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Abstract

This Ph.D. Thesis deals with the development and implementation of physics-
informed numerical analysis and machine learning methods for the modelling and
bifurcation analysis of large-scale complex dynamical systems from big-data as
well as the numerical solution of low-dimensional models of Ordinary Differential
Equations (ODEs). Modelling and analysing the emergent behaviour of large-scale
complex dynamical systems from experimental data and/or data produced by detailed
high-fidelity microscopic simulations, requires appropriate data-driven/numerical
analysis-based methods for extracting coarse-scale models that can be utilized for
further numerical analysis of the emergent dynamics. The springs of this Thesis are
interdisciplinary, bridging state-of-the-art methodologies from numerical analysis,
machine learning, microscopic simulations, bifurcation theory and neuroimaging.
The research efforts and results were focused in three main directions.
We have first focused on the solution of the source-localization problem in neu-
roimaging, exploiting and comparing the performance of state-of-the-art regulariza-
tion methods, namely the standarized Low Resolution Electromagnetic Tomography
(sLORETA), the weighted Minimum Norm Estimation (wMNE) and the dynamic
Statistical Parametric Mapping (dSPM) and information arising from the electrophys-
iology of the brain. In particular, the research efforts were focused on the localization
of the sources of brain activity of children with epilepsy based on electroencephalo-
graph (EEG) recordings acquired during a visual discrimination working memory
(WM) task using numerical regularization algorithms. Importantly, our study and
findings reveal also the importance and potential that originates from the use of
physics-based information as well as publicly available scientific resources such as
the “Neurodevelopmental MRI" database, which allow the researchers to numerically
analyse available neuroimaging data and investigate questions beyond the scope of
the original studies.
Next, we addressed a computational framework for the embedding of high-dimensional



spatio-temporal data produced by microscopic simulators in low-dimensional mani-
folds, the identification of the appropriate parsimonious observables based on the
constructed low-dimensional models and finally the construction of coarse-grained
bifurcation diagrams from spatio-temporal data. Thus, we exploit manifold learning
and in particular Diffusion Maps to identify the intrinsic dimension of the manifold
where the emergent dynamics evolve and for feature selection. Based on the selected
features, we learn the right-hand-side of the effective partial differential equations
(PDEs) using Feed-forward Neural Networks (FNNs). Based on the learned black-
box model, we construct the corresponding bifurcation diagrams, exploiting the
arsenal of numerical bifurcation theory. For our illustrations, we implemented the
proposed method to construct the one dimensional bifurcation diagram of the cele-
brated and well-studied FitzHugh-Nagumo PDEs of activation-inhibition dynamics
in neurons from data generated by Lattice Boltzmann simulations.
Finally, we addressed a numerical method based on physics-informed random-
projection neural networks for the solution of initial value problems (IVPs) of
low-dimensional systems of ODEs with a focus on stiff problems. The numerical
solution of the IVPs is obtained by constructing a system of nonlinear algebraic
equations, which is solved with respect to the output weights by the Gauss-Newton
method. The performance of the proposed scheme was assessed through three bench-
mark stiff IVPs, namely the Prothero-Robinson, the van der Pol model and the the
ROBER problem. Furthermore, the proposed scheme was compared with an adaptive
Runge-Kutta method, and a variable-step variable-order multistep solver based on
numerical differentiation formulas, as implemented in the ode45 and ode15s of the
matlab ODE suite. We show that the proposed scheme yields good approximation ac-
curacy, thus outperforming in some cases ode45 and ode15s, especially in the cases
where steep gradients arise. Furthermore, the computational times of our approach
are comparable with those of the two matlab solvers for all practical purposes.
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Chapter 1

Introduction

1.1 Motivation

Recent theoretical and technological advances in the field of numerical analysis
methods for the analysis and processing of large-scale data produced either from
experiments or from the simulation of microscopic models (e.g. Molecular Dynamics,
Monte Carlo, Lattice-Boltzmann simulations) have allowed better modeling and
analysis of complex systems for which good models in the form of e.g. ordinary
or partial differential (ODEs or PDEs) equations for describing emerging dynamic
behaviors are not available. Examples of such complex problems can be found
in various areas of science and engineering such as Environmental Engineering,
Materials Engineering, Fluid Mechanics, Biology and Biomechanics, Epidemiology
and Neuroscience. The importance of understanding the mechanisms that lead to
emerging dynamics from the interactions of units (molecules, atoms, neurons) at
a microscopic level, led to the awarding of the Nobel Prize in Physics in 2021 to
Klaus Hasselman, Giorgio Parisi and Sykyro Manabe for their research work in this
specific field.

There has been a massive progress in understanding how the interactions between
units in the micro scale give rise to specific emergent behaviors of the system at
the macro scale. Examining the complex non-linear dynamics of the system at the
macro scale allows for the derivation of fundamental laws about the behavior of the
system as a whole. Such a derivation is majorly carried out by using the arsenal
of numerical analysis methods, such as finite differences, finite elements, spectral
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methods, stiff time integrators, bifurcation analysis and more. However, despite
the tremendous progress in the development of numerical algorithms, bridging the
physics that may be available in a detailed microscopic scale with the available
numerical analysis tools for continuum models for the study of the evolution of
the emergent complex dynamics is an open challenging issue. Moreover, real-life
physical systems may have missing or noisy boundary conditions that hinder the
implementation of traditional approaches. In order to handle these issues, many
researchers have turned their attention to the analysis of big-data . The discovery of
physical laws from data and consequently the systematic analysis of their dynamics
with established numerical analysis techniques is the holy grail in the study of
complex systems and has been the focus of intense research efforts over the the last
decades [1–6].

Such data can be available either directly from experiments or from detailed
simulations using for example molecular dynamics, agent-based models, and Monte-
Carlo methods. However, temporal simulations are not sufficient for performing
a series of tasks at the macroscopic/emerging level. Such tasks of paramount im-
portance include stability analysis, design of controllers and numerical bifurcation
analysis for tracing unstable branches of solutions as well as the identification of
critical points in the parameter space that mark the onset of qualitatively different
behaviours, including e.g. catastrophic shifts. Thus, all in all, we confront with
two major problems: (a) the identification of the appropriate variables that define
the emerging (coarse-grained) dynamics, (b) the construction of low-dimensional
models based on these variables.

Even in the case when these major problems do not arise, (i.e., when models
describing the coarse-grained dynamics are available), obtaining the solution of
ODEs and/or PDEs coming from complex systems often turns out to be extremely
demanding [7–10]. Specifically, there exists a huge range of complex problems
which require dealing with (large-scale systems of) stiff ODEs [11, 12] for their
efficient modelling. As a result, the development of new methods that aim to pro-
vide efficiently accurate numerical solutions is of paramount importance [13–18].
Machine learning seems to be a promising alternative to the classical numerical
algorithms [19–22].
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Despite the huge amounts of datasets that are available today (experimental or
simulated), most of the times it is not possible to incorporate them seamlessly into
the existing physical models. There have been many promising efforts to assimilate
these data streams, yet the lack of universally acceptable models as well as the
heterogeneity of most of the available data lead to the need for a combinatorial
approach. The combination of “black-box" information acquired from data and
the a priori physics-informed knowledge can be incorporated by machine learning
(ML)[19, 20, 23]. Synergistic integration between ML algorithms and physical
models has been advocated for modeling the Earth system [24], biomedical and
biophysical processes [25] and more. Hence, the effort of interpreting physical
laws and "teaching" the ML algorithms to respect them by providing "informative
priors" (theoretical constraints, inductive biases) is needed for enabling our empirical
understanding of the world to improve the effectiveness of a learning algorithm.

An enlightening example of this new philosophy is the family of "physics-
informed Neural Networks" (PINNs) [20] which are trained to solve supervised
learning tasks while respecting the given laws of physics described by nonlinear
differential equations. The main motivation for developing these algorithms is that
such kind a priori informative constraints can lead to robust results even in the
case of imperfect datasets (noise, extreme or missing values etc). Hence, PINNs
can generalize accurately with increased performance, due to this extra physical
information about the fundamental nature of the under study phenomenon.

Following the same perspective, a-priori physics- informed constraints can be
used to improve the performance of the traditional numerical algorithms for chal-
lenging tasks such as optimization. Numerical optimization techniques have been
developed to deal with many inverse ill-posed problems, which may have an infinite
set of possible solutions and the extraction of the desirable one, the one that is justi-
fied by the real phenomenon, can be obtained using physical constraints. Usually,
these constraints are incorporated by adding extra regularization terms to the cost
function [26, 27].

The idea of interpreting a-priori information in order to increase the accuracy
and validity of numerical analysis has a particular application in neuroscience and
specifically for solving the inverse problem in Electroncephalography Source Local-
ization (ESL). In this problem, which has attracted the interest of many researchers,
by exploiting information about the functionality of the brain which has been justi-
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fied through experiments, one can identify the actual sources (neurons) that create
the available EEG recordings [28, 29]. The physical information about the brain
activity is incorporated through various regularization constraints to a traditional
optimization algorithm. These synergistic numerical regularization methods have
been proved promising techniques for acquiring information about the source space
(brain) when only information about the sensor space (scalp) is available. ESL has
been applied for identifying brain regions that may be involved in brain disorders and
especially epilepsy. One of the most challenging open problems in the field is that
of early diagnosis of epileptic crises. Epilepsy affects more than 65 million people
worldwide while, approximately 1 out of 150 children is diagnosed with epilepsy
during the first 10 years of their life [30]. Although many children self-heal before
adulthood, it has been shown that children with epilepsy confront various cognitive
and behavioural problems such as problems in learning, attention and memory capac-
ity [31]. Thus, the systematic study of the brain (dys)functionalities of children with
epilepsy, and ultimately the development of efficient/targeted treatments is one of the
most challenging problems in neuroscience and beyond. In this Thesis, motivated
by the aforementioned gaps in literature, we demonstrate in the important case of
epilepsy how physics-informed a-priori constraints can be utilized for identifying
crucial brain regions from non-invasive brain recordings (EEG) for children. Studies
for children are relatively limited but obviously of utmost importance.

Regarding the problem of bridging scales and discovering the hidden physical
laws, thus extracting “useful" information from high-dimensional spatio-temporal
data for coarse-grained modelling and numerical bifurcation analysis purposes, we
propose a three-steps computational framework to (a) perform feature selection based
on manifold learning, (b) using machine learning to learn the right-hand-sides of
the effective PDEs, and (c) based on the constructed "black-box" model to perform
numerical bifurcation analysis.

Finally, motivated by the fact that stiff systems of ODEs frequently arise in
the modelling at the coarse-continuum scale of the dynamics complex systems, we
provide an alternative of solving low-dimensional systems of ODEs using physics-
informed ML tools.
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1.2 State of the art

1.2.1 Solving the Inverse Problem in Neuroimaging

The application of the discussed idea in real life systems is of particular importance.
One great example, which has caught the attention of the scientific community,
is the brain neural system. The field of neuroimaging has began to apply both
theoretical and experimental procedures originating in complexity science—usually
in parallel with traditional methodologies [32–38] by data produced by non-invasive
neuroimaging techniques such as EEG recordings that are widely used for clinical
assessment [39–46]. An important weakness though is that sensor-level analysis of
brain signals does not give information about the “true" regions of the brain that
are being involved. This is the reason why the topic of EEG Source Localization
has been widely developed during the past decades (see review [47]). Moving from
the surface of the head deep in the brain provides much more information about
the brain activity. Of course, from the mathematical point of view, the problem of
ESL is an inverse ill-defined problem and cannot be solved exactly. There are many
methods that have been developed to deal with this problem [29, 48]. Among the
many inverse methods proposed so far, some make use of physiologically relevant
a-priori knowledge about both the location and orientation of dipole sources at the
origin of signals collected at the scalp. In order to have an accurate 3D tomography
of the solution, we have to combine this information with a space model. In this case,
the space is the human head and the model is called volume conductor model (the
realistic head model obtained by Magnetic Resonance Imaging (MRI) segmentation).
This processing considerably increases both the precision of localized sources and the
estimation of associated time series, which are analogous to the local field potentials
[49, 50]. However, the source localization problem is an ill-defined problem and as
such, it poses open questions regarding its robustness and in general the validity of
the obtained results [51]. Thus, comparative studies between the various numerical
methods that aspire to solve the source localization problem are critical[52, 53].

Toward this aim, Jatoi et al.[54] have compared the sLORETA with the exact
LORETA (eLORETA) based on EEG recordings of a visual experiment on healthy
subjects. Cincotti et al. [55] compared two techniques for source localization,
namely the surface Laplacian and LORETA using EEG recordings from a group
of Alzheimer disease patients and age-matched controls. Yao and Devald [56]
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compared the performances of several source localization methods on the basis of
both simulated and experimental EEG data of somatosensory evoked potentials.
Attal and Schwartz [57] compared the performance of three methods, namely the
wMNE, sLORETA and the dSPM for the characterization of distortions in cortical
and subcortical regions using a realistic anatomical and electrophysiological model
of deep brain activity. Seeland et al. [58] compared wMNE, sLORETA and dSPM
using EEG data taken from eight subjects performing voluntary arm movements.

Regarding epilepsy, the majority of the studies have performed source local-
ization with the aid of EEG-functional MRI (fMRI) recordings and/or simulated
data approximating epileptic spatio-temporal patterns such as spikes and discharges.
Fewer studies have dealt with source-level analysis and compared different source lo-
calization methods using EEG clinical data taken by children with epilepsy. Among
these studies, Adebimpe et al. [59] performed source localization using eLORETA
to investigate changes in functional connectivity in children with benign rolandic
epilepsy with centrotemporal spikes using resting-state EEG recordings. Groening
et al. [60] combined EEG–fMRI and EEG source analysis to identify epileptogenic
foci in children. Elshoff et al. [61] examined the efficiency of EEG-fMRI and EEG
source analysis to localize the point of seizure onset in children with refractory focal
epilepsy.

Ioannides et al. [62] assessed the performance of two source localization methods,
wMNE and eLORETA using magnetoencephalography (MEG) signals of ictal and
interictal epileptiform discharges in epilepsy and K-complexes. Chowdhury et al.[63]
compared the performance of the coherent Maximum Entropy on the Mean (cMEM)
and the 4th order Extended Source Multiple Signal Classification (4-ExSo-MUSIC)
using MEG and EEG synthetic signals mimicking normal background and epileptic
discharges. Hasan et al. [64] evaluated four algorithms (dSPM, wMNE, sLORETA
and cMEM) using simulated data from a combined biophysical/physiological model
used to generate interictal epileptic spikes as well as real EEG data recorded from
one epileptic patient who underwent a full presurgical evaluation for drug-resistant
focal epilepsy. Moeller et al. [53] provides a review of the studies that used EEG-
fMRI recordings to assess different types of epileptic form activity, underpinning the
necessity for comparing with other methods including EEG source analysis.
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The above studies have focused mainly on the study of the brain regions that
are activated during seizure periods or before their onset. Several other studies have
also aimed at analyzing the emerged patterns during seizure periods. For example,
Fergus et al. [65] used a supervised machine learning approach to classify seizure
and non-seizure records using an open dataset of seizured EEG signals from both
children and adults. On the other hand, it has been shown, that studying epileptic
seizure-free EEG recordings is of great importance as such analysis can facilitate
the identification of patients at risk of epilepsy and/or forecast forth-coming seizures
(for a discussion and review of ictal and interictal activity and their analysis see for
example [46]).

1.2.2 Bridging Microscopic and Macroscopic Scales: Learning
PDES from data

From the early ’90s, researchers employed machine learning algorithms for system
identification using macroscopic observations, i.e. assuming that we already know
the correct variables to model the underlying dynamics and the derivation of normal
forms [66–71]. Bongard and Lipson [72] proposed a method for generating symbolic
equations for nonlinear dynamical systems that can be described by ODEs from time
series data. This approach allows us to model each variable independently and is
thus able to extract the less obvious characteristics and simplify the equations during
modelling. The method was validated with four simulated and two real systems
arising from different fields such as mechanics, ecology and systems biology. The re-
ported results suggest that similar methods can be exploited to automatically identify,
testable hypotheses of such complex systems: not just provide information about
possible correlations between variables but also automatically provide information
about possible causal relationships between them. Brunton et al. [73] addressed
the so-called sparse identification of nonlinear dynamics (SINDy) method to obtain
explicit data-driven PDEs from data when the “good" variables are known, and
construct normal forms for bifurcation analysis. Making the rational assumption
that there exist only a few important terms that govern the under study dynamics
and hence, the equations are sparse in the space of possible functions, they used
sparse regression to extract the fewest terms required to effectively describe the
observational data. The authors evaluated the method in a wide range of problems:
simple canonical systems, the chaotic Lorentz system, the fluid vortex shedding
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behind an obstacle and more. The proposed methodology provides an effective
tool for handling big datasets where the problem of the curse of dimensionality is
inevitable. Extracting the few macroscopic variables is undoubtedly a convenient
alternative.

However, for many complex systems, such “good” macroscopic observables that
can be used effectively for modelling the dynamics of the emergent patterns are not
always directly available. Thus, such “hidden” variables have to be identified from
data. In the early 2000’s, the Equation-Free multiscale framework [3, 4, 74, 75]
provided a systematic framework for the numerical analysis (stability, design of
controllers, optimization, numerical bifurcation analysis) of the emergent dynamics
as well as for the acceleration of microscopic simulations, by bridging the microscale
where the physical laws may be known and the macroscopic scale where the emergent
dynamics evolve. This bridging is achieved via the concept of the “coarse time
steppers", i.e. the construction of a black-box map on the macroscopic scale. By
doing so, one can perform numerical analysis, even for macroscopically large-scale
systems tasks by exploiting the arsenal of matrix-free methods in the Krylov subspace
[3, 76–78, 75], thus bypassing the need to construct explicitly models in the form of
PDEs.

In the case when the macroscopic variables are not known a-priori, one can
resort to state-of-the art manifold learning algorithms such as Diffusion Maps [79,
6, 80, 81], a manifold learning algorithm that can be used either for dimensionality
reduction or for feature extraction. Diffusion maps exploit the relationship between
heat diffusion and random walk Markov chain. The basic observation is that if
we take a random walk on the data, walking to a nearby data-point is more likely
than walking to another that is far away. The aim of the algorithm is to identify a
low-dimensional embedding of a dataset into the Euclidean space, the coordinates
of which can be computed from the eigenvectors and eigenvalues of a diffusion
operator on the data. The Euclidean distance between points in the embedded space
is equal to the "diffusion distance" between the probability distributions centered at
those points [82]. Diffusion maps belong to the family of nonlinear dimensionality
reduction methods which focus on discovering the underlying manifold that the data
has been sampled from. By integrating local similarities at different scales, diffusion
maps give a global description of the data-set. Compared with other manifold
learning methods, the diffusion map algorithm is robust to noise perturbation and
computationally inexpensive.
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Over the last few years, efforts have been focused on developing physics-
informed machine learning methods for solving forward and inverse problems,
i.e. obtaining solution of high-dimensional multiscale problems described by PDEs
and discovering hidden physics [1, 83, 19, 84], thus both identifying the correct
observables and based on them to learn the effective PDEs. Lee et al. [5] addressed
a methodology to find the right hand sides of macroscopic PDEs directly from mi-
croscopic data using Diffusion maps and Automatic Relevance Determination for
selecting a good set of macroscopic variables, and Gaussian processes and artificial
neural networks for modelling purposes. The approach was applied to identify
a “black-box” PDE from data produced by Lattice-Boltzman simulations of the
Fitzhugh-Nagumo model in the parametric region where sustained oscillations arise.

1.2.3 Using Machine Learning for the numerical solution of dif-
ferential equations

On the problem of the numerical solution of differential equations, ML approaches
have been proposed as promising alternatives to the traditional methods. Specifically,
the idea of using Artificial Neural Networks (ANNs) for the numerical solution
of differential equations dates back to the ’90s [7–10]. The main idea behind
this approach is the use trial functions with the aid of a single-hidden layer ANN
trained to minimize the error between the predictions and the right-hand side of the
differential equations (a review and presentation of various ANN schemes for the
solution of ODEs can be found in Yadav et al. [85]). Lagaris et al. [8] presented
a method for solving initial and boundary value problems utilizing ANNs. The
proposed method relies on the approximation capabilities of FNNs and leads to
a solution that can be written in differentiable, closed analytical form. Training
phase includes the minimization of a cost function constituting by two terms, one
that satisfies the initial/boundary conditions and contains no adjustable parameters
and one which involves a feedforward neural network to be trained so as to satisfy
the differential equation. One important feature of the proposed approach is that it
enables the computation of the solution at every point of the domain; a feature that is
fundamentally different from the traditional numerical schemes.

