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“Looking at the universe as a whole; cosmology, the birth, life and death of the whole
universe, we used to have a nice simple model. Then we had to add things like dark
energy, and our nice simple picture is getting messier and messier and messier.”

Jocelyn Bell Burnell - Beautiful Minds

“Astronomy is useful because it raises us above ourselves; it is useful because it is
grand. . . It shows us how small is man’s body, how great his mind, since his intelligence
can embrace the whole of this dazzling immensity, where his body is only an obscure
point, and enjoy its silent harmony.”

Henri Poincaré - La Valeur de la Science

“Something deeply hidden had to be behind things.”

Albert Einstein - Autobiographical Notes

“The history of astronomy is a history of receding horizons.”

Edwin P. Hubble - Realm of the Nebulae

“We’ve always defined ourselves by the ability to overcome the impossible. And we
count these moments. These moments when we dare to aim higher, to break barriers,
to reach for the stars, to make the unknown known. We count these moments as our
proudest achievements. . .And that our greatest accomplishments cannot be behind us,
because our destiny lies above us.”

Cooper - Interstellar

“Do or do not, there is no try.”

Yoda - Star Wars
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Abstract
Monte Sant’Angelo Campus
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Doctor of Physics

Cosmological probes from weak lensing analysis on galaxy clusters

by Lorenzo Ingoglia

The Universe is composed of matter distributed on the large scale as a web-like struc-
ture. Galaxy clusters are located at the densest regions of the cosmic structure, the
dark matter halos. Therefore, studying this class of objects gives crucial insights into
the evolution of the matter distribution in the Universe and precious clues on the
nature of the enigmatic dark matter. The dark matter, largely dominant in the halos,
is invisible with direct observations. However, we can determine the dark matter dis-
tribution around galaxy clusters by means of weak gravitational lensing. This method
takes advantage of the deflection of light induced by massive objects, namely clusters
of galaxies, to derive their mass density profiles on scales reaching the halo boundaries
and beyond, extending into the regime of the large-scale structure.

Galaxy clusters and their hosts, the halos, are biased tracers of the underlying
matter density field. This effect is characterized by the so-called halo bias, a parameter
scaling the density profiles driven by the correlated matter distribution around galaxy
clusters. During my thesis, I investigated the relation between the halo mass and the
halo bias derived from stacked weak lensing profiles of about 7000 AMICO galaxy
clusters. This catalog is assessed from the third data release of KiDS, the ESO public
survey. Stacking the profiles is a process that reduces the statistical noise of the
lensing signal and increases the quality of the measured parameters. We thus split
the cluster sample into 14 redshift-richness bins and derived the halo bias and the
virial mass in each bin by means of a standard Bayesian inference. It is carried out
by a fiducial density model broken in a one-halo term, identified with the galaxy
cluster halo and its physical characteristics (mass, concentration, etc), and a two-
halo term, associated with matter distributed in distinct pairs of halos and directly
proportional to the halo bias. The two terms of the halo profile correlate in such
a way that the halo bias follows an increasing function of mass. This relation has
been shown and modeled in several theoretical studies based on N -body numerical
simulations, in the framework of the ΛCDM standard cosmological model. The results
of our study show an agreement within 2σ between our estimation of the halo bias
and theoretical predictions. The measurements of the average mass and bias over the
stacked density profile of the full cluster catalog give M200c = (4.9± 0.3)× 1013M�/h
and bhσ2

8 = 1.2 ± 0.1. Considering the degenerated form of the halo bias and the
additional prior of a bias-mass relation from numerical simulations, we constrained
the normalization of the matter power spectrum. We found σ8 = 0.63± 0.10 with the
matter density of the Universe set at Ωm = 0.3. Even if a fixed cosmology does not
allow to complete a fully independent cosmological inference, this result agrees with
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other studies based on CMB data, cluster clustering, cluster counts, and cosmic shear
analyses within 2σ.

In the upcoming years, the next generation of sky surveys will provide deeper and
wider catalogs of data for cosmologists to answer modern inquiries. As part of my
thesis, I have been involved in the development of a numerical tool in the context
of the Science Ground Segment data processing pipeline of the Euclid consortium.
COMB-CL is a python module (at the moment, in a state of prototype) that aims to
measure the weak lensing mass of galaxy clusters. The code is built in such a way
that catalogs of cluster and galaxy properties (position, redshift, shear, color, etc)
are input and, given a fiducial cosmology and a model for the halo density profile,
catalogs of weak lensing profiles and related masses are output. This toolkit has been
accepted and will be reviewed in a paper of the key project LE3-CL-2 regarding the
characterization of the properties of detected galaxy clusters.
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Chapter 1

Introduction

The Universe has always been a source of curiosity to mankind by how vast and
unknown it is. A large number of riddles remain unsolved despite the fast and efficient
progress of science in the last decades, as each discovery gives way to new questions.
Amongst the breakthroughs is the uncovering of dark matter and dark energy as the
principal ingredients of the standard cosmological model. Our knowledge of the origin
and the evolution of the cosmic flows has strongly increased with this model but still
needs to be completed by the study of the matter distribution within the largest and
the most massive cosmological objects in the Universe: clusters of galaxies. Weak
gravitational lensing is a relatively recent method permitting to measure the mass
component of such gravitationally bound systems, whether it is visible or dark, and
without requiring any assumption about their composition or dynamical state. This
technique is a powerful tool to probe cosmology.

This Thesis contributes to developing our understanding of the essence of matter
by studying its distribution in galaxy clusters. This introduction will review the
history of cosmology and the evolution of an expanding Universe, the model that today
best describes such Universe, the global physical processes leading to the growth of
structures, and the cosmological framework of galaxy clusters as baselines to complete
a thorough analysis on large optical surveys.

1.1 Overview of the Universe

Regarding the well-known “Big Bang” Theory, the Universe arises from a 13.8 years
ago primordial singularity, giving birth to hundreds of billion galaxies, each of them
containing the same amount of stars among which the Sun allowed to create life on
earth.

1.1.1 History of cosmology

Cosmology is the study of the formation, evolution, and interaction of the various
components of the Universe, from galaxies and clusters to the large-scale structure,
from the early moments to nowadays. Since the beginning of human being, astro-
physical observations has always been a source of motivation to better understand
our Universe. This curiosity gave rise to various beliefs and modelings across civi-
lizations, becoming preciser as soon as advanced technology allowed new observations
and brought to discoveries.

In the beginning, anthropologists think our ancestors, animated by faith in a magic
Universe, incarnated heavenly bodies with spirits, in particular the Sun and the Moon
considered as two distinct bodies, one belonging to the day and the other to the night.
As time goes by, civilizations gave more importance and power to these spirits and
disconnected them from nature. They transformed spirits into gods and their vision of
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the Universe turned mythical. The first Mesopotamian civilizations (3000-2000 B.C.)
believed in the Babylonian mythology in which the world arises from a conflict between
the cosmic primordial chaos and the gods. Almost at the same period, the Egyptians
gave to the god of Sun, Râ, a central role in their mythology related to the existence of
life. In the Indian mythical Universe, Brahma, the god creator, conceived the world
during his dream. In this mythology, the cycles of the cosmos are associated with
Brahma’s breath: the Universe is contracting when Brahma expires and is expanding
when Brahma inspires. This recall the discovery of the expansion of the Universe
by Hubble. Each cycle lasts about 8.6 billion years, which is surprisingly consistent
with modern cosmology, as the age of the Universe is about 14 billion years. Over
time, humans remarked how the cosmos is regular: the periodic appearance of the
Moon, the Sun, and the positions of the stars in the sky relative to the seasons or the
fixed patterns designed by the stars. Humans used all these comforting phenomena to
enhance their life being, as with the navigation or the prediction of seasons, essential
for agriculture. A perfect example of the historical astronomical instrument is the
Stonehenge monument in the south of England, a huge cosmic calendar built by a
4000 years old civilization marking the passage of seasons.

With the emergence of mathematics in ancient Greece (500-300 B.C.), the concept
of a geocentric Universe composed of spheres on which lie cosmic objects (the Moon,
the planets, the Sun and the stars, the Earth being at the center of the spheres)
arrived with Pythagoras and Plato. Aristotle resumed the idea by increasing the
number of spheres to 55 due to the irregular movements of the planets compared
to the stars (“planet” means “vagabond” in ancient Greek), and improved the model
by adding a metaphysical dimension: the straight separation between an “imperfect”
earth, on which all the natural movements of elements are vertical (dirt and water
fall while air and fire rise), and a “perfect” sky, where the object follow a circular
uniform movement. Later on, due to the erratic trajectories of the planets, Ptolemy
(100-200 A.D.) moved their position on smaller spheres called “epicycle”, centered on
the celestial sphere.

This model is accepted during the 15 next century until the Copernican revolu-
tion. With novel and preciser observations on the dynamics of planets, the limited
Ptolemaic system couldn’t explain their trajectories and Nicolas Copernicus solved
this problem by redefining the spheres of the planets, including the Earth, centered
on the Sun. Around the years 1600, Johannes Kepler deduced from the observations
of Tycho Brahe that the planets follow an elliptical trajectory and derived the famous
Kepler’s laws governing the movements of the planets. The Copernican revolution has
been supported with the first observations of telescopes built by the Italian Galileo.
However, the heliocentric system caused many conflicts with the Church since it de-
nied the central position of humans in the Universe. For instance, Galileo has been
forced to renounce the Copernican system, while Giordano Bruno, a Dominican monk
supporting the idea of infinite worlds, has been sentenced to be burned alive. The
Church’s hostility against the novel theories of the Universe disrupted advances and
progress in sciences.

It’s only at the end of the 17th century that Isaac Newton (1687) published the
laws of universal gravitation. By connecting the dynamics of objects on Earth (and
the famous apple falling from the tree) to the dynamics of a celestial object, Newton
removed the limits between the Earth and the sky set one thousand years ago by
Aristotle. The movement of a body becomes predictable with mathematical equations,
and our vision of the Universe turned deterministic.

The latest century has been primordial in the progress of astrophysics and cos-
mology, in particular thanks to the publication of the General Relativity by Albert
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Einstein in 1915 (Einstein, 1915) and the first models of the Universe (de Sitter,
1917; Friedmann, 1924; Lemaitre, 1926). The standard cosmological model, detailed
in Section 1.2, is considered the model that currently best describes all astrophysical
observations. This model is based on the solutions to Einstein’s field equations in the
framework of General Relativity and general assumptions of isotropy and homogeneity
of the Universe on large scales.

1.1.2 Timeline of the Universe

Due to the lack of observations it is still unclear what happened right after the Big
Bang, but according to the standard model of cosmology (see Section 1.2), the Uni-
verse cools down through a phase of exponential expansion, the “inflation”, in which
small inhomogeneities appears in the matter density field. The first nuclei of hydro-
gen and helium are created about one second right after the Big Bang during a phase
called “primordial nucleosynthesis”, which ends about three minutes later. During the
next 380000 years, the Universe is formed of an extremely hot and dense plasma of
particles (protons and electrons). At this stage, the Universe is too dense and hot
to diffuse its light, since all the emitted photons are immediately absorbed by the
plasma. Once the Universe becomes sufficiently cold, the first atoms are assembled
from the free electrons and nuclei during the “recombination” phase, and let the first
light of the Universe, the cosmic microwave background (CMB), to be diffused with
the “matter-radiation decoupling” phase. As the Universe is expanding, it becomes
neutral as a diffuse gas of hydrogen and helium emitting no light. This period is
called the “dark ages”. This gas then condensates into the first stars during the “reion-
ization epoch”, which follows the hierarchical formation of galaxies, clusters, and the
large-scale structure. The second phase of accelerated expansion starts at the age of
about 7 billion years. The source of this acceleration is supposedly assumed to be a
cosmological fluid with negative pressure, the Dark Energy, which today dominates
the energy budget of the Universe. Figure 1.1 resumes the evolution of the Universe,
from its birth to the present time.

1.1.3 Expansion of the Universe

The expansion of the Universe is an observable phenomenon first predicted by Lemaître
(1927) and first measured by Hubble (1929). In particular, the distances of galaxies
D and their recessional velocity V are linearly related as:

V = H0D. (1.1)

This equation is known as the Hubble law, where H0 is the Hubble’s constant at the
current epoch and has a dimension of the inverse of the time. H0 is roughly estimated
with cosmological surveys and, since its value might vary with novel measurements,
is often written as:

H0 = 100h km s–1 Mpc–1 , (1.2)

where h is the dimensionless Hubble parameter. During the past years, we have had
difficulties accurately determining h. For example the Planck Collaboration et al.
(2020) found h ' 0.67 with CMB data, while we measured with Hubble Space Tele-
scope observations of variable stars in the nearby Universe h ' 0.72 (Soltis, Caser-
tano, and Riess, 2021). The value of H0 varies with the cosmological epoch because
the Universe is not expanding at the same speed during its evolution. From the
Friedmann-Lemaître-Robertson-Walker (FLRW) metric introduced in Section 1.2.4,
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Figure 1.1: Timeline of the Universe: a schematic view of the history
of the Universe. The different epochs are represented chronologically

in slices from the left to the right. (Credits: NASA/WMAP)

we can estimate the Hubble’s constant at a given epoch with:

H(t) =
ȧ(t)
a(t)

, (1.3)

where a(t) is called the scale factor of the Universe at time t. It is described by
the “redshift” effect, analogous to the Doppler effect: consider a photon emitted by a
source in the Universe, its wavelength λe is shifted toward lower frequencies during
its travel time t due to the expansion of the environmental spacetime structure, and
its light will be seen redder than expected by the eye. Consider that the photon has
a wavelength λa at its arrival, the scale factor is given by:

a(t) =
λe
λa

=
1

1 + z
, (1.4)

where z is the redshift parameter used to characterize the distance and the epoch of
a given source. In the present time, z = 0 and a = 1.

1.2 Standard model of cosmology

The standard model of Cosmology, also known as the ΛCDM model, is the latest
incarnation of our understanding of the origin and the evolution of the Universe. The
Λ in the theory’s name accounts for the presence of dark energy, and CDM stands
for “cold dark matter” as dark matter is supposedly comprised of cold slow-moving
particles that do not emit electromagnetic radiation, thus they also appear dark.
However, the gravitational effect of dark matter can be observed on visible material,
such as galaxy clusters (see Section 1.4)).
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1.2.1 Cosmological principle

The standard model relies on a fundamental assumption that is the cosmological
principle. To derive its cosmological model, Einstein made the following hypothesis:
the Universe is isotropic and homogeneous. In other words, from any point in the
Universe, it is uniformly distributed in any direction of the sky as far as we observe.
The isotropy does not imply homogeneity and vice versa. For instance, if the matter
distribution is given as a function of the distance from us, the Universe is isotropic
but not homogeneous, while if the Universe is composed of a uniform magnetic field,
it can be homogeneous but not isotropic.

The cosmological principle is validated by observations of the CMB and the distri-
bution of galaxies at large scales. However, it can only be valid on scales sufficiently
large, and as soon as we consider smaller scales, e.g. within the solar system or up to
the nearby galaxies, its condition is no more true.

1.2.2 Cosmological probes

The standard model is today the most accurate model to describe our Universe, ap-
proved by cosmological probes handled in the latest century. In particular, it arises
from three major observational pieces of evidence:

1. The discovery of the recession of galaxies by Edwin Hubble using Henrietta
Leavitt’s period-luminosity relation on Cepheid variables, which derives the em-
pirical law that is today referred to as the Hubble law. It describes the fact
that galaxies move away from us at a velocity proportional to their distance and
is considered as the first observational evidence that the Universe is expanding
(Hubble, 1929).

2. The chemical abundance of primordial elements, predicted by the standard
model with abundances of hydrogen and helium in the local Universe of about
75% and 25% respectively. With measurements of light elements in stars,
quasars, and the interstellar medium (Burbidge et al., 1957; Steigman, 2006),
these fractions have been verified.

3. The fortuitous discovery of the cosmic microwave background by Penzias and
Wilson (1965), an isotropic black body radiation at 2.725K. These primordial
photons have been released at the epoch of matter-radiation decoupling more
than 13 billion years ago. Due to the expansion of the Universe and the cooling
phase of the photons, this temperature indicates the primordial Universe was
extremely hot (∼ 3000K). Today’s observations (Planck Collaboration et al.,
2020) show small anisotropies in the temperature at the scale of 1 degree, of the
order of ∆T/T = 10–5, as shown in Figure 1.2.

1.2.3 General relativity

A second fundamental principle of the standard model is that the dynamics of the
Universe are governed by General Relativity (GR), derived by Einstein in 1915 from
Special Relativity. In contrast with Newtonian physics, GR is a theory of gravitation
that does not consider gravity as a force but as a manifestation of the curvature of
spacetime. This theory changes the form of the mass definition in classical mechanics
to a more general form, described by the famous Einstein’s field equation, a relation
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Figure 1.2: The 2018 Planck map of the cosmic microwave back-
ground. The fluctuation in temperature shows that the early Universe
was slightly anisotropic. (Credits: ESA/Planck Collaboration et al.,

2020)

between the energy in the Universe and its geometry:

Rµν –
1
2
Rgµν + Λgµν =

8πG
c4

Tµν . (1.5)

In this equation, gµν is the metric tensor, Rµν is the Ricci tensor derived from the
derivatives of gµν, R is the scalar curvature given by the trace of Rµν, G is the gravita-
tional constant, c is the speed of light and Tµν is the stress-energy tensor that describes
the density of energy and momentum in spacetime. The cosmological constant Λ is
introduced two years after the publication of GR by Einstein to counterbalance the
effect of gravity and be conform with a Universe in static equilibrium. When Hub-
ble showed the expansion of the Universe, later on, the mathematician Alexander
Friedmann found that the “original” GR equations were in agreement with these ob-
servations, and suggested removing the constant from Equation (1.5), which Einstein
qualified as his “biggest blunder”. The cosmological constant is not in contradiction
with a dynamic Universe. At the end of the latest century, observations on distant
supernovae (Riess et al., 1998; Perlmutter et al., 1999) showed that the Universe was
in accelerated expansion. This discovery assumes that the Universe is today composed
of dominant energy, the so-called dark energy, which requires a strictly positive Λ.

1.2.4 FLRW metric

A metric is a mathematical tool that determines how to calculate distances in space.
In the case of our four-dimensional space, a distance s is described with a three-
dimensional element of space l and a one-dimensional element of time t on infinitesimal
scales as:

ds2 = c2dt2 – dl2 . (1.6)
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Figure 1.3: Possible curvatures of the Universe, represented as a
plane. From top to bottom, the cases of a closed Universe, an open

Universe, and a flat Universe. (Credits: NASA/WMAP)

The minus sign between the element of time and the elements of space indicates that
ds2 can be negative, for instance, if two distant events are reported at the same time.
Note that the factors in front of the coordinates compose the gµν tensor. In the
specific case of light travels, ds2 = 0 is the shortest path between two points. These
lines are also called geodesics.

In the context of a flat static Universe, the spatial distance between two events
can be described with spherical coordinates where dl2 = dr2 + r2dΩ2, r being the
radial component and Ω the angular one such that dΩ2 ≡ dθ2 + sin2 θdφ2. During
the next years after the publication of GR, four scientists - Friedmann, Lemaître,
Robertson, Walker - derived an exact solution of Equation (1.5) in the framework of
a homogeneous, isotropic, and expanding Universe:

ds2 = c2dt2 – a2(t)dχ2 , (1.7)

where dχ is an element of comoving distance on a hypersurface. The “comoving” term
refers to a coordinate system decoupling from the impact of the expansion, further
discussed in Section 1.2.6. The geometry of the Universe is defined by its curvature
as:

dχ2 =
dr2

1 – kr2
+ r2dΩ2 . (1.8)

The topology of the Universe is characterized by a connected path. A schematic
analogy of this mathematical concept is presented in Figure 1.3 with a 2D space.
Suppose a connected path is designed as a triangle onto this surface, the values of its
angles vary according to the geometry of the surface.

