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Abstract

In the current Noisy Intermediate Scale Quantum (NISQ) era, quantum compu-

tational resources can be utilized efficiently by optimizing them with suitable

classical algorithms. In the same spirit, this thesis addresses the relevant problems

in the paradigm of adiabatic quantum computation and in turn quantum annealing.

We mainly resort to heuristic optimization techniques of evolutionary algorithms

as a numerical tool and demonstrate their effectiveness in finding the solutions to

the problems considered.

The first problem we focus on is to find an equivalent 2-body interactions of a

p-body Hamiltonian as it is a necessity for embedding optimization problems with

p-local interactions in the current quantum annealer hardware architectures. We use

genetic algorithms to optimize a function which minimizes the energy difference

between the lower spectrum of the original and the mapped 2-body Hamiltonian.

We consider the two analytically solvable cases of a ferromagnetic p-spin model to

discuss our results. We also show further improvements by implementing memetic
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algorithms which enforces additional local searches.

As the second problem of this thesis, we propose an effective approach to shortcuts

to adiabaticity using a numerical approach based on genetic algorithms. The hard

optimization problems often have small spectral gaps which make the system to

undergo diabatic transitions in the finite time quantum annealing. In this thesis,

we tackle this problem by engineering the annealing schedules starting from the

polynomial ansatz by treating their coefficients as chromosomes of a genetic

algorithm. We also explore shortcuts to adiabaticity by computing a practically

feasible k-local optimal driving operator, showing that even for k = 1 we achieve

substantial improvement of the fidelity over the standard annealing solution. With

these genetically optimized annealing schedules and/or optimal driving operators,

we are able to perform quantum annealing in relatively short time-scales and with

higher fidelity compared to traditional approaches.
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1. Introduction

1.1 Introduction to quantum computation

The formulation of quantum mechanics in the early 1900’s changed the way we

perceive the world. Rigorous theories have been proposed ever since to understand

the dynamics of the systems which are small enough to be in quantum mechanical

regime. The implications of quantum mechanics such as quantization of energy

levels, quantum entanglement, quantum superposition, the possibility of tunneling

the system through a large potential and other implications of quantum mechan-

ics became the backbone of quantum computation (Steane 1998; Preskill 2018).

Quantum mechanical systems can have a high degree of correlation among their

components which cannot be created by local operations and classical communi-

cations (LOCC) (Vedral and Plenio 1998), which play a key role in formulating

quantum algorithms. Quantum systems also provide exponentially large memory

units to store information when compared with classical systems. Thanks to ex-

perimental advances, quantum computation is very relevant and highly researched

now than ever before. With the parallel advancements in the computer science,
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especially in optimization tools and machine learning, quantum computation is

well aided to show promising results even with the preliminary quantum hardware

resources available (Arute et al. 2019; Y. Wu et al. 2021).

Quantum computation aims at building devices which with suitable quantum algo-

rithms can solve hard classical problems faster which otherwise would have taken

a ridiculously long time using classical computers. In addition, quantum computers

in principle can simulate quantum systems, which opens the door to new possible

physics especially to better understanding of many-body systems (Feynman 1982;

A. Smith et al. 2019). Further, the proposed theories have also indicated in the

substantial technological advances in terms of secure communications harnessing

the quantum physical nature of substances, all of which are studied under the name

of quantum technologies (Dowling and Milburn 2003). These reasons make it

worthwhile for the scientific community to invest themselves in research in the

field of quantum computation.

So far, there have been multiple constructions of frameworks to build a quantum

computer (Nielsen and Chuang 2002). This thesis mainly addresses adiabatic

quantum computation. However, in the following part of this section, we shall also

briefly review the advancements and applications of quantum computation in a

broader picture. The supposedly most versatile approach of quantum computation

is the standard model quantum computation or gate model quantum computation.

In this paradigm of quantum computation, there is a system of particles or “qubits”

which are initiated in a particular state and are subjected to discrete unitary evo-

lutions implemented by quantum gates until the qubits evolve to the final states
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which are subsequently measured. At present, most quantum initiatives that are

involved in building quantum computers use this model of quantum computation.

Further, the qubits can be prepared using Josephson junction of superconducting

systems (Shnirman, Schön, and Hermon 1997), polarisation states of light (James

et al. 2001), quantum dots (Loss and DiVincenzo 1998; Trauzettel et al. 2007)

and other systems. In general, qubits can be constructed using quantum systems

for which two distinct states or their superposition state can be defined and can

be controlled to be in one of the states by subjecting to an external perturbation.

Be it in any kind of quantum computational model, it is important to find suitable

algorithms, which are enhanced in their performance due to quantum physical

implications. To claim a quantum speedup in any quantum algorithm, one should

prove that the given quantum algorithm can solve a given problem faster than

any existing classical algorithm. The least criteria to claim quantum speedup in

a quantum algorithm could be to prove that the algorithm outperforms a similar

approach, but implemented on a classical hardware (Rønnow et al. 2014). There are

multiple quantum algorithms formulated for circuit model quantum computation

that outperform classical algorithms in time to solution. For example, Grover’s

search algorithm which aims at finding a particular element in an unsorted data

set of size N can successfully solve the problem in
√

N iterations, as opposed to

the classical algorithm which requires at least N number of queries (Lov K Grover

1996). Shor’s algorithm (Shor 1997), and Deutsch–Jozsa algorithm (Deutsch and

Jozsa 1992) are some of the other famous examples to mention.

Adiabatic Quantum Computation (AQC) is an approach aimed mainly at solv-
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ing optimization problems (Farhi, Goldstone, Gutmann, and Sipser 2000; Farhi,

Goldstone, Gutmann, Lapan, et al. 2001; Dam, Mosca, and Vazirani 2001; Albash

and Daniel A. Lidar 2018; Aharonov et al. 2008; Hogg 2003; McGeoch 2014;

G. E. Santoro et al. 2002). The basis of AQC is the adiabatic theorem of quantum

mechanics. The adiabatic theorem of quantum mechanics deals with the slow

evolution of a quantum mechanical system driven by a given Hamiltonian (Kato

1950; Nenciu 1980). It hints at keeping the system in the given eigenstate through-

out the evolution if the external perturbations are slow enough. Further, it also

gives a quantitative description of how “slow" the process should be for a given

system in order to avoid excitations. The system is initially in an easy to prepare

ground state of a Hamiltonian. The solution to the optimization problem is en-

coded in the ground state of a final Hamiltonian. The system is evolved slowly

from the ground state of an initial Hamiltonian and according to the adiabatic

theorem, if this process is slow enough one can hope to find the system in the

ground state of the final Hamiltonian with a high probability. In this paradigm of

computation, the study of adiabatic theorem, essentially the adiabatic time scales in

which adiabatic quantum computation can be achieved becomes important. These

timescales depend on the instantaneous energy spectra of the system driven by

the time-dependent Hamiltonian according to the Schrödinger equation. Further,

adiabatic quantum computation and standard model quantum computation can

simulate each other as shown in (Aharonov et al. 2008). The quantum algorithms

like Grover’s search, Deutsch-Jozsa algorithm, Bernstein-Vazirani algorithm are

formulated in the paradigm of adiabatic quantum computation (Albash and Daniel
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A. Lidar 2018).

During the course of adiabatic evolution, the instantaneous eigen spectrum of the

Hamiltonian can show energy crossing or avoided crossing, at a particular value

of induced quantum fluctuations, and at this point, the system which is prepared

initially in the ground state can excite to the next level or in other words the system

would go through quantum phase transition in the thermodynamic limit (Sachdev

2011). The second-order phase transitions are characterised by polynomial closing

of energy gaps, while first-order phase transitions are characterized by exponential

closing of energy gaps. This is reflected in the adiabatic time scales as well, with

systems showing first order phase transition is harder to solve than the systems

showing second order phase transition.

In AQC, the final Hamiltonian is usually classical, with the ceasing of transverse

fields at the final time. For example, in the case of the ferromagnetic Ising model, at

the final time, the transverse fields are absent and hence they do not have any flips

in spins. The ground state corresponds to the case of all spins up or all spins down.

By switching on the transverse field for a short time, the spins can be flipped to one

of these degenerate states and in the absence of transverse field, the system acquires

one of the ground states breaking Z2 symmetry. When studying adiabatic quantum

computation, it is crucial to analyze its performance for different models (the final

Hamiltonian) so that the technique can be benchmarked for a broader class of

optimization problems. In this work, we have mainly considered the model of

fully connected ferromagnetic p-spin model as the case study of adiabatic quantum

computation. More details of this model are given in the further section of this
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chapter.

1.2 Quantum Annealing

An experimental realization of adiabatic quantum computation is quantum anneal-

ing (QA) (G. Santoro and Tosatti 2006; Bian et al. 2020; Kadowaki and Nishimori

1998; Jörg et al. 2010; Finnila et al. 1994; P. Hauke et al. 2019; Seoane and Nishi-

mori 2012; Seki and Nishimori 2012; Ohkuwa, Nishimori, and Daniel A. Lidar

2018a; Matsuura, Nishimori, Vinci, Albash, et al. 2017; Susa, Yamashiro, et al.

2018; Matsuura, Nishimori, Vinci, and Daniel A. Lidar 2019; Yamashiro et al.

2019; Inack and Pilati 2015). Quantum annealing is a process wherein a quantum

mechanical system, initially a large transverse field is applied such that it is in a

superposition of all states possible and eventually this transverse field is ceased

slowly and according to the adiabatic theorem we can hope to find the system in the

lowest energy configuration at the end of evolution. This is a protocol formulated

analogously to thermal annealing or simulated annealing (SA). In SA, the system

is subjected to thermal fluctuations in a slow manner (Laarhoven and Aarts 1987).

In other words, the system is cooled down starting from a high temperature slowly

such that at every instant of time it is in thermal equilibrium and at the lowest tem-

perature the system is found in the lowest energy state of the energy cost function.

SA finds a setback when the energy cost function contour has local minimums

and the algorithm is trapped in this local minimum for a long time subsequently

leading to sub-optimal solutions (Farhi, Goldstone, and Gutmann 2002). QA, on
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Figure 1.1: Process of quantum annealing. The cartoon represents the energy
contour of a problem Hamiltonian, whose ground state corresponds to all spins
down. The system is prepared in an initial Hamiltonian whose ground state is the
superposition of all spin configurations possible, and it can traverse between these
states by the process of tunneling because of the induced quantum fluctuations Γ.
As this fluctuation is ceased slowly, the system follows the instantaneous ground
state of the time-dependent Hamiltonian. Finally, at the annealing time T , it is in the
configuration of all spins down which is the ground state of the final Hamiltonian.

the other hand, benefits from quantum tunneling, where the system can tunnel

between the states separated by a large potential and essentially speeding up the

optimization (Kadowaki and Nishimori 1998). The study of time scales and theo-

retical study of quantum annealing can be done using adiabatic theorem (Messiah

1962). The process of quantum annealing can be modelled using a Hamiltonian of

the form

H(t) = A(t)Hx +B(t)Hz, (1.1)

where usually Hx = −Γ∑
i

σ i
x, whose ground state is easy to prepare. Here, Γ is

the tunneling strength. Hz is the problem many body Hamiltonian. σ i
x,y,z are the
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Pauli spin operators acting on the ith spin in the respective direction. A(t) and B(t)

are annealing schedules which satisfy the boundary conditions A(0)≫ 1,B(0) = 0

and A(T ) = 0 and B(T )≫ 1. T is the annealing time. The annealing time highly

depends on the properties of the problem Hamiltonian. The adiabatic theorem

gives the quantitative bound on the annealing time,

TAD = max
λ∈[0,1]

|⟨E0(λ )|∂λ H(λ )|E1(λ )⟩|
|E1(λ )−E0(λ )|2

, λ = t/T. (1.2)

The derivation of the above equation is given in Messiah 1962. The efficiency of

the quantum annealing is computed using the fidelity of the final state with the

exact groundstate probability of the problem Hamiltonian Hz, i. e.,

Fidelity = | ⟨ψ0|E0(T )⟩ |2. (1.3)

It is to be noted that when solving the Hamiltonians which have degenerate ground

states by quantum annealing, the total ground state probability has to be considered.

In fact, it is shown in Matsuda, Nishimori, and Katzgraber 2009 that quantum

annealing can not always lead to all the ground states with equal probabilities.

Alternatively, one can also compute residual energy which is the difference between

the ground state energy obtained by quantum annealing and the true ground state

energy (Suzuki and M. Okada 2005).

Quantum annealing finds applications in solving a number of combinatorial opti-

mization problems including some of the NP-hard (non-deterministic polynomial-

time hardness) problems designed in computational complexity theories such as
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Boolean satisfiability Problems (SAT problems) (Bian et al. 2020), traveling sales-

man problem (H. Chen et al. 2011), max-cut problem (Qiu, Zoller, and X. Li

2020) etc. We come across these kinds of combinatorial optimization problems in

many different fields such as studying DNA sequencing (Boev et al. 2021), protein

folding (Babbush et al. 2014), machine learning (Adachi and Henderson 2015), so

on and so forth (Ikeda, Nakamura, and Humble 2019).

There are a number of problems to be addressed in the field of quantum annealing

in order to improve the final solution obtained. An important one among them is

to address small energy gaps of the systems during the evolution which can lead

the system to transition to a higher level. The small energy gaps can be modeled

using Landau-Zener problem (Kadowaki and Nishimori 1998), where the diabatic

transitions occur with a probability e
−π|b|2

h̄a , where b is proportional to the energy

gap at the avoided crossing (in the adiabatic evolution) and a is a constant. This

has led to the research area of transitionless driving by counterdiabatic driving

(Del Campo 2013). This involves adding an additional potential that compensates

for the small gaps in the instantaneous energy spectrum sufficiently during the

evolution. More discussion on the techniques of counterdiabatic driving is done

later in this chapter. Moreover, small energy gaps mean a long annealing time

as predicted by the adiabatic theorem. But at the moment we cannot afford to

protect qubits from dissipation for a longer time. Therefore, it is essential to

find an alternative fast path of evolution for the annealing process at the same

time being adiabatic. In short, these techniques fall under the category of optimal

control and shortcuts to adiabaticity. Further, one should bear in mind the practical
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feasibility of the techniques introduced. For example, it is desirable that the

counterdiabatic potential introduced is local and can be easily implementable

on a quantum hardware architecture. Another technique to design an efficient

quantum annealing is to monitor the pace of quantum evolution. It may not be

essential to maintain a monotonous annealing schedule in quantum annealing. By

finding optimal annealing schedules, the performance of the quantum annealing

can be improved drastically. In fact, in Roland and Cerf 2002, the authors have

shown that by resorting to non monotonous annealing schedules computed by

implementing local adiabaticity condition, one can obtain a quadratic speedup

in adibatic search problem (equivalent to Grover’s search problem in gate model

computation). This is a remarkable result in showing quantum speedup using

adiabatic quantum computation or quantum annealing.

There are also several other formalisms and techniques which deviate from the

traditional protocol of quantum annealing in order to improve its efficiency. One

of them is applying inhomogeneous transverse field in the Hilbert space, which

modulate the interactions, especially at the point small energy gaps to avoid

transitions to higher energy level. However, it is difficult to control the field

inhomogenously at the moment from the practical point of view (Philipp Hauke

et al. 2019). Another approach is reverse annealing. In this strategy, the system is

initialized in a particular state usually close to solution state instead of a standard

approach of starting from a superposition state (Ohkuwa, Nishimori, and Daniel A.

Lidar 2018b; Gianluca Passarelli, Yip, et al. 2020; Philipp Hauke et al. 2019). Such

an initial state can be found by a classical simulation. The system is prepared in
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this candidate state with zero transverse field and the transverse field is increased

and decreased gradually, so that system searches for ground state configuration in

a smaller search space close to the candidate solution. The standard approach of

quantum annealing is implemented on stoquastic Hamiltonians only. Stoquastic

Hamiltonians are those where the non-diagonal elements are only non-positive.

There are some efforts in implementing quantum annealing in non-stoquastic

Hamiltonians (Nishimori and Takada 2017; Philipp Hauke et al. 2019). It is also

shown that non-stoquastic quantum annealing can simulate universal model of

quantum computation (Jacob D. Biamonte and Love 2008).

In this thesis, the simulation of adiabatic quantum computation or quantum an-

nealing is done using QuTip python library (Johansson, Nation, and Nori 2012;

Johansson, Nation, and Nori 2013). Specifically, we use "mesolve" function which

simulates master equation evolution for a given list of discreet time points. By

setting the collapse operators variable "c_ops" to 0, this function simulates unitary

dynamics generated by the given Hamiltonian. The Hamiltonian operators with

their respective time dependent coefficients can be passed as a nested operator. The

expectation values of the observables on the evolved state can also be obtained by

defining the observable as the variable "e_ops". The typical computational time

to simulate the unitary dynamics driven by the Hamiltonian in Eq. 1.1 with Hz

being the ferromagnetic p-spin Hamiltonian, with 15 spins for a final time T = 3,

sampled at 100 points during evolution is approximately equal to 0.03s

The experimental test bed for the results obtained in this thesis can be offered by

D-Wave systems quantum annealer (O’Malley et al. 2018; Harris et al. 2011). In
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the most recent D-Wave systems Advantage quantum annealer, there are more than

5000 superconducting flux qubits with 1,000,000 Josephson junctions (Orlando et

al. 1999). In each qubit, the basis states are defined by the clock-wise and the anti-

clockwise current in the superconducting current loop. The qubits can be controlled

to be in one of these states by applying microwave pulse with the energy same as

that of the energy difference between these two states of the flux qubit. Further, the

qubits are coupled pairwise (but not all-to-all connected) via switchable coupling

loops. There are more than 35,000 of such couplers in the present hardware of

D-Wave. These Quantum Processing Units (QPUs) can be accessed using the

open-source cloud service, Leap. Programming in the D-Wave can be done using

python based software Ocean. This thesis focuses on providing useful classical-

quantum hybrid algorithms, specifically combining classical genetic algorithms

with quantum annealing. The D-Wave Hybrid offers a platform to contribute and

run our own hybrid algorithms on their computing systems which can provide

experimental test-bed to verify our results.

1.3 Ferromagnetic p-spin model

Ferromagnetic p-spin model is widely studied in the context of quantum anneal-

ing (Bapst and Semerjian 2012; Gross and Mezard 1984; Seoane and Nishimori

2012; Seki and Nishimori 2012; Ohkuwa, Nishimori, and Daniel A. Lidar 2018a;

Matsuura, Nishimori, Vinci, Albash, et al. 2017; Susa, Yamashiro, et al. 2018).



CHAPTER 1. INTRODUCTION 13

The Hamiltonian of this model composed of N spins is,

Hp =−JN

(
1
N

N

∑
i

σ
z
i

)p

, (1.4)

where J > 0, is the coupling strength. In the finite time adiabatic quantum compu-

tation, this model shows quantum phase transitions. For p = 2, the phase transition

is of second order and for p≥ 3, the phase transition is of first order in the ther-

modynamic limit. The detailed derivation of thermodynamic properties and phase

transitions of the model is given in Bapst and Semerjian 2012.

