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The thesis focuses on the design, implementation and validation of a distributed real-
time magnetic measurement system for particle accelerators' magnets. In particular 
the thesis focuses on the study of 4 macro-areas connected to this system.
The first study regards the development and the implementation of a real-time 
measurement system starting from the system requirements defined by the final 
users  (i.e. LLRF, Power converters and machine operators). To satisfy all the 
necessities and all the constraints for all the seven  particle accelerators that will 
benefit from this system, it was a crucial point  have a measurement system as much 
flexible as possible to minimize the maintenance costs and to being prone to future 
requests by the system's users without the necessity of massive changes in the 
system. In the thesis, a novel system, one of a kind, able to measure and simulate a 
magnetic field in real-time and provide it over a optic-fiber based network is 
presented. To satisfy all the requests and to overcome all the constraints it has been 
necessary to design new custom electronics, both new PCBs modules to be 
integrated in the framework of the standard CERN electronics, and new FPGA 
modules described in VHDL. Moreover it has been necessary to design new software 
modules integrated in the FESA Framework to be compatible with all the CERN 
infrastructure.
The second study concerns the development of a necessary tool to monitor in real-
time the magnetic field provided by the seven installed systems over the optic-fiber. 
This tool was necessary for three reasons: first, to characterize and calibrate the 
system looking at the same output that the users will receive. second, to monitor the 
correct behavior of the systems. The tool was connected to all the seven systems 
thanks to an optic multiplexer. 
The third study regards the DC and dynamic performance evaluation of the presented 
system. A satisfying agreement with the metrological requirements for the system 
was found after the fine calibration of the systems.
The fourth study concerns the possibility to use neural networks to predict the 
magnetic field, and all its non linearity such as eddy currents and hysteresis inside 
magnets for particle accelerators. 
Considering a calibration quadrupole as case study  various neural network based 
architectures have been designed and implemented. The achieved result of this study 
is a network able to predict the magnetic field leading a percent error below 0.02 %.
A detailed study of these four topics is presented.
All the realized systems and subsystems were benchmarked with simulation and 
experimental measures performed all around the CERN acceleration complex 
(i.e.PSB,PS,SPS,AD,ELENA and LEIR). A satisfying agreement respect to the 
original system's requirements was found in all cases.
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Abstract

The thesis focuses on the design, implementation and validation of a distributed
real-time magnetic measurement system tailored for particle accelerators’ mag-
nets. In particular the thesis focuses on the study of 4 macro-areas connected to
this system.
The first study regards the development and the implementation of a real-time
measurement system starting from the system requirements defined by the final
users (i.e. low level radio frequency, power converters and machine operators).
To satisfy all the necessities and all the constraints for all the seven particle accel-
erators that will benefit from this system, it was a crucial point have a measure-
ment system as much flexible as possible to minimize the maintenance costs and
to being prone to future requests by the system’s users without the necessity of
massive changes. In the thesis, a novel system, one of a kind, able to measure
and simulate a magnetic field in real-time and provide it over a optic-fiber based
network is presented. To satisfy all the requests and to overcome all the con-
straints it was necessary to design new custom electronics, both new PCBs mod-
ules to be integrated in the framework of the standard CERN electronics, and
new FPGA modules described in VHDL. Moreover it was necessary to design
new software modules integrated in the software Framework to be compatible
with all the CERN infrastructure.
The second study concerns the development of a necessary tool to monitor in real-
time the magnetic field provided by the seven installed systems over the optic-
fiber. This tool was necessary for three reasons: first, to characterize and calibrate
the system looking at the same output that the users will receive. Second, to
monitor the correct behavior of the systems. Third to speed-up the debugging
in case of issues. In this layout a novel tool based both on commercial National
Instruments and custom hardware is proposed. The tool was connected to all the
seven systems thanks to an optic multiplexer.
The third study regards the DC and dynamic performance evaluation of the pre-
sented system. A satisfying agreement with the metrological requirements for
the system was found after the fine calibration of the systems.
The fourth study concerns the possibility to use neural networks to predict the
magnetic field, and all its non linearity such as eddy currents and hysteresis in-
side magnets for particle accelerators. Considering a calibration quadrupole as
case study various neural network based architectures were designed and im-
plemented. The achieved result of this study is a network able to predict the
magnetic field leading a percent error below 0.02 %.
A detailed study of these four topics is presented.
All the realized systems and subsystems were benchmarked with simulation and
experimental measures performed all around the CERN acceleration complex
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(i.e.PSB,PS,SPS,AD,ELENA and LEIR). A satisfying agreement respect to the orig-
inal system’s requirements was found in all cases.

Keywords: Particle accelerators, Magnetic measurements, FPGA, Normal con-
ducting magnets, Neural network, Artificial intelligence, Calibration, Software
framework, Magnetic sensors, Linux.

Cover Image: Measured (B̂E, in black) and estimated (ŷNARX with hyperpa-
rameters θ̃NARX1, in red). The nonlinear component of the field B̂ was plotted in
function of the current I (hysteresis graph).
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Sommario

La tesi si focalizza sul design, sull’implementazione e sulla validazione di un
sistema di misura in real-time per il campo magnetico studiato appositamente
per i dipoli degli acceleratori di particelle. In particolare questa tesi si focalizza
sullo studio di 4 macro-aree che ruotano intorno al sistema sopracitato.
Il primo studio riguarda lo sviluppo e l’implementazione di un sistema di misura
in tempo reale a partire dai requisiti di sistema definiti dagli utenti finali (es. ra-
diofrequenza, Convertitori di potenza e operatori di macchina). Allo scopo di
tenere in considerazione tutte le necessita’ e tutti i vincoli per tutti i sette accel-
eratori di particelle che beneficeranno di questo sistema e’ stato cruciale avere
un sistema di misura il più flessibile possibile per ridurre al minimo i costi di
manutenzione ed essere proni a futueo richieste da parte degli utenti del sistema
senza la necessità di modifiche invasive . Nella tesi viene presentato un nuovo sis-
tema, unico nel suo genere, in grado di misurare e simulare un campo magnetico
in tempo reale e fornirlo su una rete basata su fibra ottica. Per soddisfare tutte
le richieste e per superare tutti i vincoli è stato necessario avvalersi di elettron-
ica custom, in particolare sia nuovi moduli PCB da integrare nel framework dell’
elettronica standard CERN, sia nuovi moduli FPGA descritti in VHDL. Inoltre
e’ stato necessario sviluppare anche nuovi moduli software integrati nel Frame-
work FESA al fine essere compatibili con tutta l’infrastruttura del CERN.
Il secondo studio riguarda lo sviluppo di uno strumento necessario per moni-
torare in tempo reale il campo magnetico misurato e distribuito su fibra ottica
dai sette sistemi installati. Questo strumento è stato necessario per due ragioni:
in primo luogo, per caratterizzare e calibrare il sistema guardando lo stesso out-
put che gli utenti riceveranno. secondo, monitorare il corretto comportamento
dei sistemi. In questo layout viene proposto un nuovo strumento basato sia su
hardware National Instruments che su hardware custom. Lo strumento è stato
collegato a tutti e sette i sistemi grazie a un multiplexer ottico.
Il terzo studio riguarda l’ analisi delle performance statiche e dinamiche del sis-
tema presentato. Dopo un accurata calibrazione dei sistemi è stato trovato un
accordo soddisfacente con i requisiti metrologici del sistema.
Il quarto studio riguarda la possibilità di utilizzare reti neurali per prevedere il
campo magnetico e tutte le sue non linearità come correnti parassite e isteresi
all’interno di magneti per acceleratori di particelle. Considerando un quadrupolo
di calibrazione come caso di studio, sono state progettate e implementate diverse
architetture basate su reti neurali. Il risultato ottenuto da questo studio è una rete
in grado di prevedere il campo magnetico con un errore percentuale inferiore al
0.02 %.
Viene presentato uno studio dettagliato di questi quattro argomenti
Tutti i sistemi e i sottosistemi realizzati sono stati confrontati con simulazioni
e misure sperimentali eseguite in tutto il complesso di accelerazione del CERN



(cioè PSB,PS,SPS,AD,ELENA and LEIR). In tutti i casi è stato riscontrato un sod-
disfacente accordo rispetto ai requisiti originari del sistema.

Keywords: Acceleratori di particelle, Misure magnetiche, FPGA, Magneti re-
sistivi, Rete neurale, Intelligenza artificiale, Calibrazione, Framework software,
Sensori magnetici, Linux.

Cover Image: Campo magnetico B̂E misurato (in black) e campo magnetico
ŷNARX stimato con gli iperparametri θ̃NARX1 (in red). La componente non lineare
del campo B̂ e’ graficata in funzione della corrente I (diagramma di isteresi).
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Introduction

The precise knowledge of the magnetic field produced by dipole magnets is crit-
ical not only for the operation of a synchrotron but also in fusion engineering ap-
plications, where field measurements are used for diagnostic monitoring of the
magnetic field interacting with the plasma. Real-time measurement systems are
required, to acquire the magnetic field and feed it back to various subsystems in
charge of the control of the magnets, especially in the case of iron-dominated elec-
tromagnets with strong non-linear effects such as eddy currents, hysteresis and
saturation. Many are the sensors that could be used for magnetic measurements,
each kind of sensor has its specific field of application and its peculiarity. For this
reason, they have to be carefully chosen and the data coming out need appropri-
ate manipulation to be used. Typically custom hardware [1, 2, 3] and software [4,
5] are needed to elaborate the data and to provide a real-time accurate measure
of the magnetic field. In particle accelerators, the beam is accelerated by radio
frequency cavities while circulating around a ring made by magnets, which gen-
erate a bending field, increasing in proportion to the beam momentum. Accurate
knowledge of the magnetic field B(t) at any given time during a magnetic cycle
is therefore critical for longitudinal and transverse beam control, power supply
control, various beam diagnostics, and qualitative feedback to operators. The
required accuracy is typically 0.01 % [6]. Another aspect to not be neglected
is the protocol used to transmit the measurements for long distances, i.e. sev-
eral kilometers, over big laboratories as European Organization for Nuclear Re-
search (CERN) is. For this purpose it is crucial to have a transmission protocol
able to handle a large amounts of data streams and to ensure the synchroniza-
tion of the data coming from different sources at the receiving node. It is also
necessary to have a reliable sub-system capable to acquire the data coming out
from the magnetic field measurement system with the aim to characterize it and
debug it even remotely. Actually, a tailor made system for real-time magnetic
measurements has to be characterized to certify the fulfillment of the require-
ments in terms of Direct Current (DC) and dynamic performance. Moreover,
there are cases in which the magnetic field value is still necessary for magnets
control but there is no possibility to have an actual measure due to failures in the
measurement system or due to the physical impossibility to install sensors in the
magnet to be monitored. In these scenarios simulations or predictions of the mag-
netic field are necessary. The Magnetic field inside electromagnets it is relatively
easy to be predicted with closed mathematical models for coil-dominated mag-
nets but this task becomes very difficult for the iron-dominated ones due to the
non linearity introduced in the field current relation by eddy currents, hystere-
sis and saturation effects that characterize ferromagnetic materials. Modelling of
quasi-static and dynamic hysteresis loops is one of the most challenging topics in
computational magnetism [7, 8, 9, 10, 11, 12, 13]. For example, recent attempts
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using the well-known Preisach models[14, 15] could not attain better than 0.2 %
accuracy. Also other classes of methods, such as Jiles-Atherton differential mod-
els[16], ultimately turn out to be unsuitable, due to their well-known difficulties
in handling minor hysteresis loops. In the thesis, all the aspects described above
have been investigated and thoroughly treated. In particular, a novel real-time
magnetic measurement system developed to replace the existing systems is pre-
sented in the context of a site-wide, consolidation project. The system was de-
signed to cope with the High-Luminosity Large Hadron Collider upgrade, which
will require higher beam intensity and improved beam control throughout the
injector chain [17]. First, the measurement principle, the general system architec-
ture and the technology employed were discussed focusing in particular on the
most critical and specialized components developed, that are, the field marker
trigger generator and the magnetic flux integrator. Second, a new monitoring
system was developed to provide remote access to the measurement system fiber
optic output to have the capabilities to fully characterize the system. The devel-
oped hardware and software are presented, together with the results of the val-
idation tests. Third, the results of a detailed metrological characterization of the
integrator are discussed, including the aspects of drift estimation and correction,
the latency of the whole acquisition chain, as well as absolute gain calibration
and frequency response. Finally, a novel approach for magnetic field prediction
in electromagnets is proposed, based on tuning a Multi-layered neural network
to fit directly the magnet response, by avoiding complementary physical models.
Different architectures were considered and selected according to a compromise
between the accuracy of the field estimation and the level of complexity of the
network. The results of tests carried out on a dedicated experimental setup out-
perform both traditional and hybrid models, suggesting that this is indeed a very
promising approach applicable in a wide range of areas in which the real-time
accurate knowledge of the magnetic field in a magnet is required and there are
no possibilities for real-time measurements.
The original contributions of this work are the FPGA implementation and in-
tegration of the subsystems used to build the presented real-time measurement
system, the development from scratch of the tool for the diagnostic and character-
ization of the main system, the study of drift correction techniques implemented,
the DC and dynamic system characterization, the development of NARX neural
network approach to model non-linearities in iron-dominated magnets.

This thesis is divided into five parts: part I, Background, part II, Measure-
ment system, part III, a tool for the measurement system characterization, part IV,
metrological characterization and, part V Artificial intelligence.

In part I the context and the basic knowledge on particle accelerators needed
to fully understand the work is presented, together with the state of the art for all
the sub-domains treated in this thesis. In part II, the requirements, the proposal,
and the hardware and software implementation for the novel real-time magnetic
field measurement system are reported. In part III, a novel design is presented for
a custom tool with the aim to fully characterize the system proposed in part II. In
part IV, the proposed methodology for the system DC and dynamic characteriza-
tion and the experimental results are reported. In part V an innovative solution



Introduction 5

for magnetic field prediction in electromagnets is presented, the requirements,
the proposed methodology and the model design are discussed in detail together
with the experimental results obtained from a case study carried out on a magnet
for particle accelerators.

The structure of the chapters is as follows:

• Chapter 1: Particle accelerators. In order to ensure a full understanding
of the reasons behind this thesis, an overview of the reasons to accelerate
particles is presented. Then, the general architecture of synchrotrons for
particle accelerators is depicted. Finally, the CERN accelerator complex is
described with a particular focus on the acceleration chain.

• Chapter 2: State of the art. A recall of the formalism used in magnetic
measurements is presented first. Then the topics magnetic field prediction,
artificial intelligence, machine learning and the white rabbit transmission
are presented.

• Chapter 3: System requirements. The reason behind the novel real-time
magnetic field measurement system developed to replace the legacy sys-
tems in the acceleration chain is presented. Then requirements for the new
system, and the methods used are discussed in detail.

• Chapter 4: System proposal. The proposed design for the measurement
system is presented. Then the main functionalities of the proposed system
are described in detail.

• Chapter 5:System implementation. The hardware and software implemen-
tation is depicted. All the electronic components used are parented as well
as their interconnection and communication protocols. Then all the imple-
mented algorithms together with all the individual modules composing the
system are described.

• Chapter 6: Monitoring system requirements. The reason behind of the
new monitoring system is described, then the main requirements are pre-
sented. The proposed architecture for the new monitoring system is de-
scribed and, an overview of the hardware selected is provided, then the
proposed block diagram of the interconnections and functional modules is
presented.

• Chapter 7: Monitoring system implementation. The implementation of
the new monitoring system is presented. First, an overview of the used
software tools is provided. Then the implementations of all the Field Pro-
grammable Gate Array (FPGA) modules and of the Labview host applica-
tion are described in detail. Finally, the obtained results proving the fulfill-
ment of all the requirements are discussed.

• Chapter 8: DC performance. The results concerning voltage, magnetic flux
and integrator drift are discussed separately. The accuracy of the integrator
acquisition chain under DC input conditions was evaluated.
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• Chapter 9: Dynamic performance. The measurements carried out on a test
setup of the amplitude transfer function and the latency of the whole acqui-
sition chain are presented.

• Chapter 10: Hysteresis modelling in iron-dominated magnets based on a
multi-layered NARX neural network approach. Different machine learn-
ing approaches for magnetic field predictions are presented, based on tun-
ing a Multi-layered neural network to fit directly the magnet response. First,
a description of the problem statement is presented, then the architecture
tuning and the model selection phases were described. Finally, a compar-
ison between all the tested architecture is presented, highlighting the one
with the best performances.
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Chapter 1

Particle accelerators

In this chapter, to ensure a full understanding of the reasons behind this thesis, an
overview of the reasons to accelerate particles is presented. Later, the general ar-
chitecture of synchrotrons for particle accelerators is depicted. Finally, the CERN
accelerator complex is described with a particular focus on the acceleration chain.

1.1 Accelerators for particle physics

Particle physics is the branch of physics that studies the elementary particles that
makeup everything that surrounds us such as protons, electrons, quarks, muons,
neutrinos and the four forces that govern the interactions between these particles:

• Strong interaction between quarks by gluons;

• Weak interaction;

• Electromagnetic interaction between charged particles;

• Gravitation interaction between everything that has mass (visible only on
macroscopic scales).

There are typically two approaches to study particles.
Particles can be studied capturing the ones transported to us by the cosmic

rays, nevertheless, most of them have a very short lifetime before they disappear
many of them have very low stability and other particles are rarer to be seen in
nature.

Particles can also be created and studied artificially thanks to particle accel-
erators. In this case, they are generated and observed in a closed and more con-
trolled environment than in nature. Accelerators purpose is to provide energy to
charged particles to speed them up to 99.9999991 % of the speed of light (in the
Large Hadron Collider (LHC)). When they collide with each other or when they
hit a fixed target, their own energy is transformed into new particles (new mat-
ter) and vice versa (in accordance with the theory of relativity by Albert Einstein).
Different kinds of detectors are placed where these collisions happen. The detec-
tors are used to measure the number of particles, their charge and their mass with
the aim to first identify them, and then study their behavior.
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1.2 Synchrotrons

Synchrotrons [18] are a specific branch of particle accelerator, in particular, they
are circular machines. The main components of a synchrotron are the RF cavities
and the magnets and they are disposed in a circular geometry called ring

The Radio Frequency (RF) cavities are used to accelerate (or decelerate) the
charged particles providing energy to the beam thanks to an electromagnetic
field. Magnets are used to steer the beam and keep it tight during its orbit. The
particle beam does not circulate in the air but it circulates inside a vacuum pipe,
this minimize as much as possible any interaction with spurious surrounding
particles present in the air.

A synchrotron however is not composed only of RF cavities and magnets but
there are many other devices installed all around the ring to ensure a proper beam
quality, the injection, the extraction, the machine protection, and for diagnostic
purposes.

Charged particles such as the ones used in synchrotrons respond to the Lorentz
law:

F (t) = q(E(t) + v(t)×B(t)), (1.1)

where F is the force applied to the particles, t is the time, q is the electric charge,
E is the electric field seen by the particles , v is the particle velocity and B is the
magnetic flux density seen by the beam refereed later in this work as the magnetic
field for simplicity. The electrical and the magnetic field inside synchrotrons must
be controlled synchronously to maintain a good quality beam in a stable closed
orbit inside the ring. In principle looking at Eq.1.1 it seems that the electric fieldE
can be used both to accelerate and steer the beam, but for practical reasons in syn-
chrotrons, the electric field is used only to accelerate the charged particles. There
are different kinds of particle accelerators architectures, such as Radio Frequency
Quadrupole (RFQ) in Linear Accelerator (LINAC)s and electrostatic septum in
the beam injection-extraction areas, in which the electric field is used also to bend
the beam. Eq.1.1, states that the force produced by the magnetic field is always
orthogonal to v and B due to the vector product, this avoid any longitudinal ac-
celeration by the magnetic field. For a circular orbit, the transverse forces in the
act are the centrifugal force produced by the fact that the particles are accelerated
on a circular orbit and the force applied to the beam by the magnetic field that has
the duty to compensate the centrifugal one in order to maintain a stable closed
orbit.

1.3 CERN accelerator complex

The accelerator complex at CERN, represented in Fig.1.1, includes eight accelera-
tors (machines) that accelerate particles in order to increase their energy.

Each machine in the chain increases the energy of the particles by a factor
typically around 20 limited by non-linearities, before delivering them to the next
more powerful accelerator or to experiments. There are four main experiments
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FIGURE 1.1: CERN accelerator complex.

in the LHC (CMS, ATLAS, LHCb and ALICE) and dozen of smaller experiments
(LHC or fixed-target); each of them studies particle collisions from a different
aspect and with different technologies.

A sophisticated timing system is necessary to synchronize the accelerators.
The machines work with cycles of different nature that go to different users. The
cycles are organized in supercycles that are repeated during the day, so a super-
cycle can be seen as a cycle of cycles. Moreover, it has to be considered that each
accelerator requires a different time to produce a beam; so the schedule of the
beams is a task as complex as essential to operate the entire chain correctly.

In the following paragraphs a quick description of the main accelerators is
presented.

1.3.1 Linear Accelerator 2

LINAC2 (Fig.1.2) is the starting point for the protons used in experiments at
CERN. Linear accelerators use radiofrequency cavity positive and negative charged
alternately. The protons pass through the cavity and they see the electrical field
only when it has the right polarity to accelerate them. Small quadrupole magnets
(focusing and defocusing) ensure that the protons remain in a tight beam.

The proton source is a bottle of hydrogen gas at one end of LINAC2. The
hydrogen is passed through an electric field to strip off its electrons, leaving only
protons to enter the accelerator. By the time they reach the other end, the protons
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have reached an energy of 50 MeV. Then they enter in the Proton Synchrotron
Booster (PSB), the next step in CERN’s accelerator chain, which takes them to
higher energy. LINAC2 started up in 1978 when it replaced LINAC1. It was
originally built to allow higher intensity beams for the accelerators that follow it
in CERN’s accelerator complex. LINAC2 is being replaced by LINAC 4 in 2020-
2022.

FIGURE 1.2: LINAC2.

1.3.2 Low Energy Iron Ring

Low Energy Ion Ring (LEIR) is the second step in the ion accelerator chain. It re-
ceives long pulses of lead ions from Linear accelerator 3 (Linac 3) and transforms
them into the short, dense bunches perfect for injection to LHC [19]. LEIR has
only four bending dipoles, with a very strong 90° curvature, reaching up to 1.15
T (Fig.1.3).