More recently, scientific advances have renewed the interest for developing and
applying physics-informed machine learning algorithms for learning and solving
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differential equations [86–88, 14, 89, 1, 90, 20, 91–93]. More precisely the devel-
oped data driven algorithms perform supervised learning tasks that comply with
the fundamental physical laws underlying the nonlinear systems dynamics. More
specifically, due to the fact that stiff ODEs [11, 12] arise in the modelling of an
extremely wide range of problems, from biology and neuroscience to engineering
processes, material science and chemical kinetics, and from financial systems to
social science and epidemiology, there is a re-emerging interest in developing new
methods for their efficient numerical solution [13–18].

De et al [13] developed a PINN pipeline to solve accurately a thermal creep
flow in a plane channel problem, by utilizing the Theory of Functional Connections
(TFC) and constructing the solution of the problem was via Constrained Expressions
(CE). The authors solved the Boltzmann equation in the Bhatnagar–Gross–Krook
approximation modeling the Thermal Creep Flow in a plane channel. They employed
three different kind of ML tools, namely the standard shallow Neural Network (NN),
Chebyshev NN (ChNN), and Legendre NN (LeNN) showing that accurate solutions
can be obtained with all these networks with a very fast training time. Ji et al
solved two classical stiff ODE systems from chemical kinetics by exploiting the
Quasi-steady-state assumption (QSSA) [17]. By imposing the QSSA, the number
of state variables and transport equations is reduced by eliminating the fast species
such that the computational cost can be greatly reduced. Thus, the incorporation
of QSSA to a PINN can effectively reduce stiffness. In particular, they incorporate
QSSA to a PINN to reduce the stiffness. They applied the PINN algorithm to
approximate the solution of the ROBER problem and the POLLU problem. The
results revealed that by imposing QSSA on certain species in the kinetic systems
and reducing the stiffness, the PINN well captured the dynamic responses of the
systems. However, studies have reported severe issues or even failure when dealing
with highly stiff problems and/or with problems, the solutions of which exhibit
steep gradients. These difficulties stem from various inherent problems linked to
the training problem, including for example the estimation of the inner weights
and biases of the neural networks and the unbalanced back-propagated gradients
(see e.g. the discussion in Wang et al. [92, 94]). Recently, the so-called Extreme
Learning Machines (ELMs), have been used to approximate the solution of linear
elliptic partial differential equations with sharp gradients with collocation [21] and
for the numerical solution of nonlinear PDEs with steep-gradients and furthermore
for constructing the corresponding bifurcation diagrams [22]. The keystone idea is
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to use a fixed-weight configuration between the input and the hidden layer, fixed
biases for the nodes of the hidden layer, and a linear output layer. Hence, the output
is projected linearly onto the functional subspace spanned by the nonlinear basis
functions of the hidden layer, and the only unknowns that have to be determined are
the weights between the hidden and the output layer. Their estimation is performed
in one step by solving a (nonlinear) least squares problem.

1.3 Contributions of the Thesis

In this Thesis, the main focus is on the development and implementation of machine
learning and numerical analysis methods for the modeling analysis of the emergent
low-dimensional dynamics of complex non-linear systems. Based on the above, the
main contributions of this Thesis are the following.

The first and major contribution of this Thesis relates to performing coarse
grained numerical analysis tasks without having a-priori either the equations of the
coarse grained model or the coarse grained variables. More specifically, building on
previous work [5], we develop a computational framework based on manifold and
machine learning to perform numerical bifurcation analysis from spatio-temporal
data produced by microscopic simulators [95]. In particular, in order to discover the
appropriate set of coarse-scale variables, i.e. for feature selection we use Diffusion
maps, while for the identification of the right-hand side of the apparent coarse-
grained PDE over a grid of values of the bifurcation parameter and initial conditions,
we use FNNs. For our illustrations we use a Lattice Boltzmanm simulator of
the FitzHugh-Nagumo (FHN) spatio-temporal dynamics of activation-inhibition
dynamics of neurons. Upon training, the tracing of the coarse-grained bifurcation
diagram using the machine-learning regressors is obtained by coupling the pseuso-
arc-length continuation condition. The performance of the proposed scheme is
compared to the reference bifurcation diagram obtained by finite differences of the
deterministic FHN PDEs. The novelty and the contribution of the employed approach
dwells upon developing a completely data driven methodology for handling datasets
acquired from mechanisms that knowledge about a closed form model does not
exist. In many real life systems, one is able to collect (simulated or experimental)
data from microscopic observations easily but the macroscale dynamics is very
hard to be constructed analytically. Hence, utilizing the proposed approach, we can
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systematically use the arsenal of numerical bifurcation analysis theory to study the
emergent dynamics in the parameter space.

Regarding the task of the numerical solution of low-dimensional systems of
ODEs that may describe the evolution of the emergent dynamics of complex systems,
we propose a numerical scheme based on physics-informed Random Projection
Neural Networks (RPNNs), for the solution of low-dimensional initial value prob-
lems of ODEs. RPNNs are a family of neural networks including randomized and
Random Vector Functional Link Networks (RVFLNs) [96–99], Echo-State Neural
Networks and Reservoir Computing [100–102], and Extreme Learning Machines
[103–105]. Our scheme is implemented by a simple single-layer RPNN with Radial
Basis Functions (RBFs) with parameters that are properly uniformly-distributed
random variables. The feasibility of the scheme is guaranteed by the celebrated
Johnson and Lindenstrauss Lemma [106] and the universal approximation theorems
proved for RPNNs and in particular for ELMs [107], thus constituting a Lipschitz
embedding constructed through the random projection. To demonstrate the efficiency
of the proposed method, we have chosen three benchmark stiff low-dimensional
systems of ODEs, namely the Gear-Shampine/Prothero-Robinson ODE [11, 108],
for which an analytical solution exists, the well-known van der Pol equations [109]
and the ROBER problem, a stiff system of three nonlinear ODEs describing the
kinetics of an autocatalytic reaction [110]. The performance of the proposed scheme
is assessed in terms of both approximation accuracy and computational times in com-
parison with two widely used built in functions from the matlab suite, the ode15s
and the ode45. We show that the proposed scheme outperforms ode15s in terms
of numerical approximation accuracy, especially in the cases where steep gradients
arise, while ode45 in some cases completely fails or needs many points to satisfy a
specific tolerance, while results in comparable computational times.

Finally, we assess the performance of well-established regularization approaches
exploiting to solve the inverse source localization problem from EEG signals
recorded from children with epilepsy during a visual working memory (WM) task
[111]. In particular, for the solution of the inverse problem, we use three methods,
namely, sLORETA [112], dSPM [113] and wMNE [114]. A statistical comparative
analysis between methods and groups (healthy children vs children with epilepsy)
revealed the crucial role of the Superior Parietal Lobule (SPL) and Inferior Parietal
Lobule (IPL) at WM. Our findings are in line with fMRI studies [115–118] that have
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shown that SPL and IPL are being involved in WM processing and thus can serve as
a “biomarker" for identifying, monitoring and accessing epilepsy in children. This is
the first study to perform a comparative analysis of three numerical methods, namely
the sLORETA, wMNE and dSPM to identify differences at the source level between
healthy children and children with well-controlled epilepsy (i.e. in the absence of
seizures) during a working memory task. In the absence of anatomical MRI scans,
we used the publicly available “Neurodevelopmental MRI database" that provides
age-specific average MRI templates.

1.4 Organization of the Thesis

The structure of the Thesis is as follows. We begin with the description of the
Electroncephalography Source Localization problem and the regularization methods
which are used for identifying the source signals in chapter 2. In section 2.1, we
formulate the problem and discuss the approach of the regularization techniques.
We start by setting the mathematical formulas that describe the functionality of the
brain that leads to the recorded EEG signals. Next, we construct the mathematical
model that is used for obtaining the solution of the inverse problem which reveals
the true brain regions that are responsible for the measured EEG data. As we
have already described, this is achieved by numerical optimization techniques with
regularization (section 2.2). In sections 2.2.1, 2.2.2 and 2.2.3, we describe the three
inverse EEG methods that we are going to apply for the source identification, namely
sLORETA, wMNE and dSPM, their assumptions and their inverse solutions. In
chapter 3, we present the results of the source localization analysis in epileptic
children during a visual WM task. We describe the appropriate preliminaries in
section 3.1 and in section 3.2 we provide all the necessary information about the
experimental procedure. The subjects, the experiment itself (design and stimuli),
the EEG recordings and the pre-processing are written in detail during the sections
3.2.1-3.2.4. Furthermore, the appropriate age-specific head models that were used
for solving the forward problem are described in section 3.2.5. The results of our
comparison between the two groups (epileptic and control children) are shown in
section 3.3.1. We describe the employed statistical tests, extracting the differences
between the two groups and revealed usefull information about the IPL and its role
in the WM. We conclude by discussing the results in section 3.4.
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In chapter 4, we describe the machine and manifold learning algorithms used in
this Thesis. In section 4.1, we present the FNNs and discuss briefly their approx-
imation capabilities (section 4.1.1). Next, in section 4.2 we discuss the the basic
concept behind the use of RPNNs; we also discuss briefly the celebrated Johnson and
Lindenstrauss Lemma [106] and in section 4.3, we describe the manifold learning
algorithm of Diffusion Maps.

In chapter 5, we describe the proposed machine learning algorithm for the solu-
tion of low-dimensional ODEs. We state the problem and provide some preliminaries
on the solution of IVPs with FFNs. In Section 5.2, we describe our approach for the
solution of IVPs of ODEs with the use of RPNNs, providing also a pseudo-code of
the corresponding algorithm (section 5.2.2), and discuss its approximation proper-
ties within the framework of the universal approximation theorem of ELMs [107]
(section 5.2.1). Section 5.3 presents the performance of the proposed method for
solving (stif) low-dimensional ODEs with PINNs. After that, we present the results
regarding applications, namely the Prothero Robinson problem (5.3.1), the van der
Pol problem (5.3.2) and the ROBER problem (5.3.3). Results and their conclusions
are discussed in section 5.4.

In chapter 6, we present the numerical machine learning-based method for
constructing coarse-scale bifurcation diagrams from data coming from microscopic
simulators. In section 6.1 we state the problem of identifying the coarse grained
dynamics from data by identifying the effective macro scale variables. The feature
selection method for selecting the right variables is described in section 6.1.1. The
macroscale model of the FHN two coupled reaction diffusion PDEs is illustrated in
section 6.1.2. The detailed spatio-temporal data were produced by Lattice Boltzmann
simulations. We discus briefly the processing of obtaining the coarse-scale variables
and their spatial derivatives, which we use for modeling the coarse-grained dynamics.
Finally, we summarize and provide two short abstract pseudo-code algorithms for
the proposed pipeline in section 6.1.4. In section 6.2, we perform a systematic
numerical bifurcation analysis for the closed form FHN PDEs and construct the
bifurcation diagram which we consider as the reference bifurcation diagram for the
later comparisons. Results regarding the convergence of the reference bifurcation
diagram are also shown. In section 6.3, we illustrate the results of the proposed
framework for constructing bifurcation diagrams directly from observations for
two different approaches: (a) without feature selection (6.3.1) and (b) with feature
selection (6.3.2). We demonstrate in detail the performance of the training phase
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and describe the application of the arc-length numerical continuation method in the
"black-box" machine learning models. Finally, we discuss the results in section 6.4.

Finally, in chapter 7 we report the conclusions of the above described methodolo-
gies. We discuss the limitations and the gaps that have emerged until now as well as
some future directions that have to be investigated in the process.
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Chapter 2

Electroencephalography Source
Localization (ESL)

2.1 Mathematical formulation

Source localization aims at identifying the (unknown) sources of the brain from data
taken usually from noninvasive electromagnetic recordings (here: EEG recordings).
Its solution involves a forward and an inverse problem. The forward problem refers
to the calculation of the electric potentials of the electrodes starting from a given
electrical source. The solution of the forward problem is related to the construction
of a head model. The head model contains both anatomical information and the
conductivities of three layers, namely the skull, the cortex and the scalp. Anatomical
images can be obtained experimentally with the aid of MRI scans, while volume
conduction models can be constructed using e.g. the Boundary Elements Model
method (BEM) [119] or the Finite Elements Model method (FEM)[120]. The head
model volume is tessellated into small-sized cubes, the voxels. Sources may be
associated to single voxels or clusters of voxels. Here, each voxel is asscociated to a
single source. The relation between the scalp recordings and the discretized head
model volume is performed using the linear matrix equation:

V = Gx+ ε, (2.1)
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where V is a known N×1 matrix which contains the time instances as recorded
by each channel (N is the number of channels), x is the unknown M×1 matrix of
the intensities of the M sources (M is the number of voxels).

The matrix G, with dimensions N×M is the so-called lead field matrix that
contains the information of the head geometry and conductivities. G is known (from
the solution of the so called forward problem (see e.g. in [121])) and is related with
the head model [122]; ε reflects the noise in the measurements.

The inverse problem is ill-defined, as there is an infinite number of combinations
of positions and intensities that could effectively produce the electric potentials and
magnetic fields measured. Regularization is a common scalarization method used
to solve similar problems as in 2.1. One form of regularization is to minimize the
weighted sum of the objectives:

x̂ = min
x
(||V −Gx||+a||x||) (2.2)

where a > 0 is a problem parameter. As a varies over (0,∞), the solution traces out
the optimal trade-off curve.

Another common method of regularization, especially when the Euclidean norm
is used, is to minimize the weighted sum of squared norms, i.e.,

x̂ = min
x
(||V −Gx||22 +a||x||22), (2.3)

for various values of the parameter a > 0. These regularized approximation problems
each can solve such kind of problems as in 2.3 making both ||V −Gx|| and ||x|| small,
by adding an extra term or penalty associated with the norm of x.

Regularization is used in several contexts. In an estimation setting, the extra term
penalizing large ||x|| can be interpreted as our prior knowledge that ||x|| is not too
large. In an optimal design setting, the extra term adds the cost of using large values
of the design variables to the cost of missing the target specifications. The constraint
that ||x|| must be small can also reflect a modeling issue. It might be, for example,
that V = Gx is only a good approximation of the true relationship V = f (x) between
x and V . In order to have f (x)≈V , we want Gx≈V , and also need x small in order
to ensure that f (x)≈ Gx.
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We will see in the below sections that regularization can be used to take into
account variation in the matrix G. Roughly speaking, a large x is one for which
variation in G causes large variation in Gx, and hence should be avoided.

The most common form of regularization is the based on the above equation,
with Euclidean norms, which results in a (convex) quadratic optimization problem
(Tikhonov regularization problem [123, 124]):

x̂ = min
x
(||V −Gx||22 +a||x||22) = xT (GT G+αI)x−2V T Gx+V TV. (2.4)

This Tikhonov regularization problem has the analytical solution:

x̂ = (GT G+αI)−1GTV. (2.5)

Since GT G+αI > 0 for any α > 0, the Tikhonov regularized least-squares solution
requires no rank (or dimension) assumptions on the matrix G.

The idea of regularization, i.e., adding to the objective a term that penalizes large
x, can be extended in several ways. One useful extension is to add a regularization
term of the form ||Wx||, in place of ||x||. In many applications, the matrix W
represents an approximate differentiation or second-order differentiation operator, so
||Wx|| represents a measure of the variation or smoothness of x [48]. We can also add
several regularization terms or different norm for the regularization term.

So, in its general form a linear optimization problem with regularization can be
read as:

x̂ = min
x
(||V −Gx||22 +

k

∑
i=1

ai||Wix||p). (2.6)

In the above, k is the number of regularization constraints (refelcting the a-priori
physiological information); the matrix W , M×M, is a weighted matrix related to the
imposed constraints; αi is the regularization parameter and denote the importance
of every constraint. For different choices of W , k and p (reflecting the type of the
norm), we get different methods.
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2.2 Tikhonov regularization techniques for solving
the ESL.

2.2.1 Weighted Minimum Norm Estimation (wMNE)

For W = I (the identity matrix) and p = 2 (the L− 2 norm) in 2.6 we get the
Minimum Norm Estimation (MNE) [125], the one written in 2.5. MNE uses the
mathematical assumption that the best solution, through the infinite set of solutions,
is the one with the minimum norm. Despite the fact that MNE was the first method
used to extract a 3D distributed solution, the simplicity of its assumption often leads
to inadequate solutions. In particular, it has been shown, that this method fails in
identifying deep sources [126]. Because of the minimum norm constraint, sources
that are located in deep regions are moved closer to the cortex.

The wMNE method is a variation of the MNE that improves the problem of
the mislocation of the deep sources. wMNE uses instead of the identity matrix, a
diagonal matrix Wc that contains the weighting factors. From the multiple choices
that can be chosen as weighted factors, usually Wc = diag(||Gi||2) (for i =1,...,M) is
chosen [47]. Then, the unique solution is given by:

xwMNE = LV, (2.7)

where L = GT (GT G+αWc)
−1 is called the inverse operator with dimensions (M×

N).

2.2.2 The dynamic Statistical Parametric Mapping (dSPM)

The dSPM [113] is similar to the wMNE but uses a different regularization. dSPM
computes the source estimates of the noise based on the noise covariance matrix
Cε = αH and normalizes the rows of the inverse operator.
H = I− 1T 1

1T 1 is the centering matrix and plays the role of the identity matrix in the
measurement space. Then, from equation 2.7, the source estimates of the noise form
a diagonal matrix:

Cx̂ =WdSPM = LCεLT . (2.8)
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Thus, the dSPM solution is given by:

xdSPM = LdSPMV, (2.9)

where LdSPM =WdSPML.

2.2.3 Standarized Low Resolution Electromagnetic Tomography
(sLORETA)

sLORETA considers another source of variance, except from the covariance of the
measurement noise Cε : the covariance of the actual sources Cx = I. Assuming that
the activity of the actual sources and the noise of the measurements are uncorrelated
and based on the linear relation of equation 2.1, we have:

CV = GCxGT +Cε = GGT +αH. (2.10)

Substituting equation 2.10 to 2.7, and taking into account the linear relation of
equation 2.7, we can estimate the variation of the estimated sources as:

Cx̂ = LCV LT = L(GGT +αH)LT = GT (GGT +αH)−1G. (2.11)

The covariance of the estimated sources is equivalent to the Backus and Gilbert
resolution matrix [127], which is given by plugging equation 2.1 into 2.7 and substi-
tuting the inverse operator to get:

x̂ = LGx = GT (GGT +αH)Gx = Ax =Cx̂x, (2.12)

where A = LG is the resolution matrix.

In this case, the solution is given by:

xsLORETA = LsLORETAV, (2.13)

where LsLORETA = AL.
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Chapter 3

EEG Source Localization analysis in
epileptic children during a visual
Working-Memory task.

3.1 Introduction

We perform a source-localization analysis of the brain activity of well-controlled
epileptic children during a visual WM task [111]. WM is commonly viewed as a
functional integration system with limited capacity that is able to store information
within a short-term register and simultaneously manipulate it on-line. Thus, WM is
one of the most important components of information processing and its dysfunction
leads to various problems in several cognitive functions including mental arithmetic
[128], reading [129, 130], decision making [131] and reasoning [132]. Epilepsy
affects a lot the WM functioning as it has been shown by many studies [133–137].
Here, for the solution of the inverse problem, we use three methods, namely,
sLORETA [112], dSPM [113] and wMNE [114]. A statistical comparative analysis
between methods and groups (healthy children vs children with epilepsy) revealed
the crucial role of the SPL and IPL at WM. Our findings are in line with fMRI
studies [115–118] that have shown that SPL and IPL are being involved in WM
processing and thus can serve as a “biomarker" for identifying, monitoring and
accessing epilepsy in children.
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3.2 Experimental procedure

3.2.1 Subjects

In the study group, 21 children with established childhood epilepsy (age 6—16
years old; mean 11.43 years, SD ±2.3, 10 boys) were enrolled. These children
were diagnosed with one out of two following epilepsy syndromes: benign rolandic
epilepsy (BRE) (n = 9) and idiopathic generalized epilepsy (GE) (n = 12, including
childhood absence epilepsy (n = 5) and generalized epilepsy with tonic-clonic
seizures (n = 7)). All children were admitted to the neurophysiology laboratory of
the University Hospital of Leuven for a 24-h video-EEG monitoring during which
the Event Related Potential (ERP) study was done. They had no anti-epileptic
treatment (n = 3) or were on standard anti-epileptic medication (monotherapy, n = 15,
duotherapy, n = 3), with drug dosages always being within normal ranges. Patients on
monotherapy received valproic acid (n = 7), carbamazepine (n = 4), lamotrigine (n=3)
or sulthiame (n = 1). Patients on duotherapy received different drug combinations
[43]. None of the patients had structural brain abnormalities; in 18 patients, brain
MRI was performed showing normal findings in all cases. Only patients with at least
an eight days seizure-free period preceding the test were included [43]. Thereby
we could avoid an acute effect of epileptic seizures on the child’s performance. All
children followed mainstream school and none had a history of learning problems.
As a control group, 25 age matched non-epileptic children (mean age 10.76 years,
SD ±3.4, 17 boys) were selected, who did not have any school problem either. The
study protocol was approved by the Ethical Committee of University Hospital of
Leuven. The experimental procedure was performed by Myatchin et al. and for more
details please see [43].

