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Chapter 1 

1 Introduction 

1.1 Aim of the thesis 

This thesis aims to investigate the gene response patterns to different classes of 

psychoactive compounds, with a special focus on antipsychotic agents and drugs 

that affect dopaminerigc transmission. The first part of the thesis presents the 

experimental results of drug induced gene expression in rat brain. Those results 

were obtained by means of in situ hybridization and image analysis, allowing us 

to detect specific patterns of gene expression by different classes of drugs. We 

show that Homer 1 gene is differentially expressed by typical and atypical 
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antipsychotics, which has important implications for the clinical distinctive 

features of those two classes of drugs. Drug target identification is also explored 

in the second part of this thesis by Systems and Computational Biology 

approaches, which offer novel strategies to analyze the ever increasing amounts of 

biological data resulting form the high throughput technologies that are becoming 

commonplace in the post-genomic era. We are now facing the challenge to make 

sense of large amounts of data in order to better understand the complexity of 

cellular mechanisms, such as the response to drugs. An assessment of the current 

approaches to drug target identification is outlined in Chapter 3, based on my 

review that was recently published on Current Bioinformatics (Ambesi-

Impiombato and Di Bernardo, 2006). Finally the feasibility of computational 

predictions of gene regulation as an aid to drug response investigation are 

discussed in Chapter 6, with the presentation of a computational framework for 

binding site predictions validated on in silico promoter sequence simulations as 

well as on ‘real’ promoters of genes for which regulation is known by literature. 

After validation of our computational framework on those datasets predictions of 

the transcription factor that regulate the Homer 1 gene are presented. The 

computer code of this computational framework was written in Java 

(http://java.sun.com) and Matlab® (www.mathworks.com), with examples shown 

in Appendices A and B.  
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1.2 Antipsychotics and gene expression 

Antipsychotic drugs are the mainstay of the treatment of schizophrenia. The new 

class of drugs referred to as ‘atypical’ antipsychotics is now extensively adopted 

as pharmacological therapy of psychotic patients (Lieberman et al., 2005). 

Compared to the ‘typical’ antipsychotics these newer medications are equally 

effective in reducing the positive symptoms like hallucinations and delusions, and 

have a lower incidence of extrapyramidal side effects (EPSEs) (Arnt, 1998). 

Arguably atypical antipsychotics may also be more effective at relieving the 

negative symptoms of the schizophrenia, such as withdrawal and flattened affect 

(Beasley et al., 1996; Borison et al., 1996). Neuronal expression of immediate-

early genes (IEGs) such as c-fos in response to antipsychotics (Morgan and 

Curran, 1991) may provide a better tool for the screening of their pharmacological 

profile, and for understanding the mechanisms that underlie the distinctive clinical 

features of atypical antipsychotics. Sampling the response to chronic treatments in 

animal models may more accurately resemble what is required in order to obtain 

the pharmaceutical effects in clinical practice, and it may help investigating the 

long-term mechanisms involved in stimulus-induced neuronal plasticity.  

Typical and atypical antipsychotics have been demonstrated to affect differently 

neuronal gene expression in several preclinical paradigms (Angulo et al., 1990; 

Merchant and Dorsa, 1993; Robertson and Fibiger, 1992; Semba et al., 1996). The 

identification of new preclinical predictors of ‘atypicality’ in animal models can 

provide a powerful tool for investigation, as well as a potential means of 

preclinical characterization of putative novel antipsychotic agents and may shed 
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light on neurotransmitters and trasductional systems involved. Typical and 

atypical antipsychotics have already been demonstrated to differently affect 

neuronal expression of early genes in several preclinical paradigms (Angulo et al., 

1990; Merchant and Dorsa, 1993; Robertson and Fibiger, 1992; Semba et al., 

1996). Recently, a differential expression pattern of postsynaptic density protein 

homer 1a has been reported for typical and atypical antipsychotics and has been 

proposed as a putative preclinical characterization of antipsychotic agents (de 

Bartolomeis et al., 2002).  

The D2 dopamine receptor blockade is shared by virtually all antipsychotic agents, 

thus it is considered a crucial mechanism for their clinical efficacy, but it also 

affects the liability to extrapyramidal side effects (EPSEs) due to impairment of 

the striato-nigral dopaminergic system. The introduction of atypical 

antipsychotics and analysis of experimental in vitro and in vivo (by PET) data 

proved that the two effects may be separated using certain drugs at appropriate 

dosages (Kapur et al., 2000a). Their lower propensity to induce EPS is thought to 

depend on their ability to preferentially affect mesolimbic dopaminergic system as 

opposed to the typical antipsychotics which inhibit both mesolimbic and 

mesostriatal systems (Scatton and Sanger, 2000). Other mechanisms may explain 

the clinical difference of the two classes: the 5HT2/D2 receptor affinity ratio 

(Meltzer et al., 1992), the multiple receptor targeting (Bymaster et al., 2003) and 

the fast dissociation from D2R (Kapur and Seeman, 2001; Tauscher et al., 2004). 

However, the molecular mechanisms involved in the distinctive clinical and 

pharmacodynamic properties of atypical antipsychotics remain not fully 

understood. 
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1.3 Homer genes as antipsychotics targets 

Proteins of the Homer family are products of three distinct genes in mammals. 

They are localized at the postsynaptic density (PSD) of excitatory synapses and 

interact, through a conserved amino-terminal EVH1 domain which binds to a 

proline rich sequence, with the C-terminal intracellular tail of group 1 

metabotropic glutamate receptors (mGluRs), inositol 1-4-5-triphosphate receptor 

(IP3R), ryanodine receptors (RyRs), transient receptors potential canonical-1 

(TRPC-1) ion channels, and the NMDA glutamate receptor scaffolding protein 

shank (Tu et al., 1998; Xiao et al., 1998). Through its C-terminus coiled-coil (CC) 

domain Homer proteins multimerize, creating a reticular machinery at the PSD. 

Previous studies have demonstrated that homer gene is regulated as an immediate 

early gene (IEG) and can be induced by dopaminergic modulations, light 

exposure, and maximal electroconvulsive seizures (Brakeman et al., 1997). 

Homer 1 gene encodes for a number of transcriptional variants some of which, 

such as Homer 1a and ania-3, are induced as IEGs and play a relevant and direct 

role in the modulation of glutamate synaptic plasticity at the level of the PSD. 

Both stimulus-responsive isoforms contain the EVH1 domain but lack the CC 

motif required for dimerization (Bottai et al., 2002), acting as natural ‘dominant 

negatives’ by disrupting CC-Homer interactions with EVH1-bound proteins (Xiao 

et al., 1998). Their overexpression ultimately results in a modification of synaptic 

architecture (Sala et al., 2003), a redistribution of CC-Homer expression (Inoue et 

al., 2004), and an alteration in excitatory synaptic transmission (Hennou et al., 

2003; Minami et al., 2003). Homer 1a and ania-3 proteins differ only in their C-

terminal 10 and 41 amino acids respectively, and it is not known whether they are 
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differentially regulated, nor if this difference in their amino acid sequence has any 

functional consequence. Homer 1 gene family is implicated in several behavioral 

disorders (de Bartolomeis and Iasevoli, 2003; Lominac et al., 2005; Szumlinski et 

al., 2006b) such as schizophrenia (Norton et al., 2003; Szumlinski et al., 2005a) 

fragile X syndrome (Giuffrida et al., 2005) alcohol dependence (Szumlinski et al., 

2005b) and cocaine addiction (Dahl et al., 2005; Kalivas et al., 2004; Szumlinski 

et al., 2006a)as well as in motor dysfunction (Tappe and Kuner, 2006). 

In previous studies, we have shown that Homer 1 is strongly upregulated in 

caudate-putamen and nucleus accumbens by haloperidol and only in accumbens 

by atypical antipsychotics such as clozapine and olanzapine (de Bartolomeis et al., 

2002; Polese et al., 2002). Thus we have proposed the regulation of Homer 1 gene 

expression in rat striatum as a novel preclinical characterization of antipsychotics. 

1.4 Systems Biology and Drug Discovery 

Systems and Computational Biology are emerging as the new disciplines of the 

post-genomic era that could help predict drug targets through the analysis of the 

increasingly available data obtained by high throughput technologies. 

Computational Biology can be defined as the development and application of 

data-analytical and theoretical methods, mathematical modeling and 

computational simulation techniques to the study of biological, behavioral, and 

social systems. Systems Biology on the other hand focuses on measuring and 

monitoring biological systems on the system level (Quantitative Systems 

Biology), as well as on mapping, explaining and predicting systemic biological 
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processes and events through the building of computational and visualization 

models (Systems Biology Modeling). 

The drug discovery process is complex, time consuming and very expensive. 

Typically, the time to develop a candidate drug is about 5 years, while the clinical 

phases leading, possibly, to the commercial availability of the drug are even 

longer (>7 years) for a total cost of more than 700 Million dollars (DiMasi et al., 

2003). The drug discovery process begins from the identification of an area of 

“unmet medical needs” and then proceeds by identifying “druggable” biological 

targets that could relief the symptoms of the disease, or, as in the recent years, that 

are involved in the causative process of the disease. The pharmaceutical industry 

is moving from a symptomatic relief focus towards a more pathology-based 

approach where a better understanding of the pathophysiology should help deliver 

drugs whose targets are directly involved in the causative processes underlying 

the disease (Ratti and Trist, 2001). Identification of drug novel targets will help 

the industry in the discovery on novel drugs that are more effective and with 

lower toxicity. 

1.5 Computational prediction of gene regulation 

Control of gene expression is essential to the establishment and maintenance of all 

cell types, and is involved in pathogenesis of several diseases, possibly including 

many complex diseases, such as mental disorders (Hong et al., 2005). Neuronal 

gene expression regulation is expected to be more complex than other cell types. 

It is largely orchestrated by transcription factors (TFs) that activate and repress 
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specific cohorts of genes in both neural and non-neural cells, required for 

differentiation of adult neural stem cells and is implicated in several 

neuropathologies including Huntington’s disease, epilepsy and ischemia. Possibly 

all mental disorders including schizophrenia and mood disorders, for which a 

biological component is strongly supported by evidence, may be caused by a 

dysregulation of neural gene expression during development or adulthood, rather 

than by structural variations in proteins (Hong et al., 2005). The identification of 

genes that encode novel targets of neural-specific transcription factor will provide 

insights into the pathogenesis of mental disorders and in the identification of 

clinically relevant drug-induced gene expression patterns. Although the possibility 

of predicting the regulation of gene expression is appealing, the underlying 

biological mechanisms are not completely understood, and the development of 

bioinformatics tools capable of accurate predictions is far from trivial. It is known 

that the mechanisms of regulation of gene expression involve the binding of TFs 

to regulatory elements on gene promoters, known as Transcription Factor Binding 

Sites (TFBSs), but attempts to computationally predict such elements in DNA 

sequences of gene promoters typically yield an excess of false positives. 

Computational identification of cis-Regulatory Elements (CREs) is currently 

based mainly on three different approaches: (i) identification of conserved motifs 

using interspecies sequence global alignments (Pennacchio and Rubin, 2001); (ii) 

motif-finding algorithms that identify previously unknown motifs that are 

overrepresented in the promoters of co-expressed genes (Bailey and Elkan, 1994; 

Bussemaker et al., 2001; Eskin and Pevzner, 2002; Fujibuchi et al., 2001; Hughes 

et al., 2000; Palin et al., 2002; Sudarsanam et al., 2002); (iii) computational 
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detection of previously known motifs in promoters of genes for which regulating 

TFs are unknown (Kel et al., 2003). Limitations of the first approach are caused 

by the high mutation, deletion and insertion rates in gene promoter regions 

(Ludwig, 2002) that prevent a correct alignment of the promoter region, and 

several other reasons, including rearrangements of binding sites within the non-

coding regions or changes in regulation of the ortholog genes. The second 

approach requires a large number of sequences containing a highly 

overrepresented motif. The third approach seems promising since the quality of 

the motif models of each TF is increasing, allowing for more accurate predictions 

of unknown target genes.  

Accurate predictions require the use of an appropriate statistical background 

model of DNA sequence and integration of several sources of data, such as 

genomic sequence of gene promoters, as well as genomic sequence of ortholog 

genes, and gene expression data. Different strategies have been proposed to 

improve the accuracy of predictions, such as using a statistical background model 

or the information vector of a position weight matrix (PWM) (Kel et al., 2003), 

or, more recently, motif co-occurrence (Bulyk et al., 2004). A promising approach 

was recently shown to successfully predict TFBSs in higher eukaryotic genomes 

by considering overrepresented combinations of motifs in phylogenetically 

conserved regions and correlate them with expression profiles (Zhu et al., 2005). 

Tadesse et al. (Tadesse et al., 2004) could successfully improve specificity of the 

identification of DNA regulatory motifs by fitting a linear regression model to 

microarray data in yeast. A novel computational tool was recently released by 

Hallikas et al. (Hallikas et al., 2006) for the prediction of distal enhancer elements 
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in mammalian genomes, based on both genomic sequence and conservation. This 

method tries to detect highly conserved sequences containing clusters of TFBSs 

by aligning large stretches (50kb) of genomic DNA from two species. Our focus 

is somewhat complimentary, as we try to detect TFBSs in the proximal promoter 

of vertebrate genes as opposed to distal enhancers. Proximal promoters cannot be 

easily aligned with promoters of ortholog genes, however, our method takes 

conservation into account in a way that does not require alignment. Conlon et al. 

(Conlon et al., 2003) showed recently that integration of gene expression profiles 

and PWM scores through a linear regression analysis can indeed improve the 

prediction accuracy. 
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Chapter 2 

2 The in situ Hybridization Method 

2.1 Abstract 

Based on a previously published methodology paper (Ambesi-Impiombato et al., 

2003) I describe the detailed method for quantitative in situ hybridization 

histochemistry adopted in the experiments described in this thesis. 
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2.2 Animals 

Male Sprague-Dawley rats of approx. 250g were obtained from Harlan 

Laboratories (Udine, Italy). The animals were housed and let to adapt to human 

handling in a temperature and humidity controlled colony room with 12/12h 

light/dark cycle (lights on from 6:00 a.m. to 6:00 p.m.) with ad libitum access to 

lab chow and water. All procedures were conducted in accordance with the NIH 

Guide for Care and Use of Laboratory Animals (NIH Publication N0.85-23, 

revised, 1985) and were approved by local Animal Care and Use Committee. 

 

2.3 Special equipment 

2.3.1 Histology and molecular biology equipment 

• Refrigerator (4°C), freezer (-20°C) and deep freezer (-70°C). 

• Cryostat, OTF (Bright Instrument Co., Ltd., Cambridgeshire, UK). 

• Microcentrifuge 5415D (Eppendorf S.r.l., Milan, Italy). 

• ProbeQuant G-50 Micro Columns (Amersham Biosciences; Milan, Italy). 

• Scintillation counter, LS3801 (Beckman Coulter S.p.A., Milan, Italy). 

• Variable-temperature waterbath and variable-temperature incubator 

(Delchimica Scientific Glassware; Naples, Italy). 
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2.3.2 Imaging and data analysis 

• Kodak-Biomax MR Autoradiographic film (Amersham Biosciences; Milan, 

Italy), Kodak X-Omatic light-tight cassettes (Kodak; USA) and darkroom 

facilities. 

• Light box (Northern Light), camera (Sierra Scientific, Imaging Research Inc., 

St. Catherine’s, Ontario), video interface (QuickCapture, Data Translation, 

Inc., Marlboro, MA), Radius PrecisionColor Display/20 (Radius, Inc., San 

Jose, CA), transparency film scanner Umax PowerLook 1100PRO (Umax UK 

Ltd., Gomshall Surrey, UK), Apple PowerPC G3 and ImageJ 1.28 (W. 

Rasband, NIMH, Bethesda, MD). 

2.4 Chemicals and reagents 

2.4.1 Chemicals  

• Dextran sulfate, gelatin, chromium potassium sulfate (Chrome alum), 

triethanolamine (TEA), heparin sulphate, H2O depc-treated and autoclaved, 

ethylenediaminetetraacetic acid (EDTA), acetic anhydride, Tris HCl, sodium 

dodecyl sulphate (SDS) (Sigma-Aldrich; Milan, Italy). 

• Formamide, SSC, ethanol (100%), dithiothreitol (DTT), chloroform, 

formaldehyde, phosphate saline buffer (PBS), sodium pyrophosphate, sodium 

chloride, potassium phosphate monobasic, sodium phosphate dibasic, sodium 

hydroxide, hydrochloric acid (Delchimica Scientific Glassware; Naples, Italy). 
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• Terminal deoxynucleotidyl transferase kit (TdT, 15 units/ml, terminal 

transferase buffer, cobalt chloride) (Roche; Milan, Italy). 

• 35S-dATP (Specific Activity >1000 Ci/mmol; Amersham Biosciences; Milan, 

Italy). 

• Killik-Frozen section medium (Bio-Optica; Milan, Italy). 

• Kodak x-ray developer and fixer (Kodak; Chalon S/Saone, France). 

2.4.2 Drugs  

• Olanzapine, powder (Ely-Lilly, Indianapolis, IN). 

• Haloperidol injectable solution (Lusofarmaco, Milan, Italy). 

2.4.3 Oligonucleotide probes 

• The Homer probe was a 45-base oligodeoxyribonucleotide complementary to 

bases 805-849 of the rat Homer mRNA (GenBank # U92079) (MWG Biotech; 

Florence, Italy). 

• The PSD-95 probe was a 45 base pair oligodeoxyribonucleotide 

complementary to bases 225-269 of the rat PSD-95 mRNA (GenBank # 

M96853) (MWG Biotech; Florence, Italy).  

2.4.4 Solutions 

• Subbing solution: gelatin 0.25% (w/v), Chrome alum 0.025% (w/v) added just 

before use. 
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• Probe labeling and purification: oligonucleotide (stock solution 100 pmol/µl; 

working solution 5 pmol/µl); reagents supplied in TdT kit (15 units/ml 

terminal deoxynucleotidyl transferase in 200mM potassium cacodylate, 

200mM KCl, 1mM EDTA, 4mM 2-mercaptoethanol, 50% glycerol (v/v), pH 

6.5; 5X tailing buffer; 25mM cobalt chloride); 10µCi/µl of [α35S] dATP; 

STE solution (100mM NaCl, 20mM TRIS-HCl, 10mM EDTA); 1M DTT. 

• Tissue fixation: 1.5% Formaldehyde (v/v), 0.01M phosphate saline buffer 

(PBS), pH 7.4. 

• Prehybridization washes: 0.01M phosphate saline buffer (pH 7.4;PBS), 0.25% 

acetic anhydride (v/v), 0.1M TEA, 0.9% NaCl (w/v), pH 8.0; 80%, 95%, 

100% Ethanol (v/v); 100% Chloroform. 

• Hybridization: sterile hybridization buffer (0.1% sodium pyrophosphate (w/v), 

0.2% sodium dodecylsulphate (w/v), 0.02% heparin sulphate (w/v), 4mM 

EDTA, 80mM TRIS-HCl, 600mM NaCl, 50% formamide (v/v), 10% dextran 

sulphate (v/v), 100mM DTT); 35S-probe diluted to 1-2x106 cpm/100µl in 

hybridization buffer. 

• Post-hybridization washes: 1X SSC; 2X SSC, 50% formamide (v/v); 70% 

ethanol (v/v). 

2.4.5 Radioactive standards  

ARC-146 (CG) slide containing a scale of sixteen known amounts of 14C 

standards ranging from 0.00 to 35.00 µCi/g (American Radiolabeled Chemicals, 

Inc., St. Louis, MO, USA). 
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2.5 Detailed procedure 

2.5.1 Drug treatment and tissue preparation  

On the day of the experiment rats are randomly assigned to the treatment groups. 

The brains are rapidly removed, quickly frozen on powdered dry ice and stored at 

-70oC prior to sectioning. 

2.5.2 Tissue sectioning 

Serial coronal sections of 12µm are cut on a cryostat at -18°C, through the 

forebrain using the rat brain atlas of Paxinos and Watson (Paxinos and Watson, 

1997) as an anatomical reference (approx. from bregma 1.20mm to 1.00mm). 

Care is taken to select (Paxinos and Watson, 1997) identical anatomical levels of 

treated and control sections using thionin-stained reference slides. Sections are 

thaw-mounted onto gelatin-coated slides, and stored at -70oC for subsequent 

analysis. 

2.5.3 Radiolabeling and purification of oligonucleotide 
probes 

DNA probes of 45-base oligodeoxyribonucleotide complementary to the 

transcripts of interest are selected. For each probe a 50µl labeling reaction mix is 

prepared on ice using depc treated water, 1X tailing buffer, 1.5mM CoCl2, 

7.5pmol/µl of oligo, 125 Units of TdT and 100 µCi 35S-dATP. The mix is 

incubated 20 min at 37°C. The unincorporated nucleotides are separated from 

radiolabeled DNA using ProbeQuant G-50 Micro Columns (Amersham 

Biosciences; Milan, Italy). 
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2.5.4 In situ hybridization 

All solutions are prepared with sterile double distilled water. The sections are 

fixed in 1.5% formaldehyde in 0.12 M sodium-phosphate buffered saline (PBS, 

pH 7.4), quickly rinsed three times with 1xPBS, and placed in 0.25% acetic 

anhydride in 0.1 M triethanolamine/0.9% NaCl, pH 8.0, for 10 minutes. Next, the 

sections are dehydrated in 70%, 80%, 90% and 100% ethanol, delipidated in 

chloroform for 5 minutes, rinsed again in 100% and 95% ethanol and air dried. 

Sections are hybridized with 0.4-0.6x106 cpm of radiolabeled oligonucleotide in 

buffer containing 50% formamide, 600mM NaCl, 80mM Tris-HCl (pH 7.5), 4mM 

EDTA, 0.1% pyrophosphate, 0.2mg/ml heparin sulfate, and 10% dextran sulfate. 

Slides are covered with coverslips and incubated at 37oC in a humid chamber for 

20 hours. After hybridization the coverslips were removed in 1X SSC and the 

sections are washed 4x15 minutes in 2xSSC/50% formamide at 40oC, followed 

by two 30 min washes with 1xSSC at 40oC. The slides are rapidly rinsed in 

distilled water and then in 70% ethanol. 

2.5.5 Autoradiography 

The sections are dried and exposed to Kodak-Biomax MR Autoradiographic film 

(Amersham Biosciences; Milan, Italy) for 3-30 days. A slide containing a scale of 

16 known amounts of 14C standards are co-exposed with the samples. The 

optimal time of exposure is chosen to maximize signal to noise ratio but to 

prevent optical density from approaching the limits of saturation. Film 
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development protocol included a 1.5 min dip in the developer solution and 3 min 

in the fixer. 

2.5.6 Image analysis 

The quantitation of the autoradiographic signal is performed using a computerized 

image analysis system including: a transparency film scanner (Microtek Europe 

B. V., Rotterdam, The Netherlands), an Apple PowerPC G4, and ImageJ software 

(v. 1.36, Rasband, W.S., http://rsb.info.nih.gov/ij). Sections on film are captured 

individually. Each experimental group contained 4-6 animals. Each slide 

contained 3 adjacent sections of a single animal. All hybridized sections to be 

compared are exposed on the same sheet of X-ray film. Forebrain sections are 

analyzed in the regions of interest (ROIs) including the following (Figure 2-1): 

parietal and frontal cortex, caudate-putamen subregions (dorsolateral, 

dorsomedial, ventromedial, and ventrolateral), and nucleus accumbens (core and 

shell). ROIs were outlined on digitized autoradiograms using an oval template 

tool of ImageJ software and the mean optical density is measured within each 

ROI. Sections are quantitated blind to the treatment conditions. In order to test for 

inter-observer reliability an independent quantitation is performed by a second 

investigator. Only quantitatively comparable results, in terms of consistency of 

statistically significant effects obtained by the two investigators, are considered 

reliable. 
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Figure 2-1:diagram of regions of interest (ROIs) quantitated on autoradiographic 

film images in rat forebrain. 1 = Frontal cortex (FC); 2 = Parietal cortex (PC); 3 = 

dorsolateral caudate-putamen (DL); 4 = dorsomedial caudate-putamen (DM); 5 = 

ventromedial caudate-putamen (VM); 6 = ventrolateral caudate-putamen (VL); 7 

= core of accumbens (AcbCo); 8 = shell of accumbens (AcbSh); 9 corpus 

callosum. Modified from Paxinos and Watson Rat Brain Atlas (Paxinos and 

Watson, 1997). 

2.6 Data processing 

Measurements of optical density (OD) within ROIs are converted a calibration 

curve based on the standard scale co-exposed to the sections. Standard values 

from 4 through 12 have been previously cross-calibrated to 35S brain paste 

standards, in order to assign a dpm/mg tissue wet weight value to each OD 

measurement through a calibration curve. For this purpose a “best fit” 3rd degree 

polynomial is used. For each animal, measurements from the 2-4 adjacent sections 
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are averaged. Data are analyzed for treatment effects by a One Way Analysis of 

Variance, (ANOVA). Student-Neuman-Keuls post hoc test is used to determine 

the locus of effects in any significant ANOVA. 

2.7 Troubleshooting 

2.7.1 High overall background signal  

• As we experienced technical problems (high and non-uniform background 

signal) using commercially gelatin-coated slides, we suggest to pre-treat 

slides with a subbing solution made fresh each time. 

