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SUMMARY

The dramatically growing world population has led to a considerable
increase in the global demand for agricultural products: it is estimated
that to meet worldwide food demand, food production must be doubled
by 2050. This demand, together with the evidence that approximately
half of the soil used for agricultural purposes is moderately or severely
affected by degradation phenomena, such as erosion, salification,
drought, acidification, or compaction, has pushed farmers towards an
intensive agricultural practice. For instance, the use of chemical
fertilizers and pesticides is exponentially increased over the last
decades. Unfortunately, the continuous abuse is negatively impacting
the well-being of man and the environment. Therefore, the great
challenge is to develop an agro-industrial system that is committed to
encouraging sustainable and eco-friendly strategies. One of the best
approaches is the use of the phytomicrobiome, the so-called Plant-
Growth-Promoting Bacteria (PGPB), beneficial soil microorganisms
able to promote the well-being of plants through direct and/or indirect
mechanisms, including nitrogen fixation, the solubilization of phosphate,
the production of phytohormones, the mineralization of soil organic
matter, as well as the inhibition of phytopathogens. However, to fully
benefit from the action of PGPB, it is necessary to deeply understand
the mechanisms through which they act, and to enhance them. In this
framework fits my PhD Thesis, which aims at isolating, identifying, and
characterizing -through the combination of in vitro and in silico
techniques- new promising spore-forming PGPB to be exploited in the
agricultural field. Their application in the form of consortia or
functionalized spores has been investigated.
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RIASSUNTO

L’incessante crescita della popolazione umana degli ultimi decenni ha
comportato un notevole incremento della domanda di cibo a livello
globale, che per poter essere soddisfatta necessita il raddoppio della
produzione agricola entro il 2050. Questo, insieme all’evidenza che
circa la meta del suolo utilizzato a scopo agricolo € moderatamente o
gravemente affetto da degradazione dovuta a fenomeni quali erosione,
salificazione, siccita, acidificazione, contaminazione o compattamento,
ha spinto gli agricoltori verso una pratica di tipo intensivo basata sull’'uso
di elevate quantita di fertilizzanti e pesticidi chimici noti per essere
dannosi per il benessere dell'uomo e dellambiente; infatti, non solo essi
sono capaci di bio-accumularsi all'interno della catena alimentare, ma
pongono anche a rischio gli insetti benefici e il microbiota che popolano
il suolo, alterandone la fertilita e I'acidita. La grande sfida attuale ¢,
dunque, sviluppare un sistema agro-industriale che si impegni a
incentivare strategie sostenibili per limitare i danni ambientali,
economici e sociali legati all’attuale pratica dell’agricoltura intensiva.
Una delle strategie piu accreditate & l'utilizzo del fitomicrobioma, in
particolare dei cosiddetti Plant-Growth-Promoting Bacteria (PGPB),
microorganismi benefici del suolo in grado di promuovere il benessere
delle piante attraverso meccanismi diretti e/o indiretti, come la
fissazione dell’azoto, la solubilizzazione del fosfato, la produzione di
fitormoni, la mineralizzazione della materia organica, e ancora
l'inibizione dei fitopatogeni. Per beneficiare al massimo dell’azione dei
PGPB, ¢ tuttavia necessario comprendere a fondo i meccanismi
attraverso i quali essi agiscono, ed eventualmente potenziarli.
All'interno di questo contesto si inserisce la mia Tesi di Dottorato, che
attraverso lintegrazione di tecniche in vitro e in silico, mira a isolare,
identificare e caratterizzare nuovi promettenti PGPB sporigeni da poter
sfruttare sottoforma di consorzi o spore funzionalizzate. Il mio progetto
di Tesi si suddivide in due parti principali.

Nella Parte | verranno descritti I'isolamento, l'identificazione e la
caratterizzazione (in vitro e in silico) di batteri sporigeni del suolo
prelevati da ambienti estremi quali le saline (Capitolo II, lll). E noto,
infatti, che l'elevata concentrazione di NaCl del suolo sia uno dei
principali fattori limitanti la crescita delle piante: l'utilizzo di PGPB
resistenti a tali condizioni di stress, favorirebbe certamente la crescita
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delle stesse. In aggiunta, l'impiego di microorganismi in grado di
produrre spore, come quelli appartenenti al genere Bacillus, gioverebbe
ulteriormente a tale scopo. Le spore, infatti, recano diversi vantaggi utili
sia per l'applicazione in campo, che per la produzione su scala
industriale, poiché: i) la loro particolare struttura le rende resistenti a
condizioni avverse come elevate temperature, stress meccanici e
chimici; ii) sono sicure per 'uomo e I'ambiente; iii) possono essere
conservate per lunghi periodi, faciltando la formulazione, la
conservazione e il trasporto di eventuali prodotti commerciali; iv) la loro
produzione € semplice ed economica. Alcuni dei microorganismi isolati
hanno mostrato una notevole attivita antifungina (Capitolo IlI). In
particolare, il ceppo B. vallismortis RHFS10 & stato selezionato per la
spiccata capacita di inibire la crescita del fitopatogeno della soia
Macrophomina phaseolina. L'attivita esibita in vitro é stata indagata e in
parte attribuita a metaboliti secondari parzialmente purificati con
tecniche di chimica analitica e identificati mediante spettrometria di
massa. Nel Capitolo IV, in collaborazione con la ditta Agriges s.r.l., &
stata esequita una caratterizzazione preliminare di due Bacilli isolati
dalle saline, B. amyloliquefaciens RHF6 e B. vallismortis RHFS10, e di
alcuni ceppi della stessa ditta, in condizioni di stress da siccita. Lo scopo
era quello di creare dei consorzi di PGPB capaci di alleviare in vitro lo
stress idrico su piante di spinacio (Spinacia oleracea), scelto come
organismo modello. | primi dati raccolti hanno evidenziato come |l
trattamento preliminare dei semi con alcuni dei ceppi utilizzati, e il loro
rispettivo consorzio, abbia portato a miglioramenti della velocita e
dell’efficienza di germinazione, e anche della lunghezza delle radichette
primarie dei germogli, in condizioni standard. Il progetto & stato
purtroppo rallentato dalla pandemia di Covid-19. Sara necessario
proseguire con le indagini per verificare che la capacita del migliore
consorzio in condizioni standard, sia confermata anche in condizioni di
stress idrico.

Il Capitolo V riporta la mia esperienza presso il “Laboratoire de Chimie
Bacterienne” del CNRS di Marsiglia (Francia). In questa occasione ho
imparato a coltivare e manipolare geneticamente il batterio Gram
negativo del suolo Myxococcus xanthus, capace di formare corpi
fruttiferi contenenti myxospore resistenti a condizioni estreme come
I'essicazione, le elevate temperature e lirradiazione UV. | myxobatteri
comprendono diverse specie di micropredatori di molti patogeni delle
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piante; per questo motivo, il loro utilizzo come potenziali PGPB ha
ricevuto recentemente una discreta attenzione. In questo periodo mi
sono occupata dello studio del sistema chemotattico Frz o “frizzy”, che
controlla la frequenza con la quale le cellule cambiano direzione per
riorientarsi nel’ambiente su superfici solide.

La Parte Il di questa Tesi si incentra sul sistema di display basato su
spore di B. subtilis, come organismo modello. Esso, impiegato sia in
forma ricombinante che non ricombinante, sfrutta tutte le caratteristiche
vantaggiose delle spore precedentemente menzionate, e rappresenta
un interessante strumento biotecnologico per la veicolazione di
molecole eterologhe in diversi campi. In questa sezione sara descritto
come si € migliorata I'efficienza di display, sfruttando la temperatura di
produzione delle spore (Capitolo VII). Infatti, € stato recentemente
dimostrato che la struttura superficiale della spora di B. subtilis,
principalmente coinvolta nel processo di display, cambia in relazione
alla temperatura di sporulazione (Capitolo VI). L'idea proposta € quella
di impiegare PGPB sporigeni come matrice per esporre molecole
bioattive utilizzate in sostituzione di agenti chimici per la fertilita del
suolo o per la protezione da fitopatogeni. In tal modo la produzione
agricola beneficerebbe non solo della naturale azione dei PGPB, ma
anche delle molecole che essi trasportano sulla loro superficie.

Nella sezione “Altre collaborazioni” € descritto il processo attraverso
cui e stato sviluppato un consorzio batterico col fine di produrre
bioplastiche nella forma di Poliidrossialcanoati (PHA), a partire da
materiale di scarto agro-industriale, nel dettaglio l'inulina (Capitolo
VIII), un polisaccaride di fruttosio di cui sono ricche le radici di molte
piante, come il cardo o il carciofo, che spesso rappresentano uno scarto
del processo industriale.
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CHAPTERI

1.1 Plant Growth Promoting Bacteria

In the past decades global population has been rising like never,
reaching a value three times bigger than ever in human history. It has
been estimated that by 2050, human population will grow up to 9 billion
(Food and Agriculture Organization of the United Nations, 2017). To
satisfy the rising food demand, farmers increased crop yields using
massive amounts of chemical fertilizers and pesticides, which led to
several negative consequences as the formation of stable
phytopathogenic variants, the reduction of beneficial microorganisms,
and the accumulation of toxic substances in the environment (Reddy et
al., 2009; Pertot et al., 2017). Thus, researchers and industries are
seeking more sustainable approaches to pesticides and fertilizers (Glick
et al.,, 2007). A “green” alternative is the use of biofertilizers and
biopesticides, usually defined as “substances containing living
microorganisms, that when applied to the seed, the plant surface, or the
soil, are able to colonize the rhizosphere and the plant, promoting the
growth of the host by increasing the availability of primary nutrients or
by inhibiting phytopathogens’ spread” (Vessey, 2003; Riaz et al., 2021).
These microorganisms, capable of enhancing plant growth and
protection from pests, are generally referred to as Plant Growth
Promoting Bacteria (PGPB) (Fig. 1). Some of the most representative
PGPB include Azotobacter, Azospirillum, Acinetobacter,
Agrobacterium, Arthrobacter, Bacillus, Burkholderia, Pseudomonas,
Serratia, Streptomyces, Rhizobium, Bradyrhizobium, Mesorhizobium,
Frankia, and Thiobacillus (Wani and Gopalakrishnan, 2019).

To properly use PGPB in the “Green Revolution”, it is important to
understand the mechanisms through which they influence and
guarantee sustainable agriculture.

13| Pag.



POR CAMPANIA
[RECIONE CAMPANIA 2014 - 2020
I

Figure 1 | Effects of PGPB on plant growth.

1.2 Mode of action of PGPB

The key role played by PGPB in plant growth enhancement is widely
described (Vessey, 2003; Tilak et al., 2005). Beneficial microorganisms
promote plant growth either directly or indirectly as shown in Fig. 2
(Swarnalakshmi et al., 2020). Direct methods include phosphorus
solubilization; siderophore, and growth hormones production; nitrogen
fixation (Fig. 2). These actions trigger morphological and physiological
changes in plants, thus promoting plant growth. On the other hand, the
indirect mechanisms comprise the production of low molecular weight
compounds such as alcohols, ammonia, aldehydes, cyanogens,
ketones, cell wall-degrading enzymes, and secondary bioactive
metabolites with antagonistic traits and competition for nutrients (Fig.2)
(Glick, 2012).

1.2.1 Direct plant growth mechanisms
1.2.1.1 Phosphate solubilization

Phosphorus (P) plays a key role in cell metabolism and signalling in
plants (Vance et al., 2003). It can be present in the soil in an unavailable
form bound with inorganic or organic molecules; in fact, only H,PO4
and/or HPO42 forms are usable by plants (Smyth et al., 2011).
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Figure 2 | Direct and indirect mechanisms of action exerted by PGPB.

Phosphate-solubilizing microorganisms can solubilize the phosphorous
in free-living conditions and make it available to almost all types of
crops. Some phosphorus-solubilizing bacterial genera are
Pseudomonas, Bacillus, Azotobacter, Agrobacterium, Rhizobium,
Bradyrhizobium, Salmonella, and Thiobacillus (Liu et al., 2012; Alori and
Fawole, 2017). They mineralize phosphorus by several enzymes such
as acid phosphatases, C-P lyase, D-a-glycerophosphate, phosphor
hydrolases, phosphonoacetate hydrolase, and phytase (Gulgi et al.,
1991; Abd-Alla, 1994; Glick, 2012).

1.2.1.2 Phytohormones Production

Phytohormones are signal molecules produced by plants in a very low
quantity, involved in the enhancement of growth, development,
differentiation of cells, and in many other processes. They are also
indirectly implicated in providing defence against pathogens and abiotic
stresses such as salt stress, temperature, and drought (Egamberdieva
et al., 2017). It has been demonstrated that PGPB in soil are capable of
producing many hormones like auxins, gibberellins, cytokinins, ethylene
and jasmonates involved in stimulating the division, elongation, and
differentiation of cells (Bhardwaj et al., 2014), promoting seed
germination, elongation of the stem, and flowering and also in
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increasing the photosynthetic rate in plants (Khan et al., 2021). PGPB
genera connected to the production of phytohormones are Rhizobium,
Herbaspirillum, Bacillus, Mesorhizobium, Pantoea, Arthrobacter,
Pseudomonas, Bradyrhizobium, Rahnella, Enterobacter,
Brevundimonas, and Burkholderia (Orozco-Mosqueda et al., 2021).

1.2.1.3 Iron acquisition

Iron is another important nutritional element for plants’ growth, used as
a cofactor for proteins involved in metabolic processes such as
respiration and photosynthesis. On earth, iron is mostly present in the
ferric ionic form, not easily accessible for living beings (Ammari and
Mengel, 2006). Nature has developed many strategies to cope with this
issue: microbial siderophores is one of them. Siderophores are tiny
peptides showing side chains and functional groups able to bind to ferric
ions with high affinity (Moynié et al., 2019). Besides the biofertilizer
activity, siderophores production is also implicated in biocontrol activity
by depriving the pathogen from iron nutrition, as reported by several
researchers (Kumar et al., 2017).

1.2.1.4 Biological nitrogen fixation

Nitrogen is necessary for the synthesis of amino acids, nucleotides, and
mineral nutrients. However, as told for P and Fe, it is mostly available
in the inaccessible form of N2, which both animals and plants cannot
use (Petar and Normand, 2009). Impressively, many microorganisms,
known as biological nitrogen-fixing bacteria (BNF), can help overcoming
nitrogen deficiency. Indeed, they are able to fix the N, into available
forms of nitrogen by utilizing energy in the form of ATP and convert it
into nitrite, nitrate, and ammonia, which plants can easily assume
(Soumare et al., 2020).

1.2.2 Indirect plant growth mechanisms
1.2.2.1 Antibiotic synthesis

Antibiotics are low molecular weight molecules generally produced as
secondary metabolites by soil microorganisms, exhibiting biocidal or
biostatic, target-specific activity on phytopathogens (Olanrewaju et al.,
2017). For instance, Bacillus spp. are reported to produce many
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antibiotics such as bacilysin, iturin, subtilosin, fengycin, bacillaene,
phenazine-1-carboxylic acid, zwittermicin A, rhamnolipids, pyrrolnitrin,
oomycin A etc. (Kundan et al., 2015). P. aeruginosa also produces
phenazine, that damages lipids within the membrane of their targets, and
also obstruct the electron transport in pathogens (Haas and Défago,
2005).

1.2.2.2 Production of cell wall degrading enzymes

Many PGPB are known to produce and release hydrolytic enzymes
(e.g., proteases, cellulases, chitinase, lipases, xylanases, etc.) capable
of degrading the cell wall of other organisms, such as pathogens, or
other bacterial competitors in the soil, by changing their structural
integrity, and in the end preventing their growth (Singh and Jha, 2017).

1.3 Spore-forming PGPB as promising “plant probiotics”

Among all the known PGPB genera, particular attention has been
recently given to the spore-forming microorganisms as Bacillus spp.,
that besides showing the general PGP features described above,
exhibit a pool of unique traits that put them ahead. First, of great interest
is their resistance to harsh environments and conditions, due to their
capacity of producing spores that can survive at high temperatures and
dehydration, thus making the formulation of a potential commercial
product easier (Pesce et al., 2014). Moreover, they are efficient
producers of a broad spectrum of secondary metabolites, can be easily
genetically manipulated, and present a great ability to colonize plant
surfaces (Kumar et al., 2011). The model of Gram-positive spore-
forming bacteria certainly is Bacillus subtilis.

1.4 B. subtilis sporulation

B. subtilis is ubiquitous in nature and can effectively adapt to the
changes of the environmental conditions (Tan and Ramamurthi, 2014),
through many survival mechanisms like motility, competence, biofilm
formation, or sporulation (Mirouze and Dubnau, 2013). The latter brings
to the formation of an endospore, a quiescent cell highly resistant to
starvation, high temperatures, ionizing radiations, mechanical abrasion,
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chemical solvents, hydrolytic enzymes, desiccation, extreme pH, and
antibiotics (Nicholson et al., 2000).
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Figure 3 | The key stages of the sporulation cycle in B. subtilis (Lin et al., 2020).
The inset shows electron micrographs of sporulating cells at each of the major stag
es.

Sage 0

Bacillus’ sporulation is a genetically highly controlled process that
involves many morphological, biochemical, and physiological changes,
leading to the development of two different, but genetically identical
cells (Fig. 3): the mother cell and the forespore. This is possible due to
different gene expression programs.

1.4.1 Morphological stages

The first morphological change of the sporulation process is the
formation of a polar septum which forms two asymmetric compartments:
the mother cell and the forespore (Fig. 3). The first one will nurture the
spore until its development completes, and by the end of the process
releases the mature spore by its own lysis. After the asymmetric cell
division, the sporulation gene expression program splits and two distinct
programs activate, one in each of the resulting cellular compartments.
Soon after, the septum membrane migrates around the forespore,
which after the completion of the process becomes a double
membrane-bound structure, as a result of the engulfment process (Fig.
3). A series of protective layers are then synthesized in the mother cell
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cytoplasm and assembled around the forming spore (Fig. 3, 4). The
cortex is a modified peptidoglycan layer chemically different from that of
the vegetative cells, deposited between the two membranes
surrounding the forespore (Henriques and Moran, 2007). Meanwhile,
the proteinaceous coat is deposited around the outer membrane. Two
main coat layers can be observed by electron microscope analysis: a
darkly stained outer coat, and a more lightly stained lamellar inner coat
(Fig. 4). A third coat layer surrounds the spore: the crust, a glycoprotein
layer composed of six proteins, whose architecture has not been
cleared up yet (Bartels et al., 2019). The innermost part of the spore is
the core which contains a partially dehydrated cytoplasm with a
condensed and inactive chromosome (Fig. 4). The last stage of the
sporulation process is the lysis of the mother cell, which releases the
mature spore in the environment, where it can survive for a long time,
continuously monitoring the environment, and waiting for the
establishment of new favourable conditions. When this occurs, the
spore can return to a vegetative state through the germination process
(Fig. 3), which implies the spore core rehydration and the cracking of
the spore protective layers, which will eventually release the nascent
cell (Higgins and Dworkin, 2012).

1.4.2 Spore structure

As previously described, B. subtilis spore is made of a core surrounded
by several protective layers: the inner membrane, the cortex, the outer
membrane, and the coat (Fig.4). The core is the central part of the
spore. It contains the spore cytoplasm with all the cellular components,
such as cytoplasmic proteins, ribosomes, and DNA associated with a
large amount of Small Acid Soluble Proteins (SASPs) which protect the
DNA against many types of damage. The partially dehydrated core
plays an important role in spore longevity, dormancy, and resistance
(Setlow, 1994). The core is surrounded by the inner membrane, which
exposes the germination receptors, and in turn is surrounded by the
cortex, a modified peptidoglycan layer. The cortex is significant for the
maintenance of spore core dehydration, resistance, and dormancy. The
outer membrane, the second layer deriving from the engulfment
process, has opposite polarity compared to the inner membrane.
Finally, the outermost spore structure is the coat, mainly involved in
spore resistance and germination, which apparently possesses
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enzymatic functions that may permit interactions with other organisms
in the environment.

Crust

—— Quter coat
—— Inner coat

- Cortex

Figure 4 | B. subtilis spore structure. Left half, a micrograph taken by
Transmission Electronic Microscopy (TEM).

The spore coat layer is an intricate web made of more than 80 proteins
(Fig. 5), which are synthesized in the mother cell cytoplasm, and
gradually moved to the forespore surface (KrajCikova et al., 2017)
where are organized into three distinct layers: the inner coat, the outer
coat, and the crust (Fig. 4). Out of the 80 coat proteins, the Cot proteins,
identified so far, at least 20 have shown an enzymatic function: some of
them guide the correct assembly of other coat components, by
catalysing post-translational modifications; some others are involved in
spore protection and germination.

1.5 The spore-based display system: a powerful biotechnological
tool

The unique spore structure allowed to develop an innovative surface
display system to vehicle heterologous proteins (Isticato et al., 2001).
Surface display systems aimed at exhibiting biologically active
molecules on phages, yeast, bacteria, or synthetic particles have been
developed for environmental and biomedical purposes such as vaccine
development, bioabsorbants, biocatalysts, and biosensors (Gouy et al.,
2010; Chen et al., 2019).
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Figure 5 | Model of the coat protein interaction network (Kim et al., 2006).

Despite the promising results obtained, these technologies were not
considered suitable for harsh industrial processes, especially for
exposing enzymes sensitive to such conditions (Guoyan et al., 2019).
In this framework, the proposal of bacterial spores as novel platforms
for the display of heterologous antigens or enzymes looked like the
answer (lIsticato et al., 2001): the ability of bacterial spores to survive
extreme environments and retain the capacity to sporulate and
germinate make them suitable candidates for surface display
technology (Isticato and Ricca, 2014; Isticato et al., 2020)). B. subtilis is
the most used among the spore-forming bacterial species, due to its
many advantages: it is classified as generally recognized as safe
(GRAS), has poor nutritional requirements, and is considered the Gram-
positive bacterial model (Chen et al., 2019). Moreover, a lot is known
about its structure and physiology, indeed, among bacteria, the study of
its genetic background is second only to Escherichia coli (Kunst et al.,
1997). To expose heterologous proteins on the spore surface, two
strategies have been developed (Fig. 6). Both exhibit many advantages
over cell- or phage-based systems: the stability, safety, and amenability
to laboratory manipulations of spores of several bacterial species,
together with the lack of some constraints limiting the use of other
systems. All of this makes the spore a highly efficient platform to display
heterologous proteins.
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Figure 6 | Spore display system recombinant (A) and non-recombinant (B)
approaches.

1.5.1 Surface display on recombinant B. subtilis spores

The extremely resistant structure of the spore coat clearly suggests the
possibility of using its components as anchoring motifs for the
expression of heterologous polypeptides on the spore surface. A
genetic system to manipulate the coat of B. subtilis spores has been
developed (Fig. 7A) (Isticato et al., 2001). The spore-based approach
provides several advantages over other display systems, such as high
stability even after prolonged storage, the possibility to display large
multimeric proteins and the safety for human use. Attempts to expose
heterologous proteins on the spore surface were focused mainly on
CotB protein, selected for the surface location (Isticato et al., 2001),
CotC and CotG, for the high relative abundance in spore coat layer
(Mauriello et al., 2004).

1.5.2 Surface display on non-recombinant spores

The recombinant spore-based display system implies the genetic
engineering of the host. This is a major drawback when the application
of the display system is intended for the release into the environment of
the recombinant host or is thought for human or animal use.

Serious concerns over the release of genetically modified
microorganisms (GMOs) into nature, and their clearance from the host
following oral delivery have been raised (Detmer and Glenting, 2006).
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Figure 7 | A) B. subtilis coat engineering process in the recombinant display system
approach; B) Schematic representation of a typical adsorption experiment. Purified
spores were mixed with the purified antigen in 1X PBS buffer (pH 4.0) and incubated
one hour at 25 °C. The sample mix was fractionated by centrifugation and fractions
assayed independently.

To overcome this issue, a non-recombinant approach to expose
heterologous proteins on the spore surface has been recently proposed
(Fig. 7B). It has been demonstrated that adsorbed spores were shown
able to induce specific and protective immune responses in mice
immunized mucosally (Huang et al., 2010). Spore adsorption resulted
more efficient when the pH of the binding buffer was acidic (pH 4) and
less efficient or totally inhibited at pH values of 7 or 10 (Huang et al.,
2010). Electrostatic and hydrophobic interactions between spores and
antigen were suggested to drive the adsorption that was shown to be
not dependent on specific spore coat components but rather due to the
negatively charged and hydrophobic surface of the spore (Huang et al.,
2010). In addition, the same study showed that killed or inactivated
spores were equally effective as live spores in adsorbing the various
antigens (Huang et al., 2010).

1.5.3 Spores’ physicochemical properties

The spore surface’ physicochemical properties have been addressed in
different studies with different approaches. A first study showed that
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spores of B. subtilis are negatively charged by time-resolved
micropotentiometry (Kazakov et al., 2008). It has been shown that in an
aqueous environment, spores behave like an almost infinite ionic
reservoir and are able of accumulating billions of protons (approximately
2 x 10" per spore) (Kazakov et al., 2008). The carboxyl groups were
recognized as the main ionizable groups in the spore and according with
the diffusion time analysis, it was found that proton diffusion is much
lower in the spore core than within the coat and cortex (Kazakov et al.,
2008). This implies the inner membrane to probably be a major
permeability barrier for protons (Kazakov et al., 2008). The electrostatic
forces’ role in spore adhesion to a planar surface has been also
addressed by studying spores of B. thuringiensis (Chung et al., 2010).
By using combined atomic force microscopy (AFM)-scanning surface
potential microscopy technique, the surface potentials of a spore and a
mica surface were experimentally obtained (Chung et al., 2010): the
surface charge density of the spores was estimated at 0.03 uC/cm? at
20 % relative humidity and decreased with increasing humidity. The
electrostatic force can be an important component in the adhesion
between the spore and a planar surface (Chung et al., 2010).

1.6 Bacillus spore as a platform to display molecules of agro-
industrial interest

One of the emerging application fields of the spore-display system is
that of sustainable agriculture (Rostami et al., 2017). Replacing the
current soil management strategies, mainly dependent on inorganic
chemical-based fertilizers, and causing serious threats to human health
and the environment, is a matter of main importance (Castaldi et al.,
2021; Petrillo et al., 2021). To face two main problems obstructing plant
growth, as the availability of nutrients and the defense against
phytopathogens, the spore-based display system could represent a
‘green” answer.

B. subtilis spores are considered as safe live biocompatible carriers of
bioactive molecules in soil that benefit from some advantages like low
cost, safety, stability, easy preparation, and high resistance to harsh
conditions. Applied to the field of our concern, microbial spores could
be coated with molecules of agro-industrial interest.
Agricultural enzymes, for example, are bioactive proteins used instead
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of chemicals for food production and protection (Agricultural Enzymes
Market Size, Share | Global Industry Report, 2022-2025). Unfortunately,
these molecules are often unstable or easily degraded when in the
agricultural environment. Active biomolecules stably carried on the
spore surface, could be shielded from the external environmental
conditions. Indeed, the advantage of this approach lies in the protection
that the outermost layers of the spore structure offer to the heterologous
molecules exposed (Sirec et al., 2012). Furthermore, a recent study has
shown that proteins displayed by the non-recombinant approach are not
exposed on the spore surface but rather localized at the level of the
inner coat (Donadio et al., 2016). This internal localization probably
contributes to the protection of the heterologous protein without
interfering with its biological activity (Donadio et al., 2016). For this
purpose, the adsorption of active biomolecules on the spore surface,
could represent a reasonable eco-friendly solution. The chitinase ChiS
from B. pumilus was successfully expressed on the spores of B. subtilis
using CotG as a carrier protein by Rostami et al. (2017). The enzyme
conserved its full activity and was able to efficiently inhibit the growth of
the fungal phytopathogens Rhizoctonia solani and Trichoderma
harzianum. On this path, many more enzymes like proteases,
phosphatases, dehydrogenases, etc., could benefit from the spore
display protection, and being efficiently applied to the agricultural field.
The innovative idea this Thesis aims to shed the light on is the use of
spore-forming PGPB as a matrix to expose agro-industrial molecules
(functionalized PGPB). By doing so, crops would benefit not only from
the natural action of PGPB, but also from the bioactive molecules
brought upon their surface. Hence, as a powerful tool, Bacillus spore-
based display system conceivably offers broad possibilities in its future.
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Massive application of chemical fertiizers and pesticides has been the main strategy used
to cope with the rising crop demands in the last decades. The indiscriminate use of
chemicals while providing a temporary solution to food demand has led to a decreasein
crop productivity and an increase in the environmental impact of modern agricutture. A
sustainable alternative to the use of agrochemicals is the use of microorganis ms naturally
capable of enhancing plant growth and protecting crops from pests known as Plant-
Growth-Promoting Bacteria (PGPB). Aim of the present study was to isclate and
characterize PGPB from salt-pans sand samples with activities associated to plant fitness
increase. To survive high salinity, salt-tolerant microbes produce a broad range of
compounds with heterogenecus biological activities that are potentially beneficial for plant
growth. A total of 20 halophilic spore-forming bacteria have been screened in vitro for
phyto-beneficial traits and compared with other two members of Bacilus genus recently
isclated from the rhizosphere of the same collection site and characterized as potential
biocontrol agents. Whole-genome analysis on seven selected strains confirmed the
presence of numerous gene clusters with PGP and biocontrol functions and of novel
secondary-metabolite biosynthetic genes, which could exert beneficial impacts on plant
growth and protection. The predicted biocontrol potential was confirmed in dual culture
assays against several phytopathogenic fungi and bacteria. Interestingly, the presence of
predicted gene clusters with known biocontrol functions in some of the isclates was not
predictive of the in vitro results, supporting the need of combining laboratory assays and
genome mining in PGPB identification for future applications.

Keywords: spore-forming bacteria, biocontrol agents, halophiles, plant-growth-promoting bacteria, genome mining,
Bacill
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INTRODUCTION Vl"ldtl}' rcportcd (Shultana et al, 2020), Raccntl}', we  have

In the past decades, social concern about the environmental
effects of the uncontrolled use of chemical pesticides, fertilizers,
and herbicides in the agricultural field has risen considerably.
The use of chemicals for the protection and enhancement of
crops has led to several negative consequences: the formation
of stable phytopathogenic variants, the reduction in the number
of beneficial microorganisms, and the accumulation of toxic
substances in soils and aquatic ecosystems (Reddy et al., 2009
Pertot ¢t al, 2017). Given the increased global demand for
crop production, researchers and industries are seeking new,
more sustainable and greener approaches to pesticides and
fertilizers (Glick et al, 2007), In this framework, the use of
microorganisms known as Plant-Growth-Promoting  Bacteria
(PGPB} for crop production appears to be a promising altemative,
PGPB improve crop fitness and yields both, through direct
and indirect mechanisms. Direct mechanisms include the
promotion of alternative nutrient uptake pathways, through
the solubilization of phosphorus, the fixation of atmospheric
nitrogen, the acquisition of iron by siderophores, and the
production of growth hormones and molecules like vitamins,
amino acids, and volatile compounds (Babalala, 2010). Indirect
mechanisms instead, include the prevention or reduction of
the damage induced by phytopathogens through the production
of different classes of antimicrobial compounds such as hydrolytic
enzymes that can lyse a portion of the cell wall of many
pathogenic fungi (Jadhav et al, 2017).

The work presented here is part of a wide study aimed at
identifying and selecting halophilic Bacilli with potential
applications as biofertilizers or biocontrol agents. For this
purpose, samples from the rhizosphere of the nurse plants
Juniperus sabina and nearby soils were collected from salt-pans
(Castaldi et al, 2021). Nurse plants, such as [. sabina, exert
beneficial effects on their surrounding ecosystem, facilitating
the growth and development of other plant species, This positive
effect is in part due to the plant influence on the composition
of soil microbial communities, generally selecting for
microorganisms capable of mineralizing nutrients, enhancing
soil fertility, and thus promoting plant growth and health
(Hortal et al,, 2013; Goberna et al., 2014; Rodriguez-Echeverria
et al, 2016), For this reason, the nurse-plants rhizosphere and
relative surrounding soil are a useful source of PGPB. In
addition, bacteria growing in extreme environments, like salt-
pans, have developed complex strategies to survive harsh
conditions, which include the production of an array of diverse
compounds, such as antioxidant pigments, lytic enzymes, and
antimicrobial  compounds, making  them  interesting
biotechnological targets (Anwar et al., 2020), Among the PGPB,
bacteria belonging to the Bacillus genus are of particular interest
given their resistance to stressful environments and conditions
due to their capacity of producing spores (Pesce et al, 2014),
together with the ability to release a broad spectrum of secondary
metabolites, the easy genetic manipulation, and the great ability
to colonize plant surfaces (Kumar et al, 2011). In addition,
the effectiveness of halo-tolerant Bacillus spp. to increase the
growth of various crops under salt stress conditions has been

identified and characterized PGPB Bacillus strains isolated from
the rhizosphere of [ sabina (Castaldi et al, 2021). The two
strains, named as Bacillus sp, RHFS10 and Bacillus sp, RHFS18,
emerged for their promising PGP traits. These strains produce
siderophores and solubilize phosphorus, enhancing plant nutrients
uptake, and secrete indoleacetic acid (IAA), a phytohormone
playing a key role in both root and shoot development
Additionally, both isolates showed a strong biocontrol activity,
inhibiting the fungal phytopathogen Macraphamina phaseoling
growth (Castaldi et al,, 2021).

