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Introduction

The stationary (DC) Josephson effect is one of the most striking consequence of
the spontaneous broken-symmetry of the phase ϕ(r) of the complex gap parameter
∆(r) = |∆(r)|eiϕ(r). It can be observed in a system where a geometrical constraint
(like a potential barrier or the insertion of a different material) is placed at the
interface between two superconductors [1]. At a microscopic level it can be explained
in terms of the coherent tunneling of the Cooper pairs across the constraint. This
phenomenon results in a characteristic relation between the stationary supercurrent
J and the asymptotic phase difference of ∆(r) across the constraint, which in its
simplest expression takes the form J = Jc sin(δφ), where Jc is the critical value of
the current above which the flow becomes dissipative and superfluidity is destroyed.

The Josephson effect has been observed in both condensed-matter systems [2]
and ultra-cold Fermi gases [3, 4, 5]. In the latter case, the interparticle interaction
can be tuned via Fano-Feshbach resonances [6, 7], resulting in states characterized by
largely overlapping pairs of opposite-spin fermions (in the Bardeen-Cooper-Schrieffer
[BCS] limit), to diluite dimers (in the Bose-Einstein Condensate [BEC] limit), across
an intermediate regime known as the unitary regime, where the pair size is of the
order of the average inter-particle distance.

The Josephson characteristics and their associated critical current values Jc,
across the BCS-BEC crossover were studied in details in Refs. [8, 9], where a
potential barrier embedded in an otherwise homogeneous superfluid system was
considered. The coupling was kept unmodified under the barrier similarly to what
occurs in the experiments with ultra-cold atomic gases [3, 4, 5]. This system, which
can be referred to as a SS’S junction, was studied in details at T = 0 by solving the
inhomogeneous Bogoliubov-de Gennes (BdG) equations [10] for various interparticle
interaction strengths and potential barriers.

Similar studies were performed at finite temperature in the BCS limit using
the mean-field approach taking into consideration tunneling barriers (characterised
by a low transmission probability) [11], or considering the high-temperature regimes
where Ginzburg-Landau (GL) equation was solved for tunneling barriers [12] or SNS
junctions [13, 14]. Many different kinds of junctions have been studied with different
methods [15], but only in a restricted region of the coupling-temperature phase
diagram or by developping theories valid for strictly specific geometrical constraints.
For this reason, in the present work we extend the study in [9] at finite temperature,
where the potential barrier used as the geometrical constraint allow to access both
low- and high-transmission regimes.

In practice, the BdG equations when applied to inhomogeneous problems are
quite demanding to handle. They usually require a large amount of computation
time to reach self-consistency and need a considerable memory space to store the
functions from which to extract the physical quantities (see Section 1.1 for further
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details). For this reason, when dealing with inhomogeneous physical systems, vari-
ous approximations to the BdG equations were considered, such as the Eilenberger
equations [16, 17] in the clean limit (where the carriers mean free path is much
larger than the coherence length of the pairs) and the Usadel equations [18, 17] in
the dirty limit (where the carriers mean free path is much smaller than the coherence
length of the pairs). In this context, in this work we solve the Local Phase Density
Approximation (LPDA) equation [19] obtained by a double-coarse graining of the
BdG equations, based on the assumption of smooth enough variations for both the
magnitude and phase of the gap parameter (see Subsection 1.2.1 for further details).
The LPDA equation is a higly non-linear differential equation for the order param-
eter ∆(r) and its solution, in place of the BdG equations, leads to a considerable
reduction of time and storage requirements.

The geometry mostly considered in this work for the barriers corresponds to
a regime where the transmission probability of Cooper pairs cannot be treated as
a small quantity as it is done when dealing with a Superconducting-Insulating-
Superconducting layers (SIS) junction [11]. This regime, where the width of the
potential barrier is non-negligible and the height is small enough with respect to
the Fermi energy EF , can be put in analogy with Superconducting-Normal metal-
Superconducting layers (SNS) junctions. These two distinct physical systems can
be characterised by similar temperature dependence of the respective critcal current
Jc. The critical behaviour of Jc as the critical temperature of the (S) region is
approached is the same for both SS’S (in the above described regime) and SNS
junctions (cf. [15] and [2]). In this work we show that it is possible to obtain a
temperature dependence of the critical current Jc quite similar to that of a SNS
junction, upon considering a suitable external potential (single-particle) in place
of the change in the inter-particle interaction (two-particle) which occurs at the
interfaces of SNS junctions. This result constitutes a bridge between the condensed-
matter and ultra-cold gases experiments where it is not possible to modify the
interparticle interaction within a few µm.

Although the LPDA equation represents a practical improvement with respect
to BdG equations when dealing with problems of physical interest, it can at most
recover the same physical contents obtained by the BdG equations. For this reason
its results are expected not to be appropriate at finite temperature when the inter-
particle interaction is increased from the BCS to the BEC limit, where the Cooper
pair size becomes comparable or even smaller than the inter-particle distance. In
order to obtain reliable results in this regime, but also in the unitary regime where
the Cooper pair size is comparable with the inter-particle distance, it would be
desirable to include pairing fluctuations beyond the present mean-field approach.
In this work, we provide some insights on this issue, proposing to include pairing
fluctuations for inhomogeneous Fermi systems on top of the LPDA equation (in order
not to lose the numerical advantages with respect to BdG equations), following the
lines of Ref. [20]. Though a complete treatment of this topic is outside the scope of
the present work, we provide in Section 2.10 a comparison between some early-stage
results for the critical value Jc, obtained within this approach and the experimental
data of Ref. [3].

The second part of this work is devoted to the study of the dynamics of a quan-
tum system driven out of equilibrium. Dynamic perturbation of superconducting
systems is a flourishing research field. The possibility of inducing superconductivity
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above Tc for a limited amount of time [21, 22] promises to endless technological ap-
plications. In this context, atomic quantum gases offer a valid platform for building
a quantitative understanding of the underlying processes. Realization of out-of-
equilibrium protocols in these systems is favoured because of the easy tunability of
the relevant parameters. As an example, we can mention the observation of the
crossing from the normal to the superfluid phase in atomic quantum gases following
a quench of the interaction [23]. In this context, we have solved the time-dependent
BdG equations to study the dynamics of a two-component Fermi gas following the
action of an external perturbation, in order to provide a close-to-reality perspective
of the occurring phenomena.

The thesis is organized as follows. In the first chapter, the main theoretical con-
cepts and tools utilized throughout this work are briefly discussed. In the second
chapter, the main results of the study of the Josephson effect are reported, including
a detailed mean-field study of the effect, the proposal of an analogy between SNS
and SS ′S junctions, and early-stage results obtained by including pairing fluctua-
tions on top of the mean-field treatment. In the third chapter, an analysis of three
different out-of-equilibrium protocols is reported for a system of N fermions confined
in a 1D box potential. In the fourth chapter, the main conclusions and perspectives
of this work are briefly discussed.
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Chapter 1

Theoretical Background

Ever since its discovery, superconductivity has been a phenomenon with striking
experimental manifestations. From 1911, the year of the observation of the resistivity
drop to zero in Mercury by Onnes, it has taken almost 50 years for the formulation
of a complete theory explaining the phenomenon. Purpose of this Section is to
provide an insight on this theory and to discuss the main theoretical instruments
used throughout this work.

In particular, whithin the mean-field approach to superfluidity, we will derive
the Bogoliubov-de Gennes (BdG) equations, also in their time-dependent version,
and the so called Local Phase Density Approximation (LPDA) obtained through a
coarse graining procedure of the BdG equations.

Two limiting situations are of special interest: The weak-coupling (BCS) limit
for T . Tc and the strong-coupling (BEC) limit at T ≈ 0. In these cases, the LPDA
equation, like the BdG equations, reduces to the Ginzburg-Landau (GL) and the
Gross-Pitaevskii (GP) equation, respectively.

1.1 The Bogoliubov-de Gennes equations

One of the most successful approach used to study superconductivity in the late 60s
was the mean-field approach of the BCS theory. Subject of this theory is a system
of interacting fermions. The most commonly used kind of interaction is a contact
attractive one. The reason why this model works can be briefly explained. Referring
to electrons in metals, they can be regarded as freely moving except for occasional
scattering by lattice vibrations (Bloch model). It was showed in [24] that, adding
to this model the effects of Pauli principle, it can happen that the phonon-electron
interaction leads to an effective electron-electron attraction in a narrow energy range
around the Fermi surface, resulting in a momentum distribution of the ground state
different from that of the normal one (the Fermi sphere). The new ground state,
identified as the superconducting one, is characterised by the presence of new formed
pairs of electrons with opposite spin and zero total momentum, which are known as
Cooper pairs (see [25]).

1.1.1 The mean-field Hamiltonian

Let us consider a two-component Fermi gas with electric charge e interacting through
a potential of the contact form −gδ(r − r′) (where g > 0). The time-independent
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Chapter 1. Theoretical Background

grand canonical Hamiltonian of the system reads [26]:

K̂ =
∑
σ=↑,↓

∫
drΨ̂†σ(r)

{
1

2m

[
−i~∇+

eA(r)

c

]2

+ V σ
ext(r)− µσ

}
Ψ̂σ(r)

− g
∫
drΨ̂†↑(r)Ψ̂†↓(r)Ψ̂↓(r)Ψ̂↑(r),

(1.1)

where Ψ̂σ(r) and Ψ̂†σ(r) are the fermionic field operators1 with spin projection σ,
A(r) the vector potential, V σ

ext(r) the spin-dependent external potential, and µσ the
chemical potential associated with fermions with spin projection σ.

Dealing with this Hamiltonian results to be hard because of the 4-field operators
term. For this reason, the interaction part of K̂ is simplified by adopting a bilin-
ear form following the mean-field prescription. The resulting effective Hamiltonian
reads:

K̂eff =
∑
σ=↑,↓

∫
drΨ̂†σ(r)

{
1

2m

[
−i~∇+

eA(r)

c

]2

+ V σ
ext(r)− µσ

}
Ψ̂σ(r)

−
∫ [

∆∗(r)Ψ̂↓(r)Ψ̂↑(r) + ∆(r)Ψ̂†↑(r)Ψ̂†↓(r)
]
,

(1.3)

where we have introduced the gap parameter

∆(r) = g〈Ψ̂↓(r)Ψ̂↑(r)〉 (1.4)

with the angular brackets denoting an ensemble average over K̂eff .

1.1.2 Explicit derivation of the BdG equations (T=0)

Let us assume that the Hamiltonian K̂eff can be rearranged as

K̂eff = Eg +
∑
ν

Eν

(
γ̂†ν1γ̂ν1 + γ̂†ν2γ̂ν2

)
, (1.5)

where Eg is the ground state energy, Eν the energy of the νth excitation, and γνα
operators which satisfy the fermionic anticommutation relations:

{γ̂να, γ̂ν′α′} = 0,
{
γ̂†να, γ̂

†
ν′α′

}
= 0,

{
γ̂να, γ̂

†
ν′α′

}
= δνν′δαα′ . (1.6)

The assumption made in (1.5) allow us to identify the ground state |Φ0〉 over
which the average in Eq. (1.4) is performed, with the property

γνα|Φ0〉 = 0 ∀ν for α = 1, 2. (1.7)

The state |Φ0〉 is commonly referred to as the Bogoliubov vacuum.

1The fermionic field operators satisfy the following anticommutation relations:{
Ψ̂σ(r), Ψ̂σ′(r′)

}
= 0,

{
Ψ̂†σ(r), Ψ̂†σ′(r

′)
}

= 0,
{

Ψ̂σ(r), Ψ̂†σ′(r
′)
}

= δσσ′δ(r− r′). (1.2)
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Chapter 1. Theoretical Background

Let us further assume that the field operators in Eq. 1.3 can be written as:(
Ψ̂↑(r)

Ψ̂†↓(r)

)
=
∑
ν

(
uν↑(r) −v∗ν↑(r)
vν↓(r) u∗ν↓(r)

)(
γ̂ν1

γ̂†ν2

)
, (1.8)

where uνσ(r) and vνσ(r) are complex functions to be specified in the following.
In order for Ψ̂σ(r) and Ψ̂†σ(r) to satisfy the fermionic anticommutation relation

(see (1.2)), uνσ(r) and vνσ(r) have to obey the following closure relation:

∑
ν

[(
uν↑(r)
vν↓(r)

)(
u∗ν↑(r

′) v∗ν↓(r
′)
)

+

(
−v∗ν↑(r)
u∗ν↓(r)

)(
−vν↑(r′) uν↓(r

′)
)]

= 1δ(r− r′). (1.9)

From eq. (1.5) follows that

[γ̂να, K̂eff ] = Eν γ̂να

[γ̂†να, K̂eff ] = −Eν γ̂†να
with α = 1, 2 (1.10)

and using the anticommutation relation of fermionic field operators one finds

[Ψ̂↑(r), K̂eff ] = ĥ↑(r)Ψ̂↑(r)−∆(r)Ψ̂†↓(r)

[Ψ̂↓(r), K̂eff ] = ĥ↓(r)Ψ̂↓(r) + ∆(r)Ψ̂†↑(r)
(1.11)

where

ĥσ(r) =
1

2m

[
−i~∇+

eA(r)

c

]2

+ V σ
ext(r)− µσ. (1.12)

Using the transformation (1.8) and the relation (1.10) into (1.11) and equating the
coefficients of the γν operators, one eventually finds the following equations for uνσ(r)
and vνσ(r) 

ĥ↑uν↑(r)−∆(r)vν↓(r) = Eνuν↑(r)

−ĥ∗↑vν↑(r)−∆∗(r)uν↓(r) = Eνvν↑(r)

ĥ↓uν↓(r)−∆(r)vν↑(r) = Eνuν↓(r)

−ĥ∗↓vν↓(r)−∆∗(r)uν↑(r) = Eνvν↓(r)

(1.13)

where

ĥ∗σ(r) =
1

2m

[
i~∇+

eA(r)

c

]2

+ V σ
ext(r)− µσ. (1.14)

Let us remark that the Eν entering in (1.13) are positive definite because of the
assumption (1.5). However, after simple manipulations we can rewrite the second
and third equation of (1.13) as follows

ĥ↑[−v∗ν↑(r)]−∆(r)[u∗ν↓(r)] = −Eν [−v∗ν↑(r)],

−ĥ∗↓u∗ν↓(r)−∆∗(r)[−v∗ν↑(r) = −Eνu∗ν↓(r),

which are the first and fourth equations in (1.13) using the correspondance

Eν

(
uν↑(r)
vν↓(r)

)
↔ −Eν

(
−v∗ν↑(r)
u∗ν↓(r)

)
. (1.15)

6
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As a consequence (1.13) can be rearrenged as(
h↑(r) −∆(r)
−∆∗(r) −h∗↓(r)

)(
uν↑(r)
vν↓(r)

)
= Eν

(
uν↑(r)
vν↓(r)

)
, (1.16)

where now the solutions have both Eν > 0 and Eν < 0.
Equation (1.16) is an eigen-value problem, whose eigenvectors are orthonormal

to each other (see (1.9)), which has to be solved consistently with the gap equation
(1.4). This equation, using the transformation in (1.8) and the property of the state
|Φ0〉 (see eq. (1.7)), becomes:

∆(r) = −g
2

∑
ν

[
uν↓(r)v∗ν↑(r) + uν↑(r)v∗ν↓(r)

]
. (1.17)

Other quantities of interest, which can be evalued from uνσ(r) and vνσ(r), are
the number density and the energy of the system. Their expressions read:

nσ(r) = 〈Φ0|Ψ̂†σ(r)Ψ̂σ(r)|Φ0〉 =
∑
ν

|vνσ(r)|2 (1.18a)

and

E = 〈Φ0|K̂eff |Φ0〉+
∑
σ

µσ

∫
dr〈Φ0|Ψ̂†σ(r)Ψ̂σ(r)|Φ0〉

=

∫
dr

{∑
ν,σ

vνσ(r)
[
ĥσ(r) + µσ

]
v∗νσ(r)− 1

g
|∆(r)|2

}
.

(1.18b)

1.1.3 BdG Equations at finite Temperature

At finite temperature, eq. (1.16) remains formally the same, but an ensemble aver-
ages has correpondingly to be performed.

Averages of pairs of fermionic operators γ̂να and γ̂†να read:

〈γ̂ναγ̂ν′α′〉T = 0 〈γ̂†ναγ̂
†
ν′α′〉T = 0 〈γ̂†ναγ̂ν′α′〉T = δνν′δαα′fF (Eν , T ), (1.19)

where fF (Eν , T ) is the Fermi function at temperature T

fF (Eν , T ) =
1

eβEν + 1
(1.20)

with β = 1/kBT (kB being the Boltzmann constant).
Using the relations (1.19) in eqs. (1.4) and (1.18) we obtain:

∆T (r) = g〈Ψ̂↓(r)Ψ̂↑(r)〉T = −g
2

∑
ν

[
uν↓(r)v∗ν↑(r) + uν↑(r)v∗ν↓(r)

]
[1− 2fF (Eν , T )] , (1.21a)

nTσ(r) = 〈Ψ̂†σ(r)Ψ̂σ(r)〉T =
∑

ν {|uνσ(r)|2fF (Eν , T ) + |vνσ(r)|2 [1− fF (Eν , T )]} , (1.21b)

7



Chapter 1. Theoretical Background

ET =〈K̂eff (T )〉T +
∑
σ

µTσ

∫
dr〈Ψ̂†σ(r)Ψ̂σ(r)〉T =

=

∫
dr

{∑
ν,σ

vνσ(r)
[
ĥσ(r) + µTσ

]
v∗νσ(r) [1− fF (Eν , T )]

+u∗νσ(r)
[
ĥσ(r) + µTσ

]
uνσ(r)fF (Eν , T )− 1

g
|∆T (r)|2

}
.

(1.21c)

.

1.1.4 An equivalent version of the BdG Equation

The BdG equations are sometimes not used in the form (1.16), rather in an alterna-
tive form obtained introducing the so-called Gorkov propagators or single-particle
finite-temperature Green’s functions. At first sight, these functions could appear
as theoretical constructs of no-use when dealing with an experimental problem, but
they provide a direct link to measurable quantities.