3.2.2 Design and Stimuli

The event-related potentials study was done as part of video-EEG monitoring. A
visual one-backmatching working memory task was performed: children observed
a continuous stream of seven different figures presented one after the other in
pseudorandom order at the middle of a computer monitor, which was located at
a distance of 1.0m from the subject’s eyes. Everyday figures were used (horse,
wardrobe, jacket, cake, comb, bunch of grapes, hammer), white with a black contour
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on grey background, size 7.5 cm× 6.5 cm, visual angle 4◦18′×3◦02′. Each stimulus
was presented for 1.5 s, followed by a delay of 1.0 s, after which the next stimulus
was presented. During the delay period a fixation point (dark-grey cross) was shown
at the middle of the screen to facilitate eyes fixation. Any figure identical to the one
immediately preceding it was defined as a target stimulus (probability 0.30). Children
were asked to respond to all targets by pressing a button with their dominant hand.
Both accuracy and speed were stressed. The single experimental block contained
120 trials, 36 of which were targets. The duration of the block was 5 min. This is an
easy working memory task, which was chosen to ensure a good level of participant’s
performance.

First, the electrode placement and impedance calibration was performed. After
that, the experimental procedure was described to the child. The child was seated
comfortably in a dimly lit registration room and was instructed to look at the middle
of the computer screen placed in front of him to avoid unnecessary eye movements; a
fixation point (dark-grey cross) was shown between figures to facilitate eye fixation.
The child was also instructed to avoid movements to reduce muscle artifacts in the
EEG signal. The instruction for the task was given directly before the task. During
the experiment, no interaction with the experimenter was allowed during the task
and the experimenter sat out of sight of the child.

3.2.3 EEG recordings

Nineteen Ag/AgCl electrodes (Technomed Europe) were placed according to the
international 10-20 system at Fp1, Fp2, F3, F4, F7, F8, Fz, C3, C4, Cz, T3, T4, T5,
T6, P3, P4, Pz, O1 and O2. Placement of additional four EOG electrodes resulted in
two EOG channels: horizontal EOG – two electrodes on the outer canthi of eyes, and
vertical EOG – two electrodes above and below one eye. EOG channels allowed us
to detect both vertical and horizontal eye movements in order to effectively remove
them from EEG recording during subsequent preprocessing of the signal (see below).
Two linked mastoid electrodes were used as a reference. EEG was sampled at a
frequency of 1000 Hz with 12 bits A/D converter and amplified using a band-pass
filter of 0.095 – 70 Hz. Notch filter was off. Registration of the digital EEG was
made using the software program BrainlaB 4.0 (OSG, Belgium). The impedance of
all electrodes was monitored for each subject prior to recording and was always kept
below 5 kΩ.
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3.2.4 Data pre-processing

Data pre-processing was performed offline using the EEGLAB v.5.02 toolbox (Mat-
lab 7.0.4 platform) [138]. The ECG channel was factored out. Data were filtered with
a 50 Hz digital low pass filter. Eye movement artifacts were marked and removed
from the continuous signal without affecting the signal itself using an ICA-based
algorithm [43]. EEG fragments containing movement artifacts as well as any epilep-
tic activity were removed based on visual inspection of the data. This resulted in an
EEG signal clean from (eye) movement artifacts and epileptic activity, which was
then used for further analysis.

Afterwards, the continuous EEG signal was epoched according to the type of
stimulus (Target and Non Target), with 200 ms pre-stimulus (delay period) and
400 ms poststimulus (presentation period of the second stimulus, where the motor
responses had not yet taken place). Omitted Target trials (i.e. trials without correct
motor response) and committed Non Target trials (i.e. trials with a wrong motor
response) were excluded from the analysis. We then performed a down-sampling
at 500 Hz and we applied a baseline correction by subtracting the mean value of
the 200 ms of the pre-stimulus period. Overall, we ended up with 92 datasets (21
epileptic × 2 trial types + 25 control × 2 trial types) of 19 multi timeseries, which
were divided into four group types (Epileptic- Target (ET), Epileptic-Non Target
(ENT), Control-Target (CT), Control-Non Target (CNT)).

3.2.5 Head models for children

In our study, we did not have individual MRI scans for each child that participated
to the experiment. Thus, in the absence of such specific information, we used age-
specific MRI templates for children acquired from the “Neurodevelopmental MRI
database" [139–142]. The goal of this database is to provide for research purposes,
exactly in the absence of specific MRI scans, a series of age-appropriate average
MRI reference templates and related information. Each template was constructed
using identical procedures to facilitate comparisons across lifespan. The database
consists of average templates (T1W and T2W), segmenting priors, and stereotaxic
atlases [139]. The “Neurodevelopmental MRI Database” is available online (http:
//jerlab.psych.sc.edu/NeurodevelopmentalMRIDatabase/). The data-base is publicly
available to researchers upon request for clinical and experimental studies of normal
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and pathological brain development. The data is shared under a Creative Commons
Attribution-NonCommercial-Noderivs 3.0 Unported License (CC BY-NC-ND 3.0;
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en$_$US).

Using this database, we were able to construct an “average" age-specific head
model for each child taking into account its age. For our study, we constructed 11
averaged head models (taking into account the database with head models of children
between 6 and 16 years old, i.e. one “average" head model per year). In table 3.1,
we provide information about the total number of MRI scans per age. Here, for the
construction of the head models, as skull conductivities are age-dependent,59 we
used different conductivities ratios (CR, cortex/skull) for every age-dependent model.
The conductivity value for scalp and cortex was set to the standard value of 0.33
S/m.60 Table 2 presents analytically the different conductivity ratios for every age.

Age 6 7 8 9 10 11 12 13 14 15 16
1.5T 27 27 46 46 62 31 37 34 32 32 34
3.0T 10 19 16 15 11 30 13

Combined 37 27 56 46 72 31 47 34 42 32 44
Table 3.1 Total number of scans per age for 1.5T, 3.0T and combined average MRI templates.
All 1.5T MRIs and part of 3.0T MRIs are included in the "Combined" column as in the
original publications [139, 141]

Here, for the construction of the head models, as skull conductivities are age-
dependent [143], we used different conductivities ratios (CR, cortex/skull) for every
age-dependent model. The conductivity value for scalp and cortex was set to the
standard value of 0.33 S/m [144]. Table 3.2 presents analytically the different
conductivity ratios for every age [144].

Age 6 7-8 9-10 11-12 13-14 15-16
CR 15 20 30 40 50 60

Table 3.2 Conductivity ratios (cortex/skull) for every age-dependent head model. The
standard conductivity value for scalp and cortex was set to 0.33 S/m [144].

3.3 Results

For our analysis, we used the BrainStorm toolbox for matlab [145]. Source-
reconstructed time series were obtained by combining the EEG recordings with
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the appropriate (respect to the age of the subject) constructed MRI templates. From
each template, we extracted three layers (scalp, inner skull, outer skull) and the source
space (cortical surface). The number of vertices for each layer were set to 2562
vertices for each surface. Then, the volume conduction models were constructed in
openMEEG software [146] with BEM. The space resolution for the source model
was set to 5124 voxels with fixed orientation perpendicular to the cortex surface.
Thus, the time series at the source level were reconstructed using wMNE, dSPM
and sLORETA. The noise was computed from the raw EEG data using the pre-
stimulus period for baseline correction and then the noise covariance matrix was
calculated. A parameter that has to be determined is the “signal to noise ratio"
(SNR). In Brainstorm, the computation of SNR is performed as in the original MNE
software of Hamalainen [147]. The signal covariance matrix is “whitened" by the
noise covariance matrix and the square root of the mean of its spectrum yields the
average amplitude of SNR. The default value in Brainstorm is set to 3.
The main results of source localization procedure are presented analytically at table
3.3. For our illustrations, we have split the time period to three main intervals:
the pre-stimulus period [-200ms 0ms), the period exactly after the stimulus [0ms -
199ms] and the post-stimulus period [200ms - 400ms). Our analysis reveals similar
results when applying the different methods.

3.3.1 Hypothesis testing using T-test

After the data pre-processing and the implementation of the source-localization algo-
rithms, as described in the previous section, we got 92 time-series at the source space.
Our data have a spatio-temporal structure: number of voxels (spatial dimension)
and time points (time dimension). In order to perform two-sample T-tests for the
identification of statistically significant differences in the activity of the sources
among groups, we checked three basic assumptions. In particular, we checked if (1)
the amplitude of the source signal at each voxel and at each time instant follows a
normal distribution among subjects in a group, (2) the variances of the amplitude
of the source signal at each voxel and at each time instant of CT, ET and CNT,ENT
are equal, and (3) the amplitudes of the source signal at each voxel and at each time
instant are independent for CT, ET and CNT, ENT.
For the test of normality, we used the Shapiro-Wilk test [148]. The null hypothesis
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Time Period Method CT CNT ET ENT

Pro-Stimulus
(-200ms - -1ms)

wMNE -Right Occipital
Lobe -Occipital Lobe

-Right Occipital
Lobe -Occipital Lobe

dSPM -Right Occipital
Lobe

-Right Occipital
Lobe

-Right Occipital
Lobe -Occipital Lobe

sLORETA -Right Occipital
Lobe

-Occipital Lobe
-Left Parietal
Lobe

-Right Occipital
Lobe

-Right Occipital
Lobe

Exactly after Stimulus
(0ms - 199ms)

wMNE -Occipital Lobe
-Right Occipital
Lobe -Occipital Lobe

-Superior Parietal
Lobe
-Occipital Lobe

dSPM - Right Occipital
Lobe

-Right Occipital
Lobe -Occipital Lobe

-Superior Parietal
Lobe
-Right Occipital
Lobe

sLORETA -Right Occipital
Lobe -Occipital Lobe -Occipital Lobe

-Superior Parietal
Lobe
-Occipital Lobe

Post-Stimulus
(200ms - 399ms)

wMNE -Parietal Lobe
-Right Parietal
Lobe

-Right Parietal
Lobe

-Right Parietal
Lobe

dSPM -Parietal Lobe -Parietal Lobe
-Right Parietal
Lobe -Parietal Lobe

sLORETA -Parietal Lobe -Parietal Lobe
-Right Parietal
Lobe -Parietal Lobe

Table 3.3 Group averaged sources as obtained by the three methods: wMNE, dSPM and
sLORETA. CT: Control Target, CNT: Control non-Target, ET: Epileptic Target, ENT: Epilep-
tic non-Target.

of the test is that a sample comes from a normal distribution. The test statistic reads:

W =
(∑n

i=1 αix(i))2

∑
n
i=1(xi− x̄)2 , (3.1)

where x(i) is the i-th order statistic, x̄ is the sample mean and coefficients αi are given

by (α1,α2, ...,αn) =
mTV−1

C . C is a vector norm C = ||V−1m|| = (mTV−1V−1m)
1
2 ,

m = (m1,m2, ...,mn)
T are the expected values of the order statistics of independent

and identically distributed random variables sampled from the standard normal
distribution and V is the covariance matrix of those normal order statistics. F-tests
were performed to validate the second assumption (i.e. the equality of the variances
of the amplitude values of each voxel between ET and CT and between ENT and
CNT).

Thus, we tested for normality and equality of variances for each voxel and each
time sample (i.e. we have performed a total of 5.148× 600 = 3.088.800 t-tests).
The level of significance was set to p < 0.05, meaning that the risk of taking a false
positive is 5% of the cases. Here, in order to deal with the multicomparison problem,
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we used the false discovery rate (FDR) correction [149]. Following this procedure,
the null hypothesis could not be rejected. Similarly, the F tests validated also the
second assumption. The independence is reasonably assumed to hold true.

Thus having guaranteed that the T-test can be applied, we proceeded with the com-
parisons ET vs CT and ENT vs CNT. The null hypothesis H0 for both comparisons
was that the two groups have equal means regarding the emerged spatio-temporal ac-
tivation at the source level. So, we performed 3.E6 simultaneous two-sample T-tests
with p < 0.05 level of significance. FDR was used to deal with the multicomparison
problem. Another constraint that we added to avoid spurius and random effects was
the one of the minimum duration of the activations. Thus, we excluded all the signals
that were statistically significantly for time intervals less than 50 ms.
This statistical analysis revealed that all methods gave relatively similar results.

The pair T-test between ENT and CNT revealed a statistically significant differ-
ence in the time-range of 170ms-230ms. In this range the the SPL was activated
more in the ENT group; the activation of the SPL was mostly at the right hemisphere
(figure 3.1).

The pair T-test between ET and CT revealed a statistically significant difference
in the time-range of 160ms-360ms. In this range the IPL was activated more in the
ET group (only at the right hemisphere) (figure 3.2).

The above finding are summarized in Table 3.4.

Comparison Time period Group activated more Region Comments
ENT vs CNT 170 to 230 ms ENT SPL Only at the right hemisphere.
ET vs CT 160 to 360 ms ET IPL Only at the right hemisphere

Table 3.4 Analytical presentation of the differences between the comparisons ET vs CT and
ENT vs CNT.
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(a) wMNE. (b) dSPM.

(c) sLORETA.

Fig. 3.1 ENT vs CNT: SPL mainly of the right hemisphere activate more for the ENT group
at the time interval from 170 to 230 ms.
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(a) wMNE. (b) dSPM.

(c) sLORETA.

Fig. 3.2 ET vs CT: IPL of the right hemisphere activates more for the ET group at the time
interval from 160 to 360 ms.

3.4 Discussion

IPL have shown from many studies that can be related to seizures like epilepsy [150],
[151] and also to working memory processing [152], [153], [154].

It has been shown, that Parietal lobes play a crucial role in WM. This fact comes
from various of studies that have been used fMRI and ERPs. Berryhil et al. [155]
studied patients with unilateral right parietal lobe damage in several visual WM
recognition tasks and showed that this damage leads to impaired perfomance. Jones
et al. [156] observed interactions between WM task difficulty and participants’ WM
capacity with parietal stimulations. Osaka et al. [157] investigated neural substrates
for focusing attention in working memory and found significant activations at left
SPL. Li et al. [158] studied the role of parietal lobes in the scope and control of

30/112



attention during a visual WM task. Tseng et al. [159] proposed that signal complexity
via coherent timing and phase synchronization within the bilateral parietal network
is crucial for successful visual WM functioning.

Here, we provide an extra evidence that parietal lobes indeed participate to
the WM processing and furthermore epilepsy affects the way with this region is
being involved. This study can serve as "biomarker" for identifying, monitoring ans
assessing epilepsy in children.

ESL is a very promising technique for studying and identify non - invasively
the brain functions. Though, the problem of the sparse space resolution remains
and the challenge of reducing its effect to the results is crucial. High density scalp
recordings have been noticed to improve significantly the accuracy of the inverse
solution. However, this question is still under studying with a lot of promising results
[160–162]. In the present study, we have a relatively small number of recordings
(19 electrodes), a fact that makes our results sensitive to spacious noise. It would
be important, as en extra validation to have similar results with higher density EEG
recordings.

31/112



Chapter 4

Physics Informed Machine/Manifold
Learning methods.

4.1 Feedforward Neural Networks (FNNs)

Neural Networks constitute a biologically-inspired powerful machine learning tool
with a huge variety of applications. Their capability of performing complicated tasks
made them very rapidly one of the most popular machine learning algorithms for
regression, classification, forecasting and many more tasks. They usually contain
one input, one output and one or more hidden layers. Every layer has several units
(neurons), often fully connected by weights (ω) and biases (b), and an activation
function (ψ(·)).

Consider a function f : x ∈ RK → y ∈ R, where K is the dimension of the input.
Hence, one can write explicitly the approximation of a single hidden layer FNN (i.e.
the output of the network) with H hidden units as:

y = f̂ (x;W h,bh,ωo,bo) =
H

∑
i=1

ω
o
i ψ(ωh

i · x+bh
i )+bo (4.1)

where ωo = (ωo
1 ,ω

o
2 , . . . , ...ω

o
H) ∈ R1×H are the external weights connecting

the hidden layer and the output and bo ∈ R is the bias of the output, while the
matrix W h ∈ RH×K with rows ωh

i ∈ RK and bh = (bh
1,b

h
2, . . . ,b

h
H) ∈ RH are the

weights connecting the input and the hidden layer and the biases of the hidden layer,
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respectively. In the same way, one can easily extend the above explicit formula for
FNNs with more than one hidden layer.

Then, a cost function must be specified, usually the root-mean-square error:

ED =
1
M

M

∑
j=1

(u( j)
t − f̂ (x( j)))2, (4.2)

where M is the total number of observations, i.e. the pairs (x( j),u( j)
t ) such that

u( j)
t = f (x( j)).

The main task of a neural network is the generalization (i.e. how good it is at
learning from the given data and applying the learnt information elsewhere) and the
lack of this feature is usually due to overfitting. Foresee and Hagan ([163]) showed
that adding the regularization term Eω = ∑

H
j=1 ω2

j to the cost function will maximize
the posterior probability based on Bayes’ rule. Hence, the total cost function is:

Etotal = ED +βEw, (4.3)

where β is the regularization parameter that has to be tuned.

4.1.1 FNNs as universal approximators.

Many results are available concerning the approximation properties of FFNs. The
most important one from the numerical point of view is the Universal Approximation
Theorem, for which we refer to the original papers [164–168].

Theorem 1 (Universal Approximation Theorem). Let In denote the n-dimensional
unit cube, [0,1]n. The space of continuous functions on In is denoted by C(In). Let
ψ(·) be any any continuous discriminatory function. Then finite sums of the form:

N(x) =
H

∑
i=1

ωiψ(ω i · x+bi)

are dense in C(In). In other words, given any f ∈C(In) and ε > 0, there is a sum,
N(x), of the above form for, which

|N(x)− f (x)|< ε ∀x ∈ In.
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We say that a function ψ(·) is discriminatory if for a measure µ ∈M(In) (the space of
finite, signed regular Borel measures on In):

∫
In

ψ(ω · x+b)dµ(x) = 0, ∀ω ∈ Rh

and b ∈ R implies that µ = 0.

Proof. Let S⊂C(In) be the set of functions of the form N(x) as above. Clearly S is a
linear subspace of C(In). We claim that the closure of S is all of C(In).

Assume that the closure of S is not all of C(In). Then the closure of S, say R, is a
closed proper subspace of C(In). By the Hahn-Banach theorem, there is a bounded
linear functional on C(In), call it L, with the property that L ̸= 0 but L(R) = L(S) = 0.

By the Riesz Representation Theorem, this bounded linear functional L is of the
form

L(h) =
∫

In

h(x)dµ(x)

for some µ ∈M(In), for all h ∈C(In). In particular, since ψ(ω i · x+bi) is in R for
all ω and b, we must have that:∫

In

ψ(ω i · x+bi)dµ(x) = 0

for all ω and b. However, we assumed that ψ(·) was discriminatory so that this
condition implies that µ = 0 contradicting our assumption. Hence, the subspace S
must be dense in C(In).

Korning et al [165, 166] proved using the Stone-Weierstrass Theorem also for
the case of multilayer FNNs the capability of universal approximation.

