Region 4

Fog Device

IoT Device

Local SDN Controller

IoT Device

IOT Device

Fog Device

SDN Switch

Fog Device

Fog Region 5

Fog Device

IoT Device

Local SDN Controller

Fog Device

Figure 3.12: Hierarchical network information distribution architecture.

3.5. DISCUSSION 117

less overload in the later model. If they receive an inter-domain demand, they
should first query the global SDN controller, usually located far from the other
local SDN controllers.

Logically, single centralized controllers have limitations in terms of scal-
ability and robustness. Thus, the S-FOS architecture can be extended to dis-
tribute SDN controller features. As a result, there is a global SDN controller
(global cloud gateway) with a global view of the entire IoT-fog network in
the extended architecture. The S-FOS architecture can benefit from the hi-
erarchical model (vertical architecture). Controlling and managing the SDN
switch(es) in their domains is the responsibility of the local SDN controllers.
A domain of a local SDN controller is a collection of SDN switches directly
connected to it (i.e., the local SDN controller) and fog devices attached to this
SDN switch. For example, nodes in Fog Region 1 and Fog Region 2 are in
the same domain because they are managed by the same local SDN controller
in fig. 3.12. Finally, each local SDN controller distributes its local network
state to the global SDN controller for it to construct a global network state.
The global SDN controller then combines the local domain states provided
by the local SDN controllers to generate the global network state. The global
cloud gateway also serves as a coordinator for the local SDN controllers. The
global cloud gateway monitors the overall state of all domains. Local SDN
controllers, on the other hand, only save the states of their local domains [152].

In this work, we assume that SDN switches and SDN controllers, respec-
tively, have the features of fog gateways and cloud gateways in the IoT-Fog
networks. Cisco Kinetic is a commercial product that consists of two modules:
the Edge and Fog Processing Module and the Data Control Module, which
work together to securely connect fog devices and then extract, compute, and
move data from IoT devices. In IoT-Fog networks, the former module is im-
plemented in the fog gateway, while the latter is implemented in the cloud
gateway. In the SDN-based IoT-Fog networks, Cloud/fog gateways are nodes
with powerful computational capabilities that can implement SDN characteris-
tics using Open vSwitch, and there are no restrictions for implementing that in
a real-world environment. The scheduling component is also implementable
in both cloud/fog gateways.

The fog gateway is an ideal location for an IoT scheduler. The reason for
this is that the scheduler may make key decisions near the point of action (re-
quests from IoT devices) and make the best use of fog device resources this
way. On the other hand, in most SDN networks, the goal is to lower the SDN
controller’s load. Although we included the assigner in the SDN controller

118 CHAPTER 3. S-FOS

in S-FOS for SDN-based IoT-Fog networks, we claim that by employing dis-
tributed SDN controllers, the centralized controller’s load will be minimized,
and each of the local SDN controllers will be able to manage the flows within
a small fog region. A commercial example of a distributed SDN controller is
OpenDaylight. An assigner in another node that can operate as a fog/cloud
gateway is another option. Cisco Kinetic, as previously discussed, is a com-
mercial example of data control and edge processing that operates on cloud/fog
gateways.

For IoT forensics [153], the information kept by SDN controller can be
utilised. The purpose of IoT security is to lower the risk of potential threats
and assaults. IoT forensics, on the other hand, seeks to pinpoint the source
of the assault. Despite the fact that security and forensics are two distinct
professions with different tools and methodologies, there is a lot of overlap
between them. As a result, IoT forensics policies in an IoT-fog network can
take into account IoT security measures. By incorporating forensics features
into security methodologies, IoT security and IoT forensics can be combined
to increase security [154]. The local SDN controller can see and evaluate the
behavior of the nodes attempting to disable the fog devices. For effective case
reporting, the logger module’s function is based on learning from experience
to continuously carry out network node analysis in the local SDN controllers.
The local SDN controller works with SDN switches to identify hostile IoT
devices. For judicial investigations, the SDN controllers store the device IDs
that are identified as the attacker.

3.6 Conclusions

This chapter proposed S-FoS, a joint secure and performance optimization
workflow scheduler that considers security issues to protect scheduling ser-
vices while effectively assigning user requests to the edge resources in SDN-
based IoT-fog networks. S-FoS detects and blocks malicious IoT device re-
quests by using fuzzy functions with TRW-CB, Rate limiting, and Entropy
algorithm output as input parameters. Then it employs NSGA-III to consider
both load balancing and delay. S-FoS countermeasures TCP/UDP DDOS, and
port scanning attacks. The effectiveness of the presented approach is demon-
strated by our evaluation using IoT-based scenarios. S-FoS outperforms both
metaheuristic methods, NSGA-II and MOPSO, according to the results. When
compared to the previous one, S-FoS improves response time by 31%, network
utilization by 9%, and energy consumption by 16%. It improves response time

3.6. CONCLUSIONS 119

by 18%, network utilization by 4%, and energy consumption by 9% when
compared to the latter.

Conclusions

This thesis proposes three resource scheduling algorithms for IoT-Fog net-
works: FPFTS, FUPE, and S-FOS.

FPFTS is a fog task scheduler in which we use fuzzy logic to improve
the fitness function of a particle-swarm optimization (PSO) algorithm. It in-
troduces a novel method for optimizing the task scheduling problem in fog
computing for both delay-sensitive and delay-tolerant applications. The pro-
posed approach’s goal is to make the best use of fog resources in order to re-
duce network utilization and application loop delay. To that end, FPFTS takes
into account both the computing characteristics of the fog nodes, such as CPU
processing capacity, RAM size, and bandwidth, as well as the computing char-
acteristics of the tasks, such as CPU need. Furthermore, it is intended for use
with both delay-sensitive and delay-tolerant applications: FPFTS uses infor-
mation about the class to which each application belongs to refine scheduling
decisions in the event of fog-layer overloading. It employs fuzzy logic in PSO,
taking into account the characteristics of resources and tasks, to solve fog task
scheduling problems without becoming trapped in a local minimum and to
make the best use of fog resources.