As a first step, let us introduce field operators in the modified Heisenberg picture

Ψ̂Kσ(rτ) = eK̂eff (T )τ/~Ψ̂σ(r)e−K̂eff (T )τ/~, Ψ̂†Kσ(rτ) = eK̂eff (T )τ/~Ψ̂†σ(r)e−K̂eff (T )τ/~ (1.22)

where τ is an imaginary time, and define the normal and anomalous single-particle
Green’s functions, respectively, as follows

G(rτ, r′τ ′) ≡ −〈T̂τ
[
ψ̂K↑(rτ)ψ̂†K↑(r

′τ ′)
]
〉T , (1.23a)

F(rτ, r′τ ′) = −〈T̂τ
[
ψ̂K↑(rτ)ψ̂K↓(r

′τ ′)
]
〉T , F †(rτ, r′τ ′) = −〈T̂τ

[
ψ̂†K↓(rτ)ψ̂†K↑(r

′τ ′)
]
〉T , (1.23b)

where T̂τ is a time-ordering operator which rearranges the operators to which is
applied in decreasing time ordering and multiply them to (−1)P , where P is the
number of permutations of fermionic operators needed to obtain the correct time
ordering.

The Heisenberg field operators (1.22) obey the following equations of motion:

~
∂Ψ̂K↑(rτ)

∂τ
= eK̂eff τ/~[K̂, Ψ̂↑(r)]e−K̂eff τ/~ = −ĥ↑(r)Ψ̂K↑(rτ) + ∆(r)Ψ̂†K↓(rτ), (1.24a)

~
∂Ψ̂†K↓(rτ)

∂τ
= eK̂eff τ/~[K̂,Ψ†↓(r)]e−K̂eff τ/~ = ĥ∗↓(r)Ψ̂†K↓(rτ) + ∆∗(r)Ψ̂K↑(rτ), (1.24b)

such that the time derivatives of the normal and anomalous Green’s functions (1.23)
are:

~
∂G(rτ, r′τ ′)

∂τ
= −~δ(τ − τ ′)δ(r− r′)− ĥ↑(r)G(rτ, r′τ ′) + ∆(r)F †(rτ, r′τ ′), (1.25a)

8



Chapter 1. Theoretical Background

~
∂F(rτ, r′τ ′)

∂τ
= −ĥ↑(r)F(rτ, r′τ ′) + ∆(r)G(r′τ ′, rτ), (1.25b)

~
∂F †(rt, r′t′)

∂t
= ĥ∗↓(r)F †(rτ, r′τ ′) + ∆∗(r)G(rτ, r′τ ′). (1.25c)

Since the Hamiltonian K̂eff is time-independent, the Green’s functions depend
only on τ − τ ′. It is therefore useful to introduce the Fourier representation of the
Green’s functions

G(rτ, r′τ ′) =
1

β~
∑
n

e−iωn(τ−τ ′)G(r, r′, ωn), (1.26a)

F †(rτ, r′τ ′) =
1

β~
∑
n

e−iωn(τ−τ ′)F †(r, r′, ωn), (1.26b)

where ωn = (2n + 1)π/(β~) to ensure Fermi statistics. The frequencies ωn are
commonly referred to as Matsubara frequencies.

Introducing (1.26) into (1.25) yields the other well-known version of the BdG
equations, namely:(

i~ωn − ĥ↑(r) ∆(r)

∆∗(r) i~ωn + ĥ∗↓(r)

)(
G(r, r′, ωn)
F †(r, r′, ωn)

)
=

(
1
0

)
~δ(r− r′), (1.27)

where the gap parameter can be cast in terms of the anomalous Green’s function as

∆∗(r) = gF(rτ+, rτ) =
g

β~
∑
n

e−iωnηF †(r, r, ωn) (η → 0+). (1.28)

Combining eq. (1.9) with eq. (1.16) one sees that the solutions of eqs. (1.16)
and (1.27) are related by(

G(r, r′, ωn)
F †(r, r′, ωn)

)
=
∑

ν

[
1

iωn − Eν/~

(
uν↑(r)u∗ν↑(r

′)
vν↓(r)u∗ν↑(r

′)

)
+

1

iωn + Eν/~

(
v∗ν↑(r)vν↑(r

′)
−u∗ν↓(r)vν↑(r

′)

)]
. (1.29)

1.1.5 The time-dependent BdG Equations

In this Subsection we consider a time-dependence of the Hamiltonian (1.1), by al-
lowing the external potential or the interaction constant to vary with time. Per-
forming a mean-field decoupling on this newly defined time-dependent Hamiltonian,
we end up with an effective Hamiltonian of the same form of Eq. (1.3), where
V σ

ext(r)→ V σ
ext(r, t) and ∆(r)→ ∆(r, t) is the time-dependent order parameter

∆(r, t) = g(t)〈Ψ̂↓(r)Ψ̂↑(r)〉t. (1.30)

This definition corresponds to (1.4) upon changing g → g(t) and 〈. . . 〉 → 〈. . . 〉t,
where the angular brackets denote an ensamble average over the state |Φ(t)〉 to be
defined in the following.

We assume the time-dependence of the Hamiltonian to begin at a time t+0 , such
that K̂eff(t ≤ t0) = K̂eff(t0) = K̂eff where K̂eff is defined by eq. (1.3). It results
that |Φ(t = t0)〉 = |Φ0〉, where |Φ0〉 is the Bogoliubov vacuum at zero temperature

9



Chapter 1. Theoretical Background

introduced before (cf. eq. (1.7)). Therefore, the state |Φ(t)〉 for t > t0 can be
obtained from |Φ0〉 by

|Φ(t)〉 = Û(t, t0)|Φ0〉, (1.31)

where Û(t, t0) is the evolution operator associated with the time-dependent Hamil-
tionian K̂eff(t)

Û(t, t0) = T̂D exp

[
− i
~

∫ t

t0

K̂eff(t′)dt′
]

(1.32)

with T̂D denoting the time-ordering operator.
We assume the state |Φ(t)〉 to be still a Bogoliubov vacuum [27], in the sense

that
γ̂να(t)|Φ(t)〉 = 0 (t > t0), (1.33)

where γ̂να(t) are a set of time-dependent operators. These operators, following the
assumption (1.33), satisfy the relation

i~
∂γ̂να(t)

∂t
+
[
γ̂να(t), K̂eff(t)

]
= 0. (1.34)

Moreover, in the Heisenberg picture, the operators γKνα(t) are defined as

γ̂Kνα(t) = U †(t, t0)γ̂να(t)Û(t, t0) (1.35)

and obey the following time evolution condition

i~
∂γ̂Kνα(t)

∂t
= U †(t, t0)

{[
γ̂να(t), K̂eff(t)

]
+ i~

∂γ̂να(t)

∂t

}
Û(t, t0). (1.36)

Entering (1.34) into (1.36), we conclude that γ̂Kνα(t) = γ̂Kνα(t0) = γ̂να(t0) = γ̂να,
where γ̂να are the fermionic operators introduced in (1.5).

At this point, following the same procedure used for the diagonalization of the
time-indipendent Hamiltonian, we assume that the Heisenberg field operators can
be written in terms of γ̂να as(

Ψ̂K↑(r, t)

Ψ̂†K↓(r, t)

)
=
∑
ν

(
uν↑(r, t) −v∗ν↑(r, t)
vν↓(r, t) u∗ν↓(r, t)

)(
γ̂ν1

γ̂†ν2

)
, (1.37)

where uνσ(r, t) and vνσ(r, t) are complex functions to be dermined. Notice that, in
order for the Heisenberg field operators to depend on time, we have assumed that
the complex functions uνσ and vνσ depend on time.

Entering eq. (1.37) in the equation of motion of the Heisenberg field operators
(cf. 1.24 where now τ = it) and equating the coefficients of the γ̂να, we obtain
eventually the time-dependent Bogoliubov-de Gennes (TDBdG) equations:(

ĥ↑(r, t) −∆(r, t)

−∆∗(r, t) −ĥ∗↓(r, t)

)
= i~

∂

∂t

(
uν↑(r, t)
vν↓(r, t)

)
. (1.38)

Here, the time-dependent gap parameter ∆(r, t) can be expressed in terms of uνσ(r, t)
and vνσ(r, t) in the following way:

∆(r, t) = −g(t)

2

∑
ν

[
uν↓(r, t)v

∗
ν↑(r, t) + uν↑(r, t)v

∗
ν↓(r, t)

]
. (1.39)

10



Chapter 1. Theoretical Background

To arrive to this expression, eq. (1.30) was used along with the property

〈Φ(t)|Ψ̂↓(r)Ψ̂↑(r)|Φ(t)〉 = 〈Φ0|Ψ̂K↓(r, t)Ψ̂K↑(r, t)|Φ0〉. (1.40)

Other quantities of interest, which can be obtained from uνσ(r, t) and vνσ(r, t),
are the number density

nσ(r, t) =
∑
ν

|vνσ(r, t)|2, (1.41a)

and the energy of the system

E(t) =

∫
dr

{∑
ν,σ

vνσ(r, t)
[
ĥσ(r, t) + µσ

]
v∗νσ(r, t)− 1

g(t)
|∆(r, t)|2

}
. (1.41b)

1.2 Coarse-graining procedure of the BdG equa-

tions

To fully analyse an inhomogeneous superconducting system at any coupling and tem-
perature in terms of the time-independent BdG equations is quite prohibitive except
for a few cases. This is because solving eqs. (1.27) along with the self-consistency
condition (1.28) (or, equivalently, (1.16) along with (1.21a)) is computationally de-
manding both in terms of memory space and evaluation time, and possible only for
a limited number of relatively simple problems.

More amenable solutions are obtainable in terms of simpler non-linear differential
equations, like the Ginzburg-Landau (GL) equation in weak-coupling for T . TC
and the Gross-Pitaevskii (GP) equation in strong-coupling at T ≈ 0. However, it
is not possible to recover a solution for ∆(r) along the BCS-BEC crossover at any
temperature T . For this reason, many attempts have been made to approximate the
BdG equations over wider sectors of temperature-coupling phase diagram. The one
used here consists of the coarse graining of the BdG equations considered in [19].
This process is based on the assumption that the local magnitude and phase of the
gap parameter ∆(r) have both smooth spatial variations and allows one to obtain
a non-linear differential (local) equation for ∆(r) which is referred to as LPDA
equation. One of the virtues of this equation is that it reduces to the GL and GP
equations in the appropriate limits.

In the following, the constants ~ and e will be set equal to 1, and (kFaF )−1 will
be used as the coupling parameter, where kF = (3π2n)1/3 is the Fermi wavevector
associated with the density n and aF is the scattering length of the two-fermion
problem [28]. This dimensionless coupling parameter ranges from � −1 in the
weak-coupling (BCS) limit to � +1 in the strong-coupling (BEC) limit, across the
unitary limit where (kFaF )−1 = 0. The present work is mainly focused on the region
(kFaF )−1 . 0.5, where the mean-field approach at finite temperature is more reliable
than in BEC regime for (kFaF )−1 > 0.5.

1.2.1 The Local Phase Density Approximation of the BdG
equations

In [19] spin-balanced populations of interacting fermions subject to both an external
potential V (r) and a vector potential A(r) were considered. In this case, it is useful

11



Chapter 1. Theoretical Background

to adopt Gorkov’s procedure [29] and introduce the non-interacting Green’s function
G0 which satisfies the following equations:[
iωn − ĥ(r)

]
G0(r, r′, ωn) = δ(r−r′),

[
iωn − ĥ∗(r)

]
G0(r′, r, ωn) = δ(r−r′), (1.42)

where the spin-dependence has been dropped.
Using the properties of G0, eqs. (1.27) can be rewritten as{
G(r, r′, ωn) = G0(r, r′, ωn)−

∫
dr′′G0(r, r′′, ωn)∆(r′′)F †(r′′, r′, ωn)

F †(r, r′, ωn) =
∫
dr′′G0(r′′, r,−ωn)∆∗(r′′)G(r′′, r′, ωn),

(1.43)

while the gap parameter becomes

∆∗(r)

g
=

1

β

∑
n

∫
dr′′G̃0(r′′, r,−ωn)∆(r′′)G11(r′′, r, ωn). (1.44)

The starting assumption of the coarse-graining procedure is the smooth be-
haviour of the gap parameter, which is explicitly assumed through the subsequent
process. The variable r′′ is written as r′′ = R + τ + ρ, where R and τ identify
the centers of the volume elements (embedded into one another) about which the
magnitude ∆̃(R) and (the gradient of) the phase 2Q(R, τ ) of the gap are considered
to be approximately constant (cf. fig. 1.1). As a consequence, the spatial behaviour
of the gap parameter can be approximated as:

∆(r′′) w ∆̃(R)e2iQ(R,τ )·(R+τ+ρ). (1.45)

Moreover, assuming that the volume element centered at R + τ is close to
the variable r, performing further approximations (among which a (local) eikonal
approximation of G0(r′′, r,−ωn)), and using a standard regularization procedure to
eliminate g in favour of aF , the gap equation can be rewritten as

− m

4πaF
∆(R) =

∫
dR∆(R)

∫
dQ

π3
e2iQ·(r−R)KA(Q|r), (1.46)

where the kernel KA(Q|r) is defined by

KA(Q|r) ≡
∫

dk

(2π)3

[
1− 2fF (EA

+ (k,Q|r))

2EA(k,Q|r)
− m

k2

]
, (1.47)

with

EA
± (k,Q) ≡

√(
k2

2m
+

Q2

2m
− µ̄− A

m
·Q
)2

+ ∆̃2 ± k

m
· (Q−A), (1.48a)

2EA(k,Q) ≡ EA
+ (k,Q) + EA

− (k,Q). (1.48b)

The local chemical potential µ̄(r) ≡ µ−V (r)−A2(r)/(2m) has also been introduced
for convenience.

Expanding the kernel (cf. eq. (1.47)) in powers of Q and integrating over R, the
following non-linear (local) differential equation is eventually obtained:

− m

4πaF
∆(r) = I0(r)∆(r) + I1(r)

∇2

4m
∆(r)− I1(r)i

A(r)

m
· ∇∆(r), (1.49)
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l

x’’

z’’

y’’

R

τ

ρ

Figure 1.1: Double coarse graining procedure. The magnitude ∆̃(R) of the gap pa-
rameter is considered to be (approximately) constant in the volume of side l centered
at R. The (gradient of the) phase 2Q(R, τ) of the gap parameter is considered to
be (approximately) constant in the smaller volumes centered at R + τ embedded in
the bigger ones [Figure taken from [19]].

with the notation

I0(r) ≡
∫

dk

(2π)3

[
1− 2fF (EA

+ (k|r))

2E(k|r)
− m

k2

]
, (1.50a)

I1(r) ≡ 1

2

∫
dk

(2π)3

{
ξ(k|r)

2E(k|r)3
[1− 2fF (EA

+ (k|r))]+

+
ξ(k|r)

2E(k|r)2

∂fF (EA
+ (k|r))

∂EA
+ (k|r)

− k ·A(r)

A(r)2

1

E(k|r)

∂fF (EA
+ (k|r))

∂EA
+ (k|r)

}
,

(1.50b)

where

ξ(k|r) =
k2

2m
− µ̄(r),

E(k|r) =
√
ξ(k|r)2 + |∆(r)|2,

EA
+ (k|r) = E(k|r)− k ·A(r)

m
.

(1.51)

The remarkable aspect of the above equation, referred to as a Local Phase Den-
sity Approximation (LPDA) of the BdG equations, is that it should hold with no a
priori restrictions on coupling and temperature regimes, provided that ∆(r) varies
slowly enough with its magnitude varying more slowly than its phase. In addition,
as already mentioned, the LPDA equation reduces to the GL and GP equations in
the appropriate limits.
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To test its validity in [19], eq. (1.49) has been applied to the non-trivial case
of an isolated vortex embedded in a infinite medium. The obtained gap parameter
profile is in good agreement with the corresponding solution of the BdG equations
(see fig. 2 of [19]), and this appears especially remarkable in the light of the huge
reduction of computational time: a few seconds against a whole day. The larger
deviations, albeit still rather small, occur in the BCS regime at low temperature.
This discrepancy has been attributed to the spatial range of the kernel (of the order
of the size of the fermion pairs at low temperature) which in that limit is comparable
with the range of the gap parameter itself. Indeed further studies on the subject have
lead to the conclusion that the granularity scale resulting from the double-coarse
graining procedure discussed above is given by the Cooper pair size [30].

1.2.2 LPDA equation in the presence of a supercurrent

For later convenience, it is useful to introduce the expressions of the density n(r)
and the supercurrent j(r) consistent with the LPDA approach when dealing with a
neutral Fermi gas.

In this case, A(r) plays formally the role of an ”effective” vector potential, and
its physical meaning differs from that of vector potential in classical electrodynam-
ics. In the presence of a flowing supercurrent J , A(r) is identified with a constant
wavevector −Q0 such that at zero temperature J = Q0n/m [9], with Q0 = |Q0|,
n being the number density and m the fermionic mass. In addition for the present
system the superfluid gap parameter solution of eq. (1.49) can be written as

∆(r) = |∆(r)|eiϕ(r), where ϕ(r) = 2Q0 · r + 2φ(r). (1.52)

Consistently with the LPDA approach, we take the (coarse-grained) local current
of the form

j(r) =
1

m
(∇φ(r) + Q0)n(r) + 2

∫
dk

(2π)3

k

m
fF

(
EQ0

+ (k|r)
)
, (1.53)

where

n(r) =

∫
dk

(2π)3

{
1− ξQ0(k|r)

EQ0(k|r)

[
1− 2fF (EQ0

+ (k|r))
]}

(1.54)

is the corresponding local number density, and

ξQ0(k|r) =
k2

2m
− µ(r) +

1

2m
(∇φ(r) + Q0)2 ,

EQ0(k|r) =
√
ξQ0(k|r)2 + |∆(r)|2,

EQ0
+ (k|r) = EQ0(k|r) +

k

m
· (∇φ(r) + Q0) ,

(1.55)

with µ(r) = µ− V (r).
Note that at T = 0 the local current (1.53) with ∇φ = 0 coincides with Q0n/m

provided the integral contribution vanishes. This is the case as far as the argument
of the Fermi function remains positive for all k, while violation of this condition
corresponds to the Landau criterion for the collapse of superfluidity [31] when the
relevant quasi-particle exitations consist of pair-breaking excitations.
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1.2.3 Recovering the GL and GP equations

For later convenience, it is useful to determine how the GL and GP equations are
recovered from the LPDA equation in the appropriate limits.

