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Preface

The currently accepted theory of gravity is the General Relativity, published by Albert

Einstein (1879 ≠ 1955) in 1916. General Relativity, built on an elegant mathematical

structure, introduced a revolutionary treatment of the gravitational field and deeply

changed the understanding of space and time. The idea behind it is simple: while

most of the forces of nature are represented by fields defined on space-time, gravity is

intimately bound to the structure of space-time itself. Einstein imagined the Universe

as a four-dimensional variety whose curvature is determined by the distribution of

matter and energy associated with celestial bodies. What we experience as the “force of

gravity” is a manifestation of the curvature itself. Einstein’s theory correctly evaluated

phenomena such as the precession of Mercury’s orbit and the gravitational deflection

of light from the Sun, as measured in 1919 during a total solar eclipse by Sir Arthur

Eddington (1882 ≠ 1944). Furthermore, it predicted new gravitational effects, such

as gravitational waves, gravitational lensing, and the time delay of the light travel

confirmed experimentally.

Although General Relativity has proved valid at the Solar System scale, shortcom-

ings came out undermining its validity at ultraviolet and infrared regimes. The first

question is strictly related to one of the most important problems in modern physics:

the difficulty of developing a unified theory that is capable of embracing all the laws

of nature in a single, all-embracing theoretical framework. The central obstacle to

the realization of a unified theory is the fundamental conflict between the two pillars

of twentieth-century physics: General Relativity and Quantum Mechanics. Each of

these theories has proved successful in its own arena of physical phenomena: Gen-

eral Relativity in the classical description of gravitating systems at large scales, and

Quantum Mechanics at very small scales where the classic description fails. In other

words, a complete Quantum Gravity Theory has not been found yet and General Rel-

ativity cannot describe adequately the Universe at extreme conditions. The second

issue comes from Cosmology and Astrophysics: General Relativity cannot explain the

current accelerated expansion of the Universe without resorting to two exotic, and still

unobserved, components in matter-energy fluid, that is Dark Energy and Dark Matter.

An approach to solve these problems relies on modifying the geometrical description

of space-time, leaving the material interpretation unchanged. Correcting and expand-

ing Einsteinian theory constitutes the approach of the so-called Extended Theories of

Gravity, which have become a sort of paradigm in the study of gravitational interaction.

The study of possible modifications of Einstein’s theory has a long history that

began around 1920. Extended Theories of Gravity are divided into two fundamen-

tal classes: Higher-Order Theories involve the addition of higher-order invariants of

the curvature tensor and Scalar-Tensor Theories modify the gravitational Lagrangian

introducing scalar fields that are minimally or not minimally coupled to the geometry.

In this thesis, we turn our attention to two theories: f(R)-gravity theory and

Bootstrapped Newtonian gravity theory. f(R)-gravity generalizes the Einstein-Hilbert

Lagrangian to an arbitrary function f(R) of the Ricci scalar. The emerging gravita-

xix



tional potential in the weak-field limit is characterized by a Yukawa-like term acting

as a scale length of the system. This new scale length furnishes us with an automatic

screening mechanism such that the Solar System constraints are recovered, and a the

same time allows the explanation of galactic rotation curves in a self-consistent way.

Moreover, we can develop geometrically an inflationary model by means of higher-order

corrections. These reasons made such a theory a focus point in Cosmology. On the

other hand, the Bootstrapped Newtonian gravity, inspired by Deser’s conjecture, con-

sists of a non-linear version of Newton’s law which includes pressure effects and the

gravitational self-interaction terms. It is an attempt to describe compact objects and

coherent quantum states.

At the end of the formulation of a new physical theory, it must be tested on ex-

perimental data to certify its validity or rule it out. The purpose of this thesis is to

give astronomical constraints to the aforementioned theories using a general method

through which we could produce a broader classification of the large family of theories

of gravity. In particular, we considered the Galactic Center to constrain the theory

under consideration by studying S-star dynamics. Then, we reported a phenomenolog-

ical investigation aiming at placing bounds on the free parameters from the observed

precession of planets in the Solar System.

S-stars constitute a cluster of young stars revolving in the innermost arcsecond of

the Galactic Center. Their motion points out the existence of a compact source of

≥ 4 million solar masses and located at about 8 kpc: Sagittarius A* (Sgr A*). Such a

source of gravitational field is most probably a supermassive black hole. S-star cluster

has been monitored since 1992 by Speckle Imaging at European Southern Observa-

tory’s (ESO) New Technology Telescope (NTT) in La Silla, since 1995 at the Keck

telescope, and since 2017, with the four-telescope interferometric beam combiner in-

strument GRAVITY. Among S-stars, we focused on S2, S38, and S55 because they

are the brightest ones and they have the shortest period. Definitely, S-stars are a pre-

cious tool to study interactions between a massive compact object and its environment.

It is crucial to probe gravity in the vicinity of very massive bodies since the environ-

ment around these objects is drastically different from that typical of the Solar System,

where General Relativity has been extensively tested. Therefore, Sgr A* has become

the primary target to solve the most debated topics of modern research; the main goal

of scientists is to consolidate the black hole paradigm and shed light on the underlying

theory of gravity. It’s worth noticing that the Yukawa–like modifications to the stan-

dard potential have already been investigated by studying S-star motion around Sgr

A*. Anyway, in literature, the extended potential has been analyzed by integrating the

classical Newtonian equations of motion. In this work we used a new method, that is

we adopted a fully relativistic approach implementing the modified Yukawa potential

in the exact geodesic equations instead of just using the classical ones. This choice is

motivated by the fact that S-star orbits could deviate from the Keplerian case due to

relativistic effects as pointed out by recent results of GRAVITY Collaboration, which

robustly detected the combined gravitational redshift and transverse Doppler shift and
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then the Schwarzschild prograde orbital precession.

This thesis consists of two parts: the first part is theoretical and is aimed at

illustrating the particular theories that we have chosen to study, while the second,

fundamental part, sees the application of theoretical results to astronomical systems.

The work is divided into seven chapters.

• In Chapter 1, we briefly retraced the history of gravitational theories until the

advent of General Relativity. Motivated by the progress of science, which is

periodically prompted to ask whether a given theory needs to be extended, we

listed the criteria that must be satisfied by a given theory of gravity in order to

be considered valid.

• In Chapter 2, we summarized the principles of General Relativity. In view of

astronomical applications, we focused on the analysis of the black hole solutions.

• In Chapter 3, we exposed the reasons that led to the need of extending Gen-

eral Relativity. Subsequently, attention was paid to the detailed analysis of two

extended theories: the f(R)-gravity theory and the Bootstrapped Newtonian

gravity theory.

• In Chapter 4, we initially described the properties of the area centered on the

most mysterious object in the Galaxy: Sgr A*. Next, we exposed the observative

results that consolidated the black hole paradigm, the most likely configuration

among the alternatives scenario proposed in literature. Finally we summed up

the main experiments that are currently undergoing to probe Sgr A* across the

full electromagnetic spectrum.

• In Chapter 5, we presented the first astronomical test, consisting in constraining

the parameters of the theories by analyzing stellar orbits at the Galactic Center

using a fully relativistic approach.

• In Chapter 6, we exposed the second astronomical test, based on the comparison

between the measured orbital precession of the Solar System planets and the

theoretical predictions.

• Chapter 7 is devoted to conclusions.

The thesis was developed on the lines of research followed by professor Mariafelicia

De Laurentis focused on the theories of gravitation in their theoretical and phenomeno-

logical aspects.
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Chapter 1

Introduction

Quando guardai il mio demonio, lo trovai serio, pesante, profondo, solenne: era lo

spirito della gravità, — per cagion del quale cade ogni cosa.

– F. Nietzsche

1.1 The most mysterious interaction . . . . . . . . . . . . . . . . . 2

1.2 Brief history of gravity . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Viability of gravitation theories . . . . . . . . . . . . . . . . . 5

1.4 Creatures of gravity: black holes . . . . . . . . . . . . . . . . . 6

1.4.1 Theoretical foundation . . . . . . . . . . . . . . . . . . 7

1.4.2 Black holes in the Universe . . . . . . . . . . . . . . . . 8

1.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . 10

Gravity pervades our daily world and gives the rhythm to the cosmic dance that

millions and millions of bodies, from asteroids to galaxies, perform without rest. For the

immediacy of perception of its effects, it was the first to be described mathematically

since ancient times.

This introductory chapter will take us into the flow of the history of gravitational

theories (Sec. 1.2), a history that began before Christ and is not yet finished. In this

context, it is natural to ask what are the criteria that must be satisfied by a theory

of gravitation in order to be considered valid (Sec. 1.3). Finally, we will be introduced

to the physics of black holes, amazing objects predicted by the General Theory of

Relativity (Sec. 1.4).
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1.1 The most mysterious interaction

Gravity is probably the most mysterious of the four fundamental interactions in nature.

It has the following “special” properties that distinguish it from other interactions,

making it the only one suitable to understand astrophysical phenomena to which we

are interested in this thesis.

Gravity is the weakest fundamental interaction in nature. Consider a system of

two protons at a distance comparable to their size; their electromagnetic interaction is

at least 1/137 weaker than their nuclear (strong) interaction, their weak interaction is

about 10≠5 of the strong one and their gravitational attraction is 10≠38 weaker. Despite

this weakness gravity plays a key role for astrophysical objects, as its action is amplified

at astronomical scales.

Secondly, weak and strong interactions are mediated by fields having not zero mass

m connected to the characteristic Compton length lC = ~/ m c. It follows that the

corresponding forces are important at short ranges and decay exponentially at distances

> lC; that is why the aforementioned interactions determine the structure of matter.

Instead, gravity (like electromagnetism) is mediated by the massless graviton (photon),

and the corresponding force has an infinite effective range falling as ≥ 1/r2. This is

one reason why gravity dominates over astronomical distances.

The third remarkable property that differentiates gravity from electromagnetism is

its attractive character. While there are two types of electrical charges, positive and

negative, gravitational charges have the same sign, and always attract each other. It

follows a mechanism of self-amplification consisting of the growth of the ability of a

massive body to attract mass as a result of the increase in the mass itself. Gravitational

forces, which are too weak for a single elementary particle, increase enormously when

these particles form a macroscopic system, and totally determine its evolution.

Finally, gravity is universal, there are no neutral particles with respect to this inter-

action. The total energy of a system plays the role of gravitational charge. Everything

in nature has energy and hence interacts gravitationally.

1.2 Brief history of gravity

The beginning of the history of attempts to describe gravitational interaction can be

placed in the 4th century BC, when Aristotle hypothesized that objects fall at a speed

determined by their own mass. He did not think that motion was induced by forces such

as those we know are exerted between celestial bodies due to gravitation, but rather

he believed that consistent with our intuitive thinking, heavy bodies fall towards their

“natural place” guided by their own internal gravitas (heaviness).
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Aristotle’s philosophy dominated until the time of Galileo Galilei (1564≠1642). He

discovered that bodies fall at a rate independent of their mass, using an inclined plane

to slow the fall and a water clock to measure its duration.

The first to recognize that the terrestrial effects produced by gravity are analogous

to the celestial ones was Sir Isaac Newton (1642 ≠ 1727). At the end of the Principia,

he described gravitation as a cause operating on the Sun and planets “according to the

quantity of solid matter which they contain and propagates on all sides to immense dis-

tances, decreasing always as the inverse square of the distances” [175]. Given the space

and time as two absolute entities, the new law of gravity described the gravitational

interaction between two bodies of masses mG and M with the well-known expression

F = GN
mG M

r3
r, (1.1)

where GN is the gravitational constant. Newton knew that the “inertial mass” mI

entering in his second law

F = mI a (1.2)

was in principle conceptually different from the “gravitational mass” mG appearing in

the law of gravitation

F = mG g, (1.3)

where g is a field depending on position and other masses. If so, the acceleration at a

given point would be

a =
3

mG

mI

4

g, (1.4)

and would depend on the values of the ratio mG/mI. This possibility was tested by

Newton himself and later, in 1989, by Roland von Eötvös (1848 ≠ 1919): the ratio

mG/mI did not differ from one substance to another by more than one part in 109

[69, 206]. The observed equality opened the route towards the Principle of Equivalence

which, as we will see, is the cornerstone of Einstein’s theory. The successes of Newton’s

theory in explaining the motion of the Moon and planets culminated beautifully in the

discovery of Neptune following its prediction, in 1846, independently by John Couch

Adams (1819 ≠ 1892) and Urbain Jean Joseph Le Verrier (1811 ≠ 1877) [145], who

were based on some irregularities in the orbit of Uranus. In the same period, Newton’s

theory had to tackle the first observational problem. Le Verrier had calculated that the

observed precession of Mercury was 35ÕÕ/century in excess, and in 1882 Simon Newcomb

(1835 ≠ 1909) confirmed this discrepancy giving a value of 43ÕÕ. Le Verrier attributed

such a discrepancy to a small planet between Mercury and the Sun, but it was never

found.

Due attention should be paid to the conceptual basis of Newtonian theory, which

expressed the belief shared since ancient times that matter represented the “sub-

stance” while space and time represented the “form”: space was thought of as a three-

dimensional container in which God placed the material universe. In his words [175]:
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“Absolute space, in its own nature and with regard to anything external, always

remains similar and unmovable”.

This conception, therefore, conceived space as existing beyond and outside the

spatial relations between objects. In other words, the description of every physical

phenomenon (“event”) required an absolute definition of space, reduced to an infinite

set of triples of distances from a point O (origin) along a given direction, and of time,

reduced to a set of time intervals determined by a reference event.

The first constructive attack to the idea of absolute space was due to Ernst Mach

(1838 ≠ 1916) [68]. Going in contradiction with the Newtonian vision that inertia was

always relative to an absolute frame of reference, he stated that “inertia originates in a

kind of interaction (unspecified) between bodies”. In establishing his General Theory

of Relativity, Einstein was very impressed by ideas of Mach and summarized them in

the term “Mach’s principle”:

- space and time do not have an independent existence, since space is the separation

between bodies and time expresses the succession of events;

- the inertia of a body would lose its meaning in the absence of masses. It isn’t

related to the absolute space but is determined by all the matter in the Universe.

This delicate question was not resolved until 1905, the year in which Albert Einstein

(1879 ≠ 1955) completed his Special Theory of Relativity postulating that the speed

of light in vacuum is constant and it does not depend on the motion of its source.

Einstein’s new theory appeared to be incompatible with the Newtonian gravitation; in

fact, according to the latter, the gravitational force exerted by one body on another

depends only on the masses and the distance that separates them, implying that if

anything changed in masses or in distance, bodies would instantly feel a change in

gravitational force. The other postulate of Special Relativity is that laws of nature are

the same in all inertial reference frames. The latter therefore are given a privilege; this

preference must be considered as an independent property of the space-time continuum

seen as an absolute entity, that is, “having a physical effect, but not influenced by

physical conditions”. However, two objections could be made to this point of view. In

the first place, it assumes the existence of an entity that acts but on which one cannot

act. Secondly, no justification has yet been given for the equality between inertial mass

and gravitational mass.

The final breakthrough in the understanding of gravity was due to Einstein’s the-

ory of General Relativity (GR), which broke into the Annalen der Physik in 1916 [81].

It involved not only a generalization of Special Relativity that included gravity and

non-inertial frames, but it also was the bearer of a deep revolution in the way of under-

standing the concepts of space and time. The greatest implication of this enlargement

was that the space is curved, and its curvature is determined by the distribution of

mass in it (as will be clear in Chapter 2).
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This short chronological summary is useful to comprehend the current status of GR.

As it will be evident from the next sections, the experimental successes and the elegant

perfection of its mathematical apparatus do not hold off questions completely analogous

to those that Newton’s theory had to face, namely how to explain the increasingly

accurate observational data of the modern epoch and how to be compatible with other

sophisticated and consolidated theories.

1.3 Viability of gravitation theories

When a new physical theory is introduced, the suitable questions to be posed are the

following. How large is the portion of the physical world adequately described by such

a theory? And is this theory the only one for the description of relevant phenomena?

These issues have made it necessary to consider extensions also of the current grav-

itational theory, that is GR. In the perspective to consider possible extensions, it is

appropriate to underline the fundamental requirements that any gravitational theory

should satisfy to be considered viable [32, 236].

• It must be complete, that is, he must be able to analyze from “first principles” the

result of any experiment of interest. Equipped with a set of electrodynamic and

quantum-mechanical laws, the theory must be able to determine the evolution of

a body in a gravitational field.

• It must be self-consistent, that is, its prediction for the outcome of each exper-

iment must be unique; two different, although equivalent, calculation methods

must lead to the same results.

• It must be relativistic, that is, to the extent that gravity is “turned off”, non-

gravitational laws of physics must reduce to those of Special Relativity.

• It must have the correct Newtonian limit, that is, for weak field and low velocities

Newton laws must be reproduced. Besides, It should pass the classical Solar

System tests and explain the Galactic dynamics given the observed baryonic

matter and radiation.

• It must face the problem of large-scale structure and the question of cosmological

dynamics, that is, cosmological parameters (as the expansion rate of the Universe,

the Hubble constant, and so on) should be reproduced in a self-consistent way.

The simplest theory that satisfies the above requirements is the General Theory

of Relativity, built on the idea that gravitational field, space-time, and matter-energy

distribution are intertwined and governed by field equations [81]. It is based on three

assumptions:
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1. Principle of Relativity. All reference systems are equivalent with respect to the

formulation of the fundamental laws of physics [170]. Physical equations must

be invariant under general coordinate transformations.

2. Principle of Equivalence. This principle was stated by Einstein, who was im-

pressed by the equality of the “inertial mass” mI of a body, that is the property of

that body that regulates its response to an applied force, and the “gravitational

mass” mG, that is the property that determines its response to gravitation:

mI = mG. (1.5)

It implies as Einstein pointed out, that in a freely falling frame no external static

homogeneous gravitational field could be detected. The Principle of Equiva-

lence in its final form states that: “at every space-time point in an arbitrary

gravitational field, it is possible to choose a locally inertial frame such that, in

a region small enough to neglect inhomogeneities of the gravitational field, the

laws of nature take the form as in unaccelerated Cartesian frame in the absence of

gravitation”. This Principle thus formulated is known as the Weak Equivalence

Principle (WEP). WEP can be extended to the Strong Equivalence Principle

(SEP) if we replace “laws of nature” by “laws of motion of freely falling parti-

cles”. Thus, SEP generalizes WEP including effects of gravitation on all physical

systems.

3. Principle of General Covariance. It deals with the mathematical representa-

tion of the Principle of Equivalence; it expresses Einstein’s postulate about the

equality between all reference systems (and therefore of coordinates) for the de-

scription of the laws of physics. The Principle of General Covariance states that

a physical equation holds in a gravitational field if the following conditions are

satisfied: the equation recovers the Special Relativity in absence of gravitation,

and the equation is generally covariant, that is, it is invariant under a general

coordinate transformation.

The Principle of Causality crowns the above principles: every point of space-time must

admit a notion of past, present, and future that is the same for all physical observers.

1.4 Creatures of gravity: black holes

Our journey among gravitational theories ended with GR, whose most fascinating

prediction is the existence of black holes. As we will see, the properties of these objects

are so weird and intriguing that most astronomers could hardly accept their existence.

Now, after the theoretical and experimental advances that revolutionized astronomy,

our vision changed: black holes are believed to be everywhere. We can classify them

according to their main parameter, the mass M :

6



Introduction

• stellar-mass black holes with M ≥ (3 ≠ 30) M§;

• intermediate-mass black holes with M ≥ 103 M§;

• supermassive black holes with M ≥ (105 ≠ 109) M§;

• primordial black holes with mass up to M§;

• micro-black holes.

As we will see soon, observations confirm the existence of stellar and supermassive

black holes.

1.4.1 Theoretical foundation

Black holes’ simplest configuration is described by the spherically symmetric vacuum

solution found out by Karl Schwarzschild (1873 ≠ 1916) in 1916 (see Section 2.3) [211].

A black hole can be defined as a space-time region where the gravitational field is so

strong that even light cannot escape. A black hole is the result of the collapse of a

body of mass M down to a dimension smaller than its Schwarzschild radius

RS =
2 GN M

c2
, (1.6)

where GN is the Newton gravitational constant, M is its mass and c is the speed of

light. It is surprising to observe that formula (1.6) was already presented by Pierre-

Simon Laplace (1749 ≠ 1827) in 1799 using purely Newtonian mechanics. Laplace

speculated the existence of dark objects, which are hypothetical high-density objects

with an escape velocity larger than the speed of light. The result can be obtained by

setting the total energy of a test particle of mass m equal to zero

1

2
m v2 ≠ GN

M m

r
= 0. (1.7)

From (1.7) follows that a particle cannot escape to infinity if the radius is smaller than
2 GN M

c2
. Returning to the Schwarzschild solution, it is afflicted by a singularity at

the center (r = 0) and one at the radius r = RS. For years it was not possible to

deeply understand the significance of these features. Then, researchers realized that

r = 0 corresponds to a true singularity, while in 1924 Arthur Eddington (1882 ≠ 1944)

determined that the space-time is regular at the surface RS, and the singularity could

be removed with a suitable choice of coordinates. Only in 1958 David Finkelstein

(1929 ≠ 2016) fully understood the nature of the surface at RS [91] as a one-way

surface: it is what we now call the event horizon. If something crosses it, it cannot

influence the exterior region anymore.
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In 1918 the Reissner-Nordström solution, describing a non-rotating black hole with

a non-vanishing electrical charge was found [177].

A more realistic black hole model that takes into account the non-zero angular mo-

mentum of astrophysical systems became available in 1963 when Roy Kerr discovered

a stationary and axisymmetric solution to Einstein’s equations. This solution also has

a real singularity, but it is surrounded by an event horizon if the angular momentum

is J Æ Jú = GN M2/c. A new effect is induced by rotation, the dragging-into-rotation

effect; it involves the co-rotation of matter with the black hole in a region located

outside the horizon called ergosphere. Due to the complexity of the Kerr metric, it was

not possible to study the motion of particles and the field propagation until Carter

discovered a new type of integrals connected to hidden symmetries [40].

The picture of black holes was completed at the end of the 1960s when a global

geometrical approach was applied to the theory and many results were proved [241, 167,

125, 223, 95]. In particular, the no-hair theorem expresses the result that, under some

assumptions, black holes are characterized by a small number of parameters (hair),

namely the black hole mass, the black hole spin angular momentum, and the black

hole electric charge. In 1965 the British theorist Roger Penrose, who awarded the

Nobel Prize in 2020 “for the discovery that black hole formation is a robust prediction

of the general theory of relativity”, published an article that became a milestone in

GR [187]. Introducing new mathematical concepts, he demonstrated that black holes

formation is a stable process and he described their properties. Penrose was based on

the concept of trapped surface, which is a closed two-dimensional surface such that all

orthogonal light rays converge when traced toward the future. This idea led him to

demonstrate that once a trapped surface is formed, the collapse towards a singularity

is unavoidable in GR [187].

The remarkable properties of these objects were summarized in the term black

hole itself, which was coined in 1968 by J.A. Wheeler (1911 ≠ 2008) as an excellent

description of the alternative word “frozen star”, the dominant phrase in the literature

until then [167].

This period was fertile both for the aforementioned theoretical advancement and for

the technical innovations that produced the evidence of black holes and other compact

objects.

1.4.2 Black holes in the Universe

For many years, black holes have been thought to be very exotic objects; Einstein

himself found it difficult to believe the existence of a body with a size comparable to

its gravitational radius.

A renewed interest in compact astrophysical objects grew when in the 1930s Chan-
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drasekhar worked on white dwarfs [50], and Oppenheimer and Volkoff demonstrated

the possibility of the existence of neutron stars [181], stars having a radius slightly

higher than the gravitational radius. In the same years, the production of black holes

at the end of the gravitational collapse of a massive star was described [180].

Guisenov and Zeldovich [121] showed that an X-ray source could be produced when

collapsed stars in binaries pull gas from their companion liberating energy in a shock

with temperatures of millions of degrees. Such a source can be identified as a neutron

star if pulsations are discovered in their X-rays (thus the first neutron star was dis-

covered), or a black hole. However, the identification of a black hole with an X-ray

source requires not only the absence of pulsations but also the measurement of the mass

through observations of the velocity changes of the companion. The evidence of stellar

black holes dates back to the mass determination of the mass of X-ray binary Cygnus

X-I’s compact object [232, 21], which exceeded the maximum mass for a neutron star.