FIGURE 1.3: Low Energy Iron Ring.
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1.3.3 Proton Synchrotron Booster

ThePSB (Fig1.4) is made up of four synchrotron rings, one above the other . The
Booster receives beams of protons from the linear accelerator Linac 2 at 50 MeV
and accelerates them to 1.4 GeV for injection into the Proton Synchrotron (PS). Be-

FIGURE 1.4: Proton Synchrotron Booster.

fore the PSB received its first beams protons were injected directly from the linac
into the PS, where they were accelerated to 26 GeV. The field level from injection
to extraction goes from 0.125 T to 0.861 T, while the duration of the cycle is 1.2 s.
There is a limited variety of cycles, which helps the magnetic reproducibility of
the machine.

1.3.4 Proton Synchrotron

Proton Synchrotron (PS) typically accelerates either protons delivered by the PSB
or heavy ions from the LEIR. In the course of its history, it was used both to
fill more powerful accelerators and to perform fixed target experiments The PS
(Fig.1.5) was initially CERN’s flagship accelerator, but when the laboratory built
new accelerators the PS’s main role became to supply the beam to the newer
machines.

The accelerator operates at up to 25 GeV. The field level from injection to ex-
traction goes from 0.1 T to 1.26 T, while the duration of the cycle can be a multiple
of 1.2 s (1.2 s, 2.4 s, 3.6 s).

1.3.5 Super Proton Synchrotron

Super Proton Synchrotron (SPS) (Fig.1.6) is the second-largest machine in CERN’s
accelerator complex. It’s fed by the PS and accelerates the particles to provide
beams for the LHC, and to other experiments. The SPS accelerates particles beam
up to 450 GeV. It has 1317 conventional (room-temperature) electromagnets, in-
cluding 744 dipoles to bend the beams around the ring. The accelerator has
handled many different kinds of particles: sulfur and oxygen nuclei, electrons,
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FIGURE 1.5: Proton Synchrotron.

FIGURE 1.6: Super Proton Synchrotron.

positrons, protons and antiprotons. The field in SPS dipoles reaches a high level
of 2.02 T, while the cycles are widely different according to the experiments and
can be as long as around 30 s in case of slow extraction to certain fixed-target
experiments that require a steady particle influx, rather than the more common
discontinuous bunches. This process is based on the purposeful excitation of res-
onant instabilities in the beam.

1.3.6 Large Hadron Collider

LHC is the world’s largest and most powerful particle accelerator. It first started
up on 10 September 2008 and remains the most powerful machine present in the
CERN’s accelerator complex. The LHC consists of a 27-kilometer ring of super-
conducting magnets with a number of accelerating structures to boost the energy
of the particles along the way.(Fig.1.7)
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FIGURE 1.7: Large Hadron Collider.

Inside the accelerator, two high-energy particle beams travel at close to the
speed of light before they are made to collide. The beams travel in opposite di-
rections in separate beam pipes, two tubes kept at ultrahigh vacuum. They are
guided around the accelerator ring by a strong magnetic field maintained by su-
perconducting electromagnets. Much of the accelerator is connected to a distribu-
tion system of liquid helium, which cools the magnets, as well as to other supply
services. Thousands of magnets of different varieties and sizes are used to direct
the beams around the accelerator. These include 1232 dipole magnets 15 meters
in length which bend the beams, and 392 quadrupole magnets, each 5–7 meters
long, which focus the beams [20].

1.3.7 Antiproton Decelerator

In this accelerators complex, there are also the Antiproton Decelerator (AD) and
the Extra Low Energy Antiproton (ELENA), which produce low-energy antipro-
tons for studies of antimatter, and the Online Isotope Mass Separator (ISOLDE)
facility, which is used to produce and study unstable nuclei. The AD (Fig.1.8) is
the only machine of its kind. The AD sends the particle that provides to the dif-
ferent experiments around the CERN. The AD’s ring is composed of bending and

FIGURE 1.8: Aniproton Decelerator.
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focussing and defocusing magnets that keep the antiprotons as close as possible,
while strong electric fields slow them down to get them usable.

1.3.8 Extra Low Energy Antiproton

ELENA (Fig.1.9) is a compact hexagonal deceleration ring for cooling and further
deceleration of 5.3 MeV antiprotons delivered by the CERN AD to an energy of
0.1 MeV. It is based on conventional electromagnets. The field is very low, from
0.05 T to 0.42 T, while the cycle duration is very long, up to two minutes.

FIGURE 1.9: Extra Low Energy Antiproton.

1.4 Magnets

The charged particle beam is steered by the magnetic field produced by the mag-
nets. There are five types of magnets used in particle accelerators:

• Permanent magnet; the magnetic field is produced by hard ferromagnetic
materials.

• Iron-dominated electromagnet; the magnetic field is induced by excitation
coils typically made of copper powered by an excitation current. They are
called iron-dominated because the magnetic flux is guided by the magnet
yoke composed of a soft ferromagnetic material. The saturation field is de-
termined by the yoke.

• Coil-dominated electromagnet; the magnetic field is induced by excitation
coils powered by an excitation current. Coil-dominated magnets’ coils are
generally made of superconducting materials to produce a very high DC
field in a large aperture.

• hybrid magnet [21]; the main field is produced by permanent magnets and
a correction field produced by an iron dominated electromagnet is added to
it
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• superferric magnets; composed of a ferromagnetic yoke wounded with su-
perconducting coils [22].

Different magnets’ designs exist to produce different magnetic field profiles
and each magnetic field profile is used for a precise scope in particle accelerators.
The main magnetic field profile used are:

• Dipole field; used to bend the beam and keep it into the desired orbit.

• Quadrupole field; used to tune the beam that means focus and defocus the
particle beam to keep it tight [23].

• Sextupole field; used to correct the chromatic aberration called also chro-
maticity [24].

• Higher order magnets; used to correct the undesired multipolar fields pro-
duced by dipoles and quadrupoles.

In order to take into account all the multipoles of a magnet for particle accel-
erators the magnetic flux density is expressed as Fourier series expansion,

B(z) = By + iBx =
∞∑
n=1

(Bn + iAn)

(
z

Rr

)n−1

(1.2)

whereB is the field integral parallel to the beam axis, z = x+iy, n is the mulipole
order (n = 1 dipole, n = 2 quadrupole, etc...), Bn is the normal magnetic field
component, An is the skew magnetic field component, and Rr is the reference
radius of the magnet.
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Chapter 2

State of the Art

In this chapter, a recall of the formalism used in magnetic measurements is pre-
sented first, which will be largely used in the thesis. Later the topics magnetic
field prediction, artificial intelligence, machine learning,and the White Rabbit
transmission are presented. In the thesis, a particular focus is devoted to the
real-time magnetic field measurements and on the magnetic field prediction us-
ing machine learning techniques.

2.1 Magnetic measurements for magnets

Magnetic measurements in magnets for particle accelerators are performed in
two scenarios: offline, after the magnet manufacturing and before the magnet in-
stallation as part of the quality assurance process; online and in real-time during
the machine operations, as necessary feedback for other accelerator’s subsystems.

The main kinds of magnetic measurement carried out offline and required to
certify the quality of a magnet for particle accelerators are the following:

• The absolute value of the main field component at the peak current, repre-
senting the strength of the magnet.

• The field homogeneity inside the magnet aperture.

• The field direction of the main magnet’s component.

• the magnetic center for quadrupoles and higher order magnets.

• The eddy current strength and decay time, necessary for pulsed magnets.

• 3D field map for beam tracking.

The real-time magnetic measurements carried out online are necessary since
for iron-dominated magnets the field cannot be predicted with sufficient accuracy
from mathematical models for magnets operations. Therefore in the CERN syn-
chrotrons: LEIR, PSB, PS, ELENA, and the SPS the real-time feedback becomes
necessary.

The magnetic field measured in real-time is generally distributed to three
users:

• The Low Level Radio Frequency (LLRF) control system.
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• The beam current transformer control system.

• The power converter control system.

The revolution frequency frev(t) provided to the cavities from the LLRF is
calculated from the main bending magnetic field and it is given by

frev(t) =
c

2πR

√√√√√1− 1

1 +

(
B(t)ρq
m0c

)2 , (2.1)

where R is the mean orbit radius, B(t)is the magnetic field seen by the beam,q
is the electric charge of the beam, and m0 is the particle’s rest mass. The revolu-
tion frequency is controlled via additional correction and feedback terms that are
detailed in the literature [25, 26, 27].

The beam current transformer measures the beam equivalent current, i.e. the
amount of charge transported by the beam in the time unit [28, 29] to estimate the
number of particles that compose the beam Np(t) given by

Np(t) =
2πR

qc
IBCT (t)

√(
B(t)

)2

+

(
m0c
ρq

)2

B(t)
, (2.2)

where IBCT (t) is the measured equivalent current expressed in Ampere. The cor-
rection of the particle momentum by the magnetic field is especially relevant for
non-relativistic particles circulating in theLEIR, PSB, PS,SPS and ELENA syn-
chrotrons (the AD is a special case, it can work without measurements with a
simulated field produced in real-time). Particles circulating in these accelerators
are below the relativistic gamma transition.

The power converter controller can use magnetic measurements to regulate
the current provided to the main bending magnets. This regulation in the field
gives as an advantage the fact that most of the eddy currents, magnetic saturation
and hysteresis effects are automatically corrected by the controller. The same
does not happen if the regulation of the power converter is done in current. The
power converter is voltage controlled by an R-S-T feed-forward regulator with
feedback [30, 31].

2.2 Out-of-date B-train system

The Synchrotrons at CERN employ systems so-called B-train for determining the
dipole field in real-time. The name derives from the discrete positive and neg-
ative pulse trains used to distribute incrementally the measured field in out-of-
date systems, developed as far back as the 1950s [32].

The out-of-date digital transmission (dating from the early 1960s) uses two
coaxial cables to distribute 24 V pulses which indicate a ±0.1 Gauss increase or
decrease of magnetic field, i.e. up and down pulses. These pulses are distributed



2.2. Out-of-date B-train system 21

from the reference magnet to several client applications (Fig.2.1) as described pre-
viously.


ringwhole

Bd
  



qualitative feedback to operationpower supply control (B or dB/dt) RF control (mandatory)
beam diagnostics 
(beam current DCCT)

Old BTrain

FIGURE 2.1: Old B-train distribution representation.

The B-train measures the average field of a reference magnet and distributes
the result in real-time to various other synchrotron sub-systems, as part of a feed-
back control loop or for diagnostic purposes. The typical range of magnetic field
measured goes from about 50 mT to 2 T. The most critical user of the B-train is the
Radio Frequency (RF) subsystem, which uses RF cavities to generate the electric
field that accelerates or decelerates the beam. The instantaneous magnetic field
must be known with high precision to lock the RF frequency to the particle en-
ergy, keeping the beam centered in the vacuum chamber. While the pass-band of
the bending magnets does not usually exceed a few hundred hertz, the RF system
requires a much faster data rate to ensure smooth feedback, e.g. 250 kHz in the PS.
The use of B-train systems is not unique to CERN: for instance, similar designs
are implemented at ion therapy centeres such as the National Centre of Oncologi-
cal Hadrontherapy (CNAO) [33], MedAustron [34] and the Heidelberg Ion-Beam
Therapy Centre (HIT) [35]. For such applications, real-time feedback control of
the magnetic field is instrumental, for example, to reduce dead times that would
be otherwise spent pre-cycling the magnets to improve their reproducibility.
The out-of-date system has a 0.1 Gauss resolution with long-term stability and re-
producibility on the 10−4 level. The key specifications satisfy the current request
of all users, however, its maintenance is becoming complicated since several com-
ponents are obsolete and some parameters remain unknown. These are mostly
dominated by hardware faults, timing conflicts and electromagnetic interference
and have generated 3 to 4 maintenance calls/year in average for all the machines.
Moreover, non-desired effects as the drift of the converter or the distribution of
negative B-field values at the end of several cycles justified the decision of re-
placing the 25 years old present B-Train system for a new one. Currently, all
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six B-train systems in operation are being upgraded in the frame of a long-term
complex-wide consolidation project.

2.3 Magnetic sensors

In this section, an outline of the physical effects behind the magnetic measure-
ment and the most used magnetic sensors and their application are presented.

2.3.1 Induction coil sensor

A generic conductive spire in a magnetic field works according to Faraday’s law

Vc =
dΦ

dt
, (2.3)

where Vc is the induced electromotive force, and dΦ
dt

is the magnetic flux variation
over time.
The variation of magnetic flux across a winding induces an open-loop voltage to
the ends of the winding. The same happens even if instead of a single spire a coil
composed by multiple spires is considered and in this case the induced voltage is
proportional to the rounds’ number. The coil so realized is also called induction
coil. Induction coils for accelerator magnets typically consist of multiple loops
of single- or multi-filament strands wound around a long, rectangular core [36],
where the polarity of the coil’s output is chosen in such a way as to be consis-
tent with the sign of the magnetic field. The induction coil provides the dynamic
component of the field with intrinsically high linearity and bandwidth. The mag-
netic flux can change for different reasons: change of magnetic field strength, the
relative longitudinal displacement between coil and magnet and coil rotation. In-
tegrating the coil voltage allows obtaining the average magnetic flux from which
is possible to obtain the magnetic field B(t) knowing the area of the coil as

B(t) = B0 +
1

Ac

t∫
t0

(Vc(τ)) dτ, (2.4)

where B0 is the magnetic field at the beginning of the integration process, Ac
is the effective area of the coil and Vc is the induced voltage. This approach to
measure the magnetic field is known as fluxmeter method. The induction coil
based magnetic measurement devices such as rotating coils [37, 38], single stretch
wire technique [39, 40],static fluxmeter [41], and translating fluxmeter [42]are the
most used for their adaptability and for their manufacturability.

Since the main quantity of interest for beam control is the longitudinal integral
of the magnetic field, the length of the coil is ideally that of the iron yoke, plus the
whole fringe field region (typically, 3 to 4 times the gap height at each end) [43]. In
some of the systems at CERN, where this is not possible due to space constraints,
a much shorter coil is used instead; this is the case in the PS and LEIR, where the
coils used are respectively about 0.3 m and 0.1 m long, compared with iron yoke
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lengths of approximately 5 m. In such a case, the average field is assumed to be
proportional to the local field seen by the coil. The main source of error affecting
this technique is given by low-frequency variations of the voltage offset, which
is due to various causes including thermocouple voltages along with the cabling
and connections, electronic component imbalance and rectification of electrical
noise (i.e. 1/f noise). This voltage offsets cause, if not corrected, a drift in the
integration. Many techniques were studied to compensate and to mitigate this
drift [1, 4, 5, 44].
The effective area of the coil can be calibrated within a typical uncertainty of
100 ppm through the classical flip-coil method, i.e. by immersing it in a sufficiently
uniform magnetic fieldB perpendicular to its surface, turning it over by 180◦ and
measuring the flux change ∆Φ, corresponding to twice the magnetic flux through
the coil Φ = AcB. Alternatively, the flux measured by pulsing the field when the
coil is kept fixed can be compared to another reference method, such as a single
stretched wire [36]. It is important to stress that, for synchrotron control appli-
cations, the absolute calibration of the measurement is of secondary importance
with respect to its reproducibility. In fact, during the accelerator setup phase,
the relationship between bending field and RF frequency is always adjusted to
compensate many sources of systematic errors, including possible errors in the
magnetic field measurement itself, provided these remain reasonably small [45].

2.3.2 Nuclear magnetic resonance sensors

Nuclear Magnetic Resonance (NMR), experimentally demonstrated in 1945, is the
most accurate method for measuring magnetic field strength, able to reach an ac-
curacy of a few ppm [46, 47]. NMR magnetometers are often used as a reference
for calibration due to their high accuracy. The operating principle of an NMR
magnetometer is the following: NMR is a physical phenomenon based on the
fact that the protons and neutrons possess a magnetic dipole moment, they are
equivalent to microscopic bar magnets. This moment, which is positive for pro-
tons and negative for neutrons, is analogous to the magnetic moment created by
an electric charge rotating around its axis and is described in quantum mechan-
ics by the property called spin. Resonance can occur when the nuclei of certain
atoms are immersed in a static magnetic field (B0) and are exposed to a second
oscillating magnetic field B1 [48, 49]. Some atoms experience this phenomenon,
while others never experience it and this depends on the net moment of the nu-
cleus, which is the algebraic sum of the moments of the constituent protons and
neutrons (a non-zero moment requires an odd number of protons, or neutrons,
or both) Fig.2.2 shows a schematic representation of the NMR working principle.
Among the many elements with spin, the most commonly measured nuclei are
hydrogen-1 (also chosen as the element with which to produce magnetic reso-
nance imaging since it is the simplest and most abundant element in the human
body) and carbon-13.

If subjected to a strong stationary external magnetic field B0, the proton axis
will orient itself along the field itself (previously they were just oriented ran-
domly). This orientation can take place either in the same direction asB0 (i.e with
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FIGURE 2.2: NMR working principle.

a low energy level) or in the opposite direction (i.e. with a high energy level). The
difference between these two energy levels depends only on the magnetic mo-
ment and the magnetic field. The nuclear magnetic moment is a constant, thus
this energy gap is a precise measure of magnetic field strength. The parallel pro-
tons are slightly more prevalent than the antiparallel ones. This small prevalence
produces a resulting magnetization M, parallel to B0 and it is measurable. In
the classical view, which describes the phenomenon to a very good degree of ap-
proximation, due to the effect of B0, the axis of each proton rotates around the
direction of the moment of B0 (precession). The precession frequency is charac-
teristic of every atomic element and is called Larmor frequency [48]. The resonant
frequency is given by the following relation:

νLarmor = γ ·B0, (2.5)

where νLarmor is the Larmor frequency and γ is the gyromagnetic ratio, that is the
ratio between its magnetic moment and its angular momentum. The gyromag-
netic ratio for an isolated proton is 42.57747892 MHz/T. Consequently, resonant
frequencies for a particular substance are directly proportional to the strength of
the applied magnetic field. The gyromagnetic ratio is known from fundamental
constants with an uncertainty lower than 10−8, which is the reason behind the ac-
curacy of the method. At resonance, the nuclei absorb and release energy while
flipping back and forward between the two opposite spin states. The disequilib-
rium between the two populations gives rise to a measurable signal [47].

2.3.3 Ferrimagnetic Resonance sensors

The working principle of Ferrimagnetic Resonance (FMR) is similar to NMR,
FMR instead of protons and neutrons is based on the electron spin, however
ferrimagnetic (i.e. two unequal population of atoms with anti-parallel magnetic
moments) or ferromagnetic (i.e. one population of atoms with parallel magnetic
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moments) materials introduce anisotropy terms into 2.5. Magnetic resonance can-
not be established accurately [50] when the material is not fully saturated, there-
fore the FMR must be operated above this threshold for magnetic measurements.
In the FMR sensors gyromagnetic ratio is strongly affected by the temperature
and chemical composition of the sample, this is why metrological performance is
lower than NMR. The problem with this type of sensor is that it can only function
as a dynamic marker since a DC implementation is not yet commercially avail-
able. FMR is also widely used in commercial RF devices such as circulators and
insulators [51, 52], as well as in tunable filters [53, 54], resonators and oscillators
in the spectrum and vector network analyzers. FMR has the relevant advantages
of being highly selective (high quality factor, low insertion and return losses) and
tunable. The use of FMR in magnetometers is reported in Ref. [55].

2.3.4 Hall effect magnetic sensor

The Hall effect in semiconductors is a particular phenomenon that characterizes
the interaction between charged moving particles and magnetic fields. Given a
semiconductor strip (type N or type P) and a current flowing into it as described
in Fig.2.3, if a magnetic field orthogonal to the strip is applied the moving charges
(electrons or holes) are affected by the Lorentz force (Eq.1.1) that drives the mov-
ing charges to one end of the strip. This accumulation of charge leads to a charge
imbalance that causes a difference of potentials between the two ends of the strip.
This voltage can be measured and it is proportional to the strength of the applied
magnetic field and in a first order approximation it is correct to assume that

VH = hIBsin(α), (2.6)

where VH is the voltage at the end of the semiconductor strip, I is the current, α is
the angle between the magnetic field vector B and the Hall plate and its the over-
all sensitivity which depends on the material, the geometry, and the temperature.
This effect can be used to measure the strength of a magnetic field and realize in-
expensive Hall effect sensors in Complementary Metal Oxide Structure (CMOS)
technology implanting an N well inside substrate P. The main drawback is that
this kind of sensor is very temperature sensitive.

2.4 Real-time magnetic field predictions

As aforementioned in sec. 2.1 an accurate knowledge of the magnetic fieldB(t) at
any given time during a magnetic cycle is therefore critical for longitudinal and
transversal beam control, power supply control, various beam diagnostics, and
qualitative feedback to operators. The required accuracy is typically 0.01 % [6]. In
a restricted number of cases, conventional mathematical models can express the
B(I) relationship adequately well. An example is the semi-empirical model of the
superconducting bending dipoles of the LHC, which generate a very high field
(8.4 T), relatively unaffected by perturbations [56]. In the vastly more common
case of iron-dominated magnets, effects due to magnetic saturation, hysteresis,
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FIGURE 2.3: Hall Effect, B is the applied magnetic field , I is the
current and VH is the voltage at the end of the semiconductor strip.

and eddy currents may be as large as several percent or more, and the problem
becomes orders of magnitude more difficult[57, 58]. For example, recent attempts
using the well-known Preisach models[14, 15] could not attain better than 0.2 %
accuracy. Also other classes of methods, such as Jiles-Atherton differential mod-
els[16], ultimately turn out to be unsuitable, due to their well-known difficulties
in handling minor hysteresis loops. As an alternative, real-time measurements
can sometimes be carried out in a suitably equipped reference magnet, either a
part of the accelerator ring or powered in series with it. At CERN, six of the
synchrotrons function thanks to feedback from such measurements. In general,
however, this kind of real-time measurement system is complex, expensive, and
sometimes very impractical to deploy, for example owing to the lack of space for
sensors close to the beam vacuum chamber. As a result, there is a strong incen-
tive to investigate novel kinds of models to complement or even replace mea-
surements. In addition, even where real-time measurement systems are already
implemented, such models may serve as a useful complementary role, for ex-
ample during periods of hardware maintenance. The typical approach followed
when real-time feedback is required and when no measurement is available is
to use a nominal magnetic cycle corresponding to the excitation current saved
in a database. The drawback of this approach consists in the fact that these cy-
cles are fixed and they do not take into account all the non-linearity of the mag-
net such as saturation, eddy current and hysteresis. Modelling of quasi-static
and dynamic hysteresis loops is one of the most challenging topics in computa-
tional magnetism, mainly due to the strong non linearity and history dependency
shown by ferromagnetic materials[7, 8, 9, 10, 11, 12, 13]. This general problem is
commonly addressed in literature in the context of electrical machines, which are
excited by sinusoidal current waveforms[59, 60, 61]. Conversely, more complex
excitation current waveforms I(t), used in particle accelerators and other mag-
netic devices operating cyclically, are still an open focus of scientific interest. Such
waveforms include quasi-periodic sequences of trapezoidal-shaped pulses, with
widely varying slopes (i.e., current or, equivalently, field ramp rates) and flat-top
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levels. Flat-tops and flat-bottoms correspond to reversal points of the hysteresis
loop and their sequence largely determines the relationshipB(I) between current
and magnetic field. Under these conditions, B(I) becomes much more complex
and hard to predict[57, 58].

