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Notation and conventions

The term smooth means C*°. All the objects we will consider are assumed to be
smooth unless explicitly stated otherwise.

With SP'~1(z0) and B?(x() we denote, respectively, the Euclidean sphere and
open ball with radius 7 and center x( in R™. We simply write S*~! for the unit
sphere centered at the origin of R" and we write |S"~!| for its volume.

The term manifold means a connected, differentiable manifold of class C*°,
without boundary and of dimension greater or equal than 3. The term manifold
with boundary means a connected manifold of class C* of dimension greater
or equal than 3, with (possibly nonconnected) boundary of class C*°. The term
submanifold without further qualifications means an embedded one without
boundary.

A (k,l)—tensor field T" on a manifold M is a smooth section of the vector bundle
TFM and we write T € T'(T}FM).

If (M, g) is a Riemannian manifold, we usually denote with p its canonical
measure.

We denote with ge, the standard Euclidean metric of R", while, if (M, g) is
a Riemannian manifold and (U, (¢',...,2™)) is a coordinate chart of M, then
ge is the Riemannian metric on U defined as g. = d;;dz’ ® dx’. The respective
geometric quantities of geyq Or ge are labeled with the subscript e.

The Einstein convention of summing over the repeated indices is adopted in
the whole thesis.

In all the computations, C' denotes a general constant which may vary from
line to line.






Introduction

Gravity is one of the four fundamental physical forces in our universe. Two major
gravitational theories have evolved that are still relevant today. One of them is the
Newtonian theory of gravity, the other is Albert Einstein’s theory of general relativ-
ity, dating back to the early years of the twentieth century. In modern language, the
first theory is often formulated in terms of a (Newtonian) potential U that satisfies
the Poisson equation AU = 47 G p, relating such potential to the density of matter
p, via the gravitational constant G, in the Euclidean space R3. The general relativity
theory uses instead a very different approach, avoiding the concept of “force” and
unifying space and time into a curved Lorentzian 4-manifold (M, g) called space-
time. The Einstein equation

1
Ric — ~Rg = kT with k= 57¢
2 ct

then relates the curvatures Ric and R of the Lorentzian manifold to an “energy-
momentum” or “matter” tensor field T, which is the analogue of the classical mass
density. Here, the constants G' and c are the gravitational constant and the speed of
light, respectively. Then, the spacetime (M, g) models a gravitational system, while
the metric “represents” the gravitational field, which is influenced by the matter
distribution and determines the dynamics: the trajectories of the freely falling point
particles are (timelike) geodesics of (M, g).

Any “spacelike” hypersurface (M, g) (i.e. g, the metric induced by g on M, is
Riemannian) in a spacetime (M, g) satisfies the Einstein constraint equations

Ry — | K + (tr,K)* = 2kp
divyK — d(trgK) = kJ

where K is the second fundamental form induced by g on M, ;1 = T(n, n) is the local
energy density and J = T(n, -)|r(rar) is the local momentum density, being n the (local)
future—directed unit normal to M. Indeed, these are simply the Gauss and Codazzi
equations for a hypersurface, keeping into account the information about the “am-
bient” curvature, contained in the Einstein equation.
A triple (M, g, K), where (M, g) is a 3-dimensional Riemannian manifold and K is
a symmetric (0, 2)-tensor field on M satisfying the Einstein constraint equations is
then usually called an initial data set. Moreover, (M, g, K) is said to be time—symmetric,
if the tensor K vanishes everywhere (hence the hypersurface is totally geodesic) and
that (M, g, K) satisfies the dominant energy condition, if p > | J |, everywhere (see [33]
for the physical interpretation of this relation).
For time-symmetric initial data sets, the local momentum density J is zero, hence
R = 167uG/c* and the dominant energy condition becomes equivalent to the re-
quirement the nonnegativity of the scalar curvature R of (M, g).

Isolated systems and static systems are extensively studied gravitational sys-
tems. Isolated systems are stars or black holes that do not interact with other sys-
tems and cannot be reached by “external” gravitational waves, while static systems



4 Introduction

are individual stellar bodies or groups of stars and black holes that are not changing
in time. Mathematically speaking, a static system is characterized by the existence
of a special timelike Killing vector field in the spacetime, while an isolated system
is modeled by the asymptotic “flatness” of its Lorenzian metric. More precisely,
when describing isolated gravitational systems, one is then interested in asymptoti-
cally flat spacetimes (with one end), that is, spacetimes that far from the zone where
the matter is concentrated approach the flat spacetime, i.e. the Minkowski space-
time [33, Section 5.1]. Indeed, from a physical point of view, one expects that when
such a system is observed from great distance, its gravitational field should resem-
ble the one of a point mass. Thus, the spacetime (M, g) modeling such system,
should be asymptotically close to the Schwarzschild solution of Einstein equation, or
simply Schwarzschild spacetime (see [33, Section 5.5]), modeling the gravitational field
around a spherically symmetric, non—rotating, massive object. A time-symmetric
initial data set (M, g,0) in an asymptotically flat spacetime satisfying the dominant
energy condition is then asymptotically flat (see Definition 1.4.1) with nonnegative
scalar curvature.

This discussion explains the great relevance of the theory of asymptotically flat
Riemannian manifolds with nonnegative scalar curvature, which are the main ob-
jects of study in this thesis. Among them, the most famous example is the (exterior
spatial) 3-dimensional Schwarzschild manifold of mass m (Msch(m), gsch(m)), described
in Example 1.4.2. It is obtained by considering the {t = 0}-spacelike slice of the
Schwarzschild spacetime mentioned above.

Any one-ended asymptotically flat manifold has the remarkable property of be-
ing equipped with a well-defined notion of “total” mass, called ADM mass, intro-
duced in [3] by Arnowitt, Deser and Misner and denoted by mapwm (see Defini-
tion 1.5.5). This coincides with the parameter m for the Schwarzschild manifolds
in Example 1.4.2. Schoen and Yau proved in 1979 the celebrated positive mass the-
orem [76], stating that the ADM mass of a 3—dimensional, complete, one—ended
asymptotically flat manifold (M, g) without boundary and with nonnegative scalar
curvature is nonnegative and it is zero if and only if (M, g) is isometric to (R?, ggs).
Later, Huisken and Ilmanen in [37] and Bray in [13] proved the Riemannian Penrose
inequality for a 3—dimensional, complete, one-ended asymptotically flat manifold
(M, g) with nonnegative scalar curvature and with a compact, connected, minimal
boundary 0M, assuming that M contains no other closed minimal surfaces:

MADM = Area(0M) (RPT)
167
with equality if and only if (M, g) is isometric to (Msch(m)s 9sch(m))-

The positive mass theorem asserts that a nonnegative local mass density (R > 0)
implies a nonnegative total mass (mapm > 0). The proof of this natural physical
property is actually highly nontrivial: Schoen and Yau’s proof [76,78] is based on
a contradiction argument related to the existence of stable minimal hypersurfaces.
Later, Witten [87] (see also [69]) gave an alternative proof in which the mass is di-
rectly expressed as the integral of a nonnegative quantity depending on an asymp-
totically constant harmonic spinor. Later, Lohkamp [53] explained how the positive
mass theorem is the consequence of the nonexistence of positive scalar curvature
metrics on the connected sum N#7 of any closed 3—dimensional manifold NV with a
3—dimensional torus T (which is a known result from [30,77]). In 2001, Huisken and
IImanen [37] proved the theorem as a consequence of their proof of the Riemannian
Penrose inequality, based on a weak version of the inverse mean curvature flow. In
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2018 Li [52] gave a proof using Ricci flow, while in 2019, Bray, Kazaras, Khuri and
Stern in [12] obtained another proof which makes use of asymptotically linear har-
monic functions. Concerning to the positive mass theorem in higher dimensions,
Witten’s proof works for all spin manifolds, while Schoen and Yau were able to ex-
tend it up to dimension 7 [77], by a dimension-reduction argument. For the dimen-
sions higher than 7, we refer the reader to the unpublished papers by Schoen and
Yau [79] and Lohkamp [54]. Finally, we mention that there have been also proofs of
various versions of the theorem for nonsmooth manifolds [44,45,55,61,63,80,81]. A
very nice survey of many of these results may be found in [43].

The Riemannian Penrose inequality (RPI) can be seen as a physically natural re-
finement of the positive mass theorem. Indeed, we can imagine the minimal bound-
ary as an event horizon hiding a black hole, which actually should give a contribu-
tion to the total mass. Moreover, it is expected that such contribution depends on
the area of the event horizon, as in the case of (Msch(m), gsch(m)), Which represents
the simplest model of a vacuum “exterior region” of a black hole. Under this point
of view, inequality (RPI) tell us that the mass of our initial data set is at least equal
to the mass of the Schwarzschild manifold whose boundary has the same area of
OM. The first proof of this fact was given by Huisken and Ilmanen in [37], making
rigorous an argument based on the inverse mean curvature flow, suggested by Ge-
roch [26] and Jang-Wald [38]. An alternative approach was followed by Bray [13],
by means of a conformal flow of metrics and the application of the positive mass
theorem. We mention that Bray was able to extend the inequality also to the case of
a disconnected boundary. Moreover, while the proof of Huisken-Ilmanen is essen-
tially 3-dimensional, the approach of Bray can be generalized to higher dimensions.
Indeed, using the same technique, Bray and Lee [14] proved the conclusion in any
dimension n < 7, as in the work of Schoen and Yau on the positive mass theorem (the
obstruction to the generalization of the proof of Schoen and Yau to dimension larger
than 7 is given by the lack of regularity of the minimal hypersurfaces, if n > 7). We
remark that a proof of the Riemannian Penrose inequality in the case where the ini-
tial data set is not time-symmetric presents considerable difficulties. In [70], using a
heuristic argument, Penrose suggested what should be the natural form of inequal-
ity (RPI) for general initial data sets, however, only very partial results are known on
the validity of such statement. We mention that the proof of such Penrose conjecture
would give an indirect evidence of the validity of the cosmic censorship conjecture (we
refer the interested reader to the survey [59]).

The aim of our work is to obtain geometric inequalities involving the ADM mass
and the capacity of the boundary (if present), via monotonicity formulas holding
along the level sets of appropriate harmonic functions. An advantage of this ap-
proach is that the proofs are simpler and more direct.

In Chapter 2 we will consider a triple (M, g, u), satisfying the following condi-
tions,

(@) (M, g) is a complete, one—ended asymptotically flat manifold of dimension n,
n > 3, with compact boundary 0M;

(b) u € C°°(M) satisfies the system

uRic — Vdu > 0 in M
Au=20 in M

(%)
u=~0 on OM

u—1 at oo
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Moreover, sometimes we will also consider condition
(c) the boundary 0M is connected.

In dimension 3, if the assumptions (a) and (b) hold, the asymptotically flat space-
time (M, g), given by M := R x (M \ {u = 0}) with the Lorentzian metric g :=
—u?dt @ dt + g, satisfies the so called null convergence condition [85], i.e. Ric(V,V) >0
for every V € I'(T M) such that g(V, V) = 0, which is the curvature assumption in
Penrose’s celebrated singularity theorem [33, p. 263, Theorem 1]. Moreover, in the spe-
cial case that the first inequality in the above system is an equality, the asymptotically
flat spacetime (M, g) solves the vacuum Einstein equation, i.e. the Einstein equation
with T = 0 or equivalently Ric = 0 (we refer to [33] for further details about the
vacuum Einstein equation and the study of some famous solutions). Then, (M, g)
is a standard static spacetime having u as lapse function, which can be interpreted as a
function describing the “flowing of time ¢" with respect to a canonical observer in
the corresponding 4-dimensional Lorentzian manifold.

In dimension 3, a classic result of Bunting and Masood—ul-Alam [16] states that,

if (M, g, u) satisfy the assumptions (a) and (b), this latter with equality at the first line
of the system, then (M, g) is isometric to a spacelike slice (R?\ B (0), (1+ %)4%3)
of a Schwarzschild spacetime with positive mass m. Assuming a strong enough
decay rate at infinity of the scalar curvature, we are able to extend this rigidity con-
clusion in Theorem 2.3.1 to all triples (M, g, u) satisfying the assumptions (a) and (b)
(without requiring the equality uRic — Vdu = 0), in all the dimensions such that the
positive mass theorem holds.
Moreover, following similar ideas in [2], in the case that we cannot have such con-
clusion by the lack of a strong decay of the scalar curvature and assuming also con-
dition (c) above on the connectedness of the boundary 0M (besides conditions (a)
and (b)), we will show that for a triple (M, g, u) there holds

C>

1 < Volume(9M) )H
-2

Volume(S»—1)

where C is the boundary capacity of OM (see Definition 1.32), with equality holding
if and only if (M, g) is isometric to the (exterior spatial) Schwarzschild manifold of
mass C. A key point of the proof is to show that the functions Fp : [1,4+00) —
[0, 4+00), defined by

Fo(r) = (1 + 1) 55 / VP do,
o=V )
n—2

for every 8 > "=7, are nonincreasing (Theorem 2.1.1). Then, the above inequality
follows by computing and comparing the limit of Fj3 at +00 and the value Fj(1).

We underline that in our line of proof of this inequality and the same for all the
results in the thesis, a key technical point is dealing with the non regular level sets
(hence, with the set of the critical points of the harmonic functions we consider),
where the normal is possibly not everywhere well-defined and the derivatives of
the functions could not exist, thus making difficult showing the monotonicity of the
integrals on such level sets. Another delicate issue to deal with, not in this proof,
but fundamental in the results of Chapters 3 and 4, is the possible non-validity of
Gauss—Bonnet theorem applied to the level sets, which are not necessarily smooth
closed connected surfaces in presence of critical points.
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In Chapter 3, the main goal is to obtain a new proof of the positive mass inequal-

ity, Theorem 3.1.1. We briefly describe here the key steps.
Given a complete, one-ended asymptotically flat, 3-dimensional Riemannian mani-
fold (M, g) with nonnegative scalar curvature, Bray, Kazaras, Khuri and Stern in [12]
proved that, given any € > 0, there exists another complete, asymptotically flat, 3—
dimensional Riemannian manifold (M, g), with nonnegative scalar curvature R > 0,
satisfying the following properties,

(i) M is diffeomorphic to R?;

(i) the ADM mass mapwm of (M, g) satisfies |mapm — Mapum| < €;

(iii) there exists a coordinate chart (2!, 2%, #3), such that, for |z | large enough, there
holds

— 4
g=(1+ TADM 0ij da' @ da’.
2[z|

Hence, by this result, we can clearly limit ourselves to prove the positive mass
inequality for complete, asymptotically flat, 3—dimensional Riemannian manifolds
(M, g) with nonnegative scalar curvature and satisfying conditions (i) and (iii).

We then consider an “appropriate” function u € C*° (M \ {o}), solution of the system

Au = 47é, in M
u—1 at oo

for some point o € M (see Chapter 2 for a discussion of the existence of such function
u and its properties). Condition (i) implies that the function F' : (0,+00) — R,
defined as

F(t) = 4nt — t* / \Vu|H do + 3 / |Vu|? do,
{uzl—%} {u:l—%}

is nondecreasing, for ¢ in the intervals such that 1 — 1/t is a regular value of u (The-
orem 3.1.2). Here, H is the mean curvature of the Riemannian (connected or un-
connected) smooth surface {u = 1 — 1/¢} \ Crit(u), where Crit(u) is the set of the
critical points of u, computed with respect to the co—pointing unit normal vector
field v = Vu/|Vu | and o is the 2-dimensional Hausdorff measure of (M, g). The
topological assumption that M is diffeomorphic to R? (actually, Hy(M;Z) = 0 is suf-
ficient) and the harmonicity guarantee the connectedness of the regular level sets of
u, then the monotonicity is a consequence of Gauss—Bonnet theorem. By means of
condition (iii), a careful description of the behavior of u at infinity leads to the com-
putation of the limit of F'(t) as t — +o0, then the comparison of such limit with the
limit as ¢ — 0, which follows by the monotonicity (taking care of the critical values
by means of Sard’s theorem) implies the positive mass inequality, as

lim F(t) =0 and lim F(t) =87 mapwm-
t—0+ t—-+o00
In his proof of the Riemannian Penrose inequality (RPI), Bray in [13] also ob-
tained the sharp inequality mapy > C, comparing the ADM mass with the bound-
ary capacity C of M, mentioned above (see Definition 1.32). Such inequality was
later applied by Miao in [64] to generalize the previously discussed Bunting and
Masood-ul-Alam’s rigidity theorem to the triples (A, g,u) with M only minimal
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(that is, with zero mean curvature), not requiring that v = 0 on the boundary in
the system (%), indeed, such condition and the equality in the first line imply that
OM is totally geodesic (that is, its second fundamental form is zero). Then, Bray
and Miao asked in [15] whether a similar ADM mass/capacity inequality holds in
general, for every complete, one-ended asymptotically flat, three-dimensional Rie-
mannian manifold (M, g) with R > 0 and with a compact and connected boundary,
not necessarily minimal (that is, OM does not have zero mean curvature), in order
to get further rigidity results. In such paper, they actually were able to obtain it
under the assumption that M has nonnegative Hawking mass (another concept of
mass, actually local, see [26,37] for details) and also derived a sharp upper bound
for the capacity of the boundary in terms of its area and its Willmore energy, given
by the functional [,,, H?do. Anyway, we underline that topological assumptions
on M are necessary for the conclusion. Xiao [88] then showed the analogues of Bray
and Miao’s inequalities, replacing the capacity with the p-harmonic capacity, with
€ (0,3). Finally, we mention that another positive answer to the question of Bray
and Miao was given (in all dimensions such that the positive mass theorem holds)
in the paper by Hirsch and Miao [35], under different hypotheses on the boundary.
In Chapter 4 we reprove with our methods the upper bound on the boundary ca-
pacity obtained by Bray and Miao in [15] and Bray’s ADM mass/capacity inequality
in [13], underlining that the hypotheses in our case and the ones in such papers are
actually independent.
Precisely, we will show that in a 3—dimensional, complete, one-ended asymptoti-
cally flat manifold ()M, g) with a minimal, compact and connected boundary, non-
negative scalar curvature and vanishing first Betti number, there hold

C < Area(OM)

d >C
< T6n an mapm 2 G,

where C > 0 is the boundary capacity of M (Theorem 4.2.2). Moreover, if the
equality holds in one of these two inequalities, then (), g) is isometric to the (exte-

rior spatial) Schwarzschild manifold of mass C (Example 1.4.2).
About the second inequality, we actually obtain the following quantitative estimate

mADM—CZfW[Tr—/WuFda] >0
oM

where the function u € C*°(M) is the solution of the Dirichlet problem

Au=0 in M
u=20 on OM
u—1 at oo

and if the equality holds in the first or second inequality, then (17, g) is isometric to
the (exterior spatial) Schwarzschild manifold of mass C (see Section 4.1).
To show this, we will consider in this case two functions G,G : [C/2,4+00) — R
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defined as follows,

wC? t 2
Gy =-"2+ Z(H% /|Vu| do.
G £ 3 1 Vul?d 1 Vu|Hd
(t)_4nt+@<1+2 - /| |=d <+2t / u|Hdo,

where 3, denotes the level set {u = (1 — %) /(1 + %)}, H is the mean curvature of

Y4 \ Crit(u) with respect to the co—pointing unit normal vector field v = Vu/|Vu |
(being Crit(u) the set of the critical points of «) and ¢ is the 2-dimensional Hausdorff
measure of (M, g).

Similarly to the case of the positive mass inequality, we get that the function G is
nondecreasing for ¢ in the intervals such that (1 — £)/(1 + £) is a regular value of
u and this in turn implies that the same for the function G. Then, the computation
and the consequent comparison of the limits at infinity with the values at ¢t = C/2 of
the functions G and G, prove the above inequalities.

At the moment we are not able to improve the results of Chapter 4 in order to
drop the assumption of the minimality of the boundary, as in the question/conjecture
of Bray and Miao in [15].

A natural future development of our work is extending our computations and
results to appropriate p-harmonic functions, in order to use them for monotonic-
ity arguments, having in mind as a main goal a simpler proof of the Riemannian
Penrose inequality (RPI). Two immediate and clear obstacles to this line of research
are dealing with the structure of the set of the critical values (which, for instance, a
priori could have positive Lebesgue measure, due to the possible “bad behavior” of
p-harmonic functions) and obtaining a careful description of the decay at infinity of
these functions. The first point is related to showing the monotonicity of the appro-
priate quantities along the level sets, the second one is a key step in getting the limit
of such quantities, as the level sets go to infinity.






Chapter 1

Preliminaries

In this chapter we introduce some basic notations and results about Riemannian
manifolds and their submanifolds. Then, we discuss the behavior “at infinity” of
some harmonic functions and of some relevant quantities in complete asymptoti-
cally flat manifolds with one end. Finally, we discuss the so called ADM mass of an
asymptotically flat manifold, after the names of R. Arnowitt, S. Deser and C. W. Mis-
ner, who introduced such concept in [3].

1.1 Riemannian manifolds and curvature

A Riemannian manifold (), g) of dimension n is an n-dimensional smooth mani-
fold M with a positive definite and symmetric (0, 2)-tensor field g.

By means of such metric, we can define the lengths of the curves on and the distance
on M as the infimum of the length of the curves joining two points, giving M a met-
ric space structure (compatible with the original topology).

The Levi—-Civita connection V, symmetric and compatible with the Riemannian met-
ric g is uniquely defined, allowing a “differential calculus” for tensor fields and other
geometric objects on M, whose “deviation” from the usual differential calculus in R™
is “measured” by the Riemann curvature tensor.

Finally, one has a “natural” canonical measure p from a given Riemannian metric
(see [29, Section 3.4] and [84, Chapter 12]), hence we have a well defined notion of
integral of a real function on M.

For sake of completeness, we are going to briefly recall these notions, however we
refer the reader to [47,72,74] for a detailed treatment (see [68] for the Lorentzian
setting and [46] as a general reference of differential geometry).

Taking a local chart (U, (z!,...,2")) of M, we have the coordinate vector fields
and the coordinate 1-forms, respectively given by { 8‘22.} and {dz?}, which in each
p € U give a basis of T), M and T; M.

Then a (local or global) vector field X and and a (local or global) 1-form w can be
written in a coordinate chartas X = X' a?:i and w = w;d2’ respectively and a general
(k,l)-tensor field T" as

0

Ozt

i1 i1 il
T=Ti jd) ©-- - @da’ ® En

The metric g of M extended to tensors (of the same type) is given by

g(Tv S) = Giys1 -+ 'gikskgj121 . 'ngZZT?'lmZ"kSSIMSk )

J1.-1 T R1---21
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where (g;;) is the matrix of the coefficients of g in local coordinates and (¢g%) is its
inverse. Clearly, the norm of a tensor is then

T =v9(T,T).
We can associate to each X € I'(T'M) the 1-form X° on M satisfying
Xb(Y):g(X,Y)7 Xb:ginjd-Ti

in local coordinates. Similarly, we can also associate to each 1-form w the vector field
w! on M satisfying

0

w(Y) = g(wY), wh = g”%‘@

in local coordinates. In particular, the gradient V f of a smooth function f is defined
as Vf = dft.

A subset E C M is said measurable if o(E N U) C R" is Lebesgue-measurable
for every chart (U, ¢) of M. The family M (M) of the measurable sets of M is a o—
algebra which clearly contains the Borel sets B(A/). Then, one can define uniquely
the canonical (or volume) measure ;1 on the measurable space (M, M(M)) by imposing
in any chart (U, ) that du = /det g;;dL, where L is the Lebesgue measure in U.
The measure 1 is then a complete and regular, Radon measure, that is, finite on the
compact subsets of M (and positive on any open subset), moreover, we mention that
the measures i and H", the Hausdorff n—-dimensional measure, coincide.

If ¥ is a k—dimensional Riemannian submanifold of (), g), the canonical mea-
sure o on X with the induced Riemannian metric, the k—dimensional Hausdorff mea-
sure on (X, ds), where dy, the distance function of ¥, the k—~dimensional Hausdorff
measure on (X, dys), where dj; is the distance function of M (restricted to X) and
finally H% LY, the k—~dimensional Hausdorff measure of M restricted to ¥, all coin-
cide.

If f: M — N is a function of class C* between Riemannian manifolds with
k > max{l,dim M — dim N + 1}, then the set of the critical values of f has zero
measure zero in N. This is known as Sard’s theorem.

Another useful result is the so called coarea formula, it says that if f € C™(M),
where n is the dimension of M, then for any measurable function v : M — R, which
is everywhere nonnegative or it is in L!(M), one has

/u]Vf]du—/dt /uda, (1.1)
M R 1)

where o is the canonical measure of f~!(¢) which is a hypersurface for almost every
t € R (by Sard’s theorem). We refer the reader to [67,82] for a detailed discussion of
the coarea formula.

The Levi-Civita connection is the unique linear connection V : (X,Y) € I'(T'M) x
I(TM) — VxY € I'(TM) which is symmetric, i.e.

VxY - VyX =[X,Y],
and compatible with the metric g, i.e.

Xg(Y,Z2) =g (VxY,Z)+g(Y,VxZ) .
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Here [-, -] denotes the so called Lie bracket, i.e. [X,Y] is the vector field given by
XY —YX forevery X,Y € I'(TM). Taking a local chart (U, (z,...,z")) of M, then
the Christoffel symbols Ffj are the smooth functions defined on U by

0 _ 0

V.o —
907 OT7 ok

They satisfy the following conditions

Iy =rk,
0
az.” = F gl] + Fk]gll

for every i, j, k € {1,...,n}, by virtue of the symmetry and compatibility of V with
respect to g, respectively. By a straightforward computation, it follows that

Fi _ 5glk ( 9kj agzk . gzg) .

or? oxd  OxF

Then, the covariant derivative of a vector field X with respect to Y € I'(T'M) can be
written as

oYk 0

oz’ oxk’

One can extend uniquely the Levi-Civita connection to every tensor bundle (by
defining it in a natural way on C*°(M) and by imposing the Leibniz rule and the
commutativity with any contraction). Then, in local coordinates the covariant deriva-
tive of a tensor T' € I'(T}* M) with respect to X € I'(T'M) has coefficients

VXY:Xi( +Y3Pk)

1.0 k 210y 2 : 11 Ay iq i1...8qg—1lgigt1.. 0
(VXT)]I Js =X |: g;kT]l Js Fk]p J1-Jp=1lpip+1-. JS+ZF Th Js

It follows that VT is a (k, [+ 1)~tensor field for every T € I'(T}* M) and we will write
V™T for the m—th iterated covariant derivative of 7.
In particular, the Hessian of a smooth function f is V2f = Vdf and it is a symmetric
(0,2)—tensor field.

The divergence div.X of a vector field X is defined by

; 8X ; 1 ;
divX = tr(Z X)=V,X'= F’X = —=0; | Vdetgu X") .
1Y 1“( — Vz ) v 8 + \/W ( et gri )
In particular, the divergence of the gradient of a smooth function f is called Laplacian

of f and is denoted by Af.
If X is a vector field with compact support on a Riemannian manifold (M, g) with
or without boundary, then the following divergence theorem holds

0 if M is without boundary
divX dp =
/M v o /g(X, v)do if M has boundary
oM

where in the second case, v is the outward—pointing unit normal vector field along
OM, ;v and o are the canonical measures of the Riemannian manifolds (M, g) and



14 Chapter 1. Preliminaries

(OM, 1},,9), respectively (being tgys the inclusion map).

Remark 1.1.1. A useful application of the divergence theorem is the following for-
mula/argument, that we will use repeatedly in the whole thesis.

Given a Riemannian manifold (), g) with or without boundary and a function f €
C*°(M), having the boundary 0M as a level set in the case OM # O, if 5,S € R are
regular values of f such that s < S and {s < f < S} is compact, then {s < f < S}
is a Riemannian submanifold with boundary, given by {f = s} U {f = S} and for
every X vector field on {s < f < S} we have

/diVXdM: /diVXd,u:/g(X,y)d0+/g(X,1/)da

{s<f<S} {s<f<S} {f=S} {f=s}
)i [ o(x.55)
- X, 2 Vo - X, 2V do, 1.2
/ g( Mi I\& oy 1.2)
{f=S f=s

where the first equality follows since the two level sets have zero y—measure, the
second one by applying the divergence theorem to the vector field X on each con-
nected component of {s < f < S} and the last one by observing that the outward-
pointing unit normal vector field along {f = S} is Vf/|V f| while along {f = s}
is =V f/|V f|, being s and S regular values of f. In several occasions, with a small
abuse of language we will talk from now on of “applying the divergence theorem to
the vector field X on {s < f < S}”, in referring to formula (1.2).

The notion of curvature is given by the Riemann operator, which is the (1,3)-
tensor field, given by

R(X,Y)Z =VxVyZ —VyVxZ — Vixy|Z

for every X,Y,Z € I'(TM). In a local chart (U, (z',...,2™)), the smooth functions
Rﬁ sponU, defined by
(i i) 9 _q 9
Oxi’ Oz ) oxk — Tk gyl

can be expressed in terms of the Christoffel symbols as

!
I 8ij _ 8Fék
kT Py OxI

h h 1l
+ 5l — Dl

From the operator of Riemann we can obtain the (0, 4)-tensor field, called curvature
(or Riemann) tensor, defined by

Riem (X, Y, Z,W) = ¢ (R (X,Y) Z, W)
forevery X,Y, Z,W € I'(TM). In a local chart (U, (z*,...,2")), one has

o o0 o0 0

Ragkn = Riem (5 507" 0k Dl

and
I
Rijen = ginRijy-
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The Riemann tensor satisfies the following well known symmetries/properties,

Riem (X,Y, Z,W) = —Riem (Y, X, Z, W) ,
Riem (X, Y, Z,W) = —Riem (X, Y, W, Z) ,
Riem (X,Y,Z, W) = Riem (Z,W, X,Y) ,

and

Riem (X,Y, Z, W) + Riem (Y, Z, X, W) + Riem (Z, X, Y, W) =0,
(Bianchi’s first identity)
VxRiem(Y,Z, W, T) + VyRiem(Z, X,W,T) + VzRiem(X,Y,W,T) = 0.
(Bianchi's second identity)

forevery X, Y, Z, W, T € I'(TM).