The discovery of black holes of much greater mass (up to 106 ≠ 109 M§) was not

expected by the theory. The picture changed in 1963 when distant luminous quasars

were discovered [207]. These active galaxies are characterized by non-thermal emission

from a small-size central region, called active galactic nucleus (AGN). Their small size

and enormous luminosities (AGN generally produce 1039 W, more than two orders of

magnitude larger than the luminosity of all stars in a galaxy!) indicated that the central

engine must be associated with a large and compact mass; Salpeter and Zeldovich [205,

240] were the first to propose that the energy generation mechanism involved could be

explained by the emission of radiation from the accretion of matter onto black holes.

An accurate description of the phenomenon was presented by Lynden-Bell [157], who

suggested explaining the spectra of quasars through the accretion disk formed by the

gas around a massive object. Lynden-Bell also suggested that such supermassive black

holes are hosted by many galaxies, including our Milky Way, living as a quiet remnant

of a past active phase.

More recently, other aspects of black holes physics became very important for astro-

physical applications. As predicted by GR, the collision of a black hole with a neutron

star or coalescence of a pair of black holes is a strong source of gravitational radia-

tion. The produced gravitational waves can be strong enough to reach the Earth; in

2016, the LIGO/Virgo collaboration announced the first direct detection occurred on

14 September 2015 from the coalescence of two black holes, each of them of ≥ 30 M§

[1].

Furthermore, the first direct image of the supermassive black hole in the center of

the giant elliptical galaxy M87 was published on 10 April 2019 by the Event Horizon

Telescope (EHT) Collaboration [86].

Finally, we can probe black holes by analyzing stars orbiting around them. As will

be evident in the second part of this thesis, they represent a formidable tool for the
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direct deduction of the parameters of the gravitational field in which they revolve, such

as the mass and the distance of the compact object, and to test gravitational theories

in a not yet fully explored gravitational regime.

1.5 Concluding remarks

In this chapter, we outlined the history of attempts to explain the most enigmatic

interaction: gravitation. Starting from the first scientific speculations dating back

to before Christ, we arrived at the formulation of the GR, Einstein’s elegant theory

that weaves space and time into a single dynamic entity. We then introduced the

basic concepts that characterize the most puzzling prediction of GR: black holes. We

summarized the theoretical development that led to the current picture of these objects.

Paraphrasing S. Chandrasekhar, “the black holes of nature are the most perfect

macroscopic objects there are in the Universe: the only elements in their construction

are our concepts of space and time. And since the general theory of relativity provides

only a unique family of solutions for their description, they are the simplest objects as

well” [49].
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General Relativity

Space-time tells matter how to move; matter tells space-time how to curve.

– J. A. Wheeler

2.1 From gravity to geometry . . . . . . . . . . . . . . . . . . . . 14

2.2 Foundations of the theory . . . . . . . . . . . . . . . . . . . . 16

2.2.1 The structure of space-time . . . . . . . . . . . . . . . 16

2.2.2 Einstein’s equations of motion . . . . . . . . . . . . . . 19

2.3 Spherically symmetric solution . . . . . . . . . . . . . . . . . . 21

2.3.1 The Schwarzschild metric . . . . . . . . . . . . . . . . 21

2.3.2 Schwarzschild geodesics . . . . . . . . . . . . . . . . . . 24

2.4 Rotating black holes . . . . . . . . . . . . . . . . . . . . . . . 27
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2.5.1 General features . . . . . . . . . . . . . . . . . . . . . . 29

2.6 General metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6.1 The General Static Isotropic gravitational field . . . . . 33
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2.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . 38

In this chapter, we will dwell on the foundations of Einstein’s theory and its most

salient applications.

After summarizing the field equations derivation (Sec. 2.2), we will focus on the

Schwarzschild (Sec. 2.3) and Kerr (Sec. 2.4) solutions for their importance in astronom-

ical applications. Then, we will explain how to find out an approximate solution of the
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field equations by means of the post-Newtonian expansion (Sec. 2.5). Finally, we will

expose the parameterized post-Newtonian formalism that will act as a bridge between

GR and its extensions (Sec. 2.6). In this context we will discuss one of the crucial

verification of GR, which is the precession of the perihelia.

The importance of this summary of GR lies in keeping in mind that, in regimes in

which it is solidly verified, it must be recovered from Extended Theories of Gravity.

2.1 From gravity to geometry

The Principle of Equivalence is the fulcrum from which springs the chain of deductions

that led Einstein to abandon the preference of inertial systems over all other coordinate

systems [82].

The Principle of Equivalence implies that gravity is indistinguishable from accel-

erated motion, and it requires that non-inertial systems can be used in the Galilean

regions 1. On the other hand, to get rid of the problem of objective reasons why cer-

tain coordinate systems are preferred over others, we must be able to use coordinate

systems in arbitrary motion. A mathematical description of such a generic system

clashes with the physical interpretation of space and time shared by Special Relativity,

as we can see from this simple example. Let us consider an inertial system K with

axis z, and a system K Õ rotating at constant angular around its axis zÕ which coincides

with z. Consider a large number of standard rules, of which U are arranged along the

circumference and D along the diameter of a circle drawn in the xÕyÕ plane around the

origin of K Õ. If K Õ does not rotate with respect to K, we will have

U

D
= fi. (2.1)

Now suppose that K Õ rotates and we want to determine at a given instant t of K the

position of the edges of all the samples. Since, with respect to K, the samples arranged

on the circumference undergo the Lorentz contraction we will have

U

D
> fi. (2.2)

With this exercise, we realize that, with respect to a rotating reference system, the

configuration laws of rigid bodies are not in agreement with those formulated in terms

of Euclidean geometry. In general, space and time cannot be defined with respect to

K Õ as they were defined with respect to an inertial reference frame. On the other

hand, according to the Equivalence Principle, K Õ can be considered as a system at rest

on which a gravitational field acts. We thus arrive at this result: the gravitational

field influences and even determines metric laws of the space-time continuum. In the

presence of a gravitational field, the geometry is not Euclidean.

1We call “Galilean regions” those regions where, with respect to an appropriately chosen reference

frame, particles move without acceleration. In these regions laws of Special Relativity are valid.
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The aforementioned case is similar to the one that occurs in the two-dimensional

study of surfaces; the profound analogy between the laws of gravitation and the formu-

las of the Riemannian geometry is due to the metric properties on which the concepts

of both theories are based. In the case of the theory of surfaces, Gauss’s reasoning is

the following [82, 233]. Plane geometry is based on the concept of distance ds between

two infinitely close points, expressed by the formula ds2 = dx2
1 + dx2

2. This notion

of distance, from which the concepts of geodesic, interval, circle, and angle arise, can

also be defined on a curved surface when it is observed that an infinitely small por-

tion of this surface can be considered flat, less than an infinitesimal quantity. On this

sufficiently small portion of a curved surface, it would be possible to find a locally

Euclidean coordinate system so that the distance between two points (X1, X2) and

(X1 + dX1, X2 + dX2) satisfies the law of Pythagoras

ds2 = dX2
1 + dX2

2 . (2.3)

In particular, the inner properties of such a surface can be described in terms of

derivatives ˆX–/ˆxµ of the function X–(x) defining the transformation x æ X from

some general frame x to the locally Cartesian system X. The fundamental function

of these derivatives is the quantity gµ‹ , which defines the distance between two points

(x1, x2) and (x1 + dx1, x2 + dx2):

ds2 = g11 (x1, x2) dx2
1 + 2 g12(x1, x2) dx1 dx2 + g22(x1, x2) dx2

2. (2.4)

Here g11, g12, and g22 depend on the nature of the surface and the coordinate choice:

g11 =

A

ˆX1

ˆx1

B2

+

A

ˆX2

ˆx1

B2

(2.5)

g12 =

A

ˆX1

ˆx1

B A

ˆX1

ˆx2

B

+

A

ˆX2

ˆx1

B A

ˆX2

ˆx2

B

(2.6)

g22 =

A

ˆX1

ˆx2

B2

+

A

ˆX2

ˆx2

B2

. (2.7)

Similarly, an infinitely small region of the space-time continuum can be considered

Galilean and there will always exist an inertial system {X–} where the Special Rela-

tivity laws are valid. Generally, for space-time regions of finite extension that are not

Galilean, no choice of coordinates will validate Special Relativity, but for two nearby

events it will always exist the invariant ds expressible in arbitrary coordinates; it can

be written in the form

ds2 = gµ‹ dxµ dx‹ . (2.8)

The object gµ‹ encodes the metric relations of the space-time continuum and the grav-

itational field.
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2.2 Foundations of the theory

We arrived at this result: the heart of GR lies in the Principle of Equivalence, which

tells us how a physical system responds to a gravitational field. We shall first see

how to implement it mathematically, and then we will summarize the derivation of the

differential equations that determine the gravitational field evolution.

2.2.1 The structure of space-time

The metric tensor

According to the Principle of Equivalence, we can always find a local inertial frame in

a given gravitational field. Consider a particle in free fall in such a system; its motion

is a straight line in space-time and it is described by the equation [36]:

d2›–

ds2
= 0, (2.9)

where

ds2 = ÷–— d›– d›— (2.10)

is the line element, and ÷ = diag (1, ≠1, ≠1, ≠1) is the Minkowski metric. Now suppose

to apply coordinates transformations to Eq. (2.9) to switch to any other coordinate

system xµ

›– = ›–(x—); (2.11)

Eq. (2.9) becomes

d2›–

ds2
=

d

ds

A

d›–

ds

B

=
d

ds

A

ˆ›–

ˆxµ

dxµ

ds

B

=
ˆ›–

ˆxµ

d2xµ

ds2
+

ˆ2›–

ˆxµˆx‹

dxµ

ds

dx‹

ds
= 0. (2.12)

After multiplying by ˆx⁄/ˆ›– and using the relation

ˆ›–

ˆxµ

ˆx⁄

ˆ›–
= ”⁄

µ, (2.13)

we get the equation of motion

d2x⁄

ds2
+ �

⁄
µ‹

dxµ

ds

dx‹

ds
= 0, (2.14)

where the quantities �
⁄
µ‹

�
⁄
µ‹ = �

⁄
‹µ =

ˆ2›–

ˆxµˆx‹

ˆx⁄

ˆ›–
(2.15)
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represent the field determining the gravitational force and are called affine connections.

Now let us relate affine connections with the metric. Transformations (2.11) can

be used to express the metric line element in an arbitrary reference frame:

ds2 = ÷–— d›– d›— = ÷–—

ˆ›–

ˆxµ
dxµ ˆ›—

ˆx‹
dx‹ = gµ‹ dxµ dx‹ . (2.16)

Here, gµ‹ is the metric tensor defined by

gµ‹ = g‹µ = ÷–—

ˆ›–

ˆxµ

ˆ›—

ˆx‹
. (2.17)

It can be easily proved [233] that starting from relation (2.17), the explicit expression

for affinities in function of the metric can be obtained:

�
–
µ‹ = g–⁄ 1

2
(g⁄µ,‹ + g‹⁄,µ ≠ gµ‹,⁄) . (2.18)

We have shown that gµ‹ plays the role of gravitational potential, being the field

�
⁄
µ‹ determined by its derivatives. We are facing a metric theory of space-time, in the

sense that we are using 10 gravitational potentials (gµ‹) instead of one, as in the case

of the Newtonian gravitation.

A formulation of the law of freely falling particles as a variational principle allows

a geometrical interpretation of equation (2.14): a particle in free fall through a curved

space-time (called gravitational field) will move on the shortest (or longest) possible

path between two points, the proper time measuring the length, that is on extremal

paths called geodesics [233].

The curvature

Affine connections and their derivatives are at the basis of the Riemann tensor defini-

tion, the entity representing the heart of GR: the curvature of the space-time.

We can define the Riemann tensor starting from the notion of parallel transport

[147]. By parallel transport we mean the transport of a vector carried out while keeping

constant the angle it forms with the local geodesic. It is immediate to realize that in

Euclidean space the parallel transport of a vector on a closed path brings the vector

back on itself, but the same does not happen on a curved surface (see Figure 2.1).

A definition of “curvature” of space makes use of this property; a space is said to

be flat if it is possible to uniquely define a vector for parallel transport on a closed line,

otherwise it is said to be curved. This definition translates mathematically into the

equivalence between the relation that expresses the return of a vector on itself after the

parallel transport on a curved line and the cancellation of a defined algebraic quantity,
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2.2.2 Einstein’s equations of motion

Einstein, according to the ideas of Riemann [83], postulated that the space-time cur-

vature is locally determined by the distribution of the celestial sources. Acceptable

differential equations that regulate the gravitational field dynamic evolution must obey

some physical criteria imposed by the basic concepts discussed so far, and that here

are summarized.

1. According to the Principle of Covariance, the laws of physics must be covariant

under a general coordinate transformation.

2. When a gravitational field is present, space-time is curved and endowed with a

metric of the form

ds2 = gµ‹ dxµ dx‹ , (2.25)

where the metric tensor gµ‹ binds geometry and gravitation. It consists of 10

functions of the space-time variables, of which 6 are independent.

3. The space-time curvature is determined by the masses distributed in it.

4. In the weak field limit, the Newtonian gravitational theory is valid.

The first result imposes that field equations must be written in tensor form; the

second one implies that the laws must contain at least six quantities related to gµ‹ ; the

third suggests that the curvature must be related to a tensor representing the space-

time matter-energy content; the fourth tells us that the gravitational equations, which

must be of the second order, must provide the Newtonian solution for weak fields.

Initially, Einstein focused on finding vacuum field equations and, guided by the

aforementioned criteria, he suggested

R–
—µ‹ = 0. (2.26)

But Eq. (2.26) does not contemplate solutions other than flat space-time; they are too

restrictive to be accepted. To have equations that admit the existence of a gravitational

field, we can consider some combinations of components of the Riemann tensor, such

as the Ricci tensor Rµ‹ ; then, the right equations should be

Rµ‹ = 0. (2.27)

To connect equations in vacuum with those in presence of matter, Einstein relied

on the postulate of the matter as the generator of the curvature, and he suggested

Rµ‹ = ‰ T (m)
µ‹ , (2.28)
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where ‰ is a dimensional constant. The rank-2 tensor T (m)
µ‹ , called energy-momentum

tensor, is the covariant representation of a perfect fluid, that is a fluid composed of

particles that have negligible interactions. It can be expressed as

T (m)
µ‹ = (P + fl) uµ u‹ + P gµ‹ , (2.29)

where uµ is the four-velocity of the fluid particles and P and fl are the pressure and

energy density of the fluid, respectively. Energy-momentum conservation implies that

T (m)
µ‹ satisfies the continuity equation, that is

Òµ T (m)
µ‹ = 0. (2.30)

Equations (2.28) are not consistent from a physical point of view; in fact, according to

the (2.30), left-hand side of the field equations should be represented by a divergence-

free tensor, and this is not the case for Rµ‹ . However, starting from the Ricci tensor

we can build a divergence-free tensor as

Gµ‹ = Rµ‹ ≠ 1

2
gµ‹ R. (2.31)

The quantity Gµ‹ is the so-called Einstein tensor, and always obeys ÒµGµ‹ = 0. The

suitable field equations can be therefore written as

Gµ‹ = ‰ T (m)
µ‹ . (2.32)

The precise value of ‰ can be determined when the Newtonian limit is realized; Ein-

stein’s equations are consistent with Newton’s theory provided that ‰ = 8 fi GN/c4.

Furthermore, field equations must be mathematically consistent, i.e. they must

descend from a variational principle. The starting point is to obtain the Hilbert-

Einstein action. We start from the general action of a local gravity theory

S =
⁄

L d4x, (2.33)

where

L = L(g, . . . ) (2.34)

is a local Lagrangian density depending on the metric and its derivatives. In order to

satisfy the principle of covariance, the action S must be a scalar, hence

L =
Ô

≠g L(g, . . . ), (2.35)

where L is a local scalar and
Ô≠g d4x is the invariant volume element. To obtain

equations of the second order the Lagrangian must contain at least the squares of

the first derivatives of the metric, which contain the Christoffel symbols that are not

invariant. This suggests choosing expressions containing the metric, its first derivatives,

and its second derivatives entering linearly:

L =
Ô

≠g L(g, ˆg, ˆ2g). (2.36)
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The simplest choice is the scalar of curvature R, which contains the second derivatives

of the metric linearly. The Hilbert-Einstein action can be finally written as [36]:

SEH =
1

2k2

⁄

d4x
Ô

≠gR, (2.37)

where k2 is a dimensional constant, necessary for S to have the correct physical di-

mensions. Hilbert’s choice was arbitrary, but it was the simplest to generate the field

equations already found by Einstein. Field equations in presence of matter can be

obtained by adding the matter action Sm:

Sm =
⁄

d4x
Ô

≠gLm, (2.38)

where Lm is the matter Lagrangian density whose variational derivative is

T (m)
µ‹ = ≠ 2Ô≠g

”(
Ô≠g Lm)

”gµ‹

. (2.39)

The behaviour of the Hilbert-Einstein action with respect to small variations of the

metric is therefore studied. It can be proven that its stationary points coincide with

the Einstein equations, which can be written in one of the two equivalent forms:

Gµ‹ = Rµ‹ ≠ 1

2
gµ‹ R =

8 fi GN

c4
T (m)

µ‹ , (2.40)

Rµ‹ =
8 fi GN

c4

3

T (m)
µ‹ ≠ 1

2
gµ‹ T (m)

4

. (2.41)

As John Wheeler summarized, matter tells space how to curve, and space tells matter

how to move [234].

2.3 Spherically symmetric solution

The first exact solution to the field equations was found, in 1916, by Karl Schwarzschild

in the special case of a spherically symmetric space-time. Although it is an approxi-

mation (astronomical objects rotate!), it is the basis of numerous applications.

2.3.1 The Schwarzschild metric

The most general spherically symmetric metric is [36, 51]

ds2 = A(r, t) c2 dt2 ≠ B(r, t) dr2 ≠ 2 C(r, t) dr dt ≠ D(r, t)(d◊2 + sin2 ◊ d„2), (2.42)

where A, B, C and D are arbitrary function of space and time. It is possible to find a

new coordinate system where, making the transformations

rÕ = F (r, t), tÕ = G(r, t), (2.43)
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we have

C Õ = 0, DÕ = r2. (2.44)

We can choose for AÕ and BÕ any function of r and t without changing the spherical

symmetry; to simplify the calculations we choose an exponential form and the line

element can be recast in the form

ds2 = e‹(r,t)c2dt2 ≠ e⁄(r,t)dr2 ≠ r2d�
2, d�

2 © d◊2 + sin2 ◊ dÏ2. (2.45)

With these expressions for the coefficients of the metric

gtt = e‹(r,t), grr = ≠e⁄(r,t), g◊◊ = ≠r2, gÏÏ = ≠r2 sin2 ◊, (2.46)

and its inverse

gtt = e≠‹(r,t), grr = ≠e≠⁄(r,t), g◊◊ = ≠r≠2, gÏÏ = ≠r≠2 sin≠2 ◊, (2.47)

it’s easy to compute the Christoffel symbols from the expression

�
–
µ‹ = g–⁄ 1

2
(g⁄µ,‹ + g‹⁄,µ ≠ gµ‹,⁄) . (2.48)

After some calculations, we find that the nonvanishing symbols are:

�
t
tt =

‹t

2c
, �

t
tr = �

t
rt =

‹r

2
. �

t
rr =

⁄t

2c
e⁄≠‹ , �

r
tt =

‹r

2
e‹≠⁄, (2.49)

�
r
rr =

⁄r

2
, �

r
tr = �

r
rt =

⁄t

2c
, �

r
◊◊ = ≠r e≠⁄, �

r
ÏÏ ≠ r sin2 ◊e≠⁄, (2.50)

�
2
r◊ = �

◊
◊r =

1

r
, �

◊
ÏÏ = ≠ sin ◊ cos ◊, �

Ï
rÏ = �

Ï
Ïr =

1

r
, (2.51)

�
Ï
◊Ï = �

Ï
Ï◊ = cot ◊. (2.52)

Einstein’s equations in vacuum are obtained by setting to zero the components of

Rµ‹ . The first important result is obtained for µ = t and ‹ = r:

Rtr =
1

c r
⁄t = 0, (2.53)

from which it is deduced that ⁄ does not depend on time. The remaining non-zero

components of the Ricci tensor are

Rtt =
1

2
e‹≠⁄

A

‹ ÕÕ +
1

2
‹ Õ2 ≠ 1

2
‹ Õ⁄Õ + 2

‹ Õ

r

B

= 0, (2.54)

Rrr =
1

2

A

‹ ÕÕ +
1

2
‹ Õ2 ≠ 1

2
‹ Õ⁄Õ ≠ 2

⁄Õ

r

B

= 0, (2.55)

where a Õ indicates derivative with respect the time. From (2.54) and (2.55) we get

‹ Õ + ⁄Õ = 0 æ ‹ Õ = ≠⁄Õ. (2.56)
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Furthermore, asymptotic flatness, which requires a flat metric (e‹ æ 1 and e⁄ æ 1)

for r æ Œ, implies a zero integration constant

⁄ + ‹ = 0. (2.57)

It can be proven that after integrating Eq. (2.54), where we used the result (2.56), we

get:

e‹ = A +
B

r
, (2.58)

where A and B are integration constants. For

r æ Œ, e‹ = 1 (2.59)

so we get the value for the constant A:

A = 1. (2.60)

The value of B can be determined by requiring that Newton’s law holds at large

distances:

e‹ = g00 = 1 ≠ 2 U

c2
= 1 ≠ 2 GN M

r c2
. (2.61)

The quantity RS is defined as the Schwarzschild radius:

RS © 2 GN M

c2
. (2.62)

RS has the dimensions of a length and it can be associated with all the bodies having

mass M . Finally, the solution of the metric is:

ds2 =
3

1 ≠ RS

r

4

c2dt2 ≠
3

1 ≠ RS

r

4≠1

dr2 ≠ r2d�
2. (2.63)

The Schwarzschild metric describes gravitational field outside a spherical distribution

of matter, which may be either static or have radial motion. In fact, from the above

solution, it can be seen that by assuming the only hypothesis of a spherically symmet-

rical system the resulting metric is static. This important result is known as Birkhoff’s

theorem: the empty space-time outside a spherically symmetric distribution of matter

is describable by a static metric.

The metric (2.63) describes the space-time outside a spherically symmetric black

hole and RS locates its event horizon. At r = RS the Schwarzschild solution contains an

apparent singularity, indeed the metric coefficients of solution (2.63) become singular:

g00 = (g≠1
11 ) = 0. (2.64)

But the surface r = RS is a regular surface of the space-time manifold, as we can see

by calculating the curvature invariants; for example, the Kretschman invariant

R2 © Rµ‹⁄flRµ‹⁄fl =
12 R2

S

r6
(2.65)
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is finite at r = RS. The mentioned singularity is a “coordinate singularity”, while the

physical singularity of the metric is at r = 0 (“curvature singularity”). At r = 0 the

curvature becomes infinite and the tidal forces grow.

The Schwarzschild solution is expressed in the “standard” form in Eq. (2.63), but

it can be equivalently expressed in the “isotropic” form by introducing the new radius

variable fl as

fl © 1

2

5

r ≠ RS

2
+ (r2 ≠ RS r)1/2

6

(2.66)

or

r = fl

A

1 +
RS

4 fl

B2

. (2.67)

After substitutions, Eq. (2.63) becomes

ds2 =

A

1 ≠ RS

4 fl

B2

A

1 +
RS

4 fl

B2 dt2 ≠
A

1 +
RS

4 fl

B4

(dfl2 + fl2d◊2 + fl2 sin2 Ï2). (2.68)

2.3.2 Schwarzschild geodesics

Equations of motion of particles in a space-time described by the metric gµ‹ can be

derived from the associated Lagrangian 2 L = gµ‹

dxµ

d·

dx‹

d·
, where · is some affine

parameter along the geodesic [94]. The Lagrangian corresponding to the Schwarzschild

solution is

L =
1

2

C

3

1 ≠ RS

r

4

ṫ2 ≠
3

1 ≠ RS

r

4≠1

ṙ2 ≠ r2 ◊̇2 ≠ (r2 sin2 ◊) Ï̇2

D

(2.69)

where ˙ =
d

d·
, and the associated canonical momenta are

pt =
ˆL

ˆ ṫ
=

3

1 ≠ RS

r

4

ṫ, pÏ = ≠ˆL

ˆÏ̇
= (r2 sin2 ◊)Ï̇,

pr = ≠ˆL

ˆṙ
=

3

1 ≠ RS

r

4≠1

ṙ, and p◊ = ≠ˆL

ˆ◊̇
= r2◊̇. (2.70)

To find the integrals of motion of the problem consider the Euler-Lagrange equations

dpt

d·
=

d

d·

ˆL

ˆ ṫ
=

ˆL

ˆt
= 0, (2.71)

dpÏ

d·
= ≠ d

d·

ˆL

ˆÏ̇
= ≠ˆL

ˆÏ
= 0, (2.72)
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from which it follows that

pt =
3

1 ≠ RS

r

4

dt

d·
= constant = E, (2.73)

pÏ = r2 sin2 ◊
dÏ

d·
= constant = L. (2.74)

If we consider the equation of motion for ◊

dp◊

d·
=

d

d·
(r2◊̇) = ≠ˆL

ˆ◊
= (r2 sin ◊ cos ◊)

A

dÏ

d·

B2

(2.75)

it’s easy to see that if put ◊ = fi/2 when ◊̇ = 0, then we also have ◊̈ = 0 and the motion

will lie in an invariant plane. By rescaling the affine parameter · , and with ṫ and Ï̇

expressed in terms of E and L, the Lagrangian for time-like geodesics becomes

E2

1 ≠ RS

r

≠ ṙ2

1 ≠ RS

r

≠ L2

r2
= 2L = 1. (2.76)

We can rewrite Eqns (2.74) and (2.76) as

A

dr

d·

B2

+
3

1 ≠ RS

r

4

A

1 +
L2

r2

B

= E2 (2.77)

and
dÏ

d·
=

L

r2
. (2.78)

To get information about the types of trajectories, we can rewrite Eq. (2.77) highlight-

ing the effective potential U as

A

dr

d·

B2

= E2 ≠ U. (2.79)

The effective potential is given by

U = (1 ≠ z)(1 + l2z2), (2.80)

where we introduced the new variables z = RS/r (z = 0 is the spatial infinity and

z = 1 is the black hole horizon) and l = L/RS. The equation giving extrema of the

potential for a fixed l is

U,z = ≠1 ≠ 3 l2 z2 + 2 l2 z = 0, (2.81)

whose solution is

z±(l) =
1 ±

Ô
1 ≠ 3 l≠2

3
. (2.82)

Studying the second derivative of U with respect to z

U,zz = 2 l2 (1 ≠ 3 z), (2.83)
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5. unstable circular orbits, E2 = U+ and z = z+;

6. near horizon trapped motion, E2 < U≠ and z > z+;

7. marginal outer (z < z+) and inner (z > z+) orbits, E2 = U+.