2.5 Machine learning

Recently, more attention was directed towards Artificial Neural Network (ANN),
today used with spectacular results in a variety of domains related to time-series
prediction[62, 63, 64, 65, 66, 67, 68, 69, 70, 71], but still relatively unexplored in
magnetic applications. In Ref. [72], a hybrid Preisach-Neural Network model
is proposed to predict the dynamic hysteresis in ARMCO pure iron, reaching a
Normalized Root Mean Square Error (NRMSE) of the order of 0.7 %. ANN tech-
niques are being used more and more often to model magnetic hysteresis in com-
bination with classical approaches like Preisach, Wlodarski, Chua-Stronsmoe and
Jiles-Atherton models[59, 61, 73]. In Ref. [59], one of the first attempts at describ-
ing the memory mechanism is proposed in systems with rate-independent hys-
teresis using a combination of Preisach state updating rules and a Feed-Forward
Neural Network (FFNN). The architecture consists of two blocks: a Preisach
memory and an FFNN bounded to the memoryless relation between the state
and the output. The model is identified by tuning the weights of the network
architecture through a back-propagation based algorithm.
Developments following the approach in Ref. [59] are also reported in Refs. [60],
[74], [75]. In Refs. [76, 77], a different hybrid perspective is proposed by combin-
ing an ANN with a Fourier Descriptor (FD) to evaluate dynamic hysteresis loops.
The method is suitable when a distorted sinusoidal magnetic field H excites, in
steady state, the ferromagnetic core of a device and allows to handle problems
that appear in classical approaches when static hysteresis, eddy currents, and
anomalous losses should be considered.
An interesting modelling approach is reported in Ref. [78]: an Neural Network
(NN) approach for modelling dynamic hysteresis is proposed by combining an
array of NNs where each NN is dedicated to a particular fixed portion of the
dynamic hysteresis loop. The whole hysteretic path is built by the composition
of the evaluations made by different NNs. Moreover, the authors use excitation
curves as a sinusoidal waveform.
In Ref. [61], the authors study the hysteresis behavior of a transformer core, de-
termined by a reduced number of real-time measurements of the input currents
and the output voltages. The hysteresis loop is computed through a Deep Neural
Network (DNN) combined with the Wlodarski magnetic model. The hysteresis
loop is then used in a Finite Element (FE)) model to simulate the response of
the core to arbitrary excitation waveforms. These hybrid architectures combine a
classical approach to model the physics of the problem, together with the ANN
prediction of the short-term nonlinear behavior. Their focus is on the prediction
of a single hysteresis cycle, and in general, they are not able to take into account
the magnetic field response over a long period. Moreover, even in the short term
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case, their accuracy does not meet the above accuracy requirements of 0.01 %[15,
59, 61, 76].

2.5.1 Multi-layered non-linear autoregressive exogenous neural
network

Since the proof of universal approximation for Feed forward [79] and recurrent
[80] neural networks (with the sufficient condition of one hidden layer) the ma-
jority of the NN approaches focused on developing networks in width, almost
neglecting the benefits of developing layers in depth. However, an astonishing
improvement of NN based system performances was achieved when the possi-
bility of expanding layers in depth became computationally tractable thanks to
the development of new smart methods for learning and the increased computa-
tional power of computer machines (see Ref. [81] for a comprehensive historical
review). Further, when dealing with time series, successful dynamic approaches
unfolding the depth of the network through time were proposed, like Long-Short
Memory Network (LSTM) and variants [82, 83, 84, 85, 86]. In this scenario, an
important role is played by the multi-layer Non-Linear Autoregressive Exoge-
nous (NARX) neural network.
NARX is a popular recurrent neural network architecture having feedback com-
ing only from the output neuron instead of from the hidden neurons. This kind
of architecture is typically used for input-output modeling of discrete time non-
linear dynamic systems [87].
The architecture of a NARX Network consists of a Multi Layer Perceptron (MLP)
network and two buffers as shown in Fig.2.4. The buffers collect the previous
value of inputs and outputs of the network to provide them in input to the MLP
network. The size of the two buffers are hyperparameters of the network. If the
size of the buffer that collects the output is set to 0 then the NARX is reduced to a
Time Delayed Neural Network (TDNN), if also the size of the buffer that collects
the previous input is set to 0 then what we obtain is an MLP network that it is the
core of the NARX network.
NARX network lies at the edge between a static and a dynamic deep network ap-
proach. In general, successful NARX based approaches were extensively studied
(see, e.g. Refs. [70] and [71]). NARX models allow a sliding window operation
across the feed-forward layers, without relying on recurrent connections.

2.6 White rabbit network

In a modern real-time measurement system it is crucial to have the possibility to
transmit the measured data with high accuracy in terms of delay and time syn-
chronization. This is even more critical when the system is spread over several
square km, for this we considered the White Rabbit (WR) network. The WR net-
work is a bridge local area network based on existing IEEE standards extended in
a backward compatible way in order to meet the CERN’s requirements. The used
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FIGURE 2.4: Basic architecture of a NARX network.

standards are VLANs (IEEE 802.1Q) that use Ethernet (IEEE 802.3) to intercon-
nect switches and nodes as shown in Fig.2.5, and the Precise Time Protocol (PTP)
(IEEE 1588-2008) to synchronize them. The main feature of the WR network are:

• Sub-nanosecond accuracy and picosecond precision of synchronization.

• Possibility to connect thousands of nodes.

• Typical distances of 10 km between network elements.

• Gigabit rate of data transfer.

• Fully open hardware, open firmware and open software.

• Hardware commercial availability from many vendors.

2.6.1 History

CERN started to think about a new timing system in 2006 to increase the bi-
directionality and the bandwidth to make possible a general timing system for
all the accelerators able to auto compensate the cabling delay At the same time,
Helmholtz Center for Heavy Ion Research (GSI), start brainstorming about timing
system for the Facility for Antiproton and Ion Research (FAIR) facility. Since other
collaborations between GSI and CERN were already underway it was natural to
try to develop a single timing system that served both sets of requirements. The
requirement for a full-duplex high-bandwidth link quickly pushed to Ethernet
for the physical layer. Ethernet is not only a high-performance and well studied
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FIGURE 2.5: WR network example.

solution but also long-term support is beyond doubt, and this was important both
for CERN and GSI. Synchronous Ethernet defines a clock transmission strategy
based on recovering a clock from an Ethernet data stream using a Phase Locked
Loop (PLL) [88]. Cabling delay compensation can now be done using the Precise
Time Protocol (PTP, IEEE 1588). Mixing these two standards and setting up a
strategy to dispatch messages in a deterministic way to all nodes gave birth to
the White Rabbit project. The name of the project is referred as the White Rabbit
present in Lewis Carroll’s novel Alice’s Adventures in Wonderland.
Several companies [89] have begun to commercialize White Rabbit for industrial
applications by developing their own White Rabbit hardware and software.
The first device on the White Rabbit project was the white rabbit switch, financed
by the government of Spain and CERN, and produced by Seven Solutions.

2.6.2 Synchronization Scheme

In order to reach the wanted sub-ns accuracy the synchronization of more than
1000 nodes, WR has a timing hierarchy. One of the switch ports is named uplink
port and all the others are downlink. The first switch gets its clock from an external
source, i.e. a GPS Disciplined Oscillator (GPSDSO) and this clock is used to drive
the transmitters inside the downlink ports. The downlink port are connected or to
a final node or to the uplink port of another switch leading to a tree of switches in
which all the inner clocks are derived from the master’s clock.
To compensate the transmission delay we can consider it composed of two com-
ponents a first one coming from the electronics in the switches and the second
one coming from the time of flight in the optical fiber. The first one in a first or-
der approximation can be considered fixed and can be corrected by automatic or
manual calibration of the system. The second one can show variations up to 1 ns
for fibers lengths about 10 km not buried underground. To solve this problem
can be used a two-way scheme like PTP, the drawback is of generating traffic
on the network just for synchronization. WR proposes to use instead continuous
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measurements of the phase of the bounced-back clocks with respect to the trans-
mit clocks in each one of the switches downlink port. A PTP-like exchange can be
done initially to figure out a rough estimate of the two-way delay expressed in
125 MHz ticks. From then on, the continuous phase measurement piggybacks on
any traffic without perturbing it.

2.6.3 Determinism

Contrary to what happens to the clock, there is no hierarchy for the data traffic.
In WR protocol any node can communicate to any node at any time. It is the
responsibility of higher layer protocols to keep traffic orderly. For this task, WR
provides help in the form of different traffic types in layer 2, with different asso-
ciated priorities. In order to ensure determinism in the latency of some types of
traffic between two nodes, WR specifies different types of traffic. In the event of a
High Priority (HP) frame hitting a switch while Standard Priority (SP) frames are
waiting for delivery in a pipeline, the HP frame would be output first because of
its priority. In order to avoid long SP frames from holding an Ethernet port for too
much time, auto-fragmentation of these frames and immediate forwarding of the
HP frame is also supported by the WR specification. By automatic fragmentation
the SP frame being output would be cut roughly but with a special termination
sequence that allows the downstream switch to wait for additional fragments of
the SP frame before broadcasting it.





33

Part II

Measurement system
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Chapter 3

System requirements

In this chapter, the reasons behind the novel B-train system called Field In REal-
time STreaming from Online Reference Magnets (FIRESTORM) developed to re-
place the out-of-date systems in the context of a site-wide, long-term consolida-
tion project are presented. Then requirements for the new system, and the meth-
ods used are highlighted. FIRESTORM was designed to cope with the High-
Luminosity LHC upgrade, which will require higher beam intensity and im-
proved beam control throughout the injector chain [17].

3.1 Measurement goals and method

The main goal of a B-train system is to measure and distribute the average dipole
magnetic field, B̄, that bends the trajectory of the beam in a synchrotron ring.
The magnetic field varies cyclically over time, as illustrated in Fig. 3.1, being
proportional to the momentum of the beam particles as they are first injected
into the ring, then accelerated and finally ejected. Typical requirements include
a measurement uncertainty of 100 ppm relative to the peak field during a cycle, a
bandwidth from DC to 100 Hz, and a maximum latency of 30 µs, which is critical
especially for the RF subsystem. The measurement is carried out in a suitable
reference magnet, which is ideally installed in a dedicated room outside of the
synchrotron and is powered in series with the ring magnets. In this case, the
absence of a vacuum chamber in the magnet gap leaves the freedom to install
sensors along the magnet’s longitudinal axis, where the beam is supposed to cir-
culate. When this is not practical, such as in the LEIR bending dipole, sensors
must be installed within the accessible fringe field region. Along with B̄, the sys-
tem also distributes the rate of change of the magnetic field, ˙̄B. This is needed
by some machines, such as the PS, which implement multiple excitation circuits
that act in parallel on the same magnetic core, in order to compensate induced
voltages stemming from inductive coupling effects [90].

3.1.1 Measurement model

The setup for all B-train systems at CERN consists of the combination of two pri-
mary sensors [36, 91]: an induction coil to measure the rate of change of the field
according to Faraday’s law, and a so-called field marker to provide the necessary
integration constant Bm , according to (3.1-3.3):
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FIGURE 3.1: Schematic example of a sequence of magnetic cycles in
the Proton Synchrotron.

Φ =

∫∫
A

NTB dA = B̄Ac, (3.1)

Vc = −dΦ

dt
, (3.2)

B̄(t) = Bm + ∆B̄(t) = Bm −
1

Ac

t∫
t∗k

Vc(τ) dτ, (3.3)

where Φ is the total magnetic flux linked though the coil, NT is the number of coil
winding turns, Ac is the effective coil area, and Vc is the coil output voltage.

The B-train system must operate uninterrupted over periods that may last for
months. The integration process is seamlessly subdivided into a sequence of con-
tiguous integration intervals matching the magnetic cycles t∗k ≤ t < t∗k+1, with
k = 1, 2, ..., where each t∗k corresponds to a field marker trigger generated when
the field crosses the given threshold Bm, practically resetting the process with a
new integration constant. By far, the most important error source in (3.3) is the
drift of the integral due to a small, but unavoidable voltage offset added to the
coil output. The problem of voltage offsets in integrators is well-known not only
for induction coils but also in different measurement domains, such as inertial
sensor [33, 92, 93]. The offset, which typically ranges in value from a few µV to
a few hundred µV, is generated by a number of different mechanisms such as
thermoelectric voltages due to temperature gradients along wires; thermocouple
voltages at the connections; rectification by non-linear circuit elements of radi-
ated electromagnetic noise; or bias currents due to the imbalance in discrete or
integrated components. While some degree of mitigation can be afforded by the
thermalization of the whole setup and by careful shielding, the offset can never
be eliminated completely [92].

Even if, in principle, the integration constant could be set just once at the be-
ginning of the process, the use of repeated resets effectively prevents the build-up
of integrator drift; methods to control the drift within each integration interval are
discussed in Section 5.2.3. The value of Bm is often chosen so that a reset happens
just before the injection of particles into the synchrotron, when high measurement
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accuracy is required to capture the incoming beam and preserve its quality. If a
reset does occur when the beam is already circulating, Bm must not be assigned
to B̄(tk) abruptly but rather in a gradual manner over a suitable interval, of the
order of 10 ms, to prevent any discontinuity that may be harmful. During a mag-
netic cycle, any given field value Bm will be crossed twice, once on the up-ramp
and once on the down-ramp, thus generating two separate field marker triggers.
However, in the current implementation of FIRESTORM the field marker sig-
nal is gated by a specific time window to avoid spurious noise-induced triggers,
thereby generating only one reset trigger per cycle. It is worth noting that, two
fully independent markers can be assigned to any integration channel, allowing
for the reset timing to be optimised as dictated by the beam quality requirements.
A typical application of this feature consists in adding a second marker at high
field, just at the beginning of the beam ejection plateau, as depicted in Fig. 3.1.

3.1.2 Field marker

The field marker serves two critical roles in the system: providing the integration
constant in (3.3), and periodically resetting the measurement to prevent the accu-
mulation of drift. The marker itself is composed of a magnetic sensor, together
with detection electronics (described in Section 5.2.2). It generates a digital trig-
ger pulse whenever the field crosses a pre-set value Bm. As such, this device has
inherently a dynamic nature, that is detection can only occur on a field ramp. A
variety of different sensors can be used for this purpose. The simplest option is
a Hall probe, combined with a voltage comparator. Even though this method is
used with success at CNAO [94] and HIT [93], the long-term stability of the off-
set and gain of Hall probes may be problematic and entail frequent interruptions
for recalibration, which are not acceptable for the CERN accelerator chain. The
old PS B-train worked satisfactorily over as many as five decades with a so-called
peaking strip, described in [95]. However, this marker operates at a very low field
of 5 mT and cannot be scaled easily to higher levels. Instead, the FIRESTORM B-
train implements magnetic resonance sensors, which were extensively tested and
proven to meet all requirements [96, 97, 98]. These sensors are based on the pre-
cession frequency of the elementary magnetic moments (protons or electrons) in
a small sample of suitable material. The sample is immersed in a background
field B and irradiated with electromagnetic waves at a frequency f , so that at
resonance it absorbs and re-emits at the frequency f = γB where γ is the gyro-
magnetic ratio. In Continuous Wave (CW) mode, the RF excitation frequency is
kept fixed and a sharp peak is produced in the output voltage as the background
field sweeps through the resonance. Two different types of CW setups were de-
veloped (see Fig. 3.2):

• The earliest solution is based on a commercially available instrument, the
NMR teslameter Metrolab PT2025 [95, 99, 100]. The probe contains a cylin-
drical sample with a volume of 226 mm3 made of a hydrogen-rich substance,
water or rubber, where resonance is induced in the hydrogen nuclei based
on the gyromagnetic ratio of the proton, γp = 42.577 478 92(29) MHz T−1.
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This instrument represents a reference standard in magnetometry, as it pro-
vides the modulus of the magnetic field with an absolute accuracy of about
5 ppm provided that field is sufficiently uniform (tolerated relative gradient
≈ 1 %/m) and stable. NMR probes were used with success as markers in
the PSB and SPS systems since the 1980s. In FIRESTORM, a stable excita-
tion frequency is provided by an Aim-TTi Function/Pulse Generator [101],
while the teslameter unit demodulates the probe’s RF output to obtain its
amplitude envelope. Figure 3.2 depicts the output waveform from the tes-
lameter, with the resonance point defined as the first negative peak [100].
Typically, the peak-to-peak amplitude of the signal ranges from 50 mV up
to 1 V, depending on probe type, field uniformity and field ramp rate. The
measurement range covers magnetic field levels from 50 mT to well above
10 T, with field ramp rates up to 0.1 T s−1. The effective reproducibility in
operation, as derived from jitter measurements at a given field ramp rate
under reproducible cycling conditions, is of the order of 5 µT.

• The most recent design is represented by FMR devices, based on ∅0.3 mm
Yittrium-Iron Garnet (YIG) ferrite spheres (for a volume of 0.014 mm3) as
the resonating element [98]. FMR is a form of Electron Paramagnetic Reso-
nance, implying that the precession frequency is three orders of magnitude
higher than NMR, about 28 GHz T−1. YIG has a narrow resonance peak
even at field ramp-rates as high as 5 T s−1, with typical quality factors rang-
ing in the hundreds. Another advantage of FMR lies in the small size of
the YIG sphere, which makes the resonator compatible with high-gradient
fields such as those found in the PS combined-function magnets, where the
poles are shaped to add a quadrupole field component with a relative gra-
dient |∇B/B| = 4.6 m−1 [102]. A prototype system based on a commercially
available RF filter is installed there since 2012, and a series of tests have
shown that the resonance peak remains well defined for absolute gradients
up to 12 T m−1. On the downside, the anisotropy of conventional mono-
crystalline YIG introduces a degree of dependence upon temperature and
field direction, with equivalent errors up to 40 µT °C−1 and 20 µT mrad−1,
respectively. These errors can be reduced by careful mechanical alignment
of the YIG sphere and by thermalization of the resonator. Further reduction
could be achieved by the use of paramagnetic materials [103], which how-
ever have a lower Signal-to-Noise ratio. For FIRESTORM, lumped-element
and waveguide resonators were developed in-house and are now being im-
plemented. The existing resonators cover a measurement range from 36 mT
to 110 mT. Overall, the effective reproducibility of the marked field can be
as low as 1 µT under optimal conditions [104]. Prototypes of single-chip
integrated microwave oscillators [103] working up to 700 mT are currently
being tested; such higher field levels, however, correspond to a frequency
range about 20 GHz, which requires complex electronics for the detection.

Figure 3.2 depicts the setup of the two field markers, along with their condi-
tioners and typical examples of output signals. The NMR probe output is demod-
ulated in the teslameter unit, whereas the FMR resonance signal is first amplified
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and then amplitude-demodulated with a Schottky diode.

(A) NMR signal conditioning setup

(B) FMR signal conditioning setup

FIGURE 3.2: Field marker block diagram.

3.1.3 Field marker calibration

In all types of field markers described above the sensing element has a very small
volume, which represents a problem since the quantity of interest is the average
of the field along the whole magnet. As discussed in detail in [105], the ratio of
average to local field at the location of the sensor can be considered a constant
only within a typical approximation of a few percent, due to magnetic hysteresis
and eddy current effects. Since explicit modelling of these non-linear effects is
very complex, our calibration procedure takes a different approach, by linking
Bm directly to the average magnetic field at the time of triggering. In practice,
the average field B̄(t) is dynamically measured during any given magnetic cycle
waveform, and for a given excitation frequency f of the resonator (i.e. local field
value B = f/γ ) Bm = B̄(t∗) is obtained as the average field upon reception of
the marker trigger. The dynamic measurement can be performed with a fixed in-
duction coil, provided the initial value of the field B̄(0) is known and integrator
drift can be corrected sufficiently well. For example, after a degaussing proce-
dure consisting of low-frequency AC excitation with an exponentially decaying
amplitude, the remanent field is of the order of a few µT, and one can safely take
B̄(0) = 0 [105].
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Chapter 4

System Proposal

In this chapter, the proposed design for the measurement system is presented.

4.1 Architecture and functionalities

Figure 4.1 shows the architectural layout of the new system. Unlike previous
ones, which contained a large number of custom components with many slight
differences, FIRESTORM adopts a modular architecture based upon common
hardware and parametric firmware. This implementation allows for each setup
to be adapted efficiently based on the different sensor configurations required by
the synchrotrons. The simplest case is the SPS B-train, where a long integral coil
with one low-field marker provides input to a single integration channel. The
ELENA system has also one integral coil but two field markers, each used on
different magnetic cycles: a high-field marker for cycles where antiprotons are
decelerated, and a low-field marker for special test cycles that accelerate protons
and H− ions (in both cases, the marker is triggered just before injection). Yet an-
other example is given by the combined-function PS magnets; these consist of
two halves, one with a focusing and the other with a defocusing gradient, that
must in principle be treated as two independent magnets. As such, each half
requires a dedicated coil and integration channel. At present, the configuration
has only one low-field marker implemented on each channel. Nevertheless, the
system allows for the addition of a second pair of high-field markers, that in up-
coming operating scenarios will be triggered sequentially on the same magnetic
cycle, in order to achieve higher accuracy both at beam injection and extraction.

A flexible architecture is therefore necessary to deal effectively with these dif-
ferent requirements, as well as the adaptations and improvements that could be
necessary during the 20- to 30-years lifespan of the system. The modular ap-
proach taken by the design, together with the remote configurability and diag-
nostics capabilities made possible by the tight integration of the software within
the site-wide accelerator control system, is expected to improve both the main-
tainability and longevity of the system.