Theorem 2 (Universal Approximation Theorem for multilayer FNNs). Let ψ(·)
be any continuous nonconstant function. Then, a multilayer FNN of the form:
N(x) = ∑

H
i=1 ωi ∏

q
j=1 ψ(ω

j
i · x + b j

i ) is uniformly dense on the set of continuous
functions C. In other words, multilayer FNNs are capable of arbitrarily accurate
approximation to any real-valued continuous function over a compact set.

For the proof of the above theorem, we will use the Stone-Weierstrass Theorem.

Theorem 3 (Stone-Weierstrass Theorem). Let A be an algebra of real continuous
functions on a compact set K. If A separates points on K and if A vanishes at no
point of K, then the uniform closure B of A consists of all real continuous functions
on K (i.e., A is ρK-dense in the space of real continuous functions on K; a subset S
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of a metric space (X ,ρ) is ρ -dense in a subset T if for every ε > O and for every
t ∈ T there is an s ∈ S such that ρ(s, t)< ε .).

Proof of Universal Approximation theorem for multilayer FNNs We apply the Stone-
Weierstrass Theorem. Let K be any compact set and let A′ be the set of functions of
the form ω · x+b. Any ψ(·) a multilayer FNN N(x) of the above form is obviously
an algebra on K. If x,y ∈ K,x ̸= y, then there exist a function A ∈ A′ such that
ψ(A(x)) ̸= ψ(A(y)).

To see this, pick α,β ∈ R,α ̸= β such that ψ(α) ̸= ψ(β ). Pick A(·) to sat-
isfy A(x) = α,A(y) = β , then ψ(A(x)) ̸= ψ(A(y)). This ensures that N(ψ(·)) is
separating on K.

Second, there exist ψ(A(·))′s that are constant and not equal to zero. To see this,
pick β ∈ R such that ψ(β ) ̸= 0 and set A(x) = 0 · x+β . For all x ∈ K, ψ(A(x)) =
ψ(β ). This ensures that N(ψ(·)) vanishes at no point of K.

The Stone-Weierstrass Theorem thus implies that N(ψ(·)) is ρK-dense in the
space of real continuous functions on K. Because K is arbitrary .the result follows.

What can be summarized here is that a FNN is capable of approximating uni-
formly any (piecewise-)continuous (multivariate) function, to any desired accuracy.
This implies that any failure of a function mapping by a (multilayer) network must
arise from an inadequate choice of weights and biases or an insufficient number of
hidden nodes. Moreover, in the univariate case only one hidden layer is needed.

4.2 Physics Informed Random Projection Neural Net-
works (PINNs)

The training of an ANN requires the minimization of a cost function as in Eq. 5.2.
But, even for the simple case of single layer FNNs (SLFFNs), this task may be-
come challenging. Many optimization algorithms used for training ANNs apply
stochastic gradient-based approaches which back-propagate the error and adjust the
weights through specific directions [169]. More recently, second-order stochastic
optimization methods have been widely investigated to get better performances than
first-order methods, especially when ill-conditioned problems must be solved (see
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e.g. [170] and the references therein). Nevertheless, there are still difficulties in
using these approaches, such as the setting of the so-called hyperparameters, the
significant increase of computing time when the number of data or the number of
nodes in the hidden layer grows, and the high non-convexity stemming from the use
of nonlinear activation functions, which can lead the algorithms to local minima.

A way to deal with the “curse of dimensionality” in training ANNs is to apply the
concept of random projection. The idea behind random projections is to construct a
Lipschitz mapping that projects the data into a random subspace. The feasibility of
this approach can been justified by the celebrated Johnson and Lindenstrauss (JL)
Theorem [106]:

Theorem 4 (Johnson and Lindenstrauss). Let X be a set of n points in Rd . Then,
∀ε ∈ (0,1) and k ∈ N such that k ≥ O( lnn

ε2 ), there exists a map F : Rd → Rk such
that

(1− ε)∥u− v∥2 ≤ ∥F(u)−F(v)∥2 ≤ (1+ ε)∥u− v∥2 ∀u,v ∈X . (4.4)

Note that while the above theorem is deterministic, its proof relies on probabilistic
techniques combined with Kirszbraun’s theorem to yield a so-called extension
mapping [106]. In particular, it can be shown that one of the many such embedding
maps is simply a linear projection matrix with suitable random entries. Then, the JL
Theorem may be proved using the following lemma.

Lemma 1. Let X be a set of n points in Rd , ε ∈ (0,1) and F(u) the random
projection defined by

F(u) =
1√
k
,Ru, u ∈ Rd,

where R = [ri j] ∈ Rk×d has components that are i.i.d. random variables sampled
from a normal distribution. Then, ∀u ∈X

(1− ε)∥u∥2 ≤ ∥F(u)∥2 ≤ (1+ ε)∥u∥2

is true with probability p≥ 1−2exp
(
−(ε2− ε3) k

4

)
.

Similar proofs have been given for distributions different from the normal one
(see e.g. [171, 172]). In general, the proof of the JL Theorem is based on the
fact that inequality (4.4) is true with probability 1 if k is large enough. Thus, the
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theorem states that there exists a projection (referred to as encoder) of X into a
random subspace of dimension k ≥ O( lnn

ε2 ), where the distance between any pair of
points in the embedded space F(X ) is bounded in the interval [1− ε,1+ ε]. For
completeness, we will present the proof of the JL theorem.

Proof of JL theorem. The proof is constructive and is an example of the probabilistic
method. Choose an F which is a random projection. Let F = 1√

k
R||u||2, where R is

a k×d matrix where each entry is sampled i.i.d. from a Gaussian N(0,1). Note that
there are O(n2) pairs of u,v ∈X . By the union bound,

Pr(∋ u,v, s.t. the f ollowing f ails : (1− ε)∥u− v∥2 ≤ ∥ 1√
k

R(u− v)∥2 ≤ (1+ ε)∥u− v∥2)

≤ ∑
u,v∈X

Pr(s.t. the f ollowing f ails : (1− ε)∥u− v∥2 ≤ ∥ 1√
k

R(u− v)∥2 ≤ (1+ ε)∥u− v∥2)

≤ 2n2e−(ε
2−ε3)k/4

≤ 1

the last step follows if we choose k = 20
ε2 logn. Note that that the probability of

finding a map F which satisfies the desired conditions is strictly greater than 0, so
such a map must exist.

The proof of the norm preservation lemma has been shown in [171]. For com-
pleteness, in this step we will present the proof.

Proof of Lemma 1. First let us show that for any u ∈ Rd , we have that:

E[∥ 1√
k

Ru∥2] = E[∥u∥2].
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To see this, let us examine the expected value of the entry [Ru]2j :

E[[Ru]2j ] = E[(
d

∑
i=1

Ri, jui)
2]

= E[∑
i,i′

Ri, jRi′, jui′ui]

= E[∑
i

R2
i,iu

2
i ]

= ∑
i

u2
i

= ∥u∥2

and note that:

∥ 1√
k

Ru∥2 =
1
k

k

∑
j=1

[Ru2
j ]

which proves the first claim (note that all we require for this proof is independence
and unit variance in constructing R). Note that above shows that Z̃ j = [Ru] j/∥u∥ is
distributed as N(0,1), and Z̃ j are independent. We now bound the failure probability
of one side. By the union bound,

Pr(∥ 1√
k

Ru∥2 > (1+ ε)∥u∥2) = Pr(
k

∑
i=1

Z̃2
i > (1+ ε)k)

= n2Pr(χ2
k > (1+ ε)k)

(where χ2
k is the chi-squared distribution with k degrees of freedom). Now we appeal

to a concentration result below, which bounds this probability by:

≤ exp(−k
4
(ε2− ε

3).

A similar argument handles the other side (and the factor of 2 in the bound).

The following lemma for χ2-distribution [173] was used in the above proof

Lemma 2. We have that:

Pr(χ2
k ≥ (1+ ε)k)≤ exp(−k

4
)(ε2− ε

3)

Pr(χ2
k ≤ (1− ε)k)≤ exp(−k

4
)(ε2− ε

3).
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Proof Let Z1,Z2, . . . ,Zk be i.i.d. N(0,1) random variables. By Markov’s inequality:

Pr(χ2
k ≥ (1+ ε)k) = Pr(

k

∑
i=1

Z2
i > (1+ ε)k)

= Pr(eλ ∑
k
i=1 Z2

i > e(1+ε)kλ )

≤ E[eλ ∑
k
i=1 Z2

i ]

e(1+ε)kλ

=
(E[eλZ2

1 ])k

e(1+ε)kλ

= e(1+ε)kλ (
1

1−2λ
)

k
2

where the last step follows from evaluating the expectation, which holds for 0 < λ ≤
1/2 (this expectation is just the moment generating function). Choosing λ = ε

2(1+ε)

which minimizes the above expression (and is less than 1/2 as required), we have:

Pr(χ2
k ≥ (1+ ε)k) = ((1+ ε)e−ε)

k
2

≤ exp(−k
4
(ε2− ε

3)).

using the upper bound 1+ ε ≤ exp(ε− (ε2− ε3)/2). The other bound is proved in
a similar manner.

Moreover, in [171] it was proved that if the random projection is of Gaussian
type, then a lower bound of the embedding dimension is given by k ≥ 4(ε2/2−
ε3/3)−1 lnn. We note that the above mapping is a feature mapping, which in
principle may result in a dimensionality reduction (k < d) or a projection into a
higher-dimensional space (k > d) in which one seeks a linear manifold (in analogy
to the case of kernel-based manifold learning methods). We also note that while
the above linear random projection is but one of the choices for constructing a JL
embedding (and proving it), it was experimentally demonstrated and/or theoretically
proven that appropriately constructed nonlinear random embeddings may outperform
simple linear random projections (see e.g. [174, 175, 103–105, 176, 97, 100, 177]).

Furthermore, within this framework, it has been shown that single-layer FNNs
with randomly assigned input weights and biases of the hidden layer and with
infinitely differentiable functions at the hidden layer, called ELMs, can universally
approximate any continuous function on any compact input set [176, 103–105]. For

39/112



the case of an FNN with a single hidden layer of h units, the random projection of
the input space can be written as

Y = Φ(X), (4.5)

where the columns of the matrix X ∈ Rd×n represent a set of n points in the input
d-dimensional space, the columns of Y ∈ Rk×n are the corresponding random pro-
jections, and Φ : Rd×n→ Rk×n acts as an encoder, i.e. a family of transfer functions
whose parameters are sampled from a certain random distribution function. If the
values of the weights wi j between the input and the hidden layer are fixed, then
∀x ∈ Rd the random projection can be written as a linear map:

Y =W o
Φ, Y ∈ Rk×n, (4.6)

where Φ∈Rh×n is a random matrix containing the outputs of the nodes of the hidden
layer as shaped by the h random distribution functions (e.g. RBFs or sigmoidal
functions) and the d-dimensional inputs.

Thus, the so-called ELMs can be seen as underdetermined linear systems in
which the output weights are estimated by solving minimum-norm least squares
problems

Theorem 5 ([176]). Let us consider a single-hidden-layer FNN with h hidden units
and an infinitely differentiable transfer function φ : R→ R, n distinct input-output
pairs (xi,yi)∈Rd×Rk, and randomly chosen values from any continuous probability
distribution for the internal weights wi j and for the values of the biases of the h
neurons of the hidden layer, grouped in b ∈ Rh. Let us also denote by W ∈ Rh×d

and W o ∈ Rk×h the matrices containing the internal and output weights, and by
X ∈ Rd×n and Y ∈ Rk×n the matrices with columns xi and yi. Then, the hidden layer
output matrix Φ ∈Rh×n, whose elements are determined by the action of the transfer
functions on WX +b1T (where 1 ∈ Rn has all the entries equal to 1), has full rank
and

∥W o
Φ−Y∥= 0

with probability 1.

A review on neural networks with random weights can be found in [178].
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4.3 Diffusion Maps

Diffusion Maps is a non-linear manifold learning algorithm ([79, 6, 80]) that identi-
fies a low-dimensional representation yi ∈ Rµ of a point zi ∈ Rn, i = 1,2, . . .N in the
high dimensional space (µ << n) addressing the diffusion distance among points as
the preserved metric ([80]). Difussion Maps assume that the data lie on a smooth
manifold, while it can be shown that the eigenvectors of the large normalized kernel
matrices constructed from data converge to the eigenfunctions of Laplace-Beltrami
operator on this manifold at the limit of infinite data ([79, 80]). The approximation
of this Laplace-Betrami operator is made by representing the weighted edges con-
necting nodes i and j commonly by a normalized diffusion kernel matrix W with
elements:

wi j = exp
(
−
||zi− z j||2

σ

)
, (4.7)

Then, one can define the N×N diffusion matrix P by:

P = D−1W,D = diag

(
N

∑
j=1

wi j

)
(4.8)

whose elements pi j correspond to the probability of jumping from one point to
another in the high-dimensional space.

Taking the power t of the diffusion matrix P is essentially identical of observing
t steps forward of a Markov chain process Zt on the data points and the element
Pt(zi,z j) denotes the transition probability of moving from point i to point j after t
steps by setting:

pi j = p(zi,z j) = Prob(Zt+1 = z j|Zt = zi). (4.9)

The random walk on this weighted graph can be defined by the below transition
probabilities:

pi j = p(zi,z j) =
wi j

deg(zi)
, (4.10)

where deg(zi) denotes the weighted degree of the point i, defined as:

deg(zi) = ∑
j

wi j. (4.11)
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At the next step it is easy to compute the so called graph Laplacian matrix P̃:

P̃ = D̃1/2PD−1/2, (4.12)

The eigendecomposition of P̃ results to P̃ =UΛU∗, where Λ is a diagonal matrix
with the eigenvalues and U is the matrix with columns the eigenvectors of P̃. The
eigenvalues of P are the same of P̃ since P is the adjoined of the symmetric matrix P
while the left and right eigenvectors of P (say Φ and Ψ) are related to those of P̃ as
([82]):

Φ =UD1/2, Ψ =UD−1/2. (4.13)

The embedding of the manifold in µ dimensions consists of the first µ non-trivial/dependent
eigenvectors of P̃:

yi = (λ t
1φ1,i, . . . ,λ

t
µφµ,i), i = 1, . . . ,N, (4.14)

where t denotes the number of diffusion steps (usually t = 0) and λ1, . . . ,λµ the
descending order eigenvalues. The diffusion distance, for two data points zi and z j at
the time step t is defined as:

D2
t (zi,z j) = ∑

k

(pt(zi,zk)− pt(z j,zk))
2

Φ0(zk)
, (4.15)

where Φ0 denotes the stationary distribution of the random walk described by the
diffusion matrix P [179]:

Φ0(yi) =
deg(zi)

∑z j∈Y deg(z j)
. (4.16)

In practice, the embedding dimension µ is determined by the spectral gap in the
eigenvalues of the final decomposition. Such a numerical gap means that the first
few eigenvalues would be adequate for the approximation of the diffusion distance
between all pairs of points [79, 6]. Here we retain only the µ parsimonious eigendi-
mensions of the final decomposition as proposed in [180, 181].

One very important feature of the Diffusion Maps is that preserves the intrin-
sic geometry of the data. The below theorem provide the appropriate theoretical
validation of the Diffusion Maps algorithm.
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Theorem 6. If we choose our diffusion coordinates as in 4.14, then the diffusion
distance between points in data space (measured using the D−1 metric) is equal to
the Eucliden distance in the diffusion space.

The above theorem has been proved in [80]. We will present the proof for
completeness purposes:

Proof. We are required to prove that

Dt(zi,z j)
2 = ||pt(zi, ·)− pt(z j, ·)||2l2(Rµ ,D−1) = ∑

k
λ

2t
k (φk[i]−φk[ j])2.

Here, pt(zi,z j) = Pi j are the probabilities which form the componetns of the diffusion
matrix. Let assume for simplicity that t = 1. Then:

D(zi,z j)
2 = ||p(zi, ·)− p(z j, ·)||2l2(Rµ ,D−1) = ||P[i, ·]−P[ j, ·]||2l2(Rµ ,D−1).

According to the eigendecomposition of the equation 4.12 P = ∑k λkφkeT
k , this equals

|∑
k

λkφk[i]eT
k −∑

k≥0
λkφk[i]eT

k |2

= |∑
k

λket
k(φk[i]−φk[ j])|2

= |∑
k

λky′Tk D
1
2 (φk[i]−φk[ j])|2

= |∑
k

λky′Tk (φk[i]−φk[ j])D
1
2 |2.

In l2(Rµ ,D−1), this distance is:

(∑
k

λky′Tk (φk[i]−φk[ j])D
1
2 )D−1(∑

m
λmy′Tm (φm[i]−φm[ j])D

1
2 )T

= (∑
k

λky′Tk (φk[i]−φk[ j])D
1
2 )D−1(D

1
2 ∑

m
λmyT

m(φm[i]−φm[ j]))

= ∑
k

λky′Tk (φk[i]−φk[ j])∑
m

λmyT
m(φm[i]−φm[ j]).

Since, {y′k} is an orthonormal set

y′Tm y′k = 0, f or m ̸= k.
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Therefore,
D(zi,z j)

2 = ∑
k

λ
2
k (φk[i]−φk[ j])2.
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Chapter 5

Numerical Solution of Stiff ODEs
with Physics-Informed Random
Projection Neural Networks.

5.1 FNNs for the solution of differential Equations

We aim to solve IVPs of stiff ODEs of the following form:
dyi

dx
= fi(x,y1,y2, ...,ym),

yi(x0) = αi,
i = 1,2, . . . ,m, (5.1)

where the functions fi and the initial values αi are known, and the functions yi(x) are
the unknowns. In order to simplify the notation, we group the functions yi(x) in a
vector function y(x) : R→ Rm, and the functions fi(x,y1,y2, ...,ym) in f (x,y). Such
systems may also arise after discretization in space of PDEs.

Given a set of n input points x j ∈ Rd , defining the grid where the solution is
sought the “classical way” to solve differential equations in a d-dimensional domain
with FNNs involves the solution of a minimization problem of the form:

min
P

E(P) :=
n

∑
j=1

∥∥∥∥dΨ

dx
(x j,P,q)− f (x j,Ψ(x j,P,q))

∥∥∥∥2

. (5.2)
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Ψ(x,P,q) = Ω(x,N(x,P,q)) defines a trial solution with m components, each as-
sociated with a component yi of the solution y, Ω : Rd ×Rm→ Rm is sufficiently
smooth, N(x) =N(x,P,q) is a FNN with m components Ni(x, pi,q), and P is a matrix
containing the network parameters (the elements of the matrix containing the weights
from the hidden layer to the output layer W o = [wo

jl] ∈ Rm×h, the elements of the
matrix containing the weights from the input to the hidden layer W = [wi j] ∈ Rh×d ,
the elements of the vector of the biases of the hidden nodes b ∈Rh; the vector q ∈Rs

contains the hyperparameters of the neural network, such as the parameters of the
vector with the activation functions Φ : Rh×Rs→ Rh with components the h activa-
tion functions Φ j (e.g. for radial basis functions, the biases of the hidden neurons
and the variances of the Gaussian functions), the learning rate, and the batch size. In
the case of ODEs, according to the above notation d = 1, i.e. the input domain is
one-dimensional (representing for example time). In order to solve the optimization
problem (5.2), one usually needs quantities such as the derivatives of Ni(x, pi,q)
with respect to the input x and the weights and biases represented by pi. These
can be obtained in several ways, e.g. by computing analytical derivatives, by using
finite difference or other numerical approximations, by symbolic differentiation or
by automatic differentiation (see e.g. [182] and the references therein).

5.2 The proposed method

Here we focus on the numerical solution of problem (5.1) in an interval, say [x0,xend].
According to the previous notation, for this problem we have d = 1. Thus, we
denote by Ψi(x,wo

i , pi) the i-th component of the trial solution Ψ(x,W o,P), where
W o ∈ Rm×h is the matrix containing the weights wo

i j between the hidden and the
output layer. Note that we separate W 0 from the other network parameters consisting
of the input weights, the biases of the hidden layer and the parameters of the transfer
function, and denote those parameters again by P, with a small abuse of the notation
(thus integrating to it the vector of the hyperparameters q).

Following [8] and taking into account that the trial solution must satisfy the
initial value conditions of the problem, i.e. yi(x0) = αi, i = 1,2, . . . ,m, we set

Ψi(x,wo
i , pi) = αi +(x− x0)Ni(x,wo

i , pi), (5.3)
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where Ni(x,wo
i , pi) is a single-output FNN with parameters the output weights wo

i =

[wo
1i wo

2i . . . wo
hi]

T ∈ Rh, and pi contains the remaining parameters associated with
that network.

