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Notation and conventions

The term smooth means C∞. All the objects we will consider are assumed to be
smooth unless explicitly stated otherwise.

With Sn−1
r (x0) and Bn

r (x0) we denote, respectively, the Euclidean sphere and
open ball with radius r and center x0 in Rn. We simply write Sn−1 for the unit
sphere centered at the origin of Rn and we write |Sn−1 | for its volume.

The term manifold means a connected, differentiable manifold of class C∞,
without boundary and of dimension greater or equal than 3. The term manifold
with boundary means a connected manifold of class C∞ of dimension greater
or equal than 3, with (possibly nonconnected) boundary of class C∞. The term
submanifold without further qualifications means an embedded one without
boundary.

A (k, l)–tensor field T on a manifoldM is a smooth section of the vector bundle
T kl M and we write T ∈ Γ(T kl M).

If (M, g) is a Riemannian manifold, we usually denote with µ its canonical
measure.

We denote with geucl the standard Euclidean metric of Rn, while, if (M, g) is
a Riemannian manifold and

(
U, (xi, . . . , xn)

)
is a coordinate chart of M , then

ge is the Riemannian metric on U defined as ge = δijdx
i ⊗ dxj . The respective

geometric quantities of geucl or ge are labeled with the subscript e.

The Einstein convention of summing over the repeated indices is adopted in
the whole thesis.

In all the computations, C denotes a general constant which may vary from
line to line.





Introduction

Gravity is one of the four fundamental physical forces in our universe. Two major
gravitational theories have evolved that are still relevant today. One of them is the
Newtonian theory of gravity, the other is Albert Einstein’s theory of general relativ-
ity, dating back to the early years of the twentieth century. In modern language, the
first theory is often formulated in terms of a (Newtonian) potential U that satisfies
the Poisson equation ∆U = 4πGρ, relating such potential to the density of matter
ρ, via the gravitational constant G, in the Euclidean space R3. The general relativity
theory uses instead a very different approach, avoiding the concept of “force” and
unifying space and time into a curved Lorentzian 4–manifold (M,g) called space-
time. The Einstein equation

Ric− 1

2
Rg = kT with k =

8πG

c4

then relates the curvatures Ric and R of the Lorentzian manifold to an “energy–
momentum” or “matter” tensor field T, which is the analogue of the classical mass
density. Here, the constants G and c are the gravitational constant and the speed of
light, respectively. Then, the spacetime (M,g) models a gravitational system, while
the metric “represents” the gravitational field, which is influenced by the matter
distribution and determines the dynamics: the trajectories of the freely falling point
particles are (timelike) geodesics of (M,g).

Any “spacelike” hypersurface (M, g) (i.e. g, the metric induced by g on M , is
Riemannian) in a spacetime (M,g) satisfies the Einstein constraint equations

Rg − |K |2g +
(
trgK

)2
= 2kµ

divgK − d(trgK) = kJ

whereK is the second fundamental form induced by g onM , µ = T(n, n) is the local
energy density and J = T(n, ·)|Γ(TM) is the local momentum density, being n the (local)
future–directed unit normal to M . Indeed, these are simply the Gauss and Codazzi
equations for a hypersurface, keeping into account the information about the “am-
bient” curvature, contained in the Einstein equation.
A triple (M, g,K), where (M, g) is a 3–dimensional Riemannian manifold and K is
a symmetric (0, 2)–tensor field on M satisfying the Einstein constraint equations is
then usually called an initial data set. Moreover, (M, g,K) is said to be time–symmetric,
if the tensorK vanishes everywhere (hence the hypersurface is totally geodesic) and
that (M, g,K) satisfies the dominant energy condition, if µ ≥ |J |g everywhere (see [33]
for the physical interpretation of this relation).
For time–symmetric initial data sets, the local momentum density J is zero, hence
R = 16πµG/c4 and the dominant energy condition becomes equivalent to the re-
quirement the nonnegativity of the scalar curvature R of (M, g).

Isolated systems and static systems are extensively studied gravitational sys-
tems. Isolated systems are stars or black holes that do not interact with other sys-
tems and cannot be reached by “external” gravitational waves, while static systems
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are individual stellar bodies or groups of stars and black holes that are not changing
in time. Mathematically speaking, a static system is characterized by the existence
of a special timelike Killing vector field in the spacetime, while an isolated system
is modeled by the asymptotic “flatness” of its Lorenzian metric. More precisely,
when describing isolated gravitational systems, one is then interested in asymptoti-
cally flat spacetimes (with one end), that is, spacetimes that far from the zone where
the matter is concentrated approach the flat spacetime, i.e. the Minkowski space-
time [33, Section 5.1]. Indeed, from a physical point of view, one expects that when
such a system is observed from great distance, its gravitational field should resem-
ble the one of a point mass. Thus, the spacetime (M,g) modeling such system,
should be asymptotically close to the Schwarzschild solution of Einstein equation, or
simply Schwarzschild spacetime (see [33, Section 5.5]), modeling the gravitational field
around a spherically symmetric, non–rotating, massive object. A time–symmetric
initial data set (M, g, 0) in an asymptotically flat spacetime satisfying the dominant
energy condition is then asymptotically flat (see Definition 1.4.1) with nonnegative
scalar curvature.

This discussion explains the great relevance of the theory of asymptotically flat
Riemannian manifolds with nonnegative scalar curvature, which are the main ob-
jects of study in this thesis. Among them, the most famous example is the (exterior
spatial) 3–dimensional Schwarzschild manifold of mass m (MSch(m), gSch(m)), described
in Example 1.4.2. It is obtained by considering the {t = 0}–spacelike slice of the
Schwarzschild spacetime mentioned above.

Any one–ended asymptotically flat manifold has the remarkable property of be-
ing equipped with a well–defined notion of “total” mass, called ADM mass, intro-
duced in [3] by Arnowitt, Deser and Misner and denoted by mADM (see Defini-
tion 1.5.5). This coincides with the parameter m for the Schwarzschild manifolds
in Example 1.4.2. Schoen and Yau proved in 1979 the celebrated positive mass the-
orem [76], stating that the ADM mass of a 3–dimensional, complete, one–ended
asymptotically flat manifold (M, g) without boundary and with nonnegative scalar
curvature is nonnegative and it is zero if and only if (M, g) is isometric to (R3, gR3).
Later, Huisken and Ilmanen in [37] and Bray in [13] proved the Riemannian Penrose
inequality for a 3–dimensional, complete, one–ended asymptotically flat manifold
(M, g) with nonnegative scalar curvature and with a compact, connected, minimal
boundary ∂M , assuming that M contains no other closed minimal surfaces:

mADM ≥
√

Area(∂M)

16π
(RPI)

with equality if and only if (M, g) is isometric to (MSch(m), gSch(m)).
The positive mass theorem asserts that a nonnegative local mass density (R ≥ 0)

implies a nonnegative total mass (mADM ≥ 0). The proof of this natural physical
property is actually highly nontrivial: Schoen and Yau’s proof [76, 78] is based on
a contradiction argument related to the existence of stable minimal hypersurfaces.
Later, Witten [87] (see also [69]) gave an alternative proof in which the mass is di-
rectly expressed as the integral of a nonnegative quantity depending on an asymp-
totically constant harmonic spinor. Later, Lohkamp [53] explained how the positive
mass theorem is the consequence of the nonexistence of positive scalar curvature
metrics on the connected sum N#T of any closed 3–dimensional manifold N with a
3–dimensional torus T (which is a known result from [30,77]). In 2001, Huisken and
Ilmanen [37] proved the theorem as a consequence of their proof of the Riemannian
Penrose inequality, based on a weak version of the inverse mean curvature flow. In
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2018 Li [52] gave a proof using Ricci flow, while in 2019, Bray, Kazaras, Khuri and
Stern in [12] obtained another proof which makes use of asymptotically linear har-
monic functions. Concerning to the positive mass theorem in higher dimensions,
Witten’s proof works for all spin manifolds, while Schoen and Yau were able to ex-
tend it up to dimension 7 [77], by a dimension–reduction argument. For the dimen-
sions higher than 7, we refer the reader to the unpublished papers by Schoen and
Yau [79] and Lohkamp [54]. Finally, we mention that there have been also proofs of
various versions of the theorem for nonsmooth manifolds [44,45,55,61,63,80,81]. A
very nice survey of many of these results may be found in [43].

The Riemannian Penrose inequality (RPI) can be seen as a physically natural re-
finement of the positive mass theorem. Indeed, we can imagine the minimal bound-
ary as an event horizon hiding a black hole, which actually should give a contribu-
tion to the total mass. Moreover, it is expected that such contribution depends on
the area of the event horizon, as in the case of (MSch(m), gSch(m)), which represents
the simplest model of a vacuum “exterior region” of a black hole. Under this point
of view, inequality (RPI) tell us that the mass of our initial data set is at least equal
to the mass of the Schwarzschild manifold whose boundary has the same area of
∂M . The first proof of this fact was given by Huisken and Ilmanen in [37], making
rigorous an argument based on the inverse mean curvature flow, suggested by Ge-
roch [26] and Jang–Wald [38]. An alternative approach was followed by Bray [13],
by means of a conformal flow of metrics and the application of the positive mass
theorem. We mention that Bray was able to extend the inequality also to the case of
a disconnected boundary. Moreover, while the proof of Huisken–Ilmanen is essen-
tially 3–dimensional, the approach of Bray can be generalized to higher dimensions.
Indeed, using the same technique, Bray and Lee [14] proved the conclusion in any
dimension n ≤ 7, as in the work of Schoen and Yau on the positive mass theorem (the
obstruction to the generalization of the proof of Schoen and Yau to dimension larger
than 7 is given by the lack of regularity of the minimal hypersurfaces, if n > 7). We
remark that a proof of the Riemannian Penrose inequality in the case where the ini-
tial data set is not time–symmetric presents considerable difficulties. In [70], using a
heuristic argument, Penrose suggested what should be the natural form of inequal-
ity (RPI) for general initial data sets, however, only very partial results are known on
the validity of such statement. We mention that the proof of such Penrose conjecture
would give an indirect evidence of the validity of the cosmic censorship conjecture (we
refer the interested reader to the survey [59]).

The aim of our work is to obtain geometric inequalities involving the ADM mass
and the capacity of the boundary (if present), via monotonicity formulas holding
along the level sets of appropriate harmonic functions. An advantage of this ap-
proach is that the proofs are simpler and more direct.

In Chapter 2 we will consider a triple (M, g, u), satisfying the following condi-
tions,

(a) (M, g) is a complete, one–ended asymptotically flat manifold of dimension n,
n ≥ 3, with compact boundary ∂M ;

(b) u ∈ C∞(M) satisfies the system
uRic−∇du ≥ 0 inM

∆u = 0 inM

u = 0 on ∂M

u→ 1 at ∞

(⋆)
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Moreover, sometimes we will also consider condition

(c) the boundary ∂M is connected.

In dimension 3, if the assumptions (a) and (b) hold, the asymptotically flat space-
time (M,g), given by M := R ×

(
M \ {u = 0}

)
with the Lorentzian metric g :=

−u2dt⊗dt+g, satisfies the so called null convergence condition [85], i.e. Ric(V,V) ≥ 0
for every V ∈ Γ(TM) such that g(V,V) = 0, which is the curvature assumption in
Penrose’s celebrated singularity theorem [33, p. 263, Theorem 1]. Moreover, in the spe-
cial case that the first inequality in the above system is an equality, the asymptotically
flat spacetime (M,g) solves the vacuum Einstein equation, i.e. the Einstein equation
with T = 0 or equivalently Ric = 0 (we refer to [33] for further details about the
vacuum Einstein equation and the study of some famous solutions). Then, (M,g)
is a standard static spacetime having u as lapse function, which can be interpreted as a
function describing the “flowing of time t " with respect to a canonical observer in
the corresponding 4–dimensional Lorentzian manifold.

In dimension 3, a classic result of Bunting and Masood–ul–Alam [16] states that,
if (M, g, u) satisfy the assumptions (a) and (b), this latter with equality at the first line
of the system, then (M, g) is isometric to a spacelike slice

(
R3 \Bm

2
(0), (1+ m

2|x |)
4gR3

)
of a Schwarzschild spacetime with positive mass m. Assuming a strong enough
decay rate at infinity of the scalar curvature, we are able to extend this rigidity con-
clusion in Theorem 2.3.1 to all triples (M, g, u) satisfying the assumptions (a) and (b)
(without requiring the equality uRic−∇du = 0), in all the dimensions such that the
positive mass theorem holds.
Moreover, following similar ideas in [2], in the case that we cannot have such con-
clusion by the lack of a strong decay of the scalar curvature and assuming also con-
dition (c) above on the connectedness of the boundary ∂M (besides conditions (a)
and (b)), we will show that for a triple (M, g, u) there holds

C ≥ 1

2

(
Volume(∂M)

Volume(Sn−1)

)n−2
n−1

where C is the boundary capacity of ∂M (see Definition 1.32), with equality holding
if and only if (M, g) is isometric to the (exterior spatial) Schwarzschild manifold of
mass C. A key point of the proof is to show that the functions Fβ : [1,+∞) →
[0,+∞), defined by

Fβ(τ) = (1 + τ)β
n−1
n−2

∫
{
u=

√
τ−1
τ+1

}|∇u|
β+1 dσ ,

for every β > n−2
n−1 , are nonincreasing (Theorem 2.1.1). Then, the above inequality

follows by computing and comparing the limit of Fβ at +∞ and the value Fβ(1).
We underline that in our line of proof of this inequality and the same for all the

results in the thesis, a key technical point is dealing with the non regular level sets
(hence, with the set of the critical points of the harmonic functions we consider),
where the normal is possibly not everywhere well–defined and the derivatives of
the functions could not exist, thus making difficult showing the monotonicity of the
integrals on such level sets. Another delicate issue to deal with, not in this proof,
but fundamental in the results of Chapters 3 and 4, is the possible non–validity of
Gauss–Bonnet theorem applied to the level sets, which are not necessarily smooth
closed connected surfaces in presence of critical points.
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In Chapter 3, the main goal is to obtain a new proof of the positive mass inequal-
ity, Theorem 3.1.1. We briefly describe here the key steps.
Given a complete, one–ended asymptotically flat, 3–dimensional Riemannian mani-
fold (M, g) with nonnegative scalar curvature, Bray, Kazaras, Khuri and Stern in [12]
proved that, given any ε > 0, there exists another complete, asymptotically flat, 3–
dimensional Riemannian manifold (M, g), with nonnegative scalar curvature R ≥ 0,
satisfying the following properties,

(i) M is diffeomorphic to R3;

(ii) the ADM mass mADM of (M, g) satisfies |mADM −mADM | < ε;

(iii) there exists a coordinate chart (x1, x2, x3), such that, for |x| large enough, there
holds

g =

(
1 +

mADM

2|x|

)4
δij dx

i ⊗ dxj .

Hence, by this result, we can clearly limit ourselves to prove the positive mass
inequality for complete, asymptotically flat, 3–dimensional Riemannian manifolds
(M, g) with nonnegative scalar curvature and satisfying conditions (i) and (iii).
We then consider an “appropriate” function u ∈ C∞(M \{o}), solution of the system{

∆u = 4πδo inM

u→ 1 at ∞

for some point o ∈M (see Chapter 2 for a discussion of the existence of such function
u and its properties). Condition (i) implies that the function F : (0,+∞) → R,
defined as

F (t) = 4πt − t2
∫

{u=1− 1
t
}

|∇u|H dσ + t3
∫

{u=1− 1
t
}

|∇u|2 dσ ,

is nondecreasing, for t in the intervals such that 1− 1/t is a regular value of u (The-
orem 3.1.2). Here, H is the mean curvature of the Riemannian (connected or un-
connected) smooth surface {u = 1 − 1/t} \ Crit(u), where Crit(u) is the set of the
critical points of u, computed with respect to the ∞–pointing unit normal vector
field ν = ∇u/|∇u | and σ is the 2–dimensional Hausdorff measure of (M, g). The
topological assumption thatM is diffeomorphic to R3 (actually, H2(M ;Z) = 0 is suf-
ficient) and the harmonicity guarantee the connectedness of the regular level sets of
u, then the monotonicity is a consequence of Gauss–Bonnet theorem. By means of
condition (iii), a careful description of the behavior of u at infinity leads to the com-
putation of the limit of F (t) as t → +∞, then the comparison of such limit with the
limit as t → 0, which follows by the monotonicity (taking care of the critical values
by means of Sard’s theorem) implies the positive mass inequality, as

lim
t→0+

F (t) = 0 and lim
t→+∞

F (t) = 8πmADM .

In his proof of the Riemannian Penrose inequality (RPI), Bray in [13] also ob-
tained the sharp inequality mADM ≥ C, comparing the ADM mass with the bound-
ary capacity C of ∂M , mentioned above (see Definition 1.32). Such inequality was
later applied by Miao in [64] to generalize the previously discussed Bunting and
Masood–ul–Alam’s rigidity theorem to the triples (M, g, u) with ∂M only minimal
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(that is, with zero mean curvature), not requiring that u = 0 on the boundary in
the system (⋆), indeed, such condition and the equality in the first line imply that
∂M is totally geodesic (that is, its second fundamental form is zero). Then, Bray
and Miao asked in [15] whether a similar ADM mass/capacity inequality holds in
general, for every complete, one–ended asymptotically flat, three–dimensional Rie-
mannian manifold (M, g) with R ≥ 0 and with a compact and connected boundary,
not necessarily minimal (that is, ∂M does not have zero mean curvature), in order
to get further rigidity results. In such paper, they actually were able to obtain it
under the assumption that ∂M has nonnegative Hawking mass (another concept of
mass, actually local, see [26, 37] for details) and also derived a sharp upper bound
for the capacity of the boundary in terms of its area and its Willmore energy, given
by the functional

∫
∂M H2 dσ. Anyway, we underline that topological assumptions

on M are necessary for the conclusion. Xiao [88] then showed the analogues of Bray
and Miao’s inequalities, replacing the capacity with the p–harmonic capacity, with
p ∈ (0, 3). Finally, we mention that another positive answer to the question of Bray
and Miao was given (in all dimensions such that the positive mass theorem holds)
in the paper by Hirsch and Miao [35], under different hypotheses on the boundary.

In Chapter 4 we reprove with our methods the upper bound on the boundary ca-
pacity obtained by Bray and Miao in [15] and Bray’s ADM mass/capacity inequality
in [13], underlining that the hypotheses in our case and the ones in such papers are
actually independent.
Precisely, we will show that in a 3–dimensional, complete, one–ended asymptoti-
cally flat manifold (M, g) with a minimal, compact and connected boundary, non-
negative scalar curvature and vanishing first Betti number, there hold

C ≤
√

Area(∂M)

16π
and mADM ≥ C,

where C > 0 is the boundary capacity of ∂M (Theorem 4.2.2). Moreover, if the
equality holds in one of these two inequalities, then (M, g) is isometric to the (exte-
rior spatial) Schwarzschild manifold of mass C (Example 1.4.2).
About the second inequality, we actually obtain the following quantitative estimate

mADM − C ≥ C
4π

[
π −

∫
∂M

|∇u|2 dσ
]
≥ 0

where the function u ∈ C∞(M) is the solution of the Dirichlet problem
∆u = 0 inM

u = 0 on ∂M

u→ 1 at ∞

and if the equality holds in the first or second inequality, then (M, g) is isometric to
the (exterior spatial) Schwarzschild manifold of mass C (see Section 4.1).
To show this, we will consider in this case two functions G, Ĝ : [C/2,+∞) → R
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defined as follows,

G(t) = −πC
2

t
+
t

4

(
1 +

C
2t

)4 ∫
Σt

|∇u|2 dσ ,

Ĝ(t) = 4πt+
t3

C2

(
1 +

C
2t

)3(
1− 3C

2t

)∫
Σt

|∇u|2 dσ − t2

C

(
1 +

C
2t

)2 ∫
Σt

|∇u|H dσ ,

where Σt denotes the level set
{
u = (1 − C

2t)/(1 + C
2t)
}

, H is the mean curvature of
Σt \ Crit(u) with respect to the ∞–pointing unit normal vector field ν = ∇u/|∇u |
(being Crit(u) the set of the critical points of u) and σ is the 2–dimensional Hausdorff
measure of (M, g).
Similarly to the case of the positive mass inequality, we get that the function Ĝ is
nondecreasing for t in the intervals such that (1 − C

2t)/(1 + C
2t) is a regular value of

u and this in turn implies that the same for the function G. Then, the computation
and the consequent comparison of the limits at infinity with the values at t = C/2 of
the functions Ĝ and G, prove the above inequalities.

At the moment we are not able to improve the results of Chapter 4 in order to
drop the assumption of the minimality of the boundary, as in the question/conjecture
of Bray and Miao in [15].

A natural future development of our work is extending our computations and
results to appropriate p–harmonic functions, in order to use them for monotonic-
ity arguments, having in mind as a main goal a simpler proof of the Riemannian
Penrose inequality (RPI). Two immediate and clear obstacles to this line of research
are dealing with the structure of the set of the critical values (which, for instance, a
priori could have positive Lebesgue measure, due to the possible “bad behavior” of
p–harmonic functions) and obtaining a careful description of the decay at infinity of
these functions. The first point is related to showing the monotonicity of the appro-
priate quantities along the level sets, the second one is a key step in getting the limit
of such quantities, as the level sets go to infinity.





Chapter 1

Preliminaries

In this chapter we introduce some basic notations and results about Riemannian
manifolds and their submanifolds. Then, we discuss the behavior “at infinity” of
some harmonic functions and of some relevant quantities in complete asymptoti-
cally flat manifolds with one end. Finally, we discuss the so called ADM mass of an
asymptotically flat manifold, after the names of R. Arnowitt, S. Deser and C. W. Mis-
ner, who introduced such concept in [3].

1.1 Riemannian manifolds and curvature

A Riemannian manifold (M, g) of dimension n is an n–dimensional smooth mani-
fold M with a positive definite and symmetric (0, 2)–tensor field g.
By means of such metric, we can define the lengths of the curves on and the distance
on M as the infimum of the length of the curves joining two points, giving M a met-
ric space structure (compatible with the original topology).
The Levi–Civita connection ∇, symmetric and compatible with the Riemannian met-
ric g is uniquely defined, allowing a “differential calculus” for tensor fields and other
geometric objects onM , whose “deviation” from the usual differential calculus in Rn
is “measured” by the Riemann curvature tensor.
Finally, one has a “natural” canonical measure µ from a given Riemannian metric
(see [29, Section 3.4] and [84, Chapter 12]), hence we have a well defined notion of
integral of a real function on M .
For sake of completeness, we are going to briefly recall these notions, however we
refer the reader to [47, 72, 74] for a detailed treatment (see [68] for the Lorentzian
setting and [46] as a general reference of differential geometry).

Taking a local chart
(
U, (x1, . . . , xn)

)
of M , we have the coordinate vector fields

and the coordinate 1–forms, respectively given by { ∂
∂xi

} and {dxj}, which in each
p ∈ U give a basis of TpM and T ∗

pM .
Then a (local or global) vector field X and and a (local or global) 1–form ω can be
written in a coordinate chart asX = Xi ∂

∂xi
and ω = ωjdx

j respectively and a general
(k, l)–tensor field T as

T = T i1...ik
j1...jl

dxj
1 ⊗ · · · ⊗ dxj

l ⊗ ∂

∂xi1
⊗ · · · ⊗ ∂

∂xik
.

The metric g of M extended to tensors (of the same type) is given by

g(T, S) = gi1s1 . . . gikskg
j1z1 . . . gjlzlT i1...ikj1...jl

Ss1...skz1...zl
,
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where (gij) is the matrix of the coefficients of g in local coordinates and (gij) is its
inverse. Clearly, the norm of a tensor is then

|T | =
√
g(T, T ) .

We can associate to each X ∈ Γ(TM) the 1–form X♭ on M satisfying

X♭(Y ) = g(X,Y ), X♭ = gijX
jdxi

in local coordinates. Similarly, we can also associate to each 1–form ω the vector field
ω♯ on M satisfying

ω(Y ) = g(ω♯, Y ), ω♯ = gijωj
∂

∂xi

in local coordinates. In particular, the gradient ∇f of a smooth function f is defined
as ∇f = df ♯.

A subset E ⊆ M is said measurable if φ(E ∩ U) ⊆ Rn is Lebesgue–measurable
for every chart (U,φ) of M . The family M(M) of the measurable sets of M is a σ–
algebra which clearly contains the Borel sets B(M). Then, one can define uniquely
the canonical (or volume) measure µ on the measurable space (M,M(M)) by imposing
in any chart (U,φ) that dµ =

√
det gij dL, where L is the Lebesgue measure in U .

The measure µ is then a complete and regular, Radon measure, that is, finite on the
compact subsets ofM (and positive on any open subset), moreover, we mention that
the measures µ and Hn, the Hausdorff n–dimensional measure, coincide.

If Σ is a k–dimensional Riemannian submanifold of (M, g), the canonical mea-
sure σ on Σ with the induced Riemannian metric, the k–dimensional Hausdorff mea-
sure on (Σ, dΣ), where dΣ the distance function of Σ, the k–dimensional Hausdorff
measure on (Σ, dM ), where dM is the distance function of M (restricted to Σ) and
finally Hk

M Σ, the k–dimensional Hausdorff measure of M restricted to Σ, all coin-
cide.

If f : M → N is a function of class Ck between Riemannian manifolds with
k ≥ max{1,dimM − dimN + 1}, then the set of the critical values of f has zero
measure zero in N . This is known as Sard’s theorem.

Another useful result is the so called coarea formula, it says that if f ∈ Cn(M),
where n is the dimension of M , then for any measurable function u :M → R, which
is everywhere nonnegative or it is in L1(M), one has∫

M

u|∇f | dµ =

∫
R

dt

∫
f−1(t)

u dσ , (1.1)

where σ is the canonical measure of f−1(t) which is a hypersurface for almost every
t ∈ R (by Sard’s theorem). We refer the reader to [67, 82] for a detailed discussion of
the coarea formula.

The Levi–Civita connection is the unique linear connection ∇ : (X,Y ) ∈ Γ(TM)×
Γ(TM) 7→ ∇XY ∈ Γ(TM) which is symmetric, i.e.

∇XY −∇YX = [X,Y ] ,

and compatible with the metric g, i.e.

Xg(Y, Z) = g (∇XY, Z) + g (Y,∇XZ) .
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Here [·, ·] denotes the so called Lie bracket, i.e. [X,Y ] is the vector field given by
XY − Y X for every X,Y ∈ Γ(TM). Taking a local chart

(
U, (x1, . . . , xn)

)
of M , then

the Christoffel symbols Γkij are the smooth functions defined on U by

∇ ∂

∂xi

∂

∂xj
= Γkij

∂

∂xk
.

They satisfy the following conditions

Γkij = Γkji ,

∂gij
∂xk

= Γlkiglj + Γlkj gli

for every i, j, k ∈ {1, . . . , n}, by virtue of the symmetry and compatibility of ∇ with
respect to g, respectively. By a straightforward computation, it follows that

Γlij =
1

2
glk

(
∂gkj
∂xi

+
∂gik
∂xj

− ∂gij
∂xk

)
.

Then, the covariant derivative of a vector field X with respect to Y ∈ Γ(TM) can be
written as

∇XY = Xi

(
∂Y k

∂xi
+ Y jΓkij

)
∂

∂xk
.

One can extend uniquely the Levi–Civita connection to every tensor bundle (by
defining it in a natural way on C∞(M) and by imposing the Leibniz rule and the
commutativity with any contraction). Then, in local coordinates the covariant deriva-
tive of a tensor T ∈ Γ(T kl M) with respect to X ∈ Γ(TM) has coefficients

(
∇XT

)i1...ir
j1...js

= Xk

[
∂

∂xk
T i1...irj1...js

−
s∑

p=1

Γ
lp
kjp
T i1...irj1...jp−1lpjp+1...js

+
r∑
q=1

Γ
iq
klq
T
i1...iq−1lqiq+1...ir
j1...js

]
.

It follows that ∇T is a (k, l+1)–tensor field for every T ∈ Γ(T kl M) and we will write
∇mT for the m–th iterated covariant derivative of T .
In particular, the Hessian of a smooth function f is ∇2f = ∇df and it is a symmetric
(0, 2)–tensor field.

The divergence divX of a vector field X is defined by

divX = tr(Z 7→ ∇ZX) = ∇iX
i =

∂X i

∂xi
+ ΓiijX

j =
1√

det gkl
∂i

(√
det gklX

i
)
.

In particular, the divergence of the gradient of a smooth function f is called Laplacian
of f and is denoted by ∆f .
If X is a vector field with compact support on a Riemannian manifold (M, g) with
or without boundary, then the following divergence theorem holds

∫
M

divX dµ =


0 if M is without boundary∫
∂M

g(X, ν) dσ if M has boundary

where in the second case, ν is the outward–pointing unit normal vector field along
∂M , µ and σ are the canonical measures of the Riemannian manifolds (M, g) and
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(∂M, ι∗∂Mg), respectively (being ι∂M the inclusion map).

Remark 1.1.1. A useful application of the divergence theorem is the following for-
mula/argument, that we will use repeatedly in the whole thesis.
Given a Riemannian manifold (M, g) with or without boundary and a function f ∈
C∞(M), having the boundary ∂M as a level set in the case ∂M 6= Ø, if s, S ∈ R are
regular values of f such that s < S and {s ≤ f ≤ S} is compact, then {s ≤ f ≤ S}
is a Riemannian submanifold with boundary, given by {f = s} ∪ {f = S} and for
every X vector field on {s ≤ f ≤ S} we have∫

{s<f<S}

divX dµ =

∫
{s≤f≤S}

divX dµ =

∫
{f=S}

g(X, ν) dσ +

∫
{f=s}

g(X, ν) dσ

=

∫
{f=S}

g

(
X,

∇f
|∇f |

)
dσ −

∫
{f=s}

g

(
X,

∇f
|∇f |

)
dσ , (1.2)

where the first equality follows since the two level sets have zero µ–measure, the
second one by applying the divergence theorem to the vector field X on each con-
nected component of {s ≤ f ≤ S} and the last one by observing that the outward–
pointing unit normal vector field along {f = S} is ∇f/|∇f | while along {f = s}
is −∇f/|∇f |, being s and S regular values of f . In several occasions, with a small
abuse of language we will talk from now on of “applying the divergence theorem to
the vector field X on {s < f < S}”, in referring to formula (1.2).

The notion of curvature is given by the Riemann operator, which is the (1, 3)–
tensor field, given by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

for every X,Y, Z ∈ Γ(TM). In a local chart
(
U, (x1, . . . , xn)

)
, the smooth functions

Rlijk on U , defined by

R
( ∂

∂xi
,
∂

∂xj

) ∂

∂xk
= Rlijk

∂

∂xl
,

can be expressed in terms of the Christoffel symbols as

Rlijk =
∂Γljk
∂xi

−
∂Γlik
∂xj

+ ΓhjkΓ
l
ih − ΓhikΓ

l
jh.

From the operator of Riemann we can obtain the (0, 4)–tensor field, called curvature
(or Riemann) tensor, defined by

Riem (X,Y, Z,W ) = g (R (X,Y )Z,W )

for every X,Y, Z,W ∈ Γ(TM). In a local chart
(
U, (x1, . . . , xn)

)
, one has

Rijkh = Riem(
∂

∂xi
,
∂

∂xj
,
∂

∂xk
,
∂

∂xl
)

and
Rijkh = glhR

l
ijk.
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The Riemann tensor satisfies the following well known symmetries/properties,

Riem (X,Y, Z,W ) = −Riem (Y,X,Z,W ) ,

Riem (X,Y, Z,W ) = −Riem (X,Y,W,Z) ,

Riem (X,Y, Z,W ) = Riem (Z,W,X, Y ) ,

and

Riem (X,Y, Z,W ) + Riem (Y, Z,X,W ) + Riem (Z,X, Y,W ) = 0 ,
(Bianchi’s first identity)

∇XRiem(Y, Z,W, T ) +∇YRiem(Z,X,W, T ) +∇ZRiem(X,Y,W, T ) = 0 .
(Bianchi’s second identity)

for every X,Y, Z,W, T ∈ Γ(TM).
The knowledge of the curvature tensor is equivalent of the knowledge of the sec-
tional curvatures of all 2–planes contained in every tangent space, where the sectional
curvature of a 2–plane π ⊆ TpM with basis {v, w}, is defined by

Secp(π) = Secp (v, w) =
Riemp (v, w,w, v)

‖v‖2p‖w‖2p − g2p(v, w)
.

This definition is well–posed since it is independent of the considered basis of π.
We then have other notions of curvature, one of them is the Ricci tensor, which is the
symmetric (0, 2)–tensor field obtained by tanking the “partial” trace (with respect to
g) of the operator of Riemann, namely

Ric (X,Y ) = tr (Z 7→ R(Z,X)Y )

for every X,Y ∈ Γ(TM). In a local chart
(
U, (x1, . . . , xn)

)
, the smooth functions

Ricij on U , defined as

Ricij = Ric
( ∂

∂xi
,
∂

∂xj

)
,

are given by
Ricij = Rkkij = gklRiklj .

From the Ricci tensor we can obtain, by taking its trace, the scalar curvature,

R(p) = tr(Ricp)

which is then the smooth function on M , given in a local chart
(
U, (x1, . . . , xn)

)
by

R = Ricii = gijRicij = gijgklRiklj .

If e1, . . . , en ∈ Tp(M) is an orthonormal basis, we have

Ricp (v, w) = Rp(ei, v, w, ei) = Rp(v, ei, ei, w) ,

R = Ricp(ei, ei) = Rp(ei, ej , ej , ei) = 2
∑
i<j

Secp (ei, ej) .

In particular, it follows that, when n = 2,R = 2K, whereK is the sectional curvature
of (M, g) (also called Gauss curvature). A simple relationship between Gauss curva-
ture and topology is provided by the famous Gauss–Bonnet theorem (see [71, Section
4.3]).
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Theorem 1.1.2 (Gauss–Bonnet Theorem). For a closed surface M (compact and without
boundary), we have ∫

M

K dµ = 2πχ(M) ,

where K is the Gauss curvature and χ(M) is the Euler characteristic of M , which is a
topological invariant.

Since every connected closed surface is diffeomorphic to a sphere, or to a con-
nected sum of tori, or to a connected sum of projective planes (see [9, 60]) and

χ(M) =


2 if M is diffeomorphic to S2

2− 2n if M is diffeomorphic to the connected sum of n tori
2− n if M is diffeomorphic to the connected sum of n projective planes

one can deduce 2πχ(M) ≤ 4π, for every connected closed surface. This inequality
will play a key role in the monotonicity formulas in Chapters 3 and 4 and the lack
of an analogue of Gauss–Bonnet theorem is the reason why they do not hold in all
dimensions.

1.2 The fundamental equations of submanifolds

Let Σ be an k–dimensional Riemannian submanifold of a n–dimensional Rieman-
nian manifold (M, g). The codimension of Σ is the difference dimM − dimΣ, i.e.
n − k and the submanifolds of codimension 1 are called hypersurfaces. The Rieman-
nian metric induced by (M, g) on Σ is denoted by gΣ, though we use the notation
g(X,Y ) for all vector fields X,Y along Σ as we identify TpΣ with its image in TpM
via the differential of the inclusion map in each point p ∈ Σ. Moreover, we de-
note covariant derivatives and curvatures associated with (M, g) in the usual way
(∇, R, Riem, etc.) and write (∇Σ, RΣ, RiemΣ, etc.) for those associated with (Σ, gΣ).
Let TΣ and NΣ be the tangent bundle and the normal bundle of Σ, respectively. At
each point p ∈ Σ, the “ambient” tangent space TpM splits as an orthogonal direct
sum of TpΣ and NpΣ, i.e. TpM = TpΣ⊕NpΣ. Therefore, we indicate with v

⊥

∈ TpΣ
and v⊥ ∈ NpΣ the tangential projection and the normal projection of every v ∈ TpM ,
respectively. For all X,Y ∈ Γ(TΣ), we recall that ∇XY is a well–defined vector field
along Σ (as for every p ∈ Σ the value of ∇XY at p depends only on the values of Y
along some curve γ with γ′(0) = Xp) and consequently

∇XY =
(
∇XY

) ⊥

+
(
∇XY

)⊥
,

then, considering

∇

⊥

: (X,Y ) ∈ Γ(TΣ)× Γ(TΣ) →
(
∇XY

) ⊥

∈ Γ(TΣ)

Π : (X,Y ) ∈ Γ(TΣ)× Γ(TΣ) → −
(
∇XY

)⊥ ∈ Γ(NΣ)

we get that ∇

⊥

is a linear connection, more precisely, it coincides with ∇Σ (by the
uniqueness of the Levi–Civita connection), thus

∇XY = ∇Σ
XY −Π(X,Y ) .
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The bilinear map Π is called second fundamental form of Σ and it is symmetric, i.e
Π(X,Y ) = Π(Y,X) for every X,Y ∈ Γ(TΣ), since ∇ and ∇Σ are torsion–free con-
nections. Likewise, for every X ∈ Γ(TΣ) and for each ξ ∈ Γ(NΣ), there holds

∇Xξ =
(
∇Xξ

) ⊥

+
(
∇Xξ

)⊥
,

then, introducing

∇⊥ : (X, ξ) ∈ Γ(TΣ)× Γ(NΣ) →
(
∇Xξ

)⊥ ∈ Γ(NΣ)

Sξ : X ∈ Γ(TΣ) →
(
∇Xξ

) ⊥

∈ Γ(TΣ)

for every ξ ∈ Γ(NΣ), ∇⊥ is a connection on NΣ, compatible with g in the sense that

Xg(ξ, η) = g(∇⊥
Xξ, η) + g(ξ,∇⊥

Xη)

for every X ∈ Γ(TΣ) and for all ξ, η ∈ Γ(NΣ), then there holds

∇Xξ = SξX +∇⊥
Xξ .