FUPE is a security-aware task scheduler algorithm designed for SDN-
based IoT-fog networks that ensures a sufficient level of security. To deal with
TCP DDoS attacks, this scheduler takes into account the dynamic behavior of
distributed systems and uses two trust degrees obtained from Threshold Ran-
dom Walk with Credit-Based Connection Rate-Limiting (TRW-CB) and Rate
Limiting algorithms- i.e. one of the most popular source-based attack mitiga-
tion strategies available. With the use of multi-objective PSO and multi-criteria
decision-making algorithms, our proposal combines security concerns with job
scheduling. In IoT-fog networks, FUPE solves a multi-objective task schedul-
ing problem to maximize security and efficiency of quality of services (QoS)
such as latency. FUPE focuses on allocating applications’ tasks across fog de-
vices while taking into account fog device trustworthiness and IoT devices. As

121

122 Conclusion

a result, FUPE achieves a balance between efficiency and security.
S-FOS is the first attempt to implement a secure workflow scheduling

approach for performance optimization in SDN-based IoT-Fog networks that
takes into account TCP/UDP DDOS, as well as port scanning threats. It au-
tomatically shuts IoT devices that begin to participate in harmful activities
to secure the IoT-fog scheduling services. In S-FOS, we assume that the at-
tackers are IoT devices capable of assaulting fog devices that influence SDN
switches and controllers. The results of the security mechanism are used by S-
FOS to validate users’ applications. Then, using one of the recently researched
MOO solutions, the non-dominated sorting genetic algorithm, it selects fog de-
vices that fulfill the load balancing and latency requirements of the customers’
applications (NSGA-III). This algorithm is extensively employed in IoT-fog
networks since it outperforms other MOO algorithms on big-scale difficulties
with a large number of users. Furthermore, it minimizes the time it takes to
discover the final solution by utilizing reference points for the next-generation
population; second, it performs better for problems with more than two ob-
jective functions by using reference points for the next-generation population.
S-FoS requests that NSGA-III consider load balancing and delay when opti-
mizing performance.

Appendix A

123

Bibliography

[1] Jakob Mass, Chii Chang, and Satish Narayana Srirama. Edge process
management: A case study on adaptive task scheduling in mobile iot.
Internet of Things, 6:100051, 2019.

[2] Alessio Botta, Walter De Donato, Valerio Persico, and Antonio Pescapé.
Integration of cloud computing and internet of things: a survey. Future
generation computer systems, 56:684–700, 2016.

[3] Aaqif Afzaal Abbasi, Almas Abbasi, Shahaboddin Shamshirband, An-
thony Theodore Chronopoulos, Valerio Persico, and Antonio Pescapè.
Software-defined cloud computing: A systematic review on latest trends
and developments. IEEE Access, 7:93294–93314, 2019.

[4] Valerio Persico, Pietro Marchetta, Alessio Botta, and Antonio Pescapè.
Measuring network throughput in the cloud: The case of amazon ec2.
Computer Networks, 93:408–422, 2015.

[5] Fabio Palumbo, Giuseppe Aceto, Alessio Botta, Domenico Ciuonzo,
Valerio Persico, and Antonio Pescape. Characterizing cloud-to-user la-
tency as perceived by aws and azure users spread over the globe. In
2019 IEEE global communications conference (GLOBECOM), pages
1–6. IEEE, 2019.

[6] Sharon Choy, Bernard Wong, Gwendal Simon, and Catherine Rosen-
berg. The brewing storm in cloud gaming: A measurement study on
cloud to end-user latency. In 2012 11th Annual Workshop on Network
and Systems Support for Games (NetGames), pages 1–6. IEEE, 2012.

[7] Giuseppe Aceto, Valerio Persico, and Antonio Pescapé. The role of in-
formation and communication technologies in healthcare: taxonomies,

125

126 BIBLIOGRAPHY

perspectives, and challenges. Journal of Network and Computer Appli-
cations, 107:125–154, 2018.

[8] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog
computing and its role in the internet of things. In Proceedings of the
first edition of the MCC workshop on Mobile cloud computing, pages
13–16. ACM, 2012.

[9] Carlo Puliafito, Enzo Mingozzi, Francesco Longo, Antonio Puliafito,
and Omer Rana. Fog computing for the internet of things: A survey.
ACM Transactions on Internet Technology (TOIT), 19(2):1–41, 2019.

[10] Ehsan Pourjavad and Rene V Mayorga. A comparative study and
measuring performance of manufacturing systems with mamdani fuzzy
inference system. Journal of Intelligent Manufacturing, 30(3):1085–
1097, 2019.

[11] Mohammad Shojafar, Saeed Javanmardi, Saeid Abolfazli, and Nicola
Cordeschi. Fuge: A joint meta-heuristic approach to cloud job schedul-
ing algorithm using fuzzy theory and a genetic method. Cluster Com-
puting, 18(2):829–844, 2015.

[12] Hicham Ben Alla, Said Ben Alla, Abdellah Ezzati, and Ahmed Mouh-
sen. A novel architecture with dynamic queues based on fuzzy logic and
particle swarm optimization algorithm for task scheduling in cloud com-
puting. In International Symposium on Ubiquitous Networking, pages
205–217. Springer, 2016.

[13] Pejman Hosseinioun, Maryam Kheirabadi, Seyed Reza Kamel Tabbakh,
and Reza Ghaemi. atask scheduling approaches in fog computing: a
survey. Transactions on Emerging Telecommunications Technologies,
page e3792, 2020.

[14] Luiz F Bittencourt, Javier Diaz-Montes, Rajkumar Buyya, Omer F
Rana, and Manish Parashar. Mobility-aware application scheduling in
fog computing. IEEE Cloud Computing, 4(2):26–35, 2017.

