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Abstract The tight coupling between the macroscopic evolution of

Tokamak plasmas and the induced currents in the surrounding Vacuum

Vessel (VV) and Plasma Facing Components (PFCs) has been known

for decades. In the present Thesis we critically review some aspects of

the electromagnetic interaction. In conditions of significant plasma-wall

contact the gas mixture is generally only partially ionized. We try to

model this situation in a consistent thermodynamic framework, allowing

for ionization and the recombination phenomena, in Chapter 1. This

represents the occasion to review the whole MHD theory in the wider

framework of Non-equilibrium Thermodynamics, also discussing the

implications of the Curie principle on the closure relations generally

adopted. A self-consistent coupling of 3D non-linear MHD models with

fully volumetric 3D structures models is still missing in the literature.

We explore some possibilities in Chapter 2, hinting also the first

preliminary results in the JOREK-CARIDDI coupling. Several possible

formulations are discussed, together with the possible implications of

halo currents in the modelling. In Chapter 3 we discuss the mass-less

hypothesis and the fundamental aspects of MHD evolutionary

equilibrium models. Here we also review the key aspects of the

numerical model CarMa0NL. In the last Chapter we apply the

evolutionary equilibrium tools previously discussed to practical

problems. We first successfully cross-check analytical and numerical

computation of forces during off-normal events called disruptions,

providing some hints on the magnetic tensions, besides on the

magnetic pressures. Further, we propose a procedure for the

estimation of plasma losses during disruptions via evolutionary

equilibrium models, which we apply to a simple test case. We find also

in this case the fundamental role of the electromagnetic time constant,

which regulates the plasma dissipated heat during the current quench

phase. Further we validate CarMa0NL by direct comparison with JET

and TCV experiments, comparing simulated and real magnetic

diagnostics measurements. For JET, we find that the halo width is a

crucial element for a realistic simulation. In the TCV studies we show

that the disruption trajectory is dependent on the pre-disruption plasma

shape.
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che non può non produrre nel corso della vita.”

E. Schrödinger, Che cos’é la vita?
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Abstract vii

Abstract

T he tight coupling between the macroscopic evolution of tokamak plas-
mas and the induced currents in the surrounding Vacuum Vessel (VV)

and Plasma Facing Components (PFCs) has been known for decades. In the
present Thesis we critically review some aspects of the electromagnetic in-
teraction. In conditions of significant plasma-wall contact the gas mixture
is generally only partially ionized. We try to model this situation in a con-
sistent thermodynamic framework, allowing for ionization and recombination
phenomena, in Chapter 1. This represents the occasion to review the whole
MHD theory in the wider framework of Non-equilibrium Thermodynamics,
also discussing the implications of the Curie principle on the closure relations
generally adopted. A self-consistent coupling of 3D non-linear MHD models
with fully volumetric 3D structures models is still missing in the literature.
We explore some possibilities in Chapter 2, hinting also the first preliminary
results in the JOREK-CARIDDI coupling. Several possible formulations are
discussed, together with the possible implications of halo currents in the mod-
elling. In Chapter 3 we discuss the mass-less hypothesis and the fundamental
aspects of MHD evolutionary equilibrium models. Here we also review the
key aspects of the numerical model CarMa0NL. In the last Chapter we ap-
ply the evolutionary equilibrium tools previously discussed to practical prob-
lems. We first successfully cross-check analytical and numerical computation
of forces during off-normal events called disruptions, providing some hints on
the magnetic tensions, besides on the magnetic pressures. Further, we propose
a procedure for the estimation of plasma losses during disruptions via evolu-
tionary equilibrium models, which we apply to a simple test case. We find also
in this case the fundamental role of the electromagnetic time constant, which
regulates the plasma dissipated heat during the current quench phase. Further
we validate CarMa0NL by direct comparison with JET and TCV experiments,
comparing simulated and real magnetic diagnostics measurements. For JET,
we find that the halo width is a crucial element for a realistic simulation. In
the TCV studies we show that the disruption trajectory is dependent on the
pre-disruption plasma shape.
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Introduction

S
ustainable energy production is one of the key aspects to limit global
warming well below 2◦C, and possibly below 1.5◦C, objective set up by

the United Nations Framework Convention on Climate Change (UNFCC), as
a result of the 21st Conference Of Parties (COP21), held in Paris in December
2015. The agreement became effective and binding as soon as 55 countries,
responsible for more than the 55% of greenhouse gases emission ratified the
agreement in 2016. The Paris agreement requires especially the committed
countries to monitor and reduce their greenhouse gas emissions.

Since then, there has been debate on the effectiveness of this international
contract, and several others Conference Of Parties took place. In particular,
there was great expectation for the last one, the COP26, held in Glasgow in
November 2021. The objectives of COP26 were quite ambitious in the begin-
ning, among these it is worth quoting the phase-out of coal-fired power plants
for several countries by 2040, the reduction of greenhouse gases emissions
of 45% by 2030 respect to the levels of 2010, and the creation of an economic
fund for most vulnerable countries already experiencing dramatic effects of the
climate change. Here, it is worth mentioning that coal power plants are among
the most polluting in general, even compared to other fossil fuels plants, essen-
tially due to the lower efficiency of the plants themselves1. Unfortunately the
initial phase-out objective was smoothed into a phase-down during the final
stages of the Conference.

For what concerns my research activity, it is remarkable that for the first
time a COP reserved a relatively consistent time slot to discuss about Fusion
Energy. The urgency of climate actions makes fusion-fired power plants not
a viable option to limit the global warming below 2◦C on time, since the first
commercial prototype will likely not be connected to grid before 2050 accord-

1The average efficiency of a methane-fired plant can reach the 60%, as compared to the 40%
of a coal-fired plant.

xvii
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Table 1: Heating energy per unit mass of reactants in fusion nuclear reactions
involving Deuterium (D) and Tritium (T), compared to methane combustion.

D −D D − T CH4

78 TJ/kg 338 TJ/kg 40MJ/kg

ing to the roadmap of the European Fusion Development Agreement (EFDA)
[1]. Nonetheless, fusion power plants will likely have a significant impact on
the energy market in the long-term [2].

Then, what is fusion energy? Why is it considered as a possible player in
the future energy market? Fusion is essentially the process which feeds most
of stars’ energy, transforming light hydrogen isotopes into helium. In nature
we find three different isotopes of hydrogen, which differ in the number of
neutrons in the nucleus. Namely the Protium (H-1) has only one proton in
the nucleus, the Deuterium (H-2 or D) has one proton and one neutron, while
Tritium (H-3 or T) has one proton and two neutrons. As a result of nuclear
reactions, the mass of the products is slightly less than the original mass of
the reacting hydrogen isotopes, contrary to any standard chemical reaction.
For the human-scale, the small amount of lost mass is converted into a huge
amount of energy. This is of the same type of solar energy which makes life
possible on earth. We compare the heating power of fusion reactions which
are envisioned on earth to the heating power due to the combustion of methane
in Table 1.

The 6 orders of magnitude between fusion reactions and standard fossil
fuels combustion make the idea of a fusion-fired power plant at least attractive.
The enormous energy release generated during a fusion reaction is related to a
mass loss: in the transformation of the original hydrogen isotopes into helium
and neutrons a small quantity of mass is converted into a huge quantitative
of energy. This mechanism is totally different from any standard chemical
reaction, which only involve the outer electrons of the atoms, and where the
mass is always conserved. The incomparable specific energy of a nuclear reac-
tion is moreover complemented by the huge reservoirs of deuterium available
on earth. The deuterium is indeed available directly in ocean water, with ap-
proximately 1 atom for every 6700 atoms of hydrogen, by easy procedures of
extraction. Deuterium in ocean water alone could be considered sufficient to
power the earth for at least 2 billion years at the present rate of world energy
consumption [2].

However, the triggering of a fusion reaction is not exactly a simple task. In
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order to trigger a reaction involving atoms’ nuclei it is necessary to make the
atoms collide with sufficient energy to win all the repulsive forces of Coulomb
and atomic-scale nature. This energy is made available to the colliding atoms
in the sun core by extremely high temperatures, in the order of 15MK. More-
over the gas there is confined together by the gravitational force itself of such
a massive star. Compared to the sun core, we have two quite important and
correlated problems: reach temperatures higher then the sun core2, take the
hydrogen gas confined in some region of space.

As a first step towards the realization of competitive fusion energy power
plants, Deuterium-Tritium reactions will be employed, since they require less
energy to trigger the nuclear reaction. It is worth mentioning that Tritium is
radioactive, with a very short half-life of about 12 years. Consequently, there
are no natural reservoirs of Tritium on earth, and today the Tritium used in ex-
perimental devices is essentially available as a by-product of fission reactors.
Anyway, it is envisaged for next generation fusion reactors to produce tritium
directly via the breeding of lithium and of neutrons obtained from the nu-
clear reactions. Indeed, the isotope of lithium Li6 will be injected in a blanket
structure surrounding the reactor core. Neutrons, a natural by-product of fu-
sion reactions, will impact the atoms of Li6, triggering the reactions resulting
into Tritium. The Li6 available on earth would be sufficient for 20 thousands
years of fusion-energy production [2], and hopefully technology will be able
to initiate Deuterium-Deuterium reactions far earlier. The large and relatively
economic reservoirs of deuterium and lithium on earth represent another key
element which potentially makes fusion energy a convenient opportunity.

Let’s move then to another key question: is fusion energy sustainable? The
main by-products of fusion reactions are helium and high-energy neutrons.
Namely the energy released in a fusion reaction is kinetic energy of these two
by-products. Helium is an inert gas, hence totally harmless. On the other
hand, the high energy neutrons impact the structures surrounding the gas, and
are responsible for their activation. Anyway the half-life of such activated ma-
terials is estimated to be ∼ 100 years, at least one order of magnitude less than
by-products and activated materials of fission reactors. Significant endeavours
on research for low-activation materials are taking place at the International
Fusion Materials Irradiation Facility, in Japan.

A last advantage of a fusion power plant is its intrinsic safety, besides the
technical precautions. The fusion reaction mechanisms require to continuously
feed the reactor core with Deuterium and Tritium. Anyway, the tanks of these

2about 1 order of magnitude more, ∼ 150MK
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isotopes need to be completely isolated from the reactor core: only few grams
of Deuterium and Tritium are inside the reaction chamber during normal oper-
ation. Therefore, there is no risk of avalanche reactions leading to catastrophic
events.

Despite the large Deuterium availability, the zero net CO2 emissions, and
the intrinsic safety, a fusion reactor is nonetheless a complex and costly facil-
ity. Lots of scientific and technological challenges have to be tackled for the
commissioning of a fusion power plant competitive with other energy sources.
We mentioned already that to trigger fusion reactions on earth we need the hy-
drogen gas to reach temperatures even higher than in the sun core. How could
we do that?

First one may look for an answer in the stars’ processes. Due to the local
conditions of density and temperature, hydrogen isotopes in stars’ core present
themselves in a peculiar gaseous state. The high temperatures are responsible
for a substantial dissociation of the electrons from their nuclei, resulting in a
cloud of positive ions and electrons. A gas of completely ionised particles is
generally regarded as a state of matter on its own, and defined as a plasma. This
term was probably firstly used by Irwing Langmuir to designate in particular
a ionised gas where the local concentration of positive and negative particles
was the same [3, 4]. The possibility of fusion reactions on the sun is provided
by its large mass: the gravitational force brings the hydrogen atoms together,
counter-balancing the pressure gradient force which tends to make the gas ex-
pand in the surrounding universe. Anyway we do not have any possibility of
confining the gas with a mass comparable to that of the sun clearly. We have
then to look somewhere else, and there are essentially two different strategies
to confine the plasma on earth.

A first methodology is defined as Inertial Confinement Fusion. Here the
idea is to get the particles close together by their own mechanical inertia. Then,
a fewmg solid Deuterium-Tritium pellet is heated via an external driver beam,
e.g. a laser. The outer layer will ablate generating a force on the inner lay-
ers of the pellet due to the action-reaction principles, essentially as a rocket.
The atoms travel towards the centre of the pellet at very high speed, gaining
substantial mechanical inertia and leading to a compression of the pellet to
densities far beyond that of any solid. Contextually a shock wave arriving at
the centre of the pellet increases the temperature to the values necessary to
trigger fusion reactions. [5]

The second methodology uses hydrogen isotopes in their plasma state. As
soon as such a high temperature gas touches some solid structure, it will clearly
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melt the interface and contextually rapidly lose almost all of its thermal energy,
preventing the possibility of nuclear reactions. Any gas naturally tends to oc-
cupy all the available space at its disposal, hence hitting the walls of any box
where we store it. We have a huge problem then: we need the gas to stay
confined in some physical space, without touching any solid surface. Anyway
a ionised gas has some different properties from a standard neutral gas: it is
electrically conductive. The idea is then to have a current distribution within
the gas, supply an external magnetic field and counter-react the pressure gradi-
ent force which would make the gas expand via the Lorentz force i×B. This
is the main principle of Magnetic Confinement Fusion.

The present thesis is concerned with Magnetic Confinement Fusion de-
vices, with a particular attention for those defined as Tokamaks, a Russian
acronym to indicate “toroidal camera with magnetic coils”. Indeed this mag-
netic confinement concept for plasmas was first conjectured by the Soviet
physicists Igor Tamm and Andrei Sakharov, during the 1950s. At those times
the fusion research programmes of technologically advanced countries were
still kept secret, until the 2nd United Nations Conference on the Peaceful Uses
of Atomic Energy, in 1958. Since then, fusion research has made great steps
forward.

Many of the critical key questions in the roadmap to realization of fusion
will be addressed in the internationally funded Tokamak facility ITER (Inter-
national Thermonuclear Experimental Reactor). ITER has two main objectives
dealing with physics. The first is to reach a stable pulsed operation with high
energy gain (Q = Pout/Pin = 10). In a second test phase the reactor will
be operated in steady state with reduced power gain (Q ≃ 5). Thanks to the
knowledge on plasma physics and technology issues addressed through ITER,
the next step in the realization of fusion energy will be the first commercial
prototype, called DEMO. The engineering design of DEMO should be ready
not later than 2030, according to the roadmap presented by the EFDA board
[1]. The final aim is a successful connection of the power plant to the grid by
the year 2050.

The Tokamak is of course a toroidal device: the plasma is bent in a dough-
nut, so that a current can be induced within the gas, even without the need
for the contact of the gas with solid electrodes. The necessarily high temper-
atures require large plasma currents, in the order of MA, and large externally
applied magnetic fields, in the order of T , so to contemporaneously heat the
plasma by Joule effect and counter-react the pressure gradient. In its original
version the current was solely induced like in a simple transformer, today a
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wider range of non-inductive mechanisms is considered, as Neutral Beam In-
jection and Radio-Frequency current drive [6]. Moreover a large fraction of
the current is now self-induced via the achievement of large density gradients
between the core and the external layers of the plasma column, via an effect
known as bootstrap current [7].

The toroidal chamber encapsulating the plasma, the active coils necessary
to generate the external magnetic field, and several additional plasma facing
components necessary for the correct operation of the device are generally
electrically conducting. As easily imagined, any variation in the plasma col-
umn position, or any variation of the large plasma current induces eddy cur-
rents in the surrounding conducting structures. At the same time currents cir-
culating in the conducting structures alter the magnetic fields applied to the
plasma, those responsible for the original mechanical equilibrium and stabil-
ity of the plasma column. A tight electromagnetic interconnection relates the
evolution of the plasma column and the evolution of the currents in the sur-
rounding conductors. This is precisely the topic of this Thesis, and we will
enter in the details of the mutual effect between tokamak plasma and external
currents evolution.

The outline of the thesis is the following:

Chapter 1 presents the Magneto-Hydro-Dynamics (MHD) theory, generally
adopted to describe astrophysical and laboratory plasmas, in a macroscopic
perspective. In particular, tools of Non-Equilibrium Thermodynamics are
used to show how a thermodynamically consistent three-species fluid plasma
model can be set up. The possibility of ionization and recombination is
accounted, giving back Saha Equation in the limit of Thermodynamic Equi-
librium between particle concentrations. From here, the standard single fluid
model is easily introduced, giving the opportunity to discuss the conceptual
connections between Ohm’s law and the hypothesis of local neutrality. The
Thermodynamics framework allows a discussion of the spatial symmetry
constraints on the actual constitutive phenomenological relations assumed for
the closure of the MHD model, in presence of a magnetic field. Both the Curie
symmetry principle and Onsager reciprocal relations are applied to the case of
interest: the resulting coordinate-independent constitutive equations highlight
the coefficients which the theory should be concerned about and are suitable
to implementation. Finally the fundamental physical interaction of a fusion
plasma facing a solid wall is described, introducing the Bohm criterion and
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the ion saturation current concepts.

In Chapter 2 we first introduce some of the state of the art extended-
MHD numerical models, focusing the attention on the electromagnetic
boundary conditions required for their solution. Next we present a convenient
Magneto-Quasi-Static numerical model for describing currents in the struc-
tures surrounding the plasma, highlighting the role of induced voltages due to
plasma variations. These preliminary Sections constitute the basis to discuss
how to self-consistently compute the plasma and external currents evolution.
The remainder of the Chapter presents indeed several possible schemes to
compute the MHD boundary condition and the plasma-induced voltages on
structures, solely in terms of the external currents and the magnetic vector
potential or magnetic field at the boundary. The modelling implications of
shared currents flowing from plasma to structures and vice-versa are also
discussed in the final Section.

Chapter 3 addresses the Theory of MHD evolutionary equilibrium. First we
comment on the key role of the electromagnetic inertia in the plasma column
mechanical evolution, clarifying when an evolutionary equilibrium model is
effective in the description of a tokamak plasma. Subsequently, we set up
the theory for a circular high-aspect-ratio tokamak, which provides insight
in several aspects of the electromagnetic problem. We conclude the discus-
sion presenting the free-boundary evolutionary equilibrium model CarMa0NL.

Chapter 4 applies the tools of evolutionary equilibrium theory introduced in
previous Chapter to the study of hard-to-predict fast plasma transients, which
generally lead to the termination of the experiment, also known as disruptions.
We first analyse the electromagnetic forces generated on the wall surrounding
the plasma during a fast plasma transient. The key role of the net poloidal
current and of the pre-disruption plasma position will emerge clearly from the
discussion. Following, we show how evolutionary equilibrium models, with
relatively little physical details, can be used to get simple estimates of global
plasma losses during disruptions. The other way around, the methodology
presented allows to check the energetic consistency of simulation results. The
discussion reveals the key role of the total current decay time as compared
to the electromagnetic time constant of the surrounding wall for the overall
energy dissipation. The last Sections are finally dedicated to the validation
of the modelling tools, via the comparison of simulation results and real
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experiments at the TCV and JET Tokamaks. The qualitative, and quantitative,
agreement reveals the efficacy of the proposed methods for studying real
experiments.



Chapter 1

A continuum theory of fluid
conductors

M
agneto-Hydro-Dynamics (MHD) is the branch of physics which stud-
ies the behaviour of conducting fluids in a continuum perspective,

and is an essential tool in the study of astrophysical and laboratory plasmas.
Its birth is historically associated to the discovery of the electromagnetic-
hydrodynamic waves by Hannes Alfvén in 1942 [8]. In this respect Magneto-
Hydro-Dynamics may be regarded as an extension of Hydro-Dynamics, which
accounts also for the interaction of the continuum medium with the electro-
magnetic field. It is quite common to introduce MHD simply as a fluid dy-
namic extension [9, 10, 11].

A further common viewpoint is to regard the Magneto-Hydro-Dynamic
models as a mere approximation of more accurate and sophisticate kinetic
models. This is due to the early work on the kinetic theory of gases of S.
Chapman and T. Cowling [12] and Harold Grad [13, 14]. Especially Grad,
with its thirteen moments approximation method [13], influenced definitively
the way MHD theory was regarded and is now regarded [15, 16, 17, 18, 19, 20].
His method allows to clearly define fluid dynamics variables such as mass den-
sity, barycentric velocity, stress tensor and heat flux starting from microscopic
quantities describing a single particle within the gas. On the same grounds,
he provided a set of conservation Equations for the fluid variables by proper
averages of the Boltzmann Equation, creating a sound link between the ki-
netic theory of gases and the theory of fluid dynamics. Within this framework,
was even possible to estimate the transport coefficients, postulating on phys-
ical grounds the microscopic interactions between particles [16], committing

1
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definitely the problem of the closure of the MHD model to the averaging of
kinetic theory models.

Anyway, this perspective on the subject suffers some weaknesses. First,
the possibility for chemical reactions should be really accounted by the means
of microscopic inelastic collisions within the kinetic model, a circumstance
which is generally neglected, even if it may be taken into account [21, 22].
Moreover, it requires generally to make hypothesis on collisions at a micro-
scopic level in order to evaluate the transport coefficients. Since the molecu-
lar interactions in a tokamak plasma are only approximately known, besides
being very sensitive to the experimental conditions, the resulting transport co-
efficients are generally subject to a high degree of uncertainty. Respect to
the first problem, we provide in this Chapter some method to include chem-
ical reactions in the hydrodynamic model by the means of Non-Equilibrium
Thermodynamics theory [23, 24]. This method will provide to be consistent
in the limit of chemical equilibrium, returning the Saha Equation. The sec-
ond problem cannot be solved instead by Non-Equilibrium Thermodynamic
tools. Nonetheless this framework provides clear indications on the constraints
which the transport coefficients shall satisfy in presence of a magnetic field.
Chemically reacting fluid mixtures were already studied in the context of local
thermodynamic equilibrium in Ref. [25]. Compared to that study, we discuss
the role of the magnetic field in the theory, provide details on the electric cur-
rent and its relation to electromagnetic and electrochemical potentials, besides
making explicit the local equilibrium equations of state, thanks to the ideal
gas hypothesis. Moreover, the mathematical rigour offered by Thermodynam-
ics will allow also some critical comments on the actual form which we shall
postulate for Ohm’s law. This choice will be related to the standard hypoth-
esis of local neutrality [11, 19], circumstance which has not been sufficiently
stressed in the literature probably.

The role of the magnetic field will be discussed in detail in Section 1.7,
using the tools of invariant tensor functions theory [26]. Hence we will extend
the Curie spatial symmetry consideration to the case in which a magnetic field
is present, being responsible for the space anisotropy. This will provide insight
in the admissible couplings between thermodynamic fluxes and forces: even
[odd] order fluxes may be related only with even [odd] order forces. We will
find that the structure of the conduction tensor postulated by Braginskii [16]
is a mere consequence of the symmetry constraints imposed by the presence
of the magnetic field. This will give us the occasion to present the constitutive
Equations in the coordinate-independent form also found in Ref. [27] for the
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electrical conduction, stating clearly the parity of the coefficients respect to
the magnetic field. These coefficients are the ones diffusion theories should be
primarily investigate. Moreover, the coordinate independent is suitable for the
implementation of the anisotropic relations, without requiring ad hoc reference
systems.

The Chapter is organized as follows. In the first two Sections we quickly
review the key ingredients of the kinetic theory of gases, culminating in the
Boltzmann Equation. This will be just a literature review, to actually show
where is exactly the conjunction point between microscopic and macroscopic
theories. We refer to standard textbooks [18, 19] for details on this link while
we proceed introducing the plasma MHD model directly in a macroscopic per-
spective, framing the model in the context of Non-equilibrium Thermodynam-
ics in Section 1.3.1. Straight afterwards, in Section 1.4, we discuss the equa-
tions of state locally valid in our constrained thermodynamic equilibrium con-
ditions, also examining the limit of chemical equilibrium. In Section 1.5 we
postulate the conservation equations for the mass density, the concentrations
of the different fluids, the overall linear momentum and the internal energy of
the plasma. At this stage, the kinetic energy of diffusion is discarded, together
with the inertia of any diffusion process. This means that we will not account
separately for the mechanical inertia of ions and neutrals. In principle this is
an unnecessary assumption, anyway it serves to keep the discussion plain, fo-
cusing on other key aspects. On the other hand no assumption is made on the
local neutrality of the plasma in the beginning. In Section 1.6 we discuss the
entropy balance Equation, paying some attention to the heat flux definition and
the electro-chemical potentials. Following we discuss the constitutive Equa-
tions between the thermodynamic fluxes and forces, thoroughly analysing the
constraints imposed by the presence of the magnetic field in Section 1.7. We
critically discuss Ohm’s law and its relation to the quasi-neutrality assumption
in Section 1.8. The standard single fluid model is finally collected together in
Section 1.9. In the last Section we discuss some aspects of the plasma-wall
interaction, introducing the Bohm criterion for the ion velocity and the ion
saturation current.

1.1 From micro to macro, Liouville Theorem

The problem of determining the evolution of a fusion plasma could be regarded
as conceptually simple. There are N material point particles, namely ions,
electrons or even neutrals. Each particle has its own mass, and its internal
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structure is ignored. We denote the generalized coordinates of the particles
by qi and the generalized momenta by pi, for i = 1, · · · , N , where N is the
total number of particles. All the particles are subject to classical Hamilton
equations of motion:

d

dt
qi = − ∂

∂pi
H

d

dt
pi = +

∂

∂qi
H

(1.1)

The Hamilton function H
(
qi, pi, t

)
can be identified with the total me-

chanical energy of the system. If we know the initial positions and momenta
of the particles, we could in principle solve Hamilton Equations (1.1) and pre-
dict the evolution of the mechanical system. Besides not having precise in-
formation on the initial mechanical state, it would be impossible to solve such
a coupled system of ordinary differential equations, considering that classical
particle concentrations in a fusion plasma are about 1020m−3. A great step-
forward was first provided by Gibbs theory of ensembles [13], which replaces
the discrete description of the point-particles with the definition of a distribu-
tion function F (qi, pi, t) in the phase space, i.e. that space whose coordinates
are given by (qi, pi). As a probability density, F (qi, pi, t)dqidpi provides the
probability the mechanical system belong to the volume element dqidpi cen-
tred in (qi, pi), at the time instant t. Starting from (1.1), Liouville theorem
provides the evolution equation for F (qi, pi, t). The velocity field V in our 6N-
dimensional phase space is clearly given by Hamilton Equations (1.1). Let’s
make this explicit

V =
d

dt



q1

...
qN

p1

...
pN


=



−∂H/∂p1
...

−∂H/∂pN
∂H/∂q1

...
∂H/∂qN


, (1.2)

Hence, it is immediate to verify that V is divergence-free in the phase
space, since ∂2H/∂qi∂pi = ∂2H/∂pi∂qi ∀i = 1, · · · , N ,

∇ · V =
∂

∂q1
q̇1 + · · ·+ ∂

∂q1
q̇6N +

∂

∂p1
ṗ1 + · · ·+ ∂

∂p6N
ṗ6N = 0 (1.3)
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This trivial consequence of Hamilton Equations is also known as Liou-
ville’s Equation. The physical content of this Equation is easily understood.
Take a volume in the phase space: each point represent a mechanical state of
the system. Now let the system evolve according to Hamilton Equations of
motion. After some time the original volume may be moved and deformed
arbitrarily, but its actual volume will be the same. This is a mere consequence
of the fact that we are excluding any dissipative phenomena: in a system of
point particles with no internal degrees of freedom there is no opportunity of
dissipation. The Hamiltonian of the system can also depend explicitly on time,
as long as the applied forces are conservative, Liouville’s Equation is satisfied.
In the case of a system of charged particles we may write in particular the
Hamiltonian as

H(q(i),p(i), t) =

N∑
i=1

1

2
mi

(
p(i) −

e(i)

m(i)
A(q(i), t))

)2

+
N∑
i=1

e(i)Φ(q(i), t) +Hc(q
(i),p(i));

(1.4)

In Equation (1.4), we grouped the generalized coordinates and momenta
identifying each single particle (i) via the vectors (q(i),p(i)). Moreover, we
introduced the electric scalar potential Φ and the magnetic vector potential A,
in such a way to have for the electric field E and the magnetic flux density B
in the physical space:

E = −∂A
∂t

−∇Φ

B = ∇×A
(1.5)

Finally the collisional term Hc in (1.4) does not depend explicitly on time, as
it is not related to external forces or collective long-range phenomena. On the
opposite electric and magnetic fields are due to external currents and collective
ordered motion of charged particles in the plasma. It is worth to recall that the
generalized momenta are in relation to the generalized velocities via

p(i) = m(i)q̇
(i) − e(i)A(q(i), t). (1.6)

Independently from these considerations, We can set up a continuity equa-
tion for the distribution function F (qi, pi, t) in the 6N -dimensional phase-
space,
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∂F

∂t
+∇ · (FV) =

[
∂F

∂t

]
c

(1.7)

On the right hand side, we used the suffix “c” again to indicate the collisions.
We are very trivially stating that if there are some particles entering a volume
element in the phase space, this is either due to a net flux of particles through
the boundary of this volume or due to collisions of the point particles which
instantaneously modify the momenta of the colliding particles. In principle
we could make explicit the effect of collisions in the Hamiltonian of the sys-
tem, i.e. one can provide an operative expression for Hc

(
qi, pi, t

)
in Equation

(1.4). Anyway, this would require to describe the relatively short-range inter-
action between particles, complicating the task [28]. It is important to notice
that we attributed the long range electromagnetic interactions between parti-
cles due to charge accumulation and collective ordered motion already to the
electromagnetic potentials (A, ϕ) introduced in Equation (1.5). For complete-
ness, it is just worth to mention here that collisions in an ionised gas can be
substantially different from collisions in neutral gases. Ionised particles inter-
act via Coulomb electrical forces, regulating the friction between the electron
and ion particles and determining energy losses via bremsstrahlung radiation
[2]. The actual Coulomb collision cross-section also determines whether the
electrons really collide with the ions or if they can be accelerated up to rela-
tivistic velocities by an applied electric field. We will not need to enter these
details for what we want to show. Indeed, we need just one more ingredient to
the recipe, the standard vector identity:

∇ · (FV ) = F∇ · V + V · ∇F. (1.8)

Using this vector identity in the continuity Equation (1.7), and considering that
∇ · V = 0 from Liouville’s Equation (1.3), we finally have

∂F

∂t
+ q̇ · ∇qF + ṗ · ∇pF =

[
∂F

∂t

]
c

(1.9)

Equation (1.9) is also referred to as Liouville Theorem. It is a simple con-
sequence of the definition of the distribution function F

(
qi, pi, t

)
and of the

validity of Hamilton Equations of motion. It is important for us to notice that
Equation (1.7) is especially valid for a limited class of close thermodynamic
systems, where not only the number of particles is fixed, but each particle
has no internal degree of freedom. Indeed, in this case binary collisions are
necessarily elastic, and the evolution Equations take the Hamilton form (1.1).
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In order to accommodate inelastic collisions one should allow the particle to
have at least one internal degree of freedom, which can record the information
about the “excitation” state [21]. Moreover, we did not provide any mathe-
matical framework to allow particles to undergo chemical reactions, i.e. in
Equation (1.7) there is not any mathematical instrument set up to change the
label of each particle [22].

These aspects might reveal important for a fusion plasma, and radiative
phenomena together with the interaction with solid walls make fusion plasmas
neither isolated nor even close thermodynamic systems. During the start-up
phase of an experiment, the deuterium is puffed into the vacuum chamber, and
in case of significant plasma-wall contact, we may have a large exchange of
electrons between plasma and solid structures, besides various possible chemi-
cal reactions at the plasma-solid interface. Despite this, in steady state nominal
operation, it is normally assumed that the system is not exchanging mass with
the environment and full ionization of the gas, which allows to neglect chemi-
cal reactions related to the internal degrees of freedom of the particles.

1.2 From Deterministic to Statistic: Boltzmann Equa-
tion

We notice explicitly as by now we could have really described any system
of material point particles, eventually charged, and subject to external forces
which do not compromise the indivergence of the time evolution vector field
in phase-space. Liouville’s Theorem really does not contain any information
on the particular system examined. We have plenty of opportunities to start
from here to make hypothesis and try a macroscopic description of any state
of matter in principle. Anyway, gases exhibit one peculiarity which really
provides a great chance of simplification and conscious neglect of information
from the model, which was first exploited by Boltzmann [29]. First, for us
macroscopic observers, the particles are undistinguishable. If we exchange
coordinates and momenta of two particles, we are not really able to appreciate
any difference. Further, we can introduce a statistical hypothesis, assuming
molecular chaos [13] for the particles belonging to the plasma.

It is worth some clarification here, which is conceptually important for the
applications presented later in the manuscript. Namely, Liouville’s Theorem,
as presented in Equation (1.9), is only valid for a fixed number of particles
N . This assumption allowed both to define a 6N-dimensional phase-space
and consequently a distribution function F

(
q(i),p(i), t

)
. By the way, we are
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rather interested in what happens to the particles inside a certain bounding
box, the number of particles could really vary inside the volume considered,
for example due to gas injection, or electric currents shared between solid walls
and plasma. When we apply Liouville Equation we should hence refer to the
whole thermodynamic universe, following all the particles which might enter
in our control volume. The molecular chaos hypothesis for such a kind of open
system, occupying the region Vpl of the physical space, reads as

F (q(i),p(i), t) = F out(q(k),p(k), t) ·
∏

q(ℓ)∈Vpl

fℓ(q
(ℓ),p(ℓ), t). (1.10)

Whenever a particle (i) is within the control volume, its mechanical state is
statistically independent from the mechanical state of any other particle. There
is no correlation between the mechanical states of distinct particles within the
control volume. We can integrate Liouville Equation on all the particles co-
ordinates and velocities, but one, and we would find this way the Boltzmann
Equation for the single particle distribution function [18]:

∂f (ℓ)

∂t
+ q̇(ℓ) · ∂f

(ℓ)

∂q
+ ṗ(ℓ) · ∂f

(ℓ)

∂p
=

(
∂f (ℓ)

∂t

)
c

(1.11)

and the time derivative ṗ(ℓ) is given by Hamilton Equations. In the collisional
collisional term of Boltzmann Equation (1.11) we can symbolically account
also for those collisions with solid walls which make the plasma an open ther-
modynamic system. The possibility of studying the Boltzmann equation alone
and to get anyway information on the full mechanical system is strictly related
to the hypothesis of statistical independence between particles made, besides
the fact that particles are retained indistinguishable. In case there are parti-
cle of different species, i.e. particles which carry some label, we can write
a Boltzmann Equation for each distinct group of indistinguishable particles.
The resulting Boltzmann Equations are coupled via a collisional term mod-
elling the interaction between particles of different species. It is remarkable
that as long as we consider only binary elastic collisions between particles of
the same species the corresponding collisional term in (1.11) is zero. The situ-
ation is different if we can distinguish at least between two groups of particles
with different labels. In this case even elastic collisions can transfer momen-
tum and energy from one group of particles to the other, and the collisional
terms in the resulting two Boltzmann Equations are non-null.
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As hinted, a standard way of introducing the plasma fluid models relies
now on the calculation of proper moments of the Boltzmann Equation1 respect
to the single particle momentum [19]. In particular Grad’s thirteen moments
method [13] is based on the expansion of the single particle distribution func-
tion in a basis of Hermite polynomials. The coefficients of the expansion are
taken as state variables, and are shown to correspond to clear macroscopic
fluid quantities. Although this approach is very elegant, the actual description
of inter-particle interactions at the microscopic level can be difficult and clear
microscopic collisional models may be valid in practical narrow operational
regimes. Hence, for what concerns us, an entirely macroscopic description
will be sufficient. This is indeed what follows in next Sections.

1.3 MHD and Non Equilibrium Thermodynamics

We are going to describe Magneto-Hydro-Dynamics in the framework of clas-
sical Non-equilibrium Thermodynamics. This is a branch of Thermodynamics
which allows to deal with physical systems which are only in local or better
constrained Thermodynamic Equilibrium. The first comprehensive treatment
on the subject was probably given by de Groot and Mazur [23]. In this frame-
work, the arbitrary assumptions on collisions, necessary to derive the conser-
vation laws for the fluid from Boltzmann Equations, are in a sense postponed
directly to the macroscopic framework, where it is hopefully more easy to pro-
vide the missing information on a phenomenological basis.

In Non-equilibrium Thermodynamics it is generally assumed that locally
to a small volume element we have conditions of thermodynamic equilibrium.
Hence there are few quantities, the thermodynamic variables, retained to de-
scribe sufficiently well the mechanical state of the fluid element, thanks to
some statistical hypothesis. In our case these quantities will be the densities
and internal energies of the distinct fluid species within the considered volume
element. Strictly, the equilibrium within the volume element may be assumed
only for a subset of the thermodynamic variables, and for example we will not
always assume that equilibrium respect to particle densities is reached. In any
case, the specific entropy is a state function of these thermodynamic variables,
and its knowledge allows to set up the Equations of State.

The conservation laws for the thermodynamic variables and for the me-
chanical momentum of the fluid will be postulated based on first principles.

1or eventually the system of Boltzmann Equations for the various groups of undistinguish-
able particles.
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In the resulting evolution Equations some terms will appear which are further
unknowns for the system, such as the reaction rates, diffusion flows, and heat
fluxes. These will be defined as thermodynamic flows or fluxes in the theory,
and their determination should be based on phenomenological observations.

Nonetheless, as we shall see soon, the non-conservation Equation for the
entropy constrains the possible constitutive relations between the thermody-
namic flows and the thermodynamic forces. The latter will be defined as those
external fields or those gradients of the thermodynamic variables which are
responsible for the system to be out of equilibrium. For the moment we just
intuitively mention that the conjugate force to the heat flux will be the temper-
ature gradient, as well as the conjugate force to the electric current density will
be the electric field, or the conjugate force to the neutrals diffusion flow will
be the gradient of its chemical potential.

The main ansatz in this framework is that thermodynamic flows depend
linearly on thermodynamic forces. This way standard closure relations as
Fourier’s law for the heat flux, or Ohm’s law for the electric current will be
recovered. Whether this assumption is reasonable or not is questionable and
largely depends on the phenomena we want to describe. Grad, in the frame-
work of kinetic theory, already pointed out a long time ago [13] as there is
not any linear relation between the “flows” and “forces”, as postulated in non-
equilibrium thermodynamics. Rigorously, any flow defined in the macroscopic
theory is governed by some further evolution equation, which can be derived
from the kinetic theory, when proper assumptions are made on the collisional
terms. Anyway, whenever the time constant of evolution τ of a certain ther-
modynamic flow is sufficiently smaller than the time constants of evolution of
the thermodynamic variables, we might take τ → 0, and recover the linear
phenomenological laws between fluxes and forces postulated in the Thermo-
dynamics framework. When this separation between time scales is not veri-
fied, one could incorporate between the thermodynamic variables the relevant
“flows” which evolve on the same time-scale as mass, momentum and energy.
In this way, the real notion of thermodynamic flow moves to higher order mo-
ments of the Boltzmann Equation. These considerations underlie the theory
of extended thermodynamics [30], a further branch of Thermodynamics which
shows as physical processes normally retained diffusive do hide in general a
propagative nature, which is hidden by the really short propagation time con-
stants.

As hinted, the main limit of classical non-equilibrium thermodynamics is
that it does not provide any value for the coefficients that will appear in the
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laws relating thermodynamic flows and forces. The Thermodynamics theory
offers anyway several constraints between the coefficients appearing in the
linear laws, namely the Curie symmetry principle and Onsager’s reciprocal
relations [23].

1.3.1 Definitions

We shall consider an ideal gas mixture made out of electrons, positive ions and
mono-atomic neutrals, which describes essentially a mono-atomic deuterium
plasma. The ideal gas hypothesis is in general reasonably satisfied by stellar
plasmas and laboratory plasmas in fusion experiments, due to the low densi-
ties of the constituents and the high temperature2. We shall exploit also the
circumstance the gas is mono-atomic, allowing to not consider vibrational or
rotational intrinsic energies for the particles, when deriving the local equilib-
rium equations of state [31]. Nonetheless, the method can be generalised to
deal with general fluids [25], hence with non ideal or molecular ideal gases.

We shall describe our system in the framework of Non Equilibrium Ther-
modynamics [24, 23]. This is a theory of local thermodynamic equilibrium,
i.e. in a small fluid element some condition of thermodynamic equilibrium is
retained true, and irreversible phenomena are essentially attributed to inhomo-
geneities of thermodynamic quantities in the sample or to generalized forces
which keep the system out of equilibrium.

Here and later the subscript k is used to indicate the fluid species and varies
in the set of labels {e, i, a}, pointing out respectively electrons, positive ions
and neutral atoms. It is possible to define a mass density ρk, a specific volume
vk = 1/ρk and a particle density nk = ρk/mk for each fluid in the mixture.
The overall mass density for the gas mixture is clearly

ρ =
1

υ
=
∑
k

ρk. (1.12)

and the mass concentrations are defined as

ck =
ρk
ρ

(1.13)

The relevant thermodynamic variables we will choose to describe the local
thermodynamic equilibrium for a small fluid element are the specific volume
v, the mass concentrations ck and the overall specific internal energy u. The

2n =∼ 1020m−3 and T ∼ 150MK in average Tokamak experiments.
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specific entropy shall be specified as a state function of the thermodynamic
variables,

s = s(v, ck, u). (1.14)

In order to get an explicit expression for the specific entropy, hence in
order to set up the equations of state, it is first worth to treat all the different
fluid species as separate, virtually isolated. This is equivalent to consider an
enlarged thermodynamic state space, the macroscopic system being described
by the specific volumes vk and the internal energies uk of the different fluids.
We could imagine a set of virtual constraints which prevents the different fluids
to exchange internal energy or undergo chemical reactions, although they live
in the same physical space region [32].

The specific entropy for the k-species ideal gas is clearly a state function
of its specific volume and internal energy,

sk = sk (vk, uk) (1.15)

As long as the different gases are considered as non-interacting, the overall
specific entropy s is hence obtained by weighted summation of the specific
entropy of each subsystem,

s (vk, uk) =
∑
k

cksk (vk, uk) (1.16)

It is rather natural to require the overall specific entropy to be a thermody-
namic function of the overall specific volume v. In this way the mechanical
deformation work will be clearly distinguished from the convective energy ex-
change mechanisms related to the passage of particles through the boundary of
the fluid element. The passage from the thermodynamic variables (vk, uk) to
the variables (v, ck, uk) shall be regarded simply as a change of coordinates in
the thermodynamic state space, which highlights the possible ways by which
our system exchange energy with the surrounding environment, a fundamental
aspect in thermodynamic theories [32],

s = s (v, ck, uk) (1.17)

Clearly the mass concentrations are not independent variables, since
∑

k ck =
1, hence the number of independent thermodynamic variables is unaltered in
the two descriptions (1.16) and (1.17), moreover vk = v/ck. We will always
retain thermodynamic equilibrium respect to different fluids internal energies,
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meaning that all the temperatures equilibrate Tk = T ∀k ∈ {e, i, a}. This is
equivalent to relax the virtual constraints imposed on the system which were
preventing the exchanges of internal energies between the components of the
mixture. We can hence concentrate our attention on a sub-manifold of our
enlarged thermodynamic state space. In particular we may assign the internal
energy of a single arbitrary component of the mixture or the overall specific
internal energy u =

∑
k ckuk indifferently, carrying the same information as if

we are specifying the internal energies of all the different fluids in the mixture.
Thanks to this hypothesis, we can express the specific entropy s as a state
function of the specific volume v, the mass concentrations ck and the internal
energy u, as prescribed in Equation (1.14).

In order to deal with plasmas where thermal equilibration among the distinct
fluid components is not achieved, it is sufficient to stop one step behind and
take Equation (1.17) as state function for the specific entropy. Anyway, the
state function (1.14) still allows to describe states of chemical non-equilibrium,
since the mass concentrations ck are retained as thermodynamic variables. Re-
suming, we will deal generally with plasmas in local thermodynamic equilib-
rium respect to the internal energies of the individual species within the mix-
ture, but which are not in equilibrium with respect to the mass concentrations
of the distinct fluids.

In a macroscopic context, for a mixture of N particles species there are at
most N − 1 linearly independent chemical reactions, since the overall mass
conservation should be guaranteed. In our particular case, also the electric
charge should be conserved, and a single macroscopic reaction may take place,
i.e. the ionization/recombination reaction

e+ i︸︷︷︸
reactants

⇆ a︸︷︷︸
product

(1.18)

Now, we indicate by νk the true stoichiometric coefficients of element k in-
volved in the reaction. It is useful for the following to introduce also the nor-
malized stoichiometric coefficients νk, such that the sum of the normalized
stoichiometric coefficients of the reactants is −1 and the sum of the normal-
ized stoichiometric coefficients of the products is +1 for each of the eventual
chemical reactions of interest. In particular, having the indices of reactants
from 1 to q and the indices of products from q+1 to N , we may define unam-
biguously,
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νk =
mkνk∑N

j=q+1mjνj
(1.19)

It is very important to notice as in presence of chemical reactions while the
overall mass density (1.12) is conserved, the overall particle density n =∑

k nk may change. This implicates that we cannot relate the mass density
and the particle density by a simple constant, for example attributing all the
inertia to ions, as generally done in two-fluid descriptions of the plasma. We
summarize the true and normalized stoichiometric coefficients for our ioniza-
tion reaction (1.18) in Table 1.1.

Table 1.1: Stoichiometric coefficients for the ionization/recombination reac-
tion defined in Equation (1.18)

electron ion atom
true (ν) −1 −1 +1
normalized (ν) −me/ma −mi/ma +1

It is worth to include here some further definitions. The barycentric veloc-
ity is defined as the velocity of the mass centre of a fluid element,

v =

∑
k ρkvk

ρ
(1.20)

The relative velocity of the fluid k respect to the barycentric velocity has some
importance in the theory, and we define the diffusion flow of the species k fluid
as

jk = ρk (vk − v) (1.21)

We notice explicitly as the sum of all diffusion flows is zero (
∑

k jk = 0), by
definition of the barycentric velocity (1.20). Defined ek as the electric charge
of a single particle for the ideal gas species k, it is convenient to define the
charge to mass ratio,

zk =
ek
mk

. (1.22)

Through this definition, we may define both the electric charge density,

q =
∑
k

zkρk (1.23)
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and the electric current density in the fluid element reference frame as

i∗ =
∑
k

zkjk (1.24)

The electric current density in the fluid reference is also obtained subtracting
from the electric current seen in the laboratory reference frame all the convec-
tive current related to the motion of the electric charge density attached to the
barycentre of the fluid element,

i∗ = i− qv (1.25)

Generally, based on first principles consideration of MHD modelling [33],
we assume that any ion hitting the solid surface is quickly recombined with an
electron. This configures the solid wall as a sink for ions-electron couples and
as a source of neutral atoms. In particular for any ion impinging the wall, there
will be a neutral coming out. Moreover, we stress as there are really many
other chemical reactions occurring at the solid surface, such as sputtering of
impurities and emission of electrons due to Auger effect [19]. We shall always
neglect such kind of reactions, together with the related presence of impurities
in the plasma, besides these may have important implications also in the steady
state operation of a Tokamak.