The key functions of the FIRESTORM B-train are implemented by a set of
modules based upon off-the-shelf Simple PCIe Carrier (SPEC) hosted in an in-
dustrial Front End Computer (FEC). Each SPEC card hosts a custom-made FPGA
Mezzanine Card (FMC) that implements analogue and digital I/O. This architec-
ture allows splitting out the different functions with a fine level of granularity,
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FIGURE 4.1: Block diagram of the main functions composing the
FIRESTORM system.

improving both the flexibility and the maintainability of the final system. All
design elements, including PCB layouts and firmware, are released on the Open
Hardware Repository (OHWR) [106], a CERN initiative aimed primarily at the
High Energy Physics community to stimulate collaboration, as well as the com-
mercialization of the designs by industrial partners. These cards are linked to the
magnetic sensors through the B-train crate, acting as a central hub. The final de-
sign element is a fiber-optic Ethernet-based network WR [107], used to distribute
the measured field with high speed and noise immunity [108]. The use of an Eth-
ernet frame allows for the transmission of the measured magnetic field alongside
various ancillary signals, metadata and, crucially, three other versions of the field
itself. These are: the field measured by the out-of-date system, where available; a
copy of the nominal field obtained from the magnetic cycle database (“simulated
field”, see Section 5.2.4); and a mathematical model of the field based on the mag-
net excitation current (“predicted field”, see Section 5.2.5. This is currently only at
the prototype stage and is not implemented in the deployed systems). Access to
these high-resolution, synchronized versions of the magnetic field is expected to
greatly facilitate system diagnostics and to enhance operational flexibility in cer-
tain situations, e.g. when the measured field is not the most appropriate feedback
source for the users (see Section 5.2.4).
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Chapter 5

System Implementation

In this chapter, the hardware and software implementation are described. First,
all the electronic component used are parented as well as their interconnection
and communication protocols. Later all the implemented algorithms together
with all the individual modules composing the system are presented.

5.1 Hardware architecture of the FIRESTORM system

The core of the FIRESTORM system is the FEC, an industrial diskless rack-mounted
PC hosting the main electronic components [109]. About 2000 FECs are deployed
throughout CERN for interfacing with devices that are involved in synchrotron
control, such as RF and vacuum control systems, beam diagnostics instrumenta-
tion as well as the B-train systems. The current generation of FEC is the Siemens
SIMATIC IPC847E with up to 11 free Peripheral Component Interconnect ex-
press (PCIe) slots. The operating system is 64-bit CentOS7 Linux [110] and the
software is based on a distributed, real-time C++ class framework called Front
End Software Architecture (FESA), which is at the heart of accelerator controls at
CERN and GSI [111]. FESA abstracts the interface between the high-level accel-
erator control infrastructure and the local hardware, which is accessed via user-
written device drivers. Tools are provided to help with the generation and de-
bugging of C++ code. Automatic mechanisms are provided to store and retrieve
class properties representing configuration parameters from a common database,
as well as broadcasting measurement and diagnostic data vectors across the com-
plex in quasi-real-time, i.e. with a latency of the order of a full magnetic cycle,
which is adequate for many non-critical tasks. All communication happens on
the Technical Network, a segregated Ethernet network secured against intrusion
that is used to control and monitor all accelerator systems.

FESA is tightly integrated with the hardware timing system, used to synchro-
nize the accelerators and their subsystems within a few microseconds [112]. This
system consists physically in a network of coaxial cables, independent for each
accelerator, distributing several hundreds of trigger pulses representing timing
events relevant for beam or equipment monitoring and control. A separated se-
rial channel for each accelerator (the so-called Machine Telegram) distributes in-
formation including the type of magnetic cycle being run, the destination of the
beam and the type of the next synchrotron cycle that will be run. The framework
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FIGURE 5.1: Architecture of the FEC, depicting the software hierar-
chy as well the flow of data through the FEC.

was recently fully endowed with so-called Pulse to Pulse Modulation (PPM) ca-
pabilities, which enable or disable specific actions such as class property setting
and broadcasting, according to cycle type. PPM is a novel, crucial functionality
that allows for the automatic adaptation of sensor calibration parameters to the
magnetic characteristics of the synchrotron cycle; in particular, this applies to the
field marker level Bm, which for the best accuracy should be calibrated indepen-
dently for each cycle type. Compared to the manual updating carried out in the
older B-train systems, this mechanism improves dramatically the flexibility and
reliability of the configuration process. At present, the FIRESTORM FESA soft-
ware comprises four different classes: the B-train class, which interfaces with all
sub-systems that produce the measured field B̄; the FSBT_BTG class, specifically
for controlling the simulated field; the CosmosCheckWRS, which monitors the
status of White Rabbit network; and the Comet_EVM, for environmental moni-
toring. Altogether, the FESA framework allows for the adjustment of more than
200 different configuration variables, inherent to the operation of the B-train, as
well as access to over a 100 acquisition parameters, including internal registers
and measurement values.

5.1.1 SPEC - Simple PCIe Carriers

The SPEC (see Fig. 5.2) is a general-purpose FMC carrier card with ready-made
drivers (“spec-sw” on OHWR) that encapsulate the complexity of the host bus
communication protocol, thus greatly simplifying the whole development cy-
cle [113]. Several bus variants are available on the market, including VERSABUS
Module Eurocard (VME), PCI Extensions for Instrumentation (PXI)E as well as
PCIe interfaces, along with various types of FPGA modules.

The 4-lane PCIe version implemented in the FIRESTORM B-train is based
on a 250 MHz Xilinx Spartan-6 LXT FPGA [114], offering 101,261 logic cells and
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FIGURE 5.2: SPEC Card with EDA-03557 FMC card installed.

4.824 kbit memory. Currently, at most 50 % of the gate resources are used up
in any module, which leaves considerable room for future improvements. The
FPGA implements a finite state machine that defines the logical behavior of each
component, and a number of Digital Signal Processor (DSP) cores that carry out
the real-time signal processing tasks in 32-bit fixed-point representation (match-
ing the WR distribution data format). Additional connectivity features include a
Small Form-factor Pluggable Transceiver (SFP) fiber optic port which can be used
for WR distribution (see Section 5.2.6), a Low Pin Count (LPC) connector as the
FMC interface, plus standard Serial Advanced Technology Attachment (SATA),
mini-USB and Joint Test Action Group (JTAG) (for FPGA programming) connec-
tors.

The internal memory structure of the FPGA and its external interface are de-
fined with the help of Wishbone, an open-source core-to-core logic bus [115]. A
tool (“wbgen2” on OHWR [116]) is available to generate semi-automatically Very
High Speed Integrated Circuits Hardware Description Language (VHDL) or Ver-
ilog cores that implement registers, memory blocks, FIrst In First Out (FIFO) reg-
isters and interrupts, along with the corresponding C header files. In this way,
FESA software components can easily access and manipulate related variables
and data structures. In particular, the transfer of large memory blocks repre-
senting the waveforms of various acquired or processed data are transferred via
Direct Memory Access (DMA) through the PCIe bus, to be broadcast across the
network. It is possible to note that, in the current implementation of the system,
only one SPEC card at at a time is allowed to have DMA, to ensure stability. All
the basic functionalities of the SPEC, including configuration, initialization etc.
are managed automatically by the FESA framework.

5.1.2 FMC - FPGA Mezzanine Cards

The FIRESTORM B-train design includes four different types of FMC conforming
to the FPGA Mezzanine Card ANSI/VITA 57 standard [117], which decouples
I/O functions from the FPGA and allows simpler, modular designs. Except for
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the CERN-standard Central Timing Receiver (CTRI) card, that realizes the inter-
face to the timing system, the other three cards were developed for the specific
functions of the field marker trigger generator, magnetic flux integrator, White
Rabbit I/O, simulated and predicted field features, all described in detail in Sec-
tion 5.2. The last three functions require no specialized hardware, so they share
the same FMC card design. The FMC designs are based on a small form factor
that connects to the FPGA via a 160-pin LPC interface, which allows a theoretical
bandwidth up to 40 GB s−1 with negligible latency and no protocol overhead. The
major drawback of this choice is the difficulty of transmitting clock signals from
the carrier to the mezzanine, thus preventing true hardware synchronization be-
tween the different cards. At present this does not represent a limitation, as the
overall latency meets the requirements (see Section 9.2). Both the integrator and
trigger generator FMC cards implement small-footprint, ultra-low phase noise
Crystek CCHD-575 oscillators to generate locally a 80 MHz clock with ±20 ppm
worst-case frequency stability.

Communication between the FMC cards, the B-train crate and the WR trans-
mitter is provided by a daisy chain of standard HDMI cables with 19-pin mini-
HDMI connectors, chosen for their small size and robustness. Each HDMI ca-
ble carries a 250 MHz Low Voltage Differential Signal (LVDS) link, which allows
bi-directional, self-clocked Manchester-encoded serial transmission with a theo-
retical 250 Mbit s−1 throughput. Transmission latency is typically less than 1 µs,
mainly due to the serialization/de-serialization steps. In parallel, eight conduc-
tors are dedicated to differential 2.5 V logic DIO channels, which allow the relay-
ing of various kinds of trigger pulses with no protocol overhead.

An important goal of the LVDS links is to convey the different versions of the
magnetic field to the White Rabbit frame assembler (see, Section 5.2.6), bypass-
ing the PCIe bus with its associated programming complexity and uncontrolled
latency. The daisy chain starts with the integrator module (which was the first
component to be designed during the development phase), proceeds through the
Simulated Field module and terminates at the WR transmitter. As discussed in
Section 9.2, this arrangement results in a slight increase in the overall measure-
ment latency, while still remaining acceptable. A separate LVDS link allows the
direct exchange of data between the integrator and the trigger generator card.

5.1.3 B-train crate

The B-train crate, shown in Fig. 5.3, is the external interface of the FIRESTORM
system, working as a hub for routing internal and external signals. The crate
includes analogue and digital interface modules that allow local diagnostic access
to all sensor outputs, the field marker triggers as well as the distributed magnetic
field. In particular, a module is designed to accept as input the incremental pulse
distribution of the out-of-date B-trains, based on two parallel 24 V pulse trains
which represent respectively ±10 µT field increments, accumulate the field value
and send it via LVDS to the Integrator module for inclusion in the output stream.

The analogue outputs are duplicated on the back-plane of the crate in order to
feed OASIS, a distributed acquisition system that allows for the monitoring, with
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some bandwidth and resolution limitations, of all of CERN’s operation-related
equipment signals [118]. The front panel hosts a set of High-Definition Multime-
dia Interface (HDMI) connectors that allow to make the links between the FMC
cards, or to break them to access individual signals for diagnostics. Finally, an
LCD multi-screen panel is provided to display real-time status information such
as the measured field B̄, sensor calibration parameters and other FPGA registers.

FIGURE 5.3: The front side of the B-train crate, showing the various
3U Eurocard front panels associated with the FMC boards.

5.2 Functional SPEC modules

In this section, the design and functions of the six kinds of SPEC/FMC boards
used in the FIRESTORM B-train is described in detail.

5.2.1 Central Timing Receiver

The Central Timing Receiver card is a CERN-standard component installed in
all FECs, where it receives and decodesGeneral Machine Timing (GMT) events
that contain information on the cycle being performed in each accelerator [119].
The FIRESTORM system utilises the CTRI for generating two critical local timing
Transistor Transistor Logic (TTL) triggers:

• the “C0” trigger, which signals the start of a new accelerator cycle and is
used as an internal reference for various time related functions, such as the
integrator calibration procedures and the field marker gating function de-
scribed below. Optionally, C0 can be used to enforce a restart of the flux in-
tegration process to a given preset value. This is useful, for example, when
a field marker malfunction is suspected.
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• the “ZERO” cycle trigger, which signals the start of special cycles where no
beam is circulating and the magnet excitation current is kept at a low (or
zero) level. ZERO cycles are run from time to time in some (but not all) of
CERN synchrotrons, either as low-power fillers in the machine schedule,
or to allow capacitive-discharge magnet power supplies time to recharge.
Whenever available, ZERO cycles are used for self-calibration of the inte-
grators as described in Section 5.2.3.

These triggers are distributed through standard coaxial cables to the B-train
crate, where they are first converted to 2.5 V pulses and then relayed to the inte-
grator and the other FMCS via the HDMI DIO lines.

5.2.2 Field marker trigger generator module

The Field Marker Trigger Generator module has the goal of detecting the reso-
nance peak in the output Vm of an NMR or FMR resonator, and to generate a TTL
trigger pulse accordingly. The module has a dual-channel design which allows,
for example, to have a high-field and low-field marker acting at different times on
the same integration channel (as in ELENA [104]), or two markers acting in par-
allel on two separate integration channels (as in the PS). It is useful to recall that
the B-train crate has a number of connectors sufficient to handle up to four field
marker signals, corresponding to up to two SPEC/FMC cards operating in paral-
lel in the same FEC. The field marker output is initially routed through a signal
conditioner board in the B-train crate. This removes the DC component, allowing
for the subsequent comparison to a known threshold, and then optionally am-
plifies the signal (this is necessary only for the FMR sensor, not the NMR) [98].
In the following, the hardware on the Field Marker FMC and the peak detection
algorithm implemented in the FPGA is described in detail .

(A) Top View (B) Front View (C) Bottom View

FIGURE 5.4: Field marker trigger generator FMC.

Field Marker FMC

The Field Marker FMC (EDA-02514, see Fig. 5.4) includes two fully independent,
parallel acquisition channels based on a 16-bit, 10 MSamples/s AD7626 Analog
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to Digital Converter (ADC) with a ±4 V differential input range. This ADC was
chosen for it’s resolution and sampling rate because the resonance peak is a very
fast event that has to be accurately recognized for the marker being effective. The
analogue input stage includes a low-pass filter that is essential in removing the
noise generated by the sensor or picked up along the way, thus avoiding spurious
triggers. The cut-off frequency is usually set around 2 kHz, which corresponds
to a detection delay of the order of 100 µs; being systematic, this has negligible
impact on the calibration ofBm, at least as long as the field ramp rate at the time of
triggering is constant [100]. No additional anti-aliasing filter is necessary because
the low-pass filter added to remove the noise generated by the sensor or picked
up along the way serve also the anti-aliasing function.

I/O connectors include dual LEMO inputs for analogue field marker signals, a
LEMO analogue output for the on-board Digital to Analog Converter (DAC), and
two mini-HDMI sockets for the input and output LVDS DIO. The generated 1 ms
trigger pulse is transmitted on the LVDS output to the Integrator module, from
where it is propagated down to the WR module to be written in to the distributed
WR Ethernet frame (see 5.2.6). In addition, four diagnostic status LEDs that signal
are present, on any given machine cycle, the detection of the high- and low-field
marker triggers, or the lack thereof within the allowed time window.

Peak detection algorithm

The resonance peak is defined as the first zero-crossing of the derivative of Vm

and the corresponding time t∗ = tj is defined by:

j = min(i) :


t1 ≤ ti ≤ t2

|Vm,i| ≥ V

sign(V̇m,i) 6= sign(V̇m,i−1)

, (5.1)

where i is the running index of the waveform samples; [t1, t2] is a pre-defined
gating window, typically 20 ms long, that prevents spurious triggers to happen
too far from the expected time during a cycle; V̇m is the time derivative of the
sensor output, calculated with a seven-point finite-difference scheme; and V rep-
resents a voltage threshold, set independently for each system above the residual
noise level after filtering. As the zero-crossing can happen anywhere within the
[ti−1, ti] interval, this simple algorithm considering an ADC sample rate equal to
10 MSamples/s has an uncertainty of ±50 ns, which is negligible for our applica-
tion because the time duration of the peak depends from the field ramp rate and
it is in the range of fewms. It is useful to recall that all the algorithm’s parameters
are stored in FPGA registers loaded at run time by the FESA software, which can
be adapted automatically to the type of cycle being run via the PPM mechanism.

5.2.3 B-train integrator

The dual-channel B-train Integrator module has the primary role to determine
the value of the average field B̄ that is distributed to the B-train users. In addi-
tion, it has the capability to accept as input the incremental pulse distribution of
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the out-of-date B-trains, based on two parallel 24 V pulse trains which represent
respectively ±10 µT field increments, to accumulate it and to distribute the result
alongside the FIRESTORM measurement. The main issue affecting this measure-
ment is the drift caused by a voltage offset δV superposed to the coil output Vc.
The offset has a spectrum akin to 1/f pink noise, with a slowly drifting, almost
systematic component superposed to random fluctuations with periods of the
order of a few seconds to a few minutes, comparable with the duration of most
accelerator cycles [120]. Such an offset can be mitigated, for example, by choosing
high-quality discrete components causing imbalances in the analog input stages,
by reducing thermal gradients leading to thermoelectric voltages and, in general,
by ensuring long-term thermal stability via adequate ventilation. Respect to other
voltage integrators described in the literature [33][93][121], the specificity of the
presented design lies in the method used to estimate it and correct in real-time.
For simplicity, It could be assumed that throughout each integration interval (or,
equivalently, accelerator cycle) δV is a constant, and re-evaluate it periodically.

The application of this specific module is not limited to the presented applica-
tion but it could in principle be extended at all the industrial or scientific applica-
tions in which a fast digital integration is required.

In the following subsections the hardware of the mezzanine card, the integra-
tion and error correction algorithms are discussed in detail .

(A) Top View. (B) Front View.

(C) Bottom View.

FIGURE 5.5: Integrator module FMC
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Integrator FMC

The Integrator FMC (EDA-02512) is shown in Fig. 5.5. The core of each FMC
integration channel is a high-linearity 18-bit, 2 MSamples/s AD7986 Successive
Approximation Register (SAR) ADC with a 0 V-5 V differential input range. This
ADC was chosen mainly for it’s resolution in order to have the field resolution
within specification. Each channel includes the following conditioning stages:

• A three-way selection switch with a 200 µs settling time for the auto-calibrating
function, as explained below.

• An input buffer with a 27 MHz bandwidth and a Rin =2 MΩ impedance.
The impedance stems from a compromise between the need to limit signal
attenuation for high-resistance input loads, and the need to limit the off-
set voltages arising due to input bias currents. For a typical measurement
coil resistance on the order of Rc =1 kΩ, the low-frequency attenuation can
be easily calculated from Rc

Rc+Rin
≈ 500 ppm, and corrected in the post-

processing stage. As the specified input signal bandwidth is just 100 Hz,
a more rigorous dynamic study of the parasitic capacitive effects was not
considered a priority at this stage.

• A two-stage pre-amplifier that scales the nominal ±10 V induction coil sig-
nal to the ±5 V differential input range of the ADC. First, a voltage divider
realized with high-precision discrete resistors attenuates the signal by a fac-
tor 5/8; then, a fully differential funnel amplifier AD8475 with attenuation
factor 4/5 and nominal passband 15 MHz prepares the signal for the ADC,
while ensuring that the total attenuation factor is 1/2.

• An AD5291 digital potentiometer used in a voltage divider to provide a
programmable voltage source with 1 mV range and about 1 µV resolution,
injected between the two attenuation stages and used for fine offset com-
pensation.

• A simple first-order RC anti-aliasing filter with a 1 MHz cutoff frequency,
which gives a nominal 100 ppm maximum error at the upper end of the
100 Hz signal bandwidth.

The board includes also a multi-purpose AD5791 DAC with a ∼1 µs settling
time, whose output can be applied to the integrator input by switching the input
selector to the position 2, as shown in Fig. 5.6. This is used both for the periodic
gain self-calibration, and to generate various kinds of analogue output signals as
may be needed for diagnostics (e.g. an image of the measured field B̄ to be vi-
sualized on the spot with an oscilloscope) or for special purposes (e.g. an image
of the field derivative ˙̄B that is used to compensate eddy current effects in the PS
magnets). Three mechanical potentiometers are also included to adjust manually
the offset, positive and negative range of the DAC as needed for gain calibration,
as explained below. I/O connectors include, beside the dual ADC input and the
DAC output, two TTL/LVDS DIO connectors for the daisy chaining and diag-
nostics of the card’s output. Finally, four diagnostic status LEDs signal, on any
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given machine cycle, the reception or lack thereof of a high- or low-field marker
trigger.

Integration algorithm

The integrator implements two identical acquisition and computation chains in
parallel, which are combined linearly to provide the final output:

B̄ = k1B̄1 + k2B̄2. (5.2)

This implementation provides the flexibility to use only one set of sensors, or to
mix two sets according to the circumstances, as is required for example in the PS
B-train system. In the following, the operation of a single channel, dropping for
simplicity the index from all related variables is described in detail. The data-
flow is represented schematically in Fig. 5.6, where the analogue pre-processing
and signal digitization performed by the FMC is on the left, while the numerical
processing carried out by the FPGA is on the right.

FIGURE 5.6: Schematic flowchart of the integrator, including offset
and gain correction. The green blocks denote analogue processing

steps, while the yellow ones, processing in the digital domain.

It could be assumed that the differential voltage ∆Vin at the input of the con-
ditioning stage is the sum of the coil output voltage Vc, and the offset δV :

∆Vin = Vc + δV. (5.3)

In other words, only the sources of offset internal to the card (e.g. due to discrete
component imbalances) can be considered and the external ones can be neglected,
such as thermoelectric gradients on the cabling between the induction coil and the
card. This approximation is usually sufficient to obtain good results, as shown in
Section 8.3.
The differential voltage ∆V ′in at the input of the ADC can be expressed as:

∆V ′in = 0.8 (0.625∆Vin + ∆V2) =
1

2
∆Vin +

4

5
∆V2, (5.4)

where ∆V2 is the programmable offset added by the voltage divider thanks to the
digital potentiometer. The sampled voltage is first corrected according to (5.5):

Vout = GccVADC + ∆V1, (5.5)
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where Gcc ≈ 1 is the internal gain correction factor and ∆V1 represents the coarse
offset correction. To remain within the FPGA resource limits with a reasonable
margin, all variables in (5.5) are represented in 18-bits, with an effective resolution
of 1 LSB ≈ 76 µV. The change in magnetic flux ∆Φ is integrated according to:

∆Φi = τs

i∑
j=i∗k

Vout,j, (5.6)

where j is a running sample index, i∗k marks the start of the current integration
interval upon reception of the k − th field marker trigger, and τs = 500 ns is the
sampling time. The calculations in (5.5) and (5.6) are carried out with a 56-bit
depth to avoid overflow, and the flux change ∆Φi is represented with a depth
of 32-bits (1 LSB ≈ 5 nV s) to match the format of the final output. Finally, the
average magnetic field is computed according to the model (5.7):

B̄i = γ(Bm − α
∆Φi

Ac

), (5.7)

where the non-dimensional coefficients γ and α represent correction factors, ac-
counting respectively for the difference between the reference magnet and the
average of those in the accelerator, and any error in the effective area or the posi-
tion of the coil, as discussed in [105].

