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Abstract

A quantum protocol is a set of rules or procedures, that exploit Quantum Me-
chanics, to realize a speci�c task. In this thesis, I explore two di�erent quantum
protocols realized by the coherent manipulation of the internal dynamics of a
Bose-Einstein condensate (BEC) of 87Rb produced on an atom-chip.
In the �rst quantum protocol I experimentally investigate the possibility to suc-
cessfully implement quantum embedding of a large amount of classical data, to
be classi�ed, into the evolution parameters of the BEC quantum state. A quan-
tum embedding is, indeed, the mapping of a set of data input into new data clus-
ters in a larger Hilbert space where their subsequent classi�cation can be more
feasible by well-trained arti�cial neural networks. The high degree of control
and isolation of the atomic system from the external environment makes it the
ideal candidate, among the other explored platforms, for implementing such al-
gorithms, as further con�rmed by the high �delities achieved exceeding 97%.
The potential advantages of representing classical data on quantum systems in-
clude not only the possibility to simplify a classi�cation problem as experimen-
tally demonstrated in this work, but also the ability to speed up any processing
of classical data, such as quantum parallelism to search through a database ex-
ploitation, feature extraction, image segmentation and edge detection.
The second quantum protocol I report concerns the experimental realization of
a time-inversion evolution of our BEC dynamics. In the context of gate-based
quantum computers applications, this procedure allows one to time-reverse the
last performed operation on a quantum computer so as to perfectly restore a con-
dition in which an arbitrary new operation can be realized. In this regard, our
work explores several time-reversal experiments letting the BEC evolve through
di�erent paths in the Hilbert space. I detail how the optimal backward evolu-
tion is achieved by means of a radio-frequency pulse modulation designed with
a dressed Chopped Random Basis (dCRAB) algorithm. I show how this technique
successfully works in bringing the system back to its initial conditions with an
average accuracy of 92%. Furthermore, I demonstrate how the proposed pro-
cedure can be interpreted, from a thermodynamic point of view, as an entropy
recti�cation method. The �nal results can be applied for the practical realization
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Abstract iv

of a quantum undo operation encoded in a sub-part of a quantum processor. The
undo command is indeed a logical operation reverse, which in some platforms,
like the gate-based one presented in this thesis, can be related to the time-reversal
of the last performed operation. All the presented experiments of time-inversion
constitute the proof-of-principle of a wide class of quantum undo operations to
be implemented in several quantum technology contexts.
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Introduction

On August 12th 1981, what would become the most popular computer design
standard in the world was released on the market: the �rst IBM Personal Com-
puter, also known as the “IBM PC”. During those years, the availability of more
and more powerful computers has revolutionized many areas of science, in-
evitably a�ecting also the �eld of quantum physics. But it was more surprising
to discover that the revolution could also go in the opposite direction, i.e. that
the �elds of information and computation may bene�t from quantum physics in
a new and profound way [1, 2]. Indeed, a few months earlier in that same year,
1981, the idea of Quantum Computing was already coming to life from a keynote
speech by Richard Feynman about Simulating Physics with Computers [3]. He
pointed out that the best way to simulate a real-world scenario governed by
quantum-mechanical laws, like chemical reactions or semiconductor’s proper-
ties, was with a machine that itself follows quantum-mechanical rules. This de-
duction could be seen as stemming from observing that information itself has a
physical nature and hence it is “inevitably tied to a physical representation” [4].
As a consequence, also the laws of information transmission are subject to the
same natural laws of physics, in particular those of quantum physics.
A quantum computer represents a fundamental departure from the current way
we process information in classical computers. It is based on quantum bits,
“qubits”, which are the quantum information carriers. They allow the storage
and processing of quantum mechanically coherent superpositions of data bits.
In this context, the algorithms necessary to implement a typical computation on
a quantum computer have to be regarded as a set of physical operations, which
is actually true also for a classical computer, whereas its registers are made by
states of a quantum system. The data initialization, for a program to run, is re-
alized by the preparation of an initial quantum state and the program itself is
carried out by the appropriate time evolution operators that realize the desired
output state. The readout of the latter will consequently be a quantum measure-
ment, thus probabilistic. The algorithms designed to run on a quantum computer
can perform computational tasks that are impractical on conventional machines.
Indeed, such a computer would bene�t from the many advantages coming from
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Introduction 2

Quantum Mechanics laws. For instance, it would aim to make a virtue of the
correlations arising from the phenomenon of entanglement, unique to quantum
systems. The latter is an essential feature that makes the information carried
by a quantum computer completely di�erent from the one processed by ordi-
nary digital computers. In quantum networks, for instance, entanglement is a
key resource in transmitting data between di�erent nodes by taking advantage
of the correlations shared by di�erent particles at di�erent locations. Further-
more its investigation can bene�t quantum complexity and quantum error cor-
rection [83]. In this new light, computation in the realm of Quantum Mechanics
can be exponentially faster than its classical counterpart, for certain algorithms.
To build a quantum computer multiple platforms are being explored, from super-
conducting and photonic circuits to topological systems and trapped ions. Many
of these approaches are backed by companies such as IBM1, Google2, Microsoft3,
Honeywell4. Ultra-cold neutral atoms, that o�er the possibility to work from
thousands to tens of millions of fermionic or bosonic particles, can be the newest
kind of quantum computing modalities, owing to their greatest ultimate promise
for scalability. Indeed, a great advantage of qubits based on atoms is that the cool-
ing and trapping potentials, used to con�ne them, can collect million of qubits
in a volume that is millimeters on a side, thus providing a reduced overall size
of the quantum computer core. Moreover, the dimensions of a single atom are
much smaller than the ones of qubits created via superconducting experiments,
in addition to the fact that they do not have manufacturing defects. Sources like
lasers and radio-frequency or microwave pulses can be used to arrange them in
a way to create the gates. Furthermore, laser cooling and trapping techniques
allow to reach sub-microkelvin temperatures without the need of large dilution
refrigerators using liquid helium as in superconductive platforms. The extremely
fragile atomic qubits are thus kept cold and isolated by ultra-high-vacuum cells
protecting them from noise and dechoerence.
A scalable cold atom based quantum computing hardware and software platform
is already advancing. A 100-qubit computer of this kind, for instance, will be soon
delivered and available on a cloud service in 2022 named Hilbert realized by the
ColdQuanta company in Boulder, Colorado5. Thinking about what the quantum
computing companies are trying to do, it will be just a matter of time, expertise
and, of course, capital to get from here to a practical scalable quantum computer.
The work I present here, divided into two separate quantum protocols, develops
around the control engineering level of the quantum computer stack [5]. I report

1https://www.ibm.com/quantum-computing/
2https://quantumai.google/
3https://azure.microsoft.com/it-it/solutions/quantum-computing/
4https://www.honeywell.com/us/en/company/quantum/quantum-computer
5https://coldquanta.com/
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Introduction 3

di�erent experimental implementations of high degree of control on the evolu-
tion of a single qubit performed by a Bose-Einstein condensate (BEC) made of
approximately 105 atoms of 87Rb, realized in our laboratory with an atom-chip.
The latter is a very promising platform possessing several properties that a real-
istic quantum processor should have. For instance scalability, optimal control on
the coherent evolution of qubits and the integrability of cold atoms with nanos-
tructures which guarantee an higher degree of coupling between the system and
the manipulation �elds.
The �rst quantum protocol I describe is an extensive experimental study of Quan-
tum Embedding which develops in the context of classi�cation algorithms for
Quantum Metric Learning used in Machine Learning. It consists in an algorithm
that maps a large amount of complex classical data into a larger Hilbert space in
which the classi�cation can be easily performed via a linear quantum classi�er.
The embedding protocol is subsequently tested on three di�erent experimental
platforms by tailoring it to ultra-cold atoms, photonics and via-cloud available
NISQ computers. In this regard, I will be mainly concerned in the atomic exper-
iment I carried out. Starting from a single prescription, that is the same for each
platform, the aim of this work is demonstrating the success of quantum embed-
ding protocols at di�erent experimental levels, exploring how di�erent sources
of noise and imperfections impact their realization.
The second quantum protocol I report, concerns the proposal of an entropy rec-
ti�cation method that makes use of optimal control strategies [129] to carry out
time-reversal transformations in our Bose-Einstein condensate. The dynamical
evolution of the BEC’s quantum state is driven forth and back in time through
several paths in the Hilbert space. The driving �eld is an optimally designed
radio-frequency pulse with amplitude modulated according to the dCRAB algo-
rithm [122–126]. The versatility of the algorithm makes it possible to implement
it in a generic experimental platform. All the proposed time-reversal experiments
can be seen as the proof-of-principle of a wide class of undo operations to be im-
plemented in the next future in several quantum technology contexts, ranging
from quantum computing to quantum communications.

Thesis outline.
This thesis is organized and presented as follows.

• In chapter 1, I review the basic concepts of laser cooling and magnetic
trapping of neutral atoms. These techniques are fundamental in reaching
the desired spatial compression and temperature reduction to a consequent
increase in the phase-space density that leads to quantum degeneracy and
thus to Bose-Einstein condensation. Concluding the chapter, I detail the
evaporative cooling technique that most BEC experiments exploit in their

3
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�nal stage.

• In chapter 2, I show how the techniques, presented in the previous chap-
ter, can be applied in the context of microtraps realized with atom-chips.
I subsequently provide a description of the architecture and the typical
experimental sequence that we adopt for the realization of a BEC on our
atom-chip-based apparatus. Finally I dedicate a �rst analysis on how I ex-
perimentally manipulate the BEC focusing on the necessary control �elds.
A more detailed description for each control �eld will be provided in the
next chapters in the context of their speci�c use.

• In chapter 3, I provide a �rst overview of the typical Machine Learning al-
gorithms to describe the framework for the quantum embedding protocol,
proposed in this work. The latter falls in the category of classi�cation algo-
rithms, thus I will describe the Quantum Embedding Kernels on which the
training of our algorithm is based. In this chapter I also develop the theory
necessary to understand the experimental implementation of such algo-
rithm on the atomic platform. I then report and comment on the atomic
experimental �ndings together with the ones achieved on the supercon-
ductive and photonic platforms.

• In chapter 4, I report the time-reversal experiments realized with our BEC
to be intended as an operation of quantum undo on a quantum computer.
After an introduction on the undo operations on quantum computers, I
present the quantum system Hamiltonian and the proposed optimization
protocol used to time-reverse the BEC dynamics. I will then detail how
the driving �eld is optimally prepared by means of the dCRAB algorithm.
The three sets of experiments realized to test the protocol are subsequently
presented with their results. I conclude the chapter providing a thermody-
namic interpretation of the experimental �ndings.

• Final remarks conclude the thesis.

4



1 | Cooling and trapping neutral
atoms

The quantum protocols presented in this thesis work share a common atomic
platform represented by a Bose-Einstein condensate made of 87Rb atoms. In this
chapter, following the history of laser cooling and trapping, I evidence how the
combination and the development of these two techniques led to the achieve-
ment of su�ciently low temperatures and high densities of an atomic gas to
collapse in a Bose-Einstein condensate, a state of matter that can be described by
a single quantum state in which the atoms that constitute it behave as a unique
macroscopic matter wave. In these conditions, the quantum nature of atomic
wavefunction becomes observable and can be investigated.
Following the guideline that can be found in numerous textbooks [6, 7], I re-
port the fundamental concepts behind these techniques. In Sec. 1.1 I describe
how the mechanical e�ect of light, due to the transfer of momentum when an
atom absorbs a photon (Subsec. 1.1.1), slows down the atomic motion. In a par-
ticular arrangement of laser beams and combined with the physical principle of
Doppler e�ect, I detail in Subsec. 1.1.2 the use of such optical forces to cool an
atomic cloud in three dimensions: the optical molasses. In Subsec. 1.1.3 I report
the limitations of this technique and in Subsec. 1.1.4 I explain how understanding
the reasons for the strong disagreement between the Doppler theory and experi-
mental evidence opened the door to the overcoming of such limits and the exper-
imental realization of new sub-Doppler laser cooling techniques. In Sec. 1.2 the
working principles of magnetic trapping are explained, starting from the foun-
dations of the interaction of an atom with a static magnetic �eld (Subsec. 1.2.1).
A description of the �rst magnetic traps is given in Subsec. 1.2.4, according to
which the Magneto-Optical Trap technique was developed subsequently (Sub-
sec. 1.2.3). The cooling and trapping mechanisms are fundamental tools to reach
the desired spatial compression and consequent increase in phase-space density
required for the phase transition into a Bose-Einstein condensate described in
Sec. 1.3. These stages are, indeed, necessary in providing the optimal conditions
for the �nal evaporation stage explained in Subsec. 1.3.1, to cool the atoms to

5



Chapter 1. Cooling and trapping neutral atoms 6

quantum degeneracy and condense.

1.1 Cooling neutral atoms

In 1871, in his Theory of Heat [8], Maxwell explained in clear and simple words
the common experience that we have with the idea of temperature. “The distinc-
tion between hot bodies and cold ones is familiar to all, and is associated in our
minds with the di�erence of the sensations which we experience in touching var-
ious substances, according as they are hot or cold”. Indeed, the thermodynamic
de�nition of temperature of a system requires thermal contact between the sys-
tem and its surrounding environment. Not only, according to the “zeroth law” of
thermodynamics, the system has to be in thermal equilibrium with it.
However, this is not the case when dealing with an isolated atomic ensemble.
Despite it may be in a very well identi�ed steady state, a sample of atoms is not
necessarily in thermal equilibrium. In laser cooling experiments, indeed, atoms
interact with light and constantly absorb and scatter it. Moreover, even though
light is a form of energy, it cannot be considered as heat and de�nitely there is
no heat exchange. Therefore, to describe the temperature of a one-dimensional
atomic ensemble that has a Maxwell-Boltzmann velocity distribution, it is more
convenient to use an average kinetic energy 〈Ek〉 which relates to temperature
as 〈Ek〉 = kBT /2, kB being Boltzmann’s constant.
The exchange of momentum between atoms and an optical �eld, nearly resonant
with an atomic frequency, is the foundation on which the idea of laser cooling
has been built. The force resulting from this momentum exchange, the scat-
tering force, is well known and has been quantitatively explained by Maxwell’s
theory of electromagnetism. But only later on, in 1975, in Ref. [9] Hänsch and
Schawlow [10], and then in the same year Wineland and Dehmelt [11], proposed,
in independent papers, the idea of exploiting the mechanical e�ects of light to
damp the atomic motion. E�ects that have been for the �rst time experimentally
demonstrated a few years later in 1978 [12, 13].

1.1.1 Scattering force
Consider the Heisenberg equation of motion for a two level system represented
by a 2 × 2 hermitian density matrix ρ, whose diagonal real terms ρдд and ρee
represent the populations of the ground and excited states respectively, while the
o�-line complex terms ρдe = ρ∗eд are related to the phase coherence of the system
wave functions. Solving it for an atom plus laser light, taking into account the
spontaneous decay rate Γ, one obtains the Maxwell-Bloch equations also called

6
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optical Bloch equations (OBE):

dρдд

dt
= +Γρee +

i

2
(
Ω∗ρ̃eд − Ωρ̃дe

)
,

dρee
dt
= −Γρee +

i

2
(
Ωρ̃дe − Ω∗ρ̃eд

)
,

d ρ̃дe

dt
= −

(
Γ

2 + i∆
)
ρ̃дe +

i

2Ω
∗
(
ρee − ρдд

)
,

d ρ̃eд

dt
= −

(
Γ

2 − i∆
)
ρ̃eд +

i

2Ω
(
ρдд − ρee

)
,

(1.1)

where ∆ = ω − ω0 is the laser detuning from the atomic resonance ω0 and we
de�ne ρ̃eд ≡ ρeдe

−i∆t and ρ̃дe ≡ ρдee
i∆t for the coherences. The Rabi frequency

Ω, that represents the strength of the coupling between the light and the atomic
transition, is de�ned as:

Ω =
dдe · E0

~
, (1.2)

where dдe is the electric dipole moment for the д→ e transition and E0 = êE0 is
the vector electric �eld amplitude.
If the laser light interacts with the atoms for a period longer compared to the
natural life-time of the excited state τ = 1/Γ, we can solve equations (1.1) in
steady state conditions and get the probability of the excited state to be:

ρee =
s/2

1 + s + 4∆2

Γ2

, (1.3)

where s = 2 |Ω |2 /Γ2 is the saturation parameter.
In terms of this solution we can now write the total photon scattering rate that
is the number of scattered photons per second Γscatt = Γρee . Therefore, the scat-
tering force, resulting from the momentum exchange between light and atoms,
equals the rate at which each absorbed photon transfers momentum to the atoms
Fscatt = dp/dt = ~kΓscatt . So that:

Fscatt = ~k
Γ

2
I/Isat

1 + I
Isat
+ 4∆2

Γ2

, (1.4)

note that the Rabi frequency and saturation intensity Isat are related by I/Isat =
2 |Ω |2 /Γ2 and this is another way of expressing the saturation parameter s . There-
fore, when the laser intensity I is high compared to the saturation intensity Isat
(I � Isat ) the spontaneous emission rate tends to Γ/2 and the maximum value of
the scattering force to Fmax

scatt = ~kΓ/2. In these conditions the maximum accelera-
tion imparted to an atom of massM is amax = Fmax

scatt/M = vr/2τ , where vr = ~k/M

7



Chapter 1. Cooling and trapping neutral atoms 8

is the recoil velocity. To get a quantitative idea, for a rubidium atom (see Ap-
pendix A) vr = 5.88 mm s−1 and amax = 1.1 × 105 m s−2, approximately 104 times
the gravitational acceleration. Moreover, for an atom moving towards the laser
with constant deceleration, we can derive its stopping distance as L0 = v

2
0/amax ,

where v0 is the initial velocity of the atoms. This treatment, valid for a single
atom, can be extended to many non-interacting atoms that have the following
Maxwell-Boltzmann velocity distribution function:

f (v) ∝ e−
m |v |2
2kBT . (1.5)

In this estimation we assumed the simpli�ed vision of a constant atomic decel-
eration, but what happens really is that, because of the Doppler e�ect, only
a fraction of atoms with a velocity in the interval ∆v perceive the damping
force, all the others sense the force as weak and won’t be decelerated. It is
worth noting, in fact, that the scattering force is a Lorentzian of the type ∝[
(1 + s)

(
1 + 4∆2/(1 + s)Γ2) ]−1 with full width at half maximum ∆ω ' Γ

√
1 + s .

Being ∆ω = k · ∆v, we have ∆v ' Γ/k that for rubidium and a laser resonant
with its D2-line is 4.68 m s−1. This result clearly shows that the atoms which
experience a strong force belongs to a very narrow interval of velocities around
v0. Moreover, the small class of atoms that strongly interacts with the scatter-
ing force produced by the laser, will be decelerated until their Doppler-shift will
bring them out of resonance. In order to maintain the scattering force around its
maximum value, it is indeed necessary to compensate the velocity change during
the slowing process.

1.1.2 Optical Molasses
The force described in the previous section is the foundation on which the cool-
ing principle of neutral alkali atoms has been built. However, during the slow-
ing process the change in the atoms Doppler-shift is an obstacle hence bringing
their frequency out of resonance with the laser and therefore no more decel-
erated. In this section we will show how a combination of radiation pressure
forces produced by three pairs of orthogonal standing waves, coming from the
same laser and therefore at the same frequency, can lead to a viscous force on a
gas of atoms that overcomes the Doppler-shift problem and even takes advan-
tage of it (Fig. 1.1 a). This technique, indeed, takes the name of Doppler-molasses
or Optical Molasses (OM), because of its viscous nature. The �rst experimental
observation of an OM has been realized by the Bell Labs team [14], led by Steven
Chu in 1985. To see the e�ects of the atom velocity in the Eq. (1.4) of the scatter-
ing force, we have to include the Doppler e�ect in the laser frequency ω seen by
an atom moving at velocity v. The shift on the laser frequency is ω′ = ω − k · v

8
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Stationary atom Moving atom3-D Molasses

𝝎 𝝎
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Figure 1.1: Doppler cooling. a) Three pairs of counter-propagating orthogonal beams with the
same frequency a�ect an atomic sample as an Optical Molasses. b) A stationary atom in two
counter-propagating beams with the same frequency slightly detuned below its atomic reso-
nance, experiences zero scattering force. c) For a moving atom, the Doppler-shift brings the light
frequency closer to resonance such that the atom experiences the scattering force only coming
from the beam propagating opposite to its velocity direction. Image adapted from Ref. [7].

(note that k, in the opposite direction respect to v, produces a positive Doppler
shift for the atoms). As a consequence, the detuning from resonance becomes
∆′ = ∆ − k · v and the scattering force dependent on the atom velocity:

Fscatt (v) = ~k
Γ

2
I/Isat

1 + I
Isat
+

4(∆−k·v)2
Γ2

. (1.6)

For simplicity, we restrict to the one-dimensional problem in which we have
k · v = kv , where lasers propagate along the same direction as the atom. The
slowing lasers are just two orthogonal counter-propagating beams with the same
frequency ω slightly below the transition frequency of the two atomic levels
|1〉 and |2〉, as depicted in Fig. 1.1 b and 1.1 c. In the case of a stationary atom
(Fig. 1.1 b), the force resulting from the two counter-propagating beams is zero
since they balance each other. For a moving atom, instead, (Fig. 1.1 c) the Doppler
shift coming from the atom that moves towards one beam and against the other,
generates an imbalance in the force that damps the atomic motion. In particular,
if the atom moves opposite the direction of the light propagation, the Doppler-
shift will lead to more scattering with respect to the other beam. Indeed, the
laser frequency, seen from the atom moving towards it, is closer to resonance,
while the frequency, seen from the atom moving against the laser, is far. The
resultant force can be mathematically expressed as the di�erence between the
force F1, directed as the atom’s velocity, and F2, opposite to the atom’s velocity,

9



Chapter 1. Cooling and trapping neutral atoms 10

Figure 1.2: The force in the Optical Molasses technique. Velocity dependence of the uni-
dimensional OM damping force for ∆ = −Γ/2 and I = Isat/2. The solid blue curve represents
the total e�ect of the two counter-propagating beams exerting two opposite radiative forces F1
and F2 on the atomic sample. The dotted orange curves, instead, represent each the two forces
separately. The straight light-blue line shows the pure damping e�ect of the OM force over a
restricted velocity range that is the velocity capture range (approximately Γ/k).

as follows:

FOM (v) = F1 − F2 = ~k
Γ

2

(
I/Isat

1 + (I/Isat ) + 4(∆−kv)2
Γ2

−
I/Isat

1 + (I/Isat ) + 4(∆+kv)2
Γ2

)
. (1.7)

For small velocities |kv | � Γ we can use the �rst order approximation 1/(1−x) '
(1 + x) where in our case x = 8∆kv/Γ2

1+(I/Isat )+(4∆2/Γ2) and get:

FOM (v) = 4~k2 I

Isat

2∆/Γ
[1 + (2∆/Γ)2]2

v . (1.8)

Therefore the force, for small velocities and weak intensities I/Isat � 1, can be
well approximated by a linear expression:

F(v) = −αv ;

α = 4~k2 I

Isat

−2∆/Γ[
1 + (2∆/Γ)2

]2 .
(1.9)

10



Chapter 1. Cooling and trapping neutral atoms 11

Indeed, as depicted in Fig. 1.2, for a positive value of the damping coe�cient α
the force has a negative gradient ∂F/∂v < 0 at v = 0. Moreover, note that only
for red frequency detuning ∆ = ω − ω0 < 0 this force opposes the velocity, thus
resulting in a viscous damping force that slows the atomic motion.

1.1.3 Doppler cooling limit
In an ideal situation in which the atomic motion is unperturbed, the above de-
scribed cooling techniques would decelerate the atoms to v = 0 and reach zero
temperature. A result that is clearly not physical. Indeed, the momentum ex-
change itself, responsible of the scattering force, is source of a heating mecha-
nism. For instance, if we think of an atom that absorbs a photon able to stop
its motion, the subsequent spontaneous emission of a new photon will make the
atom move again. Conversely, if an atom at rest absorbs a photon, it gains kinetic
energy. These two processes contributes to �uctuations in the total force acting
on the atoms. For a single laser beam we can express those contributions as:

F = Fabs + δFabs + Fspont + δFspont , (1.10)

where, on average, the force arising from absorption is the scattering force we
just derived and the force coming from the random kicks of the spontaneous
emitted photons is zero. While for an atom that is immersed in two counter-
propagating beams those forces tend to cancel out, their respective �uctuations
δFabs and δFspont , instead, are cumulative. Therefore, to determine a minimum
value of the velocity and temperature reachable with the Doppler cooling tech-
nique, we have to imagine that the decay produced by a spontaneous emission of
a photon or by the absorption of a photon, causes the atom to experience a sort
of Brownian motion in the real space. In the momentum space we can interpret
it as a random walk with step size ~k and step frequency 2Γscatt , the factor 2 due
to the two counter-propagating beams.
In the case of the average �uctuation δF spont , each spontaneous emission is fol-
lowed by a change in the atom velocity equal to the recoil velocity vr . As a
consequence, the atom is subject to a random walk of the velocities along the
laser beam of step vr . The mean square displacement is v2 = Γscatttv

2
r , where

N = Γscattt is the average number of photons scattered by the atom over time t .
Projecting the mean square displacement along the z axis direction, it becomes:(

v2
z

)
spont
= ηv2

r Γscattt , (1.11)

where η = 〈cos2(ϑ )〉, being ~k cos(ϑ ) the emission direction of the spontaneous
emitted photon (η = 1/3 for isotropic spontaneous emission).

11



Chapter 1. Cooling and trapping neutral atoms 12

The average �uctuation δFabs , instead, is due to the fact that the absorption of
a photon from an atom is a random event. The atom, indeed, does not always
absorb the same number of photons over a time period t . Moreover, each absorp-
tion is followed by a spontaneous emission of a photon with an average number
of events again equal to N = Γscattt . Similarly to the former case, the absorp-
tion process induces a random walk but in one dimension since all the absorbed
photons have the same direction. The mean square displacement in the space of
velocities, therefore, is: (

v2
z

)
abs
= v2

r Γscattt . (1.12)

Thereby, the atomic sample is heated and the force acting on it results in a com-
petition between the two phenomena of heating and damping. As a consequence,
the steady state of the system has a nonzero kinetic energy.
Taking into account the �uctuations discussed above for the scattering force,
Newton’s second law gives:

d

dt

(
1
2Mv

2
z

)
=

1
2M

d

dt

(
ηv2

r 2Γscattt +v2
r 2Γscattt

)︸                         ︷︷                         ︸
Heating

−αv2
z︸︷︷︸

Cooling

=
1
2M(1 + η)v

2
r 2Γscatt − αv2

z

= 2Er2Γscatt − αv2
z

(1.13)

where the factor 2 before Γscatt accounts for the two beams, while Er =mv2
r /2 is

the recoil energy and 1+η, for the case in three dimensions, becomes 1+ 3η = 2.
From this equation, we can clearly see this competitive behavior of heating and
cooling. In particular, at equilibrium the rates of heating and cooling, underlined
in Eq. (1.13), are equal. Therefore, we can equal to zero the time derivative and,
rewriting the damping coe�cient α in terms of Γscatt , we get the mean square
velocity in the six beams molasses con�guration along the z direction (similarly
for x and y directions):

v2
z =
~

M

Γ

4
1 +

( 2∆
Γ

)2(
−2∆
Γ

) . (1.14)

According to the equipartition theorem, the z-component of the kinetic energy
of motion is related to temperature by the equation 1

2Mv
2
z =

1
2kBT . This leads to

the equation:

kBT =
~Γ

4
1 +

( 2∆
Γ

)2(
−2∆
Γ

) . (1.15)

Minimizing the latter as a function of (−2∆/Γ), we obtain a minimum detuning
value of ∆ = −Γ/2 that leads to a minimum velocity reachable with Doppler

12
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cooling as: (
v2
z

)
min
=
~Γ

2M . (1.16)

The minimum temperature found in these conditions is:

TD =
~Γ

2kB
, (1.17)

called the Doppler temperature or Doppler cooling limit. This remarkable result
shows that the �nal temperature of atoms in an Optical Molasses is proportional
only to the natural line-width Γ of the excited state, and is independent of the
optical wavelength, atomic mass, laser intensity. For 87Rb it isTD = 146 µK much
bigger than the recoil temperature due to the energy transferred by a single pho-
ton that for rubidium is Tr = 362 nK. The correspondent most probable veloc-
ity at Doppler temperature is vD = 16 cm s−1, much bigger than the recoil ve-
locity vr = 5.88 mm s−1 but smaller than the molasses velocity capture range
vc = 4.68 m s−1.