The operator ∇⊥ is called normal connection, while Sξ is known as shape operator of Σ
in the direction ξ. The second fundamental form and the shape operator are related
as follows,

g(SξX,Y ) = g
(
Π(X,Y ), ξ

)
for all X,Y ∈ Γ(TΣ) and for every ξ ∈ Γ(NΣ), therefore Sξ is self–adjoint.
We mention that the sign of the second fundamental form and of the shape oper-
ator can differ from our choice in the literature. In a way, they “measure” how a
submanifold “curves inside” the ambient space.

Finally, we introduce the other fundamental equations for submanifolds in Rie-
mannian geometry; the first one relates the Riemann tensors ofM and Σ through the
second fundamental form, the others describe the normal projection of the Rieman-
nian operator on particular triples in terms of the second fundamental form and of
its derivatives and of the shape operator.
For all vector fields X,Y, Z,W ∈ Γ(TΣ) and ξ, η ∈ Γ(NΣ), the following equations
hold,

Gauss equation:

Riem(X,Y, Z,W ) = RiemΣ(X,Y, Z,W )+g
(
Π(X,Z),Π(Y,W )

)
−g
(
Π(X,W ),Π(Y, Z)

)
,

Codazzi equation:(
R(X,Y )Z

)⊥
=∇⊥

YΠ
(
X,Z)−Π(∇Σ

YX,Z)−Π(X,∇Σ
Y Z)

−∇⊥
XΠ
(
Y, Z) + Π(∇Σ

XY, Z) + Π(Y,∇Σ
XZ) ,

Ricci equation: (
R(X,Y )ξ

)⊥
= R⊥(X,Y )ξ +Π(SξX,Y )−Π(SξY,X) .

Here, R⊥ is the curvature tensor of the normal bundle of M defined by

R⊥(X,Y )ξ = ∇⊥
X∇⊥

Y ξ −∇⊥
Y∇⊥

Xξ −∇⊥
[X,Y ]ξ .
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We notice that, being any immersed submanifold locally embedded, all that has
been said so far can be extended to only–immersed (possibly not embedded) sub-
manifolds.

1.3 Riemannian hypersurfaces

Let Σ be a Riemannian hypersurface of a n–dimensional Riemannian manifold (M, g).
In this case, the normal bundle NΣ of Σ is a vector bundle of rank 1 on Σ, therefore
locally around each point of Σ we can define, up to a sign, a unit local normal vector
field ν along Σ. If there exists a global choice of the unit normal vector field ν, i.e.
Σ has a trivial normal bundle and it is called two–sided. If M is orientable, then Σ is
two–sided if and only if Σ is orientable.
Unless we explicitly consider a neighborhood of a point with a unit normal field, we
assume that Σ is two–sided with a global unit normal vector field ν. Then, ∇Xν is a
tangent vector field on Σ, namely

∇Xν =
(
∇Xν

) ⊥

= Sν(X)

for every X ∈ Γ(TΣ). Moreover, the symmetric (0, 2)–tensor h on Σ, called (scalar)
second fundamental form of Σ with respect to ν, given by

h(X,Y ) = g(∇Xν, Y ) = g(Sν(X), Y ) = −g(ν,∇XY ) , (1.3)

for every X,Y ∈ Γ(TΣ), determines uniquely the second fundamental form Π. In-
deed,

Π(X,Y ) = g(Π(X,Y ), ν)ν = g(Sν(X), Y ) = h(X,Y )ν .

From now on we will denote Sν by S for a chosen unit normal vector field ν and
the outward unit normal field will be our default choice when Σ is the boundary of a
bounded domain.
The mean curvature H of Σ is the trace (with the induced metric) of the second funda-
mental form h, or equivalently of the shape operator S. If {eα}n−1

α=1 is an orthonormal
basis of TpΣ, for p ∈ Σ, then

Hp = hp(eα, eα) = gp(∇eαν, eα) .

In particular, Hp is equal to the sum of the principal curvatures of Σ at p, which are the
eigenvalues of Sp.

If U is a neighborhood of p in M and f is a C∞(U)–function without critical
points, such that Σ ∩ U = f−1(c), then the second fundamental form and the mean
curvature with respect to the unit normal vector field ν = ∇f / |∇f | are given re-
spectively by

h(X,Y ) =
∇df(X,Y )

|∇f |
, (1.4)

H = div

(
∇f
|∇f |

)
=

∆f

|∇f |
− ∇df(∇f,∇f)

|∇f |3
, (1.5)

for every X,Y ∈ Γ(TΣ). It is useful to notice that in a small enough neighborhood
of each point of a hypersurface, there always exists a function f as above.

If Hp = 0 for all p ∈ Σ, then Σ is called minimal.



1.3. Riemannian hypersurfaces 19

Concerning the basic equations of the submanifolds, in the codimension one case
many of the previous formula simplifies. In particular

∇XY = ∇Σ
XY − h(X,Y )ν , (Gauss formula for a hypersurface)

∇Xν = S(X) . (Weingarten formula for a hypersurface)

The Gauss equation becomes

Riem(X,Y, Z,W ) = RiemΣ(X,Y, Z,W ) + h(X,Z)h(Y,W )− h(X,W )h(Y, Z) ,

from which we obtain, after taking traces,

R = RΣ + 2Ric(ν, ν) + |h|2 −H2 , (1.6)

known as traced Gauss equation. Indeed, fixed an orthonormal basis {eα}n−1
α=1 of TpΣ

for p ∈ Σ, we have

R = Riem(eα, eβ , eβ , eα) + 2Riem(eα, ν, ν, eα)

= RiemΣ(eα, eβ , eβ , eα) + h(eα, eβ)h(eα, eβ)− h(eα, eα)h(eβ , eβ) + 2Ric(ν, ν)

= RiemΣ(eα, eβ , eβ , eα) + |h|2 −H2 + 2Ric(ν, ν) ,

where the Gauss equation implies the second equality.
The Codazzi equation gets the form

R(X,Y, Z, ν) =
(
∇Σ
Y h
)
(X,Z)−

(
∇Σ
Xh
)
(Y, Z) ,

while the Ricci equation is trivial.
Let (M, g) be a Riemannian manifold and Σ be a two-sided Riemannian hyper-

surface of M with unit normal ν. We call tangential gradient ∇⊤f(p) of a function of
class C1 defined in a neighborhood U in M of a point p ∈ Σ, the projection of ∇f(p)
on TpΣ, i.e. (∇f(p))⊤. It turns out that ∇⊤f depends only on the restriction of f to
Σ ∩ U and coincides with ∇Σf |Σ.
We define the tangential divergence of a vector field X along Σ as

div⊤X = g(∇EαX,Eα)

where {Eα} is a local orthonormal frame of Σ, which coincides with the divergence
(relative to Σ) of X , if X is a vector field on the hypersurface. It follows

∆Σf =div⊤∇⊤f = g(∇Eα∇⊤f,Eα)

= g(∇Eα∇f,Eα)− g(∇f, ν)g(∇Eαν,Eα)

=∆f −∇df(ν, ν)− g(∇f, ν)g(S(Eα), Eα)
=∆f −∇df(ν, ν)− g(∇f, ν)H ,

where ∆Σ is the Laplacian of Σ with the induced metric.
Moreover, arguing similarly,

div⊤X = div⊤X

⊥

+div⊤X⊥ = div⊤X

⊥

+ g(X, ν) g(∇Eαν,Eα) = div⊤X

⊥

+ g(X, ν)H .
(1.7)
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This last equality and the divergence theorem imply the tangential divergence formula∫
Σ

div⊤X dσ =

∫
Σ

g(X, ν)H dσ ,

for every vector field X along Σ with compact support.
We now discuss the first variation of the volume measure and mean curvature of

a hypersurface. These computations will be used in the following chapters.
Let Σ be a two–sided Riemannian hypersurface of a Riemannian manifold (M, g)
with unit normal ν. We call a local variation of Σ a smooth map

Φ : I × Σ →M

such that I is an open interval around 0 ∈ R, the map ϕt = Φ(t, ·) : Σ → M is an
embedding for each t ∈ I and

Φ(0, p) = p for every p ∈ Σ ,

finally, there exists a compact set K ⊆ Σ such that Φ(t, ·) : Σ → M is the identity
outside K, for every t ∈ I . We then define Σt = Φ({t} × Σ) = ϕt(Σ), for each fixed
t ∈ I .
We assume that the vector field along Σ, called infinitesimal generator of the variation,
given by

X(p) = dΦ(0,p)

( ∂
∂t

)
=
∂Φ

∂t
(0, p) ,

is normal, that is, X = fν, then we have,

d

dt
ϕ∗tσ

Σt

∣∣∣
t=0

= fHσ (Normal first variation of volume measure)

∂

∂t
Ht

∣∣∣
t=0

= −∆Σf −
(
|h|2 +Ric(ν, ν)

)
f

(Normal first variation of mean curvature)

where Ht = ϕ∗tH
Σt and h, H and σ are the second fundamental form, the mean value

and volume measure of Σ, respectively.
Fixed a coordinate chart (θ1, . . . , θn−1) of Σ, the measures ϕ∗tσΣt are determined by

ϕ∗tσ
Σt(A) =

∫
θ(A)

√
det gtαβ dL

n−1

for every measurable set A ⊆ Σ, with gt = ϕ∗t g
Σt and

gtαβ = g

(
∂ϕt
∂θα

,
∂ϕt
∂θβ

)
,
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where we have set ∂ϕt
∂θα (p) = dϕt

(
∂
∂θα

∣∣
p

)
for every p ∈ Σ. Then, we have,

∂

∂t
gtαβ

∣∣∣∣
t=0

=
∂

∂t
g

(
∂ϕt
∂θα

,
∂ϕt
∂θβ

)∣∣∣∣
t=0

= g

(
∇t

∂ϕt
∂θα

∣∣∣∣
t=0

,
∂

∂θβ

)
+ g

(
∇t

∂ϕt
∂θβ

∣∣∣∣
t=0

,
∂

∂θα

)
= g

(
∇ ∂

∂θα
X ,

∂

∂θβ

)
+ g

(
∇ ∂

∂θβ
X ,

∂

∂θα

)
= g

(
∇ ∂

∂θα
fν ,

∂

∂θβ

)
+ g

(
∇ ∂

∂θβ
fν ,

∂

∂θα

)
= fg

(
∇ ∂

∂θα
ν ,

∂

∂θβ

)
+ fg

(
∇ ∂

∂θβ
ν ,

∂

∂θα

)
=2fh

(
∂

∂θα
,
∂

∂θβ

)
=2fhαβ ,

as X = fν is a normal vector field and we used equality (1.3).
Hence, since

d

dt
ϕ∗tσ

Σt

∣∣∣
t=0

(A) =

∫
θ(A)

∂

∂t

√
det gtαβ

∣∣∣
t=0

dLn−1

we compute, by means of the formula

d

dt
detA(t) = detA(t) tr [A−1(t)A′(t)] ,

holding for any invertible n× n squared matrix A(t) dependent on t,

∂

∂t

√
det gtαβ

∣∣∣
t=0

=
1

2

√
det gtαβ g

λµ
t

∂gtλµ
∂t

∣∣∣
t=0

= fgλµhλµ
√

det gαβ = fH
√

det gαβ ,

which clearly gives the claimed normal variation of the volume measure.
Concerning the normal first variation of the mean curvature, for simplicity, we

prove it in the case in which

Φ :
(
(−δ, δ)× Σ, f̂ 2(t, p) dt⊗ dt+ gΣ(t)

)
−→ (U, g)

is an isometry, where U is an open set of M and f̂ is a positive smooth function
satisfying f̂(0, p) = f(p) for every p ∈ Σ. In this case, we can consider a coordinate
basis

{
∂
∂t ,

∂
∂θ1

, . . . , ∂
∂θn−1

}
in a neighborhood V of an arbitrary point p ∈ Σ in M such

that
{

∂
∂θ1

, . . . , ∂
∂θn−1

}
is a coordinate basis of the tangent space to Σ around p ∈ Σ and

we observe that the vector field ∂
∂t (defined globally as ∇t/|∇t|2 for t = π2 ◦ Φ−1)

is normal to each Σt. Then, with a slight abuse of notation, we denote by f also the
function f̂ ◦ Φ−1 and by ν the vector field defined by the equality f ν = ∂

∂t . This
latter coincides with νt along each Σt and in particular X(p) = ∂

∂t

∣∣
p

for all p ∈ Σ.
Moreover, we define the (0, 2)-tensor field h and the smooth function H on V as

h(X,Y ) = g(∇Xν, Y ) for every X,Y ∈ Γ(TV ),

H = gαβhαβ ,

respectively. The restrictions of h and H to each Σt coincide with hΣt and HΣt (with
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restriction of h to Σt we mean ι∗Σt
h, being ιΣt the inclusion map). With these nota-

tions, we have that

∂H

∂t
=
∂gαβ

∂t
hαβ + gαβ

∂hαβ
∂t

.

As we already know that
∂gαβ

∂t
= −2fgαλgβµhλµ ,

the contribution of the first term on the right hand side is given by

∂gαβ

∂t
hαβ = −2fgαλgβµhαβhλµ = −2f |h|2 . (1.8)

About the second term, we need to compute ∂hαβ/∂t. We have

∂hαβ
∂t

= g

(
∇ ∂

∂t
∇ ∂

∂θα
ν,

∂

∂θβ

)
+ g

(
∇ ∂

∂θα
ν,∇ ∂

∂θβ

∂

∂t

)
= g

(
∇ ∂

∂θα
∇ ∂

∂t
ν,

∂

∂θβ

)
+Riem

(
∂

∂t
,
∂

∂θα
, ν,

∂

∂θβ

)
+ g

(
∇ ∂

∂θα
ν,∇ ∂

∂θβ

∂

∂t

)
.

Again with a small abuse of notation in the last term of the chain of equalities

∇ ∂
∂t
ν = ∇ ∂

∂t

(
1

f

∂

∂t

)
= − 1

f2
∂f

∂t

∂

∂t
+

1

f

[
Γttt

∂

∂t
+ Γαtt

∂

∂θα

]
= −gαβ ∂f

∂θβ
∂

∂θα
= −∇⊤f ,

where in the third equality we used the fact that

Γttt =
1

f

∂f

∂t
,

Γαtt = −fgαβ ∂f
∂θβ

.

We then have

∂hαβ
∂t

= −g
(
∇ ∂

∂θα
∇⊤f,

∂

∂θβ

)
− fRiem

(
∂

∂θα
, ν, ν,

∂

∂θβ

)
+ g

(
∇ ∂

∂θα
ν,∇ ∂

∂θβ

∂

∂t

)
.

Consequently,

gαβ
∂hαβ
∂t

= −gαβg
(
∇ ∂

∂θα
∇⊤f,

∂

∂θβ

)
− fRic(ν, ν) + fgαβg

(
∇ ∂

∂θα
ν,∇ ∂

∂θβ
ν
)
,

(1.9)

being ∇ ∂
∂θα

ν tangential. Then, it follows by equations (1.8) and (1.9) that around any
p ∈ Σ there holds

∂

∂t
Ht

∣∣∣
t=0

= −2f |h|2 − gαβg

(
∇ ∂

∂θα
∇⊤f,

∂

∂θβ

)
− fRic(ν, ν) + fgαβg

(
∇ ∂

∂θα
ν,∇ ∂

∂θβ
ν
)

= −f |h|2 −∆Σf − fRic(ν, ν) ,

where we observed that

gαβg
(
∇ ∂

∂θα
ν,∇ ∂

∂θβ
ν
)
= tr(S2) = |h|2 ,
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hence, we obtained the claimed normal variations of the mean curvature in our spe-
cial case.

1.4 Asymptotically flat manifolds

We discussed in the introduction how asymptotically flat manifolds arise naturally
in general relativity and their relevance for the theory, we now see their precise
mathematical definition.

In all this thesis, we adopt the Landau big–O/little–o convention, as follows.
Let f be a function defined outside a compact set of Rn and let τ ∈ R. We will write:

f = o(1) when |f(x)| → 0 as |x| → +∞;
f = O(1) when there exists a constant C > 0 such that |f(x)| ≤ C on {|x| ≥ R}, for R
sufficiently large;
f = ok(|x|−τ ) if f ∈ Ck and |x||α |+τ |∂αf | = o(1) for every multi–index α with
0 ≤ |α| ≤ k;
f = Ok(|x|−τ ) if f ∈ Ck and |x||α |+τ |∂αf | = O(1) for every multi–index α with
0 ≤ |α| ≤ k;
f = o∞(|x|−τ ) if f ∈ C∞ and |x||α |+τ |∂αf | = o(1) for every multi–index α;
f = O∞(|x|−τ ) if f ∈ C∞ and |x||α |+τ |∂αf | = O(1) for every multi–index α.

Obviously, in a manifold these definitions naturally extend to functions defined on any coor-
dinate domain diffeomorphic to Rn minus a compact set, via a coordinate chart.

Definition 1.4.1. An n–dimensional Riemannian manifold (M, g) (with or without
boundary) is said to be asymptotically flat if there exists a closed and bounded subset
K such that M \K is a finite union of pairwise disjoint open sets M1, . . . ,Mk, called
ends, each of them diffeomorphic to Rn minus a closed ball Br(0) by a coordinate
chart (x1, . . . , xn), called asymptotically flat coordinate chart, such that, setting g =
gij dx

i ⊗ dxj , there holds

gij(x) = δij + σij with σij = O2(|x|−τ ) , (1.10)

for some constant τ > n−2
2 (the order of decay of g(x) in the asymptotically flat coor-

dinates chart (x1, . . . , xn), briefly the order), where δ is the Kronecker delta function.

We will always require in the sequel, without mentioning it, that the scalar curvature of
an asymptotically flat manifold (M, g) is nonnegative or belongs to L1(M). The reason for
this choice will be clear in the last section of this chapter, in defining the ADM mass.

In all this thesis we will use the acronym AF for asymptotically flat. Moreover, given
an AF coordinate chart

(
E, (x1, . . . , xn)

)
, we can consider on E the Riemannian metric ge,

defined as ge = δijdx
i⊗ dxj and all the relative geometric quantities will be labeled with the

letter e.

We remark that we can clearly always suppose, without loss of generality, that
|x| > 1 for every AF coordinate chart on any end and that such charts can be always
smoothly extended to the closure of the coordinate domain. Hence, all the quantities
can be expressed in terms of the coordinates on a closed set diffeomorphic to Rn
minus an open ball.
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FIGURE 1.1: An asymptotically flat manifold with just one end. By
the definition, such manifolds can possibly have a quite complicate

topology but all “concentrated” in a bounded domain.

Example 1.4.2. Let m be a real number. The (exterior spatial) Schwarzschild manifold of
mass m is defined as the Riemannian manifold (MSch(m), gSch(m)) given by

(MSch(m), gSch(m)) =

(
Rn \B(

|m |
2

) 1
n−2

(0),
(
1 +

m

2|x|n−2

) 4
n−2
geucl

)
(1.11)

The Schwarzschild manifold (MSch(m), gSch(m)) of mass m is clearly asymptotically
flat, moreover, the metric g is spherically–symmetric (roughly speaking, it means
that in polar coordinates all metric components are independent of the Sn−1–factor
and there are no mixed terms involving one–forms on Sn−1), conformal to the Eu-
clidean metric via a power of a harmonic function and the manifold (MSch(m), gSch(m))
has zero scalar curvature. The map

Φ : x ∈ Rn \B(
|m |
2

) 1
n−2

(0) 7→
(
r = |x|

(
1 +

m

2|x|n−2

) 2
n−2

, ϑ =
x

|x|

)
∈ Im × Sn−1 ,

where Im is the open interval (0,+∞), if m ≤ 0 and ((2m)
1

n−2 ,+∞) otherwise, is a
diffeomorphism with inverse

Φ−1 : (r, ϑ) ∈ Im × Sn−1 7→ x =
r

2
2

n−2

(
1 +

√
1− 2m

rn−2

) 2
n−2

ϑ ∈ Rn \B(
|m |
2

) 1
n−2

(0) ,

(1.12)
more precisely it is an isometry between the Riemannian manifolds (MSch(m), gSch(m))
and (

Im × Sn−1,
dr ⊗ dr

1− 2m
rn−2

+ r2gSn−1

)
. (1.13)

The geometry of (MSch(m), gSch(m)) depends on the sign of m, indeed, in the case
m > 0 the metric given in formula (1.11) is smooth on all of Rn \ {0}, the manifold
thus obtained is complete and has two asymptotically flat ends, with a reflection
symmetry about the totally geodesic (hence, minimal) sphere at

{
|x| = (m/2)

1
n−2
}

.
In the case m = 0, (MSch(m), gSch(m)) can be smoothly extended across the origin and
it is isometric to Euclidean space. Finally, if m < 0, the metric g degenerates on ∂M .
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From now on, for m > 0 with (exterior spatial) Schwarzschild manifold of mass m,
denoted with (MSch(m), gSch(m)), we mean the manifold(

Rn \B(
|m |
2

) 1
n−2

(0),
(
1 +

m

2|x|n−2

) 4
n−2
geucl

)
.

LetMi be an end of an AF manifold (M, g) and and (x1, . . . , xn) an AF coordinate
chart for Mi, by definition, one has

n∑
i,j=1

[
|σij(x)|+

n∑
k=1

|x|
∣∣∣ ∂σij
∂xk

∣∣∣+ n∑
k,l=1

|x|2
∣∣∣ ∂2σij
∂xk∂xl

∣∣∣] ≤ C

|x|τ
, (1.14)

on M i . Being the metric gij and its inverse gij converging to δij , as |x| → +∞, it is
easy to see that there exists a constant C (possibly different by the one above), such
that

C−1 δijv
ivj ≤ gij(p)v

ivj ≤ C δijv
ivj , (1.15)

C−1 δijvivj ≤ gij(p)vivj ≤ C δijvivj (1.16)

for every p ∈M i and for all v = (v1, . . . , vn) ∈ Rn.
An easy consequence is the (metric) unboundedness of every end Mi (and also of
every subset of Mi of which the image through (x1, . . . , xn) in Rn is unbounded).
This fact leads to the uniqueness of number of ends of an AF manifold. Indeed, we con-
sider the sets K, M1, . . . ,Mk of Definition 1.4.1. Then

M = K tM1 t · · · tMk

whereK is a closed and bounded set, while M1, . . . ,Mk are unbounded, connected,
open sets, each of them is diffeomorphic to Rn minus an open ball via an AF coordi-
nate chart. Assume that

M = C tN1 t · · · tNl

where C and N1, . . . , Nl satisfy the same conditions of K and M1, . . . , Mk, respec-
tively. For each i ∈ {1, . . . , k}, we can consider an unbounded connected subset
of Mi diffeomorphic, via an associated AF chart, to Rn minus a ball of radius suf-
ficiently large, in order that it has empty intersection with C (this is possible since
C is bounded), then we denote by M̃i its connected component in Mi \ C. Notice
that the other connected components of Mi \ C are bounded. Similarly, for each
j ∈ {1, . . . , l}, let Ñj be the unbounded connected component of Nj \ K, obtained
analogously. As each M̃i is contained in one and only one Nj(i), as M̃i is connected,
it is then well–defined a map i 7→ j(i) which is actually surjective, indeed each Ñj

is as well contained in one and only one Mi, by virtue of the fact that Ñj ∩K = Ø,
along with its connectedness. It follows that l ≤ k and, by symmetry, the conclusion
follows.

From now on we deal only with one–ended AF manifolds, that is, AF manifolds
with only one end. Anyway, most of the results that we will present can be extended
to each end of any AF manifold. We start with the behaviors in an AF coordinate
chart at infinity of some relevant quantities.
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Proposition 1.4.3. Let (Mn, g) be a one–ended AF manifold and let (x1, . . . , xn) be an AF
coordinate chart of order τ . It follows that

Γkij = O(|x|−τ−1) , (1.17)

Rml
ijk = O(|x|−τ−2) , (1.18)

Ricij = O(|x|−τ−2) , (1.19)

R = O(|x|−τ−2) .

Proof. These decay orders are immediate consequence of the expressions of these
quantities in terms of the derivatives of the metric, as seen in Section 1.1.

Proposition 1.4.4. Let (Mn, g) be a one–ended AF manifold and let (x1, . . . , xn) be an AF
coordinate chart of order τ . We have√

det gij = 1 +
1

2
tre(σ) +O(|x|−2τ ) , (1.20)

gij = δij − σij +O(|x|−2τ ) , (1.21)

where tre(σ) = σii.

Proof. We have, by using the Leibniz formula for the determinant,

det gij =
∑
θ∈Pn

n∏
i=1

giθ(i) =
n∏
i=1

gii +O(|x|−2τ )

=
n∏
i=1

(1 + σii) +O(|x|−2τ ) = 1 + tre(σ) +O(|x|−2τ )

where Pn is the set of all permutations of {1, . . . , n}. Then, the asymptotic expan-
sion in formula (1.20) follows by the Taylor expansion of the square root function.
Concerning the second asymptotic expansion, we have

gij =
(−1)i+j

det gij
Gji ,

where Gji is the determinant of the matrix obtained from (gij), by deleting the row
of index j and the column of index i. If i = j, then

gii =
g11 . . . gi−1 i−1 gi+1 i+1 . . . gnn +O(|x|−2τ )

1 + tre(σ) +O(|x|−2τ )

=
1 + tre(σ)− σii +O(|x|−2τ )

1 + tre(σ) +O(|x|−2τ )

=
[
1 + tre(σ)− σii +O(|x|−2τ )

][
1− tre(σ) +O(|x|−2τ )

]
= 1− σii +O(|x|−2τ ) .
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Instead, if i 6= j, for instance i < j,

gij =
(−1)i+j

det gij
sign(i, . . . , j − 1)

[
g11 . . . gi−1 i−1 gi+1 i+1 . . . gj−1 j−1 gij gj+1 j+1 . . . gnn

]
+O(|x|−2τ )

= −
[
σij +O(|x|−2τ )

][
1− tre(σ) +O(|x|−2τ )

]
= −σij +O(|x|−2τ ) ,

where (i, . . . , j − 1) is the permutation of {1, . . . , n − 1} which maps i in i + 1, i + 1
in i + 2 and so on, up to j − 1 which is mapped in i while the other elements are
fixed. This permutation is the product of j − i − 1 transpositions, therefore its sign
is (−1)j−i−1.

Proposition 1.4.5. Let (Mn, g) be a one–ended AF manifold and
(
E, (x1, . . . , xn)

)
an AF

coordinate chart of order τ . If {Σl}l∈R+ is a family of closed, two–sided Riemannian hy-
persurfaces such that each Σl is contained in E and rl = inf{ |x(p)| : p ∈ Σl } → +∞,
then

νi = νie +
1

2
σks ν

k
e ν

s
e ν

i
e − σij ν

j
e +O(|x|−2τ ) , (1.22)

ωi = ν♭i = Ωi +
1

2
σks ν

k
e ν

s
e Ωi +O(|x|−2τ ) ,

dσ =

[
1 +

1

2
εij σij +O(|x|−2τ )

]
dσe , (1.23)

where Ω = ν♭ee and εij = δij − νie ν
j
e .

Proof. Let p ∈M be a point of Σl. Then, there exist a neighborhood U of p in M and
a smooth function f̂ : U → R without critical points such that U ∩ Σl = f̂−1(c) for
some c ∈ R and ν = ∇f̂ / |∇f̂ |. Then

νi =

[
δij − σij +O(|x|−2τ )

]
∂j f̂√[

δij − σij +O(|x|−2τ )
]
∂if̂ ∂j f̂

=

[
δij − σij +O(|x|−2τ )

]
νje√[

δij − σij +O(|x|−2τ )
]
νie ν

j
e

=
[
νie − σij ν

j
e +O(|x|−2τ )

][
1 +

1

2
σij ν

i
e ν

j
e +O(|x|−2τ )

]
= νie +

1

2
σrs ν

r
e ν

s
e ν

i
e − σij ν

j
e +O(|x|−2τ ) ,

by the asymptotic expansion (1.21). Hence,

ωi = gij ν
j = (δij + σij)

[
νje +

1

2
σks ν

k
e ν

s
e ν

j
e − σjs ν

s
e +O(|x|−2τ )

]
= Ωi +

1

2
σks ν

k
e ν

s
e Ωi +O(|x|−2τ ) .
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Concerning the asymptotic expansion (1.23), we notice that

dσ = νdµ Σl

=
[
ge(ν, νe)νe + (ν − ge(ν, νe)νe)

]√
det gij dµe Σl

=
√
det gij δij ν

i νje dσe

=
[
1 +

1

2
tre(σ) +O(|x|−2τ )

][
1− 1

2
σks ν

k
e ν

s
e +O(|x|−2τ )

]
dσe

=
[
1 +

1

2
εij σij +O(|x|−2τ )

]
dσe ,

by equations (1.20) and (1.21).

Proposition 1.4.6 (see [37]). Let (Mn, g) be a one–ended AF manifold and
(
E, (x1, . . . , xn)

)
an AF coordinate chart of order τ . Let {Σl}l∈R+ be a family of closed, two–sided Rieman-
nian hypersurfaces that are the regular level sets f−1(l) of a smooth function f : E → R
and satisfy rl = inf{ |x(p)| : p ∈ Σl } → +∞. Then,

H = He − εik σks ε
sj heij +

1

2
He σks ν

k
e ν

s
e − εij νke ∂iσjk +

1

2
εij νke ∂kσij +O(|x|−1−2τ )

+O(|x|−2τ |he |e) ,

where H and He are the mean curvatures with respect to the unit normals ∇f / |∇f | and
∇ef / |∇ef |e associated to g and ge, respectively, while he is defined as ∇edf / |∇ef |e.

Proof. We follow the notations of Proposition 1.4.5 and we define h as ∇df / |∇f |.
Then, we observe that

|Ω|2 = gijΩiΩj =
|∇f |2

|∇ef |2e
,

therefore, we obtain

|Ω| hij =
∇dfij
|∇ef |e

= heij − ΩkΓ
k
ij .

Since
|Ω|2 = gij νie ν

j
e = 1− σij ν

i
e ν

j
e +O(|x|−2τ ) ,

and

gij − νiνj =
{
δij − σij +O(|x|−2τ )−

[
νie +

1

2
σks ν

k
e ν

s
e ν

i
e − σir ν

r
e +O(|x|−2τ )

]
·
[
νje +

1

2
σks ν

k
e ν

s
e ν

j
e − σjs ν

s
e +O(|x|−2τ )

]}
= δij − σij − νie ν

j
e − σks ν

k
e ν

s
e ν

i
e ν

j
e + σjs ν

s
e ν

i
e + σis ν

s
e ν

j
e +O(|x|−2τ )

= εij − εik σks ε
sj +O(|x|−2τ ) ,
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we have

H = (gij − νiνj)hij

=
[
εij − εikσks ε

sj +O(|x|−2τ )
][
1 +

1

2
σks ν

k
e ν

s
e +O(|x|−2τ )

](
heij − ΩkΓ

k
ij

)
=
[
εij − εikσks ε

sj +
1

2
σks ν

k
e ν

s
e ε

ij +O(|x|−2τ )
](
heij − ΩkΓ

k
ij

)
= He − εikσks ε

sj heij +
1

2
He σks ν

k
e ν

s
e − ΩkΓ

k
ij ε

ij +O(|x|−1−2τ ) +O(|x|−2τ |he |e)

= He − εikσks ε
sj heij +

1

2
He σks ν

k
e ν

s
e − εij νke ∂iσjk +

1

2
εij νke ∂kσij +O(|x|−1−2τ )

+O(|x|−2τ |he |e) ,

where the last equality follows by

Γkij =
1

2

(
∂iσkj + ∂jσik − ∂kσij

)
+O(|x|−1−2τ ) .

In a complete one–ended AF manifold (Mn, g), given an AF coordinate chart
(x1, . . . , xn) and a function f defined outside a compact set of M , we will say that f
converges to l ∈ R∪ {±∞} at infinity, writing f → l at ∞, if for every neighborhood
I of l there exists a compact set K such that f(p) ∈ I , for any p ∈ M \ K. This is
equivalent to have f(p) → l as |x(p)| → +∞.

Proposition 1.4.7. Let (Mn, g) be a complete one–ended AF manifold and (x1, . . . , xn) an
AF coordinate chart. Then, fixing any point o ∈M , there holds

d(p, o)

|x(p)|
→ 1 at ∞ .

Proof. Since gij → δij as |x(p)| → +∞, for every ε > 0 there exists R > 0 such that
o 6∈ {q ∈M : |x(q)| ≥ R} and

(1− ε)(|x(p)| −R) ≤ d(p, S) ≤ (1 + ε)(|x(p)| −R)

for every p ∈M such that |x(p)| > R, with S = {q ∈M : |x(q)| = R}.
As there holds

d(p, S)− d(o, S) ≤ d(p, o) ≤ d(p, S) + d(o, S) + diam(S)

for all such points p, we have

(1− ε)(|x(p)| −R)− d(o, S)

|x(p)|
≤ d(p, o)

|x(p)|
≤ (1 + ε)(|x(p)| −R) + d(o, S) + diam(S)

|x(p)|
,

the thesis then follows easily.

In the rest of this section we present some results about the theory of weighted
spaces on AF manifolds (for more details see [43, Appendix A] and the references
therein).

Definition 1.4.8. Let (Mn, g) be a complete one–ended AF manifold and let
(
E,ψ =

(x1, . . . , xn)
)

be an AF coordinate chart (of order τ ). We choose a smooth positive
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function onM which coincides on E with |x| =
√∑n

i=1(x
i)2 and with slightly abus-

ing the notation this function will still be denoted with |x|.

(1) For every 1 ≤ p < +∞ and s ∈ R, the weighted Lebesgue space Lps(M) is the set
of functions f in Lploc(M) such that

‖f‖Lp
s(M) =

(∫
M

|f |p |x|−sp−n dµ
) 1

p

is finite.

(2) For every k ∈ N, 1 ≤ p < +∞ and s ∈ R, the weighted Sobolev space W k,p
s (M) is

the set of functions f in W k,p
loc (M) such that

‖f‖
Wk,p

s (M)
=

k∑
i=0

‖∇if‖Lp
s−i(M)

is finite.

(3) We let Cks (M), with k ∈ N and s ∈ R, to be the set of functions f in Ck(M)
such that

‖f‖Ck
s (M) =

k∑
i=0

sup
M

(
|x|i−s |∇if |

)
is finite.

(4) For every k ∈ N, s ∈ R and α ∈ (0, 1), the weighted Hölder space Ck,αs (M) is the
set of functions f in Ck,αloc (M) such that

‖f‖
Ck,α

s (M)
=

k∑
i=0

sup
M

(
|x|i−s |∇if |

)
+ sup
p∈M

sup
q∈M

0<d(p,q)<ρ(p)

[(
min{|x(p)|, |x(q)|}

)k+α−s |∇kf(p)−∇kf(q)|
d(p, q)α

]

is finite, where ρ(p) is the injectivity radius of p and ∇kf(p) −∇kf(q) denotes
the difference of ∇kf(p) with the parallel transport of ∇kf(q) in p along the
minimal geodesic joining p and q.

All these weighted spaces are Banach spaces and whether a function belongs to them
does not depend of the AF coordinate chart, by virtue of Proposition 1.4.7, in partic-
ular, every change of the AF coordinate chart produces equivalent norms.
Moreover, if f ∈ C2(M), then

n∑
k=1

|x|
∣∣∣∣ ∂f∂xk

∣∣∣∣+ n∑
k,l=1

|x|2
∣∣∣∣ ∂2f

∂xk∂xl

∣∣∣∣ = O(|x|−s)

if and only if
|x| |∇f |+ |x|2 |∇df | = O(|x|−s) ,
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for every s > 0, by inequalities (1.16).
The importance of these spaces lies in the fact that they share analogues of many

of the global elliptic regularity results for compact manifolds, which in general are
not true on noncompact manifolds without considering weights. In the literature
there are several ways of defining such spaces, we followed Bartnik [7] with the
above definition.

The index s reflects the order of growth of the functions with respect to |x|, at
infinity. This is stated in the following lemma, with some useful continuous embed-
dings.

Lemma 1.4.9 (Section 1 [17], Lemma 9.1 [48]). With the notation and conventions of
Definition 1.4.8,

(1) Ck+1
s (M) ⊆ Ck,αs (M) and Ck,αs1 (M) ⊆ Ck,αs2 (M), if s1 ≤ s2.

(2) If l, k ∈ N, p ∈ (1,+∞) and α ∈ (0, 1) satisfy the inequality l − k − α > n/p,
then for every ε > 0 there holds C l,αs−ε(M) ⊆ W l,p

s (M) ⊆ Ck,αs (M). In particular, if
f ∈W k,p

s (M) with k > n
p , then f = O(|x|s).

By working in these spaces, we satisfy the rough (unfortunately wrong) intuition
that if a function on Rn decays at infinity with a certain order, then its Laplacian
decays two orders faster, with respect to |x|. In this spirit, if we want to to solve the
Poisson equation ∆v = f , we look for a solution v that decays two orders slower
than f .
Then, we state the following result about the Fredholm properties of the Laplacian
of a complete one–ended AF manifold (Mn, g) on weighted spaces.

Theorem 1.4.10 (Theorem A.40 [43], Theorem 9.2 [48]). Let (Mn, g) be a complete one–
ended AF manifold and ∆ denotes the Laplacian of (M, g).

(1) Let p > 1 and s ∈ R, there exists a constant C such that

‖u‖
W 2,p

s (M)
≤ C

(
‖u‖Lp

s(M) + ‖∆u‖Lp
s−2(M)

)
for every u ∈W 2,p

s (M).

(2) Let s be any real number not belonging to exceptional set

Λ = Z \ {0,−1, . . . , 3− n} .