Back to the Universe space, its morphology is related to the curvature parameter
k as:
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• k = 1 defines a spherical space, then the sum of the triangle’s angles is larger
than π and the Universe is closed.

• k = 0 defines a Euclidean space, then the sum of the triangle’s angles is equal
to π and the Universe is flat.

• k = –1 defines a hyperbolic space, then the sum of the triangle’s angles is lower
than π and the Universe is open.

We notice that in the latter case, the Universe volume could be infinite.

1.2.5 Cosmological parameters

From the assumption of the cosmological principle, the Universe can be described
with a perfect fluid in thermodynamic equilibrium, and its pressure p and density
ρ injected in the stress-energy tensor. We can thus decompose the total energy of
the Universe as a sum of several components: matter, radiation, dark energy, and
curvature of space. Their density are respectively noted ρm, ρr, ρΛ = Λ/(8πG) and
ρk = –3kc2/(8πGa2). Their pressure is written as a function of their density given
by the equation of state p ≡ ωρ, where ω = 0 for matter, ω = 1/3 for radiation,
ω = –1 for dark energy, and ω = –1/3 for curvature (the dark energy component
has a strong negative pressure, causing the counterintuitive notion of a gravitational
repulsive effect).

If we inject the FLRW metric in the Einstein’s field equation we now obtain the
Friedmann equations, which govern the expansion of space and the dynamic of the
Universe:

(
ȧ
a

)2
=

8πGρ
3

–
kc2

a2
+

Λc2

3
, (1.9)

ä
a
=

4πGρ
3

–
(
1 +

3ω
c2

)
+

Λc2

3
. (1.10)

In the literature, we commonly express the density of the various components of
the Universe relative to this critical density: Ω = ρ/ρc. The critical density is, by
definition, the total density for a flat Universe (k = 0) without dark energy (Λ = 0).
If we substitute these values in Equation (1.9) and combine with Equation (1.3), we
find:

ρc =
3H2

8πG
. (1.11)

Today, its value is approximately ρc,0 ' 2.775 1011 h2 M� Mpc–3. Hence, the dimen-
sionless density parameters are:

Ωm =
ρm
ρc

, Ωr =
ρr
ρc

, ΩΛ =
Λ

3H2 , Ωk = –
k

a2H2 . (1.12)

We can finally rewrite Equation (1.9) as the total energy budget of the Universe:

Ωtot ≡ Ωm + Ωr + ΩΛ + Ωk = 1 , (1.13)

and express the Hubble’s constant as a function of redshift:

H(z) = H0E(z) . (1.14)
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Figure 1.4: Hypothetical scenarios for the evolution of the Universe.
We compare the scale factor and its evolution over time with differ-
ent predictions given in a - de Sitter, Einstein - de Sitter, radiation
dominated, empty, closed, open, and ΛCDM - Universe. The dashed

vertical line indicates the present epoch.

Here E is the dimensionless Hubble parameter, defined as:

E(z) ≡
√

ΩΛ + Ωk(1 + z)2 + Ωm(1 + z)3 + Ωr(1 + z)4 , (1.15)

where the density parameters Ω are taken at their present-day value.
The dimensionless cosmological parameters (H0, Ωm, Ωr, ΩΛ, Ωk) at the present

epoch constitute the essential materials to describe the Universe properties (its ge-
ometry, size, components, etc) and to predict their evolution (as they are a function
of time). One of these scenarios would lead to an unrealistic Universe in which there
is no matter or radiation at the present time, only driven by its expansion. Such
Universe, that its total density is dominated by the dark energy density, is called de
Sitter (1917). Alternatively, we can easily imagine a Universe dominated by its radia-
tion, or completely empty if its today’s energy budget is given by the space curvature
density. A more realistic perspective is the idea of a flat static Universe, without
cosmological constant Λ and where the matter density equals the critical density at
the latest times. This model, originally proposed by Einstein and de Sitter (1932),
has been privileged until the early 1990s. However, following the first observations
of the CMB, the measurements of the Hubble’s constant, and the discovery of the
accelerating Universe in 1998, this model has been progressively replaced over year
by the modern ΛCDM model, where dark energy makes up 70% of the present energy
density while matter contributes around 30%. Figure 1.4 shows the different scenarios
for the evolution of the relative size of the Universe.

The luminous matter of the Universe does not compose the total budget for the
matter density. Indeed, the matter content also includes the matter that we do not
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Figure 1.5: Evolution of the density parameters in the framework
of the ΛCDM model. The history of the Universe can be decomposed
into three phases of radiation, matter, and dark energy domination.

The dashed vertical line indicates the present epoch.

see directly. Among the big riddles of modern Cosmology is the “missing matter" of
the Universe. The first evidence of this problem has been raised with observations
led on Coma, a cluster of galaxies: Zwicky (1933) found that its dynamical mass was
about 400 times bigger than that associated with luminous matter. Later on, mea-
surements of the dynamics of galaxies or gravitational lensing in clusters of galaxies
forced astrophysicists to introduce the contribution from an invisible matter to explain
observations, the so-called Dark Matter. The nature of dark matter remains today
a mystery, but there are essentially three hypotheses to explain it: baryonic (objects
too faint to be observed), non-baryonic (WIMPS, supersymmetric particles), modified
gravity. What we know is that the fraction of dark matter contribution is today 25%
of the Universe, while the baryonic matter is about 5% such that Ωm = Ωdm + Ωb.

Throughout this thesis we assume a spatially flat ΛCDM model for the Universe,
with the following matter, dark energy and baryonic density parameters at the present
time Ωm = Ωtot – ΩΛ = 0.3, Ωdm = Ωm – Ωb = 0.25, and Hubble parameter
H0 = 70 km s–1 Mpc–1. In Figure 1.5 we illustrate the evolution of the density
parameters across time. With this model, we can dissociate three distinct periods of
domination in the history of the Universe: at the early time the Universe is domi-
nated by radiation, then matter decoupled from light and formed structures (atoms,
stars, galaxies, clusters, and the large-scale structure) and finally Universe expansion
started to accelerate under dark energy effects.

1.2.6 Cosmological distances

Because the Universe is expanding, distances are computed differently than in a static
Universe. In cosmology, with dissociate proper and comoving distances. The proper
distance is the physical distance of an object that lies at a given epoch of the Universe.
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Due to the expansion, this distance varies with cosmic time. In contrast, the comoving
distance is a distance that factors out the expansion of the Universe and does not
depend on time. At the present time, the two distances are equals. Otherwise, the
proper distance Dp of an object at a given cosmic time t and a given comoving radial
distance r from us, is connected to the comoving distance Dc as:

Dp(r, t) = a(t)Dc = a(t)
∫ r

0

dr′√
1 – kr′2

, (1.16)

where Dc =
∫
dχ is derived from Equation (1.8). The comoving distance is given by

a geodesic, and thus satisfies ds2 = 0. From Equation (1.7), we can clearly see that
dχ = cdt/a. We thus derive the comoving distance of two distinct objects lying along
the line of sight at redhifts z1 and z2, with z1 < z2, as:

Dc(z1, z2) =
∫ z2

z1
dχ = Dh

∫ z2

z1

dz′

E(z′)
, (1.17)

where Dh = c/H0 is the today’s Hubble horizon. If the two objects are separated on
the sky plane by an angle δθ, they are distant of δθDm, where Dm is the transverse
comoving distance and depends on the space curvature:

Dm =





Dh√
Ωk

sinh
(√

ΩkDc
Dh

)
(Ωk > 0),

Dc (Ωk = 0),
Dh√
Ωk

sin
(√

ΩkDc
Dh

)
(Ωk < 0).

(1.18)

Alternatively, we can characterize the distance to an object of angular extent θ
and proper size l with the angular diameter distance Da ≡ l/θ, if θ is sufficiently
small. By definition, if you increase Da by a factor of two, then the angular extent
of the object diminishes by half. At a given cosmic time, the angular extent object is
θ = l/Dp, and therefore the angular diameter distance between two distant objects is:

Da(z1, z2) = Dp(z1, z2) =
Dm(z1, z2)
1 + z2

. (1.19)

This distance is often used in gravitational lensing formalism since lense objects are
deflecting source light among a transverse plane permitting to derive mass density
profiles.

Another way to compute distances in cosmology is to measure the observed flux
F of a source, i.e. the amount of photons receipt per unit surface per unit time, from
an object with known intrinsic luminosity L. The luminosity distance, Dl , is defined
such that if you increase Dl by a factor, the observed flux will diminish as the square
of the factor such that Dl ≡

√
L/(4πF). The energy of each photon is decreased

because of the redshifting of the photons. Etherington (1933) derived the relation
between angular diameter distance and the luminosity distance:

Dl(z1, z2) = Da(z1, z2)(1 + z2)2 . (1.20)

All these distances in a flat ΛCDM Universe are shown in Figure 1.6, from us and
as functions of redshift.
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Figure 1.6: Distances in cosmology, as a function of redshift. We
present here the Hubble (black), proper (green), comoving (blue), an-

gular diameter distances (green), and luminosity (red) distances.

1.3 Growth of structures

The Universe on large scales is well described by the Friedmann equations (1.9) &
(1.10) when the conditions of the cosmological principle are satisfied. However, we
saw on smaller scales that the density field of the CMB presents small anisotropies
(see Section 1.2.1), and observations of the local Universe show an inhomogeneous
distribution of the galaxies (e.g. de Lapparent, Geller, and Huchra, 1986). In this
section, we will review how these structures grow and evolve from the small initial
perturbations recovered in the CMB up to today’s large-scale structure.

1.3.1 Density perturbations

The perturbation theory describes the evolution of inhomogeneities in the cosmic fluid.
The density field ρ of this fluid shows fluctuations around the mean density ρ̄ as:

ρ = ρ̄(1 + δ) , (1.21)

where δ is called the overdensity parameter.
Assuming an adiabatic fluid in the linear regime and its dynamics ruled by the

Newtonian dynamics, valid as long as we consider marginal density fluctuations (i.e.
δ << 1) without heat exchanged between particle elements and scales much smaller
than the Hubble horizon, the Friedmann equations simplify and we derive the proper
Jeans length:

λJ = cs
√

π
Gρ̄

. (1.22)

Here cs is the sound speed defined as cs ≡
√

∂p/∂ρ. The Jeans length defines the scale
above which gravity takes overpressure forces and collapses the density perturbation.
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For smaller scales, the pressure forces are strong enough to effectively resist gravity
and perturbations oscillate. During the radiation domination epoch, the radiative
pressure of photons prevents the collapse of perturbations at small scales. This phe-
nomenon is responsible for oscillations in the density distribution of visible matter,
the Baryonic Acoustic Oscillations (BAOs), analogous to sound waves created in the
air by pressure differences. The BAOs are dominant in the density distribution of the
CMB and propagate in today’s distribution of galaxies, long after the matter-radiation
decoupling (Eisenstein et al., 2005). Perturbations that we recover in the plasma of
the early Universe are thus not singular in cosmic history but evolve linearly from
an initial state δinit with the so-called growth factor D. This time evolution can be
decomposed into the sum of a growing and a decaying mode as:

δ(z) = D+(z)δ+init +D–(z)δ–init . (1.23)

Hence, the density contrast δ is a quantity fully described by its comoving coordinate
x. Another simple way to describe the perturbations is to decompose the overdensity
field into the Fourier space. We introduce the Fourier transform δ̃ of the density
contrast δ, defined in the comoving plane waves k as:

δ(x) =
∫

d3k
(2π)3

δ̃(k)e–ik·x , δ̃(k) =
∫

d3xδ(x)eik·x . (1.24)

In practice, it is impossible to measure the density perturbation at a particular co-
moving coordinate, because it requires a fixed volume. What we instead want to do
is to apply some sort of filter to the density field and measure the density within this
filter. We thus replace the density field δ(x) by a density field smoothed over some
volume of radial coordinate r:

δr(x) =
∫

d3rW(r)δ(x + r) , δ̃r(k) = δ̃(k)W̃(r) . (1.25)

Since this is a convolution, it is convenient in practice to switch in Fourier space,
as we know from the convolution theorem in Fourier analysis that this is a simple
multiplication of Fourier transforms. The function Wr is called the window function,
and W̃r is its Fourier transform. This filter defines the density field over a volume of
radial aperture R. In cosmology three main window functions are mostly used:

• The spherical top-hat filter is the most common window function, defined
through:

Wth(r) =
1

Vth
Θ(R – r) , W̃th(k) =

sin(kR) – kRcos(kR)
(kR)3

. (1.26)

Θ is the Heaviside step function and in this case, Vth = 4πR3/3.

• The Gaussian window function is defined through:

Wg(r) =
1
Vg

e–r
2/(2R2) , W̃g(k) = e–(kR)

2/2 . (1.27)

Here, Vg = (2π)3/2R3.
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Figure 1.7: A comparison of the three window functions discussed
in the text. The blue shows the top-hat, the green the Gaussian, and
the red the sharp k-space window function. For this particular plot we

set R = 5 Mpc/h.

• The sharp k-space filter is equivalent to the top-hat filter in Fourier space:

Wkth(r) =
3

Vkth

(
R
r

)3 (
sin

r
R

–
r
R
cos

r
R

)
, W̃kth(k) = Θ(1 – kR) . (1.28)

The volume Vkth = 6π2R3 satisfies Wkth(0)Vkth = 1, which is convenient for
theoretical arguments.

An example of the window functions is given in Figure 1.7 in real space assuming the
specific case R = 5 Mpc/h.

Therefore, we see that the perturbations and their growth can be described inde-
pendently. Decoupling the spatial-time evolution of perturbations is an effective way
to measure the growth of structures in the Universe, as long as we are in the linear
regime with scales below the horizon size.

1.3.2 Matter distribution

Now that we have seen that overdensities characterize the density field in the Universe,
we are interested in a formal way to represent its distribution on all scales at any cosmic
time. The two-point correlation function is a powerful statistical tool to describe this
field, assumed to be Gaussian and isotropic in the linear regime. It computes the
covariance of δ between two positions in the Universe having a comoving separation
r:

ξ(r) = 〈δ(x)δ(x + r)〉 , (1.29)

where we assume that δ(r) is statistically homogeneous and isotropic, so ξ(r) depends
only on the modulus of the separation r. Similarly, the covariance of the Fourier
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Figure 1.8: The absolute value of the matter correlation function
as computed in Equation (1.31) at various redshifts. We show the
functional form of Sugiyama (1995) and Eisenstein and Hu (1998) in
the linear regime and Takahashi et al. (2012) in the non-linear regime.

transform of δ is called the power spectrum, defined as:

〈δ̃(k)δ̃(k′)〉 = (2π)3P(k)δD(k – k′) , (1.30)

where δD is the Dirac delta function which ensures that modes of the different wave
vector k are uncorrelated in Fourier space to preserve homogeneity.

Again, the power spectrum P(k) only depends on the modulus of k because of
isotropy. By definition, the power spectrum is the Fourier transform of the two-point
correlation function and, under the conditions of homogeneity and isotropy, these two
quantities are related as:

P(k) =
∫

d3rξ(r)eik·r ξ(r) =
∫

d3k
(2π)3

P(k)e–ik·r

= 4π
∫

r2drξ(r)j0(kr) , =
1

2π2

∫
k2dkP(k)j0(kr) .

(1.31)

The function j0(x) ≡ sin(x)/x is the spherical Bessel function of order zero. The
correlation function is displayed in Figure 1.8 evolving in redshifts. The function is
computed in a linear regime and a non-linear regime as discussed in Section 1.3.3.

Because each Fourier mode of the density field evolves independently, the linear
power spectrum can be derived at any cosmic time from a linear growth of the power
spectrum at the recombination epoch. Inflationary theories typically predict that the
primordial power spectrum is given in the following form, known as the Harrison-
Zeldovich spectrum (HZ, Harrison, 1970; Zeldovich, 1972):

Phz(k) = Askns , (1.32)
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where As is the amplitude of scalar fluctuations and ns ' 1 is the scalar spectral
index.

During inflation, primordial perturbations are nearly scale-invariant. Some of
the fluctuations have Fourier modes with wavelength larger than the horizon. These
modes enter the horizon at a later time, during the matter domination epoch. Dur-
ing the radiation domination epoch, Fourier modes are frozen since the Universe is
expanding too fast for the density perturbations to collapse under gravity. At the
matter-radiation equality epoch, the dark matter fluctuations start to grow and the
baryonic matter perturbations fluctuate into the BAOs under the effect of gravity and
radiative pressure. At the recombination epoch, the pressure becomes weaker than
gravity and all modes start to grow. Because the HZ power spectrum does not account
for the growth of density perturbations once they enter the horizon, the primordial
power spectrum after recombination, at the beginning of the matter domination era,
is given by:

Pinit(k) = Phz(k)T2(k) , (1.33)

where T(k) is a “transfer function” that takes into account the effects of gravitational
amplification of a density perturbation mode of wavelength k.

After recombination and in the linear regime, each Fourier mode evolves indepen-
dently following Equation (1.23) and the linear power spectrum therefore just scales
as:

Pl(k, z) = Pinit(k)D2
+(z) . (1.34)

The precise estimation of T(k) demands sophisticated numerical calculations of the
time evolution of the density perturbation amplitudes in each Fourier mode. Bardeen
et al. (1986) and later Sugiyama (1995) give a complete description of the transfer
function, including BAO wiggles, but this description is not as accurate as the model
described in Eisenstein and Hu (1998) and Eisenstein and Hu (1999). These two
functional forms are shown in Figure 1.9 as functions of redshift. We also display the
spectrum in the non-linear regime (see Section 1.3.3).

In the linear regime we know that δ is distributed as a Gaussian, and by linear
combination δr as well. The overdensity field delta is thus characterized by a mean
and variance. The mean is equal to zero because the density field ρ in Equation (1.21)
should return the mean density of the Universe on average. The variance of the field
can be easily computed as:

σ2(R) ≡ 〈δ2r(r)〉 =
1

2π2

∫
k2dkPl(k)W̃

2
r(k) (1.35)

Figure 1.10 shows the root mean square (RMS) variance given at various redshifts for
the three cosmological filters presented in Section 1.3.1.

A major aspect of the variance is the normalization of the matter power spec-
trum σ8. This parameter defines the RMS fluctuations σ(R) on scales of 8 Mpc/h in
a spherical top-hat filter at the present epoch. More importantly, the square of σ8
is a direct normalization factor of the linear matter power spectrum. In cosmologi-
cal analyses, the power spectrum normalization is a crucial parameter for models to
describe the growth of structures. It is generally combined with the matter-energy
density because of a tension when measuring the two cosmological parameters with
WL methods, which is quantified using the S8 ≡ σ8

√
Ωm/0.3 parameter.
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1.3.3 Non-linear evolution

The linear equations of field provide an excellent description of gravitational insta-
bility for small density fluctuations (δ � 1) but break down when the perturbations
are comparable to the mean density of the Universe. The analytical development
of the cosmological perturbation theory to higher orders is increasingly complex. In
practice, the two-point statistic equations are hardly raised to order beyond three
(Bernardeau et al., 2002). Typically, the second-order equations of perturbation the-
ory allow reaching maximum scales k ' 0.2 h/Mpc with sufficient precision (Taruya
et al., 2012). These developments only describe the analytical evolution of the density
field in the weakly non-linear regime (δ ∼ 1), which marks the limit between the two
regimes. For a correct treatment of the non-linear development, one has to rely on
numerical simulations or analytical models.

