

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

PH.D. THESIS
IN

INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

A HIERARCHICAL LEARNING FRAMEWORK FOR

NETWORK TRAFFIC ANALYSIS: DESIGN,
IMPLEMENTATION, AND USE CASES

GIAMPAOLO BOVENZI

TUTOR: PROF. ANTONIO PESCAPÈ

COORDINATOR: PROF. DANIELE RICCIO

XXXIV CICLO

SCUOLA POLITECNICA E DELLE SCIENZE DI BASE
DIPARTIMENTO DI INGEGNERIA ELETTRICA E TECNOLOGIE DELL’INFORMAZIONE

TESI DI DOTTORATO

UNIVERSITÀ DEGLI STUDI DI NAPOLI “FEDERICO II”

DIPARTIMENTO DI INGEGNERIA ELETTRONICA
E DELLE TECNOLOGIE DELL’INFORMAZIONE

DOTTORATO DI RICERCA IN
INFORMATION TECHNOLOGIES AND ELECTRICAL ENGINEERING

A HIERARCHICAL LEARNING
FRAMEWORK FOR NETWORK TRAFFIC

ANALYSIS: DESIGN,
IMPLEMENTATION, AND USE CASES

GIAMPAOLO BOVENZI

Il Coordinatore del Corso di Dottorato Il Tutore

Ch.mo Prof. Daniele RICCIO Ch.mo Prof. Antonio PESCAPÈ

A. A. 2021–2022

“A nonno Arcangelo e nonna Consiglia”

Acknowledgments

First of all, I want to express my sincere gratitude to my advisor Prof. Anto-
nio Pescapè for his guidance and inspiration during these years. A big thank
you go also to my labmates (in rigorous alphabetical order) Antonio, Alfredo,
Ciro, Domenico, Fabio, Giuseppe, Idio, Saeed, and Valerio. With their differ-
ent approaches and points of view, they have been and are a priceless source
of inspiration. They guided me through this impervious path and their sup-
port and advice brought me closer and closer to my dream job. I would like
to state my appreciation to Dr. Eng. Alessandro Finamore, my internship ad-
visor at the Huawei R&D Center, Paris. He gave me different perspectives
on research, playing an important role in my professional growth. I am also
grateful to Prof. Edmundo Monteiro (University of Coimbra, Portugal) and
Prof. Mohammad Shojafar (University of Surrey, United Kingdom) for their
valuable comments on the draft version of my Ph.D. Thesis, which allowed me
to improve it significantly. My thanks and love go to my parents Annamaria
and Luigi, my brothers Alessandro and Dario, and the rest of my big family
(it would take a separate thesis to name them all) for their unconditional and
constant support. My gratitude goes also to my friends being able to make me
smile, despite everything. Finally, special thanks go to Alessandra for her pa-
tience, presence, and love. The anxiety infused by this society is lighter when
shared with someone on the same page.

v

Contents

Acknowledgments v

List of Acronyms xi

List of Figures xiv

List of Tables xvii

List of Algorithms xix

Introduction 1

1 Background & Positioning 3
1.1 Background . 3

1.1.1 Network Traffic Analysis 3
1.1.2 Hierarchical Learning 6
1.1.3 Related Works . 9

1.2 Positioning of the Proposal 17
1.2.1 Open Challenges . 17
1.2.2 Exploiting Hierarchical Solutions 18

1.3 Summary . 22

I Design and Implementation 23

2 Hierarchical Learning Framework for Network Traffic Analysis 25
2.1 Traffic Segmentation Component 26

2.1.1 About Hindrances 28
2.2 Features Extraction Component 29

vii

viii CONTENTS

2.3 Hierarchical Learning Engine 31
2.3.1 Local Classifier Per Parent Node Design 31
2.3.2 Big Data-enabled Training Design 34
2.3.3 Global Classifiers Design 41
2.3.4 Classification and Detection Models 48
2.3.5 Performance Metrics 52

2.4 Implementation Details . 57
2.4.1 Leveraged Tools & Technologies 57
2.4.2 Hierarchical Learning Engine Package View 58

II Use Cases 61

3 Privacy: Classification of Anonymity Tools 63
3.1 Context . 63
3.2 Hierarchical Framework Instances 66

3.2.1 Dataset Description 69
3.2.2 Traffic Object and Features 70
3.2.3 Models . 71

3.3 Experimental Results . 72
3.3.1 Naïve Hierarchical vs. Best Flat Classifier 72
3.3.2 Optimization Results 73
3.3.3 Fine-grained Results 78
3.3.4 Performance with Reject Option 81
3.3.5 Big Data-enabled training Results 82

4 Security: Intrusion Detection for IoT devices 89
4.1 Context . 89
4.2 Hierarchical Framework Instances 92

4.2.1 Dataset Description 93
4.2.2 Traffic Object and Features 94
4.2.3 Models . 95

4.3 Experimental Results . 98
4.3.1 Results of Anomaly Detection Analysis 98
4.3.2 Results of Intrusion Detection Approach Analysis . . . 99

5 Traffic Management: Classification of Mobile Applications 103
5.1 Context . 103
5.2 Hierarchical Framework Instances 105

CONTENTS ix

5.2.1 Dataset Description 107
5.2.2 Traffic Object and Features 110
5.2.3 Models . 111

5.3 Experimental Results . 111
5.3.1 Sensitivity to the Number of Features 112
5.3.2 Comparing Best Configurations 113
5.3.3 Reliability Analysis 115
5.3.4 Reject Option Analysis 116

Conclusion 118

List of Acronyms

1DCNN 1-Dimensional Convolutional Neural Network. 49, 50, 111, 112,
113, 117

2DCNN 2-Dimensional Convolutional Neural Network. 49, 50, 111, 113, 117

AC Attack Classification. 11, 13, 21, 55, 91, 97, 98, 99

AD Anomaly Detection. 11, 12, 13, 21, 55, 90, 91, 92, 95, 97, 98

AE AutoEncoder. 51, 52, 91, 95

AT Anonymity Tool. xv, 10, 19, 20, 63, 64, 65, 66, 67, 69, 72, 76, 78, 79, 81

BD Big Data. xv, xvii, 9, 15, 16, 17, 19, 22, 25, 34, 35, 36, 37, 38, 39, 54, 55,
58, 60, 67, 72, 86

BiGRU Bidirectional Gated Recurrent Unit. 50

BN Bayesian Network. 49, 65, 66, 71, 75, 76

CGC Combined Global Classifier. xv, 43

CLS Contextual Label Smoothing. xix, 46, 47

CLSGC Contextual Label Smoothing Global Classifier. 46

CR Classified Ratio. xv, 81, 82

DAE Deep AutoEncoder. 11, 51, 52, 91, 95, 98, 99

DDoS Distributed Denial of Service. 15, 89, 90, 94, 99

DIR Direction. 107

xi

xii List of Acronyms

DL Deep Learning. 5, 11, 14, 17, 18, 20, 21, 22, 25, 33, 41, 49, 50, 59, 60,
65, 71, 104, 105, 106, 111, 112, 114, 116

DoS Denial of Service. 91, 93, 99, 100

DT Decision Tree. 12, 13, 15, 48, 64, 66, 71, 75

FC Flat Classifier. 7, 8

FPR False Positive Rate. 91, 96, 98, 99, 100, 101

GC Global Classifier. 8, 9, 10, 14, 18, 41, 44

HLGC Hierarchical Loss Global Classifier. 45, 46

IAT Inter-Arrival Time. 107

ID Intrusion Detection. 11, 13, 90, 91

IDS Intrusion Detection System. xvi, 10, 12, 13, 21, 90, 91, 93, 98, 99, 100,
101

IF Isolation Forest. 50, 98

IoT Internet of Things. 17, 20, 21, 89, 90, 91, 92, 93, 97, 98, 99

k-NN k-Nearest Neighbors. 13, 14

LCL Local Classifier per Level. 8, 10, 14

LCN Local Classifier per Node. 7, 11

LCPN Local Classifier per Parent Node. xv, 8, 9, 10, 11, 12, 13, 14, 15, 18,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 53, 54, 55, 59, 60, 63, 67, 69,
70, 72, 89, 90, 92, 93, 96, 99, 100, 101, 103, 111, 113

LOF Local Outlier Factor. 50, 98

LSTM Long Short-Term Memory. 49, 50, 111, 112, 113, 117

M2-DAE Multi Modal-Deep AutoEncoder. 52, 93, 95, 97, 98, 99

MCC Multi-Class Classifier. 48

List of Acronyms xiii

MD Misuse Detection. 11, 12, 13, 21, 90, 91, 92, 98, 99, 100, 101

MGC Multitask Global Classifier. xv, 45

MIMETIC MultImodal DL-based MobilE TraffIc Classification. 50, 111,
113, 117

ML Machine Learning. 5, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 25, 33,
35, 36, 37, 39, 40, 41, 55, 59, 65, 66, 71, 75, 84, 99, 104, 105, 106, 110,
111, 112, 114

MLGC Multi-Label Global Classifier. 47

MLP MultiLayer Perceptron. 14, 49, 96, 98, 99

NB Naïve Bayes. 48, 65, 66, 71, 75, 96, 98, 99

NGC Naïve Global Classifier. xv, 42, 43, 47

NIDS Network Intrusion Detection System. 20, 21, 90, 91

NN Neural Network. 12, 15, 41, 43, 45

NTA Network Traffic Analysis. 3, 4, 5, 8, 9, 10, 13, 14, 15, 17, 18, 19, 21, 26,
31

OC-SVM One-class Support Vector Machine. 50, 98

OCC One-Class Classifier. 48, 98

P2P Peer-to-Peer. 10, 11, 12, 13, 14, 65, 66

PL Payload Length. 107

RF Random Forest. 13, 14, 18, 48, 64, 66, 71, 72, 73, 74, 75, 76, 82, 84, 86,
91, 96, 98, 99, 104, 105, 110, 111, 112, 113

SVM Support Vector Machine. 12, 13, 14, 15, 71

TC Traffic Classification. xvii, 11, 16, 19, 20, 33, 36, 40, 41, 49, 64, 65, 66,
67, 69, 70, 71, 72, 73, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 103,
104, 105, 106, 110, 111

xiv List of Acronyms

TIGC Task-Incremental Global Classifier. xv, 44, 45

TO Traffic Object. 15, 26, 27, 28, 29, 30, 35, 52, 69, 92, 93, 94, 95, 96, 99

TPR True Positive Rate. 11, 91, 92, 96, 98, 99

VPN Virtual Private Network. 10, 14

XGB eXtreme Gradient Boosting. 48, 111, 112, 113

List of Figures

1.1 Hierarchical Learning Taxonomies. 6

2.1 Sketch of the designed Local Classifier per Parent Node (LCPN)
classifier. 32

2.2 Big Data (BD)-enabled LCPN: classification workflow process (test-
ing phase). 34

2.3 BD-enabled LCPN Classifier: training phase. 36
2.4 LCPN classifier training with focus on the BD infrastructure. 38
2.5 Examples for Global Classifier Techniques. 41
2.6 Naïve Global Classifier (NGC) approach. 42
2.7 Combined Global Classifier (CGC) approach. 43
2.8 Task-Incremental Global Classifier (TIGC) approach. 44
2.9 Multitask Global Classifier (MGC) approach. 45
2.10 Adopted DL models. 51
2.11 Comparison among AE, DAE, and M2-DAE architectures. 53
2.12 Package view for the prototyped Hierarchical Learning Engine. . . . 59

3.1 Traffic classifier for Anonymity Tool (AT) based on the LCPN ap-
proach. 67

3.2 Anon17 Classification Levels. 68
3.3 F-measure and G-mean of hierarchical and flat classifiers. 74
3.4 Accuracy, F-measure and G-mean of the best classifiers. 75
3.5 Fine-grained optimized hierarchical structure with TC_set. 77
3.6 Fine-grained optimized hierarchical structure with EarlyTC_set. 78
3.7 L3 Confusion matrices of best flat and hierarchical classifiers. . . . 80
3.8 F-measures and Classified Ratios (CRs) of best classifiers vs. γ. . . 81
3.9 Completion time, cost, classification performance, and complexity

map of training phase for hierarchical and flat approaches. 83
3.10 Training completion time and cost varying scheduling strategies. . . 85

xv

xvi LIST OF FIGURES

3.11 Completion time, cost, and time-cost score of training task, varying
the number of buckets and worker machines. 88

4.1 Instance of the Hierarchical Classification Framework for Intrusion
Detection System (IDS). 93

4.2 Partial ROC for baselines and proposed M2-DAE. 99
4.3 Comparison among F1 score of ML models for MD task. 100
4.4 F1 score vs. γU for LCPN-based IDS and Multi-MD in an open-set

approach. 100
4.5 Comparison between confusion matrices of LCPN-based IDS and

Multi-MD. 101

5.1 Number of biflows for the MIRAGE-2019 and MIRAGE-video
datasets. 107

5.2 Per-packet features composition of DIR, PL, and IAT. 109
5.3 Sensitivity to number of features. 112
5.4 Comparison of classification performance by selecting the optimal

number of features using MIRAGE-ext dataset. 114
5.5 Drop from the FC technique in terms of ECE (hECE) and MCE

(hMCE). 115
5.6 Best hierarchical classification approaches vs. FC when reject option

is enforced. 117

List of Tables

1.1 Table of notations. 7
1.2 Summary of previous works on BD-enabled Traffic Classifica-

tion (TC). 16

3.1 Classification performance of the best flat classifier with optimal
number of features compared to naive hierarchical configuration. . . 73

4.1 Input data extracted from Bot-IoT dataset. 95

xvii

List of Algorithms

1 Hierarchical Representation. 46
2 Contextual Label Smoothing (CLS) Representation. 47

xix

Introduction

N
etwork traffic analysis covers the entire set of operations and tech-
niques used to gain knowledge about the status of a network, in order to

manage and administer it properly. Therefore, traffic analysis solutions resort
to modeling techniques applied to the network traffic with the aim of aiding
network operators and internet service providers to achieve a clear snapshot of
what is traversing their network.

The main challenges we identified in the nowadays Internet traffic are
strictly related to the (i) the huge number of Internet enabled devices which
generates heterogeneous network traffic; and (ii) the increasing of the gener-
ated traffic in terms of traffic volume. Accordingly, the main objective of this
doctoral thesis is proposing a Hierarchical Learning Framework for Network
Traffic Analysis, in order to enhance the fine-grained network knowledge and
the scalability of traffic analysis solutions. This framework enhances traffic
analysis exploiting hierarchical dependencies among network traffic classes
in order both to improve the fine-grained modeling of network traffic and to
enable a modular and scalable learning process, enabling fast retraining.

To this extent, the proposal takes advantage of state-of-the-art machine
and deep learning solutions, thus fostering designed hierarchical learning ap-
proaches and it is evaluated on different types of Internet traffic (viz. three
scenarios), such as the traffic generated by privacy-preserving solutions (e.g.,
VPNs, Anonymity Tools), network attacks or malware (e.g., Scans, Denial of
Services, Botnets), mobile applications (e.g., Games, Social Networks, Video
on Demand).

1

2 INTRODUCTION

Chapter 1

Background & Positioning

I
n this chapter, we first introduce network traffic analysis and its applica-
tions (Sec. 1.1.1). Then, in Sec. 1.1.2 we delve into background method-

ological aspects, presenting the formalization which constitutes the backbone
of the hierarchical learning theory. Following, works related to hierarchi-
cal learning solutions in other domains (e.g., protein sequence classification)
whose applications fall within the network traffic analysis are separately ana-
lyzed in Sec. 1.1.3. Then, in Sec. 1.2 challenges of network traffic analysis are
explained and the positioning of the proposed solutions is provided. Finally, a
summary section (1.3) closes the chapter.

1.1 Background

1.1.1 Network Traffic Analysis

Network Traffic Analysis (NTA) is an umbrella term which covers the entire
set of operations and techniques used to gain knowledge about the status of a
network in order to manage and administer it properly [1]. Therefore, NTA
solutions resort to modeling techniques applied to the traffic flowing the mon-
itored networks, with the aim of aiding network operators and Internet ser-
vice providers to achieve a clear snapshot of what is traversing their network.
Along with this definition, NTA enables for the control of the network via
traffic engineering methodologies and tools falling within several applications,
like accounting, advertising, network monitoring (i.e. fault detection), network
traffic measurement (e.g., bandwidth management), security assessment, qual-
ity of service enforcement, intrusion detection, anomaly detection, application

3

4 CHAPTER 1. BACKGROUND & POSITIONING

identification, service differentiation, and user’s activity profiling [2, 3, 4, 5].
Broadly speaking, NTA can be enforced at different points in the temporal line,
namely in the past, in the present, and in the future, providing post-mortem,
early/near-real-time, and predictive hints, respectively. These three kinds of
hints characterize two main tasks, namely binary/multi-class classification and
time-series prediction, where the former covers the past (e.g., labeling) and the
present (e.g., real-time identification), and the latter focuses on the future (e.g.,
load forecasting). It is worth to underline that this taxonomization hides some
forms of interleaving of such tasks, with each task which potentially feeds the
other (e.g., a classification system can enhance a prediction system providing
the class of traffic).

Because network operators and Internet service providers should under-
stand the nature of the communications flowing across the Internet to properly
manage networks, this thesis focuses on binary/multi-class classification and
its applications, like traffic identification, traffic classification, anomaly detec-
tion, misuse detection, attack classification, malware detection, malware clas-
sification, and website fingerprinting [6]. Detailing, traffic identification and
classification are the tasks which associate traffic objects to the class of traffic
they belong, where a traffic object is a collection of network packets sharing
common characteristics (e.g., a biflow is composed by packets exchanged be-
tween two network sockets). Both traffic identification and classification are
also a well-established study area, with several surveys available like [7, 8, 9].
The main difference between these tasks is the binary nature of traffic iden-
tification and the multiclass nature of the traffic classification. Focusing on
security related applications, the task which aims at separating legitimate traf-
fic from the unwanted one (e.g., attack related) is named anomaly detection
and it deals with binary classification. Moreover, when the specific attack is in-
ferred we fall in the attack classification task, which is multi-class classifica-
tion. Furthermore, the objective of misuse detection is of combining anomaly
detection and attack classification, resulting in a multiclass classification sys-
tem with the capability of distinguishing among benign traffic and (kinds of)
attack [10, 11]. Similarly to the difference between anomaly detection and
attack classification, malware detection has the main objective of separating
legitimate traffic to which generated by malware, and malware classification
gives a deeper hint about the malware generating the identified traffic [12].
Finally, website fingerprinting wants to understand to which website (down
to the webpage) a user has been connected, by inspecting the traffic gener-
ated during the retrieving of such websites. This application is very related to

1.1. BACKGROUND 5

privacy issues because applicable to identify censorship [13].

Nowadays, traffic analysis applications are more or less wounded by the
advancements in privacy & security preserving technologies and standardiza-
tion (viz. security by design), and by the ever-increasing complexity of the
Internet itself, i.e. in terms of the number and diversity of available services
and of Internet-enabled devices. In particular, the increased adoption of ubiq-
uitous traffic encryption—with the widespread adoption of protocols such as
TLS or QUIC, which want to drastically reduce the portion of non-encrypted
network packets—and the definitive shift towards the adoption of nonstan-
dard port numbers have practically wounded the deep-packet-inspection- and
port-based classification approaches, respectively. In addition, the extreme
dynamicity of the Internet traffic, the heterogeneity of devices connecting to
the Internet—especially when considering mobile devices which have ecosys-
tems of tools that ease the installation of new apps and their updates—are all
contributing to this renewed interest [14], and call for the need for complex
solutions.

Recently, to tackle abovementioned challenges affecting the majority of the
networks, researchers are designing and evaluating advanced modeling tech-
niques based on Machine Learning (ML) and Deep Learning (DL) approaches,
with the progresses of artificial intelligence solutions experienced in the last
years reflecting their benefits also in network traffic analysis [15, 16]. More-
over, using ML techniques to perform NTA also meets the need of maintaining
privacy by classifying encrypted communication leveraging only statistical at-
tributes, rather than decrypting its content [17]. From a chronological stand-
point, NTA literature can be categorized into two “waves”. The first wave,
ignited in the early 2000’s, and centered around the use of ML methods using
per-packet (e.g., packet size, packets inter-arrival time) or per-flow (e.g., total
bytes, packets, ports) features as input targeting the classification of a handful
of applications. Several works demonstrated that even when just a few packets
of a flow were observed, the classification was accurate [18, 19], and could be
sustained at line-rate speed [20]—“early” NTA was born. Inspired by the suc-
cess of image processing in computer vision, in the last years DL techniques
re-ignited the interest towards NTA, with several DL-based classifiers being
proposed using as input either raw payload bytes or the same traffic features
discovered during the first wave [14, 21, 22, 23, 24, 25]. Accordingly, in this
doctoral thesis, different types of Internet traffic have been analyzed through
ML and DL solutions, such as the traffic generated by privacy-preserving solu-
tions (e.g., VPNs, Anonymity Tools), network attacks or malware (e.g., Scans,

6 CHAPTER 1. BACKGROUND & POSITIONING

Denial of Services, Botnets), and mobile applications (e.g., Games, Social Net-
works, Video on Demand).

1.1.2 Hierarchical Learning

(a) Class Dependencies (b) Flat

(c) LCN (d) LCL

(e) LCPN (f) GC

Node Classifier Predicted
Label

Not Predicted
Label

Optionally
Predicted Label

Class
Dependency

Classifier
Output

Optional
Classifier Output

Figure 1.1: Hierarchical Learning Taxonomies.

In this section, the taxonomization of existing approaches for hierarchical
learning is provided, which is based on the way the (hierarchical) dependencies
among traffic classes are exploited. Used notations are detailed in Tab. 1.1. In
Fig. 1.1a is reported the (hierarchical) dependencies tree. In detail, the classes
object of classifications are arranged in a T -levels tree, from the ROOT to the
leaf nodes at level LT , e.g, node ℓi···j . Moreover, the level Li has Li nodes, and

1.1. BACKGROUND 7

the node ℓi has Li child nodes and Si training samples. It is worth noting that
subscripts of labels represent the list of ancestors starting from L2, e.g., ℓi···j
has the oldest (coarsest-granularity) ancestor in ℓi, and ending with the actual
label index, e.g., ℓi···j is the jth child of its parent node. It is worth noting that
C∗ is the notation for classifier nodes.

Table 1.1: Table of notations.

Symbol Meaning
T Number of levels in the hierarchy.
L0 ROOT node/level.
Li|0<i<T ith intermediate level.
LT Leaf level.
ℓijk kth child node of the ℓij node.
Li Number of nodes of the Li level.
Li Number of children nodes of the ℓi node.
Si Number of training samples of the ℓi node.
Ci··· Classifier node which the same subscript nota-

tion as ℓi···, used for Flat, LCN, and LCPN ap-
proaches.

CLi Classifier node at the level Li, used for for LCL.
CG Global classifier.

Hierarchical learning approaches usually fall into three main cate-
gories [26]:

• Flat Classifier (FC), i.e. hierarchical dependencies are not considered at
all, resorting to a single classifier coping with leaf classes; from Fig. 1.1b
is shown a single classifierC0 which distinguishes among classes belong
LT , viz. leaf nodes.

• top-down classifier, where a set of local classifier are trained and the fi-
nal solution is obtained by solving sub-problems (i.e. divide-et-impera);
this category translates into three solutions, differing by location into the
hierarchy of dependencies in which local classifiers are placed (viz. in
which way classes are grouped w.r.t. hierarchical dependencies). These
solutions are:

– Local Classifier per Node (LCN), where a binary (viz. one-vs-rest)
classifier per node/class is trained, e.g., in Fig. 1.1c, Ci···j classifies
traffic into {ℓi···j , ℓi···j}.

8 CHAPTER 1. BACKGROUND & POSITIONING

– Local Classifier per Level (LCL), characterized by a multiclass
classifier per level, e.g., in Fig. 1.1d, CL1 classifies traffic into
{ℓ11, · · · , ℓ1n, ℓi1, · · · , ℓim}.

– Local Classifier per Parent Node (LCPN), which exploits a mul-
ticlass classifier per parent-node, e.g., in Fig. 1.1e, Ci classifies
traffic into {ℓi1, · · · , ℓim}.

• Global Classifier (GC) (viz. big-bang), where a single model is trained
by considering the hierarchical dependencies among classes, i.e., in
Fig. 1.1f the CG provides dependencies-aware classification of traffic
into both leaf and (optionally) non-leaf nodes.

Subsequently, details for each category are provided, focusing only on the
LCPN approach for the top-down classifier category.

Flat Classifier

The FC consists of a single model trained on the finest granularity classes. This
approach is the classical way NTA is actually carried out by several works,
with no dependencies between classes imposed to the learning process. It is
worth noticing that the FC could be seen as a LCL approach, where only the
model built on the last level is used: practically the FC is a naïve solution
to classification inconsistencies by which the LCL approach is affected (viz.
verdicts at different levels may mismatch existing, valid branch). Natively, the
FC enables the inference at higher hierarchy levels, by simply following up the
hierarchical dependencies of predicted classes.

Top-down Local Classifier per Parent Node

The LCPN is a top-down classification approach that makes heavily adhere the
classification model to the dependencies among traffic classes. In few words,
the LCPN results in the deployment of multiple multi-class classifiers, each
one corresponding to a parent node in the hierarchy and distinguishing among
child classes. The LCPN is the most intuitive approach when hierarchical de-
pendencies among traffic classes are exploited. It brings some native advan-
tages, mostly linked to its divide-et-impera nature, like the locality of design
choices, i.e. the selection of algorithms, inputs, and optimizations is locally-
performed. Moreover, if the hierarchical dependencies reflect on the pattern of
involved classes (considering NTA, when the hierarchy reflects communica-
tion behaviour of traffic classes), classification errors of the LCPN should fall

1.1. BACKGROUND 9

within similar classes. Despite this, the LCPN approach suffers from the prop-
agation of error throughout the hierarchy, that could be mitigated via a cen-
soring mechanism that practically enforces the non-mandatory-leaf-prediction
paradigm, by stopping the propagation to lower level classifier when the con-
fidence of the classification of a sample is below a certain threshold (i.e. reject
option).

It is worth to note that among advantages of the application of the LCPN
approach, like scalability and easier (re-)trainability, its privacy preserving na-
ture is of utmost importance: multiple levels of classification enable a dis-
tributed deployment of such solutions, with the ideal near-user-adoption of
sensitive data for modeling.

Global (or Big-Bang) Classifier

The GC approach, also known in literature as big-bang approach, is a cate-
gory of techniques that builds (viz. trains) a single model encapsulating the
knowledge about dependencies among classes. As detailed below, each tech-
nique is characterized by the way this knowledge is exploited, e.g., via the loss
function. Naïvely, a GC could be seen as a classifier which predicts each la-
bel of the hierarchy, resulting in the association of each sample to a class per
level. Moreover, another approach can be defining an extended set of classes
based on the level-wise combination of all the labels, by obtaining an extended
classification output which pushes down malformed dependencies (branches).
Moreover, it is interesting how the latest proposed advancements in classifica-
tion models for NTA are exploitable for training a GC, i.e. task-incremental
learning and multitask learning. Finally, recently has been proposed a hierar-
chical loss to capitalize dependencies without modifying the underlying model.
To the same extent, contextual label smoothing is another way to obtain a GC,
where dependencies are enforced by modifying the one-hot-encoded target ac-
cordingly to the hierarchy.

1.1.3 Related Works

In this section we report the literature which is strictly related to our proposed
framework. In detail, we first present a wider analysis of the hierarchical learn-
ing solutions proposed in the literature, with the focus on NTA applications.
Because the literature analysis we carried out shows no application of Big Data
(BD) frameworks in order to enhance hierarchical learning approaches, we re-
port works deal with NTA applications by leveraging BD technologies to train

10 CHAPTER 1. BACKGROUND & POSITIONING

“flat” (viz. non-hierarchical) classification models.

Hierarchical Learning for Network Traffic Analysis

The majority of (non-NTA) proposals for hierarchical learning come from
fields like protein sequences classification, object detection, image classifi-
cation, patient diagnosis prediction and classification, and text recognition.
Among the selected works, the LCPN solution (which is the most intu-
itive enforcement of hierarchical dependencies in the learning process) is
the broadest applied, but several solutions that exploit advancements of ML
(i.e. task-incremental learning, multi-task learning, hierarchical loss, con-
textual label smoothing) in order to obtain GC solutions are also proposed.
About LCPN, an abundance of interesting and recent works are available,
like [27, 28, 29, 30, 31, 32, 33]. Among these, some leverage an LCPN ar-
chitecture to address feature selection in a hierarchical fashion, and others di-
rectly tackle the classification task. Furthermore, focusing on GC approaches,
several attempts are done for task-incremental [34, 35], and something extra
for multi-task [36, 37, 38]. Noteworthy, a hybridization of LCPN and GC ap-
proaches is proposed in [39], but this results in a trivial post-processing of the
LCPN output.

Focusing on NTA-related tasks, the hierarchical modeling approach at-
tracted the attention of networking researchers from the beginning, due to the
intrinsic hierarchical nature of Internet traffic classes: just think of the clas-
sical chain (TRANSPORT) PROTOCOL / SERVICE / APPLICATION,
where given an application a trivial branch of labels is easily recognizable.
Interestingly, most of works which try to solve NTA tasks via hierarchical ap-
proaches falls into a confined set of these, where the LCPN is the most in
vogue and limited attention is posed only to LCL and GC solutions. Notewor-
thy, the application of hierarchical learning approaches to NTA ranges within
a broad traffic categories, such as network attacks, Peer-to-Peer (P2P), video,
Virtual Private Network (VPN), Anonymity Tools (ATs)-related, and mobile
applications. It is worth to underline that a per-paper analysis is subsequently
performed by sorting related works from the oldest to the newest, with the ex-
ception for works from the same authors which are grouped (i.e. the oldest
work places the group).

Zhang et al. [40] were among the first to propose a hierarchical Intru-
sion Detection System (IDS) based on Radial Basis Functions. In particular,
they propose (and compare) a Serial Hierarchical IDS (SHIDS) and a Paral-
lel Hierarchical IDS (PHIDS) solutions. In detail, SHIDS is composed by

1.1. BACKGROUND 11

pipelined modules, each performing single-attack detection (apart from the
first implementing Anomaly Detection (AD)), which is something similar to
the LCN approach. Differently, PHIDS implements a three-stage Intrusion
Detection (ID), made of AD, coarse-grain and per-category Attack Classifica-
tion (AC), resulting in an LCPN solution where the benign branch is no further
explored. Results over KDD’99 dataset show improvement of Radial Basis
Functions against backpropagation learning model, and performance gains in
using PHIDS over SHIDS (viz. LCPN performs better than LCN).

Similarly, Khan and Khan [41] propose a two-stage LCPN architecture
composed by a first level performing Misuse Detection (MD) and a second
level tackling AC. The proposed approach is compared with a flat multi-class
MD, showing higher True Positive Rate (TPR) and lower runtime. In [42],
the same authors propose a two-stage DL-based model, where each node is
a Deep AutoEncoder (DAE). In detail, the first stage implements binary MD
and the second stage implements multi-class MD. Interestingly, the first level
soft output is used as an additional feature for the second level. The devised
model, tested on both KDD’99 and UNSW-NB15 datasets, achieves 99.99%
and 89.13% accuracy, respectively.

In [43] authors present a three-stage LCPN ML-based model. They con-
duct a three-stage binary MD, notably including benign instances in the same
class of challenging attacks at stage 1 and 2. Results on KDD’99 dataset show
poor overall performance, but the proposal gains on challenging attacks.

Among the first in applying an LCPN hierarchical approach to Traffic Clas-
sification (TC) were [44]. In their paper the authors focused on the classifi-
cation of network traffic by imposing a three-level hierarchy for P2P traffic,
falling in the binary classification P2P vs. non-P2P traffic at the first level,
in the classification of P2P traffic types at the second level (i.e. file-sharing,
messenger, and TV), and in the application classification (11 P2P and 5 non-
P2P) for P2P traffic type and for non-P2P traffic at the third level. The clas-
sification is performed at biflow level, leveraging 39 statistical values post-
mortem-collected and achieving precision and recall ≥ 95% in P2P/non-P2P
recognition and ≥ 93% in P2P-type classification, while a recall drop down
to 71% is observed at the last level. However, results lack in comparison with
other (non-hierarchical) learning approaches, focusing on the sensitivity of the
per-node feature-selection.

Following a similar approach, in [45] the authors propose a four-level
LCPN-based hierarchical approach, tackling the classification of Internet ap-
plications. The proposal is composed by: the first layer performing a binary

12 CHAPTER 1. BACKGROUND & POSITIONING

classification of known and unknown traffic; the second layer which performs
protocol identification by extending the known traffic branch; the third layer
which extends P2P and HTTP protocol branches to catch the generating ap-
plication; the fourth layer being dedicated to the Video applications, which
are subdivided into four video application classes. Both (per-classifier) feature
selection and (coarse-grained) optimization, by evaluating different classifiers
such as Decision Trees (DTs), Neural Networks (NNs), and Support Vector
Machines (SVMs), are considered. Results show a fair comparison between
hierarchical and nonhierarchical approaches, electing the hierarchical as the
best option in terms of classification accuracy and computational complexity,
mainly due to the per-node model optimization.