The knowledge of the curvature tensor is equivalent of the knowledge of the sec-
tional curvatures of all 2-planes contained in every tangent space, where the sectional
curvature of a 2—-plane = C T),M with basis {v, w}, is defined by

Riemy, (v, w, w, v)

Secy(m) = Secp (v, 0) = T2 = 2w, w)

This definition is well-posed since it is independent of the considered basis of 7.
We then have other notions of curvature, one of them is the Ricci tensor, which is the
symmetric (0, 2)-tensor field obtained by tanking the “partial” trace (with respect to
g) of the operator of Riemann, namely

Ric (X,Y) =tr(Z — R(Z,X)Y)

for every X,Y € I'(TM). In a local chart (U, (z',...,2™)), the smooth functions
Ric;; on U, defined as
. (0 0
Ricij = Ric( 50 505 )
are given by
RiCZ’j = Rﬁij = gklRiklj .
From the Ricci tensor we can obtain, by taking its trace, the scalar curvature,

R(p) = tr(Ricy)

which is then the smooth function on M, given in a local chart (U, (z!,...,z")) by

R = Ric! = g% Ric;j = 9" gklRiklj .
Ifeq,...,e, € Tp(M) is an orthonormal basis, we have

Ricy (v, w) = Ry(ei, v, w, e;) = Rp(v, €5, €5, w),

R = Ricp(ei, 61‘) = Rp(ei,ej, €5, 61') = 22 Secp (61', ej) .

i<j

In particular, it follows that, when n = 2, R = 2K, where K is the sectional curvature
of (M, g) (also called Gauss curvature). A simple relationship between Gauss curva-

ture and topology is provided by the famous Gauss—Bonnet theorem (see [71, Section
4.3]).
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Theorem 1.1.2 (Gauss—Bonnet Theorem). For a closed surface M (compact and without
boundary), we have

[ Kau=2mxon),
M

where K is the Gauss curvature and x(M) is the Euler characteristic of M, which is a
topological invariant.

Since every connected closed surface is diffeomorphic to a sphere, or to a con-
nected sum of tori, or to a connected sum of projective planes (see [9,60]) and

2 if M is diffeomorphic to S?
X(M)=<2-2n if M is diffeomorphic to the connected sum of n tori
2—n if M is diffeomorphic to the connected sum of n projective planes

one can deduce 2mx (M) < 4, for every connected closed surface. This inequality
will play a key role in the monotonicity formulas in Chapters 3 and 4 and the lack
of an analogue of Gauss—Bonnet theorem is the reason why they do not hold in all
dimensions.

1.2 The fundamental equations of submanifolds

Let ¥ be an k—dimensional Riemannian submanifold of a n-dimensional Rieman-
nian manifold (M, g). The codimension of ¥ is the difference dim M — dim¥, i.e.
n — k and the submanifolds of codimension 1 are called hypersurfaces. The Rieman-
nian metric induced by (M, g) on ¥ is denoted by ¢*, though we use the notation
g(X,Y) for all vector fields X, Y along ¥ as we identify 7}, with its image in 7, M
via the differential of the inclusion map in each point p € ¥. Moreover, we de-
note covariant derivatives and curvatures associated with (M, g) in the usual way
(V, R, Riem, etc.) and write (V*, R*, Riem®, etc.) for those associated with (2, g*>).
Let T3 and N be the tangent bundle and the normal bundle of ¥, respectively. At
each point p € ¥, the “ambient” tangent space T,,M splits as an orthogonal direct
sum of T, and N,%, i.e. T,M = T,X & N,X. Therefore, we indicate with vl e 1,2
and v1 € N, the tangential projection and the normal projection of every v € T,M,
respectively. For all X,Y € I'(T'Y), we recall that VxY is a well-defined vector field
along X (as for every p € ¥ the value of VxY at p depends only on the values of Y’
along some curve y with 7/(0) = X)) and consequently

VxY = (VxY) | + (VxY)",
then, considering
VT (X,Y) €eT(TS) x T(TS) - (VxY) ' eT(TE)
: (X,Y) € T(TE) x T(TE) — —(VxY) " € T(NE)

we get that V' is a linear connection, more precisely, it coincides with V* (by the
uniqueness of the Levi—Civita connection), thus

VxY = VXY —II(X,Y).
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The bilinear map 1I is called second fundamental form of ¥ and it is symmetric, i.e
I(X,Y) = (Y, X) for every X,Y € I'(TY), since V and V¥ are torsion—free con-
nections. Likewise, for every X € I'(T'Y) and for each ¢ € I'(NY), there holds

Vxé = (Vx€) |+ (Vxé)™,

then, introducing

Vh(X,6) eT(TE) x T(NE) = (Vx€)© € T(NE)
Se: X €T(TE) = (Vx€) | €T(TX)

for every £ € I'(NY), V= is a connection on NY, compatible with g in the sense that

Xg(&m) = 9(Vx&m) +9(& Vxn)
forevery X € I'(T'Y) and for all {, € I'(INX), then there holds
Vxé=5:X+Vx¢.

The operator V- is called normal connection, while Sg is known as shape operator of 3.
in the direction . The second fundamental form and the shape operator are related
as follows,

g(SgX, Y)= g(H(X,Y),E)

forall X,Y € I'(T'Y) and for every & € I'(NX), therefore S; is self-adjoint.

We mention that the sign of the second fundamental form and of the shape oper-
ator can differ from our choice in the literature. In a way, they “measure” how a
submanifold “curves inside” the ambient space.

Finally, we introduce the other fundamental equations for submanifolds in Rie-
mannian geometry; the first one relates the Riemann tensors of M and X through the
second fundamental form, the others describe the normal projection of the Rieman-
nian operator on particular triples in terms of the second fundamental form and of
its derivatives and of the shape operator.

For all vector fields X,Y, Z,W € I'(TY) and £,n € I'(NY), the following equations
hold,

Gauss equation:
Riem(X,Y, Z, W) = Riem™ (X, Y, Z, W)+¢(II(X, 2), (Y, W)) —g (Il(X, W), IL(Y, Z)) ,
Codazzi equation:

(R(X,Y)2)" = VHII(X, 2) - TV X, Z) — TI(X, V3 2)
—- VxIL(Y, 2) + I(VXY, Z) + II(Y, VX Z).,

Ricci equation:
(R(X, Y)g)L = RL(X, Y)E+TI(S: X, Y) —II(S:Y, X) .
Here, R+ is the curvature tensor of the normal bundle of M defined by

RE(X,Y)E = ViVl — VeVxé — Vixy &
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We notice that, being any immersed submanifold locally embedded, all that has
been said so far can be extended to only-immersed (possibly not embedded) sub-
manifolds.

1.3 Riemannian hypersurfaces

Let ¥ be a Riemannian hypersurface of a n—dimensional Riemannian manifold (1, g).
In this case, the normal bundle NX of ¥ is a vector bundle of rank 1 on ¥, therefore

locally around each point of ¥ we can define, up to a sign, a unit local normal vector

tield v along 3. If there exists a global choice of the unit normal vector field v, i.e.

¥ has a trivial normal bundle and it is called two-sided. If M is orientable, then ¥ is

two-sided if and only if ¥ is orientable.

Unless we explicitly consider a neighborhood of a point with a unit normal field, we

assume that ¥ is two—sided with a global unit normal vector field v. Then, Vxvisa

tangent vector field on 3, namely

Vxv = (VXV)T =S,(X)

for every X € I'(T'Y). Moreover, the symmetric (0,2)-tensor h on ¥, called (scalar)
second fundamental form of 3 with respect to v, given by

h(Xv Y) = g(vXVa Y) = g(S,,(X),Y) = *g(% VXY)v (1.3)

for every X,Y € I'(T'Y), determines uniquely the second fundamental form II. In-
deed,
(X, Y) = g(II(X,Y),v)v = g(S,(X),Y) = h(X,Y).

From now on we will denote S, by S for a chosen unit normal vector field » and
the outward unit normal field will be our default choice when 3 is the boundary of a
bounded domain.

The mean curvature H of ¥ is the trace (with the induced metric) of the second funda-
mental form h, or equivalently of the shape operator S. If {e,}"_} is an orthonormal
basis of T),%, for p € ¥, then

HP = hp(ea7 606) = gp(veay, ea) .

In particular, H, is equal to the sum of the principal curvatures of ¥ at p, which are the
eigenvalues of S),.

If U is a neighborhood of p in M and f is a C*°(U)—function without critical
points, such that X N U = f~!(c), then the second fundamental form and the mean
curvature with respect to the unit normal vector field v = Vf /|V f| are given re-
spectively by

 VAf(X,Y)
h(X,¥) = 5 (1.4)
(VI Af VALY
H‘d”<|Vf|>‘|Vf| N (19)

for every X,Y e I'(T'X). It is useful to notice that in a small enough neighborhood
of each point of a hypersurface, there always exists a function f as above.
If H, = 0 for all p € %, then X is called minimal.
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Concerning the basic equations of the submanifolds, in the codimension one case
many of the previous formula simplifies. In particular

VxY =VXY —h(X,Y)v, (Gauss formula for a hypersurface)
Vxv=5(X). (Weingarten formula for a hypersurface)

The Gauss equation becomes
Riem(X,Y, Z, W) = Riem*(X,Y, Z, W) + h(X, Z)h(Y,W) — h(X,W)h(Y, Z),
from which we obtain, after taking traces,
R = R*® + 2Ric(v,v) + |h|*> — H2, (1.6)

known as traced Gauss equation. Indeed, fixed an orthonormal basis {e,}"_} of T),%.
for p € 3, we have

R = Riem(eq, €3, €3, €q) + 2Riem(eq, v, v, €4)
= Riem™(eq, €5, €3, €a) + h(ea, eg)h(€a, ) — h(ea, ea)h(es, eg) + 2Ric(v, v)
= Riem™(eq, €5, €3, €a) + |h|? — H 4 2Ric(v, v),

where the Gauss equation implies the second equality.
The Codazzi equation gets the form

R(X,Y, Z,v) = (V¥h)(X, Z) — (VXh)(Y,2),

while the Ricci equation is trivial.

Let (M, g) be a Riemannian manifold and ¥ be a two-sided Riemannian hyper-
surface of M with unit normal v. We call tangential gradient V' f(p) of a function of
class C! defined in a neighborhood U in M of a point p € ¥, the projection of Vf(p)
on T,,%, ie. (Vf (p))". It turns out that VT f depends only on the restriction of f to
¥ N U and coincides with V= f|s.

We define the tangential divergence of a vector field X along ¥ as

div'X = g(Vp, X, Ea)

where {E,} is a local orthonormal frame of 3, which coincides with the divergence
(relative to X) of X, if X is a vector field on the hypersurface. It follows

AYf =div'V'f =g(VE, V'S Ey)
=9(Ve,Vf, Ey) —g(Vf,v)g(VEe,v, Es)
= Af - Vdf(l/, V) - g(va V)g(S(Ea)7Ea)
:Af_Vdf(VaV) —g(Vf,V)H,

where A¥ is the Laplacian of 3 with the induced metric.
Moreover, arguing similarly,

div'X =div'X " +div' X+ =div' X" +¢(X,v) 9(VE. v, Es) =div' X T 4+ g(X,v)H.
(1.7)
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This last equality and the divergence theorem imply the tangential divergence formula

/diVTX do = /g(X, v)Hdo

b b

for every vector field X along ¥ with compact support.

We now discuss the first variation of the volume measure and mean curvature of
a hypersurface. These computations will be used in the following chapters.
Let ¥ be a two-sided Riemannian hypersurface of a Riemannian manifold (27, g)
with unit normal v. We call a local variation of ¥ a smooth map

O:IxXY =M

such that I is an open interval around 0 € R, the map ¢, = ®(¢,:) : ¥ — M is an
embedding for each t € I and

®(0,p) =p foreverype X,

finally, there exists a compact set K C ¥ such that ®(¢,-) : ¥ — M is the identity
outside K, for every t € I. We then define ¥; = ®({t} x X) = ¢(X), for each fixed
tel
We assume that the vector field along ¥, called infinitesimal generator of the variation,
given by
0 0P
X(p) = Ao, (5 ) = 509

is normal, that is, X = fr, then we have,

% £gt o fHo (Normal first variation of volume measure)
0 5 2 .
&Ht ’t:o =—-A*f— (|h|* + Ric(v,v)) f

(Normal first variation of mean curvature)
where H; = IHZ* and h, H and ¢ are the second fundamental form, the mean value

and volume measure of %, respectively.
Fixed a coordinate chart (91, ..., 6" !) of &, the measures ¢; o>t are determined by

pro¥t (A :/ det gt 5 L™
t0(A) oV 5

for every measurable set A C ¥, with ¢* = ¢} ¢g>* and

¢ _ (9% Obu
Jas = 9\ pga 568 ) -
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where we have set %(p) = doy (% ‘p) for every p € X. Then, we have,

| 0 (90 0o
otes | _ = ot \ oo 007 ) |,_,
- ¢ ? 91 9
= o (viggs a) +o (Vg o)
0 0
:g(VazaX’aeﬁ%g Vs ae)
0 0
—9<Vaé7f7/,w>+g<v£5fyaw>
0 0
:fg<v<ga7/7805>+fg<v£ﬂ%w>
0 0
=2/ (aaa’aeﬁ)

as X = fvis a normal vector field and we used equality (1.3).

Hence, since 5
A) = -4/ det gt
e /e(A) otV s

we compute, by means of the formula

d
%@ o

dﬁn_l
t=0

% det A(t) = det A(#) tr [A=L (1) A (8)],

holding for any invertible n x n squared matrix A(t) dependent on ¢,

1 99,
o™ 5,/detggﬂg;\“ g;\“)t_o = ng“hAu\/detga = fH\/det go3,

which clearly gives the claimed normal variation of the volume measure.
Concerning the normal first variation of the mean curvature, for simplicity, we
prove it in the case in which

0 ¢
En detgaﬁ

O ((=6,0) x 2, [ 2(t,p)dt @ dt + ¢=(t) ) — (U, g)

is an isometry, where U is an open set of M and fisa positive smooth function
satisfying f(O, p) = f(p) for every p € ¥. In this case, we can consider a coordinate
basis { 2, %, e, ﬁ} in a neighborhood V of an arbitrary point p € ¥ in M such
that {8%1’ ce %} is a coordinate basis of the tangent space to X around p € ¥ and
we observe that the vector field £ (defined globally as Vt/|Vt|? for t = m5 0 &)
is normal to each ¥;. Then, with a slight abuse of notation, we denote by f also the
function f o ! and by v the vector field defined by the equality fv = 2. This
latter coincides with 14 along each ¥; and in particular X (p) = 2 , forallp e %.
Moreover, we define the (0, 2)-tensor field h and the smooth function H on V" as

h(X,Y)=¢g(Vxv,Y) forevery X,Y e I'(T'V),
H= gaﬂhaﬁ s

respectively. The restrictions of h and H to each ¥; coincide with h** and H** (with
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restriction of h to ¥; we mean ( h, being ¢z, the inclusion map). With these nota-
tions, we have that

OH _ agaﬁh apMas
ot ot~ ot

As we already know that
dg*P
ot
the contribution of the first term on the right hand side is given by

= —2fg**¢""hy,,

Bgaﬁ

o hes = —2/¢°" g haghy, = —2f|h[*. (18)

About the second term, we need to compute 0h,z/0t. We have

Ohag ) )
o 9 (Vivaﬁa”’ aeﬁ) 9 (Vaﬁa” Vi 8t>

0 . o 0 0 B
=9 (vagavfiy’ &oﬁ) +Rlem (atvaaavljv 89B) +9 (vagay’vagﬁﬁt> .

Again with a small abuse of notation in the last term of the chain of equalities

13)_ 10f0 1[Fta aa]_ s 0F 9

_va )

Vgv=Vg (fat oo Ty Mo T ragee | T 9 569 e

where in the third equality we used the fact that

I, = ;g{ ,
=il
We then have
Ohap _

0 0 0
_ T R 9 9 9
9t g<V8§)aV f, 895> fRiem <80a,u,u, 895> —I—g(Vagal/,VaZﬂ 8t> )
Consequently,

af ahaﬁ —

T o : afs
Y <V V'/, > fRic(v,v) + fg g(Vagau,Va%Bu),

(1.9)

068

being V oV tangential. Then, it follows by equations (1.8) and (1.9) that around any
p € X there holds

0

0
S He| =2/ = g™y <v%aava,

ot =0 008

= —f|h|* = A% f — fRic(v,v),

) — fRic(v,v) + fg*%g <VLV7 Vi”)
00 F)

where we observed that

9°%9 (V o1,V o v) =tr(5%) = 0],
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hence, we obtained the claimed normal variations of the mean curvature in our spe-
cial case.

1.4 Asymptotically flat manifolds

We discussed in the introduction how asymptotically flat manifolds arise naturally
in general relativity and their relevance for the theory, we now see their precise
mathematical definition.

In all this thesis, we adopt the Landau big—O /little—o convention, as follows.
Let f be a function defined outside a compact set of R™ and let T € R. We will write:

f=o0(1) when | f(x)| = 0as |x| — +o0;

f = O(1) when there exists a constant C' > 0 such that | f(x)| < C on {|z| > R}, for R
sufficiently large;

f=op(lz|"7)if f € CF and |z|l“H7|0 f| = o(1) for every multi-index o with
0<|a| <k

f=0(|z|77) if f € C*and |z||*H7|0% f| = O(1) for every multi-index o with
0<|a|<k;

f=ox(lz| ) if f € C®and |z|l*IF7|0*f| = o(1) for every multi-index ;
f=0x(z|77)if f € C®and |x|1*1F7|0% f| = O(1) for every multi-index a.

Obviously, in a manifold these definitions naturally extend to functions defined on any coor-
dinate domain diffeomorphic to R™ minus a compact set, via a coordinate chart.

Definition 1.4.1. An n—dimensional Riemannian manifold (), g) (with or without
boundary) is said to be asymptotically flat if there exists a closed and bounded subset
K such that M \ K is a finite union of pairwise disjoint open sets Mj, ..., My, called
ends, each of them diffeomorphic to R” minus a closed ball B.(0) by a coordinate
chart (z!,...,2"), called asymptotically flat coordinate chart, such that, setting g =
gij dz' ® dz7, there holds

gij(x) = i + 0ij with oij = O2(lz|™7), (1.10)

for some constant 7 > "2 (the order of decay of g(z) in the asymptotically flat coor-
dinates chart (z!,...,2"), briefly the order), where § is the Kronecker delta function.

We will always require in the sequel, without mentioning it, that the scalar curvature of
an asymptotically flat manifold (M, g) is nonnegative or belongs to L*(M). The reason for
this choice will be clear in the last section of this chapter, in defining the ADM mass.

In all this thesis we will use the acronym AF for asymptotically flat. Moreover, given
an AF coordinate chart (E, (z',...,2™)), we can consider on E the Riemannian metric g,
defined as g. = 6;;dz' ® dz’ and all the relative geometric quantities will be labeled with the
letter e.

We remark that we can clearly always suppose, without loss of generality, that
|z| > 1 for every AF coordinate chart on any end and that such charts can be always
smoothly extended to the closure of the coordinate domain. Hence, all the quantities
can be expressed in terms of the coordinates on a closed set diffeomorphic to R”
minus an open ball.
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FIGURE 1.1: An asymptotically flat manifold with just one end. By
the definition, such manifolds can possibly have a quite complicate
topology but all “concentrated” in a bounded domain.

Example 1.4.2. Let m be a real number. The (exterior spatial) Schwarzschild manifold of
mass m is defined as the Riemannian manifold (Msch(m); gsch(m)) given by

m. o\

(@)ﬁ (0), (1 + W) geucl) (1.11)
The Schwarzschild manifold (Msch (), gsch(m)) Of mass m is clearly asymptotically
flat, moreover, the metric g is spherically-symmetric (roughly speaking, it means
that in polar coordinates all metric components are independent of the S"~!—factor
and there are no mixed terms involving one—forms on S*~1), conformal to the Eu-
clidean metric via a power of a harmonic function and the manifold (Mg (), gsch(m))
has zero scalar curvature. The map

(MSch(m)a gSCh(m)) = <Rn \

2

‘ = _ m )m _ oz n—1
o:zxeR \B(|2771|)7112(0)}—>(T_|x|(1+2|1‘|n2 ,29—|x|> el, xS,

where I,,, is the open interval (0, +00), if m < 0 and ((2m)ﬁ, +00) otherwise, is a
diffeomorphism with inverse

2
2 w3 _
() €l xS s = (1+ 1—m> 9 eR"\ B

973 rn—2

12(0)7

[m|\n—
(1.12)
more precisely it is an isometry between the Riemannian manifolds (Mseh (1), 9sch(m))

2
and R
<Im X Sn_l, ﬁﬂ + T29Sn1> . (113)

2m
—2

The geometry of (Msch(m), gsch(m)) depends on the sign of m, indeed, in the case
m > 0 the metric given in formula (1.11) is smooth on all of R" \ {0}, the manifold
thus obtained is complete and has two asymptotically flat ends, with a reflection
symmetry about the totally geodesic (hence, minimal) sphere at {|z| = (m/ Q)ﬁ }.
In the case m = 0, (Msch(m), 9sch(m)) can be smoothly extended across the origin and
it is isometric to Euclidean space. Finally, if m < 0, the metric g degenerates on 9M.
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From now on, for m > 0 with (exterior spatial) Schwarzschild manifold of mass m,
denoted with (Msey (), 9sch(m)), we mean the manifold

(Rﬁ\\B(g)"ljan’(l%_Q“:1=2>niﬂkud>-

Let M; be an end of an AF manifold (M, g) and and (z!,...,z") an AF coordinate
chart for M;, by definition, one has

n

Z {01] |+Z’ ‘80‘U

1,j=1

5o, C
Z of* ‘83:’::3;:1 H |z|7’ (1.14)

on M; . Being the metric g;; and its inverse g converging to d;;, as || — 400, it is
easy to see that there exists a constant C' (possibly different by the one above), such
that

c! 5ijvivj < gij(p)vivj < Céijvivj, (1.15)
C~L6Uvi? < g (p)vin! < C69vi? (1.16)

for every p € M; and for allv = (v!,...,v") € R™

An easy consequence is the (metric) unboundedness of every end M; (and also of
every subset of M; of which the image through (z1, ..., z,) in R" is unbounded).
This fact leads to the uniqueness of number of ends of an AF manifold. Indeed, we con-
sider the sets K, M, ..., M}, of Definition 1.4.1. Then

M=KUMLU- UM,

where K is a closed and bounded set, while M7, ..., M are unbounded, connected,
open sets, each of them is diffeomorphic to R” minus an open ball via an AF coordi-
nate chart. Assume that

M=CUN{U---UN;

where C' and Ny, ..., N; satisfy the same conditions of K and M, ..., My, respec-
tively. For each i € {1,...,k}, we can consider an unbounded connected subset
of M; diffeomorphic, via an associated AF chart, to R” minus a ball of radius suf-
ficiently large, in order that it has empty intersection with C (this is possible since
C' is bounded), then we denote by ]\Z its connected component in M; \ C. Notice
that the other connected components of M; \ C are bounded. Similarly, for each
j € {1,...,1}, let N; be the unbounded connected component of N; \ K, obtained
analogously. As each M; is contained in one and only one Nj;), as M is connected,
it is then well-defined a map ¢ +— j(¢) which is actually surjective, indeed each N
is as well contained in one and only one M, by virtue of the fact that N; iNK =0,
along with its connectedness. It follows that [ < k and, by symmetry, the conclusion
follows.

From now on we deal only with one—ended AF manifolds, that is, AF manifolds
with only one end. Anyway, most of the results that we will present can be extended
to each end of any AF manifold. We start with the behaviors in an AF coordinate
chart at infinity of some relevant quantities.
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Proposition 1.4.3. Let (M™, g) be a one—ended AF manifold and let (z*, ..., x™) be an AF
coordinate chart of order 7. It follows that

IY=0(lz|™ 1), (1.17)

Rmlj, = O(|z|777?), (1.18)

Rici; = O(|z|777 %), (1.19)
R=0(lz|77?)

Proof. These decay orders are immediate consequence of the expressions of these
quantities in terms of the derivatives of the metric, as seen in Section 1.1. O

Proposition 1.4.4. Let (M™, g) be a one—ended AF manifold and let (z*, ..., 2™) be an AF
coordinate chart of order T. We have

1
Vdetgi; =1+ itre(a) +O(|z|7?7), (1.20)
97 =67 — oy + O(|z|777), (1.21)

where tr.(o) = 0y;.

Proof. We have, by using the Leibniz formula for the determinant,

det g;; = Z ng(z‘) = Hgn’ +O(|z[ )

0epP,, =1 =1

H 1+ 04) + O(|z|727) = 1 + tre(o) + O(|z| ")

where P, is the set of all permutations of {1,...,n}. Then, the asymptotic expan-
sion in formula (1.20) follows by the Taylor expansion of the square root function.
Concerning the second asymptotic expansion, we have

(-1

i 7
g det gij Tt
where G; is the determinant of the matrix obtained from (g;;), by deleting the row
of index j and the column of index i. If i = j, then

it _ 911 Gimli1 Git1it1 - Gon + O(|2|7%7)
1+ tre(o) + O(|z|~27)
1+ tre(o) — 04 + O(|2|727)
1+ tre(o) + O(Jz|—27)
= [ + tre(o) — oy + O(]m]‘ZT)] [1 —tre(o) + O(]x]_27)]
=1—04i+0(z|7%).

9
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Instead, if i # j, for instance ¢ < j,

—1)it+J ] ‘ .
= (d ) sign(i,...,j — 1)[911"-gi—1i—1 Gi+1li4+1---95-15-19ij gj+1j+1---gnn}
etgij
+O(|z[ )
—[oij + O(lz|*N)] [1 = tre(0) + O(|[7*7)]

= —0y + O(|z| ™),

]

where (i,...,j — 1) is the permutation of {1,...,n — 1} whichmapsiini+1,7+1
in 7 + 2 and so on, up to j — 1 which is mapped in i while the other elements are
fixed. This permutation is the product of j — i — 1 transpositions, therefore its sign
is (—1)77L. O

Proposition 1.4.5. Let (M", g) be a one—ended AF manifold and (E, (z',...,2™)) an AF
coordinate chart of order 7. If {¥;},cr+ is a family of closed, two—sided Riemannian hy-
persurfaces such that each ¥; is contained in E and r; = inf{ |z(p)| : p € ¥} — 400,
then

, 1
I/Z:yé+§ak51/§1/ Loy v +O(|x| 7)), (1.22)
1
wi =10 =0+ 3 ks vEusQ +0(|x| 7%,
1 ..
do = 1+§a”aij+0(|x|*27) doe , (1.23)

where Q = 1’ and €7 = § — v} Lyl

Proof. Let p € M be a point of 3J;. Then, there exist a neighborhood U of p in M and
a smooth function f : U — R without critical points such that U N %; = FY(e) for
some ¢ € Rand v = Vf/|Vf|. Then

i 109 —oy+0(a[ N0 [0 — 0y + Oz )]
\/[5"j—0¢j+0(|93|’27)] 0707 159 — o+ Ollal#)]uisd
= [Vé—aijy |z |~ 27][1—1— UUZ/ v +O(|:U|_2T)}

. 1 -~
:Vé+§UTSVeVeVe o-ijyg+0(|x| 2T)7

by the asymptotic expansion (1.21). Hence,

1 .
5 Tks I/kV vl —ojsvs + O(]a:]_%)}

1
=0+ = aksz/ vEQi 4+ O(|z| 7).

Wi = gij Vi = (51] + Jij) [I/g + =
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Concerning the asymptotic expansion (1.23), we notice that

do =vdul %
= [ge(y, Ve)Ve + (V — ge(V, Ve ) Ve ] vdet gi; dpe LY
= \/det Gij 51’]’ l/ Ve dO’e

= [14 5 (o) + O] [1 = J 0w vk w2 4+ O(1 7] o
_ [1+%g 01+ O(|2| 7)) do

by equations (1.20) and (1.21). O

Proposition 1.4.6 (see [37]). Let (M", g) be a one—ended AF manifold and (E, (z',...,2"))
an AF coordinate chart of order 7. Let {¥;},cgp+ be a family of closed, two—sided Rieman-
nian hypersurfaces that are the reqular level sets f~1(1) of a smooth function f : E — R
and satisfy v = inf{ |z(p)| : p € £; } — +o0. Then,

y 1 ..
H=H, — ¥ ope SJhe + = H O'ksl/kl/ — " uf@iajk—kigw Vé“@kaij—FO(]x\*l*QT)

O(|z[~*7[h°e).

where H and H, are the mean curvatures with respect to the unit normals V f / |V f| and
Vef /| Vefle associated to g and ge, respectively, while he is defined as Vedf /| V€ f|e.

Proof. We follow the notations of Proposition 1.4.5 and we define h as Vdf / |V f].
Then, we observe that

y i

[0) 2 _ gm QzQ _ | 7

! = v
therefore, we obtain

Vdfi ¢ k
Since o o
Q1 =g vivl =1—oiviv] +0(z[77),

and

g7 — v = {5” — 045 + O(|x|_27) — [1/2 + 3 ks zjég ViV, — oVl + O(|x|_27)]

1 ,
. [lﬂ + 50%5 vEvi vl — o U8 +O(|x|_27)}}
= 5’] — oy — ViV — o VP VSV d o vV 4 oy v vl 4+ O(| 2| 7T

= — kg e+ O(|z|” 27),
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we have

H= (¢ - v}
= |:€ij — e o e + O(]x]_ZT)} [1 + %Uks Vf Ve + O(\x\_QT)} (hfj - rif])
= [57 — o e + ; ors Ve Vs e + O(|z|” ZT)} (b5 — 2 I%)

=H, — & O’ks S]he + H O’kslj v —QkF U—|—O(|l’|_1_2T)+O(|$|_2T‘he|e)

1 1 ..
= H, — ¥ oy, e® h6 + - H, aksy v —E”V aink+§€” Vj@kaij+0(|x|_1_27)

2
+O0(|z| 7 |hele)

where the last equality follows by
1 —1—Z7
Ffj = i(aiakﬁr&jaik—@koij) +O(\x\ 1=2 )

O]

In a complete one-ended AF manifold (M", g), given an AF coordinate chart
(z1,...,2") and a function f defined outside a compact set of M, we will say that f
converges to | € RU {+o0} at infinity, writing f — [ at oo, if for every neighborhood
I of [ there exists a compact set K such that f(p) € I, forany p € M \ K. This is

equivalent to have f(p) — l as |z(p)| = +oo.

Proposition 1.4.7. Let (M™, g) be a complete one—ended AF manifold and (x', ..., z") an
AF coordinate chart. Then, fixing any point o € M, there holds

d(p, o)

—1 atoo.
|z(p)|

Proof. Since gi; — 05 as |z(p)| = +oo, for every € > 0 there exists R > 0 such that
o¢{qe M : |x(q¢)] > R} and

(1 =e)(z(p)| = B) <d(p,5) < (1+¢)(|lz(p)] — R)

for every p € M such that |z(p)| > R, with S = {qg € M : |z(q)| = R}.
As there holds

d(p, S) — d(0,5) < d(p,0) < d(p,S) + d(o, ) + diam(5)
for all such points p, we have

(1 —&)(|z(@)| = R) —d(o,5) _ d(p,0) _ (1 +e)(|z(p)] = R) +d(o,5) + diam(5)
|z(p)| 2(p)] |z(p)] ’

the thesis then follows easily. O

| /\

In the rest of this section we present some results about the theory of weighted
spaces on AF manifolds (for more details see [43, Appendix A] and the references
therein).

