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Abstract

N
owadays, cloud computing systems are considered an attractive so-
lution for running services with high-reliability requirements, such

as in the telecom and healthcare domains, and have gained huge atten-
tion over the past decades because of continuously increasing demands.
These systems consist of processes distributed across a data center, which
cooperate by message passing and remote procedure calls. They are very
complex, as they typically consist of software components of millions of
lines of code, which run across dozens of computing nodes.

It is very difficult to avoid software bugs when implementing the rich
set of services of cloud computing systems. As a result, many high-
severity failures have been occurring in the cloud infrastructures of popular
providers, causing outages of several hours and the unrecoverable loss of
user data. Therefore, the high-reliability requirements of such systems are
still too far to reach.

Fault-injection techniques, i.e., the deliberate insertion of faults into an
operational system to determine its response, offer an effective solution to
improve the reliability of the systems. These techniques are also important
to identify failure modes of the infrastructure, in order to improve the
detection and the recovery capabilities of the entire system. Although
fault injection has reached a level of maturity that it is routinely used in
many real-world systems, its adoption in cloud computing infrastructures
raises several issues that have to be addressed.

First, the user needs to inject realistic faults to be emulated in the ex-
periments when targeting complex and distributed systems. The problem
of defining a fault model becomes more difficult when injecting software
faults (i.e., design and/or programming defects), since they depend on a
variety of technical and organizational factors, including the programming
language, the software development process, the maturity of the system,
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the expertise of developers, and the application domain.

Second, the execution of the fault injection experiments in cloud sys-
tems is not trivial. Given the complexity of such systems (millions of
LoCs), the fault injection campaigns can easily reach thousands of exper-
iments due to the combination of the number of realistic fault types to
inject and the space of the fault points where to inject. To assess the
effects of the injection, failure data should be collected during every ex-
periment by guaranteeing independence among the executions (e.g., by
performing the system clean-up, the restart of the services, the revert of
the database, etc.). In the light of these considerations, the execution
of the fault-injection experiments should ideally be fully automated and
supported by a complete fault injection workflow.

Finally, the identification of the failure symptoms, a key step towards
improving the reliability of cloud systems, often relies on the knowledge,
the experience, and the intuition of human analysts since existing fault
injection solutions provide limited support to the analyst for understanding
what happened during an experiment. Unfortunately, manual analysis is
too difficult and time-consuming, because of i) the high volume of messages
generated by large distributed systems that the human analyst needs to
scrutinize; ii) the non-determinism in distributed systems, in which the
timing and the order of messages can unpredictably change even if there
is no failure, which introduces noise in the analysis, and increases the
effort of the human analyst to pinpoint the failure (i.e., to discriminate
the anomalies caused by a fault from genuine variations of the system); iii)
the use of “off-the-shelf ” software components, either proprietary or open-
source (such as application frameworks, middleware, data stores, etc.),
whose events and protocols can be difficult to understand and to manually
analyze.

The first contribution of this thesis is a fault-injection tool-
suite for cloud systems [54]. The tool-suite is designed to be pro-
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grammable and highly usable, by performing fault injection campaigns
with customized fault types. The tool has been used to empirically an-
alyze the impact of high-severity failures in the context of a large-scale,
industry-applied case study [58] and for subsequent analysis that aims to
better understand the failure nature of these systems and to design run
time monitoring strategy, which is capable of improving the failure detec-
tion capabilities. As for the failure nature, we know that these systems
fail in complex and unexpected ways. For instance, recent outages reports
showed that failures escape fault-tolerance mechanisms, due to unexpected
combinations of events and of interactions among hardware and software
components, which were not anticipated by the system designers. These
failures are especially problematic when they are silent, i.e., not accompa-
nied by any explicit failure notification, such as API error codes, or error
entries in the logs. This behavior hinders the timely detection and re-
covery, lets the failures silently propagate through the system, and makes
the traceback of the root cause more difficult, and recovery actions more
costly (e.g., reverting a database state). Therefore, understanding how the
system can fail (i.e., the failure mode analysis) and promptly identifying
the failure at runtime (i.e., runtime failure detection) are crucial activi-
ties to improve the fault-tolerance mechanisms and define proper recovery
strategies of cloud systems.

As for the failure mode analysis, the thesis proposes a novel algo-
rithm to identify failure symptoms and error propagation anal-
ysis [56]. The algorithm adopts a probabilistic model and revealed to be
very accurate in identifying the anomalies, i.e., failure symptoms, in noisy
execution traces of the system, by significantly reducing the false alarms
(i.e., genuine variations are not mistaken for failure symptoms) without
discarding true anomalies (i.e., actual anomalies caused by a fault are not
missed). In order to analyze failures from the set of anomalies and find
recurring failure patterns, this thesis adopts two machine learning
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approaches: one based on unsupervised learning algorithms [53]
and, the other, based on deep learning ones [55] . The former ap-
proach combines clustering with the proposed anomaly detection algorithm
in order to automatically identify the failure classes among large sets of
fault injection experiments. The approach achieved high accuracy (∼ 90%

purity) under different conditions, but at the cost of manually setting the
weights of the features, which requires a deep knowledge of the system
internals, and efforts to best tune them concerning the specific workload.
The latter approach, instead, overcomes the challenges of noise and com-
plexity of the feature space by leveraging deep learning for unsupervised
machine learning. The approach saves the manual efforts spent on fea-
ture engineering, by using an autoencoder to automatically transform the
raw failure data into a compact set of features. The results demonstrate
that the proposed approach can identify clusters with accuracy similar,
or in some cases, even superior, to the fine-tuned clustering, with a low
computational cost.

The empirical analysis pointed out that cloud systems often exhibit
a non-fail-stop behavior, in which it continues to execute despite incon-
sistencies in the state of the virtual resources due to missing or incorrect
error handlers. From these results, the thesis proposes a lightweight
approach to runtime verification tailored for the monitoring and
analysis of cloud computing systems [59]. The approach defines a set
of monitoring rules from correct executions of the system in order to specify
the desired system behavior. The rules are then synthesized in a runtime
monitor that verifies whether the system’s behavior follows the desired one.
Any runtime violation of the monitoring rules gives a timely notification to
avoid undesired consequences, e.g., non-logged failures, non-fail-stop be-
havior, failure propagation across sub-systems, etc. The approach reveals
to be very effective, achieving a failure detection rate of over 90% and
improving the fault-tolerance mechanisms of the system.
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Chapter 1
Fault Injection in Cloud
Computing Systems

1.1 Reliability Issues in Cloud Computing Sys-
tems

A
s computer systems grow increasingly complex, they also become
increasingly likely to have faults, stemming from their requirements

specification, their design, their implementation, or their operating envi-
ronment [6]. This is the case of the cloud computing systems.

Cloud computing is formally defined as a “model for enabling ubiq-
uitous, convenient, on-demand network access to a shared pool of config-
urable computing resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction” [156].

Cloud systems are considered an attractive solution for running services
with high-reliability requirements, such as in the telecom and healthcare
domains [236, 129, 72, 264], and have gained huge attention over the past

1
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decades because of continuously increasing demands [238]. These systems
consist of processes distributed across a data center, which cooperate by
message passing and remote procedure calls (e.g., through message queues
and REST API calls). They are quite complex, as they typically con-
sist of software components of millions of lines of code (LoC), which run
across dozens of computing nodes, such as in the case of OpenStack (see
Appendix A), the most widely deployed open-source cloud software in the
world [176].

The OpenStack cloud computing platform is developed in Python lan-
guage and is mostly deployed as infrastructure-as-a-service (IaaS) in both
public and private clouds where virtual servers and other resources are
made available to users. It provides abstractions and APIs for program-
matically creating, destroying, and snapshotting virtual machine instances;
attaching and detaching volumes and IP addresses; configuring security,
network, topology, and load balancing settings; and many other services to
cloud infrastructure consumers. The system consists of several indepen-
dent parts, named services (also referred to as components, subsystems,
or projects). The three most important services of OpenStack [68, 227]
are: (i) the Nova subsystem, which provides services for provisioning in-
stances (VMs) and handling their life cycle; (ii) the Cinder subsystem,
which provides services for managing block storage for virtual instances;
and (iii) the Neutron subsystem, which provides services for provision-
ing virtual networks, including resources such as floating IPs, ports and
subnets for instances. In turn, these services include several components
(e.g., the Nova service includes nova-api, nova-compute, etc.), which in-
teract through message queues internally to OpenStack. Figure 1.1 shows
the logical architecture of OpenStack [175].

The communications intra and inter-services are based on Remote Pro-
cedure Calls (RPC). OpenStack projects use an open standard for messag-
ing middleware known as Advanced Message Queuing Protocol (AMQP).
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Figure 1.1. OpenStack Logical Architecture.

This messaging middleware enables the OpenStack services that run on
multiple servers to talk to each other. Moreover, each OpenStack project
has a related client project that includes Python API bindings and a
command-line interface (CLI). The OpenStack clients enable the user to
access the project API through easy-to-use commands. OpenStack APIs
are RESTful APIs and use the HTTP protocol. They include methods,
URIs, media types, and response codes. Users can run the commands
from the command line or include the commands within scripts to auto-
mate tasks.

It is very difficult to avoid software bugs when implementing the rich
set of services of cloud computing systems: let’s think that, at the time of
writing, the OpenStack project codebase consists of million lines of code
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(LoC) [30, 184], which implies thousands of residual software bugs even
under the most optimistic assumptions on the bugs-per-LoC density [155,
239]. As a result of these bugs, many high-severity failures have been
occurring in cloud infrastructures of popular providers, causing outages of
several hours and the unrecoverable loss of user data [140, 164, 99, 100].

To prevent severe failures, software developers invest efforts in mitigat-
ing the consequences of residual bugs. Examples are defensive program-
ming practices, such as assertion checking and logging, to timely detect an
incorrect state of the system [146, 84] and for providing to system opera-
tors useful information for quick troubleshooting [268, 267, 83]. Another
important approach to mitigate failures is to implement fault containment
strategies. Examples are i) interrupting a service as soon as a failure oc-
curs (i.e., a fail-stop behavior), by turning high-severity failures, such as
data losses, into lower-severity API exceptions that can be gracefully be
handled [35, 237, 188]; ii) notifying the cloud management system and
operators about the failures through error logs, so that they can diag-
nose issues and undertake recovery actions, such as restoring a previous
state checkpoint or backup [249, 85]; iii) separating system components
across different domains to prevent cascading failures across components
[134, 10, 105].

1.2 Addressing Reliability Issues with Fault Injec-
tion

To get data about software failures and improve fault-tolerant mecha-
nisms, the fault-injection technique is a valuable solution. Fault injection
is formally defined as “the process of introducing faults in a system in order
to assess its behavior and to measure the efficiency (coverage, latency, etc.)
of fault tolerance mechanisms” [8, 247, 48], and is a fundamental technique
to ascertain the fault-tolerance properties of the systems. This technique
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Figure 1.2. Overview of a fault-injection experiment in OpenStack.

consists of the deliberate insertion of faults (such as resource exhaustion,
software bugs, connection loss, etc.) into a software system in a controlled
experiment in order to trigger failures.

Figure 1.2 shows an overview of a fault-injection experiment in Open-
Stack. The injection consists of the mutation of the original code of
the Nova service with a buggy code by removing the input parameter
build_parameters from the target function. This fault, typically named
missing parameter, is one of the most common bugs in OpenStack [58].
The target system is then exercised with a workload, i.e., a set of direc-
tives used to stress the system by simulating a user (or a group of users)
that performs service requests and triggers the injected fault during the
experiments. Finally, data logs such as the logs produced by the workload
and the system, the messages exchanged among services, etc., are collected
during the experiments to scrutinize the effects of the injection and assess
the fault-tolerance mechanisms of the system.

This technique has reached a level of maturity that it is routinely used
to reveal failures in real-world systems, including cloud computing soft-
ware such as key-value data stores and distributed computing frameworks
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Figure 1.3. Issues of Fault Injection in Cloud Computing Systems.

(e.g., Cassandra, ZooKeeper) [98], entire cloud computing services (e.g.,
streaming services deployed by Netflix) [168] and infrastructures (e.g., IaaS
providers such as Amazon) [213]. Nevertheless, its adoption in cloud sys-
tems still raises several issues that have to be addressed. Figure 1.3 sum-
marizes these issues.

First, the user needs to inject realistic faults to be emulated in the ex-
periments when targeting complex and distributed systems. The problem
of defining a fault model becomes more difficult when injecting software
faults (i.e., design and/or programming defects [14]), since they depend on
a variety of technical and organizational factors, including the program-
ming language, the software development process, the maturity of the sys-
tem, the expertise of developers, and the application domain [112, 111].
Second, the execution of the fault injection experiments in cloud systems is
not trivial. Given the complexity of such systems (millions of LoCs), the
fault injection campaigns can easily reach thousands of experiments due
to the combination of the number of realistic fault types to inject and the
space of the fault points where to inject. To assess the effects of the injec-
tion, failure data should be collected during every experiment by guaran-
teeing independence among the executions (e.g., by performing the system
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clean-up, the restart of the services, the revert of the database, etc.). Fi-
nally, cloud computing systems are often exposed to unpredictable failure
conditions due to failures that can propagate across several components
or layers of the system (e.g., storage, virtual network, compute instances,
etc.) in complex ways, leading to cascading effects (failure propagation).
Hence, the identification of the failure symptoms becomes a key step to-
wards improving the reliability of the systems. However, this analysis often
relies on the knowledge, experience, and intuition of human analysts since
existing fault injection solutions provide limited support to the analyst for
understanding what happened during an experiment.

1.2.1 Definition of the Fault Model

The fault model entails the definition of three main aspects, namely
what to inject (i.e., which kind of fault), when to inject (i.e., the timing of
the injection), and where to inject (i.e., the part of the system targeted by
the injection) [48, 147, 122, 130, 60]. The what can be represented by bit-
flips [110]; program exceptions for amplifying unit- and integration-tests
[1, 121]; node crashes, network partitions and latency for networked and
distributed systems [123, 98]. The when and where to inject are sampled
from a (large) space of possibilities across time and program locations.

Although the hardware fault-injection has been proved to provide an
effective means to assess the fault-tolerance mechanisms of safety-critical
software [108, 223], the focus of this thesis is on injecting software faults
since we are interested in assessing the severity of failures caused by soft-
ware bugs in cloud computing infrastructures. Indeed, mitigating the
severity of software failures caused by residual bugs is a relevant issue
for high-reliability systems [62], yet it still represents an open research
challenge. Since software bugs are human mistakes in the source code, the
traditional fault-tolerance strategies for hardware and network faults often
do not apply. For example, if a service is broken because of a regression



8 Chapter 1. Fault Injection in Cloud Computing Systems

bug, then retrying to execute the service API with the same inputs would
result again in a failure; a retrial would only succeed in the case that the
software bug is triggered by a transient condition, such as a race condition
[93, 94, 37]. If recovery is not possible, the failed operation must be neces-
sarily aborted and the user should be notified [169, 159] so that the failure
can be handled at a higher level of the business logic. For example, the
end-user can skip the failed operation, or put on hold the workflow until
the bug is fixed.

Despite the variability of software faults across systems, the existing
software fault injection tools are based on a predefined, fixed software fault
model, that cannot be easily customized by users. Most of the existing
tools adopt the Orthogonal Defect Classification (ODC), proposed in the
’90s (e.g., bugs in initialization, algorithm, interfaces, etc.), or derived the
fault model from bug samples of third-party open-source and commercial
projects [48, 75].

A modern software fault injection tool should be able to modify the
fault model for the following reasons. First, a typical necessity in industry,
which arises when a critical failure occurs, is to introduce regression tests
against the fault that caused the failure, to assure that the same failure
cannot occur again [266]. Second, to preserve the efficiency of the fault
injection campaign, it is important to avoid injecting bugs that are un-
likely to affect a system; e.g., some classes of faults may be prevented by
testing and static analysis policies adopted by the company [28]. Third, as
the scale and the complexity of systems increase, the need for a more so-
phisticated fault model grows. For instance, modern distributed systems,
such as cloud applications, have to integrate a variety of components, in-
cluding third-party and open-source ones, and they have to deal with high
volumes of traffic. For these systems, the user needs to inject more vari-
ants of design/programming defects than those reported in the literature,
including performance bottlenecks, resource management issues, lack of
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interoperability between components, security issues, failed updates, etc.,
and adapt these faults to their projects. In general, the potential users of
software fault injection want to tune the fault model so that it reflects their
experience and expectations about failures. All these use cases require a
greater degree of control over the fault model than what is provided by
existing fault injection tools.

1.2.2 Execution of the FI Experiments

The combination of the number of realistic fault types to inject and
the space of the fault points where to inject make the execution of the
fault injection experiments in cloud computing systems a difficult and
time-consuming task. Moreover, during the execution of the experiments,
the human analyst collects data (e.g., system logs, workload logs, events,
etc.) from the target system to analyze the effects of the injection. This
analysis requires independence among the executions to relate failure to
the specific bug that caused it.

Therefore, a fault injection tool should ideally provide a complete fault
injection workflow, which assists test engineers at applying software fault
injection in these systems. Hence, a fault-injection tool should provide full
automation in the execution of the experiments, by collecting failure data
and guaranteeing independence among the executions (e.g., by performing
the system clean-up, the restart of the services, the revert of the database,
etc.). Moreover, to further increase the usability of the fault injection
technique, the tool should locate the fault injection points in the system,
i.e., a statement (or group of statements) in the source code where to inject
the faults configured in the fault model, and allow the users to select such
statements, according to their needs, and provide the configuration for the
workload used to exercise the system.
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A Fault Injection Tool-suite

To address the previous limitations, this dissertation presents a new
fault injection tool designed to be programmable, enabling users to
add and customize a software fault model. By using the tool, users
can specify new software fault models using a domain-specific language
(DSL) for fault injection. The tool compiles the specification into an
automatically-generated fault injector. Finally, the generated fault in-
jector is applied to the software-under-test to generate fault-injected
versions and to execute experiments. To achieve better usability, the
tool presented in this thesis is provided as software-as-a-service, and
includes a workflow for configuring the fault load and the workload to
i) fully automate the execution of experiments using container-based
virtualization and parallelization, and to ii) perform failure data analy-
sis. The tool also provides the automatic analysis of the fault-injection
experiments in terms of service failures, logging, and recovery, and in-
cludes advanced features, such as the graphical representation of the
fault-injection experiments.
The tool has been used to empirically analyze the impact of high-
severity failures in the context of OpenStack cloud computing plat-
form, and for subsequent analysis that aims to better understand the
failure nature of these systems and to design run time monitoring strat-
egy, which is capable of improving the failure detection capabilities.

1.2.3 Identification of the Failure Symptoms

Interpreting the outcome of fault injection experiments, i.e., the failure
symptoms, is a key step towards improving reliability. In particular, the
analyst needs to assess the effects of the fault on the target system, and
how they lead to a service failure, as they provide indications on where to
improve fault tolerance mechanisms.

However, cloud computing systems are often exposed to unpredictable
failure conditions [87] due to failures that can propagate across several
components or layers of the system (e.g., storage, virtual network, compute
instances, etc.) in complex ways, leading to cascading effects (failure
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propagation) that make recovery actions more problematic.

In the case of temporal propagation, the analysis identifies latent fail-
ures in the system, which manifest as a failure only after a while. Temporal
propagation represents an opportunity for improving error handling: for
example, by detecting the data affected by these failures with more thor-
ough consistency checks, and by preventing that they turning into failures
through software rejuvenation; or, if the failure could not be recovered,
by enforcing a fail-stop behavior, i.e., a service is stopped and a failure
is notified to error handlers and/or to the users as soon as it occurs, in
order to reduce its severity. In the case of spatial propagation, a failure
propagates across several components or layers of the cloud system, which
increases the risk of cascading failures, and makes recovery more problem-
atic (e.g., only recovering the last component in the propagation chain does
not correct errors in the previous components). Spatial propagation can
be prevented by blocking failures at components’ interfaces, by looking at
execution traces from fault injection experiments.

Therefore, identifying and analyzing the propagation of the failures
is an important activity to design more effective recovery actions. The
current state of practice is to detect the failure symptoms (e.g., service un-
availability, performance degradation) by monitoring the quality of service
during the fault injection test; more sophisticated solutions detect fail-
ures by monitoring properties expressed with formal specifications, such
as finite state machines [67], relational logic [98], and special-purpose lan-
guages [210].

This analysis too often relies on the knowledge, experience, and in-
tuition of human analysts since existing fault injection solutions provide
limited support to the analyst for understanding what happened during
an experiment [166]. Indeed, once a service failure has been triggered by
fault injection and detected by monitoring mechanisms, a human analyst
still needs to analyze the chain of events (e.g., messages) that occurred
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among the location where the fault/error is injected and the component
that experiences the service failure.

Unfortunately, manual analysis is too difficult and time-consuming, be-
cause of i) the high volume of messages generated by large distributed sys-
tems that the human analyst needs to scrutinize; ii) the non-determinism
in distributed systems, in which the timing and the order of messages can
unpredictably change even if there is no failure, which introduces noise in
the analysis, and increases the effort of the human analyst to pinpoint the
failure (i.e., to discriminate the anomalies caused by a fault from genuine
variations of the system); iii) the use of “off-the-shelf ” software compo-
nents, either proprietary or open-source (such as application frameworks,
middleware, data stores, etc.), whose events and protocols can be difficult
to understand and to manually analyze.

Motivating Example

To better understand the research problem, we discuss an example of
a fault-injection experiment on the OpenStack cloud computing platform,
shown in a simple graphical representation in Figure 1.4.

This representation shows remote procedure calls that are made for
communication in the distributed system. These calls are displayed as in-
tervals over the timeline of the experiment. We consider both API calls
between the client and the OpenStack REST APIs (the topmost sequence
of calls), and internal API calls within OpenStack, which are performed
by Nova, Neutron, and Cinder using message queues (the other three se-
quences of calls). To see the effects of the injected fault, we show two
subplots: the former shows a normal execution of the system (fault-free
execution), in which no fault is injected; the latter shows the execution
of the system when a fault is injected in the Nova subsystem (faulty exe-
cution). Since both executions are performed under the same conditions
(i.e., same software and hardware configuration, same workload, etc.), any
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Figure 1.4. A graphical representation of a fault-injection experiment.

deviation between the faulty and the fault-free execution is considered an
anomaly due to the injected fault.

The workload used in this example first creates several resources (i.e,
networks, instances, volumes, etc.), then it performs basic operations to
stimulate the different components of the system (e.g., attaching a volume
to an instance, checking the connectivity, reboot an instance, etc.) before
cleaning up the created resources. All these operations are performed by
invoking the OpenStack APIs.
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One of these API calls is an asynchronous request for creating a new
VM instance. After the API call ends, OpenStack Nova takes a few min-
utes for creating and initializing the instance. During these operations, we
inject a Python exception to force a failure ( A ). Figure 1.4 points out
that there are several API calls in the fault-free execution that are missing
in the faulty execution ( B ) since the injected fault causes a failure that
affects several OpenStack subsystems over a relatively long period. In-
deed, Nova does not complete the initialization of the VM instance due to
the fault, leaving the VM in an inactive state. Moreover, the OpenStack
Neutron subsystem was also unable to attach the virtual network to the
VM instance. Later on (i.e., after about five minutes) the workload client
experienced a service exception when calling the API of the Cinder subsys-
tem, which manages storage volumes in OpenStack ( C ). Consequently,
the workload could not attach the volume to the VM instance. Both Nova
and Neutron do not raise any API exception, but the failure only became
apparent to the client when invoking the API of the Cinder subsystem.

The analysis of a fault-injection experiment can be inaccurate due to
the non-determinism of the API calls in distributed systems. For example,
the Neutron subsystem uses asynchronous messages and polling for dis-
tributing state updates across its components, thus such messages could
be easily misclassified as anomalies. Moreover, due to the asynchronous
nature of several APIs, it is difficult to properly identify whether API calls
order does not matter (i.e., is due to non-determinism) or should be care-
fully taken into account because of the failure. In this point, Figure 1.4
also highlights events that could be false positives ( D ), both among the
fault-free and the faulty execution. Thus, we need to understand if the
differences among such two executions are due to the non-determinism in
the system (i.e., they are not related to the failure) or not (i.e., they are
actually anomalies). Considering the false positives makes the debugging
more difficult and cumbersome for the human analyst, as each execution



1.2. Addressing Reliability Issues with Fault Injection 15

may include hundreds of API calls to analyze with only a few ones relevant
for understanding the failure.

The experiment in Figure 1.4 is an example of both temporal and
spatial propagation: the issue propagates both across subsystems (from
Nova to Neutron and Cinder) and across time since the client perceives the
failure only after a relatively long time. This behavior is problematic from
the point of view of high availability, and thus of defining proper recovery
actions, as the propagation delay also increases the time-to-detect and the
time-to-recover the failure. Furthermore, the longer the propagation chain
the more difficult will be for a developer to reason about how to best
tolerate the fault, e.g., whether to manage the fault in Nova, Neutron,
and/or Cinder and at which time to manage the fault during the workload.
For example, the API could return a more timely notification of the failure
to the client, either by introducing a callback mechanism in the Nova API
that creates the instance or by returning an error from other API calls to
Nova or Neutron.

Anomaly Detection Algorithm to Failure Symptoms Identification

To provide automated support for analyzing failures triggered by fault
injection, this thesis dissertation introduces an approach that extends
fault injection, by combining it with black-box tracing and anomaly
detection algorithm for failure analysis. The driving idea is to train a
probabilistic model of the events in the distributed system under test
under fault-free conditions, by using variable-order Markov Models
for analyzing event sequences. Afterward, the system is tested with
fault injection, and event traces are collected under faulty conditions.
The faulty event traces are analyzed with anomaly detection by using
the probabilistic model, and the anomalous events are reported to the
human analyst for understanding how to avoid failures. The approach
avoids the human analyst manually inspecting thousands of events by
automatically identifying the few relevant events that are related to
the injected fault while discarding noisy, uninteresting events.



16 Chapter 1. Fault Injection in Cloud Computing Systems

1.3 From Failure Mode Analysis to Runtime Fail-
ure Detection

It is well known that failures in cloud computing systems might have
huge financial implications for the companies involved and their customers.
Unfortunately, cloud-computing systems fail in complex and unexpected
ways. For instance, recent outages reports showed that failures escape
fault-tolerance mechanisms, due to unexpected combinations of events and
of interactions among hardware and software components, which were not
anticipated by the system designers [87, 107]. These failures are especially
problematic when they are silent, i.e., not accompanied by any explicit
failure notification, such as API error codes, or error entries in the logs.
This behavior hinders the timely detection and recovery, lets the failures
silently propagate through the system, and makes the traceback of the
root cause more difficult and recovery actions more costly (e.g., reverting
a database state) [56, 58].

Therefore, understanding how the system can fail (i.e., the failure
mode analysis) and promptly identifying the failure at runtime (i.e.,
runtime failure detection) are crucial activities to improve the fault-
tolerance mechanisms and define proper recovery strategies of the cloud
computing systems.

1.3.1 Failure Mode Analysis

The analysis of the failure modes in complex systems such as cloud com-
puting is a difficult and time-consuming task. In the current fault-injection
approaches, analysts write failure specifications before the experiments.
Then, they look for occurrences of these failures within the experimental
data [253]. For example, the most sophisticated approaches check formal
specifications over events and outputs, by using finite state machines [67],
temporal logic predicates [10], relational logic [98], and special-purpose
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languages [210]. Since these specifications are mostly based on prior knowl-
edge and experience of system designers about failures, they are not meant
for discovering new, unknown failure modes of a distributed system, which
are missed by the failure specifications. Moreover, writing failure spec-
ifications is a time-consuming and cumbersome task, which makes fault
injection less applicable in practice.

Moreover, when considering complex cloud systems, it is typical to per-
form a large number of experiments (e.g., several thousand), since these
systems include tens of processes and nodes and millions of lines of source
code in which faults can be injected. For each experiment, the system gen-
erates high volumes of log files (up to hundreds of MBs) and long execution
traces (e.g., thousands of events per trace). Thus, it is not feasible in prac-
tice for the analyst to analyze all of these data in a reasonable amount of
time.

Machine Learning Approaches to Failure Mode Analysis

In order to analyze failures from the set of anomalies and find recurring
failure patterns, this thesis adopts two machine learning approaches:
one based on unsupervised learning algorithms and, the other, based
on deep learning ones.
The former approach combines clustering with the proposed anomaly
detection algorithm in order to automatically identify the failure
classes among large sets of fault injection experiments. The approach
achieved high accuracy under different conditions, but at the cost of
manually setting the weights of the features, which requires a deep
knowledge of the system internals, and efforts to best tune them con-
cerning the specific workload.
The latter approach, instead, overcomes the challenges of noise and
complexity of the feature space by leveraging deep learning for un-
supervised machine learning. This approach saves the manual efforts
spent on feature engineering, by using an autoencoder to automatically
transform the raw failure data into a compact set of features.
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1.3.2 Runtime Failure Detection

The empirical analysis performed with the proposed fault injection
tool-suite pointed out that cloud systems often exhibit a non-fail-stop be-
havior, in which it continues to execute despite inconsistencies in the state
of the virtual resources due to missing or incorrect error handlers. This
analysis suggests the need for strategies of runtime failure detection in
order to promptly test the availability of virtual resources.

To perform the runtime monitoring of the cloud application opera-
tions, an operation’s log is the main source of information for monitoring
the operation behavior [82]. Yet, there are several severe limitations in log
analysis [172] since logs are usually low-level, noisy, and they lack informa-
tion of changes to resource states. A further key technique to identify the
failure at runtime is represented by runtime verification strategies, which
perform redundant, end-to-end checks (e.g., after service API calls) to as-
sert whether the virtual resources are in a valid state [18]. For example,
these checks can be specified using temporal logic and synthesized in a run-
time monitor [66, 41, 272, 206], e.g., a logical predicate for a traditional
OS can assert that a thread suspended on a semaphore leads to the activa-
tion of another thread [10]. Runtime verification is now a widely employed
method, both in academia and industry, to achieve reliability and security
properties in software systems [17].

However, the application of these strategies to perform the runtime de-
tection of failures in cloud computing systems is very challenging [272, 82].
First, the public service of a cloud system usually receives thousands of
user requests in a very short time, which may be handled in a complex
process. For example, Figure 1.5 summarizes the complex request flow, in
terms of different requests among the services, for provisioning an instance
in OpenStack [215, 192]. The user’s request for the instance creation is
handled by the Compute (Nova) component and involves the interaction
between multiple components inside the system, such as Keystone for the
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Figure 1.5. Request flow for provisioning instance in OpenStack.

client authentication, Neutron (Quantum) for networking, Cinder for block
storage, and Glance for images. Therefore, massive trace data would be
produced in cloud systems, which is a real problem for real-time moni-
toring. Moreover, the specification methods are usually not sufficient to
accurately and flexibly express the monitoring requirements due to the
non-deterministic behavior of these systems.

Event Stream Processing Approach to Runtime Verification

To address these difficulties and perform runtime detection of the fail-
ures, this thesis dissertation proposes a lightweight approach to run-
time verification tailored for the monitoring and analysis of cloud com-
puting systems. The approach uses a non-intrusive form of tracing of
events (e.g., messages) in the system under test and builds a set of
lightweight monitoring rules from correct executions of the system in
order to specify the desired system behavior.
The approach analyzes the executions of the system in fault-free con-
ditions to define a set of failure monitoring rules. These rules encode
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the expected, correct behavior of the system, and detect a failure if a
violation occurs. We synthesize the rules in a runtime monitor that
verifies whether the system’s behavior follows the desired one. Any
runtime violation of the monitoring rules gives a timely notification to
avoid undesired consequences, e.g., non-logged failures, non-fail-stop
behavior, failure propagation across subsystems, etc.
The approach does not require any knowledge about the internals of
the system under test and it is especially suitable in multi-tenant en-
vironments or when testers may not have a full and detailed under-
standing of the system.

1.4 Thesis Structure

The thesis is structured as follows.

� Chapter 2 provides a systematic review of the literature to show an
overview of previous and related works.

� Chapter 3 introduces a new fault injection tool, ProFIPy, for Python
software. The tool is designed to be programmable, to enable users to spec-
ify their software fault model, using a domain-specific language (DSL) for
fault injection. Moreover, to achieve better usability, ProFIPy is provided
as software-as-a-service and supports the user through the configuration of
the fault load and workload, failure data analysis, and full automation of
the experiments using container-based virtualization and parallelization.
The tool also provides the automatic analysis of the fault-injection exper-
iments in terms of service failures, logging, and recovery, and includes ad-
vanced features, such as the graphical representation of the fault-injection
experiments to help the user to understand what happened during a fail-
ure.