In the same year, [46] proposed a multilateral (viz. multi-view) and hi-
erarchical learning approach, further refined into FORMULA framework [47],
operating on biflow-segmented traffic. Authors defined multiple taxonomies
resulting in multiple LCPN solutions, one for each taxonomy. Taxonomies
identified are four, namely service, application, protocol, and function, and
each taxonomy is divided into at most three levels, e.g., the service taxon-
omy is divided into service type, service name, and provided service levels.
Each combination of taxonomies’ branches is associated with a particular traf-
fic type, which is the target of classification. Results are strictly related to the
proposed solution and no comparison with other learning approaches is con-
ducted. Despite this, the proposal shows high explainability of user activity.

Recently, in [48] a two-level hierarchical classification framework is pre-
sented to identify the services running within HTTPS connections leveraging
a set of features robust to alteration (e.g., statistics of interarrival time and
packet/payload sizes). The proposed evaluation method, based on real traffic
traces, achieves a recall within [95, 100]% in 50 out of the 68 HTTPS services
considered.

To a similar extent, in [49] authors propose a two-level hybrid (viz. per-
forming both AD and MD) IDS based on LCPN. The first level performs AD
while at the second level traffic declared as benign (resp. anomaly) is further
inspected by a MD (resp. another AD) module, to catch challenging attacks. In
detail, at the first level, the whole traffic is inspected by an AD module. Differ-
ently, at second level, traffic declared as benign (resp. anomaly) is further in-
spected by a MD (resp. another AD) module, to catch challenging attacks. Fi-
nally, anomaly/anomaly or benign/attack verdicts identify anomalies. Results
on KDD’99 show that it outperforms state-of-the-art hybrid solutions, reaching
91.86% True Positive Rate (TPR) and 0.78% False Positive Rate (FPR).

1.1. BACKGROUND 13

Differently, [50] propose a two-level LCPN ML-based ID method that per-
forms binary MD at first level and AC at second. The novelty of the approach
is in the treatment of categorical (resp. numerical) features are used to feed
the MD (resp. AC) module, practically feeding different levels of the hierar-
chy with diverse information. Evaluation on NSL-KDD dataset results in 96%
accuracy.

The LCPN approach is also evaluated in [51] to classify Internet video
traffic. In particular, the authors design and implement a two-level hierarchy,
using k-Nearest Neighbors (k-NN) models, where the first level splits network-
ing flows into asymmetric and symmetric, and then the second level classifiers
infer the application generating each flow, with the asymmetric branch classi-
fier distinguishing among Asymmetric Standard Definition Video, Asymmet-
ric High Definition Video, and HTTP Download Video, and the symmetric
branch classifier within QQ, Xunlei, and Sopcast. Also in this case, the au-
thors perform a post-mortem classification, extracting 40 features for each net-
working flow, and selecting the top 4 of them via feature selection. Finally,
the authors perform a wide comparison of their proposal against several ML
models, like Random Forest (RF), DT, and SVM, the latter leveraged also in
a hierarchical learning fashion, showing the superiority of their proposal. In
detail, experimental results report ≥ 97% F-measure in discriminating among
all the considered (video) traffic and superior performance w.r.t. existing alter-
natives, while providing only a slight time complexity increase.

More recently, Schueller et al. [52] have proposed a hierarchical two-level
IDS, where the first level performs a (flow-based) AD task leveraging a SVM,
while the second one conducts (packet-based) AC via SNORT. Their proposal
is validated on DARPA IDS dataset.

Beyond the evaluation of “pure” LCPN approaches, also some hybridiza-
tions with other techniques are proposed in literature, like the Chaining ap-
proach [53]. In this paper, the authors afforded the NTA of network video
traffic, suggesting an approach that is the combination of a Chaining ap-
proach with LCPN. In detail, they propose a cascade of binary classifiers,
where some results in a further multi-class finer grain classification (like
LCPN). They identified 7 video categories, namely Asymmetric Standard Def-
inition Video, Asymmetric Ultra Clear Video, Asymmetric High Definition
Video, HTTP Download Video, Interactive Video Communications, P2P Video
Share (P2P_video), and Internet Live Video. The cascade of binary classi-
fiers provides classification outcomes, in order, Interactive Video Communi-
cations, HTTP Download Video, Video On Demand, Internet Live Video, and

14 CHAPTER 1. BACKGROUND & POSITIONING

P2P_video classes. It is worth noting that the Video On Demand category in-
cludes Asymmetric Standard Definition Video, Asymmetric Ultra Clear Video,
and Asymmetric High Definition Video categories, which are classified by a
local classifier which resides in the Video On Demand parent node. The NTA
they propose is postmortem, leveraging 40 statistical features extracted from
the fan-out of a target host. The authors compare their proposal with other
learning approaches, like LCPN, Chaining, Bagging, and RF, showing the
clear advantage by using their hybrid solution in terms of classification F1
Score.

Other than LCPN, less attention is paid to others hierarchical approaches,
like LCL and GC. In the following, a couple of examples are provided. [54]
proposed a LCL solution to classify the traffic generated over the Tor overlay.
Their proposal enforces a multiclass classifier at each level of the hierarchy,
resulting in 3 models. The first level splits the network traffic into Tor and
Non-Tor, then the Tor branch is further divided into Traffic Types at level two,
and into generating applications at level three. Authors focused on the classifi-
cation of networking flows leveraging a post-mortem feature set. The proposal
is not evaluated against nonhierarchical approaches or other hierarchical, but
it is limitedly compared by varying the underlying models and the number of
selected features.

Recently, [55] propose a GC approach based on multi-task learning, named
Multi Task Hierarchical Learning, which is evaluated by solving malware de-
tection (Stratosphere IPS & CICIDS2017 datasets) and application classifica-
tion (VPN-nonVPN2016 dataset) tasks. Their proposal is a first attempt that
exploits hierarchical relations between traffic classes in order to train a multi-
task model, which is capable of classifying networking flows into a top-level
(viz. coarse-grain) label and a mid-level (viz. fine-grain) one. In detail, the
neural network they propose is formed by a backbone, which is shared among
tasks and is connected with two task-specific branches. Each task classifies
into top-level and mid-level labels. Results show the superiority (limited to
the CICIDS2017 dataset) of Multi Task Hierarchical Learning against other
ML models, like RF, k-NN, SVM, and MultiLayer Perceptron (MLP), when
performing fine-grain predictions. However, the comparison the authors per-
formed is not fair, because the DL model underlying Multi Task Hierarchical
Learning is very complex w.r.t. experimented flat models, and it is not com-
pared against the non-hierarchical version (viz. flat) of the proposal itself.

1.1. BACKGROUND 15

Big Data-enabled Network Traffic Analysis

Noteworthy, because the literature analysis we carried out shows no applica-
tion of BD frameworks in order to enhance hierarchical learning approaches,
we summarized in Tab. 1.2 (for completeness) works tackled NTA by adopting
BD technologies, by providing their comparative overview along multiple key
aspects, highlighted by the corresponding columns.

Still, the novelty of our framework lies in addressing the challenging in-
tegration of both models (characterizing the LCPN approach) and data paral-
lelism (due to their interplay), aiming at a sophisticated and highly-effective
NTA system. On the other hand, in the literature, the application of (manifold)
BD technologies to NTA tasks is significantly represented as well by recent
works proposing approaches to exploit advantages of distributed computing in
NTA. In particular, they adopt BD technologies to define distributed ML mod-
els to enhance scalability or classification performance, and to meet real-time
analysis requirements. By investigation of all above works, the most used BD
technologies result to be Apache Hadoop and Apache Spark.

Additionally, the works in Tab. 1.2 focus on different kinds of Traffic Types,
including web services (e.g., Facebook, Gmail, Skype, and Google), network
attacks (i.e. Distributed Denial of Service (DDoS)), and typologies associated
to different contexts like mobile applications. The considered Traffic Objects
include, flows and biflows. In addition, several BD-related works focus on
the finest granularity, i.e. packets. Concerning Input Data, all the reviewed
approaches feed the classifiers with different sets of statistical features of the
considered Traffic Objects (TOs). The most common features are related to
the inter-arrival time, byte count, TCP flags, packet count, and payload length.

Also, classifiers are mostly common between the two approaches that
leverage state-of-art ML models, like SVM, DT and related evolution, and
NN. Furthermore, more than half of the reviewed works rely on a private
dataset, thus precluding further comparison and advancements. The only
exceptions are few works releasing only a part of their considered traffic
data [56, 57]. Analogously, a significant share of reviewed works provides
enough details for reproducible implementation of the approach proposed
therein, e.g. [58, 59, 60].

Finally, in the reviewed works no cost analysis of real scenario deployment
is provided, despite this gives a clear view about the trade-off with inference
performance, looking for the optimization of a distributed deployment. These
findings highlight the need for delving into the problem via successive splits
and devising a more sophisticated classification framework for harder classifi-

16 CHAPTER 1. BACKGROUND & POSITIONING

cation tasks.

Table 1.2: Summary of previous works on BD-enabled TC.

B
D

Te
ch

.

TO Input Data Traffic Type ML Model O
pe

n
D

at
as

et

R
ep

ro
du

ci
bl

e
im

pl
em

en
ta

tio
n

Paper

H F
7 statistics
(PTs, PR, PC,
FL, DUR)

Applications SVM G# [58]

S P
30 packet fields
(TTL, PR, FLGI, CHK, etc.)

DDoS vs. Normal GA G# G# [61]

H F
6 statistics
(BC, and PS at different
ISO/OSI layers)

Applications DT G# [62]

S F 100 Tstat metrics Web Services Proposal # G# [59]

H P
TS, SRC, DST, PR and
others header info.

DDoS vs. Normal — # G# [63]

S, I B
PL for the first 5 packets,
per direction PC, and BC,
and PTs.

Web Services
GBT, RF, SVM,
and NN

[64]

SS B

248 statistics
(PTs, IaT, BC at different
ISO/OSI layers, per
direction PC, FLGT, WS,
IaT, RTT, and DA, etc.)

Applications PM G# G# [57]

S P
49 (12 after selection) of
packet fields (SRC, DST,
PR, TTL, PT, etc.)

DDoS vs. Normal NB, DT, and RF G# [65]

S B
(PL, IaT, PT, FLGT) for
the first 20 packets,
Payload of first 784 bytes

Mobile Apps CNN, LSTM G# G# [56]

Legend of acronyms (— when not applicable):
BD Tech.: H (Apache Hadoop), I (IBM InfoSphere), S (Apache Spark), SS (Apache Spark Streaming);
TO: B (biflow), F (flow), P (packet);
Input Data: BC (Byte Count), CHK (IP checksum), DA (duplicate ACK flag), DST (destination IP),
DUR (duration), FL (flow length), FLGI (IP flags), FLGT (TCP flags), IaT (inter–arrival–time), PC
(packet count), PL (payload length), PR (protocol), PS (packet size), PT (port), RTT (Round Trip Time),
SRC (source IP), TS (timestamp), TTL (time to live), WS (window size);
Traffic Type: DDoS (Distributed Denial–of–Service);
ML Model: CNN (Convolutional NN), DT (Decision Tree), GA (Genetic Algorithm), GBT (Gradient
Boosted Tree), NB (Naïve Bayes), NN (Neural Network), PM (Pattern Matching), RF (Random Forest),
SVM (Support Vector Machine);
Open Dataset: # (W/o publicly available dataset), G# (At least one publicly available dataset), (W/
publicly available dataset);
Reproducible implementation: # (W/o details for reproducibility),G# (W/ details for reproducibility),
 (W/ publicly available implementation).

1.2. POSITIONING OF THE PROPOSAL 17

1.2 Positioning of the Proposal

In this section the proposed framework is positioned with respect to existing
challenges in NTA (Sec. 1.2.1), delving into the rationale behind the applica-
tion of hierarchical learning to Internet traffic (Sec. 1.2.2), staring from the
interleaving with BD technologies, and deepening the specific use cases we
identified to validate the proposal.

1.2.1 Open Challenges

In addition to the challenges mentioned in Sec. 1.1.1, which drove the tran-
sition from previous modeling solutions (port- and payload-based) for traf-
fic analysis to more advanced and privacy preserving ML- and DL-based so-
lutions, we identified other open challenges which affect state-of-the-art so-
lutions when applied to fine-grained traffic analysis in nowadays networks.
These include two main challenges which are strictly linked to the growing
adoption of Internet services: (i) the huge number of Internet enabled devices
which generates heterogeneous network traffic, which hampers the acquisition
of fine-grained network knowledge; and (ii) the increasing of the generated
traffic in terms of traffic volume, which demands for scalability of traffic anal-
ysis solutions.

In detail, the number of Internet-enabled devices grows, just think to the
number of Internet of Things (IoT) devices—that was anticipated to be over 7
billion in 2018, with a 3-fold increase expected by 2025, taking into account
both consumer and industrial uses1—and to the widespread adoption of mobile
devices—according to Ericsson mobility report2, the number of smartphone
subscriptions is expected to reach 7.7 billions by 2027, with a corresponding
+28% predicted compound annual growth rate (viz. from 63 EB/month in
2021 to 281 EB/month in 2027) of traffic generated by smartphones. More-
over, IoT devices are frequently characterized by a low-cost manufacturing
process (including hardware and software design decisions, such as unsecured
network services, dangerous update mechanisms, and obsolete components)
and insufficient user attention to setup. As a result of the many and major
flaws in IoT devices, the primary goal of daily-released malware has changed
to infecting IoT services.

In addition, the capacity (viz. available bandwidth) and coverage of net-
work links with the raise of new communication technologies (e.g., 5G) also

1https://tinyurl.com/iot-dev-2018
2https://tinyurl.com/ericsson-report-2021

https://tinyurl.com/iot-dev-2018
https://tinyurl.com/ericsson-report-2021

18 CHAPTER 1. BACKGROUND & POSITIONING

growth (always according to Ericsson, with 4.4 billions regarding 5G mobile
subscription by the 2027, with a CAGR of +37% w.r.t. 2021), clearly putting
pressure on NTA systems and posing additional problems in implementing
effective and efficient solutions. As a result of this development, highly scal-
able systems must be designed and deployed to allow for a realistic (time-
constrained) fine-grained analysis of massive volumes of heterogeneous net-
work traffic.

1.2.2 Exploiting Hierarchical Solutions

In this doctoral thesis, in order to enhance the fine-grained network knowl-
edge and the scalability of traffic analysis solutions, we propose a Hierarchi-
cal Learning Framework for Network Traffic Analysis. The framework en-
hances traffic analysis exploiting hierarchical dependencies among network
traffic classes in order both to improve the fine-grained modeling of network
traffic and to enable a modular and scalable learning process, enabling fast
retraining. Furthermore, the adoption of hierarchical approaches allows for
fine-grained performance gains, by splitting the NTA tasks in sub-problems.
Equally important, although hierarchical approaches may result in increasing
training complexity, top-down category can leverage model parallelism, due
to the scalability and modularity of the resulting approaches. As a result,
hierarchical ML-based NTA has recently appealed to the scientific commu-
nity [45, 51, 66].

It is worth to underline that in this thesis we enforce the entire set of hierar-
chical approaches introduced in Sec. 1.1.2 (i.e. LCPN and 7 GCs) by leverag-
ing (classical) ML algorithms (e.g., RF). However, despite the (re-)designing
of existing (classical) ML algorithms is potentially feasible [67], the global
classifier category of approaches is considered only for Neural Network mod-
els, except for a global solution (viz. naïve global classifier, Sec. 2.3.3) that
can be applied also to (classical) ML algorithms.

Therefore, in this thesis both ML and DL hierarchical solutions are eval-
uated on three use cases, namely classification of anonymity tools, intrusion
detection for Internet of things devices, and classification of mobile applica-
tions, respectively falling in Privacy, Security, and (fine-grained) Traffic Man-
agement applications.

1.2. POSITIONING OF THE PROPOSAL 19

Interleaving of Big Data Technologies and Hierarchical Solutions

The proposed framework suitably manages and capitalizes BD technologies.
In this direction, an initial effort has been put forward by the scientific com-
munity and industry to apply BD technologies, e.g. Apache Spark or Apache
Hadoop, to ML-based NTA [58, 62, 64], exploiting data parallelism. As NTA
becomes more and more challenging, benefiting from both model and data par-
allelization approaches is of clear appeal, but none of the two is trivially appli-
cable in itself. On one hand, model parallelism requires accurate architecture
planning to fit the specific (classification) problem to reap the potential bene-
fits in terms of classification effectiveness and design advantages. On the other
hand, data parallelization via the adoption of BD does not represent a trans-
parent enabler, as it may imply classification performance degradation, trading
efficiency for effectiveness [56]. Accordingly, their combination is far from
being trivial, as their interplay is not known a priori [68]. Nevertheless, jointly
leveraging model and data parallelism is extremely promising to accommodate
the needs arising from recent scenarios in computer networks that call for tools
for processing huge amounts of data produced by heterogeneous devices (e.g.,
as those generated by IoT platforms) in a timely manner and at a predictable
cost (e.g., leveraging cloud or fog platforms [69]). While the separate adoption
of either model or data parallelization has been investigated to a certain extent,
to the best of our knowledge their combination has not been explored in NTA
literature. Based on the above motivations, the proposed framework boasts the
benefits of both model and data parallelism and is able to provide the appeal-
ing characteristics of modularity, scalability, and fast retraining, which make it
suitable for working with traffic of today’s (and next-generation) networks. To
meet the above desiderata, we investigate the interplay of model and data par-
allelism and evaluate their interaction along multiple dimensions. As a result,
this thesis paves the way to a novel approach for designing NTA algorithms.

Hierarchical Solutions for Privacy

Because of the specific nature of AT encrypted traffic, ML classifiers represent
the natural enabler, able to provide decisions based on the sole traffic-flow fea-
tures [5] and to overcome shortcomings due to the application of common solu-
tions (e.g., those based on payload inspection or earlier port-based ones [70]).
It is worth to note that AT classification is something similar to website fin-
gerprinting, because anonymous services are often reached by means of web-
pages. Moreover, looking into the TC of ATs is beneficial to designers since

20 CHAPTER 1. BACKGROUND & POSITIONING

it puts their efficacy to the test, identifies flaws, and points the way to making
them more robust. These studies, on the other hand, are of importance to both
providers and government agencies, since they give knowledge that may be
used to enforce informed engineering regulations or prohibit users from con-
ducting undesired acts. As a result, categorizing ATs traffic is a highly intrigu-
ing and hard research subject, with current methods that may be improved to
obtain fine-grain knowledge of the (anonymous) generating application. The
fine-grained traffic analysis is useful to enforce fine-grained network manage-
ment solutions. In detail, ATs have been investigated in recent years by several
studies from different perspectives including design improvement, AT delay
and performance analysis, feasibility of effective attacks to ATs, users’ behav-
ior profiling and identity disclosure risk, and censoring policies enforced for
ATs [13]. Among these crucial aspects, a cardinal issue is understanding to
what extent (encrypted) ATs traffic can be classified, i.e. at which granularity
ATs and related applications can be accurately recognized by external entities.
On top of that, hierarchical classification represents a perfect match for TC
of ATs, as (i) it allows fine-grained tuning and design, potentially leading to
classification performance gains; (ii) it also brings a number of “practical”
benefits by design, at cost of moderate complexity increase. For example, re-
training does not involve all the nodes in the hierarchy when new applications
leveraging anonymity networks are released. In addition, distributed deploy-
ment of TC tasks, thanks to the modularity of the framework, is enabled in
the network (thus hierarchical classification could be achieved through chain-
ing of virtualized network functions, each associated to a classifier). Albeit
these benefits are granted by the hierarchical approach itself, research efforts
are needed to deepen the aspects of design optimization (to obtain enhanced
performance) and fine-grain evaluation to delve into privacy-level assessment
of ATs.

Hierarchical Solutions for Security

ML and DL have been also applied with good results to Network Intrusion
Detection Systems (NIDSs) design [40, 41]. Since IoT is highly dynamic
from multiple viewpoints (e.g., the number and variety of devices, their spa-
tial distribution, and the evolution of attacks) an IoT-tailored NIDS must cope
with these challenges, and its design is expected to address yet unknown at-
tacks, while retaining high efficiency to be deployed also onto on a massive
number of resource-constrained devices. We remark that privacy issues are
also present, with IoT devices likely deployed in domestic and other highly-

1.2. POSITIONING OF THE PROPOSAL 21

sensitive contexts. In detail, to fulfill their goals NIDSs may implement two
main approaches: AD or MD, aiming at capturing any deviation from the pro-
files of normal activities, or identifying the patterns of known attacks, respec-
tively. Indeed, ML-based intrusion detection has been widely adopted in last
years, with researches investigating both AD [40, 49, 52], trained only on be-
nign traffic (i.e. anomalies are identified as outliers), and MD [41, 43, 50],
trained on both benign and malicious traffic [10]. MD could be binary (benign
vs. malicious) or multi-class (benign vs. specific attacks). Further, several ap-
proaches fall within AC, where a preliminary phase, skimming benign events,
is assumed. Also, a number of proposals for network intrusion detection in IoT
environments can be found in literature [71, 72, 73, 74, 75]. Differently from
our use case, IoT-aware IDSs in literature do not use an IoT dataset for vali-
dation, or target AD or MD separately. Also, the most related proposal [73]
discriminates only among known attacks (i.e. no ability to detect unknown
attacks). In this thesis, we evaluate a hybrid approach targeting both at the
same time: the framework can be configured to obtain a hierarchical intrusion
detection approach tailored for the demands of IoT scenarios.

Hierarchical Solutions for Traffic Management

Regarding the mobile application traffic, because the mayor carrier is the
HTTPS protocol (port 443) which provides no hints for port-based approaches
and takes advantage from encryption, ML and DL solutions have been suc-
cessfully applied for NTA purposes [16]. However, the growing adoption of
mobile devices which is changing the type and composition of traffic traversing
our network by introducing a variety of content and services over the Internet,
is posing an important challenge to NTA. As example, according to the latest
Ericsson mobility report [76], between Q3 2019 and Q3 2020, mobile data
traffic grew 50%. This increment is driven by both the growing number of
smartphone subscriptions and by the increasing average data volume per sub-
scription, impacted foremost by the fruition of video content. It is forecasted
that the share of video traffic, that nowadays accounts for the 66% of all the
data generated by mobile devices, will increase to 77% in 2026. Along this di-
rection, enforcing hierarchical dependencies when modeling mobile network
traffic, by properly exploiting its nature (e.g., by separating traffic by con-
tent, like video/non-video, then by category of service, and last by generating
application), can introduce both classification performance gains at finer gran-
ularities and enhancements in terms of scalability of solutions.

22 CHAPTER 1. BACKGROUND & POSITIONING

1.3 Summary

This doctoral thesis is composed of two main parts, namely:

Part 1 – Design and Implementation
This part introduces design choices which characterize the proposed Hi-
erarchical Learning Framework for Network Traffic Analysis, by for-
malizing hierarchical learning approaches and their translation with re-
cent advancements in ML and DL, and providing a focus on BD-enabled
solution for classification. Therefore, implementation details are pro-
vided to foster reproducibility for the evaluated use cases.

Part 2 – Use Cases
This part validates the proposed Hierarchical Learning Framework for
Network Traffic Analysis effectiveness through three use cases strictly
related to Privacy, Security, and Traffic Management tasks, by provid-
ing a clear understanding about performance improvements in terms
of classification accuracy due to the exploitation of hierarchical depen-
dencies in various ways, and providing a deepening which regards the
scalability-related improvements introduced by our framework.

Conclusions and future perspectives end the dissertation.

Part I

Design and Implementation

23

Chapter 2

Hierarchical Learning
Framework for Network Traffic
Analysis

I
n this chapter we present the Hierarchical Learning Framework for Net-
work Traffic Analysis we designed, implemented, and evaluated. In de-

tail, a top-down solution (viz. local classifier per parent node) for hierarchical
learning along with the translation of recent advancements in Machine Learn-
ing (ML) (e.g., multitask learning) are formalized in order to enforce class
dependencies in the modeling phase, resulting in 8 hierarchical learning ap-
proaches. Moreover, we design the Big Data (BD)-enabled training for the
top-down hierarchical solution to obtain a speedup of this phase.

From a high-level perspective, the proposed framework is composed of
three main parts:

• Traffic Segmentation Component – which aggregates network packets
with respect to the selected traffic object, practically performing prepro-
cessing for raw data flowing the network;

• Features Extraction Component – which extracts profitable information
from Internet traffic, fixing a traffic object, in order to feed the engine;

• Hierarchical Learning Engine – which performs classification, supports
several Hierarchical Learning approaches, and provides structured data
for evaluation. It is worth to underline that the Hierarchical Learning
Engine is designed to be extensible in terms of supported ML and Deep
Learning (DL) models.

25

26 CHAPTER 2. FRAMEWORK

Accordingly, in Secs. 2.1, 2.2, and 2.3 a detailed per-component descrip-
tion is provided, focusing on traffic objects, traffic features, and hierarchical
learning solutions, respectively. With respect to the latter, a deepening about
big data-enabled training is provided. Finally, in Sec. 2.4 we provide details
about the implementation of such proposal by deepening technological-related
aspects.

2.1 Traffic Segmentation Component

When dealing with raw network traffic, the earliest step to perform is the traffic
segmentation, which starts from a sequence of raw network packets and applies
on top of them arbitrary aggregation rules, in order to obtain Traffic Objects
(TOs) (also known as traffic views). In the proposed framework, this task is
accomplished by the Traffic Segmentation Component, which takes in input
raw traffic and outputs a collection of TOs. Accordingly, the definition of
a specific TO determines how raw traffic is segmented into multiple discrete
traffic units [2], based on a criterion dependent on the intended application
of the classification results. Therefore, the selected TO is practically the unit
at which Network Traffic Analysis (NTA) related tasks are performed, e.g.,
actions following a traffic classification system can tract traffic on such unit of
granularity.

Generally speaking, network traffic is composed of network packets, and
such packets, having to traverse the underlying network from a source to a
destination, can be characterized based on different information (viz. routing
and state information) which are carried by them to reach the destination in
a proper way. Detailing, network packets are composed of several layers of
encapsulation, each identified by a particular protocol header. Each header
contains plain (viz. unencrypted) information arranged in arbitrary fields that
are specific to the particular protocol, which could be exploited to perform
traffic segmentation. However, only the portion of the headers that contains
routing and state data are exploitable to properly define a TO, namely (@ each
TCP/IP layer):

@ Network Access Layer MAC header, which contains per-hop routing in-
formation about the physical (viz. network access) layer by providing
the physical addresses (viz. MAC addresses) of the physical machines
placed at extremes of the current hop;

@ Internet Layer IP header, whose routing information specify the network

2.1. TRAFFIC SEGMENTATION COMPONENT 27

addresses (viz. IP addresses) of the (physical) machines involved in the
communication and the encapsulated transport protocol (e.g., TCP);

@ Transport Layer L4 (Transport) header, which contains routing informa-
tion about the application addresses (viz. transport ports) of the source
application and of the contacted service, and of TCP information regard-
ing the status of the connection, namely the TCP flags.

In particular, the MAC addresses are only useful to identify traffic which
flows between two machines on a single routing hop, e.g., when dealing with
traffic collected over a LAN environment, MAC addresses uniquely identify
the traffic which flows between two machines. Then, IP addresses could be
used to identify endpoints of a communication, thus aggregating packets to
obtain the entire trace of the traffic a user generates while interacting with a
specific service. Finally, transport ports are useful to aggregate the network
packets with respect to the contacted service. In fact, when Internet services
used standard port numbers (assigned by IANA), the traffic could be divided
into services by simply looking at the contacted transport port. Nowadays, the
port number information is used in order to clearly identify TCP/UDP sockets.

Therefore, several segmentation criteria exist and can be differentiated
basing on the set of selected routing or state information, those leading dif-
ferent TOs, like:

• Flow: stream of packets with the same 5-tuple (i.e. source IP, source
port, destination IP, destination port, and transport-level protocol), thus
taking into account their directions.

• Biflow: namely bidirectional flows, it includes flows of both directions
of traffic, i.e. given the 5-tuple for flows, biflows are characterize by
the interchangeability of (IP address, port) pairs of source and
destination.

• TCP Connection: which differs from the biflow only in the initiation and
termination heuristics which usually exploit the connection state infor-
mation contained in the TCP (transport) header.

• Service Burst: consists in the aggregation of traffic directed to a single
service, viz. packets sharing the same destination IP and port number, by
aggregating packets with a time smaller than an arbitrary “burst” thresh-
old.

28 CHAPTER 2. FRAMEWORK

Among these, flows and biflows are the most commonly used traffic objects [5,
77]. Moreover, it is worth noting that the packet arrival time could be used to
further refine the traffic object (e.g., like the service burst definition). To this
extent, for both flows and biflows, the termination can be defined based on an
arbitrary timeout.

About the Traffic Segmentation Component, it is able to split raw network
traffic into several traffic objects, like flows, biflows, TCP connections, and
service bursts. Moreover, when required, a multiview segmentation could be
obtained, namely providing composition of traffic objects in order to perform
traffic analysis at multiple views.

2.1.1 About Hindrances

Although the definition of a TO seems to be easily applicable, the relations
underlying them, e.g., if they are generated by the same host or peripheral
network, or they are sent to the same server, strictly depend on the point of the
network at which the raw traffic is collected.

In other words, the presence of NAT disrupts location-related correlations
within TOs at various levels. In detail, despite IP addresses are usually mod-
ified during the traversal of the network because of the presence of NAT(s),
the collection of the raw traffic after the (“multiple”) NATTING does not in-
validate the separation of raw traffic in TOs like biflows or flows. However,
the collection of the raw traffic after the “single” NATTING results in the im-
possibility of defining host-granularity relations, i.e. one cannot distinguish if
a (bi-)flow is initiated by the same host because each host is mapped to the
same IP address. A similar drawback is related to the collection after “mul-
tiple” NATTING, which hampers (peripheral) network-related relations. On
the other hand, when the NAT is enforced at the destination and the traffic is
collected before the destination, it is not possible to understand if contacted
servers are hosted on the same machine (viz. data center). However, usually
the presence of a (“multiple”) NAT is not considered, and (in general) the main
underlying assumption is that the traffic is collected near to either the source
host or the destination host, thus limiting the NAT(s) impact.

Moreover, the collection of biflows in the middle of the network (viz. far
from the endpoints) is also tampered by the dynamicity of the routing proto-
cols. In fact, when packets are sent from a source to a destination and vice
versa, it is not assured that all the generated packets will follow the same path
(viz. traverse the same sequence of routers) for both the directions, i.e. the
captured traffic can be either the downstream flow or the upstream flow. De-

2.2. FEATURES EXTRACTION COMPONENT 29

spite this, the biflow is still the most informative traffic object enabling the
finest grain traffic analysis, because it catches the entire conversation between
two hosts providing the identification of possible request/response patterns.

Finally, privacy-related solutions, like Anonymity Tools and VPNs, clearly
hampers the capability of defining the hosts at the extremes of a communica-
tion, because their action obfuscates the two communicating parts.

2.2 Features Extraction Component

The Feature Extraction Component takes action once the Traffic Segmenta-
tion Component has divided the raw network traffic into traffic objects. The
feature extraction procedure is strictly dependent on which traffic object has
been selected, because the network characteristics are limited by the TO it-
self. However, all traffic features could be taxonomized by the granularity the
statistics are computed.

In general, traffic features could be fine-grained, when refers to the finest
granularity obtainable from traffic objects (viz. packet-level), and coarse-
grained, when one refers to statistics (e.g., mean, standard deviation, variance,
summation, minimum, maximum) extracted imposing an arbitrary level of ag-
gregation for network packets belong the traffic object, i.e. considering the en-
tire set of packets (viz. TO-level) or applying an (either temporal or spatial and
either disjointed or overlapped) aggregation of network packets (viz. aggre-
gated). To further dissert, packet-level and aggregated features usually come
in the form of time-series. On the contrary, TO-level features are practically
statistics about traffic objects. Moreover, the portion of packets (pertaining
the same TO) which is used to compute the features further determines two
classes of approaches, namely early analysis when the initial (first-n-packets)
of a traffic object are employed, or post-mortem analysis, when the entire set
of packets (in particular the traffic object trailers) are used.

Deepening, the features extraction phase exploits non-routing information
from packet headers plus some information contained in the transport payload,
to assign to each traffic object a set of characteristics (viz. features). From a
packet-level perspective, the commonly extracted features (grouped in base of
the corresponding TCP/IP Stack Layer) are:

• Transport Layer:

– payload length: the number of bytes of the payload;

– payload bytes: the raw bytes composing the payload;

30 CHAPTER 2. FRAMEWORK

– TCP flags: the values of the TCP header corresponding to the TCP
state flags;

– TCP window size: the size of the TCP receive window;

– wrong fragments: a binary value representing if the packets check-
sum field does match or not the actual checksum;

• Internet Layer:

– packet size: the number of bytes the IP packet is composed of;

– interarrival time: the time which occurs between two consecutive
packets arrival instants;

– direction: if the packet is either upstream or downstream transmit-
ted;

– time-to-live: the value of the TTL field in the IP header;

Instead, as abovementioned, TO-level or aggregated features are derived
from the just listed features. In detail, we can identify several widely used
statistics implicitly referring to the set of aggregated packets, like:

• payload volume: being the summation of the payload-lengths;

• duration: being the summation of the interarrival times (viz. the differ-
ence between the arrival of the last and the first packets);

• number of packets;

• number of wrong fragments: being the count of wrongly fragmented
packets;

• TCP flags count: being the per flag count of transmitted TCP flags.

Moreover, also derived features could be defined, like the byte rate, which is
the payload volume divided by the duration. Noteworthy, the aforelisted fea-
tures could be practically extracted from all the TOs listed in Sec. 2.1. More-
over, the biflow TO enable for the features diversification in upstream- and
downstream-related. Furthermore, for several applications (e.g., DDoS de-
tection, user activity recognition), useful hints could be achieved leveraging
statistics on the routing-related information, like the number of TOs per source
IP or the number of concurrent TOs. However, such kinds of information are
hampered by the scenarios depicted in Sec. 2.1.1.

