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Introduction

In nature, generally, we can recognize two possible levels at which a physical
phenomenon can manifest itself: firstly, at the macroscopic scale, where the
observer’s eye can more or less directly perceive it, and secondly from a mi-
croscopic point of view. This second level, although much more challenging
to deal with, provides the elements to describe the mechanisms underlying
macroscopic phenomena. Superconductivity and ferromagnetism are both
examples of phenomena where the macroscopic behavior is a clear mani-
festation of the quantum mechanical nature of the state characterizing the
system. They both correspond to ordered phases with a spontaneously bro-
ken symmetry, however there is a fundamental difference between these two
states. Indeed, while according to the Bardeen, Cooper, and Schrieffer (BCS)
model [1–3] the usual singlet superconductivity favors the arrangement of
electrons in Cooper pairs with opposite spins, the ferromagnetic exchange
field tends to align the spins of the pairs, thus destroying the latter. These
competing mechanisms lead to the so-called paramagnetic pair breaking ef-
fect [4–12].
After the advent of the BCS theory in 1957 it became evident that, due to
their conflicting nature, the interplay between superconductivity and ferro-
magnetism could hardly be observed in bulk systems. However, the study of
hybrid structures consisting of superconducting and non-superconducting el-
ements in contact with each other, started a few years later [13,14], provided
the evidence that a sort of coexistence of these two primary macroscopic
quantum phenomena may be realized in layered superconductor/ferromagnet
(S/F) structures [15–19]. In this context, it was immediately evident that
the interplay between these two quantum processes could have paved the way
for the study of a series of new physical phenomena until then considered
quite exotic.
Recently, the growing appeal in quantum technologies and their employment
for the realization of new innovative devices, has renovated the interest in the
so called proximity effect arising at interfaces between superconducting and
normal materials characterizing such heterostructures and in the coherence
mechanisms occurring on a mesoscopic scale, which have been theoretically
and experimentally more extensively studied [15,17,19–25].
Proximitized S/F systems, which allow to artificially reproduce the coexis-
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tence of superconductivity and ferromagnetism, offer a unique opportunity
to study and analyze the effects of their interplay. The exchange field, induc-
ing pair breaking for the Cooper pairs, produces additional oscillations of the
superconducting order parameter induced in the F region, in analogy with
the so-called FFLO state [26, 27]. Among the consequences of the presence
of the magnetization at the interface of the superconductor we can mention
that the Josephson effect in SFS junctions is modified and can exhibit two
different states, denoted as 0 and π [15,17,19,28], depending on the thickness
(length) of the ferromagnetic barrier and on the magnitude of the exchange
field [29–35]. Interest in such an effect began to grow when it was shown that
these peculiar features may be exploited to design superconducting circuits
and quantum computing devices [36–40].
Furthermore, the observation of interaction between conventional supercon-
ductivity and ferromagnetism in S/F heterostructures led to another key
discovery: the existence of unconventional superconducting correlations in
a triplet state [15, 17, 19, 41–43]. In particular, it has been shown that if
the exchange field is homogeneous, the superconducting condensate consists
of only two components: the usual singlet one (|↑↓ − ↓↑〉) and the triplet
component (|↑↓ + ↓↑〉) with total zero spin projection with respect to the
magnetization axis of the F layer [15, 19]. However, these superconducting
correlations are short-ranged because, due to the paramagnetic pair-breaking
effect, the exchange field tends to align the spins of Cooper pairs, thus de-
stroying them. This implies that the Cooper pairs can survive in the ferro-
magnet only within a small region close to the interface. Thus, for obvious
reasons, this short-range proximity effect results to be not particularly ap-
pealing for the development of applications.
Nevertheless, the scenario described above is only part of the story because,
under particular conditions, it is possible to observe the formation of spin-
triplet long-range pairing correlations. These latter, are no longer affected
by the exchange-energy breaking and can survive longer inside the ferromag-
net, since the singlet Cooper pairs can be converted into the triplet state in
which the spins are aligned parallel, namely |↑↑〉 or |↓↓〉. Specifically, it
is now known that these equal spin-triplet correlations are triggered by the
presence of inhomogeneous magnetization or spin-mixing effects occurring at
interfaces [21, 44–47]. The theoretical prediction of this long-range proxim-
ity effect was subsequently also accompanied by experimental confirmations
from various groups [48–55]. The main purpose of the research in this field
is the creation and control of such long-range superconducting triplet cor-
relations in hybrid structures with the ultimate goal of using polarized spin
supercurrents for the development of new types of devices that combine the
features of superconductivity and spintronics. Therefore, the comprehension
of the physics that underpins the triplet generation process is of fundamental
interest.



6 INTRODUCTION

Motivation and outline of the thesis

Although the special features of SFS junctions have been extensively stud-
ied [15,17,19,47,56,57], much less is known when the ferromagnetic layer is
insulating. This strongly motivated us to focus on these kinds of systems,
presenting, in this thesis, an analysis of the proximity effect and transport
phenomena occurring in ferromagnetic insulator Josephson junctions (SFIS
JJs). One remarkable feature to consider is that, even if SFIS junctions
have similar properties to SFS systems, they exhibit a reduced quasiparticle
current, which is responsible for the intrinsic dissipation due to the coupling
with the environment [58, 59], affecting the dynamic properties of the junc-
tion and representing one of the drawbacks of SFS JJs based devices. On
the contrary, due to the insulating nature of the ferromagnetic barrier, SFIS
JJs exhibit longer decoherence times when implemented in quantum circuits,
placing such systems in an interesting perspective for the realization of low-
dissipative devices [60–65].
These advantageous features explain the growing strong interest in SFIS
junctions, giving rise to several theoretical and experimental studies con-
ducted on these systems [62,63,66–69].
In this work, we examine an unconventional kind of proximity effect due to
the interplay between superconductivity and the combined presence of the
exchange field, spin-orbit coupling (SOC), and nonmagnetic impurities in the
FI barrier. The analysis of such systems requires a clear understanding of
mechanisms underlying the modifications of the superconducting state prop-
erties near the S/FI interface, offering a rich scenario of phenomena that
make these devices both experimentally and theoretically very attractive.
As of today, JJs constitute one of the elementary building blocks in quan-
tum electronics field; conventional (non-ferromagnetic) JJs are able to carry
a dissipationless current I(φ) = Ic sinφ, which is defined by the critical cur-
rent Ic and the phase difference φ between the wave functions describing the
superconducting electrodes [70, 71]. These are called 0 JJs, since here the
ground state occurs at φ = 0, for Ic > 0. When the barrier is a ferromagnet,
the current-phase relation may be shifted by π to I (φ) = |Ic| sin (φ+ π) =
−|Ic| sin (φ) [15,17,19,28]. These junctions, to which corresponds a negative
critical current Ic < 0, are called π junctions.
In particular, for applications, there is a strong demand for the π junctions,
which are considered to be very promising ingredients to engineer spintronics
and quantum computing devices.
As an example, phase controllable 0-π junctions have immediate applications
in cryogenic memory [72–75], opening up new possibilities for superconduct-
ing circuit elements. Furthermore, there are other possible implementations
that benefit from the use of fixed-phase π JJs [64, 76, 77], as their integra-
tion in quantum circuits for the realization of superconducting qubits, quite
promising in view of the increased robustness against noise and electromag-
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netic interference induced by magnetic field sources and a more compact and
simple design, opening the way to scalable devices [39,40,78–81].
Mindful of these encouraging perspectives, various works demonstrated the
possibility of realizing π junctions also in SFIS JJs [69,82], getting the ben-
efits deriving from the insulating regime of the ferromagnetic barrier.
It is in this promising scenario offered by π JJs that the first part of the work
developed in this thesis is placed. We present, in fact, a theoretical study
focused on the search for possible alternative ways to control the realization
and switching of 0 and π states in SFIS JJs. In particular, here we show
that the state of a SFIS JJ can be toggled between 0 and π by using SOC
and nonmagnetic impurities as driving elements to switch between these two
phases. The main strength of our procedure consists in the possibility of con-
trolling the occurrence of 0-π transitions in SFIS JJs, through a direct action
on the thermal behavior of the critical current, Ic(T ), rather than resorting
to traditional and well-known ways, such as the tuning of the exchange field
of the barrier to drive the 0-π switching [68], that requires experimental pro-
cedures not so easily manageable.
Secondly, in this work, we focus on another peculiar characteristic, which
allows us to analyze the singular properties of these systems from a differ-
ent point of viewing: we examine the presence and possible coexistence of
spin-singlet and triplet pairing correlations induced in the FI barrier. This
second theme is becoming especially relevant since the recent experimen-
tal achievements on NbN/GdN/NbN JJs, in which evidence of spin-triplet
transport has been reported [57, 67, 83, 84]. The valuable property of this
triplet component of the superconducting condensate is that it may create
highly spin-polarized dissipationless supercurrents, which can be exploited
for the emerging field of superconducting spintronics [47,48,85–88].
In particular, in the experimental systems studied in Ref. [67], to which we
will apply the theoretical model described in this thesis, the hallmark of spin-
triplet superconductivity seems to be expressed through a peculiar behavior
of the critical current as a function of temperature. Hence, in our analy-
sis, the simulated Ic(T ) will be the benchmark for the comparison with the
experimental data, allowing us to give a more precise interpretation of the
spin-triplet nature of transport properties characterizing these devices and,
at the same time, highlighting the usefulness, in this framework, of obtaining
information about transport phenomena in the considered system directly by
looking at an experimentally accessible quantity such as the critical current.
In this thesis, we use a two-dimensional (2D) Bogolioubov de Gennes (BdG)
tight-binding model [68,89–91] to describe SFIS JJ. The proximity effect in
such junctions has widely been investigated with quasiclassical approaches
(i.e., Eilenberger equations [15,17,19,92,93]), which are particularly suitable
for systems whose dimensions significantly exceeds the Fermi wavelength λf
and the coherence length ξf [93].
Otherwise, here, we study tunnel SFIS JJs in the limit of the short junction
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regime, by using an exact solution of the Gor’kov equation. This approach
results to be appropriate, considering that the transport properties of the
system vary considerably when the barrier length changes over a few lat-
tice sites, i.e. the Josephson current experiences an exponential decay while
gradually one moves away from the S/F interface. In contrast to the qua-
siclassical methods, our approach provides a description of the systems on
the scale of the lattice site instead of the coherence length. This model is
well-suited to evaluate site-by-site the current and the superconducting cor-
relation functions and, thus, to obtain the proximity effects between two
different regions.
In particular, the transport properties of the JJ (i.e. the Josephson current
and the induced pairing correlation functions) are derived from the Green’s
function (GF) of the barrier, obtained by using the numerical calculation
method based on the recursive Green’s function (RGF) technique [89–91,94].
The RGF method is a powerful tool to compute transport properties in these
kinds of systems, composed of two leads and a central device. It is very re-
liable and computationally efficient, and allows for the inclusion of several
disorder mechanisms at the microscopic level (such as lattice defects and
irregularities), as well as provides the possibility to deal with finite temper-
ature issues.
The outline of the thesis is then as follows.

We begin the Chapter 1 by making a brief recall of the FFLO state,
which is a relevant example of coexistence of superconductivity and fer-
romagnetism. Then we will proceed by introducing some fundamental key
concepts about the general features of proximity effect starting from S/N case
to arrive at S/F systems, pointing out the main differences and peculiarities.
Among these, we mention the characteristic damped oscillating behavior of
the Cooper pair wave function in the F layer which leads us to the definition
of the 0 and π states in SFS JJs. In the last part of this chapter, we will
discuss the possibility of inducing long-range triplet pairing correlations and
on the spin-orbit coupling as possible trigger process of these latter. We will
conclude this section by mentioning that it is possible to study the transport
properties of such systems by using the Green’s functions formalism and,
finally, by discussing the symmetry properties of superconducting pairings.

The Chapter 2 is voted to the presentation of the theoretical framework
used in this thesis. In particular, the first part describes in a general way the
calculation method known as recursive Green’s function (RGF) technique,
employed to study the transport properties of SFIS JJs.
The RGF technique allows us to calculate the GF of the barrier, from which
we derive all the physically relevant quantities of the system under analysis,
reducing the computational cost with respect to the traditional direct inver-
sion of the corresponding matrix Hamiltonian of the system.
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Then, we present the theoretical 2D tight-binding model used to describe
our system and how to apply the RGF calculation technique in our situation.

In Chapter 3 we theoretically study the Josephson effect in SFIS JJs by us-
ing the numerical calculation method based on the RGF technique presented
in Chapter 2, where the junction is described by the 2D BdG tight-binding
model. In particular, we analyze the role of SOC and nonmagnetic impuri-
ties and recognize these two ingredients as key mechanisms to drive the 0-π
transition in such devices. By calculating the critical current as a function
of temperature Ic(T ) and the corresponding current-phase relation (CPR)
I(φ) in the presence of impurities and SOC, we find that while SOC tends
to bring the system toward the 0 state, the impurities, contrary, encourage
it to turn toward the π state.

d)

e)
𝑉!"# = 0.250

𝑉!"# = 0.025

𝑓$𝑓↑𝑓↓

𝑓$

𝑓↑

𝑓↓

��

����

��

�� ���� ���� ���� ���	 ��


 �
��

��
��

����

a)

𝜙/𝜋

𝑉!"# = 0.025

𝑉!"# = 0.250

b)

��

����

��

�� ���� ��

��
� 	

���

c)

𝑉!"# = 0
𝑉!"# = 0.025
𝑉!"# = 0.125
𝑉!"# = 0.150
𝑉!"# = 0.250

Figure 1: Summary of the main results of Chapter 3 . Ic(T ) of SFIS JJ in
the presence of lattice impurities and SOC, for different values of
impurity potential Vimp (a). Calculated CPRs (b, c) showing the
switching from 0-π to π regime, by increasing the lattice disorder. (d)
and (e): enhancement of the s-wave spin-triplet correlations, due to
increasing the disorder; f3 is the opposite-spin triplet, f↑ and f↓ are
the equal-spin triplets with up and down projection on the
quantization axis (z), respectively.

We show that the compresence of these two competing effects modifies the
Ic(T ) behavior when increasing the lattice disorder (whose representative pa-
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rameter in the theoretical model is Vimp): keeping the SOC strength fixed,
we pass from an Ic(T ) curve characterized by the typical cusp-minimum
which signals the 0-π transition temperature, obtained in both the clean and
quasi-clean situations (Fig.1 (a) black and green curves), to curves in which
this minimum is gradually widened, until it is completely no longer visible,
when increasing the disorder strength in the FI barrier (Fig.1 (a) red, blue,
and orange curves). This corresponds to switch from a JJ exhibiting a 0-π
transition to a totally π junction, as can be noticed by looking at the corre-
sponding calculated CPR in Figs.1 (b) and (c)).
To complete our analysis, we also study the pairing correlations arising in
these systems. In particular, we observe an enhanced contribution of the
induced spin-triplet superconductivity when increasing the nonmagnetic dis-
order, as illustrated in Figs.1 (d) and (e). For this reason, we recognize these
tunable SFIS JJs as good candidates to host unconventional superconducting
pairing mechanisms and the source of sizable spin-triplet superconductivity.

plateau
a)

c)

d)

e)

f)b)
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Figure 2: Summary of the main results of Chapter 4 . Comparison
between experimental (black points) and simulated (red line) Ic(T ),
illustrating the plateau-like behavior (a) and a non-monotonic curve
(b) characterized by a non-zero local minimum, pointing toward the
0-π transition. In (c) and (d) the corresponding calculated s-wave
correlation functions are shown: f0 is the spin-singlet, f3 is the
opposite-spin triplet and f↑ (f↓) is the equal-spin triplet with up
(down) projection on the quantization axis (z); all the pairing
components are reported on a log-scale. (e) Effect of the application of
an external magnetic field H on the experimental junctions; (f)
analogy with the simulations obtained by varying the impurities
strength Vimp.
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In Chapter 4 we apply the theoretical 2D tight-binding model described
in the previous chapters to real NbN-GdN-NbN junctions, experimentally
investigated in a previous work studying the critical current Ic as a function
of temperature T [67].
In this chapter, we focus on studying the induced pairing correlations in
these devices, and their possible connection with the Ic(T ) behavior.
In particular, we show that an unconventional Ic(T ) behavior turns out to
be the signature for the coexistence of spin-singlet and spin-triplet super-
conductivity in SFIS junctions, where the respective weight can be analyzed
and parameterized in terms of nonmagnetic disorder and SOC parameters.
We model the Ic(T ) curves in the whole temperature range, along with the
corresponding current-phase relation (CPR) as a function of the tempera-
ture T . Specifically, we find that, when the Ic(T ) curve exhibits a region
in which the Ic is constant over a wide range of temperatures, i.e. it shows
a peculiar plateau (see Fig.2 (a)), the competition between the singlet and
triplet pairing amplitudes becomes significant, showing an undoubtedly not
negligible contribution of the equal-spin triplet correlations f↑ and f↓ (Fig.2
(c)). On the contrary, the more the Ic(T ) exhibits a behavior approaching
the 0-π regime, presenting a more pronounced local minimum in the Ic(T )
curve (Fig.2 (b)), the lower is the relative weight of such equal-spin triplet
components in the corresponding junctions (Fig.2 (d)).
Furthermore, to deepen the analysis of the peculiar transport properties
characterizing these systems, we present a study on the analogy observed
between the response of the experimental samples to the application of an
external weak magnetic field H (Fig.2 (e))), and the role of SOC and impu-
rities in the theoretical model (Fig.2 (f))). In our investigation, we find that
the position in temperature of the minimum of the Ic(T ) curve represents
an important benchmark relating the 0-π transition induced by the applied
magnetic field in the experimental systems, to the combined effect of impu-
rities, exchange field fluctuations and spin-orbit coupling in the simulations.
Therefore, this analysis joining together the results of the Ic(T ) measure-
ments with the outcomes of the microscopic modeling approach, provides
the possibility to describe the combined effect of magnetic inhomogeneities
and disorder in complex barriers, an assay which can be extended to a variety
of hybrid types of JJs.



Chapter 1

Interplay between
ferromagnetism and
superconductivity

After the advent of the BCS theory by Bardeen, Cooper, and Schrieffer
(1957), it became evident that superconductivity in the singlet state could
be destroyed by an exchange mechanism [4–12]. Even though singlet su-
perconductivity and ferromagnetism appear to be mutually exclusive effects
due to the antagonistic nature of these two states of matter, their coexis-
tence may be easily achieved in layered superconductor/ferromagnet (S/F)
systems [15–19]. In this context, the proximity effect artificially allows for the
coexistence of superconductivity and ferromagnetism, and offers a unique op-
portunity to study their interplay. In fact, in such S/F structures, the Cooper
pairs can leak out of the superconductor, inducing superconducting corre-
lations in the adjacent ferromagnetic layer over characteristic length scales
near the interface [15,47]. For this reason, S/F hybrid structures present rich
physics, which makes them both experimentally and theoretically attractive.
This chapter aims to introduce the basics of the proximity effect, starting
from the superconductor/normal metal (S/N) case, to point out the main
differences with respect to S/F structures, on which the discussion will focus.
One of the main peculiarities of such proximitized S/F systems is that the
Cooper pair wave function extending from S to F exhibits a damped oscilla-
tory behavior [15,20,47]. This results in many new effects, which we discuss
in this thesis, as a non-monotonic dependence of the critical temperature
Tc of S/F structures on the F layer thickness [95–102], up to the realiza-
tion of the so called π state in superconductor/ferromagnet/superconductor
Josephson junctions (SFS JJs) [30,31,33,56].
We will begin this chapter by making a brief reference to the superconducting
phase predicted by Larkin and Ovchinnikov [27] and Fulde and Ferrell [26]
in 1964 (the FFLO state), since S/F systems are in some ways analogous to

12



1.1. SUPERCONDUCTIVITY INTERACTING WITH FERROMAGNETISM: THE FFLO STATE13

such nonuniform superconducting state, as the physical picture of the prox-
imity effect can be also explained in terms of the FFLO state.
At this stage, we will not use a heavy mathematical formulation to explain
these primary concepts which, however, deserve a brief overview to better
contextualize the work described in this thesis. A more in-depth discussion
on the theoretical framework used for the description of the systems analyzed
in this work will be presented in Chapter 2.

1.1 Superconductivity interacting with ferromag-
netism: the FFLO state

The coexistence between superconductivity and ferromagnetism can be ob-
served in the vicinity of the interface linking a conventional superconductor
with a ferromagnet in S/F bilayers, leading to a strong analogy between the
so called FFLO state and the oscillatory-like proximity effect occurring in
such S/F systems, which we will discuss later. For this reason, a brief recall
of this peculiar state seems appropriate.
In 1964, Fulde and Ferrell [26] and Larkin and Ovchinnikov [27], indepen-
dently of each other, theoretically predicted an unconventional nonuniform
superconducting phase in superconductors under the influence of a strong
uniform magnetic field. This novel superconducting phase is known as FFLO
state. Generally, an applied magnetic field damages superconductivity in two
distinct ways: orbital and paramagnetic pair-breaking effects. The relative
importance of these two effects in the suppression of superconductivity is de-
termined by the so-called Maki parameter αM =

√
2HO

c2/H
P
c2 [12], where HO

c2

and HP
c2 are the upper critical fields for the orbital and spin pair-breaking

mechanism, respectively. However, a large orbital effect is always detrimen-
tal to the FFLO state [103] and it was shown that the FFLO states may
emerge only if αM > 1, when the orbital effect is weak or absent, and the
Zeeman effect dominates, special situations which have been analyzed and
studied by various experimental and theoretical works [104–109].
In view of this, in the following discussion, we will consider only the pure
Pauli limit, corresponding to the limiting case of infinitely large Maki pa-
rameter, in which the uniform magnetic field acts only on the spins of the
electrons and all orbital effects are neglected.
The FFLO state is identified by finite center-of-mass momentum in the
Cooper pair, causing the superconducting order parameter to oscillate in
real space. The mechanism at the base of the FFLO state formation is the
different splitting of the Fermi momenta of spin-up and spin-down electrons,
due to the presence of the Zeeman field. In the FFLO state electrons with
opposite spin orientation can only stay bound if the Cooper pairs have finite
center-of-mass momenta Q, leading to the formation of a new pairing state
(k ↑,−k + Q ↓), instead of the ordinary BCS one (k ↑,−k ↓), as illustrated
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in Fig.1.1.
The finite wave vector Q in the FFLO state gives rise to spatial symme-
try breaking, resulting in a superconducting order parameter oscillating in
space. Fulde and Ferrell suggested an order parameter of the form [104]

∆(r) = ∆1e
iQ·r , (1.1)

BCS

(𝒌! ↑)

(−𝒌! ↓)

(𝒌! ↑)

(−𝒌! +𝑸 ↓)

FFLO

𝐸! 𝐸!

Figure 1.1: Schematic representation of the Cooper pair formation in the BCS
(left) and FFLO (right) states. On the right, the energy of spin-up
and spin-down electrons is shifted by the exchange field. Here, due
to Zeeman splitting, the Fermi surfaces for electrons with spin up
and down are represented, respectively, by the orange and violet
circle.

where the amplitude of the superconducting order parameter is homoge-
neous, but the phase changes in real space over position r. However, the two
solutions e±iQ·r represent degenerate superconducting states for a given Q.
This degeneracy can be lifted by considering linear combinations of e±iQ·r,
that is the state originally proposed by Larkin and Ovchinnikov [104]

∆(r) = ∆1

(
eiQ·r + e−iQ·r

)
= 2∆1 cos (Q · r) . (1.2)

Generally, the order parameter is characterized by more than two equivalent
Q wave vectors, then it can be expressed by a linear combination of terms
with different Cooper pair momenta, as [47,104]

∆FFLO(r) =
∑
ν

∆νe
iQν ·r , (1.3)
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where ν denotes the number of equivalent Q-vectors.
The occurrence of the FFLO state requires very stringent conditions on the
superconducting materials; in addition to a weaker orbital pair breaking
effect with respect to the Zeeman splitting, so that superconductivity sur-
vives up to the Pauli limit, the superconductor must be in the clean limit
because it is known today that the FFLO state is very sensitive to disor-
der [110, 111]. Very few superconductors fulfill these necessary conditions
for the FFLO state, justifying why it is rather difficult to observe such a
phase in superconductors. Interesting candidates are quasi-2D superconduc-
tors when magnetic field is applied parallel to the superconducting planes.
The theoretical treatment of these kinds of systems has been developed in
different relevant works [107,112–114].
In conclusion, here we wanted to highlight that, as we will see in the next sec-
tions, the same physics is at the origin of the oscillatory-like proximity effect
near S/F interfaces, where the induced FFLO-like state leads to oscillation
in space of the pair amplitude in the ferromagnetic region, resulting in many
interesting phenomena observed in these systems (e.g. 0-π transitions) [15].

1.2 Proximity effect

Let us now discuss what happens when a superconductor S is placed in con-
tact with a normal metal N. In this case, it is possible to observe that the
superconductor modifies the behavior of the electrons in the normal region.
Indeed, the adjacent metal starts exhibiting superconducting properties near
the interface, induced over mesoscopic distances governed by the normal co-
herence length ξN = vF /2πT for a perfect (clean) N layer (or ξN =

√
D/2πT

in the dirty case, where D is the diffusion constant of the normal metal). The
leakage of the Cooper pairs from S into N is called proximity effect. A sketch
of the behavior of the induced superconducting order parameter at an S/N
interface is shown in Fig.1.3 (a). At the same time, on the superconductor
side, in the vicinity of the interface, the order parameter is depleted within
a region equal to the coherence length of the superconductor ξS = vFs/2πTc
(or ξS =

√
DS/2πTc in dirty regime); this phenomenon is known as inverse

proximity effect [15].
The proximity effect in S/N structures can be explained on a microscopic
level through the Andreev reflection process [115–118], which plays a primary
role for the understanding of quantum transport properties of S/N systems.
Let us consider an electron of energy ε from the normal metal propagating
toward the superconductor, as illustrated in Fig.1.2 (a). The normal metal
that is next to the superconductor has electrons filled up to the Fermi level.
Electrons in the N part with an excitation energy below the superconduct-
ing gap (ε < ∆) cannot cross the interface, since no single-particle states
are available in the superconductor below the gap. Thus, electrons can pass
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from N to S only if their energy ε exceeds the superconducting gap ∆ above
the Fermi level. However, another interesting scenario is possible. In 1964
the Russian physicist Alexander F. Andreev [115] showed that an electron
with energy lower than the superconducting gap can cross the interface and
then be reflected as a hole (see Fig.1.2 (a)), experiencing the so called An-
dreev reflection. The corresponding charge 2e is transferred throughout the
interface and becomes a Cooper pair on the superconducting side. This sce-
nario also works for the opposite situation, namely when an incident hole
from the N side is reflected as an electron, breaking a Cooper pair in the
superconductor and transferring the charge 2e across the interface and into
the normal metal. The Andreev reflection process conserves energy, spin and
(approximately, when ∆� EF ) momentum.

S S

2𝑒

Δ

NS

31 2

4

N

a)

b)

incoming
electron

reflected
hole

reflected
electron

Figure 1.2: (a): Schematic representation of the Andreev reflection at S/N
interface. The curves represent the electrons (blue balls) and holes
(white balls) dispersion at the Fermi surface; the arrows indicate the
direction of propagation. Contrary to electron 1, electron 4 can
directly enter the superconductor, since ε > ∆. However, 1 can
either be reflected as electron (3), or Andreev-reflected as a hole (2)
with opposite velocity; simultaneously a Cooper pair is created in S.
(b) Andreev bound states in SNS system.

Then, the essence of the proximity effect can be summarized as follows: the
Andreev reflection induces a coherent superposition of electron and hole in
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N, thus creating superconducting correlations in the normal metal. Hence,
the coherence length basically measures the distance from the interface up to
which the phases of the induced superconducting correlations stay coherent.
Additionally, Andreev bound states appear and generate a Josephson effect
when the metallic layer is interposed between two superconductors (SNS
junctions, as in Fig.1.2 (b)), producing a flowing Josephson current through
the system [117,119–122].

S N

𝜉!

𝜉"

S F

𝜉#$

𝜉%$
𝜋

0

a)

b)

Ψ

Ψ

Figure 1.3: Schematic picture of proximity effect which shows the behavior of
the superconducting order parameter Ψ at (a) S/N and (b) S/F
interfaces.

1.2.1 Features of the proximity effect in the presence of fer-
romagnetism

At this point, it is legitimate to ask how the proximity effect changes if a fer-
romagnet is placed next to the superconductor, instead of a normal metal.
Superconducting correlations induced in a ferromagnet differ qualitatively
from those in S/N proximitized systems. In this context, the proximity ef-
fect offers not only the possibility to investigate on the quantum transport
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properties in these systems from a microscopic point of view, but it also rep-
resents a unique opportunity to study the interplay between ferromagnetism
and superconductivity.
The BCS theory, which well describes conventional superconductors, tells
us that a Cooper pair consists of two electrons with opposite spins and
momenta. The Cooper pairs leaking from the S side toward an adjacent fer-
romagnet F by proximity effect, feel the exchange interaction which acts on
the spin of electrons forming the pair, producing a Zeeman-split of spin-up
and spin-down bands. Thus, on the one hand, since the two spin bands are
not equally populated due to the exchange splitting, the Andreev scattering
is partially suppressed, inasmuch as an incoming electron can not enter the
condensate if there is no partner of exactly opposite spin and momentum at
given excitation energy, as schematically illustrated in Fig.1.4. Consequently,
this makes the formation of Cooper pairs less efficient. Secondly, by forcing
the spins to be parallel, the exchange field destroys the phase correlation
between the spin-up and spin-down electrons of a singlet pair, suppressing
the superconducting correlations over a coherence length scale shorter than
that characterizing the normal layer.

What happens is that the exchange interaction energetically favors one spin
direction; in particular, the spin-up electron decreases its energy by the
ferromagnetic exchange energy h, while the spin-down electron increases it
by the same amount. Because the total energy is conserved, to compensate
this potential energy variation, spin-up electron increases its kinetic energy
while the spin-down electron decreases it.