Furthermore, the ferromagnetic p-spin model with even p exhibits time reversal

symmetry or Z2 symmetry and hence the ground state is 2-fold degenerate(all

spins up and all spin down) and for odd p, the ground state corresponds to the

case where all spins are up. For odd p, there is only one state with lowest energy

among 2N states and hence forms a harder problem. It can be shown that in

the thermodynamic limit, for odd p and p→ ∞, the ferromagnetic p-spin model

corresponds to Grover’s search algorithm (L. K. Grover 1996; Jörg et al. 2010).

The Hamiltonian of this model commutes with total spin operator S2, and therefore

this model can be effectively represented in the total spin bases of S operator.

Therefore, the dimension of Hilbert space to describe a system of N spins system

reduces from 2N to N +1. This offers a huge advantage in simulating the system

using classical machines. The procedure of basis change is described in appendix B.

In this thesis, we have studied the quantum annealing of ferromagnetic p-spin

model in two contexts. First, to demonstrate mapping of many-body Hamiltonian
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with p-local interaction into a Hamiltonian with 2-local interactions so that the

optimization problems can be solved on quantum annealer architecture. Second, we

propose a method of shortcuts to adiabaticity using the same model by engineering

the annealing schedules and by introducing an optimal driving operator using

genetic algorithms.

1.4 Embedding optimization problems into

quantum annealer architectures

At present, D-Wave systems has built quantum annealer based on superconducting

qubits and are commercially available (Harris et al. 2011). In a D-Wave quantum

annealer, the qubits are arranged in chimera graphs or more recently Pegasus

graphs with 5000 qubits available for computation. Therefore, from the practical

point of view, all the combinatorial optimization problems have to be translated

into a form which can be embedded into these architectures. In particular, these

architectures allow at most 2-local interactions with sparse connectivity, with

Pegasus graph having better connectivity than that of Chimera architecture (S.

Okada et al. 2019). These machines can solve quadratic unconstrained binary

optimization (QUBO) problems, which can be modelled as Ising model interaction

among the qubits (Date et al. 2019; Philipp Hauke et al. 2019). Therefore, it

is an important topic of research to map a given optimization problems or the

Hamiltonians of whose ground state is to be sought into Ising like Hamiltonian.

This requires two crucial steps. One is to find an equivalent system with new
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interactions, but they simulate the same lower energy spectrum as the original

system. This requires to introduce some additional degrees of freedom into the

new system and which when introduced satisfy a suitable penalty condition so that

they do not alter the lower spectral properties of the new system when compared

to our problem Hamiltonian (Choi 2011; Choi 2008; J. D. Biamonte 2008). In

this thesis, we have attempted to solve this problem resorting to heuristic methods

of evolutionary algorithms. Second step of mapping the problem Hamiltonian is

to find a graphical embedding scheme which satisfy the interactions of the new

Hamiltonian and can be implementable in the presently available quantum annealer

hardware. In addition to representing the 2-local interactions between the qubits,

the interactions between the physical qubits which represent the same logical qubits

have to be comparatively very large.

In this thesis, the first problem that we have addressed in the paradigm of quantum

annealing is to reduce a k-local Hamiltonian into a 2-local Hamiltonian, in particular

to solve the parameter setting problem. This problem facilitates minor embedding

process by finding the strengths of interactions between the qubits. A k-local

Hamiltonian is one, where each term of the Hamiltonian acts on at most k qubits.

The motive of our research is to find a new equivalent interaction among the qubits

where at most 2 qubits interact with each other, at the same time have their eigen

spectrum closely resembling the system with original k-local interactions. In these

kinds of problems the qubits or spins in the original system are referred to as logical

qubits and the qubits in the new equivalent system are referred to as physical qubits.

The algebraic reduction of such k-local Hamiltonians into 2-local Hamiltonians
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has been done in J. D. Biamonte 2008 by the introduction of auxiliary degrees of

freedom or introducing additional ancilla qubits. The new 2-local Hamiltonians

are supposed to represent the original problem by having the same lower energy

spectrum of the original k-local Hamiltonian. This constraint is taken care of

by introducing a Boolean expression that the ancilla qubits have to satisfy. In

this work, we have considered AND embedding, where each ancilla introduced

has to satisfy an AND condition between a pair of logical states. All possible

configurations of the physical qubits are generated. A penalty function is used to

make sure if each configuration satisfies the AND embedding rule and whenever a

configuration fails to satisfy this condition, a large penalty is added to the energy of

this configuration of states of the mapped system, such that they are separated from

the lower energy spectrum. A choice of penalty function for such AND embedding

is,

Epen = δ (3x̃3 + x1x2−2x1x̃3−2x2x̃3), (1.5)

where x̃3 is the ancilla qubit. x1 and x2 are the logical qubits. By choosing a large

value for δ , the unphysical qubit configurations can be assigned a large energy so

that they are separated form the lower energy spectrum.

To be precise, if the original system contains N qubits, we match the lower 2N

states of the mapped 2-local Hamiltonian with the eigen spectrum of the original

system. We formulate an optimization problem, which minimizes the differences

between the corresponding eigen energies between the two Hamiltonians.

Another strategy of embedding technique which has gained recent attention is
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Lechner-Hauke-Zoller (LHZ) Scheme (Leib, Zoller, and Lechner 2016; Hartmann

and Lechner 2019). In this case, the physical qubits represent the interaction

between two logical qubits, rather than the logical qubits themselves. There have

also been developments in finding an effective LHZ embedding for counterdiabatic

potentials.

A specimen model to represent the many body interaction is the ferromagnetic

p-spin model. We have considered the same model to find an equivalent mapping

to it by using computational intelligence technique of evolutionary algorithms.

Evolutionary algorithms are heuristic approaches inspired by the evolution process

of living organisms. The detailed overview and comments on these evolutionary

algorithms are given later in this chapter.

1.5 Shortcuts to adiabaticity

The main hurdle of adiabatic quantum computation and in turn, quantum annealing

is small energy gaps in the instantaneous eigen spectrum of the driving Hamiltonian.

A common and the most researched way of tackling this problem is to add a

suitable counterdiabatic potential to the driving Hamiltonian which overcomes the

transition to higher energy state during the path of evolution (Del Campo 2013;

Funo et al. 2017). Also, it is of practical interest to find evolution paths which

are faster than the decoherence of the qubits by controlling the paramaters of the

quantum annealing or to find shortcuts to adiabaticity (Berry 2009; Del Campo

2013; Torrontegui et al. 2013; Campbell and Deffner 2017; Guéry-Odelin et al.
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2019; Campbell, De Chiara, et al. 2015; Mukherjee, Montangero, and Rosario

Fazio 2016; G. Passarelli, V. Cataudella, R. Fazio, et al. 2020; Abah and Lutz 2018;

Alan C. Santos and Marcelo S. Sarandy 2015; Coulamy et al. 2016; Alan C Santos

and Marcelo S Sarandy 2017; Hu et al. 2018; Alan C. Santos, Nicotina, et al. 2020).

These techniques are collectively studied under the names of transitionless driving,

counterdiabatic driving, short cuts to adiabaticity(STA), quantum optimal control

and others.

The exact solution for a counterdiabatic potential was given by M. V. Berry in Berry

2009. He derived a Hamiltonian which leads to transitionless driving using reverse

engineering technique. Which means, given a Hamiltonian H0(t), a new time

dependent Hamiltonian H(t) is found such that the instantaneous spectrum shows

no transitions. The derivation lead to the counterdiabatic potential of the form,

H(t) = H0(t)+Hcd(t), (1.6)

where,

Hcd(t) = ih̄ ∑
m ̸=n

∑
|m⟩⟨m|∂tH0 |n⟩⟨n|

En−Em
. (1.7)

This solution of transitionless driving, albeit exact, is problematic at the point of

level crossing or avoided level crossing. At these points, the small denominator,

leads to a large potential, not possibly implementable. In addition, the counter-

diabatic potential Hcd in Eq. 1.6 requires the exact diagonalization of the driving

Hamiltonian. In principle, the motive of the quantum annealing is to find the

ground state of the Hamiltonian, therefore in general we do not have access to the
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knowledge of instantaneous eigen spectrum of the driving Hamiltonian.

A variational approach to find the counterdiabatic potential was invented by Sels

and Polkovnikov (Sels and Polkovnikov 2017). The phase transitions during the

evolution can be modelled using a Hamiltonian in the moving frame of reference

as

Heff
0 = H0− λ̇Aλ , (1.8)

where Aλ is the adiabatic gauge potential defined in Sels and Polkovnikov 2017.

The excitations are caused due to the second term. Therefore, if this term is added

to the total Hamiltonian, the system is driven by the Hamiltonian H0 which can be

diagonalised exactly throughout, without any phase transitions. It can be seen that

when the system evolution is very slow which means, λ̇ → 0, the system is driven

by the Hamiltonian H0. It can be shown that the exact adiabatic potential obeys the

equation,

[ih̄∂λ H0− [Aλ ,H0],H0] = 0 (1.9)

In Sels and Polkovnikov 2017, the authors propose a variational method to compute

Aλ . In particular, instead of solving Eq. 1.9, the authors equivalently resort to the

variational principle of minimizing an action,

δS(Aλ )

δ (Aλ )
= 0, (1.10)

S(Aλ ) = Tr[G2
λ
(Aλ )], (1.11)
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Gλ (Aλ ) = ∂λ H0 +
i
h̄
[Aλ ,H0]. (1.12)

There have been multiple proposals for a suitable ansatz for finding Aλ . One of the

successful ansatz is the nested commutator operator proposed in Claeys et al. 2019,

which reads,

A(l)
λ

= ih̄
l

∑
k−1

αk[H0, [H0, ...[H0,∂λ H0]]] (1.13)

This operator is used to construct a potential Gλ (Aλ ) as in Eq. 1.12, and the

Hilbert-Schmidt norm in Eq. 1.10 is minimized. A different ansatz using cyclic

local operators is introduced in (G. Passarelli, V. Cataudella, R. Fazio, et al. 2020).

This ansatz outperforms the nested commutator ansatz for the adiabatic quantum

computation of ferromagnetic p-spin model. The cyclic ansatz can be explicitly

written as,

ACA
λ

=
p′

∑
i=1

αiSi
y +∑

abc
αabcεabcSaSbSc. (1.14)

In this thesis, we approach the shortcuts to adiabaticity by finding an optimal

driving potential using genetic algorithms. In contrast to the variational approach

given by Sels and Polkovnikov, we optimize the local ansatz operator using genetic

algorithms with the condition to gain higher fidelity at the end of adiabatic evolution.
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In particular, we consider the practically implementable local ansatz of the form,

Hod(s,γ)d=3 =C(s)
3

∑
i=1

γiSi,

Hod(s,γ)d=9 = Hod(s)d=3 +C(s)
3

∑
i, j=1

γi, jSiS j,

Hod(s,γ)d=21 = Hod(s)d=9 +C(s)
3

∑
i, j,k=1

γi, j,kSiS jSk.

(1.15)

In our work we show that by optimizing few parameters of Hod(s,γ)d=3, we are

able to achieve a high fidelity. Using other advanced techniques like multi-objective

optimization we are able to maintain high groundstate probability throughout the

evolution.

In addition to finding an optimal driving path by computing a potential, it is also

possible to engineer annealing schedules to increase the fidelity of the solution

obtained in quantum annealing. The exact optimal schedule was derived by Roland

and Cerf in (Roland and Cerf 2002). Here, the authors have imposed local adiabatic

condition throughout the evolution to obtain an optimal annealing schedule. The

authors have proven this method for Grover search algorithm in adiabatic quantum

computation regime and retrieve the quadratic speed up with the exact optimal

annealing schedule. In our work, we have used genetic algorithms to find an optimal

annealing schedule starting from a polynomial ansatz, for quantum annealing

without optimal driving. The results are promising and improved drastically when

compared with the traditional linear schedules. However with large number of

spins, this ansatz is not sufficient to obtain high fidelity. Fortunately, when time
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schedules are optimized in the optimal driving picture, quantum annealing provides

high fidelity even for large number of spins.

1.6 Evolutionary algorithms

Evolutionary algorithms are meta-heuristic techniques inspired by the Darwinian

theory of evolution (Fonseca and Fleming 1995; Bäck and Schwefel 1993; Rothlauf

2006). The living organisms undergo reproduction, mutation, natural selection, and

the fittest individuals survive along this continuous evolution process. Evolutionary

algorithms are built on these concepts, where the candidate solutions represent the

individuals which undergo optimization. It is a population-based algorithm, where

a set of candidate solutions are considered and replaced in every generation. The

"strongest" solutions survive through generations and these solutions are used to

create off-springs by the process of cross-over. Further, the population is diversified

by the process of mutation. There are different classes of evolutionary algorithms,

all of which are inspired from the dynamics of evolution of living organisms. The

standard and typical algorithm is the genetic algorithm (D. E. Goldberg and Hol-

land 1988; Giovanni Acampora, Vittorio Cataudella, Pratibha R Hegde, et al. 2019;

Sastry, D. Goldberg, and Kendall 2005). In this thesis, we mainly use genetic algo-

rithms as a numerical tool for optimization problems in the paradigm of adiabatic

quantum computation and quantum annealing. We also implement other variants

of genetic algorithms such as memetic algorithm (Giovanni Acampora, Cadenas,

et al. 2011; H. Wang, Yang, et al. 2010; Giovanni Acampora, Vittorio Cataudella,
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Pratibha Raghupati Hegde, et al. 2021), multi-objective genetic algorithm (Deb

et al. 2002; Chivilikhin et al. 2020) in this thesis. The implementation of genetic

algorithms is done using the python library Deap (Fortin et al. 2012).

Recently, genetic algorithms and quantum computation have been used to improve

each other. Genetic algorithms have been used to learn quantum operators and

circuit designs. On the other hand, there have been proposals of quantum-inspired

genetic algorithms. The review of these two aspects is given in Giraldi, Portugal,

and Thess 2004. In Venturelli and Kondratyev 2019, authors have used genetic

algorithms to obtain a candidate solution to an optimization problem which is

further used to perform reverse quantum annealing and have shown remarkable

results. In Flynn et al. 2021, authors have used genetic algorithms to find an

appropriate Hamiltonian model which best describes a given quantum system,

along with finding which of the lattice interactions are present. In R. Li et al. 2017,

genetic algorithms have been used to find approximate quantum adders. Further,

multi-objective genetic algorithms are used to optimize variational quantum eigen-

solver in Chivilikhin et al. 2020. In Las Heras et al. 2016, genetic algorithms have

been proven to be effective in finding equivalent discrete quantum operations of a

continuous evolution generated by a given Hamiltonian and in implementing error

correction protocols in quantum gates.

The key definitions and steps involved in genetic algorithms are as follows.

Fitness function Genetic algorithms compute optimal solutions by minimizing

or maximizing a function called the fitness function. It is a function of parameters
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to be optimized and describes the “motive" for genetic algorithms. Each chromo-

some is assigned fitness values evaluated from fitness function. The quality of a

chromosome is determined by this fitness value and is a criterion for the selection

process. For example, consider one-max problem (Fortin et al. 2012). It is a very

simple problem where, given a set of m integers, which can take the values between

0 and 1, we want each of them to be equal to 1. The fitness function for this

problem can be simply the sum of all m integers and direct the genetic algorithm

to maximize this fitness function. Further, a fitness function can have single or

multiple objectives.

Population initialization The algorithm is initialized by creating a string of

random real numbers in the range [popmin,popmax] called the chromosomes. These

real numbers are individually termed genes. Npopof such chromosomes compose a

population. Note that the range of the real numbers is only an initial condition. The

numbers can go beyond this initial range throughout the process of optimization,

by the process of mutation.

Selection Once the population is created, the best individuals are selected to

be parents for crossover. The selection process can be done in different ways like

Roulette wheel selection, selecting the best chromosomes, tournament selection

and others. Roulette wheel selection is to consider the chromosomes from Nroul

spins of a roulette wheel which has pie chart of chromosomes weighted by their

fitness values. Tournament selection is running a tournament among every NT
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individuals and selecting the individuals. In this thesis, we have mainly used

tournament selection and we have made a comparison performance of the algorithm

by changing the tourn size NT.

Cross-over In this process, among every two selected individuals, a segment is

interchanged between the parent chromosomes to give a new offspring chromosome.

These new chromosomes replace the parent chromosomes in the population. This

process occurs with a probability pc. There are a number of ways of performing

this process. In this thesis, we have mainly resorted to the comparative study of one

point cross-over and two-point cross-over. A higher value of pc leads to premature

convergence of the algorithm because similar solutions dominate in the population

set. Therefore, it is necessary to vary pc and choose the appropriate value suitable

for the problems chosen.

Mutation Mutation is responsible for creating diversity among living organisms

in the evolution process. It has the same role in genetic algorithms as well. Mutation

is implemented by varying the values of chromosomes according to a probability

distribution. The process of mutation occurs with a probability pm and each gene

of the chromosome changes with the probability pind. So the total probability

of this process is pm× pind. Once again, there are many ways of implementing

mutation. In this thesis, we mainly use Gaussian mutation with the mean value µ

and standard deviation σ . We vary σ to suit the problem at hand and fix the best

value which gives the best fitness value at the end of algorithm.
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Termination criteria Genetic algorithm repeatedly applies generations of se-

lection, crossover, and mutation operators to the population of chromosomes. We

can choose to stop the algorithm after a certain number of such generations or we

can terminate the algorithm once it succeeds to reach a predefined value of fitness

function for a chromosome. One can make a qualitative analysis for a problem to

estimate the number of generations for which the fitness values converge. Alterna-

tively, one can also choose the number of fitness evaluations to be the termination

criteria. This is particularly useful when comparing two different algorithms, such

as genetic and memetic algorithms. For example, memetic algorithms implement

additional generations of local searches after each generation of the standard ge-

netic algorithm. In this case, comparing the performances for a fixed number of

generations is not meaningful.

Hall of fame This is a list that gets updated in every generation with the best

chromosome found in that generation. At the end of the algorithm, the parameters

stored in this hall of fame are the optimal parameters given by genetic algorithms

and are used for analyzing the results. Note that it can sometimes happen that

the best chromosome in the current generation is slightly worse than the best

chromosome is in the previous generation. It is because in the crossover process,

even though the best chromosomes are used for mating, the child chromosome

may not be better than either of the parent chromosome. To avoid this and not

to lose better solutions, one can use elitism. One way to implement elitism is to

replace the worst chromosome in a given generation with the best chromosome of
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the previous generation.

In this thesis, we also explore a variant of genetic algorithms called memetic

algorithms (Giovanni Acampora, Cadenas, et al. 2011; H. Wang, Yang, et al. 2010).