2.3. HIERARCHICAL LEARNING ENGINE 31

Finally, it is worth mentioning that several works rely on routing-
information features [24], like the destination port and the protocol. However,
these works implicitly consider port-based or protocol-based analysis hints and
can result in biased models.

2.3 Hierarchical Learning Engine

In this Section the Hierarchical Learning Engine is presented. In detail, we
first discuss about the methodology underlying the Local Classifier per Parent
Node in Sec. 2.3.1, and several Global Classifiers approaches are detailed in
Sec. 2.3.3. Then, we present the methodology behind the usage of Big Data
technologies in order to enhance the training phase of the proposed frame-
work. Finally, we present state-of-the-art machine learning-based models for
traffic analysis, and performance evaluation metrics in Secs. 2.3.4 and 2.3.5,
respectively.

2.3.1 Local Classifier Per Parent Node Design

In this section the formalization of the Local Classifier per Parent Node
(LCPN) approach included in the proposed framework is presented, as stream-
lined in Fig. 2.1, whose main components are discussed in the following.
LCPN is widely used in the literature [45, 51] and requires a multi-class clas-
sifier for each parent node in the class hierarchy, trained to distinguish among
its children nodes (usually less than Lt, with t being node classification level).

First, it is worth to recall that the proposed classification framework fo-
cuses on classes whose relationship can be summarized in the form of a tree
(each class has one parent class, at most) with T classification levels and
Lt classes to discriminate from at tth level (whose number increases with
the depth), organized in the corresponding set Lt fi {1, . . . , Lt}. The tree
structure can be explored with three alternative approaches, as described in
Chapt. 1, namely top-down, big-bang, or flat. Here the focus is on LCPN
which is a top-down approach. In this case, for each instance to be classi-
fied, the LCPN classifier first predicts its first-level (most generic) class, then
it uses that predicted class to narrow the choice of classes to be predicted at
the second level (i.e. allowed second-level predicted classes are the children of
that predicted at the first level), and so on. Although errors at a certain class
level could propagate downwards the hierarchy, this choice promotes the ar-
chitecture modularity, which is crucial in NTA, as opposed to big-bang and flat

32 CHAPTER 2. FRAMEWORK

f0

RO

C0

C1 Ci

γ0

RO

C11 C1k

RO

f1 fi

f11 f1k

RO
γ11 γ1k

RO

Ci1 Cij

RO

fi1 fij

RO
γi1 γij

γ1 γi

,… ,p1 pL0

ma >xl pl γ0

ma <xl pl γ0Reject Option
(RO)

γ0

L0

L1

L2

Figure 2.1: Sketch of the designed LCPN classifier.

classifiers.
Fig. 2.1 reports a sketch of the LCPN classifier. We highlight that the

indexing of a node reflects the ordered list of its ancestors (except the root
C0), e.g., Cij denotes the jth L2 classifier having C0 and Ci, as grandparent
and parent, respectively. Classifier Cij is in charge of discriminating from
L̄ij < L3 classes, grouped within the (training) set Tij , based on the associated
prediction probabilities p1, . . . pL̄ij

.
The LCPN classifier is trained by recursively splitting the training set ac-

cording to the tree structure. Specifically, the procedure starts from the root
classifier C0 trained using the whole set. On the other hand, each node concur-
ring to t > 1 level classification uses a training set corresponding to a subset
of Lt, the elements all belonging to the same class at (t − 1). Reducing the
number of classes per classifier hopefully simplifies the resulting problem and
reduces the error scope of flat classification.

In addition, the classifier adopts a progressive-censoring (viz. non-
mandatory leaf node prediction [26]) policy, accomplished by equipping each
classifier node with a “reject option” that censors “unsure” classification out-

2.3. HIERARCHICAL LEARNING ENGINE 33

comes at intermediate layers (RO blocks in Fig. 2.1). In other words, the reject
option forces the classification process to stop for a given instance when a
classifier node (e.g., Ci,j) does not reach a clear verdict, i.e. when the highest
class prediction probability (e.g., maxℓ=1,...L̄i,j

pℓ) is below a threshold (e.g.,
γij). This design choice—already introduced and justified in the mobile con-
text in a flat scenario [17]—here avoids that misclassifications are propagated
downwards, at the expense of coarser-grained predictions.

By looking at the hierarchy of classifiers reported in Fig. 2.1, it is apparent
that its naïvest implementation resorts to the same classification algorithm and
feature set throughout all the hierarchy. Nonetheless, although hierarchical
classification can achieve a potential performance gain w.r.t. a flat approach
even in this case (due to the decomposition of the classification task into
subproblems), the proposed framework allows for further optimization [26].
Indeed, classification performance is expected to improve with more refined
implementations, leveraging a specific selection of features for classification,
and/or using different classification algorithms at different nodes of the class
hierarchy (e.g., chosen from a pool of classifiers available). Referring to the
hierarchical classifier illustrated in Fig. 2.1, one assumes that all classifiers in
the hierarchy shall operate on a common Traffic Classification (TC) object,
although not restricted to a specific one.

As previously explained, different sets of features (of different sizes) can
be considered to feed the classifiers in the hierarchical architecture (to achieve
accurate classification), as shown in Fig. 2.1. For instance, classifier Cij is
assumed to rely on Mij features, collected in the vector fij . The capability
of handling a different set of pairs (traffic object, features set) is enforced by
the per-node application of aforementioned Traffic Segmentation Component
(Sec. 2.1) and Features Extractor (Sec. 2.2) components.

As in the case of set of features, the LCPN classifier allows for a different
classifier to be employed at each node (see Fig. 2.1). Therefore, any ML/DL-
based (as Internet traffic is majorly encrypted) supervised classifier can be
adopted. In other words, the Hierarchical Learning Engine is able to assign
a different ML- or DL-based model to each classifier/node which composes
the LCPN classifier. For example, referring to the classifier Cij , any ML/DL-
based classifiers could be used to discriminate from L̄ij classes within the set
Tij . The sole requirement for each classifier is to be able to provide its soft
output vector, required by the censoring mechanism.

It is worth to underline that the LCPN classifier supports both these op-
timization degrees-of-freedom. In case both the per-node classifier and the

34 CHAPTER 2. FRAMEWORK

feature set are optimized at each node, the combinatorial explosion of the re-
sulting optimization is herein circumvented by a decoupled design resorting to
per-node performance, e.g., selecting the pair corresponding to the classifier
and the number of features ensuring the highest score for the sub-classification
problem the classifier node is in charge to solve. Nonetheless, it is worth
to remark that an optimization based on complete enumeration or alternative
heuristics does not contrast with the hierarchical classification architecture in
Fig. 2.1.

2.3.2 Big Data-enabled Training Design

In this section we present the design choices which enable the distributed train-
ing by exploiting the LCPN composition of multiple train-independent classi-
fiers. First, we introduce the design of operational workflow and the require-
ments of LCPN training phase. Then, the concepts of data and model paral-
lelism are described, outlining their benefits and implications. Last, we present
the BD infrastructure supporting our framework.

Big Data-enabled LCPN Design

Testing (Operational) Phase

Raw Traffic
w/

Hierarchical
Labels

Traffic
Segmentation

in Traffic
Objects and

Features
Extraction

BD-enabled LCPN approach
classification

subtask

Labeled Traffic Object

Labeled Traffic Objects

Figure 2.2: BD-enabled LCPN: classification workflow process (testing phase).

Figure 2.2 highlights how the designed LCPN classifier is integrated in
our classification workflow that receives raw traffic as input to produce labeled
traffic objects. In detail, it is worth to recall that the operations of the frame-
work require an input of raw network traffic that can be effectively modeled
in a hierarchical fashion. In other words, the action of associating network
traffic to a label must be doable at different degrees of granularity. This is a

2.3. HIERARCHICAL LEARNING ENGINE 35

generic requirement that matches many and diverse real-life traffic analysis or
management scenarios [45, 51], and can be easily tailored to specific needs.

Detailing the workflow, each traffic object is provided as input to the Hier-
archical Learning Engine. Its output is a set of {ℓ̂1, . . . , ℓ̂T } predicted labels,
each corresponding to a given classification granularity level (cf. Fig. 2.2). In
detail, tth level corresponds to Lt classes to discriminate from, with Lt grow-
ing at finer granularities (i.e. Lt+1 > Lt).

It is worth to recall that in order to assign the T labels to each TO, a tree de-
pendence for classes belonging to different levels should be imposed. Specifi-
cally, each class at (t+1)-th level has at most one parent class, which belongs
to t-th classification level. In other words, the resulting model is made of mul-
tiple classifier nodes (whose number is denoted with Nc) arranged as a tree,
which are traversed in a top-down fashion, imposing the design of a multi-
class classifier for each parent node in the class hierarchy (viz. LCPN model),
as described in Sec. 2.3.1. As mentioned in the above section, for each TO
to be classified the LCPN first predicts ℓ̂1, corresponding to the most generic
class. The above label is then used to select the classifier node in charge of pro-
viding the label ℓ̂2. This procedure is repeated until the T th classification level.
It is worth to underline that allowed classes for ℓ̂2 are only the children of ℓ̂1,
thus narrowing the choice of classes to be predicted at second level. Making
the different nodes in the tree aware only of a subset of the entire classification
space is the natural outcome of a divide-et-impera approach. This results in
a simplification of the classification problem, reducing the number of classes
(L̄1, . . . , L̄Nc) among which each node has to discriminate. Indeed, each node
is trained to distinguish only among its child nodes.

Although errors at a given class level could propagate downwards the hier-
archy, the hierarchical classification choice promotes architecture modularity,
and enables model parallelism, specifically suitable for BD architectures (later
shown in Sec. 2.3.2). Further, the LCPN approach enables a fine-grained (per-
node) optimization of the feature set, the classifier, the hyperparameters, and
even the TO. As a result, hierarchical classification is likely to achieve a sig-
nificant classification performance gain against a flat counterpart, i.e. a single
classifier solving the finest (t = T) classification task.

Training Requirements of the BD-enabled LCPN.

To operate in the test phase, the LCPN classifier needs to be previously initial-
ized by a training phase (Fig. 2.3), that trains all the Nc ML classifier nodes
of the hierarchy. For this phase, the input is a collection of Nc training sets

36 CHAPTER 2. FRAMEWORK

Training Phase
BD-enabled LCPN approach

Trained LCPN
Classifier

ML model BD
Infrastructure

Training Task

Sc
he

du
le

r

Untrained LCPN
Classifier

Figure 2.3: BD-enabled LCPN Classifier: training phase.

{T1, . . . ,TNc}, all obtained starting from total training set T and retaining
only a subset of its samples. Specifically, Tn contains only the (training) sam-
ples associated to the L̄n labels constituting the TC task to be solved by n-th
node. Accordingly, this implies |Tn|≪ |T| due to the reduced number of
classes (|·| denotes the training set size), except for the root node (n = 1).
Indeed, in general

⋃
n∈Nt

Tn = T and
⋂

n∈Nt
Tn = ∅, where Nt denotes the

set of classifiers concurring to t-th classification granularity level.
The output of the BD-enabled training is the set of trained classifier nodes

composing the tree hierarchy. It is worth to remark that the training process of
each node is independent on the others. Accordingly, although this phase may
be implemented by a single entity training allNc nodes in a sequential fashion,
the proposed framework can leverage BD-infrastructures to exploit parallelism
of both the LCPN classifier (model) and data as the following explained. This
allows obtaining increased time efficiency and, with suitable design, also cost-
effectiveness.

Data and Model Parallelism

The BD paradigm enables both batch and streaming distributed analysis, ad-
dressing the issues related to high data variability, volume, and velocity. Usu-
ally, they are used to obtain a time performance speedup and also contribute
to shorten the training phase in ML applications. This may be achieved by
exploiting both notions of data and model parallelism.

In a nutshell, data parallelism is based on the split of a training set asso-
ciated to a ML algorithm with nonoverlapping subsets, each one assigned to a
different worker. The latter performs learning (a) from its portion of data and
(b) synchronizing with other workers through partial information exchange.

2.3. HIERARCHICAL LEARNING ENGINE 37

Such process is typically accomplished thanks to a coordinating entity (named
master), which is also in charge of collecting the results of the training process
based on data parallelism [56]. It is worth noting that the fragmentation of
the training set could degrade the classification performance. Furthermore, a
higher number of workers may also negatively impact the temporal gain, due
to the burden imposed by the synchronization overhead at controller side [56].

Differently, model parallelism resorts to splitting the model associated to a
ML algorithm (with no partitioning of the training set), with the aim of simpli-
fication of the learning task for each worker. In this peculiar case (viz. LCPN
approach), model parallelism can leverage dependencies among traffic classes
(i.e. hierarchical dependency) to perfectly parallelize the learning task over
different workers, each one assigned to a subproblem. Indeed, the breakdown
of the classification procedure along a tree-like architecture enables the train-
ing phase of distinct ML (sub-)models in parallel (e.g., the classifier nodes).
Accordingly, there is no classification performance loss due to model partition-
ing (by construction) when considering LCPN. This is one of the peculiarities
of hierarchical classification approaches like LCPN as opposed to flat counter-
parts, where model partitioning is not performed based on hierarchical class
representation. Nevertheless, from a time-related perspective, the advantages
against a flat approach are not guaranteed and need to be investigated. In other
words, the advantages arising from the training of multiple but less complex
classifiers, instead of the training of a single but more complex classifier, are
not obvious.

Accordingly, the key idea is to combine the benefits of data parallelism en-
abled by BD paradigms with those deriving from the model parallelism granted
by the adoption of the hierarchical classification architecture. In classification
problems, since the duration of the learning phase for classification tasks is
directly proportional to both the number of samples used for training and the
number of classes to choose from, data parallelism can be employed to reduce
the number of samples, whereas model parallelism to reduce the number of
classes.

Description of BD Infrastructure

BD-enabled LCPN is supported by a BD infrastructure shown in Fig. 2.4 and
detailed as follows. The BD infrastructure manages the computing resources
in B units (buckets) that are instantiated on the BD framework (e.g., Apache
Spark) and are handled by a scheduler. Workload assignment is based on a
master-slave architecture, with a controller and several workers, and leverages

38 CHAPTER 2. FRAMEWORK

BD-enabled LCPN approach
BD Infrastructure

Bucket

Worker
U

nt
ra

in
ed

 N
od

es

Sc
he

du
le

r

Master

M
od

el
 P

ar
al

le
lis

m

Tr
ai

ne
d

N
od

es

D
at

a
Pa

ra
lle

lis
m

Model Parameters Exchange

<merge>
<update>

W
orkers

Maste
r

Shared
Memory

Master

<split>
<allocate>

W
orkers

Data Spreading

Figure 2.4: LCPN classifier training with focus on the BD infrastructure: scheduling
of training tasks over buckets (top, model parallelism) and internal struc-
ture of a bucket (bottom, data parallelism).

a distributed file-system (e.g., Spark SQL, Hadoop Distributed File-System,
etc.). Hence, within each bucket, there is one master node and a pool of
worker nodes, with each master assigning and coordinating the work of the
pool. Buckets are assumed to have the same number of workers (Nw), as the
scheduler acts as a load balancer that distributes tasks uniformly across the
buckets.

Regarding the Hierarchical Learning Engine, when LCPN is selected as
hierarchical classification approach, the scheduler implements model paral-
lelism by scheduling the training task of each node of the hierarchical classi-
fication architecture to one of the buckets and forwarding the corresponding

2.3. HIERARCHICAL LEARNING ENGINE 39

training set, along with ML model specifications. It is worth underlining that
a preliminary phase is enforced by the Hierarchical Learning Engine to build
the training sets {T1, . . . ,TNc} associated to the nodes of hierarchy (starting
from T as a result of labelwise splitting operations). Hence, training tasks
assigned to the same bucket are executed sequentially, whereas training tasks
assigned to different buckets are run in parallel. Once a ML training task is
assigned to a given bucket, our framework performs the latter job by imple-
menting data parallelism through master-workers exchanges. In other terms,
data parallelism is implemented within each bucket.

In detail, data parallelism for training each ML model (associated to a
classifier node) is enforced by a BD framework (e.g., Spark) through two main
phases, i.e. data spreading and model parameters exchange (Fig. 2.4, bottom).
First, during data spreading phase, the training set (already a model-specific
subset of the full training set) is further split into several (non-overlapping)
portions (i.e. <split>). Accordingly, the master node acquires the required re-
sources from the worker nodes and assigns each set portion to a given worker
(i.e. <allocate>). Then, during model parameters exchange phase, status in-
formation is repeatedly exchanged between workers and the master to (i) en-
able the aggregation of model parameters from all worker instances (<merge>,
workers→master) and (ii) synchronize the workers with the updated master
status (<update>, master→workers).

Ideally, scheduling aims at minimizing the training completion time ttot of
the hierarchical classification architecture (i.e. the makespan). Since the latter
requires all nodes to be trained in order to be put in the test phase, the above
time corresponds to:

ttot fi max
b=1,...,B

tb (2.1)

i.e., the longest completion time among buckets {t1, . . . , tB}, where B is the
number of buckets. In detail, the completion time of b-th bucket can be written
as tb =

∑Nc
n=1 ψb,ntn, where tn is the training time required for n-th classifier

node and ψb,n ∈ {0, 1} is an indicator variable being one (resp. zero) when
the training task of n-th node is assigned (resp. not assigned) to b-th bucket.
For simplicity, the completion time of each node tn is supposed constant over
bucket assignment. Still, the BD-enabled LCPN training could be generalized
to heterogeneous buckets, i.e. having different resource budgets.

Accordingly, the optimal scheduler provides the solution to the following

40 CHAPTER 2. FRAMEWORK

optimization:

pΨ fi argmin
Ψ

max
b=1,...,B

{
tb(Ψ) =

Nc∑
n=1

ψb,ntn

}
(2.2)

where Ψ ∈ {0, 1}B×Nc , whose (b, n)-th entry equals ψb,n. Hence, the opti-
mization is carried out over the space of selection matrices Ψ (column sum is
constrained to one, i.e. one task is assigned only to one bucket). It is worth
noticing that the solution to the optimization in Eq. (2.2) is infeasible since in
real scenarios the time required for each training task (namely t1, . . . , tNc) is
unknown a priori and due to NP-completeness of the optimization problem.
The explaination of how these two technical issues are circumvented follows.

First, in the place of task completion time, a surrogate function ρ(·, ·) as-
sociated to the completion time has been defined. The need for defining a
surrogate metric originates from no known general and explicit expressions of
complexity of ML classifiers as a function of relevant parameters considered:
(i) size of the training set and (ii) number of classes. In detail, for the n-th
classifier waiting time tn, such function depends on the number of samples of
training set (|Tn|) and classes of the node’s TC task (L̄n), namely

ρn fi ρ(|Tn|, L̄n) fi |Tn| L̄n / (

Nc∑
m=1

|Tm| L̄m) (2.3)

Hence, tn has been replaced with ρn to perform the optimization in Eq. (2.2). It
is worth noticing that other complexity measures monotonically growing with
both |Tn| and L̄n could be considered as well.

Secondly, the used priority scheduling approach 1 has the advantage of be-
ing O(Nc). It is based on the aforementioned surrogate and aims at assigning
training tasks so to balance the completion time among all buckets. In the fol-
lowing, all scheduling strategies have been assumed to deal withNc > B since
they collapse into trivial assigments for Nc ≤ B.

The Hierarchical Learning Engine supports two scheduling strategies,
namely offline and online scheduling, to fulfill the LCPN model training. Both
scheduling strategies sort the tasks by decreasing ρn first and assign one task
per bucket accordingly. The former statically assigns each remaining task to
the bucket having the lowest current sum of ρn’s already assigned to it. The lat-
ter strategy dynamically evaluates the state of the buckets and, when a bucket

1This approach is also referred to as “longest processing time” approach in scheduling liter-
ature.

2.3. HIERARCHICAL LEARNING ENGINE 41

completes its currently assigned task, it is assigned the remaining task with
the highest ρn. Differently from the offline scheduling, this strategy exploits
time completion feedback at the cost of monitoring each bucket state. Indeed,
feedback has been shown to “repair” the degrading effect of uncertainty on
scheduling results (due to the unavailability of tn’s and their replacement with
ρn’s) and provide general beneficial effects (i.e. independently on the specific
scheduling approach adopted) by monitoring workers’ workload status [78].

2.3.3 Global Classifiers Design

Beyond the support for LCPN-based hierarchical learning approach, the pro-
posed framework supports several Global Classifier (GC) (viz. big-bang) tech-
niques for TC which are described in this section and are implemented by the
Hierarchical Learning Engine.

(a) Class Dependencies

Input
Vector

Feature
Vector

Output
Vector

Model Backbone Model Head

(b) General DL Model

Figure 2.5: Examples for Global Classifier Techniques.

Subsequently, examples for each GC approach are carried out exploiting
both the simple hierarchy of labels and the DL general model which are de-
picted in Fig. 2.5, by focusing on the mapping between neurons in the head(s)
and classes in the hierarchy; between all the GC techniques only the naïve
global classifier is applicable as-is to classical ML models. It is worth to under-
line that the global classifier approaches are only defined for Neural Network
(NN)-based models which are composed by two parts (Fig. 2.5b): (i) the model
backbone, which extract relevant features from the input vector resulting in the
feature vector, and (ii) the model head, which performs classification by pro-
viding the class-wise probability distribution starting from the feature vector.
At the end of each section the loss function each model optimizes has been
reported.

42 CHAPTER 2. FRAMEWORK

Naïve Global Classifier

The Naïve Global Classifier (NGC) technique consists in a model that is
trained on all the possible labels in the hierarchy, resulting in a model whose
predictions could fall at each node (viz. label) of the hierarchy. Despite this
approach is prone to predict non-leaf node, post-processing operations on the
soft output could be enforced, e.g., by aggregating by hierarchical dependen-
cies or by fixing the granularity (viz. level) at which one wants to predict by
considering only related confidence values.

Therefore, this approach is based on the association of each training sam-
ple with a set of labels, i.e. each sample is associated with multiple labels, one
for each level of the hierarchy. In this way the model is capable to acquire
knowledge about hierarchical dependencies. As abovementioned, the soft out-
puts obtained through this procedure could be aggregated in several ways, by
leveraging hierarchical dependencies. Accordingly, the Hierarchical Learning
Engine implements two rules of aggregation, namely the finest-grain and the
hierarchical, where the former is based on the filtering out all confidence val-
ues that are not related to the finest-grain level of the hierarchy, and the latter is
based on the addition or product of the confidence values involved in the same
path of the hierarchical dependencies tree. Both aggregation rules are followed
by a normalization procedure in order to obtain a well-formed probability dis-
tribution vector.

The loss function this technique optimizes is:

LNGC = −
T∑
t=1

Lt∑
j=1

Stj∑
i=1

yi × log ŷi

It is worth to recall that T is the number of levels the hierarchy is composed
by, Lt if the number of classes at level Lt, and Stj is the number of training
samples for the jth node of the tth level.

Figure 2.6: Example: NGC approach. The circles represent the possible classes from
the output (head).

2.3. HIERARCHICAL LEARNING ENGINE 43

Combined Global Classifier

This technique is similar in essence to the NGC, but it is based on the mod-
eling of all the possible combinations of labels across levels. This enlarged
output space is thus formed by valid and non-valid combinations. Despite this
technique does not predict nonleaf nodes, it could happen that the prediction is
a non-valid combination: several postprocessing operations should be applied
to the soft outputs of the model, e.g., by considering only valid confidence and
by exploiting non-valid confidences in some ways.

In contrast to the NGC technique, with the Combined Global Classifier
(CGC) each training sample is associated to a valid combination of labels,
one per level, but the model’s output space considers both valid and non-valid
combinations: in this way each sample acts as a negative example for non-
valid classes, potentially pushing the generalization and accuracy of the trained
model. Indeed, when the underlying model is NN-based, the target one-hot
vector positions related to non-valid combinations are always zero. Also for
this technique, the Hierarchical Learning Engine applies an aggregation rule,
named only valid, which considers only valid confidence values from the soft
output. Also in this case the rule requires a normalization in post-processing.

The loss function this technique optimizes is:

LCGC = −
LT∑
j=1

STj∑
i=1

yi × log ŷi

where LT is the number of leaf nodes, and STj is the number for training
samples for the jth leaf (viz. level T) node.

Figure 2.7: Example: CGC approach. The circles represent the possible classes from
the output (head). Circles in red represent not valid combinations of la-
bels, in green the valid ones.

Task-Incremental Global Classifier

Task-incremental learning is a paradigm of model training where, starting from
a model trained on a specific task, an incremental training procedure is en-
forced in order to extend the capability of such a model to cope with other

44 CHAPTER 2. FRAMEWORK

tasks. This kind of training paradigm could fit the global classifier objective,
i.e. training a single model that exploits hierarchical dependencies among la-
bels, by considering each level of the hierarchy as an incrementally-learned
task [79, 80]. In this thesis, we refer to a task-incremental trained GC model
as Task-Incremental Global Classifier (TIGC).

Practically, most task-incremental learning solutions are based on the as-
sumption that each (neural network) model is composed by two in-tandem
components, namely the backbone and the head, where the backbone acts as a
features extractor and the head performs classification (as shown in Fig. 2.5b).
Given a couple of backbone–head trained on a particular task, task-incremental
learning consists in adding a new head to the backbone, which head will be
specialized for a new task, by leveraging the already trained backbone in some
ways (e.g., by fine-tuning the couple backbone–new head on the new task).
Therefore, for hierarchical traffic classification, each task corresponds to a
level of the hierarchy, and we apply task-incremental learning by adding a
new head, starting from the coarsest-granularity level/task to the finest, and by
sequentially (fine-)tuning the model backbone on each task/level.

Finally, about the model’s output management, the model obtained via
task-incremental training is composed by three separated heads, each one pre-
dicting a level of the hierarchy, potentially falling in prediction inconsistency
(viz. the labels predicted by each head are not hierarchically dependents).
In this thesis we bypass this issue by considering only the predictions of the
finest-granularity head.

The loss function for the tth task (viz. level) that this technique optimizes
is:

Lt
T IGC = −

Lt∑
j=1

Stj∑
i=1

yi × log ŷi

It is worth to recall that Lt is the number of classes at the Lt level (viz. task)
of the hierarchy, and Stj is the number for samples for the jth node of the tth

task/level.

Figure 2.8: Example: TIGC approach. The circles represent the possible classes
from the output (head). The gray head and circles are related to the old
task (viz. predicting at L1).

2.3. HIERARCHICAL LEARNING ENGINE 45

Multitask Global Classifier

Similarly to the TIGC technique, the Multitask Global Classifier (MGC) tech-
nique (viz. multi-task hierarchical learning) is based on a model that solves
multiple tasks all together, but also training all together, avoiding the incre-
mental fine-tuning which affects the TIGC. When the model is NN-based, the
optimization (minimization) objective is a loss function composed by a term
for each task/level. Despite it is possible to assign a different weight to the loss
of each task/level, we adopt a uniform weighting rule. Noteworthy, the same
considerations carried out for the outputs management of TIGC apply also to
this case, considering only finest-grain head predictions.

The loss function this technique optimizes is:

LMGC = −
T∑
t=1

Lt∑
j=1

Stj∑
i=1

yi × log ŷi

where T is the number of levels (viz. tasks), Lt is the number of classes at the
level Lt (viz. task) of the hierarchy, and Stj is the number of samples for the
jth node of the tth level.

Figure 2.9: Example: MGC approach. The circles represent the possible classes from
the output (head) of each task.

Hierarchical Loss Global Classifier

Among GC techniques, the Hierarchical Loss Global Classifier (HLGC) en-
forces the hierarchy without extending the model, as the previously presented
GC approaches, but embedding the hierarchical dependencies in the loss func-
tion by defining a hierarchical loss [81]. The hierarchical loss is enforced by
the mean of an Ultrametric Tree, which is applied to the softmax output of the
model and to the one-hot-encoding of labels (viz. target) to enforce hierarchi-
cal dependencies in the loss function.

In detail, this procedure starts from the set of ancestors A (w/o the root
node), one for each leaf label, and from a set of coefficients c, one per level,
and transform the probability distribution P of the leaf level predictions by
enforcing hierarchical dependencies. This procedure is described in Alg. 1.

46 CHAPTER 2. FRAMEWORK

Algorithm 1 Hierarchical Representation.

Require: A, c, P
D← get_dependencies_matrix(A)
H← []
H.append(P · c[0])
for i in [0,D.length()) do

H.append((P×D[i]) · c[i+ 1])

H← reduce_sum(H)
return softmax(H)

N.B. The function get_dependencies_matrix transforms the vector of ancestors (A) per leaf
label in T − 1 binary squared matrices (D), one per non-leaf level. Those matrices are of
dimensions LT × LT , where LT is the number of leaf labels. The matrix for the level Lk

contains 1 as i, j element if the i and j leaf nodes are siblings at the level Lk, otherwise 0. H is
the hierarchical representation of vectors in P.

In detail, the coefficient ci for the level Li is 1/2i, otherwise for the leaf-
nodes of level LT it results cT = 1/2T−1. Because L0 (viz. the ROOT node)
is not considered, its coefficient c0 is practically zeroed.

Contextual Label Smoothing Global Classifier

Another widely used (in non networking-related literature) technique to ob-
tain a GC is Contextual Label Smoothing Global Classifier (CLSGC). As the
HLGC, this technique does not expand models, but enforces hierarchical de-
pendencies via Contextual Label Smoothing (CLS), that is very similar to the
Ultrametric Tree. CLS extends classical label smoothing by embedding hi-
erarchical dependencies via a smoothed representation which considers sib-
ling/ancestor relations among the leaf nodes’ labels [82], i.e. fixed a label,
“older” is the kinship with another label higher is the smoothed value related
to this label.

Let B the list of branches defining the hierarchical dependencies, e.g., in
Fig. 2.5a b0 = 1 → 1.1 = (1, 1.1) is the branch of the leaf node 1.1, each
value of B matches a leaf label of the hierarchy. CLS representation of the
labels’ one-hot-encoding is obtained via the steps described in Alg. 2.

For example, looking at the hierarchy depicted in Fig.2.5, the one-hot en-
coding of the leaf node 1.1, that is [1, 0, 0], results in the [.9, .09, .01] CLS
representation. In detail, we first compute the com_anc (common ancestors
count): between 1.1 and itself it is 2 (i.e. ∥(1, 1.1) ∩ (1, 1.1)∥ = 2), between
1.1 and 1.2 it is 1 (i.e. ∥(1, 1.1)∩ (1, 1.2)∥ = 1), and between 1.1 and 2.1 it is

2.3. HIERARCHICAL LEARNING ENGINE 47

Algorithm 2 CLS Representation.

Require: B, x
for each leaf ohe label (i) in the hierarchy do

weights← []
for each branch (j) in B do

com_anc← ∥bi ∩ bj∥
weights.append(xcom_anc)

return weights
|weights|

0 (i.e. ∥(1, 1.1)∩ (2, 2.1)∥ = 0). Then, x = 10 fixed, we compute the weights
vector starting from the com_anc list (i.e. [102, 101, 100] = [100, 10, 1]). The
last step is the normalization of such vector (i.e. [100,10,1]

111 = [.9, .09, .01]).

Multi-Label Global Classifier

The Multi-Label Global Classifier (MLGC) is in essence similar to the NGC
approach because (i) both predict all the labels which are in the hierarchy and
(ii) each training sample is associated with a set of labels, one per level of the
hierarchy. Otherwise, the main difference between the two approaches is that,
while for the NCG approach each sample in the training set is passed (for each
training epoch) one time per level each time with the level-specific label, for
the MLGC we train a model with a multi-label target vector (viz. not one-
hot-encoded as for NGC, but multi-hot-encoded). Multi-label classification is
applied when an object could be associated to multiple labels at the same time
(in our case to one label per level), and it consists in applying sigmoid acti-
vations with binary cross-entropy loss, instead of the softmax with categorical
cross-entropy loss used by other approaches.

The loss function this technique optimizes is

LMLGC = −
∑T

t=1

∑Lt
j=1

∑Stj

i=1 yi × log ŷi + (1− yi)× log (1− ŷi)∑T
t=1

∑Lt
j=1 Stj

where t is the number of levels, Lt is the number of label nodes (viz. classes)
at level Lt, and Stj is the number for samples for the jth node of the tth level.

48 CHAPTER 2. FRAMEWORK

2.3.4 Classification and Detection Models

In this section, we report several Statistical and Neural Network-based models
which were successfully applied for Traffic Analysis-related tasks. In partic-
ular, models are taxonomized in base of the nature of the prediction task they
perform in Multi-Class Classifiers (MCCs) and One-Class Classifiers (OCCs).
From a traffic analysis point of view, such classes adhere to one or more tasks.
Namely, MCCs models could deal with Traffic Classification, Misuse Detec-
tion, or Attack Classification problems, otherwise OCCs models majorly deal
with Anomaly Detection (viz. novelty or outlier detection). However, this as-
sociations should not be taken as absolute because several adaptations could
be applied, e.g., the application of a reject option could enable MCCs models
in discovering outliers.

Multi-Class Classifiers

Statistical-based Family:

• Decision Tree (DT) is a tree-based model used for classification based
on the distribution entropy concept and trained via a top-down recursive
and greedy procedure. C4.5 [83] is the most famous algorithm employed
to generate a DT, which enables the previous formalization in dealing
with categorical features.