Amongst the most successful numerical methods, we recover the N -body simula-
tions. They decompose the matter distribution into a dynamical system of N dark
matter particles, whose velocities at some initial time are typically slightly perturbed
according to some assumed power spectrum. The initial state is chosen such that the
linear regime holds on all scales considered. Particles evolve under the influence of
gravity of all other particles, which shows the formation of voids and dense regions
called halos, all connected with filaments. This structure forms and amplifies with
time (see Figure 1.11). The equations of motion are then solved at any step of the
evolution of the simulation. This track requires powerful machines and cosmologists
often deal with a trade-off between the size of the simulation box and the resolution
of the particle system. For instance one of the most famous simulations is the Mil-
lennium simulation (Springel et al., 2005) which covers the evolution of N = 21603

particles in a box of size V = 500 (Mpc/h)3. Figure 1.11 highlights four slices of
this simulation from z = 18.3 to nowadays. Results of N -body simulations are then
used to develop phenomenological models or fitting formulae of density field statistics
in the non-linear regime. For example, Peacock and Dodds (1996) provided a fitting
formula of the non-linear matter power spectrum based on a scaling ansatz presented
in Hamilton et al. (1991). With the results of a large library of cosmological N -body
simulations using power-law initial spectra, Smith et al. (2003) proposed a new model
of P(k), the so-called halofit model. This model is revised by Takahashi et al. (2012)
with higher resolution N -body simulations. It is broken down in the following sum:

∆2
nl(k) = ∆2

q(k) + ∆2
h(k) , (1.36)

where ∆2(k) ≡ k3P(k)/(2π2). The term ∆q describes the distribution of the density
field on the large scales, typically k ≤ 0.1 h/Mpc, while ∆h dominates on smaller
scales where the non-linear regime mostly impacts the density field. The non-linear
spectrum is given in terms of the linear matter power spectrum, and growths according
the evolution of Pl(k, z). The correlation function and the matter power spectrum in
non-linear regime are shown for a set of different redshifts in Figures 1.8 & 1.9.

An alternative approach is to rely on the model of the spherical collapse of dark
matter halos. The idea is that the distribution of dark matter in the Universe can
be considered as composed of virialized overdense clouds of dark matter called halos.
These structures would form from the collapse of a spherically symmetric overdensity.
While realistic density perturbations are not spherical, the analytical solution of such
configuration provides useful insights into the non-linear collapse of more realistic
situations. Assuming an Einstein - de Sitter Universe (Ωm = 1), the equations of
dynamics can be solved (Gunn and Gott, 1972) and the overdensity extrapolated



1.3. Growth of structures 19

Figure 1.11: Slices of the Millennium simulation with evolving red-
shift. The four pannels show the state of the N -body system at redshift
z = 18.3 (upper left), z = 5.7 (upper right), z = 1.4 (lower left) and

z = 0 (lower right). (Credits: Springel et al., 2005)

according to linear perturbation theory. By tracking the evolution of the density
inside a sphere of constant mass, the structure collapse when the linear overdensity
reaches the critical value:

δc =
3
20

(12π)2/3 ' 1.686 . (1.37)

We call this parameter the linear density contrast. We commonly use δc to derive the
peak height parameter of a halo, which quantifies how big a fluctuation in the linear
density field this halo corresponds to. This quantity is computed as the ratio of the
critical overdensity of collapse to the variance of the linear density field on the scale
of the halo:

ν ≡ δc
σ

. (1.38)

For example, halos with peak height one correspond to peaks that have just reached
a variance equal to the collapse overdensity at a given redshift, and should thus be
collapsing. Halos of smaller peak height have, on average, already collapsed in the
past, and halos of higher peak height will, on average, collapse in the future.

In a realistic situation, a sphere with overdensity δc does not collapse into a point
of infinite density but reaches the virialized equilibrium when the total energy equals
half of the potential energy. In this configuration, the ratio between the density inside
the virialized sphere and the mean density of the Universe is (White, 2001):

∆v ≡
ρ(r < rvir)

ρ̄
= 18π2 ' 178 . (1.39)

The parameter ∆v is widely used in cosmology because it characterizes the halo with
a fiducial density. In Equation (1.39), the halo density is compared with the mean
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Figure 1.12: The halo mass functions as computed in Equation (1.40)
at various redshifts. We show the functional form of Press and

Schechter (1974), Tinker et al. (2008) and Watson et al. (2013).

density in an Einstein - de Sitter Universe (ρ̄ = ρm), but it can also be defined com-
pared with the mean matter density ∆m ≡ ρ/ρm or the critical density ∆c ≡ ρ/ρc in
a ΛCDM cosmology. This development of the non-linear evolution describes the dark
matter halos as virialized objects characterized only by their mass enclosed in spheres
of overdensity ∆m/c. The most popular choices are ∆m/c = 200, 500. An important
property of halos is their distribution over mass, the so-called halo mass function
(HMF). The Press & Schechter formalism (Press and Schechter, 1974) predicts the
probability of finding an overdensity in a Gaussian random field at or above the linear
density contrast for spherical collapse. The number of halos is distributed over mass
as:

dn
dln(M)

= f(σ)
ρm
M

dln(σ–1)
dln(M)

, (1.40)

where σ is the RMS variance as computed in Equation (1.35) of a spherical top hat
containing the Lagrangian mass M = 4πR3/(3ρm). The function f(σ) is known as the
halo multiplicity function and varies according to the model we rely on. For example,
Tinker et al. (2008) improved the HMF using 22 independent N -body simulations with
about 109 particles to obtain a fit of the multiplicity function. More recently Watson
et al. (2013) used a suite of very large (30723 – 60003 particles) cosmological N -body
simulations to derive multiple redshift-independent models of the mass function.

In Figure 1.12 we show the HMF given by these three models plotted over a set
of redshifts. We see that halos with smaller masses form more frequently than higher
mass, and their number decreases as M–2 until a cutoff which for larger mass shows
an exponential drop. This cutoff is basically set for masses reaching the non-linear
mass M∗, given by σ(M∗) = δc. This behavior is related to the hierarchical scenario
for the formation of cosmic structures(Lacey and Cole, 1993; Lacey and Cole, 1994):
the low mass halos first form and then assemble in more massive halos, which makes
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Figure 1.13: Illustration of the combination of short and long wave
modes in the overdensity field compared with the linear density con-
trast δc as the threshold for collapsing structures. The densest regions
account for ideal conditions to form halos, while less dense regions
are underpopulated areas. The distribution of halos is thus biased
compared with the distribution of the matter density field. (Credits:

Codis, 2016)

their number lower and lower.

1.3.4 Bias of halos

Because dark matter halos are distinct objects in the Universe, they could be used to
probe the total distribution of matter. Practically speaking, halos are not sampling
the matter density field uniformly since they mostly form in the high-density regions.
As a consequence, we say that dark matter halos are biased tracers of the background
matter density field. This idea was first described by Kaiser (1984) and refined in
Bardeen et al. (1986) with the enhanced clustering of Abell galaxy clusters.

In Figure 1.13, we illustrate this fact. An overdensity is collapsing as soon as it
reaches the linear density contrast δc. As the overdensity field is composed of short
and long wave modes, it reaches this threshold only in specific regions of the Universe.
Thus, the probability to form halos is higher in regions sufficiently dense, letting
the rest of the Universe underpopulated. Several groups have further developed this
idea within the framework of the Press & Schechter formalism (e.g., Mo and White,
1996; Sheth and Tormen, 1999; Sheth, Mo, and Tormen, 2001; Giocoli et al., 2010a),
deriving quantitative predictions for the correlation between the halo density field and
the underlying matter distribution within the hierarchical scenario for the formation
of cosmic structures. The relation between the dark matter halo density contrast, δh,
and the total dark matter density contrast in the linear regime, δm, is described by
the so-called halo bias parameter, bh, defined as:

bh ≡
δh
δm

. (1.41)

The halo bias constitutes a crucial parameter in cosmological studies as it directly re-
lates the overdensity field from the linear perturbation theory to non-Gaussian peaks.
First observations have been led very recently. For instance, during the past decade,
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Johnston et al. (2007b) measured the halo bias in the framework of a weak lensing
analysis. It is also predicted by numerical simulations (e.g. Tinker et al., 2010), which
makes ideal conditions to test such models on measurements derived from recent ob-
servational data. Driving novel cosmological analyses on this parameter is a promising
breakthrough in our understanding of the formation and evolution of structures in the
Universe.

1.4 Clusters of galaxies

Galaxy clusters are the most massive virialized structures in the Universe. This makes
them crucial laboratories as they occupy a special place in the hierarchy of cosmic
structures, at the crossroads of galaxy evolution and cosmological studies. According
to the hierarchical scenario of the evolution of cosmic structures (Peebles, 1980; Voit,
2005), they arise from the collapse of initial density perturbations having a typical
comoving scale of about 10 Mpc/h (Peebles, 1993; Borgani, 2008). Above these
scales, gravitational clustering is essentially in a linear regime and the dynamics are
mostly driven by the Hubble flow, while the non-linear regime is prominent on smaller
scales. Moreover, in the inner cluster regions, astrophysical processes such as gas
cooling, star formation, feedback from supernovae, and active galactic nuclei modify
the evolution of the halo properties like the density profile, the subhalo mass function,
etc (Rasia, Tormen, and Moscardini, 2004; Rasia et al., 2006; Giocoli et al., 2010b;
Despali, Giocoli, and Tormen, 2014; Despali et al., 2016; Angelinelli et al., 2020).
Galaxy clusters thus provide an ideal tool to study the physical mechanisms driving the
formation and evolution of cosmic structures in the mildly non-linear regime (Tormen,
1998; Springel et al., 2001).

1.4.1 Cluster formation

Galaxies are not distributed randomly, but they gather forming groups and clusters
of galaxies. Galaxy clusters are hosted in the densest regions of the matter density
field: the halos. While a cluster is characterized thanks to its baryonic materials, the
galaxies, its formation is dominated by its main component, the dark matter. The
hierarchical scenario seen in Section 1.3.3 tends to indicate that clusters form from
smaller galaxy groups that merge at a later time in the history of Universe (for exam-
ple, see Adami et al., 2013). As shown in Figure 1.11, the early density fluctuations at
z = 18.3 amplified in this web structure at z = 1.4, and the materials spread through
filaments into the node, the halo where the cluster lies. This filamentary structure is
well observed in Figure 1.14, in particular through spectroscopic surveys (e.g. SDSS
or 2dFGRS, York et al., 2000; Colless et al., 2001) and mock catalogues derived from
numerical simulations (e.g. Millennium, Springel et al., 2005). Galaxies having differ-
ent speeds along the filaments start forming small galaxy groups before they finally
reach the galaxy clusters (Bond, Kofman, and Pogosyan, 1996). The redshift at which
galaxies gather in clusters is still in debate, but most of them seem to form around
z = 1.4, while the farthest ones are detected at z ∼ 1.5 – 2 (Santos et al., 2011; Gobat
et al., 2011).

1.4.2 Cluster properties

In the current paradigm, galaxy clusters are thought to be made of three main com-
ponents: galaxies, dark matter, and gas in the IntraCluster Medium (ICM) (White
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Figure 1.14: The galaxy distribution from spectroscopic redshift
surveys (blue, Geller and Huchra, 1989; York et al., 2000; Colless
et al., 2001) and mock catalogues constructed from the Millennium
cosmological simulation (red, Springel et al., 2005). (Credits: Springel,

Frenk, and White (2006))
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(a) Optical (HST) (b) Optical (HST) + DM
(HST)

(c) Optical (HST) + X-rays
(Chandra)

Figure 1.15: The spatial distribution of the different matter com-
ponents in the Abell 1689 galaxy cluster. (a) Distribution of galaxies
in the optical as observed with HST. (b) Distribution of dark mat-
ter (blue) reconstructed with strong gravitational lensing in HST. (c)
Distribution of the ICM (purple) in X-rays with Chandra. (Credits:
Optical: NASA/STScI; X-ray: NASA/CXC/MIT/E.-H Peng et al;
Dark matter: NASA, ESA, E. Jullo (JPL/LAM), P. Natarajan (Yale)

and J-P. Kneib (LAM)

and Rees, 1978). Typically, their diameters are about 1 – 5 Mpc/h and total masses
1013 – 1015 M�/h, rarely exceeding 1016M�/h.

Galaxies in clusters are usually counted from ten to hundreds but represent only
a small fraction of the cluster total mass, less than 5-10%. Generally, the brightest
cluster galaxy (BCG) is used to define the center of the clusters of galaxies. However,
this position is often shifted with the “real” center position of the total mass distri-
bution in galaxy clusters due to environmental effects, for example in the case of a
cluster merger.

Dark matter is the main component of galaxy clusters in terms of mass content,
about 85% of the total mass. It can be probed with the lensing effect of a massive
cluster onto a background source, bending the path of its light ray toward the observer.
In practice, we measured lensing in a strong or weak regime, which relies on the
strength of the deflection potential. This effect is insensitive to the nature of matter,
which allows estimating the total mass of the cluster.

The ICM is composed of baryonic gas known as ionized hydrogen lying between
galaxies, accounting for about 10-15% of the total mass. Early in the cluster formation,
it is heated by gravitational field to 107 –108 K. The electrons in this hot plasma thus
emit in X-ray through thermal Bremsstrahlung.

Figure 1.15 shows the distribution of the three matter content described above in
the Abell 1689 galaxy cluster.

1.4.3 Cluster observations

Galaxy clusters can be observed with different segments composing the light spectrum.
We have seen that the X-ray band allows the detection of the ICM in clusters.

This emission was first observed with the Coma cluster (Felten et al., 1966; Gursky
et al., 1971). Later, X-ray surveys, such as the ROSAT-All-sky survey (RASS, 1990),
the X-ray Multi-Mirror Mission (XMM-Newton, 1999), or the Chandra X-ray Ob-
servatory (1999), were driven by space telescope as Earth’s atmosphere do not allow
observations on its surface. The most recent telescope, eROSITA, was launched in
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July 2019 and will allow accurate measurements of the ICM and novel X-ray detection
of astronomical sources.

In the radio domain, the ICM can also be probed through the inverse Compton
scattering of CMB photons of hot electrons. This effect, known as the Sunyaev-
Zel’dovich effect (Sunyaev and Zeldovich, 1980), was measured in hundreds of clusters.
It turned out to be an effective way to detect galaxy clusters and study properties
of the ICM (e.g. Planck Collaboration et al., 2016, for its application to the Planck
survey).

Visible and near-infrared bands are prominent to detect galaxies, and studying
their number density, luminosity distribution, or velocity dispersion profile are ef-
fective methods to find clusters. For example, the location of galaxies in the color-
magnitude panel tells us about their membership to a cluster, and algorithms known
as “redmapper” (e.g. the red-sequence Matched-filter Probabilistic Percolation, Rykoff
et al., 2014) take advantage of this feature to detect galaxy clusters. An alternative
way is to rely on Optimal Filtering algorithms (Maturi et al., 2005; Bellagamba et al.,
2011). This method identifies overdensities of galaxies associated with galaxy clusters
taking into account their spatial, magnitude, and photometric redshift distributions
(Radovich et al., 2017). Finally, optical observations are used to infer the gravitational
lensing property of galaxy clusters and measure their mass. We will further discuss
this effect in the following chapter.

1.5 Purposes of the thesis

With this section, I would like to remind the major points seen in this chapter and
introduce the ensuing inquiries that we investigated during my thesis.

Because we have always observed and tried to understand our surrounding Uni-
verse, we are currently providing faithful cosmological models to our observations
(Section 1.1). In particular, the standard model of cosmology gives an accurate de-
scription of the Universe in the framework of the cosmological principle, where the
Universe is seen as a homogeneous and isotropic fluid in accelerated expansion. Its
geometry is described with an FLRW metric and the dynamic of its content provided
with the Friedmann equations (1.9) & (1.10). With this configuration, the evolution
of the Universe is governed by a set of parameters defining the cosmological frame-
work of the study (Section 1.2). More specifically, the matter component evolves as a
Gaussian and isotropic field of inhomogeneities fluctuating around the mean density
of the Universe. On scales sufficiently small, the perturbations collapse into virialized
halos forming the so-called large-scale structure. The overdensity field of the Universe
is not probed uniformly by the halos, but we recognize a bias into their distribution:
the halo bias (Section 1.3). Galaxy clusters are astronomical objects that lie in specific
regions of the sky, the halos. Hence, clusters are mostly formed with dark matter, in-
visible with direct observations. However, we can locate them through their baryonic
components, the galaxies, or the ICM, and indirect observations of their total mass
can be led with gravitational lensing (Section 1.4).

Galaxy clusters constitute crucial objects to answer a large number of cosmological
questions. Indeed, as we have seen, they are predominantly made of dark matter,
one of the principal riddles in today’s cosmology. Thus, measuring the total mass of
clusters is a prominent scientific breakthrough to better understand the nature of dark
matter. As already mentioned, a method that allows such observation is gravitational
lensing. Because clusters are combined with massive halos, they are also primordial to
study the bias of the halos. The halo bias is consistent with the density profiles of the
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halos on large scales. To reach these scales and derive general properties of clusters,
a statistical analysis is required with gravitational lensing in the weak regime. This
tool is an effective way to compute density profiles in clusters from catalogs of data.
However, halo mass and halo bias can be extracted in a given aperture only assuming
a model of the halo density profile. In Chapter 2, we detail the theoretical framework
of the weak gravitational lensing formalism and the predicted density profiles of the
halo. The halo bias is also derived with numerical simulations in the framework of
the ΛCDM model from the halo mass. This relation and the lack of measurement
on this parameter give great opportunities to establish novel cosmological studies. I
present the set of data used for our cosmological analysis in Chapter 3 and the results
obtained from this study. More importantly, the next generation of telescopes will
provide larger and deeper catalogs of data. These surveys are essential to increase
our knowledge of the physical mechanism governing the evolution of the large-scale
structure. Hence, the development of advanced numerical materials is required for
the incoming investigations. I introduce in Chapter 4 the COMB-CL package which
aims at measuring weak lensing mass for Euclid detected clusters. Finally, all these
topics will be reviewed as a conclusion in Chapter 5 and the forthcoming cosmological
perspective will be discussed.
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Chapter 2

Theoretical framework

With this chapter, I would like to outline the theoretical framework required for the
analysis of the data. As a first step, the lensing formalism will be detailed as it is
primordial for the completion of the mass density profiles of galaxy clusters. In this
section, I will begin with the basic lens equations, go toward the different physical
aspects of gravitational lensing, give a detailed description of convergence and shear
parameters and finally extend the overview of the lensing formalism to the convergence
power spectrum. Thereafter, to contrast the density profiles of galaxy clusters derived
with WL, I will define the density model of the halos. It is decomposed into various
components, namely the one-halo term, a correction factor, and the two-halo term.
Finally, the last section will be focused on the theoretical relations between the halo
mass and other parameters of the halo model: the concentration and the halo bias.

2.1 Formalism of weak gravitational lensing

Gravitational lensing is a physical phenomenon that occurs when light is deflected by
massive objects. Such an event has been discovered in the early XIX century (Soldner,
1804) with the deflection of a light ray of a star in the background of the sun. Since,
many observations have been realized, specifically with galaxies (Zwicky, 1937) and
galaxy clusters (Lynds and Petrosian, 1986; Soucail et al., 1988). Gravitational lens-
ing opened a large field of study in astrophysics, as its intrinsic physical properties
allow to derive the mechanisms of the non-visible matter. The standard approach
to gravitational lensing has been laid out in several reviews, lecture notes and text-
books (e.g. Schneider, Ehlers, and Falco, 1992; Narayan and Bartelmann, 1996; Seitz
and Schneider, 1997; Bartelmann and Schneider, 2001; Bartelmann, 2010; Kilbinger,
2015).