1.1.4 Below the Doppler cooling limit
From an experiment conducted in 1988 [15] to measure the temperature of a gas
of sodium atoms released from an OM, it emerged that the measured Doppler
temperature (T exp

D = 43 ± 20 µK) was surprisingly lower than the one calculated
from theory (T theo

D = 240 µK) as illustrated in the previous section. Results con-
�rmed by other subsequent experiments [16]. Since then, a new picture of OM
needed to be developed in response to this evidence. Two groups in 1989 [17,18]
advanced the idea that the multiplicity of sub-levels of the atomic state (Zee-
man states and hyper�ne structure) must be included in the picture, the simple
two level scheme for the atomic structure was inadequate to describe a 3-D OM.
Furthermore, optical pumping among these sub-levels needed to be considered
too [19]. Polarized light, indeed, interacts with the hyper�ne structure and can
be exploited to reach ultra-low temperatures. See Fig. A.1 in Appendix A for the
Rubidium internal atomic structure exploited in this thesis.
The essential feature of these models is the non-adiabatic following of moving
atoms into a light �eld that varies in space. This sub-Doppler cooling technique
takes the name polarization gradient cooling or Sisyphus cooling. This cooling
process, indeed, recalls the Greek myth of Sisyphus condemned for eternity to
roll a giant stone up a hill only to loose it every time he reaches the proximity of
the top, thus repeating the climb forever.
It is possible to realize a light �eld polarization that varies in space, for instance,
considering two counter-propagating laser beams that have linear orthogonal
polarizations (lin ⊥ lin). The superposition of these two beams realizes a �eld
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that has a polarization that varies on the wavelength scale along the laser beams
direction. The atoms that move in this polarization gradient, because of their
multilevel structure, will be coupled to the light �eld di�erently at di�erent po-
sitions depending on the light polarization. Furthermore, the nearly resonant
light that drives the transition will also shift the atomic energy levels. These pro-
cesses cause a selective absorption of the photons from one or the other beams,
thus enhancing the cooling e�ciency. Like Sisyphus climbing a hill, the atoms
moving through the light �eld must increase their potential energy because of
the change in the light polarization. After traveling a distance corresponding
to the hill top of the potential, the atoms are closer to resonance and optically
pumped to a lower energy level forced to climb the potential again. In the climb-
ing stage the kinetic energy is converted in potential energy that is subsequently
radiated away by spontaneous emission. Therefore “An atom sees itself walking
in a swamp of molasses, with each planted foot sinking down into a lower energy
state. The next step requires energy to lift the other foot up and out of the swamp,
and with each sinking step, energy is drained from the atom” [20]. As a result they
are doomed to be always climbing hills, loosing energy in the process and hence
cooled. Even if also this sub-Doppler cooling process is limited over a range of
atomic velocities, its damping constant α is much larger than for the Doppler
cooling. The correction to the prediction based on the classical molasses theory,
brings to a minimum achievable temperature proportional to I/|∆|, for ∆ � Γ.
In this case, where the temperature reachable depends only on the laser inten-
sity and the detuning, the only limiting quantity is the photon recoil momentum
~k. The randomness of this event, in fact, puts a lower limit for the velocities
vmin ∼ vr . However, the temperature and density limits of laser cooling can be
surpassed by the technique of evaporative cooling of trapped atoms that does not
require laser cooling and that will be treated subsequently in this chapter.

1.2 Trapping neutral atoms

The atoms moving in a molasses spend in it a time of the order of few millisec-
onds, a lifetime not long enough to reach the right number of atoms necessary for
the �nal goal of a degenerate quantum gas as the case of a Bose-Einstein conden-
sate for our experiment. To reach condensation, indeed, a phase-space density1

of ρϕ ≥ 2.612 is required and it is reached in several seconds of experimental
cycle, as we will discuss in detail in the next section. A new idea for holding
more atoms is needed such that, combined with the strong cooling mechanism
of the OM, ensures the accumulation of big sources of cold atoms.

1ρϕ = nλ
3
dB , where λdB is the de Broglie wavelength and n the numerical density of atoms.
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During the 1980s many e�orts have been done in the community of coolers and
trappers towards the goal of trapping atoms via optical forces, as described by
Steven Chu in his Nobel Lecture in 1998 [20]. However, traps strictly based on
the scattering force seemed to be not su�cient because of a no-trapping theo-
rem referred to as the Optical Earnshaw theorem [21,22]. As we discussed above,
even if the combination of six beams exerts a radiation pressure on atoms forc-
ing them to be in the small portion of space where they cross, the latter can
escape from it. Indeed, the scattering force acting on the atoms does not imply
any con�ning mechanisms that would push them to the center of the trap. The
Earnshaw theorem for electrostatics simply states that a scattering force-based
trap is impossible provided Fscatt is proportional to the laser intensity I; there
cannot be a region in space where all force lines of Fscatt point inward to a stable
trapping point. Indeed, since ∇ · Fscatt = 0 any region in empty space must have
the net intensity �ux inward equal to the �ux outward [20]. In 1986 Pritchard,
Carl Wieman, and their colleagues observed that “the Optical Earnshaw theorem
does not always apply to atoms and that it is possible to con�ne atoms by sponta-
neous light forces produced by static laser beams”, advancing the hypothesis that
“the atomic transition rate cannot depend only on the light intensity” [23]. But it
was only in 1987, when they asked Steven Chu [24] to join the team, that the
�rst Magneto Optical Trap (MOT) was experimentally built [25] and working!
The basic idea for the trap was due to Jean Dalibard [20], stimulated by a talk
given by Dave Pritchard on how the Earnshaw theorem could be circumvented.
Simply inserting a pair of magnetic-�eld coils into the apparatus for the 3-D mo-
lasses, one can realize an hybrid trap for neutral atoms employing both optical
and magnetic �eld gradients. The development of the MOT was an exciting mo-
ment in the large international community that was working on it and it paved
the way to many subsequent experiments in the �eld of laser-cooled atoms like
Bose-Einstein condensation.

1.2.1 Interaction with a static magnetic �eld
A brief understanding of the interaction between a static magnetic �eld and a
neutral atom is necessary before introducing the Magneto-Optical Trap theory.
The discovery of the mechanical action of magnetic �elds on neutral atoms hav-
ing a magnetic dipole moment µ dates back to 1924 with the Stern and Gerlach
experiment. The interaction between the momentum µ and an external mag-
netic �eld B produces a force F = ∇(µ · B), given that E = −µ · B is the energy
that the classical momentum µ, immersed in the magnetic �eld B, perceives. The
magnetic moment of an atom, owing to its composite structure, is made by the
contribution of the orbital angular momentum of its electrons L, of the electronic
spin S and of the nuclear spin I. Assuming the simple case of an alkaline atom, as
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the case of Rubidium (for more details, see Fig. A.1 in Appendix A for the Rubid-
ium internal atomic structure exploited in this thesis), a single external electron
will determine the value of L and S. The coupling between nuclear spin I and the
total electron angular momentum J = L+S induces an hyper�ne structure of the
atomic ground level described by the hyper�ne Hamiltonian:

Hhf s = Ahf s J · I, (1.18)

where Ahf s is the magnetic dipole constant. The unperturbed hyper�ne Hamil-
tonian Hhf s is diagonal in the representation of the state base |F ,mF 〉, where F
is the total angular momentum F = I + J and mF is its component along the ẑ
axis. In absence of any external �eld, each F sub-level is (2F + 1)-fold and degen-
erate, a degeneracy that is broken when interacting with an external magnetic
�eld B. This e�ect of splitting of a spectral line into several components in the
presence of a static magnetic �eld was discovered in 1896 by P. Zeeman and takes
his name. The interaction term due to the Zeeman e�ect that contributes to the
total Hamiltonian of the system is:

HB = −µ · B

=
µB
~
(дSS + дLL + дI I) · B

=
µB
~
(дSSz + дLLz + дI Iz)Bz,

(1.19)

where the magnetic �eld B is along the atomic quantization axis ẑ and µB =
e~/2me ≈ 9.274 · 10−24 J T−1 is the Bohr magneton. The quantities дS , дL and дI
are the electron spin, electron orbital, and nuclear Landé g-factors respectively.
In particular S couples to B with a g-factor of дS ≈ 2, L couples to B with a g-
factor of дL = 1, while дI couples with B as experimentally measured in [26].
If the magnetic �eld is weak, meaning that the hyper�ne structure term domi-
nates respect to the Zeeman energies (HB � Hhf s ), we can use the eigenfunction
of the hyper�ne structure of quantum number F to rewrite the Zeeman Hamil-
tonian along ẑ as:

HB =
µB
~
дFFzBz . (1.20)

Then, we can treat this term perturbatively and use a vector model in which we
project J and I along F to formulate the following expression of the Landé дF
factor:

дF = дJ
F (F + 1) + J (J + 1) − I (I + 1)

2F (F + 1) + дI
F (F + 1) + I (I + 1) − J (J + 1)

2F (F + 1)

' дJ
F (F + 1) + J (J + 1) − I (I + 1)

2F (F + 1) ,

(1.21)
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Figure 1.3: Breit-Rabi diagram. Ground level hyper�ne structure of 87Rb (52S1/2) in an external
magnetic �eld. The color legend for the Zeeman states of F = 2 is: mF = 2 (red), mF = 1 (blue),
mF = 0 (light blue), mF = −1 (green) and mF = −2 (black). The eight levels groups according to
four sub-levels with spin up and four sub-levels with spin down. Image from Ref. [52].

given that:
J =

〈J · F〉
F (F + 1)~2F,

I =
〈I · F〉

F (F + 1)~2F.
(1.22)

The second expression in Eq. (1.21) neglects the nuclear term with an approxi-
mation of the 0.1%, since дI is much smaller than дJ . The latter can be similarly
computed, in the vector model, projecting L and S along J axis and obtaining:

дJ ' 1 + J (J + 1) + S(S + 1) − L(L + 1)
2J (J + 1) , (1.23)

where the approximation comes from дS ≈ 2 and дL = 1.
Summarizing, the result is that, for weak magnetic �elds, the Zeeman Hamil-
tonian HB due to the interaction with B, perturbs the zero-�eld eigenstates of
the hyper�ne Hamiltonian Hhf s splitting the adjacent magnetic sub-levels of a
quantity ∆E |F ,mF 〉 = µBдFmFBz . The splitting in this regime is linear and is called
the anomalous Zeeman e�ect. In the case where the magnetic �eld is dominant
(HB � Hhf s ), instead, it is called the Paschen-Back e�ect. Here the Zeeman
Hamiltonian has to be diagonalized for eigenfunctions where, this time, J and
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I are good quantum numbers and the hyper�ne coupling is treated in perturba-
tion theory. A general solution valid for both weak and strong �eld cases can be
derived by an exact diagonalization of the total Hamiltonian and leading to the
Breit-Rabi formula [27], whose diagram is depicted in Fig. 1.3. The energy levels
evolve as a function of the magnetic �eld passing from the low-�eld anomalous
Zeeman e�ect to the high-�eld Paschen-Back e�ect. We can see that for low
magnetic �elds the Zeeman shift is to a very good approximation linear.

1.2.2 Magnetic trapping
Exploiting the force that arises from the atomic interaction with an inhomoge-
neous magnetic �eld, several magnetic traps with di�erent geometries can be re-
alized. Note that the direction of the force F = ∇(µ ·B) depends on the magnetic
moment µ orientation respect to the magnetic �eld B direction. In particular,
assuming the magnetic moment orientation is preserved during the atomic mo-
tion in the �eld, one can build a trap such that the resultant force is a restoring
force. Therefore, in presence of a minimum of |B| and provided that µ ·B < 0, the
atoms that move in the magnetic �eld resent a restoring force that tends to con-
�ne them in the minimum region. Fig. 1.3, for instance, shows that 87Rb atoms
can be trapped in the states |F = 1,mF = −1〉 and |F = 2,mF = 1, 2〉, thus called
low �eld seeking states; while the others for which µ · B > 0 are repelled from
the trap and called the high �eld seeking states. In this regard, it is worth noting
that a full control of the spin-�ips investigated by E. Majorana [28] is necessary
in building a magnetic trap. The probability of spin-�ip transitions for polarized
atoms in the presence of a rapidly varying magnetic �eld is, indeed, crucial in
order to preserve the adiabatic following between the magnetic momentum and
magnetic �eld orientations, otherwise the atoms may be ejected instead of con-
�ned by the �elds of the trap. This spin-�ip problem becomes critical when the
atoms are in proximity of the trap center where the �eld is zero. In this region,
in fact, the atoms temperature is lower and their precession becomes too small
compared to the rate of change of the �eld orientation. The transition from a spin
orientation to the other is here non-adiabatic and the atoms are no more in the
low �eld seeking states and expelled from the trap. In particular, the condition
for adiabatic motion can be written as ωZ � |dB/dt |/B, where ωZ = µB/~ is the
Larmor precession rate in the �eld.

1.2.3 Magneto-Optical Trap
AMagneto-Optical Trap consists in the combination of six orthogonal and counter-
propagating laser beams, like in the Optical Molasses, that cross in the center of
a magnetic quadrupole trap made by a pair of coils in anti-Helmholtz con�gura-
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Figure 1.4: MOT scheme. Left-hand side: The combination of six orthogonal and counter-
propagating beams crossing in the center of a quadrupole magnetic �eld generated by a pair of
anti-Helmholtz coils, realizes a MOT. For it to work, is necessary that the laser beams have the
shown circular polarization. The beam pair directed along ŷ is orthogonal to the page and its
polarization is oriented as well as for the beam directed along x̂ . Right-hand side: Schematic of
the MOT working principle for an atom with a transition Jд → Je . The Zeeman splitting induced
by the presence of the magnetic �eld B, depends on the atom’s position z. A couple of counter-
propagating and orthogonal beams circularly polarized as shown, interact with the atom. The
selection rules for transitions between the di�erent me lead to an imbalance in the radiation
pressure provided by the beams thus resulting in a con�nement e�ect of the atoms towards the
center of the trap. Image adapted from Ref. [7].

tion. The laser beams need to be prepared in such a way that their polarization is
circular and opposite for each counter-propagating couple of beams as depicted
in the left-hand side of Fig. 1.4. This scheme provides cooling and trapping de-
pending on both inhomogeneous magnetic �eld and radiative selection rules to
exploit both optical pumping and strong scattering force. The MOT working
principle can be better understood if we refer to the simple case in one dimension
depicted in the right-hand side of Fig. 1.4. Here we consider atoms that have two
levels, a ground state and an excited state with angular momentum Jд = 0 and
Je = 1 respectively. The atoms slowly move in a linearly inhomogeneous mag-
netic �eld B = B(z) such as that generated by a magnetic quadrupole �eld that
is zero at the center of the quadrupole coils (z = 0). Owing to the Zeeman e�ect,
the magnetic �eld induces a splitting of the magnetic sub-levelsme = {−1, 0,+1}
of Je = 1, their energies linearly varying with the atoms position along z. Two
counter-propagating laser beams of opposite circular polarization, each detuned
below the zero-�eld atomic resonance Jд → Je by ∆, are incident on the atoms
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as shown in �gure. The Zeeman e�ect shifts up the excited state me = +1 for
B > 0, whereas me = −1 is shifted down. As a consequence, depending on light
polarization, we will have the following cases occurring:

• for atoms in z > 0: photon-absorption from the beam with polarization
σ−, indeed, makes the atoms undergoe the transition mд = 0 → me = −1
that is closer to resonance rather than mд = 0 → me = +1 that is further
out of it; therefore the more light is scattered from the σ− beam then from
σ+, thus pushing the atoms towards z = 0;

• for atoms in z < 0: for theme = ±1 states the situation is reversed and more
light is scattered from the σ+ beam, again pushing the atoms towards the
trap center z = 0.

We can compute the force experienced by the atoms in a MOT as the sum of the
scattering forces exerted by each of the two laser beams. The resulting expression
is similar to the force induced on the atoms moving in an Optical Molasses as
previously shown in Subsec. 1.1.2. However, given that in the MOT case the
Zeeman e�ect shifts the atomic resonance, we need to include the Zeeman shift
µBBz(дeme − ддmд) in the laser detuning ∆. For small distances from the trap
center we can consider the magnetic �eld linearly varying with it B(z) = B0z.
Assuming for simplicity that (дeme − ддmд) ∼ 1, the Zeeman shift of the atomic
levels at displacement z can be written as µBB0z = βz. Moreover, assuming a
small Zeeman shift βz � Γ and small velocities kv � Γ, we have:

FMOT = Fσ
+

scatt (ω − kv − (ω0 + βz)) − F
σ−

scatt (ω + kv − (ω0 − βz))

' −2 ∂F
∂ω

kv + 2 ∂F
∂ω0

βz.
(1.24)

Since the force depends on the frequency detuning∆ = ω−ω0, we have ∂F/∂ω0 =
−∂F/∂ω such that:

FMOT = −2 ∂F
∂ω
(kv + βz)

= −αv −
αβ

k
z.

(1.25)

The Zeeman e�ect produces an imbalance in the scattering force that, simi-
larly to damping in the molasses, induces a restoring force of spring constant
αβ/k . The atoms subject to this force experience a damped harmonic motion
Üz + γ Ûz + ω2

trapz = 0, where the damping coe�cient γ and the trap frequency
ωtrap can be retrieved from Eq. (1.25). As a result, the combined employing of a
quadrupole magnetic �eld together with the action of radiation pressure slows
the atoms as in an Optical Molasses and pushes them towards the center of the
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trap by means of a force that depends on displacement. Hence the e�ect here op-
erates both in velocity (Doppler e�ect) and position (Zeeman e�ect) space, and
not only in the velocity space as for molasses.
The scheme discussed so far can be easily extended to two and three dimensions,
the latter by using six laser beams. In a more general way the scheme can work
for any transition of the kind Jд → Je = Jд + 1.
A MOT has much higher capture velocities than Optical Molasses, it is for this
reason that a typical experiment of Bose-Einstein condensation �rst exploits a
MOT to quickly collect a large number of atoms and only after this, switching
o� the magnetic �eld, laser-cools the atoms in an Optical Molasses. As we will
see in the description of our experimental setup, this sequence allows one to ac-
cumulate more atoms hence reaching much higher atomic densities with respect
to molasses itself. For instance, to have a quantitative idea, we can compute the
capture velocity of a MOT and compare it to the OM capture velocity computed
in Subsec. 1.1.1. Considering a Rubidium MOT whose beams diameter is 10 mm
long, equal to the stopping distance L0, the corresponding capture velocity is
vc (Rb-MOT)=

√
dvrΓ = 23 m s−1. Therefore, any atom with a speed equal or

lower than 23 m s−1 entering the trap volume will be trapped and cooled in the
MOT. While much slower atoms are captured in an OM that have capture ve-
locity of 4.68 m s−1. An estimate of the number of atoms trapped in a MOT can
be retrieved by its loading dynamics [31]. Let us consider the rate equation that
describes the temporal trend of the number of trapped atoms in the MOT:

dN

dt
= R − γN − B

∫
n2
MOT (r , t)dV , (1.26)

where the �rst term describes the loading rate R of atoms from the background
vapor, while the next two terms describe the loss of atoms from the MOT due
to collisions with the hot background gases and due to two body intra-trap col-
lisions, respectively. γ is the loss rate due to collisions between hot background
particles and cold trapped ones, B is the loss rate coe�cient of the intra-trap term
and nMOT is the MOT atom density. In the case of loading atoms from a vapor,
we can neglect the last term and the equilibrium number of atoms in a MOT is
Neq = R/γ . Under normal operating conditions where vc is very small compared
to the average thermal speed of the background particles, we can calculate the
loading rate R obtaining:

R =
2Av4

cn

π 2v3
th

, (1.27)

where vth =
√

8kBT /(πm) is the mean thermal velocity of the background par-
ticles, A is the cross-sectional area of the trapping region and n is the atomic
density in the vapor. Given that the capture velocity is vc =

√
dvrΓ and that the
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trapping area of the beams is A = d2, together with Eq. (1.27) we have that the
loading rate R is proportional to the fourth-power of the beam diameter d . As a
consequence, also the number Neq of trapped atoms is proportional to d4:

Neq =
2v2

r Γ
2n

π 2γv3
th

d4. (1.28)

In the case of a Rubidium MOT made by cooling beams with a diameter of 1 cm, a
number of 108-109 atoms can be trapped reaching temperatures of about 100 µK.
Depending on the dimension of the beams and on the di�erent experimental
con�gurations, a MOT can reach a volume ranging from several (or a fraction
of) mm3 to cm3. Moreover due to the trapped atoms �uorescence, it is possible
to see a MOT with naked eye shining with di�erent bright colors depending on
the atomic species.

1.2.4 Quadrupole and Io�e-Pritchard traps
The simplest trap that realizes magnetic con�nement of the atoms is the quadrupole
trap [29] originally suggested by W. Paul. It is made by two identical coils car-
rying opposite currents as depicted in Fig. 1.5. This con�guration is called anti-
Helmholtz and generates a spherical quadrupolar �eld that is zero at the center
of the trap. It increases linearly from the center as:

B(r) = B′xx êx + B
′
yyêy + B

′
zzêz, (1.29)

being B′x +B
′
y +B

′
z = 0, in order to satisfy Maxwell’s equations. The cartesian co-

ordinate vectors êi are along the quadrupole main axes. Therefore, the trapping
potential providing linear con�nement around r = 0, is:

∆E |F ,mF 〉 = µBдFmF

√
(B′xx)2 + (B

′
yy)2 + (B

′
zz)2. (1.30)

From an experimental point of view, this trap is very easy to make and powerful.
Needing only a pair of coils, its construction and optical access is very simple.
Furthermore, the con�nement that it is capable of reaching is the strongest with
respect to other geometries that we will describe later and that have a parabolic
potential. For this reason the quadrupole trap was widely used in the �rst exper-
iments of neutral atom trapping. However, the Majorana spin-�ips mentioned
in Subsec. 1.2.2, constitute an obstacle for its trapping success. Indeed, moving
nearby the position of zero-�eld, the atoms experience an abrupt change in the
magnetic �eld direction thus undergoing a spin �ip process which expels them
from the trap. To overcome the spin-�ip problem, many schemes have been used
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Figure 1.5: Quadrupole and Io�e-Pritchard traps. Left-hand side: Two coils con�guration to gen-
erate a three-dimensional quadrupole trap that is zero at the center of the trap. Right-hand side:
The Io�e-Pritchard trap con�guration is obtained with four bars of opposite currents providing
the transverse con�nement and a pair of pintch coils providing the axial con�nement.

and they can essentially be grouped in three types. When Bose-Einstein conden-
sation was �rst observed, for instance, a TOP-trap (time-averaged orbiting po-
tential) was developed. It consists in adding to the quadrupole con�guration, a
weak magnetic �eld fast rotating in the horizontal plane. In this way the instan-
taneous potential that arises is parabolic, like a moving cup in which the atoms
are con�ned. The second solution that was developed is an optical-plug trap. In
this case the center of the quadrupole trap, where the �eld vanishes, is a hole
from which the atoms can escape. The idea was to optically plug this hole with
the repulsive force produced by a laser beam passing through the hole and hav-
ing an higher frequency respect to the atomic resonance. In this way the atoms
are turned away from this region and the hole is closed. The third solution is a
widely used scheme and is called Io�e-Pritchard trap [30]. It is made by the com-
bination of a linear magnetic quadrupole produced by four straight conductors,
in which the current �ows as depicted in Fig. 1.5, and an axial bias magnetic �eld
provided by two co-axial ending coils carrying currents that �ow in the same
direction (pinch coils). In the case of axial symmetry, the trapping �eld close to
the trap center is given by:

B(r) = B0
©«

1
0
0

ª®¬ + B′ ©«
0
−y
z

ª®¬ + B′′

2
©«
x2 − (y2 + z2)/2

−xy
−xz

ª®¬ . (1.31)

B′ is the gradient of the two-dimensional quadrupole �eld in the yz-plane, B0 is
the constant term coming from the bias homogeneous �eld and B′′ is the curva-
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ture along x . The magnetic �eld modulus, approximated to the second order in
r , is:

B(r) ≈ B0 +
B′′

2 x2 +
1
2

(
B′2

B0
−
B′′

2

)
(y2 + z2), (1.32)

it provides a harmonic con�nement of atoms, of mass m and magnetic moment
µ = µBдFmF , with trap frequencies:

ωaxial =

√
µ

m
B′′ and ωradial =

√
µ

m

(
B′2

B0
−
B′′

2

)
. (1.33)

The Io�e-Pritchard trap has several variants as long as its �eld geometry is pre-
served. In this regard, for instance, a Io�e-Pritchard trap, but also a quadrupole
trap, can be implemented on a chip by means of a planar current distribution,
as we will see in detail in the section describing our atom-chip layout. This new
generation of traps, called microtraps, has many advantages ranging from their
superior con�nement potential to a large variety of solutions that make the ma-
nipulation of neutral atoms easier.

1.3 Bose-Einstein condensation

The Bose-Einstein condensate (BEC) is a state of matter predicted in 1924 by Al-
bert Einstein. He generalized the ideas proposed by the Indian physicist Satyen-
dra Nath Bose who derived, in his pioneering paper on quantum statistics, the
Planck law for black-body radiation by treating the photons as a gas made of
identical particles. Einstein extended this theory to an ideal gas of identical atoms
with integer spin (bosons) and predicted that, at su�ciently low temperatures,
the particles of the gas undergoes a phase transition such that all of them oc-
cupies together the lowest quantum state of the system. As the gas is cooled
near the zero temperature, the particles are closer such that the matter waves of
each individual atom start “overlapping” causing the atoms to be indistinguish-
able one from another. A unique “giant matter wave” is taking form, made by a
whole synchronous oscillation: the Bose-Einstein condensate. This is how a sin-
gle macroscopic wave-function arises, with a well de�ned amplitude and phase,
as well as for a classical �eld. It is a new form of matter that, thanks to its macro-
scopic properties, makes quantum mechanics macroscopic thus allowing us to
investigate it.
For a more quantitative picture, we can say that the condition for condensation
to occur is when the number density n = N /V (N the number of atoms and V
the occupied volume) reaches the value [7]:

n = 2.612/λ3
dB, (1.34)
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Figure 1.6: Bose-Einstein condensa-
tion. At high temperatures T , the
weakly interacting gas, with velocity
v and density d−3, behaves as a sys-
tem of “billiard balls ”. At low tem-
peratures we can describe the atoms
as “wave packets” with an extension
of λdB , their de Broglie wavelength.
At T = Tcr it the BEC transition oc-
curs, λdB is comparable with the in-
teratomic distance d and “matter wave
overlap”. When the temperature ap-
proaches zero, the thermal cloud dis-
appears and a unique “giant mat-
ter wave” forms. Image and caption
adapted from Wolfgang Ketterle’s No-
bel Lecture [34].

where λdB is the thermal de Broglie wavelength de�ned as λdB = h/
√

2πmkBT
or, in an analogous way, λdB = h/(mv) being v the characteristic speed of the
gas. The de Broglie wavelength is a measure of the delocalization of an atom, i.e.
the dimension of the region in which an atom could be found if we measure it.
At very low temperatures, we can now understand that quantum e�ects become
important when λdB is comparable to the inter-atomic spacing (see Fig. 1.6). At
the same time the atoms have much lower average energies (temperature) thus
occupying a smaller volume near the bottom of the trap potential in which they
are con�ned. As a consequence also the phase-space density ρ(r, p, t) increases.
It represents the probability that a single particle is in a region dr around r, with
momentumdp around p at time t . The elementary volume for a gas of cold atoms
is chosen to be ~3, so that the phase-space density becomes the dimensionless
quantity ρϕ = nλ3

dB
. The order of magnitude of the reachable temperatures in a

BEC for trapped atomic gases is . 100 nK.
Bose-Einstein condensation of dilute atomic gases was observed for the �rst time
in 1995 by Eric Cornell and Carl Wieman in the laboratory of NIST-JILA Univer-
sity of Colorado at Boulder [32]. The condensate appeared in a cloud of 87Rb at a
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Figure 1.7: Evaporative cooling. Atoms are trapped in a potential well of �nite depth and un-
dergo elastic collisions. The hottest atoms escape from the trap, they are evaporated similarly to
a hot cup of tea that cools down for the evaporation of surface particles. The remaining atoms
have much lower energies. It is at this stage that after several collisions a new equilibrium is
reached via rethermalization. The temperature of the remaining trapped gas decreases and its
phase-space density increases. Figure adapted from Ref. [36].

temperature near 170 nK. Shortly after, also Wolfgang Ketterle at Massachusetts
Institute of Technology (MIT) observed Bose-Einstein condensation of sodium
atoms [33]. Before 1995, the challenges to reach BEC, from an experimental
side, were several. Trapping conditions were necessary together with a ultra-
high vacuum surrounding in order to reduce collisions with hot atoms. More-
over, very dilute gases were needed to prevent the atoms from condensing into
a solid or a liquid. After all, the required ultra-low temperatures encouraged the
development of new cooling techniques. Indeed, at that time the Doppler and
sub-Doppler cooling techniques discussed previously were routinely achieved,
nevertheless, because of the recoil limit, they allowed to reach only micro-kelvin
temperatures. A process similar to evaporation that occurs is nature and inher-
ently di�erent from the others already discussed, was applied to atom cooling
for the �rst time in 1988 [35]. It takes the name evaporative cooling and most
BEC experiments exploit it in their �nal stage.