Drift correction

Drift correction relies on the availability of beam-less ZERO cycles during which
the integrator input can be safely short-circuited (position 3 of the input switch
in Fig. 5.6), and the observed drift can be attributed entirely to the voltage offset
δV. Since sometimes the accelerators operate with many, closely spaced ZERO cy-
cles, a dead time of 5 minutes between corrections is imposed, which in practice
was found to avoid possible instabilities. During the correction process, the dis-
tributed field values will be of course meaningless and must be disregarded by
the users; in particular, the power converters feeding PS and PSB magnets must
open their control loops to avoid runaway instability.

The estimation and compensation of the voltage offset are carried out in two
stages. The first stage is purely numerical and occurs in the FPGA, where the
coarse offset correction ∆V1 is derived by averaging the voltage during a portion
of a ZERO cycle:

∆V1 = −δV = −∆Φ0

n0τs
= − 1

n0

i0+n0−1∑
i=i0

Vout,i, (5.8)

where the index i0 marks the start of the short-circuit measurement, n0 repre-
sents its duration in samples and ∆Φ0 is the measured flux drift. The duration
of this measurement should be as long as possible to improve the accuracy of the
computed average, which scales as n−

1/2
0 ; however, it is important to leave some

margin at the start of the cycle for the control loop of the power converters to
be opened. As an example, in the PS system i0 = 400 kSamples or, equivalently,
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200 ms after C0 and n0 = 200 kSamples, corresponding to a 100 ms duration was
set.

Since the resolution of ∆V1 is limited to 1 Least Significant Bit (LSB) = 76 µV,
It was decided to implement an additional correction stage, adding a much finer
offset ∆V2 to the signal in the analogue input stage. This offset can be set with
1 µV resolution over a range of ±500 µV. Different strategies are currently being
evaluated to set optimally ∆V2, including differentiation followed by low-pass
filtering of the measured flux, or an iterative binary search strategy that aims at
zeroing the measured drift. As this feature is still at the prototype stage, all the
results reported in Section 8.3 were obtained by setting ∆V2 = 0.

Gain correction

The linear gain correction procedure is also performed during a ZERO cycle, im-
mediately after the offset calibration described above, except that the input is
switched on the position 2 of Fig. 5.6. This applies to the input of the acquisition
chain the output of the high-precision DAC, used as a voltage reference in the
range between ±Vref , with Vref = 8.75 V. In this range, which covers the major-
ity of cases, the DAC shows a very good linearity; moreover, Vref has an exact
hexadecimal representation in the VHDL code, which improves the accuracy of
the gain correction. The DAC itself is calibrated manually at least once, as part
of the production tests, with an external Agilent 34401A multimeter [122]. The
three mechanical potentiometers installed on the FMC are used respectively to
remove first any offset at 0 V, and then to adjust the values of ±Vref . This cal-
ibration procedure can be repeated during operation if deemed necessary. The
gain correction procedure consists of applying to the input first +Vref and then
−Vref , over two sequences of n1 samples each, during which the FPGA computes
the average of the sampled voltage. Taking into account the scaling done by the
conditioning module (5.4), the gain correction factor is then computed as:

Gcc =
1

2

Vref

1
n1

∑i1+n1−1
i=i1

Vi − 1
n1

∑i2+n1−1
i=i2

Vi
≈ 1, (5.9)

where i1 = i0 + n0 + ∆n is the starting sample of the +Vref acquisition , ∆n =
1kS is an interval of 0.5 ms introduced to give the input time to stabilize, n1 =
300 kSamples corresponds to the duration of the acquisition of150 ms, and i2 =
i1 + n1 + ∆n is the starting sample of the −Vref acquisition .

5.2.4 Field Simulation

The simulated field module, schematically represented in Fig. 5.8, generates in
real-time a high-resolution image of the nominal, pre-programmed magnetic cy-
cle as it is stored on the centralized LHC Software Architecture (LSA) database [123].
The role of this feature is twofold:

• as a normal part of the accelerator restart sequence, when the accelerating
RF cavity control system needs a realistic value of the field to be input via
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the B-train for its own frequency program, even when no beam is circulating
yet and the magnets are not powered.

• under certain special circumstances, when magnetic field measurement feed-
back is not the best option. For instance, machine operators may want to
replace the measured field temporarily with the simulated one as a beam
diagnostic tool. As another example, in the case of a power converter trip,
the value fed back to the RF cavities must switch automatically from the
measured to the simulated field, in order to avoid large, potentially harmful
discontinuities. Even more crucially, in the specific case of the AD, the sim-
ulated field is always preferred because the machine is magnetically very
reproducible, and the RF system is adversely affected by the noise inherent
in the measured field.

Vector cycle representation

The image of each cycle is stored in the LSA as a two-column vector table, where
the first column represents time and the second, in general, the magnetic field.
One exception to this rule is provided once more by the AD, where the LSA image
contains the magnet excitation current waveform, and the B-train software must
apply a given analytical relationship to derive the magnetic field. (This involved
procedure is not necessarily more precise than a measurement, but the accelerator
was finely adjusted accordingly in the 1990’s, and today there is hardly reason to
change.)

The vector cycle representation is very compact, most cycles being described
accurately by a few dozens to a few hundred vectors. A finer resolution is gen-
erally required at high field, where the current-to-field relationship is non-linear
due to iron saturation, or to smooth out discontinuities at the junction of current
ramps and plateaus. A maximum number of 7025 vectors can be accommodated
in the SPEC’s on-board RAM, which is more than enough for any present or an-
ticipated need. A small memory footprint is also critical to pre-fetch quickly from
LSA the table for the next cycle while the current cycle is still running. The tele-
gram provides an advance of at least 1.2 s, i.e. one basic accelerator period, which
is largely sufficient for the FESA software running on the FEC to interrogate the
database, download the data via the Technical Network and transfer it onto the
Simulated Field card1. This new strategy, unlike the out-of-date B-train systems
which kept in memory the full high-resolution time series corresponding to a few
cycle types, is way more efficient and general as it can adapt transparently to any
of the thousands of cycles already stored, or expected in future.

1By default, all external data are transferred onto the Integrator module via PCIe DMA, and
from there they get handed to the other modules down the LVDS daisy chain. The only exception
to this is the AD system, where there is no Integrator module and DMA is implemented directly
in the Simulate Field module FPGA
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Magnetic cycle interpolation

The table of vectors is interpolated to the desired resolution (by default, 4 µs) in
real-time in the FPGA, using Bresenham’s line algorithm. Practical details are
different, according to the accelerator. Implementation is simpler for the acceler-
ators in the PS complex (LEIR, PSB and PS), where the cycle length can only be
one, two or three basic 1.2 s periods. Conversely, in the antiproton decelerators
(AD and ELENA) cycle vectors are not necessarily known a priori, but are defined
at run time by specific start and stop timing events, triggered manually by oper-
ators in the Control Room. This mechanism provides the possibility to prolong
a plateau for an arbitrary duration, up to a couple of minutes, as required for
beam electron cooling or to accumulate antimatter for various experiments. Dur-
ing these pauses, the interpolation is temporarily stopped and the B-train outputs
a constant value. The possibility of pausing a cycle on the flat-top, by means of
a specific set of timing events, is also implemented in the SPS, where it used to
adjust beam extraction for ion-beam momentum slip stacking [[124]].

Simulated/Predicted/WR FMC

The FMC of the Simulated Field module (EDA-03557), which is physically the
same for the Predicted Field and WR modules, is shown in Fig. 5.7. there are two
input and two output mini-HDMI connectors for LVDS DIO, one SFP optical port
for WR and one coaxial output for the on-board AD5791 DAC.

FIGURE 5.7: EDA-03557 front view mounted on a SPEC card.

FIGURE 5.8: Schematic representation of the Simulated Field
dataflow.

As already said for the integrator module, also the simulated module com-
bined with a SPEC card is not limited to be used in this application but it can be
more widely used in industrial and scientific application where it is mandatory
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to transmit data at a very high rate between devices even 10 km far from each
other. Indeed the WR is spreading more and more in the industrial and scientific
world for these kind of applications[88].

5.2.5 Field Prediction

The Predicted Field module, which at the time of writing is at an early proto-
type stage, implements a mathematical model to derive in real-time the magnetic
field from the excitation current. This can be useful in a variety of scenarios,
which overlap with the Simulated Field use-cases. For example, machine opera-
tors might want to switch temporarily from the measured to the predicted field as
a diagnostic measure, whenever they suspect a sensor malfunction; or, the differ-
ence between measurement and expectation can be continuously monitored, as a
powerful real-time diagnostic tool. In the long-term, if proven to be sufficiently
accurate, the prediction might replace the measurement altogether, drastically
cutting the cost and complexity of future B-train systems. For the time being
this is not yet possible and further studies are required to achieve this result in
operation

Different categories of mathematical models are being considered as candi-
dates for this functionality. At CERN, a semi-empirical analytical model called
FIDEL [125] is used with success since 2007 to derive offline the inverse field-to-
current relationship of the superconducting LHC magnets, as needed for open-
loop control with 100 ppm accuracy. This is possible thanks to the coil-dominated
character of these magnets and to the very high field they reach, well above 8 T,
which minimize the impact of non-linear effects such as iron saturation, hystere-
sis and eddy or persistent currents. In iron-dominated magnets below 2 T, such
as those found in all other accelerators at CERN, these effects can affect the mag-
netic field much more severely, which makes the task more challenging.

This is especially true for history-dependent features, such as the remanent
field or the response to minor hysteresis loops, as illustrated by the failure of an
early linear dynamic model tested in the PSB [126]. Different classes of hysteresis
models are discussed widely in the literature, including closed-form or differen-
tial analytic expressions, operator-based and neural network formulations, which
have had some success such as those in [127]. At present, these are still being
evaluated to identify the most suitable one for real-time FPGA implementation.

FMC

The Predicted Field FMC carries no specialized hardware and is indeed the same
as the one for the Simulated Field described above. The FMC can accept as an in-
put the current measured with a high-precision Direct Current to Current Trans-
former (DCCT) and distributed by the controller of the power converters over
a dedicated WR network, using a specific definition of Ethernet frame that in-
cludes additionally the status of the power supply and its output voltage. The
frame rate in this case is much lower than for the B-train WR, i.e. usually 10 kfps,



58 Chapter 5. System Implementation

which corresponds to the operational frequency of the digital controller of the
power converter.

5.2.6 White Rabbit interface

White Rabbit, adopted as the IEEE 1588-2019 standard, is an Ethernet-based net-
work for real-time, large-scale distributed control systems, featuring determin-
istic data delivery at gigabit speed with sub-nanosecond synchronization over
multiple kilometers of optical fiber [108]. Originally developed at CERN, it is
now openly accessible under the GNU general public license in the OHWR and
is supported by National Instruments and many other vendors. Given the tight
timing constraints and the requirement to distribute serially the actual value of
the magnetic field, rather than just the increments as in the old systems, WR was
a rather natural choice [128]. The added value of this solution resides in the im-
proved maintainability of the network based on commercially available routers
and switches. These components can be remotely configured and upgraded with
a full suite of powerful remote debugging and diagnostic facilities that allow for
measurement of the transmission latency, warn of packet loss and more.

The measured, out-of-date, simulated and predicted fields are distributed through
the LVDS daisy chain connections to the WR FMC card, which is physically iden-
tical to those of the simulated and predicted modules. The FMC offers physically
the possibility of being used either as a receiver or a transmitter, the actual func-
tionality being implemented in the SPEC gateware. In the FIRESTORM B-train,
the FPGA handles the task to assemble the data in the so-called WR-Btrain frame,
illustrated in Fig. 5.9. The B-train frame is 26 bytes long and includes, in this
order:

• A 16-bit frame control header, consisting of an 8-bit frame type ID and var-
ious status and error flag bits, essential for remote diagnostics and calibra-
tion. In particular, there is a flag bit that signals if the current cycle is a
ZERO cycle; and two additional flag bits, which are set to 1 to indicate the
reception respectively of the C0 (cycle start) and field marker trigger pulses.
Since the pulses have a nominal width of 1 ms, each one of these two flags
will normally be set on 250 consecutive frames.

• The first part of the payload, comprising two 32-bit slots for the active B̄
and ˙̄B values. The active version of the magnetic field is selected among
the four possibilities and is positioned in the first slot, to ensure that all
users read by default the same value. In signed fixed-point representation,
the distributed field has a resolution (1 LSB) of 10 nT and a range of ±20 T,
which is more than enough for all foreseeable applications. The second slot
contains the numerical time derivative of the first one, with a resolution of
1 µT s−1 and a range of ±2 kT/s, also exceeding all foreseeable demands.

• The second part of the payload, which includes four 32-bit slots for the mea-
sured, out-of-date, simulated and predicted field, with the same resolution
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as the active field slot. Repetition of the active field slot implies a redun-
dancy of 4 bytes in the payload, which has negligible impact; in return, this
guarantees that all users and diagnostic tools may conveniently access at
any time the four versions of the field, at fixed slots within the frame.

FIGURE 5.9: Functional diagram of the broadcast White Rabbit Eth-
ernet frame.

The WR-Btrain frame is distributed as part of the larger streamer frame con-
sisting of a 46-bytes payload, the minimum-length for an Ethernet frame. As
padding is implemented to achieve the required payload size, this arrangement
leaves five additional 32-bit slots free for future expansion [129]. Based on the
frame size, this corresponds to a maximum theoretical rate of 1.4 Mfps over a gi-
gabit optical link. At present, a steady transmission rate of 250 kfps is achieved
reliably, while tests are ongoing to establish a practical upper limit.
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Part III

A tool for the measurement system
characterization
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Chapter 6

Monitoring system requirements and
proposal

In this chapter, the reason behind the new monitoring system is described, later
the requirements are illustrated. Than the proposed architecture for the new mon-
itoring system is described. First, an overview of the hardware selected is pre-
sented, later the proposed block diagram of the interconnections and functional
blocks is illustrated.

6.1 System requirements

Monitoring the WR payloads at full speed and for extended periods of time is
an essential part of both, the commissioning and operation phases. Initially, sys-
tem debugging requires that the measurements distributed via WR be compared
systematically to old measurements and the signals as received by the numerous
end users. Noise and glitches in the field measurement can affect destructively
the beams and require full bandwidth to be evaluated correctly. In operation,
continuous comparison of twin parallel acquisition chains to each other and to
expectations (simplified mathematical models) will be needed to diagnose in-
strumentation errors such as integrator drift, identify fault conditions to raise
the appropriate alarms and evaluate measurement uncertainty estimates.
So far, a Python-based acquisition system was used to intercept the WR stream
and save it to file. This implements a DMA to retrieve upcoming WR data previ-
ously stored on a Double Data Rate (DDR) memory. There are some drawbacks
to this solution, such as: not easy customization; not easy installation procedure;
impossibility to check simultaneously multiple measurement chains; no remote
access, and impossibility to select remotely the system to be monitored and de-
bugged.

A more flexible solution was needed, the requirements of the new system
were the following:

• Be able to catch all the frames sent (at 250 kHz) on the optical fiber with the
WR protocol.

• Be able to check the quality of the transmission to see directly what the users
see
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• Be able to watch at the same time both chains one and two for each machine
to compare them.

• Select remotely the machine to monitor via the fiber optical switch.

• A simple graphical user interface.

• An easy way to log locally the waveform acquired.

• A portable solution, remote access to the device from everywhere inside the
CERN network.

6.2 System proposal

6.2.1 Hardware selection

The strong requirements in terms of flexibility and remote access led the devel-
opment to use the CompactRIO (cRIO) platform from National Instruments (NI).
The optical fibers, chosen physical link to broadcast the measurement signals,
arrive in two optical fiber switches from the operational (OP) and spare (SP)
chains. To decode the WR B-train data, a cRIO White Rabbit module (CRIO-WR)
[130] was used. CRIO-WR is a standalone WR node implementation on a PCB
with a form factor for NI cRIO crates. The board is originally derived from and
keeps maximum firmware compatibly with the established boards SPEC [131]
and CUTE-WR [132]. To control the optical fiber switch, a DIO module NI-9401
connected to a Switch Controller was used.
In order to host and control the CRIO-WR and the DIO modules, a cRIO crate
controller NI-cRIO-9040 is used. The processor runs a real-time software target
used to access the device and therefore the B-train data from any PC on the same
network with an Ethernet connection. A simple overview of the proposed archi-
tecture is depicted in Fig. 7.3

NI-9040 Embedded Controller

The cRIO-9040 (Fig.6.1) is a four slots high performance embedded controller
from NI. Within the controller, there is a Xilinx FPGA Kintex-7 series and a dual
core Intel Atom running NI Linux Real-Time at 1.3 GHz. It manages the connec-
tion between the controller and a host PC over Ethernet. This device communi-
cates with the cRIO modules collecting the data coming from the CRIO-WR node
and addressing the optical fiber switch through the cRIO-DIO.

NI-9401 DIO module

The NI-9401 (Fig.6.2) is a configurable digital I/O module working between 0
V and 5 V TTL. In this application it controls the optical fiber switch controller,
selecting the machine (measurement chain) to be debugged and monitored. The
switch is a multiplexer, three digital lines are necessary to select one of the 8
machines remotely and a fourth line to select between OP and SP.
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FIGURE 6.1: NI-9040 Embedded Controller.

FIGURE 6.2: NI-9401 DIO module.

cRIO-WR module

FIGURE 6.3: cRIO-WR module.
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CRIO-WR [130] is a custom board with native WR support based on an XC6SLX45T
Spartan-6 FPGA (Fig.6.3) The board is originally derived from and keeps maxi-
mum firmware compatibly with the established boards SPEC [131] and CUTE-
WR [132]. The FPGA gateware includes the WR PTP Core [133][134], the WR
streamers [135][136], the needed logic to extract and decode the B-train frames
over WR and to manage the cRIO Serial Periferal Interface (SPI) interface. In
addition, some glue logic is used to allow a good interface between the FPGA
modules.

6.2.2 Block Diagram

Optical fibers coming from the various B-Train and connected to the optical fiber
switch, as presented in Fig. 6.4, are plugged into the CRIO-WR module. The WR
PTP Core and the streamers extract the Ethernet payload sent via WR and pass it
to the BTrain receiver module decoding the raw signals forming the B-frame. In
the current implementation, a new valid frame arrives every 4 µs (250 kHz).
In this proof-of-concept, header, B, Bdot, and oldB are sent. This module takes
care of sending the data to the controller’s FPGA via cRIO interface.
The structured data arrive in the FPGA target, in which, a comparison is per-
formed to avoid the process of the same frame twice. The data pass then through
a FIFO to cross the two clock domains present inside the FPGA target, 40 MHz
and 5 MHz. The raw values are pulled from the structure payload and filled into
a FIFO, one for each slot. Data is then retrieved by the host application through
the Ethernet interface. Thanks to the real-time target, received and decoded data
are sent to the network and to the host PC on the same subnetwork of the chassis.
On the host side, data are collected and elaborated to be plotted and logged into
.csv files.
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Chapter 7

Monitoring system implementation

In this chapter, the implementation of the new monitoring system is described.
First, an overview of the used software tools is illustrated. Later, the implementa-
tions of all the FPGA modules and of the Labview host application are described
in detail. Finally, the obtained results proving the fulfillment of all the require-
ments are fully discussed.

7.1 Used software

• LabVIEW is a systems engineering software for applications that require
test, measurement, and control with rapid access to hardware and data in-
sights. LabVIEW offers a graphical programming approach that helps you
visualize every aspect of your application, including hardware configura-
tion. This visualization makes it simple to develop data analysis algorithms,
and design custom user interfaces. LabVIEW2017 was used to develop the
software running on the host computer to interface with the controller and
to have the graphical user interface of the system.

• LabVIEW FPGA is an additional module of the LabVIEW platform. It al-
lows to program FPGAs present in some National Instruments chassis di-
rectly in LabVIEW but with the possibility to import and reuse existing HDL
(VHDL, Verilog) code with the IP Integration Node. LabVIEW FPGA is also
fully equipped with built-in simulation capabilities and debugging tools.
This tool was used to program the FPGA embedded in the cRIO-9040 con-
troller.

• Xilinx Integrated Synthesis Environment (ISE) is a software produced by
Xilinx for synthesis and analysis of Hardware Description language (HDL)
designs. The version 14.7 was used to synthesize of the code for the Spartan-
6 FPGA and to program the flash memory present on the cRIO-WR board
to allow the self programming of the FPGA at each reboot.

• EDA Playground is an online tool that allows simulating HDL circuits with
commercial simulators. EDA Playground is specifically designed for small
prototypes and examples and for this purpose it was used. This tool was
used to test the developed sub-modules to certify their functionality before
to integrate them into the main project.
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• ModelSim is a multi-language HDL simulation environment by Mentor
Graphics, for simulation of hardware description languages such as VHDL,
Verilog, and SystemC, and includes a built-in C debugger. ModelSim can
be used independently, or in conjunction with Intel Quartus Prime, Xilinx
ISE, or Xilinx Vivado.

7.2 VHDL and Software Development

7.2.1 cRIO-WR FPGA Gateware

The FPGA gateware on the CRIO-WR module was developed starting from an
example project available on the CERN Open Hardware Repository [130]. The
existing demo project contains only the WR-PTP core and it sends a time-stamp of
a few bytes. To reach the desired goals, some blocks were added: Streamer mod-
ule to extract the Ethernet payload out of the WR-PTP core; BTrain Transceiver
module to decode the user specific B Frame [137]; and cRIO SPI-bus controller to
send/receive data to/from the cRIO embedded controller. B frames are identified
through the header and latched out when a new valid frame arrives. The cRIO
SPI-bus controller block is then transmitting the data into the cRIO controller.