Here, we present the results of the screening of 20 halophilic
Bucilli isolated from salt-pan sand samples, All the strains
were characterized for PGP traits and five strains emerged for
their high potentiality as biofertilizers and biocontrol agents.
Comparative genomic analysis of the five sand strains and the
previously characterized rhizospheric strains RHFS10 and
RHFS18 revealed the presence of known genes involved in
plant growth promotion and protection, sustaining, in part,
the activities observed in vitro, Overall, this work suggests a
strategy for the selection of potential PGP candidates belonging
to Bacillus genus using combined in silico and in vitro approaches,

MATERIALS AND METHODS

Isolation of Bacteria

Bacillus strains used in this study were isolated from sand
samples collected in the proximity of [ sabina plants growing
in the salt-pans of Formentera (Spain). Sand samples were
heat-treated at 80°C, for 15min to kill vegetative cells and
select for spore-forming bacteria, and 1g of sample was
suspended in 9ml of TY broth (10g/L tryptone, 5g/L yeast
extract, and 8g/L NaCl) and 10-fold serial dilutions placed
on TY plates (Cangiano et al, 2010). After 4-5days of
incubation at 30+ 1°C, colonies were recovered and streaked
on fresh TY plates, and pure cultures stored at =80°C into
glycerol stocks (Giglio et al, 2011).

Phenotypic Characterization and Growth
Conditions

The phenotypic variants of isolated strains were determined by
visual inspection, The facultative anaerobic growth was determined
using the AnaeroGen sachets (Unipath Inc, Nepean, Ontario,
Canada) placed in a sealed jar with bacteria streaked on TY
agar plates and incubated at 37°C for 3days. To confirm the
sporulation ability, the bacteria were grown in Difco sporulation
medium (8g/L Nutrient broth No. 4, 1g/L KCl, 1mM MgS0O,,
ImM Ca(NOyk, 10 pM MnCly, and 1 pM FeSQ,, Sigma-Aldrich,
Germany) at 37°C for 30-48h, and the presence of spores was
checked by light microscopy. Salt, pH, and temperature tolerance
were determined as follows; about 50 pl of culture of each isolate
grown in TY broth for 6 h at 37°C (107 cells/ml) were transferred
to individual tubes containing 5ml of TY broth with different
pH (2.0, 4.0, 6.0, 7.0, 8.0, 100, and 12.0) or NaCl concentration
0, 5, 10, 13, 15, and 18%) and left to grow at 37°C with
agitation (Cangiano et al, 2004) . The temperature tolerance
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of isolates was tested incubating the cultures at 37 (control),
4, 15, 25, 50, and 60°C. The growth (+) or no growth (-) in
comparison with the controls after 24-48h was recorded.

Plant Growth-Promoting Traits

Phosphate Solubilization

The phosphate solubilization activity was evaluated by spot
inoculation of 3 pl of the freshly grown bacterial culture (107
cells/ml) onto Pikovaskya’s agar medium (Pikovskaya, 1948).
The plates were incubated at 28°C for 10days. The formation
of transparent zones around the bacterial colonies indicates a
positive result (Schoebitz et al, 2013).

Siderophores Production

The siderophores production was determined by the Chrome
Azurol 5 (CAS) assay as described by Pérez-Miranda et al.
(2007). Three milliliter of freshly-grown bacterial cultures was
spot-inoculated on CAS agar plates and incubated at 28°C.
The formation of a yellow-orange halo zone around the bacterial
colony was a positive indicator of siderophore production and
the halo zone dia meters were measured after 4days of incubation.

Indoleacetic Acid Detection

The indoleacetic acid production was measured as described
by FEtesami et al. (2014), with some modifications. Briefly,
each strain was cultured in 10ml of TY broth at 37°C for
4days with shaking at 150 rpm. Following growth, 1ml of
bacteria supernatant was mixed with 2ml of Salkowski reagent
(0.5M FeCl, in 35% HCIO, solution), and the solution was
vortexed and incubated at room temperature for 30 min. The
formation of pink color was considered a positive reaction
(Damodaran et al, 2013). Quantitative estimation of IAA
(pg/ml) was obtained by recording spectroscopic absorbance
at 535nm using a standard curve prepared separately with
pure IAA (Sigma) in the range 0-100pg/ml (Gordon and
Weber, 1951), Sterile TY medium was used as control,

Biofilm Production and Swarming Motility

To detect the ability to produce biofilm, bacterial isolates were
grown in 24-well culture plates in TY broth for 48h without
agitation at 37°C in according to OToole (2011). Then, the
supernatant was discarded, adhered cells were rinsed three
times with distilled water and 1ml of a 0.1% crystal violet
(CV) solution was added to stain the adhered biomass. Plates
were incubated for 30min at room temperature, washed carefully
three times with distillated water and patted dry. Dye attached
to the wells was extracted with 1ml of 70% ethanol and
quantified at an absorbance of 570 nm. Data were normalized
by total growth estimated by OD6&00 nm, and the experiment
was performed in triplicate,

Swarming motility was tested according to the method
adopted by Adler (1966). TY agar 0.7% plates were spot
inoculated with 3l of the freshly grown bacterial culture (107
cells/ml). After an overnight incubation at 37°C, the swarm
diameters were measured.

Whole-Genome Sequencing of the
Selected PGPB

DNA extraction was performed using the DNeasy PowerSoil kit
(Qiagen, Hilden, Germany) according to the manufacturer’s
instructions. Genome sequencing was performed by MicrobesNG
{Birmingham, United Kingdom) with the genomic DNA library
prepared using the Nextera XT library prep kit (Ilumina) following
the manufacturer’s protocol. Libraries were sequenced on the
lumina HiSeq using a 250bp paired-end protocol. Reads were
adapted and trimmed using Trimmomatic 0.30 with a sliding
window quality cutoff of Q15 (Bolger et al, 2014) and the de
novo genome assembly was carried out with SPAdes (version
3.7) via MicrobesNG. Genomes were annotated using Prokka
(Seemann, 2014), Biosamples accession numbers for strains RHFB,
RHF2, RHF6, RHF12, RHF15, RHS10, and RHFS18 are,
respectively: SAMN 17389615, SAMN 17389609, SAMN 17389610,
SAMNI17389612, SAMNI17389613, SAMNI17389611, and
SAMN17389614. MIGS compliant details regarding each genome
are available in the Supplementary Table S1.

Average Nucleotide Identity (ANI) values between the
sequenced genomes and the closest bacterial species identified
from the 165 rRNA phylogenetic analysis (see below) were
obtained using the OrthoANT algorithm of EZBioCloud (Yoon
et al, 2017). An ANI similarity of 95% was considered as a
cut-off for species delineation.

Phylogenetic Analysis

The 165 rRNA genes were extracted from the sequenced
genomes using Anvio v2.3.3 (Eren et al,, 2021), and compared
to 76 reference 165 rRNA genes from closely related strains
identified using the Genome Taxonomy Database (GTDB)'
taxonomy and retrieved from the NCBI database. All sequences
were aligned using Seaview 4.4.0 software (Corrado et al,
2021), and the phylogenetic tree was constructed using the
Maximum-likelihood algorithm with model GTR+1+G4.
Statistical support was evaluated by the approximate likelihood-
ratio test (aLRT) and is shown at the corresponding nodes
of the tree. Clostridium difficile is used as an outgroup to
root the tree.

Evaluation of Potential Biocontrol Activity

Isolated bacterial strains were tested in vitro for growth inhibitory
activity against phytopathogenic fungi and bacteria are listed
in Table 1. The phytopathogenic fungi are deposited in the
fungal culture collection of the Plant Pathology Department
of the University of Buenos Aires (FAUBA, Argentina) and
were kindly supplied by Marcelo Anibal Carmona (Facultad
de Agronomia, Citedra de Fitopatologia, Universidad de Buenos
Aires, Buenos Aires, Argentina), except for Stemphylium
vesicarium. All the fungi were stored on Potato Dextrose Agar
(PDA) in Petri dishes, Dual-culture plate method was carried
out to detect the antifungal activity in accordance with Xu
and Kim (2014). Briefly, fungal plugs of 6mm x6mm diameter
were placed at the center of PDA plates and 5pl of bacterial
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TABLE 1 | List of the phytopathogenic fungi and bacteria used in this study.
Pathogen type Species Strain Provenience Host plant
Fungi NMacrophormina phaseoling 2,012,031 Argentine Soy
Coletofrichum tuncatum 17-5-5 Amenting Say
Drachslera feres Amenting Barley
Carcospora nicotianas Ck_2017_B3s Bolivia Soy
Stemphylium vesicarium Itaky Pear
Bactera Pssudomonas tolaasi 2192 . Mushroom
Pssudomonas swingae pv fabaci ICMP 2706 Tobacco
Pseudomonas swingae pv panici ICMP 3955 - Rice
Psaudomeonas caryophi NCPPBE349 Itaky Camations
Psaudomaonas syingae pv syringae Ba7s - Mango
Pseudomonas syringae pv faponica ICMP 6305 Wheat
Pseudomonas syingae pv papulans Psp26 Apple

strains grown overnight in TY broth were placed on the opposite
four sides of the plates 1.5cm away from the fungal disc. This
method was repeated for each fungus. Controls consisted of
plates containing the fungal plugs alone. All plates were incubated
at 28°C for 5-7days. The antagonism activity against bacterial
phytopathogens was performed as described in Li et al. (2020)
with some modifications. Bacterial pathogens were streaked
on TY plates and incubated at 25°C overnight. Single colonies
were suspended in TY broth and incubated at 25°C.
Approximately 1x 107 CFU/ml were mixed with melted 0.8%
TY agar medium before pouring plates. After solidification,
5pl of bacterial isolates solution (ODyy, = 1.0) was spot inoculated
onto the plates and incubated at 28°C for 48 h, before measuring
the diameters of inhibition halos. All experiments were performed
in triplicate.

Identification of Biosynthetic Gene
Clusters

Obtained genomes were analyzed by antiSMASH 5.0 (Blin et al,
2019) and BAGEL 4 (van Heel et al, 2018) to identify biosynthetic
gene clusters (BCGs) of potential antimicrobial compounds such
as non-ribosomal peptide synthetases (NRPSs), polyketide
synthases (PKSs), post-translationally modified peptides (RiPPs),
hybrid lipopeptides (NRPS-PKS) and bacteriocins. Biosynthetic
Gene Clusters that shared less than 70% amino acid identity
against known clusters were regarded as novel.

RESULTS AND DISCUSSION

Isolation and Characterization of Spore-

Forming Plant-Growth-Promoting Bacteria
Spore-forming bacteria were specifically isolated from sand
samples collected from gaps among nurse plants, belonging
to the genus J. sabina, in salt-pans as described in the Materials
and Methods section. Based on morphological characteristics,
atotal of 20 isolates were selected and preliminarily characterized
for growth properties (Supplementary Table §2). All the strains
can be classified as facultative anaerobic, mesophiles and
moderate halophiles, excluding RHF5 strain, which survives
up to 60°C and strain RHFB unable to grow at temperature

and salt concentration higher than 37°C and 5% NaCl, respectively
(Ventosa et al., 1998; Schiraldi and De Rosa, 2016).

To identify potential PGPB, the 20 strains were evaluated
in vitro for physiological traits associated with plant growth
enhancement and biocontrol ability (Table 2). Strain performance
was compared with those of two promising PGPB, RHFS10,
and RHFS18 strains, belonging to the Bacillus genus and isolated
from /. sabina rhizosphere of the same collection site (Castaldi
et al, 2021) and proposed as biocontrol agents for their
antagonistic activity against the phytopathogen M. phaseolina.
Most of the new strains displayed root-colonization phenotypes
since able to surface spread by swarming and to form biofilms
(Amaya-Gomez et al., 2020), while only five were found either
positive to bath solubilization of phosphate, indoleacetic acid
(IAA), and siderophore production. Strains RHE6, RHF15, and
RHFB showed a better performance than when compared
against the already characterized rhizobacteria strains RHFS10
and RHFS18, confirming that the microenvironments created
under or nearby nurse shrubs are a promising source of PGPB
(Rodriguez-Echeverria et al., 2016). All bacterial isolates were
tested for in vitro activities of their extracellular hydrolytic
enzymes (lipase, protease, amylase, xylanase, and cellulase)
usually associated with biocontrol activity (Pal and McSpadden
Gardener, 2006). As reported in Table 2, the highest hydrolytic
activity was observed for RHF12, RHF15, and RHFB strains,
comparable with that exerted by rhizosphere strains RHFS10
and RHFS18.

Based on these results reported in Table 2, seven strains
were selected for whole-genome sequencing analysis. All selected
strains were able to solubilize phosphate with efficiency higher
than the other ones and to produce Biofilm, IAA, and
siderophores. Further, strains RHF12, RHF15, RHFB, and
RHFS18 emerged for their strong hydrolytic potential, often
associated to biocontrol activity (Castaldi et al, 2021), while
strain RHF6 showed the ability to growth up to 13% NaCl,
showing the best salt tolerance (Supplementary Table 52).

Genome Sequencing and Phylogenetic
Analysis

The obtained genomes had coverage of ~30x, with a variable
number of contigs between 40 and 1,105 for RHF15 and
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TABLE 2 | Summary of plant growth-promaoting and biocontrol traits exhibited by 20 spore-forming bacteria isolates.

PGPE activities Hydrolytic activities

Strain

Biofilm (OD;;) ~ Swarming PVK  IAA(ug/ml) Siderophores  Lipase 2 Amyl Xyl cMme
RHF1 - - ++ - + - + 4 + +
RHF2 02 + + 18 + - + + + +
RHF3 - - - - - + + + + -
RHF4 - + - - + + 4+ b - +
RHFS 02 - - 2 - - + ++ -
RHF6 03 + i+ kil ++ - + + + +
RHF7 0.4 - - - - - + + - -
RHFS 0.8 ++ - 6 - - + ++ ++ -
RHFS9 - - + 3.2 - - + 4 - -
RHF10 - - - 4 - - -+ + +
RHF11 02 + - - - - + + + .
RHF12 o7 + + 25 ++ - + ++ ++ ++
RHF13 - + ++ 3 + + - ++ + ++
RHF14 - - - - - + + + + -
RHF15 0.8 + ++ 23 +4 + + ++ 4 +4
RHF16 - - - - + + + - -
RHFAT 05 ++ + + + + + ++ +
RHFB 0.3 + -+ 32 ++ ++ ++ -+ ++ +
RHFE - - - - - + + + - -
RHFL 03 - - - - - + + - -
RHF510° 0.3 ++ + 12 ++ ++ ++ + ++ ++
RHF518° 0.5 + + 12 ++ + ++ + ++ ++

Nao activity (=), halo or colony diameter <Smm (4], halo or colony dlameter =25 mm (++), halo or colory diameter 10mm (+++). Data are mpresented by means of af least three
repiicates +SE al p < (L056 using LDS. The strains salectad for further studhes are indfcatad in bakl, PVK, Pikovskaya, 144, indoleacelt ackl; and CMC, carbaxymatiyiceliioss.

"Avadabie fom Casfaldi ef al. 2021).

TABLE 3 | General features of the assemrbled genomes,

Strains

RHFB RHF2 RHF& RHF12 RHF15 RHFS510 RHFS18
Size bp) 5,648,757 4,003,762 4,066,378 4,006,200 4,232,838 4,254 653 3,906 406
Number of contigs 158 52 156 280 40 46 1,105
Mean GC content (%) 40,57 4374 483 44,01 4339 43,05 46,14
chs 5413 3,988 3001 3997 4,282 4,182 387
NSO 187,761 413,219 584,325 80,229 2,184,724 1,139,270 6,179
N75 2022 306,766 292476 34,07 1,049,735 348,257 3,118
L50 11 3 2 19 1 2 176
L5 Pl [ 4 42 2 4 a7

RHFS18, respectively (Table 3). The genome of strain RHFS18
was particularly fragmented, and repeated sequencing of the
same strain did not yield improved assembly suggesting that
the results are not dependent on a low-quality sequencing
library. The obtained genomes are approximately 4.0 Mbp long
except for RHFBs genome, being the longest (5.6Mbp) and
the one with the highest number of predicted protein coding
sequences compared to the others. Taxonomic identification
of the strains was based on the phylogenetic analysis of the
165 rRNA sequence as well as the whole genome Average
Nucleotide Identity. All the isolates were identified as members
of the genus Bacillus (Figure 1) with six strains out of seven
clustering into the same clade, and only strain RHFB falling
in a different clade. The phylogenetic divergence observed for
RHFB from the other strains agrees with the observed differences

in physiological traits for this strain (Supplementary Table §3).
Since most Bacillus species are phylogenetically close, 165 rRNA
analysis is not always exhaustive to obtain an unambiguous
assignment (Rooney et al,, 2009). To overcome this issue and
classify the strains at the species level, whole genome ANI
was used (Table 4). Strain RHFB exhibited 96.95% ANI against
the genome of the closest relative Brevibacterium frigoritolerans
and was therefore identified as a B. frigoritolerans species. Strain
RHF2 was identified as Bacillus subtilis, based on 99.96% ANI
score. Strains RHF6 and RHFS18 were classified as members
of the Bacillus amyloliquefaciens species, exhibiting 99.26 and
98.36% ANI, respectively. Strain RHF12 was identified as Bacillus
halotolerans, based on 98.04% ANI score, while RHF15 was
classified as Bacillus gibsonii, showing 99.6% ANI score. As
shown in Table 4, RHFB, RHF12, and RHFSI8 strains were
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FAGURE 1 | Phylogenatic tree of the spore-forming bacteria isolated from
salt-pans. The pylogenetic tree was constructed using the Maximum-
Eefhood algonthm with model GTR +1+ G4, based on 163 rRNA gene
sequences, The gene sequences of the isolated bacteria were aligned to
reference bactena baonging to the Baciaceae family according to Genome
Taxonomy Database {GTDE). Node support represents the approximate
Wkelhood-ratio test {aLRT) and is shown at the comesponding noda of the
tree, Clostricium difficlle is used as an outgroup,

univocally matched with the same species, while for RHF2,
RHF6, and RHF15 strains the two analyses returned different
results, This mismatch between the two methods of classification
is due to the poor discrimination between closely related species
of the Bacillus genus due to their high morphological,
biochemical, and genetic similarities (Celandroni et al, 2019).
Since taxonomy annotations based on genetic markers, such
as the 165 rRNA gene, can give variable results depending
on the strain, ANI-based classification has been preferred in
this study when showing ANT scores =95% (Jain et al,, 2018).
Based on this, RHF2, RHF6, and RHF15 were identified as

TABLE 4 | Classification of the seven selected strains,

165 rRMNA similarity ANI (best score)
RHFB B. frigoritolerans {100%) B. frigoritolerans £6.85%)
RHF2 B. valazansis (99.87%) B. subfiis 168 {99.96%)
RHFS B. vetezensis {100%) B. amyloliquetaciens {93,26%)
RHF12 B. halofolarans {98 .51%) B. halotolarans (98.04%)
RHF15 B. subitils (100%) B. gibsonf {99.6%)
RHFS10 B. halotolerans (87 5%) B. valismortis (83 48%)
RHF318 B. amylofiquefaciens (100%) B. amyloliquefaciens {88.36%)

Tha 165 fRNA sirflartly and AN score agalnst the cbsest relathve identified from the
phyiogenatic analysis ae mporad Br each isolate.

B. subtilis, B. amyloliquefaciens, and B. gibsonii, respectively
(Table 4). Only strain RHFS510 could not be classified at the
species level due to the low ANI score (93.48%) when compared
with the closest relative Bacillus vallismortis and it was classified
as Bacillus sp. RHFS10 (Table 3). Further analysis will be required
to fill this classification gap.

Environmental Adaptation to Halophilic
Conditions

‘The phenotypic plasticity of the salt-pans isolates was investigated
by comparing their growth parameters against the closest Bacillus
species identified by the ANI analysis (Table 4). Temperature,
pH, and salinity ranges required for growth were evaluated.
These parameters are useful to identify distinct phenotypic
strategies used by microorganisms to better adapt to environmental
conditions (Agrawal, 2001). As expected, taxonomically closer
strains showed small differences when compared with each
other or with their representative species (red dashed lines in
Figure 2). As already highlighted by the phylogenetic analysis,
B. frigoritolerans RHFB strain presented a diverging phenotype,
especially considering the lower salt tolerance compared to the
other isolates. Interestingly, some strains, like B, halotolerans
RHF12, B. gibsonii RHF15, and Bacillus sp. RHF510, showed
identical growth properties even though belonging to three
different Bacillus species (Figure 2), while strains of the same
species, like B. amyloliquefaciens RHF6 and RHFS18, exhibited
different adaptations to NaCl concentration and pH range.
Moreover, B. amploliquefaciens RHF®6 like B, subtilis RHF2 were
able to grow at higher salt concentrations than their representative
species, suggesting an adaptive phenotypic variation to the high
salinity condition of salt-pans.

Analysis of Potential PGP and Biocontrol
Traits

To confirm the in vitro PGP characterization of the isolates,
a prediction of the genes (Figure 3) and proteins (Table 5)
involved in biocontrol activity and plant growth promotion
was performed. The analyses identified genes that can
be attributed to the strains ability to improve nutrient availability,
suppress pathogenic fungi, and resist oxidative stress and quorum
sensing in all analyzed genomes. For instance, the genome of
most of the seven strains included the pyrroloquinolone quinone
synthase (pgq) and the dependent glucose dehydrogenase (gdh)
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RHFS10 |

B. frigoritolerans

RHF12 [

L

B. halotolerans -

github.io/polygonspiot!,

B. subtilis

B. gibsonii ———

FIGURE 2 | Phenoypic plasticity of the salt-pan isolates. Multivariate polygons plots {Giovanneli et al., 2021, in preparation) showing the growth temperature
{gT=C), pH, and safirity (% NaCl) boundanes obsenved forthe seven isolates (polygons) and the range for the closest relative identified by AN {red dashed lines).
Each edoge represen's the range for the specific variables projecied onto the axis, More information about polygons piot can be found at hitps://giovanneliiab

B. amyloliguefaciens ———

genes, involved in mineral phosphate solubilization as well as
antifungal activities and systemic resistance induction,
Interestingly, both isolates B, amyloliquefaciens RHF6 and RHFS18
did not carry the cofactor pgq gene cluster, suggesting that
other mechanisis could co-exist (Table 2). IAA is one of the
most common and effective plant-growth hormones. Besides
plants, most rhizobacteria can produce and secrete IAA,
increasing the growth and the yield of crops (Bunsangiam
et al, 2019), All the strains produced Tryptophan-2-
monooxygenase and Indole-3-acetamide hydrolase, able to
convert Tryptophan in Indole-3-acetamide and then in IAA,
respectively (Bursangiam et al, 2019). The presence of other
tryptophan synthases orthologs (subunits a and b) in all the
analyzed genomes suggests alternative IAA biosynthesis pathways
potentially involving different intermediates. This hypothesis
is supported by the observation that B. frigoritolerans RHFB,
one of the best TAA producers among the isolated PGPB,
possessed the indole-3-pyruvate decarboxylase, a key enzyme

of another Trp-dependent pathway for IAA production (Sithon
et al, 2000).

All the strains were predicted to be potentially able to fix
nitrogen and produce nitric oxide, both useful features in
agricultural practices (Ahmad et al, 2013), and to synthesize
polyamines, as spermidine and putrescine, and the ACC
deaminase, involved in lateral root development and plant
growth enhancement under abiotic stress (Xie et al, 2014;
Gupta and Pandey, 2019},

As expected, the genome of all the halophilic Bacillus strains
contained multiple genes involved in antioxidant response, such
as peroxidases, catalases, superoxide dismutase, and glutathione
peroxidase (Hassan et al, 2020; Figure 3; Table 5). Other
enzymes involved in abiotic stress responses were identified
in the strains, as the osmoprotectants choline dehydrogenase,
betaine-aldehyde dehydrogenase, and proline dehydrogenase
(Table 5). The predicted production of osmotically active
metabolites, as well as ROS scavenging enzymes, reflects the
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FIGURE 3 | Whole genome representations of the seven isolates showing the location of the identified PGP trait genes.

ability of the selected strains to survive in extreme environments, Finally, all the isolates possessed in their genomes genes
as salt-pans and to potentially alleviate abiotic stress in  encoding for hydrolases involved in fungal cell-wall and starch
agricultural system. degrading pathways, confirming the results obtained with the
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TABLE 5 | Plant-Growth-Promoting traits-associated proteins identified in the proteorne of the selected strains and their abundance,
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in vitro analysis, except for strain B, frigoritolerans RHFB whose
genome did not carry a-amylase or cellulase genes.

Antimicrobial Activity Screening

To wverify the antagonistic potential that emerged from the
genome-mining, the isolates were dually cultured with fungal
and bacterial plant pathogens (see Table 1 for a list of the used
phytopathogens). The results reveal that isolates inhibited plant
pathogens growth on plates with different efficiency (Figure 4).
Strains B, subtilis RHF2, B. amyloliquefaciens RHF6, and Bacillus sp.

RHFS10 showed a broad inhibitory spectrum, being able to
antagonize both phytopathogenic fungi and bacteria, while B.
halotolerans RHF12 and B. amyloliquefaciens RHFS18 exhibited
an antimicrobial activity limited to fungi. The highest antagonistic
activity was observed for strain Bacillus sp. RHFS10, capable of
inhibiting the growth of most of the test pathogens, confirming
its biocontrol potential already observed by Castaldi et al. (2021).
Unexpectedly, B. frigoritolerans RHFB exhibited no activity at
all. Nevertheless, in the last decade, this species has been identified
as a potential insect pathogenic bacterial species, with nematicidal
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FIGURE 4 | Representative photographs of dual culture assay for in vitro mycelial growth inhibition of fungal phytopathogens.

activity (Selvakumar et al., 2011). The diversity observed in the
antimicrobial activity against plant pathogens highlighted the
phenotypic diversity of sand and rhizosphere isolated Bacilli,
suggesting that in nature plant-associated bacteria may encounter
different phytopathogens that may induce the acquisition of
different antagonistic activity.

Genome Mining for Biosynthetic Gene
Clusters

The biocontrol potential and the ability to enhance plant growth
of PGPB are mostly attributed to their bioactive secondary
metabolites. Proteins and metabolites released in the soil by
PGPB, indeed, are implicated in root colonization, as well as
in interactions with the plant immune response and the
surrounding niche (Lugtenberg and Kamilova, 2009; Pieterse
et al, 2014; Jamali et al, 2020). The strong antimicrobial activity
of selected Bacillus strains is most likely due in part to the
production of hydrolytic enzymes and siderophores observed
in in vitro assays and confirmed by genome analysis (Tables 2
and 5). To better investigate this antagonistic activity, the
biogynthetic potential of the halophilic PGPB was evaluated
by using antiSMASH 6.0.0 to predict both characterized and
unknown functioned secondary metabolites (Figure 5).

The bacterial isolates hatbored BGCs coding for NRPSs,
polyketide synthases (PKSs), post-translationally modified
peptides (RiPPs), hybrid lipopeptides (NRPS-PKS; Figure 5A),
and the majority of the BGCs are assigned to known products
(Figure 5B; Supplementary Table $4). The unknown BGCs
are type 3 palyketide synthase (T3PKS), RiPPs and terpenes
(Figure 5C; Supplementary Table 54).

Novel Non-ribosomal Peptide Synthetases
and Bacteriocins
NRPs are modular enzymes that synthesize secondary
metabolites, some of which are known to be involved in
plant disease control (Ongena and Jacques, 2008). Several
bivactive compounds produced by Bacillus strains fit in this
category, such as surfactin or fengycin (Keswani et al., 2020),
both of them exhibiting antimicrobial activity potentially
exploited for biocontrol in agriculture. We have identified
one novel BGC belonging to the class of the NRPs from B,
amyloliquefaciens RHF6 (Figure 6). This cluster of 66.3 Kb
has six genes encoding 25 domains, which include six
condensation (C) domains, seven adenylation (A) domains,
one coenzyme A ligase (CAL) domain, two epimerization
(E) domains, one thioesterase (TE) domain, one
heterocyclization (Cy) domain and seven peptidyl carrier
protein (PCP) domains. Among them, 24 domains are essential
components of this cluster, and catalyze the incorporation
of seven amino acids into the final product exhibiting the
following sequence: D-Cys-Ser-Cys- Ala-Asn-D-Asn, This cluster
shows no similarity to any known BGCs reported in the
antiSMASH database (Supplementary Table §4). The single
heterocyclization (C) domain in the first module of the BGC,
could form a thiazoline ring from a residue of cystine (Cys).
Interestingly, many antimicrobial drugs expose a thiazoline
ring (Desai et al., 2016). This allows us to speculate on the
potential antimicrobial activity of the compound produced
by this novel BGC.

The seven genomes were also mined for potential novel
bacteriocins BGCs using BAGEL4. Bacteriocins are ribosomally
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FIGURE 6 | Novel NRP Biosynthetic gene Clusters identified from the isolate Bacilus amyloliquefaciens RHFE.

synthesized antimicrobial peptides, generally active against
bacteria closely related to producers (Cotter et al, 2013),
and classified into three main classes: class 1 comprehends
ribosomally produced and post-translationally modified
peptides (RiPPs); class I unmodified peptides, and class 11T
large antimicrobial peptides (Zhao and Kuipers, 2016). These
molecules are directed against competitive microorganisms,
and therefore generate a selective advantage for the producers.
Generally, bacteriocins are highly specific against their
target, although some might have a wider spectrum

(Jack et al,, 1995). The analysis made using BAGEL4, returned
15 regions of interest (in contrast with the antiSMASH
analysis which revealed a higher number of bacteriocins,
Supplementary Table 54), even though only six of them
could be classified as novel bacteriocins, sharing <70% of
similarity with known sequences from BAGEL4 database
(Figure 7).

One orphan BGC of 27 genes is carried by both B
amyloliquefaciens RHF6 and RHFS18 strains (Figures 7a.1,d.1),
although the core biosynthetic genes encode two different
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precursor peptides of 40 and 29 amino acids, respectively,
sharing 41.03 and 57.14% of similarity with ComX4 from the
B, subtilis group. In particular, ComX4 belongs to the ComX
subclass of RiPPs according to the BAGEL4 database, and it
is part of a major quorum-sensing system that regulates the
development of genetic competence (Okada et al, 2005) and
the production of surfactins (Caulier et al, 2019). Bacillus

amyloliquefaciens RHF6 also harbors a BGC of 23 genes
(Figure 7A-a.2), with the core biosynthetic gene encoding a
63-amino acids precursor peptide, showing a similarity of
36.51% compared to UviB, a class 11 bacteriocin first identified
in the mobilizable plasmid pIP404, from C. perfringens, knovn
to be bacteriocinogenic (Garnier and Cole, 1988). Interestingly,
two different BGCs containing the same gene encoding for a
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TABLE 6 | Antimicrobial activity of the seven selected strains against phytopathogenic fungi and bacteria,

Pathogen types Species RHFB RHF2 RHF6 RHF12 RHF15 RHFS10 RHFS18

Fungi M. phaseclina - - - + -+ — —
C. fruncatum - - et et et e 4
0 fenas - - ++ ++ ++ +t o
C. nfcotianag - et ++ ++ At ot ++
5. vasicarium - b et b bt bt -

Bactera P todaasi - - + - - + -
R syringas pv fabaci - T+ + _ _ N B
R syringas pv panicl - ++ b - - + _
R cariophilly - - - - + + -
P syringae pv syringae - + + - - ++ -
P syringae pv japonica - - -+ - + _
P syringae pv papulans - - - - _ N .

Na nhitition (=), inhibifory zone <5mm (+), ichibifory 2one Smm (++), and inhibifory 2one =5mm (+++)

putative UviB-like bacteriocin, were found in strains B. gibsonii
RHF15 (Figure 7B) and B. amyloliquefaciens RHFS18 ( 7D-d.1).
Their precursor peptides share 421 and 334% similarity
with UviB.