� Chapter 4 investigates the impact of failures in the context of widespread
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OpenStack cloud management system, by performing fault injection and
by analyzing the impact of the resulting failures in terms of fail-stop be-
havior, failure detection through logging, and failure propagation across
components. The analysis points out that most of the failures are not
timely detected and notified; moreover, many of these failures can silently
propagate over time and through components of the cloud management
system, which call for more thorough run-time checks and fault contain-
ment.

� Chapter 5 proposes a novel approach that joins fault injection with
anomaly detection to identify the symptoms of failures and analyze the
propagation of the errors. We evaluated the proposed approach in the
context of the OpenStack cloud computing platform and show that the
approach can significantly improve the accuracy of failure analysis in terms
of false positives and negatives, with a low computational cost.

� Chapter 6 introduces a new paradigm (fault injection analytics) that
applies unsupervised machine learning on execution traces of the injected
system, to ease the discovery and interpretation of failure modes. We eval-
uated the proposed approach in the context of fault injection experiments
on the OpenStack cloud computing platform, where we show that the ap-
proach can accurately identify failure modes with a low computational
cost.

� Chapter 7 presents a novel approach for analyzing failure data from
cloud systems, to relieve human analysts from manually fine-tuning the
data for feature engineering. The approach leverages Deep Embedded
Clustering (DEC), a family of unsupervised clustering algorithms based on
deep learning, which uses an autoencoder to optimize data dimensionality
and inter-cluster variance. We applied the approach in the context of the
OpenStack cloud computing platform, both on the raw failure data and
in combination with an anomaly detection pre-processing algorithm. The
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results show that the performance of the proposed approach, in terms of
purity of clusters, is comparable to, or in some cases even better than
manually fine-tuned clustering described in Chapter 6, thus avoiding the
need for deep domain knowledge and reducing the effort to perform the
analysis.

� Chapter 8 proposes an approach to runtime verification, for monitoring
and failure detection of cloud computing systems. The approach uses a
non-intrusive form of tracing of events in the system under test and derives
a set of lightweight monitoring rules from correct executions of the system
in order to specify the desired system behavior. We evaluated the approach
in the OpenStack cloud management platform showing that the approach
can be applied with high failure detection coverage.
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Chapter 2
State-of-the-Art

T his chapter provides a systematic review of the literature to show
an overview of previous and related works.

2.1 Fault Injection Adoption in Cloud Systems

The fault injection is widely used for evaluating fault-tolerant cloud
computing systems. Well-known solutions in this field include Fate [98]
and its successor PreFail [123] for testing cloud software (such as Cas-
sandra, ZooKeeper, and HDFS) against faults from the environment, by
emulating at API level the unavailability of network and storage resources,
and crashes of remote processes. Similarly, Ju et al. [124] and ChaosMon-
key [168] test the resilience of cloud infrastructures by injecting crashes
(e.g., by killing VMs or service processes), network partitions (by dis-
abling communication between two subnets), and network traffic latency
and losses. Other fault models for fault injection include hardware-induced
CPU and memory corruptions, and resource leaks (e.g., induced by misbe-
having guests). CloudVal [197] and Cerveira et al. [38] applied these fault
models to test the isolation among hypervisors and VMs. Pham et al. [198]

25
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applied fault injection on OpenStack to create signatures of the failures,
in order to support problem diagnosis when the same failures happen in
production. The fault model is the main difference that distinguishes our
work from previous studies. Most of them assess software robustness with
respect to external events (e.g., a faulty CPU, disk, or network). In other
studies, fault injection has been simulating software failures through pro-
cess crashes and API errors, but this is a simplistic form of software bugs,
which can cause generate more subtle effects (such as incorrect logic and
data corruptions, as pointed out by bug studies). In this dissertation, we
injected software bugs inside components by mutating their source code,
to deliberately force their failure, and to assess what happens in the worst
case that a bug eludes the QA process and gets into the deployed software.

We remark that previous work on mutation testing [120] also adopted
code mutation, but with a different perspective than ours, since we lever-
age mutations for evaluating software fault tolerance. This dissertation
contributes to this research field by showing new forms of analysis based
on the injection of software faults (fail-stop behavior, logging, failure-
propagation). The same approach is also suitable to other systems of
similar size and complexity of OpenStack (e.g., where the need for coor-
dination among large subsystems raises the risk for non-fail-stop behavior
and failure propagation).

2.1.1 Analysis of Bugs and Failures of Cloud Systems

Previous studies on the nature of outages in cloud systems analyzed
the failure symptoms reported by users and developers, and the bugs in
the source code that caused these failures.

Among these studies, Li et al. [140] analyzed failures of Amazon Elas-
tic Compute Cloud APIs and other cloud platforms, by looking at failure
reports on discussion forums of these platforms. They proposed a new tax-
onomy to categorize both failures (content, late timing, halt, and erratic
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failures) and bugs (development, interaction, and resource faults). One of
the major findings is that the majority of the failures exhibit misleading
content and erratic behavior. Moreover, the work emphasizes the need for
counteracting “development faults” (i.e., bugs) through “semantic checks
of reasonableness” of the data returned by the cloud system. Musavi et
al. [164] focused on API issues in the OpenStack project, by looking at
the history of source-code revisions and bug fixes of the project. They
found that most of the API changes are meant to fix API issues and that
most of the issues are due to “programming faults”. Gunawi et al. ana-
lyzed outage failures of cloud services [100], by inspecting headline news
and public post-mortem reports, pointing out that software bugs are one
of the major causes of the failures. In a subsequent study, Gunawi et al.
analyzed software bugs of popular open-source cloud systems [99], by in-
specting their bug repositories. The bug study pointed out the existence
of many “killer bugs” that are able to cause cascades of failures in sub-
tle ways across multiple nodes or entire clusters; and that software bugs
exhibit a large variety, where “logic-specific” bugs represent the most fre-
quent class. Most importantly, the study remarks that cloud systems tend
to favor availability over correctness: that is, the systems attempt to con-
tinue running despite the bugs cause data inconsistencies, corruptions, or
low-level failures are detected, in order to avoid that users could perceive
outages, but putting at risk the correctness of the service.

These studies give insights into the nature of failures in cloud systems
and point out that software bugs are a predominant cause of failures.
While these studies rely on evidence that was collected “after the fact”
(e.g., the failure symptoms reported by the users), we analyze failures
in a controlled environment through fault injection, to get more detailed
information on the impact on the integrity of virtual resources, error logs,
failure propagation, and API errors.
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2.1.2 Uncertainty in Fault Injection Experiments

Uncertainty is a key aspect in fault injection experimentation since the
behavior of a complex system depends on many factors that are difficult
or impossible to control. This problem is exacerbated when fault-injection
is used in cloud computing, where the human analyst has to deal with
the non-deterministic nature of such systems. State-of-the-art provides
several works that addressed this problem by applying solutions based on
statistical techniques. Several studies leveraged the statistical models to
model the probability of failures during hardware fault-injection exper-
iments [11, 226, 190]. Arlat et al. [9] proposed a solution that brings
together the coverage evaluation of the fault coverage and the occurrence
of the faults to estimate the dependability of the complex fault-tolerant
systems. By estimating the probabilities of the failure modes of the sys-
tem, Voas et al. [248] presented a solution to reduce the uncertainty of
whether different software faults impact the behavior of the system. To as-
sess the quality of the measurements in terms of uncertainty, repeatability,
resolution, and intrusiveness, Bondavalli et al. [33, 34] applied the prin-
ciples of measurement theory. In AMBER project [253], the authors used
data mining to identify the factors (i.e., workloads, the fault types, etc.)
with the highest impact on the performance and availability of the tar-
get system. Gulenko et el. [97] introduced an anomaly detection approach
that leverages an online clustering method to define the normal behavior of
monitored components. Wu et al. [255] proposed a method that applies a
dependency graph and an autoencoder to identify the causes of the perfor-
mance degradation in the microservices of the cloud. Both previous works
evaluated the proposed solutions by injecting performance anomalies in
the cloud computing system. The Loki tool [39] addressed the problem
of injecting faults in controlled global states of distributed systems since
it is difficult due to the lack of a global clock and communication delays
(e.g., between a central controller and a local injector). The tool performs
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a post-experiment analysis of event traces collected from nodes, using an
off-line clock synchronization algorithm, to identify whether injections hit
the desired state, and repeats the experiments only when needed.

All these studies are based on the assumption that failures can be ac-
curately and automatically identified. We consider this dissertation com-
plementary to them since it provides novel techniques for identifying the
failure modes of the target system.

2.2 Fault Modeling

The idea of software fault modeling for fault injection purposes was
initially investigated by Chillarege et al. [45], who analyzed a dataset of
failures of IBM OS and DBMS products at users’ sites [234, 235], to iden-
tify recurring patterns in the faults that caused them, and to inject the
same patterns by corrupting program data and code, e.g., as in the FINE
tool [126]. In the same period, they also introduced the Orthogonal De-
fect Classification (ODC) [46, 44], where one the goals was to classify
software fault data into orthogonal categories, including Initialization, Al-
gorithm, Interface, Checking, and Synchronization defects. Christmansson
and Chillarege [48] proposed to inject software faults by following the sta-
tistical distribution of OS faults across these categories, such that the
injected faults are representative of faults experienced by the users of the
OS in the field. Similarly, Chen and colleagues [170, 171] defined a soft-
ware fault model for OSes based on data for the IBM MVS and Tandem
GUARDIAN90 OS products [234, 134], and used this fault model to emu-
late realistic OS and DBMS crashes, to assess crash recovery mechanisms.
This fault model was later merged in the well-known fault injection tool
of the Nooks project [237].

The work on the G-SWFIT fault injection technique by Madeira and
colleagues [74, 75] aimed to define a generic software fault model (i.e., not
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tailored for a specific system) that could go beyond specific OS and DBMS
products, and that could be used for injecting faults even without any field
failure data for the specific system under testing. To define such a generic
fault model, they analyzed a sample of bugs in several open-source projects
in C [74, 75] and Java [21, 220], and looked for bug-fixes (e.g., program
elements that were changed to fix the bug, such as new assignments, control
flow constructs, function calls, etc.) which were recurring more than the
norm, and which occurred consistently across all of the projects. Based
on this analysis, they defined a software fault model with 13 fault types,
covering 60% of the sample of bugs in the open-source projects [75]. This
fault model was used in several other tools, including SAFE [61], HSFI
[243], and FastFI [224]. However, these tools focus on a fixed software
fault model, with no ability to customize the injected faults according to
the specific needs of a project or company.

Winter et al. [250] and Giuffrida et al. [91] showed that implementing
a new fault model in a tool takes both significant programming effort,
e.g., in terms of SLOC and other metrics, and considerable expertise in
program analysis and transformation, e.g., to implement a software fault
injection tool using the LLVM compiler suite, which is not affordable for
the average user of a fault injection tool.

2.3 Fault Injection Tools

Some tools provide a limited ability to customize the fault model with
a lower effort: among them, the FIDLFI tool [4] provides the user with a
configuration language to control the trigger of fault injection (i.e., instruc-
tions and paths that trigger the injection), target (i.e., instruction source
and destination registers to inject), and action (e.g., corruption, freeze,
delay, etc.). The FAIL-FCI tool [106] provides a fault injection language
tailored for grid systems, which specifies protocol states and nodes to in-
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ject (e.g., node crashes). PreFail [123] and FATE [98], which inject crashes
and I/O API errors, allow the user to write policies in Python to select the
location and timing of potential injections by considering the allocation of
processes across nodes and racks (e.g., network partitions between differ-
ent racks), and the coverage of injectable points in the software-under-test.
LFI [151], which injects errors at C library calls, allows the user to con-
figure what functions and error codes should be injected, and when to
trigger the injection (e.g., when a specific function appears in the stack
frame) using an XML configuration file. The commercial tools QA Sys-
tems Cantata [219] and Razorcat TESSY [104] provide user-friendly GUIs
to select a source-code statement to inject, similarly to breakpoints in a
GUI debugger.

It is important to note that these tools do not support rich software
fault models as in G-SWFIT and derivatives, as they only provide limited
control on what to inject, e.g., they focus on API and library calls, reg-
ister accesses, nodes, etc., but do not allow to create new fault types for
injecting arbitrary changes to the software. The proposed ProFIPy tool
provides a new language to gain a higher degree of control, where the user
can specify transformation rules about which parts of the program to in-
ject, in terms of program elements (e.g., assignments, expressions, control
flow directives, and combinations of thereof), and how to transform these
program elements into faulty ones.

2.4 Event Trace Analysis in Distributed Systems

Research studies on debugging distributed systems lead to a variety of
profiling techniques to pinpoint bugs and performance bottlenecks. Aguil-
era et al. [2] collect black-box network traces of communications between
hosts, in order to analyze requests as they move through the system (e.g.,
web requests across the tiers of a web application). Their approach infers
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causal paths of the requests, by tracing call pairs (i.e., request messages,
and their corresponding responses), and by analyzing statistical correla-
tions. However, this approach focuses on synchronous (RPC-style) inter-
actions between components, and it is not meant to analyze asynchronous
interactions (i.e., the server immediately replies to a request, before issuing
causally-related requests and performing more work) and rare events (as
the approach focus on the most frequent interactions).

Magpie [16] and Pinpoint [43] reconstruct causal paths by using more
sophisticated tracing infrastructures, by tracing detailed events at the OS-
level and the application server level. The tracing tags incoming requests
with a unique path identifier, and associates resource usage throughout the
system with that identifier. This fine-grain tracing approach does not rely
on statistical inference and can provide high accuracy, but it also brings
considerable complexity, which makes it difficult to deploy it in practice,
especially when considering cloud computing infrastructures with many
heterogeneous components (e.g., OSes, middleware, interpreters, etc.).

Gu et al. [95] proposes a methodology to extract knowledge on dis-
tributed system behavior of request processing without source code or prior
knowledge. The authors construct the distributed system’s component ar-
chitecture in request processing and discover the heartbeat mechanisms of
target distributed systems.

Pip [210] is a system for automatically checking the behavior of a dis-
tributed system against programmer-written expectations about the sys-
tem. Pip provides a domain-specific expectations language for writing
declarative descriptions of the expected behavior of large distributed sys-
tems and relies on user-written annotations of the source code of the system
to gather events and to propagate path identifiers across chains of requests.
This approach provides flexibility for the analysis but requires access to
the source code, and non-negligible efforts to annotate it.

More recent studies contributed to tools resembling debuggers, but for
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distributed systems. Pensieve [270] is an approach for producing the path
to failure, in a similar way to delta debugging: it combines static analysis,
and re-execution of the system with iteratively-refined logging, in order to
reconstruct the intermediate path backward from the failure to the user
inputs and events that cause the failure. Friday [88] is a distributed de-
bugger that allows developers to replay a failed execution of a distributed
system, and to inspect the execution through breakpoints, watchpoints,
single-stepping, etc., at the global-state level. ShizViz [27] is an inter-
active tool for visualizing execution traces of distributed systems, which
allows developers to intuitively explore the traces and to perform searches;
moreover, the tool provides support for comparing distributed executions
with a pairwise comparison, even if without probabilistic techniques to
filter-out benign variations due to non-determinism.

Recent fault injection solutions addressed cloud computing systems.
The Fate [98] tool, and its successor PreFail [123], simulate disk failures,
network partitions, and crashes of nodes, by exploring multiple occur-
rences of faults during the same experiment, to test recovery procedures
more thoroughly (e.g., at tolerating further network/disk faults occurring
during recovery). To address the combinatorial explosion of experiments,
these tools adopt user-programmable policies to prune redundant experi-
ments (e.g., injections in symmetric states or in paths that were already
covered). Ju et al. [124], ChaosMonkey [168], and Jepsen [127] test the
resilience of cloud infrastructures by injecting crashes (e.g., by killing VMs
or service processes), network partitions (by disabling communication be-
tween two subnets), and network traffic latency and losses. CloudVal [197]
and Cerveira et al. [38] use fault injection (CPU and memory corruptions,
resource leaks) to test the isolation among hypervisors and VMs. Pham
et al. [198] applied fault injection on OpenStack to create signatures of
the failures, in order to support problem diagnosis when the same failures
happen in production. Once fault injection reveals a failure, in most cases
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it is the tester’s responsibility to look at what happened during the test,
and come up with an interpretation of the issue and a potential solution
to make the system more fault-tolerant.

There are several approaches to identify anomalies in the cloud based
on models derived from fault-free executions, also in combination with
fault injection. Qiang et al. [96] presented an unsupervised failure de-
tection method using an ensemble of Bayesian models that characterizes
normal execution states of the system and detects anomalous behaviors.
The method estimates the probability distribution of runtime performance
data collected by health monitoring tools when cloud servers perform nor-
mally. Sauvanaud et al. [222] described a new approach to detect Service
Level Agreements (SLAs) violations and preliminary symptoms of SLAs
violations by means of machine learning models and based on monitoring
data. Mariani et al. [150] presented a lightweight and precise approach to
predict failures and locate the corresponding faults in multi-tier distributed
systems. The approach blends anomaly-based and signature-based tech-
niques to identify multi-tier failures that impact on performance indicators,
with high precision and low false positive rate. Islam et al. [117] described
a machine-learning-based anomaly detector used for proactive detection of
problems in the IBM Cloud Platform’s components and showed that the
detector can capture anomalies up to 20 minutes earlier than the previously
existing one.

This dissertation proposes an approach that differs from anomaly de-
tection solutions using ML models or employing self-adapted monitoring
[5, 222, 77], and it is unique in the design space of distributed debug-
ging tools. To the best of our knowledge, this is the first approach that
applies distributed debugging techniques for interpreting fault injection
experiments. In the context of fault injection, the fault-free executions are
used as a reference for identifying anomalies in fault-injected executions
performed under the same conditions (same workload, same node deploy-
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ment, etc.): therefore, the approach does not rely on programmer-written
specifications to identify failures (even if such specifications could cooper-
ate with our approach to gain further insights); moreover, our approach
does not rely on inferring causal relationships (which requires more in-
trusive instrumentation and may be inaccurate for asynchronous and rare
interactions). Since the approach only relies on modeling the observed
sequences of events, it can be easily deployed and integrated into interac-
tive tools for debugging and visualization, to provide more robust trace
comparison and analysis abilities.

2.5 Failure Mode Analysis

The existing fault injection tools detect the occurrence of failures by
looking for specific events, such as service errors returned by the distributed
system to its clients (e.g., API errors); performance degradation and bot-
tlenecks; high-severity error messages in the logs of the system; and as-
sertion failures introduced by developers inside the software. Destini [98]
uses a declarative relational logic language (Datalog) to allow developers
to customize test specifications (i.e., fault-tolerance properties that need
to be fulfilled in the presence of faults), and for checking that the system
complies with them. These specifications are expressed in terms of events
(e.g., failures and protocol events), and relations over them representing
expectations and facts (e.g., data blocks or packets that are expected in a
given state, which are compared with the ones that are actually observed
during the test). Similarly, P# [67] identifies failures using liveness spec-
ifications (e.g., lack of progress, such as the inability to restore a failed
node) and safety specifications (validity assertions on the local and global
states of the system), written with a domain-specific language in terms
of communicating state machines with asynchronous events. Mariani et
al [149] proposed a lightweight fault localization approach that trains ma-
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chine learning models with correct executions only, and compensates the
inaccuracy that derives from training with positive samples, by elaborating
the outcome of machine learning techniques with graph theory algorithms.

The previous solutions require domain expertise and human effort to
be applicable. This dissertation investigates techniques to automate the
identification of failure modes without supervision, to ease the adoption of
fault injection by practitioners.

The use of clustering to automatically discover and analyze failure
modes is a topic widely addressed by previous research. Arunajadai et
al. [13] described a clustering-based method for grouping failure modes in
electromechanical consumer products. The approach groups failure modes
based on their occurrence, to determine whether a failure should be con-
sidered by itself or whether it tends to accompany other kinds of failures.
Then, the analyst can prioritize critical failure modes. The approach uses a
hierarchical clustering algorithm with the complete linkage method. Chang
et al. [40] combines clustering with risk management, by grouping failure
modes that have similar risk levels concerning three factors (severity, oc-
currence, detection), and visualizes them to ease multi-criteria decision
making. Their approach clusters and visualizes failures as a tree structure
that is easy to understand. It is evaluated in the context of farming appli-
cations. Duan et al. [73] analyze evaluations of failure modes in natural
language by FMEA experts, using fuzzy sets to extract features, and the
k-means algorithm to cluster the failure modes. Xu et al. [259] proposed
a method to construct the component-failure mode (CF) matrix automat-
ically, by mining unstructured texts using the Apriori algorithm and the
semantic dictionary WordNet to build a standard set of failure modes.
As in the work by Arunajadai et al. [13], the matrix is used for group-
ing the failure modes using clustering algorithms, such as the K-means.
Rahimi et al. [207] analyzed a large dataset of truck crash data, based on
police reports about the driver, vehicle, crash, and citation information.
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They address the problem of high-dimensionality spaces, by adopting block
clustering to investigate heterogeneity in the crash dataset. This approach
considers two sets (observations and variables) simultaneously and orga-
nizes the data into homogeneous blocks. Liu et al. contributed with sev-
eral studies on the failure mode and effects analysis [113]. They improved
failure mode analysis using two-dimensional uncertain linguistic variables
and alternative queuing [144] and proposed a novel approach combining
HULZNs and DBSCAN algorithms to assess and cluster the risk of failure
modes [143]. They evaluated the feasibility of the proposed approaches
in real use-case scenarios, showing the ability to classify failure modes in
complex and uncertain conditions.

Different from these solutions, this dissertation introduces an approach
tailored for the domain of cloud system failures, where the data consist of
symbolic sequences, which are obtained from events recorded through dis-
tributed tracing technology. Our approach leverages deep neural networks,
to automatically cluster the failure modes without manual effort for fea-
ture engineering. Moreover, we also investigate clustering in combination
with anomaly detection for cloud systems.

2.6 Runtime Failure Detection

Promptly detecting failures at runtime is fundamental to stop failure
propagation and mitigate its effects on the system. In this work, we ex-
ploit runtime verification to state the correctness of a system execution
according to specific properties. In literature, some studies refer to run-
time verification as runtime monitoring or dynamic analysis. Runtime
monitoring consists of the observation of behaviors of the target system
during its operation instead of verifying the system according to a specific
model.

Over the last decades, several efforts have been spent on methodologies
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and tools for debugging and monitoring distributed systems. Aguilera et
al. [2] proposed an approach to collect black-box network traces of com-
munications between nodes. The objective was to infer causal paths of the
requests by tracing call pairs and by analyzing correlations. Magpie [16]
and Pinpoint [43] reconstruct causal paths by using a tracing mechanism
to record events at the OS-level and the application server level. The trac-
ing system tags the incoming requests with a unique path identifier and
links resource usage throughout the system with that identifier. Gu at al.
[95] proposes a methodology to extract knowledge on distributed system
behavior of request processing without source code or prior knowledge.
The authors construct the distributed system’s component architecture in
request processing and discover the heartbeat mechanisms of target dis-
tributed systems. Pip [210] is a system for automatically checking the
behavior of a distributed system against programmer-written expectations
about the system. Pip provides a domain-specific expectations language
for writing declarative descriptions of the expected behavior of large dis-
tributed systems and relies on user-written annotations of the source code
of the system to gather events and to propagate path identifiers across
chains of requests. OSProfiler [182] provides a lightweight but powerful
library used by fundamental components in OpenStack cloud computing
platform [176]. OSProfiler provides an annotation system that can be able
to generate traces for requests flow (RPC and HTTP messages) between
OpenStack subsystems. These traces can be extracted and used to build
a tree of calls which can be valuable for debugging purposes. To use OS-
Profiler, it is required deep knowledge about OpenStack internals, making
it hard to use in practice.

Research studies on runtime verification focused on formalisms for de-
scribing properties to be verified. Typically, a runtime verification system
provides a Domain Specification Language (DSL) for the description of
properties to be verified. The DSL can be a stand-alone language or em-
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bedded in an existing language. Specification languages for runtime verifi-
cation can be regular, which includes temporal logic, regular expressions,
and state machines, but also non-regular, which includes rule systems,
stream languages.

In the runtime verification literature, there is an established set of ap-
proaches for the specification of temporal properties, which include Linear
Temporal Logic (LTL) [199], Property Specification Patterns (PSP) [76],
and Event Processing Language (EPL) [80]. Linear Temporal Logic is the
most common family of specification languages. This approach supports
logical and temporal operators. LTL is extensively used as specification
language in many model checkers [49, 31, 109]. The Property Specification
Patterns consist of a set of recurring temporal patterns. Several approaches
use PSP and/or extend original patterns used in [29]. Event Processing
Language is used to translate event patterns in queries that trigger event
listeners whether the pattern is observed in the event stream of a Complex
Event Processing (CEP) environment [254]. In general, CEP is a technol-
ogy for the collection, aggregation, and analysis of sequences of events that
originated from various sources, occurring at different moments in time.
The most interesting characteristic of CEP systems is that can be used in
Stream-based Runtime Verification or Stream Runtime Verification (SRV)
tools. SRV is a declarative formalism to express monitors using streams;
the specifications are used to delineate the dependencies between streams
of observations of the target systems and the output of the monitoring
process.

Lola [64] is an SRV tool and implements a runtime verification as a
stream computation, where output streams are defined in terms of input
streams and/or other output streams. In particular, Lola defines a spec-
ification language and algorithms for both online and offline monitoring
of synchronous systems and can be used to describe correctness/failure
assertions but also statistical measures.
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Esper [80] (see Appendix C) is an open-source software product for
CEP and streaming analytics supporting Java and .NET languages. Esper
provides an EPL language, a compiler, and a runtime environment. The
language is declarative and data-oriented and extends the SQL standard
for analyzing streams of events with respect to time. The Esper compiler
compiles EPL source code into Java bytecode and the resulting executable
code runs on a JVM within the Esper runtime environment. The Esper
runtime provides an engine for online and real-time analysis. Finally, Es-
per is designed to provide low latency and high throughput and to be
lightweight in terms of memory, CPU, and IO usage.

In [272], Zhou et al. propose a runtime verification based trace-oriented
monitoring framework for cloud computing systems. The requirements
of the monitoring can be specified by formal specification language, i.e.
LTL, Finite State Machine (FSM). The tracing adopted in this approach
is fine-grained, in which traces are a collection of events and relationships:
every event records the details of one execution step in handling the user
request (function name, duration), every relationship records the causal
relation between two events. Using both the events and the relationships,
it is possible to represent a trace into a so-called trace tree. In a trace
tree, a node represents an event and an edge represents a relationship
between events. This approach is generalizable at the cost of accessing the
target source code to get the knowledge needed for instrumenting the code
and gaining information about events relationships. However, this is not
always the case, leading this approach difficult to exploit in practice. In
[200], Power and Kotonya propose Complex Patterns of Failure (CPoF),
an approach that provides reactive and proactive Fault-Tolerance (FT)
via Complex Event Processing and Machine Learning for IoT (Internet of
Things). Reactive-FT support is used to train Machine Learning models
that proactively handle imminent future occurrences of known errors. Even
if CPoF is intended for IoT systems, it inspired us in the use of Complex
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Event Processing to build the monitor.
This dissertation proposes an approach presenting several points of

novelty compared to state-of-the-art studies and tools in runtime verifica-
tion literature. In particular, the proposed methodology relies on black-box
tracing, instead of regular tracing, avoiding knowing about system internals
and the collection of information about the relationships between events
(i.e., uncorrelated events). Further, we provide a new set of monitoring
rules that well fit distributed systems and cloud computing infrastruc-
ture requirements, in which we need to face peculiar challenges like multi-
tenancy, complex communication between subsystems, lack of knowledge
of system internals. Based on the analysis of the events collected during
system operation, we can specify the normal behavior of the target system
and perform online anomaly detection.
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Chapter 3
Fault Injection Tool-suite

T his chapter presents a new fault injection tool, ProFIPy [54], de-
signed to be programmable, enabling users to add and to customize

a software fault model. By using this tool, users can specify new software
fault models using a domain-specific language (DSL) for fault injection.
A domain-specific language is a small, usually declarative, language that
offers expressive power focused on a particular problem domain. In many
cases, DSL programs are translated to calls to a common subroutine li-
brary and the DSL can be viewed as a means to hide the details of that
library [244].

The tool compiles the specification into an automatically-generated
fault injector. Finally, the generated fault injector is applied to the
software-under-test to generate fault-injected versions and to execute ex-
periments. To achieve better usability, ProFIPy is provided as software-
as-a-service, and includes a workflow for configuring the fault load and
the workload to i) fully automate the execution of experiments using
container-based virtualization and parallelization, and to ii) perform fail-
ure data analysis. The tool has been designed for the popular Python
language, which has recently arisen as one of the most widespread lan-

43
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guages (e.g., among the GitHub and StackOverflow communities [90, 228]),
and has found applications in several areas such as systems software (e.g.,
the OpenStack cloud platform is one of the largest projects in Python
[187, 180]), enterprise and web applications and data science [202]. We
present ProFIPy in the context of a Python project, by performing three
fault injection campaigns in which we define three different fault loads.

3.1 Fault Injection Domain-Specific Language

ProFIPy allows the user to enter a bug specification using a high-level
and easy-to-use DSL language, which is close to the Python language. The
bug specification describes how the source code of the program should be
transformed to introduce a software bug. It consists of two parts:

• Code pattern: a description of which parts of the program should
be fault-injected. The fault injection tool parses the source code of
the software and will generate a fault for every match of the code
pattern.

• Code replacement: a description of the code that should be in-
jected, which will replace the original source code that matched the
code pattern.

The code pattern describes a combination of program entities (vari-
ables, expressions, blocks, control flow constructs, etc.) that will be
searched for in the software-under-injection. The code pattern can either
consist of a Python snippet of code; or, it can be a mix of Python code and
DSL directives. In the former case, ProFIPy will look for exact matches
between the Python snippet in the code pattern and the Python code in
the software-under-injection. In the latter case, the DSL directives will
make the pattern match several different variants of the Python snippet of
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code. Similarly, the code replacement can either be Python-only code, i.e.,
the injector will insert a fixed snippet of buggy code; or, it can contain a
mix of Python and DSL directives, i.e., the injected buggy code can vary
depending on what matched the code pattern.

Figure 3.1 shows three examples of bug specifications. These specifica-
tions inject three fault types from G-SWFIT [75]: the omission of a func-
tion call (MFC); the omission of a small block of statements surrounded
by an IF construct (MIFS); and a wrong parameter in input to a function
call (WPF). Differing from the G-SWFIT technique, we modified the def-
inition of the fault types, to point out the features of the DSL language,
and to emulate more accurately some of the bugs that we found in the
OpenStack project [58, 52].

change {
$BLOCK{tag=b1; stmts=1,*}
$CALL{name=delete_*}(...)
$BLOCK{tag=b2; stmts=1,*}

} into {
$BLOCK{tag=b1}
$BLOCK{tag=b2}

}

(a) Missing function call fault
(MFC).

change {
if  $EXPR{var=node} :
$BLOCK{stmts=1,4}
continue

} into {
}

(b) Missing IF construct
with statements (MIFS)
fault.

change {
$CALL#c{name=utils.execute}(..., $STRING#s{val=*-*}, ...)

} into {
$CALL#c(..., $CORRUPT($STRING#s), ...)

}

(c) Wrong parameter in function call (WPF) fault.

Figure 3.1. Examples of fault specifications.

The MFC fault type from G-SWFIT looks for function calls in the
software-under-injection, where there is no return value from the function
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call, or where the return value is ignored by the caller [75]. By target-
ing this kind of function call, the injector can emulate a function call
omission by removing these function call statements, and yet to obtain
a syntactically-correct program, as the removal does not break any de-
pendency with the rest of the program. Moreover, the G-SWFIT study
[75] recommended that the function call should only be removed when the
function call is not the only statement in its block, to better reflect the
real bugs from open-source projects that were analyzed in that study.

In Figure 3.1a, the code pattern (i.e., the change { . . . } part of the
specification) looks for any function or method call, by using the $CALL

directive of the DSL. The {name=delete_*} syntax after $CALL means
that we are targeting calls where the function name starts with “delete_”
string, in order to inject faults in calls to the OpenStack Neutron APIs
delete_port, delete_subnet, delete_network, etc. This is an exam-
ple of how a user may want to customize fault injection according to do-
main knowledge: these APIs are prone to omissions (e.g., the Neutron bug
#1028174 [132]), and users may want to simulate these faults to assess
solutions for resource leak detection. The rest of the specification imple-
ments the rules of the MFC fault type. $CALL only matches statements
where the function or method call is the outermost part of the statement:
thus, a statement like x = mycall(), where the assignment is the outer-
most expression, would not match the code pattern of Figure 3.1a. The
(. . . ) syntax means that we are targeting function calls with any number
of input parameters (zero, one, or more). The directives $BLOCK direc-
tives require that the function call must be both preceded and followed
by one or more statements. Finally, the code replacement (i.e., the into
{ . . . } part of the specification) means that we want to transform the
matched code by replacing it only with the blocks that precede and follow
the function call. The {tag=...} syntax after $BLOCK allows the user to
give a label (e.g., b1, b2) to the parts of the code pattern that matched the



3.1. Fault Injection Domain-Specific Language 47

software-under-injection, and to reuse these parts in the code replacement.