Then, if one considers the numerical solution based on n collocation points
x1,x2, . . . ,xn, then the error function that we seek to minimize for training the FNN
is given by

E(W o,P) =
m

∑
i=1

n

∑
j=1

(
dΨi

dx
(x j,wo

i , pi)− fi(x j,Ψ1(x j,wo
1, p1), . . . ,Ψm(x j,wo

m, pm)

)2

.
(5.4)

Here we propose a machine learning method based on random projections for the
solution of IVPs of ODEs in n input collocation points. In particular, we employ m
(one for each unknown variable of the systems of ODEs) SISO neural sub-networks
with a linear output transfer function, with a single hidden layer having h nodes with
Gaussian RBFs.

In particular, we consider each sub-network Ni to be a linear combination of
RBFs,

Ni(x,wo
i , pi) =

h

∑
j=1

wo
jiG ji(x), i = 1,2, . . . ,m, (5.5)

where

G ji(x) = G(w jix+b ji,c j,σ ji) = exp

(
−
(w jix+b ji− c j)

2

σ2
ji

)
, (5.6)

j = 1,2, . . .h, i = 1,2, . . .m,

with w ji = 1. The hyperparameters corresponding to the centers of the RBFs are set
to c j = x0 +( j−1)s̄ with s̄ = (xend− x0)/(h−1) and j = 1, . . . ,h.

Under the above assumptions, the derivative of the i-th component Ψi of the trial
solution with respect to the collocation point xl is given by:

∂Ψi

∂xl
= Ni(xl,wo

i , pi)− (xl− x0)
h

∑
j=1

2
σ2

ji
wo

ji(xl +b ji− c j)exp

(
−
(xl +b ji− c j)

2

σ2
ji

)
,

(5.7)
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while, for any fixed xl , the derivative of Ψi with respect to the only unknown
parameter wo

ji is given by:

∂Ψi

∂wo
ji
= (xl− x0)exp

(
−
(xl +b ji− c ji)

2

σ2
ji

)
. (5.8)

For the determination of the other two sets of hyperparameters of the Gaussian
RBFs, namely bi j and σ ji, we fix reference intervals in which we assign random
values for these parameters. Our requests are that the functions are neither too steep
nor too flat in the reference interval, and at each collocation point there are at least
two basis functions giving values that are not too small. Then, based on numerical
experiments, the biases b ji of the hidden units and the parameters 1/σ2

ji are taken to
be uniformly randomly distributed in the intervals[

−(xend− x0)

6
,0
]

and
[

3
8(xend− x0)2 ,

81
2(xend− x0)2

]
,

respectively. We emphasise that this choice appears to be problem independent.
Therefore, the only parameters that have to be determined by training the network
are the output weights wo

ji. Hence, for the n collocation points xl , the outputs of each
network Ni, i = 1,2, . . .m, are given by:

Ni(x1,x2, . . .xn,wo
i , pi) = Riwo

i , (5.9)

where Ni(x1,x2, . . .xn,wo
i , pi) ∈ Rn is the vector with l-th component the output of

Ni corresponding to xl , and Ri = Ri(x1, . . . ,xn, pi) ∈ Rn×h is defined as

Ri(x1, . . . ,xn, pi) =

G1i(x1) · · · Ghi(x1)
...

...
...

G1i(xn) · · · Ghi(xn)

 . (5.10)

The minimization of the error function given in (5.4) is performed by a Gauss-
Newton scheme (see e.g. [183]) over nm nonlinear residuals Fq, with q = l+(i−1)n,
i = 1,2, . . .m, l = 1,2, . . .n, given by

Fq(W o) =
dΨi

dxl
(xl,wo

i , pi)− fi(xl,Ψ1(xl,wo
1, p1), . . . ,Ψm(xl,wo

m, pm)), (5.11)
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where W 0 ∈ Rmh is the column vector obtained by stacking the values of all the m
vectors wo

i ∈ Rh, W o = [Wk=1,2,...mh] = [wo
1,w

o
2 . . . ,w

o
m]

T .
Thus, by setting F(W o)= [F1(W o) · · ·Fq(W o) · · ·F(nm)(W o)]T , the new update dW o(ν)

at the (ν)-th iteration is computed by the solution of the (under-determined) system

∇W o(ν)F dW o(ν) =−F(W o(ν)), (5.12)

where ∇W o(ν)F ∈ Rnm×mh is the Jacobian matrix of F with respect to W o(ν):

∇W o(ν)F(W o(ν)) =



∂F1
∂W o

1

∂F1
∂W o

2
. . . ∂F1

∂W o
p

. . . ∂F1
∂W o

mh
∂F2
∂W o

1

∂F2
∂W o

2
. . . ∂F2

∂W o
p

. . . ∂F2
∂W o

mh
...

... . . . ... . . . ...
∂Fq
∂W o

1

∂Fq
∂W o

2
. . .

∂Fq
∂W o

p
. . .

∂Fq
∂W o

mh
...

... . . . ... . . . ...
∂Fnm
∂W o

1

∂Fnm
∂W o

2
. . .

∂F(nm)

∂W o
p

. . . ∂Fnm
∂W o

mh

∣∣(W o(ν))

. (5.13)

Note that the residuals depend on the derivatives ∂Ψi
∂xl

in (5.7) and the trial functions
Ψi in (5.3), while the elements of the Jacobian matrix depend on the derivatives of
∂Ψi
∂wo

ji
in (5.8) as well as on the mixed derivatives ∂ 2Ψi

∂xl∂wo
ji
. Based on (5.7), the latter are

given by

∂ 2Ψi

∂xl∂wo
ji
=

∂Ni(xl,wo
i , pi)

∂wo
ji

− (xl− x0)
2

σ2
ji
(xl +b ji− c j)exp

(
−
(xl +b ji− c j)

2

σ2
ji

)
,

(5.14)
where

∂Ni(xl,wo
i , pi)

∂wo
ji

= exp

(
−
(xl +b ji− c j)

2

σ2
ji

)
. (5.15)

Note also that if the Jacobian of system (5.1), with elements ∂ fi(xl)
∂yk

, is given, then
the elements of the Jacobian matrix ∇W o(ν)F can be computed easily:

∂Fp

∂W o
q
=

∂ 2yi

∂xl∂wo
jk
− ∂ fi(xl)

∂wo
jk

=
∂ 2Ψi

∂xl∂wo
jk
− (x− x0)

∂ fi(xl)

∂yk

∂Nk(xl,wo
i , pi)

∂wo
jk

, (5.16)

where, as before, q = l +(i−1)n and p = j+(k−1)h.
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As in general h > n, i.e. the minimization problem in (5.12) is an underdeter-
mined linear system, we compute its solution subject to the minimum L2 norm. This,
for a full row rank Jacobian is given by:

dW o(ν) =−∇W o(ν)FT (∇W o(ν)FT
∇W o(ν)F)F(W o(ν)). (5.17)

In the case where the Jacobian is rank deficient, one can compute the solution by
resorting to the Singular Value Decomposition for the estimation of the pseudoinverse
by cutting off all the singular values (and their corresponding singular vectors) below
a small tolerance ε . Furthermore, this choice also allows us to cope with the
difference between the exact rank and the numerical rank of the Jacobian matrix.
Following [184], for some small ε the ε-rank of a matrix M ∈ Rmn×mh is defined as
follows:

rε = min{rank(B) ∈ Rmn×mh : ∥M−B∥L2 ≤ ε}. (5.18)

Then, if ε is “small enough”, we neglect all the singular values below ε and approxi-
mate the pseudoinverse of the Jacobian matrix as

(∇W oF)+ =V rε
Σ
+
rε

UT
rε
, (5.19)

where Σrε
∈Rrε×rε is the diagonal matrix with the rε largest singular values of ∇W oF ,

Σ
+
rε

is its pseudoinverse, and U rε
∈ Rmn×rε and V rε

∈ Rmh×rε are the matrices with
columns the corresponding rε left and right eigenvectors, respectively. The value
of ε used in our experiments is specified at the beginning of Chapter 4. Thus, the
update dW o(ν) is given by

dW o(ν) =−V rε
Σ
+
rε

UT
rε

F(W o(ν)).

5.2.1 Convergence

We note that in the above configuration, we fix all the internal weights to 1 and the
centers to be equidistant in the domain, while we set randomly, from appropriately
chosen uniform distributions, the biases b ji and the width parameters σ ji of the
RBFs. This configuration is slightly different from the classical ELMs with RBFs,
where the internal weights are set equal to 1 and the biases equal to 0, while the
centers are uniformly randomly distributed in [−1,1] (see e.g. [107]). However, it
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is straightforward to show that in our scheme we still get universal approximation
properties, as stated in the next theorem.

Theorem 7. Let us fix a continuous (target) function ϕ and consider the system of
functions {Ni(x,wo

i , pi)}i=1,...,m in (5.5), with G ji, w ji and c j defined in (5.6) and the
subsequent lines. Then, for every sequence of randomly chosen parameters pi there
exists a choice of wo

i such that

lim
m→∞
∥Ni(x,wo

i , pi)−ϕ(x)∥= 0 with probability 1.

Proof. Since w ji and c j are fixed, one can manipulate (5.6) and write it as

G ji(x) = exp
(
−
(x+α ji)

2

β ji

)
,

where the parameters α ji = b ji− c j and β ji = σ2
ji are random variables (because b ji

and σ ji are random variables sampled from continuous probability distributions).
Therefore, the network fits the hypotheses of an FNN with random hidden nodes.
Because the considered RBFs are sufficiently regular, Theorem II.1 in [107] holds
and hence the thesis follows in a straightforward manner.

5.2.2 Algorithm

The proposed method for using RPNNs for the numerical solution of stiff systems of
ODEs as a pseudo-code algorithm is shown in algorithm 1.

5.3 Case study problems

We implemented Algorithm 1 using MATLAB 2020b on an Intel Core i5-8265U
CPU @ 1.60GHz with up to 3.9 GHz frequency and a memory of 8 GBs. The
Moore-Penrose pseudoinverse of ∇woF was computed with the matlab built-in
function pinv, with the default tolerance. For our simulations, we chose three
well-known and challenging stiff ODE problems: Prothero-Robinson [108], van der
Pol [109] and ROBER [110]. For comparison purposes, we also solved the ODE
problems with two widely-used functions of the matlab ODE suite[185], namely
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Algorithm 1 solving an IVP of ODE systems using an RPNN with RBFs

Require:
dyi

dx
= fi(x,y1,y2, . . . ,ym) in [x0,xend]

Require: yi(x0) = αi, i = 1,2, . . . ,m ▷ initial conditions
1: h← 40; n← 20 ▷ set # neurons and collocation points
2: maxiter← 4 ▷ set max # iters for Gauss-Newton method
3: Select xl ∈ [x0,xend], l = 1, . . . ,n ▷ set collocation points

4: c j← x0 + j
xend− x0

h−1
, j = 1, . . . ,h ▷ set RBF centers

5: b ji ∼U

(
−xend− x0

6
,0
)
, j = 1, . . . ,h, i = 1, . . . ,m ▷ set biases

6:
1

σ2
ji
∼U

(
3

8(xend− x0)2 ,
81

2(xend− x0)2

)
, j, i as above▷ set RBF inverse widths

7: Ni(x,w0
i , pi)← ∑

h
j=1 wo

jiexp
(
− (x−c j)

2

σ2
ji
−b ji

)
▷ see (5.5)-(5.6)

8: Ψi(x,w0
i , pi) = αi +(x− x0)Ni(x,w0

i , pi)
9: iter← 0

10: repeat
11: for j = 1, . . . ,n ; i = 1, . . . ,m do
12: q← j+(i−1)n

13: Fq(W o)← dΨi

dxl
(xl,wo

i , pi)− fi(xl,Ψ1(xl,wo
1, p1), . . . ,Ψm(xl,wo

m, pm))

14: Set F(W o) = [F1(W o), F2(W o), . . . , F(nm)(W o)]T

15: Compute Jacobian matrix ∇W oF(W o) ▷ see (5.13)-(5.16)
16: (∇W oF)+←Vrε

Σ+
rε

UT
rε

▷ compute pseudo-inverse
17: W o←W o− (∇W oF(W o))†F(W o) ▷ update weights
18: err← ||F(W o)||2 ▷ compute er-

roriter← iter+1
19: until (err ≤ tol) or (iter ≥ maxiter)
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ode45, implementing an adaptive-step Runge-Kutta method based on the Dormand-
Prince pair, and ode15s, implementing a variable-step variable-order multistep
method based on numerical differentiation formulas. In order to estimate the error in
the approximate solution, we used as reference solution the one computed by ode15s
with absolute and relative error tolerances equal to 1e−14. To this aim, we computed
the L2 and L∞ norms of the differences between the computed and the reference
solutions, as well as the Mean Absolute Error (MAE). These performance metrics
were evaluated at equidistant collocation points, selecting their number according
to the problem (see below). Finally, we ran each solver 10 times and computed the
median, maximum and minimum execution times in seconds. The time of each run
was measured by using the matlab commands tic and toc.

Henceforth, we use t instead of x, since the independent variable in the test
problems represents time. We also assume t0 = x0 = 0.

5.3.1 Case study 1: Prothero-Robinson problem

The Prothero-Robinson ODE [108] is given by

dy
dt

= λ (y−φ(t))+φ
′(t), λ < 0. (5.20)

Its solution is φ(t) and the initial condition is y(0) = φ(0). The problem becomes
stiff for λ ≪ 0. For our numerical simulations, we choose φ(t) = sin(t), u(0) =
φ(0) = sin(0) = 0, and [0,2π] as the time interval where the solution is sought, while
the parameter λ controlling the stiffness is set equal to −30. For the implementation
of the proposed approach, we use the following (initial) trial solution:

Ψ(t,wo) = α
(0)+ tN(t,wo), α

(0) = y(0) = sin(0) = 0. (5.21)

In Figure 5.1, we show the approximate solutions obtained with tolerances 1e−02
and 1e−03.

In Table 5.1, we report the numerical approximation accuracy obtained with the
various methods in terms of the L2-norm and L∞-norm of the error and of MAE with
respect to the reference solution. As it is shown, the proposed numerical scheme
outperforms both ode45 and ode15s in all metrics for both tolerances.

53/112



0 1 2 3 4 5 6

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6

-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 5.1 Numerical solutions of the Prothero-Robinson problem with λ =−30 in the interval
[0,2π]: (a) tol = 1e−02, (b) tol = 1e−03. The reference (analytical) solution is sin(t).

Table 5.1 Prothero-Robinson problem with λ =−30 in the interval [0,2π]. Absolute errors
(L2-norm, L∞-norm and MAE) for the solutions computed with tolerances 1e−02 and 1e−03.
The reference solution is the analytical solution sin(t).

tol = 1e−02 tol = 1e−03
L2 L∞ MAE L2 L∞ MAE

RPNN 5.95e−08 6.12e−09 3.31e-10 2.23e−08 2.84e−09 9.36e-11
ode45 2.24e−02 1.13e−03 2.97e−04 2.19e−05 1.14e−06 2.89e−07
ode15s 7.36e−03 5.86e−04 1.01e−04 5.65e−06 6.14e−07 6.08e−08

Table 5.2 Prothero-Robinson problem with λ =−30 in the interval [0,2π]. Computational
times in seconds (median, 5thpercetnile and 95thpercentile) and number of points required
with tolerances 1e−02 and 1e−03. The reference solution is the analytical solution sin(t)

tol = 1e−02 tol = 1e−03
median 5thperc 95thperc # pts median 5thperc 95thperc # pts

RPNN 7.87e−04 5.65.e−04 1.23e−03 12 6.67e−04 5.11e−04 6.35e−03 12
ode45 4.21e−01 4.10e−01 5.12e−01 189173 4.88e−01 4.45e−01 5.02e−01 189201
ode15s 7.65e−04 7.19e−04 1.05e−03 19 1.12e−03 1.01e−03 1.54e−03 65

Finally, in Table 5.2 we report the computational times and the number of points
required by each method, for both tolerance values. Notably, our method outperforms
both ode45 and ode15s, since it results in significantly smaller computational times
and number of points than ode45, and (on average) in slightly smaller computational
times and number of points than ode15s. We note that ode45 has a “poor” perfor-
mance due to the very high stiffness, thus requiring a huge number of points and yet
resulting in relatively large approximations errors.
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5.3.2 Case study 2: van der Pol problem

The van der Pol model and the concept of the so-called relaxation oscillations was
introduced by Balthazar van der Pol [109] to describe the nonlinear oscillations
observed in a triode circuit characterized by a slow charge of a capacitor followed by
a very rapid discharge. The model is given by the following equations:

y′1 = y2,

y′2 = µ(1− y2
1)y2− y1.

(5.22)

The problem becomes stiff for µ ≫ 1. As initial conditions, we consider y1(0) = 2
and y2(0) = 0. For our computations we set the time intervals to be [0,6].

For the implementation of the proposed method, we defined a trial solution
satisfying the initial conditions as follows:

Ψ1(t,wo
1) = α

(0)
1 + tN1(t,wo

1),Ψ2(t,wo
2) = α

(0)
2 + tN2(t,wo

2), (5.23)

where α
(0)
1 = 2 and α

(0)
2 = 0.

We carried out numerical experiments within a wide range of values of the
parameter µ that controls the stiffness, namely from µ = 1 to µ = 100000, using
a constant grid of n = 60 equidistant points in the interval [0,6] for the proposed
machine learning scheme. For the sake of presentation, in the following Tables,
we show here only the results obtained for µ = 1,5,6,10,100,1000,10000,100000,
which are representative of the behaviour of of the methods, while in the following
Figures we show only the solutions obtained for µ = 1,5,6,10, where steep gradients
arise; for µ > 10 the solutions become flatter in the interval of interest [0, 6]. We
tested the numerical performance of the proposed method against ode45 and ode15s.
Here, for implementing our scheme, we set n = 60 and tested its performance using
two values for the tolerance tol, i.e. 10−2 and 10−3. For comparison purposes,
we used the same values of both the absolute and relative error tolerances for
the functions ode45 and ode15s. The reference solution was computed using
ode15s with tolerances equal to 10−14. The resulting approximated solutions for
µ = 1,5,6,10 are depicted in Figure 5.4 for the tolerance of 10−2 and in Figure-5.2
for 10−3. The corresponding approximation errors for the various values of the
parameter µ , in terms of the L2-norm, the L∞-norm of the error and in terms of the
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MAE, are reported in Tables 5.3-5.6. Again, the errors in these tables were computed
using the grid points chosen to train the proposed RPNN. In Table 5.7, we provide
the number of points required by each method and in Tables 5.8- 5.9, we report the
corresponding execution times (median, 5th percentile and 95th percentile) for the
tolerances of 10−2 and 10−3, respectively, including the time required to compute
the reference solution, for various values of the parameter µ .

As shown, for the case when tolerances are set to 10−2 and for relatively small
values of µ (indicatively, µ < 10), the proposed machine learning scheme outper-
forms ode15s in all metrics, while its performance is comparable to the one obtained
with ode45 (see Tables 5.3-5.6). It is worthy to note that for small values of µ ,
where the solution exhibits steep gradients in the specific time interval (e.g. for
µ = 5,6), ode15s gives relatively large errors. Indicatively, for µ = 6, the L∞-norm
of the difference between the value of y1 (y2) computed by ode15s and the cor-
responding component of the reference solution at the end of the interval (t = 6),
where a steep gradient arises, is ∥y1− yre f

1 ∥L∞
≃ 1 (∥y2− yre f

2 ∥L∞
≃ 4.53), while the

reference values is yre f
1 ≃ −0.74 (yre f

2 ≃ −8.6). That is, ode15s actually fails to
adequately approximate the solution. The corresponding value of L∞-norm of the
approximation errors resulting from the implementation of the proposed scheme is
∥y1−yre f

1 ∥L∞
≃ 0.13 (∥y2−yre f

2 ∥L∞
≃ 0.46). On the other hand, when the value of the

stiffness parameter is relatively small, ode45 results to considerably larger approxi-
mation errors when compared to our scheme. In particular, for µ = 1, the Linf-norm
of the difference between the value of y1 (y2) provided by ode45 and the reference
solution at the end of the interval is ∥y1− yre f

1 ∥L∞
≃ 0.13 (∥y2− yre f

2 ∥L∞
≃ 0.14),

with reference value yre f
1 ≃ 1.27 (yre f

2 ≃ 2.44). For µ = 1, the corresponding norms
obtained with the proposed scheme are ∥y1−yre f

1 ∥L∞
≃ 0.01 (∥y2−yre f

2 ∥L∞
≃ 0.01).