Finally, Bacillus sp. RHFS10 carries an orphan 28 genes
BGC with a core biosynthetic gene encoding a 40-amino
acids peptide sharing 35% of similarity with the competence
pheromone of B. subtilis 168, a RiPP belonging to class
I bacteriocins. Bacillus species are known to synthesize many
well-studied bacteriocins, such as subtilin, ericin, paenibacillin,
subtilosin, thuricin, and coagulin (Abriouel et al, 2011).
Anyway, it is impossible to predict if the six compounds
produced by strains B. amyloliquefaciens RHF6, and RHFS18,
B. gibsonii RHF15 and Bacillus sp. RHFSI0 actually have
antimicrobial properties from genome sequence data only.
Despite this, the antagonistic activity exerted by RHF6, RHF
15, RHFS10, and RHFS18 strains observed previously in
in vitro assays (Table 6) could be associated with these
potential compounds. This will need to be validated by
further experiments.

CONCLUSION

In a historic moment in which the increasing population
coupled with land degradation aggravates crop production,
the use of plant growth promoting bacteria to ensure agricultural
productivity has a huge impact on our society. These soil
microorganisms enhance plant performance and represent an
eco-friendly altermative to chemical fertilizers and pesticides
(Hashem et al, 2019). When applied directly to the soil,
PGPB enhance plant growth by different action mechanisms
such as the production of different phytohormones, accelerating
the mineralization of organic matter and improving the
bioavailability of the nutrients, and protecting plants from
pests’ damages. The beneficial activity exerted by PGPB is
in part mediated by a broad spectrum of secondary metabolites
and enzymes. For example, polyamines, such as spermidine,
play important physiological and protective roles in plants,
resulting in an increase in biomass, altered root architecture,
and elevated photosynthetic capacity. Until recently, these key

metabolites were uncovered only by systematic investigation
or by serendipity, often understating the PGPB potentiality
during their screening. Many genes involved in PGB activity,
in fact, could be silent under standard laboratory conditions,
due to the absence of appropriate natural triggers or stress
signals. More recently, the onset of the genomic era has
facilitated the discovery of these ecologically important
metabolites and novel strategies became available for
PGPR characterization.

For example, genome mining allows to look over the whole
genome of a PGPB strain and highlights genes encoding
beneficial enzymes, involved in the enhancement of plant
nutritional uptake or modulation of hormone levels, as well
as for antimicrobial-encoding BGCs.

In this work, we have isolated soil halophilic Baclli and
performed their screening for PGP traits by using standard
laboratory procedures and whole-genome analysis. Bacilli
represent a significant fraction of the soil microbial community
and some species are categorized as PGPB (Cazorla et al,
2007). They are also able to produce endospores, which besides
enduring harsh environmental conditions fatal for other cell
forms (Petrillo et al, 2020), permit easy formulation and storage
of commercial PGPB-based products. In addition, salt-tolerant
PGPB can easily withstand several abiotic stresses and ameliorate
plant growth in degraded soil.

Seven Bacillus strains have been selected for in vitro
PGP traits and identified at the species level by genome
analysis. Based on genome mining, not only have
we confirmed the beneficial activities PGP found by in
vitro analysis, identifying the involved genes but also we have
highlighted their strong potentiality by the discovery of
novel biosynthesis gene clusters. Our results demonstrated
that the genomic analyses, as genome mining, allow a full
investigation of PGPB biosynthetic capacity for secondary
metabolites and proteins and represent useful tools in the
characterization of plant beneficial bacteria. Nevertheless,
the divergences observed between the predicted biocontrol
functions by found gene clusters and the results obtained
by in vitro analysis, highlight the need of combining
laboratory-assays and genome-mining in identification of
new PGPB for future applications.
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Abstract: In recent decades, intensive crop management has involved excessive use of pesticides or
fertilizers, compromising environmental integrity and public health. Accordingly, there has been
worldwide pressure to find an eco-friendly and safe strategy to ensure agricultural productivity.
Among alternative approaches, Plant Grow th-Promoting (PGI’} rhizobacteria are receiving increasing
attention as suitable biocontrol agents against agricultural pests. In the present study, 22 spore-
forming bacteria were selected among a salt-pan rhizobacteria collection for their PGP traits and
their antagonistic activity against the plant pathogen fungus Macrophomina phasealing. Based on the
higher antifungal activity, strain RHF510, id entified as Bacillus vallismortis, was further examined and
cell-free supernatant assays, column purification, and tandem mass spectrometry were employed to
purify and preliminarily identify the antifungal metabolites, Interestingly, the minimum inhibitory
concentration assessed for the fractions active against M. phaseoling was 10 times lower and more
stable than the one estimated for the commercial fungicide pentachloronitrobenzene. These results
suggest the use of B. vallismortis strain RHFS10as a potential plant growth-promoting rhizobacteria as
an alternative to chemical pesticides to efficiently control the phytopathogenic fungus M. phaseolina

Keywords: plant growth-promoting bacteria; spore-forming bacteria; Bacillus vallismortis; Macrophom-
ina phaseoling; phenotypic and genotypic characterization; biocontrol agents

1. Introduction

In the last century, the world population reached a size three times greater than any
previous value across the whole history of humanity. To cope with the rising request for
nutrients, such as those provided by wheat and rice, current agricultural practices are
based on the wide use of chemical fertilizer and pesticides. As a result, agrochemical
multinationals have gradually acquired the control of global food production and modem
agriculture is increasingly diverging from the traditional model [1]. Additionally, the
extensive use of synthetic agrochemicals has generated heavy environmental pollution
and serious risk for human and animal health due to their translocation along the food
chain [1,2]. The massive use of pesticides has also led to a gradual loss of protection
efficiency due to new resistances acquired by pests, with a continuous increase in pesticide
dosage [2,3]. A sustainable and safe strategy to ensure crop production is to substitute
agrochemicals with Plant Grow th-Promoting Rhizobacteria (PGPR) as agents stimulating
plant growth and health [3-5]. These beneficial microbes not only play an important role
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in increasing soil fertility but also enhance the growth and vigor of the plants—PGPRs,
by colonizing the roots, may enhance nutrient uptake by nitrogen fixation or P solubi-
lization [4], reduce abiotic stresses by biofilm production [5] or regulate plant hormone
production [4]. Emerging evidence has shown that rich microflora of the rhizosphere can
reduce plant disease through several antagonistic mechanisms such as competition, the
production of cell-wall-degrading enzymes, (e.g., chitinase, glucanase, and protease) [6],
volatile compound s and siderophores [7], antibiosis or the induction of plants” systemic
resistance [8]. Replacing agrochemicals with the application of PGPRs may have both
economic and environmental impacts, including relevant benefits such as rising yields,
recluction in or elimination of chemical residues, limited or no development of resistance
by pests and patho gens, employment of agricultural raw materials, and a low risk to non-
target organisms, including pollinators. For this reason, intensive research on this group of
microorganisms has been taking over to develop new biofertilizers and biocontrol agents.

In this contest, Bacillus genera include several exo- and endophytic bacteria species and
plant growth-promoting (PGP) features have been associated with different strains [9,10].
In addition to the benefits shared with other PGPR, such as solubilization of soil P, en-
hancement of nitrogen fixation, and siderophore production, Bacillus spp. are suitable as
biofertilizers because: (i) their application has little, if any, effect on the composition of
the soil microbial communities, being common members of the plant root microflora [11];
(ii) these bacteria may form endospores, which can survive at high temperatures and
dehydration, making the formulation of a commercial product easier [12]; (iii) some Bacillus
PGPR strains have also been reported to perform well under different environmental con-
ditions [13]. As biocontrol agents, Bacillus spp. exhibit both direct and indirect mechanisms
to suppress diseases caused by pathogens. These bacteria secrete a vast range of secondary
metabolites, such as cell-wall-degrading enzymes, and antioxidants that assist directly the
plant inits defense against pathogen attack [14]. As an indirect mechanism, Bacillus spp.
are able to induce the acquired systemic resistance of the colonized plant [5].

This manuscript describes the screening of 22 Bacillus strains isolated from samples
of the rhizosphere of Juniperus sabina [15] collected from the National Park of Ses Salines
d'Eivissa, Formentera (Spain), focused on finding a PGPR strain with antagonistic activity
against the phytopathogenic fungus Macrophomina phaseolina.

M. phaseolina (Tassi) Goid is responsible for charcoal root rot, the most common and
widely spread root disease affecting more than 500 cultivated and wild plant species.
The fungus is distributed worldwide and prevalently in arid areas with low rainfall and
high temperature where it can survive for up to 15 years in the soil as a saprophyte [16].
M. phaseoling generally affects the fibrovascular system of the roots and basal internodes
producing black sclerotia, which allow the fungus survival after the plants rotted [16].

Each year, this fungus induces heavy damages in agrarian plants with a high world
market value, such as soy, sunflower, leguminous, and corn [16]. Soybean grains, in
particular, are globally utilized not only as foods but also as substrates for feeds, fuels, and
bio-based materials [17]. Thus, many efforts are made for the control of M. phaseolina to
reduce or avoid the loss of agricultural yields and the consequent economic damage.

Additionally, PGPRs have been evaluated as biocontrol agents against M. phaseolina
and strains belonging to Pseudomonas and Bacillus genera showed the best performance.
In a study carried out by Simonetti et al. [18], two strains, namely Pseudononas fluorescens
9 and Bacillus subtilis 54, have been assayed for antifungal activity in combination with
manganese phosphite or alone and shown to significantly reduced soybean disease severity
induced by M. phaseoling compared to the untreated control.

Several studies are still in progress to identify the main antifungal metabolites pro-
duced by PGPRs and clarify their modes of action to achieve optimum disease control.
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2. Results
2.1. Isolation and Screening of Plant Growth-Promoting Spore-Forming Rhizobacteria

Aerobic spore-forming bacteria were isolated from rhizosphere samples of J. sabina
collected in Parque Natural de Ses Salines d'Eivissa, Formentera (Spain), as described in
the Materials and Methods section. A preliminary characterization based on the bacterial
morphology and growth properties has allowed the selection of 22 facultative anaerobic
strains, mesophiles, which are able to grow at a different pH range (Table S1).

Analysis of the DNA sequence of the 165 RNA gene of the 22 strains allowed the iden-
tification of all of them as belonging to the Bacillis genus (Table 52). In order to confirm the
different species obtained by BlastN analysis (Table S2), a phylogenetic analysis (Figure 1) was
performed by comparing the 165 sequences with respective type strains (7) available at
the NCBI Taxonomy database. The analysis corroborated the different Bacillus species by
>0.90 bootstrap values. Allisolates belong to species commonly considered as PGPR for
their ability to colonize roots [11,19] and produce antimicrobial compounds [14,19].
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Figure 1. Phylogenetic tree of isolated rhizobacteria. The phylogenetic tree was constructed using
the maximum-likelihood algorithm based on 165 rRNA gene sequences. The gene sequences of the
isolated bacteria were aligned to the rep tative type strains (7). The numbers in parentheses
indicate the GenBank accession numbers. The percentage of replicate trees in which the associated
taxa clustered together in the bootstrap test (1000 replicates) is shown next to the branches. The 165
rRINA sequence of Clostridioides difficile (ATCC9689) was used to assign an outgroup species.

The selected strains were analyzed for PGP traits by testing the presence of both
fertilizing and biocontrol features. As summarized in Table 1, a high proportion was able
to solubilize phosphate (Supplementary Figure S1), produce siderophores (Supplementary
Figure 52) and indoleacetic acid, while only some of the strains were biosurfactant and
biofilm producers and showed swarming motility.

50|Pag.



- 2020

POR CAMPANIA

2014

‘PIdE JRAICD[OPU] I, VYT IANATOR UOBBZI[IGN]OS SE&E_._._ e MAJ SAnapoe ou - ¢ > ofey) Aagoe Em:m s funu O > ofEy > unu ¢ Ananoe NEIAPOW 14+ (W (1= OeY uoRTuLIoy) ATAnoe Buomns e+

4 +4 b 4 - 4 P - - - - - HTSAHY
B3 - ++ ++ + - - b ++ - + + + TOSAHY
m 444 +4 +4+ +4+ - +4 + - - + - + OTSAHY
< e + 444 ha 4 4 P 4 e + 4 4 HISIHY
m 4+ +4+ s 4 o +4+ EExS 4+ et ++ £ +4+ BISIHA
£l e +4 + + - +4 Eexd - - 4 + + FACE |50
- - 444 ha - +4 +4 - + + + + GISIHY
- +4+ s 4 + +4+ EExS - - e + + SISIHA
444 + - ++4 - + + - - ++ 44 - FISAHY
++ ++ - 4 - - i+ - - ++ - - CISAHY
+ +4 +44 ++4 - +4+ - - + + + - TIS4HY
+4 +4 - ++4 + +4+ 444 - - + + + TISdHY
A ++ 44 4 44 4 i+ 44 +4+ + 44 +4+ O1SdHY
+4 +4 +44 - +4 +4+ 444 44 + - - + B5IHY
e +4 + 4 - 4 P - - - + 4 HSAH
e+ ++ 44 4 + - + - - ++ - - L54HT
444 - +4+ ++4 - +4+ 444 - - ++ + - 9SIHY
4 +4 + + - 4 P - - + - + CSIHY
4 +4+ s 4 - +4+ EExS - - + + - TSIHA
- - +44 + +4 +4+ 444 - - + + - CSIH
- +4 444 4 + 4 P 444 + - 4 - TSAHE
4 + +4+ 4 + +4+ EExS - - - - + 1S4HA
gy Ay Apanpy Apanpy Aparpy Ly Ay - N—— — e AL uopanpoig apoD
DSE[EIE) ASEURIYD AN aseueAx asedi asepduy DEENOL] sazoydosapig SUTENg

SIRIARIY [OHu0301g SIRIANYY TR0

sa)e[ost euReq Sunmoj-aiods 7z Aq pangiyxe spren jonuodorg pue Sunoword-ipmord juerd jo Areuwnung -1 ajqer

qrjot FTEE ‘7T ‘10T 1S oW [ iy

51|Pag.



I, J. Mol $d.2021, 22,3324

‘ POR CAMPANIA
[RECIONE CAMPANIA 2014 - 2020
I

Sof 18

Then, the potentiality as biocontrol agents of the 22 strains was tested analyzing their
ability to secrete lytic enzymes (Supplementary Figure S3) [20]. As shown in Table 1,
the number of protease and xylanase producers was the highest (over 90%) followed by
amylase, chitinase and cellulase producers (over 80%), whereas less than 50% were lipase-
producers (45%).

2.2. Antagonistic Activity of Spore-Forming Isolates against Fungal Plant Pathogen
The antagonistic activity of the 22 strains was examined against the phytopathogen
M. phaseolina by dual-culture assay (Figure 2A).
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Figure 2. Antagonism assays in solid medium. (A) Representative photographs of dual-culture assay
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for in vitro inhibition of mycelial growth of M. phaseolina by isolated strains. (1) M. phaseolina (control
plate); (2) example of active strain (RHFS10) against M. phaseolina growth; (3) images of interaction
zone of RHFS10 strain and M. phaseolina acquired with a stereoscopic microscope (10 x magnification);
(4) example of inactive strain (RHF528) against M. phaseoling growth; red arrow in panel 2 indicates
the interaction zone magnified in panel 3. (B) Inhibition of fungal growth reported as the percentage
reduction in the diameter of the fungal mycelia in the treated plate compared to that in the control
plate. All experiments were performed in triplicate with three independent trials. Data are presented
as means -+ standard deviation (n = 4) compared to control M. phaseolina grown without bacteria. For
comparative ana Iy:iis of groups ofdata, one-way ANOVA was used and p values are pre-senh:d in the
figure: ****: extremely significant < 0.0001.

Based on the size of the inhibition zone in dual-culture tests, some strains were found
to be highly efficient against the fungal pathogen while others had limited or no antimi-
crobial activity (Figure 2B). For a more detailed analysis, the produced inhibition halos
were observed under a stereomicroscope, highlighting agar-diffusible anti fungal molecule
production by the most active strains (Figure 2A, panel 3; Supplementary Figure S4).

Of all analyzed isolates, RHFS10 and RHFS18 proved to higher potentiality than
PGPR, since they possess traits beneficial for both plant growth, such as the ability to
solubilize phosphorus or produce siderophores, and show antagonistic ability against
phytopathogens. For these reasons, both strains were selected for further experiments.
Strain RHFS28, able to produce lytic enzymes but not showing antifungal activity, was
selected as a negative control for the next experiments.

To assess the effect of the cell-free culture supernatants (CFSs) of RHFS10 and RHFS18
on mycelial growth, the CFSs at 24, 48, 72 and 96 h were collected and tested against
M. phaseolina. The commercial fungicide pentachloronitrobenzene (PCNB) dissolved in
toluene was used as a positive control and toluene alone was used as a negative control of
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the experiments (Figure 3 A). The antifungal activity increased proportionally with the growth
time reaching a maximum after 72 h, specifically for the RHFSIS strain (Figure 3B). Based
on the efficiency of inhibition, measured by the percentage of mycelial grow th reduction,
strain RHFS10 was chosen for further investigation.
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Figure 3. Antifungal activity of secreted metabolites by Plant Growth-Promoting Rhizobacteria
(PGPR) strains. (A) Effects of the C5Fs from RHFS10 (panel 1) and RHFS18 (panel 2) strains collected
after 72 h of growth on the mycelial growth of M. phaseoling (panel 1). C+: Positive control, pen-
tachloronitrobenzene; C—: Negative control, toluene. All experiments were performed in triplicate
with three independent trials. (B) Antifungal activity of the Cell-Free Supernatants (CFSs) of the
two strains RHFS10 and RHFS18 collected from 24 to 96 h of growth. Percentage of fungal growth
inhibition was reported as the percentage reduction in the diameter of the fungal mycelia compared
to control plate (panel 3). Data are presented as means & standard deviation (n = 3). For comparative
analysis of groups of data, one-way ANOVA was used and p values are presented in the figure:
***: extremely significant < 0.001.

2.3, Characterization of Antifungal Metabolites

The stability of the antifungal metabolites secreted by RHFS10 was tested by incubat-
ing the CFS collected after 72 h (72-CFSs) with different proteolytic enzymes or organic
solvents and then tested for inhibition of mycelial growth.

As shown in Figure 4A, the 72-CFS still had notable activity after incubation with
organic solvents but decreased under the action of proteinase K or pepsin.

Thermostability was verified incubating the 72-CFS at increasing temperatures for 1 or
3 h. The results showed that treatments at 65 and 75 °C do not affect the inhibitory effect
against M. phaseolina, while at 85 “C a reduction in the antifungal activity was observed
(Figure 4B).

Finally, metabolites of the 72-CFSs were extracted with ethyl acetate at pH 2.0 and
pH 7.0 and the two obtained phases were separated and tested against M. phaseolina. The
results showed that the antifungal activity was mainly associated with the aqueous phase
at pH 7.0 (data not shown). This data indicated a protein nature of the bioactive molecules
in agreement with the protease sensitivity recorded in the previous tests.
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Figure 4. Stability of secreted antifungal metabolites. CFSs collected after 72 h (72-CFS) of RHFS10
was treated separately, with different enzymes and organic solvents (A) or incubated atincreasing
temperatures (37, 65, 75, and 85 °C) (B) and tested against M. phaseolina. All data represent the
average of three separate experiments,

2.4, Purification of Antifungal Metabolifes

To preliminarily identify the antifungal compounds released by the RHFS10 strain, 72-
CFS was subjected to purification by two different steps. First, the 72-CFS was fractionated
and the obtained fractions were tested against M. phaseoling. As shown in Figure 5A, the
antifungal activity was observed in the fraction containing compounds with molecular
weights between 10 and 50 kDa. In the second step of purification, the polypeptides present
in 72-CFS were collected with ammonium sulfate, dialyzed to eliminate the polypeptides
with a molecular weight lower than 10 kDa, and subjected to column chromatography. The
three obtained fractions were tested against M. phaseolina and peaks 1 and 2 showed a wide
zone of inhibition while no antagonistic activity was detected for the metabolites recovered

in peak 3 (Figure 5B).
B

peak 1 peak 3
peak 2

A

Figure 5. Antifungal activity of cell-free supernatant fractions of RHFS10. (A) 72-CFS was size-
fractionated using 10, 30 kDa and, 50 kDa cutoff spin columns, and the obtained fractions were tested
against M, phaseoling. The results obtained with fractions <10 (1), >10(2), <50 (3) and >50 kDa (4)
arereported. C+: Positive control, pentachloronitrobenzene; C—: negative control, toluene; RHFS10:
0.1 mL of fractionated 72-CFS. (B) Elution profile of 72-CFS by fractionation on Sephadex G-50 fine
column chromatography. The antagonist activity of the three recovered peaks (1 mg/dot) is reported
in the upper part of the panel. All data represent the average of three separate experiments. ANOVA
statistical analysis is extremely significant indicated—p < 0.001.
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2.4.1. Minimum Inhibitory Concentration

Minimum inhibitory concentration (MIC) of the antifungal compounds presents in
peaks 1 and 2 was determined, incubating decreasing concentrations of peaks 1 and 2
(Figure 6(A1,A2)) with M. phaseolina plugs. The antifungal efficiency of the compounds
presentin the peaks was compared to the commercial fungicide PCNB (Figure 6(A4)). The
results obtained after 5 days of incubation clearly showed higher antifungal activity of
peaks 1 and 2 than the fungicide PCNB. In particular, the deduced MIC for both peaks was
50 pg/mL, 10 times less than that ded uced for PCNB (0.5 mg/mL). We also compared the
stability of the antifungal activity over time. In this regard, the bioactive compounds present
in peaks 1and 2 perfectly retained their fungal growth inhibition for up to 14 days, while
PNCB's efficiency decreased after a week. Peak 3 confirmed its inactivity (Figure 6 (A3)).

A l||M| [2) Peak 2
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Figure 6. Minimum inhibitory concentrations of purified fractions of 72-CFS on fungal growth.
(A) Minimum inhibitory concentration of the antifungal compound present in pick 1 (Panel 1), pick
2 (Panel 2) and pick 3 (Panel 3) of purified fractions of 72-CFS using a 24-well plate assay. The
commercial fungicide pentachloronitrobenzene (PCNB) (Panel 4) was used as a reference. The tested
concentrations are indicated. Fungal plugs incubated with only PD broth (PD + M. phaseolinag) and
the PD alone (D) were used as a control. The blue lines represent the MICs of the tested samples.
(B) Graphical representation of the MIC assay. The dotted line indicates the starting size (mm) of M.
phaseoling plug (4 x 4 mm) at the beginning of the experiment. The results were obtained after 5days
of incubation at 28 “C. Data are presented as means =+ standard deviation (n = 3 replication for each
different concentration). ANOVA statistical analysis is extremely significant indicated—=*** p <0.0001
and *** p < 0.001.
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2.42. Preliminary Identification of Bioactive Compounds

Finally, the three fractions were analyzed by liquid chromatography coupled with
tandem mass spectrometry (LC-MS/MS). As shown in Table 2, several protease and
lytic enzymes were identified in the two antifungal active peaks. Two different forms of
subtilisin-like proteins were identified in peak 1, showing apparent molecular weights of
39 and 28 kDa and corresponding to the mature serine-protease and the proenzyme, respec-
tively. Additionally, the glucuronoxylanase XynC was also detected. Both subtilisin-like
protein forms were also present in peak 2, even if with a lower concentration, together with
a B-glucanase, whereas peak 3 contains a metalloprotease and an alpha-amylase. As serine-
proteases, beta-glucanase and glucoronoxylanase were demonstrated to act as antifungal
agents [21,22], our results suggest that the activity of these secreted metabolites could be
responsible, at least partially, for the antifungal action of RHFS10. To further corroborate
this hypothesis, a mass spectrometry-based proteomic analysis on the previously described
72-CFSs of RHFS10 strain treated at increasing temperatures (cfr. 3.4) was performed.
Again, the two forms of subtilisin and glucuronoxylanase XynC were identified in the
samples retaining the antifungal activity. Interestingly, the two proteins were not detected
in CFS from the negative control (RHFS28) when subjected to the same treatment. Although
the genome of RHF510 was in permanent draft stage (SAMN17389611), it allowed us to
confirm the presence of all the purified protein genes, which when expressed could be
involved in inhibiting fungal growth.

Table 2. The proteins identified on the three peaks are listed with their accession (AC) numbers and molecular weights.

Fractions Mass (Da) * Swiss Prot AC Significant Sequences Score Description
47,924 XKYNC_BACIU 18 1776 Glucuronoxylanase XynC OS5 = Bacillus subtilis
39483 SUBMN_BACNA 5 1080 Subtilisin NAT OS = Bacillus subtilis subsp. natto
Peak 1 2742 SUBN_BACNA 5 865 Subtilisin NAT OS = Bacillus subtilis subsp. natto
75.9a1 SACC_BACSU 1 795 Levanase OS5 = Bacillus subtilis
38,141 PEL2_BACIU 3 566 Pectin lyase OS = Bacillus subtilis
27.365 GUB_BACAM 8 90 Beta-glucanase OS5 = Bacillus amyloliquefacdens
Peak 2 39,483 SUBN_BACNA 5 800 Subtilisin NAT OS = Bacillus subtilis subsp. natto
2742 SUBN_BACNA 5 637 Subtilisin NAT OS = Bacillus subtilis subsp. natto
Peak3 7239 AMY_BACSU 1 41 Alpha-amylase OS = Bacillus subtilis
€ 34,106 MPR_BACSU 1 39 Extracellular metalloprotease OS = Bacillus subtilis

A Molecular mass of the Swiss Prot sequence in the absence of molecule processing.

3. Discussion

Fungal pathogens represent one of the most common causes of plant disease and are
responsible for losing a third of crops annually [23], causing economic loss and impacting
global poverty. Among phytopathogenic fungi, M. phaseolina (Tassi) Goid is one of the maost
virulent and dangerous plant pathogens. The fungus is responsible for charcoal rot disease
and for the consequent significant yield losses in major crops such as maize, sorghum,
soybean, and common beans each year. The harmfulness of the pathogen is due to its ability
to produce phytotoxins, to survive fora long time in the soil, and to target any stage of plant
growth affecting seeds, seedlings, and adult plants [24]. The persistence of M. phaseolina in
the soil and in turn its capacity to trigger plant infection depends on its ability to compete
with other microorganisms of the rhizosphere—for example, competing for organic sources
or host root colonization. For this reason, a growing number of studies have been focusing
on the isolation and characterization of PGPRs able to limit M. phaseolina growth. PGPRs
can not only colonize the rhizosphere improving plant growth by enhancing nutrient
uptake or regulating plant hormone production, but can suppress a broad spectrum of
phytopathogens, producing different antagonistic compounds or competing for nutrients.

In this contest, the focus of our research was to identify promising Bacilli rhizobacteria
acting as biofertilizers and biocontrol agents against M. phaseolina. Bacillus species are
a major type of rhizobacteria able to be beneficial to plants and to perform the same
role as chemical fertilizers [25] and pesticides [26]. As PGPR, Bacillus spp. act both by
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direct and indirect mechanisms, secreting phytohormones, antioxidants, solubilizing soil I,
enhancing nitrogen fixation, or producing cell-wall-degrading enzymes and siderophores
that promote plant growth and suppress the pathogens [27].

Moreover, the ability of the Bacillus spp. the produce endospores makes them more
suitable candidates for PGPR-based commercial products since the resistance features of
the spores can ensure the persistence of the bacteria during industrial processing and after
their spread in the environment [12].

To this aim, spore-forming bacteria were isolated from salt-pan rhizosphere (For-
mentera, Spain) of the nurse plant . sabina. As a nurse plant, |. sabina ensures a beneficial
organization of plant communities and maintenance of biodiversity, particularly in harsh
environments [28]. Growing evidence highlights that nurse plants alter the composi-
tion of soil bacterial communities, selecting microbiota that are more effective at nutrient
mineralization and involved in plant growth-promoting mechanisms. Among isolates,
22 spore-forming bacteria strains were identified at a species level and first screened for
their plant growth-promoting traits. More than 50% of the selected strains have shown to
solubilize insoluble phosphates, to produce siderophores and secrete IAA, the main plant
auxin able to regulate growth and developmental processes. These findings confirm that
the rhizosphere of nurse plants is a useful source of PGPRs. Then, the biocontrol activity
against the fungus M. phaseolina has been tested by dual-culture assay.

Among the 22 isolates, strain RHFS10, identified as B. vallismortis, showed the best
performance for plant growth-promoting applications both as biofertilizer and biocontrol
agents. The fungal growth inhibition revealed in the cell-free supematant assay suggested
the secretion of antifungal extracellular metabolites not induced by direct contact with the
fungus. These data were in agreement with the stereoscopic observation of coculture exper-
iments. Additionally, the antagonist activity of RHFS10 was not influenced by the bacterial
growth stage, suggesting a constitutive production of the antimicrobial compounds.

Stability experiments revealed a thermostability of the antifungal compounds up
to 75 °C and resistance to various organic solvents. Instead, the sensitivity to protease
treatment as well as the association of the antifungal activity with the aqueous phase during
the extraction with an organic solvent suggests a proteinaceous nature of the metabolites.

Purification experiments have associated the antifungal activity with metabolites
with molecular weights between 10 and 50 kDa, while LC-MS/MS analysis revealed
the presence of proteases and hydrolytic enzymes in the active fractions. In particular a
glucuronoxylanase of 45 kDa and a homologous of the serine protease Subtilisin NAT from
B. subtilis subsp. natto that could be directly implicated in the fungal growth inhibition. Both
proteins were absent in the inactive peak, confirming their involvement in the observed
antifungal activity.

There are, indeed, several functions ascribed to the release of these compounds
during the stationary phase of growth. It is well known that during this very phase
of their life cycle, bacteria generally release hydrolytic enzymes mainly involved in the cell
wall turnover and nutritional functions, which in many cases show antimicrobial and /or
antibiofilm activity [29]. Moreover, it has been lately reported that subtilisin-like proteases
and glucuronoxylanases can digest fungal cell wall structural proteins [30], supporting our
preliminary results. Recently, it has been shown that B. subtilis natto can use several fungal
materials as a carbon source for growth, pointing out the role of constitutively secreted
protease as a nutrient scavenger as well as a potent tool for fungal biocontrol [31].

A further important resultis the higher efficiency of the purified antifungal metabolites
than the commercial fungicide PCNB, used as a positive control in antagonism assays.
The minimum inhibitory concentration assessed for the bacterial bioactive compounds
against M. phaseolina growth (50 ug/mL) was 10 times lower than the one estimated for
the commercial fungicide PCNB (0.5 mg/mL). Interestingly, the bacterial metabolites also
appeared to be more stable over time—they retained their antifungal activity for up to two
weeks, while PCNB registered an efficiency reduction after 6 days only. Hence, the purified
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bacterial bioactive metabolites might be employed in lower concentrations, reaching a
higher long term efficiency compared to chemical fungicides.

Altogether, these results suggest a strong antifungal effect of the protein compounds
produced by the RHFS10 strain and a promising prospect for agricultural applications. The
bacterial bioactive proteins could represent a valid sustainable eco-friendly fungicide and
have potential as a biocontrol agent as an alternative to chemical pesticides.

Future studies will focus on the effect of the M. phaseolina on the expression of anti-
fungal metabolites produced by RHFS10, to verify if the fungus itself may enhance the
production of the bioactive compounds already detected in this study or, perhaps, trigger
the expression of new metabolites. Other studies also need to optimize their large scale
production and to find their best formulation for their application in field.

4. Materials and Methods
4.1. Isolation of Bacteria

Samples of the rhizosphere of Juniperus sabina plants were collected from the National
Park of Ses Salines d’Eivissa, Formentera (Spain). To isolate rhizospheric bacteria, 1 g
of roots samples was washed three times with 2 mL sterile distilled water to remove
impurities, transferred into 9 mL 1 PBS, and vortexed. The selection of spore-forming
strains was promoted through a heat pretreatment at 80 °C to kill all vegetative cells. In
total, 1 mL of the mixture was inoculated into 9 mL of LB (8 g/L NaCl, 10 g/L tryptone,
5g/L yeast extract), serially diluted up to 10-6 and 0.1 mL of each dilution were spread
on LB agar plates. Plates were incubated at 30 & 1 °C for 2-3 days. Pure cultures were
obtained by serial subculturing. Glycerol stocks of the isolates were prepared and stored at
—80°C.

4.2. Growth Conditions

Each bacterial isolate was characterized by visual inspection for colony color and
morphology, such as colony shape, size, margin and appearance. The ability to grow in
facultative anaerobic conditions was determined using the AnaeroGen sachets (Unipath
Inc., Nepean, ON, Canada) placed in a sealed jar with bacteria streaked on LB agar plates
and incubated at 37 °C for 34 days. To determine the optimum growth conditions, the
bacterial isolates were grown in LB agar at different pH (2.0, 4.0, 6.0, 7.0, 8.0, 10.0, 12.0) [32]
and temperature (4, 15, 25, 37, 50, 60 °C) ranges [33]. Plates were incubated until the
appearance of bacterial colonies.