• Use fresh dextran in hybridization mix; 

• It is crucial to check the homogeneity of the final hybridization mix in 

order to avoid unequal distribution of probe and mixing it gently if 

necessary. It may be useful repeat this step several times when pipetting 

the mix over a large number of slides. 

• If adopting the CCD camera acquisition method warm up the lightboard 

for aprox. 30 min before use in order to stabilize light intensity. 

 

2.7.2 Probe specificity 

When designing a novel oligo probe not found to be adopted previously in 

literature, we follow the following strategy. We select a sequence such to 

maximize the following parameters: GC percent close to 60%; least number of 
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secondary structures as oligo duplexes or hairpin stem formations in the antisense 

sequence. The sequence is then tested for specificity through a BLAST search 

(www.ncbi.gov). The hybridization specificity is finally tested by means of an in 

situ hybridization experiment comparing the antisense signal distribution with the 

sense oligonucleotide. 

2.8 Alternative and support protocols 

2.8.1 Slide subbing protocol 

Soak uncoated slides in distilled water and soap for 1 hr, rinse thoroughly, dip 

slides into subbing solution (gelatin 0.25% (w/v), Chrome alum 0.025% (w/v) 

added just before use) twice, allowing to drain on paper towel for 1hr between 

cycles. Store when thoroughly dry (leave overnight loosely covered). 

2.8.2 Data processing 

The statistical analysis of data could benefit from the application of optional 

preprocessing steps in order to reduce unspecific signal variability. Such 

variability could arise for several reasons: heterogeneity of different parts of film, 

overall signal intensity variation across different hybridized slides and preanalytic 

variability due to the precision limits of the image acquisition system. Those 

preprocessing options include: smoothing algorithm, histogram based background 

subtraction, optical density ratio between the region of interest and corpus 

callosum of the same section.  
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Finally, we suggest a method for quantitation of small ROIs difficult to outline 

manually, based on the application of a lower density level threshold filter. Such 

filter is a tool provided by ImageJ software that limits the measurement of any 

ROI selection to precisely those pixels whose density level exceeds the arbitrarily 

chosen threshold. Application of this filter is very useful when measuring small 

regions with a high density level compared to its surroundings, such as Ammon’s 

Horn (CA) and the Dentate Gyrus (DG) of the hippocampus. An appropriately 

chosen threshold allows a consistent region delimitation across all sections, 

devoid of bias due to manual outline. 

2.9 Quick procedure 

i. Tissue preparation: randomly assign rats to treatment group, inject, 

decapitate after 3 hours. Remove and rapidly freeze brains with powdered 

dry ice. Store at –70°C. 

ii. Tissue sectioning: cut serial coronal sections (12µm) and mount onto 

gelatin-coated slides. Store at –70°C until hybridized. 

iii. Radiolabeling and purification of oligonucleotide probes: label 

oligonucleotide DNA probes with 35S-dATP by means of a terminal 

transferase reaction. Purify probe using ProbeQuant G-50 Micro Columns. 

iv. In situ hybridization: sections are fixed, dehydrated, and delipidated. 

Hybridize sections with radiolabeled oligonucleotide probe in 

hybridization buffer, cover slides with coverslips and incubate at 37oC in 
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a humid chamber for 20 hours. Remove coverslips, wash slides, allow to 

air dry and place in imaging cassette with film and 
14

C standard slides. 

Expose for 3-11 days. 

v. Signal detection and quantitation: capture sections, measure optical 

density of regions of interest. 

vi. Data analysis: preprocess data (optional), analyze the treatment effects by 

means of the ANOVA and determine the locus of any significant effect 

using a post hoc test. 
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Chapter 3 

3 Computational Biology and Drug 

Discovery 

3.1 Abstract 

The drug discovery process is complex, time consuming and expensive, and 

includes preclinical and clinical phases. The pharmaceutical industry is moving 

from a symptomatic relief focus towards a more pathology-based approach where 

a better understanding of the pathophysiology should help deliver drugs whose 

targets are involved in the causative processes underlying the disease. 

Computational biology and bioinformatics have the potential not only to speed up 
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the drug discovery process, thus reducing the costs, but also to change the way 

drugs are designed. In this review we focus on the different computational and 

bioinformatics approaches that have been proposed and applied to the different 

steps involved in the drug development process. The development of ‘network-

reconstruction’ methods is now making it possible to infer a detailed map of the 

regulatory circuit among genes, proteins and metabolites. It is likely that the 

development of these technologies will radically change, in the next decades, the 

drug discovery process, as we know it today. This chapter is based on my recently 

published review on Current Bioinformatics (Ambesi-Impiombato and Di 

Bernardo, 2006). 

3.2 Introduction 

The drug discovery process is very similar across different pharmaceutical 

companies. It consists of preclinical and clinical phases. In the target 

identification and validation step, “druggable” biological targets are identified. In 

the hit identification step, library of compounds ranging from tens to hundreds of 

thousands of compounds are screened against the “druggable” targets to identify 

those compounds that “hit” the targets using high throughput screening (HTS). 

HTS methods based on experimental assays are reviewed extensively elsewhere 

(Hart, 2005). The number of compounds selected after this step is in the order of 

hundreds. By analyzing the structure of the selected compounds and identifying 

common active substructures, novel compounds containing those substructures 

are synthesized to significantly lower the number of lead compounds. This step is 
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called lead identification. Structural bioinformatics and chemical informatics 

approaches to drug discovery are particularly useful in this step, however, widely 

used methods like structure-activity relationship (SAR) are outside the scope of 

this review. We refer the interested reader to Bredel et al. (Bredel and Jacoby, 

2004) and Fagan et al. (Fagan and Swindells, 2000). 

The leads identified are further refined to comply with pharmacokinetic 

constraints such as absorption and bioavailability, and to increase their potency 

and efficacy, while decreasing side effects and toxicity. This step is called lead 

optimization. Knowledge of the mode of action (MOA), that is, the identification 

of the therapeutic molecular target of the drug, can simplify the task of optimizing 

the drug candidate. Understanding the MOA can help predicting the effect of drug 

interactions and allow structure-activity relationships (SAR) to guide medicinal 

chemistry efforts toward optimization (Hart, 2005). However, for many drugs, the 

targets are unknown and difficult to find among the thousands of gene products in 

a typical genome.  

Many new compounds fail when they are tested in humans due to lack of efficacy. 

Testing for efficacy early during the drug discovery process (i.e. before the 

clinical phases) is essential for reducing costs and time required. Therefore, the 

development of experimental and computational approaches to test for efficacy in 

vitro is critical. 

After the preclinical phases, a candidate compound is then selected and the 

clinical phase on the process can begin. This consists of clinical phase I, phase II, 

and phase III and possibly the launch into the market. Many compounds fail in the 
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clinical phases of the process thus leading to consistent waste of time and money. 

A good review of the evolution of the drug discovery process can be found in 

Ratti et al. (Ratti and Trist, 2001). 

Computational biology and bioinformatics have the potential not only of speeding 

up the drug discovery process thus reducing the costs, but also of changing the 

way drugs are designed. In this review we will focus on the different 

computational and bioinformatics approaches that have been proposed and 

applied to the different steps involved in drug development as shown in Table 3-1. 

Our aim is to describe the different computational methods that have been used so 

far to tackle these problems by giving examples of applications. Since we cannot 

be comprehensive in our review, we tried to compensate for this by referring the 

interested readers to other reviews with a different focus that have been written on 

this subject. The organization of this paper is based on classifying drug discovery 

approaches into two major categories. Section 3.3 reviews Classifier-based 

algorithms which try to determine drug specific patterns as biomarkers of a 

compound activity, while section 3.4 assesses more complex methods that attempt 

to infer the network of gene-gene interactions that are perturbed by a drug. We 

further subdivided those sections in subsections, each focusing on specific steps 

of the drug discovery process. 

3.3 Classifier-based algorithms 

A classifier is an algorithm that uses a set of input or predictor variables 
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(Figure 3-1). For example 

! 

x  can be a set of measurements of the expression of 

! 

n  

genes in response to a drug treatment in a tumor cell type and 

! 

y  can represent the 

efficacy of the drug for that tumor cell type. Classifiers can be further subdivided 

in supervised-learning methods and unsupervised-learning methods. In 

supervised-learning a training set of ‘solved cases’ is used to train a model to 

recognize what will be the response 

! 

y  given the input variables 

! 

x . Supervised-

learning methods may be thought of as a “learning with a teacher model” in which 

a student gives an answer 

! 

ˆ y  to each question 

! 

x  in the training set, and the teacher 

provides the correct answer 

! 

y . After the training, the student should be able to 

give the correct answer to a new question that was not in the training set. If 

! 

y  and 

! 

ˆ y  are coded as numerical values, we can define a loss function 

! 

L(y, ˆ y ) , for 

example, 

! 

L(y, ˆ y ) = (y " ˆ y (#))
2 , where 

! 

"  are the parameters of the model to be 

learned. By minimizing this function over 

! 

"  on the training set, one finds the 

values of the model parameters 

! 

" . For example, Linear Discriminant Analysis 

(LDA) is a supervised learning where 

! 

ˆ y = "x . 

In unsupervised-learning, or “learning without a teacher”, one has a set of 

! 

n  

observations 

! 

(x
1
,x

2
,...,x

n
) without the correct response variables. Cluster analysis 

is an example of unsupervised-learning method whose goal is to group a 

collection of objects into subsets or “clusters”, such that the objects within each 

cluster are more closely related to one another than those assigned to different 

clusters. In addition the goal can also be to arrange the clusters in a natural 

hierarchy. A commonly used hierarchical clustering is the one described by Eisen 

(Eisen et al., 1998). Unsupervised methods have the advantage that they are ‘data 
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driven’ and do not rely on a priori knowledge. A comprehensive and detailed 

description of these methods can be found in the excellent book by Hastie et al. 

(Hastie et al., 2001). 

 
Figure 3-1: Schematic diagram of the classifier-based algorithms. 

3.4 Target identification and validation 

Whole-genome gene expression data, proteomic data or metabolomic data, also 

named “molecular profiling” in a recent review (Stoughton and Friend, 2005), can 

be used to build classifier algorithms able to help in the process of identifying 

‘druggable’ gene/protein/metabolites targets. 

An example of an unsupervised-learning method can be found in Hughes et al. 

(Hughes et al., 2000). These authors constructed a reference database of whole-

genome expression profiles referred to as a gene expression “compendium” 

generated by 300 diverse mutations and chemical treatments in Saccharomyces 

cerevisiae. A 2D hierarchical clustering (Eisen et al., 1998; Hartigan, 1975) was 
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used to cluster genes and experiments using as the similarity measure the 

correlation coefficient. Genes and experiments were reordered according to the 

resulting clustering similarity trees. By examining the clusters the authors were 

able to find an unknown ORFs that clustered among genes involved in the 

ergosterol biosynthesis and experiments that were perturbing this pathway, thus 

deducing these ORFs to belong to this pathway. They then experimentally 

confirmed that 8 of these ORFs were indeed required for sterol metabolism. Since 

sterol metabolism is a ‘druggable’ pathway in yeast for antimycotic drugs, this 

work shows how novel targets can be identified via bioinformatics approaches. A 

similar method has been applied by Gasch et al. (Gasch et al., 2000) that 

performed a hierarchical clustering of 142 whole-genome arrays in S. cerevisiae 

in response to environmental changes and were able to clarify the regulation 

mechanisms in which three transcriptions factors were involved. 

An example of supervised learning for understanding the function of gene from 

gene expression data is given in Brown et al. 2000 (Brown et al., 2000), in which 

Support Vector Machines (SVMs) (Hastie et al., 2001) are used. When applied to 

gene expression data, an SVM begins with a set of genes that have a common 

function: for example, genes coding for ribosomal proteins or genes coding for 

components of the proteasome. In addition, a separate set of genes that are known 

not to be members of the functional class is specified. These two sets of genes are 

combined to form a set of training examples in which the genes are labeled 

positively if they are in the functional class and are labeled negatively if they are 

known not to be in the functional class. By analyzing expression data from 

2,467 genes from the budding yeast S. cerevisiae measured in 79 different DNA 
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microarray hybridization experiments the authors were able to correctly assign 

genes to five functional classes from the Munich Information Center for Protein 

Sequences Yeast Genome Database (MYGD). The method is compared with 

hierarchical clustering and shown to be marginally better, but this could have been 

expected since supervised learning methods have access to additional information 

as provided by the training set. 

An original high throughput drug screening strategy based on unsupervised-

learning is used by Segmaier et al. (Stegmaier et al., 2004), which, unlike most 

commonly used methods, does not simply screen for compounds that interact with 

specific molecular targets. The authors preliminarily define a gene expression 

signature for the target post-treatment phenotype, or ‘cellular state’ of interest. 

Specifically, in this study the target cellular state was differentiated neutrophils 

and monocytes from control individuals vs. pretreatment bone marrow samples 

derived from Acute Myelogenous Leukemia (AML) patients. A “handful” of 

marker genes were selected, unfortunately not in a generalized manner but rather 

arbitrarily, from the differentiation-correlated genes. Those markers were then 

used to develop a detection assay called Gene Expression-based High-Throughput 

Screening (GE-HTS) based on multiplexed RT-PCR and Single Base Extension 

(SBE) reaction followed by MALDI-TOF mass spectrometry. Eight target 

compounds identified by GE-HTS in this study were validated in several ways 

including morphological observations and functional measures. Interestingly, the 

broader cellular genetic program of differentiation beyond the selected handful of 

marker genes was also investigated, again through a correlation-based statistical 

test. The authors analyzed triplicate microarray expression data from HL-60 cell 
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lines treated with eight different compounds. Six out of the eight expression 

profiles were found statistically significantly similar to the gene expression 

differences characterizing the original AML-vs.-controls primary cells, as 

determined by the Mantel test (Stegmaier et al., 2004). This test is an unbiased, 

global measure of similarity, and indicates that the six compounds induced a 

nonrandom pattern of gene expression consistent with differentiation. The 

advantage of GE-HTS is that the development of the assay does not require any 

specialized assays such as traditional methods based on antibodies or reporter 

constructs or cellular phenotypes, and, once the gene expression signature pattern 

is defined, the procedure is rather straightforward. 

Although they may result in outstanding accuracy performance, correlation-based 

methods do not easily provide insight into the mechanisms of action common to 

the therapeutic category, but rather capture silent features of drug efficacy by their 

correlation to biomarker signatures based on gene expression patterns. 

 

3.5 Hit identification, Lead identification and optimization: 

Mode of Action (MOA) 

One of the first bioinformatics approaches to determine mode of action of a 

compound was based on a simple supervised-learning approach (Paull et al., 

1989). In 1985 the National Cancer Institute (USA) established a primary screen 

in which compounds were tested in vitro for their ability to inhibit growth of 60 

different human cancer cell lines (Weinstein et al., 1997). To each compound 
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tested it is possible to associate a value quantifying the differential growth 

inhibition (GI) for each cell line (treated vs. untreated). The algorithm developed 

by Allen and coworkers, named COMPARE, measures the similarity of the GI 

“signature” of a novel compound against a database of “signatures” of compounds 

with known MOA. The similarity is obtained simply by computing the average 

differences between the signatures of the test compound and each of the 

signatures in the database. Ranking according to this measure of similarity, one 

can infer the MOA of the novel compound as the one of the most similar 

compound in the database. An extension of this approach based on hierarchical 

clustering and integration of different data set from the NCI 60 cell lines has been 

proposed by Weinstein in 1997 (Weinstein et al., 1997). A more sophisticated 

approach using SVM to classify drugs into 5 mechanistic classes using drug 

activity profiles and the gene expression profiles of each of the untreated NCI 60 

cell lines, has been proposed by Bao et al. (Bao et al., 2002). 

Unsupervised approaches have been applied extensively in this area. Marton et al. 

(Marton et al., 1998) were pioneers of the “signature approach” based on gene 

expression profile following drug treatment. In this approach the drug signature is 

compared to a mutant strain signature using a correlation coefficient as a measure 

of similarity, 

! 

p =
xkyk"

xk
2" yk

2"
. They also proposed a further ‘decoder’ step 

where the mutant strains whose expression profiles were most similar to the drug-

treated cells are treated with the drug, generating an expression signature in the 

mutant strain. If the mutated gene encodes a protein involved in the pathway 

affected by the drug, then the signature in mutant cell should be different or, 
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ideally, absent. Marton et al. did a proof of principle study on FK506 and the 

calcineurin signaling pathway as a model system. 

The previously described work by Hughes et al. (Hughes et al., 2000), is another 

good example of how hierarchical clustering and correlation can be used for 

understanding the MOA of a drug. The authors used the gene expression 

‘compendium’ to identify the target of the commonly used topical anesthetic 

dyclonine. In order to find the target of the compound, the authors treated the 

yeast cells with the compound and compared the gene expression profile to the 

most similar expression profiles in the compendium using the correlation 

coefficient as the similarity measure. The erg2

! 

"  strain (knock-out of the erg2 

gene) was most similar to the dyclonine treatment thus suggesting, correctly as 

verified experimentally, that this gene is the molecular target of the drug. Since 

this gene is conserved in human but codes for the sigma receptor, a neurosteroid-

interacting protein, the MOA of the drug in human has also been explained. 

Hierarchical clustering methods have been applied not only to gene expression 

data, but also to chemical-genetic and genetic interaction data. Parsons et al. 

(Parsons et al., 2004) screened ~4700 yeast deletion mutants for hypersensitivity 

to 12 diverse inhibitory compounds. Hypersensitivity was measured from digital 

images of plates by quantifying colony area growing in drug-medium versus no-

drug control medium. Hypersensitive strains for a given drug were coded as 1, 

and with a 0 otherwise. These data (a vector of ~4700 0s and 1s for each drug) 

were used for 2D hierarchical clustering. Both genes and compounds are clustered 

together upon the similarity of their chemical-genetic interactions. By analyzing 
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the clusters they were able to detect genes whose deletion was associated with 

sensitivity to multiple compounds, thus enabling them to identify a multidrug-

resistant gene set. To identify the mode of action of a compound, they performed 

synthetic lethal screens between ERG11 mutants and the ~4700 deletion strains. 

The overlap between the genes that were synthetic lethal with ERG11 mutants, 

with the genes whose deletions were lethal after treatment with flucanozole, was 

used to infer the MOA of this drug. 

Related to these methods are drug-induced haploinsufficiency screens first 

proposed by Giaever et al. (Giaever et al., 1999). Drug-induced 

haploinsufficiency occurs when lowering the dosage of a single gene from two 

copies to one copy in diploid cells results in a heterozygote that displays increased 

sensitivity to the drug as compared to the wild-type strain. These screens make 

use of a fitness defect score (Giaever et al., 2004) that is computed using different 

methods (Baetz et al., 2004; Lum et al., 2004). 

Hierarchical clustering has been applied also to data derived from automated 

microscopy in order to identify drug MOA. Perlman et al. (Perlman et al., 2004) 

chose 200 compounds, 90 of which were drugs with known MOA. They cultured 

HeLa (human cancer) cells in 384-well plates to near confluence, and treated them 

with 13 threefold dilutions of each drug for 20 hour, covering a final 

concentration range from micromolar to picomolar. They chose 11 distinct 

fluorescent probes covering a range of biological processes. Using automated 

fluorescence microscopy they measured for each cell, region and probe, a set of 

descriptors including size, shape, intensity, as well as ratios of intensities between 
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regions for a total of 93 descriptors. For each descriptor they developed a 

titration-invariant similarity score (TISS) to allow comparison between dose-

response profiles independent of starting dose. TISS scores for 61 compounds 

were computed and used for hierarchical clustering; the data matrix used for 

clustering consisted of 61 compounds by 93 TISS scores. Once again they found 

that drug with similar mechanism of action clustered together, thus allowing 

inference of drug MOA for drugs with unknown molecular targets. 

Signature Expression profiles were used by Betts (Baetz et al., 2004) to determine 

the differential mode of action of three active drugs against Mycobacterium 

tuberculosis, and as a means of identifying novel and efficacy-optimized active 

drugs. In this study the authors show that although global response profiles of 

isoniazide and thiolactomycine are more closely related to each other than to that 

of triclosan, there are differences that distinguish the mode of action of these two 

drugs. A mathematical model is proposed to discriminate between the three 

compounds and also the vehicle control treatment. The main sources of variance 

of the data were obtained by Principal Component Analysis (PCA). The principal 

components are a linear combination of all the gene intensities. Partial least 

squares discriminant analysis was performed on a subset of data selecting the dose 

and the time point that maximized separation of experimental groups. The 500-top 

ranking genes thus identified, were further processed by stepwise linear 

discriminant analysis in order to generate a mathematical model for the 

probability 

! 

P
i
(x)  of a gene expression signature 

! 

x  belonging to classification 

group 

! 

i  based on the following discriminant function: 
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! 

Pi(x) =
e
Di

2
(x )

e
D j

2
(x )

j=1

n

"
                       i =1,2,...,n  

(1) 
where 

! 

D
i

2
(x) is the discriminant score of the signature 

! 

x  for group 

! 

i . 

Methods that rely on a dataset for the construction of a classifier model, without 

implementing more robust statistical analyses, such as running a series of training 

and testing data in a ‘leave-one-out’ manner, although accurately performing on 

the training dataset may lead to the construction of a model that ‘overfits’ the 

data, and thus may not perform well on new data obtained using different 

treatments. 

3.6 Hit identification, Lead identification and optimization: 

Efficacy and Toxicity 

A large part of the efforts based on computational and bioinformatics approaches 

have been directed to predict sensitivity of cancer cell lines to different 

compounds. Scherf et al. (Scherf et al., 2000) aimed at relating sensitivity to 

therapy with gene expression using an unsupervised approach. They used the 

database of drug activity profiles (Growth Inhibition after 48h of drug treatment) 

of more than 70,000 compounds on NCI 60 cell lines, together with gene 

expression profiles of 9,703 genes measured using cDNA microarrays for each of 

the 60 untreated cell lines. They then performed a hierarchical clustering of 118 

compounds with known mechanism of action. In order to integrate drug activity 

profile with gene expression data, they chose Pearson correlation coefficient as a 
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measure of similarity. This coefficient was calculated for each combination of a 

gene (expression profile across 60 cell lines) and a drug (GI activity profile across 

60 cell lines). This yielded 1376 correlation coefficients for each of the 118 drugs. 

Using this technique they were able to associate sensitivity of leukemic lines to L-

asparagine to the amount of asparagine synthetase. A similar technique has been 

proposed by Dan et al. (Dan et al., 2002). They were able to identify gene markers 

for chemosensitivity for 55 anticancer drugs using gene expression data across 39 

cell lines and drug activity profiles (GI). Similarly, Szakacs (Szakacs et al., 2004) 

and co-workers correlated expression profiles of all 48 human ABC transporters 

with patterns of drug activity in the NCI 60 cell lines. They were able to identify 

candidate substrates for several ABC transporters and compounds whose 

toxicities are potentiated by ABCB1-MDR1. 

One potential application of microarrays in toxicology is their use in predicting 

toxicity of undefined chemicals by comparing their gene expression patterns in a 

biological model with databases of microarray-generated gene expression data 

corresponding to known toxicants. Feasibility of compound classification based 

on gene expression profiles is proven by several experiments. Hammadeh et al. 

(Hamadeh et al., 2002a; Hamadeh et al., 2002b), for example, analyzed rat liver 

gene expression patterns elicited by peroxisome proliferators, and enzyme 

inducers. These authors used several computational analyses including hierachical 

cusltering (Eisen et al., 1998), PCA, pairwise Pearson correlation of gene 

expression profiles, and finally a combination of a genetic algorithm and K-

nearest neighbor (GA/KNN) (Li et al., 2001). Their results confirm that 

compound classification based on gene expression is feasible, and showed both 
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strong within-class correlation of expression profiles and between-class highly 

distinguishable patterns. 

The work of Staunton et al. (Staunton et al., 2001) is an example of a supervised-

learning approach. Specifically, the authors investigated whether patterns of gene 

expression were sufficient to predict sensitivity or resistance of the NCI 60 cell 

lines to 232 chemical compounds whose GI activity profile had been previously 

measured. They measure gene expression of 6817 genes in each of the 60 

untreated cell lines using Affymetrix chips. Chemosensitivity prediction was 

modeled as a binary classification problem, and thus for each compound two 

classes of cell lines were defined: sensitive (class 1) and resistant (class 2), 

according to the GI profiles. They then divided the data set into a training set and 

a test set. The classifier was implemented using a weighted voting algorithm, in 

which correlated genes “vote” on whether a cell is predicted to be sensitive or 

resistant. Correlation in the training set between a compound 

! 

c  and a gene 

! 

g  is 

defined as: 

! 

P(g,c) =
µ
1
(g) "µ

2
(g)

#
1
(d) +#

2
(d)

 

(2) 
Large values of the correlation 

! 

P(g,c) indicate that the gene expression is a good 

indicator of class distinction. A weighted sum of the gene expression level of 

strongly correlated genes is then used to classify. Classifiers with up to 200 genes 

were tested, with the median accuracy of the classifiers reaching 75%. From this 

work one can conclude that indeed gene expression profiles in untreated cells can 

be used to predict whether a cell line is sensitive or resistant to a particular drug. 