In the weak-coupling limit (kFaF )−1 � 1 and at temperature close to Tc, we
can approximate E(k|r) ∼= |ξ(k|r)| (see Eq. (1.51)) and neglect all integrands in
Eqs. (1.50) which are odd in ξ(k|r). Moreover, using the BCS equation for Tc and
assuming A(r) to be small enough, we obtain:

I0(r) ∼= −
m

4πaF
+N0

[(
1− T

Tc

)
−
(

1− π

4kFaF

)
Vext(r)

EF

]
−N0

7ζ(3)

8π2(kBTc)2
|∆(r)|2 − A(r)2

m
I1(r),

(1.56a)

I1(r) ∼= N0
7ζ(3)EF

6π2(kBTc)2
, (1.56b)

where ζ(3) ' 1.202 is the Riemann ζ function of argument 3 and N0 = mkF/(2π
2)

is the density of states at the Fermi level per spin components. Introducing Eqs.
(1.56) into Eq. (1.49), we get

(i∇+ 2A(r))2

4m
∆(r)+

3

4EF
|∆(r)|2∆(r)

+
6π2(kBTc)

2

7ζ(3)EF

[(
1− π

4kFaF

)
Vext(r)

EF
−
(

1− T

Tc

)]
∆(r) = 0,

(1.57)

that is the Ginzburg-Landau equation in the presence of an external potential [32].
In the case of a supercurrent flow, the vector potential A(r) will be replaced by

−Q0 in Eq. (1.57) and the current becomes to the lowest-order in |∆(r|2:

jGL(r) ' 1

m
(∇φ(r) + Q0)

7ζ(3)n

8π2(kBTc)2
|∆(r)|2. (1.58)

On the other hand, when (kFaF )−1 � 1 and T = 0 the largest energy scale
is given by the two-body binding energy ε0 = 1/(maF )2 = −2µ + µB, where µB
is the residual chemical potential of the composite bosons that form in this limit.
Expanding Eqs (1.50) in terms of the small parameter ∆(r)/|µ|, we obtain to the
leading orders:

I0 = − m

4πaF
+
m2aF

8π

[
µB − 2Vext(r)− ma2

F

2π
|∆(r)|2

]
, (1.59a)

I1 =
m2aF

8π
. (1.59b)

Introducing Eqs. (1.59) into Eq. (1.49) we get eventually

(i∇+ 2A(r))2

4m
∆(r) + 2Vext(r)∆(r) +

ma2
F

2
|∆(r)|2∆(r)− µB∆(r) = 0, (1.60)

which coincide with the Gross-Pitaevskii equation for composite bosons (dimers).
In the case of a supercurrent flow A(r) = −Q0 and the current to the lowest

order in |∆(r)|2 is given by

jGP (r) ' 1

m
(∇φ(r) + Q0)

m2aF
4π
|∆(r)|2. (1.61)
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Chapter 2

Josephson Effect at finite
Temperature

2.1 Geometry of the physical system

In order to study the stationary Josephson effect, we have considered a potential
barrier embedded in an otherwise homogeneous superfluid extending to infinity (SS’S
junction). This system was already studied in [9] and is similar to the experimental
setup utilized for ultracold quantum gases [3, 4].

Identifying with x̂ the direction of the current flow, the external potential that
will be mostly used in the following takes the form

Vext(x, y, z) =

{
V0 for x ≤ L/2,

0 for x > L/2,
(2.1)

where V0 and L are the height and width of a rectangular barrier centered at x =
0, respectively. We are assuming the barrier to be homogeneous along ŷ and ẑ,
the orthogonal directions to the current flow, in order to simplify the numerical
calculations.

The barrier plays the role of the weak-link needed to observe the DC Josephson
effect and allow us to study high-transparency and low-transparency regimes by
varying the height V0.

Quite generally, in correspondence of the barrier the magnitude of the gap pa-
rameter has a depression and recovers its bulk value away from it. Moreover, when
a supercurrent flow is imposed, the phase 2φ(r) introduced in (1.52) has the typ-
ical profile shown in fig. 2.1: It varies smoothly between the asymptotic values
2φ(+∞) = −2φ(−∞) = δφ/2 and its rate of change is maximum in the region of
the barrier.

Following a standard procedure when solving the GL equation, in the numerical
calculations the imaginary part of the LPDA equation (1.49) has been replaced by
the current conservation

|j(r)| = J, (2.2)

where j(r) is given by eq. (1.53).
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Figure 2.1: (a) Rectangular shape of the potential barrier of height V0 and width
L, on which the stationary supercurrent impinges from the left. Profiles (obtained
at unitarity and for T/Tc = 0.5) of the (b) magnitude and (c) phase of the gap
parameter due to the presence of the barrier, which approach their bulk values ∆0

and δφ/2, respectively, over the distance ξout. Here, kF is the Fermi wavevector and
EF = k2

F/(2m) the corresponding Fermi energy. (Reproduced from Ref. [33].)

2.2 Current vs Phase Josephson Characteristics

One of the main results obtained in the original paper by Josephson [1], later con-
firmed for fermionic systems [12], was the shape of current-vs-phase characteristic
for an insulating (low-transparency) barrier: J = Jc sin(δφ), where Jc is the critical
current above which superfluidity is destroyed. This result has been generalized to
different kind of weak links and can be rephrased more generally as J = Jcf(δφ)
where f is a periodic function with f(0) = f(π) = 0 [15].

In the following we shall assume that current-vs-phase numerical characteristics
have the shape described by

f(δφ) =
A sin(δφ)√

1 +B sin2(δφ/2)
, (2.3)

where A and B are (dimensionless) parameters which depend on the barrier height as
well as on coupling and temperature. An expression of the type of (2.3) was obtained
for delta-like barriers in the BCS limit at any temperature [34] and recovers both the
Ambeagokar-Baratoff result for low-transparency barriers [11] and the Aslamazov-
Larkin study for sufficiently thin barriers near Tc [35]. In Ref. [9] an expression
similar to eq. (2.3) was analitically derived for delta-like barriers at T = 0 and we
have proven that it fits rather well all mean-field chracteristics obtained in [9] at
T = 0 for various couplings and barrier heights and widths (see fig. 2.2).
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Figure 2.2: Josephson characteristics for a rectangular barrier of width LkF = 4 and
various height V0/EF (in units of the Fermi energy EF = k2

F/(2m)), where the values
of Q0/kF obtained in Ref. [9] by solving the BdG equations at zero temperature
for various couplings (symbols) are compared with the fits obtained by Eq. (2.3)
(lines). In (a) V0/EF = 0.4, with (kFaF )−1 = −1 (crosses and dotted line) where
A = 0.074 and B = 1.3, (kFaF )−1 = 0 (stars and dashed line) where A = 0.0412 and
B = −0.11, and (kFaF )−1 = +1.5 (squares and full line) where A = 0.00261 and
B = 0.1.In (b) (kFaF )−1 = 0, with V0/EF = 0.025 (crosses and dotted line) where
A = 1.72 and B = 96,V0/EF = 0.1 (stars and dashed line) where A = 0.367 and
B = 4.9, and V0/EF = 0.4 (squares and full line) where A = 0.0412 and B = −0.11.
(Reproduced from Ref. [33].)

The expression (2.3) plays an important role in the present study of the DC
Josephson effect. This is because the LPDA approach is expected to give reliable
results when the spatial variation of the magnitude and phase of the gap parameter
are sufficiently smooth. However, for increasing δφ the variations of both |∆(x)|
and 2φ(x) are expected to be more sharp, such that LPDA approach may fail for
δφmax < π and we may be able to draw only an arc of the Josephson characteristic.
When this occurs, we will use eq. (2.3) to extrapolate the remaining part of the
curve. In this context, we expect δφmax to be smaller for decreasing coupling at low
temperature (for the intrinsic limits of LPDA approach explained in the subsection
1.2.1), and larger for increasing temperature due to the fact that the healing length,
which describes the length scale over which the gap parameter recovers its bulk value
(see fig. 2.1), is an increasing function of the temperature [36].

In addition, eq. (2.3) recovers the standard sinusoidal Josephson relation when
B = 0, while it reduces to (2A/

√
B) cos(δφ/2) when B � 1 and to 2A sin(δφ/2)

when B → −1, which correspond to the different limiting situations highlighted in
[9]. The maximum value of eq. (2.3) for an arbitrary value of B ∈ [−1,+∞) occurs
at

δφ = arccos

(
2 +B − 2

√
1 +B

B

)
. (2.4)

Figure 2.3 shows the Josephson characteristics for different temperatures and
couplings. In particular, panel(a) shows how the current-vs-phase characteristics
evolve for increasing temperature1 at fixed coupling, while panel(c) shows how the

1The temperature range [0.5, 0.9]Tc used in Fig. 2.3 was chosen because it allowed the numerical
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Figure 2.3: The Josephson characteristics for the current J (in units of JF = kFn/m)
(top panels) are compared with those for the wave vector Q0 = |Q0| (in units of
kF ) (bottom panels), for a barrier of height V0/EF = 0.05 and width kFL = 3. The
left panels show the dependence of the Josephson characteristics on temperature
for (kFaF )−1 = 0, while the right panels show their dependence on coupling for
T/Tc = 0.7. The insets in the lower panels show the temperature and coupling
dependence of ns/n (see the text). (Reproduced from Ref. [33].)

shape of J(δφ) changes for different couplings at fixed temperature. Looking at
panel(a) we notice that the maximum value of the current Jc decreases for increasing
temperature with the position of the maximum approaching the value of π/2 for
T → T−c . In other words, for increasing temperature the Josephson characteristic
approaches the typical sinusoidal shape (B → 0). Looking at panel (c), we notice
that Jc decreases upon approaching the BCS side of the crossover with the position
of the maximum moving to the left for fixed temperature.

Panel (b) and panel (d) show instead the dependence of Q0 = |Q0| (which
enters eq. (1.53)) on δφ for various temperatures at fixed coupling and for different
couplings at fixed temperature, respectively. In particular, from the comparison
between the top and the bottom panels of fig. 2.3, we can evaluate the superfluid
density. This is because eq. (1.53) can be cast in the form

j(r) =
1

m
[∇φ(r) + Q0]ns(r), (2.5)

where ns is the local superfluid density. Away from the barrier, the result Jc/JF =
Q0ns/kFn implies that at T = 0 ns = n for any coupling. At finite temperature
on the other hand, from eq. (1.53) we expect J/JF < Q0/kF such that ns < n
where ns depends on Q0. The insets in the bottom panels of fig. 2.3 show the ratio
ns/n obtained in correspondence to the maximum of the Josephson characteristics.

integration of LPDA equation up to δφMAX larger than the critical current abscissa. At lower
temperatures, we may need eq. (2.3) to extrapolate the value of Jc and its abscissa. We verified
that at T = 0, for given coupling and barrier geometry, the branches of the characteristics we
obtain by solving the LPDA equation perfectly match the characteristics shown in Ref. [9], where
the BdG equations at T = 0 were numerically solved.
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Figure 2.4: Left panels: Temperature dependence of the Josephson characteristics
for the couplings (kFaF )−1 = 0 and (kFaF )−1 = −1, with two rectangular barriers
of heights V0/EF = (0.05, 0.25) and width kFL = 3. Right panels: Corresponding
temperature dependence of the coefficients A (dots) and B (stars) of the expression
(2.3) used to fit the corresponding Josephson characteristics in the left panels. The
values of coupling, barrier height, and width reported in the right panels refer also
the left panels. (Reproduced from Ref. [33].)

In particular, the inset in panel (c) shows that, for increasing temperature, the
superfluid density decreases, while the inset of panel (d) shows that the superfluid
density increases as the unitary limit is approached from the BCS side.

In fig. 2.4 the current-vs-phase characteristics are shown when (kFaF )−1 = −1
and (kFaF )−1 = 0 for two different barrier heights, in order to allow for a clear
comparison between the BCS and the crossover regimes. The panels on the right
show the corresponding fitting parameters (see eq. (2.3)). We notice that, for
both barrier heights and any temperature, J(δφ) has a steeper dependence on the
phase difference for δφ/π . 0.1 for (kFaF )−1 = −1, which is reflected on the fitting
parameter B that results to be an order of magnitude larger in the BCS regime than
at unitarity. At the same time the fitting parameter A is comparable in the two
cases.

Since the shape of the characteristics is deeply affected by the height and width of
the potential barrier, we studied how J(δφ) and Q0(δφ) change at fixed temperature
and coupling for varying barrier heights and widths. The main results of this analysis
are reported in Fig. 2.5. In the left panels, we see that, at fixed coupling and for a
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(bottom panels) for T/Tc = 0.5 and (kFaF )−1 = 0, for barriers with several heights
and widths. In particular, the left panels show the dependence of the Josephson
characteristics on the height V0/EF when kFL = 4, while the right panels show
their dependence on kFL for V0/EF = 0.05. (Reproduced from Ref. [33].)

temperature sufficiently smaller than Tc, the characteristics for V0 � EF approach
the shape cos(δφ/2), while for increasing V0 they recover the typical sin(δφ) relation.
We point out that this behaviour is observable only at small enough barrier widths,
because for increasing barrier widths additional effects may play an important role
as it will be highlighted in Section 2.4. Another effect of the increasing barrier
height is the suppression of the maximum value of the current Jc (this aspect will
be studied in details in the following).

Looking at the right panels of Fig. 2.5 we see that at fixed coupling, temperature,
and barrier height, the chacteristics shift the abscissa of their maximum to the right
for increasing L. Moreover, the value Jc, after an initial decrease, seems to reach
an asymptotic finite value. This feature was already observed in [37] and will be
discussed in details in Section 2.4.

2.3 Spatial profiles of the magnitude and phase of

the gap parameter

In this section, we study the profiles of the magnitude and phase of the gap parameter
which is solution to the LPDA equation. Because of the geometry of the system (see
Section 2.1), |∆(x)| is an even function about x = 0, while 2φ(x) is odd2 about the
same point. For these reasons, we will show the profiles only in the region x > 0.

In fig. 2.6 we show the profiles of the magnitude [panel (a)] and phase [panel
(b)] of the gap parameter which are solutions of the LPDA equation for different
temperatures at unitarity and at fixed δφ. Looking at both panels, we see how the

2provided that φ(x = 0) = 0
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Figure 2.6: Spatial profiles of (a) |∆(x)| (in units of the bulk value ∆0 at the
given temperature in the presence of the current) and (b) 2φ(x), for (kFaF )−1 = 0
and several temperatures in the interval 0 ≤ T/Tc ≤ 0.9. The barrier has height
V0/EF = 0.05 and width kFL = 4, and the value δφ/π = 0.10 is kept fixed for all
profiles. Symbols are common to both panels. The inset shows the temperature
dependence of |∆(x = 0)|/∆0 when T approaches Tc. (Reproduced from Ref. [33].)

spread of the profiles increases for increasing temperature, which implies an increase
on the healing length ξout (already represented in fig. 2.1) as expected. Moreover,
looking at panel (a) we notice that for increasing temperature the normalized value
|∆(x = 0)|/∆0 (where ∆0 is the bulk gap value) decreases. In the inset of panel
(b), this ratio is shown to be a decreasing function of temperature approaching 0
for T → T−c . These features, which we are showing only at unitarity and for a
particular choice of height and width of the barrier, are found to be common to all
the profiles obtained at −1.5 < (kFaF )−1 < 0 and for any choice of V0 and L.

In fig. 2.7 we show the profiles of the magnitude and phase of the gap parameter
solution of the LPDA equation at fixed temperature and δφ for different couplings
for a common barrier. Looking at both panels we see that the spread of the profiles
increases going to the BCS side of the crossover, as expected from the calculation of
the healing length given in [36]. Moreover, looking at panel (a) of fig. 2.7, we notice
that the dimensionless ratio ∆(x = 0)/∆0 decreases approaching the unitarity limit
and that all profiles have a common point at x & L/2 in correspondence to which
we observe a change of curvature. These features, shown for a fixed value of tem-
perature, are found to be common to all profiles obtained within the temperature-
coupling phase diagram where the LPDA (mean-field) approach is expected to be
applied with confidence (namely, 0.3 . T/Tc and −1 . (kFaF )−1 . 0), since in this
range the temperatures of pair formation and condensation about coincide.

The profiles of the magnitude and phase of the gap parameter solution of the
LPDA equation depend also on the barrier height and width, as shown in Figs. 2.8
and 2.9, respectively, for the case of unitarity, T/Tc = 0.5, and δφ/π = 0.1. In
fig. 2.8 we see that the major effect of increasing the barrier height is to reduce
the dimensionless ratio |∆(x = 0)|/∆0. Looking at fig. 2.9, we notice that the
dimensionless ratio |∆(x = 0)|/∆0 appears to be almost unaffected by the change of
the barrier width L. This width has instead an important influence on the spread
of both the magnitude and phase profiles of the gap parameter, as can be seen in
panel (a) and (b), respectively. Moreover, for large enough L the gap inside the
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barrier turns out to be essentially flat. This could be interpreted as the emergence
of a ”mini-gap” in this region (see Section 2.4 for further details).