[15] Redowan Mahmud, Kotagiri Ramamohanarao, and Rajkumar Buyya.
Latency-aware application module management for fog computing
environments. ACM Transactions on Internet Technology (TOIT),
19(1):1–21, 2018.

BIBLIOGRAPHY 127

[16] Sukhpal Singh Gill, Peter Garraghan, and Rajkumar Buyya. Router:
Fog enabled cloud based intelligent resource management approach for
smart home iot devices. Journal of Systems and Software, 154:125–138,
2019.

[17] Deze Zeng, Lin Gu, Song Guo, Zixue Cheng, and Shui Yu. Joint op-
timization of task scheduling and image placement in fog computing
supported software-defined embedded system. IEEE Transactions on
Computers, 65(12):3702–3712, 2016.

[18] Doan Hoang and Thanh Dat Dang. Fbrc: Optimization of task
scheduling in fog-based region and cloud. In 2017 IEEE Trust-
com/BigDataSE/ICESS, pages 1109–1114. IEEE, 2017.

[19] Yan Sun, Fuhong Lin, and Haitao Xu. Multi-objective optimization of
resource scheduling in fog computing using an improved nsga-ii. Wire-
less Personal Communications, 102(2):1369–1385, 2018.

[20] Salim Bitam, Sherali Zeadally, and Abdelhamid Mellouk. Fog com-
puting job scheduling optimization based on bees swarm. Enterprise
Information Systems, 12(4):373–397, 2018.

[21] Fatma M Talaat, Shereen H Ali, Ahmed I Saleh, and Hesham A Ali.
Effective load balancing strategy (elbs) for real-time fog computing en-
vironment using fuzzy and probabilistic neural networks. Journal of
Network and Systems Management, 27(4):883–929, 2019.

[22] Hina Rafique, Munam Ali Shah, Saif Ul Islam, Tahir Maqsood, Sule-
man Khan, and Carsten Maple. A novel bio-inspired hybrid algorithm
(nbiha) for efficient resource management in fog computing. IEEE Ac-
cess, 7:115760–115773, 2019.

[23] Redowan Mahmud, Ramamohanarao Kotagiri, and Rajkumar Buyya.
Fog computing: A taxonomy, survey and future directions. In Internet
of everything, pages 103–130. Springer, 2018.

[24] Paola G Vinueza Naranjo, Zahra Pooranian, Mohammad Shojafar,
Mauro Conti, and Rajkumar Buyya. Focan: A fog-supported smart city
network architecture for management of applications in the internet of
everything environments. Journal of parallel and distributed comput-
ing, 132:274–283, 2019.

128 BIBLIOGRAPHY

[25] Amir Vahid Dastjerdi, Harshit Gupta, Rodrigo N Calheiros, Soumya K
Ghosh, and Rajkumar Buyya. Fog computing: Principles, architectures,
and applications. In Internet of things, pages 61–75. Elsevier, 2016.

[26] Mostafa Ghobaei-Arani, Alireza Souri, and Ali A Rahmanian. Resource
management approaches in fog computing: a comprehensive review.
Journal of Grid Computing, pages 1–42, 2019.

[27] Petr Hájek. Metamathematics of fuzzy logic, volume 4. Springer Science
& Business Media, 2013.

[28] Bart Kosko. Neural networks and fuzzy systems: A dynamical systems
approach to machine intelligence. Number QA76. 76. E95 K86. 1992.

[29] Manitpal S Sidhu, Parimala Thulasiraman, and Ruppa K Thulasiram. A
load-rebalance pso heuristic for task matching in heterogeneous com-
puting systems. In 2013 IEEE Symposium on Swarm Intelligence (SIS),
pages 180–187. IEEE, 2013.

[30] Mohammad Aazam, Sherali Zeadally, and Khaled A Harras. Offload-
ing in fog computing for iot: Review, enabling technologies, and re-
search opportunities. Future Generation Computer Systems, 87:278–
289, 2018.

[31] Yiqin Deng, Zhigang Chen, Xin Yao, Shahzad Hassan, and Jia Wu.
Task scheduling for smart city applications based on multi-server mo-
bile edge computing. IEEE Access, 7:14410–14421, 2019.

[32] Redowan Mahmud and Rajkumar Buyya. Modelling and simulation of
fog and edge computing environments using ifogsim toolkit. Fog and
edge computing: Principles and paradigms, pages 1–35, 2019.

[33] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K Ghosh, and Rajkumar
Buyya. ifogsim: A toolkit for modeling and simulation of resource man-
agement techniques in the internet of things, edge and fog computing
environments. Software: Practice and Experience, 47(9):1275–1296,
2017.

[34] Pablo Cingolani and Jesús Alcalá-Fdez. jfuzzylogic: a java library to
design fuzzy logic controllers according to the standard for fuzzy con-
trol programming. International Journal of Computational Intelligence
Systems, 6(sup1):61–75, 2013.

BIBLIOGRAPHY 129

[35] Saeed Javanmardi, Mohammad Shojafar, Shahdad Shariatmadari, Je-
mal H Abawajy, and Mukesh Singhal. Pgsw-os: a novel approach for
resource management in a semantic web operating system based on a
p2p grid architecture. The Journal of Supercomputing, 69(2):955–975,
2014.

[36] Saeed Javanmardi, Mohammad Shojafar, Shahdad Shariatmadari, and
Sima S Ahrabi. Fr trust: a fuzzy reputation–based model for trust man-
agement in semantic p2p grids. International Journal of Grid and Utility
Computing, 6(1):57–66, 2015.

[37] ShengYao Sun, WenBin Yao, BaoJun Qiao, Ming Zong, Xin He, and
XiaoYong Li. Rrsd: A file replication method for ensuring data reliabil-
ity and reducing storage consumption in a dynamic cloud-p2p environ-
ment. Future Generation Computer Systems, 100:844–858, 2019.