To obtain the geometry of the geodesics in the invariant plane, consider the function

r(Ï) and let u = r≠1; the final equation is

A

du

dÏ

B2

= RS u3 ≠ u2 +
RS

L2
u ≠ 1 ≠ E2

L2
. (2.85)

The solution, once obtained u(Ï), can be completed by integrating the equations

d·

dÏ
=

1

L u2
,

dt

dÏ
=

E

L u2 (1 ≠ RS u)
. (2.86)

2.4 Rotating black holes

The Schwarzschild solution describes a black hole in the simplest approximation: a

nonrotating black hole. However, a more realistic representation should include ro-

tation: astrophysical objects (stars, planets, and galaxies) do rotate! Generally, the

progenitor of a black hole (as a collapsing rotating star) has an angular momentum

value other than zero. Even if this angular momentum got lost during the formation

and the newly born black hole has only a small value, the surrounding accreting matter

will give it mass and angular momentum.

An exact solution of Einstein’s equations outside a black hole with mass M and

angular momentum J exists, and it was found in 1963 by Roy P. Kerr [167, 94].

2.4.1 Kerr metric

The explicit form of the Kerr metric in the Boyer-Lindquist coordinates is the following:

ds2 = ≠
3

1 ≠ 2 M r

�

4

dt2 ≠ 4 M r a sin2 ◊

�
dt d„ +

A sin2 ◊

�
d„2 +

�

�
dr2 + � d◊2, (2.87)

where

� = r2 + a2 cos2 ◊, (2.88)

� = r2 ≠ 2 M r + a2, (2.89)

A = (r2 + a2)2 ≠ � a2 sin2 ◊. (2.90)

Observing the line element (2.87), we can deduce the main properties of the Kerr

metric:
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• It does not depend explicitly on „, that is, it is axisymmetric. This should be

expected because the rotation occurs around an axis which breaks the spherical

symmetry.

• It does not depend explicitly on t, that is, it is stationary. However, differently

from the non-rotating case, the reflection of time t æ ≠t changes the direction

of rotation: it is not static. On the other hand, the metric is invariant under a

joint transformation (t, „) æ (≠t, ≠„).

• The Kerr metric is asymptotically flat: it reduces to Minkowski space-time for

r æ Œ.

• The Kerr metric reduces to Schwarzschild metric in the limit a æ 0 (M ”= 0).

The Kerr metric depends on two parameters, the black hole mass M and its spin

parameter (angular momentum per unit mass) a © J/M . For values of the spin

|a| Æ M, (2.91)

the object exhibits an event horizon at the radius (� = 0)

rL
+ = M +

Ô
M2 ≠ a2. (2.92)

The infinite redshift surface �+, called also ergosurface, is defined by the equation

gtt = 0:

� ≠ 2 M r = r2 ≠ 2 M r + a2 cos2 ◊ = 0, (2.93)

or

r = r0 © M +
Ô

M2 ≠ a2 cos2 ◊. (2.94)

The surface �+ is null in the Schwarzschild case and coincides with the event horizon.

Instead, in the Kerr metric, the ergosurface cannot represent the event horizon since

it is time-like. Considering a moving particle, it can be seen that outside �+ (gtt < 0),

the observer can both corotate and counter-rotate with the black hole, while inside

�+ all of the observers are corotating with the black hole. The region between the

ergosurface and the event horizon is called the ergosphere.

A set of important theorems proven by R.H. Price, B. Carter, W. Israel, D.C.

Robinson, and S.W. Hawking, suggest that the external gravitational field of a black

hole is determined uniquely by two parameters: the mass M and the intrinsic angular

momentum J . In other words, during the formation and the accretion process, all

the properties of the incoming material, apart from mass and spin, are radiated away

by gravitational radiation (“black holes have no hair”, as John A. Wheeler summa-

rized). Heuristically, we can understand the reason observing that these properties are

associated with long-range fields exerting an influence at large distances. The cosmic
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censorship conjecture requires that the spin angular momentum J of the black hole

satisfies

‰ © c

GN

J

M2
Æ 1. (2.95)

This theorem implies that all high multipole moments (l Ø 2) of the gravitational field

of a non-charged black hole in GR can be expressed only in terms of M and J . In

particular, the quadrupole moment Q, the lowest-order moment measurable, should

satisfy the relation

q © c4

G2
N

Q

M3
= ≠‰2. (2.96)

Eq. (2.96) represents a useful tool to test GR: the Kerr hypothesis can be verified by

measuring the mass, spin, and quadrupole moment of an astrophysical black hole and

see if they fulfill the relation.

2.5 Post-Newtonian expansion

The difficulty of solving Einstein’s equations in the general case of a system that has

no particular symmetries has led to the need to develop a systematic approximation

method. One of these methods is the Post-Newtonian (PN) approximation, which

applies to a system of slowly moving particles bound together by gravitational forces.

2.5.1 General features

The Post-Newtonian expansion is a procedure used in GR to find an approximate

solution of the field equations. The approximations are expanded in a small parameter,

assumed to be < 1, expressing orders of deviations from Newton’s law (first-order),

which is the ratio v2/c2 of the velocity of the matter creating the gravitational field

and the speed of light.

Consider a system of particles that, like the Sun and the planets, are bound by their

mutual gravitational attraction [32]. Let M̄ , r̄, and v̄ the typical values of the masses,

separations, and velocities of these particles. From Newtonian mechanics we know that

the typical kinetic energy
1

2
M̄v̄2 is approximately of the same order of magnitude as

the gravitational energy
GNM̄2

r̄
, so that

v̄2 ≥ GNM̄

r̄
. (2.97)

Typical values of the significant physical quantities in the Solar System are the

following: the Newtonian gravitational potential U is Æ 10≠5, the planetary velocities

v̄2 are Æ U , the matter pressure P inside the Sun and the planets is smaller than the
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energy density fl U of the matter, and the specific energy density � of the other forms

of energy in the Solar System (stresses, radiation, etc.) are Æ U . It follows that these

quantities give only second-order contributions, considered as functions of velocity

U ≥ v2 ≥ P

fl
≥ � ≥ O(2). (2.98)

Since the velocity v contributes to order O(1), in this approximation we have

ˆ

ˆx0
≥ v · Ò, (2.99)

and
|ˆ/ˆx0|

Ò ≥ O(1). (2.100)

In the Newtonian approximation, based on the hypothesis of small velocities (v << c)

and retaining only first-order terms in the deviations of gµ‹ from the Minkowski metric

÷µ‹ , the particle equations of motion reduce to [233]

d2xi

d(x0)2
ƒ ≠�

i
00 ƒ ≠1

2

ˆg00

ˆxi
, (2.101)

where the relationship between affinities and derivatives of the metric has been taken

into account. Since g00 ≠ 1 is of order GNM̄/r̄, the Newtonian approximation gives

d2xi/dt2 to order GNM̄/r̄2 (that is, to order v̄2/r̄). Therefore, the post-Newtonian

approximation requires the calculation of d2xi/dt2 to the order v̄4/r̄. The order up

to which expanding the various components of affine connections can be deduced by

making explicit the accelerations from expression (2.18):

d2xi

dt2
= ≠�

i
00 ≠ 2�

i
0j

dxj

dt
≠ �

i
jk

dxj

dt

dxk

dt
+

C

�
0
00 + 2�

0
0j

dxj

dt
+ �

0
jk

dxj

dt

dxk

dt

D

dxi

dt
. (2.102)

According to the local flatness of space-time, we expect that it is possible to find a

coordinate system in which the metric tensor is nearly equal to the Minkowski tensor

÷µ‹ , the corrections being expandable in powers of M̄ GN/r̄ ≥ v̄2:

g00(x
0, x) = ≠ 1 + g

(2)
00 (x0, x) + g

(4)
00 (x0, x) + O(6), (2.103)

g0i(x
0, x) =g

(3)
0i (x0, x) + O(5), (2.104)

gij(x
0, x) =”ij + g

(2)
ij (x0, x) + O(4). (2.105)

The inverse metric is

g00(x0, x) = ≠ 1 + g(2)00(x0, x) + g(4)00(x0, x) + O(6), (2.106)

g0i(x0, x) =g(3)0i(x0, x) + O(5), (2.107)

gij(x0, x) =”ij + g(2)ij(x0, x) + O(4). (2.108)
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The symbol g(N)
µ‹ denotes the term in gµ‹ of order v̄N. From (2.102) and using the

estimates (2.103)-(2.108), we find the following expansions for the components �
i
00, �

i
jk

and �
0
0i

�
µ
‹⁄ = �

(2)µ
‹⁄ + �

(2)µ
‹⁄ + . . . (2.109)

and for the components �
i
0j, �

0
00 and �

0
ij

�
µ
‹⁄ = �

(3)µ
‹⁄ + �

(5)µ
‹⁄ + . . . . (2.110)

Computation of the affine connections is based on the explicit formula (2.18), and on

the fact that since the space and time scales are set respectively by r̄ and r̄/v̄, spatial

and time derivatives are of the order

ˆ

ˆxi
≥ 1

r̄
,

ˆ

ˆx0
≥ v̄

r̄
. (2.111)

Explicitly:

�
(3)0

00 =
1

2
g

(2),0
00 , (2.112)

�
(2)i

00 =
1

2
g

(2),i
00 , (2.113)

�
(2)i

jk =
1

2

1

g(2),i
jk ≠ g(2)i

j,k ≠ g(2)i
k,j

2

, (2.114)

�
(3)0

ij =
1

2

1

g(3)0
i,j ≠ g(3)0

j,i ≠ g(3),0
ij

2

, (2.115)

�
(3)i

0j =
1

2

1

g(3),i
0j ≠ g(3)i

0,j ≠ g(2)i
j,0

2

, (2.116)

�
(4)0

0i =
1

2

1

g(4)0
0,i + g(2)00g

(2)
00,i

2

, (2.117)

�
(4)i

00 =
1

2

1

g(4),i
00 + g(2)img

(2)
00,m ≠ 2g(3)i

0,0

2

, (2.118)

�
(2)0

0i =
1

2
g(2)0

0,i. (2.119)

The corresponding components of the Ricci tensor are calculated using Eq. (2.2.1):

R
(2)
00 =

1

2
Ò2g

(2)
00 (2.120)

R
(4)
00 =

1

2
Ò2g

(4)
00 ≠ 1

2
g(2)mn

,m g
(2)
00,n ≠ 1

2
g(2)mng

(2)
00,mn +

1

2
g(2)m

m,00 ≠ 1

4
g(2)0,m

0 g
(2)
00,m (2.121)

≠ 1

4
g(2)m,n

m g
(2)
00,n ≠ g(3)m

0,m0,

R
(3)
0i =

1

2
Ò2g

(3)
0i ≠ 1

2
g(2)m

i,m0 ≠ 1

2
g(3)m

0,mi +
1

2
g(2)m

m,0i, (2.122)

R
(2)
ij =

1

2
Ò2g

(2)
ij ≠ 1

2
g(2)m

i,mj ≠ 1

2
g(2)m

j,mi ≠ 1

2
g(2)0

0,ij +
1

2
g(2)m

m,i. (2.123)

These expressions can be simplified by choosing the harmonic gauge [233], that is a

coordinate system xµ so that it is satisfied the condition

gµ‹
�

⁄
µ‹ = 0. (2.124)
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It follows that, in this gauge, the Ricci tensor components are

R
(2)
00 =

1

2
Ò2g

(2)
00 , (2.125)

R
(4)
00 =

1

2
Ò2g

(4)
00 ≠ 1

2
g(2)mng

(2)
00,mn ≠ 1

2
g(2)0

0,00 ≠ 1

2

-

-

-ÒÒ÷g
(2)
00

-

-

-

2
, (2.126)

R
(3)
0,i =

1

2
Ò2g

(3)
0i , (2.127)

R
(2)
ij =

1

2
Ò2g

(2)
ij , (2.128)

and the Ricci scalar is

R(2) =R(2)0
0 ≠ R(2)m

m =
1

2
Ò2g(2)0

0 ≠ 1

2
Ò2g(2)m

m, (2.129)

R(4) =R(4)0
0 + g(2)00R

(2)
00 + g(2)mnR(2)

mn

=
1

2
Ò2g(4)0

0 ≠ 1

2
g(2)0,0

0,0 ≠ 1

2
g(2)mn

1

g(2)0
0,mn ≠ Ò2g(2)

mn

2

≠ 1

2

-

-

-Òg(2)0
0

-

-

-

2
+

1

2
g(2)00Ò2g

(2)
00 .

(2.130)

Using the definition of the Lagrangian of a particle in the gravitational field, we get

L =

A

gfl‡

dxfl

dx0

dx‡

dx0

B1/2

= (g00 + 2g0mvm + gmnvmvn)1/2

=
1

1 + g
(2)
00 + g

(4)
00 + 2g

(3)
0mvm ≠ v2 + g(2)

mnvmvn
21/2

, (2.131)

which reduces to the Newtonian Lagrangian LN =
1

1 + g
(2)
00 ≠ v2

2

to second order and

includes higher order terms in the Post-Newtonian limit.

2.6 General metrics

In this section, we wonder what it is the general form of the metric produced by a spher-

ically symmetrical static object (Sec. 2.6.1), which in first approximation represents an

astrophysical object (such as the Sun, or a black hole). Under these assumptions, three

tests to support GR were carried out [233]:

1. Gravitational redshift of spectral lines;

2. Deflection of light by the Sun;

3. Precession of the perihelia of the orbits of the inner planets.

In particular, we will focus on treating the precession of the perihelia in the context

of the Parametrized Post Newtonian (PPN) formulation (Sec. 2.6.3), an approach that

aims at finding deviations from the Schwarzschild solution in a model-independent way

(Sec. 2.6.2).
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2.6.1 The General Static Isotropic gravitational field

The most general metric tensor representing a static isotropic gravitational field, in the

“standard” form, is [233]

d· 2 = B(r) dt2 ≠ A(r) dr2 ≠ r2 (d◊2 + sin2 ◊ dÏ2). (2.132)

The metric tensor gµ‹ is diagonal and its nonvanishing components are

gtt = ≠B(r) grr = A(r) g◊◊ = r2 gÏÏ = r2 sin2 ◊ . (2.133)

Its inverse has the coefficients

gtt = ≠B≠1(r) grr = A≠1(r) g◊◊ = r≠2 gÏÏ = r≠2 sin≠2 ◊ . (2.134)

The general functions A(r) and B(r) can be determined by solving the field equations.

The nonvanishing Christoffel symbols, calculated from the usual formula (2.18), are

�
r
rr =

1

2 A(r)

dA(r)

dr

�
r
◊◊ = ≠ r

A(r)

�
r
ÏÏ = ≠r sin2 ◊

A(r)

�
r
tt =

1

2 A(r)

dB(r)

dr

�
◊
r◊ = �

◊
◊r =

1

r

�
◊
ÏÏ = ≠ sin ◊ cos ◊

�
Ï
Ïr = �

Ï
rÏ =

1

r

�
Ï
Ï◊ = �

Ï
◊Ï = cot ◊

�
t
tr = �

t
rt =

1

2B(r)

dB(r)

dr
. (2.135)

We now consider equations of motion of a freely falling particle in such a metric

d2xµ

dp2
+ �

µ
‹⁄

dx‹

dp

dx⁄

dp
= 0, (2.136)

where p is an affine parameter that can be normalized for a material particle so that

p = · . Using expressions (2.135) for the affine connections, we define the following
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system

0 =
d2r

dp2
+

AÕ(r)

2A(r)

A

dr

dp

B2

≠ r

A(r)

A

d◊

dp

B2

≠ r
sin2 ◊

A(r)

A

dÏ

dp

B2

+
BÕ(r)

2A(r)

A

dt

dp

B2

(2.137)

0 =
d2◊

dp2
+

2

r

d◊

dp

dr

dp
≠ sin ◊ cos ◊

A

dÏ

dp

B2

(2.138)

0 =
d2Ï

dp2
+

2

r

dÏ

dp

dr

dp
+ 2 cot ◊

dÏ

dp

d◊

dp
(2.139)

0 =
d2t

dp2
+

BÕ(r)

B(r)

dt

dp

dr

dp
, (2.140)

where Õ =
d

dr
. Isotropy allows us to assume that the orbit lies in the equatorial plane,

that is to fix ◊ = fi/2. Two constants of motion can be found by dividing (2.139) and

(2.140) by dÏ/dp and dt/dp respectively:

d

dp

I

ln
dÏ

dp
+ ln r2

J

= 0 (2.141)

d

dp

I

ln
dt

dp
+ ln B

J

= 0. (2.142)

The solution of (2.142), after normalizing p, is

dt

dp
=

1

B(r)
. (2.143)

The other constant is obtained by solving (2.141), and represents the angular momen-

tum per unit mass

r2 dÏ

dp
= J. (2.144)

Substituting (2.143) and (2.144) in (2.137), we get the remaining equation of motion

d

dp

Y

]

[

A(r)

A

dr

dp

B2

+
J2

r2
≠ 1

B(r)

Z

^

\

= 0, (2.145)

which gives our last constant of motion

A(r)

A

dr

dp

B2

+
J2

r2
≠ 1

B(r)
= ≠E (constant). (2.146)

Since we are more interested in the shape of orbits, that is, in r as a function of Ï,

we can eliminate dp from (2.144) and (2.146)

A(r)

r4

A

dr

dÏ

B2

+
1

r2
≠ 1

J2B(r)
= ≠ E

J2
. (2.147)

The solution can be determined by a quadrature:

Ï = ±
⁄ A1/2(r) dr

r2

A

1

J2B(r)
≠ E

J2
≠ 1

r2

B1/2
. (2.148)
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2.6.2 Eddington-Robertson expansion

Here we will expose a useful test of GR as formulated by Eddington and Robertson.

We ask ourselves what is the general form in which to express the metric produced by

a static spherically symmetrical body, which could be in principle different from that

calculated from the Einstein equations. It is reasonable to expect that such a form

should be isotropic and should have metric coefficients expressible in power series in

the small parameter
M GN

r
=

RS

2 r
:

d · 2 =

A

1 ≠ –
RS

2 fl
+ —

R2
S

2 fl2
+ . . .

B

dt2

≠
A

1 + “
RS

fl
+ . . .

B

(dfl2 + fl2 d◊2 + fl2 sin2 ◊ dÏ2) (2.149)

where –, — and “ are unknown dimensionless parameters, whose value must be fixed

by measurements. Comparison with the isotropic form of the Schwarzschild solution

[233] shows that GR is recovered for

– = — = “ = 1. (2.150)

It’s convenient to express the metric in its “standard” form by defining

r © fl

A

1 + “
RS

2 fl
+ . . .

B

(2.151)

or

fl = r
3

1 ≠ “
RS

2 r
. . .

4

. (2.152)

After substitution we obtain

d· 2 =
3

1 ≠ –
RS

r
+ (— ≠ – “)

RS

2 r2
+ . . .

4

dt2

≠
3

1 + “
RS

r
+ . . .

4

dr2 ≠ r2d◊2 ≠ r2 sin2 ◊ dÏ2. (2.153)

2.6.3 Precession of Perihelia

Consider a test particle in a bound orbit, for example around the Sun (see Figure 2.3)

[233].

When r reaches its minimum and maximum values, that is respectively at perihelia

r≠ and aphelia r+, dr/dÏ vanishes, so (2.147) gives

1

r2
±

≠ 1

J2B(r±)
= ≠ E

J2
. (2.154)
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Let us use for A(r) and B(r) the Robertson expansions

A(r) = 1 + “
RS

r
+ . . . (2.160)

B(r) = 1 ≠ RS

r
+

(— ≠ “)R2
S

2 r2
+ . . . . (2.161)

It’s useful to realize that by using the expansion

B≠1(r) ƒ 1 +
RS

r
+

(2 ≠ — + “)R2
S

2 r2
(2.162)

the argument of the first square root of (2.158) becomes a quadratic function of 1/r;

it vanishes at r = r±, so

r2
≠

(B≠1(r) ≠ B≠1(r≠)) ≠ r2
+(B≠1(r) ≠ B≠1(r+))

r2
+r2

≠(B≠1(r+) ≠ B≠1(r≠))
≠ 1

r2
=

= C

A

1

r≠

≠ 1

r

B A

1

r
≠ 1

r+

B

. (2.163)

We can determine C by putting r æ Œ:

C ƒ 1 ≠ (2 ≠ — + “)
RS

2

A

1

r+

+
1

r≠

B

. (2.164)

Substituting the above result in the integral (2.158), and defining the new variable Â

1

r
© 1

2

A

1

r+

≠ 1

r≠

B

+
1

2

A

1

r+

≠ 1

r≠

B

sin Â (2.165)

we finally find

Ï(r) ≠ Ï(r≠) =

C

1 +
1

4
(2 ≠ — + 2 “) RS

A

1

r+

+
1

r≠

BD

5

Â +
fi

2

6

≠ 1

4
“ RS

A

1

r+

≠ 1

r≠

B

cos Â. (2.166)

At aphelion Â = fi/2, so that the precession per revolution is

�Ï =
3

3fi RS

¸

4

A

2 ≠ — + 2“

3

B

(radians/revolution) (2.167)

where ¸ is called the semilatus rectum

1

¸
© 1

2

A

1

r+

+
1

r≠

B

. (2.168)

The elements defining planetary orbits are the semi-major axis a and eccentricity e,

defined as

r± = (1 ± e)a. (2.169)
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Hence the expression of ¸ in terms of a and e is

¸ = (1 ≠ e2) a. (2.170)

Einstein’s field equations yield — = “ = 1, so they predict a precession

�Ï = 3fi
RS

¸
radians/revolution. (2.171)

This is positive, meaning that the whole orbit should precess in the same direction as

the motion of the test particle.

For Mercury, GR predicts

�ÏS = 42.9822ÕÕ per century (¬). (2.172)

According to observations �Ïobs = 43.1000 ± 0.5000ÕÕ per century (see Sec. 6.2.1).

These data served as the first important verification of GR. The result we are

most interested in is Eq. (2.167): it represents a great tool to test other theories of

gravitation, as we will see in Sec. 3.4.4.

2.7 Concluding remarks

In this chapter, we retraced the developments of GR, currently the most successful

gravitational theory thanks to its formal elegance and experimental confirmations.

When Einstein formulated GR he did not supplant Newton’s laws, but he broadened

their field of applicability. He explained what happened under conditions that could

not be adequately described by the old theory, such as strong gravitational fields and

motion close to the speed of light. In general, when introducing a new theory in physics,

for it to be valid it must include successes of the one that preceded it, and at the same

time, it must broaden the range of situations that the previous one did not describe

with precision. The newborn paradigm must explain what has already been explained

and should predict something that has not yet been conceived. In the next chapter,

we will examine the signals that GR is at a point analogous to Newton’s theory when

it was “extended”. Some inconsistencies have emerged from a large amount of new

observational data and theoretical progress.
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Extending General Relativity

Veritatem inquirenti, semel in vita de omnibus, quantum fieri potest, esse

dubitandum.