2.1.1 Lens equations

As predicted by general relativity, objects with important mass curve space-time.
Because light follows geodesics, light rays are deflected nearby high densities and
images in the background are distorted compared with their real shape. Assuming
the Newtonian gravitational potential Φ� c2 as a small perturbation, we can rewrite
the metric of the Universe seen in Equation (1.6) as:

ds2 =
(
1 +

2Φ
c2

)
c2dt2 –

(
1 –

2Φ
c2

)
dl2 . (2.1)
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Figure 2.1: Diagram of the deflection of a light ray around a point
mass. (Credits: Narayan and Bartelmann, 1996)

With the propagation condition for light ds2 = 0, we can rearrange this equation and
find the effective light speed in a weak gravitational field:

c′ =
dl
dt
' c

(
1 +

2Φ
c2

)
, (2.2)

where Φ/c2 � 1 was used in a first order Taylor expansion. We see that a weak
gravitational field has the effective index of refraction:

n =
c
c′
' 1 –

2Φ
c2

. (2.3)

Conventionally normalized such as to vanish at infinity, the gravitational potential is
negative and the index of refraction larger than unity. Assuming a point mass M at
the origin of a coordinate system and a light ray propagating parallel to the z axis and
passing the point mass at an impact parameter b as in Figure 2.1, the gravitational
potential is given by:

Φ = –
GM√
b2 + z2

. (2.4)

We can now apply the Fermat’s principle, which states that a light ray travels
along an optical path τ between two fixed point A and B along which the travel time
is extremal, giving at the first-order:

δτ = δ
∫ B

A

c
n
dt = 0 . (2.5)

The deflection angle α̂ of a lens of mass M is directly derived from the variation of τ
with respect to the variation of the light path:

~̂α =
2
c2

∫
~∇⊥Φdλ , (2.6)

where ~∇⊥ is the gradient with respect to the normal direction and λ is an arbitrary
parameter related to the light path. The integral over a light path is complicated to
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carry out, but it can be approximated by integration over a straight line, and injecting
Equation (2.4) in Equation (2.6) gives:

~̂α(b) =
2RS
b

, (2.7)

where RS ≡ 2GM/c2 is known as the Schwarzschild radius of the lensing point mass.
Consider now the typical lens system displayed in Figure 2.2. We see that a light

ray traveling close to the lens is deflected by an angle α̂, as identically shown in
Figure 2.1. In this schema, Ds, Dl, and Dls are the angular diameter distances from
the observer to the source, from the observer to the lens, and from the lens to the
source, respectively. The lens is assumed to be thin compared to the overall extent of
the lens system, which holds for isolated objects such as galaxy clusters but not for
extended lenses such as the large-scale structure. With this approximation, the light
path is considered straight toward the observer, and the angles α̂, β, and θ are small
compared with unity. We can then derive the following relation:

~β = ~θ – ~α , (2.8)

where ~α is the reduced deflection angle introduced with:

~α =
Dls
Ds

~̂α . (2.9)

As processed in Equation (2.6), the reduced deflection angle can be written as a
gradient:

~α(~θ) =
2
c2

Dls
DlDs

∫
~∇⊥Φ(Dl~θ, z)dz . (2.10)

It is convenient to describe gravitational lensing equations as a function of the angular
position ~θ in the sky pane. With this formalism, gradients need to be taken with
respect to angles rather than perpendicular distances:

~∇θ = D–1
l
~∇⊥ . (2.11)

Thus, Equation (2.10) turns into:

~α = ~∇θψ with ψ ≡ 2
c2

Dls
DlDs

∫
Φdz . (2.12)

The quantity ψ is called the deflection potential or the lensing potential.

2.1.2 Convergence and shear

Taking gradient of the reduced deflection angle leads to the Laplacian of the lensing
potential:

~∇θ~α = ~∇2
θψ =

2
c2

DlDls
Ds

∫
~∇2
⊥Φdz . (2.13)

In the above equation, we have replaced the Laplacian with respect to the angle
coordinate with the Laplacian with respect to perpendicular physical coordinates.
We can extend the definition of the Laplacian with respect to the complete physical
coordinate:

~∇2 = ~∇2
⊥ +

∂2

∂z2
, (2.14)
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Figure 2.2: Diagram of a typical lens system. (Credits: Bartelmann
and Schneider, 2001)
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and derive with the Poisson’s equation:

~∇2Φ = 4πGρ . (2.15)

Here ρ is the matter density of the field. The Poisson’s equation can be inserted into
Equation (2.13) considering ∂Φ/∂z ' 0, as the extent of the lens is small compared to
the cosmological distances involved, giving:

~∇2
θψ = 2

Σ
Σcr
≡ 2κ , (2.16)

where the surface mass density and the critical surface mass density are respectively
defined as Σ ≡

∫
ρ and:

Σcr ≡
c2

4πG
Ds

DlDls
. (2.17)

The parameter κ is the dimensionless surface mass density also called convergence.
Practically speaking, its variation corresponds to an isotropic deformation of the image
of the source by the lens. If its value is negative, then the source shape will appear
smaller, and if positive bigger. The efficiency of the lens depends on the combination
between its density and its position along the line of sight. Indeed, Equation (2.16)
is maximized when Σ is high and Σcr is low. Thus in Euclidean space, lensing is more
efficient when the lens is located at a half distance of the source.

So far we have reviewed the formalism of gravitational lensing in the most general
case. Let us now switch to the specific case that is weak lensing. In this regime, we
consider angular size much smaller than any typical scale of variation in the deflection
angle. The intrinsic angular size of the source and its corresponding image is connected
with the Jacobian matrix A:

Aij ≡
∂~βi
~θj

= δij – ψij , (2.18)

with ψij ≡ ∂2ψ/θiθj are the second partial derivative of the lensing potential. We can
relate the Jacobian matrix with Equation (2.16) by taking its trace:

trA = 2 – ~∇2
θψ = 2(1 – κ) . (2.19)

When subtracting it from A by means of the unit matrix I, we obtain the shear
matrix:

Γ ≡ –
(
A –

1
2
(trA)I

)
, (2.20)

which components are:

γ1 ≡ Γ11 = –Γ22 =
1
2
(ψ11 – ψ22) ,

γ2 ≡ Γ12 = Γ21 = ψ12 .
(2.21)

If Equations (2.19) & (2.21) are taken together with Equation (2.20), we arrive at the
final form of the Jacobian matrix:

A = (1 – κ)I – Γ =
(
1 – κ – γ1 –γ2

–γ2 1 – κ + γ1

)
. (2.22)

Because lensing does change the apparent solid angle of a source, we determine how
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the angular size of a source is magnified compared with its image by the magnification
factor µ. It is expressed as the inverse determinant of A following:

µ ≡ 1
detA =

1
(1 – κ)2 – |γ|2

, (2.23)

where the quantity γ ≡ γ1+ iγ2 is the complex form of the shear which translates into
anisotropic deformations of the image of the source by the lens. More specifically,
sources initially have an intrinsic unlensed ellipticity εs, which is converted by cosmic
shear into the observed ellipticity ε. One describes this deformed ellipse by its minor
and major axes (a, b), and from the position angle φ of the source relative to the lens,
as:

ε = |ε|e2iφ , with |ε| =
a – b
a + b

. (2.24)

It is convenient to factor out the multiplicative term (1 – κ) from Equation (2.22)
and thereby introduce the reduced shear observable:

g ≡ γ/(1 – κ) , (2.25)

and its conjugate version g∗. Considering |g| ≤ 1, we can relate shear and ellipticity
with:

ε =
εs + g
1 + g∗εs

. (2.26)

In the WL limit γ � 1 and κ � 1, yielding ε ≈ εs + g. Assuming that sources are
randomly oriented, their complex intrinsic ellipticities average to zero, so 〈ε〉 = 〈γ〉.
Therefore, the average ellipticity of background galaxies is a direct observable of the
shear induced by foreground matter.

The two components of the complex shear are defined relative to a local Cartesian
space and are conveniently decomposed into a tangential and a cross component:

γ+ ≡ –<
(

γe–2iφ
)
= – (γ1 cos 2φ + γ2 sin 2φ) ,

γx ≡ –=
(

γe–2iφ
)
= – (γ2 cos 2φ – γ1 sin 2φ) ,

(2.27)

respectively. Noticing the minus sign in the exponential, it is agreed that for an
axially symmetric mass distribution the tangential component returns a positive value
around an overdensity, while a negative value characterizes underdensities. On the
other hand, the cross component of the shear does not hold any mass information,
and thus averages to zero, in the absence of systematic uncertainties.

2.1.3 Convergence power spectrum

So far, we have assumed gravitational lensing in the thin lens approximation, that is
the size of the lens is negligible compared with the overall extent of the lens system.
This configuration is clearly not appropriate for more extended lenses along the line of
sight, for instance, the large-scale structure of the Universe. To correct this problem,
distances involved for the lensing potential definition in Equation (2.12) should be
integrated with Φ along the line-of-sight. However, because our Universe is expanding,
it is more convenient now to describe the spacing between objects in terms of comoving
distance. In Section 1.2.6 we have seen that comoving and angular diameter distances
remain the same in a spatially flat Universe. Let consider χ the comoving angular
diameter distance in spatially flat space-time and χs the source distance, we now can
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Figure 2.3: The convergence power spectrum as computed in Equa-
tion (2.32) at various redshifts. We show the functional form with lin-
ear and non-linear matter power spectra computed in Equations (1.34)

& (1.36).

proceed with the following conversion:

Dls
DlDs

−→ χs – χ
χsχ

, (2.28)

and the deflection potential becomes:

ψ =
2
c2

∫ χs

0
dχ

χs – χ
χsχ

Φ(χ~θ, χ) . (2.29)

The lensing quantities ~α, κ and γ are now defined in terms of ψ of Equation (2.29).
In particular, the convergence is converted from Equation (2.16) using the Poisson’s
equation into the effective convergence:

κ =
3
2
H2
0

c2
Ωm

∫ χs

0
dχ

χ(χs – χ)
a(χ)χs

δ(χ) , (2.30)

where the overdensity δ is taken from Equation (1.21) and a is the scale factor as de-
fined in Equation (1.4). This expression is a projection of the density contrast along
with comoving coordinates, weighted by a geometrical factor involving distances be-
tween the observer and the source. Similarly, the matter power spectrum is expressed
in terms of the density contrast in Equation (1.30), we can derive the convergence
power spectrum in terms of the effective convergence:

〈κ̃(l)κ̃(l′)〉 = (2π)3Pκ(l)δD(l – l′) , (2.31)
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where the complex Fourier transform κ̃ of the convergence is a function of the 2D wave
vector l ≡ χk. Again due to statistical homogeneity and isotropy, the convergence
power spectrum only depends on the modulus l. Taking the square of Equation (2.30)
in Fourier space, we get an analytical form of the convergence power spectrum:

Pκ(l) =
9
4
H4
0

c4
Ω2
m

∫ χs

0
dχ
[

χ(χs – χ)
a(χ)χs

]2
P
(
l
χ
, χ
)

, (2.32)

where P is the matter power spectrum. This result can be derived using the Limber’s
approximation, which only collects modes that lie in the plane of the sky, thereby
neglecting correlations along the line of sight. We see that Pκ is an integral over the
comoving distance from the observer to the source, but given this functional form
it can be computed in terms of redshift corresponding to the source redshift of the
lens system. For example, in Figure 2.3 we show the convergence power spectrum
computed at different source redshifts. We also display the two forms provided with
the linear and non-linear regimes driving the matter power spectrum shape.

2.2 Models of the halo density

In this section we explore the theoretical mass density distribution of the halo, also
called the halo model. All the terms in this relation depend on the surface density Σ.
It is computed by the projection over the line of sight of the excess matter density ∆ρ
in a sphere centered on the halo as:

Σ(R) =
∫ ∞

–∞
∆ρ
(√

R2 + χ2
)
dχ . (2.33)

∆ρ includes the two terms of the halo model from the halo-matter correlation function
ξhm:

∆ρ = ρmξhm , (2.34)

and the mean matter density ρm ≡ Ωmρc must be computed in physical units at the
redshift of the sample. The critical density ρc is related to the first of the Friedmann
equations and is defined as in Equation (1.11).

In WL, we average this quantity over the disk to derive the mean surface density
enclosed within the radius R:

Σ(< R) =
2
R2

∫ R

0
R′Σ

(
R′
)
dR′ . (2.35)

In the following and for the terms contributing to the halo model, we are inter-
ested in the main lens structure, which comprises the total mass of the halo and its
concentration. The study of the relation of the halo mass and the halo concentration,
developed in Section 2.3, is also driven by this main component. In addition, we in-
clude the contribution of possibly miscentered density profiles. Finally, we complete
the halo model with the correlated matter component that allows the cosmological
study from the analysis of the halo bias.

For the cosmological analysis developed in the next chapter, the total surface
mass density profile is modeled with the terms, described at the following, and their
associated marginalized parameters:

Σtot = Σ 1h
bmo
mis

(M200c, c200c,σoff , foff) + Σ2h
lin
(bhσ2

8) . (2.36)
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Figure 2.4: The halo model (blue) is composed of the BMO halo
mass profile (thick green, Baltz, Marshall, and Oguri, 2009), its off-
centered contribution (thick cyan, Johnston et al., 2007a) and the
second term derived from the linear matter power spectrum (thick
red, Eisenstein and Hu, 1999). For comparison, we show the centered
/ off-centered NFW mass profile (dashed green / cyan, Navarro, Frenk,
and White, 1997) and the surrounding matter term with a non-linear
power spectrum (dashed red, Takahashi et al., 2012). The density
profile is computed in this example for a halo at zl = 0.2 with a total
mass M200c = 1014 M�/h, a concentration c200c = 4 and a bias set
at bh = 1 (with σ8 = 0.8. The variance and the fraction of an off-
centered population contribute to the profile with σoff = 0.25 Mpc/h
and foff = 0.25. Finally, the reduced shear is given for an effective
source redshift zs = 1, while the non-shaded area reveals the range

allowed by the stacked WL analysis.

Mass and bias are the two most critical variables among the five free parameters since
they both act on the amplitudes of the one-halo and two-halo terms, respectively. For
example, Figure 2.4 shows Equation (2.36) in blue with zl = 0.2, zs = 1, M200c =
1014 M�/h, c200c = 4, σoff = 0.25 Mpc/h, foff = 0.25 and bhσ2

8 = 0.82.
In Figure 2.4 we display, as an example, the complete model for a given mass,

concentration, bias, and redshift of the halo.

2.2.1 One-halo term

The correlation between the halo and its own matter content is given by the halo
matter density profile ρh:

ξ1h =
ρh
ρ̄m

– 1 . (2.37)

Analytic calculations and numerical simulations suggest that dark matter halos have
a symmetric density profile in a spherical aperture (Navarro, Frenk, and White, 1996).



36 Chapter 2. Theoretical framework

More recent studies look at the impact of the triaxiality of the halos as a new
source of uncertainty in the WL signal (Oguri et al., 2005; Meneghetti et al., 2010;
Sereno and Umetsu, 2011). This systematics involves a larger scatter of the mass and
over-estimates the concentration when triaxial clusters are aligned with the line of
sight.

Several works, such as Navarro, Frenk, and White (1997) and Bullock et al. (2001)
provided a specific analytical form for the halo distribution, also called the Navarro-
Frenk-White (NFW) density profile, in which the density varies with the distance
from the center r as:

ρnfw =
ρs

(r/rs)(1 + r/rs)2
, (2.38)

where ρs = ρcδc is the scale density and rs the scale radius. The overdensity contrast
δc can be expressed as a function of the concentration c and the overdensity factor ∆
as:

δc =
∆c3

3m (c)
. (2.39)

The function m(c) depends on the choice of density profile and on the concentration
parameter as in Equation(2.43). Thereafter, we adopt the common virial value ∆ =
200c, relating to a spherical volume with a density 200 times higher than the critical
density of the Universe. Hence, we parametrize the scale radius as:

rs = r200c/c200c . (2.40)

We leave the concentration within that sphere free in order to study the relation
between the mass and the concentration in Section 3.4.4. A second approach would
be to consider an existing mass-concentration scaling relation, e.g. from Merten et al.
(2015a) based on X-ray selected galaxy clusters of the Cluster Lensing And Supernova
Survey with Hubble (CLASH, Postman et al., 2012), or from simulations (e.g. Child
et al., 2018, see Section 2.3.1). The 3D NFW profile can be analytically converted into
a 2D version and thereby extended to an excess surface mass density version following
Golse and Kneib (2002).

A specific and additional feature for the halo model is to include stripping effects
by tidal forces. These phenomena represent an important challenge for modeling DM
substructures of halos (Taylor and Babul, 2004; Oguri and Lee, 2004) and their mea-
surements provide significant tests for CDM simulations (Hayashi et al., 2003; Taylor
and Babul, 2005). In particular, tides strip external regions of subhalos resulting in
the disruption of their hosted halo and modify its outer density profile in a steeper
way (Okamoto and Habe, 1999). The NFW profile has a non-physical divergence
of its total mass (Takada and Jain, 2003). The Baltz-Marshall-Oguri (BMO, Baltz,
Marshall, and Oguri, 2009) profile is a smoothly truncated version of the NFW profile
which allows circumventing this problem with infinite mass. This profile presents the
following shape:

ρbmo =
ρs

(r/rs)(1 + r/rs)2

(
r2t

r2 + r2t

)2

. (2.41)

Stripping expects the cold dark matter halos to be smoothly-truncated and their
density to collapse beyond the tidal radius, set at (Covone et al., 2014; Sereno et al.,
2017; Bellagamba et al., 2019):

rt = 3r200c . (2.42)

This configuration of the truncation radius derives from a fitting method involving a
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convergence model on ray-tracing simulations (Oguri and Hamana, 2011). The BMO
profile also provides less biased estimates of mass and concentration with respect to
the NFW profile, and better describes the density profile at the transition scales be-
tween the one-halo and two-halo terms. Baltz, Marshall, and Oguri (2009) provide an
analytical expression for the surface mass density. The function m in Equation (2.39)
differs according to the profile as (Oguri and Hamana, 2011):

mnfw = ln (1 + c) –
c

1 + c

mbmo =
τ2

2(τ2 + 1)3(1 + c)(τ2 + c2)

×
[
c(τ2 + 1)

{
c(c + 1) – τ2(c – 1)(2 + 3x) – 2τ4

}

+ τ(c + 1)(τ2 + c2)
{
2(3τ2 – 1) arctan(c/τ)

+ τ(τ2 – 3) ln(τ2(1 + c)2/(τ2 + c2))
}]

,

(2.43)

where:
τ ≡ rt/rs . (2.44)

We display the NFW and BMO surface mass density profiles in Figure 2.4. We indicate
rs, r200c and rt locations with vertical arrows.

2.2.2 Miscentering correction

Since galaxy clusters are detected with cluster finder algorithms as discussed in Sec-
tion 1.4.3, the location of their center is attributed to the detector. For example,
redmapper often use the location of the BCG as the barycenter of the total mass
distribution of the cluster, but it is biased as this position is in fact shifted with the
dark matter halo center.