7.2.2 FPGA Kintex-7 70 T

The cRIO controller’s embedded FPGA collects the data from the CRIO-WR mod-
ules and provides the decoded signals to the host user application. On the FPGA
there are two different clock domains, 40 MHz for the SPI interface with the
CRIO-WR modules and 5 MHz for the host application and DIO module inter-
face.

bit 7 – 0 : Frame type 
              => 0x42, ASCII code of ‘B’, used for the B field measurement frame 
                 => 0x49, ASCII code of ‘I’ used for the Imain frame 
bit 8  : Simulation/Effective bit, ‘0’ if the B field sent is measured, ‘1’ if the B field sent is simulated. 
bit 9   : Calibration error flag bit > Not implemented yet. TODO. 
bit 10 : C0 pulse 
bit 11 : Zero cycle pulse 
bit 12 : Focusing low marker flag (optional)
bit 13 : Defocusing low marker flag (optional) 
bit 14– 15 : Don’t care, not defined control bits. 

bit15 bit14 bit13 bit12 bit11 bit10 bit9 bit8 bit7-0 : Frame type (8bits) 

Ethernet 
Padding to 
have 64 bytes 

Frame ctrl 
16 bits 

B (dipole) 
32-bits (signed)
   

10 nT (LSB) 
(> ±20 T range) 

Bdot 
32-bits (signed) 
  

1 T/s (LSB) 
(> ±2KT/s range) 

OLD B 
32-bits (signed) 
  

10 nT (LSB) 
(> ±20 T range)  

Measured B
32-bits (signed) 
  

10 nT (LSB) 
(> ±20 T range) 

CRC 16 
bits 

bit 7 – 0 : Frame type 
               => 0x49, ASCII code of ‘I’ used for the Imain frame 
                => 0x42, ASCII code of ‘B’, used for the B field measurement frame 
bit 8   : Simulation/Effective bit, ‘0’ if the B field sent is measured, ‘1’ if the B field sent is simulated. 
bit 9   : Error flag bit, ‘1’ if one of error detection system see something wrong. 
bit 10 : Don’t care, not defined control bit.
bit 11 : Don’t care, not defined control bit. 
bit 12 : Don’t care, not defined control bit. 
bit 13 : Don’t care, not defined control bit. 
bit 14– 15 : Don’t care, not defined control bit. 

bit15 bit14 bit13 bit12 bit11 bit10 bit9 bit8 bit7-0 : Frame type (8bits) 

Frame ctrl 
16 bits 

Imain 
32-bits (signed)
   

1 mA(LSB) 
(> ±2000KA range) 

Ethernet 
Padding to 
have 64 bytes 

CRC 16 
bits 

B frame: 
(for the PS, 
ELENA, 
BOOSTER) 

I frame: 
(for the PS) 

Simulated B
32-bits (signed) 
  

10 nT (LSB) 
(> ±20 T range) 

Synthetic B
32-bits (signed) 
  

10 nT (LSB) 
(> ±20 T range) 

Frame type decoded (bits 7-0): 0x42 = 0100 0010
Bit 0     (0)     :  Frame type -  0=Bn or 1=In
Bit 1-3  (001) : n -  order of the field multiple: n=1 dipole, n=2 quadrupole … n=6 dodecapole
Bit 4-5  (00)   : Field type – measured=0, synthetic = 1, simulated=2
Bit 6-7  (01)   : reserved ?

Frame type decoded (bits 7-0): 0x49 = 0100 1001
Bit 0     (1)    : Frame type -  0=Bn or 1=In
bit 1-3  (100): n -  index of the power converter (n=1 POPS, n=2 F8L ....)
Bit 4-5  (00)  : Field type – measured=0, synthetic = 1, simulated=2
Bit 6-7  (01)  : reserved ?

v 2.1 – 02/06/2017

FIGURE 7.1: White Rabbit B-frame.

The data, at the controller’s FPGA target, is then connected to the cross clock
domain FIFO (2k samples of 14 bytes), in which its output is split into 5 differ-
ent signals, the WR B-frame slots. FIFO registers were needed to have all slots
synchronized and aligned for plotting on the host application.

The used FIFOs have a capacity of 2024 samples of 32 bits on the target side
and a capacity of 250k samples of 32 bits on the host side. These values were
calculated in order to avoid timeouts caused by FIFO overflow.
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The DIO module is also controlled by the controller’s FPGA. It drives the
switch controller and multiplexes the 16 optical fiber switch inputs to its 2 out-
puts, OP and SP chains. The fibers are then connected to the CRIO-WR and pro-
cessed resulting in 16 different monitored systems with only two fiber SFP port
inputs.

7.2.3 LabVIEW Host Application

On the host side, a dedicated LabVIEW user application was developed. At each
start of its VI, the depth of the FIFO registers is initialized (5x 250k sample FIFOs
of 32 bits each).
The main while loop reads out and extracts the data from the 32 bits five slots.
A scaling factor is then applied and samples are decimated. The decimation is
performed to shrink the decoded samples for plotting purposes.
As shown in Fig. 7.2, there are two graphs, one for B, old B, and C0, and a sep-
arate one for Bdot. Each waveform on the graphs can be enabled or disabled
depending on the analysis to be performed. In a second loop, based on events,
the multiplexer is controlled to select which measurement chain to be plotted. It
is also possible to log the signal waveforms into .tdms and/or .csv files for further
post processing with other tools, assuring a correct time synchronization due to
the White Rabbit protocol implementation.

FIGURE 7.2: B-train monitoring proposed architecture.
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7.3 Results

The whole full system was assembled and tested in the B-Train lab at CERN. The
tests were carried out following this list of requirement.

• System stability

• Correct reception of the WR Frame and correct decoding of the B_Train
frame

• Satisfaction of real-time requirements (reduced random delay)

• Correct switching between the machines

• Correct frame switching

• Correct file logging

In the following paragraphs the chosen method for the most critical test where
described more in detail.

User

cmd

2x
Optical 

Fiber 
Switch
OP/SP

Switch
Controller

cRIO
9040

8:1
mux
ctrl

Rack

8:1 OP
Fiber

8:1 SP
Fiber

GPN
Network

cRIO
WR

cRIO
DIO

FIGURE 7.3: B-train monitoring proposed architecture.

The legacy Python application and the FESA navigator were used as a ref-
erence to prove the correct decoding of the WR frames. Starting from a known
point of a known cycle the data were saved and compared with the same cycle
acquired with the other two monitoring tools during this test no problems were
discovered and the data were always correctly decoded. The real-time feature
was tested looking at the debugging info provided by the WR-switch and col-
lected in a Grafana based user interface. The WR switch reported no frame lost
in all the observation periods, also the delay was within the specification. These
tests reported in Fig.7.4 and in Fig.7.5 validated the system real-time capabilities.
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FIGURE 7.4: WR witch status connected to the monitoring system in
a period of a month. the only error is related to an unplugged RJ45

debug adapter not related to this work.

FIGURE 7.5: TX and RX frames flow through the switch connected
to the monitoring tool in a period of a month.

The complete system stability was tested letting the system run for a month.
The only reboot of the system was caused by an accidental power cut in the lab.
The presented device is still running to be used on the field and to collect data
about its stability to improve it even further.
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Part IV

Metrological characterization and
calibration
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Chapter 8

DC performance

In this chapter, the results concerning voltage, magnetic flux and integrator drift
are discussed separately. The accuracy of the integrator acquisition chain under
DC input conditions was evaluated by applying a known reference voltage to
Vin, and comparing it to the measurement results. The voltage source used was
a Data-Precision-8200 multifunction calibrator, which is characterised by a nom-
inal resolution of 10 µV and an RMS output noise level of about 300 µV. A total
of 20 values in the range between ±8.75 V were applied sequentially, while at
the same time the DAC output was measured with an Agilent 34401A multime-
ter [122][138].

8.1 Voltage measurement

The accuracy of the voltage measurement, performed with the ADC 7986 provid-
ing a Voltage Reference (VREF) equal to 5.0V , including the in-built gain and the
coarse offset corrections, was determined by comparing the known input with
the values of VADC and Vout taken from the internal FPGA registers. During the
tests the fine offset correction ∆V2 was set to zero, and the results are plotted in
Fig. 8.1. The error bars represent the repeatability σV = 400 µV, obtained from the
standard deviation over 150 measurements, corresponding to about 5 LSB. For
the most part, this scatter is due to the external source, as confirmed by perform-
ing the measurements with the input shorted, in which the intrinsic noise of the
acquisition chain is about 100 µV, slightly more than 1 LSB.

The difference between VADC and Vin provides an indication of the error intro-
duced by the conditioning and digitisation stages, which from Fig. 8.1 is approx-
imately linear. It can be seen in Table 8.1 that the slope and offset, as obtained
from an off-line linear regression absed calibration, are very close to the parame-
ters determined by the in-built correction algorithms this prove the effectiveness
of the in-built correction method. Since these are more than one order of magni-
tude above the nominal ratings of the ADC, the error must be ascribed essentially
to the analogue conditioning stage. From the difference between Vout and Vin, it is
possible to determine the residual error following the in-built correction, which
is random across the whole input range and has an RMS average of 135 µV, i.e. a
little less than 2 LSB.
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FIGURE 8.1: Error of FIRESTORM digital voltages with respect to
measured input value.

Calibration Method ∆V1 (µV) Gcc − 1 (ppm)
In-built Correction 381 221

Manual Linear Least-Squares Fit 423 220

TABLE 8.1: Comparison between calibration methods that demon-
strate the effectiveness of the in-built correction.

8.2 Flux measurement

The accuracy of the flux measurement was determined by integrating a constant
input voltage Vin in the range ±Vref over a precisely set duration of ∆t = 1 s,
taking a zero integration constant consisting in integrating the measured values
when the input of the system is short circuited, and comparing the output ∆Φ, as
read from the FPGA register, to the expected value Vin∆t. The results, expressed
in terms of the equivalent voltage difference:

∆Ve = ∆Φ/∆t − Vin, (8.1)

are plotted in Fig. 8.2. It can be seen that all measurements lie within the expected
range of ±1/2 LSB from Vout, with the error bars representing the standard devi-
ation over 1000 consecutive repetitions. On RMS average, the repeatability thus
evaluated as the standard deviation of the data reported in Fig. 8.2 is about 3 µV
or, equivalently, 0.04 LSB. The improvement compared to the voltage noise level
can be attributed to the numerical integration suppressing high-frequency noise
components. The RMS average of the mean errors across the whole input range
is 141 µV, corresponding to about 2 LSB. This is consistent with the residual error
of Vout reported in Section 8.1.
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FIGURE 8.2: Mean and standard deviation of ∆Ve (8.1) over the full
input dynamic range.

8.3 Integrator drift

The short- and long-term performances of the in-built offset voltage compen-
sation method were evaluated by first shorting the input, then retrieving the
measured flux waveforms over integration periods of duration ∆t = 1 s and
∆t = 120 s . The shortest duration is representative of the typical cycle lengths
in most of CERN accelerators; at the other extreme, two minutes is the longest
expected in ELENA antiproton cycles. Measurements were repeated respectively
1000 and 8 times and the results are plotted in Fig. 8.3a and 8.3b. The average
and standard deviation of the equivalent voltage offset δV = ∆Φ/∆t are given in
Table 8.2 for each set of measurements.

The overall RMS voltage offset after the in-built correction, calculated as the
average of the equivalent voltage offset over 1000, and reported in Table 8.2 is
about 8 µV, which under typical operating conditions i.e. using a coil of area
Ac ≈ 1 m2, is equivalent to a measured field drift of the order of 8 µT s−1. Such
an error is usually acceptable for the shorter cycles, but may not be so for longer
ones; to cover for this case, a specific novel correction strategy is currently under
development [120]. To conclude, the curves in 8.3b illustrate the time evolution
of the offset, which is observed to fluctuate with a scatter as large as ∼50 % of its
mean value on a time scale of a few seconds. This result allows to assume that
the offset is constant during the whole magnetic cycle, considering also that the
standard magnetic cycle duration is always under 3 s.

TABLE 8.2: Linearly estimated offset voltage

Integration Period (s) Mean (µV) σ (µV)
1 7.7 3.5

120 6.5 3.6
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FIGURE 8.3: Results of integrator drift tests.
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Chapter 9

Dynamic performance

In this chapter, the measurements of amplitude transfer function and the latency
of the whole acquisition chain are presented. the measurement were performed
on a the test setup represented schematically in Fig. 9.1, including: a signal gen-
erator, a complete FEC with Integrator, Simulated Field and WR output modules,
an external WR switch (simulating the distribution network) and a WR receiver
(simulating an end user).

signal
generator INT SIM WR

OUT
WR

switch
WR

receiver
data
files

DAQ data
files

bypass

cycle start trigger

FIGURE 9.1: Schematic layout of the dynamic performance test
setup.

9.1 AC amplitude transfer function

The gain response was measured as a function of frequency by injecting into the
integrator for 1 s sine waves of varying amplitude i.e. 1, 5 and 10 Vpp, and then re-
trieving the ∆Φ(t) waveform from the White Rabbit stream at the receiver’s end.
For this test, the receiver used was the WR monitoring system presented in chap-
ter 6, which is able to stream continuously multiple WR channels to disk at a peak
aggregated rate of about 100 kfps. This entails an uncertainty of ± 10 µs on any
individual timing measurement, which can however be improved by averaging
over a sufficiently high number of repetitions. The peak-to-peak amplitude of the
response was then derived as the mean difference between successive maxima
and minima, thereby canceling out the effect of integrator drift. The amplitude
response ratio is shown in Fig. 9.2a along with the −20 dB/decade slope of an
ideal integrator, while the difference between the two is magnified in Figure 9.2b.
Below 100 Hz, mean errors are within the target tolerance of 100 ppm; whereas,
starting from 1 kHz, the effect of the anti-aliasing filters starts to manifest, and the
error increases by several hundred ppm. For frequencies below 100 Hz the scatter
of the results, about 200 ppm, is comparable to the errors measured during the DC
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tests. At 1 kHz the scatter is about one order of magnitude higher, which could be
ascribed to the decreasing number of samples per period.

The standard deviation of the integrated voltage was the calculated to be sim-
ilar, approximately 100 µV, and is attributed to the noise of the signal generator.
At higher frequencies, the sampling rate limits the drift correction that can be
performed thereby increasing the standard deviation of the measurement results,
hence the larger error bars at 1 kHz.
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FIGURE 9.2: Dynamic gain response results.

9.2 Latency measurements

The latency of the whole measurement chain is of fundamental importance for the
qualification of the system as a feedback source for the user control loops, and in
particular for the RF subsystem. The propagation of a step change in the input
along the chain was analyzed, to determinate the contribution of each processing
and transmission stage. The schematic layout of the test setup is shown in Fig. 9.3.
A constant voltage was applied to the integrator input, to generate a constant-
slope ramp in the measured field . The initial time reference was given by the C0
cycle start trigger provided by a Central Timing Card, via the B-train crate. (All
triggers and DIO connections are done via the crate, which does not appear in
the layout for the sake of simplicity.) The C0 trigger was used in place of a field
marker to reset to zero the integration, thus providing an easy-to-identify falling
edge propagating through the chain.
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At the end of the chain a WR receiver was set up, which for this test consisted
of an additional SPEC/FMC module, specifically designed for diagnostics. A
single WR switch was included to reproduce the configuration common to most
deployed systems.

To measure the propagation delay between components, two different, com-
plementary methods were used: 1) the time interval between TTL triggers and/or
the diagnostic analogue output of the modules was measured with a NI 6366
USB DAQ, sampling at 10 MSamples/s; 2) the timing information built in the WR
stream was retrieved by means of the standard WR diagnostic facilities.

The tests were done at two different WR frame rates i.e. 250 kfps, which is
currently the default, and 100 kfps, which is under consideration to match the
control loop requirements of the RF subsystem in the AD, ELENA, LEIR and PSB
accelerators. The output data rate of the integrator remained fixed at 250 kfps in
both cases.

The results obtained are summarized in Fig. 9.3 and listed in detail in Ta-
ble 9.1, 9.2 and 9.3, where their extrema, mean and standard deviation (jitter)
over 10,000 repetitions are reported.

Below the different quantities that were measured are listed, and the details
of the procedure are discussed:

FIGURE 9.3: Latency test of the different components of the acquisi-
tion and transmission chain @ 250 kfps. In red, TTL trigger pulses
associated with the cycle start C0; in green, the analogue outputs
of the SPEC modules; and in cyan, quantities derived from the WR
frame. The horizontal axis is used to represent time differences (not

to scale).

• The overall mean propagation delay, 19.5 ± 2.3 µs (2 σ) at 250 kfps, was
obtained from the time difference between C0 and a TTL trigger pulse emit-
ted by the WR receiver, as soon as it detected the field step change. The
full statistics are reported in Table 9.1. This result is the most important, as
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it qualifies the whole acquisition chain. The accuracy of a single measure-
ment is dominated by the frame period length in the WR stream, but due
to the high number of repetitions the uncertainty of the mean is as low as
0.02 µs.

• The WR delay, from transmitter to receiver, was measured as the time dif-
ference between C0 and a second TTL trigger pulse emitted by the WR re-
ceiver. For this, a C0 was directly injected in the WR module via one of the
two DIO connections available. There, the WR core set to 1 the start cycle
flag in the header of the frames transmitted throughout the duration of the
pulse. At the other end, the WR receiver generated a pulse upon arrival
of the first active flag. The average delay thus measured is 7.3 ± 1.2 µs
@ 250 kfps (Table 9.1). The setup included a total fiber length of about 5 m
which adds a negligible delay, taking into account a typical propagation
speed of 5 µs km−1.

• The WR delay was also cross-checked by subtracting the high-resolution,
GPS-synchronized timestamps injected in every frame by the WR transmit-
ter, from the timestamp available at the receiver end. Again, the specific
frame used was the first one having its field marker flag set in the Frame
Control header, thereby representing the rising edge of the field marker trig-
ger pulse. The result obtained with this method is 3.9 ± 1.2 µs @ 250 kfps
(Table 9.2 ), which is significantly lower than the previous result. This differ-
ence can be ascribed to the functional sequence of the operations executed
in the modules, since timestamping is the last one before transmission, and
the first one upon reception. The uncertainty of each single timestamp dif-
ference is equal to the WR frame period, i.e. 4 µs.

• The delay due to the WR switch alone, i.e. 2.4 ± 0.1 µs @ 250 kfps, was
measured by repeating the previous test while bypassing the switch.

• The details of the propagation through the FEC were measured by a differ-
ent method, based on generating an analog output image of the integrated
field via the DAC built in the FMCs of the Integrator, the Simulated Field
and the WR modules. 1 The mean delays in the Integrator alone, and in the
whole chain up to the WR module are 4.4 and 10.9 µs respectively, with a
single-take uncertainty of 1 µs due to the sampling rate of the DAC.

The overall delay is well below the specified tolerance of 30 µs, even taking
into account the possibility of multiple switches in the WR network, and of phys-
ical fiber lengths up to 100 m as it applies to most installations. 2

When decreasing the WR frame rate to 100 kfps, the overall latency increases
by about 3 µs, which is half than what could have been expected from the 6 µs

1Since the Simulated Field module is by far the less computationally intensive of the three, its
latency is very low and the relative results were unstable, which is the reason why they are not
reported here.

2In the SPS, the B-train measurement is transmitted about 3 km away to the beam dump sub-
system, where it is used by the safety interlock PLC. As this subsystem has a high tolerance, about
1 mT, it is unaffected by the additional 15 µs delay, even during fast field ramps.
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frame period increase. However, this is consistent with the frame period itself
being only a small component of the delay, which is dominated by the processing
taking place in the three FEC modules in series.

TABLE 9.1: Overall FIRESTORM latency at different transmission
speeds

Input to Output
at 250 kHz (µs)

Transmission
at 250 kHz (µs)

Input to Output
at 100 kHz (µs)

Transmission
at 100 kHz (µs)

Average 19.5 7.3 22.6 8.3
Minimum 15.6 4.9 15.7 5.0
Maximum 23.8 9.9 29.7 11.7

2σ 2.3 1.2 3.6 1.9

TABLE 9.2: Delay across the White Rabbit network @ 250 kfps

Without Switch (µs) With Switch (µs)
Average 1.53 3.93

Minimum 1.52 3.86
Maximum 4.32 7.2

2σ 0.13 0.13

TABLE 9.3: Internal FEC propagation time @ 250 kfps

C0 to Integrator DAC (µs) C0 to WR DAC (µs)
Average 4.4 10.9

Minimum 1.8 8.4
Maximum 6.8 13.3

2σ 1.2 1.7
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Part V

Machine learning
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Chapter 10

Hysteresis modelling in
iron-dominated magnets based on a
multi-layered NARX neural network
approach

In this chapter, different machine learning approaches for magnetic field predic-
tions are presented, based on tuning a Multi-layered neural network to fit directly
the magnet response, by avoiding complementary physical models. Different ar-
chitectures are considered and selected according to a compromise between the
accuracy of the field estimation and the level of complexity of the network. In
the optics of a future real-time implementation of the network in FPGA the com-
plexity of the network is relevant not only in the training phases bu also in the
operational ones because all the weighs of the neurons have to be locally stored.
First a description of the problem statement is presented. Then an overview of the
measurement setup and the dataset preparation is depicted. Later, the architec-
ture tuning and the model selection phases were described. Finally, a comparison
between all the tested architecture is presented, highlighting the one with the best
performances.

10.1 Problem statement and architecture proposal

The problem of real-time magnetic field prediction can be formally expressed
as the estimation of a generic unknown output y as a function f of H previous
outputs, the input u and K previous inputs:

y(n) = f(y(n− 1), ..., y(n−H), u(n), u(n− 1), ..., u(n−K)), (10.1)

where y is the estimated magnetic field, u is the excitation current and n is a
discrete time index. The model relies on two buffers, one of network outputs and
another of past observations of the input current.
The network’s predictive capability is enhanced by endowing it with two buffers
taking into account the previous input and output of the system. These are ex-
pected to model dynamic features that are either time-dependent, such as eddy
current decay transients, or history-dependent, such as magnetic hysteresis. In
practice, it is proposed to approximate Eq. 10.1 with a Multi-layered NARX model.
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FIGURE 10.1: Multi-layered NARX scheme. The computation of the
states alj of the network is forward, starting from first layer (Eq.10.2),
then updating internal layers (Eq.10.3), and finally computing the

output y(n) (Eq.10.4).

Given a NARX network with L layers (Fig.10.1), the input can be propagated for-
ward through the layers in the following way. The output values a1

j of the A1

neurons belonging to the first layer l = 1 of the network are computed by means
of the equations:

a1
j(n) = φA1

(
H∑
h=1

WO
jhy(n− h) +

K∑
k=0

W I
jku(n− k)

)
(10.2)

where φA1 is the activation function of the neurons of the layer 1, the weights WO
jh

control the strength of the connections from the h-th output to the neuron j of
the layer 1 and the weights W I

jk control the strength of the connection from the
k-th input to the neuron j of the layer 1. Similarly, for each successive layer it is
possible to compute the output values of each neuron by the equations:

alj(n) = φAl

(
Al∑
i=0

W l
jia

l−1
i (n)

)
(10.3)

where l ∈ {2, . . . , L} is the layer index, φAl is the activation function of the neu-
rons of the l-th layer, and W l

ji are the weights that control the strength of the
connection from the neuron i of the layer l − 1 to the neuron j of the layer l. the
conventional formulation is used in which al−1

0 = 1 are set in order to simulate
the bias term W l

j0. The value of the output neuron y is computed as:
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y(n) =

AL−1∑
i=0

WE
i a

L
i (n) (10.4)

where the identity as activation function is used, while the weights WE
i control

the strength of the connection coming from the neuron i of the layer L to the
output neuron y. In the simulation the activation function φAl(x) = tanh(x) is set
for all the layers l ∈ {1, L}. In summary, the architecture is defined by an array of
hyperparameters θ = (L,A, K,H).