4.3. Isolates Identification by PCR Amplification of 165 rRNA

Exponentially growing cells were used to extract chromosomal DNA using the DNeasy
PowerSoil kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions.
16S rRNA gene was PCR amplified by using chromosomal DNA as a template and oligonu-
cleotides forward 8F (5-AGTTTGATCCTGGCTCAG-3 annealing at position + 84 28) and
reverse 1517R (5'-ACGGCTACCTTGTTACGACT-3' annealing at position + 14974 1517).
These two oligonudeotides were designed to amplify a 1500 bp DNA fragment and the
reaction was carried out according to Grénemeyer et al. [34] in an Esco SwiftTM Max-
Pro Thermal Cycler. The 1500 bp DNA amplified fragment was sequenced at the Bio-
Fab research sequencing facility and analyzed using Basic Local Alignment Search Tool
(BLAST). Phylogenetic analyses were carried out using Seaview 4.4.0 software package
(http:/ /pbil.univ-lyonl.fr/software/seaview.html, accessed on 7 January 2020) on 16S
ribosomal RNA genes aligned using the Muscle algorithm. All 165 rRNA sequences were
deposited in the NCBI Sequence Read Archive and identified with the accession number
as shown in Table 51.

Phylogenetic reconstruction for nucleotide alignment was carried out using the max-
imum likelihood algorithm (PhyLM). The gene sequences of the isolated bacteria were
aligned to the representative type strains (¥) belonging to the same species obtained from
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BlastN analysis. The percentage of replicate trees in which the associated taxa clustered
together in the bootstrap test (1000 replicates) is shown next to the branches.

4.4, In Vitro Screening for Plant Growth-Promoting (PGP) Traits
4.4.1. Phosphate Solubilization

The ability to solubilize inorganic phosphate was tested by growing the bacterial
isolates on Pikovskaya agar (Oxoid Ltd., Hampshire, UK) dyed with bromophenol blue [35]
for 10 days at 30 °C. The formation of more transparent zones around the bacterial colonies
was indicative of inorganic phosphate solubilization on Pikovskaya agar.

4.42. Siderophore Production

To test siderophores production, 3 uL of overnight-grown culture in LB medium
was spot-inoculated on iron-free S7 agar minimal medium. After 72 h of incubation at
28 °C, 10 mL of Chrome Azurol S (CAS) agar medium [36] was applied over agar plates
containing cultivated microorganisms. Development of yellow-orange halo zone around
bacterial spots was observed after 1 h of incubation.

4.4.3. Indole Acetic Acid Detection

To detect the IAA production, the bacteria were grown in LB broth for 72 h a 37 °C
with shaking at 150 rpm. After, 2 mL of bacteria supernatant was mixed with 4 mL of
Salkowski reagent (0.5 M FeCls in 35% HCIOy solution) and 2 drops of orthophosphoric
acid, and was finally incubated for 30 min at 25 °C. The development of pink color indicates
IAA production [37].

4.44. Biosurfactant Production

The bacterial strains were spot-inoculated on blood agar plates (BBL™ Trypticase™
Soy Agar (TSA II) with 5% Horse Blood) and after 72 h of incubation at 28 °C, the clear
zone around the colonies indicates a positive result [38].

4.45. Swarming Motility
Bacterial isolates were analyzed for their swarming motility using LB with spot-
inoculation on agar 0.7% and incubated at 37 °C overnight.

4.4.6. Biofilm Production

To evaluate the ability to produce biofilm, the isolates were separately grown in glass
tubes in LB medium as described by Haney et al. (2018) [39]. Cultures were inoculated by
adding 10 uL of an overnight culture of bacteria into 1 mL of sterile media, and the tubes
were incubated statically at either 37 °C for 48 h.

4.5, Evaluation of Potential Biocontrol Features
4.5.1. Screening for Hydrolytic Enzymatic Activity

Twenty-two bacterial isolates were grown separately in 5 mL of LB broth a 37 °C
overnight with shaking at 150 rpm. In total, 3 pL of each fresh bacterial culture was
spot-inoculated on different assay plates to test hydrolytic enzyme activity. The protease
activity was performed on Skimmed Milk Agar (SMA) [40] and the lipase activity on
Tributyrene Agar medium [41]. After overnight at 37 °C, the formation of a clear halo
around the colony was considered as positive production of these enzymes. To detect
the amylase activity was used the method described by Sethi et al. (2013) [42] with
Starch Agar plates. After the overnight incubation at 37 °C, the plates were flooded with
iodine solution and the hydrolysis of starch was observed as a colorless zone with a
violet background around grown colonies. For the detection of cellulase and xylanase
activities, Xylanase Production Medium (XPM) agar plates were used with 0.5% xylan [43]
(Megazyme) and a minimal medium with 0.5% carboxymethylcellulose (CMC) [44] as a
sole carbon source. The plates were incubated at 37 °C for 3 days after which hydrolysis
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zones were visualized by flooding the plates with 0.1% Congo Red for 15-20 min and then
destained by washing twice with 1 M NaCl. Plates, where CMC and xylan were omitted,
were used as nonsubstrate controls. Transparent hydrolytic zones around the colonies were
considered positive. For the chitinase activity, the bacterial strains were spot-inoculated on
calloidal chitin-containing medium plates [45]. After incubation at25 + 2 °C for 2-3 days,
the clear zones around or within the colonies are considered positive evidence. The catalase
activity was checked qualitatively as described by Geetha et al. (2014) [46]. Three percent
H,0; was added (34 drops) on the colonies grown on LB agar plates; effervescences of O
released from the bacterial colonies indicate the positivity of catalase activity.
All experiments were performed in triplicate.

4.5.2. Dual-Culture Assay

The isolated strains were examined in vitro for antifungal activity against pathogenic
fungus M. phaseolina (Tassi) Goid (ATCC® 64334™), The fungus was obtained from infected
soybean roots growing in Pergamino, Buenos Aires, Argentina, and it was maintained on
Potato Dextrose Agar (PDA) in Petri dishes.

The in vitro antifungal bicassays were carried out based on the dual-culture method
as previously described by Khamn et al. (2009) [47] with some modifications.

Fungal plugs of 6 x 6 mm diameter were placed at the center of PDA plates and 5 uL.
of bacteria strains overnight grown in LB broth was placed on the opposite four sides of
the plates at 1.5 cm away from the fungal disc. Plates containing the fungal plugs without
bacterial inoculation were used as control plates. All plates were incubated at 28 °C for
five days. The percentage of inhibition of the fungal growth was calculated using the
following formula:

% = [(Rc — Ri)/Rec] = 100

where Re is the radial growth of the test pathogen in the control plates (mm), and Ri is the
radial growth of the test pathogen in the test plates (mm). The experiment was repeated
thrice. Bacterial strains that showed an inhibition of the growth of pathogenic fungus were
observed by stereoscopic microscope 10 x magnification.

4.5.3. Antifungal Assay of Cell-Free Supernatants (CFSs)

Bacteria were grown on LB at 28 + 2 °C and aliquots of the suspensions, collected at
24 h intervals for the first 96 h. Cells were removed by centrifugation (7000 g for 30 min)
and supernatants were filtered using 0.22 um-pore-diameter membranes {Coming®) and
concentrated 1:10. Then, 20 uL aliquots of sterilized supernatant samples were placed on
the opposite four sides of the PDA plate at 1.5 cm from the fungal disc (6 x 6 mm diameter)
of M. phaseolina [48]. As a positive control, fungicidal pentachloronitrobenzene > 94%
(PCNB) (Sigma-Aldrich, Saint-Louis, MO, USA) dissolved in toluene was used. Toluene
alone was used as a negative control. Plates were prepared in triplicate, incubated at 28 °C
for 5 days, and examined for zones of inhibition of grown colonies.

4.6. Extraction of Secondary Metabolites

The strains were grown in 300 mL of LB at 28 + 2 °C and for 72 h. The broth cultures
were then centrifuged at 9000 > ¢ for 30 min at 4 °C and filtered through a 022 pm syringe
filter. The culture filtrate was extracted at pH7 and pH2 three times for each, mixed with an
equal volume of EtOAc into the separating funnel, and shaken for complete extraction. The
secondary compounds contained in the solvent phase were separated from the aqueous
phase, dried with Na;SOy, and evaporated under reduced pressure to yield the crude
extracts. The crude extracts were dissolved in 1 mL 2% methanol at a final concentration of
5mg/mL, the aqueous phase was concentrated 1:10. All fractions were tested against M.
phaseolina on PDA plates and incubated at 28 + 2 °C for 5 days.
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4.7. Stability of Antifungal Metabolites at Different Enzymes, Temperatures and Organic Solvent Conditions

In total, 100 pg/mL of enzymes (trypsin, proteinase K, pancreatin and pepsin) and
10% organic solvents (acetone, ethyl alcohol, chloroform, toluene and isopropyl alcohol)
(see Figure 4) were added to 100 uL of culture supernatant. Enzyme-treated samples
were incubated for 3 h at 37 °C (42 °C in the case of proteinase K) and the solvent-treated
samples were incubated for 3 hat 25 °C and subsequently, 100 uL aliquots were tested for
antifungal activity as described above. To assess the stability of the bioactive compounds at
high temperatures, CSFs were incubated at 65, 75 and 80 °C for 1 or 3 h, and their activity
toward M. phaseolina eventually tested.

4.8. Size-Fractionated Supernatants Tested for Antifungal Activity

RHFS10 strain was grown in 100 mL of LB broth for 72 h at 28 °C. The cultures were
centrifuged at 7000x g for 30 min at 4 °C and the supernatants filter-sterilized with a
022 pm filter (Millipore, Bedford, MA, USA). The supernatants were size-fractionated
(10, 30 and, 50 kDa cutoff spin column; Centricon, Millipore). Fractions were tested for
antifungal activity and reported as a percentage of growth inhibition as described above.

4.9. LC-MS/MS Analyses

Protein extracts were electrophoretically separated on a 12.5% polyacrylamide gel,
under denaturing conditions. Resulting lines were divided into 10 pieces, and each under-
went trypsin in gel digestion procedure. NanoUPLC-hrMS/MS analyses of the resulting
peptides mixtures were carried out on a Q-Exactive orbitrap mass spectrometer (Thermo
Fisher Scientific, Waltham, MA, USA), coupled with a nanoUltimate300 UHPLC system
(Thermo Fisher Scientific). Peptides separation was performed on a capillary EASY-Spray
C18 column (0.075 x 100, 1.7 um, Thermo Fisher Scientific) using aqueous 0.1% formic
acid (A) and CH;CN containing 0.1% formic acid (B) as mobile phases and a linear gra-
dient from 3% to 30% of B in 60 min and a 300 nL min~! flow rate. Mass spectra were
acquired over an m/z range from 350 to 1500. To achieve protein identification, MS and
MS/MS data underwent Mascot software (Matrix Science, London, UK) analysis using the
nonredundant Data Bank UniProtKB/Swiss-Prot (Release 2020_03). Parameter sets were:
trypsin cleavage; carbamidomethylation of cysteine as a fixed modification and methionine
oxidation as a variable modification; a maximum of two missed cleavages; false discovery
rate (FDR), calculated by searching the decoy database, <0.05. A comparison between the
proteins found in the different samples allowed discriminating those specifically expressed
by the strains showing promising antifungal activity.

4.10. Detection of Antifungal Metabolites

RHFS10 strain was grown in 2 L of LB broth at 28 °C for 72 h with shaking at 150 rpm.
The cells were removed by centrifugation (9000 g, 30 min) and the supernatant fluid
was filter-sterilized using 0.22 um-pore-diameter membranes. The antifungal activity
of the preparation was determined against M. phaseolina using the cell-free supernatant
assay described above. The culture filtrate (1800 mL) was precipitated with ammonium
sulfate (66% w/v saturation) and stored overnight at 4 °C with shaking. The precipitate
was removed by centrifugation (12,000 g, 20 min, 4 °C), resuspended in PBS 1x buffer
(0.01 mol/L~", pH 6.5; 1/10 of the initial volume) and dialyzed against the same buffer for
48 h at 4 °C with several changes (dialysis tube, porosity 24, cutoff 12 kDa; Union Carbide
Corporation, Danbury, CT, USA). The dialyzed precipitate was lyophilized, and the residue
(483 mg) was dissolved in 6 mL ultrapure Milli-Q water and applied to a Sephadex G-50
fine column (Pharmacia, Uppsala, Sweden; 4.5 x 40 cm; flow rate 2.5 mL/min~!). The
column fractions (3 mL each) were collected in homogeneous groups according to the
chromatogram obtained by monitoring proteins concentration at 280 nm [49]. Fractions
were lyophilized, tested for antifungal activity (1 mg/dot) against M. phaseolina, and
analyzed by SDS-PAGE. The SDS-PAGE was performed with 20 ug of total proteins,
fractionated on 12.5% SDS polyacrylamide gels and stained by Brilliant Blue Coomassie.
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Protein concentration was determined with the Bradford assay (Bio-Rad Protein Assay,
Hercules, CA, USA; cat no. 500-0006) with bovine serum albumin used as standard.

4.11. Mininum Inhibitory Concentrations

The MIC determination was performed in 24-well culture plates according to the
method described by Agrillo et al. (2019) [50] with some modification. The wells were
prepared in triplicate for each concentration. The retentates (peaks 1, 2, and 3) containing
the antifungal compounds were diluted separately at different concentrations (1 mg/mL;
0.5 mg/mL; 200 ug/mL; 100 pg/mL; 50 ug/mL and 25 pug/mL) in a volume of 500 uL of
ultrapure Milli-Q water and were inoculated with 500 uL of M. phaseolina plugs (4 x 4 mm)
resuspended in 2 x PD broth. As a control, 500 uL. of M. phaseolina plugs (4 x 4 mm) were
resuspended in 2 x PD broth diluted with 500 uL of ultrapure Milli-Q water. The retentates
were compared with the fungicidal PCNB >94% (Sigma-Aldrich) at the same different
concentrations. The plates were incubated at 28 °C for 5 days and the MIC was taken as
the lowest concentration of antifungal agent at which there was no visible growth of the
fungus after incubation. Finally, the percentage of inhibition of the fungal growth was
calculated using the formula described above.

4.12. Whole-Genome Sequencing

The most promising bacterial strain, RHFS10, which showed outstanding biocontrol
performance, was selected for whole-genome sequencing to obtain future relevant genetic
information. DNA extraction was performed using the method described above. Genome
sequencing was performed by MicrobesNG (Birmingham, UK) with the genomic DNA
library prepared using the Nextera XT library prep kit (Illumina) following the manufac-
turer’s protocol. Libraries were sequenced on the [llumina HiSeq using a 250 bp paired-end
protocol. Reads were adapter trimmed using Trimmomatic 0.30 with a sliding window
quality cutoff of Q15 [51] and de novo genome assembly was carried out with SPAdes
(version 3.7) via MicrobesNG (University of Birmingham, Birmingham, UK).

4.13. Statistical Analysis

All the statistical analyses were performed using GraphPad Prism 8 software. Data
were expressed as mean =+ SEM. Differences among groups were compared by ANOVA or
t-test as indicated in figure legends. Differences were considered statistically significant
at p < 0.05.
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CHAPTER IV

Microbial consortia as a strategy to reduce drought stress in
Spinacia oleracea

4.1 Abstract

Drought stress is considered one of the most severe abiotic stresses
affecting soil fertility, plant health, and crop yield, considering that
almost all agricultural lands are subjected to it. In addition, due to
climate change, water shortage is destined to increase even further,
becoming a serious threat to crop production. An efficient eco-friendly
alternative to the polluting and soil-deteriorating chemical fertilizers, is
the use of bioformulations of Plant-Growth-Promoting Bacteria (PGPB),
either single or consortia. PGPB can promote plant fitness through
direct and indirect approaches, involving the enhancement of nutrients
uptake, the production of phytohormones, or the ability to inhibit
phytopathogens’ growth, thus strengthening plants’ defences against
biotic and abiotic stresses. The present study aims at constructing
bacterial consortia exhibiting complementary PGP traits, to defend
Spinacia oleracea’s seeds and seedlings from drought stress and
promote their growth in vitro. Therefore, a characterization of six
potential PGPB belonging to the Bacillus, Azotobacter, and
Pseudomonas genera was performed under water-shortage condition
and compared with two promising PGP-Bacilli recently isolated from
salt-pans. To verify the bacterial PGP-potential, individual and
consortia, a germination bioassay was performed using the seed-
biopriming method. Three bacterial strains identified as B.
amyloliquefaciens RHF6, B. amyloliquefaciens LMG9814 and B. sp.
AGS84 emerged as the most promising, positively affecting S. oleracea’
seeds germination rate and efficiency, and promoting the seedlings’
radical development, in standard conditions. Interestingly, out of the four
consortia constructed according to the bacterial compatibility, the one
made of strains RHF6, LMG9814 and AGS84 gave the best results,
confirming the previous data. Although these preliminary results were
encouraging, further analysis is required to confirm the outcome under
drought stress and to improve this strategy, making it available for
commercial use in the agro-industrial field.
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4.2 Introduction

Plants generally undergo many abiotic stresses during their growth and
development, including heat, drought, salinity and acidity, which directly
and indirectly influence soil fertility, plant health and crop yield (Hanaka
et al., 2021). Among these, drought is considered one the most severe
environmental stresses affecting agricultural productivity. It occurs due
to temperature dynamics, light intensity, and low rainfall (Seleiman et
al., 2021), and impacts all of the main agricultural lands (Sati et al.,
2021). Indeed, it is well acknowledged that water plays a key role in
most of plant’s vital processes, being their body’s fresh mass made of
almost the 95 % of it (Abbasi and Abbasi, 2010). Drought stress
negatively affects seed germination rate and efficiency, seedling
growth, leaves’ size, area and number; it limits the number of stomata
and flowers, reduces roots’ growth and elongation, and decreases
plants’ fresh and dry biomass (Ullah et al., 2019; Khan et al., 2021).
Plants are normally able to defend themselves against numerous stress
factors by several strategies, which imply different morphological and
physiological responses (Hanaka et al., 2021). Therefore, plants may
cope with water deficiency by producing osmoprotectants, shortening
their life cycle, or by restarting their growth after the exposure to the
abiotic stress (Fang and Xiong, 2015). Nevertheless, anthropogenic
activities, together with the global warming led to an increased severity
of droughts, imposing a serious threat on the agricultural productivity
(Seleiman et al., 2021). Hence, plants defences may be not enough.
Currently agriculture highly depends on chemical fertilizers, which
expose the soil and the whole environment to deterioration (Kumar et
al., 2011). For this reason, researchers and industries are seeking for
greener and more sustainable approaches (Glick et al., 2007). One of
the most promising solutions is represented by the skilful use of
bioformulations, which may include the application of microorganisms
inocula or the employment of natural metabolites acting as plants’
growth enhancers (Vishwakarma et al., 2020; Oszust et al., 2021).A
very common approach is the application of active microorganisms
known as Plant Growth Promoting Bacteria (PGPB) (Niu et al., 2017).
PGPB are microorganisms naturally capable of enhancing plants’
growth by direct and indirect approaches, comprising the production of
phytostimulant metabolites, the promotion of plants’ nutrients up-take or
the inhibition of pests (Castaldi et al., 2021; Petrillo et al., 2021). More
importantly, they can arrange beneficial associations with the roots of
plants to improve their growth and increase tolerance to abiotic
stresses, such as water shortage (Vishwakarma et al., 2020). Recently,
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importance has been given to the application of PGPB consortia, groups
of bacteria exhibiting complementary features (Hanaka et al., 2021).
Indeed, bacterial consortia were shown to have higher performances as
compared to the inoculation of individual species (Baez-Rogelio et al.,
2017) and were also shown to promote plant drought tolerance (Wang
et al., 2012).

In the present study, a collection of six bacteria belonging to the genera
Bacillus, Azotobacter and Pseudomonas was characterized for their
PGP traits and biocontrol activity and compared with two recently
isolated potential PGP- Bacilli, B. amyloliquefaciens strain RHF6
(Petrillo et al., 2021) and B. vallismortis strain RHFS10 (Castaldi et al.,
2021), that emerged for their ability to endure abiotic stresses and inhibit
phytopathogens’ growth. The preliminary characterization was also
performed under simulated drought stress and impressively, resulted in
the enhancement of some PGP traits for many of the tested strains,
according to the evidence that bacteria may respond to abiotic and
biotic stresses by boosting their defence mechanisms. To confirm the
bacterial strains PGP potential, their ability to promote Spinacia
oleracea (Matador) germination was tested through a germination
bioassay, performed using the seed-biopriming method, under standard
condition. Spinach was selected as a model plant because it is one of
the main vegetables sold as “ready-to-eat” bagged products and it is
very sensitive to water stress (Bianchi et al., 2016). Three bacterial
strains identified as B. amyloliquefaciens RHF6, B. amyloliquefaciens
LMG9814 and B. sp. AGS84 emerged as the most promising, positively
affecting S. oleracea’ seeds germination rate and efficiency and
promoting the seedlings’ radical development. Moreover, out of the four
consortia constructed according to the bacterial in vitro compatibility, the
one made of strains RHF6, LMG9814 and AGS84 gave the best results,
confirming the previous data.

Although the results obtained were encouraging, further analysis are
required to validate and improve this strategy for a commercial use in
the agro-industrial field of arid and semi-arid regions.

4.3 Materials and methods
4.3.1 Bacterial strains and growth conditions

The PGPB used in this study are listed in Table 1, grown on TY medium
for routine use and pure cultures stored at —80 °C into glycerol stocks
(Giglio et al., 2011). Some of the strains are deposited in the culture

68| Pag.



é POR CAMPANIA
[RECIONE CAMPANIA 2014 - 2020
I

collection of Agriges s.r.l. (San Salvatore Telesino, Benevento, Italy)
and were kindly supplied.

Table 1 | List of the bacterial strains used in this study.

Strain Species Source Citation
RHf6 B. amyloliquefaciens Sand (Spain} Petrillo et al., 2021
RHFS10 B. valiismortis Rhizosphere (Spain) Castaldi et al., 2021
L5132 A. chraococcum Rhizosphere (ltaly} Agriges collection
AGS172 B. subtilis - Agriges collection
LMG9S814 B. amyloliquefaciens Sail Agriges collection
AGS34 B. sp. Grape leaves Agriges collection
AGS108 B. amvyloliquefaciens - Agriges collection
AGS54 P. fluorescens Sugar beet rhizosphere Agriges collection

4.3.2 Phenotypic characterization and growth conditions

The phenotype of the bacterial strains was determined by visual
inspection. The facultative anaerobic growth was determined using the
AnaeroGen sachets (Unipath Inc., Nepean, Ontario, Canada) placed in
a sealed jar with bacteria streaked on TY agar plates and incubated at
37 °C for 3 days. To confirm the sporulation ability, the bacterial strains
were grown in Difco sporulation medium (DSM) (8 g/L Nutrient broth
No. 4, 1 g/L KCI, 1 mM MgSO4, 1 mM Ca(NOs), 10 uM MnClz, 1 uM
FeSO., Sigma-Aldrich, Germany). The optimum growth conditions were
determined by growing the strains in TY agar at different pH (2.0, 4.0,
6.0, 7.0, 8.0, 10.0, 12.0) (Cangiano et al., 2014), temperatures (4, 15,
25, 37, 50, 60 °C) (Petrillo et al., 2020) and PEG6000 (0, 5, 10, 15, 20
%) ranges.

4.3.3 Bioassays for PGP traits

The eight strains were characterized for their PGP traits as described
below. When drought stress is simulated, 15% PEG6000 is
supplemented to the media.

4.3.3.1 Biofilm Production and Swarming Motility

To investigate the capacity of producing biofilm, bacterial isolates were
grown in 24-wells culture plates in TY broth for 48 h static conditions at
37 °C in accordance to O’'Toole (2011). After that, the supernatant was
discarded, adhered cells were rinsed three times with distilled water and
1 ml of a 0.1 % Crystal Violet (CV) solution was added to stain the
adhered biomass. Plates were incubated for 30 min at room
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temperature, carefully washed three times with distillated water and
patted dry. Dye attached to the wells was extracted with 1 ml of 70 %
ethanol and quantified at an absorbance of 570 nm. Data were
normalized by total growth estimated by ODgoonm. The experiment was
performed in triplicate. Swarming motility was assayed according to the
method described by Adler (1966). TY agar 0.7 % plates were spot
inoculated with 3 pl of the freshly grown bacterial culture (107 CFU/ml).
After an overnight incubation at 37 °C, the swarm diameters were
measured.

4.3.3.2 Phosphate Solubilization

The microbial ability to solubilize phosphate was evaluated by spot
inoculation of 3 ul of a freshly grown bacterial culture (107 CFU/ml) onto
Pikovaskya’s agar medium (Pikovskaya, 1948). The plates were
incubated at 28 °C for 10-15 days. A positive result is represented by
the formation of transparent zones around the bacterial colonies
(Schoebitz et al., 2013).

4.3.3.3 Indole-acetic Acid (IAA) Detection

The IAA production was measured as described by Etesami et al.
(2013), with some modifications. Briefly, each strain was cultured in 10
ml of TY broth at 37 °C for 4 days with shaking at 150 rpm. Then, 1 ml
of bacterial supernatant was mixed with 2 ml of Salkowski reagent (0.5
M FeCl; in 35 % HCIO4 solution), and the solution was vortexed and
incubated at room temperature for 30 min. The formation of pink color
represented a positive reaction (Damodaran et al., 2014) Quantitative
estimation of IAA (ug/ml) was achieved by recording spectroscopic
absorbance at 535 nm using a standard curve prepared with pure IAA
(Sigma) in the range 0—100 pg/ml (Gordon and Weber, 1951). Sterile
TY broth was used as control.

4.3.3.4 Ammonia production

To detect the production of ammonia, it was followed the method
described by Bhattacharyya et al. (2020). The eight bacteria were grown
in 4 % peptone broth and incubated for seven days at 30 °C. After that,
to the bacterial suspension was added 0.5 ml of Nessler’'s reagent. The
development of brown to yellow colour indicates ammonia production.
The samples’ absorbance was measured at 450 nm using a
spectrophotometer. Quantitative estimation of the amount of ammonia
production by the bacterial strains was performed comparing the results
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with a standard curve generated using a standard ammonium sulphate
solution.

4.3.3.5 Siderophores Production

The siderophores production was determined through the Chrome
Azurol S (CAS) assay as described by Pérez-Miranda et al. (2007). 3
mL of freshly grown bacterial cultures were spot inoculated on CAS agar
plates and incubated at 28 °C. The appearance of a yellow-orange halo
zone around the bacterial colonies was a positive indicator of
siderophores production and the halos’ diameters were measured after
4 days of incubation.

4.3.3.6 Biosurfactants production

The bacterial isolates were spot inoculated on blood agar plates (BBL™
Trypticase™ Soy Agar (TSA Il) supplemented with 5 % Horse Blood)
and after 72 h of incubation at 28 °C, the clear zone around the colonies
indicates a positive result (Sarwar et al., 2018).

4.3.3.7 Screening for hydrolytic enzymatic activity

The eight bacterial strains were grown separately in 5 mL of TY broth a
37 °C overnight with shaking at 150 rpm. 3 pL of each fresh bacterial
culture was spot inoculated on plates containing different carbon
sources, to test hydrolytic enzyme activity. The protease activity was
assayed on Skimmed Milk Agar (SMA) (Morris et al., 2012). After an
overnight incubation at 37 °C, the formation of a clear halo around the
colonies was considered as positive activity. To detect the amylase
activity, the method described by Alariya et al. (2013) with Starch Agar
plates, was used. After the overnight incubation at 37 °C, the plates
were flooded with iodine solution and the hydrolysis of starch was
observed as a colourless zone around the colonies. To detect cellulase
and xylanase activities, Xylanase Production Medium (XPM) agar
plates with 0.5 % xylan (Megazyme) (Meddeb-Mouelhi et al., 2014) and
a minimal medium with 0.5 % carboxymethylcellulose (CMC) (Hankin
and Anagnostakis, 1977) as sole carbon sources, were used. The
plates were incubated at 37 °C for 3 days after which hydrolysis zones
were visualized by flooding the plates with 0.1 % Congo Red for 15-20
min and then destained by washing twice with 1 M NaCl. Plates, where
CMC and xylan were omitted, were used as no substrate controls.
Transparent hydrolytic zones around the colonies were considered
positive.
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To quantify the activity observed on plate, the ratio of the clear zone
diameter to colony diameter was measured, assuming the largest ratio
represents the highest activity. Hence, the following formula was
applied:

o total diameter — colony diameter
% Efficiency = _ x 100
colony diameter

All experiments were performed in triplicate.

4.3.4 Evaluation of potential biocontrol activity

The eight bacterial strains were tested in vitro for their biocontrol activity
against spinach phytopathogenic fungi and bacteria listed in Table 5.
Colletotrichum truncatum is deposited in the fungal culture collection of
the Plant Pathology Department of the University of Buenos Aires
(FAUBA, Argentina) and was kindly supplied by Marcelo Anibal
Carmona (Facultad de Agronomia, Catedra de Fitopatologia,
Universidad de Buenos Aires, Buenos Aires, Argentina). All the fungi
were stored on Potato Dextrose Agar (PDA) in Petri dishes. A dual-
culture assay method was performed to evaluate the antifungal activity
in accordance with Xu and Kim (2014). In short, fungal plugs of 6 mm x
6 mm diameter were placed in the middle of PDA plates and 5 pl of
bacterial cultures grown overnight in TY medium were spotted on the
opposite four sides of the plates 1.5 cm away from the fungal disc.
Negative controls consisted of plates containing the fungal plugs alone.
All plates were incubated at 28 °C for 5—7days. The antagonism activity
against bacterial phytopathogens was carried out as described in Li et
al. (2020) with some modifications. Bacterial pathogens were streaked
on TY plates and incubated at 25 °C overnight. Single colonies were
suspended in TY broth and incubated at 25 °C. Approximately 1x106
CFU/mL were mixed with melted 0.8 % TY agar before pouring the
plates. After solidification, 5 pl of bacterial isolates solution (ODgpo=1.0)
was spot inoculated onto the plates and incubated at 28 °C for 48 h,
before measuring the diameters of the inhibition halos. All experiments
were performed in triplicate.
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Table 2 | List of the phytopathogenic fungi and bacteria used in this study.

Pathogen type Species Strain Provenience
Fungi Stemphylium vesicarium taly

Colletotrichum truncatum 17-5-5 Argentine
Bacteria Pseudomeonas syringae pv tabaci ICMP 2706

Pseudomonas syringae pv panici ICMP 3855

Pseudomonas syringae pv syringae B475

Pseudomonas syringae pv japonica ICMP 6305

Pseudomonas syringae pv papulans Pspl6

4.3.5 Germination assay

To test the ability of the microbial strains to promote seeds’ germination,
a modified method described by Wang et al. (2019) was performed. The
bacterial strains were overnight cultured in TY medium at 37 £ 2 °C (25
t 2 °C for strain AGS54). Then, the cells’ concentration (CFU/mL) was
determined by a Burker chamber and diluted to 1x108 CFU/mL in 1X
Phosphate-Buffered Saline (PBS). For the consortia, the dilutions of the
single strains were mixed keeping a 1:1:1 ratio. S. oleracea (Matador)
seeds were rapidly sterilized with 5 % H»O, and rinsed with sterile
deionized water. After that, 45 seeds were incubated with the proper
bacterial dilution (single or consortium) for about 4 hours at room
temperature, under stirred conditions to favor the bacterial adhesion to
the seeds. Seeds treated with 1X PBS were used as control. The treated
seeds were then spread on water agar (1.8 %) medium (WA) and
incubated at 20 °C in dark conditions. Germination was defined as the
appearance of radicles through the seed coat. The germination rate and
efficiency were obtained from three independent experiments. To
determine the seedlings’ well-being, the length of primary roots was also
measured by ImageJ software.

4.3.6 Adhesion assay

To evaluate bacterial adhesion onto S. oleracea’s seeds (each of the
different treatments and the control), a modified method described by
Hashmi et al. (2019), was performed. Three seeds were randomly
collected to count bacterial cells adhering at their surface by flow
cytometry. Seeds of each individual treatment were placed in sterile
tubes containing 1 mL of sterile 1X PBS and vortexed vigorously for 1
min.

4.3.7 Microbial compatibility in vitro
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To assess the ability of the eight strains to coexist, they were subjected
to in vitro compatibility test using the agar diffusion assay as described
by Tabacchioni et al. (2021), with minor modifications. A single colony
of each strain was inoculated in TY medium and incubated at 37 £ 2 °C
for ~ 18 h, 150 rpm. 100 pL of each strain were plated on TY agar
medium, and 5 uL of the other strains were spotted on top of it. The
plates were then incubated at 37 + 2 °C. The microorganisms that
overlap are considered compatible. On the other hand, when an
inhibition halo appears, the two microorganisms are considered
incompatible.

4.3.8 Statistical Analysis

All the statistical analyses were performed using GraphPad Prism 8
software. Data were expressed as mean + SEM. Differences among
groups were compared by ANOVA or t-test as indicated in figure
legends. Differences were considered statistically significant at p < 0.05.

