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Abstract

The changes in the manufacturing world driven by the revolution of industry 4.0
entail a growing volume of information and the demand for planning in produc-
tion’s tasks and activities. The techniques of measurement, transport, analysis
and processing of data are constantly evolving. The technological growth driven
by the evolution of industry 4.0 opens up new frontiers of research in the field
of predictive maintenance, a theme that is deeply felt in highly competitive pro-
duction contexts. In this PhD thesis, the topic of predictive maintenance is
addressed by means of a research work on measurement techniques, data pro-
cessing and Machine Learning (ML) algorithms. The research works presented in
this thesis have focused on 3 important issues in modern industry. The first work
explores the techniques for predictive maintenance on machines for the compres-
sion of cryogenic fluids and a solution based on unsupervised machine learning
techniques for diagnostics is proposed; the second work concerns techniques for
the identification of faults and diagnostics of magic hard disks and a method for
the prediction of failures based on decision forests is proposed; the third work
focuses on measurement, processing and machine learning techniques for the pre-
vention of failure on three-phase asynchronous electric motors by means of fault
detection approach.

As for the first research work, a fault detection method exploiting Hidden
Markov Models (HMMs) is proposed for fluid machinery without adequate a-
priori information about faulty conditions. The method was tested and validated
at CERN on screw compressors for cryogenic cooling.

As second research work a method to facilitate automated proactive disk re-
placement is proposed. The method identifies disks with media failures in a
production environment and adopts an application of supervised machine learn-
ing, based on Regularized Greedy Forest, to predict disk failures. In particular, a
proper stage to automatically label (healthy/at-risk) the disks during the training
and validation stage is presented along with tuning strategy to optimize the hy-
perparameters of the associated machine learning classifier. The machine learning
model is trained and validated against a large set of 65,000 hard drives in the
CERN computer center, and the remarkable achieved results are discussed.

Finally a method to identify electrical and mechanical faults in three-phase
asynchronous electric is proposed in order to prevent device failures. A mea-




surement strategy and machine learning algorithm, based on Artificial Neural
Network, is proposed to properly classify failures. The method is validated on a
set of 28 electric motors. The method’s performance is compared with common
state of art machine learning techniques.
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Chapter 1. Introduction

1 Introduction

Digital growth in manufacturing involves an evolution of production models. The
fourth industrial revolution (Industry 4.0) is bringing, on the one hand, a more
advanced automation thanks to the interconnection of robots and machinery,
and on the other hand, the maintenance of systems and industrial plants have
the opportunity to make a qualitative leap, adopting a new approach to mainte-
nance. This new approach aims to mitigate extraordinary interventions in terms
of importance and unpredictability. This new type of maintenance is referred
to as predictive and has been developing in the last decade thanks to the new
technologies described above.
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Figure 1.1: Industry 4.0

Thus, Industry 4.0 is the new frontier of manufacturing. The evolution of




production systems involves the entire industrial structure thanks to a greater
use of data and information coming from totally digitized and connected compo-
nents and systems.

Modern industry is focusing on new maintenance procedures because produc-
tion efficiency is becoming crucial in order to decrease costs related to quality
production and machine downtime[47].

The downtime production costs lead to a significant increase in demand for
reliability and availability in modern industrial manufacturing. In the last decade
the literature on diagnostic techniques has been populated with new methodolo-
gies for the improvement of availability and reliability in a plethora of different
contexts. The growing complexity of electromechanical systems and the inte-
gration of electronics on control units makes the analytical modeling of systems
increasingly difficult for the prevention and mitigation of failures. The measures-
based inferential approaches overcome the modeling difficulties such as hetero-
geneity of models, design complexity, in-depth knowledge, etc. Furthermore, with
inference measures-based modeling it is possible to obtain a highly representative
model of the case study device.

The modeling of a system, its component or its behavior can be done an-
alytically, but this requires a deep knowledge of what is being modeled. The
alternative may be measure-driven modeling. In the second case, Machine Learn-
ing (ML) algorithms are well suited for making inference and modelling systems.
Machine learning techniques allow you to have a model of the system while hav-
ing little or no previous knowledge of the system itself. Moreover, this feature
is highly valid and useful in contexts where the devices on which you want to
make the inference for various reasons cannot be removed from the work loca-
tion or it is not possible to obtain an analytical model. The frontiers of edge
computing open new horizons for technological progress. The computational ca-
pacity of microprocessors and Microcontrollers (MCU) has greatly advanced in
the last decade. This technological advancement has made available considerable
resources for the implementation of increasingly complex software. Advances in
hardware and software, in addition to new network and communication technolo-
gies, nowadays allow access to a volume of data that has completely changed the
structure of research on maintenance issues.

As described above, the wide availability of data is possible thanks to mea-
surement, network and storage technologies. A failure is a deviation from the
specifications of a system, it is caused by the activation of an error that becomes
visible to the outside. An error, in turn, is the activation of a fault, that is,
the deviation from the specifications of a component of the system. Moreover,
an internal failure of a system can be seen as the failure of one of its compo-
nents or subsystems[4]. This cascade propagation of a fault is schematized and
summarized in the figure 1.2. The analysis of the conditions of a system and
its components together with the growth of acquisition and analysis techniques
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Figure 1.2: Component Failure

pushes the lines of research on diagnostics to integrate Artificial Intelligence (AI)
techniques for predictive maintenance.

Machine learning-based predictive maintenance techniques follow 4 distinct
phases (fig. 1.3) that all works of this type have in common. The works presented
in this thesis adhere to these 4 phases. The first phase is the Data Acquisition
in which all the necessary steps are carried out so that measurements and useful
information from the system are collected (i.e. Acquisition Sensor Setup,Label
Data, Store Data).

The second phase is that of Preprocessing in which the data acquired in the
data acquisition phase are turned into a suitable way for the modelling input con-
straints. Preprocessing’s steps usually include data cleaning tasks, normalization
and features extraction.

Modelling phase is than executed as the third main passage. First of all, it is
necessary to select a modeling method and an adequate configuration, then it is
possible to carry out the actual modeling step. In a machine learning context, first
of all it is necessary to identify whether you prefer a supervised or unsupervised
modeling method, after which all the selections and optimizations of parameters
and hyperparameters are made in order to achieve the desired results in terms of
efficiency. Finally, it is necessary to deploy the prediction system and integrate
it into the system on which the predictive maintenance is to be carried out. Of
course, the deployment and integration phase requires a series of improvements
and optimization to strengthen the system.
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Figure 1.3: Steps of Predictive Maintenance based on Artificial Intelligence

1.1 Outline of the Thesis

This thesis deals with the issue of predictive maintenance by means of Ma-
chine Learning techniques. The issue is dealt with in the context of three very
widespread problems in the industrial field. Each of these problems has in com-
mon the need to prevent and, as far as possible, mitigate the activation of faults
and the occurrence of failures. This PhD thesis is conceptually divided into three
parts: the first part is focused on Fault Detection on Fluid Machinery; the second
is concerned with Hard Disk Failure Prediction; Failure Predictions in Injunction
Motors is covered in the third part.

Chapter 2 illustrates the state of the art of predictive maintenance with and
without machine learning in the three fields addressed in the following chapters.

In Chapter 3 a first predictive maintenance problem is investigated. The chap-
ter explores the problem of preventing failures on fluid compression machinery.
The result of the research activity presented in the third chapter demonstrates
how the need to perform a manual analysis on screw compressors can be overcome,
this is possible thanks to the use of algorithms for non-evident state modeling
known as Hidden Markov Models (HMM).

The focus of Chapter 4 is on the prevention of failures in data storage sys-
tems, as cloud computing is a growing technology in industry 4.0. The chapter
addresses the issue of preventing failures on magnetic hard disks (HDDs) as they
represent the most common cause of failure in data storage systems. The prob-
lem of HDD failures is approached algorithmically both from the standpoint of
failure detection and recognition, and from the standpoint of failure prevention.
The machine learning technique adopted is based on the means of decision trees,
this technique recently proposed in the literature is named Regularized Greedy
Forest (RGF).

Chapter 5 deals with a third typical problem in production realities which con-
cerns predictive maintenance in electric motors. The chapter explores the prob-
lem of failures in three-phase asynchronous motors, the measurement techniques,
features extraction methods and the machine learning algorithms for modeling
classifiers for the identification of imminent failures.
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Conclusions and final remarks about Predictive Maintenance based on Ma-
chine Learning are drawn in Chapter 6.
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2 State of the Art

In this Chapter the state of the art on failure prediction techniques is reviewed
in order to explore the solutions of the literature with and without the aid of
Artificial Intelligence (AI). Machine learning has opened new frontiers for measure
based modeling. The range of AI has grown enormously since the intelligence of
machines with machine learning capabilities has created profound impacts on
business, governments, and society. [10]

Authors of the work [46] have classified maintenance management techniques
into three classes, based on complexity level and efficiency. Higher the efficiency,
higher the complexity. Following the three definitions are reported.

e Run-to-Failure (R2F) is the first maintenance approach in terms of complex-
ity but this procedure entails less efficiency of the maintenance procedures.
The maintenance procedures are performed after a failure have occurred,
consequently, a maintenance plan can hardly be made;

e Preventive Maintenance (PvM) consists of carrying out a scheduled main-
tenance plan. This approach reduces the probability of failure occurring
but also involves unnecessary action with increased costs;

e Predictive Maintenance (PdM) is an approach based on a statistical as-
sessment of the system health status. Maintenance procedures are trig-
gered by the Predictive Maintenance system. The Predictive Maintenance
procedures are usually measure driven approach driven by statistical and
inferential techniques[46].

The opportunities of Industry 4.0 create the conditions for greater connec-
tion between machines. Predictive maintenance is one of the main challenges in
this area. Machine downtime, reduction of management and maintenance costs,
process control and production quality are at the heart of technological evolu-
tion. Furthermore, in Industry 4.0, data analysis and machine learning methods
to change production procedures do not always include predictive maintenance
methods and their organization as well[63].

Maintenance costs in industrial production generally have an impact greater
than 15% and which in some cases can reach 60% of the total manufacturing
costs[21].

Predictive maintenance takes on greater importance in industrial contexts
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with the introduction of machine learning and measurement-driven modeling.
Machine Learning applications are increasing in the industrial sector as a result
of the rapid growth of data availability and increasing computing capabilities.
Currently in the machine learning sector, supervised algorithms represent the
vast majority. However, unsupervised machine learning algorithms are assuming
more important roles in industrial applications thanks to the evolution of sensors
and growing storage and computing technologies. Moreover, it is possible to
introduce hybrid approaches of the two techniques (supervised / unsupervised).
Machine Learning is therefore opening many frontiers in the field of industry 4.0
and many opportunities for technological development[52].

2.1 Diagnostics in Screw Compressors

Fluid machines are devices exploiting the energy stored in fluids, by transforming
it in mechanical energy or vice versa. These machines are widely employed in
several industrial plants. Although these are highly reliable machines, a fault
occurrence is a deleterious event in terms of correct operation, time, and costs.
Fault detection mechanisms are in charge of identifying whether the monitored
component or process is properly working or not [24]. In literature, a wide variety
of fault detection mechanisms have been proposed. In particular, in [11], a review
on fault detection methods for pipelines highlights that, usually, a single quan-
tity is measured. Among the analyzed techniques and approaches, it is shown
that procedures are usually complex when good fault detection performance is
required. In [31], a review about wind turbines derives that vibration analysis
has been widely used in fault diagnosis and feature extraction. However, gather-
ing data about faulty conditions in actual working conditions turns out difficult,
especially for complex machines like energy turbines or high-power compressors.
Several specific signals and often custom invasive monitoring based on multiple
specific sensors have to be installed directly on field. Potential faulty conditions
of whatever type have to be forecast, modeled, and experimented. Finally, in
[62, 38, 36], fault detection methods are proposed for the monitoring of compres-
sors operation. The methods usually rely on the analysis of vibration signals, and
it is shown that the training of the fault detection models exploits both measures
related to normal and faulty conditions. This is also confirmed in [37], where
faults are classified with a Support Vector Machine by taking into account a big
amount of data (300 TB) to identify and validate the model.

A promising trend research in fault detection, with exceptional ability in
modeling 1D sensor signals, is related to Hidden Markov Models (HMMs). A
simple Markov Model is a "Markov Chain", i.e. a finite state machine governed
by a stochastic process. This process is described with a probability matrix, in
which each element a;; is the probability of the transition from the state ¢ to the
state j (a;; is the probability to remain in the same state). A Markov chain allows
computing the probability for a sequence of states to be observed. In many cases,
however, the states of interest may not be directly observable, and thus the state
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sequence is ‘hidden’. In such a case, it is possible to calculate the probability of
the sequence according to the Markov model, as well as the state sequence that
most likely produced the observations. Such a model is an HMM.

Firstly introduced in 1989 [10] to solve speech recognition problems, recently
these models have been extended to pattern identification [56, 28], health moni-
toring, human action recognition, biological sequence analysis, economics [7], and
fault detection. In particular, HMM-based approaches were used to monitor fault
detection in mechanical devices, such as bearings [35, 57, 30, 58], or in industrial
processes [19, 3, 50]. The wide use of this methodology may be attributed to the
following reasons:

e applicability to embedded stochastic processes, whose states are not directly
observable, but they can be deduced through another process;

e training easiness, due to the easiness in estimating the model parameters,
even when training samples are abundant;

e independence of multiple models, i.e. the possibility to use a number of
independent HMM to describe different conditions of a process.

By relying on the peculiar features of the HMM, a novel fault detection method
is here proposed. The abovementioned works exemplify that most researches
considered acoustic vibrations or employed accelerometers to measure the state
of the monitored process. Moreover, measures were often obtained with a dense
sampling. Instead, in actual applications, measures are sparse and asynchronous.
Then, in general, one single physical quantity may not be sufficient to detect an
incipient failure condition. For instance, in case of an operating anomaly, the
machine could not have abnormal vibrations, but it may overheat. Finally, in
fluid machinery with constraining requirements of reliability, the dynamics of the
fault detection model is such that it will remain in a fault-free state for long
stretches of time.

2.2 Failure Prediction in Hard Disks

An automated and standardized hard disk replacement process can be defined
based on the results from automatic testing framework, which is integrated by
disk manufacturers in their disk firmware: the SMART system. The hard disk
models used in storage centers are often numerous and change over time. Due
to the heterogeneity of hard disks of which datacenters are often composed, it is
not possible to perform analytical modeling. So modeling by means of machine
learning is the best solution in this context. Multiple recent approaches based
on SMART attributes have been proposed and show improved prediction perfor-
mance in general but are usually highly dependent on the specific device they
were applied to.

A Gaussian Mixture based the fault detection approach has been proposed
in 2017, which is able to minimize the False Alarm Rate (FAR) of 0%, but its
performance drops by a few dozen percentage points in the hours before the last
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24 h, and there is no information on the rate of false alarms in the days before the
last. In addition, the method has been tested on a single hard disk model [39].

The authors of [53] propose a technique based on Online Random Forests.
Their method reaches an accuracy (defined as the fraction of true positives and
true negatives in the whole population) above 93% while maintaining a low rate
of false positives (i.e., failure predicted for an actually healthy disk). To achieve
this result, this technique considers hard disk metrics over the period of one week.
It predicts a disk failure in case any of the smart metrics in the period is positive
and is hence sensitive to transient phenomena.

The authors of [55] propose a method to proactively predict disk errors before
they cause more serious damages. Failure prediction is done by combining both
SMART metrics and system-level signals. This method has the limit of not being
applicable in all those contexts in which it is not possible to access system-level
signals and therefore it would be inapplicable.

An interesting work of study and comparison of several recurrent neural mod-
els is done in this work. The authors have done an excellent study work and have
proposed an interesting method as it returns information on the health conditions
of hard drives. However, the proposed methodology does not solve 2 common
problems in contexts of this kind. In fact, the authors do not suggest a method for
the construction of the dataset on which to train automatic learning models, nor
do they explain whether the proposed methodology is able to address the hetero-
geneity of hard disk models and the differences between sensor technologies[54].

Good results have been reached using an offline machine learning technique
based on a decision forest named Regularized Greedy Forest (RGF) [8]. Only two
cases of hard disk models were explored for which a recall (defined as the fraction
of correctly detected failures among all positives) value as high as approximately
98% was achieved. The corresponding results for the false positives rate are not
mentioned explicitly but can be derived as approximately 2% [8].

An interesting approach based on the Long Short Term Memory model has
been proposed in [12] that achieves good results in terms of the false alarms rate.
This paper does not present a labeling method for broken disks; thus, it is not
clear how to create the dataset for the machine learning models. Moreover, it
does not introduce a solution on how to deal with heterogeneous sets of hard
drive models.

The authors of [41] focus on the wide-spread heterogeneity of data-centers.
They addressed the issue of the manufacturer dependencies of the implementation
technology, which the SMART monitoring system is integrated with. The authors
compare Decision Trees, Neural Networks and Logistic Regression and suggest
Decision Tree as the best solution for the problem at hand. The method proposed
is able to predict about 52% of all hard disk failures among the truly failed drives.

10
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2.3 Fault Detection and Failure Prediction in Injection Mo-
tors

In recent years, diagnostics of electric motors and health monitoring techniques
have become a task of great relevance, as timely maintenance through early detec-
tion of irregularities during the normal machine, the operation can be achieved[60)].
Due to the importance of this field, many methods have emerged to carry out
diagnostics and predictive maintenance.

Lingxin Li and Chris Mechefske in the article Induction motor fault detec-
tion & diagnosis using artificial neural networks report a statistics about failure
causes. About 50% of failures are caused by bearing failures, around 40% are
due to winding failures of the stator, the remaining 10% is due to failures of the
rotor or the shafts[29].