In the second example (Figure 3.1b), the MIFS fault type matches an IF
construct with its statements (up to 4), and removes them, i.e., the code
replacement part of the specification is empty. The specification mixes
fragments of Python code (i.e., the if construct and continue keywords)
and DSL directives ($EXPR, $BLOCK). Again, we refined the original fault
type from G-SWFIT by leveraging domain knowledge, to inject into more
specific targets. We emulate another recurring issue in OpenStack, in
which metadata of resources (e.g., the UUID of instances) must have been
initialized to allow operating on the resource, but a check on the validity
of the metadata has been omitted (e.g., the Nova bug #1096722 [133]). To
emulate this real bug, we target if constructs that check specific variables
(e.g., variables called node, which are used throughout the OpenStack Nova
codebase) and that skip an operation if the check fails (e.g., by issuing a
continue).

In the third example (Figure 3.1c), the WPF fault type injects an
invalid parameter to a function call. The bug specification replaces a $CALL

statement with the same $CALL statement, but modifying one of the input
parameters. We use again a tag to reuse code from the code pattern in the
code replacement, by means of the #c syntax after $CALL, i.e., the matched
function call is labeled as “c”. We tailored the bug specification to match
another recurring issue in OpenStack, in which an external utility (e.g.,
iptables, dnsmasq, e2fsck) is invoked at the host OS level, but with
incorrect or missing parameters (e.g., the Nova bug #732549 [131]). Thus,
we target the utils.execute() library function (the name attribute in
$CALL), and look for a string literal ($STRING) among the input parameters
of the function, where the string contains the character used by UNIX
utilities to denote parameters. In the code replacement, we inject the same
function call, but the string literal (labeled s) is wrapped by a function
call that corrupts the string with random contents, using the $CORRUPT
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DSL directive.

In addition to these examples, we have been using the DSL to define
several fault models in an industrial context, in cooperation with Huawei
Technologies Co. Ltd. The DSL provided us a fine-grain control over
the injections, by combining DSL directives with Python code fragments.
Other fault types include the injection of exceptions within try blocks, in
order to increase the test coverage of error handlers [123, 151]; the injection
of None values from library function calls, in order to test error handlers
in which the returned value is checked by an IF construct after the call;
the omission of optional input parameters to function calls; the omission of
AND/OR clauses in IF conditions; wrong or missing initialization of data,
such as key-value pair literals in Python dictionaries, using the $CORRUPT

directive; high resource consumption (CPU, memory, storage), using the
$HOG directive. The DSL can be used to inject more complex fault types, by
using regular expressions for specifying search patterns; using the tagging
syntax in the change block, to change the order of statements in the into
block; mutating any arithmetic, boolean, and control flow expression of the
Python grammar; injecting algorithmic bugs by removing entire portions of
code (e.g., patterns with multiple nested loops and control flow constructs),
and by injecting artificial time delays using a $TIMEOUT directive. More
examples are presented in § 3.3.

3.2 The ProFIPy workflow

ProFIPy provides a complete fault injection workflow, which assists
test engineers at applying software fault injection in Python systems. The
ProFIPy workflow generates a set of mutated versions of the target soft-
ware, according to user-defined bug specifications. These mutated versions
are executed in a controlled environment, and further analyzed for drawing
insights about the system behavior under failure. Figure 3.2 summarizes
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Figure 3.2. Workflow of the ProFIPy tool.

the workflow, which consists in a sequence of three main phases, that is,
Scan (see § 3.2.1), Execution (see § 3.2.2), and Data Analysis (see § 3.2.3
and § 3.4). The following sub-sections provide details for each phase.

3.2.1 Scan

In the Scan phase, the user interacts with the ProFIPy tool to define
the fault injection plan, which is the set of fault injection experiments to
be run. Each experiment specifies a fault to be injected. ProFIPy takes
in input the source code of the target software, and the bug specification
described by using our DSL (section 3.1). The fault model is stored in a
JSON file, and users can save and import fault models of previous fault
injection campaigns. ProFIPy provides pre-defined fault models based on
previous fault injection studies (section 2).

The Scan phase identifies fault injection points in the software, i.e.,
a statement (or group of statements) in the source code where ProFIPy
can inject the software bug according to the user-defined specification.
ProFIPy looks for arithmetic/boolean expressions, method and function
calls, variable initializations, and other kinds of statements.

ProFIPy processes the target code using its Abstract Syntax Tree
(AST) representation, which is commonly by program analyzers to rep-
resent the structure of a piece of code. The DSL compiler component
takes the bug specification written using the DSL and generates a meta-
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model, which consists of a small AST that reflects the structure of the
code in the code pattern. The meta-model will be used by the source code
scanner, which visits the program’s AST to find matches against the code
pattern (i.e., portions of the program’s AST that match the AST of the
meta-model). The meta-model is also used by the source code mutator to
generate fault-injected versions of the program (see § 3.2.2).

After obtaining a set of fault injection points, the user can select a
subset of such locations according to their needs. For example, the user
may want to perform experiments only for a specific component (e.g., class
or file); the user may want to inject a sample of randomly-chosen faults
(e.g., to enforce a limit on the number of experiments); or, the user can
inject faults in all of the injection points. The set of injections defines the
fault injection plan, which is used in the Execution phase.

In this chapter, the proposed DSL is tailored for the Python language.
It is possible to define a similar DSL to support other languages, such
as C/C++ and Java. Several of the bug patterns for Python could be
re-used (i.e., patterns not involving special Python syntax). The porting
would mostly affect the DSL compiler and the source code scanner and
mutator.

3.2.2 Execution

In this phase, ProFIPy iterates over the fault injection plan. In each
experiment, the original Python source code is transformed into a mutated
version, which is identical to the original except for a few mutated state-
ments. The mutation emulates a residual bug in the software. For example,
to inject a wrong parameter bug in a method call, ProFIPy modifies the
method call statement by replacing it with a call to the same method but
with different or corrupted input parameters; to emulate an omission by
the developer, ProFIPy deletes the method call in the mutated version.
The set of mutated versions are the faultload that will be executed in the
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experiments. At the end of every experiment, ProFIPy collects logs from
the target system for data analysis (§ 3.2.3).

The user also configures a workload, i.e., a set of directives to exercise
the target software during the experiments. The workload emulates the op-
erating conditions of the system and triggers the injected fault. Moreover,
the workload serves to detect service failures and recovery abilities, e.g.,
by looking for crashes and timeouts of the workload (e.g., due to stalled
service calls), or by performing consistency checks with test assertions on
the outputs of the workload (e.g., after a resource has been modified by
the workload, the behavior of the system should reflect the new state of
the resource).

The user defines the workload by providing command-line directives.
For example, the user can use UNIX shell commands to start the tar-
get software, e.g., to launch a UNIX daemon such as a network server.
Command-line directives can be used both to invoke the command-line in-
terface of the target Python program or to indirectly launch the software
by running automated test scripts. These scripts can be uploaded by the
user along with the target Python source code (Figure 3.2). Additionally,
the user can specify command-line directives to launch workload generator
tools, such as HTTP and RPC traffic generators, which in turn exercise
the target software.

ProFIPy runs the fault injection experiments within a container-based
experimental environment, by using the Docker virtualization system [70].
The tool first creates a container image, in which it copies the Python
source code uploaded by the user. The user can customize the container
image by adding configuration directives in Dockerfile format [69], such as,
to install within the container external dependencies to run the Python
software under test (e.g., using the pip command), and to install external
tools (e.g., HTTP and RPC traffic generators). Then, for each fault to be
injected, ProFIPy deploys a new container, by copying into it the mutated
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source code with the fault, and runs the workload directives defined by
the user. The experiment ends when the workload completes, or when a
user-defined timeout expires. Finally, ProFIPy cleans-up the experimental
environment by deallocating the container. In this way, the tool can also
clean-up any resource leaked or corrupted because of the injected fault
(e.g., stale processes or files). Using containers also allows the tool to run
several parallel experiments on independent sandboxes, to take advantage
of multi-core CPUs. ProFIPy tunes the number of parallel experiments
according to run at most N − 1 parallel containers at the same time,
where N is the number CPU cores in the host system [251]. To avoid
interferences in memory and I/O bandwidth, the tool further reduces the
number of parallel containers if it hits a threshold for memory and I/O
utilization.

ProFIPy can enable and disable the injected faulty code at any time
during the execution of the target software. The mutated source code re-
tains a copy of the original statements of the fault injection point, similarly
to the EDFI fault injection tool [91]: ProFIPy mutates the source code
by inserting an IF ... ELSE ... construct, where the two branches
include respectively the original statements and the faulty ones. Then,
the tool can control which of the two branches to execute, by writing a
control variable (a “trigger ”) allocated in a shared memory area between
the tool and the target software. This ability enables additional analyses
of the effects of failures and recovery. The tool executes the workload for
two times (“rounds”), without restarting the target program between the
two executions. In the first round, the injected fault is enabled, so that it
infects the target software with error states, possibly causing service fail-
ures. The workload is executed again in the second round, but the injected
fault is disabled. Of course, if the target program fails and is unable to
recover, the second workload execution will fail. The second round allows
us to analyze the scope of the error states [265, 233]. In the best case, the
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error state is confined to service requests that were issued during the first
round, and the requests during the second round are not affected by any
error (e.g., the target software recovers a correct state with a restart). In
the worst case, the error states are persistent even after that the faulty
code is disabled, causing further failures during the second round. This
analysis provides additional feedback to the user about the failure behavior
of the target software.

During the experiments, ProFIPy saves the output of the target pro-
gram (stdout, stderr) and the output of the workload directives (e.g., the
commands for launching a workload generator, which reports service fail-
ures). Moreover, the tool can be configured to save log files that may
be generated by the target software or by the workload. These outputs
and logs are analyzed in the last phase of the ProFIPy workflow (data
analysis), as discussed in the following.

3.2.3 Data Analysis

The data analysis evaluates the target software in terms of service fail-
ures, logging, and recovery. ProFIPy classifies the experiments into a set
of failure modes, which include the crash and the timeout of the target
software, and user-defined failure modes. The user can specify patterns
(e.g., using keywords and regex) that the tool will look for among the
outputs and the logs produced by the experiments. For example, failure
modes can include failures of the workload (e.g., the workload stops due
to a service API exception) and of the target software (e.g., the software
detects an error state with an internal assertion, and reports it with a
high-severity log message). The tool reports the statistical distribution of
failure modes. The user can drill-down the individual classes of failures,
to further inspect logs of experiments in that class. The user can also
drill-down with respect to fault types and injected components, to identify
the critical areas (e.g., components that are most prone to failures) where
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Table 3.1. Injected fault types.

Fault
Category

Injection Target Examples
of

Injections

Failures
when
calling
external
library
APIs

API calls to the
urllib and os
Python modules

Exceptions,
None

objects,
omitted call,
wrong call

Wrong
inputs in
Python-
etcd
API

set(key, val),
get(key),

test_and_set(key,
val, old), ...

String
corruptions,
None values,
negative
integers

Resource
manage-
ment
bugs

set(key, val),
get(key),

test_and_set(key,
val, old), ...

Hog threads
inside

methods of
Python-etcd

failure mitigations are most needed.

ProFIPy can analyze failures with respect to workload rounds. It com-
putes a service availability metric, i.e., the percentage of experiments in
which the software was (un)available in the second round of execution (in-
jected fault disabled), because of error states generated during the first
round (injection fault enabled) that persisted and were not recovered.
These cases deserve a deeper analysis, e.g., to identify resource leaks that
may occur in error handling paths, and that may cause more failures over
time [114, 94].
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3.3 Case Study

We present an application of ProFIPy in the context of Python-etcd
[201], which is a library that provides Python bindings for the etcd dis-
tributed key-value store [81]. Huawei uses Python-etcd in their systems
and asked for three fault classes to be evaluated using our fault injec-
tion tool (Table 3.1): (i) call failures when invoking APIs from external
libraries (wrong response, timeouts, etc.), (ii) wrong inputs to the Python-
etcd APIs, and (iii) resource management faults. We implemented these
fault types using the ProFIPy DSL language.

We performed three fault injection campaigns on Python-etcd version
0.4.5. The workload used deploys the etcd server, and it uploads and
queries several key-value pairs of a different kind (e.g., with directories,
sub-keys, TTL, etc.) that we derived from Python-etcd ’s integration tests.
In the following subsections, we present the injected fault types and analyze
failure modes using ProFIPy.

3.3.1 Errors from external APIs

In the first campaign of experiments, we injected faults at method
calls in Python-etcd external modules, targeting the methods of urllib

(a Python package for working with URLs) and from os (e.g., Python
methods for file I/O). The injected fault types include:

• Throw Exception: The raise of the exception on a method
call, according to pre-defined, per-API list of exceptions (e.g.,
ConnectTimeoutError);

• Missing Function Call: A method call is entirely omitted (e.g.,
replaced with the python statement pass);

• Missing Parameters: A method call is invoked with omitted pa-
rameters (e.g., the method uses a default parameter instead of the
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correct one).

For this faultload, ProFIPy identified 26 points where to inject faults.
In 13 cases, the workload covered the injected faulty code. We found
failures in 12 experiments.

� Reconnection failure. In half of the cases, we found failures in both
rounds of execution, as denoted by the service availability metric. The
experiments did not complete within the timeout, and etcd was unable to
reconnect even after the fault removal. We found that the etcd server was
unable to bind to a TCP/IP port. Thus, restarting etcd does not suffice
to recover from the fault, but the port needs to be explicitly freed. We
need additional exception handlers to catch exceptions caused by network
connections, such as time-outs.

� Critical errors about ’member has already been bootstrapped’.
In a few experiments, Python-etcd was unable to perform operations on
etcd in the first round, due to an inconsistent state of the server caused by
the fault. To recover from this failure, the system needs a more elaborated
exception handling: it should explicitly remove the affected member by
using the dynamic configuration API of etcd, and it should restart etcd

by reverting to a previous consistent state.

� Client process crash due to an exception. In the remaining cases,
the client process crashed during the first round due to an unhandled ex-
ception. Moreover, the system was not available after disabling the fault.
In these cases, Python-etcd should provide exception handlers to catch
these exceptions or to raise another kind of exception (such as EtcdExcep-
tion) to be managed by Python-etcd client process.

3.3.2 Wrong Inputs

In the second campaign of fault injection experiments, we injected
faults in input parameters of Python-etcd API methods. We config-



3.3. Case Study 57

ured ProFIPy with fault types for injecting corrupted inputs, such as
strings with random characters, None object references, negative integers,
etc. For example, let us consider the method test_and_set(key, value,

old_value) taking in input three parameters: A fault consists in inject-
ing a corrupted input in the first parameter (string type) by randomly
replacing the characters of the string.

The ProFIPy tool identified 66 locations where to inject these faults.
In all of the cases, the injected faulty code was covered by the workload,
and in 29 experiments we found the following failures in the first round of
execution:

� AttributeError: ’NoneType’ object has no attribute
’startswith’. This failure is due to an issue with Python-etcd. It happens
when the tool injects a None value instead of a string (e.g., a key string).
Python-etcd does not check whether the input strings are valid. Therefore,
when a None value is passed in input, Python-etcd uses the startswith

attribute on a None reference. To avoid this failure, Python-etcd should
sanitize null strings in inputs.

� EtcdKeyNotFound exception. This failure happens when a wrong
key or value is injected. In this case, the workload failed because it is not
able to find the expected key or value in the etcd datastore. The caller
(in this case, the workload) needs to get/set the correct keys and values.
Thus, the Python-etcd client should handle these exceptions.

� EtcdException: Bad response: 400 Bad Request. This failure
happens when ProFIPy injects a wrong key or value that is not valid (e.g.,
a non-ASCII string). When this value is passed to etcd, the server rejects
the request with the HTTP Error 400 Bad Request. Python-etcd should
be fixed to check and sanitize non-ASCII strings.
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3.3.3 Resource Management Bugs

In the last campaign of experiments, we injected CPU hogs to overload
Python-etcd. We used ProFIPy for injecting stale threads that generate
a high CPU load. We targeted the same methods of the second campaign
of experiments, by injecting a resource hog after the method call. The
tool found 37 injectable locations, and the faulty code was always covered
during the workload execution. In 14 experiments, the system experienced
a service failure in the first round of execution. Most of these failures
forced a process termination with the exception “UnboundLocalError: local
variable ... referenced before assignment”. In other cases, the workload
also failed because of inconsistent values read from the etcd datastore.
The high CPU usage triggered race conditions in Python-etcd, and in the
Python interpreter itself. Since it is hard to find and fix these issues, the
failure should be mitigated, by cleaning-up stale threads that may cause
high CPU consumption. This should be pursued by monitoring at run-
time the CPU utilization of Python processes, and by killing or restarting
stale threads if CPU utilization is too high.

3.3.4 Performance evaluation

ProFIPy can quickly inject faults even for large projects since the scan
and mutation can be parallelized across several CPUs (it is an “embar-
rassingly parallel“ task). It took less than one minute to scan and mutate
Python-etcd on an 8-core Intel Xeon with 16 GB RAM. We also evaluated
performance on the OpenStack project, by targeting the three most im-
portant modules (Nova, Neutron, and Cinder) accounting for about 400K
lines of Python code. Using the same hardware, ProFIPy takes about
20 min to identify 17488 injectable locations using 120 different DSL pat-
terns, which is reasonable for practical purposes given the large size of this
project. The duration of the execution phase is beyond the control of our
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tool since it depends on the time to deploy the target system and run the
workload. It took between 10s and 120s (worst case of a “hang” failure) to
run a single experiment on Python-etcd, and about 30 min to run all of the
tests of this section. For OpenStack, an experiment takes several tens of
minutes, since it is a complex system that deploys VMs, loads large storage
volumes, initializes databases, etc. We were able to execute experiments
on OpenStack through nightly parallelized runs.

3.4 Advanced Features

ProFIPy includes more, optional features for deeper analysis of the
large amounts of data produced by fault injection experiments. We briefly
report here on these features.

3.4.1 Coverage Analysis

To reduce the time needed to run the fault injection experiments,
ProFIPy performs a preliminary analysis to avoid injecting faults in pro-
gram paths that are not covered by the workload. Most likely, the workload
will not cover all of the paths in the program, and injecting into non-
covered paths causes a waste of time since the fault would not cause any
effect. Before executing the experiments, ProFIPy conducts a coverage
analysis, by running a “fault-free” execution (i.e., no-fault injected) using
the same workload that will be used for the experiments. It generates
coverage information by adding logging statements at every fault injection
point in the target program discovered by the scan phase (see § 3.2.1).
After the fault-free run, ProFIPy generates a reduced fault injection plan,
by only including the covered fault locations.
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3.4.2 Failure Logging

ProFIPy checks whether the target system can detect error states and
report diagnostic information on log files. The tool computes a failure
logging metric, i.e., the percentage of experiments in which the target
software both experienced a workload failure and logged at least one error
message. Failures and error logs are identified with user-provided keywords
and regex. This metric gives feedback about the logging abilities, and non-
logged failures are opportunities for improving telemetry. An example of
this analysis can be found in a previous study [58].

3.4.3 Service Recovery

The ability to enable/disable the injected faulty code provides addi-
tional analyses on the effects of failures and recovery. The service avail-
ability metric evaluates the percentage of experiments in which the software
was (un)available when the injected fault has been disabled, i.e., whether
the error states generated by the injection persist and were not recovered.
These cases are also worth a deeper analysis by the user, e.g., the develop-
ers need to avoid resource leaks when the software executes error handling
paths, since these leaked resources may cause more failures as the software
continues to execute. To perform such an analysis, the tool executes the
workload two times (“rounds”), without restarting the target program be-
tween the two executions. In the first round, the injected fault is enabled,
and it can infect the target software with error states, and cause potential
service failures. The workload is executed again in the second round, but
the injected fault is disabled (of course, if the target program fails and is
unable to recover, the second workload execution may fail). This can be
leveraged to analyze the scope of the error states [265, 233]. In the best
case, the error state is confined to service requests that were issued during
the first round, and the requests during the second round are not affected
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by any error (e.g., the target software can recover a correct state with a
restart). In the worst case, the error states are persistent even after the
faulty code is disabled, causing further failures during the second round.
This analysis provides additional feedback to the user about the failure
behavior of the target software. ProFIPy also allows the user to perform
the log analysis by distinguishing between workload rounds.

3.4.4 Failure Propagation

ProFIPy checks if the fault in the injected component propagated
across other components. The tool computes a failure propagation met-
ric, i.e., the percentage of injected faults that impacted on more than one
component. This metric is applicable for larger software with a component-
based architecture, where each sub-system generates a distinct log file, or
where logs of the sub-systems can be separated with keywords and regex.
The user configures a list of sub-systems, their source code files (e.g., a
sub-folder of the source code), and their log files or patterns. The exper-
iments that exhibit propagation are worth further investigation, e.g., to
develop more robust interfaces between sub-systems to prevent the propa-
gation and make recovery easier. The failure propagation analysis will be
addressed in detail in the Chapter 5.

3.4.5 Failure Visualization

ProFIPy provides a graphical representation of an experiment to help
human analysts to get a simplified overview of the fault-injection experi-
ments and to better understand the results [57].

The tool instruments selected APIs in the target software and records
their invocations during the experiment using the Zipkin distributed trac-
ing framework [274] (see Appendix B).

In particular, the tool instruments the following communication points:
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• The RESTful API libraries of the OpenStack subsystems (e.g., Nova,
Neutron, Cinder) used for communication between OpenStack and
its clients. Each OpenStack subsystem includes a client component,
which includes API bindings for communication.

• The OSLO Messaging library, which uses a message queue library,
by exchanging messages with an intermediary queuing server (Rab-
bitMQ) through RPC messages. These messages are used for com-
munication among OpenStack subsystems.

Only 5 selected functions of these components are instrumented, by
adding a total of 20 lines of Python code.

The tool visualizes the API calls as events on timelines as interac-
tive plots. Figure 3.3 shows the output provided by ProFIPy for a fault
injection experiment on the OpenStack cloud computing platform. The
graphical representation is oriented to a human analyst that needs to un-
derstand what happened during the experiment. This representation shows
the events between the OpenStack clients and the OpenStack subsystems
(labeled as REST API ), and the inter and intra- subsystems API calls
events (labeled using the name of the subsystem).

This experiment injected a fault in the Nova subsystem, which man-
ages VM instances in OpenStack. During the experiment, OpenStack was
exercised by a workload, which emulated a system administrator or cus-
tomer that deploys a new virtual infrastructure, by calling the OpenStack
REST APIs. One of these API calls is an asynchronous request to create
a new VM instance. After the API call ends, Nova takes a few minutes to
create and initialize the instance. During these operations, we injected a
Python exception to force a failure.

In order to point out how the fault impacted on the system, this repre-
sentation divides the events among common, missing, and spurious ones.
The groups are obtained by applying an anomaly detection algorithm (dis-
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Figure 3.3. Graphical visualization of a fault injection experiment in Open-
Stack.

cussed in § 5).

ProFIPy provides an interactive visualization of the experiment. A
user can investigate a specific event by pointing the mouse at it: the tool
displays a table with information about the event, which is important to
facilitate the analysis of the failure. Our implementation uses mpld3 [163],
a library that brings together Matplotlib, the popular Python-based graph-
ing library, and D3js, the popular JavaScript library for creating interactive
data visualizations for the web. In the figure, we notice a large number of
missing events. The failure affected several OpenStack subsystems over a
relatively long time period. These events include several internal calls to
initialize the instance and to attach it to its virtual resources (the “prop-
agation chain” of the failure). The spurious events, instead, include the
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exceptions of two REST API calls to the client.
In our example, due to the injected fault, Nova did not complete the

initialization of the VM instance, leaving it in an inactive state. Later
on, after 5 minutes, the workload client experienced a service exception
when calling the API of the Cinder subsystem, which manages storage
volumes in OpenStack. By investigating the event pointed by the mouse,
we notice that the event <cinder-volume, attach-volume> did not occur
in the faulty execution (i.e., a missing event). Thus, ProFIPy helps the
analyst in understanding that the workload did not attach a volume to the
VM instance during the faulty execution.

Moreover, the OpenStack Neutron subsystem was also unable to attach
the VM instance to the virtual network. Both Nova and Neutron did not
raise any API exception, but the failure only became apparent to the
client when invoking the API of the Cinder subsystem. Therefore, the
problem propagated both across subsystems (from Nova to Neutron and
Cinder) and across time, since the client perceived the failure only after a
relatively long time. This behavior is problematic from the point of view of
high availability, as the propagation delay also increases the time-to-detect
and the time-to-recover the failure. Moreover, the longer the propagation
chain, the more difficult will be for a developer to reason about how to
best tolerate the fault, e.g., whether to manage the fault in Nova, Neutron,
and/or Cinder and at which time to manage the fault during the workflow.
For example, the API could return a more timely notification of the failure
to the client, either by introducing a callback mechanism in the Nova API
that creates the instance or by returning an error from other API calls to
Nova or Neutron.



Chapter 4
Empirical Analysis of Software
Failures in Cloud Systems

I
n this chapter, we empirically analyze the impact of high-severity fail-
ures in the context of a large-scale, industry-applied case study, to

pave the way for failure mitigation strategies in cloud management sys-
tems. In particular, we analyze the OpenStack project, which is the basis
for many commercial cloud management products [180] and is widespread
among public cloud providers and private users [187]. Moreover, Open-
Stack is a representative real-world large software system, which includes
several sub-systems for managing instances (Nova), volumes (Cinder), vir-
tual networks (Neutron), etc., and orchestrates them to deliver rich cloud
computing services.

We adopt software fault injection to accelerate the occurrence of failures
caused by software bugs [48, 247, 166]: our approach deliberately injects
bugs in one of the system components and analyzes the reaction of the
cloud system in terms of fail-stop behavior, failure reporting through error
logs, and failure propagation across components. We based fault injection

65
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on information on software bugs reported by OpenStack developers and
users [179], in order to characterize frequent bug patterns occurring in
this project. Then, we performed a large fault injection campaign on the
three major subsystems of OpenStack (i.e., Nova, Cinder, and Neutron),
for a total of 911 experiments, by using the fault-injection tool presented
in Chapter 3.

4.1 Overview on the research problem

Mitigating the severity of software failures caused by residual bugs is
a relevant issue for high-reliability systems [62], yet it still represents an
open research challenge. Ideally, in the case that a fault occurs, a service
should be able to mask the fault or recover from it in a transparent way
to the user, such as, by leveraging redundancy. However, this is often
not possible in the case of software bugs. Since software bugs are human
mistakes in the source code, the traditional fault-tolerance strategies for
hardware and network faults often do not apply. For example, if a service
is broken because of a regression bug, then retrying to execute the service
API with the same inputs would result again in a failure; a retrial would
only succeed in the case that the software bug is triggered by a transient
condition, such as a race condition [93, 94, 37]. If recovery is not possible,
the failed operation must be necessarily aborted and the user should be
notified [169, 159] so that the failure can be handled at a higher level of
the business logic. For example, the end-user can skip the failed opera-
tion, or put on hold the workflow until the bug is fixed. If the failure does
not immediately generate an exception from the OS or the programming
language run-time, the service may continue its faulty execution until it
corrupts in subtle ways the results or the state of resources. Such cases
need to be mitigated by architecting the software into small, decoupled
components for fault containment, in order to limit the scope of failure
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(e.g., the bulkhead pattern [169, 158]); and by applying defensive program-
ming practices to perform redundant checks on the correctness of a service
(e.g., pre and post-conditions to check that a resource has indeed been allo-
cated or updated). In this way, the system can enforce a fail-stop behavior
of the service (e.g., interrupting an API call that experiences a failure, and
generating an exception), so that it can avoid data corruption and limit
the outage to a small part of the system (e.g., an individual service call).

In this chapter, we study the extent of this problem in the context
of a cloud management system. Applying software fault tolerance prin-
ciples in such a large distributed system is difficult since its design and
implementation is a trade-off between several objectives, including per-
formance, backward compatibility, programming convenience, etc., which
opens to the possibility of failure propagation beyond fault containment
limits. We investigate this problem from three perspectives, by addressing
the following three perspectives.

� In the case that service experiences a failure, is it able to
exhibit a fail-stop behavior? If a service request could not be completed
because of a failure, the service API should return an exception to inform
about the issue. Therefore, we experimentally evaluate whether the service
indeed halts on failure and whether the failure is explicitly notified to
the user. In the worst case, the service API neither halts nor raises an
exception, and the state of resources is inconsistent with respect to what
the user is expecting (e.g., a VM instance was not actually created, or is
indefinitely in the “building” state).

� Are error reporting mechanisms able to point out the occur-
rence of a failure? Error logs are a valuable source of information for
automated recovery mechanisms and system operators to detect failures
and restore service availability; and for developers to investigate the root
cause of the failure. However, there can be gaps between failures and
log messages. We analyze the cases in which the logs do not record any
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anomalous event related to a failure, since the software may lack checks to
detect the anomalous events.

� Are failures propagated across the services of the cloud man-
agement system? To mitigate the severity of failures, failure should be
limited to the specific service API that is affected by a software bug. If
the failure impacts other services beyond the buggy one (e.g., the incor-
rect initialization of a VM instance also causes the failure of subsequent
operations on the instance), it is more difficult to identify the root cause
of the problem and to recover from the failure. Similarly, the failure may
cause lasting effects on the cloud infrastructures (e.g., the virtual resources
allocated for a failed instance cannot be reclaimed, or interfere with other
resource allocations) that are difficult to debug and recover from. There-
fore, we analyze whether failures can spread across different components
of the system, and several service calls.

4.2 Methodology
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Figure 4.1. Distribution of bug types.

Our approach is to inject software bugs (§ 4.2.1, § 4.2.2) in order to
obtain failure data from OpenStack (§ 4.2.3). Then, we analyze whether
the system could gracefully mitigate the impact of the failures (§ 4.2.4).



4.2. Methodology 69

4.2.1 Bug Analysis

A key aspect to performing software fault injection experiments is to
inject representative software bugs [48, 75]. Since the body of knowledge on
bugs in Python software [214, 189], the programming language of Open-
Stack, is relatively smaller compared to other languages, we seek more
insights about bugs in the OpenStack project. Therefore, we analyzed
the OpenStack issue tracker on the Launchpad portal [179], by looking
for bug-fixes at the source code level, in order to identify bug patterns
[75, 191, 153, 271, 240] for this project. From these patterns, we defined a
set of bug types to be injected.

We went through the problem reports and inspected the related source
code. We looked for reports where: (i) the root cause of the problem
was a software bug, excluding build, packaging, and installation issues;
(ii) the problem had been marked with the highest severity level (i.e., the
problem has a strong impact on OpenStack services); (iii) the problem
was fixed, and the bug-fix was linked to the discussion. We manually
analyzed a sample of 179 problem reports from the Launchpad, focusing
on entries with importance set to “Critical ”, and with status set to “Fix
Committed ” or “Fix Released ” (such that the problem report also includes
a final solution shipped in OpenStack). Of these problem reports, we
identified 113 reports that met all of the three criteria. We shared the full
set of bug reports (see Section 4.6).

The bugs encompass several areas of OpenStack, including bugs that af-
fected the service APIs exposed to users (e.g., nova-api); bugs that affected
dictionaries and arrays, such as a wrong key used in image[’imageId’];
bugs that affected SQL queries (e.g., database queries for information
about instances in Nova); bugs that affected RPC calls between Open-
Stack subsystems (e.g., rpc.cast was omitted, or had a wrong topic or
contents); bugs that affected calls to external system software, such as ipt-
ables and dsnmasq ; bugs that affected pluggable modules in OpenStack,
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such as network protocol plugins and agents in Neutron. Figure 4.1 shows
statistics about the bug types that we identified from the problem reports
and their bug fixes. The five most frequent bug types include the following
ones.

� Wrong parameters value: The bug was an incorrect method call
inside OpenStack, where a wrong variable was passed to the method
call. For example, this was the case of the Nova bug #1130718 (https:
//bugs.launchpad.net/nova/+bug/1130718, which was fixed in https:

//review.openstack.org/#/c/22431/ by changing the exit codes passed
through the parameter check_exit_code).

� Missing parameters: A method call was invoked with omitted pa-
rameters (e.g., the method used a default parameter instead of the cor-
rect one). For example, this was the case of the Nova bug #1061166
(https://bugs.launchpad.net/nova/+bug/1061166, which was fixed in
https://review.openstack.org/#/c/14240/ by adding the parameter
read_deleted=’yes’ when calling the SQL Alchemy APIs).

� Missing function call: A method call was entirely omitted. For
example, this was the case of the Nova bug #1039400 (https://
bugs.launchpad.net/nova/+bug/1039400, which was fixed in https:

//review.openstack.org/#/c/12173/ by adding and calling the new
method

trigger_security_group_members_refresh).