It is inspired from Richard Dawkin’s idea of a meme (analogous to the gene),

where a quality or technique is shared among a portion of the population from brain

to brain rather genetically. Similarly, in the memetic algorithm (MA), a portion

of the population is subjected to local optimization in every generation. We have

used this technique in solving parameter setting problem of embedding many-body

interactions into 2-body interactions (Giovanni Acampora, Vittorio Cataudella,

Pratibha Raghupati Hegde, et al. 2021).

We have also implemented the technique of multi-objective genetic algorithms for

finding optimal annealing schedules and computing an optimal driving operator.

We have used Non-domination Sorted Genetic Algorithms-II (NSGA-II) (Deb

et al. 2002; Chivilikhin et al. 2020). This algorithm deviates from the standard

genetic algorithms in many ways. To begin with, the fitness function returns two

values which have to maximized or minimized. The population is distinguished

into different fronts based on if the given chromosome dominates in terms of the

trade-off between the two fitness values. And the parents are selected from these

fronts, the best front is called the pareto optimal front. Naturally, instead of hall of

fame, in every generation the pareto optimal front is stored which consists of a set

of chromosomes that have the best trade-off values. In addition, the chromosomes

undergo mutation process as in the standard genetic algorithms. The optimal

chromosomes in the end of evolution are used to compute and analyze further
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results.

In this thesis, we have used the python library DEAP to implement genetic algo-

rithms (Fortin et al. 2012). This library offers flexible operators for selection,

crossover and mutation, which can be chosen according to our problem and stored

in a "toolbox". In addition, the toolbox is already equipped with module for statis-

tical operations such as min, max, median, standard deviation and others which

are computed in each generation for the chromosome distribution. It also has a

logbook which stores the history of statistical data of each generation and hall

of fame which stores the best chromosome found in each generation. A simple

genetic algorithm can be implemented in a straightforward way using a single

function "eaSimple". DEAP package is also advantaged by the in-built algorithm of

NSGA-II algorithm. This functionality can be accessed by choosing the selection

operator as "selNSGA2". In addition, DEAP also has an in-built multithreaded

programming tool called "multiprocessing", that allows to parallelize the fitness

evaluations.

This thesis is organized as follows. In Chapter 2 we map k-local Hamiltonians

into Hamiltonians with 2-local interactions to facilitate embedding optimization

problems into quantum annealer architectures. We implement genetic algorithms

to achieve the same. We show further improvement in the results by using memetic

algorithms. In Chapter 3, we find shortcuts to adiabaticity by engineering the

annealing schedules and by finding an optimal driving operator which suppresses

Landau-Zener-like transitions. We use single objective genetic algorithms and

multi-objective genetic algorithms to optimize quantum annealing. We conclude
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by discussing our results in Chapter 4.



30

2. An evolutionary strategy for

finding effective quantum 2-

body Hamiltonians of p-body

interacting systems1

Finding the solution of NP-hard problems requires a time-to-solution increasing

exponentially as a function of the system size (Cook 1971). NP-hard tasks can

be studied with adiabatic quantum computation (Farhi, Goldstone, Gutmann, and

Sipser 2000; Albash and Daniel A. Lidar 2018), a heuristic tool for finding the

optimal solution to this kind of problems. The D-Wave quantum machines (Harris

et al. 2011) can perform finite-time adiabatic quantum computation, or quantum

1This chapter is reprinted by permission from [Springer Nature Customer Service Centre
GmbH]: [Springer Nature] [Quantum Machine Intelligence] [An evolutionary strategy for finding
effective quantum 2-body Hamiltonians of p-body interacting systems, G. Acampora et al), [License
Number: 5233550881398, License Date : Jan 21, 2022] (2019) (Giovanni Acampora, Vittorio
Cataudella, Pratibha R Hegde, et al. 2019) and
Giovanni Acampora, Vittorio Cataudella, Pratibha Raghupati Hegde, et al. 2021
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annealing. The superconducting architecture of D-Wave processors is built on the

Chimera graph (Choi 2008; Choi 2011), a sparsely connected graph that can host

N ≤ 2048 qubits, with at most 2-body interactions. The recent quantum processing

unit of D-Wave has upto 5000 qubits and the architecture is a Pegasus graph

which has more connectivity. However, many interesting problems, including the

ferromagnetic p-spin model (Derrida 1981; Gross and Mezard 1984; Bapst and

Semerjian 2012), can be mapped on fully-connected qubit systems with p-body

interactions (p ≥ 2). In order to exploit the available quantum hardware, these

problem have to be mapped to effective Hamiltonians (Lucas 2014), containing

at most 2-body interactions. This necessarily implies the introduction of auxiliary

degrees of freedom, or ancillae (J. D. Biamonte 2008). The major challenge in this

problem is to find the free parameters in the 2-body Hamiltonian, corresponding to

the p-body one, such that the two Hamiltonians share the same spectral properties,

at least at lower energy levels.

In this chapter, we show that genetic algorithms can be a powerful tool to optimize

the free parameters in the effective 2-body model, focusing on the ferromagnetic p-

spin system described in Sec. 1.3. Genetic algorithms are stochastic meta-heuristics

for finding solutions to optimization problems, inspired by the Darwinian theory

of evolution (D. E. Goldberg and Holland 1988). The (real) free parameters to

optimize, or genes, are arranged in a chromosome. Many such chromosomes, or

individuals, compose a population. The fitness of each individual represents its

chances of survival along generations. Choosing an appropriate fitness function

is the core of genetic algorithms. As shown with more in-depth in the following
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Sections, we use the mean square error of the effective spectrum from that of the

original Hamiltonian as our fitness function. The idea to apply genetic algorithms

is motivated by recent works (O’Driscoll, Nichols, and Knott 2019; Hardy and

Steeb 2010), where this kind of evolutionary algorithms have been successfully

exploited to solve optimization problems in quantum computing domain.

The ferromagnetic p-spin model is equivalent to the Grover search algorithm in the

limit of large and odd p. However, in this chapter we focus on the very simple cases

involving small p (p = 3) that can be also analytically addressed. As shown by a set

of preliminary experiments involving two simple configurations of ferromagnetic

p-spin model, the analytic solutions are well-reproduced by the designed genetic

algorithm. Moreover, to ensure the validity of our approach, we also simulate a

quantum annealing and study the time evolution of the ground state probability for

the p-spin system and its effective 2-body counterpart.

The rest of the chapter is organized as follows. In Section 2.1, our model Hamilto-

nian is introduced. In Section 2.2, the details about the proposed genetic algorithm

including chromosome structure and fitness function are given. Section 2.3 presents

the settings and the results of a set of preliminary experiments related to the ap-

plication of the proposed genetic algorithm to two small instances of the p-spin

model, which we use as benchmarks for the accuracy of our scheme. In Section 2.4

we introduce and perform memetic algorithms in order to further improve the

optimization of mapping. Conclusions and improvements to be performed in the

future are reported in Section 2.5.
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2.1 Problem definition

We consider a system of N qubits. The two logical states in the computational basis

of qubit i can be equivalently labeled as |σi⟩, with σi =±1, or |xi⟩, with xi = 0,1.

The two choices are related by σi = 1−2xi. In the following, we will use the xi

representation to express the energy of the system, unless stated otherwise. We

denote by σ k
i , with k = x,y,z, the Pauli matrices acting on the ith qubit. Moreover,

we work in natural units and fix h̄ = 1.

We focus on the ferromagnetic p-spin model (Derrida 1981; Gross and Mezard

1984), whose dimensionless classical Hamiltonian reads

Ep =−N

[
1
N

N

∑
i=1

(1−2xi)

]p

. (2.1)

The quantum version of this Hamiltonian reads

Hp =−N

(
1
N

N

∑
i=1

σ
z
i

)p

. (2.2)

For even p, there are two degenerate ground states due to the Z2 symmetry of

this model, while for odd p the ground state is nondegenerate. For N → ∞ and

p→ ∞ (p≤ N, p odd), this model can implement a Grover-like search in adiabatic

quantum computation (L. K. Grover 1996).

In adiabatic quantum computation, one usually employs the parametric Hamiltonian

H(s) = A(s)H0 +B(s)Hp, (2.3)
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where s = t/T is a dimensionless time and ranges in [0,1], T being the annealing

time, and the two functions A(s) and B(s) satisfy A(0)≫ B(0) and A(1)≪ B(1).

H0 is the transverse field Hamiltonian:

H0 =−
N

∑
i=1

σ
x
i . (2.4)

The qubit system is prepared in the ground state of H(0) and is evolved by slowly

changing the parameter s towards s = 1. If the evolution is adiabatic compared

to the inverse of the minimal gap ∆ between the instantaneous ground state and

the first excited state, the system is found at s = 1 in the ground state of Hp with

large probability. In this chapter, we will use a linear annealing schedule, i. e.,

A(s) = 1− s and B(s) = s.

Despite the fact that it is analytically solvable, the p-spin model is heavily studied in

the context of quantum optimization (Seoane and Nishimori 2012; Susa, Yamashiro,

et al. 2018; Ohkuwa, Nishimori, and Daniel A. Lidar 2018b; G. Passarelli, De

Filippis, et al. 2018; Gianluca Passarelli, De Filippis, et al. 2019), due to its

ability to capture the essential feature of NP-hard problems, i. e., the exponentially

growing time-to-solution as a function of N. In fact, when p > 2 and in the

thermodynamic limit, the p-spin system undergoes a first-order quantum phase

transition that makes its spectral gap ∆ close exponentially fast as a function of

N (Bapst and Semerjian 2012).

However, due to its full-connectivity and the presence of p-body interactions, this

model can be hardly embedded in the available quantum hardware. The Chimera
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graph of latest D-Wave machines only allow to study sparse models with at most

2-body interactions (Choi 2008; Choi 2011). In order to use D-Wave machines

to perform the quantum annealing of the p-spin model, first we have to map

its Hamiltonian (2.2) into an effective one, containing only 2-body interactions,

yet still fully connected. Then, using minor embedding (Choi 2008), this fully-

connected effective 2-body Hamiltonian is mapped onto a sparse model, respecting

the topology of the Chimera graph. Both these two steps require the introduction

of a certain number Na of ancillary degrees of freedom. In this chapter, we will

address only the first question and discuss the mapping of the p-spin Hamiltonian

with p-body interactions onto the effective fully-connected 2-body Hamiltonian

H ′p = K +
M

∑
i=1

hiσ
z
i +

M

∑
i=1

M

∑
j=i+1

Ji, jσ
z
i σ

z
j , (2.5)

where M = N +Na is the total number of qubits, K is a constant energy shift, hi are

local longitudinal fields and Ji, j couples qubits i and j ( j > i). The corresponding

classical effective energy reads

E ′p = c0 +
M

∑
i=1

cixi +
M

∑
i=1

M

∑
j=i+1

di, jxix j. (2.6)

Parameters in the two Hamiltonians (2.5) and (2.6) are related by (Philipp Hauke
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et al. 2019)

K = c0 +
1
2

M

∑
i=1

ci +
1
4

M

∑
i=1

M

∑
j=i+1

di, j. (2.7)

hi =−
1
2

ci−
1
4

M

∑
j=1

d j,i−
1
4

M

∑
j=1

di, j, (2.8)

Ji, j =
1
4

di, j. (2.9)

All these free parameters are real-valued.

To map the Hamiltonian (2.2) to the Hamiltonian (2.5) means that the low part of

the spectrum of H ′p has to match the spectrum of Hp, and all other energy levels

must be separated by a large energy gap from the original eigenvalues. Indeed,

for the purpose of adiabatic quantum computation, only the ground state and the

first excited subspace have to be matched in the purely adiabatic limit. However,

in this chapter we will always aim at matching the first L = 2N eigenvalues of H ′p

and all the original spectrum. We stress that even if the low-energy subspace of H ′p

correctly reproduces the spectrum of Hp, the quantum dynamics could be different.

However, this mapping allows to solve the original optimization problem, through

an experimentally viable effective model.

Multiple-body interactions can be turned into 2-body interactions using AND

embedding. Pairs of binary variables (xi,x j) are encoded in an ancillary degree of

freedom x̃i, j = xi∧ x j. Of course, allowed configurations for the triple (xi,x j, x̃i, j)

are those where the logical AND is satisfied. A penalty function Epen(xi,x j, x̃i, j)

penalizes nonphysical configurations through a large cost δ > 0. We will use the
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x1
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x̃23

x1
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Figure 2.1: Visual representation of the AND embedding of Eq. (2.11). On the left,
the graph representing the original 3-body term Jx1x2x3. On the right, the graph
corresponding to the decomposed Hamiltonian with maximum 2-body interactions,
including penalties. Blue and red circles represent the original and the ancillary
qubits, respectively. Blue lines represent coupling strength J, solid red lines
represent −2δ and dashed red lines δ .

penalty function

Epen(xi,x j, x̃i, j) = δ (3x̃i, j + xix j−2x̃i, jxi−2x̃i, jx j). (2.10)

It is easy to see that Epen = 0 if x̃i, j = xi∧ x j, while Epen ≥ δ if x̃i, j ̸= xi∧ x j (J. D.

Biamonte 2008; Leib, Zoller, and Lechner 2016).

To be specific, consider a 3-body term as Jx1x2x3. Using the previously introduced

AND embedding, this term can be rewritten using an ancillary qubit x̃23 as

Jx1x2x3 ≡ Jx1x̃23 +δ (3x̃23 + x2x3−2x̃23x2−2x̃23x3), (2.11)

where the equivalence is intended as equality between corresponding L = 8 lowest

energy levels. This is pictorially represented in Fig. 2.1.
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2.2 A genetic algorithm for optimizing Hamilto-

nian free parameters

This section is devoted to present the application of genetic algorithms for finding

the free parameters useful for mapping p-body interacting systems in the 2-body

Hamiltonian. Genetic algorithms are population-based meta-heuristics which

try to solve an optimization (or search) problem by manipulating a multi-set of

potential solutions and reproducing the natural selection process involving human

individuals. In detail, as natural selection process leads to the survival of only

the fittest human individuals (i. e., those capable of adapting to the changing

environment), so the genetic algorithms perform an evolution process that leads to

the survival of only the fittest solutions (i. e., those that better solve the optimization

problem). Specifically, genetic algorithms operate on encoded representations of

the solutions, called chromosomes. To determine how good a solution is, a fitness

function is used to reflect the capability of the solution to solve the problem. In

general, the workflow of a genetic algorithm includes the following steps. Firstly,

a population of chromosomes is generated randomly and evaluated by using the

fitness function. Successively, the algorithm performs a set of generations until

some termination criteria are satisfied. In each generation, a set of chromosomes

is selected to survive (parent selection mechanism) and reproduce by means of

the crossover operator. Generally, this operator takes in input two chromosomes

(parent) and gives in output two new chromosomes (offspring) by exchanging

portions of the parents. As in the natural evolution process, some mutations can
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occur. The mutation operator performs by randomly changing some of the genes in

the chromosomes. Both mutation and crossover operators are stochastic procedures

that are applied according to a probability, named mutation probability pmut and

crossover probability pcx, respectively. As for the termination criteria, the most

common one is the achievement of a maximum number of generations. Therefore,

in this chapter, we use this termination criterion.

Starting from this description, in order to implement a genetic algorithm for our

problem, it is necessary to define the chromosome structure, the fitness function

and the used genetic operators. Hereafter, a detailed description of the genetic

algorithm components is given.

2.2.1 Chromosome structure

The chromosome must encode the solution of our problem, that is the set of

Hamiltonian free parameters (2.6). In order to achieve this aim, the chromosome

structure has been defined as follows:

v⃗≡ (c0,c1, . . . ,cM,d1,2,d1,3, . . . ,dM−1,M). (2.12)

The length of the defined chromosome is D = (M2 +M + 2)/2. The values for

the genes belong to the range [−10,10]. This choice is motivated by the fact that,

in the analyzed cases, the genes of the chromosome v⃗ are strictly included within

these bounds, except for the penalties that are not subject to the same constrictions.
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2.2.2 Fitness function

The fitness function is used to evaluate the quality of the candidate solutions

encoded in the chromosomes. It is implemented by taking into account Ep and

E ′p reported in Eq. (2.1) and Eq. (2.6), respectively. In detail, firstly, we list all

possible configurations with N qubits, for the starting model, and with M qubits,

for the effective one. Conventionally, we arrange qubits of the effective model

so that ancillae are at the beginning of the sequence. Secondly, we apply Ep and

E ′p for each combination, sort the corresponding energies in ascending order and

perform the differences. Formally, the fitness function F is defined as follows:

F =
1
L

L

∑
i=1

[
(Ep)i− (E ′p)i

]2
+Evec

pen, (2.13)

with L = 2N . The first term enforces equality between corresponding eigenvalues,

while the second one is a penalty cost to be applied when the eigenvectors of

the effective Hamiltonian are ordered differently than the original ones. We do

not apply penalties when eigenvectors are ordered differently within symmetry

subspaces of the original Hamiltonian. In our code, Evec
pen = lδ , where l is the

number of unsorted configurations.

2.2.3 Genetic operators

Once defined the chromosome structure and the fitness function, it is necessary

to discuss about the genetic operators, that is, crossover, mutation and selection

mechanism. In the literature, different kinds of crossover, mutation and selection
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operators have been defined (Yao 1993) (Herrera, Lozano, and Sánchez 2003).

However, when a new problem is addressed with genetic algorithms, it is necessary

to select the most opportune configuration for these operators. For this reason,

in this chapter, we perform a design study of the implemented genetic algorithm

aimed at selecting the most opportune configuration for the problem at issue. In

detail, this study has involved the investigation of two different crossover operators,

that is, the one-point crossover and the two point-crossover, different Gaussian

distributions for mutation operator, and different values for tournament size for

the selection mechanism. The results of this design study are reported in the next

section. To conclude, in this section, we give more details about the investigated

genetic operators.

Crossover operators Generally, the crossover operator works by combining por-

tions of two chromosomes, denoted as parents. In this work, we investigate

two different strategies, i. e., one- and two-point crossover. In detail, the one

point crossover chooses a random number r in the range [1,D−1] (with D the

length of the chromosome), and then splits both parents at this point by creat-

ing the two children by exchanging the tails. Instead, the two-point crossover

chooses two random numbers r1 and r2 in the range [1,D−1], breaks parents

in these two points by creating the children by taking alternative segments

from the parents.

Mutation Generally, the mutation operator works by changing values of chromo-

some genes randomly. The Gaussian mutation chooses values drawn from a

Gaussian distribution with zero mean and standard deviation σ . In this work,
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we investigate several values for σ , i. e., σ = 0.2, 0.4, 0.6, 0.8 and 1.0.

Selection Selection mechanism is devoted to select the chromosomes that will

become parents of the next generation. One of the most known selection

operators is the tournament mechanism which selects each parent by per-

forming a tournament among NT chromosomes, randomly selected, where

the chromosome that wins is the fittest one. In this work, we investigate

NT = 2, 3 and 5.