Regarding the profiles of the magnitude and phase of the gap parameter, we have
often mentioned their spread and how this is affected by the temperature, coupling,
and barrier characterstics. In order to quantitatively study this dependence, we have
extracted from the gap profiles the healing length ξout, that describes the length scale
over which the gap recovers its bulk value, through a fitting procedure of the type:

|∆(x)|/∆0 = 1− Coute−(x−L/2)/ξout for x & L/2, (2.6)

in terms of the parameters Cout and ξout. The fitting region has been restricted to
x & L/2 because of the change of curvature of the profiles of the magnitude of the
gap parameter mentioned while commenting Fig. 2.7.

In fig. 2.10 the results for ξout obtained in this way are reported as a function of
temperature, for (kFaF )−1 = 0 (top panels) and (kFaF )−1 = −1 (bottom panels),
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obtained for two different barriers (whose features are reported in the caption of
the figure) at δφ = 0. Looking at fig. 2.10, we notice that the values of the
healing length ξout depend only on coupling and temperature, as it is the case for
a homogeneous superfluid. In order to confirm this finding, in Fig. 2.10 we have
compared the temperature dependence of ξout with the healing length ξ obtained
for a homogeneous system by including pairing fluctuations beyond mean-field [36].
This comparison shows a very good overall agreement.

So far, we have studied the features of the profiles of |∆(x)| and 2φ(x) at fixed
δφ. In fig. 2.11 the profiles of the magnitude and phase of the gap parameter are
shown for a given barrier at different δφ, in the sense that they correspond to a point
on the same current-vs-phase characteristic. In this case, we show also the typical
density profiles [see panel (c)]. Looking at panel (a) and panel (c), we notice that
the dimensionless ratios |∆(x = 0)|/∆0 and n(x = 0)/n are decreasing functions of
δφ. As a consequence, the profiles show a steeper dependence on the spatial variable
(which prevents the LPDA to converge at δφmax, as mentioned in section 2.2). These
features are common to all the profiles obtained by the LPDA approach.

From the profiles shown in fig. 2.11 we can extract the length ξout for different
δφ, and we can do this by considering both profiles |∆(x)| and 2φ(x). In the latter
case, in order to reduce the numerical uncertainty, it was found it convenient not
to use 2φ(x) but rather to consider 2dφ/dx which approaches 0 away from the
barrier (as discussed in details in the Appendix A) and to fit it by the expression

C
(2φ)
out exp[−(x − L/2)/ξ

(2φ)
out ]. The results of the fitting procedures are shown in fig.

2.12, where (kFaF )−1 = 0 (top panels) and (kFaF )−1 = −1 (bottom panels) for two
different barriers. Looking at Fig 2.12, we notice that ξout at finite δφ depends on
the characteristics of the barrier. Upon comparing panel (a) and (b), or (c) and
(d), equivalently, we notice that ξout increases when passing from V0/EF = 0.1 to
V0/EF = 0.05. Moreover, although the values of ξout obtained from |∆(x)| and 2φ(x)
slightly differ from each other, they share the same overall shape, namely, they have
a maximum for a certain of δφ which happens to be slightly larger than the abscissa
of Jc for the correponding characteristic. These findings are further confirmed in two
important limiting situations: On the BCS side of the crossover at T . Tc and on
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Figure 2.10: Healing length ξout (in units of k−1
F ) vs temperature (in units of
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beyond mean field are included for the same couplings (cf. Fig. 10 of Ref. [36]). For
this comparison, the results of the present calculation are rescaled by a factor 6/5,
which accounts for the different definitions for ξout and ξ in the two independent
calculations. (Reproduced from Ref. [33].)
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Here, the barrier has width LkF = 4 and height V0/EF = 0.1 (left panels) and
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profiles of |∆(x)| (diamonds) and of dφ(x)/dx (dots) are shown, where the error bars
arise from the fitting procedure. In each panel, the arrow points at the value of δφ/π
where the corresponding Josephson characteristic has its maximum. (Reproduced
from Ref. [33].)

BEC side at T = 0, where the LPDA equation reduces to the Ginzburg-Landau and
Gross-Pitaevskii equation respectively (see subsection 1.2.3)[19]. In these cases, we
have numerically solved Eq. (1.57) together with the current conservation Eq. (2.2)
where j(r) is given by (1.58) as well as Eq. (1.60) together with Eq. (2.2) where
j(r) is given by Eq. (1.61), respectively. In fig. 2.13 we report the shape of ξout(δφ),
extracted from the profiles of |∆(x)| obtained by solving the GL equation (top panel)
and GP equation (bottom panel). As noted before, ξout reaches its maximum value
for a δφ slightly larger than the abscissa of Jc of the corresponding characteristics
(shown in the insets for completeness).

2.4 Emergence of the Proximity Effect

In this section, we are interested in the length ξin complementary to ξout, which de-
scribes the spatial range over which the gap reaches the ”mini-gap” value3 (occuring
when L is large enough) in the internal region of the barrier.

The world ”mini-gap” is usually associated with SN bilayers or SNS trilayers
junctions, where the Proximity effect induces superconducting properties in the N
layer [38]. Its value identifies the energy range around the Fermi energy in which
there are no available states for quasiparticles [39, 40]. In the present context, we
used the world ”mini-gap” referring to the fact that for wide enough barriers |∆(x)|

3as introduced in Section 2.3 while commenting Fig. 2.9
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becomes flat in the interior region of the barrier (cf. Fig. 2.9) and its value is not
affected by further increasing the barrier width. This aspect allows us to regard the
present SS’S system as an effective SNS junction, where the N layer is a superfluid
with a lower critical temperature than Tc. Further details on this parallelism can
also be found in Section 2.9.

The length ξin can be interpreted as the equivalent in a SS’S junction of the
coherence length ξN in a SNS junction [2]. In order to extract ξin in a meaningful
way, in the following the barrier width will be significantly increased with respect
to the values mostly considered so far.

Following the procedure of Ref. [2], we show in Fig. 2.14 the temperature
dependence of the critical current Jc for two barrier heights (left and right top
panels) using different barrier widths, as well as the depence of Jc on the barrier
width at different temperatures for two barrier heights (left and right bottom panels).
The top and bottom panels of Fig. 2.14 correspond to Fig. 2 and Fig. 3 of Ref.
[2], respectively. Looking at the top panels, we see that the critical current is a
decreasing function of temperature and approaches 0 as T → T−c . We notice also
that the drop of the ratio Jc/JF gets more abrupt for increasing L and spans three
orders of magnitude for 0 ≤ T ≤ Tc, similarly to what was reported in Fig. 2 of
Ref. [2]. Looking at the bottom panels of Fig. 2.14, we see instead that increasing
the barrier width may result, depending on temperature, in a continuous drop of
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Figure 2.14: Upper panels: Temperature dependence of the critical current Jc (in
units of JF ) at unitarity for two barrier heights and several barrier widths. Lower
panels: Width dependence of Jc for several temperatures. The curves through
the numerical data (symbols) correspond to fits obtained by the expression (2.7).
(Reproduced from Ref. [33].)

the critical current or in reaching an asymptotic value. For this reason, we have
identified the dependence of Jc on the barrier width by a fit of the type

Jc(L) = J0
c e
−L/ξJcin + Jmini

c , (2.7)

performed in terms of the parameters J0
c , ξJcin and Jmini

c . Looking at the curves in
the bottom panels of Fig. 2.14, we notice that, as anticipated, Jmini

c remains finite
only up to a certain temperature, above which Jc appears to have an exponential
dependence on the barrier width L (as reported in Fig. 3 of Ref. [2] for T > TNc ).

The temperature dependence of the fitting parameters ξJcin and Jmini
c is shown in

the top and bottom panels of Fig. 2.15, respectively, for the same barrier heights
considered in Fig. 2.14. For completeness, in the insets of the bottom panels we show
the characteristics in correspondence to the largest barrier widths here considered.
It should be remarked, that in these cases, it is not possible to use eq. (2.3) to fit
Jc(δφ), because for the widths here considered the Josephson characteristics become
”re-entrant” (sometimes called ”multivalued” [15]) and extend beyond δφ > π.
Nevertheless, we are still able to distinguish the value of Jc (black dots) which
is shared by all characteristics here considered. This aspect, by our interpretation,
signals the presence of a minigap.

Looking at the top panels of Fig. 2.15, we see that ξJcin has a substantial enhance-
ment in correspondence to a temperature T

′
c < Tc. At the same temperature, Jmini

c

drops to zero. These two combined effects are reminiscent of the proximity effect [41]
in a SNS junction[2], where the normal metal acquires superconducting properties
due to the ”proximity” to the superconducting material and allows for a supercur-
rent flow. This effect, known as ”proximity-induced Josephon effect” [42, 43], is in
a sense complementary to what we have reported in Fig. 2.15, which could be thus
referred to as ”Josephson-induced proximity effect”.
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In order to confirm our findings, we can study in detail the profile |∆(x)| in the
region where the potential barrier occurs. In Section 2.3 (cf. Fig. 2.9), we noticed
that increasing the barrier width L of the barrier may result in a profile of |∆(x)|
which is essentially flat in the internal region of the barrier. As already mentioned,
this could be interpreted as the emergence of a minigap ∆mini. Accordingly, provided
the barrier width is large enough, we identify the behaviour of |∆(x)| with a fit of
the type:

|∆(x)| = ∆ine
−|x+L/2|/ξ∆

in + ∆mini for − L/2 . x . 0, (2.8)

in terms of the two parameters ∆in and ξ∆
in . The fitting function (2.8) was already

used in [44], where we studied the gap profiles of an SN interface obtained by the
non-local (integral) version of the LPDA equation [30] with no current flow.

In Fig. 2.16 we show the temperature dependence of ξin (top panels) and ∆mini

(bottom panels) for the same barrier heights considered in Fig. 2.15 (left and right
panels). The fitting procedure has been applied both for J = 0 (δφ = 0) and for a
finite current flow (δφ/π = 0.2). The insets of the top panels show an example of
the fitting procedure performed on the magnitude of the gap profiles. Looking at
the top panels of Fig. 2.16, we see that ξ∆

in has an enhancement in correspondence to
a temperature T

′
c below Tc. At the same temperature, ∆mini vanishes and remains

zero up to Tc.
Looking at the top panels of Fig. 2.16, we notice that ξJcin and ξ∆

in share the same
behaviour and assume similar values at each temperature. The agreement between
the data sets is better in the region T > T

′
c where the fitting procedure Eq. (2.7)

becomes more reliable.
The values obtained in Fig. 2.16 for ξ∆

in and ∆mini at δφ = 0 and δφ/π = 0.2 are
practically indistinguishable from each other. Notice that for T > T

′
c the values of
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ξ∆
in and ∆mini for δφ/π = 0.2 are missing because within LPDA approach it is not

possible to sustain a finite current flow when |∆| = 0.
The continuous lines in the top panels of Fig. 2.16 represent the same fitting

procedures performed in [44] for the length ξR (equivalent to ξN in [2]) near TRc ,
which in our case corresponds to identify ξin through the relations

kF ξ
∆
in = Cin

√
1− T/T ′c for T < T

′

c , (2.9a)

kF ξ
∆
in = Cin

√
T/T ′c − 1 for T > T

′

c , (2.9b)

where Cin is a dimensionless parameter and T
′
c is identified as the temperature at

which ∆mini vanishes.
To the temperature T

′
c we can associate an effective coupling (kFaF )−1

eff in the
internal region of the barrier. The values of (kFaF )−1

eff for the physical systems con-
sidered in Fig. 2.16 are reported in Tab. 2.1. Using these values, in the lower panels
of Fig. 2.16 we have compared the temperature dependence of ∆mini (symbols) with
that of the bulk gap ∆homo (broken lines) obtained for (kFaF )−1

eff . The good agree-
ment between the two data sets encourages our interpretation of Figs. 2.15 and
2.16 in terms of a ”Josephson-induced proximity effect”, which acts to convert the
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V0/EF T
′
c/Tc (kFaF )−1

eff

0.1 0.794 -0.189
0.2 0.604 -0.397

Table 2.1: Values of the temperature T
′
c (in units of the bulk critical temperature

Tc) at which ∆mini vanishes and of the related effective coupling (kFaF )−1
eff , for the

two barrier heights considered in Fig. 2.16.

internal (s) region of the SS’S junction into the N region of an SNS junction with an
appropriate effective coupling smaller than the coupling in the S region. This result
is remarkable from a physical point of view, since it implies that a local one-body
potential (the barrier) can locally induce a change in the two-body interaction. The
novelty of this finding relies on the fact that the external potential induces a local
change in the inter-particle interaction while not affecting the dimensionality of the
system.

Nevertheless, we cannot fully identify the internal (S’) region of the SS’S junction
with an indipendent piece of material, as it is for a SNS junction, with its own
bulk thermodynamic properties. This is because at thermodynamic equilibrium
the chemical potential µeff associated with (kFaF )−1

eff , should satisfy the identity
µeff −V0 = µ. However, as it can be seen from the insets of the bottom panel of Fig.
2.16, this identity is only approximately satisfied by our numerical calculations.

2.5 Identification of an extended BCS regime

In principle, the GL equation could be applied when (kFaF )−1 → −∞ and at
T ' T−c , which is a very limited portion of the coupling-temperature phase diagram.
Nevertheless, GL equation is commonly applied even outside this limited portion of
the coupling-temperature phase diagram. For this reason, we would like to identify
an extended BCS regime where the GL equation can be approximately applied. In
order to do that, we have preliminarly checked that the numerical values of the
coefficients I0(r) and I1(r) whithin the LPDA approach (see Eqs. (1.50)) recover
their GL limiting expressions (see Eqs. (1.56)) in the appropriate coupling and
temperature regimes. Moreover, in the same portion of coupling-temperature phase
diagram, we have compared the |∆(r)| profiles which are solution to the LPDA and
GL equations for given barrier height and width. In the top panels of Fig. 2.17,
we show the color map of the difference |∆GL(x = 0)| − |∆LPDA(x = 0)| at fixed
δφ/π = 0.2, while in the bottom panels we show the color map of the difference
(JGL
c −JLPDA

c ). Both quantities are essentially the same when (kFaF )−1 ≤ −0.7 and
T/Tc ≥ 0.85, which identify the ranges of the extended BCS regime we were after.

2.6 Critical Current

In section 2.4, we have shown how the critical current Jc is affected by the barrier
width keeping all the other relevant physical parameters fixed, namely, the barrier
height, coupling, and temperature. In this section we aim at performing a systematic
analysis of these dependences.
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In Fig. 2.18 we show color maps of Jc (left panels) for decreasing barrier heights
(from top to bottom) in the temperature-coupling phase diagram, as well as the
coupling dependence of Jc (right panels) for the same barrier heigths at various
temperatures. Looking at the color maps, we notice that at T = 0 increasing the
barrier height shifts the maximum value of Jc to the BCS side of the crossover (as
observed in [9]), while, looking at the panels on the right, we see that increasing the
temperature results in a shift to the BEC side of the crossover.

In Fig. 2.19 we show the temperature dependence of Jc at fixed barrier width for
various barrier heights (left panels), and at fixed barrier height for various barrier
widths (right panels) using two values of the coupling: (kFaF )−1 = 0 (top panels)
and (kFaF )−1 = −1 (right panels). Comparing the plots on the left and on the right,
we conclude that the barrier height affects the critical current more significantly than
the barrier width. We point out here that the data for (kFaF )−1 in the region T .
0.3Tc are missing due to the limitations of LPDA (mean-field) approach mentioned
in Section 2.3. Moreover, we have verified that the values obtained for Jc at T = 0
and unitarity compare favourably with those shown in [9] using the same barrier
heigths and widths.

Once we have established that Jc → 0 for T → T−c , it is of interest to verify
how this limit is achieved. We identify the temperature dependence of Jc near Tc
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Figure 2.18: Critical current Jc (in units of JF ) for a barrier of width kFL = 2
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For each barrier, the left panels show the colour maps of Jc/JF in the temperature-
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scale in each panel. (Reproduced from Ref. [33].)

through a fit of the type

Jc(T )

JF
= Dtη, where t = 1− T

Tc
, (2.10)

performed in terms of the dimensionless parameter D and the exponent η. In [15]
it was found that η dependends on the barrier type. Accordingly, in the present
context of an SS’S junction, we expect η to depend on both barrier height and
width.

In order to perform a systematic study, we choose to evaluate η for different
barriers with two couplings: (kFaF )−1 = −1, representative of the BCS side of
the crossover, and (kFaF )−1 = 0. For (kFaF )−1 = −1, we found it convenient to
use the results obtained by solving the GL equation (1.57), which was proven to
reproduce the LPDA results over an extended BCS region (see section 2.5). The
fit (2.10) is performed over M = 10 points and on a restricted temperature range,
that is, 0.93Tc ≤ T ≤ 0.98Tc. At unitarity, on the other hand, we have used the
LPDA results and applied the fitting procedure (2.10) over M = 15 points and
the temperature range 0.9Tc ≤ T ≤ 0.98Tc. In this case, the lower limit of the
temperature range could have been further reduced to 0.85Tc with no particular
change on the fitting function.
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The upper limit of 0.98Tc is due to the numerical inability for obtaining a realiable
characteristic with a critical current smaller than 10−4JF , while the lower limits
were chosen by looking at the temperature dependence of Jc at (kFaF )−1 = −1 and
(kFaF )−1 = 0. They reflect our expectation that the width of the critical region
near Tc is larger at unitarity than in the BCS regime [45].

In Fig. 2.20 we show the results of the fitting procedure (see eq. (2.10)) of
the critical current, both for (kFaF )−1 = −1 (left panel) and (kFaF )−1 = 0 (right
panel). In the first case, the fit is done using M points (the green ones in the plot)
with M ranging from 5 to 10, while at unitarity M ranges from 5 to 15. The values
obtained for η in each case, namely, for each set of the M points used in the fitting
procedure, are shown in the insets of each panel. These values show little variation,
and for this reason the critical exponent η, reported in each panel, has been identified
with its average. In principle, the upper limit of the temperature range 0.98Tc we
are considering in the numerical calculations, may affect the numerical value of
η. However, we are confident that the M points considered are distributed in a
sufficiently smooth way, that the error on the exponent η in the restricted interval
of T/Tc we are considering does not exceed a few percent.