1.4 Thermodynamic Equilibrium

We shall present in this Section the Equations of State valid in our constrained
thermodynamic equilibrium conditions, i.e. those relations locally valid in
each fluid element due to thermodynamic equilibrium. We here use specific
quantities, considering first particles of species k virtually isolated respect to
the particles of other species. Anyway, as discussed in previous Section, we
will later take as state variables the overall specific volume v, mass concentra-
tions ck and overall internal energy u.
All the gas species are retained to be ideal, i.e. the particles within the gas are
non-interacting and undistinguishable. Moreover we identify for each particle
a translational energy, associated to particle motion and an intrinsic energy,
related to quantum-mechanical considerations [31], e.g. possible spin states
of the particle. We consider here mono-atomic gases, so that vibrational and
rotational energy contributions may be discarded. Moreover, we have for the
excited states of the deuterium atom much higher energies as compared to the
ground state. Hence we can consider just the fundamental state of energy ϵ0,k
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and degeneracyGk when computing the intrinsic canonical partition functions.
If the intrinsic and translational energies of the single particle are independent,
as normally retained, by means of the canonical ensemble, we can set up the
Sackur-Tetrode formula [34]

sk =
kB
mk

log

[
1

nk (ΛTh,k)
3

]
+
kB
mk

(
5

2
+ logGk

)
. (1.26)

where the Thermal De Broglie wavelength is introduced, indicating by h the
Planck constant,

ΛTh,k =
h√

2πmkkBTk
. (1.27)

In the same approximations, the internal energy for the k-species gas as-
sumes the form

uk =
3

2

kBTk
mk

+
ϵ0,k
mk

. (1.28)

Using the Equation of State (1.28), the definition of thermal De Broglie wave-
length (1.27) and the identity nk = ck/mkv, we may rewrite Sackur-Tetrode
formula (1.26) in the form of an Equation of State,

sk =
kB
mk

log

[
mkv

ck

(
uk −

ϵ0,k
mk

)3/2(4π

3

)3/2

·
(mk

h

)3]

+
kB
mk

(
5

2
+ logGk

)
. (1.29)

For a mixture in thermal equilibrium, each specific entropy sk may be ex-
pressed in terms of the overall specific internal energy u =

∑
k ckuk and the

mass concentrations of all of the species in the mixture ck. It is indeed suffi-
cient to substitute in Equation (1.26), the expression of the thermal De Broglie
wave-length (1.27) and the following the identity descending from (1.28)

3

2
kBT =

u−
∑

j cjϵ0,j/mj∑
ℓ cℓ/mℓ

. (1.30)

In this way, we may use property (1.16) to get the overall specific entropy
as a function of state of the specific volume v, the overall specific internal
energy u and the different species mass concentrations ck only, as postulated
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originally in Equation (1.14). Finally, we can write down the first principle of
thermodynamics during a reversible process as

du = Tds− pdv +
∑
k

µkdck (1.31)

The relation above defines the kinetic pressure and chemical potentials as
proper partial derivatives of the entropy respect to the thermodynamic vari-
ables. We first notice, by definition of kinetic pressure,

p = T

(
∂s

∂v

)
ck,u

=
∑
k

nkkBT︸ ︷︷ ︸
pk

. (1.32)

The partial pressure pk is the pressure the gas species k would apply to the
walls of the fluid element if it was alone. Moreover, using Equation (1.28),
considering u =

∑
k ckuk, we may write down the internal energy per unit

volume of the gas mixture as a function of the kinetic pressure and the particle
densities,

ρu =
3

2
p+

∑
k

nkϵ0,k. (1.33)

The chemical potentials are defined as

µk = −T
(
∂s

∂ck

)
u,v,ci̸=k

(1.34)

After some algebra, we consistently see that

sk = −µk − hk
T

(1.35)

where we introduce the specific enthalpy for the k-species fluid as

hk = uk + pkvk =
5

2

kBT

mk
+
ϵ0,k
mk

(1.36)

From property (1.35), the specific enthalpy definition (1.36) and the Sackur-
Tetrode formula (1.26) we can write finally

µk =
kBT

mk
log ck +

kBT

mk
log

[
p

kBT

(Λk)
3

Gk
exp

(
ε0,k
kBT

)]
︸ ︷︷ ︸

ζk(p,T )/mk

(1.37)
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In Equation (1.37), ζk(p, T ) is a function of the kinetic pressure and of the tem-
perature only, and it varies from species to species due to the different molecu-
lar masses mk, intrinsic energies ϵ0,k and degeneracies of the ground state Gk.
Finally, we can take the chemical potentials to be functions µk (T, p, ck) of the
temperature, the kinetic pressure (1.32) and the particles concentrations

ck =
nk
n

=
ρk
mk

1

ρ
∑

j cj/mj
=

ck/mk∑
j cj/mj

. (1.38)

We are done with the Equations of State which we retain always valid
within a fluid element, we will need in particular Equations (1.32), (1.33) and
(1.37).

We conclude this Section, investigating the consequences of having ther-
modynamic equilibrium respect to the different species mass concentrations
ck. For fixed internal energy and specific volume, these may vary in relation
to the ionization/recombination chemical reaction (1.18). The variation of the
number of a certain species respect to another one is regulated by the ratio
between the true stoichiometric coefficients νi,

∂nj
∂nk

=
νj
νk

⇒ ∂cj
∂ck

=
mj

mk

νj
νk

(1.39)

The condition of thermodynamic equilibrium to be maximum has the impor-
tant consequence

(
∂s

∂ck

)
v,u

= 0 =⇒
∑
j

(
∂sj
∂cj

)
u,v

· ∂cj
∂ck

= 0

−
∑
j

µj
T

mj

mk

νj
νk

= 0 (1.40)

In last passage we used the chemical potentials definition (1.34). Substitu-
tion of the chemical potential expressions (1.37) into the chemical equilibrium
constraint (1.40) leads to the following law of mass action,

neni
na

=
1

(Λe)
3

(
mi

ma

)3/2 GeGi
Ga

exp

[
ε0,a − ε0,e − ε0,i

kBT

]
(1.41)

We may take [19],
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mi

ma
≃ 1, Ge = 2,

Gi
Ga

≃ 1 (1.42)

Moreover we can define the ionization energy,

ϵi = ϵ0,e + ϵ0,i − ϵ0,a (1.43)

Substituting (1.42) and (1.43) into (1.41), and making explicit the thermal De
Broglie wavelength of elecrtons as a function of the temperature (1.27), we
obtain the celebrated Saha Equation [11]

neni
na

=
(2πmekB)

3/2

h3
T 3/2 exp

(
− ϵi
kBT

)
(1.44)

which expresses the degree of ionization of the gas mixture in conditions of
Thermodynamic Equilibrium respect to the particle concentrations. We shall
see later in Section 1.6 how to describe the irreversible phenomena taking place
during chemical reactions in conditions of chemical non-equilibrium, keeping
the Saha Equation as limit for null reaction rate.

It is worth to stress here that the various fluid species do not necessarily
are in local thermal equilibrium between each other, i.e. different fluid species
in the same region of space can have different temperatures. This is often the
case in many practical plasma applications, where the temperature of electrons
Te can differ significantly from the ion temperature Ti. In that case the spe-
cific entropy would be a function of the internal energies of each distinct fluid
species. Similarly to how we found Saha Equation, we would find that in con-
ditions of local thermodynamic equilibrium respect to the distinct fluid internal
energies the temperatures equilibrate, i.e. Ti = Te = Ta.

1.5 Conservation laws

In previous Section we provided the Equations of State (1.32), (1.33) and
(1.37), valid in a small fluid element, due to local thermodynamic equilibrium.
The next step is to postulate the conservation laws for the thermodynamic vari-
ables and the linear momentum of the fluid element [9]. We first discuss the
conservation law for the overall mass density ρ and the evolution equations
for mass concentrations ck. Next, neglecting the inertia and kinetic energy of
diffusion phenomena, we postulate a conservation equation for the linear mo-
mentum ρv of the fluid element. To be general one should account separately
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for the conservation of momentum of the distinct fluid species. Anyway, as
long as the collective barycentric motion carries the most of the kinetic energy,
we can drop such conservation Equations and later recover information on the
relative motion of the distinct fluid species respect to the barycentre via the
constitutive Equations. We retain the fluid element has no intrinsic angular
momentum. This circumstance, together with the symmetry of Maxwell stress
tensor, reduces the conservation law for the fluid angular momentum to the re-
quirement that the viscous stress is symmetric [23]. Finally, given that the total
energy is certainly conserved3, the evolution Equation for the internal energy
is found by difference of the conservation Equation of the total energy and the
evolution Equations for kinetic energy and electromagnetic energy.

1.5.1 Mass and concentrations

The time evolution for the mass density of a certain fluid component is intu-
itively given in the form of a conservation law as

∂ρk
∂t

+∇ · (ρkvk) = νkJr (1.45)

The symbol Jr denotes the reaction rate of the unique macroscopic reaction
given in (1.18) describing ionization and recombination phenomena. Its di-
mensions are clearly mass per unit volume and unit time, and the normalized
stoichiometric coefficients can be found in Table 1.1. Summing up the Equa-
tions of conservations for mass densities of distinct species (1.45) we get the
Equation of conservation for the overall mass density of the fluid element,

∂

∂t
ρ+∇ · ρv = 0. (1.46)

The following conservation equations can be set up for the mass concen-
trations ck = ρk/ρ of the distinct species, considering simultaneously (1.45)
and (1.46),

ρ
d

dt
ck +∇ · jk = νkJr. (1.47)

3we neglect nuclear reactions!
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Manipulating Equations (1.47) we find also

∂

∂t
q +∇ · i = 0 (1.48)

ρ
d

dt
cq +∇ · i∗ = 0 (1.49)

In the following we may choose arbitrarily three independent evolution
Equations. Instead of taking the three Equations (1.45), we take the conserva-
tion Equations for the overall mass density (1.46), the concentration of neutrals
[(1.47) for k = a], and the electric charge density (1.48).

1.5.2 Linear momentum

We assume that the inertia of diffusion phenomena, together with the kinetic
energy of the diffusion flows is negligible. In this assumption, considering
also the action-reaction principle of mechanics, and the overall conservation
of mass property (1.46), we can set up the conservation Equation for the linear
momentum of the mass centre of the fluid element as

ρ
d

dt
v +∇ ·P = qE+ i×B (1.50)

On the right hand side the Lorentz force appears clearly. At the left hand
side P is the pressure tensor, describing both the effect of the kinetic pressure
p defined in Equation (1.32) and of the viscous stress Π,

P = pI+Π (1.51)

Since the Maxwell stress tensor is symmetric, retaining that the fluid element
has no intrinsic angular momentum, we can conclude that the antisymmetric
part of the viscous stress should be zero, i.e. Π = Π(s) [23].

It is important to bear in mind that it is possible to define the velocity of
each gas species. The missing evolution Equations for the linear momentum
of each distinct species are replaced only in part by the overall linear momen-
tum conservation equation (1.50) and further information will be provided by
the constitutive equations. This is generally possible any time the evolution
time constants governing the dynamics of the distinct fluid velocities relative
to mass centre are fast as compared to the time scale of interest [30]. These
assumptions are related precisely to the hypothesis of negligible inertia of dif-
fusion phenomena. Postulating the linear momentum conservation (1.50) we
consider in particular,
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∇ ·
∑
k

ρk (vk − v)vk ≃ 0 (1.52)

This is coherent with the assumption of retaining the overall kinetic energy
approximately equal to the kinetic energy related to the barycentric motion,

3∑
k=1

1

2
ρkvk

2 ≃ 1

2
ρv2 (1.53)

This is also equivalent to attribute the kinetic energy of diffusion to the internal
energy sink, but then makes our Equations of State imprecise when the above
hypothesis are not satisfied.

In this perspective, let us scalar multiply Equation (1.50) by the barycentric
velocity v. Simple manipulation, and the conservation of mass property (1.46),
allow to write an evolution equation for the kinetic energy of the mass centre
of the fluid element,

∂

∂t

(
1

2
ρv2

)
+∇ ·

(
1

2
ρv2v +P · v

)
= P : ∇v + qE · v + i×B · v (1.54)

1.5.3 Internal energy

One interesting feature of the Non Equilibrium Thermodynamics framework
is the way to introduce the internal energy. This is defined by difference of
the overall specific energy within the system e and all the “external” energy
sinks we retain important [23]. If we discard important energy sinks from the
analysis, our thermodynamic model will be inconsistent, since we are making
the hypothesis that our internal energy satisfy the Equation of State (1.33).
Besides the barycentric kinetic energy, the largest “external” energy sink in a
variety of plasma physics applications is generally the electro-magnetic one,

we.m. =

(
1

2
ε0E

2 +
1

2µ0
B2

)
(1.55)

The electro-magnetic energy is subject to the following conservation law,
also known as Poynting Theorem,

∂

∂t
we.m. = −∇ ·Ke.m. −E · i, (1.56)
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where the Poynting vector is defined as

Ke.m. = E× B

µ0
(1.57)

The Poynting Theorem (1.56) is a simple consequence of the validity of
Maxwell Equations, for a critical discussion in the context of fusion plasmas
see [35].

We can finally state that the overall energy is given by the sum of barycen-
tric kinetic energy, electromagnetic energy and internal energy,

ρe =
1

2
ρv2 + we.m. + ρu (1.58)

As hinted, we considered the only relevant kinetic energy is the one related
to the motion of the mass centre, hence the kinetic energy of diffusion is ac-
counted within the internal energy. The chemical energy per unit volume is
also considered a form of internal energy, hence it is also contained in ρu. We
can take for granted, at least as long as nuclear reactions are negligible, that
the total energy within an arbitrary volume cannot be created or destroyed,

∂ρe

∂t
+∇ ·Ke = 0 (1.59)

where Ke is a total energy current density, which we postulate to be

Ke = ρev +P · v +Ke.m. +Kq (1.60)

The vector Kq defines a current density of internal energy, also known as heat
flux. We can now obtain a balance equation for the internal energy by the sub-
traction of the total energy conservation equation (1.59) and the conservation
equations for the barycentric kinetic energy (1.54) and the electromagnetic en-
ergy (1.56),

∂

∂t
(ρu) = −∇ · (ρuv +Kq)−P : ∇v + i∗ · (E+ v ×B) (1.61)

1.6 Entropy conservation

We have set up the conservation laws concerning the mass density (1.46), the
neutrals concentration (1.47), the electric charge density (1.48), the overall
linear momentum (1.50), and the internal energy (1.61) of a fluid element.
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Moreover the local thermodynamic equilibrium hyptohesis provided us with
Equations of State (1.32), (1.33) and (1.37). Anyway, the mathematical model
is still undetermined, as we have introduced some unknowns for which we
did not provide any constraint: the reaction rate Jr, the electric current in the
laboratory reference frame i, the neutrals current density ja, the heat flux Kq,
and finally the viscous stress tensor Π. The general assumption of classical
irreversible thermodynamics is to assume that all these thermodynamic fluxes
depend linearly on some other quantities which we are able to determine and
which are either due to external constraints keeping the system out of thermo-
dynamic equilibrium or due to the inhomogeneities of thermodynamic vari-
ables across different fluid elements.

A standard procedure is available in this context to provide a linear closure
of the model [23], which we apply here to the case of interest. The first prin-
ciple of thermodynamics for our multi-component fluid in a reversible process
was provided in Equation (1.31). We may assume this is valid close to ther-
modynamic equilibrium, allowing to write in a small time interval dt,

ρ
ds

dt
=

1

T
ρ
du

dt
+
p

T
ρ
d 1
ρ

dt
−
∑
k

µk
T
ρ
dck
dt

(1.62)

We may now substitute the conservations laws postulated in previous Section,
for the mass density (1.46), the mass concentrations (1.47), and the internal en-
ergy (1.61) into Equation (1.62). Arranging properly the divergence terms, we
are able to distinguish clearly the entropy flux Ks from the entropy production
term σ, that is

ρ
ds

dt
= −∇ ·Ks + σ (1.63)

Here the entropy flux density Ks is defined as

Ks =
Kq −

∑3
k=1 µkjk
T

. (1.64)

and the entropy production is given by Equation (1.65).
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σ =

σodd︷ ︸︸ ︷
1

T
Kq ·

(
−∇T

T

)
+

1

T

3∑
k=1

jk ·
[
−T∇

(µk
T

)
+ zk (E+ v ×B)

]
− 1

T
Π : ∇v − 1

T
JrAr︸ ︷︷ ︸

σeven
(1.65)

Here Ar is the chemical affinity of the ionization/recombination reaction
(1.18). The chemical affinity is defined, eventually for each independent chem-
ical reaction, as

Ar =

n∑
j=1

νjµj (1.66)

where the normalized stoichiometric coefficients were introduced already in
Equation (1.19).

The split of the r.h.s. of Equation (1.62) into a divergence term and a
production term is not arbitrary. This shall satisfy a number of requirements,
in particular the Galilei invariance, and the condition of null entropy produc-
tion at thermodynamic equilibrium, which determine this separation uniquely
[23]. Notice also that Clausius-Carnot Theorem is satisfied when the system
is not allowed to exchange mass with the surrounding environment. Defini-
tion (1.64) reflects indeed how to extend the entropy flux definition to open
thermodynamic systems.
In Equation (1.65) above each thermodynamic flux scalar multiplies a further
quantity, which is defined as its conjugate thermodynamic force. Nonetheless,
many linear combinations of fluxes and forces may be defined which leave the
entropy production term unaltered, i.e. we may find transformation of fluxes
and forces which save the sum of scalar products in Equation (1.65). We will
use only transformations which leave the spatial symmetry constraints, and
Onsager’s reciprocal relations unaltered. However a wider class of transfor-
mations exist which may save the entropy production but not the Onsager re-
ciprocal relations (see Chapter VI of [23] for more details). The motivations
that lead us to distinguish the entropy production due to vectorial phenomena
σodd and due to scalar and second order quantities σeven will be clear in next
Section. In the remainder of this Section we present two entropy production
expressions which will reveal to be convenient for our application.



26 CHAPTER 1. FLUID CONDUCTORS

By the Equations of State (1.37), we take the chemical potential µk to be
a function of the temperature T , the kinetic pressure p and particles concen-
tration ck. By a change of variables we may adopt different representations
for the chemical potentials, but the form (1.37) is a convenient choice. We can
highlight the effect of the temperature gradient on the diffusion flows by the
vector identity,

T∇
(µk
T

)
= ∇µk

∣∣∣∣
T

− 1

T

[
µk − T

∂µk
∂T

∣∣∣∣
p,ck

]
∇T. (1.67)

where we indicated as a subscript the thermodynamic quantities to consider
homogeneous throughout the sample when differentiating. In particular the
first gradient at the right hand side is performed assuming homogeneous tem-
perature. By the Equation of State (1.37) we observe

∇µk
∣∣∣∣
T

=
kBT

mk
∇ log pk (1.68)

and

µk − T
∂µk
∂T

∣∣∣∣
p,ck

=
5

2

kBT

mk
+
ϵ0,k
mk

= hk (1.69)

These observations lead us to reformulate the odd contribution to the en-
tropy production in Equation (1.65) as follows,

σ′odd = − 1

T 2
Kq

∗ · ∇T

= − 1

T

3∑
k=1

jk · [∇(µk)T − zk (E+ v ×B)]. (1.70)

where,

K∗
q = Kq −

∑
k

hkjk (1.71)

Here a sort of decomposition for the heat flux Kq was naturally introduced.
This choice allows moreover to write the entropy flux density (1.64) as

Ks =
K∗

q

T
−
∑
k

µk − hk
T

jk (1.72)
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Property (1.36) leads to

Ks =
K∗

q

T
+
∑
k

skjk (1.73)

Equations (1.71)-(1.73) provide a clear interpretation of the additional entropy
flux contribution for open thermodynamic system, allowing to identify the en-
tropy fluxes related to the exchanges of matter. Notice in particular that for a
close thermodynamic system Kq = K∗

q at the boundary.
Finally, for our application it is certainly convenient to exploit the linear

dependence of the diffusion flows
∑

k jk = 0. We use this constraint, and take
as diffusion flows the electric current in the fluid reference frame i∗ and the
neutral diffusion flow ja. Proper transformation of the thermodynamic forces,
and expressing the electromagnetic fields by the electromagnetic potentials,
allows finally to write the odd contribution to the entropy production in the
following equivalent forms,

(a) σ∗odd = Ks ·
(
−∇T

T

)
+

1

T
ja · (−∇µ∗a)

+
1

T
i∗ ·
[
−∇

(
ϕ+ ϕ∗µ

)
− ∂A

∂t
+ v ×∇×A

]
(b) σ∗odd =

K∗
q

T
·
(
−∇T

T

)
+

1

T
ja · (−∇µ∗a)T

+
1

T
i∗ ·
[
−∇

(
ϕ+ ϕ∗µ

)
T
− ∂A

∂t
+ v ×∇×A

]
(1.74)

In Equations (1.74) we used the electric scalar potential and the magnetic vec-
tor potential introduced in Equation (1.5). Moreover we introduced the modi-
fied chemical potential µ∗a and the electro-chemical potential ϕ∗µ, defined as

(a) ϕ∗µ =
me,i

e
(µi − µe) ,

(b) µ∗a = µa +
mei

me
µi −

me,i

mi
µe ≃ µa + µi.

(1.75)

where

me,i =
memi

me +mi
(1.76)

is the reduced electron mass. It is important to stress these are still to consider
functions of the temperature T , the pressure p and the particles concentrations
ck.
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The K∗
q contribution to the heat flux finds the expression,

K∗
q = Kq − ξ∗hi

∗ − h∗aja (1.77)

where we adopted the following definitions,

(a) ξ∗h =
mei

e
(hi − he)

(b) h∗a = ha +
mei

me
hi −

mei

mi
he

(1.78)

It is important to notice that the entropy production is by definition a non-
negative quantity. This circumstance and the inner product structure of the en-
tropy production (1.65) suggest to set a linear relationship between fluxes and
forces: in this way the entropy production term σ, in any of its forms (1.65),
(1.70) or (1.74), is a bilinear form in the thermodynamic forces. Hence, it is
relatively simple to force the entropy production be positive-definite, via sim-
ple constraints on the coefficients of the phenomenological relations. More-
over the entropy production will be related solely to those external forces
keeping the system out of equilibrium or to inhomogeneities of the physical
system. This can be considered an optimal approximation for a wide category
of transport phenomena, such as electric current and heat conduction.

At this stage any thermodynamic flux might depend linearly on any ther-
modynamic force, even the coupling between fluxes and forces of different
tensor order is in principle allowed. For example, without further knowledge
of the physical system, we may consider the possibility for a chemical affinity
to originate a viscous stress, or for a temperature gradient to cause a reac-
tion rate. Moreover, even for fluxes and forces of the same tensorial order,
the linear relation is usually not provided by a scalar: the x- component of
the temperature gradient might be responsible for an y-component of the heat
flux for example. Clearly not all of these linear relations are really physical
and allowed. The Curie symmetry principle and Onsager’s reciprocal relations
greatly reduce the allowed linear relations between fluxes and forces and deter-
mine the structure of the tensors representing the linear constitutive relations.
We shall explore these constraints in the next Section. It is important to stress
that different “representations” for the entropy production, such as (1.74a) and
(1.74b), lead to completely equivalent closure relations. There will exist in-
deed some transformations between the linear coefficients of the constitutive
equations obtained from the different representations.

Besides the linear closure is efficient in describing heat conduction and
diffusion phenomena, the approximation of chemical reactions by linear laws
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is generally too far from real experimental conditions for most applications.
Hence, it is necessary to take here some results from chemical kinetics, in order
to introduce a realistic closure equation for the reaction rate of recombination
Jr [23]. We first assume that chemical reactions are not directly related to other
dissipative phenomena through constitutive Equations and vice-versa. Further,
indicating by kf and kr the forward and reverse reaction rate coefficients, we
require

Jr
ma

= kfna − krneni = krna

(
kf
kr

neni
na

− 1

)
(1.79)

The physical ground for the above relation are intuitive. The forward reaction
rate is proportional to the product of the particle densities of electrons and
positive ions (reactants) while the reverse reaction rate is proportional to the
particle density of the neutral atoms (product). We now focus the attention on
the ratio between particle densities at the right hand side of Equation (1.79).
Expressing particle densities as a function of the chemical potentials (1.37),
and highlighting the functions ζk(p, T ), leads to

neni
na

= n exp

[
−maAr − (ζe + ζi − ζa)

kBT

]
(1.80)

At thermodynamic and chemical equilibrium the chemical affinity is null,
Ar = 0, and Equation (1.80) reduces to Saha Equation (1.44). In the same
conditions, the reaction rate Jr in Equation (1.79) should be null, leading to
conclude

kf
kr

=
1

n
exp

[
(−ζa + ζe + ζi)

kBT

]
(1.81)

Substituting Equations (1.80) and (1.81) into (1.79) we finally obtain

Jr = krmana

[
exp

(
−maAr
kBT

)
− 1

]
(1.82)

It is interesting to observe as for maAr ≪ kBT we could establish a linear
relationship between the reaction rate and the chemical affinity.

1.7 Magnetic field anisotropy

A mixture of charged ideal gases would be an isotropic system in absence of an
externally applied magnetic field. Indeed, we may argue that there is a spher-
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ical symmetry for the medium considered as a continuum, and all proper and
improper rotations of any material element should not affect the constitutive
equations. In this situation, we say that the symmetry group for the constitutive
equations of our system is the full orthogonal group O(3). We provide some
details about symmetry groups and the theory of invariant tensor functions in
Appendix A.

Our first aim is to identify the symmetry group for our multi-component
mixture of ideal gases, when a magnetic field is present. Following Ref. [23],
we may well be tempted to claim that our linear constitutive Equations should
be solely invariant respect to rotations about the magnetic field lines. This is
almost true, as we shall see briefly. Indeed, proceeding rigorously, we can state
that any orthogonal transformation of the fluid element which does not alter the
magnetic field perceived by the fluid element itself shall not be responsible for
a modification of the constitutive equations. In this context it is important to
figure out that the magnetic field is not a standard polar vector field. Indeed,
in any point of the Euclidean space, the magnetic field is a second order skew-
symmetric tensor. Second order skew-symmetric tensors in three dimensions
have exactly three degrees of freedom as standard polar vectors, hence they are
usually represented as vectors through the inverse volume form ω,

B̃
.
=

 0 Bz −By
−Bz 0 Bx
By −Bx 0

 ω
=⇒ B

.
=

 Bx
By
Bz

 (1.83)

and defined as pseudo or axial vectors. Hence, we can conclude that the struc-
tural tensor [36, 37] which characterize the symmetry group of our constitu-
tive Equations is the second order skew-symmetric tensor B̃. The subgroup
of O(3) corresponding to this structural tensor is a transverse isotropy group
often denoted by the symbol C∞,h [26]. Transformations in this group are
given by any combination of rotations of the fluid element about the magnetic
field lines and by the inversion of the material element. The presence of the
inversion transformation within the symmetry transformations is intimately re-
lated to the pseudo-vector nature of the magnetic field. Indeed, pseudo-vectors,
compared to standard polar vectors, undergo an additional sign-flip of the com-
ponents for an inversion of the basis vectors. As a result, the material element,
after an inversion, keep to perceive the same magnetic field as before. Com-
paratively, if the magnetic field was to consider a standard polar vector field,
an element inversion would have caused a sign flip of the perceived magnetic
field.
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Now that the symmetry group for our constitutive equations is clear, we
may use some standard results of the theory of invariants for tensor functions,
commented in Appendix A, to provide the constitutive Equations for our sys-
tem consistently with the spatial symmetry constraints. The first important
consequence of the isotropization theorem [37] and the irreducible and com-
plete representations for tensor functions in isotropic systems synthesized in
Table 11 and Table 12, is that a linear tensor function of an even order tensor
cannot return an odd-order tensor, and vice versa, even in presence of a mag-
netic field. This is an extension of the Curie symmetry principle from isotropic
conditions to the case of interest. In particular this guarantees that a vectorial
thermodynamic flux may be linearly related solely to vectorial thermodynamic
forces, while scalar and second order tensors thermodynamic fluxes may be
related both to scalars and second order tensors thermodynamic forces. This
implicates that the entropy production term may be split as indicated in Equa-
tion 1.65. The two contributions σodd and σeven should be separately positive
semi-definite.

The results of tables 11 and 12, together with the isotropization Theorem
[37] allow moreover to give an invariant representation for all the constitu-
tive equations allowed, i.e. vector-valued functions of vectors, second-order
symmetric tensor-valued functions of scalars and second-order tensors, and
scalar-valued functions of scalars and second-order symmetric tensors.

Let us start from the linear constitutive equation relating a vector thermo-
dynamic flux u and a vector thermodynamic force v.

u = L (v) = β0v + β1B̃v + β2B̃
2v (1.84)

where the scalar coefficients βk are eventually scalar functions of the unique
invariant tr

(
B̃2
)

. In our case, the vector u may represent either the heat flux
K∗

q or the electric current density in the fluid reference frame i∗, while the

vector v is either the electric field
[
E+ v ×B−∇

(
ϕ∗µ
)
T

]
or the relative

temperature gradient −∇T
T . In standard vector notation we may write

u = β0v + β1v ×B+ β2v ×B×B (1.85)

Let us represent this constitutive Equation also in a Cartesian coordinate sys-
tem, with the z-axis aligned along the magnetic field direction. Constitutive
Equations (1.84) and (1.85) may be represented as,
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 ux
uy
uz

 =

 β0 − β2B
2 −β1B 0

β1B β0 − β2B
2 0

0 0 β0

  vx
vy
vz

 (1.86)

From these representations we may take β0 as significant of the isotropic rela-
tion between the input and output vector. The coefficient β1 regulates the Hall
effect, being orthogonal both to the input vector and the magnetic vector field.
The coefficient β2 is responsible for a modification of the conductivity orthog-
onal to the magnetic field direction. We may assume that the isotropic relation
is not influenced by the application of the magnetic field, hence retaining β0
independent from tr

(
B̃2
)

. The Hall effect is usually retained linear in the
magnetic field, hence we may argue that also β1 is a coefficient independent
from the magnetic field. Finally, the variation of conductivity transverse to the
magnetic field may be taken to be quadratic in the magnetic field magnitude,
as observed in experiments on metals at low temperature [38]. This requires
β2 to not depend directly on the magnetic field. In any case the coefficients
βk are even functions of the magnetic field, hence the parity of the coefficients
with respect to the magnetic field in the Cartesian representation can be easily
read from Equation (1.86). This highlights as the symmetric part of the tensor
L (·) representing the constitutive Equation is even in the magnetic field, while
the antisymmetric part, related solely to the Hall effect, is odd in the magnetic
field. Synthetically,

L (B) = LT (−B) (1.87)

Let us consider the possible scalar effects so due to a second order sym-
metric trace-less tensor T. The only possible scalar invariant linear in T is
tr (TB̃2), hence

so = L(T) = γ tr (TB̃2) (1.88)

As usual γ = γ
(
tr(B̃2)

)
. In the case under exam the scalar quantity may

be the trace of viscous stress tr(Π) or eventually the reaction rate Jr, while
the traceless second order tensor T can be only the traceless part of Π(s). In a
Cartesian coordinate system with the z-axis oriented along the magnetic field
equals

so = L(T) = −γB2 (Tx,x + Ty,y) (1.89)
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Since tr (T) = 0 ↔ Tx,x + Ty,y + Tz,z = 0 and we may write equivalently,

so = L(T) = γB2 (Tx,x + Ty,y − 2Tz,z) (1.90)

Further, we may study whether a scalar solicitation si can be responsible
for a second order symmetric trace-less tensor U. The only possibility is the
following

U = L(s) = ζs
(
B̃2 − tr (B̃2)I

)
(1.91)

where ζ is as usual a function of tr
(
B̃2
)

. In a coordinate system with the
z-axis along the magnetic field direction, the above expression looks like

L(s) = ζs

 B2 0 0
0 B2 0
0 0 −2B2

 (1.92)

Consider finally two second order symmetric tensors, the thermodynamic
flux U and the thermodynamic force T. The constant γ regulate how the
traceless part of T influences the trace of U. Similarly the constant ζ regulate
the effect of the trace of T on the traceless part of U. Both are even functions
of the magnetic field, resulting in particular to be functions of tr (B̃2). These
constants are equal due to Onsager reciprocal relations, i.e. γ = ζ [23].

Thanks, as usual, to the isotropization theorem [37], and having B̃ as struc-
tural tensor for the system symmetry, we find the following coordinate-free
form for the linear constitutive relation between the traceless part of the two
second order symmetric tensors,

Ů =η0T̊+ η1

(
T̊B̃ − B̃T̊

)
+ η2

(
T̊B̃2 + B̃2T̊

)
+ η3

(
B̃T̊B̃2 − B̃T̊B̃2

)
+ η4 tr (T̊B̃

2)
(
B̃2 − tr (B̃2)I

) (1.93)

We indicate here the traceless part of the tensor with a circle accent. All of the
constants ηk might depend on tr

(
B̃2
)

, hence are always even in the magnetic

field. Let us consider explicitly T = (∇v)(s) and U = Π(s). These tensors,
besides being symmetric, admit in general a non-null trace. If we take a Carte-
sian coordinate system with the z-axis along the magnetic field direction, we
can merge previous results synthetically in Table 1.7. We notice explicitly as
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the scalar η0 carries the information of the isotropic relation we would obtain
in absence of magnetic field, and is usually defined as shear viscosity in fluid
dynamics. The volume viscosity ηv defines the trace of the viscous stress orig-
inating by the barycentric velocity divergence. Each coefficient ηk in Table
1.7 multiplies Bk, giving information on the parity of the coefficients of the
constitutive relation respect to the magnetic field. We claim again that the coef-
ficients ηv, ζ and ηk might be considered independent from the magnetic field
in first approximation. Transport theory experts are in charge of determining
the coordinate-independent coefficients ηv, ηk, ζ based on experiments or mi-
croscopic models. It is worth to notice that the constitutive Equation relating
the viscous stress to the symmetric part of the velocity gradient is arbitrarily
retained isotropic even in presence of a magnetic field in fusion plasma appli-
cations [39, 40], meaning that only the shear viscosity η0 and the volumetric
viscosity ηv are taken to be non-null.
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Table 1.2: Synthetic scheme of the constitutive relation between viscous pressure and symmetric part of velocity gradient,
with magnetic field aligned in the positive z-direction.

˚(∇v)
(s)
xx ˚(∇v)

(s)
yy ˚(∇v)

(s)
zz ˚(∇v)

(s)
xy ˚(∇v)

(s)
yz ˚(∇v)

(s)
xz ∇ · v

Π̊xx η0 − 2η2B
2 − η4B

4 −η4B4 0 −2η1B − 2η3B
3 0 0 ζB2

Π̊yy −η4B4 η0 − 2η2B
2 − η4B

4 0 2η1B + 2η3B
3 0 0 ζB2

Π̊zz −2η4B
4 −2η4B

4 η0 0 0 0 −2ζB2

Π̊xy η1B + η3B
3 −η1B − η3B

3 0 η0 − 2η2B
2 0 0 0

Π̊yz 0 0 0 0 η0 − 2η2B
2 η1B 0

Π̊xz 0 0 0 0 −η1B η0 − 2η2B
2 0

trΠ ζB2 ζB2 −2ζB2 0 0 0 −ηv
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We conclude this Section showing how Onsager’s reciprocal relations ap-
ply in this context to the constitutive equations between thermodynamic fluxes
and forces. We assign a label k to each pair of conjugate thermodynamic fluxes
and forces. The constitutive equation between the thermodynamic flux of la-
bel i and the thermodynamic force of label j is provided by the T 1

1 tensor Li,j .
The subscripts are here necessary to identify the tensor function, and do not
refer to components in a Cartesian reference frame. Due to the microscopic re-
versibility of the laws of motion, the following Onsager’s reciprocal relations
are valid [23],

Li,j (B) = Lj,i (−B)T (1.94)

These reciprocal relations do not add any new information respect to the spa-
tial symmetry constraint (1.87) for conjugate thermodynamic fluxes and forces
pairs. On the other hand, the simultaneous consideration of the spatial sym-
metry constraint (1.87) and Onsager’s reciprocal relations (1.94) leads to

Li,j (B) = Lj,i (B) (1.95)

also for i ̸= j. Onsager reciprocal relations hence allow to greatly reduce the
number of independent coefficients to determine in order to assign the consti-
tutive Equations which close the MHD problem. It is worth to notice as these
relations have a precise effect on the entropy production. Namely, the Hall
effect relating non-conjugate fluxes and forces is not responsible for a net en-
tropy production. The same was clearly true for conjugate fluxes and forces,
and Onsager reciprocal relations extend this property to non-conjugate fluxes
and forces.

In our study we are concerned with three pairs of conjugate vector thermo-
dynamic fluxes and forces. Taking the entropy production representation for
vector phenomena (1.74b), we have the conjugate flux-force pairs reported in
Table 1.3, in particular there are three vector fluxes and three vector forces, for
a total of 9 possible couples. The spatial symmetry constraints reduce the num-
ber of independent coefficients to assign from 9 for each possible flux-force
pair, hence 81, to 3 per constitutive Equation, hence 27. Further, Onsager re-
ciprocal relations allow to identify coefficients regulating cross-effects, requir-
ing finally to assign only 18 coefficients to determine uniquely the linear con-
stitutive Equations. It is common in fusion applications to neglect the cross-
effects between heat flux and electromagnetic field and between the electric
current and temperature gradient. The cross effects between different diffu-
sion phenomena may be expected to be particularly important, since collisions



1.8. LOCAL NEUTRALITY 37

Table 1.3: Resume of the conjugate thermodynamic fluxes and forces accord-
ing to the entropy production form (1.74b).

Order Fluxes Forces

Even

Jr Ar
tr(Π) ∇ · v
Π̊(s) ∇̊v

(s)

Odd
K∗

q −∇T/T
i∗ −∂A/∂T + v ×∇×A−∇

(
ϕ+ ϕ∗µ

)
T

between the distinct fluid particles take place. It is not important which partic-
ular representation is chosen, hence the actual choice of the forces and fluxes,
provided that all the choices preserve Onsager reciprocal relations.

As an example we report the constitutive Equation for the electric cur-
rent density in the fluid reference frame i∗ when the plasma is fully ionized,
hence ca = 0 and we may neglect neutrals diffusion, with the above mentioned
choice of conjugate flux-force pairs,

i∗ = σ
(
E+ v ×B−∇ϕ∗µ|T

)
+ σTH

(
−∇T

T

)
(1.96)

With the entropy production representation (1.74a) the constitutive equation
would be,

i∗ = σ′
(
E+ v ×B−∇ϕ∗µ

)
+ σTH

′
(
−∇T

T

)
(1.97)

Clearly, in order for the two constitutive equations to be equivalent,

σ′ = σ, σTH
′ = σTH − Tsqσ (1.98)

where

sq =
me,i

e
(si − se) . (1.99)

1.8 Local Neutrality

The hypothesis of local neutrality is of central importance in nearly all plasma
MHD theories, and most of the literature, following the definition of Langmuir
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[3, 4, 11], define a plasma as a locally neutral ionized gas. The justification of
this property for the space and time scales of interest is related to the Debye
shielding theory [11, 19]. The plasma is assumed to be in local thermody-
namic equilibrium, so that partial pressures, particle densities and temperature
are well defined quantities, moreover the temperature and the ion density are
taken to be homogeneous in the sample, i.e. T (x) = T0, ni(x) = n0. No
magnetic field is present, so that we can take E = −∇ϕ. The electron inertia
is neglected, so that electrons are always in mechanical equilibrium under the
action of the electron pressure gradient −∇pe and the Lorentz force ene∇ϕ,

∇
(
ϕ− kBT

e
log ne

)
= 0. (1.100)

The above equilibrium constraint, together with the conditions of regularity at
infinity for the scalar potential, suggests to take ne = n0exp(eϕ/kBT ). Gauss
law then takes the form:

∇2ϕ = −n0e
ε0

[
1− exp

(
eϕ

kBT

)]
− qext

ε0
(1.101)

In the hypothesis eϕ/kBT ≪ 1, the above Equation reduces to

∇2ϕ−
(

1

λD

)2

ϕ = −qext
ε0

(1.102)

where we have introduced the Debye length,

λD =

√
ε0kBT

n0e2
, (1.103)

If we take the external charge distribution to be a localized point charge
placed in the origin of our reference system, i.e. qext = Qδ(r), we easily
obtain the Green function for the electrostatic potential [11, 19]:

ϕ (r) =
Q

4πε0r
exp

(
− r

λD

)
(1.104)

The Green function (1.104) indicates as the electrostatic potential of a any
point charge is shielded within few Debye lengths. Hence when the space scale
of interest is much greater than the Debye length the plasma can be regarded as
locally neutral. This is generally the case of fluid models for tokamak plasmas,
where the typical temperature and densities are responsible for a Debye length
quite smaller than the typical dimension of the fluid element.
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Once the hypothesis of local neutrality is accepted, quite much of the
model set up is automatically solved. Indeed, we can set q = 0, while up
to now q was a state variable to determine self-consistently, in the same stream
as the plasma mass density ρ. Now that the electric charge density does not
vary in time, the electric current density is divergence-free, i.e. ∇ · i = 0.
Clearly, this also implies that displacement current are dropped for consis-
tency, hence the validity of Ampère’s law ∇ × B = µ0i. The electric field
disappears structurally from the problem, as the only source of electric field is
given now by magnetic flux variations. Most importantly, Poisson Equation is
dropped from the model. Finally, we are discarding quite much information
within Ohm’s law. This is slightly subtle: plug Ohm’s law (1.96), where we
multiplied both therms by the resistivity η, within Faraday’s law. This way we
provide an evolution equation for the magnetic field, where the electric field
disappears,

∇× (ηi) = −∂B
∂t

+∇× (v ×B) (1.105)

The conservative electromotive force ∇ϕ∗µ does not play any role in this re-
spect, and clearly only the rotational part of the electric field is involved in this
relation (i.e. −∂A/∂t in the Coulomb gauge).

We now discuss how the Debye theory is recovered in the framework
of the thermodynamic model developed so far. Besides being a consistency
check, this discussion provides indications on why the local neutrality hypoth-
esis keeps to be well satisfied on the space scale of interest for a larger set of
operating conditions than the ones assumed to obtain (1.100).

We adopt the Coulomb gauge, and consider a plasma at rest (i.e. v = 0)
with a uniform conductivity σ. In these conditions, if we take the divergence
of Ohm’s law, and consider the continuity Equation for the electric charge, we
get

ε0
σ

∂q

∂t
= ε0 ·

(
∇2ϕ+∇2ϕ∗µ

)
(1.106)

Due the high conductivity of a ionised gas, the time of relaxation of the electric
charge is extremely small, i.e. τ = ε0/σ → 0. Hence, we get ∇2ϕ = −∇2ϕ∗µ.
This is not dissimilar to what we found earlier, indeed for uniform temperature
and ion density:

∇ϕ∗µ = −kBT
e

∇ log ne (1.107)
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Hence, we recover exactly the Debye theory formulated at the beginning
of this Section, even in presence of a stationary current density. Let us go
through the immediately successive non-trivial example. This time we sup-
pose directly to have a steady state divergence-free current density. Suppose
now there is a discontinuity of the conductivity in the direction of the current
density flow. Due to the continuity of the normal component of the current
density, a discontinuity in the normal component of the electric field would
exist in a standard Ohmic conductor. Here part of this discontinuity can be
accommodated in a discontinuity for ∇ϕ∗µ. Moreover we expect an eventual
accumulation of charge to be shielded within few Debye lengths.

Let’s go further and consider still a different situation: the conductivity and
the temperature are still homogeneous but the barycentric velocity is allowed
to vary. The magnetic field is certainly present due to the presence of a plasma
current and eventual external currents. Again we take ε0/σ → 0, so that by
means of Gauss law, we get

q

ε0
= ∇2ϕ∗µ +∇ · (v ×B) (1.108)

The electric charge density that would have appeared in absence of ∇ϕ∗µ is
clearly given by

ε0 (B · ω − µ0i · v) , (1.109)

where we indicated by ω = ∇ × v the fluid velocity vorticity. If we con-
sider this as an applied external charge, we again expect that the force ∇ϕ∗µ
is responsible for its shielding in few Debye lengths. Theoretically, one may
pretend that the separation of charge is in instantaneous phenomenon. The
static relation between the electric charge and other fields would be offered in
particular by

ε0∇ ·
[
σ
(
E+ v ×B−∇ϕ∗µ

)]
= 0 (1.110)

which we may decide to use, in lieu of q = 0. In general it is retained that the
electromotive forces and the conductivity inhomogeneities do not alter really
much the result q = 0, which is then used greatly simplifying the model.

Not surprisingly at this point, the actual form postulated for Ohm’s law
is not standard in the tokamak literature. Any electromotive force which is
conservative in the plasma, does not really alter the results as illustrated in
(1.105), since q = 0 is rather imposed than obtained self-consistently. In
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principle, the local neutrality should be found solving the electric charge con-
servation equation (1.48) or, still quite precisely, imposing the electric cur-
rent to be divergence-free. In Ref. [40] the generalized force is taken to be
E + v × B. In the same work, they have E = −∂A

∂t , considering the gauge
condition of Weyl, hence eventually ∇·A ̸= 0. In numerical implementations
of Refs. [41, 39], the conjugate force to the electric current is rather taken from
the entropy production representation (1.74b). The gradient component of the
generalized force is retained in the model, and further corrective terms appear,
including those related to viscosity. In these models they only neglect the term
proportional to the ion pressure gradient, since it is of order me,i/mi respect
to the electron pressure gradient. Finally they do not provide a coupling of
the electric current with the temperature gradient, hence retaining the entropy
production form (1.74b) “diagonalizes” the constitutive equations. In any of
these cases, the curl-free part of the force driving the current will somehow
disappear from the model, due to the assumed local neutrality.

1.9 The standard single fluid model

In many practical applications enough physics to describe the phenomena of
interest is still captured by the following assumptions:

• The temperature is high enough to retain that the neutral fluid concentra-
tion is negligible as compared to the concentration of positive ions and
free electrons, according to Saha Equation (1.44), i.e. ca = 0 ;

• Inhomogeneities of the conductivity and magnetic effects do not alter
very much the thermodynamic equilibrium situation described in previ-
ous Section, making the ionised gas locally neutral on the space scale of
interest, i.e. q = 0 (ci = ce = 1/2);

• As already assumed, the various gas species within our mixture are alto-
gether in local thermal equilibrium, allowing to define a unique temper-
ature, i.e. Ti = Te = T .

Under these circumstances we can take as state variables the mass density
ρ, the barycentric velocity v, the temperature T , and the magnetic flux density
B. The conservation laws assume the form:



42 CHAPTER 1. FLUID CONDUCTORS

(a)
∂ρ

∂t
+∇ · (ρv) = Sρ

(b) ρ
d

dt
v + Sρv = −∇p−∇ ·Π(s) + i×B+ Sρv

(c) ρ
d

dt
u+ Sρu =

−∇ ·Kq − p∇ · v −Π(s) : ∇v + i · (E+ v ×B) + Sρu

(1.111)

For completeness we included here some production terms, related to physical
phenomena which we are not describing self-consistently but rather providing
as forcing terms. The hypothesis of local thermodynamic equilibrium allows
to enforce the Equation of State, hence relating the internal energy and kinetic
pressure to the fluid temperature:

(d) ρu =
3

2
p =

3

2

ρ

ma
kBT → u =

3

2

kBT

ma
(1.112)

Maxwell Equations in the Magneto-Quasi-Static limit provide the evolution
equations for the magnetic field:

(e)
∂B

∂t
= −∇×E

(f) ∇×B = µ0i

(g) ∇ ·B = 0

(1.113)

The closure for the system of Equations (a)-(g) is now provided by the Non-
equilibrium Thermodynamics considerations discussed in this Chapter. In par-
ticular we claim the entropy production expression (1.74b) “decouples” the
linear closure Equations, i.e.