• Random Forest (RF) [84] is a classifier based on an ensemble of differ-
ent decision trees (viz. a forest of DT) built at training time exploiting
the idea of bagging (viz. “bootstrap aggregating” and random feature
selection) to features and samples. This model is practically introduced
to overcome the easy overfitting the DT is susceptible to and the opti-
mization is obtained by training multiple sub-performing DTs and by
taking the majorly voted class as the final prediction.

• eXtreme Gradient Boosting (XGB) [85] is a tree-based model that im-
proves the RF by applying boosting (plus regularization) in the training
phase, which is referred as additive training: basically, the output of
each trained DT is posed at the input of the subsequent DT in the en-
semble.

• Naïve Bayes (NB) is a simple probabilistic classifier that assumes class
conditional independence of the features, being not the case for real-
world problems, but working well in practice and leading to low com-

2.3. HIERARCHICAL LEARNING ENGINE 49

plexity. The variant shown to perform better in [5] is the one uses super-
vised discretization for numerical features.

• Bayesian Network (BN), mitigating the stringent assumption underly-
ing naïve bayes, is a classifier which models the dependence relation-
ships between features and classes, usually via a direct acyclic graph.
The best performing variant from [5] is obtained when the dependence
model is reduced to a simpler tree.

Neural Network-based Family:

• MultiLayer Perceptron (MLP) is the feedforward neural network of
the beginnings, consisting of an output layer and at least one hidden
layer, being able to learn non-linear mapping between inputs and out-
puts.

• 1-Dimensional Convolutional Neural Network (1DCNN) is a
convolutional-based DL model proposed by [22] for TC. As abovemen-
tioned, the authors exploited the raw payload (referred as PAY in the
follow) of network packets in order to perform TC. Accordingly, the
1DCNN model takes as input a matrix of dimension (n_bytes, 1). The
composition of this model is shown in Fig. 2.10a, with the model back-
bone constituted by a double stage of 1-D Convolutional plus Max Pool-
ing layers, and a Fully Connected (viz. Dense) at the end; the model
head is a fully connected layer.

• Long Short-Term Memory (LSTM) is a recurrent-based DL model
proposed by [24] for TC. In this case, the authors exploited the time-
series features from the IP and L4 headers (referred as HDR in the fol-
low) of network packets in order to perform TC. Therefore, this model
takes as input a matrix of dimension (n_packets, n_features). The
composition of this model is shown in Fig. 2.10b, with the model back-
bone constituted by a cascade of LSTM and Dense layers; also for this
model the head is a Dense layer.

• 2-Dimensional Convolutional Neural Network (2DCNN) is a
convolutional-based DL model proposed by [24] for TC. As for the
LSTM, the authors exploited the HDR features set, resulting in an in-
put sized (n_packets, n_features). The composition of this model is
shown in Fig. 2.10c, with the model backbone and head that practically
follow the structure of the 1DCNN, but using 2-D Convolutional layers.

50 CHAPTER 2. FRAMEWORK

• 2DCNN and LSTM cascade (2DCNN+LSTM) is a hybridization of
abovementioned 2DCNN and LSTM models proposed in [24], exploit-
ing in the model backbone the CNN as feature extractor and an LSTM
on top of these (Fig. 2.10d). The input is the same as the 2DCNN and
LSTM models, as also the model head.

• MultImodal DL-based MobilE TraffIc Classification (MIMETIC)
is an ensemble of DL models, enabling for multi-modality modeling,
proposed in [16]. In detail, this model is composed of two branches
(modalities): (i) a lighter version of the abovementioned 1DCNN, which
takes the PAY input, and (ii) an enhanced version of the abovementioned
LSTM exploiting a Bidirectional Gated Recurrent Unit (BiGRU) instead
of the LSTM layer, which is fed with the HDR features set. The head of
this model is composed by an information fusion component, required
to merge the per-modality extracted features, and ends with the usual
Dense layer.

One-Class Classifiers

Statistical-based Family:

• One-class Support Vector Machine (OC-SVM) [86] is the natural ex-
tension of SVM algorithm to the case of unlabeled data. This problem
has been approached by attempting to estimate a function f that is pos-
itive for regions with high density of points (assumed as normal), and
negative for small densities (assumed as anomalous). The functional
form of f is given by a kernel expansion in terms of a subset of the
training data.

• Isolation Forest (IF) [87], unlike other model-based anomaly detection
methods, does not create a profile for normal cases in order to discover
anomalies, but instead explicitly isolates anomalies. Exploiting the “few
and different” nature of anomalies, IF separates anomalies closer to the
root of the tree than normal points. Because of this unique feature, IF
can develop partial models (as opposed to full models in profiling) and
use only a small percentage of training data to create effective models.

• Local Outlier Factor (LOF) [88] is based on the computation of a de-
gree of being an outlier to each sample, instead of considering being an

2.3. HIERARCHICAL LEARNING ENGINE 51

(a) 1DCNN (b) LSTM

(c) 2DCNN (d) 2DCNN+LSTM

(e) MIMETIC

Input Conv
PoolingFlatten

Dense
Recurrent

Norm Dropout Concat

Layer's output size
(None, h, l, d) h

ld

Identity
Cube

(f) Legend

Figure 2.10: Adopted DL models. The dashed lines connect each model’s backbone
to the respective head. The legend (f) shows the color of each layer
and the key of lecture of boxes dimensions (w.r.t. the output size of
the respective represented layer). It is worth to underline that all the
Recurrent layers are LSTM, but the one in (e), which is a bidirectional
GRU.

outlier as a binary property. This degree is called the local outlier factor
of a sample and it is local because this factor depends on how isolated
the sample is with respect to its neighborhood.

Neural Network-based Family:

• AutoEncoder (AE) and Deep AutoEncoder (DAE) working principle
is depicted in Figs. 2.11a and 2.11b. AEs are commonly employed as
an unsupervised feature extractors, and their aim is to set the output

52 CHAPTER 2. FRAMEWORK

equal to the input x̂(m) ≈ x(m), ∀m within the training set, by learn-
ing a compressed data representation of benign traffic which minimizes
the loss ≥(x̂(m),x(m)) (e.g. the mean squared error). In detail, the
first AE layer (i.e. the encoder) provides a lower-dimensional data rep-
resentation, whereas the second layer (i.e. the decoder) tries to recon-
struct the data from the compressed representation. Differently from
the AE, the DAE has several encoding and decoding layers. This in-
creases the generalization capability of such a model, thus increasing
the model complexity. Noteworthy, AE-based models could be used as
anomaly detectors, i.e. by using (during testing phase) the loss metric
between the observed input and the AE-based reconstruction as a mea-
sure of “anomaly-ness” [89].

• Multi Modal-Deep AutoEncoder (M2-DAE) is an evolution of DAE
which handles different input types of the TO as separate “modalities”,
thus reducing the number of trainable parameters of the network. To
accomplish this task, the M2-DAE network is made of both modality-
specific and shared-modality layers (both encoding and decoding). The
proposed M2-DAE has the appeal of learning a compressed represen-
tation keeping a more-efficient (viz. less parameters) neural network
structure than DAE, which only uses shared (encoding/decoding) layers
and processes different input types in a flattened form. In detail, a sin-
gle modality deals with all the numerical input fields and one modality
for each categorical field is applied. In the latter case, TO-based cat-
egorical fields (one instance per TO, e.g., port) are represented via the
well-known one-hot-encoding format, whereas packet-based categori-
cal fields (one instance per packet within the TO, e.g., TCP flags) are
arranged herein in a multinomial-encoded format, e.g., the vector aver-
age of one-hot-encoding over the packets of the TO. The reconstruction
loss of M2-DAE is a weighted sum of the per-modality losses and it is
used as the “anomalyness” score to catch anomalies.

2.3.5 Performance Metrics

In this section, we report the most common performance metrics usually used
to evaluate classification systems. In detail, the introduced metrics can be di-
vided into two families, namely “classical” and “hierarchical”, with the former
covering the metrics with mandatory leaf prediction (viz. only fine-grained

2.3. HIERARCHICAL LEARNING ENGINE 53

(a) AE (b) DAE

(c) M2-DAE

Figure 2.11: Comparison among AE (a), DAE (b), and M2-DAE (c) architectures.

predictions are considered), and the last group, which is composed by hier-
archical metrics, namely with non-mandatory leaf prediction (viz. the classi-
fier could also predict labels at higher levels in the dependencies hierarchy).
The hierarchical metrics are taken from the artificial intelligence literature that
tackled hierarchical classification. Moreover, we designed new hierarchical
metrics to perform the per-node evaluation of the LCPN, to detect bottleneck

54 CHAPTER 2. FRAMEWORK

performance, and the hierarchical reliability evaluation of models via hierar-
chical calibration analysis. Furthermore, classification systems should be eval-
uated from four complementary (and intertwined) performance aspects, which
are essential for a complete evaluation of the proposed Hierarchical Frame-
work: (i) classification performance; (ii) training completion time; (iii) cloud
deployment cost; (iv) calibration analysis; It is worth underlying that (ii) and
(iii) are introduced in order to properly evaluate the BD-enabled training of
the LCPN classifier. Noteworthy, the BD-enabled training could also impact
the classification performance.

According to the considerations mentioned above, this section is divided
into three parts, namely classification performance metrics, which introduces
both classical and hierarchical (binary-) multi-classification performance met-
rics, BD-related metrics, in which we explain issues could affect classification
performance metrics, and introduce training completion time and cloud de-
ployment cost aspects, and finally model calibration metrics, which regards
the reliability of trained models and presents our proposal for hierarchical re-
liability metrics.

Classification Performance Metrics

The performance evaluation process is usually based on the following main
performance metrics: accuracy, precision (prec), recall (rec), and specificity
(spec). For conciseness, out of the latter three metrics, one can consider the F-
measure, F fi (2 ·prec ·rec)/(prec + rec), and the G-mean, G fi

?
rec · spec.

Since these two arise from three metrics defined on a per-class basis, usually
their arithmetically averaged (viz. macro) versions are adopted. Also, confu-
sion matrices (breaking the results down by class) can be leveraged to provide
a representation of the results of the investigated classification approaches, also
highlighting misclassification patterns at fine grain.

Focusing on hierarchical metrics, these are defined starting from the Pre-
cision and the Recall scores (Eq. 2.4).

P =
TP

TP + FP
, R =

TP

TP + FN
(2.4)

In detail, TP , FP , and FN are the number of true positive, false positive,
and false negative, respectively. Accordingly, the hierarchical version of such
metrics defined in [90] is formalized in Eq. 2.5.

2.3. HIERARCHICAL LEARNING ENGINE 55

hP =
|Ŷ b ∩ Y b|
|Ŷ b|

, hR =
|Ŷ b ∩ Y b|
|Y b|

(2.5)

with Y b (Ŷ b) being the actual (predicted) branch for a sample, where for
branch is intended the list of nodes in the hierarchical dependency tree starting
from the root to the actual (predicted) leaf, but discarding the root. Also these
metrics can be summarized via their harmonic mean, i.e. the hierarchical F1
Score. Noteworthy, to detect performance bottlenecks of the LCPN approach,
we also provide per-node metrics (i.e. not considering classification errors in-
troduced by upper levels), deriving useful guidelines for system design and
evaluation.

Moreover, in the context of intrusion detection, other performance mea-
sures could be adopted [10]. In particular, for Anomaly Detection (AD) the
comparison among models is presented in terms of the True Positive Rate
(TPR, i.e. the ratio of correctly detected anomalies) vs. the False Positive
Rate (FPR, i.e. the ratio of benign samples incorrectly declared as anomalies),
referred to as Receiver Operating Characteristic (ROC). To evaluate Attack
Classification (AC) capabilities, again the the macro F-measure (F1, i.e. the
harmonic mean of precision and recall) is considered along with confusion
matrices to highlight fine-grained error patterns.

Finally, considering that in our design each classifier implements a reject
option, we also deepen the impact of this design choice on performance. In
more detail, we investigate the impact of varying the thresholds, whose tuning
can be effective to improve the classification performance, trading it off with
the reduction of the classified instances (viz. the ratio of classified instances,
Classifier Ratio (CR)).

Big Data-related Metrics

Since BD technologies do not constitute a transparent accelerator for the train-
ing phase of ML-based traffic classifiers (can impact the resulting perfor-
mance), we evaluate classification performance of our framework leveraging
the well-known F-measure to assess classification effectiveness. As above-
mentioned, this metric represents the harmonic mean of per-class precision
and recall, arithmetically averaged over all considered classes (viz. macro av-
eraged).

Moreover, because reducing the processing time required for task com-
pletion is arguably the major driver in the adoption of BD architectures, we

56 CHAPTER 2. FRAMEWORK

provide a detailed evaluation of this key aspect. In detail, we focus on train-
ing completion time ttot, because classification systems are expected to require
frequent re-training operations, due to the aging of training data as a result of
the quick evolution of network applications and their usage.

Finally, beyond the performance in terms of classification effectiveness and
execution time, a key aspect when deploying applications on cloud is the cost
of the analysis according to the pay-per-use model. This cost is proportional to
the duration of the analysis (training phase in our case) and the configuration
of the BD architecture (i.e. the degree of parallelism). In turn, the configura-
tion cost is proportional to the number of master machines and the number of
worker machines. Hence, the total cost ctot scales according to:

ctot fi B (cM +Nw c
W) ttot (2.6)

where cM (resp. cW) denotes the master (resp. worker) hourly cost. Notewor-
thy, AWS, like most public cloud providers, provides a per-second billing with
a 60 s minimum, but since all the training completion times observed in the
use cases exceed 60 s, such constraint does not affect our cost evaluation.

Model Calibration Metrics

Moreover, we evaluate via reliability diagrams the Expected Calibration Er-
ror (ECE) and the Maximum Calibration Error (MCE) [91], which compare
neural network output probabilities to the expected model accuracy in order
to determine the calibration degree In general, a better calibrated model is
less prone to produce overconfident misclassifications, thus promoting the ap-
plication of threshold based censoring mechanisms (viz. reject option) with
the result of improving classification performance by limiting the cost of non-
classified (underconfident) samples.

In particular, to evaluate the expected model accuracy, the predictions are
grouped into M equally sized bins with respect to the output probabilities.
Let be Bm the set of samples whose confidence fall within (m−1

M , m
M], the

expected accuracy and the average confidence are defined in Eqs. 2.7 and 2.8,
respectively.

A(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi) (2.7)

C(Bm) =
1

|Bm|
∑
i∈Bm

p̂i (2.8)

2.4. IMPLEMENTATION DETAILS 57

Accordingly, the ECE and MCE are defined in Eqs. 2.9 and 2.10, where n is
the number of samples.

ECE =
M∑

m=1

|Bm|
n
|A(Bm)− C(Bm)| (2.9)

MCE = max
m∈{1,...,M}

|A(Bm)− C(Bm)| (2.10)

To a similar extent to [90], we formulate the hierarchical version of ECE
and MCE, namely, hECE and hMCE, which follow the definition of classical
ECE and MCE (Eqs. 2.9 and 2.10) but leveraging hA (described in Eq. 2.11)
instead of A.

hA(Bm) =
|Ŷ b

m ∩ Y b
m|

|Bm|
(2.11)

2.4 Implementation Details

In this section, we first report implementation details related to the tools and
technologies we leveraged for the scripting of the proposed framework. Then,
the package view of the Hierarchical Learning Engine, with respect to the re-
lation among principal packages, is explored.

2.4.1 Leveraged Tools & Technologies

The proposed Hierarchical Learning Framework for Network Traffic Analysis
has been prototyped by majorly leveraging the Python programming language.
Each component, to accomplish its task, shares with others a set of common
Python libraries and leverages component-specific Python libraries.

In detail, each component takes advantage of numpy and pandas mod-
ules, which are used to manipulate numerical data and to properly manage
both the input/output data to/by the Hierarchical Learning Engine. More-
over, both the Traffic Segmentation and the Features Extraction components
leverages scapy (and optionally pyshark) in order to manipulate network
packets. Regarding the sole Features Extraction Component, this exploits also
the scipy module to compute several statistics about traffic objects. Finally,
the Hierarchical Learning Engine exploits keras (with functional APIs),
scikit-learn, and python-keras-wrapper libraries for Python to
instantiate models, and we selected Apache Spark (with PySpark module) as

58 CHAPTER 2. FRAMEWORK

the most suitable BD technology, in terms of performance and ease of deploy-
ment.

2.4.2 Hierarchical Learning Engine Package View

In this section we report the package view of the prototyped Hierarchical
Learning Engine in Fig. 2.12. It is worth to underline that both the Traffic
Segmentation and the Features Extraction components presented above are not
shown because strictly dependent on the way the used labeling information are
provided, e.g., in tabular format such as CSV files, in form of raw PCAPs with
labeling information apart, and so on.

2.4. IMPLEMENTATION DETAILS 59

core

wrappers

weka_wrapper

keras_wrapper

sklearn_wrapper

spark_wrapper

models

anomaly_detectors dl_classifiers

utils

callbacks

scheduler

preprocessing

encoders

classification_utils

losses

external_libraries

hierarchical_classifiers

scikit

Figure 2.12: Package view for the prototyped Hierarchical Learning Engine.

About Fig. 2.12, the Hierarchical Learning Engine is composed of four
main packages in the core, namely: the hierarchical_classifiers package, that
implements the designed LCPN approach and deals with the input dataset in
order to properly feed underlying classification models; the wrappers pack-
age, that contains subpackages each one dealing with a specific external li-
brary which implements ML- and DL-based models and implementing a com-
mon interface in order to easy the interaction with other packages; the mod-
els package, that contains subpackages which defines DL-based one-class-
classifiers (viz. anomaly_detectors) and binary/multi-class-classifiers (viz.
dl_classifiers); and the utils package, that contains subpackages dealing with

60 CHAPTER 2. FRAMEWORK

generic functionalities, like the label encoders used for the LCPN, the in-
put preprocessing, the definition of losses and callbacks for the training of
DL-based models, and several classification_utils, like the definition of the
argmaxrand function which deals with tie-breaking events.

Noteworthy, the logic behind the global classifier approaches is imple-
mented by the keras_wrapper and the losses packages, the former provid-
ing training procedures like multitask learning, task-incremental learning, and
multiclass learning, and the latter implementing losses functions like hierar-
chical loss.

Finally, the source code for the last publicly accessible version of the Hi-
erarchical Learning Engine, which covers the design of the BD-enabled LCPN
approach and the intrusion detection solutions, is available at the following
link: https://github.com/jmpr0/hierarchical-framework.
The last version of the Hierarchical Learning Engine, whose package diagram
is the one depicted in Fig. 2.12 and which includes the implementation of
global classifier approaches, will be released with the related paper.

https://github.com/jmpr0/hierarchical-framework

Part II

Use Cases

61

Chapter 3

Privacy: Classification of
Anonymity Tools

I
n this chapter the Local Classifier per Parent Node (LCPN) model (Big
Data-enabled for training) instance of our framework has been config-

ured to solve the traffic classification of several privacy-preserving tools, i.e.
Anonymity Tools.

3.1 Context of Classification of Anomymity Tools

Since its creation, the Internet has grown in importance (as the importance
of the activities people do online), putting privacy and security assurance in
the limelight. The preservation of user anonymity, in particular, has piqued
the interest of the academic community, which has spent the last several years
creating and developing a variety of privacy-preserving technologies,including
proxy sites, virtual private networks, and Anonymity Tools (ATs). The latter
function as intermediaries between Internet users and eavesdropping entities,
allowing them to obscure the communication as well as the nature of the trans-
ferred materials, and as a result, a variety of AT are now publicly accessible,
capable of hiding the identities of the people (source and destination) partici-
pating in the communication, in addition to the content of the communication
itself, via encryption. The most popular ATs developed in recent years are
The Onion Router (Tor)1, the Invisible Internet Project (I2P)2, and JonDonym3

1Tor Project. https://www.torproject.org.
2The Invisible Internet Project. https://geti2p.net.
3JonDonym. http://anonymous-proxy-servers.net.

63

https://www.torproject.org
https://geti2p.net
http://anonymous-proxy-servers.net

64 CHAPTER 3. PRIVACY USE CASE

(formerly known as Java Anon Proxy or Web-Mix). These solutions let users
maintain their anonymity by encrypting data numerous times and passing it
via many stations, each receiving only a portion of the data. From the user’s
perspective, ATs allow them to browse the web and operate applications while
keeping their identity and location hidden from any intermediate entity viewing
the traffic (also bypassing limitations imposed by providers or governments).
As a result, it’s difficult to track people and their activity throughout various
networks. On the one hand, ATs aid authorities in the investigation of cyber-
crime, such as the sale of copyrighted or harmful software, narcotics, firearms,
child pornography, and stolen digital identities, as well as the concealment of
online frauds, extremism, hacking, and abuses. On the other side, they are crit-
ical for disseminating critical information through the Internet, such as when
non-democratic actors impose censorship or for the single right to privacy, as
cited by [13]. This latter point underpins their initial goal of maintaining the
Internet as a fully accessible public utility. As a result, ATs like Tor are now
widely used, with a user base of up to 2 million.4 On the one hand, looking
into the Traffic Classification (TC) of ATs is beneficial to designers since it
puts their efficacy to the test, identifies flaws, and points the way to making
them more robust. These studies, on the other hand, are of importance to both
providers and government agencies, since they give knowledge that may be
used to enforce informed engineering regulations or prohibit users from con-
ducting undesired acts. As a result, categorizing ATs traffic is a highly intrigu-
ing and hard research subject, with current methods that may be improved.

Up to our knowledge, there are no studies focused on classification of
different anonymity services at various levels of granularity via hierarchi-
cal learning. Accordingly, literature on TC of ATs via a “flat” (viz. non-
hierarchical) approach is reviewed, including the conceptually-related Website
Fingerprinting (WF) problem.

The analysis of ATs has been initially carried in private networks, e.g.,
with the aim of discriminating between HTTPS and Tor traffic [92]. In de-
tail, by leveraging a dataset made of (i) regular HTTPS traffic, (ii) HTTP and
(iii) HTTPS over a private Tor network, authors show that HTTP/HTTPS traf-
fic over Tor can be detected with ≥ 93% accuracy, employing Random Forest
(Random Forest (RF)), Decision Tree (DT), and AdaBoost classifiers.

On the other hand, a few works focus on TC analyzing real traffic from
anonymity networks, as most of the “experimental” literature explores anony-
mous WF, whose aim is to identify a webpage accessed by a client with en-

4https://tinyurl.com/y5cucfno.

https://tinyurl.com/y5cucfno

3.1. CONTEXT 65

crypted and anonymized connections by observing the patterns of data flows
(e.g., packet size and direction). [93] propose a Multinomial Naïve Bayes
(MNB) that relies on the normalized frequency distribution of IP packet sizes
to tackle the WF problem in the context of different privacy-enhancing tech-
nologies (in a closed-world scenario) including Tor and JonDonym. Although
Tor and JonDonym guarantee a better protection than other privacy-enhancing
technologies (i.e., OpenSSL, OpenVPN), they prove to be not perfect (3% and
20% average accuracy, respectively). In [94] the same problem is tackled via a
Support Vector Classifier, obtaining a gain of detection rate over [93] from 3%
to 55% (resp. from 20% to 80%) in Tor (resp. JonDonym) network. On the
other hand, in an open-world case, the detection rate drops with a maximum
of 73% and 0.05% false-positive rate. More recently, in [95] a WF approach
aimed to overcome limitation of previously devised alternatives is proposed
and tested on a huge real-world representative dataset, exploring the limits of
WF at Internet scale. Specifically, these are highlighted by a precision/recall
drop with the size of the background sites which the monitored pages need to
be distinguished from. Finally, we mention that the adoption of Deep Learn-
ing (Deep Learning (DL)) to WF is also a currently investigated topic. A novel
DL-based method to deanonymize Tor traffic is proposed in [96] and tested on
a dataset made of≥ 3 ·106 network traces, with the best-performing DL model
being +2% accurate than state-of-the-art attacks. In [97] a WF attack against
Tor is developed, leveraging a Convolutional Neural Network and evaluated
against state-of-the-art defenses (i.e. WTF-PAD and Walkie-Talkie). Results
report an accuracy > 98% on undefended Tor traffic, while reaching > 90%
accuracy (resp. 49.7%) when WTF-PAD (resp. Walkie-Talkie) is employed,
with the attack remaining effective also in an open-world setting.

Moving to pure TC of ATs (based on real-data), [98] devise an approach
based on Hidden Markov Models (HMMs) to classify four categories of Tor
traffic (Peer-to-Peer (P2P), FTP, IM, and Web). HMMs are employed to build
inbound and output models of the application types considered, and are fed
with features based on burst volumes and direction of Tor flows, obtaining an
accuracy up to 92%. [99] present a Machine Learning (ML)-based method
employing Naïve Bayes (Naïve Bayes (NB)), Bayesian Network (Bayesian
Network (BN)), functional and logistic model trees to recognize applications
used by Tor users. Both circuit-level and cell-level information is leveraged
for offline and offline/online classification, respectively. The highest accuracy
achieved in the online (resp. offline) case equals 97.8% (resp. 91%). A similar
setup is proposed in [100] for user activity recognition by means of four clas-

66 CHAPTER 3. PRIVACY USE CASE

sifiers (NB, BN, RF, and DT) fed with traffic-flow and circuit-level features.
Both approaches reach ≈ 100% accuracy, with flow-based TC being less de-
manding and based on data that could be captured anywhere between the user
and the Tor’s relay. Along the same lines, [101] employ flow-based (statisti-
cal) traffic analysis to prove whether Tor Pluggable Transports (PTs) can evade
censorship systems. Adopting a DT classifier (and based on a thorough anal-
ysis), the authors show that Tor PTs usage is recognizable, as PT-based obfus-
cation changes the content shape in a distinct way w.r.t. Tor (i.e. conferring to
flows distinctive fingerprints). The effects of bandwidth sharing on I2P were
analyzed by the same authors in [102] considering both application and user
profiling achievable by an attacker. Using a DT classifier fed with flow-based
features, the results show that users and applications on I2P can be profiled,
with a harmful (resp. beneficial) effect of the shared bandwidth increase on
application (resp. user) profiling accuracy.

Recently, [77] describe Anon17 public dataset comprising directional
traffic-flows obtained by collecting data from three ATs (i.e. Tor, I2P, and
JonDonym). Besides, detailed information about the traffic types and appli-
cations running on Tor and I2P is provided in the form of three-level labels
for each flow. Up to our knowledge, the sole public dataset similar to Anon17
is that described in [103], containing however only Tor traffic of eight ap-
plications (browsing, audio, chat, mail, P2P, FT, VoIP, and video). Anon17
dataset is leveraged in [5], where three flat classifiers (that is, one per level, i.e.
Anonymity Network, Traffic Type, and Application), are employed to perform
TC, also in its “early” variant [18]. In detail, at each level the performance of
five ML classifiers (NB, MNB, BN, DT, and RF) is compared, highlighting in-
sights about the number and nature of relevant features needed for an accurate
TC. Results show that the anonymity networks (i.e. Tor, I2P, and JonDonym)
can be easily distinguished (up to 99% F-measure). Differently, the specific
application generating traffic can be classified with up to 69% F-measure. At
both levels, early TC achieves worse results.

3.2 Hierarchical Framework Instances for Anonymity
Tools

To provide a clear example of how the proposed framework performs on a
valued practical application, we refer to the traffic generated by ATs. Still,
we remark that the proposed framework is not limited to ATs, albeit being
motivated also by this practical application. In fact, our framework is designed

3.2. HIERARCHICAL FRAMEWORK INSTANCES 67

 Level 3

 Level 2

 Level 1

Tor TorApp TorPT I2PApp
0BW

I2PApp
80BW I2PAppJon

Donym

Jon
Donym I2PTor

ROOT

MERDAFigure 3.1: Traffic classifier for AT based on the LCPN approach. Classifiers (solid
black squares) distinguish among several classes (dots). Dashed grey
squares correspond to degenerate (i.e. single class) classifiers.

to benefit from any hierarchical classification model of network traffic, e.g.,
mobile apps (arranged as categories, apps, and versions) [14], also including
flat models as simpler cases.

For example, in our considered scenario (where we leverage the subse-
quently introduced Anon17 dataset) we face T = 3 granularity levels for TC.
The first level focuses on identifying the AT used to transport traffic, i.e. as-
signing ℓ̂1 from L1 = 3 classes. The second delves into classification of the
type of transport service offered by the specific AT, i.e. assigning ℓ̂2 from
L2 = 7 classes. Finally, the finest granularity is associated with labeling the
specific application tunneled in the AT with a given transport service, i.e. as-
signing ℓ̂3 from L3 = 21 classes. Noteworthy, the training set size of each
classifier node |Tn| (compared with |T|, required when training a flat TC
approach), is shown in Fig. 3.9d. Moreover, model parallelism (induced by
LCPN) leads to the decomposition of the original classifier with L3 = 21
classes, supported by the whole training set T, into Nc = 8 independently
trainable simpler nodes considering at most five classes (Fig. 3.1) with smaller
training sets Tn. The impact on the training time of each Tn (viz. complexity)
is further minimized by data parallelism, which allows splitting each by the
number of workers considered. Our experimental validation (Sec. 3.3) shows
how, in the application of the proposed framework, there actually is an im-
provement in terms of both training time/cost and classification performance.
To this end, henceforth we leverage the Big Data (BD) infrastructure support-
ing the LCPN classifier.

68 CHAPTER 3. PRIVACY USE CASE

(358919, a)

Normal Tor Traffic

(5283, a)

Tor Apps

(252, b)
Streaming (84, b)

Torrent (84, c)

Browsing (84, d)

Tor Pluggable Transports

(353384, c)

Flash Proxy (172324, e)

FTE (106237, f)

Meek (43152, g)

Obfs3 (14718, h)

Scramble Suit (16953, i)

(645708, b)

I2P Apps Tunnels with
other Tunnels [0% BW]

(195081, d) I2PSnark (127349, j)

jIRCii (29357, k)

Eepsites (38375, l)

I2P Apps Tunnels with
other Tunnels [80% BW]

(449987, e)
I2PSnark (149992, m)

jIRCii (149998, n)

Eepsites (149997, o)

I2P Apps

(640, f)

I2PSnark (62, p)

jIRCii (221, q)

Eepsites (145, r)

Exploratory Tunnels (86, s)

Participating Tunnels (126, t)

(6335, c)

Normal Tor Traffic (5283, a)

JonDonym (6335, g) JonDonym (6335, u)

L1 – Anonymous
Network

L2 - Traffic Type L3 - Application

Figure 3.2: Anon17 Classification Levels: Anonymous network (L1), Traffic Type
(L2) and Application (L3), with total no. of samples per class and class
label at each level.

3.2. HIERARCHICAL FRAMEWORK INSTANCES 69

3.2.1 Dataset Description

As mentioned above, the dataset used to validate our proposal is Anon17,
which was collected in a real-network environment at the NIMS Lab [77] dur-
ing 2014–17 and gathers traffic from Tor, I2P, and JonDonym. The dataset
has been labeled leveraging the information provided by the anonymity ser-
vices themselves. Indeed, it provides labels at different levels: (i) Anonymous
Network Level (L1 = 3 classes); (ii) Traffic Type Level (L2 = 7 classes);
(iii) and Application Level (L3 = 21 classes). This label organization pro-
motes analyses of ATs traffic at different levels of granularity, as well as the
implementation of hierarchical approaches, as remarked in Fig. 3.2. Precisely,
the dataset contains ≈ 1.46M flows for a total of ≈ 430M packets. We point
to [77] for obtaining exhaustive information on Anon17 dataset. In this study,
we down-sample to 5% the most-populated traffic-type classes of the original
dataset, adopting a pre-processing strategy similar to [5], so as to mitigate class
imbalance. This represents a safe choice due to the high number of samples of
“majority” classes.5

The dataset is released in the form of 74 statistics per flow (that can be
extracted also from encrypted traffic). Thus, the Traffic Object (TO) we refer
to in our study is the flow. We leverage the full set of features in our experi-
mentation for all nodes. These choices are dictated by the type of analysis to
perform, which could be either batch (also termed post-mortem), or streaming
(also termed real-time). Our choices are suitable for the batch TC task we aim
to address. This notwithstanding, our framework can accommodate alternative
design choices.

According to the above dataset description, we tackle the problem of clas-
sification of ATs traffic assuming that we are in the presence of AT traffic
only, similarly to [5]. The depicted scenario refers to a context where an up-
stream classifier has been able to separate AT traffic from a clear or standard-
encrypted one (e.g., as shown by [92] for Tor network). Hence, the aim of
the proposed approach is to assess discrimination of anonymity services and
related applications once this AT traffic has been separated from other traf-
fic. More generally, the results of our analysis can be intended as an upper
bound on the ATs classification performance in the case of an open-world as-
sumption. Indeed, the use of an upstream classifier would perfectly fit within
the hierarchical approach evaluated in this chapter (viz. LCPN), with design
and evaluation of the whole AT-TC system (truly operating in an open-world

5Experimental results, not shown, have highlighted negligible difference with the (addi-
tional) use of oversampling of “minority” classes.

70 CHAPTER 3. PRIVACY USE CASE

scenario) left as future work.
Based on the nature of the traffic in Anon17 dataset, the TC here consid-

ered is arranged in three levels, corresponding to anonymity networks, traffic
types, and specific applications. As a whole, the LCPN instance of our frame-
work resorts on one classifier at L1, two classifiers at L2 and five classifiers at
L3.