An interesting method for online diagnostics has been proposed in [9] where
authors proposed the measurement of the frequency response in motor wind-
ings in order to perform detection of both mechanical and electrical damage
(i.e.deformation of the windings and degradation of conductors and materials for
isolation). This method is very interesting as it can be easily integrated into
systems based on asynchronous motors and allows for real-time diagnostics. The
fact that it doesn’t interfere with normal engine operations is a big plus. Unfor-
tunately, the proposed method presupposes a thorough knowledge of the type of
engine being observed, consequently the methodology is difficult to implement on
a large scale. Furthermore, the authors do not introduce a quantitative measure
of the real ability of the proposed method to identify failures. Finally, the case
studies are limited to cases of simulated and not real faults, there are not enough
data to suggest a real applicability.

The methodology proposed in [26] addresses the problem of rotor manufac-
turing inaccuracies caused during the die casting process. Depending on the
importance, this type of problem can present itself immediately or remain hid-
den until it manifests itself in critical moments of the use of motors. However, this
method can only be used offline and is invasive as it is necessary to disassemble
the motor.

A smart-sensor has been proposed in [60], it is based on low cost compact
triaxial stray flux sensors, the setup is easy and is non-invasive. Despite this
advantages, sensors need to be applied to specific locations on the motors, con-
sequently an offline intervention on the motor need to be performed.

An interesting comparison between vibrations and current monitoring is pre-
sented in [16]. The authors pointed out that methods based on current and
vibration analysis are the most widely used techniques for motor diagnostics.
This is explained by the advantages of reliability, non-invasiveness, and ease of
installation of the measuring sensors. The authors applied the Support Vector
Machine algorithm to the different cases of failures and measured signals. With
Support Vector Machine it is shown that mechanical failures are better identified
by means of vibration signals and electrical failures are well identified by current

11
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measurements. It is also pointed out that the accuracy of the diagnostics varies
according to the engine speed.Although it is possible to achieve satisfactory accu-
racy in some contexts, a valid method is not proposed to diagnose every type of
fault by means of current signals alone. Furthermore, the authors do not propose
a method for the choice of measurement and diagnostic instruments. Finally,
the applied method does not seem to be applicable in real time on an embedded
device but rather requires an offline computer analysis.

A graph-based semi-supervised learning has been proposed in [59] in order
to develop a comprehensive fault diagnosis method for an online diagnostics on
induction motors. The proposed method is an approach based on semi-supervised
learning which requires a smaller amount of labeled data. In particular, the
authors adopted the greedy-gradient max cut algorithm (GGMC). The authors
note that a large labeled dataset is required for supervised machine learning
methods which is not always available in real settings. The method is interesting
because it responds to the need to have a consistent training dataset since it is not
always easy to collect failed engines for multiple reasons. However, the proposed
method has been validated on the same engines used for training. Although
the data on which the approach has been validated are not the same, there is no
information on the validity of the approach in a real context. Finally, the authors
do not specify the system requirements to be able to build a diagnostic system
for a large-scale application.

12
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3 Anomaly Detection in Fluid
Machinery

3.1 Introduction

In this work, a fault detection method for fluid machinery without adequate a
priori information about faulty conditions is proposed by exploiting HMM. The
procedure takes into account multiple physical quantities and it deals with the
sparsity and non-synchronization of these measures. The core of the proposed
method is the ability to train a Hidden Markov Model by merely exploiting data
related to normal machine operation. This extends its employability to reliable
machines, where the fault is a rare, though deleterious, event. The proposed
method, by taking into account multiple factors, can be generalized and extended
to complex systems where various physical quantities can be monitored.

According to state of the art mentioned above, fault detection is a preliminary
and essential step for fault diagnostics. Moreover, many applications simply
require the detection of a fault, such as in the case study of the present work.
Therefore, the aim of this work is to build a fault detection model, while further
extension to diagnostics or prognostics will be addressed in future works.

The proposed fault detection method based on Hidden Markov Models, tak-
ing sparse measures of multiple physical quantities is sketched in Fig. 3.1. The
problem of sparsity and non-synchronization of data is faced, first, by filling the
input data on a coherent time-base and, then, by applying a decimation. Next,
a Principal Component Analysis (PCA) is employed to project the data in a
new space, and to select the principal components. Finally, data are clustered.
After this data processing, the HMM is trained by means of the Baum-Welch
algorithm. The trained model is then employed for fault detection, by means of
a goodness—of-fit test, as shown in Fig. 3.1b.

In the following subsections, the blocks in Fig. 3.1a and Fig. 3.1b are detailed.
Then, test and validation of the model are reported in the next sections, by
referring to a case study at CERN.

13
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trained
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fault
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" [
pre-processing fault detection

Figure 3.1: Block diagram of the proposed method for a) the Hidden Markov
Model training and b) the fault detection (PCA: Principal Component Analysis).

3.1.1 Data processing

The first step in data processing is the filling. In general, sensors installed on
the monitored fluid machine can return non-uniformly acquired data with data
acquisition not synchronous. Indeed, the sampling rate depends on the expected
variation of each physical measurand. However, for the next steps of training
and fault detection, structured data are necessary. To this aim, a time base
is considered with equally-spaced time instants, so that every measure can be
referred to a reference instant. Then, the value of each quantity is replicated
for each time instant up to the next measured value. It is assumed that a data
is obtained in a stationary operating condition, namely, that measures are not
acquired during transitions of the machine to a regime.

After that, data are decimated in order to diminish the computational burden
and allow further processing. The optimal decimation factor is found balancing
the trade-off between the computational burden and the final accuracy of the
model. This factor does depend on the available data, and a determination
example is reported in the following section within the discussion of the case
study.

As mentioned above, the Principal Component Analysis (PCA) follows. The
purpose in using PCA is to represent the variation of measured quantities with a
smaller number of "factors", or "main components". The samples are represented
in a new space, by redefining the axes through the main components instead of
the original variables. PCA captures the variance of data, and accounts for cor-

14
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relations among variables. The resulting lower-dimensional representations of
data can improve the proficiency of detecting and diagnosing faults using mul-
tivariate statistics. The number of principal components to take into account
depends again on the available data. The proposed criterion is that the first
discarded component would add an amount of data variance which is two-order
of magnitude less than the variance already taken into account with the selected
(principal) components (lower than 1%). This step can be executed with the
MATLAB function pca by deriving the scores associated to each component.

Data processing is concluded with a cluster analysis. Its purpose is to group
data according to some criteria of similarity, As an example, the clusters are
determined in such a way that the observations are as homogeneous as possi-
ble within the same cluster, and as uneven as possible between the different
clusters. The clustering technique employed in the proposed method exploits the
Euclidean metric. According to that, the data are clustered so that the Euclidean
intra-cluster distance is minimized, and the extra-cluster Euclidean distance is
maximized.For instance, this can be done with the kmeans function available in
MATLAB, by exploiting the default distance measure sqeuclidean. The success
of this modeling depends on the choice of the number of clusters. Too many
clusters would lead to ambiguities, while choosing few clusters means flattening
observations and merging observations that are actually associated to different
states. The number of clusters is chosen with an iterative procedure aiming to
find the combination of clusters and states of the Markov model that maximized
the accuracy of the trained model. This is better described below in discussing
the training algorithm.

3.1.2 Training

An HMM is usually characterized by five elements:

N, the number of states;

M, the number of distinct observation symbols per state;
A the state transition probability distribution;

B, the observation symbol probability distribution;

m an initial state distribution.

L o=

Training refers to the process of obtaining the HMM parameter set. In particular,
the matrices A and B are to find. Each element a;; of the matrix A represents the
probability of transition from the state i to the state j. Instead, each element b;;
of the matrix B represents the probability to observe the symbol i given a state
j. The training of an HMM consists in finding these two matrices from measured
data. The dimension of the matrix A, as well as one dimension of matrix B, is
related to the number of hidden states NN, which is not known a-priori. Thus,
an iterative procedure is employed in order to find the number of states that
maximizes a likelihood function. The iterative algorithm that constitutes the
core of training in the proposed method is the “Baum-Welch algorithm”.
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Let 8 = (A, B, ) be the model to train. The algorithm is made of three steps:
(i) a forward procedure, (ii) a backward procedure, and (iii) an update procedure.
The forward procedure calculates the probability of a partial sequence of states
a;, finishing in state i, given a model #. To this aim, an iterative procedure is
implemented (eq.3.3). The probability of observing a symbol y(z+1) in state i is
multiplied by the probability of entering the state i.

ai(t):P(le)ﬁ,--sz=}’t,St=i|9) (3.1)

The iterative procedure is initialized with @;(1) equal to the product between
the probability of observing the symbol y; in state i and the probability that the
initial state is i (namely ;) (eq. 3.2).

@;(1) = m;bi(y1) (3.2)
Eq. 3.1 resumes this first step, where Y is the random variable representing the
observed measure, and S is the random variable representing the state.

a;(t+1) =b;i(yr+1) Z a;(ta;j (3.3)
=1

On the contrary, the backward procedure corresponds to find the probability
(eq.3.4) of generating the sub-sequence from ¢+ 1 to T after entering the state i.

ﬁi(t) =P(Ys1 =Yts15-- - YT =371, 5 =i|9) (3«4)

The iteration now considers the sum of all probabilities of entering the states
after i and observe the symbol y(#+1) multiplied by the probability of having the
sub-sequence B;. Eq. 3.6 resumes this second step. The iteration is initialized
considering that this probability is 1 (eq. 3.5) in the last observation T, i.e.
Bi(T) = 1.

Bi(T) =1 (3.5)

Hence, the initialization here considers the final observation, while the rest is
obtained going backward.

N
Bi(t) = Zﬂj(l‘ +1)a;ijb;(yis1) (3.6)
=

Finally, it is possible to calculate the probability y of being in state i at time ¢
given the observed sequence Y and the parameters of model 8, and the probability
£ of being in state j at time r and 7+1 given the observations Y and the parameters
of 6.

7,~(t) = M
SN @ (0B (1) .
£,(0) = @i (D)ai;Bj(1 +1)b;(yi1) '

Ny 2N ai(taiiBi(t+ )b (yesr)
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Chapter 3. Anomaly Detection in Fluid Machinery

This allows to update the model parameters because m; equals y(1), namely the
probability of being in state i equals the initial state probability, the matrix A
is updated with the ratio between the expected number of transitions from state
i to state j and the number of transitions from state i to any other state, while
the matrix B is updated with the ration between the number of times that the
output is k£ when the state is i divided by the total number of times that the
state is 7. This update procedure is resumed in eq. 3.7 and 3.8.

m =vi(1)
T-1T-1
aj; = fu(f)z%( ) s
by () = Zleyl—ﬂZ)(t)

where 1y -,, equals "1" when y; = v, and "0" otherwise.

3.1.3 Fault detection

Once the model is trained, it can be employed for the fault detection. The data
processing steps necessary in this phase and reported in Fig. 3.1b comply with the
corresponding ones of the training phase, already detailed in the previous section.
Then, the clusters are compared to the model and the likelihood function is
returned. The maximum likelihood is found with an Expectation-Maximization
(EM) algorithm, which estimates the parameters of the statistical model [1].
Finally, a goodness—of-fit test is executed between the likelihood sample obtained
in the training phase and that obtained by the application of the test sequence.
A fault is detected when a different distribution is found for the two samples. An
example of goodness—of-fit test is the Wilcoxon one [20]. It is a non-parametric
test employed in case of non-Gaussian distribution of data. Alternative statistical
tests can also be used. As an example, the likelihood distribution could be
analyzed with a preliminary statistical test and if a compliance is found with a
Gaussian distribution, specific tests can be used, such as the chi square test.

In the following, the training and validation steps described above are resumed
in an algorithmic form in order to clarify the method implementation.

3.2 Experimental Case Study

The methodology presented above was validated on a case study at CERN. Failure
prediction techniques can address maintenance planning needs. This is especially
useful in contexts such as those of CERN where an attempt is made to condense
maintenance activities to certain periods of the year.
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3.2. Experimental Case Study

Algorithm 1 Fault Detection with Hidden Markov Models: Training

11:
12:
13:
14:
15:
16:
17:
18:
19:

Collection of sequences §; in the data set S;
procedure PRE-PROCESSING (S ) >V S; €S
Filtering: discard all sequences out of ON period;
Filling: replication of the last available measurement;
Decimation: selecting 1 over N observations, with N the decimation fac-
tor;
PCA: Extraction of the principal components
return Pre-processed Sequences: S*
end procedure
procedure TRAINING OF MODEL(80% of S* )  » multiple training needed
for all S; € S! do
Clustering: (Sgl_) « EuclideanClusterization(S")
Training: (M;, L;) « BaumWelch(Séi,A) > A states number
end for
return (M;) whose (L;) is Maximum
end procedure
procedure TESTING OF MODEL(M;, 20% of S )
Check (L;) « ExpectationMaximization(Mi,Sii)
return number of sequences rejected
end procedure

Algorithm 2 Fault Detection with Hidden Markov Models: Validation

1:
2:

procedure VALIDATION(M;, 20% of S* )
Anomaly injection: Alteration of few values in the nominal observations
§% « Alteration(S*)
S « Pre-Processing(S%)
L « ExpectationMaximization(M;,S{") ¥V §{' € §4
Validation: P,, <« Wilcoxon(L?,L;f) with L?,L;’ eLandi#j
return P,,
end procedure
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3.2.1 Description and test strategy

At CERN, liquid helium is used to cool superconducting magnets that accelerate
the particle beam in the Large Hadron Collider (LHC). Moreover, within the
High-Luminosity LHC upgrade, superconducting links are under construction,
and this requires an important economic investment also in the cryogenic plants
[5]. To process liquid helium, screw compressors are employed (Fig. 3.2).

Figure 3.2: Screw Compressor Cutaway.

A complex refrigeration system based on this kind of compressors guarantees the
distribution of liquid helium in the accelerator. In such a system (Fig. 3.3), it
is essential to prevent malfunctions of screw compressors, especially when the
accelerator is in operation. Even though a fault is a rare event because of the
reliability of these machines, it still poses a challenge for long accelerator runs.

As mentioned above, though the case study takes into account screw com-
pressors, the proposed method was conceived for fluid machines in general. The
involved quantities are typical for fluid machines, namely 3-axis acceleration,
power consumption, temperature, inlet pressure, and outlet pressure. In Fig. 3.4,
the physical quantities that compose the data set taken into account are plot for
the sake of clarity.

To verify the validity of the method, the model was built for compressor 7 in
cryogenic system QSCA installed at the point 2 of LHC. To test the algorithm,
it was necessary to conduct a series of experiments based on the administration
of well-known nominal and abnormal sequences, in order to verify if the algo-
rithm correctly recognizes the incoming sequence. The basic idea was to verify
how many anomalous and nominal sequences were correctly recognized and how
many were not. Data were divided into 80% employed for training, and 20% em-
ployed for a preliminary evaluation of the model accuracy. A further validation
step followed. However, since the whole data set contained measures acquired
during nominal operation, faulty data were obtained by artificially corrupting
the original data and these were given as input to the algorithm to verify if
they are properly recognized. In simulating the faulty data, it was considered
that, as a result of a fault, a significant increase in the vibrations is expected.
Screw compressors are complex machines, composed of several components, such
as gear-box, rotors, bearings, each of them subject to faults. It is very difficult
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Figure 3.3: Screw Compressor N.7 in LHCA-P2 CERN.

to model the system as a whole, and, therefore, to develop a model that sim-
ulates a faulty condition. However, historical fault data indicate that in many
faults or anomalous conditions, a significant vibration increase was observed be-
fore the machine failure [44]. Often, a fault of a subsystem (such as a scuffed
rotor tooth [15] or hydrodynamic unbalance [61]), although causing a significant
vibration increase, and probably a consequent variation of the other process quan-
tities, do not cause an immediate failure of the machine. However, if suddenly
discovered, it can be fixed without causing unrepairable damages to the machine.
Therefore, seven parameters, namely the vibration velocity on the three axes, the
inlet and outlet pressure, the outlet temperature, the delta oil pressure and the
position of the slide valve, were selected and collected in sequences of 24 hours
each one. Anomalous conditions were simulated by altering the vibration velocity
on the axis Z in each sequence of observation for about the 15% of its duration.
The amount of the alteration was varied in the set {20%, 30%,50%,100%, 150%}
of the original value. The results of these experiments are reported at the end of
this section. Unfortunately, it is not possible to perform controlled experiments
on the compressors considered in the test case, because they are installed and in
operation. However, the simulated amount of vibration was chosen coherently
with the documented faults for the screw compressors.
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Figure 3.4: Trends of physical quantities measured over a period of 3 months.
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Green:Vibration Z Axis, :Delta Oil Pressure, Light Blue:Slide Valve, Dark

green: Outlet Temperature, Red:Inlet Pressure MP, Violet:Outlet Pressure HP.

3.2.2 Data processing

As already described in the proposal, data were processed with filling, decimation,
principal component analysis (PCA), and clustering. In the study, the first 3 main
components were taken into account when executing the PCA. They were able to
explain 99.93% of data variance. The new dataset, obtained from the projection
of the measurements on the new orthonormal base, was then composed by only
3 main features.

Euclidean distances were hence calculated between points in a 3D space for
clustering. The centroids for the number of desired clusters were found with the
kmeans function available in MATLAB. The number of clusters was chosen with
an iterative procedure, aimed at finding the combination of states and clusters
that maximized the quality of the trained Markov model. Quality of model is
defined in terms of likelihood probability carried out at the end of training.

The system is to be modeled in its state transitions, therefore the same length
of the sequence and the same distribution of the observations have to be main-
tained. Thus, the sequences were reconstructed by associating the centroid of
the corresponding cluster to each observation. Each data point was assigned to
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3.2. Experimental Case Study

the cluster from which the Euclidean distance was minimum. Then, for each
sequence, a vector of the same size was constituted.

3.2.3 Training

Using the iterative algorithm of Baum—Welch, described in the previous Section,
the HMM was trained exploiting 80% of processed data. In order to achieve the
best combination of states and clusters, a number of states ranging from 2 to 7
was tested. The best result was obtained with a configuration of 3 states and 3
clusters. The results of this procedure are plotted in Fig. 3.5 versus the iteration
of the algorithm. It is shown that the likelihood increases quickly in the first
part, and then it reaches a steady state as no further significant improvement is
found. Although the maximum number of iterations was set to 100, less than 50
were enough to reach the steady-state value.