– R. Descartes
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In this chapter, we will introduce Extended Theories of Gravity (ETG). After an-

alyzing the reasons that led many scientists to extend GR (Sec. 3.1), we will focus on

two particular ETG: the f(R)-gravity theory (Sec. 3.3), which helps us in the natural
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solution of some problems at infrared scales, and the Bootstrapped Newtonian gravity

theory (Sec. 3.4), born from the attempt to frame gravitational theory in a quantum

context. On this background, we will define the system of geodesics equations to apply

to the exact study of stellar orbits at the Galactic Center.

3.1 Motivations

Attempts to apply GR at extreme regimes, far from the Solar System where it proved

to be successful, led to the question of whether it is the definitive theory to explain

gravitational interaction. Such a question has both theoretical and experimental roots

[35], which will be summarized in this section.

First of all, the Standard Model of Big-Bang cosmology, which refers to an adi-

abatically expanding radiation-dominated Universe described by a Robertson-Walker

metric, is afflicted by the flatness problem and the horizon problem [122].

Remaining in the cosmological context, another delicate issue is that the observed

accelerated expansion of the Universe requires mysterious and still undetected ingredi-

ents in the global matter-energy content: dark energy (DE) and dark matter (DM).

Then, since the Einsteinian scheme is classical, a unification of gravity with the

other interactions based on a quantum description is not possible. A unifying scheme

is desired for many reasons [28, 131], although the quantum gravity correction becomes

essential at an experimentally inaccessible scale (that is the Planck scale lP ≥ 10≠33

cm). An example is given by the Big Bang scenario: in the Planck era, the Universe

experiences dimensions smaller than lP and this requires an adequate quantum treat-

ment. Moreover, in GR space-time is a continuum and all scales are relevant, therefore

the quantum question must be addressed for a definitive study of the intimate nature

of space-time.

Other reasons to modify GR are dictated by the attempt to fully incorporate Mach’s

principle into the theory. This principle states that the inertial forces observed locally in

an accelerated laboratory can be interpreted as gravitational effects originating from

distant matter accelerated relative to the laboratory. These ideas found a limited

expression in GR, where the geometry is influenced by the mass distribution but is not

uniquely specified; here it is not possible to specify boundary conditions on the field

equations that bring the theory in accordance with Mach’s Principle.

These reasons led to propose several “alternative theories”, within which GR and its

successes should be replicated. One of the most productive approaches has been that of

Extended Theories of Gravitation (ETG), defined as semiclassical theories in which the

effective field Lagrangian is modified, with respect to the Hilbert-Einstein Lagrangian

of gravitation, by higher-order terms in the invariants of curvature (as R2, Rµ‹Rµ‹ ,

Rµ‹–—Rµ‹–—, R⇤R, R⇤
kR), or by terms with scalar fields not minimally coupled to
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the geometry (as „2R) [32].

Below we will see why ETG could play a relevant role in the problems mentioned.

3.1.1 The cosmological problem

The Standard Model of Big-Bang cosmology is problematic for its puzzling assumptions

on initial conditions [36, 122]. Let us briefly summarize its fundamental equations to

see what generates the cosmological problem.

The Universe is described by the Robertson-Walker metric:

d· 2 = dt2 ≠ R2(t)

C

dr2

1 ≠ k r2
+ r2 (d◊2 + sin2 ◊ d„2)

D

, (3.1)

where k = {1, ≠1, 0} depending on whether the Universe is closed, open or flat. Ein-

stein equations regulate the evolution of R(t) 1:

R̈ = ≠4fi

3
G(fl + 3 p) R (3.2)

H2 +
k

R2
=

8fi

3
G fl, with H =

Ṙ

R
. (3.3)

Conservation of energy translates into the equation

d

dt
(fl R3) = ≠p

d

dt
R3, (3.4)

where p indicates the pressure. Another assumption at the basis of the Standard Model

is the adiabatic expansion, that is

d

dt
(s R3) = 0, (3.5)

where s is the entropy density and S = s R3 is the total entropy. To complete the

previous set of equations, we must write the equation of state of an ideal quantum gas

of massless particles describing matter. Thermodynamic quantities can be expressed

as

fl = 3 p =
fi2

30
R(T ) T 4 (3.6)

s =
2fi2

45
R(T ) T 3 (3.7)

n =
’(3)

fi2
R

Õ(T ) T 3. (3.8)

1The dot represents the derivative with respect to t.
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Here n is the particle number density, ’(3) = 1.20206... is the Riemann zeta function,

R(T ) = Nb(T ) +
7

8
Nf(T ) (3.9)

R
Õ(T ) = Nb(T ) +

3

4
Nf(T ) (3.10)

and Nb(T ) and Nf(T ) are the number of spin degrees of freedom for bosons and fermions

at temperature T . Let us rewrite Eq. (3.3) in terms of T :

A

Ṫ

T

B2

+ ‘(T ) T 2 =
4fi3

45
GN R(T ) T 4 with ‘(T ) =

k

R2T 2
= k

C

2fi2

45

R(T )

S

D2/3

. (3.11)

Today, observations point out that fl is very close to the critical value, in the sense that

0.01 < �0 < 10, where

� © fl

flcr

=
8 fi

3

G fl

H2
. (3.12)

So, taking fl < 10 flcr, we have |k/R2| < 9H2. Next, assuming k = ±1 it follows that

R >
1

3
H≠1 ≥ 3 ◊ 109 years. Assuming the photon temperature T“ = 2.7 ¶K and that

there are three species of massless neutrinos (e, µ, and ·), we find that S“ > 3 ◊ 1085

and S‹ = 21/22 S“. Then:

S > 1086 (3.13)

and

|‘| < 10≠58
R

2/3. (3.14)

Finally, taking T = 1017 GeV and R ≥ 102, one finds
-

-

-

-

-

fl ≠ flcr

fl

-

-

-

-

-

=
45

4fi3

M2
P

RT 2
|‘| < 10≠55. (3.15)

This is the flatness problem. The heart of the problem lies in the smallness of this

relationship; required initial conditions are very stringent. If the Universe initial density

could have assumed any value, it seems extremely surprising to discover a value so close

to flcr. A small deviation of �0 from unity in the early Universe would have amplified

enormously during the following billions of years, leading to a current density value far

from the critical one.

Deleting ‘ T 2 from (3.117), we get T 2 = MP/(2 “ t) (“2 = (4fi3/45)R). According

to the conservation of entropy, we have R T =constant, so that R Ã t1/2. Starting at

t = 0, a light pulse will have traveled a physical horizon distance, after a time t, equal

to

l(t) = R(t)
⁄ t

0
dtÕ R≠1(tÕ) = 2t. (3.16)

The horizon distance must be compared with the radius L(t) of the region at time t,

which according to the conservation of entropy can be written as

L(t) = [sp/s(t)]1/3Lp, (3.17)
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where sp is the present entropy density and Lp ≥ 1010 years is the radius of the currently

observed Universe. Let us write the ratio of volumes:

l3
0

L3
0

= 10≠83. (3.18)

The initial Universe consists of at least ≥ 1083 separate regions which are causally

disconnected, that is have not yet had time to communicate with each other. Instead, it

is observed that the radiation of the Cosmic Microwave Background (CMB) is isotropic

up to an accuracy of the order of 10≠(4≠5). This indicates that all regions have been in

contact with one another sometime in the past. This is the horizon problem.

Now assume that there has been a period of inflation: it is a process imagined in

1981 by A. Guth [122] during which the scale factor expands exponentially (ä > 0)

a(t) ≥ eHt, H = constant. (3.19)

Then, the problems of flatness and the horizon could be avoided.

The key point to solve the flatness problem is that entropy is no longer constant

and the temperatures corresponding to tin and tR are nearly equal, where tR denotes

the reheating time (time of the end of the inflation). Then, entropy increases during

inflation and ‘ decreases [36]; so, (fl ≠ flcr)/fl could be nearly 1 both at tin and the

present time.

During inflation, the future light cone increases exponentially, while the past light

cone isn’t influenced by t Ø tR. If the duration of the inflation �t = tR ≠ tin is large

enough, lc
future(tR) will be greater than lc

past(tR).

In the context of GR, the occurrence of an inflationary phase requires the source

of gravity to have negative pressure. This becomes possible with an approximately

constant energy density, such as the vacuum energy provided by the potential of some

scalar field, the inflaton. There are two main classes of inflationary models: models

where gravity is essentially described by Einstein’s equations and the scalar field (or

scalar fields) acts as a source that produces inflation, and models where both gravity

and the source of the field equations are changed. ETG are included in this second

family.

3.1.2 UV scales: the Quantum Gravity problem

ETG play a fundamental role in the quantum gravity problem, consisting in the inca-

pability of quantizing the gravity and treating it at a fundamental level. Such difficulty

arises from the double role played by the gravitational field gµ‹ ; it describes both the

dynamical aspects of gravity and the background space-time structure. In other words,

GR cannot be formulated as a quantum field theory on a Minkowski space-time as the

other interactions, since there is not a priori a geometry for the space-time background.
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Generally, when the concept of classical space-time metric is absent, a good def-

inition of causality fails. Consider a semi-classical approximation in which the grav-

itational field is treated classically and the matter is represented by quantum fields;

according to this description, Einstein’s equations take the form

Gµ‹ © Rµ‹ ≠ 1

2
gµ‹ R =< Tµ‹ >, (3.20)

where on the left there is the usual Einstein tensor Gµ‹ and on the right there is the

expectation value of the quantum energy-momentum tensor. More precisely, if |� > is

a quantum state that describes the early Universe, then

< Tµ‹ >©< �|T̂µ‹ |� >, (3.21)

where T̂µ‹ is the quantum operator associated with the classical energy-momentum

tensor. According to Eq. (3.20), the gravitational field should change in a discontinuous

manner to keep into account the quantum behaviour of the matter. To overcome this

difficulty the gravitational field should be quantized and in this respect two main

approaches have been tried [36, 230]: the covariant and the canonical method.

The basic working hypothesis of the covariant method is that it is always possible

to separate the metric gµ‹ into a kinematic part ÷µ‹ , which represents the background

space-time, and a dynamic part hµ‹ , which represents a small perturbation of the space

time:

gµ‹ = ÷µ‹ + hµ‹ . (3.22)

The background geometry is used to define notions of causality and time. The dy-

namic field, considered as a background perturbation, is the quantity to be quantized.

Quanta are spin 2 particles, called gravitons, which propagate in flat space-time and

are defined by hµ‹ . Thus, in principle, perturbative methods familiar to the Quantum

Electrodynamics (QED) can be used to treat gravitation. Unfortunately, the resulting

perturbation theory for hµ‹ is renormalizable only at the one-loop level. The fact that

GR is not renormalizable to all orders simply means that its validity ceases at high

energies (i.e. at small scales), while it describes well phenomena in the low energy

domain (i.e. and at great distances). Ultimately, the correct theory of gravity must be

invoked in the Planck era, while, well below this time, GR is sufficient. In this perspec-

tive, higher-order terms and non-minimal couplings are added to the Hilbert-Einstein

action.

The second approach, applicable after the Hamiltonian formulation of the classical

theory in question, is the canonical method. It is based on three steps: taking the

states of the system to be described by the wave functions Â(q) of the configuration

variables, replacing each momentum variable by differentiation with respect to the con-

jugate configuration variable, and determining the time evolution of Â by means of the

Schrödinger equation i ~ ˆÂ/ˆt = Ĥ Â. The Hamiltonian formalism, first developed by

Arnowitt, Deser, and Misner [237], is based on foliating the four-dimensional manifold;
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the canonical variables are the three-metric on the obtained spatial submanifolds. The

fundamental difficulty that emerges is how to physically interpret the solution wave

function of the evolution equation of the three-metrics and their conjugate momenta,

known as the Wheeler-De Witt equation. Starting from it we can define an inner prod-

uct, which is still independent of the space-like surface belonging to a generic leaflet, but

it is not defined as positive. This particularity prevents the adoption of a probabilistic

interpretation; there is no longer a Hilbert space. A further difference is due to the

fact that resulting equations involve products of operators defined at the same point in

space-time and, moreover, involve the construction of physically unclear distributions.

Given the aforementioned difficulties in the attempt to “quantize” GR, it is natural

to consider extensions to the Hilbert-Einstein action, in particular by adding terms of

higher-order in the curvature.

3.1.3 IR scales: Dark Energy and Dark Matter

In recent years, a considerable amount of astrophysical data has been accumulated

which has made it necessary to consider a new approach also in recent times: ETG

would play a fundamental role in this context. The picture that emerges is that of a

spatially flat universe that is currently undergoing a phase of accelerated expansion.

The first evidence of accelerated expansion comes from the study of high redshift

deviations from Hubble’s linear law of type Ia supernovae [133, 188, 90, 224], which

gives information about density parameters. In particular, these observations show that

the value of �Λ, that is the contribution to the cosmic fluid due to the cosmological

constant, is greater than �M, the matter density parameter; this entails an accelerated

expansion. This evidence is strengthened by other observations.

First, the abundance of galaxy clusters and the fraction of gas in the clusters con-

strain the density parameter of matter to be �M ≥ 0.3. Moreover, the measurement

of the anisotropies in the spectrum of the cosmic background radiation, first obtained

with BOOMERANG [58] and MAXIMA [220] and later with WMAP [128, 217, 218]

satellite, provide the constraint �k ƒ 0.0, where �k is the contribution of spatial cur-

vature: the Universe is spatially flat. These facts strongly indicate that one must have

�Λ ƒ 0.7 for the equation of the cosmic triangle to be satisfied

�k + �M + �Λ = 1. (3.23)

The model just outlined is called the “concordance model” and is based on the afore-

mentioned percentages of the different �i (with i = M, �, k). The most difficult open

problem is the value of �Λ which is usually attributed to the cosmological constant; the

cause of the accelerated expansion is identified with some form of “dark energy” having

only a dynamic role in the cosmic fluid, to which it contributes about 70%. In this

case the concordance model is called �CDM (� Cold Dark Matter), which interprets
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the cosmic fluid as a mixture of cosmological constant [204], cold dark matter (given

by not relativistic particles) and baryonic matter. The issue is that if we interpret �

as vacuum energy, in analogy with inflation, we realize that the value according to the

observations is 120 orders of magnitude smaller than that of the fundamental theories

that should have operated in the primordial Universe; this leads us to suppose the

existence of some dynamic entity that reduces the vacuum energy. As a possible solu-

tion, many authors have replaced the cosmological constant with a scalar field which,

like the inflaton, slowly rolls into a self-interacting potential with a process that has

allowed vacuum energy to become dominant only in recent times; these models are

known as quintessence [53, 182]. This approach is afflicted by a fine-tuning problem,

called “coincidence problem”, consisting in the incapability of explaining why precisely

in the current cosmological era, the contributes of �Λ and �M have the same order of

magnitude. Furthermore, the origin of this scalar field is mysterious, and the forms

adopted in the literature for the potential for self-interaction, which seem to have no

immediate physical explanations are difficult to justify.

The unknown nature of dark energy has prompted many authors to seek a different

explanation for this accelerated phase; it is in fact possible that the observed cosmic

acceleration is the sign of a failure, in the infrared limit, of the laws of gravitation as

we know them.

In this conceptual framework, it is possible to develop alternative models that

naturally provide a cosmological component with negative pressure originating in the

geometry of the Universe.

3.2 Beyond Einstein’s theory

In the previous section, we realized the inevitability of extending GR at low and high

energies. Suitable alternatives should be able to cure shortcomings at extremes regimes

and be consistent with GR in the intermediate-energy regime. There are countless ways

to modify GR, that is why we discuss the Lovelock theorem. It is useful to classify

extensions of GR based on which of the underlying assumptions of the theorem they

violate. Then, we will discuss a general class of ETG which, depending on the choice

of specific parameters, give us all the cases of interest.

3.2.1 Lovelock theorem

ETG carry out modifications of GR and hence the abandonment of some of its fun-

damental assumptions. It follows that a principle governing the innumerable ways

of extending GR is given by examining basic postulates of Einstein’s theory. Such a

guide resides in Lovelock’s theorem [155, 156], which expresses GR as the only theory
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emerging from a system of specific premises. It can be stated as follows:

Theorem. In four space-time dimensions, the only divergence-free symmetric rank-

2 tensor constructed solely from the metric gµ‹ and its derivatives up to the second

differential order, and preserving diffeomorphism invariance, is the Einstein tensor

plus a cosmological term.

By analyzing the theorem, we can see that each class of ETG can be traced back

to the circumvention of one of its assumptions [15]; in particular, as summarized by

Figure 3.1, there are four ways to bypass Lovelock’s theorem.

1. Additional fields - The simplest way to evade Lovelock’s theorem consists of

adding extra degrees of freedom coupling the metric to extra fundamental fields

(scalar, vector, tensor). Since any higher differential order theory can always

be brought to second-order form plus a specific number of extra fields, the same

possibilities can be obtained by lifting the assumption of second differential order.

Finally, by dropping the implicit assumption that the matter stress-energy tensor

Tµ‹ enters the field equations linearly, it is possible to construct theories where

the Einstein’s tensor is left unchanged and the right-hand side is a nonlinear

combination of Tµ‹ preserving the vanishing of its covariant divergence [183].

Nonlinear couplings can solve some of the curvature singularities that emerge in

fluid collapse and early-time cosmology in GR [4]. These theories are equivalent

to GR in vacuum and satisfy the WEP.

2. Violations of diffeomorphism invariance - This assumption can be left in two

ways. The first assumes that the Lorentz invariance, which has been tested in

the Standard Model sector, is just an emergent symmetry that is broken at high

energy in the gravitational sector. The resulting class of theories improves the UV

behaviour of GR [129]. The second way to discard the diffeomorphism invariance

is equivalent to abandon the hypothesis that gravity should be mediated by a

massless spin-2 field. This generates the massive gravity theories [66], important

for their role to solve the cosmological constant problem.

3. Higher dimensions - The class of theories emerging from postulating higher di-

mensions have many theoretical applications, in particular, they are used to for-

mulate consistent string theories and they may solve the hierarchy problem. GR

in higher dimensions naturally introduces additional scalar and gauge fields when

a dimensional reduction from D > 4 to D = 4 is performed.

4. WEP violations - The requirement that the left-hand side of Einstein’s equa-

tion is divergence-free is dictated by the WEP. Various classes of theories that

circumvent Lovelock’s theorem only by postulating a nonminimal coupling to

the matter sector (and thus violating the weak equivalence principle) have been

proposed [16, 32].
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with respect to gµ‹ :

Gµ‹ =
1

G

C

k T µ‹ +
1

2
gµ‹(F ≠ G R) + (gµ⁄g‹‡ ≠ gµ‹g⁄‡) G;⁄‡

+
1

2

k
ÿ

i=1

i
ÿ

j=1

(gµ‹g⁄‡ ≠ gµ⁄g‹‡)(⇤j≠i);‡

A

⇤
i≠j ˆF

ˆ⇤iR

B

;⁄

≠ gµ‹g⁄‡

A

(⇤j≠1R);‡⇤
i≠j ˆF

ˆ⇤iR

B

;⁄

D

, (3.25)

where Gµ‹ is the Einstein tensor and

G ©
n

ÿ

j=0

⇤
j

A

ˆF

ˆ⇤jR

B

. (3.26)

The stress-energy tensor is given by the contribution of the ordinary matter and of the

kinetic part of the scalar field:

Tµ‹ = T (m)
µ‹ +

‘

2

5

„;µ„;‹ ≠ 1

2
„;–„;–

6

. (3.27)

The Klein-Gordon equation is obtained by varying the action with respect to „:

‘⇤„ = ≠ˆF

ˆ„
. (3.28)

The simplest extension of GR is achieved by assuming

F = f(R), ‘ = 0. (3.29)

It is the f(R)-gravity theory and will be discussed in detail in the next section.

Another interesting case is obtained by putting

F = F („) R ≠ V („), ‘ = ≠1, (3.30)

where V („) and F („) are generic functions describing the potential and the coupling

of a scalar field „. The action becomes

S =
⁄

V („)
5

F („) R +
1

2
gµ‹„;µ„;‹ ≠ V („)

6

. (3.31)

The action (3.31) goes back to the Brans-Dicke theory of gravity for V („) = 0. Orig-

inally, Brans-Dicke theory was born from the attempt to implement the principle of

Mach in a relativistic theory of gravity [27].
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3.3 f (R)-gravity

f(R) gravities have been proposed as the prototype of the infrared corrections to GR

as an alternative to models based on DM and DE. The necessity of introducing DM

arises from the evidence that studying astrophysical systems, the dynamically inferred

mass is greater than that attributed to the luminous components. The ‘missing matter’

problem was first addressed by J. H. Oort in the 1930s [179]; when he calculated the

mass of our Galaxy as the sum of its luminous components, it turned out that such

a value was lower than the mass required by the dynamic estimation based on the

Doppler red-shifts values of the stars. Moreover, in the 1960s, it was observed that

far from the Galactic Center all the stars travel with a velocity independent from the

distance from the Center. At larger scales, F. Zwicky found that the visible mass of

the galaxies constituting the Coma cluster wasn’t large enough to avoid the cluster to

come apart [242]. The ‘missing matter’ was initially attributed to invisible dark entities,

such as MACHO’s or WIMPs. Since there is no proof that these objects exist, we try

to address the problem by adopting the approach of the ETG, consisting in leaving

unchanged the material sector of the field equations and intervening on the geometry.

In particular, the f(R)-gravity theory consists in replacing the Ricci curvature scalar

R in the Hilbert-Einstein action by a generic function f(R), whose true form could be

“reconstructed” from the data.

3.3.1 Field equations

In the vacuum case, the f(R)-gravity action reads as [36]

S =
⁄ Ô

≠g f(R) d4x. (3.32)

f(R) is a continuous and differentiable function of R and g is the determinant of the

metric gµ‹ . Field equations can be obtained from a variational principle by varying

Eq. (3.32) with respect to the metric in a local inertial frame:

”S = ”

⁄ Ô
≠g f(R) d4x = 0. (3.33)

We get 2

”

⁄ Ô
≠gf(R)d4x =

⁄

Ë

”
Ô

≠gf(R) +
Ô

≠g”(f(R))
È

d4x =
⁄ Ô

≠g
5

f Õ(R)Rµ‹ ≠ 1

2
gµ‹f(R)

6

”gµ‹d4x +
⁄ Ô

≠gf Õ(R)gµ‹”Rµ‹d4x,
(3.35)

2We used the well-known relationship ”g = g gµν
”gµν = ≠g gµν ”gµν , from which it follows that

”
Ô

≠g = ≠ 1

2
Ô≠g

”g = ≠1

2

Ô
≠g gµν ”gµν . (3.34)
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where Õ =
d

dR
. The second integral of Eq. (3.35) can be written as

⁄ Ô
≠gf Õ(R)gµ‹”Rµ‹d4x =

⁄ Ô
≠gf Õ(R)ˆ‡W ‡d4x. (3.36)

Here, the quantity

W ‡ © gµ‹”�
‡
µ‹ ≠ gµ‡”�

‹
µ‹ (3.37)

has been defined starting from the relation between the Ricci tensor and the connections

�

gµ‹”Rµ‹ = gµ‹ˆ‡(”�
‡
µ‹) ≠ gµ‡ˆ‡(”�

‹
µ‹) © ˆ‡W ‡. (3.38)

Integrating by parts Eq. (3.36), we get

⁄ Ô
≠gf Õ(R)gµ‹”Rµ‹d4x =

⁄

ˆ‡

ËÔ
≠gf Õ(R)W ‡

È

d4x ≠
⁄

ˆ‡

ËÔ
≠gf Õ(R)

È

W ‡d4x.