3.2.2 Traffic Object and Features

Anonymous traffic contained in Anon17 has been split into different flows (see
Sec. 2.1), by means of the flow-exporting tool Tranalyzer2 [104], constituting
the TC object here employed. We highlight that the direction of each flow
(considered as a feature) is indicated as “A” or “B” for client-to-server and
vice versa, respectively. We note that the proposed hierarchical classification
approach could even operate at the packet-level, in principle (viz. the TC object
could be the single packet6). For each traffic flow, Anon17 provides different
sets of features extracted via Tranalyzer2 [104]. In this work, we consider two
different feature sets, referred hereinafter to as TC_set and EarlyTC_set.
In brief, TC_set capitalizes complete traffic flows, while EarlyTC_set
only relies on the first K packets of each flow, thus enabling early TC.7

In detail, TC_set originally refers to 81 per-flow statistical features. Re-
peated fields (such as those related to packet length and packet size) and (ini-
tial/final) timestamps have been removed to avoid overestimated results.8 As a
result, the employed feature set consists of 74 statistics comprising:

1. flow direction and duration,

2. packet length (PL) and inter-arrival time (IAT) statistics (mean, min,
max, median, quartiles, etc.),

3. TCP9 and IP header-related features (window size, sequence number,
TCP and IP options, etc.),

6Up to our knowledge, there is no work in literature tackling anonymous TC at this granu-
larity.

7We highlight that other feature sets (e.g., histograms), leading to lower performance, have
been considered in [5].

8Timestamp values depend upon the process adopted for collecting traces, potentially intro-
ducing classification artifacts.

9TCP-related features have zero-value if the flow leverages UDP as transport protocol (e.g.,
I2P network works on both TCP and UDP).

3.2. HIERARCHICAL FRAMEWORK INSTANCES 71

4. number of Tx/Rx bytes and packets,

5. number of distinct hosts connected to flow source or destination IP (dur-
ing its lifetime),

6. number of concurrent flows sharing the same (source IP, destination IP)
pair (regardless of source & destination ports).10

Differently, EarlyTC_set is made of the sequence of pairs (PL, IAT) of
the first K packets of each flow. In the rest of this chapter, we will employ
TC_set when referring to standard TC, whereas adoption of EarlyTC_set
will be assumed just for early TC.

Finally, for TC_set features, we consider feature selection, based on a
filtering approach, ranking the elements of the set based on the relative impor-
tance of each feature (so as to skim the more informative ones), in terms of mu-
tual information with the class (random) variable, whereas for EarlyTC_set
features, ranking is performed according to a time constraint (i.e. only the first
K packets are employed). We remark that, for the TC_set, feature extraction
techniques, such as PCA, could be easily adopted in the proposed hierarchical
classification framework without any substantial change.

3.2.3 Models

Herein, we consider as potential nodes four different ML-based classifiers,
i.e. the DT, the RF, the NB, and the BN. Indeed, these classifiers have been
successfully employed in several works tackling TC of anonymous traffic [99,
100, 102]. Nonetheless, as the proposed hierarchical classification framework
is general, other ML (e.g., Support Vector Machine (SVM), Gradient Boosting,
etc.) or even DL classifiers could be adopted with no substantial change.

Specifically, based on the related literature [101, 105], we have identified
four relevant ML models: two tree-based models, (i.e. Random Forest (RF)
and Decision Tree) and two Bayesian-based models, (i.e. Naïve Bayes and
Bayesian Network). Deepening about these algorithms are reported in the ded-
icated Sec. 2.3.4. In this use case, for the latter two algorithms we will adopt
the variants shown to perform better in [5], i.e. NB_SD (supervised discretiza-
tion is used for numerical features) and BN_TAN (the dependence model is
reduced to a simpler tree).

10We point to the user manual of Tranalyzer2 (https://tranalyzer.com) for further
details about these features.

https://tranalyzer.com

72 CHAPTER 3. PRIVACY USE CASE

3.3 Experimental Results of Classification of
Anomymity Tools

In this section, we show experimental results aimed at investigating anony-
mous TC performance via the proposed hierarchical framework, also when
considering early TC, by leveraging the LCPN approach. First, the perfor-
mance of the proposed framework is analyzed and compared with the best flat
classifier, showing that the usage of a “naïve” LCPN architecture is able to
introduce non-negligible improvements, being the result of decomposition in
simpler TC sub-tasks. Then, the results of design improvement are shown,
deepening the impact of both rough- and fine-grained optimization choices—
the former consisting in varying the number of features of the classifiers (keep-
ing the classifier type fixed) in the hierarchy with the same increment, while
the latter involving changes to both features and classifier types. Concerning
the early-TC scenario, only final results pertaining to fine-grained optimization
are reported for brevity. Also, the evaluation contains finer-grained analyses
of the error patterns of these two different classification “philosophies” along
with the severity of errors (thus leading to interesting conclusions on the ATs
considered). Then, a first investigation of classification performance obtained
by resorting to progressive censoring in the hierarchical case is reported, and
compared with the effects of censoring on a flat classifier baseline.

Moreover, results regarding the BD-enabled training of the LCPN classifier
are provided. In detail, we first show the performance achievable with pure
data parallelism. Then, we evaluate the impact of adopting different scheduling
strategies to assign tasks to buckets, assessing pure model parallelism. Finally,
we experimentally evaluate the benefits originated by the capitalization of data
and model double-parallelism in our framework (Sec. 2.3.2).

3.3.1 Naïve Hierarchical vs. Best Flat Classifier

In Tab. 3.1 we report the performance of the best flat classifiers (e.g., the con-
figurations with an optimal number of features in terms of F-measure) as de-
rived from [5] and resulting in a RF fed with 50, 35, and 65 features at L1, L2,
and L3, respectively. Performance is reported in terms of accuracy, F-measure,
and G-mean at each classification level.11 Such optimal setup is compared
with a first naïve implementation of our hierarchical classification approach,

11“n.d.” points out unavailable performance for flat classifiers at levels deeper than that con-
sidered for classification.

3.3. EXPERIMENTAL RESULTS 73

Table 3.1: Accuracy, F-measure, and G-mean (%) of the best flat classifier (RF) with
{optimal number of features} at each level compared to naive hierarchical
configuration. Results are in the format avg. (± std.) over 10-folds.

Classifier Metric L1 L2 L3

Best Flat L1
{50}

Accuracy 99.80±0.03% n.d. n.d.
F-measure 99.80±0.04% n.d. n.d.

G-mean 99.83±0.03% ♢ n.d. n.d.

Best Flat L2
{35}

Accuracy 99.75±0.06% 97.01±0.24% n.d.
F-measure 99.73±0.06% 94.30±0.35% n.d.

G-mean 99.80±0.05% 96.19±0.29% n.d.

Best Flat L3
{65}

Accuracy 99.70±0.06% 96.77±0.24% 73.52±0.40%
F-measure 99.71±0.06% 93.51±0.58% 71.14±1.05%

G-mean 99.79±0.04% 95.71±0.34% 82.73±0.57%

Naïve
Hierarchical
{65}

Accuracy 99.81±0.06% ⋆ 97.17±0.24% ⋆ 74.60±0.48% ⋆
F-measure 99.81±0.06% † 94.43±0.75% † 73.82±1.42% †

G-mean 99.83±0.05% 96.23±0.39% ♢ 84.35±0.74% ♢

Legend: Best Accuracy (⋆), F-measure (†), and G-mean (♢) per level.

obtained by using the best L3 flat configuration (RF + 65 features) in all the
classifier nodes of the hierarchy. Unsurprisingly, L1 performance metrics re-
port a score ≥ 99.7%: traffic generated through different anonymity networks
is easily distinguishable from each other, confirming that these tools are de-
signed to provide anonymity but not to hide the usage of the tool itself. Also,
results show that even a naïve hierarchical solution improves L3 performance
(up to +2.68% F-measure)12 w.r.t. the best L3 flat classifier, and performs
on a par in terms of L1–L2 levels when compared to level-optimized best flat
classifiers. This is due to split of the original TC task (21 classes at L3) into
smaller tasks (at most, 5 classes).

3.3.2 Optimization Results

Impact of Feature Selection

As a first step towards the optimization of the proposed approach, we inves-
tigate here the performance of the framework when varying the number of
features used by each classifier but considering a common number of features
(here denoted M) for each node in the tree, and keeping the classification al-
gorithm fixed to RF (that is, the best-performing one in the flat case [5]). We
remark that although there is a common M for all nodes, the specific set of

12Also, from a statistical significance viewpoint, we observed a gain of hierarchical classifi-
cation approach in 100% of the cases over the considered folds.

74 CHAPTER 3. PRIVACY USE CASE

 95

 96

 97

 98

 99

 100

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

F
-m

e
a
s
u
re

 [
%

]

Feature Count

Flat L1
Flat L2

Flat L3
Hierarchical

(a) L1 - Anonymous Network.

 70

 75

 80

 85

 90

 95

 100

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

F
-m

e
a
s
u
re

 [
%

]

Feature Count

Flat L2
Flat L3

Hierarchical

(b) L2 - Traffic Type.

 50

 55

 60

 65

 70

 75

 80

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

F
-m

e
a
s
u
re

 [
%

]

Feature Count

Flat L3
Hierarchical

(c) L3 - Application.

 95

 96

 97

 98

 99

 100

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

G
-m

e
a
n
 [

%
]

Feature Count

Flat L1
Flat L2

Flat L3
Hierarchical

(d) L1 - Anonymous Network.

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

G
-m

e
a
n
 [

%
]

Feature Count

Flat L2
Flat L3

Hierarchical

(e) L2 - Traffic Type.

 70

 75

 80

 85

 90

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

G
-m

e
a
n
 [

%
]

Feature Count

Flat L3
Hierarchical

(f) L3 - Application.

Figure 3.3: F-measure (a–c) and G-mean (d–f) [%] of hierarchical and flat classi-
fiers: RF fed with different subsets of features in TC_set (from 5 to
74 with increments of 5). Average on 10-folds and corresponding ±3σ
confidence interval are shown.

features may differ.
Fig. 3.3 summarizes the obtained results—with a view to finding the op-

timal value M for the entire hierarchy—also providing a comparison against
the three flat classifier counterparts (in terms of F-measure and G-mean, as
accuracy showed similar trends). First, the results highlight that there is no
appreciable performance difference among L1–L3 flat classifiers and the hi-
erarchical approach by looking at L1 metrics, and only a slight performance
improvement is observed with a high number of features (performance satura-
tion is observed with at least 10 features) is achieved. On the other hand, at L2
slightly higher performance are obtained by the hierarchical approach with a
lower number of employed features per node (approximately 10–20), whereas
at L3 (being the harder task) the following key observations can be made:

1. the hierarchical approach provides a non-negligible improvement over
the L3 flat classifier for all the range considered,

2. the best performance of the hierarchical classification is attained with a
smaller number of features.

These considerations apply to both F-measure and G-mean.

3.3. EXPERIMENTAL RESULTS 75

Fine-grained Optimization

 65
 70
 75
 80
 85
 90
 95

 100

L1 L2 L3

A
cc

ur
ac

y
[%

]

Classification Level

Flat L1
Flat L2

Flat L3
Hierarchical

(a) Accuracy (TC).

 65
 70
 75
 80
 85
 90
 95

 100

L1 L2 L3

F
-m

ea
su

re
 [%

]

Classification Level

Flat L1
Flat L2

Flat L3
Hierarchical

(b) F-measure (TC).

 65
 70
 75
 80
 85
 90
 95

 100

L1 L2 L3

G
-m

ea
n

[%
]

Classification Level

Flat L1
Flat L2

Flat L3
Hierarchical

(c) G-mean (TC).

 40

 50

 60

 70

 80

 90

 100

L1 L2 L3

A
cc

ur
ac

y
[%

]

Classification Level

Flat L1
Flat L2

Flat L3
Hierarchical

(d) Accuracy (early-TC).

 40

 50

 60

 70

 80

 90

 100

L1 L2 L3

F
-m

ea
su

re
 [%

]

Classification Level

Flat L1
Flat L2

Flat L3
Hierarchical

(e) F-measure (early-TC).

 40

 50

 60

 70

 80

 90

 100

L1 L2 L3

G
-m

ea
n

[%
]

Classification Level

Flat L1
Flat L2

Flat L3
Hierarchical

(f) G-mean (early-TC).

Figure 3.4: Accuracy (a), F-measure (b) and G-mean (c) of the best classifiers and
of their early-TC counterparts (d, e, and f). Average on 10-folds and
corresponding ±3σ confidence interval are shown.

Herein the fine-grained framework optimization, in case of features from
TC_set, is discussed. In detail, with the aim of trading off design complexity
with performance, we remove the constraints previously introduced, and allow
each node in the hierarchy to be optimized in terms of both the number of fea-
tures and the classifier type. We consider four different ML-based classifiers
(DT, RF, NB_SD and BN_TAN). We remark that, to avoid a combinatorial
explosion of the optimization problem, we resort to the per-node optimiza-
tion rationale. Based on the above rationale, in Fig. 3.4 we report the classi-
fication performance in terms of accuracy (Fig. 3.4a), F-measure (Fig. 3.4b)
and G-mean (Fig. 3.4c), by comparing the flat classification approaches with
the per-node optimized hierarchical classifier. The proposed (optimized) hi-
erarchical classifier is able, at least, to perform at tth (t = 1, 2, 3) level as
well as the corresponding flat classifier explicitly designed to solve the clas-
sification task of the same level. In detail, such optimized hierarchical ap-
proach is able to achieve 99.81% (resp. 99.83%), 95.81% (resp. 97.44%) and
75.56% (resp. 85.89%) F-measure (resp. G-mean) score at L1, L2, and L3,
respectively. These results (almost) represent a tie at L1, whereas +1.51%
(resp. +1.73%) and +4.42% (resp. +3.16%) gains are experienced at L2 and

76 CHAPTER 3. PRIVACY USE CASE

L3, respectively.13 The details of the optimized hierarchical classification are
reported in Fig. 3.5a, where for each classifier node the employed classifier
and the number of features are reported. Remarkably, RF denotes the best
classifier for each node-specific classification task, while only for the classifier
of Tor App applications BN_TAN provides higher performance. Instead, the
variability of the optimal number of features underlines no clear trend, except
that usually I2P-related node classifiers require a lower number of features, at
least when leveraging those in TC_set.

Optimization for Early TC

Herein we evaluate the hierarchical framework when the classifiers are fed
with features in EarlyTC_set, i.e. considering PLs and IATs of the first
K = 1, . . . , 16 (non-zero payload) packets. This analysis helps assessing the
framework capability in supporting early TC, i.e. to evaluate how soon and to
which degree ATs and related services can be identified. To this end, we have
paralleled the previous investigations in the early-TC scenario. Nonetheless,
herein we omit the details for brevity, and comment only the final results. We
remark that the main difference with the previous analysis concerns the fea-
ture selection process, herein performed on a time-basis (i.e. only the features
drawn from the first K packets are considered).

First, results show that a naïve hierarchical “extension” of best flat L3 clas-
sifier (in this case a BN_TAN with K = 11 packets) is not able to provide
improved performance (e.g., 48.80% F-measure at L3, as opposed to 50.23%
in the flat case). This result highlights a key difference with respect to the sce-
nario leveraging TC_set and emphasizes the need for hierarchical-specific
optimization in such case. Secondly, we investigate (as in Fig. 3.3) how vary-
ing the features corresponding to the first K packets could improve the per-
formance of the naïve hierarchical extension, and compare it with the best
flat counterpart. Our investigations reveal that a performance saturation is ob-
served after ≈ 10 packets, and that the hierarchical classification approach
is able to improve best flat L3 approach in terms of G-mean, whereas an F-
measure drop is observed for all values of K considered. Finally, fine-grained
optimization (see Figs. 3.4d, 3.4e, and 3.4f) provides higher performance with
respect to the optimized flat case, e.g., +1.71% F-measure and +1.59% G-
mean at L3.14

13Also, from a statistical significance viewpoint, we observed a gain of hierarchical classifi-
cation approach in 97.5% of the cases over the considered folds.

14Also, from a statistical significance viewpoint, we observed a gain of hierarchical classifi-

3.3. EXPERIMENTAL RESULTS 77

The corresponding optimized hierarchical structure is shown in Fig. 3.6a
and—when compared to Fig. 3.5a—clearly shows that per-node optimized
classifiers significantly differ in type and number of features, thus motivating
the need for fine-tuned optimization of the proposed hierarchical classification.
Although the hierarchical classification gain is not significant, its operating
principle allows to delve into the “information structure” of the TC problem
and highlight critical points by excluding potential performance drops due to
the size of the classification task, as shown by the following per-node perfor-
mance analysis.

(7)
I2PApp80BW

RF[25]

(2)
Tor

RF[65]

(3)
I2P

RF[10]

(4)
TorApp

BN_TAN[50]

(6)
I2PApp0BW
RF[45]

Tor
(5)

TorPT
RF[60]

(8)
I2PApp
RF[15]

JonDonym

JonDonym

(1)
ROOT

RF[65]

(a) Fine-grained optimized hierarchical structure with TC_set.

Classifier #Classes Accuracy F-measure G-mean
C0 → 1 L1 = 3 99.81 (± 0.06) 99.81 (± 0.06) 99.83 (± 0.05)
C1 → 2 L1 = 3 99.97 (± 0.04) 99.91 (± 0.20) 99.97 (± 0.04)
C2 → 3 L2 = 3 95.05 (± 0.29) 91.53 (± 1.06) 93.29 (± 0.79)
C11 → 4 L11 = 3 99.58 (± 1.25) 99.58 (± 1.25) 99.69 (± 0.94)
C12 → 5 L12 = 5 99.72 (± 0.12) 99.44 (± 0.21) 99.63 (± 0.14)
C21 → 6 L21 = 3 72.42 (± 1.32) 58.43 (± 1.63) 69.00 (± 1.26)
C22 → 7 L22 = 3 48.94 (± 0.51) 48.90 (± 0.52) 60.37 (± 0.42)
C23 → 8 L23 = 5 75.12 (± 5.95) 72.50 (± 6.99) 81.68 (± 4.58)

(b) Performance metrics with TC_set.

Figure 3.5: Fine-grained optimized hierarchical structure with TC_set (a). Optimal
number of features for each classifier (node) is shown in square brackets.
Lighter colors point to worse performance. Related per-node metrics are
shown in (c) (with < 60% F-measure nodes highlighted in gray).

cation approach in 90.0% of the cases over the considered folds.

78 CHAPTER 3. PRIVACY USE CASE

(1)
ROOT

NB_SD[16]

(5)
TorPT

BN_TAN[9]

JonDonym

(8)
I2PApp
RF[8]

(4)
TorApp
RF[11]

(2)
Tor

BN_TAN[10]

Tor
(6)

I2PApp0BW
RF[5]

JonDonym

(7)
I2PApp80BW

RF[14]

(3)
I2P

RF[6]

(a) Fine-grained optimized hierarchical structure with EarlyTC_set.

Classifier #Classes Accuracy F-measure G-mean
C0 → 1 L1 = 3 99.80 (± 0.05) 99.78 (± 0.06) 99.87 (± 0.04)
C1 → 2 L1 = 3 99.20 (± 0.12) 90.48 (± 1.61) 94.82 (± 1.27)
C2 → 3 L2 = 3 72.20 (± 0.81) 60.61 (± 1.70) 66.85 (± 1.02)
C11 → 4 L11 = 3 63.42 (± 4.92) 63.27 (± 4.92) 72.01 (± 3.85)
C12 → 5 L12 = 5 99.69 (± 0.07) 99.55 (± 0.18) 99.63 (± 0.13)
C21 → 6 L21 = 3 67.37 (± 0.81) 44.56 (± 1.45) 56.38 (± 0.97)
C22 → 7 L22 = 3 43.47 (± 0.75) 43.13 (± 0.72) 55.76 (± 0.63)
C23 → 8 L23 = 5 50.67 (± 9.21) 37.75 (± 11.24) 58.04 (± 7.81)

(b) Performance metrics with with EarlyTC_set.

Figure 3.6: Fine-grained optimized hierarchical structure with EarlyTC_set (a).
Optimal number of features for each classifier (node) is shown in square
brackets. Lighter colors point to worse performance. Related per-node
metrics are shown in (b) (with < 60% F-measure nodes highlighted in
gray).

3.3.3 Fine-grained Results

Per-node Detailed Classification Performance

For completeness, we report in Figs. 3.5b and 3.6b the detailed per-node classi-
fication performance, corresponding to TC_set and EarlyTC_set, respec-
tively. The following interesting observations can be made on the reported
tree representation. First, with respect to Anonymous Network Level classifica-
tion (L1) nodes present near-ideal performance both when relying on TC_set
and EarlyTC_set, thus showing (almost) no errors propagating from hi-
erarchical classification of ATs. Secondly, at Traffic Type Level (L2) both

3.3. EXPERIMENTAL RESULTS 79

approaches based on TC_set and EarlyTC_set present near-ideal perfor-
mance in classifying Tor traffic types, whereas some performance degradation
is observed in classification of I2P traffic types; this phenomenon is more pe-
nalizing in the early-TC case, e.g., with I2P F-measure drops down to 60.61%.
This represents one of the main causes of performance difference among the
two scenarios, as all these errors are propagated downwards. Finally, at Appli-
cation Level (L3), the behavior of the classifier nodes is more varied. Indeed,
referring to approach based on TC_set, it is apparent that Tor nodes (TorApp
and TorPT) work well, whereas on I2P nodes significant degradations (higher
than those at L2) are observed, with I2PApp80BW the most significant. Differ-
ently, discrimination within each I2P traffic type and TorApp is only possible
with < 65% F-measure with features in EarlyTC_set. Therefore, classifi-
cation within I2PApp80BW cannot be accurately attained with neither of the
considered feature sets (confirming the intuition that I2PApp80BW represents
the traffic obtained by mixing different apps), and the advantage of the clas-
sification task split into subproblems cannot exceed a certain threshold in this
case, due to the impossibility of discerning applications within this traffic type,
resorting to the set of the available features.

Per-Class Performance Breakdown

Since classification at L3 is a challenging task (but also the most interesting
from a user’s privacy perspective), we report in Fig. 3.7 the per-class perfor-
mance breakdown of hierarchical classification results in terms of confusion
matrices at L3, comparing them against results obtained with flat approach.
We recall that for these matrices the higher the concentration toward the main
diagonal, the better the overall performance. Furthermore, to highlight how
errors at L3 which do not imply misclassification at L1/L2 are less severe and
should be promoted as opposed to the others, in the same figures we also high-
light the error patterns corresponding to the same traffic type (solid boxes) and
the same AT (dashed boxes).

First, comparing flat and hierarchical approaches (Figs. 3.7a and 3.7b, re-
spectively), we can observe a reduction of error-patterns in the latter case,
highlighting the beneficial “divide-et-impera” principle of hierarchical classi-
fication. Secondly, confusion matrices at L1 (dashed boxes) show that classi-
fiers based on both approaches (with different quantitative outcomes) present
error patterns which almost entirely lead to a misclassification of the traffic
type within the same anonymous network. Differently, referring to L2 stand-
point (solid boxes), hierarchical classification provides improved capabilities

80 CHAPTER 3. PRIVACY USE CASE

ab c de f gh i j k lmnopq r s t u
Predicted Class

abcdefghijklmnopqrstu
Ac

tu
al
 C
la
ss

0.001

0.01

0.1

1

10

100

(a) Flat TC applied to L3.

ab c de f gh i j k lmnopq r s t u
Predicted Class

abcdefghijklmnopqrstu

Ac
tu
al
 C
la
ss

0.001

0.01

0.1

1

10

100

(b) Hierarchical TC at L3.

ab c de f gh i j k lmnopq r s t u
Predicted Class

abcdefghijklmnopqrstu

Ac
tu
al
 C
la
ss

0.001

0.01

0.1

1

10

100

(c) Flat early TC applied to L3.

ab c de f gh i j k lmnopq r s t u
Predicted Class

abcdefghijklmnopqrstu
Ac

tu
al
 C
la
ss

0.001

0.01

0.1

1

10

100

(d) Hierarchical early TC at L3.

Figure 3.7: L3 Confusion matrices ([%] in log scale) of best flat and hierarchical
classifiers in standard TC (red) and early TC (blue).

in confining errors to the same traffic type (especially in the case of I2P traf-
fic). A similar consideration applies to early TC results (Figs. 3.7c and 3.7d)
and, in particular, to errors concerning the applications of I2P Apps and Tor
Apps. Hence hierarchical classification approach performance clearly high-
lights the inability, not depending on the size of the classification task, in sat-
isfactorily discriminating (with an early TC setup in mind) among I2P traffic
types and within their corresponding applications, along with those in Tor
Apps. On the other hand, results confirm the outcomes of [105], witness-
ing that the obfuscation implemented by Tor Pluggable Transports
induces a class fingerprint easily distinguishable (≥ 99% accuracy, see C2

classifier in Fig. 3.6) from both Normal Tor Traffic and Tor Apps.

3.3. EXPERIMENTAL RESULTS 81

3.3.4 Performance with Reject Option

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pe
rc

e
n
ta

g
e

γ

F-measure (HCall)
CR (HCall)

F-measure (HC3)
CR (HC3)

F-measure (FC3)
CR (FC3)

(a) TC.

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pe
rc

e
n
ta

g
e

γ

F-measure (HCall)
CR (HCall)

F-measure (HC3)
CR (HC3)

F-measure (FC3)
CR (FC3)

(b) Early TC.

Figure 3.8: F-measures and Classified Ratios (CRs) of best classifiers vs. γ.

Finally, in Fig. 3.8 we focus on the adoption of censoring threshold(s) for
flat classification and hierarchical classification of ATs. Specifically, we report
L3 performance, being the hardest task considered. We recall that, although in
the flat case there is only a single tunable γ (referred to as FC3), hierarchical
classification allows to set a different threshold value at each node (e.g., forCij

the threshold γij can be adjusted independently from the others. Nonetheless,
as a preliminary investigation on the censored behavior of the hierarchical clas-
sification approach—to avoid cumbersome analyses—we consider two simpli-
fied options: considering only a common γ value shared by (i) all the nodes
in the hierarchy (hierarchicalclassificationall) and (ii) solely by the clas-
sifier nodes concurring to L3 classification (hierarchicalclassification3).
Accordingly, we report the F-measure vs. γ (similar trends have been observed
for other metrics) along with the corresponding trend of the ratio of classified
samples, viz. CR.

Although using such thresholds cannot be intended as a panacea able to

82 CHAPTER 3. PRIVACY USE CASE

cope with high-confidence wrong predictions, results pertaining to the adop-
tion of TC_set show performance improvement with increasing γ. In detail,
both hierarchical variants offer performance gain with higher CR (less dis-
carded flows) w.r.t. FC3 (e.g., ≈ 80% F-measure is attained with ≈ 80%
CR), with hierarchicalclassificationall having slightly improved perfor-
mance (while incurring in a slightly higher CR, due to the presence of non-
zero thresholds for nodes at higher levels in the hierarchy). On the other hand,
in the early-TC scenario, the CR is lower for hierarchical approaches, while
hierarchicalclassificationall provides slightly improved performance than
FC3, whose performance do not benefit from a γ increase. Nonetheless, such
results underline how progressive censoring via per-node thresholds may be a
viable option for further performance improvement.

3.3.5 Big Data-enabled training Results

Pure Data Parallelism.

In this campaign, we inspect the impact of sole data parallelism, hence we
do not take into account model parallelism, i.e. we assign all the nodes to
a single bucket (B = 1, no scheduler needed). In detail, we perform the
training of the Nc classifiers of the hierarchy sequentially, submitting each
training task at a time to a single master. Accordingly, we analyze the trend
of the metrics varying the number of workers Nw linked to the master, namely
we perform per-classifier data parallelism. We compare the adoption of data
parallelism on hierarchical classification (curve “Hierarchical”) against
the distributed flat approach (curve “Flat”), in terms of training completion
time (Fig. 3.9a) and related costs (Fig. 3.9b). By distributed flat approach,
we mean a single RF classifier trained at granularity level g = G = 3 using
data-parallelism (e.g., splitting the whole training set T among the workers
Nw, which are then coordinated by the master for performing the learning
task. For completeness, we also report the respective theoretical baselines
(“Hierarchical BL” and “Flat BL”), defined as the completion time
and cost for the centralized version divided by the number of workers Nw.
In other words, the latter are ideal curves which do not take into account the
synchronization overhead and allow to appreciate its impact (by comparison)
on realistic data-parallel approaches.

As shown in Fig. 3.9a, the training completion time shows an asymptotic
behavior, almost flattening at around 8–10 workers. The comparison between
hierarchical and flat training completion time shows an almost constant gain

3.3. EXPERIMENTAL RESULTS 83

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

0 2 4 6 8 10 12 14 16 18 20 22 24

Tr
ai

ni
ng

 C
os

t [
$]

Number of Workers

Hierarchical
Flat

Hierarchical BL
Flat BL

 200

 400

 600

 800

 1000

0 2 4 6 8 10 12 14 16 18 20 22 24
Number of Workers

Hierarchical
Flat

Hierarchical BL
Flat BL

 40

 50

 60

 70

 80

 90

 100

30 2 4 6 8 10 12 14 16 18 20 22 24

F-
m

ea
su

re
 [%

]

Number of Workers

Hierarchical
Flat

Hierarchical L2
Hierarchical L1

Flat L2
Flat L1

Hierarchical C
Flat C

Hierarchical L2 C
Hierarchical L1 C

Flat L2 C
Flat L1 C

102 103 104 105

Number of Samples

3

6

9

12

15

18

21

N
um

be
r

of
 C

la
ss

es

Flat [10]
I2PApp80BW [10]
I2P [10]
ROOT [20]
I2PApp0BW [10]

TorPT [10]
Tor [10]
I2PApp [4]
TorApp [4]

Tr
ai

ni
ng

 C
om

pl
et

io
n

Ti

m
e

[s
]

Circle diameter is proportional to training completion time

(a)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

0 2 4 6 8 10 12 14 16 18 20 22 24

Tr
ai

ni
ng

 C
os

t [
$]

Number of Workers

Hierarchical
Flat

Hierarchical BL
Flat BL

 200

 400

 600

 800

 1000

0 2 4 6 8 10 12 14 16 18 20 22 24
Number of Workers

Hierarchical
Flat

Hierarchical BL
Flat BL

 40

 50

 60

 70

 80

 90

 100

30 2 4 6 8 10 12 14 16 18 20 22 24

F-
m

ea
su

re
 [%

]

Number of Workers

Hierarchical
Flat

Hierarchical L2
Hierarchical L1

Flat L2
Flat L1

Hierarchical C
Flat C

Hierarchical L2 C
Hierarchical L1 C

Flat L2 C
Flat L1 C

102 103 104 105

Number of Samples

3

6

9

12

15

18

21

N
um

be
r o

f C
la

ss
es

Flat [10]
I2PApp80BW [10]
I2P [10]
ROOT [20]
I2PApp0BW [10]

TorPT [10]
Tor [10]
I2PApp [4]
TorApp [4]

Tr
ai

ni
ng

 C
om

pl
et

io
n

Ti

m
e

[s
]

Circle diameter is proportional to training completion time

(c)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

0 2 4 6 8 10 12 14 16 18 20 22 24

Tr
ai

ni
ng

 C
os

t [
$]

Number of Workers

Hierarchical
Flat

Hierarchical BL
Flat BL

 200

 400

 600

 800

 1000

0 2 4 6 8 10 12 14 16 18 20 22 24
Number of Workers

Hierarchical
Flat

Hierarchical BL
Flat BL

 40

 50

 60

 70

 80

 90

 100

30 2 4 6 8 10 12 14 16 18 20 22 24

F-
m

ea
su

re
 [%

]

Number of Workers

Hierarchical
Flat

Hierarchical L2
Hierarchical L1

Flat L2
Flat L1

Hierarchical C
Flat C

Hierarchical L2 C
Hierarchical L1 C

Flat L2 C
Flat L1 C

102 103 104 105

Number of Samples

3

6

9

12

15

18

21

N
um

be
r

of
 C

la
ss

es

Flat [10]
I2PApp80BW [10]
I2P [10]
ROOT [20]
I2PApp0BW [10]

TorPT [10]
Tor [10]
I2PApp [4]
TorApp [4]

Tr
ai

ni
ng

 C
om

pl
et

io
n

Ti

m
e

[s
]

Circle diameter is proportional to training completion time

(b)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

0 2 4 6 8 10 12 14 16 18 20 22 24

Tr
ai

ni
ng

 C
os

t [
$]

Number of Workers

Hierarchical
Flat

Hierarchical BL
Flat BL

 200

 400

 600

 800

 1000

0 2 4 6 8 10 12 14 16 18 20 22 24
Number of Workers

Hierarchical
Flat

Hierarchical BL
Flat BL

 40

 50

 60

 70

 80

 90

 100

30 2 4 6 8 10 12 14 16 18 20 22 24

F-
m

ea
su

re
 [%

]

Number of Workers

Hierarchical
Flat

Hierarchical L2
Hierarchical L1

Flat L2
Flat L1

Hierarchical C
Flat C

Hierarchical L2 C
Hierarchical L1 C

Flat L2 C
Flat L1 C

102 103 104 105

Number of Samples

3

6

9

12

15

18

21

N
um

be
r

of
 C

la
ss

es

Flat [10]
I2PApp80BW [10]
I2P [10]
ROOT [20]
I2PApp0BW [10]

TorPT [10]
Tor [10]
I2PApp [4]
TorApp [4]

Tr
ai

ni
ng

 C
om

pl
et

io
n

Ti

m
e

[s
]

Circle diameter is proportional to training completion time

(d)

Figure 3.9: On the left: Completion time (a) and cost (b) of training phase for hier-
archical and flat approaches against their respective theoretical baselines
(— BL), varying the number of workers.
On the right: Classification performance (F-measure) (c), at all 3 gran-
ularity levels, hierarchical and flat approaches against their respective
centralized version (— C), varying number of worker machines. Dashed
lines refer to configuration with only one worker machine, i.e. no data
parallelism. Complexity map (d), where each circle represents a clas-
sifier. For each, inner and outer borders refer to the training comple-
tion time with optimized data-parallel configuration (the optimal number
of workers is shown in squared brackets) and centralized configuration
(with one worker), respectively.
Graph values are provided as µ ± 3σ, corresponding to a confidence in-
terval of 99.75%.

of ≈ 50% for the former approach, e.g., with 10 workers the training phase
is completed by the hierarchical classification and flat approach in 316.97 ±
19.83 s and 643.01 ± 28.32 s, respectively. The above gain originates from
the simpler classification tasks associated to the nodes in the hierarchy and
the smaller training sets Tn (Fig. 3.9d). Notably, all training completion time
curves do not follow the respective theoretical baselines, as the actual speedup

84 CHAPTER 3. PRIVACY USE CASE

is burdened by the overhead imposed by the master–worker communication.
Accordingly, as shown in Fig. 3.9b, the reduction of the training completion
time does not result in cost savings, with cost curves showing a monotonically
increasing trend.