Likelihood Plot
T

-100 |

-140 [~ —

LOGLIKEHOOD

-160 |- .

-180 | | I I I ! I ! L

ITERATION
Figure 3.5: Model Log-likelihood per iteration.

The resulting model is synthesized in Fig. 3.6, which graphically represents
the matrices A and B, describing the Markov model. In the present case study, a
totally connected graph with 3 nodes was obtained. In each state, it is possible to
obtain one of the outputs, previously clustered into 3 classes. For each state, the
probability of issuing one of the possible outputs and the probability of passing
in another of the states or remaining in the same state are reported, respectively.
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Figure 3.6: Trained Hidden Markov model.

3.2.4 Validation

Once the model was built, it was necessary to move on to the fault detection
phase. Part of the measured data was manipulated to create the test set. For
this reason, samples are dependent. The Wilcoxon test was employed to assess the
goodness—of-fit because data distributions resulted non-Gaussian by executing a
Shapiro-Wilk test and were supposed to be dependent. Referring to Fig. 3.1b, it
is clear that the testing data is processed, prior to the statistical test, following the
same processing of the training data up to the PCA and clustering. The algorithm
carried on this processing with the same number of principal components and
clusters already identified in the train phase, which both equal 3, as already
discussed. Then, clustered data enters the trained model, and the log-likelihood
is calculated to verify if each sequence of data fits the model.

The distribution of likelihoods has been collected for each test sequence and
Wilcoxon Test was performed on those distributions. The results of the valida-
tion procedure are reported in Tab. 3.1. The first column reports the percentage
increment adopted to corrupt test data and create anomalous sequences. The
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Increment | Probability
0% 0.9283
20% 0.0375
30% 0.0243
50% 0.0202
100% 0.0160
150% 0.0188

Table 3.1: Wilcoxon test results for validation.

second column, instead, reports the Wilcoxon test results performed on the dis-
tributions of likelihood vales collected. Wilcoxon test null hypothesis is "the two
populations have the same continuous distribution". The null hypnosis is con-
firmed or rejected with a probability value, and the confidence level associated to
the statistical test is 95%. The test confirms that the dissimilarity is statistically
significant in the presence of alteration. This means that the proposed method-
ology provides statistically different likelihood values in conditions of minimal
alterations on the sequences of observations ergo it is able to recognize small
differences on nominal conditions.

3.3 Remarks and Discussion

In this work, a method for fault detection based on a Hidden Markov model
(HMM) has been treated. The method was conceived for fluid machines, and the
results of the application to screw compressors have been reported. In particular,
the method was validated experimentally on a case study at CERN with reference
to a cryogenic plant.

Seven physical quantities have been taken into account. They constitute a
dataset built with several months of continuous acquisition. However, the mea-
sures were sparse and asynchronous, so that a filling was employed at the be-
ginning of data processing. The method then carries on Principal Component
Analysis and clustering. The clusters are employed to train the HMM in the first
phase, or for a fault detection exploiting the trained HMM.

A testing procedure and a validation procedure with artificially altered data
were built to assess the capability of the method to detect a fault. A Wilcoxon
test was performed in order to assess the adherence of data sequences to the
trained model. Results point out that every sample of likelihood calculated from
altered sequences is statistically different from the likelihood sample calculated on
nominal sequences. Future work will be devoted to considering another machin-
ery facility, by performing some tests characterized by several ’damage levels’, in
order to further explore the algorithm performance.
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4 Failure Prediction in Hard
Disks

4.1 Introduction

The new frontiers of industrial production and scientific research are reflected in
a growing demand for computing and, consequently, in an evolution of storage
technologies. The increased demand for data storage and processing pushes the
data-centers to provide increasingly efficient services [48]. This efficiency require-
ment can be compromised by the devices that underpin storage: hard drives.
Magnetic hard disks are currently among the most widely used and devices for
storing data.

Magnetic hard disks are currently among the most widely used and among the
most frequently failing components of storage systems and disk failures, resulting
in about 78% of cloud server system failures [49].

In addition to the impact of a service outage for the user, these events also
result in significant costs for the service provider. As unscheduled interventions,
they may require rapid (and hence costly) human intervention or a resource
intensive consistency check and re-validation of recent processing steps by a com-
bination of the service provider and user. In the worst case, disk failures can lead
to permanent data loss and hence economical damage to the user and service
provider due to a breach of service level agreements [34, 49, 51]. While fault
tolerance techniques can reduce the risk of loss, they also often impact negatively
on system performance or price per usable volume.

In order to facilitate the automated interpretation of the disk operational sta-
tus, the disk vendors introduced Self-Monitoring, Analysis and Reporting tech-
nology (SMART), a standardized monitoring system with the goal to warn about
an increasing likelihood of disk failures. The SMART subsystem is a firmware
component running on the disk processor and continuously collects operational
metrics in order to generate a warning or error messages before disk failures that
affect the integrity of application data.

The characteristics of SMART technology include a number of attributes for
diagnostics, the SMART attribute implementation technology varies from model
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to model, even for different disk models of the same manufacturer [42].

The goal of the SMART system is to warn a user at least 24 h before device
failure [23]. Each manufacturing company implements SMART sensors according
to their proprietary technology choices and sets alarm thresholds with the aim
of an acceptable rate of false-alarms and its potential impact on drive warranty
obligations. Generally, the false-alarm rate is around 0.1% per year [32, 39].

Several methods based on modeling techniques have been proposed to recog-
nize hard drives that need to be replaced using SMART attributes [39, 17, 53,
41], but none of them meet all the needs of adapting to heterogeneous sets of
hard drives, low false positive and false negative rates, automatic preliminary
dataset labeling.

To overcome the limitations considered before, an inference method to retrieve
information about failed disks and a supervised machine learning approach to
build a predictor of near-failure disks is proposed in this work. The method
presented in this work does not need a human intervention for dataset labeling
and is capable of operating with heterogeneous sets of magnetic hard disks.

The proposal has been validated in a case study at the European Organi-
zation for Nuclear Research (CERN), where the High Energy Physics (HEP)
challenges have led storage services (fig. 4.1) to become a crucial part of the
cloud services [13]

Figure 4.1: Cern Data Center

CERN uses a variety of hard disk models [14], and an effective prediction
of a likely drive malfunction would allow increasing the user’s perceived service
quality and, at the same time, decrease the resources to operate the service.

26



Chapter 4. Failure Prediction in Hard Disks

4.2 Regularized Greedy Forest Model

The Regularized Greedy Forest model proposed in [25] is a variant of a Gra-
dient Boosted Decision Tree with an explicit regularization (introduced with a
regularization term in the loss function) and with a repeated full-correction of
the coefficients (a repeated optimization). The RGF model and the algorithm
for its training are briefly described to clarify the steps that follow in the paper.
The RGF is a forest (fig. 4.2), or more formally, a non-linear function class

h:X—{0,1} , (4.1)

where X is a set of input vector
x = [x[1],x[2],...,x[d]] e R? . (4.2)

The vector y € {0, 1} is a response vector used for the supervised learning. Each
node is a non-linear decision rule v associated with the pair (8,,@,). Here, 8,
refers to a basis function and @, to the weight assigned to the internal node v.
The model of the forest is

hi(x) =Y avBy(x) (4.3)

veF

where @, = 0 for any internal node. This forest model is accompanied with a
loss function L(h(x);y) and a regularization term R(%). The RGF goal is to find
a non-linear function h(}c) from a function class H that minimizes the following
risk function:

h =argminpeg[L(h(x),y) + R(h)] . (4.4)

The algorithm greedily selects the basis functions and optimizes the weights.

The two structural operations managing the forest are (1) the splitting of nodes

and (2) the introduction of additional trees. At the k-th iteration, the algorithm,

in modifying the structure, operates one of the two options in order to reduce
the regularized loss functions defined as:

Q(F) = L(hp(X),Y) +R(hp) . (4.5)

The addition of a new node (fig. 4.3), from which to start a new tree, consists of
the sum of the node pair to the existing tree, formally:

hp (x) =hp_, (x) +aB(x) . (4.6)

In figure 4.3 the possible changes to the forest (fig. 4.2) are shown. In par-
ticular, the example of creating a new tree in the forest or splitting a node is
schematized. The splitting of a node (fig. 4.3) consists of the removal of the
node that must be divided and the addition of the two new nodes. Assuming
a generic node associated with (8, @), (B, @) needs to be split into (81, ;) and
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Figure 4.2: RGF Schema

(B2, @2) because it is the node split that minimize the loss function, the forest A
at the iteration k becomes:

hp (%) = hipy, (%) — aB(x) + a1Bi(x) + azfa(x) . (4.7)

After a series of changes in the structure, the algorithm proceeds to an op-
timization of the weights. The algorithm then fixes the structure and adjusts
the weights by evaluating all possible combinations in order to minimize the loss
function. Carrying out a frequent optimization of the weights affects the calcu-
lation times.

To make RGF work with success, several parameters involved in the model
training have to be suitably tuned. Three different versions of the Loss Function
L(hp(X),Y) can be exploited:

e the Square Loss LS := (f(x) — y)%/2 ;
e the Exponential Loss Expo = /()
e the Logistic Loss Log := log(1 + ¢/ (X)) function .

The regularization term R(hr) can assume three different models[25]. In all
of the three cases, the coefficient 1 weighs the importance for regularization.
The first regularizer is the Ly Regularization on Leaf-only Models defined as

R(hy) =A- Z a?/2 . (4.8)

veT
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L
\
\

Figure 4.3: RGF Schema Structure Changes

The second regularizer is the Minimum-Penalty Regularizer defined as

Rlhp) = A () y™ 212« hrsy (x) = hr(x)} (4.9)

veT

The third regularizer is similar to the second, but the condition changes:
the sum of the sibling pair need to be zero. The third regularizer is the Minimum-
Penalty Regularizer with Sum-to-zero Sibling Constraints; the regularizer is

R(hr) = -4 )" y™B2/2 : hrg)(x) = hy(x) ;¥v ¢ L[ D B =01} . (4.10)

veT p(w)=v

4.3  Proposed Approach

The novel method presented here is for inferencing failed hard disks (Algorithm
3) and to predict when a drive needs to be replaced due to impending failure (Al-
gorithm 4; the method addresses the issue of the hard disk models’ heterogeneity
of which the storage systems are generally characterized.)[18].

From the collected data, a first step (fig.4.4) of knowledge extraction is made
to label the disks that have been replaced due to a failure and distinguish them
from all other disks (replaced or not). After that, a cleaning of the inconsistent
data is carried out, then, hyperparameters tuning, training and testing phases of
an RGF model are performed consequently (fig. 4.5).
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4.3.1 Automatized Labeling Stage

Labeling Training Data

In many environments, including the CERN storage deployment, a precise def-
inition or label for “failed” disks is not a priori available but needs be derived
from other existing information. At CERN, a probe has been put in place to
determine, several times per day, the presence of all disk drives (identified by
their serial numbers) in all server or compute nodes. Changes between these con-
figuration snapshots are used to track interventions by the data center operations
team, which usually take place for one of the following reasons: A disk is:

e removed/disabled after repeated I/O or self-test errors;
e retired/replaced at the end of its planned lifetime;
e relocated within the data center(s) (e.g., due to floorspace reorganization).

In Figure 4.6, the hard disk ds is an example of temporary suspension during
the interval Iy = [t4,;1g,]. A typical scenario of a host decommissioning is also
shown in the Figure 4.6. All drives belonging to a host that has to be shut down
are drained and removed. Due to the high disk reliability, it is quite unlikely that
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more than one disk would fail at the same day on the same host. Thus, whenever
multiple shutdowns are observed (e.g., d1, ds, ds,dy) in a small day interval, it is
necessary not to classify these disks as replaced disks due to a failure.

dy f———x

dy

3 6 5 GGG
Figure 4.6: Hard disks’ lifetimes in a decommissioned host at time fs.

In Fig.4.7 it is presented a real case, in which the number of disks measured
each day is reported; the figure well illustrates a typical scenario where there is
an inconsistency between the number of disks that a probe measures daily and
the number of disks actually running. The obtained outliers are a consequence
of multiple occurrences of gaps.

As there is no available label classifying a disk as broken, we propose a heuris-
tic approach based on the following definition for “disks at risk”, which is aimed
to identify disk replacements due to individual device failures from the larger
amount of disk replacements due to other data center operations (e.g., host or
disk model replacements or retirement campaigns).

Definition. A disk is classified as broken if it has been removed and all other
hard disk belonging to the same host machine continue to operate mominally.

In other words, replaced hard disks are classified as broken if and only if
neither if other HDDs are removed in the same day nor if the host machine is
decommissioned within 30 days (e.g., dy at fx instant in Figure 4.6).
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SMART Data

The number of hard disks required to perform good training must be reasonably
large. Hard drives fail even after several years from their installation, which leads
to a small number of failures per year in a storage system. To obtain sufficient
SMART tuples (a complete set of SMART measures defining the health status
of a disk) to train and test the proposed machine learning method, some tens of
replaced hard disks have to be taken into account; this way, the SMART tuples
of all hard disks must be necessarily collected in a database daily. The collected
data must be accessible in order to be evaluated in their temporal sequence, and
each SMART attribute tuple must be associated with the serial number, model,
host machine and timestamp of the drive. The job that collects and stores this
information must be run daily.

Pre-Processing

To suitably train the proposed method, all incorrect measures associated with
errors, missing values, exceeding values, etc., must be preliminarily removed. The
collected measurements may be corrupted as errors caused by the probe, in the
internal network, in the file system, etc., may occur. Another typical example of
a corrupt measurement can be an out-of-range temperature measurement, which
can happen because the temperature sensor of a hard disk broke, but this has
not affected the correct functioning of the storage device. Moreover, a disk can
be turned off for several days before being switched on again. Disks disappeared
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from the list of monitored devices and belonging to multiple removals (due to
maintenance, dismantling of hosts machine or similar) have to be excluded from
the set labeled as broken units. In addition, entire measures may be missing in
some days because of software errors, busy firmware, database problems, etc.

An example of the considered conditions are schematically presented in Fig-
ure 4.6; in particular, the hard disk dy (more specifically, its SMART tuples) are
not present during a time interval, a gap.

Let us define S as the whole dataset of available hard disks in the storage
system, and let Iy := [tg,;t4,], With tg, > 15, +1 be a generic days gap experi-
enced during SMART tuples acquisitions. This way, the subset S, € I, of hard
disks replaced during the gap has to be removed from the dataset because no
assumptions can be made about their possible failure and the classification rule
for broken disks is not applicable; a specific hard disk is dropped from the list
of monitored devices since its host machine has been completely removed, and
hard disks possibly operating have also been dismissed. On the other hand, disks
normally running after the gaps are kept in the dataset. Disks replaced dur-
ing an interval S, x € Ig4k = [tg,;g,+k] need to be excluded as well because a
replacement S},k that happened in the interval Iz, does not have the k days
of measures needed for a consistent train dataset. Thus, the dataset becomes
Sa=8-{S, €Iy, Iy}

Afterward, a classification needs to be performed on the dataset according
to Definition 4.3.1. The system must be able to recognize and process the typ-
ical measures of the last K useful days before disk replacement. To this aim,
a preliminary analysis has to be carried out to understand how many days be-
fore the replacement, the SMART measures of a disk, typically, begin to signifi-
cantly change.

4.3.2 RGF-Based Machine Learning Approach

Training of Models

The considered dataset S; needs to be split into training, Sy, and test, St, sets.
As there is a need to classify each hard disk according to its state of health,
a binary classification distinguishing between “at-risk” s, and “not at risk” s,
disks must be performed. The classification phase is performed by using the
RGF model. The training algorithm requires a tuning of the hyperparameters.

The goal is to learn a single nonlinear function A(x) on some input vectors
x € Sp with labels Y, minimizing the argument of a loss function L(h(X),Y).
The algorithms used for learning can be RGF with L, regularization on leaf-only
models (referred to as “RGF” in the following), or the RGF with Minimum-
Penalty Regularization (“RGF_Opt”) or RGF with min-penalty regularization
with Sum-to-zero Sibling constraints (“*RGF _Sib”).

The number of leaves is a data-dependent hyperparameter, and its tuning af-
fects the training time. The number of leaves can be chosen in the range of (1000,
10,000). The degree of regularization A can be adjusted choosing a value as small
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as needed {1,...1072°}. A lower value of A reduces the importance of the regular-
ization in the regularized loss functions. The hyperparameter mazimum depth y
is a parameter used only with the two Minimum-Penalty Regularization models
and indirectly tunes the importance of nodes because a smaller value ensures
a lesser penalty for deeper nodes. In the two min-penalty regularizers, the d,
represents the distance from the root of the generic node v, and the constant hy-
perparameter is elevated as y? . Thus, higher values of y penalize deeper nodes.
The last hyperparameter of interest is the Test Interval, i.e., the number of leaves
added per each iteration. Besides the ones just listed, there are others hyperpa-
rameters whose configurations, if not defined, do not prevent model training but
can help improving its efficiency and effectiveness. Their contribution will not
be discussed in this paper, and the amplitudes exploited during the performance
assessment have been set to their default value.

The hyperparameter tuning, together with the choice of the number of ob-
servation days, create a number of possible configurations that can rapidly reach
a few thousands. A drastic reduction of the experiments number without losing
significance can be made by means of a Design Of Experiments (DOE) using
the Taguchi Orthogonal Array Designs [33]; in particular, each combination of
factor levels exploited to carry out a specific experiment is referred to as plan
configuration. Some of the considered parameters, such as the width of the ob-
servation window, lambda, the number of leaves, etc., can assume values within
large intervals. The purpose of the design of experiments is to evaluate the
effect of all parameters in some significant configurations for training purposes;
this way, for each parameter, a suitable, limited number of values has been estab-
lished according to both their typical interval of variation and authors’ knowledge
and experience.