�Wrong return value: A method returned an incorrect value (e.g., None

instead of a Python object). For example, this was the case of the Nova
bug #855030 (https://bugs.launchpad.net/nova/+bug/855030, which
was fixed in https://review.openstack.org/#/c/1930/ by returning an
object allocated through allocate_fixed_ip).

� Missing exception handlers: A method call lacks exception han-
dling. For example, this was the case of the Nova bug #1096722 (https:
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//bugs.launchpad.net/nova/+bug/1096722, which was fixed in https:

//review.openstack.org/#/c/19069/ by adding an exception handler for
exception.InstanceNotFound).

4.2.2 Fault Injection

In this study, we perform software fault injection to analyze the impact
of software bugs [247, 48, 166]. This approach deliberately introduces
programming mistakes in the source code, by replacing parts of the original
source code with faulty code. For example, in Figure 4.2, the injected bug
emulates a missing optional parameter (a port number) to a function call,
which may cause failure under certain conditions (e.g., a VM instance
may not be reachable through an intended port). This approach is based
on previous empirical studies, which observed that the injection of code
changes can realistically emulate software faults [65, 48, 7], in the sense that
code changes produce run-time errors that are similar to the ones produced
by real software faults. This approach is motivated by the high efforts that
would be needed for experimenting with hand-crafted bugs or with real
past bugs: in these cases, every bug would require to carefully craft the
specific conditions that trigger it (i.e., the topology of the infrastructure,
the software configuration, and the hardware devices under which the bug
surfaces). To achieve a match between injected and real bugs, we focus
the injection on the most frequent five types found by the bug analysis.
These bug types allow us to cover all of the main areas of OpenStack (API,
SQL, etc.), and suffice to generate a large and diverse set of faults over the
codebase of OpenStack.

We emulate the bug types by mutating the existing code of OpenStack.
The Figure 4.2 shows the steps of a fault injection experiment. We used
the ProFIPy tool presented in Chapter 3 to automate the bug injection
process in Python code. The tool uses the ast Python module to generate
an abstract syntax tree (AST) representation of the source code; then, it

https://bugs.launchpad.net/nova/+bug/1096722
https://bugs.launchpad.net/nova/+bug/1096722
https://bugs.launchpad.net/nova/+bug/1096722
https://review.openstack.org/#/c/19069/
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72 Chapter 4. Empirical Analysis of Software Failures in Cloud Systems

Faulty	round Fault-free	round

iface_name = self.get_interface_name
(network, port)

if bug_trigger == True:
iface_name = self.get_interface_name

(network)
else:
iface_name = self.get_interface_name

(network, port)

Original Python code Injected Python code

4. Deploy & start 
the target system

3. The buggy 
execution path is 
initially disabled

6. Run the 
workload for 
the first time

9. Testbed
clean-up before 

next test

8. Run the 
workload for 

the second time

Correct execution path 
(the same method call of 

the original Python script)

Buggy execution path 
(missing parameter in 

method call)

5. The buggy 
execution path is 

enabled at this point

1. Scan the source code, to 
identify a fault injection point

2. Mutate the source 
code to inject the bug

7. The buggy 
execution path is 
disabled again

TIMELINE

OFF

ON OFF

Figure 4.2. Overview of a fault injection experiment.

scans the AST by looking for relevant elements (function calls, expressions,
etc.) where the bug types could be injected; it modifies the AST, by re-
moving or replacing the nodes to introduce the bug; finally, it rewrites the
modified AST into Python code, using the astunparse Python module. To
inject the bug types of Section 4.2.2, we modify or remove method calls
and their parameters. We targeted method calls related to the bugs that
we analyzed, by targeting calls to internal APIs for managing instances,
volumes, and networks (e.g., which are denoted by specific keywords, such
as instance and nova for the methods of the Nova subsystem). Wrong
input and parameters are injected by wrapping the target expression into
a function call, which returns at run-time a corrupted version of the ex-
pression based on its data type (e.g., a null reference in place of an object
reference, or a negative value in place of an integer). Exceptions are raised
on method calls according to a pre-defined list of exception types.

The tool inserts fault-injected statements into an if block, together
with the original version of the same statements but in a different branch
(as in step 2 in Figure 4.2). The execution of the fault-injected code
is controlled by a trigger variable, which is stored in a shared memory
area that is writable from an external program. This approach has been
adopted for controlling the occurrence of failures during the tests. In the
first phase (round 1), we enable the fault-injected code, and we run a
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workload that exercises the service APIs of the cloud management system.
During this phase, the fault-injected code could generate run-time errors
inside the system, which will potentially lead to user-perceived failures.
Afterward, in a second phase (round 2), we disable the injected bug, and
we execute the workload for a second time. This fault-free execution points
out whether the scope of run-time errors (generated by the first phase) is
limited to the service API invocations that triggered the buggy code (e.g.,
the bug only impacts local session data). If failures still occur during the
second phase, then the system has not able to handle the run-time errors
of the first phase. Such failures point out the propagation of effects across
the cloud management system (see § 4.1).

We implemented a workload generator to automatically exercise the
service APIs of the main OpenStack sub-systems. The workload has been
designed to cover several sub-systems of OpenStack and several types of
virtual resources, in a similar way to integration test cases from the Open-
Stack project [185]. The workload creates VM instances, along with key
pairs and a security group; attaches the instances to volumes; creates a
virtual network, with virtual routers; and assigns floating IPs to connect
the instances to the virtual network. Having a comprehensive workload
allows us to point out propagation effects across sub-systems caused by
bugs.

The experimental workflow is repeated several times. Every experiment
injects a different fault, and only one fault is injected per experiment.
Before a new experiment, we clean up any potential residual effect from the
previous experiment, in order to be able to relate failure to the specific bug
that caused it. The clean-up re-deploys OpenStack removes all temporary
files and processes and restores the database to its initial state. However,
we do not perform these clean-up operations between the two workload
rounds (i.e., no clean-up between the steps 6 and 8 of Figure 4.2), since
we want to assess the impact of residual side effects caused by the bug.
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Table 4.1. Assertion check failures.

Name Description
FAILURE IMAGE ACTIVE The created image does not transit into the

ACTIVE state
FAILURE INSTANCE ACTIVE The created instance does not transit into the

ACTIVE state
FAILURE SSH It is impossible to establish a ssh session to the

created instance
FAILURE KEYPAIR The creation of a keypair fails
FAILURE SECURITY GROUP The creation of a security group and rules fails
FAILURE VOLUME CREATED The creation of a volume fails
FAILURE VOLUME ATTACHED Attaching a volume to an instance fails
FAILURE FLOATING IP
CREATED

The creation of a floating IP fails

FAILURE FLOATING IP
ADDED

Adding a floating IP to an instance fails

FAILURE PRIVATE NETWORK
ACTIVE

The created network resource does not transit into
the ACTIVE state

FAILURE PRIVATE SUBNET
CREATED

The creation of a subnet fails

FAILURE ROUTER ACTIVE The created router resource does not transit into
the ACTIVE state

FAILURE ROUTER INTERFACE
CREATED

The creation of a router interface fails

4.2.3 Failure Data Collection

During the execution of the workload, we record inputs and outputs
of service API calls of OpenStack. Any exception generated from the call
(API Errors) is also recorded. In-between calls to service APIs, the work-
load also performs assertion checks on the status of the virtual resources,
in order to point out failures of the cloud management system. In the con-
text of our methodology, assertion checks serve as ground truth about the
occurrence of failures during the experiments. These checks are valuable
to point out the cases in which a fault causes an error, but the system does
not generate an API error (i.e., the system is unaware of the failure state).
Our assertion checks are similar to the ones performed by the integration
tests as test oracles [124, 186]: they assess the connectivity of the instances
through SSH and query the OpenStack API to check that the status of the
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instances, volumes and network is consistent with the expectation of the
test cases. The assertion checks are performed by our workload generator.
For example, after invoking the API for creating a volume, the workload
queries the volume status to check if it is available (VOLUME CREATED
assertion). These checks are useful to find failures not notified through
the API errors. Table 4.1 describes the assertion checks.

If an API call generates an error, the workload is aborted, as no fur-
ther operation is possible on the resources affected by the failure (e.g., no
volume could be attached if the instance could not be created). In the
case that the system fails without raising an exception (i.e., an assertion
check highlights a failure, but the system does not generate an API error),
the workload continues the execution (as a hypothetical end-user, being
unaware of the failure, would do), regardless of failed assertion check(s).
The workload generator records the outcomes of both the API calls and of
the assertion checks. Moreover, we collect all the log files generated by the
cloud management system. This data is later analyzed for understanding
the behavior of the system under failure.

4.2.4 Failure Analysis

We analyze fault injection experiments according to three perspectives
discussed in Section 4.1. The first perspective classifies the experiments
with respect to the type of failure that the system experiences. The possible
cases are the following ones.

� API Error: In these cases, the workload was not able to correctly
execute, due to an exception raised by a service API call. In these cases,
the cloud management system has been able to handle the failure in a
fail-stop way, since the user is informed by the exception that the virtual
resources could not be used, and it can perform recovery actions to address
the failure. In our experiments, the workload stops on the occurrence of
an exception, as discussed before.
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� Assertion failure: In these cases, the failure was not pointed out by
an exception raised by a service API. The failure was detected by the
assertion checks made by the workload in-between API calls, which found
an incorrect state of virtual resources. In these cases, the execution of the
workload was not interrupted, as no exception was raised by the service
APIs during the whole experiment, and the service API did (apparently)
work from the perspective of the user. These cases point out non-fail-stop
behavior.

�Assertion failure(s), followed by an API Error: In these cases, the
failure was initially detected by assertion checks, which found an incorrect
state of virtual resources in-between API calls. After the assertion check
detected the failure, the workload continued the execution, by performing
further service API calls, until an API error occurred in a later API call.
These cases also point out issues at handling the failure, since the user is
unaware of the failure state and cannot perform recovery actions.

� No failure: The injected bug did not cause a failure that could be
perceived by the user (neither by API exceptions nor by assertion checks).
The effects of the bug may be tolerated by the system (e.g., the system
switched to an alternative execution path to provide the service); or, the
injected source code was harmless (e.g., an uninitialized variable is later
assigned before use). Since no failure occurred, these experiments are not
further analyzed, as they do not allow to draw conclusions on the failure
behavior of the system.

Failed executions are further classified according to a second perspec-
tive, with respect to the execution round in which the system experienced a
failure. The possible cases are the following ones.

� Failure in the faulty round only: In these cases, a failure occurred
in the first (faulty) execution round (Figure 4.2), in which a bug has been
injected; and no failure is observed during the second (fault-free) execution
round, in which the injected bug is disabled, and in which the workload
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operates on a new set of resources. This behavior is the likely outcome of
an experiment since we are deliberately forcing a service failure only in the
first round through the injected bug.

� Failure in the fault-free round (despite the faulty round): These
cases are concerns for fault containment since the system is still experi-
encing failures despite the bug being disabled after the first round and
the workload operates on a new set of resources. This behavior is due to
residual effects of the bug that propagated through session state, persistent
data, or other shared resources.

Finally, the experiments with failures are classified from the perspective
of whether they generated logs able to indicate the failure. In order to make
more resilient a system, we are interested in whether it produces informa-
tion for detecting failures and for triggering recovery actions. In practice,
developers are conservative at logging information for post-mortem anal-
ysis, by recording high volumes of low-quality log messages that bury the
truly important information among many trivial logs of similar severity
and contents, making it difficult to locate issues [273, 139, 268]. There-
fore, we cannot simply rely on the presence of logs to conclude that a
failure was detected.

To clarify the issue, Figure 4.3 shows the distribution of the number of
log messages in OpenStack across severity levels, TRACE to CRITICAL,
during the execution of our workload generator, and without any failure.
We can notice that all OpenStack components generate a large number of
messages with severity WARNING, INFO, and DEBUG even when there
is no failure. Instead, there are no messages of severity ERROR or CRIT-
ICAL. Therefore, even if a failure is logged with severity WARNING or
lower, such log messages cannot be adopted for automated detection and
recovery of the failure, as it is difficult to distinguish between “informa-
tive” messages and actual issues. Therefore, to evaluate the ability of the
system to support recovery and troubleshooting through logs, we classify
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Figure 4.3. Distribution of log messages severity during a fault-free execu-
tion of the workload.

failures according to the presence of one or more high-severity message
(i.e., CRITICAL or ERROR) recorded in the log files (logged failures),
or no such message (non-logged failures).

4.3 Experimental Evaluation

In this work, we present the analysis of OpenStack version 3.12.1 (re-
lease Pike), which was the latest version of OpenStack when we started this
work. We injected bugs into the most fundamental services of OpenStack
[68, 227]: (i) the Nova subsystem, which provides services for provision-
ing instances (VMs) and handling their life cycle; (ii) the Cinder subsys-
tem, which provides services for managing block storage for instances; and
(iii) the Neutron subsystem, which provides services for provisioning vir-
tual networks for instances, including resources such as floating IPs, ports
and subnets. Each subsystem includes several components (e.g., the Nova
sub-system includes nova-api, nova-compute, etc.), which interact through
message queues internally to OpenStack. The Nova, Cinder, and Neutron
sub-systems provide external REST API interfaces to cloud users.
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Figure 4.4. OpenStack testbed architecture.

Figure 4.4 shows the testbed used for the experimental analysis of
OpenStack. We adopted an all-in-one virtualized deployment of Open-
Stack, in which the OpenStack services run on the same VM, for the fol-
lowing reasons: (1) to prevent interferences on the tests from transient
issues in the physical network (e.g., sporadic network faults, network de-
lays caused by other user traffic in our local data center, etc.); (2) to
parallelize a high number of tests on several physical machines, by using
the Packstack installation utility [208] to have a reproducible installation
of OpenStack across the VMs; (3) to efficiently revert any persistent ef-
fect of a fault injection test on the OpenStack deployment (e.g., file system
issues), in order to assure independence among the tests. Moreover, the all-
in-one virtualized deployment is a common solution for performing tests
on OpenStack [209, 152]. The hardware and VM configuration for the
testbed includes: 8 virtual Intel Xeon CPUs (E5-2630L v3 @ 1.80GHz);
16GB RAM; 150 GB storage; Linux CentOS v7.0.

In addition to the core services of OpenStack (e.g., Nova, Neutron,
Cinder, etc.), the testbed also includes our components to automate fault
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injection tests. The Injector Agent is the component that analyzes and in-
struments the source code of OpenStack. The Injector Agent can: (i) scan
the source code to identify injectable locations (i.e., source-code statements
where the bug types discussed in § 4.2.2 can be applied); (ii) instrument the
source code by introducing logging statements in every injectable location,
in order to get a profile of which locations are covered during the execution
of the workload (coverage analysis); (iii) instrument the source code to
introduce a bug into an individual injectable location.

The Controller orchestrates the experimental workflow. It first com-
mands the Injector Agent to perform preliminary coverage analysis, by in-
strumenting the source code with logging statements, restarting the Open-
Stack services, and launching the Workload Generator, but without inject-
ing any fault. The Workload Generator issues a sequence of API calls in
order to stimulate OpenStack services. The Controller retrieves the list
of injectable locations and their coverage from the Injector Agent. Then,
it iterates over the list of injectable locations that are covered, and is-
sues command for the Injector Agent to perform fault injection tests. For
each test, the Injector Agent introduces an individual bug by mutating the
source code, restarts the OpenStack services, starting the workload, and
triggers the injected bug as discussed in § 4.2.2. The Injector Agent col-
lects the logs files from all OpenStack subsystems and from the Workload
Generator, which are sent to the Controller for later analysis (§ 4.2.4).

We performed a full scan of injectable locations in the source code
of Nova, Cinder, and Neutron, for a total of 2 016 analyzed source code
files. We identified 911 injectable faults that were covered by the workload.
Figure 4.5 shows the number of faults per sub-system and per type of fault.
The number of faults for each type and sub-system depends on the number
of calls to the target functions, and on their input and output parameters,
as discussed in § 4.2.2. We executed one of the tests per injectable location,
by injecting one fault at a time.
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Figure 4.5. Number of fault injection tests.

After executing the tests, we found failures respectively in 52.6% (231
out of 439 tests), 46.4% (125 out of 269 tests), and 61% (124 out of 203
tests) of tests in Nova, Cinder, and Neutron, for a total of 480. In the
remaining 47.3% of the tests (431 out of 911 tests), instead, there were
neither an API error nor assertion failures: in these cases, the fault was
not activated (even if the faulty code was covered by the workload), or there
was no error propagation to the component interface. The occurrence of
tests not causing failures is a typical phenomenon that occurs with code
mutations, which may not infect the state even when the faulty code is
executed [48, 130]. Yet, the injections provided us with a large and diverse
set of failures for our analysis.

4.3.1 Does OpenStack Show a Fail-Stop Behavior?

We first analyze the impact of failures on the service interface APIs
provided by OpenStack. The Workload Generator (which impersonates
a user of the cloud management system) invokes these APIs, looks for



82 Chapter 4. Empirical Analysis of Software Failures in Cloud Systems

Figure 4.6. Distribution of OpenStack failures.

errors returned by the APIs, and performs assertion checks between API
calls. A fail-stop behavior occurs when an API returns an error before any
failed assertion check. In such cases, the Workload Generator stops the
occurrence of the API error. Instead, it is possible that an API invocation
terminates without returning any error, but leaving the internal resources
of the infrastructure (instances, volumes, etc.) in a failed state, which is
reported by assertion checks. These cases represent violations of the fail-
stop hypothesis, and represent a risk for the users as they are unaware
of the failure. To investigate this aspect, we initially focus on the faulty
round of each test, in which fault injection is enabled (Figure 4.2).

Figure 4.6 shows the number of tests that experienced failures, divided
into API Error only, Assertion Failure only, and Assertion Failure(s), fol-
lowed by an API Error. The figure shows the data divided with respect to
the subsystem where the bug was injected (respectively in Nova, Cinder,
and Neutron); moreover, Figure 4.6 shows the distribution across all fault
injection tests. We can see the cases in which the system does not exhibit a
fail-stop behavior (i.e., the categories Assertion Failure only and Assertion
Failure followed by an API Error) represent the majority of the failures.
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Figure 4.7. Distribution of assertion check failures.

Figure 4.7 shows a detailed perspective on the failures of assertion
checks. Notice that the number of assertions is greater than the number
of tests classified in the Assertion failure category (i.e., Assertion Failure
only and Assertion Failure followed by an API Error) since a test can
generate multiple assertion failures. The most common case has been one
of the instances not active because the instance creation failed (i.e., it did
not move into the ACTIVE state [186]). In other cases, the instance could
not be reached through the network or could not be attached to a volume,
even if in the ACTIVE state. A further common case is the failure of
the volume creation, but only the faults injected in the Cinder sub-system
caused this assertion failure.

These cases point out that OpenStack lacks redundant checks to as-
sure that the state of the virtual resources after a service call is in the
expected state (e.g., newly-created instances are active). Such redundant
checks would assess the state of the virtual resources before and after a
service invocation and would raise an error if the state does not comply
with the expectation (such as a new instance could not be activated).
However, these redundant checks are seldom adopted, most likely due to
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Figure 4.8. Distribution of API Errors.

the performance penalty they would incur, and because of the additional
engineering efforts to design and implement them. Nevertheless, the cloud
management system is exposed to the risk that residual bugs can lead to
non-fail-stop behaviors, where failures are notified with a delay or not noti-
fied at all. This makes it not trivial to prevent data losses and to automate
recovery actions.

Figure 4.8 provides another perspective on API errors. It shows the
number of tests in which each API returned an error, focusing on 15 out of
40 APIs that failed at least one time. The API with the highest number of
API errors is the one for adding a volume to an instance (openstack server
add volume), provided by the Cinder sub-system. This API generated
errors even when faults were injected in Nova (instance management) and
Neutron (virtual networking). This behavior means that the effects of fault
injection propagated from other sub-systems to Cinder (e.g., if an instance
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Figure 4.9. Cumulative distribution of API Error latency.

is in an incorrect state, other APIs on that resource are also exposed to
failures). On the one hand, this behavior is an opportunity for detecting
failures, even if in a later stage. On the other hand, it also represents the
possibility of a failure to spread across sub-systems, thus defeating fault
containment and exacerbating the severity of the failure. We will analyze
fault propagation in more detail in Section 4.3.3.

To understand the extent of non-fail-stop behaviors, we also analyze
the period of time (latency) between the execution of the injected bug
and the resulting API error. This latency should be as low as possible.
Otherwise, the longer the latency, the more difficult is to relate an API
error with its root cause (i.e., an API call invoked much earlier, on a differ-
ent sub-system or virtual resource); and the more difficult it is to perform
troubleshooting and recovery actions. To track the execution of the in-
jected bug, we instrumented the injected code with logging statements to
record the timestamp of its execution. If the injected code is executed sev-
eral times before a failure (e.g., in the body of a loop), we conservatively
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consider the last timestamp. We consider separately the cases where the
API error is preceded by assertion check failures (i.e., the injected bug was
triggered by an API different from the one affected by the bug) from the
cases without any assertion check failure (e.g., the API error arises from
the same API affected by the injected bug).

Figure 4.9 shows the distributions of latency for API errors that oc-
curred after assertion check failures, respectively for the injections in Nova,
Cinder, and Neutron. Table 4.2 summarizes the average, the 50th, and the
90th percentiles of the latency distributions. We note that in the first cat-
egory (API errors after assertion checks), all sub-systems exhibit a median
API error latency longer than 100 seconds, with cases longer than several
minutes. This latency should be considered too long for cloud services
with high-availability SLAs (e.g., four nines or more [23]), which can only
afford a few minutes of monthly outage. This behavior points out that the
API errors are due to a “reactive” behavior of OpenStack, which does not
actively perform any redundant check on the integrity of virtual resources,
but only reacts to the inconsistent state of the resources once they are
requested in a later service invocation. Thus, OpenStack experiences a
long API error latency when a bug leaves a virtual resource in an incon-
sistent state. This result suggests the need for improved error checking
mechanisms inside OpenStack to prevent these failures.

In the case of failures that are notified by API errors without any
preceding assertion check failure (the second category in Table 4.2), the
latency of the API errors was relatively small, less than one second in the
majority of cases. Nevertheless, there were few cases with an API error
latency higher than one minute. In particular, these cases happened when
bugs were injected in Nova, but the API error was raised by a different
sub-system (Cinder). In these cases, the high latency was caused by the
propagation of the bug’s effects across different API calls. These cases are
further discussed in § 4.3.3.
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Table 4.2. Statistics on API Error latency.

Subsys. Avg [s]
50th

%ile
[s]

90th

%ile
[s]

API Errors after
an Assertion

failure

Nova 152.25 168.34 191.60
Cinder 74.52 93.00 110.00
Neutron 144.72 166.00 263.60

API Errors
only

Nova 3.73 0.21 0.55
Cinder 0.30 0.01 1.00
Neutron 0.30 0.01 1.00

4.3.2 Is OpenStack Able to Log Failures?

Since failures can be notified to the end-user with a long delay, or even
not at all, it becomes important for system operators to get additional
information to troubleshoot these failures. In particular, we here consider
log messages produced by OpenStack sub-systems.

We computed the percentage (logging coverage) of failed tests which
produced at least one high-severity log message (see also § 4.2.4). Table 4.3
provides the logging coverage for different subsets of failures, by dividing
them with respect to the injected subsystem and to the type of failure.
From these results, we can see that OpenStack logged at least one high-
severity message (i.e., with severity level ERROR or CRITICAL) in most
of the cases. The Cinder subsystem shows the best results since logging
covered almost all of the failures caused by fault injection. However, in the
case of Nova and Neutron, logs missed some of the failures. In particular,
the failures without API errors (i.e., Assertion Failure only) exhibited the
lowest logging coverage. This behavior can be problematic for recovery and
troubleshooting since the failures without API errors lack an explicit error
notification. These failures are also the ones in need of complementary
sources of information, such as logs.

To identify opportunities to improve logging in OpenStack, we analyzed
the failures without any high-severity log across, with respect to the bug



88 Chapter 4. Empirical Analysis of Software Failures in Cloud Systems

types injected in these tests. We found that MISSING FUNCTION CALL
andWRONG RETURN VALUE represent the 70.7% of the bug types that
lead to non-logged failures (43.9% and 26.8 %, respectively). TheWRONG
RETURN VALUE faults are the easiest opportunity for improving logging
and failure detection since the callers of a function could perform additional
checks on the returned value and record anomalies in the logs. For example,
one of the injected bugs introduced a WRONG RETURN VALUE in calls
to a database API called by the Nova sub-system to update the information
linked to a new instance. The bug forced the function to return a None
instance object. The bug caused an assertion check failure, but OpenStack
did not log any high-severity message. By manually analyzing the logs, we
could only find one suspicious message with the only WARNING severity
and with little information about the problem, as this message was not
related to database management.

The non-logged failures caused by a MISSING FUNCTION CALL em-
phasize the need for redundant end-to-end checks to identify inconsisten-
cies in the state of the virtual resources. For example, in one of these
experiments, we injected a MISSING FUNCTION CALL in the Libvirt-
Driver class in the Nova subsystem, which allows OpenStack to interact
with the libvirt virtualization APIs [141]. Because of the injected bug, the
Nova driver omits to attach a volume to an instance, but the Nova sub-
system does not perform checks that the volume is indeed attached to the
instance. This kind of end-to-end checks could be introduced at the service
API interface of OpenStack (e.g., in nova-api) to test the availability of
the virtual resources at the end of API service invocations (e.g., by pinging
them).

4.3.3 Do Failures Propagate Across OpenStack?

We analyze failure propagation across sub-systems, to identify more
opportunities to reduce their severity. We consider failures of both the
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Table 4.3. Logging coverage of high-severity log messages.

Logging coverage

Subsystem
API

Errors
only

Assertion
failure
only

Assertion
failure

and API
Errors

Nova 90.32% 80.77% 82,56%
Cinder 100% 95,65% 100%
Neutron 98.67% 66.67% 95%

“faulty” and the “fault-free” rounds, respectively (Figure 4.2).

In the faulty round, we are interested in whether the injected bug
impacted sub-systems beyond the injected one. To this aim, we divide
the API errors with respect to the API that raised the error (e.g., an API
exposed by Nova, Neutron, or Cinder). Similarly, we divide the assertion
check failures with respect to the sub-system that manages the virtual
resource checked by the assertion. There is a spatial fault propagation
across the components if an injection on a sub-system (say, Nova) causes
an assertion check failure or an API error on a different sub-system (say,
Cinder or Neutron).

Figure 4.10a shows a graph of events that occurred during the faulty
round of the tests with a failure. The nodes on the top of the graph rep-
resent the sub-systems where bugs were injected; the nodes on the middle
represent assertion check failures; the nodes on the bottom represent API
errors. The edges that originate from the nodes on the top represent the
number of injections that were followed by an assertion check failure or an
API error. Moreover, the edges between the middle and the bottom nodes
represent the number of tests where an assertion check failure was followed
by an API error. The most numerous cases are emphasized with propor-
tionally thicker edges and annotated with the number of occurrences. We
used different shades to differentiate the cases with respect to the injected
sub-system.
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Figure 4.10. Fault propagation during fault injection tests.

The failures exhibited a propagation across OpenStack services in a
significant amount of cases (37.5% of the failures). In many cases, the
propagation initiated from an injection in Nova, which caused a failure at
activating a new instance; as discussed in the previous subsections, the
unavailability of the instance was detected in a later stage, such as when
the user attaches a volume to the instance using the Cinder API. Even
worse, there are some cases of propagation from Neutron across Nova and
Cinder. These failures represent a severe issue for fault containment since
an injection in Neutron not only caused a failure of their APIs but also
impacted virtual resources that were not managed by these sub-systems.
Therefore, the failures are not necessarily limited to the virtual resources
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managed by the sub-system invoked at the time of the failure, but also
to other related virtual resources. Therefore, end-to-end checks on API
invocations should also include resources that are indirectly related to the
API (such as checking the availability of an instance after attaching a
volume). For as concerns Cinder, instead, there are no cases of error
propagation from this sub-system across Nova and Neutron.

We further analyze the propagation of failures by considering what
happens during the fault-free round of execution. The fault-free round
invokes the service APIs after the buggy execution path is disabled as dead
code. Moreover, the fault-free round executes on new virtual resources (i.e.,
instances, networks, routers, etc., are created from scratch). Therefore, it
is reasonable to expect (and it is indeed the case) that the fault-free round
executes without experiencing any failure. However, we still observe a
subset of failures (7.5%) that propagate their effects to the fault-free round.
These failures must be considered critical since they are affecting service
requests that are supposed to be independent but are still exposed to
temporal failure propagation through shared state and resources. We
remark that the failures in the fault-free round are caused by the injection
in the faulty round. Indeed, we assured that previous injections do not
impact the subsequent experiments by restoring all the persistent state of
OpenStack before every experiment.

Figure 4.10b shows the propagation graph for the fault-free round. The
most cases, the Nova sub-system was unable to create new instances, even
after the injected bug is removed from Nova. A similar persistent issue
happens for a subset of failures caused by injections in Neutron. These
sub-systems both manage a relational database that holds information
on the virtual instances and networks, and we found that the persistent
issues are solved only after the databases are reverted to the state before
fault injection. This recovery action can be very costly since it can take
a significant amount of time, during which the cloud infrastructure may
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become unavailable. For this reason, we remark the need for detecting
failures as soon as they occur, such as using end-to-end checks at the
end of service API calls. Such detection would support quicker recovery
actions, such as reverting the database changes performed by an individual
transaction.

4.4 Threats to Validity

The injection of software bugs is still a challenging and open research
problem. We addressed this issue by using code mutations to generate real-
istic run-time errors. This technique is widespread in the field of mutation
testing [120, 125, 194, 193] to devise test cases; moreover, it is also com-
monly adopted by studies on software dependability [48, 247, 171, 75, 91]
and on assessing bug-finding tools [71, 217]. In our context, bug injection
is meant to anticipate the potential consequences of bugs on service avail-
ability and resource integrity. To strengthen the connection between the
real and the experimental failures, we based our selection of code muta-
tions on past software bugs in OpenStack. The injected bug types were
consistent with code mutations typically adopted for mutation testing and
fault injection (e.g., the omission of statements). Moreover, the analysis of
OpenStack bugs gave us insights on where to apply the injections (e.g., on
method calls for controlling Nova, for performing SQL queries, etc.). Even
if some categories of failures may have been over-or under-represented (e.g.,
the percentages for failures that were not detected or that propagated), our
goal is to point out the existence of potential, critical classes of failures,
despite possible errors in the estimates of the percentages. In our experi-
ments, these classes were large enough to be considered a threat to cloud
management platforms.
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4.5 Discussion and Lessons Learned

The analysis of fault injections pointed out the impact of the injected
bugs on the end-users (e.g., service unavailability and resource inconsisten-
cies) and on the ability of the system to recover and to report about the
failure (e.g., the contents of log files, and the error notifications raised by
the OpenStack service API). In particular, the results of the experimental
campaign revealed the following findings:

• In the majority of the experiments (55.8%), OpenStack failures were
not mitigated by a fail-stop behavior, leaving resources in an in-
consistent state (e.g., instances were not active, volumes were not
attached) unbeknownst to the user; In the 31.3% of these failures,
the problem was never notified to the user through exceptions; the
others were only notified after a long delay (longer than 2 minutes on
average). This behavior threatens data integrity during the period
between the occurrence of the failure and its notification (if any) and
hinders failure recovery actions.

• In a small fraction of the experiments (8.5%), there was no indica-
tion of the failure in the logs. These cases represent a high risk for
system operators since they lack clues for understanding the failure
and restoring the availability of services and resources;

• In most of the failures (37.5%), the injected bugs propagated across
several OpenStack components. Indeed, 68.3% of these failures were
notified by a different component from the injected one. Moreover,
there were relevant cases of failures that caused subtle residual ef-
fects on OpenStack (7.5%): even after removing the injected bug
from OpenStack, cleaning up all virtual resources, and restarting the
workload on a set of new resources, the OpenStack services were still
experiencing a failure, that could only be recovered by fully restart-
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ing the OpenStack platform and restoring its internal database from
a backup.

These results point out the risk that failures are not timely detected and
notified, and that they can silently propagate through the system. Based
on this analysis, we identify a set of directions towards a more reliable
cloud management system.