We have performed the analysis shown in Fig.2.20 for a wide set of barrier heights
and widths, for both (kFaF )−1 = −1 and (kFaF )−1 = 0, in order to verify how η
is affected by the barrier characteristics. The results of this analysis are shown in
the colormaps of Fig. 2.21. Looking at the left panel for (kFaF )−1 = −1 we see
that η takes the value 1.5 in the bottom-left corner (high-transparency barriers),
and evolves smoothly towards the value 2 in the top-right corner (low-transparency
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barriers), in accordance with what predicted in [15]. By making a comparison
between the left and right panels, we notice that at unitarity the exponent η takes
systematically larger values with respect to those at the same barrier height and
width for (kFaF )−1 = −1. None of the combinations of V0 and L here considered
seems to model a tunnel junction with small transmission probability [11], for which
η = 1.

2.7 The Landau Criterion

In this section, we aim at developping a procedure to determine the critical current
Jc, above which superfluidity is destroyed, at any temperature in the BCS-BEC
crossover. Following the Landau criterion [46], we expect the LPDA equation not to
have solutions for J > Jc, whereby the superfluid flow is expected to be dissipative
and unstable, thus preventing the convergence of the LPDA equation.

There are two different mechanisms by which superfluidity is destroyed: The
pair-breaking excitations on the BCS side of the crossover and the sound mode
quanta on the BEC side of the crossover. These two limiting situations have already
been taken into consideration in the context of Josephson effect at zero temperature
[9] and we expect the LPDA results to be consistent with them.

To extend the Landau criterion at finite temperature, we will exploit the Joseph-
son characteristics for decreasing barrier heights and widths down to vanishingly
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small barriers, in order to identify the critical value Jc we are looking for when
V0 → 0+ and L → 0+. This procedure has already been used in Ref. [9] where
the BdG equations applied to the Josephson effect were proven to include both the
dissipative mechanisms mentioned above. We expect the critical current to be a
decreasing function of the temperature for any coupling since the superfluid density
decreases for increasing temperature, as shown in the insets of Fig. 2.3.

In order to obtain Jc for a vanishingly small barrier, we have at first studied the
dependence of Jc on the barrier height V0 for fixed barrier width L. The results of
this study are shown in Fig. 2.22 at unitarity for kFL = 2. Looking at the main
plot of Fig. 2.22, we have identified the dependence of Jc on V0 via the relation

Jc(V0)

JF
= Ee−V0/F (2.11)

in terms of the parameters E and F . The occurence of an exponential dependence
on V0 for fixed L could be inferred also from Fig. 13 of Ref. [37], although there
only at unitarity and for T = 0.

The quite large sets of barrier heights here considered and the fitting procedure
Eq. (2.11) allows us to extrapolate Jc(0) = Jc(V0 → 0+). This quantity has been
evalued for different barrier widths and its depence on L is reported in the inset of
Fig. 2.22. The quantity Jc(0) appears to have no dependece on L, in such a way
that Jc(0) can be identified as the critical current.

The procedure explained above has been applied to obtain Jc(0) in the ranges
−1.4 < (kFaF )−1 < 1.4 and 0 ≤ T < Tc, and has involved the analysis of about
30000 Josephson characteristics. The main results of this systematic study are
shown in Fig. 2.23, where the values of Jc(0) implement the Landau criterion for
superfluidity at finite temperature along the BCS-BEC crossover. The values of
Jc(0) in Fig.2.23 are consistent with the critical exponent η = 1.5 as T → T−c
irrespective of coupling (see Fig. 2.21).

From Fig. 2.23 we notice that the LPDA results all lie (within the numerical
error) in the shaded region delimited by the broken lines, that correspond to pair-
breaking excitations on the BCS side of unitarity (left branch) and sound-mode
excitations on the BEC side of the crossover (right branch) [9]. This fact, which
wad already observed in [9] at T = 0, is rather remarkable: The LPDA results for
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with a barrier of width kFL = 2, for (kFaF )−1 = 0 and various temperatures.
The inset shows the behaviour of the limiting value of Jc(0) = Jc(V0 → 0+) when
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Figure 2.23: The critical current Jc(0) (in units of JF ), for which the superfluid
flow becomes unstable in the limit of a barrier with vanishing height and width,
is shown as a function of (kFaF )−1 for several temperatures. The left and right
dashed lines (which cross each other near unitarity) correspond to the appearance
at T = 0 of pair-breaking and sound-mode excitations, respectively [9]. The shaded
area highlights the region of allowed superfluid flow, where the superfluid critical
current lies below both dashed lines. (Reproduced from Ref. [33].)
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0.2 ≤ T/Tc ≤ 0.4 (shaded area). The upper and lower curves delimiting the shaded
area correspond, respectively, to the values T/Tc = 0.2 and T/Tc = 0.4 in Fig. 2.23.
(Reproduced from Ref. [33].)

the inhomogeneous problem at hands, namely, an homogeneous superfluid with a
vanishingly small barrier, appear to include not only pair-braking excitations on the
BCS side of the crossover (which are explicitly included in the mean-field treatment
of a homogeneous system), but also sound-mode excitations on the BEC side of the
crossover (which for a homogeneous system would require the inclusion of pairing
fluctuations beyond mean-field). Despite this positive feature, we believe that the
inclusion of pairing-fluctuations beyond the present mean-field treatment is still
required, since it should change quantitatively the results of Fig. 2.23 especially at
finite temperature on the BEC side of the crossover [47].

We have further compared the data of Fig. 2.23 with the experimental results of
Ref. [5]. In this experiment particular effort was made to produce a small pertur-
bation to a superfluid system of 6Li atoms. A red detuned laser was moved in the
atomic cloud with constant velocity and the column integrated density at the cloud
center was measured. Variation of this quantity with respect to the unperturbed
value signaled the reaching of the critical velocity. The experiment was carried out
at low enough temperature. For this reason, in fig. 2.24 we have compared the
experimental results with our results comprised in the area between the curve for
T = 0.2Tc and T = 0.4Tc of Fig. 2.23. The shaded area obtained theoretically shows
a good agreement with the experimental data.

Recently, a relation between the critical current Jc and the condensate density
nc for low transparency barriers, based on theoretical arguments valid on the BEC
side of the crossover but extended also to the BCS side of the crossover [48], was
used to determine the condensed density from the experimental measurements of Jc
[3]. Here, we look for a relation between the same quantities in the complementary
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Figure 2.25: Left panel: Coupling dependence of the ratio between Jc(0)/JF taken
from Fig. 2.23 and the condensate density nc (in units of the bulk density n) obtained
at the mean-field level [49] for various temperatures. Right panel: Temperature
dependence of the “universal” function extracted from this ratio in the interval
0.2 ≤ T/Tc ≤ 0.9. Here, the broken line corresponds to a square-root behaviour
close to Tc and the star for the value 8/(3π) obtained analytically at T = 0. The
inset shows the coupling dependences of Jc(0)/JF (dashed line - left scale) and of
nc/(n/2) (full line - right scale) at T = 0, covering the whole BCS-BEC crossover.
(Reproduced from Ref. [33].)

regime, namely, for a vanishingly small barrier and on the BCS side of the crossover.
We have taken into consideration the values Jc(0)/JF , shown in Fig. 2.23, for
−1.4 ≤ (kFaF )−1 ≤ 0 and 0.2Tc ≤ T ≤ 0.9Tc, and divided them by the ratio nc/n,
where nc is the condensed density evaluated at the mean-field level [49] and n the
bulk density. The results of this calculation, shown in the right panel Fig. 2.25,
appear to be independent of coupling. In the left panel of Fiq. 2.25 we have plotted
the ”universal function” of Jcnc/JFn vs temperature, by taking the average value of
Jcnc/JFn from the right panel at fixed temperature and associating with it an error
equal to the difference between its maximum and minimum values. The ratio is a
decreasing function of the temperature and vanishes as T → T−c with a square-root
behaviour, as expected. Moreover, the relation found and numerically proven at
finite temperature, holds true also at T = 0, as shown in the inset of Fig. 2.25, for
which analytical expressions are available for both the critical current [9] and the
condensed density [49].

2.8 Comparison with Experimental Data

In this section, we will compare the LPDA results for specific barrier heights and
widths with experimental data obtained by shining a laser and moving it at constant
speed through a 6Li atomic gas in a harmonic trap [3]. Particular care will be taken
in this case to translate the experimental parameters into the ones used in the LPDA
approach.

In the harmonic trap the Fermi energy is identified by Et
F = ω0(3N)1/3, where
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ω0 is the geometric average of the trapping frequencies and N the total number of
atoms. In terms of Et

F and the associated Fermi wavevector ktF , it is possible to
infer the dimensionless values V0/E

t
F and ktFL used in the experiment. The moving

laser, which plays the role of a potential barrier, spans only the central region of the
atomic gas. Therefore, it seems reasonable to identify the Fermi wavevector kF used
in the theoretical calculations with the experimental value k0

F at the trap center. As
a consequence, knowing the ratio κ = Et

F/E
0
F , where E0

F = (k0
F )2/(2m), allows us

to determine both the barrier height and width in terms of EF and kF , respectively,
values to be used in the LPDA approach to simulate the experimental barrier. We
point out that in this calculation the external potential used has the shape

Vext(x) = V0 exp

(
−2

x2

2w2

)
, (2.12)

where w is the Gaussian width of the potential. We further notice that the values
Jc/JF obtained by the numerical calculations have to be multplied by κ2 in order
to be comparable with the experimental data for Jc/J

t
F .

Another important quantity to be taken into careful consideration is the tem-
perature. The experimental value is in terms of T tF , while in our calculations T is
always related to the critical temperature Tc evalued within LPDA approach. We
have found it reasonable in this case for each coupling to identify T/Tc with the
experimental ratio T/T tc , where the values of T Tc /T

t
F for each coupling have been

taken from the fully self-consistent t-matrix calculation of Ref. [50] (cf. Fig. 7
therein). This kind of identification is common in condensed matter when compar-
ing theoretical results with experimental data and has already been considered in
the context of ultra-cold Fermi gas [51].

In fig. 2.26 we report the comparison between the theoretical results for Jc
(shaded area and continous lines) and the corresponding experimental values (dots
with errorbars) for three barrier heights and several couplings across the BCS-BEC
crossover. The experimental data are taken for T/T tF = 0.06(2) [3], which correponds
to the low temperature regime, as it can be seen in Tab. 2.2 where the ratios T/Tc
used for each coupling are reported. In addition, in Tab. 2.2 the values of κ for each
experimental coupling is reported4 as well as the corresponding theoretical couplings
used in the numerical simulation.

The shaded areas in Fig. 2.26 take into account the experimental error in deter-
mining of both temperature and barrier width. The upper (lower) border represents
the results of Jc obtained at T/T tF = 0.08 (T/T tF = 0.04) and a barrier width in-
creased (decreased) by 5% with respect to the nominal value [3]. The continous lines
in Fig. 2.26 represent the theoretical results obtained at T/Tc = 0.06 and using as
Gaussian width of the barrier the nominal value of w.

Looking at Fig. 2.26, we notice an overall agreement between theory and experi-
ment which improves as the barrier height increases. Nevertheless the LPDA results
seem to overestimate the value of Jc in general. This fact may be partly due to the
fact that in our numerical calculations we are not taking into account neither the
dependence of the barrier on the transversal direction to the current flow (since we
are considering it to be homogeneous), nor the fact that the fermionic gas is confined
in an harmonic trap. Both aspects may contribute to a decrease of the theoretical
values of Jc.

4The values of EtF /EF were kindly provided by W. J. Kwon (private communication).
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Figure 2.26: Critical current Jc (in units of the trap value J tF ) vs the experimental
coupling parameter (ktFaF )−1 for three different barrier heights (in all cases the
Gaussian 1/e2 width of the barrier is ktFw = 2.530 ± 0.125). The experimental
data from Ref. [3] (dots with error bars) are compared with the theoretical values
represented by the shaded areas, whose boundaries are set by the experimental
uncertainties on T/T tF and V0/E

t
F (see the text). For each experimental data point,

the values of (kFaF )−1 and T/Tc at which the theoretical calculations have been
performed are listed in Table 2.2. (Reproduced from Ref. [33].)

(ktFaF )−1 Et
F/EF (kFaF )−1 T/Tc

-0.583 0.795 -0.52 0.344
-0.254 0.712 -0.214 0.233
0.0516 0.577 0.039 0.163
0.504 0.511 0.36 0.117
1.055 0.386 0.655 0.076
2.22 0.270 1.15 0.049
4.22 0.206 1.91 0.034

Table 2.2: Conversion from experimental to theoretical coupling values and corre-
sponding theoretical values of T/Tc for T/T tF = 0.06, used for the comparison shown
in Fig. 2.26.
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Chapter 2. Josephson Effect at finite Temperature

2.9 Analogy between condensed-matter SNS and

cold-atoms SS’S Josephson junctions

In this section, we point out an analogy between SNS and SS’S junctions. To this
end, we consider for the SS’S junction a slab geometry like that described in Section
2.1, with a potential barrier of height V0 and width L embedded in an otherwise
homogeneous superfluid of critical temperature T Sc and coupling (kFaF )−1

S . The SNS
junction will instead be modelled by an infinite homogeneous superfluid S (with the
same critical temperaure and coupling of the SS’S junction), with the insertion of a
different material N for a width L (centered at x = 0 like the potential barrier for
the SS’S junction (cf. Fig. 2.1)) with a critical temperature TNc < T Sc and coupling
(kFaF )−1

N < (kFaF )−1
S . Both (kFaF )−1

N and (kFaF )−1
S will specifically refer to the BCS

side of unitarity, where mean-field results are expected to be more reliable. [By our
convention, in both cases the Fermi wavevector kF refers to the outer superfluid (S)
with associated bulk density n].

As a first step in this study we have taken into consideration the GL equation for
both the SS’S (cf. (1.57) where (kFaF )−1 → (kFaF )−1

S and Tc → T Sc in the present
context) and SNS junctions (cf. (1.57) where V0 → 0 and Tc → TNc θ(L/2 − |x|) +
T Sc θ(|x|−L/2)). By comparing the two expressions, we notice that the discontinuity
of Tc across the SNS junction corresponds to the following value of the barrier height
V0 for the SS’S junction:[

1− π

4
(kFaF )−1

S

] V0

EF
= 1−

(
TNc
T Sc

)2

− T

T Sc

(
1− TNc

T Sc

)
(2.13)

where the temperature T is assumed sufficiently close to T Sc for the GL equation to
be valid.

Figure 2.27 shows the temperature dependence of V0 as obtained by eq. (2.13)
over an extended range of temperature for four different sets of couplings (kFaF )−1

N

and (kFaF )−1
S , to which there correpond different ratios TNc /T

S
c . It is interest-

ing to notice that for barrier heights within the range of those used in ultra-cold
gases experiments (cf. [3, 4]) there correspond ratios of TNc /T

S
c that corresponds to

condensed-matter SNS junctions (cf. [2]).
In Fig. 2.28 we show the temperature dependence of the critical current Jc for

an SNS and SS’S junctions for which the values of (kFaF )−1
N , (kFaF )−1

S , and V0 have
been chosen so as to obtain a similar behaviour. The remarkable aspect of this plot
is that the values of Jc/JF obtained for the two junctions overlap each other over
three order of magnitude in the range 0 ≤ T < T Sc .

Fig. 2.29 extends the comparison of Fig. 2.28 to another pair of values (kFaF )−1
N

and (kFaF )−1
S . In this case, the temperature dependence of Jc of the SS’S junction

is shown for three values of V0. The good agreement between the values of Jc/JF
covers three orders of magnitude as in the previous case and becomes optimal when
the critical current of the SS’S system for increasing values of V0 are compared
with Jc of the SNS junction in the ”low”, ”intermediate”, and ”high” temperature
regimes, in line with the temperature dependence of the effective barrier reported
in Fig. 2.27.
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Figure 2.27: Temperature dependence of the barrier height V0 (in units of the Fermi
energy EF ) for an SS’S junction, which would be needed to mimic an SNS junction
according to eq. (2.13). The four cases here reported correspond to : (I-full line)
(kFaF )S = −0.25, (kFaF )N = −0.50, TNc /T

S
c = 0.498; (II-dashed line) (kFaF )S =

−0.5, (kFaF )N = −1, TNc /T
S
c = 0.48; (III-dashed-dotted line) (kFaF )S = −0.75,

(kFaF )N = −1.25, TNc /T
S
c = 0.469; (IV-dotted line) (kFaF )S = −0.85, (kFaF )N =

−1, TNc /T
S
c = 0.798.

In Section 2.4 it was observed that the dependence of Jc on the barrier width
L could be modelled by the form (2.7) and it was shown that finite values of Jmini

c

correspond to the emergence of a ”minigap” in the interior of the barrier. Moreover,
Jmini
c vanished at the same temperature T ′c at which ∆mini also vanished (cf. Figs.

2.15 and 2.16). For this reason, in the present context of SNS junctions, it is
interesting to consider the behaviour of Jc for increasing width of the N region.
In panel (a) of Fig. 2.30 the dependence of the critical current on L is shown for
different temperatures. The lines are obtained applying the fitting procedure (2.7)
to the LPDA results. The dependence of Jmini

c on the barrier width is shown in panel
(b). Following the arguments of Section 2.4, we would associate to the interior region
of the system an effective temperature 0.5T Sc which in practice corresponds to the
numerical input setup of TNc /T

S
c = 0.498. This provides a non-trivial consistency

check on our numerical calulations.
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width kFL is common to the SS’S and SNS junctions.
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Figure 2.29: The temperature dependence of the critical current Jc (in units of
JF ) obtained for three different SS’S junctions (dots, triangles, and diamonds) with
given value of the outer coupling (kFaF )−1

S and slab width kFL but different barrier
heights V0/EF , is compared with the temperature dependence of Jc obtained for an
SNS junction (squares) with the same values of the outer coupling and slab width
of the SS’S junctions. Also specified are the value of the inner coupling (kFaF )−1

N

and the ratio TNc /T
S
c .
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Figure 2.30: (a) Width dependence of Jc (in units of JF ), corresponding to an SNS
junction with outer coupling (kFaF )−1

S = −0.25 and inner coupling (kFaF )−1
N =

−0.75, for several temperatures. (b) Temperature dependence of the minimum
value Jmini

c attained by Jc. The vertical arrow marks the temperature TNc where
Jmini
c would be expected to vanish.