1.3.1 Evaporative cooling
A simple model can be used to understand the basics of evaporative cooling tech-
nique. Similarly to a cup of tea that cools down due to the evaporation of surface
particles, a “cup” of atoms, made by a harmonic potential, can be cooled allowing
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Figure 1.8: Radio-frequency evaporative cooling. Left-hand side: parabolic pro�le of energy
levels in a magnetic trap. Red arrows are the RF-�eld that induces a transition, only for the most
energetic atoms depicted in light-blue, from trapped to untrapped levels. Right-hand side: the
remaining atoms thermalize at lower temperatures.

the high-energy atoms to escape from the trap thus lowering the overall temper-
ature of the system (as pictorially shown in Fig. 1.7). We can consider evapo-
ration as a sequence of steps following the evolution of the energy distribution
described below.

• Step 1. The atoms have an initial Boltzmann distribution of energy N (E) =
N0e

−E/kBT1 characterized by temperature T1;

• Step 2. A cuto� energy Ecut = ηkBT1 is applied (typically η = 3 − 6), such
that all the hot atoms having E > Ecut are allowed to escape from the trap;

• Step 3. After some time, collisions between the remaining atoms redis-
tribute the energy among them and thermal equilibrium is re-established
at a lower temperature T2 < T1 characteristic of a new Boltzmann distri-
bution.

The Boltzmann distribution extends to in�nity, therefore, at least in principle,
a lower cuto� can always be found thus, iterating these steps, reaching a lower
temperature is always possible. Besides the simplicity of the scheme just de-
scribed, evaporative cooling is experimentally realized in a di�erent way. As a
matter of fact, the magnetic potential in which the atoms are trapped, does not
change. It is the interaction with an external applied RF-�eld that expels the
atoms from the trap. Indeed, the �eld �ips the magnetic moments of the atoms
∆mF = ±1 such that the forces acting on them are anti-trapping. Moreover,
the frequency of the �eld ωRF is adjusted such that дF µBb′r = ~ωRF and only
the hotter atoms at a certain distance r from the trap center are a�ected (see
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Fig. 1.8). After this radio-frequency cuto�, the atoms collide in search of a new
thermal equilibrium stabilizing at a �nal lower temperature. It is important that
the process of continuously lowering the RF signal is accurately tuned on the
particular experimental atomic sample. The velocity of thermalization, indeed,
is proportional to the elastic collisional rate γ = nσv , n being the atom density, σ
the elastic scattering cross section and v w

√
kBT /m the mean velocity [6]. The

evaporation process is more e�cient ifγ remains constant whilstv decreases and
n increases. Therefore, the evaporation time will be properly chosen according to
the thermalization speed of the sample. It is worth noting that these techniques
can be applied to atoms trapped with the optical dipole force as well [37].

1.3.2 Coherence of a Bose-Einstein condensate
Interesting properties arise from the description of a Bose-Einstein condensate
as a collection of atoms sharing the same wavefunction. The one we want to
mention in this thesis is the coherence property of a BEC. It was observed for
the �rst time in a remarkable experiment performed at MIT carried out by the
group of Wolfgang Ketterle in 1997 [38]. The experiment demonstrated the inter-
ference between two free expanding sodium condensates separated by ∼ 40 µm
and created in a double-well potential formed by magnetic and optical forces. An
initially elongated condensate was cut into two parts by means of the interaction
with a blue-detuned laser beam. After switching o� the trapping potential, such
two separated condensates fall under gravity and expand for 40 ms. The absorp-
tion image, taken right after the expansion time, clearly showed an interference
pattern in the overlapping zone of the two condensates. Such an experiment
demonstrated that matter waves interfere like electromagnetic waves. However,
a fundamental di�erence with optics experiments of interference, was that in
the MIT experiment there was no �xed relation between the phases of the two
condensates. A property that directly re�ects the coherence of a Bose-Einstein
condensate is, indeed, its phase. However, the phase is not an observable, being
the argument of a complex number that is the macroscopic wavefunction. The
observation of high-contrast interference between the two atomic BECs consti-
tuted a clear evidence for coherence in such systems. An interesting treatment
that gives the tools necessary to understand and analyze the coherence and sta-
tistical properties of macroscopic matter waves associated with condensates is
given in Ref. [36]. It is further shown how a relative phase between two initially
independent condensates can emerge as a result of a succession of detection pro-
cesses. The coherence properties demonstrated in this experiment showed that
it is possible to couple out a coherent beam of matter waves from a Bose-Einstein
condensate, which constitutes the de�nition of an atom laser with the same well-
de�ned phase and wavelength like the light from a laser.
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2 | Experimental apparatus: a BEC
on an atom-chip

Bose-Einstein condensate-based experiments are often very elaborate. The con-
densate itself is a very fragile object and the e�orts in reaching it and preserve
its coherence are the result of several focused and balanced steps. However, the
achievement of such an exotic state of matter attracted a great interest in the sci-
enti�c community. In particular it stimulated the development of new extremely
versatile tools for a practical improvement in realizing and manipulating such
coherent atomic matter waves. In this regard, the atom-chip exploited in our
experiment constitutes an example. Indeed, the use of microtraps, replacing the
customary magnetic coils used to con�ne the atoms in standard BEC experi-
ments, considerably simpli�ed the overall apparatus. Additionally, the strong
con�nement potential reached via chip-traps allowed to gain a remarkable ac-
celeration in the condensate time production, from minutes to a few seconds,
thus bene�ting the atomic physics research �eld. Moreover, the high degree of
exquisite control that the atom-chip enables is a powerful tool too in the manip-
ulation of the BEC internal state dynamics. The latter is fundamental in the de-
velopment of the quantum protocols I want to present in this thesis work, whose
success relies in the high degree of control reachable in the ultimate stages of
our experimental sequence.
The experimental apparatus and a typical sequence for the preparation and ma-
nipulation of our BEC on the atom-chip is the subject of this chapter. The cooling
and trapping techniques that make use of an atom-chip are described in detail
in Sec. 2.1. After explaining the basic wire traps principles in Subsec. 2.1.1, I put
the emphasis on the on-chip realization of a wire equivalent of the Quadrupole
(Subsec. 2.1.2) and Io�e-Pritchard (Subsec. 2.1.3) standard traps.
Our experimental setup is then detailed in Sec. 2.2. Starting from the core of our
experiment, the atom-chip layout is described in Subsec. 2.2.1. When the atoms’
cooling is achieved near a surface, given by the atom-chip itself, the implemen-
tation of a variant of the standard MOT is inevitable. The mirror-MOT is thus
explained in Subsec. 2.2.2, together with an overview of the whole experimen-
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tal apparatus. The laser system employed to generate the necessary frequencies
required by our experiment is shown in Subsec. 2.2.3. A step-by-step analysis
of our experimental sequence in reaching BEC is provided in Subsec. 2.2.4 and
a description on how we measure it performing standard absorption imaging is
reported in Subsec. 2.2.5. Finally a dedicated �rst analysis on how we experi-
mentally manipulate the produced BEC, is explained in Sec. 2.3, focusing on the
necessary �elds that we use for this purpose: a microwave �eld (Subsec. 2.3.1)
and a radio-frequency �eld (Subsec. 2.3.2).

2.1 Cooling and trapping on an atom-chip

Micro-traps can perfectly reproduce the features of standard magnetic traps for
ultra-cold neutral atoms, tightly con�ning them and making their manipulation
easier. An atom-chip has a completely planar geometry in which the trapping
potential is provided by micro-structured current-carrying wires. It was pro-
posed in 1995 by Weinstein and Libbrecht [39] and, after many pioneering ex-
periments [40–42], it was successfully realized in 1999 by Reichel, Hänsel, and
Hänsch [43]. The advantages of working with an atom-chip are several. The
�rst that immediately comes to mind is that large magnetic �eld gradients and
curvatures can be generated in close proximity to the chip surface by means of
modest electric currents. The power dissipation is also lower respect to that pro-
duced by macroscopic coils. Another bene�t is that the lithographic techniques,
used to fabricate the chip, make it possible to integrate many complex systems
all directly on a single chip, like several microscopic traps with di�erent geome-
tries, wave-guides and also other atom-optical devices. Of particular interest to
us, is the greatly simpli�ed way that such micro-traps allows in achieving Bose-
Einstein condensation. Indeed, micro-structured conductors can be exploited in
the last stage of evaporative cooling allowing the formation of a condensate in
a time shorter than a factor of 10 compared to typical experiments [44]. The
higher atomic densities and thus elastic collisions, reachable in such con�gura-
tions, indeed, result in a faster thermalization that makes possible to drastically
shorten the time of RF evaporative cooling. The tight trap permits fast adiabatic
changes of the con�ning potential, thus yielding an easier magnetic compression
of the atomic cloud. Furthermore, despite the pull of gravity, the magnetic tight
con�nement permits to trap the atoms very close to the magnetic trap center re-
sulting in a rather uniform evaporation. The cooling cycle becomes so fast that
the collisions with background gas atoms are less important and the stringent
vacuum condition can be also relaxed. The overall experimental cycle in reach-
ing BEC can be as short as a few seconds (typically of the order of 10 s), thus
bene�ting atomic physics experiments.
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Another important aspect of atom-chips is that they make possible a coherent
manipulation of the internal states of the con�ned atoms due to the versatility of
the lithographic wire structures. Elaborated potentials, with complex structures,
in fact, can be designed and tailored to the speci�c purpose.
Although the robustness, the simplicity of the setup and the possibilities of chip-
based potential, the ultimate limit of an atom-chip is the atom-wire distance.
In order to feel the near-�eld potential, indeed, the atomic cloud must be very
close to the chip surface. However, this proximity can trigger atom-surface in-
teractions and thus dechoerence [45, 46], principally due to the magnetic noise
originating from the surface of the atom-chip. A lower limit is therefore set for
the distance d of the atoms from the chip surface and this, in turn, limits the
timescale of the fully controlled dynamics. The atoms-wire distance d , indeed,
has to be small compared to the desired features of the potential, let’s say, of size
l . Thus the timescale is also limited being t ∼ h/E ∼ ml2/h, where E ∼ h2/ml2

is the kinetic energy of atoms of mass m localized on the scale l [47]. Besides,
as extensively studied and demonstrated, with a proper choice of surface mate-
rial and fabrication techniques, it is possible to trap atoms at distances of a few
hundreds nanometers [48] as well as preserving quantum coherence [49, 50].

2.1.1 Wire traps principles
A simple straight wire contains all the main concepts necessary to realize an
atom-chip. Consider an in�nitely straight wire carrying a current I . The mag-
netic �eld induced is radial. Assuming that the wire is along the x-axis, the
magnetic �eld magnitude, gradient and curvature at distance z from the wire is:

B(z) =
µ0I

2πz ,

B′(z) = −
µ0I

2πz2 ,

B′′(z) =
µ0I

4πz3 ,

(2.1)

respectively. The �eld of this single wire is not useful for trapping, since there is
no local minimum. However, superimposing a homogeneous magnetic �eld Bbias
oriented along they-axis and perpendicular to the wire, the �eld cancels, creating
a line of zero �eld parallel to the wire on the z-axis at a distance z0 = µ0I/2πBbias
(see Fig. 2.1). Assuming that the current �ows in the negative direction (I < 0),
we can write the vectorial components of the magnetic �eld plus the bias �eld
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Figure 2.1: Magnetic guide. The combination of a wire and an external bias �eld Bbias creates
a two-dimensional trapping �eld called magnetic guide. On the left-hand side the resultant mag-
netic �eld lines are reported. On the right-hand side the �eld magnitude |By (z)| at y = 0. Both
�gures are realized for a wire current I = −1 A and a bias �eld Bbias = −5 G. Figure adapted
from Ref. [51].

as:
Bx = 0,

By = Bbias −
µ0I

2π
z

y2 + z2 ,

Bz =
µ0I

2π
y

y2 + z2 .

(2.2)

Therefore, the external bias �eld determines the zero-�eld point and its magni-
tude determines the distance between the trap center and the wire.
In the wire proximity (y = 0 and z = z0), expression (2.2) can be linearly expanded
to see that both requirements ∇ · B = 0 and ∇ × B = 0 are ful�lled. Moreover,
the �eld behaves as a two-dimensional quadrupole �eld with constant gradient
along any direction from the zero-point |B′(0, z0)| = µ0 |I |/2πz2

0.
Since there is no �eld dependence on x in Eq. (2.2), the wire-trap is only radial,
also called magnetic guide, as it con�nes atoms in the plane perpendicular to the
wire and allows their transportation along the wire direction itself. This con�g-
uration does not provide axial con�nement, necessary for a three-dimensional
trap. To con�ne the atoms in all directions can be easily done by bending the
wire ends, end-caps, obtaining a wire with a �nite length or adding additional
crossing wires. Various geometries can be used, but in the following we will de-
scribe the ones used in our experiment and obtained by bending the wire ends
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Figure 2.2: Quadrupole U-trap. Wire layout in the plane z = 0 for a Quadrupole U-trap and
magnetic potentials generated for I = 1 A. The bias �eld B0 along y is set to have a trap at
positions z0 = 0.5 mm (red line) or z0 = 0.1 mm (blue line). Note that in order to prevent atom
losses due to Majorana spin-�ips, described in Subsec. 1.2.2, a longitudinal magnetic �eld parallel
to the wire is added (not shown). The latter, combined with the bias �eld, e�ectively rotates the
trap axis avoiding Majorana transitions but still leaving the position z0 as a minimum for the
magnetic �eld. The potentials shown in the �gure were obtained by numerical Biot-Savart law
integration, taking into account a wire width of 125 µm. Figure from Ref. [52].

at right angles to form a “U” or a “Z”. In both cases, the central part of the wire
combined with the bias �eld forms a two-dimensional quadrupole for transverse
con�nement, while the bent wire parts provide the axial con�nement.

2.1.2 Quadrupole U-trap
A U-bent wire can be realized by “closing” the guide formed by a straight wire
directed along the x-axis and the external bias �eld Bbias = B0 oriented along y,
as in Fig. 2.2. This wire con�guration induces a 3-D quadrupole trap. Assuming
that the contribution of the lateral branches of the wire does not a�ect the 2-D
quadrupole potential provided by the central part of the wire, we will consider
they = 0 and z = z0 position of the minimum as �xed. Introducing the parameter
R = z0/L, where the central part of the wire along x-axis is of length L, we
can calculate the magnetic �eld produced by each branch. The total �eld BUbr

components, linearly approximated around x/L and obtained summing up the
two branches contributions, are:

BUbrx =
µ0I

4πL2 4Rx ,

BUbry = 0,

BUbrz = −
µ0I

4πL2 (R
2 + 1)L.

(2.3)

Note that, since we are moving along the y = 0, z = z0 line, the only variable
is x. As for the simple wire guide, also here the constant component of the �eld
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Figure 2.3: Io�e-Pritchard Z-trap. Wire layout in the plane z = 0 for a Io�e-Pritchard Z-trap
and magnetic potentials generated for I = 1 A. The bias �eld along y is set to have a trap at
positions z0 = 0.5 mm (red line) or z0 = 0.1 mm (blue line). Note that also here, an additional
longitudinal magnetic �eld (not shown) is applied parallel to the wire with the e�ect of tilting the
trap axis, thus avoiding Majorana spin-�ips. The potentials shown in the �gure were obtained by
numerical Biot-Savart law integration, taking into account a wire width of 125 µm. Figure from
Ref. [52].

along z-axis is responsible for a displacement of the trap center along the y-axis.
While the total contribution along x-axis is proportional to x and results in a
longitudinal �eld gradient of:

|B′Ubrx | =
µ0I

πL2R. (2.4)

The resulting potential is that of a three-dimensional quadrupole trap, with �eld
zero at x = 0, y > 0, and z = z0. Therefore, by choosing the correct bias �eld,
the U-trap can substitute the standard quadrupole coil pairs for the production
of a MOT [53]. It is noteworthy that the U-quadrupole can be also tilted respect
to the planar surface, in order to have the 45◦ necessary to have a mirror-MOT
con�guration for the loading of the chip. However it is not the case in our ex-
periment, in which a mirror-MOT con�guration is achieved by using traditional
tilted coils setup, as we will describe in the following subsections.

2.1.3 Io�e-Pritchard Z-trap
A U-trap can be transformed into a Z-trap by simply moving a branch of the U-
trap to its opposite half-plane, as depicted in Fig. 2.3. Hence, a quadrupole trap
on a chip can be easily converted into a Io�e-Pritchard trap. To calculate the
cartesian components �eld generated by the two branches in a Z con�guration,
we can follow the same approach used for the U-trap in Subsec. 2.1.2 by simply
changing the current direction I → −I in one of the two branches. Accordingly,
the approximation to the �rst order of the total �eld BZbr induced by the two
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branches is:
BZbrx =

µ0I

2πL2 (1 + R
2)LR,

BZbry = 0,

BZbrz =
µ0I

2πL2 (R
2 − 1)x .

(2.5)

Now it is the �eld along the z-axis that has a dependence on x , the displacement
along y-axis of the trap center is variable. Whilst the x component of the �eld is
constant. This feature is of great importance in preventing the vanishing of the
trap �eld and thus avoiding the losses due to Majorana spin-�ips. Note that the
above results are valid only in the restricted range w < z0 � L, where w is the
wire width. The overall e�ect is a three-dimensional Io�e-Pritchard trap whose
axial con�nement is provided by the curvature ∂2B/∂x2.
The Z-wire trap allows e�cient evaporative cooling. It is harmonic near its min-
imum and has a strong con�nement by a nearly linear gradient further away
from the wire. This wire geometry is actually used in our experiment to trap the
BEC, as explained in the following.

2.2 The experimental setup

In this section we report the path, realized in our laboratory, in reaching always
cooler temperatures and higher densities from a Rb vapor as far as the �nal goal
of its condensation in the state |F = 2,mF = +2〉 (see Fig. A.1). The latter, indeed,
has the strongest interaction with the magnetic �eld and will be, therefore, the
most strongly trapped state.
The section is structured as follows. A �rst overview on the atom-chip technical
details are presented. Then a description of the entire experimental apparatus
and the required lasers are discussed. Finally, a step by step analysis of our pro-
cedure in realizing a Bose-Einstein condensate together with the imaging tech-
nique, used to measure it, are reported. This experiment is the result of the work
and e�orts of many previous members of the atom-chip group. An extensive and
exhaustive dissertation is given in Ref. [52].

2.2.1 The atom-chip layout
The atom-chip is the hearth of our experiment. The BEC forms a few hundred
microns in proximity of its surface and the condensate’s internal state dynam-
ics manipulation is performed by means of it. It was fabricated by the Quantum
Optics group of the University of Vienna by standard micro-fabrication technol-
ogy. It consists in a silicon surface on top of which is evaporated a gold layer
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Figure 2.4: The atom-chip layout. Dimensions and wires layout of the atom-chip golden
frontside used in our experiment. Enhanced in pink is the small-z wire that realizes the Io�e-
Pritchard trap in which the BEC is produced in the �nal cycle. Enhanced in green, the u-wire
used to manipulate the BEC internal atomic states. These are the main structures of the chip,
the other ones can be switched on to implement ulterior manipulations depending on the ex-
periment. However, we will not consider them any further because they have not been tested
yet.

by photo-lithography. The wires on the surface are obtained by opportunely re-
moving gold portions in such a way to shape the appropriate structures. They
are of several widths (50, 125 and 300µm), have a height of 2 µm and are de�ned
by 10 µm-wide gaps. The overall chip surface is covered by a high-quality gold
layer with a substrate smoothness made by grains of a size lower than 50 nm.
This guarantee the high re�ectivity necessary to realize an integrated mirror-
MOT, a variant of the standard magneto-optical trap to cool and trap the atoms
that will be described in Subsec. 2.2.2. High-quality wires are essential too in or-
der to avoid uncontrolled deviations of the current �ow and as a consequence
disorder in the trapping potential [54, 55]. A schematic of the chip layout is re-
ported in Fig. 2.4. Placed at the center of the chip, there is a z-wire (enhanced
in pink and which we will refer to as small-z) that generates the Io�e-Pritchard
potential at the �nal stage of our experimental cycle in which the BEC is pro-
duced. The central part of the small-z is 2 mm long while its arms are 6 mm long.
The width of this wire is 125 µm and has a resulting resistance of 1.63 Ω. For a
bias �eld of 15 G, the trap frequencies induced in the center of the Io�e-Pritchard
small-z trap are ωaxial = 2π × 76 Hz and ωradial = 2π × 975 Hz.
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Figure 2.5: Backside of the atom-chip. A ceramic white block sustains the macroscopic Z-wire
(big-Z) and two U-shaped conductors. The big-Z is used to facilitate the transfer of the atoms
into the on-chip small-z trap. While the closest U-conductor to the chip carries the RF signal
used for evaporative cooling.

Enhanced in green, is a u-wire exploited to manipulate the BEC internal atomic
states (Fig. A.1), as we will clear later in Sec. 2.3. The width of this wire is of
300 µm and it has a resistance R = 0.8 − 0.9 Ω. Applying to it a voltage signal
V (t) = A cos (ωRF t), a current I (t) = RV (t) is generated. Since the distance at
which the BEC forms, with respect to the chip surface where the u-wire holds, is
d = 190 µm and the signal frequency ωRF of the radio-frequency �eld produced
by it does not exceed a few tenth of MHz, the electromagnetic �eld induced by
I (t) is a near-�eld. Hence it can be approximated to the �eld generated by an
in�nitely long wire and the atoms will be a�ected by a magnetic �eld varying in
time as:

B(t) =
µ0R

2πdV (t),

= A
µ0R

2πd cos (ωRF t).
(2.6)

This �eld can e�ciently couple the internal mF states of the atomic hyper�ne
structure, hence providing a suitable tool for state manipulation.
In Fig. 2.5 the backside of the atom-chip is shown. The ceramic white block sus-
tains and isolates other di�erent conductors placed behind the chip. On the rear
side of the white block, in turn, a mini-heater and a thermocouple are glued.
Indeed, while the experiment is not running, the microchip mount is heated to
40◦C to make the rubidium atoms detach from its surface and cleaning it, thus
preventing atom-desorbing during the experimental cycle and their consequent
detrimental e�ect on the trap lifetime. Since the atom-chip is placed in a ultra-
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high-vacuum (UHV) science cell, both the mini-heater (343-HEATER-2×10, con-
trolled by an external regulator) and the thermocouple placed near to it, have to
be UHV compatible.
As shown in Fig. 2.5, the ceramic white block holds two U-shaped conductors
and a macroscopic Z-wire (named big-Z ). The U-shaped conductors are made
of copper and have a section of 1.5 mm high and 2 mm wide, while the whole
width is 16 mm. They are placed in two di�erent planes. The upper U structure
has a length of 9 mm and is just below the mirror, the lower one has a length
of 11 mm and lays just below the upper one. We can independently drive them
with two remotely controlled power supplies and they are electrically isolated
by a 0.125 mm thick kapton foil (KAP10). The U-conductor closer to the mirror
is actually used to generate the radio-frequency signal that drives evaporative
cooling of our rubidium atomic cloud.
The big-Z wire is made of copper and insulated with kapton, its cross-section
is of 0.61 mm and 0.87 mm. The big dimension of the wire allows to work with
higher currents providing a Io�e-Pritchard trap of larger volume. In this case
the minimum of the trap, indeed, falls further away from the chip surface. This
trap is useful to transfer the atoms, previously cooled in a molasses, to the on-
chip magnetic trap made by the small-z. This microscopic trap, in fact, has a
small capturing volume respect to the typical dimensions of a molasses that are
of x ×y × z = 1.5× 1.5× 3 mm3. The transfer is realized by keeping the external
�eld constant and decreasing the big-Z current so that the trap position moves
closer to the chip surface, until the trapping potential of the small-z on the chip
can be turned on.

2.2.2 Apparatus and Mirror-MOT
Any experiment that deals with ultra-cold atoms requires to isolate them from
the environment. Indeed, collisions of the trapped atoms with the ones from the
residual gas, ultimately limits the magnetic trap lifetime. The latter needs to be
of the same order of magnitude of the BEC cycle time, that for an experiment like
ours realized with a chip-setup is of a few seconds. In our laboratory the isola-
tion is realized by means of a vacuum system composed by an Ion pump (Varian
VacIon Plus StarCell 150, 125 l/s, controlled by a Varian Duel controller) and a
Ti-sublimation pump. They provide an Ultra-High-Vacuum (UHV) pressure of
2 × 10−10 mbar in the science cell. All the system is supported by the �ange of
the ionic pump to which the science cell is attached and suspended 18 cm above
the optical table (as you can see in Fig. 2.6). The science chamber is a rectangular
glass made of Vycor, 100 mm long, 40 mm wide and 40 mm deep. Its transparent
feature allows full optical access. The chip is placed in the middle of the cell, with
the gold side facing down as shown in the picture. Its support, electrical connec-
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Figure 2.6: Mirror-MOT. 3D vision of our mirror-MOT coil suits and laser beams. The vacuum
science cell, with the atom-chip mounted inside with its golden side facing down, is placed at the
center of the coils. The four MOT beams with the required circular polarizations are represented:
two straight beams propagate in opposite directions parallel to the chip surface, the other two
beams are re�ected on two mirrors placed on the optical table and impinges at 45◦ on the chip
surface. The latter beams, re�ecting on the golden chip surface, provides the last two MOT-
beams for a total of six. The magnetic coils suit indicated by (a) are the ones that generates the
bias �elds, while the ones indicated by (b) are parallel to the 45◦ beams and produce the magnetic
�eld for the MOT. For illustrative purposes, an atomic cloud is drawn near the chip surface at the
beam crossing.

tions and the dispensers occupy the upper part of the cell held by the �ange.
Several magnetic coils surrounds the science chamber in order to generate the
magnetic �elds used in the di�erent stages of the cooling and trapping cycle.
Three pairs of Helmholtz coils, two for each direction, provide the homogeneous
magnetic bias �elds (Bx , By , Bz) used to manipulate the atoms and compensate
external environmental magnetic �elds (coils (a) in Fig. 2.6). The 45◦-tilted pair
(coils (b) in Fig. 2.6), instead, are the anti-Helmholtz coils used to generate the
quadrupole �eld of the MOT stage.
In our experiment we use a variant of the standard magneto-optical trap to cool
and trap the atoms: the mirror-MOT. This con�guration, inevitable when one
wants to cool atoms that are near a surface, is shown in Fig. 2.6. It exploits the
mirror surface of the chip to re�ect two of the usual six counter-propagating
MOT beams to realize the same cooling with just four beams. Two are counter
propagating and aligned along the y direction, parallel to the chip surface, with
opposite polarization σ+ and σ−. The other two impinge on the chip at 45◦ from
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Figure 2.7: Mirror MOT optical setup. Schematic of the laser beams necessary to cool the atomic
gas in a mirror-MOT. We show how the cooling light divides into the four mirror-MOT beams
and mixes once with the repump beam, to enhance the MOT e�ciency, and then with the optical
pumping beam to prepare the atoms in the �nal magnetically trapped state |F = 2,mF = +2〉
that will be the initial state of all our experiments described in chapter 3 and 4.

opposite directions and lay in the xz-plane. In this way the usual MOT geometry
is realized in the half space delimited by the chip re�ecting surface. The MOT
coils (b) are tilted in order to be parallel to those beams and creating a minimum
of the magnetic �eld in the region where the four MOT beams overlap at 7 mm
from the chip surface.
Our mirror-MOT optical setup is schematized in Fig. 2.7. Inside the laser system
black box, all the necessary beams are prepared (as described in detail in Sub-
sec. 2.2.3). Before splitting into the four beams required for the mirror-MOT, a
small portion of the master laser, used for cooling, is withdrawn and detected by a
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photodiode in order to adjust possible noise. A half-wave-plate (HWP) and a po-
larizing bemsplitter (PBS) subsequently divide the cooling light into two beams:
one, after passing through another PBS, realizes the two counter-propagating
and parallel to the chip MOT-beams and similarly the other realizes the two tilted
MOT-beams at 45◦. Thus, after being split into the four MOT-beams, two pair of
lenses in a telescope con�guration enlarge the beams’ size to an e−2 diameter of
30 mm in order to exploit all the chip surface. Four quarter-wave-plates (QWP)
circularly polarize each of the four beams according to the MOT scheme. During
the �rst loading phase, the frequency of the laser is red detuned −3Γ (−18 MHz,
where Γ = 2π×6 MHz is the natural linewidth of the rubidium D2-line transition)
from the transition F = 2 → F ′ = 3 (see Rubidium D2-line scheme in Fig. A.1).
The power of the cooling beam is 200 mW and the �rst polarizing beam-splitter
sends a portion of it of 1/3 to the straight beam pairs, while a portion of it of 2/3
to the tilted beam pairs.
Even though the chosen transition for the MOT F = 2→ F ′ = 3 is a closed tran-
sition, the probability of the atoms falling in the F = 1 state is non zero given that
the laser frequency is slightly detuned from resonance and thus not far from the
state F ′ = 2. This is su�cient to lose the MOT trapping requirements explained
in Subsec. 1.2.3. In order to prevent this loss and to enhance the MOT e�ciency,
a second laser, resonant with the transition F = 1 → F ′ = 2, is implemented
thus repumping the lost atoms in the F = 2 ground state. It has a total power
of 5 mW after the �ber and is mixed with the cooling light in the �rst polarizing
beam-splitter.
Finally, to maximize the transfer of atoms into the magnetic trap, another beam,
that pumps them into the desired low �eld seeking state |F = 2,mF = +2〉, is
exploited. It is indicated as optical pumping beam and, in order to ful�ll this
purpose, is resonant with the F = 2 → F ′ = 2 transition. It is mixed in the sec-
ond polarizing beamsplitter with the straight MOT-beams and is aligned such
that impinges on the atomic cloud at a distance from the chip surface where the
on-chip magnetic trap center forms.