(h) Kq = −γ · ∇T − 5

2

kBT

e
i

(i) i = σ [E+ v ×B]

(l) Π(s) = η · ∇v

(1.114)

In order to set up the constitutive Equation (h) we exploited the circumstance
me ≪ mi, besides the assumed local electrical neutrality of the fluid, q = 0.
The constitutive Equation (i) is Ohm’s law, where E + v × B is the elec-
tric field felt by the the fluid element in its motion. It was found here taking
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∇
(
ϕ+ ϕ∗µ

)
T

= 0, since we observed that the curl-free part of the force is
unimportant in the hypothesis q = 0. Moreover q = 0 was found in thermo-
dynamic equilibrium as approximate consequence of this force balance. All
the tensor fields above {γ, σ, η} are functions of the thermodynamic variables
{ρ, T} besides of the magnetic field, which also determines the structure of
such tensors, as illustrated in Section 1.7. We notice that constitutive rela-
tion (1.114h) extends classical Fourier’s law to account for the internal energy
brought by diffusion phenomena within the gas mixture.

The system of Equations (a)-(l) describes already a quite wide range of
phenomena of interest, and in next Chapter we will describe some state of the
art numerical models to solve similar sets of Equations for simulating tokamak
plasmas.

1.10 The plasma-wall interface

In the study of plasmas, a certain interest was always devoted to those electric
circuits constituted at the same time by the ionised gas and the surrounding
solid conductors. It is the case for example of an Argon lamp discharge, where
a voltage is applied to the gas through electrodes. In the tokamak literature,
the shared electric currents between plasma and solid walls are defined as halo
currents [42, 43]. Their formation is a threat to the integrity of the device:
their presence is generally responsible for dangerous electromagnetic forces
on structures [44]. It is clear that halo currents in tokamaks, as well as shared
plasma-wall currents in general, have a key role in the electromagnetic cou-
pling of fluid and solid conductors, hence it is worth to report briefly the key
physics at the plasma-wall interface, which also explain the possible boundary
conditions to use in the MHD plasma model.

We notice immediately, on fundamental physical grounds, that the gas can-
not penetrate the solid wall surface, unless peculiar absorption properties are
accounted. This provides with the widely used boundary condition:

ρv · n̂ = 0 (1.115)

at the interface between the plasma and solid structures. The further funda-
mental consideration is that, on the scale length of interest, the electric current
density should be solenoidal, in accordance with the Magneto Quasi Static
(MQS) approximation,
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i · n̂
∣∣∣
pl
− i · n̂

∣∣∣
w
= 0 (1.116)

This is true even in the general case where ionization and recombination
phenomena take place, as there is no macroscopic charge accumulation. A fur-
ther boundary condition is anyway still missing, as there are three gas species
in the mixture: electrons, positive ions and neutrals.

1.10.1 Bohm Criterion

The remaining boundary condition is deduced from more subtle considera-
tions, which are beyond the hypothesis of local neutrality and local thermody-
namic equilibrium. In order to grasp the key aspects it is convenient to first
consider a cold-ion plasma, where Ti = 0. On the other hand, electrons have
their own approximately thermal motion, which we may define as “fractional”-
Maxwellian [33]. Indeed thermal electrons moving towards the wall surface
are captured by the wall, and hence not scattered back into the plasma. At the
wall surface we may consider exactly half of the Maxwellian distribution of
electron velocities as cut-off due to this mechanism. Moreover the mean ve-
locity of the underlying Maxwellian is retained null at the wall surface. The
wall surface charges negatively, as a consequence of the incident electrons,
and a positive space charge region develops in the nearby plasma. The result
is a space charge layer which tends to repel the plasma thermal electrons. The
plasma-wall interface region where quasi-neutrality is broken and large vari-
ations of the electric charge density takes place is defined as plasma sheath
[33, 45]. We shall see that the characteristic length of this region is indeed the
Debye length. In the perspective of an MHD scientist, this region is infinites-
imally thin in extent, at least until the Debye length is small compared to the
characteristic dimensions defining the fluid element (e.g. the Larmor radius or
the mean free paths for the different collisions taking place [46]). The descrip-
tion of the plasma-wall interface is hence beyond the locally-neutral MHD
modelling capabilities. Accurate account of the electric charge distribution at
the interface is needed to provide a further boundary boundary condition to the
MHD problem.

The dynamics of formation of the space charge layer can be retained es-
sentially instantaneous from the MHD perspective. In order to find the most
important implication of the sheath formation, let us assume that the elec-
tron temperature can be retained homogeneous throughout our sample. We
moreover retain the sheath essentially collision-less, this hypothesis will re-
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veal valid any time the Debye length is sufficiently shorter than the mean free
path between collisions. We now consider a simplified 1D problem where a
quasi-neutral plasma face an infinitely extended solid wall. The plasma quan-
tities area allowed to vary only along the x direction, perpendicular to the wall.
We may well describe the situation via the simple model proposed in [45]:

(a) nivi = ni,0vi,0

(b) mivi
∂vi
∂x

= −e∂V
∂x

(c)
kBTe
ne

∂ne
∂x

= +e
∂V

∂x

(d)
∂2V

∂x2
= − q

ε0
=

e

ε0
(ne − ni)

(1.117)

In this context the eventual net current density in the plasma does not play a
role, i.e. its role is fully accounted at the MHD scale. At the plasma-sheath
scale the electrostatic effects are predominant. The set of Equations above is
complemented by the boundary conditions at the plasma side:

(α) ne = ni = n0

(β) V = 0

(γ)
∂V

∂x
=
∂ne
∂x

=
∂ni
∂x

= 0

(1.118)

It is convenient to normalize the set of Equations (1.117-1.118), defining

η = − eV

kBTe
, Ne =

ne
n0
, Ni =

ni
n0
, ui =

vi
cs

(1.119)

where we introduced the single fluid sound speed

cs =

√
kBTe
mi

(1.120)

After some algebra, Equations (1.117-1.118) are transformed into

d2η

dx2
=

1

λ2D

 1√
1 + 2η

u2i,0

− e−η

 (1.121)

Here λD is the Debye length obtained for the electron density and temperature
at the sheath entrance. In the limit η ≪ 1 Equation (1.121) is approximated as
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d2η

dx2
=

1

λ2D

(
1− 1

u2i,0

)
η (1.122)

The electric potential distribution within the sheath is monotonic, and non-
oscillating, solely in the hypothesis

ui,0 ≥ 1 ↔ vi,0 ≥ cs (1.123)

The latter is the Bohm criterion for the ion velocity. This constraint guaran-
tees in particular that the electron density decrease towards the wall faster than
the ion density [47, 46]. In normal situation the above criterion is marginally
satisfied, i.e. is satisfied with the equality sign [48, 46]. Correctly considering
the ion temperature, keeping the hypothesis of isothermal flow, the fluid sound
speed is corrected to [49, 46]:

cs =

√
kB (Ti + Te)

mi
(1.124)

From the above discussion we may conclude that a valid candidate bound-
ary condition for the MHD problem is represented by

vi · n = cs (1.125)

The non-penetration condition (1.115), implies clearly that for any ion im-
pinging the wall there will be a released neutral particle, i.e. va · n̂ = −vi · n̂.
Since the fluid velocity normal to the boundary is null, while the ion and neu-
tral velocities are as large as the ion acoustic speed, it is quite more robust to
retain in the model at least the ionised fluid and the neutral fluid inertia, as
done for example in [50].

1.10.2 The pre-sheath

Condition (1.125) requires nonetheless some mechanism within the plasma
capable to accelerate ions to this acoustic sound speed. Most importantly,
at the sheath edge the actual particle density may differ from the one of the
undisturbed plasma. This is defined in standard sheath physics literature as
that region where we do not observe variations in the particle densities, and the
plasma can be retained in thermodynamic equilibrium. A pre-sheath region
is generally retained to exist where an electric field is still associated to the
gradient of particle densities. The actual dimensions of such a layer depends
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on the actual physical mechanism driving the ions to the Bohm velocity at
the sheath entrance. The pre-sheath width can be related for example to some
geometrical factor, to the ion mean free path, to the ionization length or to the
ion gyroradius [46]. A variety of pre-sheath models is available according to
the dominant effect, anyway the essential ingredients of all the models are:

• the pre-sheath is retained a quasi-neutral region;

• the collisionality of electrons is discarded;

• The electron directed velocity is far smaller than the electron thermal
velocity.

As a consequence of the last two assumptions, Chodura [51] proposed to dis-
card the ve×B term in the electron momentum balance Equation, which leads
to a Boltzmann relation between electron density and electric potential in the
pre-sheath [52]. For example, assuming the acceleration of ions is essentially
due to magnetic fields, besides the electric field close to the boundary, the
MHD code JOREK [50] impose boundary conditions for the ion velocity at a
magnetic pre-sheath entrance [52].

Anyway in our case the definition of undisturbed plasma loses some of its
features. In a working tokamak, the plasma is purposely out of equilibrium.
Thanks to the language set up in previous Sections, we can see that the pre-
sheath region could be in principle accounted directly within the fluid model.
The low collisionality of electrons in the pre-sheath corresponds to set an in-
finite conductivity in Ohm’s law (1.114i). This suggests that the electric field
felt by the ionised fluid in its motion is kBT

e ∇ lnne. Anyway, this is inessen-
tial in the momentum transfer Equation for the ionised gas (1.50), since q = 0.
The fluid acceleration, dv

dt scales already as ∇p/ρ ≃ kBT
mi

∇ lnne. Hence, the
classic interpretation that ions are accelerated by an electrostatic field is found
even in our simple single fluid MHD model4. The real definition of “undis-
turbed” or “bulk” plasma could be then provided as that portion of the plasma
where the Bohm condition has no more influence on the pressure gradient.

The consequence of this discussion is that in principle the MHD model
contains all the fundamental ingredients to describe the pre-sheath region on
the same grounds as the background plasma. The only apparent structural
difference is in the collisionality of electrons, which is retained null in the
pre-sheath modelling. Observe anyway that this is rather an assumption, and

4We are attributing here the inertia of the ionised fluid to ions
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we can just be more general and tune correctly the collisionality in proximity
of the sheath entrance via the electric resistivity. Clearly enough resolution
should be provided in order to correctly represent the eventually steep varia-
tions of particle density and ion velocity in a thin region close to the sheath. It
is indeed important to figure out that the particle density at the sheath and at
the pre-sheath entrance may be different, and this difference can be crucial to
the correct modelling.

1.10.3 Ion and electron current to the wall

The velocity distribution of electrons in front of the wall is an half-Maxwellian:
there are no electrons moving from the wall surface to the plasma if electron
emission is excluded. Moreover the foreword-going distribution of velocity
is Maxwellian. The electrons crossing the wall surface are hence given by
[45, 33]

Γe,w =
1

4
ne,wvth,e, (1.126)

where the thermal speed of electrons is given by

vth,e =

√
8kBTe
πme

. (1.127)

As we move further and further from the wall towards the plasma the
backward-going tail of the Maxwellian distribution is gradually recovered.
Contextually the electron flux should be kept and the “fractional” Maxwellian
has to be shifted. At some point we will recover a full drifted Maxwellian
distribution, with some mean velocity ve. In particular the electron flux we
have at the sheath entrance n0ve should equal the electron flux we have at the
wall, given by (1.126). The actual electron density at the wall is given by the
Boltzmann factor, hence we find

Γe,w = n0e
e∆Vw
kBTe vth,e (1.128)

Here ∆Vw is the voltage difference between the wall and the plasma sheath
entrance, and is to be determined by considering the overall experimental sit-
uation (i.e. the applied voltage differences due to bulk plasma and external
conductors). At the same time, the inflow of ions at the sheath entrance pro-
vides the ion current density, due to the continuity relation (1.117a),

Γi,w = n0cs (1.129)
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If the wall is a perfect insulator the electron and ion flux should be equal
to each other, Γe,w = Γi,w, so that the net electric current vanishes. Using
expressions (1.128, 1.129) for the fluxes and ( 1.124, 1.127) for the velocities
we can calculate the voltage at such a sheath interface:

e∆Vi
kBTe

=
1

2
ln

[(
2π
me

mi

)(
1 +

Ti
Te

)]
(1.130)

With this definition we may express the electric current to the wall as

jw,n = n0cs

(
1− e

∆Vw−∆Vi
kBTe

)
(1.131)

Equation (1.131) is the desired result: it provides a relation between the
voltage drop across the sheath and the actual current flowing from the plasma
to the wall. For ∆Vw → −∞ the current saturates to the ion current saturation
value. In general ∆Vw will be an unknown of the plasma-wall interaction
problem. For a straight plasma column, confined within two equal electrodes,
the application of a voltage will result in an electric current whose magnitude
is always less than the ion saturation value [33]. In this respect the application
of a voltage to the sheath modifies the electron flux to the wall. The ion flux
is not modified, the Bohm criterion keeping its validity. The overall current
density crossing the sheath is hence evidently limited by the ion saturation
current. This circumstance should likely be considered in the modelling of
halo currents in Tokamak devices, and we shall comment a bit more about this
point at the end of the next Chapter.





Chapter 2

Interaction of MHD Plasmas
and MQS Conductors

I
n the previous Chapter we presented a sound Thermodynamics framework
to build close Magneto-Hydro-Dynamic models. Nonetheless the practical

implementation and solution of such a model requires still quite many steps:

• Setting up a functional relation for the coefficients of phenomenological
laws in terms of thermodynamic and internal variables, besides of the
magnetic field. These relations may depend on the type of experiment
and on the operational regime;

• providing proper boundary and initial conditions, significant for the ex-
periment under exam;

• Building a sound numerical approximation for the problem, which al-
lows to deal with all the space and time scales of interest, still using a
tractable number of degrees of freedom;

The conductivity parameters for diffusion phenomena and heat fluxes, as
well as the viscosities, are normally set up on a phenomenological basis, and
they are not object of this Thesis. Instead we are going to present few fun-
damental ideas of some state of the art extended MHD numerical models for
tokamak studies. Such models are in the stream of those presented in previous
Chapter, and include the energy evolution equation, besides the momentum
balance equation, the evolution equation for the mass density, and Faraday’s
equation in presence of a finite resistivity. The local neutrality hypothesis is
still retained satisfied, and in the majority of implemented models the neutral

51
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gas is discarded from the analysis. Anyway, further hypothesis are relaxed
compared to what illustrated in previous Chapter. For example the inertia and
the temperature of the different fluid species are accounted separately in some
of the implementations, so to study the relaxation of temperature or the effect
of electron inertia on the plasma evolution. Further, the closure relations are
postulated relying on different physical models and observations, not neces-
sarily of thermodynamic nature. Namely we will describe the code M3D-C1
[39, 41, 53] in Section 2.1 and the code JOREK [54, 55, 40, 56] in Section
2.2. These Sections will provide an idea on how to fill the gap between mod-
els as the one presented in Section 1.9 and their actual solution. The attention
is focused on the electromagnetic boundary conditions needed by the MHD
models. We will find that the tangential component of the magnetic flux den-
sity at the boundary of the computational domain B× n̂ needs to be provided
at any time instant of the simulation.

Following, in Section 2.4 we describe a convenient integral formulation
for solving the eddy current problem in conducting structures, based on the
introduction of an electric vector potential and the use of edge shape functions
[57]. There we highlight as the magnetic vector potential due to plasma cur-
rents should be provided as a forcing term for this model. These preliminary
Sections constitute the fundamentals to discuss the possible coupling strate-
gies between extended MHD models and conducting structures models in the
remainder of the Chapter.

From that point onwards, the attention will be devoted to the two funda-
mental aspects of a self-consistent coupling:

• The computation of the correct boundary condition B× n̂ at the bound-
ary of the MHD computational domain;

• The evaluation of the magnetic vector potential due to plasma currents
in the conducting domain

In order to describe clearly these two aspects, it is convenient to regard the
space as essentially split into the interior or inner domain Vin and the exterior
or outer domain Vext = E3\Vin. Here, the interior domain is essentially the
computational domain for the MHD problem, while the exterior domain is the
remainder physical space. In the exterior domain we will find the conducting
structure domain Vc, where active and passive currents are allowed to circulate.
We define the interface which separates the inner and the outer region as Cou-
pling Surface and we denote it by +∂Vin, since it is the boundary of the MHD
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Figure 2.1: Example Geometry for the Coupling problem. The Coupling Sur-
face ∂Vin is indicated in Green and bounds the inner domain Vin. The remain-
der space is the exterior domain Vext = E3\Vin. We indicate also the trace in
the poloidal cross-section at φ = 0 of the inner domain Ωin and of the outer
domain Ωext. The line separating these traces run clock-wise in the direction
îu = îφ × n̂.

computational domain. Some of the notation we will use in the whole Chap-
ter is collected in Figure 2.1. We indicate the trace of the Coupling Surface
in the poloidal half-plane φ = 0, oriented clock-wise, as +Γp. This closed
line separates the cross sectional areas of the inner domain Ωin from the cross-
sectional area of the outer domain Ωext. Much of our discussion does not need
assumptions about the axisymmetry of the Coupling Surface, anyway we will
see that this is the case at least for the JOREK and M3D-C1 codes, hence these
definitions will prove to be useful.

In the context of tokamak plasmas, the problem of assigning B× n̂ at the
boundary of the interior domain is generally met when computing the MHD
equilibrium configuration. Several strategies are possible to couple a Finite El-
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ement formulation of the MHD equilibrium problem within the Coupling Sur-
face, to the solution of the magnetostatic problem in the exterior domain [58].
The natural framework in this context is that of Boundary Element Methods
(BEMs). Essentially, the magnetostatic field problem in the exterior domain is
reduced to an integral equation which needs to be satisfied at the boundary of
the domain. The possibility to set up such formulas is offered by Green func-
tion theorems, as we shall see briefly. The boundary conditions for the exterior
problem will appear naturally in the boundary integral equation (either B · n̂ or
A × n̂ at the boundary have to be supplied). Similarly, the information about
electric currents in the outer domain will be condensed in the magnetic fields
and potentials these currents generate at the Coupling Surface. BEMs have
the great advantage of not requiring any discretization of the vacuum domain
to provide the necessary boundary condition on B × n̂. Completely differ-
ent strategies to describe the electromagnetic coupling with structures are also
present in the literature, for example M3D-C1 models both the conductors and
the outer vacuum domain within its FEM formulation, up to some point where
homogeneous boundary conditions can be retained [59]. This methodology is
justified there stressing the non-locality of BEMs, leading to fully populated
response matrices, i.e. B× n̂ at some location of the boundary can be linearly
related to B · n̂ completely elsewhere along the boundary.

In this Chapter, we shall always move in the context of Boundary El-
ement Methods. Although most of the concepts presented are general, we
will consider as reference models for the coupling JOREK for the plasma and
CARIDDI for the structures. Indeed the JOREK-CARIDDI coupling has been
the subject of a recent collaboration of my research group with the fast parti-
cles and MHD group at the Max-Planck Institute for Plasma Physics situated
in Garching. The first coupling strategy we describe is based on the Virtual
Casing Principle, and it is described in Section 2.5. This is in particular the
methodology already used for the JOREK-STARWALL coupling [60, 61], and
the main alternative currently programmed for the JOREK-CARIDDI cou-
pling. As we shall discuss in some detail in next Chapter, this is also the
methodology used in the evolutionary equilibrium MHD model CarMa0NL
[62]. The idea is to represent the magnetic vector potential due to plasma cur-
rents in the exterior domain via an equivalent surface current distribution at
the Coupling Surface. In the context of Boundary Element Methods, this can
be retained an indirect or Bielak-MacCamy method [58]. At the moment, I
was involved in the implementation of the relevant routines to extrapolate the
equivalent currents to the plasma at the Coupling Surface and in the valida-
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tion of the magnetic field produced by such equivalent currents in the outer
domain. In Section 2.6, two possible direct or Johnson-Nedeléc BEM for-
mulations are presented [58, 63, 64], respectively in terms of magnetic vector
potential and magnetic field1. For the magnetic vector potential formulation,
the possible implications of the adopted gauge are discussed. We will see that
the gauge choice is irrelevant for the computation of the poloidal magnetic
field in the axisymmetric case, but generates sensible complications in a fully
3D problem. Anyway, as important by-product of this discussion, we will
find a relation between electromagnetic quantities at the Coupling Surface and
plasma-induced voltages in conducting structures. Since the wide variety of
gauges adopted in extended MHD codes, a whole magnetic field formulation
is discussed straight afterwards. We will show that the possibility of inver-
sion of the resulting boundary integral Equation is subject to the topology of
the computational domain. The singularity of the related linear system will
be associated to the homology group of curves wrapping around the torus, via
considerations about the uniqueness of the magnetostatic problem. We dis-
cuss there how to make the system invertible, and we show that the topological
problem is essentially related to the axisymmetric component of the magnetic
field.

The last Section explores the implications of shared injected currents be-
tween plasma and structures on the coupling strategies presented. In these
scenarios, direct magnetic field formulations keep the feature of not requiring
fictitious conducting shells. A critical discussion of the potential advantages
and disadvantages of this circumstance concludes the Chapter.

2.1 M3D-C1

The M3D-C1 form of the resistive MHD single fluid Equations is illustrated in
[39], and it is of course quite similar to what we have presented in Section 1.9.
There is a difference solely in the relation between viscous stress and gradient
of the velocity, which is retained to be isotropic there. Moreover an adiabatic
situation is described, hence the heat flux does not play a role.

A more general model within the M3D-C1 formulation was described in
[41]. There the ion and electron fluids are not considered in local thermody-
namic equilibrium between each other, meaning they are locally at eventually
different temperatures Ti ̸= Te. Nonetheless the local electrical neutrality is

1I would like to acknowledge N. Schwarz and F. J. Artola for the intense discussions which
originated these two formulations during my stay in Garching.
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assumed, allowing to consider a single continuity law for the particle density.
Moreover electron inertia is neglected, allowing to derive a Generalised Ohm’s
law from the momentum transfer equation for electrons. Clearly two evolution
equations for the internal energies of the two non-isothermal but co-existing
fluids should be integrated. An exchange term tends to equalize the tempera-
tures of the two co-existing gas species, consistently with the thermodynamic
picture illustrated in Chapter 1. The viscous stresses for electrons and ions
needs to be defined separately in such a framework, and in particular Πe ∝ ∇i
is retained. Some correction terms for the viscous effects are also considered
coming from gyrokinetic models.

In Subsection 2.1.1 we illustrate how the unknown vector fields are repre-
sented in terms of stream functions and we define the complete set of projec-
tion operators which is used to provide the evolution Equations for the stream
functions describing the magnetic field. We will take care of the weak formu-
lation of the problem, in order to evidence how the electromagnetic boundary
conditions emerge in the task. This aspect of the M3D-C1 formulation was
not illustrated for convenience in [39], although the possibility of using BEMs
for coupling the MHD model with the exterior magnetostatic problem was
certainly explored with the predecessor M3D [65]. The projection operators
used for the momentum balance Equation were presented both in [39] and in
[66]. In the latter reference, the partial decoupling of the different MHD dy-
namics provided by these projection operators is commented, together with
the split-implicit method used for time-integration. The latter method allows
to decouple the time evolution of some of the unknowns of the problem at the
expenses of the introduction of higher order spatial derivatives. Details about
this integration procedure were discussed in [41, 67].

It is just worth to mention here that M3D-C1 uses a C1-finite element space
for the representation of the unknown stream functions. The discretization of
the domain is provided by the Cartesian product of triangles in the poloidal
plane and segments of toroidal lines along the toroidal angle. The space of so-
lutions is contextually approximated by the tensor product of reduced-quintic
polynomials in the poloidal plane triangles and cubic Hermite functions along
the toroidal lines. The reduced-quintic polynomials used for representing the
stream functions in the poloidal plane were discussed in [53]. The introduction
of such elements was motivated there based on the flexibility of triangles in
representing complex geometries, and the inherent simplicity of mesh refine-
ment, in conjunction with the expected desirable properties of C1 elements.
If we expect the solution to be C1-continuous we can immediately discard the
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non-relevant lower order continuous solutions from our space of test functions.
Moreover the C1-elements allows to deal directly with weak formulation of
partial differential Equations up to the fourth-order, convenient circumstance
in view of using the split-implicit time integration method.

For the reduced quintic polynomial representation adopted the interpola-
tion error is estimated to be of the order O(h5), as compared to the O(h2)
of standard linear Lagrange elements2. Compared to a full fifth-order polyno-
mial description of some functions ϕ within the triangle element, three degrees
of freedom are eliminated enforcing the continuity of the normal derivative
of ϕ across triangle edges. This reduces the number of degrees of freedom
from 21 to 18 per triangle, besides enforcing the desired C1-continuity in the
poloidal plane. Six degrees of freedom are associated to each node of the
triangle: (ϕ, ∂rϕ, ∂zϕ, ∂

2
r2ϕ, ∂

2
z2ϕ, ∂

2
r,zϕ). Further 3 degrees of freedom per

node will appear due to the tensor product with the cubic Hermite functions
along the toroidal angle. The resulting mass-matrices, after the application
of the Galerkin method, will have in general a block three-diagonal structure,
due to the coupling between adjacent poloidal planes. This symmetry is ex-
ploited with proper block Jacobi pre-conditioners before the eventual matrix
inversions, as described in detail in [66].

2.1.1 Representation and Projection Operators

The unknown vector fields are taken to be the barycentric velocity v and the
magnetic vector potential A. In a cylindrical coordinate reference system
(r, φ, z) these are represented in the following form:

v = r2∇u×∇φ+ ωr2∇φ+
1

r2
∇⊥χ (2.1)

A = r2∇φ×∇f + ψ∇φ− F0 ln r îz (2.2)

For the definition of the nabla operator in the poloidal plane ∇⊥, we re-
fer to Appendix B. The last choice is compatible with the gauge condition
∇ ·

(
A/r2

)
= 0 and implies, by consecutive application of the curl operator,

the following representation for the magnetic flux density and electric current
density:

2h is the typical linear dimension of mesh edges.
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B = ∇ψ ×∇φ+ F ∗∇φ

i = ∇F ∗ ×∇φ+
1

r2
∇⊥

∂ψ

∂φ
−∆∗ψ∇φ

(2.3)

where

F ∗ = F0 + r2∇ · ∇⊥f +
∂2f

∂φ2
(2.4)

Such expressions for the magnetic field, electric current density and flow
velocity can now be replaced in the single fluid MHD Equations. In particular
we provide as an example here solely the evolution Equation for the magnetic
flux density, obtained plugging Ohm’s law in Faraday’s Equation:

∂B

∂t
= −∇×

(
ηi
)
+∇× (v ×B) (2.5)

Before going through a weak formulation for the coupled system of Partial
Differential Equations, each of the vector field evolution Equations is projected
on three orthogonal subspaces. These projections, together with the adopted
representations (2.1)-(2.3a), allow to isolate the evolution Equations for each
stream function. The projection operators adopted for the magnetic flux den-
sity evolution Equation are:

(a) ∇φ · ∇⊥ × [(Eq.)]

(b) ∇φ · (Eq.)
(c) ∇ · [(Eq.)]

(2.6)

In particular the last projection (2.6c) is unnecessary since the indivergence of
B is automatically satisfied due to the chosen representation. The projection
operators used for the momentum transfer Equation and further details can be
found in [39].

A Galerkin method can then be applied, taking the weak form of the pro-
jected evolution equations. Hence, these evolution equations for the stream
functions are first multiplied by a test function νi(r, φ, z) and then integrated
over the computational volume. Each test function determines an algebraic
Equation. The axisymmetry of the computational domain allows to first in-
tegrate over a poloidal plane, and later along the toroidal angle. It is worth
stressing that besides the domain is axisymmetric, scalar and vector fields are
allowed to be fully three-dimensional. Quite much details of this procedure
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were discussed in [39], although an important step was omitted there3: the
rigorous consideration of surface terms coming out from the Galerkin method.
Indeed such surface terms were considered to vanish. We show here how this
approximation is precisely enforcing some boundary condition, for the PDE
problem. The discussion reveals how to extend that picture to consider differ-
ent boundary conditions.

In particular, the neglect of such surface terms forces M3D-C1 to either
treat the conducting wall as ideal or to encapsulate the conducting and vacuum
domain within the computational domain [59].
Here we project via the operator (2.6a) the magnetic field evolution Equation
(2.5) and consider the weak form of such projected Equation. In order to fo-
cus the attention on key aspects, we consider the resistivity to be isotropic and
assigned, and the fluid velocity to be zero.Leaving the toroidal angle integra-
tion as a successive step, after some algebra we get the evolution equation
(d3r = r d2r = r dr dz):

−
∫
Ωin

1

r2

(
νi, ψ̇

)
r d2r+

∫
Γp

νi
r

∂ψ̇

∂n
dℓ =

+

∫
Ωin

η

r2
∆∗νi∆

∗ψr d2r

−
∫
Ωin

η

r2

{
νi,

∂F ∗

∂φ

}
r d2r−

∫
Sfw

1

r2
∂η

∂φ
{νi, F ∗}r d2r

−
∫
Ωin

η

r4

(
νi,

∂2ψ

∂φ2

)
r d2r−

∫
Sfw

1

r4
∂η

∂φ

(
νi,

∂ψ

∂φ

)
r d2r

−
∫
Γp

νi
r

∂

∂n
(η∆∗ψ)− η

∆∗ψ

r

∂νi
∂n

dℓ

+

∫
Γp

νi
r

∂

∂φ
(η∇F ∗ ×∇φ) · ndℓ

+

∫
Γp

νi
r

∂

∂φ

(
η

r2
∇⊥

∂ψ

∂φ

)
· ndℓ

(2.7)

It is interesting to notice that the last three terms at the right hand side are cer-
tainly null whenever the current is not allowed to circulate on the boundary of
our axisymmetric domain. Even in this case at the left hand side, we find a
boundary term involving the time derivative of (1/r)∂ψ/∂n at the boundary,

3since it was not important for that discussion
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which is related with the tangential component of the magnetic field. This is
not a coincidence: the magnetic flux density tangent to the boundary should
be provided as a boundary condition to the MHD problem. Nonetheless, if
we take a boundary far enough from the plasma we may impose homogeneous
Dirichlet boundary conditions and neglect also such a term. This was the strat-
egy adopted for simulating the mutual plasma-structure interaction in [59],
where the structures and the vacuum domain are modelled within the M3D-C1
computational boundary.

2.2 JOREK

The extended MHD code JOREK solves a variety of MHD physical models
in toroidal geometry, based on different approximations or studies objectives
[56]. Within the JOREK code we may solve models which eventually include a
description of neutrals [68], ablation models for pellet injection [69, 70], fluid
models for runaway electrons [71, 72], separate description of ion and electron
temperatures [73], just to quote a few non-trivial extensions. The code was
anyway initially thought for simulating Edge Localized Modes [55, 61] and the
main reduced and full MHD models were described in some detail respectively
in [74] and [40, 75].

The fundamentals of the finite element space implemented were presented
in [54]: while a Fourier decomposition is adopted along the toroidal angle, the
poloidal cross-section is discretized via Bézier surfaces. Bernstein polynomi-
als are used as test functions to implement an iso-parametric C1 finite element
space. Between the advantages of using such an isoparametric approach there
is the possibility to fit the curved elements to the initial magnetic flux map. We
will describe briefly Beziér finite element space in subsection 2.2.2.

It is certainly worth mentioning that main JOREK models for the plasma
were also coupled to the eddy current code STARWALL [60, 61]. The cou-
pling allows for free-boundary plasma simulations, which greatly extended
the prediction capabilities of simulations. We will widely comment about the
JOREK-STARWALL coupling in later Sections, as the electromagnetic inter-
action of the tokamak plasma with the conducting structures is the real focus of
this Chapter. The main limitation of the STARWALL code is that only includes
the possibility of modelling thin conductors. Recently endeavours for the self
consistent coupling of JOREK with the fully volumetric 3D eddy current code
CARIDDI are ongoing, and we shall comment the first steps in this direction.

Different time integration schemes are allowed for advancing the stream
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functions and potentials in time. In particular two numerical parameters are
introduced, which allow to choose between the implicit-Euler, the Crank-
Nicholson and the Gears time integration schemes, besides all the combina-
tions in between. Details on the time discretization will be presented later
when discussing the JOREK-CARIDDI coupling via the Virtual Casing Prin-
ciple approach.

2.2.1 Models and representations

In Tokamaks the toroidal magnetic fields applied by external coils is generally
much larger than the toroidal magnetic field generated by plasma currents. In
first approximation, hence we may retain the toroidal field to be constant in
time and varying as 1/r within the first wall,

B = F0∇φ+∇ψ ×∇φ (2.8)

Here F0 is constant, and we may define the stream function ψ as poloidal flux.
It is worth noticing that ψ is not necessarily axisymmetric, i.e. ψ = ψ(r, φ, z).
Moreover, the reduced MHD representation (2.8) makes the poloidal magnetic
field divergence-free on its own, which is a rigorously true feature of axisym-
metric problems. One may correctly argue that this representation does not
allow for the circulation of poloidal currents, however these are recovered as-
suming that the poloidal currents needs to provide the MHD equilibrium at
each time step (i.e. the inertial force is replaced by the jpol × Bφ force). In
this reduced-MHD framework the velocity field is represented by [74, 61]

v = v∥B+ r2∇u×∇φ (2.9)

If compared with the M3D-C1 representation reported in (2.1) you see im-
mediately that the toroidal flow and the curl⊥-free (r2v) contribution to the
poloidal flow are essentially attributed to the flow along magnetic field lines.
The term r2∇u×∇φ is instead normally attributed to the E×B velocity [61].
Representation (2.9) allows to greatly simplify the solution of the MHD prob-
lem, eliminating fast magneto-sonic dynamics from the description and one of
the stream functions for the velocity. Further details on this ansatz are given in
reference [56].

Equations (2.8)-(2.9) define the JOREK reduced MHD model vector rep-
resentations for the unknown vector fields. A careful derivation of the reduced
MHD Equations based on the ansatz (2.8)-(2.9) has been given in [74], where
the terms neglected in the formulation are also commented. For the purpose
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of the present Thesis, it is just worth to mention about the electromagnetic
Equations

(a)
∂ψ

∂t
= r2 {ψ, u} − F0

∂u

∂φ
+
η

r2
∂2ψ

∂φ2
+ η (j − j0)

(b) j = ∆∗ψ

(2.10)

Equation (2.10a) is obtained by Faraday’s law, and Ohm’s law in the form
E+v×B = ηi, with the provided representation for the magnetic flux density
(2.8) and fluid velocity (2.9). The variable j is directly related to the toroidal
current density, i.e. j = −rjφ, hence Equation (2.10b). The standard reduced
JOREK model, implements a forcing term j0 and drops the term (η/r2)∂2φ2ψ.
Equations (2.10) are first scaled by 1/r2 before a Galerkin method is imple-
mented on the space of Bézier-trigonometric test functions. For the toroidal
current j we find in particular:

∫ 2π

0

∫
Ωin

νi
r
j drdφ =

∫ 2π

0

∫
Γp

νi
µ0

1

r

∂ψ

∂n
dℓdφ

−
∫ 2π

0

∫
Ωin

r∇⊥

(
ψ

µ0r2

)
· ∇⊥(νi) drdφ

(2.11)

Again we find that the tangential component of the magnetic field at the Cou-
pling Surface has to be provided as an input for the solution of the MHD prob-
lem. The correct imposition of such a boundary condition necessarily goes
through the solution of the magnetostatic problem straight outside of the MHD
computational domain.

The representation of vector fields for the full MHD JOREK models is
directly in terms of their cylindrical components. The magnetic field is repre-
sented as the curl of the magnetic vector potential

A = Ar∇r + ψ∇φ+Az∇z (2.12)

The freedom in the gauge is eliminated considering the Weyl gauge, i.e. E =
−∂A

∂t .

2.2.2 Bézier Finite Elements space

For the sake of completeness it is worth to report briefly on the finite element
space adopted to solve the extended MHD JOREK models. As hinted already
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the evolution Equations for the vector potential, the barycentric velocity, the
plasma density and the internal energy, complemented by suitable closure re-
lations are solved in an axisymmetric domain. The dependence of physical
quantities on the toroidal angle can be then accounted via a simple Fourier
decomposition. The discretization of the poloidal cross-section of the JOREK
domain is then performed via Bézier patches. These elements carry the name
of the engineer Pierre Bézier, which developed a novel way to describe curves
in a language easily comprehensible for a computer during the 60s. Bézier
objects are today found in most drawing software packages. The motivations
which lead to this choice were essentially three [54]:

• The possibility of simple mesh refinement

• The possibility to align the grid on the MHD equilibrium flux map,
which requires curved elements

• As evidenced already for M3D-C1, the use of C1 elements has several
other advantages in terms of convergence.

The possibility of discretizing the domain via curved patches is given by the
choice of an isoparametric method: the mapping from the reference element
to the mesh element uses the same test functions as the unknown variables. In
particular the test functions used in JOREK are cubic Bernstein polynomials,
defined as follows,

Bi(s) =
6

i! (3− i)!
si (1− s)3−i ∀i ∈ {0, 1, 2, 3} (2.13)

which represents a basis for polynomials of degree ≤ 3. The test functions
defined in (2.13) define a partition of unity, i.e. they sum to 1 for any value
of s ∈ [0, 1]. We can easily use such polynomials to build a curve in the eu-
clidean space, defining four reference points Pi = (xi, yi, zi) and considering
the mapping:

[0, 1] ∈ R → E3

s 7→
4∑
i=0

PiBi(s)

Quite similarly we can build a patch considering the Cartesian product between
the cubic Bernstein polynomials. In this case the mapping looks like
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Figure 2.2: Example of Bézier patch, used in the JOREK numerical formula-
tion.

[0, 1]× [0, 1] ∈ R2 → E3

(s, t) 7→
4∑
i=0

4∑
j=0

Pi,jBi(s)Bj(t)

Hence, 16 points are necessary to define a Bézier patch. Keep in mind that in
the case of JOREK we are interested in points Pi,j which have the real poloidal
coordinates of the mesh control points as first two coordinates and the un-
known stream function under exam as the third one, e.g. Pi,j = (ri,j , zi,j , ψi,j).
Hence for each Bézier patch we have 16 degrees of freedom. We can associate
4 d.o.f. to each of the corner nodes of the patch, which are in particular related
to the actual value of the unknown function, the first order derivatives along
the directions defined by the tangent control points and the mixed second order
derivative identified by the twist point. The details are illustrated in [54], we
just provide an example of a Bézier element which provide an intuition of such
property in Figure 2.2.
Requiring the control points between two consecutive patches to coincide, we
enforce both the C0-continuity and the continuity of first order derivatives
along the tangential direction to the edge separating the two patches. Further,
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we just need to enforce the continuity of the normal derivatives across patches,
which is easily accomplished observing that the two twist points associated to
two adjacent Bézier patches in correspondence of a corner point have to be
aligned with the tangent control point right in the middle. In this way, the 4
degrees of freedom previously associated to a corner node are indeed the same
for all the patches sharing that corner point. This means also that the 9 control
points associated to a corner node between 4 Beziér patches are completely
specified by the 4 degrees of freedom associated to that corner point.

2.3 Vector Green’s Theorem

This mathematical interlude is solely intended to introduce the notation we
use in the remainder of the Chapter, the content herein being well-known for
a long time. Nonetheless the necessity of taking care about the gauge used
in extended MHD models, compared to the Coulomb gauge generally used
in eddy current codes, makes this Section useful for the following. It is just
for completeness that we derive the Green’s Theorem at the grounds of nearly
any BEM formulation. This identity will show that all the information we will
need about the plasma produced magnetic vector potential in the outer domain
is contained in the magnetic vector potential, and its normal spatial derivatives,
at the Coupling Surface. The Green’s function for the Laplace operator, i.e. the
solution of

∇2G(r, r′) = −4πδ(r− r′) (2.14)

is

G(r, r′) =
1

|r− r′|
(2.15)

From now on, in order to simplify the notation, we will denote the Green func-
tion G = G(r, r′) omitting its explicit dependence on the coordinates of the
source and field point. In order to distinguish whether a vector vector fields de-
pends on the source or field coordinate, we will use a prime, i.e. A′ = A(r′).
We will use the same notation for the nabla operator, i.e. ∇′ = ∇r′ . As well
known, the fact that (2.15) is a solution of (2.14) means that the convolution
operator obtained with the above kernel is actually the inverse of the the Lapla-
cian operator:
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f(r) = − 1

4π

∫
E3

G∇′2f ′ dr′ (2.16)

This is the basic ingredient to build generic Biot-Savart formulas, in arbitrary
bounded and unbounded domains. The consideration of finite boundaries is of
particular concern for us, as we want to determine the vector potential in the
exterior domain to a torus. Direct application of (2.16) allows to write

A = − 1

4π

∫
E3

G∇2′A′ dr′ (2.17)

We define now, in an arbitrary gauge, the magnetic vector potential associated
to the inner domain as

Ain = − 1

4π

∫
Vin

G∇2′A′ dr′ (2.18)

Contextually we define the magnetic vector potential due to interior currents
as

A∗
in = +

1

4π

∫
Vin

G∇′ ×∇′ ×A′ dr′ (2.19)

Of course ∇ × ∇ × A = µ0i. In particular the electric current density in
the inner domain is solely related to plasma currents by construction of the
Coupling Surface. The two definitions (2.18) and (2.19) overlap exactly only
when the Coulomb gauge is adopted, otherwise they are related by

A∗
in = Ain +

∫
Vin

G ∇′ (∇′ ·A′) dr′ (2.20)

Similar vector fields Aext and A∗
ext are defined when the integration is per-

formed on the exterior domain Vext. In particular the currents in the exterior
domain are solely the ones in the conducting domain Vc.

We now show how to completely describe the vector potential associated to
the interior domain Ain in the outer domain based only on information about
the vector potential and its spatial derivatives at the Coupling Surface. First,
using ∇ ·

(
fT
)
= f∇ ·T+∇f ·T, we transform (2.18) into

Ain = − 1

4π

∫
Vin

∇′ ·G∇′A′ dr′ +
1

4π

∫
Vin

∇′G · ∇′A′ dr′ (2.21)
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According to the vector identity for dyadic products ∇·(v ⊗w) = (∇·v)w+
(v · ∇)w, we can further transform the second term at the right hand side of
Equation (2.21) into:

∇′G · ∇′A′ = ∇′ ·
[
∇′G⊗A′]−∇′2GA′ (2.22)

Considering the definition of the Green function (2.14) and the last vector iden-
tity (2.22) and using the divergence Theorem for tensor fields, we finally can
write (2.21) as:

Ain = − 1

4π

∫
+∂Vin

[
G
(
n̂′ · ∇′A′)+ (n̂′ · ∇′G

)
A′]dr′ + νA (2.23)

where

ν(r) =

{ 1 r ∈ Vpl
0.5 r ∈ ∂Vpl
0 r /∈ Vpl

(2.24)

Of course we can rewrite (2.23) also as

Ain = − 1

4π

∫
+∂Vin

[
G
∂A′

∂n′
− ∂G

∂n′
A′
]
dr′ + νA (2.25)

It is important to recognise that Equations (2.23)-(2.25) are nothing else
than the vector version of classical Green’s second identity. Indeed, given a
vector field v and a function G we have implicitly shown:

∫
V

[
v′∇′2G−G∇′2v′

]
d3r′ =

∫
∂V

[(
n̂′ · ∇′G

)
v′ −G

(
n̂′ · ∇′v′)]d2r′

(2.26)

2.4 MQS models for conducting structures

The description of eddy currents in bulk volumetric structures is conveniently
tackled via integral formulations, exploiting the Biot-Savart law [76]. Essen-
tially this requires to enforce Ohm’s law in weak form on a suitable set of test
functions in the conducting domain,∫

Vc

w · ηi dr′ =
∫
Vc

w ·
(
−∂A
∂t

−∇ϕ
)
dr′ (2.27)
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The Coulomb gauge is generally adopted, so that the magnetic vector po-
tential, is conveniently split a contribution due to plasma currents and a portion
associated to currents in external conductors, i.e.

A = A∗ =
µ0
4π

∫
Vin

Gi′ dr′︸ ︷︷ ︸
A∗

in

+
µ0
4π

∫
Vext

Gi′ dr′︸ ︷︷ ︸
A∗

ext

(2.28)

The only currents circulating in the exterior domain are those in active and
passive conductors, hence we can reduce the integration volume from Vext to
Vc, while in the inner domain only the plasma fluid conductor is present in our
applications. In view of using a Galerkin method, contextually with the fact
the current density is divergence-free, we can take as space of test functions to
enforce (2.27) a subspace of ker(div(Vc)). The actual discretization of (2.27)
on a set of test functions {wk : ∇ · wk = 0} leads to the algebraic linear
ordinary differential equation system

Lw
d

dt
Iw +Rw Iw + Vpl + Fw Vw,e = 0 (2.29)

where Iw is the vector of degrees of freedom for the current density.Since
in applications one is generally concerned mostly about the conducting wall
surrounding the plasma we indicate more generally all the d.o.f. for external
currents by the subscript “w”. The further subscript “e” indicates the eventual
equipotential electrodes present at some boundary face. The matrices above
are simply defined in terms of the test functions:

(a) (Lw)i,j =
µ0
4π

∫
Vc

wi ·
∫
Vc

Gwk
′ dr′ dr

(b) (Rw)i,j =

∫
Vc

wi · η ·wk dr

(c) (Fw)i,j =

∫
Sj

wi · n̂dr′

(2.30)

In Equation (2.30c) we denoted by Sj an equipotential electrode surface on
the boundary of the conducting domain, so that Vk is essentially the potential
at that electrode. The remaining source term, related to the induction effect of
plasma currents is given by

Vpl,k =
d

dt

∫
Vc

wk ·A∗
in dr

′ (2.31)
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Much of the effort in later Sections will be to understand the possible ways to
correctly evaluate A∗

in in the conducting domain in terms of the vector poten-
tial or magnetic field at the Coupling Surface. At the moment we can consider
it as a source term. Also the vector Vw,e is clearly the vector of the applied
voltages to the electrodes. If at the electrodes we know the injected currents,
rather then the applied voltages, we can treat the voltages Vw,e as unknowns,
and enforce Kirchoff current law at such equipotential electrodes:

F T Iw = Iw,e (2.32)

A variety of possible representations for the electric current density and of
finite element spaces is available to tackle the problem [77]. In the remainder
of this Section we shall review the fundamental ingredients of the eddy current
code CARIDDI [76, 57, 78, 79]. In some aspects we may regard the eddy cur-
rent code STARWALL [80, 81] as the thin structures version of CARIDDI. Be-
sides eliminating the unnecessary degrees of freedom related to the description
of divergent vector fields, this code has some others highly desirable features
for modelling the large conducting structures of a tokamak device:

• Further degrees of freedom are automatically eliminated considering
only those divergence-free basis vectors which are independent in the
definition of a solenoidal current density

• It allows the current density across elements to be discontinuous in the
tangential direction, so to accommodate the possibility of a finite current
density at the interface between the conducting and the vacuum domain,
besides the possibility of correctly describing the tangent discontinuity
of the current density between elements with different resistivities

The code has been extensively used for the simulation of eddy currents in
tokamak devices [82, 83], also thanks to its essential integration in the evolu-
tionary equilibrium model CarMa0NL [62, 84, 85]. It implements some spe-
cific features in order to exploit the symmetries of the toroidal device [86].
Moreover, provided the actual injected currents from the plasma, CARIDDI
has been used to evaluate the resistive current path in structures due to halo
currents in realistic 3D geometries [87, 88].