 

 52 

Other interesting examples of supervised classification methods applied to drug-

treated human neural cell cultures come from two studies of Gunther and 

colleagues. The aim of first study (Gunther et al., 2003) was to investigate 

whether high content statistical categorization of drug-induced gene expression 

profiles can be used to predict the drug’s therapeutical class among different 

classes of psychoactive compounds. Primary cultures of human neuronal 

precursor cells were treated with multiple members of antidepressants (AD), 

antipsychotics (AP), and opioid receptor agonists (OP). Arguably, however, one 

of the most used class of psychoactive drugs, the class of antianxiety compounds, 

would have been an interesting choice. Gene expression was measured using 

DNA microarrays containing about 11k oligonucleotide probes. Data was 

analyzed by supervised statistical classification including Classification Tree (CT) 

and Random Forest (RF) methods. Both methods are based on a “leave-one-out” 

training and testing series, so that the class of the naive test sample can be 

predicted after training over all other samples. The former method resulted in 

88.9% of correct predictions, and relied on few strong markers. Notably, accuracy 

did not decline significantly when the classification was repeated after 

withholding the predominant classifier genes from the analysis. The latter method, 

is based on stochastic feature evaluation, and resulted in a correct prediction rate 

of 83.3% based on a much larger set (326) of week marker genes. Interestingly, 

two examples are given in which one subclass of AD (SSRIs, or tricyclic) could 

be successfully predicted as belonging to the antidepressants class after being 

excluded from the training using the RF. Although the accuracy of prediction of 

novel subclass unrepresented in the training was surprisingly high (100%), it is 
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unclear why a similar analysis after withholding the third subclass of AD adopted 

in this study, the MAOIs, is missing. The authors of this work recently published 

a new study (Gunther et al., 2005) in which they propose a novel algorithm for 

drug efficacy-profiling, called Sampling Over Gene Space (SOGS), and applied it 

to drug-treated human cortical neuron 1A cell line. While less appealing from a 

physiological point of view, cell line monocultures provide a simpler system more 

suitable for reproducible chemical genomics screening. This procedure is based 

on supervised classification methods such as Linear Discriminant Analysis (LDA) 

and Support Vector Machines (SVM), expected to yield stronger predictions than 

stochastic feature evaluation such as RF on one hand, but on the other they are 

more prone to ‘overfitting’ the training data. SOGS however builds multiple 

classifier methods iteratively sampling random sets of features using LDA or 

SVM, and the final classification is based on the most frequent classification over 

the multiple iterations. The authors claim that such a combination of stochastic 

feature evaluation with the stable LDA and SVM modeling methods minimizes 

overfit, while increasing prediction strength. 

3.7 Network/Pathway reconstruction 

Perturbations to the state of the cell have been used extensively in molecular 

biology to infer the function of a single gene or protein. With the advent of high 

throughput quantitative methods it has become possible to move from a 

qualitative biology to a quantitative biology, thus enabling the use of 

methodologies typical of engineering and physics to the study of the biological 
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processes and the emergence of “systems biology”, i.e. the integrated study of 

biological processes [for a good review of systems biology refer to Brent (Brent, 

2004) and for its application in drug discovery refer to Butcher et al. (Butcher et 

al., 2004) and Apic et al. (Apic et al., 2005)]. Biological processes are the result 

of complex interaction among thousands of components. Network, or, graph 

theory, is a mathematical formalism that is very well suited for describing such 

interactions. Hence the renewed interest in network theory and its potential impact 

on molecular biology and medicine. 

In the area of drug development, particular relevance assumes “reverse 

engineering” whose goal is to map gene, protein and metabolite interactions in the 

cell, thus elucidating the regulatory circuits used by the cell for its functioning, 

and their malfunctioning during diseases. A very good review was recently 

published on this topic (Gardner and Faith, 2005). 

We can distinguish two different reverse engineering strategies (Gardner and 

Faith, 2005): the “physical approach” and the “influence approach”. In the former, 

the aim is to use RNA expression data to identify the transcription factors (TFs) 

and the DNA binding sites to which the factor binds. The interactions thus 

inferred are true physical interactions between TFs and the promoters of the 

regulated genes. In the latter, the aim is to find regulatory influences between 

RNA transcripts that do not necessarily have to be of the TF-DNA binding site 

kind. The general model, as shown in Figure 3-2, requires that some RNA 

transcripts act as regulatory “inputs” whose concentration variations drive the 

expression of an “output” transcript. Such a model therefore does not describe 
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physical interactions, since an mRNA does not control directly the level of other 

mRNAs, but rather aims at inferring the regulatory influence between two or more 

transcripts that may as well be indirect through the action of proteins, metabolites 

and other molecules. 

Reverse engineering algorithms make use of measurements of transcript 

concentrations in response to perturbations to the state of the cell in order to infer 

regulatory interactions. 

 
 

Figure 3-2: Schematic diagram of reverse-engineering approaches to drug 

discovery. Gene expression profiles following a variety of perturbations to the 

cells are used to reconstruct the network of interactions of gene, proteins and 

metabolites. 

3.8 Target identification and Validation 

For a detailed description on computational and bioinformatics methods to infer 

interactions among genes and proteins we refer the interested reader to an 

excellent review on this topic by Gardner et al (Gardner and Faith, 2005). Here we 
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will briefly discuss two recent examples based on two different methodologies 

that use the “influence strategy” as defined above.  

The first methodology describes a gene network as a system of ordinary 

differential equations (De Jong et al., 2004). The rate of change in concentration 

of a particular transcript, 

! 

x
i
, is given by a nonlinear influence function, 

! 

fi , of the 

concentrations of other RNAs: 

! 

dxi

dt
= fi(xi,...,xn ) 

(3) 
Where n is the number of genes or transcripts in the network. The function 

! 

fi  can 

have different forms. The easiest form that this function can assume is the linear 

form where Equation (3) becomes: 

! 

dxi

dt
= wij xi + pi

j

"  

(4) 
where 

! 

wij  represents the influence of gene 

! 

j  on gene 

! 

i , and 

! 

pi  an externally 

applied perturbation to the level of transcript 

! 

i . We developed an inference 

algorithm named Network Identification by Regression (NIR) (Gardner et al., 

2003) that uses the differential equation model of a gene network in Equation (4) 

to infer the regulatory interactions among 9 genes part of the Escherichia coli 

SOS pathway. The strategy we adopted was to overexpress each of the 9 genes in 

the network using an exogenous plasmid carrying a copy of the gene under the 

control of an inducible promoter. After transfection and induction of the vector, 

the gene expression change of the 9 genes in the network was measured at steady-

state, i.e. when the cell has reached a new equilibrium and all the transient effects 
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are over. Under these conditions, the term on the left hand-side of Equation (4) 

becomes 

! 

dx
i

dt
= 0, so that the equation can be rewritten as: 

! 

"pi = wij x j

j

#  

(5) 
where both 

! 

pi  and 

! 

x j  for all the 9 different perturbation experiments are 

experimentally measured, whereas the weights 

! 

wij  are the unknown parameters 

that we would like to learn from the data. Using multiple linear ridge regression, 

we were able to recover a network model, shown in Figure 3-3, that correctly 

identified 25 of the previously known regulatory interactions between the 9 

transcripts, as well as 14 interactions that could be novel, or possibly false 

positives. These results were obtained with a noise-to-signal ration of 68%. From 

a drug discovery point of view, this approach would be powerful for finding new 

targets for antibiotics, since the 9 genes are part of the SOS pathway involved in 

response to DNA damage. The genes that are the ‘hubs’ of the network, i.e. those 

genes that are the main regulators of the system, are ideal targets for new 

antibiotics because they would block the response of the bacteria to damage, thus 

preventing their survival.  

As a second example of successful network inference applied to a mammalian 

system, we will illustrate the work of Basso et al. (Basso et al., 2005). The 

approach used by these authors is based on information theory. Their approach 

named ARACNE is based on the computation of mutual information among pair 

of genes. For a pair of discrete random variables, 

! 

x  and 

! 

y , the mutual information 

is defined as 
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! 

I(x,y) =S(x) + S(y) " S(x,y) 
(7) 

where 

! 

S(.) defines the entropy. For a given discrete stochastic variable 

! 

t  the 

entropy is defined as: 

! 

S(t) = Pr(t = t
i
)log(Pr(t = t

i
)

i

" )  

(8) 
As it can be intuitively appreciated from the above definition entropy is maximal 

for a uniformly distributed variable. The probability is estimated using 

Montecarlo simulations. To each value of the mutual information 

! 

I(x,y) is 

associated a p-value computed again using Montecarlo simulations. The null 

hypothesis associated to the p-value corresponds to pair of nodes that are 

disconnected from the network and from each other. The final step of their 

algorithm is a pruning step that tries to reduce the number of false positives (i.e. 

inferred interactions among two genes that are not direct interaction in the real 

biological pathway). They use Data Processing Inequality principle that asserts 

that if both 

! 

(x,y) and 

! 

(y,z)  are directly interacting, and 

! 

(x,z)  are indirectly 

interacting through 

! 

y , then 

! 

I(x,z) <= I(x,y)  and 

! 

I(y,z) <= I(x,y) . This condition 

is necessary but not sufficient, i.e. the inequality can be satisfied even if 

! 

(x,z)  are 

directly interacting, therefore the authors acknowledge that by applying this 

pruning step using DPI they may be discarding some direct interactions as well. 

The authors applied their algorithm on a data set consisting of 336 whole-genome 

expression profiles representative of perturbations of B cell lines and are able to 

find novel direct targets of the Transcription Factor MYC. 
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Figure 3-3: Inference of a nine-transcript subnetwork of the SOS pathway in E. 

coli using the NIR algorithm. (a) Graph depiction of the network model identified 

by the NIR algorithm. Previously known regulatory influences are marked in blue, 

novel influences (or false positives) are marked in red. The strengths and 

directions of the identified connections are not labeled in the graph. (b) The 

network model is also depicted as a matrix of interaction strengths. The colors 

are the same as in panel (a). 
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3.9 Hit identification, Lead identification and optimization 

Network identification can be used to infer the direct gene and protein targets of a 

compound with unknown mode of action. One of the earliest approaches of this 

kind has been proposed by Imoto et al. (Imoto et al., 2003). Although the 

approach described in the paper is somewhat confusing, we decided to include it 

in our review since to our knowledge this is one of the first papers to propose that 

network inference can be used for lead optimization. The authors termed their 

approach the "virtual gene technique". Briefly, using an algorithm by Maki et al. 

(Maki et al., 2001) they reconstruct a directed acyclic graph (DAG) describing 

gene regulatory interactions considering the drug as a "virtual gene". Let 

! 

V = {g
1
,g
2
,...,gn}  the set of all genes and 

! 

D = {d
1
,d

2
,...,d

m
}" V  the set of genes to 

be knocked out in order to perturb the system. 

! 

D is assumed to contain also the 

virtual gene and the perturbation experiment associated to this virtual gene is 

treatment with the drug. By observing how the genes change in response to the 

gene disruption they are able to find a DAG by drawing an edge between two 

nodes of the graph if a certain equivalence relationship is satisfied. By considering 

the DAG whose root is the virtual gene, the children of this virtual gene would be 

the candidate genes directly affected by the drug. From their paper is not clear 

how well their method performs since the experimental results on deletion strains 

of S. cerevisiae are poorly described. However, their method is an illustrative 

example of how network inference can be applied to drug discovery. 

Another example of network inference to drug discovery is the work of Haggarty 

et al (Haggarty et al., 2003). Their approach is based on wildtype and nine 
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different gene deletion strains in S. cerevisiae. Each of the strains is treated with 

all the possible combinations of 2 molecules drawn from a set of 24 small 

molecules. The authors propose a method that can be used to understand which of 

the molecules have similar mode of action by measuring the similarity of chemo-

genomic networks. For each strain the data were represented as an adjacency 

matrix, 

! 

A , with one row and one column for each of the 24 molecules tested. The 

element 

! 

aij  of matrix 

! 

A  is 

! 

0 when no observable effect on growth after treatment 

with compound 

! 

i  and 

! 

j  is found, 

! 

1 if there is a measurable growth defect. For 

each compound in each strain, information in 

! 

A  can be used for clustering the 

compounds on the basis of similarity in their pattern of biological activity. 

However the authors do not test thoroughly this prediction. 

The NIR algorithm we developed and briefly described in section 3.8, can also be 

used for compound mode of action discovery. The network model can be used as 

a predictive tool for analyzing new RNA expression data obtained by measuring 

transcript responses to a drug treatment. As a proof-of-principle, we applied the 

antibiotic mitomycin C to E. coli, we observed the changes in all nine measured 

SOS transcripts. However the known mediator of mytomicin C is only the gene 

recA. The network model obtained by the NIR algorithm enables us to separate 

secondary changes from primary changes due to direct interaction with the drug. 

In this case Equation (5) can be solved to find the 

! 

pi  value for each 

! 

i =1...9, since 

the network model 

! 

wij  is known while 

! 

x j  are the measured response of the cell to 

the drug treatment. If 

! 

pi  is close to 

! 

0, then gene 

! 

i  is not a direct target of the 

drug, otherwise gene 

! 

i  is directly interacting with the compound. 
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The network model correctly filters the RNA expression response to the drug 

treatment to reveal the recA gene as the direct target. The same target was 

identified for treatment with UV irradiation and the antibiotic pefloxacin, both of 

which stimulate recA transcript, but not for novobiocin, a drug that should not 

directly interact via the recA gene. 

We recently proposed an extension of the NIR algorithm called Mode of action by 

Network Identification (MNI), that computes the likelihood that gene products 

and associated pathways are targets of a compound (Di Bernardo et al., 2005). 

Our approach is described in Figure 3-4. We first reverse-engineer a network 

model of regulatory interactions in the organism of interest using a training data 

set of whole-genome expression profiles. The network model is based on ordinary 

linear differential equations under steady-state conditions described by Equation 

(5). We then use the model to analyze the expression profile of the compound-

treated cells to determine the pathways and genes targeted by the compound. The 

algorithm assumes that the expression profile training data set are obtained at 

steady-state following a variety of treatment, including compounds, RNAi, and 

gene-specific mutations (Figure 3-4). 
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Figure 3-4: Overview of the NMI method. In phase 1, a set of treatments is 

applied to cells. Changes in mRNA species are measured. The data are then 

used by the MNI algorithm of infer a model of the regulatory network among the 

genes. In phase 2, cells are treated with the test compounds and the expression 

changes of all the mRNA species is measured. The expression data are then 

filtered using the network model to distinguish the targets of the test compound 

from secondary responders. 

The ability to use different treatment types is an important advance over earlier 

model estimation techniques that require knowledge of the targets of the 

perturbations. To infer a network model without requiring gene-specific 

perturbations the algorithm employs an iterative procedure. It first predicts the 

targets of treatment using an assumed network model, and then uses those 

predicted targets to estimate a better model. The procedure stops once 

convergence criteria are met. Once the regulatory model has been learned, we 
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applied it to the expression profile of a test compound to predict its targets. We 

applied this method to the S. cerevisiae using as a training data set 515 whole-

genome yeast expression profiles resulting from a variety of treatment (Hughes et 

al., 2000; Mnaimneh et al., 2004). We then used MNI algorithm to identify the 

probable targets of 15 compounds, 13 of which were drawn from the Hughes 

compendium (Hughes et al., 2000) and from other studies (Ueda et al., 2003). Of 

these 15 compounds, 9 had previously known targets, while the targets of other 

six were previously unknown. MNI ranks the ~6000 genes in yeast according to 

their probability of being direct targets of the compound. By selected the top 50 

genes predicted by MNI for a compound, it is possible to infer the pathways 

directly affected by the drug looking for significantly overrepresented Gene 

Ontology (GO) processes among the highly ranked genes. 

For 7 out of 9 compounds with known mode of action, MNI correctly identified 

the known target pathway and for 6 out of this 9 it was able also to identify the 

correct target gene. We then demonstrated the use of MNI on a tetrazole-

containing compound, 1-phenyl-1H-tetrazole-5-ylsulfonyl-butanenitrile (PTSB) 

found to inhibit both wt S. cerevisiae and human small lung carcinoma cells. We 

applied MNI to the expression profile after treatment with PTSB and found two 

genes thioredoxin reductase (TRR1, MNI_rank=32) and thioredoxin (TRX2, 

MNI_rank=36) while the overrepresented GO process among the top 50 genes 

was the 'cell redox homeostasis'. We validated the prediction made by MNI with 

appropriate biochemical assays and confirmed that PTSB acts by inhibiting these 

two targets. 
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3.10 Conclusions 

Computational biology and bioinformatics approaches have the potential to 

completely change the way drugs are discovered and designed. Already these 

methods are having an impact on the different stages of the drug discovery 

process. We have shown in this review how computational methods like 

classification and network-based algorithms can be used to understand the mode 

of action and the efficacy of a given compound and to help elucidating the 

pathophysiology of a disease. But these computational tools, in our opinion, may 

also be used in a different and innovative way to promote a change of paradigm in 

how drugs are designed. In the pharmacological industry there has already been a 

shift from symptomatic oriented drugs, that can relieve the symptoms but not the 

cause of the disease, to pathology-based drugs whose targets are the genes and 

proteins involved in the etiology of the disease. Drugs targeting the affected 

pathway have thus the potential to become therapeutic. An example of this is 

enzyme replacement therapy in genetic sulfatase deficiency syndromes (Cosma et 

al., 2003). The sulfatase enzyme is the missing protein that when reintroduced in 

the organism is able to restore the pathway that had been altered by the disease 

process. The passage from symptomatic-centered drug discovery to disease-

centered drug-discovery has been forced upon the industry by the availability of 

the full sequence of the human genome, with its implicit promise of novel 

potential targets. However, as reported in a recent review by Csermely et al. 

(Csermely et al., 2005), the number of successful drugs did not increase 

appreciably in the recent years. With the current paradigm, an ideal drug is both 

potent and specific, i.e. it targets specifically a single protein. In our opinion a 
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second shift is now necessary and will be driven by the availability of 

sophisticated computational biology and bioinformatics tools: a shift from single-

target drugs to "network drugs". By network drug we define a compound or a set 

of compounds that is able to alter a biological pathway disregulated by a disease 

in a predefined way so as to restore its normal physiological function. A similar 

concept has been put forward by Csermely et al. (Csermely et al., 2005) in their 

review, where they propose the partial inactivation of multiple targets as a novel 

paradigm for drug design. They argue that such kind of multi-target drug could be 

much more efficient than a drug directed at a single target. They proposed that a 

network approach to drug design would examine the effect of drugs in the contest 

of a network of relevant protein-protein, regulatory and metabolic interactions. 

The end result would be the development of a drug that would hit multiple targets 

selected in such a way as to decrease network integrity and so completely disrupt 

the functioning of the network. Our idea is to take this approach one step further 

and aim not at disrupting the network, but into developing compounds and 

delivery techniques able to change the behavior of the network in a controllable 

and predictable manner. 

Thanks to network-inference approaches, some of which were described in this 

review, it is now becoming possible to have a detailed map of the regulatory 

circuit among genes, proteins and metabolites. This in turn allows a better 

understanding of how biological pathways are regulated and how they accomplish 

their function. The approaches presented in this review also allow the screening of 

a compound to quickly identify the proteins it interacts with. This gives us all the 

necessary tools to identify and repair the disregulated biological pathway causing 



 

 67 

the disease, much as an engineer would do to restore a malfunctioning electronic 

circuit. If she/he finds that a specific component of the circuit is malfunctioning, it 

would be bypassed using extra wires that would bridge different parts of the 

circuit. Sometimes this would not be sufficient since those parts of the circuit 

should be in contact only under precisely defined conditions. In this case, she/he 

would also need to add a microchip that would take care of activating those 

connections only when necessary. 

Similarly one could think of delivering multiple compounds, each directed to a 

specific biological target, in a coordinated way controlled by a computer chip that 

would release the drugs in the organism only when needed to restore 

physiological behavior of the pathway disregulated by the disease. The key step in 

this approach is to have a detailed knowledge of the network of protein, gene and 

metabolite interactions in the different biological pathways. 

Although this picture may seem farfetched all the tools to accomplish this feat 

have already been developed and are here to stay, and hopefully in the next 

decades the way we think of drugs will be completely different. 
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Chapter 4 

4 Quetiapine Experiments 

4.1 Abstract 

Neuronal expression of immediate-early genes in response to a drug is a powerful 

screening tool for dissecting anatomical and functional brain circuitry affected by 

psychoactive compounds. We examined the effect of dopaminergic perturbation 

on two Homer 1 gene splice variants, Homer 1a and ania-3 in rat forebrain. Rats 

were treated with the ‘typical’ antipsychotic haloperidol, the ‘atypical’ quetiapine, 

or the selective dopamine transporter (DAT) inhibitor GBR 12909 in acute and 

chronic paradigms. Our results show that the high affinity dopamine D2 receptor 
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antagonist haloperidol strongly induces Homer 1 gene expression in the caudate-

putamen whereas quetiapine, a fast D2R dissociating antagonist, does not. This 

confirms that Homer 1 may be considered a predictor of ‘atypicality’ of 

antipsychotic compounds in acute and also chronic regimens. Chronic treatment 

with GBR 12909 showed a strong induction in the parietal cortex resembling the 

activation of ‘sensitization’ circuitry by stimulants. Finally, we describe a 

differential spatial induction pattern of Homer 1 gene within the caudate-putamen 

by typical antipsychotics and DAT blockers, and propose a novel method to 

quantitate it. 

4.2 Introduction 

In the present study we investigated the differential effects of several agents that 

modulate the dopaminergic neurotransmission on Homer 1a and ania-3 gene 

expression by means of quantitative in situ hybridization on rat forebrain slices. 

The treatments included the typical antipsychotic haloperidol and the atypical 

quetiapine, as well as the DAT inhibitor GBR 12909, all in acute and chronic 

regimens. Stimulants such as cocaine and amphetamine are also known to induce 

immediate early genes, and specifically Homer 1 (Berke et al., 1998; Yano and 

Steiner, 2005). Moreover, the expression patterns of stimulant induced IEGs can 

be directly affected by pretreatment schedules (Curran et al., 1996). Since both 

antipsychotics and DAT inhibitors, with opposite effects on dopamine 

transmission, are known to upregulate Homer 1 gene expression, we attempted to 

detect any subtle differential response to stimulating vs. blocking dopamine 
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transmission. With the chronic treatment schedule we tried to assess whether there 

is tolerance phenomena to Homer 1a induction as found for IEG induction after 

repeated stimulant administration (Persico et al., 1993). 

4.3 Materials and methods 

The procedure for in situ hybridization histochemistry was taken from several 

standard published protocols (Ambesi-Impiombato et al., 2003; Austin et al., 

1992; Young et al., 1986). Refer to Chapter 2 for detailed procedure. 

4.3.1 Drug treatment and tissue preparation 

Quetiapine was chosen based on the observation that this compound, as opposed 

to haloperidol, binds to the dopamine D2 receptor (D2R) with fast dissociation 

dynamics, which is correlated to low propensity of this drug to induce EPSEs 

(Kapur et al., 2000b). In preclinical studies quetiapine has been shown to have a 

clozapine-like activity in a wide range of behavioral and biochemical tests, while 

showing no significant liability for hematological side effects, such as neutropenia 

(Nemeroff et al., 2002). The selective dopamine transporter blocker GBR 12909, 

also known as vanoxerine (1-{2-[bis-(4-fluorophenyl)methoxy]ethyl]}-4-(3-

phenylpropyl)piperazine), shares the same mechanism of action as cocaine, as it 

blocks dopamine reuptake, by selectively binding to the Dopamine Transporter 

(DAT). A DAT inhibitor was included in our experiments because dopamine re-

uptake inhibitors have been shown to regulate Homer 1 gene products in a 

regionally selective manner (Swanson et al., 2001), and because Homer 1a is 

strongly induced in the striatum by cocaine (Brakeman et al., 1997).  



 

 72 

4.3.2 Acute experiment. 

On the day of the experiment rats were randomly assigned to one of the following 

treatment groups: A) 0.9% NaCl (SAL); B) 15 mg/kg quetiapine (QUE15); C) 30 

mg/kg quetiapine (QUE30); D) haloperidol 0.8 mg/Kg (HAL); E) GBR 12909 30 

mg/kg (GBR). The animals were sacrificed by decapitation 90 minutes after the 

treatment. 

4.3.3 Chronic experiment. 

Rats were treated daily for 21 days after their assignment to the following 

experimental groups: A) 0.9% NaCl (SAL); B) 15 mg/kg quetiapine (QUE) (the 

daily dose was divided in two administration 12 hours a part); C) haloperidol 0.8 

mg/Kg (HAL); D) GBR 12909 15mg/kg (GBR). 

The drug dosages of the antipsychotics were chosen based on previous animal 

studies in which behavioral effects are elicited that are predictive of antipsychotic 

activity (Pira et al., 2004), or within the range most commonly used in rat brain 

gene expression studies (Cochran et al., 2002; Merchant and Dorsa, 1993; 

Robertson and Fibiger, 1992). The dose of GBR 12909 is consistent with a 

previous study in which submaximal behavioral responses are obtained (Lane et 

al., 2005). All treatments were performed intraperitoneally (i.p.). The animals 

were sacrificed by decapitation 90 minutes after the last injection. The brains were 

rapidly removed, quickly frozen on powdered dry ice and stored at -70oC prior to 

sectioning. 
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4.3.4 Radiolabeling and purification of oligonucleotide 
probes 

The Homer 1a probe was a 48-base oligodeoxyribonucleotide complementary to 

bases 2527-2574 of the rat Homer mRNA (GenBank # U92079) (MWG Biotech; 

Firenze, Italy). The ania-3 probe was a 48-base oligodeoxyribonucleotide 

complementary to bases 1847-1894 of the rat ania-3 mRNA (GenBank # 

AF030088) (MWG Biotech; Firenze, Italy). For each probe a 50µl labeling 

reaction mix was prepared on ice using DEPC treated water, 1X tailing buffer, 

7.5pmol/µl of oligo, 125 Units of TdT and 100mCi 35S-dATP. The mix was 

incubated 20 min at 37°C. The unincorporated nucleotides were separated from 

radiolabeled DNA using ProbeQuant G-50 Micro Columns (Amersham 

Biosciences; Milano, Italy). As an assessment of the probe specificity, the 

autoradiographic signal distribution was compared and found to be consistent 

with previous in situ hybridization studies (Brakeman et al., 1997; Polese et al., 

2002). The specificity of each probe was also tested by a control experiment using 

the corresponding sense oligo. 