[38] Mohammad Shojafar, Zahra Pooranian, Paola G Vinueza Naranjo, and
Enzo Baccarelli. Flaps: bandwidth and delay-efficient distributed data
searching in fog-supported p2p content delivery networks. The journal
of supercomputing, 73(12):5239–5260, 2017.

[39] Sun Park, ByungRea Cha, Kyungyong Chung, and JongWon Kim. Mo-
bile iot device summarizer using p2p web search engine and inherent
characteristic of contents. Peer-to-Peer Networking and Applications,
pages 1–10, 2019.

[40] Opeyemi Osanaiye, Shuo Chen, Zheng Yan, Rongxing Lu, Kim-
Kwang Raymond Choo, and Mqhele Dlodlo. From cloud to fog com-
puting: A review and a conceptual live vm migration framework. IEEE
Access, 5:8284–8300, 2017.

[41] Sabina Jeschke, Christian Brecher, Tobias Meisen, Denis Özdemir, and
Tim Eschert. Industrial internet of things and cyber manufacturing sys-
tems. In Industrial internet of things, pages 3–19. Springer, 2017.

[42] Mohammad Aazam, Sherali Zeadally, and Khaled A Harras. Deploying
fog computing in industrial internet of things and industry 4.0. IEEE
Transactions on Industrial Informatics, 14(10):4674–4682, 2018.

[43] Houbing Song, Ravi Srinivasan, Tamim Sookoor, and Sabina Jeschke.
Smart cities: foundations, principles, and applications. John Wiley &
Sons, 2017.

130 BIBLIOGRAPHY

[44] H Arasteh, V Hosseinnezhad, V Loia, A Tommasetti, O Troisi,
M Shafie-Khah, and P Siano. Iot-based smart cities: a survey. In 2016
IEEE 16th International Conference on Environment and Electrical En-
gineering (EEEIC), pages 1–6. IEEE, 2016.

[45] Vasileios A Memos, Kostas E Psannis, Yutaka Ishibashi, Byung-Gyu
Kim, and Brij B Gupta. An efficient algorithm for media-based surveil-
lance system (eamsus) in iot smart city framework. Future Generation
Computer Systems, 83:619–628, 2018.

[46] Jiang Zhu, Yonghui Song, Dingde Jiang, and Houbing Song. A new
deep-q-learning-based transmission scheduling mechanism for the cog-
nitive internet of things. IEEE Internet of Things Journal, 5(4):2375–
2385, 2017.

[47] Yuxin Liu, Anfeng Liu, Tian Wang, Xiao Liu, and Neal N Xiong. An
intelligent incentive mechanism for coverage of data collection in cogni-
tive internet of things. Future Generation Computer Systems, 100:701–
714, 2019.

[48] Arun Kumar Sangaiah, Arunkumar Thangavelu, Venkatesan Meenakshi
Sundaram, et al. Cognitive computing for big data systems over iot.
Gewerbestrasse, 11:6330, 2018.

[49] Hanan Elazhary. Internet of things (iot), mobile cloud, cloudlet, mo-
bile iot, iot cloud, fog, mobile edge, and edge emerging computing
paradigms: Disambiguation and research directions. Journal of Net-
work and Computer Applications, 128:105–140, 2019.

[50] G. Aceto, V. Persico, and A. PescapÃ©. A survey on information
and communication technologies for industry 4.0: State-of-the-art, tax-
onomies, perspectives, and challenges. IEEE Communications Surveys
Tutorials, 21(4):3467–3501, 2019.

[51] Ashkan Yousefpour, Genya Ishigaki, and Jason P Jue. Fog computing:
Towards minimizing delay in the internet of things. In 2017 IEEE inter-
national conference on edge computing (EDGE), pages 17–24. IEEE,
2017.

[52] Jiafu Wan, Baotong Chen, Shiyong Wang, Min Xia, Di Li, and
Chengliang Liu. Fog computing for energy-aware load balancing and

BIBLIOGRAPHY 131

scheduling in smart factory. IEEE Transactions on Industrial Informat-
ics, 14(10):4548–4556, 2018.

[53] Rodrigo Roman, Javier Lopez, and Masahiro Mambo. Mobile edge
computing, fog et al.: A survey and analysis of security threats and
challenges. Future Generation Computer Systems, 78:680–698, 2018.

[54] Fadele Ayotunde Alaba, Mazliza Othman, Ibrahim Abaker Targio
Hashem, and Faiz Alotaibi. Internet of things security: A survey. Jour-
nal of Network and Computer Applications, 88:10–28, 2017.

[55] Jianbing Ni, Kuan Zhang, Xiaodong Lin, and Xuemin Shen. Secur-
ing fog computing for internet of things applications: Challenges and
solutions. IEEE Communications Surveys & Tutorials, 20(1):601–628,
2017.

[56] Alberto Dainotti, Antonio Pescapé, and Giorgio Ventre. A cascade
architecture for dos attacks detection based on the wavelet transform.
Journal of Computer Security, 17(6):945–968, 2009.

[57] Péter Megyesi, Alessio Botta, Giuseppe Aceto, Antonio Pescapé, and
Sándor Molnár. Challenges and solution for measuring available
bandwidth in software defined networks. Computer Communications,
99:48–61, 2017.

[58] Cheng Li, Zhengrui Qin, Ed Novak, and Qun Li. Securing sdn infras-
tructure of iot–fog networks from mitm attacks. IEEE Internet of Things
Journal, 4(5):1156–1164, 2017.

[59] J Ramprasath and V Seethalakshmi. Secure access of resources in
software-defined networks using dynamic access control list. Interna-
tional Journal of Communication Systems, 34(1):e4607, 2021.

[60] Ruchi Vishwakarma and Ankit Kumar Jain. A survey of ddos attacking
techniques and defence mechanisms in the iot network. Telecommuni-
cation systems, 73(1):3–25, 2020.