The Optimal Filtering algorithm later discussed in Section 3.1.3, detects clusters
from overdensities of the spatial distribution of galaxies. The location of their center is
assumed to be known. Because the algorithm detects overdensities from the galaxies
distribution, we do not rely on the peaks related to the fluctuations in the total
matter distribution. Instead, as the detection of clusters is based on the identification
of galaxy overdensities, the adopted cluster center corresponds to the peak in the
projected space of the galaxy distribution. This peak may not coincide with the
barycenter of the DM distribution.

In reality, we expect the detected pixel position of the cluster center to possibly
be shifted with respect to the center of the halo. Skibba and Macciò (2011) and
George et al. (2012) discussed the importance of locating the centers of dark matter
halos in order to properly estimate their mass profiles. Miscentering is expected to be
a small fraction with respect to the cluster radius, under the assumption that light
traces dark matter (Zitrin et al., 2011b; Zitrin et al., 2011a; Coe et al., 2012; Merten
et al., 2015b; Donahue et al., 2016). However, radial miscentering is larger for optical
clusters selected in a survey with a complex mask footprint.

Hence, we introduce the radial displacement of the cluster center Roff , while the
off-centered density profile is the average of the centered profile over a circle drawn
around the incorrect center (Yang et al., 2006; Johnston et al., 2007a):

Σoff(R|Roff) =
1
2π

∫ 2π

0
Σcen

(√
R2 +R2

off + 2RRoff cos θ
)
dθ . (2.45)
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This term holds for an isolated galaxy cluster. We extend the profile to a global
population of galaxy clusters so that the off-centered contribution is given by:

Σoff(R|σoff) =
∫ ∞

0
P(Roff ,σoff)Σoff(R|Roff)dRoff , (2.46)

where the displaced distances Roff follows a Rayleigh distribution with parameter σ2
off

(Simet et al., 2017; Melchior et al., 2017):

P(Roff ,σoff) =
Roff
σ2
off

exp

[
–
1
2

(
Roff
σoff

)2
]
. (2.47)

Considering foff as the fraction of the off-centered population, the total miscen-
tered density profile can be modeled as:

Σmis(R|σoff , foff) = (1 – foff)Σcen(R) + foffΣoff(R|σoff) . (2.48)

Since this mainly impacts the central region of the halo profile, we reduce the correc-
tion to the one-halo component of the model. The miscentering effect is illustrated in
Figure 2.4 with the two elements of the above sum. From the figure, we can also see
that the miscentering parameters are degenerate with the halo concentration.

2.2.3 Two-halo term

On large scales, the lensing signal of the halo is dominated by correlated matter, e.g.
neighboring halos or filaments, rather than its own matter content. The two-halo term
usually contributes to the whole profile at R & 10 Mpc/h. Following the standard
approach, this signal is proportional to the matter-matter correlation function ξm
through the halo bias bh:

ξ2h = bhξm . (2.49)

We derive the matter correlation function at radius r from the Fourier transform of
the dimensionless matter power spectrum ∆2(k) ≡ P(k)k3/

(
2π2
)
, and the first-order

spherical Bessel function j0(x) = sin x/x:

ξm =
∫ ∞

0

∆2(k)
k

j0(kr)dk . (2.50)

We illustrate the second term of the surface mass density profile in Figure 2.4 assuming
bias bh = 1. We also display results given by the linear matter power spectrum
(Eisenstein and Hu, 1998; Eisenstein and Hu, 1999) and by the non-linear matter
power spectrum computed assuming the so-called halofit model (Takahashi et al.,
2012). A halo mass of M200c = 1014 M�/h and concentration of c200c = 4 contribute
15% and 25%, respectively, to the whole profile at the intermediate scale R = 3.16
Mpc/h, considering the BMO miscentered profile as the one-halo term. We focus on
the linear version since we provide a comparative analysis with theoretical mass-bias
relations (e.g. Tinker et al., 2010, see Section 2.3.2) derived from simulations, where
results are given in terms of “peak height" in the linear density field. However, it is
important to keep in mind that the non-linear version of the power spectrum shows
a non-negligible contribution of mass fluctuations at small and intermediate scales.
The second term of the halo model is parameterized in terms of a degenerate value of
the halo bias with σ2

8. This parameter defines the RMS fluctuations σ(M) for a mass
enclosed in a comoving sphere of radius 8 Mpc/h. This actually corresponds to the
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typical scale for the formation of galaxy clusters. The parameter σ2
8 also derives from

the matter power spectrum as a normalization factor and permits the cosmological
inference of the product bhσ2

8 (see Section 3.4.6).

2.3 Predictions of the halo mass

The model of density profile shown in the previous section accounts for three ma-
jor halo parameters: mass, concentration, and bias. While the mass of the halo is
prominent for the analytical description of the model, the two other variables can
be expressed in terms of the first one. Indeed, numerous numerical simulations show
that the halo concentration and the halo bias are related to the halo mass. At the
following, we detail the theoretical relations of the halo mass with respect to the halo
concentration and the halo bias.

2.3.1 Halo concentration

Halo concentration is determined by the mean density of the Universe at the epoch of
halo formation (Neto et al., 2007; Giocoli, Tormen, and Sheth, 2012). Thus, clusters
that assemble later are expected to have a lower concentration than older clusters,
formed when the mean density was higher. This determines a clear correlation with
the halo mass in such a way that the halo concentration is expected to be a decreasing
function of the halo mass. Results from simulated data show this relation, but this
behavior between the concentration and the total mass has also been tested observa-
tionally (e.g. Okabe et al., 2010). Many of these studies measure the density profile
of simulated halos and constrain a mass-concentration relation according to models,
mostly NFW. A large number of them do not directly fit functions of mass, but instead
operate the the peak height parameter of the halos as defined in Equation (1.38). In
this case, the RMS variance of the field is described with the halo mass, computed
from the Lagrangian radius of the halos as:

M =
4πR3

3
ρm . (2.51)

Different fitting methods can produce inconsistent results, thus we shall account for
numerous theoretical predictions to better enlarge the field of study of the concentra-
tion. All these functions presented in this thesis are displayed in Figure 2.5.

Duffy et al. (2008) measure the mass-concentration relation with a NFW profile
using N -body simulations with a fiducial Wilkinson Microwave Anisotropy Probe year
5 (WMAP5) cosmology. They find an additional dependency between the halo mass
and redshift, best modeled as a power law.

Bhattacharya et al. (2013) predict the concentration with the halo mass from dark
matter simulations run in the framework of a WMAP7 cosmology in the redshift range
0 < z < 2. The best-fitted relation gives the concentration as a power-law function of
the peak height parameter.

Dutton and Macciò (2014) use a set of simulations to detect halos with spherical
overdensity algorithm and fit NFW profiles in a Planck Collaboration et al. (2014)
cosmology. They derive a power-law relation between mass and concentration.

Meneghetti et al. (2014) present an analysis of the N -body/hydrodynamical simu-
lations that aimed at estimating the expected concentration-mass relation for the Clus-
ter Lensing and Supernova Survey with Hubble (CLASH) cluster sample. With NFW
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Figure 2.5: Relations between the mass and the halo concentration
at lens redshift zl = 0.3. The relations derive from results given by
different theoretical analyses, respectively Duffy et al. (2008), Bhat-
tacharya et al. (2013), Dutton and Macciò (2014), Meneghetti et al.
(2014), Diemer and Kravtsov (2015), Child et al. (2018), Diemer and

Joyce (2019), and Ishiyama et al. (2020).
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and alternative versions of density models, they provide a mass-redshift-concentration
relation.

Diemer and Kravtsov (2015) give a universal model in c200c – ν space without
applying for specific cosmology. This complex model makes use of the matter power
spectrum slope to correct from residual deviations in the relation. This parameter is
defined as:

n =
dlnP(k)
dlnk

. (2.52)

This feature makes the relation highly sensitive to the cosmological framework, as n
is directly involved in the amplitude of the power law.

Child et al. (2018) combine two very large cosmological N -body simulations to
measure mass and concentration of the halos with a NFW profile. They fit is a power-
law function, dependent on the non-linear mass instead of the peak height. This
relation covers a redshift range of 0 < z < 4.

Diemer and Joyce (2019) model is an improved version of Diemer and Kravtsov
(2015). It is based on a mathematical derivation of the evolution of concentration at
the low-mass end of the relation. This functional form is more physically motivated,
and allows fewer free parameters (six instead of seven). In addition to the logarithmic
slope of the matter power spectrum seen in Equation (2.52), it involves the effective
exponent of linear growth defined as:

αeff = –
dlnD+

dln(1 + z)
. (2.53)

Because of the improved functional form, the model improves the fit, particularly in
the case of scale-free cosmologies.

Ishiyama et al. (2020) recalibrate Diemer and Joyce (2019) model with a new set
of large high resolution simulations. The model provides median concentrations only
but was calibrated for a larger number of overdensity definitions ∆.

2.3.2 Halo bias

The halo bias, introduced in Section 1.3.3, is essential to model the two-halo terms.
It quantifies the excess clustering of halos over the clustering of dark matter. As
with concentration, bias is predicted as a function of either mass or peak height
with numerical simulations. Such theoretical relation represents crucial probes for
cosmological analyses. Practically speaking, halos are detected in simulated data and
their bias is assessed by measuring the halo power spectrum and computing its ratio
with the linear matter power spectrum:

b2h =
Ph
Pl

. (2.54)

The square of the halo bias is taken because we consider the ratio of power spectra,
while in Equation (1.41) the bias is derived from the ratio of overdensity parameters.
In contrast with concentration-mass relations, studies that constrain mass-bias rela-
tions are fewer but do not present strong inconsistency. All of them show that bias is
predicted as an increasing function of the mass, and at fixed mass that the halo bias
varies with redshift. We account here for three different predictions of the halo bias.
We select these models because all provide models with a redshift dependency, which
is more consistent with observed galaxy clusters. We show such models in Figure 2.6
for a set of lens redshifts.
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Figure 2.6: Relations between the mass and the halo bias at different
lens redshift. The relations derive from results given by different the-
oretical analyses, respectively Seljak and Warren (2004), Tinker et al.

(2010), and Bhattacharya et al. (2011).

The first relation is derived in Seljak and Warren (2004). The authors use a set
of N -body simulations to explore the average halo bias relation as a function of halo
mass. The relation is given under the form of a power law of the mass ratio x = M/M∗,
which best fit gives:

bh = 0.53 + 0.39x0.45 +
0.13

40x + 1
+ 5× 10–4x1.5

+ log10(x) [0.4(Ωm – 0.3 + ns – 1) + 0.3(σ8 – 0.9 + h – 0.7)] .
(2.55)

This relation is drastically different compared with the two others because it directly
involves cosmological parameters, and the local variable is considered as the mass.
This parametric model is limited since it has been constrained with galaxy halos,
which represent a much smaller size and mass than clusters. Moreover, the results of
this study showed that predictions of the halo bias are relatively different from 10%
to 50% with the simulated data.

A prominent study of theoretical prediction of the halo bias is processed in Tinker
et al. (2010). They calibrate the dependence of the large-scale bias on the mass by
analysing the clustering of dark matter halos based on dark-matter only cosmological
simulations. It is presented with the following form:

bh = 1 –
[
1 + 0.24ye–(4/y)

4] ν0.44y–0.88

ν0.44y–0.88 + δ0.44y–0.88c

+ 0.183ν1.5 +
[
0.019 + 0.107y + 0.19e–(4/y)

4]
ν2.4 ,

(2.56)

where y ≡ log10∆. The function is very convenient for analyses as it is adaptable to
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any value of the overdensity contrast. This study find a 6% scatter about the best-fit
bias relation with simulations.

An alternative model is provided by Bhattacharya et al. (2011). A bias model is
derived using the peak-background split function of Sheth and Tormen (1999). This
function is used to predict the halo bias in Lagrangian space. Then bias is computed
with the following:

bh = 1 +
0.788ν2/(1 + z)0.01 – 1.795

δc
+

2× 0.807
δc
[
1 + 0.788ν20.807/(1 + z)0.01

] . (2.57)

They find a corresponding change with simulations of 10% to 15%.
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Chapter 3

Data analysis

This chapter is focused on the cosmological study presented in Ingoglia et al. (2022).
In the previous chapter, we have seen the theoretical tools to understand the physical
mechanisms behind weak gravitational lensing. The terms and the parameters com-
posing the model of the halo density profile can be articulated in order to contrast with
the lensing signal around galaxy clusters. The halo parameters such as concentration
and bias correlate with the halo mass which allows driving a cosmological analysis
accounting for extensive surveys.

In the following, we describe the catalogs of data used for the analysis. From such
materials, we derive the density profiles of galaxy clusters and explain the process that
maximizes the statistical efficiency of the lensing signal. Then, we detail the sources
of uncertainty that stem from the WL measurements and how to correct them. At
this stage, the full signal is processed and ready for cosmological constraints. We thus
describe the Bayesian statistics that allows extracting the cosmological parameters of
the halo model. Finally, we expose the results of this study and additional products
which should be extended in another publication.

3.1 Description of the KiDS data

Data are prominent to rule cosmological studies, as they allow to generate sufficient
materials for analyses. For an accurate lensing signal, we have to look for deep and
dense source samples in such a way that the statistical number of background sources
increases while the contamination of foreground and cluster member galaxies is small.
In the following, we provide a global overview of the survey. Then, we give a complete
description of the sources and lenses catalogs used for the data analysis.

3.1.1 Third data release

For European astronomy, the reference ground telescope is the ESO’s Very Large Tele-
scope (VLT) on Cerro Paranal in the Atacama Desert of northern Chile. The study
is based on the optical wide-field imaging Kilo-Degree Survey (KiDS, de Jong et al.,
2013). The survey is managed by the 268 Megapixel OmegaCAM imager (Kuijken,
2011), presently located on the VLT Survey Telescope (VST, Capaccioli and Schipani,
2011). This camera is ideal for such a survey, as it was specifically designed to provide
superb and uniform image quality over a large, 1◦× 1◦, field of view (FoV). KiDS en-
compasses two areas of the extragalactic sky in four broad-band filters (ugri), split into
an equatorial stripe (KiDS-N), and a second one centered around the South Galactic
Pole (KiDS-S). KiDS was designed primarily to map the matter distribution in the
Universe through weak gravitational lensing and photometric redshift measurements

The data set that we use for this work is the Data Release 31 (DR3, de Jong et al.,
1http://kids.strw.leidenuniv.nl/DR3

http://kids.strw.leidenuniv.nl/DR3


46 Chapter 3. Data analysis

1
4
0

1
6
0

1
8
0

2
0
0

2
2
0

2
4
0

R
.A

.
[d
eg]

−
1
0

−
5 0 5

Dec [deg]
K
iD

S
-N

orth

−
2
0

0
2
0

4
0

R
.A

.
[d
eg]

−
4
0

−
3
5

−
3
0

−
2
5

−
2
0

Dec [deg]

K
iD

S
-S
ou

th

F
ig

u
r
e

3.1:
Sky

distribution
ofK

iD
S-N

(top)
and

K
iD

S-S
(bottom

)
tiles.

In
green

the
tiles

released
in

the
current

D
R
3,and

in
blue

in
the

previous
releases

D
R
1
and

D
R
2.

T
he

m
ulti-band

source
catalog

covers
the

com
bined

area
(blue

+
green)

and
the

target
K
iD

S
area

is
show

n
in

grey.
B
lack

dashed
lines

delineate
the

locations
of

the
G
A
M
A

fields.
(C

redits:
de

Jong
et

al.,2017)



3.1. Description of the KiDS data 47

2017). It covers a total area of approximately 450 deg2 for 440 survey tiles distributed
in five patches following the Galaxy And Mass Assembly survey convention (GAMA,
Driver et al., 2011, G9/G12/G15 within KiDS-N and G23/GS within KiDS-S). In
contrast, the first two data releases of KiDS (DR1 & DR2, de Jong et al., 2015; Kuijken
et al., 2015) contain a total of 148 survey tiles covering an area of about ∼ 450 deg2,
which makes DR3 almost three times larger. This intermediate release includes one-
third of the final KiDS area, which will ultimately reach 1350 deg2. Figure 3.1 shows
the distribution of KiDS tiles in the sky plane for both DR3 and DR1+DR2 releases,
in comparison with the full target area. Released data products include calibrated,
stacked images and their weights, as well as masks and single-band source lists for
292 survey tiles not previously released, and a multi-band, aperture-matched source
catalog encompassing all survey tiles released in DR3. The multi-color KiDS data
are reduced and calibrated with the Astro-WISE system (Valentijn et al., 2007;
Begeman et al., 2013). The data release is complemented by several additional data
products, mainly photometric redshift, and WL shear catalogs.

3.1.2 Sources catalog

Numerous sources, deep photometric data, accurate redshifts, and qualitative shears
are primary criteria to handle a relevant WL study. We use the weak lensing data
set based on KiDS-DR3, also called the “KiDS-450” (K450 in the figures) data set.
It is initially covered by 454 tiles, which after masking overlapping tiles, provides an
effective area of 360.3 deg2. Hildebrandt et al. (2017) present a complete tomographic
cosmic shear analysis of KiDS-450. Only galaxies with reliable shape measurements
are included in this catalog.

Image data reduction for weak lensing is performed with the theli pipeline (Erben
et al., 2005; Schirmer, 2013) on KiDS-450 r -band images for which the best-seeing
dark time is reserved. Then the shear is estimated from the shape of a galaxy using
the lensfit likelihood based model-fitting method (Miller et al., 2007; Miller et al.,
2013; Kitching et al., 2008; Fenech Conti et al., 2017). It is a Bayesian method that
measures the components (ε1, ε2) of the complex ellipticity given in Equation (2.24)
for each individual galaxy whose surface is assumed to fit with a likelihood. These
quantities are still affected by a small multiplicative and additive bias. To correct
for these biases, the measured ellipticity component is calibrated with two empirical
parameters, namely m and c, as (Fenech Conti et al., 2017):

εtruei =
εmeas
i – ci
1 + m̄

. (3.1)

In KiDS-450, the additive shear calibration parameter is directly applied to the
galaxy’s ellipticities, while the multiplicative shear bias parameter is computed indi-
vidually in each galaxy by lensfit and must be corrected retrospectively as an average
weighted quantity. Indeed, because faint galaxies have more noisy ellipticity measures
than bright galaxies, the lensfit method makes use of a weighting system based on
the inverse-variance of the likelihood surface.

Photometric redshifts are derived from KiDS-450 galaxy photometry in the ugri-
bands. They are estimated with the Bayesian code bpz (Benítez, 2000). bpz is
widely used in astronomy and is amongst the most accurate code when combined with
the best available spectral energy distribution (SED) templates (Hildebrandt et al.,
2010). This code fits a redshift likelihood model and derives the posterior probability
distribution which peaks at the supposed redshift position of the source. The method
is also effectively used for CFHTLenS data in Hildebrandt et al. (2012). The redshift
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Figure 3.2: Redshift distributions of AMICO KiDS-DR3 clusters
(dark gray) and KiDS-450 galaxies (light gray).

distribution of the galaxies is shown in Figure 3.2 in light-gray in comparison with the
clusters. Sources accounted for the WL signal aim at exceeding the redshift range of
the lenses in order to limit the number of foreground galaxies.

The final catalog comprises 14,650,348 sources identified as galaxies and has an
effective number density of neff = 8.53 arcmin–2, defined as (Heymans et al., 2012):

neff =
1
Ω
(
∑

ws)2∑
w2
s

, (3.2)

where Ω is the total area of the survey excluding masked regions and ws is the lensfit
weight of each galaxy of the survey.