(3.39)

Assuming that there are no fields at infinity, for the divergence theorem the first of

such integral vanishes. To write W ‡ in terms of the metric, consider the definition of

affine connection (2.18); we obtain

”�
‡
µ‹ = ”

5

1

2
g‡–(ˆµg–‹ + ˆ‹gµ– ≠ ˆ–gµ‹)

6

=
1

2
g‡– [ˆµ(”g–‹) + ˆ‹(”gµ–) ≠ ˆ–(”gµ‹)] , (3.40)

since in a locally inertial reference frame the relation Ò–gµ‹ = ˆ–gµ‹ = 0 holds. Simi-

larly, we obtain the other relation

”�
‹
µ‹ =

1

2
g‹–ˆµ(”g‹–). (3.41)

Contracting Eq. (3.40) and (3.41) with gµ‹ and gµ‡, we get

gµ‹”�
‡
µ‹ = gµ‹ 1

2
[≠ˆµ(g–‹”g–‡) ≠ ˆ‹(gµ–”g‡–) ≠ g‡–ˆ–(”gµ‹)] =

=
1

2
ˆ‡(gµ‹”gµ‹) ≠ ˆµ(g–µ”g‹–), (3.42)

gµ‡”�
‹
µ‹ = ≠1

2
ˆ‡(g‹–”g‹–). (3.43)

Inserting these expressions in Eq. (3.37) and Eq. (3.39), we obtain

W ‡ = ˆ‡(gµ‹”gµ‹) ≠ ˆµ(gµ‹”g‡‹). (3.44)

and

⁄ Ô
≠gf Õ(R)gµ‹”Rµ‹d4x =

⁄

ˆ‡

ËÔ
≠gf Õ(R)

È

[ˆµ(gµ‹”g‡‹) ≠ ˆ‡(gµ‹”gµ‹)] d4x. (3.45)
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Integrating by parts and eliminating the vanishing terms for the divergence theorem,

we have
⁄ Ô

≠gf(R)d4x =
⁄ Ô

≠g
5

f Õ(R)Rµ‹ ≠ 1

2
f(R)gµ‹

6

”gµ‹d4x+

+
⁄

Ë

gµ‹ˆ‡ˆ‡(
Ô

≠gf Õ(R)) ≠ g‡‹ˆ‡ˆµ(
Ô

≠gf Õ(R))
È

”gµ‹d4x. (3.46)

For this variation to vanish it must be

f Õ(R)Rµ‹ ≠ 1

2
f(R)gµ‹ = ÒµÒ‹f Õ(R) ≠ gµ‹⇤f Õ(R), (3.47)

where ⇤ © gµ‹ÒµÒ‹ . Their trace is

3⇤f Õ(R) + f Õ(R) R ≠ 2 f(R) = 0. (3.48)

Field equations (3.47) can be written in terms of the Einstein tensor. We can write

f Õ(R)Rµ‹ ≠ 1

2
f Õ(R)gµ‹R +

1

2
f Õ(R)gµ‹R ≠ 1

2
f(R)gµ‹ = f Õ(R);µ;‹ ≠ gµ‹⇤f Õ(R), (3.49)

from which

Gµ‹ =
1

f Õ(R)

;

1

2
gµ‹ [f(R) ≠ f Õ(R)R] + f Õ(R);µ:‹ ≠ gµ‹⇤f Õ(R)

<

. (3.50)

The higher-order terms of the right member in Eq. (3.50) can be considered as effective

fields and red as a source term T (curv)
µ‹ contributing to the field equations

Gµ‹ = T (curv)
µ‹ . (3.51)

3.3.2 Weak field limit of f(R)-gravity theory

Here we develop the PN limit of an analytic f(R)-gravity assuming a spherically sym-

metric metric following [34, 37, 38], showing that a gravitational potential with a

Yukawa correction is obtained.3

The solution of field equations (3.47), inferred from action (3.32), can be obtained

starting from a general spherically symmetric metric:

ds2 = g‡· dx‡dx· = gtt(x
0, r)dx02 ≠ grr(x

0, r)dr2 ≠ r2d�
2, (3.52)

where x0 = ct and d�
2 is the solid angle. Let us assume that the metric can be

developed around a Minkowskian background as gµ‹ = ÷µ‹ + hµ‹ and for simplicity let

3In general, the number of Yukawa corrections appearing in the modified gravitational potential

depends on the differential degree of the field equations [89].

52



Extending General Relativity

us use c = 1 for the moment. We assume a general analytic function for the f(R) term,

expanding it in Taylor series around a certain value R = R0:

f(R) =
ÿ

n

fn(R0)

n!
(R ≠ R0)

n ƒ f0 + f Õ

0R + f ÕÕ

0 R2 + f ÕÕÕ

0 R3 + . . . . (3.53)

The weak field approximation consists in inserting the last expansions in the field

equations (3.47) and expanding the system at orders O(0), O(2), and O(4). At the

zeroth order the field equations give the condition f0 = 0. At second order the equations

are

f Õ

0r R(2) ≠ 2 f Õ

0 g
(2)
tt,r + 8 f ÕÕ

0 R(2)
,r ≠ f Õ

0 r g
(2)
tt,rr + 4 f ÕÕ

0 r R(2) = 0, (3.54)

f Õ

0 r R(2) ≠ 2 f Õ

0 g(2)
rr,r + 8 f ÕÕ

0 R(2)
,r ≠ f Õ

0 r g
(2)
tt,rr = 0, (3.55)

2 f Õ

0 g(2)
rr ≠ r

Ë

f Õ

0 r R(2) ≠ f Õ

0 g
(2)
tt,r ≠ f Õ

0 g(2)
rr,r + 4 f ÕÕ

0 R(2)
,r + 4 f ÕÕ

0 r R(2)
,rr

È

= 0, (3.56)

f Õ

0 r R(2) + 6 f ÕÕ

0

Ë

2 R(2)
,r + r R(2)

,rr

È

= 0, (3.57)

2 g(2)
rr + r

Ë

2 g
(2)
tt,r ≠ r R(2) + 2 g(2)

rr,r + r g
(2)
tt,rr

È

= 0. (3.58)

The general solution at O(2)-order can be obtained using the trace equation:

g
(2)
tt =”0 ≠ ”1

f Õ
0 r

+
”2(t)⁄

2e≠r/⁄

3
+

”3(t)⁄
3er/⁄

6 r
, (3.59)

g(2)
rr = ≠ ”1

f Õ
0 r

≠ ”2(t) ⁄2 (r/⁄ + 1) e≠r/⁄

3 r
+

”3(t) ⁄3 (1 ≠ r/⁄) er/⁄

6 r
, (3.60)

R(2) =
”2(t) e≠r/⁄

r
+

”3(t) ⁄ er/⁄

2 r
, (3.61)

where ⁄ =
Ò

≠6f ÕÕ
0 /f Õ

0, the integration constant ”0 can be neglected, ”1 is an arbitrary

integration constant, and ”2(t) and ”3(t) are two functions of time with dimensions of

length≠1 and length≠2, which can be set to a constant since the system (3.59)-(3.61)

contains only spatial derivatives. In particular, we can set ”1 = GN M if we notice that

it recovers the standard weak field limit in the limit f(R) æ R for a point-like mass

M . A suitable black hole metric must be asymptotically flat, that is, Yukawa growing

mode in the system (3.59)-(3.61) must be set to zero. The resulting solution is

gtt(x
0, r) =1 ≠ RS

2 f Õ
0 r

+
”2(t) ⁄2 e≠r/⁄

3
, (3.62)

grr(x
0, r) =1 +

RS

2 f Õ
0 r

+
”2 (t)⁄2 (1 + r/⁄) e≠r/⁄

3 r
, (3.63)

R =
”2(t) e≠r/⁄

r
. (3.64)

It follows that the gravitational potential in f(R)-gravity is:

�(r) = ≠ RS

2 f Õ
0 r

+
”2(t)⁄

2e≠r/⁄

6 r
. (3.65)
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From Eq. (3.65) it descends that the Newtonian potential is recovered only in the special

case f(R) = R. By defining 1 + ” = f Õ

0 and assuming that ”2 is quasi-constant and is

related to ” by

”2 = ≠3 RS

⁄2

”

1 + ”
, (3.66)

Eq. (3.65) can be recast as

�(r) = ≠ RS

2 (1 + ”) r
(1 + ” e≠r/⁄). (3.67)

Eq. (3.67) is given by the sum of two terms: the first term is the Newtonian contribution

generated by a point-like mass
M

1 + ”
, and the second one is the Yukawa-like modifica-

tion with a scale length ⁄, which naturally arises from the theory. The parameter ” is a

universal constant quantifying the discrepancy with the Newtonian potential, which is

recovered if ” = 0. The parameter ⁄ is a scale length acting as a screening mechanism,

indeed it makes the Yukawa corrections negligible at small scales and relevant from

galactic to cosmological scales, explaining galaxy rotation curves, cluster of galaxies

and the accelerated expansion of the Universe in a more natural way than introducing

Dark Matter and Dark Energy [62, 39, 60, 61, 173, 31].

The values of these corrections are unknown, and they must be considered as free

parameters to be constrained by observations. In Part II we will test f(R)-gravity

at Galactic scale, proposing a completely general approach to classify other ETG at

different scales.

3.3.3 Geodesic motion

In this section we will derive the geodesics equations associated to the metric deter-

mined by the coefficients (3.62) and (3.63), which can be recast as

ds2 = [1 + �(r)] dt2 ≠ [1 ≠ Â(r)] dr2 ≠ r2d�
2, (3.68)

where 4

�(r) = ≠RS (” e≠r/⁄ + 1)

r (” + 1)
, (3.69)

�(r) =
RS

r

S

W

W

W

W

U

(” e≠r/⁄ + 1)

(” + 1)
+

A

” r e≠r/⁄

⁄
≠ 2

B

(” + 1)

T

X

X

X

X

V

. (3.70)

The potential Â(r) can be written as

Â(r) = �(r) + ”�(r). (3.71)

4The speed of light has been restored.
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where we have defined

�a © ⁄ r
Ë

RS ” + e
r
⁄ (RS + (1 + ”) r)

È

, (3.78)

�b © ⁄ r
Ë

RS ” + e
r
⁄ (RS ≠ (1 + ”) r)

È

. (3.79)

Here, a dot indicates the derivative with respect to the proper time, and we recall that

RS = 2 GN M/c2.

This system of parametric non-linear differential equations is the starting point for

the definition of the theoretical model in our fitting procedure; it can be numerically

integrated to obtain the orbital motion of a two-body system.

3.3.4 Precession

Following Ref. [59], let us report the basic steps to compute the periastron shift for the

Yukawa-like potential. We must start from orbits equation r = r(„) which, as shown

in Ref. [59], assumes the form:

A

dr

d„

B2

=
E2 ≠ [�(u) + 1] [L2u2 + 1]

L2u4[�(u)2 ≠ 1]
, (3.80)

where u = 1/r. Energy, E, and angular momentum, L, are two conserved quantities:

pt © ˆL

ˆ ṫ
= [1 + �(r)]ṫ © E, (3.81)

p„ © ˆL

ˆ„̇
= r2 sin2 ◊ „̇ © L. (3.82)

Imposing (du/d„)2 = 0 and after simple calculations, we get

” RS u e≠1/⁄ u

(” + 1) L2
+

RS u

(” + 1) L2
+

” RS u3 e≠1/⁄ u

(” + 1)
+

RS u3

(” + 1)
+

E2

L2
≠ 1

L2
≠ u2 = 0. (3.83)

The following step is to rewrite the previous equation in terms of two orbital parame-

ters: the eccentricity e and the latus rectum ¸. Let us use the ansatz

u =
1 + e cos ‰

¸
, (3.84)

where ‰ is the relativistic anomaly. After substitution of Eq. (3.84) in Eq. (du/d„)2 = 0,

we get

A

d‰

d„

B2

=
Ë

1 ≠ (e2 + 3) µ + 2 µ (e cos ‰ + 1)2
È

�+(e2 ≠1)(1≠4µ)µ2 ≠µ2(e cos ‰+1)2,

(3.85)
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where µ © M/¸ and we defined the variables

� =
2 µ2(e cos ‰ + 1)

” + 1
(�1 + 1), (3.86)

�1 = ”

A

1

2⁄2µ2(e cos ‰ + 1)2
≠ 1

⁄ µ(e cos ‰ + 1)
+ 1

B

. (3.87)

It’s worth noticing that since we want to study systems in which the semi-major axis

of the orbit is lower than the Yukawa scale length, we expanded in Taylor series the

term e≠1/⁄ u. Integrating Eq. (3.85), we get the relation for the periastron advance

�„ =
3fiRS

a(1 ≠ e2)

A

1 +
”R2

S

6a2 (1 ≠ e2)2
≠ fi”R2

S

2a (1 ≠ e2) ⁄
≠ 3”RS

2a (1 ≠ e2)
≠ ”R2

S

24 (” + 1) ⁄2
+

”RS

6⁄

B

.

(3.88)

Eq. (3.88) reduces to the GR expression �„GR for ” = 0:

�„GR =
3fi RS

a (1 ≠ e2)
. (3.89)

3.4 Bootstrapped Newtonian Gravity

Bootstrapped Newtonian gravity [44, 42] is the second attempt we propose as an alter-

native to GR. It arises from the need to elaborate a consistent quantum theory to cure

the various shortcomings afflicting the classical picture of black hole formation [9, 125].

This approach is inspired by Deser’s idea [67] that, starting from the Fierz-Pauli action

in Minkowski space-time and adding gravitational self-coupling terms (consistent with

diffeomorphisms invariance), it should be possible to fully reconstruct Einstein’s theory.

Since we don’t know a priori what the underlying theory of gravity is, the coupling

constants for the additional terms are left free to vary allowing the possibility of alter-

native dynamics. This program furnishes a non-linear equation for the gravitational

potential acting on test particles at rest, which includes pressure and gravitational self-

interaction effects. Such an equation was used to study compact objects [43, 45, 46]

and coherent quantum states [41, 48]. A full (effective) metric tensor can be derived

from the Bootstrapped Newtonian potential [47], which allows exact analysis of the

trajectories of test particles and photons around astrophysical compact objects. The

Bootstrapped effective metric is given in terms of Eddington-Robertson Parametrized

Post-Newtonian parameters [233], chosen to minimize deviations from Schwarzschild

metric up to a certain order beyond which a free parameter appears.

In Sec. 3.4.1 we describe the derivation of the Bootstrapped potential and in Sec. 3.4.3

we illustrate how a full effective metric, compatible with a starting potential, can be

reconstructed. The theoretical results will be tested in Part II, where we will bound

the free parameter using the measured precession in Solar System and studying S-star

orbits around the black hole in the center of the Galaxy.
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3.4.1 Potential in the vacuum

It’s worth remembering that if the space-time is static, it is always possible to choose

the time coordinate x0 such that the metric reads

gµ‹ = ÷µ‹ + ‘ hµ‹(xi), (3.90)

where the small parameter ‘ quantifies the deviations from flat space-time. Considering

a massive particle initially at rest in this reference frame (ẋi = 0, which implies that

ẋ0 ƒ 1), as long as |ẋi| ƒ ‘ << 1 (weak-field approximation), its geodesic equation

(2.14) to the first order in ‘ becomes

ẋi ƒ 1

2
‘ h00,i . (3.91)

Eq. (3.91) yields Newton’s second law for a particle in the potential V if we set

g00 = ≠1 + ‘ h00 = ≠(1 + 2 V ). (3.92)

Indeed, the linearized Einstein equations furnish the potential V since it reduces to

the Poisson equation

r≠2(r2 V Õ)Õ © �V = 4 fi GN fl (3.93)

in the de Donder gauge

ˆ–h–µ ≠ 1

2
ˆµh = 0, (3.94)

where h © ÷–— h–—. We must assume then that the coordinates xµ in which the

components of the metric take the form in Eq.(3.90) are harmonic, that is they must

satisfy the equation

⇤xµ = 0. (3.95)

We can now start to derive heuristically the potential outside a static and spherically

symmetric source by considering the Newtonian Lagrangian for a source of density

fl = fl(r)

LN[V ] ƒ ≠4fi

⁄

Œ

0
r2dr

C

(V Õ)2

8 fi GN

+ fl V

D

, (3.96)

where Õ =
d

dr
. The corresponding equation is the Poisson equation. To describe mean-

field deviations from GR induced by quantum physics, we will add interacting terms

to this action. To do this it’s worth noticing that the Hamiltonian

HN[V ] = ≠LN[V ] = 4fi

⁄

Œ

0
r2dr

A

≠ V �V

8 fi GN

+ fl V

B

, (3.97)

58



Extending General Relativity

computed on shells by means of Eq.(3.93), gives the Newtonian potential energy

UN(r) =2 fi

⁄ r

0
r̄2 dr̄ fl(r̄) V (r̄) (3.98)

=
1

2 GN

⁄ r

0
r̄2 dr̄ V (r̄) �V (r̄) (3.99)

= ≠ 1

2 GN

⁄ r

0
r̄2 dr̄ [V Õ(r̄)]2, (3.100)

where we assumed that boundary terms can be discarded. The above UN is given by

the interaction of the matter distribution enclosed in a sphere of radius r with the

gravitational field; we can then associate it to a self-gravitational source JV, that is

JV(r) =
4

4 fi r2

d

dr
UN(r) = ≠ 1

2 fi GN

[V Õ(r)]2. (3.101)

Next, we add the “loop correction” Jfl = ≠2 V 2 which couples with the matter source.

Finally, since the pressure becomes relevant for large compactness, we also add the

term

Jp ƒ ≠ 1

4 fi r2

dUp

dr
, (3.102)

where Up is the potential energy associated with the work done by the force responsible

for the pressure. The total Lagrangian is

L[V ] = LN[V ] ≠ 4 fi

⁄

Œ

0
r2dr [qV JV V + 3 qp Jp V + qfl Jfl (fl + 3 qp p)]

= ≠4fi

⁄

Œ

0
r2dr

C

(V Õ)2

8 fi GN

(1 ≠ 4 qV V ) + (fl + 3 qp p)V (1 ≠ 2 qfl V )

D

, (3.103)

where qV, qp and qfl are three coupling constants which quantify the different con-

tributions. The Einstein-Hilbert action at next-to-leading order in ‘ in Eq. (3.90) is

recovered for qV = qp = qfl = 1 [48]. The field equation for V is

�V = 4 fi GN
1 ≠ 4 qfl V

1 ≠ 4 qV V
(fl + 3 qp p) +

2 qV (V Õ)2

1 ≠ 4 qV V
, (3.104)

which is completed by the conservation equation pÕ = ≠V Õ(p + fl). In vacuum (p = fl =

0), Eq. (3.104) reduces to

�V =
2 qV (V Õ)2

1 ≠ 4 qV V
. (3.105)

The exact solution reads [44]

V0 =
1

4 qV

C

1 ≠
3

1 +
6 qV GN M

r

42/3
D

, (3.106)

whose asymptotic expansion far from the source is

V0 ƒ ≠GN M

r
+ qV

G2
N M2

r2
≠ q2

V

8 G3
N M3

3 r3
. (3.107)

The post-Newtonian terms of the above expansion depend on the coupling constant

qV, whose exact value can be constrained by observations.
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3.4.2 Harmonic and areal coordinates

Before reconstructing a metric compatible with (3.106), let us illustrate the relation

between the radial coordinate r appearing in the potential and the areal coordinate r̄

used to write the general static spherically symmetric metric as

ds2 = ≠B̄(r̄) dt̄2 + Ā(r̄) dr̄2 + r̄2 d�
2. (3.108)

Cartesian coordinates xi = (x, y, z) in flat space satisfy the condition (3.95) which can

be extended to general space-times by defining harmonic coordinates xµ = (t, x, y, z)

such that

⇤xµ = g–—
�

µ
–— = 0. (3.109)

Since we are interested in spherically symmetric space-times, we associate polar coor-

dinates to the harmonic ones by

x = r(r̄) sin ◊ cos „, y = r(r̄) sin ◊ sin „, z = r(r̄) cos ◊, (3.110)

where the “harmonic” r5 is an invertible smooth function of the areal coordinate r̄.

Explicitation of Eq. (3.109) gives r = r(r̄):

d

dr̄

Q

ar̄2

Û

B̄

Ā

dr

dr̄

R

b = 2
Ò

Ā B̄r. (3.111)

The metric (3.108) can be expressed in terms of the rotationally invariant forms dx
2 =

dr2 + r2d�
2 and (x · dx)2 = r2 dr2 as

ds2 = ≠B dt2 +
r̄2

r2
dx

2 +

S

UA

A

dr̄

dr

B2

≠ r̄2

r2

T

V

(x · dx)2

r2
, (3.112)

where dt = dt̄, r̄ = r̄(r), A = Ā(r̄(r)) and B = B̄(r̄(r)).

It’s useful recall that Schwarzschild solution is given by

B̄S =
1

ĀS

= 1 ≠ RS

r̄
, (3.113)

where RS = 2 GN M . By solving (3.111) we find

r = r̄ ≠ RS, (3.114)

which leads to the potential for the Schwarzschild metric in harmonic coordinates

VS =
1

2
[BS ≠ 1] = ≠GNM

r

3

1 +
GNM

r

4≠1

. (3.115)

In Fig. (3.3) we can see the comparison between VS and V0 of Eq.(3.107); GR is recovered

to the first order in qV if qV = 1. We now replace VS with V0, that is

5We refer to r as the “harmonic” radial coordinate although polar coordinate do not satisfy con-

dition (3.109).
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the coefficients ak’s are fully determined by the �k’s and bk’s since C̄ = Ā B̄. To

determine the metric up to the third order in RS/r̄, let us solve Eq. (3.117).

At the first and second order in RS/r̄ we get

‡1 =
b1

2
≠ 3

4
�1 (3.122)

‡2 =
�1

4
(2 �1 ≠ b1) ≠ �2

2
, (3.123)

while the third-order equation gives

�3 =
5

2
�1 �2 ≠ 1

2
b2

1 �1 ≠ b1 �2 + b2 �1 +
5

4
b1 �

2
1 ≠ 2 b3 ≠ 3

2
�

3
1. (3.124)

To match the Eq. (3.116) we fix the bk’s, that is

B̄ ƒ 1 ≠ RS

r(r̄)
+

qV R2
S

2 [r(r̄)]2
≠ 2 q2

V R3
S

3 [r(r̄)]3
, (3.125)

which gives b1 = ≠1 and

b2 =
qV

2
≠ 3

4
�1 ≠ 1

2
(3.126)

b3 =
qV

4
(2 + 3 �1) ≠ 2

3
q2

V ≠ �1

16
(8 + �1) ≠ �2

2
≠ 1

4
. (3.127)

After replacing these expressions in Ā, we get

a1 = 1 + �1 (3.128)

a2 =
3

2
≠ qV

2
+

7

4
�1 + �2 (3.129)

a3 =
11

4
+

3

2 qV ≠ 5

2
≠ 9

4
�1

4

qV +
7

2
(�1 + �2) +

�1

2

3

5 �2 ≠ 17

8
�1 ≠ 3 �

2
1

4

. (3.130)

To fix all the coefficients from physical considerations, we introduce the Eddington-

Robertson Parametrized Post-Newtonian (PPN) formalism [233], in which the metric

reads

ds2 ƒ ≠
C

1 ≠ –
RS

r̄
+ (— ≠ – “)

R2
S

2 r̄2
+ (’ ≠ 1)

R3
S

r̄3

D

c2 dt2

+

C

1 + “
RS

r̄
+ ›

R2
S

r̄2
+ ‡

R3
S

r̄3

D

dr̄2 + r̄2 d�
2 , (3.131)

where we can set – = 1 by the definition of the gravitational radius. This is in

agreement with b1 = ≠– = ≠1 and we can identify the first order PPN parameters

�1 = “ ≠ 1 and qV = — +
“ ≠ 1

2
. (3.132)
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Finally, we obtain

B̄ ƒ1 ≠ RS

r̄
+ (— ≠ “)

R2
S

2r̄2

+ [7 + 4 — (5 + “) ≠ 32 —2 ≠ “ (26 ≠ 7 “) ≠ 24 �2]
R3

S

48 r̄3
(3.133)

and

Ā ƒ1 + “
RS

r̄
≠ (— ≠ 3 “ ≠ 2 �2)

R2
S

2 r̄2

+ [5 + 32 —2 ≠ 4 — (9 + “) + 3 “ (6 + 15 “ ≠ 8 “2) + 8 �2 (2 + 5 “)]
R3

S

16 r̄3
(3.134)

so that

C̄ ƒ1 + (“ ≠ 1)
RS

r̄
+ �2

R2
S

r̄2

+ [11 + 32 —2 ≠ 8 — (4 ≠ “) ≠ “ (22 ≠ 59 “ ≠ 36 “2) ≠ 12 �2 (1 ≠ 5 “)]
R3

S

24 r̄3
.