The choice of levels for each factor is limited to the number of configurations
of the experiment plan used. The risk of overfitting is averted. Due to the limited
number of possible combinations, it is necessary to execute the experiment plan
within intervals that reasonably already give good performance. The optimal
configuration is therefore identified between levels of factors that do not cause
overfitting. It is also possible to make a comparison between the performances
obtained in the optimal case and in all cases foreseen by the experiment plan. This
further comparison allows the system to obtain the certainty of having achieved
the best performance among all the tested combinations.

Usually, the goal is generally to minimize false negatives to avoid risk tar-
gets being incorrectly predicted, thus assuring a conservative behavior from an
operating point of view. The accuracy index is often used in contexts of method-
ologies based on predictors to give a quantization of the goodness of the model.
Accuracy is defined as

True Positives + True Negatives

A = , 4.11
couracy Total Population ( )

where True Positives and True Negatives are the number of disks well predicted
as healthy or non-healthy, respectively. Vice-versa, the number or disk wrongly
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predicted are False Positives (in case of an healthy disk predicted as to be re-
placed) and False Negatives (for disks that need to be replaced and actually
predicted as healthy). The accuracy is usually used to have a first feeling on the
effectiveness of the predictor since it returns the fraction of correctly predicted
test cases out of the totality of all test cases. Although this index shows correctly
executed predictions, it does not measure the predictor’s sensitivity to the dis-
tinctions between positive and negative cases. The method proposed in this work
uses Recall, False Positive Rate (FPR) and Positive Likelihood Ratio (LR+) to
better evaluate the predictor’s performance.
The Recall index, defined as
True Positives

Recall = — - (4.12)
True Positive + False Negatives

is often preferred in this context; the higher the recall value, the better the
reduction of false negatives.

As regards data-centers storage systems, characterized by tens of thousands
of hard disks, a single percentage point of false positives corresponds, instead,
to several hundred hard disks wrongly classified as “to be replaced” even if they are
not. This way, in the considered application field, minimizing the false positive
occurrences turns out to be as fundamental as maximizing the recall. The index
associated with the risk of false positives is the False Positive Rate defined as:

FPR = Fa.l.se Positives . ‘ (4.13)
False Positive + True Negatives

The Taguchi DOE approach can be exploited to assess the factors’ impact on
one performance index; to this aim, the Positive Likelihood Ratio (LR+), defined
as: R

LR+ = Recall (4.14)
FPR

and capable of simultaneously taking into account Recall and FPR, has been
exploited. Before carrying out the training stage of the RGF model, input data
have to suitably shuffled in order to guarantee independence from the temporal
distribution of the measures and prevent biases related to the dataset S;. Both
training and test experiments are required for each of the plan configurations; to
this aim, the whole dataset S, is split according to a ratio of 70%—30%, for train-

ing and testing, respectively.

The Regularized Greedy Forest is trained using the the training data set Sy,
and tested using the testing data set St.

Authors suggest at least 30 runs for each plan configuration in order to simul-
taneously assure statistical significance and feasible execution times. For each
plan configuration, the values of Accuracy, Recall and FPR, expressed in per-
centage terms, are calculated as the median of the Accuracy, Recall and FPR
achieved in the various runs. The final index of LP+ is calculated as the ratio of
the median Recall and FPR.
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Algorithm 3 Classifier Training.
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: procedure DATASETCOLLECTION(D)
for each disk d; € D do
S «— Get SMART tuples daily of d;
end for
Return S
: end procedure
: procedure PRE-PROCESSING(S)
for each SMART tuple S; € S do
if S; is corrupted OR missed OR out-of-range then
Remove S; from §
end if
Label(S;) according to Definition 4.3.1
if S; is replaced in [g1; g2 + k] then
Remove S; from §
end if
end for
Return S
end procedure
: procedure DESIGN OF EXPERIMENT(S)
T = TaguchiDesign(Lg, replicates = 30)
for each design #; € T do
Shuf fle(S)
S., St = Splil(S, 70 — 30%)
Model = Rg fTrain(t;,Sr)
LR+ = Rg fTest(Model, St)
end for
Select configuration C using E f fectPlot(T, LR+)
Return C
end procedure
: procedure THRESHOLD ASSESSMENT(S, C)
Shuffle(S)
S, St = Split(S)
Get Definitive Model Model = Rg fTrain(C, Sr)
Get Probabilities P = RgfTest(Model, St)
RC «— RocCurve(P, St)
Select Threshold 7, using RC
Return T, Model
: end procedure
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The RGF classifier returns a probability for each tuple of SMART measures of
likelihood with respect to the two classes of healthy or broken. The last step for
the user is the choice of a proper threshold beyond which discriminating whether
the considered tuple identifies a Hard Disk that needs to be replaced or not.
The choice of the optimal threshold turns out to be a trade-off between false
and true positive rates. To drive the choice of the right threshold, the Receiver
Operating Characteristic (ROC) curve has been exploited. The ROC curve,
a graphic tool for the evaluation of FPR and TPR, helps the developer, in fact,
to identify the best trade-off threshold, which the authors experienced close to
the beginning of the curve knee.

Validation

The system configured and trained according to the above method can be put
into production. It is useful to perform a further final validation and evaluate the
trend of the probability with which each hard disk is classified as healthy or not.
The tuples of SMART attributes collected daily are processed by the trained and

Algorithm 4 Prediction.

1: procedure PREDICTION(T,, D, Model)

2 for each disk d; € D do

3 D, «— Get SMART tuples of d;

4 Prediction = Rg f Prediction(D ,, Model,T.)
5: Return (D, Prediction)

6 end for

7 Return the list of disks at risk with probabilities
8: end procedure

tested RGF model. By reporting the evolution of probabilities versus time on a
plot, samples corresponding to a change of the operating condition (from healthy
to broken) can be identified a few days before the replacement of the hard disk.

4.4  Experimental Results

The proposed method has been validated on a case study at CERN; CERN has
a computer center where a large volume of data generated by the complex accel-
erator system and experiments are stored and processed. The collected data are
stored in a set of Magnetic, Solid State or Tape Hard Disks through a distributed
file systems service called EOS and internally developed. There are currently
roughly 65,000 magnetic drives, including 89 different models. Approximately
15,000 disk replacements occur annually due to different reasons; replacements
due to bankruptcies are roughly a dozen per week. Data collected from Au-
gust 2018 and October 2020 have been used for the case study experiments in
Section 4.4.1. A remaining fraction of data collected in the months between
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Model Healthy Broken Total
Ischia 11,962 81 12,043
Capri 11,238 160 11,398

Ventotene 9172 18 9190

Procida 7948 20 7968

Ponza 4695 378 5073

Table 4.1: The composition of the dataset.

November 2020 and January 2021 were reserved for validation in Section 4.4.2.
An example of the algorithm implemented in R is available as supplementary ma-
terial "R-Scripts" in order to encourage the reproducibility of the method (A.2
A3).

4.4.1 Case Study

For the case study, the five models among those used at the CERN Data Center
were examined. Selected models are those characterized by the higher cardinality
in the CERN Data Center; this is a key issue since a large number of hard drives
are necessary to grant a sufficient amount of information on broken disks to train
the RGF model. The examined datasets are shown in Table 4.1; it is worth noting
that all considered datasets are unbalanced in terms of healthy versus replaced
hard disks in favor of the healthy ones. For the sake of privacy, the vendors
and models of the examined Hard Disks have been replaced with names of some
Tyrrhenian islands.

Before collecting the data to train and test the RGF model, a study on the
temporal distribution of the SMART measures has been carried out; as stated
above, reasons why there may be gaps between the measures are manifold. Since
the proposed method requires that for RGF training, tuples of hard disks classified
according to Definition 1 are necessary, establishing after how many days of
absence a hard disk can be considered as permanently replaced and its missing
measures that are not attributable to transient conditions is a fundamental step.
To this aim, the duration of gaps between the tuples greater than 1 day have been
collected and organized as a histogram. The corresponding results are reported
in Figure 4.8, where it can be noticed that the maximum number of occurrences
is associated with a 5-day gap. On the contrary, the number of occurrences for
gaps longer than 20 days rapidly decreases.
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Figure 4.8: A histogram of the temporal gap between SMART tuples by drive.

It has been decided to adopt a conservative approach and to remove all the
measures of the 30 days prior to the last available from the dataset. The measures
of the last 30 days have however been used for the purpose of labeling hard drives.
In particular, the SMART attributes considered to provide measure tuples are
reported in Table 4.2.

After extrapolating only the data relating to the hard disks shown in Table 4.1
from the entire dataset S, the dataset S; has been pre-processed to clean from
corrupt, incomplete and error data according to what was stated in Section 4.3.1.

Once the dataset was cleaned, each hard disk’s serial (the drive’s unique iden-
tifier) was classified and labeled according to Definition 4.3.1; successively, the la-
beled dataset has been divided into train, S;, and test, S;, datasets. The training
set of SMART measures of healthy disks has been randomly decimated in such a
way as to assure the same cardinality of the broken drives for each disk model.

A Resolution III plan Lg has been exploited for all five hard drive models,
whose plan configurations are reported in Table 4.3.

Each configuration is characterized by at least one parameter level different
from one another, thus assuring a complete and efficient investigation of the whole
experimental space.

The main output of the Taguchi approach is the so-called effects diagram,
i.e., the evolution of the performance index versus each parameter level; the
effects diagram allows the developer to determine which level of each factor cor-
responds to a maximization (or minimization) of the chosen performance index.
For the considered method, the goal is the maximization the LR+ index. As an
example, the corresponding results of the DOE for the Ponza model is reported
in Figure 4.9, in which, for each factor, the levels were coded with the numbers 1,
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SMART Attribute Name Description
Hardware read errors that occurred
01 Read Error Rate when reading data from a disk
surface
03 Spin-Up Time Average time of spindle spin up
04 Start/Stop Count Number of spindle start/stop cycles
Reallocated Sectors .
05 Count Quantity of remapped sectors
07 Seck Error Rate Fre('ll.len'cy of errors while
positioning
09 Power-On Hours Number of hours elapsed in the
power-on state
10 Spin Retry Count Number of retry attempts to spin up
12 Device Power Cycle Number of power-on events
Count
Power-off Retract Number of power-off or emergency
192
Count retract cycles
193 Load,/Unload Cycle Number of cycles into landing zone
position
194 HDA temperature Temperature of a hard disk
assembly
Current Pending Number of unstable sectors (waiting
197 .
Sector Count for remapping)
198 Offline Uncorrectable Number of uncorrected errors
Sector Count
199 Ultra DMA CRC Error Number of CRC errors during

Count

UDMA mode

Table 4.2: Selected SMART Attributes[22].
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Experiment Algorithm Loss Function Leaf Days
1 RGF LS 1000 6
2 RGF Expo 5000 7
3 RGF Log 10,000 8
4 RGF _Sib LS 5000 8
5 RGF _Sib Expo 10,000 6
6 RGF_Sib Log 1000 7
7 RGF_Opt LS 10,000 7
8 RGF_Opt Expo 1000 8
9 RGF_Opt Log 5000 6

Table 4.3: The design of the experiment.

2 and 3. As regards the algorithms and the loss functions, the three coded levels
are in the order: RGF, RGF _Opt and RGF _Sib for algorithms and LS, Expo
and Log for the loss function. As for the levels of the number of leaves and the
number of days of observation, the levels encode the values of 1000, 5000, 10,000
and 6, 7, 8, respectively. From the reported effects diagrams, it can be stated that
for Ponza models, the proposed method gives better results using the RGF with
Lo regularization on leaf-only models (“RGF”) codified as the first level of the
first factor. In a similar way, Expo, 10,000 and 6 days levels are chosen for the
Loss Function, maximum number of leaves and observation interval for training,

respectively.
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Figure 4.9: Ponza’s Effect Diagram.
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Similar behaviors have also been obtained for the other disk models; for the
sake of brevity, they have not been reported. Choosing the levels associated
with the maximum value in the effects diagrams for each parameter, the oper-
ating configuration capable of assuring the best prediction performance can be
determined; the corresponding values are reported in Table 4.4 for the different
disk models.

Model Algorithm Loss Function Leaf Days
Ischia RGF_Opt Log 10,000 7
Capri RGF Log 1000 8

Ventotene RGF_Opt Expo 1000 8

Procida RGF_Opt LS 10,000 7

Ponza RGF Expo 10,000 6

Table 4.4: Optimum Configuration.

Due to the discretization of the variation ranges, the DOE allows the developer
to single out a sub-optimal operating configuration. This way, a manual tuning of
the hyperparameters in a small neighborhood of the obtained configurations has
been carried out in order to further improve the performance in the prediction
stage; in particular, the performance index LR+ has increased for some points.
The first draft of performances are reported in Table 4.5. Using the sub-optimal
configuration following the DOE, quite good performance values were obtained,
but it is necessary to further reduce the False Positive Rate for the system in
order to support maintenance.

Model Recall FPR LR+
Ischia 95.2% 1.6% 59.5
Capri 92.7% 3.6% 25.8

Ventotene 95.0% 8.7% 113.1

Procida 97.6% 6.1% 15.9

Ponza, 100% 5.1% 19.5

Table 4.5: The results with a threshold at 50%.

Therefore, it is necessary to increase the threshold beyond which a hard disk
is considered close to failure. Finally, the optimal thresholds have been carried
out by means of the ROC method (Figure 4.10). The associated final results are
reported in Table 4.6; the remarkable results in FPR reduction can be appreci-
ated.
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Figure 4.10: ROC Curves.
Model Threshold Recall FPR LR+
Ischia 85% 98.4% 0.2% 659
Capri 67% 92.2% 0.8% 115
Ventotene 74% 95.8% 0.6% 160
Procida 62% 99.5% 0.4% 284
Ponza 88% 78.1% 0.9% 86

Table 4.6: The final results with the optimized Threshold

4.42 Validation

The performance of the model was evaluated on a small fraction of disks not
used in the previous phases. From the validation set, the hard drives replaced
due to failure have been extracted, according to the heuristic approach proposed
in this paper. Thus, the predictor’s ability to recognize these hard drives at risk
in the days preceding the replacement has been assessed. The serial number of
the replaced hard disks have been masked using the name of German cities and
French rivers. SMART data from the last 60 days prior to the replacement day
were collected from these hard drives, and the predictor was evaluated on the
tuples of each day. The most significant results are shown in Figure 4.11a,b for
Ischia and Ventotene models, respectively. It can be noted that some hard disks
showed a significant change in the range of a week before the replacement day,
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and other hard disks were to be considered at risk even tens of days before re-
placement.
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Figure 4.11: Validation of the Ischia (a) and Ventotene (b) Hard Disk Models.
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45 Final Remarks and Discussion

In this paper, a method for predicting hard disk media failures and hence increas-
ing the availability of large-scale storage services has been presented. The main
contribution is a proper stage to automatically label (healthy/at-risk) the disks
during the training and validation stage along with the tuning strategy to opti-
mize the hyperparameters of the associated machine learning classifier. This way,
the described classification model is fully automated and avoids any repeated hu-
man intervention or judgment from a storage deployment team. The proposed
method is based on an inferential modeling approach, designed to adhere to the
hard drive model it is trained on. Consequently, a forest is trained for each hard
disk model. This feature allows the prediction system to overcome the hetero-
geneity problems of hard disk models typical of datacenters. It is hence applicable
in large data-centers faced with a heterogeneous population of storage devices and
storage deployments. The presented method is based on a practical identifica-
tion heuristics for failed disks and the application of supervised machine learning
(Regularised Greedy Forest), exploiting the full set of available SMART metrics
for failure predictions. A data preparation algorithm has been presented, it takes
care of handling operational problems, such as gaps in SMART sensor collection.
The method allows the system to reliably identify hard disks that have been
replaced due to failures, in contrast to other frequent deployment operations,
such as disk retirement or relocation, and to operate without the requirement
of keeping consistent replacement logs, e.g., by a data center operations team.
The trained model with our method achieves a promising level of accuracy, in
excess of 95%, and a False Positive Rate typically below 5%, even reaching below
1% in some cases. The additional information from the model allows storage
service providers to reduce the risk of service unavailability, e.g., by proactive
re-replication or via the determination of “at-risk” failure groups with multiple
devices with an increased failure likelihood. This method has the disadvantage
of the need to archive a continuous flow of data from the probe that collects data
from the hard disks. In order to carry out adequate training and achieve satis-
factory performance values, it is necessary to collect a set of measurements from
tens of failed hard drives. In future works, there is the intention to extend this
method also to solid state drives whose quantity in our case study is growing day
by day and will soon be sufficient to validate the methodology. In future works,
two main tasks will be carried out. The first task will be to validate the cur-
rent methodology, especially the pre-processing phase described above, on larger
datasets that are continuously collected and tested with other machine learning
classifiers. The second task will be to validate the methodology presented above
on other contexts in which the dataset is very unbalanced and for which the False
Positive Rate assumes an important equal (or greater) of false negatives, such as
asynchronous electric motors and power supplies.
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5 Fault diagnostics and Fail-
ure Prediction in Induction
Motors

5.1 Introduction

The three-phase asynchronous motor is widely used as an electric drive due to its
design simplicity, low production cost, sturdiness and reliability. Furthermore,
the asynchronous motor is characterized by a high efficiency. It can also be
simply connected directly to the distribution network with constant voltage and
frequency if it is not necessary to control it in speed with an inverter. The inrush
current, at start-up, may be greater than the current absorbed at full load (4
-10 times higher), although the torque may be small due to the initial phase
shift. In the three-phase asynchronous motor there is a fixed part called the
stator and a moving component called the rotor. The asynchronous motor (also
called induction motor) is an alternating current motor whose angular speed of
the rotor is lower than the rotation speed of the magnetic field generated by the
stator windings, hence the asynchronous|2].
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Figure 5.1: Induction Motor

A set of laminations makes up the stator, it is in the shape of a circular crown.
Between these laminations there are internal grooves in which the enamelled
copper conductors of the three-phase stator winding are wound. Inside the stator
there is the rotor which also consists of a set of laminations, with an internal hole
in which the rotation shaft is inserted. The stator contains external grooves in
which the rotor winding is inserted.There is a thickness of air or dielectric between
the rotor and the stator called an air gap, typically less than a millimeter large to
allow the rotor to spin freely. The most common rotor is the squirrel cage rotor
which is made by inserting die-cast aluminum or copper bars into the channels.
The bars are directly connected to each other on the part that protrudes beyond
the reed valve, on both sides. Induction motors are widely used and appreciated
in industry as they have a very low rotor resistance; voltages on the rotor are not
high, while the currents are high due to the low value of the resistance. Finally
the rotor does not have a number of its own poles, but it depends on the number
of poles of the stator.