As a consequence, the Cooper pair acquires a center of mass momentum
Q = 2h/vF [15,20,47] that produces an oscillation in space of superconduct-
ing pair amplitude in F. A qualitative picture of this effect has been provided
by Demler, Arnold, and Beasley [20], schematically illustrated in Fig.1.5.
Then, considering the case of F layer with homogeneous magnetization,
and supposing for simplicity the one-dimensional situation, at a distance
x from the S/F interface the initial singlet state

(
1/
√

2
)

(|↑↓〉 − |↓↑〉) ≡
|S = 0, Sz = 0〉 (where S is the total spin of the pair and Sz its projection
on the z-axis) obtains a phase multiplier exp(±iQx), depending on the ori-
entation of the electron spin:

|00〉 =
(

1/
√

2
)

(|↑↓〉 − |↓↑〉) −→ |Ψ〉 =
(

1/
√

2
) (
|↑↓〉 eiQx − |↓↑〉 e−iQx

)
=
(

1/
√

2
)

(|↑↓〉 − |↓↑〉) cos (Qx) + i
(

1/
√

2
)

(|↑↓〉+ |↓↑〉) sin (Qx) .

(1.4)
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Figure 1.4: Schematic representation of differences between Andreev reflection
at the S/N (a) and S/F interface (b). In the case of S/N interface
(a), the spin bands are equally populated, implying that the
incoming spin-up electron is reflected as a spin-down hole for any
ε < EF , and meanwhile, a Cooper pair is created in the
superconductor. In (b) it is shown that, in S/F systems, when no
spin-down states are available at certain energies due to exchange
splitting of spin bands, the Andreev reflection of the incoming
spin-up electron may be suppressed and the Cooper pair in S is not
created.

In the above equation, we can notice the analogy with the oscillating in space
FFLO state described previously and defined by Eq.(1.3).
Thus, the second-line in Eq.(1.4) can be decomposed into a spin singlet and
a spin triplet

(
1/
√

2
)

(|↑↓〉+ |↓↑〉) ≡ |S = 1, Sz = 0〉 pairing state

|Ψ〉 = cos (Qx) |00〉+ i sin (Qx) |10〉 . (1.5)

Eq.(1.5) shows that the zero triplet component |10〉 appears automatically in
any S/F system due to the different phase shifts acquired by the spin-up and
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Figure 1.5: Picture of proximity effect in S/F system: Cooper pair going from S
to F acquires a momentum ±2∆p = Q = 2h/vF (Adapted from [20]).

spin-down electrons as they propagate in F [47]. Even though this is not
a rigorous calculation, this superposition of singlet and triplet amplitudes
explains the oscillatory behavior of the Cooper pair wave function in the F
layer.
However, in S/F bilayers such oscillation in space of the Cooper pair wave
function is not the only characteristics of the penetration of the supercon-
ducting correlations in the ferromagnet; in fact, the Cooper pair wave func-
tion appears also modulated by an exponential decay with the distance from
the interface. As for the S/N case, also for S/F systems there is a quantita-
tive difference between the decay lengths of clean and diffusive ferromagnets.
The microscopic treatment of this issue is described within the framework
of the quasiclassical theory of superconductivity by the Eilenberger (clean
regime) and Usadel (dirty regime) equations [15,17]. In the dirty limit it can
be derived that the effective coherence length in a ferromagnet is a complex
function ξf = ξ1f + iξ2f , with the consequence that the decay and oscillation
of the superconducting order parameter in F are respectively described by
the length scales ξ(1,2)f =

√
D

[h2+(πT )2]
1/2±πT

[30], where D = vF `/3 is the

diffusion constant depending on the Fermi velocity vF and the mean free
path ` in the F layer [123, 124]. Then, the Cooper pair wave function takes
the form

Ψ ∼ exp

(
− x

ξf1

)
cos

(
x

ξf2

)
. (1.6)
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In particular, in real ferromagnets (i.e. classical ferromagnets as Fe, Co,
Ni) the exchange field is large compared with the superconducting critical
temperature (h � Tc) and one can find that ξ1f = ξ2f exactly coincide,

leading to a unique characteristic length scale defined by ξf =

√
D

h
.

On the other hand, in the case of a clean ferromagnet, the characteristic
decay and oscillation lengths of the superconducting correlations are not
coinciding. As directly follows from the Eilenberger equations [15, 17], the
coherence length is still a complex function but here the decay and oscillating
lengths are respectively defined as ξ1f = vF /2πT and ξ2f = vF /2h. In this
case, the Cooper pair wave function takes the form [15]

Ψ ∼ 1

x
exp

(
− x

ξ1f

)
sin

(
x

ξ2f

)
. (1.7)

The schematic behavior of the superconducting order parameter at S/F in-
terfaces is depicted in Fig.1.3 (b).

1.2.2 Oscillatory behavior of Tc in S/F systems

In S/F bilayers and multilayers, the oscillatory behavior of the superconduct-
ing order parameter induced in ferromagnets may lead to a non-monotonic
dependence of the superconducting transition temperature Tc on the F layer
length (dF ) (Fig.1.6(a)). Indeed, when this latter is smaller than the oscil-
lating length, i.e. dF � ξ2f , the Cooper pair wave function in F changes
slightly and is similar to the superconducting order parameter in the adjacent
S layer. This corresponds to a zero phase in the wave function describing
the superconducting order parameter in the S layer in S/F multilayer struc-
tures, and we call this state the "0" phase (Fig.1.6(b)). On the other hand,
when dF ∼ ξ2f the Cooper pair wave function may cross the zero at the
center of the F layer and change the sign, producing a π shift of the phase of
the superconducting order parameter in the neighboring S layer; we call this
state the "π" phase (Fig.1.6(c)). Then, by increasing the F layer thickness,
it is possible to induce subsequent switching between 0 and π phases, leading
to a non-monotonic dependence of the critical temperature on the F layer
thickness Tc (dF ). This oscillatory-type dependence of Tc (dF ) was first the-
oretically predicted [95,96] and then also experimentally observed [97–102].
However, experiments on Tc(dF ) behavior in S/F systems were not initially
so conclusive; indeed, although the non-monotonic oscillation behavior of
Tc(dF ) was eperimentally observed in various works, negative results was
also reported [126,127]. Furthermore, in the original theory of the proximity
effect proposed by Buzdin et al. [95,96] itself, the transitions between 0 and
π phases in S/F bilayers are considered not possible in the presence of a
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Figure 1.6: (a): Experimental data reported in [97] showing the oscillation of Tc
of Nb/Gd multilayers vs thickness of Gd layer dGd for a fixed value
of Nb layer. Schematic representation of the behavior of the Cooper
pair wave function in the 0 phase (b) and π phase (c) The x axis is
chosen perpendicular to the planes of the S and F layers with
thicknesses 2ds and 2df , respectively. The Cooper pair wave
function in the π phase vanishes at the center of the F layers and
Ψ(x) is antisymmetric toward the center of the F layer [15]. (d):
Critical temperature of Nb/Cu0.43Ni0.57 bilayer as a function of the
F layer thickness [125].

single S layer. All these issues led to a lack of agreement between theory
and experiments, revealing the different and sometimes controversial behav-
ior of Tc(dF ) in the various structures. In light of this, for the interpretation
of both theoretical and experimental results, other mechanisms have been
suggested to take into account, as the interference between the normal quasi-
particle reflection at the free boundary of F layer and Andreev reflection at
S/F interface [22,125,128,129], due to the comparability between dF and ξ2f
in such systems; the effect of a finite interface transparency [127], spin-flip
scattering [20,130], and others.

1.2.3 Formation of the π state

The fact that, as we have seen in the previous section, in S/F multilayers
transitions from 0 to π phase may occur, has an interesting implication.
Indeed, this allows us to extend the discussion to the case of ferromagnetic
Josephson junctions (SFS JJ), thus providing the possibility to have an equi-
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librium phase difference between the two superconducting electrodes not only
of zero but, under particular circumstances, also of π.
Then, it is natural to call these latter junctions π JJs, to distinguish them
from the conventional 0 JJs.
This effect was predicted in 1977 by Bulaevskii et al. [112] who discussed
the tunneling through a JJs with an insulating barrier in the presence of
magnetic impurities.

a)

b)

Figure 1.7: (a): Temperature dependence of the critical current density jc(T ) for
Nb/Cu0.47Ni0.53/Nb junctions for various dF . In the middle panels,
the cusp indicates the temperature-driven π-0 and 0-π transitions.
(b): jc(dF ) dependence for Nb/Cu0.47Ni0.53/Nb junctions at
T = 4.2K [31].

The supercurrent flowing across a JJ is usually described by the sinusoidal
current-phase relation I(φ) = Ic sinφ, where Ic is the Josephson critical cur-
rent and φ is the superconducting phase difference across the junction. Cor-

respondingly, the associated Josephson energy reads: EJ =
Φ0Ic
2π

(1− cosφ)

[70,71], where Φ0 is the superconducting flux quantum. For conventional JJs
(0 JJs), Ic > 0 and the minimum energy is achieved at φ = 0. Conversely,
for the π junction, the critical current is negative (Ic < 0) and φ = π corre-
sponds to the ground state energy. In this case, the current-phase relation
is modified to: I (φ) = |Ic| sin (φ+ π) = −|Ic| sin (φ), in terms of the magni-
tude of the critical current |Ic|.
Then, the transition from the 0 to the π state results in a sign change of the
critical current. For this reason, measurements of the Ic in SFS JJs may be
adequate to reveal the 0-π transition. Indeed the temperature dependence
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of the oscillation length of the superconducting order parameter in the F
layer is also the origin of the anomalous behavior of the critical current Ic
as a function of temperature, as can be seen in Fig.1.7(a)), where the 0-π
crossover is identified by the presence of a peculiar cusp in the Ic (T ) curve
at the transition temperature.
In this respect, the first unambiguous experimental confirmation of the 0-
π transition in SFS JJs via critical current measurements was provided by
Ryazanov and coworkers [30, 31], and subsequently these results have been
confirmed in other experimental works [32]. Later works have also stud-
ied oscillations induced by a variation of the F layer thickness dF . Indeed,
these systems exhibit a non-monotonic behavior of the critical current Ic
as a function of dF , where the vanishing of Ic signals the transition from
the 0 to the π state (Fig.1.7(b)). The current through a SFS JJ was first
calculated by Buzdin et al. [33, 56], who evaluated the critical current as a
function of the F layer thickness dF for different transparencies at the left
and right S/F interfaces, by solving the Usadel equations in the dirty limit
near the transition temperature Tc. In particular they found the expression
for the critical current as a function of dF in the limits of completely and
low transparent interfaces. They also calculated the Ic(dF ) behavior in a
more realistic situation, closer to real experimental systems, considering one
S/F boundary with a low transparency interface while the other interface
quite transparent, generalizing the results for the case of superconducting
electrodes with different gaps and diffusion constants. Then, several other
experiments confirmed the theoretical predictions [34,35,131].
We will not derive in detail the appearance of the π state in SFS junctions,
for which a complete theoretical description is provided within the quasi-
classical formalism [15, 17, 56]. However, as discussed in the next chapters,
we will draw attention to the role that π and 0 − π junctions may have in
different scenarios, due to their applicability as architectural elements for the
improvement of nanostructures and the realization of new types of devices.

1.3 Long-range proximity effect

In any S/F system, when the magnetization in the F layer is homogeneous,
triplet correlations between electrons of opposite spins are created (Eq.(1.5)).
In particular, these opposite spin-triplet correlations, together with the spin
singlet ones, get dephased by the presence of the exchange field and are sup-
pressed with distance from S/F interface, on a length scale given by h/∆
in the clean regime, and exponentially in diffusive structures on the length
scale ξf =

√
D/h, where h is the ferromagnetic exchange energy. For this

reason, they are called short-range pairing correlations.
However, the possible scenarios offered by S/F systems are not limited to
a such short range proximity. In the first decade of the 2000s, several the-
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Figure 1.8: SF′F trilayer considered for the explanation of LRTC formation.
The two ferromagnetic layers have different orientation of their
magnetization: F′ is magnetized along an axis in the x-z plane at an
angle θ measured from the z-axis, while F is magnetized along the
z-axis.

oretical works predicted the appearance of spin-triplet pair correlations in
S/F systems in the presence of magnetic inhomogeneities as, for example,
non-collinear magnetizations in different parts of ferromagnetic multilayers
structures [21, 44–47]. In particular, such superconducting pairing correla-
tions, characterized by triplet amplitudes with a spin projection Sz = ±1 on
the quantization axis of the ferromagnet, are called equal-spin correlations
(|11〉 = |↑↑〉, |1− 1〉 = |↓↓〉). For this reason, they are not subject to the
exchange field in F, because both electrons of the pair have the same spin.
Hence, they may persist over long distances in F and decay in ferromag-
net on the same length scale as in normal metals ξN , thus, giving rise to
a long-range proximity effect. This latter, was subsequently also observed
experimentally by various groups [48–55].
To give an explanation of how such long-range spin-triplet components

can be obtained, let us consider adding a second ferromagnetic layer (F′) to
the structure (i.e. SF′F trilayer illustrated in Fig.1.8), whose magnetization
axis is non-collinear with that of the first one (F). In particular, we suppose
that F′ is magnetized along an axis in the x-z plane at an angle θ measured
from the z-axis in spin space, and F is magnetized along the z-axis. As we
have seen in Eq.(1.5), when the singlet Cooper pair leaks in F′, it trans-
forms as a mixture of singlet and opposite-spin triplet amplitudes, where
|00〉θ =

(
1√
2

)
(|↙↗〉 − |↗↙〉) and |10〉θ =

(
1√
2

)
(|↙↗〉+ |↗↙〉) are the

states projected onto the spin quantization axis in F′, defined by the versor
n = cos(θ)ez + sin(θ)ex. Then, the superconducting correlations further
leak in F where the magnetization is along the z-axis, thus we project the
pairing states on ez, by using the following transformation formulas for basis
vectors [47]
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|↗〉 = cos

(
θ

2

)
|↑〉+ sin

(
θ

2

)
|↓〉

|↙〉 = cos

(
θ

2

)
|↓〉 − sin

(
θ

2

)
|↑〉 .

(1.8)

These projected states can be used to obtain the following transformation
for pair amplitudes

|00〉θ −→ |00〉 (1.9)

|10〉θ −→ cos(θ) |10〉 −
(

1√
2

)
sin(θ) [|↑↑〉 − |↓↓〉] ,

finding that while the singlet state |00〉θ is invariant under a rotation in spin
space since it has a zero total spin (S = 0), the zero projection triplet state
in the rotated θ-basis |10〉θ produces a non-zero projection triplet state with
aligned spins in the z-basis (|↑↑〉 and |↓↓〉 terms in (1.9)). Thus, F′ creates
opposite spin triplet pairs in the θ-basis which will be equal spin triplets in
F, when viewed with respect to the z-axis.
Therefore, by susbtituting Eqs.(1.9) in Eq.(1.5) we obtain the final state |Ψ〉
in the rotated spin frame

|Ψ〉 = cos (Qx) |00〉+ i sin (Qx) {cos(θ) |10〉 −
(

1√
2

)
sin(θ) [|↑↑〉 − |↓↓〉]} .

(1.10)

Thus, magnetic inhomogeneities mix singlet and triplet pair components at
interfaces and create long-range triplet correlations (LRTC) in ferromagnetic
proximitized structures. This is realizable, non only by considering two ferro-
magnetic layers with misaligned magnetic fields, as mentioned here, but also,
for example, in the presence of magnetic domain walls near the interfaces
on a length scale given by the magnetic length [15, 21], or interfaces with
magnetic disorder [42, 132]. Another option is given by a single ferromag-
net with a nonhomogenous exchange field [133], or a time-varying exchange
field [134]. Finally, as we will discuss in the next paragraph, there exist
theoretical proposals to use SOC as a substitute for inhomogeneous magne-
tization to generate LRTC in such systems, since spin-orbit interaction leads
to a mixing of the spin channels.

1.3.1 Spin-orbit coupling as a source of long-range supercon-
ducting pairings
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Figure 1.9: (a): Spatial dependence of all pairing amplitudes for the S/F system
shown in the inset. fs and f‖ are the zero-spin singlet and triplet
components, while f⊥ is the triplet long-range component. The
exchange field in F is homogeneous and points in the z direction,
while a fully isotropic SOC is assumed in F (from [135]). In (b-e) are
shown the different geometries discussed in [135].

As we have seen, the presence of magnetic inhomogeneities creates equal-spin
triplet pairing correlations with non-zero spin projection with respect to the
magnetization axis of the ferromagnetic layer.
However, this is not the only way to obtain such LRTC, as various works
illustrated that, in the clean regime [136–139], spin-orbit coupling (SOC)
is an alternative source of the LRTC besides the magnetic inhomogeneities
studied in the past. Furthermore, Bergeret and Tokatly [135, 140] showed
that SOC of Rashba [141] and Dresselhaus [142] type satisfies the condition
of all triplet projections also in the diffusive (dirty) limit.
Physically, the generation of long-range pairing correlations can be viewed
as a rotation of the triplet component of the superconducting condensate
in S/F hybrid structures in the presence of SOC, leading to components f⊥

perpendicular to the original one (as illustrated in Fig.1.9 (a)), which restore
the long-range decay behavior of the induced Cooper pair wave function.
By using the quasiclassical equations including the effect of the spin-orbit
field, they predicted the appearance of LRTC in a variety of diffusive hy-
brid S/F structures in which SOC is present (Figs.1.9 (b-e)). Furthermore,
discussing the condition for the singlet-triplet conversion, they also demon-
strated the equivalence in the creation of LRTC of the role played by the
inhomogeneous magnetization, and SOC under the presence of an homoge-
neous exchange field. In particular, this analogy provides a useful tool for
designing experimental setups and studying novel combinations of materi-
als for the manipulation of the triplet component in hybrid superconducting
structures, suggesting a possible way to control the spin in S/F heterostruc-
tures in the presence of SOC, particularly attractive for the development of
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new technological devices in the field of spintronics.
In particular, in this thesis, this last-mentioned appealing purpose encour-
aged us to focus our study on ferromagnetic-insulator Josephson junctions
(SFIS JJs) characterized by an intrinsic SOC as a generator of long-range
supercurrents, besides regarding SOC as a useful tool for driving the evolu-
tion of the Ic(T ) of SFIS JJs from 0-π to 0 regime, as we will see in detail
in Chapter 3.

1.4 The Green’s functions formalism to describe
transport properties of hybrid systems

In order to efficiently describe transport phenomena and, therefore, the mo-
tion of electrons and holes in such hybrid heterostructures, in this work we
choose to use the formalism based on Green’s functions (GFs). The for-
mulation of the BCS theory in terms of GFs derived by Gor’kov [149] rep-
resents an efficient way to study proximity systems. As a matter of fact,
GFs include the proper information allowing to directly obtain from them
the relevant physical quantities of interest, such as currents and density of
states [94, 150]. Since the superconducting state somehow mixes electrons
and holes, such Green’s functions not only describe these latter but, more
generally, by introducing the Nambu (particle-hole) space and spin space,
also quasiparticles and spin correlations can be depicted. Then, it is natu-
ral to introduce two-component field operators in real space, called Nambu
operators [120]

Ψ (r) =

(
ψ↑ (r)

ψ†↓ (r)

)
, Ψ† (r) =

(
ψ†↑ (r) , ψ↓ (r)

)
, (1.11)

where Ψ (r) annihilates electron at position r, whereas Ψ† (r) creates elec-
tron at position r. At this point, we can define the Nambu-Gor’kov Green’s
function

Ǧ
(
r, t, r′, t′

)
= −i

〈
T (Ψ (r, t) Ψ†

(
r′, t′

)
)
〉

(1.12)

where T is the time-ordering operator and the brackets
〈 〉

denote the ther-
mal average

〈
O
〉

= Tr
(
e−H/(kBT )O

)
(where H is the Hamiltonian of the

system).
The GF in Eq.(1.12) takes the form of a 2 × 2 matrix in the particle-hole
(Nambu) space:

Ǧ
(
r, t, r′, t′

)
=

[
G1 F1

−F2 G2

]
(1.13)
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where its elements are respectively

G1 = G↑↑
(
r, t, r′, t′

)
= −i

〈
T
(
ψ↑ (r, t)ψ†↑

(
r′, t′

))〉
, (1.14)

G2 = G†↓↓
(
r, t, r′, t′

)
= −i

〈
T
(
ψ†↓ (r, t)ψ↓

(
r′, t′

))〉
, (1.15)

F1 = F↑↓
(
r, t, r′, t′

)
= −i

〈
T
(
ψ↑ (r, t)ψ↓

(
r′, t′

))〉
, (1.16)

F2 = F↓↑
(
r, t, r′, t′

)
= −i

〈
T
(
ψ†↓ (r, t)ψ†↑

(
r′, t′

))〉
. (1.17)

The diagonal elements of Ǧ matrix in Eq.(1.13), G and G†, represent respec-
tively the particle-particle and the hole-hole propagator and they are called
normal Green’s functions. The off-diagonal elements F and F †, instead, rep-
resent respectively the particle-hole and the hole-particle propagators and
they are called anomalous Green’s functions. Hence, the anomalous GFs de-
scribe the superconducting condensate, thus the pairing correlations.
In the presence of exchange field or other interactions that provide spin mix-
ing effects, e.g. spin-orbit coupling, the GFs G and F in the Nambu-Gor’kov
matrix (Eq.1.13)) become non trivial 2× 2 matrices in the spin space (that
we indicate as Ĝ and F̂ ).
In particular, in this thesis, to describe finite temperature properties of con-
sidered systems, we will work with Matsubara GFs. The latter can be ob-
tained by passing to immaginary-time through the transformation t = −iτ
[120]. Then, by Fourier transforming, one can obtain the GF Gωn , where
ωn = πT (2n+ 1) are the Matsubara frequencies and T is the temperature.
Therefore, the anomalous GF in Matsubara representation F̂ωn can be ex-
pressed in terms of the Cooper pairs correlation functions as [90]

F̂ωn (r, r) =
3∑

ν=0

fν(r)σ̂νiσ̂2 (1.18)

where σ̂ν are the Pauli matrices in the spin space (σ̂0 is the 2 × 2 unit
matrix), f0 = |00〉 and f3 = |10〉 are the amplitudes of singlet and zero-spin
triplet component of the Cooper pairs correlations, respectively, while f1
and f2 allow to obtain the spin-aligned triplet components f↑↑ = |↑↑〉 and
f↓↓ = |↓↓〉. Eq.(1.18) can be written in the matrix form as

F̂ =

(
f↑↑ f↑↓
f↓↑ f↓↓

)
=

[
if2 − f1 f3 + f0
f3 − f0 if2 + f1

]
, (1.19)

where, in the left hand side matrix, the spin aligned components appear as
diagonal elements, while the opposite spin components are the off-diagonal
ones.
As we will see, Eq.(1.19) will be used in Chapters 3 and 4 to derive the
superconducting pairing correlations in the analyzed systems.
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1.5 Symmetries of pairing correlations

The wave function of a Cooper pair depends on the position (orbital part),
spin, and time (energy or frequency) coordinate of electrons forming the pair.
Therefore, it can be found that all the superconducting correlations intro-
duced in the previous section can be classified according to their symmetry
properties with respect to all these quantities [41, 47, 143]. As we will see,
four different symmetry components exist in S/F heterostructures, that may
be comparable in size.
As we said, the pairing correlations in superconductors are described by the
anomalous Green’s function F , which can be expressed as

Fαβ,ab(r1, τ1, r2, τ2) = 〈TτΨαa(r1, τ1)Ψβ b(r2, τ2)〉 , (1.20)

where Tτ is the time-ordering operator, r1,2 and τ1,2 are the spatial and
imaginary-time (in the Matsubara technique) coordinates of the electrons
comprising the Cooper pair, {a, b} denote any orbital degree of freedom,
while {α, β} are spin indices of the two fermions in the correlator. The Pauli
principle requires that this function is overall odd, thus changing its sign
under the exchange of two electrons

Fαβ,ab(r1, τ1, r2, τ2) = −Fβα,ba(r2, τ2, r1, τ1) . (1.21)

For homogeneous systems, F depends only on relative coordinates r = r1−r2
and τ = τ1 − τ2 of the electrons forming the pair, therefore it follows:

Fαβ,ab(r, τ) = −Fβα,ba(−r,−τ) . (1.22)

We can see that, in this particular case, it is possible to express the symmetry
restrictions on the permutation properties in terms of spin (S), coordinate
parity (P ∗), orbital index (O), and time coordinate (T ∗) permutation oper-
ators, respectively as

SFαβ,ab(r, τ)S−1 = Fβα,ab(r, τ) (1.23)

P ∗Fαβ,ab(r, τ)P ∗−1 = Fαβ,ab(−r, τ) (1.24)

OFαβ,ab(r, τ)O−1 = Fαβ,ba(r, τ) (1.25)

T ∗Fαβ,ab(r, τ)T ∗−1 = Fαβ,ab(r,−τ) . (1.26)

The combined action of these operators is referred to as the SPOT rule,
leading to the change in sign in Eq.(1.22) which can symbolically be written
as: SP ∗OT ∗ = −1 [143]. These symmetry permutation rules were pointed
out for the first time by Berezinskii in 1974 [144].
By Fourier-transforming the relative coordinates in Eq.(1.22) we get
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Fαβ,ab(p, ωn) = −Fβα,ba(−p,−ωn) . (1.27)

For inhomogeneous systems this equation holds for each set of center coor-
dinates.
The symmetry constraints in spin, momentum, and Matsubara frequency
(ωn = (2n + 1)πT ), expressed through Eq.(1.27), can be satisfied by four
possible superconducting states (see Fig.1.10), exhausting all possibilities
compatible with the Fermi statistics and Pauli principle:

• Type A: spin singlet, even frequency, even parity

• Type B: spin singlet, odd frequency, odd parity

• Type C: spin triplet, even frequency, odd parity

• Type D: spin triplet, odd frequency, even parity.

Figure 1.10: Symmetry classification of the pair correlation function; the wavy
lines indicate odd-ω states (from [47]).

To better explain this classification, we can notice that the spin part of
Eq.(1.27), which is a matrix in spin space, can be divided into singlet and
triplet functions as [41]

Fαβ(p, ωn) = Fs(p, ωn)(iσy)αβ + Ft(p, ωn) · (σiσy)αβ , (1.28)

where σ = (σx, σy, σz) is the vector of the three Pauli matrices.
The singlet part is odd under the spin exchange α ←→ β, while the three
triplets are even. Therefore, in order to satisfy the overall odd symmetry
nature of the pair correlation function, for the singlet state the wave func-
tion is necessarily either symmetric or anti-symmetric in both momentum
and frequency. By contrast, in a triplet state, the wave function is either
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anti-symmetric in momentum and symmetric in frequency (even-ω) or sym-
metric in momentum and anti-symmetric in frequency (odd-ω).
In reference to the above symmetry type classification, we can remind that
the usual singlet s-wave BCS superconductivity is of type A, while an exam-
ple of type B was introduced by Balatsky and Abrahams in the case of un-
conventional superconductors with singlet odd pairing correlations [145,146];
moreover, type C is represented by the spin-triplet p-wave superfluid state
formed in 3He [147]. Finally, type D was also considered by Berezinskii in
connection with the discovery of the superfluid phase in 3He [144].
The appearance of these different symmetry components of the pairing cor-
relations is subject to the local breaking of peculiar symmetry properties in
some spatial regions of the considered systems, e.g. near interfaces, or in the
presence of line defects.
In particular, as we will see in the situation analyzed in this thesis, if both
spin rotational symmetry and parity are broken, e.g. at an interface between
a superconductor and a ferromagnet with SOC, all four types of pair ampli-
tudes are generated at the interface [68,148].
The possibility of dealing with different unconventional pairing states sym-
metries continues to be an intriguing field still being explored, especially as
regards the presence of odd-ω states, due to their fundamental influence on
both the electromagnetic response and spin properties of such systems, that
may be relevant for possible technological applications.



Chapter 2

RGF technique and model
Hamiltonian

In this thesis, for the description of SFIS JJ we choose to employ a two di-
mensional (2D) tight-binding lattice model, which is appropriate to evaluate
site by site the currents and the induced superconducting pairing correla-
tions due to the proximity effect between different regions.
As anticipated in the previous chapter, the transport properties of the junc-
tion are derived by using the Green’s functions formalism. Then, the Green’s
function describing the whole system is obtained by applying the Recursive
Green’s function (RGF) technique [89, 91]. The strong points of the RGF
technique are: (i) it does not require the derivation of the boundary condi-
tions at the various interfaces, which, contrary, sometimes is a thorny issue
in the quasiclassical approaches; (ii) it entails a reduction of the computa-
tional cost of calculation, gaining a factor L2 (where L is the length of the
barrier in number of sites) in efficiency with respect to the direct inversion
of corresponding matrix Hamiltonian for the calculation of the barrier GF,
from which we can extract the relevant physical quantities of interest; (iii) it
turns out to be a suitable approach to effortlessly take into account disorder
effects.
The first part of this chapter is voted to the general description of the RGF
technique, which can be usefully applied to systems described by lattice mod-
els, as the case we analyze in this thesis. Then, we will proceed with the
presentation of the 2D tight binding model used to represent SFIS junctions.
In this part we will focus on the explanation of the different interactions in-
cluded in the Hamiltonian of the considered system, such as the presence of
SOC and nonmagnetic lattice impurities. Finally, we will pass to the appli-
cation of the RGF method to our situation, which leads us to the calculation
of the GF of the barrier from which we will derive the Josepshon current and
the superconducting correlation functions.

33
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Figure 2.1: Slices division of the system consisting of two leads and one central
device (sample). The sample is formed by N different sections. The
surface Green’s functions of the two leads are indicated with GL

0 and
GR

N+1. The perturbation T couples two neighbor sections (adapted
from [154]).