2.10 Inclusion of pairing fluctuations

In this Section, we show a few early-stage results for the critical current Jc obtained
by including pairing fluctuations on top of the LPDA equation.

In Ref. [20] pairing fluctuations were added on top of the mean-field approach
in the following way. The gap equation was kept in its form valid at the mean-field
level, while the density equation was modified by the inclusion of pairing fluctuations
at the level of the t-matrix approximation in the broken-symmetry phase. Following
the same line of reasoning, in the present context we retain the LPDA equation
(1.49) for the gap parameter ∆(r) and modify the expressions for the local number
density n(r) (1.54) and current density j(r) (1.53) through the inclusion of pairing
fluctuations in the spirit of a local-density approach.

As a first test on this procedure, we solved the LPDA equation for the gap
parameter ∆(r) together with the current conservation, where we have introduced
the newly found expression for j(r), for the SS’S junctions considered in Section 2.8.
We point out that the ratios T/Tc used in this context remain the same as those
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Figure 2.31: Critical current Jc (in units of the trap value J tF ) vs the experimen-
tal coupling parameter (ktFaF )−1 for three different barrier heights (in all cases the
Gaussian width of the barrier is ktFw = 2.530± 0.125). The experimental data from
Ref. [3] (dots with error bars) are compared with the theoretical values obtained
within the mean-field approach (triangles) and with the inclusion of pairing fluctu-
ation (squares) at the experimental nominal temperature T/T tF = 0.06. For each
experimental data point, the values of (kFaF )−1 and T/Tc at which the theoretical
calculations have been performed are listed in Table 2.2.

used at the mean-field level, but the absolute value of the critical temperature Tc is
now evaluated whithin the present approach.

Fig. 2.31 shows the comparison among the values of the critical current Jc
for three different barriers obtained at the mean-field level (triangles), measured
experimentally (circles) [3], and obtained with the inclusion of pairing fluctuations
(squares). The triangles and the dotted lines represent the same data of Fig. 2.26
in a restricted coupling region5. Looking at Fig. 2.31 we notice that the inclusion of
pairing fluctuations leads to lower values of Jc and improves the agreement with the
experimental data. Despite this observation, we expect the geometry of the system
to play a non-negligible role which could be taken into account in the future by
means of a local-density approximation in the transversal direction to the current
flow.

Please note that the results reported in this Section are preliminary and need
further confirmation.

5At the present stage, the values of Jc for (kFaF )−1 = [1.15, 1.91] (cf. Tab. 2.2) are still to be
evaluated.
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Chapter 3

Transient Phenomena in a
Superfluid Fermi Gas

In this Chapter, we discuss the main results obtained by our study of the dynamics
of a two-spin components Fermi system in a 1D box potential. We have considered
three different Protocols:

• In Protocol 1, we initially separated the spin-up and spin-down fermions by
means of a spin-dependent external potential and then let it vanish in a release
time tR = 0+;

• In Protocol 2, we performed a quench of the inter-particle interaction on a
state whose energy corresponds to an effective temperature larger than Tc (as
evaluated within a mean-field approach);

• In Protocol 3, we perturbed the ground state at T = 0 through a spin-
independent external potential with Gaussian shape, whose height was ramped
to a maximum and then reduced to a minimum value a certain number of times.

The dynamics of the systems considered for each Protocol was determined by
integrating the time-dependent BdG equations using a predictor-corrector algorithm
of the 5th order. The BdG functions uνσ and vνσ were expanded over the set of
functions

φn(x) =

√
2

L
sin
(nπx
L

)
n = 1, 2, . . . (3.1)

which are the wavefunctions for a particle confined in a 1D box extending from
x = 0 to x = L. In the numerical simulations this expansion is truncated at a
certain energy level far enough from the Fermi energy of the system. Further details
on the numerical procedure used to integrate the time-dependent BdG equations
can be found in Appendix B.

In this context, it is useful to introduce the dimensionless coupling constant [52]

γ =
mg

~2n
(3.2)

being n the total number density. The value |γ| � 1 corresponds to the strong-
coupling limit, while |γ| → 0+ to a weak attractive interaction.

The real-time dynamics of the systems described in the following can be observed
at the link https://drive.google.com/drive/folders/1-w9nA3MGsIVz0VXc_Om_

mZjPkZodEOdw?usp=sharing where various .mp4 files are available for each Protocol.
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Chapter 3. Transient Phenomena in a Superfluid Fermi Gas

3.1 Protocol 1

In this Protocol, we begin by separating the spin components using an external
potential of the form

V σ
ext(x) = V0

{
δσ↑θ(x− L/2),

δσ↓θ(L/2− x),
(3.3)

where L is the size of the box potential where the fermions are confined. The initial
state of this protocol is characterised by a larger number of spin-up (-down) fermions
on the left (right) half of the 1D box with respect to the right (left) half. The starting
values of uνσ and vνσ. to be used in (1.38) in order to unveil the dynamics of this
system, are found by solving the time-independent BdG equations (1.16) for a fixed
number of spin-up and spin-down fermions, N↑ and N↓, respectively.The height V0 of
the potential determines the amount of the separation of the up and down fermions.
In practice, a value of V0 = 4EF proves sufficient to confine the 99% of N↑ fermions
to the left half of the box.

As a first step, we have applied this Protocol of suddenly releasing the external
potential (tR = 0) to a non-interacting system. We have found it convenient to
define the quantity

N
(L)
↑ (t) =

∫ L/2

0

n↑(x, t)dx, (3.4)

which counts the number of spin-up fermions in the left half of the box at each time
t. The N↑ fermions that were initially confined in the left half of the box, after
the sudden release of the external potential, experience periodic oscillations in the
following sense. The density profile of the N↑ fermions, after an initial spread over
the whole box, at a characteristic time tc rebuilds itself in the right half of the box
with a shape which is symmetric to the initial one. Later on, at time t = 2tc, the
density profiles recovers the initial shape, with the process going on indefinetely. The
characteristic time tc is independent from the number of fermions and the specific
characteristics of the separating potential (as proven in Appendix C). Its value is
given by

tc = π/ω1, (3.5)

where ω1 is the eigenfrequency associated with the ground-state energy of a single
particle in the box.

In Fig. 3.1 the quantity N
(L)
↑ (t) is reported as a function of time for systems with

different number of particles. The time dependence of N
(L)
↑ (t) reflects the oscillatory

dynamics of the system. It assumes the initial value N
(L)
↑ (0) at times t = ltc ∀l even,

and the value 1−N (L)
↑ (0) at times t = mtc ∀m odd. Moreover, the shape of N

(L)
↑ (t)

for increasing N↑ gets progressively more picked around t = ntc ∀n. At the same
time the secondary maxima and minima, right before and after the given time, get
less enhanced.

By applying the same Protocol to an interacting system, we have observed a
different dynamics. The spin-up (-down) fermions, initially confined in the left
(right) half of the box, as soon as the confining external potential is released spread
over the whole width L, and at time t = tc realize a new spin-separation phase, less
steep than the starting one, where the spin-up (down) fermions are mostly located
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Figure 3.1: Time dependence of N
(L)
↑ (t) after a sudden release of the external poten-

tial for a non-interacting system with N↑ = 1 (blue line), N↑ = 5 (orange line), and
N↑ = 10 (green line). To produce the initial state the value V0 = 4EF was utilized.

in the right (left) half of the box. Later on, after another spread of the spin-up and
spin-down fermions densities over the whole box width, at time t = 2tc the majority
of spin-up (-down) fermions are located in the left (right) half of the box, and so
on. This process continues up to a certain time te, in correspondence to which
spin-up and spin-down densities completely overlap each other and extend over the
whole confining box potential. To summarize, we can assert that the main difference
between the dynamics of a non-interacting and an interacting system for the present
Protocol with tR = 0 consists in the fact that, while the non-interacting system
experiences periodic density oscillations, the interacting system is characterized by
dumped density oscillations with the same periodicity.

In Fig. 3.2 we report the time dependence of N
(L)
↑ which we find representative

of the dynamics discussed above. This quantity at time t = ltc ∀l even and small
enough experiences local maxima, while at time t = mtc ∀m odd and small enough
experiences local minima. These values, reported in Fig. 3.2 (dots), correspond to
a partial restoring of the initial spin separation, which gets less steep as the spin-up
and spin-down fermions continue to interact.

From the three panels of Fig. 3.2, we notice that increasing the interaction
dampens the density oscillations of the system: The absolute value of N

(L)
↑ (t = ntc)

∀n decreased as γ increased. Moreover, the values N
(L)
↑ (t = ntc) ∀n can be modelled

through

N
(L)
↑ (ltc) = N

(L)
↑ (0)e−ltc/te for l even

N
(L)
↑ (mtc) = [1−N (L)

↑ (0)]e−mtc/te for m odd
(3.6)

in terms of the fitting parameter te, which can be identified as the equilibration time
in the sense explained above.

We have applied the Protocol 1 with tR = 0 to systems for a large set of values
of γ and performed the fitting procedure (3.6) on the corresponding N

(L)
↑ (t). The

results of this analysis are shown in Fig. 3.3, where te is shown as a function of

49



Chapter 3. Transient Phenomena in a Superfluid Fermi Gas

0 2 4 6 8
t/tc

0

0.2

0.4

0.6

0.8

1

N
(L
)

↑
(t)

γ=0.4

0 2 4 6 8
t/tc

γ=1.2

0 2 4 6 8 10
t/tc

γ=2

Figure 3.2: Time dependence of N
(L)
↑ (t) for a sudden release of the separating ex-

ternal potential for an interacting system with 40 fermions (N↑ = 20 and N↓ = 20)
for three different values of coupling constant γ. The continuous lines represent the
instanteneous value of N

(L)
↑ (t), the dots identify the values corresponding to t = ntc

with n = 1, 2, . . . , and the dashed lines represent an exponential fit through the
dots.

γ. One sees that the equilibration time results to be inversely proportional to the
inter-particle interaction strength γ. Specifically the values of te can be modelled
through a branch of a hyperbola as shown in Fig. 3.3.

The dynamics discussed so far can be clearly unveiled only when tR = 0 and for
a large enough number of fermions, for which it is possible to consider steep initial
spin-separations, and for small inter-particle interaction strength. Otherwise, the
off-diagonal terms of the BdG equeations (1.38) does not allow us to clearly identify
the damped oscillatory dynamics, because the system reaches almost immediately
the final equilibrium configuration discussed above. The systems here considered at
time t = 0 have 97% of spin-up (-down) fermions in the left (right) half of the box
when using the value V0 = 3.8EF in (3.3).

Choosing finite values for the releasing time tR of the separating external poten-
tial prevents the observation of the dumped oscillatory dynamics described above.
In this case, the spin-up and spin-down densities are slowly made to overlap each
other and the off-diagonal terms of eq. (1.38) starts to increase immediately.

In particular, for tR → +∞ the process is expected to be adiabatic. As a
consistency check on our numerical calculations, we verified that the final state
for increasing tR tends indeed to the ground-state of the system with no external
potential (apart from the confining box) as found by solving the time-independent
BdG equations (1.16).

Following these considerations on the adiabatic limit, the energy E∞ of the final
state for Protocol 1 is expected to be larger than the energy Ebox(T = 0) of the
ground-state at T = 0 with no separating external potential. Moreover, the faster
the release of the external potential, the more energetic is expected to be the final
state. To confirm this expectation, we have studied the dynamics of the system for
a large set of values of tR, obtainig the results shown in Fig. 3.4. The energy E∞ is
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Figure 3.3: Coupling dependence of the equilibration time te obtained through the
fitting procedure (3.6) for a system of 40 (N↑ = 20 N↓ = 20) fermions. The dashed
line represents the branch of the hyperbola fitting the values of te.

found to be a decreasing function of tR and tends to Ebox(T = 0) for t� tc.
The energy E∞ can also be used to associate an effective temperature Teff to the

final state of Protocol 1. Solving the BdG equations for a system of N fermions
confined in a box at finite temperature, we have obtained the relation between the
temperature and the energy of the system shown in Fig. 3.5, which can then be used
to associate an effective temperature to the final state of Protocol 1. This procedure
thus leads us to associate an effective temperature larger than Tc for the final states
considered in Fig. 3.4. This result is rather remarkable because the final states here
considered have a non-vanishing gap. Metastable states with the same chacteristics,
that is T > Tc and finite gap, were experimentally observed in Ref. [22]. We have
applied Protocol 1 to the case with N↑ 6= N↓. In particular, we were interested in
establishing the differences in dynamics, if any, with respect to the spin-balanced
case. The main results of this study are reported in Figs. 3.6 and 3.7.

In Fig. 3.6 the time dependence of N
(L)
↑ is reported for three cases with N↑ = 10

and different values of N↓. Situations with N↓ < N↑, N↓ = N↑, and N↓ > N↑ are
considered. The separating external potentials and the interaction constant g are
the same in each case, so that the differences in the dynamics in the three cases are
due to the imbalance amount of the spin populations. From Fig. 3.6 we note that
the initial spin-separation when N↓ = 5 is less steep with respect to N↓ = 10 and
N↓ = 15, resulting in a faster dynamic. Namely, when N↓ = 5 the equilibrium value
0.5 is reached in a shorter time with respect to the other cases and it is not possible
to clearly distinguish the local maxima and minima at t = ltc for l = 1, 2 . . . typical
of the current Protocol. On the other hand, the case with N↓ = 15 has an initial spin
separation slightly different from the case with N↓ = 10 and the time dependence of

N
(L)
↑ (t) experiences local maxima and minima at the same characteristic times ltc
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Figure 3.4: Energy of the final state vs the release time tR of the separating external
potential for a system of 20 fermions (N↑ = 10 N↓ = 10) and γ = 1.05. The dotted
line is a guide to the eye.
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Figure 3.5: Energy of a system of 20 fermions (N↑ = 10 N↓ = 10) and γ = 1.05 in
units of the energy at T = 0 vs the temperature in units of Tc evaluated within the
present approach. The blue dots correspond to the values of the energy for T < Tc,
while the orange squares to the values of the energy for T ≥ Tc. The green dotted
line is the fitting spline of the blue dots, while the red dotted line is the fitting spline
of the orange squares.
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Figure 3.6: Time dependence of N
(L)
↑ (t) for a sudden release of the separating ex-

ternal potentials for an interacting system with N↑ = 10 and three different values

of N↓. The dashed lines indicate the value N
(L)
↑ (t = 0) for N↓ = 5 (black), N↓ = 10

(blue), and N↓ = 15 (red). The height of the separating external potentials is 3.6EF
in all cases (where EF refers to the case N↑ = N↓ = 10). The interaction constant
g is the same in all cases and leads to the values γ = 2.7 for N↓ = 5, γ = 2 for
N↓ = 10, and γ = 1.6 for N↓ = 15.

for l = 1, 2, . . . as the spin-balanced case. The local maxima and minima of N
(L)
↑ (t)

for the case with N↓ = 15 are larger in absolute value with respect to those of the
spin-balanced case. This leads to a longer equilibration time te for the case with
N↓ > N↑ with respect to systems with N↑ = N↓. These findings are in agreement
with the fact that reducing the value of N↓ results in a larger coupling constant,
which are characterised by a faster dynamics, while increasing N↓ leads to smaller
coupling constants, which are characterized by a slower dynamics (cf. Fig 3.1).

In studing spin-imbalanced systems it is useful to introduce the quantity ∆
2
(t)

defined by

∆
2
(t) =

1

L

∫ L

0

|∆(x, t)|2

E2
F

dx, (3.7)

which enables us to study the time evolution of the superfluid gap. In Fig. 3.7
this quantity is reported for the same cases of Fig. 3.6. From the middle panel of

Fig. 3.7 we see that ∆
2
(t) for the spin-balanced case quickly reaches a finite value

around which it oscillates with no detectable periodicity (cf. right panels in Fig.
3.7). In this case, it is not possible to identify a transient time in a clear manner.

The final value about which ∆
2
(t) oscillates is slightly smaller than ∆

2
(t = 0).

On the other hand, from the top and bottom panels (with N↓ = 5 and N↓ = 15,
respectively) we note that a transient time is clearly detectable and the final value

about which ∆
2
(t) oscillates is considerably smaller than ∆

2
(t = 0) for N↓ = 5 and

slighlty larger than ∆
2
(t = 0) for N↓ = 15. From a preliminary study we have
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Figure 3.7: Time dependence of ∆
2

(left panels) and angular frequency dependence

of the absolute value of its Fourier transform |F (∆
2
)| (right panels) for a system

with N↑ = 10 and N↓ = 5 (top panels), N↓ = 10 (middle panels), and N↓ = 15
(bottom panels) to which Protocol 1 was applied. The dashed line in each panel

signals the value ∆
2
(t = 0). The separating external potentials and the coupling

constant used are the same as in Fig. 3.6.

observed that the transient time of ∆
2
(t) and the equilibration time obtained from

the time-dependence of N
(L)
↑ (t) appear to be the same within numerical error. This

interesting aspect requires further analysis.

3.2 Protocol 2

In this Protocol, we have performed a quench of the inter-particle interaction on
a state whose effective temperature is larger than Tc evaluated within the BdG
(mean-field) approach (see Section 3.1 for further details).

Following the procedure used in Ref. [23], in this protocol the dimensionless
coupling of the system is ramped linearly to its final value in a time tq, namely,

γ(t) =

γi + (γf − γi)
t

tq
for t < tq

γf for t ≥ tq,
(3.8)

γi and γf being the initial and final values of the dimensionless coupling, respectively.
Numerical results of this protocol need further analysis.
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Figure 3.8: Time dependence of ∆
2

for a system of N = 20 (N↑ = 10 N↓ = 10)
fermions and γ = 1.05 to which Protocol 3 was applied. The values in the top panel
refer to V0/EF = 1, in the middle panel to V0/EF = 2, and in the bottom panel
V0/EF = 3. In all cases tp/tc = 0.001 and σ/L = 0.04.