2.2.3 Laser system
It is clear till now that, for our experiment to work, several laser lights at di�erent
frequencies are required. We can summarize all of them as: cooling laser, repump
laser, optical pumping laser and imaging laser. A schematic of the exploited 87Rb
hyper�ne structure of the ground 52S1/2 and excited 52P3/2 states of the D2-line
transition, is depicted in Fig. 2.8 and reports all the frequencies used during our
experiment. These frequencies are provided by two distributed feedback lasers
(DFB) placed inside a black box on our optical table and connected to the outside
by polarization maintaining optical �bers, except for the optical pumping beam

41



Chapter 2. Experimental apparatus: a BEC on an atom-chip 42

Figure 2.8: 87Rb D2-line and laser frequencies. Hyper�ne structure of the 52S1/2 and 52P3/2
states of the 87Rb D2-line transition is shown. Red arrows are the laser frequencies required
by our experiment, while light-blue arrows indicate the spacing between the levels reported in
MHz [57].

that exits in free space from a hole in the box (as shown in Fig. 2.7). One DFB
laser (the master) provides lights for the MOT cooling, the optical pumping and
the absorption imaging. While the second DFB laser provides the light for the
repumping.
The DFB master laser is locked on the crossover transition F = 2 → F ′ =
CO(2, 3) (a smooth transition between the two separate ones F = 2 → F ′ = 2
and F = 2→ F ′ = 3) by a frequency-modulated (FM) spectroscopy. According to
Fig. 2.9, we can see that after passing through an optical isolator and an anamor-
phic prism, the light is divided into two beams one is sent to a tapered ampli�er
(TA) and another to the double-pass AOM-1 (Acusto Optic Modulator). The lat-
ter shifts the laser frequency in order to be close to the F = 2→ F ′ = 3 transition
necessary for the MOT cooling stage. From the output of AOM-1, a small portion
of light ∼ 1 mW is used for the FM-spectroscopy and ∼ 4 mW is sent to another
double-pass AOM-4 to get the optical pumping light. AOM-4 shifts the light
frequency to the F = 2 → F ′ = 2 transition necessary to prepare the atoms in
the �nal low �eld seeking state |F = 2,mF = +2〉. This light is then mixed in a
polarizing beamsplitter (PBS) with a portion of the repump laser (resonant with
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Figure 2.9: Laser system. Schematic of the DFB master and DFB repump lasers that provides all
the necessary frequencies for the experiment. The master generates lights for: cooling, imaging
and optical pumping stages. While the DFB repump laser produces the repumping light only.
We use the following abbreviations to indicate: AOM, acusto-optic modulator; AP, anamorphic
prism; EOM, electro-optic modulator; HWP, half waveplate; OI, optical isolator; PBS, polarizing
beamsplitter; PD, photodiode; QWP, quarter waveplate; TA, tapered ampli�er.

the F = 1→ F ′ = 2 transition) in order to improve the pumping e�ciency. The
part of the beam that goes to the TA, instead, is ampli�ed up to 850 mW. This
ampli�cation, indeed, is required for the collection of a large number of atoms
in the �rst cooling stage realized by the MOT. Such ampli�ed beam is then sent
to a single-pass AOM-2 that shifts its frequency setting the desired red detun-
ing from resonance necessary during the MOT and optical molasses stages. Its
negative �rst di�raction order is sent to a PBS and coupled to an optical �ber to
go out of the box and realize the cooling light. Since the TA produces a great
power, we can exploit also the∼ 15 mW coming from the �rst positive di�raction
order of the AOM-2 to realize the imaging light. This beam is sent to another
double-pass AOM-3 that shifts down its frequency in order to be resonant with
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Figure 2.10: Time-line of the BEC production program.

the F = 2→ F ′ = 3 transition and then to go to an optical �ber out of the box.
The second DFB laser is used only for the rempump light. A small part of this
beam is sent to a spectroscopy cell in order to stabilize, by means of polarization
spectroscopy, the laser frequency on the crossover resonance F = 1 → F ′ =
CO(1, 2). The other part of the beam is sent to the single-pass AOM-5 shifting
the frequency in order to be resonant with the desired transition F = 1→ F ′ = 2.
The beam is then divided by a PBS into two parts. The �rst is mixed, as already
explained, with the optical pumping beam. The second is coupled into an optical
�ber and directed out of the box to be mixed with the MOT beams.
Finally, several mechanical shutters are mounted along each laser’s path in order
to control the timing of the laser light. Together with the AOMs, they switch the
lasers on and o� when necessary during the entire experimental cycle.

2.2.4 Steps towards BEC on the atom-chip
The experimental cycle to produce a Bose-Einstein condensate in our laboratory
has a duration of 8 s. A summary of our BEC production program time-line is
shown in Fig. 2.10. Let us analyze it step by step.

• MirrorMOT.At the beginning of the cycle, a 2 s long pulse at 7 A activates
the injection of the rubidium vapor gas from a pulsed-dispenser placed be-
hind the chip to the science cell. As they escape from the dispenser, the
rubidium atoms have an initial phase-space density of Φ ' 10−25 at an
evaporation temperature of ∼ 700◦C . Together with the activation of the
dispenser, the mirror-MOT stage (described in Subsec. 2.2.2) is started thus
allowing the loading of a large pre-cooled number of atoms at 7 mm from
the chip surface. Here the atom number is maximum and they will need
to be subsequently shifted and transferred into the on-chip magnetic trap
which is e�ective only in the small range of typically < 3 mm from the
chip surface. During this stage the peak atom number is obtained with a
light detuning ∆ = −18 MHz (−3Γ) from the rubidium D2-line transition,
a beam intensity of 35 mW cm−2 and a quadrupole gradient of 15 G cm−1.
After 5 s of loading we obtain:

N = 7 × 108 atoms;
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T = 120 µK;
Φ = 8.5 × 10−8.

• CMOT. The spatial extent of the MOT cloud, reached in the previous step,
is too big to be transferred to the magnetic trap made by the small-z wire
on the chip surface. For an optimum loading of the magnetic trap it is
important to reduce the spatial extent of the MOT. This is the intent of
the Compressed-MOT (CMOT) stage. This stage has to be performed in
close proximity of the chip surface where the magnetic on-chip trap will
be turned on. Therefore, a transfer of the atoms from the distance of 7 mm
to 2 mm from the chip is realized �rst. The position of the MOT center is
displaced applying an appropriate homogeneous magnetic �eld made by
the bias-x and bias-z currents �owing in the bias coils. To implement this
movement, these �elds are linearly ramped in 450 ms. At this point, the
compression can start. The CMOT di�ers from the MOT in the increased
red detuning of the trapping laser (from −3Γ to −14Γ), decreased power of
cooling light (80% reduction) and greatly reduced repumping laser power
(from 5 mW to 50 µW). The change in the frequency locking of the cool-
ing laser is compensated in its FM-spectroscopy by a frequency jump lock.
The CMOT e�ect is to reduce the radiation pressure thus creating a denser
cloud. Indeed, reducing the detuning of the trapping laser decreases the
scattering rate and as a consequence the possibility of the radiated pho-
tons to be re-absorbed from the neighboring atoms thus risking a repulsive
undesired e�ect. The entire CMOT stage lasts about 14 ms, after which we
obtain:

N = 7 × 107 atoms;
T = 25 µK;
Φ = 8.5 × 10−7.

• Molasses. A short optical molasses is performed at the end of the com-
pression stage. The quadrupole �eld is turned o� and the bias magnetic
�eld is adjusted in order to compensate spurious magnetic �elds coming
from the environment. In this regard the cloud is released to expand freely
and homogeneously in all directions. Here we can take a �rst “photograph”
of the cloud thanks to which we can balance the laser beams in order to
have the correct compensation of the �elds. Indeed, if one direction is not
correctly compensated, the cloud tends to move in that direction (as you
can see in Fig. 2.11). The optical molasses bene�ts are great in terms of
the reached temperature, which is consistent with sub-Doppler “sysiphus-
like” cooling reported in Subsec. 1.1.4. After its 3.5 ms duration we have:
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Figure 2.11: Unbalanced compensation �elds e�ects. Here are reported several pictures of how
the atomic cloud appears when some compensation �eld of the magnetic trap is unbalanced. At
the top side of each image you can notice the chip pro�le as a gray shade. In these particular cases,
the circuit that turns on a compensation �eld was disconnected (but we didn’t know it!). Hence,
we were trying to understand the origin of the problem by changing the optical alignment and
the values of the compensation �elds. The pictures e), f), g) and h) show how a little portion of
atoms, when you are reaching the correct balancing, is �nally moving towards the trap center!
Sub�gure i) shows how the magnetically trapped atoms appear with a good compensation of
�elds and optimal alignment of MOT beams.

N = 7 × 107 atoms;
T = 10 µK;
Φ = 4.5 × 10−6.

• Optical pumping. At this stage the molasses light are turned o� together
with the magnetic �elds and the optical pumping stage starts lasting for an
overall time of 300 µs. The �rst 100 µs are spent to trigger they-coils (at 1 G)
in order to have the optical pumping beam polarized with a polarization σ+
with respect to the quantization axis provided by the y-coils themselves.
Subsequently the opening of a shutter let the optical pumping beam reach
the atomic cloud and interact with it for 150 µs and for further 50 µs with
the repumping light. Hence, the optical pumping light transfer the whole
atomic population in the low �eld seeking state |F = 2,mF = +2〉 that is
a dark state for the transition F = 2 → F ′ = 2 exploited for this purpose.
Indeed, this keeps the heating to a minimum during the optical pumping
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pulse. However, a small heating of the atomic cloud by means of the opti-
cal pumping is observed together with a slight displacement of the cloud
in the beam direction. This reveals a non perfectly de�ned polarization of
the light, hence resulting in a not entirely dark state. After this step the
characteristics of the atomic cloud become:

N = 7 × 107 atoms;
T = 13 µK;
Φ = 3.0 × 10−6.

• Big-Z magnetic trap. The atoms are now prepared to be magnetically
trapped by the �elds generated via the atom-chip. A �rst �eld induced
by the big-Z wire is needed to transfer the atoms into the on-chip small-z
magnetic trap. To do so, a rapidly increasing current IZ (from zero to a max-
imum of 25 A), �owing through the big-Z wire behind the chip, is activated.
Simultaneously, a bias �eld along x is set (Bx = 10.5 G) in order to position
the trap minimum of the resulting con�ning potential at 2 mm from the
chip surface. The bias �eld along y is also turned on (By = 3 G) in order to
avoid the Majorana spin-�ips due to the vanishing �eld minimum of the
big-Z Io�e-Pritchard trap. The total time for this transfer procedure is of
250 ms. At this stage it is also possible to take another absorption image
of the cloud in order to optimize the optical pumping beam thus maximiz-
ing the magnetic trap loading e�ciency. Note that absorption imaging is
a destructive measurement, therefore, after the optimization is completed,
a new cycle have to start from the beginning to reach the �nal stage of
condensation.
The characteristics of the cloud at this point of the cycle are:

N = 3 × 107 atoms;
T = 15 µK;
Φ = 4.9 × 10−6.

• Small-z magnetic trap. The small-z trap provides the trapping potential
in which the �nal stage of evaporation takes place. The �nal evaporation
cooling requires high collision rates to have a faster atom thermalization.
The small-z trap, therefore, must strongly compress the atoms to reach
the desired corresponding high densities. The strength of micro-traps re-
sides right in their extreme compressibility. In this regard, the atoms are
adiabatically transferred to the small-z potential by linearly ramping its
current from zero to 1.7 A in 250 ms, whilst the big-Z current is ramped
o�. The y bias coils are also ramped down to maintain the residual �eld at
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Figure 2.12: BEC density pro�le. From left to right: in the �rst image we are slightly above
the threshold of the BEC phase transition where the density distribution is still Gaussian. In the
second one, a sharp parabolic peak of condensed atoms is emerging within a Gaussian pro�le
of non-condensed atoms. In the third image, a Thomas-Fermi distribution of an almost pure
condensate has formed. Image and caption adapted from [52].

the trap center. The x bias coils are, instead, ramped up from Bx = 10.5 G
to Bx = 15.5 G. In this trap the atoms are highly compressed and take the
typical cigar-shape. At the end of this compression stage, they are 190 µm
far from the chip center and the cloud temperature undergoes an increase.
After 500 ms from the compression phase ending, when rethermalization
has taken place, the measured characteristic of the cloud are the following:

N = 1.5 × 107 atoms;
T = 90 µK;
Φ = 1.8 × 10−5.

• Evaporative cooling. At this stage, evaporative cooling is achieved ap-
plying to the U-shaped conductor, hosted behind the chip, a radio-frequency
signal that exponentially sweeps from 22 MHz to 0.7 MHz in 3 s. The sig-
nal is provided by a home-made Direct Digital Synthesizer (DDS) adapted
to the requirement of the setup and connected to the U-shaped conductor
that serves as the antenna. The signal is designed and controlled through a
Mathematica® program. The RF interaction induces transitions in the mF

atomic sub-levels e�ectively turning the potential from trapping to anti-
trapping. This results in lowering the potential depth and thus reaching
the phase transition point. The required parameter values to attain Bose-
Einstein condensation are ful�lled and in the case of our experiment are:

N = 90 × 103 atoms;
T = 480 nK;
Φ > 2.612.

The remaining atoms are �nally in a Bose-Einstein condensate in the unique pure
quantum state |F = 2,mF = +2〉 and are distributed following a Thomas-Fermi
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Figure 2.13: Imaging system. Left-hand side: View from the top of the probe beam for the
imaging of the BEC spatially separated atomic clouds of manifold F = 2. The beam is along the
x̂ direction, perpendicular to the atomic clouds spatial spreading. Right-hand side: Absorption
images of the F = 2 and F = 1 manifolds.

pro�le (see Fig. 2.12) having an axial dimension of daxial = 15.5 µm and a radial
dimension of drad = 1.26µm.

2.2.5 Imaging system
Observing a trapped Bose-Einstein condensate is a very di�cult task because of
its small and optically thick dimensions. That is why we adopt an absorption
imaging technique combined with Stern-Gerlach [56] discrimination. At this
stage the magnetic �elds are switched o�, thus letting the atoms fall expanding
ballistically for some ms, depending on the experiment. During this time, a weak
homogeneous magnetic �eld, By = 1 G, realized by a pair of coils oriented along
the y-direction (see left side of Fig. 2.13) and in Helmholtz con�guration, de�nes
the quantization axis of the system. Moreover, an inhomogeneous magnetic �eld
gradient, lasting 10 ms, is generated by a pair of bias coils in anti-Helmholtz
con�guration and is applied along the quantization axis. Therefore, atoms in
di�erentmF sub-levels of F = 1 and F = 2 are subject to the force:

Fy = 〈F ,mF |∇(µ · B) · ŷ|F ,mF 〉 = µBдFmF

∂By

∂y
, (2.7)
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that spatially separate them. Atoms in the magnetic sub-levels |mF = ±1,±2〉
are, indeed, deviated in opposite directions, whilst the ones in |mF = 0〉 sub-
level, having zero angular momentum, are not a�ected.
Then, after further 13 ms of free expansion, we observe the clouds by shining an
imaging laser beam directed along the x-direction, in resonance with the atomic
transition F = 2 → F ′ = 3 and σ+ polarized. The absorption of light creates a
shadow of the BEC clouds in the imaging beam that is recorded by a CCD camera
(see right side of Fig. 2.13). The amount of light absorbed gives the column optical
density (OD) along a particular direction through the clouds, from which we
extract: position, dimension and density of the atomic cloud. Every experimental
result in this thesis work comes from the analysis of images of optical density
structures. In more detail, for an imaging beam oriented along x-direction with
an intensity pro�le I0(y, z) and an atomic cloud of spatial density n(x ,y, z), the
transmitted beam intensity is:

It (y, z) = I0(y, z)e
−σ

∫
n(x ,y,z)dx , (2.8)

where σ = 3λ2/2π is the resonant absorption cross section and the integral is
computed along the observation direction x̂ . Through this equation and the im-
ages of the probe beam pro�les with and without the atomic clouds, we can get
the column atom density ñ(y, z) =

∫
n(x ,y, z)dx . Precisely, we exploit also a

“dark” image, whose intensity pro�le is Id(y, z) and which consists in an image
without the atoms and laser both, to avoid o�set errors due to spurious light
sources. The column atom density becomes:

ñ(y, z) =

∫
n(x ,y, z)dx = −

1
σ
ln

(
It − Id
I0 − Id

)
. (2.9)

The image containing the sample of atoms gives us information on the absorption
It (y, z), the image without the atoms on the incident light I0(y, z) and the dark
image on Id(y, z).
We can summarize our imaging sequence as follows:

• The imaging beam resonant with the F = 2 → F ′ = 3 transition shines
on the spatially separated clouds for 25 µs, taking an image on the CCD
camera of the �ve atomic clouds of the F = 2 manifold (see right side of
Fig. 2.13);

• After 1 ms from the �rst image, the imaging beam and repumping beam
are simultaneously switched on for 25 µs thus taking an image of the three
atomic clouds of the F = 1 manifold (again see right side of Fig. 2.13);
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• After the imaging beam has blown away all the atoms from the trap, the
previous two steps are repeated in order to have an image of both manifolds
but without any atoms;

• A �nal image of the dark background alone without any light is then taken.

The overall free falling time during the imaging sequence is thus of 24 ms. Fi-
nally, the program on which we analyze the collected images permits to extract
all the necessary information by manually selecting the region of the absorption
spot.
Note that absorption imaging is a destructive measurement during which the
atoms accumulate enough recoil to be blown away from the condensate state.
Therefore, every time you need to repeat a measurement, a new cycle (as de-
scribed in Subsec. 2.2.4) has to be performed to produce a new BEC. In order to
prepare the system to start a new cycle, after the imaging sequence, further 15 s
are required to recover the vacuum optimal conditions. The overall duration of
an experimental cycle is thus 23 s.

2.3 Manipulating the BEC internal states

The quantum protocols developed in this thesis work, require the manipulation
of the internal state dynamics of our condensate. This is achieved exploiting the
rubidium hyper�ne structure letting it interact with radio-frequency and micro-
wave �elds, as shown in Fig. 2.14. The radio-frequency interaction drives the
coherent evolution among the |mF 〉 sub-levels of the same manifold, while the
micro-wave driving allows to jump from a manifold F = 1 to another F = 2.
The resulting population distribution among them, at the end of the evolution, is
measured via the imaging system as described in Subsec. 2.2.5. Since the atoms
are identical and don’t interact, the relative atomic population of the sub-levels
is equivalent to the occupation probability of each, thus allowing an estimate of
the system �nal quantum state. The coherences of the state can be measured
as well, by implementing a quantum state tomography as we will discuss later
in this thesis. Furthermore, a theoretical treatment for each interaction and a
more complete description is given in the dedicated chapters, hence clarifying
the chosen notation that better �ts each experiment.

2.3.1 Microwave manipulation
The micro-wave manipulation is provided by the far-�eld produced by an ex-
ternal �at antenna placed on the optical table under the atom-chip as shown
in Fig. 2.15. The generated microwave �eld has an angular frequency ωMW =
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Figure 2.14: Internal states manipulation of our BEC. The Rubidium hyper�ne structure is ex-
ploited to manipulate the internal state dynamics of the BEC. The radio-frequency interaction
(orange arrows) drives the coherent evolution among the |mF 〉 sub-levels of the same manifold,
while the micro-wave driving (green arrow) allows to jump from a manifold F = 1 to another
F = 2.

2π ×6.834 GHz in order to be resonant with the |F = 1〉 and |F = 2〉 energy split-
ting of the rubidium ground state. It is provided by a BCO Series phase-locked
source in multiplied con�guration (6834 multiplying factor) operating on an ex-
ternal reference frequency of 10 MHz. The reference frequency at 10 MHz is sent
to the BCO by a signal generator. The timing of the output coming from the BCO
is controlled by a series of three mixer that switch it o� and on. Indeed, they are
mixed with a signal coming from an arbitrary waveform generator that allows
the modulation and control of the micro-wave signal with a resolution of 4 ns.
The output is �nally ampli�ed and sent to the �at antenna via a SMA cable.

2.3.2 Radio-Frequency manipulation
The radio-frequency manipulation is provided by the near-�eld produced by the
u-wire integrated on the atom-chip and highlighted in green in Fig. 2.4. We will
refer to this wire calling it “chip-antenna” and we will restrict only to the dynam-
ical evolution induced on the sub-manifold F = 2 where our BEC is produced.
The chip-antenna generates a magnetic �eld induced by the current I (t) = RA cos(ωRF t)
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Figure 2.15: Micro-wave antenna. 3D reconstruction of the experimental setup used to couple
the microwave antenna far-�eld with the atomic cloud. A sinusoidal signal at 10 MHz is the
frequency reference for the BCO phased lock source. The signal timing is regulated by three
mixer X controlled by an external rectangular-wave signal. After passing through an ampli�er
A, the output reaches the antenna via an SMA cable.

produced applying a voltage signal of amplitude A to its edges, R being the wire
resistance and ωRF the signal frequency. The corresponding magnetic �eld is
B(t) = BRF cos(ωRF t), where BRF = Aµ0R/2πd and d = 190 µm is the distance of
the condensate from the chip surface. When such a �eld is applied, the atoms
in the BEC starts to coherently oscillate, with a Rabi frequency Ω, between the
magnetic sub-levels |mF 〉 = {+2,+1, 0,−1,−2}. Since the Rabi frequency Ω in-
duced by the �eld is linear in BRF , it turns also that Ω ∝ A. Therefore, the desired
strength of the coupling between the atoms and the �eld can be tuned simply
changing the applied signal amplitude A. In order to have an estimate of the re-
lation between Ω andA, we measure the oscillations induced by radio-frequency
signals of variable time duration τn = 2πn/ωRF , n being an integer number, at
di�erent amplitudes [58]. In particular we set ωRF = 2π × 4.323 MHz so to be
resonant with themF sub-levels energy splitting induced by an external bias mag-
netic �eld B = 6.1794 G oriented along the ŷ direction, while the �eld induced
by the radio-frequency signal is along x̂ . By �tting the theory to the experimen-
tal data produced by each evolution, we extract the dependency of Ω from the
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amplitude A obtaining: Ω/2π ' 13.78A (kHz V−1).
To tune the magnetic bias �eld at the desired value, instead, we use Ramsey
spectroscopy [59]. We apply two radio-frequency pulses at Ω = 2π × 60 kHz and
ωRF = 2π × 4.323 MHz, both lasting TP = 2π × 18

ωRF
' 4.16 µs, one for prepara-

tion and one for recombination, separated by a free evolution time interval of
TB � TP . Fitting the fringes produced by di�erent currents IB applied to the ex-
ternal Helmholtz bias coils, we obtain the linear relationB ' 1.727IB (G A−1) [58].
As it will be cleared in chapter 4 by experimental evidence, the radio-frequency
manipulation time lasts about 100 µs. After this time, decoherence due to noise
can occur.
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3 | Statemanipulation and control
for Quantum Machine Learn-
ing

Nowadays the need of processing large amounts of data is considerably increas-
ing, and the development of supercomputers has further encouraged the ad-
vancement of quantum technologies and the study of algorithms in that direc-
tion. Classical Machine Learning (ML), as a �eld of study that aims at develop-
ing computer algorithms that learn through experience, has already improved
the �eld of arti�cial intelligence (AI) technology in which the system can learn
from data and make consequent decisions with minimal human intervention.
The applications of these kind of algorithms is extremely wide [62–65] and is
still growing in the direction of �nding e�cient solutions in handling of big
data [66]. However, the natural structure of the original data can be very complex
and an intensive preprocessing is often necessary for ML algorithms to perform
e�ciently. The introduction of Quantum Machine Learning (QML) algorithms
has provided a remarkable speed-up over their classical counterparts, as in per-
forming tasks of topological data analysis, principal components analysis and
support vector machines (SVMs) [60, 61, 81]. In the case of binary classi�cation
problems, one would aim at achieving a geometrical representation of the data
in which they are easier to be identi�ed into distinct categories later to be ana-
lyzed. In this context, we have investigated QML using parametrized quantum
circuits that embed the input data in Hilbert space and perform quantum mea-
surements to discriminate between classes. In particular, we have developed an
extensive experimental study of this Quantum Embedding (QE) procedure by im-
plementing the ideas proposed by Ref. [86] carried out on multiple experimental
platforms. We have investigated how the protocol can be tailored to ultra-cold
atoms, photonics, and via-cloud available NISQ [83] computers. Starting from
a single prescription, we have implemented three di�erent experiments, high-
lighting requirements and tolerances of each one for this task.
In the context of this thesis I will emphasize the description of the atomic plat-
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form in which I realized the embedding on a BEC of 87Rb atoms. The chapter
is thus structured as follows. An introduction to the types of ML learning algo-
rithms is presented in Sec. 3.1. The embedding protocol we implement, speci�-
cally, falls in the category of classi�cation algorithms. Therefore, kernel-based
methods are discussed in Sec. 3.2, which are the cornerstone of ML and o�er
a deep theoretical understanding. Here I highlight the peculiar topic of Quan-
tum Embedding Kernels (QEKs) on which our work focus. I highlight how such
a subclass of kernel methods is the ideal candidate to realize Quantum Machine
Learning (QML) models. The training of our quantum embedding protocol is sub-
sequently explained in Sec. 3.3. The theoretical background necessary to clarify
the used notation and to understand the experimental implementation of such
algorithm on the atomic platform is then described (Sec. 3.4). Here I focus on
the Bloch sphere representation of atomic two-level systems and the description
of their unitary evolution on it. I show how an atomic platform naturally suits
the embedding scheme, by virtue of the fact that the manipulation of the atomic
internal states is carried out by a sequence of rotations. The experimental im-
plementation and the results achieved are then detailed in Sec. 3.5, together with
the limits I encountered and the possible solutions proposed. Finally, in Sec. 3.6,
the results of the superconductive and photonic platforms are also detailed. In
the conclusion and discussion Sec. 3.7, I compare all the obtained results success-
fully demonstrating the quantum embedding protocol at di�erent experimental
levels. The speci�c features come into play in a complementary fashion, hence
supporting the promising idea of hybrid quantum technologies for future quan-
tum machine learning applications.