2.1 RGF technique

The recursive Green’s function (RGF) technique is a well established method
firstly introduced in the study of electronic transport in mesoscopic sys-
tems [151–153]. Moreover, in the last twenty years this calculation technique
has been widely employed to investigate the transport properties of super-
conducting Josephson junctions (JJs) [89–91]. Indeed, the RGF procedure
allows calculating the Green’s function of a "central" device when it is con-
nected to two leads. In particular, as we will see, when dealing with a JJ
the two leads are the superconducting electrodes and the central device is
represented by the barrier.
The RGF method become extremely useful if the device GF cannot be com-
puted from the direct inversion of its Hamiltonian, as, for large systems,
the latter calculation procedure may be seriously expensive from a compu-
tational point of view.
In this section we will explain and describe the general features of the RGF
method. The first step is considering the central device as consisting of dif-
ferent sections, as illustrated in Fig.2.1, whose non-interacting isolated GFs
(G0) can be exactly computed. In order to calculate the interacting GF (G)
of each section, we have to consider their interactions with the other sub-
systems. In this model, the perturbation T connects only nearest neighbor
sections. Hence, in this schematic representation of the central device, the
section j interacts only with its nearest-neighbors one j + 1 and j − 1.
We can calculate the interacting GF of each section by using a Dyson-like
equation [94,154]

G = G0 +G0TG. (2.1)
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This picture can be easily applied to systems described by lattice models,
as illustrated in Fig.2.2 (a). Here, the basic idea is still to break up the
system into independent stripes (labeled by the index j) and then glue them
together by the means of the Eq.(2.1), which allows building the full GF slice
by slice. Starting from the edge of one lead, using Eq.(2.1), one attaches the
first stripe of the central device to the lead by calculating the GF of the
connected system: lead + first stripe. At each step another stripe is added
to the already connected system, until one reconstructs the whole system:
lead-device-lead. In Fig.2.2 (a) the central device is coupled to the left (L)
and right (R) edges. Since T connects only the section j with its nearest-
neighbors j + 1 and j − 1, only the surfaces of the two leads have to be
considered. In Fig.2.2 (b) a sketch of the system divided in single transverse
stripes is shown.
From now on, we will indicate with G0

j,j the (unperturbed) bare GF of the

𝑟𝑖𝑔ℎ𝑡	𝑙𝑒𝑎𝑑𝑙𝑒𝑓𝑡	𝑙𝑒𝑎𝑑

𝑐𝑒𝑛𝑡𝑟𝑎𝑙	𝑑𝑒𝑣𝑖𝑐𝑒
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𝑗 = 0									1										2 𝑁							𝑁 + 1

a) b)

Figure 2.2: (a) Schematic of the system made up of two leads and one central
device. In (b) the system divided in single stripes. Gj,j is the GF of
the j-th stripe when connected to the others, while G0

j,j indicates
the bare GF of the isolated j-th stripe.

j-th isolated stripe and with Gj,j′ the interacting GF that couples the j-th
stripe with the j′-th one.
Thus, the method requires as input the surface GFs of left and right lead,
defined as GL0 and GRN+1, respectively. These GFs are computed separately
and before the recurrence procedure.
Since our goal is to connect each stripe to the two leads, the derivation of
several intermediate recurrence formulas is needed, before obtaining expres-
sions for the whole device GF. Thus, carrying out the recurrence procedure
first from left to right and then from right to left, it is possible to generate
two families of GFs, GLj,j′ and G

R
j,j′ , describing interacting GFs connected to

the left and right lead, respectively. As final step, these two families are then
joined together to obtain the exact full G of the central device.
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2.1.1 Left Green’s Function

We begin calculating the left GFs. We recall that the rightmost slice of the
left lead is denoted by 0. Then, our goal is to obtain GL0,j and G

L
j,j in order

to describe electron propagation in the sample when the left lead is taken
into account (Fig.2.3).
Therefore, the first step is to incorporate the first slice j = 1 to the left

𝐺"!","

𝐺"$!,!

𝐺"$!,"%&

𝐺"$!,! 𝐺"$","

𝐺"$!,"

Figure 2.3: Graphical representation of how to attach the stripe j to the left
lead. The first j − 1 stripes are already connected. In order to
attach the stripe j, we have to calculate GL

j,j and GL
0,j .

lead. In order to simplify the calculations, we define the kets |j〉 representing
the state of the electron in the stripe j.
Thus, by using the Dyson-like Eq.(2.1), we obtain:

〈1|GL |1〉 = 〈1|G0 |1〉+ 〈1|G0TGL |1〉 =

〈1|G0 |1〉+
∑
j,j′

〈1|G0 |j〉 〈j|T
∣∣j′〉 〈j′∣∣GL |1〉 = (2.2)

〈1|G0 |1〉+ 〈1|G0 |1〉 〈1|T |0〉 〈0|GL |1〉

where at the second step we used the completeness relation
(∑

j |j〉 〈j| = 1
)
.

Here we exploit the fact that T couples only nearest-neighbors stripes, i.e.
〈j|T |j′〉 = Tj,j′δj,j′+1δj,j′−1.
It is worth to notice that the left GF of the first stripe GL1,1 depends on the
GF that connects it to the left lead GL0,1. We again use Eq.(2.1) to obtain
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an expression for GL0,1.

〈0|GL |1〉 = 〈0|G0 |1〉+ 〈0|G0TGL |1〉 =

〈0|G0 |1〉+
∑
j,j′

〈0|G0 |j〉 〈j|T
∣∣j′〉 〈j′∣∣GL |1〉

= 〈0|G0 |0〉 〈0|T |1〉 〈1|GL |1〉 .

(2.3)

In the third line of Eq.(2.3) we have taken into account that G0 is the un-
perturbed GF of the system divided in isolated stripes, thus it cannot couple
two separated stripes together. Hence, the matrix element 〈0|G0 |1〉 = 0.
Adopting the more compact notation 〈j|GL |j′〉 = GLj,j′ , we obtain the fol-
lowing two equations:

GL1,1 = G0
1,1 +G0

1,1T1,0G
L
0,1 (2.4)

GL0,1 = GL0 T0,1G
L
1,1. (2.5)

Therefore, by substitution, we have:

GL1,1 = G0
1,1 +G0

1,1T1,0G
L
0 T0,1G

L
1,1, (2.6)

which is a self-consistent equation for the GF of the first stripe connected to
the left lead GL1,1.
Then, with some algebra, we get

GL1,1 =
(
I −G0

1,1T1,0G
L
0 T0,1

)−1
G0

1,1, (2.7)

where I is the identity operator. Notice that this GF takes into account the
coupling of the first stripe with the left lead, but has no information about
the rest of the system or the right lead.
Once calculated GL1,1, we can proceed evaluating the left GF of the second
stripe GL2,2, attaching it to the first one, and so on, until we reach the right
lead.
At this point, it is desirable to derive a more general recursive formula analog
to Eq.(2.7) that is valid for each stripe of the central device.
Assuming that we have just attached the first j − 1 stripes to the left lead,
now we want to connect the j-th stripe to the resulting system.
Applying the Eq.(2.1), we can find a self consistent expression for GLj,j :

GLj,j = 〈j|GL |j〉 = 〈j|G0 |j〉+ 〈j|G0TGL |j〉 =

〈j|G0 |j〉+ 〈j|G0 |j〉 〈j|T |j − 1〉 〈j − 1|GL |j〉 =

G0
j,j +G0

j,jTj,j−1G
L
j−1,j
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where, using again Eq.(2.1), for GLj−1,j we have

GLj−1,j = 〈j − 1|G0 |j〉+ 〈j − 1|G0 |j − 1〉 〈j − 1|T |j〉 〈j|GL |j〉 =

G0
j−1,j−1Tj−1,jG

L
j,j .

We notice that G0
j−1,j−1 is the GF of j − 1-th stripe, when connected to

the system made up of the left lead and the j − 2 preceding stripes. There-
fore, G0

j−1,j−1 = GLj−1,j−1 and it has memory of the j − 2 steps which led to
that point. Thus, we have :

GLj,j = G0
j,j +G0

j,jTj,j−1G
L
j−1,j−1Tj−1,jG

L
j,j . (2.8)

Furthermore, we can obtain the generalized recursive formula for the left GF
of the j-th stripe:

GLj,j =
(
I −G0

j,jTj,j−1G
L
j−1,j−1Tj−1,j

)−1
G0
j,j . (2.9)

The Eq.(2.9) is accompanied by the equation for the GF which connects the
surface stripe of the left lead with the j-th stripe of the central device.

GL0,j = GL0,j−1Tj−1,jG
L
j,j . (2.10)

2.1.2 Right Green’s Function
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Figure 2.4: Graphical representation of how to attach the stripe j to the right
lead. The last N − j stripes are already connected. At this point, we
can repeat the same procedure to attach the j-th stripe to the right
(R) lead, Fig.2.4. In order to attach the stripe j, we have to
calculate GR

j,j and GR
N,j .
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Similarly to left case, we start connecting the last stripe j = N to the right
lead, obtaining the following equations

GRN,N = G0
N,N +G0

N,NTN,N+1G
R
N+1,N

(2.11)

GRN+1,N = GRN+1TN+1,NG
R
N,N .

Once we have attached the N -th stripe to the lead, we can repeat the proce-
dure N − j times, thus obtaining a recursive expression for right GF of the
j-th stripe GRj,j . In this way, it is possible to find for the right GF of the j-th
stripe the general self-consistent equations:

GRj,j =
(
I −G0

j,jTj,j+1G
R
j+1,j+1Tj+1,j

)−1
G0
j,j (2.12)

GRN+1,j = GN+1,j+1Tj+1,jG
R
j,j (2.13)

that describe how the j-th stripe is connected to the right lead. It is worth
to notice that GRj,j depends on GRj+1,j+1, which is the GF of the preceding
stripe. The latter has memory of all the preceding stripes from the right
lead to the j + 2-th one.

2.1.3 Full Green’s Function
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Figure 2.5: Graphical representation of how to attach the left subsystem to the
right subsystem through the stripe j. The first j − 1 stripes and the
last N − j stripes are already connected. In order to reconstruct the
whole connected system, we have to calculate Gj,j .

Once we arrived at the j-th stripe both from the left and right leads, we can
proceed to obtain the exact full GF of the central device. At this step, we
have already computed the left GF of the j − 1-th stripe (GLj−1,j−1) and the
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right GF of the j + 1-th one (GRj+1,j+1). The system is composed by three
parts:

• the isolated j-th stripe;

• the subsystem composed by the left lead and the first j − 1 stripes;

• the subsystem composed by the right lead and the last N − j stripes.

Hence, we have to connect the two parts together through the j-th stripe.
In order to calculate the total GF G of the connected system at the j-th
stripe, we again use the Eq.(2.1), which we project on the state vector |j〉
obtaining

Gj,j = 〈j|G |j〉 = 〈j|G0 |j〉+ 〈j|G0TG |j〉 =

〈j|G(0) |j〉+
∑
j′,j′′

〈j|G(0)
∣∣j′〉 〈j′∣∣T ∣∣j′′〉 〈j′′∣∣G |j〉 =

〈j|G0 |j〉+ 〈j|G0 |j〉 〈j|T |j − 1〉 〈j − 1|G |j〉+

〈j|G0 |j〉 〈j|T |j + 1〉 〈j + 1|G |j〉 .

Therefore, for Gj,j we have:

Gj,j = G0
j,j +G0

j,j (Tj,j−1Gj−1,j + Tj,j+1Gj,j+1) . (2.14)

Following the same procedure, we can obtain a recursive formula even for
Gj−1,j and Gj+1,j . Let us do the explicit calculations for Gj−1,j :

Gj−1,j = 〈j − 1|G0 |j〉+ 〈j − 1|G0TG |j〉 =

∑
j′,j′′

〈j − 1|G0
∣∣j′〉 〈j′∣∣T ∣∣j′′〉 〈j′′∣∣G |j〉 =

(2.15)

〈j − 1|G0 |j − 1〉 〈j − 1|T |j〉 〈j|G |j〉 =

G0
j−1,j−1Tj−1,jGj,j .

For the system considered, we can notice that G0
j−1,j−1 = GLj−1,j−1 because

the j − 1-th stripe is connected to the left lead. Thus, we have:

Gj−1,j = GLj−1,j−1Tj−1,jGj,j . (2.16)
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An analogue equation is valid for Gj+1,j :

Gj+1,j = GRj+1,j+1Tj+1,jGj,j . (2.17)

By substitution, we can obtain a self-consistent expression for Gj,j depending
on GLj−1,j−1 and GRj+1,j+1.

Gj,j =
[
I −G0

j,j

(
Tj,j−1G

L
j−1,j−1 + Tj,j+1G

R
j+1,j+1

)]−1
G0
j,j (2.18)

The Eq.(2.18) is accompanied by the equations that connect the left and
right leads with the j-th stripe.

G0,j = GL0,j−1Tj−1,jGj,j (2.19)

GN+1,j = GRN+1,j+1Tj+1,jGj,j (2.20)

Note that to carry out the whole recursive algorithm we need to perform
2N matrix inversions (N for the left GF and N for the right GF). If W is
the number of sites within each stripe of our lattice, the GFs of each stripe
are W ×W matrices. Each inversion requires O(W 3) operations. Thus, the
complexity of the calculation scales as N ×W 3 [154]. In this way, we gain
a factor N2 in efficiency with respect to the direct inversion of the N ×W
Hamiltonian matrix of the central device that, instead, scales as N3 ×W 3.

2.2 Tight-binding model Hamiltonian

𝑗 = 0									1									2 … 𝐿							𝐿 + 1

𝑚 = 0

𝑚 = 𝑊

𝒚- 𝒙-

𝒛0
𝒉 = ℎ𝒛0

S SFI + SOC + impurities

Figure 2.6: Schematic representation of the SFIS junction geometry with a
ferromagnetic insulator barrier in the presence of SOC and
impurities. The exchange field h is taken parallel to the z-axis, thus
perpendicular to the junction plane (i.e., the xy-plane).
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We start defining the Hamiltonian of the SFIS JJ, modeled by using a two-
dimensional lattice, as illustrated in Fig.2.6, where L is the length of the
ferromagnetic barrier and W is the width of the junction, expressed in units
of lattice sites. Each lattice site position is determined by a couple of indices
(j,m). By defining two unit vectors x and y, we can introduce a vector
r = jx + my which points a lattice site with j = 0, 1, . . . , L, L + 1 and
m = 1, . . . ,W . The Hamiltonian of the junction in the Nambu ⊗ spin space
is given by

Ȟ =
∑
r,r′

Ψ†(r)
[
Ĥ(r, r′) ∆̂(r, r′)
−∆̂∗(r, r′) −Ĥ∗(r, r′)

]
Ψ(r′) . (2.21)

Although many combinations of particle/hole and spin are possible to express
Ψ and exist in the literature, here we choose the following 4-component spinor
(and its corresponding Hermitian adjoint)

Ψ(r) =
[
ψ↑(r), ψ↓(r), ψ

†
↑(r), ψ

†
↓(r)

]T
, (2.22)

where ψ†α(r) and ψα(r) are the field operators creating/annihilating an elec-
tron with spin α at lattice point r. Here, the symbols .̂ and .̌ describe the
2× 2 and 4× 4 matrices in spin and Nambu⊗spin spaces respectively.
In Eq.(2.21), Ĥ is the normal-state Hamiltonian of the junction while ∆̂
describes the superconducting pairing potential. The former can be written
as Ĥ = Ĥs + ĤFI , with Ĥs and ĤFI referring to the S leads and FI barrier,
respectively.
In Fig.2.6, the S regions extend for j < 1 and j > L. Ĥs consists in a kinetic
term (i.e. Ĥs = ĤK

s ) that reads:

ĤK
s (r, r′) ={−ts

(
δr,r′+x + δr+x,r′

)
σ̂0 (2.23)

− ts
(
δr,r′+y + δr+y,r′

)
σ̂0

− (4ts − µs) δr,r′ σ̂0}
× [Θ (−j + 1) + Θ (j − L)]

where ts and µs are the hopping parameter and the chemical potential, re-
spectively, and Θ is the Heaviside step-function, defined as

Θ(j) =

{
1 : j > 1

0 : j ≤ 0 ,
(2.24)

Here and in the followings, we indicate with σ̂0 and σ̂ν (ν = 1, 2, 3) the unit
and the Pauli matrices in the spin space, respectively.
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In this work, we take the pairing potential ∆̂ different from zero only in the
S leads, which, thus, vanishes inside the F barrier. Here, ∆̂ is of spin-singlet
s-wave symmetry and is expressed as

∆̂(r, r′) = ∆δr,r′ i σ̂2 (2.25)

×
[
Θ (−j + 1) eiφL + Θ (j − L) eiφR

]
,

where φ = φL − φR defines the phase difference across the junction and φL
(φR) is the phase in the left (right)-hand side superconductor. In our model,
the order parameter ∆ is constant in the leads and it is not derived from
self-consistent calculations. Further, we assume that there is no disorder in
the superconductors.

Let us now consider the ferromagnetic barrier of the junction. It extends
from j = 1 to j = L and its Hamiltonian consists of four terms

ĤFI = ĤK
FI + ĤSOC

FI + Ĥex
FI + Ĥ i

F I , (2.26)

describing respectively:

• the kinetic part ĤK
FI , which includes the chemical potential and the

tight-binding hopping along x and y directions

ĤK
FI(r, r

′) ={−tFI
(
δr,r′+x + δr+x,r′

)
σ̂0 (2.27)

− tFI
(
δr,r′+y + δr+y,r′

)
σ̂0

− (4tFI − µFI) δr,r′ σ̂0}
×Θ (j) Θ (L+ 1− j) ,

• the Rashba spin-orbit coupling ĤSOC
FI

ĤSOC
FI (r, r′) = iα

[{
δr,r′+x − δr+x,r′

}
σ̂2 (2.28)

−
{
δr,r′+y − δr+y,r′

}
σ̂1
]

Θ (j) Θ (L+ 1− j) ,

• the Zeeman exchange field Ĥex
FI

Ĥex
FI(r, r

′) = −h′ · σδr,r′Θ (j) Θ (L+ 1− j) , (2.29)
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• the on-site random impurity potential Ĥ i
F I

Ĥ i
F I(r, r

′) = vr σ̂0 δr,r′Θ (j) Θ (L+ 1− j) . (2.30)

In the above equations, σ is the vector of the Pauli matrices (σ̂1, σ̂2, σ̂3),
tFI is the hopping integral among nearest-neighbor lattice sites (in the fol-
lowings we omit the subscript FI for simplicity, i.e. we take tFI = t),
µFI the Fermi energy, α the amplitude of the spin-orbit interaction, vr
the on-site random impurity potential strength, uniformly distributed in
the range −Vimp ≤ vr ≤ Vimp. Finally, to represent a more realistic sce-
nario in which the magnetization may be nonuniform in the whole barrier,
the exchange field is assumed to be slightly disordered and is modeled as
h′ = h + δh, where δh are small on-site fluctuations given randomly in the
range −h/10 ≤ δh ≤ h/10 (along the h-direction).
Moreover, in this work, since the junction plane coincides with the xy-plane,
the exchange field h′ is always taken in the perpendicular direction, h′ = h′z
(along the z-direction).
In our model, the exchange field, the SOC and the impurity potential are
defined only inside the ferromagnetic barrier. As we have seen in the pre-
vious chapter, the first two effects play a salient role in this discussion. In
fact, due to the proximity effect at S/F interface, the presence of uniform
exchange field provides the appearance of the short-range zero-spin triplet
correlations (i.e. |↑↓ + ↓↑〉) in the barrier, while SOC induces spin-mixing ef-
fects and enables the LRTC with non-zero projection along the quantization
axis of the ferromagnet (i.e. |↑↑〉, |↓↓〉). The presence of a random on-site
impurity potential is needed if we want to simulate the transport properties
of realistic "dirty" junctions. Indeed, these latter often represent a condition
closer to real experimental systems.

2.2.1 Transport properties of the SFIS JJ

In this context, all the interesting transport properties of the SFIS JJ, such
as the Josephson current flowing through the junction and the induced su-
perconducting correlations, can be derived from the GF of the barrier. Its
Matsubara representation is given by Ǧωn(r, r′), where r = jx+my and r′ =
j′x+m′y run over all the possible lattice site indices j, j′ = 0, 1, . . . , L, L+1
and m,m′ = 1, . . . ,W .
The barrier Matsubara GF is, thus, a 4WL×4WLmatrix in the Nambu⊗spin
space, whose blocks with fixed (r, r′) can be numerically calculated by solv-
ing the Gor’kov equation
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[
iωnτ̂0σ̂0 −

∑
r1

(
Ĥ(r, r1) ∆̂(r, r1)
−∆̂∗(r, r1) −Ĥ∗(r, r1)

)]
(2.31)

× Ǧωn(r1, r′) = τ̂0σ̂0δ(r− r′),

where ωn = (2n + 1)πT is the fermionic Matsubara frequency and T is the
temperature. Here and in the followings, τ̂0 and τ̂ν (ν = 1, 2, 3) are the
analogous of the unit and Pauli’s matrices in the Nambu space, respectively.
In order to get Ǧωn(r, r′) we solve the Gor’kov Eq.(2.31) by applying the re-
cursive RGF technique [89–91,151–153] as described in the previous section.
Thus we divide the 2D lattice along the x-direction in transverse stripes,
and recursively calculate the GF at each stripe of the barrier, starting from
the two superconducting leads (see Appendix A for more details). Since we
have L sites in the x-direction and W sites in the y-direction, we will have
L stripes whose Hamiltonian and GF will be represented by 4W × 4W ma-
trices.
For this reason, we introduce the GF in Nambu⊗spin space Ǧj,j of the stripe
j along the x-direction inside the barrier. It is a 4W ×4W matrix, where W
is the number of lattice sites in each stripe. It can be visualized as a 2 × 2
block matrix in the Nambu space, where each block consists in a 2W × 2W
sub-matrix:

Ǧj,j = Ǧωn(r, r′) =

[
Ĝωn(r, r′) F̂ωn(r, r′)
−F̂ ∗ωn(r, r′) −Ĝ∗ωn(r, r′)

]
, (2.32)

where r = jx + my, r′ = jx + m′y with j fixed. The off-diagonal terms of
the matrix in the right-hand side of Eq.(2.32) are the so-called anomalous
Green’s functions F̂ωn , that describe the superconducting pair correlations.
Notice that, here and in the following expressions, the ’checks’ .̌ indicate the
full 4W×4W matrices in Nambu⊗spin space, whereas .̂ is used for 2W×2W
matrices in the spin space.
To compute the GF of the whole barrier, we start from the surface GFs of
the two superconducting leads S (which we will discuss in more detail in the
next section), and recursively calculate the GF Ǧj,j at each stripe j inside
the F barrier by connecting it to the leads with the RGF technique.
The barrier stripes can be connected (to the leads and to each other) by
using the hopping matrices Ť±, given by

Ť± =


−t ∓α 0 0 . . .
±α −t 0 0 . . .
. . . . . . . . . . . . . . .
0 0 . . . t ±α
0 0 . . . ∓α t

 , (2.33)



46 CHAPTER 2. RGF TECHNIQUE AND MODEL HAMILTONIAN

involving the hopping and spin-orbit coupling along the x-direction. Since we
consider nearest-neighbors hopping, only adjacent stripes can be connected
by the Ť± matrices (i.e. the j-th stripe is linked to the j−1-th and j+1-th).

At this point, we can thus specify the RGF method described in the previous
section to our situation. We suppose that the bare Matsubara GF of each
stripe j can be calculated as follows:

Ǧ0
j,j =

[
iωn1̌− Ȟ0

j,j

]−1
, (2.34)

where Ȟ0
j,j is the Hamiltonian of the stripe, involving only couplings between

lattice sites within the same stripe (i.e. Ĥ(r, r′) with r = jx + my and
r′ = jx + m

′y in Eq.(2.21)). Then we have to compute the interacting GF
of the stripe j, Ǧj,j in Eq.(2.32), which corresponds to the GF when it is
connected to the two leads and to its nearest neighbors (i.e. j−1-th and j+1-
th stripes). We observe that Ǧj,j can be numerically computed by the means
of a Dyson-like equation [89, 90, 152], starting from the surface GFs of the
superconductors, which are supposed to be known. These latter are defined
as ǦL0,0(ωn) and ǦRL+1,L+1(ωn) for the left and right S leads (respectively
with j = 0 and j = L+ 1 in Fig.2.6), and can be evaluated by applying the
calculation method used in [89,94].
Thus, by following the procedure illustrated in sec.2.1, we can construct Ǧj,j
once the recursive technique is applied both from the left and right directions,
by using ǦLj,j and Ǧ

R
j,j which describe the stripe j when it is connected only

to the left and right lead, respectively. Therefore, we can rewrite Eqs.(2.9),
(2.12) in terms of the Matsubara GFs, obtaining

ǦLj,j =
[
iωn1̌− Ȟ0

j,j − Ť+ǦLj−1,j−1Ť
−]−1 , 0 ≤ j ≤ L (2.35)

ǦRj,j =
[
iωn1̌− Ȟ0

j,j − Ť−ǦRj+1,j+1Ť
+
]−1

, L+ 1 ≤ j ≤ 1 . (2.36)

The above equations allow to calculate Ǧj,j in Eq.(2.32), inside the barrier
(1 ≤ j ≤ L) by using the formula

Ǧj,j =
[
iωn1̌− Ȟ0

j,j − Ť−ǦRj+1,j+1Ť
+ − Ť+ǦLj−1,j−1Ť

−]−1 , (2.37)

which is none other than Eq.(2.18) in the Matsubara representation.
Finally, by the relations adapted from Eqs.(2.19) and (2.20), we derive the
GFs connecting two adjacent stripes (namely the stripe j with the ones at
j − 1 and j + 1), Ǧj,j±1 = Ǧωn(r, r′ ± x) and Ǧj±1,j = Ǧωn(r ± x, r′) with
r = jx +my, r′ = jx +m′y
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Ǧj,j+1 = Ǧj,j Ť
−
j,j+1 Ǧ

R
j+1,j+1, (2.38)

Ǧj+1,j = ǦRj+1,j+1 Ť
+
j+1,j Ǧj,j , (2.39)

Ǧj,j−1 = Ǧj,j Ť
+
j,j−1 Ǧ

L
j−1,j−1, (2.40)

Ǧj−1,j = ǦLj−1,j−1 Ť
−
j−1,j Ǧj,j . (2.41)

In particular, the Josephson current, at finite temperature and given position
j in F, can be computed from Eqs.(2.38) and (2.39), as follows

I(j) = − ie
2
T
∑
ωn

Tr
[
τ̂3Ť+Ǧj,j+1 − τ̂3Ť−Ǧj+1,j

]
, (2.42)

where Tr stands for the trace over the Nambu⊗spin space. In the above
equation, the summation over the Matsubara frequencies is performed.
Furthermore, by taking the off-diagonal elements of Ǧj,j in the right-hand
side of Eq.(2.32), F̂ωn(r, r′) with r = r′ = jx + my (with j fixed), we can
derive the four pairing components with s-wave symmetry at each stripe j
along the x-direction:

1

W

∑
ωn

W∑
m=1

F̂ωn(r, r) =
3∑

ν=0

fν(j)σ̂ν i σ̂2 , (2.43)

where f0 is the spin-singlet component and fν with ν = 1, 2, 3 are the spin-
triplet components.

Analogous considerations can be applied to the GFs connecting the j-th
stripe with its neighbors j ± 1 (i.e. Ǧj,j±1, Ǧj±1,j , Eqs.(2.38)-(2.41)), from
which we can calculate the odd-parity pairing functions:

1

4W

∑
ωn

W∑
m=1

F̂ωn (r + x, r) + F̂ωn (r, r− x)

−F̂ωn (r, r + x)− F̂ωn (r− x, r) = (2.44)
3∑

ν=0

fν (j) σ̂ν i σ̂2 ,

that give rise to p-wave superconductivity.

Making explicit the term in right hand side of Eqs.(2.43) (Eq.(2.44)), we
can rewrite the s-wave (p-wave) pairing components as
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f0 =
f↑ ↓ − f↓ ↑

2

f3 =
f↑ ↓ + f↓ ↑

2

f1 =
f↓ ↓ − f↑ ↑

2

f2 =
f↑ ↑ + f↓ ↓

2 i
,

(2.45)

from which we extract the standard spin correlation functions, f0, f3, f↑
(that is f↑↑) and f↓ (that is f↓↓).

2.3 Definition of the superconducting surface GFs

As we have mentioned, in order to apply the RGF technique to solve the
Gor’kov Eq.(2.31) inside the barrier, we need to know as input GFs the sur-
face Green’s functions of the superconducting leads. As illustrated in Fig.2.6,
in our system the barrier lies in the interval 1 ≤ j ≤ L and the supercon-
ducting leads in the intervals j ≤ 0 and j ≥ L + 1. The left and right edge
stripes are located, respectively, at j = 0 and j = L + 1 and are described
by the surface GFs Ǧ0,0(ωn) and ǦL+1,L+1(ωn) [89].
Since we assume that the order parameter is uniform and that there is no
disorder in the superconductors, we "condense" all the semi-infinite two-
dimensional superconducting leads in their edge stripes, thus calculating
their surface GFs. In the following, we illustrate how these latter are calcu-
lated.
We start by considering the surface GFs of the S leads in the Nambu space,
in the absence of exchange field and spin-orbit interaction [89]. Then we will
generalize our results to Nambu ⊗ spin space when considering the ferro-
magnetic barrier in the presence of SOC.
Let us indicate with Ǧk,k′(ωn, 0, 0) and Ǧk,k′(ωn, L+ 1, L+ 1) the GFs matri-
ces describing the particle propagation between sites k and k′, respectively in
the left and right superconducting lead stripe, with k, k′ = 1, . . . ,W . There-
fore, by following Ref. [89], the left and right surface GFs have the following
structure in the Nambu space

G(k,k′) (ωn, 0, 0) =

W∑
m=1

eip
+
m

tΩn (W + 1)
sin (qmk) sin

(
qmk

′)
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×
(

Ω1 −i ∆
−i ∆ Ω2

)

−
W∑
m=1

e−ip
−
m

tΩn (W + 1)
sin (qmk) sin

(
qmk

′) (2.46)

×
(

Ω2 −i ∆
−i ∆ Ω1

)
and

G(k,k′) (ωn, L+ 1, L+ 1) =

W∑
m=1

eip
+
m

tΩn (W + 1)
sin (qmk) sin

(
qmk

′)

×
(

Ω1 −i ∆ eiφ

−i ∆ e−iφ Ω2

)

−
W∑
m=1

e−ip
−
m

tΩn (W + 1)
sin (qmk) sin

(
qmk

′) (2.47)

×
(

Ω2 −i ∆ eiφ

−i ∆ e−iφ Ω1

)
,

where φ is the phase difference between the two superconductors and we
have defined

Ω1,2 = ∓Ωn − ωn (2.48)

Ωn =
√
ω2
n + ∆2 (2.49)

qm =
mπ

W + 1
(2.50)

p±m = arccos

[
− 1

2t
(µ+ 2t cos qm ± i Ωn)

]
, (2.51)
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with the conditions: Im{(p+)} > 0 and Im{(p−)} < 0. Note that qm are
the eigenvalues of the wave number labelling the eigenfunctions along the y-
direction (with m = 1, . . . ,W ), resulting from using the hard-wall boundary
conditions in the y-direction [94].