The presented modellization takes inspiration from recent ’Jordan’ NARX neu-
ral network models [139, 140] and it is augmented with internal static layers. Al-
though in those models the output layer is sent back to the input layers (that is
why this kind of modelization is also referred to as recurrent), it is worth noting
that the computation is completely forward. Consequently, this approach avoids
the shortcomings of Backpropagation Through Time (BPTT) learning [141], which
requires unfolding the network through time for as many timesteps as there are
in the sequence, which significantly slows down learning and/or causes large
memory consumption. Note that the presented formalizations collapse to the
definition of Deep MLP (when H = K = 0) and Deep TDNN (when H = 0).
Selecting a model architecture is therefore equivalent to assigning a set of integer
values to the hyperparameters θ.

10.2 Measurement Setup

An extensive measurement campaign was performed as a case study on a spare
reference quadrupole available at CERN (Fig. 10.2). The measurement setup is
represented schematically in Fig. 10.3. The magnet was fed by an A&D AG
BIP1540 power supply, capable of providing an output current up to 40 A and
an output voltage of 10 V. To control the power supply, an NI PXI 4461 card is
used driven by custom C++ software based on the Flexible Framework for Mag-
netic Measurements (FFMM) [142]. The current was measured with a LEM IT60
ULTRASTAB Direct Current Current Transducer (DCCT) having an accuracy of
3 ppm.

The magnet was excited with ten different cycle sequences. In order to enforce
a specific initial condition (for H and B) it was decided to perform a degaussing
of the magnet before starting the acquisitions [143]. In this way, the initial condi-
tions with H=0 A/m and B=0 T are ensured. The described shape of the wave-
forms was designed to use curves similar to the ones actually used in magnets
for particle accelerators [144].

Each sequence includes seven trapezoidal cycles about 4 to 5 seconds long,
starting from I = 0 and reaching increasingly higher flat-top values, designed
to scan the whole interior area of a major hysteresis loop. The major loop corre-
sponds to the maximum applied current of 25 A and each flat-top level represents
an inversion point in the magnetic history, which determines the subsequent
branch of the hysteresis loop. The flat-top levels in the different sequences were
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FIGURE 10.2: Reference quadrupole used for the case study. At the
tip of the pole, the Hall probe based FM302 teslameter provided by
Projekt Elektronic GmbH was used to measure the magnetic field.

Power supply
BIP1540

FM302
TeslameterNI PXI 461 

PC

DCCT
    Magnet

Hall 
probe

FIGURE 10.3: Schematics of measurement setup.
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FIGURE 10.4: Sample Plot of the current I(t) (in black) and the mag-
netic field, B(t) (in red) from the collected data. The abscissa repre-
sents the time in seconds (obtained knowing the sample rate of the
acquisitions of 2.5 kS/s - corresponding to a sampling interval of
0.4 ms). The ordinate has a double scale: on the left for the excita-
tion current I(t) and on the right for the magnetic field B(t). Panel
(a) shows the form of a whole sequence of data collected. Panel (b)
shows a selection focusing on the first set of cycles, containing seven
magnetic cycles; Panels (c) and (d) represent a further zoom on the

last two and one magnetic cycle of the set of cycles respectively.
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all different, in order to test the interpolating capability of the network. All differ-
ent levels are listed in Tab. 10.1, while a sample subset is plotted in Fig. 10.4. The
field ramp-rate, defined as the slope of the excitation current during the ramps,
is kept constant for all training and test cycles, so as to minimize the impact of
this variable on the predictive performance of the neural network. Even if the
ramp-rate is assumed to be constant, the magnetic field will still be affected by
hysteresis due to the different amplitude of the plateau and eddy currents. This
is because the main objective of this paper is modelling the hysteretic part of the
response, rather than different dynamics, so the aim was to eliminate as much as
possible any confounding variable.

The magnetic field was measured with a Hall probe-based FM302 teslameter,
from Projekt Elektronic GmbH, with a sensitivity of 1 V/T. The output voltage
was acquired with the same PXI card used to control the power supply, with 24
bits of resolution at the raw sampling rate of 2.5 kS/s. The probe was placed at
the tip of one of the magnet poles to measure the peak field in the gap (propor-
tional to the quadrupolar field gradient acting as a magnetic lens on the particle
beam). The maximum field measured was Bmax = 0.16 T. The noise level of the
measurement, estimated from its standard deviation on the current plateaus, is
approximately 13 µT, i.e. 8.1 · 10−5 relative to the maximum.

10.3 Magnet response

The measured relationship g between the current I and the magnetic field B rep-
resents the so called hysteresis graph of the magnet:

B(I) = g(I) (10.5)

The relationship appears to be essentially linear, although a zoom-in reveals that
the field follows a different path when the current is reduced. The area of the hys-
teresis loop is indicative of the losses, which include a quasi-static contribution
intrinsic to the material, plus a dynamic component due to the eddy currents,
which increases with the ramp rate. The maximum width of the loop, relative to
the full range of the field, is approximately 1 % in the region between 7 and 17 A.

It is possible to get an insight into the magnetic response, using a Linear
Model [145] and in first approximation neglecting its nonlinear part:

B(I) = B0 +G · I + B̂(I) (10.6)

Consequently, it was possible to compute B0 = 7.79 · 10−4 T and G = 6.50 ·
10−3 T/A, respectively the offset and gain of the least-square linear regression
shown in Fig. 10.5.

B̂(I) is the residual of the regression and contains the nonlinear component.
This decomposition is crucial in the construction of datasets used to learn and
test models on the nonlinear part of the signal.
A different representation of the magnetic behavior as a function of the current
is given in Fig. 10.6, in terms of the so-called transfer function Tf , defined by the
field-to-current ratio:
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FIGURE 10.5: Hysteresis graph. (a): the field as a function of the
current, together with the least-square regression. (b): correspond-

ing plot magnified in a sample rectangle.

Tf(I) =
B(I)

I
=
B0

I
+G+

B̂(I)

I
(10.7)

In this figure one can more clearly see how the response switches discontinu-
ously from the lower to the upper branch of the hysteresis loop, as the current
starts to decrease at the end of each flat-top. The flatness of the lower branch on
the up-ramp between about 5 and 25 A corresponds to an almost constant trans-
fer function, i.e. the desired linear behavior under typical operating conditions.
Due to the field level being very low, there is no visible saturation leading to a
reduction of the transfer function at high current. The nonlinear component B̂
vanishes at the high and low reversal points of the hysteresis loops. As a result,
the vertical asymptote for I → 0 can be entirely attributed to the remanent field
B0. The transfer function B/I is equivalent to the H-B graph and it contains the
same amount of information, since in a magnetic circuit the field H is propor-
tional to the excitation current I. In the context of this application, the transfer
function is the preferred representation because it allows an operator to visualize
more readily the degree of linearity corresponding to a given level of excitation,
perfect linearity corresponding of course to a constant transfer function [146].

10.4 Dataset Preparation

The raw dataset D̄ is composed of the excitation current and field waveforms
of the 10 sequences of 7 magnetic cycles, acquired at 2.5 kS/s (sampling time
400 µs) for a total of 871 440 samples. During the network architecture selection
and training phases were carried out on a reduced subset D including 87 144
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FIGURE 10.6: Transfer function Tf(I) of the magnet, defined by the
ratio between magnetic field and excitation current as in Eq. (10.7).

samples at the actual sample rate of 250 S/s (corresponding to a sampling interval
of 4 ms.).

One half of the subsampled dataset D, DL was used for the architecture learn-
ing, and the remaining half, DE was used for the test and statistical error evalua-
tion.

The data arrays were organized in pairs [IL(n), BL(n)] and [IE(n), BE(n)] in-
cluding the measured current and field. The data in DL was further split into
training Dtrain

L , validation Dval
L and test Dtest

L datasets with a 60:20:20 ratio. The
splitting of the dataset is detailed in Tab. 10.1, where the sequences of flat-top
currents are also listed. It should be noted that the training subset includes only
a few of the possible transitions between different successive flat-top levels. Each
different combination is associated with a different branch of the magnetic hys-
teresis loop, and the accuracy of the inference made on the test combinations
gives a measure of the interpolating power of the trained network. In addition, a
second version of the datasets, D̂L = [ÎL(n), B̂L(n)] and D̂E = [ÎE(n), B̂E(n)], was
created by replacing the measured field with its nonlinear component, as derived
from Eq. (10.6), B̂(I) = B(I) − B0 − G · I . In this case, the magnetic field can be
computed by adding back the NN output ŷ to the previously subtracted linear
regression. The rationale of this decomposition is to isolate the physically inter-
esting part of the magnet’s response, focusing the training process on a dataset
having a much smaller dynamic range.
Architectures were simulated within the Neural Network Toolbox in Matlab 2018b.
The training and simulations were performed on a computer equipped with an
Intel Core i5, Clock 3.2GHz, Ram 8 GB.
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TABLE 10.1: Current cycle flat-top values of the 10 cycle sequences
tested. The role of each dataset, be it training, validation or test is

given in the second column.

Dataset Cycle Index Unit
Index Type 1 2 3 4 5 6 7

1 Dtrain
L 2 5 8 10 15 20 25 A

2 Dtrain
L 1 2 6 8 12 20 25 A

3 Dtrain
L 1 5 8 10 12 21 25 A

4 Dval
L 2 4 6 10 13 18 25 A

5 Dtest
L 3 6 11 16 20 23 25 A

6 DE, D̄E 3 6 11 16 20 23 25 A
7 DE, D̄E 2 6 9 13 17 22 25 A
8 DE, D̄E 3 6 9 15 18 21 25 A
9 DE, D̄E 1 3 7 9 13 18 25 A
10 DE, D̄E 2 4 8 11 15 19 25 A

TABLE 10.2: Parameters in input to Algorithm 1

params Value Description
epochs 200 Max. training epochs
maxFail 6 Max. validation failures
minGrad 1 · 10−7 Min. gradient
muMax 1 · 1010 Max. µ value
R 200 Learning repetitions

10.5 Architecture Tuning

10.5.1 Model Selection and Evaluation

An incremental approach was adopted, by increasing the complexity of the model
progressively. First, a static structure without feedback was considered, the num-
ber of layers L and then the number of neurons on each layer Al were indepen-
dently optimized. Next, a feedback was added first on the input, optimizing K,
and then on the output, optimizing H to finally achieve a NARX structure (see
section 10.5.3). The process was carried out on DL and also on D̂L as defined in
Section 10.4. This is because, besides testing the capability of the network archi-
tecture of reconstructing the magnetic field (B ≈ y), the capability of obtaining B
when focusing only on the learning of its nonlinear component and reconstruct-
ing it by adding the linear component was also tested (i.e., B ≈ B0 + Gu + ŷ).
The optimal hyperparameters are given in Tab. 10.3 and were later used also to
evaluate the models trained on the full dataset DL.

The pseudo-code representing each step of the selection process is listed in
Algorithm 1, where the input dataset D represents either the full or the nonlin-
ear component only version. The algorithm includes three main loops. The first
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Algorithm 1 Model Evaluation and Selection (M, params,D)

Require: setM of hyperparameters θj for each model to evaluate (see Table 10.3)
set params of simulation parameters (see Table 10.2)
the dataset D

Ensure: set Score of evaluations for each model inM
1: [Dtrain

L , Dval
L , Dtest

L ] = Split(DL, 60 : 20 : 20)
2: for θj ∈M do . Loop1: iterate over the set of different models
3: for i = 1 : R do . Loop2: repeat learning R times
4: repeat
5: W = train(θj, params,D

train
L , Dval

L )
6: until term_condition (params) . Loop3: actual execution of a training instance
7: [Btest

L , Itest
L ]← Dtest

L

8: yi ← y(θj,W ; Itest
L )

9: Error(i)← RMSE(yi, B
test) . as defined in Eq. 10.8

10: end for
11: Score(j) = model_evaluate(Error, θj) . compute BC scores, Eq. 10.9
12: end for

loop, Loop1, iterates over a set of modelsM, each one defined by its own hyper-
parameter vector, θj . The second loop, Loop2, trains the network and estimates its
prediction error R times on the test datasetDtest

L , in order to improve the statistical
significance of the results. The third loop, Loop3, is an actual instance of training
performed according to the training parameters given in Tab. 10.2, and the train-
ing and validation datasets, Dtrain

L and Dval
L . During the training procedure the

hyperparameters of the model θj are kept fixed, while the connection weights W
are updated iteratively with the objective to minimize the output reconstruction
error with the Levenberg-Marquardt (LM) method [147], until one of the termi-
nation criteria is met. These are contained in the function term_condition and
include:

• the validation error fails to decrease for maxFail iterations

• the maximum number of epochs for the training (epochs) is reached

• the LM damping factor µ exceeds its maximum acceptable value (muMax). In
the LM algorithm, the factor µ switches continuously from a Newton-like (µ ≈
0) to a steepest gradient descent (µ � 0) optimization. Too large values of µ
imply that one is too far from a minimum and the search has failed.

At the end of the learning phase, the validation dataset Dval
L is used to optimize

the network generalization. The test dataset Dtest
L is used to evaluate the pre-

diction performance of the network after the training in terms of the Root Mean
Square Error (RMSE), computed for each iteration of Loop2 as:

RMSE(yi, D
test) =

√√√√ ∑
n∈N

(yi(n)−Btest(n))2

|N |
(10.8)
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where yi = y(θj,W ; Itest
L ) is estimated according to Eq. (10.1) with the current

set of hyperparameters and weights, and |N | is the number of samples of the test
dataset. To choose the best architecture it is possible to perform a statistical model
selection: the model evidence P (D|θj) was maximized, i.e. a probability term
that expresses the preference shown by the data for the j − th model of hyperpa-
rameters θj . In general, the computation of this term is analytically intractable,
thus different approximations of this term were proposed in literature [145]. Pop-
ular approximations rely on different penalization terms of the model complexity
computed as the number of weights |W | determined by specific choice of hyper-
parameters θj , like Akaike Information Criterion (AIC) or Bayesian Information
Criterion (BIC).
A recently proposed information criterion, named Bridge Criterion (BC), was
used. BC aims at bridging the advantages of both AIC and BIC in the asymptotic
regime. [148] To this end, the function model_evaluate assigns to each hyperpa-
rameter θj a score based on the BC term:

Score(j) = |N | ln

(
1

R

R∑
i=1

Error2(i)

)
+ |N |2/3 · (1 + 1/2 + ... + 1/ |W |) (10.9)

Thus, the minimization of the BC term corresponds to the maximization of the evi-
dence of the j-th model, ensuring a balanced model fit as the first term in Eq. (10.9)
weighs the reconstruction error, while the second term penalizes the number of
weights.Moreover, a smaller parameter space allows us to find more stable solu-
tions during the training phase.

10.5.2 Static Network Structures

The model selection started by evaluating the performance of a static network,
without any feedback. This is the case of a Deep MLP Neural Network, defined
by hyperparameters θMLP that include the number of hidden layers L, and the
number of neurons in each of them, Al.

An example of static architecture is shown in Fig. 10.8, with two hidden layers
characterized by a tanh activation function, while the output layer is linear.
Following Algorithm 1, increasingly complex structures were evaluated. Fig. 10.7
shows the overall model selection guided by BC scores, in four steps: first two
steps for selecting the static structure, last two steps for selecting the input-output
buffer size. In the first step, an overall comparison was performed over structures
with a fixed number of nodes per layer (10) but a different number of hidden
layers (up to 15) , aimed at determining the optimal depth for the neural network.
In Fig. 10.7a, BC scores are shown as a function of the number of layers. It is pos-
sible to appreciate that networks with a number of layers under 8 gave the best
BC scores. After 8 layers the BC scores increase, meaning that the performance
of the network models is in general poorer. In Fig. 10.7b, the second step of the
selection procedure is shown, in which the structures with 2 and 4 layers were se-
lected as suitable candidates for the next selection step, since they provide a good



100 Chapter 10. Hysteresis modelling in iron-dominated magnets based on a
multi-layered NARX neural network approach

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Layers

-9.4

-9.2

-9

-8.8

-8.6

-8.4

-8.2

-8

-7.8

B
C

 s
c
o

re

10 5

(A)

20 40 60 80 100

Structures

-1.35

-1.3

-1.25

-1.2

-1.15

-1.1

-1.05

-1

-0.95

-0.9

B
C

 s
c
o

re

10
6

2 layers

4 layers

8 layers

(B)

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Input Buffer K

-1.13

-1.12

-1.11

-1.1

-1.09

-1.08

-1.07

-1.06

-1.05

-1.04

B
C

 s
c
o
re

10 6

(C)

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Output Buffer H

-1.13

-1.125

-1.12

-1.115

-1.11

-1.105

-1.1

B
C

 s
c
o
re

10 6

(D)

FIGURE 10.7: The process of model selection in four steps. On the
top the static, and on the bottom the dynamic hyperparameter selec-
tion, respectively. Panel (a): firstly, once fixed the number neurons
to 10 per layer, it was let the number of levels vary and compute BC
scores in order to select best promising structures. Panel (b): sec-
ondly, fixing the number of the layers, the number of neurons for
each layer was varied from 1 to the maximum of 10 neurons, select-
ing the best 100 winning structures. Panel (c): thirdly, the dimension
of the input buffer varid. Panel (d): finally, the dimension of the
output buffer were varied while all other hyperparameters remain

fixed.

FIGURE 10.8: Generic scheme of a MLP neural network. The first
green block represents the input layer, where the input is the ex-
citation current I(n); the second and the third blocks represent the
two hidden layers with A1 and A2 neurons respectively. In each
hidden layer, there are two blue boxes representing the weights, W,
and the bias, b; the two hidden layers use a tanh activation func-
tion. The fourth block represents the output layer, which is linear.
The output of the neural network is the predicted value y(n) esti-
mating the magnetic field B(n) and corresponding to the last green
block. Note that this scheme is obtained as outputs of the Matlab
Toolbox “nntraintool", in which the parameters used for the simula-

tions were inserted.
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TABLE 10.3: Hyperparameters definition for the model selection.

Neural Network
Model

Multilayer
Perception

Time
Delay

Autoregressive
Exogenous

Hyperparameter θMLP θTDNN θNARX
L {1, . . . , 15} L̃MLP L̃MLP

A {1, . . . , 10}L ÃMLP ÃMLP

K 0 {1, . . . , 35} K̃TDNN

H 0 0 {1, . . . , 35}

compromise between performance and complexity, and once verified that even
adding 8 layers do not significantly improve BC scores. With these two steps
the procedure helps us select static MLP structures with hyperparameters L,A,
shown in Tab. 10.4.

10.5.3 Dynamic Network Structures

The static models was enhanced with temporal feedback. The strategy consisted
in adding feedback to hidden layers, starting from the best static network struc-
tures selected previously.

When buffering past observation in input, the model architecture reduces to a
deep TDNN with hyperparameters θTDNN .

During this step of model selection, the best hyperparameters found in the
previous section for MLP networks (θ̃MLP ) were used, while the impact of the
input delay buffer length K were explored as an additional hyperparameter.
Fig. 10.7c and Fig. 10.7d show the BC scores as a function ofK andH in the range
{1, . . . , 35} for the best two- and four-layer structures selected in section 10.5.2.
BC remains low for K between 5 and 33, with a minimum range between 25 and
32. For higher buffer lengths the RMSE increases rather steeply, which indicates
instability. Similar behavior can be appreciate for K in the range between 13 and
32, after that performance for higher buffer lengths rapidly degrades. The result-
ing architecture is a NARX with hyperparameters θNARX , including the length H
of the output buffer. Also in this case, the model was fine tuned with an incre-
mental approach: the set of optimal model hyperparameters previously selected
(L, A and K) was fixed and only H was varied in the range {1, . . . , 35}. It was
found that the best performances are associated with long buffers: in Tab. 10.4
the best combinations of hyperparameters θ̃ selected by Alg. 1 are shown.

10.6 Results and Discussion

The performance of these models was evaluated on a completely new collected
dataset DE, which include different sequences of hysteresis inversion points with
respect to the learning phase, in order to stress the interpolating power of the
networks.
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TABLE 10.4: Hyperparameters θ̃ selected by Alg. 1 and used in tests
shown in Section 10.6. In the last column, the corresponding number

of neuron connections are listed |W |.

Hyperparameters L A K H |W |
θ̃MLP1 2 (10, 9) 0 0 129
θ̃MLP2 4 (1, 1, 1, 10) 0 0 37
θ̃TDNN1 2 (10, 9) 26 0 379
θ̃TDNN2 4 (1, 1, 1, 10) 31 0 67
θ̃NARX1 2 (10, 9) 26 31 689
θ̃NARX2 2 (7, 8) 26 17 381
θ̃NARX3 4 (1, 1, 1, 10) 31 31 98
θ̃NARX4 4 (1, 8, 5, 4) 31 31 153

First, for each model the estimation y = y(θ,W ; IE) was computed given by
the network on the new dataset. Then, the RMSE(y,DE) was calculated accord-
ing to Eq. 10.8. In order to facilitate comparison to the requirements, the RMSE
were normalized with respect to the maximum measured field:

NRMSE(y,DE) =
RMSE(y,DE)

Bmax

· 100 (10.10)

Two other measures of performance were used, i.e. the MAE:

MAE(y,DE) = max {|y(n)−BE(n)|}n∈N (10.11)

and the MPE, normalized with respect to the maximum measured field:

MPE(y,DE) =
MAE(y,DE)

Bmax

· 100 (10.12)

The results obtained are summarized in Tab. 10.5 and Tab. 10.6. In Tab. 10.5 the
test dataset DE is considered with samples at the same sample rate of the learn-
ing dataset 250 S/s, while in Tab. 10.6 the D̄E dataset used for the final testing
was collected at the raw sample rate of 2.5 kS/s, ten time faster than the learn-
ing dataset. In both tables, for each type of model, the reference to the optimal
hyperparameter vector along with the corresponding error norms are listed. The
optimal hyperparameters are listed separately in Tab. 10.3. The linear regres-
sion alone gives a relative error of the order of the percent, which corresponds
to the relative width of the hysteresis loop. Such an error, which in other con-
texts might be taken as an indication of good linearity of the magnet tested, is
unacceptable for the considered application. Next, let us consider the results of
the networks trained on the dataset DL, which are given in the upper half of Ta-
bles 10.5 and 10.6. Both the static (MLP) and the dynamic networks with input
feedback (TDNN) perform as the linear regression alone.