4.4 Results and discussion
4.4.1 In vitro characterization of potential PGPB

The six bacterial strains of the collection listed in Table 1, were
preliminarily characterized for growth properties (Supplementary Table
S1) and compared with two Bacilli isolated from samples of sand and
rhizosphere collected from salt-pans, strains RHF6 and RHFS10,
recently emerged as promising PGPB (Castaldi et al., 2021; Petrillo et
al., 2021). All the strains object of this study represent well-recognized
PGPB genera, with more than the 70 % identified as members of the
Bacillus genus, while strains LS132 and AGS54 were identified as the
Gram-negative A. chroococcum and P. fluorescens (Table 1).

The eight strains can be classified as facultative anaerobic; almost all
of them fit in the mesophiles group, except for strains LMG9814, AGS84
and AGS108 that can grow up to 60 °C and strain AGS54, which grows
between 4 and 40 °C (Supplementary Table S1) (Schiraldi and De
Rosa, 2016). In addition, to determine the tolerance to drought stress,
the eight strains were grown in the presence of different PEG6000
concentrations (Materials and methods). The 60 % of the strains
tolerate up to 15 % PEGG6000; only strains AGS172, AGS84 and AGS54
survived up to 20 %. The strains used in this study seem to be
moderately tolerant to the lack of moisture, proven by either the capacity

74| Pag.



é POR CAMPANIA
[RECIONE CAMPANIA 2014 - 2020
I

of growing in relatively high PEG6000 concentrations and the ability to
survive at high temperatures. In fact, drought is strictly connected to the
rising global warming: the higher temperatures promote evaporation,
which in turn reduces surface water and dries out soils and vegetation
(Drought and Climate Change, 2021). To compare the PGP potential of
the six new strains to the already characterized Bacilli, strains RHF6
and RHFS10, their ability to produce growth hormones and
siderophores, to solubilize phosphorous, and the capability of
hydrolysing different polymers were assayed (Table 3). Most of the
strains is potentially able to colonize root apparatus, since capable of
surface spreading by swarming and to form biofilms (Amaya-Gémez et
al., 2020), while only five were found positive to biosurfactants
production. Strain AGS54 is the best IAA producer, followed by AGS84
and AGS172. On the other hand strain LS132 releases the highest
amount of ammonia, as expected of an Azotobacter (Plunkett et al.,
2020). As mentioned above, all the microorganisms were tested for their
hydrolytic potential against different substrates (milk proteins, starch,
xylan and cellulose). As shown in Table 3, the best hydrolytic activity,
often connected to biocontrol (Pal and McSpadden Gardener, 2006),
was registered for strains AGS172 and AGS84, comparable with that
exerted by RHF6 and RHFS10; while LS132 strain, only exhibited
proteolytic activity.

Table 3 | Summary of plant growth-promoting and biocontrol traits exhibited by the 8 bacterial
strains.

PGP tzaits HYDRCGEYTIC ACTIATIES (%)
AA Ammonia
Strair Swarming PYK (gL} production  Siderophores (%) Biosurfactants Protease Amyiase Nylanase [=:%]
g imafL
RHFG + + 4.5 6.9 7.1 k4 100 100 417 100
RHFS102 A ++ 6.5 9.8 417 + 100 100 7689 160
15132 + - 1.4 12.1 16.7 - 100 g 2] o
AGS172 +++ + 129 5.2 118 + 100 100 25 100
LMGI814 - + 8.6 2.2 4.5 - 100 75 41.2 37.%
AGS84 + + 17.2 4.1 7.3 - 100 20 100 180
AGS108 ++ ++ 5.7 2.5 31 + 100 64.3 22.2 333
AGS54 - ++ 242 2.7 47.1 + 100 4 0 47.8

No activity (), halo or colony diameter <5 mm (+), halo or colony diameter 10 mm (+++). Data are represented by means
of at least three replicates + SE at p < 0.05 using LDS. PVK, Pikovskaya; IAA, indoleacetic acid; and CMC,
carboxymethylcellulose. ' Available from Petrillo et al. (2021). 2 Available from Castaldi et al. (2021).

Based on this preliminary characterization, it is possible to say that this
bacterial collection has a strong PGPB potential in vitro.
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4.4.2 Antagonistic activity against Spinacia  oleracea
phytopathogens

To verify if the bacterial strains, that already proved to possess many
PGP traits in vitro, also exert an antagonistic activity against some S.
oleracea phytopathogens (Koike et al., 2002; Liu et al., 2021), dual
culture assays were performed between the PGPB and the pathogens
listed in Table 2. The results revealed that the bacteria inhibit plant
pathogens on plates with different efficiency (Fig. 1). Based on the size
of the inhibition zone in dual culture tests, all the strains but LS132
showed a strong antifungal activity against S. vesicarium and C.
truncatum (Fig.1; Table 4).

C- RHF% RUFSI L5132 ALS372 LMGo814 AGSSE AGHIS ALIB5S

5. vesicariuwm if@@ /
C. truncatum _-"/g i *’_f ! y 11 v v

Figure 1 | Rebresentativé photographs of. dual CIJ-IIture asééy for in vitro ms/.celial g.rc')wth
inhibition of fungal phytopathogens.

In particular, it is possible to notice that B. subtilis strain AGS172
exhibited a broad spectrum of action against both fungal and bacterial
pathogens (Table 4) comparable to the one already observed for strains
RHF6 and RHFS10 (Petrillo et al., 2021); whereas strains B. sp. AGS84
and B. amyloliquefaciens AGS108 showed an inhibitory activity limited
to the fungal pathogens. Unexpectedly, strain A. chroococcum LS132
showed any particular biocontrol activity.

Table 4 | Antimicrobial activity of the bacterial strains against phytopathogenic fungi and
bacteria.

Pathogen type Species RHF6'  RHFS10' 15132 AGS17Z LMG9814 AGS84  AGS108 AGS54
Fungi 5. vesicarium e A - bt ot b ot -+

C. truncatum o e + ot Tt it ot +
Bacteria P. syringae pv tobaci ++ + - o - - - s

P, syringae pv panici E=3 +

P syringae pv syringoe + el - + I ++ - +

P syringae py japoeica 4 + - ++ - - =+

P syringae pv papulans - - - + + + - +

No inhibition (=), inhibitory zone 5mm (+++). ' Available from Petrillo et al. (2021).

4.4.3 Characterization of PGP traits under drought stress
condition
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To fulfil the aim of this study, a further characterization of the bacterial
strains was repeated under drought stress condition, in the presence of
15 % PEG6000. As expected, the results obtained this time were lower
than the ones registered before (Table 5), on average.

Table 5 | Summary of plant growth-promoting and biocontrol traits exhibited by the 8 bacterial
strains under drought stress.

PGPR traits HYDROLYTIC ACTIVITIES
Ammoenia
Strain PVK  1AA{ug/mLl) production  Siderophores (%) Biosurfactants Protease Amylase Xylanase oaC
(mg/i}
REIFG + 4.2 1.3 3.5 ++ o] 0 G 0
RHF510 + 18 G.0 25.0 bk o 50 75 #]
15132 - 2.4 1.8 G + o o 0 o]
AGS172 + 5.2 1.7 5.2 ++ 100 50 75 8]
LMG9814 - 35 o8 3.2 ++ 100 66.7 0 0
4]
AG3B4 + 4.4 1 4.6 ++ 100 75 ]
AG5108 + 2.3 0.6 35 + 160 75 5 8]
AGS54 - 21 1.4 20.0 + 0 o] o 4]

No activity (), halo or colony diameter <5 mm (+), halo or colony diameter 10 mm (+++). Data are represented by means
of at least three replicates + SE at p < 0.05 using LDS. PVK, Pikovskaya; IAA, indoleacetic acid; and CMC,
carboxymethyicellulose.

The most impressive loss was observed for the hydrolytic activities,
cellulolytic activity on top of all. Strain RHF6 which exhibited one of the
highest hydrolytic potentials, lost it completely, together with strains
LS132 and AGS54. On the contrary, the xylanase activity exhibited by
strains AGS172 and AGS108, and the amylase activity exhibited by
strains AGS84 and AGS108 increased under drought-stress condition.
This behaviour agrees with what has been recently stated by Bouskill et
al. (2016). It was observed, indeed, that bacterial communities can
respond to water stress by increasing the hydrolytic activity of classes
of enzymes correlated to the metabolism of complex C-sources. The
same tendency was observed for the IAA production shown by strains
RHFS10 and LS132, which increased almost three and two times,
respectively, reaching 18 and 2.4 ug/mL (Table 5).

4.4.4 Effects of seed-biopriming on S. oleracea germination in vitro

Once verified that the bacterial strains used in this study exhibited
important PGP traits in vitro under standard and water-shortage
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conditions, a germination bioassay was carried out to evaluate the
effects of the potential PGPB, on the early vegetative growth stage of
S. oleracea seedlings. S. oleracea was chosen as a model plant, due to
its moisture-sensitiveness (Bianchi et al., 2016). To this aim, 45 seeds
(per treatment) of S. oleracea, after being rapidly sterilized with 5 %
H20O, and rinsed with sterile deionized water, were incubated with a
dilution of each one of the strains adjusted to 1 x 108 CFU/mL with 1X
PBS, for ~ 4 h at room temperature under stirred conditions to favor the
bacterial adhesion to the seeds. Seeds treated with 1X PBS only, were
used as control (Material and methods). Following the incubation, the
seeds were spread on WA plates, and let germinate in the dark at 20
°C for about one week. Germination was defined as the appearance of
radicles through the seed coat. In Fig.2A are reported the effects of S.
oleracea’s seeds bio-priming. During the germination period, the
number of germinated seeds was counted every day after incubation,
to calculate the germination rate and efficiency (Fig.2B, 2D). To
determine the seedlings’ well-being, the length of primary roots was also
measured (Fig.2C). As it is possible to observe, the bacterial strains
affect seeds germination with different efficiency. Seed-biopriming
using strains RHF6, LMG9814 and AGS84 significantly improved
seeds’ germination rate and efficiency and produced the healthiest
seedlings also, against the untreated control seeds (Fig. 2A); strain
AGS108 also positively affected the seeds’ germination. In particular,
the longest radicle length (6.82 cm), and the highest germination rate
and efficiency (Fig.2B, 2C, 2D) was recorded for seeds bioprimed with
B. amyloliquefaciens strain RHF6. On the other hand, strains RHFS10,
LS132, AGS172 and AGS54 -bioprimed seeds exhibited lower viability
and vigor (Fig.2A).

A possible explanation for the best effects exerted by strains RHF6,
LMG9814 and AGS84, could be a stronger adhesion of the bacterial
cells to the seeds (Supplementary Figure S2). To evaluate this
parameter, three bioprimed seeds were randomly collected to count
bacterial cells adhering at their surface by flow cytometry as described
in the Materials and methods section. Once again, strain RHF6
exhibited the best performance. Hence, we can say that the bacterial
inoculation, in some cases, led to an acceleration of the radicle
emergence (as for strains RHF6, LMG9814 and AGS84), and that it has
a positive impact on radicle growth after its initial, rapid, protrusion from
the seed.
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Figure 2 | A) Effects of seed-biopriming on S. oleracea. The red squares point out the
treatments that gave the best results; B) Seeds germination rate (%) measured over a 6 days
period; C) Measure of the seedlings’ primary roots length by Imaged software; D) Seeds
germination efficiency measured over a 6 days period: the comparison between the number of
total germinated seeds over the number of total seeds on each plate is reported in percentage.
Data are presented as means + standard deviation (n = 3). For comparative analysis of groups
of data, one-way ANOVA was used, and p values are presented in the figure: ***: extremely
significant < 0.001.

4.4.5 Effects of bacterial consortia on S. oleracea germination in
vitro

A more recent strategy to increase plant growth, is the application of
consortia of PGPB exhibiting complementary traits (Hanaka et al.,
2021). Indeed, bacterial consortia were shown to have higher
performances as compared to the inoculation of individual species
(Baez-Rogelio et al., 2017). On the base of the results obtained for the
in vitro bacterial compatibility assayed on Petri dishes and reported in
Supplementary Table S3, four consortia named C1, C2, C3 and C4,
were prepared out of the eight potential PGPB (Table 1). As described
in the previous paragraph, a germination assay was performed to verify
the action of the consortia on the germination phase of S. oleracea
(Fig.3).
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Figure 3 | A) Effects of seed-biopriming with the bacterial consortia on S. oleracea. The red
square points out the consortium that gave the best results: C2; B) Seeds germination rate (%)
measured over a 6 days period; C) Measure of the seedlings’ primary roots length by ImageJ
software; D) Seeds germination efficiency measured over a 6 days period: the comparison
between the number of total germinated seeds over the number of total seeds on each plate is
reported in percentage. C1: RHFS10, AGS172, AGS108; C2: RHF6, AGS84, LMG9814; C3:
RHFS10, RHF6, AGS172; C4: RHFS10, AGS54, LS132. Data are presented as means *
standard deviation (n = 3). For comparative analysis of groups of data, one-way ANOVA was
used, and p values are presented in the figure: ***: extremely significant < 0.001; **: significant
< 0.006.

This time the seeds were imbibed with the four cultures mixes (adjusted
to 1x108 CFU/mL, maintaining a 1:1:1 ratio of the single
microorganisms), and after that let germinate on WA plates. As
previously described, the seedlings well-being was evaluated through
several parameters (Fig.3B, 3C and 3D). Out of the four consortia, C2
made of strains RHF6, AGS84 and LMG9814, gave the best results,
increasing the germination rate and efficiency up to ~100 %, and
producing seedlings with the longest primary roots (6.96 cm) (Fig.3).
Interestingly, the best consortium is the one bringing together the PGPB
which showed the strongest effect when assayed individually (Fig.2).
This outcome confirms the former results and allows to hypothesize a
beneficial synergic action of the three strains in the consortium C2, at
least looking at the germination efficiency.

4.5 Conclusions

The application of PGPB to the agricultural field is considered to have
the potential for improving plant growth in extreme environments
characterized by water shortage. Drought stress, indeed, is one of the
main agricultural problems reducing crop vyield in arid and semiarid
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areas, and it is made even tougher by the rapid global warming, which
brings longer drought periods, that severely damage food production in
some countries (Seleiman et al., 2021). PGPB are known to enhance
plant growth by several mechanisms including nitrogen fixation,
phytohormone production (including auxins, cytokinins, and
gibberellins), solubilization of mineral phosphates, and iron
sequestration by siderophores production (Glick, 2012). Interestingly,
many PGPB have been demonstrated to limit drought stress effects in
plants, for example by reducing plant ethylene levels, a molecular stress
marker, or by increasing their antioxidant potential (Mayak et al., 2004;
Arshad et al., 2008). Anyway, the ability of bacteria to survive, and
compete with the soil microflora, colonizing the rhizosphere remains a
critical step for successful application (Bashan, 1998) especially in dry
soils (van Meeteren et al., 2008). For these reasons, the application of
drought tolerant PGPB may represent a valid strategy to deliver
beneficial effects on plants. The present study aims at proposing new
potential drought tolerant PGPB, which may be able to alleviate water-
shortage induced stress on S. oleracea seedlings and plants. For this
purpose, a collection of eight bacteria from the Bacillus, Pseudomonas
and Azotobacter genera were preliminary characterized for their PGP
traits as the ability to produce biofilm, growth hormones, siderophores
or the capacity to surface-spread, and solubilize nutrients under
standard and drought stress conditions (Table 3, 5). As hypothesized,
the results obtained under simulated water-shortage were lower than
the ones registered in optimal conditions (Table 5). The most impressive
loss was observed for the hydrolytic activities, cellulolytic activity on top
of all: strain RHF6 which exhibited one of the highest hydrolytic
potentials, lost it completely. Interestingly, drought stress also triggered
some of the bacterial features, such as the IAA production, which
increased almost three and two times, compared to the standard
condition, reaching 18 and 2.4 uyg/mL in strains RHFS10 and LS132,
respectively (Table 5). The bacterial strains were also successfully
tested for their biocontrol activity against some S. oleracea’s fungal and
bacterial pathogens. All the strains but A. chroococcum LS132,
exhibited inhibitory activity; strain B. subtilis AGS172 exhibited a broad
spectrum of action against both fungal and bacterial pathogens (Table
6), showing a similar behaviour to the already characterized strains
RHF6 and RHFS10, (Petrillo et al., 2021; Castaldi et al., 2021). Since
seed germination is a critical step in plant growth as it controls seedling
production and crop yield, to find approaches able to promote seed
germination of economical-valuable crops is considered of great interest
on global level (Makhaye et al., 2021). In this context, over the past
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decades, inoculation of seeds with PGPB, has proved to be an efficient
and “green” practice to increase plant tolerance over stresses, the
durability of food production and reduce its ecological impact (Duhamel
and Vandenkoornhuyse, 2013; Gupta et al., 2015). This method is
referred to as seed-biopriming (Mitra et al., 2021). This represents an
effective method to introduce beneficial microbial inocula into the
rhizosphere or soil, and improves the seed quality, germination, viability,
by enhancing the production of regulatory substances, the uptake of
nutrients, and protection from seed or soil-borne pathogens (Mitra et al.,
2021). Hence, a germination bioassay was performed to evaluate the
effects of the potential PGPB on the early vegetative growth stage of S.
oleracea seedlings. S. oleracea was chosen as a model plant, due to its
moisture-sensitiveness (Bianchi et al., 2016). The most promising
strains were B. amyloliquefaciens RHF6, B. amyloliquefaciens
LMG9814 and B. sp. AGS84, which significantly improved seeds’
germination rate and efficiency and produced the healthiest seedlings
compared with the untreated seeds (Fig. 3). The beneficial effect,
especially the one shown by strain RHF6, agrees with the stronger
adhesion of the bacterial cells to the seed surface (Supplementary
Figure S3). According to the in vitro compatibility, four consortia were
prepared out of the eight bacterial strains. Again, the germination
efficiency, rate and primary roots length were considered to determine
the seedlings vigour (Fig.3). Interestingly, the best consortium (C2) is
the one made of the three PGPB that exhibited the strongest beneficial
effect on the germination, individually (Fig.2): strains RHF6, LMG9814
and AGS84. This outcome confirms the former results and allows to
hypothesize a beneficial synergic action of the three strains in the
consortium C2, at least for the germination efficiency.

Due to Covid-19 pandemic, this study hasn’t come to an end yet. Further
experiments need to be performed to confirm the promising results
reached so far.
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Supplementary Figures and Tables are available in Appendix I.
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CHAPTER V

Myxococcus xanthus’ Frz chemosensory system

5.1 A potential PGPB: M. xanthus

M. xanthus belongs to the Myxococcales, or myxobacteria, soil dwelling
Gram-negative gliding bacteria that form fruiting bodies containing
myxospores (Dawid, 2000) resistant to harsh conditions such as
desiccation, high temperature, and UV irradiation (Reichenbach, 1999)

(Fig.1).

vegetative developmental
cycle cycle

| |

starvation aggregation sporulation

hours
development

48

wild type
strain D22

Figure 1 | M. xanthus life cycle.

Myxobacteria are found in both terrestrial soils and aquatic
environments (Dawid, 2000), and besides fruiting bodies and spores
formation (Curtis et al., 2007), show several complex social traits
including cooperative swarming with two motility systems (Spormann,
1999), and group (or “wolf pack”) predation on both bacteria and fungi
(Berleman et al., 2006) (Fig. 2). Myxobacteria embrace several species
of micropredators that colonize soil and predate many microorganisms
classified as plant pathogens (Adaikpoh et al., 2020); their predatory
capabilities are ascribed to secreted hydrolytic enzymes and secondary
metabolites with antimicrobial activity, which place the myxobacteria
near or at the top of the microbial food chain (Konovalova et al., 2010).
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Figure 2 | Epibiotic predation by the myxobacterium M. xanthus. A) M. xanthus cells that
are placed next to E. coli on a CF agar plate, which only provides a minimal amount of nutrients,
expand radially using gliding motility, enter the prey colony, and lyse prey cells. Multicellular
fruiting bodies (white arrowhead), in which M. xanthus cells differentiate into spores, start to
emerge near the inoculation spot. Preying M. xanthus induces regular cell reversals, which
appear as macroscopic ripples within the prey area (yellow arrowhead). The image was taken
2 days after the initial inoculation of predator and prey. B) M. xanthus secretes hydrolytic
enzymes and secondary metabolites, which presumably kill and degrade prey cells for biomass
acquisition. Outer membrane vesicles (OMVs) may contribute to the delivery of these lytic
factors. M. xanthus cells typically move and prey in large clusters, but also individual cells can
induce prey cell lysis.

This evidence indicates that myxobacteria may enhance plant health by
inhibiting the growth of fungal and/or bacterial plant pathogens (Bull et
al., 2002), acting as potential biocontrol agents by competition,
antibiosis, and parasitism (Chet and Inbar, 1994).

5.2 Frz chemosensory system

At the CNRS of Marseille (France), | focused on one of the main
chemosensory systems used by M. xanthus. The Frz (“frizzy”)
chemosensory system controls the frequency at which cells change the
direction of their movement on solid surfaces to reorient in the
environment, analogously to controlled tumbles in E. coli (Blackhart and
Zusman, 1985): this behavior allows cells to move towards favorable
directions or away from toxic compounds. There is evidence that M.
xanthus employs chemotaxis-like genes in its attack on prey cells
(Berleman et al., 2008). In fact, myxobacteria use gliding motility
(Spormann, 1999) to search the soil for preys and produce a wide range
of antibiotics and lytic compounds that kill and decompose prey cells
and break down complex polymers, thereby releasing substrates for
growth (Sudo and Dworkin, 1972). In this contest, M. xanthus’ “frizzy”
system seems to have a possible key role. It is known that the Frz
system is activated by a variety of saturated fatty acids which trigger the
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signal transduction pathway associated with chemotaxis in the
microorganism. This system could probably respond to the plant
signaling, attracting the myxobacteria to the roots, where they may act
as biocontrol agents as previously explained.

In Fig. 3 is shown the Frz system organization. The Frz core is
composed of a cytoplasmic Methyl-accepting Chemotaxis Proteins
MCP (FrzCD), a CheA (FrzE) and a CheW (FrzA) (Sourjik and Berg,
2000) (Fig. 3B), encoded by a single operon (Fig. 3C). In the absence
of any of these three proteins, cells display drastically reduced reversal
frequencies and are no longer able to respond to isoamyl alcohol (IAA),
a Frz activator (Sudo and Dworkin, 1972). The Frz system also includes
a second CheW-like protein, FrzB, described as an accessory because
while in its absence, cells show phenotypes similar to those caused by
the deletion of core proteins, AfrzB cells are still able to respond to IAA
with increased reversal frequencies (Guzzo et al., 2015) (Fig. 3B).

B
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Di %C Signaling unit |
Q C

2 o .
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Figure 3 | Schematic representation of the supramolecular organization of Che proteins.
A) MCP form trimers of dimers (each dimer is shown as a green circle), which, in turn, form
hexagons connected with rings composed of the CheA-P5 domain (dark blue bars) and CheW
(white bars). The light blue circles represent the CheA-P4 domain and the red circles the
interface between the B-strands 3 and 4 of subdomain 1 of CheA-P5 and the B-strands 4 and 5
of subdomain 2 of CheW. Rings containing six CheW proteins (shown at the center of the array)
might serve to modulate the stability and activation of the system. A signaling unit is represented
in the red box. B) FrzCD, FrzECheA, FrzA and FrzB proteins organization depicted by homology
with Che proteins. C) Schematic representation of the frz operon.

In the Frz pathway, the FrzCD chemoreceptor activates the
autophosphorylation of a CheA-CheY fusion, FrzE, which in turn
phosphorylates the response regulator FrzZ (Guzzo et al., 2015). The
system also possesses two CheW homologues (FrzA and FrzB), a
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methyltransferase  (FrzF) and methylesterase (FrzG). The
chemoreceptor of the Frz pathway, FrzCD, lacks the transmembrane
and periplasmic domains, which are replaced by a N-terminal domain
of unknown function (Bustamante et al., 2004). When FrzCD was first
localized in cells, it appeared organized in multiple dynamic cytoplasm
clusters that aligned when cells made side-to-side contacts, which has
been proposed to be part of a signaling process that synchronizes cell
reversals (Mauriello et al., 2009). Furthermore, M. xanthus Frz system
doesn’t form clusters on the membrane, but directly on the bacterial
chromosome. Clusters assembly is controlled by the chemoreceptor
FrzCD, which binds to the DNA by a N-terminal domain carrying a
positively charged eukaryotic histon-like tail (Parra et al., 2006). FrzCD
appears to bind DNA in a non-sequence specific manner, thus, DNA-
bound clusters do not occupy fixed localization sites but move across
small areas on the nucleoid surface. While the binding of FrzCD to DNA
is essential to target the Frz chemosensory system to the nucleoid, it is
not sufficient for Frz cluster formation, as it requires downstream
interactions with the FrzE kinase (Moine et al., 2017).

5.3 HAMP domains

An important question is how superficial receptors bring the signals
across the cell membranes right into the cells. Bacteria and lower
eukaryotes sense environmental stimuli through modular, dimeric
transmembrane receptors, whose extra- and intracellular parts are often
connected by a HAMP domain (Hulko et al., 2006). HAMP domains act
as the signal relay modules in many receptors, physically bridging input
and output components and transferring signals between them (Airola
et al., 2013). HAMP domains were originally referred to as “linker
regions” in histidine kinases and chemotaxis receptors, and
subsequently named HAMP by Aravind and Ponting, (1999) for their
occurrence in histidine kinases, adenylyl cyclases, methyl-accepting
chemotaxis proteins, and phosphatases (Hulko et al., 2006). As
mentioned above, M. xanthus Frz chemosensory system is made of
several proteins encoded by a single operon. Among them FrzCD, a
cytoplasmic MCP, represents the chemoreceptor of the pathway and
controls Frz cluster assembly on the DNA. FrzCD conteins two HAMP
domains (Fig. 4), which most likely take part to the transduction of
external stimuli, from the outside to the inside of the cell.
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Figure 4 | Schematic representation of HAMP1 and HAMP2 domains in the frzCD gene
sequence.

5.3.1 Role of the Frz HAMP domains in cluster formation

As demonstrated by Mauriello et al. (2009), Frz system chemoreceptor
FrzCD is organized in multiple dynamic cytoplasm clusters that align
when cells are side-by-side. This has been proposed to be involved in
the process that controls cells reversals. As shown in Fig. 4 FrzCD is
composed of two HAMP domains, which might be implicated. To
investigate their involvement in clusters formation, frzCD”Ahamp1 and
frzCDAhamp2 mutants were constructed as described in the Materials and
methods section, bringing to the strains named EM777 and EM775,
respectively. frzCD null mutant (EM410), and the double-mutant
frzCDAhampl1dhamp2 (EM776) were already available in the lab. The
mutants’ motility and fruiting bodies formation were then analyzed by
spotting fresh cultures onto CYE 0.5 % agar or CF 1.5 % agar,
respectively, and observed by a binocular stereoscope after 48 °C
incubation at 32 °C (data not shown).

5.3.2 Role of the DNA binding domain in cluster formation

Clusters assembily is generally guided by the interaction between FrzCD
N-terminal domain and the DNA, in a non-sequence specific way (Parra
et al., 2006). Surprisingly, in mutants carrying a lacking-DNA Binding
Domain frzCDADPBD, the protein is still able to form clusters, though
smaller and less defined than wild type, that do not colocalize with the
nucleoid (Fig. 5). The HAMP domains localized downstream the DNA
Binding Domain (DBD), right after FrzCD N-terminal, could be
implicated in the conservation of the interaction. To better understand
this, HAMP truncated mutant proteins, FrzCDAhamp1  FrzCDAhamp2
FrzCDAhamp1ahamp2 - \vere expressed and purified together with the wild
type FrzCD and the lacking DNA Binding Domain FrzCDAPBD ysed as
positive and negative controls (Fig. 6). For this purpose, their capacity
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to bind ssDNA was then investigated by Biolayer interferometry (BLItz)
technique, useful for measuring interactions between proteins,
peptides, nucleic acids, small molecules, and/or lipids in real time (data
not shown).

DAPi HTC

o - -

Figure 5 | Fluorescence microscopy analysis of the localization of FrzCD-neongreen and

FrzCD-neongreenADBD in M. xanthus cells. DAPI (blue) and FITC (green) micrographs,
acquired by an inverted Delta Vision optical sectioning microscope (Applied Precision) are
shown.

M wt Ahamp2 Ahamp1 Ahampt/2 ADBD

Figure 6 | SDS-PAGE of purified proteins. Lanes: 1) FrzCD (45.9 kDa); 2) FrzCD2hamp2 (39.9
kDa); 3) FrzCDAhamp1(40.5 kDa); 4) FrzCDAhamp1ahamp2 (34 5 kDa); 5) FrzCD 2PBP (37.3 kDa). M:
protein marker (kDa).

Unfortunately, due to COVID-19 pandemic | was unable to follow the
successive analyses.

5.4 Materials and methods
5.4.1 Bacterial Strains, Plasmids, and Growth

M. xanthus strains were grown as described by Bustamante et al.
(2004). frzCDAa™1 and frzCDA"a™2 constructs were generated by overlap
extension PCR and cloned into pBJ114 (Mauriello et al., 2009). The plasmid
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obtained was used to electroporate wild type strain DZ2, yielding strains
EM777 and EM775.

5.4.2 Proteins expression and purification

For the FrzCD2ham1  FrzCDAhamp2 FrzCDArampldhamp2  Er7CD and FrzCDAPBD
production, cells of E. coli LB21 strains pEM663, pEM662, pEM658 and
pEM414, bearing pMR3690 expression vector were grown for 3 h at 37 °C in
500 mL LB medium supplemented with 100 ug/mL Ampicillinand 0.5 mM IPTG
to express the heterologous proteins. The His6-tagged proteins were then
purified under native conditions by affinity chromatography and desalted using
a Repligen’s SpectraPor® membrane to remove high NaCl and imidazole
concentrations.
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Summary

Bacterial spores are commonly isolated from a vari-
ety of different environments, including extreme habi-
tats. Although it is well established that such
ubiquitous distribution reflects the spore resistance
properties, it is not clear whether the growing condi-
tions affect the spore structure and function. We
used Bacillus subtilis spores of similar age but pro-
duced at 25, 37, or 42°C to compare their surface
structures and functional properties. Spores pro-
duced at the 25°C were more hydrophobic while
those produced at 42°C contained more dipicolinic
acid, and were more resistant to heat or lysozyme
treatments. Electron microscopy analysis showed
that while 25°C spores had a coat with a compact
outer coat, not tightly attached to the inner coat, 42°C
spores had a granular, not compact outer coat, remi-
niscent of the coat produced at 37°C by mutant
spores lacking the protein CotG. Indeed, CotH and a
series of CotH-dependent coat proteins including
CotG were more abundantly extracted from the coat
of 25 or 37°C than 42°C spores. Our data indicated
that CotH is a heat-labile protein with a major regula-
tory role on coat formation when sporulation occurs
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at low temperatures, suggesting that B. subtilis
builds structurally and functionally different spores
in response to the external conditions.

Introduction

Bacterial endospores (spores) are commonly isolated
from a wide range of ecological niches, from soil to deep
marine sediments, from the gastrointestinal tract of inver-
tebrates and vertebrates to the rhizosphere of plants and
to polluted environments (Nicholson et al., 2000; Womer
et al., 2019). Such ubiguitous distribution reflects both
the metabolic dormancy of spores that do not require
water and nutrients and also their structure, resistant to
conditions that would not allow the survival of other cell
forms (Setlow, 2006). The spore is structurally character-
ized by a dehydrated cytoplasm sumrounded by several
protective layers: a peptidoglycan-iike cortex, that is a
major factor in the resistance to heat (Nicholson et al.,
2000; Setlow, 2006) and a multi-layered coat, formed by
over seventy different proteins and contributing to the
resistance to chemicals, Iytic enzymes and of the proper
interaction of the spore with compounds that trigger ger-
mination (Henrigues and Moran, 2007; Kailas et al.,
2011; McKenney et al., 2013). Some spore former spe-
cies, including Bacillus anthracis, Bacillus cereus and
Bacillus megaterium, have an additional protective layer,
the exosporium, a ‘balloon-like' structure consisting of a
paracrystalline basal layer and an external hair-like nap
formed mainly by the collagen-like glycoprotein BelA
(Henriques and Moran, 2007; McKenney et al., 2013). In
the model system for spore formers, Bacillus subtilis, the
exosporium is not present but a crust, formed by proteins
and glycoproteins, surrounds the coat and is the outer-
most spore layer (McKenney et al., 2013).

The common isolation of live spores, able to germinate
in response to the presence of nutrients originating vege-
tative cells, from highly diverse environments does not
necessarily imply that these species are able o colonize
all such habitats. In some cases, spores have been con-
sidered as tracers to estimate the gut transit time (Mir
et al., 1997), the microbial dispersal by ocean cuments
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(Muller et al., 2014) or the global microbial abundance in
deep sediments (Wdormer et al., 2019). However, spores
of various species have been found able to germinate,
proliferate and sporulate in the animal gut (Cutting,
2011), in the rhizosphere of plants (Timmusk et al., 2011)
and even in the deep marine sediments (Cupit et al.,
2018), pointing to a physiological role of spore formers in
at least some of the analysed environments.