At this point, we can generalize the above equations to the case including
the spin-mixing effect due to SOC. Thus, for every couple of indices (k, k′)
within the S lead stripe, we can obtain the GF matrices in the Nambu ⊗
spin space, by considering the following 4 × 4 matrices substitution in the
left and right lead, respectively

Ǧk,k′ (ωn, 0, 0) −→


ck↑ ck′↓ c†k↑ c†

k′↓

c†k↑ Ω1 0 0 ∆
c†
k′↓ 0 −Ω∗2 −∆∗ 0

ck↑ 0 −∆∗ −Ω∗1 0
ck′↓ ∆ 0 0 Ω2


(2.52)

and

Ǧk,k′ (ωn, L+ 1, L+ 1) −→


ck↑ ck′↓ c†

k′↑ c†
k′↓

c†k↑ Ω1 0 0 ∆ ei φ

c†
k′↓ 0 −Ω∗2 −∆∗ ei φ 0

ck↑ 0 −∆∗ e−i φ −Ω∗1 0
ck′↓ ∆ e−i φ 0 0 Ω2

 .

Essentially, for each couple of fixed indices (k, k′) we have a 4× 4 matrix in
the Nambu ⊗ spin space, which presents a block structure, as illustrated in
Fig.2.7 (a), describing the electron-hole processes (G,−G†) and Cooper pair
correlations (F,−F †). Therefore, in the basis chosen to describe our system,
every stripe (considering both the superconducting leads and barrier) has a
well defined matrix structure, as shown in Appendix A (Fig.2), where we
explained in detail the process of dividing the system in stripes. Thus, for
the construction of the surface GFs of the S leads, we have to recover such
matrix form, rearranging the various blocks composing the different GF ma-
trices with (k, k′) fixed.
Let us consider, for example, the left S lead surface stripe with only two
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Figure 2.7: (a): Schematic representation of GF matrix structure for fixed
(k, k′) within the left S stripe, in the Nambu ⊗ spin space. In (b) we
illustrate the possible four different propagators Ǧk,k′ that we obtain
in the case of a stripe with only two sites (W = 2), needed for the
construction of the surface GF.

sites in the y-direction, W = 2. In this case, the indices (k, k′) run from 1
to 2. Thus, in principle, we find four different 4× 4 matrices in the Nambu
⊗ spin space (Fig.2.7 (b)), describing the propagation between the sites k
and k′ within the left S stripe: Ǧ1,1 (ωn, 0, 0), Ǧ1,2 (ωn, 0, 0), Ǧ2,1 (ωn, 0, 0),
Ǧ2,2 (ωn, 0, 0), where each of them has the matrix structure illustrated in
Fig.2.7 (a). Therefore, we can reconstruct the whole stripe matrix of the left
surface GF by separating each block Ǧk,k′(ωn, 0, 0) in four blocks (Ĝ,F̂ ,−F̂ †,−Ĝ†)
and then, rearranging them as in Fig.2.8.
The same procedure can be applied for the calculation of the right lead
surface GF, ǦL+1,L+1(ωn). Consequently, by generalizing this process to
W -sites stripes, we obtain the leads GFs ready to use as the starting input
in the recursive algorithm of the RGF technique.
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Figure 2.8: Schematic representation of the left S surface GF matrix structure
(for W = 2), in the Nambu ⊗ spin space.



Chapter 3

Realization of 0-π states in
SFIS JJs: the role of spin-orbit
interaction and lattice
impurities

The interest in proximity structures made of superconducting and ferro-
magnetic layers in contact with each other, such as Josephson devices with
ferromagnetic barrier, has been recently renewed due to their potential ap-
plications to superconducting spintronics [47, 86, 87, 155] and to quantum
computing [36, 79]. However, much less is known when the ferromagnetic
layer is insulating.
In this chapter we aim to investigate, from a purely theoretical point of view,
the transport properties of SFIS junctions with particular attention paid to
the temperature behavior of the critical current, Ic(T ), that may be used
as a fingerprint of the junction. Specifically, we theoretically study the role
that impurities and spin-mixing mechanisms due to the SOC may have on
the appearance of the 0 and π phases, as well as on the controlled switching
between these two states.
Moreover, to enrich and complete our analysis we also calculate the corre-
lation functions in these SFIS JJs in the presence of SOC and impurities,
for s-wave and p-wave symmetries, recovering both the long and short range
pairing components.
This chapter is inspired by the work presented in Ref. [148] and is organized
as follows.
In the first section, we briefly recall the 2D BdG model Hamiltonian and
the RGF approach presented in detail in Chapter 2, used to describe the
SFIS JJ and calculate currents and correlation functions. Thus we report
the main model parameters used in the simulations. Then, we consider the
clean regime and discuss the appearance of the 0 and π states, firstly by
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varying the exchange field strength and, secondly, by adding the SOC, an-
alyzing how these two effects influence the Ic(T ) behavior. Subsequently,
we show a detailed investigation on the critical current in the presence of
lattice impurities and their effect, combined with the SOC, on the switching
between 0, 0-π, and π regimes. At last, we present the correlation functions
calculated in these systems.

3.1 Introduction

As we introduced in Chapter 1, the supercurrent flowing across a JJ is usu-
ally described by the sinusoidal relation I = Ic sinϕ, where Ic is the critical
current and ϕ the phase difference between superconductors. In conventional
JJs the ground state occurs at ϕ = 0 (Ic > 0), by contrast in π junctions the
minimum energy corresponds to ϕ = π (Ic < 0 ).
According to the literature, SFS JJs are promising platforms to implement
π junctions [15, 17, 19, 28]. Indeed, as a consequence of the phase change
of the Cooper pair wave function which extends from S to F layer due to
the proximity effect, they show an oscillating behavior of the critical cur-
rent as a function of the length of the F region [26, 27], thus providing the
necessary sign change of Ic to switch from 0 to π. The so-called π JJs are
currently subject to intense research activity due to their applicability as
architectural elements for the development and the improvement of nanos-
tructures, since they are considered to be very promising ingredients to en-
gineer superconducting circuits, nanoelectronics, spintronics and quantum
computing devices [36–38]. Among these applications, for example, we can
mention the possible integration of such π junctions in quantum circuits for
superconducting qubits, considered quite promising due to increased robust-
ness against noise and electromagnetic interference induced by magnetic field
sources and a more compact and simple design, opening the way to scalable
devices [39,40,78–81].
The 0-π transitions between the 0 and the π state have been experimentally
measured in SFS JJs by varying the thickness of the ferromagnet in different
kinds of samples [34,131,156] or the temperature [30,35,157]. In particular,
the temperature induced 0-π crossover is characterized by a peculiar cusp
in the Ic(T ) behavior at the transition temperature, giving the first chance
to realize both the 0 and π state in a single device. However, since SFS
JJs are affected by dissipation effects due to their coupling to the environ-
ment [58, 59], JJs with a nonmetallic barrier result to be a good option for
obtaining 0-π transitions and π states. Indeed, these systems show features
similar to SFS JJs with the advantage of having a less dissipative nature
which makes ferromagnetic insulator JJs well suited for these kinds of ap-
plications. As a matter of fact, transport properties through SFIS JJs have
been investigated both theoretically [63,82] and experimentally [66], display-
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ing temperature induced 0-π transitions together with unconventional Ic(T )
behaviors [67,68]. Therefore, the possibility to arrange an equilibrium super-
conducting phase difference of π across JJ has been theoretically predicted
also in this case [69,82].
In this intriguing scenario, one of the most challenging issues is to find an
effective way of controlling the occurrence of 0-π transitions in SFIS JJs,
through a direct action on their Ic(T ) behavior, which is one of the main
quantities reachable experimentally.
It is well known that tuning the exchange field of the barrier is an available
technique to manipulate the critical current [68], thus driving the switching
between 0, 0-π and π regimes. However, this approach does not provide an
easy engineering of ferromagnetic JJs based devices, since the exchange field
is an intrinsic property of the magnetic barrier and experimental procedures
required for its manipulation may induce decoherence and magnetic noise.
For this reason, it would be extremely useful to find alternative and more
accessible mechanisms that can be exploited to drive the 0-π transition in
such devices. In this context, we recognize spin-mixing effects (SOC) and
lattice impurities as good tools that offer the possibility to control the tun-
ing of 0-π transitions in SFIS JJs. Spin-orbit coupling (SOC) [136,158–166]
has already been studied as a source of intriguing anomalous Josephson ef-
fect [167–175]. Moreover, it has been investigated in previous works [90] to
induce the π − 0 transition in SFS JJs. However a thorough study of the
SOC effect on the Ic(T ) behavior in these 0− π junctions is lacking. On the
other hand, while previous works investigated the 0 − π transition induced
in SIS JJs by magnetic impurities [29,176–178], the chance of controlling the
0− π transition by means of lattice non-magnetic impurities is not yet well
explored.
Here, we present how the interplay between SOC and nonmagnetic disorder
may be exploited for the engineering of fully tunable 0-π JJs which can be
switched between the 0, 0-π and π regimes.
Furthermore, since S/F hybrid systems are presumed to host triplet super-
conductivity induced by the proximity effect [15, 17, 19, 41–43], as a supple-
mentary analysis we also calculate the correlation functions in these SFIS JJs
in the presence of SOC and impurities, both for s-wave and p-wave symme-
try. Indeed, in addition to the short-range singlet and triplet pairings with
total spin projection Sz = 0, in our system we also find the equal spin-triplet
long-range correlation pairs with total spin projection Sz = ±1 in the direc-
tion of the exchange field due to the presence of SOC, which allows the spin
symmetry breaking at S/FI interfaces. In particular, we show that intensify-
ing the impurities strength results in an enhancement of the odd-frequency
correlations (i.e., s-wave equal-spin triplet and p-wave singlet, respectively).
Therefore, we identify SFIS JJs as sources of unconventional odd-frequency
superconductivity and equal-spin triplet pairings when spin-mixing and dis-
order effects are involved [19,41–43,90,143,179–181].
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3.2 Formalism and model parameters

𝑗 = 0									1									2 … 𝐿							𝐿 + 1

𝑚 = 0

𝑚 = 𝑊

𝒚- 𝒙-

𝒛0
𝒉 = ℎ𝒛0

S SFI + SOC + impurities

Figure 3.1: Schematic representation of the SFIS junction geometry with a
ferromagnetic insulator barrier in the presence of SOC and
impurities. The exchange field h is taken parallel to the z-axis, thus
perpendicular to the junction plane (i.e., the xy-plane).

We study the Josephson effect in SFIS JJs by using the numerical calculation
method based on the RGF technique [89–91] presented in Chapter 2. We
describe the junction by using the 2D Bogolioubov de Gennes (BdG) tight-
binding model [68,89–91] shown in Fig.3.1. As we have seen, the normal-state
Hamiltonian of the junction Ĥ = Ĥs + ĤFI , can be separated in two parts
referring to the S leads and FI barrier, respectively. In ĤFI we include all
the interactions present in the barrier, namely the exchange field, SOC and
lattice impurities, described by the corresponding terms and parameters, as
defined in Chapter 2.
The Josephson current at finite temperature T is derived from the Matsubara
GF of the FI barrier, calculated with the RGF technique, whose application
requires to divide the 2D lattice in transverse stripes labeled by the index
j. Thus, remembering that we indicate with .̌ the full 4W × 4W matrix
in Nambu ⊗ spin space, the barrier GF Ǧj,j of the stripe j-th along the
x-direction solves the Gor’kov equation Eq.(2.31). Therefore, the Josephson
current I(j) originates from the GFs connecting two adjacent stripes (namely
the j-th and j + 1-th), Ǧj,j+1 and Ǧj+1,j , and reads

I(j) = − ie
2
T
∑
ωn

Tr
[
τ̂3Ť+Ǧj,j+1 − τ̂3Ť−Ǧj+1,j

]
, (3.1)

where Tr stands for the trace over the Nambu ⊗ spin space and we consider
that the different neighbor stripes composing the system are connected by
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the Ť± matrices defined by Eq.(2.33).
Lastly, the s- and p-wave correlation functions at each stripe j along the x-
direction are extracted from the anomalous GF F̂ωn by using Eqs.(2.43) and
(2.44), respectively, that we report here by making explicit the right-hand
side for convenience

1

W

∑
ωn

W∑
m=1

F̂ωn(r, r) =

(
−f1 + if2 f0 + f3
−f0 + f3 f1 + if2

)
, (3.2)

and

1

4W

∑
ωn

W∑
m=1

F̂ωn (r + x, r) + F̂ωn (r, r− x)

−F̂ωn (r, r + x)− F̂ωn (r− x, r) =

(
−f1 + if2 f0 + f3
−f0 + f3 f1 + if2

)
. (3.3)

where the vector r = jx + my points a lattice position. The above equa-
tions allow to obtain the four paring components: f0, f3 (short-range spin
singlet and triplet pairings with Sz = 0), f↑, f↓ (long-range spin triplets with
Sz = ±1, obtained as linear combination of f1 and f2).
Here, we report the choice of the model parameters used for all the results
discussed in the following. Henceforth, we adopt units with ~ = c = kB = 1,
where c is the speed of light and kB is the Boltzmann constant.
All the energies are, thus, scaled by t and the magnitude of the spin-orbit
coupling α is scaled by ta, where the lattice constant is set a = 1, while the
Josephson current is calculated in units of I0 = e∆.
We recall here that we denote with L and W the length and width of the
barrier, while SOC, exchange field and impurity potential strength are re-
spectively described through the parameters α, h and Vimp.
Further, we fix several parameters as: the barrier width W = 32 sites in the
y direction, the FI and superconductors hoppings ts = t = 1, the chemical
potentials µFI = 0, µs = 3, and the order parameter ∆ = 0.005. In partic-
ular, the chosen chemical potential mismatch at FI and S interfaces allows
to describe the insulating regime in our model. Finally, the exchange field is
assumed to be slightly disordered and is modeled as h′ = h+δh, where δh are
small on-site fluctuations given randomly in the range −h/10 ≤ δh ≤ h/10
(along the h-direction). Here, h′ is taken parallel to the z-axis, thus per-
pendicular to the junction plane (i.e., the xy-plane). In the numerical simu-
lations, both the temperature dependence of the critical Josephson current
(i.e. Ic(T )) and correlations functions are averaged over Ns samples with
different random impurity configurations. We choose Ns = 80 − 100 for
the Ic(T ) curves and Ns = 300 for the pairing correlation functions. In
particular, the ensemble average of the Josephson current (Eq.(2.42)) over
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a number of different samples is obtained as: < I >= 1
Ns

∑Ns
n=1 In, where

In is the Josephson current in the n-th sample. Then, evaluating the av-
erage Josephson current by varying φ in the range from 0 to π we obtain
the average current-phase relation (CPR) at fixed T (i.e. I(φ, T )). Finally,
the averaged critical current Ic(T ) is estimated from the CPR at different
temperatures between 0 and Tc, by taking its maximum in absolute value
(Ic(T ) = maxφ[|I(φ, T )|]). In this work, each Ic(T ) curve together with the
corresponding CPRs (I(φ, T )) has been normalized to the maximum value of
the critical current with respect to the temperature, i.e. Imax = maxT [Ic(T )].

3.3 Tuning of 0, 0-π and π regimes in SFIS JJs in
the clean limit, by varying the exchange field h

To begin with, first of all, in this section we want to illustrate that, as
reported in the literature [30, 34, 35, 131, 156, 157], it is possible to switch
between the 0, 0-π and π regimes in SFIS JJs by varying the exchange field.
This is reflected in particular features of the Ic(T ) behavior, such as the pres-
ence of a peculiar cusp at the transition temperature (T0−π) in temperature
induced 0-π transitions, which we can observe by varying the corresponding
parameter h in our model. In this part, we consider a clean situation, in
which both lattice impurities and small exchange field fluctuations in the
FI barrier are absent (Vimp = 0, δh = 0). Furthermore, here and in the
following, we consider the short junction regime, typical of tunnel junctions,
where the length of the FI barrier is fixed at L = 8 sites in the x direction,
unless otherwise specified.
Thus, in Fig.3.2 (a) we show the temperature dependence of the critical
current, obtained for increasing values of h in the clean limit. For these sim-
ulations we fixed the SOC strength α = 0.04. All the other parameters are
the same as those defined in the previous section 3.2. As we can see, the non-
monotonic dependence of Ic(T ) is visible. In particular, we can notice that,
starting from the Ambegaokar-Baratoff (AB) [182] type behavior (h = 0.10,
red curve), Ic is strongly modified with increasing the exchange field h in the
ferromagnetic layer, causing the system to move towards 0-π and π regimes.
Then, undergoing some oscillations, the AB trend is established again when
h increases (h = 0.60, blue curve). Moreover, the cusp-minimum of the 0-π
transition appears to be shifted in temperature as h varies. We also report in
Figs.3.2 (b-d) the current-phase relation (CPR) corresponding to the Ic(T )
curves obtained for h = 0.10, 0.25, 0.40, respectively. As can be seen, the
AB-type curves shown in (a) correspond to pure 0 (b) and π (d) JJs, stable
over the whole range of temperatures.
Specifically, it is worth noting that varying h significantly influences the
Ic(T ) behavior of these systems, producing an even more considerable effect
in the short junction regime, namely the situation we are considering in this
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thesis. For this reason, manipulating the exchange field of the barrier is ef-
fectively a difficult operation to manage experimentally. Conversely, as we
will see in the next sections, the 0, 0-π and π switching can be more easily
attained by acting on the SOC and nonmagnetic impurities.
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Figure 3.2: (a): Ic(T ) for different values of h. For these simulations we used
α = 0.04, L = 8 and W = 32 sites in the x and y direction. CPR, at
selected temperatures, of a 0 (b), 0-π (c) and π (d) JJ, obtained for
h = 0.10, 0.25, 0.40, respectively.
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3.4 The role of spin-orbit coupling (SOC) on the
switching between 0 and π state in the clean
limit

In this section, we consider the case of SFIS JJ which presents temperature
induced 0-π transitions and analyze the effect of SOC on its Ic(T ) behavior.
As in the previous section, we still look at a clean situation with a uniform
distribution of the exchange field in the 2D lattice (Vimp = 0, δh = 0).
All the results discussed in the following are obtained with the model pa-
rameter describing the exchange field fixed at h = 0.45.
In Fig.3.3 (a) we can see that, starting from a 0-π transition corresponding
to α = 0, we recover the AB behavior for α = 0.20. For larger α the critical
current is always of AB type. We can also notice that the second lobe of the
Ic(T ) curve is reduced in height and its (cusp-like) minimum is shifted to-
ward higher temperatures when α increases, until the Ic(T ) behavior visibly
changes and it completely disappears in the AB regime. In Figs.3.3 (b-d),
the characteristic CPRs corresponding to Ic(T ) curves for α = 0, 0.07, 0.20
are shown. We can notice that the 0-π transition is well evident for α = 0
and only slightly appreciable for α = 0.07, while it is completely washed
out for α = 0.20. Hence, by increasing α, we induce a shift in the transition
temperature T0−π towards higher values, until the 0-π transition cancels out.
Further, we observe visible contributions due to the second and higher or-
der harmonics in the CPRs at T0−π, when the first order harmonic appears
strongly weakened [183, 184]. Our results confirm the fact that SOC stabi-
lizes the 0 state rather than the π state [90] in these devices.
To better illustrate this mechanism, in Fig.3.4 we show the critical Joseph-
son current as a function of the length of the ferromagnetic-insulator layer
(with L from L = 3 to L = 50), i.e. current-length relation (CLR). In these
simulations we used T = 0.1Tc and φ = π/2. Furthermore, we set h = 0.45
and α = 0, 0.07, 0.20.
The change in sign of Josephson current, indicating the corresponding 0-π
transitions at fixed lengths of the FI layer due to the presence of the exchange
potential, is more frequent in the cases with α = 0 and α = 0.07. The effect
of SOC increasing is the suppression of the above-mentioned 0-π transitions
and consequently a mostly always positive Josephson current for α = 0.20.
Indeed, the SOC produces a shift of the CLR curve from lower to higher
current values; negative critical currents are representative of π states while,
when Ic becomes positive (at fixed length L), the π − 0 transition occurred
and the system reaches the 0 final-state under the SOC growth. Taking h
and L fixed, there is no possibility that, by further increasing α, the system
will return to the π state experiencing another 0-π transition.
We can provide a qualitative explanation of this effect as follows. As we have
seen in Chapter 1, the short-range spin-triplet component Sz = 0 appears
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Figure 3.3: Effect of SOC increasing on the Ic(T ) (a). We set the exchange field
h = 0.45, while the dimensions of the lattice are L = 8 and W = 32,
along the x and y-direction, respectively. In (b-d), the CPRs, at
selected temperatures, relative to the simulations in (a) for
α = 0, 0.07, 0.2 are shown.

in S/FI systems due to exchange field breaking time-reversal symmetry in
the F layer. In the presence of spin-orbit interaction, the spin-mixing ef-
fect at S/FI interfaces allows for long-range equal spin-triplet components
Sz = ±1 inside the ferromagnetic region. The Sz = 0 components (singlet
and zero-spin triplet) show an oscillating behavior due to the different phase
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Figure 3.4: CLR computed by varying the length of the junction from L = 3 to
L = 50, with φ = π/2, T = 0.1Tc and W = 32, for α = 0, 0.07, 0.2.
The CLR curves are normalized to the value of their current at
L = 3.

shifts acquired by the up and down-spin electrons of the Cooper pair, as they
propagate in F, while the Sz = ±1 pairing components show a long-range
decay, since the exchange field h has the same effect on the two equal spin
electrons [19, 26, 27, 185]. In the long junction limit all the pairing func-
tions decay exponentially over the temperature dependent coherence length
ξf1 = vF

2πT , whereas the oscillation period of the zero-spin pairing components
is given by ξf2 = vF

2h [15, 41, 42, 90]. Therefore, for x >> ξf1, heuristically,
the Josephson current can be considered as consisting of two contributions:

I ∼ ISz=±1 e
−x/ξf1 + ISz=0 e

−x/ξf1 cos

(
x

ξf2

)
,

where ISz=0 and ISz=±1 are the amplitudes of the opposite spin and parallel
spin components, respectively. Increasing the SOC results in an enhance-
ment of the non-oscillating part of the Josephson current, whose superposi-
tion with the oscillating term produces, in turn, an enlarged total current
and, thus, may prevent that Ic vanishes in the 0-π transition.
To complete our analysis in the presence of SOC in the FI barrier and illus-
trate what we explained in terms of the Ic(T ) behavior, in Fig.3.5 we addi-
tionally report the density plot of Josephson current, calculated at T = 0.1Tc
and φ = π/2, as a function of the exchange field h and SOC strength, α,
for a wider range of these latter parameters. The black/dark-violet regions
indicate negative values of the current, where the JJ is π. In particular, we
can notice a well-defined π-island that in our simulations appear stable in
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Figure 3.5: Josephson current, calculated at T = 0.1Tc and φ = π/2, as a
function of the exchange field h and SOC strength α, for a wider
range of these latter parameters.

temperature. The white/light-yellow regions, where I > 0, indicate conven-
tional 0 JJs, with a mostly constant occurrence at low values of the exchange
field (h < 0.05) for any value of α. Intermediate orange-red areas represent
JJs which show a good probability to undergo a 0-π transition, since the
critical current is very low. Our outcomes, obtained for SFIS JJs, are in
accordance and extend those previously demonstrated in [90,91] in the case
of SFS JJs in the non-insulating regime.
In conclusion, we can claim that our results lead to regarding SOC as a useful
tool for driving the evolution of the Ic(T ) of SFIS JJs from 0-π to 0 regime.

3.5 The dirty regime: the role of lattice impurities
in the formation of π JJs

At this point, it become legitimate to ask under which conditions the junc-
tion displays a stable π state over the whole temperature range, similar to
what happens in the case of the 0 state with strong SOC. Real systems are
affected by the unavoidable presence of impurities and in this section, we
show that interesting features for the existence of π states in SFIS JJs can
be detected in the presence of nonmagnetic impurities, modeled as scalar
on-site potentials.
In what follows, we focus on the effect of disorder on the Ic(T ) curves ex-
hibiting a 0-π transition and on the corresponding CPR. In particular, firstly
we consider the case of a SFIS JJ in the presence of disorder, secondly we
analyze the combined effect of impurities and SOC on the Ic(T ) of these de-
vices. As a matter of fact, the influence of increasing Vimp results in different
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scenarios.
In the following simulations, we use L = 8, W = 32 as for the analysis

of the clean system, and α = 0.04 (for the case with SOC), while the fol-
lowing four different values of the impurity potential are chosen: Vimp =
0.025, 0.125, 0.150, 0.250. Moreover, here, small on-site exchange field fluc-
tuations are considered (δh 6= 0) to model a more realistic scenario in which
the exchange field may be non-uniform in the whole barrier.
In Fig.3.6 (a) we show the Ic(T ) curve at α = 0, calculated as the impu-
rity potential increases. We notice that for high values of Vimp the system
changes its Ic(T ) behavior leaving the 0-π regime and reaching a stable π
state almost over the whole temperature range, as it is evident in the cor-
responding CPRs (Figs.3.6 (c-e)). Precisely, for Vimp = 0.025 (green curve)
both the maximum of the second lobe and the dip of the 0-π transition
settle at higher values of current with respect to the clean regime (black
line in Fig.3.6 (a)). Consequently, the clear effect of increasing Vimp is the
filling of the minimum of the 0-π transition and its shifting toward very
low temperatures (red and blue curves), leading to the AB-like behavior for
the highest disorder configuration (orange curve), corresponding to a pure π
regime (Fig.3.6 (e)). The presence of impurities seems to be a driving force
for the conversion of a 0-π JJ into a pure π one. As it is shown, in the
absence of SOC the realization of an almost pure π JJ is feasible even for
small values of the impurity potential (Fig.3.6 (c, d)).
In the presence of SOC (Fig.3.6 (f)) the clean Ic(T ) curve (black line) ex-
hibits a 0-π transition occurring at T ∼ 0.45Tc, characterized by a lower
value of the current in the π state. In this case, we can notice that en-
hancing the impurity strength produces a more gradual filling of the 0-π dip
together with its broadening (Fig.3.6 (f), red and blue curves), shifting it
toward higher critical current values and lower temperatures. When passing
from the 0-π regime to the π one, with α 6= 0, the system also shows a pecu-
liar plateau region in the Ic(T ) extended over a wide range of temperatures,
for intermediate values of Vimp (Fig.3.6 (f), red curve). The combined effect
of SOC and impurities allows to stabilize the 0-π transition over a wide range
of temperatures. However, for Vimp = 0.250, we observe a sharp change in
the Ic(T ) behavior, where neither the plateau nor the 0-π dip are no longer
visible, suggesting that the 0-π transition may occur at very low tempera-
tures and that the pure π regime may be reached at larger values of Vimp.
We may further analyze the system response to the presence of disorder by
looking at the CPRs (Figs.3.6 (b-e), (g-l)), corresponding to the Ic(T ) curves
in Figs.3.6 (a) and (b), respectively.
For the first scenario (Figs.3.6 (a, b-e)), the increase of Vimp produces strong
modifications in the CPRs, characterized by an enhanced contribution of
higher order harmonics at low temperatures, reflecting the lowering of the
0-π transition temperature (T0−π). Further, for Vimp = 0.250 the CPRs are
opposite in sign with respect to the typical sinφ behavior, indicating that a



66 CHAPTER 3. 0-π TUNABLE SFIS JJS

𝛼 = 0 𝛼 ≠ 0

T = 0.05 Tc T = 0.20 Tc
T = 0.25 Tc T = 0.30 Tc
T = 0.35 Tc T = 0.40 Tc

T = 0.70 TcT = 0.45 Tc

𝑉!"# = 	0.025 𝑉!"# 	 = 	0.125

𝑉!"# = 	0.150 𝑉!"# 	 = 	0.250

𝑉!"# = 	0

a)

c)

g)

d)

f)

e)

h)

i)

l)

��

����

��

����

��

�� ���� ��

�

���

��

����

��

�� ���� ��

��
� 	

���

��

����

��

�� ���� ��

��
� 	

���

�����

�����

�����

�� ���� ��

�

�	�

��

����

��

�� ���� ��

��
� �

���

����

��

����

��

�� ���� ��

��
� 	

���

����

��

����

��

�� ���� ��

��
� 	

���

��

����

��

�� ���� ��

��
� 	

���

��

����

��

�� ���� ��

��
� 	

���

�����

�����

�����

�� ���� ��

�

�	�

��

����

��

�� ���� ��

��
� 	

���

��

����

��

�� ���� ���� ���� ���	 ��


 �
��

��
��

����

m
ax

��

����

��

����

��

�� ���� ��

��
� 	

���

m
ax

��

����

��

����

��

�� ���� ��

��
� 	

���

m
ax

��

����

��

����

��

�� ���� ��

��
� 	

���

m
ax

��

����

��

����

��

�� ���� ��

��
� 	

���

��

����

��

�� ���� ���� ���� ���	 ��


 �
�


�
�

���
�

��

����

��

�� ���� ���� ���� ���	 ��


 �
�


�
�

���
�

b)

Figure 3.6: Effect of increasing Vimp in the cases without and with SOC (a, f).
Corresponding calculated CPRs (b-e, g-l), at selected temperatures,
and formation of π state (see text for details on the used
parameters).
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phase difference of π is established across the junction.
On the other hand, in Figs.3.6 (f, g-l) we present the CPRs in the case of
α 6= 0. Here, the 0-π transition gradually moves to lower temperatures as
Vimp increases, until the junction is totally π for the highest value of Vimp
(Fig.3.6 (l)). In Fig.3.6 (f) we observe that the influence of the SOC on
the dirty SFIS JJs consists in stabilizing the 0-π regime even for moderately
high values of the impurity potential. Here, the result of the coexistence of
two competing effects, namely the spin-orbit and the disorder, is noticeable.
Indeed, as for the clean regime, also in the dirty case the SOC tends to bring
the system toward the 0 state; whereas the non-magnetic on-site impurities
encourage it to turn toward the π state. This results in the slowdown of
the switching from 0-π to π Ic(T ) behavior, which, thus, takes place more
gradually as Vimp is enlarged. For this reason, the system goes through an
intermediate regime involving a widened 0-π transition characterized by the
plateau in the critical current, before reaching the π regime. In this situation,
we can better visualize how the impurities drive the transformation of the
Ic(T ) from that of a 0-π JJ to the one of a π JJ. Indeed, this mechanism is
only slightly perceivable when α = 0 and the entire process happens almost
suddenly.
We can provide a qualitative picture of this phenomenon in the following.