�Need for deeper run-time verification of virtual resources. Fault
injections pointed out OpenStack APIs that leaked resources on failures,
or left them in an inconsistent state, due to missing or incorrect error
handlers. For example, the server-create API failed without creating a new
VM, but it did not deallocate virtual resources (e.g., instances in “dead”
state, unused virtual NICs) created before the failure. These failures can
be prevented through fault injection. Moreover, residual faults should be
detected and handled using run-time verification strategies, which perform
redundant, end-to-end checks after a service API call, to assert whether the
virtual resources are in the expected state. For example, these checks can
be specified using temporal logic and synthesized in a run-time monitor
[66, 41, 272, 206], e.g., a logical predicate for a traditional OS can assert
that a thread suspended on a semaphore leads to the activation of another
thread [10]. In the context of cloud management, the predicates should
test at run-time the availability of virtual resources (e.g., volumes and
connectivity), similarly to our assertion checks (Table 4.1). In Chapter 8,
we propose a novel runtime failure detection approach tailored for cloud
computing systems.

� Increasing the logging coverage. The logging mechanisms in Open-
Stack reported high-severity error messages for many of the failures. How-
ever, there were failures with late or no API errors that would benefit
from logs to diagnose the failure, but such logs were missing. In partic-
ular, fault injection identified function call sites in OpenStack where the
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injected wrong return values were ignored by the caller. These cases are
opportunities for developers to add logging statements and to improve
the coverage of logs (e.g., by checking the outputs produced by the faulty
function calls). Moreover, the logs can be complemented with the run-time
verification checks.

� Preventing corruptions of persistent data and shared state.
The experiments showed that undetected failures can propagate across
several virtual resources and sub-systems. Moreover, we found that these
propagated failures can impact shared state and persistent data (such as
databases), causing permanent issues. Fault injection identified failures
that were detected much later after their initial occurrence (i.e., with high
API error latency, or no API errors at all). In these cases, it is very
difficult for operators to diagnose which parts of the system have been
corrupted, thus increasing the cost of recovery. Therefore, in addition to
timely failure detection (using deeper run-time verification techniques, as
discussed above), it becomes important to address the corruptions as soon
as the failure is detected since the scope of recovery actions can be smaller
(i.e., the impact of the failure is limited specific resources involved by the
failed service API call). One potential direction of research is on selectively
undoing recent changes to the shared state and persistent data of the cloud
management system [249, 221].

4.6 Experimental artifacts

We release the following artifacts to support future research on miti-
gating the impact of software bugs: (i) the analysis of OpenStack bug re-
ports (https://doi.org/10.6084/m9.figshare.7731629), (ii) raw logs
produced by the experiments (https://doi.org/10.6084/m9.figshare.
7732268), and (iii) tools for reproducing our experimental environment in
a virtual machine (https://doi.org/10.6084/m9.figshare.8242877).

https://doi.org/10.6084/m9.figshare.7731629
https://doi.org/10.6084/m9.figshare.7732268
https://doi.org/10.6084/m9.figshare.7732268
https://doi.org/10.6084/m9.figshare.8242877
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Chapter 5
Identification of the Failure
Symptoms in Cloud Systems

T his chapter introduces a novel anomaly detection algorithm to find
unusual events and interactions (i.e., symptoms of failures) that oc-

curred in fault injection experiments. We designed the algorithm to be
robust to noise in cloud systems, caused by non-determinism of timing
and order of events, and to be quickly trained only a small set of fault-
free executions of the distributed system, by using a variable-order Markov
Model. Anomaly detection can aid human analysts in scrutinizing more
efficiently the events that occurred during an experiment, by discarding
uninteresting events, e.g., unusual, yet benign orderings of events caused
by non-determinism. We evaluated the algorithm on the widespread Open-
Stack cloud management platform [180, 187]. We targeted the three main
sub-systems of OpenStack (Nova, Neutron, Cinder) with fault injection
under several scenarios. We show that anomaly detection can pinpoint
anomalous events with a high hit rate, and can halve the number of false
alarms due to non-determinism.
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5.1 Methodology

The approach analyzes the cloud-computing system as a set of black-box
communicating components, without leveraging any a priori information
about their internals (e.g., the approach is unaware of invariants and pre-
/post-conditions in the system). Thus, we apply unsupervised machine
learning on execution traces to identify failure patterns.

The approach focuses on messages exchanged in the distributed system
during the fault injection experiments. In general, messages are the key
observation point for debugging and verification of distributed systems,
since they reflect well the activity of the system [136]. For example, nodes
perform work when they receive messages to provide a service to another
node (e.g., through remote procedure calls), and reply with messages to
provide the response and results; moreover, nodes use messages to asyn-
chronously notify a new state to other nodes in the system. The approach
is plugged into the public communication interfaces, such as REST APIs
and message queues, based on off-the-shelf protocols and libraries, and it
collects raw traces of messages exchanged among the components.

An important design objective is to make the approach robust to non-
determinism in distributed systems, where the timing and the order of
messages can unpredictably change (e.g., due to sporadic delays) regard-
less of the occurrence of failures. Thus, there is a need to discriminate
between variations in the message order due to failures and by “benign”
variations caused by non-determinism. To mitigate this uncertainty, we
adopt a probabilistic model for anomaly detection that screens out the
benign variations.

Another design objective is to use as few training samples as possi-
ble. The approach trains a model by executing the system several times.
However, since the execution time to run a cloud workload can be signif-
icantly long (e.g., in our experiments, a single run takes tens of minutes),
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Figure 5.1. Overview of the proposed approach.

it is mandatory to keep these runs at a minimum to make the approach
affordable in practice.

Figure 5.1 shows an overview of the proposed approach. We first in-
strument communication APIs (step 1 ). Then, we exercise the system
with a workload, and with no-fault injected (step 2 ). We record a trace
of all messages exchanged among the components, and between the com-
ponents and the clients. Since no fault is injected, such trace is denoted
as fault-free trace. We generate several fault-free traces, by running the
workload several times. The fault-free traces are used as a training set
to create a model of normal behavior (step 3 ). We adopt a probabilis-
tic model to account for the natural variability of the interactions (e.g.,
different ordering, type, etc.) in the training traces.

We remark that having a representative experimental environment (i.e.,
matching the real-world operational environment, in terms of user work-
load, hardware, etc.) is a problem not limited to this approach, but it is a
more general problem for fault injection [20]. Our goal is to facilitate the
analysis of fault injection data, regardless of how well the data matches
the operational environment (e.g., by architecting a realistic workload, by
using a realistic configuration, etc.).

Once the model has been trained, the approach performs the fault
injection experiments (step 4 ). We focus on injecting one fault per ex-
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periment, as injecting multiple faults concurrently is still an open research
problem and not yet adopted in real projects, due to the high number
of combinations among multiple faults. This step produces fault-injected
traces (also faulty traces), one per experiment. The fault-injected traces
are then analyzed using the previously defined normal behavior model to
identify anomalies (step 5 ). Since all the executions (i.e., fault-free and
fault-injected ones) are performed under the same conditions (i.e., same
software and hardware configuration, same workload, etc.), any deviation
between a fault-injected trace and the probabilistic model is attributed to
the injected fault and it is considered as an anomaly.

In order to emphasize messages that were omitted because of the in-
jected fault (i.e. only occurring in fault-free conditions), and new messages
that were caused by the injected fault (i.e., only occurring under faulty
conditions), the results of anomaly detection are visualized by presenting
to the human analyst the messages of both the fault-injected and of a
fault-free execution (step 6 ).

The anomaly detection algorithm constitutes the core of the proposed
approach. Figure 5.2 shows a detailed flowchart of this algorithm. In the
rest of this section, we discuss the phases of the workflow and present an
example of fault injection analytics of a real system.
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5.1.1 Instrumentation

The first step of the approach consists of instrumenting the system
under test, to collect the messages exchanged by nodes during the experi-
ments [225]. To this purpose, the approach wraps the communication APIs
that are invoked by every component in the system.

This instrumentation is a form of “black-box tracing”, since it does not
require any knowledge about the internals of the system under test, but
it requires only basic information about the communication APIs being
used. This approach is especially suitable when testers may not have a full
and detailed understanding of the entire cloud platform. Moreover, this
kind of distributed tracing is already familiar to developers for debugging,
performance monitoring and optimization, root cause analysis, and service
dependency analysis [47, 42].

The information recorded by the instrumented APIs includes the time
at which a communication API has been called and its duration; the com-
ponent that invoked the API (message sender) and the remote service
that has been requested through the API call (service API ). Moreover, we
record information about the response message (e.g., the status line and
the message body in an HTTP response, the body of the message, etc.).
We refer to the calls to communication APIs (i.e., the messages collected
during the experiments) as events. Thus, the execution of the system gen-
erates a trace of events that are ordered with respect to the timestamp
given by the event collector.

This anomaly detection technique is designed to be tolerant to the non-
determinism in the ordering of the events (e.g., due to random messaging
delays) by using a probabilistic technique, which is discussed in Section
5.1.4.
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5.1.2 Data Collection

Once the system has been instrumented, it is executed with the work-
load, collecting traces without injecting any fault (fault-free traces).
Such fault-free traces (also known as golden runs or reference runs) have
been adopted for fault injection experiments in small systems (e.g., em-
bedded ones), by using the traces as a reference to understand how the
fault-injected system derailed from a proper execution [135, 137, 166]. We
generalize this approach to support more complex systems, such as cloud
computing ones, and use unsupervised machine learning to discover un-
known failure modes. In the next steps, we will use fault-free traces to
train a model of the “normal” behavior of the distributed system, which
we will use as a reference for analyzing failures. The model takes into
account the variability of events across executions of the system (e.g., dif-
ferences in the relative ordering of messages). Then, the system is executed
again under fault injection, using the same workload of fault-free runs. For
each experiment, we inject a different fault, and we collect a trace (faulty
trace) of the events that are generated during the execution. Thus, we
obtain several traces, one per experiment.

To recognize events that are generated by background and asyn-
chronous activities, which are independent of the workload, we collect a
third type of trace, namely (idle trace), which contains events occurring
in the distributed system not caused by the workload or by the injected
faults. Indeed, if these events are not removed from our analysis, they
might be erroneously identified as (false) anomalies. Examples of such
events are garbage collection, resource monitoring, updating database in-
dexes, etc., and they can be triggered at arbitrary times. Another example
in the OpenStack cloud computing platform is the events generated by the
invocation of the method sync_instance_info of the Nova Scheduler com-
ponent: this method is periodically called by compute nodes to notify the
UUIDs of instances on the hosts, and it is not related to the workload.
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To identify these events, we perform a separate execution of the cloud
system, by leaving it in an idle state (i.e., no workload is applied) for several
minutes before and after a fault-free execution. We record into the idle
trace any background message collected during these periods. Then, we
remove such background events from both the fault-free and faulty traces.

5.1.3 Trace Pre-processing

Each event in the system is described by the couple of<message sender,
service API>. In our context, the service API represents the name of the
invoked method (e.g., create volume), whereas the message sender is the
name of the sub-system invoking the method (e.g., Cinder). The proposed
approach represents the events within a trace with unique identifiers (i.e.,
symbols) so that two events of the same type are identified by the same
symbol. Besides the specific event, we also consider the response status
in the assignment of the symbols. For example, if the event is an HTTP
message, we differentiate among invocations of the same GET method with
different status codes (e.g., 200 for success, and 404 for failure). Events
in a trace are ordered by their time of collection, and then converted into
sequences of symbols: each symbol represents a specified couple <message
sender, service API>, and the response status.

Once all execution traces have been converted into sequences, before
resorting to anomaly detection, we perform preliminary filtering of events
that do not represent anomalies. We identify events that do not exhibit
any difference between the fault-injected and the fault-free executions, i.e.,
events that occur regardless of the injected fault. Since these events are
not related to the failure modes, they can be discarded from the analysis.
To identify these events, we look for overlapping symbols (i.e., same type,
same order) between the faulty sequences and the fault-free ones.

The approach identifies overlapping symbols between the sequences, by
computing the longest common sub-sequence (LCS) of the sequences [25]:
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the LCS is a subset of symbols that are present in both sequences in the
same order, and that can be obtained by removing (a minimal number of)
symbols from the original sequences. This kind of problem is recurrent
in computer science, such as in bioinformatics and source code versioning
(e.g., in the diff Unix tool), and can be solved with efficient algorithms
[115, 165]. The approach identifies a selected fault-free trace that is most
similar to the fault-injected trace, i.e., the one with most overlapping
symbols, by computing the normalized length of the LCS (nLCS) between
the faulty trace and the fault-free ones, where nLCS(x, y) = |LCS(x,y)|√

lx·ly
, and

where lx and ly are the lengths of the individual strings x and y. Then,
it generates a list of differences (i.e., non-common events) between the
selected fault-free trace and the faulty trace. These non-common events
are further analyzed with a probabilistic model, to tell which ones are
indeed anomalies.

5.1.4 Probabilistic Modeling

The analysis performed with LCS still does not suffice to identify
failure-related events, since the differences in the faulty trace can be ei-
ther actual symptoms of a failure (i.e., real anomalies, caused by the in-
jected fault); or non-anomalous events (i.e., events that may, or may not
occur in fault-free conditions, or may occur in a different order, due to
non-deterministic behavior). The latter type of events may lead to false
alarms, which may divert the attention of the human analyst. To over-
come inaccuracies, we use a probabilistic model, in cascade after the trace
analysis with LCS, to evaluate whether a non-common event is indeed an
anomaly.

In particular, the approach uses a Markov model to estimate the prob-
ability of an event. Markov modeling is a popular approach for the proba-
bilistic analysis of sequences of symbols (e.g., to predict the probability of
a future symbol), such as in bioinformatics [231], data compression [212],
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and text and speech recognition [205]. Markov models do not require mas-
sive datasets to be trained, which is instead the case for other anomaly
detection techniques like neural networks. The size of the training set is
an important concern in our context, as developers have a limited time
budget to spend for fault injection testing [10]. Since executions can take
several hours in commercial-grade systems, we need to train the model
with a minimal number of fault-free executions.

Among Markov models, Hidden Markov Models (HMMs) are a powerful
and very popular technique among researchers in dependable computing,
such as for anomaly detection and fault diagnosis purposes in critical in-
frastructures [19, 275, 63, 36]. HMMs separate observations (e.g., events)
from the (hidden) states of the underlying stochastic process that gener-
ates the observations, since in many systems the current state is unknown
for an external observer, and must be indirectly inferred from events [205].
However, we found that HMMs are not suitable for our anomaly detection
problem. The main issue with HMMs is the high flexibility of the model,
in terms of the high number of parameters that need to be tuned in the
training phase (e.g., the number and probabilities of the hidden states).
During the training phase, we cannot rely on a human analyst to annotate
the events with the corresponding hidden state of the system, as it would
be exceedingly time-consuming and error-prone for complex distributed
systems with many unknown states. Instead, training HMMs with unan-
notated traces significantly increases the required size of the training set
(e.g., up to thousands of traces using the EM algorithm) [36]. Another
issue is the zero frequency problem, that is, modeling the probability of
events with no occurrences in the training set, which is often the case in
anomaly detection [252].

Therefore, we opt for a non-hidden Markov model where the states
are a direct representation of the observed events. However, a simple
Markov chain still does not suffice for our purposes, since the probability
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of the next state (i.e., the next event of the sequence) would only depend
on the current state (i.e., the memoryless property). In general, this is
not the case for event sequences that can be generated by a distributed
system; in practice, the probability of an event is highly correlated with the
history of the previous events. For example, in the OpenStack platform,
the occurrence of an event representing a “volume attach” operation must
be preceded by a sequence of several preliminary operations on the volume
and on the instance to be attached (e.g., an instance must have been
created and initialized).

Ultimately, we opted for higher-order Markov models, where the prob-
ability of events takes into account the history of the previous states of a
sequence. In particular, since we do not have a fixed cardinality for the
conditioning set of events in history, we adopt Variable-order Markov Mod-
els (VMMs). VMMs estimate the probability that a symbol σ can appear
after a sequence s (named context), by counting the joint occurrences of
σ and s in the training sequence to build the predictor P̂ , for variable
cardinalities of s [24].

In this work, we use the notation defined by Begleiter et al. [24]. Let Σ

be a finite alphabet. A learner is given a training sequence xn1 = x1x2...xn,
where xi ∈ Σ and xixi+1 is the concatenation of xi and xi+1. Based on xn1 ,
the goal is to learn a model P̂ that provides a probability assignment for
any future outcome given some past. Specifically, for any context s ∈ Σ

and symbol σ ∈ Σ, the learner should generate a conditional probability
P̂ (σ|s). The accuracy of the predictor P̂ (·|·) is typically measured by its
average log-loss l(P̂ , xT1 ) with respect to a test sequence xT1 = x1...xT :

`(P̂ , xT1 ) = − 1

T

T∑
i=1

log P̂ (xi|x1...xi−1) (5.1)

There exist many algorithms in the scientific literature for training and
applying VMMs [24]. In particular, one important aspect that character-



108 Chapter 5. Identification of the Failure Symptoms in Cloud Systems

izes VMM algorithms is how they handle the zero-frequency problem (i.e.,
sequences with zero occurrences in the training set). If the probability is
estimated by simply counting the number of occurrences, the unobserved
events would get a zero probability, with an infinite log-loss. This problem
is especially relevant in the case of long sequences with a rich alphabet,
where the training set is “sparse” and only covers a tiny part of the multi-
dimensional space of the sequences. The sequence of events generated by
a distributed system also falls in this condition.

The approach uses the Prediction by Partial Matching, Method C
(PPM-C) lossless compression algorithm [51], which is a variant of the
original PPM algorithm published in 1984 by Cleary and Witten [50] that
includes a set of improvements proposed by Moffat [161]. PPM is a sta-
tistical modeling technique that builds a predictor by combining several
fixed-order context models [51], with different values of the order k, rang-
ing from zero to an upper bound D (i.e., the maximal order of the Markov
model) [154].

All PPM variants manage the zero-frequency problem by using two
mechanisms, called escape and exclusion. For each context s of length k ≤
D, the algorithm allocates a uniform probability mass P̂k(escape|s) (which
varies across PPM variants) for all symbols that did not appear after the
context s in the training sequence. The remaining mass 1− P̂k(escape|s)
is distributed among all other symbols that have non-zero counts for this
context. Using the escape mechanism, the conditional probability is given
by [24]:

P̂ (σ|snn−D+1) =

P̂D(σ|snn−D+1),
†

P̂D(escape|snn−D+1) · P̂ (σ|snn−D+2),
‡

(5.2)

† if snn−D+1σ occurred in the training sequence ‡ otherwise
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where P̂D(·|·) is a conditional probability with fixed-order D, which can
be calibrated according to frequency counts from the observed sequences
in the training set.

The exclusion mechanism is used to tune the probability estimates.
This probability is inversely proportional to the size of the alphabet (for
example, the probability of the escape is 1/|Σ| in the case of an empty
context s = ε), but the PPM-C introduces a correction. If a symbol σ
appears after the context s of length k ≤ D, it is redundant to consider
σ as part of the alphabet when computing P̂k(·|s′), for all s′ suffix of s.
Therefore, the estimates P̂k(·|s′) are corrected by considering a smaller
alphabet of observations [24]. For more information on PPM and the
Method C variant, we refer the reader to the work by Begleiter et al. [24].

We set the maximum order D of the VMMs to 5. Indeed, it has been
found that PPM achieves the best compression for this choice and that its
accuracy saturates when the context is increased beyond this value [51].

5.1.5 Classification of Anomalies

The ultimate result of anomaly detection is to classify the events into:

• Common events: Events that occurred both in the faulty trace
and in at least one of the fault-free traces, with the same type and
order.

• Anomalous events: Differences between the faulty trace and the
fault-free traces. They are further classified into:

– Spurious events: Events that would normally not occur under
fault-free conditions.

– Missing events: Events that occur in fault-free conditions,
but do not occur under fault injection.
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As discussed in § 5.1.3, we first use the LCS algorithm to identify com-
mon events of a faulty trace, by comparing it to a selected fault-free trace
(i.e., one of the fault-free traces in the training set, with the highest sim-
ilarity to the faulty trace). Then, we further analyze the LCS differences
(i.e., non-common events according to the LCS) using the VMM model
(§ 5.1.4). We train the VMM with a set of n− 1 fault-free traces, by using
all the fault-free traces except the selected fault-free trace. Then, we apply
the VMM to compute the probabilities of LCS differences, to determine
whether they are indeed anomalous, as follows:

� Analysis of LCS differences that only appear in the fault-
injected trace. The fault-injected trace takes the role of the test sequence
for the VMM. We focus on symbols of the test sequence that were high-
lighted as differences in the previous LCS analysis. The goal is to confirm
whether these symbols are actually unlikely events, not only with respect
to the selected fault-free trace (i.e., the one used for determining the LCS)
but also according to the whole set of fault-free traces in the training set.
For each event not included in the LCS, we compute the probability of
the event according to the VMM. If the probability is lower than a thresh-
old εSPURIOUS, then the symbol has a low likelihood to appear in that
position of the sequence; thus, the VMM confirms that the symbol rep-
resents a spurious anomalous event. Otherwise, the event is considered
non-anomalous.

� Analysis of LCS differences that only appear in the selected
fault-free trace. The selected fault-free trace takes the role of the test se-
quence for the VMM. As for the previous step, we focus on symbols of the
test sequence that were highlighted as differences in the previous LCS anal-
ysis. In this case, we consider the events that only appear in the selected
fault-free trace: therefore, from the point of view of the fault-injected trace,
these events represent omissions. This step confirms whether these events
are likely, and thus their omission should be considered an anomaly. The
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approach applies the VMM to the events that only appear in the fault-free
trace, by computing the probabilities of such events according to the re-
maining fault-free traces in the dataset. If the probability of the event is
higher than a threshold εMISSING, then there is a high likelihood for the
symbol to be in that position of the sequence. Therefore, the fact that
the event is missing in the fault-injected trace should be considered an
anomaly, and thus it is marked as a missing anomalous event. Otherwise,
if the probability of the event is less than the threshold, then the lack of
such an event from the fault-injected trace is considered non-anomalous.

We remark that even if the two steps perform similar comparisons, the
results obtained by them are different and complementary. If the fault-
injected trace contains an anomalous event with a low probability value
according to the VMM, then it is confirmed as spurious. Similarly, if
the fault-injected trace does not contain an event with a high probability
value in the selected fault-free trace, then the event is confirmed to be an
omission. A practical approach is to select conservative thresholds (e.g.,
εSPURIOUS = 20% and εMISSING = 80%), so that the VMM can filter
out most of the LCS differences that are not actually spurious/missing
events; and to leave to the human analyst the decision about the uncertain
events. Therefore, the sensitivity of the probabilistic model is an important
factor that makes it applicable in practice. We further analyze it in our
experiments.

5.2 Experimental Evaluation

We evaluate our anomaly detection algorithm with experiments on the
OpenStack cloud management platform, which is a relevant case of a large
and complex distributed system.
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5.2.1 Experimental Setup

We injected faults into the three most important sub-systems of Open-
Stack [68, 227]: (i) Nova, which provides services for provisioning instances
(i.e., VMs) and handling their life cycle; (ii) Neutron, which provides ser-
vices for provisioning virtual networks, including resources such as floating
IPs, network interfaces, subnets, and routers; and (iii) Cinder, which pro-
vides services for managing block storage resources. Each of these three
sub-systems represents by itself a complex system, and they are developed
as independent projects by distinct and dedicated teams [230, 229]. We
targeted OpenStack version 3.12.1 (release Pike), deployed on Intel Xeon
servers (E5-2630L v3 @ 1.80GHz) with 16 GB RAM, 150 GB of disk stor-
age, and Linux CentOS v7.0, connected through a Gigabit Ethernet LAN.

In our tests, we injected faults during the interactions among Open-
Stack components. We targeted the internal APIs used by OpenStack com-
ponents for managing instances, volumes, networks, and other resources.
The injected faults represent exceptional cases, such as a resource that is
not found or unavailable, a processing delay when retrieving a resource, or
an incorrect value caused by the user, the configuration, or a bug inside
OpenStack. In particular, we focus on the following types of faults:

• Throw exception: An exception is raised on a method call, accord-
ing to a pre-defined, per-API list of exceptions.

• Wrong return value: A method returns an incorrect value. The
wrong return value is obtained by corrupting the targeted object,
depending on the data type (e.g., by replacing an object reference
with a null reference, or by replacing an integer value with a negative
one).

• Wrong parameter value: A method is called with an incorrect
input parameter. Input parameters are corrupted according to the
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data type, as for the previous point.

• Delay: A method is blocked for a long time before returning a re-
sult to the caller. This fault can trigger timeout mechanisms inside
OpenStack, and cause stalls.

We performed three distinct fault injection campaigns, in which we
applied three different workloads:

• New deployment (DEPL): This workload configures a new vir-
tual infrastructure from scratch, by stimulating all of the target sub-
systems (i.e., Nova, Cinder, and Neutron) in a balanced way. This
workload creates VM instances, along with key pairs and a security
group; creates and attaches volumes to an existing instance; creates
a virtual network and a subnet, with a virtual router; assigns a float-
ing IP to connect the instances to the virtual network; reboots the
instances, and then deletes them.

• Network management (NET): This workload includes network
management operations, to stress more the Neutron sub-system and
virtual networking. The workload initially creates a network and a
VM and generates network traffic via the public network. After that,
it creates a new network with no gateway, brings up a new network
interface within the instance, and generates traffic to check whether
the interface is reachable. Finally, it performs a router rescheduling,
by removing and adding a router resource.

• Storage management (STO): This workload performs storage
management operations on instances and volumes, to stress more
the Nova and Cinder sub-systems. In particular, the workload cre-
ates a new volume from an image, boots an instance, then rebuilds
the instance with a new image (e.g., as it would happen for an update
of the image). Finally, it performs a cleanup of the resources.
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All the workloads invoke the OpenStack APIs provided by the Nova,
Cinder, and Neutron sub-systems. We designed the workloads to cover
several sub-systems of OpenStack and several types of virtual resources,
similar to integration test cases from the OpenStack project [185], to point
out potential failure propagation effects across sub-systems.

During the execution of the workload, any exception generated by API
calls (API Errors) is recorded. In-between calls to service APIs, the work-
load also performs assertion checks on the status of the virtual resources,
to point out failures of the cloud management system. These checks assess
the connectivity of the instances through SSH and query the OpenStack
API to ensure that the status of the instances, volumes, and the network
is consistent with the expectation of the tests. In our context, assertion
checks serve as ground truth about the occurrence of failures during the
experiments. These checks are valuable to point out the cases in which a
fault causes an error, but the system does not generate an API error (i.e.,
the system is unaware of the failure state) [58].

We consider an experiment as failed if at least one API call returns an
API error or if there is at least one assertion check failure. Before every
experiment, we clean up any potential residual effect from the previous
experiment, to be able to relate failure to the specific fault that caused
it. We re-deploy the cloud management system, remove all temporary files
and processes, and restore the OpenStack database to its initial state.

5.2.2 Failure Dataset

We used the ProFIPy tool (see § 3) to scan the source code of Nova,
Cinder, and Neutron to find all the injectable API calls, and to introduce
faults by mutating the calls. For each workload, we identified the injectable
locations that were covered by the workload itself, and we performed one
fault injection test per covered location. In total, we performed 2 538 fault
injection experiments, and we observed failures in 1 314 experiments (52%).
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In the remaining tests, there were neither API errors nor assertion failures
since the fault did not affect the behavior of the system (e.g., the corrupted
state is not used in the rest of the experiment, or the error was tolerated).
This is a typical phenomenon that occurs in fault injection experiments
[48, 130]; yet, the experiments provided us with a large and diverse set
of failures for our analysis. We focus on non-tolerated faults since they
are the ones of interest for the analysts. Failures point out scenarios that
are not yet handled by the cloud system, and that require additional fault
tolerance mechanisms. The purpose of the proposed approach is to ease
the identification of these failure modes.

Table 5.1 shows, for each workload, the number of event types d ob-
served in the distributed system during the execution of the workloads,
the average length of the fault-free sequences (in terms of the number of
events in the trace), the total number of fault injection experiments for
the workload, and the number of experiments that experienced at least
one failure.

The number of unique events (i.e., different types of operations per-
formed by the system) and the number of events (i.e., total operations of
the system) per trace reflect the extent and diversity of the workloads.
DEPL is the most stressful one in both regards, followed by NET and
by STO. Moreover, the DEPL and the NET workloads are more non-
deterministic than STO because the former perform a massive use of the
network-related operations. Indeed, network operations are performed by
the Neutron sub-system in an asynchronous way, such as by exchanging
periodic and concurrent status polls among agents deployed in the datacen-
ter and the Neutron server. This behavior leads to more non-deterministic
variations in the traces. These differences among the workloads are use-
ful to evaluate our approach under different degrees of complexity and
non-determinism.

In our implementation, we adopt the Zipkin distributed tracing sys-
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Table 5.1. Workload characteristics.

Workload
Num.
unique
events

Avg. num. of
events per
fault-free

trace

Num. of
total exps.

Num. of
failed exps.

DEPL 64 285 1076 537
NET 40 252 561 262
STO 41 109 901 515

tem [274], due to its maturity, high performance, and support for several
programming languages. The instrumented APIs send data via HTTP to
a collector, which stores trace data. The collected events are ordered with
respect to the timestamp given by the Zipkin collector.

As explained in § 3.4.5, we instrumented the following communication
points to collect the events:

• The OSLO Messaging library, which uses a message queue library to
exchange messages with an intermediary queuing server (RabbitMQ)
through RPCs. These messages are used for communication among
OpenStack sub-systems. In particular, we instrumented the cast and
call methods, which are used when the RPC methods do not return
or return a value to the caller, respectively [183].

• The RESTful API libraries of each OpenStack sub-system, i.e., no-
vaclient for Nova (implements the OpenStack Compute API [174]),
neutronclient for Neutron (implements the OpenStack Network API
[178]), and cinderclient for Cinder (implements the OpenStack Block
Storage API [173]). These interfaces are used for communication be-
tween OpenStack and its clients (e.g., IaaS customers).

Zipkin puts a negligible overhead in terms of run-time execution, as it
adopts an asynchronous collection mechanism to avoid impacting critical
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execution paths. Indeed, we only needed to instrument 5 selected lines
of code (i.e., the cast and call methods of OSLO to broadcast messages,
and the clients), by adding simple annotations (the Zipkin context man-
ager/decorator) only at the beginning of these methods (a total of 20 lines
of Python code). Our instrumentation neither modified the internals of
OpenStack sub-systems nor used any domain knowledge about them.

5.2.3 Evaluation Metrics

We evaluate anomaly detection with respect to the ability to properly
classify the events within a trace. In particular, we evaluate the false alarm
rate and the hit rate [263]. In our context, a false alarm occurs when a
non-anomalous event is classified as an anomalous one, and a hit occurs
when an anomalous event is correctly classified as such. The false-alarm
rate is given by the total number of false alarms over the total number of
non-anomalous events. The false-alarm rate should be as small as possible.
The hit rate is given by the total number of hits over the total number
of anomalous events. The hit rate should be as large as possible. Both
metrics range between 0 and 1.

Our fault-injection experiments generated over 450 thousands events
over 2, 538 execution traces, with 109 distinct event types (i.e., unique
events). A key concern for evaluating anomaly detection is the need for
a reliable ground truth about the actual label of the events (anomalous
or non-anomalous). Unfortunately, manually assigning labels to such a
large set of data is prone to errors and unfeasible in practice. Thus, we
adopted an automated evaluation method and opted for conservative esti-
mates where needed (i.e., by underestimating the accuracy of the proposed
approach). Firstly, we build for each workload an anomaly detection model
based on the LCS algorithm with 50 fault-free traces. Then, in order to
define the ground truth of the anomalies, we run the distributed system
under fault-free conditions a large number of times, generating an addi-



118 Chapter 5. Identification of the Failure Symptoms in Cloud Systems

tional set of 500 fault-free traces, which is an order of magnitude larger
than the training set of the model. Finally, we apply the LCS algorithm
to these traces. Since these traces are fault-free, the differences pointed
out by the LCS can be considered as false alarms. We record a list of
false-alarm event types by adding an event type if it caused a false alarm.
In total, the list includes respectively 38, 30, 18 event types for the three
workloads. Instead, common events (i.e., non-anomalous) are considered
as true negatives.

In our experimental evaluation, we consider an anomaly raised by a
detector as a false alarm if its type belongs to the list of false-alarm event
types. This method is very conservative since we are labeling all events
of these types as false positives, even if these events could represent true
anomalies for some experiments. This approach under-estimates the ability
of the VMM at identifying true anomalies since we only take into account
anomalies for events that were never affected by false alarms in our initial
extensive analysis. Furthermore, our classification assumes that the LCS
is not affected by false negatives, thus overestimating the accuracy of the
LCS approach.

5.2.4 Experimental Results

We aim to evaluate how the probabilistic model can prevent false
alarms and, at the same time, not discard hits. We analyzed the fault-
injection experiments that experienced a failure (i.e., an API error to the
clients, or a failure identified by our assertion checks). To provide context
for the evaluation, we compare three approaches:

• LCS , the baseline approach, which just aligns and compares traces
(as in existing techniques based on reference runs [110, 135, 166]),
without using a probabilistic model to account for non-determinism;

• LCS with VMM , the proposed approach, which applies a Variable-
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order Markov Model after LCS, as discussed in § 5.1.5;

• LCS with HMM , a different probabilistic approach, which applies
a Hidden Markov Model (instead of VMM) after LCS.