Definition 1.4.8. Let (M™, g) be a complete one—ended AF manifold and let (E, ¢ =

(z',...,2")) be an AF coordinate chart (of order 7). We choose a smooth positive
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function on M which coincides on E with || = /) ;- (2%)? and with slightly abus-
ing the notation this function will still be denoted with |z |.

(1) Forevery 1 < p < +oo and s € R, the weighted Lebesque space LE(M) is the set
of functions f in L? (M) such that

loc
1
p
sz = ([ 172127 dn )
M

is finite.

(2) Forevery k € N, 1 < p < 400 and s € R, the weighted Sobolev space WP (M) is
the set of functions f in VVIIZCP(M ) such that

k
1 lyroan = S IVl
i=0
is finite.

(3) We let C¥(M), with k € N and s € R, to be the set of functions f in C*(M)
such that

k
[ fllexary = Z sup (|z|"~*|V'f])
i—0 M

is finite.

(4) Forevery k € N, s € Rand a € (0,1), the weighted Holder space C’f’o‘(M) is the
set of functions f in Cl]f)f‘(M ) such that

k
o _ i—S vz
et = D sup (=191

kta—s|VFf(p) = V¥ f(q)]

e sup [(min{|x<p>|,|x<q>\})
peEM qeEM

0<d(p,q)<p(p)

d(p,q)®

is finite, where p(p) is the injectivity radius of p and V* f(p) — V¥ f(q) denotes
the difference of V* f(p) with the parallel transport of V*f(g) in p along the
minimal geodesic joining p and g¢.

All these weighted spaces are Banach spaces and whether a function belongs to them
does not depend of the AF coordinate chart, by virtue of Proposition 1.4.7, in partic-
ular, every change of the AF coordinate chart produces equivalent norms.
Moreover, if f € C?(M), then

n

>l

k=1

o0 f

of Of
oz ozkox!

n
BT Z |
k=1

=O([z[™)

if and only if
x| [VF]+ |2 [Vdf| = O(lx|7),
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for every s > 0, by inequalities (1.16).

The importance of these spaces lies in the fact that they share analogues of many
of the global elliptic regularity results for compact manifolds, which in general are
not true on noncompact manifolds without considering weights. In the literature
there are several ways of defining such spaces, we followed Bartnik [7] with the
above definition.

The index s reflects the order of growth of the functions with respect to |z, at
infinity. This is stated in the following lemma, with some useful continuous embed-
dings.

Lemma 1.4.9 (Section 1 [17], Lemma 9.1 [48]). With the notation and conventions of
Definition 1.4.8,

(1) CEFY(M) € CE° (M) and C&° (M) € C&* (M), if 51 < 55,

(2) If Lk € N, p € (1,+00) and a € (0, 1) satisfy the inequality | — k — a > n/p,
then for every & > 0 there holds CL° (M) C WEP(M) C CE*(M). In particular, if
f € WEP(M) with k > 2, then f = O(|z]*).

By working in these spaces, we satisfy the rough (unfortunately wrong) intuition
that if a function on R" decays at infinity with a certain order, then its Laplacian
decays two orders faster, with respect to |z|. In this spirit, if we want to to solve the
Poisson equation Av = f, we look for a solution v that decays two orders slower
than f.

Then, we state the following result about the Fredholm properties of the Laplacian
of a complete one—ended AF manifold (M", g) on weighted spaces.

Theorem 1.4.10 (Theorem A.40 [43], Theorem 9.2 [48]). Let (M™, g) be a complete one—
ended AF manifold and A denotes the Laplacian of (M, g).

(1) Letp > land s € R, there exists a constant C' such that
lullyzogary < € (lullzon + 180l )
for every u € WP (M).
(2) Let s be any real number not belonging to exceptional set
A=7Z\{0,~1,...,3—n}.
Then, for any p > 1, the map

A WEP(M) = W (M)
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is Fredholm (i.e. is a bounded linear operator between two Banach spaces with finite-
dimensional kernel and cokernel). More precisely,

SO - (] ez

dimker A = ¢ r=0 n—1
0 fors <0
R N e
dim coker A = = [( n—1 ) - ( n—1 )] fors<2-n
0 fors>2—n

In particular, if 2 —n < s < 0, the operator A is an isomorphism between W (M)
and WP,(M).

(3) Ifu e CO(M)and Au € CY%(M), then u € C2*(M) and

[ull 2oy < C(lullcoear + HAUHcgg(M)) :

(4) If2-n<s<0,he Cg,’a(M)for some s’ < —2and the operator A+h : C2*(M) —
CS;”Q(M ) is one—to—one, then it is an isomorphism.

A key step in our line to obtain geometric inequalities is knowing the behavior at
infinity, in an AF coordinate chart, of certain harmonic functions. We will need the
following theorem.

Theorem 1.4.11. Let A denote the Euclidean Laplacian of R™ and let s € Nand s’ € R
be such that s > s' > n — 2. If f € C°°(R™) is a real function with f = O(|z|~*") and
Af =p=01(z|5727%), for some 0 < o < 1, then, letting T = x/|x| and § = y/|y|, we
have

s—n+2 1 1

f@) == Y g e [ Al PE ) dy+ Oalla] ),

k=[s'—n+2] R™

outside a closed ball centered at the origin, where w,, is the volume of the unit ball in R™, [ -]

is the ceiling function ([ x| is the least integer greater than or equal to x) and Py, = P,g"_z)/ 2
are the ultraspherical (or Gegenbauer) polynomials (see [1, Chap. 22] and [83, Chap. 1V],
for more details), given by

[4]
PR =Y (-1 ¢
[=0

[MES

L (k—1+252)
T (252) I'(k — 21)!

(2t)F2 (1.24)

In particular, each function under the summation sign is a harmonic function.

Proof. By a classical representation formula and since p = O(|x|~5727%), the function

__ 1 ry)
w(z) = P e / PR dy, (1.25)

R”
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is well-defined, of class C? and satisfies Aw = p on R”. We assume |z| > 2 and we
split R™ in the three separate pieces

B+ (0), Bis (), R™\ (B2 (0) U Bpa| () .

2 2 2 2

We recall that in the following computations C' will denote a constant which may
vary from line to line and it is independent of z. For any y € B|.| (z), we have
2

P(y) c / 1
dy | < d
/ [~y y'— [z[+2Fe o=y

By () By (@)
N =

< Clz|*e. (1.26)

Since |y — IE|>| |fory§ZBi( ), we have
2
1
S lewldy

p(y)
/ o —yn2 Y| = Ol

R\ (B, (0UB|,| (z)) R"\B@ (0)

2 2

< Clz| . (1.27)

In the region B lzl (0), where % < 1, we can expand the fundamental solution |z —

Y ]2 " as a power series in ||y" as follows,

P “—ZW : (i‘)kma@

for the polynomials P}, (see [43, Appendix A] ), noticing that every function in the
sum is harmonic in both variables x and y. We then consider

s—n+2

1 PN
Z W/p(yﬂy!kPk(x-y)dy
k=0 Rr
and we observe that
s—n—+2 1
> / o) lol* Pu@ - D)y | < Cla|
k=0 R™\B | (0)
2
p(y) °N ”H
/ |I_y|n—2 dy_ |n 1o [n—2+k / p ’y’kPk( /y\) dy < C|x|787a7
By, (0) k=0 By, (0)
2 2
thus, we can conclude that also
S— n+2
Wdy ]x]” Tn—2+k / \y\ Py(z-y)dy | < Clz|7°7%, (1.28)
Rn

k=0 7(
2
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by inequalities (1.26) and (1.27).
Indeed, we have

s—n+2 s—nd
1
Y, e [ o0 v AE Dy Z o ool /" d
k=0 Rn\BL}'() k= R“\B| ‘(0)
<C 1 J
= Z |:L=|n 1 [n—2+k W Y
k= R7\B |, (0)
2
C
<
- ’x’s—i-a’

as Py (7 - y) are clearly bounded quantities.
About the second inequality, (following [62]) if y € B|.| (0), there holds
2

k=s—n—+3

s—n+2
P mwz( ) (- 9)

since |‘y‘| < 1, hence, we get

1 A~ AN
/ uf(?%dy > o[ / p) ly|* Pu(@ - ) dy

=] B;(0)
2 2

s [ bl

Then, recalling equation (1.25), by inequality (1.28) we get

s—n+2
1 PR
n(n— 2w wiz) =— 3 W/p@)mkpk(w)dym(:c),
k=0 Rn

where the first summand is a harmonic function and
h=0(z|™*9).

Since the function f — w is harmonic and bounded on R", then it is constant by
Liouville’s theorem and this constant must be zero by the behavior at infinity of f
and w, then f and w coincide, hence,

Ah/ (n(n—2)w,) =Aw=Af=p.
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The higher order estimates of & follow by point (3) of Theorem 1.4.10, since p =
O1(|x|~5727%), along with point (1) of Lemma 1.4.9. Finally, the assumption about
the behavior at infinity of f implies that in the sum remain those harmonic functions
which tends to zero fast enough. O

A consequence is the following result.

Proposition 1.4.12. With the notation and conventions of Definition 1.4.8, if v is a smooth
positive harmonic function outside a compact subset of M such that v — 0 at oo, then there
exists a constant C such that

C 2—n—a

for every o € (0, min{1,7}).

Proof. Without loss of generality, we can assume that v is defined and harmonic on
the domain E of the AF coordinate chart. We observe that

Af =690;0;f +a”0;0;f +V 0;f , (1.29)
for every f € C®(E), where a” = ¢ — §9 = O(Jz|"7) and b/ = —gM' T}, =

O1(|xz|~17T7), by estimates (1.16) and (1.17).
For a fixed 0 < € < 7 and for an arbitrary a > 0 to be chosen later, we consider the

function
B 1 1
$a = a a2 |2+ )

By direct computation, one can check that

n—2 n—2+¢ .
O30 = “(mn R )
nn—2) nm+e)(n—24+¢)| ; n—2 mn-—-2+¢
8i8j¢a:a[ |z |2 o |z |nt2+e ‘el —a |z |” - |z |nte dij s

in particular, ¢, = Ox(]z[*7™). Consequently, by equality (1.29) along with the
behavior at infinity of the functions a* and v/, we get

Ay = a[— (n—2+e)e|z| ¢ +0(|x|fw)} :

hence, there exists Ry > 1, independent of a such that A¢, < 0in {|z| > Ry}, for
every a > 0. We now choose a > 0 (since v is positive) such that

« > Mmax v on{|zr|= Ry},
P Ry tol =t}

then by the maximum principle for elliptic equations [21, Section 6.4], we have
v<¢, in {|z|> Ra}. (1.30)

Notice that from (1.30) one gets in particular that v = O(|z|>~"). Then, point (3)
of Theorem 1.4.10, applied to a smooth extension on all M of v, implies that v =
Os(]x|?>~™). Consequently, we also have A.v = O(|z|~""7). Hence, we can apply
the first part of the proof of Theorem 1.4.11 to a smooth extension v on all R" of v,v,
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to conclude that

1 1

D= — Py@-9)dy+h
v n(n_Q)wn,x,n_g/p(y) 0(Z - y) dy +
Rn

1 1 -
= - /p(y)dy+h

n(n — 2)wy, |x|"—2

C N
" ez Tl

outside a closed ball of R" with center 0, with h = O(|z|> ") for every o €
(0, min{1, 7}). We underline that in this computation we used the fact that Py(¢) =1,
by formula (1.24). It follows that

Ay.gh = O1(|z|7"79)

as Ay, 40 = 0 outside a closed ball of R" of radius large enough centered at the origin.

By Shauder’s interior estimates (see [28, Lemma 6.20]), we then have h= Os(|z|?>~ ),
thus, the statement of the proposition. O

A consequence of this proposition is the following result, which will be used in
Chapters 2 and 4.

Corollary 1.4.13. Let (M", g) be a complete one—ended AF manifold with compact bound-
ary and let (E, (z',...,2™)) be an AF coordinate chart of order 7. If v € C°°(M) is the
solution of the Dirichlet problem

Av=0 inM
v=1 on OM
v—0 at oo

(the existence of such v can be obtained following [57], together with a “barrier” argument
to ensure the convergence to zero at oo, the uniqueness follows by the maximum principle,
see [71] for instance) then,

= ¢ 2—n—a
U= e O (131)
where , 1
e ———— - 2
¢ (n —2)[S1| /]Vv\da (n—2)[S 1| /\Vv[ dp (1.32)
oM I

and any o € (0, min{1, 7}).
The function v is called boundary capacity potential, while the last integral in formula (1.32)
boundary capacity of 9M in (M, g) (see [56]).

Proof. We notice that 0 < v < 1 on M \ OM, by the strong maximum principle [71,
Chapter 9], therefore, the behavior of v at infinity is given by the previous propo-
sition. Furthermore, by the Hopf lemma [21, Section 6.4], |[Vv| > 0 on 0M. In
particular, 1 is a regular value of v, thus, the unit normal vector field along OM can
be expressed in terms of v. Let K be the compact set which is the complement of £
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in M,ie. M \ E. Applying the divergence theorem, we obtain that

Vo V|z|
0= / AUduz/g(Vv, ) do + / g(Vv, > do ,
|Vl V|||

KU{|z|<R} oM {lz|=R}
hence,
Vo Vx|
|Vo|do = /g(Vv,) do = — / 9<Vvv ) do .
/ |Vo| |V]z|]
oM oM {lz|=R}

Now, thanks to formulas (1.14), (1.21), (1.22), (1.23) and (1.31), keeping in mind that
|0iv| < C|z|'~", we have

V2| ) ( 2 .
g\ Vv, ——— | do = / ge| Vv, — 0; | doe + O(R™T
[ oo N e

{|z|=R} {|=|
_ / g (vec f“a-) do. + O(R™)
A e P R A
{|z|=R}
= —C(n—2)|S" Y+ O(R™). (1.33)

Then,

_ : V‘$‘ _ n—1
/ywda_ Jim /g<w,mx“> do = C(n—2)[S"|,

oM {lz]=R)

giving the first identity in formula (1.32).
Concerning the second identity, the divergence theorem implies

|Vo|? dp = / div (v Vv) du

Ku{]z|<R} KU{|z|<R}

Vo V|z|
= [ g(Vv, )da+/vg(Vv, )da,
/( Vo] |V ]]]
oM

{lz|=R}

since v is identically 1 on dM. Then, for R — +o0o we obtain the desired equality, as
the last term goes to zero, as v. O

Finally, by means of Theorem 1.4.11, we describe the behavior of certain har-
monic functions in the end (of a one-ended AF manifold) if it is isometric to the end
of a Schwarzschild manifold (see Example 1.4.2) of arbitrary mass m (in particular,
the parameter m is a real number).

Proposition 1.4.14. Let (M",g) be a complete, one—ended AF manifold, possibly with
boundary. Assume that there exists a distinguished AF coordinate chart (E,¢ = (z',...,2™))
in which the metric g can be expressed as

4

m n—2 . .
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If v is a positive harmonic function outside a compact subset of M with v — 0 at oo, then
there exists a constant C' such that

Z¢k .’IJ/‘:L" —(1+ m - mC +0 (’ ‘4—2n—o¢)
mn 7 T |2 [n—2+k 2)zn2) 2z =2 (|t

for every o € (0,1). Notice that each function under the summation sign is an Euclidean
harmonic function.

Proof. Considering the push—forwards via ¢ of the function v and of the metric g to
R™ minus a ball, still denoted by v and g, respectively, we know that

C

v—| = S +h, and h = Oy(|z[> "),

withO<a< 1. Wesetd =1+ M% Then, we have

0=Av=U"""2 [Ag+2U " g (VU, V)] ,

hence,
Ao+ 2U g (VU, V) = 0

which implies
2
Ach—U™ (| |n2)1 (veh II) —cy! TP (|Z 2)) .
x

Then,
mC

_ —1
h= = U e 1

where the function f satisfies

Aoy =u (V) 19
f:OQ(|IL‘|2 n— a)).

The claim then follows by applying Theorem 1.4.11 to a smooth extension of f on all
R™, once noticed that for such an extension the right hand side of equation (1.34) is
Ol(|$|—2(n—1)—a). 0

Corollary 1.4.15. Under the assumptions of the previous proposition, in dimension 3, there
exists a constant C' such that
C 1

= + IFE (p(z/|z]) — mC) + Ox(|z|7279),

for every o € (0, 1), where ¢ satisfies AS2¢ = —2¢.

Proof. We proceed as in the proof of Proposition 1.4.14. We first pass to the the push-
forwards via 1 of the function v and of the metric g to R? minus a ball, still denoted
by v and g, respectively and we obtain with the same argument that

-1
:C—l/p(y)lyl’“Pl(f-@)dy— <1+m> M+ Ol

x| dr|a]? 2fz[) 20z
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(outside a closed ball centered at the origin), where p is a suitable function. By for-
mula (1.24) we have P;(t) = t, therefore, we obtain

—s [ r(y) |yl Pl(w-y)dyz/p(y)lyl T-ydy=:+—7>.
|| E |z |?
R3 R3

We now notice that a - 7 is the restriction to the unit sphere of the homogeneous har-

monic polynomial a - z, hence an eigenfunction of the S>~Laplacian with eigenvalue
—2. The claim then follows, as

—1
m mC mC _3
<”2|x|> ol ~ e T2

1.5 The ADM mass

The asymptotically flat manifolds (explaining our general convention, just after Defi-
nition 1.4.1) have the remarkable property of having a well-defined notion of “total”
mass, called ADM mass, after the names of R. Arnowitt, S. Deser and C. W. Misner,
who introduced it in [3]. In this section we discuss such notion and see that it is a
geometric invariant of a complete AF manifold.

First, we consider (M, g) to be a complete, one-ended AF manifold with scalar
curvature in L' and let (E, (2, ...,2™)) be an AF coordinate chart of order 7, where
7 > (n — 2)/2. We define on E the vector field

U = /det gs "' 9" (8;9j1 — D19:5) Ok

and we observe that B o
U* = /det gt (97T% — g¥'TL)
therefore, the divergence of U with respect to g. can be written as
dive(U) = 9,U" = \/det gt [g9 0k, — g7 0T, + 2gTET), — 297 THT ]
= V/det gy [R +g“T}T — g“TiT]
= \/det g R+ O(|z| 2147 (1.35)

by assumption (1.10) and formula (1.17), where we used the following equalities,

Okgij = 9jLhi + 9alk;
Op/det giy = /et gi; Ty
Oeg'? = —gl g gy = —g"' T4, — g'T,
R = g [0} — ;T + T5T%, — T T
Equality (1.35) with the integrability of the scalar curvature R with respect to g, then

implies the integrability of the divergence of U with respect to g. on E by virtue of
fact that 7 > (n — 2)/2. This last integrability in turn implies, by the divergence
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theorem, the existence and the finiteness of the limit of

zk

’ﬁl(?“) W / \/@gkl Kl ( 1951 — 8lgz])’ ’dde,
—7’}

as r — +o00. On the other side, we have

.. xk xi 1_9r
det got g™ 9" (91951 — 319@‘)@ = (0j9i5 — 8igjj)m +O(|z|77%7), (1.36)

by the formulas (1.20) and (1.21). Then, from equality (1.36) it follows that the limit
of
1 2!
m(r) = 2= DS / (959ij — aigjj)m doe
{lz|=r

as r — 400 exists, it is finite and equal to Egl m(r).
Remark 1.5.1. Analogously, if {¥;},cg+ is a family of closed two-sided hypersurfaces
such that

(1) for every | € RY there exists an open bounded domain D; with dD; = {|z| =
ro} U 3 for some ro > 1;

(2) rl:inf{|x| : xGEl}ﬁ)+ooasl*>+oo;
there exists L > O such thatr; " 0.(X;) < L forevery [ € RT;

then the limit .

2(71—1)|S”1|l—>+oo/ i9i 81933>Vd0e,

exists, it is finite and it is equal to hI_P m(r), where v, is the co—pointing unit nor-
r—>+00

mal vector field along 3;, with respect to g.. Moreover, we get directly by formu-

las (1.22) and (1.23),

. 1 ;
i ey [ @ ) da' ) do
b

1

" 2(n— 1S lilﬂﬂoo /(83'91'1' — 9igj;) Ve doe.

Hence, for every AF coordinate chart (E,¢ = (z',...,2") of order 7 of (M", g),
with 7 > (n — 2)/2, it is well-defined the limit

7

1

xr
m(gaw)—mrgffm /(63‘913‘ 319]])’

{lzl=r}

doe , (1.37)

where g = g;; dz' ® da?. We then want to see that such limit is independent of the AF
chart v, i.e. it is a geometric invariant of (M", g).

Lemma 1.5.2 (Theorems 9.3 and 9.5 in [48]). Let (M™, g) be a complete, one—ended AF
manifold. Let (Ey,v1 = (z',...,2")) and (E2,v2 = (y*,...,y")) be two AF coordinate
charts with orders 11, T2, respectively, where T, 72 > (n — 2)/2, then there exists a rigid
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motion (Ag, a’) € O(n,R) x R™ of R", such that

- (Ai- I+ ai) =R

Z; [|R|+Z;|x|‘8xj Z |f* ‘8m33xk” =0(=I"™)
i= j=

—2

outside some bounded open set of M and for some T € (%52, min{ry, 72}).

Proof. We can assume 71 < n — 1 and extend the functions x' to smooth functions
on M. First, we show that there exist functions z*,..., 2" € C°°(M) such that each
2% is a harmonic function on M, (z!,...,2") is a coordinate system for M outside a
compact subset and

i — 2 € Cz’fl1+1+sl(M) ifn=3
xt— 2t ECQSIIH(M) ifn>4

for some a; € (0,1) and 1 > 0. We observe that Az’ € Cgflfl(M) for every
o € (0,1), by point (1) of Lemma 1.49, as Az € CL_ _|(M). If n > 4, there holds
2—-n< e + 1 < 0, then point (4) of Theorem 1.4.10 guarantees the existence
of u' € C*? (M) such that Au’ = Az’. If n = 3, then Az’ € L, _ (M) for
every p > 1,61 > 0, by point (2) of Lemma 1.4.9, hence, by choosing ¢; > 0 in a
way that —m + 1 + £ is not an integer and it is greater than 2 — n, it follows by
point (2) of Theorem 1.4.10, that there exist u’ € W?>? P e, (M) with Au' = Az’ If

p > n, point (2) of Lemma 1.4.9 implies u' € C n/+1+51( M) for every o/ € (0, 1), thus

ut € 0231+1+51( ) by point (3) of Theorem 1.4.10.

Setting z* = 2’ — u', each form dz' is a harmonic 1-form, by construction and since
these 1-forms are “asymptotic” to dz?, they form a (local) dual frame, near infinity.
An application of the mean value theorem to the function z o ¢)~! then implies that
the map 2 : M — R" is one-to—one for | z| large enough, thus {2} form coordinates

near infinity. Moreover, one can deduce
a 0 o 0N\ _ JO(lz[Tre) ifn=3
/(52 5) =607 o5) —{ (139

ozt 92 O(lz|™) ifn >4
from the formula of change of coefficients of the metric g. Analogously, assum-
ing 7» < n — 1 and extending the functions y* to smooth functions on M, we find

functions w!,...,w™ € C°°(M) such that each w' is a harmonic function on M,

(w!,...,w")is a coordinate system near infinity and
. 4 9 .
y—w'e O e, (M) ifn=3
y' —w' € C*22 (M) ifn >4

for some ay € (0,1),e2 > 0 and
o 0 o 9\  JO(|z| =) ifn=3
(o) - oo o) - | 139

Now'” owi O(|z|~™) ifn >4
in particular, £, and &, can be chosen in such a way that 7 — ey, —e2 > (n — 2)/2.
Observe now that 2/, w' € W2?, for every 1 < s < 2 and recall that, by pomt (2)
of Theorem 1.4.10, the dlmensmn of ker A on W2P(M)is n + 1, then {w', ... w", 1}
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form a basis of such kernel. Thus, there exist a matrix A; and constants a’ such that
2= Aé-wj +ad.

Hence, formulas (1.38) and (1.39), sending |z| — +oo, imply that A € O(n,R). The
statement of the lemma then follows by setting 7 = min{m — e, — e}, if n = 3
and 7 = min{7, 7o}, if n > 4. O

Theorem 1.5.3 (Invariance of the ADM mass — I). Let (M",g) be a complete, one—
ended AF manifold with scalar curvature in L'. Given any AF coordinate chart (E, =
(2!, ... ,x")), the limit

1 !
{lz|=r}

doe ,

exists finite and it is independent of the AF chart.

Proof. We only need to show that the limit is independent of the chart .
We first prove that, given (47, a’) € O(n,R) x R" and set

y' = A2l + d,

then, possibly choosing a smaller set E, the chart (E, ¢ = (y',...,y")) is AF and the
associated limits coincide. In £ we have

dy' = AL dz* (1.40)
) .
= Ak 1.41
oy~ Y g (1.41)
Cilz| <yl < Cox (1.42)

where the second equality follows from the orthogonality of the matrix A and the
last inequalities are clearly satisfied, possibly choosing a smaller set E. Then, there
holds

ag’) dy’ ® dy’ = g( 0. i) - 5@} dy’ ® dy’

9 o
_ g(@,a ) - AjAj| do* @ da
/0 0 x
= g<%,@) —5kl:| dl‘k@dxl:(?"(d)dl'k@dxl,
implying the equality
ol = Aboi AL, (1.43)
It follows that also (E, 1; = (y! ,...,y”)) is an AF coordinate chart and, by Re-
mark 1.5.1 and inequalities (1.42), we conclude
~ aoi(j.’) 60'](?) 30’ 4 4
mio ) = [ (G - )t /( - agﬂ)ﬂ?()a—m(g’w
{lz|=r} |=r

where the second equality is a direct consequence of formulas (1.40), (1.41) and
(1.43).
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If now, we consider any two AF coordinate charts (E1,v1 = (2',...,2")) and (Es, ¢y =
(y',...,y™)) of orders 7 and 75, respectively, by Lemma 1.5.2 and the previous step,
we can assume

y'(p) — 2'(p) = R'(p) (1.44)

n ; n OR! n 92 Ri o
> [IR|+;|x|\aﬂ. +j;1‘5”‘2‘axjaxk” —0(lz|"")  (145)

=1

outside some bounded open set of M, for some 7 € (%32, min{r,2}). As conse-

quences of formulas (1.44) and (1.45), we obtain that

Cilz| <yl < Colz], (1.46)
d [ OR"\ 9
Bt (52- t o )ayk’ (1.47)

for some C1, C > 0 and outside some bounded open set containing the previous
one. Moreover, we have

(z) _ 0 9\ _ 5k+aRk 5l+87Rl 9 90
Jiim = I\ oz oz ) — \" T G i 9z )Y oyk’ oyt
ORF OR!
_ [ sk L R W ()

which implies

9\ 2 pk ! k 2 pl k I\ 9o
9;;°  O°R <5§‘+8R»>91(;l/)+<5f+8R> 0°R g(y)+<5f+3R ) <5l+aR> 911

Oxs ~ Oxidxs OxJ ozt ) Ozidrs M GI% it 527 | D
d*R* OR! AR\ 92R!
= — st V(s (v) sk S\ s ()
8$zams(j+am]>(kl+0'kl)+<z"‘axl axﬂazs(’“l+0kz)
ORF OR! OR? 89(11)
5f ) (ot + == (6t ki
+<l + 8331) (J+6xﬂ><3+@xs) oyt

o) | PR PR
Oy 0xiQxs  Oxidxs

+O(|z|717%7),

where we used equality (1.47) to obtain the second equality, while for the last one
we took advantage of formulas (1.45) and (1.46). In particular, there holds

99 09\ PR PR
oys  Oxs  Oxidxs  02i0xs

+ O(|z|1727). (1.48)
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By equality (1.48), we then obtain

oyl Oy

dg;) @R PR 09 PR . R’
= g = — — - /i —1-27 i k
< 81'-7 axlaw] ax]ax] 81-1 + ax] axz +O( .’IJ’ )) ( k+ 8$k ) dw (V)

F TS T AN j AN
:< ij__ 995 >dx@(y)+ 0 (aR 8R>dzl(u)+0(yx112f).

892@ Og(y) .
( J 17 >dyl(V)

oI ozt

Oz \ 0zt Oz

Thus, by formula (1.23), there holds

0 o9,
/ < oyi oy )dy ) do

{lzl=r}

891(;6) agj(j) 7 0 8RZ 8RJ 7 n—2-—21
= <(‘9xj "o )dw (v)do + /w(axj—axi)dw(y)da—i-O(r )
{lz|=r} {lzl=r}

o) ou)

/ R )d (v) do
{|z|=r
0 3RZ aR‘] fEi % xk 0 1 n n—2—2r
+ | 505 - axi)ﬂr<|x|w“dm Ao Nda >>+O(T )
{lz|=r}
(1.49)

where in the last equality we denoted with ¢, the inclusion map of the hypersurface
{|]z] = r } in M and with X _| w the internal product of a vector field X with a form w

(see [46]). We then notice that

) 7 % k
(O (2 e naen)

Oxi \9zi  Oat mLT || Ozk
0 (OR" ORI\ 0 2! 0 zF 0
Ostdz” © de (3:&(03& 8:1:2>0:U“ |m|0ml>br<x8xk (da A A da )>
9 (OR' OR/\ O
= 2= (5= — == - (dz' A A da"
LT(@:UJ(GQCJ (9:1:2> oz’ (da” A --- A de )>’
therefore, by Stoke’s theorem,
0 (OR' ORI\ ' [ xF 0 1 n
/axj(axj ‘ami>r‘r<|x|aw(dx Ao Nda >)
{lz|=r}

& (OR. ORI\ 0 . .
B /d<axj<8xj_8xi>8:ciJ(dx oA )>

{lz|zr}

& & (OR.  ORL\ .
8331'@(8:01 B 3mi)dx A Adet =0

{lz|zr}

where R! is a smooth function with compact support, coinciding with R’ on an open
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set which contains {|z| = r}, for each i. Being 7 > 52, the last equality in for-

mula (1.49) combined with this last result implies that

m(ga 77/}1) = m(gv zﬁ2) :
O

Concerning the asymptotically flat manifolds with nonnegative and not summable
scalar curvature, we have the following more immediate result.