[61] J Angela Jennifa Sujana, M Geethanjali, R Venitta Raj, and T Revathi.
Trust model based scheduling of stochastic workflows in cloud and fog
computing. In Cloud Computing for Geospatial Big Data Analytics,
pages 29–54. Springer, 2019.

132 BIBLIOGRAPHY

[62] Qiao Yan, F Richard Yu, Qingxiang Gong, and Jianqiang Li. Software-
defined networking (sdn) and distributed denial of service (ddos) attacks
in cloud computing environments: A survey, some research issues, and
challenges. IEEE communications surveys & tutorials, 18(1):602–622,
2015.

[63] Narmeen Zakaria Bawany, Jawwad A Shamsi, and Khaled Salah. Ddos
attack detection and mitigation using sdn: methods, practices, and so-
lutions. Arabian Journal for Science and Engineering, 42(2):425–441,
2017.

[64] Reza Mohammadi, Reza Javidan, and Mauro Conti. Slicots: An sdn-
based lightweight countermeasure for tcp syn flooding attacks. IEEE
Transactions on Network and Service Management, 14(2):487–497,
2017.

[65] Amandeep Verma and Sakshi Kaushal. A hybrid multi-objective par-
ticle swarm optimization for scientific workflow scheduling. Parallel
Computing, 62:1–19, 2017.

[66] Mohammed Abdullahi, Md Asri Ngadi, Salihu Idi Dishing, Bar-
roon Isma’eel Ahmad, et al. An efficient symbiotic organisms search
algorithm with chaotic optimization strategy for multi-objective task
scheduling problems in cloud computing environment. Journal of Net-
work and Computer Applications, 133:60–74, 2019.

[67] Mohammed Anis Benblidia, Bouziane Brik, Leila Merghem-Boulahia,
and Moez Esseghir. Ranking fog nodes for tasks scheduling in fog-
cloud environments: A fuzzy logic approach. In 2019 15th international
wireless communications & mobile computing conference (IWCMC),
pages 1451–1457. IEEE, 2019.

[68] Saeed Javanmardi, Mohammad Shojafar, Valerio Persico, and Antonio
Pescapè. Fpfts: a joint fuzzy particle swarm optimization mobility-
aware approach to fog task scheduling algorithm for internet of things
devices. Software: Practice and Experience, 51(12):2519–2539, 2021.

[69] Mikail Mohammed Salim, Shailendra Rathore, and Jong Hyuk Park.
Distributed denial of service attacks and its defenses in iot: a survey.
The Journal of Supercomputing, 76(7):5320–5363, 2020.

BIBLIOGRAPHY 133

[70] PJ Beslin Pajila and E Golden Julie. Detection of ddos attack using sdn
in iot: a survey. In Intelligent Communication Technologies and Virtual
Mobile Networks, pages 438–452. Springer, 2019.

[71] Spilios Evmorfos, George Vlachodimitropoulos, Nikolaos Bakalos, and
Erol Gelenbe. Neural network architectures for the detection of syn
flood attacks in iot systems. In Proceedings of the 13th ACM Interna-
tional Conference on PErvasive Technologies Related to Assistive Envi-
ronments, pages 1–4, 2020.

[72] Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Jef-
frey Voas. Ddos in the iot: Mirai and other botnets. Computer,
50(7):80–84, 2017.

[73] Qiao Yan, Wenyao Huang, Xupeng Luo, Qingxiang Gong, and
F Richard Yu. A multi-level ddos mitigation framework for the indus-
trial internet of things. IEEE Communications Magazine, 56(2):30–36,
2018.

[74] Prashant Kumar, Meenakshi Tripathi, Ajay Nehra, Mauro Conti, and
Chhagan Lal. Safety: Early detection and mitigation of tcp syn flood
utilizing entropy in sdn. IEEE Transactions on Network and Service
Management, 15(4):1545–1559, 2018.

[75] Reza Mohammadi, Mauro Conti, Chhagan Lal, and Satish C Kulhari.
Syn-guard: An effective counter for syn flooding attack in software-
defined networking. International Journal of Communication Systems,
32(17):e4061, 2019.

[76] Luying Zhou, Huaqun Guo, and Gelei Deng. A fog computing based
approach to ddos mitigation in iiot systems. Computers & Security,
85:51–62, 2019.

[77] Wided Ben Daoud, Mohammad S Obaidat, Amel Meddeb-Makhlouf,
Faouzi Zarai, and Kuei-Fang Hsiao. Tacrm: trust access control and
resource management mechanism in fog computing. Human-centric
Computing and Information Sciences, 9(1):1–18, 2019.

[78] Nitin Auluck, Omer Rana, Surya Nepal, Andrew Jones, and Anil Singh.
Scheduling real time security aware tasks in fog networks. IEEE Trans-
actions on Services Computing, 2019.

134 BIBLIOGRAPHY

[79] Zhongjin Li, Jidong Ge, Hongji Yang, Liguo Huang, Haiyang Hu, Hao
Hu, and Bin Luo. A security and cost aware scheduling algorithm for
heterogeneous tasks of scientific workflow in clouds. Future Generation
Computer Systems, 65:140–152, 2016.

[80] Gaith Rjoub, Jamal Bentahar, and Omar Abdel Wahab. Bigtrustschedul-
ing: Trust-aware big data task scheduling approach in cloud computing
environments. Future Generation Computer Systems, 110:1079–1097,
2020.

[81] Sukhpal Singh Gill and Rajkumar Buyya. Secure: Self-protection
approach in cloud resource management. IEEE Cloud Computing,
5(1):60–72, 2018.

[82] Pengfei Hu, Sahraoui Dhelim, Huansheng Ning, and Tie Qiu. Survey
on fog computing: architecture, key technologies, applications and open
issues. Journal of network and computer applications, 98:27–42, 2017.

[83] Fatin Hamadah Rahman, Thien-Wan Au, SH Shah Newaz, Wida Su-
santy Suhaili, and Gyu Myoung Lee. Find my trustworthy fogs: A
fuzzy-based trust evaluation framework. Future Generation Computer
Systems, 109:562–572, 2020.