In Fig. 3.9c we compare the F-measure vs. the number of workers of the
hierarchical and flat classifiers against their centralized counterparts (Nw = 1).
F-measure is shown for all the three levels of TC granularity. Beyond the
effective gain of hierarchical classification (e.g., red vs. green curves), it is
apparent that the performance remains stable when Nw grows. This result
may seem counterintuitive at first, since the fragmentation of the training set
could negatively impact the performance of ML classifiers [56]. Still, such
weak dependence could be explained by the parallel and ensemble nature of the
RF classifier. Indeed, the aforementioned peculiarity leads to a federated RF
version (on Spark) which suffers less from compressed intermediate exchanges
among workers (via the master), as opposed to other algorithms. Hence, this
makes it more resilient to the fragmentation of the training set. We remark that,
in general, this is not the case for ML approaches, e.g., see neural networks
in [56] for a mobile TC task.

Finally, in Fig. 3.9d we provide the fine-grain analysis of the training com-
pletion time for the flat-approach as well as for each node of the hierarchical
classification hierarchy (as shown in Fig. 3.1). Therein, the diameter of each
circle is proportional to the training completion time of the related classifier
(tn). In detail, for each classifier the inner circle refers to the optimized data
parallel configuration (the optimal number of workers—related to the min-
imum number of workers that allow to achieve the lowest completion time
observed—is reported in square brackets close to node names), the outer one
refers to the centralized (single worker) execution. The difference between the
outer and the inner diameter shows the gain achieved with data parallelism.
Circles are scattered according to the number of samples of the related train-
ing sets (x-axis) and classes that must be told apart (y-axis).

From this plot, we infer that a higher complexity corresponds to a higher
reduction in training time when data parallelism is leveraged. This positive
effect is balanced by the unavoidable saturation due to the synchronization
bottleneck between master-workers.

Pure Model Parallelism.

In this campaign we evaluate, in the case of pure model parallelism (i.e. Nw =
1, resulting in each bucket with one master and one slave), how different

3.3. EXPERIMENTAL RESULTS 85

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 2 3 4 5 6 7
 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09
Time: Cost:

Tr
a
in

in
g
 C

o
m

p
le

ti
o
n

Ti
m

e
 [

s]

Tra
in

in
g
 C

o
st [$

]
of Buckets

Offline
Online
Oracle

Optimal

Figure 3.10: Training completion time (left y axis) and cost (right y axis) achievable
with different scheduling strategies in case of pure model parallelism
(bars report average and standard deviation over 10 folds, markers re-
port the sole average).

scheduling strategies available impact the training completion time (ttot) and
the training cost (ctot) achieved by the architecture. Notably, for this experi-
mental analysis we only consider ttot and ctot, since TC effectiveness is not
impacted by scheduling selection (viz. model parallelism).

In detail, we evaluate the two proposed variants of the priority schedul-
ing, i.e. its offline and online versions, against two baselines. The former is
an oracle baseline which realizes the same scheduling with clairvoyant knowl-
edge of training completion time for each node {t1, . . . , tNc}, which is used
in the place of {ρ1, . . . , ρNc}. The latter is the optimal baseline which de-
rives from the full exploration of all scheduling choices, namely the solution
to Eq. (2.2). Figure 3.10 reports the results vs. B = 1, . . . , 7 buckets. The
general trend witnesses the benefits of adopting pure model parallelism, which
allows to improve the average performance from a ttot perspective. For in-
stance, when considering B = 5 with online scheduler, there is a relative ttot

improvement of up to ≈ +74% with respect to B = 1 (i.e. the centralized
case), at expenses of a slight ctot increase (i.e. ≈ +33%). Moreover, the pro-
posed priority scheduling strategies achieve results not far from the oracle and
the optimal baselines, i.e. ≈ −27.1% and ≈ −27.3% relative loss of training
time, respectively, at most. In detail, the online variant outperforms the offline
counterpart in most of the cases, i.e. ≈ +26% relative gain in terms of training
time, at most, and ≈ −20% relative loss of training cost, at most. This gain

86 CHAPTER 3. PRIVACY USE CASE

is due to the side knowledge of nodes completion time originating from the
online feedback.

Finally, regardless of the scheduling strategy adopted, the obtained results
show a saturation, with completion time settling at ≈ 200s for deployments
with B ≥ 4. This highlights the inherent limitations of pure model parallelism
that need to be overcome by leveraging data and model parallelism together,
as shown in the following analysis. More specifically, we focus on the online
variant of the proposed priority scheduling since it guarantees better perfor-
mance and feasible implementation.

Data+Model Double-Parallelism.

Based on the outcomes of previous experimentations, we now evaluate the
performance of our framework. In detail, we jointly consider data (Nw > 1
workers) and model (B > 1 buckets) parallelism.

Accordingly, to measure performance we consider the training completion
time and the resulting cost: TC effectiveness is not considered since the effect
of data parallelism on RF has been shown to be negligible. Indeed, increasing
B only affects the degree of model parallelism (i.e. there is a higher number of
buckets which can process the training tasks associated to the classifier nodes)
and does not alter TC performance of HC approaches. Conversely, increasing
Nw incurs in the same TC performance insensitivity observed in Fig. 3.9c.

The above two metrics are explored by varying the number of (a) available
buckets B and (b) workers per bucket Nw. For completeness, in Fig. 3.11 we
again report, in dotted horizontal and dashed vertical boxes, the configurations
pertaining to pure data parallelism (Nw > 1 and B = 1) and pure model
parallelism (Nw = 1 and B > 1), respectively. Notably, the intersection of
the two boxes reports also the time-cost performance of the centralized HC
approach (Nw = 1 and B = 1). It is worth to underline that time-cost perfor-
mance was not previously addressed, given the focus on TC effectiveness and
the lack of a BD infrastructure.

By looking at the results, the minimum training completion time (Fig. 3.11
top) is obtained with Nw = 11 workers and B = 5 buckets (symbol),
corresponding to 74.54 ± 13.44 s, on average. This configuration leads to
+77.58%, +61.79%, and +90.02% relative reduction of the training comple-
tion time with respect to optimized pure data parallelism (with Nw = 11) and
pure model parallelism (withB = 5), and centralized approaches, respectively.
Differently, considering the cost (Fig. 3.11 middle) the cheapest configuration
is obtained with Nw = 2 and B = 2 (symbol), corresponding to a cost

3.3. EXPERIMENTAL RESULTS 87

of 0.028$. This configuration leads to +24.42%, +31.02%, +9.9% relative
cost reduction w.r.t. optimized pure data parallelism (with Nw = 2) and pure
model parallelism (with B = 2), and centralized approaches, respectively.

Finally, we also consider a time-cost score (s(ttot, ctot)) taking into ac-
count both training completion time (ttot) and cost (ctot). In detail, we evalu-
ate the weighted average of the two normalized metrics which ranges from 0
to 1 (the lower, the better). More specifically, the formula is:

s(ttot, ctot) = λ1 rt tot + λ2 rc tot (3.1)

where rt tot and rc tot represent the corresponding min-max normalized counter-
parts (i.e. rx fi

x−xmin
xmax−xmin

), with weights λ1 = λ2 = 0.5. It is worth remarking
that these weights could be configured to get the desired trade-off.

Thus, the best balanced configuration is attained with Nw = 6 workers
and B = 5 buckets (symbol) and shows a training completion time of
82.81 ± 16.89 s and a cost of 0.047$, corresponding to a score of 0.05. This
configuration leads to +76.89%, +58.78%, +90.28% relative reduction con-
sidering pure data parallelism (with Nw = 6), pure model parallelism (with
B = 5) and centralized approaches, respectively.

Summarizing, in the light of the results reported and by comparison with
existing literature, some important take-home messages can be drawn. First,
our validation on the sole data parallelism highlights the need for a complete
investigation which includes the related cost analysis. Indeed, we have found
that a naïve increase of the number of workers incurs in a saturation of the
time gain (due to synchronization overhead) which negatively impacts the cost
of the training architecture. Such complementary and close-to-deployment in-
vestigation has been previously addressed only by our recent work [56] which
was limited to a nonhierarchical scenario. Secondly, from a time-cost perspec-
tive (even) pure model parallelism is beneficial for hierarchical approaches to
TC: nonetheless, this requires the careful design of a feasible scheduling strat-
egy for its effective capitalization. We believe the importance of this aspect is
likely to increase due to the rising trend toward large-scale TC problems [14].
Hence, our proposal complements the lack of this analysis in similar studies on
hierarchical classification [45, 51]. Finally, results concerning the integration
of both the model (via the designed scheduler) and data parallelism granted
by our framework have highlighted the high-performance (in terms of cost,
time and TC effectiveness) achieved, as well as its flexibility, in comparison to
existing hierarchical TC implementations (e.g., [45]).

88 CHAPTER 3. PRIVACY USE CASE

1 3 5 7 9 11 13 15 17 19 21 23

87654321

1 3 5 7 9 11 13 15 17 19 21 23

87654321

1 3 5 7 9 11 13 15 17 19 21 23
Number of Workers per Bucket

87654321

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Nu
m

be
r o

f B
uc

ke
ts

100
200
300
400
500
600
700

Tr
ai

ni
ng

 C
om

pl
et

io
n

Ti
m

e
[s

]

0.050
0.075
0.100
0.125
0.150
0.175
0.200
0.225

Tr
ai

ni
ng

 C
os

t [
$]

0.0
0.2
0.4
0.6
0.8
1.0

Ti
m

e
Co

st
Sc

or
e

Figure 3.11: Completion time (top), cost (center), and time-cost score (bottom) of
training task, varying the number of buckets and worker machines. Re-
sults for pure data parallelism and pure model parallelism correspond
to row 1 and column 1, respectively; centralized hierarchical classifica-
tion corresponds to cell (1,1). For each metric the optimum combination
is marked.

Chapter 4

Security: Intrusion Detection
for IoT devices

I
n this chapter the proposed framework is configured in order to tackle the
Intrusion Detection task in Internet of Things (IoT) context by using the

LCPN model.

4.1 Context of Intrusion Detection for IoT Devices

Nowadays, the number of Internet of Things (IoT) devices was anticipated
to be over 7 billion in 2018, with a 3-fold increase expected by 2025, taking
into account both consumer and industrial uses 1. Unfortunately, IoT devices
are frequently characterized by a low-cost manufacturing process (including
hardware and software design decisions, such as unsecured network services,
dangerous update mechanisms, and obsolete components) and insufficient user
attention to setup, raising serious security issues and multiple vulnerabilities 2.
As a result of many and major flaws in IoT devices, the primary goal of daily-
released malware has changed to infecting IoT services. Once infiltrated, IoT
devices may be used to create a botnet that takes advantage of their "mas-
sive" and "always-on" nature to exploit newly exploitable flaws. Despite this,
IoT botnets vary from traditional botnets due to the large number of bots en-
gaged and their variety. These cyberweapons are commonly used to launch
Distributed Denial of Service (DDoS) attacks, but they might also be used

1https://tinyurl.com/iot-dev-2018
2https://owasp.org/www-project-internet-of-things/

89

https://tinyurl.com/iot-dev-2018
https://owasp.org/www-project-internet-of-things/

90 CHAPTER 4. SECURITY USE CASE

for social engineering, collecting sensitive information from targets, and even
spreading malware to do unlawful cryptocurrency mining. Indeed, a number
of IoT botnets have recently been documented, including the well-known Mi-
rai malware [106] and its numerous variants [107], proof-of-concept worms
designed to infect high-density IoT devices, such as smartbulbs [108], or other
notable IoT malware instances like Bashlite, Hajime, BrickerBot, NewAidra,
and VPNFilter. It is worth noting that hostile actions (such as DDoS and
phishing) always include a reconnaissance phase (scan) and a data exfiltra-
tion phase (steal), both of which are likely to leave a trace in network traf-
fic [4, 106, 109, 110]. Accordingly, Network Intrusion Detection Systems
(NIDSs) are meant to monitor network traffic to determine when a system is
being targeted by a network attack, or is a source of it.

Thereby, the interest of research community has been recently focused on
attacks related to IoT context. To fulfill their goals, a NIDS could imple-
ment two main approaches: Anomaly Detection (AD) or Misuse Detection
(MD), aiming at capturing any deviation from the profiles of normal activities,
or identifying the patterns of known attacks, respectively. Indeed, Machine
Learning-based intrusion detection has been widely adopted in last years, with
researches investigating both AD [40, 49, 52], trained only on benign traffic
(i.e. anomalies are identified as outliers), and MD [41, 43, 50], trained on both
benign and malicious traffic [10]. MD could be binary (benign vs. malicious)
or multi-class (benign vs. specific attacks). Further, several approaches fall
within Attack Classification (AC), where a preliminary phase, skimming be-
nign events, is assumed. Also, a number of proposals for network intrusion
detection in IoT environments can be found in literature [71, 72, 73, 74, 75].
Differently from the scenario analyzed in this section, IoT-aware Intrusion De-
tection Systems (IDSs) in literature do not all use an IoT dataset for validation,
or target AD or MD separately. Also, the most related proposal [73] discrimi-
nates only among known attacks (i.e. no ability to detect unknown attacks).

In this section, we leverage the proposed framework to instantiate a hy-
brid approach for ID, which is evaluated targeting both AD and MD at the
same time: the Hierarchical Classification Framework instance, which is
subsequently described, results in a Hierarchical Hybrid Intrusion Detector
(H2ID)—which is an LCPN-based solution—tailored for the demands of IoT
scenarios.

As outlined in Chapt. 1, several works regarding hierarchical network In-
trusion Detection (ID) approaches where proposed, distinguishing them be-
tween AD and MD based on the nature of the first level of the hierarchy. To

4.1. CONTEXT 91

better frame the problem on the specific scenario, subsequently several works
performing network ID in IoT environments are presented.

In [71] authors proposed MSML, a Multilevel Semi-supervised Machine
Learning-based ID. The aim of this framework is to separate unknown traffic
from benign and known attacks related and it is composed by four modules,
i.e. pure clustering, pattern modeling, fine-grained classification, and model
updating. MSML is tested on KDD’99 dataset, showing an accuracy up to
96.6%.

Li et al. [72] propose a two-stage IDS enhanced by software-defined
IoT. They perform a preliminary feature selection stage, followed by a cost-
sensitive classification using a Random Forest (RF). The entire workflow guar-
antees the detection of novel intrusions and adds a self-learning capability. The
proposal is tested on KDD’99 dataset, showing an improved detection with no
impact on time complexity w.r.t. existing solutions.

Lately, in [73] authors propose a two-level ID, where the first level im-
plements a flow-based binary MD task, whereas the second addresses packet-
based Attack Classification (AC). The model is tested on both CICIDS2017
and UNSW-NB15, resulting in an ideal F1 score on the former, and 100% at
the first level (resp. 97% at second level) on the latter.

In [74], a Deep AutoEncoder (DAE) is proposed for AD and compared
against some outlier detectors, achieving lower False Positive Rate (FPR)
(0.007% as opposed to 0.02%) with similar True Positive Rate (TPR) on their
own dataset N-BaIoT. Along the same lines, in [75] authors develop Kitsune,
an online neural network-based NIDS, using an ensemble of AutoEncoders
(AEs) (KitNET). They show that the proposed approach performs equally as
offline algorithms. They show that proposed approach balances offline algo-
rithms. Several works leveraged it to evaluate their ID models. Then, sev-
eral works have leveraged N-BaIoT; for example, [111] have compared several
classifiers, i.e. ZeroR and OneR, as baseline, and JRip, PART, J48, and RF,
in an AC task. Results show a ≈ 80% (≈ 10%) gain in accuracy of all these
against ZeroR (OneR).

Finally, [112] propose a Denial of Service (DoS) detection framework
composed by three modules, i.e. Dataset Preparation and Labelling, Feature
Selection, and Classification & Comparison. Proposal falls in multi-class MD
fitted with and without a moving average windows method. Classifier authors
compare are Naïve Bayes, and evolution, i.e. Bayesian Network, A1DE, and
A2DE, and other models, obtaining a near ideal performance.

Another dataset containing traffic related to IDS in the IoT ecosystem is

92 CHAPTER 4. SECURITY USE CASE

Bot-IoT [113], being the object of the study presented in this section. Bot-Iot
was capitalized by the same authors to perform both binary and multi-class MD
analyses leveraging SVM, RNN, and LSTM-RNN, resulting in a high accu-
racy. Moreover, the first application of AD techniques to the dataset Bot-IoT is
performed by [114] through a novel system named Mixture Localization-based
Outliers (MLO). MLO is fed with the top-10 features of both UNSW-NB15
and Bot-IoT datasets (unfortunately, in the latter case, these features comprise
the Argus sequence number, possibly implying a performance bias). Authors
compare their proposal against others AD techniques, with a 94.8% − 98.3%
average TPR on Bot-IoT (resp. 95%− 99.5% on UNSW-NB15).

4.2 Hierarchical Framework Instances for Intrusion
Detection for IoT Devices

In this section we describe the instance of the Hierarchical Learning Frame-
work designed to perform the Intrusion Detection task, resorting in an LCPN-
based approach, whose structure is depicted in Fig. 4.1: first, the overall LCPN
architecture is shown and then the two main levels composing it are detailed,
via the respective design choices. It is worth to underline that this LCPN so-
lution requires a T = 2 levels hierarchy of labels, with L0 being the root, L1

being the “Type of Traffic” (viz. benign or malicious) level, and L2 being the
“Type of Attack”. Accordingly, the first level of the solution corresponds to
an Anomaly Detector (L1), whose output may activate an Attack Classifier
implemented as the second level (L2). Indeed, if a TO is flagged as anoma-
lous (ANM) by L1, deviations from normal activities are identified and are
further inspected by L2 in order to search for known attacks. L2 is in charge
of classifying the TO according to a set of known attacks {ATK1, . . . ,ATKn}
or detect an unknown attack (UNK) possibly modeling zero-day attacks. This
task is based on open-set classification methodology (i.e. unknown attacks are
not assumed to be seen during the training phase). Differently, no other compu-
tation is required if L1 declares the TO as benign (BNG). Notably, the specific
instance of the LCPN classifier benefits from the Reject Option (Sec. 2.3.1) to
enforce a double-censoring mechanism based on two independent thresholds
γB and γU that allow the architecture to be adapted according to the required
performance trade-off. Looking at the architecture in its entirety, L1 is meant to
provide a pre-filtering (aimed at identifying benign TOs) that can be conducted
with low overhead also on limited hardware, thus being suitable for IoT con-
texts. Accordingly, L2 is activated on-request (based on the verdict of L1): this

4.2. HIERARCHICAL FRAMEWORK INSTANCES 93

Anomaly
Detector

Attack
Classifier

True

False

True

False

Inference path
Inference I/O
Train input

Fe
at

ur
es

Ex
tra

ct
io

n
Tr

af
fic

Se
gm

en
ta

tio
n Training path

Figure 4.1: Instance of the Hierarchical Classification Framework for IDS. Solid ar-
rows represent operational dataflow (inferring), while dashed arrows re-
fer to training phase only.
Legend. Raw trace (RT), traffic object (TO), benign (B, BNG), anomaly
(ANM), attack (A, ATK), thresholds (γB, γU), loss (λ), and probability (p).

results in a lightweight path for benign traffic that is not subjected to a second-
level analysis. While the LCPN classifier is generalizable (i.e. different choices
can be made to implement either level), in what follows our specific instance
is detailed, consisting of a MultiModal Deep AutoEncoder (Multi Modal-Deep
AutoEncoder (M2-DAE)) and an Machine Learning-based classifier at levels
L1 and L2, respectively.

4.2.1 Dataset Description

Results have been obtained leveraging the Bot-IoT dataset, collected by au-
thors of [113] in an emulated IoT environment, which is (when experiments
where performed) the sole dataset releasing PCAP traces of (IoT) attacks and
benign behaviors, enabling the extraction of engineered sets of features. At-
tack traffic refers to four attack categories, namely (i) information gathering
(Scan), denial of service, both (ii) single sourced (DoS) and (iii) distributed

94 CHAPTER 4. SECURITY USE CASE

(DDoS), and (iv) information theft (Theft). For our study, we took advantage
of the traces (in pcap format) composing the full dataset to extract specific
features. Each sample in the dataset is labeled at multiple levels: (a) attack,
(b) category, and (c) subcategory. For each sample in the dataset, we consider
only the first two levels. The first one (binary-labelled, i.e. tells whether the
sample is part of either a benign communication or an attack) is used for train-
ing and evaluating the first detection level (L1), whereas the second is used to
perform attack classification at the second level (L2). In detail, L1 is trained
only with benign traffic traces, whereas L2 is trained via traffic exclusively re-
lated to known attacks. These two training phases are completely independent
(L1 and L2 are trained on nonoverlapping sets of data).

4.2.2 Traffic Object and Features

When performing the analysis, raw traces are first segmented in biflows by the
Traffic Segmentation Component. In addition to TCP and UDP, also ARP is
considered, due to its importance in LANs (i.e. MAC addresses to index this
traffic). In detail, MAC addresses can be used to extend the 5-tuple identi-
fying each biflows—obtaining a 7-tuple. This traffic object allows to catch
mismatches between layer-2 and layer-3 addresses, enabling the framework to
naturally manage other kinds of anomalous (e.g. spoofed) traffic. However,
since in the considered dataset the is a perfect match between 5-tuples and 7-
tuples, this specification could be omitted without prejudice for the generality
of the approach or the correctness of the reported results. For each biflow,
an increasing number of packets (i.e. 5, 10, 15, 20, and 25) is considered,
thus enabling the evaluation of the proposal in several scenarios (including
early-detection, in which the very initial sequence of packets is taken into ac-
count). From the raw traces the Feature Extraction Component extracts the
input fields reported in Tab. 4.1. They are differentiated according to the layer
of the TCP/IP stack they belong to (i.e. network or transport), their type (i.e.
numerical or categorical), and granularity (i.e. TO- or packet-based). To re-
duce the number of malicious biflows and obtain a balanced dataset, a random
undersampling of extracted TOs is enforced by selecting all biflows related to
benign traffic (i.e. ≈ 7k) and at most 500 biflows (selected at random) per
attack subcategory, for a total of 4.5k anomalous samples.

4.2. HIERARCHICAL FRAMEWORK INSTANCES 95

Table 4.1: Input data extracted from Bot-IoT dataset.

TCP/IP
Stack
Layer

Field Name Stat(s) Type Granularity #
Tr

an
sp

or
t

n. wrong fragments + N B 3
destination port n.d. C B 1
payload bytes seq. A C P 3
payload length A, S, m, M N P 12
TCP flags combin. + C P 3
TCP window size A, S, m, M N P 12

N
et

w
or

k

n. packets + N B 3
byte rate n.d. N B 3
duration n.d. N B 3
inter-arrival-time A, S, m, M N P 12
protocol n.d. C B 1
time-to-live A, S, m, M N P 12

Legend:
Input Dimensionality (#);
Stats: sum (+), average (A), std dev (S), minimum (m), maximum (M);
Type: Numerical (N), Categorical (C);
Granularity: Biflow-based (B), and Packet-based (P).
Fields present bidirectional, upstream, and downstream representation.
destination port and protocol are only bidirectional.

4.2.3 Models

L1: Anomaly Detection through M2-DAE

In this section, the proposed approach for AD is described, leveraging a partic-
ular class of Deep Learning models, namely the DAEs, in an innovative way.
In this context, the DAE is used as an anomaly detector, i.e. by using (dur-
ing testing phase) the loss metric between the observed input and the DAE-
based reconstruction as a measure of “anomaly-ness” [89]. The reason for
this choice is the successful application of AEs (and recently DAEs) in several
AD works [42, 89, 115]. The autoencoder-based solutions has been designed
as the model for L1 is an Multi Modal-DAE (M2-DAE) neural network (de-
tailed in Sec. 2.3.4), which handles different input types of the TO as separate
“modalities”, thus reducing the number of trainable parameters of the network.

96 CHAPTER 4. SECURITY USE CASE

L2: Machine Learning-based Attack Classification

In this section, the design of the L2 level is discussed. Its goal is to clas-
sify each anomalous TO received from the L1 level, associating it to either
one of the known attacks {ATK1, . . . ,ATKn} or the unknown attack class
(UNK). The generality of the proposed hierarchical framework in its LCPN
mode allows for any n-class classifier to be employed at the L2 level; hence,
any Machine/Deep Learning-based supervised classifier can be adopted. The
sole requirement for each classifier is to be able to provide its soft-output vec-
tor p = [p1, p2, . . . , pn], pi being the confidence probability associated to the
(known) class ATKi, needed by the censoring mechanism we adopt (see the
following section). Given the presence of the unknown class, L2 naturally fits
the problem of open-set classification via reject option: during the operational
phase, the TOs declared as anomalous may reveal attacks never observed in
the training phase, when not matching any known attack. This choice also
supports loop-based mechanisms [40] that can adaptively identify new classes
for initially unforeseen attacks. Based on the existing literature on AC, sev-
eral options for implementing the L2 level are considered. In particular, three
different options are investigated: RF, NB, and MultiLayer Perceptron (MLP).

Double-censoring mechanism

In the abovementioned design both levels implement a threshold-based mech-
anism, whose effect is to censor the output of each level in case of low-
confidence. This provides the architecture with adaptability, with minimal im-
pact on complexity. With regards to L1, an anomaly is detected if λ > γB
(in such a case the TO is passed to L2). Herein the threshold γB is designed
to balance the anomaly TPR-FPR tradeoff. Differently, with reference to
L2, the soft-output vector p = [p1, p2, . . . , pn] of the L2 classifier (gathering
the predicted class probabilities of ATK1, . . . ,ATKn) is used to label the TO
with the attack a fi argmax{p}, only when max{p} > γU. Differently, when
max{p} ≤ γU, the TO is associated to the unknown class UNK. Hence, γU
represents the threshold balancing discrimination of known attacks against
unknown attack detection. Notably, the two thresholds are independently set,
allowing to separately tune the sensitivity to anomalies and unknown attacks.
Ultimately, this allows to adhere to different performance trade-off require-
ments.

4.2. HIERARCHICAL FRAMEWORK INSTANCES 97

Deployment Scenarios

The proposed two-level architecture perfectly fits typical IoT deployment sce-
narios. In fact, it results in practical benefits achieved by means of deployment
modularity and flexibility, as discussed hereinafter. Since IoT infrastructures
are intrinsically hierarchical (e.g., made of devices, gateways, and edge/cloud
layers), the two constitutive levels can be deployed at different layers and
trained separately. The latter aspect limits the need for retraining the whole
architecture. Indeed, L1-Anomaly Detection can be deployed locally, i.e. on
each IoT device (or on the local gateways). On the other hand, L2-Attack
Classification can be implemented in a centralized fashion (e.g., at a remote
gateway or at the edge/cloud layer). As IoT devices are often characterized
by limited computing, storage, memory, and energy resources, it is paramount
that the locally-deployed functionalities do not conflict with these constraints.
In our proposal this is guaranteed by the lightweight nature of the L1 level (im-
plementing M2-DAE as opposed to common DAEs). Moreover, for both the
training and operation phases, the proposed framework architecture adheres to
the privacy requirements characterizing IoT networks, where operational (be-
nign) traffic is naturally subjected to privacy concerns (e.g., smart-home or
health-related applications, to name a few). More specifically, the proposed
two-level architecture allows both training and operation phases to be per-
formed without sharing the benign traffic with the remote nodes implementing
AC. Indeed, the AD level is the only component to be fed with the benign traf-
fic and is locally deployed. Only the traffic marked as anomalous is sent to
the (remote) AC level. Accordingly, no exchange of benign privacy-concerned
traffic is put in practice neither in training nor in operation. This notwith-
standing, the training process is not negatively impacted since: i) L1-Anomaly
Detection—requiring benign traffic only—is still able to learn patterns based
on local observations; ii) L2-Attack Classification is based on anomalous traf-
fic only, and does not need the—privacy concerning—local traffic for training.
Thus, L1 can be pre-trained by using already known traffic patterns of IoT
devices connected to the user’s network and fine-tuned to the specific traffic
behavior of each locally-connected device. Since the IoT-generated traffic pat-
terns could be influenced by the deployment position (e.g., distance from the
cloud/edge) and by user behavior and needs, the fine-tuning phase should take
this heterogeneity into account by balancing the importance of both contri-
butions (i.e. location- and behavior-dependent features). Instead, L2 can be
more effectively trained by using samples observed from multiple distributed
devices. This is in line with the fact that the benign traffic is expected to be

98 CHAPTER 4. SECURITY USE CASE

characteristic of the specific IoT devices (and of their position in the network)
while the attacks are expected to assume their own typical patterns which are
dictated by the attacking strategies rather than the attacked network. Accord-
ingly, the designed architecture naturally allows IoT devices to concur in train-
ing L2-Attack Classification by exchanging traffic at any granularity via a wide
class of existing federated learning approaches [116, 117], without incurring
in loss of privacy.

4.3 Experimental Results

In this section, the experimental evaluation of the Hierarchical Classification
Framework instance for IDS is provided. First, evaluation metrics are intro-
duced and then the evaluation setup is described. Finally, experimental results
are shown and discussed.

Performed performance assessment consists of two phases: L1 analysis
and IDS analysis. In L1 analysis the ROC analysis is exploited to evaluate
M2-DAE against three One-Class Classifiers (OCCs) commonly used in AD
(i.e. One-class Support Vector Machine (OC-SVM), Isolation Forest (IF), and
Local Outlier Factor (LOF)), and a standard DAE, which is inspired by [74].
OCCs are fed with the same engineered input as (M2-)DAE, which consists
of 4+4 encoding/decoding layers with relu activations. In IDS analysis the
hierarchical model instance is compared with a multi-class MD (Multi-MD),
designing both for open-set classification. It is worth to underline that the
Multi-MD model is instantiated by leveraging the flat approach with reject
option available in the hierarchical framework. The two approaches are com-
pared based on the F1 score of the open-set problem ({ATK}ni=1 ∪ UNK) vs.
the unknown threshold (γU). A former comparison of RF, NB, and MLP abil-
ity in performing AC and MD tasks aims to select the best model for L2 and
Multi-MD, respectively.

4.3.1 Results of Anomaly Detection Analysis

In Fig. 4.2, the partial ROC (i.e. with TPR ∈ (90, 99)%) compares the exper-
imented models at L1. Notably, M2-DAE and DAE outperform OCCs models,
showing an almost constant FPR ≤ 1% on varying number of packets, against
> 40% FPR reached by OCCs. Although DAE and M2-DAE report similar
results (with the former resulting in a lower FPR in most of the cases), the
latter boasts a less complex model, with a reduction of trainable parameters

4.3. EXPERIMENTAL RESULTS 99

Figure 4.2: Partial ROC for baselines and proposed M2-DAE, varying the number of
packets.

(i.e. weights and bias) up to a factor of 4× (i.e. from≈ 12M of DAE to≈ 3M
of M2-DAE). Therefore, it provides a better trade-off, considering that the re-
duction of complexity is a desired property for ML approaches in IoT context,
when these algorithms are designed to run on hardware with limitations. Ac-
cordingly, the M2-DAE as model has been selected for L1. Similarly, 5 packets
per TO has been considered, to support early detection of the anomalies with
low overhead.

4.3.2 Results of Intrusion Detection Approach Analysis

To select the best models for L2 and Multi-MD, the aforementioned Machine
Learning models (i.e. RF, NB, and MLP) have been preliminarily evaluated
tackling AC and MD, respectively. The outcomes of the comparison are sum-
marized in Fig. 4.3, reporting the results for MD task via RF, NB, and MLP on
the overall dataset in terms of F1 score. Results pertaining to AC are omitted
for brevity. Accordingly, the RF is selected a model for both MD and AC task,
because it reported the best performance and the lowest variability. Then, for
both the LCPN-based IDS and Multi-MD models, the open-set analysis is per-
formed by removing one of the known attack classes from the training set and
considering it as unknown (UNK class). This procedure is iterated for all the
attack classes. It is worth to underline that DoS and DDoS classes are merged
and referred as DoS. Then, a threshold γU is applied to the soft-output of the
classifiers: TOs whose highest predicted class probability is≤ γU are declared
as UNK.