Theorem 1.5.4 (Invariance of the ADM mass —II). Let (M", g) be a complete, one—ended
AF manifold with nonnegative scalar curvature R, not in L*. Given any AF coordinate chart
(E.¢ = (z',...,2")) of order T > "2, then

1 't
e Gii — 0:gii)— do = :
g 0) = g e A | @ 0i931) ] doe = o0
{lz[=r}
In particular, the limit above is independent of the AF chart.
Proof. From formulas (1.35) and (1.36), it follows
"
/ (0,9i5 — 8i9jj)m do = / Rdp + / q djte
{lz|=r} {ro<|e|<r} {ro<|z|<r}
k
.. x _9_9r
+ / det g« g™ g™ (Digj — 8lgij)mdge + O
{lz|=ro}

for ro > 1 sufficiently large and for every » > ry, where the function ¢, which is
O(|z|~2(147)), is then in L!(E). Now, passing to the limit for r — +oo, at the right
hand side of the above equality, the first term diverges positively by the monotone
convergence theorem, the second one converges by the dominate convergence the-
orem and the last one tends to zero as 7 > (n — 2)/2. Consequently, we have the
thesis. O

Definition 1.5.5 (ADM mass). Let (M",g) be a one—ended AF manifold and let
(E,(z',...,2™)) be an AF coordinate chart. The limit

1 !
m = U 9ij — 0i955) 7 doe,
{lz|=r}

where g = g;;dz' ® da’, exists and it is independent of the AF coordinate chart
(proved first by Bartnik [7] and then independently by Chrusciel [18]). This geo-
metric invariant is called ADM mass of (M, g), named after the physicists Arnowitt,
Deser and Misner [3].

Example 1.5.6. We consider outside an open ball in R" spherically-symmetric metrics
given in polar coordinates as

g = ¢(r)dr ®dr+ X(?”)nggn—l
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and we observe that

$(r)dr @ dr + x(r)7? ggn—1 = gewet + (X(r) = 1) geuat + (&(r) — x(r))dr & dr

]

—{@j+[quxu—n)@j+(¢0xw-—xﬂmn)iﬂ2]}dwi®dxf

Then, if o
ztad
aij = (x(lz]) = 1)dij + (6(|z]) = x(|z])) 5 = Oa(lz]77),

|2

for r > 252 and if the scalar curvature of g is integrable or nonnegative, we have a

one—ended AF manifold with

MADM = 2(n—11)\8”—1] TEIEOO / (n—1) [M —xX'(r)| doe
{lz|=r}
= [ 60) — x() )] (1.50)
since
00 () = 1) + (o(1s1) — x(le) 5
= X(lal) b+ (¢ 1al) = x () T+ AL g 2, 2 2

For the Schwarzschild manifold of mass m, introduced in Example 1.4.2 and given
by formula (1.13) up to an isometry, one has x = 1 and ¢ = 1/(1—2mr?~"), therefore
the parameter m coincides with the ADM mass by equality (1.50).

Several other formulas that “produce” the ADM mass are known, such as the
r — +oo limits of the Brown—York mass or of the Hawking mass of {|z| = r} (see [22]
and the references therein). In a different spirit, the ADM mass can also be recovered
through an expression involving the Ricci curvature at infinity (see [65]).

Remark 1.5.7. In 1960, Arnowitt, Deser and Misner in [4-6] studied in detail the iso-
lated gravitational systems. They adopted a Hamiltonian viewpoint, namely, they
chose a spacelike hypersurface as an “initial hypersurface” and wrote the Einstein’s
equations as evolution equations of this initial data. Then, they discovered a con-
served quantity, the ADM mass and concluded that it represented the “total” mass
of the isolated system. A disadvantage of the ADM mass is that it is defined only
globally, hence, since the 1970s, physicists and mathematicians are looking for a suit-
able quasi-local notion which describes the mass of an isolated system, using only
metric-related quantities contained in a bounded region of space.

We conclude this section presenting an example due to Denisov and Solov’ev [19]
showing that, in general, a change of coordinate chart could destroy the asymptotic
properties of functions and tensors, in particular, the geometric invariance of the
limit (1.37), if one considers also AF coordinate charts with orders 0 < 7 € (0, "T_Q]

(this explains the condition on the order in Definition 1.4.1).

Example 1.5.8. We define the map

R3\{0} 52— y=(1+|z| )z e R\ {0},
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where o > 0, which is clearly a diffeomorphism outside a closed ball centered at the
origin with a large enough radius. Then, there holds

Geuel = 0ijdy’ @ dy’

e dx' @ da?

_ [<1+ 2726, — a2 + 202 — alz| )

= [(5@' + OQ(’xra)]dJE‘i ® da’

and
) ; ) +oo for0<a<1/2
. x ) «
167 TEI_POO / (ajgij - aigjj)? doe = TEI_POO 3201 1/8 fora=1/2
{lz|=r} 0 fora >1/2

where geye = gijdxi ® dad.






Chapter 2

Sub-static manifolds with
harmonic potential

In this chapter, the object under investigation is a triple (M, g, u) satisfying the fol-
lowing two conditions:

(@) (M, g) is a complete, one—ended AF manifold of dimension n > 3, with com-
pact boundary 0M (which could have several connected components).

(b) u € C°°(M) satisfies the system

uRic —Vdu >0 in M

Au=0 in M

“ m 2.1)
u=20 on OM
u—1 at oo

We will refer to such a triple (M, g, ) as a sub—static harmonic triple and to u as the
potential of (M, g).

If the equality holds everywhere in the first equation of system (2.1), the triple
(M, g,u) is called static.

In dimension 3, if the assumption (a) and the first two conditions in (2.1) hold,
then the asymptotically flat spacetime (M, g), given by M := R x (M \ {u = 0})
with the Lorentzian metric g := —u?dt ® dt + g, satisfies the so called null conver-
gence condition [85], i.e. Ric(V,V) > 0 for every V € I'(T'M) such that g(V,V) = 0.
This is exactly the curvature assumption made in Penrose’s celebrated singularity
theorem [33, p. 263, Theorem 1], since typically a singularity theorem has three in-
gredients: an energy condition on the matter; a condition on the global structure of
spacetime; gravity strong enough (somewhere) to trap a region. Recall that, in gen-
eral relativity, a singularity is a place that objects or light rays can reach in finite time
but where the curvature becomes infinite, or the spacetime stops being a manifold.
Before Penrose, it was conceivable that, for example, in the collapse of a star inside
its Schwarzschild radius (r = 2m), if the star is spinning and thus possesses some
angular momentum, maybe the centrifugal force could partly counteract the gravity
and avoid the formation of a singularity. The singularity theorem shows that this
cannot happen, hence a singularity will always develop.

The triples (M, g, u) satisfying assumption (a), the equality in the first equation
and the second condition of system (2.1) are of great relevance. The asymptotically
flat spacetime (M, g), defined as before, then solves the vacuum Einstein equation
(i.e. the Einstein equation with T = 0). In general, a spacetime (M, g) is called
static if there exists a timelike Killing vector field X that is irrotational. Examples
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of static spacetimes are the static standard spacetimes (M, g) which can be globally
decomposed as M = Rx M? and g = — N?dt®@dt+g (the function N : M3 — (0, 4+00)
is called static lapse function). It is then justified to interpret the static lapse function
N of a static system as telling us how fast the time ¢ flows at different points in the
space M3, where t is the time measured by a static observer on 9;.

By the strong maximum principle, one clearly has that v € (0,1) in Int(M) =
M \ OM, hence, taking the trace of the first inequality, we see that the scalar curva-
ture R is nonnegative everywhere (and zero in the static case). By the last condition,
u : M — [0,1) is proper, consequently, each level set of u is compact and it follows
that it has finite (n — 1)-Hausdorff measure, by applying [32, Theorem 1.7] in a coor-
dinate chart. Then, for every regular value ¢ € [0, 1) of u there exists ; > 0 such that
(t —et,t +e4)N[0,1) does not contain any critical value, hence, the set of the critical
values of u is an open set of zero Lebesgue measure, by Sard’s theorem.
Moreover, |Vu| > 0 on OM by the Hopf lemma, hence zero is a regular value of
u. More precisely, the function |Vu| attains a positive constant value on each con-
nected component of M and the boundary 0M is a totally geodesic hypersurface
in M (in particular, each of its connected components is a minimal hypersurface),
since Vdu = 0 on 0M as a consequence of the first two conditions in system (2.1),
restricted to OM and the second fundamental form of the boundary is proportional
to Vdu, by formula (1.4).
By Corollary 1.4.13, being 1 — u the boundary capacity potential there mentioned, we
also know that c

u:l—W+02(|wl2_”) as |z| — +oo, (2.2)
with .
oM
which is the boundary capacity of OM in (M, g) by formula (1.32).
In an AF coordinate chart (2!, ..., 2"), then
D= (n—2)Cla[™a' + ofa[""), 2.4)
9i0ju = —(n —2)C|z| " *(na'e? — |z|*6;;) + o(|z|™™). (2.5)

Consequently, the set of critical points Crit(u) is compact, therefore it has finite (n —
2)—dimensional Hausdorff measure, by applying [31, Theorem 1.1]. More precisely,
Crit(u) is a countably (n — 2)-rectifiable subset (see Federer [24] or [82]).

In general, it is convenient to notice that

/|vuyda: (n—2)|S" ¢, (2.6)

for every t € [0, 1) regular value of u. Indeed, by applying the divergence theorem
to the vector field Vu on {0 < u < t} (see Remark 1.1.1), one has

0= / Audp = /Vu|do’ —/Vu| do = /\Vu|do’ —(n—2)|S" Y,
{O0<u<t} {u=t} oM {u=t}

where the first equality follows by the fact that « is a harmonic function and the last
one by formula (2.3).
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Remark 2.0.1. It is also useful to observe that:

(1) for every t € (0,1) sufficiently close to 1, the level set {u = t} is regular and
diffeomorphic to the (n — 1)-sphere S"~1;

(2) there hold {u > t} = {u>t}and {0 < u <t} = {0 <u <t} foreveryt e
(0,1). Moreover, one has {t < u < T} = {t <u < T} for every t,T € (0,1)
such thatt < T}

(3) the sets {u > t} are all connected, for every ¢t € (0, 1).

We check (1) first. We start by observing that due to formula (2.2) there holds
|Vu| # 0in {u > to} for some 0 < ¢y < 1. This fact establishes a diffeomorphism
between {u > to} and {u = to} X [to, 1) and tells us at the same time that the level sets
{u =t} are pairwise diffeomorphic for every ¢ > t,. It is thus sufficient to show that
{u = tp} is connected. Suppose by contradiction that this is not the case. Without
loss of generality we can assume that {u = #p} can be decomposed into the disjoint
union of two connected sets C'; and Cs, indeed the same argument works a fortiori if
the connected components are more than two. Now, by definition of asymptotically
flat manifold, there exists a compact set K C M such that M \ K° is diffeomorphic to
R™\ B via an AF chart ), where B is a suitable open ball with center at 0 and radius
greater than 1. Here, for each subset F of M, E° and FE denote the interior and the
closure of E in M, respectively. Also, we can suppose, up to choosing a larger ¢y,
that {u > tp} € M \ K°. Now, in view of the asymptotic expansion of v, there exist
two positive constants A < B such that

In particular, setting Ry = [B/(1 — t9)]"/(*~2), we have
{]x] > Ro} - {’LL > to} ~ {Cl X [to, 1)} L {CQ X [to, 1)},

where the symbol ~ indicates that the manifolds involved are diffeomorphic. At
the same time, {|x| > Ry} C C; x [tp,1) for some i € {1,2}, since {|z| > Ry} is
connected and each C; X [to, 1) is a closed set of M. Then, we have

{Cy x [to, 1)} U {Ca x [to,1)} = {u>te} C M\ K°

[(M\ K°)n{|z] < Ro}] U [(M\ K°) N {|z| > Ro}]
[(M\K°)n{|z| < Ro}] U{C; x [to, 1)},

N

which gives the contradiction that the noncompact set C; x [tg, 1), where j € {1,2}\
{i}, is contained into the compact one (M \ K°) N {|z| < Ry}. Therefore, {u = ty}
is connected. Now, {u = to}, with u := 1,u, is a closed and connected hypersur-
face of R", having strictly positive sectional curvature as Riemannian submanifold
of (R™, geuel), up to a larger ty, due to formula (2.5). Consequently, {u = to} is dif-
feomorphic to S"~! by the Gauss map (see [25, Section 5.B] for more details). State-
ment (1) thus follows, being {u = t¢} and {u = ¢y} diffeomorphic.

Concerning point (2), the first claims are obvious if ¢ € (0, 1) is a regular value of
the function u, while the last one is clear for every 0 < ¢t < T' < +o0 regular values
of u, we will now show these statements in general. We consider ¢ € (0,1). One
has immediately that {0 < v <t} C {0 < u < t}. We suppose by contradiction that
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{0 <u<t} C{0<u<t}, then

{u>t}:U({O§u§t})§E<{0<u<t}>:U<B({u2t})>:{UZt}OQ{uZt},

where in the second equality we have used that {0 < u < t} = {0 < u < t} (whichis
a consequence of the fact that 0 is a regular value of u). Thus, there exists a point p in
{u > t}° such that u(p) = ¢, in particular p is a point of local minimum in this open
set, which is impossible by the strong maximum principle. Similarly, one can check
that {u >t} ={u>t}as {0 <u <t} ={0 <wu<t}° Then,ift,T € (0, 1) such that
t <T,onegets {t <u<T}={t <u< T}, by observing that the following chain of
inclusions,

{O§u<t}u{u>T}:C({t§u§T})gC({t<u<T})

:C<C({O§u§t}u{u2T})> = ({0 <u<tyU{u>T))P
—0<u<t)Ufu>T ={0<u<tyU{u>T}

is a chain of equalities. Here, the fourth equality follows since {0 < u < ¢} and
{u > T} are disjoint closed sets (we refer to [41] for some properties of interior and
closure).

Finally, to show (3), we suppose, by contradiction, that {« > t} is disconnected,
for some ¢t € (0,1). Since u — 1 at oo, we know that only one connected component
of {u > t} can be unbounded with an argument similar to the first part of point (1).
Then, any other connected component K is compact and at same time, its interior
must be nonempty and contain points where u > ¢, since 0K C {u = ¢} and {u >
t} = {u > t}. Therefore, K attains a local maximum in its interior and we obtain a
contradiction as before.

A fundamental sub-static harmonic triple is the so called Schwarzschild solution
of mass m > 0, denoted with (Msc(m)s gsch(m)» Usch(m)), Where (Msch(m)s gsch(m)) i8
the Schwarzschild manifold of mass m defined in Example 1.4.2 and the function
USch(m) 18 given in the following way:

1 -

U 2|z|n—2
Sch(m) = T m -

1 + 2‘:13‘7172

Up to an isometry (see Example 1.4.2), the triple (Int(Msch(m)): 9sch(m)» Usch(m)) 1S
equal to

((omyms vo0) st L2202 T o),

1 —2mr2—n

we will use this last triple in the rest of this chapter. We recall that the parameter m >
0 coincides with the ADM mass of (Msch(m); gsch(m)) @s showed in Example 1.5.6.

2.1 Monotonicity and outer rigidity

We state now a monotonicity and outer rigidity theorem, which will be used later to
prove the a capacitary Riemannian Penrose inequality (2.55). The expression “outer
rigidity” here means “rigidity” (that is, existence of an isometry with a model space)
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of a piece of type {u > ty} of a Riemannian manifold, where ¢, € [0,1) is a regular
value of a smooth proper function v : M — [0, 1), converging to 1 at co.

In all the sequel, we will denote for simplicity with o the (n — 1)-Hausdorff measure of
(M, g).

Theorem 2.1.1. Let (M, g,u) be a sub—static harmonic triple and let Fg : [1,400) —
[0, +00) be the function defined by

Fa(r) := (1—}—7)5% / |Vu|?*do,
(/)

for every 8 > “=2. Each function Fj is continuous and convex on [1,+00) and it is con-
tinuously differentiable with nonpositive derivative in (1,400). Moreover, if there exists

To+1
of wand ({u > to}, g ) is isometric to the following end of the Schwarzschild manifold

70 € (1,+00) such that Fj(ro) = 0 for some 8 > "=%, then to = \/ 2=t s a reqular value

dr @ dr 9

1
([TOHLOO) x P, 1902 +r 98n—1> ,  with rg = [C(1 + 79)]"-2,

of mass equal to the boundary capacity

1
oM

Notice that the functions Fj are all well-defined, in view of the properties of
the set of the critical points of u, discussed in the previous section and since the
integrand function is bounded on every level set of u (which are all compact).

Once Theorem 2.1.1 has been proved, the monotonicity and convexity of Fj also
extend to the case 3 = 7= by the dominated convergence theorem.

Moreover, at every value 7 such that {u = /(7 —1)/(7 + 1) } is a regular level set,
thus for a.e. 7 > 1, each function Fj is twice differentiable, with first and second
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derivative given by

n—1

3
B(r+1)Pn=2"2 n—1 2u
Fi(r) = — B lH - =
(7 = \vu\ H- 220 2 |Vl do

n—1
B(r+1)fn=2? n— 51 n—1 2u 2
1" .
Fs(r) = T—1 T n—1 |Vl n— —u2| ul| do

(V)

+ B / |VulP~3 VT | Vu||? do + / IVulf~L L2 do
{e=v5t} {v=yt}
11 /AZ(|VU|5 Y do + / |Vu|ﬂ_1[Ric(1/,1/)Vdi(Z/’y)}da}
{v=yt} {v=y/51}

n—1
_B(T—I—l)ﬁmfs n—2 / 51 n—1 2u 2
N T—1 n—1 [Vl n—21—u? [Vul| do
e §
(/)

+8 / IVulP~3 VT |Vu||? do + /|vu|ﬁ—1|ﬁy2da

{e=v35} {e=v35}

4 / |VU|B_1[Ric(u,u)—Vduiw} da}, 27)
=!

where A¥ is the Laplacian relative to the hypersurface/level set {u = /27 = L1

Here, we have used the normal first variation of volume measure and of mean curva-
ture (see the end of Section 1.3) and the divergence theorem to obtain the expression
of F'j. The symbols H and h stand respectively for the mean curvature and the sec-

ond fundamental form of {u = /(7 — 1)/(7 + 1) } with respect to the co—pointing
unit normal vector field v = Vu/|Vu| and are given respectively by

Vdu(Vu, Vu)

H=- 2.8

|Vu |3 ’ 28)
Vdu (X,Y)
h(X,)V)= —————
(XY) |Vul ’

for every pair of vector fields X,V tangent to {u = \/(r —1)/(7 + 1) }, see formu-
las (1.4) and (1.5). Also, V' denotes the tangential part of the gradient, that is,

V'f=Vf-g(Vfrv,

for every f € C1(M).
Then, in absence of critical points of u, the function Fj is twice differentiable in
(1, +00) with nonnegative second derivative by formula (2.7) together with the first
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condition of system (2.1), therefore the first derivative F is nondecreasing in (1, +00).
Then, being the limit of F5(7) zero for 7 — +o0, we also conclude that I} is always
nonpositive. We now show this claim that lim, 4~ F| [’5,(7-) = 0. We first rewrite the
function F' é in the following way

+1 _n-3 |Vu| A1 n—1 2u
Fi(r) = -84/ = 1) no _ vl H-— L do .
5(7) 6] 7_1(74—) 2/ <(1_u2)25) n_21_u2\Vu\ |Vu|do
{=v51}

Then, let (z!,...,2™) be an AF coordinate chart of order 7. In these coordinates,
g = gijdz’ @ da’. Then, we have, by formulas (1.21), (2.2) and (2.4),

|V |? g7 0udu

2n—1

(1 - u2)¥i2 (1 - u2)¥iz
[5” + O(\m\”)] [(n —2)2C? x| 2t 2l + 0(\:6\2*2”)]
[2C |22 + of|z[2-m)] 2 =2

— 92)2 (2 _9)\2 2
= 2T o) — P TE L aie @9)
(2¢)* =) (2¢)* =)
with C = m Joas | Vu|do. Concerning the term H — %=1 24, |Vy|, by for-

mula (2.8) it is always equal to

_[Vdu(Vu,Vu) n—1 2u
|Vu|3 n—21-u

2 |vu|]a

which is o(|z| 1), arguing as before. This fact and limit (2.9) imply

-1
12
(%) {H—Z - - uu2|Vu|]—>Oatoo.
(1_u)n72 - -

Te—1

Therefore, for every € > 0 there exists 7. > 1 such that, whenever p € {u > | },

e (('V“')B {H nol 2“|Vu|] (n) < e

1—u2)n%2 n—21—u?

one has

and consequently,

ot ~1 2
/ Wiu’n_l H- " h |Vul||Vu|do € | — ae, ae],
(1—u2)n2 n—21—u?
_ T—1
{o=yE1}
for every 7 > 7., where a := (n — 2)|S" 1| C, by virtue of property (2.6).

We underline that, by direct computation, one can check that the all functions Fj
are constant, respectively identically equal to

8
(7’L _ 2)ﬁ+1|Sn—1‘ mlfm

in [1, 400), for every Schwarzschild solution of mass m > 0.
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Strategy of the proof. To give an idea, we focus our attention on the rigidity state-
ment and for simplicity, we let 3 = 2. At the same time, we provide some heuristics
for the monotonicity statement. The method is based on a conformal splitting tech-
nique which consists of two main steps. The first step is the construction of the so
called cylindrical ansatz and amounts to finding an appropriate conformal metric g of
g in terms of the potential u. In the case under consideration, the natural deforma-
tion is given by

g=(1 —uQ)%g. (2.10)

Indeed, when (M, g, u) is the Schwarzschild solution, the metric g obtained through
the above formula is cylindrical, more precisely (), g) is a round cylinder (with
boundary). In general, the cylindrical ansatz leads to a conformal reformulation of
system (2.1), in which the metric g satisfies

- — 1 1 =
Q@ := Ric — coth(p) Vdy + —3 dp @ dop — " IVel?g >0 in Int(M),

where (V, R, Riem, etc.) denote the Levi-Civita connection and the curvatures as-
sociated with (M, ), || - | indicates the norm correlated with g and finally ¢ is the
g-harmonic function given by ¢ = log (%J_F—Z) The importance of the function ¢ lies
in the fact that if (M, g, u) is the Schwarzschild solution, then ¢ is a non-trivial affine
function, i.e. ¢ is smooth and its Hessian Vdy vanishes everywhere (or equivalently,
¢ is smooth and its gradient vector field V is parallel). Viceversa, it is known that
a complete Riemannian manifold admitting a nonconstant affine function, splits as
a Riemannian product, thus, if ¢ is an affine function with respect to g, then (1, g)
splits as a Riemannian product in the direction V¢ as well as (M, g) in the direction
Vu and, being this latter asymptotically flat, it must be a piece of a Schwarzschild
manifold, up to isometry. With this in mind, the second step of our strategy consists
in finding a nonnegative or nonpositive quantity, whose vanishing guarantees that
the function ¢ is affine. More precisely, we use the previous conformal reformulation

of the original system together with the Bochner formula to deduce the inequality
Al[Vel? =7 (VIVel?, Vieg(sinh p)) = [|[Vdpl* + Q(Ve, Vi) 2 0,

in a way that

0.

= = _
o (19217 _ 19001 + (T, T)
sinh ¢ sinh ¢

This will imply the monotonicity statement once we obtain the equality

di < 0.

o
i) - -2 [ 1T+ QT Vo)
inh ¢
{e>s(7)}

A delicate point is justifying such identity in a region where critical points of the
potential are present. Also, if the left hand side of the above identity vanishes, then
the Hessian of ¢ must be zero in an open unbounded region of M. Consequently,
the function ¢ is affine on this region of M with respect to g and the partial isometry
with a Schwarzschild manifold follows.
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Given a sub-static harmonic triple (), g, u), let us consider the conformal change
defined by

L+ 4. .11

2
g=(1—u?)iz —1 (
g=(1-u’)n2g, p=log (T—

The conformal metric g of ¢ is well-defined, being 0 < w < 1 in M. Moreover,
one obtains that (M, ) is complete by using the Hopf-Rinow theorem [73], together
with the completeness of (M, ¢g) and formulas (1.15) and (2.2) (we refer also to [20]).
Clearly,

= coshﬁ(cp/Q)?, u = tanh(p/2).

From now on in this chapter, a bar over a symbol will denote the relative geometric object
associated to the metric g on M, for instance,(V, R, Riem, etc.) will denote the Levi—-Civita
connection and the curvatures associated with (M, q) and || - || the norm with g.

Then, it follows by the formulas in [10, Theorem 1.159] that

1 . _
Vu =5 cosh 7 (p/2) Vip, (2.12)
1 Vdy 1 sinh(y/2) — o
Vdu=75 - dp ® dp — ||V . (213
b 2 C()Sh2(gp/2) Q(n _ 2) COSh3(g0/2) [TL © & dp H ‘70” g] ( )
Au = 5 cosh 5 (/2) Bip,

and

tanh?®(/2) 1 1
-2 2 cosh?(p/2)

Ric = Ric — tanh(p/2) Vdp + [ ] do ® dy

1 1 1 —

- 5 + tanh®(¢/2) | | Ve |7 .
(TL _ 2) |:2 COSh2(QD/2) an (gp/ ):| || 90H g

Consequently, rewriting system (2.1) in terms of g and ¢, we get that the triple

(M, 7, p) satisfies

_ — 1 1 =
Ric — coth(p) Vdp + mdg@@dgo— - IVel?g >0 inInt(M)

Ap=0  inM (2.14)
p=0 on OM
@ — +oo atoo

Remark 2.1.2. Since {|Vu| =0} = Crit(u) = Crit(p) := {||Vp| =0} and {p =s} =
{u = tanh(s/2)}, it follows from the results at the beginning of this chapter that:
Crit(¢) has zero i—measure and zero (n — 1)-Hausdorff measure in (M, g); the level
sets of ¢ have finite (n — 1)-Hausdorff measure in (M, g); there exists sy > 0 such
that { = s} is regular and diffeomorphic to S*~! for every s > sp; {s < ¢ < S} =
{s < ¢ < S}anditisacompactset, forevery 0 < s < S < +o0; {¢ > s} is connected
for every s > 0. Finally, we will denote for simplicity by & the (n — 1)-Hausdorff
measure of (M, 7).

Along {¢ = s} \ Crit(¢), we consider the co—pointing normal unit vector field

Ve
Vel

UV =
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with associated mean curvature

—  Vdp(Ve, V)

H=- AT ) (2.15)
[Vepll3
and second fundamental form
h(X,y) = Y XY) (2.16)
Vel

for every pair of vector fields X,Y tangent to {¢ = s} \ Crit(y), see formulas (1.4)
and (1.5).
By formulas (2.12) and (2.13), we get

— 2
Vo= ——FVu, (2.17)
(1—u2)n—z
— 2 1 2
hence,
— 4 16
|Vdp|? = ——— [Veul + — " Vdu(Vu,Vu)  (218)
Zn_ —2

— u2)7zf2 n (1 — u2) n—2
16n(n —1) u? Yt

(n—2)? (1_u2)4( 2=1)

These equalities, together with the asymptotic flatness of (), g) and the behavior at
infinity of u, described at the beginning of this chapter, allow us to obtain an upper
bound for the functions || V|| and || Vdy|| and for the -measure of the level sets of
¢ sufficiently “close” to infinity. This is the content of the following lemma.

Lemma 2.1.3. There exists 0 < sg < 400 such that

sso

sup Vel +sup | Vde|| + sup /CF < 400.
{p=s}

Proof. Equality (2.17) with limit (2.9) imply

4(n—2)%C?

- —w23 (o2
(20)2(23_(26) (n—2)? at co. (2.19)

IVel|? —
Now, computing the limit at co of the right hand side of equality (2.18), as for the
limit (2.9), thanks to formulas (1.17), (1.21), (2.3), (2.4) and (2.5), we have
IVdp|? — (n—1)(15n — 1) (n — 2)2(2C) 72 at oo. (2.20)
In particular, from limits (2.19) and (2.20), it follows

sup || Ve || + sup [ Vde|| < 400,
M M
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since ¢ is a smooth function. Moreover, as a consequence of limit (2.9), there exist a
constant L > 0 and a value sy > 0 such that

(1—u?)i2 < L|Vu
on {¢ > so}. Then, we have that every s > sy is a regular value of ¢ and
/dE: / (1—u2)%da§L / |Vu|da:L/Vu|do,
{p=s} {u=tanh(s/2)} {u=tanh(s/2)} oM

where the last equality follows by virtue of property (2.6) (as the set of the regular
values of u coincides with the set of the regular values of ¢, since there holds the
equality {|Vu|=0} = {||Vp|=0}). Thus,

sup /d0<+oo.

$>50
{p=s}

O]

A key point of our argument is to exhibit a suitable vector field with nonnegative
divergence, relative to the conformal metric g. To do this, let us focus on the set
Int(M) \ Crit(¢) and notice first that the classical Bochner formula, applied to the
g—harmonic function ¢, becomes

1 — - e = =
5 AlIVel? = [IVdg|* + Ric(Ve, Vo) +5(V Ap, Vi)
= | Vdy|* + Ric(Ve, Vo). (.21)
Then, we obtain
ATol? = T (VIT0l?) = @ (21927 T |
[Vell” = div (V][ Ve] v { 5lIVel Vel
Bl (e oo e e
= 5 [9 (VIVelP 2 WIV61?) + 196172811 Ve 2]
— _ [ — 2 — —_— = —
= BIVel72 (8- 2) |VIVell|* + | Ve |* + Ric(Vep, V)|, 222)

where in the third equality we have used formula (2.21). Now, we observe from the
nonnegativity of the tensor

N — 1 1 =
Q := Ric — coth(p) Vdp + —— dp @ dp — —— || Vp|*7 (2.23)
n—2 n—2
(see system (2.14)) that
Q(Ve, Vo) = Ric(V, V) — coth(p) Vdp(Ve, Vi) > 0. (2.24)

Therefore, by adding and subtracting the term 3|V || ~2coth(¢) Vdp(Ve, V) on
the right-hand side of equality (2.22), we get

AlVel? = BIIV el 2coth(p) Vdp(Ve, Vi)

= BI9172 [(8 = DI|TITeI|* + Ve |2 + QT T)] -
(2.25)
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Since
BIVie || ~2eoth(¢) Vdio(Vip, Vo) = coth(y) g(VI| Ve |, Vg )
setting
_ VIVel?
Y = b (2.26)
there holds

— AlVepl? h
Tvyy = 2IVell  coshy o
sinh ¢ sinh” ¢

(VIVell?, Vo)
and from equality (2.25), we get
sinh(p) div Y5 = 81 Vl|*2 | (8 = 2) | VI Vol |* + [ Vdel? + Q(Ver, V)| -
Now, the refined Kato inequality for harmonic functions,
n = 2 = 2
HHVHWPHH < |IVdel, (2.27)
which is a consequence of

IVde ] = I Ve 2IRI? + IV Vel 12 + IV T Vel I”

n

-9 _
VT IVolll?
n_lH IVellll7,

= Vel In)? + —< VI Vel +

where the first identity is simply the definition of norm of a tensor (see [23, Proposi-
tion 18]), while the second one follows from the second equality (2.15), implies

B-2)||VIVel||* + IVde | + Q(Ve, Vi)

n—2\ | —, — — n _ o
=(8-2=1)II¥IVell|*+ [Hwn? — = [IVIVell|’ [+Q(Ve. Vo) 2 0,
(2.28)

n—2
n—1°

whenever 5 > Hence,

- -2
divYs >0 forevery > % . (2.29)

We now show some fundamental integral identities.