Then, for any p > 1, the map

∆ :W 2,p
s (M) 7→W 0,p

s−2(M)
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is Fredholm (i.e. is a bounded linear operator between two Banach spaces with finite-
dimensional kernel and cokernel). More precisely,

dimker∆ =


[s]∑
k=0

[(
n+k−1
n−1

)
−
(
n+k−3
n−1

)]
for s ≥ 0

0 for s < 0

dim coker∆ =


[2−n−s]∑
k=0

[(
n+k−1
n−1

)
−
(
n+k−3
n−1

)]
for s ≤ 2− n

0 for s > 2− n

In particular, if 2 − n < s < 0, the operator ∆ is an isomorphism between W 2,p
s (M)

and W 0,p
s−2(M).

(3) If u ∈ C0
s (M) and ∆u ∈ C0,α

s−2(M), then u ∈ C2,α
s (M) and

‖u‖
C2,α

s (M)
≤ C

(
‖u‖C0

s (M) + ‖∆u‖
C0,α

s−2(M)

)
.

(4) If 2−n < s < 0, h ∈ C0,α
s′ (M) for some s′ < −2 and the operator ∆+h : C2,α

s (M) →
C0,α
s−2(M) is one–to–one, then it is an isomorphism.

A key step in our line to obtain geometric inequalities is knowing the behavior at
infinity, in an AF coordinate chart, of certain harmonic functions. We will need the
following theorem.

Theorem 1.4.11. Let ∆ denote the Euclidean Laplacian of Rn and let s ∈ N and s′ ∈ R
be such that s ≥ s′ ≥ n − 2. If f ∈ C∞(Rn) is a real function with f = O(|x|−s′) and
∆f = ρ = O1(|x|−s−2−α), for some 0 < α < 1, then, letting x̂ = x/|x| and ŷ = y/|y |, we
have

f(x) = −
s−n+2∑

k=⌈s′−n+2⌉

1

n(n− 2)ωn

1

|x|n−2+k

∫
Rn

ρ(y) |y |k Pk(x̂ · ŷ) dy +O2(|x|−s−α) ,

outside a closed ball centered at the origin, where ωn is the volume of the unit ball in Rn, d·e
is the ceiling function (dxe is the least integer greater than or equal to x) and Pk = P

(n−2)/2
k

are the ultraspherical (or Gegenbauer) polynomials (see [1, Chap. 22] and [83, Chap. IV],
for more details), given by

P
(n−2)/2
k (t) =

[ k2 ]∑
l=0

(−1)l
Γ
(
k − l + n−2

2

)
Γ
(
n−2
2

)
l!(k − 2l)!

(2t)k−2l . (1.24)

In particular, each function under the summation sign is a harmonic function.

Proof. By a classical representation formula and since ρ = O(|x|−s−2−α), the function

w(x) = − 1

n(n− 2)ωn

∫
Rn

ρ(y)

|x− y |n−2
dy , (1.25)
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is well–defined, of class C2 and satisfies ∆w = ρ on Rn. We assume |x| ≥ 2 and we
split Rn in the three separate pieces

B |x |
2

(0), B |x |
2

(x), Rn \
(
B |x |

2

(0) ∪B |x |
2

(x)
)
.

We recall that in the following computations C will denote a constant which may
vary from line to line and it is independent of x. For any y ∈ B |x |

2

(x), we have∣∣∣∣∣
∫

B |x |
2

(x)

ρ(y)

|x− y|n−2
dy

∣∣∣∣∣ ≤ C

|x|s+2+α

∫
B |x |

2

(x)

1

|x− y |n−2
dy

≤ C|x|−s−α . (1.26)

Since |y − x| ≥ |x |
2 for y 6∈ B |x |

2

(x), we have∣∣∣∣∣
∫

Rn\
(
B |x |

2

(0)∪B |x |
2

(x)
) ρ(y)

|x− y |n−2
dy

∣∣∣∣∣ ≤ C
1

|x|n−2

∫
Rn\B |x |

2

(0)

|ρ(y)| dy

≤ C|x|−s−α . (1.27)

In the region B |x |
2

(0), where |y |
|x | <

1
2 , we can expand the fundamental solution |x −

y |2−n as a power series in |y |
|x | as follows,

|x− y |2−n =
∞∑
k=0

1

|x|n−2

(
|y |
|x|

)k
Pk(x̂ · ŷ)

for the polynomials Pk (see [43, Appendix A] ), noticing that every function in the
sum is harmonic in both variables x and y. We then consider

s−n+2∑
k=0

1

|x|n−2+k

∫
Rn

ρ(y) |y |k Pk(x̂ · ŷ) dy

and we observe that ∣∣∣∣∣
s−n+2∑
k=0

1

|x|n−2+k

∫
Rn\B |x |

2

(0)

ρ(y) |y |k Pk(x̂ · ŷ) dy

∣∣∣∣∣ ≤ C|x|−s−α

∣∣∣∣∣
∫

B |x |
2

(0)

ρ(y)

|x− y|n−2
dy −

s−n+2∑
k=0

1

|x|n−2+k

∫
B |x |

2

(0)

ρ(y) |y |k Pk(x̂ · ŷ) dy

∣∣∣∣∣ ≤ C|x|−s−α ,

thus, we can conclude that also∣∣∣∣∣
∫
Rn

ρ(y)

|x− y|n−2
dy−

s−n+2∑
k=0

1

|x|n−2+k

∫
B |x |

2

(0)

ρ(y) |y |k Pk(x̂ · ŷ) dy

∣∣∣∣∣ ≤ C|x|−s−α , (1.28)
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by inequalities (1.26) and (1.27).
Indeed, we have∣∣∣∣∣
s−n+2∑
k=0

1

|x|n−2+k

∫
Rn\B |x |

2

(0)

ρ(y) |y |k Pk(x̂ · ŷ) dy

∣∣∣∣∣ ≤ C

s−n+2∑
k=0

1

|x|n−2+k

∫
Rn\B |x |

2

(0)

|ρ(y)| |y |k dy

≤ C

s−n+2∑
k=0

1

|x|n−2+k

∫
Rn\B |x |

2

(0)

1

|y |s+2+α−k dy

≤ C

|x|s+α
,

as Pk(x̂ · ŷ) are clearly bounded quantities.
About the second inequality, (following [62]) if y ∈ B |x |

2

(0), there holds

∣∣∣∣∣ 1

|x− y|n−2
− 1

|x|n−2

s−n+2∑
k=0

(
|y |
|x|

)k
Pk(x̂ · ŷ)

∣∣∣∣∣ =
∣∣∣∣∣ 1

|x|n−2

∞∑
k=s−n+3

(
|y |
|x|

)k
Pk(x̂ · ŷ)

∣∣∣∣∣
≤ C

1

|x|n−2

(
|y |
|x|

)s−n+3

,

since |y |
|x | <

1
2 , hence, we get∣∣∣∣∣
∫

B |x |
2

(0)

ρ(y)

|x− y|n−2
dy −

s−n+2∑
k=0

1

|x|n−2+k

∫
B |x |

2

(0)

ρ(y) |y |k Pk(x̂ · ŷ) dy

∣∣∣∣∣
≤ C

|x|s+1

∫
B |x |

2

(0)

|ρ(y)||y |s−n+3 dy

≤ C

|x|s+α
.

Then, recalling equation (1.25), by inequality (1.28) we get

n(n− 2)ωnw(x) = −
s−n+2∑
k=0

1

|x|n−2+k

∫
Rn

ρ(y) |y |k Pk(x̂ · ŷ) dy + h(x) ,

where the first summand is a harmonic function and

h = O(|x|−s−α) .

Since the function f − w is harmonic and bounded on Rn, then it is constant by
Liouville’s theorem and this constant must be zero by the behavior at infinity of f
and w, then f and w coincide, hence,

∆h/ (n(n− 2)ωn) = ∆w = ∆f = ρ .



1.4. Asymptotically flat manifolds 35

The higher order estimates of h follow by point (3) of Theorem 1.4.10, since ρ =
O1(|x|−s−2−α), along with point (1) of Lemma 1.4.9. Finally, the assumption about
the behavior at infinity of f implies that in the sum remain those harmonic functions
which tends to zero fast enough.

A consequence is the following result.

Proposition 1.4.12. With the notation and conventions of Definition 1.4.8, if v is a smooth
positive harmonic function outside a compact subset of M such that v → 0 at ∞, then there
exists a constant C such that

v =
C

|x|n−2
+O2(|x|2−n−α)

for every α ∈ (0,min{1, τ}).

Proof. Without loss of generality, we can assume that v is defined and harmonic on
the domain E of the AF coordinate chart. We observe that

∆f = δij∂i∂jf + aij∂i∂jf + bj ∂jf , (1.29)

for every f ∈ C∞(E), where aij = gij − δij = O(|x|−τ ) and bj = −gkl Γjkl =
O1(|x|−1−τ ), by estimates (1.16) and (1.17).
For a fixed 0 < ε < τ and for an arbitrary a > 0 to be chosen later, we consider the
function

ϕa = a

(
1

|x|n−2
− 1

|x|n−2+ε

)
.

By direct computation, one can check that

∂jϕa = −a
(
n− 2

|x|n
− n− 2 + ε

|x|n+ε

)
xj

∂i∂jϕa = a

[
n (n− 2)

|x|n+2
− (n+ ε)(n− 2 + ε)

|x|n+2+ε

]
xi xj − a

[
n− 2

|x|n
− n− 2 + ε

|x|n+ε

]
δij ,

in particular, ϕa = O∞(|x|2−n). Consequently, by equality (1.29) along with the
behavior at infinity of the functions aij and bj , we get

∆ϕa = a
[
− (n− 2 + ε)ε|x|−n−ε +O(|x|−n−τ )

]
,

hence, there exists R2 > 1, independent of a such that ∆ϕa < 0 in {|x| ≥ R2}, for
every a > 0. We now choose a > 0 (since v is positive) such that

ϕa > max
{|x |=R2}

v on {|x| = R2} ,

then by the maximum principle for elliptic equations [21, Section 6.4], we have

v ≤ ϕa in {|x| ≥ R2} . (1.30)

Notice that from (1.30) one gets in particular that v = O(|x|2−n). Then, point (3)
of Theorem 1.4.10, applied to a smooth extension on all M of v, implies that v =
O2(|x|2−n). Consequently, we also have ∆ev = O(|x|−n−τ ). Hence, we can apply
the first part of the proof of Theorem 1.4.11 to a smooth extension v̂ on all Rn of ψ∗v,
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to conclude that

v̂ = − 1

n(n− 2)ωn

1

|x|n−2

∫
Rn

ρ(y)P0(x̂ · ŷ) dy + ĥ

= − 1

n(n− 2)ωn

1

|x|n−2

∫
Rn

ρ(y) dy + ĥ

=
C

|x|n−2
+ ĥ

outside a closed ball of Rn with center 0, with ĥ = O(|x|2−n−α) for every α ∈
(0,min{1, τ}). We underline that in this computation we used the fact that P0(t) = 1,
by formula (1.24). It follows that

∆ψ∗g ĥ = O1(|x|−n−α)

as ∆ψ∗g v̂ = 0 outside a closed ball of Rn of radius large enough centered at the origin.
By Shauder’s interior estimates (see [28, Lemma 6.20]), we then have ĥ = O2(|x|2−n−α),
thus, the statement of the proposition.

A consequence of this proposition is the following result, which will be used in
Chapters 2 and 4.

Corollary 1.4.13. Let (Mn, g) be a complete one–ended AF manifold with compact bound-
ary and let

(
E, (x1, . . . , xn)

)
be an AF coordinate chart of order τ . If v ∈ C∞(M) is the

solution of the Dirichlet problem 
∆v = 0 in M
v = 1 on ∂M
v → 0 at ∞

(the existence of such v can be obtained following [57], together with a “barrier” argument
to ensure the convergence to zero at ∞, the uniqueness follows by the maximum principle,
see [71] for instance) then,

v =
C

|x|n−2
+O2(|x|2−n−α) (1.31)

where
C =

1

(n− 2)|Sn−1|

∫
∂M

|∇v | dσ =
1

(n− 2)|Sn−1|

∫
M

|∇v |2 dµ (1.32)

and any α ∈ (0,min{1, τ}).
The function v is called boundary capacity potential, while the last integral in formula (1.32)
boundary capacity of ∂M in (M, g) (see [56]).

Proof. We notice that 0 < v < 1 on M \ ∂M , by the strong maximum principle [71,
Chapter 9], therefore, the behavior of v at infinity is given by the previous propo-
sition. Furthermore, by the Hopf lemma [21, Section 6.4], |∇v | > 0 on ∂M . In
particular, 1 is a regular value of v, thus, the unit normal vector field along ∂M can
be expressed in terms of v. Let K be the compact set which is the complement of E
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in M , i.e. M \ E. Applying the divergence theorem, we obtain that

0 =

∫
K∪{|x |<R}

∆v dµ =

∫
∂M

g

(
∇v, ∇v

|∇v |

)
dσ +

∫
{|x |=R}

g

(
∇v, ∇|x|

|∇|x||

)
dσ ,

hence, ∫
∂M

|∇v | dσ =

∫
∂M

g

(
∇v, ∇v

|∇v |

)
dσ = −

∫
{|x |=R}

g

(
∇v, ∇|x|

|∇|x||

)
dσ .

Now, thanks to formulas (1.14), (1.21), (1.22), (1.23) and (1.31), keeping in mind that
|∂iv | ≤ C|x|1−n, we have∫

{|x |=R}

g

(
∇v, ∇|x|

|∇|x||

)
dσ =

∫
{|x |=R}

ge

(
∇ev,

xi

|x|
∂i

)
dσe +O(R−τ )

=

∫
{|x |=R}

ge

(
∇e C

|x|n−2
,
xi

|x|
∂i

)
dσe +O(R−α)

= −C(n− 2)|Sn−1|+O(R−α). (1.33)

Then, ∫
∂M

|∇v | dσ = − lim
R→+∞

∫
{|x |=R}

g

(
∇v, ∇|x|

|∇|x||

)
dσ = C(n− 2)|Sn−1| ,

giving the first identity in formula (1.32).
Concerning the second identity, the divergence theorem implies∫

K∪{|x |<R}

|∇v |2 dµ =

∫
K∪{|x |<R}

div (v∇v) dµ

=

∫
∂M

g

(
∇v, ∇v

|∇v |

)
dσ +

∫
{|x |=R}

v g

(
∇v, ∇|x|

|∇|x||

)
dσ ,

since v is identically 1 on ∂M . Then, for R → +∞ we obtain the desired equality, as
the last term goes to zero, as v.

Finally, by means of Theorem 1.4.11, we describe the behavior of certain har-
monic functions in the end (of a one–ended AF manifold) if it is isometric to the end
of a Schwarzschild manifold (see Example 1.4.2) of arbitrary mass m (in particular,
the parameter m is a real number).

Proposition 1.4.14. Let (Mn, g) be a complete, one–ended AF manifold, possibly with
boundary. Assume that there exists a distinguished AF coordinate chart

(
E,ψ = (x1, . . . , xn)

)
in which the metric g can be expressed as

g =

(
1 +

m

2|x|n−2

) 4
n−2

δij dx
i ⊗ dxj .
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If v is a positive harmonic function outside a compact subset of M with v → 0 at ∞, then
there exists a constant C such that

v =
C

|x|n−2
+
n−2∑
k=1

ϕk(x/|x|)
|x|n−2+k

−
(
1 +

m

2|x|n−2

)−1 mC

2|x|2(n−2)
+O2(|x|4−2n−α)

for every α ∈ (0, 1). Notice that each function under the summation sign is an Euclidean
harmonic function.

Proof. Considering the push–forwards via ψ of the function v and of the metric g to
Rn minus a ball, still denoted by v and g, respectively, we know that

v =
C

|x|n−2
+ h, and h = O2

(
|x|2−n−α)

)
,

with 0 < α < 1. We set U = 1 + m
2|x |n−2 . Then, we have

0 = ∆v = U− 2(n−1)
n−2

[
∆ev + 2U−1ge(∇eU ,∇ev)

]
,

hence,
∆ev + 2U−1ge(∇eU ,∇ev) = 0 ,

which implies

∆eh− U−1 (n− 2)m

|x|n−1
ge

(
∇eh,

x

|x|

)
= −CU−1 m(n− 2)2

|x|2(n−1)
.

Then,

h = − U−1 mC

2|x|2(n−2)
+ f ,

where the function f satisfies

∆ef = U−1 (n− 2)m

|x|n−1
ge

(
∇ef,

x

|x|

)
, (1.34)

f = O2

(
|x|2−n−α)

)
.

The claim then follows by applying Theorem 1.4.11 to a smooth extension of f on all
Rn, once noticed that for such an extension the right hand side of equation (1.34) is
O1

(
|x|−2(n−1)−α).

Corollary 1.4.15. Under the assumptions of the previous proposition, in dimension 3, there
exists a constant C such that

v =
C

|x|
+

1

2|x|2
(ϕ(x/|x|)−mC) +O2(|x|−2−α) ,

for every α ∈ (0, 1), where ϕ satisfies ∆S2ϕ = −2ϕ.

Proof. We proceed as in the proof of Proposition 1.4.14. We first pass to the the push–
forwards via ψ of the function v and of the metric g to R3 minus a ball, still denoted
by v and g, respectively and we obtain with the same argument that

v =
C

|x|
− 1

4π |x|2

∫
R3

ρ(y) |y |k P1(x̂ · ŷ) dy −
(
1 +

m

2|x|

)−1 mC

2|x|2
+O2(|x|−2−α)
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(outside a closed ball centered at the origin), where ρ is a suitable function. By for-
mula (1.24) we have P1(t) = t, therefore, we obtain

1

|x|2

∫
R3

ρ(y) |y |k P1(x̂ · ŷ) dy =
1

|x|2

∫
R3

ρ(y) |y |k x̂ · ŷ dy =
x̂ · a
|x|2

.

We now notice that a · x̂ is the restriction to the unit sphere of the homogeneous har-
monic polynomial a · x, hence an eigenfunction of the S2–Laplacian with eigenvalue
−2. The claim then follows, as(

1 +
m

2|x|

)−1 mC

2|x|2
=

mC

2|x|2
+O2(|x|−3) .

1.5 The ADM mass

The asymptotically flat manifolds (explaining our general convention, just after Defi-
nition 1.4.1) have the remarkable property of having a well–defined notion of “total”
mass, called ADM mass, after the names of R. Arnowitt, S. Deser and C. W. Misner,
who introduced it in [3]. In this section we discuss such notion and see that it is a
geometric invariant of a complete AF manifold.

First, we consider (M, g) to be a complete, one–ended AF manifold with scalar
curvature in L1 and let

(
E, (x1, . . . , xn)

)
be an AF coordinate chart of order τ , where

τ > (n− 2)/2. We define on E the vector field

U =
√

det gst g
klgij

(
∂igjl − ∂lgij

)
∂k

and we observe that
Uk =

√
det gst

(
gijΓkij − gkiΓjij

)
,

therefore, the divergence of U with respect to ge can be written as

dive(U) = ∂kUk =
√

det gst
[
gij∂kΓ

k
ij − gij∂iΓ

k
jk + 2gijΓkijΓ

l
kl − 2gijΓkilΓ

l
kj

]
=
√
det gst

[
R+ gijΓkijΓ

l
kl − gijΓkilΓ

l
kj

]
=
√
det gstR+O

(
|x|−2(1+τ)

)
(1.35)

by assumption (1.10) and formula (1.17), where we used the following equalities,

∂kgij = gjlΓ
l
ki + gilΓ

l
kj

∂k
√

det gij =
√

det gij Γ
l
kl

∂kg
ij = −gilgjt∂kglt = −gilΓjkl − gjtΓikt

R = gij
[
∂kΓ

k
ij − ∂iΓ

k
jk + ΓsijΓ

k
sk − ΓskjΓ

k
is

]
.

Equality (1.35) with the integrability of the scalar curvature R with respect to g, then
implies the integrability of the divergence of U with respect to ge on E by virtue of
fact that τ > (n − 2)/2. This last integrability in turn implies, by the divergence
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theorem, the existence and the finiteness of the limit of

m̃(r) =
1

2(n− 1)|Sn−1 |

∫
{|x |=r}

√
det gst g

klgij
(
∂igjl − ∂lgij

) xk
|x|

dσe ,

as r → +∞. On the other side, we have

√
det gst g

klgij
(
∂igjl − ∂lgij

) xk
|x|

= (∂jgij − ∂igjj)
xi

|x|
+O

(
|x|−1−2τ

)
, (1.36)

by the formulas (1.20) and (1.21). Then, from equality (1.36) it follows that the limit
of

m(r) =
1

2(n− 1)|Sn−1 |

∫
{|x |=r}

(∂jgij − ∂igjj)
xi

|x|
dσe

as r → +∞ exists, it is finite and equal to lim
r→+∞

m̃(r).

Remark 1.5.1. Analogously, if {Σl}l∈R+ is a family of closed two–sided hypersurfaces
such that

(1) for every l ∈ R+ there exists an open bounded domain Dl with ∂Dl = {|x| =
r0} t Σl for some r0 > 1;

(2) rl = inf{|x| : x ∈ Σl } → +∞ as l → +∞;

(3) there exists L > 0 such that r1−nl σe(Σl) ≤ L for every l ∈ R+;

then the limit
1

2(n− 1)|Sn−1 |
lim
l→+∞

∫
Σl

(∂jgij − ∂igjj) ν
i
e dσe,

exists, it is finite and it is equal to lim
r→+∞

m(r), where νe is the ∞–pointing unit nor-

mal vector field along Σl, with respect to ge. Moreover, we get directly by formu-
las (1.22) and (1.23),

lim
l→+∞

1

2(n− 1)|Sn−1 |

∫
Σl

(∂jgij − ∂igjj) dx
i(ν) dσ

=
1

2(n− 1)|Sn−1 |
lim
l→+∞

∫
Σl

(∂jgij − ∂igjj) ν
i
e dσe.

Hence, for every AF coordinate chart
(
E,ψ = (x1, . . . , xn

)
of order τ of (Mn, g),

with τ > (n− 2)/2, it is well–defined the limit

m(g, ψ) =
1

2(n− 1)|Sn−1 |
lim

r→+∞

∫
{|x |=r}

(∂jgij − ∂igjj)
xi

|x|
dσe , (1.37)

where g = gijdx
i⊗dxj . We then want to see that such limit is independent of the AF

chart ψ, i.e. it is a geometric invariant of (Mn, g).

Lemma 1.5.2 (Theorems 9.3 and 9.5 in [48]). Let (Mn, g) be a complete, one–ended AF
manifold. Let

(
E1, ψ1 = (x1, . . . , xn)

)
and

(
E2, ψ2 = (y1, . . . , yn)

)
be two AF coordinate

charts with orders τ1, τ2, respectively, where τ1, τ2 > (n − 2)/2, then there exists a rigid
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motion (Aji , a
i) ∈ O(n,R)× Rn of Rn, such that

xi −
(
Aij y

j + ai
)
= Ri

n∑
i=1

[
|Ri |+

n∑
j=1

|x|
∣∣∣ ∂Ri
∂xj

∣∣∣+ n∑
j, k=1

|x|2
∣∣∣ ∂2Ri

∂xj∂xk

∣∣∣ ] = O(|x|1−τ )

outside some bounded open set of M and for some τ ∈
(
n−2
2 ,min{τ1, τ2}

)
.

Proof. We can assume τ1 < n − 1 and extend the functions xi to smooth functions
on M . First, we show that there exist functions z1, . . . , zn ∈ C∞(M) such that each
zi is a harmonic function on M , (z1, . . . , zn) is a coordinate system for M outside a
compact subset and {

xi − zi ∈ C2,α1
−τ1+1+ε1

(M) if n = 3

xi − zi ∈ C2,α1
−τ1+1(M) if n ≥ 4

for some α1 ∈ (0, 1) and ε1 > 0. We observe that ∆xi ∈ C0,α
−τ1−1(M) for every

α ∈ (0, 1), by point (1) of Lemma 1.4.9, as ∆xi ∈ C1
−τ1−1(M). If n > 4, there holds

2 − n < −τ1 + 1 < 0, then point (4) of Theorem 1.4.10 guarantees the existence
of ui ∈ C2,α

−τ1+1(M) such that ∆ui = ∆xi. If n = 3, then ∆xi ∈ Lp−τ1−1+ε1
(M) for

every p > 1, ε1 > 0, by point (2) of Lemma 1.4.9, hence, by choosing ε1 > 0 in a
way that −τ1 + 1 + ε1 is not an integer and it is greater than 2 − n, it follows by
point (2) of Theorem 1.4.10, that there exist ui ∈ W 2,p

−τ1+1+ε1
(M) with ∆ui = ∆xi. If

p > n, point (2) of Lemma 1.4.9 implies ui ∈ C0,α′

−τ1+1+ε1
(M) for every α′ ∈ (0, 1), thus

ui ∈ C2,α′

−τ1+1+ε1
(M) by point (3) of Theorem 1.4.10.

Setting zi = xi − ui, each form dzi is a harmonic 1–form, by construction and since
these 1–forms are “asymptotic” to dxi, they form a (local) dual frame, near infinity.
An application of the mean value theorem to the function z ◦ ψ−1 then implies that
the map z : M → Rn is one–to–one for |z | large enough, thus {zi} form coordinates
near infinity. Moreover, one can deduce

g
( ∂

∂zi
,
∂

∂zj

)
− g
( ∂

∂xi
,
∂

∂xj

)
=

{
O(|x|−τ1+ε1) if n = 3

O(|x|−τ1) if n ≥ 4
(1.38)

from the formula of change of coefficients of the metric g. Analogously, assum-
ing τ2 < n − 1 and extending the functions yi to smooth functions on M , we find
functions w1, . . . , wn ∈ C∞(M) such that each wi is a harmonic function on M ,
(w1, . . . , wn) is a coordinate system near infinity and{

yi − wi ∈ C2,α2
−τ2+1+ε2

(M) if n = 3

yi − wi ∈ C2,α2
−τ2+1(M) if n ≥ 4

for some α2 ∈ (0, 1), ε2 > 0 and

g
( ∂

∂yi
,
∂

∂yj

)
− g
( ∂

∂wi
,
∂

∂wj

)
=

{
O(|x|−τ2+ε2) if n = 3

O(|x|−τ2) if n ≥ 4
(1.39)

in particular, ε1 and ε2 can be chosen in such a way that τ1 − ε1, τ2 − ε2 > (n− 2)/2.
Observe now that zi, wi ∈ W 2,p

s , for every 1 < s < 2 and recall that, by point (2)
of Theorem 1.4.10, the dimension of ker∆ on W 2,p

s (M) is n+ 1, then {w1, . . . , wn, 1}
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form a basis of such kernel. Thus, there exist a matrix Aij and constants ai such that

zi = Aijw
j + ai .

Hence, formulas (1.38) and (1.39), sending |x| → +∞, imply that A ∈ O(n,R). The
statement of the lemma then follows by setting τ = min{τ1 − ε1, τ2 − ε2}, if n = 3
and τ = min{τ1, τ2}, if n ≥ 4.

Theorem 1.5.3 (Invariance of the ADM mass – I). Let (Mn, g) be a complete, one–
ended AF manifold with scalar curvature in L1. Given any AF coordinate chart

(
E,ψ =

(x1, . . . , xn)
)
, the limit

m(g, ψ) =
1

2(n− 1)|Sn−1 |
lim

r→+∞

∫
{|x |=r}

(∂jgij − ∂igjj)
xi

|x|
dσe ,

exists finite and it is independent of the AF chart.

Proof. We only need to show that the limit is independent of the chart ψ.
We first prove that, given (Aji , a

i) ∈ O(n,R)× Rn and set

yi = Aij x
j + ai ,

then, possibly choosing a smaller set E, the chart
(
E, ψ̃ = (y1, . . . , yn)

)
is AF and the

associated limits coincide. In E we have

dyi = Aik dx
k (1.40)

∂

∂yi
= Aki

∂

∂xk
(1.41)

C1 |x| ≤ |y | ≤ C2 |x| (1.42)

where the second equality follows from the orthogonality of the matrix A and the
last inequalities are clearly satisfied, possibly choosing a smaller set E. Then, there
holds

σ
(y)
ij dyi ⊗ dyj =

[
g
( ∂

∂yi
,
∂

∂yj

)
− δij

]
dyi ⊗ dyj

=
[
g
( ∂

∂xk
,
∂

∂xl

)
−AikA

i
l

]
dxk ⊗ dxl

=
[
g
( ∂

∂xk
,
∂

∂xl

)
− δkl

]
dxk ⊗ dxl = σ

(x)
kl dx

k ⊗ dxl ,

implying the equality
σ
(y)
ij = Aki σ

(x)
kl A

l
j . (1.43)

It follows that also
(
E, ψ̃ = (y1, . . . , yn)

)
is an AF coordinate chart and, by Re-

mark 1.5.1 and inequalities (1.42), we conclude

m(g, ψ̃) =

∫
{|x |=r }

(
∂σ

(y)
ij

∂yj
−
∂σ

(y)
jj

∂yi

)
dyi(ν) dσ =

∫
{|x |=r }

(
∂σ

(x)
ij

∂xj
−
∂σ

(x)
jj

∂xi

)
dxi(ν) dσ = m(g, ψ)

where the second equality is a direct consequence of formulas (1.40), (1.41) and
(1.43).
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If now, we consider any two AF coordinate charts
(
E1, ψ1 = (x1, . . . , xn)

)
and

(
E2, ψ2 =

(y1, . . . , yn)
)

of orders τ1 and τ2, respectively, by Lemma 1.5.2 and the previous step,
we can assume

yi(p)− xi(p) = Ri(p) (1.44)
n∑
i=1

[
|Ri |+

n∑
j=1

|x|
∣∣∣ ∂Ri
∂xj

∣∣∣+ n∑
j, k=1

|x|2
∣∣∣ ∂2Ri

∂xj∂xk

∣∣∣ ] = O(|x|1−τ ) (1.45)

outside some bounded open set of M , for some τ ∈
(
n−2
2 ,min{τ1, τ2}

)
. As conse-

quences of formulas (1.44) and (1.45), we obtain that

C1 |x| ≤ |y | ≤ C2|x| , (1.46)

∂

∂xi
=

(
δki +

∂Rk

∂xi

)
∂

∂yk
, (1.47)

for some C1, C2 > 0 and outside some bounded open set containing the previous
one. Moreover, we have

g
(x)
ij = g

(
∂

∂xi
,
∂

∂xj

)
=

(
δki +

∂Rk

∂xi

)(
δlj +

∂Rl

∂xj

)
g

(
∂

∂yk
,
∂

∂yl

)
=

(
δki +

∂Rk

∂xi

)(
δlj +

∂Rl

∂xj

)
g
(y)
kl ,

which implies

∂g
(x)
ij

∂xs
=

∂2Rk

∂xi∂xs

(
δlj+

∂Rl

∂xj

)
g
(y)
kl +

(
δki +

∂Rk

∂xi

)
∂2Rl

∂xj∂xs
g
(y)
kl +

(
δki +

∂Rk

∂xi

)(
δlj+

∂Rl

∂xj

)
∂g

(y)
kl

∂xs

=
∂2Rk

∂xi∂xs

(
δlj +

∂Rl

∂xj

)
(δkl + σ

(y)
kl ) +

(
δki +

∂Rk

∂xi

)
∂2Rl

∂xj∂xs
(δkl + σ

(y)
kl )

+

(
δki +

∂Rk

∂xi

)(
δlj +

∂Rl

∂xj

)(
δts +

∂Rt

∂xs

)
∂g

(y)
kl

∂yt

=
∂g

(y)
ij

∂ys
+

∂2Rj

∂xi∂xs
+

∂2Ri

∂xj∂xs
+O(|x|−1−2τ ) ,

where we used equality (1.47) to obtain the second equality, while for the last one
we took advantage of formulas (1.45) and (1.46). In particular, there holds

∂g
(y)
ij

∂ys
=
∂g

(x)
ij

∂xs
− ∂2Rj

∂xi∂xs
− ∂2Ri

∂xj∂xs
+O(|x|−1−2τ ) . (1.48)
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By equality (1.48), we then obtain

(
∂g

(y)
ij

∂yj
−
∂g

(y)
jj

∂yi

)
dyi(ν)

=

(
∂g

(x)
ij

∂xj
− ∂2Rj

∂xi∂xj
− ∂2Ri

∂xj∂xj
−
∂g

(x)
jj

∂xi
+ 2

∂2Rj

∂xj∂xi
+O(|x|−1−2τ )

)(
δik+

∂Ri

∂xk

)
dxk(ν)

=

(
∂g

(x)
ij

∂xj
−
∂g

(x)
jj

∂xi

)
dxi(ν)+

∂

∂xj

(
∂Rj

∂xi
− ∂Ri

∂xj

)
dxi(ν) +O(|x|−1−2τ ) .

Thus, by formula (1.23), there holds

∫
{|x |=r }

(
∂g

(y)
ij

∂yj
−
∂g

(y)
jj

∂yi

)
dyi(ν) dσ

=

∫
{|x |=r }

(
∂g

(x)
ij

∂xj
−
∂g

(x)
jj

∂xi

)
dxi(ν) dσ +

∫
{|x |=r }

∂

∂xj

( ∂Ri
∂xj

− ∂Rj

∂xi

)
dxi(ν) dσ +O(rn−2−2τ )

=

∫
{|x |=r }

(
∂g

(x)
ij

∂xj
−
∂g

(x)
jj

∂xi

)
dxi(ν) dσ

+

∫
{|x |=r }

∂

∂xj

( ∂Ri
∂xj

− ∂Rj

∂xi

) xi
r
ι∗r

(
xk

|x|
∂

∂xk
(dx1 ∧ · · · ∧ dxn)

)
+O(rn−2−2τ ),

(1.49)

where in the last equality we denoted with ιr the inclusion map of the hypersurface
{|x| = r } in M and with X ω the internal product of a vector field X with a form ω
(see [46]). We then notice that

∂

∂xj

(∂Ri
∂xj

− ∂Rj

∂xi

) xi

|x|
ι∗r

(
xk

|x|
∂

∂xk
(dx1 ∧ · · · ∧ dxn)

)
= δstdx

s ⊗ dxt
(

∂

∂xj

(∂Ri
∂xj

− ∂Rj

∂xi

) ∂

∂xi
,
xl

|x|
∂

∂xl

)
ι∗r

(
xk

|x|
∂

∂xk
(dx1 ∧ · · · ∧ dxn)

)
= ι∗r

(
∂

∂xj

(∂Ri
∂xj

− ∂Rj

∂xi

) ∂

∂xi
(dx1 ∧ · · · ∧ dxn)

)
,

therefore, by Stoke’s theorem,∫
{|x |=r }

∂

∂xj

(∂Ri
∂xj

− ∂Rj

∂xi

)
xi

r
ι∗r

(
xk

|x|
∂

∂xk
(dx1 ∧ · · · ∧ dxn)

)

=

∫
{|x |≥r }

d

(
∂

∂xj

(∂Rir
∂xj

− ∂Rjr
∂xi

) ∂

∂xi
(dx1 ∧ · · · ∧ dxn)

)

=

∫
{|x |≥r }

∂

∂xi
∂

∂xj

(∂Rir
∂xj

− ∂Rjr
∂xi

)
dx1 ∧ · · · ∧ dxn = 0

whereRir is a smooth function with compact support, coinciding withRi on an open
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set which contains {|x| = r }, for each i. Being τ ≥ n−2
2 , the last equality in for-

mula (1.49) combined with this last result implies that

m(g, ψ1) = m(g, ψ2) .

Concerning the asymptotically flat manifolds with nonnegative and not summable
scalar curvature, we have the following more immediate result.

Theorem 1.5.4 (Invariance of the ADM mass – II). Let (Mn, g) be a complete, one–ended
AF manifold with nonnegative scalar curvature R, not in L1. Given any AF coordinate chart(
E,ψ = (x1, . . . , xn)

)
of order τ > n−2

2 , then

m(g, ψ) =
1

2(n− 1)|Sn−1 |
lim

r→+∞

∫
{|x |=r}

(∂jgij − ∂igjj)
xi

|x|
dσe = +∞ ,

In particular, the limit above is independent of the AF chart.

Proof. From formulas (1.35) and (1.36), it follows∫
{|x |=r}

(∂jgij − ∂igjj)
xi

|x|
dσe=

∫
{r0<|x |<r}

R dµ+

∫
{r0<|x |<r}

q dµe

+

∫
{|x |=r0}

√
det gst g

klgij
(
∂igjl − ∂lgij

) xk
|x|

dσe +O(rn−2−2τ )

for r0 > 1 sufficiently large and for every r > r0, where the function q, which is
O
(
|x|−2(1+τ)

)
, is then in L1(E). Now, passing to the limit for r → +∞, at the right

hand side of the above equality, the first term diverges positively by the monotone
convergence theorem, the second one converges by the dominate convergence the-
orem and the last one tends to zero as τ > (n − 2)/2. Consequently, we have the
thesis.

Definition 1.5.5 (ADM mass). Let (Mn, g) be a one–ended AF manifold and let(
E, (x1, . . . , xn)

)
be an AF coordinate chart. The limit

mADM =
1

2(n− 1)|Sn−1|
lim

r→+∞

∫
{|x |=r}

(∂jgij − ∂igjj)
xi

|x|
dσe ,

where g = gijdx
i ⊗ dxj , exists and it is independent of the AF coordinate chart

(proved first by Bartnik [7] and then independently by Chruściel [18]). This geo-
metric invariant is called ADM mass of (M, g), named after the physicists Arnowitt,
Deser and Misner [3].

Example 1.5.6. We consider outside an open ball in Rn spherically–symmetric metrics
given in polar coordinates as

g = ϕ(r)dr ⊗ dr + χ(r)r2gSn−1
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and we observe that

ϕ(r)dr ⊗ dr + χ(r)r2gSn−1 = geucl +
(
χ(r)− 1

)
geucl +

(
ϕ(r)− χ(r)

)
dr ⊗ dr

=

{
δij+

[(
χ(|x|)− 1

)
δij +

(
ϕ(|x|)− χ(|x|)

) xixj
|x|2

]}
dxi ⊗ dxj .