3.1.3 AMICO clusters

We use the galaxy cluster catalog obtained from the application of the Adaptive
Matched Identifier of Clustered Objects algorithm (AMICO, Bellagamba et al., 2018)
on KiDS-DR3 data (AK3 in the figures). AMICO is a robust cluster finder algorithm
that is also selected to form part of the Euclid analysis pipeline (Euclid Collabora-
tion et al., 2019). The algorithm exploits the Optimal Filtering technique (Maturi
et al., 2005; Bellagamba et al., 2011) and aims at maximizing the signal-to-noise ratio
(SNR) for the detection of objects following a physical model for clusters. In a nut-
shell, it identifies overdensities of galaxies associated with galaxy clusters taking into
account their spatial, magnitude, and photometric redshift distributions (Radovich
et al., 2017).

Specifically, AMICO convolves the 3D galaxy distribution with a redshift-dependent
filter, defined as the ratio between M, a model of the density of galaxies per unit magni-
tude and solid angle, and N, the field galaxy distribution. It results in a 3D amplitude
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map, where every peak constitutes a possible detection of clusters:

A(θc, zc) ∝
Ngal∑

i=1

M(θi – θc, mi)pi(zc)
N(mi, zc)

, (3.3)

where θi and θc are the positions on the sky of the galaxy and the cluster center,
respectively, mi and pi are the magnitudes and the photometric redshift distribution
of the galaxy and zc is the redshift of the cluster. The above sum runs over all the Ngal
galaxies of the catalog. The cluster model M is constructed by a luminosity function
and a radial profile which parameters have been extracted from the observed galaxy
population of SZ-detected clusters (Hennig et al., 2017), as detailed in Maturi et al.
(2019). In addition, AMICO assigns to each galaxy i a probability to be a member of
a detected cluster j according to:

P(i ∈ j) ≡ Pf,i
A(θj, zj)Mj(θi – θj, mi)pi(zj)

A(θj, zj)Mj(θi – θj, mi)pi(zj) + N(mi, zj)
, (3.4)

where Pf,i is the field probability of the i-th galaxy before the j-th detection is defined
(for more details, see Bellagamba et al., 2018). By definition, the sum of membership
probabilities for each detected structure will roughly correspond to the number of
visible members. This quantity can be use as richness proxy of the cosmic structure
j:

λ∗j ≡
Ngal∑

i=1
P(i ∈ j)Fij , (3.5)

where Fif is a selection function that filters the galaxies as:

Fij =

{
1 if mi < m∗(zj) + 1.5 and Ri < R200c(zj) ,
0 otherwise .

(3.6)

The magnitude and radial cuts m∗ and R200c are parameters used for the cluster model
constructed in Maturi et al. (2019). The typical magnitude m∗ as a function of redshift
is derived from a stellar population evolutionary model with a decaying starburst
at redshift z = 3 and a Chabrier initial mass function (IMF, Bruzual and Charlot,
2003). The parameter R200c derives from a typical NFW profile, where the mean
concentration is taken at c200c = 3.59 for a corresponding mass of M200c = 1014 M�/h
(Hennig et al., 2017).

Finally, for each cluster, AMICO returns central angular positions, redshift, SNR
of the detection, amplitude A, and effective richness λ∗.

AMICO KiDS-DR3 catalog is fully described in Maturi et al. (2019). It contains
7988 candidate galaxy clusters covering an effective area of 377 deg2. Clusters are
detected above a fixed threshold of SNR = 3.5. The catalog encompasses an intrinsic
richness range of 2 < λ∗ < 140 and a redshift range 0.1 ≤ z < 0.8. The richness and
redshift distributions are presented in Figure 3.3. From the figure, we can see that
the richness slightly increases with redshift, which indicates that rich galaxy clusters
are found at high redshift in agreement with the hierarchical scenario of the cosmic
structures. Conversely, poor and distant clusters are not detected due to their low
SNR. These blank regions are usually associated with low levels of completeness (i.e.
the fraction between detected and mock galaxy clusters), as shown in Figure 13 of
Maturi et al. (2019).
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3.2 Lensing processing of catalogs

In the previous section, we have introduced the set of data used for the analysis. Now
we present the technical and computational details to extract a high-resolution WL
signal from such catalogs of data. In particular, we first describe the global lensing
measurements. Then, we focus on an effective way to select background sources and
reduce the contamination on the lensing signal. Lastly, we explain how to increase
the quality of the lensing signal with a stacking method.

3.2.1 Lensing computation

In Section 2.1.2, we have seen that the tangential component of the complex shear,
γ+, is an observable of the surface density distribution around a massive object. On
the other hand, Section 2.2 provides the model that best describes the surface density
profile of halos. It is possible to relate the shear to this physical quantity through the
excess surface mass density ∆Σ, defined as (Sheldon et al., 2004):

∆Σ ≡ Σ – Σ = Σcrγ+ , (3.7)

where Σ, Σ and Σcr are given in Equations (2.33) & (2.35) & (2.17). However, in WL
what is observed from sources like galaxies is not the shear, but their ellipticity defined
in Equation (2.24). Equation (2.26) shows that ε is not determined in terms of γ, but
in terms of the reduced shear g. Then the reduced shear is a more direct observable
than the shear, which remains an approximation of the source ellipticities. However,
the reduced shear is not directly included in the definition of the differential excess
surface density. So we link these two quantities using the convergence κ ≡ Σ/Σcr in
Equation (3.7) and derive:

g+ =
∆Σ

Σcr – Σ
. (3.8)

The ellipticity still remains an indirect observable of the shear and the reduced shear.
So we denote the corresponding excess surface mass density for tangential and cross
components as:

∆̃Σ+/x ≡ Σcrε+/x . (3.9)

When measuring the ellipticity as a function of radial distance, the signal is very noisy
and becomes noisier with the distance. To correct for this spurious signal, we compute
lensing at a given distance from the cluster center by stacking the radial position and
the ellipticity of the i-th galaxy source over the j-th radial annulus. Thereby, we assess
the two observables using their weighted mean as:

Rj =

(∑
i∈jwls,iR–α

i∑
i∈jwls,i

)–1/α

, (3.10)

and:

∆̃Σj =

(∑
i∈jwls,iΣcr,iεi∑

i∈jwls,i

)
1

1 + Kj
. (3.11)

The lens-source weight of the i-th source is:

wls,i = ws,iΣ–2
cr,i , (3.12)

and ws,i is the lensfit inverse-variance source weight as defined in Miller et al. (2013).
Here, Kj is the weighted mean of the lensfit multiplicative bias mi introduced to
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calibrate the shear on average (see previous section):

Kj =

∑
i∈jwls,imi∑
i∈jwls,i

. (3.13)

The effective radius in Equation (3.10) is estimated with a shear-weighted mean and
computed by approximating the shear profile as a power-law, with α = 1. Sereno
et al. (2017), which explored different methods to assess the mean radius, found that
this configuration makes the fitting procedure to shear profiles less dependent on the
binning scheme. We compute the average inverse surface critical density of a cluster
to derive the effective redshift of its background sources zback in each radial bin also
following Sereno et al. (2017):

Σ–1
cr (zback) =

∑
i∈jws,iΣ–1

cr,i∑
i∈jws,i

. (3.14)

This estimate permits us to compute the modeled reduced shear in Equation (3.8) as
an average quantity, and not consider each individual source redshift for the compu-
tation of the critical surface density.

A preliminary measurement of the statistical errors of the two observables in Equa-
tions (3.10) & (3.11) is given by the weighted standard deviation of the radial dis-
tances:

σ2
R,j =

∑
i∈jwls,i

(
Ri – Rj

)2
∑

i∈jwls,i
, (3.15)

and by the standard error of the weighted mean:

σ2
∆̃Σ,j

=
1∑

i∈jwls,i
, (3.16)

respectively. Notice that taking Equation (3.12) into account, dimension on the error
of ∆̃Σ turns to a surface mass density dimension.

A more complete way to assess the uncertainty given by the averaged signal is to
compute the covariance matrix as in Section 3.3.1. This statistical measurement of
the noise includes the errors which propagate among the radial bins.

In the following, we provide lensing profiles sampled in 30 annuli corresponding
to 31 logarithmically equispaced radii in the range [0.1, 30] Mpc/h. This choice is
justified since our analysis both require small and large scales to identify the two terms
of the halo model. We discard the four inner annuli of the measured shear profile to
avoid contamination from cluster member galaxies and the contribution of the BCG
in the resulting density profiles (Bellagamba et al., 2019). In that order, effects of
miscentering are minimized as the lensing signal is considered only for R & 0.2 Mpc/h.
This measurement is also repeated around random lens points to compensate for the
systematic signal, as discussed later in Section 3.3.2.

We illustrate the process of stacking the shear signal in Figure 3.4, where a 2D dis-
tribution of selected sources around the AMICO cluster J225151.12-332409 is shown
(more details in the following section). For visual convenience in the illustration, we
highlighted only 12 of the 31 radii in the radial range [0.35, 3] Mpc/h. The tangen-
tial and the cross components of ∆̃Σ associated with the 10 annuli are additionally
displayed in the bottom panel. Remark that larger bins account for more numerous
sources, but this statistics is compensated with a noisier signal, while vice versa, the
closer cluster center bins have fewer sources which lensing highly affect.
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Figure 3.4: Top panel : Illustration of eleven of the thirty annuli in
the radial range [0.35, 3] Mpc/h, for the AMICO cluster J225151.12-
332409. The sources shown are selected following the cut discussed
in Section 3.2.3. Blank regions indicate masks (Hildebrandt et al.,
2017). Bottom panel : Tangential and cross components of the excess
surface mass density (Equation 3.11) of J225151.12-332409. Vertical

error bars are derived from Equation (3.16).
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Table 3.1: Pattern of the redshift-richness bins designed for the WL
analysis.

zl λ∗
[0.1, 0.3[ [0, 15[ [15, 25[ [25, 35[ [35, 45[ [45, 140[
[0.3, 0.45[ [0, 20[ [20, 30[ [30, 45[ [45, 60[ [60, 140[
[0.45, 0.6[ [0, 25[ [25, 40[ [40, 55[ [55, 140[

3.2.2 Stacked signal

In WL, stacking across radial bins does not provide sufficient accurate signal to con-
strain precisely the two parameters of the halo model (see Section 2.2) and derive
generic mass relations (see Sections 2.3.1 & 2.3.2). Instead, we can stack the shear
profiles of individual halos across properties of galaxy clusters. Therefore, we consider
14 cluster bins combined in redshift and richness. Table 3.1 shows the binning pat-
tern, also displayed in cells in the zl vs λ∗ diagram in Figure 3.3. The binning scheme
mostly follows Bellagamba et al. (2019) to provide nearly uniform WL SNR per bin.
The only difference is for the last redshift bin, in which a larger number of clusters
are considered for intermediate richness ranges. In this way, we compensate for the
numerous galaxy clusters in the higher richness bin and homogenize the distribution
of clusters in this redshift bin with the two other redshift bins.

Considering the j-th radial bin of the k-th galaxy cluster, the corresponding stacked
observable in the K-th cluster bin is:

Oj,K =
∑

k∈KWj,kOj,k∑
k∈KWj,k

, (3.17)

with Wj,k =
∑

i∈jwls,i . The shear estimate is not accurate since the correction of the
multiplicative bias has already been applied via Equation (3.11) to the signal of each
individual galaxy cluster, while it should be corrected over the averaged measure of
the bin. We compute the effective value of the cluster observable Ok, e.g. richness or
redshift of cluster k, among the cluster bins K through a lensing-weighted mean (e.g.
Umetsu et al., 2014):

OK =
∑

k∈KWkOk∑
k∈KWk

, (3.18)

where Wk =
∑

jWj,k is the total weight of the cluster k for the whole area of the
cluster profile.

Figure 3.5 shows the stacked profile of AMICO clusters considering the full richness
range and the redshift 0.1 ≤ zl < 0.6 as the selection proposed in the next section.

3.2.3 Selection method

Gravitational lensing is an accurate method to measure cluster density profiles only
when effective discriminations between background sources, and foreground and clus-
ter member galaxies are considered. Indeed, the relative position of a source tells us if
the galaxy is lensed, in the case where the source lies in the background of the cluster,
or contaminated, in the case where the source lies in the foreground of the cluster
or belongs to the cluster. It is known that contaminated galaxies usually dilute the
resulting lensing signal (Broadhurst et al., 2005; Medezinski et al., 2007). Therefore,
the more contaminated sources impact the lensing computations, the more spurious
becomes the signal. Conversely, the less lensed sources contribute to the stacked shear
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Figure 3.5: The stacked matter density profile of AMICO KiDS-DR3
clusters with 0.1 ≤ zl < 0.6. The signal is computed assuming the
combined selections given in Equation (3.23). Horizontal and vertical

bars are derived from Equations (3.15) and (3.16).

profile, the less is the statistical power of the signal. It becomes clear that the effi-
ciency of weak lensing relies on the statistical equilibrium of a thorough selection of
clusters and sources.

First of all, we consider galaxy clusters selected in the redshift range zl ∈ [0.1, 0.6[,
as done in Bellagamba et al. (2019). We select clusters at zl < 0.6 because the color-
color cut in Equation (3.22) is very effective for sources at zs > 0.6. Furthermore,
remote clusters convey a lower density of background sources. Objects at zl < 0.1 are
discarded because of the reduced lensing power of low mass clusters and the inferior
photometric redshift accuracy of the sources. The final sample consists of 6961 clusters
(87.1% of the whole catalog). In Figure 3.5 we plot the mass density profile obtained
for the complete cluster sample assuming the combined selection of sources given in
Equation (3.23).

A preliminary approach to select sources would rely only on the redshift position
of sources and lenses. From this assumption, we can consider a broad selection as:

zs > zl + ∆z , (3.19)

where zs is the best-fitting BPZ photometric redshift of the source, zl is the lens
redshift, and ∆z = 0.05 is a secure interval to balance uncertainties coming from
photometric redshifts. However, this criterion is not sufficient to remove misplaced
galaxies, as SED photometry usually provides inaccurate redshift positions. In order to
significantly reduce the probability of a galaxy being at redshift equal to or lower than
the cluster, we could select galaxies according to their redshift posterior probability
distribution. We additionally apply a more accurate redshift filter following the work
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of Bellagamba et al. (2019) and Sereno et al. (2017):

(0.2 ≤ zs ≤ 1) ∧ (ODDS ≥ 0.8) ∧
(
zs,min > zl + ∆z

)
. (3.20)

The first selection encloses the range for which we expect the most reliable photometric
redshifts given the available bands (ugri) and thus excludes galaxies whose redshift
is less robust. The ODDS parameter from the KiDS shear catalog accounts for the
probability density function (PDF) of the redshift: a high value indicates a high
reliability of the best photo-z estimate. The parameter zs,min measures the lower
bound of the 2σ confidence interval of the PDF.

A complementary approach is based on the source distribution in the color-color
(CC) panel. This method uses the properties of the CC diagram to separate or classify
galaxies. A color is, by definition, the difference between two magnitudes. In KiDS-
DR3, the most reliable colors are given by the gri-bands, therefore we take a look
at the KiDS-450 sources in the (r -i) vs (g-r)-color-color (hereafter dubbed gri-CC)
plane. Preliminary works are provided in Medezinski et al. (2010), which highlight a
strong correlation between the location in the (r -i) vs (g-r) diagram and the galaxy
redshift. More specifically, Figure 3 in Medezinski et al. (2010) lays out in colored
areas various populations of sources for three different Subaru clusters (e.g. cluster
members in green). The paper shows gri-CC selected sources in the galaxy cluster
A1703, for which Broadhurst et al. (2008) and Oguri et al. (2009) initially performed
a WL analysis. Two singular areas in the color-color plane are clearly identified as
background sources of A1703, efficiently selected at zs & 0.6 and displayed in blue/red
in the figure of the study. They present the following segmentation:

[(g – r < 2.17(r – i) – 0.37) ∧ (g – r < 1.85 – 0.6(r – i))]
∨ (g – r < 0.47 – 0.4(r – i)) ∨ (r – i < –0.06) .

(3.21)

Following an original proposal by Oguri et al. (2012), Bellagamba et al. (2019) ex-
ploit another relevant selection specific to KiDS-DR3, which effectively filters galaxies
beyond zs ' 0.7, obtaining:

(g – r < 0.3) ∨ (r – i > 1.3) ∨ (g – r < r – i) . (3.22)

This last selection was tested in Covone et al. (2014), Sereno et al. (2017) and Sereno et
al. (2018) and Bellagamba et al. (2019), and conserves 97% of galaxies with CFHTLenS
spectroscopic redshifts above zs & 0.63 (Sereno et al., 2017).

In order to evaluate the efficiency of the gri-CC cuts explored in Equations (3.22)
and (3.21), we are interested in testing them over the Cosmic Evolution Survey 30-
Bands photometric catalog2 (COSMOS, Ilbert et al., 2009). The full sample consists
of 385,065 galaxies with very accurate photometric redshifts reliable up to magnitude
i < 25. In Figure 3.6, we present the COSMOS sources selected with the two gri-CC
criteria. As a comparison, we generate evolving tracks using the galev3 code (Kotulla
et al., 2009). This tool simulates the evolution of galaxies in terms of color over cos-
mological timescales. We run the code with different Hubble - de Vaucouleurs galaxy
morphological types: Non-barred spiral Sa-type, Barred-spiral Sb-type, Lenticular
S0-type, and Elliptical E-type.

With this plot, we are interested in the contamination of objects belonging to the
redshift range of 0.2 < zs < 0.6, in agreement with the selection of clusters. We

2https://irsa.ipac.caltech.edu/data/COSMOS/
3http://www.galev.org/

https://irsa.ipac.caltech.edu/data/COSMOS/
http://www.galev.org/
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Figure 3.6: (r -i) vs (g-r) diagram. We show the selections dis-
cussed in this article, following previous complementary works (Equa-
tions 3.22 and 3.21, Oguri et al., 2012; Medezinski et al., 2010, respec-
tively). We additionally show the evolving tracks of spiral, lenticular
and elliptical galaxies in the gri -CC plane obtained using the galev

code (Kotulla et al., 2009).



58 Chapter 3. Data analysis

0

5000

10000

15000

20000

25000 COSMOS

Oguri+12

Medezinski+10

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

redshift

0

1000

2000

3000

4000

5000
COSMOS⊗K450

Oguri+12

Medezinski+10

n
.

of
ga

la
x
ie

s

Figure 3.7: COSMOS (Ilbert et al., 2009) and COSMOS⊗KiDS-
450 photometric redshift distributions for the full samples and their
dedicated gri -CC selections. The shaded region highlights the contam-
ination area, which corresponds to the cluster redshift range [0.1, 0.6[.



3.3. Sources of error and fitting process 59

Table 3.2: Contamination of gri -CC selections in COSMOS (up) and
COSMOS⊗KiDS-450 (down). We compare the fraction of selected
sources with the total number of sources and of contaminated sources

above zs > 0.6 with selected sources.

CC-cut N. of sources Total fraction (%) Contamination fraction (%)
None 385065 100 44.2
Medezinski et al. (2010) 17049 44.3 5.4
Oguri et al. (2012) 125754 32.6 3.8
None 47619 100 40.2
Medezinski et al. (2010) 20540 43.1 14.8
Oguri et al. (2012) 14857 31.2 5.7

report these numbers in Table (3.2). The cut shown in Oguri et al. (2012) encom-
passes 125,754 galaxies with 96.2% background sources for the corresponding redshift
threshold zs ≥ 0.6. On the other hand, the selection done by Medezinski et al. (2010)
counts 170,429 (35.5% more), and 94.6% of them lie over zs ≥ 0.6. In the top panel
of Figure 3.7, we see that both cuts efficiently remove contaminating members in
COSMOS, with a higher number of background galaxies for Equation (3.21). The
contamination fraction given by Equation (3.22) is fully consistent with Sereno et al.
(2017).