Proposition 2.1.4. Let (M, g, u) be a sub—static harmonic triple, let g and ¢ be the metric
and the function defined by formulas (2.11). Then, the following integral identities hold.

(1) Forevery B> 0and for every 0 < s < S < 400,

AvlEaes Y8+
IZelf* o [ Vel 230
sinh ¢ sinh ¢

{e=5} {o=s}
_ IVl [8Vdp(V e, V) — coth(p) | Ve '] -
sinh ¢ a

{s<p<S}
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(2) For every B > 0 and for every 0 < s < +00,

IVl [ IVel”~? [coth(p)|[ Ve ||* — BVdp(Ve, Vi)
IVl . dp
sinh ¢ sinh ¢
{p=s} {p>s}
(2.31)

(3) Forevery 8 > =2 and for every 0 < s < S < +oo regular values of the function ¢,

/uwuﬁ / [l 032

sinh ¢ sinh ¢

||w|rﬁ—2 (6= 2| VIVl | + 1VdelP + (T, Vo)

= dp >0
sinh ¢ p="

{s<p<S}

where the tensor Q is defined by formula (2.23).

(4) For every B > “=2 and for every 0 < s < +oo regular value of the function o,

e
IVel”H (2.33)
sinh ¢
{p=s}
— _ [ — 2 J— — —
1961772 [(8 = 2| VIV |* + I Vde|? + Q(Tp, Vep)]
:/ : dp>0.
sinh ¢

{p>s}
We underline that in this proposition and in all the sequel, in all the integrals Re-
mark 2.1.2 is kept into account tacitly.

Before to proceed, we remark that the integrals in the right hand side of equali-
ties (2.30) and (2.31) are well-defined. Indeed,

[V ||P~2 [coth(p) | Ve |[* — BVdp(Ve, V)]
sinh ¢

eL'({p>shm) (239
for every s € (0,400), as there holds

IVeo||7~2 |eoth(p) [ Ve [|* = BVdp(Ve, Vo)
sinh ¢

IVell®
sinh ¢

< [coth(e) | V|2 + 81| Vg |

fi—a.e. in {¢ > s} and the function at the right hand side of this inequality belongs
L'({¢ > S}, ;) for S sufficiently large, by the coarea formula (1.1), in connection
with limit (2.19) and Lemma 2.1.3. Notice that the well-definition of the integrals
in the right hand side of equalities (2.32) and (2.33) is instead immediate since the
integrand function is well-defined and nonnegative fi—a.e. in M, by formula (2.28).

Finally, we remark that the first two points can be proved as in [2, Proposition
4.1]. Here, we provide an alternate proof which is self-contained and does not make
use of any fine measure—theoretic property of Crit(y).
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Proof of Proposition 2.1.4 (1). For every > 0, we consider on the open set Int(A/) \
Crit(y) the vector field

<. _ 1Tl ¥y
sinh ¢

I

which satisfies

o X — IV llP~2 [6Vdp(Ve, V) — coth(p) [ Ve |*]
VA= sinh ¢ ’

If {s < < S}NCrit(p) = O, then the statement is a straightforward application of
the divergence theorem to Xg on {s < ¢ < S} (see Remark 1.1.1). Now, suppose that
{s < ¢ < S}NCrit(p) # O. Since there always exists 5 € (s, .S) regular value of ¢, up
to splitting the right-hand side of equality (2.30) into two integrals by virtue of the
fact that its integrand belongs to L' ({s < ¢ < S};71), we can suppose without loss
of generality that one among s and S is a regular value of ¢. To fix the ideas, suppose
that S is the regular value. We are going to change the function ¢ in a neighborhood
of the set Crit(y). To do this, for every ¢ > 0 sufficiently small, by Sard’s theorem,
we can fix a positive real number 6(¢) such that s + d(¢) < S is a regular value of ¢
and d(e) < de, where d > 0 will be specified later. Then, considering a smooth and
nondecreasing cut-off function &, : [0, +00) — [0, 1] satisfying the conditions

£(1) =0 m[aé%, ogg@)gg m{;azﬁ, (1) =1 m{g&+w>,
(2.35)

where c is a positive real constant independent of ¢, we define on M the following
smooth functions

e =& 0| Ve, (2.36)
and
pe = — (1 =Z2:)6(e)
Clearly,
Ve = Vo +i(e) &L (IVel?) VIIVel? (2.37)
and
pe=pin {|Tel? 2 Se }. 2.38)

Notice that s is a regular value for the function ¢.. To see this, let p be a point of
{pe = s} and distinguish two cases

= 1
e IVelPw) > 5

N | =

IVel?(p) <

In the first case, s = ¢:(p) = ¢(p) — I(e) and V. (p) = Vo(p). Since s + d(¢) is a
regular value for ¢, it follows then V. (p) # 0.
In the second case, observing that s < ¢(p) < s+ d(¢), there holds p € {s < ¢ < S}.
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Consequently, we have from formula (2.37) at the point p

1961l > 196 - 8() & (19 112) [ V17 2
= [ Vell(1 - 25(e) & (I 1?) [ VIV |

— C —
> |Vl (1 - 2de < Jmax [V V] 1),

where ¢ is given by conditions (2.35). Now, notice that max,<,<s | VIIVe ||| > 0,
otherwise, due to the presence of critical points in {s < ¢ < S}, there should be a
connected component of {s < ¢ < S} where Vi = 0, but this is impossible because
{s < < S} ={s < ¢ < S} and by the size of Crit(y). Hence, choosing

1
d< __
de g VIVl

we obtain | V. | () = |V l(p)/2 > VE/(2V2).

Moreover, for ¢ > 0 sufficiently small, S is also a regular value of ¢, and {p. = S} =
{¢ = S}, as there exists 0 < ¢ < S — s such that the interval [S — ¢, S + €] does not
contain critical values of p and {S — ¢ < ¢ < S + ¢} is compact.

By virtue of fact that s, S are regular values of ., we apply the divergence theorem
to the vector field =4. X5 in {s < ¢. < S}. Then,

[ Ve (_ Ve
/ Vel Vel

{4.06:5} {4:06:5}
= IVelP2 [8Vdp(Ve, Vi) — coth(p)|| Ve *] .
= Sde . 1Y
sinh ¢
{s<pe<S}
= (IVel?) Ve l? Vdp(Vp, V
Lo / e (V) |l '<P|| p(Vep Sa)dﬁ,
sinh ¢
(Us:\T2: ) n{s<0= <5}
where
U, :={|Ve|> <u} foreveryu>0. (2.39)

By construction Z4. = 0 in {||Vep|? < 2¢} D {||Ve|? < (3/2)¢}, therefore from
formula (2.38) it follows

YVo|b+1 YolB+1
/ =, Wol™ o _ / =, IVeI™ 4 (2.40)

sinh ¢ sinh ¢

{e=5} {p=s}
= IVel”2 [6Vde(Ve, Vi) — coth(p) [ Ve |] .
= e : I
sinh ¢
{s<p<S}
& (IVel?) IVellP Vdp(Ve, Vi)
+2 - di .
sinh ¢

(Use\Tae ) {s<io<S}
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Looking at the right-hand side of equality (2.40), we notice

dfi

/ &IVl IVl Vde(Ve, V)
sinh ¢
(UGE\U25 N{s<p<S} UsN{s<p<S}

C _ _
<% IVl ol an

5
gzl

<CZ p{s <9< 5P =0

where we have used the properties (2.35) of £ to obtain the first inequality and
Lemma 2.1.3 for the second inequality, while, by the dominated convergence theo-
rem, we have

/ =, [Vl [8Vde(Ve, Vi) — coth(@)[ Ve |']
= sinh ¢

lim

e—0t
{s<p<S}

V|72 [8Vde(Ve, Vo) — coth(e) || Vel*] .

sinh ¢

{s<p<S}

Finally, looking at the left-hand side of equality (2.40), we notice that {¢ = S} isa
compact set contained in {||V¢||* > 6¢} for ¢ > 0 sufficiently small and we observe
that £ can always be chosen to be nonincreasing in ¢ in a way that, in turn, =, is
nonincreasing, therefore by the monotone convergence theorem it follows

Yo|B+1 Vol|B+1!
O Y e /) s
e—0+ sinh ¢ sinh ¢
{p=s} {p=s}

Passing to the limit as ¢ — 07 in equality (2.40), we obtain the desired identity. [

Proof of Proposition 2.1.4 (2). Lemma 2.1.3 implies

YollB+L
I Vel

lim o=0.

S—+o0 sinh
{p=5}

Therefore, passing to the limit as S — +oo in equality (2.30) and using the domi-
nated convergence theorem, by virtue of formula (2.34), the statement follows. [

In order to prove Proposition 2.1.4 (3), it is useful to have a precise estimate of

J (I 9l2= 5}” vanYh el do in terms of a suitable power of §, for every J regular value

of || Vi ||? sufficiently close to zero (notice that the set of the critical values of || Vi II?
has zero Lebesgue measure by Sard’s theorem being || V»||? a smooth function). This
is the content of the following lemma.

Lemma 2.1.5. There exists 69 > 0 such that

1 V||V . _
sup{ —_— / M : 0 < 8 < & is a reqular value of ||V || } < 400.
3 sinh ¢

n—1
{IT¢2=s}
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Proof. Applying Sard’s theorem to the smooth function ||V ||?, there exists a regular
value ¢ of || Vi||? such that

0<ep< Ianﬁl V||, the limit of | V|| at co.

1
Here, the limit exists and is equal to (2C)  "~? (n—2) by formula (2.19). In particular,
{IVe |? < g0} is a compact set contained in Int(M). Now, let us consider on {0 <
V|| < e} the vector field

_ T2
7 ._on 1Yn;2: ‘1 V[chHn
n—2 n-1 sinhgp Vel||m1

having divZ > 0, by definition (2.26) and formula (2.29). Therefore, for every regular
value 0 < € < g of | Vp|?, applying the divergence theorem to Z on U, \ U. (see
Remark 1.1.1), where U,, is given by formula (2.39), we get

V| Vel V|| Ve|? _

/ I Hda—/ 1 VIVl Hdaz/divzcmzo,
B sinh ¢ Ve |ln—T B sinh ¢ Ve |ln—T o

{IVel2=e0} {IVel2=<} Us, \Us

then, it follows

vk 2 Avilkvd 2
/ 1 VIVl / 1 [VIvelPll
by [V by [V

{IVell2=e0} {IVp|2=<}

Consequently, setting

1 V|Vep|?
cl = / - HJ SOUL Hd?>0,
) she T T
{IVel2=c0}
we obtain
1 V| Vel
1 e,
ganet sinh ¢
{IVel2=¢}
Thus, the thesis follows. O

Proof of Proposition 2.1.4 (3). In Int(M) \ Crit(¢) we consider the vector field Y3, de-
fined by formula (2.26), satisfying

BIVeIP [(5 -2 [VITel | + Ve > + (T, Tp)
sinh ¢

0<divys =

When {s < ¢ < S} N Crit(p) = O, then the statement is a straightforward appli-
cation of the divergence theorem to Y3 on {s < ¢ < S} keeping into account both
Remark 1.1.1 and expression (2.15) of mean curvature along regular level sets of .
Now, suppose that {s < ¢ < S} N Crit(y) # . In this case, we consider for every
¢ > 0 sufficiently small the smooth nondecreasing cut—off function & : [0, +00) —
[0, 1] satisfying conditions (2.35) and the smooth function = : M — [0, 1], given by
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formula (2.36) and we apply the divergence theorem (in the same way, as before) to
the vector field =. Y3 in {s < ¢ < S}. It follows

BH Vol H
/IIWII / [Vel” ]
sinh ¢ sinh ¢
{p=s} {e=5}
J— _ —_ 2 J— — —
_IVelB=2[(8 = 2| VIVl +IVde I2+Q(Ve, V)|
= —e - dp
sinh ¢
{s<p<S}
/ & (IVell) [IVell” 2 [|VIIVel? H
+ i
2sinh ¢
(U3.\T3,) {s<p<S}
2 2

where U, is defined by formula (2.39). Notice that £, can always be chosen to be
nonincreasing in ¢, hence, also = is nonincreasing. Therefore, applying the mono-
tone convergence theorem, as ¢ — 07, the first term on the right of the equality tends
to

1961726 = 2 |VITell|*+1 Vel +Q(Tp, Tip)

sinh ¢ di.
{s<p<S}
To conclude, we finally need to show that
L(IVel®) IVellP~2 || VIV
- [ Tl Vel T [P
e—0+ 2sinh ¢
(U%E\T%E)m{s<¢<5}
First we observe that
/ & (IVell?) IVelP2 || VIVl H
2sinh

(U%E\T%E) N{s<p<S}

& (IVell) 1Vell®2[[VIVel? H

- 2sinh ¢

Us \U1,

2 2¢

e[t /Hvuwu I

= 2e sinh ¢
{IVel2=s

where, keeping in mind the properties satisfied by ., in the first inequality we have
used the nonnegativity of the integrand and in the last one the coarea formula (1.1).
Now, the Sard’s theorem applied to the smooth function ||Vi||?> and Lemma 2.1.5
imply the existence of g, ¢; > 0 such that the inequality

1 91941 .
= e e

TR

S2n—
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holds for a.e. s € [3¢, 3¢] for every 0 < & < 2, therefore we get

[ £Ter) 197 [ZIVe [

2sinh ¢
(U3.\T7 ) {s<p<5}
2 2
¢ Tae [ISITel] , _co [ e oo
§/52ds . L d0§1/32+2n—1ds§CE2w_n—1),
2e sinh ¢ 2e
ze A{lIVel?=s} 3¢
which clearly implies limit (2.41), as 8 > 2=2. O

Proof of Proposition 2.1.4 (4). For every S large enough, S is a regular value of ¢ and
Lemma 2.1.3 together with limit (2.19) imply

1Vl Has| < (196l Vagl o <

{p=S5} {p=S}

In particular,

1

. ~— B IT = _
SI—I>I—sr—loo sinh S /HVQOH Hd7=0.
{¥=5}

Therefore, the desired identity can be obtained by the monotone convergence theo-
rem, by passing to the limit as § — +o0, in equality (2.32). O

Remark 2.1.6. For every 8 > =2 as a consequence of integral identity (2.32), we
have

1961772 [(8 = 2) [ VI Vo | |*+ 1 Vi |2+ Q(Vep, V)| € Lioe (nt(M), 7). (2.42)
Consequently, there holds
IV’ Vdp(Ve, V) € Lig(Int(M), ) , (243)

since

/ IF0l5~ [Vdo(Veo, V)| dii < / IVellP 1 [V T || dr
K K
:/rVsouﬁuwuﬁa‘zHvuwuw
K

for every compact set K C Int(M), then applying Holder inequality, keeping into
account formulas (2.28) and (2.42).
Moreover, for every 3 > 2=2, the integral identity (2.33) implies that

196152 [(8 = 2)[[VIVel|* + I Vde? + Q(Vep, Vi)

1 .

for all s € (0,+00), by the Sard’s theorem and being the integrand function well-
defined and nonnegative fi—a.e. in M.
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By means of these integral identities, we are able to show the following propo-
sition of monotony and partial rigidity which, reread in terms of the original data,
will allow us to obtain Theorem 2.1.1.

Proposition 2.1.7. Let (M, g,u) be a sub—static harmonic triple, let G and ¢ be the metric
and the function defined by formulas (2.11) and let @3 : [0, 00) — R be the function

2y(s)i= [ Vel do (2.44)
{p=s}

for every B > =2 Then, ®g is continuously differentiable with a nonpositive derivative

given by

196122 [(8 - 2| VI Tl |*+1 Vdel>+Q(Ve, V)

®’,(s)=—Lsinh <
()= —sinb(s) [ e a5 <0,
{p>s}
(2.45)
for every s > 0.
Moreover, if there exists so > 0 such that ®}5(s) = 0 for some 3 > 1=2 then s is a regular

value of o and ({p > s}, g) is isometric to ([0, +00) x {¢ = so}, dp@dp+Gy,—s,y), Where
p is the g—distance function from {¢ = so} and  is an affine function of p in {¢ > so}, i.e.
there exist a,b € R such that o = ap + b.

Notice that we now know the integrability of the integrand function in formula (2.45)
on the unbounded set of integration, by Remark 2.1.6.

Proof. We divide the proof in three steps.

Step 1 — Continuity. The boundary 0M is a regular level set of , therefore there exists
e > 0 such that the interval [0, €] does not contain critical values of ¢. Consequently,
we can consider on {0 < ¢ < ¢} the vector field || V||? Vi and apply to such field
the divergence theorem in {0 < ¢ < £}. Then, by Remark 1.1.1, we obtain

B(e) — By(0) = / TP+ do — / TP+ do = / I (Ve |* Vo) dn

{p=¢} {¢=0} {0<p<e}
_ / A(VIVel?, V) di = / BV lP 2 Vdo(Vo, Vi) dr,
{0<p<e} {0<p<e}

(2.46)

where the third equality follows as ¢ is a g-harmonic function. Then, the dominate
convergence theorem implies the continuity of ®3 at 0. Now, a straightforward ap-
plication of Proposition 2.1.4 (1) and of the dominate convergence theorem gives the
right and left continuity of the function

o
Ts:s € (0,400) = 5(8) o R, (2.47)
sinh s
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then @3 is also continuous in (0, +00).
Step 2 — Continuous differentiability and monotonicity. By applying the coarea for-
mula (1.1) in equality (2.46) and using identity (2.15), we obtain

By(e) = 25(0) +5 [ds [IF6]"Vdo(T. Vo) dr = ,00) - 5 [as [V Hao.

0 {p=s} 0 {p=s}
Now, being
J19elfas — [ Vel Has
{p=s1} {p=s2}
196 )f g (vuwu ) /uwu“ (vrwu ) i
/ Vel Vel
{p=s2}
=5 [ W)
{s1<p<s2}

for every 0 < 51 < s < ¢ (by Remark 1.1.1 and expression (2.15) of the mean
curvature along regular level sets of ¢), by the dominated convergence theorem the
function

[0, - /ywuﬂﬂda eR
{p=s}
is continuous, therefore the fundamental theorem of integral calculus implies the
continuous differentiability of ®3 on the closed interval [0, €].

Let sg be a regular value of the function ¢. By Remark 2.1.6 we can define the func-
tion Wg : (0, +00) — R as follows

— S 2 — -
VelPH — IVelP=2(B=2)||VIVel || +IVde|?+Q(Ve.Ve)| .
f H s;rf}Ucp do + f [ H sinthp ] d'u’ ifs < so
{o=s0} {s<p<so}
Us(s)=
— — 2 — —
ITel’ B V2122 [(8-2) || ZITe || +1VdeP+Q(Fe.T9)] .
f sfrfhgo f H sinhHAp dp ifs > so
{p=s0} {80<90<S}
Then, ¥g(s) = | (o= S}”Ziﬂiﬁ do for every s > 0 regular value of ¢, by Proposi-

tion 2.1.4 (3). Moreover, ¥z is a continuous function on the open interval (0, +00),
as

B IVelIP-2[(8 = 2| VIVl |*+ | Vde|? + Q(Ve, V)]
wts) - w5 = [ G- DTIFALS L iz
{s<p<s}

(2.48)

for every couple 0 < s < 5 < 400, therefore Remark 2.1.6 and the dominated con-
vergence theorem imply the right and left continuity of ¥z on the interval (0, +00).
Now, considering the function T 3 given by formula (2.47), forevery 0 < s <5 < +00
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we have
Ys(s) —Tp(s) _ 1 / [Vel”2 [8Vde(Ve, Vi) — coth(e) [ Vel']
5—s 5—s sinh ¢ K
{s<p<5s}
1[5 [ IVe|P3 [BVde(Ve, V) — coth(e)|[ Ve ]
=—— [dr - do
5—8Js sinh ¢
{p=7}

___f Sm()d—l/s th(r)C5(r) d
i g(7)dr —— coth(7)Yg(7)dT,

where the first equality follows from Proposition 2.1.4 (1), the second one from the
coarea formula (1.1), keeping in mind formula (2.43) and the last one is a conse-
quence of the properties of Vg, together with Sard’s theorem. Then, from the conti-
nuity of the functions Y3 and ¥y it follows that the function Y4 is C'! and

Ts(+) =—BWps(-) — coth(-) Yp(-).
In turn, this implies that ®5 € C*(0, 4+00) and Pjy(s) = —f sinh(s)Ws(s), as Pp(s) =
sinh(s)Y 5(s), for every s > 0. Moreover, by equality (2.48),
D(5)  @s)
sinh(S) sinh(s)

=—BWs(S) + BYs(s)

_3 IVell®~2[(8 = 2| VI Vel |+ Ve [>+Q(Ve, Ve)]
N sinh ¢

dfi >0

{s<p<S}
(2.49)

for every 0 < s < S < +o00. Therefore, the integral representation (2.45) follows
from the passage to the limit, as S — 400, in formula (2.49), by using the monotone
convergence theorem and by the fact that

P5(S5) IVe|? H
. B . . 2 —
S—lg—loo Sinh(S) B 5’—1>r-ir-loo 5(3) B S—lg-loo / sinh ) 7=0,

{p=5}
where the last equality is explained in the proof of Proposition 2.1.4 (4).

Before to proceed with the last point, the outer rigidity, we need to recall briefly
some known definitions and results involving the normal exponential map (see [75]).

Let (]\//.7 ,g) a complete Riemannian manifold with compact boundary &M and we
denote by v the inner—pointing unit normal vector field along OM. For p € OM, we
denote by 7, : I, — M the (maximal) geodesic, in the usual sense in Riemannian
geometry, with initial conditions 7,(0) = p and 7,(0) = 7}, where I, is an open or
closed interval starting at 0. Now, on the set O of v € N OM such that v = tv, for
everyt € Ipandforallp € OM, itis well-defined the map expt v € O — Fr(w) ([V15),
called normal exponential map of &M, which is smooth. By using the compactness of
&M there exists £ > 0 such that [0,¢) C I, the restriction 7o ) is a minimal geodesic
in M, i.e. di3(3p(s),3p(t)) = |t — s| for every s,t € [0,¢) and p is the unique point of
OM that realizes the distance of every point ¢ € 7,([0,¢)) from oM. Consequently,
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the function ¢ : M — R U {+0o0}, defined as
c(p) :==sup {t >0 : dﬁ(ﬁp(t),(?]\/f) =t},

is well-defined. Also, it is a continuous function. Take >0 and p € OM with
c¢(p) < +oo. Then T = ¢(p) if and only if T" = d;(3;,(T"), 9M ) and at least one of the

following holds: or 7,(7T') is the first conjugate point of oM along 7, (which means
that there exists a Jacobi filed Y’ along Ap satisfying the initial conditions Y'(0) €
Tp('?]\? and VoY — S, Y (0) € N, 8M) or there exists a foot point p € oM \ {p} on OM
of 4,(T") (where for a apoint g € M,a point p € dM is called a foot point on oM of q if

d7(q,p) = dg;(q, 0M)). We put
Dy = exp™ <{t1/p : t€0,¢(p))and p € 8]\7}),

CutdM := exp™ <{c(p)yp . p € OM such that ¢(p) < +oo}>,

where Cut @M is called the cut locus of the boundary &M. Then, it follows that Int(M) =
(D7 \ 8]/\4\) L CutdM and {tv, : t€0,c(p))and p € 6]\7} is the maximal domain
where exp™ is a diffeomorphism

Finally, if p € OM be a foot point on M of a point ¢ € Int(M), then there ex-
ists a unique curve o : [0,l]] — M parametrized in arclength from p to ¢ such
that dﬁ(o(s),a(t)) = |t — s| for every s,t € [0,l] and coincide with 7, where
| = di(q,0M).

Step 3 — Outer rigidity. Suppose that ®};(sg) = 0, for some sy > 0. Then, it follows
from identity (2.45) together with formula (2.28), that

(

in {¢ > so} \ Crit(¢). These equalities imply Vdy = 0in {¢ > so}, as Vdyp is a
smooth function and 7(Crit(y)) = 0, consequently ||V |> = a® with a > 0, since
{¢ > so} is connected. Then, s¢ is a regular value of ¢ and {¢ > so}, with the
induced Riemannian metric, is a noncompact, connected and complete Riemannian
manifold, with compact and totally geodesic boundary (since Vdyp = 01in {¢ = so}
and its second fundamental form is related to the g—Hessian of ¢ by formula (2.16))
and having Ric > 0 (by the first line of system (2.14), applying the Cauchy-Schwarz
inequality). Therefore, by [42, Theorem C], we obtain that the level set {¢ = s¢} is
connected and that {¢ > so} is isometric to the product [0, +00) x {¢ = so}. More-
over, this isometry from the product [0, +00) x {¢ = so} to {¢ > s¢} is determined
by the normal exponential map of the boundary {¢ = s¢}, which in this case it is
a diffeomorphism (see [42]). Finally, we prove that ¢ is an affine function of p on
{¢ > so}, i.e. there exist a,b € R such that ¢ = ap + b. First, we notice that every
integral curve v, of Vi outgoing from a point p of {¢ = s} is defined on the in-
terval [0, +o0) and it is contained in {¢ > s¢}, by the completeness and || V| > 0.
Then, ¢ o y,(t) = a?t + so for every t € [0,400) and all the curves v, realize the
distance between the hypersurfaces {¢ = so} and {¢ = s1} with s; > s¢. Indeed, for
every curve o : [0,]] — {¢ > so} parametrized by arc-length and joining a point of

— N — — - —
VIVl =0, IVl - <[ VIVl |* =0
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{¢ = so} to a point of { = 51}, we have

/|| d7>'0/l

= at = Lg (Yo(0)lj0,4)

where s1, sg and ¢ satisfy s; = a’t + so.

Since 7 = (1/a)Vy is the (inward-pointing) unit normal vector field along the
boundary {¢ = s¢} and we know that the normal exponential map is a diffeo-
morphism, then the point exp!(¢7,) has distance from {¢ = s¢} equal to ¢ and p
is the unique point of {¢ = so} that realizes such distance, as said before, therefore
exp(t7,) coincides with ~,(t/a) (recall the last part of the above discussion on the
properties of the normal exponential map), by the properties of the integral curves
75 for p € {¢ = so}. Hence,

@\H

p(o(r) dr | =~ lgoo(l) ~poo(0)

gp(expL(tﬁp)) =poy(t/a) =at + sy = a,p(expL(tfp)) + 50
This shows that ¢ is an affine function of p on {¢ > s¢}. O

While the previous proposition gives an outer rigidity result, the following corol-
lary provides a “global” rigidity result.

Corollary 2.1.8. Let (M, g, u) be a sub—static harmonic triple, let g and ¢ be the metric and
the function defined by formulas (2. 11) and let ®g : [0,00) — R be the function defined
by formula (2.44), for every B > “=2. If &4 is constant for some 3 > "=2, then OM

n

is connected and (M, g) is isometric to ([0, +o0) x OM,dp @ dp + Gapr), where p is the
g—distance function to OM and ¢ is an affine function of p.

Proof. As (I)IB(S) = 0, for every s > 0, by identity (2.45) and formula (2.28), the fol-
lowing integral

Jiver{(s-"

{e>s}

)| Tl |+ [1Vde 1 [Tl ]+ (T, w>}cr

is zero for every s > 0. In turn, the monotone convergence theorem implies that

fizer={(

is zero, too. Then, one has

(

in M \ Crit(y), by the Kato inequality for harmonic functions (2.27) and by (2.24).
Consequently, Vdy = 0 in M, therefore | Vip||? = a* with @ > 0 and Ric > 0 by the
continuity of the Ricci tensor. The same argument of the proof of the outer rigidity
in Proposition 2.1.7 implies that M is connected and (M, g) is isometric to

B N _ o o
NTIT e 1T P [ TIT e+ QT T

N _ o
D IITellF =0, I¥del? - [ FITel | =0

([0, +-00) x OM, dp @ dp + Gony)

where p is the g—distance to M and ¢ is an affine function of p. O
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We are now ready to prove Theorem 2.1.1. Also in this case we proceed by steps.
Step 1 — Continuity, differentiability, monotonicity and convexity. Let g and ¢ be the
metric and the function defined by formulas (2.11) and let ®5 : [0,00) — R be the
function defined by formula (2.44), for every 8 > ”—_f Notice that

n—

)

for every 7 € [1,+00). Then, by Theorem 2.1.7, Fj is continuous in [1,400) and
continuously differentiable in (1, +00) with

Fﬁ(T) = 2%71 (I)B <log (

Fé(T):3:%@%(10g<5:11j:§::1>) <0. (2.50)

The convexity of s is a consequence of its continuity and of the fact that Iy is
nondecreasing in (1, +00), which follows from formula (2.49) after observing that

s (g (YY) )= Ve

VT+1—y1-1
and that the function log <\/77V::}:/7 ”:j) is nondecreasing.

Step 2 — Outer rigidity. Let us assume that there exists 79 € (1, o0) such that F5(m) =
0, for some 3 > 2=2. Then, equality (2.50) implies

\/T0+1+\/T0—1>
\/To—l-l—\/Tg—l '

Ps(s0) =0 withsg = log<
Therefore, it follows from Theorem 2.1.7 that

({ie = 50},9) = (10,+00) x { = 50}, dp @ dp+ Grpesyy ) -

where the symbol = means that the Riemannian manifolds are isometric, p is the
g—distance function from {p = s¢} and

o= (n-— 2)(2C)_"1f2p+ S0,
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by virtue of the fact that ||Vp|| = 1, together with limit (2.19). Then, we have the
following isometries

pe ({90 > 30}7 g)

(pv Q) € ([0’ +OO) X {QO = 50}7 dP ® dp +y{gp:so})

2
<@ L q)e <[80, +00) x {¢ = so}, (TE_)Q)Q dp ® dp + g{<p80})

(26) n—2
9215 0ns

(u = tanh(yp/2),q) € <[t0, 1) x {u =tp}, (=221 =22 du ® du +g{u:t0}) .

where to = tanh(so/2).