Then, if

σij =
(
χ(|x|)− 1

)
δij +

(
ϕ(|x|)− χ(|x|)

) xixj
|x|2

= O2(|x|−τ ) ,

for τ > n−2
2 and if the scalar curvature of g is integrable or nonnegative, we have a

one–ended AF manifold with

mADM =
1

2(n− 1)|Sn−1|
lim

r→+∞

∫
{|x |=r}

(n− 1)

[
ϕ(r)− χ(r)

r
− χ′(r)

]
dσe

=
1

2

[
rn−2

(
ϕ(r)− χ(r)

)
− rn−1χ′(r)

]
, (1.50)

since

∂k

[(
χ(|x|)− 1

)
δij +

(
ϕ(|x|)− χ(|x|)

) xixj
|x|2

]
= χ′(|x|) x

k

|x|
δij +

(
ϕ′(|x|)− χ′(|x|)

) xixjxk
|x|3

+
ϕ(|x|)− χ(|x|)

|x|

[
δik

xj

|x|
+ δjk

xi

|x|
− 2xixjxk

|x|3
]
.

For the Schwarzschild manifold of mass m, introduced in Example 1.4.2 and given
by formula (1.13) up to an isometry, one has χ ≡ 1 and ϕ = 1/(1−2mr2−n), therefore
the parameter m coincides with the ADM mass by equality (1.50).

Several other formulas that “produce” the ADM mass are known, such as the
r → +∞ limits of the Brown–York mass or of the Hawking mass of {|x| = r} (see [22]
and the references therein). In a different spirit, the ADM mass can also be recovered
through an expression involving the Ricci curvature at infinity (see [65]).

Remark 1.5.7. In 1960, Arnowitt, Deser and Misner in [4–6] studied in detail the iso-
lated gravitational systems. They adopted a Hamiltonian viewpoint, namely, they
chose a spacelike hypersurface as an “initial hypersurface” and wrote the Einstein’s
equations as evolution equations of this initial data. Then, they discovered a con-
served quantity, the ADM mass and concluded that it represented the “total” mass
of the isolated system. A disadvantage of the ADM mass is that it is defined only
globally, hence, since the 1970s, physicists and mathematicians are looking for a suit-
able quasi–local notion which describes the mass of an isolated system, using only
metric–related quantities contained in a bounded region of space.

We conclude this section presenting an example due to Denisov and Solov’ev [19]
showing that, in general, a change of coordinate chart could destroy the asymptotic
properties of functions and tensors, in particular, the geometric invariance of the
limit (1.37), if one considers also AF coordinate charts with orders 0 < τ ∈ (0, n−2

2 ]
(this explains the condition on the order in Definition 1.4.1).

Example 1.5.8. We define the map

R3 \ {0} 3 x 7→ y =
(
1 + |x|−α

)
x ∈ R3 \ {0} ,
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where α > 0, which is clearly a diffeomorphism outside a closed ball centered at the
origin with a large enough radius. Then, there holds

geucl = δijdy
i ⊗ dyj

=

[
(1 + |x|−α)2δij − α(2 + 2|x|−α − α|x|−α) xi xj

|x|2+α

]
dxi ⊗ dxj

=
[
δij +O2(|x|−α)

]
dxi ⊗ dxj

and

1

16π
lim

r→+∞

∫
{|x |=r}

(
∂jgij − ∂igjj)

xi

r
dσe = lim

r→+∞

α2

2 r2α−1
=


+∞ for 0 < α < 1/2

1/8 for α = 1/2

0 for α > 1/2

where geucl = gijdx
i ⊗ dxj .





Chapter 2

Sub–static manifolds with
harmonic potential

In this chapter, the object under investigation is a triple (M, g, u) satisfying the fol-
lowing two conditions:

(a) (M, g) is a complete, one–ended AF manifold of dimension n ≥ 3, with com-
pact boundary ∂M (which could have several connected components).

(b) u ∈ C∞(M) satisfies the system
uRic−∇du ≥ 0 inM

∆u = 0 inM

u = 0 on ∂M

u→ 1 at ∞

(2.1)

We will refer to such a triple (M, g, u) as a sub–static harmonic triple and to u as the
potential of (M, g).
If the equality holds everywhere in the first equation of system (2.1), the triple
(M, g, u) is called static.

In dimension 3, if the assumption (a) and the first two conditions in (2.1) hold,
then the asymptotically flat spacetime (M,g), given by M := R ×

(
M \ {u = 0}

)
with the Lorentzian metric g := −u2dt ⊗ dt + g, satisfies the so called null conver-
gence condition [85], i.e. Ric(V,V) ≥ 0 for every V ∈ Γ(TM) such that g(V,V) = 0.
This is exactly the curvature assumption made in Penrose’s celebrated singularity
theorem [33, p. 263, Theorem 1], since typically a singularity theorem has three in-
gredients: an energy condition on the matter; a condition on the global structure of
spacetime; gravity strong enough (somewhere) to trap a region. Recall that, in gen-
eral relativity, a singularity is a place that objects or light rays can reach in finite time
but where the curvature becomes infinite, or the spacetime stops being a manifold.
Before Penrose, it was conceivable that, for example, in the collapse of a star inside
its Schwarzschild radius (r = 2m), if the star is spinning and thus possesses some
angular momentum, maybe the centrifugal force could partly counteract the gravity
and avoid the formation of a singularity. The singularity theorem shows that this
cannot happen, hence a singularity will always develop.

The triples (M, g, u) satisfying assumption (a), the equality in the first equation
and the second condition of system (2.1) are of great relevance. The asymptotically
flat spacetime (M,g), defined as before, then solves the vacuum Einstein equation
(i.e. the Einstein equation with T = 0). In general, a spacetime (M,g) is called
static if there exists a timelike Killing vector field X that is irrotational. Examples
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of static spacetimes are the static standard spacetimes (M,g) which can be globally
decomposed as M = R×M3 and g = −N2dt⊗dt+g (the functionN :M3 → (0,+∞)
is called static lapse function). It is then justified to interpret the static lapse function
N of a static system as telling us how fast the time t flows at different points in the
space M3, where t is the time measured by a static observer on ∂t.

By the strong maximum principle, one clearly has that u ∈ (0, 1) in Int(M) =
M \ ∂M , hence, taking the trace of the first inequality, we see that the scalar curva-
ture R is nonnegative everywhere (and zero in the static case). By the last condition,
u : M → [0, 1) is proper, consequently, each level set of u is compact and it follows
that it has finite (n−1)–Hausdorff measure, by applying [32, Theorem 1.7] in a coor-
dinate chart. Then, for every regular value t ∈ [0, 1) of u there exists εt > 0 such that
(t− εt, t+ εt) ∩ [0, 1) does not contain any critical value, hence, the set of the critical
values of u is an open set of zero Lebesgue measure, by Sard’s theorem.
Moreover, |∇u| > 0 on ∂M by the Hopf lemma, hence zero is a regular value of
u. More precisely, the function |∇u| attains a positive constant value on each con-
nected component of ∂M and the boundary ∂M is a totally geodesic hypersurface
in M (in particular, each of its connected components is a minimal hypersurface),
since ∇du ≡ 0 on ∂M as a consequence of the first two conditions in system (2.1),
restricted to ∂M and the second fundamental form of the boundary is proportional
to ∇du, by formula (1.4).
By Corollary 1.4.13, being 1 − u the boundary capacity potential there mentioned, we
also know that

u = 1− C
|x|n−2

+ o2(|x|2−n) as |x| → +∞ , (2.2)

with
C =

1

(n− 2)|Sn−1|

∫
∂M

|∇u| dσ , (2.3)

which is the boundary capacity of ∂M in (M, g) by formula (1.32).
In an AF coordinate chart (x1, . . . , xn), then

∂iu = (n− 2) C |x|−n xi + o(|x|1−n) , (2.4)

∂i∂ju = −(n− 2) C |x|−n−2(nxixj − |x|2δij) + o(|x|−n) . (2.5)

Consequently, the set of critical points Crit(u) is compact, therefore it has finite (n−
2)–dimensional Hausdorff measure, by applying [31, Theorem 1.1]. More precisely,
Crit(u) is a countably (n− 2)–rectifiable subset (see Federer [24] or [82]).
In general, it is convenient to notice that∫

{u=t}

|∇u| dσ = (n− 2)|Sn−1| C , (2.6)

for every t ∈ [0, 1) regular value of u. Indeed, by applying the divergence theorem
to the vector field ∇u on {0 < u < t} (see Remark 1.1.1), one has

0 =

∫
{0<u<t}

∆u dµ =

∫
{u=t}

|∇u|dσ −
∫
∂M

|∇u| dσ =

∫
{u=t}

|∇u|dσ − (n− 2)|Sn−1| C ,

where the first equality follows by the fact that u is a harmonic function and the last
one by formula (2.3).
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Remark 2.0.1. It is also useful to observe that:

(1) for every t ∈ (0, 1) sufficiently close to 1, the level set {u = t} is regular and
diffeomorphic to the (n− 1)–sphere Sn−1;

(2) there hold {u ≥ t} = {u > t} and {0 ≤ u ≤ t} = {0 < u < t} for every t ∈
(0, 1). Moreover, one has {t ≤ u ≤ T} = {t < u < T} for every t, T ∈ (0, 1)
such that t < T ;

(3) the sets {u ≥ t} are all connected, for every t ∈ (0, 1).

We check (1) first. We start by observing that due to formula (2.2) there holds
|∇u| 6= 0 in {u ≥ t0} for some 0 < t0 < 1. This fact establishes a diffeomorphism
between {u ≥ t0} and {u = t0}×[t0, 1) and tells us at the same time that the level sets
{u = t} are pairwise diffeomorphic for every t ≥ t0. It is thus sufficient to show that
{u = t0} is connected. Suppose by contradiction that this is not the case. Without
loss of generality we can assume that {u = t0} can be decomposed into the disjoint
union of two connected sets C1 and C2, indeed the same argument works a fortiori if
the connected components are more than two. Now, by definition of asymptotically
flat manifold, there exists a compact setK ⊆M such thatM \K◦ is diffeomorphic to
Rn \B via an AF chart ψ, where B is a suitable open ball with center at 0 and radius
greater than 1. Here, for each subset E of M , E◦ and E denote the interior and the
closure of E in M , respectively. Also, we can suppose, up to choosing a larger t0,
that {u ≥ t0} ⊆ M \K◦. Now, in view of the asymptotic expansion of u, there exist
two positive constants A < B such that

A

|x|n−2
≤ 1− u ≤ B

|x|n−2
.

In particular, setting R0 = [B/(1− t0)]
1/(n−2), we have

{|x| > R0} ⊆ {u ≥ t0} ≈
{
C1 × [t0, 1)

}
t
{
C2 × [t0, 1)

}
,

where the symbol ≈ indicates that the manifolds involved are diffeomorphic. At
the same time, {|x| > R0} ⊆ Ci × [t0, 1) for some i ∈ {1, 2}, since {|x| > R0} is
connected and each Ci × [t0, 1) is a closed set of M . Then, we have{
C1 × [t0, 1)

}
t
{
C2 × [t0, 1)

}
= {u ≥ t0} ⊆ M \K◦

=
[
(M \K◦) ∩ {|x| ≤ R0}

]
t
[
(M \K◦) ∩ {|x| > R0}

]
⊆
[
(M \K◦) ∩ {|x| ≤ R0}

]
t
{
Ci × [t0, 1)

}
,

which gives the contradiction that the noncompact set Cj × [t0, 1), where j ∈ {1, 2} \
{i}, is contained into the compact one (M \K◦) ∩ {|x| ≤ R0}. Therefore, {u = t0}
is connected. Now, {ũ = t0}, with ũ := ψ∗u, is a closed and connected hypersur-
face of Rn, having strictly positive sectional curvature as Riemannian submanifold
of (Rn, geucl), up to a larger t0, due to formula (2.5). Consequently, {ũ = t0} is dif-
feomorphic to Sn−1 by the Gauss map (see [25, Section 5.B] for more details). State-
ment (1) thus follows, being {u = t0} and {ũ = t0} diffeomorphic.

Concerning point (2), the first claims are obvious if t ∈ (0, 1) is a regular value of
the function u, while the last one is clear for every 0 < t < T < +∞ regular values
of u, we will now show these statements in general. We consider t ∈ (0, 1). One
has immediately that {0 < u < t} ⊆ {0 ≤ u ≤ t}. We suppose by contradiction that
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{0 < u < t} ⊆ {0 ≤ u ≤ t}, then

{u > t} = { ({0 ≤ u ≤ t}) ⊆ {
(
{0 < u < t}

)
= {

(
{({u ≥ t})

)
= {u ≥ t}◦ ⊆ {u ≥ t} ,

where in the second equality we have used that {0 ≤ u < t} = {0 < u < t} (which is
a consequence of the fact that 0 is a regular value of u). Thus, there exists a point p in
{u ≥ t}◦ such that u(p) = t, in particular p is a point of local minimum in this open
set, which is impossible by the strong maximum principle. Similarly, one can check
that {u > t} = {u ≥ t} as {0 ≤ u < t} = {0 ≤ u ≤ t}◦. Then, if t, T ∈ (0, 1) such that
t < T , one gets {t ≤ u ≤ T} = {t < u < T}, by observing that the following chain of
inclusions,

{0 ≤ u < t}∪{u > T} = { ({t ≤ u ≤ T}) ⊆ {
(
{t < u < T}

)
= {

(
{ ({0 ≤ u ≤ t}∪{u ≥ T})

)
= ({0 ≤ u ≤ t}∪{u ≥ T})◦

= {0 ≤ u ≤ t}◦∪{u ≥ T}◦ = {0 ≤ u < t} ∪ {u > T}

is a chain of equalities. Here, the fourth equality follows since {0 ≤ u ≤ t} and
{u ≥ T} are disjoint closed sets (we refer to [41] for some properties of interior and
closure).

Finally, to show (3), we suppose, by contradiction, that {u ≥ t} is disconnected,
for some t ∈ (0, 1). Since u → 1 at ∞, we know that only one connected component
of {u ≥ t} can be unbounded with an argument similar to the first part of point (1).
Then, any other connected component K is compact and at same time, its interior
must be nonempty and contain points where u > t, since ∂K ⊆ {u = t} and {u ≥
t} = {u > t}. Therefore, K attains a local maximum in its interior and we obtain a
contradiction as before.

A fundamental sub–static harmonic triple is the so called Schwarzschild solution
of mass m > 0, denoted with (MSch(m), gSch(m), uSch(m)), where (MSch(m), gSch(m)) is
the Schwarzschild manifold of mass m defined in Example 1.4.2 and the function
uSch(m) is given in the following way:

uSch(m) =
1− m

2|x |n−2

1 + m
2|x |n−2

.

Up to an isometry (see Example 1.4.2), the triple
(
Int
(
MSch(m)

)
, gSch(m), uSch(m)

)
is

equal to ((
(2m)

1
n−2 ,+∞

)
× Sn−1,

dr ⊗ dr

1− 2mr2−n
+ r2gSn−1 ,

√
1− 2mr2−n

)
,

we will use this last triple in the rest of this chapter. We recall that the parameterm >
0 coincides with the ADM mass of (MSch(m), gSch(m)) as showed in Example 1.5.6.

2.1 Monotonicity and outer rigidity

We state now a monotonicity and outer rigidity theorem, which will be used later to
prove the a capacitary Riemannian Penrose inequality (2.55). The expression “outer
rigidity” here means “rigidity” (that is, existence of an isometry with a model space)
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of a piece of type {u ≥ t0} of a Riemannian manifold, where t0 ∈ [0, 1) is a regular
value of a smooth proper function u :M → [0, 1), converging to 1 at ∞.

In all the sequel, we will denote for simplicity with σ the (n − 1)–Hausdorff measure of
(M, g).

Theorem 2.1.1. Let (M, g, u) be a sub–static harmonic triple and let Fβ : [1,+∞) →
[0,+∞) be the function defined by

Fβ(τ) := (1 + τ)β
n−1
n−2

∫
{
u=

√
τ−1
τ+1

}|∇u|
β+1 dσ ,

for every β > n−2
n−1 . Each function Fβ is continuous and convex on [1,+∞) and it is con-

tinuously differentiable with nonpositive derivative in (1,+∞). Moreover, if there exists

τ0 ∈ (1,+∞) such that F ′
β(τ0) = 0 for some β > n−2

n−1 , then t0 =
√

τ0−1
τ0+1 is a regular value

of u and ( {u ≥ t0}, g ) is isometric to the following end of the Schwarzschild manifold(
[r0,+∞)× Sn−1 ,

dr ⊗ dr

1− 2Cr2−n
+ r2gSn−1

)
, with r0 = [C(1 + τ0)]

1
n−2 ,

of mass equal to the boundary capacity

C =
1

(n− 2)|Sn−1|

∫
∂M

|∇u| dσ .

Notice that the functions Fβ are all well–defined, in view of the properties of
the set of the critical points of u, discussed in the previous section and since the
integrand function is bounded on every level set of u (which are all compact).
Once Theorem 2.1.1 has been proved, the monotonicity and convexity of Fβ also
extend to the case β = n−2

n−1 by the dominated convergence theorem.
Moreover, at every value τ such that

{
u =

√
(τ − 1)/(τ + 1)

}
is a regular level set,

thus for a.e. τ > 1, each function Fβ is twice differentiable, with first and second
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derivative given by

F ′
β(τ) = −β (τ + 1)β

n−1
n−2

− 3
2

√
τ − 1

∫
{
u=

√
τ−1
τ+1

}|∇u|
β

[
H− n− 1

n− 2

2u

1− u2
|∇u|

]
dσ ,

F ′′
β (τ) =

β (τ + 1)β
n−1
n−2

−3

τ − 1

{(
β − n− 2

n− 1

) ∫
{
u=

√
τ−1
τ+1

}|∇u|
β−1

[
H− n− 1

n− 2

2u

1− u2
|∇u|

]2
dσ

+ β

∫
{
u=

√
τ−1
τ+1

}|∇u|
β−3 |∇⊤ |∇u||2 dσ +

∫
{
u=

√
τ−1
τ+1

}|∇u|
β−1 |

◦
h|2 dσ

− 1

β − 1

∫
{
u=

√
τ−1
τ+1

}∆
Σ
(
|∇u|β−1

)
dσ +

∫
{
u=

√
τ−1
τ+1

}|∇u|
β−1

[
Ric(ν, ν)− ∇du(ν, ν)

u

]
dσ

}

=
β (τ + 1)β

n−1
n−2

−3

τ − 1

{(
β − n− 2

n− 1

) ∫
{
u=

√
τ−1
τ+1

}|∇u|
β−1

[
H− n− 1

n− 2

2u

1− u2
|∇u|

]2
dσ

+ β

∫
{
u=

√
τ−1
τ+1

}|∇u|
β−3 |∇⊤ |∇u||2 dσ +

∫
{
u=

√
τ−1
τ+1

}|∇u|
β−1 |

◦
h|2 dσ

+

∫
{
u=

√
τ−1
τ+1

}|∇u|
β−1

[
Ric(ν, ν)− ∇du(ν, ν)

u

]
dσ

}
, (2.7)

where ∆Σ is the Laplacian relative to the hypersurface/level set
{
u =

√
τ−1
τ+1

}
.

Here, we have used the normal first variation of volume measure and of mean curva-
ture (see the end of Section 1.3) and the divergence theorem to obtain the expression
of F ′′

β . The symbols H and h stand respectively for the mean curvature and the sec-
ond fundamental form of

{
u =

√
(τ − 1)/(τ + 1)

}
with respect to the ∞–pointing

unit normal vector field ν = ∇u/|∇u| and are given respectively by

H = − ∇du(∇u,∇u)
|∇u|3

, (2.8)

h(X,Y ) =
∇du (X,Y )

|∇u|
,

for every pair of vector fields X,Y tangent to
{
u =

√
(τ − 1)/(τ + 1)

}
, see formu-

las (1.4) and (1.5). Also, ∇⊤ denotes the tangential part of the gradient, that is,

∇⊤f = ∇f − g(∇f, ν)ν,

for every f ∈ C1(M).
Then, in absence of critical points of u, the function Fβ is twice differentiable in
(1,+∞) with nonnegative second derivative by formula (2.7) together with the first
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condition of system (2.1), therefore the first derivativeF ′
β is nondecreasing in (1,+∞).

Then, being the limit of F ′
β(τ) zero for τ → +∞, we also conclude that F ′

β is always
nonpositive. We now show this claim that limτ→+∞ F ′

β(τ) = 0. We first rewrite the
function F ′

β in the following way

F ′
β(τ) = −β

√
τ + 1

τ − 1
(τ+1)−

n−3
n−2

∫
{
u=

√
τ−1
τ+1

}
(

|∇u|
(1− u2)

n−1
n−2

)β−1[
H− n− 1

n− 2

2u

1− u2
|∇u|

]
|∇u| dσ .

Then, let (x1, . . . , xn) be an AF coordinate chart of order τ . In these coordinates,
g = gij dx

i ⊗ dxj . Then, we have, by formulas (1.21), (2.2) and (2.4),

|∇u|2

(1− u2)2
n−1
n−2

=
gij∂iu ∂ju

(1− u2)2
n−1
n−2

=

[
δij +O

(
|x|−τ

)] [
(n− 2)2 C2 |x|−2n xi xj + o(|x|2−2n)

][
2 C |x|2−n + o(|x|2−n)

]2 (n−1
n−2

)

=
(n− 2)2 C2(
2 C
)2 (n−1

n−2
)
(1 + o(1)) −→ (n− 2)2 C2(

2 C
)2 (n−1

n−2
)

at ∞ . (2.9)

with C = 1
(n−2)|Sn−1|

∫
∂M |∇u| dσ. Concerning the term H − n−1

n−2
2u

1−u2 |∇u|, by for-
mula (2.8) it is always equal to

−
[∇du(∇u,∇u)

|∇u|3
+
n− 1

n− 2

2u

1− u2
|∇u|

]
,

which is o(|x|−1), arguing as before. This fact and limit (2.9) imply(
|∇u|

(1− u2)
n−1
n−2

)β−1[
H− n− 1

n− 2

2u

1− u2
|∇u|

]
−→ 0 at ∞ .

Therefore, for every ε > 0 there exists τε > 1 such that, whenever p ∈ {u ≥
√

τε−1
τε+1},

one has

−ε <
(

|∇u|
(1− u2)

n−1
n−2

)β−1[
H− n− 1

n− 2

2u

1− u2
|∇u|

]
(p) < ε

and consequently,∫
{
u=

√
τ−1
τ+1

}
(

|∇u|
(1− u2)

n−1
n−2

)β−1[
H− n− 1

n− 2

2u

1− u2
|∇u|

]
|∇u| dσ ∈

[
− aε, aε

]
,

for every τ ≥ τε, where a := (n− 2)|Sn−1| C, by virtue of property (2.6).
We underline that, by direct computation, one can check that the all functions Fβ

are constant, respectively identically equal to

(n− 2)β+1|Sn−1|m1− β
n−2

in [1,+∞), for every Schwarzschild solution of mass m > 0.
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Strategy of the proof. To give an idea, we focus our attention on the rigidity state-
ment and for simplicity, we let β = 2. At the same time, we provide some heuristics
for the monotonicity statement. The method is based on a conformal splitting tech-
nique which consists of two main steps. The first step is the construction of the so
called cylindrical ansatz and amounts to finding an appropriate conformal metric g of
g in terms of the potential u. In the case under consideration, the natural deforma-
tion is given by

g = (1− u2)
2

n−2 g . (2.10)

Indeed, when (M, g, u) is the Schwarzschild solution, the metric g obtained through
the above formula is cylindrical, more precisely (M, g) is a round cylinder (with
boundary). In general, the cylindrical ansatz leads to a conformal reformulation of
system (2.1), in which the metric g satisfies

Q := Ric− coth(φ)∇dφ+
1

n− 2
dφ⊗ dφ− 1

n− 2
‖∇φ‖2 g ≥ 0 in Int(M) ,

where (∇, R, Riem, etc.) denote the Levi–Civita connection and the curvatures as-
sociated with (M, g), ‖ · ‖ indicates the norm correlated with g and finally φ is the
g–harmonic function given by φ = log

(
1+u
1−u
)
. The importance of the function φ lies

in the fact that if (M, g, u) is the Schwarzschild solution, then φ is a non–trivial affine
function, i.e. φ is smooth and its Hessian ∇dφ vanishes everywhere (or equivalently,
φ is smooth and its gradient vector field ∇φ is parallel). Viceversa, it is known that
a complete Riemannian manifold admitting a nonconstant affine function, splits as
a Riemannian product, thus, if φ is an affine function with respect to g, then (M, g)
splits as a Riemannian product in the direction ∇φ as well as (M, g) in the direction
∇u and, being this latter asymptotically flat, it must be a piece of a Schwarzschild
manifold, up to isometry. With this in mind, the second step of our strategy consists
in finding a nonnegative or nonpositive quantity, whose vanishing guarantees that
the function φ is affine. More precisely, we use the previous conformal reformulation
of the original system together with the Bochner formula to deduce the inequality

∆ ‖∇φ‖2 − g
(
∇‖∇φ‖2,∇ log(sinhφ)

)
= ‖∇dφ‖2 +Q(∇φ,∇φ) ≥ 0 ,

in a way that

div

(
‖∇φ‖2

sinhφ

)
=

‖∇dφ‖2 +Q(∇φ,∇φ)
sinhφ

≥ 0 .

This will imply the monotonicity statement once we obtain the equality

F ′
2(τ) = −2

2
n−2

∫
{φ>s(τ)}

‖∇dφ‖2 +Q(∇φ,∇φ)
sinhφ

dµ ≤ 0 .

A delicate point is justifying such identity in a region where critical points of the
potential are present. Also, if the left hand side of the above identity vanishes, then
the Hessian of φ must be zero in an open unbounded region of M . Consequently,
the function φ is affine on this region of M with respect to g and the partial isometry
with a Schwarzschild manifold follows.
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Given a sub–static harmonic triple (M, g, u), let us consider the conformal change
defined by

g = (1− u2)
2

n−2 g , φ = log
(1 + u

1− u

)
. (2.11)

The conformal metric g of g is well–defined, being 0 ≤ u < 1 in M . Moreover,
one obtains that (M, g) is complete by using the Hopf–Rinow theorem [73], together
with the completeness of (M, g) and formulas (1.15) and (2.2) (we refer also to [20]).
Clearly,

g = cosh
4

n−2 (φ/2)g , u = tanh(φ/2) .

From now on in this chapter, a bar over a symbol will denote the relative geometric object
associated to the metric g on M , for instance,(∇, R, Riem, etc.) will denote the Levi–Civita
connection and the curvatures associated with (M, g) and ‖ · ‖ the norm with g.

Then, it follows by the formulas in [10, Theorem 1.159] that

∇u =
1

2
cosh−

2n
n−2 (φ/2)∇φ , (2.12)

∇du =
1

2

∇dφ
cosh2(φ/2)

− 1

2(n− 2)

sinh(φ/2)

cosh3(φ/2)

[
ndφ⊗ dφ− ‖∇φ‖2 g

]
, (2.13)

∆u =
1

2
cosh−

2n
n−2 (φ/2)∆φ ,

and

Ric = Ric− tanh(φ/2)∇dφ+

[
tanh2(φ/2)

n− 2
− 1

2

1

cosh2(φ/2)

]
dφ⊗ dφ

− 1

(n− 2)

[
1

2

1

cosh2(φ/2)
+ tanh2(φ/2)

]
‖∇φ‖2 g .

Consequently, rewriting system (2.1) in terms of g and φ, we get that the triple
(M, g, φ) satisfies

Ric− coth(φ)∇dφ+
1

n− 2
dφ⊗ dφ− 1

n− 2
‖∇φ‖2 g ≥ 0 in Int(M)

∆φ = 0 inM

φ = 0 on ∂M

φ→ +∞ at∞

(2.14)

Remark 2.1.2. Since {|∇u|= 0} = Crit(u) = Crit(φ) := {‖∇φ‖= 0} and {φ= s}=
{u = tanh(s/2)}, it follows from the results at the beginning of this chapter that:
Crit(φ) has zero µ–measure and zero (n− 1)–Hausdorff measure in (M, g); the level
sets of φ have finite (n − 1)–Hausdorff measure in (M, g); there exists s0 ≥ 0 such
that {φ = s} is regular and diffeomorphic to Sn−1 for every s ≥ s0; {s ≤ φ ≤ S} =
{s < φ < S} and it is a compact set, for every 0 < s < S < +∞; {φ ≥ s} is connected
for every s ≥ 0. Finally, we will denote for simplicity by σ the (n − 1)–Hausdorff
measure of (M, g).

Along {φ = s} \ Crit(φ), we consider the ∞–pointing normal unit vector field

ν =
∇φ

‖∇φ‖
,



58 Chapter 2. Sub–static manifolds with harmonic potential

with associated mean curvature

H = − ∇dφ(∇φ,∇φ)
‖∇φ‖3

, (2.15)

and second fundamental form

h(X,Y ) =
∇dφ (X,Y )

‖∇φ‖
, (2.16)

for every pair of vector fields X,Y tangent to {φ = s} \ Crit(φ), see formulas (1.4)
and (1.5).

By formulas (2.12) and (2.13), we get

∇φ =
2

(1− u2)
n

n−2

∇u , (2.17)

∇dφ =
2

1− u2

[
∇du +

n

n− 2

2u

1− u2
du⊗ du − 1

n− 2

2u

1− u2
|∇u|2 g

]
,

hence,

‖∇dφ‖2 = 4

(1− u2)
2n
n−2

|∇du|2 + 16n

n− 2

u

(1− u2)
3n−2
n−2

∇du(∇u,∇u) (2.18)

+
16n(n− 1)

(n− 2)2
u2

(1− u2)4
(

n−1
n−2

) |∇u|4 .
These equalities, together with the asymptotic flatness of (M, g) and the behavior at
infinity of u, described at the beginning of this chapter, allow us to obtain an upper
bound for the functions ‖∇φ‖ and ‖∇dφ‖ and for the σ–measure of the level sets of
φ sufficiently “close” to infinity. This is the content of the following lemma.

Lemma 2.1.3. There exists 0 ≤ s0 < +∞ such that

sup
M

‖∇φ‖+ sup
M

‖∇dφ‖+ sup
s≥s0

∫
{φ=s}

dσ < +∞ .

Proof. Equality (2.17) with limit (2.9) imply

‖∇φ‖2 −→ 4 (n− 2)2 C2(
2 C
)2 (n−1

n−2
)
=
(
2 C
)− 2

n−2 (n− 2)2 at ∞ . (2.19)

Now, computing the limit at ∞ of the right hand side of equality (2.18), as for the
limit (2.9), thanks to formulas (1.17), (1.21), (2.3), (2.4) and (2.5), we have

‖∇dφ‖2 −→ (n− 1) (15n− 1) (n− 2)2 (2 C)−
4

n−2 at ∞ . (2.20)

In particular, from limits (2.19) and (2.20), it follows

sup
M

‖∇φ‖ + sup
M

‖∇dφ‖ < +∞ ,
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since φ is a smooth function. Moreover, as a consequence of limit (2.9), there exist a
constant L > 0 and a value s0 > 0 such that

(1− u2)
n−1
n−2 ≤ L|∇u|

on {φ ≥ s0}. Then, we have that every s ≥ s0 is a regular value of φ and∫
{φ=s}

dσ =

∫
{u=tanh(s/2)}

(1− u2)
n−1
n−2 dσ ≤ L

∫
{u=tanh(s/2)}

|∇u| dσ = L

∫
∂M

|∇u| dσ ,

where the last equality follows by virtue of property (2.6) (as the set of the regular
values of u coincides with the set of the regular values of φ, since there holds the
equality {|∇u|=0} = {‖∇φ‖=0}). Thus,

sup
s≥s0

∫
{φ=s}

dσ < +∞ .

A key point of our argument is to exhibit a suitable vector field with nonnegative
divergence, relative to the conformal metric g. To do this, let us focus on the set
Int(M) \ Crit(φ) and notice first that the classical Bochner formula, applied to the
g–harmonic function φ, becomes

1

2
∆ ‖∇φ‖2 = ‖∇dφ‖2 +Ric(∇φ,∇φ) + g(∇∆φ,∇φ)

= ‖∇dφ‖2 +Ric(∇φ,∇φ) . (2.21)

Then, we obtain

∆‖∇φ‖β = div
(
∇‖∇φ‖β

)
= div

(
β

2
‖∇φ‖β−2∇‖∇φ‖2

)
=
β

2

[
g
(
∇‖∇φ‖β−2,∇‖∇φ‖2

)
+ ‖∇φ‖β−2∆‖∇φ‖2

]
= β ‖∇φ‖β−2

[
(β − 2)

∥∥∇‖∇φ‖
∥∥2 + ‖∇dφ‖2 +Ric(∇φ,∇φ)

]
, (2.22)

where in the third equality we have used formula (2.21). Now, we observe from the
nonnegativity of the tensor

Q := Ric− coth(φ)∇dφ+
1

n− 2
dφ⊗ dφ− 1

n− 2
‖∇φ‖2 g (2.23)

(see system (2.14)) that

Q(∇φ,∇φ) = Ric(∇φ,∇φ)− coth(φ)∇dφ(∇φ,∇φ) ≥ 0 . (2.24)

Therefore, by adding and subtracting the term β‖∇φ‖β−2coth(φ)∇dφ(∇φ,∇φ) on
the right–hand side of equality (2.22), we get

∆‖∇φ‖β − β‖∇φ‖β−2coth(φ)∇dφ(∇φ,∇φ)

= β‖∇φ‖β−2
[
(β − 2)

∥∥∇‖∇φ‖
∥∥2 + ‖∇dφ‖2 +Q(∇φ,∇φ)

]
.

(2.25)
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Since
β‖∇φ‖β−2coth(φ)∇dφ(∇φ,∇φ) = coth(φ) g

(
∇‖∇φ‖β ,∇φ

)
,

setting

Yβ :=
∇‖∇φ‖β

sinhφ
, (2.26)

there holds

div Yβ =
∆‖∇φ‖β

sinhφ
− coshφ

sinh2 φ
g
(
∇‖∇φ‖β ,∇φ

)
and from equality (2.25), we get

sinh(φ) div Yβ = β‖∇φ‖β−2
[
(β − 2)

∥∥∇‖∇φ‖
∥∥2 + ‖∇dφ‖2 +Q(∇φ,∇φ)

]
.

Now, the refined Kato inequality for harmonic functions,

n

n− 1

∥∥∇‖∇φ‖
∥∥2 ≤ ‖∇dφ‖2 , (2.27)

which is a consequence of

‖∇dφ‖2 = ‖∇φ‖2‖h‖2 + ‖∇‖∇φ‖‖2 + ‖∇⊤‖∇φ‖‖2

= ‖∇φ‖2‖
◦

h‖2 + n

n− 1

∥∥∇‖∇φ‖
∥∥2 + n− 2

n− 1
‖∇⊤‖∇φ‖‖2 ,

where the first identity is simply the definition of norm of a tensor (see [23, Proposi-
tion 18]), while the second one follows from the second equality (2.15), implies

(β − 2)
∥∥∇‖∇φ‖

∥∥2 + ‖∇dφ‖2 +Q(∇φ,∇φ)

=
(
β − n− 2

n− 1

)∥∥∇‖∇φ‖
∥∥2+[‖∇dφ‖2 − n

n− 1

∥∥∇‖∇φ‖
∥∥2]+Q(∇φ,∇φ) ≥ 0 ,

(2.28)

whenever β ≥ n−2
n−1 . Hence,

div Yβ ≥ 0 for every β ≥ n− 2

n− 1
. (2.29)

We now show some fundamental integral identities.

Proposition 2.1.4. Let (M, g, u) be a sub–static harmonic triple, let g and φ be the metric
and the function defined by formulas (2.11). Then, the following integral identities hold.

(1) For every β ≥ 0 and for every 0 < s < S < +∞,∫
{φ=S}

‖∇φ‖β+1

sinhφ
dσ −

∫
{φ=s}

‖∇φ‖β+1

sinhφ
dσ = (2.30)

=

∫
{s<φ<S}

‖∇φ‖β−2
[
β∇dφ(∇φ,∇φ)− coth(φ)‖∇φ‖4

]
sinhφ

dµ .
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(2) For every β ≥ 0 and for every 0 < s < +∞,∫
{φ=s}

‖∇φ‖β+1

sinhφ
dσ =

∫
{φ>s}

‖∇φ‖β−2
[
coth(φ)‖∇φ‖4 − β∇dφ(∇φ,∇φ)

]
sinhφ

dµ .

(2.31)

(3) For every β > n−2
n−1 and for every 0 < s < S < +∞ regular values of the function φ,∫

{φ=s}

‖∇φ‖β H

sinhφ
dσ −

∫
{φ=S}

‖∇φ‖β H

sinhφ
dσ = (2.32)

=

∫
{s<φ<S}

‖∇φ‖β−2
[
(β − 2)

∥∥∇‖∇φ‖
∥∥2 + ‖∇dφ‖2 +Q(∇φ,∇φ)

]
sinhφ

dµ ≥ 0,

where the tensor Q is defined by formula (2.23).

(4) For every β > n−2
n−1 and for every 0 < s < +∞ regular value of the function φ,∫

{φ=s}

‖∇φ‖β H

sinhφ
dσ (2.33)

=

∫
{φ>s}

‖∇φ‖β−2
[
(β − 2)

∥∥∇‖∇φ‖
∥∥2 + ‖∇dφ‖2 +Q(∇φ,∇φ)

]
sinhφ

dµ ≥ 0 .

We underline that in this proposition and in all the sequel, in all the integrals Re-
mark 2.1.2 is kept into account tacitly.