𝑇 > 𝑇!"#𝑇 < 𝑇!"# 𝑇 = 𝑇!"#

0-state

𝜋-state

0-state
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0-state
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0 − 𝜋
transition

Temperature T
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Figure 3.7: Schematic representation of 0 and π energy levels in the clean (a)
and dirty (b) regime. In the latter case, the broadening in energy,
due to the presence of on-site non-magnetic impurities, is shown.
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In the clean case, for temperatures lower than the 0-π transition one (T <
T0−π) the lower energy level is the 0 state. When T = T0−π the 0 and π
energy levels are coinciding; finally, for T > T0−π the 0-π transition has
occurred and the Josephson energy minimum is reached at φ = π (Fig.3.7
(a)). On the other hand, the presence of on-site non-magnetic impurities
produces a broadening in energy (and, therefore, in temperature) of the 0
and π energy levels (Fig.3.7 (b)). The broadening of the levels gives rise
to an overlap region in which the JJ comes to be in a "hybrid 0-π state"
over a more or less extended range of temperatures. When the impurities
strength is enhanced, the overlapping between the levels grows together with
the probability that, for T < T0−π (where T0−π is the transition temperature
in the clean limit), the system prefers to stabilize in the π energy state.
Finally, in Fig.3.8 we illustrate the possibility to build up a controllable de-
vice that can host all the Ic(T ) regimes. Here, we show that, once we fix
the impurity potential strength in such a way to have an almost pure π JJ
in the α = 0 configuration (Fig.3.8 (a)), by adding the spin-orbit interaction
and modifying its coupling strength, we manage to drive the junction toward
0-π (Figs.3.8 (b-c)) and 0 (Fig.3.8 (d)) regimes. This happens in a reversible
manner, in the sense that decreasing the SOC would bring back the system
in the initial π state.
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Figure 3.8: Effect of SOC strength (α) increasing on the Ic(T ) behavior, at fixed
value of the impurity potential (Vimp = 0.125). The Ic(T ) curves are
calculated for the following values of α = 0, 0.04, 0.07, 0.20. The
Ic(T ) curves in (a) and (b) correspond to the ones in Fig.3.6 (a) and
(f), respectively, for Vimp = 0.125.

3.6 Analysis of pairing functions

In this paragraph, for sake of completeness, we look at the possible pair-
ing mechanisms that can take place in the devices analyzed in the previous
section. In SFIS JJs, the exchange field breaks the time-reversal symmetry,
giving rise to the zero-spin triplet pairing correlations. However, when we
consider systems with impurities and SOC the chance to have more exotic
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Figure 3.9: Module of spatial profile of s and p-wave pairing components,
calculated at h = 0.45, α = 0.04, T = 0.025Tc and φ = 0, for
Vimp = 0.025 (a, b, f), Vimp = 0.125 (c), Vimp = 0.150 (d) and
Vimp = 0.250 (e, g).

pairing components becomes relevant. In particular, as we illustrated in
Chapter 1, in the presence of SOC triplet pairings with parallel spins (with
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Sz = ±1 projection) emerge. Indeed, the generation of equal-spin triplet
correlations via SOC is provided by the fact that, at interfaces, spin-orbit
interaction breaks the spin symmetry, leading to a mixing of spin-up and
spin-down channels in such a way that the total spin S is no longer a good
quantum number. As a result, the proximity amplitudes in the ferromagnet
will intrinsically be a mixture of singlet and triplet pair correlations.
Moreover, we notice that SOC breaks also the inversion symmetry at the
S/FI interfaces, thus, all four types of pair amplitudes (i.e., s-wave singlet,
s-wave triplets, p-wave singlet, p-wave triplets) can be found in the F re-
gion [41–43]. Since the Pauli’s principle requires the pairing correlations to
be totally antisymmetric, as we have seen in Chapter 1, the possible types of
pairing functions have to fulfill specific symmetry properties with respect to
spin, momentum, and frequency [41–43, 143, 179–181]. For this reason, the
s-wave singlet as well as the p-wave triplets are even functions of the Mat-
subara frequencies ωn (even-frequency), while the s-wave triplets and p-wave
singlet are odd-frequency.
In Fig.3.9 we show the amplitude of the spatial profile of the calculated s-
and p-wave correlation functions, as a function of the position inside the
FI barrier (expressed in terms of the number # of sites), corresponding to
the system configurations analyzed in the previous section in the presence of
SOC and disorder, Figs.3.6 (f), and (g) to (l). In the following calculations
we set h = 0.45, α = 0.04, T = 0.025Tc and φ = 0. The other parameters are
set as in the previous sections. As well as for the systems in Figs.3.6 (f), and
(g) to (l), we choose the following values of the on-site impurity potential:
Vimp = 0.025 (Figs.3.9 (a, b, f)), Vimp = 0.125 (Fig.3.9 (c)), Vimp = 0.150
(Fig.3.9 (d)) and Vimp = 0.250 (Figs.3.9 (e, g)). The plots in Figs. (b) to
(e) represent a zoomed-in view of the s-wave spin-triplet components, while
in Figs. (f) and (g) we show a zoomed-in view of the p-wave correlations for
the configurations with the lowest and highest value of Vimp.
In the s-wave symmetry, the majority component is the spin-singlet one f0
(for simplicity only shown in Fig.3.9 (a)); nevertheless, this is to be expected
since we are considering a short-FI barrier directly coupled to conventional
s-wave singlet SCs. Furthermore, f0 is an even-frequency function and in
the Matsubara summation it is reinforced. We observe that the s-wave spin-
triplet pairings, initially generated by SOC at interfaces, survive throughout
the FI region and intriguingly appear remarkably enhanced by the effect of
increasing the impurity potential Vimp. In the middle of the FI barrier (site
# 4) we obtain that, passing from Vimp = 0.025 to Vimp = 0.250 (Figs.3.9 (b)
and (e)), the s-wave singlet f0 (even-frequency) remains almost unchanged,
while the s-wave spin-triplets (odd-frequency) f3, f↑ and f↓ result increased
by factors of ∼ 15, ∼ 21, ∼ 33, respectively. Further, in Figs.3.9 (f) and
(g), it is shown that a sizable p-wave pairing is already induced in the FI
layer in the nearly clean situation (Vimp = 0.025). In this case, the majority
contribution is provided by the zero-spin triplet (f3). However, the spin-
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singlet f0 (odd-frequency) results enlarged by the influence of nonmagnetic
disorder, while the triplet correlations (even frequency), contrary to s-wave
ones, appear rather stable with respect to the increment of lattice impuri-
ties. Finally, at site # 4 comparing the p-wave pairings with the s-wave ones
corresponding to the highest value of impurities strength, we find that the
equal-spin components f↑ and f↓ are almost of the same order of magnitude
in both the s- and p-wave cases.
Our results highlight the importance of SFIS JJs with SOC and tuned im-
purities as promising platforms hosting unconventional odd-frequency super-
conductivity and showing sizable equal-spin triplet pairings, thus verifying
the predictions in Refs. [67, 68].

3.7 Conclusion

In this chapter, we focused our attention on the problem of the tunability
of 0-π transitions in SFIS JJs. Using a Bogoliubov de Gennes 2D tight-
binding model we managed to study the temperature-dependent transport
properties of these devices. Here, we extended the analysis carried out in
Ref. [90] to the case of 0-π junctions with ferromagnetic insulator barriers.
In particular, we analyzed the influence of spin-mixing (due to SOC) and
nonmagnetic disorder effects on SFIS JJs, focusing on the Ic(T ) behavior.
We pointed out the role of SOC in driving the switching between 0-π and 0
regimes and the capability to induce 0-π to π conversions by adding disorder
to the system. In particular, the engineering of the impurity concentration
(that is strongly linked with the model parameter Vimp) could lead to the
realization of stable π junctions, highly desired for superconducting circuits.
Moreover, we figured out the opportunity to obtain a fully tunable system,
starting from a π JJ and tuning the spin-orbit field by external means.
In this context, the SFIS JJs analyzed here could represent an intriguing
and unexplored platform which can be switched among the three different
regimes. Finally, we complete our analysis by studying the correlation func-
tions in the presence of SOC and impurities. In particular, we observed an
enhanced contribution of the odd-frequency pairings, i.e. s-wave triplets and
p-wave singlet due to the increasing of nonmagnetic disorder. Therefore, we
recognized these tunable SFIS JJs as good candidates to host unconventional
superconducting pairing mechanisms and the source of sizable spin-triplet
superconductivity, confirming the results of the authors of Refs. [68,90].



Chapter 4

Coexistence and tuning of
spin-singlet and triplet
transport in spin-filter
Josephson junctions

The increased capabilities of coupling more and more materials through func-
tional interfaces are paving the way to a series of exciting experiments and
extremely advanced devices. Here we focus on the capability of magneti-
cally inhomogeneous superconductor/ferromagnet (S/F) interfaces to gen-
erate spin-polarized triplet pairs. In particular, we apply the theoretical
2D tight-binding model described in the previous sections to experimental
systems characterized by spin-filter ferromagnetic Josephson junctions (JJs),
finding unique correspondence between neat experimental benchmarks in the
temperature behavior of the critical current Ic(T ) and the theoretical model
based on microscopic calculations. In this chapter, we focus on studying
the induced pairing correlations in these devices, and their possible connec-
tion with the Ic(T ) behavior. As a matter of fact, this kind of combined
analysis provides accurate proof of the coexistence and tunability of singlet
and triplet transport in such systems. From a theoretical point of view,
we consider ferromagnetic insulator JJs (SFIS JJs) in the presence of spin-
mixing effects (due to SOC) and nonmagnetic disorder, where the possibility
to model these interactions allows to enlarge the space of parameters that
regulate the phenomenology of the Josephson effect, thus offering the oppor-
tunity to extend the application to a variety of hybrid types of JJs.
This chapter is inspired by the work presented in Ref. [68] and is organized
as follows.
In the first section, we briefly recall the theoretical formalism used in this
analysis and discuss the choice of the model parameters, in relation with the
experimental values found in the literature, regarding these systems. Then
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we apply the 2D tight-binding model and the RGF technique to calculate
the Ic(T ) and correlation functions, where the former will be the benchmark
for the comparison with the experimental data and the starting point for the
discussion on the possible singlet and triplet proximity effect arising in in
these structures. Subsequently, we proceed proposing an investigation on the
possible analogy existing between the response of spin-filter JJs to the appli-
cation of a weak external magnetic field, and the role of SOC and impurities
in the model. Lastly, we complete our analysis illustrating how the Ic(T )
behavior can be modified by the combined effect of SOC and impurities, by
expanding the range of parameters describing these effects.

4.1 Introduction

Ferromagnetic (SFS) JJs are a unique platform to integrate the coherent
quantum nature of superconductors and ferromagnets into unconventional
mechanisms and smart tunable functionalities. The rich literature has es-
tablished several key elements, which arise when superconducting pair cor-
relations traverse the exchange field of a ferromagnet [15, 17, 19, 30, 57].
JJs with multiple F-layer barriers have been theoretically and experimen-
tally studied in connection to unconventional triplet superconductivity with
equal-spin Cooper pairs, characterized by total spin momentum S = 1 and
spin z-component Sz = ±1 (|11〉 S,Sz = |↑↑〉 and |1− 1〉 S,Sz = |↓↓〉), which
can be artificially generated in these structures [15,19,47,48,54,85–88,186].
Compared to spin-singlet Cooper pairs (|00〉S,Sz = 1/

√
2(|↑↓〉 − |↓↑〉)) and

opposite-spin triplet Cooper pairs (|10〉S,Sz = 1/
√

2(|↑↓〉 + |↓↑〉)), the spin-
aligned triplet Cooper pairs are immune to the exchange field of the F layer
and can carry a non-dissipative spin current. Therefore, spin-triplet Cooper
pairs constitute the essential element for the emerging field of superconduct-
ing spintronics [47,48,85–88].
It is well established that spin-polarized triplet pairs are generated via spin-
mixing and spin-rotation processes at magnetically inhomogeneous S/F in-
terfaces [19, 46, 47, 86, 87, 187], as we have seen in Chapter 1. Recently,
theoretical and experimental studies have been dedicated to an alternative
mechanism for triplet pair generation involving spin-orbit coupling (SOC) in
combination with a magnetic exchange field [188, 189]. These systems may
benefit from the capability to generate controllable spin-polarized supercur-
rents with a single ferromagnetic layer, compared to magnetically textured
JJs.
A conclusive evidence for the spin-triplet nature of the supercurrent could
be supported by the capability to distinguish singlet and triplet components.
The capability of quantifying the amount of spin-polarized supercurrents re-
mains a fundamental benchmark to further prove triplet correlations and a
key step towards real applications.



74 CHAPTER 4. PAIRING CORRELATIONS IN SPIN-FILTER JJS

In this scenario, superconducting tunnel junctions with ferromagnetic insu-
lator (FI) barriers (SFIS), namely spin-filter NbN/GdN/NbN JJs, have re-
vealed unique transport properties, such as spin-polarization phenomena [66,
83, 190], an interfacial exchange field in the superconducting layer [65, 191],
macroscopic quantum tunneling [192] and an unconventional incipient 0-
π transition [67]. In particular, with spin-filter JJs [66] we indicate those
junctions in which the flowing current is highly spin polarized because of
the different tunneling probability experienced by spin-up and spin-down
electrons, due to the exchange splitting produced by the FI barrier [7, 193]
which gives rise to a lower barrier height for spin-up electrons and a higher
barrier height for spin-down electrons, thus, acting as efficient filter for spin-
polarized carriers.
Such SFIS JJs are especially well-suited for the implementation in supercon-
ducting circuits in which a very low dissipation is required [60–62,64,82,194].
Furthermore, in these systems, evidence of spin-triplet transport has been
reported [57,67,83,84].
Here we build on a study of the critical current Ic as a function of tempera-
ture T in NbN-GdN-NbN JJs [67], to demonstrate coexistence and tuning of
singlet and triplet components. By using a 2D tight-binding Bogolioubov de
Gennes (BdG) approach [89–91], we model the Ic(T ) curves in the whole tem-
perature range, along with the corresponding current-phase relation (CPR)
as a function of the temperature T . It turns out that measurements of the
temperature behavior of the critical current along with microscopic modeling
approach provide an alternative accurate method to assess the spin-triplet
transport, which can be extended to different types of JJs: the amount of
spin-singlet and -triplet correlations can be quantified and parameterized in
terms of disorder parameter and spin-mixing (SOC) mechanisms through a
fitting of experimental data.
The large variety of materials and configurations employed in diffusive SFS
JJs in the literature allows to access a wide range of behaviors for the thermal
dependence of the critical current [15, 71]. Particularly relevant in this con-
text is the non-monotonic behavior for the Ic(T ) in systems in which a 0-π
transition occurs, characterized by a peculiar cusp at the transition temper-
ature T0−π [15,30]. In this chapter, we focus on the peculiar behavior of the
Ic(T ) in tunnel ferromagnetic spin-filter JJs, in which an unconventional 0-π
transition occurs. Specifically, in the devices discussed here, the Ic(T ) curve
shows a region in which the Ic is constant in a wide range of temperatures,
i.e. it shows a plateau, or it shows a non-monotonic trend characterized by a
non-zero local minimum, i.e. the Ic(T ) exhibits an incipient 0-π transition.
Such unconventional Ic(T ) behavior turns out to be the benchmark for the
coexistence of spin-singlet and spin-triplet superconductivity in SFIS junc-
tions. As we will see, when the Ic(T ) curve is characterized by a plateau
over a wide range of temperatures, the competition between the singlet and
triplet pairing amplitudes becomes significant, in both s-wave and p-wave
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symmetries. This behavior sets in due to the combined effects of impuri-
ties and spin-mixing mechanisms. On the other hand, when the Ic(T ) curve
exhibits an incipient 0-π transition, the equal-spin triplet component is grad-
ually suppressed, becoming irrelevant in the limit case of a more standard
cusp-like 0-π transition. This last situation corresponds to relative low values
of disorder and spin-mixing effects.

4.2 Formalism and model parameters

b)

a)

Figure 4.1: (a): Picture of the SFIS JJs 2D lattice model. The barrier
(highlighted in blue) has a total thickness L along x. The junction
width is W along y. The spin-mixing mechanism due to SOC is
depicted by the spin-flipping process highlighted at the interface
between the superconducting boundaries (red sites) and the barrier.
The impurities, with random strength depicted by the height of the
yellow potential peaks, are represented on each site of the lattice.
The exchange field h (violet arrow) is parallel to the z-axis, while
the hopping t between nearest-neighbor sites is here represented by
pink arrows. (b): Sketch of the experimental NbN/GdN/NbN JJs
analyzed.

In this paragraph we briefly discuss the spirit of our lattice modeling that
we want to use for the description of the experimental systems considered,
consisting of NbN/GdN/NbN JJs.
Also in this case, the Josephson current at finite temperature and the pair-
ing correlation functions in s- and p-wave symmetry are derived from the
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Matsubara GF of the FI barrier (Eqs.(2.42)-(2.44)), calculated with the re-
cursive RGF technique [89–91], as illustrated in Chapter 2, where the SFIS
junctions are modeled by using a BdG Hamiltonian on a two-dimensional
(2D) lattice [68,89–91]. A schematic representation of the 2D lattice model,
in comparison with the sketch illustrating the structure of real experimental
systems, is reported in Fig.4.1; as usual we indicate with L the length of the
FI barrier and W the width of the junction expressed in lattice units, along
the x and y directions, respectively.
The Hamiltonian of the S leads is described by the parameters ts and µs,
denoting the hopping integral among nearest-neighbor lattice sites and the
chemical potential, respectively. Relevant parameters of the barrier Hamilto-
nian ĤFI , instead, are the hopping integral t, the Fermi energy µFI and the
amplitude of the spin-orbit interaction α, used to introduce a spin-symmetry
breaking [195, 196], through the spin-mixing mechanism. Furthermore, we
include on-site random impurity potential with strength vr uniformly dis-
tributed in the range −Vimp ≤ vr ≤ Vimp. Finally, the exchange field is
assumed to be slightly disordered; we take it oriented along the z-axis, to-
gether with the corresponding small on-site fluctuations δh, given randomly
in the range −h/10 ≤ δh ≤ h/10. Details on Hamiltonian parameters used
in the simulations can be found in Chapter 2.
However, here we explain the choice of parameters used in the theoretical
model, in comparison with the real experimental values found in the litera-
ture, typical of the systems analyzed.
All the energy parameters are expressed in dimensionless units where the
energy scale is the hopping t in the FI. The strength of the SOC, α, is scaled
by ta (with a lattice constant), while the Josephson current is calculated in
units of I0 = e∆.
Further, the presence of disorder requires the need to perform ensemble av-
erages over several samples to obtain the final Ic(T ) curves and correlations.
In particular, we use Ns = 50 − 100 samples to compute the average Ic(T )
and Ns = 200−300 samples for the average correlation functions, depending
on the strength of Vimp.
In our simulations, we fix t = 1, µFI = 0, µs = 3, ∆ = 0.005, h = 0.25. Fur-
ther, we note that NbN (S leads) and GdN (FI barrier) are characterized by
almost equal hopping parameters [197–199], which are set equal ts = t for the
sake of simplicity. The choice of assuming different chemical potentials for
the S and FI regions is made in order to model the experimental devices as
tunnel junctions with a ferromagnetic half-metallic GdN barrier, as experi-
mentally observed [200] and predicted by full atomistic simulations [201,202].
The estimate for the exchange energy h is chosen in agreement to the ex-
change field measured in several materials and is kept fixed to that of the
bulk GdN [187, 191, 198, 199, 203]. This is consistent with t ∼ 3eV and the
experimental constant lattice of GdN is aGdN = 4.974Å [197–199].
In Tab.4.1 and Tab.4.2 we summarize the parameters used in simulations
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and the ones characterizing real systems, respectively.
When modeling the experiments, we use α as a measure of the spin-mixing
(i.e. the SOC strength) and it is chosen to be α = 0.04, unless otherwise
indicated. Although we choose a small spin-orbit field so that α � h, it
breaks the spin symmetry at interfaces and is sufficient to cause the gener-
ation of long-range equal triplet-correlation pairs with total spin projection
Sz = ±1.
The experimental JJs under study are characterized by a transverse area
of ∼ 50µm2 and by a thickness varying from 2 nm to 4 nm [67]. In our
simulations, this is taken into account by considering systems with a width
larger than the length of the barrier (W > L). The numerical simulations
are performed on lattices characterized by L = 8 sites along the x-direction
and different values of width W of the junction, in the y direction, both ex-
pressed in units of lattice sites. Tunnel junctions experience an exponential
suppression of the critical current when increasing the barrier thickness [71].
In our model, this implies dealing with systems of few lattice sites, hence, we
choose L = 8 and keep it fixed in all the numerical simulations, in agreement
with the short-junction limit. However, the main effect of increasing the
experimental sample thickness (and so the magnetic area of the FI) consists
in enhancing the magnetic activity of the junction [66, 67, 83, 194]. In our
model, we manage to mimic this effect by changing the flux of the exchange
field Φ(h) = LWh through the JJ (by the means of the width of the barrier
W ) and by tuning the impurity potential strength Vimp (thus, changing the
influence of disorder effects in the system). Therefore, we use these quanti-
ties as effective control parameters when modeling the peculiar behavior of
the Ic(T ) curve in each experimental device.

Table 4.1: Values of the parameters used in simulations.

Parameter Value (in units of t)

hopping in FI t 1
hopping in SC ts = t 1
SC gap ∆ 5× 10−3

exchange energy h 2.5× 10−1

exchange field fluctuations δh −h/10 ≤ δh ≤ h/10
spin-orbit coupling energy α 4× 10−2

chemical potential of FI µn 0
chemical potential of SC µs 3
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Table 4.2: Main experimental values, reported in the literature, describing the
analyzed systems.

Parameter Experimental value

junction area ∼ 50µm2

barrier thickness 2− 4nm
hopping GdN ∼ 3 eV
hopping NbN ∼ 3 eV
exchange energy h 0.5 eV − 1 eV
constant lattice of GdN aGdN = 4.974Å

4.3 2D tight-binding model applied to spin-filter
JJs

In this section we present our results where, in particular, the simulated
Ic(T ) will be the benchmark for the comparison with the experimental data.
We focus our analysis on the NbN/GdN/NbN JJs with FI thicknesses of:
dF = 3.0 nm, 3.5 nm and 4.0 nm. A sketch of the experimental samples is
reported in Fig.4.1 (b).
In the theoretical model, the combined effect of SOC and impurities in the
FI region efficiently mimics the presence of magnetic inhomogeneities in the
barrier, which are more likely to occur in devices with large areas [47, 57],
as the junctions under study. This approach is meant to include all possible
effects occurring in the FI barrier, and it is a powerful platform to describe
a large variety of JJs.
In Figs.4.2 (a) to (c) we show the comparison between the experimental
thermal dependence of the critical current Ic(T ) for the junctions with GdN
barriers dF = 3.0 nm, 3.5 nm and 4.0 nm (black points), respectively, and the
simulations obtained with the tight-binding BdG lattice model (red lines).
In the insets, the measured saturation of the Ic(T ) down to 20 mK is also
reported. The error bars on the measured Ic are of the order of 1% and
represent the statistical error due to thermally-induced critical current fluc-
tuations [192]. The amplitude of the simulated critical current has been
multiplied by the experimental Ic measured at 20 mK.
As we can see, the experimental data evolve from a plateau over a wide
range of temperatures (a few Kelvins) observed for the junctions with GdN
thickness dF = 3.0 nm and dF = 3.5 nm into a non-monotonic Ic(T ) curve
for the junction with dF = 4.0 nm. The agreement between numerical out-
comes and experimental data is certified by the capability to reproduce the
unconventional plateau (Figs.4.2 (a) and (b)) and the non-monotonic behav-
ior (Fig.4.2 (c)). For the Ic(T ) simulations in Fig.4.2 we chose: (a) L = 8,
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Figure 4.2: Comparison between the experimental Ic(T ) for spin-filter junctions
with GdN barriers dF = 3.0 nm (a), 3.5 nm (b) and 4.0 nm (c)
(black points), and the simulations obtained with the tight-binding
BdG lattice model (red straight lines). In the insets of figures (a-c):
measured saturation of the Ic(T ) down to 20mK. In (d-f) the
corresponding calculated CPRs, at selected temperatures, are
shown. The CPRs have been normalized to the maximum value of
the current at 0.05Tc. The red lines in (a), (b) and (c) are the best
Ic(T ) curves obtained from the maximum of the CPRs calculated
with the 2D lattice model, with simulations parameters as reported
in the text. The color-gradient in (a), (b) and (c) depicts the
temperature range for the 0 state (light blue), the π state (light
red), and the width of the 0-π transition region (yellow region),
obtained from the CPRs in (d), (e) and (f).

W = 24, (b) L = 8, W = 28, (c) L = 8, W = 32 (expressed in units of
lattice sites); moreover, we set Vimp = 0.150 for the simulated curve in (a),
Vimp = 0.185 in (b), and Vimp = 0.115 in (c). Here, the presence of random
on-site impurities requires the need to perform ensemble averages over sev-
eral samples.
We notice that the Hamiltonian parameters, as well as the lattice size, have
no atomistic origin and are chosen to describe the main mechanisms that
are expected to occur in the experimental devices. Even though the lattice
size is scaled down compared to the experimental system, we think that our
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theoretical model gives qualitatively an accordance with the experimental
results as long as the model parameters are adjusted accordingly.
The main feature we can appreciate is that it is possible to relate the plateau
in the Ic(T ) curve to an overall broadening of a 0-π transition in tempera-
ture. To make this aspect clearer, we also calculate the corresponding CPRs,
as illustrated in Figs.4.2 (d) to (f), where they have been normalized to the
maximum value of the current (Imax = maxT [Ic(T )]) at T = 0.05Tc. The
CPRs indicate that, at low temperatures, the JJs are in the 0 state (light
blue gradient region in Figs.4.2 (a), (b) and (c)), while at temperatures
above T = 0.7Tc the JJs are in the π state (red gradient region). Com-
pared to what has been theoretically and experimentally observed in 0-π
SFS and SFIS JJs [30, 60, 61, 64], when the plateau is measured in the JJs
with dF = 3.0 nm and 3.5 nm in Figs.4.2 (a) and (b), the CPRs exhibit the
presence of higher order harmonics in the Josephson current for a wide range
of temperatures (yellow gradient region). The transition region is reduced
when the Ic(T ) curve gradually points towards a non-monotonic behavior, as
shown in Fig.4.2 (c). In all the cases reported in Fig.4.2, the 0-π transition
extends over a few Kelvins in temperature around 4.2 K, in agreement with
previous findings [83].

4.4 Analysis of pairing functions: the Ic(T ) as the
hallmark of singlet and triplet pairings weight

Let us now discuss the superconducting pairing correlations arising in the
systems analyzed in the previous paragraph.
In Fig.4.3, we show the amplitude of the correlation functions < |f | > de-
termined from numerical simulations for the three devices at T = 0.025Tc
(corresponding to 0.3 K) and φ = 0, where φ is the phase-difference across
the device. The correlation functions are determined for the spin-singlet
(f0), spin-triplet with opposite spins (f3) and equal-spin triplet functions
(f↑ and f↓), both in s-wave (Figs.4.3 (a), (b) and (c)) and p-wave symme-
tries (Figs.4.3 (d), (e) and (f)), as a function of the position in the lattice
along the x-direction, with index j = 1, · · · , L. In order to assure the total
antisymmetry of the fermionic wave function, triplet superconductivity for
even-frequency pairing is conventionally of p-wave type [41,47,143].
As shown in the following, for symmetry reasons here the dominant orbital
part in the triplet pairing channel happens to be of s-wave type. We use
<> to indicate the ensemble average, due to the presence of random on-
site impurities in the 2D lattice. All the cases show a dominant s-wave
singlet component f0 at the superconductor/barrier interface that strongly
decays toward the middle of the barrier thickness. This is reasonable be-
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Figure 4.3: In (a), (b) and (c), the amplitudes of the ensemble average of the
s-wave correlation functions < |f | >, determined by numerical
simulations at temperature T = 0.025Tc, are shown as a function of
the lattice position in the barrier along the x direction (with index
j) for the junctions with GdN thickness dF = 3.0 nm, 3.5 nm and
4.0 nm, respectively. f0 is the spin-singlet (black line and square
symbols), f3 is the opposite-spin triplet (red line and circles) and f↑
(f↓) is the equal-spin triplet with up (down) Sz projection (blue line
and up-triangle symbols, and green line and down-triangle symbols,
respectively). In (d), (e) and (f), we show the same correlation
functions components for the p-wave symmetry. Both s- and p-wave
data are reported on a log-scale.

cause the sides of the FI-layer are attached to the superconducting leads
with a usual Bardeen-Cooper-Schrieffer (BCS) s-wave symmetry [182] and,
due to the proximity effect, the singlet pair wave function enters the bar-
rier. In the middle of the barrier (lattice position j = 4), where the spin
mixing and the exchange field effects take place, a competition between the
s-wave triplet and singlet pair amplitudes arises. On the contrary, for the
p-wave case, the singlet component f0 turns out to be much lower than the
corresponding s-wave one. At the same time, we may observe a prevalence
of the zero-spin p-wave triplet component f3 at the superconductor/barrier
interface, while in the middle of the barrier thickness the spin-aligned triplet
correlations become relevant. These results are justified by symmetry con-
siderations [19,47,87,143]. Indeed, for the s-wave symmetry, the singlet is an
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Table 4.3: S- and p-wave symmetry spin-correlations. Ensemble average
of the pair-correlation amplitudes 〈|f |〉 in both s- and p-wave
symmetry for JJs with GdN thickness dF in units of the major
zero-spin component: the spin-singlet f0 for the s-wave correlations
(A) and the zero-spin triplet f3 for the p-wave correlations (B).