In laboratory conditions, B. subtilis spore domancy,
resistance and resilience is not fully acquired immediately
upon their release by the sporulating cell but only few
days after (Segev et al., 2012; Camilleri et al,, 2019).
Early released (young) spores have significant lower
resistance to heat and chemicals than late released ones
and can partially acquire such resistance properties dur-
ing the maturation period through molecular changes
that most likely involve the spore surface structures
(Sanchez-Salas et al., 2011).

A number of studies have shown that the temperature
of growth and sporulation affects some spore properties,
in particular the resistance to heat and chemicals both in
B. subtilis (Palop et al., 1995; Melly et al., 2002) as well
as in other Bacillus species (El-Bisi and Ordal, 1956;
Warth, 1978). In B. cereus, the temperature of sporula-
tion also alters the structure of the coat and of the
exosporium (Bressuire-lsoard et al., 2015). The regula-
tory coat protein CotE of B. cereus is more abundant in
extracts from spores formed at 20°C than at 37°C, indi-
cating that a high amount of that protein is required to
maintain proper assembly of spore surface layers at low
temperature and suggesting a complex relationship
between the function of a spore regulatory protein and
environmental factors during spore formation (Bressuire-
Isoard et al., 2015). However, as the temperature also
affects the growth rate, the time of entry into the sporula-
tion cycle and the time of spore formation, it cannot be
excluded that the observed differences were at least in
part due to the different age of the analysed spores.

To understand whether the environmental conditions
affect the structure and the function of the forming spore,
we used spores of a laboratory collection strain of the
model organism B. subtilis produced at 25, 37 and 42°C.
We first developed a method to collect spores of the
same age grown at the three different temperatures and
then analysed their structure and function. Our results
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point to the conclusion that B. subtilis builds different
spore surfaces in response to the extemal temperature
and indicate CotH, a previously identified spore coat pro-
tein with a regulatory role on at least nine other coat pro-
teins, as a major regulatcr of coat formation at low
temperatures.

Results and Discussion
Production of spores of similar age at 25, 37 and 42°C

Isogenic strains of B. subtilis carrying the gene coding for
the green fluorescent protein (gfp) posed under the con-
trol of sporulation-specific promoters recognized by the
RNA polymerase sigma factors «" (spol/Q gene; Donadio
et al., 2016), o* (gerE gene; Donadio et al., 2016) or o*
acting in conjunction with GerE (cotC gene; Donadio
et al., 2016) were induced to sporulate in Difco Sporula-
tion (DS) medium at 25, 37 and 42°C. Aliquots were col-
lected at various times and analysed by fluorescence
microscopy to assess the timing of appearance of the
fluorescent signal at the varous growth temperatures. In
agreement with the literature data (Fujita and Losick,
2003), at 37°C fluorescence signals appeared 2, 5.5 or
7 h after the onset of sporulation when gfp expression
was controlled, respectively, by the &7, ¢* or o"-GerE-
dependent promoters (Table 1). With respect to cells
growing at 37°C, production of fluorescent signals was
delayed at 25°C and slightly accelerated at 42°C
(Table 1). While the difference between the time of
appearance of the fluorescence signal at 37 versus 42°C
was only minimal and was not futher considered in our
study, a delay factor of 2.40 was calculated as the ratio
between the hours needed fo observe the appearance of
fluorescent cells at 25 versus 37°C (Table 1).

As an additional approach, the B. subtilis strain PY79,
isogenic to the strains used for the experiment of
Table 1, was used to produce spores in DS medium at
25, 37 and 42°C. At different times during growth and
sporulation aliguots were collected and analysed urder
the light microscope. For each time point cells and free
spores of eight independent microscopy fields were
counted and averaged. An amount of B5% of free spores
was counted after 30 h at 37 and 42°C and after 69 h at
25°C (Supporting Information Figure S1), in good

Table 1. Time of appearance (hours after the onset of sporulation) of the flusrescence signal at the various temperatures.

Temperature of grewth

Gena fusion Transcriptional control 25°C 37°C 42°C Delay factor 25°C/37°C Delay factor (average)
[ — o 50 2.0 1.5 25 2.40
oot o 14.0 5.5 5.0 215

Pootc glp o + GerE 18.0 7.0 7.0 257

@ 2019 Society for Applied Microbiology and John Wiley & Sons Ltd., Environmental Microbiology, 22, 170182
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Fig. 1. Resistance of spores to lysozyme and heat. A, Spores formed at 25°C (white bar), 37°C (grey bar) and 42°C (black bar) were incubated
with 50 mg mI™" of lysczyme and the percentage of loss of refraction measured. The results are the mean from six replicate experiments, each
performed with an independently prepared spore suspension. Error bars represent standard deviations. Analysis of variance has been performed
by unpaired two-tailed t test (**“p = 0.05). B. Spores formed at 25°C (white circles), 37°C (grey circles) and 42°C (black circles) were incubated at
100°C for 30 min. The data are the means of three independent experiments. C. DPA content of spores produced at 25°C (white bar), 37°C (dark-
grey bar) and 42°C (black bar). D. DPA release (pM) from spores produced at 25, 37 and 42°C incubated at 50, 80, 100 and 110°C for 15 min.

agreement with the delay factor calculated in Table 1.
Based on these, spores produced after 30 h at 37 and
42°C and after 69 h at 25°C were considered of similar
age and used for all further experiments.

Functional analysis

Purified spores of similar age produced at the three differ-
ent temperatures were analysed for their resistance prop-
erties, efficiency of germination and hydrophobicity. The
temperature of growth and sporulation had small but sta-
tistically significant (p < 0.05) effects on the resistance fo
lysozyme digestion, with 25°C spores less resistant than
those produced at 37 or 42°C (Fig. 1A). 25°C spores
were also less resistant than 37°C spores, which in tum
were less resistant than 42°C spores, after incubation at
100°C (Fig. 1B). The effect of the temperature on heat
resistance was most likely mediated by the increased
dipicolinic acid (DPA) content of spores (Fig. 1C) that
caused a decrease of free water (Leguérinel et al., 2007).
The different resistance to heat of 25, 37 and 42°C
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spores was also observed by measuring the amount of
DPA released after a heat treatment. Next, 25°C spores
released 5 uM of DPA after an incubation at 80°C, while
the 37°C spores released DPA over the background level
after an incubation at 100 and 42°C spores only released
DPA after an incubation at 110°C (Fig. 1D).

The gemnination efficiency was measured by using
either asparagine or alanine as germinants (Serrano et al.,
2005; Atluri et al, 2008; Christie & Lowe, 2007). With
asparagine, germination of 42°C spores (black symbols in
Fig. 2A) was slower than that of 25 and 37°C spores
(white and grey symbols, respectively, Fig. 2A). When ala-
nine was used, the process was in general faster than with
asparagine and 25°C spores (white symbols in Fig. 2B)
were slightly faster than 37 and 42°C spores, that behaved
similarly (Fig. 2B). Similar results were obtained by mea-
suring germination by flow cytometry, as previously
reported (Cangiano et al., 2014; data not shown).

The effects of the temperature of growth and sporula-
tion on the hydrophobicity of the spore surface were

analysed by using the bacteral adherence To
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Fig. 2. Germination efficiency and spore relative hydrophobicity. Spore produced at 25°C (white symbols), 37°C (grey symbols) and 42°C (black
symbaols) were induced to germinate in response to asparagine (A) or to alanine (B). The percentage of germination was determined as ODsag
loss. Data are the means from three replicate experiments, each performed with an independently prepared spore suspension. Bars represent
standard deviations. C. The percentage of hydrophobicity represents the proportion of spores in n-hexadecane after a separation into sohlvent
and water phases. Each percentage is the mean from three replicate experiments, each performed with an independently prepared spore sus-
pension. Error bars represent standand deviations.

@ 2019 Society for Applied Microbiology and John Wiley & Sons Ltd., Environmental Microbiology, 22, 170-182
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42°C

Fig. 3. Thin section transmission electron micrograph. Representative spore produced at 25, 37 or 42°C are reported. Triangles (left panel) point
to sites of detachment between inner and outer coat. Bars corespond to 300 nm.

hydrocarbons (BATH) assay, based on the partitioning of
spores between aqueous and hexadecane phases
(Wiencek et al., 1990). Spores produced at 42°C showed
a lower relative hydrophobicity than those produced at
25 or 37°C (Fig. 2C).

All together results of Figs. 1 and 2 suggest that the
temperature of growth and sporulation affects spore func-
tions. Resistance to lysozyme and heat increases with
the temperature of spore production, with 42°C spores
more resistant than 37°C spores that in tum are more
resistant than 25°C spores, while 25°C spores are slightly
faster to respond to gemminants and more hydrophobic
than 37 and 42°C spores.

Structural analysis

A transmission electron microscopy (TEM) approach was
used to compare the ultra-structure of spores prepared at
25, 37 and 42°C. As previously reported (McKenney
et al., 2013), unstained B. subtilis spores produced at
37°C showed a coat composed of a lamellar inner coat
and a thick electron-dense outer coat (Fig. 3). The outer-
most structure of the B. subtilis coat, the crust, is only
visible after a red-ruthenium staining (McKenney et al.,
2010) and, therefore, did not appear in our analysis. Over
40 spores of different sections were analysed for each
temperature and about 80% of the analysed 25°C spores
differed from 37°C spores and showed a lamellar,
strongly electron-dense outer coat, pardially detached
from the inner coat (Fig. 3). A similar percentage of 42°C
spores also differed from 37°C spores and showed a
granular, not compact and thick outer coat (Fig. 3), remi-
niscent of the coat produced at 37°C by a cotG null
mutant strain (Freitas et al., 2019).

To further characterize the coat of spores produced at
different temperatures, surface proteins were extracted
by the SDS-dithiothreitol (DTT) treatment (Nicholson and

Setlow, 1990) and analysed by SD5-PAGE. As shown in
Fig. 4A, the profile of proteins extracted from 25, 37 or
42°C spores showed several differences. In particular,
the abundance of proteins of apparent molecular mass of
65, 30 and 22 kDa (indicated by the black arrows)
decreased with the increase of temperature in a gradient-
like manner (25 = 37 > 42). Other proteins of apparent
molecular mass of 40 and 36 kDa (indicated by grey
arrows) were abundantly extracted from 25°C spores and
minimally extracted from 37°C spores (25 > 42 > 37).
Other differences involved proteins extracted only from
spores produced at one of the three temperatures (indi-
cated by triangles).

To identify some of the proteins differentially represen-
ted in 25, 37 and 42°C spores a westem blotting
approach was followed by using a collection of antibodies
previously raised against various spore coat proteins.
Proteins of apparent molecular mass of 65 and 34 kDa
were identified as CotB and CotG, respectively, and were
both abundantly extracted from 25°C spores and were
minimally extracted from 42°C spores (Fig. 4B). CotA
was also extracted in slightly higher amounts at 25°C
than 37 or 42°C but the differences were minimal
(Fig. 4B). Other differentially expressed proteins were not
recognized by any of the antibodies in our collection.
Those indicated by the grey arrows in Fig. 4A were iden-
tified by N-terminal amino acid sequencing as CotQ
(50 kDa) and CotS (40 kDa). Proteins indicated by the tri-
angles in Fig. 4A were either not sufficiently abundant or
not sufficiently resolved to be identified.

Assembly of CotH and other CotH-dependent proteins is
controlled by the temperature

The proteins identified as differentially extracted from
25, 37 and 42°C spores, CotB, CotG, CotQ and CotS,
are all known as dependent on the action of the
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Fig. 4. Chromatographic profile of SDS-DTT extracted coat proteins.
A. Proteins from spores prepared at 25, 37 or 42°C were analysed
by SDS-PAGE. Arrows indicate proteins more abundantly extracted
from 25°C spores than from 37 or 42°C (black amows) or less abun-
dant in 37°C spores than 25 or 42°C (grey arrows). Triangles indi-
cate proteins only (or mostly) extracted from spores prepared at one
of the three temperatures. M: Protein marker (kDa). B. Western blot
analysis of proteins extracted from mature spores prepared at the
three temperatures with anti-CotA, anti-CotB, anti-CotG antibodies.

[+ CotG

regulatory protein CotH (Zilhao et al., 2004; Kim et a.,
2008). Therefore, the presence of CotH in spores pre-
pared at the three temperatures was evaluated by west-
ern blotting with anti-CotH antibody. As shown in Fig. 5A,
CotH was abundantly extracted from 25°C spores while it
was minimally extracted from 37 and 42°C spores. As
CotH has been recently identified as an atypical protein
kinase-like able to phosphorylate both CotB and CotG
(Nguyen et al., 2016), the kinase activity of CotH was
assayed by western blotting in 25, 37 and 42°C spores
with antibody specifically recognizing the phosphorylation
consensus motif (p)PKC-Ab). The western blot of Fig. 5B
shows that the CotH kinase was active on CotB and
CotG when sporulation had occurred at 25 or 37°C, while
no activity was detected at 42°C even if some CotH pro-
tein was still present (Fig. 5A).

Based on the effects of the temperature on CotH, the
abundance of other CotH-dependent proteins that were
not resolved in the SDS-PAGE of Fig. 5A was analysed
in 25, 37 and 42°C spores. As shown in Figs. 5C and 5D,
CotC, CotU and CotZ were differentially extracted from
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25, 37 and 42°C spores but while CotZ was more abun-
dantly extracted from 25°C than from 37 or 42°C spores
(Fig. 5C) following the same trend observed for CotB and
CotG, all forms of CotC and CotU followed an opposite
trend and were more abundantly extracted from 42 than
from 37 or 25°C spores (Fig. 50).

To analyse whether the observed different amount of
CotH-dependent proteins was dependent on their exfract-
ability, spores expressing CotG and CotC fused to RFP
or GFP (RH406 and DS127), respectively, were analysed
by fluorescence microscopy (Donadio et al., 2016). The
highest fluorescent signal was observed around 25°C
spores when the reporter proteins were fused to CotG
(Fig. 6A) and around 42°C spores when GFP protein was
fused to CotC (Fig. 6B). These results support the idea
that the differences observed by western blot were due to
different amounts of CotG and CotC present around the
spores.

Results of Figs. 3-6 then suggest that the growth and
sporulation temperature influence the ultrastructure and
protein composition of the spore surface, in part through
the action of the momphogenetic protein CotH.

CotH is a heat-labile protein

The abundance of CotH in 25°C spores (Fig. 5A) could be
due to a high expression of the structural gene cotH at low
temperatures or to a different stability of the protein at the
various temperatures. To distinguish between these possi-
bilities, cotH expression was analysed by using a previ-
ously characterized strain of B. subtilis (PY79) camying a
translational gene fusion between the cotH coding part
and the lacZ gene of Escherichia coli (Baccigalupi et al.,
2004) and the cotH-driven f-galactosidase activity mea-
sured during sporulation at the three temperatures. The
time-course experiment of Fig. 7A shows that cotH was
expressed at different times at the three sporulation tem-
peratures. In agreement with data of Table 1, cotH expres-
sion was delayed of a factor 2.4 with respect to the
expression at 37°C while at 42°C it was slightly faster
(Fig. 7A); however, the levels of expression were similar at
the three temperatures, suggesting that similar level of
CotH were produced at 25, 37 and 42°C.

The ScooP software (Pucci et al., 2017) predicts the
temperature-dependent stability of a monomer protein on
the base of its structure and was used to analyse CotH.
As the structure of the B. subtilis protein is not available,
the B. cereus homolog (60% similarity) (Nguyen et al.,
2016) was used. The graph in Fig. 7B shows that the free
energy (AG) associated with the CotH folding is lower at
temperatures between 10 and 30°C, suggesting a major
stability of the protein within this temperature range. To
validate the in silico prediction, CotH of B. subtilis was
overproduced in E coli and purified by affinity
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chromatography. The purified protein was incubated
30 min at 25, 37 or 42°C and the intrinsic fluorescence of
the Trp residues measured by spectrofluorimetric analy-
sis (Vivian and Callis, 2001). By this approach when the
protein is properly folded the Trp residues are hidden and
a high fluorescence intensity is expected. On the con-
trary, low fluorescence intensity is expected when the
protein is unfolded and the Trp residues exposed to the

Phase contrast Fluorescence

ColG-RFP

Asuagu jeubis sxuadsason|d

hydrophilic environment (Vivian and Callis, 2001). As
shown in Fig. 7C, a decrease of fluorescent emission
was observed raising the temperature of incubation of
CotH. Results of Fig. 7 then indicate that CotH is pro-
duced at similar levels at 25, 37 and 42°C, and that the
protein is more stable at low temperatures, suggesting
that CotH is a heat-labile protein and explaining its higher
abundance and activity at 25°C.

Fluorescence

Phase contrast

CotC-GFP

Fig. 6. Fluorescence microscopy analysis of spores expressing CotG-RFP and CotC-GFP and produced at different 25, 37 and 42°C. Phase-
contrast and fluorescence images of spores of the RH406 (A) and DS127 (B) strains are shown. A representative microscopy field is reported for
each temperature and strain. Scale bar 1 pm. The exposure time was the same for all samples with the same reporter gene. [Color figure can ba

viewed at wileyonlinelibrary.com]
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Fig. 7. Production and stability of CotH at 25 37 anc 42°C.
A, Expression of a cotH: facZ translational fusion (Baccigalupi et al.,
2004) during sporulation at 25°C (white circles), 37°C (grey circles)
and 42°C (black circles). Samples were collected at various times
after the onset of sporulation. Enzyme activity is exprassed m Miller
units. The data are the means of two independent expeiments.
B. Stability curve of CotH in function of the temperature obtained by
SCooP software (Pucci et al., 2017). C. CotH thermal stability moni-
tored spectroflucrimetrically by Trp flucrescence. CotH emission was
scanned after 30 min of incubation at 25, 37 and 42°C. For each
temperature, the fluorescence emission of Trp was measuied and
nomalized with the native protein. CotH concentraticn was
5 mmol I"* in PBS. Each spectrum was the average of three scans.

Spores lacking CotH are strongly defective when
produced at low temperatures

Results of Figs. 5A, 5B and 7 propose CotH as a
major regulator of coat formation at low temperatures of
growth. To confirm this conclusion, a mutant strain not
expressing CotH (Naclerio et al., 1996) was used o pro-
duce spores at 25, 37 and 42°C and to compare their
structure and function. The mutant strain is not altered for
its growth rate and sporulation efficiency (Naclerio et al.,
1996), therefore spores were collected after 30 h (37 and
42°C) or 69 h (25°C), as defined for its isogenic parental
strain, and used for functional analyses. Similar to wid-type
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spores, also mutant spores produced at 25°C were less
resistant to beth lysozyme (Fig. 8A) and heat (Fig. 8B), but
the effect was more severe than with the wild type (dashed
bars in both panels).

Mutant spores produced at all three temperatures were
less efficient to germinate than the isogenic wild-type
spores with both asparagine (Fig. 8C) or alanine (Fig. 809
as gemnination inducer. Comparing mutant (confinuous
lines in Figs. 8C and 8D) and wild type (dashed lines in
Figs. BC and 3D) spores, those produced at 25°C showed
the biggest difference with both germinants.

Mutant spores produced at the three temperatures
showed similar relative hydrophobicity (Fig. 8E), suggesting
that the relative high hydrophobicity of wild-type spores
produced at 25°C spores (Fig. 2C) was mostly due io
CotH or CotH-dependent proteins.

Spores lacking CotH were also used for a structural
analysis. As previously reported (Zilhao et al., 2004), cotH
spores produced at 37°C showed an altered coat ultra-
structure with both the inner and outer coat thinner than in
wild-type spores and detached from each other (Fig. 9A).
The same spores produced at 25°C showed a more
severe alteration of both the inner and outer coat, which
appeared to be amorphous and partially detached from the
underlying cotex layer (Fig. 9A). At 42°C, the outer coat of
cotH spores was thinner and less granular than wild-type
spores produced at the same temperature (Fig. 9A).

Mutant spores were then used to extract and analyse
by SDS-PAGE coat proteins. As shown in Fig. 9B and as
previously reported for 37°C spores (Naclerio et al.,
1996), the total number of proteins extracted from the
cotH mutant was low compared with wild-type spores
(see Fig. 4A). The profile of proteins extracted from 42°C
spores was similar to that extracted from wild-type spores
produced at the same temperature (see Fig. 4A). The
profile of proteins extracted from mutant spores produced
at 25°C showed two prominent proteins not present in
the extracts cf spores produced at 37 or 42°C (indicated
by black arows in Fig. 8B). These two proteins, identified
by N-terminal amino acid sequencing as Mpr (33.7 kDa)
and TasA (28.5 kDa), are known to be present in the core
of the spore and their extraction by a coat-extraction
treatment has been previously associated to a severely
defective coat (Stover and Driks, 1999).

Altogether results of Figs. 8 and 9 indicate that spores
lacking CotH are strongly defective at 25°C and much
less so at 42°C, in keeping with previous results indicat-
ing CotH as a major regulator of coat structure at low
temperatures.

Conclusions

Main results of this manuscript are that B. subtilis builds
structurally and functionally different spores in response
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Fig. 8. Functional analysis of cotH mutant spores. Resistance to lysozyme digestion (A) and to heat (B) of spores produced at 25, 37 and 42°C
of a wild type (dashed bars) and a cotd mutant (continuous bars). Germination in response to asparagine (C) or to alanine (D) of wild type
(dashed lines) and cotH mutant (continuous lines) spores produced at 25°C ({diamonds), 37°C (squares) and 42°C (circles). The percentage of
germination was determined as ODs, loss. Data are the means from three replicate experiments, each performed with an independently pre-
pared spore suspension. Bars represent standard deviations. E. Percentage of hydrophobicity of wild type (dashed bars) and cotH mutant (con-
tinuous bars). Each parcentage is the mean from three replicate experiments, each performed with an independently prepared spore suspansion.

Error bars represent standard deviations.

to the different environmental temperatures and that
CotH is a heat-labile protein with a pivotal role in deter-
mining the outer coat protein composition at low
temperatures.

Fig. 9. Structural analysis of cotH mutant spores. A. Thin
section transmission electron micrograph of cotd mutant spores pro-
duced at 25, 37 or 42°C. Bars correspond to 300 nm. B. SDS-PAGE
profile of coat proteins extracted from cotH mutant spores. Arrows
indicate proteins more abundantly extracted from 25°C spores than
from 37 or 42°C identified by N-terminal amino acid sequencing. M:
Protein marker (kDa).

Spores of the same age produced at 25, 37 or 42°C
showed different functional and structural properties. In
particular, compared with 37°C spores those produced at
25°C were less resistant to lysozyme and heat, slightly
faster to germinate, more hydrophobic and showed a com-
pact and lamelar outer coat, partially detached from the
inner coat. Those produced at 42°C were, instead, more
resistant to lysozyme and heat, slower to respond to aspar-
agine as a germinant, less hydrophobic and showed a
thick and apparently granular outer coat, reminiscent of the
structure produced at 37°C by a mutant strain lacking CotG
(Freitas et al., 2019). The effects of the temperature on the
spore relative hydrophobicity could be a consequence of
the effects on CotG and CotZ. As both these proteins are
major crust components (McKenney et al, 2010), their
amount affects crust composition which in tum affects the
spore relative hydrophobicity (Shuster et al., 2019).

Consistently with the ultrastructural analysis, the coat
of spores produced at the three temperatures differed
also in their protein composition, with several proteins
that were extracted in different quantities from spores
grown at 25, 37 or 42°C. Several of the proteins affected
by the temperature belong to the group of CotH-
dependent proteins and we observed that CotH is itself
thermo-responsive. It is produced at the same levels at
all tested temperatures but is heat labile and, therefore,
more stable at low than at high temperatures.
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CotH is known to have a regulatory role on the assem-
bly of at least nine other coat proteins, including CotB,
CotC, CotG, CotS, CotZ and CotQ (Kim et al., 2006).
CotH is an atypical kinase and performs its regulatory
role on CotB and CotG by phosphorylating the serine res-
idues present in the two coat proteins (Nguyen et al.,
2016). In agreement with the instability of CotH at high
temperatures, we observed kinase activity only at 25 and
37°C while at 42°C no phosphorylation of CotB and CotG
was detected. Based on this, we infer that the heat-labile
kinase CotH phosphorylates CotB and CotG, allowing
their coat assembly at 25 and 37°C, while at 42°C CotB—
CotG are not phosphorylated and not assembled in the
forming coat. It is noteworthy to observe that wild-type
spores produced at 42°C do not contain CotG and have
ultrastructural properties reminiscent of spores produced
at 37°C by a CotG-lacking strain (Freitas et al., 2019).

Other CotH-dependent proteins are not phosphorylated
and therefore respond to CotH and to the temperature by
different mechanisms. CotC and CotU, showed an oppo-
site trend with respect to CotB-CotG and were extracted
in higher amounts from 42°C spores than from 37 or
25°C. This observation is not surprising, since it has been
previously reported (Saggese et al., 2014) that in a CotH-
lacking strain CotG has a negative effect on the coat
assembly of CotC and CotU by a still unknown mecha-
nism. Therefore, it is likely that the increase of CotC and
CotU observed in 42°C spores was due to the absence
of CotG. CotS assembly is also negatively affected by
CotG when CotH is not present (Saggese et al., 2014),
and this is likely relevant for the observed CotS profile at
the various temperatures.

As a working model for the temperature-dependent
assembly of the outer coat we propose that at low tem-
peratures CotH is abundant, active and able to efficiently
phosphorylate CotB and CotG, thus allowing their coat
assembly. In these conditions, the presence of CotG
reduces by an unknown mechanism the amounts of CotC
and CotU assembled in the outer coat At high tempera-
tures CotH becomes less active (or totally inactive), as a

Table 2. Bacterial strains.

Strain Genotype Source
Bacillus PY79 Wild type Youngman et al.
subtilis (1984)
ER209 cotH Maclerio ef al. (1996)
RH2466  pspollQ: Donadio et al. (2016)
gip
RH2467  pgerE:gfp Donadio et al. (2016)

Ds127 cotCugfp Donadio et al. (2016)

RH406 cotGurfp This study
Escherichia V513 cotH:his Isticato ef al. (2015)
coli GC237 cotH:lacZ Baccigalupi et al.
(2004)
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consequence, CotG is less abundant or totally absent,
and in these conditions the amounts of CotC and CotU
assembled in the outer coat increase. In this way, CotH
controls the switch from a CotB/CotG outer coat, which
appears lamellar and highly electron dense, to a CotC/
CotU outer coat that appears granular and thick.

In this still partial picture, many points remain to be elu-
cidated, as the mechanism by which CotG plays a nega-
tive effect on CofC, CotU and CotS assembly, and the
mechanism controlling CotS, CotQ and CotZ assembly.
However, results so far obtained allow us to propose
CotH as a major thermo-regulator of the B. subtilis spore
surface.

Materials and methods
Bacterial strains, growth and sporulation

Bacillus subtilis strains used in this work are listed in the
Table 2. Sporulation at 25, 37 and 42°C was induced by
the exhaustion method in DS medium. Cell growth and
sporulation induction were monitored by measuring the
changes in optical density at 600 nm (ODggg) over time
(Nicholson and Setlow, 1990). Fluorescence microscopy
analyses were performed by collecting sporulating
cells (500 ul) at various times during sporulation, re-
suspending the sporangia in 50 pl of 1x PBS buffer and
observing 5pl with an Olympus BX51 fluorescence
microscope using 100x objective UPlanF1. Phase-
contrast and green fluorescent images were acquired as
previously described (Donadio et al.,, 2016). Cell growth
and sporulation experiments to obtain spores of similar
age were performed at least five times.

Purification of mature spores was performed by cold-
water washing using overnight incubation in H.O at 4°C
to lyse residual sporangial cells. Spore purity was
checked under optical microscope (Olympus BH-2 with
100x lenses) and was higher than 95% (Nicholson
and Setlow, 1990). Spore counts were determined by
direct counting with a Birker chamber (Sigma, USA;
BR719505) under an optical microscope (Olympus BH-2
with 40x lens).

Germination efficiency

Purified spores were heat activated as previously
described (Cutting and Vander Hom, 1990) and diluted in
10 mM Tris=HCI (pH 8.0) buffer containing 1 mM glu-
cose, 1 mM fructose, and 10 mM KCI. The germination
was induced by adding 10 mM r-asparagine or 10 mM -
alanine and the assays were conducted in friplicate in
96-well plates incubated at 37°C measuring the opfical
density decrease at 580 nm in a microplates reader Bio-
tek Synergy H4 (Cutting and Vander Horn, 1990).
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Gemmination was also monitored by cytofluorimetry as
previously described (Cangiano et al., 2014).

Lysozyme and heat resistance

Purified spores (ODggy ~0.8) were re-suspended
in 10mM Tris-HCl (pH7.8) containing lysozyme
(50 mgml~") and the decrease in optical density was
monitored at 595 nm for 30 min (Cutling and Vander
Horn, 1990). Purified spores (ODggg ~0.4) were incubated
at 100°C for 10 min. The decrease in optical density was
monitored at 580 nm in 96-well plates using a microplates
reader Biotek Synergy H4, with readings every 5 min for
an hour (Cutting and Vander Horn, 1990). All experi-
ments were conducted twice with two independently pre-
pared batches of spores. All measurements were done in
triplicate.

DPA content and DPA release

DPA concentration was measured as previously
described (Abhyankar et al,, 2018). In brief, spore sus-
pensions at an ODgyy of 1.0 were washed twice in
50 mM KCI to remove readily exchangeable calcium,
suspended in 1 ml of sterile Milli-Q water and subse-
guently autoclaved at 121°C for 30 min to induce the
release of DPA. Then the samples were cooled on ice,
centrifuged (10 min at 13 000g) and 0.8 ml of superna-
tant was transfemred to new test tubes. Next, 0.2 ml of
color reagent [1% Fe(NH.)/*(S0.4)?6H.0 along with 1%
ascorbic acid in 0.5 M acetate buffer of pH5.5] was
added to the supernatant. By measuring the absorbance
at 440 nm, a standard curve was prepared for the con-
centration range of 100-10 mg I”'. The ODg4p of the
samples was measured and the amounts of DPA/spores
were calculated from the standard curve.

DPA release from heat-treated spores was monitored
by measuring the emission at 545 nm of the fluorescent
terbium-DPA  complex as previously described
(Jamroskovic et al., 20186).

Suspension of 1.0 x 10% spores were incubated at
50, 80, 100 and 110°C for 15 min, then centrifuged
(10 min at 13,000g) and the supernatant was transferred
to 200 pl wells of a 96-well microtiter plate, in the pres-
ence of a freshly prepared solution of 30 yM TbCly in
400 mM sodium acetate buffer, pH 5. The DPA content
was measured following the formation of terbium®-DPA
complex in a microplates reader Synergy H4, BioTek,
reading up to 1-h each 5 min (1., = 276 and 545 nm). A
sample containing 30 pM TbCl; was used as a blank
while samples containing wvarous concentrations of
DPA without TbCl; were measured and their photo-
luminescence subtracted as background.
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Two independent experiments were carried out for
each data point, and all measurements were done in
duplicate.

Hydrophobicity assay

Spore relative hydrophobicity was evaluated by the
BATH assay (Wiencek et al., 1990). Briefly, 3.0 ml of
water containing 1.5 x 10® spores produced at
25, 37 and 42°C was incubated for 15 min at 25°C. After
incubation, 1.0 ml of hexadecane (Sigma-Aldrich) was
added to each spore suspension, and the mixture was
vortexed for 1 min in glass test tubes (15 x 100 mm).
After 15 min, to allow the partifion of the two phases, the
aqueous phase was carefully collected with a Pasteur
pipette, and the OD44, was measured. The spore relative
hydrophobicity was calculated as

Spore relative hydrophobicity = (@) x100.
0

where A, and A; were the initial and final ODgyg
respectively.

Transmission electron microscopy

For thin sectioning TEM analysis, purified spores were
processed as described previously [Freitas et al., 2019]
and imaged on a Philips EM 208S (FEl) microscope
equipped with digital camera and Image Analysis
Software.

Extraction of coat proteins and western blot analysis

Spore coat proteins were extracted from a suspension of
spores by SDS-DTT or NaOH treatment (Isticato et al.,
2015). The concentration of extracted proteins was deter-
mined by using Bio-Rad DC protein assay kit (Bio-Rad),
and 20 pg of total spore coat proteins were fractionated
on 12.5% SDS polyacrylamide gels and staining by Bril-
liant Blue Coomassie or electro-fransferred to nitrocellu-
lose filters (Bio-Rad) for western blot analysis following
standard procedures. CotH-, CotA-, CotC-, CotB-, CotG-
(Isticato et al., 2013) and Phospho-(Ser) PKC substrate-
specific antibodies (Cell signal technology) were used at
working dilutions of 1:150 for CotH detection, 1:7000 for
CotA, CotC, CotB and CotG detection and 1:10 000 for
PKC. Then a horseradish peroxidase-conjugated anti-
rabbit secondary antibody was used (Santa Cruz). West-
em blot filters were visualized by the electro chemi lumi-
nescence method as specified by the manufacturer and
processed to improve the contrast level using
ChemidocXRS software (Bio-Rad).