4.3.5 Image analysis 

Signal intensity analysis was carried out on digitized autoradiograms measuring 

mean optical density within outlined Regions of Interest (ROIs) in 

correspondence of subregions of the cortex, caudate-putamen, and nucleus 

accumbens (oval templates Figure 4-1a). Sections were quantitated blind to the 

treatment conditions. In order to test for inter-observer reliability an independent 

quantitation was performed by a second investigator. Only quantitatively 
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comparable results, in terms of consistency of statistically significant effects 

obtained by the two investigators, were considered reliable. 

Quantitative measurements of the spatial distribution of the signal within the 

caudate-putamen were carried out using ImageJ as follows. The digital image of 

autoradiogram of interest is rotated 45 degrees so that a rectangle can be selected 

along a direction form DL to VM subregions of caudate-putamen (rectangular 

template in Figure 4-1b). The ImageJ command plot profile is used to 

output the average signal intensity profile along the horizontal axis of the tilted 

selection. This command computes the average intensity of pixels in each vertical 

line on the tilted rectangle template. 

 

Figure 4-1: Panel a: diagram of regions of interest (ROIs) quantitated on 

autoradiographic film images in rat forebrain. 1 = Frontal cortex (FC); 2 = Parietal 

cortex (PC); 3 = dorsolateral caudate-putamen (DL); 4 = dorsomedial caudate-

putamen (DM); 5 = ventromedial caudate-putamen (VM); 6 = ventrolateral 

caudate-putamen (VL); 7 = core of accumbens (AcbCo); 8 = shell of accumbens 
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(AcbSh). Panel b: rectangle selection used for the quatitation of spatial 

distribution profiles on a 45º rotated image. Modified from Paxinos and Watson 

Rat Brain Atlas (Paxinos and Watson, 1997) 

4.3.6 Data processing 

Measurements of mean optical density (OD) within ROIs were converted using a 

calibration curve based on the standard scale co-exposed to the sections. Standard 

values from 4 through 12 have been previously cross-calibrated to 35S brain paste 

standards, in order to assign a dpm/mg tissue wet weight value to each OD 

measurement through a calibration curve. For this purpose a “best fit” 3rd degree 

polynomial was used. For each animal measurements from the 3-7 adjacent 

sections were averaged. A One Way Analysis of Variance (ANOVA) was used to 

analyze treatment effects, and to determine the locus of effects in any significant 

ANOVA the Student-Neuman-Keuls post hoc test was used. 

The spatial distribution profiles acquired (as described in the ‘Image analysis’ 

section) from previously published in situ hybridization autoradiograms (Berke et 

al., 1998), were analyzed by a correlation based clustering (clusterdata 

command in Matlab) in order to verify if an unsupervised classification could 

separate between antipsychotic- and stimulant-induced spatial profiles in an 

independent dataset. 
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4.4 Results 

Homer 1 gene expression was detected in several regions of the forebrain of 

control animals with higher intensity of the autoradiographic signal in caudate-

putamen, in the nucleus accumbens, cortex and islands of Calleja, with a similar 

pattern for the two splice variants Homer 1a and ania-3 (Figure 4-2). Statistically 

significant effects of treatments vs. saline are summarized in Table 4-1.  

 

Figure 4-2: Autoradiographic film images of Homer 1a (panel a) and ania-3 

(panel b) mRNA detected by means of in situ hybridization histochemistry (ISHH) 

in coronal brain sections after acute treatment with saline (SAL), quetiapine 15mg 

(QUE15), quetiapine 30mg (QUE30), haloperidol (HAL), or GBR 12909 (GBR). 
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Table 4-1: summary of statistically significant changes compared to SAL at the 

post hoc test. FC = frontal cortex; PC = parietal cortex; DM = dorso-medial; DL = 

dorso-lateral; VL = ventro-lateral; VM = ventro-medial. 

4.4.1 Acute Treatment. 

As reported previously (de Bartolomeis and Iasevoli, 2003; Polese et al., 2002), 

acute haloperidol treatment robustly induced the expression of Homer 1a in all 

subregions of the caudate-putamen. Statistically significant differences were 

detected among experimental groups in all subregions of caudate-putamen (DM: 

ANOVA p=0.0024; DL: ANOVA p=0.0131; VL: ANOVA p=0.0041; VM: 

ANOVA p=0.0067), but not in cortex and nucleus accumbens (Figure 4-2 and 

Figure 4-3). The post-hoc test performed on each caudate-putamen subregion 

revealed a significant signal increase in the caudate-putamen in haloperidol group 

compared to control, and to any other experimental group. The other treatments 

showed no statistically different difference of Homer 1a gene expression 

compared to SAL. GBR induced the expression of ania-3 in the inner layer of the 
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frontal cortex (ANOVA, p=.0027), with a statistically significant increase 

compared to all other experimental groups. This layer of the cortex roughly 

corresponds to the peak distribution of D1 and D2 dopamine receptors within the 

cortex (Boyson et al., 1986), and resembles the distribution of dopamine-

containing axon terminals (Dawson et al., 1986). Within the caudate-putamen 

ania-3 splice variant shows a haloperidol-induced expression pattern similar to 

that of Homer 1a. In all the caudate-putamen subregions statistically significant 

changes (ANOVA p<.0001) were detected, where the post hoc test showed that 

HAL increases the expression of ania-3 in all the subregions and GBR in all of 

them except DL. Ania-3 was upregulated also in the shell of nucleus accumbens 

(ANOVA p= .0024), where at the post hoc test, the expression levels induced by 

QUE30, HAL, and GBR, were significantly higher compared to the saline group. 

Compared to ania-3, the variant Homer 1a had a similar trend in the nucleus 

accumbens, but not statistically significant (p=.0593). 
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Figure 4-3: Homer 1a and ania-3 mRNA levels after acute treatment. Panel a: 

Homer 1a mRNA levels in caudate-putamen. Panels b, c, and d: ania-3 mRNA 

levels in cortex, caudate-putamen and nucleus accumbens. Data are reported in 

relative dpm as mean ± S.E.M. 

*   vs. all other treatments (ANOVA, p<0.05); 

** vs. SAL, QUE15, QUE30 (ANOVA, p<0.05); 

#   vs. SAL, QUE15 (ANOVA, p<0.05); 

## vs. SAL (ANOVA, p<0.05). 

4.4.2 Chronic Treatment.  

Statistical analysis showed a statistically significant increase of both Homer 1a 

(ANOVA, outer layer p=.0040; inner layer p<.0203) and ania-3 (ANOVA, outer 

layer p=.0003; inner layer p<.0001) gene expression in the parietal cortex of rats 

treated with GBR (Figure 4-4 and Figure 4-5). This induction was not detected in 

the acute treatment. Apart from this observation, the expression patterns of the 
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two Homer 1 splice variants in the chronic treatment were similar to the acute 

treatment. Statistically significant changes of Homer gene expression were found 

in lateral caudate-putamen regions (ANOVA: DL p= .0014; VL p= .0038) by 

chronic haloperidol treatment. A similar upward trend was found in DM, that is 

not significant at the post hoc test compared to SAL, but it was compared to GBR. 

Ania-3 splice variant showed a statistically significant induction in most caudate-

putamen subregions (ANOVA: DM p=.0086, DL p=.0023, VL p=.0019) by HAL 

compared to SAL and to all other treatments. No statistically significant changes 

were found in nucleus accumbens. 

 

Figure 4-4: Autoradiographic film images of Homer 1a (panel a) and ania-3 

(panel b) mRNA detected by means of in situ hybridization histochemistry (ISHH) 

in coronal brain sections after chronic treatment with saline (SAL), quetiapine 

(QUE), haloperidol (HAL), or GBR 12909 (GBR). 
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Figure 4-5 : Homer 1a and ania-3 mRNA levels after chronic treatment. Panels a 

and b: Homer 1a mRNA levels in cortex and caudate-putamen. Panels c and d: 

ania-3 mRNA levels in cortex and caudate-putamen. Data are reported in relative 

dpm as mean ± S.E.M. 

* vs. all other treatments (ANOVA, p<0.05); 

** vs. SAL, GBR (ANOVA, p<0.05); 

4.4.3 Spatial distribution analysis.  

Representative spatial profiles of Homer 1a signal from acute GBR and HAL are 

compared in Figure 4-6. This plot shows the distinct profiles of the signal 

distribution for the two experimental groups within the caudate putamen. We 

applied the spatial quantitation method to the autoradiographic images of 9 

distinct IEG probes (c-fos, MKP-1, ania-3, ania-1, ania-4, ania-6, ania-7, ania-8, 

and ania-9) from an independently published set of in situ hybridization 
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experiments (Berke et al., 1998). The clustering analysis correctly distinguished 

the two classes with only 3 misclassifications out of 18 occurred (Figure 4-7), 

which corresponds to a cumulative p value of p=.0038 assuming a binomial 

background distribution (π = .5). 

 

Figure 4-6: Spatial profiles representing the average signal intensity gradient of 

Homer 1a expression measured at an angle of 45º on representative 

autoradiograms of the acute treatment. 
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Figure 4-7: Correlation based clustering of spatial profiles measured within 

caudate-putamen sections hybridized with 9 IEG different probes 

(autoradiograms from Berke et al.). The classifier correctly classified cocaine vs. 

eticlopride treatments, with a misclassification rate of 3 out of 18. 

4.5 Discussion 

Our previous findings on the differential regulation of Homer 1a by typical and 

atypical antipsychotics (de Bartolomeis et al., 2002) have led us to propose that 

measuring the increase of Homer 1a in caudate-putamen in rodents can be used to 

discriminate typical from atypical antipsychotics. Specifically, our previous 

results on the differential expression of haloperidol vs. atypical antipsychotics 

olanzapine and clozapine (de Bartolomeis et al., 2002; Polese et al., 2002) 
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suggested that typical antipsychotics with high D2R affinity strongly induce an 

overexpression of Homer 1a in subcortical regions of the rat brain after acute 

treatment. To further confirm this hypothesis, it needs to be tested on several other 

antipsychotics and/or other agents that target D2Rs. The response of Homer 1 

gene to antipsychotics was also assessed with a chronic administration, 

resembling the clinical treatment regimens required for antipsychotic effects to be 

observed in humans. In the present paper we confirm the strong induction of 

Homer 1a gene expression in rat caudate-putamen after acute administration of 

the typical antipsychotic haloperidol and show a lack of induction by the atypical 

quetiapine (Figure 4-3a and Figure 4-3c), consistent with the previously reported 

Homer 1a induction patterns in the rat striatum. Quetiapine only induced the gene 

expression of ania-3 in the shell of the nucleus accumbens, showing selectivity to 

limbic structures. The induction of ania-3 by GBR after acute treatment occurred 

in brain regions involved in rewarding effects of stimulant drugs (Wise et al., 

1996), including, the ventral striatum regions, the accumbens shell, and inner 

layer of frontal cortex which receives mesocortical dopamine projections 

(Dawson et al., 1986).  

In most subcortical regions, chronic treatments showed a similar effect on Homer 

1 gene, as haloperidol but not quetiapine induced its expression (Figure 4-5b and 

Figure 4-5d). As opposed to the acute treatment, chronic GBR did not affect ania-

3 in caudate-putamen (Figure 5d). Most remarkably, in the cortical regions both 

Homer 1a (figure 5a) and ania-3 (Figure 5c) showed a strong induction by 

chronic GBR limited to the parietal cortex, both statistically significant (p<.0001). 

This induction in the parietal cortex was absent or not statistically significant after 
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the acute treatment and could be related to the recruitment of ‘sensitization’ 

specific neuronal networks by stimulants after a pretreatment schedule, as 

previously suggested by Curran and coworkers (Curran et al., 1996). Their results 

show an increase of c-fos expression in the somatosensory cortex by cocaine after 

a sensitization pretreatment schedule with amphetamine, cocaine or morphine. 

The neuroanatomical specificity of c-fos induction by cocaine after a pretreatment 

schedule found by Curran strikingly resembles the response of Homer 1 gene 

expression to chronic GBR (Figure 4-5a and Figure 4-5c), suggesting a common 

activation mechanism of the two IEGs, even though our chronic treatment did not 

include a withdrawal period as in the experiment by Curran. As opposed to c-fos, 

Homer 1 is an effector gene and is directly involved in synaptic plasticity through 

a dominant negative effect on mGluRs signal transduction. The induction of 

Homer 1 in somatosensory cortex after repeated GBR administration might be 

involved in a compensatory blunting of cortical activity as was shown to occur 

after Homer 1a overexpression by viral vector infusion in the frontal cortex of rats 

(Lominac et al., 2005). 

Overall, the two splice variants of Homer 1 gene showed a similar expression 

pattern. The major difference between them is the response to GBR in the frontal 

cortex after the acute treatment where ania-3 is upregulated (Figure 4-4b) and 

Homer 1a is not. Acute GBR also induced ania-3 in most caudate-putamen 

subregions (Figure 4-4c). Other significant changes specific to the ania-3 probe 

were detected in the nucleus accumbens after acute treatments (Figure 4d), where 

QUE30, HAL, and GBR increased ania-3 expression compared to SAL in the 

shell of accumbens. The increase of ania-3 in nucleus accumbens but not in 
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caudate-putamen, is consistent with a prominent effect on limbic regions by 

quetiapine, while sparing the nigrostriatal pathway that is implicated in EPSEs 

(Tada et al., 2004; Westerink, 2002). The differences in expression patterns found 

between the two splice variants of Homer 1 gene may suggest a differential 

regulation with a neuroanatomical specificity. However a simpler explanation for 

those differences could be that the signal-to-noise ratio for ania-3 is higher than 

for Homer 1a. Thus, further investigation is needed to conclusively determine 

whether the two variants are indeed differentially expressed. Should this be 

confirmed it would be interesting and challenging to pin down the mechanisms 

involved in such differential regulation.  

Apart from the strong induction of Homer 1 gene by chronic GBR in the parietal 

cortex, we also report a novel finding about the GBR-induced expression pattern 

in the striatum. The anatomical distribution of the signal induced by acute (Figure 

4-2) and chronic (Figure 4) GBR in caudate-putamen shows a distinctive spatial 

gradient of expression for both Homer 1 probes. In detail, following a direction 

from VM to DL (oblique box in Figure 4-1b), the signal is more intense at the 

center and decreases at the extremities, such that higher levels are found in the 

caudate-putamen regions VL-center-DM, and lower levels in VM and DL (Figure 

4-6). To our knowledge, this distinctive regional distribution of induced 

expression of IEGs within the caudate-putamen has never been described before. 

Interestingly, the same distribution within the caudate-putamen can be appreciated 

by carefully observing the autoradiograms of cocaine-treated rat forebrains from 

previously published paper by Berke and coworkers (Berke et al., 1998). Most of 

the IEGs studied in their work display this distinctive signal distribution within 
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the caudate-putamen in the cocaine group, whereas the induction by the 

antipsychotic eticlopride, resembles the classical anatomical distribution induced 

by HAL in our experiments. Our clustering analysis performed on this 

independent set of autoradiograms detected a statistically significant difference 

between spatial gene expression profiles between cocaine and eticlopride treated 

animals. The fact that both haloperidol and a DAT inhibitor, with opposite effects 

on dopaminergic neurotransmission, induce Homer 1 in caudate-putamen could 

argue against a relevant role of Homer 1 gene in the action of antipsychotics. 

However this conclusion is not so straightforward, as the neuroanatomical 

distribution of the gene expression induced by GBR and haloperidol indeed 

showed differential effects in both acute and chronic regimens. Specifically, the 

spatial distribution was different within the caudate-putamen, and in the chronic 

treatment a differential induction was observed in the parietal cortex. 

In conclusion, our results confirm that Homer 1 gene induction pattern within 

striatal structures may be considered as a predictor of ‘atypicality’ of 

antipsychotic compounds in both acute and chronic regimens, with possibly a 

slightly different pattern observed for the two splice variants Homer 1a and ania-

3. Chronic treatment with GBR 12909 showed a strong induction in the parietal 

cortex resembling the activation of ‘sensitization’ circuitry by stimulants as 

shown for c-fos. Finally, our results provide strong evidence, compatible with 

independently published imaging data, of a differential anatomical induction 

pattern by agents that directly affect dopaminergic neurotransmission, namely 

(typical) antipsychotics and DAT blockers. 
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Chapter 5 

5 Ziprasidone Experiments 

5.1 Abstract 

The essential difference between typical and atypical antipsychotics is the lower 

incidence of extrapyramidal side effects of the latter. Several animal studies have 

shown a differential effect on neuronal gene expression of immediate early genes, 

including the effector gene homer 1. The D2 dopamine receptor, blocked by all 

antipsychotics, plays a crucial role in the mechanisms of antipsychotic effects as 

well as extrapyramidal side effects, and appears to mediate homer 1a differential 

expression. Acute induction of homer 1a gene expression in rat striatum has been 
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recently proposed as a novel preclinical characterization of antipsychotics. 

However the effect on homer 1 gene after prolonged antipsychotics administration 

has not been assessed so far. In order to further characterize the differential effects 

of antipsychotics on post synaptic density genes, the novel atypical antipsychotic 

Ziprasidone was used in both acute and chronic paradigms. Rats were treated 

(i.p.) with clozapine, haloperidol, ziprasidone, or vehicle, and sacrificed 90 min 

after the injection in the acute paradigm. In the chronic schedule haloperidol 

ziprasidone or veichle treated animals were sacrificed at either 90 min or 24h after 

the last injection. Quantitative in situ hybridization was carried out for of 

postsynaptic density genes homer1a, 1b, and shank in rat striatum. Our results 

show a dose dependent induction of homer 1a gene expression in lateral caudate 

putamen of the rat after acute administration of ziprasidone, as well as after 90 

mins after the chronic treatment, but not at 24 hrs from the last injection of the 

chronic treatment. This suggests that the effect on homer 1a is transient and also 

that it does not saturate over prolonged administration. The dose dependency of 

this effect may correlate to a higher D2 receptor occupancy obtained by the higher 

concentrations of the drug. Finally, these findings also show that homer 1a 

induction pattern in rat striatum can separate ziprasidone 4mg/kg and clozapine 

15mg/kg from haloperidol 0.8mg/kg, as shown for other atypical antipsychotics. 

5.2 Introduction 

To investigate the dynamics of homer 1a response to antipsychotics, and because 

the effect on homer 1 gene after prolonged antipsychotics administration has not 
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been assessed so far, we expanded our paradigm to include a chronic 

administration. The advantage of a prolonged treatment administration is that it 

more closely resembles the clinical administration schedule of these compounds. 

We used an experimental design that allowed us to explore the effects on homer 

gene expression after short (90 min) and long (24h) duration of withdrawal. In our 

chronic paradigm we also investigated the effects on other relevant genes, not 

described as IEGs, involved in postsynaptic glutamatergic system, including 

homer 1b, Shank1, PSD-95, and IP3R, all known to modulate postsynaptic 

signaling through its direct or indirect interaction with homer (Naisbitt et al., 

1999). These genes encode major components of postsynaptic density and interact 

directly or indirectly with each other (de Bartolomeis and Iasevoli, 2003). 

Moreover, they cooperate in clustering glutamate receptors and in directing the 

intracellular second messenger-mediated response to extracellular signals, 

including those evoked by antipsychotics (Yang et al., 2004), and thus can be 

considered as candidate genes for psychosis.  

In the present study we investigated the effects of acute administration of two 

different dosages of the atypical antipsychotic ziprasidone compared with the 

typical antipsychotic haloperidol and with clozapine, the prototype atypical 

antipsychotic, on gene expression of homer1a in rat forebrain. Ziprasidone is an 

atypical antipsychotic, whose efficacy in schizophrenia has clearly been 

demonstrated on both short and long period with an excellent tolerability profile 

both regarding movement disorders and metabolic side effects (Nasrallah and 

Newcomer, 2004). The choice of ziprasidone in the present study was based on its 

receptor affinity profile and clinical properties, since it shows a low liability to 
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EPSEs despite its relatively high affinity for D2 receptors, making this compound 

particularly interesting in terms of how it might affect homer gene expression. 

Indeed, homer gene expression is sensitive to dopamiergic manipulation, and has 

been shown to be involved in subtle tuning of motor function (Tappe and Kuner, 

2006). 

 

5.3 Materials and methods 

The procedure for in situ hybridization histochemistry was taken from several 

standard published protocols (Ambesi-Impiombato et al., 2003; Austin et al., 

1992; Young et al., 1986). Refer to Chapter 2 for detailed procedure. 

5.3.1 Drugs 

Haloperidol (Serenase® 2mg/ml. Lusofarmaco; Milan, Italy) was used as 

commercially available ampoules and diluted in saline. Clozapine was dissolved 

in saline. Ziprasidone was provided by Pfizer as a powder and was dissolved by 

few drops of DMSO and 0.9% NaCl. All injections were performed 

intraperitoneally using an equal injection volume. 

5.3.2 Drug treatment: Acute paradigm 

On the day of the experiment rats were randomly assigned to each of the 

following treatment groups: A) 0.9% NaCl (SAL); B) 15mg/kg clozapine (CLO) 

C) haloperidol 0.8mg/Kg (HAL); D) ziprasidone 4mg/kg (ZIP4); E) ziprasidone 
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10mg/kg (ZIP10). The animals were sacrificed by decapitation 90 min. after the 

treatment. 

5.3.3 Drug treatment: Chronic Paradigm 

Animals were randomly assigned to each of the following treatment groups: A) 

0.9% NaCl (SAL); B) haloperidol 0.8mg/Kg (HAL); C) ziprasidone 4mg/kg 

(ZIP). On the last day of injection, the animals were divided in two subgroups: 

one was sacrificed at 90 minutes after the last injection whereas the other after 24 

hours, resulting in the following experimental groups: SAL90’, HAL90’, ZIP90’ 

(sacrificed at 90 min.); and SAL24h, HAL24h, ZIP24h (sacrificed at 24 hrs.). 

5.3.4 Radiolabeling and purification of oligonucleotide 
probes 

The homer probe was a 48-base oligodeoxyribonucleotide complementary to 

bases 2527-2574 of the rat homer 1a mRNA (GenBank # U92079) (MWG 

Biotech; Firenze, Italy). The Shank probe was a 48-base oligodeoxyribonuce 

complementary to bases 2757-2804 of the rat Shank 1 mRNA (GenBank # 

NM_0317751) (MWG Biotech; Firenze, Italy). The PSD95 probe was a 45-base 

oligodeoxyribonucleotide complementary to bases 225–269 of the rat PSD95 

mRNA (GenBank # M96853) (MWG Biotech; Firenze, Italy). The homer1b was a 

48-base oligodeoxyribonucleotide complementary to bases 1306-1354 of the rat 

homer1b mRNA (GenBank Accession AF093267).The IP3R probe was a 48-base 

oligodeoxyribonuce complementary to bases 7938-7985 of the rat IP3R mRNA 

(GenBank # NM_001007235) (MWG Biotech; Firenze, Italy). These sequences 

were checked with blastn algorithm against GenBank, to avoid cross-

hybridization. For each probe a 50µl labelling reaction mix was prepared on ice 
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using depc treated water, 1X tailing buffer, 1.5mM CoCl2, 7.5pmol/µl of oligo, 

125 Units of TdT and 100mCi 35S-dATP. The mix was incubated 20 min at 37°C. 

The unincorporated nucleotides were separated from radiolabeled DNA using 

ProbeQuant G-50 Micro Columns (Amersham Biosciences; Milano, Italy). The 

autoradiographic signal distribution of homer matched that of previous ISSH 

studies (Berke et al., 1998; Brakeman et al., 1997; de Bartolomeis et al., 2002; 

Polese et al., 2002). Also, the specificity of each probe was tested by a control 

experiment using the corresponding sense oligo. 

5.4 Results 

5.4.1 Anatomical distribution of gene expression 

Gene expression for homer 1a and shank was detected in control animals with a 

signal distribution that was comparable between acute and chronic paradigms. 

Low levels of homer 1a gene expression were detected in the forebrain of control 

animals in both cortical and subcortical regions (Figure 5-1), consistently with 

previous experiments (de Bartolomeis et al., 2002; Polese et al., 2002). Shank 

gene expression was detected in several regions of the forebrain of control 

animals with higher intensity of the autoradiographic signal in cortical layers and 

the in the islands of Calleja, and low levels in subcortical regions. 

Qualitatively, homer 1b and PSD-95 were both abundantly expressed throughout 

cortical and subcortical regions, with a homogeneously spatial distribution of the 

signal. High levels of the signal was also present in the islands of Calleja. Finally, 
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IP3R signal was detected throughout the caudate-putamen and accumbens, and 

with a slightly lower intensity in the cortex. 

 

Figure 5-1: Autoradiographic film images of homer 1a mRNA detected by means 

of in situ hybridization histochemistry (ISHH) in coronal forebrain sections from 

rats assigned to the following treatment groups (from left to right): SAL, CLO, 

HAL, ZIP4, ZIP10. 