The fundamental results reported in this chapter are available at:

• Ilaria Gianani, Ivana Mastroserio, Lorenzo Bu�oni, Natalia Bruno, Ludovica
Donati, Valeria Cimini, Marco Barbieri, Francesco S. Cataliotti, and Filippo
Caruso, Experimental Quantum Embedding for Machine Learning. Eprint:
arXiv:2106.13835 (2021).

They are achieved within a collaboration with the theory group of Prof. Filippo
Caruso, Università di Firenze, and the experimental group of Prof. Marco Barbi-
eri, Università degli Studi di Roma Tre.
Prof. Caruso conceived the whole project and his theory group performed the
numerical optimization and the analysis of the results from the Rigetti super-
conductive platform. The group of Prof. Barbieri carried out the experiment
on the photonic platform. Within the experimental group supervised by Prof.
Francesco S. Cataliotti, Università di Firenze and Istituto Nazionale di Ottica (CNR-
INO) Firenze, I performed the experiment on the atomic platform.
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3.1 Types of learning algorithms

Since ancient times transferring acquired knowledge has induced mankind to
develop solutions by applying established results in di�erent contexts. This ten-
dency remains valid even for today’s most sophisticated technologies. Indeed,
the current need of processing large amount of data and the availability of su-
percomputers has fostered an innovative take on programming: rather than try-
ing and structuring the database so that a computer can walk through it, we
now mimic processes of natural intelligence [68–70]. Algorithms are then able
to act as quasi-conscious agents, thanks to the introduction of Machine Learn-
ing (ML). Arti�cial intelligence (AI) technology aspiration is to realize machines
that mimic the cognitive functions of human’s mind, such as learning and problem
solving. In this regard, the Machine Learning subset branch deals with develop-
ing computer algorithms that improve autonomously through experience. After
having experienced a learning data set, the learning-machine should accurately
perform new unseen tasks. The types of ML algorithms di�er in their approach
to construct learning models. They can be divided into the three following broad
categories [71]:

• Supervised learning [72, 73]. In these kind of algorithms, the goal of the
learning-machine is to build a general rule that maps an input in the correct
output. This is realized on the basis of some previously learned example in-
puts and their desired outputs. For instance, consider a dataset {(xi ,yi)}Ni=1,
where xi are the inputs, or feature vectors, that constitutes the training
examples. The elements yi are, instead, the labels on which we build the
knowledge of the learning algorithm. Through an iterative optimization of
an objective function, the supervised learning algorithm produces a model
that can predict the correct label y to be assigned to a new input x that is
not belonging to the training data. Classi�cation and regression algorithms
fall in this category.

• Unsupervised learning [74–76]. These kind of algorithms have in input
a collection of unlabeled vectors {xi}Ni=1. They have to �nd on their own,
thus without feedbacks, some common properties from the input data in
order to group or cluster them into categories. The algorithm will react
positively or negatively based on the presence or absence of those common
features. Typical applications of unsupervised learning are dimensionality
reduction, density estimation, similarity metric.

• Reinforcement learning [62]. In this kind of algorithms the learning-
machine interacts with an environment in which it must perform some
goal. The machine can perform di�erent actions and in particular has to
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maximize a notion of cumulative reward. The goal is to learn a strategy
that associates to a particular feature vector, representing the environment
state, the best action to execute. The optimal policy maximizes the ex-
pected average reward. Reinforcement learning algorithm �nds wide gen-
eral applications, such as game theory, like playing chess, information the-
ory, genetic algorithms, autonomous vehicles.

The quantum protocol described in this chapter is developed in the context of
classi�cation algorithms, thus belonging to the category of supervised learning
models. The idea is similar in spirit to classical Support Vector Machines (SVMs)
[72] �rst developed at AT&T Bell Laboratories by Vapnik and colleagues [77,
78]. SVM, indeed, maps some training examples to points in space in order to
maximize the width of the gap between the two categories. It can e�ciently
perform also non-linear classi�cation using the so called kernel trick that maps
the inputs into high-dimensional feature space, as will be cleared in the following
section.

3.2 Quantum embedding kernels

Kernel machines are a class of algorithms that makes use of kernel functions. A
kernel function transfers some raw data into a high-dimensional space in which
their classi�cation is easier. To better understand what kernel methods do, let us
consider some examples and simple de�nitions [86,87]. In particular we want to
relate this overview in the context of our quantum protocol investigation. The
latter faces the problem of linear classi�cation in which we want to assign binary
labels to datapoints dividing them into regions separated by a linear boundary. It
is an approach similar to that of Support Vector Machines that is the best known
member of supervised learning models using kernel methods.
Given a data domain X , and a set of data samples {a1, ...,aMa } from class A ⊆ X
with label y = 1 and a set of data samples {b1, ...,bMb } from class B ⊆ X with
label y = −1, the problem of binary classi�cation is to predict the label of a new
input x ∈ X assigning it to either class A or class B. A classi�er is an algorithm
that solves the problem of binary classi�cation. It is a map from the data domain
to the real numbers f : X → R. It assigns a binary label to x according to the
threshold rule:

y =

{
−1 if f (x) < τ

1 if f (x) ≥ τ
τ ∈ R (3.1)

If no other information is provided, τ is assumed to be zero. An example of
linear classi�er is reported in Fig. 3.1, where the decision boundary is a straight
line that divides full circles from empty circles. The margines, de�ned by support
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Figure 3.1: Linear classi�er. A linear decision boundary separates full circles from empty circles.
The samples that delimit the margins are called support vectors.

vectors, describe the distance of the dataset on either side of the line. Having a
larger margin is intuitively the best situation, indeed outliers of the dataset have
smaller chance to be wrongly classi�ed. The same reasoning works for higher
dimensional spaces too, where the decision boundary does not just de�ne a line
but a hyperplane. However, this method of linear classi�cation is not always
possible. Indeed, there are datasets that are not separable by a hyperplane and
thus cannot be classi�ed with high accuracy using this scheme. In order to en-
hance the capabilities of a linear classi�er, one can use a feature map Φ(x) that
embeds them into a larger feature space in which the linear classi�cation is pos-
sible. Such a strategy is very powerful inasmuch allows to perform non-linear
classi�cation in the original space of datasets. Usually this is done by means of a
function k called kernel, to which the feature map Φ is associated. It is a function
that contains only the inner products between vectors in the embedding space:

k(x, x′) = 〈Φ(x),Φ(x′)〉 . (3.2)

It is the central property of kernel-based methods, indeed using the trick of just
computing the inner products between the images of all pairs of data in the fea-
ture space, one has no need to explicitly compute all the coordinates of the fea-
ture vectors. In many cases, computing the embedding requires a much higher
cost with respect to the computationally cheaper kernel. This implicit embed-
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Figure 3.2: The kernel trick. A set of training points, originally belonging to a 2-dimensional
input space in which they are not linearly separable, are mapped via a feature transformation Φ
into a 3-dimensional space where a separating hyperplane can be easily found.

ding through its associated kernel is known as the kernel trick, and is pictorially
shown in Fig. 3.2. In general, any function ful�lling the Mercer condition:∑

i,j

cicjk(xi, xj) ≥ 0 (3.3)

for all possible sets of real coe�cients {ci} and sets of datapoints {xi}, is a kernel.
Despite kernel machines are extremely useful to understand the learning meth-
ods, the current progress in learning models is dominated by deep neural net-
works. Kernel matrices, indeed, need to be constructed from the input data and
have quadratic complexity in the number of datapoints. In the context of big
data, this can constitute an obstacle. Other than that �nding the suitable kernel
for a given problem is not always a trivial task.
An interesting solution is provided by quantum mechanics. Indeed, quantum
computers can perform kernel methods with an exponential speed up over the
corresponding classical operations [67]. Quantum embedding kernels (QEKs) are
a subclass of quantum kernel methods where a parametrized quantum circuit
(PQCs) [79–82] is used to embed data-points into the Hilbert space of quantum
states of a NISQ device [83]. Noisy Intermediate-Scale Quantum (NISQ) is a term
coined by John Preskill in 2018 to describe the current state of art in the realiza-
tion of quantum processors. The latter would be able to perform computations
that are intractable for classical computers [67, 84, 85]. This comes in the frame-
work of an exchange of concepts and methods between Machine Learning and
quantum information.
Even in the simplest instance, the natural representation of a quantum bit is
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the Bloch sphere, rather than the single-dimensional geometry of classical data.
Quantum classi�ers are models that use quantum theory to solve classi�cation
tasks. They make use of quantum embeddings which e�ectively embed data-
points in the Hilbert space of quantum states, facilitated by a quantum feature
map. To implement the latter on a NISQ hardware, quantum gates like Pauli ro-
tations are used. They are unitary operations U(x) that depend on the speci�c
data x in input and constitute a quantum circuit. Once the data are loaded, the
quantum feature map is thus represented by the action:

|Φ(x)〉 = U(x)|0〉 . (3.4)

The associated quantum embedding kernel (QEK) is given by the overlap between
the embeddings:

k(x, x′) = |〈Φ(x′)|Φ(x)〉|2 . (3.5)
This is a de�nition for pure quantum states. However, it is not always possible
to avoid noise. The embedded quantum state in this case is better represented
by its associated density matrix ρ(x), which for a pure state reduces to ρ(x) =
|Φ(x)〉〈Φ(x)|. The quantum kernel becomes the Hilbert-Schmidt inner product
for matrices:

k(x, x′) = Tr{ρ(x), ρ(x′)} . (3.6)
In order to be able to use this kernel, the overlap of two quantum states needs
to be computed on a NISQ device. There are many algorithms that realize this
task [88–92], but here we will linger on the �delity classi�er. Indeed, the latter is
the one used in this work to test the success of our embedding protocol.
Let us go back to the two classes A and B previously de�ned. The sampling
of M quantum states from a set {|ψi〉} is described by the density matrix ρ =
1
M

∑
i |ψi〉〈ψi |. According to this de�nition, we can sample Ma inputs from class

A and embed them into Hilbert space in the ensemble ρ = 1
Ma

∑
a∈A |a〉〈a |. Sim-

ilarly, we sample Mb inputs from class B in the ensemble σ = 1
Mb

∑
b∈B |b〉〈b |.

Thus, ρ and σ are mixed states that describe the process of selecting embedded
data point |a〉 and |b〉 with uniform probability from a training set.
The �delity classi�er is de�ned as:

f f id = 〈x |ρ − σ |x〉 . (3.7)

Eq. (3.7) measures the �delity, or overlap, between data states, indeed:

〈x |ρ − σ |x〉 =
1
Ma

∑
a

|〈a |x〉|2 −
1
Mb

∑
b

|〈b |x〉|2 . (3.8)

This operation requires a very few resources on a quantum computer. A quantum
circuit for the �delity classi�er can, indeed, be e�ciently implemented. It can be
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performed by a C-SWAP test (see Appendix B), which measures the overlap of
two quantum states using an auxiliary ulterior qubit. The quality of the �delity
classi�er can be estimated, according to statistical learning theory, by analyzing
the expected risk. In our case it results that:

Î [f f id] = −Tr
[
(ρ − σ )2

]
= −DH−S (ρ,σ ) , (3.9)

the empirical risk of the �delity classi�er under linear loss is opposite to the
Hilbert-Schmidt distance. Thus maximizing the distance between the embed-
dings belonging to di�erent classes, is equivalent to minimize the expected risk.
These considerations have led us to construct the cost function used to train an
optimal quantum feature map for our experimental protocol.

3.3 Training Quantum Embedding

In our investigation we explore the application of quantum embedding in the
minimalistic, but illustrative instance, of a single-qubit embedder. This is carried
out in two steps. In the �rst learning stage we train and identify the optimal quan-
tum circuit that realizes the embedding. We adapt and numerically optimize the
quantum embedding protocol by Machine Learning methods, mapping the data
into new clusters that later can be more feasibly and possibly linearly separated
by well trained arti�cial neural networks. Secondly, the circuit is implemented in
three di�erent quantum architectures to explore how di�erent sources of noise
and imperfections impact the realization.
The learning stage starts from a complex classical data set made of 1000 points,
in which some elements ai belongs to class A and some elements bj belongs to
class B. The latter are represented in red and blue in Fig. 3.3. As shown, they can-
not be linearly separated in their one-dimensional space, thus making the quan-
tum embedding a suitable resource to classify the two classes. The full quantum
embedding is realized by the quantum feature map Φ(x ,θ ) that depends on the
classical data point x and on the training parameters θ . We apply it to an input
qubit |0〉, which can be the initial state of any physical system, thus transforming
the data in the following quantum states:

ai → |ai〉 = Φ(x = ai ,θ )|0〉,
bj → |bj〉 = Φ(x = bi ,θ )|0〉,

(3.10)

such that they are as separated as possible in the Hilbert space, as pictorially
shown in Fig. 3.4. To do so, we need to train Φ(x ,θ ) until we �nd the optimal
transformation. The training consists in a �rst choice of two data points, from
the string of 1000 data, and embed them in the Hilbert space by means of Eq. (3.10)
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Figure 3.3: A string of classical data to be classi�ed. The dataset, used for classi�cation bench-
mark, is one-dimensional and it is not linearly separable. The classes (blue dots) and (red crosses)
have been normalized to live in the interval [−π ,π ].

with an initial random guess of the parameter θ . We then perform a C-SWAP test,
between the two embedded quantum states, that computes the overlaps |〈ai |bj〉|2,
|〈ai |ai ′〉|

2 and |〈bj |bj ′〉|2 necessary to estimate the so-called cost function C (ob-
tained specializing Eq. (3.8) to our case) de�ned as:

C = 1 − 1
2

(∑
i,i ′

|〈ai |ai ′〉|
2 +

∑
j,j ′

|〈bj |bj ′〉|
2

)
+

∑
i,j

|〈ai |bj〉|
2. (3.11)

The optimal parameter θ will be the one that minimizes the cost-function. In-
deed the �rst two terms, in Eq. (3.11), represents the distance, intended as the
Hilbert-Schmidt norm, between points belonging to the same class. The third
term represents the distance between points belonging to di�erent classes. Over-
all, minimizing C is equivalent to both maximizing the Hilbert-Schmidt norm
between elements of di�erent classes and minimizing it between elements of the
same class. The parameter of the embedding circuit is then updated by gradient
descent using the automatic di�erentiation capabilities of the software Penny-
lane [93]. After 200 gradient descent steps (i.e. training steps) the cost function
converges to a minimum, taking only a few minutes of computational time.
Once the optimization is done, meaning that the system has learned how to clas-
sify the data, we sample 10 more data points (not exploited for the training)
in order to test the generalization capabilities of the embedding and to be the
benchmark for all the experimental platforms. In our example, these points are
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Figure 3.4: Pictorial representation of quantum embedding. The string of classical data on the
left is composed by elements that belongs to two distinct classesA and B. They cannot be linearly
separated in their one-dimensional representation. The quantum embedding algorithm transfers
and separates the data in the Hilbert space where a classi�cation boundary can be easily found.

10 scalars ϕ chosen in the interval [−π ,π ] and arranged into two classes with 5
elements each. These test points are all correctly classi�ed by the optimal cir-
cuit based on the following sequence of rotations on non-commuting axes of the
Bloch sphere to be applied to the input qubit:

Φ(ϕ,θ ) = {Rx (ϕ),Rz(θ1),Rx (ϕ),Rz(θ2),Rx (ϕ),Rz(θ3),Rx (ϕ)} . (3.12)

Here the circuit parameters to be optimized are θ = {θ1,θ2,θ3}, in order to con-
struct |ϕ〉. From theory, we expect to see a clusterization of the two classes as
depicted in Fig. 3.5.
We then implement the same embedding on the following three di�erent exper-
imental platforms, to test its robustness to real-world deployment scenarios.

• Atomic platform. The quantum embedding is performed on a BEC of
87Rb atoms, in which the classical information to be encoded is mapped
in the rotation angles of the Bloch vector, representing the atomic state,
around the non commuting axes x̂ and ẑ of the Bloch sphere. The sequence
of rotations necessary to realize the embedding is implemented by a series
of quasi-resonant microwave pulses applied to the atoms.

• Photonic platform. The quantum embedding is performed on an opti-
cal experiment, applying the rotations to a heralded single-photon source
generated via spontaneous parametric down conversion. A three-plate ar-
rangement is used to impart the transformation dictated by the embedding
sequence.
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Figure 3.5: Before and after learning. Bloch sphere representation of the embedded quantum
states that are randomly distributed (before learning) and clustered in two families (after learn-
ing), as provided by theory.

• Superconducting platform. The quantum embedding is performed on
the superconducting chip of Rigetti [94] Aspen-8, composed by a lattice of
30 superconducting qubits in a ladder-like con�guration. The rotations are
implemented as quantum gates carried out remotely on the Rigetti’s cloud
service.

Since di�erent experiments have di�erent capabilities, each implementation re-
quires to “recompile” the embedding sequence to �t with the speci�cations of
each device, while keeping the learned parameters �xed. Indeed, the scheme
�exibility allows to extend the procedure to a more complex data set and to rota-
tions around di�erent axes in order to account for the speci�c needs. Finally, the
performance of the embedding is conveniently captured, for each experimental
platform, by the Gram matrix which contains all the scalar products between the
embedded states. Therefore, if the system has learned to separate the points in
the Hilbert space, the Gram matrix will clearly show a clusterization of quantum
states into the two classes.

3.4 Theoretical background for the atomic plat-
form

The manipulation of atomic internal states is naturally suited to the above scheme,
since qubit operations in Eq. (3.12) are indeed rotations realized by sequences of
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control pulses. In this regard, the intent of this section is to describe the coher-
ent evolution of a two-level system, the atomic qubit, interacting with a single-
frequency radiation in the representation of the Bloch sphere. Indeed, the latter
gives a useful way of visualizing the e�ect of sequences of π - and π/2-pulses on
the atoms. Note that the notions reported in this section are universal for two-
level systems, however I have chosen to present them here in order to clarify the
notation that will be used in the experimental implementation. Furthermore, the
described treatment is the foundation on which laser spectroscopy techniques
are based and they are a crucial ingredient in the comprehension of the state
manipulation and control work conducted in this thesis at this stage.

3.4.1 The Bloch sphere representation
The Bloch sphere is a very powerful tool to represent a two-level system and
describe its dynamical evolution. The state |ψ 〉 of a two-level system can be
written as a superposition of the level at higher energy that we indicate as |0〉,
and the level at lower energy indicated as |1〉. A generic superposition is:

|ψ 〉 = c0 |0〉 + c1 |1〉 → |ψ 〉 =

(
c0
c1

)
(3.13)

where the squared magnitude of the coe�cients |c0 |
2 and |c1 |

2 represent the prob-
abilities of �nding the atom in the upper state or in the lower state respectively,
such that |c0 |

2 + |c1 |
2 = 1. They are complex numbers with two degrees of free-

dom each. Every transformation of |ψ 〉, that leaves the state vector in the Hilbert
space spanned by |0〉 and |1〉, can be represented by a 2×2 unitary matrix. These
kinds of matrices can be written as a combination of the three Pauli matrices,
representing the spin vector σ ≡ (σx ,σy,σz), and the identity matrix:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, I =

(
1 0
0 1

)
. (3.14)

Some useful properties of the Pauli matrices are that [σi ,σj] = 2iεijkσk , where εijk
is the Levi-Civita symbol, and σiσj = δijI + iεijkσk . In particular, from the latter,
we can retrieve the useful property:

eia(σ ·n̂) = I cosa + i(σ · n̂) sina, (3.15)

where the operator σ · n̂ is the projection of the spin σ along a generic direction
n̂ ≡ (sinϑ cosφ, sinϑ sinφ, cosϑ ) expressed in polar coordinates, with ϑ ∈ [0,π ]
and φ ∈ [0, 2π ].
The state |ψ 〉 of a two-level system can be seen as an eigenstate of σ · n̂. This
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Figure 3.6: Bloch sphere representation
of a qubit. The state |ψ 〉 of a two-level
system, standing for a qubit, can be iden-
ti�ed as a point on the surface of the
Bloch sphere having coordinates ψ ≡

(sinϑ cosφ, sinϑ sinφ, cosϑ ).

operator’s eigenvalues are ±1. Solving the equation (σ · n − I)|ψ 〉 = 0, for the
eigenvalue +1, we �nd the following expression for |ψ 〉:

|ψ 〉 = cos
(
ϑ

2

)
|0〉 + eiφ sin

(
ϑ

2

)
|1〉. (3.16)

Therefore, the probability amplitudes for the superposition state are the quanti-
ties c0 = cos(ϑ/2) and c1 = eiφ sin(ϑ/2), having just two degrees of freedom, and
eiφ being the relative phase factor.
Note that the expectation values of σx , σy and σz on |ψ 〉 are:

〈σx〉 = 〈ψ |σx |ψ 〉 = sinϑ cosφ;
〈σy〉 = 〈ψ |σy |ψ 〉 = sinϑ sinφ;
〈σz〉 = 〈ψ |σz |ψ 〉 = cosϑ .

(3.17)

Hence, a generic state |ψ 〉 of a two-level system, representing a qubit, corre-
sponds to the unit vector:

|ψ 〉 ⇔ψ = σ ≡ (sinϑ cosφ, sinϑ sinφ, cosϑ ). (3.18)

We can thus visualize this vector lying on a sphere, the Bloch sphere (see Fig. 3.6),
and name it Bloch vector. In this representation a classical bit can only be at the
North pole |0〉 or at the South pole |1〉. A pure state is represented by a point on
the surface of the Bloch sphere, while a mixed state is a point inside the sphere
that is a vector with a length smaller than its unit radius.

3.4.2 Unitary evolution on the Bloch sphere
When an atom interacts with an external �eld, the Bloch vector representing
its quantum state will start moving on the Bloch sphere surface. The induced
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coherent evolution of its state can thus be described by a trajectory lying on the
Bloch sphere surface. To understand how powerful this representation is, due to
its simplicity, let us consider again the two-level system previously described in
which now we introduce an interaction. The complete Hamiltonian H = H0+HI

representing this interacting system is characterized by the unperturbed term
H0 = ~ω |1〉 |1〉〈1| + ~ω |0〉 |0〉〈0|, where ~ω |1〉 and ~ω |0〉 are the energies of the
ground level |1〉 and the excited level |0〉 respectively, and the interaction term
HI . We choose the zero-energy of the system in such a way that we can rewrite
the unperturbed term as:

H0 =
~ω0

2 (|0〉〈0| − |1〉〈1|) ,

=
~ω0

2

(
1 0
0 −1

)
,

=
~ω0

2 σz,

(3.19)

where ω0 = ω |0〉 − ω |1〉 . In our experiment, the role of the interaction is played
by the external microwave magnetic �eld generated by the antenna described
in Subsec. 2.3.1. Therefore, the interaction term is given by HI = −µ̂ · B. We
adopt a semiclassical approach in which the oscillating magnetic �eld is treated
as a classical wave B = B0b̂ cos(ωt + ϕ) = B0b̂

2 (e
i(ωt+ϕ) + e−i(ωt+ϕ)), where ω and

ϕ are the microwave frequency and phase respectively, B0 is the magnetic �eld
amplitude and b̂ is the unit vector that indicates its direction. µ̂, instead, is the
magnetic dipole moment operator that writes:

µ̂ = µ (|0〉〈1| + |1〉〈0|) ,

= µ

(
0 1
1 0

)
,

= µσx ,

(3.20)

where µ is real and is de�ned as the matrix element µ ≡ 〈1|µ̂ |0〉 = 〈0|µ̂ |1〉. Note
that the magnetic dipole moment operator applied to the |1〉 state swaps it into
|0〉 and viceversa. It is a hermitian operator µ̂† = µ̂ and it is symmetric.
Substituting in HI we obtain the following expression for the interaction:

HI =
~Ω

2 σx
(
ei(ωt+ϕ) + e−i(ωt+ϕ)

)
, (3.21)

under which the atomic population of the two levels starts to oscillate at the Rabi
frequency de�ned as:

Ω = −
µ · b̂B0
~
. (3.22)
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It is worth noting that in a full quantized approach, the quantization of the
electro-magnetic (EM) �eld leads to write the magnetic �eld operator as:

B̂(t) = ib̂

√
~

2ωε0V

(
âe−i(ωt+ϕ) − â†ei(ωt+ϕ)

)
, (3.23)

in which the annihilation of a photon, by means of the operator â, is associated
to the term of the �eld e−iωt having positive frequency, while the creation of
a photon, by means of the operator â†, is associated to the one having negative
frequency eiωt . Hence, the interaction Hamiltonian is made by the following four
terms:

1) |0〉〈1|e−iωt : a photon is annihilated and the atom excites;

2) |0〉〈1|eiωt : a photon is created and the atom excites;

3) |1〉〈0|e−iωt : a photon is annihilated and the atom deexcites;

4) |1〉〈0|eiωt : a photon is created and the atom deexcites.

The processes indicated by 2) and 3) do not preserve the energy and are out of
resonance. Neglecting these terms, amounts to adopting the Rotating Wave Ap-
proximation (RWA). Therefore, going back to our semiclassical model, we write:

HI =
~Ω

2

(
σ+e
−i(ωt+ϕ) + σ−e

i(ωt+ϕ)
)
, (3.24)

where:
σ+ = |0〉〈1| =

(
0 1
0 0

)
, σ− = |1〉〈0| =

(
0 0
1 0

)
. (3.25)

With this approximation and switching to a rotating frame at the same frequency
of the external �eld ω, we can conclude some interesting observations. Consider
the unitary transformation:

U = exp
{
−i
ωt

2 σz
}
=

(
e−i

ωt
2 0

0 ei
ωt
2

)
, (3.26)

such that |ψ 〉 = U|ψ̃ 〉 and according to which the Hamiltonian transforms as:

H
U
−→ H̃ = U†HU − i~U†

∂U

∂t
. (3.27)
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Considering each term separately we have:

U†H0U =
~ω0

2 σz,

U†HIU =
~Ω

2
(
cosϕσx + sinϕσy

)
,

−i~U†
∂U

∂t
= −
~ω

2 σz .

(3.28)

We observe that, de�ning the detuning as ∆ = ω − ω0, we get:

H̃ = −
~∆

2 σz +
~Ω

2
(
cosϕσx + sinϕσy

)
,

=
~Ω

2 cosϕσx +
~Ω

2 sinϕσy −
~∆

2 σz .