Before to proceed, we remark that the integrals in the right hand side of equali-
ties (2.30) and (2.31) are well–defined. Indeed,

‖∇φ‖β−2
[
coth(φ)‖∇φ‖4 − β∇dφ(∇φ,∇φ)

]
sinhφ

∈ L1
(
{φ ≥ s};µ

)
(2.34)

for every s ∈ (0,+∞), as there holds

‖∇φ‖β−2
∣∣coth(φ)‖∇φ‖4 − β∇dφ(∇φ,∇φ)

∣∣
sinhφ

≤
[
coth(φ)‖∇φ‖2 + β‖∇dφ‖

] ‖∇φ‖β
sinhφ

µ–a.e. in {φ ≥ s} and the function at the right hand side of this inequality belongs
L1
(
{φ ≥ S}, µ

)
for S sufficiently large, by the coarea formula (1.1), in connection

with limit (2.19) and Lemma 2.1.3. Notice that the well–definition of the integrals
in the right hand side of equalities (2.32) and (2.33) is instead immediate since the
integrand function is well–defined and nonnegative µ–a.e. in M , by formula (2.28).

Finally, we remark that the first two points can be proved as in [2, Proposition
4.1]. Here, we provide an alternate proof which is self–contained and does not make
use of any fine measure–theoretic property of Crit(φ).
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Proof of Proposition 2.1.4 (1). For every β ≥ 0, we consider on the open set Int(M) \
Crit(φ) the vector field

Xβ =
‖∇φ‖β ∇φ

sinhφ
,

which satisfies

divXβ =
‖∇φ‖β−2

[
β∇dφ(∇φ,∇φ)− coth(φ)‖∇φ‖4

]
sinhφ

.

If {s ≤ φ ≤ S} ∩ Crit(φ) = Ø, then the statement is a straightforward application of
the divergence theorem toXβ on {s < φ < S} (see Remark 1.1.1). Now, suppose that
{s ≤ φ ≤ S}∩Crit(φ) 6= Ø. Since there always exists s ∈ (s, S) regular value of φ, up
to splitting the right–hand side of equality (2.30) into two integrals by virtue of the
fact that its integrand belongs to L1

(
{s ≤ φ ≤ S};µ

)
, we can suppose without loss

of generality that one among s and S is a regular value of φ. To fix the ideas, suppose
that S is the regular value. We are going to change the function φ in a neighborhood
of the set Crit(φ). To do this, for every ε > 0 sufficiently small, by Sard’s theorem,
we can fix a positive real number δ(ε) such that s + δ(ε) < S is a regular value of φ
and δ(ε) < dε, where d > 0 will be specified later. Then, considering a smooth and
nondecreasing cut–off function ξε : [0,+∞) → [0, 1] satisfying the conditions

ξε(τ) = 0 in
[
0,

1

2
ε

]
, 0 ≤ ξ′ε(τ) ≤

c

ε
in
[
1

2
ε,

3

2
ε

]
, ξε(τ) = 1 in

[
3

2
ε,+∞

)
,

(2.35)

where c is a positive real constant independent of ε, we define on M the following
smooth functions

Ξε := ξε ◦ ‖∇φ‖2 , (2.36)

and

φε := φ− (1− Ξε) δ(ε) .

Clearly,

∇φε = ∇φ+ δ(ε) ξ′ε
(
‖∇φ‖2

)
∇‖∇φ‖2 (2.37)

and

φε = φ in
{
‖∇φ‖2 ≥ 3

2
ε
}
. (2.38)

Notice that s is a regular value for the function φε. To see this, let p be a point of
{φε = s} and distinguish two cases

‖∇φ‖2(p) ≤ 1

2
ε , ‖∇φ‖2(p) > 1

2
ε .

In the first case, s = φε(p) = φ(p) − δ(ε) and ∇φε(p) = ∇φ(p). Since s + δ(ε) is a
regular value for φ, it follows then ∇φε(p) 6= 0.
In the second case, observing that s ≤ φ(p) ≤ s+ δ(ε), there holds p ∈ {s ≤ φ ≤ S}.
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Consequently, we have from formula (2.37) at the point p

‖∇φε‖ ≥ ‖∇φ‖ − δ(ε) ξ′ε
(
‖∇φ‖2

) ∥∥∇‖∇φ‖2
∥∥

= ‖∇φ‖
(
1− 2δ(ε) ξ′ε

(
‖∇φ‖2

) ∥∥∇‖∇φ‖
∥∥

≥ ‖∇φ‖
(
1− 2d ε

c

ε
max

{s≤φ≤S}

∥∥∇‖∇φ‖
∥∥) ,

where c is given by conditions (2.35). Now, notice that max{s≤φ≤S}
∥∥∇‖∇φ‖

∥∥ > 0,
otherwise, due to the presence of critical points in {s ≤ φ ≤ S}, there should be a
connected component of {s ≤ φ ≤ S} where ∇φ ≡ 0, but this is impossible because
{s ≤ φ ≤ S} = {s < φ < S} and by the size of Crit(φ). Hence, choosing

d ≤ 1

4 c max
{s≤φ≤S}

∥∥∇‖∇φ‖
∥∥ ,

we obtain ‖∇φε‖(p) ≥ ‖∇φ‖(p)/2 >
√
ε/(2

√
2).

Moreover, for ε > 0 sufficiently small, S is also a regular value of φε and {φε = S} =
{φ = S}, as there exists 0 < ε < S − s such that the interval [S − ε, S + ε] does not
contain critical values of φ and {S − ε ≤ φ ≤ S + ε} is compact.
By virtue of fact that s, S are regular values of φε, we apply the divergence theorem
to the vector field Ξ4εXβ in {s < φε < S}. Then,∫

{φε=S}

g

(
Ξ4εXβ ,

∇φε
‖∇φε‖

)
dσ −

∫
{φε=s}

g

(
Ξ4εXβ ,

∇φε
‖∇φε‖

)
dσ

=

∫
{s<φε<S}

Ξ4ε
‖∇φ‖β−2

[
β∇dφ(∇φ,∇φ)− coth(φ)‖∇φ‖4

]
sinhφ

dµ

+ 2

∫
(
U6ε\U2ε

)
∩{s<φε<S}

ξ′4ε
(
‖∇φ‖2

)
‖∇φ‖β ∇dφ(∇φ,∇φ)
sinhφ

dµ ,

where

Uµ := {‖∇φ‖2 < µ} for every µ > 0 . (2.39)

By construction Ξ4ε ≡ 0 in {‖∇φ‖2 ≤ 2ε} ⊇ {‖∇φ‖2 ≤ (3/2)ε}, therefore from
formula (2.38) it follows∫
{φ=S}

Ξ4ε
‖∇φ‖β+1

sinhφ
dσ −

∫
{φ=s}

Ξ4ε
‖∇φ‖β+1

sinhφ
dσ (2.40)

=

∫
{s<φ<S}

Ξ4ε
‖∇φ‖β−2

[
β∇dφ(∇φ,∇φ)− coth(φ)‖∇φ‖4

]
sinhφ

dµ

+ 2

∫
(
U6ε\U2ε

)
∩{s<φ<S}

ξ′4ε
(
‖∇φ‖2

)
‖∇φ‖β ∇dφ(∇φ,∇φ)
sinhφ

dµ .
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Looking at the right–hand side of equality (2.40), we notice∣∣∣∣∣
∫

(
U6ε\U2ε

)
∩{s<φ<S}

ξ′4ε
(
‖∇φ‖2

)
‖∇φ‖β ∇dφ(∇φ,∇φ)
sinhφ

dµ

∣∣∣∣∣ ≤ C

ε

∫
U6ε∩{s<φ<S}

‖∇φ‖β+2‖∇dφ‖ dµ

≤ C
ε

β
2
+1

ε
µ({s ≤ φ ≤ S}) → 0 ,

where we have used the properties (2.35) of ξε to obtain the first inequality and
Lemma 2.1.3 for the second inequality, while, by the dominated convergence theo-
rem, we have

lim
ε→0+

∫
{s<φ<S}

Ξ4ε
‖∇φ‖β−2

[
β∇dφ(∇φ,∇φ)− coth(φ)‖∇φ‖4

]
sinhφ

dµ

=

∫
{s<φ<S}

‖∇φ‖β−2
[
β∇dφ(∇φ,∇φ)− coth(φ)‖∇φ‖4

]
sinhφ

dµ .

Finally, looking at the left–hand side of equality (2.40), we notice that {φ = S} is a
compact set contained in {‖∇φ‖2 > 6ε} for ε > 0 sufficiently small and we observe
that ξε can always be chosen to be nonincreasing in ε in a way that, in turn, Ξε is
nonincreasing, therefore by the monotone convergence theorem it follows

lim
ε→0+

∫
{φ=s}

Ξ4ε
‖∇φ‖β+1

sinhφ
dσ =

∫
{φ=s}

‖∇φ‖β+1

sinhφ
dσ .

Passing to the limit as ε→ 0+ in equality (2.40), we obtain the desired identity.

Proof of Proposition 2.1.4 (2). Lemma 2.1.3 implies

lim
S→+∞

∫
{φ=S}

‖∇φ‖β+1

sinhφ
dσ = 0 .

Therefore, passing to the limit as S → +∞ in equality (2.30) and using the domi-
nated convergence theorem, by virtue of formula (2.34), the statement follows.

In order to prove Proposition 2.1.4 (3), it is useful to have a precise estimate of∫
{∥∇φ∥2=δ}

‖∇∥∇φ∥2‖
sinhφ dσ in terms of a suitable power of δ, for every δ regular value

of ‖∇φ‖2 sufficiently close to zero (notice that the set of the critical values of ‖∇φ‖2
has zero Lebesgue measure by Sard’s theorem being ‖∇φ‖2 a smooth function). This
is the content of the following lemma.

Lemma 2.1.5. There exists δ0 > 0 such that

sup

{
1

δ
1
2

n
n−1

∫
{∥∇φ∥2=δ}

∥∥∇‖∇φ‖2
∥∥

sinhφ
dσ : 0 < δ < δ0 is a regular value of ‖∇φ‖2

}
< +∞ .
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Proof. Applying Sard’s theorem to the smooth function ‖∇φ‖2, there exists a regular
value ε0 of ‖∇φ‖2 such that

0 < ε0 < min
∂M

‖∇φ‖2, the limit of ‖∇φ‖2 at ∞ .

Here, the limit exists and is equal to
(
2 C
)− 1

n−2 (n−2) by formula (2.19). In particular,
{‖∇φ‖2 ≤ ε0} is a compact set contained in Int(M). Now, let us consider on {0 <
‖∇φ‖2 ≤ ε0} the vector field

Z := 2
n− 1

n− 2
Yn−2

n−1
=

1

sinhφ

∇‖∇φ‖2

‖∇φ‖
n

n−1

having divZ ≥ 0, by definition (2.26) and formula (2.29). Therefore, for every regular
value 0 < ε < ε0 of ‖∇φ‖2, applying the divergence theorem to Z on Uε0 \ Uε (see
Remark 1.1.1), where Uµ is given by formula (2.39), we get∫
{∥∇φ∥2=ε0}

1

sinhφ

∥∥∇‖∇φ‖2
∥∥

‖∇φ‖
n

n−1

dσ −
∫

{∥∇φ∥2=ε}

1

sinhφ

∥∥∇‖∇φ‖2
∥∥

‖∇φ‖
n

n−1

dσ =

∫
Uε0\Uε

divZ dµ ≥ 0 ,

then, it follows∫
{∥∇φ∥2=ε0}

1

sinhφ

∥∥∇‖∇φ‖2
∥∥

‖∇φ‖
n

n−1

dσ ≥
∫

{∥∇φ∥2=ε}

1

sinhφ

∥∥∇‖∇φ‖2
∥∥

‖∇φ‖
n

n−1

dσ .

Consequently, setting

c1 :=

∫
{∥∇φ∥2=ε0}

1

sinhφ

∥∥∇‖∇φ‖2
∥∥

‖∇φ‖
n

n−1

dσ > 0 ,

we obtain

1

ε
1
2

n
n−1

∫
{∥∇φ∥2=ε}

∥∥∇‖∇φ‖2
∥∥

sinhφ
dσ ≤ c1 .

Thus, the thesis follows.

Proof of Proposition 2.1.4 (3). In Int(M) \ Crit(φ) we consider the vector field Yβ , de-
fined by formula (2.26), satisfying

0 ≤ div Yβ =
β‖∇φ‖β−2

[
(β − 2)

∥∥∇‖∇φ‖
∥∥2 + ‖∇dφ‖2 +Q(∇φ,∇φ)

]
sinhφ

.

When {s < φ < S} ∩ Crit(φ) = Ø, then the statement is a straightforward appli-
cation of the divergence theorem to Yβ on {s < φ < S} keeping into account both
Remark 1.1.1 and expression (2.15) of mean curvature along regular level sets of φ.
Now, suppose that {s < φ < S} ∩ Crit(φ) 6= Ø. In this case, we consider for every
ε > 0 sufficiently small the smooth nondecreasing cut–off function ξε : [0,+∞) →
[0, 1] satisfying conditions (2.35) and the smooth function Ξε : M → [0, 1], given by
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formula (2.36) and we apply the divergence theorem (in the same way, as before) to
the vector field Ξε Yβ in {s < φ < S}. It follows∫

{φ=s}

‖∇φ‖β H

sinhφ
dσ −

∫
{φ=S}

‖∇φ‖β H

sinhφ
dσ

=

∫
{s<φ<S}

Ξε
‖∇φ‖β−2

[
(β − 2)

∥∥∇‖∇φ‖
∥∥2+‖∇dφ‖2+Q(∇φ,∇φ)

]
sinhφ

dµ

+

∫
(
U 3

2 ε
\U 1

2 ε

)
∩{s<φ<S}

ξ′ε
(
‖∇φ‖2

)
‖∇φ‖β−2

∥∥∇‖∇φ‖2
∥∥2

2 sinhφ
dµ ,

where Uµ is defined by formula (2.39). Notice that ξε can always be chosen to be
nonincreasing in ε, hence, also Ξε is nonincreasing. Therefore, applying the mono-
tone convergence theorem, as ε→ 0+, the first term on the right of the equality tends
to

∫
{s<φ<S}

‖∇φ‖β−2
[
(β − 2)

∥∥∇‖∇φ‖
∥∥2+‖∇dφ‖2+Q(∇φ,∇φ)

]
sinhφ

dµ .

To conclude, we finally need to show that

lim
ε→0+

∫
(
U 3

2 ε
\U 1

2 ε

)
∩{s<φ<S}

ξ′ε
(
‖∇φ‖2

)
‖∇φ‖β−2

∥∥∇‖∇φ‖2
∥∥2

2 sinhφ
dµ = 0 . (2.41)

First we observe that∫
(
U 3

2 ε
\U 1

2 ε

)
∩{s<φ<S}

ξ′ε
(
‖∇φ‖2

)
‖∇φ‖β−2

∥∥∇‖∇φ‖2
∥∥2

2 sinhφ
dµ

≤
∫

U 3
2 ε

\U 1
2 ε

ξ′ε
(
‖∇φ‖2

)
‖∇φ‖β−2

∥∥∇‖∇φ‖2
∥∥2

2 sinhφ
dµ

≤ c

2ε

∫ 3
2
ε

1
2
ε
s

β−2
2 ds

∫
{∥∇φ∥2=s}

∥∥∇‖∇φ‖2
∥∥

sinhφ
dσ ,

where, keeping in mind the properties satisfied by ξε, in the first inequality we have
used the nonnegativity of the integrand and in the last one the coarea formula (1.1).
Now, the Sard’s theorem applied to the smooth function ‖∇φ‖2 and Lemma 2.1.5
imply the existence of ε0, c1 > 0 such that the inequality

1

s
1
2

n
n−1

∫
{∥∇φ∥2=s}

∥∥∇‖∇φ‖2
∥∥

sinhφ
dσ ≤ c1
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holds for a.e. s ∈
[
1
2ε,

3
2ε
]

for every 0 < ε < 2
3ε0, therefore we get∫

(
U 3

2 ε
\U 1

2 ε

)
∩{s<φ<S}

ξ′ε
(
‖∇φ‖2

)
‖∇φ‖β−2

∥∥∇‖∇φ‖2
∥∥2

2 sinhφ
dµ

≤ c

2ε

3
2
ε∫

1
2
ε

s
β−2
2 ds

∫
{∥∇φ∥2=s}

∥∥∇‖∇φ‖2
∥∥

sinhφ
dσ ≤ c c1

2ε

3
2
ε∫

1
2
ε

s
β−2
2

+ 1
2

n
n−1 ds ≤ C ε

1
2
(β−n−2

n−1
) ,

which clearly implies limit (2.41), as β > n−2
n−1 .

Proof of Proposition 2.1.4 (4). For every S large enough, S is a regular value of φ and
Lemma 2.1.3 together with limit (2.19) imply∣∣∣∣ ∫

{φ=S}

‖∇φ‖β H dσ

∣∣∣∣ ≤ ∫
{φ=S}

‖∇φ‖β−1 ‖∇dφ‖ dσ ≤ C .

In particular,

lim
S→+∞

1

sinhS

∫
{φ=S}

‖∇φ‖β H dσ = 0 .

Therefore, the desired identity can be obtained by the monotone convergence theo-
rem, by passing to the limit as S → +∞, in equality (2.32).

Remark 2.1.6. For every β > n−2
n−1 , as a consequence of integral identity (2.32), we

have

‖∇φ‖β−2
[
(β − 2)

∥∥∇‖∇φ‖
∥∥2+‖∇dφ‖2+Q(∇φ,∇φ)

]
∈ L1

loc
(
Int(M), µ

)
. (2.42)

Consequently, there holds

‖∇φ‖β−3 ∇dφ(∇φ,∇φ) ∈ L1
loc
(
Int(M), µ

)
, (2.43)

since ∫
K

‖∇φ‖β−3 |∇dφ(∇φ,∇φ)| dµ ≤
∫
K

‖∇φ‖β−1
∥∥∇‖∇φ‖

∥∥ dµ
=

∫
K

‖∇φ‖
β
2 ‖∇φ‖

β−2
2

∥∥∇‖∇φ‖
∥∥ dµ

for every compact set K ⊆ Int(M), then applying Hölder inequality, keeping into
account formulas (2.28) and (2.42).
Moreover, for every β > n−2

n−1 , the integral identity (2.33) implies that

‖∇φ‖β−2
[
(β − 2)

∥∥∇‖∇φ‖
∥∥2 + ‖∇dφ‖2 +Q(∇φ,∇φ)

]
sinhφ

∈ L1
(
{φ ≥ s};µ

)
for all s ∈ (0,+∞), by the Sard’s theorem and being the integrand function well–
defined and nonnegative µ–a.e. in M .
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By means of these integral identities, we are able to show the following propo-
sition of monotony and partial rigidity which, reread in terms of the original data,
will allow us to obtain Theorem 2.1.1.

Proposition 2.1.7. Let (M, g, u) be a sub–static harmonic triple, let g and φ be the metric
and the function defined by formulas (2.11) and let Φβ : [0,∞) → R be the function

Φβ(s) :=

∫
{φ=s}

‖∇φ‖β+1 dσ (2.44)

for every β > n−2
n−1 . Then, Φβ is continuously differentiable with a nonpositive derivative

given by

Φ′
β(s)=−β sinh(s)

∫
{φ>s}

‖∇φ‖β−2
[
(β − 2)

∥∥∇‖∇φ‖
∥∥2+‖∇dφ‖2+Q(∇φ,∇φ)

]
sinhφ

dµ ≤ 0 ,

(2.45)

for every s > 0.
Moreover, if there exists s0 > 0 such that Φ′

β(s0) = 0 for some β > n−2
n−1 , then s0 is a regular

value of φ and ({φ ≥ s0}, g) is isometric to
(
[0,+∞)×{φ = s0}, dρ⊗dρ+g{φ=s0}), where

ρ is the g–distance function from {φ = s0} and φ is an affine function of ρ in {φ ≥ s0}, i.e.
there exist a, b ∈ R such that φ = aρ+ b.

Notice that we now know the integrability of the integrand function in formula (2.45)
on the unbounded set of integration, by Remark 2.1.6.

Proof. We divide the proof in three steps.
Step 1 – Continuity. The boundary ∂M is a regular level set of φ, therefore there exists
ε > 0 such that the interval [0, ε] does not contain critical values of φ. Consequently,
we can consider on {0 ≤ φ ≤ ε} the vector field ‖∇φ‖β ∇φ and apply to such field
the divergence theorem in {0 < φ < ε}. Then, by Remark 1.1.1, we obtain

Φβ(ε)− Φβ(0) =

∫
{φ=ε}

‖∇φ‖β+1 dσ −
∫

{φ=0}

‖∇φ‖β+1 dσ =

∫
{0<φ<ε}

div
(
‖∇φ‖β ∇φ

)
dµ

=

∫
{0<φ<ε}

g
(
∇‖∇φ‖β ,∇φ

)
dµ =

∫
{0<φ<ε}

β ‖∇φ‖β−2∇dφ(∇φ,∇φ) dµ ,

(2.46)

where the third equality follows as φ is a g–harmonic function. Then, the dominate
convergence theorem implies the continuity of Φβ at 0. Now, a straightforward ap-
plication of Proposition 2.1.4 (1) and of the dominate convergence theorem gives the
right and left continuity of the function

Υβ : s ∈ (0,+∞) →
Φβ(s)

sinh s
∈ R , (2.47)
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then Φβ is also continuous in (0,+∞).
Step 2 – Continuous differentiability and monotonicity. By applying the coarea for-
mula (1.1) in equality (2.46) and using identity (2.15), we obtain

Φβ(ε) = Φβ(0) + β

ε∫
0

ds

∫
{φ=s}

‖∇φ‖β−3∇dφ(∇φ,∇φ) dσ = Φβ(0)− β

ε∫
0

ds

∫
{φ=s}

‖∇φ‖β H dσ .

Now, being∫
{φ=s1}

‖∇φ‖β H dσ −
∫

{φ=s2}

‖∇φ‖β H dσ

=

∫
{φ=s2}

‖∇φ‖β−1 g

(
∇‖∇φ‖, ∇φ

‖∇φ‖

)
dσ −

∫
{φ=s1}

‖∇φ‖β−1 g

(
∇‖∇φ‖, ∇φ

‖∇φ‖

)
dσ

= β−1

∫
{s1≤φ≤s2}

div
(
∇‖∇φ‖β

)
dµ

for every 0 ≤ s1 < s2 ≤ ε (by Remark 1.1.1 and expression (2.15) of the mean
curvature along regular level sets of φ), by the dominated convergence theorem the
function

s ∈ [0, ε] →
∫

{φ=s}

‖∇φ‖β H dσ ∈ R

is continuous, therefore the fundamental theorem of integral calculus implies the
continuous differentiability of Φβ on the closed interval [0, ε].
Let s0 be a regular value of the function φ. By Remark 2.1.6 we can define the func-
tion Ψβ : (0,+∞) → R as follows

Ψβ(s)=



∫
{φ=s0}

∥∇φ∥β H
sinhφ dσ +

∫
{s<φ<s0}

∥∇φ∥β−2
[
(β−2)

∥∥∇∥∇φ∥
∥∥2

+∥∇dφ∥2+Q(∇φ,∇φ)
]

sinhφ dµ if s ≤ s0

∫
{φ=s0}

∥∇φ∥β H
sinhφ dσ −

∫
{s0<φ<s}

∥∇φ∥β−2
[
(β−2)

∥∥∇∥∇φ∥
∥∥2

+∥∇dφ∥2+Q(∇φ,∇φ)
]

sinhφ dµ if s > s0

Then, Ψβ(s) =
∫
{φ=s}

∥∇φ∥β H
sinhφ dσ for every s > 0 regular value of φ, by Proposi-

tion 2.1.4 (3). Moreover, Ψβ is a continuous function on the open interval (0,+∞),
as

Ψβ(s)−Ψβ(s) =

∫
{s<φ<s}

‖∇φ‖β−2
[
(β − 2)

∥∥∇‖∇φ‖
∥∥2+ ‖∇dφ‖2 +Q(∇φ,∇φ)

]
sinhφ

dµ

(2.48)

for every couple 0 < s < s < +∞, therefore Remark 2.1.6 and the dominated con-
vergence theorem imply the right and left continuity of Ψβ on the interval (0,+∞).
Now, considering the function Υβ given by formula (2.47), for every 0 < s < s < +∞
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we have

Υβ(s)−Υβ(s)

s− s
=

1

s− s

∫
{s<φ<s}

‖∇φ‖β−2
[
β∇dφ(∇φ,∇φ)− coth(φ)‖∇φ‖4

]
sinhφ

dµ

=
1

s− s

∫ s

s
dτ

∫
{φ=τ}

‖∇φ‖β−3
[
β∇dφ(∇φ,∇φ)− coth(φ)‖∇φ‖4

]
sinhφ

dσ

= − β

s− s

s∫
s

Ψβ(τ) dτ −
1

s− s

s∫
s

coth(τ)Υβ(τ) dτ ,

where the first equality follows from Proposition 2.1.4 (1), the second one from the
coarea formula (1.1), keeping in mind formula (2.43) and the last one is a conse-
quence of the properties of Ψβ , together with Sard’s theorem. Then, from the conti-
nuity of the functions Υβ and Ψβ it follows that the function Υβ is C1 and

Υ′
β( · ) = −βΨβ( · )− coth( · )Υβ( · ) .

In turn, this implies that Φβ ∈ C1(0,+∞) and Φ′
β(s) = −β sinh(s)Ψβ(s), as Φβ(s) =

sinh(s)Υβ(s), for every s > 0. Moreover, by equality (2.48),

Φ′
β(S)

sinh(S)
−

Φ′
β(s)

sinh(s)
=−βΨβ(S) + βΨβ(s)

=β

∫
{s<φ<S}

‖∇φ‖β−2
[
(β − 2)

∥∥∇‖∇φ‖
∥∥2+‖∇dφ‖2+Q(∇φ,∇φ)

]
sinhφ

dµ ≥0

(2.49)

for every 0 < s < S < +∞. Therefore, the integral representation (2.45) follows
from the passage to the limit, as S → +∞, in formula (2.49), by using the monotone
convergence theorem and by the fact that

lim
S→+∞

Φ′
β(S)

sinh(S)
= −β lim

S→+∞
Ψβ(S) = −β lim

S→+∞

∫
{φ=S}

‖∇φ‖β H

sinhφ
dσ = 0 ,

where the last equality is explained in the proof of Proposition 2.1.4 (4).

Before to proceed with the last point, the outer rigidity, we need to recall briefly
some known definitions and results involving the normal exponential map (see [75]).
Let (M̂, ĝ) a complete Riemannian manifold with compact boundary ∂M̂ and we
denote by ν̂ the inner–pointing unit normal vector field along ∂M̂ . For p ∈ ∂M̂ , we
denote by γ̂p : Ip → M the (maximal) geodesic, in the usual sense in Riemannian
geometry, with initial conditions γ̂p(0) = p and γ̂′p(0) = ν̂p, where Ip is an open or
closed interval starting at 0. Now, on the set O of v ∈ N∂M̂ such that v = tνp for
every t ∈ Ip and for all p ∈ ∂M̂ , it is well-defined the map exp⊥ : v ∈ O → γ̂π(v)(|v |ĝ),
called normal exponential map of ∂M̂ , which is smooth. By using the compactness of
∂M̂ there exists ε > 0 such that [0, ε) ⊆ Ip, the restriction γ̂p|[0,ε) is a minimal geodesic
in M , i.e. d

M̂

(
γ̂p(s), γ̂p(t)

)
= |t− s| for every s, t ∈ [0, ε) and p is the unique point of

∂M̂ that realizes the distance of every point q ∈ γ̂p
(
[0, ε)

)
from ∂M̂ . Consequently,
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the function c : ∂M̂ → R ∪ {+∞}, defined as

c(p) := sup
{
t > 0 : d

M̂
(γ̂p(t), ∂M̂) = t

}
,

is well–defined. Also, it is a continuous function. Take T > 0 and p ∈ ∂M̂ with
c(p) < +∞. Then T = c(p) if and only if T = d

M̂
(γ̂p(T ), ∂M̂) and at least one of the

following holds: or γ̂p(T ) is the first conjugate point of ∂M̂ along γ̂p (which means
that there exists a Jacobi filed Y along γ̂p satisfying the initial conditions Y (0) ∈
Tp∂M̂ and ∇0Y − SνY (0) ∈ Np∂M̂ ) or there exists a foot point p̂ ∈ ∂M̂ \ {p} on ∂M̂
of γ̂p(T ) (where for a point q ∈ M̂ , a point p̃ ∈ ∂M̂ is called a foot point on ∂M̂ of q if
d
M̂
(q, p̃) = d

M̂
(q, ∂M̂)). We put

D
∂M̂

:= exp⊥
({
tνp : t ∈ [0, c(p)) and p ∈ ∂M̂

})
,

Cut∂M̂ := exp⊥
({
c(p)νp : p ∈ ∂M̂ such that c(p) < +∞

})
,

where Cut∂M̂ is called the cut locus of the boundary ∂M̂ . Then, it follows that Int(M) =(
D
∂M̂

\ ∂M̂
)
tCut∂M̂ and

{
tνp : t ∈ [0, c(p)) and p ∈ ∂M̂

}
is the maximal domain

where exp⊥ is a diffeomorphism.
Finally, if p ∈ ∂M̂ be a foot point on ∂M̂ of a point q ∈ Int(M̂), then there ex-
ists a unique curve σ : [0, l] → M parametrized in arclength from p to q such
that d

M̂

(
σ(s), σ(t)

)
= |t − s| for every s, t ∈ [0, l] and coincide with γ̂p, where

l = d
M̂
(q, ∂M̂).

Step 3 – Outer rigidity. Suppose that Φ′
β(s0) = 0, for some s0 > 0. Then, it follows

from identity (2.45) together with formula (2.28), that(
β − n− 2

n− 1

)∥∥∇‖∇φ‖
∥∥2 ≡ 0 , ‖∇dφ‖2 − n

n− 1

∥∥∇‖∇φ‖
∥∥2 ≡ 0

in {φ ≥ s0} \ Crit(φ). These equalities imply ∇dφ ≡ 0 in {φ ≥ s0}, as ∇dφ is a
smooth function and µ

(
Crit(φ)

)
= 0, consequently ‖∇φ‖2 ≡ a2 with a > 0, since

{φ ≥ s0} is connected. Then, s0 is a regular value of φ and {φ ≥ s0}, with the
induced Riemannian metric, is a noncompact, connected and complete Riemannian
manifold, with compact and totally geodesic boundary (since ∇dφ ≡ 0 in {φ = s0}
and its second fundamental form is related to the g–Hessian of φ by formula (2.16))
and having Ric ≥ 0 (by the first line of system (2.14), applying the Cauchy–Schwarz
inequality). Therefore, by [42, Theorem C], we obtain that the level set {φ = s0} is
connected and that {φ ≥ s0} is isometric to the product [0,+∞)× {φ = s0}. More-
over, this isometry from the product [0,+∞)× {φ = s0} to {φ ≥ s0} is determined
by the normal exponential map of the boundary {φ = s0}, which in this case it is
a diffeomorphism (see [42]). Finally, we prove that φ is an affine function of ρ on
{φ ≥ s0}, i.e. there exist a, b ∈ R such that φ = aρ + b. First, we notice that every
integral curve γp of ∇φ outgoing from a point p of {φ = s0} is defined on the in-
terval [0,+∞) and it is contained in {φ ≥ s0}, by the completeness and ‖∇φ‖ > 0.
Then, φ ◦ γp(t) = a2t + s0 for every t ∈ [0,+∞) and all the curves γp realize the
distance between the hypersurfaces {φ = s0} and {φ = s1} with s1 > s0. Indeed, for
every curve σ : [0, l] → {φ ≥ s0} parametrized by arc–length and joining a point of
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{φ = s0} to a point of {φ = s1}, we have

Lg(σ) =

l∫
0

‖σ̇(τ)‖ dτ ≥
∣∣∣∣

l∫
0

1

a
g
(
σ̇(τ),∇φ (σ(τ))

)
dτ

∣∣∣∣ = 1

a
|φ ◦ σ(l)− φ ◦ σ(0)|

= at = Lg
(
γσ(0)|[0,t]

)
,

where s1, s0 and t satisfy s1 = a2t+ s0.
Since ν = (1/a)∇φ is the (inward–pointing) unit normal vector field along the
boundary {φ = s0} and we know that the normal exponential map is a diffeo-
morphism, then the point exp⊥(tνp) has distance from {φ = s0} equal to t and p
is the unique point of {φ = s0} that realizes such distance, as said before, therefore
exp⊥(tνp) coincides with γp(t/a) (recall the last part of the above discussion on the
properties of the normal exponential map), by the properties of the integral curves
γp̂ for p̂ ∈ {φ = s0}. Hence,

φ
(
exp⊥(tνp)

)
= φ ◦ γp(t/a) = at+ s0 = aρ

(
exp⊥(tξp)

)
+ s0 .

This shows that φ is an affine function of ρ on {φ ≥ s0}.

While the previous proposition gives an outer rigidity result, the following corol-
lary provides a “global” rigidity result.

Corollary 2.1.8. Let (M, g, u) be a sub–static harmonic triple, let g and φ be the metric and
the function defined by formulas (2.11) and let Φβ : [0,∞) → R be the function defined
by formula (2.44), for every β > n−2

n−1 . If Φβ is constant for some β > n−2
n−1 , then ∂M

is connected and (M, g) is isometric to
(
[0,+∞) × ∂M, dρ ⊗ dρ + g∂M ), where ρ is the

g–distance function to ∂M and φ is an affine function of ρ.

Proof. As Φ′
β(s) = 0, for every s > 0, by identity (2.45) and formula (2.28), the fol-

lowing integral∫
{φ>s}

‖∇φ‖β−2

{(
β − n− 2

n− 1

)∥∥∇‖∇φ‖
∥∥2+[‖∇dφ‖2− n

n− 1

∥∥∇‖∇φ‖
∥∥2]+Q(∇φ,∇φ)

}
dµ

is zero for every s > 0. In turn, the monotone convergence theorem implies that∫
M

‖∇φ‖β−2

{(
β − n− 2

n− 1

)∥∥∇‖∇φ‖
∥∥2+[‖∇dφ‖2− n

n− 1

∥∥∇‖∇φ‖
∥∥2]+Q(∇φ,∇φ)

}
dµ

is zero, too. Then, one has(
β − n− 2

n− 1

)∥∥∇‖∇φ‖
∥∥2 ≡ 0 , ‖∇dφ‖2 − n

n− 1

∥∥∇‖∇φ‖
∥∥2 ≡ 0

in M \ Crit(φ), by the Kato inequality for harmonic functions (2.27) and by (2.24).
Consequently, ∇dφ ≡ 0 in M , therefore ‖∇φ‖2 ≡ a2 with a > 0 and Ric ≥ 0 by the
continuity of the Ricci tensor. The same argument of the proof of the outer rigidity
in Proposition 2.1.7 implies that ∂M is connected and (M, g) is isometric to(

[0,+∞)× ∂M, dρ⊗ dρ+ g∂M )

where ρ is the g–distance to ∂M and φ is an affine function of ρ.
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We are now ready to prove Theorem 2.1.1. Also in this case we proceed by steps.
Step 1 – Continuity, differentiability, monotonicity and convexity. Let g and φ be the
metric and the function defined by formulas (2.11) and let Φβ : [0,∞) → R be the
function defined by formula (2.44), for every β > n−2

n−1 . Notice that

Fβ(τ) = 2
β

n−2
−1Φβ

(
log

(√
τ + 1 +

√
τ − 1√

τ + 1−
√
τ − 1

))
,

for every τ ∈ [1,+∞). Then, by Theorem 2.1.7, Fβ is continuous in [1,+∞) and
continuously differentiable in (1,+∞) with

F ′
β(τ) =

2
β

n−2
−1

√
τ2 − 1

Φ′
β

(
log

(√
τ + 1 +

√
τ − 1√

τ + 1−
√
τ − 1

))
≤ 0 . (2.50)

The convexity of Fβ is a consequence of its continuity and of the fact that F ′
β is

nondecreasing in (1,+∞), which follows from formula (2.49) after observing that

sinh

(
log

(√
τ + 1 +

√
τ − 1√

τ + 1−
√
τ − 1

))
=
√
τ2 − 1

and that the function log
(√

τ+1+
√
τ−1√

τ+1−
√
τ−1

)
is nondecreasing.

Step 2 – Outer rigidity. Let us assume that there exists τ0 ∈ (1,∞) such that F ′
β(τ0) =

0, for some β > n−2
n−1 . Then, equality (2.50) implies

Φ′
β(s0) = 0 with s0 = log

(√
τ0 + 1 +

√
τ0 − 1√

τ0 + 1−
√
τ0 − 1

)
.