5.4.2 Acute paradigm 

Statistically significant differences were detected for homer 1a among 

experimental groups in all subregions of the caudate-putamen (DL: ANOVA 

p<0.0001; VL: ANOVA p<0.0001; VM: ANOVA p=0.0003; DM: ANOVA 

p=0.0001). Post hoc tests revealed a statistically significant signal increase in all 

subregions of the caudate-putamen for HAL, ZIP4 and ZIP10 groups compared to 

SAL and CLO (Figure 5-2). On the other hand, post hoc tests revealed no 

statistically significant differences of homer1a gene expression between CLO and 

SAL in the caudate-putamen. Remarkably, in the lateral subregions (DL and VL), 

a further statistically significant difference at the post hoc test was detected 

between the two different dosages of ziprasidone, with the level of ZIP4 being not 

only higher than SAL and CLO but also lower than ZIP10 and HAL. No 

statistically significant differences were detected in measurements of nucleus 

accumbens. Consistent results were obtained by an independent in situ 

hybridization experiment using different forebrain sections from the same animals 
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(data not shown). Statistical analysis for shank signal showed no significant 

change across experimental groups in any of the striatal sub-regions. 

 

Figure 5-2: Homer 1a mRNA levels measured after acute treatment in caudate-

putamen subregions (CP DL = dorsolateral; CP VL = ventrolateral, ANOVA 

p<0.0001; CP VM = ventromedial, ANOVA p=0.0003; CP DM = dorsomedial, 

ANOVA p=0.0001), quantitated by densitometry of in situ hybridization 

histochemistry autoradiograms. Post-hoc test levels of significance: *treatment 

vs. SAL, CLO; **treatment vs, SAL, CLO, ZIP4. Data are expressed as relative 

dpm ± S.E.M. 

5.5 Chronic Paradigm 

Quantitative analysis of homer 1a signal in the chronic experiment (Figure 5-3) 

revealed a statistically significant signal increase in all subregions of the caudate-

putamen for HAL90’ group compared to SAL90’ (ANOVA, p<0.05, Figure 5-4). 

HAL90’ also shows a significant induction of homer1a gene compared to ZIP90’ 
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group in all caudate-putamen subregions (but only a positive trend in DL) and in 

both core and shell of accumbens (Figure 5-4). Post hoc tests also revealed a 

significant increase of homer1a gene expression of ZIP90’ over SAL90’ in: DL, 

VL, and VM caudate-putamen, and a positive trend in DM (Figure 5-4). No 

significant change was found between ZIP90’ and SAL90’ in the two subregions 

of the nucleus accumbens.  No change was detected between groups sacrificed at 

24 hours from last injection in any of the subregions assessed. The quantitative 

analysis of shank, homer1b, PSD-95, and IP3R signal levels in the chronic 

experiment showed no statistically significant change in any of the regions 

analyzed in both 90 minutes and 24 hours groups. 

 

Figure 5-3: Autoradiographic film images of homer 1a mRNA detected by means 

of in situ hybridization histochemistry (ISHH) in coronal forebrain sections from 

rats assigned to the following treatment groups: SAL90’, HAL90’, ZIP90’ (from left 

to right, upper row); SAL24h, HAL24h, ZIP24h (from left to right, lower row). 
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Figure 5-4: Homer 1a mRNA levels measured after chronic treatment in caudate-

putamen subregions and nucleus accumbens (90 minutes paradigm: CP DL = 

dorsolateral, ANOVA p= 0.0141; CP VL = ventrolateral, ANOVA p=0.0021; CP 

VM = ventromedial, ANOVA p=0.0040; CP DM = dorsomedial, ANOVA 

p=0.0113; Acb = nucleus Accumbens p=0.0024; 24 hours paradigm: ANOVA 

p>0.05 in all subregions), quantitated by densitometry of in situ hybridization 

histochemistry autoradiograms. Post-hoc test levels of significance: *treatment 

vs. SAL90’; **treatment vs, SAL90’, ZIP90’. Data are expressed as relative dpm ± 

S.E.M. 

5.6 Discussion 

Previous studies have shown that acute treatment with typical or atypical APS 

may modulate the expression of the IEG form of homer in the rat forebrain 

differently (de Bartolomeis et al., 2002; Polese et al., 2002). In this study, we 

investigated the effects of the novel atypical antipsychotic agent ziprasidone 

compared to other antipsychotics on the neural expression of genes known to 
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respond to dopaminergic stimulation. This is especially appealing due to the fact 

that ziprasidone has a relatively high affinity to the D2 receptor compared to other 

atypical antipsychotics (Seeman and Tallerico, 1998), and induces a striatal D2 

occupancy, as assessed by PET in humans at clinically effective doses, which is 

lower than that induced by haloperidol, similarly to the other atypical compounds 

risperidone and olanzapine (Mamo et al., 2004). Moreover, for the first time to 

our knowledge we investigated whether homer 1a acute response is affected by 

previous repeated administrations of antipsychotics, by assessing whether the 

IEG-like response of homer 1a is conserved after a 21-day chronic antipsychotic 

administration and whether the induction of the gene is sustained also after 24 

hours from last injection, as may be expected due to persisting levels of 

antipsychotics in target tissues following a chronic administration. 

The dosages of antipsychotics used in this study were all chosen as to fit within 

the dosage range that produce effects in animal behavioral models that are 

predictive of antipsychotic efficacy in humans, such as the conditioned avoidance 

suppression test (Seeger et al., 1995). Moreover the higher dose of ziprasidone 

used in our paradigm (10mg/kg) is also compatible with the dosage that produces 

minimal catalepsy, 12.1 mg/kg (9.7-15.1, 95% C.I.) (Seeger et al., 1995).  

Our results show a dose dependent induction of homer 1a gene expression in rat 

caudate putamen after acute administration of ziprasidone, with a significantly 

greater effect for the higher dose, which is shown to be correlated to EPSE 

liability in animal models. Homer 1a expression by the higher ziprasidone dose 

overlaps that obtained by haloperidol. At the lower ziprasidone dosage, shown to 
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exert responses in animal models predictive of antipsychotic efficacy, but not EPS 

liability, the level of change observed in Homer 1a expression was significantly 

lower than with the higher dosage. This provides further evidence that the 

expression of genes involved in postsynaptic glutamatergic function is 

differentially modulated by typical and atypical antipsychotics and that this 

modulation may positively correlate with their degree of dopamine D2 receptor 

occupancy.  

The dose dependency of the observed effect on homer gene expression by 

ziprasidone is thus particularly interesting. Specifically, homer induction pattern 

by ziprasidone in the lateral striatum separates the lower dose (ZIP4) from the 

higher dose (ZIP10), which shows a consistently similar behavior to HAL. In 

medial caudate-putamen subregions (VM, DM) ZIP4 shares the same level of 

significance with ZIP10 and HAL, whereas in lateral subregions (DL and VL) 

ZIP4 has an intermediate level of significance between CLO and ZIP10. The dose 

dependency of homer induction by ziprasidone may correlate to an increasing D2 

dopamine receptor occupancy, and possibly to animal responses that are 

predictive of an increased risk of EPSE. The differential effects on homer gene 

expression seem to be neuroanatomically specific to lateral caudate-putamen, as 

no statistically significant differences were detected in the other regions analyzed, 

including nucleus accumbens. The specific pattern of homer differential activation 

observed in the lateral caudate-putamen could be explained by a more pronounced 

action of haloperidol and very high doses of ziprasidone on the striato-nigral 

pathway compared to clozapine and lower doses of ziprasidone. Consistently, 

clozapine and ziprasidone are known to have a lower incidence of EPSEs in 
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clinical practice (Stimmel et al., 2002). Since the lower dose of ziprasidone 

4mg/kg and clozapine 15mg/kg are predicted to have antipsychotic effects in 

animal behavioral models, with a negligible potential for EPSE, our results may 

capture the distinctive therapeutic properties of these drugs. Specifically, a distinct 

functional effect of these drugs on the glutamatergic postsynaptic density may 

contribute to some of their biological effects such as low EPSE liability. 

It can be expected that a chronic treatment with psychotropic compounds may 

cause gene expression to be up- or down-regulated, as seen for a number of target 

genes (Chen and Chen, 2005; Feher et al., 2005; Semba et al., 1996). To assess 

this prediction we sacrificed the animals after a chronic schedule and at two time 

points, acutely (90 min), and delayed (24 h) from last injection. After a chronic 

antipsychotic treatment homer1a induction is observed in rats sacrificed at 90 

minutes but not in the littermates sacrificed at 24 hours. Conversely, c-fos, a 

different antipsychotic responding IEG (Feher et al., 2005; MacGibbon et al., 

1994; Semba et al., 1996), is reported not to be induced at 45 minutes from last 

administration in a chronic antipsychotic treatment paradigm (Semba et al., 1996). 

While c-fos induction undergoes a tolerance phenomenon after repeated 

antipsychotic administration, this seems not the case for homer1a. Our data show 

that it is induced at 90 minutes from administration in both acute and chronic 

paradigms. In contrast to the 90 minutes challenge, no change from basal 

expression has been detected for any of the compounds used in the 24 hours 

paradigm. Thus, homer1a gene did not show any sensitization or tolerance 

phenomena after a chronic antipsychotic treatment and it appears to retain the IEG 

response liability even after a long-term treatment by antipsychotics. Moreover, 
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homer1a induction after long-term treatment remains specific as demonstrated by 

the clear separation between haloperidol- and ziprasidone-induced effects in our 

study. Hence evaluation of homer 1a pattern of expression may provide a 

compelling tool to estimate the molecular outcome of sustained antipsychotic 

treatment in preclinical models. 

At the molecular level, considering that homer 1a functions as a “dominant 

negative” on the signal transmission efficiency of group 1 mGluRs (Xiao et al., 

1998), it can be predicted that the increase of homer 1a will displace constitutively 

expressed CC-homers (1b/c, 2, 3), thus disrupting the clustering of mGluRs and 

uncoupling them from their intracellular effectors. The overall effect would 

therefore be a reduction of glutamate activation of the striatal neurons. Although a 

direct correlation of this effect to any biological effect induced by antipsychotics 

is speculative, a specific pattern of homer 1a induction might represent a first step 

that triggers complex molecular and neuronal events that ultimately lead to 

biological effects of the drugs. Moreover, the differential pattern of homer 

expression may provide a powerful molecular tool for further investigation into 

the differential molecular mechanisms of typical and atypical antipsychotics, as 

well as a potential predictor of ‘atypicality’ for putative novel antipsychotic 

agents. Finally, our results confirm that antipsychotic compounds acting 

prevalently at the dopamine receptors can perturb homer 1a, a relevant effector of 

glutamatergic signaling, which, differently from other early genes such as c-fos, 

has a direct role in synaptic plasticity. 
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Chapter 6 

6 Computational Prediction of 

Antipsychotics Gene Targets 

6.1 Abstract 

Control of gene expression is essential for the establishment and maintenance of 

all cell types, and is involved in pathogenesis of several diseases. Accurate 

computational predictions of transcription factor regulation may thus help in 

understanding complex diseases, including mental disorders in which 

dysregulation of neural gene expression is thought to play a key role. However, 

predictions via bioinformatics tools are typically poorly specific. We have 
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developed and tested a computational workflow to computationally predict 

Transcription Factor Binding Sites on proximal promoters of vertebrate genes. 

The computational framework was applied to groups of genes found to respond to 

antipsychotic drugs. Our approach for the prediction of regulatory elements is 

based on a search for known regulatory motifs retrieved from TRANSFAC, on 

DNA sequences of genes’ promoters. Predictions are thus weighted by 

conservation. These predictions are further refined using a logistic regression to 

integrate data from co-regulated genes. Consistent results were obtained on a large 

simulated dataset consisting of 5460 simulated promoter sequences, and on a set 

of 377 vertebrate gene promoters for which binding sites are known (TRANSFAC 

gene set). Our results show that integrating information from multiple data 

sources, such as genomic sequence of genes’ promoters, conservation over 

multiple species, and gene expression data, can improve the accuracy of 

computational predictions. The validation of our method allowed us to apply the 

computational framework to Homer1 promoter as a means to infer direct targets 

of antipsychotics. 

6.2 Computational Framework 

Our Computational Framework for transcription factor Binding site Identification 

(CFBI) supplies a set of novel tools to fetch and integrate data from multiple 

sources and analyze it to make predictions, all in an automated and flexible 

bioinformatics workflow (Figure 6-1). Differently from previous approaches, 

CFBI does not require alignment of ortholog gene promoters, nor a linearity 



 

 104 

assumption, as in the case of linear regression based algorithms. Our framework 

can also be applied to qualitative expression data, such as developmental and/or 

neuroanatomical expression data such as that obtained by in situ hybridization 

histochemistry. 

 

Figure 6-1: Diagram illustrating the structure of the framework for the 

computational prediction of transcription factor binding sites. The diagram shows 

the multiple sources of input data, including ensembl, compara, TRANSFAC (or 
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alternatively, novel motifs obtained by a motif-finding algorithm, such as 

MDScan), the optional data preprocessing RepeatMasker step, and the post-

processing steps including data integration from multiple species and logistic 

regression of gene expression defined classes of genes. Dotted lines indicate 

optional or alternative steps 

6.3 Methods 

6.3.1 Sequence and motif data retrieval 

Promoter sequences were retrieved from the latest build of ensembl database 

(build 32), and ortholog gene IDs were obtained by querying the compara 

database (Hubbard et al., 2005). Finally, all of the 145 vertebrate motif data were 

fetched from TRANSFAC 9.2. Each transcription binding site motif was modeled 

as a position weight matrix (PWM). 

6.3.2 Position weight matrix score 

We computed PWM scores using a statistical formula proposed by Stormo et al. 

(Stormo, 2000; Stormo and Fields, 1998). This score is based on the ratio between 

the probability of a subsequence being generated from the PWM over that of 

being generated by the background Markov model. The score of a motif of length 

w over a promoter sequence of length l is given by: 
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were 

! 

pij is the probability of a base at position i+j based on the PWM and and 

! 

" p ij  

is the probability of it being generated by the background Markov model. For this 

purpose a species-specific 3rd Order Markov model was trained on large (10kb) 

intergenic regions upstream of a set of human neural genes, including Dopamine 

D2 receptor, 5-HT2A, Tryptophan hydroxylase 1, Homer 1, Neuronal 

acetylcholine receptor alpha-10, c-Myc and c-Fos. Alternatively, a different set of 

background sequences may be specified each time. 

6.3.3 Phylogenetic data integration 

For each motif, the PWM score in the promoter of ortholog genes in k different 

species was integrated by the following mathematical formula that is based on the 

assumption that some of the regulatory machinery of gene expression is conserved 

in evolutionary related species: 

! 

relSum = s
i
(1" d

i
)

i=1
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(2) 
were si is the PWM score of the motif in the promoter of the gene in species i, and 

di is a weight proportional to evolutionary distance from the main species 

(human), ranging from 0 (same species) to 1 (farthest species). The distance 

weight di (Table 6-1) was calculated using the multi-species alignment of coding 

sequences of the myc gene using the program DNADIST (Felsenstein, 1989). We 

named this score ‘relatedness sum’ (relSum, for short) since it takes into account 

how related promoters of different species are. 
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6.3.4 Qualitative data integration: Logistic regression 

If a priori information is available indicating that a gene of interest is part of a set 

of genes that may share common regulatory motifs in their promoters, then this 

information can be used to increase the specificity of in silico predictions. This a 

priori information can be obtained, for example, by selecting a cluster of co-

expressed genes from microarray experiments. A value y=1 is assigned to the 

cluster of co-expressed genes to which the gene of interest belongs, while a value 

y=0 is assigned to a background set of genes that are thought not to share any 

common regulatory motifs. Logistic regression is then used to identify the shared 

regulatory motifs in the co-expressed dataset. The general model for a logistic 

regression is: 

! 

yi =
1

1+ e
"a"b

T
x

                  for i =1...n  

(3) 
where n is the total number of target genes in the two sets, the response variable 

! 

yi " {0,1} is equal to the class of the ith gene, and x is a vector of scores (relSums) 

for m ‘candidate’ motifs (regressors). The vectors a and b are the parameters of 

the model. Parameter b is a vector of size m of fitted weights. The greater the 

weight, the more likely the corresponding motif is functional. The variance 

! 

" 2 of 

b may be computed as: 
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where X is the n 
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"  m matrix of relSum scores and the diagonal matrix w is equal 
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6.3.5 Generation of the in silico promoter dataset 

The sequence generator Seq-gen algorithm (Rambaut and Grassly, 1997) was used 

to build simulated datasets of ortholog sequences. Seq-gen is able to generate 

simulated DNA sequences of a given length and the corresponding ‘ortholog’ 

sequences at different evolutionary distances, starting from the 9-species 

phylogenetic distance matrix previously described (Table 6-1). Seq-gen was run to 

generate 90 simulated DNA sequences with the corresponding ‘ortholog’ in 9 

species (human, chimp, dog, cow, mouse, rat, chicken, fugu, and zebrafish). This 

program implemented the Hasegawa, Kishino and Yano (HKY) model (Hasegawa 

et al., 1985) for the generation of simulated data. Motif sequences were randomly 

selected from the list of known binding sites in TRANSFAC, and inserted in 

random non-overlapping positions within the simulated promoter sequences. In 

order to account for the evolutionary distance, we decreased the frequencies of 

inserted motifs with the evolutionary distance. Thus, human and chimp promoters 

received two inserts, cow and dog received 1.5 inserts on average, mouse and rat 

1 insert, chicken 0.5 inserts and finally fugu and zebrafish 0.2 inserts. Only the 

high quality subset of 145 TRANSFAC matrices, i.e. compiled from 20 or more 

binding sites, was considered for the generation of simulated datasets. Thus a total 

of 13050 promoters were analyzed (145 different datasets of 90 genes) 
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Table 6-1: Phylogenetic distance weights used to compute the ‘relatedness sum’ 

score (variable d in equation 2). 

6.4 Results 

The CFBI approach we developed proceeds as follows (Figure 6-1): the gene of 

interest is selected and its promoter sequence, together with promoter sequences 

of ortholog genes in other species are retrieved from ensembl database 

(www.ensembl.org) and compara for orthology information (Hubbard et al., 

2005). A list of motifs of all known vertebrate transcription factors (TFs) is 

obtained by the TRANSFAC database, or a list of novel motifs may be predicted 

by MDScan (Liu et al., 2002). Motifs are then modeled as Position Weight 

Matrices (PWMs). A PWM score for each motif is computed in each promoter of 

the ortholog gene set. The PWM scores in the ortholog gene set are integrated 

using a weighted sum calibrated on the phylogenetic distances between the 

species. This final score can then be used to rank the motifs and select the ones 

with the highest probability of being functional transcription factor binding sites.  



 

 110 

These predictions can be refined using logistic regression to integrate data from 

potentially co-regulated genes. The logistic regression makes use of two sets: a set 

of promoters of potentially co-regulated genes, and a background set of gene 

promoters that do share any regulatory motifs. For further details please refer to 

the Methods section. 

 
In order to establish the performance of CFBI, we counted the number of true 

positives (TP), true negatives (TN), false positives (FP), false negatives (FN), and 

presented the results as Positive Predictive Value (PPV) = 

! 

TP

TP + FP
, and 

Sensitivity = 

! 

TP

TP + FN
. 

6.4.1 Simulated data 

Performance and usability of the CFBI was tested on an in silico dataset 

consisting of 1450 genes with ortholog sequences in 9 different species (see 

Methods). 

The predictive performance of CFBI on this dataset is shown in Figure 6-2. 

Robustness of the logistic regression step was tested by progressively introducing 

‘noise’ in the set of co-regulated genes and in the background set of genes (see 

Methods). Noise was added to simulate a more realistic scenario, in which only 

some of the genes in the co-regulated set, do share a common regulatory motif in 

their promoters. The noise free case (black continuous line in Figure 6-2) 

consisted of the 10 motif-positive promoters assigned to the co-regulated set of 

genes, and the null promoters (with no insertions) assigned to the background set. 
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Promoters in the background set were progressively misassigned to the co-

regulated set, and the corresponding performances are shown in Figure 6-2. 

 

Figure 6-2: Positive Predictive Value (PPV) vs. Sensitivity plot showing the 

results in the simulated dataset. Continuous lines: performance profile obtained 

using the logistic regression step (black thick line shows performance with zero 

noise, and thin gray scale lines show performance when miss-assignmets are 

progressively introduced). 

6.4.2 TRANSFAC genes dataset 

The TRANSFAC dataset consists of promoters of 407 human genes from 

TRANSFAC gene table, for which transcription factors are known and 

experimentally validated with an annotated 5’-UTR. Ortholog gene sequences 

were fetched via the automated workflow, for each of 9 species where available. 
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The analysis was limited to the subset of 161 groups of ortholog genes for which 

all 9 orthologs were available, for a total of 1449 promoter sequences. All 

promoters were 1kb long, with 300bp downstream of the transcript start site. 

Results on the human TRANSFAC genes dataset confirm the results obtained on 

the simulated dataset. Single species performance appears to resemble the 

evolutionary distance of the species (Figure 6-3). The PPV reached a maximum of 

approximately 30% when the ortholog gene promoter sequences are used, as 

compared to an average peak of <20% for the human species alone. We also 

compared the performance of CFBI with one of the most commonly used 

algorithms for TFBS prediction, MATCH  (Kel et al., 2003) using both the 

‘minimize FP’ and ‘minimize FN’ options (Figure 6-3). 
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Figure 6-3: PPV vs. Sensitivity on the TRANSFAC genes dataset. Plain gray 

lines: scores obtained on the individual species; continuous lines: mammals (the 

thicker line is the human); dashed lines: chicken; dot dashed: fugu and zebrafish. 

Performance obtained using MATCH: two bordered white diamonds correspond 

to ‘minimize false positives’ and ‘minimize false negatives’ 

6.4.3 Myc targets dataset 

In order to confirm our results on an independent dataset, we selected a subset of 

Myc target genes from the Myc database (Basso et al., 2005). The Myc gene a 

transcription factor vastly implicated in neuroscience (Knoepfler et al., 2002; 

Pession and Tonelli, 2005; West et al., 2004), whose primary targets have been 

extensively validated. Only the top 17 high quality targets were included in the 

analysis, i.e. those validated as primary targets by both Chromatin 
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ImmunoPrecipitation (ChIP) and biochemical assays, in order to have a small but 

highly reliable dataset (Basso et al., 2005). 

Performance on this dataset confirms the advantage of integrating phylogenetic 

sequence information over using a single species, and a boost (> two fold) in 

performance when integrating information on co-regulated genes via logistic 

regression (Figure 6-4). 

 

Figure 6-4: PPV vs. Sensitivity on the small set of ‘high quality’ Myc target genes 

dataset. Continuous line: performance of the weighted sum over 9 species; 

dashed line: human alone. The asterisk shows the peak performance obtained by 

the logistic of the 17 relSum scores against 100 promoters of random genes not 

included in the Myc database 
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6.5 Homer 1 promoter analysis 

The promoter sequence 2kbp + 500bp within 5’-UTR upstream of the rat Homer 1 

gene (chr2:23580396-23582896, NCBI build 36) was retrieved from UCSC 

Genome Browser and analyzed through our computational framework. Because 

the annotation of Homer 1 is missing in the current build of the rat genome, the 

precise transcription start site was identify by the alignment of human Homer 1 

gene (NM_004272.3). The Top predictions based on a z score greater than 3 are 

shown in Table 6-2. Remarkably, the top hit is the CREB binding site, which is 

indeed expected because of the involvement of the MAP kinase in Homer 1a 

induction (Sato et al., 2001), and confirms a previous bioinformatics analysis by 

Bottai et al (Bottai et al., 2002).  
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Table 6-2: Top predicted Transcription factor binding sites predicted by King 

Algorithm. Positions are shown relative to the transcription start site and the 

ranking based on z scores. 
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Chapter 7 

7 Conclusions 

7.1 Homer 1 as ‘atypicality’ predictor 

Findings from our previous experiments on the differential regulation of Homer 

1a by typical and atypical antipsychotics (de Bartolomeis et al., 2002) have led us 

to propose that measuring the increase of Homer 1a in caudate-putamen in 

rodents can be used to discriminate typical from atypical antipsychotics. 

Specifically, our previous results on the differential expression of haloperidol vs. 

atypical antipsychotics olanzapine and clozapine (de Bartolomeis et al., 2002; 

Polese et al., 2002) suggested that typical antipsychotics with high D2R affinity 

strongly induce an overexpression of Homer 1a in subcortical regions of the rat 
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brain after acute treatment. We investigated the response of Homer 1 gene to 

antipsychotics with a acute and chronic administration of other antipsychotics, 

including Quetiapine and Ziprasidone. The chronic administration of 

antipsychotics to animals was used to resemble the clinical treatment regimens 

required for antipsychotic effects to be observed in humans. The results presented 

in this manuscript confirm the strong induction of Homer 1a gene expression in 

rat caudate-putamen after acute administration of the typical antipsychotic 

haloperidol and show a lack of induction by the atypical quetiapine (Figure 4-3a 

and Figure 4-3c) and ziprasidone 4mg/kg, consistent with the previously reported 

Homer 1a induction patterns in the rat striatum (de Bartolomeis et al., 2002). The 

atypical agents Quetiapine and Ziprasidone only induced showed an induction for 

Homer 1 in nucleus accumbens suggesting selectivitiy for limbic structures.  