2.3 Preliminary experiments and results

This section is devoted to show the results of some preliminary experiments

carried out to demonstrate the feasibility of the proposed approach. In detail,

the designed genetic algorithm is applied to solve two simple configurations of the

ferromagnetic p-spin model. This choice is due to the possibility to analytically

solve these configurations and perform a comparison with the output of the genetic

algorithm. The configuration of the applied genetic algorithm is the result of

a design study involving the genetic operators described in Section 2.2.3. The

comparison between the solution obtained by the designed genetic algorithm and

that computed analytically is carried out by considering the energy eigenvectors

and eigenvalues of the first 2N Hamiltonian states, as well as the Hamiltonian free

parameters. Moreover, the use of the solution obtained by the genetic algorithm

is investigated for the adiabatic quantum computation with respect to the original

p-spin model. Hereafter, more details about the considered configurations of the
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Figure 2.2: Graph representing the effective 2-body model for the p-spin Hamil-
tonian with N = 4 and p = 3, originally containing four 3-body terms. Blue and
red circles represent the original and the ancillary qubits, respectively. Blue lines
represent coupling strength J, solid red lines represent −2δ and dashed red lines
δ .

ferromagnetic p-spin model, the design study, the comparison results and the

exploitation of genetic solutions in the adiabatic quantum computation are given.

2.3.1 Experimental set-up

To perform our experimentation, we consider the simplest configurations of the

ferromagnetic p-spin model which require the minimum number of ancillary qubits

for embedding, e. g., N = 3, p = 3 and N = 4, p = 3. The Hamiltonian of the

former one only contains a single 3-body term, which can be decomposed as

described in Eq. (2.11) with a single ancilla, i. e., x̃23 = x2∧ x3 and hence M = 4.

By contrast, the Hamiltonian for the N = 4 case contains four 3-body terms, which

require two ancillae, i. e., x̃12 = x1 ∧ x2 and x̃34 = x3 ∧ x4, to be decomposed as

described in Section 2.1, i. e., M = 6. The reduction process leads to the graph

represented in Fig. 2.2.
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These two cases are selected because it is possible to work out by hand the analytic

solution for these settings with little effort and, this is useful for carrying out the

comparison study with the designed genetic algorithm. We report the analytic

solutions below.

v⃗M=4 ≡ (−3,−3δ ,
26
9
,

26
9
,

26
9
, 2δ , 2δ ,

16
3
,−8

3
−δ ,−8

3
,−8

3
); (2.14)

v⃗M=6 ≡ (−4,−3δ ,−3δ ,
7
2
,

7
2
,

7
2
,

7
2
, 0, 2δ , 2δ ,

3, 3, 3, 3, 2δ , 2δ ,−3−δ ,−3,−3,−3,−3,−3−δ ). (2.15)

In what follows, we will fix δ = 50 as this number provides a large separation

between the largest eigenvalue of the target subspace and the smallest eigenvalue

of the nonphysical one, in both cases.

2.3.2 Design study

In order to select the best configuration for genetic operators, we perform a design

study by considering the operators described in Section 2.2.3. By using 2 differ-

ent crossover operators, 5 different mutation operators and 3 different selection

operators, our design study involves the assessment of 30 different combinations.

Table 2.1 gives an index to the different combinations. As for the other parameters

of the genetic algorithm, in our experimentation, we set Npop = 20 chromosomes,

the crossover probability pcx = 0.4, the mutation probability pmut = 0.7. This

choice is not typical, as usually pmut < pcx. However, the results we discuss below

are qualitatively independent on these two parameters. The termination criterion
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is the achievement of a number of generations, i. e., Ng = 25000. Genetic algo-

rithms are stochastic procedures, thus we repeat the simulation 100 times for every

combinations.

The comparison among all the different combinations of genetic operators is shown

in the boxplot of Fig. 2.3. In detail, boxplots show the minimum, the maximum,

the median and the likely range of variation of the fitness values over the 100 runs.

However, in order to select the most opportune combination, the median fitness

values are compared.

By analyzing Fig. 2.3, for N = 3, M = 4, the best median of the fitness values (the

minimum one) is the combination 18, i. e., the combination involving the two-point

crossover, the Gaussian mutation with σ = 0.2 and tournament selection with

NT = 5. Instead, for N = 4 and M = 6, the configuration 2 is the one yielding the

smallest median fitness value, i. e., the combination involving one-point crossover,

σ = 0.2 and NT = 3.

2.3.3 Results

Once performed 100 runs of the genetic algorithm with configuration 18 for N = 3,

M = 4 and 100 runs with configuration 2 for N = 4, M = 6, we obtain 100 solutions

for N = 3, M = 4 and 100 solutions for N = 4, M = 6. As an example, Fig. 2.4

shows the fitness values against the number of generations for the genetic algorithm

with configuration 18 used to address N = 3, M = 4 problem.

To compare the solutions obtained by the genetic algorithm and the analytically

computed ones for both considered configurations of the ferromagnetic p-spin



CHAPTER 2. AN EVOLUTIONARY STRATEGY FOR FINDING EFFECTIVE
QUANTUM 2-BODY HAMILTONIANS OF P-BODY INTERACTING SYSTEMS 46

Table 2.1: Combinations of genetic operators investigated in the design study. 1P
(2P) stands for one-point (two-point) crossover.

# Crossover σ NT # Crossover σ NT

1 1P 0.2 2 16 2P 0.2 2
2 1P 0.2 3 17 2P 0.2 3
3 1P 0.2 5 18 2P 0.2 5
4 1P 0.4 2 19 2P 0.4 2
5 1P 0.4 3 20 2P 0.4 3
6 1P 0.4 5 21 2P 0.4 5
7 1P 0.6 2 22 2P 0.6 2
8 1P 0.6 3 23 2P 0.6 3
9 1P 0.6 5 24 2P 0.6 5

10 1P 0.8 2 25 2P 0.8 2
11 1P 0.8 3 26 2P 0.8 3
12 1P 0.8 5 27 2P 0.8 5
13 1P 1.0 2 28 2P 1.0 2
14 1P 1.0 3 29 2P 1.0 3
15 1P 1.0 5 30 2P 1.0 5
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Figure 2.3: Box graphs depicting the distribution of fitness values for different
combinations of the genetic operators. Here, N is the number of qubits in the
original Hamiltonian and M is the number of qubits in the mapped Hamiltonian.
For each combination, the black line inside the box corresponds to the median
over 100 runs of the genetic algorithm. Outliers are explicitly indicated using black
crosses. The indexes of the combinations on the x-axis are tabulated in Table 2.1.
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Figure 2.4: Updating of the fitness values through 25.000 generations, for the case
N = 3, M = 4, and for the best combination of genetic operators, i. e., combination
18 in Table 2.1. The final fitness value at the last generation is F = 9.8799×10−8.

model, we select the best chromosome (i. e., the one with the least fitness value)

among all solutions over 100 runs. The comparison is carried out by considering

the computed Hamiltonian free parameters, but also the energy eigenvectors and

eigenvalues of the first 2N states of the embedded Hamiltonian generated by the

genetic algorithm with that of the original Hamiltonian in Eq. (2.1). Table 2.2

and Table 2.3 show the results of this comparison for N = 3, M = 4 and N = 4,

M = 6, respectively. For N = 3, M = 4, the first qubit in the genetic eigenvector

is the ancilla qubit defined as q0 = q1∧ q2. For the case N = 4 and M = 6, the

first two qubits of the sequence are the two ancillae, defined as q0 = q2∧q3 and

q1 = q4 ∧ q5. In addition, the first 2N genetic eigenvectors always respect the

original degeneracies of the starting spectrum. Moreover, we also observe the

sign-flip pattern in the spectrum, as predicted by the Z2 anti-symmetry of this

model for odd p.
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Table 2.2: The results of the comparison between the best chromosome obtained
by the genetic algorithm and the analytically computed solution for N = 3, M = 4

problem. We fixed δ = 50.

Free parameters Eigenvectors Eigenvalues
Analytic Genetic Analytic Genetic Analytic Genetic

−3 −2.99919 [0, 0, 0] [0, 0, 0, 0] −3.00000 −2.99919
−150 −150.853 [0, 0, 1] [0, 1, 0, 0] −0.11111 −0.11138
26/9 2.88781 [0, 1, 0] [0, 0, 0, 1] −0.11111 −0.11129
26/9 2.88795 [1, 0, 0] [0, 0, 1, 0] −0.11111 −0.11124
26/9 2.88790 [0, 1, 1] [1, 1, 1, 0] 0.11111 0.11111
100 100.720 [1, 0, 1] [0, 1, 0, 1] 0.11111 0.11120
100 101.118 [1, 1, 0] [0, 0, 1, 1] 0.11111 0.11120

16/3 5.33174 [1, 1, 1] [1, 1, 1, 1] 3.00000 2.99999
−158/3 −53.6496
−8/3 −2.66531
−8/3 −2.66545

An indicator of the accuracy of the returned solution is the root mean square

rms≡

√√√√ 1
D

D

∑
i=1

(
vanalytic

i − vgenetic
i

vanalytic
i

)2

. (2.16)

In the N = 3 case, the best solution yields rms ≈ 7.2× 10−3, while for N = 4

we have rms ≈ 0.22. The scaling of the accuracy of the best returned solution

as a function of the input size is a serious question that will be addressed in a

forthcoming paper. However, we observe that the analytic solution is qualitatively

well-reproduced by the genetic algorithm in both cases.
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Table 2.3: The results of the comparison between the best chromosome obtained
by the genetic algorithm and the analytically computed solution for N = 4, M = 6

problem. We fixed δ = 50.

Free parameters Eigenvectors Eigenvalues
Analytic Genetic Analytic Genetic Analytic Genetic

−4 −3.99450 [0, 0, 0, 0] [0, 0, 0, 0, 0, 0] −4.0 −3.99450
−150 −148.165 [0, 0, 0, 1] [0, 0, 0, 0, 1, 0] −0.5 −0.53947
−150 −144.833 [0, 0, 1, 0] [0, 0, 1, 0, 0, 0] −0.5 −0.52837
7/2 3.46613 [0, 1, 0, 0] [0, 0, 0, 0, 0, 1] −0.5 −0.47565
7/2 3.54304 [1, 0, 0, 0] [0, 0, 0, 1, 0, 0] −0.5 −0.45146
7/2 3.45503 [0, 0, 1, 1] [1, 0, 1, 1, 0, 0] −0.0 −0.03157
7/2 3.51886 [0, 1, 0, 1] [0, 0, 0, 1, 0, 1] −0.0 −0.02561
0 −0.02015 [0, 1, 1, 0] [0, 0, 1, 0, 0, 1] −0.0 −0.01985

100 96.397 [1, 0, 0, 1] [0, 0, 1, 0, 1, 0] −0.0 −0.01965
100 95.7088 [1, 0, 1, 0] [0, 0, 0, 1, 1, 0] −0.0 0.00748
3 2.98789 [1, 1, 0, 0] [0, 1, 0, 0, 1, 1] −0.0 0.04105
3 3.12228 [0, 1, 1, 1] [1, 0, 1, 1, 1, 0] 0.5 0.46894
3 2.91879 [1, 0, 1, 1] [0, 1, 1, 0, 1, 1] 0.5 0.46932
3 3.04070 [1, 1, 0, 1] [1, 0, 1, 1, 0, 1] 0.5 0.50621

100 97.8836 [1, 1, 1, 0] [0, 1, 0, 1, 1, 1] 0.5 0.53568
100 97.9453 [1, 1, 1, 1] [1, 1, 1, 1, 1, 1] 4.0 4.00773
−53 −58.5698
−3 −2.94631
−3 −3.01034
−3 −2.99610
−3 −3.09301
−53 −56.9343
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2.3.4 Discussion for adiabatic quantum computation

The genetic 2-body model can be used for adiabatic quantum computation, with the

time-dependent Hamiltonian of Eq. (2.3), and compared with the original p-spin

model, or with the analytic 2-body model. In this last part, we focus on N = 3,

M = 4 for computational ease. We performed the same analysis also for N = 4,

M = 6 with similar results. In each of the cases, the number of ancillae qubits

utilized is M−N. For the purpose of quantum optimization, it is paramount that the

fidelity Φ, i. e., the ground state occupation probability at the end of the annealing

(s = 1), is high. Of course, due to the larger number of degrees of freedom of the

effective model with ancillae, we expect that a slower annealing is needed to reach

the target ground state, compared with the original p-spin model.

First, we compare the low part of the instantaneous spectra of the two models in

Fig. 2.5, using δ = 11 for visual clarity. We observe that the first 2N = 8 states

match at s = 1, though they differ for 0 < s < 1. Higher excited states, subjected

to penalty, are significantly separated from the lower ones.

Second, we simulate a quantum evolution of annealing time T = 100, and compare

the evolution of the ground state occupation probability of the genetic model with

those of the original p-spin model and of the analytic 2-body model of Eq. (C.1).

Results are shown in Fig. 2.6. The ground state population of the effective model

evolves differently than the original one. This is not surprising, as the goal of our

genetic algorithm is to match the final spectrum, irrespective of the instantaneous

dynamics. By contrast, the evolution of the genetic model closely resembles that

of the analytic 2-body model. The fidelity at the end of the evolution is large
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Figure 2.5: Instantaneous eigenvalues of the time-dependent Hamiltonian (2.3),
for s ∈ [0,1], with δ = 11 for sake of clarity. Panel (a) is for the p-body ferromagnetic
p-spin model in Eq. (2.2), panel (b) is for the genetic 2-body Hamiltonian in Eq. (2.5),
for the first L = 11 states. At s = 1, the first 2N states are the same for the two
models, whereas higher (penalized) energy levels are separated from the low part
of the spectrum. Increasing δ will increase this separation.

(Φ≈ 0.994 and Φ≈ 0.993 for the analytic and the genetic 2-body Hamiltonians,

respectively), although not as large as that of the original model (Φ≈ 0.99998) for

this choice of T . This can be justified by the adiabatic condition.

In fact, a common adiabatic criterion states that the evolution time must satisfy the

following condition,

TAD = max
t∈[0,T ]

|⟨ε0(t)|∂tH(t)|ε1(t)⟩|
|ε1(t)− ε0(t)|2

, (2.17)

where |εi(t)⟩ are the instantaneous eigenstates of H(s) (Albash and Daniel A.

Lidar 2018). The introduction of ancillary qubits with large energy penalties δ for

unphysical configuration makes the numerator of the right-hand side of Eq. (2.17)

larger for the effective model than for the original p-spin model, while the minimal

gap is similar for both models. For the cases we analyzed, the adiabatic time scale
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Figure 2.6: Evolution of the ground state occupation probability as a function of
the dimensionless time s, for the original p-spin model with N = 3 (black line), the
analytic 2-body model of Eq. (C.1) (red line), and the best genetic solution (blue
line).

of the effective model is ∼ δ times longer than for the original model. Thus, it is

natural to expect that, for fixed T , the original model is closer to the adiabatic limit

than the effective one, thus the corresponding fidelity is larger.

2.4 Improvement in the mapping by using

Memetic algorithms

In this section we solve the problem of finding a mapping of p-body Hamiltonian

into 2-body Hamiltonian using a class of evolutionary algorithms called memetic

algorithms(MA). This algorithm gives importance to local search after every gener-

ation of global search of genetic algorithms. Here, we have used hill-climbing local

search procedure where a portion of candidate solutions are repeatedly mutated for
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some generations and these candidate solutions are replaced in the population with

the best chromosome obtained in this procedure (Renders and Bersini 1994; H.

Wang, D. Wang, and Yang 2009). This process leads to greedy search for solutions

around the region of the intial solution. In this section, this heuristic technique

is shown to be more efficient than the simple genetic algorithm in optimizing the

chromosome, for the problem considered. Results of this section are published in

the article Giovanni Acampora, Vittorio Cataudella, Pratibha Raghupati Hegde,

et al. 2021.

Since we are considering the same problem of mapping k-body Hamiltonian into

2-body Hamiltonian, the fitness function remains the same as in Eq. 3.11. Memetic

algorithm involves the cyclic steps of selection, crossover, mutation, and local

search procedure of hill climbing. In order to design an efficient memetic algorithm,

it is necessary to deal with an important design issue: what is the best tradeoff

between local search and the global search provided by evolution? (Krasnogor and

J. Smith 2005). This issue leads naturally to questions such as the following:

• Local search frequency: How often should local search be applied within the

evolutionary cycle?

• Local search intensity: How much computational effort should be allocated

to each local search?

In this work, the frequency hyper-parameter l f refers to the first question and

represents the number of individuals that will be undergone to the local search

procedure. Instead, the intensity hyper-parameter li refers to the second question

and, in this work, it will be represented by the number of fitness function evaluations
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computed during the application of the local search procedure on one of the

selected individuals. These two hyper-parameters, frequency and intensity, strongly

affect the performance of the memetic algorithms, and, as a consequence, in the

experimental session, an exhaustive study is performed to tune them (see appendix

C).

2.4.1 Local search procedure

To complete the description of the proposed MA, it is necessary to discuss the

integrated local search procedure. In this work, we use a variant of the Hill

Climbing, whose pseudo-code is reported in Table 2.4. The choice of integrating

this local search with genetic algorithms is tied to the fact that this hybridization

represents the most popular one for memetic algorithms (Renders and Bersini

1994) and it is suitable for continuous search space (Shahamatnia et al. 2011). In

general, the Hill Climbing Search is a greedy strategy which performs iterative

search for optimum solution in the neighborhood of a candidate (G. Acampora and

Vitiello 2012). The typical steps of the Hill Climbing Search are:

• to generate an arbitrary candidate solution,

• to change the current solution at each iteration by using, typically, a mutation

operator

• if the change improves the current candidate, then the new one becomes the

current one. The algorithm ends when a termination criterion is satisfied.

In literature, there are several variants of Hill Climbing search depending on how

the next solution is tried (G. Acampora and Vitiello 2012). Among them, the
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Table 2.4: Stochastic Hill Climbing pseudo-code

Input: initial_solution representing the initial solution, maximum number of evaluations of fitness function max_evals, lp
is the local mutation probability.

Output: sol which represents the solution optimized by means of local search.

1: sol← initial_solution;
2: evals← 0;
3: while (evals < max_evals ) do
4: new_sol← getRandomNeighborWithGaussianDistribution(sol, lp);
5: if (evaluate(new_sol) < evaluate(sol)) then
6: sol← new_sol;
7: end if
8: evals← evals+1;
9: end while
10: return sol;

stochastic version of the Hill Climbing search selects a neighbor at random. In

our work, we use this variant equipped with the same Gaussian distribution used

in the genetic mutation to change the variables of the current solution. Moreover,

each solution variable will be mutated according to a probability, denoted as local

mutation probability lp. This numerical hyper-parameter will be tuned in the

systematic design study. We have considered two instances of the ferromagnetic

p-spin model – N = 3,M = 4 and N = 4,M = 6.