2.4.1 The Electric Vector Potential

Mathematically, the fundamental idea behind the eddy current code CARIDDI,
is to enforce the solenoidality of the unknown current density i, via an electric
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vector potential,

i = ∇×T (2.33)

Due to Ampére’s law this electric potential differs from the magnetic field for
the gradient of a scalar function,

H = T−∇Ω (2.34)

where T ∈ grad(H1)⊥. Of course the electric currents in the conducting
domain is fully described by the curl of T, while in vacuum the magnetic field
is solely provided by −∇Ω. While the Magneto-Quasi-Static problem in the
whole space for linear conductors has a unique solution in terms of H, the
solution in terms of the potentials (T,Ω) is not unique. Indeed, provided a
possible solution (T1,Ω1) we have that (T1 −∇f,Ω1 + f), with f arbitrary
scalar function, generates exactly the same magnetic field. Hence, there is
some freedom to determine T, and we shall impose a proper gauge condition.

The classical Coulomb or Lorentz gauges can be assigned, together with
proper boundary conditions at the conducting-vacuum interface to provide sep-
arately uniqueness both for T and Ω [77]. A more convenient choice is the
two-component gauge described in [76, 89, 90], briefly discussed here. Es-
sentially we consider a vector field v, which has no close field lines in the
conducting domain, more precisely v ∈ curl(H1(Vc))

⊥. In particular from
a certain point P0 it is possible to reach any point of the conducting domain
moving along the lines of the vector v, without closing any loop. The desired
gauge is finally

T · v = 0 (2.35)

Besides it is possible to prove the uniqueness of T for the MQS problem
in this gauge [77], we will see clearly why it is like that in the discrete version
of the problem, hence let’s move to the finite element space employed.

2.4.2 The Edge Shape Functions

It is clear that we are going to represent the vector field i as the curl of the
electric vector potential T, and that the formulation will be rigorously in the
degrees of freedom for the electric vector potential. In order to enforce the
continuity of i · n̂ across elements, we need to enforce the continuity across el-
ements’ facets of n̂×T. On the other hand, we would like to describe currents
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whose tangential component is eventually discontinuous across elements and
across the interface with the vacuum domain, which requires the discontinuity
of the normal component of T across elements facets. It is convenient then to
introduce basis functions which automatically enforce this property. A suitable
choice is found within the vector basis functions Te, associated to the edges
of the mesh discretizing the conducting domain. Rigorously, an isoparamet-
ric finite element space is implemented, where the scalar test functions are the
usual piece-wise linear function Nk. Given a certain element Vd

Nj(xm) = δj,m
Nnodes∑
j=1

Nj(x) = 1 ∀x ∈ Vd
(2.36)

where j and m run through the indices of the element nodes. Now we can
associate to each oriented edge e identified by the starting and ending nodes
(i, j) a vector basis function associated to edge [91]. In case of tetrahedral
elements these vector basis functions can be defined as [57]

Te = T(i,j) = Ni∇Nj −Nj∇Ni (2.37)

It is not hard to show that the edge shape functions (2.37) satisfy the desired
continuity properties, defining vector fields whose tangential component to el-
ements’ faces are continuous across different elements. Vice-versa the normal
component to elements’ facets can be discontinuous. The edge shape functions
defined in (2.37), and all the corresponding ones defined for different element
shapes, satisfy the following property:∫

(±)ej

Tek · t dℓ = (±)δej ,ek (2.38)

i.e. the line integral of the edge basis function Tek is unitary on the edge ek
itself, and null along any other edge ej ̸=k. Notice again that the edges are
oriented, hence the ± sign. This property provides us with the great effective-
ness of this representation for describing currents. Consider indeed the electric
vector potential approximated via edge shape functions,

T =

Ne∑
e=1

IeTe (2.39)
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where we defined the degrees of freedom Ie associated to each edge. Let’s try
to compute the electric current flowing through some face of the discretized
conducting domain. Thanks to Stoke’s Theorem we get

ISf
=

∫
Sf

i · n̂ dr =

∫
+∂Sf

T · t dℓ. (2.40)

We can subdivide the boundary of the surface Sf into the actual different mesh
edges constituting it. Using (2.38), we finally get

ISf
=
∑
e∈∂Sf

(±)Ie (2.41)

The current flowing through some face of the domain is given by the sum-
mation of the degrees of freedom of the electric potential associated to each
edge of the surface boundary. In principle it is sufficient a single active edge
to define the currents flowing through a face of the discretized domain. Not
coincidentally, we have still to apply the gauge condition (2.35). The discrete
version of such a constraint essentially requires to find a tree of the mesh, and
set to zero the corresponding degrees of freedom. The edges of the co-tree
alone are necessary and sufficient to determine a unique solution of the eddy
current problem. Further degrees of freedom are eliminated when there are no
current flows across the boundary of the conducting domain, hence we can set
to zero all the degrees of freedom associated to cotree boundary edges.

Anyway, in presence of non-simply connected conductors, this procedure
would automatically exclude the possibility of having net currents flowing
around the handles of the domain. Each handle requires for an additional de-
gree of freedom, the dimension of the closed curves homology group of the
domain being defined also as genus of the domain. Hence, suitable automatic
procedures were identified to correctly re-activate a single degree of freedom
per handle. Each additional degree of freedom is a suitable linear combination
of the degrees of freedom associated to tree boundary edges [92, 93].

It is easily understood, that the electric vector potential and the electric
current density share the same degrees of freedom, the electric current density
being represented by

i =

nc∑
k=1

Ik ∇×Tk︸ ︷︷ ︸
wk

(2.42)
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2.5 Virtual Casing Principle Approach

In this section, we consider both the fundamentals aspects and the pragmatic
steps of the coupling between models of plasma and conducting structures via
the Virtual Casing principle, originally proposed by Shafranov and Zakharov
to the magnetic fusion devices community [94, 95]. The fundamental idea
of the Virtual Casing is very simple to explain via the following imaginary
experiment. We consider the Coupling Surface as virtually made of some su-
perconducting material. Any current we drive within the the interior domain
is structurally shielded from a corresponding surface current on the supercon-
ducting sheet: an observer in the outer domain would not experience any mag-
netic field related to that current. This provide us with the sound intuition
that we can define an equivalent surface current at the Coupling Surface which
perfectly reproduce the magnetic fields due to plasma currents in the outer
domain.

In this Section we shall clarify how to find this equivalent surface current
for an arbitrary current distribution within the plasma, and how this informa-
tion can be potentially exploited for simulating the self-consistent evolution of
the plasma and the surrounding eddy currents. For fixing the ideas we take as
specific example the MHD code JOREK, and the eddy current code CARIDDI.
The coupling strategy we are going to present is quite general and it is essen-
tially the same employed in the JOREK-STARWALL coupling [60, 61].

Before going further it is useful to prove the following uniqueness Theo-
rem, which provide us with the certainty that all the information we need to
solve the outer magnetostatic problem is actually contained within the tangen-
tial component of the magnetic vector potential at the MHD computational
boundary, and in external currents.

Theorem 1 Given the electric current density i in Vext, and the tangential
component of the magnetic vector potential at at +∂Vin, the magnetostatic
problem

∇×B = µ0i inΩe

B = ∇×A inΩe

n̂×A = at on∂Ωe

has a unique solution, provided B is regular at infinity.
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Proof: Suppose that two different solutions of the above problem exist, and
define their difference as δB = B1 −B2. Due to linearity, clearly δB has to
satisfy the associated homogeneous problem. Let us evaluate the L2-norm of
δB:

∥δB∥2L2 =

∫
Vext

|δB|2 dV =

∫
Vext

δB · ∇ × δA dV

which, by standard vector identities, gets the form:

∥δB∥2L2 =

∫
Vext

δA · ∇ × δB︸ ︷︷ ︸
=0

dV +

∫
−∂Vin

n̂× δA︸ ︷︷ ︸
=0

·δBdS

Since the L2-norm of the difference magnetic field needs to be zero, we con-
clude that the solution is really unique: B1 = B2. □

This theorem clearly shows that the magnetostatic problem in the outer
domain is well-posed if we specify:

• the electric current density in the whole Ωe

• the tangential component of the magnetic vector potential at the interface
with the inner domain

• suitable regularity conditions at infinity

Notice moreover that the tangential component of the magnetic vector po-
tential can be provided in any gauge, the magnetostatic problem will still have
unique solution. In this case the difference vector potential is the gradient of a
scalar function δA = ∇δϕ, while the curl of δB is still null. The surface term
in the last passage of our proof gets the form:

∫
−∂Vin

(n̂×∇δϕ) · δBdS =

∫
Vext

∇ · [∇δϕ× δB] dV =

=

∫
Vext

∇×∇δϕ︸ ︷︷ ︸
always 0

·δB−∇ϕ · ∇ × δB︸ ︷︷ ︸
=0

dV

= 0
(2.43)
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2.5.1 The equivalent surface current

Either an equivalent surface current or the tangential component of the mag-
netic vector potential completely specify the outer magnetostatic problem.
Hence a relation between the two exists, eventually involving the currents in
the exterior domain. According to the notation introduced in Section 2.3, this
relation is provided in particular by:

(1− ν)A =
µ0
4π

∫
∂Vin

G keq
′ dr′

+
µ0
4π

∫
Vc

G i′ dr′

− 1

4π
∇
∫
V
G
(
∇′ ·A′) on ∂Vin

(2.44)

The currents in the exterior domain i are assigned, and the vector potential A
is known at the Coupling surface. Essentially we pretend that the actual in-
formation on the vector potential associated to currents in the interior domain
is given by the equivalent surface current keq at the Coupling Surface. It is
important to account for the gauge immediately, to ensure our problem is not
affected by this choice. We see that in Equation (2.44) there is anyway a fur-
ther unknown term, related precisely to the gauge choice. Anyway this is the
gradient of a scalar function, and is not too much problematic4. We recognise
indeed, for a plasma current distribution which is solenoidal in the interior do-
main (i ∈ [grad

(
H1(Vin)

)
]⊥), that the only information we need about A at

the boundary is found in its tangent divergence-free component to the bound-
ary. Indeed, all the information about magnetic fluxes at the Coupling Surface
is therein. Moreover keq is a divergence-free vector field tangent to the bound-
ary. Finally we can enforce the weak form of (2.44) at the Coupling Surface
on the space of divergence-free vector fields there ker[div(∂Vin)], or a suitable
subspace. Let us indicate for convenience by Apl the difference between the
overall magnetic vector potential A, in its arbitrary gauge, and the magnetic
vector potential associated to the currents in external conductors A∗

w, shortly:

Apl = A−A∗
w (2.45)

With this notation, the weak form of Equation (2.44) is

4at least as long as there are no currents crossing the Coupling Surface
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Figure 2.3: (a) Example of the discretization of the JOREK boundary for
preparation of the CARIDDI equivalent shell; (b) example of the CARIDDI
shell with some equivalent current to the plasma.

∫
∂Vin

w ·Apl dr =

∫
∂Vin

w · µ0
4π

∫
∂Vin

G keq
′ dr′ dr

∀ w ∈ ker[div(∂Vin)]

(2.46)

The possible implications of a current which is not solenoidal in Vin, but only
in the overall volume V , are commented later in Section 2.7. We approximate
the Coupling Surface ∂Vin with an infinitesimally thick volumetric shell Veq,
discretized via hexahedral CARIDDI elements. In particular, provided some
points along the JOREK boundary, we can first move along the normal direc-
tion to the JOREK boundary, providing some reference poloidal coordinates,
and then move along the toroidal angle via straight segments. Other construc-
tions are possible, however this looks robust in the set-up of automatic proce-
dures respect to the eventual presence of sharp corners in the Coupling Sur-
face, compared to other eventual barycentric alternatives. An example for the
equivalent shell built on the top of the JOREK boundary for ASDEX-Upgrade
simulations is given in Figure 2.3.

The corresponding CARIDDI basis vectors within this fictitious shell, pro-
vided the further constraint wk · n̂ = 0 on ∂Veq, represent exactly a finite
subset of the vector space ker[div(∂Vin)] we need. Equation (2.46) gets the
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form

∫
Veq

wk ·Apl dV =

nC∑
j=1

Ieq,j

∫
Veq

wk · µ0
4π

∫
Veq

Gwj
′ dr′ dr (2.47)

Here wk are the standard CARIDDI basis functions for the electric current
density, {wk = ∇ × Tk ∀k = 1, · · · , neq}. We indicated by neq the total
number of degrees of freedom for the equivalent current in the CARIDDI rep-
resentation. Now we come back to our definition of Apl (2.45), which we plug
into (2.46): ∫

Ωeq

wk · (A−A∗
w) dV =

=

nC∑
j=1

Ieq,j

∫
Veq

wk · µ0
4π

∫
Veq

Gwj
′ dr′ dr

∀ k ∈ {1, · · · , neq}

(2.48)

While A∗
w is calculated completely within CARIDDI as a function of the

wall currents, the overall vector potential at the interface surface A is provided
by JOREK in terms of its boundary basis functions. In general we may write:

A =

nJ∑
j=1

Ajuj (2.49)

where nJ is the overall number of degrees of freedom for the boundary vector
basis functions of JOREK uj. Equation (2.48) takes finally the algebraic form:

H Aj −Meq,w Iw = Leq Ieq (2.50)

where,

Hk,j =

∫
Veq

wk · uj dV (2.51)

(Meq,w)k,j =

∫
Veq

wk · µ0
4π

∫
Vc

G wj(r
′) dr′ dr (2.52)

(Leq)k,j =

∫
Veq

wk · µ0
4π

∫
Veq

G wj
′ dr′ dr (2.53)
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The projection of JOREK basis functions to CARIDDI basis functions de-
scribed in Equation (2.51) is performed by the means of a Gauss integration.
For example, in the reduced MHD model, Equation (2.51) writes down∫

Veq

ψj∇φ ·wk dS (2.54)

Where ψj is a scalar basis function for the JOREK representation of the vector
potential. Hence, within one CARIDDI element, Gauss quadrature formulas
look like

NG∑
i=1

detJ(i) · ψj(ri)
ri

wk · iφ(ri) (2.55)

The inherent difficulty now is that the point ri, which is a Gauss point of the
straight CARIDDI element, does not necessarily belong to the JOREK bound-
ary (i.e. the Coupling Surface). Hence, the CARIDDI Gauss point is approxi-
mated to be the same as the nearest point on the real JOREK boundary in order
to evaluate ψj :

ψj(ri) ≃ ψj(ri,projected) (2.56)

In principle, one can find proper 1:1 mappings between the mid-plane of each
CARIDDI straight element parallel to the Coupling Surface and a real patch
covering the JOREK boundary, given by the tensor product of a Beziér and a
toroidal segment. This way one could pull back and push forward scalar and
vector fields accurately. Anyway this would greatly complicate the task, in
practice requiring to set up curved elements in CARIDDI, and not necessarily
bringing much more accuracy: the idea is that we are piece-wise linearizing
the Coupling Surface. In this respect, if the toroidal or poloidal discretization
of the equivalent shell is not sufficient the CARIDDI equivalent current may
not well represent the plasma current in the proximity of the shell. We show
some preliminary results obtained for the geometry of ASDEX-Upgrade, and
for an axisymmetric plasma, in Figure 2.4. The equivalent reference poloidal
flux ψpl employed is the same used for calculating the equivalent current in
Figure 2.3b.

Test results shown in Figure 2.4 take Apl, as defined in (2.45) as a precom-
puted input where A is the real JOREK vector potential and A∗

w is computed
by STARWALL. The equivalent currents are then calculated via the relation
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Figure 2.4: Tangent poloidal magnetic field at a surface shifted of 1 mm re-
spect to the JOREK boundary, as given by the CARIDDI equivalent current for
two different discretizations along the toroidal angle, by JOREK via a toroidal
filament representation, and by the equivalent current in STARWALL. 10 sub-
divisions per JOREK boundary element along the poloidal angle are adopted,
the shell thickness is 1mm in this numerical experiment.
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Ieq =
(
Leq

−1 H
)
Apl,j (2.57)

whereApl is clearly the vector specifying the plasma magnetic vector potential
in the JOREK representation, according to the above assumption. In this sense
the results reported in Figure 2.4 do not represent a full CARIDDI test where
A∗

w is represented coherently to the other CARIDDI variables. Nonetheless
the qualitative agreement is good, and both the root mean square error and the
maximum error on the computation of the tangent magnetic field, taking the
JOREK-computed quantities as reference, is less than 1.2 %.

2.5.2 Evolution Equations for the eddy currents: decoupling
plasma and wall vector potential

Within the CARIDDI integral formulation the evolution Equation for the ex-
ternal currents (2.29) now looks like:

Lw
d

dt
Iw +RwIw +Mw,eq

d

dt
Ieq = 0 (2.58)

Here Mw,eq = Meq,w
T . We can use Equation (2.50) to make explicit the

dependence of the equivalent currents on the wall currents and on the overall
vector potential, since these are the real unknowns for the system:

(
Lw −Mw,eq Leq

−1 Meq,w

) d

dt
Iw +

(
Mw,eq Leq

−1 H
) d

dt
A+Rw Iw = 0

(2.59)
We notice the immediately that

L∗
w = Lw −Mw,eq Leq

−1 Meq,w (2.60)

is the modified inductance matrix we would have in presence of the conductive
structures and a superconducting shell at the Coupling Surface. Depending on
the JOREK model we may have degrees of freedom for the magnetic vector
potential A which have the dimensions of a vector potential or of a magnetic
flux. We indicate shortly:

N =Mw,eq Leq
−1 H (2.61)

It is convenient for the following to rewrite the time evolution Equation (2.59)
in view of the last two definitions:
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L∗
w

d

dt
Iw +N

d

dt
A+Rw Iw = 0 (2.62)

Before going further to the time discretization, we change the vector basis
respect to which we represent wall currents. The convenience of this transfor-
mation will be apparent at the end of the Section. In particular we solve the
generalized eigenvalue problem:

L∗
w Iw = λRw Iw (2.63)

The modified inductance matrix L∗
w and the resistance matrixRw are sym-

metric and of dimension nw × nw, indicating by nw the number of degrees of
freedom for the representation of currents in external conductors. A discrete
set {λk} of nw generalized eigenvalues exists which makes the solution of the
linear system (2.63) non-trivial. The eigenvector corresponding to λk is de-
noted here by Iλk . The transformation matrix for the components of a vector
from the canonical basis to this new eigenvector basis is built simply by taking
the eigenvectors as the columns of a matrix S:

S =


...

...
Iλ1 · · · Iλnc

...
...

 (2.64)

We rewrite the time evolution Equation (2.59), multiplying from the left
both sides by ST . Moreover we express the components of the wall currents
in the new eigenvector basis:

L̃∗
w

d

dt
Ĩw + R̃wĨw + ST N

d

dt
A = 0 (2.65)

where

L̃∗
w = ST L∗

w S (2.66)

R̃w = ST Rw S (2.67)

(2.68)

are the modified inductance matrix and the resistance matrix in the new refer-
ence system. Here the inductance matrix L̃∗

w results to be a diagonal matrix
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containing the above-mentioned eigenvalues {λk}, while R̃w results to be the
identity matrix.

The time integration of above Equations will be performed within JOREK,
advancing the structures degrees of freedom Iw together with the JOREK vari-
ables. It is then important to have a look on how their time discretization
scheme applies to Equation (2.65):

(1 + ξ) L̃∗
w δĨ

(n)
w +∆tθR̃w δĨ

(n)
w + (1 + ξ)ST N δA(n) =

=−∆tθR̃w Ĩ
(n)
w + ξL̃∗

w δĨ
(n−1)
w + ξST N δA(n−1)

(2.69)

where we have defined the difference of a vector:

δv(k) = v(k+1) − v(k) (2.70)

and we have introduced the numerical parameters

(ξ, θ) ∈ [0, 1]× [0, 1] (2.71)

It is easy to see, that setting the couple of numerical parameters (θ, ξ) appro-
priately we can choose between different time integration schemes:

• (1/2, 0) → Crank-Nicholson

• (1, 0) → implicit Euler

• (1, 1/2) → Gears

We have anyway to consider (2.69) in its generality, i.e. for any admissible
value of θ and ξ. In particular we find that

δĨ(n)w =
[
(1 + ξ) L̃∗

w +∆tθR̃w

]−1 (
b−

(
ST N

)
δA(n)

)
(2.72)

where, the vector b is known from previous time steps, being essentially the
r.h.s. of Equation (2.69),

b = b
(
Ĩ(n)w , A(n), Ĩ(n−1)

w , A(n−1), ξ, θ,∆t
)

(2.73)

The inversion of the term in square bracket is immediate thanks to the change
of basis described by the transformation matrix (2.64). Indeed the modified
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inductance matrix L̃∗
w is the diagonal matrix of the generalized eigenvalues for

the linear system (2.63) and R̃w is the identity matrix.
Finally we are ready to provide the boundary conditions, i.e. to provide an

operative expression for n̂×B at the boundary in the JOREK representation.
By a Biot-Savart integral and a proper Gauss projection we provide indeed in
the JOREK representation:

δB
(n)
tan = Qeq δI

(n)
eq +

(
Qw S

)
δĨ(n)w (2.74)

As intermediate step in the calculation of Qeq one has to calculate the tangent
magnetic field produced by the equivalent current in appropriate JOREK field
points. These were illustrated in the example of Figure 2.4. Relation (2.50) for
the vector potential at the interface surface leads then to

δB
(n)
tan =

(
Qeq Leq

−1 H
)

︸ ︷︷ ︸
Q∗

A

δA(n) +

(Qw −Qeq Leq
−1 Meq,w

)
︸ ︷︷ ︸

Q∗
w

S

 δĨ(n)w

(2.75)
We notice that Q∗

w S Ĩ
(n+1)
w is that tangential magnetic field we would find

keeping the currents in the conductors as they are and considering the inter-
face itself made by a superconducting material. The matrix Q∗

A was tested for
the calculation of free-boundary equilibria, in lieu of the corresponding STAR-
WALL matrix with preliminary good results, which will be published during
the year. Finally, by Equation (2.72), we find

δB
(n)
tan =

{(
Qeq Leq

−1 H
)
−
(
Q∗
w S
) [

(1 + ξ) L̃∗
w +∆tθR̃w

]−1 (
ST N

)}
δA(n)

+
[
Q∗
wS
]
b

(2.76)

The “forcing” term b was already defined in (2.73) and depends solely on the
numerical parameters {ξ, θ,∆t}, besides the electromagnetic variables at pre-
vious time steps.
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2.6 Direct Boundary Element Approach

Coupling strategies based on the virtual casing principle have been imple-
mented and proved to be efficient in many applications, as we have seen for
the JOREK-STARWALL coupling [60, 61], and as we shall see for the evo-
lutionary equilibrium code CarMa0NL [62]. Anyway this is not the only op-
portunity, and we shall comment on two further possible coupling strategies in
this Section.

We are going to present a magnetic vector potential formulation in sub-
section 2.6.1, which is in principle the real Johnson-Nédélec formulation
[58, 63, 64]. We will see anyway that the different gauge choice between the
formulation of the extended MHD problem and the formulation of the MQS
problem for conducting structures will in general make this strategy inappli-
cable. We shall see anyway, that the gauge choice does not affect the problem
of the poloidal magnetic field in the axisymmetric case. The boundary inte-
gral Equation in that case will correspond to the one already found in [96],
presenting tokamak magnetic diagnostics. Moreover, as a by-product of this
formulation, we will find a valid direct formula to compute the magnetic vec-
tor potential due to plasma currents in the exterior domain as a function of
the tangential component of the overall magnetic field and vector potential at
the Coupling Surface, independently of the gauge choice in extended MHD
model. The computed Ain will differ by the one in the Coulomb gauge only
for the gradient of a scalar function, being irrelevant in the determination of
applied voltages to structures.

Further, we present a magnetic field formulation in subsection 2.6.2. The
corresponding boundary integral Equation was used in [97] to show that we
can’t get real informations about the actual plasma current distribution within
the plasma from external magnetic measurements, since the tangential mag-
netic flux density at the plasma boundary determines alone the actual measure-
ments, and many different current density distributions can reproduce the same
tangential field at the boundary. This was in a sense already found in practice
computing MHD equilibria and comparing them to the simulated measure-
ments in [98]. In the last reference, it was evidenced that few parameters for
tuning the plasma current distribution5, clearly not enough to reproduce the
details of the current distribution within the plasma, were instead sufficient to
reproduce the correct magnetic measurements around the plasma.

5the overall current J , the poloidal beta βp, and the internal inductance ℓi. We shall come
back to these definitions and the definition of plasma boundary in next Chapter.
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2.6.1 Vector Potential Formulation

A pure Johnson-Nédélec formulation can be set up if we are in the Coulomb
gauge. Indeed in this case, the Laplace problem for the magnetic vector poten-
tial

∇2A∗ = −µ0i in Vext

A∗ = A0 on ∂Vext
(2.77)

has unique solution provided the electric currents in external conductors i and
Dirichlet boundary conditions A0. Now consider our general Green’s iden-
tity (2.25) and add to both sides the vector potential associated to the exte-
rior domain (which is both due to currents i and eventually due to the Gauge
∇(∇ ·A))

(1− ν)A = − 1

4π

∫
+∂Vin

[
G
∂A′

∂n′
− ∂G

∂n′
A′
]
dr′ +Aw (2.78)

In general, we would like to invert the above boundary Equation respect to
∂A/∂n, since therein we have all the information about the tangential com-
ponent of the magnetic field. Anyway are not really able to calculate Aw at
the Coupling Surface, unless we are in the gauge of Coulomb. In this case
indeed the magnetic vector potential is solely due to the electric currents, and
both CARIDDI and STARWALL can easily compute the Biot-Savart integral
to calculate A∗

w as a function of the external currents i. Unfortunately the ex-
tended MHD models considered all use different gauges. In particular we have
that

Aw = A∗
w +

∫
Vext

G∇′ (∇′ ·A′) dr′ (2.79)

and the second term at the right-hand-side is exactly what we are not able
to evaluate, preventing the possibility of a solution for ∂A/∂n. Besides this
inherent difficulty, it is worth to still explore some property of this integral
Equation.

In particular in the next paragraph we illustrate how (2.25) can be used to
calculate the plasma induced voltages in conducting structures, independently
of the gauge. In the last paragraph of this subsection we illustrate that we may
still use this direct formulation for computing the poloidal field related to the
axisymmetric mode.
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The plasma-induced Voltages

Here we first find a convenient expression for the magnetic vector potential
associated to electric currents in the inner domain, as a function of the external
currents and of the vector potential at the Coupling Surface. We can start
directly from (2.20). Notice that the plasma vector potential due to currents
in the interior domain A∗

in is effectively the plasma currents generated vector
potential in the Coulomb gauge. Using the vector identities ∇ (gf) = g∇f +
f∇g,

∫
V ∇f dr =

∫
+∂V f n̂dr and ∇′G = −∇G, we get:

A∗
in = Ain +

∫
+∂Vin

G
(
∇′ ·A′)n̂′ dr′ −∇

[∫
Vin

(
∇′ ·A′)G dr′

]
︸ ︷︷ ︸

χin

(2.80)

Here we could get the derivative out of the integral, thanks to the fact that
∇G = −∇′G, and by analogy with electrostatic problems. The last term at
the r.h.s. appears really as the electric field generated by a charge distribution
∇ ·A. We rigorously show in Appendix C, that Equation (2.80) above, thanks
to Green’s vector identity (2.23), can be rewritten in the more convenient form:

A∗
in = νA−∇χin

− 1

4π

∫
∂Vin

[
G
(
B′ × n̂′)+ (A′ × n̂′)×∇′G−

(
A′ · n̂′)∇′G

]
dr′

(2.81)
For ∇χin = 0 (i.e. in the Coulomb Gauge) this is essentially the same form as
provided in Stratton’s textbook [99].

In case we want to evaluate A∗
in for points r in the outer domain Vext, then

we have certainly ν = 0. Moreover, the gradient terms, which involve the vol-
ume integral and the surface integral of G(A · n̂) are also unimportant, since
they will not have any effect on induced voltages. This makes clear that we
can easily evaluate induced voltages due to plasma currents if we know about
the tangential magnetic field and the tangential vector potential at a surface en-
closing the plasma, whatever is the gauge actually used. The fact that A · n̂ is
unimportant is physically consistent with the fact that it does not specify any-
thing about magnetic fluxes linked to curves on the interface between the two
domains. Finally the electromagnetic effect of the plasma currents on the outer
domain is correctly represented by the equivalent surface current distribution
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keq = − 1

µ0
B× n (2.82)

and the equivalent surface distribution of magnetic moment

Meq = − 1

µ0
A× n (2.83)

so that

A∗
in +∇f =

µ0
4π

∫
∂Vin

G k′
eq dr

′

+
µ0
4π

∫
∂Vin

M′
eq ×∇′Gdr′ + νA

(2.84)

which implies, since Meq · n̂ = 0,

Bin =
µ0
4π

∫
∂Vin

k′
eq ×∇′G dr′

+
µ0
4π

∫
∂Vin

∇′
∥ ·M

′
eq∇′Gdr′ + νB

(2.85)

Using definition (2.83), it is possible to show µ0∇∥ ·Meq = Bn. Hence finally
we can express (2.85) in terms of magnetic flux density:

Bin =
1

4π

∫
∂Vin

(
B′ × n̂′)×∇′G dr′

+
1

4π

∫
∂Vin

B′
n∇′Gdr′ + νB

(2.86)

Implications for the MHD Boundary Conditions

Let’s look again to the problem of the calculation of n̂×B, now that this term
appears explicitly in our boundary integral Equations. Thanks to definition
(2.79) and our result (2.81), we can rewrite (2.78) as
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(1− ν)A =− 1

4π

∫
∂Vin

[
G
(
B′ × n̂′)]dr′

− 1

4π

∫
∂Vin

[(
A′ × n̂′)×∇′G−

(
A′ · n̂′)∇′G

]
dr′

+A∗
ext +∇

∫
Vext

G
(
∇′ ·A′) dr′︸ ︷︷ ︸
χext

(2.87)

Again, we face the problem of the apparently unknown term related to the
gauge choice. Also in this case, relying on physical considerations, we may
probably restrict our attention to the subspace of vector fields whose tangent
component to the boundary to the boundary is divergence-free. Anyway, the
real idea which lead us to the formulation of such direct method was to avoid
the construction of ad hoc subspaces on the Coupling Surface for getting in-
formation on B× n̂. Whenever this is not the case, we may well stay with the
Virtual Casing formulation. Hence, we do not explore this opportunity.

We just want to explore here some interesting features of the axisymmetric
case. For completeness, let us arrive to describe this case via a Fourier decom-
position of the problem along to the toroidal angle, we will need such kind of
expansions also later. For clarity we keep an exponential notation here:

(a) B̂ =

+∞∑
k=−∞

B̂ke
jk(φ−φ′)

(b) Â =

+∞∑
k=−∞

Âke
jk(φ−φ′)

(2.88)

In this notation, we use an hat to denote the complex quantities in the Fourier
space, relative to the spatial coordinate φ. We need at this stage to expand the
Green function G(r, r′) defined by (2.15) similarly [100]:

G =
1

|r− r′|
=

1

π
√
rr′

∞∑
k=−∞

ei k(φ−φ
′)Qk−1/2(χ) (2.89)

where Qk−1/2(χ) are half-integer Legendre functions of the second kind:

Qk−1/2(χ) =
1

2
√
2

∫ 2π

0

cos ku√
χ− cosu

du (2.90)
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and

χ =
2

k2
− 1 with k2 =

4rr′

(r + r′)2 + (z − z′)2
(2.91)

It is evident that we can study the problem harmonic by harmonic. Let us
introduce some short-hands for convenience and clarity. We denote Btan =
B× n̂, Atan = A× n̂, and clearlyAn = A · n̂ in (2.87). Moreover we define:

Gk = Qk−1/2

√
rr′

2π
(2.92)

With this notation, we finally expand (2.87) in toroidal harmonics. Equating
each term with the same dependence on φ, we get

(1− ν) Âk −
(
∇̂χext

)
k
= Â∗

w,k

− 1

r

∫
Γp

GkB̂
′
tan,k dℓ

′

− 1

r

∫
Γp

Â′
tan,k ×

[
r′∇′Gk

r′
− jkGki

′
φ

]
dℓ′

− 1

r

∫
Γp

Â′
n,k

[
r′∇′Gk

r′
− jkGki

′
φ

]
dℓ′

(2.93)

In general, we are not able to evaluate (∇̂χext)k, except eventually at the ex-
penses of very large volume integrals. However, consider the axisymmetric
mode n = 0. In this case the toroidal component of the magnetic vector po-
tential is solely related to the poloidal component of the magnetic field and
vice-versa. We can hence focus our attention to the axisymmetric toroidal
component of the magnetic vector potential, ψ0∇φ, which generates the ax-
isymmetric poloidal field ∇ψ0 × ∇φ. In the projection of (2.93) along the
toroidal angle the gradient term

(
∇̂χext

)
0

drops out. Indeed a the gradient of
a scalar single valued function cannot have an axisymmetric component in the
toroidal direction. Hence, after some algebra6, the toroidal projection of (2.93)
for k = 0 takes the form:

(1− ν)ψ0 = ψ∗
ext,0 −

∫
Γp,in

G0
1

r′
∂ψ′

0

∂n′
dℓ′ +

∫
Γp,in

ψ′
0

1

r′
∂G0

∂n′
dℓ′ (2.94)

6In particular, using the property ∇ (G0/r
′) = −∇′ (G0/r

′).
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whereG0 is given by (2.92), and is the standard Green function for the poloidal
flux produced by a toroidal filament. In [96] the factor (1 − ν) is better spec-
ified in terms of solid angles, so to account for eventual singularities of the
surface ∂Vin. We see that Equation (2.94) is valid in any gauge, and we may
use it for getting information on the tangential component of the axisymmetric
poloidal field at the Coupling Surface. The necessary and sufficient informa-
tion to determine the outer magnetostatic problem is contained respectively
in ψ0 (tangential component of the vector potential at the boundary) and in
ψ∗
ext,0 (information about currents in the exterior domain). The fact that the

axisymmetric version of the problem is gauge independent, at least as far as
the poloidal magnetic field is concerned, should not be surprising. Indeed, in
the axisymmetric case, ψ(r, z) assumes the real meaning of the flux of mag-
netic field linked to the loop whose trace in the poloidal half-plane φ = 0 is
given by the coordinates (r, z).

The discussion would be instead quite more intricate for what concerns the
poloidal component of the magnetic vector potential, hence the toroidal mag-
netic field, and we prefer to postpone this problem directly to the magnetic
field formulation presented in next Section. Here it is just worth recalling that
in normal situations there are no poloidal currents crossing the physical bound-
ary ∂Vin, and the toroidal field can be substantially attributed to the external
conductors. The topology of the problem itself, together with Ampère’s law
suggest then to write the toroidal magnetic field at the boundary as

Bφ =
Fact + Feddy

r
(2.95)

To conclude, the boundary integral Equation (2.94) is suitable to find the
the axisymmetric poloidal magnetic field component tangent to the boundary.
On the other hand, this method suffers the gauge choice for higher order har-
monics.

2.6.2 Magnetic Field Formulation

The inherent difficulties related to the gauge in the vector potential formula-
tion, lead us to go toward a pure magnetic field formulation. The fundamental
Equation was already provided as a by-product of the previous discussion, see
Equation (2.86). It is convenient to rewrite it again here, adding directly the
contribution of the active and wall currents:
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(1− ν)B = Bext −
1

4π

∫
∂Vin

[(
B′ × n̂′)×∇′G−B′

n∇′G
]
dr′ (2.96)

For points on the Coupling Surface, we may enforce (2.96) in weak form, using
JOREK boundary basis vectors as space of test functions. This would lead to
the algebraic problem

Btan = Bext,tan +Mt,t Btan +Mt,n Bn (2.97)

where the vector of external magnetic fields Bext,tan and the vector of the nor-
mal component of the overall magnetic field Bn are assigned. The question
arises whether (2.96) is suitable for the calculation of the tangential magnetic
field, i.e. whether the linear system (2.97) is invertible respect to Btan. Ob-
serve immediately that B · n̂ brings an information “almost” equivalent to the
one contained in A×n̂. The information lost, passing from the tangential com-
ponent of the vector potential to the normal component of the magnetic field is
precisely related to the flux linked by a curve wrapping around the hole of our
toroidal Coupling Surface. Given this information, B ·n allows in principle to
reconstruct the information of A× n̂.

Is this lost information important? Consider a simple case where there are
no currents in the outer domain. Think of a non-null toroidal current density
distribution within the inner domain which makes the Coupling Surface itself
a flux surface, i.e. B · n̂ = 0 on ∂Vin. The linear system (2.97) would be
homogeneous, but we know that a tangent magnetic vector field exists. In
order to persuade ourselves that the system is undetermined, we consider two
more uniqueness Theorems for the magneto-static field.

Theorem 2 In the outer domain Vext, the electric current density i, the normal
component of the magnetic flux density at the Coupling Surface B · n̂ = f ,
and the circulation µ0Iφ of B linked to a curve [Γp], representative for the
homology group of curves wrapping around the torus, are assigned. Then, the
magnetostatic problem

∇×B = µ0i inΩe

∇ ·B = 0 inΩe

B · n̂ = f on∂Ωe
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∫
Γp

B · t dℓ = µ0Iφ

has a unique solution, provided B is regular at infinity.

Proof: Suppose that two different solutions of the above problem exist, and
define their difference as δB = B1 −B2. Due to linearity, clearly δB has to
satisfy the associated homogeneous problem. Let us evaluate the L2-norm of
δB. Considering together the indivergence of δB and the fact that δB · n = 0
on the boundary of the domain, we can conclude that δB is orthogonal to the
gradient of any scalar function in Vext:

∫
Vext

δB · ∇φd3r =

∫
+∂Vext

φ δB · n︸ ︷︷ ︸
=0

d2r−
∫
Vext

φ∇ · δB︸ ︷︷ ︸
=0

d3r = 0 (2.98)

Besides curl-free, the difference field δB is also conservative if and only if
its circulation along Γp is zero. We notice explicitly that only in this case the
circulation of δB along any close line will be zero. □

Theorem 3 In the outer domain Vext, the electric current density i, the normal
component of the magnetic flux density at the Coupling Surface B · n̂ = f ,
and the flux ψt of B linked to a curve [Γt], representative for the homology
group of curves wrapping around the hole of the torus, are assigned. Then, the
magnetostatic problem

∇×B = µ0i inΩe

∇ ·B = 0 inΩe

B · n̂ = f on∂Ωe∫
ΣΓt

B · n̂ dr = ψΓt

has a unique solution, provided B is regular at infinity.

Proof: As before, we want the difference problem to define δB to be orthog-
onal to itself in L2(Vext). We already know that δB ∈ ker(div(Vext)), we
need to prove it is also in grad[H1(Vext)]. Since δB · n̂ = 0 and δi = 0, the
magnetic flux linked to any curve in the homology group of Γt is the same.
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This is in a 1 : 1 correspondence to the circulation of δB around the torus, via
the external inductance of the toroidal surface,

δψ = L δIφ

Since δψ = 0, then δIφ = 0 and the circulation of δB along any close line is
zero. □

The discussion makes clear that we need to re-integrate some information
in (2.97) to make it invertible, since B · n̂ alone is not sufficient. In particular,
if the plasma current is known, we can really enforce the discrete version of
the circulation constraint:

Λ ·Btan = µ0Ip (2.99)

The constraint can be imposed via an eigenvector decomposition. In par-
ticular we can take:

1−Mt,t = T−1 Σ T (2.100)

where T is the matrix whose columns are the eigenvectors of the linear opera-
tor 1−Mt,t, and Σ is the diagonal matrix containing the eigenvalues. We find
numerically that the above matrix is indeed singular, having a null eigenvalue.
We order the eigenvalues so that the null one is also the last. Now, we consider
the linear system (2.97), and the topological constraint (2.100) in the basis of
eigenvectors,

(a) Σ B̃tan = M̃n Bn + B̃ext,tan

(b) Λ̃ · ˜Btan = µ0Iφ.
(2.101)

The tilde denotes here vectors and matrices as represented in the eigenvector
basis. We need just to add the constraint (b) to the last Equation of the linear
system (a). The result, moving back to the original representation is:

(
1−MBt,Bt +MΛ

)
Btan =MBt,Bn Bn + µ0IφBtan,0 +Bext,tan (2.102)

whereBtan,0 is the eigenvector associated to the originally null eigenvalue and

MΛ = Btan,0 ⊗ Λ (2.103)

Equation (2.102) provides an example of magnetic field formulation, properly
fixed to account for the topological singularity. It is worth stressing that the
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plasma current is not always an input of the model (it is actually not in gen-
eral, and it is really computed as the circulation of B indeed). Hence, proper
techniques should be set up if one wants to enforce the constraint in this way.

The Toroidal Geometry

Expansion in the toroidal angle makes the magnetic field formulation very
convenient, besides providing some insight about the topological constraint
applied to the problem. Let us then apply the toroidal expansion of B and of
the Green function G, already described in (2.88) and (2.89), to the boundary
Equation (2.96):

(1− ν) B̂k = B̂ext,k

− 1

r

∫
Γp

B̂′
tan,k ×

[
r′∇′Gk − jkGki

′
φ

]
dℓ′

+
1

r

∫
Γp

B̂′
n,k∇′ [r′∇′Gk − jkGki

′
φ

]
dℓ′

(2.104)

where the Green functions Gk were defined in (2.92).

Let us consider now (2.104) for a generic toroidal harmonic k ≥ 1. Clearly,
a magnetic field with such a periodicity in the toroidal angle can’t give any fi-
nite flux through a surface linked to Γt. This is a structural feature of the
toroidal harmonic decomposition, and suggests that the system (2.104) is in-
vertible for any k ≥ 1. This is further confirmed considering the circulation
along a poloidal curve such as the Γp defined in Figure 2.1. The informa-
tion contained in

∫
Γp

B̂k · t̂ dℓ is indeed information on the actual currents
flowing inside and outside the domain with toroidal frequency k/2π. This in-
formation is however already contained in the external currents to the MHD
computational domain (since the jump of i · n̂ across the Coupling Surface
has to be null). There are enough arguments to claim that the topological con-
straint needs hence to be applied to the problem solely for the n = 0 mode.
Limiting our attention to the axi-symmetric case, of course we have again the
poloidal/toroidal decomposition of the problem, and Equation (2.104) takes
the form (̂iφ × n̂ = îu):
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(a) (1− ν)

(
−1

r

∂ψ

∂n

)
=

1

r

∂

∂n

[∫
Γp

1

r′
∂ψ′

∂n′
G0 dℓ

′

]

+
1

r

∂

∂u

[∫
Γp

1

r

∂ψ′

∂u′
G0 dℓ

′

]

(b) (1− ν)
F

r
=

Fext
r

− 1

r

∫
Γp

F ′∂G0

∂n′
dℓ′

(2.105)

As discussed, Equation (2.105a) is not invertible. Indeed the information on
the plasma current or equivalently on the poloidal flux regards solely this field
component. On the other hand the axisymmetric toroidal field at the boundary
is solved solely in terms of the external currents. Indeed when there are no
currents in external circuits F = 0.

2.7 The role of Halo Currents

Up to this point, we scarcely commented on the possibility of shared currents
between plasma and structures, which are instead a major concern of the toka-
mak community, and generally defined as halo currents [101, 102, 103]. Al-
though they are negligible in the normal operation of the device, fast transients
may be responsible for a significant contact of the plasma column with the
solid structures, and in turn of a significant plasma current injected into struc-
tures. Especially the axisymmetric poloidal halo current, in its interaction with
the toroidal magnetic field applied by the external Toroidal Field coils, can
generate severe forces on structures [44].

We commented in previous Sections that the essential information we need
about Atan, is essentially the one related to the magnetic fluxes, linked to any
possible close line laying on the boundary. This lead us to consider the portion
of A tangent to the Coupling Surface and divergence-free therein. Those con-
siderations are still valid, anyway it is the case now of providing information on
the actual currents crossing the Coupling Surface. Earlier, when discussing the
Virtual Casing Principle, we assumed that the electric current density within
the inner domain was on its own solenoidal (i ∈ grad[H1(Vin)]), circumstance
which is not valid in presence of halo currents. What does happen if we apply
Equation (2.50) to find the equivalent current in presence of halo currents?

Our current distribution i is not anymore solenoidal separately in both do-
mains Vin and Vext, but solely in the whole domain V . We can anyway imagine
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to add and subtract to the current i a surface current distribution khalo located
at the Coupling Surface. In particular we can imagine that khalo, on the in-
ner page of the Coupling Surface, makes close the plasma current paths within
the inner domain. On the outer page −khalo makes close instead the current
paths of external conductors which terminate at the Coupling Surface. Cer-
tainly khalo belongs to the space (ker[div(∂Vin)])

⊥. Indeed, in absence of
halo currents we don’t need such a current sheet, while in order to provide a
closure of the plasma current paths it is certainly:

∇∥ · khalo = i · n̂ (2.106)

The fact that khalo is orthogonal to div-free vector fields in the Coupling Sur-
face, means that we can write it as the surface gradient of some scalar function
khalo = −∇∥ϕhalo. The current i+khalo is on its own solenoidal in the inner
domain. Hence we can retain that this current contribution is correctly repro-
duced by the equivalent current as previously computed via (2.50). Anyway
we left out a further contribution −khalo. Let’s have a look whether this is
accounted in our equivalent current:

∫
∂Vin

w ·
∫
∂Vin

Gµ0∇′
∥ϕhalo

′ dr dr =

=−
∫
∂Vin

w · ∇∥

∫
∂Vin

Gµ0ϕhalo
′ dr dr = 0

(2.107)

We see that −khalo the current density distribution which would make the
currents in the exterior domain solenoidal within Vext, is not contained within
the equivalent current keq we calculate. This is clear, as we are considering
an divergence-free current on the Coupling Surface, contrary to the nature of
khalo as we defined it. One may think then to consider a complementary
set of basis functions in grad

[
H1(∂Vin)

]
, to represent the effect of currents

crossing the interface. Anyway, the projection of (2.44) on such a subspace,
would not set to zero the gauge-related terms. This aspect, together with the
actual properties of CARIDDI basis vectors, makes this way not very practical
in view of the plasma-structures electromagnetic coupling. Nonetheless, as
long as the injected currents are provided, −khalo can be easily reconstructed.
In particular we can define electrodes on the outer page of the equivalent shell.
The halo current injected into the conducting structures has to be drained from
the equivalent shell and vice versa. This way we recover all the remainder
previously discarded information.
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In this respect, while we may still keep the virtual casing formulation to
model the solenoidal eddy currents, we found a special treatment for the halo
currents. In particular, when injecting halo currents in structures, we should
always be careful to make the currents in the outer domain solenoidal on their
own, implementing a surface current distribution which makes the outer do-
main current paths close. This is in a sense the approach used in the axisym-
metric evolutionary equilibrium model CarMa0NL [84, 104]. There, equiva-
lent currents are only able to catch the information on the toroidal plasma cur-
rent, the poloidal currents within the first wall being synthetically described by
a plasma toroidal flux variable. In order to inject currents in the wall, a ficti-
tious shell is implemented which allows for the currents in the exterior domain
to be solenoidal in Vext. A divergence-free poloidal equivalent surface current
at the Coupling Surface, could only account for the overall toroidal flux infor-
mation. The neglect of other information virtually coincides with the set-up of
a poloidal surface current distribution on the inner page of ∂Vin which makes
the plasma currents solenoidal on their own, and whose undesired effect in
terms of magnetic field is annihilated precisely by the corresponding fictitious
poloidal currents in the outer domain.