The NARX networks, instead, are two orders of magnitude better, achieving
a best-case NRMSE of 0.006 %. The results evaluated on the reduced dataset are
about a factor of two worse, i.e. 0.01 %.
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FIGURE 10.9: Approximation of four cycles in a sample interval
[0.2, 1.6] of the current I . Black lines show the measured nonlinear
magnetic response B̂, along with a NARX4 (red) and MLP1 (green).

Fig. 10.9 gives a qualitative insight on solutions explored by the different mod-
els. It is shown within four different cycles the nonlinear magnetic response B̂
(black lines) along with a NARX network (NARX4) and an MLP network (MLP1)
response in function of a sample interval of input current I . It is possible to ap-
preciate that across different cycles, the best that an MLP can do is to perform
a weighted mean of different magnetic responses, a typical known behavior in
machine learning because the network is trying to approximate an input-output
signal response that is not a mathematical function, resulting in an ill-posed prob-
lem [145].
On the other hand, the addition of the finite-temporal information in input lets
the NARX disambiguate the different cycles and gives a fine approximation of
the different magnetic responses. This further gives an insight into what the used
incremental model selection approach does: the first steps of structural model
selection found the best structures that better approximate mean values of the
nonlinear signal through different cycles, then next steps of model selection learn
the dimension of the buffer that carries out the sufficient dynamical information
in order to disambiguate each cycle.

Thanks to having memory of past outputs, the NARXs are shown to be able
to reproduce the dynamics of the magnet very accurately.
The maximum length of the output buffer, K = 35, corresponds during the train-
ing phase to a total duration of 140 ms, much shorter than the time span necessary
to cover even just two consecutive inversion points of the magnetic cycle. While
in classical approaches, such as the Preisach models, the complete sequence of in-
version points is a necessary input to reconstruct accurately the magnetic history,
here it was found instead that such information appears to be encoded implicitly
by the network, despite the shortness of the output delay buffer. The role of the
buffers might therefore be limited to the modelling of short-term dynamics, such
as the decay of eddy currents or the ripple of the power supply. This hypothesis
seems to be confirmed by the improved performance at the higher sampling rate,
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corresponding to a buffer duration of 14 ms, which allows a finer modelling on
an even shorter time-scale. Tab. 10.7 shows a comparison of the obtained results
with respect to those of the state of the art in literature facing similar reconstruc-
tion problems. In Ref. [61], the authors used a Deep Neural Network to model
the magnetization curve, achieving an RMSE of 0.13 %. This result is comparable
with the obtained result for an MLP architecture (8.70 · 10−4 T), but it is higher
than the RMSE obtained from the NARX architecture (2.12 · 10−5 T). In Ref. [59],
the authors used a Preisach memory block and a feed-forward Neural Network
to magnetic hysteresis modelling. The maximum prediction error achieved is
around 13 % that is higher than the achieved MAE reported in Tab. 10.5. In fact,
the MAE for a NARX network is of the order of 10−4. In Ref. [15], the author
used Preisach to model the hysteretic behavior of a combined magnet, reaching
a relative error in the order of 0.2 %. For the presented case study, the achieved
MPE with a NARX architecture is of about 0.2 %.
In Ref. [72], the authors proposed a Preisach-recurrent neural network model to
predict the dynamic hysteresis in ARMCO® Pure Iron. The proposed model is
able to predict the magnetic flux density of ARMCO® Pure Iron with a NRMSE
of about 0.7 %. Comparing their result with the ones in Tab. 10.5, it is possibe to
see that the NRMSE obtained from a NARX architecture is of the order of 10−2. In
Ref. [73], the authors presented a neural network model of nonlinear hysteretic
inductors, achieving a relative error less than 8 %. In Tab. 10.5, the MPE resulting
from a NARX architecture is about 2·10−1 %. Finally, in Ref. [76], the authors pro-
posed a combined approach (Genetic Algorithm and Neural Network) to mod-
elling dynamic hysteresis. This approach allows them to achieve a Mean Square
Error less than 5 %. For the presented case study, in Tab. 10.5 the RMSE for the
various architectures is shown. In particular, for the NARX architecture, an RMSE
of the order of 10−5 was achieved, giving therefore a better result compared to the
literature.
An example of the nonlinear field component B̂E (see Section 10.2) is plotted as
a function of the time or the current, along with the corresponding reconstruc-
tion by a NARX network, in Fig. 10.10. These plots allow to appreciate visually
the high quality of the reconstruction, which matches the measured field closely
and consistently. Let us now consider the results of the networks trained on the
nonlinear component dataset, D̂L, (LR+∗ group) which are given in the bottom
halves of Tables 10.5 and 10.6.
This kind of reconstruction can be considered as an hybrid modelling of the mag-
netic field: a first module corresponding to the linear regression module is cou-
pled with a network which models the nonlinear part only of the signal. In this
case, the result is qualitatively different, since all tested architectures learned on
D̂L perform almost equally and with performance comparable to the MLP and
TDNN networks alone, and unable to reach the better performance of NARX
learned on the full signal inDL. These results confirm that avoiding pre-processing
at the same time relying complex delay structured in NARX networks is a suc-
cessfull choice to capture the full dynamic of the magnetic field.
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FIGURE 10.10: Measured (B̂E, in black) and estimated (ŷNARX with
hyperparameters θ̃NARX1, in red) nonlinear component of the field
B̂ in function of time t (Panel (a)) and in function of the current I

(Hysteresis graph - Panel (b)).

To perform a statistical evaluation among the models, a one-way Analysis of Vari-
ance (ANOVA) was performed for absolute errors in the reconstruction respec-
tively of dataset DE reported in Tab. 10.5 and dataset D̄E reported in Tab. 10.6.
A first ANOVA on DE reconstruction revealed a significant statistical effect on
groups, F [16, 754 · 103] = 13 · 103, p < 107. A Post hoc analyses (Tukey’s test) re-
vealed that all models are significantly different from Linear Regression (null hy-
pothesis). From this analysis, it was found that TDNN2 (best performing model
excluding NARX models) is not statistically different from MLPs, TDNN1 and
LN+TDNN2 (p > 0.01). On the other hand, all NARXs are statistically different
from all the other models (p < 10−5) and are not statistically different from each
other (p > 0.01). The second ANOVA on D̄E revealed again a a significant sta-
tistical effect on groups, F (16, 754 · 103) = 14 · 103, p < 10−7. Post hoc analyses
revealed that models augmented with linear regression (LN+∗) were not signifi-
cantly different from each other (p > 0.01). Moreover, this LR+∗ group was not
statistically different from at least one of the MLP group (p > 0.01). This means
that at their best they could at most replicate the performance of MLP models and
this confirms that the learning restricted to the nonlinear part only does cut off
important information of the original signal.
The statistical results on TDNN models are even more interesting: TDNN2 is not
statistically different from MLP1 (p > 0.01) and TDNN1 is different from all the
other models being the worst one, failing to generalize the case of faster sam-
ple rate. This is explained by observing that changing the buffer on the input is
not sufficient to the TDNN model to let it adapt to signal when different input
rates are given. On the other hand, in the case of NARX the buffer on input de-
lay allows the nets to adapt very smoothly to the new faster rate, thanks to the
buffer on internal outputs. Thus, all models in NARX group perform better and
are statistically different from other groups (p < 10.6 · 10−6) and interestingly the
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FIGURE 10.11: ANOVA results on Absolute Errors computed for the
competing models on Dataset D̄E. The horizontal lines are the 95 %
confidence interval for each model. Five groups are highlighted: LR
group (gray), MLP group and LR+∗ group (yellow), TDNN1 (pink),

TDNN2 (in blue) and the NARX group (orange).

different NARXs with different selected hyperparameters are not statistically dif-
ferent (p > 0.1). It is possible to visualize the result of this second ANOVA in
Fig. 10.11: here the absolute error with 95 % confidence interval (straight line)
is shown for each model. The models can be partitioned into four groups: lin-
ear regression is the baseline (in gray). The only model performing worst of this
baseline is TDNN1 (pink group) that completely fails to adapt to the new sample
rate of D̄E. Then, the behavior of the models learned on linear models (LN+∗
group) is equiparable to the MLP networks, performing better than LN alone
(yellow group). On the other hand, TDNN2 is slightly better than this group
(blue group). And finally, all NARXs (orange group) are successful in adapting
to the new rate and significantly outperform the performances of all the other
groups. A final test is made computing training and simulation time of execu-
tion of the winning architectures and results are shown in Tab. 10.8. The first
column reports the architectures on which the training and simulation times are
evaluated. In particular, for the training/simulation time evaluation the neural
networks trained on the dataset DL was considered. The second column contains
the training time for each architecture. The training time refers to the time needed
for the function Train (see line 5 in Alg. 1). The third and the fourth columns con-
tain the simulation time computed on the test dataset DE at the decimated data
rate of 250 S/s (see Tab. 10.5) and the dataset D̄E) at full data rate of 2.5 kS/s (see
Tab. 10.6), respectively.

The simulation time refers to the time needed for the evaluation of the predic-
tions on all the points of the dataset (see line 8 in Alg. 1).
It is possible to appreciate that this result nicely fits the complexity measure in
Tab. 10.4. The more complex a model is, the more execution time is required
to complete the different steps of the Alg. 1. In accordance with the complexity
measure, it is worth mentioning that deeper models of NARX perform better than
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NARXs with fewer layers. On the other hand, it should be noted that computa-
tion occurring on the same layer can be further optimized by processing them in
parallel, thus a trade-off can be achieved between those constraints in order to
reach the best performance in time execution.
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TABLE 10.5: Performance comparison among the different architec-
tures, computed on the test datasets DE at the decimated data rate
of 250 S/s. RMSE, NMRSE, Maximum Absolute Error (MAE) and
Maximum Percentage Error (MPE) are shown for the linear Regres-
sion (LR) alone , the ANNs trained on the full dataset DL and the
hybrid models LR+*, combining LR plus the ANN trained on the
nonlinear component only D̂L. The reconstructed magnetic field for
models LR+* is computed by Eq.10.6, in which the linear component
(B0+G·I) is computed by means of LR coefficients, while the nonlin-
ear component (B̂) is approximated by the corresponding network

output. Corresponding hyperparameters are given in Tab. 10.4.

Architecture Test Hyper- RMSE NMRSE MAE MPE
Dataset -parameters [T] (%) [T] (%)

Linear G, B0 9.07 · 10−04 5.67 · 10−01 2.60 · 10−03 1.61
Regression
MLP1 DE θ̃MLP1 8.70 · 10−04 5.44 · 10−01 2.60 · 10−03 1.64

MLP2 DE θ̃MLP2 8.83 · 10−04 5.52 · 10−01 2.50 · 10−03 1.55
TDNN1 DE θ̃TDNN1 7.95 · 10−04 4.97 · 10−01 1.90 · 10−03 1.21

TDNN2 DE θ̃TDNN2 8.05 · 10−04 5.03 · 10−01 2.20 · 10−03 1.39

NARX1 DE θ̃NARX1 2.12 · 10−05 1.32 · 10−02 3.36 · 10−04 2.10 · 10−01

NARX2 DE θ̃NARX2 2.13 · 10−05 1.33 · 10−02 3.17 · 10−04 1.98 · 10−01

NARX3 DE θ̃NARX3 2.05 · 10−05 1.28 · 10−02 3.11 · 10−04 1.95 · 10−01

NARX4 DE θ̃NARX4 2.05 · 10−05 1.28 · 10−02 3.12 · 10−04 1.95 · 10−01

LR+MLP1 DE G, B0, θ̃MLP1 8.00 · 10−04 5.00 · 10−01 1.90 · 10−03 1.16

LR+MLP2 DE G, B0, θ̃MLP2 8.00 · 10−04 5.00 · 10−01 1.90 · 10−03 1.17

LR+TDNN1 DE G, B0, θ̃TDNN1 8.05 · 10−04 5.03 · 10−01 1.90 · 10−03 1.21

LR+TDNN2 DE G, B0, θ̃TDNN2 7.97 · 10−04 4.98 · 10−01 1.90 · 10−03 1.20

LR+NARX1 DE G, B0, θ̃NARX1 7.99 · 10−04 4.99 · 10−01 1.90 · 10−03 1.19

LR+NARX3 DE G, B0, θ̃NARX2 7.99 · 10−04 5.00 · 10−01 1.90 · 10−03 1.19

LR+NARX3 DE G, B0, θ̃NARX3 8.00 · 10−04 5.00 · 10−01 1.90 · 10−03 1.20

LR+NARX4 DE G, B0, θ̃NARX4 8.01 · 10−04 5.01 · 10−01 1.90 · 10−03 1.19
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TABLE 10.6: Performance comparison among the different archi-
tectures, computed on the test dataset D̄E at the full data rate of
2.5 kS/s. RMSE, NRMSE, MAE and MPE are shown for the LR
alone, the ANNs trained on the full dataset DL and the hybrid mod-
els combining LR plus the ANN trained on the nonlinear compo-
nent only D̂L. The values of the corresponding hyperparameters are

given in Tab. 10.4

Architecture Test Hyper- RMSE NMRSE MAE MPE
Dataset -parameters [T] (%) [T] (%)

Linear G, B0 9.07 · 10−04 5.67 · 10−01 2.60 · 10−03 1.61
Regression
MLP1 D̄E θ̃MLP1 8.70 · 10−04 5.44 · 10−01 2.60 · 10−03 1.64
MLP2 D̄E θ̃MLP2 8.83 · 10−04 5.52 · 10−01 2.50 · 10−03 1.55
TDNN1 D̄E θ̃TDNN1 1.10 · 10−03 6.66 · 10−01 2.70 · 10−03 1.67
TDNN2 D̄E θ̃TDNN2 8.52 · 10−04 5.32 · 10−01 2.50 · 10−03 1.56
NARX1 D̄E θ̃NARX1 9.92 · 10−06 6.20 · 10−03 4.63 · 10−05 2.89 · 10−02

NARX2 D̄E θ̃NARX2 1.27 · 10−05 8.00 · 10−03 6.90 · 10−05 4.31 · 10−02

NARX3 D̄E θ̃NARX3 9.22 · 10−06 5.80 · 10−03 3.98 · 10−05 2.49 · 10−02

NARX4 D̄E θ̃NARX4 9.28 · 10−06 5.80 · 10−03 4.06 · 10−05 2.54 · 10−02

LR+MLP1 D̄E G, B0, θ̃MLP1 8.00 · 10−04 5.00 · 10−01 1.90 · 10−03 1.16
LR+MLP2 D̄E G, B0, θ̃MLP2 8.00 · 10−04 5.00 · 10−01 1.90 · 10−03 1.17
LR+TDNN1 D̄E G, B0, θ̃TDNN1 8.05 · 10−04 5.03 · 10−01 1.90 · 10−03 1.18
LR+TDNN2 D̄E G, B0, θ̃TDNN2 7.97 · 10−04 4.98 · 10−01 1.90 · 10−03 1.18
LR+NARX1 D̄E G, B0, θ̃NARX1 7.98 · 10−04 4.99 · 10−01 1.90 · 10−03 1.17
LR+NARX2 D̄E G, B0, θ̃NARX2 7.98 · 10−04 4.99 · 10−01 1.90 · 10−03 1.17
LR+NARX3 D̄E G, B0, θ̃NARX3 7.99 · 10−04 5.00 · 10−01 1.90 · 10−03 1.17
LR+NARX4 D̄E G, B0, θ̃NARX4 8.00 · 10−04 5.00 · 10−01 1.90 · 10−03 1.17
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TABLE 10.7: Related results

Architecture Metric Value
Deep Neural Network

(MLP with two hidden layers),
Ref. [61]

Root Mean
Square Error 0.13 %

Preisach + Feed-forward
neural network

(one hidden layer), Ref. [59]

Maximum
Absolute Error 13 %

Preisach, Ref. [15] Relative Error 0.2 %
Preisach + Recurrent Neural

Network, Ref. [72]
Normalized Root

Mean Square Error 0.7 %

Neural Network,
Ref. [73] Relative Error < 8 %

Genetic Algorithm +
Neural Network, Ref. [76] Mean Square Error < 5 %

Proposed architecture
NARX4

Normalized Root
Mean Square Error 5.80 · 10−3 %

TABLE 10.8: Training and simulation times.

Architecture Training time
[s]

Simulation time
(DE)
[s]

Simulation time
(D̄E)
[s]

MLP1 16.88 0.40 1.08
MLP2 14.18 0.44 0.88

TDNN1 46.30 1.73 12.50
TDNN2 22.13 1.50 16.16
NARX1 125.52 2.66 25.23
NARX2 42.96 2.30 22.23
NARX3 19.91 2.91 27.98
NARX4 15.89 2.84 28.67
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In this thesis, the concepts behind the B-train systems at CERN were introduced,
beginning from their role in a synchrotron, their method of operation, as well as
the different sensors required for their implementation. The design of the sys-
tems was discussed, describing in detail the functions linked to magnetic flux in-
tegration, self-calibration and distribution over a White Rabbit network. A new
real-time WR monitoring and debugging system for the B-train was presented, to
improve flexibility and remote access to the signals of the new B-Trains at CERN.
A working prototype was successfully obtained under a platform never used pre-
viously in this context, demonstrating that the requirements in terms of both per-
formance and operational flexibility can be met. This work showcases the power
and possibilities offered by WR, as a new and flourishing standard in the general
context of distributed acquisition chains and control systems, especially when
accurate timing and synchronization are crucial. The presented monitoring de-
vice covered a key role in the final implementation of the new B-train system at
CERN, as it will allow real-time logging, monitoring and visualization of multi-
ple data streams to an unprecedented level of accuracy and time resolution. The
Monitoring system was also profitably used for the system characterization and
debugging.

First, the DC response of the system was experimentally characterized, show-
ing that after calibration the voltage acquisition error across the ±10 V input
range has arithmetic and an RMS mean of respectively 3 and 135 µV (8.1). then
the equivalent voltage offset error was evaluated integrating the same, known
constant voltage inputs over one second, obtaining closely comparable results,
thus proving the soundness of the integration stage (8.2). Next, integration tests
were carried out with the input shorted for up to 120 s, measuring on RMS av-
erage an equivalent voltage offset of 8 µV. Under typical operational conditions,
these errors lead to a measurement drift of the order of 8 µT s. Such offset, while
remaining high in absolute terms, is much lower than in the legacy systems, and
is well within the tolerance of all magnetic cycles being run.

The response of the system to time-changing inputs was characterized as well.
First, the measurement gain as a function of frequency was evaluated for sine-
wave inputs of varying amplitude, showing that errors remain below the speci-
fied 100 ppm tolerance up to the required 100 Hz bandwidth. Then, the contribu-
tion of all system components to the measurement latency was quantified, finding
that overall it remains always well below the specified 30 µs tolerance. Therefore,
it is possible to conclude that the new CERN B-train electronic acquisition system
meets all its requirements, as it was also independently verified by running an
extensive series of operational tests, as reported in detail in [104].

An incremental method to select an optimal DNN architecture was developed
to predict the field generated by a magnet when excited by a sequence of cyclic



114 Conclusions

excitation current waveforms. the method was experimentally validated on a
case study in conditions representative of those found in particle accelerators
and similar, pulsed-mode machines. The response of the magnet tested is lin-
ear within about 1.5 %, and the work was focused essentially on predicting its
residual nonlinear component, which is dominated by ferromagnetic hysteresis.
The presented networks were trained and tested directly on the raw datasets,
founding that NARX networks achieve in general the required level of perfor-
mance i.e. an NRMSE better than 0.01 %, while simpler architectures with buffers
only on the input (TDNN) or no buffers at all (MLP) do not. Interestingly, it was
discovered that by isolating the nonlinear residual component of the measured
magnetic response (datasets D̂L and D̂E), the performance of all the networks
improves. In particular, the simple MLP architecture improves by two orders of
magnitude and can achieve an NRSME as low as 5.9 · 10−5 with only 19 neurons
on two hidden layers.
Such excellent performance is well within the initial requirements and paves a
very promising way for future applications in this context. It was observed that
the prediction accuracy generally improves when the network is trained on low
data rate (250 S/s) signals and tested at a higher data rate (2.5 kS/s). This may
be linked to the fact that the reduced dataset is less affected by noise, and there-
fore allows the network to better focus on capturing the underlying dynamics.
The presented method was based on an incremental approach that firstly opti-
mizes the static structure parameters (L,A) and then the time buffers (i.e., K,H).
While this approach does not ensure the finding of an optimal solution, It was
proved that it constitutes an efficient heuristic able to computationally minimize
the model selection procedure. Future work will also focus on extending and
refining the model selection by including smart procedures for parameter grid
search, trainable activation functions and sparse structure learning (see e.g., Refs.
[149, 150, 151, 152, 153]) that would allow deeper structures to be better managed.
This work opens the door to further investigation on this aspect by decreasing
further the data rate of the training dataset, while at the same time increasing
the interval between the samples in the output buffer so that it may cover the
period of two or more cycles. Train and testing NARX networks on a wider vari-
ety of excitation waveforms, such as sequences of cycles with flat-tops increasing
or decreasing randomly, which are representative of the most challenging actual
operating conditions of accelerator magnets. In addition, in future experimental
campaigns, the range of the tested currents will be extended, to ensure the intro-
duction of relevant levels of saturation, as well as the range of current ramp rates
to deal with different levels of eddy current-related effects. Moreover, a further
improvement will be to expand the framework to include classification capabil-
ities [69, 154] to identify different branches of the hysteresis cycles in real-time.
Overall, in this framework, the analysis of the simpler network solutions found
by the procedure could also open to the possibility of producing even more effi-
cient solutions, by substituting blocks of NN operations with equivalent mathe-
matical equations or equivalent smaller networks.

Finally, as part of the renovation of the real-time magnetic measurement sys-
tems currently ongoing at CERN, the obtained result open exciting possibilities
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on a real-time version of the NARX networks implemented in FPGA hardware
that will be able to carry out a continuous field prediction, in parallel to the mea-
surement. This facility will provide the opportunity to gather huge amounts of
data concerning thousands of different sequences of cycles, covering all relevant
dynamic scenarios. This will ultimately allow to fine-tune the parameters of the
networks and estimate their robustness and performance in the long term with
high statistical significance.
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