The details of choosing the optimal parameters of memetic algorithms for these

instances is given in Appendix. C. The results obtained using our memetic algo-

rithms is compared with analytical results and other heuristics in the following

subsections.
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2.4.2 Comparison with the analytical approach

The solution obtained by the memetic algorithm, run with the best configuration

obtained thanks to the aforementioned tuning process, is assessed by comparing

it with the reported known analytical solution. The comparison is performed

by taking into account the energy eigenvectors and eigenvalues of the first 2N

Hamiltonian states, as well as the D Hamiltonian free parameters. Since memetic

algorithms are stochastic methods, we compare the analytical solution with the

memetic solution characterized by the median fitness value on 100 runs. Tables

2.5 and 2.6 show the comparison between the solutions computed by the proposed

memetic algorithm and by the analytical approach for the considered problem

instances, respectively.

Table 2.5: The free parameters, eigenvalues and eigenvectors obtained from the
memetic algorithm and their comparison with the analytical values, for the

instance of N = 3 and M = 4 case, with δ = 50. The first qubit of the memetic
approach is the ancilla x̃23 = x2∧ x3.

Free parameters Eigenvectors Eigenvalues
Analytic Memetic Analytic Memetic Analytic Memetic

−3 −2.99875 [0, 0, 0] [0, 0, 0, 0] −3.00000 −2.99875
−150 −151.71271 [0, 0, 1] [0, 0, 1, 0] −0.11111 −0.11296
26/9 2.88847 [0, 1, 0] [0, 0, 0, 1] −0.11111 −0.11141
26/9 2.88578 [1, 0, 0] [0, 1, 0, 0] −0.11111 −0.11027
26/9 2.88733 [0, 1, 1] [0, 0, 1, 1] 0.11111 0.11081
100 101.02709 [1, 0, 1] [0, 1, 0, 1] 0.11111 0.11093
100 105.91522 [1, 1, 0] [1, 1, 1, 0] 0.11111 0.11099

16/3 5.33107 [1, 1, 1] [1, 1, 1, 1] 3.00000 2.99970
−158/3 −57.89412
−8/3 −2.66613
−8/3 −2.66356
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Table 2.6: The free parameters, eigenvalues and eigenvectors obtained from the
memetic algorithm and their comparison with the analytical values, for the

instance of N = 4 and M = 6 case, with δ = 50. The first two qubits of the memetic
approach are the two ancillae x̃12 = x1∧ x2 and x̃34 = x3∧ x4.

Free parameters Eigenvectors Eigenvalues
Analytic Memetic Analytic Memetic Analytic Memetic

−4 −4.00015 [0, 0, 0, 0] [0, 0, 0, 0, 0, 0] −4.0 −4.00015
−150 −156.82967 [0, 0, 0, 1] [0, 0, 0, 0, 1, 0] −0.5 −0.52681
−150 −145.30849 [0, 0, 1, 0] [0, 0, 1, 0, 0, 0] −0.5 −0.522034
7/2 3.47812 [0, 1, 0, 0] [0, 0, 0, 1, 0, 0] −0.5 −0.49854
7/2 3.50162 [1, 0, 0, 0] [0, 0, 0, 0, 0, 1] −0.5 −0.49541
7/2 3.47334 [0, 0, 1, 1] [0, 0, 0, 1, 0, 1] −0.0 −0.00737
7/2 3.50473 [0, 1, 0, 1] [0, 0, 1, 0, 0, 1] −0.0 −0.00623
0 0.04262 [0, 1, 1, 0] [0, 0, 0, 1, 1, 0] −0.0 −0.00367

100 105.23229 [1, 0, 0, 1] [1, 0, 1, 1, 0, 0] −0.0 0.00553
100 99.95697 [1, 0, 1, 0] [0, 1, 0, 0, 1, 1] −0.0 0.01108
3 2.94584 [1, 1, 0, 0] [0, 0, 1, 0, 1, 0] −0.0 0.01597
3 2.99295 [0, 1, 1, 1] [0, 1, 0, 1, 1, 1] 0.5 0.49935
3 2.93736 [1, 0, 1, 1] [1, 0, 1, 1, 0, 1] 0.5 0.50072
3 2.97869 [1, 1, 0, 1] [0, 1, 1, 0, 1, 1] 0.5 0.50228

100 105.10894 [1, 1, 1, 0] [1, 0, 1, 1, 1, 0] 0.5 0.51089
100 93.38913 [1, 1, 1, 1] [1, 1, 1, 1, 1, 1] 4.0 3.99791
−53 −51.33364
−3 −2.93534
−3 −2.98893
−3 −2.97847
−3 −3.01356
−53 −56.15643

By analysing Tables 2.5 and 2.6, it is possible to observe that the first 2N memetic

eigenvectors always respect the original degeneracies of the starting spectrum.

Moreover, it is possible to say that the analytic solution is qualitatively well-

reproduced by the memetic algorithm in both considered cases. However, in order
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to quantify the precision of the produced solution, we compute the Normalized Root

Mean Square Error (NRMSE) between the analytic solution and that produced by

our algorithm. Formally,

NRMSE≡

√
1
D ∑

D
i=1

(
vanalytic

i − vmemetic
i

)2

(
vanalytic

max − vanalytic
min

) (2.18)

where D is the number of the free parameters, vanalytic
i is the i-th free parameter of

the analytic solution, vmemetic
i is the i-th free parameter of the memetic solution,

and, vanalytic
max and vanalytic

min are the maximum and the minimum of the free parameters

of the analytic solution, respectively. In detail, in the case N = 3, the median fitness

solution (reported in Table 2.5) yields NRMSE = 0.0098, while for N = 4, the

median fitness solution (reported in Table 2.6) yields NRMSE = 0.0114. For sake

of completeness, Table 2.7 reports the statistics such as minimum (min), maximum

(max), mean and standard deviation (std) related to the NRMSE values over all

runs in both considered cases. As shown, the proposed MA produces solutions

with a low NRMSE value.

2.4.3 Comparison with other meta-heuristics

After discussing the feasibility of the proposed approach, this section is devoted to

show the improvement provided by MA with respect to other meta-heuristics. In

order to achieve this aim, this second experimental session involves the comparison

between our MA and the Genetic Algorithm (GA) and the Hill Climbing (HC)
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Table 2.7: The statistics for the NRMSE values computed between the analytical
solution and the memetic solutions obtained in all executed runs for both

considered cases.

Case N = 3 and M = 4

min max mean std

0.0038 0.0277 0.0127 0.0044

Case N = 4 and M = 6

min max mean std

0.0077 0.0223 0.0134 0.0029

characterized by the same symbolic hyper-parameters (i.e., selection mechanism,

crossover, mutation and local mutation) of our approach. This comparison will

permit to show that the integration between GA and HC executed by our MA leads

to a benefit. As for the values for the numerical hyper-parameters (i.e., mutation

and crossover probabilities, local mutation probability) of the compared algorithms,

they are the best ones, set up experimentally. All compared algorithms end after

evaluating 1,000,000 solutions. The performance of the compared algorithms is

assessed by using the fitness value. Therefore, the lower is the fitness value, the

higher is the performance.

Fig. 2.7 shows the behaviour of the compared algorithms in a test run for the two

considered problem instances. Precisely, the fitness values against the number of

evaluations for all compared algorithms are reported. Starting from these figures, it

is possible to see how MA achieves a better fitness value with respect to the other

meta-heuristics in the same or smaller number of fitness evaluations.

However, as all compared algorithms are characterized by a stochastic nature, in



CHAPTER 2. AN EVOLUTIONARY STRATEGY FOR FINDING EFFECTIVE
QUANTUM 2-BODY HAMILTONIANS OF P-BODY INTERACTING SYSTEMS 61

10-6

10-4

10-2

100

102

 0  200000  400000  600000  800000  1×106

F
itn

es
s

No. of evaluations

GA
MA
HC

(a)

10-4

10-3

10-2

10-1

100

101

102

103

 0  200000  400000  600000  800000  1×106

F
itn

es
s

No. of evaluations

GA
MA
HC

(b)

Figure 2.7: Fitness values against the number of evaluations for GA, MA and HC
in the cases (a) N = 3 and M = 4 and (b) N = 4 and M = 6. The values for each
algorithm are obtained from a test run.
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order to better study their behavior we perform 100 runs for each one of them. Fig.

2.8 shows the fitness values obtained on the 100 runs by all compared algorithms

for both problem instances. In detail, for the case N = 3, the median fitness

values for GA, MA and HC are 1.3473×10−6, 7.6298×10−7 and 1.6875×10−6,

respectively. For the case N = 4, the median fitness values for GA, MA and HC are

3.4285×10−4, 1.172×10−4 and 5.3624×10−4, respectively. Starting from these

results, it is possible to say that MA relatively improves of about 55% on average

on GA and of 67% on average on HC. However, in order to give further significance

to these results, we perform a pairwise statistical comparison between MA and

the compared algorithms independently. In particular, we apply the Wilcoxon’s

signed rank test (Wilcoxon 1992; García et al. 2009), a non-parametric pairwise test

used to answer this question: do two samples represent two different populations?

Hence, it can be employed to detect significant differences between the behavior of

two algorithms and so it is suitable for our experimentation (Giovanni Acampora,

Avella, et al. 2011). In our context, the samples are composed of the fitness

values obtained on the 100 runs. The results in terms of p-values computed by

the Wilcoxon’s signed rank test are reported in Table 2.8. By analysing them, it is

possible to say that our memetic approach statistically outperforms the compared

meta-heuristics at 99% confidence level (the significance level α has been set to

0.01) for both considered problem instances.
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Table 2.8: The p-values computed by the Wilcoxon’s signed rank test

Case N = 3 and M = 4 Case N = 4 and M = 6

MA vs GA MA vs HC MA vs GA MA vs HC

1.0869×10−4 1.5831×10−10 1.9780×10−18 4.5904×10−18

2.5 Conclusions

Using a genetic algorithm, we have mapped the ferromagnetic p-spin Hamilto-

nian into a Hamiltonian with only 2-body interactions. We have shown, in two

analytically solvable cases, that our strategy can successfully be used for this task.

We have also discussed and compared the adiabatic quantum computation of the

original and the mapped Hamiltonian systems. Further, the mapping is improved

by using memetic algorithms, where the performance is enhanced by the local

search procedure. For a given number of fitness evaluations, we have made the

comparisons of the performances of heuristic techniques of genetic algorithms,

memetic algorithms and hill climbing and shown that memetic algorithms out-

perform the other heuristics considered in terms of the final fitness values. The

computational time of evaluating 1,000,000 fitness values in a serial manner for N

= 3 is 777.44 s. While for N=4, it is 2864.83 s.
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Figure 2.8: Fitness values of 100 runs for the compared algorithms (a) in the case
N = 3 and M = 4 (b) in the case N = 4 and M = 6.

.
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3. Genetic optimization of quan-

tum annealing1

3.1 Introduction

Small spectral gaps is a bottleneck of adiabatic quantum computation and quantum

annealing (Kadowaki and Nishimori 1998; G. E. Santoro et al. 2002; Jörg et al.

2010; Knysh 2016). In these paradigms of quantum computation, the goal is to

read the ground state of a target Hamiltonian Hz, encoding an NP-complete or

NP-hard problem (Lucas 2014). Starting from the (easy to prepare) ground state

|ψ(0)⟩ of a transverse field Hamiltonian Hx =−Γ∑
N
i=1 σ x

i , where N is the number

of qubits and Γ is the strength of the transverse field, the system is evolved with the

time-dependent Hamiltonian H0(t) = A(t)Hx +B(t)Hz. The annealing schedule

is given by the pair {A(t),B(t)}, satisfying A(0)≫ B(0) and 0 = A(T )≪ B(T ),

1The sections of this chapter are published in Pratibha Raghupati Hegde et al. 2022. Reprinted
Chapter with permission from [(Pratibha Raghupati Hegde et al. 2022) as follows: Pratibha
Raghupati Hegde, Gianluca Passarelli, Annarita Scocco, Procolo Lucignano, Physical Review A,
Vol 105, 012612, 2022] License Number:RNP/22/JAN/049647, License Date: 26th Jan 2022 by the
American Physical Society.
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where T is the annealing time. At t = T , the system is found in the target ground

state with a high probability, provided T is longer than the inverse square of the

smallest gap between the ground state and the first excited state (M. S. Sarandy,

L.-A. Wu, and D. A. Lidar 2004). During the dynamics the system may cross

a quantum phase transition (Sachdev 2011), correspondingly the gap takes its

minimum value ∆ = mint [E1(t)−E0(t)] which results in long annealing times to

satisfy the adiabatic condition, thus making the algorithm ineffective.

If the annealing time T is shorter than that predicted by the adiabatic theorem,

the fidelity of the final solution is compromised; if T is longer, the system suffers

decoherence. Therefore, the goal here is to modify the annealing dynamics in order

to achieve high fidelities even breaking the adiabatic criterion, before decoherence

sets in.

This can be achieved by taking advantage of different improved schemes. We

mention optimal control theory (Glaser et al. 2015), which is limited, in principle,

only by the quantum speed limit (Caneva et al. 2009; Hegerfeldt 2013); shortcuts

to adiabaticity (STA) (Torrontegui et al. 2013; Del Campo 2013; Campbell, De

Chiara, et al. 2015; Mukherjee, Montangero, and Rosario Fazio 2016; Campbell

and Deffner 2017; Abah and Lutz 2018; Funo et al. 2017; Y.-H. Chen et al. 2016;

Alan C. Santos and Marcelo S. Sarandy 2015; Coulamy et al. 2016; Alan C Santos

and Marcelo S Sarandy 2017; Hu et al. 2018; Alan C. Santos, Nicotina, et al. 2020)

or modulating in a controlled way the annealing schedules (Susa and Nishimori

2021; Matsuura, Buck, et al. 2021; Bölte and Thonemann 1996; Roland and Cerf

2002).
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A possible STA consists in adopting counterdiabatic (CD) driving (Torrontegui et al.

2013; Del Campo 2013; Campbell, De Chiara, et al. 2015; Mukherjee, Montangero,

and Rosario Fazio 2016; Campbell and Deffner 2017; Abah and Lutz 2018; Funo et

al. 2017; Y.-H. Chen et al. 2016). In transitionless or CD driving, a time-dependent

potential Hcd(t) is added to the unperturbed Hamiltonian H0(t) so that diabatic

Landau-Zener transitions are completely suppressed at all times and for all choices

of the annealing time T . The total Hamiltonian reads H(t) = H0(t)+Hcd(t). The

CD operator satisfies the constraint Hcd(0) = Hcd(T ) = 0 and does not modify

the starting and target Hamiltonians. Computing the exact CD potential requires

knowledge of the (generally unknown) instantaneous spectrum of the Hamiltonian

H0(t). Moreover, the resulting operator is highly nonlocal, hardly implementable

on actual quantum machines, and generally unbounded in the thermodynamic

limit (Berry 2009).

Recently, much effort has been put forth to build approximate CD potentials. In

some very simple cases, such as the Ising model with longitudinal and transverse

fields, linear combination of local operators provide good approximations of the

CD potential, e. g., Hcd(t) ≈ ∑k αk(t)Ok. The operators Ok are generally Hermi-

tian products of a small number of Pauli operators. The coefficients αk(t) can be

determined by variational optimization (Sels and Polkovnikov 2017; Hartmann

and Lechner 2019). For more complicated many-body Hamiltonians, other choices

for operators Ok involve nested commutators between H0(t) and its time deriva-

tive (Claeys et al. 2019). However in the former case, we do not know in advance

which and how many local operators are needed to build a good “enough” CD
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operator. In the latter case, nested commutators can be highly non-local, as much as

the exact CD potential. Moreover, the number of nested commutators is expected

to diverge in the thermodynamic limit when the system undergoes a quantum phase

transition (G. Passarelli, V. Cataudella, R. Fazio, et al. 2020).

In this chapter, we derive an alternative route and we focus on the study of optimal

annealing schedules A(t) and B(t) as well as on an optimal driving (OD) potential

Hod(t) that are variationally improved so to achieve the maximum fidelity at the

final time T . The search for variational minima is approached using computational

intelligence tools (Bölte and Thonemann 1996), in particular we adopt a genetic

algorithm, i. e., an evolutionary strategy inspired by the Darwinian theory of the

survival of the fittest (Yao 1993). We consider time schedules that are polynomial

functions of time and we consider local operators for the OD. In our approach,

the coefficients of the polynomials and the OD operator are represented as a real-

valued chromosome. Each chromosome is characterized by a fitness value. At

each generation, chromosomes will mate and randomly mutate. Only the fittest

individuals will survive to the next generation. We show that a simple choice of

the fitness function can lead to optimized annealing schedules as well as to OD

potentials that largely improve the fidelity of the target quantum ground state of

Hz, compared to the bare case. We discuss the adiabatic quantum computation of a

prototypical system, the ferromagnetic p-spin model, an exactly solvable model

with a nontrivial phase diagram, which encodes a Grover-like search (Lov K Grover

1996; Roland and Cerf 2002) for large and odd p.

This chapter is organized as follows. In Sec. 3.2, we describe the ferromagnetic
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Figure 3.1: Cartoon of our genetic algorithm. a) The free parameters of the
annealing schedules are stored into a chromosome. b) We first randomly generate
Npop individuals. c) Then random gene mutation occurs in each individual. d) Then
we apply two individual crossover. e) We select the fittest individuals and start
again from c) until convergence. The azure bars identify the fitness values: the
larger the better.

p-spin model. In Sec. 3.3, we introduce the genetic algorithms and the construction

of chromosomes for the problems of optimization of annealing schedules and OD

potentials. We also define fitness functions for single objective genetic algorithm

(SOGAs) and multi-objective genetic algorithms (MOGAs). In Sec. 3.4, we

present the results obtained by optimizing the annealing schedules, OD potentials

individually and together using genetic algorithms. In Sec. 3.5 we discuss the

possibility of extending our techniques to the quantum annealing of random Ising

models. We finally derive our conclusions in Sec. 3.6.