In Fig. 4.4, the F1 score vs. γU is used to investigate their ability to rec-
ognize UNK class, for both the LCPN-based IDS and Multi-MD; for the pro-
posed IDS, γB is fixed to obtain a ≈ 1% FPR (the TPR corresponds to ≈ 99%
(Fig. 4.2)). Results highlight no significant difference in recognizing Theft

100 CHAPTER 4. SECURITY USE CASE

 40 50 60 70 80 90 100

M
o

d
e

l

RF

NB

MLP

F1 score [%]

Figure 4.3: Comparison among F1 score of ML models for MD task. Variation val-
ues are provided for a C.I. of 99.7%.

γU

Figure 4.4: F1 score vs. γU for LCPN-based IDS (H) and Multi-MD (F) in an open-
set approach. Variation values are provided for a C.I. of 99.7%.

and Scan as the UNK class, whereas for DoS class the proposed IDS solution
can potentially provide significant gains over Multi-MD in terms of F1 score.
Given the trade-off introduced by tuning γU for Multi-MD and (γB,γU) for the
LCPN-based IDS, we inspect fine-grained classification results (w/o DoS) con-
sidering (i) the configurations achieving the best F1 score (Figs. 4.5a–4.5b), (ii)
those ensuring a FPR ≤ 1% (Figs. 4.5c–4.5d): the LCPN-based IDS achieves
+1.76% (+4.41%) F1 score in the former (latter) case. Confusion matrices
confirm the effectiveness of the LCPN-based IDS in capturing unknown at-
tacks, as opposed to Multi-MD. This recognition capacity reduces with the

4.3. EXPERIMENTAL RESULTS 101

BNG
Scan

Theft
UNK

Predicted Class

BNG

Scan

Theft

UNK

Ac
tu

al
 C

la
ss

98.73 0.01 0.00 1.26

0.10 95.40 0.00 4.50

0.00 0.00 97.57 2.43

0.07 1.43 0.00 98.50

F1 = 97.61 ± 1.02%

0

20

40

60

80

100

(a) (γB, γU) = (1.77, 0.95).

BNG
Scan

Theft
UNK

Predicted Class

BNG

Scan

Theft

UNK

Ac
tu

al
 C

la
ss

97.87 0.00 0.00 2.13

0.00 89.50 0.00 10.50

0.00 0.00 95.13 4.87

3.70 0.00 0.00 96.30

F1 = 95.85 ± 1.85%

0

20

40

60

80

100

(b) γU = 0.99.

BNG
Scan

Theft
UNK

Predicted Class

BNG

Scan

Theft

UNK

Ac
tu

al
 C

la
ss

99.28 0.01 0.00 0.71

0.50 95.10 0.00 4.40

0.00 0.00 97.57 2.43

3.60 1.43 0.00 94.97

F1 = 97.08 ± 2.56%

0

20

40

60

80

100

(c) (γB, γU) = (2.57, 0.96).

BN
G

Sca
n

Th
eft UN

K

Predicted Class

BN
G

Sca
n

Th
eft

UN
K

Ac
tu
al
 C
la
ss

99.84 0.01 0.00 0.14

0.40 97.40 0.00 2.20

0.00 0.00 98.87 1.13

33.40 0.00 0.00 66.60

F1=92.67±0.33%

0

20

40

60

80

100

(d) γU = 0.72.

Figure 4.5: Comparison between confusion matrices of LCPN-based IDS (left) and
Multi-MD (right). (a) and (b) report the results of the configurations
resulting in the best F1 score achievable. (c) and (d) report the results of
the configurations resulting in the lowest FPR (≤ 1%).

decreasing of FPR, but it is always better than Multi-MD. Finally, the use of
a less complex classifier (no benign samples) gives to the LCPN-based IDS a
gain in capturing attack classes.

102 CHAPTER 4. SECURITY USE CASE

Chapter 5

Traffic Management:
Classification of Mobile
Applications

I
n this chapter a wider evaluation of the framework instances is provided by
using both LCPN and global classifiers solutions against the traffic classi-

fication of the traffic generated by mobile applications, to enhance fine-grained
QoS enforcement via Traffic Management solutions.

5.1 Context of Classification of Mobile Applications

When no accurate information on the application generating the traffic is avail-
able, the use of security and QoS enforcement facilities, as well as network
monitors, is decreased or qualitatively compromised. TC is the process of as-
sociating network traffic with certain applications, and has a long history of use
in numerous domains. Nevertheless, the growing popularity of mobile devices,
which is changing the type and composition of traffic traversing residential and
business networks and connecting content and services over the Internet, is
posing a serious challenge to TC. For instance, according to the latest Ericsson
mobility report [76], between Q3 2019 and Q3 2020 (a time frame including
the spread of the current pandemic situation), mobile data traffic grew 50%,
driven by both the rising number of smartphone subscriptions and the increas-
ing average data volume per subscription fueled primarily by video content. In
more detail, it is forecasted that the share of video traffic, currently accounting

103

104 CHAPTER 5. TRAFFIC MANAGEMENT USE CASE

for 66% of all mobile data traffic, will increase to 77% in 2026. As a result, in
recent years the popularity of mobile TC has grown, driven (in addition to the
normal drivers of TC, such as service differentiation) by valuable profile data
(for advertisers, security agencies, and insurance companies), while also point-
ing to privacy risks (e.g., recognition of context-sensitive apps, such as dating
and health apps, and bring-your-own-devices policies). The increasing use of
encrypted protocols has been spurred by the attempt to safeguard privacy and
security (TLS).

Accordingly, several recent studies have examined mobile TC, primarily
in the presence of encrypted traffic and using both standard machine and deep
learning approaches. To this end, we will review the best-known studies that
use basic ML and DL-based algorithms to handle encrypted traffic in order to
conduct TC in the mobile context.

Among the first works tackled TC for mobile traffic, Stöber et al. [118]
proposed a user fingerprinting technique for devices that learns their traffic
patterns by monitoring background activity (about 70% of smartphone traffic).
Data bursts are used to extract statistical information from 3G transmissions,
which is then used to infer, by mean of ML-based classifiers, the individual
user who generated it. In detail a 90% accuracy is achieved by considering 20
users with various groups of installed applications, focusing only on Android
OS.

On the other hand, authors of [119] use a RF classifier to classify app
usage across 13 iOS apps into 8 distinct categories by using data retrieved from
encrypted Wi-Fi traffic. As the training time increases the results demonstrate
inconsistent behavior, showing the influence of imprecise ground truth, which
clearly compromises the accuracy of the classification.

Alan and Kaur [120] use website fingerprinting approaches to see if An-
droid applications can be recognized from their launch-time traffic using only
TCP/IP header information (i.e. the payload size of the first 64 packets). Ap-
plications can be recognized with 88% accuracy in the best case, i.e. when the
training and test samples are collected on the same device. However, when the
operating system/vendor is different, there is a significant drop, down to 26%
for the top classifier. The effects of app updates on training data (viz. aging)
are also considered.

Noteworthy, Aceto et al. [23] recently proposed a systematic framework
for tackling the problem of encrypted (mobile) TC using DL models on three
datasets of real human user activities, highlighting pitfalls, design guidelines,
and challenges of works relied bot-generated datasets. Several factors are con-

5.2. HIERARCHICAL FRAMEWORK INSTANCES 105

sidered, including (i) the chosen TC object, (ii) the type and amount of input
data, (iii) the DL architecture used, and (iv) the set of performance indicators
needed for a thorough evaluation. The study of existing DL-based traffic clas-
sifiers reveals the need for unbiased, informative, and diverse input data, as
well as a rigorous performance evaluation workbench.

Taylor et al. [121] present AppScanner, a machine learning (ML)-based
(i.e. RF) system for smartphone app identification based on packet size and
direction (also accessible from encrypted traffic). Results show app reidenti-
fication with up to 96% accuracy in the best case, exceeding baselines taken
from website fingerprinting, with good tolerance to fingerprint aging, based on
traffic generated by bots of the 110 most popular Android apps and account-
ing for variation in app versions, devices used, and fingerprint aging. To a
similar extent, the same authors in [17] conducts further in-depth analysis of
AppScanner (i.e. leveraging a larger dataset) to evaluate the loss of classifica-
tion performance caused by the variation/aging of app fingerprints due to the
different versions of the devices/apps used.

Moreover, in [122] authors present CUMMA, a technique based on RF,
hidden Markov models, and clustering, with the goal of classification (and
detect anomalous uses) of services in mobile messaging apps. Based on data
collected from 15 participants using Whatsapp and WeChat, the results show
that both apps are 96% accurate.

Finally, in [3] a multiclassification technique that leverages state-of-the-art
classifiers provided for mobile (encrypted) TC was provided, by considering
4 classes of combinations that vary in the classifier results employed, learning
philosophy, and training requirements. Using real user action datasets from
iOS and Android, the combined results outperform the best state-of-the-art
ML classifier (up to +9.5% recall).

5.2 Hierarchical Framework Instances

In this section, we describe our framework instances we evaluated in order to
evaluate hierarchical TC solutions for the traffic generated by mobile appli-
cations. First, we decided to enforce hierarchical dependencies arranging the
mobile applications into two main groups, namely video and generic. This first
division, which defines the first two branches of the hierarchical dependency
tree, is driven by the deeply different service requirements of these kinds of
traffic, with the video that is huge demanding in terms of network resources.
Furthermore, both video and generic branches are split into traffic categories

106 CHAPTER 5. TRAFFIC MANAGEMENT USE CASE

with a major difference: the video traffic is arranged into categories matching
the traffic type, whereas the generic traffic is divided into service-specific cat-
egories. The definition of these two different categories is justified by the fact
that video traffic has different behaviors with respect to the reproduced video
stream. On the contrary, non-video (viz. generic) traffic usually follows the
activities that users can perform, pushing for a service-specific categorization.
Finally, the class dependencies tree ends with application at the leafs level.

Subsequently, enforcing of the aforementioned class dependencies tree in
the training phase of designed hierarchical approaches, a broader evaluation
of our framework is performed. Detailing, we compare the entire set of ap-
proaches provided by the Hierarchical Learning Engine, in order to assess
(performance) advantages against a flat approach (viz. non-hierarchical). This
analysis is performed by using different sets of features feeding both ML and
DL state of the art models for mobile TC. Beyond the evaluation of (hierar-
chical) classification metrics, the analysis is also performed with respect to the
calibration of the obtained models and in the presence of reject option.

5.2. HIERARCHICAL FRAMEWORK INSTANCES 107

5.2.1 Dataset Description

Amazon
Background

Background
Background

Booking

Chat

CloudVR
DiscoveryVR

FourSquare

FulldiveVR

Generic

Instagram

Linkedin

Messenger

Music\&Audio

Musixmatch

Netflix
OnDemand

Overall Traffic

Pinterest

PrimeVideo

Shopping

Short

Skype

Snapchat

Social

SoundCloud
Spotify

TikTok

Travel\&Local TripAdvisor

Tumblr

Video

Vimeo

Whatsapp

Wish

Within

eBay

Figure 5.1: Number of biflows for the MIRAGE-2019 (Generic) and MIRAGE-video
(Video and Background) datasets. The boxes’ sizes are proportional to
the number of biflows.

In this use case, we leverage both the datasets MIRAGE-2019 and MIRAGE-
video, whose number of biflows is sketched in Fig. 5.1. Both datasets are
collected leveraging the MIRAGE traffic capture system [14] at University of
Napoli “Federico II”. From these datasets we extract the traffic generated by
24 popular android applications, plus spurious network traffic referred as back-
ground, resulting in 25 classes at application granularity (in green in Fig. 5.1),
9 classes at service level (in blue in Fig. 5.1), and 3 macro classes, namely
video, generic, and background. In detail, both not background macro classes
are divided into 4 services and each non background service is further di-
vided into 3 application classes, resulting in a balanced hierarchy we named
MIRAGE-ext.

Therefore, in Fig. 5.2 is provided the hierarchical characterization of mo-
bile applications by means of three main packet-level features, namely Di-
rection (DIR) (where 0 stands for upstream and 1 for downstream), Payload
Length (PL), and Inter-Arrival Time (IAT). In detail, Fig. 5.2 reports three

108 CHAPTER 5. TRAFFIC MANAGEMENT USE CASE

heatmaps representing the average per-level behavior of the considered classes
w.r.t. abovementioned features for the first 10 packets with payload of biflows,
essentially discarding signaling packets and considering, if HTTPS is used,
about the first 5 packets belonging to the TLS handshake and the reminder
to application data. Noteworthy, by focusing on the “Traffic Type” level (L1)
clear differences arise. In particular, the generic traffic consistently shows the
highest feature values for all packets (i.e. packets are usually downstream,
large, and with high inter-arrival-times), but the first present an opposite behav-
ior (i.e. the first packet carries a small payload, w.r.t. background and generic
classes, and it is almost always sent in upstream). These outcomes denote the
nature of generic traffic being sporadic and mainly generated by the user ini-
tiative (viz. request). Going deeper in the hierarchy, at “App Category” level
(L2) we can note more patterns, with the Short video category being prone to
present the first packet in downstream, and the OnDemand video showing a
consistent increasing of payload size. A more confused behavior characterizes
generic application categories. Finally, at “Application” level (L3) a clearer
match of categories behavior to the considered applications is shown, like Net-
flix that strongly impacts the data payload length of the OnDemand category,
and Whatsapp and Messenger that clearly push down the payload size for the
Chat category.

5.2. HIERARCHICAL FRAMEWORK INSTANCES 109

Back
gro

un
d

Gen
eri

c

Vid
eoTr

af
fic

 Ty
pe

Back
gro

un
d

Musi
c\&

Aud
io

Sh
op

pin
g

So
cia

l

Tra
ve

l\&
Loc

al

Cha
t

Clou
dV

R

OnD
em

an
d

Sh
ort

Ap
p

Ca
te

go
ry

0123456789
Packet Index

Back
gro

un
d

Musi
xm

atc
h

So
un

dC
lou

d

Sp
oti

fy

Amazo
n

Wish

eB
ay

Lin
ked

in

Pin
ter

est

Tum
blr

Boo
kin

g

Fou
rSq

ua
re

Trip
Ad

vis
or

Mess
en

ge
r

Sky
pe

Wha
tsa

pp

Disc
ov

ery
VR

Ful
ldiv

eV
R

With
in

Netf
lix

Pri
meV

ide
o

Vim
eo

Ins
tag

ram

Sn
ap

cha
t

Tik
Tok

Ap
pl

ica
tio

n

(a) DIR

Back
gro

un
d

Gen
eri

c

Vid
eoTr

af
fic

 Ty
pe

Back
gro

un
d

Musi
c &

 Aud
io

Sh
op

pin
g

So
cia

l

Tra
ve

l &
 Lo

cal

Cha
t

Clou
dV

R

OnD
em

an
d

Sh
ort

Ap
p

Ca
te

go
ry

0123456789
Packet Index

Back
gro

un
d

Musi
xm

atc
h

So
un

dC
lou

d

Sp
oti

fy

Amazo
n

Wish

eB
ay

Lin
ked

in

Pin
ter

est

Tum
blr

Boo
kin

g

Fou
rSq

ua
re

Trip
Ad

vis
or

Mess
en

ge
r

Sky
pe

Wha
tsa

pp

Disc
ov

ery
VR

Ful
ldiv

eV
R

With
in

Netf
lix

Pri
meV

ide
o

Vim
eo

Ins
tag

ram

Sn
ap

cha
t

Tik
Tok

Ap
pl

ica
tio

n

(b) PL

Back
gro

un
d

Gen
eri

c

Vid
eoTr

af
fic

 Ty
pe

Back
gro

un
d

Musi
c &

 Aud
io

Sh
op

pin
g

So
cia

l

Tra
ve

l &
 Lo

cal

Cha
t

Clou
dV

R

OnD
em

an
d

Sh
ort

Ap
p

Ca
te

go
ry

0123456789
Packet Index

Back
gro

un
d

Musi
xm

atc
h

So
un

dC
lou

d

Sp
oti

fy

Amazo
n

Wish

eB
ay

Lin
ked

in

Pin
ter

est

Tum
blr

Boo
kin

g

Fou
rSq

ua
re

Trip
Ad

vis
or

Mess
en

ge
r

Sky
pe

Wha
tsa

pp

Disc
ov

ery
VR

Ful
ldiv

eV
R

With
in

Netf
lix

Pri
meV

ide
o

Vim
eo

Ins
tag

ram

Sn
ap

cha
t

Tik
Tok

Ap
pl

ica
tio

n

(c) IAT

Figure 5.2: Per-packet features composition of DIR, PL, and IAT.

110 CHAPTER 5. TRAFFIC MANAGEMENT USE CASE

5.2.2 Traffic Object and Features

In this section, we describe the input we extract from datasets in order to
feed specific models. In particular, we extract three commonly used sets of
features, namely (i) statistical, (ii) first-packets payload-bytes, and (iii) per-
packet IP/L4-header-info. It is worth to underline that we select the biflow
(bidirectional flow) as Traffic Object (TO) because capable of catch the re-
quest/response communication patterns characterizing the majority of mobile
applications.
Statistical Features. This category of features is widely used in literature ad-
dressing TC when classical ML models (like DT, RF, SVM) are adopted [14].
In detail, for each TO, we extract a set of 40 features, namely (i) Service,
(ii) Protocol, (iii) Number of Packets, (iv) IP Packet Length, (v) L4 Payload
Bytes, (vi) Duration, (vii) (L4) Payload Length (PL), and (viii) inter-arrival
time (IAT), of which the time-series features PL and IAT are reported in terms
of 17 stats, namely minimum, maximum, mean, standard deviation, variance,
mad, skewness, kurtosis, and percentiles from 10 to 90 with step 10.
Payload Bytes Features. This set of features is composed by the sequence
of the first bytes composing the L4 payload, for each TO [22]. In particular
we extract up to 784 bytes for each biflow, encoding each byte in the range
[1-256] with a zero-right-padding for biflows do not cover the entire sequence.
Noteworthy, when considering TCP biflows, this features will match part of
the TLS handshake, in particular covering the total of both client hello (sized
in 160-170 bytes) and server hello (sized in 70-75 bytes), and a part of the
certificates/keys (size varies with negotiated parameters, e.g., the minimum
recommended dimensions of 256 bytes for RSA and 32 bytes for ECDSA), up
to cover the entire TLS handshake when certificates/keys are small enough, i.e.
including also handshake closing info.
IP/L4 Header Time-Series Features. Finally, this group of features is com-
posed by characteristics extracted from the IP and L4 headers of each packet
(w/ L4 payload) [24]. These characteristics are the per-packet (i) (L4) Payload
Length, (ii) inter-arrival-time, (iii) Direction, and (iv) TCP Window Size. The
maximum number of packets is set to 100, resulting in a input of size (100, 4).
It is worth noting that the first IAT is always zero. A zero-right padding is
applied when a biflows does not contains enough packets.

We refer to these three groups as STAT, PAY, and HDR, respectively. We
recall that the modeling based on STAT input translates into a post-mortem
analysis because features are computed once biflows are closed (viz. on the
entire set of packets). Otherwise, PAY and HDR result in an online (viz. early)

5.3. EXPERIMENTAL RESULTS 111

classification, resorting to the first packets of each biflow.

5.2.3 Models

In this section, evaluated ML and DL models are listed. In detail, we se-
lect 2 classical ML models, i.e. RF [17] and eXtreme Gradient Boosting
(XGB) [123], and 4 DL models, i.e. 1-Dimensional Convolutional Neural Net-
work (1DCNN) [22], Long Short-Term Memory (LSTM) [24], 2-Dimensional
Convolutional Neural Network (2DCNN) [24], 2DCNN+LSTM [24], and
MultImodal DL-based MobilE TraffIc Classification (MIMETIC) [16], which
are carefully described in Sec. 2.3.4. It is worth to underline that each model
takes its own set of features from Sec. 5.2.2: (i) STAT is used for RF and XGB,
(ii) PAY is used for 1DCNN and for the first modality of MIMETIC, and (iii)
HDR is used for LSTM, 2DCNN, 2DCNN+LSTM, and for the second modal-
ity of MIMETIC.

All these models are trained by the Hierarchical Learning Engine by en-
forcing class dependencies through the hierarchical learning approaches de-
scribed in Sec. 2.3.

5.3 Experimental Results

In this section we report results derived from the systematical application of
hierarchical learning approaches for the task of TC on the dataset MIRAGE-
ext. In detail, in this section we (i) assess the sensitivity of ML/DL models
used to enforce hierarchical classification approaches against the selected in-
put (viz. features selection); then (ii) we select the best input configuration
for each model-hierarchical approach combination, providing a fair compari-
son among the best hierarchical classification approaches from the perspective
of (hierarchical) classification performance, i.e. (h)F1 Score; subsequently
(iii) we perform a calibration analysis via (h)ECE and (h)MCE to compare
the reliability of all hierarchical approaches by selecting the best model for
each aforementioned set of features; finally, (iv) we compare performance of
the best performing ML/DL models and hierarchical classification approaches
combinations, with respect to the flat counterpart, when the reject option is
enforced. We underline that for the LCPN classification approach we resort in
a naïve configuration, opting for the selection of the same model at each node,
by selecting the same number of features and the same reject option thresholds
for all the hierarchically arranged classifiers.

112 CHAPTER 5. TRAFFIC MANAGEMENT USE CASE

5.3.1 Sensitivity to the Number of Features

73.3
77.9
82.5
87.2
91.8
96.4

Le
ve

l 1
F1

 S
co

re
 [%

]

65.5
70.1
74.7
79.3
83.9
88.5

Le
ve

l 2
F1

 S
co

re
 [%

]

4 8 12 16 20 24 28 32 36 40
Number of Features

59.5
64.6
69.6
74.6
79.7
84.7

Le
ve

l 3
F1

 S
co

re
 [%

]

Approach
FC
LCPN
NGCSUM

NGCPROD

NGCLAST

Best #Feat

(a) RF

63.4
70.1
76.9
83.7
90.5
97.3

Le
ve

l 1
F1

 S
co

re
 [%

]

58.7
64.7
70.7
76.8
82.8
88.8

Le
ve

l 2
F1

 S
co

re
 [%

]

4 8 12 16 20 24 28 32 36 40
Number of Features

53.0
59.3
65.7
72.1
78.4
84.8

Le
ve

l 3
F1

 S
co

re
 [%

]

Approach
FC
LCPN
NGCSUM

NGCPROD

NGCLAST

Best #Feat

(b) XGB

97.2
97.6
98.0
98.3
98.7
99.1

Le
ve

l 1
F1

 S
co

re
 [%

]

90.9
91.7
92.5
93.3
94.1
94.9

Le
ve

l 2
F1

 S
co

re
 [%

]

256 361 484 625 784
Number of Features

81.7
83.9
86.2
88.4
90.6
92.9

Le
ve

l 3
F1

 S
co

re
 [%

]

Approach
FC
LCPN
NGCSUM

NGCPROD

NGCLAST

CGC
TIGC
MGC
HLGC
CLSGC
MLGCSUM

MLGCPROD

MLGCLAST

Best #Feat

(c) 1DCNN

75.4
79.9
84.5
89.0
93.5
98.0

Le
ve

l 1
F1

 S
co

re
 [%

]

68.7
73.2
77.8
82.3
86.8
91.3

Le
ve

l 2
F1

 S
co

re
 [%

]

4 10 20 30 50
Number of Features

45.9
54.3
62.7
71.1
79.6
88.0

Le
ve

l 3
F1

 S
co

re
 [%

]

Approach
FC
LCPN
NGCSUM

NGCPROD

NGCLAST

CGC
TIGC
MGC
HLGC
CLSGC
MLGCSUM

MLGCPROD

MLGCLAST

Best #Feat

(d) LSTM

87.1
89.4
91.6
93.8
96.0
98.2

Le
ve

l 1
F1

 S
co

re
 [%

]

82.2
84.2
86.3
88.3
90.4
92.4

Le
ve

l 2
F1

 S
co

re
 [%

]

4 10 20 50
Number of Features

61.9
67.4
72.9
78.4
84.0
89.5

Le
ve

l 3
F1

 S
co

re
 [%

]

Approach
FC
LCPN
NGCSUM

NGCPROD

NGCLAST

CGC
TIGC
MGC
HLGC
CLSGC
MLGCSUM

MLGCPROD

MLGCLAST

Best #Feat

(e) 2DCNN

91.5
92.9
94.2
95.6
97.0
98.3

Le
ve

l 1
F1

 S
co

re
 [%

]

85.9
87.3
88.7
90.1
91.5
92.9

Le
ve

l 2
F1

 S
co

re
 [%

]

4 10 20 50
Number of Features

75.2
78.1
81.0
83.9
86.8
89.7

Le
ve

l 3
F1

 S
co

re
 [%

]

Approach
FC
LCPN
NGCSUM

NGCPROD

NGCLAST

CGC
TIGC
MGC
HLGC
CLSGC
MLGCSUM

MLGCPROD

MLGCLAST

Best #Feat

(f) 2DCNN+LSTM

Figure 5.3: Sensitivity to number of features for single-modal models which are fed
with the respective feature set. Results are reported as avg. ± std. over
the 10-folds.

As abovementioned, in this section we perform the optimization of the
input size (viz. number of features) for each ML and DL model, by sepa-
rately considering hierarchical classification approaches. The F1 Score is re-
ported for each level (viz. from L1 to L3) by coarsening the prediction at

5.3. EXPERIMENTAL RESULTS 113

the finest granularity L3, i.e. starting from leaf nodes predictions we ascend
the hierarchical branches to obtain coarser predictions. It is worth noting that
the MIMETIC model is not considered for the sensitivity analysis because
the multimodal nature of the input causes a combinatorial explosion of the
search space, opting for the per-modality optimization as shown in the paper
the model is proposed [16]. Accordingly, we selected for the MIMETIC model
12 packets for the HDR set of features (viz. first modality) and 512 bytes for
the PAY ones (viz. second modality).

In detail, in Figs. 5.3a and 5.3b we report performance varying the number
of STAT features from 4 to 40, with step 4, for RF and XGB, respectively.
We recall that these features are selected based on their ranking, which is ob-
tained via mutual information [124]. Noteworthy, the best number of features
(star markers) is always 40 for both models and for all the approaches. The
few exceptions regard the first level prediction of RF, where NGCSUM and
NGCPROD saturate at 8 and the LCPN at 28 features. From this analysis it
is clear that the best results on the STAT features are obtained by selecting the
entire set of features, i.e. 40.

Focusing on the PAY set of features, and thus to the 1DCNN model shown
in Fig. 5.3c, it is clear that for the last level the optimal number of features (viz.
the optimal number of payload bytes) is 625 for the majority of approaches
with few exceptions falling around this value. Noteworthy, this trend is con-
firmed considering coarsest level of aggregation, with performance on L1 that
reaches a plateau for all the approaches at 625 bytes.

Considering the F1 score trend for the HDR set of features, namely
Figs. 5.3d, 5.3e, and 5.3f, we remark that 10 packets (viz. features) are
enough to obtain the best performance. In addition, it is worth noting the neg-
ative effect on performance caused by the selection of more than 10 packets.
Exceptionally, the HLGC is the sole approach consistently showing the best
performance at 20 packets for the three models, namely LSTM, 2DCNN, and
2DCNN+LSTM. Ascending the hierarchy, 10 packets is consistently selected
as the best number of features across all approach/model combinations.

5.3.2 Comparing Best Configurations

In Fig. 5.4 the comparison of the (hierarchical) F1 score for each combinations
model/approach we validated is shown by selecting the best number of features
for each configuration. The figures show, for each model, the best (i.e. the
green triangle pointing up) and the worst (i.e. the red triangle pointing down)
approach, in terms of F1 score and hierarchical F1 score. Noteworthy, looking

114 CHAPTER 5. TRAFFIC MANAGEMENT USE CASE

50
60
70
80
90

100

Le
ve

l 1
F1

 S
co

re
 [%

]
50
60
70
80
90

100

Le
ve

l 2
F1

 S
co

re
 [%

]

RF XGB 1DCNN LSTM 2DCNN 2DCNN + LSTM MIMETIC
Model

50
60
70
80
90

100
Le

ve
l 3

F1
 S

co
re

 [%
]

Approach
FC
LCPN
NGCSUM

NGCPROD

NGCLAST

CGC
TIGC
MGC
HLGC
CLSGC
MLGCSUM

MLGCPROD

MLGCLAST

(a) F1 Score

50
60
70
80
90

100

Le
ve

l 1
hF

1
Sc

or
e

[%
]

50
60
70
80
90

100

Le
ve

l 2
hF

1
Sc

or
e

[%
]

RF XGB 1DCNN LSTM 2DCNN 2DCNN + LSTM MIMETIC
Model

50
60
70
80
90

100

Le
ve

l 3
hF

1
Sc

or
e

[%
]

Approach
FC
LCPN
NGCSUM

NGCPROD

NGCLAST

CGC
TIGC
MGC
HLGC
CLSGC
MLGCSUM

MLGCPROD

MLGCLAST

(b) hF1 Score

Figure 5.4: Comparison of classification performance, i.e. F1 (a) and hF1 (b) Scores,
by selecting the optimal number of features for each model-approach
combination, using MIRAGE-ext dataset. Fixed the model, the facing
up (down) green (red) triangle indicates the best (worst) approach. Re-
sults are reported as avg.± std. over the 10-folds.

at Fig. 5.4a by considering the finest granularity (L3), the approaches which
are selected as worst are theHLGC for DL-based models and theNGCPROD

for the ML-based ones. On the other hand, the best approach is the FC, which
shows the highest F1 score for 4 out of 7 models, followed by the NGC and
the CGC. Despite these findings elect the flat classification as the best per-

5.3. EXPERIMENTAL RESULTS 115

forming, going up through the hierarchy, the results show a different story. In
fact, at both app category and traffic type classification (viz. L2 and L1, re-
spectively) the global classifiers take the throne, showing better performance
for 5 out of 7 models at both L2 and L1. As a general comment, the MLGC
approach is hard to train when using the LSTM model, and the product-based
post-processing aggregation applied to the NGC (viz. NGCPROD) is always
worse than the sum-based one (viz. NGCSUM). Moreover, in Fig. 5.4b the
hierarchical F1 score is shown. In this case, the FC is no more the best ap-
proach for the application level classification (L3), leaving the floor for solu-
tions based on global classifiers which show higher performance for 5 out of
7 models. In detail, the hierarchical version of the F1 score metric is more
complete with respect to the classical one because it considers the classifica-
tion behavior through the entire hierarchy of labels, catching the behavior at
coarser granularities, i.e. when non-mandatory leaf prediction is enforced.

5.3.3 Reliability Analysis

XGB 1DCNN 2DCNN + LSTM MIMETIC
Model

102

101

100

0

100

101

102

EC
E

[%
]

|g
ai

n|

Approach
LCPN
NGCSUM

NGCPROD

NGCLAST

CGC
TIGC

MGC
HLGC
CLSGC
MLGCSUM

MLGCPROD

MLGCLAST

(a) ECE

XGB 1DCNN 2DCNN + LSTM MIMETIC
Model

102

101

100

0

100

101

102

hE
CE

 [%
]

|g
ai

n|

Approach
LCPN
NGCSUM

NGCPROD

NGCLAST

CGC
TIGC

MGC
HLGC
CLSGC
MLGCSUM

MLGCPROD

MLGCLAST

(b) hECE

XGB 1DCNN 2DCNN + LSTM MIMETIC
Model

102

101

100

0

100

101

102

M
CE

 [%
]

|g
ai

n|

Approach
LCPN
NGCSUM

NGCPROD

NGCLAST

CGC
TIGC

MGC
HLGC
CLSGC
MLGCSUM

MLGCPROD

MLGCLAST

(c) MCE

XGB 1DCNN 2DCNN + LSTM MIMETIC
Model

102

101

100

0

100

101

102

hM
CE

 [%
]

|g
ai

n|

Approach
LCPN
NGCSUM

NGCPROD

NGCLAST

CGC
TIGC

MGC
HLGC
CLSGC
MLGCSUM

MLGCPROD

MLGCLAST

(d) hMCE

Figure 5.5: Drop from the FC technique in terms of ECE (hECE) and MCE (hMCE).

In this section we present the model calibration analysis by comparing
the absolute gain from the FC approach of reliability metrics introduced in

116 CHAPTER 5. TRAFFIC MANAGEMENT USE CASE

Sec. 2.3.5, namely (hierarhical) ECE and MCE, (Fig. 5.5) for all the eval-
uated hierarchical learning solutions. For sake of brevity and uniformity of
results among the three defined feature sets, we report calibration diagrams
for the best model for each set of features, showing XGB for the STAT ,
the 1DCNN for the PAY , the 2DCNN + LSTM for the HDR, and
MIMETIC because of the multimodal input (viz. PAY +HDR). We un-
derline that the metrics are shown for the finest level of classification (viz.
application).

What emerged from this analysis is that, focusing on the nonhierarchical
ECE and MCE NGCPROD, NGCLAST , and MLGCLAST consistently show
positive gains considering DL-based models, reaching a≈ +5% ECE gain and
a ≈ +13% MCE gain for the NGCLAST leveraging the 1DCNN . Moreover,
focusing on the MCE metric for the 1DCNN model 5 out of 8 hierarchical
approaches show a positive gain ranging from ≈ +3% to ≈ +13% MCE.
Then, focusing on the hierarchical version of ECE and MCE, which are based
on the hierarchical accuracy thus including non-mandatory leaf prediction im-
pact, both LCPN and NGCPROD show an opposite behavior with respect to
nonhierarchical metrics by showing positive gains. As a general comment to
Fig. 5.5, the NGCSUM , HLGC, and MLGCSUM approaches systematically
obtain a negative gain considering the four reliability metrics.