[84] Maurizio D’Arienzo, Antonio Pescape, and Giorgio Ventre. Dynamic
service management in heterogeneous networks. Journal of Network
and Systems Management, 12(3):349–370, 2004.

[85] Ammar Muthanna, Abdelhamied A Ateya, Abdukodir Khakimov, Irina
Gudkova, Abdelrahman Abuarqoub, Konstantin Samouylov, and An-
drey Koucheryavy. Secure and reliable iot networks using fog com-
puting with software-defined networking and blockchain. Journal of
Sensor and Actuator Networks, 8(1):15, 2019.

[86] Ivan Farris, Tarik Taleb, Yacine Khettab, and Jaeseung Song. A survey
on emerging sdn and nfv security mechanisms for iot systems. IEEE
Communications Surveys & Tutorials, 21(1):812–837, 2018.

[87] Celyn Birkinshaw, Elpida Rouka, and Vassilios G Vassilakis. Imple-
menting an intrusion detection and prevention system using software-
defined networking: Defending against port-scanning and denial-of-
service attacks. Journal of Network and Computer Applications,
136:71–85, 2019.

BIBLIOGRAPHY 135

[88] Syed Akbar Mehdi, Junaid Khalid, and Syed Ali Khayam. Revisit-
ing traffic anomaly detection using software defined networking. In In-
ternational workshop on recent advances in intrusion detection, pages
161–180. Springer, 2011.

[89] Sergei Dotcenko, Andrei Vladyko, and Ivan Letenko. A fuzzy logic-
based information security management for software-defined networks.
In 16th International Conference on Advanced Communication Tech-
nology, pages 167–171. IEEE, 2014.

[90] Jürgen Branke, Jurgen Branke, Kalyanmoy Deb, Kaisa Miettinen, and
Roman Slowiński. Multiobjective optimization: Interactive and evolu-
tionary approaches, volume 5252. Springer Science & Business Media,
2008.

[91] Nikola K Kasabov. Learning fuzzy rules and approximate reasoning
in fuzzy neural networks and hybrid systems. Fuzzy sets and Systems,
82(2):135–149, 1996.

[92] Shuang Feng and CL Philip Chen. Fuzzy broad learning system: A
novel neuro-fuzzy model for regression and classification. IEEE trans-
actions on cybernetics, 50(2):414–424, 2018.

[93] Hicham Ben Alla, Said Ben Alla, Abdellah Touhafi, and Abdellah
Ezzati. A novel task scheduling approach based on dynamic queues
and hybrid meta-heuristic algorithms for cloud computing environment.
Cluster Computing, 21(4):1797–1820, 2018.

[94] Simar Preet Singh, Anand Nayyar, Harpreet Kaur, and Ashu Singla.
Dynamic task scheduling using balanced vm allocation policy for fog
computing platforms. Scalable Computing: Practice and Experience,
20(2):433–456, 2019.

[95] Sanjeev Arora and Boaz Barak. Computational complexity: a modern
approach. Cambridge University Press, 2009.

[96] Maurice Clerc. Particle swarm optimization, volume 93. John Wiley &
Sons, 2010.

[97] Rongbin Xu, Yeguo Wang, Yongliang Cheng, Yuanwei Zhu, Ying Xie,
Abubakar Sadiq Sani, and Dong Yuan. Improved particle swarm opti-
mization based workflow scheduling in cloud-fog environment. In Inter-

136 BIBLIOGRAPHY

national Conference on Business Process Management, pages 337–347.
Springer, 2018.

[98] Vangelis Angelakis, Ioannis Avgouleas, Nikolaos Pappas, Emma
Fitzgerald, and Di Yuan. Allocation of heterogeneous resources of an iot
device to flexible services. IEEE Internet of Things Journal, 3(5):691–
700, 2016.

[99] https://www.mathworks.com/products/matlab.html. Matlab.

[100] http://www2.imse cnm.csic.es/Xfuzzy/. Xfuzzy.

[101] Lelio Campanile, Marco Gribaudo, Mauro Iacono, Fiammetta Marulli,
and Michele Mastroianni. Computer network simulation with ns-3: A
systematic literature review. Electronics, 9(2):272, 2020.

[102] Andras Varga. A practical introduction to the omnet++ simulation
framework. In Recent Advances in Network Simulation, pages 3–51.
Springer, 2019.

[103] Rogério Leão Santos De Oliveira, Christiane Marie Schweitzer, Ail-
ton Akira Shinoda, and Ligia Rodrigues Prete. Using mininet for
emulation and prototyping software-defined networks. In 2014 IEEE
Colombian Conference on Communications and Computing (COL-
COM), pages 1–6. IEEE, 2014.

[104] Saptarshi Ghosh, SA Busari, Tasos Dagiuklas, Muddesar Iqbal, R Mum-
taz, J Gonzalez, Stavros Stavrou, and Loizos Kanaris. Sdn-sim: inte-
grating a system-level simulator with a software defined network. IEEE
Communications Standards Magazine, 4(1):18–25, 2020.

[105] Juan Wang and Di Li. Adaptive computing optimization in software-
defined network-based industrial internet of things with fog computing.
Sensors, 18(8):2509, 2018.

[106] Ke Xiao, Kai Liu, Xincao Xu, Yi Zhou, and Liang Feng. Efficient fog-
assisted heterogeneous data services in software defined vanets. Journal
of Ambient Intelligence and Humanized Computing, pages 1–13, 2019.

[107] Zhihan Lv and Wenqun Xiu. Interaction of edge-cloud computing based
on sdn and nfv for next generation iot. IEEE Internet of Things Journal,
7(7):5706–5712, 2019.

BIBLIOGRAPHY 137

[108] Quamar Niyaz, Weiqing Sun, and Ahmad Y Javaid. A deep learn-
ing based ddos detection system in software-defined networking (sdn).
arXiv preprint arXiv:1611.07400, 2016.