The increase of ania-3 in nucleus accumbens but not in caudate-putamen, is 

consistent with a prominent effect on limbic regions by quetiapine, while sparing 

the nigrostriatal pathway that is implicated in EPSEs (Tada et al., 2004; 

Westerink, 2002). The differences in expression patterns found between the two 

splice variants of Homer 1 gene may suggest a differential regulation with a 

neuroanatomical specificity. However a simpler explanation for those differences 

could be that the signal-to-noise ratio for ania-3 is higher than for Homer 1a. 

Thus, further investigation is needed to conclusively determine whether the two 

variants are indeed differentially expressed. Should this be confirmed it would be 

interesting and challenging to pin down the mechanisms involved in such 

differential regulation.  
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Moreover, the differential pattern of homer expression may provide a powerful 

molecular tool for further investigation into the differential molecular mechanisms 

of typical and atypical antipsychotics, as well as a potential predictor of 

‘atypicality’ for putative novel antipsychotic agents. Finally, our results confirm 

that antipsychotic compounds acting prevalently at the dopamine receptors can 

perturb homer 1a, a relevant effector of glutamatergic signaling, which, 

differently from other early genes such as c-fos, has a direct role in synaptic 

plasticity. 

The other dopaminergic agent used in our studies GBR, which shares the 

mechanism of action with cocaine, induced ania-3 by GBR after acute treatment 

in brain regions involved in rewarding effects of stimulant drugs. Most 

remarkably, in the cortical regions both Homer 1a (figure 5a) and ania-3 (Figure 

5c) showed a strong induction by chronic GBR limited to the parietal cortex, both 

statistically significant (p<.0001). This induction in the parietal cortex was absent 

or not statistically significant after the acute treatment and could be related to the 

recruitment of ‘sensitization’ specific neuronal networks by stimulants after a 

pretreatment schedule, as previously suggested by Curran and coworkers (Curran 

et al., 1996).. The induction of Homer 1 in somatosensory cortex after repeated 

GBR administration might be involved in a compensatory blunting of cortical 

activity as was shown to occur after Homer 1a overexpression by viral vector 

infusion in the frontal cortex of rats (Lominac et al., 2005). 
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7.2 Computational predictions 

We have developed a novel strategy for increasing the accuracy of computational 

predictions of TFBSs on genomic DNA sequences. Key factors of our 

computational framework include the integration of phylogenetic information 

from multiple species, and the possibility to include a priori information such as 

that available from quantitative or qualitative gene expression data. 

Regulation of gene expression is a key factor determining complexity of 

biological systems. There is an increasing interest in understanding regulation of 

gene expression in the brain, where the dynamics of gene expression may play a 

role in drug response and in brain disorders. There are examples in which neural 

gene expression profiles could accurately discriminate among classes of 

psychoactive compounds (Gunther et al., 2003; Gunther et al., 2005) or even 

between complex social behaviors within honeybees (Whitfield et al., 2003). 

Here, we developed a novel strategy for increasing the accuracy of computational 

predictions of TFBSs on genomic DNA sequences. Key factors of our 

computational framework include the integration of phylogenetic information 

from multiple species, and the possibility to include a priori information such as 

that available from quantitative or qualitative gene expression data. 

One novelty of our computational approach, compared to others that make use of 

phylogenetic information, is that it does not require aligning promoter sequences 

from different species, thus overcoming the problem of aligning promoter 

sequences that have diverged with evolution. 
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A second novelty is the use of non-linear logistic regression to integrate additional 

a priori information on gene regulation. The source of a priori information could 

be microarray gene expression profiles. Clusters of genes that share a common 

expression profile with a gene of interest can be identified, and considered against 

a set of genes that do not change. The hypothesis is that genes that are co-

expressed should be co-regulated and therefore share common regulatory motifs 

in their promoters, while the second set of non-changing genes is used as a 

background set to reduce false positives. Alternatively, contrasting sets of genes 

could be identified from biological knowledge or from different experimental data 

such as a specific pattern of expression by in situ hybridization. For example, a 

pattern of expression in specific neuroanatomical regions in response to a drug 

may be used to select one group of genes, whereas a (larger) set of genes not 

responding, or responding with a different pattern may be used as the background 

set. Logistic regression is different from the linear regression method by Conlon 

et al. (Tadesse et al., 2004), in that the linear regression model relies on the 

assumption that the gene expression levels are linearly related to the sequence 

matching scores of the motifs. Such an effect could be true in lower animals but is 

not easy to detect in mammals. In addition, the use a background set makes 

logistic regression less prone to false positive predictions.  

Our results on Homer 1 gene regulation by antipsychotics have stimulated us to 

the investigation of the molecular mechanisms involved in such a regulation. 

Sequence analysis of Homer 1 promoter was perfomed implementing our  

computational framework for the prediction of TFBSs after it  had been validated 

on simulated datasets as well as on ‘real’ datasets. Accurate predictions of direct 
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drug targets through combined analysis of genomic expression data are promising 

in the drug discovery process, and the investigation of mechanisms of action of 

compounds. 

7.3 Future directions 

Our investigation on the identification of drug targets antipsychotics and gene 

networks directly perturbed by such drugs is still an ongoing process that will 

require experimental validation of predicted targets and analysis of Homer 1a co-

regulated genes. Our future goals are to implement the computational framework 

on promoters of all genes that are expressed in the brain and find correlations 

based on the patterns top scoring predicted TFBSs, in order to recover a 

functional network of genes that are expressed in the brain, and that are the direct 

targets of antipsychotic drug treatments. Predictions will be integrated with gene 

expression data obtained by in situ hybridization or microarray technology and 

will be validated experimentally. 
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Appendix A 

1 Java Code Examples 

1.1 Package bioinfo 

1.1.1 Bioinfo.MarkovModel Class 

// 
//  MarcovModel.java 
//   
// 
//  Created by Alberto Ambesi on Tue Sep 02 2003. 
//  Copyright (c) 2004 __Tigem__. All rights reserved. 
// 
package bioinfo; 
 
import java.io.*; 
import bioinfo.bio.*; 
import java.util.*; 
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/* 
 * Markov Model object  
 */ 
 
public class MarkovModel implements Serializable { 
 private int order; //order of Markov Model 
 protected boolean useBothStrands; 
 private boolean freqsComputed; 
 protected LinkedHashMap tupleCountMap_f; // using simple base freq 
model  
 protected LinkedHashMap tupleCountMap_r; 
 private int[] counter; 
 private int[] voidCounter; //counts tuples with no occurrances in 
training seqs. 
 private static HashMap reverseMap = makeReverseMap(); 
 private boolean consolidated; 
        private Vector speciesV; //not used: should be a single species, 
whith get method 
  
 /** 
  * constructor using Markov Models 
  * @param order order of Markov Model 
  */ 
 public MarkovModel(boolean useBothStrands, int order) throws 
Exception { 
  this.order = order; 
  //this.promoter = promoter; 
  //To do: check order 
  this.useBothStrands = useBothStrands; 
   
  initialize(); 
 } 
        /** 
  * constructor using Markov Models 
  * @param order order of Markov Model 
  */ 
 public MarkovModel(boolean useBothStrands, int order, Vector 
speciesV) throws Exception { 
  this.order = order; 
  this.speciesV = speciesV; 
  //To do: check order 
  this.useBothStrands = useBothStrands; 
   
  initialize(); 
 } 
  
 public static HashMap makeReverseMap() { 
  reverseMap= new HashMap(); 
  reverseMap.put("a", "t"); 
  reverseMap.put("c", "g"); 
  reverseMap.put("g", "c"); 
  reverseMap.put("t", "a"); 
  return reverseMap; 
 } 
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 /** 
  * this test the code of markov model generation: it calcs the prob 
of @param tuple 
  */ 
 public void testMarkovModel(String tuple, int order) throws 
Exception { 
  long tStart = System.currentTimeMillis(); 
  System.out.println("probability of " + tuple + " using order " + 
order + " = " + calcProbabilityOfTupleVerbose(tuple, true, order)); 
  try { 
   System.out.println("frequency of   " + tuple + " = " + 
calcMMFreq(tuple, true));//forwardStrand 
  } catch(NullPointerException e) { //prints the exact frequency 
only if available 
  } 
 } 
  
 /** 
  * @param string must be lowercase only a, c, g, t are allowed 
  */ 
 private String reverseComplement(String s) { //throws Exception { 
  String revComp = ""; 
  for (int i = s.length(); i>0; i--) 
   revComp += (String)reverseMap.get(s.substring(i-1, i)); 
  return revComp; 
 } 
  
 private void initialize() throws Exception { 
  //initializing map and counter[] 
  freqsComputed = false; 
  String[] base = new String[]{"a", "c", "g", "t"}; 
  tupleCountMap_f = new LinkedHashMap(); 
  Vector lastTempV = new Vector(); 
  lastTempV.addElement(""); 
  int w = order + 1; 
  counter= new int[w]; 
  for (int j =0; j<w; j++) {  
   Vector tempV = new Vector(); 
   for (Iterator k=lastTempV.iterator(); k.hasNext();) { 
    String tuple = k.next().toString();  
    for (int b=0; b<base.length; b++) {  
     tempV.addElement(tuple + base[b]); 
    } 
   } 
   for (Iterator k=tempV.iterator(); k.hasNext();)  
    tupleCountMap_f.put(k.next(), new Integer(0)); //adding 
back to main map 
   lastTempV = tempV; 
   counter[j]=0; 
  } 
  tupleCountMap_r = (LinkedHashMap)tupleCountMap_f.clone();  
 } 
  
  
 /** 
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  * computes relative frequencies of all n-tuples with n {1:order} 
  */ 
  public void addMMCounts(String seqStr) throws Exception { 
  System.out.println("adding a sequence counts for this Markov 
Model of order " + this.order + "..."); 
  int w = order + 1; 
  int L = seqStr.length(); 
  seqStr = seqStr.toLowerCase(); 
  int illegalSymbolCounter =0; 
  for (int i = 0; i < L; i++) { // iterating base by base a window 
of w 
   String s = ""; 
   try { 
                            try { 
 
                                    s = seqStr.substring(i, i + w); 
                                    //System.out.println(s); 
                            } catch (IndexOutOfBoundsException e2) { 
//reaching end of sequence 
                                    s = seqStr.substring((L - --w), L); 
                                    //System.out.println("cought (index " 
+ i + "): " + s); 
                            } 
                            //System.out.print(s.charAt(0)); 
                            for (int j = 1; j<=w; j++) { 
                                    String jTupleSeqStrF = s.substring(0, 
w-j+1); 
                                    try { 
                                            int jTupleCount_f = 
((Integer)tupleCountMap_f.get(jTupleSeqStrF)).intValue(); 
                                            
tupleCountMap_f.put(jTupleSeqStrF, new Integer(++jTupleCount_f)); 
                                            //System.out.println("\t" + 
jTupleSeqStrF + " count updated: " + jTupleCount_f); 
                                            String jTupleSeqStrRC = 
reverseComplement(jTupleSeqStrF); 
                                            int jTupleCount_r = 
((Integer)tupleCountMap_r.get(jTupleSeqStrRC)).intValue(); 
                                            
tupleCountMap_r.put(jTupleSeqStrRC, new Integer(++jTupleCount_r)); 
                                            counter[j-1]++; 
                                    }catch(NullPointerException e2){ 
                                            //exception if sequence 
contains symbols different than 'a','c','g', or 't' (eg.'n') 
                                            illegalSymbolCounter++; 
                                    } 
                            } 
                        } catch(StringIndexOutOfBoundsException e) { 
                                System.out.println("WARNING sequence too 
short: " + s); 
                        } 
  } 
  if (illegalSymbolCounter>0) 
   System.out.println("illegal symbols: " + 
illegalSymbolCounter); 
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 } 
  
 /** 
  * consolidates Markov Model adding correction to those frequencies 
that are equal to 0 
  */ 
 public void consolidate() throws Exception { 
  if (consolidated)  
   throw new Exception("cant consolidate an already 
consolidated MarkovModel"); 
   
  consolidate(tupleCountMap_f); 
  if (useBothStrands) 
   consolidate(tupleCountMap_r); 
  consolidated = true; 
 } 
 /** 
  * consolidates Markov Model adding counts the zero frequency 
tuples, needed for the correction factor in method calcMMFreq() 
  */ 
  private void consolidate(LinkedHashMap tupleCountMap) throws 
Exception { 
  //System.out.println("adding a sequence counts for this Markov 
Model of order " + this.order + "..."); 
  voidCounter= new int[order+1]; 
  for (int i=0; i<order+1; i++)  
   voidCounter[i] = 0; 
  for (Iterator i = tupleCountMap.keySet().iterator(); 
i.hasNext();) { 
   String tuple = i.next().toString(); 
   if (((Integer)tupleCountMap.get(tuple)).intValue() ==0) { 
    voidCounter[tuple.length()-1]++; 
   } 
  } 
 } 
   
 /** 
  * calcs Probability of a single tuple from this tupleCountMap 
adding the correctionfactor; 
  */ 
 public double calcMMFreq(String tuple, boolean forwardStrand) throws 
Exception { 
  if (!consolidated)  
   throw new Exception("MarkovModel is not consolidated"); 
  tuple = tuple.toLowerCase(); 
  LinkedHashMap tupleCountMap; 
  if (forwardStrand) 
   tupleCountMap = tupleCountMap_f; 
  else tupleCountMap = tupleCountMap_r; 
  int j = tuple.length(); 
  //System.out.println(tuple); 
  int tupleCount; 
  try { 
   tupleCount= ((Integer)tupleCountMap.get(tuple)).intValue(); 
  } catch(NullPointerException e) { 
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   throw new Exception("can't score tuple: " + tuple); 
  } 
  double correctionfactor = (double)voidCounter[j-
1]/(2*Math.pow(4, j)); 
  double freq= (double)tupleCount/counter[j-1]; 
  return freq + correctionfactor; 
 } 
  
 public LinkedHashMap getTupleCountMap_f() { 
  return tupleCountMap_f; 
 } 
  
 public LinkedHashMap getTupleCountMap_r() { 
  return tupleCountMap_r; 
 } 
  
 /* 
  * use method in MarkovModelTools.java 
  * returns the probability of the 4 symbols in a given position 
based on the previous jTuple from this markovModel 
  */ 
 public double[] fetchProbabilitiesOfNextSymol(String jTuple, boolean 
plusStrand) throws Exception { 
  double[] probabilities = new double[4]; 
  int totalCounts=0; 
  int x=0; 
  LinkedHashMap tupleCountMap; 
  if (plusStrand) 
   tupleCountMap= getTupleCountMap_f(); 
  else tupleCountMap= getTupleCountMap_r(); 
  while (totalCounts==0) { // will rely on a lesser order if the 
totalCount is zero 
   try { 
    jTuple = jTuple.substring(x++); 
   } catch(StringIndexOutOfBoundsException e) { 
    jTuple=""; 
   } 
   probabilities[0] = calcMMFreq(jTuple + "a", plusStrand); // 
forward strand 
   probabilities[1] = calcMMFreq(jTuple + "c", plusStrand); 
   probabilities[2] = calcMMFreq(jTuple + "g", plusStrand); 
   probabilities[3] = calcMMFreq(jTuple + "t", plusStrand); 
   totalCounts += ((Integer)tupleCountMap.get(jTuple + 
"a")).intValue(); 
   totalCounts += ((Integer)tupleCountMap.get(jTuple + 
"c")).intValue(); 
   totalCounts += ((Integer)tupleCountMap.get(jTuple + 
"g")).intValue(); 
   totalCounts += ((Integer)tupleCountMap.get(jTuple + 
"t")).intValue(); 
  } 
  double sum = 0; 
  for (int i=0; i<4; i++) { 
   sum+=probabilities[i]; 
  } 
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  if (sum==0) 
   throw new Exception("probability cannot be zero"); 
  for (int i=0; i<4; i++) { 
   probabilities[i]/=sum; 
  } 
  return probabilities; 
 } 
  
 public String generateRandomSeqStr(int order, int length) throws 
Exception { 
  if (!consolidated)  
   throw new Exception("MarkovModel is not consolidated"); 
  String seqStr = ""; 
  boolean testMode =false; 
  while (order > this.order) // max order is this.order 
   order--; 
  System.out.println("generating random seq using order "  + order 
+ " (" + this.order + ") and length " + length); 
  for (int i=0; i<order; i++) { //priming... 
   String sym; 
   double rand = Math.random(); 
   double[] probs = fetchProbabilitiesOfNextSymol(seqStr, 
true); 
   if (rand < probs[0])  
    sym = "a"; 
   else if (rand < probs[0]+probs[1])  
    sym = "c"; 
   else if (rand < probs[0]+probs[1]+probs[2])  
    sym = "g"; 
   else  
    sym = "t"; 
   seqStr += sym; 
  }  int factor = 1; //number of times the length for 
training the random seq. 
  for (int i=order; i<length *factor; i++) { 
   String sym; 
   double rand = Math.random(); 
   double[] probs; 
   probs= 
fetchProbabilitiesOfNextSymol(seqStr.substring(seqStr.length() - order), 
true); 
   if (rand < probs[0])  
    sym = "a"; // a 
   else if (rand < probs[0]+probs[1])  
    sym = "c"; //c  
   else if (rand < probs[0]+probs[1]+probs[2])  
    sym = "g"; //g 
   else 
    sym = "t"; //t 
   seqStr += sym; 
  } 
  String[] seqStrArr = new String[factor]; 
  for (int s=0; s<factor; s++)  
   seqStrArr[s] = seqStr.substring(s*length, ((s+1)*length)); 
  return seqStrArr[factor-1]; 
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 } 
  
  
 /**  
  * Computes probability of a word using this Markov Model 
  * @param wTuple word for which to compute the probability.  
  */ 
 public double calcProbabilityOfTuple(String wTuple, boolean 
forwardStrand, int desiredOrder) throws Exception { 
  int w = wTuple.length(); 
  int order = desiredOrder; 
  if (desiredOrder>this.order)  
   order = this.order; 
  while (order > w - 1) // decreases order for short tuples 
shorter than order + 1 
   order--; 
  if (order!=desiredOrder) 
   System.out.println("warning using order "  + order); 
  LinkedHashMap tupleCountMap; 
  if (forwardStrand) 
   tupleCountMap = tupleCountMap_f; 
  else tupleCountMap = tupleCountMap_r; 
  double numerator = 1; 
  for (int i=0; i<w-order; i++) { 
   numerator *= calcMMFreq(wTuple.substring(i, i+order+1), 
forwardStrand); //freq 
  } 
  double denominator = 1; 
  try { 
   for (int i = 0; i<w-order-1; i++) { 
    denominator *=  calcMMFreq(wTuple.substring(i+1, 
i+order+1), forwardStrand); 
   } 
  } catch(NullPointerException e) { 
   //allows for order == 0 
  } 
  return numerator/denominator; 
 } 
  
 /**  
  * Exactly the same as calcProbabilityOfTuple() only with output use 
just for test 
  */ 
 public double calcProbabilityOfTupleVerbose(String wTuple, boolean 
forwardStrand, int desiredOrder) throws Exception { 
  int w = wTuple.length(); 
  int order = desiredOrder; 
  if (desiredOrder>this.order)  
   order = this.order; 
  while (order > w - 1) // decreases order for short tuples 
shorter than order + 1 
   order--; 
  if (order!=desiredOrder) 
   System.out.println("warning using order "  + order); 
  LinkedHashMap tupleCountMap; 



 

 142 

  if (forwardStrand) 
   tupleCountMap = tupleCountMap_f; 
  else tupleCountMap = tupleCountMap_r; 
  double numerator = 1; 
  System.out.print("p(" + wTuple + ") = \n   "); 
  for (int i=0; i<w-order; i++) { 
   numerator *= calcMMFreq(wTuple.substring(i, i+order+1), 
forwardStrand); //freq 
   System.out.print("p(" + wTuple.substring(i, i+order+1) + ") 
"); 
  } 
  System.out.print("\n   ----------------------\n        "); 
  double denominator = 1; 
  try { 
   for (int i = 0; i<w-order-1; i++) { 
    denominator *=  calcMMFreq(wTuple.substring(i+1, 
i+order+1), forwardStrand); 
    System.out.print("p(" + wTuple.substring(i+1, 
i+order+1) + ") "); 
   } 
   System.out.println(); 
  } catch(NullPointerException e) { 
   //allows for order == 0 
  } 
  return numerator/denominator; 
 } 
 
 public static void writeDataSetSpeciesModels(int order, 
LinkedHashMap map, String outputFile) throws Exception { 
   
  LinkedHashMap spec_modelMap = new LinkedHashMap(); 
  int j=0; 
  int counter=0; 
  for (Iterator i = map.keySet().iterator(); i.hasNext();) { 
   String seqName = i.next().toString(); 
   String[] split = seqName.split("\\|"); 
   String species = ""; 
   try { 
    species = new Species(split[0]).getName(); 
   } catch(Exception e) { 
    try { 
     species = new Species(split[1]).getName(); 
    } catch(Exception e1) { 
     try { 
      species = new Species(split[2]).getName(); 
     } catch(Exception e2) { 
      throw new Exception("species not in fasta 
heading: >" + seqName); 
     } 
    } 
   } 
   MarkovModel markovM; 
   if (!spec_modelMap.keySet().contains(species)) { 
    System.out.println("species: " + species); 
    markovM = new MarkovModel(true, order); //use 
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bothStrands 
    spec_modelMap.put(species, markovM); 
   } else markovM = (MarkovModel)spec_modelMap.get(species); 
   String seq = map.get(seqName).toString(); 
   markovM.addMMCounts(seq); 
   counter++; 
  } 
  for (Iterator i = spec_modelMap.values().iterator(); 
i.hasNext();) 
   ((MarkovModel)i.next()).consolidate(); 
  ObjectOutputStream out = new ObjectOutputStream(new 
FileOutputStream(outputFile)); 
  out.writeObject(spec_modelMap); // species > MarkovModel 
  out.close(); 
  System.out.println("added seqs= " + counter); 
 } 
  
        /*public static void trainMarkovModels() { 
             
        }*/ 
         
 public static void main(String[] args) throws Exception { 
  System.out.println("\nUsage: java MarkovModel order dataset.fa 
\n"); 
  String fileName= "input/dataset.txt"; //default 
  int order = 6;                        //default 
  System.out.println("testing markov modeld order 3"); 
                MarkovModel testmm = new MarkovModel(true, order); 
                testmm.addMMCounts("catcatg"); 
 } 
} 
 

1.2 Package bioinfo.bio 

1.2.1 bioinfo.bio.DNASequence Class 

/* 
 * code for DNA sequences 
 * bioinfo.bio.DNASequence.java 
 * created by @author Alberto Ambesi  
 */ 
 
package bioinfo.bio; 
 
import java.util.*; 
import java.io.*; 
 
/** 
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 * 
 * @author alberto 
 */ 
public class DNASequence implements Serializable { 
    private String name; 
    private String sequence; 
    private HashMap featMap; // maps track name to a Features  
    private HashMap annoMap;    //annotations, with no ref to locations. 
     