For larger values of the stiffness parameter (e.g. for µ > 100) ode15s results to the
best approximation accuracy; as shown, the proposed scheme achieves an adequate
numerical accuracy ranging within the orders of 10−5 to 10−7.

Interestingly enough, when the tolerances are set equal to 10−3, we have a
behaviour similar to the case when the tolerance is set to 10−2. In particular, for
solutions with steep gradients as in the case of µ = 6, the proposed method provides
better approximations when compared to ode15s and almost the same with ode45.
For larger values of the stiffness parameter (e.g. for µ > 100) ode15s results to the
best approximation accuracy, yet, the proposed scheme achieves adequate numerical
accuracy ranging between 10−5 and 10−7.
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Thus, we conclude that our RPNN-based approach performs well in terms of
accuracy regardless of the level of stiffness, combining in some sense the “good"
properties of the other two solvers.

Table 5.3 Van der Pol problem. Absolute errors (L2-norm, L∞-norm and MAE) for the
component y1 of the solutions computed with tolerances set to 1e−02. The reference
solution was obtained with ode15s with tolerances set to 1e−14.

L2 L∞ MAE L2 L∞ MAE L2 L∞ MAE

µ = 1 µ = 5 µ = 6

RPNN 0.0234 0.0143 0.0012 0.1443 0.0891 0.0070 0.1652 0.1284 0.0043
ode45 0.5091 0.1746 0.0433 0.1250 0.0790 0.0043 0.1486 0.1112 0.0054
ode15s 0.1534 0.0565 0.0123 1.0602 0.6514 0.0521 1.5121 0.9553 0.0654

µ = 10 µ = 100 µ = 1000

RPNN 0.0013 0.0006 0.0002 0.0003 6.58e-5 3.54e-5 9.09e-5 2.37e-5 9.96e-6
ode45 0.0017 0.0007 0.0002 0.0001 4.73-5 1.53e-5 9.94e-6 3.43e-6 8.87e-7
ode15s 0.0179 0.0035 0.0020 0.0001 2.69e-5 9.49e-6 6.19e-8 1.68e-8 6.35e-9

µ = 10000 µ = 100000

RPNN 1.01e-5 2.34e-6 1.11e-6 6.36e-7 1.33e-7 7.99e-8
ode45 1.04e-6 3.31e-7 9.34e-8 1.07e-7 3.68e-8 9.98e-9
ode15s 1.45e-10 4.11e-11 1.51e-11 2.56e-12 7.01e-13 2.60e-13

5.3.3 Case study 3: ROBER problem

The ROBER model was developed to describe the kinetics of an autocatalytic
reaction [110]. The set of the reactions reads:

A
k1−→C+B,B+B

k2−→C+B,B+C
k3−→ A+C, (5.24)

where A, B, C are chemical species and k1, k2 and k3 are reaction rate constants.
Assuming idealized conditions and the mass action law is applied for the rate
functions, we have the following system of ODEs:

y′1 =−k1y1 + k3y2y3,

y′2 = k1y1− k3y2y3− k2y2
2,

y′3 = k2y2
2,

(5.25)
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Fig. 5.2 Numerical solutions of the van der Pol problem in the interval [0,6] with tolerances
set to tol = 1e− 3: (a)-(b) µ = 1, (c)-(d) µ = 5, (e)-(f) µ = 6, and (g)-(h) µ = 10. y1 is
shown on the left ((a),(c),(e) and (g)) and y2 on the right ((b),(d),(f) and (h)). The reference
solution was obtained with ode15s with tol= 1e−14.
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Table 5.4 Van der Pol problem. Absolute errors (L2-norm, L∞-norm and MAE) for the
component y2 of the solutions computed with tolerances set to 1e−02. The reference
solution was obtained with ode15s with tolerances set to 1e−14.

L2 L∞ MAE L2 L∞ MAE L2 L∞ MAE

µ = 1 µ = 5 µ = 6

RPNN 0.0432 0.0165 0.0041 0.7567 0.6023 0.0318 0.7029 0.4613 0.0233
ode45 0.4769 0.1993 0.0433 0.6919 0.5459 0.0281 0.5303 0.4275 0.0192
ode15s 0.3483 0.1321 0.0261 5.0013 3.0131 0.2172 6.6734 4.5342 0.2458

µ = 10 µ = 100 µ = 1000

RPNN 0.0190 0.0123 0.0011 0.0045 0.0028 0.0003 0.0011 0.0003 9.19-5
ode45 0.0290 0.0104 0.0025 0.0332 0.0106 0.0033 0.0299 0.0113 0.0027
ode15s 0.0017 0.0006 0.0002 1.38e-6 1.18e-6 8.52e-8 8.18e-10 1.43e-10 9.54e-11

µ = 10000 µ = 100000

RPNN 3.34e-5 2.32e-5 2.19e-6 4.01e-6 2.11e-6 2.77e-7
ode45 0.0321 0.0103 0.0029 0.0308 0.0106 0.0028
ode15s 5.58e-14 4.43e-14 4.06e-15 7.77e-16 1.26e-16 8.82e-17

Table 5.5 Van der Pol problem. Absolute errors (L2-norm, L∞-norm and MAE) for the
component y2 of the solutions computed with tolerances set to 1e− 03. The reference
solution was obtained with ode15s with tolerances set to 1e−14.

L2 L∞ MAE L2 L∞ MAE L2 L∞ MAE

µ = 1 µ = 5 µ = 6

RPNN 0.0254 0.0097 0.0021 0.1432 0.0902 0.0071 0.1723 0.1349 0.0061
ode45 0.0294 0.0111 0.0024 0.1402 0.0874 0.0068 0.1672 0.1311 0.0067
ode15s 0.0116 0.0032 0.0012 0.0350 0.0217 0.0018 1.0857 0.7257

µ = 10 µ = 100 µ = 1000

RPNN 0.0013 0.0006 0.0001 0.0012 0.0002 0.0001 8.23e-5 2.52e-5 9.18e-6
ode45 0.0013 0.0004 0.0001 9.42e-5 1.75e-5 1.13e-5 2.21e-6 6.35e-7 2.30e-7
ode15s 0.0074 0.0013 0.0009 0.0001 2.74e-5 9.94e-6 1.20e-7 2.91e-8 1.26e-8

µ = 10000 µ = 100000

RPNN 6.94e-6 1.31e-6 8.59e-7 1.18e-6 3.89e-7 1.27e-7
ode45 1.19e-7 3.90e-8 1.16e-8 1.08e-8 3.49e-9 9.95e-10
ode15s 6.47e-10 1.85e-10 6.54e-11 7.56e-12 1.89e-12 8.15e-13

where y1, y2 and y3 denote the concentrations of A, B and C, respectively. In our
simulations, we set the typical values of the parameters, i.e. k1 = 0.04, k2 = 104
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Table 5.6 Van der Pol problem. Absolute errors (L2-norm, L∞-norm and MAE) for the
component y2 of the solutions computed with tolerances set to 1e−03. The reference
solution was obtained with ode15s with tolerances set to 1e−14.

L2 L∞ MAE L2 L∞ MAE L2 L∞ MAE

µ = 1 µ = 5 µ = 6

RPNN 0.0468 0.0158 0.0041 0.7537 0.6011 0.0308 0.7295 0.4824 0.0254
ode45 0.0554 0.0198 0.0045 0.6954 0.5114 0.0288 0.6176 0.4947 0.0212
ode15s 0.0153 0.0051 0.0015 0.1711 0.1237 0.0075 4.6391 2.9251 0.1703

µ = 10 µ = 100 µ = 1000

RPNN 0.0101 0.0088 0.0005 0.0050 0.0022 0.0004 0.0008 0.0003 6.78e-5
ode45 0.0029 0.0010 0.0003 0.0035 0.0011 0.0003 0.0036 0.0011 0.0003
ode15s 0.0009 0.0003 8.98e-5 5.27e-7 1.59e-7 5.37e-8 8.07e-10 1.55e-10 9.11e-11

µ = 10000 µ = 100000

RPNN 3.21e-5 2.12e-5 2.43e-6 1.21e-5 3.75e-6 1.09e-6
ode45 0.0036 0.0011 0.0004 0.0032 0.0010 0.0003
ode15s 2.99e-13 1.05e-13 2.62e-14 7.51e-16 1.30e-16 8.59e-17

Table 5.7 Van der Pol problem in the interval [0,6]. Number of collocation points required
from each method with tolerances set to 1e−02 and 1e−03. The reference solution was
obtained with ode15s with tolerances set to 1e−14. The number of points used in the RPNN
method were fixed to 60 regardless of the value of µ .

µ 1 5 6 10 100 1000 10000 100000

tol = 10−2
ode45 13 25 22 41 530 5410 54221 542336
ode15s 35 52 33 20 19 20 21 23

tol = 10−3
ode45 16 30 25 43 530 5411 54222 542336
ode15s 54 71 65 28 24 22 23 24

reference
solution

356 455 301 146 99 87 66 49

and k3 = 3× 107, with y1(0) = 1, y2(0) = 0 and y3(0) = 0 as initial values of the
concentrations, and we consider the time interval [0,1.8].

Based on the proposed methodology, we construct an (initial) trial solution that
satisfies the initial conditions with α

(0)
1 = 1, α

(0)
2 = 0 and α

(0)
3 = 0. For the numerical

solution of the ROBER system with the proposed method, we used a grid of n = 14
equidistant collocation points in the time interval [0,1.8]. For our illustrations, we
tested the numerical performance of the scheme using two values of the tolerance
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Table 5.8 van der Pol problem. Median, 5th and 95th percentiles of the computational time
(in seconds) for the different methods with tolerances set to 10−2 for various values of µ .
The reference solution is computed with ode15s when tolerances equal to 10−14.

median
5th
perc

95th
perc

median
5th
perc

95th
perc

median
5th
perc

95th
perc

µ = 1 µ = 5 µ = 6

RPNN 0.1578 0.1448 0.1960 0.2052 0.1806 0.2409 0.2269 0.2032 0.2854
ode45 0.0008 0.0007 0.0010 0.0009 0.0008 0.0013 0.0009 0.0008 0.0012
ode15s 0.0047 0.0042 0.0056 0.0081 0.0075 0.0097 0.0058 0.0053 0.0066
reference
solution

0.0075 0.0068 0.0082 0.0139 0.0123 0.0161 0.0099 0.0087 0.0112

µ = 10 µ = 100 µ = 1000

RPNN 0.1127 0.1060 0.1308 0.0744 0.0568 0.0868 0.0594 0.05264 0.1121
ode45 0.0012 0.0010 0.0016 0.0046 0.0040 0.0063 0.0421 0.0308 0.0719
ode15s 0.0029 0.0026 0.0037 0.0038 0.0032 0.0051 0.0040 0.0029 0.0075
reference
solution

0.0049 0.0043 0.0068 0.0052 0.0044 0.0069 0.0057 0.0042 0.01163

µ = 10000 µ = 100000

RPNN 0.0278 0.0254 0.0381 0.0412 0.0367 0.0823
ode45 0.3081 0.2975 0.3724 3.2561 3.0868 10.1607
ode15s 0.0031 0.0034 0.0047 0.0053 0.0041 0.0143
reference
solution

0.0046 0.0042 0.0055 0.0051 0.0044 0.0153

tol, i.e. 10−2 and 10−3. For comparison purposes, we used the same values of both
the absolute and relative error tolerances for the functions ode45 and ode15s. The
approximate solutions obtained with tolerances 10−2 and 10−3 are shown in figure
5.3. Furthermore, in tables 5.11 and 5.12 we report the corresponding numerical
approximation accuracy obtained with the various methods in terms of the MAE,
L2-norm and L∞-norm of the error with respect to the reference solution. In table
5.10, we show the number of points required by each method, and the execution
times (median, 5thpercentile and 95thpercentile) of all the methods, including the
time required to compute the reference solution.

As it is shown, with tolerances equal to 10−2 the proposed machine learning
method achieves more accurate solutions than ode15s, while ode45 fails to converge
(see tables 5.11 and 5.11). The number of points used by our approach is smaller
than to those used by the other two methods (see table 5.10). On the other hand, the
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Table 5.9 van der Pol problem. Median, 5th and 95th percentiles of the computational time
(in seconds) for the different methods with tolerances set to 10−3 for various values of µ .
The reference solution is computed with ode15s when tolerances equal to 10−14.

median
5th
perc

95th
perc

median
5th
perc

95th
perc

median
5th
perc

95th
perc

µ = 1 µ = 5 µ = 6

RPNN 0.2219 0.2134 0.2386 0.2886 0.2512 0.3487 0.2744 0.2651 0.2913
ode45 0.0010 0.0009 0.0012 0.0011 0.0010 0.0013 0.0010 0.0010 0.0012
ode15s 0.0069 0.0063 0.0088 0.0100 0.0095 0.0121 0.0099 0.0093 0.0115

µ = 10 µ = 100 µ = 1000

RPNN 0.1467 0.1402 0.1579 0.0752 0.0706 0.0818 0.0554 0.0521 0.0623
ode45 0.0011 0.0011 0.0014 0.0043 0.0040 0.0053 0.0313 0.0286 0.0374
ode15s 0.0034 0.0031 0.0039 0.0036 0.0033 0.0041 0.0037 0.0032 0.0045

µ = 10000 µ = 100000

RPNN 0.0590 0.0553 0.0651 0.0410 0.0378 0.0449
ode45 0.2915 0.2806 0.3640 2.9382 2.8654 3.3288
ode15s 0.0035 0.0034 0.0050 0.0048 0.0041 0.0057

computing time of our method is larger, but we believe this is paid off by the fact that
our method does not require the user to explicitly take into account the stiffness of
the ODE problem and it provides an approximate solution in the form of a function
that can be evaluated at points different from the collocation ones. Finally, we believe
that the code implementing the proposed scheme can be made more efficient, but
this is beyond the scope of the current thesis.

When the tolerances are set equal to 10−3, the proposed method provides a
solution whose error is generally comparable or slightly worse than the errors in the
solutions computed by the other two methods. We also note that ode45 is now able
to compute an approximate solution to the problem. The execution time required
by the RPNN method is again larger than the times of the classical methods, but the
comments made for the case of the tolerances equal to 10−2 still apply.
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Fig. 5.3 ROBER problem. Approximate solutions computed by the different methods in the
interval [0,1.8] with tolerances set to 1e−02 ((a), (c) and (e)) and 1e−03 ((b), (d) and (f)).
The reference solution was obtained with ode15s with tolerances set to 1e−14.
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Fig. 5.4 Numerical solutions of the van der Pol problem in the interval [0,6], with tol=1e−2:
(a)-(b) µ = 1, (c)-(d) µ = 5, (e)-(f) µ = 6, and (g)-(h) µ = 10. y1 is shown on the left
((a),(c),(e) and (g)) and y2 on the right ((b),(d),(f) and (h)). The reference solution was
obtained with ode15s with tol= 1e−14.
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Table 5.10 ROBER problem. Computational times and number of points required in the
interval [0, 1.8] by RPNN, ode45 and ode15s with tolerances 1e−02 and 1e−03. The
reference solution was computed by ode15s with tolerances equal to 1e−14.

tol = 1e−02 tol = 1e−03
median min max # pts median min max # pts

RPNN 0.0265 0.0210 0.7435 14 0.634 0.0956 2.1890
ode45 - - - - 4.54e−01 5.56e−01 0.0024 23
ode15s 0.0047 0.0034 0.0065 24 0.0033 0.0024 0.0056 22
reference 0.0053 0.0038 0.0082 191 0.0053 0.0038 0.0082 34

Table 5.11 ROBER problem. Absolute errors (L2-norm, L∞-norm and MAE) for the solutions
computed with tolerance set to 1e−02. The reference solution was obtained with ode15s
with tolerances set to 1e−14.

y1 y2 y3

L2 L∞ MAE L2 L∞ MAE L2 L∞ MAE

RPNN 3.45e-5 3.076e-5 4.78e-6 0.0001 0.0001 1.93e-5 0.0004 0.0002 8.99e-5
ode45 — — — — — — — — —
ode15s 0.0003 0.0001 5.14e-5 0.0051 0.0024 0.0003 0.0042 0.0023 0.0003

Table 5.12 ROBER problem. Absolute errors (L2-norm, L∞-norm and MAE) for the solutions
computed with tolerance set to 1e−03. The reference solution was obtained with ode15s
with tolerances set to 1e−14.

y1 y2 y3

L2 L∞ MAE L2 L∞ MAE L2 L∞ MAE

RPNN 9.12e-6 7.02e-6 2.45e-6 0.002 0.002 0.0005 0.0006 0.0004 0.0003
ode45 7.34e-7 4.50e-7 2.69e-7 9.98e-5 9.84e-5 1.76e-5 9.99e-5 9.91e-5 1.78e-5
ode15s 6.15e-5 4.03e-5 1.32e-5 0.0002 0.0001 3.33e-5 0.0002 0.0001 4.90e-5

5.4 Discussion

We propose a machine learning algorithm for the solution of ODEs with a focus on
stiff ODEs, which combines the speed and the generalization advantages of RPNNs.
In this algorithm, only the parameters from the hidden to the output layer have to be
determined, and every hidden unit is “responsible” of learning the behaviour of the
underlying physical model around a center point.
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Theoretical results stemming from the Johnson and Lindenstrauss Theorem and
universal approximation theorems that have been proved for ELMs guarantee the
approximation capabilities of our RPNN, despite the much simpler way of obtaining
the weights of the network.

The results show that the proposed machine learning approach is able to provide
reasonably accurate numerical approximations to the solutions of four benchmark
stiff ODE problems. Our algorithm outperforms ode15s in terms of numerical
accuracy in cases where steep gradients arise in the solution, while it is more robust
than ode45, which in turn is generally less accurate and needs more points to
converge, or even fails for highly-stiff problems.

The computational times are in general larger than those required by the ode45
and ode15s solvers, but comparable for all practical purposes. However, our method
results in smaller computational times than ode45 and ode15s when the solution has
to be computed in “dense” sets of points, because the method provides an analytical
expression for the approximation of the solution upon training with a finite set of
collocation points. Furthermore, in our opinion the larger computational times are
also due to the fact that our home-made code is not optimized (its optimization is
out of the scope of the current thesis).
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Chapter 6

Constructing coarse-scale bifurcation
diagrams from spatio-temporal
observations of microscopic
simulations. A machine learning
approach.

6.1 Methodology

The pipeline of our computational framework for constructing the bifurcation dia-
grams of the hidden coarse-scale PDEs from data coming from detailed microscopic
simulations consists of three tasks: (a) identify the coarse-scale variables from
fine-scale time series, (b) learn the coarse-scale PDEs using machine learning and,
(c) wrap around the machine learning model an appropriate numerical bifurcation
method to construct the corresponding coarse-grained bifurcation diagram [95].

We assume that the emergent dynamics of the complex system under study on a
domain Ω× [t0, tend]⊆ Rd×R can be modelled by a system, say of m PDEs of the
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form:

∂u(i)(x, t)
∂ t

≡ u(i)t = F(i)(t,x,u(x, t),Du(x, t),D2u(x, t), . . . ,Dνu(x, t),ε),

(x, t) ∈Ω× [t0, tend], i = 1,2, . . . ,m
(6.1)

where u(x)= [u(1)(x), . . . ,u(m)(x)], F(i), i= 1,2, . . .m is a non-linear operator, Dνu(x)
is the generic multi-index ν-th order derivative, i.e., :

Dνu(x) :=

{
∂ |ν |u(x)

∂xν1
1 · · ·∂xνd

d

∣∣∣∣|ν |= ν1 +ν2 + · · ·+νd, ν1, . . . ,νd ≥ 0

}
,

and ε denotes the (bifurcation) parameters of the system.
The boundary conditions read:

B(i)
l (u(i)(x, t)) = h(i)l (x, t) x ∈ ∂Ωl, (6.2)

where {∂Ωl} denotes an l partition of the boundary of Ω, and initial conditions

u(i)(t0,x) = u(i)0 , x ∈Ω (6.3)

The right-hand-side of the i-th PDE depends on say γ(i) number of variables and bifur-
cation parameters from the set of variables {x,u(x),Du(x),D2u(x), . . . ,Dνu(x),ε}.
Let us denote this set as S (i), with cardinality |S (i)|= γ(i). Hence, at each spatial
point xq,q = 1,2, . . . ,M and time instant ts,s = 1,2, . . . ,N the set of features for the
i-th PDE can be described by a vector zq(ts) ∈ Rγ(i).
Here, we assume that such macroscopic equations in principle exist but there are not
available in a closed-form.