(3.135)

The harmonic radius can be written as

r ƒ r̄ +
1 ≠ 3 “

4
RS + (1 ≠ 3 “ + 2 “2 ≠ 2 �2)

R2
S

4r̄
. (3.136)

Experimental data strongly constrain |“ ≠ 1| ƒ |— ≠ 1| << 1. Assuming — = “ = 1,

that is �1 = 0 and qV = 1, we find that the Bootstrapped metric which describes the

minimum deviation from the Schwarzschild form is given by

B̄ ƒ 1 ≠ RS

r̄
≠ (5 + 6 �)

R3
S

6 r̄3
(3.137)

ƒ BS(r̄) ≠ (6 › ≠ 1)
R3

S

6 r̄3
(3.138)

Ā =1 +
RS

r̄
+ (1 + �)

R2
S

r̄2
+ (9 + 14 �)

R3
S

4 r̄3
(3.139)

ƒAS(r̄) + (› ≠ 1)
R2

S

4 r̄2
+ (14 › ≠ 9)

R3
S

4 r̄3
, (3.140)

and

r ƒ r̄ ≠ RS

2
≠ (› ≠ 1)

R2
S

2 r̄
. (3.141)

From now on, we will put �2 = � for clarity. The second-order PPN parameters are

both determined by the parameter � as

› = 1 + �, ’ = 1 ≠ 5 + 6 �

12
=

13 ≠ 6 ›

12
, (3.142)

so that the combination › = ’ = 1 corresponding to the PPN expansion of the

Schwarzschild metric is not allowed. We can see that the new contribution to Ā at
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the second order only vanishes for � = 0, but higher-order corrections cannot be elim-

inated. Correspondingly, for — = “ = 1, we have

C̄ ƒ 1 + (› ≠ 1)
R2

S

r̄2
+ (12 › ≠ 7)

R3
S

6 r̄3
. (3.143)

The geodesic equations 6

ẍµ + �
µ
–— ẋ– ẋ— = 0 (3.144)

can be equivalently computed using the Euler-Lagrange equations

d

ds

ˆL

ˆẋµ
≠ ˆL

ˆxµ
= 0 , (3.145)

with L = g–— ẋ– ẋ— = ≠1 for a massive object. From the metric in Eq. (3.131), one

then finds

r̈ =
RS

Ó

2 (1 + �) RS r ṙ2 + (R2
S/4)

Ë

3 (9 + 14�) ṙ2 ≠ c2 (5 + 6�) ṫ2
È

+ r2
1

ṙ2 ≠ c2 ṫ2
2Ô

2 r [2 (9 + 14 �) (R3
S/8) + (1 + �) R2

S r + RS r2 + r3]

+
r5 (◊̇2 + „̇2 sin2 ◊)

2 r [2 (9 + 14 �) (R3
S/8) + (1 + �) R2

S r + RS r2 + r3]
(3.146)

◊̈ =„̇2 sin ◊ cos ◊ ≠ 2 ṙ ◊̇

r
(3.147)

„̈ = ≠ 2 „̇

r
(ṙ + r ◊̇ cot ◊) (3.148)

ẗ =
6 ṙ ṫ [(5 + 6 �) (R3

S/8) + (RS/2) r2]

(5 + 6 �) (R3
S/4) r + 3 RS r3 ≠ 3 r4

. (3.149)

Spherical symmetry as usual implies that the orbital motion occurs on a plane

which we can arbitrarily set at ◊ = 0 = ◊̇.

The third and fourth equations are the usual conservation equations for the angular

momentum and energy conjugated to t, respectively. The above parametric system of

non-linear differential equations can be integrated numerically in order to study the

orbits.

3.4.4 Precession

As we saw in Sect. 2.6.3 , the precession of Newtonian orbits of planets and stars with

semilatus rectum ¸ and eccentricity e can be expressed in terms of the PPN parameters.

At the first order in RS/¸ it reads

�Ï(1) = fi(2 ≠ — + 2 “)
RS

¸
, (3.150)

6A dot indicates the derivative with respect to the proper time.
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and reproduces the GR result for — = “ = 1. The second order correction depends on

both › and ’ and, for — = “ = 1, is given by

�„(2) = fi

C

(41 + 10› ≠ 24 ’) + (16 › ≠ 13)
e2

2

D

R2
S

4 ¸2

ƒ fi

C

(37 + 22 �) + (3 + 16 �)
e2

2

D

R2
S

4 ¸2

ƒ �„
(2)
S + 2 fi

Ë

11 › ≠ 7 + 4 (› ≠ 1) e2
È R2

S

4¸2
, (3.151)

where the GR result �„
(2)
S corresponds to › = ’ = 1. From Eq. (3.142), it follows that

we cannot have › = ’ = 1 for any value of �, and a deviation from GR remains.

3.5 Concluding remarks

In this chapter we focused on two ETG: f(R)-gravity theory and Bootstrapped Newto-

nian gravity theory. Deviations between these theories and GR are encoded in specific

parameters. After having ascertained the consistency of a certain theory, this must be

selected or ruled out on the basis of experimental observations. To this aim, it must

be constrained at all the observation scales. In the next part, we will see how to bound

such parameters astronomically, studying the stellar orbits at the Galactic Center and

the orbital precession of the Solar System planets.
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The Galactic Center

Dopo tanta nebbia a una a una si svelano le stelle.

– G. Ungaretti
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Our home galaxy, the Milky Way, is an ordinary barred spiral galaxy, which hides

in its central 100 pc a region of unique phenomena: the Galactic Center (GC). Here

astronomers can study relevant physical processes common to extra-galactic centers of

a similar type with unprecedented spatial resolution. Indeed, located at a distance of

about 8 kpc (26000 light-years) away from the Earth, there lies the closest galactic

nucleus (the GC is ≥ 105 times nearer than the closest galaxies).

In this chapter, after presenting a schematic description of the central region, we will

summarize the recent observational and theoretical progress on the innermost parsec.

We will focus on the evidence that contributed to strengthen the black hole nature
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(AGB). Finally, in the central region, there are a few more massive red supergiants stars

[19]. Observations show that their motion and distribution are random and isotropic

[227]. This cluster is associated with a slow solid-body rotation in the sense of the

rotation of the Galaxy, with an amplitude of ≥ (1.4 km s≠1)/arcsec [161, 104, 227,

208].

It was found that the other part of these stars are hot early-type ‘HeI-stars’ [138,

221, 20, 148, 104, 222, 184], such as post-main-sequence, blue supergiants and Wolf-

Reyet (WR) stars with ages of 2 ≠ 8 Myr and zero-age main-sequence (ZAMS) masses

(30≠100) M§ [172, 160]. Radial velocities and proper motions measurements revealed

that most of such stars are arranged on a disk in a clockwise rotation around Sgr A*

(jz > 0) 1 [103]. On the other hand, it emerged that some stars exhibit a counter-

clockwise motion, and it became clear that all the stars are arranged on two strongly

inclined disks relative to each other [103]. In the central arcsecond is found a faint

population of blue stars. This population constitutes the so-called S-star cluster.

The discovery of this remarkable concentration of young stars is surprising. Ac-

cording to the standard theories of stellar evolution, formation processes should be

strongly inhibited in this region due to the intense tidal field of the central body. A

still unanswered question is whether they formed in situ, or they were transported into

the center from further out. The processes proposed to explain the presence of these

stars constitute the Paradox of Youth.

4.2.1 The S-star cluster

S-star cluster consists of lighter stars that exhibit a distribution different from the

planar structure. A robust accounting is made by Gillessen et al. [111], who derived

the individual orbit for 28 of them. Of the stars with a semi-major axis a Æ 1ÕÕ, 16 are

B-stars and 3 are late-type stars.

A NIR spectroscopic study [123] throws light on parameters of S-stars within a

distance of 0.04 pc from the black hole (S1, S2, S4, S6, S7, S8, S9, and S12). The

effective temperature lies in the range (21000≠28500) ¶K, characteristic of spectral type

from B0 to B2.5. Such stars have surface gravity within the range log(g) > 3.4 ≠ 4.2,

classifying themselves as dwarfs on the main sequence stage, that is, below the turn

due to central hydrogen exhaustion. Their projected rotational velocities fall in the

range from 60 to 170 km s≠1, and their luminosities in the range log(L/L§) ≥ 3.6≠4.3.

Their age is estimated to be less than 15 Myr (in particular, they derived for S2 an

age of 6.6+3.4
≠4,7 Myr), compatible with the age of the young clockwise-rotating stellar

disk. The brightest member of the B-star cusp is the star S2/S02 [159]. According

1We can define the projected, normalized specific angular momentum of the motion on the sky as

jz = (x vy ≠ y vx)/({x2 + y2}{v2

x + v2

y})1/2. If jz > 0 the motion is clockwise, while if jz < 0 it its

counter-clockwise.
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to its spectrum, S2 can be classified as a main-sequence (dwarf) B0 ≠ 2.5 V star with

a ZAMS mass of mZAMS ≥ 19.5 M§ and with a low rotation velocity typical of the

solar neighbourhood BV stars. The high abundance of He/H (0.25 ≠ 0.5), makes S2

a member of the ‘He-rich’ class of B-stars.

Box 1: Observing S-stars

S-star motion has been monitored for the last three decades by two main observa-

tional teams, one led by Genzel at the Max Planck Institute for Extraterrestrial

Physics (MPE), using telescopes in Chile at the European Southern Observatory

(ESO), and the other led by Ghez at the University of California (UCLA), using

the Keck Observatory in Hawaii. They were awarded by Nobel Prize in Physics

2020 for discovering a compact object at the center of our galaxy [98]. The two

teams performed their observations in the K-band, centered at ⁄ = 2.2 µm, to

reduce the attenuation due to interstellar dust. Both teams initially used the

technique of speckle imaging in the NIR, based on a series of short exposures

(just above a tenth of a second) to compensate for the smearing of photons’

trajectories due to the Earth’s atmosphere. This technique allowed the measure-

ments of the projected velocity of the stars, which was inferred from the shift in

their position. These first data were obtained, for Genzel’s group, between 1992

and 2002 with the SHARP camera at the ESO’S 3.5 m NTT. Despite the power

of such a technique to spatially resolve the stars, its limitation is to be found

in its functioning: the short exposure times limited the observation to only the

brightest stars. These shortcomings were overcome when adaptive optics was de-

veloped. Such a technique uses a bright reference object next to the observation

target, while a deformable secondary mirror changes shape to compensate for

aberrations to the known reference object with a feedback loop, thus enabling

longer exposure time and high-resolution images. These data began to be taken

at ESO from 2002 when the Naos-Conica (NACO) system was mounted at the

telescope Yepun (8 m) of the VLT. From then on it was also possible to use a

spectrograph to study the stars’ composition and measure their radial velocities.

The decisive turning point in S-star observations is achieved with the develop-

ment of GRAVITY, the cryogenic, interferometric beam combiner of the four

UTs of the VLT, along with the AO systems for all four UTs [118]. GRAVITY

is able to detect also faint stars with an angular resolution that exceeds that of

adaptive-optics assisted imaging by a factor of ≥ 20. With GRAVITY it was

possible to precisely detect the first-order GR-effects of the orbit of S2.

S-star cluster is the perfect tool to answer many astrophysical and physical ques-

tions. In particular, they provide direct constraints on the nature of Sgr A*, as we will

see in the next sections.
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4.3 Is Sgr A* a supermassive black hole?

In this section, we will summarize the steps that led to the following conclusion: in the

central parsec there is a combination of a dense nuclear star cluster and a central

compact object associated with Sgr A*. The crucial question is: does the center of

the Milky Way host a SMBH or some other type of compact object? We can obtain

the definitive proof of the existence of a massive black hole in two ways:

• analyzing the gravitational potential to the scale of the event horizon;

• demonstrating that the gravitational potential of a galactic nucleus is dominated

by a compact “dark” mass that can be only a black hole.

4.3.1 Evidence for a central compact object

The first evidence of a large central mass concentration came out at the end of the

1970s. At that time the group of Townes [238], based on the increase of the radial

velocity of ionized gas (in the 12.8 µm line of the NeII) to a few hundred km/s towards

the center, concluded that the total mass within a radius of 1 pc about the GC was

estimated to be of the order of 2≠4 million solar masses. The Berkley group advanced

the hypothesis that this mass concentration could plausibly be a black hole associated

with the radio source Sgr A* [143, 142]. However many scientists did not judge this

conclusion convincing, first of all, because gas reacts to forces other than gravity (mag-

netic fields, friction, radiation pressure, etc.), then because in this method only line of

sight velocities come into play, and finally because there wasn’t detection of a luminous

infrared or X-ray source associated to Sgr A* [197, 3, 136]. Since then, the focus has

been mainly put on stars.

The first stellar velocity dispersion measurements, confirming the gas measure-

ments, came from spectroscopy of 2 µm CO absorption bands in late-type giants and

supergiants (from p ≥ 10ÕÕ to p ≥ 3Õ2) [198, 161, 212, 124]. However, these data, sam-

pling the mass at a large radius, were far to be conclusive. The evidence of a massive

central object was reinforced by a virial analysis applied to the first blue supergiants

detected in the central 10ÕÕ [93, 138].

An improved analysis of the mass distribution from 2.5ÕÕ to ≥ 1ÕÕ is found in Ref. [104,

124], which was based on radial velocities of ≥ 200 late-type stars and two dozen early-

type stars available at that time. Genzel et al. deduced a combination of a 3.0◊106 M§

central mass and a 106 M§ star cluster with a core radius of ≥ 10ÕÕ. The corresponding

average stellar density in the core was ≥ 106 M§ pc≠3.

2Here p denotes the projected angular distance.

75



Chapter 4

The turning point came with the determination of proper motions of the fast-

moving (velocities up to ≥ 103 km/s) S-stars within Æ 1ÕÕ of Sgr A*, thanks to the

above mentioned speckle imaging [72, 73, 102, 105]. Both ESO NTT and Keck datasets

were in agreement with the conclusion that velocity dispersion of the stars follows a

Kepler-law around a compact mass (‡(v) ≥ R≠1/2) to a scale of about 0.01 pc; the idea

of the presence of a compact mass at the GC began to be considered satisfactory.

4.3.2 Constraints from stellar orbits

The breakthrough occurred with the determination of individual stellar orbits [96, 107,

203, 78]. The first orbit to be studied was that of the star S2 [209, 108]. Revolving

with a period of 16.00 years, at the time of writing two full orbits are observed. Data

from NTT/VLT and Keck telescopes agreed within the uncertainties, giving 4.1 ◊ 106

[209] and 4.6 ◊ 106 M§ [108].

The most recent work on the S-stars orbits has strengthened this evidence thanks to

the advent of many more and higher quality data coming from upgraded facilities, such

as GRAVITY. Regarding Genzel’s team, after 25 years of uninterrupted monitoring of

stellar orbits, they measured accelerations for 47 stars (see Fig. 4.4 for the graphic

representation), and used 17 of them for a Keplerian multi-star orbit fit to determine

parameters of the central mass, that is its mass M and its distance R, and orbital

elements for the stellar orbits. Best-fit keplerian parameters for S-stars are reported

in Table 2.1, while the best estimates for the potential’s parameter are given by:

M =(4.35 ± 0.13) ◊ 106 M§, (4.1)

R0 =8.33 ± 0.12 kpc. (4.2)

The most recent estimates obtained by the GRAVITY collaboration [116] include the

superb 2017 ≠ 2019 astrometry and the pericentre passage observation. They were

the first to detect the GR Schwarzschild precession in S2’s orbit, that is �„per orbit =

fSP ◊ 12.1Õ = (1.10 ± 0.19) ◊ 12.1Õ. They obtained for the mass and the distance of the

black hole the following estimates:

M =(4.261 ± 0.012) ◊ 106 M§, (4.3)

R0 =8246.7 ± 9.3 pc. (4.4)

In summary, the dynamical study of S-stars demonstrates the existence of a highly

concentrated mass of ≥ 4 ◊ 106 M§ within the pericenter of S2 (125 AU). This corre-

sponds to a minimum density of 5 ◊ 1015M§ pc≠3.
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Figure 4.4: Best-fitting orbits from the multi-star fit (solid lines) with the corresponding

radial velocity data [110].

4.3.3 Alternatives to the black hole paradigm

Although observations go in the direction of consolidating the black hole paradigm,

the issue of the nature of the object at the center of the Milky Way is a hotly debated

topic. Many scientists have wondered to what extent we are sure that Sgr A* is a black

hole, and have proposed several alternative solutions to the black hole paradigm. To

complete this discussion, let us briefly discuss the most important of these speculations

and how they can reasonably be ruled out.

“Dark” cluster- In the last years, thanks to Hubble Space Telescope (HST) and

to VLBI, astronomers inferred the presence of central high density “dark” mass in

many galaxies [134, 120]. By “dark” (i.e., nonstellar) objects we mean objects that

do not emit radiation and that are only discovered by their effects on the kinematics

of nearby stars and gases; possible candidates include low-mass stars, brown dwarfs,

planets, or compact stellar remnants (white dwarfs and neutron stars). On the other

side, dynamic studies in the center of the Milky Way indicate that the central object

has a minimum density of 1016 M§ pc≠3. The enormous density deduced excludes that

the central mass could be made up of a dark cluster because it should have a lifetime

of less than a few 105 years, a very small fraction of the lifetime of the galaxy [158].

This stability argument strongly suggests that no sufficiently long-lived astrophysical

object can be so massive and so small unless it is a single or binary black hole.
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Table 4.1: Keplerian parameters of the 40 S-stars whose orbit has been determined in

Ref. [110]

Star a(") e i(°) Ω(°) Ê(°) tP (years) T (years) mK

S1 0.595 ± 0.024 0.556 ± 0.018 119.14 ± 0.21 342.04 ± 0.32 122.3 ± 1.4 2001.80 ± 0.15 166.0 ± 5.8 14.7

S2 0.1255 ± 0.0009 0.8839 ± 0.0019 134.18 ± 0.40 226.94 ± 0.60 65.61 ± 0.57 2002.33 ± 0.01 16.00 ± 0.02 13.95

S4 0.3570 ± 0.0037 0.3905 ± 0.0059 80.33 ± 0.08 258.84 ± 0.07 290.8 ± 1.5 1957.4 ± 1.2 77.0 ± 1.0 14.4

S6 0.6574 ± 0.0006 0.8400 ± 0.0003 87.24 ± 0.06 85.07 ± 0.12 116.23 ± 0.07 2108.61 ± 0.03 192.0 ± 0.17 15.4

S8 0.4047 ± 0.0014 0.8041 ± 0.0075 74.37 ± 0.30 315.43 ± 0.19 346.70 ± 0.41 1983.64 ± 0.24 92.9 ± 0.41 14.5

S9 0.2724 ± 0.0041 0.644 ± 0.020 82.41 ± 0.24 156.60 ± 0.10 150.6 ± 1.0 1976.71 ± 0.92 51.3 ± 0.70 15.1

S12 0.2987 ± 0.0018 0.8883 ± 0.0017 33.56 ± 0.49 230.1 ± 1.8 317.9 ± 1.5 1995.59 ± 0.04 58.9 ± 0.22 15.5

S13 0.2641 ± 0.0016 0.4250 ± 0.0023 24.70 ± 0.48 74.5 ± 1.7 245.2 ± 2.4 2004.86 ± 0.04 49.00 ± 0.14 15.8

S14 0.2863 ± 0.0036 0.9761 ± 0.0037 100.59 ± 0.87 226.38 ± 0.64 334.59 ± 0.87 2000.12 ± 0.06 55.3 ± 0.48 15.7

S17 0.3559 ± 0.0096 0.397 ± 0.011 96.83 ± 0.11 191.62 ± 0.21 326.0 ± 1.9 1991.19 ± 0.41 76.6 ± 1.0 15.3

S18 0.2379 ± 0.0015 0.471 ± 0.012 110.67 ± 0.18 49.11 ± 0.18 349.46 ± 0.66 1993.86 ± 0.16 41.9 ± 0.18 16.7

S19 0.520 ± 0.094 0.750 ± 0.043 71.96 ± 0.35 344.60 ± 0.62 155.2 ± 2.3 2005.39 ± 0.16 135 ± 14 16.

S21 0.2190 ± 0.0017 0.764 ± 0.014 58.8 ± 1.0 259.64 ± 0.62 166.4 ± 1.1 2027.40 ± 0.17 37.00 ± 0.28 16.9

S22 1.31 ± 0.28 0.449 ± 0.088 105.76 ± 0.95 291.7 ± 1.4 95 ± 20 1996.9 ± 10.2 540 ± 63 16.6

S23 0.253 ± 0.012 0.56 ± 0.14 48.0 ± 7.1 249 ± 13 39.0 ± 6.7 2024.7 ± 3.7 45.8 ± 1.6 17.8

S24 0.944 ± 0.048 0.8970 ± 0.0049 103.67 ± 0.42 7.93 ± 0.37 290 ± 15 2024.50 ± 0.03 331 ± 16 15.6

S29 0.428 ± 0.019 0.728 ± 0.052 105.8 ± 1.7 161.96 ± 0.80 346.5 ± 5.9 2025.96 ± 0.95 101.0 ± 2.0 16.7

S31 0.449 ± 0.010 0.5497 ± 0.0025 109.03 ± 0.27 137.16 ± 0.30 308.0 ± 3.0 2018.07 ± 0.14 108. ± 1.2 15.7

S33 0.657 ± 0.026 0.608 ± 0.064 60.5 ± 2.5 100.1 ± 5.5 303.7 ± 1.6 1928 ± 12 192.0 ± 5.2 16.

S38 0.1416 ± 0.0002 0.8201 ± 0.0007 171.1 ± 2.1 101.06 ± 0.24 17.99 ± 0.25 2003.19 ± 0.01 19.2 ± 0.02 17.

S39 0.370 ± 0.015 0.9236 ± 0.0021 89.36 ± 0.73 159.03 ± 0.10 23.3 ± 3.8 2000.06 ± 0.06 81.1 ± 1.5 16.8

S42 0.95 ± 0.18 0.567 ± 0.083 67.16 ± 0.66 196.14 ± 0.75 35.8 ± 3.2 2008.24 ± 0.75 335 ± 58 17.5

S54 1.20 ± 0.87 0.893 ± 0.078 62.2 ± 1.4 288.35 ± 0.70 140.8 ± 2.3 2004.46 ± 0.07 477 ± 199 17.5

S55 0.1078 ± 0.0010 0.7209 ± 0.0077 150.1 ± 2.2 325.5 ± 4.0 331.5 ± 3.9 2009.34 ± 0.04 12.80 ± 0.11 17.5

S60 0.3877 ± 0.0070 0.7179 ± 0.0051 126.87 ± 0.30 170.54 ± 0.85 29.37 ± 0.29 2023.89 ± 0.09 87.1 ± 1.4 16.3

S66 1.502 ± 0.095 0.128 ± 0.043 128.5 ± 1.6 92.3 ± 3.2 134 ± 17 1771 ± 38 664 ± 37 14.8

S67 1.126 ± 0.026 0.293 ± 0.057 136.0 ± 1.1 96.5 ± 6.4 213.5 ± 1.6 1705 ± 22 431 ± 10 12.1

S71 0.973 ± 0.040 0.899 ± 0.013 74.0 ± 1.3 35.16 ± 0.86 337.8 ± 4.9 1695 ± 21 346 ± 11 16.1

S83 1.49 ± 0.19 0.365 ± 0.075 127.2 ± 1.4 87.7 ± 1.2 203.6 ± 6.0 2046.8 ± 6.3 656 ± 69 13.6

S85 4.6 ± 3.30 0.78 ± 0.15 84.78 ± 0.29 107.36 ± 0.43 156.3 ± 6.8 1930.2 ± 9.8 3580 ± 2550 15.6

S87 2.74 ± 0.16 0.224 ± 0.027 119.54 ± 0.87 106.32 ± 0.99 336.1 ± 7.7 611 ± 154 1640 ± 105 13.6

S89 1081 ± 0.055 0.639 ± 0.038 87.61 ± 0.16 238.99 ± 0.18 126.4 ± 4.0 1783 ± 26 406 ± 27 15.3

S91 1917 ± 0.089 0.303 ± 0.034 114.49 ± 0.32 105.35 ± 0.74 356.4 ± 1.6 1108 ± 69 958 ± 50 12.2

S96 1499 ± 0.057 0.174 ± 0.022 126.36 ± 0.96 115.66 ± 0.59 233.6 ± 2.4 1646 ± 16 662 ± 29 10.

S97 2.32 ± 0.46 0.35 ± 0.11 113.0 ± 1.3 113.2 ± 1.4 28 ± 14 2132 ± 29 1270 ± 309 10.3

S111 −12.3 ± 8.4 1.092 ± 0.064 102.68 ± 0.40 52.34 ± 0.75 132.4 ± 3.3 1947.7 ± 4.5 N.A. 13.8

S145 1.12 ± 0.18 0.50 ± 0.25 83.7 ± 1.6 263.92 ± 0.94 185 ± 16 1808 ± 58 426 ± 71 17.5

S175 0.414 ± 0.039 0.9867 ± 0.0018 88.53 ± 0.60 326.83 ± 0.78 68.52 ± 0.40 2009.51 ± 0.01 96.2 ± 5.0 17.5

R34 1.81 ± 0.15 0.641 ± 0.098 136.0 ± 8.3 330 ± 19 57.0 ± 8.0 1522 ± 52 877 ± 83 14.