On the other hand, the magnetic field formulation proposed in Section
2.6.2, does not need particular care in this respect, as the boundary conditions
set up for the magnetic fields at the computational MHD boundary are inde-
pendent from the eventual passage of currents across the Coupling Surface.
Consider the case of an axisymmetric plasma hitting the wall, generating this
way a shared axisymmetric poloidal current between plasma and structures.
The governing Equation for the boundary condition on the toroidal magnetic
field is provided by (2.105). We may rewrite that Equation in the more physi-
cally intuitive form:

(1− ν)
µ0Ipol
2πr

=
µ0
4π

∫
Vext

i×∇′G dr′ −
∫
∂Vin

µ0I
′
pol

2πr′
î′u ×∇′Gdr′

(2.108)
The surface integral is exactly the magnetic field produced by a poloidal cur-
rent distribution at ∂Vin of density µ0Ipol/2πr. Consider first a situation when
there are no halo currents, and the external toroidal field is clearly given by
µ0Iext/2πr. Then equation above is trivially satisfied by Ipol = Iext at the
boundary of the domain. Similarly when we have a current crossing ∂Vin, the
last surface term configures a current distribution which makes solenoidal the
current distribution i within structures. At the boundary between inner and
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outer domain this overall solenoidal current distribution produce a discontinu-
ous toroidal field which is given essentially by one half of the toroidal field in
the perfect toroidal solenoid constituted by the real currents flowing in external
conductors and the fictitious current circulating on ∂Vin. Not by coincidence
at the boundary (1 − ν) = 1/2, and the boundary conditions are again pro-
vided correctly. Hence this formulation maintains the potential advantage of
non-discretizing the MHD computational boundary accordingly with the MQS
numerical model of the external structures, even in presence of halo currents.
This same fact could be seen eventually also as a possible disadvantage: the
eventual mismatch between the effective toroidal and curved Coupling Sur-
face ∂Vin and the straight electrodes of conducting structures, can configure a
current density which is quite “imprecisely solenoidal” (e.g. the surface cur-
rent may vanish in vacuum at some point and appear again at some conducting
structures’ electrode).

The uniqueness of the overall coupled problem is subject to the condition
of having an overall solenoidal current density. Notice that in principle the cur-
rent density has not to be solenoidal separately in the two domains, but just in
the whole domain. Then we need to enforce the continuity of the normal com-
ponent of the current density, which configures itself as a Kirchoff Current Law
at the structures electrodes facing the plasma in the CARIDDI formulation. In
this respect, the injected currents into CARIDDI electrodes could be assigned,
while electrodes potentials could be treated as further unknowns. This way
we would have an equal number of Equations and unknowns in the CARIDDI
formulation, see Equations (2.29) and (2.32). Take in mind moreover that the
actual current density crossing the boundary is given by the line integrals along
the boundary of the tangent magnetic field. In both the approaches presented
the tangent magnetic field is obtained as the solution of the outer magnetostatic
field problem, and we may well argue that Ihalo = f(Btan).

It remains an open question whether the sheath physics models described
in the previous Chapter can be conveniently coupled in this framework. A
recent attempt to include the effect of the ion saturation current was made
in [50]. First notice that at the present we retain that there are no surface
current densities tangent to the boundary, so that the tangential magnetic field
is essentially the same at the boundary of the MHD computational domain
and at the sheath entrance. In any case the halo current flowing across the
computational domain is given by the coupled solution of the inner and outer
problems to the Coupling Surface. In this framework is not simple to imagine
how the current-voltage characteristics of the sheath can be taken into account
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in the interaction scheme. The discussion of Section 1.10 would suggest to
model the actual sheath as a set of non-linear resistors connecting the inner
and the outer domain. These resistors would have a shared terminal in the
bulk plasma, which is retained equipotential, plus a further terminal at the
conducting structures’ electrodes. The highly non-linear characteristic (i, v)
already discussed is moreover determined by the actual value of the electron
temperature. How can we frame those considerations in this context? The
answer does not seem simple, and will be object of future research.





Chapter 3

Theory of MHD Evolutionary
Equilibrium

T he birth of Magneto-Hydro-Dynamics as a physics subject on it-
self is largely due to the seminal paper of H. Alfvén “Existence of

Electromagnetic-Hydrodynamic Waves” [8]. Probably for the first time, it was
evidenced as a wave Equation can result from the coupling of purely mechan-
ical and electromagnetic quasi-static phenomena. The characteristic velocity
for the propagation of a magnetic field perturbation in a plasma with assigned
current density is today indicated in literature as “Alfvén velocity” and defined
as:

vA =
B

√
µ0ρ

→ τA =
L

vA
(3.1)

For typical tokamak plasma densities and magnetic fields, considered a char-
acteristic length L = 1 m, the Alfvén time falls generally within the range
1-10 µs1. The electromagnetic interaction of the MHD plasma with the sur-
rounding environment adds anyway an important ingredient to the Alfvén
recipe.

In particular, for typical tokamak devices, where many conducting struc-
tures surround the plasma, the real inertia to the plasma motion is mostly pro-
vided by the eddy currents around the plasma, rather than by the mass den-
sity of the plasma itself. When this is the case, the mechanical motion will
evolve on the relatively long electromagnetic time-scale (i.e. ∼ 1-10 ms for

1For a tokamak plasma we consider as reference magnetic flux density the poloidal magnetic
flux density.
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medium size devices). In these conditions, further physical phenomena tak-
ing place on the Alfvénic time-scale can be retained essentially instantaneous
when studying plasma displacements. It makes sense in such situations to use
MHD evolutionary equilibrium models, where the mass of the plasma is dis-
carded completely. The electro-mechanical analogue of such a situation is that
of an electrical motor driving an arbitrary machinery, the whole system hav-
ing null mechanical inertia. The electromagnetic torque provided by the motor
would adapt at any time to fit the load torque of the machinery. The velocity of
the motor-machine drive would then result from this mechanical equilibrium
constraint at any time instant2.

In Section 3.1 we show when the evolutionary equilibrium hypothesis
makes sense in the study of rigid Vertical Displacement Events (VDEs) of the
plasma column. This problem is considered here mainly to motivate the con-
venience and possible efficacy of evolutionary equilibrium MHD models for
the coherent study of plasma mechanical evolution. Anyway the problem of
the vertical motion of a tokamak plasma column plays a crucial role on its own
in present tokamaks. Indeed, it is well recognised that a plasma with a verti-
cally elongated cross section presents better performances in terms of poloidal
beta and energy confinement time [105]. We shall come back to the defini-
tion of poloidal beta in this Chapter, this is a figure of merit which quantifies
the achieved plasma kinetic pressure as compared to the magnetic pressure.
The energy confinement time can be defined simply as the ratio of the plasma
thermal energy and the plasma power losses and quantifies the capability of
operating a tokamak in steady state [106]. The actual realization of vertically
elongated plasma cross-sections, in MHD mechanical equilibrium, requires the
application of quite large quadrupole magnetic fields, which in turn determines
a mechanical instability respect to vertical displacements [107, 108]. As soon
as the plasma displaces vertically it will find a radial field which further pushes
the plasma in the direction of the motion. In Section 3.1 we will discriminate
in which conditions this instability is Alfvénic and when instead the vertical
motion evolves on the electromagnetic time-scale, introducing the a figure of
merit known as stability margin [108, 109, 110, 111].

Motivated by the former discussion, we first introduce the MHD evolution-
ary equilibrium model for a simple high-aspect-ratio circular tokamak in Sec-
tion 3.2. The discussion will reveal some key aspects of the MHD equilibrium

2This would be equivalent to consider the electrical drive system evolving through points of
the steady state torque-velocity characteristic of the motor, instead of properly considering the
angular momentum balance equation for the electrical drive.



3.1. ELECTRO-MECHANICAL SEMI-RIGID MODEL 103

problem, such as the necessity of a vertical field to provide the radial mechan-
ical equilibrium, and its relation to the plasma internal parameters. Moreover
this will be the occasion to derive some analytical formulas we will use in next
Chapter for providing simple estimates of wall forces and energy exchanges.
The approximations are introduced in successive steps, so to understand what
key features remain valid in general. The discussion largely follows the work
of V. D. Pustovitov [112, 113, 114].

Straight afterwards, in Section 3.3 we provide a classification of MHD
Equilibrium problems, mainly to introduce the concept of free-boundary MHD
simulation. With these concepts set-up, we will be ready to describe in Sec-
tion 3.4 to introduce the free-boundary MHD evolutionary equilibrium model
CarMa0NL [62]. Here, a free-boundary MHD equilibrium solver interacts
self-consistently with the 3D model for conducting structures CARIDDI al-
ready described in Section 2.4. Hence, we will first review the key aspects of
the free-boundary MHD equilibrium solver, which closely resembles the one
presented in [115]. Following we will evidence how the Virtual Casing Prin-
ciple is applied here for the self-consistent simulation of the plasma motion
subject to the inertia of the external passive currents. Applications of this tool
are postponed to the next Chapter.

3.1 Electro-mechanical semi-rigid Model

In this section we show the efficacy and comment on the range of validity of
the plasma mass-less approximation when studying mechanical instabilities of
a tokamak plasma column. In order to understand this key aspect we refer to
a very simplified model of the single fluid MHD Equations. In particular, we
consider an axisymmetric plasma column with a given cross-section. The only
motions we allow for the plasma column are the rigid vertical motion and the
radial motion. Moreover, also the plasma current distribution within this cross-
section is assigned, so that we can describe the plasma ring simply in terms of
a self-inductance and mutual inductances with the other circuits, variable only
in relation to the position of the column in the poloidal plane (r, z).

In subsection 3.1.1 we provide the Equations of motion for a tokamak
plasma under these constraints, using a Lagrangian formulation. It is worth
stressing that a radial motion is not a rigid displacement: any time the major
radius of the plasma changes the actual volume of the plasma column changes
consequently. An overall radial mehcanical momentum balance hence involves
internal forces to the plasma column, as we shall see soon. That’s the motiva-
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tion lead us to define the following model as “semi-rigid”.
Strictly, for what we want to demonstrate, it is not even necessary to con-

sider radial motions of the column: this general viewpoint is presented rather to
allow for possible theoretical future extensions. In subsection 3.1.2 we indeed
focus the attention solely on the rigid vertical displacements. Here we show
that the neglect of plasma mass, besides being a singular perturbation, leads to
meaningful results, at least as long as some figure of merit, which quantifies
the stabilizing force provided by external passive currents is sufficiently larger
than the de-stabilizing force.

3.1.1 Equations of Motion

The assumptions introduced, allow to study the plasma in interaction with the
surrounding structures by the classical tools of Electrical Engineering. In par-
ticular the evolution equations for the electro-mechanical system introduced
by these assumptions can be set up via a Lagrangian formulation [116].

All the conductors are fixed in the laboratory reference frame, except
the plasma ring, which is allowed to rigidly displace vertically and to com-
press/extend along the radial direction. In our study we are interested solely in
the self and mutual inductances between circuits, besides the eventual resistive
dissipation there. We can neglect from the beginning the parasitic capacitances
and capacitors within the external circuits, as they will not play a role in the
subsequent study. The average kinetic pressure within the plasma is assumed
to be assigned within each cross section, and is denoted by ⟨p⟩.

The generalized Lagrangian coordinates for such a system include:

• The generalized electric charges for each independent loop

qk(t) =

∫ t

t0

ik (τ) dτ (3.2)

where the ik are the electric currents for each independent loop in the
external conductors;

• The generalized electric charge for the net toroidal and poloidal current
within the plasma

(a) Qφ(t) =

∫ t

t0

Iφ (τ) dτ

(b) Qpol(t) =

∫ t

t0

Ipol (τ) dτ

(3.3)
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where Iφ is the overall toroidal plasma current and Ipol is the net poloidal
current within the plasma. We stress that the current distributions are
here considered to be always the same within the plasma poloidal cross-
section.

• The radial and vertical position of the plasma cross-section within the
poloidal plane, rp (t) and zp (t) respectively

The Lagrangian function describing such a system is

L =
1

2
i Le,e i+

1

2
LφI

2
φ +

1

2
LpolI

2
pol

+ i · Le,φ Iφ + i · Le,pol Ipol

+
1

2
mpṙ

2 +
1

2
mpż

2

− V · q − VφQφ − VpolQpol − 2πrpSp⟨p⟩

(3.4)

Here the magnetic energy is described by the first five terms. As intuitively
recognised Le,e is the mutual inductance matrix between external conductors,
independent of the plasma position. The self inductance terms for plasma
toroidal and poloidal currents are Lφ and Lpol respectively. The other mu-
tual inductance terms are similarly defined. We notice explicitly that the self-
inductance for these two plasma currents is insensitive to the vertical motion
of the plasma itself, i.e. Lφ = Lφ (rp) and Lpol = Lpol (rp). Moreover, the
net poloidal and toroidal plasma currents originate orthogonal magnetic fields,
hence there is no mutual inductance between Iφ and Ipol. Since the poloidal
current paths originate perfect toroidal solenoids the inductance terms Le,pol
are null for toroidal filament conductors and in any case depend solely on the
radial position of the plasma rp. In the remainder of the Lagrangian we notice
the kinetic energy for the plasma cross-section, and the potential energy terms.
In particular the last one synthetically accounts for the exchange term between
mechanical energy and internal energy of the plasma and it is related to the
deformation of the plasma ring. Further, we introduce linear dissipative terms
for the various circuits by the means of a dissipation function

Fk = − ∂

∂ik
D (i1, · · · , iN ) ; D = i ·R · i (3.5)

The Euler-Lagrange Equations for this electro-mechanical system are in
principle:
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(a) L
d

dt
i+R i+ Le,φ

d

dt
Iφ + Le,pol

d

dt
Ipol

+
∂Le,φ

∂rp
ṙpIφ +

∂Le,φ

∂zp
żpIφ +

∂Le,pol

∂rp
ṙpIpol + V = 0

(b) Lφ
d

dt
Iφ +Rφ Iφ + Le,φ

d

dt
i

+
∂Le,φ

∂rp
ṙp · i+

∂Le,φ

∂zp
żp · i+

∂Lφ
∂rp

ṙp · Iφ + Vφ = 0

(c) Lpol
d

dt
Ipol +Rpol Ipol + Le,pol

d

dt
i

+
∂Le,pol

∂rp
ṙp · i+

∂Lpol
∂rp

ṙp · Ipol + Vpol = 0

(d) mp
d

dt
ṙp −

1

2

∂Lφ
∂rp

I2φ − 1

2

∂Lpol
∂rp

I2pol

−
∂Le,φ

∂rp
· iIφ −

∂Le,pol

∂rp
· iIpol + 2πSp⟨p⟩ = 0

(e) mp
d

dt
żp −

∂Le,φ

∂zp
· iIφ = 0

(3.6)

Various approximations of the dynamical system above are possible. In
particular, as hinted, we consider the toroidal plasma current Iφ and the
poloidal plasma current Ipol as assigned in the following discussion, so to ne-
glect the Euler Lagrange equations (b) and (c) above. In the same stream,
instead of feeding active coils via the corresponding voltages in the vector V
we assume the active currents as known in advance.

3.1.2 Rigid Vertical Displacements

The only admissible rigid displacement for an axisymmetric system is the one
along the vertical direction. Hence, we further assume here that the plasma
column can only move vertically, via a rigid displacement. Moreover a sin-
gle active circuit and a single eigenmode for the electric currents in passive
structures is retained important. The plasma currents and active coil currents
are assigned and constant through time. In these further approximations, Euler
Equations (3.6) simplify to:
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(a) Lwİw +RwIw + Iφ
∂Mw,p

∂zp
żp = 0

(b) mpz̈p −
∂Mp,w

∂zp
Iw Iφ −

∂Mp,PF

∂zp
IPF Iφ = 0

(3.7)

Here the suffix “PF” is used to indicate the active “Poloidal Field” coil, and the
suffix “w” is used to indicate the “wall” current. Whenever the toroidal plasma
current is assumed to be concentrated in a toroidal filament of coordinates
(rp, zp) in the poloidal plane, direct computation of the Lorentz force provides:

∂Mp,w

∂zp
= −2πrpB̃r,w,

∂Mp,PF

∂zp
= −2πrpB̃r,PF (3.8)

where B̃r,w and B̃r,PF are the radial magnetic flux densities at (rp, zp) pro-
duced by a unitary current in the wall and Poloidal Field circuit respectively.

The dynamical system (3.7) is still non-linear as the spatial derivatives of
the various mutual inductances are still arbitrary functions of the vertical posi-
tion. It is convenient to linearise about a position of mechanical equilibrium,

mpδ
...
zp+mp

1

τw
δz̈p+

(
∂FST
∂zp

− ∂FPF
∂zp

)
zeq

δżp−
1

τw

∂FPF
∂zp

∣∣∣∣∣
zeq

δz = 0 (3.9)

Here we consistently considered that at MHD equilibrium, there are no in-
duced currents in passive structures, i.e. Iw(t0) = 0. Moreover we defined the
stabilizing force due to passive currents and the destabilizing force due to the
active coil currents as

(a) δFST =

(
∂Mp,w

∂zp

)
zeq

Iφ
δMp,w Iφ

Lw

(b) δFPF = δ

(
∂Mp,PF

∂zp

)
zeq

IφIPF

(3.10)

Notice that the stabilizing force δFST is the restoring force acting on the
plasma column due to the action of wall currents in the limit case Rw → 0,
so that the current in passive conductors is purely inductive. In order to high-
light the different time-scales involved, it is convenient to normalize Equation
(3.9) so that the coefficient multiplying the higher order derivative multiplies
an dimensionless term,
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(
τA
τw

)2[
δ

...
zp +

1

τw
δz̈p

]
+

(
1

τw

)2

·

k̂1︷ ︸︸ ︷[
µ0
B2

0 L
·
(
∂FST
∂zp

− ∂FPF
∂zp

)
zeq

]
δż

−
(

1

τw

)3
 µ0
B2

0 L
· ∂FPF
∂zp

∣∣∣∣∣
zeq


︸ ︷︷ ︸

k̂2

δz = 0

(3.11)
Here, provided the reference length L and the reference magnetic flux density
B0, the Alfvénic time was defined as

τA =
L
√
µ0

mp

L3

B0
(3.12)

and the coefficient k̂1 is defined as stability margin in the literature [108, 109,
110], although using a different normalization. This parameter provides an
indication on how the stabilizing and destabilizing forces acting on the plasma
vary in the direction of motion, although in the ideal wall limit (i.e. Rw →
0). It is interesting to notice that the stability margin solely depends on the
geometry of the problem, and the plasma and active coil currents. Explicitly
considering the definitions of stabilizing and destabilizing forces (3.10) into
the definition of stability margin provided in (3.11), we find

k̂1 =
µ0
B2

0L
·

[(
∂Mp,w

∂zp

)2

zeq

I2φ
Lw

−
(
∂2Mp,PF

∂z2p

)
zeq

IPF Iφ

]
(3.13)

Notice in particular that the stabilizing force depends on the square of the
plasma current, while the destabilizing force depends linearly on it. Hence for
an assigned normalized plasma current distribution, and given active currents,
we shall expect that the stability margin decreases when the plasma current
decreases [117]. We will see shortly that the actual dynamics of the plasma
column evolution are essentially determined from this parameter: if the sta-
bilizing force due to passive currents grows faster in the direction of the mo-
tion than the destabilizing force, the plasma column will move vertically on
the electromagnetic time-scale. On the contrary the vertical instability will be
Alvénic.
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Hence, besides the ratio between the Alfvénic time scale and the electromag-
netic time scale of external conductors is in general very small, i.e.

ε =
τA
τw

→ 0 (3.14)

due to the presence of an eventually positive real eigenvalue, we should be very
careful in discarding the higher order terms in the linear system (3.11), which
would be the same as to neglect the plasma mass in the original dynamical sys-
tem (3.7). More generally, such type of “perturbations” are singular, changing
clearly the actual dynamical order of the system itself and eventually hiding
some important dynamics. Hence we provide in next paragraph an asymptotic
solution for the linear system (3.11), properly accounting for the mass of the
plasma column. The asymptotic solution will confirm our claims and highlight
the dependencies, showing in which conditions the plasma is unstable respect
to the vertical motion and the key role of the stability margin in determining
whether the instability is on the Alfvénic or electromagnetic time scale. In last
paragraph we provide some further comments on the possibility of neglecting
the mass of the plasma, showing that Tikhonov’s Theorem is inapplicable to
the case of interest, unless explicitly accounting for the viscous phenomena.

Asymptotic Solution for Small Perturbations

In this paragraph, using Perturbation Theory tools for multiple time-scale sys-
tems [118], we provide an asymptotic solution of the linear system (3.9). The
solution of the linear system is thought as an expansion in the small parameter
ε = τA/τw:

δzp (t) = δz0 (t) + εδz1 (t) + · · · (3.15)

In particular, we will discard all correction terms, retaining δzp ≃ δz0. The
idea is now to explicitly introduce two distinct time variables, one for the slow
dynamics and another one for the fast dynamics [118]. This possibility can be
understood going back to the phase-space description of the dynamical system.
We think the “Hamiltonian” vector field d

dt as a linear combination of two new

vector fields ∂
∂t1

and ∂
∂t2

, in particular

d

dt
7→ 1

ε

∂

∂t1
+

∂

∂t2
(3.16)

These phase-space vector fields ∂t1 and ∂t2 commute with each other, so that
it is the same whether we move first along a field line of ∂t1 of some parameter



110 CHAPTER 3. QUASI-STATIC MHD

∆t1 and then along a field line of ∂t2 of some parameter ∆t2 or vice-versa.
Neglecting dissipative terms for the moment, this means that a single surface
is spanned by the field lines of ∂t1 and ∂t2 passing by a certain point of the
phase-space P , exactly in the same way as in a conservative system a single
field line of d

dt passes through P . The evolution of the mechanical system is
then parametrized in terms of the two variables (t1, t2) rather than in terms of
a single time t.

The benefit of this new view-point will be apparent in few lines. In par-
ticular, substituting (3.16) into the ordinary differential Equation (3.9), and
explictly considering the pertubative expansion for the solution (3.15), we get
the following “partial” evolution Equation for δz0 (t1, t2):

∂3

∂t31
δz0 (t1, t2) +

k̂1
τ2w

∂

∂t1
δz0 (t1, t2) = 0 (3.17)

There are two types of general solution for the above dynamical system, de-
pending on the sign of k̃1. For k̃1 > 0, the general integral of Equation (3.17)
is

δz0 (t1, t2) = a0 (t2) cos

(√
k̂1
τw

t1

)
+ b0 (t2) sin

(√
k̂1
τw

t1

)
+ c0 (t2)

(3.18)
For k̃1 < 0 we would have had an instability on the fast time scale t1, indeed:

δz0 (t1, t2) = d0 (t2) exp


√

|k̂1|
τw

t1

+e0 (t2) exp

−

√
|k̂1|
τw

t2

+f0 (t2)

(3.19)
If we go back to the definition of k̂1, see Equation (3.11), we understand that
as long as the stabilizing force FST grows along the vertical direction more
than the destabilizing force FPF , than the fast dynamics reduce to oscillations.
Anyway, whenever the destabilizing force grows faster an Alfvénic instability
is generated. In this respect, the parameter k̂1 exactly quantifies whether the
“electromagnetic inertia” offered from surrounding structures reduce the fast
dynamics to be solely oscillations in the plasma position or not.

Let us now compute the slow dynamics, in the case k̂1 > 0: we again
make explicit the operator (3.16) and the expansion (3.15) into the ordinary
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differential Equation (3.9), this time considering the first order correction terms
in ε:

∂3

∂t31
δz0 (t1, t2) +

k̂1
τ2w

∂

∂t1
δz0 (t1, t2) =

+
1

τ2w
cos

(√
k̂1
τw

t1

)[
2k̂1a

′
0 +

k̂1 + k̂2
τw

a0

]

+
1

τ2w
sin

(√
k̂1
τw

t1

)[
2k̂1b

′
0 +

k̂1 + k̂2
τw

b0

]

+
1

τ2w

[
k̂1c

′
0 −

k̂2
τw

]
(3.20)

We require the above “partial” evolution equation to be homogeneous, in order
for δz0(t1, t2) to be the best possible approximation of δzp(t) [118]. This
requirement is equivalent to the requirement that the terms in square brackets
above are null, providing the evolution Equations for a0(t2), b0(t2), and c0(t2).
The general form for such “slow-time” quantities is:

a0 (t2) = A0 exp

[
−

(
k̂1 + k̂2

k̂1

)
t2
τw

]

b0 (t2) = B0 exp

[
−

(
k̂1 + k̂2

k̂1

)
t2
τw

]

c0 (t2) = C0 exp

[(
k̂2

k̂1

)
t2
τw

] (3.21)

Finally A0, B0 and C0 are scalar constants to determine enforcing the initial
conditions at t1 = t2 = 0. The actual mechanical state parametrized via the
parameter t along the integral line of d

dt is identified along the integral lines of
∂t1 and ∂t2 via the parameters

t1 =
t

ε
, t2 = t (3.22)

Hence our asymptotic solution for the linear system (3.9), in the limit
τA/τw → 0 and in case k̂1 > 0, is finally



112 CHAPTER 3. QUASI-STATIC MHD

δzp (t) ≃
[
∆z0 + ε2

τ2w

k̂1
∆z̈0

]
e

k̂2
k̂1

t
τw

−

[
ε2
τ2w

k̂1
∆z̈0 cos

(√
k̂1
τA

t

)
− ε

τw√
k̂1

∆ż0 sin

(√
k̂1
τA

t

)]
e
− k̂1+k̂2

k̂1

t
τw

(3.23)
Here the symbols ∆z0, ∆ż0, and ∆z̈0 were used to indicate the initial pertur-
bation on the plasma position, velocity and acceleration. Remember that k̂1
and k̂2 are dimensionless quantities close to unity in magnitude. In particular
we obtained the asymptotic solution (3.23) for k̂1 > 0. We see that in this
case the Alfvénic motion reduces to an oscillation which decays on the longer
electromagnetic time-scale. The unstable mode is generated on the electro-
magnetic time-scale any time that k̂2 > 0, i.e. any time that the destabilizing
force grows along the direction of the plasma column motion. It is instructive
to make explicit k̂2, as defined via Equations (3.10-3.11), in case the plasma
column can be schematically regarded as a toroidal current-carrying filament,
making valid expressions (3.8),

k̂2 = − µ0
B2

0L
2πrp

∂B̃r,PF
∂zp

IPF Iφ (3.24)

Inside the plasma chamber, the magnetic field produced by the external

conductors is curl-free, meaning that ∂B̃r,PF

∂zp
= −∂B̃z,PF

∂rp
. Hence we can

rewrite (3.24) as

k̂2 =
µ0
B2

0L
2πB̃z,PF IPF Iφ

[
− r

B̃z,PF

∂B̃z,PF
∂rp

]
︸ ︷︷ ︸

n

(3.25)

The term in square bracket, denoted by n, is also defined as decay index
[107, 108]. As we shall see, for a positive plasma current (Iφ > 0) the con-
ditions of radial mechanical equilibrium will require the external coils to pro-
vide a negative vertical field (IPF B̃z,PF < 0). Vice-versa a negative toroidal
current will require to supply a positive vertical field. Hence, the vertical insta-
bility will be generated for a negative decay index, n < 0. This means that the
filamentary plasma will be unstable with respect to the vertical motion when-
ever the magnitude of the vertical field increases along the radial direction.
Probably more intuitively, for a positive plasma current Iφ, hence a negative
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vertical field IPF B̃z,PF , the plasma is vertically unstable for negative values
∂B̃r,PF /∂zp. In this case indeed, as soon as the plasma filament moves ver-
tically it will meet a radial field which tends to further displace the filament
from its initial MHD Equilibrium position.

From the asymptotic solution (3.23), and for k̂2 > 0, we see that a vertical
instability is triggered by an initial plasma displacement or acceleration. This
zero order approximation suggests that an initial perturbation of the velocity,
keeping null the initial displacement and acceleration, does not trigger the un-
stable mode. Moreover a perturbation of the plasma position, keeping null
this time the initial velocity and acceleration, does not stimulate the Alfvénic
oscillations.

The asymptotic solution (3.23) suggests that we may disregard the fast
Alfvén dynamics in first approximation for ε → 0, as these appears as correc-
tions of order ε and ε2, which are moreover damped in few electromagnetic
time-scales. Anyway this is true solely for k̂1 > 0.

Tikhonov’s Theorem

In the framework of Perturbation Theory, there are few tools to conveniently
deal with multiple time-scale systems [119]. In particular, Tikhonov’s Theorem
provides some sufficient conditions to state that the solution of a dynamical
system in the form

ẋ = f
(
x, y, t

)
+ ε · · · x(t0) = x0

εẏ = g
(
x, y, t

)
+ ε · · · y(t0) = y0

(3.26)

in the limit ε→ 0 tends to the solution of the reduced problem

ẋ = f
(
x, y, t

)
x(t0) = x0

0 = g
(
x, y, t

) (3.27)

In our simple model, the state variables x is precisely given by the wall
current, and the vertical position of the plasma column in the poloidal plane,
x = (δIw, δzp), while the state variable y is given by the toroidal filament
vertical velocity y = δżp, see Equation (3.7). Hence we would greatly benefit
of this result, in order to state with mathematical rigour that we can indeed
neglect the mass.

Within the sufficient conditions however we find that the static part of the
reduced problem, g (δIw, δzp, δżp) = 0, has to be solved by an isolated root
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δżp = ϕ(δIw, δzp) (which has to be continuous). Moreover δżp has to be an
asymptotically stable solution of the problem

d

dt
δżp = g(δIw, δzp, δżp) (3.28)

for assigned δIw and δzp. Further, it is required that the initial conditions on
the velocity are in the domain of attraction of the reduced solution.

Unfortunately, we are not even in the conditions to satisfy the first hypoth-
esis: the force balance equation does not involve even the velocity, hence an
isolated root δżp does not exist, and virtually the force balance can be satisfied
for any value of the velocity.

As frequent, the introduction of even a small friction term sorts out most
of the undesirable mathematical features. Besides a fusion plasma may be
considered substantially a non-viscous fluid, due to its relatively low density,
it is convenient to account even for the eventually very small viscosity which
is present, as this changes the mathematical structure of the dynamical system.
Let us introduce a friction term in the linearised version of the momentum
balance Equation (3.7b), where we set mp = 0,

(
−∂Mp,w

∂zp

∣∣∣
zeq

)
IφδIw+

(
−
∂2Mp,PF

∂z2p

∣∣∣
zeq
IPF Iφ

)
δzp+ηzδżp = 0 (3.29)

It is seen immediately that a unique solution δżp can be identified, and that this
is an asymptotically stable solution of (3.28).

3.2 Fundamentals of Evolutionary Equilibrium

The discussion of Section 3.1 provide us with some confidence about the ac-
tual possibility of retaining the macroscopic plasma motions quasi-static, i.e.
evolving through mechanical equilibrium states. We illustrated indeed that in
some conditions, the Alfvénic dynamics determine solely local oscillations,
which have no influence on the actual macroscopic motion of the column. Be-
sides Tikhonov Theorem does not apply immediately, it is generally possible
to retain in a wide variety of experiments that in the limit τA/τw → 0 the true
solution of the massive problem converges towards the solution of the mass-
less model. Discarding viscous phenomena, it is hence possible to retain in
each time instant of the plasma evolution
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i×B = ∇p (3.30)

Here p is the local thermodynamic equilibrium pressure, governed by the
Equations of State for ideal gases. Accordingly, the field lines for the mag-
netic flux density and the electric current density will be tangent to pressure
equi-level surfaces (B · ∇p = 0, and j · ∇p = 0). In tokamak experiments,
these equi-pressure surfaces are generally nested tori [120], although of course
more complicate situations could exist in presence of singularities. The fact
that the magnetic field lines lay on toroidal equi-pressure surfaces allow to
conclude that two magnetic flux labels can be associated to each isobaric sur-
face. In particular on a toroidal surface there are two homology groups of close
lines, which are not reducible to points by continuous deformation. One is the
group of curves wrapping around the hole of the torus, in the almost-toroidal
direction, [Γt] (we are not yet assuming axisymmetry here). Since B · n̂ = 0,
all the curves in this group share the same linked magnetic flux, generally in-
dicated as poloidal flux. Similarly the group of curves wrapping around the
torus in the almost-poloidal direction will all link the same magnetic flux, this
time denoted as toroidal flux. These definitions are borrowed clearly from the
purely axisymmetric case.

In a dynamic situation, such the one we are examining, one may want
to account for the small friction the plasma come across during its motion.
This could be beneficial rather for questions of mathematical convergence, as
commented in last Section. In this case the dynamic equilibrium constraint
above should be generalize to

i×B = ∇ ·P where P = pI+Π(s) (3.31)

Here we indicated by I the Euclidean metric tensor. For this viscous situation,
the magnetic flux density and electric current density field lines shall lay on
those stress-free surfaces, where the projection of ∇ ·P is null.

Here, we will always retain the viscosity of the plasma negligible, besides
its mechanical inertia, hence enforcing the equilibrium constraint in its classi-
cal form (3.30). In this context, we define plasma boundary the last magnetic
flux surface encompassing finite plasma currents, together with the eventual
wall interface which is “wet” by these currents. The implicit assumption is
that there is a well defined topology for the magnetic surfaces, i.e. the mag-
netic field lines ergodically define surfaces and there is no magnetic chaos.

In general we will consider in this Chapter exclusively situations where
the plasma only faces the vacuum, without any current shared between the
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plasma and the wall. In this respect the plasma boundary is generally retained
to be the Last Closed magnetic Flux Surface (LCFS), not intersecting any solid
structure. When this surface is tangent to the wall interface in one single point,
we define the plasma as limiter. Further it is possible to break the topology
of field lines within the reactor chamber with a proper set-up of the externally
applied magnetic fields. In this case the LCFS is completely separated from the
solid structures, at the expenses of a singular point for the magnetic flux, where
the magnetic field is null. Such MHD equilibrium configurations are defined
as divertor, and the point of null magnetic field along the plasma boundary is
defined as X-point.

In the present Section, the important aspect we will stress several times
is that the equilibrium constraint forces B · n̂ = 0 everywhere at the plasma
boundary (even at the X-point, where the normal to the boundary is undefined,
B = 0). This condition will be exploited to investigate, by the means of a very
simplified quasi-cylindrical model, the actual relation between the evolution of
the plasma boundary and the evolution of currents in external conductors.

Let’s start immediately noting that provided the following information:

• Net plasma toroidal current

• Geometry of the plasma boundary

• Currents in external conductors

we could really set up a complete electromagnetic model of the outer domain to
the plasma boundary. Indeed, since B·n̂ = 0 at the plasma boundary, Theorem
2 of previous Chapter applies immediately. It is just sufficient to work out the
mathematics. In the language set up in previous Section, one could try to adopt
an integral formulation for the currents in passive conductors, and condense the
information about Apl outside the plasma in a surface integral. In particular,
we may represent the magnetic vector potential A within the plasma, up to its
boundary, as [121]

A = ψ∇φ∗ + ϕ∇θ∗ (3.32)

where the toroidal flux is a function of the poloidal flux, i.e. ϕ = ϕ(ψ).The
functions (θ∗, φ∗) are hence the curvilinear coordinates placed on any mag-
netic toroidal surface, in order to identify a specific point there. The plasma
boundary is identified by some “label” ψb or ϕb = ϕ(ψb). This representation
consistently guarantees that the magnetic flux density is tangent to the plasma
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boundary (B · n̂ = 0), moreover highlights that a finite magnetic flux exists
for each of the two homology groups of close curves laying boundary. The
general vector identity (2.81), at the plasma boundary, takes the simple form:

Apl = − 1

4π

∫
∂Ωpl

G (B× n̂) d2r − ϕb

∫
∂Ωpl

(∇θ∗ × n̂)×∇Gd2r (3.33)

All the information about Apl outside of the plasma boundary is contained
within the tangential component to the plasma boundary of the total magnetic
flux density and in the toroidal flux. Anyway, in a dynamic situation the actual
integration domain would be variable in time. Precise information on B × n̂
should be determined at each time as a function of the net toroidal plasma cur-
rent and of the external currents, see Equation (2.102) where all the matrices
are now function of the geometry of the plasma boundary, hence variable in
time. Clearly, this way does not appear very convenient numerically. More-
over, the actual information available in terms of plasma boundary evolution is
in general poor and we would prefer to know the plasma boundary as a result
of simulations, rather than providing it as an input.

With this consciousness, in the last paragraph of this Section, we will try to
find the actual magnetic field tangent to the plasma boundary based on totally
different considerations, and in particular relating this quantity to the solution
of the MHD problem within the plasma column itself. We will find that few
information about the current density within the plasma column will be suffi-
cient to determine B × n at the plasma boundary, meaning that few moments
of the actual current distribution are actually important for the determination
of the inductive coupling with structures.

We can finally start to derive our high-aspect-ratio circular tokamak model,
valuable in capturing many key features of MHD evolutionary equilibrium
models. We will introduce the assumptions step-by-step, mainly following
References [113, 114].

(a) Axisymmetry

We already explored how an axially symmetric magnetic field can be repre-
sented in cylindrical coordinates in the previous paragraph, we shall say some-
thing more here. Exploiting the axisymmetry hypothesis, we can focus on
an arbitrary poloidal half-plane (r, z) with r ≥ 0. In this respect, each pair
(r∗, z∗) is representative for the circumference of radius r∗, laying on the plane
z = z∗ and centred on the z-axis. We already defined ψ(r, z) = rAζ as the
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poloidal flux of B across such a circle, normalized by 2π. Similarly we define
the poloidal current per radian as I = rBζ/µ0. These two scalar functions
contain all the information about the magnetic field and current density:

B = ∇ψ ×∇φ+ µ0I∇φ, (3.34)

j = ∇I ×∇φ− r2
(
∇ · ∇ψ

µ0r2

)
∇φ. (3.35)

The above representation, makes moreover quite clear that the poloidal com-
ponent of the magnetic field is solely related to the toroidal component of the
magnetic vector potential, and vice-versa. Let us now define the trace in the
poloidal plane of the plasma boundary as separatrix line, we will denote it
with Γpl, similarly to what we did in Figure 2.1 for the trace of the Coupling
Surface. In particular we define the tangential direction to the separatrix as
îtan = iφ × n̂, where n̂ is the normal to the plasma boundary pointing out-
wards. With this notation, we notice explicitly that

Btan = −1

r

∂ψ

∂n
(3.36)

Application of (2.94) to the case of interest, taking the plasma boundary in lieu
of the Coupling Surface, leads then immediately to

(1− ν)ψ = ψext + ψpl (3.37)

where

ψpl =

∮
Γpl

G0

(
r, r′, z, z′

)
Btan(r

′, z′) dℓ′ (3.38)

The integral in ψ disappeared, thanks to the fact that the plasma boundary is
a flux surface. The axisymmetric Green function G0 was already defined in
(2.92), we here provide it more explicitly in terms of elliptic integrals:

G0

(
r, r′, z, z′

)
=

√
rr′

πk

[(
1− k2

2

)
K(k)− E(k)

]
(3.39)

Here, K(k) and E(k) are complete elliptic integrals of the first and second
kind respectively and k was already defined in Equation (2.91). In particular,
G0 is the Green function expressing the poloidal flux generated at the poloidal
plane location (r, z) by a unit current ring whose trace in the poloidal plane



3.2. FUNDAMENTALS OF EVOLUTIONARY EQUILIBRIUM 119

is given by (r′, z′). Indeed we can express the poloidal flux generated by the
axisymmetric toroidal currents circulating in the wall as

ψw =

∫
Sw

G0

(
r, r′, z, z′

)
µ0jw,φ

(
r′, z′

)
dr′ dz′. (3.40)

(b) Thin Wall

Later, we will consider a geometrically thin wall for the tokamak, i.e. dw ≪
bw. In order to calculate the potentials generated by such current, we can lump
the volumetric current density distribution circulating in such a conductor into
a thin layer placed at the wall mean surface kw,φ,

kφ,w =

∫
ℓ⊥

jw,φ dℓ (3.41)

With this definition the poloidal flux due to eddy currents in the wall is
efficiently described by

ψw =

∮
Γw

G0

(
r, r′, z, z′

)
µ0kw,φ

(
r′, z′

)
dℓ′ (3.42)

(c) large aspect-ratio

We introduce here the large aspect-ratio hypothesis. We can introduce an
arbitrary quasi-cylindrical reference system (ρv, uv, φ), centred at the poloidal
position (Rv, 0). Soon, we will be interested either to the “plasma” quasi-
cylindrical reference frame (ℓ, α, φ), centred in Rv = Rpl, or to the “wall”
quasi-cylindrical frame (ρ, u, φ), centred in Rv = Rw. See Figure 3.1 for a
synthetic scheme of the conventions adopted.

The idea here is to expand the Green function G0 for our axisymmetric
problem in the inverse aspect ratio of the tokamak. It is convenient in particular
to define as small parameter the half inverse aspect ratio

εν =
ρ

2Rν
. (3.43)

The requirement εν ≪ 1 in the region of interest will allow us to truncate the
Green function retaining only first order toroidal corrections. Here ν is again
a place-holder either to indicate the plasma reference frame ν = pl or the wall
reference frame ν = w [113, 122]. The complete elliptic integrals can be
represented via the asymptotic expansion:
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Figure 3.1: Reference Geometry for an high-aspect ratio tokamak with circular
plasma and circular thin wall.

K = λ+
λ− 1

4
k∗2 + · · ·

E = 1 + (λ− 0.5) k∗2 + · · ·
(3.44)

where

k∗2 = 1− k2 and λ = ln
4

k∗
(3.45)

and k(r, r′, z, z′) was defined in Equation (2.91). It is convenient to refer to
a Cartesian coordinate system in the poloidal plane (x̄, z̄) local to the quasi-
cylindrical reference frame origin, i.e. whose origin is in (Rν , 0). The follow-
ing transformations are valid

x̄ = Rw − r, z̄ = z (3.46)

It is convenient to introduce the following small parameters of order εv:
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(a)δx̃ =
x+ x′

2Rv

(b)δz̃ =
z − z′

2Rv

(c)δd̃ =

√
(x− x′)2 + (z − z′)2

2Rv

(3.47)

The last one is carrying the information on the distance in the poloidal plane
between “source” and “field” points, and it will carry the information about
the singularity of our Green function (3.39). Indeed, using definitions (2.91)
and (3.47) into (3.45) we have

k∗2 = δd̃2
1

(1− δx̃)2 + δz̃2
(3.48)

Hence k∗2 ∝ ε2v, and we may disregard all higher order terms in the expan-
sions (3.44) of the elliptic integrals, as they would appear as second or higher
order toroidal corrections. We can finally start to approximate our Green func-
tion as

G0 ≃
√
rr′

2πk
[λ− 2] (3.49)

Anyway, all of the terms in Equation (3.49) should be approximated for
consistency considering only toroidal corrections up to the first order. We con-
tinue then by expanding λ, as defined in Equation (3.45), in the small parame-
ters δx̃, δz̃ and δd̃, leading to

λ ≃ λ1 = ln

(
4

δd̃

)
− δx̃ (3.50)

We finally truncate also the remainder term of the Green function (3.49) to the
first order toroidal correction:

√
rr′

2πk
≃ Rv (1− δx̃) (3.51)

Substitution of Equations (3.50) and (3.51) into (3.49), neglecting second order
toroidal corrections, leads finally to

G ≃ Rv
2π

[(λ0 − 2) + (λ0 − 1) δx̃] (3.52)



122 CHAPTER 3. QUASI-STATIC MHD

where

λ0 = ln

(
4

δd̃

)
= ln

 8Rv√
(x− x′)2 + (z − z′)2

 (3.53)

For the following discussion, it is convenient to re-write at this stage the
approximate Green function (3.52) explicitly in terms of the quasi-cylindrical
coordinates (ρν , uν) and (ρ′ν , u

′
ν). In particular the quantity λ0 defined above

can be expressed as

λ0 = ln
8Rv
ρv,max

+ ln
1√

1 + 2ξcos(uν − u′ν) + ξ2
(3.54)

where

ξ =
ρv,min
ρv,max

, ρv,min = argmin{ρv, ρ′v}, ρv,max = argmax{ρv, ρ′v}

(3.55)
The second term at the r.h.s. of Equation (3.54) is a generating function for
Chebyshev polynomials of the first kind. Indeed, introducing the symbol t =
cos (uν − u′ν),

ln
1√

1− 2ξt+ ξ2
=

∞∑
m=1

ξmTm(t)

m
(3.56)

where:

T0(t) = 1 , T1(t) = t Tm+1(t) = 2tTm(t)− Tm−1(t) (3.57)

Considering t = cosu′ − u and standard trigonometric properties it is also
possible to prove:

ln
1√

1− 2ξt+ ξ2
=

∞∑
m=1

ξm

m
cosm(u′ν − uν) (3.58)

In general all of the terms in Equation (3.58) must be retained as ξ, besides
being less than unity, is not necessarily a small parameter. Hence, we can
finally write:
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G1 =
Rv
2π

{[
ln

(
8Rv

ρv,MAX

)
− 2 +

∞∑
m=1

ξm

m
cosm(u′ − u)

]

− ρv cos v + ρ′v cos v
′

2Rv
·

[
ln

(
8Rv

ρv,MAX

)
− 1 +

∞∑
m=1

ξm

m
cosm(u′ − u)

]}
(3.59)

(d) Circular plasma cross-section

For an high-aspect-ratio tokamak plasma of circular cross section the appli-
cation of Equation (3.38) via the approximate Green’s function (3.59) is par-
ticularly simple. Indeed, taking a quasi cylindrical reference frame (ℓ, α, φ)
centred at Rv = Rpl, all the “source” points are located at the plasma minor
radius ℓ′ = b, and for all the field points exterior to the plasma ξ = ℓ/b. Con-
sidering the asymptotic solutions of the outer magnetostatic problem, it could
be possible to motivate the following widely used expansion of Btan in the
inverse aspect ratio of the plasma [107, 123]:

Btan = BJ

(
1− b

Rpl
Λcosα

)
(3.60)

Using approximations (3.59)-(3.60) into the convolution product (3.38) we
finally obtain:

ψpl = ψpl,0(ℓ) + ψpl,1(ℓ) cosα (3.61)

where :

(a) ψpl,0(ℓ) =
µ0Rpl
2π

J

(
ln

(
8Rpl
ℓ

)
− 2

)
(b) ψpl,1(ℓ) = −

µ0Rpl
2π

J
ℓ

2Rpl
·
[
b2

ℓ2
·
(
Λ +

1

2

)
+ ln

(
8Rpl
ℓ

)
− 1

]
(3.62)

It is worth stressing here that we discarded in the result any second or-
der toroidal correction, as this would be inconsistent with the approximations
adopted for the Green function and the magnetic flux density. Notice that ψpl,1
is a first order toroidal correction as compared to ψpl,0
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(e) Circular crown wall cross-section

We consider the vacuum vessel surrounding the circular plasma to have a cir-
cular crown cross section. We assume that such a current distribution is well
approximated via the representation:

kφ,w =
Jw
2πbw

+
Jcw
2πbw

cosu (3.63)

The Biot-Savart law (3.42) for such a current distribution, together with
the high-aspect-ratio hypothesis for the Green function (3.59), leads to

ψw = ψw,0 + ψw,1 cosu (3.64)

In particular, the following inductance coefficient matrix can be defined as
a function of ρ: [

ψ0,w

ψ1,w

]
=

[
L0,0(ρ) L0,1(ρ)
L1,0(ρ) L1,1(ρ)

]
︸ ︷︷ ︸

L(ρ)

·
[
Jw
Jcw

]
(3.65)

where:

L(ρ) =

 µ0Rw

2π

[
ln 8Rw

ρmax
− 2
]

−µ0bw
8π

[
ln 8Rw

ρmax
− 1 + 1

2

(
ρ
bw

)2]
−µ0ρ

4π

[
ln 8Rw

ρmax
− 1 + 1

2
bw
ρ ξ
]

µ0Rw

2π
ξ
2


(3.66)

Here ρmax is the biggest between the wall minor radius bw and the field
point at the minor radius ρ. Hence, inside the plasma-wall gap ρmax = bw.
Moreover, ξ = ρmin/ρmax equals ρ/bw inside the gap. It is interesting to note
as the inductance matrix L is consistently symmetric for ρ = bw.