3.3 Protocol 3

In this Protocol, we have chosen the external potential to mimic the pump-and-
probe experiments [21, 22]. The initial state for this Protocol is the ground state for
a system of N fermions confined in a box with dimensionless coupling parameter γ.
We perturb (pump) this system by appling a time-dependent external potential of
Gaussian shape, whose height Vmax varies with time in the following way:

Vext(x, t) = Vmax(t)e−(x−x0)2/(2σ2) with Vmax(t) = V0



t

tp
for t < tp,(

2− t

tp

)
for tp ≤ t < 3tp,(

t

tp
− 4

)
for 3tp ≤ t < 4tp,

(3.9)

In Fig. 3.8 we report the evolution of ∆
2

over time for different values V0 of the

external Gaussian potential, x0 = L/2 and tp = 0.001tc. The quantity ∆
2

oscillates
in time in a quite regular way and the characteristics of these oscillations are deeply
affected by the value V0. For increasing V0, both the period and amplitude of the
oscillations become larger, as it can be seen from the panels in Fig. 3.8.

The dimensionless coupling constant γ plays an important role in this dynamics.
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Increasing the inter-particle interaction makes it not impossibile to identify any pe-

riodicity in the time-dependence of ∆
2
, which oscillates in a random fashion around

an equilibrium value.
Another important parameter is tp (see (3.9). Its value deeply affects the energy

of the final state E∞ (cf. Fig. 3.9) and the dynamics of the system. In particular:

• For tp → 0+, E∞ → Ebox(T = 0) and in this limit for small enough γ, ∆
2

shows periodic oscillations in time. For larger values of γ on the other hand the
system is not sensible to the perturbation and experiences only small random
oscillations of both density and gap profiles.

• In the ”opposite” limit, namely, for tp � 0 E∞ → Ebox(T = 0), the system for
a large enough γ appears to verify the adiabatic limit and after the perturba-
tion recovers the inital density and gap initial profiles, while for smaller values

of γ, ∆
2

shows periodic oscillations at times t > 4tp. These oscillations are
associated with ”periodic flattening and steepening of the quasiparticle dis-
tribution function” as it happened for the Higgs-like modes described in Ref.
[53], but in the present case no damping has been observed in the investigated
simulation time.

• For intermediate values of tp, ∆
2

increases and for time t � tp oscillates in
time with no detectable periodicity.

In the latter case, an ”optimal” value of tp can be identified that maximizes the
ratio E∞/Ebox(T = 0). Looking at Fig. 3.9, this ”optimal” value does to not
depend neither on the inter-particle interaction nor on the height of the Gaussian
external potential. These results need further analysis.
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Figure 3.9: Dependence of the energy of the final state E∞ on time tp, for a system
of N = 20 (N↑ = 10 N↓ = 10) fermions and for a set of values of γ to which Protocol
3 was applied. Values in the top panel refer to V0/EF = 1, in the middle panel to
V0/EF = 2, and in the bottom panel to V0/EF = 3. In all cases, σ/L = 0.04. The
legend in the middle panel refers also to the the top and bottom panels. The dotted
lines are a guide to the eye.
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Conclusions

In the first part of this work, we have performed a systematic study of the Joseph-
son effect at finite temperature across the BCS-BEC crossover. We have taken into
consideration junctions of the type SS’S, where an external potential acts in the
internal (S’) region of an otherwise homogeneous superfluid. We have solved the
LPDA equation, obtained through a coarse-graining of the BdG equations, for var-
ious couplings across the BCS-BEC crossover, at temperatures 0 ≤ T < Tc and for
a large set of barriers. The LPDA equation, that is a non-local differential equa-
tion for the gap parameter, has allowed this study owing to its reduced complexity
with respect to the BdG equations from which it originates. This results in more
feasible computation time and reduced memory load needed to extract the physical
quantities one is interested in, with respect to the BdG equations.

We have studied the Josephson characteristics and the profiles of the magnitude
and phase of the gap parameter varying alternatively and simultaneously coupling,
temperature, barrier height, and width. In this way we have obtained the following
results: The emergence of the Josephson-induced Proximity effect for increasing
barrier width (see Sec. 2.4); The identification on numerical grounds of an extended
BCS regime (see Sec. 2.5); The evaluation of the exponent η for the critical current
Jc and its dependence on the barrier heights and width (see Sec. 2.6); The extension
of the Landau criterion to finite temperature (see Sec. 2.7); A favourable comparison
with experimental results currently available for ultra-cold Fermi gases (see Secs. 2.7
and 2.8).

In this work, we have proven that the temperature dependence of the critical
current Jc for SS’S and SNS junctions, upon a suitable choice of the physical pa-
rameters, are essentially the same in spite of the fact that these junctions constitute
two distinct physical systems, for which the changes occuring at the center of the
junction affect either single-particle (for the SS’S junction) or two-particle (for the
SNS junction) properties. Moreover, we have made a non-trivial consistency check
of our calculations based on the Josephson-induced proximity effect introduced in
Section 2.4. In this context, we plan to compare our numerical findings with the
experimental temperature dependence of Jc shown in Fig. 3 of Ref. [2].

The studies on SS’S and SNS junctions were performed mainly on the BCS side of
the crossover, because in that region the mean-field approach, underlying the LPDA
equation, is expected to give more reliable results. For increasing temperature and
going from BCS to BEC limits of the crossover, pairing fluctuations are expected to
play a major role due to the fact that the Cooper pair size in that region becomes
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comparable or even smaller than the inter-particle distance. In order to get more
reliable results for this portion of the coupling-temperature phase diagram we are
developing a procedure to include pairing fluctuations on top of the LPDA equation
and currently testing it via a comparison with the available experimental data for the
critical current Jc for ultra-cold Fermi gases [3]. We plan to extend this comparison
to additional experimental results like those of Ref. [5] for vanishingly small barriers
and of Ref. [4] in the unitary regime for increasing temperature.

In the last part of this work, we have developed three out-of-equilibrium Proto-
cols for a system of N fermions confined in a 1D box potential. In Protocol 1 we
have separated spatially the spin-up and spin-down fermions using a suitable spin-
dependent external potential and studied the dynamics of this system after releasing
the external potential either suddenly or by decreasing its height in a time tR lin-
early. We have determined the equilibration time te for the densities and observed
that te is inversely proportional to the inter-particle interaction strength. Moreover,
we have observed the existence of finite-gap states whose energy corresponds to an
effective temperature larger than Tc. We have applied Protocol 1 to spin-imbalanced
systems and observed that the equilibration time when N↓ < N↑ systems appears
to be smaller than that when N↑ = N↓, while systems with N↓ > N↑ appear to have
a slower dynamics with respect to their balanced counterpart. Moreover, while for
spin-balanced systems a transient time can not be clearly identified from the time-
evolution of the gap parameter, for imbalanced systems it can be clearly determined.
In Protocol 2, we have performed a quench of the interaction strength. In this case,
the numerical results need further analysis to draw definite conclusions. In Protocol
3, we have perturbated the system by a pulsing Gaussian external potential and
observed a different dynamics depending on the inter-particle interaction strength
γ. For small values of γ, the gap parameter shows a periodic dependence on time,
while for larger values of γ this periodicity is not detectable. Moreover, we have
determined the existence of an ”optimal” value of the time tp for perturbing the
system, in order to maximize its final energy.

Once the dynamic following the application of Protocol 2 will be determined, we
plan to extend the present study with three Protocols to spin imbalanced systems
and further to 2D systems.
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Appendix A

Numerical Procedure for solving
the LPDA Equation in the
presence of a Supercurrent

In this Appendix, a method is set up for the numerical solution of the LPDA equa-
tion (1.49) in the presence of a supercurrent. This method can as well be used to
solve directly the GP (1.60) and GL (1.57) equations in their respective domains
of validity, thus complementing other numerical methods already available for these
cases [54, 55].

For definiteness, we take the supercurrent directed along the x axis and assume
translational invariance along the y-z plane. Accordingly, the problem effectively
reduces to one dimension and Eq. (1.49) with A(x)→ Q0 simplifies as follows:

− m

4πaF
∆̃(x) = I0(x)∆̃(x) +

I1(x)

4m

d2

dx2
∆̃(x) + iI1(x)

Q0

m

d∆̃(x)

dx
(A.1)

where ∆̃(x) = e−2iQ0x∆(x) ≡ |∆̃|(x)e2iφ(x) and the coefficients I0(x) and I1(x) are
given by the expressions (1.50a) and (1.50b) of the main text, respectively. Through
the integrals over the wave vector k in these coefficients, the system preserves mem-
ory of the orthogonal dimensions y and z. In addition, for a symmetric barrier with
respect to x = 0, the domain of solution of Eq. (A.1) can be restricted to (0,+∞).

It is further convenient to separate the real and imaginary parts of Eq. (A.1) and
introduce the spatial derivatives of |∆̃|(x) and φ(x). In this way, Eq. (A.1) reduces
to a system of four first-order differential equations in the unknown functions |∆̃|(x),
|∆̃|′(x), φ(x), and φ′(x):

|∆̃|′ = d|∆̃|
dx

(A.2a)

φ′ =
dφ

dx
(A.2b)

d|∆̃|′

dx
= 4|∆̃|

[
φ′2 + 2Q0φ

′ − m

I1

(
m

4πaF
+ I0

)]
(A.2c)

dφ′

dx
= −2

|∆̃|′

|∆̃|
(Q0 + φ′) (A.2d)

where the x dependence of the various quantities has been omitted for simplicity.
To ensure the solutions to these equations to be physically meaningful, we adopt
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the following boundary conditions :

|∆̃|′(x = 0) = 0, φ(x = 0) = 0,

lim
x→+∞

|∆̃(x)| = ∆0, lim
x→+∞

φ′(x) = 0,
(A.3)

where ∆0 is the bulk value of the gap parameter in the presence of the current.
We remark that Eq.(A.2d) entails the local current conservation in both limits

of weak coupling and T → T−c [12] (when the LPDA equation recovers the GL
equation) and of strong coupling and T = 0 [56] (when the LPDA equation recovers
the GP equation). However, when the BCS-BEC crossover is spanned at arbitrary
temperature in the superfluid phase like in the present context, Eq.(A.2d) does not
automatically guarantee current conservation. For this reason, we have followed the
strategy adopted in Ref. [9], where the Josephson problem was considered at T = 0
throughout the BCS-BEC crossover, and replaced the imaginary part (A.2d) of the
gap equation by the condition (2.2) for local current conservation. With the LPDA
expression (1.53) for the current, this local condition reads:

0 = j(x)− J =
φ′(x)

2m
n(x) +

Q0

m
(n(x)− n)

+ 2

∫
dk

(2π)3

k

m

[
fF (EQ0

+ (k|x))− fF (EQ0
+ (k|x→ +∞))

] (A.4)

where Q0 = Q0x̂, n(x) is the value of the local density given by Eq.(1.54), and n
is the corresponding bulk density far away from the barrier. The expression (A.4)
depends on |∆̃|(x) and φ′(x), and can be brought to the form of Eqs. (A.2a)-(A.2c)
by moving φ′(x) to the left-hand side. Finally, as it was done in Ref. [9], the wave
vector Q0 occurring in Eqs. (A.2a)-(A.2c) and (A.4) can also be considered as an
independent variable, thereby imposing the additional boundary condition

2φ(+∞) =

∫ +∞

0

dx2φ′(x) =
δφ

2
(A.5)

that fixes in advance the asymptotic phase difference δφ.

A.1 Implementing the implicit Runge-Kutta

method

The four equations (A.2a)-(A.2c) and (A.4) to be solved are highly nonlinear in the
variables |∆̃|(x), φ′(x), and Q0. We have thus found it convenient to solve them
through an implicit rather than an explicit Runge-Kutta method, since the latter
might be subject to numerical instabilities [57]. Accordingly, we have implemented
this method in the following way.

Owing to the spatial localization of the perturbance introduced by the barrier
in an otherwise homogeneous superfluid, it is sufficient to restrict the solution of
the equations (A.2a)-(A.2c) and (A.4) to a finite interval extending from x = 0 to
x = xmax (in practice, xmax ranges from 10k−1

F to 200k−1
F , depending on coupling and

temperature). The interval (0, xmax) is then split into N subintervals (not necessarily
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of equal length) identified by an index ν = (1, · · · , N), such that Xν=0 = 0 and
Xν=N = xmax. In each of these subintervals a mesh of K points

xk = Xν−1 + uk (Xν −Xν−1) (k = 1, · · · , K) (A.6)

is further selected such that Xν−1 ≤ xk ≤ Xν , with the condition uk=1 = 0 and
uk=K = 1 on the variables uk. In this way, each interval (Xν−1, Xν) of variable
length is mapped onto the interval (0, 1) of unit length. [In practice, the values
N = 30 and K = 5 have proven sufficient for good numerical convergence of the
method.]

With this geometrical setting, the solution of Eqs. (A.2a)-(A.2c) and (A.4)
proceeds as follows. Within the ν-th subinterval, these equations have the form

y′(xk) = g(y(xk), xk) (A.7)

where {xk; k = (1, · · · , K)} is the mesh of points (A.6) and yT = ( ˜|∆|, φ, ˜|∆|
′
, φ′)

refers to the four unknown functions to be determined. The left-hand side of Eq.
(A.7) is then represented by the expression

y′(xk) =
K∑
i=1

qi fi(xk) (A.8)

in terms of K distinct functions {fi(x); i = (1, · · · , K)}, one of which assumes the
unit value in correspondence to one of the points {xk}, that is to say

fi(xk) = δik. (A.9)

The coefficients {qi; i = (1, · · · , K)} of the expansion (A.8), in turn, correspond to
the values of the right-hand side of Eq. (A.7), since

g(y(xk), xk) =
K∑
i=1

qi fi(xk) = qk (A.10)

for any given k. Within ν-th subinterval, we thus write:

y(xk) = y(Xν−1) +
K∑
i=1

qi

∫ xk

Xν−1

dxfi(x) = y(Xν−1) +
K∑
i=1

akiqi (A.11)

with the short-hand notation

aki =

∫ xk

Xν−1

dxfi(x). (A.12)

In particular, for k = K such that xK = Xν , Eq.(A.11) becomes

y(Xν) = y(Xν−1) +
K∑
i=1

biqi (A.13)

where now

bi =

∫ Xν

Xν−1

dxfi(x). (A.14)
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The result (A.13) is interpreted as yielding the solution yν at the left side of the ν-th
subinterval in terms of the solution yν−1 at the left side of the (ν−1)-th subinterval.
Formally, this transfer of information from the (ν − 1)-th to the ν-th intervals can
be cast in the form yν = P(yν−1) in term of a “propagator” P .

A convenient choice for the set of variables {uk} and for the functions (A.9) is

obtained in terms of the normalized Legendre polynomials P n(u) =

√
2n+ 1

2
Pn(u)

where Pn(u) are standard Legendre polynomials [58], such that∫ +1

−1

duP n(u)P n′(u) = δnn′ . (A.15)

Let {uk; k = (1, · · · , K)} be the K distinct real zeros of the Legendre polynomial
PK(u), obtained by solving the K × K eigenvalue problem that results by cyclic
application of the recurrence relation (n+ 1)Pn+1(u) = (2n+ 1)uPn(u)− nPn−1(u)
from n = 0 up to n = K − 1 where P−1(u) = 0 (cf., e.g., Appendix B of Ref.
[30]). From the normalization of the corresponding eigenvectors one also obtains
the weight factors {wk; k = (1, · · · , K)} that enter the Gaussian quadrature:∫ +1

−1

duP n(u)P n′(u) =
K∑
k=1

P n(uk)P n′(uk)wk = δnn′ . (A.16)

In this way, one defines the orthogonal (K ×K) matrix

Snk = P n(uk)
√
wk (A.17)

such that
K∑
k=1

SnkS
T
kn′ = δnn′ and

K−1∑
n=0

STknSnk′ = δkk′ . (A.18)

Owing to Eq. (A.17) and the second of Eqs. (A.18), the requirement (A.9) is thus
implemented in the form

fi(xk) =
√
wi

K−1∑
n=0

STinP n(uk) =
√
wi

K−1∑
n=0

STinP n

(
2xk −Xν −Xν−1

hν

)
(A.19)

where hν = Xν−Xν−1 is the length of the ν-th interval. Here, the choice 2uk = uk+1
maps the K roots uk of the polynomial PK(u) in the interval (−1,+1) into the K
values uk that enter Eq. (A.6) and are restricted to the interval (0, 1). In this way,
the coefficients (A.12) become:

aki =
hν
2

√
wi

K−1∑
n=0

STin

∫ uk

−1

dyP n(y) (A.20)

where∫ uk
−1
dyP n(y) =

1√
2n+ 1

×
[
P n+1(uk)− P n+1(−1)√

2n+ 3
− P n−1(uk)− P n−1(−1)√

2n− 1

]
(A.21)

which results from the identity

(2n+ 1)Pn(x) =
dPn+1(x)

dx
− dPn−1(x)

dx
(A.22)

among the Legendre polynomials [58]. Similarly, an expression like (A.20) holds for
the coefficients (A.14), where the upper end of the integral in Eq. (A.21) is now +1.
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A.2 Successive steps of the Newton method

There remains to apply a multi-dimensional Newton method for solving Eq. (A.10),
within each of the N subintervals in which the domain (0, xmax) of the solution of this
equation has been partitioned, as well as to solve Eq. (A.13) that connects adjacent
subintervals. Accordingly, two successive steps have been set up for achieving the
self-consistency of the solution. First step - With the help of Eqs. (A.6) and (A.11),

Eq. (A.10) is cast in the form

g

(
y(Xν−1) +

K∑
i=1

akiqi, Xν−1 + hνuk

)
− qk = 0 (A.23)

where ν = (1, · · · , N) identifies the ν-th subinterval and k = (1, · · · , K) the mesh
of points in each subinterval. For any given ν in Eq. (A.23), the K vectors {qi}
(each of 4 dimensions) are considered unknown, while the values of y(Xν−1) as well
as the value of Q0 are guessed beforehand as inputs of the calculation. One cycle of
Newton method is then applied to determine the values of {qi}. Second step - Once

the quantities {qi} have been determined in this way for any given ν, their values
are inserted into Eq.(A.13) which can be rewritten in the compact form

yν = P(yν−1) with ν = (1, · · · , N). (A.24)

These 4N equations contain (N + 1) sets of 4-dimensional unknown quantities yν ,
since yν=0 at the left edge of the interval (0, xmax) has also to be taken into account.
Including in yν=0 also the value of Q0 that has to be self-consistently determined,
the required additional equations are supplied by the five boundary conditions (A.3)
and (A.5). One cycle of Newton method is then applied to determine the values
of {yν ; ν = (0, · · · , N). Cycling back and forth - Once the quantities {yν ; ν =

(0, · · · , N)} have been determined in this way, their values are fed back into the
first step above and new values for the quantities {qi} are determined from Eq.
(A.23) through a second cycle of Newton method. These values of {qi} are then
fed into the second step above, and new values of {yν} (including Q0) are in turn
obtained. Typically 5− 30 (depending on coupling and temperature) cycles of this
two-step Newton method are required to eventually achieve full self-consistency.