These approaches allow us to separately evaluate the relative influence
of LCS and the probabilistic models on the accuracy of anomaly detection,
pointing out any improvements due to the adoption of the probabilistic
model. Moreover, we compare the accuracy of the proposed approach
(VMM) with respect to a traditional probabilistic model (HMM).

We are interested in evaluating the accuracy of anomaly detection un-
der different sizes of the training set (i.e., the number of fault-free traces).
We expect that, while increasing the number of training traces, the accu-
racy of the approaches improves. However, since false alarm and hit rates
are related and often conflicting metrics, we look for trade-offs between
these metrics [116]. Thus, we use ROC curves in Figure 5.3 to represent
both the metrics, computed over all experiments, and for different sizes
of the training set between 5 and 50. Our evaluation deliberately targets
the case of a limited training dataset, since it is typical for developers to
have only a limited time budget to conduct test activities. In our case, an
experiment takes on average 40 minutes (including the time to re-deploy
OpenStack components, to revert the state of its databases and volumes,
etc.), thus, 50 executions take about 33 compute hours, which we ran in
parallel across several machines. If we used more training traces in our
evaluation, the accuracy figures would not have been representative of
what developers would achieve within a realistic amount of time.

The results show that LCS with VMM achieves a hit rate higher than
90%. The hit rate saturates around 98% when the probabilistic model
is trained with 20 fault-free traces, for all workloads. This size for the
training set can be considered small enough for practitioners to apply the
proposed approach. The proposed approach comes with a false alarm rate
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Figure 5.3. Approaches comparison.

of around 22%. This result means that the probabilistic model can discard
many of the differences that are caused by non-deterministic behavior,
even if a moderate amount of false alarms still needs to be tolerated by
practitioners.

To put these results in context, we can compare them with the results
for the LCS approach. The LCS achieves a perfect hit rate (100%) since,
with our conservative evaluation, we consider this baseline approach not
affected by false negatives. The false alarm rate for LCS is between 39-
41%. The false alarm rate does not improve much by increasing the size of
the training set since the LCS only identifies differences between the fault-
injected trace and one selected fault-free trace from the training set (thus,
the remaining training traces do not contribute to identifying anomalies).

The VMM is applied in pipeline after the LCS, by analyzing non-
common events identified by the LCS (§ 5.1.5). Thus, the VMM can reduce
the false alarm rate compared to the LCS, by classifying a “benign” non-
common event as non-anomalous. However, the VMM can also reduce the
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hit rate, since it can classify a real anomaly as non-anomalous. Overall, the
LCS with VMM approach achieves a better trade-off than LCS between
a false alarm and hit rates. The loss in hit rate with respect to LCS is
about 2% since a very small number of real anomalies are discarded by
the VMM. At the same time, the gain in terms of false alarm rate is quite
significant, since about half of the false alarms are discarded by the VMM.

The results in Figure 5.3 also point out that the LCS with HMM
achieves worse performance than LCS with VMM at identifying anoma-
lies. In our analysis, we carefully configured the HMM approach in order to
perform a fair comparison against VMM (i.e., the one that gives the best
results for HMM, in order to prevent any bias in favor of our proposed
solution). To integrate HMM into our analysis, we configured the classifi-
cation thresholds (εSPURIOUS and εMISSING) by performing a preliminary
calibration, and we selected the thresholds that achieve the lowest number
of false positives without reducing the hit rate. Moreover, we varied the
number of hidden states, ranging between 2 and 100. As in previous re-
search that adopted HMMs, we initialized the transition and the symbol
probabilities with random values [204, 232], then we used the Baum-Welch
algorithm to re-estimate the parameters using the forward-backward pro-
cedure, as in the work of Batista et al. [22]. The ROC curve reports the
results for the best configuration of the HMM approach.

Even if the HMM reduces the false alarms compared to the plain LCS
approach, the false alarm rate (about 35%) is still significantly higher than
the LCS with VMM. The hit rate for LCS with HMM (about 85%) is also
worse than the LCS with VMM. We attribute this behavior to the excessive
flexibility of HMMs, as they require to train a high number of parameters,
which are not tuned well when using only a few tens of training fault-
free traces (e.g., 50 traces are still not enough to get a good accuracy). A
similar problem would occur or be even exacerbated when using other high-
dimensionality models such as neural networks [167]. Instead, even with
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Table 5.2. Evaluation of anomaly detection, with n = 20.

Workload Approach Avg. Hits
per exp.

Avg. False
Alarms
per exp.

DEPL
LCS 14 92

LCS with HMM 8 82
LCS with VMM 13 50

NET
LCS 5 120

LCS with HMM 5 106
LCS with VMM 5 58

STO
LCS 22 51

LCS with HMM 21 50
LCS with VMM 21 25

a lower number of training traces, VMMs can achieve a better accuracy,
where 20 traces suffice to reach a good trade-off between the false alarm
and hit rates.

Finally, Table 5.2 shows, for each workload, the average absolute num-
bers of hits and false alarms per experiment, when using 20 training traces.
It is interesting to notice that, for each workload, the number of false
alarms is significantly higher than the number of hits. This difference
points out that the injected faults lead to only a small number of anoma-
lies, while the number of false alarms can be very high due to the non-
determinism of distributed systems. These differences are higher for the
DEPL and NET workloads that have a higher degree of non-determinism.
Moreover, the table highlights that the VMM always provides the lowest
number of false alarms regardless of the workload, with a limited loss in
terms of hits.
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5.2.5 Sensitivity Analysis

In the previous analysis, we adopted conservative values for the VMM
thresholds (εSPURIOUS = 20% and εMISSING = 80%), so that the ap-
proach can filter out most of the anomalies discovered by the LCS tech-
nique. Naturally, the choice of the thresholds can influence the number
of false alarms and hits of the approach. Thus, we performed a sensi-
tivity analysis to estimate the influence of the thresholds (εSPURIOUS and
εMISSING) on the hit and false alarm rates. We fixed the number of training
traces to 20. We remark that, when the probability of a spurious event is
higher than the εSPURIOUS, the event is marked as non-anomalous. Sim-
ilarly, a missing event is marked as non-anomalous when its probability
is lower than the εMISSING. Therefore, when εSPURIOUS is set to 0%, the
VMM discards all anomalies, while a εSPURIOUS set to 100% results in not
discarding any anomaly. Finally, setting the εMISSING to 0% implies not
to discard any anomaly, and setting the threshold to 100% discards all
anomalies.

� εMISSING. We first analyze the accuracy of the VMM with respect to
omission anomalies. Figure 5.4 shows the rate of hits and of true positives
(i.e., the complement of false alarms, defined as 1 − false alarm rate, for
readability), by varying the εMISSING from 0% to 100%. We can observe
that the hit rate is higher than 0,99 until a value of εMISSING equal to 50%.
Then, the hit rate decreases slightly, until εMISSING reaches 90%. Finally,
the hit rate decreases rapidly to 0 at 99%, since even the probability of
events with high likelihood falls below the threshold. Instead, the true
positive rate increases linearly after 1%, with significant improvement at
80%. Thus, εMISSING = 80% is a good trade-off between hits and false
alarms. The designer can fine-tune this threshold to prioritize hits over
false alarms or vice versa if errors with respect to one of these metrics are
not tolerated.



124 Chapter 5. Identification of the Failure Symptoms in Cloud Systems

0 10 20 30 40 50 60 70 80 90 100

MISSING (%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

e

True Positive Rate
Hit Rate

Figure 5.4. Sensitivity analysis for omission anomalies (εMISSING).

� εSPURIOUS. We performed the same analysis on εSPURIOUS, not plotted
for brevity. The analysis points out that the hit rate is even less sensitive
rather than εMISSING. Indeed, the hit rate only drops at 0.0 with εSPURIOUS

equal to 0%, for which all anomalies are discarded. Given that a spuri-
ous anomaly is an event that does not normally happen under fault-free
conditions, the associated symbol is never encountered in the training set.
The probabilistic model assigns to it a low probability since it is inversely
proportional to the size of the dictionary [51] and since we collect dozens
of different symbols in our experiments. Thus, a conservative εSPURIOUS

(e.g., 20%) is a good choice since it does not impact the hits and, at the
same time, discards many false alarms.

5.2.6 Computational Cost

In this section, we evaluate the computational cost and scalability of
the anomaly detection algorithm. Figure 5.5 shows the time taken to
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analyze event traces, for increasing volumes of data, i.e., by varying the
number of traces to analyze, and the number of the events per trace.
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Figure 5.5. Execution time for LCS with VMM.

In Figure 5.5a, we consider the average time to apply the approach
on a single test trace with a fixed number of events. The figure points
out that the number of training has a higher impact on the computational
time of the LCS technique rather than the computational time of the
VMM technique. Indeed, the most of the time for analysis is incurred
because of the search for the selected fault-free trace, i.e., the training trace
most similar to the one under analysis (see also § 5.1.3 and Figure 5.2).
Once the selected fault-free trace has been found, the VMM algorithm
can be executed very quickly, taking about 3s with 50 training traces.
Therefore, the analysis of even thousands of fault injection experiments
can be performed in a reasonable amount of time. Since the traces can be
analyzed independently from each other, they can be partitioned across
several CPUs (e.g., using SMP machines): for example, in our workstation
with 8 SMP cores, it takes about 40 minutes to analyze the two thousand
traces that were produced by our fault injection experiments.

Finally, we analyze the impact on the execution time for applying the
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approach by varying the number of events per trace (see Figure 5.5b). We
consider test traces of increasing size, by replicating the same sequence of
events several times (2x, 5x, 10x). The execution time grows linearly, as
in the previous analyses. We also found that the size of the traces has a
limited impact on the computational time of the VMM technique.



Chapter 6
Failure Mode Analysis in
Cloud Computing Systems

I
n this chapter, we introduce a new paradigm to data analysis for fault
injection experiments, which we call fault injection analytics. Our ap-

proach combines distributed tracing to gather raw failure data, and un-
supervised machine learning to discover the failure modes of the injected
system.

The approach aims to make easier, for human analysts, the identi-
fication of the failure modes among large amounts of data produced by
fault-injection experiments. When considering complex cloud systems, it
is typical to perform a large number of experiments (e.g., several thou-
sand), since these systems include tens of processes and nodes and millions
of lines of source code in which faults can be injected. Moreover, for each
experiment, the system generates high volumes of log files (up to hundreds
of MBs) and long execution traces (e.g., thousands of events per trace).
Thus, it is not feasible in practice for the analyst to analyze all of these
data in a reasonable amount of time.

127
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Figure 6.1. Overview of the proposed approach.

The approach combines clustering with the anomaly detection algo-
rithm proposed in Chapter 5 in order to automatically identify the failure
classes among large sets of fault injection experiments. This approach
allows human analysts to find recurring failure patterns and to add new
fault-tolerance mechanisms for them. It is sufficient for the analyst to only
analyze one or a few experiments from the same class, thus making the
analysis more efficient.

6.1 Methodology

The approach proposed in this chapter extends the anomaly detec-
tion algorithm presented in Chapter 5 by including an additional step.
Indeed, the results of anomaly detection (i.e., the deviations between a
fault-injected trace and the model) are the input of the clustering phase
(step 6 ). This step aims to partition fault injection experiments in a num-
ber of groups such that experiments belonging to the same group exhibit
the same anomalies (i.e., failure mode). Finally, the failure modes are vi-
sualized to the human analyst (step 7 ), by displaying the distribution of
failure modes across all the experiments. Moreover, the user can focus on
a specific experiment, by visualizing the anomalies of the execution over
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timelines. Figure 6.1 summarizes the proposed solution.

6.1.1 Failure Clustering

To identify failure modes, we perform clustering to group the experi-
ments into classes (clusters), where each class represents a distinct failure
mode of the system under test. In general, clustering algorithms reveal
hidden structures in a given data set, by grouping “similar” data objects
together while keeping “dissimilar” data objects in separated classes [258].
Formally speaking, consider a set of n distinct data objects {x1, . . . , xn}
and a number of k clusters. A (hard) clustering technique assigns to each
data object a label li representing its class, with i ∈ [1, k] [119]. In the
context of failure data, a data object represents an execution of the system
while it was experiencing a fault. The i-th execution is represented by a
vector of features xi = [f1, . . . , fd]. Each feature is a number that repre-
sents how many events of a given type occurred during the execution, with
d unique types of events. The number of features easily bumps up, due to
a large amount of failure data (e.g., hundreds of message types, GBs of log
files, thousand of traces, and experiments).

In our context, the clustering of the experiments helps the human an-
alyst in the identification of the failure modes and in analyzing a large
amount of data of the fault-injection campaigns (hundred of MB of logs,
thousand of traces and experiments, etc.).

To apply the clustering, the approach represents each fault-injection
experiment with a vector of features. The number of features is twice the
number d of unique events (i.e., the symbols in the dictionary of events)
that were traced during the experiments. Given that anomalies can be
classified as spurious or missing, we include in the vector two features for
each symbol: the number of times that the symbol occurred as a spurious
anomaly (the first d features), and the number of times that the symbol
occurred as a missing anomaly (the last d features). For example, let us
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suppose that the dictionary consists of three different symbols, A,B,C
(i.e., a dictionary with three unique events). Let be xi = [1, 1, 0, 0, 2, 3] the
vector associated to the faulty trace collected during the ith experiment.
These features can be interpreted as follows:

• Anomaly detection identified two spurious events, one for the symbol
A and one for the symbol B.

• Anomaly detection identified five missing events, two for the symbols
B and three for the symbol C.

We pre-process the vectors before clustering, by scaling down the fea-
tures for the missing events, in order to give higher importance to the
features that represent spurious anomalies. The preliminary selection and
transformation features (feature engineering) is used to make the failure
data more amenable for analysis [162, 269, 260]. This policy is motivated
by the empirical observation that omission anomalies tend to be much
more frequent than spurious anomalies since fail-stop behaviors (i.e., fail-
ure modes in which the system stops its execution) are more frequent than
other failure modes. Since spurious anomalies are rarer, we want to give
them more emphasis since they provide valuable information on unusual
failure modes that deviate from fail-stop behaviors (e.g., when the system
reacts by performing wrong operations).

This representation holds concise information about the anomalies of
the experiments. Spurious events are indicators of wrong interactions that
happened in the distributed system during the experiment while missing
events point out actions that were not performed. We apply a clustering
algorithm on these vectors, to group the experiments that exhibit similar
anomalies. Thus, clusters describe distinct failure modes exhibited by the
system. Our approach is not bound to a specific clustering algorithm; we
rely on the anomaly detection algorithm to detect the symptoms of the
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failures with high accuracy, in order to favor the quality of the failure
clusters.
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Figure 6.2. Example of fault injection data analysis.

6.1.2 Visualization

Visualizing the execution of distributed systems is a key step to enable
designers to debug failures, yet effectively summarizing information is an
open research problem [26, 27, 16, 210]. Therefore, we designed a dash-
board to leverage unsupervised machine learning to obtain summarized
information about failure modes, in order to present them in a simpli-
fied way. The dashboard does not require the user to manually configure
the failure modes, thus supporting the analysis and discovery of unknown
failure modes.

Besides providing basic statistics about the experiments (e.g., number,
duration), the first feedback for the user is the distribution of failure modes
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across the fault injection experiments (Figure 6.2a). Both the categories
(i.e., the failure modes) and their sizes (i.e., the number of experiments)
are automatically generated through unsupervised machine learning. In
the example of Figure 6.2a, based on fault injections on the OpenStack
platform, every failure mode is labeled with a summary of the spurious
and omission anomalies that occurred in that failure mode. The dash-
board groups the experiments into a few classes (one per failure mode)
to simplify the analysis of failure modes. The user can quickly get a bet-
ter understanding of each failure mode, by only looking at one or a few
experiments for that class.

The dashboard also supports the user at inspecting anomalous events
that occurred within individual experiments. When the user selects an
experiment, the dashboard displays the timespans of RPCs (e.g., message
queues) and REST API calls. Timespans are divided with respect to the
origin of the messages, such as the Nova, Neutron, and Cinder sub-systems
and external clients in the case of OpenStack. The dashboard divides
interactions among three groups, as defined in § 5.1.5: common, missing,
and spurious events. In the example shown in Figure 6.2b, the spurious
events are exceptions raised by two REST API calls. The missing events
are internal calls to initialize a new VM instance and to attach virtual
resources to it. Due to the injected fault in the Nova sub-system, it did not
complete the initialization of the instance, leaving it in an inactive state,
and propagated the problem to Neutron and Cinder. The visualization
supports analysts at reasoning about how to best handle faults, e.g., when
in the flow of interactions, and whether to manage it in Nova, Neutron
and/or Cinder.
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6.2 Experimental Evaluation

In this section, we evaluate the accuracy of the proposed approach at
identifying failure modes in fault injection tests. For the evaluation, we
used the failure dataset described in § 5.2.2. The approach pursues this goal
by clustering the execution traces so that the human analysts can analyze
the data more easily. For example, the analyst only focuses on a sample
of the experiments for each cluster instead of inspecting the whole set of
experiments, which would be unfeasible for large fault injection campaigns.

We evaluate both the ability to identify the number of classes in the
data (i.e., how many distinct failure modes occurred in the experiments),
and to assign the fault injection experiments to the classes (i.e., the fail-
ure mode to which an experiment belongs). First, we evaluate clustering
according to an internal criteria (§ 6.2.1), in which we assess the quality
of clustering in terms of quantities that only involve the data samples.
Then, we assess the quality of clustering according to an external criteria
(§ 6.2.2), in which we compare the results of clustering against a reference
classification of the data (i.e., an external ground truth). The internal eval-
uation assesses how well the clustering algorithm can identify the number
of classes, as internal criteria are also adopted by clustering algorithms to
estimate the number of classes. The external evaluation assesses how well
the clustering algorithm assigns the data samples to the classes, assuming
that the number of classes has been given in input to the algorithm.

We perform clustering using the vector representation of executions
traces based on the VMM, as in § 6.1.1. We adopt an unsupervised cluster-
ing algorithm, the K-Medoids with the squared euclidean distance measure.
The algorithm forms clusters by minimizing the sum of the dissimilarities
between objects and a reference point for their cluster. Differently from the
classical K-Means, which takes the mean value of the objects in a cluster
as a reference point, the K-Medoids algorithm uses a medoid, i.e., the most
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centrally located object in a cluster. Thus, K-Medoids is less sensitive to
outliers than K-Means [12, 245].

As a reference for the evaluation, we also analyze two alternative, sim-
pler approaches to clustering, which we refer to as LCS and SEQ.

• SEQ is a baseline approach based on plain sequences of events from
fault-injection experiments (i.e., it does not use anomaly detection):
this approach represents each experiment with a vector of d features,
where d is the number of symbols in the dictionary. Each feature rep-
resents the number of times that a specific symbol occurred during
the execution. For example, let us suppose that we collected three
different message types, A,B,C. Let be xi = [4, 2, 1] the vector asso-
ciated to a trace collected during the ith fault injection experiment.
This implies that the events A,B,C were observed 4, 2 and 1 times,
respectively, during the ith experiment.

• LCS performs clustering on vector representations that are similar
to the approach proposed in § 5.1, but without applying the proba-
bilistic model. Thus, evaluating LCS gives information on the influ-
ence of the probabilistic model on clustering (e.g., due to fewer false
anomalies, which can distort the similarity measure).

We built a ground truth for the evaluation, by performing preliminary
labeling of failures. The problem of having a ground truth is a quite
common open problem in all the research work dealing with log analysis.
Data labeled by real system administrators represent the ideal case with
the actual ground truth, but this option requires a significant resource
commitment from a company. Therefore, we mitigated this problem by
using the same data source that would be used by a system administrator
for analyzing failures, e.g., by OpenStack logs, API Errors experienced
by clients, assertion checks from OpenStack developers, anomalies in the
traces, etc., to classify the experiments with respect to their failure modes,
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based on our previous experience with OpenStack [58]. System logs are
usually good indicators of system state as they contain reports of events
that occur on the several interrelated components of complex systems [142].
Previous works leveraged the collection of system logs as sources of data,
which could be analyzed by a system to make it aware of its internal state
[242, 3, 86, 148]. Also, to reduce the possibility of errors in manual labeling,
multiple authors discussed cases of discrepancy, obtaining a consensus for
the failure modes.

We found the following types of failure modes:

• Instance Failure: The creation of the instance fails, or the instance
is created but it is in an error state.

• Volume Failure: The creation of the volume and/or the attach of
the volume to the instance fails, or the volume is created but is in
an error state.

• Network Failure: The creation of network resources (e.g., net-
works, subnets, etc.) fails.

• SSH Failure: The instance is correctly created and up, but it is not
reachable.

• Cleanup Failure: The deletion of resources (previously created by
the workload) fails.

• No Failure: There was no failure during the experiment.

Table 6.1 shows the failure modes found for each workload (i.e., 6, 4,
and 4 failures mode respectively for DEPL, NET, and STO workloads)
and represents our ground truth for clustering. Even if we use the same
labels for the failure modes across the three workloads, each failure mode
should be considered different for each workload since they involve dif-
ferent resources and APIs during execution (e.g., DEPL and STO have
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Table 6.1. Failure Mode Classes per Workload.

Failure Mode DEPL NET STO

Instance Failure 224 56 320
Volume Failure 151 - 38
Network Failure 52 30 -
SSH Failure 41 176 -

Cleanup Failure 69 - 157
No Failure 539 299 386

both cleanup failures, but with different behaviors). This classification
represents our ground truth for evaluating the results of clustering.

We shared the failure dataset on GitHub1 to help the research com-
munity in the application and evaluation of new solutions for clustering
the failure modes of the systems. For every experiment of the three fault-
injection campaigns, the dataset contains the events exchanged in the sys-
tem and the corresponding failure label. We shared the representations of
experiments with and without the anomaly detection phase.

6.2.1 Internal Evaluation

After performing fault-injection experiments, the human analyst first
needs to get a qualitative understanding of how the system can fail under
faults, i.e., to discover how many distinct failure modes the system exhibits.
Since the analyst does not know a priori the number K of failure modes, it
is part of the task of our unsupervised analysis to determine this number.
A common heuristic is: (i) to configure the clustering algorithm to run
with a tentative value of K; (ii) to evaluate the “validity” of the clusters,
in terms of low distance between samples assigned to the same cluster,
and high distance between samples assigned to different clusters; and, (iii)

1https://github.com/dessertlab/Failure-Dataset-OpenStack

https://github.com/dessertlab/Failure-Dataset-OpenStack
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Table 6.2. Number of clusters using the Silhouette index, with different
clustering approaches.

Workload Actual
clusters

SEQ LCS LCS with
VMM

DEPL 6 2 6 6

NET 4 5 3 5

STO 4 4 3 4

to repeat these steps for increasing values of K until the validity index
reaches a “knee” point (i.e., the value of K after which the validity index
significantly drops) [103].

In this evaluation, we apply the procedure described before in the same
way an analyst would do (i.e., without prior knowledge of the number of
clusters). We compare the number of clusters obtained with respect to
our ground truth knowledge of the failure modes (i.e., 6 failure modes for
DEPL, and 4 failure modes for NET and STO). We adopt the Silhouette
index as a cluster validity technique [216], which computes the average
dissimilarity between points to evaluate the cohesion of data within clusters
and the separation between clusters. For a given cluster {τk}Kk=1, this
method assigns to each sample i ∈ τk a measure si = (bi−ai)/max(ai,bi)

(Silhouette width), where ai is the average distance between the ith sample
and all of the samples included in τk, and bi is the minimum average
distance of i to all points in any other cluster. By averaging the Silhouette
width of samples in the same cluster, and then averaging these values
across clusters, we obtain a Global Silhouette value that can be used as
clustering validity index [32].

We configure the clustering algorithm with tentative values for the
number of K clusters, with values between K = 2 and K = 20. Table 6.2
shows the number of clusters suggested by the Silhouette index, for the
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three vector representations and the three workloads. In the case of clus-
tering based on VMM, the “knee” point matches, or is very close, to the
number of clusters in our ground truth, for all of the three workloads. The
other two clustering approaches (i.e., LCS and SEQ) are only accurate for
some workloads but do not perform well for other ones. For example, in
the case of the DEPL workload, the knee point at K = 2 for SEQ is much
lower than the actual number of clusters K = 6 in our ground truth. For
the NET and STO workloads, the validity index for LCS drops at K = 3

clusters, but clustering should find at least K = 4 clusters according to
the ground truth. Overall, the vector representation with VMM leads to
a more reliable indication of the number of clusters.

6.2.2 External Evaluation

The external evaluation assesses clustering algorithms as in a classifica-
tion problem, by comparing the clusters with respect to the failure modes
in our ground truth (Table 6.1). We compare, for each element in the
dataset, the cluster assigned to the element with the actual class of the el-
ement, according to the ground truth. We adopt the following rule for the
comparison [160]: for every cluster generated by the algorithm, we identify
the ground-truth class with the largest overlap and assign every element in
the cluster to the ground-truth class. In the case of a poor clustering algo-
rithm, multiple clusters may be assigned to the same ground-truth class,
but it never assigns the same cluster to multiple ground-truth classes.

In quantitative terms, let C be the number of ground-truth classes
{ωc}Cc=1. The purity of a cluster is defined as the fraction of elements
in the cluster that matches the ground-truth class [257]. Assuming K

clusters, for each cluster {τk}Kk=1 we define Pk = 1/nk ·max(nck), where nk
is the size of the cluster τk, and nck is the number of elements in the cluster
τk that belong to the class with label wc. The overall purity achieved by
a clustering algorithm is the weighted sum of purities across classes, given
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Table 6.3. Purity of clusters, with different techniques.

Workload SEQ LCS LCS with
VMM

DEPL 0.74 0.91 0.94

NET 0.85 0.81 0.86

STO 0.82 0.86 0.90

by P =
∑K

k=1
nk/n · Pk. The larger the value of purity, the better the

clustering quality.
We compute for each workload the purity obtained by the three clus-

tering techniques. Table 6.3 shows the results. We perform 50 repetitions
and compute the average value of purity across repetitions. We omit the
standard deviation since it is negligible (lower than 1e−03). The results
suggest that, for all workloads, the LCS with VMM always provides the
highest purity value. Moreover, we can notice that the VMM leads to an
increase in the value of purity ranging between 3% and 5% when com-
pared to the basic LCS approach. The SEQ technique leads to worse
results, especially in the case of a very stressful workload such as DEPL,
where the sequence of events is longer and with more types of events. We
performed the statistical hypothesis test (Student’s t-test) to verify that
differences are statistically significant: this is indeed the case, as the test
rejects the null hypothesis at the 1% significance level. Thus, the proposed
probabilistic model can enhance the accuracy of failure mode clustering.

6.3 Critical Consideration

The approach presented in this chapter leverages machine learning to
support human analysts in identifying failure modes. From thousands of
fault-injection experiments and events, the techniques identify the recur-
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ring failure modes (e.g., a dozen of clusters in our previous experience), on
which the analyst can focus failure mitigation strategies.

Unfortunately, it requires careful tuning by the human analyst to
achieve high accuracy. Indeed, we found that accuracy improves when
weights are fine-tuned for the most important features. For example,
features representing asynchronous (i.e., non-blocking) messages are more
prone to be false positives and less representative of the failure modes; thus,
giving a higher weight to features representing synchronous messages (i.e.,
blocking the caller) increase the accuracy of clustering. Similarly, spuri-
ous anomalies on REST API calls often denote exceptions raised by the
system, and are more representative of the failure modes.

Human analysts must deal with hundreds of events. Some of the events
are relevant symptoms of the failure mode, such as exceptions received by
the client from REST API calls. Other events are not a symptom of the
failure but are benign variations caused by asynchronous updates from
Neutron. In order to accurately cluster this failure mode, the features
representing REST API calls should be assigned a larger weight than some
of the Neutron events, which are non-deterministic and are prone to noise.

The fine-tuning of weights requires considerable effort by the human
analyst, which represents a significant cost and limits the usefulness of the
failure mode analysis. Moreover, the tuning requires detailed knowledge
of the internals of the system under test, which may be not available for
large projects based on software components from different teams and third
parties (e.g., commercial vendors). Thus, manual-fine tuning of feature
weights is a difficult and time-consuming task, and the human analyst
needs a different approach for failure mode analysis.



Chapter 7
Improving Failure Mode
Analysis with Deep Learning

F
ailure mode analysis techniques must be robust to noise in the fail-
ure data. As shown in Chapter 6, the adoption of unsupervised

machine learning techniques, such as clustering and anomaly detection,
comes to the rescue but still faces some limitations. These techniques
require the preliminary selection and transformation features (feature en-
gineering) [162, 269, 260], to make the failure data more amenable for
analysis. This effort requires deep domain knowledge and represents a
significant up-front cost.

In this chapter, we propose a novel approach for efficiently identifying
recurrent failure modes from failure data. The approach leverages deep
learning for unsupervised machine learning, to overcome the challenges of
noise and complexity of the feature space. Our approach saves the manual
efforts spent on feature engineering, by using an autoencoder to automat-
ically transform the raw failure data into a compact set of features. The
approach transforms the data by jointly optimizing for the reconstruction

141
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Figure 7.1. Overview of the proposed solution.

error (i.e., the transformed features are still representative of the sam-
ple) and inter-cluster variance (i.e., to make it easier to identify groups of
similar failures).

7.1 Methodology

To overcome the open issues of existing techniques, we provide a novel
solution to perform failure mode analysis, which does not require a manual
effort by the human analyst for feature engineering. To this purpose, we
use deep learning techniques for generating the features.

Our solution leverages Deep Embedded Clustering (DEC), a family of
algorithms that performs clustering on the embedded features of an au-
toencoder [256, 89, 102, 138, 262, 101]. The application of unsupervised
learning algorithms is taking place in the context of cloud computing sys-
tems since they do not require a large amount of data for training or labeled
data. For example, Riganelli et al. [211] applied the Hierarchical Tempo-
rary Memory (HTM) - an unsupervised learning algorithm - to support
online failure prediction in cloud systems.

The solution proposed in this chapter (Figure 7.1) uses DEC on the raw
vector representations of the fault-injected traces, which are the same ones
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of the SEQ approach discussed in § 6.2. This proposed approach relieves
the human analyst from fine-tuning the feature weights in the clustering
stage, thus saving manual efforts.

An alternative version of the proposed solution is in combination with
anomaly detection, by applying it on anomaly vectors, as in the LCS with
VMM (by replacing the step 6 of Figure 6.1). In this case, the human
analyst invests effort to train an anomaly detection model using fault-free
traces, but without manual feature engineering. This combined approach
can further improve the accuracy of failure mode analysis. We also analyze
this approach in the experimental part of this work.

More in detail, DEC transforms the data with a non-linear mapping
fθ : X → Z, where θ are the learnable parameters, X is the input data
(i.e., features about failure), and Z is the embedded feature space (i.e., a
new, smaller set of transformed features). We apply a deep neural network
(DNN) to parametrize the fθ mapping for DEC clusters data by simulta-
neously learning (i) a set of k clusters centers in the embedded feature
space Z, and (ii) the parameters θ of the DNN that performs the mapping
between data points (i.e., the input data) and Z. DEC consists of two
phases: the initialization of the parameters with a deep autoencoder and
the optimization of the parameters.

7.1.1 Parameter Initialization

To initialize the parameters, we use a multi-layer deep autoencoder.
An autoencoder is a neural network composed of two parts, an encoder,
and a decoder. The goal of the encoder is to compress the input features
to lower-dimensional features. The decoder part, on the other hand, takes
the compressed features as input and reconstructs them as close to the
original data as possible. Autoencoder is an unsupervised learning algo-
rithm in nature since during training it only uses unlabelled data. Our
approach applies a fully connected symmetric autoencoder since our vec-
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tors are compressed and decompressed in a specular way.
We initialize the autoencoder network layer by layer so that the lay-

ers work as a denoising autoencoder [246, 145] trained to reconstruct the
previous layer’s output after random corruption of the data. We set the
network input dimension equal to d, where d is the number of the vector
features (which depends on the number of unique events).

After the training, we concatenate all the layers of the encoder followed
by the layers of the decoder, to form a multi-layer deep autoencoder with a
bottleneck coding layer in the middle. All layers of the neural network are
densely (fully) connected. Our solution is intentionally meant to adopt a
typical and regular DNN architecture, to avoid hand-tuning by the human
analyst as much as possible. Thus, the value d is the only parameter that
depends on specific the failure dataset under analysis.

The autoencoder is trained to minimize the reconstruction loss. Then,
we discard the decoder layers, and we apply the encoder layers as our
initial mapping between the data space and the feature space.