Instead, we assume that we have detailed observations from microscopic sim-
ulations from which we can compute the time and spatial derivatives of all the
observables in N points in time and M points in space using e.g. finite differences.
Thus, we aim to (a) identify the intrinsic dimension of the manifold on which the
coarse-grained dynamics evolve, i.e. for each PDE identify γ(i), and the coordinates
that define the low-dimensional manifold, i.e. the sets S (i), and based on them (b)
identify the right-hand-side (RHS) of the the effective PDEs using machine learning.
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To demononstrate the proposed approach, we have chosen to use fine-scale data
from LBM simulations of the coupled FitzHugh-Nagumo PDEs of activation and
inhibition dynamics. Using the LBM simulator, we produced data in time and space
from different initial conditions and values of the bifurcation parameter. For the iden-
tification of the right coarse-scale variables that define the low-dimensional manifold
on which the emergent dynamics evolve, we performed feature selection using parsi-
monious Diffusion Maps [180, 181]. Then, we trained the machine learning schemes
to learn the right-hand-side of the coarse-grained PDEs on the low-dimensional
manifold. Based on the constructed model, we performed numerical bifurcation
analysis, employing the pseudo-arc-length continuation method. The performance
of the data-driven scheme for constructing the coarse-grained bifurcation diagram
was validated against the one computed with the PDEs using finite differences. A
schematic overview of the proposed framework for the the case of two effective
PDEs (as in the paradigm of FHN dynamics) is shown in Figure (6.1).

In what follows, we describe the method that we used for feature selection
which is based on Diffusion Maps algorithm. After that, we describe the macroscale
model of the FHN equations and the microsimulator LBM model which we used for
simulating fine scale observations.

6.1.1 Feature selection

Here, by identifying the coarse-scale spatio-temporal behaviour of a system of PDEs,
we mean learning their right-hand sides. Hence, we first have to deal with the task
of discovering the few coarse-grained spatial derivatives from the high-dimensional
input data space. There exist various methods for feature selection such as LASSO
([186, 187]), Random Forests ([188, 189]). In our framework, we used a technique
that extracts the dominant features based on manifold parametrization through output-
informed Diffusion Maps ([180]). The core assumption of this method is that if a
given dataset in a high-dimensional, then using manifold learning algorithms (here
Diffusion Maps), we can parametrize an ambient Euclidean space that lies on a
lower-dimensional manifold.
For this purpose, given a set of φ 1,φ 2, . . . ,φ k−1 ∈ RN Diffusion Maps eigenvectors,
for each element i = 1,2 . . . ,N of φ k, we use a local linear regression model:

φk,i ≈ αk,i +β
T
k,iΦk−1,i, i = 1,2, . . . ,N (6.4)
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Fig. 6.1 Schematic of the three-stage workflow for constructing coarse-grained bifurcation
diagrams from fine scale observations using the paradigm of two PDEs: 1) Identify the
parsimonious coarse-grained observables using Diffusion Maps from microscopic simula-
tions (here Lattice-Boltzmann) and compute their spatial derivatives using finite differences,
2) "learn" the right hand side PDEs using machine learning algorithms (here FNNs and
RPNN) and 3) employ the tools of numerical bifurcation analysis (here the pseudo arc-length
continuation method to construct the coarse-grained bifurcation diagrams.
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to investigate if φk is an dependent eigendirection; Φk−1,i = [φ1,i,φ2,i, . . . ,φ
T
k−1,i],

αk,i ∈ R and βk,i ∈ Rk−1. The values of parameters αk,i and βk,i are found solving
an optimization problem of the form:

α̂k,i, β̂k,i = argmin
α,β

∑
j ̸=i

K(Φk−1,i,Φk−1, j)(φk, j− (α +β
T

Φk−1, j))
2 (6.5)

where K is a kernel weighted function, usually the Gaussian kernel:

K(Φk−1,i,Φk−1, j) = exp
(
−
||Φk−1,i−Φk−1, j||

σ2

)
, (6.6)

where σ is the shape parameter. The final normalized leave-one-out cross-validation
(LOOCV) error for this local linear fit is defined as:

rk =

√√√√∑
N
i=1(φk,i− (α̂k,i + β̂ T

k,iΦk−1,i)2

∑
µ

i=1(φk,i)2
. (6.7)

For small values of rk, φ k is considered to be dependent of the other eigenvectors
and hence as a harmonic or repeated eigendirection, while large values of rk, suggest
that φ k can serve as a new independent eigendirection.

In our application, we provide as inputs to the diffusion algorithm the combined
input-output domain (the observables zi and their spatial and time derivatives). In
principle, any of the subsets that is capable to parametrize the discovered embed-
ding coordinates that were chosen after the above described methodology, can be
considered as a new possible input data domain that can be used for learning the
right-hand-side PDE. We find the subsets that minimally parametrize the intrinsic
embeddings by quantifying it with a total regression loss (LT ) based on a mean
squared error:

LT = (
µ

∑
k=1

L2
φ k
)

1
2 . (6.8)

Here, as Lφ j we define the Gaussian process regression loss ([190]) for representing
the intrinsic coordinate φ j when using s out of n selected input features:

Lφ k
=

1
N

N

∑
i=1

(φk,i−g(·))2, (6.9)
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where g(·) is the output of the Gaussian process regressor with inputs the values of
the features in the ambient space and target values the eigenvectors φ k. Note that
for this procedure we don’t include the bifurcation parameter to the dataset. We
have chosen to employ the above method separately for every subset of the same
value of the bifurcation parameter and finally to select the subset of features with the
minimum sum of total regression loses across all the embedding spaces.

6.1.2 The macroscale model: The Fitzhugh-Nagumo partial dif-
ferential equations

For demonstrating the performance of the proposed scheme, we selected the cele-
brated, well studied FitzHugh-Nagumo (FHN) model first introduced in [191] to
simplify the Hodgkin-Huxley model into a two-dimensional system of ODEs to de-
scribe the dynamics of the voltage across a nerve cell. In particular, we consider the
FHN equations which adds a spatial diffusion term to describe the propagation of an
action potential as a traveling wave. The bifurcation diagram of the one-dimensional
two Partial Differential Equations (PDEs) is known to have a turning point and
two supercritical Andronov-Hopf bifurcation points. In what follows, we provide
the model along with the initial and boundary conditions and then we describe the
microscopic simulator constructed based on the Lattice-Boltman modeling approach.

The system consist in two coupled nonlinear reaction-diffusion PDEs, describ-
ing the evolution of an activator u : [x0,xend]× [t0, tend]→ R and an inhibitor v :
[x0,xend]× [t0, tend]→ R:

∂u
∂ t

= Du ∂ 2u
∂x2 +u−u3− v,

∂v
∂ t

= Dv ∂ 2v
∂x2 + ε(u−α1v−α0),

(6.10)

where α0 and α1 are model parameters, ε is the kinetic bifurcation parameter and
Du, Dv are the diffusion coefficients for u and v respectively. For our simulations, we
set α1 = 2, α0 =−0.03, Du = 1, Dv = 4 (as described in [192]) and vary the
bifurcation parameter ε in the interval [0.005,0.955] concentrating the points at the
boundary by taking a grid of Chebychev-Gauss-Lobatto nodes. We use a uniform
discretization of the spatial domain [x0,xend] = [0,20] with a step ∆x = 0.2 and of the
time domain on [t0, tend] = [0,450] with a time step ∆t = 0.01. To solve the equation
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we consider Homogeneous Neumann Boundary conditions at both boundaries:

du
dx

(0, t) = 0,
dv
dx

(0, t) = 0.

du
dx

(20, t) = 0,
dv
dx

(20, t) = 0.
(6.11)

and various initial conditions u0(x) = u(x,0) and v0(x) = v(x,0), that, in order to
explore different behaviours, we randomly select varying the following parameters
of an hyperbolic tangent sigmoid:

u0(x) = w tanh
(
α(x− c)

)
+β

v0(x) = 0.12 ·u0(x).

w∼U (0.8,1.2), α ∼U (0.5,1)

c∼U (2,18), β ∼U (−0.4,0),

(6.12)

where U (a,b) is used to denote the uniform distribution in the interval [a,b].

6.1.3 The microscale simulator: the Lattice Boltzman model for
the Fithugh-Nagumo PDEs

Lattice-Boltzman modeling ([5, 193, 194]) can be used as a mesoscopic numer-
ical simulation for identifying spatiotemporal dynamics of finite-difference-type
discretizations of the Boltzman-BGK equations ([195]). In this paper, the lattice
Boltzmann model is our fine-scale “microscopic simulator”, and its results are consid-
ered to be “the ground truth” from which the coarse-scale PDE and the coarse-scale
bifurcation diagram will be learned.

The microscopic proprieties of atoms and molecules determine the macroscopic
evolution of a physical system, but it is generally difficult to describe a system
considering equations for the dynamic of each particle. The statistical description of
the system at a mesoscopic level use the concept of distribution function f (·):

f u
i (x j+i, tk+1) = f u

i (x j, tk)+Ω
u
i (x j, tk)+Ru

i (x j, tk)

f v
i (x j+i, tk+1) = f v

i (x j, tk)+Ω
v
i (x j, tk)+Rv

i (x j, tk),
(6.13)
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where Ωi represent the collision term defined by Bhatnagar-Groos-Krook (BGK)
[196]:

Ω
u
i (x j, t + k) =−ω

u( f u
i (x j, tk)− f u,eq

i (x j, tk))

Ω
v
i (x j, t + k) =−ω

v( f v
i (x j, tk)− f v,eq

i (x j, tk)).
(6.14)

ω is a BGK relaxation coefficient defined as [197]:

ω
u =

2
1+3Du ∆t

∆x2

ω
v =

2
1+3Dv ∆t

∆x2

.

(6.15)

We use the D1Q3 (i.e. one dimension lattice where particles can stream to the
right ( f1), to the left ( f−1) or staying still ( f0)). On the zeroth moment of the overall
distribution function, one can finally compute the coarse-scale observables [5]:

u(x j, tk) =
1

∑
i=−1

f u
i (x j, tk)

v(x j, tk) =
1

∑
i=−1

f v
i (x j, tk).

(6.16)

The coexistence of multiple distributions makes it necessary to introduce weights
ωi for the connections in the lattice and based on spatially uniform Local diffusion
equilibrium, for which f eq

i must be homogeneous in all velllocity directions, the
weights are chosen w0 = 4/6,w1 = w−1 = 1/6. Thus,:

f u,eq
i (x j, tk) = wiu(x j, tk)

f v,eq
i (x j, tk) = wiv(x j, tk), i =−1,0,1.

(6.17)

Finally, the reaction terms Ri in equation 6.13 are computed by:

Ru
i (x j, tk) = wi∆t(u(x j, tk)−u(x j, tk)3− v(x j, tk))

Rv
i (x j, tk) = wi∆tε(u(x j, tk)−α1v(x j, tk)3−α0).

(6.18)
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We set the model parameters equals to the macro scale FHN simulator and again
we vary the bifurcation parameter ε in the interval [0.005,0.955]. The spatial and
time domains also remains the same as described in the previous section and we
apply homogeneous Neumann boundary conditions at both boundaries and simulate
the behaviours of u and v from FHN model using the mesoscale LBM simulator.

6.1.4 Algorithm

Summarizing, the proposed three-tier algorithm for constructing numerically bifur-
cation diagram from data is provided as pseudo code in algorithm 2 and algorithm 3.
In algorithm 2 the first two steps of identifying the effective coarse scale observables
and learning the dynamics are shown. In algorithm 3, we describe the third step of
applying the pseudo Arc-length method to the "black-box" machine learning models.

6.2 Numerical bifurcation analysis of the FHN PDEs

For comparison purposes, we first construct the bifurcation diagram of the FHN
PDEs using central Finite Differences. The discretization of the one-dimensional
PDEs in M points with second-order central finite differences in the unit interval
0≤ x≤ 200 leads to the following system of 2∗ (M−2) algebraic equations ∀x j =

( j−1)h, j = 2, . . .M−1, h = 1
M−1 :

Fu
j (u,v) =

Du

h2 (u j+1−2u j +u j−1)+u j−u3
j − v j = 0

Fv
j (u,v) =

Dv

h2 (v j+1−2v j + v j−1)+ ε(u j−α1v j−α0) = 0.

At the boundaries, we imposed homogeneous von Neumann boundary conditions.
The above 2 ∗ (M− 2) nonlinear algebraic equations are solved iteratively using
Newton’s method. The non-null elements of the Jacobian matrix are given by:

∂Fu
j

∂u j−1
=

Du

h2 ;
∂Fu

j

∂u j
=−Du 2

h2 −3u2
j ;

∂Fu
j

∂u j+1
=

Du

h2 ;
∂Fu

j

∂v j
=−1

∂Fv
j

∂v j−1
=

Dv

h2 ;
∂Fv

j

∂v j
=−Dv 2

h2 − εα1v j;
∂Fv

j

∂v j+1
=

Du

h2 ;
∂Fv

j

∂u j
= ε.
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Algorithm 2 Identify the coarse scale observables from fine scale observations and
learn the coarse dynamics for the FHN PDEs.

Require: Grid Nε of Chebysev-Gauss-Lobatto points in [0.005,0.955] for ε ▷ set grid for
bifurcation parameter ε

Require: x = [x0 : ∆x : xend ] and t = [t0 : ∆t : tend ] be the space and time grid with M and N
points respectively

1: inits← Ni ▷ set # of initial conditions
1. Identify the coarse scale observables.

2: Lu
t ← 0, Lv

t ← 0
3: for ε = 1, . . . ,Nε do
4: for i = 1, . . . ,Ni do
5: Select w∼U (0.8,1.2), c∼U (2,18),

α ∼U (0.5,1), β ∼U (−0.4,0).
6: ui(x,0,ε)← wtanh(α(x− c))+β

7: vi(x,0,ε)← 0.12 ·ui(x,0,ε) ▷ see equation 6.12
8: for s = 2 : N do
9: f u,eq

j (x, t(s),ε)← w ju(x, t(s),ε), j =−1,0,1
10: f v,eq

j (x, t(s),ε)← w jv(x, t(s),ε), j =−1,0,1 ▷ see equation 6.17
11: ui(x, t(s),ε)← ∑

1
j=−1 f u,eq

j (x, t(s),ε)
12: vi(x, t(s),ε)← ∑

1
j=−1 f v,eq

j (x, t(s),ε) ▷ see equation 6.16
13: Compute ut,i,vt,i,ux,i,vx,i,uxx,i,vxx,i ▷ using central finite differences.
14: Compute the first µ Diffusion Maps (DM) eigenvectors:

[φ u
1 , . . . ,φ

u
µ ]← DM(u,v,ut ,ux,vx,uxx,vxx)

[φ v
1 , . . . ,φ

v
µ ]← DM(u,v,vt ,ux,vx,u

,
xxvxx) ▷ see equation 4.14

15: z← [u,v,ux.vx.uxx,vxx]
16: for every q⊂ z do
17: for k = 1, . . . ,µ do
18: φ̂ u

k ← GP(q)
φ̂ v

k ← GP(q) ▷ GP: Gaussian process regressor
19: Lφ

u
k
← 1

N ∑
N
i=1(φ

u
k,i− ˆφ u

k,i)
2

20: Lφ
v
k
← 1

N ∑
N
i=1(φ

v
k,i− ˆφ v

k,i)
2 ▷ see equation 6.9

21: Lu
t (q)← Lu

t (q)+(∑
µ

j=1 L2
φ u

j
)

1
2

22: Lv
t (q)← Lv

t (q)+(∑
µ

j=1 L2
φ v

j
)

1
2 ▷ see equations 6.8 and 6.9

23: zu←{q∗ : Lu
t (q
∗) = min(Lu

t )}
zv←{q∗ : Lu

t (q
∗) = min(Lv

t )} ▷ extract the effective features
2. Learn the coarse scale PDEs

24: Train two FNNs without feature selection:
F̂u ≡ ût ←FFN(z,ε)
F̂v ≡ v̂t ←FFN(z,ε) ▷ without feature selection

25: Train two FNNs with feature selection:
F̂u

r ≡ ût,r←FFN(zu,ε)
F̂v

r ≡ v̂t,r←FNN(zv,ε) ▷ with feature selection
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Algorithm 3 Construct bifurcation diagrams with pseudo Arc-length continuation
method.

3. Wrap around the macine learning model the pseudo Arc-Length method.
1: ε0← 0.005,ε−2← ε0, ε−1← ε−2 +5e−04
2: u0←−tanh(0.5(x−9.5)),v0 = 0.12u0 ▷ set initial guesses
3: [u−2;v−2]← NR(u0,v0,ε−2)

[u−1;v−1]← NR(u0,v0,ε−1)▷ approximate the solutions for the first step with
Newton Raphson

4: ζ−2← [u−2;v−2;ε−2], ζ−1← [u−1;v−1;ε−1]
5: maxiter← 6 ▷ set max # iters for Newton method
6: δ = 1e−06 ▷ peturbation parameter
7: tol = 1e−06
8: repeat
9: ∆s =

√
sum((ζ−1(1 : 2)−ζ−2(1 : 2))2)+(ζ−1(3)−ζ−2(3))2

10: ζ ← 2ζ−1−ζ−2

11: N← ζ−1(1:2)−ζ−2(1:2)
∆s + ζ−1(3)−ζ−2(3)

∆s
12: iter← 0
13: repeat
14: for j = 1, · · · ,M do
15: ∂ F̂u

∂u j
← F̂u(u j,v j,ε)−F̂u(u j+δ ,v j,ε)

2δ
; ∂ F̂u

∂v j
← F̂u(u j,v j,ε)−F̂u(u j,v j+δ ,ε)

2δ

∂ F̂v

∂u j
← F̂v(u j,v j,ε)−F̂v(u j+δ ,v j,ε)

2δ
; ∂ F̂v

∂v j
← F̂v(u j,v j,ε)−F̂v(u j,v j+δ ,ε)

2δ

∂ F̂u

∂ε
← F̂u(u j,v j,ε)−F̂u(u j,v j,ε+δ )

2δ
; ∂ F̂v

∂ε
← F̂v(u j,v j,ε)−F̂v(u j,v j,ε+δ )

2δ
∂N
∂u j

; ∂N
∂v j

; ∂N
∂ε

16: Compute the Jacobian ∇F ←

∇uF̂u ∇vF̂u ∇ε F̂u

∇uF̂v ∇vF̂v ∇ε F̂v

∇uN ∇vN ∇εN

 ▷ see eq 6.19

17: ∆ζ ← (∇F)†F
18: ζ ← ζ −∆ζ ▷ update solutions
19: err← ||F ||2 ▷ compute error
20: iter← iter+1
21: until (err ≤ tol) or (iter ≥ maxiter)
22: ζ−2← ζ−1,ζ−1← ζ

23: ũ← ζ (1), ṽ← ζ (2), ε̃ ← ζ (3)
24: until ε̃ < ε0
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To trace the solution branch along the critical points, we used the “pseudo" arc-
Length-continuation method ([198–200]). This involves the parametrization of u(x),
v(x) and ε(x) by the arc-length s on the solution branch. The solution is sought in
terms of ũ(x,s), ṽ(x,s) and ε̃(s) in an iterative manner, by solving until convergence
the following augmented system:∇uFu ∇vFu ∇εFu

∇uFv ∇vFv ∇εFv

∇uN ∇vN ∇εN


du(n)(x,s)

dv(n)(x,s)
dε(n)(s)

=−

Fu(u(n)(x,s),v(n)(x,s),ε(n)(s))
Fv(u(n)(x,s),v(n)(x,s),ε(n)(s))
N(u(n)(x,s),v(n)(x,s),ε(n)(s))

 ,
(6.19)

where

∇εFu =
[

∂Fu
1

∂ε

∂Fu
2

∂ε
. . .