Therefore, it follows from Theorem 2.1.7 that

({φ ≥ s0}, g) ∼=
(
[0,+∞)× {φ = s0}, dρ⊗ dρ+ g{φ=s0}

)
,

where the symbol ∼= means that the Riemannian manifolds are isometric, ρ is the
g–distance function from {φ = s0} and

φ = (n− 2)(2C)−
1

n−2 ρ+ s0 ,
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by virtue of the fact that ‖∇ρ‖ ≡ 1, together with limit (2.19). Then, we have the
following isometries

p∈
(
{φ ≥ s0}, g

)

(ρ, q)∈
(
[0,+∞)× {φ = s0}, dρ⊗ dρ+ g{φ=s0}

)

(
φ =

n− 2

(2C)
1

n−2

ρ+ s0, q

)
∈
(
[s0,+∞)× {φ = s0},

(2C)
2

n−2

(n− 2)2
dφ⊗ dφ+ g{φ=s0}

)

(
u = tanh(φ/2), q

)
∈
(
[t0, 1)× {u = t0},

22
n−1
n−2 C

2
n−2

(n− 2)2(1− u2)2
du⊗ du+ g{u=t0}

)
.

where t0 = tanh(s0/2).
Here, the map p → (ρ, q) associates to every point p of {φ ≥ s0} the pair having
as first coordinate the g–distance of p from {φ = s0} and as second coordinate the
point q of {φ = s0} that realizes such distance, or equivalently, the map associating
to every point p of {u ≥ t0} the pair having as first coordinate the g–distance of p
from {u = t0} and as second coordinate the point q of {u = t0} that realizes such
distance (by virtue of the fact that {φ ≥ s0} = {u ≥ t0} and {φ = s0} = {u = t0}).
Then, in view of equality (2.10) and with the same notation as above, we have the
isometries

p∈
(
{u ≥ t0}, g

)

(u, q)∈
(
[t0, 1)× {u = t0},

22
n−1
n−2 C

2
n−2

(n− 2)2(1− u2)2
n−1
n−2

du⊗ du+ (1− u2)−
2

n−2 g{u=t0}

)

(
r =

(
2C

1− u2

) 1
n−2

, q

)
∈
(
[r0,+∞)× {r = r0},

dr ⊗ dr

1− 2Cr2−n
+ (2C)−

2
n−2 r2g{r=r0}

)
,

(2.51)

where r0 =
(

2C
1−t20

) 1
n−2 . Then, by a straightforward computation, it follows

|Riem|2(p)= (2C)
4

n−2

r4(p)

∣∣∣∣Riem g{r=r0}
+
1− 2Cr2−n

2
n

n−2 C
2

n−2

g{r=r0} ? g{r=r0}

∣∣∣∣2
g{r=r0}

(q) +
c2

r2n(p)
,

(2.52)

where c2 is a suitable positive constant, q is the point of {r = r0} that realizes the g–
distance of p from {r = r0} and g{r=r0} ? g{r=r0} is the (0, 4)–tensor field on {r = r0}
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given by the Kulkarni–Nomizu product

g{r=r0} ? g{r=r0} (X,Y, Z,W ) = 2g{r=r0} (X,Z) g{r=r0} (Y,W )

− 2g{r=r0} (X,W ) g{r=r0} (Y, Z)

for everyX,Y, Z,W vector fields on {r = r0}. Now, denoting by Θ the isometry from
{u ≥ t0} to [r0,+∞)×{r = r0} introduced by formula (2.51), for every q0 ∈ {r = r0}
it follows from equality (2.52) that

lim
r→+∞

(2C)−
4

n−2 r4 |Riem|2
(
Θ−1(r, q0)

)
=

∣∣∣∣∣Riem g{r=r0}
+
(2C )−

2
n−2

2
g{r=r0} ? g{r=r0}

∣∣∣∣∣
2

g{r=r0}

(q0) .

(2.53)

At the same time, we have

lim
r→+∞

r4 |Riem|2
(
Θ−1(r, q0)

)
= 0 , (2.54)

by observing that

|Riem| = O(|x|−τ−2) and
r

|x|
→ 1 at ∞

for any AF coordinate chart (x1, . . . , xn) of order τ > n−2
2 , which are consequences

of formulas (1.18) and (2.3), respectively.
Combining limits (2.53) and (2.54), the arbitrariness of the point q0 in {r = r0} gives

Riem g{r=r0}
= − (2C )−

2
n−2

2
g{r=r0} ? g{r=r0} .

Hence,
(
{r = r0}, g{r=r0}

)
is a complete (n− 1)–dimensional Riemannian manifold

with constant (sectional) curvature (2C )−
2

n−2 . Consequently, being all the level sets
{u = t} diffeomorphic to {u = t0} for t > t0 and to Sn−1 for t sufficiently to close to
1, the set {r = r0} = {u = t0} is simply connected. Therefore, from [25, Section 3.F]
it follows (

{r = r0}, g{r=r0}
) ∼= (Sn−1, (2C )

2
n−2 gSn−1) ,

hence, we conclude

({u ≥ t0}, g) ∼=
(
[r0,+∞)× Sn−1,

dr ⊗ dr

1− 2Cr2−n
+ r2gSn−1

)
.

2.2 A capacitary Riemannian Penrose inequality

A straightforward application of the monotonicity of Fβ leads to the following geo-
metric inequality.

Theorem 2.2.1 (Capacitary Riemannian Penrose inequality). Let (M, g, u) be a sub–
static harmonic triple with connected boundary having associated boundary capacity

C =
1

(n− 2)|Sn−1|

∫
∂M

|∇u| dσ ,
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as defined in formula (2.3). Then

C ≥ 1

2

(
|∂M |
|Sn−1|

)n−2
n−1

. (2.55)

Moreover, the equality holds if and only if (M, g) is isometric to the (exterior spatial) Schwarzschild
manifold of mass C.

Proof. The monotonicity of Fβ in (1,+∞) together with its continuity in [1,+∞),
given by Theorem 2.1.1, imply

Fβ(1) ≥ lim
τ→+∞

Fβ(τ) , (2.56)

for every β > n−2
n−1 . As explained at the beginning of this chapter, just before for-

mula (2.2), we have the |∇u| attains a positive constant value on ∂M , which is con-
nected. Then, from equality (2.3), it follows

|∇u| ≡ (n− 2)C |Sn−1|
|∂M |

on ∂M ,

hence,

Fβ(1) =
2β

n−1
n−2

[
(n− 2)C |Sn−1|

]β+1

|∂M |β
. (2.57)

Now, we know by the proof of Lemma 2.1.3 that

|∇u|
(1− u2)

n−1
n−2

−→ 2−
n−1
n−2 (n− 2)C− 1

n−2 at ∞ .

Therefore, fixed ε > 0, there exists τ0 > 1 such that

|∇u| ≥ (1− u2)
n−1
n−2

(
2−

n−1
n−2 (n− 2)C− 1

n−2 − ε
)

in
{
u ≥

√
τ0−1
τ0+1

}
and the level sets

{
u =

√
τ−1
τ+1

}
are regular for all τ ≥ τ0. Conse-

quently, for every τ ≥ τ0 we have

Fβ(τ) = (1 + τ)β
n−1
n−2

∫
{
u=

√
τ−1
τ+1

}|∇u|β+1 dσ

≥ (1 + τ)β
n−1
n−2

∫
{
u=

√
τ−1
τ+1

}(1− u2)β
n−1
n−2

(
2−

n−1
n−2 (n− 2)C− 1

n−2 − ε
)β

|∇u| dσ

= 2β
n−1
n−2

(
2−

n−1
n−2 (n− 2)C− 1

n−2 − ε
)β∫
∂M

|∇u| dσ

= 2β
n−1
n−2 (n− 2)C

(
2−

n−1
n−2 (n− 2) C− 1

n−2 − ε
)β

|Sn−1| ,

where in the second equality we used property (2.6). In particular,

lim
τ→+∞

Fβ(τ) ≥ 2β
n−1
n−2 (n− 2)C

(
2−

n−1
n−2 (n− 2) C− 1

n−2 − ε
)β

|Sn−1| ,
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thus, the arbitrariness of ε > 0 implies

lim
τ→+∞

Fβ(τ) ≥ (n− 2)β+1C1− β
n−2 |Sn−1| .

In a similar way we can obtain the reverse inequality, then we conclude

lim
τ→+∞

Fβ(τ) = (n− 2)β+1C1− β
n−2 |Sn−1| . (2.58)

Putting together formulas (2.56), (2.57) and (2.58), we obtain inequality (2.55).
Concerning the rigidity statement, first we observe that if (M, g) is isometric to the
Schwarzschild manifold of mass m > 0, then the right–hand and left–hand sides of
inequality (2.55) are both equal to m, by straightforward computations.
Suppose now that the equality holds in (2.55). Then, for every β > n−2

n−1 , the function
Fβ is constant. In turn, Φβ is also constant, being

Φβ(s) = 21−
β

n−2 Fβ

(
1 + tanh2

(
s
2

)
1− tanh2

(
s
2

)) .
Hence, from Corollary 2.1.8, it follows

(M, g) ∼=
(
[0,+∞)× ∂M, dρ⊗ dρ+ g∂M ) ,

where ρ is the g–distance to ∂M and φ is an affine function of ρ. Thus, (M, g) is
isometric to the Schwarzschild manifold with mass C, with a slight refinement of the
argument in the proof of the outer rigidity in Theorem 2.1.1 (notice that the argument
for the outer rigidity in Theorem 2.1.1 give us a diffeomorphism between the man-
ifolds without boundary, composing it with the diffeomorphism (1.12), we obtain a
map that can be extended also on the boundaries, which is the wanted isometry).

2.3 A uniqueness theorem for sub–static manifolds

Using the positive mass theorem [54, 79] for every dimension n ≥ 3, more precisely
a consequence of it contained in [35, Theorem 1.5], one can prove the following
uniqueness statement. We remark that then, the capacitary Riemannian Penrose in-
equality (2.55) is an obvious consequence, thus, such inequality is actually relevant
in the other cases, where the hypotheses of the following theorem are not satisfied.

Theorem 2.3.1 (Uniqueness theorem for sub–static harmonic triples). Let (M, g, u)
be a sub–static harmonic triple with associated boundary capacity C, given by formula (2.3).
Assume that there exists a distinguished AF coordinate chart

(
E, (x1, . . . , xn)

)
with order

of decay τ1, with τ1 > n−2
2 , such that the scalar curvature satisfies

R = O(|x|−τ2) , (2.59)

for some τ2 > n. Then (M, g) is the (exterior spatial) Schwarzschild manifold of mass C.

Proof. By condition (2.59) and by the fact that ∇du ≡ 0 on ∂M , which in turn implies
the minimality of the boundary ∂M , we have that the hypothesis of [35, Theorem
1.5] are fulfilled, therefore

mADM ≥ C.

Now, we want to show that the reverse inequality mADM ≤ C holds, this would
imply that we are in the “rigidity case” mADM = C of [35, Theorem 1.5], therefore
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(M, g) is the Schwarzschild manifold of mass C.
To this aim, we introduce an equivalent expression for the ADM mass involving the
Ricci tensor (see [65] and references therein), given by

mADM = lim
r→+∞

− 1

(n− 2)(n− 1)|Sn−1|

∫
{|x |=r}

(
Ric− 1

2
Rg
)
(X, ν) dσ , (2.60)

where ν is the ∞–pointing unit normal vector field along {|x| = r} with respect to
g and X is the “Euclidean” conformal Killing vector field xi ∂

∂xi
. We then rewrite

characterization (2.60) as

mADM = lim
r→+∞

− 1

(n− 2)(n− 1)|Sn−1|

{ ∫
{|x |=r}

(
Ric− ∇du

u

)
(X, νe) dσ

+

∫
{|x |=r}

(
Ric− ∇du

u

)
(X, ν − νe) dσ +

∫
{|x |=r}

∇du
u

(X, ν) dσ − 1

2

∫
{|x |=r}

Rg(X, ν) dσ

}
,

where νe = xi

|x|
∂
∂xi

= 1
|x| X . As uRic−∇du ≥ 0 in system (2.1), we notice that∫

{|x |=r}

(
Ric− ∇du

u

)
(X, νe) dσ =

1

r

∫
{|x |=r}

(
Ric− ∇du

u

)
(X,X) dσ ≥ 0 . (2.61)

Then, recalling that (∇du)ij = ∂i∂ju− Γkij∂ku, where Γkij are the the Christoffel sym-
bols related to g, by formulas (1.17) and (2.2) we get

|(∇du)ij − (∇edu)ij | = |Γkij∂ku| = O
(
|x|−n−τ1

)
(∇du)ij = O(|x|−n) .

These decays, coupled with formulas (1.19) (1.22) and (1.23) yield∣∣∣∣ ∫
{|x |=r}

(
Ric− ∇du

u

)
(X, ν − νe) dσ

∣∣∣∣ ≤ C

∫
{|x |=r}

1

|x|τ1+min{τ1+2,n}−1
dσe

=
C

rτ1+min{τ1+2,n}−n −→ 0 , (2.62)

being τ1 > n−2
2 . We now observe that∫

{|x |=r}

∇du
u

(X, ν) dσ −→ −(n− 1)(n− 2)C|Sn−1| as r → +∞ , (2.63)

indeed,∫
{|x |=r}

∇du
u

(X, ν) dσ =

∫
{|x |=r}

∇du
u

(X, ν − νe) dσ +

∫
{|x |=r}

∇du−∇edu

u
(X, νe) dσ

+

∫
{|x |=r}

∇edu

u
(X, νe) dσ ,
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and one can show that the first two terms of this sum tend to 0 for r → +∞, with
similar estimates as before, while∫

{|x |=r}

∇edu

u
(X, νe) dσ −→ −(n− 1)(n− 2)C|Sn−1| as r → +∞ ,

using formulas (2.5) and (1.23). Hence, limit (2.63) is proven.
Gathering together formulas (2.61), (2.62) and (2.63), there holds

mADM ≤ C + lim sup
r→+∞

1

2(n− 2)(n− 1)|Sn−1|

∫
{|x |=r}

Rg(X, ν) dσ . (2.64)

Now, since

g(X, ν) = gijX
iνj =

(
δij +O(|x|−τ1)

)
Xi
(
νje + νj − νje

)
= ge(X, νe) +O(|x|−τ1+1) = |x|+O(|x|−τ1+1) ,

by formulas (1.23) and (2.59), we obtain∣∣∣∣ ∫
{|x |=r}

Rg(X, ν) dσ

∣∣∣∣ ≤ C

∫
{|x |=r}

1

|x|τ2−1
dσe ≤ Cr−τ2+n −→ 0 as r → +∞ .

Then, from inequality (2.64), it follows mADM ≤ C and we are done.

It remains an open question to see whether it is possible to remove the assump-
tion on the decay of R, at least in dimension n = 3.





Chapter 3

Positive mass inequality via linear
potential theory

In this chapter, a new proof of the positive mass theorem is established through
a newly discovered monotonicity formula, holding along the level sets of an ap-
propriate harmonic function, related to the minimal positive Green’s function with
a pole of a complete one–ended asymptotically flat 3–manifold with nonnegative
scalar curvature and sufficiently simple topology.

3.1 The positive mass theorem

Arnowitt, Deser and Misner in [5] conjectured that the ADM mass, measured along
a spacelike hypersurface in a physical spacetime modeling an isolated gravitational
system, is nonnegative (and zero only if the spacetime is “empty" of matter). The
metric of any physical spacetime is a solution of the Einstein’s equation

Ric− 1

2
Rg =

8πG

c4
T

where T is the energy–momentum tensor which, in realistic physical models, satisfies
a certain positivity condition, called dominant energy condition (for instance, it implies
that the matter cannot travel faster than light, see [33, Section 4.3]). In particular, to-
tally geodesic spacelike slices inside a spacetime modeling an isolated gravitational
system such that the dominant energy condition holds, have nonnegative scalar cur-
vature. Then, one case of the ADM conjecture is the following.

Theorem 3.1.1 (Positive mass theorem). Let (M, g) be a 3-dimensional, complete, one–
ended asymptotically flat manifold with nonnegative scalar curvature. Then, the ADM mass
of (M, g) is nonnegative

mADM ≥ 0.

Moreover, mADM = 0 if and only if (M, g) is isometric to (R3, gR3).

Before proceeding with our proof this theorem, we mention that since the origi-
nal work of Schoen and Yau, in which they used minimal surfaces techniques, sev-
eral other approaches have been proposed to prove this relevant result. Far from
being complete and referring the reader to [43] for a comprehensive survey on this
topic, we just mention that the first alternate proof was found by Witten [87] (see
also [69]), using harmonic spinors. Another route to the positive mass theorem was
subsequently provided by the Huisken and Ilmanen via the weak inverse mean cur-
vature flow [37]. Yet another proof of the positive mass theorem has been recently
proposed by Li [52], using the Ricci flow. Finally, in a very recent preprint, Bray,
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Kazaras, Kuhri and Stern [12] were able to provide a new argument, based on the
study of the level sets of linearly growing harmonic functions. This latter approach
turned out to be flexible enough to also allow for the treatment of the “spacetime
case" (see [11,34]) and together with some of the computations carried out in [39,40],
it is possibly the method closest to ours.

Our proof of the positive mass theorem follows from a monotonicity result hold-
ing along the level sets of an appropriate function, related to the positive minimal
Green’s function Go with pole o in a 3–dimensional complete one–ended AF mani-
fold (M, g), for an arbitrary point o ∈ M . We start discussing its existence, noticing
that the condition of minimality directly implies the uniqueness.
Since (M, g) is a one–ended AF manifold, there exist a bounded open subset Ω con-
taining o with smooth boundary and a positive smooth function ϕ, defined an open
set containing M \ Ω, that is superharmonic in M \ Ω, identically 1 on ∂Ω and 0 at
infinity (see the proof of Proposition 1.4.12). Then, we consider a cover {Ωk}k∈N of
M with bounded open sets, having smooth boundary and satisfying the following
two conditions: Ω ⊂⊂ Ω0 and Ωk ⊂⊂ Ωk+1 for every k ∈ N. Afterwards, we con-
struct a nondecreasing sequence of functions, {Gk}k∈N, where each Gk is a positive
Green kernel of Ωk with pole at o, i.e. Gk is a positive function in Ωk \ {o} satisfying
the following conditions

∆Gk = −δo in Ωk and lim
p→q

Gk(p) = 0 for all q ∈ ∂Ωk,

(we refer to [36, Definition 3.9, Lemma 3.15, Theorem 3.19, Theorem 3.25] for the
existence of such a sequence {Gk}k∈N). By Harnack principle (see [36, Section 2] and
references therein), Go := limk→+∞ Gk is either harmonic in M \ {o} or identically
+∞. To see that Go is not identically +∞, it is sufficient to show that Lk := max∂Ω Gk
(greater than zero, as Gk is a smooth, positive function in Ωk \ {o}) does not go to
+∞. Now, if by contradiction Lk → +∞ (or if an arbitrary subsequence tends to
+∞), then there should exist a subsequence of {L−1

k Gk}k∈N that converges pointwise
to 1 in M \ {o}. Indeed, one has

0 ≤ L−1
k Gk ≤ L−1

k [sup
Ω(r)

Gk − inf
Ω(r)

Gk] + L−1
k inf

Ω(r)
Gk ≤ L−1

k [sup
Ω(r)

Gk − inf
Ω(r)

Gk] + 1 , (3.1)

where Ω(r) := Ω \ Br(o) for r > 0 sufficiently small, by noticing that minΩ(r) Gk =
min∂Ω Gk, due to the fact that

inf
Ω \ {o}

Gk = min
∂Ω

Gk ,

from the maximum principle (recall that Gk(p) → +∞ for p → o). Then, since the
sequence {Gk}k∈N has uniformly bounded oscillations in any compact subset K of
M \ {o} for sufficiently large k such that K ⊆ Ωk, [51, Lemma 1] and Lk → +∞, the
sequence {L−1

k Gk}k∈N is locally uniformly bounded in Ω \ {o} and as a consequence
of elliptic Hölder estimates in [43, Theorem A.6], it is also locally equicontinuous in
Ω\{o}, therefore, up to a subsequence, it converges uniformly on compact subsets of
Ω\{o} to a harmonic function G which is bounded between 0 and 1, by formula (3.1).
Consequently, G has a removable singularity at o, see [27] and can be extended to a
bounded harmonic function on all Ω, still denoted by G. Now, the function G admits
a maximum in o, by virtue of the fact that each L−1

k Gk assumes maximum in Ω(r) on
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the interior boundary ∂Br(o) as

max
Ωk\Br(o)

L−1
k Gk = max

∂Br(o)
L−1
k Gk ,

by the maximum principle (recall that L−1
k Gk is a positive function in Ωk \ {o} and

L−1
k Gk ≡ 0 on ∂Ωk). Then, G in Ω is equal to a constant γ ∈ [0, 1], again by the

strong maximum principle. Notice that {L−1
k Gk}k∈N is locally uniformly bounded

in M \ Br(o), since 0 ≤ L−1
k Gk ≤ L−1

k max∂Br(o) Gk and L−1
k Gk converges uniformly

to γ on ∂Br(o). Similarly as before, up to a subsequence, {L−1
k Gk}k∈N converges

uniformly on compact subsets of M \ Br(o), therefore it converges uniformly on
compact subsets of M \ {o} to a harmonic function, which we will still denote by G
(being its harmonic extension). Now, since G is a constant in Ω \ Br(o), one obtains
that G is constant and equal to γ on allM . Let us show that γ = 1. Being ∂Ω compact,
there exist a sequence {pk} ⊆ ∂Ω and a point p ∈ ∂Ω, such that L−1

k Gk(pk) = 1 and
pk → p. Consequently, γ = G(p) = 1, by the uniform convergence of {L−1

k Gk}k∈N on
∂Ω, together with the continuity of G.
We are then ready to show the contradiction, indeed, observing first that ϕ ≥ L−1

k Gk
in Ωk\Ω by the maximum principle (since the inequality is trivially true on its bound-
ary) and later passing pointwise to the limit, we have ϕ ≥ 1 in M \ Ω, which is not
possible.
Thus, Go is a positive harmonic function in M \ {o}, more precisely, it satisfies
∆Go = −δo in M (arguing as [50, p. 198–199]) and tends to 0 at ∞, since Go ≤ Lϕ in
M \ Ω, where L is the limit of a converging subsequence of the bounded sequence
{Lk}k∈N. Moreover, there hold ∣∣∣Go − 1

4πr

∣∣∣ = o(r−1) (3.2)∣∣∣∇Go +
1

4πr2
∇r
∣∣∣ = o(r−2) (3.3)∣∣∣∇dGo − 1

4πr2

( 2

r
dr ⊗ dr −∇dr

)∣∣∣ = o(r−3) (3.4)

where r stands for the distance function from o in (M, g), by [57, Appendix] (there,
these formulas are proven for every G distributional solution of ∆G = −δo in an
open set U ⊆M containing o).
Since a comparison theorem holds for Green kernels (see [58, Corollary 2.6]), Go is
unique, in the sense that it is independent by the particular exhaustion and minimal
among all positive distributional solutions of the equation ∆G = −δo in M (as a
direct consequence of the fact that (1 + ε)G ≥ Gk on Ωk \ {o}, for every G positive
distributional solution of ∆G = −δo on M and for every ε > 0, by the maximum
principle and the behavior near o of these functions).
Finally, we recall the property ∫

{Go=τ}

|∇Go|dσ = 1 (3.5)

for every regular value τ of Go, by arguing as in [58, Section 2] (with ψ ≡ 1) and
keeping into account the convergence of Go to 0 at ∞ (together with the density of
C∞
c (M) in Lipc(M)).

We now state the monotonicity result that will imply the positive mass inequality.
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Theorem 3.1.2. Let (M, g) be a 3-dimensional, complete, one–ended AF manifold with
nonnegative scalar curvature and satisfying H2(M ;Z) = {0}. Let u be the distributional
solution of {

∆u = 4πδo inM

u→ 1 at ∞
(3.6)

for some o ∈M , given by u = 1− 4πGo, where Go is the minimal positive Green’s function
Go with pole at o which tends to 0 at ∞.
Let F : (0,+∞) → R be the function defined as

F (t) = 4πt− t2
∫

{u=1− 1
t
}

|∇u|H dσ + t3
∫

{u=1− 1
t
}

|∇u|2 dσ , (3.7)

where H is the mean curvature of the surface Σt = {u = 1− 1/t} \Crit(u), computed with
respect to the ∞–pointing unit normal vector field ν = ∇u/|∇u | and σ is the 2–Hausdorff
measure of (M, g). Then F coincides a.e. with a nondecreasing locally absolutely continuous
function on (0,+∞), still denoted by F , such that

F ′(t) = 4π +

∫
{u=1− 1

t
}

[
− RΣt

2
+

|∇Σt |∇u ||2

|∇u|2
+

R

2
+

|
◦
h|2

2
+

3

4

(
2 |∇u|
1− u

−H

)2 ]
dσ

(3.8)

a.e. in (0,+∞), in particular, at all values of t such that 1− 1/t is a regular value of u.

Before to proceed with the proof of this theorem, we list some useful properties
of the function u and we discuss the well–definition of the function F .

The function u is smooth on M \ {o}, tends −∞ as p → o and is proper (as a
function from M \ {o} to (−∞, 1)). In particular, its level sets are compact. It fol-
lows then from [32, Theorem 1.7] that they also have finite 2–dimensional Hausdorff
measure. At same time, the set Crit(u) of the critical points of u has locally finite
1–dimensional Hausdorff measure (see for instance [31, Theorem 1.1]) and the set N̂
of the critical values of u has zero Lebesgue measure by Sard’s theorem, whereas the
set of regular values of u is open.
A key fact in the proof of the monotonicity is that the regular level sets of u are con-
nected. Here is where the assumption H2(M ;Z) = {0} comes into play. To see
this, suppose by contradiction that for some τ ∈ (−∞, 1) \ N̂ the (regular) level
set Σ = {u = τ} is given by the disjoint union of at least two connected compo-
nents, each one being a connected closed surface. Considering two of such con-
nected closed surfaces Σ′ and Σ′′, by the triviality of H2(M ;Z), we have that each
connected closed surface in (M, g) is the boundary of a bounded open domain. In
particular, there exist two bounded connected open subsets Ω′,Ω′′ ⊆ M such that
∂Ω′ = Σ′ and ∂Ω′′ = Σ′′. If o doesn’t belong to Ω′, then Ω′ is contained in M \ {o}
and by the maximum principle u must then be constant in Ω′, but this is no possible
since the level sets of u have finite 2–dimensional Hausdorff measure. Therefore, o
belongs to Ω′ and to Ω′′, in particular Ω′ and Ω′′ have nonempty intersection. Con-
sequently, Ω′ ⊆ Ω′′ or Ω′′ ⊆ Ω′, since ∂Ω′ = Σ′ and ∂Ω′′ = Σ′′ are disjoint and by the
maximum principle, u must be constant in Ω′′ \ Ω′ or in Ω′ \ Ω′′ respectively, which
is a contradiction.

Concerning the well–definition of the function F given by formula (3.7), it is suf-
ficient to observe that the integrand functions are σ–a.e. bounded on each level
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set of the function u, by virtue of the fact that the level sets of u have finite σ–
measure. To justify this sentence, one only needs to check that

∣∣|∇u|H∣∣ is bounded on
{u = τ} \ Crit(u), for every τ ∈ (−∞, 1), being σ

(
Crit(u)

)
= 0. Since u is harmonic,

H can be expressed as

H = −∇du(∇u,∇u)
|∇u|3

= −g(∇|∇u|,∇u)
|∇u|2

, (3.9)

on the open set Mo \ Crit(u), setting

Mo :=M \ {o}.

Consequently, one has ∣∣|∇u|H∣∣ ≤ |∇du(ν, ν)| ≤ |∇du| , (3.10)

where |∇u| 6= 0.

We are now ready to prove Theorem 3.1.2. For the sake of clarity, we first give a
proof under the favorable assumption that Crit(u) = Ø, then we proceed with the
proof in the general case.

Proof of Theorem 3.1.2 in the absence of critical points. In this case, all of the level sets of
u are regular and diffeomorphic between them, in turn the function F is everywhere
continuously differentiable in its interval of definition. We claim that F ′(t) ≥ 0 for
every t ∈ (0,+∞). We start observing that

d

dt

∫
{u=1− 1

t
}

|∇u|2 dσ = − 1

t2

∫
{u=1− 1

t
}

|∇u|H dσ ,

d

dt

∫
{u=1− 1

t
}

|∇u|H dσ = − 1

t2

∫
{u=1− 1

t
}

|∇u|
[
∆Σt

(
1

|∇u|

)
+

|h|2 +Ric(ν, ν)

|∇u|

]
dσ , (3.11)

where ∆Σt is the Laplace–Beltrami operator of the induced metric gΣt on Σt = {u =
1 − 1

t } and h denotes the second fundamental form of Σt, computed with respect
to ν = ∇u/|∇u|. Here, we have used the normal first variation of volume measure
and of mean curvature (see the end of Section 1.3). Now, with the help of the traced
Gauss equation (1.6), the integrand on the right hand side of equality (3.11) can be
expressed as

|∇u|
[
∆Σt

(
1

|∇u|

)
+

|h|2 +Ric(ν, ν)

|∇u|

]
=

= −∆Σt(log |∇u|) + |∇Σt |∇u||2

|∇u|2
+

R

2
− RΣt

2
+

|
◦
h|2

2
+

3

4
H2,

where RΣt and
◦
h denote the scalar curvature and the traceless second fundamental

form of Σt, respectively, whereas ∇Σt is the Levi–Civita connection of gΣt . Substitut-
ing the latter expression into formula (3.11) and using standard manipulations, one
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arrives at

F ′(t) = 4π −
∫
Σt

RΣt

2
dσ +

∫
Σt

[
|∇Σt |∇u||2

|∇u|2
+

R

2
+

|
◦
h|2

2
+

3

4

(
2 |∇u|
1− u

−H

)2 ]
dσ.

(3.12)
Now, we notice that the last summand of the right hand side is always nonnega-
tive, as the scalar curvature of (M, g) is nonnegative by assumption. The first two
summands also give a nonnegative contribution, by virtue of Gauss–Bonnet theo-
rem 1.1.2 and the discussion thereafter, as Σt is a connected closed surface for every
t ∈ (0,+∞), hence ∫

Σt

RΣt

2
dσ =

∫
Σt

KΣt dσ = 2πχ(Σt) ≤ 4π ,

where KΣt = RΣt/2 is the Gauss curvature and χ(Σt) is the Euler characteristic of
Σt.

Proof of Theorem 3.1.2 in the general case. Let us consider the vector field Y , defined as

Y =
∇|∇u|
(1− u)2

+
|∇u|

(1− u)3
∇u , (3.13)

where u is a solution of problem (3.6), then the vector field Y is well–defined on the
open set Mo \ Crit(u). With the help of Bochner formula,

1

2
∆ |∇f |2 = |∇df |2 +Ric(∇f,∇u) + g(∇∆f,∇f)

for every f ∈ C∞(M), the divergence of Y on Mo \ Crit(u) can be expressed as

div(Y ) =
|∇u|

(1− u)2

[
3 |∇u|2

(1− u)2
+

3 g(∇|∇u|,∇u)
(1− u) |∇u|

+
|∇du|2 − |∇|∇u||2 +Ric(∇u,∇u)

|∇u|2

]
,

where in the computation we used the fact that u is harmonic. By the traced Gauss
equation (1.6) and the identity

|∇du|2 = |∇u|2|h|2 + |∇|∇u||2 + |∇Σ|∇u||2 ,

one can work out an equivalent expression for div(Y ), adapted to the (regular parts
of the) level sets of u, namely

div(Y ) =
|∇u|

(1− u)2

[
− RΣ

2
+

|∇Σ|∇u||2

|∇u|2
+

R

2
+

|
◦
h|2

2
+

3

4

(
2 |∇u|
1− u

−H

)2 ]
.

Here, h,H,RΣ and ∇Σ are all referred to the regular level set of u that passes for the
point where div(Y ) is computed.
First of all, we show that div(Y ) ∈ L1

loc(Mo), keeping into account that div(Y ) is
µ–a.e. well–defined and smooth since µ

(
Crit(u)

)
= 0. Let K ⊆ Mo be a compact

set, then, by Sard’s theorem, K is contained in Ets := {1 − 1
s < u < 1 − 1

t } for some
t > s > 0 such that 1 − 1/s and 1 − 1/t are regular values of u. We consider the
non–trivial case in which the interval (1 − 1/s, 1 − 1/t) contains some critical value
of u, in particular the open subset {1 − 1/s < u < 1 − 1/t} contains critical points,
hence, the vector field Y is not well–defined on {1−1/s ≤ u ≤ 1−1/t}. To overcome
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this difficulty, we consider a pointwise nondecreasing sequence of cut–off functions
{ηk}k∈N+ such that, for every k ∈ N+, the function ηk : [0,+∞) → [0, 1] is smooth,
nondecreasing and satisfies

ηk(τ) ≡ 0 in
[
0 ,

1

2k

]
, 0 ≤ η′k(τ) ≤ 2k in

[
1

2k
,
3

2k

]
, ηk(τ) ≡ 1 in

[
3

2k
,+∞

)
.

(3.14)

Using these cut–off functions, we define for every k ∈ N+ the vector field

Yk = ηk

( |∇u|
1− u

)
Y .

It is immediate to see that all the vector fields Yk are well–defined on Mo and they
coincide with the vector field Y , defined by formula (3.13), whenever restricted to a
compact set sitting inside Mo \ Crit(u), for k large enough. Their divergence can be
computed as follows,

div(Yk) =
|∇u|

(1− u)2

{
ηk

( |∇u|
1− u

)[ 3 |∇u|2
(1− u)2

+
|∇du|2 − |∇|∇u||2

|∇u|2

]}
+

|∇u|
(1− u)2

{
ηk

( |∇u|
1− u

)[3 g(∇|∇u|,∇u)
(1− u)|∇u|

+
Ric(∇u,∇u)

|∇u|2

] }
+

|∇u|2

(1− u)3
η′k

( |∇u|
1− u

) ∣∣∣∣ ∇u
1− u

+
∇|∇u|
|∇u|

∣∣∣∣2 .
A remarkable feature of the above expression is that the last summand is nonnega-
tive. Thus, considering the function Φ : (0,+∞) → R, defined by

Φ(t) = − t2
∫

{u=1− 1
t
}

|∇u|H dσ + t3
∫

{u=1− 1
t
}

|∇u|2 dσ

which is well-defined, as Φ(t) = F (t) − 4πt in (0,+∞) and since, for large enough
k, the vector field Yk coincides with Y at the boundary of {1 − 1/s < u < 1 − 1/t},
the divergence theorem, applied to Yk on {1−1/s < u < 1−1/t} (see Remark 1.1.1),
implies

Φ(t)− Φ(s) =

∫
{1− 1

s
<u<1− 1

t
}

div(Yk) dµ ≥
∫

{1− 1
s
<u<1− 1

t
}

Pk dµ +

∫
{1− 1

s
<u<1− 1

t
}

Dk dµ , (3.15)

where we set

Pk := ηk

( |∇u|
1− u

)
P with P :=

|∇u|
(1− u)2

[
3 |∇u|2

(1− u)2
+

|∇du|2 − |∇|∇u||2

|∇u|2

]
,

Dk := ηk

( |∇u|
1− u

)
D with D :=

|∇u|
(1− u)2

[
3 g(∇|∇u|,∇u)
(1− u)|∇u|

+
Ric(∇u,∇u)

|∇u|2

]
.

Notice that the functions D and P are µ–a.e. well–defined and smooth as well as
div(Y ). Now, the functions Pk are clearly nonnegative and they pointwise converge
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monotonically to the function P IMo\Crit(u) inMo, where IMo\Crit(u) denotes the char-
acteristic function of Mo \ Crit(u). The monotone convergence theorem thus yields

lim
k→+∞

∫
{1− 1

s
<u<1− 1

t
}

Pk dµ =

∫
{1− 1

s
<u<1− 1

t
}

P dµ , (3.16)

by virtue of the fact that µ
(
Crit(u)

)
= 0. Concerning the functions Dk, they are not

necessarily positive. Indeed, in Mo \ Crit(u) the terms of D in the square brackets
are related both to the mean curvature of the regular level sets of u and to the Ricci
tensor of M and we do not have information about them. However, we know that
all the functions Dk belong to L1

loc(Mo), since

|Dk | ≤ |D | ≤ |∇u|
(1− u)2

[
3 |∇du|
1− u

+ |Ric|
]

in Mo \ Crit(u) and converge pointwise to the function D IMo\Crit(u) in Mo. Then,
D ∈ L1(Ets) and the dominated convergence theorem implies

lim
k→+∞

∫
{1− 1

s
<u<1− 1

t
}

Dk dµ =

∫
{1− 1

s
<u<1− 1

t
}

Ddµ , (3.17)

being µ
(
Crit(u)

)
= 0. As a consequence of inequality (3.15) together with lim-

its (3.16) and (3.17), we have that the sequence given by the integrals of the functions
Pk is bounded, in particular P ∈ L1(Ets). Being div(Y ) = P +D in Mo \ Crit(u), it
follows then that div(Y ) ∈ L1

loc(Mo). More precisely, we obtained

(1) 0 ≤ Pk ↑ P IMo\Crit(u) in Mo and P ∈ L1
loc(Mo);

(2) |Dk | ≤ |D | ≤ |∇u |
(1−u)2

[
3 |∇du |
1−u + |Ric|

]
in Mo \Crit(u), in particular, |D |/|∇u| ∈

L1
loc(Mo) and Dk → D IMo\Crit(u) in Mo;

(3) div(Y ) = P +D in Mo \ Crit(u) .

Now, we show that Φ ∈W 1,1
loc (0,+∞) with weak derivative given by

Φ′(t) =

∫
{u=1− 1

t
}

[
− RΣt

2
+

|∇Σt |∇u||2

|∇u|2
+

R

2
+

|
◦
h|2

2
+

3

4

(
2|∇u|
1− u

−H

)2 ]
dσ
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a.e. in (0,+∞) with an argument inspired by [8]. We consider a function χ ∈
C∞
c (0,+∞), then, we have

+∞∫
0

χ′(s)Φ(s) ds =

+∞∫
0

ds

∫
{
u=1− 1

s

}χ′
( 1

1− u

) g(Y,∇u)
|∇u|

dσ

=

1∫
−∞

dτ

∫
{
u=τ
} 1

(1− u)2
χ′
( 1

1− u

) g(Y,∇u)
|∇u|

dσ

=

∫
Mo

g

(
Y,∇

[
χ
( 1

1− u

)])
dµ

= lim
k→+∞

∫
Mo

g

(
Yk,∇

[
χ
( 1

1− u

)])
dµ

= − lim
k→+∞

∫
Mo

χ
( 1

1− u

)
div(Yk) dµ . (3.18)

Here, the third equality follows by the coarea formula (1.1), by observing that in
Mo \ Crit(u) there holds∣∣∣ 1

(1− u)2
χ′
( 1

1− u

) g(Y,∇u)
|∇u|

∣∣∣ ≤ 1

(1− u)4
‖χ′ ‖L∞(0,+∞)

[
|∇du|+ |∇u|2

1− u

]
∈ L1

loc(Mo) .