Besides this observation, a more reliable analysis would be to consider the cross-
matched catalog COSMOS⊗KiDS-450 as the 47,619 COSMOS sources within KiDS-
450. The lower panel of Figure 3.7 provides this distribution and Table 3.2 shows
that 14,857 of them are filtered by Oguri et al. (2012) and 20,540 by Medezinski et al.
(2010). Respectively, 94.3% and 85.2% of selected sources appear to be uncontami-
nated. These statistics highlight higher contamination from Equation (3.21) and more
efficient removal of contaminated KiDS-450 sources for Equation (3.22) but still has
some drawbacks due to the limited number of objects. Another explanation for the
main difference between the two cuts is the unequal reduction of galaxies from COS-
MOS to the cross-match data set. KiDS-450 sources in COSMOS are few at zs > 1,
where Medezinski et al. (2010) is consequently selecting more sources than Oguri et
al. (2012) in COSMOS only, while the proportion of galaxies at zs < 1 remains high
in both catalogs. In that sense, we prefer to retain Equation (3.22) as the principal
gri-CC selection for this work.

Finally, we formulate the selection of the background sources by combining the
following Equations as follows:

(3.19) ∧ [(3.20) ∨ (3.22)] . (3.23)

As a further restriction for the selection presented in this study, we restricted the
source redshifts to the range zs > 0.2. This complementary selection is assumed since
a large fraction of sources are below this limit, which might increase the contamination
of nearby clusters (Sereno et al., 2017).

3.3 Sources of error and fitting process

This section discusses the sources of error that arise when computing a stacked lensing
profile. Because WL is processed with statistical calculations, fluctuations in the
resulting signal occur. This effect propagates across the bins and can be translated
with covariance matrices. Moreover, the lensing computations are affected by a signal



60 Chapter 3. Data analysis

that systematically shifts the profile. This can be balanced by removing the signal
given by random lenses. Finally, once the systematic signal is removed, we constrain
the final WL profiles with a Bayesian analysis taking into account the statistical
covariance matrices.

3.3.1 Statistical uncertainty

Stacked WL signals are a comprehensive assessment of the profile given by a galaxy
cluster population, but possible deviations arise due to statistical uncertainties and
systematic biases. While the systematic noise can be efficiently corrected for using the
random fields, the statistical uncertainty of the stacked shear is essentially described
by its covariance matrix. It can be decomposed into the contributions of large intrinsic
variations of the shapes of galaxies (shape noise, e.g. Mandelbaum et al., 2013; Sereno
and Ettori, 2015; Viola et al., 2015), correlated and uncorrelated structures (e.g.
Hoekstra, 2001; Hoekstra, 2003; Hoekstra et al., 2011; Umetsu et al., 2011; Gruen
et al., 2015), and intrinsic scatter of the mass measurement (e.g. Metzler, White, and
Loken, 2001; Gruen et al., 2011; Becker and Kravtsov, 2011; Gruen et al., 2015). The
statistical uncertainty is dominated by the shape noise of the sources (McClintock
et al., 2019), which has already been accounted for in Equation (3.16). However,
since galaxies contribute to the signal in different radial and redshift-richness bins, we
may expect covariance terms to be significant between radii in identical and distinct
pairs of stacked profiles. In order to estimate the statistical error of the stacked WL
measurements, we use a bootstrap method with replacement. This technique makes
use of random sampling data and repeats the process a given number of times to
better estimate statistical measurements (mean, variance, confidence intervals, etc).
We, therefore, construct the covariance matrix from each pair of radial bins ij over
N = 1000 bootstrap realizations of the source catalog:

Cij =

∑
n∈N

(
∆̃Σi,n – ∆̃Σi

)(
∆̃Σj,n – ∆̃Σj

)

N – 1
, with ∆̃Σ =

∑
n∈N ∆̃Σn
N

. (3.24)

The correlation matrix quantifies the dependency between the bins, and can be
derived from the covariance profile:

Rij =
Cij√
CiiCjj

. (3.25)

Figure 3.8 displays the correlation matrices for the cluster bin zl⊗λ∗ = [0.3, 0.45[⊗[30, 45[
and the cross-covariances with the low and high redshift-richness bins [0.1, 0.3[⊗[0, 15[
and [0.45, 0.6[⊗[55, 140[. The correlation matrices do not show any strong contribu-
tion from off-diagonal terms, while the diagonal components encompass the majority
of the statistical noise. We still consider the full covariance of each individual clus-
ter bin to quantify the statistical uncertainty of the stacked WL signal, in order to
account for the dependency between the radii of the bin when fitting the data. Fur-
thermore, we combine uncertainties of the galaxy cluster signal and the random signal
detailed in the next section by summing their covariances. These matrices are used
when measuring the halo parameters in Section 3.3.3.

3.3.2 Systematic effect

We performed stacked shear analysis around random lens points following the same
process used in Section 3.2. This spurious signal characterizes the residual systematic
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effects, usually coming either from the edges of the detector (Miyatake et al., 2015), the
imperfect correction of optical distortion (Mandelbaum et al., 2005) or the incorrect
estimation of the redshift (McClintock et al., 2019). If none of these effects impact the
profile, the random stacked shear should vanish, while it deviates from zero as soon as
the systematic bias is apparent (Miyatake et al., 2015). The random signal is finally
subtracted from the shear profiles of the stacked bins to correct these uncertainties.

We built a random catalog over the full (RA,Dec) sources range considering the
KiDS-450 footprint of masked areas. Each equatorial random position is uniformly
sampled over a Nside=2048 pixel healpix map and associated to a redshift random
position. We sample random redshift from an inverse transform method, assuming
AMICO redshifts to follow a Weibull distribution (e.g. Pen et al., 2003):

n ≡ β

Γ
(
1+α

β

) 1
z0

(
zl
z0

)α
exp

[
–
(
zl
z0

)β
]

. (3.26)

The parameters α, β and z0 are marginalized and constrained to track the real distri-
bution of AMIC KiDS-DR3 redshifts. We find:

• α = 1.06

• β = 4.81

• z0 = 0.59

Figure 3.9 shows the distribution of random and AMICO lenses. Random redshifts
follow the Weibull distribution and tend to recover the same distribution as clusters
of galaxies for a more realistic representation of the random signal.

Rykoff et al. (2016) suggest an efficient way to generate a random richness com-
ponent from a depth map of the source catalog. However, their study is based on the
redmapper algorithm for cluster detection which considerably differs from AMICO.
Moreover, due to the absence of a depth map in KiDS-450, we cannot assign richness
parameters to our random catalog. Still, the presence of random redshifts is a robust
feature for the random catalog as we can associate the stacked random signal to each
redshift bin. Finally, the number of random points exceeds the number of real galaxy
clusters by 15976 lenses in order to fully cover the 3D field of AMICO KiDS-DR3
lenses.

A simple test to check the correct processing of the subtraction of the systematics
is to look at the tangential and cross stacked shear profile of the random lenses. The
top panels of Figure 3.10 present three different profiles derived from AMICO cross,
random cross, and random tangential signals. While the tangential component of
random points remains consistent with zero, the cross signal of the lower redshift
bin reveals that systematics largely impact the shear in the last radial bins, and
consequently might distort the estimation of the halo bias if no correction is applied.
Looking deeply at the cross signal of the five KiDS-DR3 patches, we observe that only
three of them are significantly affected. We relate these systematics to the geometry
of the field, which at some point is irregular in those specific patches. Indeed, since
the lower redshift bin needs a larger field of view to compute stacked shear over a fixed
large radial profile, the resulting signal is much more sensitive to the discontinuities
of the field (e.g. isolated tiles). Hamana et al. (2013) suggest that the point spread
function (PSF) in the shape measurement of galaxies located at the edge of the FoV
is imperfectly corrected. This biased PSF anisotropy sensitively impacts the shear of
galaxies, which consequently breaks the symmetry of the intrinsic ellipticity and leads
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to a non-zero cross component. However, since the subtraction of the two signals gives
a signal consistent with zero, the correction suppresses this systematic effect and the
final version of the data is ready for the analysis (see Section 3.3.3).

3.3.3 MCMC method

In Bayesian statistics, the Monte Carlo Markov Chain (MCMC) method is com-
monly used to sample posterior distributions. The best parameters are found with
the maximum likelihood distribution, giving the highest probability of the sample
(also given by minimizing the χ2-distribution). In this specific study, the likelihood
function is the joint probability of getting the measurement ∆̃Σ with the parameters
θ = [log10M200c, c200c,σoff , foff , bhσ2

8] given the model ∆Σ. This probability distribu-
tion is assumed to be normal and multiplied over the radial bins (i, j) of the profile to
provide a global approximation of the variable:

L (θ) ≡ p
(

∆̃Σ|θ
)
∝ exp

(
–

χ2

2

)
, (3.27)

where:
χ2 =

∑

i,j

(
∆̃Σi – ∆Σi

)
C–1
ij

(
∆̃Σj – ∆Σj

)
, (3.28)

and Cij is the covariance matrix described in Section 3.3.1.
The χ2 parameter is a good indicator of the goodness of fit of a statistical model.

Its probability distribution depends on the degree of freedom which is the difference
between the number of observations considered in the analysis and the number of
variables in the halo model, here df = 26 – 5 = 21. In a goodness-of-fit test, the null
hypothesis assumes that there is no significant difference between the observed and
the expected values. Considering a significance level of α = 0.01 defining the critical
χ2 values on the left and right tails of the distribution, the null hypothesis is verified
if 8.9 < χ2 < 38.9.

The likelihood is defined in the prior uniform distribution of the halo parameters
having the following conservative bounds (Bellagamba et al., 2019):

• log10 (M200c/ (M�/h)) ∈ [12.5, 15.5]

• c200c ∈ [1, 20]

• σoff ∈ [0, 0.5] Mpc/h

• foff ∈ [0, 0.5]

• bhσ2
8 ∈ [0, 20]

We based the Bayesian inference on the emcee4 algorithm (Foreman-Mackey et al.,
2013), which uses an affine-invariant sampling method initially introduced in Good-
man and Weare (2010). The cosmological parameters are defined for the fit as in
Section 1.2.5.

We adopted an ensemble sampler with 32 walkers over a chain of 10,000 steps,
giving a total size of 320,000 walkers to sample the posterior distribution. This scheme
was already adopted in McClintock et al. (2019). We define the burn-in phase as being
twice the integrated autocorrelation time τf of our chain f. This parameter is used to
define the number of samples needed to reduce the relative error on the estimate. In

4https://emcee.readthedocs.io/

https://emcee.readthedocs.io/
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Figure 3.11: Posterior distributions arising from the halo model and
the density profile derived in this study. The median of the marginal-
ized distribution of the mass, concentration, off-centering parameters,
and bias are displayed as dashed lines. The 2D posterior distributions
also show the 68% and 95% confidence regions in shaded grey regions.
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addition, we tested if the MCMC converge to a single value by running the potential
scale reduction factor R̂ (see Gelman and Rubin, 1992). Convergence is reached if the
criterion R̂ < 1.1 is satisfied.

In Figure 3.11, we show the joint posterior distributions given by the sampler for
the total profile shown in Figure 3.5. In the case of a normal PDF (as for the halo
mass and bias), the 16th-84th and 2th-98th percentiles highlight 1σ and 2σ confi-
dence regions forming ellipsoids in the 2D parameter space. In the opposite case, the
percentiles show distorted ellipsoidal regions which define the errors on the param-
eter. For example the foff posterior distribution gives errors larger than the prior
boundaries, while we expect the posterior of the parameter to follow a Gaussian-like
distribution within the limits defined by the prior function. This effect suggests that
the parameter is imprecisely constrained. Nevertheless, the sampler distributions of
the parameters of interest (i.e. mass, concentration, and bias) converge significantly,
which makes it possible to consistently exploit their relation. For the following, we
define the error on the parameters as the 1σ confidence interval, specifically approxi-
mated here with the region where 68% of walkers lie around the mean.

3.4 Results of the study

The WL analysis gives results when constraining the halo model discussed in Sec-
tion 2.2 on the stacked shear density profiles derived in Section 3.2.2. Specifically, we
extract the halo parameters into 14 redshift-richness bins using the MCMC method
presented in the previous section. Then we derive scaling relations with mass and
richness and compare them with alternative studies in KiDS-DR3. We discuss the
sparsity of AMICO galaxy clusters as additional material for further studies. Results
on the halo concentration the power-law relation with mass results are also analyzed.
We subsequently show the main results on the halo bias, and its relation with the halo
mass. This relation is finally used to test the matter power spectrum normalization.

3.4.1 Primary outcomes

In Figure 3.12, we obtain the shear profiles for the AMICO KiDS-DR3 galaxy clusters
split into 14 redshift-richness bins, from 0.2 to 30 Mpc/h. We also show the fitted
model and its components within its 1σ confidence region. We also compute the SNR
over the full lensing profile as:

S
N

=
∑

j

∆̃Σj
σ∆̃Σj

, (3.29)

where the error on ∆̃Σ derives from Equation (3.16) and the sum runs over the radial
bins j. We associate to each bin the χ2 computed as in Equation (3.28), which indicates
that all pass the goodness-of-fit test presented in Section 3.3.3.

Table 3.3 shows the best fit values for the halo mass, the sparsity, the concen-
tration, and the halo bias in each cluster bin with the 68% confidence bounds. The
parameters computed over the stacked profile of the full catalog are also displayed in
the first row and correspond to the dashed values shown in Figure 3.11 with χ2 = 29.8,
which suggests that the goodness-of-fit test has been passed, as for the other bins. The
mean redshift and the mean richness of the lenses are computed as in Equation (3.18),
while the mean redshift of the sources is the effective redshift zback in Equation (3.14).
We additionally measure the mass from a fitting in the radial range [0.2, 3.16] Mpc/h
assuming the same priors for the full profile, unlike the bias derived from Tinker et al.
(2010). These measurements are in good agreement with Bellagamba et al. (2019)
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and show for the two lower redshift bins a relative percentage difference within ∼ 5%
(see Figure 3.13). This variation could be explained by the different choice for the
radial bins within 3.16 Mpc/h: 14 logarithmically equispaced annuli were used in the
previous study, while in this work we selected the radial bins within 3.16 Mpc/h over
the full radial range of the shear profile. These two definitions make the profiles and
the derived measurements of the mass slightly different.

3.4.2 Mass-richness relation

The average redshift and richness of the lenses in each redshift bin are shown in
Figure 3.3, and follow the global trend given by the removal of low mass clusters at high
redshift for AMICO clusters with SNR < 3.5. Figure 3.12 shows that the differential
density at a given radius increases with richness, suggesting a clear correlation between
cluster mass and richness. Figure 3.13 shows the relation between the mass and the
effective richness of the cluster bins. We fit this relation assuming the following power
law in logarithmic scale:

log10
M200c
Mpiv

= α + β log10
λ∗

λpiv
+ γ log10

E(z)
E(zpiv)

, (3.30)

where E(z) derives from Equation (1.15) and Mpiv = 1014M�/h, λpiv = 30, and
zpiv = 0.35 corresponding to the median values for AMICO KiDS-DR3 in Bellagamba
et al. (2019). We estimate the parameters of this multi-linear function applying an
orthogonal distance regression method (ODR5), involving mass, richness and redshift
uncertainties. The fit gives:

• α = 0.007± 0.019

• β = 1.72± 0.09

• γ = –1.35± 0.70.

As Figure 3.13 shows, these results are in remarkable agreement with Bellagamba
et al. (2019) despite the different definition of richness bins at high redshifts and the
different fitting method. In addition, they are also perfectly consistent with Lesci
et al. (2020) and Sereno et al. (2020), regardless of the different approaches employed
to fit the scaling relation.

The positive correlation between shear signal and richness is shown in Figure 3.12
at large radii and implies a strong correlation between the bias and the mass. The
SNR of individual radial bins at large scales is relatively low due to the poor quality of
the shear produced by low mass clusters and increases with the richness. The highest
redshift-richness bin shows a particularly low SNR with a low amplitude for the shear
profile, where usually we expect the signal amplitudes at small and large scales to be
high in large richness bins. The poor quality of the lensing signal in this specific bin
also impacts the halo mass and bias with a downward trend.

3.4.3 Cluster sparsity

As parallel analysis of Ingoglia et al. (2022), we study the halo sparsity of AMICO
KiDS-DR3 clusters. Originally introduced by Balmès et al. (2014), the sparsity is

5https://docs.scipy.org/doc/scipy/reference/odr.html

https://docs.scipy.org/doc/scipy/reference/odr.html
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defined as the ratio of halo masses enclosed in apertures of different overdensities:

s∆1,∆2 ≡
M∆1

M∆2

, (3.31)

with ∆1 < ∆2. The physical meaning of the halo sparsity is simply the excess of
mass contained in the annulus large of ∆r = r∆2 – r∆1 . This parameter is particularly
interesting because it does not depend on the specific choice of ∆1, as soon as its
value is not taken too small. Sparsity thus provides crucial insights on the halo mass
profile without requiring information on its mass. This characteristic implies that the
average value of the sparsity can be derived from the halo mass function, as defined
in Equation (1.40) (see Balmès et al., 2014):

∫ Mmax
∆2

Mmin
∆2

dn
dln(M∆2)

dln(M∆2)
M∆2

= 〈s∆1,∆2〉
∫ 〈s∆1,∆2〉M

max
∆2

〈s∆1,∆2〉M
min
∆2

dn
dln(M∆1)

dln(M∆1)
M∆1

. (3.32)

This equation can be solved numerically to compute the ensemble average sparsity
〈s∆1,∆2〉. Alternatively, we can derive the sparsity analytically considering a given
density profile of the halo, using the definition of the overdensity contrast in Equa-
tion (2.39) as:

δc =
∆1c3∆1

3m
(
c∆1

) =
∆2c3∆2

3m
(
c∆2

) . (3.33)

Assuming the definition of the concentration in Equation (2.40) and the Lagrangian
transformation in Equation (2.51), we can express the mass M∆2 in terms of the
concentration c∆1 . In the stacked WL analysis, we constrained the mass M∆1 = M200c,
and in that respect we derive here the sparsity with respect to the mass aperture
M∆2 = M500c(c200c). We justify this choice since analyses on N -body simulation data
show that Equation (3.32) stays valid by a few percent (e.g. Corasaniti and Rasera,
2019).

We show these results in Figure 3.14, also given in Table 3.3, where the mass
M200c is taken only in the inner region of the clusters (in parenthesis in Table 3.3). It
is compared with the expected sparsity from the halo density models Navarro, Frenk,
and White (1997) and Baltz, Marshall, and Oguri (2009), where the concentration is
computed as in Diemer and Joyce (2019). The gap between the two models is relatively
small compared with the wide range of the measurements confidence segments. The
results do not show a strong deviation from these lines, remaining within a 2σ range.

The relation in Equation (3.32) gives sufficient materials to constrain our results
as a redshift-dependent equation. It allows to deeply analyze cosmologies, particularly
the shared area that the combined Ωm and σ8 parameters yield (see e.g. Corasaniti,
Sereno, and Ettori, 2021).