@ 2019 Society for Applied Microbiology and John Wiley & Sons Ltd., Environmental Microbiology, 22, 170-182

108 | Pag.



180 R. Isticato et al.
Construction of cotG::rfp fusion

The coding sequence of mp was polymerase chain
reactionamplified using pRSET A-RFP plasmid DNA
(Donadio et al., 2016) as a template and synthetic oligo-
nucleotides RFP-for (5'-GAATTCATGGCCTCCTCCG
AGGAC-3) and RFP-rev (5-GGTACCTTAGGCGCCGG
TGGAG-3) to prime the reaction. The purified DNA frag-
ment of 564 bp was digested with EcoRl and Kpnl and
cloned in frame to the 3' end of the cotG gene carried by
the integrative vector pCotG-C (lwanicki et al., 2014),
previously digested with the same restriction enzymes.
The new plasmid was used to transform competent cells
of strain PY79, yielding strain RH406 (cotG::p).

fi-Galactosidase assay

Samples (1.0 ml each) of cotH::lacZ-bearing cells were
collected during sporulation performed at 25, 37 and
42°C, centrifuged (10 min at 5000g) and the pellets
assayed as previously described (Schaefer et al., 2016)
with some modifications. Briefly, 0.3 ml of a Z-Buffer solu-
tion (60 mM NazHPO, x 7H.0, 40 mM NaH.PO,4, 10 mM
KCl, 1mM MgSO, x 7H.O, 166 mi~' lysozyme,
50 mM p-mercaptoethanol) and 10 pl of toluene, fo
permeabilize the cells, were added to the thawed pellets.
After preincubation at 30°C for 15 min, 0.15 ml of each
sample was transferred in 96 multiwells. The reaction
starts adding 30 ul of 4 mgml~ ortho-Nitrophenyl-f-
galactoside. The optical density was monitored at
420 and 595 nm in a microplates reader Biotek Synergy
H4, reading every 2 minutes for the first 10 min and every
5 min for the 20 later min. The specific p-galactosidase
activity was expressed in Miller units, calculated as
follows:

. . 1000#(OD4zomin~")
Miller Units = ——————————,
ODsgs *volume used

where the kinetic OD.z readings were converted into the
slope of ODyag over time (OD,zp min™').

Expression and purification of CotH

For CotH production, cells of E. coli strain V513 (Isticato
et al., 2015), bearing pBAD-B expression vector (Life
Technologies) carrying an in-frame fusion of the 5' end of
the cotH coding region to six histidines, were grown for
18h at 37°C in 100 ml of autoinduction medium fo
express the heterologous protein (Isticato et al., 2015).
The His6-tagged CotH protein was purified under native
conditions using a His-Trap column as recommended by
the manufacturer (GE Healthcare Life Science). Purified
protein  was desalted using a PD10 column
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(GE Healthcare Life Science) to remove high NaCl and
imidazole concentrations.

Spectrofluorometry

Purified CotH was dissolved in 1x PBS at a concentra-
tion of 5 pmol I™'. Fluorescence spectra were acquired
after 30min of incubation at 25, 37 and 42°C with a
Fluoromax-4 fluorometer (Horiba, Edison, NJ) in 1cm
path length quartz cuvette. Samples were continuously
stirred and allowed to equilibrate to each temperature
before fluorescence readings were taken. Excitation
wavelength of 295 nm was used to avoid the contribution
from tyrosine residues. The excitation and emission band
widths were set to 5 and 2.5 nm respectively. The emis-
sion spectra were recorded from 305 to 470. Each spec-
trum was the average of three scans (Jokiel et al., 2005).
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Abstract

Background: Bacterial spores displaying heterologous antigens or enzymes have long been proposed as mucosal
vaccines, functionalized probiotics or biocatalysts, Two main strategies have been developed to display heterologous
molecules on the surface of Bacillus subtilis spores: (i) a recornbinant approach, based on the construction of a gene
fusion between a gene coding for a coat protein (carrier) and DNA coding for the protein to be displayed, and (i) a
non-recombinant approach, based on the spontaneous and stable adsorption of heterologous molecules on the
spore surface. Both systems have advantages and drawbacks and the selection of one or the other depends on the
protein to be displayed and on the final use of the activated spore. It has been recently shown that 8 subtifis builds
structurally and functionally different spores when grown at different ternperatures; based on this finding 8 subitilis
spores prepared at 25, 37 or 42 °C were compared for their efficiency in displaying various model proteins by either
the recormbinant or the non-recombinant approach.

Results: Immune- and fluorescence-based assays were used to analyze the display of several model proteins on
spores prepared at 25, 37 or 42 °C. Recombinant spores displayed different amounts of the same fusion protein in
response to the temperature of spore production, In spores simultaneously displaying two fusion proteins, each of
therm was differentially displayed at the various temperatures, The display by the non-recombinant approach was only
modestly affected by the temperature of spore production, with spores prepared at 37 or 42 °C slightly more efficient
than 25 °C spores in adsorbing at least some of the model proteins tested

Conclusion: Our results indicate that the temperature of spore production allows control of the display of heterclo-
gous proteins on spores and, therefore, that the spore-display strategy can be optimized for the specific final use of
the activated spores by selecting the display approach, the carrier protein and the temperature of spore production,

Keywords: Display platform, Mucosal vaccines, Bacillus subtilis, Probiotics

Introduction

Endospores (spores) are quiescent cell forms produced
by over 1000 bacterial species when the environmen-
tal conditions do not allow cell growth to continue [1].
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In the spore form, these bacterial species can survive
conditions, such as the prolonged absence of water and
nutrients, the exposure to extremes of temperature and
pH, to UV irradiations and to toxic chemicals, that would
be lethal for other cell forms [2]. Although metabolically
quiescent, the spore is able to sense the environment and
respond to conditions that allow cell growth by germinat-
ing and generating a new vegetative cell [3]. Spore ger-
mination and resistance are in part due to the peculiar
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structure of the spore, that has been studied in detail in
Bacillus subtiiis, the model system for spore formers [2,
4]. In B. subtilis, spores are formed by a partially dehy-
drated cytoplasm (core) surrounded by several protective
layers: the thick peptidoglycan-like cortex, the multilay-
ered, proteinaceous coat and the crust, the outermost
layer formed of proteins and glycans [4]. In some species,
including B. anthracis, B. cereus and B. megaterium, the
outermost layer of the coat is the exosporium, a protec-
tive shell mainly made of glycoproteins [4].

The rigidity and compactness of the spore suggested
the possibility of using this unusual cell as a platform to
display heterclogous proteins [5]. In a proof-of-concept
work, the spore coat protein CotB of B. subtilis was used
as a carrier to display the C fragment of the tetanus toxin
(TTFC) of Clostridium tetani on the spore surface [5].
To this aim a genetic system was developed to generate
gene fusions between the cotB gene and DNA coding
for TTFC and to allow expression of the fusion during
sporulation [5]. The mucosal administration of recom-
binant spores displaying TTFC was then shown protec-
tive against a challenge with the tetanus toxin and able
to induce humoral and cellular immune responses [6, 7].
Over the years, the same approach has been used with
other coat proteins as carriers and a variety of other het-
erologous proteins [8]. However, this display system has
the drawback of generating recombinant spores, that
in case of a fizld use could raise safety concerns [9]. To
overcome this problem a non-recombinant display sys-
tem based on the spontaneous and stable adsorption of
heterologous proteins to bacterial spores has been also
developed [10, 11]. Antigens and enzymes have been effi-
ciently and stably adsorbed to spores [12, 13] and it has
been proposed that the adsorption is due to the nega-
tive electric charge and the relative hydrophobicity of the
spore surface [10, 14]. In addition, studies with B. subti-
lis and B. megaterizom indicated that some proteins were
able to infiltrate through "pores” of the outermost spore
coat layers and localize in the inner coat of B subtilis
spores [15] or in the interspace between the exosporium
and the outer coat in B. megaterium spores [16, 17].

The spore-display system by both the recombinant or
non-recombinant approach, provides several advantages
with respect to other display systems, such as a high sta-
bility even after a prolonged storage, the possibility of
displaying large, multimeric proteins and the safety for
a human use, demonstrated by the wide use of spores of
some species as probiotics [18, 19]. Based on these, the
activated spore has been proposed as a mucosal delivery
system, as a vaccine vehicle, as a functionalized probiotic
and as a platform to display enzymes [8, 20].

Both approaches are quite efficient, and it has been
estimated that up to 3.0 x 10° heterologous molecules
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can be displayed by each recombinant spore of B. subtilis
[8, 21]. The efficiency of the non-recombinant approach
can be higher than that measured for the recombinant
system and depends on the heterologous protein and the
Bacillus species used [12, 15, 16, 20]. In spite of the effi-
ciency of these systems, the possibility to increase and/
or control the number of heterologous proteins pre-
sented on the spore is an important achievement for the
full exploitation of this biotechnalogy tool. In the case
of a use as a vaccine vehicle, for example, an increased
efficiency of display results in a higher dose of antigen
delivered or reduced amounts of spores needed for the
immunization.

Based on a recent report showing that B. subtilis builds
spores with different structure when grown at 25, 37
or 42 °C [22], we investigated whether the efficiency of
spore-display by both recombinant and non-recombinant
approaches could be modulated by modifying the tem-

perature of spore production.

Results and discussion

Effects of the temperature on the recombinant display
system

CotB, CotC and CotG are abundant coat proteins widely
used as carriers to display heterologous proteins on the
spore surface [8]. All three proteins have been recently
found differentially represented in spores produced at
25, 37 or 42 °C, with CotB and CotG more abundant in
spores prepared at 25 °C and CotC more abundant in
42 °C spores [22]. We used isogenic B subtilis strains
carrying DNA coding for the model antigen TTFC
(tetC) fused to the gene coding for either CotB (cotB) [5]
or CotC (cotC) [23] to evaluate the effect of the sporu-
lation temperature on the fusion proteins. Spores of
strains RH103 (cotB:tetC) and RH114 (cotCz:tetC) were
produced at 25, 37 and 42 °C and purified, as previously
reported [22]. Surface proteins were extracted from
RH103 and RH115 spores by the SDS-DTT or NaOH
treatments, respectively and used for western blotting
analysis with anti-CotB [5] or anti-CotC [23] antibodies.

As shown in Fig. 1, specific CotB-TTFC (upper panel)
and CotC-TTFC (lower panel) signals were observed in
all the samples but not in the negative controls, reveal -
ing that the temperature did not affect the self-assembly
of the heterologous proteins around the spores. Moreo-
ver, we observed that the fusion protein CotB-TTFC
was more represented in 25 °C spores than in 37 or
42 °C spores (upper panel), while the fusion CotC-TTFC
showed the opposite trend (lower panel).

A flow cytometry approach was used to confirm and
quantify the differences in the display of CotB-TTFC
and CotC-TTFC at the various temperatures and evalu-
ate their surface exposure. Spores of strains RH103
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and analyzed by flow cytometry as previously reported

M co 25 37 42 [24]. The threshold of positive events was set at 1x10°
70 — CotB- fluorescence intensity and the percentages of fluorescent
50— —— ‘-TTF c events for each temperature are indicated in red in each

panel. The flow cytometry analysis indicated that CotB-

TTEFC was displayed with the highest efficiency in spores
prepared at 25 °C (86.9% positive events) and that such
efficiency decreased in 37 and 42 °C spores (Fig. 2). The
efficiency of display was opposite with CotC-TTFC with

M Co 25 37 42 the highest levels observed with 42 °C spores (90.0% of
70— positive events) and lower levels with 37 and 25 °C spores

CotC- (Fig. 2). In addition, the fluorescent intensity peak for
50— ¢ v 9 “'—Tch CotB-TTFC was tenfold higher at 25 “C than at 42 °C

while for CotC-TTFC was tenfold higher at 42 °C than
at 25 °C, suggesting that the sporulation temperature
affected not only the amount of assembled heterologous

Fig. 1 Western blotting analysis of coat proteins. Purified spores of
strains carmying the cotB:tetC (upper panel) or cotCetetC (lower panel)
were produced at the three emperatures and used to extract coat

proteins by SDS-OTT (upper panel) or NaOH (lower panel) treatment proteins but also their surface display.
as previously reparted [221. Proteins were reacted with anti-CotB Results of Figs. 1, 2 indicated, respectively, the amounts
[upper panel) or ant-CotC (lower panel) antibody. Control lanes (Co) of fusion proteins extracted and exposed on the spore

were loaded with prateins extracted from spares of strains carrying

surface but did not allow to exclude that other amounts
eithera cotB (upper panel) ora cotC (lower panel null mutation

of each fusion were actually present (but not extracted or
not exposed) on spores produced at different tempera-
tures. To address this issue, we used different isogenic
and RH114 were reacted with anti-TTFC [7] antibod-  strains of B. subtilis RH238, carrying the Green Fluo-
ies, then with fluorescently labeled secondary antibody rescent Protein (GFP) fused to CotC [23], and RH296,

control 25 37 42
e Gate: [Nn Gaﬂngl Gate: [No Galing] Gate: [No Gating] _Gitej [No Gam
= 0.3% B6.9% 73.6% | 60.4%
CotB- ¥
TTFC ¢
38

Tl W B A S P JIL 2 D A S S I 2 A S S J2

Gate: [No Gating Gate: [No Gating] Gate: [No Gating]

T38% 90.0%

CotC-
TTFC

Iwl W W W W W W W W W WS W I W W W W WP 2

Fluorescence intensity (FITC)

Fig.2 Flow cytometry analysis of spores of strains carrying the cotB:tetC or cotC-tetC gene fusion. Spores were produced at 25, 37 or 42 °C and
reacted with anti-TTFC antibody, then with FITC-conjugated secondary antibody. The analysis was then performed on the entire spore population
{ungated). In each panel is indicated the percentage of positive events above the fluorescent intensity threshold of 1 x 107 (red line). As control
experiment spores of an isogenic wild type strain (PY79) not containing ary gene fusion were analyzed

\
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carrying the Red Fluorescent Protein (RFP) fused to
CotG [22]. A fluorescence microscopy analysis on spores
prepared at 25, 37 or 42 °C and the quantification of the
fluorescence signals performed by the Image] software,
as previously reported [24], indicated that the CotG-
based fusion was more abundant at 25 °C, less abundant
at 37 “C and almost undetectable at 42 *C while the CotC-
based fusion showed an opposite pattern (Fig. 3).

Results of Fig. 3, confirming results of Figs. 1,2, allow
to conclude that the CotB- and CotG-based fusions are
efficiently displayed when spores are produced at 25 °C,
while CotC-based fusions are better displayed when
spores are produced at 42 °C and, therefore, that is pos-
sible to modulate the amount and the surface exposure
of fusion proteins displayed on the spore by changing the
temperature of spore production on the base of the car-
rier protein used for the display.

Effects of thetemperature on recombinant spores
displaying two fusion proteins

An extension of the recombinant spore-display tech-
nology is the use of spores carrying more than one het-
erologous protein. By chromosomal DNA-mediated

POR CAMPANIA

[RECIONE CAMPANTA 2014 - 2020
I

Page 40f 10

transformation [25], the gene fusion carried by strains
RH238 (ecotCzgfp) was moved into strain RH296
(cotGzrfp) obtaining strain RH406 that carried both
fusions. As shown in Fig. 4, spores of strain RH406 pre-
sented both fluorescent proteins on their surfaces in
similar amounts when spores were grown at 37 °C. When
spores were produced at 25 "C the red fluorescent sig-
nal (CotG-RFP) was more abundant than the green one
(CotC-GFP) that was instead predominant when spores
were grown at 42 °C.

Results of Fig. 4 highlight an important improvement
for the spore-display technology, showing that it is pos-
sible to produce spores that simultaneously display two
heterologous proteins and to control which displayed
protein has to be more abundantly represented by select-
ing the temperature of spore production.

Effects of the temperature on the non-recombinant display
system

To evaluate the effects of the temperature on non-
recombinant spore-display (adsorption) we used three
model proteins: the pentapeptide HPHGH (herein PPT)
of 0.77 kDa [26], the commercially available lysozyme

c
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Fig. 3 Fluorescence microscopy analysis of spores displaying CotG-RFP or CotC-GFP. a-¢ Spores of strain RH296, carrying the cotGurfp fusion (a)
and of strain RH238, carrying the cotCugfp fusion (b) were praduced at 25,37 or 47 °C and observed with afluorescent micrascaope. The exposure
time was the sarme for all samples with the sarme reporter gene. Phase cantrast (PO), red-fluorescence [CotG-RFF) or green-fluarescence (CatC-GFP)
micrascopy images of representative spores are reported, Scale bar 1 prm. b-d Quantitative analysis of the fluorescence of more than 300 spores as
in panels a—¢, performed with the Image) software, as previously reported [22]. The Y-axis describes the Total corrected cellular fluorescence (TCCF)
walue
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Fig. 4 Fluorescence microscopy analysis of spores displaying simulaneously CotG-RFP and CotC-GFF a Spores of strain RH408, carrying the
cotGerfp and cotCgfp fusions were produced at the three temperatures and observed with afluorescent microscope. The exposure time was
the same for all samples. Phase contrast (PC), red- fluorescence [CotG-RFP) and green-fluorescence (CotC-GFP) microscopy and merge of the
fluorescence images of representative spores are reported. b Quantitative analysis of the fluorescence of 200 spores as in panel a, performed with
the ImageJ software, as previously reported [22]. The Y-axis describes the Total corrected cellular fluorescence (TCCF) value

(herein LYS) of 14.4 kDa (Sigma) and the commercially
available bovine serum albumin (herein BSA) of 66.4 kDa
(New England-Biolabs). All three proteins were fluores-
cently labeled with rhodamine as previously described
[26] and 10 mM of each model protein independently
used for adsorption with 5.0 x 10° purified spores of the
B. subtilis strains PY79 [27] produced at 25, 37 or 42 °C.
The adsorption reactions were carried out for 1 h at
25°C in 50 mM Sodium Citrate buffer, pH 4.0, as pre-
viously described [11]. Adsorbed spores were collected
by centrifugation and analysed by fluorescence micros-
copy and flow cytofluorimetry, as previously described
[24]. As shown in Fig. 5, all three proteins were adsorbed
to the spores and the fluorescent signal distributed all
around the spore surface. The relative fluorescence sig-
nals were analyzed by the Image] software (NIH), as
previously reported [24]. Since the proteins were fluo-
rescently tagged with rhodamine, an amine-specific
label, the number of fluorophore molecules attached to
each protein was different, impairing a comparison of
fluorescence levels between different proteins. However,
the analysis allowed to conclude that: (i) PPT adsorbed
with similar efficiency to 37 °C and 42 °C and slightly
less efficiently to 25 °C spores (37 =42 25); ii) LYS had
a pattern of adsorption similar to that described for PPT
(37=42>125); and (iii) BSA adsorbed at similar levels to
25, 37 or 42 °C spores (25=37=42) (Fig. 5). Adsorbed
spores were analyzed by flow cytometry and the per-
centage of positive-fluorescent events was obtained

as described for Fig. 2. This quantitative analysis per-
formed in duplicate on 100,000 spores/each, confirmed
the fluorescence microscopy results of Fig. 5, indicating
that PPT was absorbed much more efficiently at 37 or
42 °C, with respectively 75.95 and 77.80% positive events
(p-e) than at 25 °C (41.74% p. e.) (Fig. 6). A similar trend
was observed with LYS, although the differences were
smaller with 74.48, 82,15 and 90.44% p.e. at 25, 37 and
42 °C respectively, while no differences were observed
with BSA with spores prepared at the three temperatures
(Fig. 6).

Although the molecular mechanism of spore adsorp-
tion is not known in detail, it is likely that more factors
are involved in the process. The negative electric charge
and relative hydrophobicity of the spore surface have
both been shown to influence the efficiency of adsorption
[10, 14]. Since it has been previously reported that 25 °C
spores are more hydrophobic than 37 and 42 °C spores
[22], we hypothesized that the different relative hydro-
phobicity of spores could explain the reduced efficiency
of adsorption of PPT and LYS to 25 °C spores. How-
ever, the GRAVY value, an estimation of protein hydro-
phobicity calculated by adding the hydropathy values of
each amino acid residue of a protein and dividing by the
number of residues in the protein [28], for PPT, LYS and
BSA were —2.32, —0.15 and —0.45, respectively, with
increasing positive values indicating an increasing hydro-
phobicity. Therefore, proteins with the least (PPT) and
the highest (LYS) hydrophobicity value showed a similar
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Fig. 5 Fluorescence microscopy of spores adsarbed with rhodamine-labeled PPT, LYS or BSA. a Fluorescence of PPT-Rd, LYS-Rd or BSA-Rd upon
adsarption to wild type spares grown at 25, 37 ar 42 °C. The same micrascopy field was observed by phase cantrast (PC) and fluorescence
micrascopy (Rhod). The exposure time was the same for all samples. b Quantitative analysis of the fluorescence of 300 spores as in panel a,
performed with the Image) software, as previously reparted [22]. The Y-axis describes the Total corrected cellular fluorescence (TCCF) value

adsorption pattern (Figs. 5,6), making it unlikely that
the hydrophobicity is a major determinant of the effi-
ciency of adsorption, in our experiments. Other physical
and chemical parameters of the heterologous proteins,
including probably the size and the isoelectric point, have
to be considered as they may mediate the ability of pro-
teins to cross the outermost spore layers [15-17], result-
ing in relevant for the efficiency of the process.

Localization of proteins adsorbed on 25, 37 or 42 °C spores
A previous report showed that RFP when adsorbed to
spores is able to cross the crust and the outer coat, local-
izing at the inner coat level [15]. In that study, the RFP
fluorescence signal was localized by comparison with the
signal due to GFP fused to proteins known to be local-
ized in various spore coat layers [15]. A similar approach
was used to evaluate whether the temperature of spore
production also affected the localization of the adsorbed
proteins within the coat. Since the high red fluorescence
signal produced by rhodamine-labeled PPT, LYS or BSA
overlapped (and caused interference) with the region of
detection for the GFP signal, the localization assays were
performed adsorbing RFP to spores carrying the cotC::
gfp fusion [15] and prepared at 25, 37 or 42°C.

As previously reported [15], in 37 °C spores the red
fluorescence signal of RFP was internal to the green
signal of CotC-GFP (Fig. 7). While RFP localization
did not change with 25 °C spores, it was slightly altered
with 42 °C spores where the RFP signal was external
with respect to the CotC-GFP signal (Fig. 7). The dif-
ferent localization of RFP is most likely due to the dif-
ferent coat structure of spore produced at the various
temperatures and indicates that the lamellar and highly

electron-dense outer coat (CotB-CotG rich) produced
at low temperatures [22] is somehow a more permeable
than the granular and thick coat (CotC rich) produced
at 42 °C [22], at least with respect to RFP.

Conclusions

Main conclusion of this study is that the temperature
of spore production affects the display of heterologous
proteins on the spore surface:

+ with the recombinant display the temperature
modulates the amount and the surface exposure of
the displayed proteins with CotB- and CotG-based
fusions more efficient at low temperatures and
CotC-based fusions are more efficient at high tem-
peratures;

« when a recombinant spore carries two heterologous
proteins each of them is differentially displayed at dif-
ferent temperatures on the base of the carrier used;

+ with the non-recombinant display a modest effect
is observed with small proteins (PPT and LYS)
adsorbed more efficiently by 37 or 42 °C spores
than by 25 °C spores;

+ the localization of adsorbed RFP within the spore
surface layers is modified by the temperature, indi-
cating that spores produced at the low temperatures
(CotB/CotG type coat) or at high temperature (CotC
type coat) [22] have different adsorption properties.

Overall, this study indicates that the temperature of

spore production is an essential parameter to be con-
sidered in the development of a spore-display system.
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Materials and methods

Spore production, extraction of coat proteins and western

blot analysis

Sporulation at 25, 37 and 42 °C was induced by the
exhaustion method in Difco Sporulation (DS) medium
as recently reported [24, 29]. Mature spores were puri-
fied by cold-water washing using overnight incubation
in H,O at 4 °C to lyse residual sporangial cells. Spore
purity (higher than 95%) was checked under optical
microscope.

Spore coat proteins were extracted from a suspension
of spores by SDS-DTT or NaOH treatment [30]. The
concentration of extracted proteins was determined
by using Bio-Rad DC protein assay kit (Bio-Rad), and

20 pg of total spore coat proteins were fractionated on
12.5% SDS polyacrylamide gels and staining by Brilliant
Blue Coomassie or electro-transferred to nitrocellu-
lose filters (Bio-Rad) for western blot analysis following
standard procedures. CotC- and CotB- substrate spe-
cific antibodies were used at working dilutions 1:7000
for CotC-TTFC and CotB-TTFC detection [5, 21].
Then, a horseradish peroxidase-conjugated antirabbit
secondary antibody was used (Santa Cruz). Western
blot filters were visualized by the electro chemi lumi-
nescence method as specified by the manufacturer and
processed to improve the contrast level using Chemi-
docXRS software (Bio-Rad).

The experiments have been repeated twice analyzing
two distinct coat protein extractions.
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Labeling with Rhodamine

2 mg/ml of pentapeptide HPHGH (PPT), commercially
available lysozyme (LYS-Sigma), and bovine serum
albumin (BSA-New England-Biolabs) were labeled with
50 pl of Rhodamine B isothiocyanate (Sigma) (1 mg/ml
in DMSO) as specified by the manufacturer. The pro-
tocol is based on the reaction between the isothiocy-
anate group of Rhodamine and epsilon-NH, of Lysine
residues of the protein to be labeled in order to obtain
a fluorescent complex. Final molar Rhodamine/Pro-
teins ratio was 0.06 and the labeling reactions were per-
formed pH 8.5. The labeling was followed by dialysis in
1xPBS to remove the unbound fluorescent excess and
lyophilization.

Binding reaction

10 mM of PPT-Rd, LYS-Rd, BSA-Rd were added to a sus-
pension of 5.0 x 10% wild type spores, produced at differ-
ent temperatures, in 50 mM sodium citrate pH 4.5 in a
final volume of 200 pl. For the reaction with RFP, 1 pg of
purified protein was added to the suspension of 1.0 x 10°
spores produced at different temperatures, in 1.5 M PBS
pH 4.0in a final volume of 200 pl. After 1 h of incubation
at 25 °C, the binding mixtures were washed and centri-
fuged (10 min at 13,000g) to fractionate adsorbed spores
(pellet) from unbound protein (supernatant).

Flow cytometry

Recombinant spores expressing TTFC were analyzed by
flow cytometry as previously described [31]. Briefly, 10°
purified spores were incubated at room temperature for
30 min at room temperature in phosphate-buffered saline
(PBS)-3% fetal bovine serum (FBS) prior to 1 h-incuba-
tion with anti-TTFC polyclonal antibodies diluted at 1:20
in 1x PBS-1%FBS. After three washes in 1xPBS, fluores-
cein isothiscyanate (FITC)-conjugated anti-rabbit immu-
noglobulin G (1:64; Sigma) was added and the mixture
was incubated for 1 h at room temperature, followed by
four washes in PBS.

For spores adsorbed with PPT-Rd, LYS-Rd and BSA-
Rd, a total of 10° spores were resuspended in 0.5 ml of
binding buffer and directly analyzed.

Flow cytometry analysis was performed by BD Accuri’™
C6 Cytometer and BD Accuri™ C6 Software (BD Bio-
sciences, Inc., Milan, Italy) collecting 100,000 events.
Spore without the addition of primary and secondary
antibodies or not adsorbed were used to measure the
unspecific fluorescence, allowing to set the threshold
of positive events at 1x 10° fluorescence intensity. The
experiments were repeated twice analyzing two indepen-
dently prepared samples.
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Fluorescence microscopy

10° adsorbed spores were resuspended in 50 pl of bind-
ing buffer and observed with an Olympus BX51 fluores-
cence microscope fitted with a 100 x objective UPlanF1
and U-MNG or U-MWIBBP cube-filters to detect the red
and green fluorescence emission respectively. The expo-
sure times are in the range between 500 and 1000 ms. Cap-
tured images were processed with Image Analysis Software
(Olympus) for minor adjustments of brightness, contrast
and color balance and for creation of merge images. For
RFP adsorbed spores, the fluorescence intensities and the
distance between two fluorescent peaks were measured
using unadjusted merged images with Image ] processing
software (version 148, NIH) as previously described [15].
To obtain the total corrected cellular fluorescence (TCCF),
an outline was drawn around several fluorescent spores
and area, integrated density and the mean fluorescence
measured, along with several adjacent background read-
ings. The TCCF was calculated by subtracting the area of
selected cell x mean fluorescence of background readings
to the integrated density.
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ARTICLEINFO ABSTRACT

Keywords: One of the major issues for the microbial production of polyhydroxyalkanoates (PHA) Is to secure renewable,
Artificlal microbial consortivm non-food biomass feedstocks to feed the fermentation process, Inulin, a polyd isperse fructan that aceumulales as
Inulin

reserve polysaccharide in the roots of several low-requirement crops, has the potential to face this challenge.

In this work, a “substrate fcilitaior” microbial consortium was designed to address PHA production using
inulin as feedstock, A microbial collection of Bacillus species was screened for efficient inulinase producer and the
genome of the selected strain, RHF15, identified as Bacillus gibsonil, was analysed unravelling its wide catabolic
potential, RHF15 was co-cultured with C Aecator, an blished PHA producer, lacking the ability to
metabolize inulin, A Central Composite Rotary Design (CCRD) was applied to optimise PHA synthesis from inulin
by the designed artificial microbial consortium, assessing the impact of species inoculum ratio and inulin and N-
source concentrations, In the optimized conditions, a maximum of 1.9 g L™ of Polyhydroxybutyrate (PHB],
corresponding to ~80% (Zpalymer/Ecow) polymer content was achieved, The investigated approach represents an
effective process optimization method, potentially applicable to the production of PHA from other complex C-
sources,

Central composite mtary design

1. Introduction the total, As a fact, the use of biomass and waste feedstocks has emerged

as the main breakthrough for cost-effective PHA production, and, to this

The extensive worldwide use of plastic and the impact of its pro-
duction chain have seriously harmed the environment, increasing the
demand for fossil resources, Furthermore, plastic pollution of soil and
water is urgently asking for biodegradable plastics.

Polyhydroxyalkanoates (PHAs) are a family of biodegradable poly-
esters produced by various microbial species for energy storage. Being
produced from a renewable source, they have been proposed as a green
alternative to traditional chemical plastics, including polyethylene (PE),
polypropylene (PP), and polyethylene terephthalate (PET) [11. Besides
polyhydroxybutyrate (PHB), the best characterized member of PHA
family, several hydroxyalkanoic acid differing in their chain
length, have been identified so far, giving rise to different PHA co-
polymers with tunable properties |21,

The main limit for exploitation of PHA is related to their production
cost, with the starting feedstocks accounting for more than the 50% of
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purpose, different lignocellulosic materials and food wastes have been
tested [3,4], To be considered as appropriate feedstocks for microbial
synthesis of PHAs, the complex C-sources contained in mw materials
require a preliminary catabolic step to be converted into suitable sub-
strates for microbial PHA producers, The isolation of strains for direct
high yield PHA synthesis from low-cost waste streams has been reported
in few cases 1,5/, On the other hand, in vive engineering approaches
have been applied, focusing on the introduction of specific catabolic
genes into native PHA producers or, vice versa, on the implementation of
PHA-synthetic genes into non-native producers endowed with the ability
to metabolize complex Csources, Although effective on different waste
materials, both the above- ioned strategies are time-c ing and
challenging 161,

The design and construction of artificial microbial consortia have
opened a new perspective in this field. The production of several

ised form 16 August 2021; Accepted 16 August 2021
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microbial products by co-culture has been successfully reported, high-
lighting their advantages in terms of productivity and process economic
over pure cultures | 7], Microbial consortia represent a valuable strategy
to deal with the need to use complex C-sources that would be not
metabolized by an individual species, and/or to relieve the negative
effect of side products inhibiting one of the species of the consortium
[8,91.