R44 3.9 ± 1.4 0.27 ± 0.27 131.0 ± 5.2 80.5 ± 7.1 217 ± 24 1963 ± 85 2730 ± 1350 14.

Fermion ball - An alternative model suggested by Viollier [228] and De Paolis

[64] conjectured that “dark” compact objects could be fermion balls [80]. These are

objects in which, thanks to the Pauli exclusion principle, the degeneracy pressure of

the fermions is balanced by the self-gravity of the system. The maximum mass of such

an object is given by the Oppenheimer-Volkoff limit MOV; given the fermion mass, all

objects heavier than the corresponding MOV must then be black holes [228]. A fermion

ball would help to describe the low luminosity of Sgr A*, but several drawbacks can

be highlighted. First, describing different SMBHs requires different typologies of the

constituent fermions according to their mass. For example, M87 [231], with a mass

of ≥ 6.3 ◊ 109 M§ implies a fermion mass around 17 keV/c2. A fermion ball with

such a mass would have a radius of ≥ 10 light days, or at the distance of Sgr A*,

about 8.3 mpc. In this case, some parts of the S2 orbit would be located inside

the ball. Heavier objects would require even smaller fermion masses. Observational

characteristics of S2 constrain instead the fermion mass to be > 400 keV/c2 [228, 17].

The impossibility of having a universal model of a fermion ball capable of describing

all SMBHs is the first sign that we should exclude this hypothesis. Secondly, X-ray

and NIR flares observations [171, 174, 12, 76, 192, 79, 109, 77, 101, 6, 7] indicate

that emission comes from regions much smaller than the Schwarzschild radius of a

fermion ball corresponding to a given mass. Ultimately, this scenario carries with it
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the inevitable convergence to a black hole at some point. In fact, it does not explain

what happens to the continuously in-falling matter, which accumulating in the potential

well, will collapse into a black hole.

Boson star - Another model capable to explain massive compact objects is the

boson star, proposed by Torres [225]. By their nature, such agglomerations of bosons

are supported by the Heisenberg Uncertainty Principle. Depending on the mass of

the constituent bosons and the particular self-interaction potential assumed, a large

variety of masses of compact objects can be generated. The mass of the constituent

bosons also determines the size of the hypothetical compact object; generally, it will

not be larger than some Schwarzschild radius. This is the first reason that makes it

difficult to distinguish between boson stars and black holes observationally [226, 166,

165]. But similar to what happens for fermion stars, it is unlikely that at some point in

their life these objects will not collapse into black holes as a result of the accretion of

baryonic matter. One way to discriminate between boson stars and black holes would

be offered by the discovery of pulsars around Sgr A*, which would allow us to measure

the quadrupole moment of the central object. Furthermore, to obtain supermassive

objects one should ad hoc introduce a weak repulsive force between bosons [52]. We

can reasonably exclude the bosonic scenario.

In summary, noting the fragility of the aforementioned alternative configurations,

the hypothesis that Sgr A* is a black hole, for now, remains the most likely one.

4.4 A laboratory to test General Relativity

The most interesting application at the GC for the current research is to probe GR

through tests involving the entire electromagnetic spectrum. Since Eddington’s solar

eclipse observation in 1919 [235], GR has been robustly verified by many experiments.

However, most of the tests were conducted in weak gravitational regimes, where there

is no way that large deviations from GR can be detected. On the other hand, the

need to understand what the definitive theory of gravity is and whether there may be

deviations from Einstein’s theory involves extending the tests to stronger gravitational

regimes, where the predictions of the two theories may be dramatically different. But

how can we define a strong gravitational regime?

For this purpose, it’s worth remembering that space-time is completely described by

three tensors: the metric describing the curvature of space-time at one point, the Ricci

tensor describing how much of the curvature is due to the local mass and the Riemann

curvature tensor describing the total contributes to the curvature (local mass and

gravitational fields due to distant masses). Starting from these tensors, we can define

two parameters that intuitively allow us to characterize the entity of the gravitational

regime on the basis of dimensional arguments: ‘ and › [194]. The parameter ‘ measures
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Figure 4.5: The parameter space for gravitational fields of a wide range of astrophysical

and cosmological systems (left) and their experimental counterpart (right).

the strength of the gravitational field at a distance r from an object of mass M

‘ © GN M

r c2
. (4.5)

In particular, infinitesimal gravitational fields correspond to ‘ æ 0 (Minkowski space-

time), weak gravitational fields correspond to ‘ π 1 (Newtonian gravity), and strong

fields are found for ‘ æ 1 (at ‘ ƒ 1 the event horizon is approached). Instead, the pa-

rameter › approximately measures the space-time curvature through the Kretschmann

(R–—“” R–—“”)
1/2 =

Ô
48

GN M

r3 c2
and is defined as

› © GN M

r3 c2
. (4.6)

These parameters span a two-dimensional surface where we can put the gravitational

fields probed by different objects and experiments. Figure 4.5 shows the (‘, ›)-space

for a wide range of situations.

In this work, we considered the following astrophysical gravitational system: stars

orbiting close Sgr A*. Sgr A* is the perfect tool to test GR for many reasons. First

of all, the environment of Sgr A* is made extreme by its strong gravitational field,

one of the strongest in the Universe as we can see in Fig. 4.5 [8, 195]. Second, NIR

observations of stars orbiting Sgr A* allowed us to accurately measure the values of

its mass and its distance from us, equal respectively to ≥ 4 ◊ 106 M§ and ≥ 8 kpc
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First of all, tracing individual orbits of stars around Sgr A* provides direct con-

straints on its main parameters (Sec. 4.3.2): the mass and the distance from us. Know-

ing the mass of the central object, M , is salient to place the Milky Way onto scaling

relations [135]. Determining the distance to the GC, R, is equally important in astron-

omy since its value determines the size of the Milky Way. To date, many measurements

of M and R are available, made more and more precise by the use of GRAVITY which

has an astrometric accuracy of ≥ 10 µas. The above measurements outline for Sgr A*

a mass of ≥ 4 ◊ 106 M§ and a distance from us of ≥ 8 kpc.

Astrometric and spectroscopic observations of these stars allow the detection of

distinct relativistic effects caused by the corrections to the Newtonian potential of

Sgr A*. The Schwarzschild-type corrections lead to precession in the orbital plane

of the star given by Eq. (2.171). Orbits having angular momenta not parallel to the

black hole spin S exhibit a precession of the orbital angular momentum around S due

to frame dragging (Lense-Thirring precession of the nodes). The ascending node, �,

shows an advancement per orbit given by �� = �LTP , where P = 2fi
Ò

a3/GN M is

the Newtonian period and

�LT © 8fi2

(1 ≠ e2)3/2

GN M

c3P 2
‰ (4.8)

is the Lense-Thirring frequency. Such effects are more evident in stars moving on very

eccentric orbits and for large spin values [196]. So, observing stellar orbits may also

provide a measure of the spin and the quadrupole moment of Sgr A*, allowing an elegant

test of the no-hair theorem through the Eq. (2.96). In Ref. [196] it is estimated the

precision with which the spin and the quadrupole moment of Sgr A* can be measured

with GRAVITY observations.

Relativistic effects on the orbits of S-stars may also be reflected by gravitational

lensing events. Such events depend mainly on the mass and distance of Sgr A* but

could be also influenced by its spin and quadrupole moments thus giving the possibility

to reveal deviations from GR [24, 25, 26, 65, 229].

4.4.2 Pulsars timing

Another tool to test GR is constituted by radio pulsars. These objects are characterized

by the emission of steady beams of electromagnetic radiation, the periods of which are

regular and can be measured precisely. In the case the pulsar is in a binary system

(two pulsars or a pulsar and a companion), timing observations can be used to infer

parameters of the system such as the mass of both objects. Discovering a pulsar

sufficiently close to Sgr A* would allow us to deduce its mass, spin, and quadrupole

moment, and thus would represent another way to test the no-hair theorem.

Binary systems are usually modeled by a set of Keplerian parameters such as the

eccentricity e, the orbital period Pb, the semi-major axis, and a set of post-Keplerian
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parameters [59, 189]. Let us describe the last ones considering a system where m1 and

m2 are respectively the masses of a pulsar and Sgr A* and assuming GR. The mean

rate of pericenter advance, < Ê̇ >, can be used to determine the total mass of the

system:

< Ê̇ >=
2fi

Pb

3

2fi GN m

c3 Pb

42/3

(1 ≠ e2)≠1, (4.9)

where m = m1+m2. The Einstein delay of the emitted radio pulse, “E, is a combination

of the relativistic Doppler effect and the gravitational redshift:

“E = e
3

2fi

Pb

4≠1 3

2fi GN m

c3 Pb

42/3 m2

m

3

1 +
m2

m

4

. (4.10)

The orbital period derivative Ṗb is

Ṗb = ≠192fi

5

3

2fi M

Pb

45/3 3

1 +
73

24
e2 +

37

96
e4

4

(1 ≠ e2)≠7/2, (4.11)

where

M © GN M§

c3

(m1 m2)
3/5

(m1 + m2)1/5
. (4.12)

Finally, the Shapiro delay experienced by the radio pulse represents the extra traveling

time due to the curvature of space-time; it is

�s ƒ 2 GN MBH

c3
ln

A

1 + e cos Ï

1 ≠ sin i sin(Ê + Ï)

B

, (4.13)

where MBH © m2 ∫ m1, and Ê and Ï are the angular distance of the pericenter in the

orbital plane and the orbital phase of the pulsar, and i is the inclination of the orbital

plane with respect to the line of sight.

Instead, to deduce the spin of Sgr A*, we must consider the precession of the orbital

plane. Precession rates of the angles � and � (� is the equatorial longitude of the

ascending node, and � is the equatorial longitude of pericenter) can be written as

�̇ = �LT (4.14)

�̇ = ≠3 �LT cos ◊. (4.15)

Then, we can expand in Taylor series Ê and the projected semi-major axis x,

Ê = Ê0 + Ê̇0(t ≠ t0) +
1

2
Ê̈0(t ≠ t0)

2 + . . . (4.16)

x = x0 + ẋ0(t ≠ t0) +
1

2
ẍ0(t ≠ t0)

2 + . . . (4.17)

where the coefficients (and so the spin magnitude and orientation) are inferred from a

fit of the timing data. In Ref. [149, 196] the precision with which a test of the no-hair

theorem can be performed is reported.

83



Chapter 4

In addition to test GR through the no-hair theorem, we can test alternative theories

by generalizing the Post-Keplerian (PK) parameters appropriately [59]. In this case,

the two masses are not the only free parameters. For example, in f(R)-gravity the

parameters ” and ⁄, introduced previously, also come into play. These additional

parameters turn out to be degenerate with masses. So, the only way to infer values

of the masses is to calculate more PK parameters and break the degeneracy. In f(R)-

gravity, the periastron advance for a binary system can be generalized in the following

manner as shown by De Laurentis in [59]

Ê̇ =
Ê̇GR

” + 1

C

1 +
2”

(1 ≠ e2)2

3

2fi

Pb

44/3 G
4/3
N

c4
(m1 + m2)

4/3

≠ 2”

(1 ≠ e2)⁄

3

2fi

Pb

42/3 G
5/3
N

c4
(m1 + m2)

2/3

≠ 2”

(1 ≠ e2)

3

2fi

Pb

42/3 G
2/3
N

c2
(m1 + m2)

2/3 ≠ ”

2 ⁄2

G2
N

c4
(m1 + m2)

2 +
”

⁄

GN

c2
(m1 + m2)

D

(4.18)

where

Ê̇GR =
3

2fi

Pb

45/3 G
2/3
N

c2

(m1 + m2)
2/3

(1 ≠ e2)
. (4.19)

Definitely, we could test f(R)-gravity via the previous equation and by means

of observations from the Parkes Pulsar Timing Array (PPTA) and from the next-

generation instruments such as the Square-Kilometre-Arrai (SKA) [139, 54, 219].

4.4.3 EHT observations

We expect to have undeniable evidence that Sgr A* is a supermassive black hole by

means of upcoming sub-millimeter VLBI images from EHT Collaboration [70]. The

EHT [92, 86] is a global collaboration based on the technique of linking radio dishes

across the Earth to create an Earth-sized interferometer (See Fig. 4.7).

The way in which we expect to determine if Sgr A* is a Kerr black hole or an

alternative theory black hole is by means of its shadow.

To understand what is the shadow, consider a source of light behind a rotating

black hole, or more concretely photons emitted from the accreting disk and those

propagating close to the black hole: a distant observer will see the apparent image of

the black hole in the form of a dark spot [94]. The contour of this shadow corresponds

to photons revolving the black hole many times before they reach the distant observer

(see Fig. 4.8).

The shadow of a black hole is circular for a Schwarzschild space-time, while its

shape depends on the mass, spin, and inclination for a Kerr metric. However, shadows
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Figure 4.9: Shadow of the supermassive black hole at the center of M87 galaxy [86].

nation in the search for SMBHs led many scientists to propose alternative theories

describing massive compact objects in terms of “exotic” matter. However, such del-

icate alternative configurations can be excluded with a certain degree of confidence,

on the basis of observations and theoretical reasonings. In the current research, GC

is therefore configured as a superb laboratory where scientists can probe the gravita-

tional field in a little-explored regime and answer fundamental questions such as do

black holes exist? What is the theory of gravity underlying nature? In the following

chapter, we will present a method to test theoretical results reported in the first part

through the study of stellar orbits at the GC.
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Test I: Stellar orbits at the Galac-

tic Center

I vari sforzi [compiuti] dai tempi di Euclide, per il corso di duemila anni, mi

spinsero a sospettare nei concetti stessi [della geometria] non si racchiuda ancora

quella verità che si voleva dimostrare, e che può essere controllata, in modo simile

alle altre leggi fisiche, soltanto da esperienze, quali, ad esempio, le osservazioni

astronomiche.

– N. I. Lobačevskij
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In this chapter, which is based on the articles [55, 56], we will use S-stars orbits to

search departures from GR at the inner parsec of our Galaxy. Their proximity to Sgr A*

and their high speed that reaches thousands of km/s, make the S-stars perfect objects

to probe the gravitational potential in which they move. Their peculiar dynamics

helped astronomers to establish the nature of the central object: a supermassive black
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hole of ƒ 4◊106 M§. However, their most profound application in the present research

is the possibility to test the underlying theory of gravity. Indeed, S-stars probe gravity

regimes of up to ‘ ≥ 10≠4, that are two orders of magnitude stronger than the Solar

System regime (‘ ≥ 10≠6) where GR has turned out to be successful.

Our approach to test theories of gravity consists of three fundamental steps: simu-

lation of the orbits in a given theory through a fully relativistic procedure (Sec. 5.2.2),

comparison between mock orbits and the data (Sec. 5.1), determination of allowed re-

gions for the parameters characterizing the theory in question (Sec. 5.3).

5.1 Data

The data used in this work are taken from Ref. [110], where the result of 25 years

of monitoring stellar orbits around Sgr A* is presented. The authors measured the

accelerations of 47 stars, and they determined the orbit for 40 of them. We focused

our calculations on three of these stars: S2, S38 and S55.

5.1.1 The chosen stars

Our choice falls on the stars S2, S38, and S55 for two main reasons: their short periods,

less than twenty years, and their high brightness. Stars with short periods are desirable

for two reasons: first of all, they allow us to sample a larger portion of the orbit during

an observational period, and then they simplify the detection of relativistic effects,

most of which are cumulative and grow with increasing phase coverage. On the other

hand, we look for highly bright sources since they are less prone to be confused with

other members of the cluster.

• S2: The star S2, also known as S0≠2, has a period of 16 years and is the brightest

member of the cluster, having a near-infrared Ks-band magnitude equal to mK =

14.2. Observing S2’s motion helped to strengthen the evidence for the existence

of a compact object at the center of the Milky Way of about 4 million solar

masses [98]. S2 reached the closest approach to Sgr A* in 2018 with a velocity of

7650 km/s. During this event, the relativistic effects predicted by Einstein, as the

combined transverse Doppler and gravitational redshift, were more evident and

for the first time have been measured by the GRAVITY collaboration with an

unseen accuracy [115]. Moreover, they robustly detected an orbital precession of

ƒ 12 Õ/orbit, in agreement with General Relativity [117]. The NTT and VLT set

of S2’s observations contains 145 astrometric observations, ranging from 1992.224

to 2016.53.

• S38: The star S38, or S0≠38, has a period of 19.2 years and a Ks-band magnitude

of mK = 17. Since its orbit is located in a much less crowded zone, the west of Sgr
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A*, it is more distinguishable. We have a set of 114 observations, from 2004.24

to 2016.287.

• S55: The star S55, or S0 ≠ 102, has a period of 12.80 years, the shortest known

so far, and a Ks-magnitude of mk = 17.5. The dataset covered the period from

2004.511 to 2013.617 with 44 astrometric observations.

5.1.2 Description of the dataset

In this section, we briefly describe the dataset presented in Ref. [110]. The measure-

ments were performed in the near-infrared (NIR) since interstellar extinction reduces

from ≥ 30 magnitudes of the optical to ≥ 3 magnitudes. They were obtained with

different instruments, undergoing an improvement in accuracy as the observational

techniques advanced. Specifically:

• SHARP - The SHARP camera, built by Max-Planck-Institut scientists, was used

between 1992 and 2002 at the ESO’s 3.5 m NTT in Chile [75]. The first high-

resolution data of the inner parsec of the Galaxy were taken in speckle mode with

exposures time of 0.3 s, 0.5 s, and 1.0 s, and revealed high proper motion around

the central compact object. The data are described in detail in Ref. [210].

• NACO - The Naos-Conica (NACO) system, mounted at the telescope Yepun

(8.0 m) of the VLT [146, 201], introduced us the technique of adaptive optics (AO)

imaging in 2002. The quality of the data increased due to the larger telescope

aperture and the higher Strehl ratios (≥ 40%).

• GEMINI - These observations were produced in 2000 by the 8 m telescope Gem-

ini North (Mauna Kea, Hawaii) using AO system in combination with the NIR

camera Quirc. The Gemini team made publicly available these data after pro-

cessing.

The detailed astrometric calibration description of the above data is fully explained

in Ref. [113]. We could summarize it in these steps: extracting pixel positions from

maps of the S-stars and transforming them to a common astrometric coordinate sys-

tem. In particular, the astrometric reference frame is implemented relating the S-stars

positions to a set of selected reference stars, which are in turn related to a set of SiO

maser stars with known positions from Sgr A*.

For a complete implementation of such a reference frame, the drift of the central

mass cannot be neglected. This motion could be added up to the coordinates of the

fitting ellipse or removed from the data points. We used the precise determination of

position and proper motion of Sgr A* by Plewa et al. [191], who concluded that the
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average motion in units of mas is:

�x(t) ≥ (≠0.16 ± 0.17) + (≠0.04 ± 0.08)(t ≠ 2009.02) , (5.1)

�y(t) ≥ (+0.08 ± 0.17) + (≠0.01 ± 0.07)(t ≠ 2009.02) . (5.2)

5.2 Simulation of the orbits

In general, the analytical resolution of the field equations is complicated by their non-

linearity, and becomes possible only for systems that are assumed to have particular

symmetries. To tackle the problem of motion in the most general case, that is, in

the case of a generic metric representing a nonstandard space-time, it is necessary to

solve the equations of geodesics directly with numerical methods. In this section, we

will explain how to construct mock stellar orbits starting from the symbolic expres-

sion of an extended metric (Sec. 5.2.1) and integrating the corresponding geodesics by

means of the Runge-Kutta method (Sec. 5.2.2). The whole code was implemented in

Mathematica.

5.2.1 Formulation of the motion problem

The first part of the code to produce mock orbits is symbolic. Given a generic metric

gµ‹(p̨), the starting point is to make explicit the corresponding Lagrangian L(p̨) =

g–—(p̨) ẋ– ẋ—. Here, {p̨} denotes the overall set of parameters characterizing the theory.

In particular, we examined two Extended Theories of Gravity: the f(R)-gravity and

the Bootstrapped Newtonian gravity. The corresponding parameters are, respectively,

{p̨} = {”, ⁄} and {p̨} = {�}.

Given L(p̨), the corresponding geodesic equations can be straightforwardly com-

puted using the Euler-Lagrange equations (Eq. (3.73)). The resulting four equations

(system (3.74)-(3.77) for the f(R)-gravity, and (3.146)-(3.149) for the Bootstrapped

Newtonian gravity) constitute a second-order nonlinear differential system for the

four-dimensional coordinates {r, ◊, „, t}, with the proper time · as an independent

parameter. To be well-posed, this Cauchy system must be equipped with initial condi-

tions for the unknown functions and their derivatives with respect to the proper time:

{r(0), ṙ(0), ◊(0), ◊̇(0), „(0), „̇(0), t(0), ṫ(0)}. Spherical symmetry implies that the orbit

lies on a fixed plane, hence we assume that initially, the star is in the equatorial plane,

◊(0) = 0, and its velocity is parallel to such a plane, ◊̇(0) = 0. It follows that the

condition ◊̈ = 0 is satisfied identically. Values for r and „ at a given time are retrieved

from the expressions of the Cartesian coordinates in the orbital plane (xorb, yorb) (see

Fig. 5.1)

(xorb, yorb) =
1

a (cos � ≠ e), a
Ô

1 ≠ e2 sin �

2

, (5.3)

where a is the semi-major axis, e is the eccentricity and � is the eccentric anomaly.

The Cartesian components of the velocity in the same plane are
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Parameter S2 S38 S55

a (mas) 125.058 ± 0.041 141.6 ± 0.2 107.8 ± 1.0

� (¶) 228.171 ± 0.031 101.06 ± 0.24 325.5 ± 4.0

e 0.884649 ± 0.000066 0.8201 ± 0.0007 0.7209 ± 0.0077

i (¶) 134.567 ± 0.033 171.1 ± 2.1 150.1 ± 2.2

Ê (¶) 66.263 ± 0.031 17.99 ± 0.25 331.5 ± 3.9

tp (yr) 2018.37900 ± 0.00016 2003.19 ± 0.01 2009.34 ± 0.04

T (yr) 16.0455 ± 0.0013 19.2 ± 0.02 12.80 ± 0.11

mK 13.95 17. 17.5

Ref. [117] [110] [110]

Table 5.1: Orbital parameters of S2, S38, and S55.

Star M(M§) R(kpc) Ref.

S2 (4.261 ± 0.012) ◊ 106 8.2467 ± 0.0093 GRAVITY [117]

S38 (4.35 ± 0.13) ◊ 106 8.33 ± 0.12 Gillessen [110]

S55 (4.35 ± 0.13) ◊ 106 8.33 ± 0.12 Gillessen [110]

Table 5.2: Parameters of the central BH.

In order to constrain a given set of parameters through observations, we have in-

troduced a Do loop that makes them vary over a range of values [pi,min, pi,max] with an

appropriate step �pi, where pi = {”, ⁄, �}. In particular, for the f(R)-gravity we de-

fined a double cycle for ” and ⁄: ” in the range [≠0.9, 2] with an increment of �” = 0.05

and ⁄ in the range [1000 AU, 60000 AU] with a step of �⁄ = 100 AU. The choice of

” > ≠1 ensures that we are avoiding the singularity in the gravitational potential,

while the range of variation for ⁄ has a lower extreme comparable with the semi-major

axis of the selected S-stars and extends for about an order of magnitude. Instead, to

test the Bootstrapped Newtonian theory we let � vary in the range [≠350000, 350000]

with an increment �� = 100.

We have grafted a numerical differential equations solver in the Do loop, so as to

find, for each value of the parameters space, a numerical solution for our differential

system with independent variable · from ·min to ·max. Specifically, we used NDSolve,

the numerical solver in Mathematica. NDSolve is a very sophisticated tool; it allows

users to choose among a lot of explicit Runge-Kutta methods (see Box 2), the most

efficient class of methods for many nonstiff systems. Moreover, it’s able to do au-

tomatic stiffness detection by default. Another nice characteristic is that it includes

interpolation for all kinds of solutions to make them continuous.
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Box 2: Runge-Kutta methods

To understand the idea on which the Runge-Kutta method is based a, consider

the set of N first-order coupled differential equations having the general form

dyi(x)

dx
= fi(x, y1, . . . , yN), i = 1, . . . , N, (5.8)

where the functions fi are known and all yi are specified at some initial value.

The idea behind any routine that can solve such an initial value problem is to

rewrite dy and dx in terms of finite quantities �y and �x, and multiply the

equations by �x to obtain algebraic formulas for the variation of the functions

following the increment of the independent variable x by a quantity �x. The

literal implementation of this procedure results in Euler’s method, the simplest

and least accurate, based on the formula

yn+1 = yn + h f(xn, yn), (5.9)

which advances the solution from xn to xn+1 © xn + h. Accuracy is given by

the degree of matching of high terms with the Taylor expansion of the solution.