(A) s-wave (B) p-wave

dF (nm) f↑/f0 f↓/f0 f3/f0 f↑/f3 f↓/f3 f0/f3

3.0 4.21 3.23 1.28 0.74 1.00 0.32
3.5 0.34 0.80 0.78 0.67 0.84 0.14
4.0 0.11 0.15 0.20 0.51 0.60 0.06

even-frequency function, while the triplets are odd-frequency. The viceversa
is valid for the p-wave case.
The dF = 3.0 nm-thick barrier junction exhibits s-wave triplet correlations
functions larger than the singlet one, with a major contribution provided by
the equal-spin triplet component with Sz = +1, f↑ (Fig.4.3 (a)).
For what concerns the p-wave spin-correlation functions for this device, f3
provides the main contribution at the borders, while f↓ competes with f3 in
the middle of the barrier (lattice position j = 4), as shown in Fig.4.3 (d).
Moreover, the opposite and equal-spin p-wave triplet components are nearly
a factor 2 larger than the corresponding s-wave singlet component.
By increasing the thickness of the barrier, thus gradually pointing towards
an incipient 0-π transition with a non-monotonic behavior in the Ic(T ) curve,
in the s-wave cases we can observe a progressive suppression of the equal-
spin triplet components and a dominant spin-singlet channel. At the same
time, in the p-wave case, we observe a slight reduction of the ratio between
the equal-spin triplets (f↑ and f↓) and the major zero-spin component (f3).
Thus, the p-wave opposite spin-triplet components are of the same order of
magnitude compared to the corresponding s-wave spin-singlet component,
while the equal-spin triplet components are instead reduced.
In Tab.4.3, we summarize the values of the pair-correlations in the middle of
the barrier thickness (lattice position j = 4), in units of the majority zero-
spin component, i. e. f0 for the s-wave (Tab.4.3 A) and f3 for the p-wave
cases (Tab.4.3 B), respectively.
The analysis of the superconducting pairings induced in these systems shows
that a connection between the amplitude of the different correlation func-
tions, especially those with s-wave symmetry, and the Ic(T ) behavior can
be observed. In particular, we found that the characteristic plateau struc-
ture can be noticed only when considering a combined effect of SOC and
impurities, once fixed the dimensions of the system. As it is shown for the
SFIS JJ with dF = 3.0 nm in Fig.4.2 (a) and Fig.4.3 (a), the formation of
the plateau goes along with the coexistence of comparable spin-singlet and
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triplet superconductivity.
Thus, in this perspective, fitting of experimental Ic(T ) curves allows to iden-
tify the coexistence of spin-singlet and triplet transport and quantify the
weight between the different transport channels.

4.5 Analogy between the effect of an external mag-
netic field applied to the experimental samples,
and the compresence of SOC and impurities in
the model

Figure 4.4: Tuning of the thermal behavior of the critical current in the
presence of an external magnetic field. Normalized critical current
Ic(T,H/H0)/Ic(0.3K,H/H0) density plots as a function of the
percentage of magnetic field periodicity H/H0 and the temperature
T , for the JJs with GdN thickness (a) dF = 3.0 and (c) dF = 3.5
nm. Blue, red and green lines refer to the cross sections reported in
(b) and (d). The white dashed arrows in (a) and (c) are a guide for
the eye and highlight the shift of the minimum in the
Ic(T,H/H0)/Ic(0.3K,H/H0) by increasing H/H0.

In order to investigate the peculiar transport properties characterizing these
systems, in this paragraph we propose a study on possible analogy be-
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tween the effect of an external magnetic field applied to the experimental
NbN/GdN/NbN junctions and the combined presence of SOC and nonmag-
netic lattice impurities in the theoretical model.
From the experimental side, the Ic(T ) response to an external magnetic field
applied to the samples in the plane of the JJs (specifically along the z di-
rection) has been probed. In Fig.4.4 the evolution of the normalized critical
current Ic(T,H/H0)/Ic(0.3K,H/H0) as a function of a weak magnetic field
H/H0 is shown, where H0 is the amplitude of the first lobe of the Fraunhofer
pattern curve, acquired by applying the magnetic field from +2.4 mT to −2.4
mT. H0 is estimated at each investigated temperature T (from T = 0.3 K
to T = 8 K). The results are reported in Fig.4.4 in the two density-plots (a)
and (c) for the junctions with dF = 3.0 nm and 3.5 nm, respectively.
We can notice that, increasing the field H/H0, the plateau structure at
zero field previously illustrated in Figs.4.2 (a) and (b) evolves into a non-
monotonic behavior with a minimum (dark region around 70-80%H0 and
between 2 and 4 K) and a maximum (bright region around 70-80%H0 and
between 4 and 6 K). The effect appears more pronounced for the JJ with
dF = 3.0 nm (a). The blue, green and red dashed line cuts are related to
the cross-section curves reported in Figs.4.4 (b) and (d), where the grad-
ual appearance of an enhanced dip and a non-monotonic behavior in the
normalized Ic(T ) curves can be observed by increasing H/H0. The error
bar on each measured point is of the order of few percents and it is due to
thermally-induced Ic fluctuations [192].
Even if the strength of the external magnetic field is not enough to generate
a complete magnetic ordering, slight modifications in the microscopic struc-
ture of the barrier arise [204], which has been already predicted to occur
in systems with tunable domain walls [205], intrinsic SOC [206] and mag-
netic impurities [176]. At zero field, the magnetic disorder is maximum and
likely introduces electronic defect states in the barrier [207]. As the field
increases, the system undergoes towards a more ordered phase, and hence
defect states density reduces. Therefore, the tunability of the Ic(T ) shape
from the plateau towards a non-monotonic curve by applying an external
magnetic field can be related to a reduction of the disorder in the barrier.

This picture exhibits an analogy with numerical simulations obtained when
changing the strength of the impurity potential in the 2D lattice model
while keeping fixed all the other parameters. In particular, it is worth to
notice that, in the model, we do not include the Peierls phase in the hopping
parameters due to the external magnetic field, nor we study the dynamics
of the magnetization in barrier. It would include extra complications that
are not justified in this analysis. The main point here is that our samples
have a ferromagnetic tunnel (FI) barrier. Qualitatively, the main role of
the external field in these samples is to trigger the magnetic ordering in
the GdN layer. Within our model, this effect is qualitatively accounted
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by reducing the impurity scattering in FI layer in the presence of SOC.
Local impurity potentials in the FI barrier are assumed to induce small
site-dependent fluctuations of the chemical potential. In our approach, the
coexistence of spin-mixing mechanisms, promoted by SOC-like interactions,
and on-site impurities, model the magnetic disorder.
We show the result of the interplay of these effects in Fig.4.5 (a), illustrating
the simulated Ic(T ) for different Vimp values. Here, the current is normalized
to the maximum of the CPR at the lowest investigated temperature T , while
T is normalized to the critical temperature Tc.
We can notice that the characteristic 0-π behavior is modified by increasing
the impurity potential Vimp. The enhancement of the impurity strength
produces a shift of the minimum of the curve towards lower temperatures and
higher critical current values, with a consequent broadening of the typical
0-π cusp that progressively gives rise to the plateau. Viceversa, decreasing
Vimp, one can recover the 0-π transition.
In Figs.4.5 (b)-(g) we finally report the s- and p-wave correlation functions
corresponding to simulated Ic(T ) curves for different impurity potentials
Vimp in (a): Vimp = 0.150, Vimp = 0.115 and Vimp = 0.025. We here take as a
reference the JJ with dF = 4.0 nm, i.e. the simulations for lattice dimensions
L = 8, W = 32. While the p-wave components appear to be approximately
unaffected by disorder (Figs. 4.5 (e)-(g)), for the s-wave symmetry the effect
of increasing the impurity strength Vimp results in a pronounced enhancement
of the equal-spin triplet pairing correlations, f↑ and f↓ (Figs.4.5 (b)-(d)).
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Figure 4.5: (a): Simulated Ic(T ) for three different impurity potential Vimp

values: Vimp = 0.025 (green curve), Vimp = 0.115 (red curve) and
Vimp = 0.150 (blue curve). The current is normalized to the
maximum of the current-phase relation at the lowest investigated
temperature T , while T is normalized to the critical temperature Tc.
Calculated s-wave ((b), (c) and (d)) and p-wave ((e), (f) and (g))
ensemble average of the pair amplitude < |f | > in arbitrary units for
different impurity potential values Vimp in (a). f0 is the spin-singlet
component (black line and square symbols), f3 is the opposite-spin
triplet component (red line and circle symbols), f↑(f↓) is the up
(down) equal-spin triplet component (blue lines and up-triangle
symbols, and green lines and down-triangle symbols, respectively).
Both s- and p-wave data are reported on a log-scale.
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Expanding the range of parameters describing the SOC and impu-
rities strength

To get a deeper understanding of the combined effect of impurities and the
SOC in these systems, here we show how they affect the Ic(T ) shape, ex-
panding the range of values of these parameters in our simulations. The
results are presented in Fig.4.6. Lattice dimensions are L = 8, W = 32, i.e.
they refer to the JJ with dF = 4.0 nm. To accomplish the Ic(T ) diagram, we
select the following values for α and Vimp: from panels (a) to (d), (e) to (h),
(i) to (l) and (m) to (p), Vimp = 0.025, 0.115, 0.150, 0.250, respectively, and
from panels (a) to (m), (b) to (n), (c) to (o) and (d) to (p), α = 0.2, 0.1, 0.07,
0.04. In all the panels, the Ic (y-axis) is normalized to its value at the lowest
temperature, i. e. T = 300 mK, while the T (x-axis) is normalized to the
critical temperature Tc of the device. The scale on the y-axis on each plot
ranges from 0 to 1.1, as on the x-axis. Minor ticks represent an increment
of 0.1.
In Fig.4.6 we can notice that for small values of α and Vimp (bright red-
and blue-scales), the simulated Ic(T ) curve shows a cusp-like 0-π transition,
provided that the exchange field h in the junction is non-zero, as it occurs
in SFS JJs tipically reported in the literature [30,60,61,64]. By increasing α
(dark red-scale), the main effect is to reduce the height of the second maxi-
mum in the Ic(T ) curve, without recovering the plateau structure observed
in SFIS JJs. At very large α (see panel (a) in Fig.4.6), the 0-π transition is
washed out and an AB-like shape sets in, stabilizing a 0 phase. In this case
the main contribution is expected from the spin-singlet, though the spin-
triplet correlations are increased compared to the cases with smaller α. At
the same time, by keeping the spin-orbit field weak and by increasing Vimp
(dark blue-scale), the minimum of the 0-π transition occurs at higher crit-
ical current values and it is broadened in temperature, but always showing
a non-monotonic trend for the Ic(T ). In the limit of large Vimp (see panel
(p) in Fig.4.6), the 0-π transition is shifted towards very low T values, sta-
bilizing a π phase almost over the whole temperature range. This evidence
is given by the sharp decrease of Ic when the temperature drops. In this
regime, in agreement with Fig.4.5, we predict an enhanced contribution of
the s-wave spin-triplet components due to the interplay of SOC and disor-
der. In the limit of large Vimp and α (see panel (d) in Fig.4.6), an AB-like
behavior is recovered. This latter corresponds to a stable 0 phase, reflecting
the fact that, in the competition between SOC and impurity scattering, the
equilibrium state is dominated by α. This also confirms the presence of a
threshold value of α (at fixed value of h), above which the JJ is always in
the 0 phase [90,148].
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Figure 4.6: Competition between the SOC and the impurity potential and their
effect on the temperature behavior of the critical current.
Normalized Ic vs. temperature T curves as a function of the SOC
strength α and the on-site impurity potential Vimp. Red-color scale
refers to increasing values of α, while blue-color scale refers to
increasing Vimp values. In (a) α = 0.2, Vimp = 0.025; (b) α = 0.2,
Vimp = 0.115; (c) α = 0.2, Vimp = 0.150; (d) α = 0.2, Vimp = 0.250;
(e) α = 0.1, Vimp = 0.025; (f) α = 0.1, Vimp = 0.115; (g) α = 0.1,
Vimp = 0.150; (h) α = 0.1, Vimp = 0.250; (i) α = 0.07, Vimp = 0.025;
(j) α = 0.07, Vimp = 0.115; (k) α = 0.07, Vimp = 0.150; (l) α = 0.07,
Vimp = 0.250; (m) α = 0.04, Vimp = 0.025; (n) α = 0.04,
Vimp = 0.115; (o) α = 0.04, Vimp = 0.150; and (p) α = 0.04,
Vimp = 0.250. In all the panels, the Ic (y-axis) is normalized to its
value at the lowest temperature, i.e. T = 300mK, while the T
(x -axis) is normalized to the critical temperature of the device Tc.
We also highlight in panels (a), (d), (j) and (p) the state of the
Josephson junction: 0, 0-π or π.
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4.6 Conclusion

In this chapter we have investigated on the occurrence of the unconventional
thermal dependence of the critical current Ic(T ) observed in spin-filter JJs,
in order to achieve a deeper comprehension of singlet and triplet transport
phenomena that can take place in these devices.
In particular, the theoretical results show that the characteristic behavior of
the Ic(T ) is related to the amplitude of the different spin-correlation func-
tions, especially those with s-wave symmetry. We found that the presence
of a plateau extended over a wide range of temperatures and the peculiar
non-monotonic behavior in the Ic(T ) when increasing the thickness of the
barrier can be explained in terms of the coexistence of spin-singlet and triplet
superconductivity, whose correlation functions have been calculated by using
a 2D tight-binding BdG description of the system [89–91].
Specifically, we observe a general decrease in the relative weight of the s-
wave equal-spin triplet components (f↑ and f↓) in the junctions that show
an increasing non-monotonicity of the Ic(T ) curves. Hence, the more Ic(T )
exhibits a behavior approaching the 0-π regime, the lower is the weight of
the s-wave equal-spin correlations. This is in agreement with the fact that
spin-aligned supercurrents are insensitive to exchange field and, thus, cannot
give rise to 0-π transitions.
In addition, this approach highlighted also the role played by the disorder in
the barrier. At the same time, the presence of a spin-mixing effect, in this
context provided by the spin-orbit interaction, is crucial to reproduce the
characteristic plateau in the Ic(T ) curves.
As further analysis, we proposed a study on the analogy observed between
the response of the experimental samples to the application of an external
weak magnetic field, and the role of SOC and impurities in the theoretical
model. We have shown that a transition between the peculiar plateau-shape
of the Ic(T ) curve towards an incipient 0-π curve is experimentally observed
when increasing the strength of the external magnetic field. In this analy-
sis, qualitatively we assume that the main role of the external field in these
samples is to trigger the magnetic order in the GdN layer. Although in our
model we do not include the Peierls phase in the hopping parameters, nor we
study the dynamics of the magnetization in barrier, we qualitatively mimic
the role of the external magnetic field by reducing the impurity scattering in
the FI barrier in the presence of SOC.
In our investigation, by exploring a wider range of α and Vimp parameters,
we found that the position in temperature of the Ic(T ) dip turns out to be
an important benchmark relating the 0-π transition induced by the applied
magnetic field, to the combined effect of impurities, exchange field fluctu-
ations and spin-orbit coupling in the simulations. We found that for weak
on-site impurity potential Vimp, by increasing α, the minimum of the Ic(T )
curve occurs at the same temperature. Instead, when increasing Vimp, the
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minimum is shifted in temperature, as it occurs in the experimental Ic(T )
curves at a finite external magnetic field.
In conclusion, this jointed experimental/theoretical analysis provides a good
description of the coexistence and tunability of singlet and triplet transport,
where the ability to describe the combined effect of magnetic inhomogeneities
and disorder in complex barriers, with clear benchmarks on the phenomenol-
ogy of the junctions, can be of reference for a variety of structures.



Chapter 5

General conclusion

This dissertation has been devoted to the analysis of transport properties and
novel aspects of proximity effect in Josephson junctions made of ferromag-
netic insulator barrier in the presence of spin-orbit interaction, exchange field
fluctuations and nonmagnetic disorder. We consider tunneling through a spin
filtering ferromagnetic barrier in the insulating regime [62, 63, 66–69, 148],
while most of experiments and theoretical studies carried out so far have
been limited to systems containing metallic ferromagnets [15,17,19,47,56,57].
From an applied perspective, the advantage of using such SFIS junctions in
superconducting circuits resides in the intrinsically non-dissipative nature of
the tunnelling process in these systems, which can led to overcome issues of
dissipation-driven decoherence [60–65].
The numerical studies carried out in this work were performed by using a
two-dimensional (2D) Bogolioubov de Gennes (BdG) tight-binding model
[68,89–91], where the induced superconducting correlations and the Joseph-
son current are extracted from the Green’s function of the barrier, which was
constructed by using the recursive Green’s function procedure [89–91, 94].
This approach is particularly suitable to obtain information about transport
properties of the system under consideration on the atomic scale, thus pro-
viding a site-by-site description of the order parameter inside the barrier and
near the interfaces.
Due to spin-triplet character of the Cooper pairs formed in such heterostruc-
tures, the physical mechanisms at interfaces offer a rich scenario of phenom-
ena, including the observation of transitions between the 0 and π phase
[15,17,19,28,69,82] and the formation of long-range triplet superconductiv-
ity [15,19,47,48,54,85–88,186].
The first part of the work collocates in the wide scenario of possibilities of-
fered by the promising application of the π junctions, as key ingredients that
open up new horizons in superconducting electronics [39, 40,64,76–81].
A description as close as possible to the nature of the real samples allows an-
alyzing new ways to control the realization of π junctions and the switching
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between the 0 and π state. In particular, in this work we have theoreti-
cally shown how the interplay between spin-orbit coupling and nonmagnetic
disorder may be exploited for the engineering of fully tunable 0-π SFIS JJs
which can be switched between the 0, 0-π , and π regimes. By analyzing the
critical current behavior as a function of temperature and the correspond-
ing current-phase relation, we pointed out the role of SOC in driving the
switching between 0-π and 0 regimes and the capability to induce 0-π to π
conversions by adding disorder to the system, illustrating the possibility to
build up a fully controllable device [148]. This features are highly desirable
in many applications and may provide physical and technical bases for real-
izing novel superconducting quantum circuits, as memory elements [72–75]
and superconducting qubits [39, 40,64,76–81].
In the second part of this work, we focused on the pairing mechanisms arising
in such SFIS junctions and used the microscopic theoretical model to study
real NbN/GdN/NbN samples [68]. On the latter, measurements of the crit-
ical current as a function of temperature were performed. The measured
Ic(T ) showed a peculiar behavior, characterized by uncommon plateaus or
local minima in the curves, which led us to ask whether these characteris-
tic trends could be a possible manifestation of the triplet nature of trans-
port phenomena. The joint theoretical analysis has provided a better and
more complete understanding of the physics governing these systems, allow-
ing to find the relevant parameters and identifying the presence of possible
spin-sensitive proximity effect in such SFIS JJs, by comparing the simulated
thermal behavior of the critical current with the experimental outcomes and
then, by calculating the corresponding correlations functions in the simulated
devices. Specifically, we have shown that the presence of a plateau extended
over a wide range of temperatures and the peculiar non-monotonic behav-
ior in the Ic(T ) is due to the combined effect of impurities and spin-mixing
mechanisms, and can be explained in terms of a non-negligible triplet super-
conductivity contribution in these systems, which coexists with the conven-
tional singlet-type one. These results suggest that these kinds of junctions
may work as spin filtering devices, benefiting from the capability to generate
controllable spin-polarized supercurrents with a single ferromagnetic layer,
compared to magnetically textured JJs.
To deepen our analysis, we have also compared the outcomes deriving from
the application of an external magnetic field to the experimental samples
and the role of spin-mixing and disorder effect in the theoretical model. In
our case, these latter mimic the magnetic ordering provided by the exter-
nal magnetic field, allowing to find a relation between the effects resulting
from the slight modifications arising in the microscopic structure of the bar-
rier [176, 204–206] and the compresence of impurities, exchange field fluctu-
ations, and spin-orbit coupling in the simulations.
Therefore, these systems may be used as a reference to classify peculiar fea-
tures in a variety of structures and help orient experiments. Our study, in
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fact, provides a more complex and realistic description of the thin ferromag-
netic insulator barrier, which is necessary to progress towards the realization
of functional interfaces for extremely advanced devices.



Appendix A

Hamiltonian and GF of the striped system

In this section we illustrate the preliminary steps preceding the application
of the RGF technique for the solution of Gor’kov equation (Eq.(2.31)), that
we can summarize as follows:

• definition of the Hamiltonian matrix of a single stripe;

• definition of the Hamiltonian matrix of the whole barrier (once all the
single stripes have been defined);

• calculation of the GF matrix structure of the single stripe;

• calculation of the GF matrix structure of the whole barrier;

• definition of the surface GFs of the left and right superconducting leads.

We recall here that we denote with L the length of the barrier (along the
x-direction) and with W its width (along y), as defined in Chapter 2.
Thus, we begin by defining the Hamiltonian of a single stripe. For simplicity,
we can take as an example a generic two-site stripe, i.e. when the width of the
lattice isW = 2, in the clean situation. By using the following representation
ψ† =

[
c†1↑, c

†
1↓, c

†
2↑, c

†
2↓, c1↑, c1↓, c2↑, c2↓

]
, we can write the 4W × 4W stripe

matrix Hamiltonian in the Nambu ⊗ spin space as
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Ȟstripe j =



−µ+ h 0 −ty iαy 0 −∆ 0 0

0 −µ− h iαy −ty ∆ 0 0 0

−ty −iαy −µ+ h 0 0 0 0 −∆

−iαy −ty 0 −µ− h 0 0 ∆ 0

0 ∆∗ 0 0 µ− h 0 ty iαy

−∆∗ 0 0 0 0 µ+ h iαy ty

0 0 0 ∆∗ ty −iαy µ− h 0

0 0 −∆∗ 0 −iαy ty 0 µ+ h



(A.1)

where ty and αy are, respectively, the hopping and SOC parameters between
sites in the same stripe; ty provides the particle a non-zero probability of
hopping from one site to one of the nearest neighbors. At the same time αy
provides the hopping from one site to one of the nearest neighbors with a
change in its spin. Hence, the spin-orbit interaction generates spin-mixing
effects. Note that in the description of the model presented in the Chapter
2 we considered the hopping and SOC constants equal for both x and y
directions (i.e. αx = αy = α and tx = ty = t).
From the general form of the stripe Hamiltonian expressed by Eq.(A.1), we
can deduce that the Hamiltonian describing a superconducting stripe (under
the assumption of having no magnetization neither SOC within S) can be
obtained by setting h = 0 and αy = 0, while for a normal stripe in the
presence of exchange field and SOC we choose ∆ = 0.
The next step consists of the introduction of the Hamiltonian describing the
whole barrier. In particular, this requires taking into account the interactions
that couple sites belonging to different stripes, between nearest-neighbor sites
along the x-direction. Since this is a nearest-neighbor tight-binding model,
only "horizontal" hoppings are allowed. In our description of the barrier
in terms of stripes, we include all these scattering processes by using the
4W × 4W matrix Ť± connecting adjacent stripes and defined by Eq.(2.33),
that we report here for convenience

Ť± =


−t ∓α 0 0 . . .
±α −t 0 0 . . .
. . . . . . . . . . . . . . .
0 0 . . . t ±α
0 0 . . . ∓α t

 , (A.2)

meaning that the Ť± matrices couple in the same way all the adjacent stripes,
from the left- and right-hand side, respectively.
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At this point, we can define the Hamiltonian matrix of the whole barrier as

H =


Ȟstripe 1 Ť+ 0 0 . . .

Ť− Ȟstripe 2 Ť+ 0 . . .

0 Ť− Ȟstripe 3 Ť+ . . .
. . . . . . . . . . . . . . .

 . (A.3)

In particular, since the length of the barrier is L, H consists of L rows and
L columns. Each element is a 4W × 4W matrix, hence, H results to be a
4WL× 4WL matrix.
Therefore, in order to model the barrier of a Josephson junction, we will use
Eq.(A.3) by setting ∆ = 0.

Let us now discuss the third point of the list we have mentioned at the
beginning of this section, namely the definition of the structure of the GF
matrices, by starting from the GF of the single stripes.
We can formally define the GF of the single isolated stripe in the Matsubara

representation as Ǧ0
j,j(ωn) =

[
iωn1̌− Ȟ0

j,j

]−1
, where Ȟ0

j,j = Ȟstripe j is the
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Figure 1: Schematic representation of propagators that will be used to construct
the GFs of the stripe. This example refers to the case of 2 sites within
the stripe (W = 2).
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Hamiltonian of the j-th stripe, i.e. the j-th diagonal element of the Hamil-
tonian in Eq.(A.3). Ǧ0

j,j consists in a 4W ×4W matrix in the Nambu ⊗ spin
space. With a similar notation, we indicate with Ǧj,j the GF of the j-th
stripe when connected to both the S leads.
Furthermore, for our explanation, we indicate with Ǧk,k′ (with k, k′ = 1, · · · ,W )
the possible different propagators between sites within the considered stripe.
As before, let us consider as an example a single stripe formed by 2 sites
along the y-direction (i.e. W = 2). In this case, as schematically illustrated
in Fig.1, we can identify four different propagators Ǧk,k′ (with k, k′ = 1, 2):
Ǧ1,1, Ǧ1,2, Ǧ2,1, Ǧ2,2. Each of these has a 2 × 2 block structure, where, in
particular, we can identify four different principal blocks: Ĝ, F̂ , −F̂ †, −Ĝ†.
Then, in turn, each block is a 2× 2 GF matrix in the spin space.
At this point, by rearranging the 2 × 2 blocks, we can proceed with the
construction of the GF describing the whole stripe, whose schematic repre-
sentation is illustrated in Fig.2; here, the constituent 2 × 2 blocks of each
certain Ǧk,k′ matrix are represented by elements with the same colors.
In this context, it is interesting to notice that both the GFs representing the
propagators Ǧk,k′ and the whole stripe exhibit the same structure in terms
of the four principal blocks G, F , −F †, −G†. Indeed, for the GF matrix
describing the stripe, we can distinguish four 2W × 2W macro-blocks (de-
picted by the grey areas in Fig.2).
This way of representing the GFs is useful in the calculation of the correla-
tions functions at a certain stripe within the barrier and, at the same time,

𝐺"!! 𝐹"!! 𝐹"!"

𝐺""! 𝐺""" 𝐹""! 𝐹"""

−𝐹"!!
# −𝐹"!"

# −𝐺"!!
# −𝐺"!"

#

−𝐹""!
# −𝐹"""

# −𝐺""!
# −𝐺"""

#

𝑐!↑
#

𝑐!↓

𝑐!↓
#

𝑐!↑

𝑐%↑
#

𝑐%↓
#

𝑐%↓

𝑐%↑

𝑐!↓𝑐!↑ 𝑐%↑ 𝑐%↓ 𝑐!↑
# 𝑐!↓

# 𝑐%↑
# 𝑐%↓

#

𝐺#&,&( 𝜔) =

𝐺"!"

Figure 2: Block representation of the single-stripe Green’s function for a stripe
with 2 sites along y-direction. Different colors stand for different
propagators Ǧ1,1, Ǧ1,2, Ǧ2,1, Ǧ2,2, whose structure is depicted in
Fig.1. This scheme shows how we construct the GF of the single stripe.
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provides a graphical explanation of the application of RGF method.
Once we have the GF of the stripes, we can reconstruct the GF of the whole
barrier, by applying the RGF technique and using as input the surface GFs
of the left and right superconducting lead, as illustrated in Chapter 2.
The GF of the barrier will be represented by a tridiagonal matrix with the
GFs of the stripes Ǧj,j as diagonal elements and the GFs that connect each
stripe with the adjacent ones Ǧj,j±1 on the lower and upper diagonal.
In Fig.3, we give a pictorial representation of the GF structure of the whole
junction, where the two highlighted blocks represent the surface GFs de-
scribing the S leads, which we calculate separately as illustrated in Chapter
2.
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Figure 3: Block representation of the SFS junction GF. Each block consists in a
4W × 4W matrix. With Ǧ0,0 and ǦL+1,L+1 we indicate the surface
GF of the left and right S lead, respectively.



Appendix B

Surface Green’s function of a semi-infinite normal
lead

Green’s functions of certain lattice systems can be obtained in analytical
form, as in the case of semi-infinite lattices [94]. In the study of systems
made up of two leads and one central device, e.g. the Josephson junctions,
the two electrodes are usually modeled by semi-infinite lattices. In view of
this, to be thorough, in this section we give a derivation of the surface GF of
a semi-infinite normal lead, following the Ref. [94]. The extension of these
calculations to the superconducting case is rather complicated and, there-
fore, in this work we only reported the results of Ref. [89].

The 1D chain

𝑚! 𝑚!+1

𝑡

Figure 4: The semi-infinite 1D linear chain, starting at site m0 and extending
infinitely to the right. t is the hopping parameter between
nearest-neighbor sites.

Let us start by considering the case of one dimensional (1D) tight-binding
Hamiltonian of a semi-infinite linear chain including nearest neighbor hop-
ping; here we consider that the chain terminates at longitudinal site m0, and
extends infinitely to the right, along the x direction, as illustrated in Fig.4.
Thus, we define the Hamiltonian of the semi-infinite 1D chain as
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Hsemi
1D =

∞∑
m=m0

εmc
†
mcm + tmx c

†
mcm+1 + (tm−1x )∗c†mcm−1 (B.4)

where εm is the on-site energy and tmx = t = −~2
2m∗

1
a2x

is the hopping parame-
ter between nearest-neighbor sites, considered the same all along the chain.
Here, ax is the lattice constant in the x direction and m∗ is the electron
effective mass; in particular, such a form of the hopping parameter ensures
to recover the free-particle case in the continuum limit.
The Hamiltonian in Eq.(B.4) is written in second quantization using the
fermionic site creation (annhilation) operator cm (c†m), obeying the following
anticommutation relations: {cm, c†m′} = δmm′ , {c†m, c†m′} = {cm, cm′} = 0.
For the Hamiltonian in Eq.(B.4) the eigenvalue problem may be written as
Hsemi

1D φµm = Eµφµm, which substituted in Eq.(B.4) gives

t∗φµm−1 + tφµm+1 − (Eµ − 2t)φµm = 0 . (B.5)

We can choose as solutions the normalized real-space eigenstates

φµm =

√
2

π
sin(µ(m−m0 + 1)) , (B.6)

obtained by imposing the hard-wall boundary condition at the left end of
the chain: φµm0−1 ≡ 0.
Then, substituting Eq.(B.6) into Eq.(B.5) we obtain the energy dispersion
relation relative to Eq.(B.4)

Eµ = −2t(1− cosµ) = εm + 2t cosµ , (B.7)

where we introduced the variable µ = kµx · ax, as the product between the
wave vector and the lattice constant in the longitudinal direction.
At this point, we can define the Green’s function of the semi-infinite 1D
linear chain as

G(m,m′, E) =

∫ π

0
dµ

φµm(φµm′)
∗

E − Eµ + iη
, (B.8)

where η is an infinitesimal real positive quantity which is needed for conver-
gence reasons.
Considering that we want to calculate the surface GF at site m = m′ = m0,
the Eq.(B.8) becomes
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Gm0(E) =
2

π

∫ π

0
dµ

sin2 µ

E − Eµ + iη
. (B.9)

The elliptical integral in Eq.(B.9) can be solved by application of the residue
theorem in the complex plane, integrating on the unitary circle. To do this,
we firstly perform the following change of variables

eiµ = w , dµ =
1

iw
dw , (B.10)

which allows us to write the Eq.(B.9) as

Gm0 =
1

2πit

∫
dw

(w2 − 1)2

w2

1

w2 − 2bw + 1
, (B.11)

where we have defined b = (E+iη−εm)
2t .