Before enforcing the weak form of Ohm’s law, providing an integral for-
mulation in the same stream of what discussed in Section 2.4, it is convenient
to express the plasma poloidal flux in the quasi-cylindrical reference frame of
the wall. We indicate the same quantity, expressed in (ρ, u) coordinates by an
hat,

ψ̂pl(ρ, u) = ψ̂pl,0 + ψ̂pl,1 cosu+ ψ̂pl,2 cos 2u (3.67)

where, with the short-hand ψJ = µ0RwJ/2π
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(a) ψ̂pl,0 = +ψJ

{[
ln

8Rw
ρ

− 2

]
+

∆b

2Rw

[
ln

8Rw
ρ

− 1

2

]}
(b) ψ̂pl,1 = −ψJ

{
ρ

2Rw

[(
b

ρ

)2(
Λ +

1

2

)
+ ln

8Rw
ρ

− 1

]
+

∆b

ρ

}

(c) ψ̂pl,2 = +ψJ

{(
∆b

ρ

)2 1

2
+

∆b

2Rw

1

2

[
1 + 2

(
b

ρ

)2(
Λ +

1

2

)]} (3.68)

We can enforce finally Ohm’s law in the conducting thin wall in its weak
form, using as test functions the same we used to represent the current density.
Indicating with σ the conductivity, and with dw the wall thickness, considering
moreover the relation between wall fluxes and currents (3.65), we find

(a)Jw = −2πσbwdw
Rw

[
d

dt
ψ̂pl,0 + L0,0

d

dt
Jw + L0,1

d

dt
Jcw

]
(b)Jcw = −2πσbwdw

Rw

[
d

dt
ψ̂pl,1 + L1,0

d

dt
Jw + L1,1

d

dt
Jcw

] (3.69)

where the inductances (3.66) are all evaluated for ρ = bw, and we omitted this
explicit dependence in the notation.

(f) The Equilibrium constraint

In order for the plasma boundary to be effectively a flux surface, the α-varying
term in the plasma poloidal flux expression (3.61) has to be exactly compen-
sated by the poloidal flux applied by the external conductors. Luckily, the
u-varying external poloidal flux can be readily expressed as

ψext,1 =

(
ψa,1(ρ) + ψw,1(ρ)

ρ

)
· ρ cosu (3.70)

where the term in brackets is ρ-independent and ρ cosu = ℓ cosα−∆b. Hence
the equilibrium condition is easily enforced requiring
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ψa,1(ρ) + ψw,1(ρ)

ρ
= −

ψ1,pl(ℓ)

ℓ

∣∣∣∣∣
ℓ=b

= Rpl
µ0J

2πb

b

2Rpl

[(
Λ +

1

2

)
+ ln

8Rpl
b

− 1

]
︸ ︷︷ ︸

B⊥,ext

(3.71)

We highlighted in this expression the vertical magnetic flux density Bz,ext =
−B⊥,ext, provided by external currents to guarantee the plasma boundary to
be a flux surface:

B⊥,ext =
µ0J

2πb

b

2Rpl

[(
Λ +

1

2

)
+ ln

8Rpl
b

− 1

]
(3.72)

We indicate by the symbol ∆t the time variations of a physical quantity
between the initial equilibrium time instant t0, where all eddy currents in the
vessel are null, and the generic time instant t. With this notation, the equilib-
rium constraint (3.71), together with the inductance definitions (3.64)-(3.66),
leads to the relation

L1,0(bw)Jw + L1,1(bw)J
c
w = −bw∆t (RplB⊥,ext) (3.73)

The equilibrium constraint hence enforces

L1,0(bw)
d

dt
Jw + L1,1(bw)

d

dt
Jcw = −bw

d

dt

ψ̂1,pl(b)

b
(3.74)

which substituted in (3.69b) provides

Jcw = −τw
d

dt

[
J
∆iw −∆b

bw

]
(3.75)

where we defined the wall time constant

τw = µ0σbwdw (3.76)

and the ideal wall shift

∆iw = bw · bw
2Rw

[(
1− b2

b2w

)(
Λ +

1

2

)
+ ln

bw
b

]
(3.77)
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The latter is the plasma shift necessary for the wall to be a flux surface, at
least up to first order toroidal corrections in ϵw and to first order column shift
corrections in ∆b/bw (i.e. neglecting corrections of order ∆b/Rw, and second
and higher order corrections both in ϵw and ∆b/bw).

The actual physical meaning of (3.77) is easily understood in the ideal wall
limit, i.e. τw → ∞. A super-conducting wall freezes the normal component
to the wall of the magnetic flux density. Moreover, the overall poloidal flux
cannot vary outside the wall in reason of even rapid variations in the plasma
current or geometry. For a constant plasma current, Equation (3.75) reveals
that the actual distance between the plasma geometrical centre and the ideal
wall geometrical centre is fixed. This guarantees that the normal component
of the magnetic flux density at the wall is indeed fixed. Whenever the plasma
current varies, the normal component of the magnetic flux density can be pre-
served solely varying the distance between the actual geometrical centre and
the ideal one. This information is still correctly reproduced by Equation (3.75).
The consequences of Equation (3.75) in the ideal wall case will be gain dis-
cussed later, when we provide an explicit expression of Λ, hence of ∆iw in
terms of plasma internal parameters.

We conclude this paragraph showing how the evolution Equation (3.69)
looks like disregarding second order toroidal corrections:

Jw = −τ0,w
d

dt
(J + Jw) (3.78)

where

τ0,w = τw

(
ln

8Rw
bw

− 2

)
(3.79)

This makes clear that in the ideal wall case all of the net toroidal plasma
current variations will be found as net toroidal current variations in the wall.
This correctly represents the poloidal flux conservation in the outer domain in
our high aspect-ratio framework.

(g) ψ and Bpol in the plasma-wall gap

Here we merge together the results of this section to provide the general ex-
pression of the poloidal flux in the plasma-wall gap as a function BJ , Λ and
Jw, besides of the geometrical parameters which identify the plasma boundary,
b and ∆b. The parameters BJ and Λ describe the tangential component of the
poloidal magnetic field at the plasma boundary, while Jw is the net toroidal
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current in our thin, high-aspect-ratio, circular wall. We assume then that Jcw is
automatically compatible with the equilibrium constraint, provided the above
quantities.

We will write down the poloidal flux in the wall quasi-cylindrical refer-
ence frame. Formulas presented will be valid in points of the poloidal plane
internal to the wall and external to the plasma boundary. We just need to sum
up Equations (3.67)-(3.68) for the plasma poloidal flux and Equations (3.64)-
(3.66) for the wall poloidal flux, considering the Equilibrium constraint (3.71)
is satisfied. We have

ψ(ρ, u) = ψ0(ρ) + ψ1(ρ) cosu+ ψ2(ρ) cos 2u (3.80)

where

(a) ψ0 = ψ0,a + L̃wJw +
µ0Rw
2π

[
ln

8Rw
ρ

− 2

]
J+

µ0Rw
2π

∆b

2Rw

[
ln

8Rw
ρ

− 1

2

]
J

(b) ψ1 =
µ0Rw
2π

(
∆(ρ)−∆b

ρ

)
J

(c) ψ2 = +
µ0Rw
2π

{(
∆b

ρ

)2 1

2
+

∆b

2Rw

1

2

[
1 + 2

(
b

ρ

)2(
Λ +

1

2

)]}
J

(3.81)
where in Equation (3.81b) we defined

∆(ρ) = ρ · ρ

2Rw

[(
1− b2

ρ2

)(
Λ +

1

2

)
+ ln

ρ

b

]
(3.82)

such that ∆(bw) = ∆iw as defined in Equation (3.77). Indeed, from (3.81b),
whenever ∆b = ∆(ρ∗) the corresponding ρ = ρ∗ surface is a magnetic flux
surface. Moreover we defined

L̃w = L0,0(bw) =
µ0Rw
2π

(
ln

8Rw
bw

− 2

)
(3.83)

The higher order correction terms in ∆b/Rw and (∆b/ρ)
2 may be dis-

carded in first analysis. The magnetic flux density in (ρ, u) components is
given by
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(a) Bρ =
1

Rw

(
1 +

ρ

Rw

)
1

ρ

∂ψ

∂u
= Bρ,0 +Bρ,1 sinu+Bρ,2 sin 2u

(b) Bu =
1

Rw

(
1 +

ρ

Rw

)
∂ψ

∂ρ
= Bu,0 +Bu,1 cosu+Bu,2 cos 2u

(3.84)

By definitions above and the overall poloidal flux expression in the plasma-
wall gap (3.80)-(3.81), we get for Bρ

(a) Bρ,0 = 0 (3.85)

(b) Bρ,1 = − ψ1

ρRw
= BJ

b
ρ ·

∆b−∆(ρ)
ρ

(c) Bρ,2 = − ψ2

ρRw
= −1

2BJ
b
ρ

[(
∆b
ρ

)2
+
(

∆b
2Rw

)
·
{
1 + 2

(
b
ρ

)2 (
Λ + 1

2

)]}
Notice that Bρ,0 = 0, consistently with the solenoidality of the magnetic field.
Further, we get for Bu

(a) Bu,0 = −BJ bρ (3.86)

(b) Bu,1 = −BJ bρ
[
∆b−∆(ρ)

ρ + ρ
Rw

(
Λ + ln ρ

b

)]
(c) Bu,2 = BJ

b
ρ

[(
∆b
ρ

)2
+
(

∆b
2Rw

)
· 2 b2

ρ2

(
Λ + 1

2

)]
These results will serve as a basis to derive handy formulas describing

ideal wall forces and energy fluxes during plasma transients in the following
Sections.

(h) Solutions for Btan via inner problem

As hinted, we want now to evaluate the magnetic flux density at the plasma
boundary exploiting the equilibrium constraint within the plasma. The gen-
eral procedure which allows to extrapolate certain moment of Btan in terms of
some other moment of the plasma current distribution is based on a weighted
residual method. The equilibrium constraint within the plasma is imposed in
weak form, by appropriate choice of test basis functions. Now, we apply the
method to our high aspect ratio circular plasma. The large aspect-ratio hypoth-
esis, allowing the magnetic field representation (3.60) at the plasma boundary,
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will be the key assumption to determine Λ, as defined in Equation (3.60), in
terms of few internal plasma quantities: the average kinetic pressure and the
average poloidal magnetic energy density within the plasma cross-section.

As a first step, we rewrite our MHD mechanical equilibrium constraint
(3.30) in a more convenient form, which will highlight in particular the role of
the magnetic flux density at the plasma boundary in the equilibrium problem.
The following manipulation is based on the vector identities:

(a)∇ (v ·w) = v × (∇×w) +w × (∇× v) + (v · ∇)w + (w · ∇)v.

(b)∇ · (v ⊗w) = (∇ · v)w + (v · ∇)w.

(c)∇ · fv = f∇ · v + v · ∇f
(3.87)

Using Ampere’s law (∇ × B = µ0j) and the vector identity (3.87a), the
left hand side of the MHD equilibrium Equation (3.30) can be written as

(∇×B)

µ0
×B = −∇

(
B2

2µ0

)
+ (B · ∇)

(
B

µ0

)
(3.88)

hence the equilibrium requirement becomes

∇
[
p+

B2

2µ0

]
− B

µ0
· ∇B = 0 (3.89)

For the sake of completeness, it is worth mentioning that, exploiting the vector
identity (3.87b) and the indivergence of the induction magnetic field, we can
express the MHD equilibrium constraint also in terms of the Maxwell stress
tensor:

∇ ·T = 0, (3.90)

where

T =

(
p+

B2

2µ0

)
I− BB

µ0
. (3.91)

However we here enforce (3.89) in weak form, i.e. we multiply Equation
(3.89) by an arbitrary test vector field q and integrate over the plasma volume.
For independent vector fields q, defined in the plasma region, we can this way
study different integral consequences of the equilibrium constraint within the
plasma. Let us first scalar multiply (3.89) by q,
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q · ∇
[
p+

B2

2µ0

]
= q · (B · ∇)B (3.92)

Using the vector identity (3.87c) and the Leibniz rule for directional deriva-
tives, we get

∇ ·
[(
p+

B2

2µ0
q

)]
−
(
p+

B2

2µ0

)
∇ · q = (B · ∇) (B · q)−B · (B · ∇)q

= ∇ · (B · q)B−B · (B · ∇)q
(3.93)

Hence finally,

∇·
[(
p+

B2

2µ0

)
q+ (B · q)B

]
=

(
p+

B2

2µ0

)
∇·q−B ·(B · ∇)q (3.94)

We are rather interested in the radial force balance of the plasma column.
Hence, we first take q = ir, that is the unitary vector indicating the radial
direction in the cylindrical reference frame (r, φ, z). Clearly, we have

∇ · ir =
1

r

∂

∂r
r =

1

r
, (B · ∇) ir =

Bζ
r

∂

∂ζ
ir =

Bζ
r
iζ (3.95)

Using (3.95) in the equilibrium constraint (3.94) we recover Equation (6.3)
in Chapter 2 of Reference [123], despite a misprint there,

∫
+∂Vp

[(
p+

B2

2µ0

)
ir + (B · ir)B

]
· dS = 2π

∫
Ωp

(
p+

B2

2µ0
−
B2
ζ

µ0

)
dS

(3.96)
The first integral is defined along the plasma boundary, where moreover we
have B · dS = 0.

Following we consider the test vector field q = r, which is the vector
from the origin of the reference system to any point of the space. We notice
explicitly as in the cylindrical basis (r, φ, z) the components of such a vector
are (r, 0, z), hence

∇ · r =
1

r

(
∂

∂r
r2 +

∂

∂z
z

)
= 3, (B · ∇) r = B · I = B (3.97)
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Hence, the weak form of the MHD Equilibrium constraint (3.94) with q =
r finally take the form of Equation (6.1) in Chapter 2 of Reference [123]:

∫
+∂Vp

[(
p+

B2

2µ0

)
r+

(B · r)B
µ0

]
· dS = 2π

∫
Sp

(
3p+

B2

2µ0

)
dS (3.98)

Equations like (3.96) and (3.98) can be used to estimate a certain moment
of the distribution of the magnetic flux density at the boundary. In particular,
for the high aspect ratio circular tokamak, we can assume the poloidal mag-
netic flux density tangent to the plasma boundary to have the form (3.60) and
the toroidal magnetic flux density to have the form

Bφ =
µ0I

r
≃ µ0I

Rpl
(1 + ϵplcosα) (3.99)

where I is the poloidal current per radian as already defined in Equations
(3.34)-(3.35). Plugging the magnetic field representations (3.60) and (3.99)
into the MHD Equilibrium constraints (3.96)-(3.98) we obtain

(a) −
⟨Bφ⟩2∂Vpl

2µ0
+

B2
J

2µ0
(1 + 2Λ) = ⟨p⟩Spl

+
〈
B2

p

2µ0

〉
Spl

−
〈
B2

φ

2µ0

〉
Spl

(3.100)

(b)
⟨Bφ⟩2∂Vpl

2µ0
+

B2
J

2µ0
(3 + 2Λ) = 3 ⟨p⟩Spl

+
〈
B2

p

2µ0

〉
Spl

+
〈
B2

φ

2µ0

〉
Spl

Here second order toroidal corrections have been discarded for consistency
with the flux density representations. By difference of the two Equations
above, we get the pressure balance equation:

⟨p⟩Spl
+

〈
B2
φ

〉
Spl

− ⟨Bφ⟩2∂Vpl
2µ0

=
B2
J

2µ0
(3.101)

Normalizing Equation (3.101) by the magnetic energy densityB2
J/2µ0, we get

moreover 〈
B2
φ

〉
Spl

− ⟨Bφ⟩2∂Vpl
B2
J

= 1−
⟨p⟩Spl

B2
J/2µ0︸ ︷︷ ︸
βp

(3.102)

We introduced here a formal definition for the “poloidal beta” βp, which is
the average pressure in the plasma cross-section normalized by the average
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poloidal magnetic energy density at the plasma boundary we would have in
the purely cylindrical case B2

J/2µ0. This is an important figure of merit for
tokamak plasmas: the higher βp the higher the kinetic pressure (hence the
temperature) we are able to reach for a given plasma current. Equation (3.102)
allows to discriminate the actual orientation of poloidal currents within the
plasma [124]. For βp < 1 the toroidal field within the plasma on average is
higher than the toroidal field at the plasma boundary, hence poloidal plasma
currents flow in the same direction as currents in Toroidal Field coils. For
βp = 1 we do not predict poloidal currents, or at least an overall net poloidal
current (current densities in the poloidal direction can still exist locally, and
compensate each other in the integral relation (3.102)). For βp > 1 we expect
instead a net poloidal plasma current which counter-react the TF coils currents.

Summing up the constraints (3.101a) and (3.101b) we finally obtain an
expression for the parameter Λ of the poloidal field representation (3.60) in
terms of internal plasma parameters:

Λ =
⟨p⟩Spl

B2
J/2µ0︸ ︷︷ ︸
βp

+
1

2

〈
B̄2
p

〉
Spl

B2
J︸ ︷︷ ︸
ℓi

−1 (3.103)

Similarly to βp, we defined here the “internal inductance” as the the aver-
age magnetic energy density within the plasma cross section normalized by
B2
J/2µ0. This is an indicator on the distribution of electric current density

within the cross-section: low values of ℓi indicate a rather flat profile of the
toroidal current density distribution, while high values of ℓi indicate that the
toroidal current density is very much peaked towards the centre of the plasma
cross-section.

3.3 Classification of Equilibrium Problems

Now that the basics conceptual ingredients are set up, we can provide an intu-
itive classification of the MHD equilibrium problems one may want to solve.
Moreover we can grasp the problem of the coupling with external conductors
in a very concise way.

Fixed boundary - Forward problem We already stressed that if we know
the actual plasma boundary and all of the external currents (say the active
currents, we suppose the eddy currents to be zero) we are able to solve the
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magnetic field problem in the whole exterior domain to the plasma, up to the
plasma boundary. In particular, for the high-aspect ratio circular tokamak,
providing the plasma shift ∆b and minor radius b, the plasma current J and the
magnetic field due to external currents B⊥,ext, we uniquely determine BJ :

BJ =
µ0J

2πb
(3.104)

and Λ

Λ = −
B⊥,ext
BJ

·
2Rpl
b

− ln
8Rpl
b

+
1

2
(3.105)

The parameters BJ and Λ completely determine the magnetic field tangent to
the boundary for the high-aspect-ratio circular tokamak. The problem of the
determination of Btan at the plasma boundary, for assigned plasma boundary,
plasma current and external magnetic fields may be correctly defined as the
MHD fixed boundary equilibrium forward problem. Once Btan is known at
the plasma boundary, the equilibrium constraint can be used to solve the MHD
Equilibrium problem within the plasma, as a Neumann problem.

Fixed boundary - backward problem In previous Section, when providing
the expressions for the overall poloidal flux in the plasma-wall gap, we as-
sumed in some sense to have a complete knowledge about the plasma bound-
ary geometry, and the tangential component of the magnetic field. Moreover
we took as known also the net current in the thin wall Jw. We observed that Jcw
was then automatically assigned, so for the equilibrium constraint to be valid.
This apparently innocent procedure hides a quite different way of using the
MHD equilibrium model.

We may correctly define the problem of determining external currents for
assigned plasma shape, plasma current and tangential magnetic field to the
boundary as the MHD fixed boundary equilibrium backward problem. For the
sake of understanding imagine now the wall currents Jw and Jcw as if they
are really active currents, we shall come back to the dynamic problem in few
paragraphs. Notice that, prescribed the plasma boundary geometry, and the
tangential component of the magnetic field, the problem of the contemporary
determination of Jw and Jcw would be undetermined. The only well determined
quantity is the vertical field to provide to keep the plasma in that particular
equilibrium configuration B⊥,ext. How this externally applied vertical field
is produced by the currents Jw and Jcw is to some extent arbitrary, since they
both produce a vertical field in the tokamak. More generally we may imagine



3.3. CLASSIFICATION OF EQUILIBRIUM PROBLEMS 135

then to substitute our wall with some other conductor, which is not capable of
generating a vertical field. In this case, rather than having infinite solutions,
we would not have even a single one.

We are simply stating that the problem of the determination of currents
which provide the magnetic field necessary to keep an MHD plasma in Equi-
librium with some prescribed plasma boundary is ill-posed in the sense of
Hadamard [125].

Free-boundary There is a last opportunity: we may decide to assign all the
external currents3, the overall plasma current, and information on the tangen-
tial field, assigning BJ and Λ. This represents enough information to deter-
mine the plasma minor radius b and the plasma shift ∆b. Indeed, from J and
BJ we immediately obtain the plasma minor radius:

b =
µ0J

2πBJ
(3.106)

and finally Rpl is easily obtained considering also the externally applied verti-
cal field B⊥,ext and the value of Λ:

Rpl = − BJ
B⊥,ext

· b
2

[
Λ + ln

8Rpl
b

− 1

2

]
(3.107)

This last possibility represents the most embryonic example of a free-boundary
MHD equilibrium problem. Notice that BJ and Λ are assigned besides we do
not know about the actual location and minor radius of the circular plasma
boundary. This is one of the key ingredient of free-boundary equilibrium as
seen from the exterior domain: we have actually to assign some information
on the magnetic field tangent to the plasma boundary, besides we do not know
neither the shape nor the location of this surface.

The next ingredient in setting up a free-boundary equilibrium problem is
then some machinery which allows to relate BJ and Λ to the geometrical pa-
rameters b, Rpl, the plasma current J and the external fields. Intuitively, if
we are able to assign a current density distribution for any arbitrary plasma
boundary, then we are in the position to relate the tangential field to the plasma
boundary to the actual geometry of the boundary itself. Hence, the machinery
we are looking for is precisely the solution of the MHD equilibrium problem

3again we consider a static situation where also the wall currents are assigned, the role of
induction is discussed later.
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within the plasma. As we shall see, the MHD Equilibrium condition constrains
indeed the possible ways in which we can choose such a current distribution.

Evolutionary Equilibrium Before going further and enter the rather tech-
nical aspects of the MHD equilibrium problem within the plasma itself, let us
explain which is then the role of eddy currents, and how we move from static
MHD equilibrium to evolutionary MHD equilibrium problems. For our sim-
ple high-aspect-ratio circular test case, we shall admit that the vertical field
provided by external conductors can be in part produced by the unknown wall
currents Jw and Jcw defined in Equation (3.63). Vessel currents have their own
dynamics (3.69a, 3.75), given in first approximation by

(a) Jw = τ0,w
d

dt
(Jw + J)

(b) Jcw = τw
d

dt

[
J
∆b −∆iw

bw

] (3.108)

These are accompanied by the equilibrium constraint (3.71), where wall cur-
rents are made explicit via (3.65)-(3.66):

−
[
µ0
4π

(
ln

8Rw
bw

− 1

2

)]
Jw +

[
µ0
4π

Rw
bw

]
Jcw = −Rpl (B⊥,ext −B⊥,act)

(3.109)
Here B⊥,ext = B⊥,ext(BJ ,Λ, b, Rpl) is the vertical field necessary to keep
the plasma column in equilibrium and provided by (3.72). The vertical field
provided by external active coils is assigned and indicated by B⊥,act. At the
initial time instant the wall currents are assigned to be null, i.e. Jw(t0) =
Jcw(t0) = 0.

Now, depending on the type of problem, different quantities can be as-
signed. We may assign the plasma boundary evolution, i.e. ∆b(t) and b(t),
besides the plasma current J(t), obtaining a forward fixed boundary evolu-
tionary equilibrium problem. This may be used for estimating eddy currents
when the plasma boundary evolution is known precisely. Moreover the tan-
gential field to the boundary is an output of such procedure, which can be used
in some time instant to compute the poloidal flux map within the boundary.

Imagine now to be able to control perfectly one of the two degrees of free-
dom of the current in the wall, say Jcw, hence dropping its evolution Equation
from (3.108). We may want to prescribe some desired evolution for the plasma
boundary geometry, and for the tangential magnetic field to the boundary (i.e.
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for the current density distribution inside the plasma). Then one can formu-
late the control problem of what is the best Jcw to enforce this evolution. The
equilibrium problem this time is evolutionary, fixed-boundary and backward.

Finally prescribing BJ(t) and Λ(t), and as usual the plasma current J(t),
we can contemporaneously determine the evolution of the plasma boundary
and of the wall currents. In principle, this is already a free-boundary evo-
lutionary equilibrium problem. However, in more general situations, it can
be difficult to prescribe information about Btan without knowing the actual
plasma boundary, and we will need to solve the MHD equilibrium problem
within the plasma precisely to add some constraint between plasma geometry,
external currents and magnetic field at the plasma boundary. This is further
commented in next Section.

3.4 CarMa0NL

CarMa0NL is a free-boundary evolutionary equilibrium model, first introduced
in [62], later used for a variety of a tasks, ranging from the analysis of forces
generated on wall structures during fast plasma transients [126, 127, 128, 85],
estimation of plasma energy losses [35] and analysis of disruption events in
existing devices [84, 129].

In this Section we provide the essential structure of the numerical model,
explaining how to couple an axisymmetric free-boundary MHD Equilibrium
solver with the fully 3D volumetric model of external conductors, already de-
scribed in Section 2.4. A suitable Coupling Surface, located outside and in the
immediate proximity of the first-wall, bounds the computational domain of the
MHD equilibrium problem, as indicated in Figure 2.1. The first-wall delimits
the portion of the MHD computational domain where the plasma can actually
live.

The Coupling Surface is assumed to be axisymmetric, and more generally
all the physical quantities within the MHD Equilibrium problem are retained
independent of the toroidal angle. A differential formulation is set up for the
solution of the free-boundary MHD Equilibrium problem within the Coupling
Surface, described in detail in subsection 3.4.1.

We will see that the boundary conditions for the MHD equilibrium prob-
lem will require to evaluate the poloidal flux due to the external currents, both
active and passive, at the Coupling Surface. The formulation has some similar-
ity with the one presented in [115], indeed the two models adopt also the same
finite elements, i.e. second order Lagrangian triangles, for the description of
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the poloidal flux in the inner domain Ωin. In this respect, it is worth noticing
that the magnetic field is determined by the superposition of the plasma and
external currents produced magnetic fields. The solution of the vacuum outer
magnetic problem can be determined separately, considering the plasma as the
only magnetic field source. The solution of such problem is clearly axisym-
metric and is found considering an enlarged semi-circle domain, encapsulating
Ωin [115]. Anyway this “plasma-only” problem is solved once for all before
the simulation, providing the relation between plasma currents within Ωin and
plasma poloidal flux at the boundary ∂Ωin. Later, when discussing applica-
tions, we will see that CREATE-L represents a convenient tool for providing
the initial flux map to start a CarMa0NL simulation.

The poloidal flux produced by the wall 3D currents at the Coupling Sur-
face will be easily computed via Biot-Savart integrals, we need just to average
ψext = rAφ,ext along the toroidal angle, configuring this way a real poloidal
flux. The additional non-trivial passage is how to correctly reproduce the in-
duced voltages due to plasma variations on structures. The basic idea is to use
the Virtual Casing Principle and describe the plasma produced poloidal flux ψp
via a suitable set of equivalent filamentary toroidal currents placed in the nodes
of the Coupling Surface. In subsection 3.4.2 we describe how these equivalent
currents are found in terms of the plasma poloidal flux.

The overall evolutionary equilibrium model is finally summarized at the
end of this Section, providing few comments on its numerical solution.

3.4.1 The Grad-Shafranov Solver

We already observed that for a plasma in MHD equilibrium, equi-pressure
surfaces are also magnetic flux surfaces: current and magnetic flux density
field lines are tangent to them. These equi-pressure surfaces are nested tori
in case the magnetic fields are regular enough [120]. Up to know, we did not
comment much on the consequences of MHD equilibrium within the plasma
itself, except for the key role of figures of merit as the poloidal beta βp and the
internal inductance ℓi. It is worth here a short comment, in order to understand
how an evolutionary equilibrium free-boundary model can be set up.

Observe in particular, from the current density representation in terms of
poloidal flux ψ and poloidal current I (3.114), that the toroidal current density
in axisymmetric geometry is expressed as

jφ = −r∇ · ∇ψ
µ0r2

= L∗ψ (3.110)
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The elliptic operator acting on ψ at the r.h.s. is defined as the Shafranov oper-
ator, and sometimes indicated by the symbol L∗ [130]. This is just a represen-
tation for the toroidal current density coherent with the magnetic flux density
representation given in (3.34). Now, while in vacuum we have jφ = 0, within
the plasma the equilibrium constraint implies, for this axisymmetric case, that
p = p(ψ), I = I(ψ) and

jφ = r
dp

dψ
+

µ0
8π2r

dI2

dψ
(3.111)

Here the function dp/dψ and dI2/ dψ should be specified based on the real
toroidal current distribution within the palsma, which generally means on cal-
culations of transport codes. From the point of view of MHD equilibrium these
are free-functions which need to be specified in order to provide a closure to
the Grad-Shafranov Equation resulting from the contemporary consideration
of Equations (3.110) and (3.111):

L∗ψ = 2πr
dp

dψ
(ψ) +

µ0
4πr

dI2

dψ
(ψ) (3.112)

The idea is now to solve Equation (3.112) within the domain Ωin, pre-
scribing coherently the electric current density to be null outside the plasma
boundary. The free-functions dp/dψ and dI2/dψ shall accommodate this
feature. Anyway the plasma boundary is determined by the unknown flux map
itself. For this reason the free functions are specified in terms of a normalized
poloidal flux:

ψ̄ =
ψ − ψa
ψb − ψa

, (3.113)

where we have introduced the new unknowns ψa, poloidal flux value at the
magnetic axis, and ψb, poloidal flux value at the plasma boundary. The free
functions can be then specified as

(a)
dp

dψ
= λ

β0
R0

(
1− ψ̄αm,p

)αn,p

(b)
dI2

dψ
=

8π2

µ0
λR0 (1− β0)

(
1− ψ̄αm,I

)αn,I

so that the overall expression for the current density is
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jζ = λ β0 ·
r

R0

(
1− ψ̄αm,p

)αn,p

+ λ(1− β0) ·
R0

r

(
1− ψ̄αm,I

)αn,I

(3.114)

Here the input parameters to vary the toroidal current density distribution are
(β0, αm,p, αn,p, αm,I , αn,I), while R0 is a reference major radius, generally
taken to be the major radius of the vacuum vessel, i.e. R0 = Rw. The val-
ues of ψa and ψb have to be determined self-consistently, and in particular ψb
specifies the plasma boundary. For this reason the following constraints are
enforced:

(a) ψa = ψ(PA)

(b) ψb = ψ(PB).
(3.115)

We hence need to specify, given a flux map, the locations of the magnetic axis
and of the point defining the plasma boundary. This can be a non-trivial task,
and represents an important feature of the solver. The boundary point PB , in
absence of halo currents or scrape-off layers, is always taken to be either the
limiter point where the Last Close Flux Surface intersect solid walls, or the
X-point for diverted configurations. The position of the magnetic axis is a
singular point for the flux map, where the nested toroidal surfaces degenerate
to a toroidal line. We need finally a constraint in order to specify λ, which is
purposely introduced in the parametrization above to allow for the imposition
of the net toroidal current, which is an input for the model:∫

Ωpl

jφ dS = J (3.116)

The weak form for the Grad-Shafranov equation (3.112) is enforced via a
Galerkin Finite Element Method, using 2D lagrangian elements [115, 62],

A ψ = g(ψ, s, u)− Â ψ̂ (3.117)

here ψ is the vector containing the degrees of freedom for the poloidal flux in
the internal nodes of the discrete domain. Similarly, the vector ψ̂ contains the
degrees of freedom of the poloidal flux in the boundary nodes. The vector w
contains the plasma profile input parameters u = [β0, αm,p, αn,p, αm,I , αn,I ],
and the vector s contains the further unknowns which regulate the extent of the
plasma region s = [ψa, ψb, λ]. The definition of the matrices is as follows:
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(a) Ai,j = −
∫
Ωin

∇wi · ∇wj
r

dr ∀i, j ∈ Ni

(b) Âi,j = −
∫
Ωin

∇wi · ∇wj
r

dr ∀i ∈ Ni and ∀j ∈ Nb

(c) gj =

∫
Ωin

µ0jφ(ψ, s, u)wj dr

(3.118)

Here by wk the Lagrange test function on triangular element; Ni is the set
of indices related to d.o.f. internal to the domain; and Nb is the set of indices
for the boundary degrees of freedom. The poloidal flux at the boundary ∂Ωin is
really given by two different sources: namely the external sources ψ̂ext and the
plasma source ψ̂p. At this stage we can regard ψ̂ext as an input for the MHD
equilibrium model. On the other hand, the actual value of p̂sip depends on
the plasma current distribution. In order to provide ψ̂p, the outer vacuum ax-
isymmetric magnetostatic problem needs to be solved. This is done efficiently,
using the same Galerkin formulation and discretizing the outer poloidal plane
up to a semi-circle sufficiently far from the plasma, which allows to set up an-
alytical Robin-like boundary conditions [131]. The Galerkin formulation for
this problem looks similar to the one proposed above, although no boundary
terms appear now:

A∗ ψ∗
p = g∗(ψ, s, u) (3.119)

Here the subscript “p” denotes the plasma source, while the asterisk super-
script denotes that vectors and matrices are defined both in the internal and
external domain to the Coupling Surface (virtually all of the poloidal plane).
The forcing term g∗ representing the plasma currents is the same as before,
although it is defined on a wider mesh. The d.o.f. which do not correspond to
nodes internal to the Coupling Surface shall be padded by zeros,

(g∗)j =

{
gj j ∈ Ni

0 otherwise
(3.120)

Hence we can define a rectangular matrix E1, which is always null except for
those internal nodes to the Coupling Surface, such that gp = E1 g. Clearly

we have ψp = A∗−1 E1 g. Considering that we are only interested to the
poloidal flux at the Coupling Surface, we can select the corresponding nodes
via a further rectangular matrix E2, resulting in
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ψ̂p = E2 A
∗−1 E1︸ ︷︷ ︸
K

g(ψ, s, u) (3.121)

Finally the MHD equilibrium problem is transformed to

A ψ̂ =
(
1− Â K

)
g(ψ, s, u)− Â ψ̂ext (3.122)

The system of Equations above, provided the flux from external conductors
ψ̂e and the input profile parameters u, should be solved together with the con-
traints (3.115)-(3.116) for the remaining unknowns s.

3.4.2 Coupling with external conductors

As hinted, the evolution of currents in the passive structures is here provided
in terms of the integral formulation discussed in the previous Chapter. The
actual poloidal flux ψe = rAφ which these 3D currents produce at the coupling
surface points is in principle 3D, i.e. ψe = ψe(r, φ, z). Nonetheless we can
average the poloidal flux along the toroidal angle. The poloidal flux due to
external currents is then easily computed via a Biot-Savart integration,

ψ̂e = QIw (3.123)

where Iw is the vector of degrees of freedom for the external currents. A
convenient way of providing the plasma magnetic field outside of its bound-
ary is given by the virtual-casing principle [94], as widely discussed in previ-
ous Chapter. In particular, thanks to the assumed axisymmetry of the plasma,
CarMa0NL considers a set of equivalent currents circulating in toroidal fila-
ments placed exactly at the Coupling Surface nodes of the MHD equilibrium
problem. These currents produce exactly the poloidal magnetic field of the
plasma outside of the domain delimited by the Coupling Surface itself. It is
then simple to represent the plasma-induced voltages in conducting structures
via a simple mutual inductance matrix Meq.

In order to determine the equivalent currents at the Coupling Surface
nodes, we come back to the magnetostatic problem in the whole poloidal plane,
for assigned plasma currents, given in Equation (3.119). Its solution provided
the poloidal flux due to plasma currents in the whole poloidal plane, hence
in particular ψ̂p at the Coupling Surface. We adopt now the Virtual Casing
principle discussed in previous Chapter. We consider a distribution of filamen-
tary currents placed at the mesh nodes of ∂Ωin. We pretend these currents
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correctly reproduce the poloidal flux at ∂Ωin in our second order Lagrangian
finite element space, i.e.

∫
∂Ωin

G0

Nb∑
k=1

Ieq,kδ(r
′ − rk, z

′ − zk) dℓ
′ = ψ̂p(r, z) ∀ (r, z) ∈ ∂Ωin

(3.124)
Here the Green function for the poloidal flux produced by a toroidal filament
was provided in Equation (3.39). We enforce (3.124) in weak form using as ba-
sis functions the 2D lagrangian basis functions associated to Coupling Surface
nodes:

L0 Ieq = H0 ψ (3.125)

where we defined

(a) (L0)j,k =

∫
∂Ωin

wj

∫
∂Ωin

G0δ(r
′ − rk, z

′ − zk) dℓ
′ dℓ

(b) (H0)j,k =

∫
∂Ωin

wj · wk dℓ
(3.126)

Hence the equivalent currents are found immediately by

ĝeq = L0
−1 H0 ψ̂p (3.127)

Of course, ψ̂p is proportional to the original vector g, via the matrix A∗−1E1.
Finally, considering definition of K (3.121), we obtain:

Îeq = L0
−1 H0 K︸ ︷︷ ︸

S

g(ψ, s, u) (3.128)

Once the equivalent currents are found in the 2D finite element represen-
tation calculation of the mutual inductance with structures is easily performed
in CARIDDI, thanks to the standard axi-symmetric Green function G0.

A last aspect important aspect concerns the plasma toroidal flux variations,
which do induce voltages in external conductors, without actually modifying
the magnetic field outside. Indeed, plasma poloidal currents configure perfect
toroidal solenoids, which do not produce magnetic field outside of the plasma.
The plasma toroidal flux is defined, thanks to Ampère’s law,
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Ψp(ψ, s, w) =
µ0
2π

∫
Ωin

I − I0
r

dr (3.129)

where I is the poloidal plasma current, and I0 is the poloidal current of exter-
nal conductors, essentially the one due to Toroidal Field Coils. By a formal
analogy with magnetostatic problems, we can calculate a vector potential in
the exterior domain which correctly reproduces the electric field due to plasma
toroidal flux variations, when considering its time variations.

In particular we can consider the toroidal flux as concentrated in a toroidal
filament placed at the centre of the plasma domain, i.e. placed at the centre
of Vfw. The vector potential produced by such a singular toroidal flux distri-
bution, expressed in the Coulomb gauge, is mathematically analogous to the
magnetic field produced by a current circulating in the same toroidal filament.
Exploiting this analogy, we can therefore easily compute a number of turns
vector which relates plasma toroidal flux variations to induced voltages in pas-
sive structures,

Vpl,tor = N
d

dt
Ψp(ψ, s, u) (3.130)

3.4.3 Resume

Finally the CarMa0NL evolutionary equilibrium problem looks like:

(a) L
d

dt
I +R I +Meq

d

dt
Ieq +N

d

dt
Ψp = V

(b) A ψ̂ =
(
1− Â K

)
g(ψ, s, u)− Â ψ̂e

(3.131)

and complemented by the constraints (3.115) for ψa, ψb and (3.116) for λ
[115]. The two systems of Equations (a) and (b) are coupled via:

Ieq = S g(ψ, s, u)

ψ̂e = Q I

The meaning of each matrix was commented in previous subsections. The
algebraic system of Ordinary Differential Equations above is solved via an
implicit Euler scheme, which guarantees the possibility of using appropriately
large time steps. While the model for the structures is fully 3D and linear, the
plasma equilibrium model is 2D and fully non-linear. A great degree of non-
linearity is in particular introduced by the fact that the equilibrium problem is
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free-boundary, hence even a linear relation between jvarphi(ψ, r) and ψ would
produce a non-linear problem. In next Chapter we will illustrate applications
of CarMa0NL to physics problems and analysis of experiments.





Chapter 4

Applications to the study of
Tokamak Disruptions

Hard to predict fast transient events often lead to the sudden termination of
experiments in nearly all existing tokamak devices, see for example the statis-
tical studies available for JET [132, 133, 134], and COMPASS [135]. Nearly 1
every 10 experiments is estimated to accidentally disrupt, even if this is largely
related to the research character of the experiments, which push the devices
to their performance limits [44]. These disruptions are a major threat for the
integrity of tokamaks, due to different motivations. According to the ITER
Physics Basis [44, 136], the major concerns are related to the energy deposi-
tion on the wall and plasma facing components surrounding the plasma, the
electro-magnetic forces generated during the quench of the plasma current,
and the generation of runaway electrons beams.

Early studies of tokamak experiments allowed to set up three essential op-
erational bounds which almost certainly lead to an abrupt termination of the
experiment [132, 137]. The density limit bounds the maximum achievable
particle density, and roughly scales with the elongation and the plasma aver-
age current density n ∼ kJ [MA]/S[m2] [138]. The current limit is set up
by MHD instabilities occurring when the plasma boundary becomes a ratio-
nal surface at q = 2. The safety factor q is a measure of the average toroidal
excursion of a magnetic field line within a single poloidal transit [139]. Sta-
ble operation requires q ≥ 2. For an assigned toroidal magnetic field, an in-
crease in the plasma current is responsible of course also for an increase in the
poloidal magnetic field, hence a degradation of the safety factor q. Finally the
experimentally-found pressure limit indicates a maximum achievable toroidal

147
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beta which scales roughly as βt ∼ 3 · J [MA]/B0b [137]. Overcoming any
of these operational limits, a disruption will likely occur, conversely the op-
erational area identified by these bounds is not definitive. Indeed disruptions
are triggered by a variety of MHD instabilities, and we lack a complete un-
derstanding of all the possible triggering mechanisms. Nonetheless statistical
studies provide sufficient confidence that disruptions do not occur randomly,
hence we should aim at their comprehension, classification and avoidance. The
necessity for safe ITER operation led anyway to the design, test and optimiza-
tion of disruption mitigation systems [140, 141, 142].

A quite general phenomenology of disruptions in tokamaks was described
in [44]:

• due to the overcome of some operational limit, a large thermal energy
loss takes place (Thermal Quench, TQ), on a time scale which ranges
from 10µs for small devices to 100µs for Medium Size Tokamaks, up
to few ms in JET;

• The current distribution within the plasma flattens, in reason of the more
homogeneous temperature profile (⪅ 1ms);

• The overall resistivity of the plasma increase, due to the lower tempera-
ture, and consequently the toroidal plasma current drops very rapidly
(Current Quench, CQ). The current decay rates vary for each ma-
chine, depending on several aspects like the aspect ratio and the average
toroidal current density. For the sake of example, we may consider the
overall area normalized current quench time for typical JET pulses. The
shortest CQ fall in the 2-5 ms/m2 range, extrapolating linearly from
the 100%-40% decay time [44]. Considering an average plasma area
of 3.5 m2 and currents in the order of 2MA, we immediately find CQ
decay rates in the range 100-250 kA/ms.

In any of these steps the plasma may suffer a vertical instability, which can
be even the driver for the TQ. A loss of the vertical control can indeed be
responsible also for the motion of the plasma column at substantially unaltered
plasma current and temperature. When plasma comes in close contact to the
solid interface, the cross-sectional area shrinks rapidly, decreasing the edge
safety factor q to values about 1.5-2. At this point some MHD instability
is again triggered, as for the current limit. This type of event is sometimes
indicated as hot Vertical Displacement Event (VDE).

This phenomenology highlights already some of the possible threats. In
typical JET discharges, the thermal energy is in the order of ∼ 12 MJ , and
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in ITER this will climb up to ∼ 350 MJ . The sudden release of this energy,
mainly by radiation, can be responsible for a severe thermal energy deposit
on structures. Further, even during the Current Quench, when the thermal
energy of the plasma is substantially negligible, the poloidal magnetic energy
is continuously converted within the plasma into heat conducted or radiated to
the surrounding plasma facing components [143, 144]. We shall explore this
circumstance, by the tools discussed in previous Chapter, in Section 4.2.

Anyway, the major concern during the Current Quench in present toka-
maks is related to the large Lorentz forces generated in the surrounding wall
and plasma facing components. Not surprisingly electromagnetic force calcu-
lations are always necessary in the design of fusion devices, see for example
computations for the future tokamak COMPASS-U [128, 85]. The electromag-
netic forces are in part related to the induced currents in external conductors,
and in part related to the halo currents shared between plasma and structures.
The latter are predominantly poloidal and interact with the large toroidal field
applied by TF coils, generating significant mechanical stresses. We shall study
in detail eddy current-related disruption forces in Section 4.1.

It is worth to mention that in ITER a further major concern during the
CQ phase is represented by the runaway electrons [44]. There the nominal
plasma current J ∼ 15MA is estimated to decay in a time tCQ ∼ 35ms, the
plasma major radius being ∼ 6 m. The resulting electric fields will be large
enough to accelerate a large fraction of the electrons within the plasma up
to relativistic velocities, in a runaway-like mechanism (the Coulomb collision
cross-section decreases with the velocity of the particles, which become more
and more collision-less as they gain velocity). The kinetic energy gained by
these relativistic particles can be an important fraction of the poloidal magnetic
energy, and the inherent risk is a local release of such energy when the runaway
beam hits some solid surface [145].

This last Chapter is dedicated to applications of the evolutionary equilib-
rium models presented earlier, to the analysis and modelling of tokamak dis-
ruptions. This is mainly in order to demonstrate the efficacy of the developed
models and their significance both for the design of fusion devices and for the
analysis of tokamak experiments. In Section 4.1 we study the forces exerted
on the vacuum vessel surrounding the plasma during these fast transients. We
will see, in agreement with recent literature, that the effect of net poloidal cur-
rents in the wall, and of plasma pre-disruption position is crucial on the forces
estimation [127, 146, 147].

In Section 4.2 we show how evolutionary equilibrium models can be used
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to estimate the plasma losses during a disruption, or equivalently how to test
an evolutionary equilibrium simulation for being energetically consistent. In-
terestingly we will find that the amount of possibly dissipated energy during
the CQ strongly depends on the electromagnetic time constant of the wall.

Finally, in Section 4.3 and Section 4.4 we compare CarMa0NL simula-
tions respectively for JET and TCV experiments, benchmarking via simulated
and real magnetic diagnostics measurements. We will use a simplified model
for the JET conducting structures, leading to an overstimate of the growth rate
of the vertical displacement, as expected from [148]. We will overcome this
problem with a fictitious down-scaling of the disruption trigger, to focus our
attention to the latest phase of the disruption, when the plasma comes in close
contact to the solid surface and an halo region develops. The simulation re-
sults, in good agreement with the experimental measurements, will show the
development of a relatively wide halo region, carrying a significant portion of
the overall plasma current.

For TCV we will report on simulation results dedicated to the study of
plasma trajectories during disruptions, aiming to interpret a recent experimen-
tal campaign on this topic. to show main dependencies. We will see that the
radial motion is greatly affected by the pre-disruption plasma shape, and we
will propose an interpretation of this behaviour.