(3.29)

In this frame, that rotates at the frequency of the external �eld, we arrive at the
important conclusion that the Hamiltonian is the scalar product:

H̃ =
~

2 (Ω · σ ) , (3.30)

between the spin vector σ and the Rabi vector identi�ed on the Bloch sphere by
the coordinates:

Ω = (Ω cosϕ,Ω sinϕ,−∆) . (3.31)

Furthermore, substituting this result in the Heisenberg equation for σ and in
force of the commutation rules [σi ,σj] = 2iεijkσk , we get the fundamental result:

dσ

dt
= Ω × σ . (3.32)

This means that in the Bloch description, the �ctitious magnetic �eld lies along
Ω and the two-level system response to it is a precession motion around it with
a precession rate given by the Rabi vector magnitude |Ω | =

√
Ω2 + ∆2, usually

known as the generalized Rabi frequency.
This visual interpretation given by the Bloch sphere is an indispensable ingredi-
ent for designing an interaction made of a complex sequence of pulses, such as
those used in the experimental implementation of quantum embedding as will
be further clari�ed in the following.
In our experiment the microwave �eld that drives the evolution can be well rep-
resented by the unitary operator:

UΩ(Ω,ϕ,∆, t) = exp
{
−
i |Ω |t

2 nΩ · σ

}
, (3.33)

70



Chapter 3. State manipulation and control for Quantum Machine Learning 71

where Ω is the Rabi frequency induced by the microwave �eld on the atoms, ϕ
is the phase of the microwave signal that we set to zero, ∆ is the detuning of the
signal frequency from resonance, |Ω | is the magnitude of the Rabi vector induced
by the microwave �eld, and:

nΩ(Ω,ϕ = 0,∆) = (nx ,ny,nz) =
(
Ω

|Ω |
, 0,− ∆

|Ω |

)
(3.34)

is the rotation axis directed along Ω and around which the Bloch vector, repre-
senting the state of our system, precesses. It is worth noting that the choiceϕ = 0
is equivalent to set a time origin of the evolution induced by the microwave �eld.
Hence, the notation reported in the following is a re�ection of this choice further
supported by the fact that during our experiment the phase ϕ is not changed and
remains zero during the whole evolution.
Thanks to the property of Eq. (3.15), the evolution operator of Eq. (3.33) can be
rewritten as:

UΩ(Ω,ϕ,∆, t) = I cos
(
|Ω |t

2

)
− i(nΩ · σ ) sin

(
|Ω |t

2

)
, (3.35)

and its explicit 2 × 2 matrix form is the following:

UΩ =
©«
cos

(
|Ω |t

2

)
+ i ∆
|Ω | sin

(
|Ω |t

2

)
−i Ω
|Ω | sin

(
|Ω |t

2

)
−i Ω
|Ω | sin

(
|Ω |t

2

)
cos

(
|Ω |t

2

)
− i ∆
|Ω | sin

(
|Ω |t

2

)ª®¬ . (3.36)

We can describe this evolution in an equivalent way on the three dimensional
Bloch sphere. The Bloch vector, indeed, evolves rotating of an angle α = |Ω |t
around the direction nΩ = (nx ,ny,nz) according to the following 3 × 3 matrix:

R(α) =
©«
cosα + n2

x (1 − cosα) −nz sinα nxnz(1 − cosα)
nz sinα cosα −nx sinα

nxnz(1 − cosα) nx sinα cosα + n2
z(1 − cosα)

ª®¬ . (3.37)

Therefore, we can experimentally design the desired evolution setting the funda-
mental parameters that are the Rabi frequency Ω, the detuning ∆ and the inter-
action time duration t . All the experimental procedures in realizing the quantum
embedding protocol on the atomic platform are based on these simple assump-
tions and will be described in the next sections.

3.4.3 Rotations around x-axis: controlled evolution
It is now straightforward specializing to the case of an evolution that contem-
plates just a rotation around the Bloch sphere x-axis. Thus, the direction along
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Figure 3.7: Rotations around x̂ . Precession of the Bloch vector |ψ 〉 about the e�ective microwave
�eld directed along nΩ = (nx , 0, 0) for ∆ = 0 (left-hand side) and ∆ , 0 (right-hand side).

which nΩ is oriented, in this case, is nΩ = (nx , 0, 0) and Ω = (Ω, 0, 0). This
means that in the case of a resonant microwave �eld (∆ = 0) the direction of
the Rabi vector is identi�ed by the unit vector nΩ = (1, 0, 0) and the Bloch state,
starting for instance from the initial state |ψ 〉 = |0〉, precesses around it about
an angle α = Ωt given by the Rabi frequency and the interaction time duration
(as depicted in the left-hand side of Fig. 3.7). The motion will be clockwise or
counterclockwise depending on the sign of the Rabi frequency and the evolution
operator that describes it becomes:

UΩ·x̂ =

(
cos

(Ωt
2
)
−i sin

(Ωt
2
)

−i sin
(Ωt

2
)

cos
(Ωt

2
) )
. (3.38)

In the presence of a slightly-detuned from resonance �eld (∆ , 0), instead, the
precession axis is tilted as shown in the right-hand side of Fig. 3.7. The direction
of the e�ective magnetic �eld will be close but not equal to the x-axis direction,
rather forming an angle ∼ ∆/|Ω | from it. In this case the direction of the e�ective
�eld is given by Eq. (3.34), the Rabi vector is Ω = (Ω, 0,−∆) and the unitary
evolution expressed according to Eq. (3.36).
We de�ne this kind of rotation as controlled evolution because, in order to realize
it experimentally, the microwave �eld is switched on (Ω , 0).

3.4.4 Rotations around z-axis: free evolution
A rotation around the z-axis, instead, is when the Rabi vector is directed along it,
thus nΩ = (0, 0, 1). This means that during the evolution the microwave �eld is
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Figure 3.8: Rotations around ẑ. Precession
of the Bloch vector |ψ 〉 about the e�ective mi-
crowave �eld directed along nΩ = (0, 0,nz ).

switched o� (Ω = 0) and only the presence of detuning drives it. In this case, de-
pending on the initial state, the Bloch vector of the system turns around the Rabi
vector Ω = (0, 0,−∆) into a plane parallel to the equator (as shown in Fig. 3.8).
The motion will be clockwise or counterclockwise depending on the sign of the
detuning and the evolution operator that describes it becomes:

UΩ·ẑ =

(
cos

(∆t
2
)
+ i sin

(∆t
2
)

0
0 cos

(∆t
2
)
− i sin

(∆t
2
) ) = exp

{
i
∆t

2 σz

}
. (3.39)

It is an instructive exercise to apply this evolution operator to the generic Bloch
vector of Eq. (3.16) for a rotation of an angle β = ∆T , obtaining:

UΩ·ẑ(β)|ψ 〉 = e
iβ
2

[
cos

(
ϑ

2

)
|0〉 + ei(φ−β) sin

(
ϑ

2

)
|1〉

]
. (3.40)

This result clearly shows that, at the end of the evolution, the state acquires a
phase given by φ − β , apart from a negligible global phase factor e

iβ
2 .

Furthermore, it is worth noting that the North pole |0〉 and the South pole |1〉,
lying on the z-axis, are stationary points thus are not a�ected by this evolution.
We de�ne this kind of rotation as free evolution because, in order to realize it
experimentally, the microwave �eld is switched o� (Ω = 0).

3.4.5 Ramsey sequence
A Ramsey sequence [59] is obtained when our atomic two-level system is sub-
ject to two radiation pulses separated by a time-interval much longer then their
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duration. Such a combined evolution is obtained with two rotations around the
Bloch sphere x-axis, that realizes the two pulses, and a rotation around the z-axis
that realizes the waiting time between their application. The resulting quantum
mechanical transition probability between the two levels provides interesting
properties for precision measurement that will be adopted in this thesis work
thus worthy of a discussion.
To understand this sequence, it is useful to introduce the concepts of π -pulses
and π/2-pulses.
The π -pulse is de�ned as a pulse made of resonant radiation such that Ωt = π .
In this case the evolution described in Eq. (3.38) becomes:

Uπ =

(
0 −i
−i 0

)
. (3.41)

If we apply this matrix to the generic state of a two-level system given in Eq. (3.13),
we obtain that a complete transfer of population from one state to the other oc-
curs:

|ψ 〉 = c0 |0〉 + c1 |1〉
Uπ
−−→ Uπ |ψ 〉 = c0 |1〉 + c1 |0〉. (3.42)

This operation realizes a swap, or population inversion, of the two states.
A π/2-pulse is also frequently used in interferometry experiments and it is sim-
ilarly de�ned by the condition Ωt = π/2. It realizes the evolution:

Uπ/2 =
1
√

2

(
1 −i
−i 1

)
. (3.43)

For an atom initially in state |0〉, a π/2-pulse produces a superposition of states
|0〉 and |1〉 with equal amplitudes therefore lying on the equator of the Bloch
sphere:

|ψ 〉 = |0〉
Uπ /2
−−−−→ Uπ/2 |ψ 〉 =

1
√

2
(|0〉 − i |1〉). (3.44)

In the Ramsey sequence, the �eld is applied in the form of two coherent π/2-
pulses of the same duration τP = π/2Ω separated by a time interval T � τP
during which the �eld is absent, as depicted in Fig. 3.9. Assuming a small detun-
ing (|∆| � Ω), after the �rst π/2-pulse, a two-level atom prepared in the initial
state |0〉 ends up in the superposition state (|0〉 − i |1〉)/

√
2, with ϑ = π/2 and

φ = −π/2. This superposition subsequently evolves freely for a time T precess-
ing around ẑ on the equatorial plane by an angle β = ∆T . Finally the second
π/2-pulse closes the sequence and the �nal Bloch state has ϑ = π − β and φ = π .
The �nal occupation probabilities P |0〉 and P |1〉 , of the states |0〉 and |1〉 respec-
tively, can be computed by applying the operatorUπ/2UΩ·ẑ(T )Uπ/2 to the initial
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Figure 3.9: Ramsey sequence. The Ramsey sequence is here showed in the Bloch sphere de-
scription. For a small detuning (|∆| � Ω), a π/2-pulse brings the state |0〉 in the superposition
(|0〉 − i |1〉)/

√
2. A waiting timeT , in which the interaction is absent, causes the state to accumu-

late a phase moving around the equator of an angle β = ∆T . The �nal pulse brings the system
in a �nal Bloch vector having ϑ = π − β and φ = π and transforms the accumulated phase in a
measurable population imbalance.

state. The resulting probabilities are:

P |0〉 = |c0 |
2 = sin2

(
∆T

2

)
,

P |1〉 = |c1 |
2 = cos2

(
∆T

2

)
.

(3.45)

In Fig. 3.10 we report the signal generated by this sequence for P |1〉 as a function
of the detuning ∆ for di�erent T . These oscillations are named Ramsey fringes.
In the �gure we show di�erent fringes according to longer or shorter waiting
time T between the two pulses. We can see that the central fringe, the one at
resonance, is �xed and that the slopes increase with T .
The Ramsey method is very powerful in determining the detuning ∆ with high
precision. This is of fundamental importance in the context of the quantum em-
bedding protocol developed in this thesis work where a high degree of control
on the rotation angles is required.
In order to determine ∆ we tune the apparatus on the more sensitive point that
is the side-of-fringe ∆T = π/2. Here the �uctuations δP |1〉 of P |1〉 , computed by
means of the error propagation formula, are:

δP |1〉 =

����∂P |1〉∂∆ ����
∆=π/2T

δ∆. (3.46)
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Figure 3.10: Ramsey fringes. In this �gure, transition probabilities of Eq. (3.45) for the state |1〉,
as a function of the detuning ∆, are reported for di�erent free evolution timesT . The oscillations
are computed for a Rabi frequency Ω = 2π × 60 kHz. The central peak does not change while its
slope increases with T .

Therefore the Ramsey sequence sensitivity in determining the detuning ∆ is:

δ∆ =
δP |1〉��� ∂P |1〉∂∆ ���

∆=π/2T

=
δP |1〉

T /2 . (3.47)

It is now clear that a longer waiting time T , also known as the observation time,
provides higher sensitivity. The latter is only limited by technical noise that can
occur a�ecting δP |1〉 and by the coherence time of the experiment that de�nes
the maximum observation time.

3.5 Experimental implementation on the atomic
platform

The aim of this section is to explain how the sequence of rotations of Eq. (3.12),
described in Sec. 3.3, realizes the embedding protocol on the atomic platform.
The qubit embedder we choose, and to which the embedding sequence will be
applied, is the state |0〉 ≡ |F = 2,mF = 0〉 of Fig. 3.11. As shown in the �gure, the
preparation of the initial state of the experiment is realized by applying an opti-
mally designed radio-frequency pulse [129] to the atoms. It transports the popu-
lation of level |F = 2,mF = +2〉, in which the BEC of typically ∼ 105 87Rb atoms
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Figure 3.11: Atomic level scheme for quantum embedding. In this picture we show the involved
levels of 87Rb hyper�ne ground state structure. Enhanced in pink is the chosen qubit encoder
for the embedding, also shown in its Bloch sphere representation. The embedding sequence
starts with all the atoms prepared in the state |F = 2,mF = 0〉 by a radio-frequency signal here
represented by orange arrows. The green arrow represents the microwave �eld that drives the
dynamical evolution dictated by the quantum feature map.

is experimentally produced in our laboratory as detailed in chapter 2, to the level
|F = 2,mF = 0〉. The embedding sequence subsequently starts by coupling the
magnetically insensitive levels |0〉 ≡ |F = 2,mF = 0〉 and |1〉 ≡ |F = 1,mF = 0〉
by means of an external micro-wave �eld applied to the atoms. We recall that the
microwave antenna, described in Sec. 2.3, is driven by a rectangular wave sent to
the three mixers depicted in Fig. 2.15 which control the timing of the output sig-
nal switching it o� and on. Therefore, by designing the control pulse according
to the rotations dictated by the embedding, we let the atoms dynamically evolve
consequently.
As we explained in Sec. 3.3, di�erent experimental implementations require to
adapt the feature transformation of Eq. (3.12) to the peculiar needs of the realistic
scenario. In our case, we design the microwave pulse according to the interaction
time necessary to realize a controlled evolution (rotation around x̂ of an angle
xi = Ωτi ) and a free evolution (rotation around ẑ of an angle θj = ∆Tj) given by
the embedding sequence. Since the Rabi frequency Ω and the microwave detun-
ing ∆, from the atomic resonance, are set at the beginning of the experimental
sequence, our free parameter in reaching the desired rotation angle is the pulse
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duration: τi for controlled evolution and Tj for free evolution. In particular, we
set the amplitude of the pulse (following the procedure described in Subsec. 2.3.1)
such that the induced Rabi frequency on the atoms is Ω = 2π × 38 kHz. The de-
tuning of the microwave frequency from the atomic resonance, instead, is set to
∆ = 2π × 6.57 kHz. As a consequence the interaction time necessary to perform
a rotation Rx (xi) is τi = xi/Ω, while the one needed to perform a rotation Rz(θj)
isTj = θj/∆. Note that to realize the rotation Rz , i. e. a free evolution, the mixers
will turn o� the microwave signal (Ω = 0) and the atomic Bloch vector will pre-
cess around nΩ = (0, 0,−1). Instead, since the parameters Ω and ∆ are �xed at
the beginning of the evolution and cannot be changed during it, the rotation Rx ′

realized with the microwave switched on is not exactly oriented along x̂ . As al-
ready explained in the previous section, the induced evolution is a precession of
the atomic Bloch vector around the Rabi vector direction that is nΩ =

( Ω
Ω , 0,−

∆
Ω

)
.

Therefore, the rotation Rx is in our case tilted of an angle arctan(∆/Ω) respect
to the x̂ direction. In order to eliminate the error on the rotation angle, that ac-
cumulates during a rotation Rx ′ , we proceeded as follows. Simulating the overall
evolution, we computed, via a python script, the accumulated error in reaching
the angle at each rotation step. We then subtracted this value from the angle
reached experimentally. In this way we get a correction factor on the evolution
duration for each rotation of the embedding sequence. This procedure has led us
to the following reduced feature transformation:

Φ(x1,θ ,x2) = {Rx ′(x1),Rz(θ ),Rx ′(x2)} , (3.48)

after which the �nal embedded state |x〉 is reached. You can notice that we used
less rotations with respect to the original sequence of Eq. (3.12). Indeed, even
though our Ramsey fringes contrast keeps its maximum value till 300 µs of ob-
servation time (see Subsec. 3.5.1), we cannot perform a too long evolution for the
following reason. The relative error of the rotation angle traveled by the Bloch
vector during both the rotations Rx ′ and Rz is equal to the relative error of Ω
and ∆ respectively. In our case they are of 1% (see Subsec. 3.5.1), meaning that if
the interaction time during the free evolution, for instance, doubles so does also
the error on the �nal angle. It is for this reason that we chose to operate with
pulses that have an overall duration not exceeding 200 µs. Moreover, a too long
interaction time overheats the atom-chip risking to damage it.
According to all these fundamental considerations we have designed 10 di�er-
ent microwave pulses to implement the 10 embeddings sampled to test the pro-
tocol as described in Sec. 3.3. They are arranged in two classes of 5 elements
each. Therefore, at the end of the experimental sequence, we expect to see the
�nal states clustered in two separated regions of the Bloch sphere as depicted in
Fig. 3.5.
The interaction time with microwave switched on (τ1,τ2) and with microwave
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switched o� (T ) are reported in Tab. 3.1 for each of the 10 optimally embedded
quantum states. After the evolution is ended, we then measure, for every �nal

State τ1 [µs] T [µs] τ2 [µs]
1 19 36 8
2 45 51 7
3 20 37 1
4 20 38 3
5 19 28 3
6 30 47 38
7 32 20 8
8 4 7 35
9 4 25 12
10 7 10 6

Table 3.1: Embedding parameters for the atomic platform. Interaction times with the microwave
switched on (τ1,τ2) and o� (T ) for the atomic experiment, in order to generate the 10 optimally
embedded quantum states.

state, the number of atoms N |0〉 in the state |0〉 and the number of atoms N |1〉
in the state |1〉 by adopting the absorption imaging technique described in Sub-
sec. 2.2.5. The relative population of the state |1〉 is retrieved as follows:

P |1〉 =
N |1〉

N |0〉 + N |1〉
. (3.49)

From P |1〉 we get the z-component of the state vector de�ned as 〈σz〉 = (N |0〉 −
N |1〉)/(N |0〉 + N |1〉). Obtaining:

〈σz〉 = 1 − 2P |1〉 . (3.50)

To measure also the other components 〈σx〉 and 〈σy〉 and thus perform a full to-
mography of the state, we adopt the following strategy. We rotate the reference
frame in order to have the x- and y-components both directed along the z-axis.
In this way we can measure them using the relation of Eq. (3.50). We experi-
mentally realize it by designing the microwave pulses reported in Fig. 3.12. The
pulse depicted in Fig. 3.12 c, is the one that realizes the embedding sequence of
Eq. (3.48). At the end of it we directly measure 〈σz〉. The pulses in Fig. 3.12 a and
3.12 b, instead, are obtained by adding, at the end of the embedding sequence in
Fig. 3.12 c, further rotations (thus interaction times) around the x′- and z-axis.
We compute these rotation angles via a simulation of the state vector evolution
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Figure 3.12: Control pulses sequences and embedded states results. In this �gure is reported the
control pulses sequence used to measure each component of the 10 �nal embedded states on the
Bloch sphere. The performed tomography in order to obtain them is detailed in the text. For
each experimental point is represented also the expected one from theoretical prediction. Every
experimental sequence is repeated 5 times and the depicted uncertainties are computed via error
propagation.
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Figure 3.13: Fidelities and Bloch vectors results for the atomic platform. Left-hand side: Fidelity
between the predicted state and the one reconstructed in the atomic experiment calculated for the
10 validation states. The experimental states are obtained by measuring the three components of
the Bloch vector after applying the quantum embedding circuit. The experimental sequence is
repeated 5 times and the uncertainty on the �delity is obtained via error propagation. Note that
the error bar for the state 5 is smaller than the marker. Right-hand side: Bloch sphere represen-
tation of the 10 embedded quantum states experimentally measured on the atomic platform. The
results clearly show a clusterization in two families in accordance with the theoretical prediction
reported in Fig. 3.5.

in order to project the 〈σx〉 and 〈σy〉 components along ẑ. In more detail, in order
to measure 〈σx〉, a rotation along x̂′ about an angle x3 is necessary, followed by a
rotation around ẑ of an angle θ and a �nal rotation around x̂′ about an angle x4.
Similarly, for 〈σy〉 we compute the rotation angles x5 and x6. Note that the rota-
tion along ẑ is always of the same amount θ , the latter, indeed, is the “learned”
parameter that has to be kept �xed.
The experimental results obtained for each component of the 10 states are re-
ported in the same Fig. 3.12 below the pulses used to generate them. The error
bars are computed via standard deviation from �ve repetitions of the experimen-
tal sequence.
The experimental �ndings in terms of the Bloch vectors are also showed in Fig. 3.13.
Here, a clear clusterization of the reconstructed states can be seen, as we expected
from the theoretical predictions reported in Fig. 3.5. The �delities between the
theoretical states and the experimentally reconstructed ones are also reported.
Since the evolution that the system undergoes is unitary, the state’s purity is
preserved within experimental error. Therefore, we computed the �delities us-
ing the following formula for pure states:

F (ψtheo,ψexp) =
��〈ψtheo |ψexp〉��2 . (3.51)

The measured �delity is on average better than 0.99, and the error bars have been
computed via uncertainty propagation.
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3.5.1 Experimental limits of the atomic platform
The experimental realization of the embedding protocol with atoms is funda-
mentally limited by the following two factors. One is the accuracy with which
we measure both the Rabi frequency and the radio-frequency detuning, values
that we set at the beginning of the experimental sequence. Another is the stabil-
ity in time of these frequency values.
In order to have an estimate of the accuracy, we performed measurements of Rabi
oscillations and Ramsey interferometer up to a duration of 300 µs. The latter is a
duration much longer than that of any of the embedding sequences. This has led
to a measure of Ω = 2π × 38.89(2) kHz and ∆ = 2π × 6.57(4) kHz, respectively.
The uncertainties δΩ f it = 2π × 0.02 kHz and δ∆f it = 2π × 0.04 kHz, are com-
puted by the �tting error.
To estimate the stability of our system, instead, we performed a measurement
of the Allan variance [96] of the Rabi frequency and of the resonance frequency.
The Allan variance (or Allan deviation) is the most often used tool for the time-
domain characterization of oscillators. It is de�ned as the expectation of the
two-sample variance, i.e. the classical variance of Eq. (3.53) for N = 2. The time-
domain average y of a variable y, for k = 1, ...,N , is de�ned as:

yk(τ ) =
1
τ

∫ (k+1)τ

kτ
y(t)dt . (3.52)

Given N samples yk(τ ), the classical variance is:

σ 2
y =

1
N − 1

N∑
k=1

[
yk − 〈y〉N

]2
, (3.53)

where we denote with 〈〉N the average of N values. The Allan variance is thus
de�ned as the mathematical expectation E of the classical variance for N = 2:

σ 2
y (τ ) = E

{
1
2

[
yk+1 − yk

]2
}
. (3.54)

It is assumed that the two samples yk+1 and yk are contiguous in time. If the
samples yk(τ ) are not contiguous, then a correction is necessary, which depends
on the noise type. In practice, the statistical expectation is replaced by the simple
mean. Given a string of M contiguous samples yk(τ ), we have M − 1 di�erences
yk+1 − yk . Thus the measured Allan variance is:

σ 2
y (τ ) =

1
2(M − 1)

M−1∑
k=1

(
yk+1 − yk

)2
. (3.55)
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Figure 3.14: Rabi frequency stability: Allan deviation. The values reported have been computed
via the frequency stability analysis program Stable32 [97]. The analysis is the result of an overall
number of frequency measurements of 390, performed for a total time of three hours. The chosen
averaging time between two contiguous measurement is 23 s, corresponding to the duration of
one BEC experimental sequence.

This quantity estimates the stability due to noise processes and not to that of
systematic errors or imperfections that can occur. It compares the variance of a
�rst measurement with the subsequent one for an averaging time τ .
We measured the Allan variance of the Rabi frequency as follows. We applied on
the atoms a microwave π/2-pulse of duration τ = π/(2Ω), that is 2π × 6.47 µs,
and measured the relative population P |1〉 . We repeated the same measurement
for a total time interval of three hours. The averaging time between two con-
tiguous measurements is of 23 s, that is the duration of one BEC experimental
cycle after which a new BEC is created. In complete analogy with the discus-
sion in Subsec. 3.4.5, for each P |1〉 , we then computed the sensitivity of the Rabi
frequency at t = τ = π/2Ω respect to the relative population �uctuations δP |1〉 ,
getting:

δΩ =
δP |1〉��� ∂δP |1〉∂Ω

���
τ=π/2Ω

=
δP |1〉

τ/2 . (3.56)

The obtained values of δΩ were fed into the Stable32 Frequency Stability Anal-
ysis Program [97] getting the results reported in Fig. 3.14.
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Figure 3.15: Detuning stability: Allan deviation. The values reported have been computed via
the frequency stability analysis program Stable32 [97]. The analysis is the result of an overall
number of frequency measurements of 390, performed for a total time of three hours. The chosen
averaging time between two contiguous measurement is 23 s, corresponding to the duration of
one BEC experimental sequence.

To measure the stability of the detuning frequency, thus its Allan variance, we
adopted a similar strategy. This time applying to the atoms the Ramsey sequence
described in Subsec. 3.4.5 to measure the interferometer sensitivity reported in
Eq. (3.47). We applied the sequence tuning the apparatus on the more sensitive
point that is the side-of-fringe ∆T = π/2 and setting an observation time of
T = 300 µs. At the end of the sequence we measured the relative population P |1〉 .
We repeated the same measurement for a total time interval of three hours and
with an averaging time of 23 s. Inserting the obtained δ∆ into the Stable32 pro-
gram, we get the results reported in Fig. 3.15 for the Allan variance. Observing
both �gures for Rabi and Ramsey sequences, we can see that at very short ob-
servation times, the Allan deviation is high due to noise. At longer τ it decreases
because the noise starts to be averaged out. But at still longer τ , the Allan devi-
ation starts increasing again, suggesting that the frequency under investigation
is gradually drifting. This investigation has allowed us to understand that the
major source of instability in our system is given by the Rabi frequency, even
though the resonance frequency starts drifting earlier. They are presumably due
to microwave power �uctuations for the Rabi frequency and magnetic �eld �uc-
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tuations for the detuning from resonance.
These results have allowed us to estimate a �uctuation of δΩAllan = 2π ×1.5 kHz
for the Rabi frequency and of δ∆Allan = 2π × 71 Hz for the detuning. These last
are evaluated on an averaging time of 115 s corresponding to the time needed for
�ve repeated measurement of each embedded state.
The overall uncertainty that takes into account both our accuracy and stabil-
ity analysis, is thus δΩ =

√
δΩ2

f it
+ δΩ2

Allan
for the Rabi frequency and δ∆ =√

δ∆2
f it
+ δ∆2

Allan
for the detuning. This re�ects, via error propagation, on the

uncertainty on the component σz of the �nal embedded states as:

δσz =

����∂σz∂Ω ����δΩ + ����∂σz∂∆ ����δ∆, (3.57)

similarly on the other components σx and σy . From our simulation of the exper-
iment, we numerically compute the value of the partial derivatives for a small
increment. The latter, together with the �ndings of the Allan variance, let us ex-
pect an error of δσz = 0.1 on the components of the �nal Bloch vector. A value
that has been con�rmed from the experimental results in Fig. 3.12.

3.5.2 Rotations around non-orthogonal axes
In our quantum embedding implementation on the atomic platform, we investi-
gated a possible experimental solution to the problem of rotations around non-
orthogonal axes that we encountered. The solution we suggested is to perform
the embedding sequence in a rotated frame de�ned by the following Rabi vector
directions:

x̂′′ = nΩ =

(
1
√

2
, 0, 1
√

2

)
,

ẑ′′ = nΩ =

(
−

1
√

2
, 0, 1
√

2

)
.

(3.58)

These directions are orthogonal and can be achieved by tuning our apparatus
such that the value of the detuning is equal to that of the Rabi frequency, thus
realizing a rotation around the axis x̂′′. By setting the detuning equal and oppo-
site to the Rabi frequency, instead, we can realize a rotation around the ẑ′′ axis.
The new frame is depicted in Fig. 3.16. In this way the non-orthogonality prob-
lem is overcome.
The embedding sequence can be transferred in the new frame by a simple trans-
formation. The change of reference, indeed, is a rotation around the ŷ axis of an
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Figure 3.16: Quantum embedding in the rotated frame. The embedding sequence can be trans-
ferred in a rotated frame about γ = 45◦ around the ŷ axis. It can be easily experimentally im-
plemented by setting the Rabi frequency value once equal and once equal and opposite to the
detuning frequency of the microwave �eld from resonance. Thus realizing the rotation axes nΩ

shown in �gure.

angle of γ = 45◦. The matrix that realizes it is:

Ry(γ ) =
©«

cosγ 0 sinγ
0 1 0

− sinγ 0 cosγ

ª®¬ , (3.59)

according to which, the new coordinates are:

x′′ =
x + z
√

2
,

y′′ = y,

z′′ =
−x + z
√

2
.

(3.60)

From these transformations we can retrieve the expressions that link the Bloch
vector’s spherical coordinates ϑ and φ with the new coordinates in the rotated
reference frame. They are:

ϑ ′′ = arccos
(
− sinϑ cosφ + cosϑ

√
2

)
,

φ′′ = atan 2(y,x),
(3.61)

where y = sinϑ sinφ and x = (sinϑ cosφ + cosφ)/
√

2.
The corresponding microwave pulse to be designed will have equal positive and
negative amplitude, and the microwave will always be turned on during the
whole evolution. This solution could be convenient in terms of the speed of the
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Figure 3.17: Quantum circuit for the superconducting platform. A quantum processor trains the
circuit shown in �gure. After the embedding sequence has been performed through the showed
rotations, a C-SWAP gate computes the overlap between the two embedded qubits q1 and q2.

overall dynamics, that is increased using such a high detuning. In addition to the
fact that no correction factors have to be computed. It is, however, experimen-
tally challenging to achieve the condition in which Ω and ∆ are equal. Therefore,
a correction factor that accounts for this fact must be considered. Furthermore,
the �nal tomography will require the design of additional microwave pulses to
project the three Bloch vector’s components in the original reference frame.
The two approaches are substantially equivalent so one can choose the one that
better �ts the experimental setting.