The integrating function in Eq.(B.11) has a double pole at w0 = 0 and two
single poles at w1,2 = b ∓

√
b2 − 1. Because only w1 is within the chosen

integration path (i.e. the unitary circle), we can apply the residue theorem
as follows:

Gm0 =
1

2πit
2πi [Res(f, w1) +Res(f, w0)] , (B.12)

where

Res(f, w1) = lim
w−→w1

(w2 − 1)2

w2

1

w − w2
=

(w2
1 − 1)2

w2
1(w1 − w2)

Res(f, w0) = lim
w−→w0

d

dw

(w2 − 1)2

(w − w1)(w − w2)
=
w1 + w2

w2
1 + w2

2

.

(B.13)

Therefore, after substituting w1,2 and a few algebraic steps, we obtain

Gm0 =
1

t

(
b−

√
b2 − 1

)
. (B.14)

Since we are mainly interested in retarded Green’s functions, when express-
ing Gm0 in Eq.(B.14) in terms of energy we have to take into account the
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requirement ImG(E) 6 0 in the limit of η −→ 0+. Thus, after substituting

b =
E − εm

2t
, we can rewrite the surface GF of the 1D semi-infinite chain as

Gm0(E) =



(E − εm)

2t2
+

1

2t2

√
(E − εm)2 − 4t2, for E − εm ≤ −2t

(E − εm)

2t2
− i

2t2

√
4t2 − (E − εm)2, for |E − εm| < 2t

(E − εm)

2t2
− 1

2t2

√
(E − εm)2 − 4t2, for E − εm ≥ 2t .

(B.15)

The 2D lattice

We can generalize the procedure explained in the case of the 1D semi-infinite
chain to the 2D tight-binding lattice (Fig.5). Thus, denoting with x the
longitudinal direction, parallel to transport, and with y the transverse one,
the general form of the lead Hamiltonian is then given as [94]

Hsemi
2D (m0) =

∞∑
m=m0

N∑
n=1

[εmnc
†
mncmn + tmnx c†mncm+1,n+

tmny c†mncm,n+1 +
(
tm−1,nx

)∗
c†mncm−1,n +

(
tm,n−1y

)∗
c†mncm,n−1]

(B.16)

where m and n are, respectively, the indices of the lattice position in the
longitudinal and transverse direction, tmnx (tmny ) is the hopping energy onto
site (m,n) from its longitudinal x (transverse y) neighbor and, lastly, εmn
represents the on-site energy [94]. As for the 1D case, we properly define the
hopping energies as 

tx = −~2
2m∗

1
a2x

ty = −~2
2m∗

1
a2y
,

(B.17)

where ax (ay) is the lattice constant in the x (y) direction and m∗ is the
electron effective mass.
Again, we consider the hopping energy uniform along each direction, namely
tmnx = tx (tmny = ty). This choice corresponds to consider an equally spaced
grid in both directions.
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Figure 5: The semi-infinite 2D lattice, with site indices n = 1, · · · , N and
m = m0, · · · ,∞. tx and ty are the hopping parameters between
nearest-neighbor sites in the x and y direction, respectively.

At this point, we start solving the time-independent Schrödinger equation
to obtain eigenvalues and eigenstates of our system. For the Hamiltonian in
Eq.(B.16) the eigenvalue problem may be written as :

Hsemi |Ψµν〉 = Eµν |Ψµν〉 , (B.18)

where µ and ν are respectively the longitudinal and transverse quantum
numbers of the system, and Eµν is the energy measured with respect to the
bottom of the conduction band.
The eigenstates may be expanded as follow

|Ψµν〉 =
∑
mn

uµνmnc
†
mn |0〉 , (B.19)

where |0〉 is the vacuum state and the expansion coefficients are given by:
uµνmn = 〈0| cmn |Ψµν〉. Substituting Eq.(B.19) in the Eq.(B.18), we find a set
of coupled equations for the coefficients uµνmn

t∗xu
µν
m−1,n + txu

µν
m+1,n + t∗yu

µν
m,n−1 + txu

µν
m,n+1 = (Eµν − εmn)uµνmn , (B.20)

where we are we implicitly assuming m > m0. As a further simplification,
we suppose that the eigenvalue problem has a separable solution. Hence, we
can divide the dependence on the indices (m,n) and (µ,ν) in the expressions
for the eigenvalue energies Eµν and coefficients uµνmn

uµνmn = φµm · χνn, Eµν = Eµ + Eν , (B.21)

where φµm and χνn represent the longitudinal and transverse wave function,
respectively.
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Therefore, the Eq.(B.20) splits into longitudinal and transverse parts:

t∗xφ
µ
m−1 + txφ

µ
m+1 − (Eµ − 2tx)φ µ

m = 0

t∗yχ
ν
n−1 + tyχ

ν
n+1 − (Eν − 2ty)χ

ν
n = 0.

(B.22)

As for the 1D chain, also for the 2D semi-infinite lattice, in order to find
a solution for φµm and χνn, we choose functions that satisfy the hard-wall
boundary conditions, i.e. the wave-functions must vanish at the left-end
m = m0 − 1 and at the lateral edges of the lead n = 0, n = N + 1. Hence,
in addition to the longitudinal wave function we have also used in the 1D
case φµm =

√
2
π · sin (µ (m−m0 + 1)), with µ = kµx · ax and longitudinal

energy dispersion relation Eµ = −2tx · (1− cosµ), in the generalization to
the 2D lattice we have to add the conditions for the transverse wave function
χν0 ≡ χνN+1 ≡ 0, yielding

χνn =

√
2

N + 1
· sin

(
πνn

N + 1

)
; (B.23)

with ν = 1, . . . , N as discrete mode number of the transverse wave function.
For the energy dispersion relation, after substituting the Eq.(B.23) into the
second of Eqs.(B.22), we obtain

Eν = −2ty ·
(

1− cos

(
πν

N + 1

))
. (B.24)

Therefore, the total energy dispersion relation reads:

Eµν = −2 (tx + ty) + 2tx cosµ+ 2ty cos

(
πν

N + 1

)
, (B.25)

and the solutions of the time-independent Schrödinger equation are:

|Ψµν〉 =
∑
mn

φµm χ
ν
n c
†
mn |0〉 . (B.26)

With the above definition of the eigenstates, the retarded Green’s function
of the system can be written as

G
(
m,n,m′, n′;E

)
= Gm,m′

(
n, n′

)
=
∑
µν

c†mn |Ψµν〉 〈Ψµν | cm′,n′
E − Eµν + iη

. (B.27)

Inserting the known eigenstates in Eq.(B.26) into Eq.(B.27), the GF becomes

Gm,m′
(
n, n′, E

)
=

∫ π

0
dµ

N∑
ν=1

φµm
(
φµm′
)∗
χνn
(
χνn′
)∗

E − Eµν + iη
. (B.28)
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Since we are interested in calculating the surface Green’s function of the
lead, we only look at GF obtained for m = m′ = m0

Gm0

(
n, n′, E

)
=

N∑
ν=1

χνn (χνn′)
∗ · 2

π

∫ π

0
dµ

sin2 µ

E − (Eµ + Eν) + iη
= Gsemi .

(B.29)
Defining the parameters p and q as follows

p = E + iη + 2 (tx + ty)− 2ty cos

(
πν

N + 1

)
, (B.30)

q = −2tx ,

the integral over the continuous variable µ in Eq.(B.29) has the same form
as that calculated for the 1D chain (Eq.(B.9)) and may be evaluated analo-
gously, obtaining

2

π

∫ π

0
dµ

sin2 (µ)

p+ q cosµ
=

2p

q2

(
1−

√
1− q2

p2

)
= G̃(ν) . (B.31)

Hence, the final expression for the surface Green’s function of the lead is
obtained by substituting G̃(ν) in the Eq.(B.29)

Gsemi =
2

N + 1

N∑
ν=1

sin

(
πνn

N + 1

)
sin

(
πνn′

N + 1

)
G̃(ν) . (B.32)

We can thus notice that, the lattice Green’s function in Eq.(B.29) may be
written as a transformation of G̃(ν) if we introduce a transformation matrix
U , whose columns are simply the transverse wave functions χνn [94]

U ≡
(
χ1
n |χ2

n | · · · |χNn
)
. (B.33)

Therefore, the lattice Green’s function may then be expressed as

Gsemi = UG̃(ν)U † , (B.34)

where it can be shown that the U matrices are unitary (UU † = U †U = 1).
Thus, Eq.(B.34) defines the unitary transformation that converts the Green’s
function G̃(ν) in the transverse mode representation into Gsemi in the site
representation (or vice versa, G̃(ν) = U †GsemiU).
We conclude this section by noticing that, by making the parameters p and q
(Eqs.(B.30)) explicit, it is possible to re-express the Eq.(B.31) as a function
of energy, yielding

G̃(ν,E) =
(E − εν)

2t2x
±

√
(E − εν)2

4t4x
− 1

t2x
, (B.35)
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where we defined εν = −2(tx + ty) + 2ty cos

(
πν

N + 1

)
.

Finally, the condition of considering the imaginary part of the retarded GF
as negative, ImG ≤ 0, allows to eliminate the ambiguity in the sign in front
of the square root, obtaining

G̃(ν,E) =



(E − εν)

2t2x
+

√
(E − εν)2

4t4x
− 1

t2x
, for E − εν ≤ −2tx

(E − εν)

2t2
− i

√
1

t2x
− (E − εν)2

4t4x
, for |E − εν | < 2tx

(E − εν)

2t2x
−

√
(E − εν)2

4t4x
− 1

t2x
, for E − εν ≥ 2tx ,

(B.36)

showing the analogy with Eqs.(B.15) obtained in the 1D case.



Bibliography

[1] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of supercon-
ductivity,” Phys. Rev., vol. 108, pp. 1175–1204, Dec 1957.

[2] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Microscopic theory of
superconductivity,” Phys. Rev., vol. 106, pp. 162–164, Apr 1957.

[3] L. N. Cooper, “Bound electron pairs in a degenerate fermi gas,” Phys.
Rev., vol. 104, pp. 1189–1190, Nov 1956.

[4] B. T. Matthias, H. Suhl, and E. Corenzwit, “Spin exchange in super-
conductors,” Phys. Rev. Lett., vol. 1, pp. 152–152, Aug 1958.

[5] P. W. Anderson and H. Suhl, “Spin alignment in the superconducting
state,” Phys. Rev., vol. 116, pp. 898–900, Nov 1959.

[6] H. Suhl and B. T. Matthias, “Impurity scattering in superconductors,”
Phys. Rev., vol. 114, pp. 977–988, May 1959.

[7] R. Meservey and P. Tedrow, “Spin-polarized electron tunneling,”
Physics Reports, vol. 238, pp. 173–243, Mar. 1994.

[8] A. A. Abrikosov and L. P. Gor’kov, “Contribution to the theory of
superconducting alloys with paramagnetic impurities,” Zhur. Eksptl’.
i Teoret. Fiz., vol. 39, 12 1960.

[9] B. S. Chandrasekhar, “A note on the maximum critical field of high-
field superconductors,” Applied Physics Letters, vol. 1, pp. 7–8, Sept.
1962.

[10] A. M. Clogston, “Upper limit for the critical field in hard supercon-
ductors,” Phys. Rev. Lett., vol. 9, pp. 266–267, Sep 1962.

[11] G. Sarma, “On the influence of a uniform exchange field acting on
the spins of the conduction electrons in a superconductor,” Journal of
Physics and Chemistry of Solids, vol. 24, pp. 1029–1032, Aug. 1963.

[12] K. Maki and T. Tsuneto, “Pauli paramagnetism and superconducting
state,” Progress of Theoretical Physics, vol. 31, pp. 945–956, June 1964.

107



108 BIBLIOGRAPHY

[13] P. G. De Gennes, “Boundary effects in superconductors,” Rev. Mod.
Phys., vol. 36, pp. 225–237, Jan 1964.

[14] G. Deutscher and P. G. de Gennes, “Proximity effects,” pp 1005-34 of
Superconductivity. Vols. 1 and 2. Parks, R. D. (ed.). New York, Marcel
Dekker, Inc., 1969., 10 1969.

[15] A. I. Buzdin, “Proximity effects in superconductor-ferromagnet het-
erostructures,” Rev. Mod. Phys., vol. 77, pp. 935–976, Sep 2005.

[16] Y. A. Izyumov, Y. N. Proshin, and M. G. Khusainov, “Com-
petition between superconductivity and magnetism in ferromag-
net/superconductor heterostructures,” Physics-Uspekhi, vol. 45,
pp. 109–148, feb 2002.

[17] A. A. Golubov, M. Y. Kupriyanov, and E. Il’ichev, “The current-phase
relation in josephson junctions,” Rev. Mod. Phys., vol. 76, pp. 411–469,
Apr 2004.

[18] I. F. Lyuksyutov and V. L. Pokrovsky, “Ferromagnet-superconductor
hybrids,” Advances in Physics, vol. 54, pp. 67–136, Jan 2005.

[19] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, “Odd triplet super-
conductivity and related phenomena in superconductor-ferromagnet
structures,” Rev. Mod. Phys., vol. 77, pp. 1321–1373, Nov 2005.

[20] E. A. Demler, G. B. Arnold, and M. R. Beasley, “Superconducting
proximity effects in magnetic metals,” Phys. Rev. B, vol. 55, pp. 15174–
15182, Jun 1997.

[21] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, “Long-range proxim-
ity effects in superconductor-ferromagnet structures,” Phys. Rev. Lett.,
vol. 86, pp. 4096–4099, Apr 2001.

[22] A. Bagrets, C. Lacroix, and A. Vedyayev, “Theory of proximity effect in
superconductor/ferromagnet heterostructures,” Phys. Rev. B, vol. 68,
p. 054532, Aug 2003.

[23] F. Perez-Willard, J. C. Cuevas, C. Surgers, P. Pfundstein, J. Kopu,
M. Eschrig, and H. v. Lohneysen, “Determining the current polariza-
tion in al/co nanostructured point contacts,” Phys. Rev. B, vol. 69,
p. 140502, Apr 2004.

[24] V. T. Petrashov, I. A. Sosnin, I. Cox, A. Parsons, and C. Troadec, “Gi-
ant mutual proximity effects in ferromagnetic/superconducting nanos-
tructures,” Phys. Rev. Lett., vol. 83, pp. 3281–3284, Oct 1999.



BIBLIOGRAPHY 109

[25] T. Kontos, M. Aprili, J. Lesueur, and X. Grison, “Inhomogeneous su-
perconductivity induced in a ferromagnet by proximity effect,” Phys.
Rev. Lett., vol. 86, pp. 304–307, Jan 2001.

[26] P. Fulde and R. A. Ferrell, “Superconductivity in a strong spin-
exchange field,” Phys. Rev., vol. 135, pp. A550–A563, Aug 1964.

[27] A. Larkin and Y. Ovchinnikov, “Nonuniform state of superconductors,”
Zh.Eksp.Teor.Fiz. 47 (1964) 1136-1146, Sov.Phys.JETP 20 (1965)
762, 1964.

[28] A. Buzdin, “π-junction realization due to tunneling through a thin
ferromagnetic layer,” Journal of Experimental and Theoretical Physics
Letters, vol. 78, p. 583, Nov 2003.

[29] L. Bulaevskii, V. Kuzii, and S. A.A., “Superconducting system with
weak coupling to the current in the ground state,” JETP Lett., vol. 25,
1977.

[30] V. V. Ryazanov, V. A. Oboznov, A. Y. Rusanov, A. V. Vereten-
nikov, A. A. Golubov, and J. Aarts, “Coupling of two superconductors
through a ferromagnet: Evidence for a π junction,” Phys. Rev. Lett.,
vol. 86, pp. 2427–2430, Mar 2001.

[31] V. A. Oboznov, V. V. Bol’ginov, A. K. Feofanov, V. V. Ryazanov, and
A. I. Buzdin, “Thickness dependence of the josephson ground states
of superconductor-ferromagnet-superconductor junctions,” Phys. Rev.
Lett., vol. 96, p. 197003, May 2006.

[32] H. Sellier, C. Baraduc, F. m. c. Lefloch, and R. Calemczuk,
“Temperature-induced crossover between 0 and π states in s/f/s junc-
tions,” Phys. Rev. B, vol. 68, p. 054531, Aug 2003.

[33] A. Buzdin and I. Baladie, “Theoretical description of ferromagnetic
π junctions near the critical temperature,” Phys. Rev. B, vol. 67,
p. 184519, May 2003.

[34] T. Kontos, M. Aprili, J. Lesueur, F. Genêt, B. Stephanidis, and
R. Boursier, “Josephson junction through a thin ferromagnetic layer:
Negative coupling,” Phys. Rev. Lett., vol. 89, p. 137007, Sep 2002.

[35] H. Sellier, C. Baraduc, F. Lefloch, and R. Calemczuk, “Half-integer
shapiro steps at the 0−π crossover of a ferromagnetic josephson junc-
tion,” Phys. Rev. Lett., vol. 92, p. 257005, Jun 2004.

[36] L. B. Ioffe, M. V. Feigel’man, A. Ioselevich, D. Ivanov, M. Troyer,
and G. Blatter, “Topologically protected quantum bits using josephson
junction arrays,” Nature, vol. 415, pp. 503–506, Jan 2002.



110 BIBLIOGRAPHY

[37] T. Ortlepp, T. Ortlepp, A. Ariando, O. Mielke, C. Verwijs, K. Foo,
H. Rogalla, F. Uhlmann, and J. Hilgenkamp, “Flip-flopping fractional
flux quanta,” Science, vol. 312, no. 5779, pp. 1495–, 2006. Originally
published in Science Express on 20 April 2006.

[38] J. Baselmans, A. Morpurgo, B. van Wees, and T. Klapwijk, “Tun-
able supercurrent in superconductor/normal metal/superconductor
josephson junctions,” Superlattices and Microstructures, vol. 25, no. 5,
pp. 973–982, 1999.

[39] T. Yamashita, K. Tanikawa, S. Takahashi, and S. Maekawa, “Super-
conducting π qubit with a ferromagnetic josephson junction,” Phys.
Rev. Lett., vol. 95, p. 097001, Aug 2005.

[40] T. Yamashita, S. Kim, H. Kato, W. Qiu, K. Semba, A. Fujimaki, and
H. Terai, “π phase shifter based on nbn-based ferromagnetic joseph-
son junction on a silicon substrate,” Scientific Reports, vol. 10, no. 1,
p. 13687, 2020.

[41] M. Eschrig, T. Lofwander, T. Champel, J. C. Cuevas, J. Kopu,
and G. Schon, “Symmetries of pairing correlations in superconductor-
ferromagnet nanostructures,” Journal of Low Temperature Physics,
vol. 147, pp. 457–476, Feb 2007.

[42] M. Eschrig and T. Lofwander, “Triplet supercurrents in clean and dis-
ordered half-metallic ferromagnets,” Nature Physics, vol. 4, p. 138, Jan
2008.

[43] T. Löfwander, R. Grein, and M. Eschrig, “Is cro2 fully spin polar-
ized? analysis of andreev spectra and excess current,” Phys. Rev. Lett.,
vol. 105, p. 207001, Nov 2010.

[44] A. Kadigrobov, R. I. Shekhter, and M. Jonson, “Triplet superconduct-
ing proximity effect in inhomogeneous magnetic materials,” Low Tem-
perature Physics, vol. 27, no. 9, pp. 760–766, 2001.

[45] A. F. Volkov, F. S. Bergeret, and K. B. Efetov, “Odd triplet super-
conductivity in superconductor-ferromagnet multilayered structures,”
Phys. Rev. Lett., vol. 90, p. 117006, Mar 2003.

[46] M. Houzet and A. I. Buzdin, “Long range triplet josephson effect
through a ferromagnetic trilayer,” Phys. Rev. B, vol. 76, p. 060504,
Aug 2007.

[47] M. Eschrig, “Spin-polarized supercurrents for spintronics: A marriage
between superconductivity and ferromagnetism is opening the door for
new spin-based applications,” Physics Today, vol. 64, pp. 43–49, Jan.
2011.



BIBLIOGRAPHY 111

[48] J. W. A. Robinson, J. D. S. Witt, and M. G. Blamire, “Controlled injec-
tion of spin-triplet supercurrents into a strong ferromagnet,” Science,
vol. 329, pp. 59–61, July 2010.

[49] T. S. Khaire, M. A. Khasawneh, W. P. Pratt, and N. O. Birge, “Ob-
servation of spin-triplet superconductivity in co-based josephson junc-
tions,” Phys. Rev. Lett., vol. 104, p. 137002, Mar 2010.

[50] C. Klose, T. S. Khaire, Y. Wang, W. P. Pratt, N. O. Birge, B. J. Mc-
Morran, T. P. Ginley, J. A. Borchers, B. J. Kirby, B. B. Maranville, and
J. Unguris, “Optimization of spin-triplet supercurrent in ferromagnetic
josephson junctions,” Phys. Rev. Lett., vol. 108, Mar. 2012.

[51] J. W. A. Robinson, G. B. Halász, A. I. Buzdin, and M. G. Blamire,
“Enhanced supercurrents in josephson junctions containing nonparallel
ferromagnetic domains,” Phys. Rev. Lett., vol. 104, p. 207001, May
2010.

[52] P. V. Leksin, N. N. Garif’yanov, I. A. Garifullin, Y. V. Fominov,
J. Schumann, Y. Krupskaya, V. Kataev, O. G. Schmidt, and B. Büch-
ner, “Evidence for triplet superconductivity in a superconductor-
ferromagnet spin valve,” Phys. Rev. Lett., vol. 109, p. 057005, Aug
2012.

[53] J. D. S. Witt, J. W. A. Robinson, and M. G. Blamire, “Josephson
junctions incorporating a conical magnetic holmium interlayer,” Phys.
Rev. B, vol. 85, p. 184526, May 2012.

[54] N. Banerjee, C. B. Smiet, R. G. J. Smits, A. Ozaeta, F. S. Bergeret,
M. G. Blamire, and J. W. A. Robinson, “Evidence for spin selectivity of
triplet pairs in superconducting spin valves,” Nature Communications,
vol. 5, Jan. 2014.

[55] J. W. A. Robinson, N. Banerjee, and M. G. Blamire, “Triplet pair
correlations and nonmonotonic supercurrent decay with cr thickness
in nb/cr/fe/nb josephson devices,” Phys. Rev. B, vol. 89, p. 104505,
Mar 2014.

[56] A. I. Buzdin, L. N. Bulaevskii, and S. V. Panyukov, “Critical-current
oscillations as a function of the exchange field and thickness of the
ferromagnetic metal (f) in an s-f-s josephson junction,” JETP Lett.
(Engl. Transl.); (United States), 2 1982.

[57] M. G. Blamire and J. W. A. Robinson, “The interface between super-
conductivity and magnetism: understanding and device prospects,”
Journal of Physics: Condensed Matter, vol. 26, p. 453201, oct 2014.



112 BIBLIOGRAPHY

[58] A. Zaikin, “Quantum coherent effects in josephson junctions and gran-
ular superconductors,” Physica B: Condensed Matter, vol. 152, no. 1,
pp. 251–256, 1988.

[59] T. Kato, A. A. Golubov, and Y. Nakamura, “Decoherence in a su-
perconducting flux qubit with a π-junction,” Phys. Rev. B, vol. 76,
p. 172502, Nov 2007.

[60] A. A. Bannykh, J. Pfeiffer, V. S. Stolyarov, I. E. Batov, V. V.
Ryazanov, and M. Weides, “Josephson tunnel junctions with a strong
ferromagnetic interlayer,” Phys. Rev. B, vol. 79, p. 054501, Feb 2009.

[61] G. Wild, C. Probst, A. Marx, and R. Gross, “Josephson coupling and
fiske dynamics in ferromagnetic tunnel junctions,” The European Phys-
ical Journal B, vol. 78, pp. 509–523, Dec. 2010.

[62] S. Kawabata, S. Kashiwaya, Y. Asano, Y. Tanaka, and A. A. Golubov,
“Macroscopic quantum dynamics of π junctions with ferromagnetic in-
sulators,” Phys. Rev. B, vol. 74, p. 180502, Nov 2006.

[63] S. Kawabata and Y. Asano, “Theory of quantum transport in josephson
junctions with a ferromagnetic insulator,” Low Temperature Physics,
vol. 36, no. 10, pp. 915–919, 2010.

[64] A. K. Feofanov, V. A. Oboznov, V. V. Bol’ginov, J. Lisenfeld, S. Po-
letto, V. V. Ryazanov, A. N. Rossolenko, M. Khabipov, D. Balashov,
A. B. Zorin, P. N. Dmitriev, V. P. Koshelets, and A. V. Ustinov, “Imple-
mentation of superconductor/ferromagnet/ superconductor π-shifters
in superconducting digital and quantum circuits,” Nature Physics,
vol. 6, pp. 593–597, June 2010.

[65] Y. Zhu, A. Pal, M. G. Blamire, and Z. H. Barber, “Superconducting
exchange coupling between ferromagnets,” Nature Materials, vol. 16,
pp. 195–199, Sept. 2016.

[66] K. Senapati, M. G. Blamire, and Z. H. Barber, “Spin-filter josephson
junctions,” Nature Materials, vol. 10, pp. 849–852, Sept. 2011.

[67] R. Caruso, D. Massarotti, G. Campagnano, A. Pal, H. G. Ahmad,
P. Lucignano, M. Eschrig, M. G. Blamire, and F. Tafuri, “Tuning of
magnetic activity in spin-filter josephson junctions towards spin-triplet
transport,” Phys. Rev. Lett., vol. 122, p. 047002, Feb 2019.

[68] H. G. Ahmad, M. Minutillo, R. Capecelatro, A. Pal, R. Caruso, G. Pas-
sarelli, M. G. Blamire, F. Tafuri, P. Lucignano, and D. Massarotti, “Co-
existence and tuning of spin-singlet and triplet transport in spin-filter
josephson junctions,” Communications Physics, vol. 5, Jan. 2022.



BIBLIOGRAPHY 113

[69] Y. Tanaka and S. Kashiwaya, “Theory of josephson effect
in superconductor-ferromagnetic-insulator-superconductor junction,”
Physica C: Superconductivity, vol. 274, no. 3, pp. 357–363, 1997.

[70] M. Tinkham, Introduction to Superconductivity. Dover Publications,
2 ed., jun 2004.

[71] A. Barone and G. Paternò, Physics and applications of the Josephson
effect. UMI Out-of-Print Books on Demand, Wiley, 1982.

[72] C. Bell, G. Burnell, C. W. Leung, E. J. Tarte, D.-J. Kang, and M. G.
Blamire, “Controllable josephson current through a pseudospin-valve
structure,” Applied Physics Letters, vol. 84, pp. 1153–1155, Feb. 2004.

[73] B. Baek, W. H. Rippard, S. P. Benz, S. E. Russek, and P. D. Dressel-
haus, “Hybrid superconducting-magnetic memory device using compet-
ing order parameters,” Nature communications, vol. 5, no. 1, pp. 1–6,
2014.

[74] M. Abd El Qader, R. Singh, S. N. Galvin, L. Yu, J. Rowell, and
N. Newman, “Switching at small magnetic fields in josephson junctions
fabricated with ferromagnetic barrier layers,” Applied Physics Letters,
vol. 104, no. 2, p. 022602, 2014.

[75] B. Baek, W. H. Rippard, M. R. Pufall, S. P. Benz, S. E. Russek,
H. Rogalla, and P. D. Dresselhaus, “Spin-transfer torque switching
in nanopillar superconducting-magnetic hybrid josephson junctions,”
Physical Review Applied, vol. 3, no. 1, p. 011001, 2015.

[76] A. Ustinov and V. Kaplunenko, “Rapid single-flux quantum logic using
π-shifters,” Journal of Applied Physics, vol. 94, no. 8, pp. 5405–5407,
2003.

[77] M. Khabipov, D. Balashov, F. Maibaum, A. Zorin, V. Oboznov,
V. Bolginov, A. Rossolenko, and V. Ryazanov, “A single flux quantum
circuit with a ferromagnet-based josephson π-junction,” Superconduc-
tor Science and Technology, vol. 23, no. 4, p. 045032, 2010.

[78] G. Blatter, V. B. Geshkenbein, and L. B. Ioffe, “Design aspects of
superconducting-phase quantum bits,” Phys. Rev. B, vol. 63, p. 174511,
Apr 2001.

[79] L. B. Ioffe, V. B. Geshkenbein, M. V. FeigelâĂŹman, A. L. FauchÃĺre,
and G. Blatter, “Environmentally decoupled sds -wave josephson junc-
tions for quantum computing,” Nature, vol. 398, pp. 679–681, Apr
1999.



114 BIBLIOGRAPHY

[80] J. B. Majer, J. R. Butcher, and J. E. Mooij, “Simple phase bias for
superconducting circuits,” Applied Physics Letters, vol. 80, no. 19,
pp. 3638–3640, 2002.

[81] D. Balashov, B. Dimov, M. Khabipov, T. Ortlepp, D. Hagedorn, A. B.
Zorin, F.-I. Buchholz, F. H. Uhlmann, and J. Niemeyer, “Passive phase
shifter for superconducting josephson circuits,” IEEE Transactions on
Applied Superconductivity, vol. 17, no. 2, pp. 142–145, 2007.

[82] S. Kawabata, Y. Asano, Y. Tanaka, A. A. Golubov, and S. Kashi-
waya, “Josephson π state in a ferromagnetic insulator,” Phys. Rev.
Lett., vol. 104, p. 117002, Mar 2010.