[109] Xiaoyu Duan and Xianbin Wang. Fast authentication in 5g hetnet
through sdn enabled weighted secure-context-information transfer. In
2016 IEEE International Conference on Communications (ICC), pages
1–6. IEEE, 2016.

[110] Stanislav Lange, Steffen Gebert, Thomas Zinner, Phuoc Tran-Gia,
David Hock, Michael Jarschel, and Marco Hoffmann. Heuristic ap-
proaches to the controller placement problem in large scale sdn net-
works. IEEE Transactions on Network and Service Management,
12(1):4–17, 2015.

[111] Hsin-Hung Cho, Chin-Feng Lai, Timothy K Shih, and Han-Chieh Chao.
Integration of sdr and sdn for 5g. Ieee Access, 2:1196–1204, 2014.

[112] Leonid M Kupershtein, Tatiana B Martyniuk, Olesia P Voitovych,
Bohdan V Kulchytskyi, Andrii V Kozhemiako, Daniel Sawicki, and
Mashat Kalimoldayev. Ddos-attack detection using artificial neural net-
works in matlab. In Photonics Applications in Astronomy, Communi-
cations, Industry, and High-Energy Physics Experiments 2019, volume
11176, page 111761S. International Society for Optics and Photonics,
2019.

[113] Sarwan Ali, Maria Khalid Alvi, Safi Faizullah, Muhammad Asad Khan,
Abdullah Alshanqiti, and Imdadullah Khan. Detecting ddos attack on
sdn due to vulnerabilities in openflow. In 2019 International Conference
on Advances in the Emerging Computing Technologies (AECT), pages
1–6. IEEE, 2020.

[114] Huseyin Polat, Onur Polat, and Aydin Cetin. Detecting ddos attacks in
software-defined networks through feature selection methods and ma-
chine learning models. Sustainability, 12(3):1035, 2020.

[115] Gaganjot Kaur and Prinima Gupta. Hybrid approach for detecting ddos
attacks in software defined networks. In 2019 Twelfth International
Conference on Contemporary Computing (IC3), pages 1–6. IEEE, 2019.

[116] Abdul Fadlil, Imam Riadi, and Sukma Aji. Ddos attacks classifica-
tion using numeric attribute-based gaussian naive bayes. International

138 BIBLIOGRAPHY

Journal of Advanced Computer Science and Applications (IJACSA),
8(8):42–50, 2017.

[117] Jisa David and Ciza Thomas. Efficient ddos flood attack detection us-
ing dynamic thresholding on flow-based network traffic. Computers &
Security, 82:284–295, 2019.

[118] Huangxin Wang, Quan Jia, Dan Fleck, Walter Powell, Fei Li, and An-
gelos Stavrou. A moving target ddos defense mechanism. Computer
Communications, 46:10–21, 2014.

[119] Avijit Hazra. Using the confidence interval confidently. Journal of tho-
racic disease, 9(10):4125, 2017.

[120] Mauro Conti, Chhagan Lal, Reza Mohammadi, and Umashankar Rawat.
Lightweight solutions to counter ddos attacks in software defined net-
working. Wireless Networks, 25(5):2751–2768, 2019.

[121] Fanglu Guo and Tzi-cker Chiueh. Sequence number-based mac address
spoof detection. In International Workshop on Recent Advances in In-
trusion Detection, pages 309–329. Springer, 2005.

[122] D Dasgupta, J Gomez, F Gonzalez, M Kaniganti, K Yallapu, and
R Yarramsetti. Mmds: multilevel monitoring and detection system. In
Proceedings of the 15th Annual Computer Security Incident Handling
Conference, pages 22–27, 2003.

[123] Junlong Zhou, Jin Sun, Peijin Cong, Zhe Liu, Xiumin Zhou, Tongquan
Wei, and Shiyan Hu. Security-critical energy-aware task scheduling for
heterogeneous real-time mpsocs in iot. IEEE Transactions on Services
Computing, 2019.

[124] Saeed Javanmardi, Mohammad Shojafar, Reza Mohammadi, Amin
Nazari, Valerio Persico, and Antonio Pescapè. Fupe: A security driven
task scheduling approach for sdn-based iot–fog networks. Journal of
Information Security and Applications, 60:102853, 2021.

[125] Shivi Sharma and Hemraj Saini. Fog assisted task allocation and se-
cure deduplication using 2fbo2 and mowo in cluster-based industrial iot
(iiot). Computer Communications, 152:187–199, 2020.

BIBLIOGRAPHY 139

[126] Vincenzo De Maio and Dragi Kimovski. Multi-objective scheduling of
extreme data scientific workflows in fog. Future Generation Computer
Systems, 106:171–184, 2020.

[127] Ismail M Ali, Karam M Sallam, Nour Moustafa, Ripon Chakraborty,
Michael J Ryan, and Kim-Kwang Raymond Choo. An automated task
scheduling model using non-dominated sorting genetic algorithm ii for
fog-cloud systems. IEEE Transactions on Cloud Computing, 2020.

[128] Georgios L Stavrinides and Helen D Karatza. A hybrid approach to
scheduling real-time iot workflows in fog and cloud environments. Mul-
timedia Tools and Applications, 78(17):24639–24655, 2019.

[129] Wiem Mkaouer, Marouane Kessentini, Adnan Shaout, Patrice Koligheu,
Slim Bechikh, Kalyanmoy Deb, and Ali Ouni. Many-objective software
remodularization using nsga-iii. ACM Transactions on Software Engi-
neering and Methodology (TOSEM), 24(3):1–45, 2015.

[130] Yuan Yuan, Hua Xu, and Bo Wang. An improved nsga-iii procedure for
evolutionary many-objective optimization. In Proceedings of the 2014
Annual Conference on Genetic and Evolutionary Computation, pages
661–668, 2014.