(3.19)
The fourth equality is a consequence of the dominated convergence theorem, since
Yk → Y IMo\Crit(u) pointwise in Mo and keeping into account that in Mo \Crit(u) one
has∣∣∣∣g(Yk,∇[χ( 1

1− u

)])∣∣∣∣ ≤ ∣∣∣∣g(Y,∇[χ( 1

1− u

)])∣∣∣∣ = ∣∣∣∣ |∇u|
(1− u)2

χ′
( 1

1− u

) g(Y,∇u)
|∇u|

∣∣∣∣
and formula (3.19). Finally, the last equality follows by the properties of the di-
vergence operator combined with the divergence theorem applied to χ

(
1

1−u
)
Yk on

Eba := {1 − 1
a < u < 1− 1

b}, for a, b ∈ (0,+∞) such that 1 − 1/a, 1 − 1/b are regular
values of u and suppχ ⊆ (a, b). In order to compute the last limit in formula (3.18),
we recall that∫
Mo

χ
( 1

1− u

)
div(Yk) dµ =

∫
Eb

a

χ
( 1

1− u

){
Pk + Dk +

|∇u|
1− u

η′k

( |∇u|
1− u

)
Q
}
dµ ,

(3.20)

where

Q :=
|∇u|

(1− u)2

∣∣∣∣ ∇u
1− u

+
∇|∇u|
|∇u|

∣∣∣∣2 .
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Observe that the function Q is µ–a.e. well–defined and smooth, moreover, Q ∈
L1
loc(Mo). Indeed, in Mo \ Crit(u), since there hold

Q =
|∇u|

(1− u)2

[
|∇u|2

(1− u)2
− 2 |∇u|H

1− u
+

|∇Σ|∇u||2

|∇u|2
+H2

]
≥ 0 ,

P =
|∇u|

(1− u)2

[
3 |∇u|2

(1− u)2
+

|∇Σt |∇u||2

|∇u|2
+

H2

2
+ |

◦
h|2
]

∈ L1
loc(Mo) ,

then, we obtain

Q ≤ 4P +
2|∇u|
(1− u)3

|∇du|

from formula (3.10), consequently Q ∈ L1
loc(Mo). This property of Q along with the

dominated convergence theorem yields

lim
k→+∞

∫
Eb

a

χ
( 1

1− u

) |∇u|
(1− u)

η′k

( |∇u|
1− u

)
Qdµ = 0 , (3.21)

indeed, χ
(

1
1−u
) |∇u |

(1−u) η
′
k

( |∇u |
1−u

)
Q→ 0 pointwise in Mo and

∣∣∣χ( 1

1− u

)∣∣∣ |∇u|
1− u

η′k

( |∇u|
1− u

)
Q ≤‖ χ ‖L∞(0,+∞)

|∇u|
1− u

η′k

( |∇u|
1− u

)
Q I{ 1

2k
≤ |∇u |

1−u
≤ 3

2k

}
≤‖χ‖L∞(0,+∞)

3

2k
2k Q I{ 1

2k
≤ |∇u |

1−u
≤ 3

2k

}
≤ 3 ‖χ‖L∞(0,+∞) Q ∈ L1(Eba) ,

by virtue of properties (3.14) of the cut–off functions ηk. At the same time, from the
dominated convergence theorem it also follows∫

Eb
a

χ
( 1

1− u

)
(Pk + Dk)dµ →

∫
Eb

a

χ
( 1

1− u

)
(P + D)dµ , (3.22)

by points (1) and (2) above and being χ bounded. Then, by formulas (3.18), (3.20)
and limits (3.21) and (3.22), we have

+∞∫
0

χ′(s)Φ(s) ds = − lim
k→+∞

∫
Mo

χ
( 1

1− u

)
div(Yk) dµ = −

∫
Mo

χ
( 1

1− u

)
div(Y ) dµ

= −
+∞∫
0

ds

{
χ(s)

∫
{u=1− 1

s
}

[
− RΣs

2
+

|∇Σs |∇u||2

|∇u|2
+

R

2
+

|
◦
h|2

2
+

3

4

(
2 |∇u|
1− u

−H

)2 ]
dσ

}
,

where the third equality follows by the coarea formula (1.1) by virtue of points (1),
(2) and (3) above.
Thus, Φ ∈ W 1,1

loc (0,+∞), hence F ∈ W 1,1
loc (0,+∞) with weak derivative given a.e.

by the expression in formula (3.8), as F (t) = 4πt + Φ(t). Consequently, F coincides
a.e. with a locally absolutely continuous function on (0,+∞), still denoted by F .
The weak derivative of F coincides with the classical derivative almost everywhere,
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thus, for any pair of positive real numbers s < t, we have

F (t)− F (s)

=

t∫
s

dτ

{
4π +

∫
{u=1− 1

τ
}

[
− RΣτ

2
+

|∇Στ |∇u||2

|∇u|2
+

R

2
+

|
◦
h|2

2
+

3

4

(
2 |∇u|
1− u

−H

)2 ]
dσ

}

=

∫
[s,t]\N

dτ

{
4π −

∫
{u=1− 1

τ
}

RΣτ

2
dσ +

∫
{u=1− 1

τ
}

[
|∇Στ |∇u||2

|∇u|2
+

R

2
+

|
◦
h|2

2
+

3

4

(
2|∇u|
1− u

−H

)2 ]
dσ

}
,

where
N := {τ ∈ (0,+∞) : 1− 1/τ is a critical level set of u} .

Notice that in the last identity we used the fact that N is negligible, by Sard’s theo-
rem. Then, the monotonicity of F follows by the very same considerations we made
after formula (3.12).

Combining the above theorem with some standard facts about the asymptotic
behavior of the minimal positive Green’s functions near the pole, one gets the fol-
lowing corollary.

Corollary 3.1.3. Under the assumptions of Theorem 3.1.2, we have

0 ≤ lim
t→+∞

F (t) . (3.23)

Moreover, if limt→+∞ F (t) = 0, then (M, g) is isometric to (R3, geucl).

Proof. We first claim that limt→0+ F (t) = 0. To see this fact, we recall that u is related
to the minimal positive Green’s function Go of (M, g) with pole at o, by the equality
u = 1− 4πGo. Hence, there holds ∫

{u=1− 1
t
}

|∇u| dσ ≡ 4π (3.24)

for every t ∈ (0,+∞) \ N , by identity (3.5). As a consequence of the asymptotic
behavior near the pole of Go, see formulas (3.2) (3.3) and (3.4), in a sufficiently small
neighborhood of o ∈M , the function u satisfies the bounds

C1

r
≤ 1− u ≤ C2

r
,

C3

r2
≤ |∇u| ≤ C4

r2
, |∇du| ≤ C5

r3
,

for some positive constants Ci > 0, i = 1, . . . , 5. In particular, the function u has no
critical points near o, hence 1− 1/t is a regular value of u for t > 0 sufficiently close
to 0. Combining these bounds with formulas (3.10) and (3.24), we conclude

t2
∫

{u=1− 1
t
}

|∇u|2 dσ ≤
∫

{u=1− 1
t
}

C4

r2(1− u)2
|∇u| dσ ≤ C4

C2
1

∫
{u=1− 1

t
}

|∇u| dσ ≤ 4πC4

C2
1

,

t

∫
{u=1− 1

t
}

|H| |∇u| dσ ≤
∫

{u=1− 1
t
}

|∇du|
1− u

dσ ≤ C5

C1C3

∫
{u=1− 1

t
}

|∇u| dσ ≤ 4πC5

C1C3
.
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From these estimates, the fact that F (t) → 0, as t → 0+, easily follows. Then, the
monotonicity of F yields inequality (3.23)

Let us now focus our attention on the rigidity statement. By the above discus-
sion, we have that u behaves like 1 − 1/r and ∇u behaves like ∇r/r2 in a suffi-
ciently small neighborhood of the pole o. In particular, there exists a maximal time
T such that ∇u 6= 0 in {u < 1 − 1/T}, where F is continuously differentiable.
Notice that the open set {u < 1 − 1/T} is connected, then, arguing by contradic-
tion and using inequality (3.23), one easily gets that F ′ ≡ 0 in (0, T ). In partic-
ular, all the positive summands in formula (3.12) are forced to vanish for every
t ∈ (0, T ). Then, ∇Σt |∇u| ≡ 0 implies that |∇u| = f(u), for some positive func-
tion f : (0, T ) → (0,+∞) which can actually be made explicit. Indeed, from for-
mula (3.12) one also has that H = 2f(u)/(1 − u) and it follows from equalities (3.9)
that H = −g(∇|∇u|,∇u)/|∇u|2 = −f ′(u). Hence, we have that f satisfies the ODE

f ′(u) = −2f(u)

1− u
.

Now, the only solution to this ODE which is compatible with the asymptotic behav-
ior of u and |∇u|, as u → −∞, is given by f(u) = (1 − u)2. Since u < 1 on the
whole manifold, f never vanishes, hence T = +∞ and |∇u| 6= 0 everywhere. In
particular, all the level sets of u are regular and diffeomorphic to each other. So, up
to an isometry, we have that Mo = (−∞, 1) × {u = 0}, every slice {t} × {u = 0} is
the level set {u = t} and the metric g can be written on Mo as

g =
du⊗ du

(1− u)4
+ gαβ(u,ϑ) dϑ

α ⊗ dϑβ ,

where gαβ(u,ϑ) dϑα ⊗ dϑβ represents the metric induced by g on the level sets of u.
Exploiting the vanishing of the traceless second fundamental form of the level sets in
formula (3.12), i.e. hαβ = (H/2)gαβ , in combination with equality hαβ = ∇duαβ/|∇u|
by equality (1.4), it turns out that the coefficients gαβ(u,ϑ) satisfy the following first
order system of PDE’s

∂gαβ
∂u

=
2 gαβ
1− u

,

from which one can deduce

gαβ(u,ϑ) dϑ
α ⊗ dϑβ = (1− u)−2cαβ(ϑ) dϑ

α ⊗ dϑβ .
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At the same time, the traced Gauss equation (1.6), together with Bochner formula
imply

R{u=u0} = R− 2Ric(ν, ν)− |h|2 +H2

= −2 |∇u|−2Ric(∇u,∇u) + H2

2

= |∇u|−2
[
−∆|∇u|2 + 2 |∇du|2

]
+

H2

2

= |∇u|−2
{
−∆|∇u|2 + 2

[
|h|2|∇u|2 + |∇⊥|∇u||2

]}
+

H2

2

= |∇u|−2
{
−∆|∇u|2 + 2

[
|h|2|∇u|2 +H2|∇u|2

]}
+

H2

2

= |∇u|−2
{
−∆|∇u|2 + 3H2|∇u|2

}
+

H2

2

= −∆|∇u|2

|∇u|2
+

7H2

2

= 2(1− u0)
2 ,

where we used again the fact that all the positive summands in formula (3.12) are
forced to vanish on each level set of u and equalities |∇u| = (1−u)2 and H = 2 (1−u).
Then, {u = u0} with the Riemannian metric induced by (M, g) has constant sectional
curvature (equal to (1 − u0)

2) and, by the vanishing of the Gauss–Bonnet term in
formula (3.12), it is diffeomorphic to a 2–sphere. Consequently, ({u = u0}, g{u=u0})
is isometric to (S2, (1− u0)

−2gS2) from [25, Section 3.F], thus, up to an isometry, one
has Mo = (−∞, 1)× S2 and

g =
du⊗ du

(1− u)4
+

gS2

(1− u)2
.

Then, (Mo, g) is isometric to (R3 \ {O}, geucl), being the map

(u, ϑ) ∈
(
(−∞, 1)× S2, g

)
7→
(

1

1− u
, ϑ

)
∈
(
(0,+∞)× S2, dr ⊗ dr + r2gS2

)
an isometry. However, this isometry can be extended to a homeomorphism from M
to R3 and consequently, M is simply connected. Finally, the rest of the claim follows
from the fact the manifold (M, g) is complete, simply connected and flat (that is, it
has constant zero curvature), as |Riem| is a continuous function, then it is isometric
to R3 with its standard metric (see [25, Section 3.F], for instance).

By means of Theorem 3.1.2, we present now a new proof of the positive mass
theorem 3.1.1. As we will see, it also exploits the recent result [12, Proposition 2.1],
that for every Riemannian manifold (M, g), satisfying the assumptions of the pos-
itive mass theorem 3.1.1 and having scalar curvature in L1, for every ε > 0, there
exists a Riemannian manifold (M, g) satisfying the same assumptions of (M, g) and
also the following properties: M is diffeomorphic to R3; there holds |m − m| < ε
where m and m are the ADM masses of (M, g) and (M, g) respectively; there exists
an AF coordinate chart (x1, x2, x3) such that g = (1 + m

2|x|)
4 δijdx

i ⊗ dxj .

Proof of the positive mass theorem 3.1.1. We set m = mADM and we deal the first part
of the positive mass statement, i.e., m ≥ 0. If the scalar curvature R is not in L1(M),
then m = +∞ and the inequality is obvious, hence we assume R ∈ L1(M). By [12,
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Proposition 2.1], the analysis can be reduced to the special case where the underlying
manifold M is diffeomorphic to R3 and there exists a distinguished AF coordinate
chart x = (x1, x2, x3) – called Schwarzschildian coordinate chart – in which the metric
g can be expressed as

g =
(
1 +

m

2|x|

)4
δij dx

i⊗ dxj .

By virtue of the monotonicity of the function F , given by formula (3.7), established
in Theorem 3.1.2, we have

lim
t→0+

F (t) ≤ lim
t→+∞

F (t) . (3.25)

We now claim that limt→+∞F (t) = 8πm. It is clear that combining this claim and
limt→0+ F (t) = 0, given by Corollary 3.1.3, by inequality (3.25), one easily gets m ≥
0. In order to compute the limit of F (t) as t → +∞, we need to understand the
behavior at infinity of u, in particular, we have

u = 1− 1

|x|
+

1

2|x|2
(
m+ ϕ(x/|x|)

)
+O2

(
|x|−2−α) , (3.26)

where x = (x1, x2, x3) is a Schwarzschildian coordinate chart, ϕ fulfills ∆S2ϕ = −2ϕ
and finally 0 < α < 1. This formula follows by Corollary 1.4.15, in view of iden-
tity (3.24), indeed, fixing a regular value τ ∈ (−∞, 1) of u and taken R0 > 0 suf-
ficiently large in a way that {u ≥ τ, |x| ≤ R} is a Riemannian submanifold with
boundary, given by {u = τ} t {|x| ≤ R}, for every R ≥ R0, we first apply the diver-
gence theorem to ∇u on {u ≥ τ, |x| ≤ R} and then we take the limit as R → +∞.
We then obtain

4π =

∫
{u=1− 1

t
}

|∇u| dσ = lim
R→+∞

∫
{|x |=R}

g

(
∇u, ∇|x|

|∇|x||

)
dσ = 4πC ,

where C is the constant in the asymptotic expansion

u = 1− C

|x|
+

1

2|x|2
(mC + ϕ(x/|x|)) +O2(|x|−2−α) .

Here, the limit follows by an equality analogous to formula (1.33). Thus, C is equal
to 1.
Notice that, as a first consequence of expansion (3.26), the function u has no critical
points near infinity, hence there exists t0 ∈ (0,+∞) such that 1 − 1/t is a regular
value of u for every t ≥ t0. Then, to compute the limit on the right hand side of
inequality (3.25), it is convenient to rewrite F as

F (t) =

∫
{u=1− 1

t
}

1

1− u

[
1 +

g(∇|∇u|,∇u)
(1− u) |∇u|2

+
|∇u|

(1− u)2

]
|∇u| dσ

and, by formula (3.26), we get

|∇u| = 1

|x|2

[
1− 1

|x|
(
2m+ ϕ(x/|x|)

)
+O

(
|x|−2−α) ] ,

g(∇|∇u|,∇u)
|∇u|2

= − 2

|x|

[
1− 1

2|x|
(
4m+ ϕ(x/|x|)

)
+O

(
|x|−2−α) ] ,
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therefore

lim
|x |→+∞

1

1− u

[
1 +

g(∇|∇u|,∇u)
(1− u) |∇u|2

+
|∇u|

(1− u)2

]
= 2m.

In particular, for every ε > 0, there exists tε > t0 such that whenever u(p) ≥ 1− 1/tε
one has

2m− ε ≤ 1

1− u

[
1 +

g(∇|∇u|,∇u)
(1− u) |∇u|2

+
|∇u|

(1− u)2

]
(p) ≤ 2m+ ε .

Using this fact in combination with equality (3.24), we deduce that, for every t ≥ tε,
there holds

4π(2m− ε) ≤ F (t) ≤ 4π(2m+ ε).

Therefore, we have that limt→+∞ F (t) = 8πm, hence m ≥ 0.
Concerning the rigidity statement, one of the implications is obvious, while the claim
that (M, g) and (R3, geucl) are isometric if m = 0 follows by the argument in the
original Schoen–Yau’s paper [76] (see also [43, p. 95–97 and p. 102]).





Chapter 4

ADM mass, area and boundary
capacity

In this chapter, we show two sharp comparison results for three–dimensional com-
plete one–ended asymptotically flat manifolds (M, g) with a minimal, compact and
connected boundary and with nonnegative scalar curvature, by means of two mono-
tonicity formulas holding along regular level sets of a suitable harmonic potential,
associated to the boundary of M , under the assumption that the first Betti number
of M vanishes.

Let (M, g) be a 3–dimensional, complete, one–ended asymptotically flat mani-
fold with minimal, compact and connected boundary and with nonnegative scalar
curvature. Let u ∈ C∞(M) be the solution of the following Dirichlet problem,

∆u = 0 inM

u = 0 on ∂M

u→ 1 at ∞
(4.1)

and let C > 0 be the boundary capacity of ∂M in (M, g), given by

C =
1

4π

∫
∂M

|∇u|dσ =
1

4π

∫
M

|∇u|2dµ , (4.2)

as 1 − u is the boundary capacity potential, see Corollary 1.4.13. Since u satisfies
system (4.1), by the strong maximum principle, we have

Int(M) =M \ ∂M = {0 < u < 1} .

Then, from the Hopf lemma, it follows |∇u| > 0 on ∂M , in particular, zero is a
regular value of u. Moreover, by the last condition in system (4.1), u : M → [0, 1)
is proper. Consequently, each level set of u is compact, therefore, it has finite 2–
Hausdorff measure of (M, g), see [32, Theorem 1.7]. Another consequence of the fact
that u is proper is that for every regular value t ∈ [0, 1) of u, there exists εt > 0 such
that (t − εt, t + εt) ∩ [0, 1) does not contain any critical value (the set of the critical
values of u has zero Lebesgue measure, by Sard’s theorem). By Corollary 1.4.13 we
also know that in a fixed AF coordinate chart (x1, x2, x3) of order τ , τ > 1/2, one has

u = 1− C
|x|

+O2(|x|−1−α) (4.3)

for some 1/2 < α < min{τ, 1} (where the choice α > 1/2 will be clear in Section 4.1,
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due to the computations of some limits). A consequence of formula (4.3) is the com-
pactness of Crit(u) which implies that Crit(u) has finite 1–dimensional Hausdorff
measure, see [31, Theorem 1.1]. The divergence theorem (see Remark 1.1.1), together
with Sard’s theorem imply ∫

{u=s}

|∇u| dσ = 4πC (4.4)

for a.e. s ∈ [0, 1), in particular, any s regular value for u.

4.1 Monotonicity formulas and rigidity statements

Proposition 4.1.1. Let (M, g) be a 3–dimensional, complete, one–ended asymptotically flat
manifold with a minimal, compact and connected boundary and with nonnegative scalar
curvature. Let u ∈ C∞(M) be the solution of Dirichlet problem (4.1) and let C > 0 be the
boundary capacity of ∂M in (M, g) given by formula (4.2). Moreover, let Ĝ : [C/2,+∞) →
R be the function defined as

Ĝ(t) = 4πt+
t3

C2

(
1 +

C
2t

)3(
1− 3C

2t

)∫
Σt

|∇u|2 dσ− t
2

C

(
1 +

C
2t

)2 ∫
Σt

|∇u|H dσ, (4.5)

where Σt is the level set of u, given by

Σt :=
{
u =

(
1− C

2t

)
/
(
1 +

C
2t

)}
,

H is the mean curvature of Σt \ Crit(u) with respect to the ∞–pointing unit normal vector
field ν = ∇u/|∇u | and σ is 2–Hausdorff measure of (M, g). Then, there hold

Ĝ (C/2) = 2C

[
π −

∫
∂M

|∇u|2 dσ

]
, (4.6)

lim sup
t→+∞

Ĝ(t) ≤ 8π (mADM − C) . (4.7)

Finally, if all regular level sets of u are connected, then Ĝ is nondecreasing on the set T̂ ,
given by

T̂ :=
{
t ∈ [C/2,+∞) :

(
1− C

2t

)
/
(
1 +

C
2t

)
is a regular value of u

}
. (4.8)

We observe that the function Ĝ is well–defined, indeed, it is sufficient to notice
that the integrand functions are σ–a.e. bounded on each level set of u, since such
level sets have finite σ–measure. To justify this claim, one only needs to check that
||∇u|H| is bounded on {u = s}\Crit(u), where Crit(u) is the set of the critical points
of u, for every s ∈ [0, 1), being σ

(
Crit(u)

)
= 0. As u is harmonic, H can be expressed

by

H = −∇du(∇u,∇u)
|∇u|3

= −g(∇|∇u|,∇u)
|∇u|2

. (4.9)

Consequently, one has ∣∣|∇u|H∣∣ ≤ |∇du(ν, ν)| ≤ |∇du| , (4.10)
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wherever |∇u| 6= 0.
Finally, we notice that T̂ differs from [C/2,+∞) only for a negligible set and it is

a disjoint countable union of open intervals and of only one interval of type [a, b),
with a = C/2, as it is an open set of [C/2,+∞).

Proof. The function Ĝ is easily seen to satisfy equality (4.6), now, we check for-
mula (4.7). By virtue of the compactness of Crit(u), there exists t0 ∈ [C/2,+∞)

such that every t ∈ [t0,+∞) belongs to T̂ , therefore, we reduce ourselves to work on
the interval [t0,+∞). We break Ĝ in two pieces, namely

Ĝ1(t) = 4πt +
t3

C2

(
1 +

C
2t

)3 ∫
Σt

|∇u|2 dσ − t2

C

(
1 +

C
2t

)2 ∫
Σt

|∇u|H dσ , (4.11)

Ĝ2(t) = − 3t2

2C

(
1 +

C
2t

)3 ∫
Σt

|∇u|2 dσ .

It is convenient, in order to compute the limit of Ĝ2(t), as t → +∞, to rewrite the
function as

Ĝ2(t) = − 3C
2

(
1 +

C
2t

)∫
Σt

|∇u|2

(1− u)2
dσ . (4.12)

By the expansion (4.3) of u, we have

|∇u| = C
|x|2

[
1 +O

(
|x|−α

) ]
, (4.13)

therefore,

lim
|x |→+∞

|∇u|
(1− u)2

= C−1 . (4.14)

Thus,
lim

t→+∞
Ĝ2(t) = −6πC . (4.15)

Indeed, by virtue of limit (4.14), for every ε > 0 there exists tε > t0 such that

C−1 − ε ≤ |∇u|
(1− u)2

≤ C−1 + ε

in {u ≥ (1 − C
2tε

)/(1 + C
2tε

)}. Using this fact in combination with formula (4.4), for
every t ≥ tε, there holds

4π − 4πCε ≤
∫
Σt

|∇u|2

(1− u)2
dσ ≤ 4π + 4πCε .

Then, the integral term in expression (4.12) of Ĝ2(t) converges to 4π, as t → +∞,
consequently the limit (4.15) holds. In order to compute the upper limit of Ĝ1, given
by formula (4.11), we introduce an auxiliary function ρ :M → [C/2,+∞),

ρ =
C
2

1 + u

1− u
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called Euclidean fake distance. This name is justified by the fact that

ρ = |x|+O2(|x|1−α) . (4.16)

Then, the expression of Ĝ1 becomes

Ĝ1(t) =
t

4

(
1 +

C
2t

){
16π

(
1 +

C
2t

)−1

−
∫

{ρ=t}

H2 dσ +

∫
{ρ=t}

[
g(∇|∇ρ|,∇ρ)

|∇ρ|2

]2
dσ

}
.

We break Ĝ1 in three pieces,

Ĝ11(t) = −2πC ,

Ĝ12(t) =
t

4

(
1 +

C
2t

)[
16π −

∫
{ρ=t}

H2 dσ

]
, (4.17)

Ĝ13(t) =
t

4

(
1 +

C
2t

) ∫
{ρ=t}

[
g(∇|∇ρ|,∇ρ)

|∇ρ|2

]2
dσ =

1

4

(
1 +

C
2t

) ∫
{ρ=t}

ρ

[
∇dρ(∇ρ,∇ρ)

|∇ρ|3

]2
dσ .

(4.18)

For simplicity, we start with the computation of the limit of Ĝ13. By expansion (4.3)
of u, there exist some constants 0 < A1 < A2 and 0 < B1 < B2 such that

A1

|x|
≤ 1− u ≤ A2

|x|
, (4.19)

B1

|x|2
≤ |∇u| ≤ B2

|x|2
. (4.20)

on {|x| ≥ R0} for R0 > 1 sufficiently large. Since Σt ⊆ {|x| ≥ R0} for every t ≥ t1,
with t1 large enough, from formula (4.19) it follows

A1 t

C
≤ rt ≤ |x(p)| ≤ Rt ≤

2A2 t

C
(4.21)

for every p ∈ Σt and for all t ≥ t1, where we set

rt := min{|x(p)| : p ∈ Σt} , (4.22)
Rt := max{|x(p)| : p ∈ Σt} .

In particular, as a consequence of inequalities (4.21), one has

1

Rt
≥ C

2A2 t
=

A1

2A2

C
A1t

≥ A1

2A2

1

rt
, (4.23)

then, there holds

4πC =

∫
Σt

|∇u| dσ ≥ B1

R2
t

Area(Σt) ≥
B1A

2
1

4A2
2

Area(Σt)

r2t
, (4.24)
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where the first inequality follows by formula (4.20), while the second one by inequal-
ity (4.23). Now, by formulas (4.21) and (4.24), we have

rt → +∞ for t→ +∞ , (4.25)

Area(Σt) ≤ Cr2l for every t ≥ t1 , (4.26)

respectively. Therefore, from formula (1.23) of Proposition 1.4.6, it follows

Areae(Σt) ≤ CArea(Σt) , for every t sufficiently large . (4.27)

At the same time, the behavior near infinity of ρ, described by formula (4.16), implies

∇dρ(∇ρ,∇ρ)
|∇ρ|3

= O(|x|−1−α) ,

then,

ρ

[
∇dρ(∇ρ,∇ρ)

|∇ρ|3

]2
= O(|x|−1−2α) . (4.28)

Hence, we have

0 ≤
∫

{ρ=t}

ρ

[
∇dρ(∇ρ,∇ρ)

|∇ρ|3

]2
dσ ≤ C

r1+2α
t

Area(Σt) ≤ Cr1−2α
t ,

for every t ≥ t1, where the first inequality follows by formula (4.28), together with
definition (4.22) and the second one by formula (4.26). Consequently, being α > 1/2,
one gets the convergence of Ĝ13(t) to zero, as t→ +∞, where Ĝ13 is given by equal-
ities (4.18), by limit (4.25).
We remark that a key point is the knowledge that the error term in formula (4.3) is
O2(|x|−1−α), with α > 1/2. Indeed, if this error term were only o2(|x|−1), then the
limit of Ĝ13(t) would be a indeterminate form.
Concerning the upper limit of Ĝ12(t) for t → +∞, where Ĝ12 is given by equal-
ity (4.17), this is known to be less or equal than 8πmADM from the celebrated work
of Huisken and Ilmanen [37], but for completeness, we show its computation.
By Proposition 1.4.6, it follows

H = He − εikσksε
sjheij +

1

2
Heσksν

k
e ν

s
e − εij νke ∂iσjk +

1

2
εij νke ∂kσij +O(|x|−1−2τ )

+O(|x|−2τ |he |e) , (4.29)

where

νe =
∇eρ

|∇eρ|e
,

εij = δij − νieν
j
e ,

he =
∇edρ

|∇eρ|e
, (4.30)

He =
∆eρ

|∇eρ|
− ∇edρ(∇eρ,∇eρ)

|∇eρ|3
. (4.31)

and σij = gij−δij , where g = gij dx
i⊗dxj in the fixed AF coordinate chart (x1, x2, x3)

of order τ > 1/2. Recall that hep |TpΣt×TpΣt is the second fundamental form of Σt at
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every p ∈ Σt with respect to νe associated to the metric ge, while He is the mean
curvature of Σt with respect to νe associated to ge, by formulas (1.4) and (1.5).
By virtue of behavior of ρ near infinity in equation (4.16), together with the equali-
ties (4.30) and (4.31), we know that

he =

[
εij
|x|

+O(|x|−1−α)

]
dxi ⊗ dxj , (4.32)

He =
2

|x|
+O(|x|−1−α) , (4.33)

with

εij = δij − νei ν
e
j ,

νei =
∂iρ

|∇eρ|e
.

Then, being heij = O(|x|−1), by equality (4.32), from formula (4.29) we get

H = He − εikσksε
sjheij +

1

2
Heσksν

k
e ν

s
e − εij νke ∂iσjk +

1

2
εij νke ∂kσij +O(|x|−1−2α) ,

H2 =H2
e− 2Heε

ikσksε
sjheij +H2

eσksν
k
e ν

s
e − 2Heε

ij νke ∂iσjk +Heε
ij νke ∂kσij +O(|x|−2−2α).

This last equality, along with formula (1.23) of Proposition 1.4.6, implies

H2 dσ =
[
H2
e +

1

2
H2
e ε
ijσij − 2Heε

ikσksε
sjheij +H2

eσksν
k
e ν

s
e − 2Heε

ij νke ∂iσjk

+Heε
ij νke ∂kσij +O(|x|−2−2α)

]
dσe . (4.34)

Then, we obtain∫
{ρ=t}

H2 dσ

=

∫
{ρ=t}

[
H2
e+

1

2
H2
e ε
ijσij−2Heε

ikσksε
sjheij+H2

eσksν
k
e ν

s
e−2Heε

ij νke ∂iσjk+Heε
ij νke ∂kσij

]
dσe

+O(r−2α
t )

≥16π+

∫
{ρ=t}

[
1

2
H2
e ε
ijσij−2Heε

ikσksε
sjheij+H2

eσksν
k
e ν

s
e−2Heε

ij νke ∂iσjk+Heε
ij νke ∂kσij

]
dσe

+O(r−2α
t ) ,

where the equality is a consequence of formula (4.34) together with inequalities (4.21)
and (4.27), while the inequality follows from Willmore inequality∫

Σ

H2
e dσe ≥ 16π
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for every orientable, immersed, closed surface Σ ⊆ R3 (see [86]). Consequently, by
expansion (4.16) of ρ near infinity, there holds

t

(
16π −

∫
{ρ=t}

H2 dσ

)

≤−
∫

{ρ=t}

|x|
[
1

2
H2
e ε
ijσij−2Heε

ikσksε
sjheij+H2

eσksν
k
e ν

s
e−2Heε

ij νke ∂iσjk+Heε
ij νke ∂kσij

]
dσe

+O(r1−2α
t ) .

Then, thanks to formula (4.33), it follows

t

(
16π −

∫
{ρ=t}

H2 dσ

)

≤
∫

{ρ=t}

[
− 2

|x|
εijσij+4εikσksε

sjheij−
4

|x|
σksν

k
e ν

s
e+4εij νke ∂iσjk−2εij νke ∂kσij

]
dσe+O(r1−2α

t ).

Since equality (4.32) with the observation that

εikεij ε
sj =

(
δik − νieν

k
e

) (
δij − νei ν

e
j

) (
δsj − νse ν

j
e

)
= εsk

implies

εikσksε
sjheij =

1

|x|
εikσksε

sj εij +O(|x|−1−2α) =
1

|x|
εskσks +O(|x|−1−2α) ,

we obtain

t

(
16π −

∫
{ρ=t}

H2 dσ

)

≤
∫

{ρ=t}

[
− 2

|x|
εijσij+

4

|x|
εksσks−

4

|x|
σksν

k
e ν

s
e+4εij νke ∂iσjk−2εij νke ∂kσij

]
dσe+O(r1−2α

t )

=

∫
{ρ=t}

[
2

|x|
εksσks−

4

|x|
σksν

k
e ν

s
e+4εij νke ∂iσjk−2εij νke ∂kσij

]
dσe+O(r1−2α

t ) . (4.35)

We then manipulate the third term in the square brackets above as follows,∫
{ρ=t}

εij νke ∂iσjk dσe =

∫
{ρ=t}

εij
[
∂i

(
νke σjk

)
− σjk∂iν

k
e

]
dσe

=

∫
{ρ=t}

[
Heν

j
e ν

i
eσij − εijσjkε

ksheis

]
dσe

=

∫
{ρ=t}

[
2

|x|
νje ν

i
eσij −

1

|x|
εijσij

]
dσe +O(r1−2α

t ) , (4.36)
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by means of formulas (4.34), (4.21) and (4.27). Then, we defineX = σ(νe, ·)♯e , namely
X = Xi∂i with Xi = σij ν

j
e and we observe that

εij∂i

(
νke σjk

)
= εij∂iX

j =
[
δij − νieν

j
e

]
∂iX

j = ∂iX
i − ge

(
∇e
νeX, νe

)
= diveX − ge

(
∇e
νeX, νe

)
= ge

(
∇e
Eα
X,Eα

)
= div{ρ=t}e (X

⊥

) + Heσij ν
i
eν

j
e ,

where {Eα} is a local orthonormal frame on {ρ = t}, with respect to the metric ge,
keeping into account equality (1.7). On the other side, we have

∂iν
k
e = ∂i

(
∂kρ

|∇eρ|e

)
=

∂i∂kρ

|∇eρ|e
− (∂jρ) (∂kρ) (∂i∂jρ)

|∇eρ|3e
= εkjheij .

By these two formulas and the divergence theorem (on the closed surface {ρ = t}),
the second equality in formula (4.36) follows.
Now, by inequality (4.35) together with equality (4.36), we obtain

t

(
16π −

∫
{ρ=t}

H2 dσ

)
≤
∫

{ρ=t}

[
−2εij νke ∂iσjk + 4εij νke ∂iσjk − 2εij νke ∂kσij

]
dσe +O(r1−2α

t )

=2

∫
{ρ=t}

εij [∂iσjk − ∂kσij ] ν
k
e dσe +O(r1−2α

t )

=2

∫
{ρ=t}

{
δij [∂iσjk−∂kσij ]νke−νieνje νke ∂iσjk+νieνje νke ∂kσij

}
dσe+O(r1−2α

t )

=2

∫
{ρ=t}

[∂iσij − ∂jσii] ν
j
edσe +O(r1−2α

t ) −→ 32πmADM as t→ +∞.

where at the end we used Remark 1.5.1 and the fact that α > 1/2, keeping into
account formula (4.26). In conclusion

Ĝ = Ĝ11(t) + Ĝ12(t) + Ĝ13(t) + Ĝ2(t) ,

where

Ĝ11(t) = −2πC ,

lim sup
t→+∞

Ĝ12(t) ≤ 8πmADM ,

lim
t→+∞

Ĝ13(t) = 0 ,

lim
t→+∞

Ĝ2(t) = −6πC ,

hence formula (4.7) is proved.
Now we show the monotonicity in absence of critical points. In this case, the func-
tion Ĝ is everywhere continuously differentiable in its domain of definition, with
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first derivative given by

Ĝ′(t) = 4π −
∫
Σt

RΣt

2
dσ +

∫
Σt

[
|∇Σt |∇u||2

|∇u|2
+

R

2
+

|
◦
h|2

2
+

3

4

(
4u

1− u2
|∇u| −H

)2 ]
dσ .

(4.37)

Indeed,

d

dt

∫
Σt

|∇u|2 dσ = − C
t2

(
1 +

C
2t

)−2 ∫
Σt

|∇u|H dσ , (4.38)

d

dt

∫
Σt

|∇u|H dσ = − C
t2

(
1 +

C
2t

)−2 ∫
Σt

|∇u|
[
∆Σt

(
1

|∇u|

)
+

|h|2 +Ric(ν, ν)

|∇u|

]
dσ

= − C
t2

(
1 +

C
2t

)−2 ∫
Σt

[
−∆Σt(log |∇u|) + |∇Σt |∇u||2

|∇u|2
+

R

2
+

− RΣt

2
+

|
◦
h|2

2
+

3H2

4

]
dσ

= − C
t2

(
1 +

C
2t

)−2 ∫
Σt

[
|∇Σt |∇u||2

|∇u|2
+

R

2
− RΣt

2
+

|
◦
h|2

2
+

3H2

4

]
dσ ,

where ∇Σt , ∆Σt are the Levi–Civita connection and the Laplace–Beltrami operator
of the induced metric gΣt , respectively, RΣt is the scalar curvature of Σt and finally h,
◦
h denote the second fundamental form of Σt and its traceless version, with respect
to ν = ∇u/|∇u|. Here, the first and the second equality are consequences of the
normal first variation of the volume measure and of the mean curvature (see the end
of Section 1.3), whereas the third one and the last one follow with the help of the
traced Gauss equation (1.6) and of the divergence theorem. Now, we notice that the
last summand of the right hand side of equality (4.37) is always nonnegative, as the
scalar curvature of (M, g) is nonnegative, by assumption. At same time, the absence
of critical points implies that all the level sets of u are diffeomorphic, in particular
they are connected as ∂M = {u = 0} is connected, by hypothesis. Consequently, the
first two summands also give a nonnegative contribution, by virtue of Gauss–Bonnet
theorem, as each Σt is a connected closed surface (see the precise explanation at the
end of the proof of Theorem 3.1.2 – in absence of critical points). Thus, Ĝ′(t) ≥ 0 for
every t ∈ [C/2,+∞), then Ĝ is nondecreasing therein.
Now, we show the monotonicity also in presence of critical points. We consider the
vector field X given by

X :=
1 + u

2(1− u)
∇u+

C
(1− u)2

∇|∇u|+ 2C (2u− 1)

(1 + u)(1− u)3
|∇u|∇u , (4.39)

on the open setM \Crit(u), noticing that it is well–defined. With the help of Bochner
formula,

1

2
∆ |∇f |2 = |∇df |2 +Ric(∇f,∇u) + g(∇∆f,∇f) , (4.40)
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for every f ∈ C∞(M) and by virtue of the fact that u is harmonic, the divergence of
X can be expressed as

div(X) =
C|∇u|
(1− u)2

[
|∇u|
C

+
12u2

(1− u2)2
|∇u|2 + 6u

1− u2
g(∇|∇u|,∇u)

|∇u|

+
|∇du|2 − |∇|∇u||2 +Ric(∇u,∇u)

|∇u|2

]
.