[83] A. Pal, Z. Barber, J. Robinson, and M. Blamire, “Pure second har-
monic current-phase relation in spin-filter josephson junctions,” Nature
Communications, vol. 5, Feb. 2014.

[84] A. Pal, J. A. Ouassou, M. Eschrig, J. Linder, and M. G. Blamire, “Spec-
troscopic evidence of odd frequency superconducting order,” Scientific
Reports, vol. 7, Jan. 2017.

[85] T. S. Khaire, M. A. Khasawneh, W. P. Pratt, and N. O. Birge, “Ob-
servation of spin-triplet superconductivity in co-based josephson junc-
tions,” Phys. Rev. Lett., vol. 104, p. 137002, Mar 2010.

[86] J. Linder and J. W. A. Robinson, “Superconducting spintronics,” Na-
ture Physics, vol. 11, pp. 307–315, Apr. 2015.

[87] M. Eschrig, “Spin-polarized supercurrents for spintronics: a review of
current progress,” Reports on Progress in Physics, vol. 78, p. 104501,
Sep 2015.

[88] W. M. Martinez, W. P. Pratt, and N. O. Birge, “Amplitude control of
the spin-triplet supercurrent in s/f/s josephson junctions,” Phys. Rev.
Lett., vol. 116, p. 077001, Feb 2016.

[89] A. Furusaki, “Dc josephson effect in dirty sns junctions: Numerical
study,” Physica B: Condensed Matter, vol. 203, no. 3, pp. 214 – 218,
1994.

[90] T. Yamashita, J. Lee, T. Habe, and Y. Asano, “Proximity effect in a
ferromagnetic semiconductor with spin-orbit interactions,” Phys. Rev.
B, vol. 100, p. 094501, Sep 2019.

[91] Y. Asano, “Numerical method for dc josephson current between d-wave
superconductors,” Phys. Rev. B, vol. 63, p. 052512, Jan 2001.



BIBLIOGRAPHY 115

[92] W. Belzig, F. K. Wilhelm, C. Bruder, G. SchÃűn, and A. D. Zaikin,
“Quasiclassical green’s function approach to mesoscopic superconduc-
tivity,” Superlattices and Microstructures, vol. 25, no. 5, pp. 1251–1288,
1999.

[93] C. J. Lambert and R. Raimondi, “Phase-coherent transport in hybrid
superconducting nanostructures,” Journal of Physics: Condensed Mat-
ter, vol. 10, pp. 901–941, feb 1998.

[94] D. K. Ferry, S. Goodnick, and J. Bird, Transport in Nanostructures.
Cambridge University Press, 2009.

[95] A. I. Buzdin and M. Y. Kupriyanov, “Transition temperature of a
superconductor-ferromagnet superlattice,” ZhETF Pisma Redaktsiiu,
vol. 52, p. 1089, Nov. 1990.

[96] Z. Radović, M. Ledvij, L. Dobrosavljević-Grujić, A. I. Buzdin, and
J. R. Clem, “Transition temperatures of superconductor-ferromagnet
superlattices,” Phys. Rev. B, vol. 44, pp. 759–764, Jul 1991.

[97] J. S. Jiang, D. Davidović, D. H. Reich, and C. L. Chien, “Oscillatory
superconducting transition temperature in nb/gd multilayers,” Phys.
Rev. Lett., vol. 74, pp. 314–317, Jan 1995.

[98] L. V. Mercaldo, C. Attanasio, C. Coccorese, L. Maritato, S. L.
Prischepa, and M. Salvato, “Superconducting-critical-temperature os-
cillations in nb/CuMn multilayers,” Phys. Rev. B, vol. 53, pp. 14040–
14042, 6 1996.

[99] A. Sidorenko, V. Zdravkov, A. Prepelitsa, C. Helbig, Y. Luo, S. Gsell,
M. Schreck, S. Klimm, S. Horn, L. Tagirov, and R. Tidecks, “Oscil-
lations of the critical temperature in superconducting nb/ni bilayers,”
Annalen der Physik, vol. 12, pp. 37–50, 3 2003.

[100] I. A. Garifullin, D. A. Tikhonov, N. N. Garif’yanov, L. Lazar,
Y. V. Goryunov, S. Y. Khlebnikov, L. R. Tagirov, K. Westerholt,
and H. Zabel, “Re-entrant superconductivity in the superconduc-
tor/ferromagnet v/fe layered system,” Phys. Rev. B, vol. 66, p. 020505,
Jul 2002.

[101] L. Lazar, K. Westerholt, H. Zabel, L. R. Tagirov, Y. V. Goryunov,
N. N. Garif’yanov, and I. A. Garifullin, “Superconductor/ferromagnet
proximity effect in fe/pb/fe trilayers,” Phys. Rev. B, vol. 61, pp. 3711–
3722, Feb 2000.

[102] Y. Obi, M. Ikebe, H. Wakou, and H. Fujimori, “Superconducting tran-
sition temperature and dimensional crossover in nb/co and v/co mul-



116 BIBLIOGRAPHY

tilayers,” Journal of the Physical Society of Japan, vol. 68, pp. 2750–
2754, Aug. 1999.

[103] L. W. Gruenberg and L. Gunther, “Fulde-ferrell effect in type-ii super-
conductors,” Phys. Rev. Lett., vol. 16, pp. 996–998, May 1966.

[104] Y. Matsuda and H. Shimahara, “Fulde ferrell larkin ovchinnikov state
in heavy fermion superconductors,” JPS Journals, vol. 76, p. 051005,
May 2007.

[105] R. Beyer and J. Wosnitza, “Emerging evidence for FFLO states in
layered organic superconductors (review article),” Low Temperature
Physics, vol. 39, pp. 225–231, Mar. 2013.

[106] K. Machida and H. Nakanishi, “Superconductivity under a ferromag-
netic molecular field,” Phys. Rev. B, vol. 30, pp. 122–133, Jul 1984.

[107] H. Shimahara, “Fulde-ferrell state in quasi-two-dimensional supercon-
ductors,” Phys. Rev. B, vol. 50, pp. 12760–12765, Nov 1994.

[108] N. Dupuis, “Larkin-ovchinnikov-fulde-ferrell state in quasi-one-
dimensional superconductors,” Phys. Rev. B, vol. 51, pp. 9074–9083,
Apr 1995.

[109] M. D. Croitoru and A. I. Buzdin, “Peculiarities of the orbital effect
in the fulde-ferrell-larkin-ovchinnikov state in quasi-one-dimensional
superconductors,” Phys. Rev. B, vol. 89, p. 224506, Jun 2014.

[110] S. Takada, “Superconductivity in a Molecular Field. II: Stability of
Fulde-Ferrel Phase,” Progress of Theoretical Physics, vol. 43, pp. 27–
38, 01 1970.

[111] L. Aslamazov, “Influence of impurities on the existence of an inhomo-
geneous state in a ferromagnetic superconductor,” JETP Lett. (Engl.
Transl.), vol. 28, pp. 773–775, 1969.

[112] L. Bulaevskii, “Magnetic properties of layered superconductors with
weak interaction between the layers,” JETP Lett., vol. 37, pp. 1133–
1136, 1973.

[113] H. Burkhardt and D. Rainer, “Fulde-ferrell-larkin-ovchinnikov state in
layered superconductors,” adp, vol. 506, no. 3, pp. 181–194, 1994.

[114] Buzdin, A. I. and Brison, J. P., “Non-uniform state in 2d superconduc-
tors,” Europhys. Lett., vol. 35, no. 9, pp. 707–712, 1996.

[115] A. F. Andreev, “Thermal conductivity of the intermediate state in
superconductors,” Soviet Physics-JETP, vol. 19, pp. 1228–1232, 1964.



BIBLIOGRAPHY 117

[116] G. Blonder, m. M. Tinkham, and k. T. Klapwijk, “Transition from
metallic to tunneling regimes in superconducting microconstrictions:
Excess current, charge imbalance, and supercurrent conversion,” Phys-
ical Review B, vol. 25, no. 7, p. 4515, 1982.

[117] C. W. J. Beenakker, “Three âĂĲuniversalâĂİ mesoscopic josephson
effects,” Transport Phenomena in Mesoscopic Systems, p. 235âĂŞ253,
1992.

[118] P. De Gennes and E. Guyon, “Superconductivity in" normal" metals,”
Phys. Letters, vol. 3, 1963.

[119] C. W. J. Beenakker and H. van Houten, “Josephson current through
a superconducting quantum point contact shorter than the coherence
length,” Phys. Rev. Lett., vol. 66, pp. 3056–3059, Jun 1991.

[120] A. Zagoskin, Quantum Theory of Many-Body Systems: Techniques and
Applications. Springer Publishing Company, Incorporated, 2nd ed.,
2014.

[121] I. O. Kulik, “Macroscopic Quantization and the Proximity Effect
in S-N-S Junctions,” Soviet Journal of Experimental and Theoretical
Physics, vol. 30, p. 944, Jan. 1969.

[122] B. Bujnowski, D. Bercioux, F. Konschelle, J. Cayssol, and F. S. Berg-
eret, “Andreev spectrum of a josephson junction with spin-split super-
conductors,” EPL (Europhysics Letters), vol. 115, p. 67001, sep 2016.

[123] D. Meschede, Gerthsen Physik. Springer, 24. ed., 2010.

[124] C. Kittel and P. McEuen, Kittel’s Introduction to Solid State Physics.
John Wiley & Sons, 2018.

[125] V. V. Ryazanov, V. A. Oboznov, A. S. Prokofiev, V. V. Bolginov,
and A. K. Feofanov, “Superconductor—ferromagnet—superconductor
-junctions,” Journal of Low Temperature Physics, vol. 136, pp. 385–
400, Sept. 2004.

[126] C. Strunk, C. Sürgers, U. Paschen, and H. v. Löhneysen, “Supercon-
ductivity in layered nb/gd films,” Phys. Rev. B, vol. 49, pp. 4053–4063,
Feb 1994.

[127] J. Aarts, J. M. E. Geers, E. Brück, A. A. Golubov, and R. Coehoorn,
“Interface transparency of superconductor/ferromagnetic multilayers,”
Phys. Rev. B, vol. 56, pp. 2779–2787, Aug 1997.

[128] Y. V. Fominov, N. M. Chtchelkatchev, and A. A. Golubov, “Non-
monotonic critical temperature in superconductor/ferromagnet bilay-
ers,” Phys. Rev. B, vol. 66, p. 014507, Jun 2002.



118 BIBLIOGRAPHY

[129] Y. Obi, M. Ikebe, and H. Fujishiro, “Evidence for zero- and π-phase
order parameters of superconducting Nb/Co tri- and pentalayers from
the oscillatory behavior of the transition temperature,” Phys. Rev.
Lett., vol. 94, p. 057008, Feb 2005.

[130] S. Oh, Y.-H. Kim, D. Youm, and M. R. Beasley, “Spin-orbit scattering
effect on the oscillatory Tc of superconductive/magnetic multilayers,”
Phys. Rev. B, vol. 63, p. 052501, Dec 2000.

[131] Y. Blum, A. Tsukernik, M. Karpovski, and A. Palevski, “Oscillations
of the superconducting critical current in nb-cu-ni-cu-nb junctions,”
Phys. Rev. Lett., vol. 89, p. 187004, Oct 2002.

[132] J. Linder, T. Yokoyama, and A. Sudbø, “Theory of superconduct-
ing and magnetic proximity effect in s/f structures with inhomoge-
neous magnetization textures and spin-active interfaces,” Phys. Rev.
B, vol. 79, p. 054523, Feb 2009.

[133] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, “Josephson current in
superconductor-ferromagnet structures with a nonhomogeneous mag-
netization,” Phys. Rev. B, vol. 64, p. 134506, Sep 2001.

[134] M. Houzet, “Ferromagnetic josephson junction with precessing magne-
tization,” Phys. Rev. Lett., vol. 101, p. 057009, Aug 2008.

[135] F. S. Bergeret and I. V. Tokatly, “Spin-orbit coupling as a source of
long-range triplet proximity effect in superconductor-ferromagnet hy-
brid structures,” Phys. Rev. B, vol. 89, p. 134517, Apr 2014.

[136] L. Lepori, D. Giuliano, A. Nava, and C. A. Perroni, “Interplay be-
tween singlet and triplet pairings in multiband two-dimensional oxide
superconductors,” Phys. Rev. B, vol. 104, p. 134509, Oct 2021.

[137] V. M. Edelstein, “Triplet superconductivity and magnetoelectric effect
near the s-wave-superconductor– normal-metal interface caused by lo-
cal breaking of mirror symmetry,” Phys. Rev. B, vol. 67, p. 020505,
Jan 2003.

[138] S. Takei and V. Galitski, “Microscopic theory for a ferromagnetic
nanowire/superconductor heterostructure: Transport, fluctuations,
and topological superconductivity,” Phys. Rev. B, vol. 86, p. 054521,
Aug 2012.

[139] X. Liu, J. K. Jain, and C.-X. Liu, “Long-range spin-triplet helix in
proximity induced superconductivity in spin-orbit-coupled systems,”
Phys. Rev. Lett., vol. 113, p. 227002, Nov 2014.



BIBLIOGRAPHY 119

[140] F. S. Bergeret and I. V. Tokatly, “Singlet-triplet conversion and
the long-range proximity effect in superconductor-ferromagnet struc-
tures with generic spin dependent fields,” Phys. Rev. Lett., vol. 110,
p. 117003, Mar 2013.

[141] E. Rashba, “Properties of semiconductors with an extremum loop. cy-
clotron and combinational resonance in a magnetic field perpendicular
to the plane of the loop,” Sov. Phys. Solid. State, vol. 2, pp. 1109–1122,
1960.

[142] G. Dresselhaus, “Spin-orbit coupling effects in zinc blende structures,”
Phys. Rev., vol. 100, pp. 580–586, Oct 1955.

[143] J. Linder and A. V. Balatsky, “Odd-frequency superconductivity,” Rev.
Mod. Phys., vol. 91, p. 045005, Dec 2019.

[144] V. L. Berezinskii, “New model of the anisotropic phase of superfluid
he3,” JETP Lett., vol. 20, pp. 287–289, 1974.

[145] A. Balatsky and E. Abrahams, “New class of singlet superconduc-
tors which break the time reversal and parity,” Phys. Rev. B, vol. 45,
pp. 13125–13128, Jun 1992.

[146] E. Abrahams, A. Balatsky, D. J. Scalapino, and J. R. Schrieffer, “Prop-
erties of odd-gap superconductors,” Phys. Rev. B, vol. 52, pp. 1271–
1278, Jul 1995.

[147] A. J. Leggett, “A theoretical description of the new phases of liquid
3He,” Rev. Mod. Phys., vol. 47, pp. 331–414, Apr 1975.

[148] M. Minutillo, R. Capecelatro, and P. Lucignano, “Realization of 0-
π states in superconductor/ferromagnetic insulator/superconductor
josephson junctions: The role of spin-orbit interaction and lattice im-
purities,” Phys. Rev. B, vol. 104, p. 184504, Nov 2021.

[149] L. P. Gor’kov Sov. Phys. JETP, vol. 7, no. 505, 1958.

[150] J. Rammer and H. Smith, “Quantum field-theoretical methods in trans-
port theory of metals,” Rev. Mod. Phys., vol. 58, pp. 323–359, Apr
1986.

[151] T. Ando, “Quantum point contacts in magnetic fields,” Phys. Rev. B,
vol. 44, pp. 8017–8027, Oct 1991.

[152] S. Datta, Electronic Transport in Mesoscopic Systems. Cambridge
Studies in Semiconductor Physics and Microelectronic Engineering,
Cambridge University Press, 1995.



120 BIBLIOGRAPHY

[153] P. A. Lee and D. S. Fisher, “Anderson localization in two dimensions,”
Phys. Rev. Lett., vol. 47, pp. 882–885, Sep 1981.

[154] C. H. Lewenkopf and E. R. Mucciolo, “The recursive green’s funtion
method for graphene,” Journal of Computational Electronics, V. 12,
2013.

[155] I. Žutić, J. Fabian, and S. Das Sarma, “Spintronics: Fundamentals and
applications,” Rev. Mod. Phys., vol. 76, pp. 323–410, Apr 2004.

[156] J. W. A. Robinson, S. Piano, G. Burnell, C. Bell, and M. G. Blamire,
“Critical current oscillations in strong ferromagnetic π junctions,”
Phys. Rev. Lett., vol. 97, p. 177003, Oct 2006.

[157] S. M. Frolov, D. J. Van Harlingen, V. A. Oboznov, V. V. Bolginov,
and V. V. Ryazanov, “Measurement of the current-phase relation of
superconductor/ferromagnet/superconductor π josephson junctions,”
Phys. Rev. B, vol. 70, p. 144505, Oct 2004.

[158] D. Bercioux and P. Lucignano, “Quantum transport in rashba
spin–orbit materials: a review,” Reports on Progress in Physics, vol. 78,
p. 106001, sep 2015.

[159] D. Bercioux, M. Governale, V. Cataudella, and V. M. Ramaglia,
“Rashba effect in quantum networks,” Phys. Rev. B, vol. 72, p. 075305,
Aug 2005.

[160] C. A. Perroni, D. Bercioux, V. M. Ramaglia, and V. Cataudella,
“Rashba quantum wire: exact solution and ballistic transport,” Journal
of Physics: Condensed Matter, vol. 19, p. 186227, Apr. 2007.

[161] I. V. Krive, L. Y. Gorelik, R. I. Shekhter, and M. Jonson, “Chiral sym-
metry breaking and the josephson current in a ballistic superconduc-
torâĂŞquantum wireâĂŞsuperconductor junction,” Low Temperature
Physics, vol. 30, no. 5, pp. 398–404, 2004.

[162] A. A. Reynoso, G. Usaj, C. A. Balseiro, D. Feinberg, and M. Avi-
gnon, “Anomalous josephson current in junctions with spin polarizing
quantum point contacts,” Phys. Rev. Lett., vol. 101, p. 107001, Sep
2008.

[163] Bergeret, F. S. and Tokatly, I. V., “Theory of diffusive josephson junc-
tions in the presence of spin-orbit coupling,” EPL, vol. 110, no. 5,
p. 57005, 2015.

[164] T. Yokoyama, M. Eto, and Y. V. Nazarov, “Anomalous josephson effect
induced by spin-orbit interaction and zeeman effect in semiconductor
nanowires,” Phys. Rev. B, vol. 89, p. 195407, May 2014.



BIBLIOGRAPHY 121

[165] A. Zazunov, R. Egger, T. Jonckheere, and T. Martin, “Anomalous
josephson current through a spin-orbit coupled quantum dot,” Phys.
Rev. Lett., vol. 103, p. 147004, Oct 2009.

[166] M. Alidoust and K. Halterman, “Spontaneous edge accumulation of
spin currents in finite-size two-dimensional diffusive spinâĂŞorbit cou-
pledsfsheterostructures,” New Journal of Physics, vol. 17, p. 033001,
Mar 2015.

[167] G. Campagnano, P. Lucignano, D. Giuliano, and A. Tagliacozzo,
“Spin–orbit coupling and anomalous josephson effect in nanowires,”
Journal of Physics: Condensed Matter, vol. 27, p. 205301, may 2015.

[168] M. Minutillo, D. Giuliano, P. Lucignano, A. Tagliacozzo, and G. Cam-
pagnano, “Anomalous josephson effect in s/so/f/s heterostructures,”
Phys. Rev. B, vol. 98, p. 144510, Oct 2018.

[169] G. Campagnano, P. Lucignano, F. Trani, A. Tagliacozzo, and D. Giu-
liano, “Anomalous josephson effect in nanowires,” in 2017 16th Inter-
national Superconductive Electronics Conference (ISEC), IEEE, June
2017.

[170] M. Alidoust, C. Shen, and I. Zutic, “Cubic spin-orbit coupling and
anomalous josephson effect in planar junctions,” Phys. Rev. B, vol. 103,
p. L060503, Feb 2021.

[171] S. Pal and C. Benjamin, “Quantized josephson phase battery,” EPL
(Europhysics Letters), vol. 126, p. 57002, jul 2019.

[172] A. Brunetti, A. Zazunov, A. Kundu, and R. Egger, “Anomalous joseph-
son current, incipient time-reversal symmetry breaking, and majorana
bound states in interacting multilevel dots,” Phys. Rev. B, vol. 88,
p. 144515, Oct 2013.

[173] A. Buzdin, “Direct coupling between magnetism and superconduct-
ing current in the josephson ϕ0 junction,” Phys. Rev. Lett., vol. 101,
p. 107005, Sep 2008.

[174] F. Konschelle, I. V. Tokatly, and F. S. Bergeret, “Theory of the spin-
galvanic effect and the anomalous phase shift ϕ0 in superconductors
and josephson junctions with intrinsic spin-orbit coupling,” Phys. Rev.
B, vol. 92, p. 125443, Sep 2015.

[175] K. N. Nesterov, M. Houzet, and J. S. Meyer, “Anomalous josephson
effect in semiconducting nanowires as a signature of the topologically
nontrivial phase,” Phys. Rev. B, vol. 93, p. 174502, May 2016.



122 BIBLIOGRAPHY

[176] S. Pal and C. Benjamin, “Tuning the 0 - π josephson junction with a
magnetic impurity: Role of tunnel contacts, exchange coupling, e - e
interactions and high-spin states,” Scientific Reports, vol. 8, Mar. 2018.

[177] J.-C. Wang, G.-Q. Zha, and S.-P. Zhou, “0−π transitions in mesoscopic
josephson junctions with magnetic impurity interlayers,” Physica C:
Superconductivity, vol. 483, pp. 79–81, Dec. 2012.

[178] O. Vavra, S. Gazi, D. S. Golubovic, I. Vavra, J. Derer, J. Verbeeck,
G. Van Tendeloo, and V. V. Moshchalkov, “0 and π phase joseph-
son coupling through an insulating barrier with magnetic impurities,”
Phys. Rev. B, vol. 74, p. 020502(R), Jul 2006.

[179] A. M. Black-Schaffer and A. V. Balatsky, “Odd-frequency super-
conducting pairing in topological insulators,” Phys. Rev. B, vol. 86,
p. 144506, Oct 2012.

[180] J. Cayao, C. Triola, and A. M. Black-Schaffer, “Odd-frequency super-
conducting pairing in one-dimensional systems,” The European Physi-
cal Journal Special Topics, vol. 229, Feb 2020.

[181] T. Löthman, C. Triola, J. Cayao, and A. M. Black-Schaffer, “Disorder-
robust p-wave pairing with odd frequency dependence in normal metal-
conventional superconductor junctions,” 2020.

[182] V. Ambegaokar and A. Baratoff, “Tunneling between superconduc-
tors,” Phys. Rev. Lett., vol. 10, pp. 486–489, Jun 1963.

[183] E. Goldobin, D. Koelle, R. Kleiner, and A. Buzdin, “Josephson junc-
tions with second harmonic in the current-phase relation: Properties
of ϕ junctions,” Phys. Rev. B, vol. 76, p. 224523, Dec 2007.

[184] F. Konschelle, J. Cayssol, and A. I. Buzdin, “Nonsinusoidal current-
phase relation in strongly ferromagnetic and moderately disordered sfs
junctions,” Phys. Rev. B, vol. 78, p. 134505, Oct 2008.

[185] F. S. Bergeret, A. Verso, and A. F. Volkov, “Spin-polarized josephson
and quasiparticle currents in superconducting spin-filter tunnel junc-
tions,” Phys. Rev. B, vol. 86, p. 060506(R), Aug 2012.

[186] D. Sprungmann, K. Westerholt, H. Zabel, M. Weides, and H. Kohlst-
edt, “Evidence for triplet superconductivity in josephson junctions with
barriers of the ferromagnetic heusler alloy cu2MnAl,” Phys. Rev. B,
vol. 82, p. 060505, Aug 2010.

[187] J. P. Cascales, Y. Takamura, G. M. Stephen, D. Heiman, F. S. Berg-
eret, and J. S. Moodera, “Switchable josephson junction based on in-
terfacial exchange field,” Applied Physics Letters, vol. 114, p. 022601,
Jan. 2019.



BIBLIOGRAPHY 123

[188] V. M. Edel’shtein, “Characteristics of the Cooper pairing in two-
dimensional noncentrosymmetric electron systems,” Soviet Journal of
Experimental and Theoretical Physics, vol. 68, p. 1244, June 1989.

[189] N. Banerjee, J. A. Ouassou, Y. Zhu, N. A. Stelmashenko, J. Linder,
and M. G. Blamire, “Controlling the superconducting transition by
spin-orbit coupling,” Phys. Rev. B, vol. 97, p. 184521, May 2018.

[190] H. G. Ahmad, L. D. Palma, R. Caruso, A. Pal, G. P. Pepe, M. G.
Blamire, F. Tafuri, and D. Massarotti, “Critical current suppression
in spin-filter josephson junctions,” Journal of Superconductivity and
Novel Magnetism, vol. 33, pp. 3043–3049, July 2020.

[191] A. Pal and M. G. Blamire, “Large interfacial exchange fields in a thick
superconducting film coupled to a spin filter tunnel barrier,” Phys. Rev.
B 92, 180510(R), 2015.

[192] D. Massarotti, A. Pal, G. Rotoli, L. Longobardi, M. G. Blamire, and
F. Tafuri, “Macroscopic quantum tunnelling in spin filter ferromagnetic
josephson junctions,” Nature Communications, vol. 6, June 2015.

[193] J. S. Moodera, T. S. Santos, and T. Nagahama, “The phenomena of
spin-filter tunnelling,” Journal of Physics: Condensed Matter, vol. 19,
p. 165202, Apr. 2007.

[194] H. G. Ahmad, R. Caruso, A. Pal, G. Rotoli, G. P. Pepe, M. G. Blamire,
F. Tafuri, and D. Massarotti, “Electrodynamics of highly spin-polarized
tunnel josephson junctions,” Phys. Rev. Applied, vol. 13, p. 014017, Jan
2020.

[195] O. Madelung and B. Taylor, Introduction to Solid-State Theory.
Springer Series in Solid-State Sciences, Springer, 1978.

[196] A. und N. D. Mermin, “Solid state physics. von n. w. ashcroft und n. d.
mermin holt, rinehart and winston, new york 1976, XXII, 826 seiten,
$19, 95,” Physik in unserer Zeit, vol. 9, no. 1, pp. 33–33, 1978.

[197] L. Litinskii, “The band structure of hexagonal NbN,” Solid State Com-
munications, vol. 71, pp. 299–305, July 1989.

[198] F. Leuenberger, A. Parge, W. Felsch, K. Fauth, and M. Hessler, “Gdn
thin films: Bulk and local electronic and magnetic properties,” Phys.
Rev. B, vol. 72, p. 014427, Jul 2005.

[199] L. E. Marsoner Steinkasserer, B. Paulus, and N. Gaston, “Hybrid den-
sity functional calculations of the surface electronic structure of gdn,”
Phys. Rev. B, vol. 91, p. 235148, Jun 2015.



124 BIBLIOGRAPHY

[200] P. Wachter and E. Kaldis, “Magnetic interaction and carrier concen-
tration in GdN and GdN1-xOx,” Solid State Communications, vol. 34,
pp. 241–244, Apr. 1980.

[201] C.-g. Duan, R. F. Sabiryanov, J. Liu, W. N. Mei, P. A. Dowben, and
J. R. Hardy, “Strain induced half-metal to semiconductor transition in
gdn,” Phys. Rev. Lett., vol. 94, p. 237201, Jun 2005.

[202] P. Larson and W. R. L. Lambrecht, “Electronic structure of gd pnic-
tides calculated within the LSDA+U approach,” Phys. Rev. B, vol. 74,
p. 085108, Aug 2006.

[203] A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine, “New
perspectives for rashba spin–orbit coupling,” Nature Materials, vol. 14,
pp. 871–882, Aug. 2015.

[204] B. Cullity and C. Graham, Introduction to Magnetic Materials. Wiley,
2011.

[205] T. E. Baker, A. Richie-Halford, and A. Bill, “Long range triplet joseph-
son current and 0-πtransitions in tunable domain walls,” New Journal
of Physics, vol. 16, p. 093048, Sept. 2014.

[206] J.-F. Liu, K. S. Chan, and J. Wang, “Tunable 0-π transition by spin
precession in josephson junctions,” Applied Physics Letters, vol. 96,
p. 182505, May 2010.

[207] T. Maity, H. J. Trodahl, S. Granville, S. Vézian, F. Natali, and B. J.
Ruck, “Magnetoresistance of epitaxial GdN films,” Journal of Applied
Physics, vol. 128, p. 213901, Dec. 2020.


	Index
	Introduction
	Motivation and outline of the thesis

	Interplay between ferromagnetism and superconductivity
	Superconductivity interacting with ferromagnetism: the FFLO state
	Proximity effect
	Features of the proximity effect in the presence of ferromagnetism
	Oscillatory behavior of Tc in S/F systems
	Formation of the  state

	Long-range proximity effect
	Spin-orbit coupling as a source of long-range superconducting pairings

	The Green's functions formalism to describe transport properties of hybrid systems
	Symmetries of pairing correlations

	RGF technique and model Hamiltonian
	RGF technique
	Left Green's Function
	Right Green's Function
	Full Green's Function

	Tight-binding model Hamiltonian
	Transport properties of the SFIS JJ

	Definition of the superconducting surface GFs

	Realization of 0- states in SFIS JJs: the role of spin-orbit interaction and lattice impurities
	Introduction
	Formalism and model parameters
	Tuning of 0, 0- and  regimes in SFIS JJs in the clean limit, by varying the exchange field h
	The role of spin-orbit coupling (SOC) on the switching between 0 and  state in the clean limit
	The dirty regime: the role of lattice impurities in the formation of  JJs
	Analysis of pairing functions
	Conclusion

	Coexistence and tuning of spin-singlet and triplet transport in spin-filter Josephson junctions
	Introduction
	Formalism and model parameters
	2D tight-binding model applied to spin-filter JJs
	Analysis of pairing functions: the Ic(T) as the hallmark of singlet and triplet pairings weight
	Analogy between the effect of an external magnetic field applied to the experimental samples, and the compresence of SOC and impurities in the model
	Conclusion

	General conclusion
	Appendix A
	Hamiltonian and GF of the striped system

	Appendix B
	Surface Green's function of a semi-infinite normal lead
	The 1D chain
	The 2D lattice

	Bibliography