4.1 Electromagnetic Forces

In this Section discuss the electromagnetic forces generated on conducting
structures during disruptions, in order to provide design indications and un-
derstand the magnitude of electromagnetic local and integral forces generated
on surrounding structures by fast variations of the plasma current J , internal
inductance ℓi or poloidal beta βp.

In subsection 4.1.1 we develop handy analytical formulas to estimate local
and integral forces for an high-aspect-ratio circular tokamak, in the ideal wall
hypothesis. These are compared with CarMa0NL simulation results in the fol-
lowing subsection, for a cross validation of analytical and numerical models.

4.1.1 Ideal Wall Forces

Here we provide some analytical formulas for the estimation of electro-
magnetic local and integral forces generated during disruptions in an high-
aspect-ratio, circular tokamak, with thin wall. The analysis will follow eas-
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ily from the discussion provided in Section 3.2, and it is based on references
[149, 127, 147].

The plasma transient is assumed to be fast enough to consider the wall as
ideal with respect to plasma-produced magnetic field variations. Hence, in the
time interval of interest, all the electromagnetic quantities just outside such a
perfectly conducting sheet are unaffected by variations of plasma currents or
geometry. Such changes however modify the magnetic field in the inner region
to the wall surface. As a result, the jump of B across the wall is equal to the
difference between the actual and the initial values of B at the inner page of
the wall:

δB = Bin −Bout = B(t)−B(t0). (4.1)

Our interest is devoted to the surface force density fw, defined as the line
integral across the wall:

fw =

∫
wall

j×Bdl⊥ =

∫
wall

(
−∇B2

2µ0
+

B

µ0
· ∇B

)
dl⊥. (4.2)

where in the last equality we used Ampere’s law, and standard vector identities,
see Equation (3.89). We can introduce a coordinate system local to each point
of the wall mean surface, such that

∇ = n̂w
∂

∂ℓ⊥
+∇∥ (4.3)

As long as wall currents are tangent to the wall, we have ∇∥ ×B = 0, and the
surface force density (4.2) gets simplified to

fw = − B2

2µ0

∣∣∣∣∣
out

in

n̂w +
n̂w ·B
µ0

B|outin (4.4)

The last term in Equation (4.4) is tangential to the wall, due to the solenoidal-
ity of B and the thin wall approximation, which imply the continuity for the
normal component of B across the surface. This term was discarded in the
analysis presented in [149]. Therefore the model presented there describes
exclusively the surface force density normal to the wall, due to the jump of
magnetic pressure,

pm =
B2

2µ0
. (4.5)
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In CarMa0NL computations, both contributions to (4.4) are taken into account,
and revealed the importance of the tangential force density contribution [127].
Finally such tangential forces were reintegrated in the analytical model pre-
sented later in [147]. As we shall see, a magnetic tension term is present
whenever the magnetic flux density has a normal component to the wall. In
this respect, the former model presented in [149] can be considered as the par-
ticular case of the one presented in [147], where the pre-disruption plasma
position is such that the wall is a flux surface, i.e. ∆b = ∆iw. Indeed, in the
ideal wall approximation, the normal component of B is frozen at the wall sur-
face, hence the wall keeps to be a flux surface if it is such before the disruption
takes place.

(a) The magnetic pressure

Equation (4.4) is still quite general, the only hypothesis up to now is that the
wall is geometrically thin. From the hypothesis of axisymmetry, we may ex-
press B, in terms of the “polodail flux” ψ = rAφ and the poloidal current
I = rBφ/µ0 per radian defined by (3.34) and (3.35) respectively. Thanks to
the orthogonality of poloidal and toroidal magnetic fields, the overall magnetic
pressure can be regarded as the sum of the separate contributions provided by
each magnetic field component:

pm = pψm + pIm (4.6)

where we define the poloidal field magnetic pressure and the toroidal field
magnetic pressure as

(a) pψm =
|∇ψ|2

2µ0r2

(b) pIm =
µ0I

2

2r2

(4.7)

For the study case of interest, the poloidal field magnetic pressure is eas-
ily obtained by the expression for the poloidal magnetic field provided in
Equations (3.84, 3.86, 3.86). We neglect there the corrections in ∆b/Rw and
(∆b/ρ)

2

pψm = pψm,0 + pψm,1 cosu (4.8)

with:
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(a) pψm,0 = κ2w
B2
J

2µ0

(b) pψm,1 = −2ϵwκ
2
w

[
B2
J

2µ0
Λw +

Rw
b

Bρ,1BJ
2µ0

] (4.9)

where ϵw = bw/Rw was first introduced as the wall inverse aspect ratio com-
menting (??) and we define:

Λw = Λ+ ln
bw
b
, κw =

b

bw
(4.10)

From Equation (4.9b) we see that the presence of a normal field to the wall
also influences the magnetic pressure. The relative weight of that term can be
understood observing from (3.86b) that

Bρ,1
BJ

=
b

bw

∆b −∆iw

bw
(4.11)

Clearly Bρ,1 = 0 whenever the wall is a flux surface.
Let us evaluate now the toroidal magnetic pressure. In our high aspect

ratio assumption, the toroidal magnetic field in the plasma-wall gap can be
expressed as in (3.99). In complete analogy with the discussion which lead
us to (3.101), we can set up the pressure balance equation for the plasma-wall
gap, where ⟨p⟩Ωgap = 0, which reads

〈
B2
φ

〉
Ωgap

2µ0
Sgap =

⟨Bφ⟩2∂Vw
2µ0

Sw −
⟨Bφ⟩2∂Vpl

2µ0
Spl +

B2
u,0

2µ0
Sw −

B2
J

2µ0
Spl (4.12)

Scaling (3.101) by the plasma cross-sectional area Spl and summing (4.12) we
get 〈

B2
φ

〉
Ωw

2µ0
−

⟨Bφ⟩2∂Vw
2µ0

= −κ2w
[
⟨p⟩Ωpl

−
B2
J

2µ0

]
(4.13)

where we defined κw = bw/b in Equation (4.10) and the square of such a
quantity appears here essentially as the ratio between the cross-sectional ar-
eas of the plasma and of the wall. Now, in the ideal wall limit, the toroidal
magnetic energy cannot escape the wall, and in general the low magnitude of
poloidal plasma currents prevents the conversion of the toroidal magnetic en-
ergy into thermal or dissipated energy, as discussed in [35] and later in next
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Section. Hence, the variation of toroidal magnetic pressure in the plasma-wall
gap, in the ideal wall approximation, is given by:

δ

(
B2

0

2µ0

)
= δ

[
κ2w

(
⟨p⟩Ωpl

−
B2
J

2µ0

)]
(4.14)

where we used the fact that ⟨Bφ⟩∂Vw = B0. Equation (4.14) contains all the
information to evaluate the toroidal magnetic pressure jump at the ideal wall,

δpIm = δ

(
B2

0

2µ0

)
(1 + 2ϵw cosu) (4.15)

We notice explicitly that Equation (4.14) can be generalized to the non-ideal
wall case, or to an arbitrary ρ = ρ∗ surface within the plasma-wall gap as long
as the fluxes of toroidal magnetic energy can be computed and this energy is
not converted to other forms.

Resuming our results, we sum up the magnetic pressure jump across the
wall due to toroidal and poloidal eddy currents into a single term:

δpm = δpm,0 + δpm1 cosu (4.16)

where

(a) δpm,0 = δ
(
k2w⟨p⟩Ωpl

)
= δ

[
k2w

B2
J

2µ0
βp

]
(b) δpm,1 = −2ϵwδ

[
k2w

B2
J

2µ0

(
ℓw
2

)
+
Rw
b

Bρ,1BJ
2µ0

] (4.17)

In (4.17) we used the equilibrium relation Λ = βp+ℓi/2−1, derived in (3.103)
and we introduced the internal inductance up to the wall

ℓw = ℓi + 2 ln
bw
b

(4.18)

(b) The magnetic tension

The circumstance that the wall is not a flux surface before the transient deter-
mines Bρ ̸= 0 at the wall, which determines of course also Bρ,1 ̸= 0 which
affects the anti-symmetric magnetic pressure (4.9b)-(4.17), and is responsible
for a tangential force to the wall (4.4). As hinted, the continuity of the normal
component of B across the wall implies that δB is tangent to the wall surface,
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and the wall force density for the general case where B · n̂ ̸= 0 at the wall, can
be written as

fw = δpmn̂w + δπûiu + δπφ̂iφ (4.19)

where we defined the poloidal and toroidal magnetic tensions on the wall as

(a) δπu = −BρδBu
µ0

(b) δπφ = −BρδBφ
µ0

(4.20)

In particular, using Equations (3.86)-(3.87), we get for the poloidal magnetic
tension

δπu = − BJ
µ0

b

bw

(
∆b −∆iw

bw

)
︸ ︷︷ ︸

Bρ,1

δ

[
BJ

(
b

bw

)]
sinu (4.21)

We explicitly remark that in the in the ideal wall approximation the normal
component of the magnetic flux density is constant at the wall surface, and
indeed Bρ,1 scales like J (∆b −∆iw). The latter quantity has to be constant
in the ideal wall limit, as commented when studying the evolution equation
for wall currents in Equation (3.75). Hence, a poloidal magnetic tension raises
exclusively in reason of plasma current variations, as expressed in (4.21).

In order to evaluate the toroidal magnetic tension δπφ, we need instead
some expression for the jump of toroidal magnetic flux density across the wall,
δBφ ≃ δ⟨Bφ⟩∂Vw (1 + ϵw cosu). Such a jump of toroidal field is solely re-
lated to the the net poloidal current in the wall. In tokamak devices the plasma
produced toroidal field, hence the reaction toroidal field produced by eddy
currents, is in general much smaller than the toroidal field imposed by external
active coils, i.e. ⟨Bφ,act⟩∂Vw ≫ ⟨Bφ,w⟩∂Vw . Under this assumption, Equation
(4.14) is well approximated by

δ⟨Bφ⟩∂Vw =
1

2⟨Bφ,act⟩∂Vw
δ
[
k2wB

2
J (βp − 1)

]
(4.22)

Hence, the toroidal magnetic tension (4.20) readily transforms to:

δπφ = − Bρ,1
⟨Bφ,act⟩∂Vw

δ

[
k2w

B2
J

2µ0
(βp − 1)

]
sinu (4.23)
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It is worth noting that the average jump in toroidal field is clearly related to the
net poloidal current in the wall:

Ipol,w = 2πRwδ⟨Bφ⟩∂Vw (4.24)

This net poloidal current is responsible on the other hand for the toroidal flux:

ϕtor,w =
µ0Ipol,w
2πRw

πb2w (4.25)

which, not by coincidence, is exactly opposite to the variation of the toroidal
flux due to plasma currents in the hypothesis Bφ,pl ≪ Bφ,act, i.e. the flux
conservation is satisfied consistently with the ideal wall assumption.

(b) The integral radial force

As significant figure of merit to quantify the mechanical stress on the wall, it
is convenient to define the following integral radial force [146, 149, 128, 127,
147]

Fr =

∫
∂Vw

fw · ir dr (4.26)

Besides in our axisymmetric conditions the net force is indeed zero along the
radial direction, Fr quantifies the stress which tends to either compress or
stretch the torus along its major radius. To get an operative expression in terms
of plasma parameters, it is sufficient to consider the various contributions to
the force density described in Equation (4.19) and their definitions. Clearly
the toroidal magnetic tension does not contribute to the integral radial force,
being îφ · îr = 0. Moreover, as observed in [147], the contributions to Fr due
to a non-null normal component of the magnetic field at the wall, Bρ,1 ̸= 0,
compensate each other in the integration,

2π

∫
Γw

−Bρ,1
µ0

δ

[
b

bw
BJ

]
·
[
cosu

(
n̂ · îr

)
+ sinu

(̂
iu · îr

)]
︸ ︷︷ ︸

=cos 2u

dℓ = 0 (4.27)

Hence the estimations of integral radial force already provided in [149]
keep to be valid also for the more generic case where ∆b ̸= ∆iw before the
disruption [147],

Fr =
1

2
Swϵwδ

[
k2w

B2
J

2µ0
(βp + ℓw)

]
(4.28)
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4.1.2 A test case

Following the discussion in [127], we compare the analytical formulas pro-
vided in previous Section with numerical computations of force and force den-
sities implemented by the code CarMa0NL. In order to fit the high-aspect ratio
hypothesis of the analytical model and not deviate too much from typical pa-
rameters of a tokamak device, we consider a circular tokamak of major radius
Rw = 1 m and minor radius bw = 0.25 m, for an overall inverse aspect ratio
ϵw = 4. The wall is 1 cm thick, and numerically represented by a single layer
of elements, in order to force the current to be always tangent to the mean
surface of the wall, as substantially happens in a sheet. We take the resistiv-
ity of the vessel to be the one of Inconel 625 at 300 degC. A summary of
the essential information for our wall is in Table 4.1. With these choices, the
numerically computed slower time constant for the wall is about 3.24 ms, in
fairly good agreement with the predicted τ0w, as defined in (3.79).

R0 bfw bw dw ηw = 1/σw
1 m 0.2 m 0.25 m 1 cm 1.33 · 10−6 Ω ·m

Table 4.1: Vessel geometry and resistivity.

The first wall implemented in CarMa0NL has a circular trace in the
poloidal plane, with the same major radius as the wall and minor radius
bfw = 0.2 m. The first wall bounds the domain where we can actually find
the plasma, the MHD computational domain extends few mm outwards in
correspondence of a suitable Coupling Surface.

We consider here the equilibrium configuration synthetically described in
Table 4.2, which is also the slightly inward-shifted configuration described
in [127]. The input parameters βp, ℓi, ∆b and b for the analytical model
will be provided by CarMa0NL simulation results. CarMa0NL standard rou-
tines use a slightly different definition for the internal inductance and the
poloidal beta, computing the average energies in the volume, rather than in
the cross-sectional surface. Anyway in the high-aspect ratio limit the problem
is easily circumvented accounting for the plasma-wall major radii ratio, i.e.
ℓi = (Rw/Rpl) · ℓCarMa

i , and βp = (Rw/Rpl) · βCarMa
p [127]. Hence, in Ta-

ble 4.2 we show the classical poloidal beta and internal inductance, as defined
in (3.103). In the same table we report the variations of main plasma quantities
during two different simulations, namely a Thermal Quench (TQ) and a Cur-
rent Quench (CQ). For each simulation we compare the forces, calculated with
and without the account of the net poloidal current in the wall, and considering
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Event J [MA] βp ℓi ∆b [cm] ∆iw [cm]
Initial 1.700 0.108 1.114 −1.43 1.14

after 0.01 ms TQ 1.700 0.081 1.114 −1.47 1.11
after 0.01 ms CQ 1.690 0.110 1.114 −1.44 1.14

Table 4.2: Global parameters for inward-shifted and low βp plasma simula-
tions. The further input parameters are kept constant (αm = 0.85, αn = 1.15)

Bρ = 0 Bρ ̸= 0 CarMa0NL
δpm0 [bar] −0.204 −0.204 −0.175
δpm1 [bar] −0.006 −0.006 0.004
πu1 [bar] 0 ∼ 0 0.001
πφ,1 [bar] 0 −0.006 −0.005
Fr [kN] −22.326 −22.326 −25.325

δpΨm0 [bar] ∼ 0 ∼ 0 +0.006
δpΨm1 [bar] 0.096 0.096 0.096
FΨ
r [kN] −47.433 −47.433 −47.370

Table 4.3: Forces generated during the TQ described in table 4.2

or discarding the contribution due to the normal component of the magnetic
field.

In order to simulate the TQ, we impose a linear decay of the coefficient
β0 of our current parametrization (3.114). Notice that for changes of β0 in the
range [0, 1] we can essentially tune the dominant contribution to the toroidal
current density between dp/dψ and fdf/dψ. In general β0 is proportional to
the poloidal βp. The larger the aspect ratio the more accurate is the linear scal-
ing between these quantities. During the TQ simulation, the plasma current is
kept constant together with all the other profile parameters αs. Results for this
case are illustrated synthetically in Table 4.3 and Figure 4.1. The numerical
results are obtained by proper projections of the volumetric forces computed
in CarMa0NL, transformation into the Fourier space along the poloidal angle,
and scaling by the wall thickness.
Notice that during the Thermal Quench, the dominant contribution to the mag-
netic pressure jump is related essentially to δpm,0 (4.17a), since the pressure is
significantly varying within the plasma column, while δpm,1 (4.17b) is much
smaller, since the wall internal inductance ℓw does not vary greatly, and the
plasma current is held fixed. Correspondingly δπu is essentially null while
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Bρ = 0 Bρ ̸= 0 CarMa0NL
δpm0 [bar] ∼ 0 ∼ 0 −0.004
δpm1 [bar] 0.034 0.027 0.024
πu1 [bar] 0 −0.009 −0.009
πφ,1 [bar] 0 0.002 0.002
Fr [kN] −17.000 −17.000 −16.831

δpΨm0 [bar] −0.087 −0.087 −0.084
δpΨm1 [bar] −0.009 −0.016 −0.017
FΨ
r [kN] −6.267 −6.267 −7.007

Table 4.4: Forces generated during CQ described in table 4.2.

δπφ can still be significant. Neglecting the poloidal current both in the analyt-
ical and the numerical model we can get an astonishing agreement, indicating
that there might be still some possible corrections in modelling the pressure
jump due to poloidal currents. However, in all of the cases, the agreement
is qualitatively good and indicates that the electromagnetic force will tend to
shrink the wall towards the plasma.

For the CQ, we impose a linear decay of the plasma current of 1MA/ms,
and in order to keep the mean pressure almost constant during the simulation
we increase β0 correspondingly as

β0(t)

β0(t0)
=

[
J(t0)

J(t)

]2
. (4.29)

A resume of the results obtained for our inward-shifted low-βp plasma is re-
ported in Table 4.4 and Figure 4.2. In this case the prevalent contribution on
the magnetic pressure jump is δpm,1, and the accordance between the numer-
ical calculation and the analytical prediction improves greatly accounting for
the normal field to the wall. Also the prediction on the magnetic tension are
perfectly in agreement. Again, neglecting the poloidal current in the model we
would find totally different results, confirming its important role in the task.
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(a) with net poloidal current.
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(b) without net poloidal current.

Figure 4.1: Analytical (blue) and Numerical (red) volume force density dis-
tribution during Thermal Quench scenario presented in Table 4.2, taking into
account (a) and neglecting (b) the poloidal current in the wall. Corresponding
quantitative results are reported in table 4.3
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(a) with net poloidal current.
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(b) without net poloidal current.

Figure 4.2: Analytical assumingBρ = 0 at the wall (blue), Analytical account-
ing for Bρ ̸= 0 (green), and Numerical (red) force density distribution during
the CQ scenario described in table 4.2. Corresponding quantitative results are
reported in table 4.4
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4.2 Energy Balance

A second, and not less important, threat to the integrity of a tokamak during
disruptions concerns heat loads on the structures surrounding the ionised gas.
As hinted, in ITER, the major concern will be related to the dissipated energy
during the TQ, and the eventual localized energy deposition during the CQ,
due to the very likely formation of runaway electrons [44]. Nonetheless, the
overall estimation of plasma losses remain an important task on itself, even
during normal plasma operation. In general detailed plasma models [150, 151]
are necessary to estimate the heat flux on plasma facing components, and ther-
mal models are then necessary to finally estimate the thermal stress on each of
them [152]. These approaches do not allow anyway for a simple and compre-
hensive understanding of the overall energy fluxes across the plasma domain,
hence cross-validation between the different models. In [35] a critical review
of the energy balance for a disruptive plasma was presented. Here we focus
on some critical results of that study and slightly extend that discussion. In
subsection 4.2.1 we will come back to the energy balance Equations describe
in Section 1.5, finding the integral consequences of those relations. In sub-
section 4.2.2 we show how evolutionary equilibrium models, with relatively
little physical details, can be employed to provide global estimates of plasma
losses. This will require the hypothesis of small kinetic energy of the plasma,
as compared to the thermal and magnetic energies. The same approach illus-
trated for the estimation of plasma losses can be used, the other way around,
to test the validity of simulations against experimental estimates of radiated
power and heat fluxes, although this is left as future work. In subsection 4.2.3
we comment in particular the role of the toroidal magnetic energy in the task,
which turns out to be a sort of independent energy tank, not greatly involved
in exchanges with other forms of energy. Finally in subsection 4.2.4 we will
show by CarMa0NL simulations that the energy dissipated during the CQ is
essentially related to the poloidal magnetic energy within the wall, and eventu-
ally the one drained from outside. This observation will motivate us to derive
a simple analytical model for plasma losses as function of few plasma internal
parameters. The model will clearly show that the amount of poloidal magnetic
energy converted to heat depends on the overall CQ duration as compared to
the time constant of the surrounding wall.
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4.2.1 General considerations

In the framework of Magneto-Hydro-Dynamics the relevant energy reservoirs
are generally retained to be the magnetic, barycentric kinetic and internal en-
ergy of the gas, as widely discussed in Section 1.5. For a certain volume V we
define these overall energy tanks as

(a) Wm =

∫
V

B2

2µ0
dr

(b) K =

∫
V

1

2
ρv2 dr

(c) U =

∫
V
ρudr

(4.30)

In the general case where large currents at very low plasma densities occur,
even the kinetic energy associated to the diffusion of electrons and ions respect
to the barycentric fluid becomes important, i.e. the kinetic energy of electrons
becomes an energy reservoir of comparable importance to kinetic energy of
ions. This is certainly the case in presence of runaway electrons beams [145].
We observed also that it may be important to distinguish between the kinetic
energy of neutrals and of the ionised part of the gas.

Here we do not include runaway electrons in the task, and more generally
we exclude that the kinetic energy of diffusion can play a role. The internal
energy remains defined by difference of the total energy and the electromag-
netic and “barycentric” kinetic energy. The relevant separate energy balances
were provided already in Equations (1.54), (1.56) and (1.61). Here we con-
sider those balance Equations in their integral form, first taking an arbitrary
volume V, whose boundary eventually moves at the velocity vb,
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(a)
dWm

dt
= −

∫
+∂V

E×B

µ0
dr+

∫
+∂V

B2

2µ0
vb · n̂ dr−

∫
V
E · i dr

(b)
dK

dt
= −

∫
+∂V

1

2
ρv2 (v − vb) · n̂dr−

∫
+∂V

pv · n̂ dr

+

∫
V
p∇ · v dr−

∫
V
(v ×B) · i dr

(c)
dU

dt
= −

∫
+∂V

ρu (v − vb) · n̂dr−
∫
+∂V

Kq · n̂dr

+

∫
Vfw

Srad dr

−
∫
V
p∇ · v dr+

∫
V
(E+ v ×B) · i dr

In order to focus the attention on the key aspects we already considered a lo-
cally neutral gas, i.e. q = 0 and neglected viscous phenomena P = pI, consid-
ering our ionised gas as an ideal simple fluid, where ρu = (3/2)p. Moreover
we considered an eventual energy production term in Equation (4.31c), so to
account for those energy drained outside via radiation or other phenomena not
described within our thermodynamic frame. The possible volumes of interest
to apply (4.31) are essentially:

• The volume occupied by the plasma, i.e. V = Vpl. In this case the
velocity of the boundary exactly equals the fluid velocity, and we come
back to a Lagrangian picture, with the null convective terms in (4.31b)-
(4.31c). On the other hand, since the electromagnetic energy is not
linked to the plasma mass, In Equation (4.31a) the term

∫
+∂Vpl

B2

2µ0
vn dr

essentially accounts for the magnetic energy incorporated in the plasma
volume due to its motion.

• The volume where the plasma can live, i.e. the volume enclosed by the
first wall surface V = Vfw. In this case certainly vb = 0, as the first
wall surface is not allowed to move.

Since we are interested to take the perspective of structures, we choose the
second option and consider V = Vfw. As discussed, we admit that the wall
cannot absorb or emit mass towards the plasma side, which leads to consider
ρv · n̂ = 0. Hence, the energy balance Equations take the simplified form
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(a)
dWm

dt
= −

∫
+∂V

E×B

µ0
· n̂dr−

∫
V
E · i dr

(b)
dK

dt
= +

∫
V
p∇ · v dr−

∫
V
(v ×B) · i dr

(c)
dU

dt
= −

∫
+∂V

Kq + ρuv · n̂ dr+

∫
Vfw

Srad dr

−
∫
V
p∇ · v dr+

∫
V
(E+ v ×B) · i dr

(4.31)

In this context the local energy exchange terms are clear: the electromag-
netic energy converted to other forms is given by the term E · i. The portion
(E+ v ×B)·i is the electromagnetic energy spent in order to keep the electric
current flowing besides collisions and dissipative phenomena within the fluid
element. Indeed the electric field felt by a small volume element in its motion
at the fluid velocity equals E + v ×B. Notice as this interpretation does not
need any assumption on the actual constitutive relation for the electric current
density. The remainder portion (i×B) ·v is spent to accelerate the fluid itself,
i.e. reflects into a kinetic energy variation. Even in absence of viscous phe-
nomena related to plasma motion, the deformation work can still provide an
energy exchange mechanism between kinetic and internal energy, as for any
classical ideal gas,

Pρu,wkin
=

∫
Vpl

p∇ · v dr (4.32)

All the other terms in the energy balance equations (4.31) are related to energy
fluxes across the boundary of the domain. In particular we define the flux of
the Poynting vector:

ΦS =

∫
+∂Vfw

E×B

µ0
· n̂dr (4.33)

Moreover, we lump the heat flux and the eventual production/absorption terms
of internal energy related to radiative phenomena in a single term which we
define as plasma power losses,

dQ

dt
=

∫
+∂Vfw

(Kq + ρuv) · n̂ dr+

∫
Vfw

Srad dr (4.34)

Finally, the plasma power losses can be expressed as
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dQ

dt
= −ΦS − dWm

dt
− dK

dt
− dU

dt
(4.35)

4.2.2 Predicting plasma losses

An important assumption can be now introduced, concerning the relative
weight of the various energy tanks. We may consider the typical tokamak
plasma parameters reported in table 4.5, to provide some simple estimates.

J Rpl Rpl/b n T
2MA 3m 3 1019 m−3 17 106 K

Table 4.5: Typical tokamak experiments plasma parameters.

For the parameters in Table 4.5, the reference poloidal magnetic field
can be considered to be BJ = µ0J/2πb ≃ 0.4 T . Moreover the atomic
mass of deuterium is mi = 3.34 · 10−27kg, leading to an Alvén velocity
νA ≃ 2 km/ms. This is the velocity of propagation for small perturbations
within the plasma. However, as widely discussed in Section 3.1, when the
reaction force exerted by the surrounding passive conductors on the plasma
is strong enough, the macroscopic plasma motion will generally happen on
the electromagnetic time scale of external conductors, which is generally in
the order of tens of ms, even larger for ITER. Motion at the Alfvénic speed
will be limited to local oscillations, not contributing significantly to the ki-
netic reservoir. Using parameters in table 4.5, and assuming the macroscopic
plasma motion is indeed on the electromagnetic time-scale, e.g. v ≤ 1 km/s,
the resulting kinetic energy density per unit volume is about ⪅ 16 mJ/m3.
Correspondingly the magnetic energy density is about 570 kJ/m3, with about
six orders of magnitude of difference. Also the thermal energy density in this
example is about 3.5 kJ/m3. Essentially, if we exclude that the magnetic en-
ergy can be suddenly converted to kinetic, a fairly reasonable in presence of
external conductors, the kinetic energy tank is irrelevant to the task, and we
can set K = 0.

If we neglect the kinetic energy completely, we contextually admit that all
of the electromagnetic power density which was converting electromagnetic
to kinetic energy, i × B · v, is now instantaneously converted to deformation
power density p∇ · v. Hence all of the E · i power density in (4.31a) becomes
an exchange term between magnetic and internal energy. From the energy
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balance Equations (4.31), in the assumption of negligible kinetic energy, the
plasma power losses finally take the form

dQ

dt
= −ΦS − dWm

dt
− dU

dt
(4.36)

All of the terms at the r.h.s. of (4.36) are readily computable as post-processed
quantities of evolutionary-equilibrium simulations. In the case of CarMa0NL,
the magnetic field is known in the MHD computational domain up to the Cou-
pling Surface. Hence, the flux of Poynting vector (4.33) and the magnetic
energy inside the first wall (4.30a) are simple integrals of known quantities.
Moreover, we assumed the plasma to be a classical ideal gas, hence the energy
per unit volume is directly related to the kinetic pressure ρu = (3/2)p. The
distribution of kinetic pressure within the plasma can be reconstructed from
(3.114), since the poloidal flux map ψ(r, z) is computed at each time instant,
together with ψa, ψb and λ, while β0, αm,p, αn,p are input parameters to the
model.

4.2.3 Toroidal magnetic energy

A great simplification of the actual study of the energy flows during a transient
is provided by the different role poloidal and toroidal magnetic fields play in
tokamak experiments. It is convenient to define separately the poloidal and
toroidal magnetic energies:

(a)Wm,pol =

∫
Vfw

B2
pol

2µ0
dr

(b)Wm,tor =

∫
Vfw

B2
φ

2µ0
dr

(4.37)

The flow of poloidal and toroidal magnetic energy are defined correspond-
ingly:

(a) ΦS,pol =

∫
+∂Vfw

Eφ ×Bpol

µ0
· n̂dr

(b) ΦS,tor =

∫
+∂Vfw

Epol ×Bφ

µ0
· n̂dr

(4.38)

Let us consider an axisymmetric first wall. Moreover, we consider an ax-
isymmetric case, where



168 CHAPTER 4. TOKAMAK DISRUPTIONS

Bφ =
µ0Ipol(r, z)

2πr
(4.39)

If there are no halo currents crossing the first wall surface the flux of toroidal
magnetic energy gets the simple circuit form:

ΦS,tor = −Ipol,ext
dΨtor,fw

dt
(4.40)

where Ψtor,fw is the toroidal flux across the first wall poloidal cross section and
Ipol,ext is the net poloidal current circulating in external conductors, both active
coils and passive structures. Formula (4.40) complicates slightly in presence
of halo currents, where additional terms related to the halo current injection
and to the voltage difference between points of the first wall would appear. We
proceed our study in the hypothesis of absence of halo currents, and we find in
particular that

dWm,tor

dt
+ΦS,tor =

d

dt

[
1

2

µ0
2π

∫
Sfw

I2pol(r, z)− 2Ipol,ext · Ipol(r, z)
r

dr

]
(4.41)

In tokamak devices the net poloidal current circulating in TF coils overwhelms
in general the net poloidal plasma current. As the net poloidal current in pas-
sive structures is eventually induced by plasma toroidal flux variations, also
the net poloidal current in the wall is in general far smaller than the net current
in TF coils. Hence, we are safely in the assumption:

Ipol,act ≫ Ipol,w, Ipol,pl(r, z) ∀(r, z) ∈ Vpl (4.42)

The net poloidal current in TF coils is generally kept constant, even during fast
plasma transients. Hence approximation (4.42) transforms (4.41) into:

dWm,tor

dt
+ΦS,tor ≃ 0 (4.43)

This means that the toroidal magnetic energy represent an energy tank on its
own, which does not transform to other forms, hence allowing a great simpli-
fication of our energy balance (4.36):

dQ

dt
= −ΦS,pol −

dWm,pol

dt
− dU

dt
(4.44)
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The identification of plasma losses starts to become clear. The amount of
losses is given by some contributions:

• drop of the internal energy

• drop of the poloidal magnetic energy

• influx of poloidal magnetic energy

Moreover, since Ipol,act ≫ Ipol,w, we can consider in general the plasma
toroidal flux variations as a forcing term for the induced voltages in struc-
tures, without care about the reciprocal interaction between toroidal flux and
net poloidal current in the wall. This is indeed one of the assumptions adopted
in the CarMa0NL evolutionary equilibrium model. Let us clarify this point,
the toroidal flux due to plasma currents should be calculated in few steps:

• The relation I2pol = I2pol(ψ) is calculated integrating the input function
dI2pol/ dψ with the initial condition I2pol|∂Vpl = (Ipol,act + Ipol,w)

2

• We consider the square root of such quantity Ipol(ψ) =
√
I2pol(ψ)

• The plasma poloidal current is obtained eliminating the contribution
from external conductors, Ipol,pl(ψ) = Ipol(ψ)− Ipol,act − Ipol,w

• Finally the plasma-produced toroidal field is known and we are ready to
compute its flux across the poloidal cross section of the plasma

Hence, it is quite clear that the actual value of plasma-produced toroidal flux
depends on the net poloidal current Ipol,w in principle. Anyway, since the
active poloidal current is far greater than the net poloidal current in the wall,
we can take

Ipol,pl(ψ) ≃

√
I2pol,act +

∫ ψ

ψB

dI2pol
dψ

dψ − Ipol,act (4.45)

In this approximation, the plasma-produced toroidal flux is independent of the
net poloidal current induced in the wall, and the toroidal flux time variations
are essentially a forcing term in the study of eddy currents. This is the assump-
tion adopted within the CarMa0NL model.
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J [MA] βp ℓi ∆iw [cm] ∆b[cm]

1.5 0.586 1.125 1.48 0.25

Table 4.6: Reference MHD Equilibrium for circular high-aspect-ratio toka-
mak.

4.2.4 A test case

In this subsection we apply previous considerations to the estimation of plasma
losses in a disruptive high-aspect-ratio tokamak device of circular cross sec-
tion, using the evolutionary equilibrium model CarMa0NL. The initial MHD
equilibrium configuration for this test case is synthetically described in table
4.6. The tokamak geometry is the same as described in previous Section, see
table 4.1.

We simulate the disruption as a Thermal Quench followed by a Current
Quench. The TQ is simulated bringing the the poloidal beta to zero in 0.1 ms.
After that a CQ is forced with a decay rate of 1 MA/ms. We will show the re-
sults obtained for a slower CQ at 100 kA/ms later in the discussion. The actual
choice of the current density profile parameters, the αs in our parametriza-
tion (3.114), determines a small drop in the internal inductance during the TQ,
while this keeps to be constant during the simulation of the CQ. The excursion
of the internal inductance value is within few percent points. In the consid-
ered study case hence we do not explicitly consider large internal inductance
variations, which may be caused for example by the onset of runaway elec-
tron beams (e.g. ∆ℓi ≃ 3ℓi(t0) [145]). An overview of the evolution of main
parameters is provided in Figure 4.3.

We show the essential results of our energy losses estimation in Figure 4.4,
where the various terms involved in the power balance (4.44) are integrated in
time, and variations of the various energy terms are portrayed since the initial
disruption time instant. Various conclusions can be drawn from here. First,
during the TQ the poloidal magnetic energy does not experience large varia-
tions and contextually the poloidal magnetic energy influx is very small. On
the other hand the plasma-produced toroidal flux undergoes a sudden variation
which modifies eventually the toroidal magnetic energy within the first wall.
This variation is however fully compensated by the Poynting flux contribution
ΦS,tor, as commented in (4.43). Hence during this preliminary phase of the
disruption the plasma loss is solely related to variations of the internal energy,



4.2. ENERGY BALANCE 171

0 0.2 0.4 0.6 0.8 1 1.2

Time [ms]

0.5

1

1.5

J
 [

M
A

]

0 0.2 0.4 0.6 0.8 1 1.2

Time [ms]

0

0.5

1

Figure 4.3: Evolution of (a) the net plasma toroidal current, and (b) the poloidal
beta βp and internal inductance ℓi

∆QTQ ≃ −∆U (4.46)

Further, during the Current Quench, by assumption all of the internal energy
is already lost. The plasma energy losses can be estimated as

∆QCQ ≃ −∆Wm,pol −
∫ t

t0

ΦS,pol(τ) dτ (4.47)

The plasma losses during the CQ depends solely on the consumption of
poloidal magnetic energy. This is both the energy contained within the first
wall, and the poloidal magnetic energy coming from outside due to the corre-
sponding Poynting vector influx.

In order to be confident that the toroidal magnetic energy is indeed not im-
portant in the task in a wide parameter range, we compare similar simulations
where we force a different value for the toroidal magnetic field enforced by
active coils. The maximum difference between toroidal magnetic energy vari-
ations and toroidal magnetic energy outflow should be expected during the TQ,
since the plasma poloidal currents change considerably during this transient,
as demonstrated by the pressure balance (3.101). Hence we define the l.h.s.
of (4.43) as “uncompensated” toroidal magnetic energy and evaluate the rel-
ative weight of this term as compared to the overall toroidal magnetic energy
variation within the first wall during the TQ in Table 4.7. We see that toroidal
magnetic energy variation is almost perfectly compensated for very high values
of the externally applied toroidal magnetic field. For lower values, the actual
exchange of toroidal magnetic energy with thermal energy can be appreciable
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Figure 4.4: Main contributions to the energy balance (4.44) for the study case
under exam, described in Figure 4.3 and table 4.6.

Bφ,act|r=Rw [T ] 14.6 4.87 2.00

∆Utor(tTQ,tCQ)
∆Wm,tor(tTQ,tCQ) [%] 2.36 17.0 50.0

Table 4.7: “Uncompensated” toroidal magnetic energy during the TQ, for dif-
ferent values of the applied toroidal field.

in the TQ phase, we illustrate the correspondingly different plasma losses in
Figure 4.5. You can see that in the case of relatively low applied toroidal mag-
netic field some of the internal energy is transferred to the toroidal magnetic
energy reservoir during the TQ and released in later phases of the disruption.
Nonetheless the effect of the poloidal magnetic energy consumption remain
dominant on the losses.

4.2.5 The circular high-aspect ratio analytical model

As a result of previous subsection we found that the actual plasma losses dur-
ing the Current Quench are related to the poloidal magnetic energy variation
within the first wall and the corresponding influx ΦS,pol. In this subsection,
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Figure 4.5: Estimation of plasma losses for different toroidal field enforced by
active coils at r = Rw.

we provide some simple formulas for the estimation of plasma power losses
during the CQ of our circular high-aspect-ratio tokamak. We want to find the
actual dependence of dQ/dt (4.44) on global parameters, as the net toroidal
current J , the poloidal beta βp and the internal inductance ℓi, besides of geo-
metrical parameters like the plasma minor radius b and shift ∆b.

In order to do this we need to estimate the poloidal magnetic energy stored
in the plasma, in the plasma-first wall gap and the flux of poloidal magnetic
energy through the first wall. It is worth noticing immediately that in the cylin-
drical limit a shift ∆b of the plasma column correspond to a shift of the poloidal
flux map in general, hence corrections in the poloidal magnetic energy stored
within the first wall and in the poloidal magnetic energy flux will appear as cor-
rections of order iO(∆b/bfw)

2. First order corrections in the plasma shift, will
hence appear exclusively also as toroidal corrections to the cylindrical-limit
case. In general corrections of order o(∆b/Rw) may be accounted in the mod-
elling task, but they do not add great information [35]. Hence, in our deriva-
tion we will consider exclusively first order toroidal corrections (o(bfw/Rw))
and second order cylindrical corrections in the plasma shift (o(∆b/bfw)

2). In
this Section, we provide the general formulas and we can use to evaluate the
poloidal magnetic energy in the plasma-first wall gap and the corresponding
Poynting vector flux across the first wall.



174 CHAPTER 4. TOKAMAK DISRUPTIONS

Poloidal Energy in the plasma

The poloidal magnetic energy within the plasma volume can be estimated via
the internal inductance definition:

Wm,pol,pl =
1

2

[
µ0Rw

ℓi
2

(
1 +

∆b

Rw

)]
J2 → 1

2
µ0Rw

ℓi
2
J2 (4.48)

Here we adopted the standard definition of internal inductance provided in
(3.103), where the internal inductance is the average poloidal magnetic energy
in the cross-section normalized by B2

J/2µ0. Hence the poloidal magnetic en-
ergy in the plasma is completely determined via the plasma current J and the
internal inductance parameter ℓi. As hinted, we discard any correction of order
∆b/Rw as we retain it of higher order.

Poloidal Energy in the gap

Simple manipulation of Maxwell Equations for our axisymmetric case allows
to write:

Wm,pol,gap =
1

2µ0
2π

[
ψb

∫
Γpl

Bp · îα dℓ−
∫
Γw

Bp · îu dℓ

]
(4.49)

where we indicated by ψb the poloidal flux at the boundary. Thanks to the
expansions (3.80) for the poloidal flux and (3.84) for the poloidal magnetic
flux density we can immediately simplify (4.49) to

Wm,pol,gap =
1

2
J2π [ψb − ψ0(bfw)]

+
1

2µ0
2π · πbfw· [ψ1(bfw) ·Bu,1(bfw) + ψ2(bfw) ·Bu,2(bfw)]

(4.50)

The poloidal flux at the boundary can be estimated directly via the equi-
librium considerations which lead us to (3.71). In particular the homogeneous
flux at the plasma boundary is both due to plasma currents and the external
currents. correctly expanding Rpl in terms of the Shafranov shift ∆b we get

ψb = ψ0,a + L̃wJw+
µ0Rw
2π

[
ln

8Rw
b

− 2

]
J

+
∆b

2Rw

µ0Rw
2π

[
ln

8Rw
b

− Λ− 3

2

]
J

(4.51)
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Notice the factor 1/2π in the inductance-like terms is necessary since by con-
vention we refer to poloidal fluxes per radian (i.e. ψ = rAφ). Plugging now
our definitions (3.81), (3.87) and (4.51) into our expression for the poloidal
energy in the gap (4.50), discarding second order toroidal corrections and cor-
rections of order ∆b/Rw, we get finally:

Wm,pol,gap =
1

2

[
µ0Rw ln

bfw
b

− µ0Rw
2

(
∆b

bfw

)2
]
J2 (4.52)

Considering at the same time the plasma and plasma-gap energy, we have
the poloidal magnetic energy in the plasma-wall gap :

Wm,pol,fw =
1

2

[
Lpl,fwi − Lshift

(
∆b

bfw

)2
]
J2 (4.53)

where we defined the “plasma inductance internal to the first wall” and the
“plasma shift inductance” terms respectively as:

(a) Lpl,fwi = µ0Rw

[
ℓi
2
+ ln

bfw
b

]
(b) Lshift = µ0Rw

1

2

(4.54)

Poloidal Poynting vector flux

We defined the poloidal magnetic energy flux in (4.38). There we may express,
thanks to Faraday’s law for our axisymmetric problem rEφ = −dψ

dt . Moreover

the tangential component to the first wall is such that îu = n̂× îφ. The flux of
the poloidal magnetic energy across the first wall hence simplifies to

ΦS,pol =
2π

µ0
bfw

∫ 2π

0
Bu(bfw, u)

dψ(bfw, u)

dt
du (4.55)

which leads immediately to consider the separate contributions to the overall
poloidal energy flux:

ΦS,pol,fw =
(2π)2

µ0
bfw

{
Bu,0

dψ0

dt
+

1

2
Bu,1

dψ1

dt

}
(4.56)
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Using again definitions (3.81) and (3.87) for the poloidal flux and magnetic
field in the plasma-wall gap, and discarding higher order corrections, we get
the Poynting vector flux contribution

ΦS,pol,fw = JLw
dJw
dt

+
1

2
Lpl,fwe

dJ2

dt
+

1

2
Lshift

d

dt

(
J
∆b

bfw

)2

(4.57)

where the plasma shift inductance term was given in (4.54b) and we defined
the wall inductance and the “plasma inductance external to the first wall” re-
spectively as

(a) Lw = µ0Rw

[
ln

8Rw
bw

− 2

]
(b) Lpl,fwe = µ0Rw

[
ln

8Rw
bfw

− 2

] (4.58)

Dissipated Heat and Time Constants

The dissipated energy during the CQ (4.47), thanks to the expressions (4.53)
for the poloidal magnetic energy and (4.57) for the Poynting vector flux, can
be finally provided in terms of plasma global parameters:

dQCQ
dt

= −1

2

dLplJ
2

dt
− LwJ

dJw
dt

(4.59)

where we defined the plasma inductance

Lpl = µ0Rw

[
ℓi
2
+ ln

8Rw
b

− 2

]
(4.60)

Notice that the cylindrical plasma-shift corrections in (∆b/bfw)
2, which

we evaluated both for the poloidal energy and for the Poynting vector flux,
cancel each other and do not enter in the estimation of plasma losses. Two
important limits of (4.59) can be identified based on the overall CQ duration
as compared to the electromagnetic time constant of the wall. Consider indeed
the evolution Equation for the net current in the wall (3.69a).In the limit of fast
CQ, i.e. ∆tCQ ≪ τ0,w, a variation of the net plasma current is immediately
compensated by a variation of the wall net toroidal current, so to preserve
the poloidal flux outside. Hence in this case dJw/ dt = −dJ/dt and the
dissipated heat takes the very simple form
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dQfastCQ

dt
= −

d
(
Lpl,wiJ

2
)

dt
(4.61)

where we defined the plasma inductance internal to the wall

Lpl,wi = µ0Rw

[
ℓi
2
+ ln

bw
b

]
(4.62)

Equation (4.61) is susceptible of a very simple interpretation. Whenever the
plasma CQ is fast compared to the electromagnetic time constants there is not
enough time for the poloidal magnetic energy to penetrate the wall. Hence
the poloidal magnetic energy available for conversion to heat is solely the one
contained within the first wall itself. In particular all of the consumed poloidal
magnetic energy inside the wall is necessarily dissipated towards the external
world by other forms than electromagnetic. Indeed, in the ideal wall approxi-
mation, a finite ΦS,pol at the first wall is solely associated to a variation of the
poloidal magnetic energy in the first wall - vacuum vessel gap.

Let us examine the diametrically opposite case, i.e. the no-wall limit. In
this case the wall current ideally does not vary, always being null and we can
set dJw/ dt = 0 in Equation (4.59), leading to

dQslowCQ

dt
= −1

2

d
(
LplJ

2
)

dt
(4.63)

Virtually all of the poloidal magnetic energy inside the wall and all of the
poloidal mangetic energy outside the wall (excluded the magnetic energy of
PF coils) can be converted to heat! This limit finds practical application in
case the CQ is much longer than the electromagnetic time constants ∆tCQ ≫
τ0,w. In particular, consider a linear decay for the plasma net current, so that
dJ/dt = const. After few electromagnetic time constants, the induced wall
current will reach its steady value Jw = τ0,w dJ/dt, and we can take indeed
dJw/dt ≃ 0.

During the CQ the plasma behaves exactly as a heater, converting poloidal
magnetic energy into dissipated heat. The actual amount of magnetic en-
ergy available for conversion is regulated by the actual duration of the CQ
as compared to the wall electromagnetic time constant. Besides more energy
is available for conversion heat during a slow CQ, it is nonetheless true that
a slower dissipation of a higher quantitative of energy can lead of course to
power losses. In this respect what remains important is the power dissipation.
Moreover the faster the CQ, the more severe will be the magnetic pressure
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Figure 4.6: Plasma power losses during (a) a fast CQ of 1MA/ms and (b) a
slow CQ of 100 kA/ms.

differences across wall structures during the CQ, hence the greater will be the
mechanical stress. These opposite trends make the design of tokamak experi-
ments particularly delicate.