3.2 Problem definition

In this chapter, we consider the fully-connected ferromagnetic p-spin model (Der-

rida 1981; Gross and Mezard 1984) as case study. The Hamiltonian of this model
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is

Hz =−JN

(
1
N

N

∑
i=1

σ
z
i

)p

, (3.1)

with J > 0 and p≥ 2. For odd p, its ground state is ferromagnetic with all qubits in

the state |0⟩. For even p, the ground state manifold is 2-dimensional (|00 · · ·0⟩ and

|11 · · ·1⟩) due to the Z2 symmetry. If we study the quantum annealing with time-

dependent Hamiltonian H0(t) using as a target Hamiltonian Hz defined in Eq. (3.1),

we observe a dynamical quantum phase transition separating a paramagnetic phase

(at short times) from a ferromagnetic phase (at long times). For p = 2, the quantum

phase transition is of second order, while for p≥ 3 it is of first order. The latter is

the hardest case for quantum annealing, as the minimal gap ∆ closes exponentially

as a function of N (Bapst and Semerjian 2012). This feature motivates the broad

interest in this system as a toy model of NP-hard problems (Seoane and Nishimori

2012; Seki and Nishimori 2012; Ohkuwa, Nishimori, and Daniel A. Lidar 2018a;

Matsuura, Nishimori, Vinci, Albash, et al. 2017; Susa, Yamashiro, et al. 2018;

Matsuura, Nishimori, Vinci, and Daniel A. Lidar 2019; Yamashiro et al. 2019;

G. Passarelli, De Filippis, et al. 2018; G. Passarelli, V. Cataudella, and Lucignano

2019; Giovanni Acampora, Vittorio Cataudella, Pratibha R Hegde, et al. 2019;

G. Passarelli, V. Cataudella, R. Fazio, et al. 2020; Gianluca Passarelli, Yip, et al.

2020).

The model Hamiltonian is permutationally invariant and commutes with the total

spin operator S2 at all times. The starting and the target state belong to the

subspace with maximum spin S = N/2 and the dynamics will occur within the
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same (maximum spin) subspace. Therefore, we can work in this (n = N + 1)-

dimensional sector. In the following, we will consider J as unit of energy. Times

are expressed in units of J−1 (h̄ = 1 here and in the following).

We perform adiabatic evolutions of the system described by the p-spin model

assisted by genetic algorithms. We aim at improving the final state fidelity of the

system by following three strategies: a) optimizing annealing schedules b) optimiz-

ing local OD with the traditional linear annealing schedules and c) optimizing both

annealing schedules and local OD operator. These strategies are explained in detail

later in the chapter, see Sec. 3.3. Further, we choose an annealing time sufficiently

shorter than the timescale TAD predicted by the adiabatic theorem, i. e.,

TAD = max
λ∈[0,1]

|⟨E0(λ )|∂λ H(λ )|E1(λ )⟩|
|E1(λ )−E0(λ )|2

, λ = t/T. (3.2)

3.3 Methods: Genetic algorithms

We use a class of evolutionary algorithms known as genetic algorithms to find

optimized annealing schedules for adiabatic evolutions. In addition, we also

manage to demonstrate the efficiency of genetic algorithms in the paradigm of

shortcuts to adiabaticity by finding optimized, local OD operators.

Genetic algorithms are inspired by Darwin’s theory of evolution. These algorithms

offer solutions to optimization problems conditioned by a single objective or

multiple objectives (Giovanni Acampora, Vittorio Cataudella, Pratibha R Hegde,

et al. 2019; Giovanni Acampora, Vittorio Cataudella, Pratibha Raghupati Hegde,
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et al. 2021; Deb et al. 2002; Fortin et al. 2012). In both cases, the possible solutions

to the problem are encoded as a string of real numbers called chromosomes. The

construction of a chromosome depends on the optimization problem. In this article,

broadly speaking, we address three optimization problems, all of which aid the

performance of adiabatic evolution, i. e., finding the system in a ground state of

the problem Hamiltonian Hz with maximum probability at the end of the evolution.

The three problems are as follows.

3.3.1 Optimization of annealing schedules

Here we try to optimize the performance of quantum annealing by optimizing

its annealing schedules A(t) and B(t) (Matsuura, Buck, et al. 2021; Bölte and

Thonemann 1996; Susa and Nishimori 2021). Firstly, we express the annealing

schedules as dimensionless time functions of s = t/T throughout this chapter.

We consider polynomial expansions of A(s) and B(s) as candidates for the pos-

sible annealing time schedules, i. e., A(s,α) = ∑
ka+1
i=1 αisi, B(s,β ) = ∑

kb+1
j=1 β js j.

Moreover, these time-dependent functions have to satisfy the boundary conditions,

A(0) = 1, A(1) = 0 and B(0) = 0, B(1) = 1, and therefore can expressed as

A(s,α) = 1+
ka

∑
i=1

αisi +

(
−1−

ka

∑
i=1

αi

)
ska+1,

B(s,β ) =
kb

∑
j=1

β js j +

(
1−

kb

∑
j=1

β j

)
skb+1.

(3.3)

We optimize the coefficients of these polynomial expansions as chromosomes of
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the genetic algorithm and the structure of the chromosome for this problem is

D1 =
[
α1,α2, · · ·αka,β1,β2, · · ·βkb

]
. (3.4)

The length of the chromosome is ka + kb.

3.3.2 Optimization of the local OD operator

In this section, we adopt the strategy of shortcuts to adiabaticity to optimize the

performance of quantum annealing (Berry 2009; Sels and Polkovnikov 2017;

Claeys et al. 2019; G. Passarelli, V. Cataudella, R. Fazio, et al. 2020; Hartmann

and Lechner 2019). Keeping the annealing schedules to be fixed and as linear

functions, i. e., A(s) = 1− s and B(s) = s, we optimize an OD operator which

successfully avoids Landau-Zener transitions resulting in a better fidelity of the

state of the system with the exact ground state at t = T . We assume that the OD

operator Hod(s) can be expanded as the sum of local spin operators,

Hod(s,γ) =C(s)
d

∑
i=1

γiOi, (3.5)

where Oi are the total spins along the x, y and z directions, i. e., Sx, Sy and Sz, and

their products. Especially, we consider only single local operators and cumulatively

add the set of all possible 2-spin operators and the set of all 3-spin operators. These
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local operators can be explicitly written as

Hod(s,γ)d=3 =C(s)
3

∑
i=1

γiSi,

Hod(s,γ)d=9 = Hod(s)d=3 +C(s)
3

∑
i, j=1

γi, jSiS j,

Hod(s,γ)d=21 = Hod(s)d=9 +C(s)
3

∑
i, j,k=1

γi, j,kSiS jSk.

(3.6)

The chromosome of the genetic genetic algorithm for this problem is the set of

coefficients of the local operators,

D2 = [γ1, · · · ,γ3,γ11,γ12, · · · ,γ33,γ111,γ112, · · · ,γ333] , (3.7)

whose length is equal to the number of local operators, d. In this work, we

are able to achieve remarkable results by optimizing the local OD operator with

only single spin operators, i. e., Hod(s,γ)d=3 = C(s)∑
3
i=1 γiSi, and therefore we

discuss and demonstrate our results for the case with d = 3. The higher terms of

2-spin and 3-spin operators are omitted since they do not produce any significant

improvements. The time schedule C(s) is fixed in this approach and is given

by C(s) = A(s)B(s) = (1− s)s. The function C(s) controls the pace of evolution

dictated by the OD operator Hod(s).
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3.3.3 Optimization of the time schedules and the local

OD

Finally, here we optimize the annealing schedules A(s), B(s) and the local OD

operator altogether (Susa and Nishimori 2021; Matsuura, Buck, et al. 2021). The

time schedule C(s) is optimized by absorbing it as the coefficients of the local OD

operators, i. e., Hod(s) = ∑
d
i=1Ci(s)Oi. We consider each Ci(s) to be a polynomial

of order kc + 1, which satisfies the boundary condition Ci(0) = 0 and Ci(1) = 0.

Therefore, the OD operator can be explicitly written as

Hod(s,ε) =
d

∑
i=1

(
kc

∑
j=1

ε jis j +

(
−

kc

∑
j=1

ε ji

)
skc+1

)
Oi. (3.8)

We optimize the free parameters ε ji, in addition to the free parameters αi and βi in

Eq. (3.4). The time-dependent Hamiltonian of the system is given by

H(s) = A(s,α)Hx +B(s,β )Hz +Hod(s,ε), (3.9)

where
α = {α1, ...,αka}

β = {β1, ...,βkb}

ε = {ε11, ...,εkcd}.

Therefore, the chromosome for this optimization problem can be expressed as

D3 =
[
α1, · · ·αka,β1, · · · ,βkb ,ε11, · · ·εkc1, · · ·εkcd

]
. (3.10)
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The length of the chromosome in this case is ka + kb +(d× kc). Again here, we

are able to obtain high fidelity of the state of the system by considering only single

spin operators in the expansion of the local OD operator. Therefore we stick to the

case of d = 3.

The key aspect of genetic algorithms is the definition of fitness function. It is a

function which takes each chromosome as a variable and gives it a fitness value

according to the quality of the solution generated by the given chromosome. In

the course of a genetic algorithm, we intend to either maximize or minimize this

fitness function. Depending on the number of conditions the chromosomes have

to satisfy, the genetic algorithms are characterized by fitness functions which are

single objective or multi-objective. In the remaining of this section, we describe the

fitness function and the workflow of Single Objective Genetic Algorithms (SOGAs)

and Multi-Objective Genetic Algorithms (MOGAs).

3.3.4 Single objective genetic algorithms

SOGAs follow the workflow of a standard genetic algorithm. We define the fitness

of each chromosome as the fidelity, which is the ground state probability at t = T ,

i. e.,

fso ≡ Pgs(T ) = |⟨E0(T )|U(T )|ψ(0)⟩|2, (3.11)

where U(t,0) = T+ exp{−i
∫ t

0[H(t ′)]dt ′} is the time evolution operator and T+ is

the time ordering. The time evolution is computed with the QuTiP toolbox (Johans-

son, Nation, and Nori 2012; Johansson, Nation, and Nori 2013). An alternative
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fitness function would be to use the negative of the mean energy at the final

time T , i. e., −⟨ψ(0)|U†(T,0)HzU(T,0)|ψ(0)⟩. This choice does not require the

knowledge of any spectral property of the Hamiltonian. The fittest individuals,

maximizing fso, are those with higher fidelities and are likely to survive along

generations. At the end of the genetic optimization, we will obtain a chromosome

defined according to the problem. However, all three problems considered here

aim at giving a higher fidelity.

We initialize a starting population of Npop individuals, whose genes are randomly

extracted in the interval [gmin,gmax]. Then, we repeatedly apply the three genetic

operators (mutation, crossover and selection (Herrera, Lozano, and Sánchez 2003))

until a convergent solution is achieved. The genetic algorithm is implemented by

using the DEAP package (Fortin et al. 2012). Here, we briefly describe the genetic

operators adopted, also sketched in Fig. 3.1.

i) Gaussian mutation—Among the population of individuals, random individuals

are selected with a probability pm for mutation. Each gene is independently mutated

with a probability pind, by adding a normal variable, extracted from a Gaussian with

mean value µ = 0 and variance σ2 = 1 [see Fig. 3.1(c)]. The mutation probability

of each gene, i. e., the product pm pind, should be neither too large nor too small (a

quantitative description is given in Appendix D.1). In the former case, the genetic

algorithm will turn into a random search. In the latter case, the algorithm would

be nonergodic. These random mutations increase variability in the population and

reduce the probability of being trapped in local minima.

ii) Two-point crossover—After mutation process, we randomly select two parents
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from the chromosome population. Two random integers are randomly extracted

in the interval [0,L− 1], where L is the length of the chromosome, which is

the number of free parameters to be optimized using a genetic algorithm and is

problem-specific. Two children are produced by mixing alternating parts of the

two parents, obtained by cutting the chromosomes at the two extracted indices

[see Fig. 3.1(d)]. Note that the exchange of the fragments is only symbolic in

Fig. 3.1(d) and represents a one-point crossover for the sake of visual clarity. In our

experiments, we resort to a two-point crossover operator which yields the fastest

convergence in this case. The whole process occurs with a probability pc. Small pc

ensures slow but accurate convergence to the optimal solution. On the other hand,

large pc ensures quick convergence but can lead to sub optimal solutions. Hence,

pc has to be carefully tuned to find a compromise between speed of convergence

and accuracy of the solution.

iii) Selection by tournament—After mutation and crossover, a new population is

produced. NT competitors are selected from the population and their fitness is com-

pared [see Fig. 3.1(e)]. Only the fittest individual survives to the next generation.

This tournament is repeated until we obtain a new set of Npop individuals.

3.3.5 Multi-objective genetic algorithms

While SOGAs aim at maximizing the ground state probability at the final time

T , they sometime lead to practically not feasible solutions during the time of

evolution. For example, some of the solutions returned by the algorithm can have

energy level crossings between the ground state and the first excited state. In an
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attempt to avoid these solutions produced by SOGAs, we add another objective

to the fitness function. Other than maximizing the fidelity at t = T , we choose to

maximize it together with the area under the curve of the instantaneous ground state

probabilities of the system computed at Nt time intervals. The latter assures that

the ground state occupation is maximum at all the intermediate times, in the spirit

of counterdiabatic dynamics. The ground state probability at time t is given by

Pgs(t) = |⟨E0(t)|U(t)|ψ(0)⟩|2. The fitness of a chromosome in MOGA are defined

as

fmo ≡
{

1
T

∫ T

0
Pgs(t)dt,Pgs(T )

}
. (3.12)

We stress here the fact that this is not the same as imposing local adiabaticity as by

Roland and Cerf (2002). MOGAs deviate from the standard genetic algorithms.

In particular, they work using the strategy of Non-dominated Sorting Genetic

Algorithm II (NSGA-II) (Deb et al. 2002; Chivilikhin et al. 2020). NSGA-II uses

an elitist method of evolutionary algorithms. The parent and offspring generations

are clubbed together and are ranked into fronts based on non-dominated sorting.

The population of the following generation is filled with the best fronts until

Npop is reached. In case that only some chromosomes have to be selected from a

front in the process, the most diverse solutions are chosen based on the crowding

distance. Given the new population, by the above non-dominated sorting process,

the chromosomes undergo selection (a binary tournament selected based on both

rank and crowding distance), mutation and crossover processes. In the end of

Ng generations, the Pareto optimal front with the best ranking is obtained. The
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details of selecting the chromosome from the Pareto optimal front is given in

Appendix D.2.

3.4 Results

In this section we present the results obtained by performing adiabatic quantum

computation of the ferromagnetic p-spin model assisted by genetic algorithms. In

particular, we concentrate on a system with 15 spins and p = 3 to demonstrate

our results. The adiabatic time scale of Eq. (3.2) for this system is TAD ≈ 30. We

choose the annealing time T = TAD/10 ≈ 3 in order to be far from adiabaticity.

Throughout the time evolution, we store the data of energy gaps between the ground

state and the first excited state, time schedule function values and ground state

probabilities. We initiate the genetic algorithm with a population of Npop = 20

individuals, and run it for a large enough number of generations until the algorithm

gives convergent values. When implementing genetic algorithms, it is advisable

to perform an initial experimentation to optimize the hyperparameters involved

in mutation, crossover and selection processes. The details of this procedure are

given in Appendix D.1. We consider the optimal hyperparameters to repeatedly

perform genetic algorithms and to analyse the results obtained from their solutions.

With the optimized annealing schedules and an optimal driving (OD) operator, the

Schrödinger equation is solved in the time domain [0, T ] and sampled at 100 evenly

spaced points in this interval. The system is initialized in the ground state of Hx.

When we optimize the annealing schedules, we evolve the Schrödinger equation
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Figure 3.2: Summary of the results obtained by using the optimized annealing
schedules for solving the p-spin model using SOGA. We investigate the system
with 15 spins with both the annealing schedules A(s) and B(s) expanded up to a
degree of 3. In other words, ka = kb = 2. In panel (a), we show the instantaneous
energy gaps during the dynamics of the adiabatic evolution, in panel (b) we show
the instantaneous ground state probability using the optimised schedules and by
using a simple linear schedule, in panel (c) we show the annealing schedules A(s)
and B(s), and in panel (d) we show the histogram of the fidelities for 50 runs of the
algorithm.
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Figure 3.3: Boxplot of fidelities of the states of systems with different sizes. Each
box represents the first quartile and the third quartile and the red line represents the
median of the data for 50 runs of SOGA which optimizes the annealing schedules
A(s) and B(s), each of which is expanded up to a third-degree polynomial.
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Figure 3.4: Results obtained by optimizing the time independent part of the local
OD operator for the ferromagnetic p-spin model with 15 spins and p = 3. The OD
operator chosen is Hod(s,γ)d=3. The plots depict the data for 50 runs of the SOGA
and the corresponding results obtained by adiabatic quantum computation. a)
Instantaneous energy gaps between the ground state and the first excited state.
b) Instantaneous ground state probabilities. c) Histogram of the fidelities for 50
instances.

with the Hamiltonian in Eq. (3.9), but without the optimal driving Hod(s,ε) term.

In the case of optimal driving optimization, we evolve the Schrodinger equation

with the Hamiltonian in Eq. (3.9). The ground state probability of the system

is computed along the genetically optimized path of quantum annealing. The

Schrödinger equation evolution is simulated using the QuTiP library (Johansson,

Nation, and Nori 2012; Johansson, Nation, and Nori 2013). Further, we repeat

the genetic algorithms 50 times and compute the corresponding results pertaining

the dynamics of the system. Hereafter, we present the results obtained by using

the three strategies assisted by SOGA. We discuss the cases where MOGAs can

be opted over SOGAs in order to obtain meaningful results. Further, we test our

methods with systems of varying number of spins.
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Figure 3.5: Boxplot of fidelities of the states of systems with different sizes. Each
box represents the data for 50 runs of SOGA iterated for 1000 generations, which
optimizes the time independent part of the OD operator with d = 3.
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Figure 3.6: Results obtained by optimizing the annealing schedules A(s), B(s)
and time dependent local OD operator for the ferromagnetic p-spin model with
15 spins and p = 3. The OD operator chosen is Hod(s,γ)d=3, and ka = kb = 2 and
kc = 3. The plots depict the data for 50 runs of the SOGA and the corresponding
results obtained by adiabatic evolution. a) Instantaneous energy gaps between the
ground state and the first excited state. b) Instantaneous ground state probabilities.
c) Time schedule functions, A(s), B(s) and C(s) d) Histogram of the fidelities for 50
instances.
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Figure 3.7: Boxplot of fidelities of the states of systems with different sizes. Each
box represents the data for 50 runs of SOGA iterated for 1000 generations which
optimizes the annealing schedules A(s) and B(s), and the scheduling of local OD
operator [Hod(s,γ)d=3], with ka = kb = 2 and kc = 3.
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3.4.1 Optimization of annealing schedules A(s) and B(s)

As described in Sec. 3.3, we optimize the annealing schedules by encoding the

coefficients of the polynomials in Eq. (3.3) as chromosomes D1 in Eq. (3.4). With

the optimal annealing schedules given by the genetic algorithms, we simulate the

adiabatic quantum computation. We focus on the cases when ka = 2 and kb = 2

and hence the length of the chromosome is 4. We have run the algorithm for 5000

generations.