Here, the map p — (p, q) associates to every point p of {¢ > s} the pair having
as first coordinate the g—distance of p from {¢ = s¢} and as second coordinate the
point ¢ of {¢ = so} that realizes such distance, or equivalently, the map associating
to every point p of {u > ty} the pair having as first coordinate the g—distance of p
from {u = tp} and as second coordinate the point ¢ of {u = ¢} that realizes such
distance (by virtue of the fact that {¢ > so} = {u >t} and {¢ = so} = {u = to}).
Then, in view of equality (2.10) and with the same notation as above, we have the
isometries

pe ({u>to}, 9)

|

n—1 2

22 n=2 (Cnz
¢ — du®du+(l—u2)_$§{u:t }
(n—2)2(1 —u2)*n=2 )

|

1
2C n—2 d d
<’”:< > 2,q>e([ro,+oo>><{r:m} W+<2c>vf2r29{r:m}>,

(u,q)e ([t(), 1) X {u = to},

1 — u2 "1 —2Cr2—n
(2.51)
1
where ry = (12_% )"=2. Then, by a straightforward computation, it follows
4 2
, (20)7= |_. 1—2Cr? ™ _ _ Co
Riem|*(p) = —*— |Riemg, _ +————G(r—r0} O Gjrero}| (@) + 5 »
r4(p) R = {r=ro} = {r=ro} Tirorg} 21 (p)
(2.52)

where c; is a suitable positive constant, ¢ is the point of {r = r¢} that realizes the g-
distance of p from {r = ro} and g,—,\} ® G(r—p} is the (0, 4)-tensor field on {r = ro}
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given by the Kulkarni-Nomizu product

?{r:ro} O g{r:ro} (Xv Y, Z, W) = 2?{1”:7"0} (Xv Z) g{r:ro} (}/’ W)
- 2?{7":7“0} (X7 W) ?{7‘:7‘0} (Y> Z)

forevery X,Y, Z, W vector fields on {r = 79 }. Now, denoting by © the isometry from
{u > to} to [rg, +00) x {r = o} introduced by formula (2.51), for every gy € {r = ro}
it follows from equality (2.52) that

2

(2¢) 7z

+7§{r=ro} O g{r:ro} (QO) .

lim (2€) 7% r* [Riem|*©(r, qo))= Riemy,, _ ; 5

r—400 B
g{r:ro}

(2.53)
At the same time, we have

lim |Riem]2(@_1(r, 9))=0, (2.54)

r—+00

by observing that

”
|Riem| = O(|z|~772) and Tl —1 atoo
x
for any AF coordinate chart (z!,...,2") of order 7 > "7_2, which are consequences

of formulas (1.18) and (2.3), respectively.
Combining limits (2.53) and (2.54), the arbitrariness of the point g in {r = r¢} gives

(2c) "7

Riemg{rzro} = —fg{rz’r‘o} & g{T:TO} )

Hence, ({r = ro}, E{T:TO}) is a complete (n — 1)-dimensional Riemannian manifold

with constant (sectional) curvature (2C )7£. Consequently, being all the level sets
{u = t} diffeomorphic to {u = to} for t > to and to S"~! for ¢ sufficiently to close to
1, the set {r = ro} = {u = to} is simply connected. Therefore, from [25, Section 3.F]
it follows

_2
({7" = T0}> g{r:m}) = (Sn_la (2C)n72gS"*1) 5

hence, we conclude

. dr @ dr
({02 toh0) = (o 4oe) x5, {220 )

2.2 A capacitary Riemannian Penrose inequality

A straightforward application of the monotonicity of Fj leads to the following geo-
metric inequality.

Theorem 2.2.1 (Capacitary Riemannian Penrose inequality). Let (M, g,u) be a sub—
static harmonic triple with connected boundary having associated boundary capacity

1
= =g |7
oM
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as defined in formula (2.3). Then

1/ [OM]| \»1
> — . .
C_2(|Sn1|> (2.55)

Moreover, the equality holds if and only if (M, g) is isometric to the (exterior spatial) Schwarzschild
manifold of mass C.

Proof. The monotonicity of Fp in (1,+400) together with its continuity in [1, +00),
given by Theorem 2.1.1, imply
Fﬁ(l) > lim Flg(T), (2.56)

T—+00

for every B > =2 As explained at the beginning of this chapter, just before for-

mula (2.2), we have the |Vu| attains a positive constant value on dM, which is con-
nected. Then, from equality (2.3), it follows

(n—2)C|s"|
S e’ M
|Vul oM on OM ,
hence,
n-1 1
28722 [(n —2)cIsm )"
Fa(1) = [ ST ] (2.57)
Now, we know by the proof of Lemma 2.1.3 that
&H — 2_%(n—2)c_ﬁ at co.
(1 - )i
Therefore, fixed € > 0, there exists 7y > 1 such that
V| > (1 — u2)i-2 (2‘3%é (n—2)C 72 — 5)
in {u > :gjri } and the level sets {u = :—H} are regular for all 7 > 75. Conse-

quently, for every 7 > 75 we have

For) = ()5 [ v
(i)
>(1+7) / (1— uz)ﬁ’%(?%(n —2)CTE - €>B\VU| do
)
_ 2ﬂ2—:§<2—2%é(n ) 5)5/|Vu|d0
oM

n— n— B
— 2852 (n — 2)c(2T% (n—2)C w2 — 5) s
where in the second equality we used property (2.6). In particular,

n— n— 6
lim Fy(r) > 20572 (n — 2)(3(2*5 (n—2)C 2 — 5) il

T—+00
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thus, the arbitrariness of ¢ > 0 implies

lim Fy(r) > (n— 2)%+lci a2 s

T—+00

In a similar way we can obtain the reverse inequality, then we conclude

: _ 11220 an—1

im Fy(r) = (n—2)A+tc!—nz |sn L. (2.58)
Putting together formulas (2.56), (2.57) and (2.58), we obtain inequality (2.55).
Concerning the rigidity statement, first we observe that if (), g) is isometric to the
Schwarzschild manifold of mass m > 0, then the right-hand and left-hand sides of
inequality (2.55) are both equal to m, by straightforward computations.
Suppose now that the equality holds in (2.55). Then, for every 3 > “=2, the function
Fj is constant. In turn, @3 is also constant, being

Hence, from Corollary 2.1.8, it follows
(M, g) = ([0,+00) x M, dp @ dp + Gonr) »

where p is the g—distance to M and ¢ is an affine function of p. Thus, (M, g) is
isometric to the Schwarzschild manifold with mass C, with a slight refinement of the
argument in the proof of the outer rigidity in Theorem 2.1.1 (notice that the argument
for the outer rigidity in Theorem 2.1.1 give us a diffeomorphism between the man-
ifolds without boundary, composing it with the diffeomorphism (1.12), we obtain a
map that can be extended also on the boundaries, which is the wanted isometry). [

2.3 A uniqueness theorem for sub-static manifolds

Using the positive mass theorem [54,79] for every dimension n > 3, more precisely
a consequence of it contained in [35, Theorem 1.5], one can prove the following
uniqueness statement. We remark that then, the capacitary Riemannian Penrose in-
equality (2.55) is an obvious consequence, thus, such inequality is actually relevant
in the other cases, where the hypotheses of the following theorem are not satisfied.

Theorem 2.3.1 (Uniqueness theorem for sub-static harmonic triples). Let (M, g, u)
be a sub—static harmonic triple with associated boundary capacity C, given by formula (2.3).
Assume that there exists a distinguished AF coordinate chart (E, (z', ..., z")) with order
of decay 71, with T > "2, such that the scalar curvature satisfies

R=0(z["7), (2.59)

for some 5 > n. Then (M, g) is the (exterior spatial) Schwarzschild manifold of mass C.

Proof. By condition (2.59) and by the fact that Vdu = 0 on M, which in turn implies
the minimality of the boundary 0M, we have that the hypothesis of [35, Theorem
1.5] are fulfilled, therefore

mapm > C.

Now, we want to show that the reverse inequality mapym < C holds, this would
imply that we are in the “rigidity case” mapm = C of [35, Theorem 1.5], therefore
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(M, g) is the Schwarzschild manifold of mass C.
To this aim, we introduce an equivalent expression for the ADM mass involving the
Ricci tensor (see [65] and references therein), given by

1

. . 1
MADM = TEIJPOO R /(Rlc — §Rg) (X,v)do , (2.60)
{lz|=r}

where v is the co—pointing unit normal vector field along {]a:] = r} with respect to
g and X is the “Euclidean” conformal Killing vector field z* d . We then rewrite
characterization (2.60) as

. 1 } Vdu
mapm = M S - D] { /(RIC - )X do

{lz|=r}
/(RIC - %>(X,V —v)do + / v—du(X, v)do — L /Rg(X, v) da} ,
U U 2
{lz|=r} {lz|=r} {lz|=r}

L
|z

= L X. AsuRic — Vdu > 0 in system (2.1), we notice that

ot T Ja]

/ Rlc—v—du X,I/e)dO'— ! /(Rlc—m>(X,X)d020. (2.61)
r u
|=r {lz|=r}

where v, =

Then, recalling that (Vdu);; = 0;0;u — I‘ Oy, where Fk are the the Christoffel sym-
bols related to g, by formulas (1.17) and (2 2) we get

[(Vdu)ij — (Vedu)i;| = |T5;00ul = O (|| ™)
(Vdu)ij = O(|z[™").

These decays, coupled with formulas (1.19) (1.22) and (1.23) yield

Vdu 1
' /(RIC - u )(X7V - Ve)d |Z.|7—1+m1n{’r1+2 n}— 1
{lz|=r} {lz|=r
C
= 707-1—&—rnir1{7—1-l—2,n}—n - 0’ (262)
being 7 > “>%. We now observe that
VAU X Ddo = —(n—1)(n—2)ClS™Y| asr— 400,  (2.63)
u
{lz|=r}
indeed,
/ Vau ¢ Vydo = / Vau % v do + / Vdu = Vidu v ) o
u u u
{lz|=r} {lz|=r} {lz|=r}
+ v du(X, ve)do,

{lzl=r}
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and one can show that the first two terms of this sum tend to 0 for r — 400, with
similar estimates as before, while

/vdu(X,Ve)da—>—(n—l)(n—Z)C]S"1| asr — 400,
u
{lz|=r}

using formulas (2.5) and (1.23). Hence, limit (2.63) is proven.
Gathering together formulas (2.61), (2.62) and (2.63), there holds

. 1
mapm < C + limsup 3 = 2)(n = D] /Rg(X, v)do. (2.64)

r—-+00
{lz|=r}

Now, since
9(X,v) = giniuj = (5@‘ + O(\:U|_Tl)>Xi (ug + 0 — Vg)
= ge(X,ve) + O(lz| 7Y = [z + O(|z| 1),

by formulas (1.23) and (2.59), we obtain

1
‘ /Rg(X,Z/)da SC/ Wd%ﬁCr_Tﬁ"—)O asr — +00.
{lz|=r} {lz|=r}
Then, from inequality (2.64), it follows mapm < C and we are done. O

It remains an open question to see whether it is possible to remove the assump-
tion on the decay of R, at least in dimension n = 3.






Chapter 3

Positive mass inequality via linear
potential theory

In this chapter, a new proof of the positive mass theorem is established through
a newly discovered monotonicity formula, holding along the level sets of an ap-
propriate harmonic function, related to the minimal positive Green’s function with
a pole of a complete one—ended asymptotically flat 3-manifold with nonnegative
scalar curvature and sufficiently simple topology.

3.1 The positive mass theorem

Arnowitt, Deser and Misner in [5] conjectured that the ADM mass, measured along
a spacelike hypersurface in a physical spacetime modeling an isolated gravitational
system, is nonnegative (and zero only if the spacetime is “empty" of matter). The
metric of any physical spacetime is a solution of the Einstein’s equation

. 1 811G
Ric — iRg = CTT
where T is the energy—momentum tensor which, in realistic physical models, satisfies
a certain positivity condition, called dominant enerqy condition (for instance, it implies
that the matter cannot travel faster than light, see [33, Section 4.3]). In particular, to-
tally geodesic spacelike slices inside a spacetime modeling an isolated gravitational
system such that the dominant energy condition holds, have nonnegative scalar cur-
vature. Then, one case of the ADM conjecture is the following.

Theorem 3.1.1 (Positive mass theorem). Let (M, g) be a 3-dimensional, complete, one—
ended asymptotically flat manifold with nonnegative scalar curvature. Then, the ADM mass
of (M, g) is nonnegative

mapwm = 0.

Moreover, mapy = 0 if and only if (M, g) is isometric to (R3, ggs).

Before proceeding with our proof this theorem, we mention that since the origi-
nal work of Schoen and Yau, in which they used minimal surfaces techniques, sev-
eral other approaches have been proposed to prove this relevant result. Far from
being complete and referring the reader to [43] for a comprehensive survey on this
topic, we just mention that the first alternate proof was found by Witten [87] (see
also [69]), using harmonic spinors. Another route to the positive mass theorem was
subsequently provided by the Huisken and Ilmanen via the weak inverse mean cur-
vature flow [37]. Yet another proof of the positive mass theorem has been recently
proposed by Li [52], using the Ricci flow. Finally, in a very recent preprint, Bray,
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Kazaras, Kuhri and Stern [12] were able to provide a new argument, based on the
study of the level sets of linearly growing harmonic functions. This latter approach
turned out to be flexible enough to also allow for the treatment of the “spacetime
case" (see [11,34]) and together with some of the computations carried out in [39,40],
it is possibly the method closest to ours.

Our proof of the positive mass theorem follows from a monotonicity result hold-

ing along the level sets of an appropriate function, related to the positive minimal
Green’s function G, with pole o in a 3—-dimensional complete one—ended AF mani-
fold (M, g), for an arbitrary point o € M. We start discussing its existence, noticing
that the condition of minimality directly implies the uniqueness.
Since (M, g) is a one—ended AF manifold, there exist a bounded open subset €2 con-
taining o with smooth boundary and a positive smooth function ¢, defined an open
set containing M \ Q, that is superharmonic in M \ €2, identically 1 on 02 and 0 at
infinity (see the proof of Proposition 1.4.12). Then, we consider a cover {€ }ren of
M with bounded open sets, having smooth boundary and satisfying the following
two conditions: Q@ CC Qg and Q) CC Q4 for every k € N. Afterwards, we con-
struct a nondecreasing sequence of functions, {Gy }ren, where each Gy, is a positive
Green kernel of €2, with pole at o, i.e. Gy, is a positive function in €, \ {o} satisfying
the following conditions

AGL = =6, in € and Zl)ig(l] Gr(p) = 0 for all g € 09,

(we refer to [36, Definition 3.9, Lemma 3.15, Theorem 3.19, Theorem 3.25] for the
existence of such a sequence {Gj }ren). By Harnack principle (see [36, Section 2] and
references therein), G, := limy_,; Gj is either harmonic in M \ {o} or identically
+00. To see that G, is not identically +oo, it is sufficient to show that L := maxaq Gk
(greater than zero, as Gy is a smooth, positive function in €2 \ {o}) does not go to
+o00. Now, if by contradiction L, — +o0o (or if an arbitrary subsequence tends to
+00), then there should exist a subsequence of {L,;lgk} ren that converges pointwise
to 1in M \ {o}. Indeed, one has

0< L;lgk < L;l[sup Gr — inf Gi] + L;l inf G < L;l[sup Gr — inf G¢] +1, (3.1)
Q(r) Q(r) Q(r) Q(r) Q(r)

where Q(r) := Q\ B,(0) for r > 0 sufficiently small, by noticing that ming,y G, =
mingg Gi, due to the fact that

Qi\n{fo} Gy = Ig})ﬂ G,
from the maximum principle (recall that G;(p) — +oo for p — o). Then, since the
sequence {Gy }ren has uniformly bounded oscillations in any compact subset K of
M \ {o} for sufficiently large k such that K C €, [51, Lemma 1] and Lj — +o0, the
sequence {L; 'Gy.} ren is locally uniformly bounded in © \ {0} and as a consequence
of elliptic Holder estimates in [43, Theorem A.6], it is also locally equicontinuous in
2\ {0}, therefore, up to a subsequence, it converges uniformly on compact subsets of
2\ {o} to aharmonic function G which is bounded between 0 and 1, by formula (3.1).
Consequently, G has a removable singularity at o, see [27] and can be extended to a
bounded harmonic function on all €2, still denoted by G. Now, the function G admits
a maximum in o, by virtue of the fact that each L, 'G), assumes maximum in Q(r) on
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the interior boundary 0B, (0) as

_max L;'G,= max L. 'Gy,
Q\Br (o) 0By (o)

by the maximum principle (recall that L, 'Gj, is a positive function in Q2 \ {o} and
L;'Gr. = 0 on 99y). Then, G in Q is equal to a constant y € [0, 1], again by the
strong maximum principle. Notice that {L;lgk} keN is locally uniformly bounded
in M \E,« (0), since 0 < L,;lgk < L,;l maxgp, (o) G and L;lgk converges uniformly
to v on 9B, (o). Similarly as before, up to a subsequence, {L,'Gi}ren converges
uniformly on compact subsets of M \ B, (o), therefore it converges uniformly on
compact subsets of M \ {o} to a harmonic function, which we will still denote by G
(being its harmonic extension). Now, since G is a constant in 2\ B,.(0), one obtains
that G is constant and equal to y on all M. Let us show that v = 1. Being 02 compact,
there exist a sequence {p;} C 02 and a point p € 99, such that L,;lgk (pr) = 1 and
pr. — p. Consequently, v = G(p) = 1, by the uniform convergence of {L; "Gy} en on
01, together with the continuity of G.

We are then ready to show the contradiction, indeed, observing first that ¢ > L,;lgk
in 2\ 2 by the maximum principle (since the inequality is trivially true on its bound-
ary) and later passing pointwise to the limit, we have ¢ > 1in M \ , which is not
possible.

Thus, G, is a positive harmonic function in M \ {0}, more precisely, it satisfies
AG, = —6, in M (arguing as [50, p. 198-199]) and tends to 0 at oo, since G, < L¢ in
M \ Q, where L is the limit of a converging subsequence of the bounded sequence
{L }ren. Moreover, there hold

1

_ -1
Go= 1| = o(r™) (3.2)
1 _
‘Vgo + T2 Vr’ = o(r?) (3.3)
1 2 _ -3
Vdgo - m ( ; dr (%9 dr — Vd?“) ‘ = 0(7" ) (3'4)

where r stands for the distance function from o in (M, g), by [57, Appendix] (there,
these formulas are proven for every G distributional solution of AG = —d, in an
open set U C M containing o).

Since a comparison theorem holds for Green kernels (see [58, Corollary 2.6]), G, is
unique, in the sense that it is independent by the particular exhaustion and minimal
among all positive distributional solutions of the equation AG = —J, in M (as a
direct consequence of the fact that (1 + )G > Gy on @ \ {0}, for every G positive
distributional solution of AG = —d, on M and for every € > 0, by the maximum
principle and the behavior near o of these functions).

Finally, we recall the property

/ VGoldo = 1 (35)
{Go=7}
for every regular value 7 of G,, by arguing as in [58, Section 2] (with ¢ = 1) and
keeping into account the convergence of G, to 0 at co (together with the density of
C2=(M) in Lip,(M)).
We now state the monotonicity result that will imply the positive mass inequality.
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Theorem 3.1.2. Let (M, g) be a 3-dimensional, complete, one—ended AF manifold with
nonnegative scalar curvature and satisfying Ho(M;7Z) = {0}. Let u be the distributional
solution of

{Au =4rd, inM (3.6)

u—1 at oo
for some o € M, given by u = 1 — 4w G,, where G, is the minimal positive Green’s function

G, with pole at o which tends to 0 at co.
Let F': (0,400) — R be the function defined as

F(t) = 4nt — t* / |\Vu|H do + 3 / |Vu|? do, (3.7)

{u:l—%} {u:l—%}
where H is the mean curvature of the surface ¥y = {u =1 — 1/t} \ Crit(u), computed with
respect to the oo—pointing unit normal vector field v = Vu/|Vu | and o is the 2-Hausdorff

measure of (M, g). Then F coincides a.e. with a nondecreasing locally absolutely continuous
function on (0, +00), still denoted by F', such that

R®  [VZ|Vu|? R |h)2 3 [ 2|Vul 2
F'(t)y=14 — S sl B T —Hu) la
®) 7r+/[ > T VP +2+2+4<1—u >]U
{u=1-1}

(3.8)
a.e. in (0,400), in particular, at all values of t such that 1 — 1/t is a reqular value of u.

Before to proceed with the proof of this theorem, we list some useful properties
of the function v and we discuss the well-definition of the function F.

The function u is smooth on M \ {o}, tends —co as p — o and is proper (as a

function from M \ {0} to (—o0, 1)). In particular, its level sets are compact. It fol-
lows then from [32, Theorem 1.7] that they also have finite 2-dimensional Hausdorff
measure. At same time, the set Crit(u) of the critical points of u has locally finite
1-dimensional Hausdorff measure (see for instance [31, Theorem 1.1]) and the set N
of the critical values of u has zero Lebesgue measure by Sard’s theorem, whereas the
set of regular values of u is open.
A key fact in the proof of the monotonicity is that the regular level sets of u are con-
nected. Here is where the assumption Hy(M;Z) = {0} comes into play. To see
this, suppose by contradiction that for some 7 € (—o0,1) \/\Af the (regular) level
set ¥ = {u = 7} is given by the disjoint union of at least two connected compo-
nents, each one being a connected closed surface. Considering two of such con-
nected closed surfaces ¥’ and ¥, by the triviality of Hy(M;Z), we have that each
connected closed surface in (MM, g) is the boundary of a bounded open domain. In
particular, there exist two bounded connected open subsets €', Q" C M such that
o = ¥ and 99" = %", If o doesn’t belong to (', then (' is contained in M \ {0}
and by the maximum principle u must then be constant in {7/, but this is no possible
since the level sets of u have finite 2-dimensional Hausdorff measure. Therefore, o
belongs to 2’ and to Q”, in particular ' and Q" have nonempty intersection. Con-
sequently, ' C Q" or Q" C ¥, since 9 = ¥/ and 992" = ¥’ are disjoint and by the
maximum principle, u must be constant in Q” \ Q' or in ' \ Q” respectively, which
is a contradiction.

Concerning the well-definition of the function F' given by formula (3.7), it is suf-
ficient to observe that the integrand functions are o—a.e. bounded on each level
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set of the function u, by virtue of the fact that the level sets of u have finite o—
measure. To justify this sentence, one only needs to check that | [Vu[H| is bounded on
{u =7} \ Crit(u), for every 7 € (—o0, 1), being o (Crit(u)) = 0. Since u is harmonic,
H can be expressed as

on the open set M, \ Crit(u), setting
M, := M\ {o}.
Consequently, one has
||VulH| < |Vdu(v,v)| < |Vdul, (3.10)

where |Vu| # 0.

We are now ready to prove Theorem 3.1.2. For the sake of clarity, we first give a
proof under the favorable assumption that Crit(u) = (), then we proceed with the
proof in the general case.

Proof of Theorem 3.1.2 in the absence of critical points. In this case, all of the level sets of
u are regular and diffeomorphic between them, in turn the function F is everywhere
continuously differentiable in its interval of definition. We claim that F’(¢) > 0 for
every t € (0,+00). We start observing that

T / |Vul da——t—2 / |Vu|Hdo,

{u:l—%} {u:l—%}

d 1 1 \h]Q + Ric(v, v)
— Hdo = —= A> 1 d 11
}

{uzl—% {u:l—%

where A** is the Laplace-Beltrami operator of the induced metric g** on £y = {u =

— %} and h denotes the second fundamental form of 3;, computed with respect
to v = Vu/|Vul|. Here, we have used the normal first variation of volume measure
and of mean curvature (see the end of Section 1.3). Now, with the help of the traced
Gauss equation (1.6), the integrand on the right hand side of equality (3.11) can be
expressed as

1 |h|? + Ric(v,v)
A¥ [ —— ’ =
’V“[ (|Vu|) ]

Vo Vul? R R®™  |h]2 3
— —A>(] ‘7 - Bl BT & p”
(log|Vul) + V2 + 5 5 + 5 +4 ;

where R™ and h denote the scalar curvature and the traceless second fundamental
form of %, respectively, whereas V** is the Levi-Civita connection of g*. Substitut-
ing the latter expression into formula (3.11) and using standard manipulations, one
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arrives at

R IV Vull2 R |h)2 3 [ 2|Vul 2
/ _ _ L e B - L = _
F'(t) = 4n /2d0+/[ v T2t 2 +4(1_u H)}da.
3t P

(3.12)
Now, we notice that the last summand of the right hand side is always nonnega-
tive, as the scalar curvature of (M, g) is nonnegative by assumption. The first two
summands also give a nonnegative contribution, by virtue of Gauss-Bonnet theo-
rem 1.1.2 and the discussion thereafter, as 3J; is a connected closed surface for every
t € (0,+00), hence

R>
/ 5 da—/KZt do =2mx(3;) < 4w,
po 2y

where K** = R¥t/2 is the Gauss curvature and x(3;) is the Euler characteristic of
PO O

Proof of Theorem 3.1.2 in the general case. Let us consider the vector field Y, defined as

VI|Vu| n |Vul

YE A T

Vu, (3.13)

where u is a solution of problem (3.6), then the vector field Y is well-defined on the
open set M, \ Crit(u). With the help of Bochner formula,

5 AV = |Vdf? + Rie(V £, Vu) + g(V AF, V)

for every f € C°°(M), the divergence of Y on M, \ Crit(u) can be expressed as

|Vu| [3|Vul]*  39(V|Vul,Vu) N |Vdu|?* — |V|Vul|* + Ric(Vu, Vu)

div(Y) = (1—u)? [(1—u)? (1 —u)|Vu] [Vul? ,

where in the computation we used the fact that u is harmonic. By the traced Gauss
equation (1.6) and the identity
| Vul? = |Vu*[h[* + [V[Vul[* + | V¥ V|

one can work out an equivalent expression for div(Y’), adapted to the (regular parts
of the) level sets of u, namely

div(Y) = D e

(1—u)? 2 |Vu|? 2 2 4\ 1-u

|Vul R®  |VE|Vu|l? R |2 3<2wu\ Hﬂ
Here, h, H, R* and V* are all referred to the regular level set of u that passes for the
point where div(Y') is computed.

First of all, we show that div(Y) € L} (M,), keeping into account that div(Y) is
p—a.e. well-defined and smooth since (Crit(u)) = 0. Let K C M, be a compact
set, then, by Sard’s theorem, K is contained in E! := {1 — % <u<l-— %} for some
t > s > 0suchthat1 —1/sand 1 — 1/t are regular values of u. We consider the
non-trivial case in which the interval (1 — 1/s,1 — 1/t) contains some critical value
of u, in particular the open subset {1 —1/s < u < 1 — 1/t} contains critical points,
hence, the vector field Y is not well-defined on {1—1/s < u < 1—1/t}. To overcome
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this difficulty, we consider a pointwise nondecreasing sequence of cut-off functions
{nk }ren+ such that, for every k € N¥, the function 7y, : [0,4+00) — [0, 1] is smooth,
nondecreasing and satisfies

1 3

1 3
<n < in |—, — = in | — .
} , 0<m(r) <2k in [2]{’2]@}’ ne(t) =1 in [%,—i—oo)

m(T) =0 in [0’2/{

Using these cut—off functions, we define for every k € N* the vector field

IVUI)Y

Y:(
p= o

It is immediate to see that all the vector fields Y}, are well-defined on M, and they
coincide with the vector field Y, defined by formula (3.13), whenever restricted to a
compact set sitting inside M, \ Crit(u), for k large enough. Their divergence can be
computed as follows,

div(V;) = (1|Y7“;|)2 {”’“Gv_uu) [3\%\2 L |Vdup? - WWU!ZH

(1 —u)? |Vul?
N |Vu| { (|Vu|> {39(V|Vu|,Vu) +Ric(Vu,Vu)] }
(1 —u)? 1—u (1 —u)|Vul |Vul|?
N |V |? ,<vu\>' Vu  V|Vul |?
(1 —u)? T =) 1= |Vu| | -

A remarkable feature of the above expression is that the last summand is nonnega-
tive. Thus, considering the function ® : (0, +00) — R, defined by

d(t)= — t* / |Vu|H do + 3 / |Vu|? do
{u:lf% {u:lf%

which is well-defined, as ®(¢) = F(t) — 4xt in (0, +00) and since, for large enough
k, the vector field Y}, coincides with Y at the boundary of {1 —1/s < u <1 —1/t},
the divergence theorem, applied to Y, on {1—1/s < u < 1—1/t} (see Remark 1.1.1),
implies

B(1) — D(s) = /div(Yk)du > /Pkdu + /Dkdu, (3.15)

{1-1<u<1-1} {1-i<u<1-1} {1-1<u<1-1}
where we set
- |Vul . | Vu| [3|Vu]? |[Vdul? = |V|Vul[?
Po=m( o, ) P owith P = A-w? |a-w2 ™t Vul !
|Vul ) |Vul  [3¢9(V|Vul|,Vu) Ric(Vu, Vu)
D = S D h D =
k ”k<1_u> wit 1-w?| (1-w|Vy| [Vul?

Notice that the functions D and P are p—a.e. well-defined and smooth as well as
div(Y’). Now, the functions Pj are clearly nonnegative and they pointwise converge
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monotonically to the function P T/ \crit(w) in Mo, where [/ \ cuit(u) denotes the char-
acteristic function of M, \ Crit(u). The monotone convergence theorem thus yields

lim /Pkd,u: /Pdu, (3.16)

k—+o00
{1-1<u<i-1} {1-l<u<i-1

by virtue of the fact that z(Crit(u)) = 0. Concerning the functions Dy, they are not
necessarily positive. Indeed, in M, \ Crit(u) the terms of D in the square brackets
are related both to the mean curvature of the regular level sets of v and to the Ricci
tensor of M and we do not have information about them. However, we know that
all the functions Dy, belong to L}OC(MO), since

Di| < |D| < |Vul [3\Vdu]

A—wp | 1w TR ‘]

in M, \ Crit(u) and converge pointwise to the function D I\ crit(u) in Mo. Then,
D € LY(E!) and the dominated convergence theorem implies

lim /Dkdu— /Dd,u,, (3.17)

k:—>+oo
louci-1y leuci-1}

being p(Crit(u)) = 0. As a consequence of inequality (3.15) together with lim-
its (3.16) and (3.17), we have that the sequence given by the integrals of the functions
Py, is bounded, in particular P € L'(E?). Being div(Y) = P + D in M, \ Crit(u), it
follows then that div(Y) € L;,.(M,). More precisely, we obtained

(1) 0 < P P I\ Crit(u) in My and P € Li (M,);

loc

(2) | Di| <[D] < ¥y [Wd“' + |Rlc\] in M, \ Crit(u), in particular, | D|/|Vu| €
L},.(M,) and Dy, — D Iy \ crit(u) in Mo;
(3) div(Y) =P+ Din M, \ Crit(u).