Induction motors play an important role in industrial manufacturing. To get
a sense about the impact of the induction motors in industrial field suffice it to
note that these devices account for 29% of global and 69% of industrial electricity
consumption[43]. As seen in the chapter 2 on the state of the art, predictive main-
tenance of electric motors is a hotly debated topic. Signal processing and artifi-
cial intelligence recent advancement have attracted renewed interest in induction
motor diagnostics thus model-based approaches can be overcome thanks to the
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machine learning-based fault diagnosis methods[59]. Induction motor faults are
mainly diagnosed by using characteristic signals of the motors, such as vibration
signals, thermal images, acoustic signals, and motor currents|27].

It is well documented in the literature that mechanical faults are generally
identifiable with appropriate motor vibration analysis. On the other hand, faults
of an electrical nature can be adequately identified by means of analysis of the
current signals. The diagnostic techniques by means of vibrations are however
invasive as it is necessary to have complete access to the motors in order to
install the sensors. Vibration-based diagnostics can be performed using sensors
installed on the system or portable sensors that require human intervention for
positioning. For fixed sensors, there are techniques that provide triaxial sensors
to be able to analyze vibrations in space and there are sensors to be applied in
several points of the engine in order to distinguish the various types of faults. In
the case of sensors to be used manually, an operator must intervene to be able to
measure the vibrations in particular points of the engine. It is evident that the
vibration analysis is invasive as it requires complete access to the engine, this is
not always possible. Generally, in real contexts, asynchronous motors are located
in places where access is limited or space restrictions are present. This constraints
prevent a diagnosis guided by an operator. At the same time, in many cases the
cost of installing vibration sensors is not economically advantageous. Finally, it
is important to remember that vibration-based techniques are able to achieve
satisfactory accuracy only in the diagnostics of mechanical faults and it is not
yet possible to identify, from the vibration signals, faults of a nature other than
mechanical. An approach based on current measurements can solve all these
problems and has the advantage of being easily used in many contexts where
cost and invasiveness are critical requirements. The method proposed below is
based precisely on the collection and treatment of current signals coming from
the power supply circuit of the three-phase asynchronous electric motors.

5.2 Current signals

The prediction maintenance system presented in this work requires particular
focus on the measurement sensors which assume a critical importance for the
purpose of the performance. It is necessary to pay attention to the signal-to-noise
ratio (SNR), the sampling frequency, the size of the measurement buffer, etc. On
the other hand, the processing speed of these signals is not a very important
requirement as the dynamics of the asynchronous motors and the evolution of
the failures leave the designer enough time to process the prediction algorithms.
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Figure 5.2: Measurement System

The choice of sensors to be adopted depends on the type of measures to
be made. Three-phase asynchronous electrical motors are generally powered by
alternating current at 400V at 50Hz. From the study of the state of the art, it
is known that some failure phenomena have an impact on the supply current in
a band centered on 1kHz. It is therefore necessary to acquire with a frequency
greater than double the frequency in which the phenomenon generally occurs but
which does not cause an excessive consumption of resources.

5.3 Prediction Algorithms

The prevention of failures by means of artificial intelligence is operable by adopt-
ing a classifying algorithm trained to recognize an error state before its activation
causes the failure.

Therefore the issue of performing fault detection must be addressed by adopt-
ing a classifier that, on the one hand, ensures a satisfactory level of accuracy in
the prediction of failures and, on the other hand, allows the diagnostic system to
be easily integrated into edge computing solutions.

The goal is therefore to train an algorithm represented by a function f(X)
that, given the current signals measured on the power supply line, returns a
symbol that identifies the class to which the signals belong (healthy / broken).
The function (5.1) to be constructed is therefore a relationship between a set
of cardinality m to a set of cardinality 1. The function f(X) is therefore the
following:

Y=f(X):R" - R! (5.1)

where m is the number of features and R'is the label set. The function, there-
fore represent the classification algorithm and the output is the result of the
classification.

The features extracted from the signal are derived from the spectral analysis
of the measured signals. In particular, the largest spectral components of the
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Figure 5.3: Predictor System

Fast Fourier Transform (FFT) and the largest components of the power spectral
density (PSD) are collected from each signal. For each component, amplitude-
frequency pairs are selected. The method proposed in this work adopts both FFT
and PSD because the aim is to extract characteristics from the signals that are
representative of the failure phenomena. A failure cannot be identified on the
basis of thresholds in the FFT or PSD components alone. This is the reason why
the method proposed in this work adopts a more complex inferential modeling
by adopting a large number of feautures extracted from both the FFT and the
PSD.
In consideration of the inputs taken, the function of the classifier therefore
becomes:
Y = f(FFFT AFFT pPSD 4PSD) (5.2)

The number of components to be selected must be large enough to represent
the reconstructed signal with good approximation. At the same time it is not ad-
visable to select too large a number of components for reasons of computational
complexity. It should be noted that an excessive number of components (FFT
and PSD) risks being representative not only of the signal but also of the noise
of the measures.

The model therefore takes as input the features described above extracted
from the observations collected from the supply line.
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The method proposed in this work adopts Feed-Forward Artificial Neural
Network (ANN) as machine learning model. Feed-Forward ANN’s connections
between the units do not form cycles. In the case of feed-forward networks,
function 5.1 is transformed consequently and it is necessary to introduce the
concept of Neuron (hence the name) to explain it.

I w,

—

Figure 5.4: Neuron

Given an input vector I, a Neuron consists of an activation function ¢ that
takes as input the weighted sum of the elements of the vector I (fig. 5.4). This
simple neuron is called Perceptron, introduced by Rosenblatt in 1962. Often the
threshold is included in the neuron model, adding a fictitious input with value
on this input fixed at 1, the weight of the connection is given by —¢ that can be
imagined as an additional neuron with no input values. Formally the function of
the neuron becomes:

0= ¢(Z w;l;) (5.3)
i=0

where n is the total number of neuron’s inputs.
The activation function ¢ can be of different types, the ones that are adopted
in this proposed methodology are listed below.

e Rectified Linear Unit (ReLU) which is an activation function defined as the
positive part of its argument(fig.5.5), the function ¢ is ¢(x) = max(0,x);
e Hyperbolic tangent (Tanh) which is an activation function defined as tanh(x)

X

(fig.5.6), thus the function ¢ becomes ¢(x) = L=

e Sigmoid, sometimes named as Logistic or Soft eStJ;sep (fig.5.7), whose function

is ¢(x) = 7=
It is important to note that in the configuration of the neural network archi-
tecture, the activation function is a very important hyperparameter in order to
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b(x)

Figure 5.5: ReLU

achieve high performance. All neurons therefore contribute to form the network.
If the output of a neuron is linked in input to a new neuron, the latter contributes
to form a level that is defined as a deep level. Hence, the network is organized in
levels: each neuron of a level receives input only from the neurons of the previous
level; it propagates the outputs only towards the neurons of the following levels.
The layers between the inputs and the output are called Hidden Layers. Self-
connections are not allowed in this type of network, nor are connections between
neurons belonging to the same level. Each neuron, therefore, has the function of
propagating the signal through the network, with a flow of information that goes
from the previous level to the next level (the levels could coincide with the input
or output of the network). It follows that the first level of the Neural Networks
takes argument of 5.2 as input.

In the fig.5.8 a generic architecture of a Feed-forward neural network is re-
ported, where [ € {2,..., L} is the layer index, the total number of hidden levels
is L and the A; is the generic number of neurons per level I. The number of
intermediate levels (L — 1), the number of neurons for each level (A;) and the
activation functions (¢(x)) are hyperparameters that compose the architecture
configuration and should be established at the first stage, in order to get the
topology, the number and type of neurons, the connections, etc. Further hyper-
parameters are added that do not describe the architecture in the strict sense but
contribute to the performance of the model: Regularization strength (Lambda)
and The Standardize data option. The Regularization strength (Lambda) hy-
perparameter specifies the regularization penalty term and the Standardize Data
binary hyperparamenter specifies whether to standardize the numeric predictors
must be standardized or not, in the case of predictors with widely different scales.
The term of the regularization penalty affects the weight of the regularization,
depending on the value chosen, the risk of overfitting is prevented or increased.
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6(x)

Figure 5.6: Tanh

Figure 5.8: Feed-forward neural network architecture

Once the architecture is ready, second stage is to determine the weights of
the connections in order to build a classifier, based on the training data set made
available to the network (placed in input), this phase is named Training.

However, the choice of the hyperparameters that describe the architecture
must be guided by technical approach because the possible hyperparameters
combinations can be infinite. Of course, the goal is to maximize the classifier
performances while trying to minimize the complexity of the architecture.

Hyperparameter configuration can be chosen via grid search based approach,
which consists of an exhaustive search in a limited range of possible configura-
tions, or by a random search based approach, which consists of a non-exhaustive
and random search for configurations in a range of possible combinations. In
case of large number of hyperparameters, the random search technique is to
be preferred over the grid search from the computational times’ viewpoint, be-
cause it has been demonstrated that random search is able to preserve good
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b(x)

Figure 5.7: Sigmoid

performance[6].

As mentioned, the training phase is used, in an iterative way, to do the tun-
ing of the weights which affect the connections between neurons. The weights
are updated in each iteration taking into account the error between the result
obtained and the desired result. It is therefore necessary to introduce an error
function that must be minimized at each iteration.

In order to evaluate the effectiveness of the training operations and of the
resulting model, it is necessary to preserve a fraction of the dataset on which to
test the model. The simplest division technique to evaluate a Machine Learning
algorithm is that of static division (ie 70% -30%), but it can involve drawbacks
and is more appropriate in contexts where the dataset is very large and it is not
possible to perform multiple trainings. The method presented in this paper for
the prevention of failures in electric motors, on the other hand, recommends using
cross-validation. This technique operates a division of the dynamic dataset, it is
in fact a statistical technique that allows the data to be used alternately both
for the train and for the test. It is often called k-fold cross validation because
the dataset is initially divided into a series of equal portions and uses a fraction
for the train and a fraction for the test at each of the k-iterations. In this work
the cross validation technique is adopted as it is more suitable when the datasets
are not large. In contexts such as that of electrical motor diagnostics it is not
easy to collect large datasets of data for the model training. In fact, it is evident
from the state of the art that the methods proposed for failure prediction on elec-
tric motors, in literature, have also been validated on a limited number of faulty
motors. Finally, the optimization of the model can be guided by means of the
Receiver Operating Characteristic (ROC) curve. The ROC curve is a graph that
relates the sensitivity and specificity of a diagnostic test to the variation of the
cut-off value (threshold value). Sensitivity and specificity are two fundamental
indicators to be able to correctly interpret the result. Sensitivity is the propor-
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tion of positive cases that are correctly classified, the specificity of a diagnostic
test is the proportion of negatives that are correctly classified. Increasing the
cut-off value increases the number of false negatives, while the number of false
positives decreases. Consequently, there is a highly specific but not very sensitive
test. Lowering the cut-off value, the number of false positives increases, while the
number of false negatives decreases, therefore we have a highly sensitive but not
very specific test. The larger the area under the curve, the higher the quality of
the model.

5.4 Maintenance Prediction Device: a case study

The case study on which the method was validated includes a set of motors of
various nature and different working conditions.

Current sensor chosen for the acquisition is the MCR1101-20-5. The sensor’s
characteristics are reported in table 5.1.

Figure 5.9: MCR1101-20-5 Package

It was decided to adopt this sensor due to its full scale, passband and limited
magnetic hysteresis characteristics. The sensor has been validated in laboratory
tests using the Fluke 5720A Calibrator and 5725A Amplifier. The evaluation of
the magnetic hysteresis was performed by subjecting the sensor to increasing and
decreasing current flows and acquiring 10 thousand samples for each current step.

Parameter Typical Value for VCC = 5V and T4 = 25°C
Input Range +20 A

Sensitivity 100mV/A

Zero Current Offset +20mA

Sensitivity Error +0.3%

Linearity Error +0.3%FS

Total Error +0.6 %RD

Zero Current Offset Drift | +60mA
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Sensitivity Drift

+0.3%

Total Error Drift

+0.4%

FS

Table 5.1: MCR1101-20-5 sensor’scharacteristics

The sensors were evaluated in order to ensure the validity of the measure-
ments. A measurement campaign was performed in order to asses sensor perfor-

mances.
| Input Current [A] | Mean [A] | Standard Deviation [A] | Samples |
-10,000 -9,872 0,007 10000
29,000 8378 0,005 10000
-8,000 -7,886 0,006 10000
7,000 6,926 | 0,007 10000
-6,000 -5,913 0,008 10000
75,000 1926 [ 0,007 10000
~1,000 73,939 0,007 10000
73,000 5954 [ 0,007 10000
22,000 1,972 0,008 10000
71,000 0,978 [ 0,007 10000
0,000 0,010 0,008 10000
1,000 1,009 0,008 10000
2,000 1,090 0,008 10000
3,000 2,983 0,007 10000
1,000 3,036 0,006 10000
95,000 4,992 0,006 10000
6,000 5,082 0,006 10000
7,000 6,984 0,005 10000
8,000 7.083 0,006 10000
9,000 8,961 0,006 10000
10,000 9,090 0,007 10000
9,000 8,957 0,006 10000
8,000 7.073 0,006 10000
7,000 6,993 0,007 10000
6,000 5,070 0,007 10000
5,000 1,974 0,007 10000
1,000 3,083 0,007 10000
3,000 3,018 0,008 10000
2,000 2,009 0,007 10000
1,000 1,010 0,007 10000
0,000 0,009 0,008 10000
~1,000 20,930 0,008 10000
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~2,000 1,983 0,008 10000
~3,000 2,953 0,007 10000
~4,000 ~3,940 0,007 10000
75,000 4,042 0,007 10000
~6,000 5,912 0,007 10000
~7,000 6,911 0,006 10000
8,000 7,901 0,006 10000
29,000 “8,889 0,007 10000
~10,000 29,879 0,007 10000

Table 5.2: Magnetic Hysteresis

In the figure 5.10 the average values of 10 thousand samples per each step
are plotted. It is evident from the graph that the averages of the measurements
overlap, so it can be deduced that there are no relevant magnetic hysteresis effects.

The Microcontroller (MCU) chosen for the setup is the STM32F,V11VET.
The MCU'’s charachteristics are written below, for the sake of brevity, just infor-
mation relevant for the case study have been reported below.

Arm@®) 32-bit Cortex®-M4 CPU with FPU;

512 Kbytes of Flash memory;

128 Kbytes of SRAM;

General-purpose DMA;

Up to 11 timers;

A 12-bit A/D converter 2.4 MSPS with 16 channels;
Up to 3 USARTs.

The current sensors output a voltage proportional to the measured current.
Since it is necessary to acquire samples coming from 3 motor phases, 3 ADC chan-
nels have been used on which the voltage signals coming from the MCR1101-20-5
sensors are input. It is necessary to reach a sampling rate in order to collect from
the three channels measurements at 10000 samples per second. This is possible
by using the DMA and setting it so that as soon as the ADC produces a valid
value, the DMA takes it to a buffer in RAM. Of course it is necessary to reach a
trade off between sample size and available RAM resources.

In this case study it was possible to acquire 20 whole periods with 20000 sam-
ples for each phase, for a total buffer of 60000 samples.

The device including sensors and wiring to operate the acquisitions is shown
in the figure 5.11.
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Figure 5.10: Magnetic Hysteresis
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Figure 5.11: Data Acquisition System

To operate the measurement campaign, it was necessary to acquire samples
on a large number of engines in different health conditions. Samples from the 3
power supply streams were collected for each motor. The dataset used for the
case study is shown in the table 77.

| Classes | Number of Motors | Class’dimension |

Healthy

7

21

Faulty

21

63

Table 5.3: Dataset
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For each sample, the 10 largest frequency components of the Fast Fourier
Transform (FFT) and the 10 largest components of the Power Spectral Density
(PSD) were selected. The dataset is then created by taking the frequencies and
amplitudes of the largest 10 components of the FFT and PSD.

X = {fi, ATFT o, ATFT, --~,f10,Af{T,fl,AfSD,fz,Ag‘qD, ---,flo,Aﬁ)SD (5.4)

The Dataset is therefore composed of 40 features that describe in a synthetic
way, and with a good approximation, the nature of the acquired signal. For the
training and testing of the model, the k-fold technique was adopted. In this case,
5 folds were selected.

It is necessary to make a choice of hyperparameters before starting the train-
ing. As illustrated above, the random search technique can lead to satisfactory
results by reducing development times. The table 5.4 shows the ranges of all
the hyperparameters, it is natural that the number of all the possible configura-
tions is very high, this entails a great deal of difficulty in operating a grid search
technique (exhaustive evaluation of all configurations).