Co-culture based approaches have been applied to PHA synthesis (9],
Bhatia et al., (2018b) have co-cultured Ralstomia eutropha and Bacillus
subtilis, respectively as PHA and invertase producers, to address PHA
production from sucrose as substrate, These bacteria form a mutually
beneficial symbiotic relationship, since glucose, fructose, and propionic
acid produced by B. subtilis are efficiently converted into P(3HB-co-3
HV) copolymer by R eutropha. Simultaneous production of PHA and
xanthan gum has been reported by a mixed culture of Cupriavidus necator
and Xanthomonas campestris from palm oil [11]. Sawant et al. [12] have
ascribed the increased efficiency in PHA production from lignocellulosic
substrates by Saccharophagus degradans and B. cereus co-culture, to the
occurrence of mutual communication and cooperative growth between
the two bacteria. Finally, a mutually beneficial symbiotic relationship
based on nutrient supply and detoxification, has been achieved by
properly engineering Escherichia coli and Psendomonas malodorous
strains, during fermentation of mixed glucose and xylose substrates
[13].

Inulin is a linear polysaccharide com posed of p-2,1-linked p-fructose
residues terminated by a glucose residue, accumulated as a reserve
carbohydrate in the roots and tubers of various crops, such as chicory
and dahlia and, more interestingly, in low-requirement crops, such as
Jerusalem artichoke and Cynara cardunculus [14,15). These inulin
sources have a high potential for applications in biorefineries, being able
to cope with drought, pests and diseases and growing well in marginal
lands with little fertilizer applications [15]. Inulin hydrolysis into
fermentable sugars, catalysed by microbial inulinases, is mandatory for
its utilization as carbon and energy source in microbial processes, The
synthesis of several microbial products has been reported from these
inulin-rich biomasses [16-18], although PHA production is still less
explored. In the reported examples, PHA production has been achieved
by exploiting microbial inulinases in separate hydrolysis and fermen-
tation (SHF) [19,20] and simultaneous saccharification and fermenta-
tion (SSF) processes [21], since no PHA-producing strain naturally
endowed with the ability to hydrolyse inulin has been isolated so far,

C. necator is an established PHA producer, able to accumulate
polymer with high productivity from fructose, however it lacks the hy-
drolytic enzymes necessary to convert inulin into fermentable sugars
[21]. In this work, an artificial microbial consortivm was designed to
address PHA production from inulin, by complementing this C. necator
enzymatic deficiency with a properly isolated inulin-hydrolysing
microorganism, To this aim, a microbial collection of halophilic Bacil-
lus species was screened for efficient inulinase producers. Halophilic
bacteria are a useful source of enzymes suitable for industrial processes,
To adapt to saline conditions, this group of microorganisms has devel-
oped different strategies, as the production of a large variety of extra-
cellular hydrolytic enzymes. Moreover, these enzymes exhibit optimal
activities at various ranges of salt concentration, pH and temperature,
making them suitable to be used in many industrial processes [22],

A Central Composite Rotary Design (CCRD) was applied to optimise
PHA synthesis from inulin by the designed artificial microbial con-
sortium, assessing the impact of species inoculum ratio and inulin and N-
source concentrations. The investigated approach represents an effec-
tive process optimization method, potentially applicable to the pro-
duction of PHA from other complex C- sources,
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2. Materials and methods
2.1. Microbial strains and culture conditions

Halophilic Bacillus sp. strains used in this work are listed in Table 51,
Tryptone Yeast extract (TY) medium was used for Bacillus strains
maintenance and pre-inoculum growth, Minimal medium (MM) sup-
plemented with inulin 1% (w/v) was used for inulinase producers
screening in liquid cultures (23], Bacillus strains were grown at 37 °C
with shaking (150 rpm ).

. necator DSM 428 strain was grown aerobically at 30 °C both inrich
(Tryptic Soy Broth, TSB) and minimal medium (MMg,) according to
Budde, 2011 [23],

Powder inulin used in this study was a commercial mixture of
chicory roots inulin provided by Sigma chemical as high purity grade
substrate for in vitro assays (inulin from chicory, 9005-80-5, Sigma-
aldrich) and a low purity grade inulin from chicory as carbon source
for microbial growth (provided by Lineavi, Inulinpulver, Jeder Tag Ein
Wohl fihltag).

2.2, Screening for inulinase producers

Iodine agar plate assay was used for screening on solid medium.
Microorganisms were grown on MM supplemented with inulin 1% (w/v)
agar plates for 24 h and then incubated in a close jar satured of iodine
vapours for 6 min at room temperature,

For s ing in liquid medi bacterial strains were grown in TY
medium for 16 h and inoculated in MM+ Inulin 1% (w,/v) at 0.4 OD g
ml (250 mL Flasks with 25 mL of medium) for 30 h.

2.3. Inulinase enzymatic assay

The culture medium was centrifuged at 5000 g for 15 min and the
supernatant was used as the inulinases source. Enzymatic activity was
measured by the determination of reducing sugars released from inulin
by DNS-method (Muller 1996) according to Corrado et al. (2021) (211,
One unit of the enzyme (inulinases or invertase activity) was defined as
the amount of the enzyme which produces 1 pmol of reducing sugars per
minute, All the assays were camried out in duplicate.

2.4. Whole genomic annotation

The Rapid Annotation using Subsystems Technology (RAST) was
applied to RHF15 genome, already available [24] for gene prediction
and annotation [25,26], CG View (Circular Genome Viewer) server 1.0
was used to construct a circular genome map of strain RHF15 (271,

2.5. Resp surface methodol

B

A 2° full factorial Central Composite Rotary Design (CCRD) was
employed to find out the interactive effects of inulin, NH4Cl concen-
tration, bacteria strains inoculum concentration on both cell biomass
production and PHA accumulation. CCRD was designed using Minitab
19 and resulted in 31 conditions with eight axial points and seven rep-
licates at the center point (Table 1), The combination of predictor set-
tings that optimized the fitted response was used to verify the model.

Experiments were performed at 20 ml scale in MMg,, at 30 “C for 96
h. The four components (Inulin, NH4Cl, RHF15 and C. necaror) were
added to the media according to the designed values (Table 1), After 96
h cells were recovered by centrifugation (5500 g, 15 min) and lyophi-
lized for COW determination and PHA extraction. Regression analysis
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Table 1
Optimization of growth variables for CDW production and PHA accumulation
from co-cultures, using central com posite rotatable design (CCRD).

Run  Conecator  RHF15  NHCl  Idlln €OW PHB U
oD mL " on gLt gLt gLt ml "
mL 1

1 0 o 0.5 10 00 00 o

2 0 o 0.5 30 00 00 o

3 0 0 2 10 0.0 0.0 0

4 0 0 2 30 0.0 0.0 0

5 0 0.2 0.5 10 08 0.0 6.8
L] 0 02 0.5 30 09 00 124
70 02 2 10 13 00 20
L] 0 02 2 30 15 00 227
9 0z 0 05 10 0.3 1240
1m0z 0 0.5 30 06 282 0
1 0z 0 2 10 0z 52 0
12 02 0 2 30 0.4 165 0
13 02 02 0.5 10 14 584 3.2
14 02 02 0.5 30 21 687 123
15 0.2 02 2 10 15 na 2.1
16 02 02 2 30 19 425 19
17 0 0.l 1.25 20 13 0.0 5.3
1\ 01 0 1.25 ) 04 78 0
19 01 0.1 1.25 20 15 14.7 3.5
200 01 ol 1.25 20 17 19.0 3.3
21 01 ol 125 20 15 212 33
22 01 01 125 0 14 we 27
23 01 ol 125 20 16 178 4.1
24 01 0.1 1.25 2 17 03 33
25 01 01 1.25 20 16 179 33
2% 03 0.1 1.25 20 20 597 2.3
27 01 03 125 20 11 182 5.1
28 01 ol o 20 09 34 3.2
29 01 ol 275 20 06 16.7 8.32
30 01 ol 125 40 1.3 30 133
3101 0.1 1.25 0 00 57 1.2

using ANOVA was performed, and model fitting methods applied for
data analysis. Contour and surface plots were created to visualize the
interactive effects of all components on PHA accumulation,

2.6, Verification of the model for PHA production using inulin as carbon
sotirce

To validate the model a numerical optimization method via Minitab
19 was applied to predict the variables value. The high and low variables
values were determined according to overlaid plots for all responses,
Optimized conditions turn out to be 0.3 OD mL ™! for bacteria inoculum,
2 g L~! of NH4Cl and 30 g L™ of inulin. Bacillus strain and €. necator
were co-cultured in MM, media at 20 mL scale up to 96 h, Samples were
collected at 24 h intervals and analysed for biomass production (Cell Dry
Weight, CDW) and PHA accumulation (% gpolymer/Bcow). Concentration
of glucose, fructose and residual inulin in the culture broth were assayed
by p-fructose and 1-glucose, and fructan assay kits (Megazyme).

2.7. PHA extraction and analysis

Polymer extraction was performed on lyophilized cells [21]. Gas
chromatography mass spectrometry method (GC-MS) was used to
analyse PHA production and composition as previously described by
Vastano et al. (2015) (28],

2.8. NMR

TH NMR spectrum of the extracted polymer was performed in CDCla;
CD40D (1:1), at 298 K using a 600 MHz Bruker (Bruker Italia, Italy)
instrument equipped with a cryogenic probe,
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3. Results and discussion
3.1. Screening of halophilic bacteria for inulinase production

A halophilic bacteria collection was screened for the ability to pro-
duce inulinases (Table 5§1). All analysed microorganisms belong to a
larger collection isolated from samples of sand and rhizosphere of
Juniperus sabina collected from salt-pans (24,291, The selected strains
are facultative anaerobic belonging to the Bacillus genus, all classified as
mesophiles-moderate halophilic bacteria, since able to grow at a tem-
perature ranging from 15°C to 50°C and between 0.5 and 2.5 M of salt
[50]. The 8 strains were chosen for their exoenzymatic activity profile,
being able to hydrolyse substrates like cellulose, starch or xylan [24],

After the primary screening on agar, four strains were selected, based
on the diameter of the hydrolytic zone, Once cultured in liquid medium,
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Fig. 1. Screening for inulinase producers, A) Maximum inulinase activity (U
mL ') determined in liquid medium, for the strains selected from the First
screening on solid medium (pictures below); B) Kinetic of growth, inulinase
production and glucose and fructose consumption of the best inulinase pro-
ducer, B. gibsonii RHF15, selected from the screening.
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the strain RHF15, displayed the highest level of inulinase production,
reaching up to 14 U mL ™" (Fig. 1) after 15 h, in line with the values
reported for other inulinase producers [31). The enzymatic activity was
detected in the culture broth in the early stage of growth, probably as a
result of inulin induction (311, The inulinase/saccharase activity ratio,
1/5, was equal to 2, indicating the prevalence of inulinase over invertase
activity [521. As a fact, the release of both glucose (the minority
component of inulin) and fructose was recorded from the beginning of
the process. Then, whilst glurose level remains almost neglectable,
fructose concentration rises steeply up to 12 h, when it approaches a
constant level in correspondence with the entry into the stationary
growth phase. It is noteworthy that high inulinase activity levels were
preserved in the culture broth even after prolonged stationary phase,
representing an advantage for the exploitation of this strain as inulinase-
producer in a properly designed artificial microbial consortium.

Based on these results, the strain RHF15, identified as B. gibsonii, was
selected for further analysis.

i

3.2, Whole genome i
strain RHF15

af p coding genes of the

The genome of strain RHF 15 (Figure 52) was analysed by the RAST
annotation server [25,260], revealing 100 RNAs and a total number of
4282 predicted protein-coding sequences (CDSs), where “Amino Acids
and Derivatives” (17.4%) and “Carbohydrates™ (14.4%) were the most
represented subsystem features (Table 83). In order to identify proteins

ponsible for inulin hydrolysis, predicted amino acid sequences from
Carbohydrates subsystem were analysed scanning for Carbohydrate-
Active enZymes (CAZymes). CAZymes are a group of enzymes
involved in carbohydrate metabolism, divided into classes according to
their catalytic activity, The analysis revealed the presence of 129
CAZymes, including 16 Carbohydrate Esterases, 40 Glycoside Hydro-
lases (GH), 34 Glycosyl Transferases, 5 Polysaccharide Lyases and, 34
enzymes involved in Auxiliary Activities (Fiz. 2A), The abundance of

A

= CE [Carbohyedrate Esterases]
' GH [Glycasick Hydredasal
 GT {GhvcosyiTrarsferases)

FL {Pakysaccharide Lyases)

® AA [Ausilisry Activities)

POR CAMPANIA

[RECIONE CAMPANTA 2014 - 2020

Macr 189 (202 1) 494 -502

Jouwmal of Bi

hydrolytic enzymes belonging to different CAZY families, hignlighted by
this analysis, is in accordance with the wide hydrolytic abilities towards
different substrates (xylan, cellulose, amylose, chitin) recentdy reported
for this strain [24],

Among GH, the Glycoside Hydrolase Family 32 includes members of
the pfructosidase superfamily, able to hydrolysz non-reducing p-D
fructosidic bonds releasing fructose (23] and for this reason, more
attention was dedicated to this group of enzymes. Interestingly, 3 senes
putatively coding for enzymes related to this family (Fig. 2B) have been
identified. A multiple alignment of the deduced aminoacidic sequences
with those of wellknown GH32 hydrolases able to cleave inulin
(Table 54) was performed using SeaView software [34] (Fig. S5),
highlighting the typical highly conserved motifs of the GH32 farnily
[35-37] in the selected RHF15 enzymes,

A blastP analysis of the amincacidic sequences of the three putative
inulinase coding genes was run against the NCBI database. The best hits
were obtained with the levanase SacC, the sucrose-6-phosphate hydro-
lase ScrB and the levanbiose-producing levanase LevB of B. subrilis with a
sequence similarity score ranging between 99 and 100% (Table 21,
B. subtilis levanase SacC has been depicted as an exofctosidase,
capable of hydrolysing both levan and inulin, leading to the production
of free fructose (35 ]. Regarding ScrB, no data are available on the ability
to hydrolyze inulin on behalf of this enzyme, whilst, from previous
studies, it is known that B. subtilis LevB is an endolevanase that selec-
tively cleaves the ([-2,6) fructosyl bonds and does not hydrolyse inulin
[39]. Since the hydrolytic activity has been detected in the supermatant
fraction, a predicted signal peptide in the primary structure of the SacC
and ScrB homologous proteins has been searched using SigralP 3.0
Server [40]. The performed analysis allowed to identify the presence of a
signal peptide (position 1-23) and a probable cleavage site (position
24-25)inSacC [41],whilstno significant result was obtained with ScrE,
suggesting a cytoplasmic role of this enzyme. According to the collected
information, the inulin hydrolytic activity associated with stmin RHF15
is most likely due to the levanase SacC homol og,
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Fig. 2. Annotation of CAZymes in B. gibsonii RHF15 genome A) Distribution of CAZyme classes in strain RHF15, B) Distribution of CAZyme families in the GH class,

and number of proteins belonging to each family.
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Table 2

Summary of the blastP analysis run between the three selected enzymes of strain RHF15 (Query D) and the NCBI database, Only the best hits are shown,
Query [D Subject 1D Source Type Similarity (%) Expect value Bit score
33193 RHF15 00488 WP 153940225,1 B subtilis Levanase SacC 100.00 0.0 1399
33193 RHF15 02998 WP L0607 3378,1 B subtilis Levanbiose-producing levanase LevB 99,80 0.0 1062
33193 RHF15 02621 WP 07 2692791.1 B subiilis Sucrose-b-phosphate hydmlase Scri 99.79 0.0 1005

3.3. Response surface design for optimization of PHA production from
microbial co-culture

An artificial microbial co-culture able to utilize inulin as a carbon
source for PHA production was designed exploiting the RHF15 strain
and C. necator as inulinase and PHA producers, respectively.

No genes coding for essential proteins in the PHA biosynthesis
(PhbA, [-ketothiolase, PhbB, acetoacetyl coenzyme A reductase; and
PhbC, Polyhydroxyalkanoate-synthase) were identified in the genome of
the RHF15.

A Central Composite Rotary Design (CCRD) was used to explore the
effectiveness in PHA production of the co-culture as a function of inulin
and NH4Cl concentrations as well as of the inoculum amount of each
strain. The design resulted in 31 experiments (Table 1).

Cell dry weight (COW g L") and PHA content (PHA %) were

d as the p infl d by the four independent vari-
ables. Biomass production and PHA accumulation were determined after
96 h. Inulinase activity was also assayed in culture supernatants at the
end of the process (Table 1), The experimental results were fitted with a
second order polynomial equations:

PHA% = — 1059+ 53.1%A + 116.7*B — 1L.03*C + 0.79°D+ 207*A’
—383.2°B + 2.12°C" —0.02°D" + 866* A*B — 60.3A*C + 3.04*A*D
— 28.9*B*C —0.35*B*D — 0.03*C*D

COW gL' = — 1.234 40.69%A 4 11.22%B — 1.05*C +0.09°D + 3.57*A7
— 39.72*B - 0.38°C" — 0.002°D" +4.89*A*B — 1.14A*C + 0.086*A*D
+ 0.99*B*C +0.06*°B*D — 0.002*C*D.

being A) C. necator inoculum concentration (OD rru.'l)', B) RHF15
inoculum concentration (OD mL~'); C) NH4CI, concentration (gL B
inulin concentration (g L™1).

The significance of the models is depicted by F-value of 30,15 and
60.08 for both CDW and PHA, respectively, Analysis of variance
(ANOVA) was used to determine the influence and the significance of
the independent variables on the dependent responses (Table 5). The
significance of model terms is defined by their P values, where only the

Table 3

terms with a Prob = F lower than 0.05 are considered significant.

In this work, the P value for model terms A, B, D, B%, €%, D? and A, B,
C, D, AB, AC, AD, BC, B%, C* was found to be lower than 0.05, therefore
they are significant terms for both CDW production and PHA accumu-
lation, respectively (Table 3), Conversely the model terms C, AB, AC,
AD, BC, BD, €D, A® and BD, €D, C* with a P value higher than 0,05 are
not significant for both COW and PHA, respectively.

The goodness of fit is confirmed by R?, that reflects a good co-relation
between actual and predicted value. The value of R?, adjusted R® and
predicted R* are 0.96, 0.93, 0.76 for CDW production and 0.98, 0,96,
0.89 for PHA accumulation. The difference less than 0.2 between
adjusted R” and predicted R further validates the model,

Lack of fir-F value of the quadratic model proves the co-relation be-
tween response variables and independent factors. The Lack of fit-F value
for both CDW production and PHA production is 3.59 and 3.51,
respectively. The non-significant value justifies the fitness of the model.

The significance of interactive model terms for PHA production is
depicted by contour plot and relative three-dimensional surface plots
presented in Fig. 3. 3D graphs displayed the effect of the interaction
between RHF15: C. necator, NH4Cl: C. necator, NH4Cl: RHF15 and Inulin:
. necator on the dependent variable PHA accumulation, The combined
effect of variables was studied keeping the following mid-values: 0.15
OD mL ™! inoculum concentration for both bacterial strains, 20 g L1
inulin and 1.7 g L' NH4CL. It is evident from the plot that PHA pro-
duction reaches a maximum with the increase of the concentration of
both bacterial species (Fig. 3, Panel A). Furthermore, for C. necator
inoculum in the range 0.2-0.3 OD mL~!, PHA production holds at ~70%
with NH4Cl concentration below 1 g L 1 (Fig. 3, Panel B). From the
interactive plot NH4Cl: RHF15, it is evident that a positive effect on
polymer production is linked to an increase of RHF15 inoculum together
with a decrease of NH4Cl (Fig. 3, Panel C). This phenomenon can be due
to the negative effect of NH4Cl on inulinase production. As a fact, in the
co-culture system, high concentration of NH4Cl seems to negatively
affect the production of inulinases (compare runs 14 and 16).
Conversely, in the absence of C. necator, a higher NH4Cl amount seems
to promote inulinase production (runs 6 and 8) (Table 2). Thus, a major
contribution of RHF15 to the co-culture seems to be required to promote

Analysisof variance (ANOWVA) and regression anal ysis of quadratic model for the growth optimization (a, Sum of Squares S5; b, Degree of Freedom DF; ¢, Mean Square,

MS; *, significant model terms with a P value lower than 0,05).

Source ANOVA Regression Analysis

cowgL ! PHB % cowglt PHB %

s8* DF* p Value Prob=F 58 DF* p Value Prob =F Ms* F Value M5® F Value
Moxdel 12,8991 14 <0,0001* 10,2645 14 <0.0001* 0.9214 3015 73318 60.08
C. necator (A) 0.7506 1 0.0001* 5274.3 1 L0001* 0.7506 24.56 5274.3 43220
RHF15(8) 0.6856 1 <0,0001* TE5.4 1 <0.0001* 0.6856 2244 TE5.4 62,72
MNH4CIC) 0.0204 1 0.425 6183 1 <0.0001* 0.0204 067 6183 .66
Tmilin(D) 0.8447 1 <(L0001* 396.6 1 <0.0001* 0.8447 765 396.6 50,29
AD 0.0383 1 0.279 1200.0 1 <0.0001* 0.0383 125 1200.0 98.33
AC 0.1161 1 0.069 27.6 1 <0.0001* 0.1161 380 327.6 26.84
AD 0.1195 1 0.065 148.1 1 0.003 0.1195 301 1481 1214
BC 0.0889 1 0.107 753 1 0.024 0.0889 291 75.3 617
BD 0.0514 1 0.213 1.9 1 0.697 0.0514 168 1.9 0.16
o] 0.0052 1 0.687 0.8 1 0.803 0.0052 017 08 0.06
At o.0211 1 0418 708 1 0.028 0.0211 069 70.9 5.81
B 26100 1 00001 2429 1 <0.0001* 26100 8542 242.9 19.9
c L0093 1 00001 36 1 0.127 10093 33.03 36 2.59
o’ 12465 1 <0.0001* 721 1 0.027 12465 408D 721 2.55
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PHA accumulation. Interestingly, at the temperature chosen for the
microbial consortium (30 °C), RHF15 assured high level of inulinase
activity production, comparable with the values obtained in the
screening conditions (37 “C).

As for the interactive effect inulin: C necator, their concomitant in-
crease positively affects polymer production, assuring up to 70% PHA
content at more than 20 g L! inulin together with more than 0,25 OD
mL~'C necator (Fig. 3, Panel D).

To validate the models and define the variable values that allow
obtaining upto 2 g L 1 of CDW and up to 80% of PHA accumulation,
overlaid contour plots were constructed (Fig. 4). In the plot each set of
[ defines the | ies of acceptable response values. The solid
contour line and the dotted one correspond to the lower and the upper
bounds respectively, whilst the white portion in the plot represents the
acceptable range wherein the possible combination of parameter set-
tings can be obtained. In the case study, two overlaid contour plots were
considered: C. necator, NH4Cl and C. necator: RHF15,

From the first plot (Fig. 4A) the optimal solutions are defined by
0.1-0.3 OD mL " for ¢ necator and a wide range of NH4Cl concentra-
tions, being RHF15 and inulin at the mid value, 0.15 ODmL ™" and 20 g
L~ respectively), At low concentrations of NH4Cl, a PHA content higher
than 20% can be obtained at low inoculum concentration, whilst when
the N-source is increased, it is necessary to increase the inoculum, From
the overlaid plot RHF15: C. necator (Fig, 4B) it is evident that at low
RHF15 inoculum it is necessary to increase the C. necator concentration
at least to 0.25 OD mL ! to obtain more than 1 g L' CDW together with
a minimum of 20% PHA. On the other hand, the increase in RHF15
inoculum allows to reduce the contribution of C. necator to be in the
acceptable range.

The possible combination settings were used as starting values for
the numerical optimization of the models. The inoculum concentration
of bacterial strains was set to 0.3 OD rru.'l, NH4Cl was set in the range
1.5-2 g L', and a concentration of inulin higher than 20 g L' was
chosen,

The optimum variable values were 0.3 0D mL ! for inoculum, 2 g
L' of NHyCl and 30 g L~! of inulin. The result obtained using predicted
response verified the model witha degree of accuracy higher than 95%.
In the optimum conditions, up to 2.4 g L™! of CDW and 75% of PHA
production were achieved.

The composition of the polymers produced in all the conditions
explored in the CCRD design was determined by GC-MS analysis, and
revealed the presence of 3-hydroxybutyrate (3HB) as the only
com ponent,
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3.4. Kinetics of polymer production

iz b displays the kinetics of PHB production in the optimized

ons defined for the artificial microbial consortium, An increase in
cell biomass was observed in the earlier phase, whilst polymer synthesis
started only after 48 h, From this point onward, the cellular growth
slowed down and PHA production sharply increased reaching up to 1.9
gL' at 96 h, corresponding to a polymer accumulation (Yp,) of 78.8%
and a productivity of 0.02 g L' h™', The efficiency of the mutual species
interaction is visible from the profiles of C-sources consumption. Inulin
concentration dropped rapidly in the first 24 h and, concomitantly
fructose concentration increased, indicating an efficient polysaccharide
conversion into fermentable sugars, in accordance with inulinase pro-
duction in the early growth phase, observed for RHF15 strain, After 48 h,
almost all the inulin was consumed, whilst fractose was available at high
level (~10 g L"), thus assuring the carbon source excess necessary for
polymer accumulation. At the end of the process, 93% of inulin was
converted, with yield coefficients Yp5 = 0.07 and Yy 5 = 0.09. No re-
sidual glucose was detected in the culture broth, indicating its con-
sumption by the co-culture. Although glucose is the minority monomer
in inulin (about 3 g L~! estimated from the total hydrolysis of 30 g L1
inulin}, its release promoted the growth of RHF15, being C. necator DSM
428 not able to metabolize glucose [42], thus leaving a higher amount of
fructose available for PHB production,
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Comparison of processes for PHA production from inulin-based substrates, SHF (Separated Hydrolysis and Fermentation), SSF (Simultaneous Saccharification and

Fermentation),

Process Substrate Strmin CowWgl ' PHBgL ' Ypa (%) Poductivity, gL 'h! Rel.
Microbial co-culture Inulin from chicory mots C. necaior 428 and 2.4 19 il 00z This work
(Shake flasks) B. ghsonil RHF15
SHF Inulin from Jerusalem artichoke tubers C. necator 4058 7.7 4 52 007 Koutinas, 2013
(Shake flasks)
SHF Inulin from chicory mols C. mecator 428 11.0 7.3 &6 0.062 Haas, 2015
{Bioreacior) C. mecator 531 A5 1.6 45 mea
C. mecator 545 14.0 110 TE 0.15
SHF Inulin from chicory mots C. necator 428 3z 20 a2 00z Corrado, 2021
SSF C. necator 428 a9 a2 82 003
(Shake flasks)

Finally, the purity of the extracted polymer was checked by 'H NMR.
The spectrum confirmed the presence of the characteristic signals
attributable to the homopolymer polyhydroxybutyrate [43] (Fig. 56).

The use of inulin-rich biomass for PHA production has been reported
in Separated Hydrolysis and Fermentation (SHF) processes using various
fungal inulinase mixtures and different C. necator strains (Table 4). In
these examples, the PHB volumetric productivities refer only to the
fermentation process and do not take into account the overall process
time, including also the production of the enzyme and the inulin hy-
drolysis steps. Recently, the efficiency of a Simultaneous Saccharifica-
tion and Fermentation (S5F) process for one-step inulin hydrolysis by a
Penicillium lanosocoerulenm inulinase mixture and PHA production by
C. necator H16 has been demonstrated, with a PHB productivity of 0,03
g L' h' (21]. Although leading to a slightly reduced productivity if
compared to the SSF reported by Corrado et al. (2021), the process with
the co-culture is camried out in “one-pot”, allowing to reduce the overall
production time by skipping the enzyme production step.

To our knowledge, this is the first example of the use of a “substrate-
facilitator” [7] microbial consortium for PHA production from inulin, A
similar strategy has been applied by Bhatia et al., (2018b) to a different
substrate, saccharose, co-culturing R eutropha 5119 strain with the su-
crose hydrolysing B. subtilis. Interestingly, in this example, the synthesis
of a P(3HB-o-3 HV) copolymer has been reported, thanks to the sup-
plying of the required precursor (propionate) from B. subrilis [10],
Despite the similarity of the microbial species involved as well as of the
supplied carbon sources, it is worth noting that differences in metabolic
profiles of each strain of the consortium, their mutual interactions,
together with the applied experimental conditions (concentration of the
C and N sources, ratio between the two strains) might translate into
substantial variation in polymer compaosition,

Noteworthy, besides the PHB-containing cells, about 12 U mL ™! of
inulinase activity were detected in the supernatant of the co-culture
system developed in this work, leading to envisage the possibility to
recover these enzymes as extracellular co-products of the process,
enhancing its overall cost-competitiveness [2,44,45],

In conclusion, several engineering strategies have been applied for
the designing of consolidated bioprocesses involving strains able to
convert complex substrates into different microbial products [ 4,6]. The
use of artificial consortia, although still less explored, allows to over-
come the need for strain engineering, providing that the compatibility of
the consortium members has been verified. The results of this work add a
piece of knowledge in this field, providing an optimized process based
on an artificial microbial consortium for inulin conversion into PHA.

4. Conclusions

A “substrate facilitator” microbial consortium, composed of the
inulin-hydrolysing B. gibsonii strain RHF15 and the PHA-producer
C. necator, was designed to address polymer production from inulin,
The RHF15 strain was isolated from the screening of a halophilic mi-
crobial collection for its ability to produce inulinase, and its genome

investigated, highlighting its hydrolytic potential,

The co-culture performances were optimized through response sur-
face methodology, achieving a maximum of 1.9 g L' of PHB, corre-
sponding to ~80% (Epolymer/8 cow) polymer content,

The applied methodology can be extended to other complex carbon
sources, exploiting the reservoir of hydrolytic activities discovered in
RHF15 genome combined with other PHA producing strains with
different substrate preferences.
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CHAPTER IX

The employment of plant-beneficial soil microorganisms known as
PGPB to the agricultural field, is receiving increasing attention for their
biotechnological potential as alternatives to chemicals. Among soil
microorganisms, spore-forming bacteria such as Bacillus and
Myxococcus, are catching researchers’ interest. Due to their low-cost
production, easy manipulation, safety, and high resistance to harsh
conditions, spore-forming bacteria present undoubted advantages in
the development of new eco-friendly fertilizers and pesticides
formulations.

In this framework, our findings highlighted the value of the extreme
environments such as salt-pans, as remarkable reservoirs of
biotechnological potential, since hosting microorganisms with unique
characteristics. Interestingly, the influence of the saline environment on
the studied species, put in evidence how the surrounding habitat plays
a significant role in the bacterial phenotypic plasticity, which can be
exploited to select even more suitable extreme PGPB candidates, able
to endure harsh conditions like high salinity, temperature, and drought,
to be exploited individually or in consortia. In these extreme
ecosystems, microorganisms have developed many strategies to cope
with such harsh conditions, such as the production of bioactive
compounds potentially valuable for biotechnological applications, for
instance, antimicrobial molecules or highly efficient hydrolytic enzymes
with multiple applications, from the formulation of sustainable pesticides
to the production of value-added products like Polyhydroxyalkanoates
(PHA) in the circular-economy sector. Finally, this Thesis proposes an
advanced method to exploit spore-forming PGPB as efficient matrixes
to expose bioactive molecules (functionalized-PGPB), which are often
unstable or easily degraded when in the agricultural environment. It has
been demonstrated that Bacillus’ spore structure is actively shaped by
the temperature of sporulation, thus affecting the heterologous
molecules’ display efficiency on its surface. These results suggest it is
possible to take advantage of the influence of the environmental
conditions on the bacterial spores’ phenotype, to create an even more
effective system, customizable in accordance with the features of the
application soil.
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In conclusion, the results obtained widely confirmed the use of spore-
forming PGPB as an efficient eco-friendly alternative to agrochemicals
and shed a light on the development of a “2.0 functionalized-PGPB”, as
an innovative matrix to deliver agro-industrial enzymes for the
promotion and protection of crops.
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Table S1 | Bacterial growth properties.

Strain Colony colour Colony *Anaerobic pH Temperature range  PEG6000 {%)
morphology growth range {°C) range
RHF6 ! Creamy white Flat +++ 4-10 15-50 0-15
RHFS10 2 White Undulate ++ 6-12 15-50 0-15
1S132 Milky white  Translucent ++ 2-10 25-40 0-15
AGS172 Creamy white Wrinkled ++ 2-10 25-50 0-20
LMG9314 Creamy white Flat ++ 4-10 25-60 0-15
AGS384 Creamy white Flat ++ 2-12 25-60 0-20
AGS108 Creamy white Flat ++ 2-12 25-60 0-20
AGS54 Creamy white iIrregular + 4-10 4-40 0-15

*Anaerobic growth: +: low growth; ++: moderately growth; +++: high growth. 1 Petrillo et al., 2021; 2
Castaldi et al., 2021.
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Figure S2 | Adhesion assay. Flow cytometry analysis of S. oleracea bioprimed-seeds. Seeds
treated with individual bacterial strain were collected randomly to count bacterial cells adhering
at their surface. In each panel is indicated the number of cells counted (Y- axis) against their
dimension (X-axis). As control experiment 1X PBS-treated seeds were analysed.
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APPENDIX 1ll
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Mauriello, PhD.
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