Now, we show that ® ¢ wh

loc

R |V |Vul[? L2 3 [ 2|Vul 2
o'(t) = - e ~H]) |d
®) /[ > T v +2+ 2 +4<1—u ) 7
1

' (0, +00) with weak derivative given by
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a.e. in (0,4+o00) with an argument inspired by [8]. We consider a function x €
C2°(0,400), then, we have

+o00 +o00
/X'(s)q)(s)ds:/ds /X/( ! )g(rfv’zu) do
0 it}

- kglfoo g<Yk’V[X (1iu>]> W
M,

. 1y,
—— lm [ (ﬁ) div(Yz) dp. (3.18)
M,

Here, the third equality follows by the coarea formula (1.1), by observing that in
M, \ Crit(u) there holds

[ Vul?

1—wu

1,/ 1 \g(Y,Vu) 1 )
‘(1—u)2 (1—u> V| < =) ]EL’W(M")‘
(3.19)
The fourth equality is a consequence of the dominated convergence theorem, since
Yi — Y\ crit(u) Pointwise in M, and keeping into account that in M, \ Crit(u) one

has

o (VT ()] = (o e 2] = [ D )

and formula (3.19). Finally, the last equality follows by the properties of the di-
vergence operator combined with the divergence theorem applied to x (%) Y% on
Et:={1-1<u<1-1} fora,be (0,+00)suchthat 1 —1/a, 1 — 1/b are regular
values of v and suppx C (a,b). In order to compute the last limit in formula (3.18),
we recall that

/X(liz) div(Yy) dp :/X(liu> {P’“ + D lv—ult ”%Gv—uu) Q}d”’

M, EY

1 e 000 [|Vdu+

where )
| Vu|

(1—u)?

Vu  V|Vu|
1—u |Vu|

Q=




90 Chapter 3. Positive mass inequality via linear potential theory

Observe that the function @ is p—a.e. well-defined and smooth, moreover, Q €
L} (M,). Indeed, in M, \ Crit(u), since there hold

2 2 H by 2
oo Vel [P 2Vl 9Vl )
(1—u)? | (1—u) 1—u \Vu\
[Vu| [3|Vul* [V Vull? 2 1
P = =~ 4+lh L; (M,),
(1_u)2 (1_u)2 ’v ’2 + +‘ ‘ € loc( )
then, we obtain
2
0 <ap+ 2V 1gay

(1 —wu)?
from formula (3.10), consequently Q € L}, (M,). This property of @ along with the
dominated convergence theorem yields

lim x( ! )(W“' nk(‘w”)cgd (3.21)

k—+00 1—u/ (1—u)
12

indeed, x (%) (\IVuu\) ), ('V“|) Q@ — 0 pointwise in M, and

‘X( ! )} |Vl U/,C(WUUQ <HX||L°°O+OO) W_UI\L UZ(’vu’>QH{1SVu§3}

1—u 1—u 1 1 1—u

< HX”LDO(O,—i-oo) ﬁ 2k Q I 1L | Vul 3

2k="1—u —2k

< 3 | x Il (0,400) @ € LN(EQ),

by virtue of properties (3.14) of the cut—off functions 7. At the same time, from the
dominated convergence theorem it also follows

/x (ﬁ) (Px + Dy)dp —>/ . _u) (P + D)du, (3.22)
E? Eb

by points (1) and (2) above and being x bounded. Then, by formulas (3.18), (3.20)
and limits (3.21) and (3.22), we have

+o0o
/ T LR T __/ 1 .
/X(s)é(s)ds— kgg{loo X<1_u>d1V(Yk)d,u— X(l_u)dlv(Y)du
M, Mo
R |V |Vul[? h]2 3 (2]Vul 2
/ds{ [ e () o)
{u=1-3}

where the third equality follows by the coarea formula (1.1) by virtue of points (1),
(2) and (3) above.

Thus, ® € Wllo’cl(o, +00), hence F € Wl};j(o, +00) with weak derivative given a.e.
by the expression in formula (3.8), as F'(t) = 4nt + ®(t). Consequently, F' coincides
a.e. with a locally absolutely continuous function on (0, +00), still denoted by F'.
The weak derivative of F' coincides with the classical derivative almost everywhere,
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thus, for any pair of positive real numbers s < ¢, we have

t
R> | V57| Vul? h]2 3 /2|Vul 2
—/dT{47T+ / [— 5 + ’VU‘Q +2+2+4<1—U_H> :|d0}

s {u=1-1}
|VET|Vu||2 L2 3 [2|Vul 2
= d7{47r [ Va2 2+ 5 +Z 1—u7H dop,
[S,t}\./\/' {UZI—%} }
where

N :={7 € (0,+0) : 1 — 1/7is a critical level set of u} .

Notice that in the last identity we used the fact that AV is negligible, by Sard’s theo-
rem. Then, the monotonicity of F' follows by the very same considerations we made
after formula (3.12). O

Combining the above theorem with some standard facts about the asymptotic
behavior of the minimal positive Green’s functions near the pole, one gets the fol-
lowing corollary.

Corollary 3.1.3. Under the assumptions of Theorem 3.1.2, we have

0< lim F(t). (3.23)

t—4o00

Moreover, if limy_, 1o F(t) = 0, then (M, g) is isometric to (R3, geyer)-

Proof. We first claim that lim;_,o+ F'(t) = 0. To see this fact, we recall that u is related
to the minimal positive Green’s function G, of (M, g) with pole at o, by the equality
u = 1 — 47G,. Hence, there holds

/ |Vu|do = 4 (3.24)
{u:l—%}

for every t € (0,+00) \ NV, by identity (3.5). As a consequence of the asymptotic
behavior near the pole of G,, see formulas (3.2) (3.3) and (3.4), in a sufficiently small
neighborhood of o € M, the function u satisfies the bounds

C C C C C
S<l-us = DLVl [Vdul <5
r r r2
for some positive constants C; > 0, ¢ = 1,...,5. In particular, the function « has no

critical points near o, hence 1 — 1/t is a regular value of u for ¢t > 0 sufficiently close
to 0. Combining these bounds with formulas (3.10) and (3.24), we conclude

Cy 47 Cy
2 2do < S S < = <
t /yvuy do < / Tz(l_u)Q\Vu\da /yvuda &
{uzlf% {u:lf% {u 1—

|Vdu| / 47 Cs
< < < .
t/ |H| |Vu| do < / 1_ud0_ C’lC |Vu|do C\Cs

{u=1-3} {u=1-1} {u=1-1}
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From these estimates, the fact that F(t) — 0, as ¢t — 07, easily follows. Then, the
monotonicity of F' yields inequality (3.23)

Let us now focus our attention on the rigidity statement. By the above discus-
sion, we have that u behaves like 1 — 1/r and Vu behaves like Vr/r? in a suffi-
ciently small neighborhood of the pole o. In particular, there exists a maximal time
T such that Vu # 01in {u < 1 — 1/T}, where F is continuously differentiable.
Notice that the open set {u < 1 — 1/T"} is connected, then, arguing by contradic-
tion and using inequality (3.23), one easily gets that ' = 0 in (0,7). In partic-
ular, all the positive summands in formula (3.12) are forced to vanish for every
t € (0,T). Then, V*|Vu| = 0 implies that |Vu| = f(u), for some positive func-
tion f : (0,7) — (0,+00) which can actually be made explicit. Indeed, from for-
mula (3.12) one also has that H = 2f(u)/(1 — u) and it follows from equalities (3.9)
that H = —g(V|Vu|, Vu)/|Vu|?> = — f/(u). Hence, we have that f satisfies the ODE

: 2f(u)
fi(u) = 1o
Now, the only solution to this ODE which is compatible with the asymptotic behav-
ior of u and |Vu|, as u — —oc, is given by f(u) = (1 — u)%. Since u < 1 on the
whole manifold, f never vanishes, hence 7' = +o00 and |Vu| # 0 everywhere. In
particular, all the level sets of u are regular and diffeomorphic to each other. So, up
to an isometry, we have that M, = (—o0,1) x {u = 0}, every slice {t} x {u = 0} is
the level set {u = t} and the metric g can be written on M, as

du ® du o
= m + gag(u,ﬁ) dy ®d195,

where g,5(u,0) d0® @ d9” represents the metric induced by g on the level sets of u.
Exploiting the vanishing of the traceless second fundamental form of the level sets in
formula (3.12),i.e. hog = (H/2) gqp, in combination with equality h,s = Vduag/| Vu|
by equality (1.4), it turns out that the coefficients g,g(u,?) satisfy the following first
order system of PDE’s

aga,@ o 2 9ap

ou 1—u’

from which one can deduce

Gop(1,9) d9* @ d9P = (1 — u) 2cap (V) d0™ @ do” .
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At the same time, the traced Gauss equation (1.6), together with Bochner formula
imply

Riv=t0} — R — 2Ric(v,v) — |h|? + H?
2

= —2|Vu| 2 Ric(Vu, Vu) + H7
2

H
= |Vu|™ [-A|Vul® +2|Vdul?] + =
2

H2

= |Vu| 2 {—A|Vu]2+2 [\h\QWUPJr \VL!VUHQ] T
H2

= |Vu| "2 {=A|Vu|* + 2 [|h|*|Vu|* + H?|Vul?]} +5

H2
= |Vu|"2 {-A|Vu|* + 3H?| Vu|*} + >

_ A|Vu]* | TH?
| Vul? 2
= 2(1 — up)?,

where we used again the fact that all the positive summands in formula (3.12) are
forced to vanish on each level set of u and equalities |Vu| = (1—u)? and H = 2 (1—u).
Then, {u = ug} with the Riemannian metric induced by (M, ¢) has constant sectional
curvature (equal to (1 — u)?) and, by the vanishing of the Gauss-Bonnet term in
formula (3.12), it is diffeomorphic to a 2-sphere. Consequently, ({u = uo}, g{u=uo})
is isometric to (S?, (1 — ug) 2gs2) from [25, Section 3.F], thus, up to an isometry, one
has M, = (—o0,1) x S? and

_du®du n Js2
S A-w)t T (1 -w)?

Then, (M,, g) is isometric to (R3 \ {O}, geua1), being the map

(u, ) € ((—oo, 1) x SQ,g) — <11u,19> € ((O,+oo) x S, dr @ dr +7”QQS2)
an isometry. However, this isometry can be extended to a homeomorphism from M
to R3 and consequently, M is simply connected. Finally, the rest of the claim follows
from the fact the manifold (M, g) is complete, simply connected and flat (that is, it
has constant zero curvature), as |Riem| is a continuous function, then it is isometric
to R? with its standard metric (see [25, Section 3.F], for instance). O

By means of Theorem 3.1.2, we present now a new proof of the positive mass
theorem 3.1.1. As we will see, it also exploits the recent result [12, Proposition 2.1],
that for every Riemannian manifold (M, g), satisfying the assumptions of the pos-
itive mass theorem 3.1.1 and having scalar curvature in L!, for every ¢ > 0, there
exists a Riemannian manifold (M, g) satisfying the same assumptions of (M, g) and
also the following properties: M is diffeomorphic to R?; there holds |m — m| < e
where m and 7 are the ADM masses of (M, g) and (M, g) respectively; there exists
an AF coordinate chart (x!, 2%, 23) such that g = (1 + %)4 Siida’ @ da.

Proof of the positive mass theorem 3.1.1. We set m = mapm and we deal the first part
of the positive mass statement, i.e., m > 0. If the scalar curvature R is not in LY(M),
then m = +oo and the inequality is obvious, hence we assume R € L'(M). By [12,
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Proposition 2.1], the analysis can be reduced to the special case where the underlying
manifold M is diffeomorphic to R? and there exists a distinguished AF coordinate
chart x = (2!, 22, 23) - called Schwarzschildian coordinate chart — in which the metric
g can be expressed as
m

2z
By virtue of the monotonicity of the function F, given by formula (3.7), established
in Theorem 3.1.2, we have

g = <1 + )4 0ij da'® da’.

lim F(t) < lim F(t). (3.25)

t—0+ t——+o00

We now claim that lim;_, { o F'(t) = 8mm. It is clear that combining this claim and
lim; .o+ F(t) = 0, given by Corollary 3.1.3, by inequality (3.25), one easily gets m >
0. In order to compute the limit of F'(t) as ¢t — 400, we need to understand the
behavior at infinity of v, in particular, we have

1
= 1 e — —2—« 2
u |:L‘|+2|x|2 (m+ ¢(z/|z])) + O2(| x| ), (3.26)
where z = (2!, 22, #3) is a Schwarzschildian coordinate chart, ¢ fulfills AS’ ¢ = —2¢

and finally 0 < a < 1. This formula follows by Corollary 1.4.15, in view of iden-
tity (3.24), indeed, fixing a regular value 7 € (—o0,1) of u and taken Ry > 0 suf-
ficiently large in a way that {u > 7, || < R} is a Riemannian submanifold with
boundary, given by {u = 7} U {|z| < R}, for every R > Ry, we first apply the diver-
gence theorem to Vu on {u > 7, |z| < R} and then we take the limit as R — +o0.
We then obtain

_ _ Viz| _
4 = /|vu|dJ_Rl—l>Too /g<Vu,‘V’xH>da—47rC,

{u=1-1} {lz[=R}

where C'is the constant in the asymptotic expansion

C

rih 2‘; (mC + é(x/|a])) + Os(|z| ).

u=1
Here, the limit follows by an equality analogous to formula (1.33). Thus, C is equal
to 1.
Notice that, as a first consequence of expansion (3.26), the function u has no critical
points near infinity, hence there exists to € (0,+o00) such that 1 — 1/t is a regular
value of u for every t > to. Then, to compute the limit on the right hand side of
inequality (3.25), it is convenient to rewrite F' as

1 V|Vul|,Vu Vu
ro = [ [ R + ) v

{u=1-1}

and, by formula (3.26), we get

Vul = | 1y m o+ dte/laD) + O(lal ) |.
g(V|Vul,Vu) 2

_ _L m z/|x x—Q—a
T x[l 577 (4m + 9(a/lal)) + O(la| )],
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therefore

lim
|z|—+00 1 —u

| P o(V|Vul.V0) |Vl

(1= u) | Vul? u—uv]:2m‘

In particular, for every ¢ > 0, there exists t. > t( such that whenever u(p) > 1 — 1/t
one has
1

2m —e < [1—1—
1—u

9(V|Vul|,Vu) |Vul
(1—wu)|Vul?  (1—u)

2}(19) < 2m+e.

Using this fact in combination with equality (3.24), we deduce that, for every t > t.,
there holds
dr(2m —e) < F(t) < 4n(2m +¢).

Therefore, we have that lim;_,, - F'(t) = 8mm, hence m > 0.

Concerning the rigidity statement, one of the implications is obvious, while the claim
that (M, g) and (R3, geyq) are isometric if m = 0 follows by the argument in the
original Schoen—Yau'’s paper [76] (see also [43, p. 95-97 and p. 102]). O






Chapter 4

ADM mass, area and boundary
capacity

In this chapter, we show two sharp comparison results for three-dimensional com-
plete one-ended asymptotically flat manifolds (M, g) with a minimal, compact and
connected boundary and with nonnegative scalar curvature, by means of two mono-
tonicity formulas holding along regular level sets of a suitable harmonic potential,
associated to the boundary of M, under the assumption that the first Betti number
of M vanishes.

Let (M, g) be a 3—dimensional, complete, one—-ended asymptotically flat mani-
fold with minimal, compact and connected boundary and with nonnegative scalar
curvature. Let u € C°°(M) be the solution of the following Dirichlet problem,

Au=0 inM
u=20 on OM (4.1)
u—1 at oo

and let C > 0 be the boundary capacity of 9M in (M, g), given by

1

1 2
=1 / Vuldo = 4W/Wu\ du, 42)
oM M

as 1 — u is the boundary capacity potential, see Corollary 1.4.13. Since u satisfies
system (4.1), by the strong maximum principle, we have

Int(M) = M\ M = {0 < u < 1}.

Then, from the Hopf lemma, it follows |Vu| > 0 on 0M, in particular, zero is a
regular value of u. Moreover, by the last condition in system (4.1), u : M — [0,1)
is proper. Consequently, each level set of u is compact, therefore, it has finite 2—
Hausdorff measure of (M, g), see [32, Theorem 1.7]. Another consequence of the fact
that u is proper is that for every regular value ¢ € [0, 1) of u, there exists e, > 0 such
that (¢t — e, t + &) N [0,1) does not contain any critical value (the set of the critical
values of u has zero Lebesgue measure, by Sard’s theorem). By Corollary 1.4.13 we
also know that in a fixed AF coordinate chart (2!, 22, 23) of order 7, 7 > 1/2, one has

C
u=1- m+02(|x|_1_0‘) (4.3)

for some 1/2 < o < min{r, 1} (where the choice a > 1/2 will be clear in Section 4.1,
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due to the computations of some limits). A consequence of formula (4.3) is the com-
pactness of Crit(u) which implies that Crit(u) has finite 1-dimensional Hausdorff
measure, see [31, Theorem 1.1]. The divergence theorem (see Remark 1.1.1), together
with Sard’s theorem imply

|Vu|do = 4nC (4.4)
{u=s}

fora.e. s € [0, 1), in particular, any s regular value for .

4.1 Monotonicity formulas and rigidity statements

Proposition 4.1.1. Let (M, g) be a 3—dimensional, complete, one—ended asymptotically flat
manifold with a minimal, compact and connected boundary and with nonnegative scalar
curvature. Let u € C° (M) be the solution of Dirichlet problem (4.1) and let C > 0 be the
boundary capacity of M in (M, g) given by formula (4.2). Moreover, let G : [C/2, +00) —
R be the function defined as

~ 3 c\? 3C y 12 c\?
G(t)—47rt+@ <1+2t> (1_2t> /\Vu\ dO’—E <1+2t> /\VU\HdU, (4.5)
Zt Zt

where %y is the level set of u, given by

s (o= (1- 211+ ).

H is the mean curvature of ¥, \ Crit(u) with respect to the co—pointing unit normal vector
field v = Vu/|Vu | and o is 2-Hausdorff measure of (M, g). Then, there hold

G(c/2) =2c [w— / yvu\2da] , (4.6)
oM
liriliup G(t) < 87 (mapm — C) - 4.7)

Finally, if all reqular level sets of w are connected, then G is nondecreasing on the set T,

given by

~ C C\ .

T := {t €1[C/2,+00) : (1 — E)/(l + Z) is a reqular value ofu} . (4.8)
We observe that the function G is well-defined, indeed, it is sufficient to notice
that the integrand functions are o—a.e. bounded on each level set of u, since such
level sets have finite c-measure. To justify this claim, one only needs to check that
|| Vu|H|is bounded on {u = s}\ Crit(u), where Crit(u) is the set of the critical points
of u, for every s € [0,1), being o (Crit(u)) = 0. As u is harmonic, H can be expressed
by

~ Vdu(Vu,Vu) — g(V|Vu|,Vu)

H= -
[Vul? [Vul?

(4.9)

Consequently, one has

||VulH| < |Vdu(v,v)| < |Vdul, (4.10)
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wherever |Vu| # 0. R

Finally, we notice that 7 differs from [C/2, +00) only for a negligible set and it is
a disjoint countable union of open intervals and of only one interval of type [a,b),
with @ = C/2, as it is an open set of [C/2, 4+00).

Proof. The function G is easily seen to satisfy equality (4.6), now, we check for-
mula (4.7). By virtue of the compactness of Crit(u), there exists tyg € [C/2,+00)
such that every ¢ € [ty, +00) belongs to 7A', therefore, we reduce ourselves to work on
the interval [to, +oc). We break G in two pieces, namely

Et Zt

~ 3¢2 c\?
p

It is convenient, in order to compute the limit of ég(t), as t — +oo, to rewrite the

function as
~ 3C C |Vu|2
= — — 1 —_— . .
Ga(t) ( +2t>/(1—u)2 do (4.12)

t

By the expansion (4.3) of u, we have

c L
therefore,
. |Vu| —1
1 = . 4.14
Thus, ~
t_lgrn(>o Ga(t) = —67C. (4.15)

Indeed, by virtue of limit (4.14), for every € > 0 there exists ¢, > ty such that

| Vu| -1
(1 —u)? <C '+e¢

in {u>(1- %) /(14 i)} Using this fact in combination with formula (4.4), for
every t > t., there holds

Cloe<

|[Vul?

1= u)p? do < 4m + 4rCe.

47 — 47Ce g/

p3M

Then, the integral term in expression (4.12) of CAT‘Q(t) converges to 4w, ast — +o0o,
consequently the limit (4.15) holds. In order to compute the upper limit of GG;, given
by formula (4.11), we introduce an auxiliary function p : M — [C/2, +00),

_g1+u
P=91-u
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called Euclidean fake distance. This name is justified by the fact that
p=lz|+Oy(|x|' ™). (4.16)

Then, the expression of G 1 becomes

Gi(t) :% <1+26t> {167r <1+2Ct)_1— /H2d0+ /[W]Qda}.

{p=t} {p=t}
We break G in three pieces,
éll(t) = -27C,
Crolt) = - 145 i6r — /H2d (4.17)
20 =7 2 | '
{p=t}
A t C 9(V|Vp,Vp)]? 1 C / Vdp(Vp,Vp)]*
== (14 = AN RS =-(1+= B TP 4o
Gu = (1r3) [ 2= 1 (e m) oMo e
{p=t} {p=t}

(4.18)

For simplicity, we start with the computation of the limit of G1s. By expansion (4.3)
of u, there exist some constants 0 < A; < Ay and 0 < By < By such that

égl_u§ﬁ7 (4.19)
] Ed
B B>

on {|z| > Ry} for Ry > 1 sufficiently large. Since ¥; C {|z| > Ry} for every ¢t > t;,
with ¢; large enough, from formula (4.19) it follows

245t
A < < Jalp)| < Ry < 22 (21)
C C
for every p € ¥, and for all ¢ > ¢;, where we set
re ;== min{|z(p)| : p € L4}, (4.22)

Ry := max{|z(p)| : p € s}
In particular, as a consequence of inequalities (4.21), one has

1 C A C A 1
I A6 Al 42
Ry = 2A5t 245 A1t — 245 1y ’ (4.23)

then, there holds

B1 A? Area(Y;)
4 A3 r2

B
ArC = / |Vu|do > R% Area(%;) > (4.24)
t
3t
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where the first inequality follows by formula (4.20), while the second one by inequal-
ity (4.23). Now, by formulas (4.21) and (4.24), we have

ry — 400 fort — +o0, (4.25)
Area(Yy) < C’rl2 forevery t >ty (4.26)

respectively. Therefore, from formula (1.23) of Proposition 1.4.6, it follows
Area(X;) < CArea(X;), for every ¢ sufficiently large. (4.27)

At the same time, the behavior near infinity of p, described by formula (4.16), implies

Vdp(Vp,Vp o
S8 — Ol o),
then,
Vdp(Vp,Vp)]” 1%
TETEIE] o). (@.28)

Hence, we have

Vdp(Vp,Vp)]? C _2a
0< /p [|(Vp3)} do < 1+2 Area(3;) < Crtl 2o
{p=t}

for every ¢t > ¢, where the first inequality follows by formula (4.28), together with
definition (4.22) and the second one by formula (4.26). Consequently, being o > 1/2,
one gets the convergence of G13(t) to zero, as t — +00, where G113 is given by equal-
ities (4.18), by limit (4.25).

We remark that a key point is the knowledge that the error term in formula (4.3) is
Os(|xz|717%), with o > 1/2. Indeed, if this error term were only o2(|z|7!), then the
limit of G13(¢) would be a indeterminate form.

Concerning the upper limit of Gia(t) for t — 400, where Gy is given by equal-
ity (4.17), this is known to be less or equal than 8mmapwm from the celebrated work
of Huisken and Ilmanen [37], but for completeness, we show its computation.

By Proposition 1.4.6, it follows

y 1 ..
H=H,—¢ Uks Jhe + = H OksV V —gljyfﬁiajk+igzjyécakgij_i_o(’x’fl—%)
+O(|z| | hele) (4.29)

where
Vep
|Veple’
e =6 —yivd
_ Vep
~veple’
Acp  Vedp(Vep, V)
[Vepl [Vep2

Ve =

e

(4.30)

He =

(4.31)

and 0, = g;;—d;j, where g = g;; dz'®dz’ in the fixed AF coordinate chart (2!, 22, 23)

of order 7 > 1/2. Recall that hy 7,2, xT,%, is the second fundamental form of X; at
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every p € X; with respect to v, associated to the metric g., while H, is the mean
curvature of 3; with respect to v, associated to g., by formulas (1.4) and (1.5).

By virtue of behavior of p near infinity in equation (4.16), together with the equali-
ties (4.30) and (4.31), we know that

b = |29 4 O(|2| ") | dot @ dad (4.32)
||
2 —1l-a
He:‘?|+0(|m| )7 (433)
with
gij = 0ij — ViV,
Ve 8lp
CVeple

Then, being h{; = O(|z| "), by equality (4.32), from formula (4.29) we get

1 .
H=H, — %oy, SJhe + = H Ops VU —5”yk8igjk+§5wykakaij+0(’x’—1—2a)’
H? :Hg—QHes Oks€ Sthj+H20ksy > —2H.eY v, 6ajk+H el 31901] +O(|z|272).

This last equality, along with formula (1.23) of Proposition 1.4.6, implies

1 g ) .
H?do = [Hz + ngewoij - 2He€zkaksesjhfj + HQO'kSI/ — 2H, £ 1/} ko, Ok
+ Hee"vEogoy; + O(|2|272)] do . (4.34)

Then, we obtain

H? do
{p=t}
1 g : ‘
I/[Hz—l-2HZE”O’Z‘]‘—QHGEZkUksé‘sjhfj-i-HgUksV v —2H, " 1} 80Jk+H ey 8kozj]dae
{p=t}
+ O( —2&)
1 y . .
2167r+/ [2Hgs”aij—2H€€’koksssjhfj+Hgaksy vE—2H, % ! 80]k+H ek 8kaw doe
{p=t}
+0(r ),

where the equality is a consequence of formula (4.34) together with inequalities (4.21)
and (4.27), while the inequality follows from Willmore inequality

/Hz do. > 167
b
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for every orientable, immersed, closed surface ¥ C R? (see [86]). Consequently, by
expansion (4.16) of p near infinity, there holds

t <167r—/H2 da>
{p=t}

1 y . .
S—/\x\ {2Hga”aij—2H651k0k3553hfj+H20k3V S —2H, e vt 8ojk+H ey 8kazj doe
{p=t}
+ O( 1— 2a) )

Then, thanks to formula (4.33), it follows
t (167r —/H2 dU)
{p=t}

9 , .
§/|:—xE”O’ij-i-llé‘lkaks&‘s]h%
{p=t}

4 .
O'kSV Ve +4€”V 8i0jk—2513V§akO'ij dO’e—FO(Ttl_QOC).

]
Since equality (4.32) with the observation that

Eikeijasj = ((Vk v Vk> ((5,~j v e) (533 — v VJ) =k

i Vj
implies
1 . . 1
e*opee the = mElkgksgsjgij +O(|z|7172%) = mes’“mm + O(|z|7172),
we obtain
t <167r—/H2 da)
{p=t}
< _i g . i ks 4 514 ij ka 9 ij ka d 9] 1—2«
< ‘x‘s azj—i—’x‘s Oks— ‘x‘aksu 1/+ €YV, 0;0j—2Y VU045 | A0e+ (Tt )
{p=t}
[ 2 4
:/ ngsaks ’ ‘aksy 1/5—1—45”1/’“80k 2:4y 8k013]d06+0( 1720y (4.35)
x x
{p=t}

We then manipulate the third term in the square brackets above as follows,
/Eij Vf 0ioj doe = /Eij {81- (Vf O'jk) — Ujkail/f} doe
{p=t} {p=t}
= / [He vivioy —elojehs hfs} do.
{p=t}

2 . 1
_ /[mygyga,] e aw} do, +O(r) | (436)
{o=t}
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by means of formulas (4.34), (4.21) and (4.27). Then, we define X = o (v, -)k, namely
X = X'9; with X* = 0;;1// and we observe that
€ij8i (Vfdjk) = €ij Oin = [51‘7 — Véljg] &Xj = 61X1 — Je (V55X7 Ue)
=diveX — ge (V5. X, ve) = ge (VE, X, Eq)
=divlir=th(x ) + Heoyjvivi

e

where {E,} is a local orthonormal frame on {p = t}, with respect to the metric g,
keeping into account equality (1.7). On the other side, we have

Okp 9i0kp  (9jp) (Okp) (8:0;p) ;
ok =0, = — I ckipe.
ve <Weple> [Veple [Vep[? =

By these two formulas and the divergence theorem (on the closed surface {p = t}),
the second equality in formula (4.36) follows.
Now, by inequality (4.35) together with equality (4.36), we obtain

t <167T —/H2 d0'> < / [—28” l/(ljaink + 4€ij Vfaia'jk — QEU yfakaij] dO’e + O(Ttl_za)

{p=t} {p=t}
=2 [ e [9ojk — Opoij| VE doe + O(r} )
{p=t}
= 2/{5’7 (0,0 1. — OoijIVE—VivI VE Oiojn+1ivi vE O oy }dae—i-O(rtl_%‘)
{p=t}
:2/[8iaij — 0;05i] vido, + O(rtl_Qa) — 32mrmapMm  ast — +oo.
{p=t}

where at the end we used Remark 1.5.1 and the fact that « > 1/2, keeping into
account formula (4.26). In conclusion

G = Gui(t) + Gra(t) + Gas(t) + Ga(t)
where

CA}H(t) = -2nC,

lim sup alg(t) < 8Tmapwm,
t——+00

lim Gi3(t) =0,

t——+o00
lim Gs(t) = —67C,

t——4o00

hence formula (4.7) is proved.
Now we show the monotonicity in absence of critical points. In this case, the func-

tion G is everywhere continuously differentiable in its domain of definition, with
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first derivative given by

~ R | V>t V|2 E 4u 2
'(t) = 4m — d DS T do .
&) W/Q a+/[ Tup +2+ = +4(1 IVl )]a

p3M pI

(4.37)

Indeed,

/yvu2da— —% <1+ 2t) /yquda (4.38)

C s, 1 |h|? + Ric(v, v)
/yquda_ - <1+2) /Vu\ [A (IV |>+ e do

C |V | Vul|?
R A1 —_—
( —1-2) [ (log|Vul) + e 2—|—
h)2  3H2
2 5 + 1 do
_ o C ‘2/ [V Vul[> | R R™ [bP  3H%]
2 2t |Vu|? 2 2 2 4 ’

t

where V¥, A** are the Levi-Civita connection and the Laplace-Beltrami operator
of the induced metric ¢**, respectively, Rt is the scalar curvature of ¥; and finally h,
101 denote the second fundamental form of ¥; and its traceless version, with respect
to v = Vu/|Vul|. Here, the first and the second equality are consequences of the
normal first variation of the volume measure and of the mean curvature (see the end
of Section 1.3), whereas the third one and the last one follow with the help of the
traced Gauss equation (1.6) and of the divergence theorem. Now, we notice that the
last summand of the right hand side of equality (4.37) is always nonnegative, as the
scalar curvature of (M, g) is nonnegative, by assumption. At same time, the absence
of critical points implies that all the level sets of u are diffeomorphic, in particular
they are connected as OM = {u = 0} is connected, by hypothesis. Consequently, the
first two summands also give a nonnegative contribution, by virtue of Gauss-Bonnet
theorem, as each X; is a connected closed surface (see the precise explanation at the
end of the proof of Theorem 3.1.2 — in absence of critical points). Thus, a (t) > 0 for
every t € [C/2,+00), then Gis nondecreasing therein.