’ Hyperparameter \ Range
Number of Fully connected Layer {1-3}
First Layer Size {1 -300}
Second Layer Size {1 -300}
Third Layer Size {1 -300}
Activation {ReLU; Tanh; Sigmoid}
Regularization Strength (Lambda) | {1.1905¢7°7 — 1190.4762}
Standardize Data {Yes — No}

Table 5.4: Hyperparameter configuration

The training phase is therefore carried out iteratively and it is necessary to
introduce criteria with which to terminate it. The iterations can be limited in
number, in time or on the basis of an index and the achievement of its threshold
value.
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Figure 5.12: Neural Network Minimum Classification Error

The graph in the plot represents the estimate of the Minimum Classification
Error (MCE). The MCE is calculated considering the sets of hyperparameter val-
ues for each iteration (blue points). The yellow dot and the red square respectively
represent the Minimum Error Hyperparameters and the Bestpoint Hyperparam-

eters. In the figure 5.12 the Minimum Error Hyperparameters and the Bestpoint
Hyperparameters coincide.

The results are summarized at the end of the cross validations in the confu-
sion matrix (fig. 5.13) where known and predicted classes are reported. The false
classes (labeled as 0) correspond to observations labeled as healthy, that is, ob-
servations collected from the engines in good condition. The true classes are the

classes labeled as faulty, i.e. observations corresponding to motors in anomalous
conditions (broken bearings, misalignments, etc.).

The graph 5.14 shows the ROC Curve which represents the relationship be-
tween Sensitivity (True Positive Rate) and Specificity (True Negative Rate). The
Sensitivity is the probability of positives cases correctly classified and the Speci-
ficity is the probability of negative cases correctly classified as negatives.

The Sensitivity is calculated by taking the ratio between the cases belonging to
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True Class

Predicted Class

Figure 5.13: Neural Network Confusion Matrix

the class of fault signals correctly classified as positive (the true positives) divided
by the sum between true positives and the faulty cases erroneously classified as
negative (the false negatives) (5.5). This index represents the probability with
which a classifier correctly identifies a faulty case as positive.

s tivit True Positives (5 5)
ensitivity = , .
Y True Positives + False Negatives

The Specificity is calculated by taking the ratio between the cases belonging to the
class of nominal device signals correctly classified as negative (the true negatives)
divided by the sum between true negatives and the healthy cases erroneously
classified as positive (the false positives). This index represents the likelihood
with which a classifier correctly identifies a healthy case as negative.

True Negatives

Specificity = (5.6)

True Negatives + False Positives

Both sensibility and Specificity indices are calculated from the results presented
in the confusion matrix 5.13.
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Figure 5.14: Neural Network ROC Curve

5.5 Performance Discussion

A comparative analysis was carried out between the proposed method and a mod-
ified version of it. The comparison was made by replacing the machine learning
core with two common classifiers. The selected algorithms for this comparison
were chosen for their characteristic of being widely used in diagnostic applications
based on the machine learning approach. The solution based on a feed forward
neural network has been compared with Support Vector Machine (SVM) and
Decision Tree (DT).

Support Vector Machine is a binary classifier trained on a set of labeled
patterns[45]. A Training set can be defined as:

(xi,y;) € RV x {1} i=1,..,N (5.7)

where x; € R' is the input data set and y; € {1} is the target. The goal of
the support vector machine is to divide the samples by a hyperplane so that the
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’ Hyperparameter ‘ Range ‘
Box Constraint level | {0.001 — 1000}
Kernel scale {0.001 — 1000}
Kernel Function {Gaussian, Linear, Quadratic, Cubic}
Standardize Data {True, False}

Table 5.5: Hyperparameter configuration - SVM

division coincides with the targets y;.
The classification function is defined as:

f(x)=sgn(w-x+b) (5.8)

The function sgn is the bipolar sign function, the vector w is the vector of coef-
ficient and b stands for the bias of the hyperplane.

The classifier’s hyperplane must be idenified in order to satisfy the condition
that y; is greater than or equal to one:

yilw-x+b]l 21, i=1,..,N (5.9)

The 5.9 can be modified as reported in 5.11 in order to introduce a slack
variable to identify a hyperplane that does not fully satisfy the The 5.9 but
maximizes the result.

yilw-x+b]>1-¢;, i=1,...N (5.10)

The goal of the algorithm is to minimize the following:
1 1<
. _ .. - 2
minJ(w, e, b) = GW W 2C [:El e; (5.11)

As performed in the case of the neural networks described above, also in this

case, for comparative purposes, we proceeded with the evaluation of the perfor-
mances with the cross validation technique. The random search technique was
also applied to the support vector machine for the configuration of the hyperpa-
rameters. The possible values that the hyperparameters can assume are shown
in the table 5.5.
Following the application of the random search, the optimal configuration ob-
tained consists of the kernel function such as the Gaussian, the Kernel scale
12.6062, the Box constraint level 167.007, and Standardize data true. This op-
timal configuration allowed to reach an accuracy of 97.6 %, true positive rate of
100% and true negative rate of 90,4%.

The Support Vector Machine ROC Curve is shown in Figure 5.20. The curve
is quite similar to that obtained with the feed forward neural network proposed
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Figure 5.15: SVM Confusion Matrix

in the method, in fact the accuracy level achieved is not much lower. This does
not mean that the feed forward neural network is the best choice for predictive
maintenance purposes in asynchronous three-phase electric motors.

The Decision Trees are Machine Learning algorithms that can be used for
both regression and classification problems. A decision tree is a tree-like model
of decisions and it is usually build upside down with its leaves at the bottom.

In decision trees, decisions are represented by the path taken from the root
to the leaf node. Tree construction occurs iteratively through leaf splitting or
pruning. The random search and cross validation techniques have also been ap-
plied in the case of decision trees. The possible values that the hyperparameters
can assume are shown in the table 5.6. It is necessary to establish the optimal
split criterion for this case. This choice will also be made by means of the ran-
dom search technique.Two split criteria are considered: Gini Diversity Index and
Maximum Deviance Reduction function. Gini Index (G) is defined according to
the formula 5.12:

G=1-) P} , (5.12)
k

where the percentage inside a group of elements is defined as P, and the group
of elements must belong to class k. The value G represent the purity and it is
equal to 0 if all the elements (inside the group) are part of the same class. Thus,
from the branches the node returns as output observation of just one class, given
all the elements belong to that specific class, the classification error is null.

The other split criterion is the Maximum Deviance Reduction function (some-

66



Chapter 5. Fault diagnostics and Failure Prediction in Induction Motors

0.45 —®— Observed min classification error
L ] B Bestpoint hyperparameters
@  Minimum error hyperparameters
0.4 i
|
0.35 -||
_ |
S |
= 0.3
o] |
5 |
=
_S 0.25 —l-l
2|
2]
B8 |
[&] 0‘2 L.
E [
g |
E
Eo15( |
= |
|
0.1 ||
|
005+ &0 o 0o
\D—.—.—.—.—.—.—.—.—.—.—H—.—.—Q—.—.—'—.—H—Q
0 =
1 1 1 1 1 1
5 10 15 20 25 30

lteration

Figure 5.16: SVM Classification Error

times called cross entrpoy). The function is defined as:

= > prxloga(pi) (5.13)
k

Also in Maximum Deviance Reduction function, the elements that are part

of the class k are represented by the variable p; which stands for the percentage
inside a group.

The procedure of splitting keeps going if the conditions are still valid. Of
course, a too complex decision tree is not advisable and must be avoided, oth-

erwise there could be risks of overfitting, interpretability and unreliability of
predictions.
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‘ Hyperparameter ‘ Range
Maximum Number of
Splits {1-83}
Split Criterion

{Gini’s diversity index;

Maximum Deviance Reduction}

Table 5.6: Hyperparameter configuration - Decision Tree

Following the application of the random search in Decision Tree algorithm,
the optimal configuration obtained consists of 6 number of splits and Gini’s di-
versity index as Split Criterion. This optimal configuration allowed to reach an

accuracy of 90.5 %, true positive rate (Sensitivity) of 95.2% and true negative
rate (Specificity) of 76,2%.
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Figure 5.19: Decision Tree Classification Error
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Figure 5.20: Decision Tree ROC Curve

The figure 5.20 shows the ROC curves of the Decision Tree model. Already
graphically it is possible to note that the area under the curve is considerably
lower than that of the curves in the two previous models. This suggests that the
performances cannot be superior or equal to those of the other two algorithms
previously explored.

Model Accuracy | Sensitivity | Specificity
Neural Network Feed-Forward | 98,8 98,4 100
SVM 97,6 100 90,5
Decision Tree 90,4 95,2 76,2

Table 5.7: Performances comparison
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56 Final Remarks

In this chapter a method for the predictive maintenance of three-phase asyn-
chronous electric motors has been proposed. The proposed method explores the
acquisition techniques for samples of current measures on the supply power lines.
The proposed method is based on an analysis carried out on each single phase.
For each motor the three phases are used independently in this method. This
approach increases the robustness of the method as a problem that can occur
on a single phase can be identified by the algorithm. Furthermore, treating the
phases separately allows you to triple the size of the dataset, reducing the risk of
overfitting.

The preprocessing for feature extraction is also easily implemented in edge
computing devices, this allows the implementation and deployment of the pro-
posed method even in real-world contexts where access to external resources is
limited. The machine learning algorithm adopted in this method is a classifier
based on a Feed-Forward Neural Network. The simplicity of this model is advan-
tageous for edge-computing deployment.

Finally, in this work a further comparison was made between the performance
of the feed-forward network-based classifier and other common classifiers in order
to demonstrate the highest performance that a feed-forward-based classifier is
capable of achieving. It is evident from the experimental data that the proposed
method therefore achieves high levels of accuracy (higher than 98%).
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6 Conclusions

In this thesis the issue of predictive maintenance was addressed by means of ma-
chine learning algorithms with heterogeneous measures. The fourth industrial
revolution of these years is transforming production processes. The connection
of devices and the growing computing capacity (cloud computing/edge comput-
ing) create new frontiers in the technological transformation of manufacturing
companies. The interconnection between industrial devices, the growth of edge
computing and the advancement of cloud computing produce large volumes of
data. The availability of this growing amount of data has opened up scientific
approaches in the design and organization of industrial processes.

The literature on predictive maintenance amply highlights the importance of
model-driven approaches in the management of ordinary and extraordinary main-
tenance tasks, as well as highlighting the impact that downtime times have on
production chains. The need for diagnostics of the health status of the systems
is justified by the costs caused by the failures, which are given by the sum of the
extraordinary maintenance costs and the costs of interruption of the processes
dependent on the interrupted systems.

Among the many fields in which the issue of predictive maintenance is felt,
three contexts commonly recognized as important in modern industry have been
selected: screw compressors, electric motors and magnetic hard disks. These
devices all have in common two extremely important factors for which it was
decided to shift the focus of the research: the wide diffusion and the high risk
(given by the product of the frequency of failures by the cost of failure).

First, a method for fault detection based on a hidden Markov model (HMM),
initially conceived for fluid machines and validated on a screw compressor case
study, was discussed. The experimental case study at CERN is inserted in a
cryogenic plant for which the risk of long periods of downtime raises the atten-
tion of the problem. Following a campaign to collect historical measures several
months long, seven physical quantities that make up the dataset were taken into
consideration. The measures were sparse and asynchronous, so at the beginning
of the data processing techniques were proposed and adopted to overcome this
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typical problem, after which PCA and clustering were carried out. The clusters
thus constituted were used to train the HMM in the first phase, or for fault de-
tection using the trained HMM test procedure. Subsequently, a test procedure
and a validation procedure with artificially altered data to evaluate the ability of
the method to detect a fault were proposed and adopted. The Wilcoxon test was
adopted to evaluate the adherence of the data sequences to the trained model.
The test demonstrated that there is statistical significance in validation as the
likelihood samples calculated from altered sequences are statistically different
from those calculated from nominal sequences.

The second work is a method of predicting failures on hard drives and thereby
increasing the availability of large-scale storage services. The method takes ad-
vantage of the dataset composed of SMART metrics and presents a technique
for automatically labeling the disks and an optimization technique for choosing
the hyperparameters of the machine learning classifier. The method is fully au-
tomated and is also based on the application of the Regularized Greedy Forest
machine learning algorithm. The method allows the system to reliably identify
hard drives that have been replaced due to failures by distinguishing them from
other maintenance operations that may be required. Experimental tests have
shown that the method achieves an accuracy of over 95%, and a false positive
rate of less than 5% (with peaks of 1%), a much better result than those proposed
in the state-of-the-art literature. Finally, the proposed method poses a solution
to the problem of heterogeneity typical of large scale storage centers.

The third work dealt with a new method for predictive maintenance in three-
phase asynchronous electric motors. A method is proposed for current measure-
ments, the extraction of features from the acquired samples and for the modeling
of a machine learning classifier for the identification of motors close to failure.
The method is robust to the risks of overfitting as it treats the current measure-
ments of the phases independently of each other, thus avoiding excessive learning
on the individual motors. The optimal configuration of the hyperparameters was
achieved by adopting the random search technique and the validation of the effi-
ciency was performed by means of cross validation. The proposed methodology
has achieved levels of accuracy above 98%, sensitivity of 98.4% and specificity of
100%.

The entire research work reported in this thesis explored common machine
learning techniques for predictive maintenance and proposed new methods for
innovative solutions. The methods presented in the previous chapters reach per-
formance levels higher than those of the state of the art, demonstrating that
machine learning techniques validly solve the most common needs of the manu-
facturing world in the field of predictive maintenance.
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Appendix A. Appendix

A Appendix

In support of the thesis, some information is provided to improve understanding
and support the reproducibility of the proposed methodologies. In particular,
the codes concerning the work on the diagnostics of screw compressors (A.1), on
the failure prediction of magnetic hard disks(A.2 and A.3) and on the acquisition
device for the diagnostics of three-phase asynchronous motors (A.4) are reported
below.
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Listings

A.1 Hidden Markov Model Code Example . . . ... .......... 76
A.2 Automatized Labeling and Features Extraction . . . .. ... ... 78
A.3 Training Testing RGF . . . ... ... ... ... .......... 81
A.4 Data Acquisition Device - Main.C . . ... ... .......... 8

Listing A.1: Hidden Markov Model Code Example

% Select Folder with training data

dir _name = [’C:\ Users\fgargiul\Documents\HMM Gargiulo v2\datasets\’];

% Select the model name. model name.mat and model name.json will be
created

model name = ’Model A and B’;

file = ..
repetitions cluster =’..7;

% SET MINOR PARAMETERS % % % % % % # % % % % # # % % # 4 # o 4 4 o o o o ok 4 4 4 o o o 4 4 4 ok 4 K
% HMM type (8 options)

% 'left to right’, ’ergodic-—random’, ’ergodic—uniform
hmm_type = ’'ergodic—random’;

s

% Filtering thresholds
% either: 0.0 and 0.0, 0.05 and 0.05, 0.1 and 0.1
idle th = 0.0;

dir_th = 0.0;

% Number of cluster
% either 5, 8, 14.
no_of clusters =3;

Number of states
either 8, 14, 20.
=3; % no of states

O XX

Maximum iterations for Baum Welch Algorithm.

It stops earlier if diff. between two consecutive [l
is smaller than le—/

max _iter = 500;

RN

% PARAMETERS for online recognition

% They are not wused in the MATLAB script but by the online recognition
that

% runs in the mobile brower. Those can be changed in the .json file

% afterwards, too.

% CREATE .mat MODEL % % % % % % % % % % % % % o % 5 % % o 5% K K ok o K K o ok 4 K K K o K K K F K K

type = hmm_type; % model type

O = no_of clusters; % no of output symbols
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%initial guess of parameters

if stremp(type, ’ergodic—uniform’)
priorl = ones(Q,1) * (1/Q);
transmatl = ones(Q, Q)* (1/Q);
obsmatl = ones(Q, O)* (1/0);

elseif strcmp(type, 'ergodic—random’)
priorl = mk_stochastic(rand(Q,1));
transmatl = mk stochastic(rand(Q,Q));
obsmatl = mk stochastic(rand(Q,0));

else
% left to right model
priorl = zeros(Q,1);

priorl (1)=
% transistion limited to current and next state (one step 12r)
transmatl = zeros(Q);
for i = 1:(Q-1)
transmatl(i,i) = 0.5;
transmatl (i,i+1) = 0.5;
end

transmatl(Q7 Q) =
obsmatl = ones(Q, O)* (1/0);
end

% Variable will contain all model parameters.
all _models = cell (size(1));

% Read in single gesture and cluster the data.
% f contains info about every single sample

% regex = [’media_ 1hour.csv ’'[;
regex = [’TIMBER Media ’ file ’.csv’];
[c]l_values, no_of files, f| = prepare_cluster v2(regex, dir_name,

idle_th , dir_th);

% Apply kmeans algorithm to find cluster centers.
[7,C, sumd| = kmeans(cl_values, no_of clusters
>display’, ’final’, ’replicates’, 5);

)

% Dendrogram plot

tree = linkage(cl_values,’centroid’);
figure (1)

dendrogram (tree)

hold on;
% Assign samples to cluster wvalues
[f, 7] = assign_to_cluster (C, cl_values, f);

% Select 80% of data for training and 20% to find average likelihood.
k = 5; % how many folds i want
N = size(f,1); % total number of observations

% No cross walidation is performed here. Used to create random
% indices onyly
indices = crossvalind (’Kfold’ ,N,k);

% Split orignial set

test = (indices == 1) ; % which points are in the test set
train = “test; % all points that are NOT in the test set
test set = f(test ,:);

train_set = f(train ,:);

% in this context, models contains only one model
[ model ] train data(train_set, ’'1’, priorl, transmatl, obsmatl,
max_iter);

model (1) .cluster centers = C;
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model (1) .idle th = idle th;
model (1) .dir_th = dir_th;
model (1) .hmm _type = hmm _type;

% model(1).f sample = f sample;

, ~, prob_table] = test_ data( test_set, model(1l));

% check that only the correct gesture was tested.
assert (all ([prob_table{:, 3}] =— ’17));

% Compute the tested Il _mean

% need to exclude the —Inf, as it will get biased o/w.