The summary of the results by optimizing the annealing schedules using SOGA

is provided in Fig. 3.2. In Fig. 3.2(a), we show that the optimized path increases

the minimum gap between the ground state and the first excited state only slightly:

energy scales remain within practical limits. Meanwhile, in Fig. 3.2(b), the ground

state probabilities remain higher throughout the evolution and, around the final

time, there is a slight drop in the fidelity. This could possibly be overcome by

using MOGA by imposing a condition in the fitness function that the derivative

of the ground state probability evolution curve remains smaller. In Fig. 3.2(c),

we show the annealing schedules optimized by the SOGA. We see that both the

schedules A(s) and B(s) increase to a value larger than one and gradually decrease

to their respective boundary values, as opposed to the traditionally used monotonic

functions (M. S. Sarandy, L.-A. Wu, and D. A. Lidar 2004; Giovanni Acampora,

Vittorio Cataudella, Pratibha R Hegde, et al. 2019). We point out that the nature

of our optimized time schedules is different from the exact solution of annealing

schedule function derived for example in Ref. (Roland and Cerf 2002). This is

due to the fact that we do not impose the local adiabaticity at all points of time,
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but only at the final time. Fig. 3.2(d) shows the histogram of fidelities for 50 runs

of the algorithm. Fidelities are distributed in a small window with median value

of the distribution being ≈ 0.895, which is about two orders of magnitude higher

with respect to the linear schedule.

To conclude this section, we study the genetic optimization of annealing schedules

for varying system sizes. In Fig. 3.3, we fix the chromosome length to be 4, and

we run the genetic algorithms for 5000 generations for system sizes up to 45

spins. We plot the fidelities of the adiabatic evolution as a box plot where each

box represents the interval between the first and third quartiles and the red line is

the median fidelity over 50 repetitions. The solutions by the genetic algorithms

decrease for larger system sizes. However, the performance is strikingly better than

the corresponding results using linear annealing schedules, by several orders of

magnitude.

3.4.2 Optimization of OD

Here we optimize the local OD operators alone fixing linear annealing schedules as

described in Sec. 3.3. The chromosome is D2 in Eq. (3.7). We focus on optimizing

the local operators with only single spin operators Hod(s,γ)d=3 from Eq. (3.6) and

show that optimizing only 3 parameters, we obtain good fidelities. The higher

number of local terms lead to many trivial solutions of simply increasing the energy

scale of the system beyond practical capabilities due to the large solution space, at

the same time being computationally expensive.

The summary of the results obtained by genetic optimization of Hod(s,γ)d=3 are
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shown in Fig. 3.4. In Fig. 3.4(a) we show the energy gaps between the ground

state and the first excited state. The minimum energy gap is slightly higher than

the original system driven with no OD potentials. In panel (b), we show the

corresponding results of the evolution of ground state probabilities. Even though

the ground state probabilities are comparatively lower during the evolution, the

fidelities are high at the final time. The probabilities can be controlled to be higher

also during the evolution using MOGA. The results are not very diverse due to

the small chromosome size and yet these set of solutions are feasible. Finally in

Fig. 3.4, we show the distribution of fidelities for 50 solutions of SOGA. All the

solutions show very high fidelity with the median value of≈ 0.98. We analyzed the

data of optimized chromosomes to understand the contribution of each of the local

operator term in the expansion of optimized local OD operator. The contribution of

Sy is larger for all the cases considered, which is expected since the Sy term is the

starting point for many known expansions of the OD operator (Claeys et al. 2019;

Sels and Polkovnikov 2017; G. Passarelli, V. Cataudella, R. Fazio, et al. 2020;

Hartmann and Lechner 2019).

We verify the robustness of the genetic optimization approach in OD driving for

larger system sizes. In Fig. 3.5 we compare the fidelities of states of the systems up

to 45 spins. The fidelities are very high despite increasing the number of spins by

optimizing only single spin operators (i. e., d = 3). Nevertheless, when we increase

the size of the system, some of the solutions given by the genetic algorithms lead

to energy level crossings between the ground state and the first excited state. The

corresponding ground state probabilities fall to very low values in these points and
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regain better values towards the end of the evolution. However, this is an unphysical

scenario. We resort to MOGA in this case, which makes sure the ground state

probabilities are higher throughout the evolution by avoiding the situations of

energy crossings. An example of improvement of the results using MOGA for a

system with 40 spins is demonstrated in Appendix D.2.

3.4.3 Optimization of time schedules and the local OD

Here we optimize the free parameters of the time schedules A(s,α), B(s,β ), and

C(s,ε) all together as a chromosome D3 in Eq. (3.10). We choose ka = 2, kb = 2

and the number of local operators d = 3, each accompanied by a time schedule

Ci(s,ε) as described in Eq. (3.8) with kc = 3. It is sufficient to run the algorithm

up to 1000 generations in this case in order to obtain convergent results.

Fig. 3.6 shows the summary of the results obtained by optimizing all the time

schedules in the realm of shortcuts to adiabaticity. In Fig. 3.6(a), we show the

minimum energy gaps. In this case, the solutions are quite diverse because of

the larger search space. The same is reflected in the evolution of ground state

probabilities in Fig. 3.6(b). In Fig. 3.6(c), we show the optimized annealing

schedules. While some of the solutions show the same increase and decrease

patterns seen in the previous case, some others are monotonic between the boundary

values. The schedules C(s) plotted in green color are composed of the three time

functions {C1(s),C2(s),C3(s)} of each of the local operators in the expansion of

the OD potential. We show the distribution of fidelities in the solutions given by

the genetic algorithm in Fig. 3.6(d). The fidelities are exceptionally higher with a
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median value of ≈ 0.997.

In Fig. 3.7, we compare the fidelities of adiabatic quantum computation assisted by

genetic algorithms for varying system sizes. Here we have fixed the chromosome

length to be 13 and we run the algorithm for 1000 generations for all the cases. The

performance of genetic optimization is consistently higher even for larger system

sizes.

3.5 Generalization to random Ising models

In order to test the feasibility of our method in a more general framework, we

additionally studied the performance of the genetic optimization for a random Ising

model. We considered a system of n = 5 qubits arranged in the graph shown in

Fig. 3.8, described by the following Hamiltonian,

Hz = HI =
1
2 ∑
⟨i j⟩

(
1− Ji jσ

z
i σ

z
j

)
, (3.13)

where the sum acts on qubits connected by the graph bonds and the couplings

Ji j are random uniform variables in [−1,1]. The idea here is to apply the genetic

routine to a family of randomized models so as to see if some general features of

optimized annealing schedules/OD operators can be inferred. This would allow us

to significantly speed up computation since it would remove the need to repeat the

genetic optimization on an instance-by-instance basis. We generated Ninst = 50

random instances and repeated the (stochastic) genetic optimization Nrep = 30
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Figure 3.9: Results of genetic optimization of quantum annealing of a random
Ising model (Eq. (3.13)), for a typical random instance. The plot shows the data of
30 genetic optimizations of the considered random instance. Top panel depicts the
optimization of annealing schedules alone, with the parameters, ka = kb = 3. Here,
(a) Instantaneous total probability of obtaining degenerate ground states using
optimized polynomial schedules vs using linear schedules (b) Optimized annealing
schedules A(s) and B(s) (c) Approximation ratios of 30 genetic optimizations of the
given random instance. In the bottom panel, (d), (e) and (f) are the corresponding
results obtained by optimizing annealing schedules and OD operator(Hod(s,γ)d=3)
together. The parameters considered in this case are ka = kb = 2 and kc = 3.
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Figure 3.10: Median approximation ratio distribution for Ninst = 50 random in-
stances over Nrep = 30 repetitions of SOGA for each instance. The histogram
shows the approximation ratios of traditional quantum annealing protocol. In the
inset plot, we show the corresponding approximation ratios of quantum annealing
with optimized time schedules, and quantum annealing with optimized annealing
schedules and OD operator.
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times for each instance and for each choice of the parameters of the simulation. In

particular, we considered two different annealing times (T = 5 and 10). For the

optimization of annealing schedules alone, we considered the parameters of the

polynomial ansatz, ka = kb = 3, while for the optimization of the OD operator we

considered ka = kb = 2 and kc = 3. We focused our attention on SOGAs and, since

the target Hamiltonian is Z2 symmetric and the ground state is doubly degenerate,

we resorted to the average final energy as fitness function: fso = ⟨HI⟩. We quickly

note that the Hamiltonian in Eq. (3.13) is commonly used to encode MaxCut and

MinCut problems (Crooks 2018). This is why, in the following, we will show

data concerning the so-called approximation ratio, i. e. the ratio between the final

fitness value and the true ground-state energy, which is a commonly used figure of

merit in approximate optimization of this kind of problems (Farhi, Goldstone, and

Gutmann 2014; Crooks 2018).

We show the results for a typical random instance in Fig. 3.9 by optimizing

annealing schedules alone and by optimizing both annealing schedules and OD

operator. First, we focus on the optimization of the annealing schedules (see

Fig. 3.9 (a)(b)(c)). In all cases analyzed, the annealing schedules are nonmonotonic

like for the p-spin model of Sec. 3.2. In addition, since the final typical energy

scale is smaller than the starting one, we note that the schedule B(s) is always larger

than A(s). The energy scales remain comparable with the ones of linear annealing

schedules, but the approximation ratio is substantially improved compared with

the linear schedules. The results are similar when annealing schedules and OD

operators are optimized together (see Fig. 3.9 (d)(e)(f)). Especially, the annealing
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schedules continue to show nonmonotonic features, and we note that the schedules

of the OD operator C(s) is bounded within a smaller range of values. Also, the

approximation ratios are significantly higher than the bare case. In Fig. 3.10, we

compare the median approximation ratios (median of Nrep = 30 SOGA repetitions)

of 50 random instances of the Ising model. It is evident that the genetically

optimized quantum annealing protocols show consistently higher approximation

ratios than the traditional quantum annealing with linear annealing schedules and

without OD.

Even though the preliminary analysis of this problem shows considerably promis-

ing results, the question of whether one can find a general optimal schedules or

OD operator which optimizes any random instance of Ising model remains open.

We considered the average time schedule obtained from the data of 50 random

instances, and investigated if this averaged schedule optimizes new random in-

stances. In most cases it shows slight improvement when compared to the bare

case. However, our analysis is far from being comprehensive in this test case and

we reserve the possibility of expanding on this aspect in future works together with

machine learning techniques.

3.6 Conclusions

In this chapter, we used genetic algorithms to optimize the performance of quantum

annealing. We demonstrated the efficiency of our method for the ferromagnetic

p-spin model with p = 3. In the beginning, we optimized the annealing schedules
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of the standard adiabatic quantum computation protocol using genetic algorithms.

We considered the time schedules to be polynomial expansions, whose coefficients

were optimized as chromosomes of genetic algorithms. For a system with 15

spins, we were able to achieve a median fidelity of ≈ 0.895, by optimizing 4 free

parameters of the polynomials.

We used the genetic algorithms in the paradigm of shortcuts to adiabaticity as

well. Here, we optimized a practically implementable local Hamiltonian composed

of only single spin operators which when added to the system Hamiltonian can

improve the fidelity of the state of the system. In the first step, we fixed the

annealing schedules to be linear functions of time and the time schedule of the

optimal driving operator to be a quadratic function. By optimizing only the

coefficients of single spin operators, i. e., by optimizing only 3 free parameters,

we were able to achieve a median fidelity of ≈ 0.98, for a system with 15 spins.

As a next step, we optimized the annealing schedules, and the time-dependent

coefficients of the local operators together. In this case, the time schedule of

each of the optimal driving operator were absorbed as their coefficients and were

assumed to be polynomial functions of time. By optimizing 13 free parameters of

polynomials, we were able to obtain median fidelity ≈ 0.997.

Further, we tested our methodology for varying system sizes. While optimizing

annealing schedules alone showed a decrease in the fidelities, optimization of

optimal driving showed consistent performance even for larger systems with up

to 45 spins by optimizing only local single spin operators. We also discussed the

cases when the single objective genetic algorithms give unphysical solutions of
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energy crossings and the possibility of using multi-objective genetic algorithms to

tackle this problem.

We tested the technique of SOGAs for a generic case of random Ising models.

We generated 50 random instances of Ising models. We separately analyzed the

results when only annealing schedules are optimized with chromosome size 6 and

as well as in the picture of optimal driving with chromosome size 13. We compared

the approximation ratios (the ratio between the energy of the final state and the

energy of the true ground state) of the traditional quantum annealing with those of

genetically optimized quantum annealing and demonstrated that genetic algorithms

are promising tools also in optimizing quantum annealing of random Ising models.

Optimized annealing schedules and local optimal driving operators can enhance

the efficiency of quantum annealers in solving optimization problems. To give

a practical example, D-Wave quantum annealers allow the experimentalists to

control the dynamics globally by submitting a piecewise linear approximation of

the annealing schedules. The shape of this approximation can then be tweaked

using our genetic algorithm. Our method is flexible in terms of choice of the ansatz,

definition of fitness function, simulation of time dynamics, and can be fine-tuned

accordingly to match the experimental platforms and their limitations.
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4. Conclusions

In this thesis we have approached the problem of mapping a p-body Hamiltonian

into a Hamiltonian with only 2 body interactions. We have used a genetic algorithm

(GA) where a fitness function minimizes the energy difference between the lower

spectrum of the original and the final Hamiltonian by optimizing the free parame-

ters of the fully connected 2-body Hamiltonian. The process of mapping highly

interacting models into 2 local interactions requires the introduction of ancillae

qubits, which are desired to be minimum in number to avoid huge resources. We

have considered two analytically solvable cases of a ferromagnetic p-spin model;

the number spins N=3 and N=4. For N=3, we have used one ancillary degree of

freedom leading to the final Hamiltonian with the number of qubits M=4. For

N=4, we introduce two ancillae leading to M=6. The optimized free parameters

obtained from genetic algorithms is in good agreement with the analytical values

for the cases considered. We further implement memetic algorithms (MA) which

are advantaged by the local searches around the region of the solution obtained

from a genetic algorithm. We consider the same cases of the ferromagnetic p-spin

model and show that memetic algorithm outperforms other heuristics in terms of
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the median fitness value (taken over 100 runs of the algorithm) for a given num-

ber of fitness evaluations. Specifically, for the case of N = 3, the median fitness

values for GA, MA and hillclimbing (HC) are 1.3473×10−6, 7.6298×10−7 and

1.6875×10−6, respectively. For the case N = 4, the median fitness values for GA,

MA and HC are 3.4285×10−4, 1.172×10−4 and 5.3624×10−4, respectively.

Further, we have proposed the optimization of quantum annealing using genetic

algorithms. Specifically, we engineered the annealing schedules which helps

the system to avoid diabatic transitions. We chose the polynomial ansatz whose

coefficients are constructed as a string of real numbers called chromosome. The

chromosome is optimized by genetic algorithm with the goal to maximize the final

fidelity of the adiabatic evolution. We have used ferromagnetic p-spin model to

benchmark our technique. For the ferromagnetic p-spin model with 15 spins, this

technique is able to achieve the median fidelity approximately equal to 0.895 by

optimizing only 4 parameters. When the number of spins were increased to a large

number, the fidelity was shown to be decreasing by engineering the annealing

schedules alone. However by adding an optimal driving operator to the time

dependent driving Hamiltonian which remains zero in the initial and the final time

we were able to achieve very high fidelity even for a large number of spins. We

constructed a practically implementable local optimal driving Hamiltonian from

single spin operators. By optimizing only 3 parameters using genetic algorithms,

the adiabatic evolution showed the final time median fidelity of approximately

0.98 for a system of 15 spins. Further by optimizing the annealing schedules and

the optimal driving operator together, the median fidelity was further increased to
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approximately 0.997. In the optimal driving scenario, The fidelity remained high

even for the large number of spins (upto 45 spins).

The results of this thesis have shown that the evolutionary algorithms are very

effective techniques in aiding quantum computation. They are effective in perform-

ing efficient embedding of optimization problems into quantum hardware and they

are also capable of modelling and engineering the optimal interactions deviating

from the standard theoretical quantum algorithms making it possible to implement

them on the real quantum hardware. Likewise, in the near future we would like to

use these techniques for other problems within the subject of quantum computation.

The quantum approximate optimization algorithms (QAOAs) have been recently

shown to have advantaged by shortcuts to adiabaticity by implementing an optimal

quantum circuit (Hegade, X. Chen, and Solano 2022; Wurtz and Love 2021). It will

be definitely a worthwhile study to investigate the use of genetic algorithms in this

problem. The preliminary study of finding optimal driving of a random Ising model

in our work is a starting point to investigate the use of machine learning techniques

to find general patterns in optimal schedules, perhaps also using different ansatz

functions. It would be also interesting to study the effectiveness of evolutionary

strategies in finding an optimal driving in open quantum systems.
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A. Adiabatic theorem of quantum
mechanics

Adiabatic theorem states that if a system is prepared in the nth eigenstate of a time
dependent non-degenerate Hamiltonian in the initial time, it continues to be in the
same eigenstate at every instant of time, up to a multiplicative phase factor if the
Hamiltonian is driven slowly enough (Born and Fock 1928).
The time independent Schrödinger equation of system described by the Hamiltonian
H at time t is given by,

H(t)|ψn(t)⟩= En(t)|ψn(t)⟩. (A.1)

When the system is driven by the Hamiltonian H(t), the state of the system at time
t can be expressed in terms of the instantaneous eigen bases (obtained by solving
Eq. A.1) at time t of the driving Hamiltonian H(t). i. e.,

Ψ(t) = ∑
n

c′n(t)ψn(t) (A.2)

The coefficients c′n(t) can be rewritten as

Ψ(t) = ∑
n

cn(t)ψneiθn(t), (A.3)

where θn(t) = −
t∫

0
En(t)dt. The evolution of this state with time is described by

the time-dependent Schrödinger equation as follows,

ih̄
Ψ(t)

dt
= H(t)Ψ(t), (A.4)
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Using the expression A.3 and further solving, we get

ih̄∑
n

[
ċn(t)ψn(t)eiθn(t)+ cn(t)ψ̇n(t)eiθn(t)+ cn(t)ψn(t)θ̇n(t)eiθn(t)

]
= ∑

n
cn(t)H(t)ψn(t)eiθn(t).