3.6 Superconducting and photonic platforms re-
sults

Di�erent platforms, however, do not necessarily have the same features and con-
straints. We evidence this, by taking as an example the case of the superconduct-
ing chip of Rigetti [94] named Aspen-8. It is composed by a lattice of 30 supercon-
ducting qubits in a ladder-like con�guration. The qubits are controllable by the
action of single and two-qubit gates giving this platform all the characteristics of
an universal quantum computer. We thus use this platform to deploy again the
same embedding of Eq. (3.12) but on a completely di�erent device with di�erent
noise pro�le and constraints. Using Rigetti’s cloud service, each circuit, shown in
Fig. 3.17, is sampled 2000 times for each of the 100 data-points necessary to build
the Gram matrix. As shown in Fig. 3.19, the Gram matrix (even if it is sensibly
noisier than our other tests) clearly exhibits the separation boundary between
the two classes. The advantage of this experiment is that it could be performed
without the need of an ad hoc laboratory; it has been carried out remotely by just
reserving some time on the Rigetti system and programming it [95]. The entire
set of experiments performed on this platform has taken a total time of around
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5 minutes to run.
It is also of interest to perform the quantum embedding with “�ying” qubits i.e.
photons. Thus, we have also investigated quantum embedding in an optical ex-
periment by generating photon-pairs at the degenerate wavelength 810 nm via
parametric down conversion realizing a heralded single-photon source. In par-
ticular, the degenerate 810 nm photon-pairs are generated from a 50 mW CW
laser at 405 nm through Type I spontaneous parametric down conversion using
a 3 mm BBO crystal. Both photons are �ltered with band-pass �lters (FWHM
= 7.3 nm) and single mode �bers. One photon acts as a trigger and is directly
coupled to an Avalanche Photodiode Detector (APD), while the other undergoes
the embedding transformation as follows. The input state of the photons is set
to horizontal polarization direction |H 〉 and then the embedding is performed by
applying a single unitary:

U(ϕ;n) = cos
(
ϕ

2

)
σ0 − i sin

(
ϕ

2

)
(n · σ ), (3.62)

where n = (nx ,ny,nz) denotes the associated rotation axis. The embedding pa-
rameters dictating the rotation for each of the 10 states are reported in Tab. 3.2.
This alternative approach of constructing the embedding in the form of a fea-

State ϕ [rad] nx ny nz

1 0.668 0.667 0.143 0.731
2 1.986 -0.423 0.460 -0.781
3 2.111 -0.510 0.379 -0.772
4 2.408 0.619 0.240 0.748
5 1.301 -0.405 0.914 0.034
6 4.258 0.418 0.908 -0.006
7 4.367 0.247 0.969 0.026
8 3.549 -0.475 0.847 0.239
9 4.379 0.197 0.980 0.036
10 3.762 -0.433 0.877 0.208

Table 3.2: Embedding parameters for the photonic platform.

sible unitary is more suited to photonic experiments. On one hand, this scheme
requires superior controllability of the system, since we cannot choose the ro-
tation axis in advance. On the other hand, using only a one-shot embedding
instead of a step-by-step approach is a signi�cant simpli�cation.
For photon polarization qubits, rotations in the form of Eq. (3.62) are conve-
niently performed by means of a series of three wave plates: a quarter wave
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Figure 3.18: Fidelities and Bloch vectors results for the photonic platform. Left-hand side: Fidelity
between the predicted state and the experimentally reconstructed one in the photonic exper-
iment, obtained by quantum state tomography after applying the quantum embedding circuit,
calculated for the 10 validation states. Right-hand side: Bloch sphere representation of the 10 em-
bedded quantum states experimentally measured on the photonic platform. The results clearly
show a clusterization in two families in accordance with the theoretical prediction reported in
Fig. 3.5.

plate (Q1), a half wave plate (H2) and a second quarter wave plate (Q3), whose
angles are associated to the parameters ϕ and n as follows:

θQ1 =
1
2

[
− arctan

(
nz
nx

)
− arctan

(
ny tan

(
ϕ

2

))]
,

θH2 =
1
2

− arcsin ©«nx
√
n2
z

n2
x

+ 1 sin
(
ϕ

2

)ª®¬ − arctan
(
nz
nx

) ,
θQ3 =

1
2

[
− arctan

(
nz
nx

)
− arctan

(
ny tan

(
ϕ

2

))]
.

(3.63)

This is a standard approach, relying on the availability of reliable hardware com-
ponents, at the cost of losing a direct mapping of each term in the sequence of
Eq. (3.12) into a physical object.
Veri�cation of the outputs is carried out by means of quantum state tomography,
operated by a further half waveplate/quarter waveplate sequence and a polar-
izer. It is then performed by collecting coincidence counts in correspondence of
the projections along the polarization directions Horizontal, Vertical, Diagonal,
Anti-diagonal, Right-circular and Left-circular. For each state, approximately
20000 coincidence events are collected, distributed among the six projectors. The
reconstructed Bloch vectors are reported in Fig. 3.18. The two main sources of
imperfection are the limited accuracy in the setting of the wave-plate axis (±1◦
for the encoding plates, ±0.25◦ for the tomography plates), and deviations of the
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imparted phase shifts from the target values π/2 or π . Despite these deviations,
clustering of the states in two classes is clearly observed. Once again the �delity
between the experimental results and the theoretical predictions, also shown in
Fig. 3.18, is on average above 0.96 which for one qubit accounts for a more than
satisfactory agreement. Uncertainties have mainly statistical origin, due to �uc-
tuations in the number of collected counts. In order to account for those, we
have performed a Monte Carlo routine, simulating 300 experiments: in each of
them, counts are generated by bootstrapping on the observed values, assuming
Poissonian statistics, as customary. The uncertainty on the �delity is thus eval-
uated as the standard deviation of the �delities with the target state observed in
the Monte Carlo replicas.

3.7 Discussion & conclusions

The Gram matrices reported in Fig. 3.19 reveal that all the architectures we have
considered indeed give satisfactory results in realizing the quantum embedding.
To make this observation more quantitative, we here provide a theoretical bound,
based on the observed �delities, for the number Nmax of di�erent classes and/or
di�erent points that can be embedded on a single qubit. Our bound is derived
from geometrical constraints of the embedding on the Bloch sphere. The min-
imal assumption we can make for the embedding to be successful is to avoid
overlapping between di�erent classes. These are associated to distinct spherical
sectors de�ned by its central angle ϑ ; in our example, the two sectors correspond
to two separate halves of the sphere (ϑ = π ). By simple geometrical arguments,
the surface occupied by a single spherical sector is given by 2π [1 − cos(ϑ/2)].
Since we want the sectors to be non-overlapping, and the total available surface
of our Bloch sphere is 4π , we can formulate a geometrical constraint considering
the number of classes N as follows:

2πN
[
1 − cos

(
ϑ

2

)]
≤ 4π . (3.64)

This equation thus computes the tightness of the embedding given a number N
of classes to embed.
These methods also provide an upper bound on the data set which can e�ec-
tively be embedded. We use the �delity F between the experimental states and
the corresponding targets. While the ideal state is associated to a unique direc-
tion in the Bloch sphere, accounting for the imperfections of the actual prepared
state leads us to consider a spherical surface 2π (1 − F ) as the proper geometric

90



Chapter 3. State manipulation and control for Quantum Machine Learning 91

0

2

4

6

8

1 0 0

2

4

6

8

1 0

0 , 0

0 , 2

0 , 4

0 , 6

0 , 8

1 , 0

(a) Before learning

0

2

4

6

8

1 0 0

2

4

6

8

1 0

0 , 0

0 , 2

0 , 4

0 , 6

0 , 8

1 , 0

(b) After learning

0

2

4

6

8

1 0 0

2

4

6

8

1 0

0 , 0

0 , 2

0 , 4

0 , 6

0 , 8

1 , 0

(c) Atomic
platform

0

2

4

6

8

1 0 0

2

4

6

8

1 0

0 , 0

0 , 2

0 , 4

0 , 6

0 , 8

1 , 0

(d) Photonic
platform

0

2

4

6

8

1 0 0

2

4

6

8

1 0

0 , 0

0 , 2

0 , 4

0 , 6

0 , 8

1 , 0

(e) Superconducting
platform

Figure 3.19: Gram matrices results of quantum embedding. Gram matrix representation of the
embedded quantum states as predicted by theory before learning in (a) and after learning in (b).
The experimental �ndings for all the explored platforms are also reported below in (c), (d) and (e).
All the architectures we considered show satisfactory results, indeed, the two classes are clearly
distinct. However, the results of the atomic platform prove that, respect to the others, ultra-cold
atoms appear the more promising candidates for such implementations.

measure. Thus, the maximum number of points allowed is:

Nmax ≤
4π

2π (1 − F ) . (3.65)

Our experiments demonstrate that a �delity exceeding 0.9 can be routinely achieved
on all platforms we have explored. This determines a maximal embedding ca-
pacity Nmax ' 20 as a conservative estimate. This reasoning can be obviously
generalized to the 2n-dimensional hypersphere in the case of multi-qubit embed-
ding.
Our experimental investigation demonstrates how quantum embedding tech-
niques may suit radically di�erent approaches to qubit encoding and manipu-
lation by pulses as for cold atom, by quantum logic circuits as for the Rigetti
machine, or by compiled operations as for photons. Such a versatility shows
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promises for future interconnected systems on hybrid architectures, with spe-
cialized hardware for storage, processing and distribution of quantum data. Fi-
nally, the potential advantages of representing classical data on quantum systems
include not only the possibility to simplify a classi�cation problem as experimen-
tally demonstrated in this work, but also the ability to speed up any processing
of the classical data such as, among the others, the quantum parallelism to search
through a database, feature extraction, image segmentation, and edge detection.
Indeed, combining quantum machine learning and quantum image processing
is expected to allow to potentially solve real world problems that are very chal-
lenging via classical supercomputers, especially in the case of large volumes of
data in various domains ranging from sociology to economy, from geography to
bio-medicine.
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4 | Reversing timewithultra-cold
atoms for quantum undo op-
erations

In our everyday experience, empirical-knowledge suggests that time goes on ac-
cording to the inevitable fact that the events have a proper spatial and temporal
relation. The scienti�c counterpart of our interpretation of time coming from
the familiar experience of growing or becoming, is made by the concept of en-
tropy which provides the arrow of time. The latter comes from the second law
of thermodynamics which led Arthur S. Eddington to the de�nition of a time’s
arrow in 1928 [98], thus establishing the fundamental di�erence between past
and future. According to it, the progress of time towards the future, indeed, fol-
lows the direction of more and more random elements in the state of the world.
In the direction where the random elements decrease, instead, the arrow of time
is pointing towards the past. It follows the fundamental statement that the in-
troduction of randomness is the only thing which cannot be undone. According to
this law, it is too improbable that at a certain point a universe evolves backwards
hence developing in the opposite direction of our own system. However, this
statement is not in con�ict with the primary laws for which the fundamental
microscopic equations of motion are symmetrical with respect to time-reversal
transformation. There are some conditions for which no increase in the ran-
dom elements can occur. Indeed, if we are able to isolate a portion of space such
that no energy can enter or leave and boundary e�ects are compensated, then
the time’s arrow gets lost. This is a very distinctive property that is typical of
“a fortuitous concourse of atoms”, in Sir Eddington words, a much-prized rarity
in thermodynamical equilibrium. Precisely it means that, at thermodynamical
equilibrium, the random elements have reached their limit of increase and have
become steady. The arrow of time does not know anymore where to point. How-
ever, it does not mean that this region of space is timeless: the atoms vibrate as
usual like little clocks; by them we can measure speeds and durations; time is still
there and retains its ordinary properties, but it has lost its arrow; like space it ex-
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tends, but it does not “go on”. Time reversal in such systems is therefore possible,
in the sense that in an in�nite time all the con�gurations of the phase space of
the system will be explored.
In this regard, I here report a time inversion experiment realized on a BEC of 87Rb
atoms, by driving its dynamical evolution forth and back along several paths in
its Hilbert space. A BEC can be considered as a very well isolated system at ther-
mal equilibrium, however interacting with an external coherent driving �eld.
In our case, indeed, irreversibility comes into play in the sense of the unavoid-
able dechoerence time of our condensate. The latter imposes a temporal limit
to its evolution thus exhibiting entropy production. The procedure we propose
is therefore an entropy recti�cation method that makes use of optimal control
strategies successfully applied in our context in several experimental implemen-
tations. In particular, we want to apply our �ndings for the practical realization of
quantum undo operations in quantum technology contexts, ranging from quan-
tum computing to quantum communications. By means of the undo command,
indeed, one can time-reverse the last performed operation on a quantum com-
puter so as to perfectly restore a condition in which an arbitrary new operation,
chosen by the external user, can be then applied. Moreover, I will show that we
can further generalize this concept, by applying the undo command also for the
reversing of a quantum operation in a generic instant of the system’s past, and
thus not only in the last time instant.
The chapter is organized as follows. In Sec. 4.1 I introduce the undo operation
in the context of quantum computers applications, highlighting how the pro-
posed solution can be adapted to a generic experimental platform. In Sec. 4.2 both
the quantum system Hamiltonian and the optimization protocol are described,
by explaining the way the driving �eld is optimally designed by means of the
dCRAB algorithm. In Sec. 4.3 I present all the experiments we realized to test
time-reversal transformations with ultra-cold atoms, to be seen as the proof of
principle of undo operations in quantum regimes. Finally, Sec. 4.4 concludes the
chapter, by discussing the relevance of our experimental results and providing
for them a thermodynamic interpretation whereby the employed optimal control
strategy corresponds to an entropy recti�cation procedure.

The results reported in this chapter are under preparation:

• Ivana Mastroserio, Stefano Gherardini, Cosimo Lovecchio, Tommaso Calarco,
Simone Montangero, Francesco S. Cataliotti, and Filippo Caruso, Exper-
imental realization of optimal time-reversal on an atom-chip for quantum
undo operations.
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4.1 Undo operations on a quantum computer

The undo command allows to reverse a calculation or, more in general, an oper-
ation that has been performed in a past step of a complex computational routine.
Speci�cally, the undo command is a basic tool to be addressed in all those com-
putational processes, in which the external user may need to proceed step by
step thus visualizing the result of each operation. This already holds in tradi-
tional/classical (in the sense of “not quantum”) computer or computing systems
managed by a high-level interface (as e.g. an operating system) where such a
command is a requirement that is practically taken for granted [99, 100].
In quantum platforms for quantum computing, the undo command is expected
to need more onerous procedures with respect to the classical case. So far, proce-
dures carrying out time-reversal transformations [101] have been implemented
in speci�c settings [102,103], however without employing universal features that
might be valid in a general quantum technologies context. Indeed, in doing this,
two main challenges have to be still addressed: one from the procedural side,
ensuring high-performance, and the other from a technological point of view.
The �rst challenge concerns the establishment of an optimal procedure for the
realization of quantum undo operations. For instance, by reducing as much as
possible the execution error and requiring a moderate computation load depend-
ing on the experimental devices at disposal. In real experiments, indeed, one can
often implement only a small set of operations, due to practical limitations, ex-
perimental imperfections and few resources. Moreover, such an optimal proce-
dure has to be designed to be possibly implemented in a generic experimental
platform. The solution to these issues, which we propose, is the use of quantum
optimal control (OC) methods introduced for the control of quantum systems
dynamics. Quantum OC theory is one of the optimal ways to successfully pre-
pare quantum states and perform desired tasks. The latter are crucial elements
in the implementation of quantum-based technologies, ranging from atomic to
molecular and optical systems [104–121]. Speci�cally, in this work we adopt the
dressed Chopped Random Basis (dCRAB) optimal control algorithm [122–126]
that has been already successfully tested in several experiments involving many-
body atomic systems [127–131] thanks to its e�ciency and versatility.
The second challenge in designing quantum undo operations is to identify what
are the key mechanisms and devices without which a time-reversal routine can-
not be experimentally realized. As previously mentioned, such OC tools are
required to allow for the realization of quantum undo operations in a generic
experimental platform, and thus not only in a Bose-Einstein condensate as we
implemented in this work.
In this context, we theoretically and experimentally exploit the power of dCRAB
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Figure 4.1: Pictorial representation of the realized time-reversal experiments. We prepare a 87Rb
BEC in the state |F = 2,mF = +2〉 that is the initial state for all the performed experiments;
the experiments are respectively denoted as a), b) and c). In the �rst experiment, the atoms
evolve from a1) towards the state a2) where their population is equally distributed among the
states |F = 2,mF = +2〉 and |F = 2,mF = −2〉, and then brought back to the initial state
|F = 2,mF = +2〉 corresponding to the con�guration a3). In the second experiment, the atoms
evolve from b1) towards a state b2) by using the optimal pulse employed in the �rst experiment
but with a shorter length that belongs to [10, 100) µs. Then, the atoms evolve back to the initial
state – con�guration b3) – as in the �rst experiment. Finally, in the third experiment, the forward
evolution of the atoms from c1) to c2) is the same of that in the �rst experiment, while in the
backward process the system reaches the quantum state c3) that has been already explored in
the second experiment (thus, in its past). It is worth noting that also the latter transformation
realizes a quantum undo operation, but on a shorter time-scale with respect to the other cases
illustrated in the �gure. Furthermore, although for illustrative purposes we chose to report in
this plot only the populations of the states, we will show in Subsec. 4.3.3 that the state c3) has the
same coherences, within experimental error, of state b2).

optimal control techniques to successfully perform time-reversal transforma-
tions. We invert the dynamical evolution of a very fragile quantum system real-
ized with ultra-cold atoms from an atom-chip device (as summarized in Fig. 4.1).
To make an illustrative comparison, we also show the large di�erences between
the results from our experiments and the ones given by inverting, through the
addition of a phase term (i.e. a prefactor eiπ ), the time-dependence of the exter-
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nal driving (radio frequency) �eld f (t) used to address the atoms. Indeed, even
in the absence of external noise (in our case, the system dynamics is to good ap-
proximation not a�ected by noise at least until around 100 µs), the evolution of a
driven quantum system is governed by the Schrödinger equation [132] in which
the Hamiltonian operator is generally composed by two distinct contributions:
one modeling the inner structure of the system (the atomic Hamiltonian H0),
and the other describing the interaction with external coherent �elds, modelled
e.g. by the time-dependent function f (t), that steers its dynamics. Hence, leading
the system back to its initial state is not simply done by the possible inversion of
the time arrow of the driving �eld, i.e., f (−t), because of the unavoidable pres-
ence of the Hamiltonian term H0 that always evolves forward in time. It has
been already proven that, in some speci�c cases, it is possible to exploit the pe-
riodicity of the quantum dynamics to retrace part of the evolution or to create
an echo of the initial state [133–135]. Speci�cally, some peculiar time inversion
tasks have been demonstrated, such as the reversal of atom-�eld interaction in
a cavity quantum electrodynamics experiment [136] or feedback control-based
deterministic reversal of projective measurements on a trapped ion experiment
through a quantum error-correction protocol [137]. However, these strategies
may be viable if no constraints on the duration of the time-reversal transforma-
tions to be implemented are taken into account. For example, in our case using
ultra-cold atoms within an atom-chip device (but similarly even in many other
atomic, molecular and optical systems) any dynamical transformation is con-
strained by the well-known decoherence time T2 [7], which de�nes the period
after which the system looses on average quantum coherence due to the pres-
ence of an external �eld or/and the coupling to external environment. In our
experiments, the quantum system dynamics we implemented cannot be longer
than around 100 µs. Also for this reason, the use of OC techniques has been
opted for the realization of quantum undo operations allowed by time-reversal
procedures.

4.2 Physical system and optimization protocol

The experiment is performed on the Bose-Einstein condensate (BEC) of 87Rb re-
alized as detailed in chapter 2. The condensate dynamics is, in this case, driven
on the �ve-fold Hilbert space given by the F = 2 rubidium hyper�ne ground
state. Hence, we assume that the internal state of the atomic system is described
at each time t by the 5 × 5 density matrix ρ(t).
After the creation of the BEC, at the beginning of the system evolution, the atoms
are optically pumped in the |F = 2,mF = +2〉 sub-level, as pictorially shown in
Fig. 4.2. The free evolution of the atoms, within the BEC, is governed by the time-
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Figure 4.2: Relevant 87Rb atomic energy levels. The whole quantum dynamics in our time-
reversal experiments take place in the F = 2 hyper�ne ground state of a 87Rb Bose-Einstein
condensate. The manifold is given by the �ve possible orientations of a spin-2, energetically
separated by means of a homogeneous magnetic �eld. The atomic cloud is initially prepared in
the |F = 2,mF = +2〉 quantum state, and subsequently the �ve neighboring |F ,mF 〉 states are
coupled by a quasi resonant radio frequency radiation (depicted by the red arrows). By modulat-
ing the latter in time through an optimally designed strategy, the energies of the �ve sub-levels
are e�ectively “shaken” in order to drive the system forth and back in time. The inset shows
an example of optimally prepared pulse, whose frequency ω(t) typically belongs to the range
1 − 10 MHz.

independent atomic Hamiltonian H0 that is evaluated via the Breit-Rabi formula
[138]. Thanks to the Breit-Rabi formula, indeed, one can quantitatively deter-
mine the energies of all di�erent sub-levels for a known magnetic �eld intensity.
In particular, as detailed in Subsec. 2.3.2, for our system the atoms are in the pres-
ence of a constant bias magnetic �eld that we arbitrarily set to 6.179 G. As a re-
sult, we obtain the atomic HamiltonianH0 = h diag(8635, 4320, 0,−4326,−8657) kHz,
where h is the Planck’s constant, and the elements of the state basis are chosen
to correspond to the hyperfyne levels from mF = +2 to mF = −2 by ensuring
that the reference zero-energy state is |F = 2,mF = 0〉 (see Fig. 4.2).
Then, the atomic evolution is driven by means of a quasi resonant radio fre-
quency (RF) �eld that is produced by micro structured conductors integrated on
the atom-chip (again see Subsec. 2.3.2 for the description of the tuning of the
experimental parameters). The driving is implemented through a frequency-
modulated RF pulse f (t) that couples the �ve neighboring mF states and is de-
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scribed by the Hamiltonian:
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(4.1)

with ~ reduced Planck constant. By using the rotating wave approximation
(RWA) to express the system Hamiltonian, in Eq. (4.1) f (t) = ∂t [tω(t)]whereω(t)
denotes the time-dependent frequency of the driving �eld. Instead, the coupling
Rabi frequency Ω is proportional to the RF �eld amplitude and in the following
will be set to Ω = 2π × 60.0 kHz.
Overall, the total Hamiltonian describing our system is H (t) = H0 + HRF (t). We
may also include in the model a dephasing term by means of super-operators ex-
pressed in the so-called Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) form
[139] to describe the presence of experimental low-frequency noise on the mag-
netic bias �eld and on the RF signal. However, it is worth noting that such noise
�eld starts a�ecting the dynamics of the quantum system after a time interval
of the order of the decoherence time of the BEC, which we have estimated to be
around 100 µs. In this regard, a quantitative analysis is realized in the second set
of experiments described in Subsec. 4.3.2.

4.2.1 Radio-frequency modulation with dCRAB
In order to drive the system evolution forth and back in time, the optimal time-
dependence of f (t) needs to be determined. This goal is here achieved by mini-
mizing the di�erence between the �nal and target quantum states of the atomic
evolution, both expressed in terms of the corresponding density matrix ρ. This
di�erence is provided by the error function ϵ ≡ 1

2
∑5

n=1
��ρn,n(T ) − ρ̂n,n��, where T

is the length of the control pulse, ρn,n(T ) denotes the ‘�nal’ atomic population
of the n-th sub-level at t = T (i.e, after the control pulse is ended), while ρ̂n,n
is the corresponding target population. Let us note that the error function ϵ ,
de�ning the success score of our procedure, can be chosen depending on the ex-
perimental or evolution constraints we are facing with. In our case, we chose
the simplest experimental way to get the optimal pulse output, i.e., by taking the
error function as the mismatch between the target atomic populations and the
ones obtained by letting evolve the optimally driven dynamics of the atoms in
the BEC.
To minimize the error function ϵ , the time-dependence of the (slowly oscillating)
frequency RF control pulse f (t) is optimally modulated by following the prescrip-
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tions of the dCRAB method [122–126]. For this purpose, the time-dependent fre-
quency ω(t) of the driving �eld is expanded in the standard Fourier basis such
that:

f (t) = 1 +
7∑

k=−7
Ak(1 + iνkt)eiνk t , (4.2)

and the optimal values of the expansion coe�cients Ak (amplitude of the control
function modulation) are determined algorithmically by ensuring that the error
function ϵ is minimized. Let us observe that in Eq. (4.2) νk = 2πk/T , where k
is the index that spans the set of harmonics pertaining to the driving �eld, with
k = 1, . . . , 7 [140], andT denotes the length of the control pulse as above. More-
over, also note that the optimization procedure in determining the optimal values
of Ak is performed via the subplex variant of the Nelder-Mead algorithm [141].
It is a subspace-searching simplex algorithm for unconstrained minimization of
a function1. Like the Nelder-Mead simplex method it generalizes, the subplex
method is well suited for optimizing noisy objective functions. The number of
function evaluations required for convergence typically increases only linearly
with the problem size, so for most applications the subplex method is much more
e�cient than the simplex method. The depth of modulation in all the experi-
ments is set to ∆ν = 1.3 MHz around the central frequency ν0 = 4.323 MHz.
Let us emphasize that our time-reversal protocol operates only on the diagonal
elements of the �nal density matrix ρ̂(T ) (reached at the end of the evolution),
corresponding to the quantum system populations that we directly measure. In
fact, the optimization procedures, which we perform to design the optimal pulses
driving the quantum system dynamics, are set not to employ non-diagonal ele-
ments of ρ̂(T ) that should be necessarily measured by means of a tomography
process. In this regard, by making use of the results in Refs. [129,143] concerning
the optimal preparation of quantum states on 87Rb BEC atom-chip-based micro-
traps (as ours), we implement a preliminary test experiment to tune the values
of the setup parameters for accurate state preparation and transfer. Speci�cally,
in this test experiment, we measure the time evolution of the atomic popula-
tion in each of the �ve mF sub-levels during the application of an optimal pulse
that brings the quantum system from an initial state, in which the population is
equally distributed among the states |F = 2,mF = +2〉 and |F = 2,mF = −2〉, to a
�nal state where all the population occupies the |F = 2,mF = −2〉 sub-level. The
experimental results, reported in Fig. 4.3 for illustrative purposes, are in satis-
factory agreement with the theoretical predictions obtained by solving the well-
known Liouville-von Neumann (di�erential) equation Ûρ(t) = −(i/~)[H (t), ρ(t)].
Finally, before proceeding, let us also observe that whenever a full density ma-
trix reconstruction is performed for additional test experiments (see the next sec-

1https://cran.r-project.org/web/packages/subplex/subplex.pdf
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Figure 4.3: Illustration of an atomic population dynamics. Time evolution of the �ve mF sub-
levels, as an e�ect of the application of the optimal control pulse f (t) to drive the system from an
initial state where the population is equally distributed among the states |F = 2,mF = +2〉 and
|F = 2,mF = −2〉, to a �nal state where all the population occupies the |F = 2,mF = −2〉 sub-
level. Continuous lines represent the theoretical simulations while the dots are the experimental
values, which are the average result of ten experimental repetitions. Error bars, computed via
standard deviation, are smaller then the diameter of the points and thus not shown.
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tion), the distance between the target and the experimentally measured quantum
states, ρ̂ and ρ(t) respectively, is evaluated through the Uhlmann �delity [142]:

F(ρ̂, ρ(t)) ≡

(
Tr

√√
ρ̂ρ(t)

√
ρ̂

)2

. (4.3)

In all the other cases, the accuracy in performing a given operation is assessed
by means of the error function, according to the formula 1 − ϵ .