tmp = [prob_table{:, 4}];
model (1) .tested 1l mean = mean(tmp ([prob_ table{:, 4}] "= —Inf));
model;

save ([ ’C:\ Users\ fgargiul \Documents\HMM Gargiulo_v2\Output\’ model name],

’all_models’);
% CREATE . json MODEL s k%  # s s % & # o 3 K K o o K K A oK oK K KA K K K KA K K KA KKK K
%%

% Seperate filter
convert _model_ to_json(model name, model, ’17);

Listing A.2: Automatized Labeling and Features Extraction

This
script loads the SMART data from your folder and assigns a value
Broken {0,1} to each measure

# and it splits the dataset in measures set for the train/test and a set
for the prediction

# Before run this script, make sure you run it in the correct folder wit
getwd () and setwd ()

dataset_initialization <— function(hd_type,num_models, num_months,
lastdays , pathscript, pathdata)
{

data.table)

ggplot2)

library (lubridate)

library (fpc)

library (dplyr)

cat("last_days_measures_for_trainingset", lastdays, "\n")

library
library

A~~~

setwd(pathscript)

#missing parameters are substituted

if (missing (hd type)) hd type<—"HDD"

if (missing (num models)) num models<—5

if (missing (num months)) num months<—28

if (missing (pathdata)) pathdata<—"/mypath/data"

if (missing (pathscript)) pathscript<—"/mypath/scripts"

source("./renaming values func.R")
source("./removing columns func.R")

h

add. months= function(date,n) seq(date, by — paste (n, "months"), length

= 2)[2]

#setwd (pathdata)
unlink ("/mypath/dataset_initialized /", recursive=TRUE)

78




LISTINGS

dir.create(file.path(paste0(pathdata,"/dataset_initialized")),
showWarnings = FALSE)
load (pasteO (pathdata ,"/disk/disk—all .rda"))

sd<—sd [order (mtime) |
sd<—sd|[,dyear:=NULL|

if (hd_type——"HDD"){

sd<—sd [ type=—"HDD" |
invalid vendors <— c("#HA" , "HEHA")

sd <— sd| !(vendor %in% invalid_vendors) ]
} else if (hd_type—"SSD"){

sd<—sd [ type=="SSD" |
invalid vendors <— c("#HA" , "HEHA")

sd <— sd[ !(vendor %in% invalid_vendors)]

}

cols na omit<—c("mtime","serial","host", "mtime")
sd<—na.omit(sd, cols= cols na omit, invert=FALSE)

#attaching last date per serial
a<—sd|[, .(lastdate_ serial=max(mtime)), by=serial]

setkey (sd, serial)

setkey (a,serial)

sd<—merge(sd,a, all=TRUE)

remove (a)

colnames (sd) [colnames(sd)=="i"] <— "lastdate serial"
sd$lastdate serial<—as.Date(sd$lastdate serial , "CET")

#attaching last date per serial completed
#H### tagging brokens
sd<—ma.omit(sd, cols= "mtime", invert=FALSE)

dl<—as.Date("2018 08 01")
d2<—as.Date("2018—07—01")

i=0

numhdbroken<—c ()

numdisk<—c ()

list broken_ serial<—data.table()

for (i in 1:num months){

d2 <— add.months(d2,1)
dl<—add.months (d2,1)
day(dl) <— day(dl) — 1

lhsd<—sd[, .(lastdate=max(mtime)), by=host |
lhsd<—lhsd [as.Date(lastdate , "CET")<=dl & as.Date(lastdate , "CET")>
d2]

lhd<—sd|[! (host %in% lhsd$host) |
ld<—lhd [, .(lastdate=max(mtime)), by=serial]
ld<—ld [as . Date(lastdate , "CET")<=dl & as.Date(lastdate , "CET")>=d2]

list broken_ serial<-rbind(list_ broken_ serial ,1d)
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}
sd<—sd [order (mtime) |

#4# splitting in (last day and second last day ) & all the rest
sd_predict<—sd[as.Date(mtime, "CET" )==max(sd$lastdate serial) |
sd<—sd [as.Date(mtime, "CET" )<max(sd$lastdate serial)—20]

sd$broken<—0
sd[serial %in% list_broken_serial8$serial|$broken<—1 #to be postponet at
line 121

remove(lhd, lhsd, list broken serial ,1d, dl, d2, i, numdisk,
numhdbroken)

A # Tagging completed
wAAA A removing fake replacements A A A AAAH
#

#a<—sd [broken==1]

a<—sd|[,.SD|[.N], by=serial|
a<—al,.N, by—=c("host","lastdate serial")]
colnames(a) [colnames(a)=="i"] <~ "num_deseappering hd"

host lastdate serial<—c("host","lastdate serial")
setkeyv (sd,host lastdate serial) -
setkeyv (a,host Tastdate serial)

sd<—merge(sd,a, all=TRUE)

remove(a)
print (nrow(sd|[broken==1]))

sd [N>1]$broken<—0
print (nrow(sd|[broken==1]))

sd<—sd | ,N:=NULL]

sd<—sd [, lastdate serial:=NULL]

sd predict<—sd predict[,lastdate serial:=NULL]
sd<—sd [order (mtime) | -

a<—sd [, .(lastdate serial=max(mtime)), by=serial]|
setkey (sd, serial)

setkey (a,serial)

sd<—merge(sd,a, all=TRUE)

remove(a)

colnames(sd) [colnames(sd)=—="1i"] <— "lastdate serial"
sd$lastdate serial<—as.Date(sd$lastdate serial , "CET")
sd<—sd [order (mtime) | -

#let 's keep last days we need
sd<—sd [as.Date(mtime, "CET")> (lastdate serial —lastdays)]| #da wverificare
sd<—sd|[,lastdate serial:=NULL]

sd<—sd|,lastdate serial:=NULL]
print (nrow(sd|[broken==1][,.N,by=serial]))

#Let’s extract sets
model list<—sd|[,.N,by=model]
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model list<-model list [order(—N)]|
model list<-—na.omit(model list , cols= "model", invert=FALSE)
model list<—model list [1:num_ models |

num broken by modek—sd|[broken==1,.N,by=c("model" ,"serial")]|
# print (num broken by model)

a<—num broken by model[, .N, by—model]

colnames(a) [colnames(a)=="N"] <— "num broken"

setkey (model list ,model) -

setkey (a,model)

model list<—merge(model list ,a, all=TRUE)

model list<—model list [order(-N)]|

remove (a) -

# model _list$broken<—nrow(as.data.table (num broken_ by model))

for (i in 1:num models) {
n<—model list|i]$model
m<—as . character (m)
sub sd<—sd|[model—m]|
sub sd predict<—sd predict|[model=—m]|

#renaming & remowving column in training set has been performed
remotely because of dimensions

sub sd<—renaming values (sub sd, TRUE)

sub_sd<-removing columns (sub sd)

sub sd|,serial:=NULL] -

sub_sd<—sub_sd|[base :: sample (nrow(sub_sd)) |

dir .create( file.path(paste0(pathdata,"/dataset_ initialized /", m)),
showWarnings = FALSE)
write.csv(sub_sd, pasteO (pathdata,"/dataset initialized /" ,m,"/train_",

m, ".csv"), row.names = FALSE)
write.csv(sub_sd_predict, paste0(pathdata,"/dataset_initialized /" ,m,"/
prediction_",m, ".csv"), row.names = FALSE)
}
write.csv(model list [1:num models,], pasteO(pathdata,"/production
dataset_initialized /models_list .csv"), row.names = FALSE)

Listing A.3: Training Testing RGF

reticulate ::use_python("/mypath_to_conda/anaconda3/bin/python", required
=T)

library (data.table)

library (reticulate)

library (doParallel)

## make sure the python packages are actually installed
stopifnot (reticulate ::py module_available ("rgf.sklearn"))

## before initialising RGF
library (RGF)
train_test pred precision v2 <— function(num model, iteration){

list models <— fread ("./production_dataset_ initialized /models_
list .csv")
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list _of candidates <— data.table()
results <— data.table ()

for (i in 1l:num model) {

m <— list_models[i]|$model
pred_dir <— file.path("prediction" , iteration ,m)

if (!dir.exists(pred_dir)){
dir.create(pred_dir, recursive = TRUE) # file.path should not have
a trailing "/"

}
path <— paste0("dataset_finalized/", " "iteration ,"/")
HD trainset data <— data. matrlx(flread(pasteO(path7 "trainset
T feature.csv" )))
HD trainset target <— fread (paste0(path, "trainset target.csv"
DT
HD trainset broken X <— data.matrix(fread (paste0 (path, "testset
feature broken.csv" ))) -
HD trainset broken Y <— fread (pasteO (path, "testset target
broken.csv" ))[[1]] - -
HD trainset healthy X <— data.matrix(fread (paste0 (path, "testset
" feature_ healthy.csv" ))) -
HD trainset healthy Y <— fread (paste0(path, "testset target

healthy .csv" ))[[1]]
HD trainset tobepredicted <— data.matrix(fread (paste0(path, "testset
predict.csv")))

rgf <— RGF Classifier$new(max leaf=5000,
- algorithm="RGF Opt",
test interval=100,
#reg depth =200,
12=0.1,
loss="Expo")

rgf$fit (HD_trainset data, HD trainset_target)

score train <— rgf$score(HD trainset data, HD trainset target)
# score healthy <— rgf$score(HD trainset healthy X, HD trainset
healthy Y) - - - - -
# score broken <— rgf8score(HD trainset broken X, HD trainset
broken Y) - - - - -
score proba healthy <— rgf$predict _proba(HD_trainset healthy X)
score:proba:broken <— rgf8$predict proba(HD trainset broken X)

score_proba_ healthy <— as.data. table(score proba healthy)

score_healthy<— nrow(score proba_ healthy [VI>0.25]) / nrow(score proba
_healthy)

score_proba broken <— as.data.table(score_proba broken)

score_broken <— nrow(score_ proba_ broken[V2>0.75]) / nrow(score_ proba
broken)

write.csv(score proba healthy ,paste0 (" prediction/" ,iteration ,"/" m,"/
score proba healthy", .csv"), row.names = FALSE)

write.csv(score proba broken,pasteO( prediction/" ,iteration ,"/" ,m,"/
score proba broken",".csv"), row.names = FALSE)

a<l— rgf$durnp model ()

b<— rgf$get params()

c<— rgf$feature importances()

rgf$save model(paste0 ("prediction/",iteration ,"/" ,m,"/model.json"))
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# prediction

guess set serial

moon
L

guess set serial$model
colnames (guess set
guess set
tobepredicted)
a
tobepredicted)

_set_serial)
serial$candidates

fread (paste0 ("dataset finalized/" ,m

Jiteration ,"/serial_predict.csv"))

<— m

<— c("serial", "model")

<— rgf8predict (HD trainset

<— rgf8predict_proba(HD trainset

guess_set_serial8healthy prob <— a[,1]
guess_set_serial$broken prob <— a[,2]

# summaries

list of candidates <— rbind(list_of candidates, guess_set_serial |

candidates==1 |)

print(list of candidates[,.N, by-=model])

summary <—
summary .csv"))

tp <—
tn <—

fread (paste0("dataset finalized /", m," " ,iteration, "/

score_broken *x summary$N Test B
score healthy * summary$N Test H

fp <— summa_ry$N_Test_H*(17score:healt_hy)
fn <— summary8N Test B#(l—score_broken)

pr <— tp/(tp+fp)
rc <— tp/(tp+fn)

fpr<— fp/(fp+tn)
plr<— rc/fpr
results<—rbind(results ,
data.table (model = as.character (m),
ratio summary$ratio ,

))

N Train_H summary$N Train H,
N Train B = summary$N Train B,

Score H = score healthy ,
Score B = score broken,

N Test H = summary$N Test H,
N Test B = summary$N Test B,
N pred set = summary$N pred set ,
# N candid = nrow(guess set

serial [ candidates==1 |),

Expected false neg = (1 — score broken) * (
summary$N pred set), -

Expected false pos = (1 — score healthy) =*
(summary$N pred set), -

Precision = pr,

Recall = rc,

F Score = (2 % pr = rc) / (pr +
i),

FPR = fpr,

PLR = plr

write.csv(guess_set_ serial ,paste0("prediction/",iteration ,"/" ,m,"/
predicted" ,m,".csv"), row.names = FALSE)
}
write.csv(results ,paste0("prediction","/" iteration ,"/results.csv"),

row.names = FALSE)
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num modek—7

pathscript<—"/mypath/scripts"

source (paste0 (pathscript , "/production dataset finalization .R")) #in the
same folder there is the the script called in the line below

pathdata<—"/mypath/data"

numCores <— detectCores ()—2

registerDoParallel (numCores)

unlink (pasteO (pathdata, "/dataset finalized/"), recursive=TRUE)

unlink (paste0 (pathdata, "/prediction/"), recursive=TRUE)

unlink (paste0 (pathdata, "/tent all/"), recursive=TRUE)

foreach (i= 1:9) %dopar% {
# for(i in 1:5) {
print (i)
iteration<—i
dataset finalization (num model,0.95,28, pathdata,iteration)
setwd (pathdata) -
train_test pred precision_v2(num_model, iteration)

dest_dir <— file.path("tent_all") # file.path should not have a
trailing "/"
if (!dir.exists(dest_dir)) {
dir.create(dest_dir, recursive = TRUE)
}

file .copy(from = paste0( "prediction/",iteration), to = dest_dir,
recursive = TRUE, copy.date = TRUE)

}

unlink (" /tmp/rgf", recursive=TRUE)

Listing A.4: Data Acquisition Device - Main.C

/#* USER CODE BEGIN Header x/
Jxx

KK K K K K K K K K K K K K K K ok ok ok K K K K K K K K K ok ok ok K K K K K K K oK ok ok ok Kk K K K K K K K ok ok ok ok K Ok Ok ok K K K ok ok ok Ok K K K|
* Q@file : main. c
* @brief : Main program body

K K K KKK R O O K K K K S K K KK K K R K K O K K K K K K K K K R R R R K Ok Ok 3k 3k K K K K K K R R K K K K K K K K K K K K R R K Ok K]
@attention

<h2><center>copy; Copyright (c) 2021 STMicroelectronics.
All rights reserved.</center></h2>

* % X % % %

This software component is licensed by ST wunder Ultimate Liberty
license

* SLA0044, the "License"; You may not use this file except in

compliance with

* the License. You may obtain a copy of the License at:

* www. st.com/SLA0044

*

K K KK K O O Ok K K K S K K K K K K R R K O K K K K K K K K K R R R R K Ok Ok Kk 3k K K K K K R R R K K O Ok K K K K K K K K R R K Ok K]

*
/# USER CODE END Header x/
/* Includes

#include "main.h"

#include "usb device.h"
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J*

Private includes

USER CODE BEGIN Includes x/
USER CODE END Includes x/

Private typedef

*/

USER CODE BEGIN PTD x/
USER CODE END PTD x/

Private define

*/

USER CODE BEGIN PD x/
USER CODE END PD x/

Private macro

USER CODE BEGIN PM x/
USER CODE END PM x/

Private wvariables

ADC_HandleTypeDef hadcl;
DMA _HandleTypeDef hdma adcl;

I12C_HandleTypeDef hi2cl;

12S _HandleTypeDef hi2s2;
12S HandleTypeDef hi2s3;

TIM_HandleTypeDef htim3;

UART _HandleTypeDef huart2;

J*

uintl6_t measure buffer [60000];

USER CODE BEGIN PV x*/

uint8 t command[1];

J/*
J#

void SystemClock Config(void)
void PeriphCommonClock Config(void);
static void MX GPIO Init(void
static void MX_ ADC1_Init(void
static void MX_ I2C1_Init(void
static void MX 1282 Init(void
static void MX 1283 Init(void

USER CODE END PV x/

Private function prototypes

static void MX_TIM3_Init(void
static void MX_ USART2 UART_it(void) ;
static void MX_ DMA Init(void);

/+ USER CODE BEGIN PFP x/
/+ USER CODE END PFP x/

/* Private user code

/+ USER CODE BEGIN 0 x/

void get samples(void) {

*/

*/
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ADC1—CR2 |= 1](1<<8);
DMA2_Stream0—>MOAR=measure _buffer;
DMA2_Stream0—>PAR=&ADCI1—DR;

DMA2 Stream0—>NDTR=60000;

DMA2 _ Stream0—CR|=1;
HAL_GPIO_TogglePin(LD4_GPIO_Port, LD4 Pin);
TIM3—>CR1 |= 1;

J/ HAL ADC Start DMA(&hadcl, (wint32 tx)measure buffer,
40000) ;

while ((DMA2 >LISR & (0x00000020) )==0):

DMA2—>LIFCR |= 0x00000020

TIM3—>CR1 = 0;

HAL GPIO_TogglePin(LD4 GPIO Port, LD4 Pin);

)

¥

/* USER CODE END 0 =/

JHx
* @brief The application entry point.
* @retval int
*/

int main(void)

{

/+ USER CODE BEGIN 1 x*/
/+ USER CODE END 1 x/

/#* MCU Configuration

*/

/* Reset of all peripherals, Initializes the Flash interface and the
Systick. x/
HAL Init();

/+ USER CODE BEGIN Init x/
/+ USER CODE END Init x/

/* Configure the system clock x*/
SystemClock Config () ;

/# Configure the peripherals common clocks */
PeriphCommonClock Config () ;

/+ USER CODE BEGIN SysInit /
/+# USER CODE END SysInit x/

/* Initialize all configured peripherals */
MX_ GPIO_Init() ;

MX DMA Init() ;

MX_ADC1_Init () ;

MX I12C1_Init();

MX 12S2 Init();

MX 12S3 Init();

MX TIM3 Init() ;

MX_ USART2 UART Init() ;

MX_USB_DEVICE_Init () ;
/+ USER CODE BEGIN 2 x/

/+ USER CODE END 2 x/

/* Infinite loop x/
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/#* USER CODE BEGIN WHILE x/
while (1)