In Euler’s method, errors start at powers of h2 (first-order accuracy). Moreover,

this formula is not symmetric: it advances the solution through an interval h,

but uses the information of the derivative only at the beginning of that interval.

Hence the idea of considering this formula as an intermediate “test” step to

obtain higher-order methods. In general, denote the Runge-Kutta method for

the approximate solution to an initial value problem at tn+1 = tn + h by

gi = yn + h
s

ÿ

j=1

aijkj, (5.10)

ki = f(tn + cih, gi), i = 1, 2, . . . , s, (5.11)

yn+1 = yn + h
s

ÿ

i=1

biki (5.12)

where s is the number of stages. It is assumed that the row-sum conditions are

satisfied:

ci =
s

ÿ

j=1

aij, i = 1, . . . , s. (5.13)

Such conditions determine the points at which the function is sampled. Ex-

plicit Runge-Kutta methods include the special case where the matrix A is lower

triangular.

aWolfram Documentation

We, therefore, integrated the two differential equations systems with the Runge-

Kutta method, starting from the above initial conditions. In particular, we performed
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both backward and forward integration starting from the apocentre passage for S2,

while for S38 and S55 forward integration was enough. Indeed, astrometric data for

S38 and S55 have been collected after their last apocentre passage (which occurred

on 1993.59 and 2002.94, respectively), while data for S2 span the period 1992.224 to

2016.53 including the apocentre time (2010.35).

To summarize, the schematic code constituting the heart of the numerical part is

the following:

Do [ NDSolve[ equations, {r, ◊, „, t}, {·, ·min, ·max}], {pi, pi,min, pi,max, �pi}]. (5.14)

The numerical integration produces a four-dimensional parametric array {t(·),

r(·), ◊(·), „(·)} for each star and for each point in the grid of parameters, from which

we calculate the vector (xorb(·), yorb(·)) representing the mock orbit on the orbital

plane:

xorb(·) = r(·) sin ◊(·) cos „(·), (5.15)

yorb(·) = r(·) sin ◊(·) sin „(·). (5.16)

We illustrate in Fig. 5.2 the phase portrait of ṙ(·) versus r(·) for the GR solution.

Our aim of comparing theoretical orbits with the ones observed from the Earth

requires the projection of mock coordinates in the orbital plane onto apparent co-

ordinates in the observer’s plane. Such a transformation from the true positions,

(xorb(·), yorb(·)), into the apparent position, (xth(·), yth(·)), is performed by means

of three Keplerian elements (see Fig. 5.3): the angle of the line of node �, the angle

from ascending node to pericentre Ê, and the inclination i. These parameters are re-

ported in Table 5.1. From the theory of binary stars [2, 216], the following Thiele-Innes

formulas are known

xth(·) = l1 xorb(·) + l2 yorb(·), (5.17)

yth(·) = m1 xorb(·) + m2 yorb(·). (5.18)

Expressions for the Thiele-Innes elements l1, l2, m1 and m2 are related to the Keplerian

parameters by

l1 = cos � cos Ê ≠ sin � sin Ê cos i, (5.19)

m1 = sin � cos Ê + cos � sin Ê cos i, (5.20)

l2 = ≠ cos � sin Ê ≠ sin � cos Ê cos i, (5.21)

m2 = ≠ sin � sin Ê + cos � cos Ê cos i. (5.22)

5.3 Fitting Procedure

To summarize, for each point in the space of the parameters {p̨}, we integrated nu-

merically the geodesics equations (Eqns (3.74)-(3.77) for the f(R)-gravity, and (3.146)-

(3.149) for the Bootstrapped gravity) to find true positions (xorb(·), yorb(·)) of the stars
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pi, we marginalized the likelihood distribution over the other parameter to obtain the

one dimensional likelihood:

L(pi) =

s

dNj pjL(pi, pj)
s

dNj pj

, (5.26)

where i = (”, ⁄), i ”= j and Nj is the dimension of the j-th parameter’s space. In

the case of the Bootstrapped gravity, it is sufficient to calculate the one-dimensional

likelihood function.

To calculate the best fit value for ”, we considered the point that maximizes the

marginalized likelihood distribution. The confidence interval at 68%, [”̂ ≠ ‡≠, ”̂ + ‡+],

is determined by the Neyman interval, which takes into account the asymmetry of the

distribution [11]:
⁄ ‡

−

≠0.9
P (”Õ)d”Õ = 0.16 =

⁄ 2

‡+

P (”Õ)d”Õ, (5.27)

where P (”Õ) is the probability distribution obtained by normalizing the likelihood dis-

tribution, and [≠0.9, 2] are the extremes of the variation range for ”. We repeated the

same procedure for �. On the contrary, we can set only a lower limit on ⁄ at 1‡ level.

5.4 Results

In this section our results are reported.

5.4.1 Test I.a: f(R)-gravity

The outcome of our analysis is summarized in Table 5.3 and illustrated from the Figures

5.4 to 5.9.

Figures 5.4, 5.5, and 5.6 depict mock orbits corresponding to the best fit parameters

of the selected stars as listed in Table 5.3. We report the data with their own error

bars to visually check the effectiveness of our procedure in fitting observations. More

in detail, the first, the second, and the third plots are particularized respectively for

S2, S38 and S55.

Figure 5.7 illustrates the comparisons between the observed and mock coordinates

with the corresponding residuals. In the left column (right column) the results for the

right ascension (RA) (declination (Dec)) are depicted. In both coordinates, and in all

stars, residuals are larger at the beginning of the observing interval time, and decrease

as astrometric accuracy improves.

Finally, to visually show the effectiveness of our multi-star approach, Figure 5.8

depicts the orbits of the analyzed S-stars corresponding to the best estimates of the

parameters in the multi-star run, as reported in the fourth row of Table 5.3.
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Star �

S2 ≠5900+39358.8
≠44964.9

S38 25500+22607.1
≠23312.88

S55 60400+81386
≠87446.9

Multi-Star 17400+30555.6
≠32244.3

Table 5.4: Best-fit values for �.

orbits respectively of S2, S38, and S55.

Figure 5.13 depicts the comparisons between the observed and simulated coordi-

nates with the corresponding residuals; the left and the right column are particularized

respectively for the right ascension (RA) and the declination (Dec).

Finally, we show in Figure 5.14 the orbits of the studied S-stars corresponding to

the best multi-star fit for � = 7400+30555.6
≠32244.3 (last row of Table 5.4), the point maximizing

the likelihood distribution shown in Fig. 5.15.

5.5 Concluding remarks

We investigated the orbital motion of S-stars in the framework of f(R)-gravity and

Bootstrapped Newtonian-gravity theories. In order to constrain the parameters {”, ⁄, �},

we varied them freely in an appropriate range. We solved the geodesic equations nu-

merically setting initial conditions at the apocenter. Then, we applied the Thiele-Innes

formulas to convert the mock positions to the reference frame of a distant observer.

The numerical integration is carried out on the basis of a two-body approach, i.e.

perturbations due to other members of the S-stars cluster, as well as other possible

existing extended structures of matter, have been neglected. Finally, we performed

‰2-statistics to compute the best fit values of the parameters, and their uncertainties.

We do not detect any departure from GR, even using more stars simultaneously.

This result was rather expected since S-stars are, on average, at a distance r > 1000 RS

(for Sgr A*, RS ≥ 0.08 AU) from the source. Therefore, any strong-field effect is

negligible.

The proposed approach is completely general and could be useful in the task of

classifying other gravitational theories on the basis of dynamical tests at the GC.
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Test II: Precession of the Perihe-

lia

Adeo ut coelestis hic Mercurius non minùs Astronomos torserit, quàm terrestris

Alchimistas eludat.

– G. B. Riccioli

6.1 Precession . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.1.1 Bootstrapped Newtonian gravity . . . . . . . . . . . . 112

6.1.2 f(R)-gravity . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Astronomical tests . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.1 Test II.a: Bootstrapped Newtonian gravity . . . . . . . 113

6.2.2 Test II.b: f(R)-gravity . . . . . . . . . . . . . . . . . . 116

6.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . 117

In the previous chapter, we presented a relativistic approach to test theories of

gravity using stellar orbits observations at the GC. In this chapter, based on the article

[56], we want to check the validity of our results by performing further analysis. To

this end, we present a phenomenological investigation aiming at placing bounds on the

parameters of interest from observations of the precession of the perihelia of planets in

the Solar System. We will report the results for the f(R)-gravity theory (inspired by

De Laurentis and De Martino [59]), and those for the Bootstrapped Newtonian gravity

theory.
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6.1 Precession

It’s useful to recall theoretical expressions for the periastron advance. The follow-

ing results will be applied to an astronomical system to constrain the characteristic

parameters, as we will see in Sec. 6.2.

6.1.1 Bootstrapped Newtonian gravity

The expression at the leading order of the perihelion precession in terms of the PPN

parameters (Eq. 2.167) is:

�„(1) = fi (2 ≠ — + 2 “)
RS

¸
. (6.1)

As we saw in Sec. 3.4.4, the second-order correction depends on both › and ’ and,

for — = “ = 1, is given by Eq. (3.151):

�„(2) = fi

C

(41 + 10› ≠ 24 ’) + (16 › ≠ 13)
e2

2

D

R2
S

4 ¸2

ƒ fi

C

(37 + 22 �) + (3 + 16 �)
e2

2

D

R2
S

4 ¸2

ƒ �„
(2)
S + 2 fi

Ë

11 › ≠ 7 + 4 (› ≠ 1) e2
È R2

S

4¸2
. (6.2)

From Eq. (3.142), it follows that we cannot have › = ’ = 1 for any value of �. A

deviation from GR, quantified by �, remains.

In order to constrain the parameter � by observed values of celestial bodies preces-

sion, we can identify its confidence region as the set of values such that the precession

�„ = �„(1) + �„(2) (6.3)

is compatible with data.

6.1.2 f(R)-gravity

As demonstrated in Ref. [59], the equation for the periastron advance in f(R)-gravity

is given by

�„ =
3fiRS

a(1 ≠ e2)

A

1 +
”R2

S

6a2 (1 ≠ e2)2
≠ fi”R2

S

2a (1 ≠ e2) ⁄
≠ 3”RS

2a (1 ≠ e2)
≠ ”R2

S

24 (” + 1) ⁄2
+

”RS

6⁄

B

.

(6.4)

It is immediate to notice that Eq. 6.4 reduces to the GR expression �„GR if ” = 0:

�„GR =
3fi RS

a (1 ≠ e2)
. (6.5)
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Planet a(106 km) P (years) i(¶) e �„obs(
ÕÕ/cy) �„S(ÕÕ/cy) [�min; �max]

Mercury ¬ 57.909 0.24 7.005 0.2056 43.1000 ± 0.5000 42.9822 [≠89708.7; 144995]

Venus √ 108.209 0.61 3.395 0.0067 8.6247 ± 0.0005 8.6247 [≠1149.67; 1167.47]

Earth   149.596 1.00 0.000 0.0167 3.8387 ± 0.0004 3.83881 [≠3660.86; 2094.96]

Mars ƒ 227.923 1.88 1.851 0.0935 1.3565 ± 0.0004 1.35106 [155248.; 179879.]

Jupiter ≈ 778.570 11.86 1.305 0.0489 0.6000 ± 0.3000 0.0623142 [5.46709 · 108; 1.92679 · 109]

Saturn ∆ 1433.529 29.45 2.485 0.0565 0.0105 ± 0.0050 0.0136394 [≠1.57315 · 108; 3.59618 · 107]

Table 6.1: Values of semi-major axis (a), orbital period (P ), tilt angle (i), eccentricity

(e), observed orbital precession (�„obs), orbital precession as predicted by GR (�„S)

and constraints on � for Solar System’s planets.

6.2 Astronomical tests

To constrain the free parameters of the theories under consideration, we confronted the

theoretical results exposed in Sec. 6.1 with the astronomical data. To infer a range of

validity for a given parameter, we compared the analytical expression of the precession

with the observed values of the perihelion advance of the Solar System’s planets.

6.2.1 Test II.a: Bootstrapped Newtonian gravity

Precession in the Solar System

We can put constraints on � starting from the Solar System planets whose orbital pre-

cession has been measured: Mercury, Venus, Earth, Mars, Jupiter, and Saturn [178].

Let us describe Table 6.1. Column (1) gives the name of the planet and its corre-

sponding symbol. From column (2) to column (5) values of the planetary parameters1

are quoted: semi-major axis (a), orbital period (P ), tilt angle (i), and eccentricity (e).

Column (6) gives the observed values of the precession [178] while the GR values as

obtained by Eq. (2.167) are reported in column (7). For each planet, we can define an

allowed region of the parameter � as the interval of values such that its extremes solve

the equation

�„(�) = �„obs, (6.6)

where �„obs include the observative uncertainties. The inferred lower and upper limits

for �, which then outline the range of values compatible with data, are reported in

column (8) of Table 6.1 while a graphical representation is given by Figure 6.1. Grey

shades represent the allowed regions for �, that is the region under the curve �„(�)

delimited by the values [�„(�min); �„(�max)]. Graphically, the values �„(�min) and

�„(�max) are obtained intercepting the theoretical black line with the blue dashed lines,

that is the measured values taken from [178]. Finally, red lines mark the GR values

1The reported values are taken from NASA fact sheet at

https://nssdc.gsfc.nasa.gov/planetary/factsheet/
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Planet a(106 km) P (years) i(¶) e �„S(ÕÕ/cy) [�„min; �„max]

Uranus « 2872.463 84.01 0.772 0.0457 0.00238404 [0.00238404; 0.00238405]

Neptune » 4495.060 164.786 1.769 0.0113 0.000775374 [0.000775373; 0.000775375]

Pluto … 5869.656 247.936 17.16 0.2444 0.000419669 [0.000419669; 0.00041967]

Table 6.2: Orbital parameters from the Nasa Fact Sheet, the GR prediction for the

precession in the sixth column and the values predicted by the bounds on the parameter

� of the Bootstrapped theory deduced for Venus (see Table 6.1).

Object �„GR(ÕÕ/cy) �„(�¬) �„(�√) �„(� ) �„(�∆)

Mars 1.35106 [1.34814; 1.35577] [1.35102; 1.3511] [1.35094; 1.35113] [≠3.75855; 2.5191]

Jupiter 0.0623142 [0.0622752; 0.0623773] [0.0623137; 0.0623147] [0.0623126; 0.0623151] [≠0.00607962; 0.0779489]

Table 6.3: Precession for Mars and Jupiter as predicted by confidence values for �

inferred from Mercury, Venus, Earth, and Saturn.

1167.47]. We can use the values defining such an interval to predict the precession for

Uranus, Neptune and Pluto, for which no observation is available. The results, sum-

marized in Table 2, show that the Bootstrapped Gravity theory predictions perfectly

agree with GR.

We can next calculate the precession for Mars and Jupiter with the values of � as

obtained by Mercury, Venus, Earth, and Saturn to check agreement with the corre-

sponding Schwarzschild value (Table 6.3).

Precession of S2-star

When in 2002 the star S2 passed the pericentre at 120 AU(≥ 1400 RS) with an or-

bital speed of 7700 km/s (— = v/c = 2.56 ◊ 10≠2), the first-order GR-effects, as the

gravitational redshift and the Schwarzschild precession, were in reach of accurate obser-

vations thanks to GRAVITY [116]. The results, summed up in Table 6.4 and depicted

in Fig. 6.2, confirm the compatibility of our predictions with GR. In Table 6.5 we

report values of the precession as obtained by the extremes of the confidence regions

for � inferred from Mercury, Venus, Earth and Saturn: GR value always lies in such

intervals.

The mean value of the parameter � such that

�„(�) = �„S (6.7)

is given by

� = ≠1.64236 ± 0.10305 . (6.8)
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Object �„GR(ÕÕ/orbit) �„(�Mercury) �„(�Venus) �„(�Earth) �„(�Saturn)

S2 730.382 [≠57243.9; 94435.7] [≠11.7295; 1485.75] [≠1634.61; 2085.15] [≠1.01666 · 108; 2.32414 · 107]

Table 6.5: Precession for S2 as predicted by confidence regions for � inferred from

Mercury, Venus, Earth and Saturn.

Planet a(106 km) P (years) i(¶) e �„obs(
ÕÕ/cy) �„S(ÕÕ/cy) [”min; ”max]

Mercury ¬ 57.909 0.24 7.005 0.2056 43.1000 ± 0.5000 42.9822 [≠0.0141694; 0.00897216]

Venus √ 108.209 0.61 3.395 0.0067 8.6247 ± 0.0005 8.6247 [≠0.0000584993; 0.0000574467]

Earth   149.596 1.00 0.000 0.0167 3.8387 ± 0.0004 3.83881 [≠0.0000759063; 0.000132503]

Mars ƒ 227.923 1.88 1.851 0.0935 1.3565 ± 0.0004 1.35106 [≠0.0043058; ≠0.00371842]

Jupiter ≈ 778.570 11.86 1.305 0.0489 0.6000 ± 0.3000 0.0623142 [≠0.930762; ≠0.792286]

Saturn ∆ 1433.529 29.45 2.485 0.0565 0.0105 ± 0.0050 0.0136394 [≠0.120041; 1.47988]

Table 6.6: Values of semi-major axis (a), orbital period (P ), tilt angle (i), eccentricity

(e), observed orbital precession (�„obs), orbital precession as predicted by GR (�„S)

and constraints on ” for Solar System’s planets.

to predict the precession for Uranus, Neptune, and Pluto. We report the results in

Table 6.7 and we can easily ascertain that GR value lies in the interval predicted by

the f(R)-gravity. As a final check, we can calculate the precession for Mars and Jupiter

with the values of ” as obtained by the remaining four planets (Table 6.8). The latter

Table shows full compatibility between the standard value and those predicted by the

extended theory.

Precession of S2-star

We performed the same analysis with S2. We report the results in Table 6.9 and we

portray them in Figure 6.4. Finally, in Table 6.10 we put the values of the precession as

obtained by confidence values of ” deduced from Mercury, Venus, Earth, and Saturn.

6.3 Concluding remarks

In this chapter, we performed a further astronomical test to cross-check constraints

obtained using stellar orbit at the GC. Bounds on � and ” can be deduced from the

comparison between the measurements of the orbital precession of Solar System bodies

and the theoretical predictions arising from bootstrapped Newtonian metric (computed

in Ref. [47]) and the f(R)-gravity metric (computed in Ref. [59]). The inferred confi-

dence regions for � and ” for each planet are reported, respectively, in Tables 6.1 and

6.6. Their graphical representation can be found in Figures 6.1 and 6.1. We obtained
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Object �„S(ÕÕ/orbit) �„(”Mercury) �„(”Venus) �„(”Earth) �„(”Saturn)

S2 730.382 [723.883; 740.885] [730.34; 730.424] [730.285; 730.437] [294.278; 830.074]

Table 6.10: Precession for Mars, Jupiter, and S2 as predicted by confidence regions for

” inferred from Mercury, Venus, Earth, and Saturn.

the Galactic Center and repeating the same analysis for the star S2 [116]. The mean

value of the parameter � such that the Bootstrapped Newtonian precession equals the

Schwarzschild value is

� = 1.64236 ± 0.10305. (6.11)

Finally, the value of ” which recovers the Schwarzschild precession is ” = 0. As we

expected, the confidence regions inferred by precession measurements slightly extend

around zero.
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Conclusions

Nature uses only the longest threads to weave her patterns, so that each small piece

of her fabric reveals the organization of the entire tapestry.

– R. Feynman

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2 Future prospects . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.1 Summary

When we are in the presence of a new mathematically consistent theory, that is, one

that respects a series of specific theoretical principles, we must understand if its pre-

dictions are consistent with the data provided by the reality or, if not, relegate it to

the abstract realm of mathematics. In this thesis, we address this need to the plethora

of theories of gravity and we pursue the goal of building an applicative counterpart to

the extensive theoretical work aimed at developing suitable models. We have divided

this thesis into two parts: in the first part we presented the foundations of General

Relativity and its extensions; in the second part we wondered if these extensions could

describe reality. In particular, we focused on two theories that could help to solve the

flaws that undermine the General Relativity on two sides: the f(R)-gravity theory on

the infrared side and the Bootstrapped Newtonian gravity on the ultraviolet side.

First, we investigated the orbital motion of S-stars around Sgr A* to constrain

the free parameters emerging from the aforementioned theories: {”, ⁄} from the f(R)-

gravity and � from the Bootstrapped gravity. To bound such parameters, we adopted

a completely agnostic method without imposing a priori any fiducial value, that is, we
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varied them freely in an appropriate range. For each point in the parameters space,

we solved the relativistic geodesic equations numerically by the Runge-Kutta method

by setting initial conditions at the apocenter. To tackle the problem of stellar motion

we chose to integrate the exact geodesics equations instead of solving the classical

Newtonian equations of motion as previously was done. This is the correct way to

proceed if we want to take into account accurately the relativistic effects induced by

the central compact object. Then, we applied the Thiele-Innes formulas to project

the theoretical positions to the reference frame of a distant observer. The numerical

integration was carried out neglecting perturbations due to other members of the S-

stars cluster and other possible existing extended structures of matter. Finally, we

performed ‰2-statistics to compute the best fit values of the parameters, and their

uncertainties [55, 55]. We did not find any significant deviation from GR, even using

more stars simultaneously. Indeed, we got ” = 0.00+1.69
≠0.52, where ” = 0 reduces our

geodesics to the GR ones. Additionally, we set a lower bound on ⁄ that excludes

regions of the parameter space where ⁄ < 6336.23 AU, in agreement with the results

obtained by Borka et al. [22] and Hees et al. [126]. Finally, we found � = 17400+30555.6
≠32244.3.

We expected this result because S-stars are, on average, at a distance r > 1000 RS

from the source and strong-field effects are negligible.

Next, we exploited the measurements of perihelion precession of Solar System plan-

ets to investigate phenomenologically the considered theories. In particular, we checked

for which values of the parameters there is no contradiction between observations and

theoretical expressions for the precession. Among the planets whose precession has

been observed (that is Mercury, Venus, Earth, Mars, Jupiter, and Saturn) the tightest

allowed interval for � and ” was obtained with Venus:

� œ [≠1149.67; +1167.47], (7.1)

” œ [≠0.0000584993; 0.0000574467]. (7.2)

Predicting the orbital precession for the remaining planets (Uranus, Neptune and

Pluto) with such values, we found a great agreement between the theoretical pre-

cession and the GR value. Such compatibility was confirmed by repeating the same

analysis for the star S2, whose precession has been robustly detected by the GRAVITY

collaboration [116].

The proposed approach is completely general and puts this work into a broader

program that aims at constraining other theories still untested at the Galactic scale.

7.2 Future prospects

Gravitational research is at a crucial, exciting point. The possibility of a critical test of

GR is in reach of the second generation facilities, which are probing space-time deeper

and deeper towards the event horizon. Efforts to achieve this goal are mainly on two
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fronts.

From one side, at NIR wavelengths, constraints on the parameters of a particular

gravitational theory could be improved with increasing high accuracy observations

of stars near the GC by advanced facilities such as GRAVITY [18]. Following the

recent detection of the three stars S62, S4711, and S4714 [185, 186], moving on highly

eccentric orbits with a short semi-major axis, new stars are likely to be found within

the orbit of S2 [114]. Looking for stars at smaller radii is fundamental to find possible

deviations from GR since strong field effects, such as the Lense-Thirring precession,

are no longer negligible for distances of the pericenter close to RS. Good candidates for

this measurement are S62 and S4714 [186], which can reliably provide an estimate of

the central object spin thus helping to test the gravitational theory at the basis. In this

context, the most stringent test would be offered by a pulsar-black hole binary system,

with a pulsar spinning hundred times per second. In that case, we would observe the

largest deviations from GR. Prospects of finding such a system at the center of the

Milky Way are increasing immensely thanks to the explorations currently conducted

by BlackHoleCam and EHT.

From the other side, the incontrovertible proof that Sgr A* is a supermassive black

hole requires an angular resolution close to the object’s event horizon. Shadow obser-

vations conducted by EHT Collaboration, with a high angular resolution of better than

60 µas, will concretize this delicate purpose. They will use VLBI images to determine

if they correspond to a black hole described by GR or a black hole in ETG.

There will be further progress thanks to the high point-source sensitivity of the

new instrumentation like James Webb Space Telescope (JWST)1. New investigations

of faint flares will explain better the energetics near Sgr A*.

We do not know where we are on the long and compelling history of gravitational

theories. However, looking for a way to orient ourselves among the extended family of

theoretical models on the basis of astronomical observations, we hope to have indicated

the direction to take to catch a glimpse of the truth.

1http://www.jwst.nasa.gov/
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