4.3 Time reversal experiments

In this work we exploit the dCRAB control techniques to realize three di�erent
set of experiments (summarized in Fig. 4.4) to faithfully time-invert the evolu-
tion of a quantum system realized with ultra-cold atoms. The proposed strate-
gies are successfully applied along several paths in the system’s Hilbert space,
where quantum operations can be inverted by using gradually higher level of
control in terms of the complexity of the addressed control problems. More-
over, we also aim to illustrate how such techniques allow for the extension of
the implemented time-reversal transformations to much more complicated sit-
uations, in which performing the backward evolution in a shortest time-scale
and/or with accuracy values as high as possible may be crucial. Finally, in order
to make a comparison and corroborate our need to employ quantum OC meth-
ods, we show how di�erent the outcomes of such experiments are, if one inverts
the time-dependence of the external driving �eld instead of using an optimal
driving pulse.

(a) I set of experiments (b) II set of experiments (c) III set of experiments

Figure 4.4: Time reversal experiments. (a) The atomic evolution is driven forward and backward
in time from an initial state to a given target one. (b) The time-reversal of the quantum system
evolution is performed along trajectories with gradually shorter time duration. (c) The quantum
state of our system is driven back in time to a quantum state that has been already explored in
the past.
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4.3.1 First set of experiments
In the �rst set of experiments (also see Fig. 4.4a), our aim is to drive the evolu-
tion of our quantum system forward and backward in time from an initial state
ρ(0) to a given target one ρ̂ and then back again to ρ(0). This experiment is two-
fold: �rstly by time-inverting the driving �eld f (−t), and secondly by control-
ling the time-reverse evolution via the optimally designed driving pulse fOC(t),
where again the subscript OC stands for ‘optimal control’. As we will show in
the following, by comparing the experimental results of both procedures, we will
clearly demonstrate that inverting the time-dependence of the driving �eld, with-
out modifying the time-independent part of the system’s Hamiltonian (H0), does
not bring back the system to its initial state, and thus such a procedure may be
a common misconception to get time-reversed quantum dynamics. Conversely,
thanks to the use of OC algorithms, one is able to bring the quantum system
back to the desired state and restore the initial conditions. The experiment is
repeated four times to test the realization of an accurate time-reversal transfor-
mation over four di�erent paths in the Hilbert space of the BEC. Speci�cally, our
quantum system is driven – according to the optimal strategy of Ref. [129] –
from the initial state ρ(0), such that ρ1,1(0) = 1 and ρk,j(0) = 0 for k, j = 1, . . . , 5
apart k = j = 1 (experimentally, it corresponds to the case where the atomic
population occupies the state |F = 2,mF = 2〉 ≡ | + 2〉 as depicted in Fig. 4.2), to
the following four di�erent target states:

i) ρ̂A: ρ̂1,1 = ρ̂5,5 = 0.5;

ii) ρ̂B : ρ̂2,2 = ρ̂4,4 = 0.5;

iii) ρ̂C : ρ̂1,1 = ρ̂2,2 = 0.5;

iv) ρ̂D : ρ̂n,n = 1/5, for n = 1, . . . , 5,

where for each target all the other elements of ρ are equal to zero. Subsequently,
the optimal control pulse fOC(T ) (designed as in Subsec. 4.2.1) is applied to the
BEC to bring the system back to the initial state ρ(0) according to the two pro-
cedures introduced above. In all the analyzed cases, the time duration T of the
forward and backward processes is set to 100 µs, thus entailing a total system
evolution of 200 µs. To validate our experimental results as well as the goodness
of using optimal control techniques to achieve time-reversal transformations,
the atomic populations are measured at the end of the control pulse at t = T .
Then, the error function ϵ is computed by comparing our measurements with
the corresponding theoretical values obtained by reversing the time evolution
of the BEC, both using f (−T ) (inversion of the time-dependence of the driving

103



Chapter 4. Reversing time with ultra-cold atoms for quantum undo operations 104

A B C D
Prepared State

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Er
ro

r f
un

ct
io

n
Theory with fOC(T)
Experiment with fOC(T)
Experiment with f( T)

Figure 4.5: Control error functions. Theoretical and experimental error function computed for
the implemented time-reversed quantum dynamics in reaching the initial state ρ(0) by starting
from the target states ρ̂A, ρ̂B , ρ̂C , ρ̂D or at least in proximity of them, depending on the ex-
perimental accuracy achieved for their preparation. The black bar represents the numerically
simulated error function obtained through the optimized inversion of the driving �eld fOC (T ).
The light blue bar is the corresponding experimental error function (with its standard deviation),
while the red bar denotes the experimental error (with its standard deviation) obtained by chang-
ing the time-dependence of the driving �eld and thus applying the pulse f (−T ). The error bars
are computed by repeating 10 times each set of experiments. It is worth noting that, clearly, the
error function is not zero also in the case of the numerical simulation. Indeed, this occurs �rst
for the presence of experimental decoherence, as we will show in Subsec. 4.3.2 where the opti-
mal time-reversal is tested over time. Secondly it follows from the limited number of resources
at disposal, in terms of OC operations, to avoid computational burden.

�eld) and fOC(T ) (optimal driving �eld). The resulting values of the error func-
tions are illustrated in Fig. 4.5 where similar behaviors can be observed for all the
tested target states i), ii), iii) and iv). Here, it is worth noting that our results are
validated just by using the atomic populations of the system. However, it is well-
known that measuring the population elements of a quantum system represents
only a partial knowledge of its full density matrix. For this reason, albeit the ex-
cellent agreement between theoretical continuous lines and experimental dots in
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Intermediate stateInitial state OC full time-inversion Pulse time-inversion

Figure 4.6: Tomographic reconstruction. Density matrix representation of the initial state ρ(0),
the intermediate state ρOCA (T ) (reached via OC and as much close as possible to the target state
ρ̂A), and the �nal states ρOC (T ) and ρ(−T ) obtained by inverting or the whole system quantum
dynamics via OC techniques or the pulse time-dependence of the driving �eld respectively.

Fig. 4.3 that seems to con�rm our assumption of unitary dynamics, we perform
a full density matrix reconstruction for the case i). In this case, the atomic pop-
ulation of the target state is equally distributed among the two hyper�ne states
|F = 2,mF = 2〉 ≡ | + 2〉 and |F = 2,mF = −2〉 ≡ | − 2〉. As reported in Fig. 4.6,
we have measured the density matrix of the experimental state ρOCA (T ) that is
reached in the forward evolution by following the optimized OC path from the
initial state ρ(0) = | + 2〉〈+2| to the intermediate target state ρ̂A. Then, the two
possible �nal density matrices ρOC(T ) and ρ(−T ), corresponding respectively to
the ending stage of the optimally controlled and time-inverted backward trajec-
tories, are also reconstructed. The time evolution of sub-levels | + 2〉 and | − 2〉 is
also shown in Fig. 4.7 and is in perfect agreement with the theoretical predictions.
These experimental �ndings con�rm our assumption on the accuracy of the im-
plemented time-reversal transformations as well as the presence of the correct
coherence terms in the measured density matrices. Furthermore, the results il-
lustrated in Fig. 4.6 and 4.7 clearly show that inverting only the time-dependence
of the driving �eld brings the BEC atomic population closer (in the sense given
by the Uhlmann �delity) to the orthogonal state | − 2〉 instead of | + 2〉, while the
optimally reversed evolution successfully reaches the initial state.

4.3.2 Second set of experiments
To evaluate the time limits/constraints of the optimally-controlled time-reversal
transformations implemented in the �rst set of experiments, we perform a sec-
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Figure 4.7: Forward and backward evolution of | + 2〉 and | − 2〉 sub-levels. Top: The backward
evolution is driven by the pulse fOC (T ). Bottom: The backward evolution is driven by the pulse
f (−T ). In the optimally reversed dynamics the atomic population goes back to the initial state
| + 2〉, thus perfectly restoring the initial condition. In the time-reversed dynamics, instead, the
atomic population accumulates in the orthogonal state | − 2〉. Also here it can be noted that the
theoretical curves do not reach unity in the backward process. It is due to decoherence and to
resource consuming operations, from a computational point of view, in the OC optimization as
previously motivated in the caption of Fig. 4.5.

ond set of experiments (see Fig. 4.4b) to drive the quantum system evolution back
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and forth from the state ρ(0) to quantum target states ρ̂Q j , along the same trajec-
tory, by using pulses of gradually shorter lengths Tj , which belong to the interval
{10, 20, 40, 60, 70, 80, 100} µs. In all these experiments, the pulses that realize the
forward and backward processes have the same duration. In more details, �rst
we design an optimal forward pulse that brings the quantum system from the
initial state ρ(0) to the state ρ̂A reached at T = 100 µs. We thus obtain the op-
timal values of the pulse’s parameters by �xing the length of the control pulse
to T = 100 µs. Then, from such a pulse, we generate a set of sub-pulses with
a gradually shorter length Tj (including T = 100 µs). In this way, by varying Tj
from 10 µs to 100 µs, the quantum state ρ̂Q j is always closer (according to the
error function ϵ) to ρ̂A, until it coincides with ρ̂A for Tj = 100 µs. Then, a back-
ward process from ρ̂Q j to the quantum state ρ(0) is realized, once by inverting
the time-dependence of the forward pulse and another using OC to design the
backward pulse, similarly to what done in the �rst set of experiments. Also the
experimental results, reported in Fig. 4.8, show a quite small error in realizing
reversed quantum dynamics via optimal control techniques, while on the con-
trary the dynamics obtained by changing the time-dependence of the driving
�eld leads to a higher value of the error function ϵ . The experimental results are
in perfect agreement with the corresponding theoretical predictions for driving
pulses with short duration, while for experiments longer than 80 µs the mismatch
increases. The reason behind this behaviour is in the presence of experimental
dephasing noise that entails quantum coherence degradation. In fact, by includ-
ing the presence of dephasing noise in the theoretical model, whose e�ects on the
error function are depicted by the light-blue shaded area in Fig. 4.8, the mismatch
between experimental and theoretical data can be explained. Dephasing noise in
the model is included by means of the following Lindbladian super-operator term
L acting on the density matrix ρ(t):

L(ρ(t)) =
5∑

n=1
γn [− {|n〉〈n |, ρ(t)} + 2|n〉〈n |ρ(t)|n〉〈n |] (4.4)

where {·, ·} denotes the anticommutator. The action of L is to randomize the
phase of each sub-level n of the BEC with rate γn, whose value for simplicity has
been taken constant for all the sub-levels, i.e., γn ≡ γ ∈ 2π [20, 200]Hz. Hence,
the light-blue shaded area is obtained as in the following. The di�erence be-
tween the experimental and theoretical points at 100 µs is attributed exclusively
to the dephasing noise that determines the range of γ . Then, starting from such
dephasing range, the minimum and maximum values of the shaded area at each
pulse length T are obtained by numerically solving the GKSL equation:

Ûρ(t) = −
i

~
[H (t), ρ(t)] + L(ρ(t)) , (4.5)
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Figure 4.8: Testing optimal time-reversal over time. The error function vs pulse length T , with
T ∈ {10, 20, 40, 60, 70, 80, 100} µs, is reported from both the theoretical and experimental side.
The values of the error function are evaluated once by using the proposed optimal control strat-
egy and another by inverting the time-dependence of the driving �eld. In the �gure, we also take
into account the presence of experimental dephasing noise on the quantum system evolution, by
including in the numerical simulations a correction term that amends the theoretical prediction.
The correction, pictorially represented in the �gure by the light-blue shaded area, is numerically
simulated for each value of T by solving the di�erential equation (4.5) in the dephasing range
γn ≡ γ ∈ 2π [20, 200]Hz (estimated at T = 100 µs) and with an additional magnetic �eld �uctu-
ation with standard deviation of 1 mG. In this way, the correction is �nally obtained by taking
the corresponding minimum and maximum values of such computation.

by varying the dephasing rate γn ≡ γ in the interval 2π [20, 200]Hz and consid-
ering magnetic �eld �uctuations within the range ∆B = 1mG. In this regard, we
recall that in the GKSL equation, which models the time evolution of the system’s
density matrix a�ected by dephasing noise, H (t) ≡ H0 + HRF (t) with HRF (t) de-
�ned as in Sec. 4.2 and f (t) is constrained in the range f (t) ∈ 2π [4150, 4600] kHz,
so as to maintain always the same coupling of the RF antenna to the driving cir-
cuit.
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Figure 4.9: Tomography reconstruction of the measured states ρOCP (τ1) and ρOCP (τ2). The state
ρOCP (τ1), reported on the left-hand side of the image, is reached in τ1 = 33 µs in the �rst stage
of the experiment and represents a state in the past of the system evolution. The state ρOCP (τ2)
on the right-hand side of the image is reached in τ2 = 67 µs via the optimally time inverted
dynamics. The accuracy 1-ϵ between these two measured density matrices is 97.3%.

4.3.3 Third set of experiments
To better illustrate the wide applicability of our implemented time-reversal pro-
cedures, in a third set of experiments (see Fig. 4.4c) we aim to show that our OC
strategy is able to invert the evolution of the quantum system by driving it back
from ρ̂A (target state at T = 100 µs) to a quantum state ρP (τ ) that is reached in
τ ≤ 100 µs along the same trajectory linking ρ(0) with ρ̂A. In this way, we are go-
ing to show that it is also possible to drive the system back to a generic quantum
state that has been already explored in the past. This e�ectively quali�es our
experiments as a proof-of-principle of quantum undo operations, whereby the
external user has to be able to reverse at will the last operation they performed.
In more details, also in this case, the set of experiments is two-fold. First, start-
ing from the initial state ρ(0), the system evolution, enabled by the driving pulse

109



Chapter 4. Reversing time with ultra-cold atoms for quantum undo operations 110

that drives the quantum system from ρ(0) to ρ̂A in 100 µs (it is the same optimal
pulse used in the �rst set of experiments), is interrupted after τ1 = 33 µs. In that
instant, the system has reached the intermediate state ρOCP (τ1), which is then re-
constructed via tomography. Therefore, this �rst stage of the experiment allows
us to identify the state ρP (τ ), with τ taken equal to τ1 in our case. Secondly, the
system is made evolve from the initial state ρ(0) to the target state ρ̂A in 100 µs
without interrupting the pulse. Exploiting the dCRAB optimization procedure,
then, a path from ρ̂A to the state ρP (τ1) is traced back by using an optimal pulse
lasting τ2 = 67 µs (note that, by construction, τ1 + τ2 = 100 µs), and the resulting
state ρOCP (τ2) is measured again via a tomographic process. The experimental
results are reported in Fig. 4.9.
The accuracy 1 − ϵ between the measured density matrix ρOCP (τ1 = 33 µs), rep-
resenting a state in the past of the system evolution, and the measured state
ρOCP (τ2 = 67 µs) reached via the optimally time inverted dynamics, is around
97.3%. These results illustrate that the implemented OC strategy allows to per-
form a quantum undo operation not only of the last quantum state ρA but also of
any past state ρP (τ ) in the occurred quantum dynamics. In other terms, one is
able to bring back the system from the target state ρ̂A to the initial one ρ(0), but
even from ρ̂A to a generic state along the pathway ρ(0) ←→ ρ̂A.

4.4 Discussion & conclusions

The experiments presented in this chapter have tested the validity of using op-
timal control theory, enabled in our case by a dCRAB technique, to carry out
time-reversal transformations with high accuracy (on average around 92%) in a
Bose-Einstein condensate realized on an atom-chip. Speci�cally, we have real-
ized three sets of experiments. In the �rst set, the laser-cooled 87Rb atoms of
the condensate are driven forward and backward in time from an initial state
ρ(0) to a target one and then back to ρ(0). In the second set of experiments,
we have shown that the adopted OC technique works with almost equal accu-
racy in bringing back to the initial condition any quantum target state along the
same trajectory, independently on the time instant in which the target state was
achieved in the forward evolution of the system. In a third set of experiments,
we have also experimentally demonstrated the possibility to drive the quantum
system back to a quantum state already explored in its past dynamics. In our
opinion, all these experiments constitute the proof-of-principle of a wide class
of undo operations that might be implemented in the next future in several quan-
tum technology contexts. In particular, the implementation of undo operations
of the last step (or a few last steps) of a quantum circuit for quantum comput-
ing applications, is the main outlook of the experiments here presented. In this
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regard, however, it remains an open question whether it is always possible to
calculate such an undo operation, thus not only of the last few steps of a quan-
tum circuit. Indeed, this would require the knowledge of the state of the system
at any time which is not always possible.
To conclude, let us provide the thermodynamic interpretation of our experimen-
tal results. The introduction of a procedure to achieve time-reversal transforma-
tions is implicitly linked with the understanding of a clever way to nullify (or
even rectify) the thermodynamic entropy originated by the system [144–151].
Thermodynamics, and in particular the second law, tells us that if a dynami-
cal process (classical or quantum) is reversible, then it spontaneously (without
further consumption of resources) operates to go back to the starting point by
following the minimum energy trajectories allowed during the system evolu-
tion. Such dynamics are also denoted as autonomous, and thus it is not re-
quired to steer the system towards the desired state by means of an external
drive. Clearly, this is not the case in our experiments. Indeed, the decoherence
time, intrinsic to the Bose-Einstein condensate, imposes a time limit of 100 µs to
the experimental implementation of the dynamics as we showed in Subsec. 4.3.2.
This temporal constraint makes the quantum process irreversible thus needing
to pump energy from the outside (in our case making use of optimal control
strategies) to successfully carry out time-reversal transformations. In our ex-
periments, we have quanti�ed this aspect by computing the Loschmidt echo
M(τ ) ≡

��〈ψ0 |e
iH2(τ )τe−iH1(τ )T |ψ0〉

��2 [152–154], with ~ here set to 1, |ψ0〉 denoting
the initial wave-function such that ρ(0) = |ψ0〉〈ψ0 |, and τ duration of both the
forward and backward processes. Since in our case we can identifyH1(t) = H (t)
(i.e., as the BEC Hamiltonian of the forward process in the implemented dy-
namics) and H2(t) = HOC(t) (i.e., the optimal control Hamiltonian in which the
driving �eld is fOC(t)), the Loschmidt echo M(τ ) can be equivalently written as:

M(τ ) = Tr
[
eiHOC (τ )τ ρ̂(τ )e−iHOC (τ )τ ρ(0)

]
= Tr

[
ρOC(τ )ρ(0)

]
, (4.6)

where ρ̂(τ ) is the target quantum state achieved by the forward process at t = τ .
The values of M(τ ) = Tr[ρOC(τ )ρ(0)] computed experimentally for each set of
tomographic data are practically equal to the corresponding Uhlmann �delity
values F(ρOC(τ ), ρ(0)) that we have used to evaluate the accuracy of the imple-
mented time-reversal transformations. This evidence, beyond providing a clear
thermodynamic interpretation of our experimental �ndings, allows us to con-
clude in quantitative terms that the time-arrow inversion t → −t of the time-
dependent terms in the interaction Hamiltonian is not su�cient in general to
reverse a quantum evolution and thus to implement quantum undo operations.
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Final remarks

In this thesis work I presented two quantum protocols that share a common
atomic platform represented by a Bose-Einstein condensate of 87Rb atoms re-
alized on an atom-chip. I showed how the exquisite control that the atom-chip
enables, is a powerful tool in the manipulation of the BEC internal state dy-
namics. The latter is fundamental in the development of the quantum protocols
realized in this thesis work, whose success relies on the high degree of control
reachable in the ultimate stages of our experimental sequence.
In the context of classi�cation algorithms used in Quantum Machine Learning,
I implemented a �rst protocol of quantum embedding to map a string of com-
plex classical data into the Hilbert space of the BEC where the classi�cation is
easier. I described how, in a �rst “learning” stage, the optimal quantum circuit
that realizes the mapping of the data is identi�ed. This is provided by the con-
struction of a cost function that, after an iterative routine of 200 gradient descent
steps, �nds the optimal parameters for the embedding taking only a few minutes
of computational time. After the system has learned how to perform classi�ca-
tion, by virtue of the acquired knowledge during the training, I illustrated how
the protocol can be implemented on three di�erent platforms, namely ultra-cold
atoms, photons and superconductive circuits, to test its robustness to real-world
deployment scenarios. The experimental results I presented demonstrate that a
�delity exceeding 90% can be routinely achieved on all the explored platforms.
In particular the atomic platform reaches �delities even higher than 97%, prov-
ing that ultra-cold systems are promising candidates for the implementation of
this kind of algorithms. Indeed, the degree of control and isolation from the
external environment, provided by the ultra-high-vacuum in which the atoms
are held and by the stable magnetic and RF �elds, is generally much better than
what can be achieved with the other platforms. Estimating resources for quan-
tum algorithms using realistic quantum computing architectures is an important
near-term challenge. The optimization of speci�c algorithms to a speci�c hard-
ware is the highest and most important level of quantum computers co-design.
In this regard our experimental investigation demonstrates how quantum em-
bedding techniques may suit radically di�erent approaches to qubit encoding
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and manipulation by pulses as for ultra-cold atoms, by quantum logic circuits as
for superconductive platforms or by compiled operations as for photons. Such
results show promise for future interconnected systems or hybrid architectures
with specialized hardware for storage, processing and distribution of quantum
data.
Another quantum protocol I described in this thesis concerns the driving for-
ward and backward in time of our BEC’s dynamical evolution, by adopting an
optimal control theory, enabled by the dCRAB algorithm. I reported how the pro-
posed strategy is successfully applied along several paths of the system’s Hilbert
space, where quantum operations can be inverted by using gradually higher lev-
els of control. Indeed, in a �rst experiment the time-inversion is successfully
achieved from an initial state ρ(0) to a target one and then back again to ρ(0).
The procedure is further con�rmed repeating the experiment by choosing di�er-
ent intermediate target states. In a second set of experiments, the implemented
transformation is then extended to a more complicated situation in which the
backward evolution is performed in a gradually shorter time-scale and in which
high accuracy levels are required. Finally, a third set of experiments shows that
it is also possible to drive the system back to a quantum state already explored
in a past evolution, by starting from the present one in which the system is. In
order to make a comparison and corroborate the need to employ quantum opti-
mal control methods, I reported how di�erent the experimental outcomes are if
one simply inverts the time-dependence of the external driving �eld, through an
addition of a phase term, instead of using an optimal driving pulse. The experi-
mental �ndings with optimal control, indeed, have an average accuracy of 92%,
while the ones with the pulse time-inversion have an average accuracy of 38%.
All the experiments I described to test time-reversal transformations with ultra-
cold atoms, can be seen as the proof-of-principle of undo operations in quantum
regimes. An alternative outlook could be in the implementation of the above
techniques for self-veri�cation algorithms.
As I showed, ultra-cold neutral atoms can simulate a wide variety of phenom-
ena, thanks to their high degree of isolation, �exible geometry, spin control and
easily observable dynamics. However, challenges can arise in several scenarios
like, for instance, the non-uniformity of trapping potentials or a variety of loss
and decoherence mechanisms from the interaction with background vacuum gas.
Sometimes the imperfections such as noise and decoherence cannot accurately
be modeled theoretically and must be explored empirically by building and test-
ing more complex simulation platforms. In some cases quantum control can be
exploited to protect the quantum sensor from environmental noise or even en-
hance the system’s response to an external unknown perturbation and investi-
gate its nature. In this regard, even though this was not the subject of this thesis,
in our group we experimentally explored a new method, based on the stochas-

113



Final remarks 114

tic Quantum Zeno e�ect [155–157], to estimate the power spectral density of an
unknown noise �eld. The control signal, in this case, is applied together with
repeated projective measurements to correlate the �nal survival probability of
the system and the noise spectrum. The results of this work are available at:

• Hoang-Van Do, Cosimo Lovecchio, Ivana Mastroserio, Nicole Fabbri,
Francesco S. Cataliotti, Stefano Gherardini, Matthias M. Müller, Nicola
Dalla Pozza, and Filippo Caruso, Experimental proof of quantum
Zeno-assisted noise sensing. New J. Phys. 21, 113056 (2019).

The measurement of environmental e�ects on a quantum system is of great im-
portance for the development of quantum technologies. For high performance
quantum computers, indeed, it is essential to distinguish between the intrinsic
noise in the qubits, coming from their coupling to the environment (decoher-
ence), and the noise coming from control errors. The latter, for instance, can
be either systematic in nature, such as drifts or crosstalks, or stochastic, such as
thermal and shot noise in the control sources. Quantum control techniques can
thus be included as a possible mitigation approach of such e�ects, by designing
the controller in a way such that the impact of stochastic noise on the qubits is
smaller then their intrinsic one, and the systematic noise is fully characterized
and thus, where possible, reduced.
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A | Rubidium 87

In this appendix I supply some useful numbers of Rubidium 87 within the context
of this thesis. Most information is taken from Ref. [57].

Relative Natural Abundance η(87Rb) 27.83(2)%
Atomic Mass m 1.443 160 60(11) × 10−25 kg
Nuclear Spin I 3/2

Table A.1: Physical properties of 87Rb.

Figure A.1: 87Rb D2 transition structure.
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Frequency ω0 2π × 384.230 484 THz
Wavelength in vacuum λ 780.241 209 nm
Wavelength in air λair 780.032 00 nm
Wave Number in vacuum kL/2π 12 816.549 389 cm−1

Lifetime τ 26.24(4) ns
Decay Rate/Natural Line Width
(FWHM) Γ

38.11(6) × 106 s−1

2π × 6.065(9)MHz
Recoil Velocity vr 5.8845 mm s−1

Recoil Frequency ωr 2π × 3.7710 kHz
Recoil Temperature Tr 361.96 nK
Doppler Shift (vatom = vr ) ∆ωD(vatom = vr ) 2π × 7.5419 kHz
Doppler Temperature TD 146 µK
E�ective Saturation Intensity
(π -polarized light) Isat 2.503(3)mW cm−2

Table A.2: Optical properties of 87Rb D2-line transition (52S1/2 → 52P3/2). Note that kL is the
wave-vector of the laser light.

Electron spin Landé д-factor дS 2.002 319
Electron orbital Landé д-factor дL 0.999 993
Nuclear Landé д-factor дI −0.000 995

Fine structure Landé д-factor
дJ (52S1/2) 2.002 331
дJ (52P1/2) 0.666
дJ (52P3/2) 1.3362

Table A.3: Magnetic �eld interaction parameters of 87Rb D transition.
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B | C-SWAP Test

The Controlled-SWAP gate (C-SWAP or Fredkin gate) is a gate with three input
and three output. It transfers the �rst input unchanged while swapping the last
two if and only if the �rst input is 1. It is illustrated in Fig. B.1. In quantum
computation, this test is used to check how two given quantum states di�er. This
quantum circuit e�ciently implements the �delity classi�er reported in Eq. (3.8).
Given the initial state |0,ϕ,ψ 〉 as an input for the C-SWAP circuit, it is easy to

Figure B.1: C-SWAP quantum circuit. The quantum circuit, reported in this �gure, implements
a controlled-swap test between the states |ϕ〉 and |ψ 〉. The Hadamard gate is indicated with H ,
|0〉 is the ancilla qubit and |0,ϕ,ψ 〉 is the initial state to which the gate is applied.

verify that a C-SWAP and two Hadamard gates realize the swapping of the two
states in input |ϕ〉 and |ψ 〉, with the use of the ancilla qubit |0〉. Let us recall the
matrix form of the Hadamard gate:

H =
1
√

2

(
1 1
1 −1

)
. (B.1)

Following the circuit in Fig. B.1, after the �rst Hadamard gate, the state of the
system becomes:

H −→
1
√

2
(|0,ϕ,ψ 〉 + |1,ϕ,ψ 〉) . (B.2)
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The C-SWAP gate, applied to the latter, swaps only the states that have the ancilla
as |1〉, thus obtaining:

C-SWAP −→
1
√

2
(|0,ϕ,ψ 〉 + |1,ψ ,ϕ〉) . (B.3)

The second Hadamard gate will then give:

H −→
1
2 |0〉 (|ϕ,ψ 〉 + |ψ ,ϕ〉) +

1
2 |1〉 (|ϕ,ψ 〉 − |ψ ,ϕ〉) . (B.4)

Finally, the measurement gate on the �rst qubit will ensure that it is |0〉 with
probability:

P |0〉 =
1
2 +

1
2 |〈ψ |ϕ〉|

2 . (B.5)

Hence, ifψ⊥ϕ, then |〈ψ |ϕ〉|2 = 0 and the probability to measure |0〉 is P |0〉 = 1/2.
While, ifψ = ϕ, then |〈ψ |ϕ〉|2 = 1 and the probability to measure |0〉 is P |0〉 = 1.
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