Now, we show the monotonicity also in presence of critical points. We consider the
vector field X given by

14w C 2C(2u—1)
X = Vu + V\Vu|+(1+u)(l_u)

2(1 —u) (1 —u)?
on the open set M \ Crit(u), noticing that it is well-defined. With the help of Bochner
formula,

S| Vu|Vu,  (4.39)

7A|Vf|2 |Vdf|? 4+ Ric(Vf,Vu) + g(VAF, V), (4.40)
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for every f € C°°(M) and by virtue of the fact that u is harmonic, the divergence of
X can be expressed as

C|Vu| [|Vul 12u? 9 6u  g(V|Vul,Vu)
1-w)?| C +(1—u2)2‘vu‘ L |Vu|
+|Vdu|2 — |V|Vul[? 4+ Ric(Vu, Vu)

[Vul?

div(X) =

Using the traced Gauss equation (1.6), together with the identity
[Vdu|* = |Vul*[b]* + [V[Vu[ > + [ V¥ Vul[?,
one can obtain an equivalent expression for div(X'), adapted to the (regular portions

of the) level sets of u, namely

div(X) = Wul B2 VAVeP R

(1-w)?| C 2 |Vu|? 2 2

) ) 2 h|2 4 °

C|Vu| [|Vu| R® |V¥|Vul| |\+3<“2\VU|_H>].
4 \1

(4.41)

Here, h, H, R* and V* are all the ones associated to the (regular portions of the) level
set of u that passes for the point where div(X) is computed.

Let t,T € T such thatt < T, where 7 is given by equality (4.8). We want to show
that G(t) < G(T). To simplify the exposition, we introduce the diffeomorphism
f:]C/2,+00) — [0,1), defined by

1-¢
F(t) = e (4.42)

We treat the non-trivial case in which the open interval (f(t), f(T))) contains critical
values of u. In this case, the vector field X is no longer well-defined in { f(t) < u <
f(T')} and to overcome this difficulty, we consider the same pointwise nondecreas-
ing sequence of cut—off functions {7 }ren introduced in proof of Theorem 3.1.2, in
the general case, namely, for every k € N7, the functions 7 : [0, +00) — [0,1] are
smooth, nondecreasing and satisfy

1 1 3 3
= i — <n < in |—,— in | — )
Nk(7) =0 in [O, 21{:] , 0<m(r) <2k in [2k , 2]4:]’ () =1 in [21{: ,+oo)

Using these cut—off functions, we define for every k£ € NT, the vector fields

1+ u
Xy = ——
k ) VU+?7k<

|Vul > { C 2C(2u—1)
V|Vu| +
T tw?) [a-wz Y VT T rna—w
Notice that the vector fields X}, are well-defined in M and they coincide with the
vector field X in formula (4.39), whenever restricted to a compact set sitting inside

3|VU|VU]
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M \ Crit(u), for k large enough. Moreover, they have divergence given by the fol-
lowing formula,

wmvr Ulamaira) [t

(T ) [(11%) Vul+ Wdupyvlv?'vuug]*'vcu'}

div(Xy) =

2

¢ / ‘VU| 2(2u )
ey nk((l—u)(l—i—u)?’)‘ = | VulVut VIVl

Since in the above expression the last summand is nonnegative and since, for large
enough k, the vector field X}, coincides with X at theboundary of { f(¢) < u < f(T)},
the divergence theorem, applied to X on {f(t) < u < f(T)} (see Remark 1.1.1),
gives

G(T) - G(t) = / div(Xy,) dp > / Py dp + / Dy dy, (4.43)
{F()<u<f(T)} {F()<u<f(T)} {F(t)<u<f(T)}

where we set

~ C|Vu Vu Vu ~
P, = | I[I |+77k<( | Vu| )P},

(1-u)2] C 1—w)(1+u)?
By = C|VU| ( |Vu| >57
)1+ u)3
with
~ 12u? |Vdul|? — |V|Vul|?
P=—-— 2
R T .

B 6u  g(V|Vul, Vu) n Ric(Vu, Vu)

12 |Vul |Vul|?

We notice that the functions P and D are p—a.e. well-defined and smooth as well as
div(X), being 1(Crit(u)) = 0 and furthermore, we observe that the following facts
hold,

(1)

0< P, C|Vul [|Vu|

(1-w?| C

in M, where I\ cyit(u) denotes the characteristic function of M \ Crit(u),

(2)

+P HM\cm(u)]

C|Vu|
(1 —wu)?

in M \ Crit(u), keeping into account formula (4.9) and inequality (4.10), more-
over,

6
1Dy < D| and |D|_[ u2|Vdu|+|R1c|}eLlloc(M)

~ ’ Vu ’
Dy — ———L_ DI
k (1 — ) M\Crit(u)
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in M,

div(x) = IVl Pvu\ _ A]

(1 —u)?
in M \ Crit(u).

By point (2), the dominated convergence theorem implies

. ~ B C|Vu| =
Jlim / Dy dp = / Tz D (4.44)

{F®)<u<f(T)} {F®)<u<f(T)}

whereas, by point (1) and the monotone convergence theorem, it follows

, ~ C|Vu| [|Vu|] =+
1 = — . .
k—gloo / Py du / 1= u)? { C + P |du (4.45)

{F®)<u<f(1)} {ft)<u<f(T)}

As a consequence of inequality (4.43) with the existence of limit (4.44) finite, the
sequence of nonnegative real numbers given by the integrals of the functions P, is
bounded from above, then

C|Vu| [|Vu|
(I1—wu)?t C

+P] e LN{f(t) <u< f(T)}).

Then, passing to the limit, as k — 400, in inequality (4.43), by limits (4.44) and (4.45)
together with point (3) above, we get

G(T) - G(t) > / div(X) dy
{fO)<u<f(T)}

B c IVE[Vu|l2 R |2 3/ 4u 2
(TN

[F@®).f {u=r}

%
v [ )

{u=T}

where N is the set of the critical values of u. Here, the equality follows first by using
the coarea formula (1.1), then by applying the equality (4.41) for the divergence of X
and finally by Sard’s theorem. Since we are integrating only along the regular level
sets of u and since every regular level set is a connected (by assumption) closed sur-
face, we can invoke Gauss—Bonnet theorem to deduce that the last two summands
also give a nonnegative contribute (see the precise explanation at the end of the
proof of Theorem 3.1.2 — in absence of critical points). The claimed monotonicity of
G hence follows. O

Under the assumptions of above proposition, we conjecture that it is possible to
prove (by an argument similar to the one of Section 3.1) that the function G defined
by formula (4.5), coincides a.e. with a nondecreasing locally absolutely continuous
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function on [C/2, +00), still denoted by G, such that

A R V|2 b2 3/ 4 ?
G = [T ITTIE R W80

3t
a.e. in [C/2, +00), in particular, at all values t € T.

Proposition 4.1.2. Let (M, g) be a 3—dimensional, complete, one—ended asymptotically flat
manifold with minimal, compact and connected boundary and with nonnegative scalar cur-
vature. Let u € C°°(M) be the solution of Dirichlet problem (4.1) and let C > 0 be the
boundary capacity of OM in (M, g), given by formula (4.2). Let G : [C/2,4+00) — R be the
function defined by

2 4
G(t) :—%4—% <1+26t> /Wu|2da, (4.46)

where 3, is the level set of u, given by

s (o= (1- £/ ).

and o is 2-Hausdorff measure of (M, g). Then, the function G satisfies

G(C/2)= —-2C lw— / |Vu|2da] : (4.47)
oM
Jim G(t) = (4.48)

and admits an absolutely continuous representative in [C/2,+00), still denoted by G, such
that

G’(t)zﬂtngri <1+§t> (1—>/w 2 do (”%) /\Vu\Hda

(4.49)

ae. in [C/2,400), in particular, at all the values t € T, where the set T is defined by
equality (4.8). Finally, if all the reqular level sets of u are connected, then G is nondecreasing

inT.

Notice that the function G is well-defined, as the integrand function is bounded
on each level set of v and each level set of u has finite c—measure.

Proof. The function G is easily seen to satisfy equality (4.47). Concerning limit (4.48),
it is convenient to rewrite the second summand in the definition (4.46) of function G

as
t ,, C c\® |V
1 ( Zt) /\Vu| do = — <1+2t> / 1« |Vul|do,

{u=r(®)} {u=f(®)}
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where f : [C/2,400) — [0,1) is the diffeomorphism defined by formula (4.42). By
formulas (4.3) and (4.13), we have

v
|x]|—+o00 1—u

i

therefore, the second summand of G tends to zero for t — +oo, by applying an
argument similar to the one leading to limit (4.15), thus limit (4.48) follows.

In absence of critical points, the function G is everywhere continuously differentiable
in its interval of definition, with first derivative given by

, w2 1 c\’ 3C /‘ ) C C 2/
= — +-(1+2) (1-= v - = (1 v
G'(t) 2 T < t3 o |Vul|*do g\t |Vu|Hdo,

t 3t

keeping into account formula (4.38).

In presence of critical points, G is continuously differentiable only on T, with first
derivative given as above. In order to obtain the rest of statement, let us consider
the function G : [C/2, +00) — (0, +00) defined by

Gr(t) = L ( ) !/\VuFda
7o)

Obviously it is well-defined and we want to show that G; € Vszcl (C/2,+00). Notice
that

2C? 3
{f(a)<u<f(b)}

for every a,b € (C/2,+00) such that a < b, where the equality follows by a change
of variable together with the coarea formula (1.1). Thus, G1 € L}, .(C/2,+00). Now,
let y € C°((C/2,+00)), we have

+oo

/x’(t)Gl(t)dtz +/Oodt[ ’(t)% <1+§t>4 / |Vu|2do']

c/2 {u=f(®)}

Cl+u 202
/ds/ (5155) oy Vel e

0 {u=s)

Cl+u 202
_ s 3
_/X<21—u> (1_u2)3]Vu] an

M

Cl+u 2C2
— 1 2 2 3d
i [ (5150) e (TuPI TP

L Cl+u 2C|Vu| 9
_kgrfoo g(V[x(z 1—u>]’(1—u)(1+u)3nk(’vu’ JVu)dp

B ) Cl+u) . 2C|Vu] 9
==, X<21-—u)dw<u.—ux1+uy”M“vu|)v“ -
M

(4.50)
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Here, the third equality is a consequence of the coarea formula (1.1), the fourth one
follows by the dominate convergence theorem, since

/ 3 3

pointwise in M and

2C?
3 SHX/HLOO(C/Q;FOO) mlvul?’ S Llloc(M)a

Cl+u 202

finally, the last equality is obtained by the properties of the divergence operator com-
bined with the divergence theorem applied to

(C . +u>( 2|Vl = (| Vul?) Vu

21w 1 —u)(1+u)

on E! := {f(a) < u < f(b)}, for a,b € T such that suppx C (a,b). We observe that

/ (1) o (g a7 ¥

(g ) <(1_2§)|ZI:L| u)gnk(|Vu|2)Vu>du

B <C > (IVu ‘)<C\Vu\ [4(2u—1)’vu’2 2(1 —u) g(V|Vul, Vu) p

21 )2 [ (1+u)? A+tu)?d  [Vu
1 / AC|Vu?
+ X(2 1= u) (| Vul?) - u|)(1 4|_ E g(V|Vu|,Vu)dp. (4.51)
E}

Now, keeping into account that

Cl+u) , 9 4C|Vu|?
(51 Va2 (vl )

AC Xl (c/2,400) 9 3
S T A—wita)p ([ Vul?) [Vul |Vdu|ﬂ{ig\vu\2§%}
AC || x| oo /2, 400) 3%/2

A-w+w® vak

|Vdul,

we have

u U2
\/ (5152 ) vy 2T 71Vl Vi < o —

0. (4.52)

At the same time, setting

2(1 —u) g(V|Vul, Vu)
(14 w)3 |Vul ’
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we get
: Cl+u C|Vul Cl+u\ C|Vu|
(I X<21— > K Vul) gy Qe /(21—u> (e
Eb Eb
B Cl+u\ C|Vu|
- G e
M
(4.53)
as a consequence of the dominate convergence theorem, since
Cl+u C|Vu| Cl4+u\ C|Vul
(5 )utval) FE 0 (512 ) S Qi
pointwise in M and
4|2u — 1| 5 2(1—u) 1 b
< — L (E 4.54
Q1< e 1Vl + (o Vel € LA(ED), (459

C1 C|V C|V
V(5102 V) @) < Ilierson gz Q1 € 1B,

where these inequalities hold in M \ Crit(u). Then, from formula (4.50), by virtue of
equality (4.51) together with limits (4.52) and (4.53), it follows

+/Ooxl(t) G1(t) dt
c/2
:_AZXGiZ) e ke = e K
——+/Oodtx(t){4<1+ )(1—)/yv 2 do —<1+2t) /!Vu\Hdoy
c/2

where the second equality is obtained by the coarea formula (1.1), along with a
change of variable. In this way, we conclude that G has a weak derivative in the
open interval (C/2, +00), now we want to see that it is in L} .(C/2, 4+00). Notice that
each summand of CQ/(1 — u)? is in L}, (M), keeping into account formula (4.54),
therefore the functions

1 c\? 3C

1+ ) (1= 2
tb—>4< +2t>< 2t>/\Vu| do

¢

C C\?

(1=
tl—>4t< +2t> /]Vu\HdU,

p3M

defined a.e., belongs to L}, .(C/2, +oc). Consequently, Gy € Wllocl (C/2,+00) and this
conclusion, along with the fact Gy is also of class C! in an interval of type [a,b),
with a = C/2, implies that G admits an absolutely continuous representative in
[C/2,+00) (see [49], for instance, about the relation between Sobolev spaces and the
locally absolutely continuous functions). Thus, G admits an absolutely continuous
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representative in [C/2, +00), as G(t) = —”762 + G1(t) in [C/2,400), coinciding with
GonT.

Assuming now that all regular level sets of u are connected, being the function G
continuously differentiable on T, with first derivative given by formula (4.49), it
follows easily that the equality

. 4¢3

G(t) = el G'(t) (4.55)

holds, for every ¢ € T. We set

A= 2C[7T— / \VU\ZdJI ,
oM

therefore,
G(C/2) = —A,
G(C/2) = A,
by formulas (4.47) and (4.6), respectively. Then, by virtue of the fact that C/2 €

T, the monotonicity of G proved in Proposition 4.1.1, under the assumption of the
connectedness of all regular level sets of u, implies

413 ~ .
EG/(U -~ A=G(t)-G(C/2) 20,
forevery t € T,in particular
C2
/
>
(1) > 3 A,

foreveryt € T Notice that this inequality is true a.e. in [C/2, +00), as T differs from
[C/2,+00) only for a negligible set, by Sard’s theorem. Consequently, integrating
between C/2 and t € T and since G admits an absolutely continuous representative
in [C/2, +00), coinciding with it on T, it follows

c’A A

e -ce= -S4+ 4

c’A A

G(t)+A> TR + 5

ctA A
=27 (4.56)

for every t € T. By the compactness of Crit(u), there exists ty € [C/2,+00) such
that [ty, +00) C T, thus, passing in inequality (4.56) to the limit, as ¢ — +o0, we get
A > 0, by limit (4.48). Now, the nonnegativity of A implies that G (t) > 0 and in
turn that G'(t) > 0, for every t € 7. This implies that G is nondecreasing in 7A’, since
T differs from [C/2, +00) for a negligible set and G admits an absolutely continuous
representative in [C/2, +-00), coinciding with it on 7. O
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Under the assumptions of the above proposition, we conjecture (as before) that
it is possible to prove that the function G is of class C'! in [C/2, +00) with

=™ 1 6336/ Y 62/
@0 =" +4(1+21t b Vuldo = \1 T % |Vu|Hdo

3¢ \Crit(u) 3¢\ Crit(u)

fora.et € (C/2,+00).

Until now, we defined two functions G and G which are monotone on a set that
differs from their interval of definition only for a negligible set, under the assump-
tion of connectedness of all the regular level sets of u. Whereas the monotonicity of
function G can be interpreted as a version, in presence of boundary, of the mono-
tonicity obtained by Munteanu and Wang in [66], the monotonicity of the function
G is new. Another fundamental property of these functions is that their being con-
stant characterizes the (exterior spatial) Schwarzschild manifolds of mass m > 0,
as we are going to see in the next two propositions. A key point of these results
lies in the fact that when they are constant, there are no critical points of u, which
in turn implies, in both cases, that G’ = 0, where G’ is sum of nonnegative terms.
From a careful analysis of the consequences of the vanishing of these nonnegative
terms, one can deduce that the Riemannian manifold is isometric to a (exterior spa-
tial) Schwarzschild manifolds of positive mass.

Proposition 4.1.3 (Rigidity — I). Let (M, g) be a 3—dimensional, complete, one—ended
asymptotically flat manifold with minimal, compact and connected boundary and with non-
negative scalar curvature. Let u € C°° (M) be the solution of Dirichlet problem (4.1) and
let C > 0 be the boundary capacity of OM in (M, g), given by formula (4.2). Consider the
function G : [C/2,+00) — R defined by formula (4.5). Then, G is constant in [C/2, +o0)
if and only if (M, g) isometric to the (exterior spatial) Schwarzschild manifold of mass C in
Example (1.4.2).

Proof. If (M, g) is the (exterior spatial) Schwarzschild manifold with mass m > 0,

L o] IV (1 _m i m go 2T (4.57)
u = ) Ul = + > T 199 =T * *
1+ 5 2z|/  |xf? 2] (14 52)°

Notice that u has no critical points. By a straightforward computation, one has

0.

C:zl/Vu\dU:m and G
4
oM

Now, we assume that G is constant in [C/2, +00). We know that there exists a maxi-
mal time 7" such that Vu # 0in {0 < u < (1 — 5)/(1 + 55) }, since OM = {u = 0} is
a regular level set of u and v : M — [0, 1) is proper. Then, G is continuously differ-
entiable in [, T) with G given by formula (4.37) and nonnegative, since each level
set {u = (1 — %) /(1 + %)} is a connected closed surface, as it is diffeomorphic to
OM = {u = 0}, which is connected by assumption, for every t € [£,T). At the same

time, G’ (t) = 0in the same interval, as G is constant. Therefore, all the nonnegative
summands in formula (4.37) are forced to vanish for every ¢t € [C/2,T). This fact
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gives V| Vu| = VT |Vu| = 0and H = 2%, | Vu| imply

1—u?
Vu \ Vu 4u
T L
= = e =-HVu=— :
VIVu| =V ' |Vu|+ V- |Vu| g<V]Vu],‘vu|>|vu| Vu 17u2|Vu|Vu
(4.58)
Consequently,

V (log |Vul|) = V (2log (1 — u?))
V [log (]Vu\ 2>] =

(1—w?)
Thus, the function |Vu|/ (1 — uz)2 is constant on every connected component of
{0<u<(1- %) /(14 %) }, but this latter set is connected since it is diffeomorphic to
[0, (1 = 55)/(1+ 55)) x M and OM is connected. In conclusion, | Vu| = a(1—u?)?,
where a € Ris a positive constant, therefore, being 0 < u < 1 on the whole manifold,
T = +o0 and |Vu| # 0 everywhere. In particular, all the level sets of u are regular

and diffeomorphic to each other, which clearly implies that they are all connected.
Concerning the constant a, from formulas (4.3) and (4.13), it follows

C= lim |z|*|Vu|=a lim |z]*(1—u*)?=4aC?,
) |z|—+o00

x| =+

therefore a = (4C)~!. Now, up to an isometry, we have that M = [0,1) x M, every
slice {t} x OM is the level set {u = ¢} and the metric g can be written as

_ WO d ) di™ @ dv”
g—m U ® du + gag(u,) ® ;
where go5(u,9) d9® @ dv” represents the metric induced by g on the level sets of u.
By the vanishing of the traceless second fundamental form of the level sets in for-
mula (4.37), i.e. hag = (H/2)gqp, in combination with equality h,g = Vduag/|Vu/,
by equality (1.4), it turns out that the coefficients g,g(u,?) satisfy the following first
order system of PDE’s
0905 4u

u 1wz %

from which we can deduce
Gop(1,9) d9® @ d9P = (1 — u?)"%cop(9) d¥® @ d¥° .
At the same time, for every ug € [0, 1), we also have

(1 — up)?

1
= Rriv=uo} —
2 R 4c2 7
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indeed, from the traced Gauss equation (1.6) together with Bochner formula (4.40)
(coupled with the fact that u is harmonic), it follows

R{v=w) = R — 2Ric(v,v) — |h|* + H?
2

= —2|Vu| 2 Ric(Vu, Vu) + H7
2

H
= |Vu|™? [-A|Vul* +2|Vdu[*] + R
Here, the second equality is a consequence of the vanishing of the scalar curvature of

M and of the traceless second fundamental form of the level sets, in equality (4.37),
in particular, the vanishing of this latter also implies

3
IVdul? = |[Vul? b + 2|V |Vu| > + |V Vu||? = 5| Vul’H?,

keeping into account formula (4.58), consequently;,

Riv=wo} — —\Vu|72 A\VUP + 72H27
but, being
|Vu| = a(l — u?)?
H=1 ﬁuuz [ Vu| = dau(l —u?),

with a = (4C) ™}, as already explained, one obtains
Riv=vol — 8(40)72(1 — ud)?.

Then, {u = wp} with the Riemannian metric induced by (M, g), has constant sec-
tional curvature (equal to (1 — u2)?/(4C?)) and by the vanishing of the Gauss—
Bonnet term in formula (4.37), it is diffeomorphic to a 2—sphere. Consequently,
({u = w0}, gru—yy}) is isometric to (S?, % gs2), by [25, Section 3.F], in par-
ticular, (OM, gops) is isometric to (S?,4C? gs2). Thus, up to an isometry, one has
M =1[0,1) x S? and

_(4c)? 4C?
g= 1= w2t du @ du + (1= 2)? gs2 -
Then, the map
Cl+u
(w,9) € (M, g) = 57— 0¢€ (Msen(c), gsch(c))
is an isometry. O

Proposition 4.1.4 (Rigidity — II). Let (M, g) be a 3—dimensional, complete, one—ended
asymptotically flat manifold with minimal, compact and connected boundary and with non-
negative scalar curvature. Let u € C°°(M) be the solution of Dirichlet problem (4.1) and
let C > 0 be the boundary capacity of OM in (M, g), given by formula (4.2). Consider the
function G : [C/2,400) — R defined by formula (4.46). Then, G is constant in [C/2, +00)
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if and only if (M, g) isometric to the (exterior spatial) Schwarzschild manifold of mass C in
Example (1.4.2).

Proof. 1f (M, g) is the (exterior spatial) Schwarzschild manifold with mass m > 0,
then, by the equalities (4.57) together with the observation m = C, one obtains di-
rectly that G = 0. Now, we assume that G is constant in [C/2, +00), then, as before,
there exists a maximal time T such that Vu # 0in {0 < u < (1 — %)/(1 + %)},
since OM = {u = 0} is a regular level set of w and u : M — [0, 1) is proper. Hence, in
[$,T) the function G is of class C?, with G'(t) given by formula (4.49) and at same
time with G/(t) = 0, while G is of class C! in the same interval, with G’ given by
formula (4.37) and at the same time G’ (t) =0, as G =0, due to equality (4.55). Con-
sequently, arguing as in the proof of Proposition 4.1.3, one obtains that 7" = 400 and
|Vu| # 0 everywhere. In particular, @ is constant on its interval of definition and
the conclusion follows again by Proposition 4.1.3. O

4.2 Some sharp comparison results

In this section, two sharp inequalities are derived by means of Proposition 4.1.1 and
Proposition 4.1.2, under a suitable topological assumption in order to guarantee the
connectedness of all the regular level sets of u. One of these results is an improve-
ment of the mass—capacity inequality obtained by Bray in [13] and the other one is a
sharp upper bound of the boundary capacity of dM in terms of its area, proven by
Bray and Miao in [15], anyway, our assumptions are different from the ones of these
authors.

Lemma 4.2.1. Let (M, g) be a 3—dimensional, complete, one—ended asymptotically flat man-
ifold with compact and connected boundary. Let uw € C° (M) be the solution of Dirichlet
problem (4.1). Assume that the first Betti number of M is zero, then, all reqular level sets of
u are connected.

Proof. Lett € (0,1) be a regular value of u. We know that {u > t} = {u >t} and
{0 <u <t} ={0 < u <t} as explained after Remark 2.0.1, we want to see that they
are connected. First, we show the connectedness of {0 < u < t}. Supposing it is not
connected, it must have a connected component K disjoint from dM (as this latter is
connected and compact). Then, 0K C {u =t} and, since {0 < u <t} = {0 <u < t},
the interior of K must be nonempty and contain some points where 0 < v < ¢, which
is not possible, by the maximum principle. On the other side, we already know that
{u > t} is connected, as explained after Remark 2.0.1.

Let now ¢ > 0 such that [t — ¢, + €] doesn’t contain critical values of u, we consider
the reduced Mayer-Vietoris exact sequence of the pair {0 < u <t + ¢} and {u > t},

H\(M;Z) —» Hy({t <u<t+ehZ) — Ho({0 <u<t+ehZ) ® Hy({u>t}Z)

We recall that H,,(X;7Z) ~ H,(X;Z), for all positive integers n € N and Hy(X;Z) ~
Hy(X;Z) ® Z, for any topological space X. Then, from the connectedness of the sets
{0 <u<t+e}and {u > t}, it follows that the last space, Hy ({0 < u < t + €}; Z) &
Hy ({u > t}; Z),is trivial, therefore, Hy ({t < u < t + ¢}; Z) is the image of Hy(M;Z) ~
H,(M;Z),but this image is trivial. Indeed, the assumption that the first Betti number
of M is zero implies that H; (M Z) coincides with its torsion subgroup (i.e. the sub-
group of all its elements with finite order), but at same time Hy({t <u<t+e}2Z)is
torsion—free (since Hy(X;Z) is isomorphic to a direct sum of Z'’s, one for each path—
connected component of any topological space X). Thus, Hy ({t < u <t +€};Z) =0
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and, consequently, {t < u < t+¢€} is connected, but, being {t < u < t+¢} diffeomor-
phic to {u = t} x [¢, t +¢], the number of the connected components of {t < u < t+¢€}
and {u = t} is the same. O

Theorem 4.2.2. Let (M, g) be a 3—dimensional, complete, one—ended asymptotically flat
manifold with minimal, compact and connected boundary and with nonnegative scalar cur-
vature. Assume that the first Betti number of M is zero. Let uw € C°°(M) be the solution of
Dirichlet problem (4.1) and let C > 0 be the boundary capacity of OM in (M, g), given by
formula (4.2). Then, the following statements hold.

(1)
1-< 4
Area u = 2C,t > A 2 <1 + C>
1+ & 21

forevery t € T, where the set T is given by equality (4.8). In particular,

< Area(OM)

—_— 4.59
Y e (459

with equality if and only if (M, g) isometric to the (exterior spatial) Schwarzschild
manifold of mass C in Example (1.4.2).

(2) ;
mADM—C24[7T—/|Vu|2dU} >0, (4.60)
T
oM

with equality in the first or second inequality if and only if (M, g) isometric to the
(exterior spatial) Schwarzschild manifold of mass C.
In particular,

mapm > C, (4.61)

with equality if and only if (M, g) isometric to the (exterior spatial) Schwarzschild
manifold of mass C.

Proof. By Lemma (4.2.1), all the regular level sets of u are connected, in turn this
implies that the functions G and G, given respectively by formulas (4.46) and (4.5),
are nondecreasing on 7, by Propositions 4.1.2 and 4.1.1, respectively. Thus, for every
teT,

G(C/2) <G(t) < lim G(t) =0, (4.62)

t—+o00

0<-G(C/2) = G(C/2) <G(t) < lim_C(t) <87 (mapm —C) . (4.63)
by formulas (4.47), (4.48), (4.6), (4.7). Now, dividing by 87 in formula (4.63), the in-
equalities (4.60) follow. If the equality holds in the first inequality of formula (4.60),
then G is constant on 7 and this is sufficient to guarantee that Crit(u) = O, by the
same argument, in the proof of Proposition 4.1.3 in order to prove T' = 400, where
T = sup{t : [0, f(t)) does not contain critical values of u} for f(t) := (1-<)/(1+<).
Consequently, G is constant on [C/2),+00) and the rigidity statement that (M, g)
is isometric to the (exterior spatial) Schwarzschild manifold of mass C, follows by
Proposition 4.1.3. Analogously, if the equality holds in the second inequality of for-
mula (4.60), then G is constant on 7 and this is sufficient to guarantee that Crit(u) =
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O, by the same argument in the proof of Proposition 4.1.4, in order to prove T = +o0,
where T is defined as before. Thus, G is constant on [C/2),+00) and the rigidity
statement is a consequence of Proposition 4.1.4.

Inequality (4.61) follows immediately from formula (4.60) and the rigidity statement
result, in the case that the equality holds in inequality (4.61), is a simple consequence
of the fact that equality holds in the first and the second inequality of formula (4.60).
On the other hand, in a (exterior spatial) Schwarzschild manifold with mass m > 0,
one has that m = C and the functions G and G are identically zero, as showed in
the proof of Propositions 4.1.4 and 4.1.3, hence, the equalities in formula (4.60) also
hold.

By the last inequality in formula (4.62) and recalling the definition (4.46) of the func-
tion G, for every t € 7A', there hold

4mC? c\™*
2

pI

Consequently, we have

47rC:/|Vu|d0§ [/]Vuzda

b 3t

1/2
[Area(X;)]/?

12 € c\? 1/2

< (@m)Ve — (14 ) [Area(Xy)] /7,
t 2t

where the equality comes from formula (4.4) and the first inequality is a consequence

of Holder inequality. Thus,

4
Area(X;) > 4nt? (1 + ;jt) ,

in particular,
Area(OM) > 167 C?,

from which we obtain

< Area(OM) .
- 16m
Finally, if we assume that the equality holds, then G is constant on 7T and the rigidity
statement follows as before. On other side, in a (exterior spatial) Schwarzschild
manifold with mass m > 0, the equality in formula (4.59) can be checked directly,
keeping into account that m = C. O
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