Fu
N

∂ε

]T
,∇εFv =

[
∂Fv

1
∂ε

∂Fv
2

∂ε
. . .

Fv
M

∂ε

]T
,

and

N(u(n)(x,s),v(n)(x,s),ε(n)(s)) =

(u(n)(x,s)−ũ(x,s)−2)
T · (ũ(x)−2− ũ(x)−1)

ds
+

(v(n)(x,s)−ṽ(x,s)−2)
T · (ṽ(x)−2− ṽ(x)−1)

ds
+

(ε(n)(s)− ε̃−2) ·
(ε̃−2− ε̃−1)

ds
−ds,

where (ũ(x)−2,ṽ(x)−2) and (ũ(x)−1,ṽ(x)−1) are two already found consequent solu-
tions for ε̃−2 and ε̃−1, respectively and ds is the arc-length step for which a new
solution around the previous solution (ũ(x)−2, ṽ(x)−2, ε̃−2) along the arc-length of
the solution branch is being sought. The corresponding bifurcation diagram is shown
in Figure 6.2. We obtained a Andronov-Hopf bifurcation at ε ≈ 0.018497 and a fold
point at ε ≈ 0.95874. This is considered as the reference bifurcation diagram. In
6.3, the contour plot of the L2 norm of the convergence of the solutions as computed
with Finite Differences with respect to the size of the grid N as L2N = ||uN−u2N ||2
is shown.

78/112



0 0.2 0.4 0.6 0.8 1

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 HP

TP 

stable

unstable

0 0.2 0.4 0.6 0.8 1

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 HP

TP 

stable

unstable

Fig. 6.2 Reference bifurcation diagram of the FHN PDEs with respect to ε as computed with
FD and N = 200 points. (a) < u >, (b) < v >. Andronov-Hopf Point: HPε=0.01827931.
Turning Point: T Pε=0.94457768.

Fig. 6.3 Contour plot of the L2 norm of the convergence of the solutions as computed
with Finite Differences with respect to the size of the grid N as L2N = ||uN −u2N ||2. The
convergence error was evaluated on 1001 grid points, using linear piecewise interpolation.
(a) upper branch for u (b) upper branch for v (c) lower branch for u (d) lower branch for v.
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Fig. 6.4 Coarse initial conditions for (a) u and (b) v for the training. Every dot denotes a point
whose ε and mean u (or v) were used for input data. Red dots are training points, blue points
are testing points. The grid is spanned with Chebychev-Gauss-Lobatto points for epsilons in
the interval [0.005,0.995] and the initial condition are randomly selected as in Eq. (6.12)

6.3 Numerical bifurcation analysis from microscopic
simulations

For u(x, t) and v(x, t), we collected transients with a sampling rate of 1s, from 10
different random sampled initial conditions for 40 different values for the bifurcation
parameter (ε). In particular, we created a grid of 40 different ε in [0005, 0.955] using
Gauss-Chebychev-Lobatto points, while the 10 initial conditions are sampled accord-
ing to Eq.6.12. Figure 6.4) depicts the total of 400 training initial conditions. Thus,
we end up with a dataset consisting of 40 (values of ε)×10 (initial conditions)×448
(time points ignoring the first 2s of the transient)×40 (space points) ⋍ 7.168.000
data points.
For learning the coarse-grained dynamics and construct the corresponding bifurca-
tion diagram, we trained two FNNs (one for each one of the variables u and v).
The FNNs were constructed using two hidden layers with 12 units each. Hidden
units were employed with the hyperbolic tangent sigmoid activation function while
the regularization parameter was tuned and set λ = 0.01. For the training of the
FNNs we used the Deep Learning toolbox of MATLAB 2021a on an Intel Core
i5-8265U with up to 3.9 GHz frequency and a memory of 8 GB.
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6.3.1 Numerical bifurcation analysis without feature selection

In Figures(6.5) we show the regression performance in the test dataset of the FNNs.
Table (6.1) summarises the performance on the training and on test data set. The
training phase of the FNN for ût stopped at 828-th epoch and required around 4 hours
with minimum tolerance set to 1e−07. The training phase of the FNN for v̂t stopped
at 1000-th epoch and required around 4h with minimum tolerance set to 1e− 10.
Differences between the predicted and the actual values of the time derivatives of u
and v for three different values of ε are shown in Figure (6.6).

After training, we used the FNNs to compute with finite differences the quantities
required for performing the bifurcation analysis (see Eq.(6.19)), i.e.:

∂ F̂u

∂u j
=

F̂u(u j,v j,ε)− F̂u(u j +δ ,v j,ε)

2δ
;
∂ F̂u

∂v j
=

F̂u(u j,v j,ε)− F̂u(u j,v j +δ ,ε)

2δ

∂ F̂v

∂u j
=

F̂v(u j,v j,ε)− F̂v(u j +δ ,v j,ε)

2δ
;
∂ F̂v

∂v j
=

F̂v(u j,v j,ε)− F̂v(u j,v j +δ ,ε)

2δ

∂ F̂u

∂ε
=

F̂u(u j,v j,ε)− F̂u(u j,v j,ε +δ )

2δ
;
∂ F̂v

∂ε
=

F̂v(u j,v j,ε)− F̂v(u j,v j,ε +δ )

2δ
,

with δ = 1e− 06. The reconstructed bifurcation diagrams are shown in Figure
(6.9). Using the FNNs, we estimated the Andronov-Hopf point at ε ≈ 0.0191 and
the turning point at ε ≈ 0.9713 We approximated the same points using the finite
differences scheme in the previous section at ε ≈ 0.0183 for the Andronov-Hopf
point and at ε ≈ 0.9446 for the turning point.

test set train set
MSE (u) Linf (u) MSE (v) Linf (v) MSE (u) Linf (u) MSE (v) Linf (v)

FNN 7.90e-09 2.26e-02 1.56e-09 6.63e-03 1.31e-09 7.00e-03 2.78e-10 2.58e-03
FNN

with FS 5.39e-08 2.93e-02 1.16e-08 7.65e-03 1.90e-08 2.64e-02 1.37e-09 4.70e-03

Table 6.1 Mean-square and Linf errors between the predicted from the FNNs and the actual
time derivatives of u and v.

6.3.2 Numerical bifurcation analysis with feature selection

Here, we aimed at identifying if any subset of features of the input domain can
be used for parametrizing the intrinsic embeddings (and thus learn the RHS of the
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Fig. 6.5 Regression results for the test dataset of the FNNs: (a) FNN without feature selection
(R=0.99996) for ût , (b) FNN without feature selection (R=0.99992) for v̂t , (c) FNN with
feature selection (R=0.99712) for ût . (d) FNN with feature selection (R=0.99950) for v̂t .

(a) (b)

(c) (d)
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Fig. 6.6 Contour plot for ||ut − ût || in the test dataset between the predicted time derivatives
from the FNNs (ût) without feature selection and the actual time derivatives ut ((a), (c), and
(e)) and for ||vt − v̂t || ((b), (d), and (f)) for different values of ε : (a) and (b) ε = 0.0114 near
the Andronov-Hopf point, (c), (d) ε = 0.4, (e) and (f) ε = 0.9383 near the turning point.
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Fig. 6.7 Contour plot for ||ut − ût || in the test dataset between the predicted time derivatives
from the FNNs (ût) with feature selection and the actual time derivatives ut ((a), (c), and (e))
and for ||vt − v̂t || ((b), (d), and (f)) for different values of ε: (a) and (b) ε = 0.0114 near the
Andronov-Hopf point, (c), (d) ε = 0.4, (e) and (f) ε = 0.9383 near the turning point.
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PDEs). We applied Diffusion Maps for every sample of the test dataset with the
same value of the bifurcation parameter and identified the three parsimonious leading
eigenvectors as described in section 4.3. We denote them as φ1,φ2,φ3. We have
set the width parameter of the Gaussian kernel to σ = 10. The three parsimonious
Diffusion Maps coordinates for different values of the parameter epsilon are shown
in figure (6.8). For ε = 0.114 that is close to the Andronov-Hopf point, the embedded
space is a two dimensional “carpet" in the three dimensional space. The oscillatory
behaviour leads to different values of the time derivative which can be effectively
parametrized as shown by the coloring of the manifold (Figures 6.8a, 6.8b). On
the contrary, for ε = 0.4010 and ε = 0.9383 where the solutions are the embedded
space is one dimensional line in a two dimensional space since time derivatives
converges rapidly to zero (Figures 6.8c,6.8e,6.8d and 6.8f). The “good" subsets of
the input data domain are presented in Table (6.2). As expected, the best candidate
features are the (u,v,uxx) for ut and (u,v,vxx) for vt which are the only features that
indeed appear in the closed form of the FHN PDEs. For the selection of the three
parsimonious Diffusion Maps coordinates, we used the datafold package in python
([201]).

ut = (φ u
1 ,φ

u
2 ,φ

u
3 ) vt = (φ v

1 ,φ
v
2 ,φ

v
3)

Features Sum Total Losses Features Sum Total Losses
1d (u) 4.3E-03 (u) 7.6E-03
2d (u,v) 6.37E-06 (u,v) 1.91E-05
3d (u,v,uxx) 2.77E-07 (u,v,vxx) 6.29E-07
4d (u,v,ux,uxx) 1.03E-07 (u,v,vx,vxx) 1.34E-07

Table 6.2 The “best” variables that can effectively parametrize the intrinsic coordinates
((φ u

1 ,φ
2
2 ,φ

u
3 ) and (φ v

1 ,φ
v
2 ,φ

v
3 )) and the corresponding sums of total loses across all the values

of the bifurcation parameter ε .

Finally, we repeated the same steps but now using as inputs in the FNNs the
reduced input domain as obtained from the feature selection process, the bifurcation
parameter. Figures (6.5c) and (6.5d) show the regression results of the schemes.
Table (6.1) summarizes the performance of the schemes on the training and the test
set. The training phase of the FNN for ût stoped at 1000-th epoch and required 3
hours and 37 minutes with minimum tolerance set to 1e−07. The training phase of
the FNN for v̂t stoped at 1000-th epoch and required 4 hours and 19 minutes. Figure
(6.7) illustrates the differences between the predicted from the FNNs with feature
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Fig. 6.8 (a) and (b): The three parsimonious Diffusion Maps coordinates for ε = 0.01114
near the Andronov-Hopf point. In this region the solutions are oscillating. (c) and (d):
The two parsimonious Diffusion maps coordinates for ε = 0.4010. (e) and (f): The two
parsimonious Diffusion maps coordinates for ε = 0.9383 near the turning point. Colors
represent ut ((a), (c), (e)) and vt ((b), (d), (f)).
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Fig. 6.9 Reconstructed bifurcation diagram from the Lattice-Boltzmann simulations of the
FHN dynamics with respect to ε with FNNs with feature selection. (a) < u >; the inset
zooms near the Andronov-Hopf bifurcation point (b) < u > the inset zooms near the turning
Point, (c) < v >; the inset zooms near the Andronov-Hopf bifurcation point, (d) < v >; the
inset zooms near the turning Point.

selection and the actual time derivatives. Hence, we have:

∂u
∂ t

= F̂u(u,v,uxx,ε),

∂v
∂ t

= F̂v(u,v,vxx,ε)

(6.20)

where F̂u and F̂v are the outputs of the FNNs and we perform Arc Length for
ε , computing numerically the Jacobians of Fu and Fv . Thus, the data-driven
bifurcation diagram with feature selection is shown in Figure 6.9. Now, using the
FNNs, we estimated the Andronov-Hopf point at ε ≈ 0.0195 and the turning point
at ε ≈ 0.9762.
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6.4 Discussion

Buliding on previous efforts [5], we present a machine-learning methodology for
constructing the coarse-bifurcation diagrams using fine scale simulations in space
and time. The proposed approach is a three tier one. In the first step, we use
non-linear manifold-learning and in particular Diffusion Maps to select the right
coarse-scale observables that define the low-dimensional manifold on which the
emergent dynamics evolve in the parameter space. At the second step, we learn the
right-hand-side of the effective PDEs with respect to the coarse-scale observables;
here we used FNNs. Finally, based on the constructed black-box model, we con-
struct the coarse-grained bifurcation diagrams exploting the arsenal of numerical
bifurcation. To demonstrate the approach, we used Lattice-Boltzmann simulations
of the FitzHugh-Nagumo PDEs and compared the obtained bifurcation diagram with
the one constructed directly by discretizing the PDEs with Finite-Differences.

The results show that the proposed machine-learning framework was able to
identify the correct variables that are required to model the emergent dynamics and
based on them to construct accurately the actual bifurcation diagram. In terms of
approximation accuracy of the observed dynamics, both approches (with and without
feature selection) contsructed the bifurcation diagram with high accuracy.

Here, we have focused on constructing black-box models of PDEs. The approach
can be extended to construct “gray-box" models by incorporating information from
the physics into the machine learning architecture [202]. Futhermore, based on
previous efforts aiming at extracting normal forms of ODEs from data [203], the
approach can be extended to discover normal forms of PDEs.
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Chapter 7

Conclusions

In this Thesis, we developed and implemented physics-informed data-driven com-
putational tools, based on numerical analysis and machine learning to confront
with the problem of coarse-grained modelling and numerical bifurcation analysis
of the emergent dynamics of complex systems. We considered three different open
problems in the field, namely that of (i) solving the inverse source localization
problem with a focus in computational neuroscience and neuroimaging; here we
compared the performance of well-established regularization techniques on real
EEG data, thus exploiting the information from metanalytics studies from fMRI
data, (ii) developing a machine learning method for solving the inverse problem
in complex systems modelling, i.e. identifying an appropriate set of observables
that parametrize low-dimensional manifolds where the emergent dynamics evolve
and based on them construct models in the form of PDEs for systematically study
the dynamics with the aid of numerical bifurcation analysis algorithms, and (iii)
developing a machine-learning method for solving the direct problem, namely that
of the numerical solution of low-dimensional initial value problems of ODEs with a
focus on stiff-problems containing sharp gradients.

For the first problem, we revealed extra evidence about the crucial role of the
parietal lobules in working memory tasks in children with controlled epilepsy [111].
This finding was actually obtained by all regularization methods that we used, thus
indicating that it is robust enough and may serve as “biomarker" for identifying,
monitoring and assessing epilepsy in children. This is the first time that such a com-
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parative analysis for the specific important problem has been done. In the present
thesis, we used EEG signals coming from a relevant small number of electrodes,
something that may affect the accuracy of the results. Investigating if similar re-
sults would be revealed with more dense EEG recordings would be of paramount
importance. We approached the source localization problem from the Tikhonov
regularization point of view. There have been proposed different approaches for
obtaining the sources that create the EEG signals such as beamforming techniques,
which independently scan for dipoles within a grid containing candidate locations
(i.e. source points) [204, 205]. The goal is to estimate the activity at a source point
or region while avoiding the crosstalk from other regions so that these affect as little
as possible the estimate at the region of interest. Recently, there have been efforts
to employ machine learning for solving the source localization problem [206, 207].
The idea of this promising approach is to utilize machine learning methodologies that
have already applied for solving inverse imaging problems such as X-ray computed
tomography (CT) [208, 209], MRI [210, 211], image super resolution [212, 213],
seismic tomography [214] and more. Since the source localization problem consti-
tutes a very sensitive problem in many ways, from the noise of the EEG recordings
to the effect of the head model and the approximation error of the applied algorithm,
comparison between different approaches and validation of the results could help
to investigate the weaknesses. Moving from the sensor space into the source space
leads the scientific community to various new open issues. Except from the obvious
result of the visualization of the true regions that are involved, ESL is being used for
more scientific purposes. Studying the functional connectivity of human brain using
source time series instead of the measured EEG scalp recordings is indisputable one
of the most widely studied topics in computational neuroscience [215–219]. Another
of utmost, source connectivity is a topic with many open issues and various of
challenges and many optimism results that turn a lot of researchers to deal with them.
It is of great interest that we can continue our analysis, implementing functional
connectivity methods such as Granger causality [220], Partial Directed Coherence
(PDC) [221] and others and construct the intra-networks of causality that govern the
multiple source time series.

For the second problem, building on previous efforts [5], we developed a data-
driven computational framework for constructing coarse-bifurcation diagrams from
fine scale observations without assuming any knowledge for a closed form model
[95]. For our illustrations, we have chosen to learn and reconstruct the dynamics
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of the two coupled Fitzhugh-Nagumo PDEs, a celebrated model in the field of
mathematical Neuroscience. The proposed methodology succeeded to effectively
identify the set coarse variables that are required to model the emergent dynamics
and based on them approximate with high accuracy the actual bifurcation diagram.
For this purpose, we used a feature selection method based on the Diffusion Maps
Algorithm. To the best of our knowledge, this is the first time that such a methodology
has be addressed for constructing bifurcation diagrams from data. During the last
decades, there have been developed many feature selection algorithms such as group
LASSO [222], random forests [223], recursive feature elimination [224] and more. It
would be interesting to check if other methods would suggest different set of features
for describing the coarse-grained dynamics. Lovelett et. al. [202] incorporated
physics information into the machine learning architecture and constructed "grey-
box" models which would be a promising expansion of the presented methodology.
Another future direction could be the generalization for extracting normal form
of PDEs from data as in [203]. As regard the task of learning the dynamics, we
applied FNNs. FNNs have high computationally cost and demand many hours when
handling with large datasets. Evaluation of RPNNs/ ELMs may reduce dramatically
the computational cost of the methodology. We constructed fine-scale observations
from the LBM microsimulator for the FHN equations. However, this framework
should be validated in observations coming from real systems. In this case, methods
for dealing with possible noisy or extreme values should be integrated [225]. Finally,
towards the construction of bifurcation diagrams, it would be interesting to exploit
and compare the performance of other schemes such as the one addressed in Wang
et al. [226], a physics-informed machine learning scheme based on deep learning
to learn the solution operator of arbitrary PDEs and that in Kovachki et al. [227]
where it has been addressed the concept of Neural Operators, which are mesh-free,
infinitedimensional operators with neural networks to learn surrogate functional
maps for the solution operators of PDEs.

Finally for the third problem, we expoited the high speed and approximation
properties of RPNNs for the efficient numerical solution of low-dimensional systems
of stiff ODEs with encouraging results. In particular, results show that the proposed
method in some cases especially in the regions where sharp gradients arise outper-
form the built in matlab function ode15s reagarding the numerical accuracy. The
proposed numerical scheme required in general more time than matlab’s functions
but it was fairly comparable. An interesting feature of the proposed method is
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that provides an analytical expression for the approximation of the solution upon
training with a finite set of collocation points. This feature leads to less computa-
tional cost in “dense” sets of points. Definitely, an optimized code may leads to
smaller computational times. A systematic validation of its performance over various
suggested benchmark problems ([228, 229]) is a possible subject of future work.
The algorithm was evaluated in low-dimensional systems of ODEs consisting of
up to three equations. In many real life complex systems of PDEs, one may ends
up to a stiff ODE system of much more equations. A possible future expansion
of the proposed methodology applied to higher order systems is one of our future
tasks. Since our method computes the solution in the whole domain, the issue for
selecting the number of collocation points needed for extracting a relevant solution
needs further investigation. Applying an adaptive expansion, which would divide
the whole interval into subintervals accordingly to the approximation error, may
overcome this issue. Furthermore, a systematic tuning of the hyperparameters of the
algorithm must be done. It is interesting to investigate if different architectures or
different set of hyperparameters could amplify the approximation accuracy. Another
useful procedure would be the stability and error propagation analysis. The conver-
gence properties, the stability and the theoretical foundations of the method need
to be learnt in detail in the future. Finally, a comparison with other ML schemes
[86, 88, 182, 230, 231] that have been proposed for obtaining the solutions of differ-
ential equations is important. Since these techniques have emerged only recently, the
exhaustive comparison between the various schemes could reveal future directions
and/or limitations of this approach.

The common conclusion from the problems we dealt with in this Thesis is
that the synergistic integration between machine learning or numerical analysis
algorithms and physical models opens new horizons and at the same moment poses
more challenges in scientific computing. Looking to the future, where more than a
trillion sensors (airborne, seaborne, satellite remote sensing and others) are expected
to provide us with a wealth of multi-fidelity observations, the effective integration of
the physical knowledge to the traditional machine leaning and numerical analysis
algorithms will come to play a decisive role in our ambition to understand the world
around us.
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