Using the traced Gauss equation (1.6), together with the identity

|∇du|2 = |∇u|2|h|2 + |∇|∇u||2 + |∇Σ|∇u||2 ,

one can obtain an equivalent expression for div(X), adapted to the (regular portions
of the) level sets of u, namely

div(X) =
C|∇u|
(1− u)2

[
|∇u|
C

− RΣ

2
+

|∇Σ|∇u||2

|∇u|2
+

R

2
+

|
◦
h|2

2
+

3

4

(
4u

1− u2
|∇u| −H

)2 ]
.

(4.41)

Here, h,H,RΣ and ∇Σ are all the ones associated to the (regular portions of the) level
set of u that passes for the point where div(X) is computed.
Let t, T ∈ T̂ such that t < T , where T̂ is given by equality (4.8). We want to show
that Ĝ(t) ≤ Ĝ(T ). To simplify the exposition, we introduce the diffeomorphism
f : [C/2,+∞) → [0, 1), defined by

f(t) :=
1− C

2t

1 + C
2t

. (4.42)

We treat the non–trivial case in which the open interval
(
f(t), f(T )

)
contains critical

values of u. In this case, the vector field X is no longer well–defined in {f(t) ≤ u ≤
f(T )} and to overcome this difficulty, we consider the same pointwise nondecreas-
ing sequence of cut–off functions {ηk}k∈N introduced in proof of Theorem 3.1.2, in
the general case, namely, for every k ∈ N+, the functions ηk : [0,+∞) → [0, 1] are
smooth, nondecreasing and satisfy

ηk(τ) ≡ 0 in
[
0 ,

1

2k

]
, 0 ≤ η′k(τ) ≤ 2k in

[
1

2k
,
3

2k

]
, ηk(τ) ≡ 1 in

[
3

2k
,+∞

)
.

Using these cut–off functions, we define for every k ∈ N+, the vector fields

Xk :=
1 + u

2(1− u)
∇u+ηk

(
|∇u|

(1− u)(1 + u)3

)[
C

(1− u)2
∇|∇u|+ 2C (2u− 1)

(1 + u)(1− u)3
|∇u|∇u

]
.

Notice that the vector fields Xk are well–defined in M and they coincide with the
vector field X in formula (4.39), whenever restricted to a compact set sitting inside
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M \ Crit(u), for k large enough. Moreover, they have divergence given by the fol-
lowing formula,

div(Xk) =
C|∇u|
(1− u)2

{
ηk

(
|∇u|

(1− u)(1 + u)3

)[
6u

1− u2
g(∇|∇u|,∇u)

|∇u|
+

Ric(∇u,∇u)
|∇u|2

]

+ηk

(
|∇u|

(1− u)(1 + u)3

)[
12u2

(1− u2)2
|∇u|2 + |∇du|2 − |∇|∇u||2

|∇u|2

]
+

|∇u|
C

}

+
C

(1− u2)3
η′k

(
|∇u|

(1− u)(1 + u)3

) ∣∣∣∣ 2(2u− 1)

1− u2
|∇u|∇u+∇|∇u|

∣∣∣∣2 .
Since in the above expression the last summand is nonnegative and since, for large
enough k, the vector fieldXk coincides withX at the boundary of {f(t) < u < f(T )},
the divergence theorem, applied to Xk on {f(t) < u < f(T )} (see Remark 1.1.1),
gives

Ĝ(T )− Ĝ(t) =

∫
{f(t)<u<f(T )}

div(Xk) dµ ≥
∫

{f(t)<u<f(T )}̂

Pk dµ+

∫
{f(t)<u<f(T )}̂

Dk dµ , (4.43)

where we set

P̂k :=
C|∇u|
(1− u)2

[
|∇u|
C

+ ηk

(
|∇u|

(1− u)(1 + u)3

)
P̂

]
,

D̂k :=
C|∇u|
(1− u)2

ηk

(
|∇u|

(1− u)(1 + u)3

)
D̂ ,

with

P̂ :=
12u2

(1− u2)2
|∇u|2 + |∇du|2 − |∇|∇u||2

|∇u|2
,

D̂ :=
6u

1− u2
g(∇|∇u|,∇u)

|∇u|
+

Ric(∇u,∇u)
|∇u|2

.

We notice that the functions P̂ and D̂ are µ–a.e. well–defined and smooth as well as
div(X), being µ

(
Crit(u)

)
= 0 and furthermore, we observe that the following facts

hold,

(1)

0 ≤ Pk ↗
C|∇u|
(1− u)2

[
|∇u|
C

+ P̂ IM\Crit(u)

]
in M , where IM\Crit(u) denotes the characteristic function of M \ Crit(u),

(2)

|D̂k | ≤
C|∇u|
(1− u)2

|D̂ | and |D̂ | ≤
[

6u

1− u2
|∇du|+ |Ric|

]
∈ L1

loc(M)

in M \Crit(u), keeping into account formula (4.9) and inequality (4.10), more-
over,

D̂k →
C|∇u|
(1− u)2

D̂ IM\Crit(u)
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in M ,

(3)

div(X) =
C|∇u|
(1− u)2

[
|∇u|
C

+ P̂ + D̂

]
in M \ Crit(u).

By point (2), the dominated convergence theorem implies

lim
k→+∞

∫
{f(t)<u<f(T )}

D̂k dµ =

∫
{f(t)<u<f(T )}

C|∇u|
(1− u)2

D̂ dµ , (4.44)

whereas, by point (1) and the monotone convergence theorem, it follows

lim
k→+∞

∫
{f(t)<u<f(T )}

P̂k dµ =

∫
{f(t)<u<f(T )}

C|∇u|
(1− u)2

[
|∇u|
C

+ P̂

]
dµ . (4.45)

As a consequence of inequality (4.43) with the existence of limit (4.44) finite, the
sequence of nonnegative real numbers given by the integrals of the functions Pk is
bounded from above, then

C|∇u|
(1− u)2

[ |∇u|
C

+ P̂
]
∈ L1

(
{f(t) < u < f(T )}

)
.

Then, passing to the limit, as k → +∞, in inequality (4.43), by limits (4.44) and (4.45)
together with point (3) above, we get

Ĝ(T )− Ĝ(t) ≥
∫

{f(t)<u<f(T )}

div(X) dµ

=

∫
[f(t),f(T )]\N

dτ
C

(1− τ)2

{ ∫
{u=τ}

[
|∇Σ|∇u||2

|∇u|2
+

R

2
+

|
◦
h|2

2
+

3

4

(
4u

1− u2
|∇u| −H

)2 ]
dσ

+ 4π −
∫

{u=τ}

RΣ

2
dσ

}
,

where N is the set of the critical values of u. Here, the equality follows first by using
the coarea formula (1.1), then by applying the equality (4.41) for the divergence of X
and finally by Sard’s theorem. Since we are integrating only along the regular level
sets of u and since every regular level set is a connected (by assumption) closed sur-
face, we can invoke Gauss–Bonnet theorem to deduce that the last two summands
also give a nonnegative contribute (see the precise explanation at the end of the
proof of Theorem 3.1.2 – in absence of critical points). The claimed monotonicity of
Ĝ hence follows.

Under the assumptions of above proposition, we conjecture that it is possible to
prove (by an argument similar to the one of Section 3.1) that the function Ĝ defined
by formula (4.5), coincides a.e. with a nondecreasing locally absolutely continuous
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function on [C/2,+∞), still denoted by Ĝ, such that

Ĝ′(t) = 4π +

∫
Σt

[
− RΣt

2
+

|∇Σt |∇u||2

|∇u|2
+

R

2
+

|
◦
h|2

2
+

3

4

(
4u

1− u2
|∇u| −H

)2 ]
dσ

a.e. in [C/2,+∞), in particular, at all values t ∈ T̂ .

Proposition 4.1.2. Let (M, g) be a 3–dimensional, complete, one–ended asymptotically flat
manifold with minimal, compact and connected boundary and with nonnegative scalar cur-
vature. Let u ∈ C∞(M) be the solution of Dirichlet problem (4.1) and let C > 0 be the
boundary capacity of ∂M in (M, g), given by formula (4.2). Let G : [C/2,+∞) → R be the
function defined by

G(t) = −πC
2

t
+
t

4

(
1 +

C
2t

)4 ∫
Σt

|∇u|2 dσ , (4.46)

where Σt is the level set of u, given by

Σt :=
{
u =

(
1− C

2t

)
/
(
1 +

C
2t

)}
,

and σ is 2–Hausdorff measure of (M, g). Then, the function G satisfies

G (C/2) = − 2C

[
π −

∫
∂M

|∇u|2 dσ

]
, (4.47)

lim
t→+∞

G(t) = 0 , (4.48)

and admits an absolutely continuous representative in [C/2,+∞), still denoted by G, such
that

G′(t) =
πC2

t2
+

1

4

(
1 +

C
2t

)3(
1− 3C

2t

)∫
Σt

|∇u|2 dσ − C
4t

(
1 +

C
2t

)2 ∫
Σt

|∇u|H dσ

(4.49)

a.e. in [C/2,+∞), in particular, at all the values t ∈ T̂ , where the set T̂ is defined by
equality (4.8). Finally, if all the regular level sets of u are connected, thenG is nondecreasing
in T̂ .

Notice that the function G is well–defined, as the integrand function is bounded
on each level set of u and each level set of u has finite σ–measure.

Proof. The functionG is easily seen to satisfy equality (4.47). Concerning limit (4.48),
it is convenient to rewrite the second summand in the definition (4.46) of function G
as

t

4

(
1 +

C
2t

)4 ∫
{u=f(t)}

|∇u|2 dσ =
C
4

(
1 +

C
2t

)3 ∫
{u=f(t)}

|∇u|
1− u

|∇u| dσ ,
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where f : [C/2,+∞) → [0, 1) is the diffeomorphism defined by formula (4.42). By
formulas (4.3) and (4.13), we have

lim
|x |→+∞

|∇u|
1− u

= 0 ,

therefore, the second summand of G tends to zero for t → +∞, by applying an
argument similar to the one leading to limit (4.15), thus limit (4.48) follows.
In absence of critical points, the functionG is everywhere continuously differentiable
in its interval of definition, with first derivative given by

G′(t) =
πC2

t2
+

1

4

(
1 +

C
2t

)3(
1− 3C

2t

) ∫
Σt

|∇u|2 dσ − C
4t

(
1 +

C
2t

)2 ∫
Σt

|∇u|H dσ ,

keeping into account formula (4.38).
In presence of critical points, G is continuously differentiable only on T̂ , with first
derivative given as above. In order to obtain the rest of statement, let us consider
the function G1 : [C/2,+∞) → (0,+∞) defined by

G1(t) :=
t

4

(
1 +

C
2t

)4 ∫
{u=f(t)}

|∇u|2 dσ .

Obviously it is well–defined and we want to show that G1 ∈W 1,1
loc (C/2,+∞). Notice

that
b∫
a

G1(t) dt =

∫
{f(a)≤u≤f(b)}

2C2

(1− u2)3
|∇u|3 dµ < +∞

for every a, b ∈ (C/2,+∞) such that a < b, where the equality follows by a change
of variable together with the coarea formula (1.1). Thus, G1 ∈ L1

loc(C/2,+∞). Now,
let χ ∈ C∞

c

(
(C/2,+∞)

)
, we have

+∞∫
C/2

χ′(t)G1(t)dt =

+∞∫
C/2

dt

[
χ′(t)

t

4

(
1 +

C
2t

)4 ∫
{u=f(t)}

|∇u|2 dσ
]

=

1∫
0

ds

∫
{u=s}

χ′
(
C
2

1 + u

1− u

)
2C2

(1− u2)3
|∇u|2 dσ

=

∫
M

χ′
(
C
2

1 + u

1− u

)
2C2

(1− u2)3
|∇u|3 dµ

= lim
k→+∞

∫
M

χ′
(
C
2

1 + u

1− u

)
2C2

(1− u2)3
ηk(|∇u|2)|∇u|3 dµ

= lim
k→+∞

∫
M

g

(
∇
[
χ

(
C
2

1 + u

1− u

)]
,

2C |∇u|
(1− u)(1 + u)3

ηk(|∇u|2)∇u
)
dµ

= − lim
k→+∞

∫
M

χ

(
C
2

1 + u

1− u

)
div

(
2C |∇u|

(1− u)(1 + u)3
ηk(|∇u|2)∇u

)
dµ .

(4.50)
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Here, the third equality is a consequence of the coarea formula (1.1), the fourth one
follows by the dominate convergence theorem, since

χ′
(
C
2

1 + u

1− u

)
2C2

(1− u2)3
ηk(|∇u|2)|∇u|3 → χ′

(
C
2

1 + u

1− u

)
2C2

(1− u2)3
|∇u|3 IM\Crit(u)

pointwise in M and∣∣∣∣χ′
(
C
2

1 + u

1− u

)
2C2

(1− u2)3
ηk(|∇u|2)|∇u|3

∣∣∣∣ ≤‖χ′ ‖L∞(C/2,+∞)
2C2

(1− u2)3
|∇u|3 ∈ L1

loc(M) ,

finally, the last equality is obtained by the properties of the divergence operator com-
bined with the divergence theorem applied to

χ
(C
2

1 + u

1− u

) 2C |∇u|
(1− u)(1 + u)3

ηk(|∇u|2)∇u

on Eba := {f(a) < u < f(b)}, for a, b ∈ T̂ such that suppχ ⊆ (a, b). We observe that∫
M

χ

(
C
2

1 + u

1− u

)
div

(
2C |∇u|

(1− u)(1 + u)3
ηk(|∇u|2)∇u

)
dµ

=

∫
Eb

a

χ

(
C
2

1 + u

1− u

)
div

(
2C |∇u|

(1− u)(1 + u)3
ηk(|∇u|2)∇u

)
dµ

=

∫
Eb

a

χ

(
C
2

1 + u

1− u

)
ηk(|∇u|2)

C |∇u|
(1− u)2

[
4(2u− 1)

(1 + u)4
|∇u|2 + 2(1− u)

(1 + u)3
g(∇|∇u|,∇u)

|∇u|

]
dµ

+

∫
Eb

a

χ

(
C
2

1 + u

1− u

)
η′k(|∇u|2)

4C |∇u|2

(1− u)(1 + u)3
g(∇|∇u|,∇u)dµ . (4.51)

Now, keeping into account that∣∣∣∣χ(C
2

1 + u

1− u

)
η′k(|∇u|2)

4C |∇u|2

(1− u)(1 + u)3
g(∇|∇u|,∇u)

∣∣∣∣
≤

4C ‖χ‖L∞(C/2,+∞)

(1− u)(1 + u)3
η′k(|∇u|2) |∇u|3 |∇du| I{ 1

2k
≤|∇u |2≤ 3

2k
}

≤
4C ‖χ‖L∞(C/2,+∞)

(1− u)(1 + u)3
33/2√
2k

|∇du| ,

we have∣∣∣∣ ∫
Eb

a

χ

(
C
2

1 + u

1− u

)
η′k(|∇u|2)

4C |∇u|2

(1− u)(1 + u)3
g(∇|∇u|,∇u)dµ

∣∣∣∣ ≤ C√
2k

−→ 0 . (4.52)

At the same time, setting

Q :=
4(2u− 1)

(1 + u)4
|∇u|2+2(1− u)

(1 + u)3
g(∇|∇u|,∇u)

|∇u|
,
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we get

lim
k→+∞

∫
Eb

a

χ

(
C
2

1 + u

1− u

)
ηk(|∇u|2)

C |∇u|
(1− u)2

Qdµ =

∫
Eb

a

χ

(
C
2

1 + u

1− u

)
C |∇u|
(1− u)2

Qdµ

=

∫
M

χ

(
C
2

1 + u

1− u

)
C |∇u|
(1− u)2

Qdµ ,

(4.53)

as a consequence of the dominate convergence theorem, since

χ

(
C
2

1 + u

1− u

)
ηk(|∇u|2)

C |∇u|
(1− u)2

Q→ χ

(
C
2

1 + u

1− u

)
C |∇u|
(1− u)2

Q IM\Crit(u)

pointwise in M and

|Q| ≤ 4|2u− 1|
(1 + u)4

|∇u|2 + 2(1− u)

(1 + u)3
|∇du| ∈ L1(Eba) , (4.54)

∣∣∣∣χ(C
2

1 + u

1− u

)
ηk(|∇u|2)

C |∇u|
(1− u)2

Q

∣∣∣∣ ≤ ‖χ‖L∞(C/2,+∞)
C |∇u|
(1− u)2

|Q| ∈ L1(Eba) ,

where these inequalities hold in M \Crit(u). Then, from formula (4.50), by virtue of
equality (4.51) together with limits (4.52) and (4.53), it follows

+∞∫
C/2

χ′(t)G1(t) dt

= −
∫
M

χ

(
C
2

1 + u

1− u

)
C |∇u|
(1− u)2

[
4(2u− 1)

(1 + u)4
|∇u|2+2(1− u)

(1 + u)3
g(∇|∇u|,∇u)

|∇u|

]
dµ

= −
+∞∫

C/2

dt χ(t)

[
1

4

(
1 +

C
2t

)3(
1− 3C

2t

)∫
Σt

|∇u|2 dσ − C
4t

(
1 +

C
2t

)2∫
Σt

|∇u|H dσ
]
,

where the second equality is obtained by the coarea formula (1.1), along with a
change of variable. In this way, we conclude that G1 has a weak derivative in the
open interval (C/2,+∞), now we want to see that it is in L1

loc(C/2,+∞). Notice that
each summand of CQ/(1 − u)2 is in L1

loc(M), keeping into account formula (4.54),
therefore the functions

t 7→ 1

4

(
1 +

C
2t

)3(
1− 3C

2t

)∫
Σt

|∇u|2 dσ

t 7→ C
4t

(
1 +

C
2t

)2∫
Σt

|∇u|H dσ ,

defined a.e., belongs to L1
loc(C/2,+∞). Consequently, G1 ∈ W 1,1

loc (C/2,+∞) and this
conclusion, along with the fact G1 is also of class C1 in an interval of type [a, b),
with a = C/2, implies that G1 admits an absolutely continuous representative in
[C/2,+∞) (see [49], for instance, about the relation between Sobolev spaces and the
locally absolutely continuous functions). Thus, G admits an absolutely continuous
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representative in [C/2,+∞), as G(t) = −πC2

t + G1(t) in [C/2,+∞), coinciding with
G on T̂ .
Assuming now that all regular level sets of u are connected, being the function G

continuously differentiable on T̂ , with first derivative given by formula (4.49), it
follows easily that the equality

Ĝ(t) =
4t3

C2
G ′(t) (4.55)

holds, for every t ∈ T̂ . We set

A := 2C

[
π −

∫
∂M

|∇u|2 dσ

]
,

therefore,

G (C/2) = −A ,

Ĝ (C/2) = A ,

by formulas (4.47) and (4.6), respectively. Then, by virtue of the fact that C/2 ∈
T̂ , the monotonicity of Ĝ proved in Proposition 4.1.1, under the assumption of the
connectedness of all regular level sets of u, implies

4t3

C2
G′(t)−A = Ĝ(t)− Ĝ (C/2) ≥ 0 ,

for every t ∈ T̂ , in particular

G′(t) ≥ C2

4t3
A ,

for every t ∈ T̂ . Notice that this inequality is true a.e. in [C/2,+∞), as T̂ differs from
[C/2,+∞) only for a negligible set, by Sard’s theorem. Consequently, integrating
between C/2 and t ∈ T̂ and since G admits an absolutely continuous representative
in [C/2,+∞), coinciding with it on T̂ , it follows

G(t)−G (C/2) ≥ −C2A
8t2

+
A
2
,

G(t) +A ≥ −C2A
8t2

+
A
2
,

G(t) ≥ −C2A
8t2

− A
2
, (4.56)

for every t ∈ T̂ . By the compactness of Crit(u), there exists t0 ∈ [C/2,+∞) such
that [t0,+∞) ⊆ T̂ , thus, passing in inequality (4.56) to the limit, as t → +∞, we get
A ≥ 0, by limit (4.48). Now, the nonnegativity of A implies that Ĝ(t) ≥ 0 and in
turn that G′(t) ≥ 0, for every t ∈ T̂ . This implies that G is nondecreasing in T̂ , since
T̂ differs from [C/2,+∞) for a negligible set and G admits an absolutely continuous
representative in [C/2,+∞), coinciding with it on T̂ .
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Under the assumptions of the above proposition, we conjecture (as before) that
it is possible to prove that the function G is of class C1 in [C/2,+∞) with

G′(t) =
πC2

t2
+

1

4

(
1 +

C
2t

)3(
1− 3C

2t

) ∫
Σt\Crit(u)

|∇u|2 dσ − C
4t

(
1 +

C
2t

)2 ∫
Σt\Crit(u)

|∇u|H dσ

for a.e t ∈ (C/2,+∞).

Until now, we defined two functions G and Ĝ which are monotone on a set that
differs from their interval of definition only for a negligible set, under the assump-
tion of connectedness of all the regular level sets of u. Whereas the monotonicity of
function G can be interpreted as a version, in presence of boundary, of the mono-
tonicity obtained by Munteanu and Wang in [66], the monotonicity of the function
Ĝ is new. Another fundamental property of these functions is that their being con-
stant characterizes the (exterior spatial) Schwarzschild manifolds of mass m > 0,
as we are going to see in the next two propositions. A key point of these results
lies in the fact that when they are constant, there are no critical points of u, which
in turn implies, in both cases, that G′ ≡ 0, where G′ is sum of nonnegative terms.
From a careful analysis of the consequences of the vanishing of these nonnegative
terms, one can deduce that the Riemannian manifold is isometric to a (exterior spa-
tial) Schwarzschild manifolds of positive mass.

Proposition 4.1.3 (Rigidity – I). Let (M, g) be a 3–dimensional, complete, one–ended
asymptotically flat manifold with minimal, compact and connected boundary and with non-
negative scalar curvature. Let u ∈ C∞(M) be the solution of Dirichlet problem (4.1) and
let C > 0 be the boundary capacity of ∂M in (M, g), given by formula (4.2). Consider the
function Ĝ : [C/2,+∞) → R defined by formula (4.5). Then, Ĝ is constant in [C/2,+∞)
if and only if (M, g) isometric to the (exterior spatial) Schwarzschild manifold of mass C in
Example (1.4.2).

Proof. If (M, g) is the (exterior spatial) Schwarzschild manifold with mass m > 0,

u =
1− m

2|x |

1 + m
2|x |

, |∇u| =
(
1 +

m

2|x|

)−4 m

|x|2
, H =

2

|x|
1− m

2|x |(
1 + m

2|x |
)3 . (4.57)

Notice that u has no critical points. By a straightforward computation, one has

C :=
1

4π

∫
∂M

|∇u| dσ = m and Ĝ ≡ 0 .

Now, we assume that Ĝ is constant in [C/2,+∞). We know that there exists a maxi-
mal time T such that ∇u 6= 0 in

{
0 ≤ u < (1− C

2T )/(1 +
C
2T )
}

, since ∂M = {u = 0} is
a regular level set of u and u : M → [0, 1) is proper. Then, Ĝ is continuously differ-
entiable in

[C
2 , T

)
with Ĝ′ given by formula (4.37) and nonnegative, since each level

set {u = (1 − C
2t)/(1 + C

2t)} is a connected closed surface, as it is diffeomorphic to
∂M = {u = 0}, which is connected by assumption, for every t ∈

[C
2 , T

)
. At the same

time, Ĝ′(t) = 0 in the same interval, as Ĝ is constant. Therefore, all the nonnegative
summands in formula (4.37) are forced to vanish for every t ∈ [C/2, T ). This fact
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gives ∇Σt |∇u| = ∇⊤|∇u| = 0 and H = 4u
1−u2 |∇u| imply

∇|∇u| = ∇⊤|∇u|+∇⊥|∇u| = g

(
∇|∇u|, ∇u

|∇u|

)
∇u
|∇u|

= −H∇u = − 4u

1− u2
|∇u|∇u .

(4.58)

Consequently,

∇ (log |∇u|) = ∇
(
2 log

(
1− u2

))
∇
[
log

(
|∇u|

(1− u2)2

)]
= 0 .

Thus, the function |∇u|/
(
1− u2

)2 is constant on every connected component of{
0 ≤ u < (1− C

2T )/(1+
C
2T )
}

, but this latter set is connected since it is diffeomorphic to[
0, (1− C

2T )/(1 +
C
2T )
)
×∂M and ∂M is connected. In conclusion, |∇u| = a(1−u2)2,

where a ∈ R is a positive constant, therefore, being 0 ≤ u < 1 on the whole manifold,
T = +∞ and |∇u| 6= 0 everywhere. In particular, all the level sets of u are regular
and diffeomorphic to each other, which clearly implies that they are all connected.
Concerning the constant a, from formulas (4.3) and (4.13), it follows

C = lim
|x |→+∞

|x|2|∇u| = a lim
|x |→+∞

|x|2(1− u2)2 = 4a C2 ,

therefore a = (4C)−1. Now, up to an isometry, we have that M = [0, 1)× ∂M , every
slice {t} × ∂M is the level set {u = t} and the metric g can be written as

g =
(4C)2

(1− u2)4
du⊗ du+ gαβ(u,ϑ) dϑ

α ⊗ dϑβ ,

where gαβ(u,ϑ) dϑα ⊗ dϑβ represents the metric induced by g on the level sets of u.
By the vanishing of the traceless second fundamental form of the level sets in for-
mula (4.37), i.e. hαβ = (H/2)gαβ , in combination with equality hαβ = ∇duαβ/|∇u|,
by equality (1.4), it turns out that the coefficients gαβ(u,ϑ) satisfy the following first
order system of PDE’s

∂gαβ
∂u

=
4u

1− u2
gαβ ,

from which we can deduce

gαβ(u,ϑ) dϑ
α ⊗ dϑβ = (1− u2)−2cαβ(ϑ) dϑ

α ⊗ dϑβ .

At the same time, for every u0 ∈ [0, 1), we also have

1

2
R{u=u0} =

(1− u20)
2

4C2
,
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indeed, from the traced Gauss equation (1.6) together with Bochner formula (4.40)
(coupled with the fact that u is harmonic), it follows

R{u=u0} = R− 2Ric(ν, ν)− |h|2 +H2

= −2 |∇u|−2Ric(∇u,∇u) + H2

2

= |∇u|−2
[
−∆|∇u|2 + 2 |∇du|2

]
+

H2

2
.

Here, the second equality is a consequence of the vanishing of the scalar curvature of
M and of the traceless second fundamental form of the level sets, in equality (4.37),
in particular, the vanishing of this latter also implies

|∇du|2 = |∇u|2|h|2 + 2
∣∣∇⊤|∇u|

∣∣2 + ∣∣∇⊥|∇u|
∣∣2 = 3

2
|∇u|2H2 ,

keeping into account formula (4.58), consequently,

R{u=u0} = −|∇u|−2∆|∇u|2 + 7H2

2
,

but, being

|∇u| = a(1− u2)2

H =
4u

1− u2
|∇u| = 4au(1− u2) ,

with a = (4C)−1, as already explained, one obtains

R{u=u0} = 8(4C)−2(1− u20)
2 .

Then, {u = u0} with the Riemannian metric induced by (M, g), has constant sec-
tional curvature (equal to (1 − u20)

2/(4C2) ) and by the vanishing of the Gauss–
Bonnet term in formula (4.37), it is diffeomorphic to a 2–sphere. Consequently,
({u = u0}, g{u=u0}) is isometric to (S2, 4C2

(1−u20)2
gS2), by [25, Section 3.F], in par-

ticular, (∂M, g∂M ) is isometric to (S2, 4C2 gS2). Thus, up to an isometry, one has
M = [0, 1)× S2 and

g =
(4C)2

(1− u2)4
du⊗ du+

4C2

(1− u2)2
gS2 .

Then, the map

(u, ϑ) ∈ (M, g) 7→ C
2

1 + u

1− u
ϑ ∈

(
MSch(C), gSch(C)

)
is an isometry.

Proposition 4.1.4 (Rigidity – II). Let (M, g) be a 3–dimensional, complete, one–ended
asymptotically flat manifold with minimal, compact and connected boundary and with non-
negative scalar curvature. Let u ∈ C∞(M) be the solution of Dirichlet problem (4.1) and
let C > 0 be the boundary capacity of ∂M in (M, g), given by formula (4.2). Consider the
function G : [C/2,+∞) → R defined by formula (4.46). Then, G is constant in [C/2,+∞)
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if and only if (M, g) isometric to the (exterior spatial) Schwarzschild manifold of mass C in
Example (1.4.2).

Proof. If (M, g) is the (exterior spatial) Schwarzschild manifold with mass m > 0,
then, by the equalities (4.57) together with the observation m = C, one obtains di-
rectly that G ≡ 0. Now, we assume that G is constant in [C/2,+∞), then, as before,
there exists a maximal time T such that ∇u 6= 0 in

{
0 ≤ u < (1 − C

2T )/(1 + C
2T )
}

,
since ∂M = {u = 0} is a regular level set of u and u :M → [0, 1) is proper. Hence, in[C
2 , T

)
the function G is of class C2, with G′(t) given by formula (4.49) and at same

time with G′(t) = 0, while Ĝ is of class C1 in the same interval, with Ĝ′ given by
formula (4.37) and at the same time Ĝ′(t) = 0, as Ĝ ≡ 0, due to equality (4.55). Con-
sequently, arguing as in the proof of Proposition 4.1.3, one obtains that T = +∞ and
|∇u| 6= 0 everywhere. In particular, Ĝ is constant on its interval of definition and
the conclusion follows again by Proposition 4.1.3.

4.2 Some sharp comparison results

In this section, two sharp inequalities are derived by means of Proposition 4.1.1 and
Proposition 4.1.2, under a suitable topological assumption in order to guarantee the
connectedness of all the regular level sets of u. One of these results is an improve-
ment of the mass–capacity inequality obtained by Bray in [13] and the other one is a
sharp upper bound of the boundary capacity of ∂M in terms of its area, proven by
Bray and Miao in [15], anyway, our assumptions are different from the ones of these
authors.

Lemma 4.2.1. Let (M, g) be a 3–dimensional, complete, one–ended asymptotically flat man-
ifold with compact and connected boundary. Let u ∈ C∞(M) be the solution of Dirichlet
problem (4.1). Assume that the first Betti number of M is zero, then, all regular level sets of
u are connected.

Proof. Let t ∈ (0, 1) be a regular value of u. We know that {u ≥ t} = {u > t} and
{0 ≤ u ≤ t} = {0 < u < t}, as explained after Remark 2.0.1, we want to see that they
are connected. First, we show the connectedness of {0 ≤ u ≤ t}. Supposing it is not
connected, it must have a connected component K disjoint from ∂M (as this latter is
connected and compact). Then, ∂K ⊆ {u = t} and, since {0 ≤ u ≤ t} = {0 < u < t},
the interior ofK must be nonempty and contain some points where 0 < u < t, which
is not possible, by the maximum principle. On the other side, we already know that
{u ≥ t} is connected, as explained after Remark 2.0.1.
Let now ϵ > 0 such that [t− ϵ, t+ ϵ] doesn’t contain critical values of u, we consider
the reduced Mayer–Vietoris exact sequence of the pair {0 ≤ u ≤ t+ ϵ} and {u ≥ t},

H̃1(M ;Z) → H̃0 ({t ≤ u ≤ t+ ϵ};Z) → H̃0 ({0 ≤ u ≤ t+ ϵ};Z)⊕ H̃0 ({u ≥ t};Z) ,

We recall that H̃n(X;Z) ' Hn(X;Z), for all positive integers n ∈ N and H0(X;Z) '
H̃0(X;Z)⊕Z, for any topological space X . Then, from the connectedness of the sets
{0 ≤ u ≤ t + ϵ} and {u ≥ t}, it follows that the last space, H̃0 ({0 ≤ u ≤ t+ ϵ};Z) ⊕
H̃0 ({u ≥ t};Z), is trivial, therefore, H̃0 ({t ≤ u ≤ t+ ϵ};Z) is the image of H̃1(M ;Z) '
H1(M ;Z), but this image is trivial. Indeed, the assumption that the first Betti number
of M is zero implies that H1(M ;Z) coincides with its torsion subgroup (i.e. the sub-
group of all its elements with finite order), but at same time H̃0 ({t ≤ u ≤ t+ ϵ};Z) is
torsion–free (since H0(X;Z) is isomorphic to a direct sum of Z’s, one for each path–
connected component of any topological spaceX). Thus, H̃0 ({t ≤ u ≤ t+ ϵ};Z) = 0
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and, consequently, {t ≤ u ≤ t+ ϵ} is connected, but, being {t ≤ u ≤ t+ ϵ} diffeomor-
phic to {u = t}× [t, t+ϵ], the number of the connected components of {t ≤ u ≤ t+ϵ}
and {u = t} is the same.

Theorem 4.2.2. Let (M, g) be a 3–dimensional, complete, one–ended asymptotically flat
manifold with minimal, compact and connected boundary and with nonnegative scalar cur-
vature. Assume that the first Betti number of M is zero. Let u ∈ C∞(M) be the solution of
Dirichlet problem (4.1) and let C > 0 be the boundary capacity of ∂M in (M, g), given by
formula (4.2). Then, the following statements hold.

(1)

Area

({
u =

1− C
2t

1 + C
2t

})
≥ 4π t2

(
1 +

C
2t

)4

for every t ∈ T̂ , where the set T̂ is given by equality (4.8). In particular,

C ≤
√

Area(∂M)

16π
, (4.59)

with equality if and only if (M, g) isometric to the (exterior spatial) Schwarzschild
manifold of mass C in Example (1.4.2).

(2)

mADM − C ≥ C
4π

[
π −

∫
∂M

|∇u|2 dσ
]
≥ 0 , (4.60)

with equality in the first or second inequality if and only if (M, g) isometric to the
(exterior spatial) Schwarzschild manifold of mass C.
In particular,

mADM ≥ C , (4.61)

with equality if and only if (M, g) isometric to the (exterior spatial) Schwarzschild
manifold of mass C.

Proof. By Lemma (4.2.1), all the regular level sets of u are connected, in turn this
implies that the functions G and Ĝ, given respectively by formulas (4.46) and (4.5),
are nondecreasing on T̂ , by Propositions 4.1.2 and 4.1.1, respectively. Thus, for every
t ∈ T̂ ,

G(C/2) ≤G(t) ≤ lim
t→+∞

G(t) = 0 , (4.62)

0 ≤ −G(C/2) = Ĝ(C/2) ≤ Ĝ(t) ≤ lim
t→+∞

Ĝ(t) ≤ 8π (mADM − C) , (4.63)

by formulas (4.47), (4.48), (4.6), (4.7). Now, dividing by 8π in formula (4.63), the in-
equalities (4.60) follow. If the equality holds in the first inequality of formula (4.60),
then Ĝ is constant on T̂ and this is sufficient to guarantee that Crit(u) = Ø, by the
same argument, in the proof of Proposition 4.1.3 in order to prove T = +∞, where
T = sup{t : [0, f(t)) does not contain critical values of u} for f(t) := (1− C

2t)/(1+
C
2t).

Consequently, Ĝ is constant on [C/2),+∞) and the rigidity statement that (M, g)
is isometric to the (exterior spatial) Schwarzschild manifold of mass C, follows by
Proposition 4.1.3. Analogously, if the equality holds in the second inequality of for-
mula (4.60), then G is constant on T̂ and this is sufficient to guarantee that Crit(u) =
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Ø, by the same argument in the proof of Proposition 4.1.4, in order to prove T = +∞,
where T is defined as before. Thus, G is constant on [C/2),+∞) and the rigidity
statement is a consequence of Proposition 4.1.4.
Inequality (4.61) follows immediately from formula (4.60) and the rigidity statement
result, in the case that the equality holds in inequality (4.61), is a simple consequence
of the fact that equality holds in the first and the second inequality of formula (4.60).
On the other hand, in a (exterior spatial) Schwarzschild manifold with mass m > 0,
one has that m = C and the functions G and Ĝ are identically zero, as showed in
the proof of Propositions 4.1.4 and 4.1.3, hence, the equalities in formula (4.60) also
hold.
By the last inequality in formula (4.62) and recalling the definition (4.46) of the func-
tion G, for every t ∈ T̂ , there hold∫

Σt

|∇u|2 dσ ≤ 4πC2

t2

(
1 +

C
2t

)−4

.

Consequently, we have

4πC =

∫
Σt

|∇u| dσ ≤

[ ∫
Σt

|∇u|2 dσ

]1/2
[Area(Σt)]

1/2

≤ (4π)1/2
C
t

(
1 +

C
2t

)−2

[Area(Σt)]
1/2 ,

where the equality comes from formula (4.4) and the first inequality is a consequence
of Hölder inequality. Thus,

Area(Σt) ≥ 4π t2
(
1 +

C
2t

)4

,

in particular,

Area(∂M) ≥ 16π C2 ,

from which we obtain

C ≤
√

Area(∂M)

16π
.

Finally, if we assume that the equality holds, thenG is constant on T̂ and the rigidity
statement follows as before. On other side, in a (exterior spatial) Schwarzschild
manifold with mass m > 0, the equality in formula (4.59) can be checked directly,
keeping into account that m = C.
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