To start the clustering phase, we need to initialize the cluster centers.
Therefore, we firstly input the initialized DNN with the data points to get
embedded data points, and then apply a clustering algorithm in the feature
space Z to obtain k initial centroids. Our solution adopts the K-Medoids,
a clustering method that performs the clustering phase by minimizing the
sum of the dissimilarities between objects and a reference point for their
cluster. As a reference point, this method uses the medoid, i.e., the most
centrally located object in a cluster. Therefore, this method is considered
less sensitive to outliers than the classical K-Means, which takes the mean
value of the objects in a cluster as a reference point [12, 245].

7.1.2 Parameter Optimization

The approach trains the non-linear mapping fθ with two joint objec-
tives: the DNN minimizes the reconstruction error; and, it maximizes
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inter-cluster variance in the embedded feature space. Towards these goals,
the approach alternates between (i) computing a “soft” assignment between
the current cluster centroids and the embedded data samples (i.e., a vector
of probabilities that the sample is a member of each cluster); and (ii) up-
dating the mapping fθ and the cluster centroids to maximize inter-cluster
variance. We repeat the process until meeting a convergence criterion.

To measure the similarity between the embedded data points and the
k centroids, we build a custom layer, named cluster layer, to convert the
input features to cluster label probability. To quantify the similarity be-
tween every embedded point and a centroid (i.e., to assign the probability
in the soft assignment), we computed the Student’s t-distribution.

Then, we recompute the clusters iteratively by learning from the cur-
rent soft assignment. In particular, the clustering model is trained to
minimize the distance between the soft assignments and an artificial “tar-
get” distribution, which is a transformed version of the probabilities in the
soft assignment that widens the gap between the probabilities [195]. In our
case, we compute the target distribution by raising the soft assignments
to the second power and normalizing the values. The approach gives more
emphasis on data points assigned with high probability, and at the same
time, it also optimizes for the ones with low probability. By optimizing
for the low distance between the actual soft assignments and the target
distribution, we obtain clusters with larger intra-cluster variance, thus im-
proving the cluster quality.

For the optimization, we minimize the Kullback–Leibler divergence
(KL) between the soft assignments and the target [118]. The KL diver-
gence is a loss function that measures the difference between two distri-
butions. We update the target distributions after a specific number of
clustering iterations. The clustering model is then trained to minimize the
KL divergence loss between the output of the clustering and the target
distribution. We leveraged the Stochastic Gradient Descent (SGD) with
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momentum [203] to optimize simultaneously both the cluster centers and
the DNN parameters. The parameter optimization process stops when a
percentage of points below a convergence threshold changes the assigned
cluster between two iterations in a row. We set the convergence threshold
equal to 0.1%.

7.2 Experimental Evaluation

In this section, we evaluate the proposed approach in the context of
failure data from the OpenStack cloud computing platform. For the eval-
uation, we used the failure dataset presented in § 5.2.

We evaluated our solution in two scenarios:

• The deep neural network technique is applied on the raw failure data,
without performing any anomaly detection. This is the same data
as in the SEQ approach (see § 6.2).

• The deep neural network technique is applied on top of anomaly de-
tection, i.e., on the anomaly vectors. This is the same data generated
by the LCS with VMM approach (see Section 6.1).

For each of these cases, we compare the proposed approach (DEC )
against baselines, in which we apply traditional clustering. For the base-
lines, we consider both the case of plain features (k-medoids w/o fine-
tuning), and a manual fine-tuning of the weights of the features (k-medoids
with fine-tuning). We remark that the fine-tuning of the features is a diffi-
cult and time-consuming task, due to the exploration of a large number of
features (hundreds of event types) and the deeper study of event types in
OpenStack (e.g., synchronous and asynchronous events, missing and spu-
rious events, RPC messages and REST APIs, etc.). This exploratory data
analysis was performed with Matlab code and took around two weeks of
manual effort.
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To evaluate different use-cases and conditions, we applied our solution
to perform clustering on the data from the three fault-injection campaigns,
one for each workload. The input data X is a matrix with the number of
rows equal to the number of fault-injection experiments. The columns are
dependent on the number of different event types d observed during the
execution of the workload. In particular, the number of columns is d when
the clustering is applied without the help of the anomaly detection, and
2d when the clustering is applied with the anomaly detection (since the
algorithm discerns the spurious events from the omitted ones, as explained
in § 5.1.

We set the hyper-parameters to minimize the reconstruction loss. Dur-
ing the phase of pre-training, we performed a basic tuning of the param-
eters following the common practices of previous studies [157, 128]. We
randomly initialized the weights of the layers. The layers were pre-trained
for 100, 000 iterations and a drop-out rate set to 20%. We trained DEC
with additional 100, 000 iterations but without a drop-out rate. We set
the size of the mini-batch to 256, the starting learning rate to 10%, which
is divided by 10 every 20, 000 iterations, and the weight decay to 0 [256].
For each dataset, we tuned the autoencoder by configuring the number
and the dimension of the inner layers (between 2 and 4 layers, of decreas-
ing dimension from d to K), and the distance metric for clustering (L1,
city block, and L2, euclidean). Moreover, to initialize the centroids of the
clusters, we selected the best solution after running the k-medoids with 30

repetitions.

To evaluate the quality of the clustering, we compare the cluster as-
signed to the experiment with the failure class of the experiment defined
in our ground truth (Table 6.1). To associate the clusters to the failure
classes, we identify, for every cluster, the failure label with the largest over-
lap and assign every element in the cluster to the ground-truth class [160],
as also described in §6.2. We remark that this evaluation is conservative
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Table 7.1. Purity values of clustering without performing anomaly detec-
tion (SEQ data). Bolded values are the best performance.

Clustering Approach DEPL NET STO

k-medoids w/o
fine-tuning 0.70 0.80 0.80

k-medoids with
fine-tuning 0.74 0.85 0.82

DEC 0.86 0.86 0.92

Table 7.2. Purity values of clustering on top of anomaly detection (LCS
with VMM). Bolded values are the best performance.

Clustering Approach DEPL NET STO

k-medoids w/o
fine-tuning 0.80 0.78 0.87

k-medoids with
fine-tuning 0.94 0.86 0.90

DEC 0.84 0.83 0.89

since it can assign multiple clusters to the same ground truth, but it can
not associate the same cluster to different classes of failure.

Table 7.1 and Table 7.2 show the clustering results, in terms of purity,
without and with anomaly detection, respectively. The results without
anomaly detection (Table 7.1, SEQ data) show that the use of the DEC
achieves a higher purity compared to traditional clustering, both without
and with fine-tuning of feature weights. This behavior applies to each
of the three workloads. The scenario without anomaly detection is the
most important one since it is the case of the busy system designer that
needs quick feedback from fault injection tests, to quickly perform the
next iteration of development. For example, the designer may add or
revise fault-tolerance mechanisms, and test them again on a new round of
fault injection experiments. In these cases, avoiding training an anomaly
detection model is useful to speed up data analysis.
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In the case of clustering in combination with anomaly detection (Ta-
ble 7.2, data from LCS with VMM ), the data have already been processed
and reduced before clustering. Therefore, clustering achieves better re-
sults than using data without anomaly detection. In particular, clustering
benefits most in the case of manual fine-tuning of the feature weights, as k-
medoids with fine-tuning always achieves better results than both the basic
k-medoids w/o fine-tuning and DEC. However, these better results come
at the cost of manually setting the weights of the features, which requires
a deep knowledge of the system internals, and efforts to best tune them
concerning the specific workload. Instead, the DEC approach achieves
performance that is close to the case of fine-tuning, with significantly less
effort from the human analyst. Moreover, DEC always returns better re-
sults than the basic k-medoids, consistently over all the workloads, and
both with and without anomaly detection. Our experiments also pointed
out that the standard deviation is below 5%, and data are normally dis-
tributed around the mean.

To better understand the impact of the clustering on the analysis of
failure modes, we inspected the distribution of the failure data samples
across the clusters and compared it to the distribution of the actual fail-
ure modes (Table 6.1). Ideally, the distribution across clusters matches
the actual failure modes, so that the human designer can prioritize the
development of fault tolerance mechanisms according to the distribution.
Moreover, it is sufficient for the human designer to only analyze one or a
few experiments from the same class, thus making the analysis more effi-
cient. To map the clusters to the failure modes of Table 6.1, we followed
the approach described in § 6.2. We remark that this analysis does not
focus on the quality of clusters (i.e., samples misclassified in the wrong
cluster), as the previous analysis already provided figures about the pu-
rity of the clusters. Here, we focus on the distribution of the clusters that
would be presented to the human designer, as the shape of the distribution
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influences the interpretation of the failure data.

Figure 7.2 shows the distributions of the clusters for the proposed ap-
proach (DEC ), for the baselines (k-medoids with and without fine-tuning),
and the actual distribution of the failure modes according to the ground
truth. The size of the clusters for Instance Failure, Network Failure, and
Cleanup Failure from the clustering techniques are close to the actual fre-
quency of these failure modes. Instead, there are noticeable differences for
the remaining failure modes. In the case of Volume Failure, the k-medoids
w/o fine-tuning misses this failure mode, while the cluster from k-medoids
with fine-tuning is only half of the actual frequency of this failure mode.
In the case of SSH Failure, which accounts for a minor part of the fail-
ures, all of the clustering approaches do not report any failure. We do not
attribute this result to the clustering techniques, but to the similarity of
events occurring in this failure mode to the ones occurring for Instance
Failure, which misleads clustering. Instead, we believe that this failure
mode could be better analyzed by looking not only at the execution traces
but also at additional information sources, such as system logs. Finally,
both k-medoids with and without fine-tuning over-estimate the cases of
No Failure, as they report several hundreds of no-failures more than the
actual size of this class. This error is the most severe one since it mis-
leads the human designer at believing that the system fails less frequently
than the actual truth (e.g., about −20% of neglected failures). Thus, with
the simple k-medoids, the analyst would unjustly trust the reliability of
the system. Instead, in the proposed approach, the share of cases of No
Failure is close to the ground truth.

We evaluated the computational cost of the proposed approach to es-
timate the overhead introduced by the use of deep learning to cluster the
failure data. We performed several evaluations, by varying the workloads,
the vector representation of the experiments (i.e., with and without the
anomaly detection), and the layers of the neural network. We found that
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Figure 7.2. Distribution of failure modes from different clustering tech-
niques (SEQ data).

the use of DEC for clustering introduces an average overhead of ∼ 23

seconds compared to the basic use of the k-medoids. This time includes
the initialization of the cluster centers with k-medoids (i.e., the parameter
initialization) and the training of the DNN (i.e., the parameter optimiza-
tion). The standard deviation is high (∼ 75% of the average value) since
the configuration of the DNNs impacts the computational cost. Neverthe-
less, the overhead introduced by DEC can be considered acceptable, given
that the proposed solution avoids the manual fine-tuning of features, which
represents a difficult and time-consuming task.
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Chapter 8
Runtime Failure Detection in
Cloud Computing Systems

R
untime verification strategies, a key technique to identify the failures
at runtime, perform redundant, end-to-end checks (e.g., after service

API calls) to assert whether the virtual resources are in a valid state. For
example, these checks can be specified using temporal logic and synthesized
in a runtime monitor [66, 41, 272, 206], e.g., a logical predicate for a
traditional OS can assert that a thread suspended on a semaphore leads to
the activation of another thread [10]. Runtime verification is now a widely
employed method, both in academia and industry, to achieve reliability
and security properties in software systems [17]. This method complements
classical exhaustive verification techniques (e.g., model checking, theorem
proving, etc.) and testing.

In this chapter, we propose a lightweight approach to runtime verifica-
tion tailored for the monitoring and analysis of cloud computing systems.
We used a non-intrusive form of tracing of events in the system under test,
and we build a set of lightweight monitoring rules from correct executions

153



154 Chapter 8. Runtime Failure Detection in Cloud Computing Systems

of the system in order to specify the desired system behavior. We syn-
thesize the rules in a runtime monitor that verifies whether the system’s
behavior follows the desired one. Any runtime violation of the monitor-
ing rules gives a timely notification to avoid undesired consequences, e.g.,
non-logged failures, non-fail-stop behavior, failure propagation across sub-
systems, etc. The approach does not require any knowledge about the in-
ternals of the system under test and it is especially suitable in multi-tenant
environments or when testers may not have a full and detailed understand-
ing of the system. We investigated the feasibility of our approach in the
OpenStack cloud management platform, showing that the approach can
be easily applied in the context of an “off-the-shelf” distributed system.
In order to preliminary evaluate the approach, we executed a campaign of
fault-injection experiments in OpenStack. Our experiments show that the
approach can be applied in a cloud computing platform with high failure
detection coverage.

8.1 Methodology

Node C

Communication
APIs (REST APIs, 

MQs)

Instrumentation

A1A2B2B1
Runtime 

Verification 
Engine

Lightweight
Monitoring Rules

Fault-free 
traces
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Monitor Synthesis

Collection of 
correct executions

Runtime Verification Process

Analysis

Figure 8.1. Overview of the proposed approach.
Figure 8.1 shows an overview of the proposed approach. Firstly, we
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instrument the system under test to collect the events exchanged in the
system during the experiments (step 1 ). This instrumentation is a form
of black-box tracing since we consider the distributed system as a set of
black-box components interacting via public service interfaces. To instru-
ment the system, we do not require any knowledge about the internals of
the system under test, but only basic information about the communica-
tion APIs being used. This approach is especially suitable when testers
may not have a full and detailed understanding of the entire cloud plat-
form. Differently from traditional distributed system tracing [182], this
lightweight form of tracing does not leverage any propagation of the event
IDs to discriminate the events generated by different users or sessions.

In the step 2 , we collect the correct executions of the system. To
define its normal (i.e., correct) behavior, we exercise the system in “fault-
free” conditions, i.e., without injecting any faults. Moreover, to take into
account the variability of the system, we repeat several times the execution
of the system, collecting different “fault-free traces”, one per each execution.
We consider every fault-free trace a past correct execution of the system.

Step 3 analyzes the collected fault-free traces to define a set of failure
monitoring rules. These rules encode the expected, correct behavior of
the system, and detect a failure if a violation occurs. This step consists
of two main operations. Firstly, the approach extracts only the attributes
useful for expressing the monitoring rules (e.g., the name of the method,
the name of the target system, the timestamp of the event, etc.). Then,
we define the failure monitoring rules by extracting “patterns” in the event
traces. We define a “pattern” as a recurring sequence of (not necessarily
consecutive) events, repeated in every fault-free trace, and associated with
an operation triggered by a workload. In this work, we identify patterns by
manually inspecting the collected traces. In future work, we aim to develop
algorithms to identify patterns using statistical analysis techniques, such
as invariant analysis [78, 261, 92]. We assume that the format of these rules
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can detect many of the failures that appear in cloud computing systems:
if at least one of the rules is violated, then a failure occurred.

Finally, we synthesize a monitor from failure monitoring rules, ex-
pressed according to a specification language (step 4 ). The monitor takes
as inputs the events related to the system under execution, and it checks,
at runtime, whether the system’s behavior follows the desired behavior
specified in the monitoring rules (step 5 ). Any (runtime) violation of the
defined rules alerts the system operator of the detection of a failure.

8.2 Monitoring Rules

In general, we can express a monitoring rule by observing the events
in the traces. For example, suppose there is an event of a specific type,
say A, that is eventually followed by an event of a different type, say B, in
the same user session (i.e., same ID). The term event type refers to all the
events related to a specific API call provided by a specific service. This
rule can be translated into the following pseudo-formalism:

a→ b and id(a) = id(b), with a ∈ A, b ∈ B (8.1)

The rules can be applied in the multi-user scenario and concurrent
systems as long as the information on the user IDs is available. How-
ever, introducing an ID in distributed tracing requires both an in-depth
knowledge about the internals and intrusive instrumentation of the system.
Therefore, to make our runtime verification approach easier to apply, we
propose a set of coarse-grained monitoring rules (also known as lightweight
monitoring rules) that do not require the use of any propagation ID. To
apply the rules in a multi-user scenario, we define two different sets of
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events, A and B, as in the following.

A = {all distinct events of type “A” happened in [t, t+ ∆]}

B = {all distinct events of type “B” happened in [t, t+ ∆]}
(8.2)

with |A| = |B| = n. Our monitoring rule for the multi-user case then
asserts that there should exist a binary relation R over A and B such that:

R = {(a, b) ∈ A×B | a→ b,

6 ∃ ai, aj ∈ A, bk ∈ B | (ai, bk), (aj , bk),

6 ∃ bi, bj ∈ B, ak ∈ A | (ak, bi), (ak, bj) }

(8.3)

with i, j, k ∈ [1, n]. That is, every event in A has an event in B that fol-
lows it, and every event a is paired with exactly one event b, and viceversa.
These rules are based on the observation that, if a group of users performs
concurrent operations on shared cloud infrastructure, then a specific num-
ber of events of type A is eventually followed by the same number of events
of type B. The idea is inspired by the concept of flow conservation in net-
work flow problems. Without using a propagation ID, it is not possible to
define the couple of events ai and bi referred to the same session or the
same user i, but it is possible to verify that the total number of events of
type A is equal to the total number of events of type B in a pre-defined
time window.

In the context of OpenStack, users perform their requests via Dash-
board or command line by using the API provided from the client-side of
the project (e.g., novaclient). The OpenStack API is implemented as a
set of web services in the Representational State Transfer (REST) archi-
tectural style. An interaction with one of the services takes the form of
sending a request (including formatted data) to a particular address on the
server and then parsing the response. The REST calls are based on the
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HTTP protocol. Hence, we can discern information such as the method
invoked (i.e., GET, DELETE, POST, PUSH, etc.), the client performing
the request (i.e., cinderclient, neutronclient, and novaclient), and the re-
sponse status code (i.e., 2xx for successful requests, 4xx for client errors,
5xx for server-side errors, etc.). In the case of the REST API, an event
type is identified as the pair client performing the request and the method
invoked (e.g., <novaclient, GET>).

On the other hand, OpenStack’s internal services communicate via
RPC messages to serve users’ requests. These messages contain fields such
as the method invoked, the caller (the system’s service), and the body of
the message, which further contains useful information to serve the request.
For example, if a user aims to launch an instance from an image by us-
ing the command line, he runs the command openstack server create,
which sends the request to Nova subsystem [177]. Once the request is
received, Nova starts communicating with other subsystems to serve the
request, i.e., the subsystem exchanges messages with Keystone to verify
user’s authentication, Glance to get the image, Neutron to create networks,
and sub-networks, and Cinder for the volume attachment. In the case of
the RPC calls, an event type is a pair consisting of the service providing
the API and method invoked (e.g., <cinder-volume, create_volume>)

The identification of the event (or more events) characterizing the ac-
tion taken by the user is needed to specify a monitoring rule. The pre-
vious example helps to understand that, the event flow used to serve
users’ requests starts from a REST API call. However, there is not
a one-to-one relationship between the first RPC message of the event
flows and the REST API starting the request. Indeed, we observed that
the first RPC message exchanged among the subsystems is the method
schedule_and_build_instances of the nova-conductor component.
This events arises from the POST method called by novaclient, but not
every novaclient POST generates the schedule_and_build_instances
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event since the same POST method can be used to create or add different
resources. Therefore, we can not identify a pattern starting from a REST
API call, but we can instead leverage an RPC message for this purpose. For
example, if we observe the event schedule_and_build_instances from
nova-conductor, we can realize that the user’s request is the creation
of an instance. Similarly, if we observe the event create_volume of the
cinder-scheduler component, we derive that the user requested the cre-
ation of a volume, and so on. In the following, we name the events heading
the flow of RPC messages as head event.

To derive the monitoring rules, we based the analysis on finding the
patterns of events starting with a head event. The key idea is that, if
we can link a pattern of recurring events following a specific head event,
then we can derive rules to monitor user activities and identify anomalies
(e.g., out-of-order events, missing events, etc.). Unfortunately, due to the
non-determinism of the cloud systems, we can not manually infer rules
by simply observing fault-free executions. Indeed, the head event starting
from a user request is not necessarily followed by the same number and
the same order of events. Actually, this is seldom the case. Moreover, the
high volume of messages in the system makes the manual inspection very
difficult and prone to error.

Therefore, we investigate the additional information contained in the
body of the RPC messages since it contains a rich set of information. To
automatically derive the fields of interest from the body, we analyzed the
trace executions of the system and applied a set of filters on the fields of
the body message, as shown in the Algorithm 1. This analysis allowed us
to pinpoint the Oslo Context variables, i.e., the variables used to provide
context-aware log records when specifying a request and, thus, to main-
tain useful information about a request context. Among these variables,
the analysis highlighted the _context_request_id, i.e., the identifier of
a request and the _context_global_request_id, i.e., a request-id which



160 Chapter 8. Runtime Failure Detection in Cloud Computing Systems

Algorithm 1 Pseudocode for the identification of the body fields
1: J: number of messages in the trace
2: for j in 1..J do
3: if trace(j).is_rpc then
4: for field in trace(j).body.keys do
5: fields_list = fields_list ∪ field
6: for field in fields_list do
7: for j in 1..J do
8: if field ∈ trace(j).body.keys then
9: not_null_count[field]++
10: value = trace(j).body[field]
11: if value == None then
12: none_count[field]++
13: else
14: not_null_none_count[field]++
15: values = values ∪ value
16: counter[value]++
17: values_count[field] = values.length
18: maximum_value_repetition[field] = counter.maximum
19: average_value_repetition[field] = counter.average
20: for field in fields_list do . Filtering fields
21: if (not_null_none_count[field] >= not_null_none_threshold)

AND (values_count[field] >= values_count_threshold)
AND (maximum_value_repetition[field] >= max-
imum_value_repetition_threshold) AND (aver-
age_value_repetition[field] >= average_vale_repetition_threshold)
then

22: filtered_fields_list = filtered_fields_list ∪ field
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Algorithm 2 Pseudocode of the Pattern Finder
1: I: number of trace executions
2: J: number of messages in the trace
3: for i in 1..I do
4: for j in 1..J do
5: p = trace(i, q) | ∃ trace(i, q’) ∈ p | trace(i, q).timestamp <=

trace(i, q’).timestamp + window_size AND trace(i, q).REQUEST_ID
= trace(i, j).REQUEST_ID

6: gp = trace(i, q) | ∃ trace(i, q’) ∈ p | trace(i,
q).timestamp <= trace(i, q’).timestamp + window_size AND
(trace(i, q).REQUEST_ID = trace(i, j).REQUEST_ID OR trace(i,
q).GLOBAL_REQUEST_ID = trace(i, j).REQUEST_ID)

7: patterns = patterns ∪ p
8: global_patterns = global_patterns ∪ gp
9: frequencies[p]++
10: frequencies[gp]++

may have been sent in from another service to indicate this is part of a
chain of requests [181]. These variables allow us to identify the flow of
RPC messages related to the same user’s request and, consequently, to
recognize the head event of the flow.

To automatically infer the monitoring rules, we use an algorithm that
analyzes the logs collected during the fault-free executions of the system.
As described in Chapter 3 and Chapter 5, we use Zipkin distributed trac-
ing system to collect the logs of the system’s execution. These logs are
aggregate information in JSON (JavaScript Object Notation) format. We
use a parser that creates a file in CSV (Comma Separated Value) format
containing the timestamp of the events, the name of the method called, and
the component invoking the method, the status code of the REST API,
and the context variables contained in the body of the RPC messages.
The context variables are used to discover a flow of related events (i.e., a
pattern). To properly identify the patterns, we use a specified temporal
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window that allows us to find related events whose difference of timestamp
is not greater than the duration of the temporal window. Indeed, since the
executions of the system under test contained in the logs can last tens of
minutes, sometimes hours, it is meaningless to link different messages that
are too temporally distant. When the pattern in the temporal window is
found as common among all fault-free executions, then we derive a moni-
toring rule. The Algorithm 2 shows the pseudo-code used to automatically
infer the patterns from the fault-free executions.

The analysis of fault-free executions pointed out different types of mon-
itoring rules. Suppose to observe three different RPC events in a specified
temporal window, say a, b, c belonging to three different event types, say
A,B,C, respectively. Suppose also that the event a is the head event, i.e.,
the occurrence of this event identifies a pattern of events that follow the
heading one. We categorize the monitoring rules as follows:

� Ordered-Events Rules (ORD): Rules based on a flow of events that
follows always the same order and occurrence. For example, the event b
and c follow a always with the same pattern (e.g., a→ b→ c). These rules
interest the services less affected from the non-determinism and where it
is possible to find a fixed pattern for the same operation. The ORD rules
can identify failures as out-of-order or missing events in the pattern. The
Algorithm 3 shows the pseudocode for the ORD rules.

� Occurred-Events Rules (OCC): Rules based on a flow of events that
occur after the head event, but without following any specific order and/or
occurrence. For example, the event type b happens before or after the event
type c in different executions (e.g., a → b → c, or a → c → b), or with
different occurrences (e.g., a→ b→ b→ c, or a→ b→ c→ b, etc.). These
rules are frequent when non-determinism affects the flow of events and it is
not possible to identify a fixed pattern among all the executions. A failure
can cause a missing or an out-of-order event in the pattern. The OCC
rules are robust to the identification of failure due to missing events in
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Algorithm 3 Pseudocode for the ORD Rules
1: for p in patterns do
2: frequence = 0
3: for i in 1..I do . i: trace execution index
4: for j in 1..J do . j: row of the trace execution
5: if trace(i, j).rpc_type == p.first_line.rpc_type then
6: frequence++
7: if frequences[p] / frequence >= threshold then
8: ord_rules = ord_rules ∪ p
9: for gp in patterns do

10: frequence = 0
11: for i in 1..I do
12: for j in 1..J do
13: if trace(i, j).rpc_type == gp.first_line.rpc_type then
14: frequence++
15: if frequences[gp] / frequence >= threshold then
16: ord_rules = ord_rules ∪ gp

the pattern, but not to the out-of-order events since there is not a specific
ordering involved in the rule. The Algorithm 4 shows the pseudocode for
the OCC rules.

� Counted-Events Rules (COUNT): Rules based on the assumption
that an event is repeated several times varying in a range of value (e.g.,
min < a < max, where min and max represent the minimum and the
maximum number of times the event is repeated in fault-free conditions,
respectively). The COUNT rules can be applied when the system is trying
to serve a request involving multiple-repeated operations (e.g., polling re-
quests) but it is not able to complete the action. This leads to an anoma-
lous repetition of events (e.g., a > max). The Algorithm 5 shows the
pseudocode for the COUNT rules.

While the ORD and OCC rules are based on a flow of events following
the head event a, the COUNT rules are based on the repetition of the
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Algorithm 4 Pseudocode for the OCC Rules
1: for p in patterns do
2: total_pattern_frequence =

∑
frequencies of patterns which are

permutations of p
3: for line in p do
4: frequence = 0
5: for i in 1..I do
6: for j in 1..J do
7: if trace(i, j).rpc_type == line.rpc_type then
8: frequence++
9: if total_pattern_frequence / frequence >= threshold then
10: occ_rules = occ_rules ∪ p
11: for gp in global_patterns do
12: total_pattern_frequence =

∑
frequencies of patterns which are

permutations of p
13: for line in gp do
14: frequence = 0
15: for i in 1..I do
16: for j in 1..J do
17: if trace(i, j).rpc_type == line.rpc_type then
18: frequence++
19: if total_pattern_frequence / frequence >= threshold then
20: occ_rules = occ_rules ∪ gp
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Algorithm 5 Pseudocode for the COUNT Rules
1: for p in patterns do
2: if p.has_all_lines_with_same_rpc_type then
3: minimum = p.line
4: maximum = p.len
5: for q in patterns do
6: if q.has_all_lines_with_same_rpc_type then
7: if q.rpc_types = p.rpc_types then
8: if if q.len > maximum then
9: maximum = q.len

10: if q.len < minimum then
11: minimum = q.len
12: rep_rules = rep_rules ∪ (p.first_line, minimum, maximum)
13: for gp in global_patterns do
14: if gp.has_all_lines_with_same_rpc_type then
15: minimum = gp.len
16: maximum = gp.len
17: for q in global_patterns do
18: if q.has_all_lines_with_same_rpc_type then
19: if q.rpc_types = gp.rpc_types then
20: if q.len > maximum then
21: maximum = q.len
22: if q.len < minimum then
23: minimum = q.len
24: rep_rules = rep_rules ∪ (gp.first_line, minimum, maximum)
25: for p in patterns do . Pattern Reduction
26: if ∃ q ∈ patterns t.c. q ⊂ p then
27: frequencies[q] += frequencies[p]
28: patterns = patterns \ p
29: for gp in global_patterns do
30: if ∃ q ∈ patterns t.c. q ⊂ gp then
31: frequencies[q] += frequencies[gp]
32: global_patterns = global_patterns \ gp
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head event in a specific range of occurrences. This difference makes the
runtime verification of the COUNT rules difficult in practice. Let’s make a
simple example. Suppose to have n different users, with n > 1, performing
the same action concurrently. In the case of ORD and OCC rules, if
we observe n times the same head event, then the same monitoring rule
is activated the same number of times and controls if the patterns are
verified n times. In the case of COUNT rules activated concurrently, since
the occurrences of the head event will presumably be higher than the
threshold (the max value) defined in the rule, then the approach will raise
an exception, resulting in a false alarm case. It is clear that, in order
to make the COUNT rules effective in practice, we need to discern the
concurrent requests activating these rules. We address this issue by looking
at the resource involved in the user’s requests (e.g., the id of the network,
the id of a device, etc.) and contained in the body of the RPC messages.
Therefore, if we observe head events activating the same COUNT rule by
targeting n different resources, then we derive that the number of head
events should range in (n ∗min < |a| < n ∗max).

In addition to the monitoring rules based on RPC messages, we infer
a further type of monitoring rule based on the status code of the REST
API. Indeed, a POST or a PUT method with a status code 4xx (client
error), and 5xx (server error) is an indication of the incapability of the
client in performing the request and the incapability of the server to fulfill
the request, respectively. These events can not be observed during fault-
free executions since they are failure symptoms, but they are common in
faulty conditions, i.e., when the fault is injected into the system.

8.3 Experimental Evaluation

In this section, we infer the monitoring rules in the context of the Open-
Stack cloud computing platform. We targeted OpenStack version 3.12.1
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(release Pike), deployed on Intel Xeon servers (E5-2630L v3 @ 1.80GHz)
with 16 GB RAM, 150 GB of disk storage, and Linux CentOS v7.0, con-
nected through a Gigabit Ethernet LAN.

8.3.1 Multi-tenant Workload

In the previous chapters, we used single-user workloads to produce fail-
ure data and evaluate the anomaly detection approach (Chapter 5), and the
failure mode analysis approaches (Chapter 6, and Chapter 7). Although
these workloads consist of a large set of operations stressing the OpenStack
subsystems, they do not include concurrent operations performed by dif-
ferent users. We believe that to properly evaluate the monitoring rules in
the context of cloud infrastructures, we need to take into account these
situations. Hence, we used a multi-tenant workload including different
users performing concurrent operations on the infrastructure. The users
have 6 different behaviors, which are specified by 6 different sub-workloads,
described in the following:

• Volume : The user performs operations strictly related to the block
storage (Cinder service).

• Instance : The user’s requests are related to the Nova service for
the creation of the instance.

• Network : The user simply creates network resources (networks,
sub-networks, IP addresses, routers, etc.), stressing the Neutron ser-
vice.

• Instance Volume : The user creates an instance from an image,
then a volume.

• Volume Instance : The user creates an instance from a volume
using a different API from the previous sub-workload.
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• DEPL: The single-user workload used in the previous chapters
(Chapter 5, 6, 7) that stresses Nova, Cinder and Neutron services.

The six behaviors are run concurrently to obtain the multi-tenant work-
load. The Volume, Network, Instance Volume, and Volume Instance work-
loads are run twice by different users. Therefore, the multi-tenant workload
includes 10 different users running concurrently.

8.3.2 Fault-free Analysis

We applied the algorithm described in § 8.2 on 100 fault-free traces, col-
lected by executing the system with the multi-tenant workload and without
injecting any fault. To set the length of the time window, we made a con-
servative choice by setting the time window equal to the longest duration
of the actions observed during the execution of the workload in fault-free
conditions (∼ 35 seconds).

We derived 7 types of monitoring rules based on RPC messages, related
to different actions, regardless of the user starting the request. Table 8.1
summarizes the rules. Rules # 1, 2, and 3 refer to the creation of the
instance, volume, and network, respectively, and thus cover the most fre-
quent actions on an Infrastructure-as-a-Service platform, i.e., the creation
of the resources. We notice that the rules related to the creation of the in-
stance and volume are of type ORD, while the one related to the creation
of the network is OCC due to the asynchronous nature of the Neutron
subsystem. We found also the rule for the attachment of the volume to
an instance (Rule # 4), which is another relevant and frequent operation
performed by users to use the created instance, and for the deletion of
the instance (Rule #5). Moreover, we derived two further rules related to
the network operations (Rules # 6 and 7), i.e., the update of the security
groups, the sets of IP filter rules that are applied to all project instances,
and define networking access to the instance, and the operation of pinging
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the instance via SSH, which is the only rule of type COUNT.