/# USER CODE END WHILE x/

/+ USER CODE BEGIN 3 x/

if (command[0] =="a’){

CDC_Transmit FS((uint8 tx*)measure buffer,

sizeof (measure buffer));

command [0]="0";

uint32 t dimension[1];

char token[1]="#";

int count=0;

dimension [0]= (uint32_ t)(sizeof(measure_ buffer));

uint8
ack [0
ack |1
2
3

o+
I
o
-
'S

OOOO

ack |
ack|

while ((uint32 t) ((ack[3]<<24) |(ack[2]<<16) |(ack[l]<<8) | (

ack[0])) !'=dimension [0]) {

HAL_ UART _ Transmit(&huart2, (uint8 t=)(token) ,1,
HAL Delay(10);

HAL_UART_Transmit(&huart2 , (uint8 t=x)(dimension)

dimension), 1000);

1000) ;

,sizeof(

HAL_ UART_Receive(&huart2, (uint8 t=*)(ack), 4, 1000);

HAL Delay(100) ;

}

ack[0]=1;

ack|[1]=1;

get _samples () ;

while (count<dimension[0]) {

HAL_ UART_Transmit(&huart2, (uint8 t=)measure_ buffer +

count , 100, 1000);
count+=100;
HAL_ Delay (50) ;

HAL_ Delay (2000) ;

}
/+ USER CODE END 3 x/
}

/**
* @brief System Clock Configuration
* @retval None
*/

void SystemClock Config(void)

RCC _ OscInitTypeDef RCC OsclnitStruct

_ - = {0};
RCC _ClkInitTypeDef RCC _ClkInitStruct = {0};

/#% Configure the main internal regulator output voltage
*/
__HAL RCC PWR_CLK ENABLE() ;
HAL_PWR_VOLTAGESCALING CONFIG(PWR REGULATOR_VOLTAGE SCALEL) ;

/** Initializes the RCC Oscillators according to the specified
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parameters
* in the RCC_ OsclInitTypeDef structure.
*
/
RCC _OsclnitStruct. OscillatorType = RCC_OSCILLATORTYPE HSE;
RCC _OscInitStruct . HSEState = RCC_HSE ON;
RCC_OsclInitStruct .PLL. PLLState = RCC_PLL_ON;
RCC_OscInitStruct .PLL. PLLSource = RCC_PLLSOURCE_HSE;
RCC_OsclInitStruct .PLL.PLLM = 4;
RCC _OscInitStruct . PLL.PLLN 96;
RCC OsclnitStruct.PLL.PLLP RCC ~ PLLP_DIV2;
RCC_OsclInitStruct . PLL.PLLQ
if (HAL RCC_OscConfig(&RCC _ OscInltStruct) != HAL OK)
{

Error Handler () ;

/#x Initializes the CPU, AHB and APB buses clocks

*

RCC _ ClkInitStruct.ClockType = RCC_CLOCKTYPE HCLK|RCC CLOCKTYPE SYSCLK
|[RCC_ CLOCKTYPE . PCLK1|RCC_ CLOCKTYPE PCLK2;

RCC _ClkInitStruct .SYSCLKSource = RCC_SYSCLKSOURCE PLLCLK;

RCC _ ClkInitStruct . AHBCLKDivider = RCC SYSCLK DIV1;

RCC _ ClkInitStruct . APB1CLKDivider = RCC HCLK DIV2;

RCC _ClkInitStruct . APB2CLKDivider = RCC_HCLK_DIVI

if (HAL RCC_ClockConfig(& RCC _ClkInitStruct , FLASH LATENCY 3) != HAL OK)

{
Error _Handler () ;
}
}
Jxx
* @brief Peripherals Common Clock Configuration
* @retval None
*/
void PeriphCommonClock Config(void)
{
RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};
/#*x Initializes the peripherals clock
*
PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_I12S;
PeriphClkInitStruct . PLLI2S.PLLI2SN = 200;
PeriphClkInitStruct . PLLI2S.PLLI2SM = 5;
PeriphClkInitStruct . PLLI2S.PLLI2SR = 2;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL OK)
Error Handler () ;
}
}
Jxx
* @brief ADC1 Initialization Function
* @param None
* @retval None
*/
static void MX_ ADC1_ Init(void)
{

/* USER CODE BEGIN ADC1_Init 0 x/
/* USER CODE END ADC1_Init 0 x/
ADC _ChannelConfTypeDef sConfig = {0};

/* USER CODE BEGIN ADC1_Init 1 x*/
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}

/* USER CODE END ADC1_ Init 1 x/

/#x Configure the global features of the ADC (Clock, Resolution, Data
Alignment and number of conversion)

*

hadcl.Instance = ADCI1;

hadcl.Init. ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;

hadcl.Init.Resolution = ADC RESOLUTION 12B;

hadcl.Init.ScanConvMode = ENABLE;

hadcl.Init.ContinuousConvMode = DISABLE;

hadcl.Init.DiscontinuousConvMode = DISABLE;

hadcl.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;

hadcl.Init.ExternalTrigConv = ADC EXTERNALTRIGCONV T3_TRGO;

hadcl.Init.DataAlign = ADC DATAALIGN RIGHT;

hadcl.Init.NbrOfConversion = 3;

hadcl. Init .DMAContinuousRequests = ENABLE;

hadcl.Init.EOCSelection = ADC_EOC_SINGLE CONV

if (HAL_ADC_TInit(&hadcl) != HAL_OK)

{
Error Handler () ;

/#x Configure for the selected ADC regular channel its corresponding
rank in the sequencer and its sample time.
*/

sConfig.Channel = ADC CHANNEL 11;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME 28CYCLES;
if (HAL_ADC_ConfigChannel(&hadcl, &sConfig) != HAL OK)
{
Error Handler () ;

/xx Configure for the selected ADC regular channel its corresponding
rank in the sequencer and its sample time.
*/

sConfig.Channel = ADC CHANNEL 12;
sConfig.Rank = 2;
if (HAL_ADC_ConfigChannel(&hadcl, &sConfig) != HAL OK)
{
Error Handler () ;

/#x Configure for the selected ADC regular channel its corresponding
rank in the sequencer and its sample time.
*/

sConfig.Channel = ADC CHANNEL 15;

sConfig.Rank = 3;

if (HAL_ADC_ConfigChannel(&hadcl, &sConfig) != HAL OK)
Error Handler () ;

}

/* USER CODE BEGIN ADCI1 _ Init 2 x/

/* USER CODE END ADC1_Init 2 x/

J#x

* @brief I2C1 Initialization Function
#* @param None
# @retval None

*/

static void MX I2C1_Init(void)

/* USER CODE BEGIN I12C1_Init 0 %/

/* USER CODE END 12C1 _Init 0 x/
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/+ USER CODE BEGIN I2C1_Init 1 x/

/* USER CODE END 12C1 _ Init 1 x/
hi2cl.Instance = 12C1;
hi2c¢l.Init.ClockSpeed = 100000;
hi2cl.Init.DutyCycle = I2C_DUTYCYCLE_2;
hi2cl.Init.OwnAddressl = 0;
hi2cl.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2cl.Init.DualAddressMode = I2C_DUALADDRESS DISABLE;
hi2cl.Init.OwnAddress2 = 0;
hi2cl.Init.GeneralCallMode = I12C_GENERALCALL_DISABLE;
hi2cl.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_ I2C_Init(&hi2cl) != HAL OK)
{

Error Handler () ;

}
/* USER CODE BEGIN 12C1_Init 2 */
/+ USER CODE END 12C1_Init 2 %/

}

VEx:
* @brief I252 Initialization Function
* @param None
* @retval None
*/
static void MX 1282 Init(void)

/* USER CODE BEGIN 1252 Init 0 x/
/* USER CODE END 12S2 Init 0 x/
/* USER CODE BEGIN 1252 Init 1 x/

/* USER CODE END 12S2 Init 1 x/
hi2s2.Instance = SPI2;
hi2s2.Init .Mode = 125 MODE MASTER TX;
hi2s2.Init.Standard = I12S_STANDARD_PHILIPS;
hi2s2.Init.DataFormat = 125 DATAFORMAT 16B;
hi2s2 . Init . MCLKOutput = 125 MCLKOUTPUT _DISABLE;
hi2s2.Init.AudioFreq = 125 AUDIOFREQ_ 96K;
hi2s2.Init .CPOL = 125 CPOL_LOW;
hi2s2.Init.ClockSource = I2S_CLOCK_PLL;
hi2s2.Init.FullDuplexMode = 125 FULLDUPLEXMODE ENABLE;
if (HAL_ I2S Init(&hi2s2) != HAL OK)
{

Error Handler () ;

}
/+ USER CODE BEGIN 1252 Init 2 x/

/* USER CODE END 1252 Init 2 x/

}
JHx
* @brief I2S3 Initialization Function
* @param None
* @retval None
*/
static void MX 1283 Init(void)
{

/* USER CODE BEGIN 1283 Init 0 x*/
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/* USER CODE END 1253 Init 0 x/
/* USER CODE BEGIN 1283 Init 1 x*/

/* USER CODE END 1283 Init 1 x/
hi2s3.Instance = SPI3;

hi2s3.1Init .Mode = 125 MODE_ MASTER_ TX;
hi2s3.Init.Standard = 12S_STANDARD_PHILIPS;
hi2s3.Init.DataFormat = 125 DATAFORMAT 16B;
hi2s3 . Init . MCLKOutput = 128 MCLKOUTPUT ENABLE;
hi2s3.Init.AudioFreq = I12S_AUDIOFREQ_96K;
hi2s3.Init .CPOL = I2S_CPOL_LOW;
hi2s3.Init.ClockSource = 125 CLOCK_PLL;
hi2s3.Init.FullDuplexMode = I2S FULLDUPLEXMODE DISABLE;
if (HAL I2S Init(&hi2s3) != HAL OK)

Error Handler () ;
}
/* USER CODE BEGIN 1283 Init 2 x/

/+ USER CODE END 1253 Init 2 +/

}
JHx

¥ @brief TIM3 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM3_ Init(void)

/+ USER CODE BEGIN TIMS3_ Init 0 x/
/% USER CODE END TIMS3 Init 0 +/

TIM _ClockConfigTypeDef sClockSourceConfig = {0};
TIM _MasterConfigTypeDef sMasterConfig = {0};

/* USER CODE BEGIN TIM3 Init 1 x/

/* USER CODE END TIM3 Init 1 x/

htim3.Instance = TIM3;

htim3.Init.Prescaler = 0;

htim3.Init.CounterMode = TIM_COUNTERMODE UP;

htim3.Init.Period = 1919;

htim3.Init.ClockDivision = TIM_ CLOCKDIVISION DIV1;
htim3.Init.AutoReloadPreload = TIM_ AUTORELOAD PRELOAD DISABLE;
if (HAL TIM Base Init(&htim3) != HAL OK)

{

Error _Handler () ;

}

sClockSourceConfig. ClockSource = TIM CLOCKSOURCE INTERNAL;

if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL OK)
{

Error _Handler () ;
sMasterConfig . MasterOutputTrigger = TIM TRGO_ UPDATE;
sMasterConfig . MasterSlaveMode = TIM_MASTERSLAVEMODE ENABLE;
if (HAL_ TIMEx_ MasterConfigSynchronization(&htim3, &sMasterConfig) !=
HAL OK)
Error Handler () ;

}
/* USER CODE BEGIN TIMS3_ Init 2 %/
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/* USER CODE END TIM3 Init 2 x/

}
JHx

* @brief USART2 Initialization Function
* @param None
* @retval None
*/
static void MX USART2 UART Init(void)
{

/* USER CODE BEGIN USART2_ Init 0 x/
/* USER CODE END USART2 Init 0 %/
/* USER CODE BEGIN USART2_ Init 1 x/

/* USER CODE END USART2 Init 1 =/
huart2.Instance = USARTZ2;

huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS 1;
huart2.Init.Parity = UART PARITY NONE;
huart2.Init.Mode = UART MODE TX RX;
huart2.Init.HwFlowCtl = UART HWCONTROL NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_ UART_ Init(&huart2) != HAL OK)

Error _Handler () ;
5* USER CODE BEGIN USART2_ Init 2 x/
/* USER CODE END USART2 Init 2 =/
}

JHx
#* Enable DMA controller clock
*/

static void MX_ DMA Init(void)

{

/#% DMA controller clock enable */
__HAL RCC DMA2 CLK ENABLE() ;

/* DMA interrupt init x/

/* DMA2_ Stream0_IRQn interrupt configuration x*/
HAL NVIC SetPriority (DMA2 Stream0 IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn) ;

}
JHx

* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_ GPIO_Init(void)

GPIO _InitTypeDef GPIO InitStruct = {0};

/# GPIO Ports Clock Enable x/
_HAL RCC_GPIOE CLK_ENABLE() ;
" THAL RCC_GPIOC_CLK_ENABLE() ;
__HAL RCC GPIOH_CLK_ ENABLE() ;
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HAL,L RCC_GPIOA CLK_ENABLE() ;
" HAL_RCC_GPIOB_CLK_ENABLE() ;
" HAL_RCC_GPIOD_CLK_ENABLE() ;

/#*Configure GPIO pin Output Level %/
HAL_GPIO_ WritePin (GPIOE, GPIO_PIN_ 3, GPIO_PIN_ RESET) ;

/*xConfigure GPIO pin Output Level x*/
HAL GPIO_WritePin (OTG_FS_PowerSwitchOn_GPIO _Port,
"OTG_FS_PowerSwitchOn_Pin, GPIO_PIN SET) ;

/*Configure GPIO pin Output Level x*/
HAL_ GPIO_WritePin (GPIOD, LD4 Pin|LD3 Pin|LD5_ Pin|LD6_Pin
| Audio_ RST Pin, GPIO_PIN RESET);

/*Configure GPIO pin : DATA_ Ready Pin x/

GPIO _InitStruct.Pin = DATA_ Ready_ Pin;

GPIO _InitStruct.Mode = GPIO_MODE INPUT;

GPIO _InitStruct.Pull = GPIO_NOPULL;

HAL GPIO_Init(DATA Ready GPIO_ Port, &GPIO InitStruct);

/+xConfigure GPIO pin : PE3 x/

GPIO InitStruct.Pin = GPIO PIN 3;

GPIO InitStruct. Mode = GPIO_ MODE OUTPUT _PP;
GPIOilnltStruct Pull = GPIO NOPULL;

GPIO _InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init (GPIOE, &GPIO _InitStruct);

/*Configure GPIO pins : INT1_ Pin INT2 Pin MEMS INT2 Pin */
GPIO _InitStruct.Pin = INT1_Pin|INT2_ Pin|MEMS_INT2_ Pin;
GPIO InitStruct.Mode = GPIO_ MODE EVT RISING ;

GPIO InitStruct.Pull = GPIO_ NOPULL;

HAL_GPIO_Init (GPIOE, &GPIO _ InltStruct) ;

/#*Configure GPIO pin : OTG_FS_ PowerSwitchOn_Pin */

GPIO InitStruct.Pin = OTG_FS PowerSwitchOn_ Pin;

GPIO InitStruct. Mode = GPIO_ MODE OUTPUT __ PP;

GPIO InitStruct.Pull = GPIO NOPULL;

GPIO InitStruct.Speed = GPIO SPEED FREQ LOW;

HAL_ GPIO_ Init(OTG_FS_PowerSwitchOn GPIO Port, &GPIO InitStruct);

/*xConfigure GPIO pin : PAO x/
GPIO _ InitStruct.Pin = GPIO_PIN 0;

GPIO InitStruct.Mode = GPIO_MODE EVT RISING;
GPIO InitStruct.Pull = GPIO _NOPULL;

HAL GPIO _ Init (GPIOA, &GPIO _InitStruct);

/#*Configure GPIO pzns : SPI1 SCK Pin SPI1_MISO Pin SPI1 MOSI Pin
GPIO InitStruct.Pin SPI1_SCK_Pin|SPI1_MISO Pin|SPI1_MOSI Pin;
GPIO InitStruct. Modc = GPIO_MODE AF_PP;

GPIO_InltStruct Pull = GPIO_NOPULL

GPIO _InitStruct.Speed = GPIO_SPEED FREQ VERY HIGH;

GPIO InitStruct.Alternate = GPIO AF5 SPIl;

HAL_ GPIO_Init (GPIOA, &GPIO InitStruct);

/*Configure GPIO pins : LD4 Pin LD3 Pin LD5 Pin LD6 Pin
Audio RST Pin x/

GPIO InitStruct.Pin = LD4 Pin[LD3 Pin|LD5_ Pin|LD6_Pin
| Audio_ RST _Pin;

GPIO _InitStruct.Mode = GPIO MODE OUTPUT PP;

GPIO _InitStruct.Pull = = GPIO_NOPULL;

GPIO InitStruct.Speed = = GPIO SPEED FREQ LOW;

HALiGPloilnit(GPIOD &GPIO InitStruct);

/*Configure GPIO pin : OTG_FS OwverCurrent_Pin x/
GPIO _InitStruct.Pin = OTG_FS_OverCurrent_Pin;

*/
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GPIO _ InitStruct.Mode = GPIO_ MODE INPUT;
GPIO _InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(OTG_FS_OverCurrent  GPIO_ Port, &GPIO _InitStruct);

}
/* USER CODE BEGIN j =/

/+ USER CODE END 4 x/

JHx
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error Handler (void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return

state */
__disable_irq();
while (1)

{

}
/* USER CODE END Error_ Handler Debug x/
¥

#ifdef USE_FULL_ASSERT
ke x

*

@brief Reports the mame of the source file and the source line
number

* where the assert_param error has occurred.

* @param file: pointer to the source file name

* @param line: assert_ param error line source number

* @retval None

void assert failed (uint8 t =file , uint32_ t line)

/* USER CODE BEGIN 6 =/
/# User can add his own implementation to report the file mname and line

number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file,
line) x/

/+ USER CODE END 6 x/
}
#endif /+ USE_FULL_ ASSERT +/

ok ke ok sk ok ek ok ok ok ks ke k ok k ok (C) COPYRIGHT STMicroelectronics ##xx+END OF
FILE %%/
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