In practice, the initial values of {yTν } are taken to be ( ˜|∆| = ∆̃0, φ = 0, ˜|∆|
′

=
0, φ′ = 0) irrespective of ν, as well as Q0 = 0, where ∆̃0 is the value of the gap
parameter in the absence of the barrier. In this way, the value δφ = 0 is initially
assumed for the boundary condition (A.5). Cycling back and forth between the first

and second steps above produces eventually a nontrivial spatial profile for ˜|∆|(x),
although still with φ(x) = 0. This profile is then taken as input for determining
the next value of the Josephson characteristic for a non-vanishing value of δφ and
the corresponding value of Q0. The process is repeated several times for increasing
values of δφ.

A.3 Two types of cycles of the Newton method

The numerical method just described is computationally quite demanding, to the
extent that it becomes progressively more difficult to reach convergence for increas-
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ing values of δφ. This is especially true when considering the decreasing branch of
the Josephson characteristics in order to approach the limiting value δφ = π.

Under these circumstances, we found it more convenient to alternate two types of
cycles while searching for the solution, namely, a first type of cycle when δφ is fixed
and Q0 is consistently determined as described above, and a second type of cycle
when Q0 is instead fixed and δφ is consistently determined. In the latter case, the
boundary condition (A.5) is removed from the second step above and δφ is obtained
by integrating the spatial profile of φ′(x). At the same time, Q0 is fixed at the value
previously obtained by performing the first type of cycle. The new solution, attained
in this way by performing the second type of cycle, is then used back as input for
the first type of cycle. Typically, repeating this procedure a couple of times proves
sufficient.

A.4 Further numerical insights

The LPDA equation (A.1) contains the local coefficients I0(x) and I1(x), which have
to be determined from the expressions (1.50a) and (1.50b) with sufficient numerical
accuracy at each step of the Newton method. Comparable accuracy is also required
to determine the local number density n(x) and current j(x) that enter the condition
(A.4). This is because the presence of numerical noise may render the convergence
of the whole method quite difficult and sometimes even impossible to reach. For
these reasons, before starting the convergence procedure described above, all these
quantities have been accurately evaluated over a regular grid of points in the vari-
ables (|∆|, µ,Q0), and a tri-linear interpolation has been utilized to determine the
actual values of these quantities needed at each iteration of the Newton method.

In practice, for a Josephson characteristics with a mesh of 50 values of δφ, the
computational time ranges from 100 to 800 minutes, 15 minutes of which are used
for the calculation of the coefficients I0(x) and I1(x) of the LPDA equation over the
above three-dimensional grid (|∆|, µ,Q0). This wide range of computational time
reflects the convergence of a single profile ∆(x) for given δφ, which may require
from a few seconds up to 20 minutes depending on the settings. The computer code
(with no parallelization) was run on a devise with 3000 Mhz CPU speed, 187 GB
RAM memory, 15 GB swap memory, 1 GB/s writing speed, and 250 MB/s reading
speed.
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Numerical Procedure for solving
the BdG equations and their
time-dependent version

In this Appendix, a method is described for the numerical solution of the BdG
equations (1.16) and for the integration of their time-dependent version (1.38).

In Chapter 3 we considered systems confined in a 1D box potential. For this
reason, we found it convenient to expand the wave functions uνσ and vνσ in the
basis set of eq. (3.1). This procedure allows us to express the wave functions uνσ
and vνσ in terms of a finite set of coefficients as follows:{

uν↑(x) =
∑M

n aνnφn(x)

vν↓(x) =
∑M

n bνnφn(x).
(B.1)

Here, the coefficients aνn and bνn obey the normalization condition∑
n

(
|aνn|2 + |bνn|2

)
= 1 (B.2)

for any values of ν in order for the uνσ and vνσ to satisfy the closure relation (1.9).
Introducing the expressions (B.1) in eq. (1.16) and projecting on the n-th element

of the set (3.1), we obtain the equations for the coefficients aνn and bνn:(
~2k2

n

2m
− µ↑

)
aνn +

∑
n

aνn

∫ L

0

dxφn(x)V ↑ext(x)φn(x)

−
∑
n

bνn

∫ L

0

dxφn(x)∆(x)φn(x) = Eνa
ν
n,

(B.3a)

(
−~2k2

n

2m
+ µ↓

)
bνn −

∑
n

bνn

∫ L

0

dxφn(x)V ↑ext(x)φn(x)

−
∑
n

aνn

∫ L

0

dxφn(x)∆∗(x)φn(x) = Eνb
ν
n,

(B.3b)

where kn is the wavevector associated to the n-th wavefunction of the set (3.1).
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It is convenient to rearrenge eqs. (B.3) in matrix form as follows:

~2k21 − µ↑ + V ↑11 . . . V ↑1M −∆11 . . . −∆1M

...
. . .

...
... . . .

...

V ↑M1 . . . ~2k2N − µ↑ + V ↑MM −∆M1 . . . −∆MM

−∆∗11 . . . −∆∗1M −~2k21 + µ↑ − V ↓11 . . . −V ↓1M
... . . .

...
...

. . .
...

−∆∗M1 . . . −∆∗MM −V ↓M1 . . . −~2k2N + µ↑ − V ↓MM





aν1
...
aνM
−
bν1
...
bνM


= Eν



aν1
...
aνM
−
bν1
...
bνM


, (B.4)

where the matrix elements V σ
nn′ and ∆nn′ are defined by

V σ
nn′ =

∫ L

0

dxφn(x)V σ
ext(x)φn′(x), (B.5a)

∆nn′ =

∫ L

0

dxφn(x)∆(x)φn′(x). (B.5b)

The integral in eq. (B.5a) involving two sin functions was solved analitically in
Protocol 1 and numerically in Protocol 3. The integral in eq. (B.5b) involving four
sin functions (two of them being hidden in the gap parameter, cf. eq. (1.17)) was
solved analitically for all Protocols.

Equation (B.4), for given N↑ and N↓, was used to determine the initial state of
both Protocols 1 and 3. The unknowns in this equation are the set of coefficients
aνn and bνn, which determine also the gap parameter and the chemical potentials µ↑
and µ↓. We have solved eq. (B.4) by using the following iterative procedure:

1. make an initial guess for µ↑ and µ↓;

2. make an initial guess on the coefficients ∆
(i)
nn′ ;

3. solve the eigenvalue problem for the matrix in eq. (B.4) and rescale the eigen-
vectors, namely aνn and bνn, by a common factor in order to satsfy the normal-
ization condition (B.2);

4. evalute the new ∆
(i+1)
nn′ using the just found aνn and bνn coefficients;

5. check whether the condition
∑

n,n′ |∆
(i+1)
nn′ −∆

(i)
nn′|/

∑
n,n′ |∆

(i)
nn′| < 10−6 is sat-

isfied; otherwise, introduce ∆
(i+1)
nn′ in (B.4) and repeat steps 3→5 until the

self-consistency is achieved,

6. evalute N↑ and N↓ in terms of the coefficients aνn and bνn by analitically inte-
grating the expression (1.18a);

7. check whether N↑ and N↓ are the desired values within 10−6 accuracy; other-
wise modify µ↑ and µ↓ accordingly and repeat steps 3→7 until the condition
is eventually verified.

The coefficients aνn and bνn, as well as the chemical potentials µ↑ and µ↓, solution
of eq. (B.4) for given N↑ and N↓ fermions, depend on the number M of functions
used in the expansion (B.1). We have verified that both the chemical potentials and
the average gap parameter in the 1D box approach a limiting value for increasing
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M . We have chosen the number M of functions for the expansion in eq. (B.1)
such that the limiting value of the average gap parameter is recovered within 5%.
The energy associated to this cutoff corresponds to about 100EF for spin-balanced
systems and is in line with the values of the cutoff energy utilized in the literature
[59]. In this respect, results corresponding to a smaller energy cutoff, which can
be obtained faster though quantitatively not totally accurate, may provide useful
qualitative insights in a reduced computational time.

To integrate the time-dependent BdG equations, we found it convenient to
rewrite the wave functions uνσ and vνσ in (1.38) in the form{

uν↑(x, t) =
∑M

n=1 a
ν
n(t)eiωntφn(x)

vν↓(x, t) =
∑M

n=1 b
ν
n(t)e−iωntφn(x)

(B.6)

where ωn are the eigenfrequencies associated with the n-element of the basis (3.1).
The introduction of the factors e±iωnt stems from the fact that they correspond
to the time-dependence of the non-interacting system and prevent the numerical
integration of the equations to numerically diverge. In both Protocol 1 and Protocol
3, aνn(t = 0) = aνn and bνn(t = 0) = bνn, where aνn and bνn are the coefficients solution
of eq. (B.4) for fixed N↑ and N↓.

In practice, the time-dependent BdG equations (1.38), with the expansions (B.6)
for uνσ and vνσ corresponds to eq. (B.4) where

aνn → aνn(t)eiωnt, bνn → bνn(t)e−iωnt, Eν → i~
d

dt
.

They are a set of coupled first order differential equations for the complex coeffi-
cients aνn(t) and bνn(t). We have integrated these equations by means of a predictor-
corrector (PEC) algorithm. Accordingly, we have chosen a carefully selected time
step ∆t and used the Runge-Kutta method to predict the values of the coefficients
aνn(ti) and bνn(ti) (where ti = i∆t)for i = 1, . . . , 4, while for later times (i > 4) we
have used the Adam-Bashforth method [60] in combination with the Adam-Moulton
method [60] to find aνn(ti) and bνn(ti). Upon writing the set of first-order differential
equations that we are solving in the form

dy

dt
= F(t,y), (B.7)

where y is the column vector whose elements are the coefficients aνn and bνn, the
Adam-Bashforth method used in the Predict-Evaluate step of PEC algorithm is

y(ti+5) =y(ti+4) + ∆t

[
1901

720
F(ti+4,y(ti+4))− 2774

720
F(ti+3,y(ti+3))

+
2616

720
F(ti+2,y(ti+2))− 1274

720
F(ti+1,y(ti+1)) +

251

720
F(ti,y(ti))

]
;

(B.8)

while the Adam-Moulton method used in the Correct step of PEC algorithm is

y(ti+4) =y(ti+3) + ∆t

[
251

720
F(ti+4,y(ti+4)) +

646

720
F(ti+3,y(ti+3))

−264

720
F(ti+2,y(ti+2)) +

106

720
F(ti+1,y(ti+1))− 19

720
F(ti,y(ti))

]
.

(B.9)
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The PEC algorithm was preferred to the Runge-Kutta method because, by keeping
in memory the values of y at the previous time steps, it requires only one evaluation
of F per time ti, with respect to the four which would be needed by the Runge-Kutta
algorithm. We have checked that, for the same time step ∆t, the numerical accuracy
of the two methods is practically the same.

As a final remark on the method used to integrate the time-dependent BdG equa-
tions, we point out that the chosen time step ∆t considerably affects the conserva-
tion in time of the normalization of the coefficients aνn(t) and bνn(t) (B.2). Moreover,
the larger the number of M functions used in (B.6), the smaller ∆t needs to be.
A reasonable criterion in this respect is setting ∆t = 2π/50ωM , which guarantees
the conservation of the normalization condition (B.2) within a 10−3 accuracy for
evolution times up to 5000~/EF .
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Recurrence Time of a
Non-Interacting N-Fermion
System

A characteristic feature of the fermionic system embedded in a one-dimensional box
with hard walls at x = 0 and x = L, whose time evolution we have studied in detail
numerically in Section III in terms of the TDBdG equations, was that in the absence
of inter-particle interaction the fermionic densities for both spins were bouncing back
and forth with a definite period if they were initially prepared, say, in only half of
the box. In this Appendix, we are going to determine an analytic expression for this
recurrence time, by considering a system of a N non-interacting (spinless) fermions
system subject to Pauli principle.

Suppose that the N non-interacting fermions are initially confined to a “left” (`)
segment of width QL, extending from x = 0 to x = QL with Q < 1. The (nor-
malized) single-particle wave functions corresponding to this initial configuration
are given by

φ(`)
n`

(x) =

√
2

QL
sin

(
n`πx

QL

)
(n` = 1, 2, . . . ) (C.1)

such that φ
(`)
n` (x = 0) = φ

(`)
n` (x = QL) = 0 for all n`. In addition, each of these wave

functions vanishes for x > QL. Correspondingly, the N -fermion density associated
with this initial (t = 0) ground-state configuration reads:

n(x, t = 0) =
N∑

n`=1

|φ(`)
n`

(x)|2. (C.2)

Suppose now that at t = 0+ this system is suddenly released from the segment
and let free to expand over the entire box from x = 0 to x = L. Each of the N
eigenfunction occurring in the expression (C.2) will then evolve in time as follows
(t > 0):

φ(`)
n`

(x, t) =
∑
n

[∫ QL

0

dx′φ(`)
n`

(x′)φ∗n(x′)

]
φn(x)e−iεnt/~ (C.3)

where φn(x) are the wave functions extending to the entire box from x = 0 to x = L
(introduce in the main text) and

εn =
~2π2n2

2mL2
(C.4)
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are the corresponding eigenvalues (m being the fermion mass). The coefficients in
Eq. (C.3) can be readily brought to the form∫ QL

0

dxφ(`)
n`

(x)φ∗n(x) = 2
√
Q

∫ 1

0

sin(n`πy) sin(nπQy). (C.5)

Let’s now consider the symmetric “right” (r) segment also of width QL, extend-
ing from x = (1−Q)L to x = L. If the N fermions were confined to this segment,
their wave functions would be given by

φ(r)
nr (x) =

√
2

QL
sin

[
nrπ

QL
(x− (1−Q)L)

]
(nr = 1, 2, . . . ) (C.6)

such that φ
(r)
nr (x = (1− Q)L) = φ

(r)
nr (x = L) = 0 for all nr (with the understanding

that these wave functions vanish for x < (1−Q)L). Each wave function (C.6) can
be represented in terms of the wave functions φn(x) for the entire box from x = 0
to x = L, by writing

φ(r)
nr (x) =

∑
n

[∫ L

(1−Q)L

dx′φ(r)
nr (x′)φ∗n(x′)

]
φn(x) (C.7)

where ∫ L

(1−Q)L

dxφ(r)
nr (x)φ∗n(x) = (−1)nr+n2

√
Q

∫ 1

0

sin(nrπy) sin(nπQy). (C.8)

By comparing the results (C.5) and (C.8), we obtain that∫ QL

0

dxφ(`)
m (x)φ∗n(x) = (−1)m+n

∫ L

(1−Q)L

dxφ(r)
m (x)φ∗n(x) (C.9)

for n` = nr = m.
On the other hand, the time-dependent factor e−iεnt/~ in the expression (C.3)

also equals (−1)n for a characteristic time tc such that εntc/~ = πn2, that is to say,

tc =
2mL2

π~
=

π~
εn=1

. (C.10)

With the results (C.9) and (C.10), each time-dependent function (C.3) becomes for
t = tc:

φ(`)
n`=m

(x, tc) =
∑
n

(−1)m+n

[∫ L

(1−Q)L

dx′φ(r)
nr=m(x′)φ∗n(x′)

]
φn(x)(−1)n

= (−1)mφ(r)
nr=m(x, tc).

(C.11)

When this result is eventually used in the expression of the number density
n(x, t) that develops in time from its initial value (C.2) at t = 0, we then obtain
that at time t = tc

n(x, t = tc) =
N∑

n`=1

∣∣φ(`)
n`

(x, t = tc)
∣∣2 =

N∑
m=1

∣∣φ(r)
m (x)

∣∣2. (C.12)
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Appendix C. Recurrence Time of a Non-Interacting N-Fermion System

In conclusion we have proved that, if the density profile of a non-interacting
N -fermion system is initially confined within the left segment 0 ≤ x ≤ QL (with
Q < 1) and then at t = 0 let to expand freely over the whole box 0 ≤ x ≤ L, after
a characteristic time tc given by the expression (C.10) this density profile will be
specularly reflected within the right segment (1−Q)L ≤ x ≤ L. This reflection will
then repeat itself in a cyclic way, with a characteristic period 2tc. The occurrence
of this phenomenon has also been confirmed by our numerical calculations with the
TDBdG equations in the absence of the inter-particle interaction.
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Y. Laplace, D. Pontiroli, M. Riccò, F. Schlawin, D. Jaksch, and A. Cavalleri.
Evidence for metastable photo-induced superconductivity in k3c60. Nature
Physics, 17:611–618, 5 2021.

[23] P. Dyke, A. Hogan, I. Herrera, C. C. N. Kuhn, S. Hoinka, and C. J. Vale.
Dynamics of a fermi gas quenched to unitarity. Phys. Rev. Lett., 127:100405,
Aug 2021.
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