     
    /**  
     * @param name name of the sequence, @param seqeunce sequence 
     */ 
    public DNASequence(String name, String sequence) throws 
IllegalDNASymbolException { 
        this.name = name; 
        this.sequence = sequence; 
        annoMap = new HashMap(); 
        featMap = new HashMap(); 
        //check sequence:  
        Vector allowedSymbols = new Vector(); 
        if (!sequence.matches("[aAcCgGtTxXnN\\-]*")) 
            throw new 
IllegalDNASymbolException(this);//sequence.substring(i-1, i)); 
    } 
    public String getName() { 
        return name; 
    } 
    public String getSequence() { 
        return sequence; 
    } 
    /**  
     * returns a Vector of String features ... must be changed with 
overlapping  
     */ 
    public Vector getOverlappingFeatures(Location loc) { 
        Vector v = (Vector)featMap.get(loc); 
        return v; 
    } 
     
    /** 
     * contains needs to be tested.... 
     */ 
    public void addFeature(Location loc, String feat) { 
        Vector v; 
        if (featMap.keySet().contains(loc)) 
            v=(Vector)featMap.get(loc); 
        else { 
            v = new Vector(); 
            featMap.put(loc, v); 
        } 
        v.addElement(feat); 
    } 
     
    public void addAnnotation(String annType, String ann) { 
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        annoMap.put(annType, ann); 
    } 
     
    public HashMap getFeatMap() { 
        return featMap; 
    } 
    public HashMap getAnnoMap() { 
        return annoMap; 
    } 
    public static void main(String[] args) throws Exception { 
        //System.out.println("A".matches("[[aAcCgGtTxXnN\\-]")); 
        DNASequence seq = new DNASequence("name", "AcTgNxXn-aCtG"); 
        System.out.println(seq.getName() + " " + seq.getSequence()); 
        try { 
            DNASequence seq2 = new DNASequence("name2", "AcTgNxfXn-
aCtG"); 
            System.out.println(seq2.getName() + " " + 
seq2.getSequence()); 
        } catch(IllegalDNASymbolException e) { 
            System.out.println(e.toString()); 
        } try { 
            DNASequence seq3 = new DNASequence("name3", "wAcqTgNxfXn-
aCtGs"); 
            System.out.println(seq3.getName() + " " + 
seq3.getSequence()); 
        } catch(IllegalDNASymbolException e) { 
            System.out.println(e.toString()); 
        } 
    } 
} 
 
/** */ 
class IllegalDNASymbolException extends Exception { 
    public IllegalDNASymbolException(DNASequence seq) { 
        String sequence = seq.getSequence(); 
        String name = seq.getName(); 
        int min =3; 
        int counter = 0; 
        boolean printAll = true; 
        for (int i=0; i<sequence.length(); i++) { 
            String base = Character.toString(sequence.charAt(i)); 
            if (!base.matches("[aAcCgGtTxXnN\\-]")) { 
                printAll = counter++<min; 
                if (counter<2) 
                    System.out.println("Exception in parsing DNASequence: 
'" + name + "'"); 
                if (printAll) { 
                    System.out.println("\tIllegal symbol: " + base + " at 
position: " + (i+1)); 
                } 
            } 
        } 
        if (!printAll) 
            System.out.println("... and " + (counter-min) + " others."); 
    } 
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1.2.2 bioinfo.bio.Species Class 

/* 
 * Species.java 
 */ 
 
package bioinfo.bio; 
 
import java.util.*; 
import java.io.*; 
import bioinfo.IOTools; 
 
/** 
 * 
 * @author alberto 
 */ 
public class Species implements Serializable { 
    private String name; 
    private String shortName; 
     
    /**  
     * @param fullName name of a species as "homo sapiens" 
     */ 
    public Species(String fullName) { 
        name = fullName.toLowerCase(); 
        shortName = new StringTokenizer(name," ").nextToken(); 
    } 
    public String getName() { 
        return name; 
    } 
    public String getShortName() { 
        return shortName; 
    } 
     
    public boolean equals(Species sp) { 
        return this.name.equalsIgnoreCase(sp.getName()); 
    } 
    public static void main(String[] args) throws Exception { 
        LinkedHashMap specMap = new LinkedHashMap(); 
        String homoName = "homo sapiens"; 
        String musName = "mus musculus"; 
        String ratName = "rattus norvegicus"; 
 
        Species human = new Species(homoName); 
        Species mouse = new Species("mus musculus"); 
        Species rat = new Species("rattus norvegicus"); 
   
        System.out.println(mouse.getShortName()); 
        System.out.println(rat.getShortName()); 
        System.out.println(human.getShortName()); 
         



 

 147 

        specMap.put(musName, mouse); 
        specMap.put(ratName, rat); 
        specMap.put(homoName,human); 
         
        //boolean write = false; // 
        //if (write) 
        //    IOTools.writeObject(specMap, fileName); 
    } 
    
} 

1.3 Package bioinfo.ensj 

1.3.1 bioinfo.ensj.LocationFetcher Class 

package bioinfo.ensj; 
import bioinfo.*; 
 
import java.util.*; 
import java.io.*; 
import bioinfo.bio.EnsemblSpecies; 
import org.ensembl.driver.CoreDriver; 
import org.ensembl.datamodel.Sequence; 
import org.ensembl.datamodel.Location; 
import org.ensembl.driver.SequenceAdaptor; 
/* 
 */ 
 
public class LocationFetcher { 
  
   
        /** 
         * fetch location from a list of location w/ format: 
chrX\t10000\t10100 
         **/ 
 public static void main(String[] args) throws Exception { 
            String usage = "Usage: java bioinfo.ensj.LocationFectcher 
file spec"; 
            System.out.println(usage); 
            String file = args[0]; 
            String spec = args[1]; 
            fetch(file, spec); 
            //fetchPromoterWLoc(file,spec,4000,1000); 
        } 
         
        /** 
         *  
         **/ 
        public static void fetch(String file, String spec) throws 
Exception { 
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            EnsemblSpecies species = 
(EnsemblSpecies)EnsemblSpecies.getSpeciesMultiAccessMap().get(spec); 
            Vector v = IOTools.parseStringsFromFile(file); 
            PromoterFetcher fetcher = new PromoterFetcher(species); 
            CoreDriver driver = fetcher.getCoreDriver(); 
            SequenceAdaptor seqAdaptor = driver.getSequenceAdaptor(); 
            for (int i =0; i< v.size();i++) { 
                String line = v.elementAt(i).toString(); 
                if (line.startsWith("chr")) { 
                    String[] spl = line.split("\t"); 
                    String chr = spl[0].substring(3); 
                    int start = Integer.parseInt(spl[1]); 
                    int end = Integer.parseInt(spl[2]); 
                     
                    Sequence seq = seqAdaptor.fetch(new 
Location("chromosome",chr,start,end,1)); 
                    System.out.println(">" + species.getShortName() + "_" 
+ chr + ":" + start + "-"+ end); 
 //CoordinateSystem,sequenceRegion,start,end,strand  
                    System.out.println(seq.getString()); 
                    //seq.printFasta(outputFileName); 
                } //else System.out.println(line); 
            } 
        } 
} 
 

1.4 Package bioinfo.program 

1.4.1 bioinfo.program.MatrixSampler Class 

// 
//  MatrixSampler3.java 
//   
// 
//  Created by Alberto Ambesi on Fri Apr 15 2005. 
//  Copyright (c) 2003 __MyCompanyName__. All rights reserved. 
// 
package bioinfo.program; 
 
import java.io.*; 
import java.io.Serializable; 
import java.util.regex.*; 
import java.util.*; 
//import org.biojava.bio.*; 
//import org.biojava.bio.seq.*; 
//import org.biojava.bio.seq.impl.ViewSequence; 
//import org.biojava.bio.symbol.*; 
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//import org.biojava.utils.ChangeVetoException; 
import bioinfo.*; 
import bioinfo.transfac.*; 
import bioinfo.bio.EnsemblSpecies; 
 
/** 
 * This is the Gibbs sampling algorithm implementation as of Conlon 2002 
 * scores must be taken the log (base 2): Math.log(score)/Math.log(2) 
 */ 
public class MatrixSampler { 
    private double threshold; 
 private boolean useRevComp; 
    private MarkovModel mm; 
 private int order; 
 private String sequenceStr; 
 private String sequenceStr_rc; 
 private String sequenceName; 
 private double[] scoreLogSum; //[strand] 
 private double[][] scoreProfile; 
 //private double altScore_f; //alternative score based on 
infoVector[position:1->L-w+1] 
 //private double altScore_r; //alternative score based on 
infoVector[position:1->L-w+1] 
  
 /** 
  * constructor using matrices 
  * sampler2 : avoid using Sequence instatnce variable 
  */ 
 public MatrixSampler(String[] sequence, MarkovModel mm, int order) 
throws Exception { 
        sequenceStr = sequence[0].toLowerCase(); 
        sequenceName = sequence[1]; 
  this.mm = mm; 
  this.order = order; 
        this.threshold = .85f; //default 
 } 
  
 public MatrixSampler(String[] sequence, MarkovModel mm, int order, 
double threshold) throws Exception { 
  this(sequence, mm, order); 
        this.threshold = threshold; 
  } 
  
 /* 
  * Core gibbs sampling algorithm 
  */ 
    private double scoreTulpe(Matrix mat, int offset, boolean 
forwardStrand) throws Exception { 
        double matrixP =1; //motif sampler score Thijs '01 
        double backgroundP =1; 
  //double backgroundMax =0; 
  //dists = mat.getDistributionsArray(); 
  String seqStr; 
  if (forwardStrand) 
   seqStr = sequenceStr; 
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  else seqStr = sequenceStr_rc; 
   
  for (int i=0; i<mat.getInformationV().length; i++) { 
            String base = ""; 
   String tuple = ""; 
   int j = -1; //base 0 1 2 3 
   int end = offset+i; // position of base 
   if (end>0) { 
    int start =end-order; 
    if (start <0) 
     start=0; 
    tuple = seqStr.substring(start, end); // one position 
uptream of base 
   } 
   base = seqStr.substring(end, end+1); 
   if (base.matches("[NnXx-]")) //.equalsIgnoreCase("n") || 
base.equalsIgnoreCase("x")) 
    throw new IllegalDNASymbolException(base); ///  N's are 
masked    
   else if (base.equalsIgnoreCase("a")) j=0; 
   else if (base.equalsIgnoreCase("c")) j=1; 
   else if (base.equalsIgnoreCase("g")) j=2; 
   else if (base.equalsIgnoreCase("t")) j=3; 
   try {//check that no n's are in previous tuple 
    while (tuple.substring(0,1).matches("[NnXx-]")) 
//.equalsIgnoreCase("n")  
     //|| tuple.substring(0,1).equalsIgnoreCase("x")) 
      tuple=tuple.substring(1); 
   } catch(StringIndexOutOfBoundsException e) { 
    tuple=""; 
   }  
   matrixP *= mat.getDistributionsArray()[i][j]; 
   //System.out.println("tuple: " + tuple); 
   try { 
    backgroundP *= 
MarkovModelTools.fetchProbabilitiesOfNextSymol(tuple, mm, 
forwardStrand)[j]; //(!)TESTMODE boolean forwardStrand 
   } catch(Exception e) { 
    if (tuple.split("n|N|x|X|-", -2).length>1) 
     tuple="";   // correttion for input seq 
of kind: // GGGCGGNGGA    
    backgroundP *= 
MarkovModelTools.fetchProbabilitiesOfNextSymol(tuple, mm, 
forwardStrand)[j]; //(!)TESTMODE boolean forwardStrand     
   } 
   //System.out.println(forwardStrand + ", consensus (" + 
mat.getConsensus() + "); mat.freqs["+i+"]["+j+"]= " 
   // + mat.freqs[i][j] + "; backgroundP(" + base + "|"+ tuple 
+")=" 
   // + MarkovModelTools.fetchProbabilitiesOfNextSymol(tuple, 
mm, forwardStrand)[j]); 
        } 
  double score = matrixP/backgroundP; 
  if (forwardStrand) { 
   scoreLogSum[0] += score; 
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   scoreProfile[0][offset] = score; 
  } else { 
   scoreLogSum[1] += score; 
   scoreProfile[1][sequenceStr.length() - 
mat.getInformationV().length -offset] = score; 
  }  
  return score; 
    } 
      
 
 /* 
  * this implementation scores the sequence  
  *  
  */ 
    public void scoreSequence(Matrix mat, boolean bothStrands) throws 
Exception { 
  int positions = sequenceStr.length() - 
mat.getInformationV().length + 1; 
  scoreLogSum = new double[2]; //is initialized to zeros 
  //int counter=0; 
  try { 
   scoreProfile = new double[2][positions]; //{fwd,rev}{scores} 
   for(int offset = 0; offset < positions; offset++) {  
    try { 
     scoreTulpe(mat, offset, true);   
     //counter++; 
    }catch(IllegalDNASymbolException e) { 
    } 
   } 
   scoreLogSum[0] = Math.log(scoreLogSum[0])/Math.log(2); 
   if (bothStrands) { 
    sequenceStr_rc = 
BioinfoTools.reverseComplement(sequenceStr); 
    scoreLogSum[1] = 0; 
    for(int offset = 0; offset < positions; offset++) {  
     try { 
      scoreTulpe(mat, offset, false);   
     }catch(IllegalDNASymbolException e) { 
     } 
    } 
    scoreLogSum[1] = Math.log(scoreLogSum[1])/Math.log(2); 
   } 
  } catch(NegativeArraySizeException e) { // motif is longer than 
sequence 
   scoreProfile = new double[2][0]; 
  } 
 } 
  
   
 public String getSequenceStr() { 
  return sequenceStr; 
 } 
  
 public String getSequenceName() { 
  return sequenceName; 
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 } 
  
 public double[] getScoreLogSum() { 
  return scoreLogSum; 
 } 
   
 public double[][] getScoreProfile() { 
  return scoreProfile; 
 } 
  
 public static void main(String[] args) throws Exception { 
  //System.out.println(args[0].split("n|N|x|X", -2).length); 
  if (args.length<3) 
   throw new Exception("Usage: java 
bioinfo.transfac.MatrixSampler dataset.fa motifMap markovModelMap [ 
noOfMatrices ]"); 
  String seqFile = args[0]; 
  String matrixFile = args[1]; 
  String markovModelFile = args[2];//"objects/homo_orth26_tf8-
3_5k-1keMrM.markovM5"; 
  LinkedHashMap matrixMap = 
(LinkedHashMap)IOTools.loadObject(matrixFile);   
  LinkedHashMap seqMap = BioinfoTools.parseFastaFile(seqFile); 
  HashMap specMap = EnsemblSpecies.getSpeciesMultiAccessMap(); 
  int noOfMatrices = matrixMap.values().size(); 
  if (args.length>3) 
   noOfMatrices = Integer.parseInt(args[3]); 
     
  int order =3; 
  LinkedHashMap markovModelMap = 
(LinkedHashMap)IOTools.loadObject(markovModelFile);   
  PrintStream ps = IOTools.createPrintStream(seqFile, 
"_MatrixSampler.xls"); 
  //int counter=0; 
  for (Iterator seqIt = seqMap.keySet().iterator(); 
seqIt.hasNext();) { 
   String seqName = 
seqIt.next().toString();//sequence.getName(); 
   String seqStr = seqMap.get(seqName).toString(); 
   String[] sequence = new String[]{seqStr, seqName}; 
   int index = seqName.indexOf("|"); 
   String spec = seqName.substring(index+1, 
seqName.indexOf("|", index+1)); 
                         
   MarkovModel model = 
(MarkovModel)markovModelMap.get((EnsemblSpecies)specMap.get(spec)); 
   String geneID = seqName.substring(0, index); 
   MatrixSampler sampler = new MatrixSampler(sequence, model, 
order); 
   /*ps.print("geneID\tmatrixID"); 
   for (Iterator j =matrixMap.values().iterator(); 
j.hasNext();) 
    ps.print("\t" + ((Matrix)j.next()).getMatrixID()); 
   ps.println();*/ 
   for (Iterator j =matrixMap.values().iterator(); 
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j.hasNext();) { 
    Matrix m= (Matrix)j.next(); 
    sampler.scoreSequence(m, true); 
    System.out.println("\t" + geneID + "(" + spec + ")_"  
     + m.getMatrixID() 
     + "= f" + sampler.getScoreLogSum()[0]  
     + " r" + sampler.getScoreLogSum()[1]   
    ); 
    ps.print(geneID + "\t" + m.getMatrixID()); 
    double[][] profile = sampler.getScoreProfile(); 
    for (int k =0; k<profile[0].length; k++) { 
     double maxScore = Math.max(profile[0][k], 
profile[1][k]); 
     ps.print("\t" + maxScore); 
    } 
    ps.println(); 
   } 
  } 
  ps.close(); 
 } 
} 
 

1.5 Package bioinfo.transfac 

1.5.1 bioinfo.transfac.Matrix Class 

// 
//  Matrix.java 
//   
// 
//  Created by Administrator on Mon Nov 03 2003. 
//  Copyright (c) 2003 __MyCompanyName__. All rights reserved. 
// 
package bioinfo.transfac; 
import java.lang.*; 
import java.io.*; 
import java.util.*; 
//import org.biojava.bio.dist.*; 
//import org.biojava.bio.dp.*; 
//import org.biojava.bio.symbol.*; 
//import org.biojava.bio.seq.*; 
//import org.biojava.bio.seq.io.*; 
import bioinfo.*; 
 
/** 
 * a class for matrix records in Transfac Matrix table 
 */ 
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public class Matrix implements Cloneable, Serializable { 
 private String matrixID; 
    private String name; 
    private String description; 
    private String bindingFactors; 
    private String consensus; 
    private Vector countsV; 
    protected double[][] freqs; //position i, base j 
    protected double max, min; 
    protected double[] info; 
    protected int length; 
    protected double pseudoCount; 
    public static final double pseudoCount_default=0.0001; //default 
value 
 private static String transfacVersion; 
     
    public Matrix(String id, String name, String consensus, String 
description, String bindingFactors, Vector countsV) throws Exception { 
  this(id, name, consensus, description, bindingFactors, countsV, 
pseudoCount_default); 
 } 
  
    public Matrix(String id, String name, String consensus, String 
description, String bindingFactors, Vector countsV, double pseudoCount) 
throws Exception { 
        matrixID = id; 
        transfacVersion = TransfacTools.currentVersion(); 
  this.name = name; 
        this.description = description; 
        this.consensus = consensus; 
        this.bindingFactors = bindingFactors; 
        this.countsV = countsV; 
        this.pseudoCount = pseudoCount; 
  length = countsV.size(); 
        createDistributionsArray(pseudoCount); 
        createInformationVector(); 
        calcMaxAndMin(); 
   } 
   /* 
 * as in nature review gen wasserman '04 
 */ 
   private void createInformationVector() throws Exception { 
    info = new double[length]; 
    for (int i=0; i<length; i++) { 
     info[i] = 2; 
     for (int j =0; j<4; j++) { 
      if (freqs[i][j]!=0) 
       info[i] += freqs[i][j] * 
Math.log(freqs[i][j])/Math.log(2); // Math.log() is base e 
   //else log(4*0) ~ 0 
     } 
     //System.out.println("\tinfo[" + i + "]= " + info[i]); 
    } 
    } 
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    private void calcMaxAndMin() throws Exception { 
        //System.out.println("calculating max and min..."); 
        min = 0; 
        max = 0; 
        for (int i=0; i<length; i++) { 
            double minFreq = freqs[i][0]; 
            double maxFreq = freqs[i][0]; 
            for (int j=1; j<4; j++) { 
                if (minFreq>freqs[i][j]) minFreq = freqs[i][j]; 
                if (maxFreq<freqs[i][j]) maxFreq = freqs[i][j]; 
            } 
            //System.out.println("\tminFreq: " + minFreq + ", maxFreq: " 
+ maxFreq + ", info[" + i + "]:" + info[i]); 
   min += info[i]*minFreq;//Math.log(minFreq)/Math.log(2); 
   max += info[i]*maxFreq;//Math.log(maxFreq)/Math.log(2); 
        } 
        //System.out.println("...calculated max and min: " + max + ", " + 
min); 
    } 
     
    /* 
     * returns an array of weights with pseudoCount is used by 
MatchAnnotator 
     */ 
    private void createDistributionsArray(double pseudoCount) throws 
Exception { 
        //System.out.println("creating distributions array using " + 
pseudoCount + " pseudocounts."); 
        freqs = new double[countsV.size()][4]; 
        //FiniteAlphabet dna = DNATools.getDNA(); 
        for (int i=0; i<countsV.size(); i++) { 
            double[] counts= (double[])(countsV.elementAt(i)); 
   double sum =0; 
            for (int j=0; j<4; j++) { 
    freqs[i][j] = counts[j] + pseudoCount; 
    //System.out.print(freqs[i][j] + "\t" ); 
                sum += freqs[i][j]; 
            } 
            for (int j=0; j<4; j++) { 
                freqs[i][j] /= sum; 
    //System.out.print(freqs[i][j] + "\t" ); 
            } 
            //System.out.println(); 
        } 
    } 
     
    /* 
     * Attention: shuffles only matrix not consensus 
     */ 
    public Matrix shuffle() throws Exception { 
        Matrix shuffledMatrix = (Matrix)(this.clone()); 
        List weightsL = (List) countsV; 
        Collections.shuffle(weightsL);     



 

 156 

        setCountsV(new Vector(weightsL)); 
        return shuffledMatrix; 
    } 
     
    public Matrix reverseComplement() throws Exception { 
        Matrix revCompMatrix = (Matrix)(this.clone()); 
        List weightsL = (List)countsV; 
        Collections.reverse(weightsL); 
        for (int i =0; i<weightsL.size(); i++) { 
            double[] weightsAtCurrentPos = (double[])weightsL.get(i); 
            double weightA = weightsAtCurrentPos[0]; 
            double weightC = weightsAtCurrentPos[1]; 
            weightsAtCurrentPos[0] = weightsAtCurrentPos[3]; // a <- t 
            weightsAtCurrentPos[1] = weightsAtCurrentPos[2]; // c <- g 
            weightsAtCurrentPos[2] = weightC; // g <- c 
            weightsAtCurrentPos[3] = weightA; // t <- a 
            weightsL.set(i, weightsAtCurrentPos); 
        } 
        setCountsV(new Vector(weightsL)); 
        return revCompMatrix; 
    } 
    public String getMatrixID() throws Exception { 
        return matrixID; 
    } 
   
    public String getName() throws Exception { 
        return name; 
    } 
    public String getDescription() throws Exception { 
        return description; 
    } 
    public String getConsensus() throws Exception { 
        return consensus; 
    } 
    public Vector getCountsV() throws Exception { 
        return countsV; 
    } 
    public String getBindingFactors() throws Exception { 
        return bindingFactors; 
    } 
    public static String getTransfacVersion() throws Exception { 
  return transfacVersion; 
 } 
    public double[][] getDistributionsArray() throws Exception { 
        return freqs; 
    } 
 
    public double getMax() throws Exception { 
        return max; 
    } 
    public double getMin() throws Exception { 
        return min; 
    } 
    public double[] getInformationV() throws Exception { 
        return info; 
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    } 
  
 public void changePseudoCountAndUpdateMatrix(double i) throws 
Exception { 
  this.pseudoCount = i; 
  createDistributionsArray(pseudoCount); 
        createInformationVector(); 
        calcMaxAndMin(); 
 } 
  
    public void setMatrixID(String s) throws Exception { 
        matrixID= s; 
    } 
    public void setName(String s) throws Exception { 
        name= s; 
    } 
    public void setDescription(String s) throws Exception { 
        description= s; 
    } 
    public void setConsensus(String s) throws Exception { 
        consensus= s; 
    } 
    public void setCountsV(Vector v) throws Exception { 
        countsV= v; 
    } 
    public void setBindingFactors(String s) throws Exception { 
        bindingFactors= s; 
    } 
    /* 
 public static LinkedHashMap writeAllMatrices(boolean 
vertebratesOnly, boolean removeFlankingNNN) throws Exception { 
  return writeAllMatrices(vertebratesOnly, removeFlankingNNN, 
pseudoCount_default); 
 }*/ 
  
 public static LinkedHashMap writeAllMatrices(boolean 
vertebratesOnly, boolean removeFlankingNNN, double pseudoCount) throws 
Exception { 
   Properties props = new Properties(); 
  InputStream inputStream = new FileInputStream(new 
File("config/match.props")); 
  props.load(inputStream); 
  String version = props.getProperty("transfacVersion"); 
  //String home = props.getProperty("home"); 
  String option = ""; 
  if (vertebratesOnly)  
   option = "Vert"; 
  if (removeFlankingNNN) 
   option += "Nr"; 
  //option += ("" + pseudoCount); //.replaceAll("\\.", "_"); 
   
  String outputFile = "objects/all" + option + "_matrices_" + 
version + ".map"; 
  System.out.println("writing all " + option + " matrices to " + 
outputFile + "..."); 
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  LinkedHashMap map = 
TransfacTools.fetchAllMatrices(vertebratesOnly, removeFlankingNNN); 
  if (pseudoCount!=pseudoCount_default) 
   for (Iterator i = map.values().iterator(); i.hasNext();) 
   
 ((Matrix)i.next()).changePseudoCountAndUpdateMatrix(pseudoCount); 
  //ObjectOutputStream out = new ObjectOutputStream(new 
FileOutputStream(outputFile)); 
  //out.writeObject(map); // ensemblID > TransfacGene 
  //out.close(); 
  System.out.println("... done. (pseudoCount=" + pseudoCount + "); 
removeFlankingNNN: " + removeFlankingNNN); 
  return map; 
 } 
  
    /** 
     * this main writes the matrix map to file 
     */ 
    public static void main(String[] args) throws Exception { 
        if (args.length <2) throw new Exception ("Usage: java 
bioinfo.transfac.Matrix vertebratesOnly(t|*) removeFlankingNNN(t|*) [ 
pseudoCount ]"); 
        long timePoint = System.currentTimeMillis(); 
 
  boolean vertebratesOnly = args[0].equalsIgnoreCase("t"); 
  boolean removeFlankingNNN = args[1].equalsIgnoreCase("t"); 
  double pseudoCount; 
  if (args.length==3) { 
   pseudoCount = Double.parseDouble(args[2]); 
  } else pseudoCount = Matrix.pseudoCount_default; 
   
        System.out.println("stored " + writeAllMatrices(vertebratesOnly, 
removeFlankingNNN, pseudoCount).values().size() + " matrices."); 
   
  System.out.println("time: " + (System.currentTimeMillis() - 
timePoint)); 
  timePoint = System.currentTimeMillis(); 
    } 
} 
 

1.5.2 bioinfo.transfac.Motif Class 

// 
//  Matrix.java 
//   
// 
//  Created by Administrator on Mon Nov 03 2003. 
//  Copyright (c) 2003 __MyCompanyName__. All rights reserved. 
// 
package bioinfo.transfac; 
import java.lang.*; 
import java.io.*; 
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import java.util.*; 
//import org.biojava.bio.dist.*; 
//import org.biojava.bio.dp.*; 
//import org.biojava.bio.symbol.*; 
//import org.biojava.bio.seq.*; 
//import org.biojava.bio.seq.io.*; 
import bioinfo.*; 
 