5.3.4 Reject Option Analysis

Finally, in this section we show the impact of the reject option with respect
to approaches show a positive gain in terms of reliability metrics against the
FC, namely the CGC, LCPN , MLGCLAST , and NGCLAST hierarchical
learning approaches, focusing on the best approaches, i.e. DL-based. In detail,
figures in Fig. 5.6 show the absolute gains of F1 Score and the percentage
of Classified Ratio by varying the reject option threshold in the range (0, 1)
with respect to the flat classifiers. It is worth noting that these figures have
different colored backgrounds, namely green (positive gain), orange (negative
but limited gain, i.e. > −0.1 for the F1 score and > −1% for the CR), and
red (negative gain), which aid in visualize the trade-off between classification
performance and classified ratio. Accordingly, in all the figures in Fig. 5.6 the
trends of F1 Score gain are opposed to the CR because these two metrics are
in trade-off. Noteworthy, the CGC is the approach behave more similarly to
the FC, consistently following the zero-gain dashed line for each considered
model. Moreover, no couple of F1 Score and CR points falls in the green areas.
In other words, hierarchical learning approaches does not beat the trade-off

5.3. EXPERIMENTAL RESULTS 117

0.00

0.01

F1
 S

co
re

|g
ai

n|

CGC LCPN MLGCLAST NGCLAST

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-10.00

-1.00

0.00

CR
 [%

]
|g

ai
n|

(a) 1DCNN

-0.01

0.00

0.01

F1
 S

co
re

|g
ai

n|

CGC LCPN MLGCLAST NGCLAST

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-10.00

-1.00

0.00

1.00

CR
 [%

]
|g

ai
n|

(b) 2DCNN

-0.10

-0.01

0.00

0.01

F1
 S

co
re

|g
ai

n|

CGC LCPN MLGCLAST NGCLAST

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-10.00
-1.00

0.00

1.00

CR
 [%

]
|g

ai
n|

(c) LSTM

-0.01

0.00

0.01
F1

 S
co

re
|g

ai
n|

CGC LCPN MLGCLAST NGCLAST

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-1.00

0.00

1.00

CR
 [%

]
|g

ai
n|

(d) 2DCNN+LSTM

-0.01

0.00

0.01

F1
 S

co
re

|g
ai

n|

CGC LCPN MLGCLAST NGCLAST

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-1.00

0.00

1.00

CR
 [%

]
|g

ai
n|

(e) MIMETIC

Figure 5.6: Best hierarchical classification approaches vs. FC when reject option is
enforced.

offered by the flat approach. The sole exception is given by the LCPN with
1DCNN at γ = 0.5, but the gain w.r.t. FC is very limited. To this extent,
we consider as successful the F1 Score/CR trade-offs points with a metric on

118 CHAPTER 5. TRAFFIC MANAGEMENT USE CASE

the orange background (or very near to the boundary with the red one) and the
other on the green. Detailing, looking at Fig. 5.6a (viz. 1DCNN model) the
NGCLAST obtains a positive gain of≈ +2% F1 Score with a limited CR gain
of ≈ −1% for the threshold γ = 0.2, up to reach a maximum of F1 Score
with γ = 0.7, namely scoring ≈ +5% with a huge negative gain of ≈ −9%
for the CR. On a similar fashion, the MLGCLAST approach obtain ≈ +2%
F1 Score with a small negative gain for the CR, i.e. ≈ −1%, when γ = 0.9.
Furthermore, from Fig. 5.6b the main finding is related to the NGCLAST ,
which obtain (at γ = 0.7) a F1 Score gain of up to ≈ +3% with a CR negative
gain of ≈ −10%. Finally, the last outcome that is worth to mention is shown
in Fig. 5.6e, where the LCPN obtain ≈ +1% CR with a F1 Score reduction
of ≈ −1%.

Conclusions

In this thesis a Hierarchical Learning Framework for Network Traffic Analysis
is proposed, in order to obtain advantages in terms of fine-grain classification
performance by exploiting (hierarchical) dependencies among network traffic
classes which are included in the training phase of machine- and deep-learning
models. Thus, we provide the design choices which results in a framework
composed of three fundamental components, namely the traffic segmentation
and the features extraction components, and the hierarchical learning engine.
Whereas the first two modules enforce data preprocessing procedures in or-
der to group raw network traffic into traffic object, each characterized by a
set of features, in order to feed models managed by the hierarchical learning
engine. In detail, we designed a top-down approach named local classifier
per parent node, and 7 global classifier approaches by exploiting well known
modeling techniques, such as multitask learning, task-incremental learning,
multi-label learning, and contextual label smoothing. Moreover, among de-
signed approaches for hierarchical learning, we capitalize the purely hierarchi-
cal nature of the local classifier per parent node approach (composed of models
arranged in a tree by following the hierarchical dependencies among network
traffic classes) to design a Big Data-enabled training procedure, with the ob-
jective of speeding up the training phase of such approach by capitalizing both
model and data parallelism. Along this direction, we deeply explored the en-
forcement of a hierarchical reject option, obtained by censoring unconfident
classification verdicts, which can result in advantages in terms of classification
performance (at the expense of some not classified traffic) and which enables
an open-set classification for detecting unknown traffic classes.

Finally, the proposed hierarchical learning framework is evaluated against
three use cases, each one related to a particular application of network traffic
analysis, namely: (i) the classification of anonymity tools, falling in privacy-
related applications; (ii) the detection of intrusions in IoT environments, thus
dealing with security related issues; and (iii) the classification of traffic gen-

119

120 CONCLUSION

erated by mobile applications, to facilitate the fine-grain enforcement of traffic
management solutions. From these evaluations we (i) assessed the superior-
ity of the local classifier per parent node against a flat (viz. non hierarchical)
approach in terms of classification performance, training time, and deploy-
ment cost, when dealing with the classification of anonymity tools; (ii) clearly
obtained advantages in terms of anomaly detection and unknown attack clas-
sification performance by adopting a two levels solution for intrusion detec-
tion instead of a single level multi-class misuse detector; and (iii) broadly
compared 8 hierarchical learning approaches in performing mobile applica-
tion traffic classification, showing pros and cons from various perspectives,
i.e. classification performance, models reliability, and impact of reject option,
both with and without the mandatory leaf node prediction constraint.

Bibliography

[1] Eva Papadogiannaki and Sotiris Ioannidis. A survey on encrypted net-
work traffic analysis applications, techniques, and countermeasures.
ACM Computing Surveys (CSUR), 54(6):1–35, 2021.

[2] Alberto Dainotti, Antonio Pescape, and Kimberly C Claffy. Issues and
future directions in traffic classification. IEEE network, 26(1):35–40,
2012.

[3] Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, and Antonio
Pescapé. Multi-classification approaches for classifying mobile app
traffic. Journal of Network and Computer Applications, 103:131–145,
2018.

[4] Alberto Dainotti, Antonio Pescapé, and Giorgio Ventre. Worm traf-
fic analysis and characterization. In IEEE international conference on
communications, pages 1435–1442, 2007.

[5] Antonio Montieri, Domenico Ciuonzo, Giuseppe Aceto, and Antonio
Pescapé. Anonymity services Tor, I2P, JonDonym: Classifying in the
dark. In IEEE International Teletraffic Congress (ITC 29), volume 1,
pages 81–89, 2017.

[6] Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, and Anto-
nio Pescapé. Toward effective mobile encrypted traffic classification
through deep learning. Neurocomputing, 409:306–315, 2020.

[7] Thuy TT Nguyen and Grenville J Armitage. A survey of techniques for
internet traffic classification using machine learning. IEEE Communi-
cations Surveys and Tutorials, 10(1-4):56–76, 2008.

121

122 BIBLIOGRAPHY

[8] Petr Velan, Milan Čermák, Pavel Čeleda, and Martin Drašar. A survey
of methods for encrypted traffic classification and analysis. Interna-
tional Journal of Network Management, 25(5):355–374, 2015.

[9] Fannia Pacheco, Ernesto Exposito, Mathieu Gineste, Cedric Baudoin,
and Jose Aguilar. Towards the deployment of machine learning solu-
tions in network traffic classification: A systematic survey. IEEE Com-
munications Surveys & Tutorials, 21(2):1988–2014, 2018.

[10] Preeti Mishra, Vijay Varadharajan, Uday Tupakula, and Emmanuel S.
Pilli. A detailed investigation and analysis of using machine learning
techniques for intrusion detection. IEEE Commun. Surveys Tuts., 2018.

[11] Nadia Chaabouni, Mohamed Mosbah, Akka Zemmari, Cyrille Sauvi-
gnac, and Parvez Faruki. Network intrusion detection for iot security
based on learning techniques. IEEE Communications Surveys & Tuto-
rials, 21(3):2671–2701, 2019.

[12] Yanfang Ye, Tao Li, Donald Adjeroh, and S Sitharama Iyengar. A sur-
vey on malware detection using data mining techniques. ACM Comput-
ing Surveys (CSUR), 50(3):1–40, 2017.

[13] Giuseppe Aceto and Antonio Pescapé. Internet censorship detection: A
survey. Computer Networks, 83:381–421, 2015.

[14] Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, Valerio Per-
sico, and Antonio Pescapé. Mirage: Mobile-app traffic capture and
ground-truth creation. In International Conference on Computing, Com-
munications and Security (ICCCS), pages 1–8. IEEE, 2019.

[15] Alberto Dainotti, Francesco Gargiulo, Ludmila I Kuncheva, Antonio
Pescapè, and Carlo Sansone. Identification of traffic flows hiding behind
tcp port 80. In IEEE International Conference on Communications,
pages 1–6, 2010.

[16] Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, and Antonio
Pescapè. Mimetic: Mobile encrypted traffic classification using multi-
modal deep learning. Computer Networks, 165:106944, 2019.

[17] Vincent F Taylor, Riccardo Spolaor, Mauro Conti, and Ivan Marti-
novic. Robust smartphone app identification via encrypted network traf-
fic analysis. IEEE Transactions on Information Forensics and Security,
13(1):63–78, 2017.

BIBLIOGRAPHY 123

[18] Laurent Bernaille, Renata Teixeira, Ismael Akodkenou, Augustin Soule,
and Kave Salamatian. Traffic classification on the fly. ACM SIGCOMM
Computer Communication Review, 36(2):23–26, 2006.

[19] Manuel Crotti, Maurizio Dusi, Francesco Gringoli, and Luca Salgar-
elli. Traffic classification through simple statistical fingerprinting. ACM
SIGCOMM Computer Communication Review, 37(1):5–16, 2007.

[20] Pedro M Santiago del Rio, Dario Rossi, Francesco Gringoli, Lorenzo
Nava, Luca Salgarelli, and Javier Aracil. Wire-speed statistical classi-
fication of network traffic on commodity hardware. In Proceedings of
the Internet Measurement Conference, pages 65–72, 2012.

[21] Zhanyi Wang. The applications of deep learning on traffic identification.
BlackHat USA, 2015.

[22] Wei Wang, Ming Zhu, Jinlin Wang, Xuewen Zeng, and Zhongzhen
Yang. End-to-end encrypted traffic classification with one-dimensional
convolution neural networks. In 2017 IEEE International Confer-
ence on Intelligence and Security Informatics (ISI), pages 43–48. IEEE,
2017.

[23] Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, and Antonio
Pescapé. Mobile encrypted traffic classification using deep learning. In
Proc. IEEE TMA, 2018.

[24] Manuel Lopez-Martin, Belen Carro, Antonio Sanchez-Esguevillas, and
Jaime Lloret. Network traffic classifier with convolutional and recurrent
neural networks for internet of things. IEEE Access, 5:18042–18050,
2017.

[25] Mohammad Lotfollahi, Mahdi Jafari Siavoshani, Ramin Shirali Hossein
Zade, and Mohammdsadegh Saberian. Deep packet: A novel approach
for encrypted traffic classification using deep learning. Soft Computing,
24(3), 2020.

[26] Carlos N Silla and Alex A Freitas. A survey of hierarchical classifica-
tion across different application domains. Data Mining and Knowledge
Discovery, 22(1):31–72, 2011.

124 BIBLIOGRAPHY

[27] Hong Zhao, Qinghua Hu, Pengfei Zhu, Yu Wang, and Ping Wang. A
recursive regularization based feature selection framework for hierar-
chical classification. IEEE Transactions on Knowledge and Data Engi-
neering, 2019.

[28] Xinxin Liu and Hong Zhao. Hierarchical feature extraction based on
discriminant analysis. Applied Intelligence, 49(7):2780–2792, 2019.

[29] Arijit Patra and Julia Alison Noble. Hierarchical class incremen-
tal learning of anatomical structures in fetal echocardiography videos.
IEEE journal of biomedical and health informatics, 24(4):1046–1058,
2020.

[30] Rodolfo M Pereira, Diego Bertolini, Lucas O Teixeira, Carlos N Silla Jr,
and Yandre MG Costa. Covid-19 identification in chest x-ray images
on flat and hierarchical classification scenarios. Computer Methods and
Programs in Biomedicine, 194:105532, 2020.

[31] Weijie Zheng and Hong Zhao. Cost-sensitive hierarchical classification
via multi-scale information entropy for data with an imbalanced distri-
bution. Applied Intelligence, pages 1–13, 2021.

[32] Xinxin Liu and Hong Zhao. Robust hierarchical feature selection with
a capped ℓ2-norm. Neurocomputing, 443:131–146, 2021.

[33] Shunxin Guo, Hong Zhao, and Wenyuan Yang. Hierarchical feature
selection with multi-granularity clustering structure. Information Sci-
ences, 568:448–462, 2021.

[34] Ju-Youn Park and Jong-Hwan Kim. Incremental class learning for hi-
erarchical classification. IEEE transactions on cybernetics, 50(1):178–
189, 2018.

[35] Ankita Raj, Anima Majumder, and Swagat Kumar. Hifi: A hierarchical
framework for incremental learning using deep feature representation.
In 2019 28th IEEE International Conference on Robot and Human In-
teractive Communication (RO-MAN), pages 1–6. IEEE, 2019.

[36] Zhenzhong Kuang, Zongmin Li, Tianyi Zhao, and Jianping Fan. Deep
multi-task learning for large-scale image classification. In 2017 IEEE
Third International Conference on Multimedia Big Data (BigMM),
pages 310–317. IEEE, 2017.

BIBLIOGRAPHY 125

[37] Salim Malakouti and Milos Hauskrecht. Hierarchical adaptive multi-
task learning framework for patient diagnoses and diagnostic category
classification. In 2019 IEEE International Conference on Bioinformat-
ics and Biomedicine (BIBM), pages 701–706. IEEE, 2019.

[38] Xiaoni Li, Yucan Zhou, Yu Zhou, and Weiping Wang. Mmf: Multi-task
multi-structure fusion for hierarchical image classification. In Interna-
tional Conference on Artificial Neural Networks, pages 61–73. Springer,
2021.

[39] Julio Noe Hernandez, Luis Enrique Sucar, and Eduardo F Morales.
A hybrid global-local approach for hierarchical classification. In The
Twenty-Sixth International FLAIRS Conference, 2013.

[40] Chunlin Zhang, Ju Jiang, and Mohamed Kamel. Intrusion detection
using hierarchical neural networks. Pattern Recognition Letters, 26(6):
779–791, 2005.

[41] Azeem Khan and Shehroz Khan. Two level anomaly detection classifier.
In IEEE ICCEE’08, pages 65–69, 2008.

[42] Farrukh Aslam Khan, Abdu Gumaei, Abdelouahid Derhab, and Amir
Hussain. TSDL: A two-stage deep learning model for efficient network
intrusion detection. IEEE Access, 2019.

[43] Hui Lu and Jinhua Xu. Three-level hybrid intrusion detection system.
In IEEE ICIECS, pages 1–4, 2009.

[44] Jae-Hak Yu, Han-Sung Lee, Young-Hee Im, Myung-Sup Kim, and Dai-
Hee Park. Real-time classification of internet application traffic using a
hierarchical multi-class svm. KSII Transactions on Internet and Infor-
mation Systems (TIIS), 4(5):859–876, 2010.

[45] Luigi Grimaudo, Marco Mellia, and Elena Baralis. Hierarchical learn-
ing for fine grained internet traffic classification. In International Wire-
less Communications and Mobile Computing Conference (IWCMC),
pages 463–468. IEEE, 2012.

[46] Ji-hye Kim, Sung-Ho Yoon, and Myung-Sup Kim. Study on traffic clas-
sification taxonomy for multilateral and hierarchical traffic classifica-
tion. In 2012 14th Asia-Pacific Network Operations and Management
Symposium (APNOMS), pages 1–4. IEEE, 2012.

126 BIBLIOGRAPHY

[47] Sung-Ho Yoon, Kyu-Seok Shim, Su-Kang Lee, and Myung-Sup Kim.
Framework for multi-level application traffic identification. In Asia-
Pacific Network Operations and Management Symposium (APNOMS),
pages 424–427. IEEE, 2015.

[48] Wazen M Shbair, Thibault Cholez, Jérôme François, and Isabelle Chris-
ment. A multi-level framework to identify HTTPS services. In
IEEE/IFIP NOMS, pages 240–248, 2016.

[49] Chun Guo, Yuan Ping, Nian Liu, and Shou-Shan Luo. A two-level hy-
brid approach for intrusion detection. Neurocomputing, 214:391–400,
2016.

[50] Soo-Yeon Ji, Bong-Keun Jeong, Seonho Choi, and Dong Hyun Jeong. A
multi-level intrusion detection method for abnormal network behaviors.
Elsevier JNCA, 62:9–17, 2016.

[51] Yu-ning Dong, Jia-jie Zhao, and Jiong Jin. Novel feature selection and
classification of internet video traffic based on a hierarchical scheme.
Computer Networks, 119:102–111, 2017.

[52] Quentin Schueller, Kashinath Basu, Muhammad Younas, Mohit Patel,
and Frank Ball. A hierarchical intrusion detection system using support
vector machine for SDN network in cloud data center. In IEEE ITNAC,
pages 1–6, 2018.

[53] Zheng Wu, Yuning Dong, Lingyun Yang, and Pingping Tang. A new
structure for internet video traffic classification using machine learning.
In 2018 Sixth International Conference on Advanced Cloud and Big
Data (CBD), pages 322–327. IEEE, 2018.

[54] Liangmin Wang, Hantao Mei, and Victor S Sheng. Multilevel identi-
fication and classification analysis of tor on mobile and pc platforms.
IEEE Transactions on Industrial Informatics, 17(2):1079–1088, 2020.

[55] Onur Barut, Yan Luo, Tong Zhang, Weigang Li, and Peilong Li. Multi-
task hierarchical learning based network traffic analytics. arXiv preprint
arXiv:2106.03850 (Acc. ICC21), 2021.

[56] Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, Valerio Per-
sico, and Antonio Pescapé. Know your big data trade-offs when clas-
sifying encrypted mobile traffic with deep learning. In IEEE/ACM Net-
work Traffic Measurement and Analysis Conference (TMA), 2019.

BIBLIOGRAPHY 127

[57] Xunzhang Li, Yong Wang, Wenlong Ke, and Hao Feng. Real-time net-
work traffic classification based on CDH pattern matching. In IEEE
14th International Conference on Computational Intelligence and Se-
curity (CIS), pages 130–134, 2018.

[58] Valerio D’Alessandro, Byungchul Park, Luigi Romano, Christof Fetzer,
et al. Scalable network traffic classification using distributed support
vector machines. In IEEE 8th International Conference on Cloud Com-
puting (ICCC), pages 1008–1012, 2015.

[59] Martino Trevisan, Idilio Drago, Marco Mellia, Han Hee Song, and
Mario Baldi. WHAT: A big data approach for accounting of mod-
ern web services. In IEEE International Conference on Big Data (Big
Data), pages 2740–2745, 2016.

[60] Jia Lingyu, Liu Yang, Wang Bailing, Liu Hongri, and Xin Guodong.
A hierarchical classification approach for tor anonymous traffic. In
IEEE International conference on communication software and net-
works (ICCSN), pages 239–243, 2017.

[61] Masataka Mizukoshi and Masaharu Munetomo. Distributed denial of
services attack protection system with genetic algorithms on Hadoop
cluster computing framework. In IEEE Congress on Evolutionary Com-
putation (CEC), pages 1575–1580, 2015.

[62] Zhengwu Yuan and Chaozheng Wang. An improved network traf-
fic classification algorithm based on Hadoop decision tree. In IEEE
International Conference of Online Analysis and Computing Science
(ICOACS), pages 53–56, 2016.

[63] Sufian Hameed and Usman Ali. Efficacy of live DDoS detection with
hadoop. In NOMS 2016-2016 IEEE/IFIP Network Operations and Man-
agement Symposium, pages 488–494. IEEE, 2016.

[64] Luong-Vy Le, Bao-Shuh Lin, and Sinh Do. Applying big data, machine
learning, and SDN/NFV for 5G early-stage traffic classification and net-
work QoS control. Transactions on Networks and Communications, 6
(2):36, 2018.

[65] Amjad Alsirhani, Srinivas Sampalli, and Peter Bodorik. DDoS detec-
tion system: Using a set of classification algorithms controlled by fuzzy

128 BIBLIOGRAPHY

logic system in Apache Spark. IEEE Transactions on Network and Ser-
vice Management, 16(3):936–949, 2019.

[66] Jae-Hak Yu, Han-Sung Lee, Young-Hee Im, Myung-Sup Kim, and Dai-
Hee Park. Real-time classification of internet application traffic using a
hierarchical multi-class svm. KSII Transactions on Internet and Infor-
mation Systems (TIIS), 4(5):859–876, 2010.

[67] Siddharth Gopal and Yiming Yang. Recursive regularization for large-
scale classification with hierarchical and graphical dependencies. In
Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 257–265, 2013.

[68] Eric P Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seung-
hak Lee, Xun Zheng, Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu.
Petuum: A new platform for distributed machine learning on big data.
IEEE Transactions on Big Data, 1(2):49–67, 2015.

[69] Kai Yang, Hui Ma, and Shaoyu Dou. Fog intelligence for network
anomaly detection. IEEE Network, 34(2):78–82, 2020.

[70] Niccolo Cascarano, Alice Este, Francesco Gringoli, Fulvio Risso, and
Luca Salgarelli. An experimental evaluation of the computational cost
of a dpi traffic classifier. In GLOBECOM IEEE Global Telecommuni-
cations Conference, pages 1–8. IEEE, 2009.

[71] Haipeng Yao, Danyang Fu, Peiying Zhang, Maozhen Li, and Yunjie Liu.
MSML: A novel multi-level semi-supervised machine learning frame-
work for intrusion detection system. IEEE Internet Things J., 2018.

[72] Jiaqi Li, Zhifeng Zhao, Rongpeng Li, Honggang Zhang, and Tianhao
Zhang. AI-based two-stage intrusion detection for software defined IoT
networks. IEEE Internet Things J., 2018.

[73] Imtiaz Ullah and Qusay H. Mahmoud. A two-level hybrid model for
anomalous activity detection in IoT networks. In IEEE CCNC, pages
1–6, 2019.

[74] Yair Meidan, Michael Bohadana, Yael Mathov, Yisroel Mirsky,
Asaf Shabtai, Dominik Breitenbacher, and Yuval Elovici. N-baIoT
—network-based detection of IoT botnet attacks using deep autoen-
coders. IEEE Pervasive Computing, 17(3):12–22, 2018.

BIBLIOGRAPHY 129

[75] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai.
Kitsune: an ensemble of autoencoders for online network intrusion de-
tection. arXiv preprint, 2018.

[76] Fredrik Jejdling et al. Ericsson mobility report. Ericsson AB, Business
Area Networks, Stockholm, Sweden, Tech. Rep. EAB-20, 9174, Novem-
ber 2020.

[77] Khalid Shahbar and A Nur Zincir-Heywood. Packet momentum for
identification of anonymity networks. Journal of Cyber Security and
Mobility, pages 27–56, 2017.

[78] Stephen R Lawrence and Edward C Sewell. Heuristic, optimal, static,
and dynamic schedules when processing times are uncertain. Journal of
Operations Management, 15(1):71–82, 1997.

[79] Yen-Chang Hsu, Yen-Cheng Liu, Anita Ramasamy, and Zsolt Kira. Re-
evaluating continual learning scenarios: A categorization and case for
strong baselines. arXiv preprint arXiv:1810.12488, 2018.

[80] Matthias Delange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia,
Ales Leonardis, Greg Slabaugh, and Tinne Tuytelaars. A continual
learning survey: Defying forgetting in classification tasks. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2021.

[81] Cinna Wu, Mark Tygert, and Yann LeCun. A hierarchical loss and
its problems when classifying non-hierarchically. Plos one, 14(12):
e0226222, 2019.

[82] Michael J Trammell, Priyanka Oberoi, James Egenrieder, and John
Kaufhold. Contextual label smoothing with a phylogenetic tree on the
inaturalist 2018 challenge dataset. Washington Academy of Sciences.
Journal of the Washington Academy of Sciences, (1):23–45, 2019.

[83] J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

[84] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[85] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd acm sigkdd international conference
on knowledge discovery and data mining, pages 785–794, 2016.

130 BIBLIOGRAPHY

[86] Bernhard Schölkopf, Robert C Williamson, Alexander J Smola, John
Shawe-Taylor, John C Platt, et al. Support vector method for novelty
detection. In NIPS, volume 12, pages 582–588. Citeseer, 1999.

[87] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In
IEEE ICDM’08, pages 413–422.

[88] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg
Sander. LOF: identifying density-based local outliers. In ACM Sigmod
Record’00, volume 29, pages 93–104.

[89] Giuseppina Andresini, Annalisa Appice, Nicola Di Mauro, Corrado
Loglisci, and Donato Malerba. Exploiting the auto-encoder residual
error for intrusion detection. In IEEE EuroS&PW’19, 2019.

[90] Aris Kosmopoulos, Ioannis Partalas, Eric Gaussier, Georgios Paliouras,
and Ion Androutsopoulos. Evaluation measures for hierarchical classi-
fication: a unified view and novel approaches. Data Mining and Knowl-
edge Discovery, 29(3):820–865, 2015.

[91] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On cal-
ibration of modern neural networks. In International Conference on
Machine Learning, pages 1321–1330. PMLR, 2017.

[92] John Barker, Peter Hannay, and Patryk Szewczyk. Using traffic anal-
ysis to identify the second generation onion router. In IFIP Interna-
tional Conference on Embedded and Ubiquitous Computing, pages 72–
78. IEEE, 2011.

[93] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. Web-
site fingerprinting: attacking popular privacy enhancing technologies
with the multinomial naïve-bayes classifier. In Proceedings of the ACM
workshop on Cloud computing security, pages 31–42, 2009.

[94] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas En-
gel. Website fingerprinting in onion routing based anonymization net-
works. In Proceedings of the 10th annual ACM workshop on Privacy in
the electronic society, pages 103–114, 2011.

[95] Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel, An-
dreas Zinnen, Martin Henze, and Klaus Wehrle. Website fingerprinting
at internet scale. In NDSS, 2016.

BIBLIOGRAPHY 131

[96] Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom Van Goethem, and
Wouter Joosen. Automated feature extraction for website fingerprinting
through deep learning. In NDSS Symposium, 2018.

[97] Payap Sirinam, Mohsen Imani, Marc Juarez, and Matthew Wright.
Deep fingerprinting: Undermining website fingerprinting defenses with
deep learning. In Proceedings of ACM SIGSAC Conference on Com-
puter and Communications Security, pages 1928–1943, 2018.

[98] Gaofeng He, Ming Yang, Junzhou Luo, and Xiaodan Gu. Inferring ap-
plication type information from tor encrypted traffic. In Second Inter-
national Conference on Advanced Cloud and Big Data, pages 220–227.
IEEE, 2014.

[99] Mashael AlSabah, Kevin Bauer, and Ian Goldberg. Enhancing Tor’s
performance using real-time traffic classification. In Proceedings of
ACM conference on Computer and communications security, pages 73–
84, 2012.

[100] Khalid Shahbar and A Nur Zincir-Heywood. Benchmarking two tech-
niques for tor classification: Flow level and circuit level classification.
In Symposium on Computational Intelligence in Cyber Security (CICS),
pages 1–8. IEEE, 2014.

[101] Khalid Shahbar and A Nur Zincir-Heywood. An analysis of Tor plug-
gable transports under adversarial conditions. In IEEE Symposium Se-
ries on Computational Intelligence (SSCI), pages 1–7, 2017.

[102] Khalid Shahbar and A Nur Zincir-Heywood. Effects of shared band-
width on anonymity of the I2P network users. In IEEE Security and
Privacy Workshops (SPW), pages 235–240, 2017.

[103] Arash Habibi Lashkari, Gerard Draper-Gil, Mohammad Saiful Islam
Mamun, and Ali A Ghorbani. Characterization of Tor traffic using time
based features. In ICISSp, pages 253–262, 2017.

[104] Stefan Burschka and Benoît Dupasquier. Tranalyzer: Versatile high
performance network traffic analyser. In IEEE Symposium Series on
Computational Intelligence, pages 1–8, 2016.

[105] Khalid Shahbar and A Nur Zincir-Heywood. Traffic flow analysis of tor
pluggable transports. In 11th International Conference on Network and
Service Management (CNSM), pages 178–181. IEEE, 2015.

132 BIBLIOGRAPHY

[106] Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Jef-
frey Voas. DDoS in the IoT: Mirai and other botnets. IEEE Computer,
50(7):80–84, 2017.

[107] Ayush Kumar and Teng Joon Lim. Edima: early detection of IoT mal-
ware network activity using machine learning techniques. In IEEE WF-
IoT, pages 289–294, 2019.

[108] Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin O’Flynn. IoT
goes nuclear: Creating a ZigBee chain reaction. In IEEE SP, pages
195–212, 2017.

[109] Alberto Dainotti, Antonio Pescapé, and Giorgio Ventre. A cascade ar-
chitecture for DoS attacks detection based on the wavelet transform.
IOS Press Journal of Computer Security, 17(6):945–968, 2009.

[110] Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, and Antonio
Pescapé. Mobile encrypted traffic classification using deep learning:
Experimental evaluation, lessons learned, and challenges. IEEE Trans-
actions on Network and Service Management, 16(2):445–458, 2019.

[111] Sudarshan S. Chawathe. Monitoring iot networks for botnet activity.
In IEEE International Symposium on Network Computing and Applica-
tions (NCA), pages 1–8, 2018.

[112] Zubair A Baig, Surasak Sanguanpong, Syed Naeem Firdous, Tri Gia
Nguyen, Chakchai So-In, et al. Averaged dependence estimators for
DoS attack detection in IoT networks. FGCS, 2019.

[113] Nickolaos Koroniotis, Nour Moustafa, Elena Sitnikova, and Benjamin
Turnbull. Towards the development of realistic botnet dataset in the In-
ternet of Things for network forensic analytics: Bot-IoT dataset. FGCS,
100:779–796, 2019.

[114] Osama AlKadi, Nour Moustafa, Benjamin Turnbull, and Kim-
Kwang Raymond Choo. Mixture localization-based outliers models
for securing data migration in cloud centers. IEEE Access, 7:114607–
114618, 2019.

[115] Hieu Mac, Dung Truong, Lam Nguyen, Hoa Nguyen, Hai Anh Tran,
and Duc Tran. Detecting attacks on web applications using autoencoder.
In ACM SoICT’18, pages 416–421.

BIBLIOGRAPHY 133

[116] Abebe Abeshu Diro and Naveen Chilamkurti. Distributed attack detec-
tion scheme using deep learning approach for internet of things. Future
Generation Computer Systems, 82:761–768, 2018.

[117] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated
machine learning: Concept and applications. ACM Trans. Intell. Syst.
Technol., 10(2), January 2019. ISSN 2157-6904.

[118] Tim Stöber, Mario Frank, Jens Schmitt, and Ivan Martinovic. Who do
you sync you are? smartphone fingerprinting via application behaviour.
In Proceedings of the sixth ACM conference on Security and privacy in
wireless and mobile networks, pages 7–12, 2013.

[119] Qinglong Wang, Amir Yahyavi, Bettina Kemme, and Wenbo He. I know
what you did on your smartphone: Inferring app usage over encrypted
data traffic. In 2015 IEEE conference on communications and network
security (CNS), pages 433–441. IEEE, 2015.

[120] Hasan Faik Alan and Jasleen Kaur. Can android applications be identi-
fied using only tcp/ip headers of their launch time traffic? In Proceed-
ings of the 9th ACM conference on security & privacy in wireless and
mobile networks, pages 61–66, 2016.

[121] Vincent F Taylor, Riccardo Spolaor, Mauro Conti, and Ivan Martinovic.
Appscanner: Automatic fingerprinting of smartphone apps from en-
crypted network traffic. In 2016 IEEE European Symposium on Security
and Privacy (EuroS&P), pages 439–454. IEEE, 2016.

[122] Yanjie Fu, Hui Xiong, Xinjiang Lu, Jin Yang, and Can Chen. Service
usage classification with encrypted internet traffic in mobile messag-
ing apps. IEEE Transactions on Mobile Computing, 15(11):2851–2864,
2016.

[123] Iyad Lahsen Cherif and Abdesselem Kortebi. On using extreme gradient
boosting (xgboost) machine learning algorithm for home network traffic
classification. In 2019 Wireless Days (WD), pages 1–6. IEEE, 2019.

[124] Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based
on mutual information criteria of max-dependency, max-relevance, and
min-redundancy. IEEE Transactions on pattern analysis and machine
intelligence, 27(8):1226–1238, 2005.

	Frontespizio ITEE
	_PhD_Thesis__HL_for_TC___Giampaolo_Bovenzi