The time constant for our study case is about τ0,w ≃ 3.5ms. A verification
of the “exact” analytical formula for the dissipated heat during the CQ (4.59),
together with its fast CQ (4.61) and slow CQ (4.63) limits, is provided in Figure
4.6. In the left panel, we consider the relatively fast CQ of 1MA/ms already
discussed. It is evident as in the first time instants of CQ the “fast” approxi-
mation essentially matches the “exact” analytical formula, since the magnetic
field has still to diffuse across the wall. Results for a slower CQ of 100kA/ms
are shown in the right panel. In this case, we notice a good match after the net
wall current is close to its steady state value, i.e. since a time instant ∼ 2τ0,w
after the start of the CQ. The noise of such power losses estimations is related
to the computation of the time derivatives via finite differences during the post-
processing. Nonetheless, we prefer here to provide power rather than energy
estimations to get rid of the cumulative error we would integrate at each time
step.
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4.3 JET Vertical Displacement

The Joint European Torus (JET), with its major radius Rw ≃ 2.96 m, is the
largest tokamak device operated up to now 1. IN JET currents up to 3 MA
and toroidal fields up to 3.45 T were achieved. With these incredibly large
currents and magnetic fields, JET represents certainly the main reference for
extrapolations to ITER [153]. In 2011, after some years of shut-down, the first
wall materials were even replaced to install an “ITER-like” wall and study the
fundamental physics interaction of the Beryllium and Tungsten divertor with
the hot plasma [154, 155]. The only similarly-sized tokamak, with even larger
plasma volume, is JT60-SA, which is presently in its commissioning phase and
hopefully will be soon operated [156].

In subsection 4.3.1 we explain how to deal with JET magnetic iron core
within an evolutionary equilibrium simulation, especially with focus on the
particular case of deep magnetic saturation of the iron core. There, we also
show standard procedures to set up the initial conditions for a CarMa0NL sim-
ulation, which requires the definition of the initial poloidal flux map in the
plasma domain. In subsection 4.3.2 we describe some of the magnetic diag-
nostics installed, and how we set up comparison of their measurements with
CarMa0NL simulations. Finally in subsection 4.3.3 we describe a real JET
experiment and we analyse it by a CarMa0NL simulation.

4.3.1 The magnetic iron core

In order to provide sufficient flux excursion to guarantee long-lasting experi-
ments, JET includes a large iron core [157] which slightly complicates the set
up of an evolutionary equilibrium simulation. Indeed, in principle one has to
couple the non-linear model of the magnetic core to the Evolutionary Equilib-
rium model, which is of course far from trivial.

Nonetheless, when steady state MHD Equilibrium conditions are achieved,
we may assume that the iron core is deeply saturated. In the following we
will assume that even during the fast plasma current transient the iron core
is still saturated. In this assumption we may regard the magnetic core as a
fixed source of poloidal flux for what concerns the plasma MHD Equilibrium
problem. Moreover there will be no induced voltages on structures due to
variations of the magnetization. This is clearly an arbitrary assumption, espe-
cially for later phases of the disruption, and future work for a more accurate

1and the most long-lived, considering the first plasma at JET was achieved in 1983.



180 CHAPTER 4. TOKAMAK DISRUPTIONS

description of the iron core is recommended.
Contextually to the identification of an initial flux map to initialize the sim-

ulation, we need to identify the actual poloidal flux produced at the Coupling
Surface both by the active coil currents ψ̂a and by the magnetization in the iron
core ψ̂m. These poloidal fluxes will be retained constant throughout the whole
simulation. In this respect the boundary conditions for the free-boundary MHD
Equilibrium problem at each time step will be given by

ψ
∣∣
∂VCS

= ψ̂a + ψ̂m + ψ̂I + ψ̂pl (4.64)

where ψ̂a and ψ̂m are calculated once for all at the initial MHD equilibrium
time instant. If variations of the active currents needs to be accounted, these
can conveniently included as current variations of the currents in the coils im-
plemented in the 3D description of external conductors.

We stress as the initial MHD Equilibrium flux map should be calculated
correctly considering the presence of the iron core. In order to find such a flux
map we use the CREATE-L tool [115], which include a 2D Equivalent model
of the iron-core [158, 159]. The inherent advantage in using CREATE-L in
this pre-processing stage is that it allows to use exactly the same discretization
of the MHD computational domain within the Coupling Surface Ωin. The ini-
tial poloidal flux map is found through an iterative Newton-Raphson scheme,
imposing exactly the poloidal flux due to active coils via standard axisymmet-
ric Green functions and self-consistently determining the poloidal flux due to
plasma currents and iron core magnetization at each Newton iteration. Starting
from a proper qualified guess2, the solution is generally found after few New-
ton iterations. Clearly, we find a solution only if the input parameters provided
for the set up of the toroidal plasma current profile, i.e. J , β0, and the α-type
parameters, can reproduce indeed a realistic current distribution in equilibrium
with the external field provided by active conductors and mangetic core. We
decided to compare the MHD Equilibrium found in this way directly with the
magnetic measurements.

In Figure 4.7 we show the reference MHD Equilibrium configuration for
the JET shot #71985, calculated at the time instant t0 = 67.3s, calculated
with the procedure described above. Some important parameters defining the
MHD Equilibrium are provided in tables 4.8 and 4.9.

2e.g. previously computed MHD equilibria or poloidal fluxes produced by toroidal filaments
within Ωin
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Figure 4.7: Poloidal flux surfaces for the MHD Equilibrium configuration of
the JET experiment #71985 at t0 = 67.3 s, computed by CREATE-L. The
plasma boundary is depicted in red, the first wall in blue, the vacuum vessel and
some conductors are in grey. In magenta we show the position and orientation
of the 18 in-vessel Internal Discrete Coils. Green and orange dashed lines
schematically show the 14 ex-vessel Saddle Loops.
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β0 αm,p αn,p αm,f αn,f λ ψa
[
Wb
rad

]
ψb
[
Wb
rad

]
0.014 0.997 1.036 0.877 1.289 1.967 −0.038 −0.207

Table 4.8: Input parameters and further toroidal current profile parameters for
MHD Equilibrium setting of JET shot #71985 at t0 = 67.3 s.

Rpl Apl J β′p ℓ′i q95

2.92m 4.55m2 2.146MA 0.017 1.067 2.4

Table 4.9: Plasma parameters for MHD Equilibrium of JET shot #71985 at
t0 = 67.3 s, as computed by CREATE-L. βp and ℓi are presented according to
the CarMa0NL definition (i.e. in terms of volume averages).

4.3.2 The magnetic diagnostics

Several magnetic diagnostics are installed in JET. Inside the first wall there are
pick-up coils to measure the magnetic flux density at several poloidal locations,
and replicated at 4 different toroidal angles (i.e. in 4 of the 8 octants which
constitute the JET structures) [160]. We will focus in particular on the Internal
Discrete Coils, whose location and orientation in a single poloidal plane is
given in Figure 4.7.

Similarly, several loops are present to measure the ex-vessel magnetic
fluxes. In Figure 4.7 we show in particular the ideal location of the standard
Saddle Loops. Ideally, these would be intended to measure the actual poloidal
flux difference between two distinct poloidal locations. Anyway the presence
of bellows and ports, besides the installation tolerances, generally requires to
modify the ideal path and reduce the area linked to each coil. For example, the
large horizontal port significantly reduce the toroidal span of Saddle Loops 1
and 14. This effect is simple to account rescaling the real measurement by the
ratio of ideal and real toroidal span of the loops. Anyway the large port open-
ings (both the horizontal and the vertical ones) require to significantly break
the axisymmetry in case of Saddles Loops 2, 3, 4 and 11, 12, 13. Within the
JET database, raw measurements are always re-scaled to virtually simulate a
complete toroidal span of each Saddle Loop. A further correction factor is
applied in post-processing to account for the loss of flux due to bellows and
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non-axisymmetric paths of the diagnostics. The locations in Figure 4.7 hence
provide the ideally axisymmetric toroidal connections which should best fit the
real, non-axisymmetric, Saddle Loops measurements.

In order to check the MHD Equilibrium we found is satisfactory, we com-
pare the simulated Internal Discrete Coils and Saddle Loops measurements,
with real ones. The experimental measurements are processed to eliminate
the spurious effect due the non-perfect poloidal alignment of the diagnostics,
which may link some toroidal magnetic field. Compensation coefficients are
computed from the last available dry run, considering the reading of diagnos-
tics measurements when only Toroidal Field coils are in operation. Moreover,
we read the signals from all the available replica at different toroidal locations,
subsequently considering the average of measurements along the toroidal an-
gle. The standard deviation for the same measurement at different toroidal an-
gles is generally small as compared with the average, indicating the robustness
of the axisymmetry hypothesis adopted for the plasma during the experiment.

For the sake of comparison of simulated and real diagnostics measure-
ments it is useful to introduce some reference quantities. Notice the Internal
Discrete Coils are approximately tangent to the inner page of the first wall.
Following some earlier discussion on the circular tokamak, we may take the
average measurement as reference quantity, which would scale like ∼ Bu,0.
Anyway, to be more general, we consider the following effective value of the
tangent field along the poloidal angle:

Bref =

√√√√ 1

2π

18∑
k=1

B2
exp,k∆θIDC,k (4.65)

The average of saddle loops measurements would be zero in the ideal limit of
perfect coverage of the torus via the loops. In this case it is especially useful
to use an effective value as reference quantity:

ψref =

√√√√ 1

2π

14∑
k=1

ψ2
exp,k∆θSL,k (4.66)

The relative errors for the MHD Equilibrium described in Figure 4.7 are given
in Figure 4.8.
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Figure 4.8: Relative error for (a) Internal Discrete Coils and (b) Saddle Loops
measurements, expressed in per unit respect to the reference quantitiesBref ≃
378.8mT (4.65) and ψref ≃ 1.226Wb (4.66).

4.3.3 Experiment #71985

Starting from the MHD equilibrium configuration found for the JET shot
#71985, we try to simulate the actual experiment. In this case a voltage kick
is purposely applied to the Fast Radial Field Circuit, used in JET for the con-
trol of the vertical position, generating a VDE. The plasma hits the wall, and
contextually loses thermal energy, up to the point when a CQ starts. The evo-
lution of experimentally found quantities is reported in Figures which follow,
together with the simulations results. In order to fit the actual electromagnetic
evolution of the experiment there is a number of knobs which we can manipu-
late:

• The electric current in active conductors, especially the Fast Radial Field
Circuit;

• The profile parameter β0, which allows to drive the internal energy vari-
ations;

• The net toroidal plasma current, which is the fundamental quantity driv-
ing the poloidal magnetic energy exchanges;

• The α-type profile parameters, which we can use to modify the actual
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Figure 4.9: Plasma current centroid vertical position during JET experiment
#71985.

steepness of the current density distribution about its current centroid,
allowing to fit the internal inductance evolution

• The growth of the halo width related after the first time of plasma-wall
contact

In the following simulation we model the conducting vacuum vessel by a
simplified axisymmetric model, where the thickness and resistivity are adapted
to account for the presence of bellows and of the JET double-shell [148].
Nonetheless, the presence of ports is discarded completely and even the bel-
lows are not described as geometrically concentrated at a given toroidal loca-
tion, i.e. we take a toroidally uniform resistivity. These simplifications may
lead to an overestimate of the growth rate as compared to the experiment, as
observed in [148]. Moreover our estimation of the initial MHD Equilibrium
is subject to a small error, as evidenced in Figure 4.8, adding uncertainty in
the calculated growth rate for the vertical instability. These considerations in-
dicate clearly that a more accurate description of conducting structures and
finer tuning of the initial MHD equilibrium would be necessary to accurately
fit the experiment. In particular, the application of the experimental voltage
kick leads to unacceptably fast vertical displacement, not observed in reality.

Nonetheless, the available knobs at our disposal allow to stimulate a Ver-
tical Displacement in our CarMa0NL simulation which does not differ much
from the one we observe experimentally, up to the point when the plasma hits
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the wall. We achieve this by proper re-scaling the applied voltage kick to the
fast radial field circuit. This expedient, besides not fully consistent, allow us
to correctly reproduce the time instant of first plasma-wall contact. From that
time instant onwards, the actual dynamics of the plasma column change com-
pletely, and also the growth rate of the vertical instability gradually lose of
importance. In Figure 4.9 we compare the evolution of the current centroid
vertical position as evaluated by CarMa0NL and as found in the experiment
according to the definition suggested in Reference [160]. The quite fair agree-
ment of the vertical displacement, up to the first time of plasma-wall contact
(thit = 67.328 s), motivate the possibility of describing later stages of the
experiment, even before more accurate models for structures and initial equi-
librium are available.

We compare the net toroidal plasma current against the experimental one
in Figure 4.10a. Contextually we show the CarMa0NL estimation for the
poloidal plasma current in Figure 4.10b. Notice that we impose a linear de-
cay of βp from its nominal value 0.017 to zero, since the time instant of
plasma-wall contact and lasting 1 ms. About the same time, e-fit predicts
an increase of the poloidal beta and suddenly stops converging. It is worth
noticing that we predict a quite lower βp as compared to the e-fit reconstruc-
tion (βefit ≃ 4βCarMa). The time step adopted in the simulation is 0.2 ms,
enough smaller than structures time constants. Since the first time of plasma-
wall contact, we account for the existence of an halo layer. In particular we
manually tune the flux difference between the plasma boundary and the core
boundary magnetic surfaces to be a given fraction of the flux difference be-
tween the plasma boundary and the magnetic axis poloidal fluxes, i.e. we tune
the parameter H(t) of the following relation:

ψb − ψL = H(t) (ψa − ψb) (4.67)

The label “L”, clearly indicates the limiter point, i.e. the boundary of the
core plasma. The simulated pick-up coils measurement are very sensitive to
different choices ofH(t), indicating that appropriate account of the halo width
is necessary to correctly simulate the plasma evolution. The parametrization of
the toroidal current density (3.114), remains defined up to the plasma bound-
ary, i.e. includes the halo region. From Figure 4.10a we see that a significant
portion of the toroidal current is carried by the plasma in the halo region.

During the current spike, slightly before the Current Quench takes place,
the current density distribution within the plasma flattens significantly. It is
important to describe this feature in order to correctly account for the poloidal
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Figure 4.11: (a) Plasma internal inductance and (b) cross-sectional area during
JET experiment #71985, as evaluated in CarMa0NL simulation.

magnetic energy variations and fluxes. Indeed a raise of the plasma current
without a corresponding decrease in the internal inductance, would lead in
general to an eventually non-physical increase in the poloidal magnetic energy
within the first wall. We show in Figure 4.11a the internal inductance variations
we find in simulation, after a detailed tuning of the α(t)-type current profile
parameters.

For completeness, we provide the actual plasma toroidal current density
distribution at a later time instant of the simulation in Figure 4.12a. From
this picture, the actual relatively large cross-sectional area of the halo layer is
evident. In the same Figure, we show the corresponding eddy currents. The
injection of halo currents into structures is not performed at this stage, as the
actual toroidal field is not retained important indeed on the actual plasma evo-
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(a) (b)

Figure 4.12: Simulated (a) toroidal plasma current density distribution and
(b) eddy currents in passive structures during JET experiment #71985 at t =
67.366 s, i.e. during the Current Quench and beyond the instant of plasma-wall
contact. The overall toroidal plasma current is 792 kA.

lution, as motivated in previous Sections. The actual way we compute the
plasma toroidal flux variations is consistent with a surface current sheet lo-
cated at the inner page of the Coupling Surface, which makes close the plasma
current paths, as discussed in Section 2.7. Notice that most of the stabilizing
current and toroidal current due to the plasma Current Quench is carried by the
restraining rings, with a relatively low eddy current in the surrounding vacuum
vessel. There you may also notice the net poloidal current, resulting from the
toroidal flux variations.

Some of the simulated measurements for Internal Discrete Coils and Sad-
dle Loops are compared against experimental measurements in Figures 4.13c.
In particular we subtract from the signals the initial value at t0 = 67.3 s, in
order to focus the attention on the efficacy of our dynamic description, rather
than on the error on the initial MHD Equilibrium flux map. The agreement
is quantitatively satisfactory for measurement on the top part of the machine,
while large deviations are found for simulated IDC measurements placed on
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(a) Internal Discrete Coils

(b) Saddle Loops

(c) Summary of the comparison between simulated and experimental (a) Internal Dis-
crete Coils and (b) Saddle Loops measurements. Variations of the signals respect to
the initial time instant t0 = 67.3 s are reported.
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the bottom, at least in late time instants of the simulation. As the plasma is
moving upwards, and the current centroid is clearly located at the top of the
device, the mismatch is probably related to a still inaccurate description of
eddy currents in the divertor structures. It is worth moreover to notice in this
respect that here we are not considering the actual supply of all of the PF coils,
besides the applied voltages to PF coils are instead varied during the experi-
ment (although on a slower time scale then the fast radial field coils).

4.4 Disruption Trajectories in TCV

In this Section we collect the results of a recent experimental and simulation
campaign carried out at the Tokamak á Configuration Variable (TCV), focused
on the prediction of disruption trajectories [129]. TCV is a medium size toka-
mak (Rw = 0.88m,B < 1.54 T ), characterized by great shaping flexibility of
the steady state plasma at MHD Equilibrium, thanks to its set set of 16 Poloidal
Field Coils [161]. The campaign under exam was motivated by the recent
idea of installing sacrificial limiters in the next generation tokamak DEMO
[162]. The effectiveness of this solution relies on the capability of predicting
and controlling the the target location where the plasma is hitting the wall,
in consequence of a disruption. The experimental campaign [129] revealed
that the actual radial motion of the plasma column is very correlated to the
pre-disruption MHD Equilibrium configuration, hence in last analysis to the
shaping external magnetic fields. This feature can be observed for example in
Figure 4.14, where LIUQE reconstructions for different Vertical Displacement
Events are presented, all triggered by a Voltage Kick and contextual shut-down
of the vertical control system.

From the LIUQE reconstructions, it is quite evident that the plasma with
original positive triangularity tends to move inward, while the plasma with
negative triangularity move outwards. Plasmas with almost null triangularity,
also defined as “drop-like” tends to stay centred in the vacuum chamber during
their vertical motion. This behaviour was observed during the experimental
campaign also for different disruption triggers:

• increasing the density above the Troyon density limit, via gas puff in the
vacuum chamber;

• increasing the toroidal plasma current until reaching qedge = 2, properly
varying the applied homogeneous poloidal flux
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Figure 4.14: Each panel reports the LIUQE reconstruction of the plasma
boundary for a TCV shot. The plasma boundaries depicted in blue are taken
at a time instant prior to the disruption trigger t0, where the plasma can be
considered in static equilibrium. In all of the above experiments the disrup-
tion trigger is a Voltage Kick, and contextual shut-down of the vertical control
system.

Similar plasma shapes, with different cross-sectional areas, were also triggered
in the same way to examine whether the growth rate of the vertical instability
influences the trajectory. It was found that the actual time-scale of the vertical
motion does not influence substantially the trajectory of the current centroid in
the poloidal plane [129].

The trajectories observed in experiments are substantially confirmed in
CarMa0NL simulations. In Figure 4.14 the black solid lines represent the
plasma boundary as found in CREATE-L, before the disruption trigger. There
we indicate with t0 the pre-disruption time instant where we compute the MHD
equilibrium. We provide some details on these MHD equilibrium configura-
tions, which we use to initialize CarMa0NL simulations, in Table 4.10.

The Vertical Displacement Events are triggered in simulation by standard
voltage kicks which lead to the correct vertical motion of the plasma column.
A wide variety of simulations is performed varying different plasma internal
parameters during the simulation. The most significant results to the study of
disruption trajectory are illustrated in Figure 4.15. The general tendency of
positive triangularity plasmas to move towards the high field side, and that of
negative triangularity plasmas to move towards the low field side, is confirmed.
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#shot J [kA] βp ℓi ∆b [cm] Apl [m
2] k δ

66078 209.2 0.391 1.087 −0.9 0.236 1.584 0.367
66079 207.2 0.298 0.989 +0.5 0.193 1.427 0.651
68492 251.7 0.322 0.821 +2.2 0.216 1.608 −0.266
68496 190.2 0.478 0.984 +1.6 0.218 1.586 0.020
68502 250.6 0.193 0.935 +1.8 0.225 1.523 0.285

Table 4.10: Summary of the pre-disruption TCV equilibria considered. The
plasma profile parameters are computed by CREATE-L. The reference major
radius for TCV is Rw = 0.88m.

It is noticeable as the net toroidal plasma current variations accentuate this be-
haviour. The sudden beta drop instead leads always to a sharp displacement
of the plasma column towards the high-field side. This “inward” motion is
nonetheless always over-compensated by the dynamics induced from the volt-
age kick and the net toroidal plasma current variations.

Both the effect of the net plasma current variation and of the poloidal beta
drop on the disruption trajectory could still be explained by the simple high-
aspect-ratio evolutionary equilibrium theory introduced in Section 3.2. In the
ideall-wall limit, according to (3.75), the following quantity should be con-
served:

J (∆b −∆iw) = const (4.68)

where J is the plasma toroidal current, ∆b is the shift of the plasma column re-
spect to the wall geometrical center, and ∆iw is the plasma shift which makes
the wall a flux surface. For a circular high-aspect-ratio tokamak we find that for
∆b < ∆iw the plasma should move inwards during the CQ, vice-versa we ex-
pect an outward moving plasma column when ∆b > ∆iw. The generalization
of this picture to our shaped, small aspect-ratio case is of course non-trivial. A
position of the plasma column which makes the wall a flux surface, for given
shape, area and current distribution within the boundary, does not even exist in
general. A suitable generalization of ∆iw likely involves some moment of the
magnetic field distribution at the wall. The real physical requirement is that
the motion will try to keep Bn frozen at all the wall points, although the wall
is not ideal and the magnetic field slowly diffuse through the vessel. Nonethe-
less, simulations and experiments suggests to frame the observed trajectories
into the analytical picture claiming that ∆b > ∆iw for plasmas with positive
triangularity, and ∆b < ∆iw in the opposite case.
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Figure 4.15: Trajectories of the disruptions triggered by Voltage Kick, and
reported in Figure 4.14: (a) LIUQE Reconstruction of the experiment; (b)
CarMa0NL simulations: the solid lines are obtained for constant plasma cur-
rent and βp; dashed lines are found imposing a βp drop, followed by a current
overshoot and quench (200kA/ms); dotted lines account for a constant βp and
plasma current evolving as in the real experiment; dash-dotted lines combine
the experimental plasma current evolution with a βp drop.

This overall trend is confirmed in Figure 4.15, even from the small current
overshoots occurring in shots #66078 and #66079, both with positive trian-
gularity. The dotted lines represent simulated trajectories obtained keeping
constant the poloidal beta, and varying the toroidal current as in the exper-
iment. At some point of these trajectories you may notice a sharp outward
motion, precisely related to the current spike.

Concerning the behaviour observed at the Thermal Quench, the analysis
is even more simple. A drop in the poloidal beta is likely responsible for a
reduction in the ideal wall Shafranov shift, see Equation (3.77). For a constant
plasma current, ∆b would just follow the motion of the ideal shift ∆iw, so to
leave the distance ∆b −∆iw unaltered in the ideal wall limit.

Finally we examine in greater detail the shot #66078, for which we find
a good quantitative agreement between simulated and experimental measure-
ments. In this case we force the current in active Poloidal Field coils to equal
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Figure 4.16: Toroidal plasma current, poloidal beta and internal inductance
evolution during TCV experiment #66078.

the experimental one at each time step. As a consequence the effect of the real
“Voltage Kick” is completely accounted, since the magnetic field imposed by
active conductors is reproduced exactly in the simulation. An overview of the
evolution of the plasma current and main internal plasma parameters is given
in Figure 4.16. We report the motion of the magnetic axis in the poloidal plane
as reconstructed by LIUQE and as computed in the CarMa0NL simulation in
Figure 4.17. The simulated radial motion match quite well the reconstruction,
while the simulated vertical motion differs considerably after some ms from
the application of the Voltage Kick. Again notice that a radial displacement
towards the low field side occurs when the plasma current overshoots without
variations of βp, i.e. at the time instant t ≃ 1.16s.

The CarMa0NL computed evolution match quite well the real magnetic
measurements, as shown in Figure 4.18 for the pick-up coils whose location
and orientation was illustrated in Figure 4.14. The mismatch between real
and simulated measurement does not vary much during the time evolution,
indicating the effectiveness of our description. Again, in order to fit the ex-
periment, we forced the plasma current to equal the experimental one. The
thermal energy was regulated similarly to what reconstructed by LIUQE via
the parameter β0. Moreover the α(t)-type parameters were set up in such a
way to determine a current flattening before the TQ, as you can notice form
the internal inductance evolution in Figure 4.16b. Compared to the JET simu-



4.4. DISRUPTION TRAJECTORIES IN TCV 195

1.15 1.152 1.154 1.156 1.158 1.16

Time [s]

0.7

0.75

0.8

0.85

0.9

CarMa0NL

LIUQE

1.15 1.152 1.154 1.156 1.158 1.16

Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4.17: Evolution of the magnetic axis poloidal location during TCV
experiment #66078.

lation of previous Section, here we don’t have any halo layer, and the plasma
currents are always taken within the Last Closed Flux Surface.

The results of our benchmark with experiments support the possibility of
using evolutionary equilibrium tools for the analysis of disruption experiments.
Nonetheless, the validity of evolutionary equilibrium models to predict the
tokamak plasma evolution is still subject to different hypothesis and to the
correct set-up of some input parameters, which are eventually evolving in time.
Let us recollect the underlying hypothesis making an evolutionary equilibrium
model valid:

• Equilibrium, hence evolutionary equilibrium, models generally assume
a well defined topology for the magnetic flux surfaces. The eventual
break of magnetic topology is hence neglected or assumed to not influ-
ence considerably the overall tokamak plasma evolution, except for what
results from the sudden loss of thermal energy;

• The natural mechanical macroscopic motion needs to be limited to the
electromagnetic time-scale by the presence of passive conductors. An
Alfvénic motion cannot be captured from the model. The verification
of this hypothesis can be performed at least for what concerns the rigid
vertical motion of the plasma column, evaluating the stability margin
of the planned reference equilibrium configuration. Nonetheless, it is
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a matter of fact that the stabilizing effect of passive conductors on the
vertical motion is less and less efficient as the plasma current decreases.
In this respect the vertical instability may become Alfvénic during the
CQ, although this cannot be determined in advance and likely depends
on the effect of halo currents on the plasma evolution.

• In order to use a tool as CarMa0NL one should retain reasonably sat-
isfied the hypothesis of axisymmetric plasma. Any 3D plasma effect
cannot be captured by this description.

Even when the mass-less approximation and the axisymmetric hypothesis
are retained accurate, the possibility of using axisymmetric evolutionary equi-
librium models for predicting the plasma evolution during disruptions of future
experiments is subject to the knowledge of several physical features:

• Plasma current evolution

• Initial perturbation driving the evolution/disruption, and eventually the
equivalent quasi-static trigger;

• Thermal Quench duration;

• Evolution of the current density profile parameters, i.e. the α-type pa-
rameters of the CarMa0NL representation (more generally the relation
between plasma boundary geometry and Btan);

• Active currents evolution (which eventually requires to model the con-
trol system);

• Halo width evolution;

For example, the prediction of the net plasma current could be implemented
providing information on joule losses and on the deformation power [62].
More generally, the free-functions appearing in the Grad-Shafranov equation
may be evaluated by simplified diffusion models, and coupled self-consistently
to the MHD equilibrium problem [163]. Anyway the actual value and evolu-
tion of diffusion coefficients may be subject to even larger uncertainties than
the one we have for the input parameters listed above. When some objec-
tive is identified, a simulation scan can be conveniently set-up, varying for
example the plasma current decay-rates, the evolution of the current profile
parameters, or the way in which the active coils are fed. This allows for use-
ful engineering estimations. The most classical example is given probably by
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Figure 4.18: Comparison of simulated, reconstructed and raw measurements
for some of the pick-up coils during TCV experiment #66078.

the estimation of the mechanical stress on passive structures during expected
disruption scenarios of tokamaks actually in their design phase [128, 85]. Vast
simulation-campaigns can be performed to investigate the expected forces and
the mechanical stress on the tokamak wall and eventual plasma facing compo-
nents. The apparent freedom in the choice of the free functions and other input
parameters can be checked for energetic consistency by the considerations of
Section 4.2.





Conclusions

T he modelling and simulation of tokamak plasmas on the macroscopic
length-scale is fundamental for the understanding of present experi-

ments and for the design of future devices. The passive conducting struc-
tures themselves can be considered on their own a fundamental ingredient of
a working tokamak, slowing down to the electromagnetic time scale otherwise
Alfvénic plasma motions. The present Thesis was largely motivated by the
problem of the self-consistent description of the plasma evolution under the
passive feedback of the conducting structures nearby. Several questions moti-
vated efforts in different directions, let us resume briefly what we achieved to
answer and what is still largely missing.

Halo currents are among the less understood electromagnetic phenom-
ena taking place in a tokamak device, and this work certainly does not pro-
pose a definitive interpretation. Anyway, the initial driver which motivated
the thermodynamics study of Chapter 1 was, surprisingly, the study of halo
currents. The discussion of Section 1.10 highlights clearly the recombination
of ions and electrons at the solid interface and the ionization of the neutral
gas within the bulk plasma as key features of a steady state shared current be-
tween plasma and wall. This fact makes advisable to model our fluid mixture
as a partially ionised gas, if we want to describe operational regimes where
there is significant plasma-wall contact. Hence, we devoted our initial ef-
fort in providing a simple but thermodynamically coherent description of the
ionization/recombination phenomena within the context of Magneto-Hydro-
Dynamics. The correct tool to pursue this objective was identified to be the
general framework of Non-Equilibrium Thermodynamics, which allowed us to
set up a constitutive relation for the ionization-recombination rate and recover
Saha Equation in conditions of thermodynamic equilibrium. Besides the va-
riety of extended MHD models available in the literature, only a few describe
the neutral gas within the fluid mixture, and in most cases it is hard to verify
whether the reference conditions of Thermodynamic equilibrium are correctly
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described or not. This path proposes to the MHD community the possibility of
accounting for chemical reactions at the macroscopic, thermodynamic level.

As a side-effect, we had the opportunity to review in a unitary framework
all of the closure relations to the MHD model generally postulated on a phe-
nomenological basis. The discussion revealed in particular how the actual
structure of constitutive relations is constrained first by a positive-definite en-
tropy production and further by the fundamental symmetry principle of Curie
and the reciprocal relations of Onsager. The anisotropy of the system in-
troduced by the presence of a strong magnetic field was fully accounted in
this context, with some interesting consequences of the magnetic field being a
pseudo-vector. In particular, we found that even order thermodynamic fluxes,
are only generated by even order thermodynamic forces, and the same holds
for odd order quantities. The coordinate-independent form of the constitutive
Equations was also a natural consequence of this discussion. We believe that
this completely-macroscopic framework may be beneficial on the one hand for
understanding and on the other hand to check that all the ad hoc modifications
of extended-MHD models are thermodynamically consistent.

Later, we examined the problem of the electromagnetic interaction rather
from the conducting structures perspective. A variety of extended-MHD mod-
els is available in the literature, and some of them include also conducting
structures within the model [59, 60]. Anyway a numerical model which de-
scribes both 3D volumetric structures and 3D non-linear MHD models is still
missing. The underlying question of Chapter 2 is clear: How can we develop
such a tool? A review of the mathematical formulation of the extended-MHD
codes M3D-C1 [39, 41] and JOREK [40, 54, 61], allowed to identify the tan-
gent component of the magnetic field to the MHD computational boundary as
the key boundary condition to set up in order to account for the effect of cur-
rents in external conductors. The Magneto-Quasi-Static problem in the outer
domain to the Coupling Surface needs to be implicitly solved at each time step
of the MHD simulation, accounting clearly for passive currents.

We hence explored different possible interaction schemes, all in the frame
of Boundary Element Methods. In particular the indirect scheme based on
the Virtual Casing Principle was described for its application to the JOREK-
CARIDDI coupling. Preliminary results are satisfactory, but further work is
still necessary before realistic halo current patterns can possibly be simulated.
Further we explored two possible direct formulations [63], with the objective
of avoiding the discretization of the JOREK boundary via CARIDDI elements.
In this respect the direct-A formulation presents some gauge problems, except
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in the axisymmetric case, n = 0. Anyway its discussion revealed how to cor-
rectly account for plasma induced voltages in conducting structure, solely in
terms of the tangent component of magnetic field and vector potential at the
MHD computational boundary. The direct-B formulation, also thanks to the
previous considerations on plasma-induced voltages, looks finally suitable for
implementation. The resulting boundary integral equation first revealed to be
non-invertible. We showed this is related to the topological singularity of the
Coupling Surface, and how to overcome this situation. Moreover, thanks to
the axisymmetry of the computational domain, we were able to attribute the
singularity of our integral equation essentially to the n = 0 poloidal magnetic
field component of the problem. In principle, for axisymmetric Coupling Sur-
faces, one can hence formulate an hybrid direct-AB coupling scheme, where
the boundary condition for the n = 0 component of the poloidal magnetic
field is provided by the means of the vector potential formulation, and all other
modes are computed via the magnetic field formulation.

Our survey reveals some possible directions to take. In particular the
JOREK-CARIDDI coupling via the Virtual Casing Principle needs to be fur-
ther developed, with the aim of studying realistic halo current patterns. The
main limitation of the resulting plasma-structures integrated model will be
probably related to the axisymmetry of the Coupling Surface, which does not
allow to simulate plasma currents in eventual toroidal gaps along the first wall
or in between Plasma Facing Components. Work in this direction may be im-
portant, as only few models for simulating these currents exist at the present
[164]. Moreover, complications on the boundary conditions in presence of
halo currents may raise, since the correct inclusion of sheath physics effects to
limit the current to its ion saturation value is not trivial [50].

The lack of a detailed 3D plasma-structures modelling tool, does not mean
that we don’t have other possibilities to examine the consequences of the
plasma-wall electromagnetic interaction. Which electromagnetic force is gen-
erated on the wall during a disruption? What energy fluxes shall we expect?
How wide is the halo layer generated due to the plasma-wall contact? Can
we estimate the plasma trajectory during fast transients? In order to answer
these questions we can use more synthetic descriptions, rather than a full ex-
tended MHD simulation. In this respect Chapter 3 has to be regarded as a
preparatory Section for the subsequent applications. Former studies on Verti-
cal Displacement Events [108] identified the stability margin as key parameter
to discriminate whether the plasma motion evolves on the electromagnetic or
on the Alfvénic time scale. We review those considerations with the aim of
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justifying quasi-static evolution tools as robust. Further studies are needed in
this direction, to verify whether the quasi-static assumption is mathematically
rigorous also for non-rigid motions. Following, we examine the consequences
of the mass-less approximation on a circular high-aspect-ratio tokamak, pro-
viding this way the main ingredients of the evolutionary equilibrium theory
[114]. In the final Section the numerical model CarMa0NL is reviewed, in
view of its applications in the final Chapter.

Then, finally, what force shall we expect on the tokamak wall during a
disruption? Studying numerically the sound analytical findings for a circular
tokamak presented in [146, 149], we confirmed the key role of the net poloidal
current in the task and we pointed out as the magnetic pressure jump is not
necessarily the only important electromagnetic force raised during a disrup-
tion [127]. The numerical observation of a significant tangential force was
later shown to be consistent with the analytical framework [147]. We review
this scientific discussion in the first Section of Chapter 4. Additionally, we
show here the presence of a magnetic toroidal tension on the wall, eventually
present both in the TQ and the CQ. The cross-validation of the numerical and
analytical model suggests that we can use CarMa0NL for studying disruption
forces, at least as long as the plasma evolution can be retained substantially
axisymmetric and the plasma motion is not Alfvénic. Further, the analytical
formulas can be used as rough order of magnitude estimates also during the
design phase of tokamaks [128].

In the work [35], and in Section 4.2, we comment on the energy fluxes be-
tween the plasma and the external environment. Sometimes this task is hard,
due to the different models employed to study the different physics processes
involved in a tokamak. We propose a procedure to estimate at least the integral
plasma losses via evolutionary equilibrium simulations. The method, besides
simple, is new to the literature at the best of our knowledge. The main ansatz
concerns the energy reservoirs included in the task: we consider solely the in-
ternal energy of the plasma and the magnetic energy as important, neglecting
the kinetic energy of the fluid or eventually of the different fluid species con-
sidered separately. All the essential ingredients to a complete energy balance
are then already set up within the evolutionary equilibrium model, provided the
Equation of State for an ideal gas ρu = 3

2p. We find that for large externally
applied toroidal magnetic fields the internal energy is converted completely to
heat during the TQ. For lower values a really small fraction of internal energy
can be pumped to toroidal magnetic energy and released in later phases of the
disruption. The latter effect is anyway negligible during the CQ if compared
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to the heat dissipated due to the poloidal magnetic energy consumption. We
set up simple analytical formulas to show that the actual amount of poloidal
energy converted to heat within the plasma depends on the duration of the CQ
as compared to the electromagnetic time constant of the surrounding wall.

Comparing JET experiment #71985 with CarMa0NL simulations, in Sec-
tion 4.3, we found that the actual width of the halo layer is a crucial parameter
to correctly reproduce the magnetic diagnostics measurements. A proper fit
of the growth of the halo layer, together with the other plasma current pro-
file parameters, allowed to find a reasonably good reproduction of the plasma
electromagnetic features in our simulation. This provides at least with the indi-
cation that evolutionary equilibrium models may still be used in circumstances
of significant plasma-wall contact. Much work is anyway still missing for a
detailed reproduction of the experiment: firstly more detailed descriptions for
the structures shall be used [148], and the iron core should be included in the
task, relaxing the deep saturation hypothesis.

The analysis of TCV experiments, in particular the quantitative match
found for the TCV shot #66078, provide further support to the efficacy of
evolutionary equilibrium models in the description of disruptions. The nu-
merical analysis substantially confirmed the experimental finding that positive
triangularity plasmas tend to move towards the high-field side, while negative
triangularity plasmas generally displace outward during the disruption. We
claim a simple interpretation of this behaviour also by the means of the simple
high-aspect-ratio model.

Clearly, we addressed only a very tiny fraction of the possible theoretical
and practical questions raising in the framework of the plasma-wall electro-
magnetic interaction. As immediate future work to accomplish we plan to
continue the efforts in the JOREK-CARIDDI coupling, since it would be a
very useful tool in the study of halo currents. In the near future, we will apply
the energy balance scheme already described to real experiments, to check the
energetic consistency of evolutionary equilibrium simulations. Further it will
be extremely interesting to extend our JET analysis with further details of the
structures and a proper model of the iron-core. Also, the analysis of TCV ex-
periments should be complemented by analytical studies, to interpret clearly
the observed correlation between pre-disruption plasma shape and radial mo-
tion. We add moreover some open questions, which probably need a somewhat
longer time-scale:

• Is it convenient to implement the thermodynamic ioniza-
tion/recombination description given in Chapter 1 in exented-MHD
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models?

• Can the inclusion of electron inertia be significant in the frequent sit-
uations of high electric current and small mass density? Is it possible
to model the runaway electrons within the thermodynamic theory dis-
cussed in Chapter 1? How Ohm’s law changes in the special relativistic
case?

• How can we properly describe the ion saturation current at the plasma-
wall interface? Can we couple an electromangetic model of the sheath,
in the stream of the one presented in Section 1.10, to the extended MHD
and conducting structures models?

• Is it possible to allow present tokamak-oriented extended-MHD models
for a fully 3D computational domain?

• How can we set up the width of the halo layer in an evolutionary simu-
lation, in order to make it predictive?



Appendices

A Invariant Tensor Functions

The full orthogonal group of the three-dimensional Euclidean space O(3),
is the group of all those T 1

1 tensors Q with non-null determinant, such that
Q−1 = QT , i.e. the group of all the proper an improper rotations of the Eu-
clidean space. The constitutive equations are clearly tensor-valued functions
of tensors, which we take to be linear in the framework of Non-Equilibrium
Thermodynamics. Let F (T1, · · · , Tn) be an arbitrary tensor function of n
tensors of arbitrary order. The orthogonal transformation Q is defined as a
symmetry transformation for the tensor function F (T1, · · · , Tn) if and only
if the Q-transformation of the input tensors just determine a corresponding
Q-transformation of the output tensor,

F (⟨Q⟩T1, · · · , ⟨Q⟩Tn) = ⟨Q⟩F (T1, · · · , Tn) (69)

Here the symbol ⟨Q⟩ is just a shorthand for the operator which acts on an
arbitrary tensor, transforming all the contravariant components via the tensorQ
and all the covariant components via the tensorQT . We remember in particular
that any orthogonal transformation has no effect on scalars, hence the operator
⟨Q⟩ has no effect on scalars. Given the tensor function F (Tk), the set of
all symmetry transformations constitutes a subgroup S of the full orthogonal
group O(3), defined as symmetry group for the tensor function F (Tk).

The problem of establishing constitutive relations in a coordinate-
independent form is essentially a problem of representation of tensor functions
by invariants [165, 37, 36, 26]. Indeed we are concerned with the problem of
finding a set of tensors {F1, · · · , Fm} invariant for transformations in the sym-
metry group S, such that a tensor function F (T1, · · · , Tn) may be represented
as,
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F (T1, · · · , Tn) = f1F1 + · · · fmFm (70)

where the coefficients fk are functions of the scalar invariants of the input
tensors. When the form-invariants {Fk} are linearly independent, the repre-
sentation is defined as irreducible. Moreover if the set {Fk} is sufficient for
the representation of any tensor function with the same tensor order value, the
representation is defined as complete. Hilbert’s Theorem [165, 26] guaran-
tees that in the three-dimensional Euclidean space, for any compact symmetry
group, there exists a finite set of scalar invariants of the input tensors. Hence
the problem of representation of a constitutive equation by a finite set of form-
invariants is meaningful.

The point group S is characterized by the set of tensors {ξ1, · · · , ξn} when

[Q ∈ S] ⇐⇒ [⟨Q⟩ξ1 = ξ1, · · · , ⟨Q⟩ξn = ξn] (71)

the tensors {ξ1, · · · , ξn} are also defined as structural tensors. Any point
group that can be characterized by a finite set of structural tensors is com-
pact, and any compact point group may be characterized even by a single
structural tensor. These results allow to formulate the isotropization theo-
rem [37] in the convenient form [26]: An anisotropic tensor function in the
three-dimensional Euclidean space of any finite number of input tensors is ex-
pressible as an isotropic tensor function of the original input tensors and the
structural tensors.

Since the structural tensor for our symmetry group is the second-order
skew-symmetric tensor B̃, and due to the validity of the isotropicization theo-
rem [37], we may investigate the irreducible and complete representation for
our constitutive relations, considering the irreducible and complete represen-
tations for isotropic functions of the original input tensors and the tensor char-
acterizing the symmetry, i.e. a second-order skew-symmetric tensor W̃ . We
report the relevant results [26] in Tables 11-12. The scalar and form invariants
for a function of several input tensors are also given by the scalar and form
invariants of each single input tensor.
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Table 11: Scalar invariants in the three-dimensional Euclidean space in
isotropic conditions. As a convention, v is a polar vector, A is a second-order
symmetric tensor, W̃ is a second-order skew-symmetric tensor.

Input Tensors Scalar Invariants
v v · v
A trA, trA2, trA3

W̃ tr W̃ 2

v, W̃ v · W̃ 2v

A, W̃ trAW̃ 2, trA2W̃ 2, trA2W̃ 2AW̃
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Table 12: Form invariants in the three-dimensional Euclidean space in
isotropic conditions. Same conventions of Table 11 are adopted. The suffix
S denotes symmetric part of the corresponding tensor.

Input Tensors Form Invariants

Second-Order Symmetric Tensor Valued

- 1

v v ⊗ v

A A,A2

W̃ W̃ 2

v, W̃

(
v ⊗ W̃v

)
S
, W̃v ⊗ W̃v,(

W̃v ⊗ W̃ 2v
)
S

A, W̃
AW̃ − W̃A, AW̃ 2 + W̃ 2A,

W̃AW̃ 2 − W̃ 2AW̃ ,A2W̃ − W̃A2

Vector valued

- -

v v

A -

W̃ -

v, W̃ W̃v, W̃ 2v

A, W̃ -
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B List of Operators

In the following table we define in cylindrical coordinates of the operators
sometimes used in Chapter 2.

Symbol Expression Comments

∇⊥f
∂f
∂r îr +

∂f
∂z îz Gradient in the poloidal plane

∇⊥ · v 1
r

[
∂
∂r (rvr) +

∂
∂z (rvz)

]
Divergence in the poloidal plane

∇⊥ ×w 1
r

[
∂wz
∂r − ∂wr

∂z

]
îφ Curl in the poloidal plane

∆∗f r2∇⊥ ·
(
∇⊥f
µ0r2

)
L∗f −1

r∆
∗f Shafranov operator

(f, g) ∇⊥f · ∇⊥g

{f, g} ∇⊥f ×∇⊥g · ∇φ Poisson Brackets
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C Proof of Stratton’s Formula

We start from Equation (2.80), and we use immediately Green’s vector identity
(2.23), to wirte:

A∗
in +∇χin =

1

4π

∫
+∂Vin

[
−G

(
n̂′ · ∇′A′)+ (n̂′ · ∇′G

)
A′ +G

(
∇′ ·A′) n̂′]dr′ (72)

We use ∇ ·Gv = G∇ · v + v · ∇G to get

A∗
in +∇χin =

1

4π

∫
+∂Vin

[
−G

(
n̂′ · ∇′A′)+ (n̂′ · ∇′G

)
A′

+
(
∇′ ·GA′) n̂′ −

(
A′ · ∇′G

)
n̂′]dr′ (73)

Since ∂Vin is a bounded surface without contour, it is possible to show that∫
+∂Vin

∇′ ·
(
GA′) n̂′ dr =

∫
+∂Vin

∇′ (GA′) · n̂′ dr (74)

This result is obtained indeed using the vector identies:

(a) ∇ · (A⊗ n̂) = (∇ ·A)n̂+ n̂ · ∇A (75)

(b)
∫
S ∇ ·Tdr =

∫
∂S n̂∂S ·T dr (76)

(c) n̂×∇×A = (∇A) · n̂− (n̂ · ∇)A (77)

(d)
∫
S n̂×∇× v dr =

∫
∂S t̂∂S × v dr (78)

The vector identity (74) allows to rewrite (73) in the form:

A∗
in +∇χin =

1

4π

∫
+∂Vin

[
−G

(
n̂′ · ∇′A′)+ (n̂′ · ∇′G

)
A′

+∇′ (GA′) · n̂′ −
(
A′ · ∇′G

)
n̂′]dr′ (79)

which we further transform, by ∇ (Gv) = G∇v +∇G⊗ v, into

A∗
in∇χin =

1

4π

∫
+∂Vin

[
−G

(
n̂′ · ∇′A′)+ (n̂′ · ∇′G

)
A′

+G
(
∇′A′) · n̂′ +

(
A′ · n̂′)∇′g

−
(
A′ · ∇′g

)
n̂′]dr′

(80)
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Now we exploit the vector identities:

(a) n̂×∇×A = (∇A) · n̂− (n̂ · ∇)A

(b) (A× n)×∇G = n̂ (A · ∇G)−A (n̂ · ∇G)
(81)

which, considering ∇×A = B, allow us to rewrite (80) as

A∗
in +∇χin =

1

4π

∫
+∂Vin

[
−G

(
B′ × n̂′)− (A′ × n̂′)×∇′G+

(
A′ · n̂′)∇′G

]
dr′

(82)

Notice that Stratton’s book [99] uses the opposite convention for the normal to
the domain.
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Localised-Modes dans un Tokamak. PhD thesis, UniversitÃ¨ de
Provence, 2010.
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