[131] Elnaz Parvizi and Mohammad Hossein Rezvani. Utilization-aware
energy-efficient virtual machine placement in cloud networks using
nsga-iii meta-heuristic approach. Cluster Computing, pages 1–23, 2020.

[132] Khaled Alwasel, Devki Nandan Jha, Fawzy Habeeb, Umit Demirbaga,
Omer Rana, Thar Baker, Scharam Dustdar, Massimo Villari, Philip
James, Ellis Solaiman, et al. Iotsim-osmosis: A framework for mod-
eling and simulating iot applications over an edge-cloud continuum.
Journal of Systems Architecture, 116:101956, 2021.

[133] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyari-
van. A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE
transactions on evolutionary computation, 6(2):182–197, 2002.

[134] Jiewen Mao, Weijun Deng, and Fuke Shen. Ddos flooding attack de-
tection based on joint-entropy with multiple traffic features. In 2018
17th IEEE International Conference On Trust, Security And Privacy In
Computing And Communications/12th IEEE International Conference

140 BIBLIOGRAPHY

On Big Data Science And Engineering (TrustCom/BigDataSE), pages
237–243. IEEE, 2018.

[135] Ayyoob Hamza, Hassan Habibi Gharakheili, and Vijay Sivaraman.
Combining mud policies with sdn for iot intrusion detection. In Pro-
ceedings of the 2018 Workshop on IoT Security and Privacy, pages 1–7,
2018.

[136] Raja Majid Ali Ujjan, Zeeshan Pervez, Keshav Dahal, Ali Kashif
Bashir, Rao Mumtaz, and J González. Towards sflow and adaptive
polling sampling for deep learning based ddos detection in sdn. Future
Generation Computer Systems, 111:763–779, 2020.

[137] Jitendra Patil, Vrinda Tokekar, Alpana Rajan, and Anil Rawat. Port
scanning based model to detect malicious tcp traffic and mitigate its
impact in sdn. In 2021 2nd International Conference on Secure Cy-
ber Computing and Communications (ICSCCC), pages 365–370. IEEE,
2021.

[138] Fengxiao Tang, Yuichi Kawamoto, Nei Kato, Kazuto Yano, and Yoshi-
nori Suzuki. Probe delay based adaptive port scanning for iot devices
with private ip address behind nat. IEEE Network, 34(2):195–201, 2019.

[139] Saroja Subbaraj, Revathi Thiyagarajan, and Madavan Rengaraj. A smart
fog computing based real-time secure resource allocation and schedul-
ing strategy using multi-objective crow search algorithm. Journal of
Ambient Intelligence and Humanized Computing, pages 1–13, 2021.

[140] Hamza Baniata, Ahmad Anaqreh, and Attila Kertesz. Pf-bts: A privacy-
aware fog-enhanced blockchain-assisted task scheduling. Information
Processing & Management, 58(1):102393.

[141] Samaresh Bera, Sudip Misra, and Athanasios V Vasilakos. Software-
defined networking for internet of things: A survey. IEEE Internet of
Things Journal, 4(6):1994–2008, 2017.

[142] Ola Salman, Imad Elhajj, Ali Chehab, and Ayman Kayssi. Iot survey:
An sdn and fog computing perspective. Computer Networks, 143:221–
246, 2018.

[143] Laizhong Cui, F Richard Yu, and Qiao Yan. When big data meets
software-defined networking: Sdn for big data and big data for sdn.
IEEE network, 30(1):58–65, 2016.

BIBLIOGRAPHY 141

[144] Claude E Shannon. Prediction and entropy of printed english. Bell
system technical journal, 30(1):50–64, 1951.

[145] Suleman Khan, Abdullah Gani, Ainuddin Wahid Abdul Wahab, and
Prem Kumar Singh. Feature selection of denial-of-service attacks us-
ing entropy and granular computing. Arabian Journal for Science and
Engineering, 43(2):499–508, 2018.

[146] Nguyen Trung Hieu, Mario Di Francesco, and Antti Ylä Jääski. A vir-
tual machine placement algorithm for balanced resource utilization in
cloud data centers. In 2014 IEEE 7th International Conference on Cloud
Computing, pages 474–481. IEEE, 2014.

[147] Guangshun Li, Jiping Wang, Junhua Wu, and Jianrong Song. Data pro-
cessing delay optimization in mobile edge computing. Wireless Com-
munications and Mobile Computing, 2018, 2018.

[148] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF
De Rose, and Rajkumar Buyya. Cloudsim: a toolkit for modeling and
simulation of cloud computing environments and evaluation of resource
provisioning algorithms. Software: Practice and experience, 41(1):23–
50, 2011.

[149] Maolin Tang and Shenchen Pan. A hybrid genetic algorithm for the
energy-efficient virtual machine placement problem in data centers.
Neural processing letters, 41(2):211–221, 2015.

[150] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. Power pro-
visioning for a warehouse-sized computer. ACM SIGARCH computer
architecture news, 35(2):13–23, 2007.

[151] Yustus Eko Oktian, SangGon Lee, HoonJae Lee, and JunHuy Lam. Dis-
tributed sdn controller system: A survey on design choice. computer
networks, 121:100–111, 2017.

[152] Fetia Bannour, Sami Souihi, and Abdelhamid Mellouk. Distributed sdn
control: Survey, taxonomy, and challenges. IEEE Communications Sur-
veys & Tutorials, 20(1):333–354, 2018.

[153] Hany F Atlam, Ezz El-Din Hemdan, Ahmed Alenezi, Madini O Alas-
safi, and Gary B Wills. Internet of things forensics: A review. Internet
of Things, page 100220, 2020.

[154] Maria Stoyanova, Yannis Nikoloudakis, Spyridon Panagiotakis, Evan-
gelos Pallis, and Evangelos K Markakis. A survey on the internet of
things (iot) forensics: Challenges, approaches and open issues. IEEE
Communications Surveys & Tutorials, 2020.