(A.5)

Further simplifying, we get the expression,

∑
n
[ċn(t)ψn(t)+ cn(t)ψ̇n(t)] = 0. (A.6)

Now taking inner product with another instantaneous eigen state ψm(t),

∑
n

ċn⟨ψm|ψn⟩eiθn(t) =−∑
n

cn⟨ψm|ψ̇n⟩eiθn(t). (A.7)

In the above equation all the terms are time dependent and are not explicity denoted
in the rest of the derivation. Because of the orthogonality condition, the inner
products of the mth state survive on the left hand side, leading to,

ċm =−∑
n

cn⟨ψm|ψ̇n⟩ei(θn−θm). (A.8)

To find an equivalent expression for the term ⟨ψm|ψ̇n⟩, differentiate the time
independent Schrödinger equation and take innerproduct with an arbitrary eigen
state |m⟩. This gives us,

Ḣψn +Hψ̇n = Ėnψn +Enψ̇n, (A.9)

⟨ψm|Ḣ|ψn⟩+Em⟨ψm|ψ̇n⟩= Ėnδmn +En⟨ψm|ψ̇n⟩. (A.10)

For n ̸= m we get,

⟨ψm|ψ̇n⟩=
⟨ψm| Ḣ |ψn⟩

En−Em
. (A.11)

Since we are considering adiabatic regime where the rate of change of Hamiltonian
is very small, for the case when n ̸= m, the term ⟨ψm |ψn⟩ can be set to zero. This
leads to to the equation of change of the coefficients to be

ċm =−cm⟨ψm |ψ̇m⟩ . (A.12)
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Solving this equation by integration gives,

cm(t) = cm(0)eiγ(t), whereγ(t) = i
t∫

0

⟨ψm |ψ̇m⟩dt. (A.13)

Here γ(t) is called the geometric phase. It is evident from this equation that if the
system is initially in the nth eigen state which means cn(0) = 1, then the probability
of finding the system in the nth eigenstate at a time t is also equal to 1. This is the
gist of the adiabatic theorem.

A.0.1 Adiabatic criterion
The question of how slow the evolution should be to be in adiabatic limit can be
addressed by deriving a quantitative adiabatic criterion. Consider the intermediate
step in the previous derivation in Eq. A.8.

ċn =−∑
k

cm⟨ψn |ψ̇m⟩ei(θm−θn)

= ∑
m

cm
⟨ψn| Ḣ |ψm⟩

En(t)−Em(t)
e
− i

h̄

t∫
0

Em(t ′)−En(t ′)dt ′
(A.14)

For the adiabatic theorem to be true, we know that cm(t) = 1 whenever cn̸=m(0) = 1.
Applying the same in the above equation,

ċn̸=m =
⟨ψn| Ḣ |ψm⟩

En(t)−Em(t)
e
− i

h̄

t∫
0

Em(t ′)−En(t ′)dt ′

. (A.15)

Integrating the above equation in the limit 0 and T(the final time),

cn̸=m(T ) =
T∫

0

⟨ψn| Ḣ |ψm⟩
En(t)−Em(t)

e
i
h̄

t∫
0

En(t ′)−Em(t ′)dt ′

dt. (A.16)

We know that cn ̸=m(T ) should be close to zero to satisfy the adiabatic criterion.
In the integral, the largest contribution comes from the largest matrix element
of ⟨ψn(t)| Ḣ |ψm(t)⟩ ≈ ⟨ψ|n Ḣ |ψn⟩, and the smallest energy difference En(t)−
Em(t)≈ En−Em during the time evolution. The integral in the above equation can
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be approximately written as,

cn̸=m(T )≈
T∫

0

⟨ψn| Ḣ |ψm⟩
En(t)−Em(t)

e
i
h̄

t∫
0

En(t ′)−Em(t ′)dt ′

dt

=
⟨ψn| Ḣ |ψm⟩

En(t)−Em(t)

ih̄
En−Em

(
e−iEn−EmT/h̄−1

)
≈ ⟨ψn| Ḣ |ψm⟩

En(t)−Em(t)

ih̄

En(t)−Em(t)
.

(A.17)

Since the last term is oscillating the upper bound is considered to obtain the
condition for adiabaticity. Now this expression of cn̸=m(T )≪ 1. Therefore the
condition for adiabaticity is,

h̄⟨ψn| Ḣ |ψm⟩

En(t)−Em(t)
2 ≪ 1, (A.18)

or more explicitly (h̄ = 1),

max
t∈[0,T ]

| ⟨ψn(t)| Ḣ(t) |ψm(t)⟩ |
|En(t)−Em(t)|2

≪ 1. (A.19)

The above equation indicates how slow the Hamiltonian is allowed to be varied
with time such that the system is in ground state at a given time. This is one of
the simplest and the earliest adiabatic criterion derived. There are other adiabatic
conditions in the literature which have proven to be more rigorous (J.-d. Wu et al.
2008; Comparat 2009; Albash and Daniel A. Lidar 2018).
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B. Representing ferromagnetic p-
spin model in maximum spin
subspace

Since the Hamiltonian of the ferromagnetic p-spin model commutes with the total
spin operator S2, the model can be represented in the maximum spin subspace
spanned by total spin operators. Here we derive the equivalent Pauli spin operators
σx, σy, σz in this subspace.
Spin operators and Pauli matrices are related by,

Sx,y,z =
h̄
2

σx,y,z. (B.1)

From here, we set h̄ = 1.
The total spin operator Sz operator acts on a system of N spin-1

2 particles as,

Sz |J,m⟩= m |J,m⟩ , (B.2)

Where J is the maximum spin equal to N/2 and m ∈ {−J...J} being N + 1 in
number. The eigen value equation of σz in the new subspace is straight forward
i. e.,

σz

∣∣∣∣N2 ,m
〉
= 2m

∣∣∣∣N2 ,m
〉
. (B.3)

σz is diagonal in this subspace with the ith eigen value being N−2i. Therefore the
matrix elements of σz are

σz[i, i] = N−2i, (B.4)

where i = 0...N.
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To find σx and σy operators, consider the ladder operators S+ and S−, defined by,

S± |J,m⟩= Sx± iSy =⇒ Sx =
S++S−

2
, Sy =

S+−S−
2i

(B.5)

The action of these ladder operators on a state |J,m⟩ is

S± |J,m⟩=
√

J(J+1)∓m(m+1) |J,m±1⟩ . (B.6)

With this definition, the matrix elements of Sx, ⟨i|Sx |i′⟩ can be computed. From
Eq. B.5, 〈

N
2
, i
∣∣∣∣Sx

∣∣∣∣N2 , i′
〉
=

〈
N
2
, i
∣∣∣∣ S++S−

2

∣∣∣∣N2 , i′
〉

=
1
2

√
N
2

(
N
2
+1
)
− i′(i′+1)δi,i′+1

+
1
2

√
N
2

(
N
2
+1
)
+ i′(i′+1)δi,i′−1

(B.7)

This implies that only the elements ⟨i|Sx |i−1⟩ and ⟨i|Sx |i+1⟩ have non zero
values,〈

N
2
, i
∣∣∣∣Sx

∣∣∣∣N2 , i+1
〉
=

1
2

√
N
2

(
N
2
+1
)
−
(

N
2
− i−1

)(
N
2
− i
)

(B.8)

=
1
2

√
(i+1)(N− i). (B.9)

Similarly, 〈
N
2
, i+1

∣∣∣∣Sx

∣∣∣∣N2 , i
〉
=

1
2

√
(i+1)(N− i),〈

N
2
, i
∣∣∣∣Sy

∣∣∣∣N2 , i+1
〉
=

1
2i

√
(i+1)(N− i),〈

N
2
, i+1

∣∣∣∣Sy

∣∣∣∣N2 , i
〉
=− 1

2i

√
(i+1)(N− i).

(B.10)

The corresponding equivalent Pauli matrices σx,y,z can be obtained from the relation
in Eq. B.1. The ferromagnetic p-spin model can be defined using these new
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operators with the dimension of the Hamiltonian being N +1.
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C. Numerical details of memetic
algorithms

C.1 Experimental setup
In order to evaluate the proposed approach of mapping p-body Hamiltonian into
2-body Hamiltonian using memetic algorithms, we consider two instances of the
problem at hand. In particular, we consider the mapping of the ferromagnetic p-
spin model with (i) N = 3 and p = 3, needing one ancilla which implies M = 4; (ii)
with N = 4 and p = 3, needing two ancillae which makes M = 6. The evaluation
involves these two instances because it is possible to find the analytical solution for
them and, as a consequence, this allows us to study the suitability of our proposal in
finding the most opportune free parameters. Formally, the correct free parameters
for these two configurations are, respectively,

v⃗M=4 ≡ (−3,−3δ ,
26
9
,

26
9
,

26
9
, 2δ , 2δ ,

16
3
,−8

3
−δ ,−8

3
,−8

3
) (C.1)

v⃗M=6 ≡ (−4,−3δ ,−3δ ,
7
2
,

7
2
,

7
2
,

7
2
, 0, 2δ , 2δ ,

3, 3, 3, 3, 2δ , 2δ ,−3−δ ,−3,−3,−3,−3,−3−δ ). (C.2)

In our experimentation, we will fix the constant δ used to compute the penality
cost Evec

pen reported in Eq. 3.11 to 50 because this value provides a large separation
between the largest eigenvalue of the target subspace and the smallest eigenvalue
of the nonphysical one, in both considered problem instances, as described in
(Acampora2019).
To visualize the results of the experimentation, a graphical methodology, named
box plots, is used. A box plot is a standardized way of displaying data based on a
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five-number summary: the minimum, the maximum, the sample median, and the
first (Q1) and third (Q3) quartiles. Graphically, a boxplot is constructed of two
parts, a box and a set of whiskers. The lowest point is the minimum of the data set
and the highest point is the maximum of the data set. The box is drawn from Q1
to Q3 with a horizontal line drawn in the middle to denote the median. Moreover,
outliers are plotted as individual points or crosses. Box plots have been chosen
because they are a non-parametric method: they display variation in samples of a
statistical population without making any assumptions of the underlying statistical
distribution. Indeed, the used samples will be fitness values obtained by different
runs of the algorithms whose the statistical distribution is unknown.

C.2 Tuning of hyper-parameters of the memetic
algorithm

The configuration of the memetic algorithm used in the experiments is the result
of a design study involving the genetic operators and the other hyper-parameters
as described in this section. In particular, we perform a design study involving
the tuning of the following hyper-parameters: crossover probability, mutation
probability, tournament size, frequency and intensity. The tested values for each one
of them together with the other hyper-parameter values are reported in Table C.1.
By using 3 different values for the crossover probability and mutation probability,
2 for tournament size, 4 for intensity and 5 for frequency, our design study would
have involved the assessment of 360 different combinations. Hence, to reduce the
computational effort related to the hyper-parameter tuning, we have decided to
perform a tuning study in two steps. The first step is devoted to analyse the trend
of the frequency and intensity values. In this first step, the values for crossover
probability, mutation probability and tournament size are fixed. The second step,
instead, has involved the study of all hyper-parameters by reducing the number
of different values for the intensity and frequency to the best ones obtained in
the first step. Being MAs stochastic procedures, we perform 100 runs for each
configuration in both steps of the design study.
Fig. C.1 shows the results of the first step for both the considered problem instances
by using box plots. As shown by the median fitness values represented in the box
plots, the configurations with a low frequency are better than the others for both
instances (in particular, frequency value 1 characterizes the best configurations for
both instances). Instead, the intensity hyper-parameter is not characterized by a
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Table C.1: Parameter settings for the tuning of the memetic hyper-parameters

Population size 20
Stopping criteria 1,000,000 fitness evaluations

Crossover probability 0.2, 0.5 and 0.9
Mutation probability 0.02, 0.05 and 0.09

Tournament size 3 and 5
Intensity 50, 100, 250 and 500 fitness evaluations

Frequency 1, 5, 10, 15 and 20 individuals

clear trend. Indeed, for the case N = 3 and M = 4, the best values are the highest
ones, whereas, for the case N = 4 and M = 6, the best values are the lowest ones.
For this reason, we select the following values to perform the second step: 1 for
frequency and the extreme values (50 and 500) for the intensity.
Fig. C.2 shows the results of the second step for both the considered problem
instances by using box plots graphical method. The configuration for which the
box has the lowest median is considered to be the best configuration of the memetic
algorithm. As shown in the box plots, for the case N = 3, the best configuration is
the 11th one that is characterized by pm = 0.09, pc = 0.2, NT = 5, li = 50 and l f = 1,
whereas, the best configuration for the case N = 4 is the 12th one characterized by
pm = 0.09, pc = 0.2, NT = 5, li = 500 and l f = 1. These configurations for MA
are used in the comparison studies reported in the next sections.
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Figure C.1: Results of the first step of the tuning process for (a) the case N = 3
and M = 4 and (b) the case N = 4 and M = 6. Each configuration is denoted
as x− y where x is the frequency value and y is the intensity value. For sake of
readibility, outliers are not displayed.
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Figure C.2: Results of the second step of the tuning process for (a) the case
N = 3 and M = 4 and (b) the case N = 4 and M = 6. Configurations are described
in Table C.2. For sake of readibility, outliers are not displayed.
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Table C.2: Configurations of the second step of the tuning study. In the table,
values for crossover probability(pc), mutation probability(pm), tournament selection

size (NT ), intensity (li) and frequency (l f ) chosen are tabulated.

# pc pm NT li l f # pc pm NT li l f

1 0.2 0.02 3 50 1 19 0.5 0.05 5 50 1
2 0.2 0.02 3 500 1 20 0.5 0.05 5 500 1
3 0.2 0.02 5 50 1 21 0.5 0.09 3 50 1
4 0.2 0.02 5 500 1 22 0.5 0.09 3 500 1
5 0.2 0.05 3 50 1 23 0.5 0.09 5 50 1
6 0.2 0.05 3 500 1 24 0.5 0.09 5 500 1
7 0.2 0.05 5 50 1 25 0.9 0.09 3 50 1
8 0.2 0.05 5 500 1 26 0.9 0.02 3 500 1
9 0.2 0.09 3 50 1 27 0.9 0.02 3 50 1

10 0.2 0.09 3 500 1 28 0.9 0.02 3 500 1
11 0.2 0.09 5 50 1 29 0.9 0.05 5 50 1
12 0.2 0.09 5 500 1 30 0.9 0.05 5 500 1
13 0.5 0.02 3 50 1 31 0.9 0.05 3 50 1
14 0.5 0.02 3 500 1 32 0.9 0.05 3 500 1
15 0.5 0.02 5 50 1 33 0.9 0.09 5 50 1
16 0.5 0.02 5 500 1 34 0.9 0.09 5 500 1
17 0.5 0.05 3 50 1 35 0.9 0.09 3 50 1
18 0.5 0.05 3 500 1 36 0.9 0.09 3 500 1
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D. Numerical details of genetic al-
gorithms used in genetic opti-
mization of quantum annealing

D.1 Optimizing the hyperparameters of genetic
algorithms

Genetic algorithms are characterized by hyperparameters pertaining the selection,
crossover and mutation processes. To be precise, the individual undergo the process
of mutation with a probability of pm, wherein the real numbers of the chromosome
are altered according to a Gaussian distribution with variance σ2 and mean µ .
Further each real number (gene) in the chromosome undergoes mutation with the
probability pind. We perform two-point crossover among the parent chromosomes
where a string of values are cut and exchanged between the parents to produce
two new solutions and this process occurring with a probability of pc. We choose
the tournament selection process where among every NT individual chromosomes,
we choose the best chromosome as parent for producing offspring. This cycle of
generation repeats. In general, for each optimization problem it is advisable to
perform an initial experimentation to fix these hyperparameters which give the
best solution to the problem (Giovanni Acampora, Vittorio Cataudella, Pratibha R
Hegde, et al. 2019; Giovanni Acampora, Vittorio Cataudella, Pratibha Raghupati
Hegde, et al. 2021; Fortin et al. 2012). In particular, for the problem of annealing
schedules optimization, we have tuned and chosen the hyperparameters values,
NT = 6, pc = 0.75, pm = 0.35, pind = 0.1, σ2 = 0.6, µ = 0. For the problem of
finding the optimal driving, the best combination of hyper parameters is found to
be NT = 3, pc = 0.3, pm = 0.9, pind = 0.1, σ2 = 1, µ = 0. However, in this paper,
for the optimization problems chosen, varying the hyperparameters have minimal
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effect on the overall quality of the solutions. For example, pm = 0.9 gives the best
fidelity, however decreasing pm leads to searching in smaller search space which
in turn reduces the number of solutions which simply increase the energy scaling
of the system. Meanwhile, by doing so, the fidelity is not affected by a great deal.

D.2 Selection of chromosome from the Pareto
Optimal Front in MOGA

The output of a MOGA which is implemented using Non-dominated Sorting
algorithm II, is a set of chromosomes with the best ranking in terms of their
domination over the rest of the chromosomes (Deb et al. 2002; Fortin et al. 2012).
This set of chromosomes is called Pareto optimal front. In the end of evolution,
we choose one of the chromosomes in the Pareto optimal front, which has a
good trade-off between the area under the ground-state probability curve and
fidelity. In this work, we choose the chromosome with the maximum value of
0.4× area+0.6×Pgs(T ) and use this solution to perform adiabatic evolution and
compute results. As an example, we consider the ferromagnetic p-spin model with
40 spins and optimize a local optimal driving (OD) operator (with fixed annealing
schedules). We show the difference in the solutions obtained from SOGAs and
MOGAs in Fig. D.1. In MOGA, with the imposition of large area under the curve
of ground state probabilities, the genetic algorithm converges to solutions where
there are no energy crossings. The same can be seen in the plots of ∆min(t) and the
histogram of ∆min(T ). The median fidelity using the results of SOGA is ≈ 0.983,
whereas with MOGA, the median fidelity is ≈ 0.981.
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Figure D.1: Results of the optimization of local OD operator with 3-local operators
for a p-spin model with 40 spins and p = 3. We compare the performance of SOGA
in (a) and MOGA in (b). The red bold line in the solutions obtained from SOGA
indicate the solutions where there are energy level crossings. The corresponding
results using MOGA do not show this kind of solutions.


	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	Introduction to quantum computation
	Quantum Annealing
	Ferromagnetic p-spin model
	Embedding optimization problems into quantum annealer architectures
	Shortcuts to adiabaticity
	Evolutionary algorithms

	An evolutionary strategy for finding effective quantum 2-body Hamiltonians of p-body interacting systems
	Problem definition
	A genetic algorithm for optimizing Hamiltonian free parameters
	Chromosome structure
	Fitness function
	Genetic operators

	Preliminary experiments and results
	Experimental set-up
	Design study
	Results
	Discussion for adiabatic quantum computation

	Improvement in the mapping by using Memetic algorithms
	Local search procedure
	Comparison with the analytical approach
	Comparison with other meta-heuristics

	Conclusions

	Genetic optimization of quantum annealing
	Introduction
	Problem definition
	 Methods: Genetic algorithms
	Optimization of annealing schedules
	Optimization of the local OD operator
	Optimization of the time schedules and the local OD
	Single objective genetic algorithms
	Multi-objective genetic algorithms

	Results
	Optimization of annealing schedules A(s) and B(s)
	Optimization of OD
	Optimization of time schedules and the local OD

	Generalization to random Ising models
	Conclusions

	Conclusions
	Bibliography
	Adiabatic theorem of quantum mechanics
	Adiabatic criterion

	Representing ferromagnetic p-spin model in maximum spin subspace
	Numerical details of memetic algorithms
	Experimental setup
	Tuning of hyper-parameters of the memetic algorithm

	Numerical details of genetic algorithms used in genetic optimization of quantum annealing
	Optimizing the hyperparameters of genetic algorithms
	Selection of chromosome from the Pareto Optimal Front in MOGA