/** 
 * a class for matrix records in Transfac Matrix table 
 */ 
 
 
public class Matrix implements Cloneable, Serializable { 
 private String matrixID; 
    private String name; 
    private String description; 
    private String bindingFactors; 
    private String consensus; 
    private Vector countsV; 
    protected double[][] freqs; //position i, base j 
    protected double max, min; 
    protected double[] info; 
    protected int length; 
    protected double pseudoCount; 
    public static final double pseudoCount_default=0.0001; //default 
value 
 private static String transfacVersion; 
     
    public Matrix(String id, String name, String consensus, String 
description, String bindingFactors, Vector countsV) throws Exception { 
  this(id, name, consensus, description, bindingFactors, countsV, 
pseudoCount_default); 
 } 
  
    public Matrix(String id, String name, String consensus, String 
description, String bindingFactors, Vector countsV, double pseudoCount) 
throws Exception { 
        matrixID = id; 
        transfacVersion = TransfacTools.currentVersion(); 
  this.name = name; 
        this.description = description; 
        this.consensus = consensus; 
        this.bindingFactors = bindingFactors; 
        this.countsV = countsV; 
        this.pseudoCount = pseudoCount; 
  length = countsV.size(); 
        createDistributionsArray(pseudoCount); 
        createInformationVector(); 
        calcMaxAndMin(); 
   } 
   /* 
 * as in nature review gen wasserman '04 
 */ 
   private void createInformationVector() throws Exception { 
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    info = new double[length]; 
    for (int i=0; i<length; i++) { 
     info[i] = 2; 
     for (int j =0; j<4; j++) { 
      if (freqs[i][j]!=0) 
       info[i] += freqs[i][j] * 
Math.log(freqs[i][j])/Math.log(2); // Math.log() is base e 
           // else log(4*0) ~ 0 
     } 
     //System.out.println("\tinfo[" + i + "]= " + info[i]); 
    } 
    } 
     
  
    private void calcMaxAndMin() throws Exception { 
        //System.out.println("calculating max and min..."); 
        min = 0; 
        max = 0; 
        for (int i=0; i<length; i++) { 
            double minFreq = freqs[i][0]; 
            double maxFreq = freqs[i][0]; 
            for (int j=1; j<4; j++) { 
                if (minFreq>freqs[i][j]) minFreq = freqs[i][j]; 
                if (maxFreq<freqs[i][j]) maxFreq = freqs[i][j]; 
            } 
            //System.out.println("\tminFreq: " + minFreq + ", maxFreq: " 
+ maxFreq + ", info[" + i + "]:" + info[i]); 
   min += info[i]*minFreq;//Math.log(minFreq)/Math.log(2); 
   max += info[i]*maxFreq;//Math.log(maxFreq)/Math.log(2); 
        } 
        //System.out.println("...calculated max and min: " + max + ", " + 
min); 
    } 
     
    /* 
     * returns an array of weights with pseudoCount is used by 
MatchAnnotator 
     */ 
    private void createDistributionsArray(double pseudoCount) throws 
Exception { 
        //System.out.println("creating distributions array using " + 
pseudoCount + " pseudocounts."); 
        freqs = new double[countsV.size()][4]; 
        //FiniteAlphabet dna = DNATools.getDNA(); 
        for (int i=0; i<countsV.size(); i++) { 
            double[] counts= (double[])(countsV.elementAt(i)); 
   double sum =0; 
            for (int j=0; j<4; j++) { 
    freqs[i][j] = counts[j] + pseudoCount; 
    //System.out.print(freqs[i][j] + "\t" ); 
                sum += freqs[i][j]; 
            } 
            for (int j=0; j<4; j++) { 
                freqs[i][j] /= sum; 
    //System.out.print(freqs[i][j] + "\t" ); 
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            } 
            //System.out.println(); 
        } 
    } 
     
    /* 
     * Attention: shuffles only matrix not consensus 
     */ 
    public Matrix shuffle() throws Exception { 
        Matrix shuffledMatrix = (Matrix)(this.clone()); 
        List weightsL = (List) countsV; 
        Collections.shuffle(weightsL);     
        setCountsV(new Vector(weightsL)); 
        return shuffledMatrix; 
    } 
     
    public Matrix reverseComplement() throws Exception { 
        Matrix revCompMatrix = (Matrix)(this.clone()); 
        List weightsL = (List)countsV; 
        Collections.reverse(weightsL); 
        for (int i =0; i<weightsL.size(); i++) { 
            double[] weightsAtCurrentPos = (double[])weightsL.get(i); 
            double weightA = weightsAtCurrentPos[0]; 
            double weightC = weightsAtCurrentPos[1]; 
            weightsAtCurrentPos[0] = weightsAtCurrentPos[3]; // a <- t 
            weightsAtCurrentPos[1] = weightsAtCurrentPos[2]; // c <- g 
            weightsAtCurrentPos[2] = weightC; // g <- c 
            weightsAtCurrentPos[3] = weightA; // t <- a 
            weightsL.set(i, weightsAtCurrentPos); 
        } 
        setCountsV(new Vector(weightsL)); 
        return revCompMatrix; 
    } 
    public String getMatrixID() throws Exception { 
        return matrixID; 
    } 
   
    public String getName() throws Exception { 
        return name; 
    } 
    public String getDescription() throws Exception { 
        return description; 
    } 
    public String getConsensus() throws Exception { 
        return consensus; 
    } 
    public Vector getCountsV() throws Exception { 
        return countsV; 
    } 
    public String getBindingFactors() throws Exception { 
        return bindingFactors; 
    } 
    public static String getTransfacVersion() throws Exception { 
  return transfacVersion; 
 } 
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    public double[][] getDistributionsArray() throws Exception { 
        return freqs; 
    } 
 
    public double getMax() throws Exception { 
        return max; 
    } 
    public double getMin() throws Exception { 
        return min; 
    } 
    public double[] getInformationV() throws Exception { 
        return info; 
    } 
  
 public void changePseudoCountAndUpdateMatrix(double i) throws 
Exception { 
  this.pseudoCount = i; 
  createDistributionsArray(pseudoCount); 
        createInformationVector(); 
        calcMaxAndMin(); 
 } 
  
    public void setMatrixID(String s) throws Exception { 
        matrixID= s; 
    } 
    public void setName(String s) throws Exception { 
        name= s; 
    } 
    public void setDescription(String s) throws Exception { 
        description= s; 
    } 
    public void setConsensus(String s) throws Exception { 
        consensus= s; 
    } 
    public void setCountsV(Vector v) throws Exception { 
        countsV= v; 
    } 
    public void setBindingFactors(String s) throws Exception { 
        bindingFactors= s; 
    } 
    /* 
 public static LinkedHashMap writeAllMatrices(boolean 
vertebratesOnly, boolean removeFlankingNNN) throws Exception { 
  return writeAllMatrices(vertebratesOnly, removeFlankingNNN, 
pseudoCount_default); 
 }*/ 
  
 public static LinkedHashMap writeAllMatrices(boolean 
vertebratesOnly, boolean removeFlankingNNN, double pseudoCount) throws 
Exception { 
   Properties props = new Properties(); 
  InputStream inputStream = new FileInputStream(new 
File("config/match.props")); 
  props.load(inputStream); 
  String version = props.getProperty("transfacVersion"); 
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  //String home = props.getProperty("home"); 
  String option = ""; 
  if (vertebratesOnly)  
   option = "Vert"; 
  if (removeFlankingNNN) 
   option += "Nr"; 
  //option += ("" + pseudoCount); //.replaceAll("\\.", "_"); 
   
  String outputFile = "objects/all" + option + "_matrices_" + 
version + ".map"; 
  System.out.println("writing all " + option + " matrices to " + 
outputFile + "..."); 
  LinkedHashMap map = 
TransfacTools.fetchAllMatrices(vertebratesOnly, removeFlankingNNN); 
  if (pseudoCount!=pseudoCount_default) 
   for (Iterator i = map.values().iterator(); i.hasNext();) 
   
 ((Matrix)i.next()).changePseudoCountAndUpdateMatrix(pseudoCount); 
  //ObjectOutputStream out = new ObjectOutputStream(new 
FileOutputStream(outputFile)); 
  //out.writeObject(map); // ensemblID > TransfacGene 
  //out.close(); 
  System.out.println("... done. (pseudoCount=" + pseudoCount + "); 
removeFlankingNNN: " + removeFlankingNNN); 
  return map; 
 } 
  
    /** 
     * this main writes the matrix map to file 
     */ 
    public static void main(String[] args) throws Exception { 
        if (args.length <2) throw new Exception ("Usage: java 
bioinfo.transfac.Matrix vertebratesOnly(t|*) removeFlankingNNN(t|*) [ 
pseudoCount ]"); 
        long timePoint = System.currentTimeMillis(); 
 
  boolean vertebratesOnly = args[0].equalsIgnoreCase("t"); 
  boolean removeFlankingNNN = args[1].equalsIgnoreCase("t"); 
  double pseudoCount; 
  if (args.length==3) { 
   pseudoCount = Double.parseDouble(args[2]); 
  } else pseudoCount = Matrix.pseudoCount_default; 
   
        System.out.println("stored " + writeAllMatrices(vertebratesOnly, 
removeFlankingNNN, pseudoCount).values().size() + " matrices."); 
   
  System.out.println("time: " + (System.currentTimeMillis() - 
timePoint)); 
  timePoint = System.currentTimeMillis(); 
    } 
} 
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1.6 Package bioinfo.ucsc 

1.6.1 bioinfo.ucsc.RefSeqGene Class 

/* 
 * RefseqGene.java 
 * 
 * Created on August 23, 2006, 7:41 PM 
 * 
 * To change this template, choose Tools | Template Manager 
 * and open the template in the editor. 
 */ 
 
package bioinfo.ucsc; 
import bioinfo.bio.EnsemblSpecies; 
import java.util.*; 
import java.io.*; 
import java.util.zip.GZIPInputStream; 
import org.ensembl.datamodel.Location; 
 
 
/** 
 * 
 * @author alberto 
 */ 
public class RefseqGene { 
    private String id; 
    private Location geneLoc; 
    private Location cdsLoc; 
    private Vector exonV; 
    private Vector intronV; 
    private static String build; 
    private static String species; 
    private static String file; 
    private Vector altOverlapLocs; 
    private Vector altNonOverlapLocs; 
    private static Vector ambiguousRefseqsV; 
     
    /** Creates a new instance of RefseqGene */ 
    public RefseqGene(String id, Location geneLoc, Location cdsLoc, 
Vector exonV, Vector intronV) { 
        this.id =id; 
        this.geneLoc=geneLoc; 
        this.cdsLoc=cdsLoc; 
        this.exonV = exonV; 
        this.intronV = intronV; 
        altOverlapLocs = new Vector(); 
        altNonOverlapLocs = new Vector(); 
    } 
     
     
    public static void main(String[] args) throws Exception { 
        String aSpecies = "mus"; 
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        String aBuild = "35"; 
        if (args.length>1) { 
            aSpecies = args[0]; 
            aBuild = args[1]; 
        } 
        aSpecies = 
((EnsemblSpecies)EnsemblSpecies.getSpeciesMultiAccessMap().get(aSpecies))
.getShortName(); 
        String usage = "Usage: java bioinfo.ucsc.RefseqGene [ species 
build ]"; 
        System.out.println(usage); 
        String[] chromosomes = new 
String[]{"1","2","3","4","5","6","7","8","9","10","11","12","13","14","15
","16","17","18","19","X","Y","M"}; 
        if (!aSpecies.equals("mus")) { 
            System.out.println("currently works only for mus. Valid 
chromosomes are: 1-19, X, Y, M"); 
            return; 
        } 
        LinkedHashMap map = parse(aSpecies, aBuild); 
        System.out.println("total number of refseqs: " + 
map.entrySet().size()); 
        LinkedHashMap<String,Vector> chrMap = new 
LinkedHashMap<String,Vector>(); 
        for (Iterator i = map.values().iterator(); i.hasNext();) { 
            RefseqGene gene = (RefseqGene)i.next(); //test first gene 
            String refseq = gene.getId(); 
            int count = 0; 
            Location geneLoc = gene.getGeneLoc(); 
            String chr = geneLoc.getSeqRegionName(); 
            Vector refseqV; 
            if (chrMap.containsKey(chr)) 
                refseqV=chrMap.get(chr); 
            else { 
                refseqV=new Vector(); 
                chrMap.put(chr,refseqV); 
            } 
            if (!refseqV.contains(refseq)) 
                refseqV.addElement(refseq); 
             
            /*for (Iterator i=gene.getExonV().iterator(); i.hasNext();) 
                System.out.println("exon  " + ++count + ": " + 
((Location)i.next()).toString()); 
            count=0; 
            for (Iterator i=gene.getIntronV().iterator(); i.hasNext();) 
                System.out.println("intron " + ++count + ": " + 
((Location)i.next()).toString()); 
            */ 
        } 
        /*for (int i = 0; i<chromosomes.length; i++) { 
            try { 
                System.out.println(chromosomes[i] + "\t" + 
chrMap.get(chromosomes[i]).size()); 
            } catch(NullPointerException e) { 
                System.out.println(chromosomes[i] + "\t0");  
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            } 
        }*/ 
        for (Iterator i = chrMap.entrySet().iterator(); i.hasNext();) { 
            Map.Entry ent = (Map.Entry)i.next(); 
             
            System.out.println(ent.getKey() + "\t" + 
((Vector)ent.getValue()).size()); 
             
        } 
        //System.out.println("test gene " + gene.getId() + ", 5 prime 
UTR: " + gene.get5PrimeUTR().toString()); 
    } 
    /** 
     * @param args the command line arguments 
     */ 
    public static LinkedHashMap parse(String aSpecies, String aBuild) 
throws Exception { 
        species = aSpecies; 
        build = aBuild; 
        String home = "/Users/alberto"; 
        //file = "data/ucsc_" + aSpecies + "_" + aBuild + 
"/refGene.txt.gz"; 
        file = home + "/Public/" + 
UcscTools.convertNCBIBuild(aSpecies,Integer.parseInt(aBuild)) + 
"/database/refGene.txt.gz"; 
         
        //String refFile = "data/ucsc_" + spec + "_" + build + 
"/refGene.xls"; 
        File testFile = new File(file); 
        if (!testFile.exists()) 
            System.out.println("refseq file not found: " + file  
                    + "\ndownload refGene.txt.gz from ucsc 
http://hgdownload.cse.ucsc.edu/downloads.html, annotation database 
section"); 
        BufferedReader br= new BufferedReader( 
                            new InputStreamReader( 
                                new GZIPInputStream( 
                                    new FileInputStream( 
                                        file 
                            )))); 
        System.out.println("reading refseq file: " + file ); 
        String line = br.readLine(); 
        LinkedHashMap map = new LinkedHashMap(); 
        ambiguousRefseqsV = new Vector(); 
        while (line!=null) { 
            String[] parsedL = line.split("\t"); 
            int k =0; 
             
            String id =  parsedL[k]; 
            try { //bugfix: new files start with a number. 
                Integer.parseInt(id); 
                id =  parsedL[++k];  
            } catch(NumberFormatException ex) { 
                 
            } 
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            String chr = parsedL[++k].substring(3); 
            int str = 0; 
            if (parsedL[++k].equals("+")) 
                str = 1; 
            else if (parsedL[k].equals("-")) 
                str =-1; 
            else throw new Exception("strand is illegal: " + parsedL[k] + 
"\nline:" + line); 
 
            int start = Integer.parseInt(parsedL[++k]); 
            int end   = Integer.parseInt(parsedL[++k]); 
            Location geneLoc = new 
Location("chromosome",chr,start,end,str); 
             
            start = Integer.parseInt(parsedL[++k]); 
            end   = Integer.parseInt(parsedL[++k]); 
            Location cdsLoc  = new 
Location("chromosome",chr,start,end,str); 
             
            Vector exonV = new Vector(); 
            Vector intronV = new Vector(); 
            int exonsNo = Integer.parseInt(parsedL[++k]); 
            String[] exonSt = parsedL[++k].split(",");  
            String[] exonEn = parsedL[++k].split(","); 
            if (exonSt.length!=exonsNo || exonEn.length!=exonsNo) 
                throw new Exception(); 
            for (int i=0; i<exonsNo;i++) { 
                int st = Integer.parseInt(exonSt[i]); 
                int en = Integer.parseInt(exonEn[i]); 
                Location exon = new Location("chromosome",chr,st,en,str); 
                exonV.addElement(exon); 
                try { 
                    int st2 = Integer.parseInt(exonSt[i+1]); 
                    Location intron = new 
Location("chromosome",chr,en+1,st2-1,str); 
                    intronV.addElement(intron); 
                 
                } catch(IndexOutOfBoundsException e) { 
                     
                } 
            } 
            if (str==-1) { //invert order of exon and intron Vectors 
                Vector tmpV = new Vector(); 
                for (int i=0; i<exonV.size(); i++) 
                    tmpV.add(0, exonV.elementAt(i)); 
                exonV = tmpV; 
                tmpV = new Vector(); 
                for (int i=0; i<intronV.size(); i++) 
                    tmpV.add(0, intronV.elementAt(i)); 
                intronV = tmpV; 
            } 
//            //TEST 
//            if (id.equals("NM_207668")) 
//                System.out.println("testing: " + id); 
            RefseqGene gene = new RefseqGene(id, geneLoc, cdsLoc, exonV, 
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intronV); 
            if (!geneLoc.getSeqRegionName().endsWith("_random")) { 
                RefseqGene prev = (RefseqGene)map.put(id, gene); 
                if (prev!=null) { 
                    //boolean sameTSS = false; 
                    Location prevLoc = prev.getGeneLoc(); 
                     
                    if (overlaps(prevLoc,geneLoc)) {//overlaps, choose 
most upstream 
                        if (str>=0) { 
                            if (prevLoc.getStart()<geneLoc.getStart()) { 
                                map.put(id, prev); //put back 
                                prev.altOverlapLocs.addElement(geneLoc); 
                                //System.out.println(id + ": " + 
geneLoc.getStart() + " <- " + prevLoc.getStart()); 
                                //if (!ambiguousRefseqsV.contains(id)) 
                                //    ambiguousRefseqsV.addElement(id); 
                            } else { 
                                gene.altOverlapLocs.addElement(prevLoc); 
                            } 
                             
                        } else {  
                            if (prevLoc.getEnd()>geneLoc.getEnd()) { 
                                map.put(id, prev); 
                                prev.altOverlapLocs.addElement(geneLoc); 
                                //if (!ambiguousRefseqsV.contains(id)) 
                                  //  ambiguousRefseqsV.addElement(id); 
                                //System.out.println(id + ": " + 
geneLoc.getEnd() + " <- " + prevLoc.getEnd()); 
                            } else { 
                                gene.altOverlapLocs.addElement(prevLoc); 
                            } 
                        } 
                    } else { 
                        map.put(id, prev); //put back 
                        prev.altNonOverlapLocs.addElement(geneLoc); 
                        if (!ambiguousRefseqsV.contains(id)) 
                             ambiguousRefseqsV.addElement(id); 
                        System.err.println("WARNING: duplicate entry not 
overlapping for refseq " + id); 
                    } 
                } 
            } 
             
            //System.out.println("map contains ID: " + id + " -> " + 
map.containsValue(id));  
            /*if (id.equals("NM_001001999")) 
                System.out.println("TEST NM_001001999: " + id + " "  
                        + geneLoc.getSeqRegionName() + " "  
                        + geneLoc.getStart() + " "  
                        + geneLoc.getEnd() + " " 
                        + gene.getId() + ". " 
                        +" Map contains ID: " + map.containsKey(id) 
                        ); 
            */ 
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            line = br.readLine(); 
        } 
        System.out.println("no of ambiguous refseqs: " + 
ambiguousRefseqsV.size()); 
        //for (Iterator i = getAmbiguousRefseqsV().iterator(); 
i.hasNext();) 
          //  System.out.println(i.next().toString()); 
//        System.out.println("map contains NM_207668: " + 
map.containsKey("NM_207668"));  
                                                     
        return map; 
    } 
 
    public String getId() { 
        return id; 
    } 
 
    public Location getGeneLoc() { 
        return geneLoc; 
    } 
 
    public Location getCdsLoc() { 
        return cdsLoc; 
    } 
 
    public Vector getExonV() { 
        return exonV; 
    } 
 
    public Vector getIntronV() { 
        return intronV; 
    } 
    public Location get5PrimeUTR() { 
        Location utrLoc = null; 
        int start = geneLoc.getStart(); 
        int end = geneLoc.getEnd(); 
        int strand = geneLoc.getStrand(); 
         
        if (strand>0) { 
            if (start<cdsLoc.getStart()) // hasUTR 
                utrLoc = new Location("chromosome", 
geneLoc.getSeqRegionName(), start,cdsLoc.getStart()-1,strand); 
        } else {  
            if (cdsLoc.getEnd()<end) // hasUTR 
                utrLoc = new Location("chromosome", 
geneLoc.getSeqRegionName(), cdsLoc.getEnd()+1, end, strand); 
        } 
         
        return utrLoc; 
    } 
    public Location get3PrimeUTR() { 
        Location utrLoc = null; 
        int start = geneLoc.getStart(); 
        int end = geneLoc.getEnd(); 
        int strand = geneLoc.getStrand(); 
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        if (strand>0) { 
            if (cdsLoc.getEnd()<end) // hasUTR 
                utrLoc = new Location("chromosome", 
geneLoc.getSeqRegionName(), cdsLoc.getEnd()+1, end, strand);     
        } else { 
            if (start<cdsLoc.getStart()) // hasUTR 
                utrLoc = new Location("chromosome", 
geneLoc.getSeqRegionName(), start,cdsLoc.getStart()-1,strand); 
        } 
         
        return utrLoc; 
    } 
 
    public static Vector getAmbiguousRefseqsV() { 
        return ambiguousRefseqsV; 
    } 
        public static boolean overlaps(Location a, Location b) throws 
Exception { 
            boolean bool = false; 
            //System.out.println("test " + a.getSeqRegionName()); 
            //System.out.println("test " + a.getSeqRegionName()); 
            if (a.getSeqRegionName().equals(b.getSeqRegionName())) { 
                int startA = a.getStart(); 
                int endA = a.getEnd(); 
                int startB = b.getStart(); 
                int endB = b.getEnd(); 
 
                if (endA<startA || endB<startB) 
                    throw new Exception("end < start:"); 
                bool =((endA>=startB && endA<=endB) || (endB>=startA && 
endB<=endA)); 
            } 
            return bool; 
        } 
 
    public Vector getAltNonOverlapLocs() { 
        return altNonOverlapLocs; 
    } 
 
    public Vector getAltOverlapLocs() { 
        return altOverlapLocs; 
    } 
} 
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Appendix B 

2 Matlab Code Examples 

2.1 Logistic regression 

% function x = logistic(a, y, w) 
% 
% Logistic regression.  Design matrix X (nxm), targets y (1xn)  
% n data elements, m regressors,  
% optional instance weights W.   
% Model is E(y) = 1 ./ (1+exp(-a-X*b)). 
% Outputs are: regression coefficients b (1xm), 
%              last iteration iter,  
%              variance var 
  
function [b, iter, covar]= logistic(X, y, w) 
  
  
epsilon = 1e-10; %-10 
ridge = 1e-1; % default 5, diego choose 1 
maxiter = 100; 
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[n, m] = size(X); 
  
a = ones(n,1); 
%X = [a X]; 
%m = m+1; 
  
if nargin < 3 
    w = ones(n,1); 
end 
  
b = zeros(m,1); 
oldexpy = -ones(size(y)); 
  
for iter = 1:maxiter 
    adjy = X * b; 
    expy = 1 ./ (1 + exp(-adjy)); 
    deriv = max(epsilon*0.001, expy .* (1-expy)); 
    adjy = adjy + (y-expy) ./ deriv; 
    weights = spdiags(deriv .* w, 0, n, n); 
  
    xwx = X' * weights * X + ridge*speye(m); 
     
    %   if(cond(xwx)>100000000000) 
    %       cond(xwx) 
    %   end 
  
    covar = inv(xwx); 
    b = covar * X' * weights * adjy; 
  
    if (sum(abs(expy-oldexpy)) < n*epsilon) 
        break; 
    end 
    oldexpy = expy; 
end 
 

2.2 logistic regression implementation 

%Cross-validation loss function using k=n; n observations (patterns);  
% m features; two classes y [1, 0] 
% X must include a first column of ones: size(x) == n x m+1 
  
function [loss_ni, err, pval, loss, b] = logRegLoss(X, y);  
  
[r,c] = size(y); 
[n,m1] = size(X); % n x 1+m 
m = m1-1; 
if (r~=n || c~=1) 
    y=y'; 
    if (c~=n || r~=1) 
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        'error: wrong y input' 
        return; 
    end 
end 
if X(:,1)~=ones(n,1) 
    'error: fist column of x must be ones' 
    return; 
end 
  
%B = []; 
ind1= find(y==1); 
ind0= find(y==0); 
  
n1 = length(ind1); 
n2 = length(ind0); 
loss_ni =[]; 
loss  =[]; 
[b maxiter covar] = logistic(X,y); 
for i=1:n 
    Xni= X([1:i-1 i+1:n],:); 
    yni= y([1:i-1 i+1:n]); 
    [bni maxiter covar] = logistic(Xni,yni); 
    %var =diag(covar); 
    %z =(bni./sqrt(var)); 
    %B(:,i) = bni(2:m1); 
     
    xi = X(i,:); % 1xm left-one-out 
    yi = y(i);   % 1x1  
    y_hat = 1./( 1+exp(-xi*bni) ); 
     
    loss_ni(i) = -2 * (yi*bni'*xi' - log(1+exp(bni'*xi'))); 
    loss(i)  = -2 * (yi*b'  *xi'   - log(1+exp(b'  *xi'))); 
     
    if y_hat<.5 
        err(i) = yi~=0; 
    else 
        err(i) = yi==0; 
    end 
end 
%binomial 
p = .6; 
%var = n*p*(1-p); 
  
pval = binocdf(sum(err),n,p); 
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