Table 8.1. Monitoring Rules.

Rule
#

Rule
Description Rule Type # of

Events Subsystems

1 Instance
Creation ORD 4 Nova

2 Volume
Creation ORD 2 Cinder

3 Network
Creation OCC 3 Neutron

4 Volume
Attachment ORD 4 Nova, Cinder

5 Instance
Deletion ORD 3 Nova

6 Security Group
Update ORD 2 Neutron

7 Ping Instance
via SSH COUNT 6-26 Neutron

We notice that the monitoring rules based on RPC messages do not
cover all the possible operations of the workload. The volume deletion and
the instance reboot are some examples of operations not covered by the
monitoring rules. By investigating the fault-free traces, we observed that
these operations do not involve a sequence of events, but only a single head
event. However, to verify a monitoring rule of type ORD or OCC, we need
a sequence of at least two events, i.e., at least one event has to follow the
head event activating the rule since the users’ behavior is not deterministic
and, thus, can not be predicted (e.g., we can not assume that all the users
will delete a volume). In addition to the rules shown in Table 8.1, we also
included rules based on REST API returning status code 4xx (client error)
and 5xx (server error) in our set of monitoring rules.



170 Chapter 8. Runtime Failure Detection in Cloud Computing Systems

8.3.3 Evaluation

To evaluate the monitoring rules, we performed a fault-injection cam-
paign in OpenStack. We exercised the system with the multi-tenant work-
load and injected faults in Nova, Cinder, and Neutron subsystems. In
particular, we used the the ProFIPy tool (see § 3) to inject the following
fault-types:

• Throw exception: An exception is raised on a method call, accord-
ing to a pre-defined, per-API list of exceptions.

• Wrong return value: A method returns an incorrect value. The
wrong return value is obtained by corrupting the targeted object,
depending on the data type (e.g., by replacing an object reference
with a null reference, or by replacing an integer value with a negative
one).

• Wrong parameter value: A method is called with an incorrect
input parameter. Input parameters are corrupted according to the
data type, as for the previous point.

Before every experiment, we clean up any potential residual effect from
the previous experiment, to be able to relate failure to the specific fault
that caused it. We re-deploy the cloud management system, remove all
temporary files and processes, and restore the OpenStack database to its
initial state. In total, we performed 637 fault injection experiments, and we
observed failures in 496 experiments (∼ 78%). We consider an experiment
as failed if at least one API call returns an API error or if there is at
least one assertion check failure. We remark that assertion checks serve as
ground truth about the occurrence of failures during the experiments since
they are valuable to point out the cases in which a fault causes an error,
but the system does not generate an API error (i.e., the system is unaware
of the failure state) [58].
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We evaluated the monitoring rules in terms of precision and recall. The
former is defined as the ratio between the true positives and the sum of true
positives and false positives. The latter is computed as the number of true
positives divided by the sum of true positives and false negatives. In our
context, we define a true positive case when the monitoring rules identify
the failure caused by the fault injected into the system. A false negative
happens when the monitoring rules do not identify the failure experienced
by the system due to the injected fault. The false positives refer to the
cases in which the monitoring rules identify a failure but the system is
not actually failed. To provide a more complete evaluation, we aggregate
precision and recall, using the F1 score, defined as the harmonic mean of
the two metrics. All the metrics range between 0 (total misclassification)
and 1 (perfect classification).

To provide context for the evaluation, we compare three approaches:

• OpenStack Coverage Mechanisms (OCM): The failure coverage
mechanisms of the OpenStack cloud infrastructure used to notify the
users when the system is not able to serve the requests;

• Monitoring Rules (MR): The proposed approach, which applies
the monitoring rules to identify the failures;

• OpenStack with Monitoring Rules (OCM with MR): The com-
bination of the OpenStack coverage mechanisms with the monitoring
rules is useful to estimate the improvement obtained by implement-
ing an external monitoring solution to support OpenStack.

For each OpenStack service targeted by the fault-injection experiments,
Table 8.2 shows the results, in terms of precision, recall, and F1 score
obtained by the three approaches.

The table highlights that the OCM approach provides perfect precision
over all the services, i.e., the system notification of a failure is always a
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Table 8.2. Approaches comparison.

OpenStack
Service Approach Precision Recall F1 score

Nova
OCM 1.00 0.30 0.46
MR 0.89 1.00 0.94

OCM with MR 0.89 1.00 0.94

Cinder
OCM 1.00 0.28 0.44
MR 0.85 0.84 0.85

OCM with MR 0.85 0.85 0.85

Neutron
OCM 1.00 0.71 0.83
MR 0.87 0.31 0.46

OCM with MR 0.95 0.92 0.93

All subsystems
OCM 1.00 0.36 0.53
MR 0.87 0.82 0.85

OCM with MR 0.88 0.93 0.91

true positive case. However, the accuracy dramatically decreases when
we evaluate the false negatives since the OCM approach systematically
provides the worst performances over all the services, as a consequence of
the inability of the system in promptly identifying the failures, as already
discussed in Chapter 4. Different from the system’s coverage mechanisms,
the MR approach provides some false positive cases. Nevertheless, the
precision achieved by the approach is still very close to the one provided
by the OCM approach. The considerations on the false-negative cases,
instead, are way different. We can notice, indeed, how the MR rules can
effectively bring a substantive improvement on the recall values for Nova
and Cinder subsystems, while it provides worse performance for Neutron.
Overall the subsystems, the MR approach increases the recall compared
to the system’s fault-tolerance mechanisms.

The F1 score allows us to compare the approaches both in terms of false
positives and false negatives, and thus provides a comprehensive evalua-
tion of the approaches. The metric suggests that overall the fault-injection
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experiments, the MR approach massively improves the performances ob-
tained with the plain OpenStack coverage mechanisms (84% vs 53%). In
particular, the proposed approach achieves a F1 score higher for Nova and
Cinder services, while the performances are worse for the Neutron service.
We attribute this to the non-determinism affecting the network service that
causes either a missing coverage or a missing activation of the monitoring
rules.

When the monitoring rules are used in combination with the OpenStack
coverage mechanisms (OCM with MR approach), we can notice that, al-
though the rules slightly impact the precision of the system, they massively
help in the reduction of the false-negative cases, overall the services. Even
for the Neutron service, when the recall for the MR approach is lower than
the one provided by OpenStack coverage mechanisms, the OCM with MR
approach takes benefits from the monitoring rules since they help identify
failures not detected by the plain mechanisms of the system.

To provide a more comprehensive evaluation, we also analyzed the
promptness of the monitoring rules in the identification of failures. Ide-
ally, a failure should be identified as soon as the system experiences it
to quickly restore the services and thus increase the reliability of the sys-
tem. For every fault-injection experiment, we computed tfail as the time
of identification of the failure, which is the timestamp of the first API error
raised by the system to notify the failure for the OCM approach, and the
timestamp of the activation of a monitoring rule that identified a failure
for the MR approach. Moreover, we defined tstart and tend as the times-
tamp of the start and the end of the workload execution, respectively. To
perform the comparison between OpenStack coverage mechanisms and the
monitoring rules in terms of promptness, we defined a failure notification
interval, i.e., the difference between the time of identification of the failure
and a common initial time. We used the start of workload execution as
the initial time, i.e., the failure notification interval is equal to tfail−tstart.
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Since the approaches are compared on the same experiments and in the
same conditions, a lower failure notification time indicates the ability to
promptly identify failures.

To perform a fair and robust evaluation, we did not consider the notifi-
cation of the false-positive cases in this analysis since they would unfairly
help the monitoring rules. Moreover, we considered the failure notification
interval of undetected failures as the whole duration of the workload (i.e.,
tend − tstart) otherwise they would not be considered at all in this analy-
sis. Table 8.3 shows the average failure notification interval (in seconds)
provided by the approaches.

Table 8.3. Average Failure notification interval (seconds).

Approach Nova Cinder Neutron All
subsystems

OCM 711.02 451.58 401.37 553.86
MR 507.88 371.25 404.32 439.80

OCM with MR 507.26 368.68 328.85 424.06

The table shows that the MR approach provides a notably lower fail-
ure notification time when compared to the OCM approach for Nova and
Cinder services, and a comparable notification time for the Neutron ser-
vice. Overall the fault-injection experiments, the average notification time
of the monitoring rules is ∼ 114 seconds lower than the average notifica-
tion time of the OpenStack coverage mechanisms. The failure notification
time of the OCM with the MR approach is very close to the MR approach
and thus proves that the contribution of the monitoring rules is crucial for
the prompt detection of failures at runtime. Also for the Neutron service,
where the MR approach showed the worst performance due to the asyn-
chronous nature of the network operations, the OCM with MR approach
notably decreases the average failure notification time with respect to the
OCM approach (∼ 77 seconds).
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8.3.4 Sensitivity Analysis

We performed a sensitivity analysis of the monitoring rules by vary-
ing the length of the time window used by the algorithm to identify the
patterns.

Table 8.4 shows the results of the analysis by setting the time window
equal to 5, 20, 35, and 50 seconds. Unsurprisingly, we found that the per-
formance of the approach improves by increasing the length of the time
window. Indeed, a short time window increases the number of false posi-
tives and limits the true negatives. As matter of fact, we found that a time
window equal to 5 seconds provides a false positive rate equal to 1. On
the other hand, a larger time window allows the algorithm to find more
patterns more robust to the non-deterministic variations of the events,
increasing both the precision and the recall.

The analysis shows also that there is a saturation of the performance of
the monitoring rules. Indeed, from 35 to 50 seconds, we have an increase
of the F1 score of 1%. Since the goal is to detect failures as soon as
possible, the choice of the time window should be a valid compromise
between performance and detection time and, therefore, a time window
equal to 35 seconds (or also 20 seconds) can be considered a more valuable
choice.

Table 8.4. Sensitivity Analysis of the time window.

Time
Window
(seconds)

Precision Recall F1 score

5 0.75 0.87 0.81
20 0.85 0.92 0.88
35 0.88 0.92 0.90
50 0.90 0.92 0.91
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8.3.5 Computational Cost

We performed the analysis of the computational cost needed to de-
rive the monitoring rules from fault-free traces. The computational times
include the time needed to parse the logs, filter events, and adopt the al-
gorithm to find the patterns. We found that the overall time needed to
simultaneously analyze 50 different fault-free execution traces (which con-
tain ∼ 140000 rows) is lower than 70 seconds (i.e., less than 1.5 seconds
per trace, on average). The computational cost increases linearly with the
number of traces.

8.4 Runtime Monitor

After identifying the monitoring rules, we synthesize the rules in a
runtime monitor that verifies whether the system’s behavior follows the
desired one. Any runtime violation of the monitoring rules gives a timely
notification to avoid undesired consequences, e.g., non-logged failures, non-
fail-stop behavior, failure propagation across sub-systems, etc.

We translate the rules in the Event Processing Language (EPL), a
particular specification language provided by the Esper software (see Ap-
pendix C), and allow the expression of different types of rules (i.e., tem-
poral, statistical, etc.). The language is a SQL-standard language with
extensions, offering both typical SQL clauses (e.g., select, from, where,
insert into) and additional clauses for event processing (e.g, pattern,
output).

We applied the EPL statements, derived from the monitoring rules, to
detect failures in OpenStack when multiple users perform requests concur-
rently (multi-tenant workload). Since we do not collect a user ID, we use a
counter to take into account multi-tenancy operations. We associate a dif-
ferent counter to each head event: when a head event occurs, we increment
its counter. This allows us to keep track of the same actions performed
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simultaneously by different users and, consequently, to activate multiple
monitoring rules, one per each different action. For example, suppose that,
in the same time window, we observe twice the event type <conductor,

schedule_and_build_instances>, which is the head event of the request
flow related to the instance creation. We derive that two users are concur-
rently requesting (in the same time window) the creation of an instance.
Therefore, we activate two monitoring rules to fully control the users’ ac-
tions. The value of the counter is sent, along with the event name, to the
Esper Runtime.

To express the monitoring rules, we use the clause of pattern, useful
for finding time relationships between events. Pattern expressions usually
consist of filter expressions combined with pattern operators. We use the
pattern operators every, followed-by (→), and timer:interval. The
operator every defines that every time a pattern subexpression connected
to this operator turns true, the Esper Runtime starts a new active subex-
pression. Without this operator, the subexpression stops after the first
time it becomes true. The operator→ operates on events order, establish-
ing that the right-hand expression is evaluated only after that the left-hand
expression turns true. The operator timer:interval establishes the du-
ration of the time window during which to observe the arriving events (it
starts after that the left-hand expression turns true).

Listing 8.1 shows the EPL translation of the rule Volume Creation in
the multi-user case.

Listing 8.1. EPL rule in the multi-user scenario

@name(’Rule#1’) select * from pattern [every a = Event(name="
cinder-scheduler_create_volume") -> (timer:interval(
secondsToWait seconds) and not b=Event(name="cinder-
volume_create_volume", countEvent = a.countEvent))];

Every time the Esper Runtime observes an event <cinder,

scheduler_create_ volume> with its counter value, it waits for
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the observation of the event <cinder, volume_create_volume> with the
same counter value within a time window of secondsToWait seconds. If
this condition is not verified, the approach generates a failure detection
message.

The monitor synthesis is automatically performed once EPL rules are
compiled. The Esper Runtime acts like a container for EPL statements
which continuously executes the queries (expressed by the statements)
against the data arriving as inputs. For more detailed information on
Esper, we refer the reader to the official documentation [79].

The apply the runtime monitor in the context of OpenStack, we trace
all messages exchanged in the system by using Zipkin, which stores all
information in an online collector (see Appendix B). We then extract peri-
odically the events stored in the Zipkin collector and extract information
such as the invoked method, the service providing the API, the times-
tamp, and the status code of the REST API. The processed information
is then pushed into a queue, named Esper Inputs Waiting Queue, which
stores the flow of events. The events in the queue are sent as inputs to
the Esper Runtime, which compares the flow of events to every statement
compiled by the Esper Compiler (i.e., the monitoring rules): if that event
satisfies the condition of a rule, then the rule moves to the next condition,
otherwise, it raises an exception.



Conclusion

N
owadays, cloud computing systems are extensively used to run ser-
vices in different domains around the world. However, it is very

difficult to avoid software bugs when implementing the rich set of ser-
vices of cloud computing systems. As a result, many high-severity fail-
ures have been occurring in the cloud infrastructures of popular providers,
causing outages of several hours and the unrecoverable loss of user data.
Therefore, the high-reliability requirements of such systems are still too
far to reach. Fault injection represents a valid solution to assess the fault-
tolerance mechanisms and improve the overall reliability, but its adoption
in cloud systems still faces important issues.

This thesis dissertation addressed these open issues by proposing ef-
fective solutions to apply fault-injection in cloud systems and to better
understand the failure nature of these systems and design time monitoring
strategy, which is capable of improving the failure detection capabilities.

In Chapter 3, we introduced ProFIPy, a tool designed to be pro-
grammable and highly usable, by performing fault injection campaigns
with customized fault loads in Python software. The programmability of
the tool through a DSL was useful to easily and quickly customize fault in-
jections to comply with the fault classes requested by the company, based
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on their internal software requirements.

In Chapter 4, we used the tool proposed in Chapter 3 to empirically as-
sess the severity of failures caused by software bugs, through the deliberate
injection of software bugs. We applied this methodology in the context of
the OpenStack cloud management system. The experiments pointed out
that the behavior of OpenStack under failure is not amenable to automated
detection and recovery. In particular, the system often exhibits a non-fail-
stop behavior, in which it continues to execute despite inconsistencies in
the state of the virtual resources, without notifying the user about the fail-
ure, and without producing logs for aiding system operators. Moreover,
we found that the failures can spread across several sub-systems before
being notified and that they can cause persistent effects that are difficult
to recover. Finally, we point out areas for future research to mitigate these
issues, including run-time verification techniques to detect subtle failures
in a more timely fashion and to prevent persistent corruption.

In Chapter 5, we proposed a novel anomaly detection approach to
identify the failure symptoms and enhance the error propagation analysis.
The approach analyzes the execution traces of distributed systems under
fault injection, by comparing the executions to fault-free ones to point out
anomalies. To address the problem of non-determinism (which may lead to
“benign” anomalies not actually related to failures), we develop a sequence
comparison approach supported by a probabilistic model. The probabilis-
tic model is built from a group of several fault-free execution traces, in
order to reflect “benign” variations that normally occur in the distributed
system. Moreover, to make the approach applicable to black-box systems
and not reliant on intrusive instrumentation, we base our probabilistic
model only on externally observable traces of messages, which are ana-
lyzed as sequences of symbols using Variable-order Markov Models. We
evaluated the approach within the OpenStack cloud computing platform:
we found that the VMM limits the false positives compared to a non-
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probabilistic comparison of execution sequences, without significant loss
in terms of false negatives. Moreover, the VMM is lightweight enough to
be applicable with a low computational cost.

In Chapter 6, we presented a novel approach for discovering failure
modes in distributed systems, by combining fault injection, distributed
tracing, and unsupervised learning algorithms. By adopting a probabilis-
tic model (VMM), our approach can identify anomalies in noisy execution
traces by significantly reducing the false alarms without discarding true
anomalies. To further help the human analyst in analyzing failures, we
presented a novel technique that clusters fault injection experiments ac-
cording to classes of failure modes. The results showed that clustering can
achieve high accuracy under different conditions.

In Chapter 7, we presented a novel approach for analyzing failure data
from cloud systems, by using unsupervised learning algorithms and deep
learning to cluster the failure data into failure classes. The proposed ap-
proach relieves the human analyst from manually tuning the features to
achieve a good performance at clustering failure data. The approach lever-
ages an autoencoder for dimensionality reduction and parameter initializa-
tion, in combination with a clustering layer to optimize both the recon-
struction error and inter-cluster distance. The results show that the pro-
posed approach can achieve performance comparable to, or in some cases
even better than, the performance of manually-tuned clustering, which en-
tails a deep knowledge of the domain and a significant human effort. In
all cases, the proposed approach performs better than unsupervised clus-
tering when no feature engineering is made to the dataset. The approach
has been designed to be applied without any a priori information about
the types of features in the failure data, in order to minimize the manual
effort. This is especially important when the cloud system is still under
active development when multiple versions are updated, tested, and re-
leased at a quick pace. However, our approach cannot exceed the accuracy
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that can be achieved by leveraging the knowledge of the human analyst
about the system. Furthermore, since the approach uses deep neural net-
works, it requires high hardware requirements to keep computational times
acceptable, in particular when the amount of data to analyze is very large.

In Chapter 8, we proposed an approach to runtime monitoring in cloud
computing infrastructures that automatically infers a set of monitoring
rules from the fault-free executions of the system. We used the approach
in the OpenStack cloud computing platform, showing the feasibility of the
approach in a large and complex “off-the-shelf” distributed system. The
approach derived different rule types, which have been evaluated in the
context of fault-injection experiments by using a multi-tenant workload.
The analysis proved that the monitoring rules improve the fault tolerance
mechanisms of the system, providing high accuracy in the identification of
failures at runtime and decreasing the time to notify the failure. We also
implemented a prototype of a monitoring solution by using a specification
language to analyze the overhead introduced by the approach in a real user
scenario and showed that the approach can be applied in practice with low
effort and computational costs.

The limitations of this dissertation are represented by the threats to
external validity, i.e., the possibility to generalize the application of the
solutions and the results. Indeed, although all the solutions have been
extensively validated in OpenStack, which is not a trivial cloud platform,
it still represents a single usage scenario. The development of the tools
and the execution of the experiments also on other cloud computing plat-
forms is nearly prohibitive but, at the same time, we have to consider that
cloud systems are quickly moving towards container-based platforms (e.g.,
Kubernetes, Openshift, etc.), and the results obtained with heavy-weight
virtual machine-based platforms might not hold for container-based plat-
forms, which sometimes include self-healing mechanisms.

To mitigate these limitations, the dissertation focused on the three
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major OpenStack projects (i.e., Nova, Neutron, and Cinder), which are
large and diverse enough to get interesting insights on the application of the
proposed solutions across different projects and different languages (e.g.,
Python versus C and Java). The diversity of the projects was reflected by
differences in terms of project-specific patterns, due to the programming
idioms, API conventions, and process of the projects, and in terms of the
different messages exchanged in the services, i.e., the number, type, and
sources of non-determinism.

A further valuable aspect to take into consideration is that, although
cloud systems are very heterogeneous, the communication protocols tar-
geted in this dissertation and used to collect the events are independent
of OpenStack. Indeed, RPC is widely used in client-server computing and
is readily used to take advantage of cloud resources [15], and many cloud
providers use the REST architectural style for offering such resources [196].
The tracing system used in this thesis is widely adopted in different real-
world usage scenarios. Just to pinpoint some relevant examples, Zipkin is
used at Salesforce to perform distributed tracing for microservices [218] or
to gather timing data for all the disparate services involved in managing a
request with the Twitter API [241].

Since the anomaly detection approach, the failure mode analysis, and
the runtime monitoring solution depend on the observation of the events
exchanged in the system, we expect that the application of all these solu-
tions on a different cloud platform is feasible because of the maturity of the
distributed tracing system and the same communication protocols of the
cloud systems, although we acknowledge it may lead to different results.

At the end of the day, the solutions proposed, discussed, and validated
in this thesis contribute extensively and significantly to the topic of reli-
ability in cloud computing and can be considered of interest for both the
academic and industrial communities.
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Appendix A
Introduction to OpenStack

O
penStack is a popular cloud computing platform widespread among
public cloud providers and private users [187], and the basis of over

many commercial products [180, 187] OpenStack contains a large set of
components, each providing APIs to manage virtual resources, and consists
of ∼ 20 million LoC [184]. OpenStack embraces a modular architecture to
provide a set of core services that facilitates scalability and elasticity as
core design tenets, as shown in Figure A.1. This chapter briefly reviews
OpenStack components, their use cases, and security considerations.

A.1 Compute

OpenStack Compute service (nova) provides services to support the
management of virtual machine instances at scale, instances that host
multi-tiered applications, dev or test environments, “Big Data” crunching
Hadoop clusters, or high-performance computing. The Compute service fa-
cilitates this management through an abstraction layer that interfaces with
supported hypervisors (we address this later on in more detail). Compute
security is critical for an OpenStack deployment. Hardening techniques
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Figure A.1. OpenStack service overview.

should include support for strong instance isolation, secure communica-
tion between Compute sub-components, and resiliency of public-facing API
endpoints.

A.2 Object Storage

The OpenStack Object Storage service (swift) provides support for
storing and retrieving arbitrary data in the cloud. The Object Storage
service provides both a native API and an Amazon Web Services S3-
compatible API. The service provides a high degree of resiliency through
data replication and can handle petabytes of data. It is important to un-
derstand that object storage differs from traditional file system storage.
Object storage is best used for static data such as media files (MP3s, im-
ages, or videos), virtual machine images, and backup files. Object security
should focus on access control and encryption of data in transit and at rest.
Other concerns might relate to system abuse, illegal or malicious content
storage, and cross-authentication attack vectors.
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A.3 Block Storage

The OpenStack Block Storage service (cinder) provides persistent block
storage for compute instances. The Block Storage service is responsible for
managing the life-cycle of block devices, from the creation and attachment
of volumes to instances, to their release. Security considerations for block
storage are similar to that of object storage.

A.4 Shared File Systems

The Shared File Systems service (manila) provides a set of services
for managing shared file systems in a multi-tenant cloud environment,
similar to how OpenStack provides for block-based storage management
through the OpenStack Block Storage service project. With the Shared
File Systems service, you can create a remote file system, mount the file
system on your instances, and then read and write data from your instances
to and from your file system.

A.5 Networking

The OpenStack Networking service (neutron, previously called quan-
tum) provides various networking services to cloud users (tenants) such
as IP address management, DNS, DHCP, load balancing, and security
groups (network access rules, like firewall policies). This service provides a
framework for software-defined networking (SDN) that allows for pluggable
integration with various networking solutions. OpenStack Networking al-
lows cloud tenants to manage their guest network configurations. Secu-
rity concerns with the networking service include network traffic isolation,
availability, integrity, and confidentiality.
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A.6 Dashboard

The OpenStack Dashboard (horizon) provides a web-based interface for
both cloud administrators and cloud tenants. Using this interface, admin-
istrators and tenants can provision, manage, and monitor cloud resources.
The dashboard is commonly deployed in a public-facing manner with all
the usual security concerns of public web portals.

A.7 Identity Service

The OpenStack Identity service (keystone) is a shared service that
provides authentication and authorization services throughout the entire
cloud infrastructure. The Identity service has pluggable support for mul-
tiple forms of authentication. Security concerns with the Identity service
include trust in authentication, the management of authorization tokens,
and secure communication.

A.8 Image Service

The OpenStack Image service (glance) provides disk-image manage-
ment services, including image discovery, registration, and delivery services
to the Compute service, as needed. Trusted processes for managing the
life cycle of disk images are required, as are all the previously mentioned
issues with respect to data security.

A.9 Data Processing Service

The Data Processing service (sahara) provides a platform for the pro-
visioning, management, and usage of clusters running popular processing
frameworks. Security considerations for data processing should focus on
data privacy and secure communications to provisioned clusters.
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A.10 Other Supporting Technology

Messaging is used for internal communication between several Open-
Stack services. By default, OpenStack uses message queues based on the
AMQP. Like most OpenStack services, AMQP supports pluggable com-
ponents. Today the implementation back end could be RabbitMQ, Qpid,
or ZeroMQ. Because most management commands flow through the mes-
sage queuing system, message-queue security is a primary security concern
for any OpenStack deployment. Several of the components use databases
though it is not explicitly called out. Securing database access is yet an-
other security concern.
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Appendix B
Zipkin

Z ipkin is a distributed tracing system [274]. It helps gather timing
data needed to troubleshoot latency problems in service architec-

tures. Features include both the collection and lookup of this data.
Applications need to be “instrumented” to report trace data to Zipkin.

This usually means the configuration of a tracer or instrumentation library.
The most popular ways to report data to Zipkin are via HTTP or Kafka,
though many other options exist, such as Apache ActiveMQ, gRPC, and
RabbitMQ. The data served to the UI are stored in memory, or persistently
with a supported backend such as Apache Cassandra or Elasticsearch.

Tracers live in the applications and record timing and metadata about
operations that took place. They often instrument libraries, so that their
use is transparent to users. For example, an instrumented web server
records when it received a request and when it sent a response. The trace
data collected is called a Span. Tracing information is collected on each
host using the instrumented libraries and sent to Zipkin. When the host
requests another application, it passes a few tracing identifiers along with
the request to Zipkin in order to tie the data together into spans.

Instrumentation is written to be safe in production and has little over-

191



192 Appendix B. Zipkin

head. For this reason, they only propagate IDs in-band, to tell the receiver
there’s a trace in progress. Completed spans are reported to Zipkin out-
of-band, similar to how applications report metrics asynchronously. For
example, when an operation is being traced and it needs to make an out-
going HTTP request, a few headers are added to propagate IDs. Headers
are not used to send details such as the operation name.

The component in an instrumented app that sends data to Zipkin is
called a Reporter. Reporters send trace data via one of several transports
to Zipkin collectors, which persist trace data to storage. Later, storage is
queried by the API to provide data to the UI. Figure B.1 shows a diagram
describing this flow.

Figure B.1. Zipkin architecture.
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Identifiers are sent in-band and details are sent out-of-band to Zipkin.
In both cases, trace instrumentation is responsible for creating valid traces
and rendering them properly. For example, a tracer ensures parity between
the data it sends in-band (downstream) and out-of-band (async to Zipkin).

Trace instrumentation report spans asynchronously to prevent delays
or failures relating to the tracing system from delaying or breaking user
code. Spans sent by the instrumented library must be transported from
the services being traced to Zipkin collectors. There are three primary
transports: HTTP, Kafka, and Scribe.

There are 4 components that makeup Zipkin, briefly described in the
following.

� Zipkin Collector. Once the trace data arrives at the Zipkin collector
daemon, it is validated, stored, and indexed for lookups by the Zipkin
collector.

� Storage. Zipkin was initially built to store data on Cassandra since
Cassandra is scalable, has a flexible schema, and is heavily used within
Twitter. However, we made this component pluggable. In addition to
Cassandra, we natively support ElasticSearch and MySQL. Other back-
ends might be offered as third-party extensions.

� Zipkin Query Service. Once the data is stored and indexed, we need
a way to extract it. The query daemon provides a simple JSON API for
finding and retrieving traces. The primary consumer of this API is the
Web UI.

� Web UI. We created a GUI that presents a nice interface for viewing
traces. The web UI provides a method for viewing traces based on service,
time, and annotations. Note: there is no built-in authentication in the UI!
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Appendix C
Esper

E
sper is a language, compiler and runtime for complex event process-
ing (CEP) and streaming analytics [80]. It enables rapid develop-

ment of applications that process large volumes of incoming messages or
events, regardless of whether incoming messages are historical or real-time
in nature. Esper filters and analyzes events in various ways, and respond
to conditions of interest.

Esper offers a language by name Event Processing Language (EPL)
that implements and extends the SQL-standard and enables rich expres-
sions over events and time. The Esper compiler compiles EPL into byte
code that can be saved in jar package file format for distribution and exe-
cution. The Esper runtime loads and executes byte code produced by the
Esper compiler. The runtime provides a highly scalable, memory-efficient,
in-memory computing, minimal latency, real-time streaming-capable pro-
cessing engine for online and real-time arriving data and high-variety data,
as well as for historical event analysis.

The compiler and runtime are not limited to running on a single ma-
chine and run well inside a distributed stream processing framework. The
compiler and runtime make sense and can run in any architecture and any
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container, as they have no dependencies on external services and do not
require any particular threading model or model of how time advances and
do not require any external storage. EPL works well with event-time and
watermark-based time management.

The Esper runtime has an horizontal scale-out architecture for linear
horizontal scalability, elastic scaling, load distribution, balancing and re-
balancing, fault tolerance, dynamic discovery of nodes through seed nodes,
replication and multi-datacenter support. The design priorities for Esper
are: i) low latency and high throughput; ii) expressiveness, conciseness,
extensibility of the EPL language; iii) compliance to standards and best
practices; iv) light-weight in terms of memory, CPU and IO usage.

C.1 Event Processing Language

Event Processing Language is designed for Complex Event Processing
and Streaming Analytics. It is organized in modules that are compiled into
bytecode by the compiler. A module is an EPL source code unit and it is
composed of a set of statements. Optionally, a module can have a name
that is used in a similar way to a package name in a programming language.
The statements are continuous queries that analyze events and time: they
can be used to detect situations. Moreover, they can have listeners at-
tached to them so that predefined actions can be triggered every time an
event that matches the condition of the statement is met. A statement
has always a name that is used to identify it within a deployment.

A statement can declare different EPL-objects (Event types, Variables,
Named windows, Tables, Contexts, Expressions, and Scripts, Indexes) and
use different access modifiers (private, public, and protected) to control the
access to them. The Esper runtime can be seen as a statement container.
An actor (i.e., a user) can interact with Esper by compiling and deploying
modules containing statements, as shown in Figure C.1.
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Figure C.1. Esper Runtime

A basic select allows selecting all the arriving events of interest, as
follows.

Listing C.1. Basic select

select * from MyEvent

Upon the event of a new MyEvent event arriving, the runtime passes
the arriving event as it is to callbacks. After that, the runtime effectively
forgets the current event.

An aggregation function groups multiple events together to form a
single value. The following example counts the number of MyEvent events
arriving and passes the new count to callbacks. After that, the runtime
forgets the current event but remembers the current count.

Listing C.2. Basic Aggregation

select count(*) from MyEvent

A filter can be used to consider only a subset of the events MyEvent
that arrives (for example, only those events with the attribute temperature
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> 35).

Listing C.3. Event Filter

select * from MyEvent(temperature > 35)

A data window retains events for aggregation, match-recognize pat-
terns, subqueries, etc. It can be defined as a length window (keeps the last
N events) or a time window (keeps the last N seconds of events). Upon
the arrival of a new event, the runtime adds that event to the window but
also passes the same event to callbacks.

Listing C.4. Basic Data Window

select * from MyEvent#length(10)

This concept can be combined to obtain more expressive statements.
A basic EPL pattern matches when an event or multiple events occur
that match the definition of the pattern. A pattern can have five types of
operators: every, logical operators (and, or, not), the followed-by operator,
guards that cause termination of pattern subexpression (as timer:within),
observers that observe time events (timer:interval, timer:at).

Listing C.5. EPL Pattern

every a = A -> b=B(attribute1 = a.attribute1)

The operator followed-by (→) is used to express a temporal relationship
between events. The operator every is used to clarify that not only the
first event of a certain type has to be considered, but every one of them. A
more complete description of the EPL language can be found by consulting
the documentation [79].
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