3.4.4 Mass-concentration relation

In Section 2.3.1 we introduced the theoretical framework of the relation between the
halo mass and the halo concentration. We have seen that many simulations predict
the concentration to decrease with the mass. This behavior is supported by our results
shown in Figure 3.15. In this figure, our results are compared with the concentration
and mass measured with stacked WL data from 130,000 SDSS galaxy groups and
clusters (Johnston et al., 2007b) and 1176 CFHTLenS galaxy clusters (Covone et al.,
2014). These analyses are consistent within 1σ. The large and asymmetric error bars
for the concentration reflect the high sensitivity of this parameter to the inner region
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of the halo density profile, which is poorly covered by our WL analysis. Sereno and
Covone (2013), Umetsu et al. (2014) and Sereno et al. (2015b) discussed the effects
stemming from the different choices and forms of the priors, and found a log-uniform
prior might underestimate the concentration. As done for the redshift-mass-richness
relation, we fitted the redshift-concentration-mass relation with a power-law function
(Duffy et al., 2008), given as:

log10 c200c = α + β log10
M200c
Mpiv

+ γ log10
1 + z

1 + zpiv
. (3.34)

We assume the pivot mass and redshift have the same values as in Equation (3.30),
while the multi-linear regression is processed with the ODR routine over the full sample.
We find:

• α = 0.62± 0.10

• β = –0.32± 0.24

• γ = 0.71± 2.51.

The large error on γ suggests a weak constraint of the redshift evolution due to the
sparse number of data points (Sereno et al., 2017). The black line in Figure 3.15
shows the fitted power-law with the 1σ uncertainty interval, assumed as the range
defined by the standard deviations of the estimated parameters and derived from the
diagonal terms of the asymptotic form of the covariance matrix (see Fuller, 1987).
Because of the small set of data points, the fit in each redshift bin does not provide
consistent results for the coefficients. In the plot, we also show the theoretical re-
lations between mass and concentration given by six different analyses of numerical
simulations presented in Section 2.3.1 (Duffy et al., 2008; Dutton and Macciò, 2014;
Meneghetti et al., 2014; Diemer and Kravtsov, 2015; Child et al., 2018; Diemer and
Joyce, 2019; Ishiyama et al., 2020). In the corresponding mass range, our results
are in good agreement with the theoretical predictions but have a steeper and lower
relation with respect to the results obtained by Sereno et al. (2017) on the PSZ2LenS
sample. The average concentration for the full AMICO KiDS-DR3 catalog seems to
show a lower value than Equation (3.34) and the theoretical expectations but remains
in the 1σ confidence interval.

3.4.5 Mass-bias relation

In Figure 3.16 we show the correlation between the cluster mass and the halo bias for
the different redshift bins. The corresponding values are also reported in Table 3.3.
These results are also in good agreement with previous results based on stacked WL
studies on SDSS (Johnston et al., 2007b) and CFHTLens (Covone et al., 2014; Sereno
et al., 2015a) galaxy clusters. As expected with the fourth richness bin at the highest
redshift, the Bayesian inference of the halo bias shows a low SNR consistent with the
poor quality of the lensing signal at large scales.

As introduced in Section 2.3.2, we can predict the halo bias with the halo mass us-
ing dark-matter only cosmological simulations. We mainly refer to Seljak and Warren
(2004), Tinker et al. (2010) and Bhattacharya et al. (2011) as theoretical relations,
also reported in Figure 3.16 using the corresponding values of σ8 in Table 3.4. Due
to the limited number of points, the data in each redshift bin do not exhibit a strong
correlation with the theoretical bias given at the effective redshift of the bin. The
black lines present an agreement within 2σ with all our measurements except the
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Figure 3.15: The relation between the mass and the halo concentra-
tion for the full catalog (black) and the low (blue), intermediate (red),
and high (green) redshift bins. The results on the concentration are
compared with calibrated data from a stacked WL analysis on SDSS
and CFHTLenS galaxy clusters (Johnston et al., 2007b; Covone et al.,
2014). The thick black line reports the best estimate of the linear
regression for Equation (3.34) with its 1σ confidence region. The re-
lation is contrasted with results given by different theoretical analyses
(Duffy et al., 2008; Dutton and Macciò, 2014; Meneghetti et al., 2014;
Diemer and Kravtsov, 2015; Child et al., 2018; Diemer and Joyce,

2019; Ishiyama et al., 2020).
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Figure 3.16: Halo bias-mass relation for the full catalog (black) and
for the low (blue), intermediate (red) and high (green) redshift bins.
The results on the halo bias are compared with calibrated data from a
stacked WL analysis on SDSS and CFHTLenS galaxy clusters (John-
ston et al., 2007b; Covone et al., 2014; Sereno et al., 2015a). Theoret-
ical relations are derived from Seljak and Warren (2004), Tinker et al.
(2010), and Bhattacharya et al. (2011) and respectively displayed as
dotted, thick, and dashed lines. These functions are computed within
their confidence interval using the values of σ8 reported in Table 3.4.

third richness point for the high redshift bin, which agrees within 3σ due to its high
amplitude. We attribute this statistical fluctuation to the low number of clusters in
this region of richness-redshift space since the few and the uneven number of objects
results in a poorer statistical measurement of the stacked lensing signal.

Measuring the bias-mass relation with AMICO KiDS-DR3 clusters WL signals
stands for major improvements in such analysis, as this data set provides sufficient
quality shear density profiles to reach the scales where the halo bias dominates. There-
fore, mass and bias are assessed with relatively high precision to constrain their rela-
tion.

3.4.6 Cosmological inference

Since the halo bias degenerates with σ2
8, it is important to obtain independent con-

straints on this cosmological parameter within a ΛCDM framework. Here we let σ8 be
a free parameter in the theoretical mass-bias relation and fit the bhσ2

8 results with the
method described in Section 3.3.3, assuming a uniform prior σ8 ∈ [0.2, 2.0]. We use a
diagonal covariance matrix, where the variance terms are the square of the errors on
the bias defined by the 68% confidence regions. We do not account for the errors on
the mass, hence accurate mass measurements are essential to constrain σ8.

The resulting best fit values of the posteriors given among the combined redshift
bins are shown in Table 3.4. Bhattacharya et al. (2011) used the “peak-background
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Table 3.4: Median, 16th and 84th percentiles of the posterior distri-
bution for σ8. We also show the difference, ∆σ8, between σ8 measured
on the median mass values, and σ8 measured on the mass 16th and
84th percentile values. The cosmological parameter is given for three

relations derived from numerical simulations.

simulation σ8 ∆σ8
Seljak and Warren (2004) 1.01+0.05

–0.05 0.02
Tinker et al. (2010) 0.63+0.11

–0.10 0.01
Bhattacharya et al. (2011) 0.66+0.19

–0.27 0.12

split" approach of Sheth and Tormen (1999) to fit the parameters of the mass function.
We note that the bias function does not match the numerical results as well as direct
calibrations, which could explain the discrepancy with respect to the results obtained
with the two other relations. In order to estimate the effect of the mass uncertainty
on cosmological inference, we measured σ8 at masses corresponding to the 16th and
84th percentiles and noticed a difference with the median masses smaller than the
statistical uncertainty of the parameter (see Table 3.4).

Figure 3.17 shows the three posterior distributions for σ8 obtained in this work
compared with the results from the cosmic microwave backround measurements by
Planck (Planck Collaboration et al., 2020, Table 2, TT, TE, EE+lowE+lensing) and
WMAP (Hinshaw et al., 2013, Table 3, WMAP-only Nine-year). Our constraint
on σ8 with the Seljak and Warren (2004) model, which has a sharp posterior that
peaks around σ8 ∼ 1, highlights a discrepancy larger than 3σ with CMB values. The
posteriors given by the Tinker et al. (2010) and Bhattacharya et al. (2011) models
overlap within 2σ and 1σ with the CMB data, respectively, but the Bhattacharya
et al. (2011) posterior is clearly different from a normal distribution. Because of the
small size of the sample and the poor quality of the bias-mass measurements in some
bins, our results yield quite broad posteriors that are necessarily in agreement with
WMAP and Planck median values.

Finally, in Figure 3.18 we present our reference result from Tinker et al. (2010)
in the broader context of recent measurements of σ8. This model was calibrated for
a range of overdensities with respect to the mean density of the universe and can
easily be converted to overdensities with respect to the critical density, which makes
the bias more reliable for the mass definition M200c. In addition, our bhσ2

8 results
given by the Tinker et al. (2010) relation are more reliable in comparative terms, since
studies referenced in this paper base their analyses on this relation. In particular, we
display the results from clustering and cluster counts studies based on the AMICO
galaxy clusters sample (Nanni, Marulli, and Veropalumbo, in prep. Lesci et al., 2020),
from cluster counts analyses done on SDSS-DR8 and 2500 deg2 SPT-SZ Survey data
(Costanzi et al., 2019; Bocquet et al., 2019), from galaxy clustering and weak lensing
in DES-Y3 (DES Collaboration et al., 2021), and from cosmic shear analysis based
on the HSC-Y1 and KiDS-DR4 catalogs (Hikage et al., 2019; Asgari et al., 2021,
respectively). We also show the results from Planck (Planck Collaboration et al.,
2020, Table 2) and WMAP (Hinshaw et al., 2013, Table 3) measurements.

Since the amplitude of the matter power spectrum correlates with the mean mat-
ter density, all these studies derived the combined parameter S8 ≡ σ8

√
Ωm/0.3. In

this work, we computed a direct measurement of σ8, dependent on the specific cos-
mological model assumed in our analysis. In the figure, we indicate with different
symbols the measurements of σ8 obtained without assuming specific values of the
cosmological parameters (empty dots) and those assuming Ωm = 0.3 (filled dots).
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Figure 3.17: Posterior distributions for σ8. The probability function
is shown for three halo bias-mass relations, i.e. Seljak and Warren
(2004), Tinker et al. (2010) and Bhattacharya et al. (2011), shown in
blue, red and green, respectively. The dark to light shaded regions
correspond to the 1 – 2 – 3σ intervals. We compare these distributions
with the median values of Planck (cyan, Planck Collaboration et al.,
2020, Table 2, TT, TE, EE+lowE+lensing) and WMAP (magenta,

Hinshaw et al., 2013, Table 3, WMAP-only Nine-year).
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Figure 3.18: Comparison with literature results. Our reference σ8
value is obtained assuming the Tinker et al. (2010) model. We show
the median, 16th and 84th percentiles. We present from top to bottom
results obtained in this work (black), Planck Collaboration et al. (2020)
(blue), Hinshaw et al. (2013) (red), Nanni, Marulli, and Veropalumbo
(in prep.) (magenta), Lesci et al. (2020) (cyan), Costanzi et al. (2019)
(turquoise), Bocquet et al. (2019) (green), DES Collaboration et al.
(2021) (light green), Hikage et al. (2019) (yellow) and Asgari et al.
(2021) (orange). We show the relative constraints on σ8 in a free cos-
mology (empty dots) and assuming Ωm = 0.3 (filled dots). The shaded
regions correspond to the 99.7%, 95% and 68% confidence intervals.
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Our results are closer to those obtained fixing Ωm = 0.3, as a low inference of Ωm
induces a higher estimate of σ8, and vice versa. For example, Planck Collaboration
et al. (2020) results show a posterior mean slightly higher than with Ωm = 0.3, while
for cosmic shear studies it is slightly lower, hence when fixing Ωm to 0.3 there is a
shift in σ8 to larger values for Planck Collaboration et al. (2020) and lower values
for cosmic shear surveys. However, the 2 – 3σ regions for the posteriors of the three
theoretical relations agree with the results of these external references, regardless of
the cosmological dependencies considered, but still have to be taken carefully into
consideration because of the poor constraint. The gap of σ8 results from Seljak and
Warren (2004) to Tinker et al. (2010) or Bhattacharya et al. (2011) also stresses the
importance of the theoretical model when constraining cosmological parameters in a
stacked WL analysis.
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Chapter 4

Euclid project

Modern surveys give interesting materials to probe the shaded areas of cosmology.
However, they remain quite limited compared with the next generations of surveys,
as new telescopes become more technologically advanced with time. Typically, they
should map the distribution of matter with unprecedented precision, offering an ideal
framework to understand the mechanisms ruling the formation and evolution of the
Universe. Thus, analyses of older data are not meaningless since they could be re-
peated and enhanced on wider and deeper sets of data that provide such surveys. WL
is a particularly promising field for the upcoming years, mostly due to its statisti-
cal properties when dealing with large catalogs of data. In that respect, developing
WL numerical tool to treat novel measurements is primordial to anticipate incoming
releases and provide sufficient upstream work for fast and robust scientific results.

In this chapter, we present the numerical development of COMB-CL, a python1

package that aims to measure the WL mass of galaxy clusters detected in the wide and
deep field covered by Euclid. Euclid is one of the most relevant future surveys whose
space mission is to map the dark Universe. This mission is organized in a consortium.
COMB-CL project consists of a teamwork system, based on the numerical structure
developed for the stacked WL analysis of KiDS-DR3 clusters of galaxies. We detail
the contents of the tool in order to complete the thesis.

4.1 Mission of the Euclid consortium

The Euclid Consortium2 (EC) is an astronomical and astrophysical organization se-
lected by the European Space Agency (ESA) that gathers teams of researchers to
contribute to the Euclid mission. It is responsible for the technical development of
scientific instruments, the production of the data, and for leading the scientific ex-
ploitation of the mission until completion. This section focuses on the scientific goals
and characteristics of the EC mission, and the Science Ground Segment (SGS) activ-
ities to better determine the structural environment of COMB-CL.

4.1.1 Scientific objectives

EC mission, first presented in Laureijs et al. (2011), will investigate the expansion
history of the Universe and the evolution of the cosmic structures. The two primary
fields of research that Euclid will explore are WL studies and measurements of the
BAOs imprinted in the clustering of galaxies. While BAOs provide a direct distance-
redshift probe to study the expansion rate of the Universe, WL provides an indirect
dark matter probe by combining angular distances, which probes the expansion rate,

1https://www.python.org/
2https://www.euclid-ec.org/

https://www.python.org/
https://www.euclid-ec.org/
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Figure 4.1: Footprint of the Euclid survey. In blue the observation
area of the principal Euclid Wide Survey mission and in yellow of the

Euclid Deep Fields. (Credits: ESA/Euclid Consortium)

and mass density contrasts, which probes the growth rate of structure. These investi-
gations will be complemented by independent analyses on clusters of galaxies derived
from Euclid data.

In order to complete these scientific goals, the survey will map the large-scale struc-
ture over the entire extragalactic sky by measuring shapes and redshifts of galaxies.
It will probe a large fraction of the sky, about 70%, and of the Universe’s history,
the last 10 billion years, covering 15,000 deg2 free of contamination by light from the
Milky Way and the Solar System up to redshifts z ∼ 2. Euclid will provide about 2
billion photometric galaxy images used for WL observations (Amendola et al., 2018)
and about 30 million of them with accurate spectroscopic redshifts (Pozzetti et al.,
2016). The survey will also complete deep field observations distributed over three
patches in the sky, for a total surface around 40 deg2. This auxiliary survey is about
2 magnitudes deeper than the wide survey. It is primarily used for calibrations of the
wide survey data but also aims at exploring faint objects in the early Universe, as
well as assessing the purity of the spectroscopic observations. The footprint of Euclid
is presented in Figure 4.1 with both wide and deep surveys.

Such observations will be possible with the Euclid space telescope, which launch
date is scheduled for this year and will complete a 6-year observing mission from the
L2 Earth-Sun Lagrangian point. It is composed of mirrors large of 1.2 meters (for
the largest one), deflecting observation light towards two instruments: VIS, returning
high-resolution images in the 500-800 nm optical band, and NISP, comprising Y, J,
and H broad-band filters in the 900-2000 nm near-infrared range. VIS and NISP will
reach pixel resolutions of 0.1 arcsec and 0.3 arcsec down to magnitudes 24.5 and 24,
respectively, and both will share a common FoV of 0.53 deg2. In addition, NISP will
provide near-infrared spectra with slitless grism spectrographs, one “blue” (920-1250
nm) in the Euclid Deep Fields and three “reds” (1250-1850 nm) with the Euclid Wide
Survey.

In terms of comparison with KiDS, Euclid will provide space survey data quality
on deep fields, covering an area more than 10 times wider. The data product is also
20 times larger, as KiDS will identify about 100 million galaxies at its completion,
versus 2 billion for Euclid. The large fraction spectroscopic data in Euclid will also
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provide accurate redshift positions. All these characteristics make the Euclid survey
a prominent mission to yield promising WL probes in the future years.

4.1.2 Ground segment

During its 6-year space mission, Euclid will deliver a large amount of data, about
2,000 Gbit per day. This flow will be managed and treated by the ground segment
of the Euclid mission, composed of two independent sections: the ESA Operations
Ground Segment (OGS) and the EC Science Ground Segment (SGS).

The OGS will be in charge of the communication sector with Euclid from the
ground station under the responsibility of the Mission Operations Centre (MOC) in
Darmstadt, Germany. The MOC will operate the spacecraft and deliver the raw
scientific data to the SGS.

The SGS is amongst the most challenging part of this mission. This segment
represents the major fraction of the resources provided by the EC. It is responsible
for data processing and the production of scientific results. This crucial operation
is basically processed in three main levels, interconnected with several Organization
Units (OUs) (Pasian et al., 2012):

• Level 1 starts the monitoring process when receiving the raw VIS and NISP images.
Then follows the housekeeping telemetry and the production of daily reports.
This software level processing is developed by SGS but operates at the Science
Operations Centre (SOC) under ESA management. Data edited from telemetry
are then transmitted to calibration modules and provide co-added images and
spectra to level 2.

• Level 2 is basically merging all the upstream flow of data in stacked images and
returns source catalogs where all the multi-wavelength data (photometric and
spectroscopic) are aggregated. This flow is conveyed to different OUs, that
compute spectroscopic redshifts from the spectra, photometric redshifts from
the multi-wavelength images, and shape measurements from the visible images.
Such data are stored in catalogs and treated in level 3.

• Level 3 is in charge, with the EC Science Working Groups (SWG), of computing all
the high-level science data products. It is organized in work packages covering
different scientific areas, namely Galaxy Clustering (GC), Weak Lensing (WL),
Clusters of galaxies (CL), Internal Data (ID), and External Data (ED).

The processing structure of SGS routines is regularly alimented with simulated and
external data from SWG and ground-based observatories, respectively, to cross-check
key points of the pipeline and validate data for the processing of the next OU.

The skeleton is shown in Figure 4.2 with the flow of data going through the pattern
of the pipeline. All the processing functions are thus connected to each other with the
responsibility to provide robust measurements for scientific results. These materials
are specific to the Euclid mission, as they have been developed under the policy of the
EC. However, most of these processing functions derive from external studies, which
ensure the possibility to analyze alternative data set considering the copyright legacy.
The opportunity to adapt these packages on external surveys let the possibility for
SGS to pursue activities long after the mission completion.
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Figure 4.2: EC SGS pipeline for Euclid data treatment. This dia-
gram shows the composition of the complete SGS environment down
to the level 3 acting for science catalogs. (Credits: Zacchei et al., 2016)
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4.2 COMB-CL numerical toolkit

In order to produce data for the EC mission, we have seen that processing functions
are necessary. We introduce here the COMB-CL3 python toolkit in a prototype stage,
that will measure WL mass for individual Euclid detected clusters. In the following,
we give a global description of the module, we detail the input and output data, then
we describe how it is structured, and finally, we predict the additional features that
could be implemented in COMB-CL.

4.2.1 Global description

As part of the OU-LE3-CL, we have been involved to develop a python module that
measures the mass of Euclid galaxy clusters using their shear density profiles. COMB-
CL package is derived from the numerical codes used in the WL stacked analysis on
KiDS galaxy clusters (Ingoglia et al., 2022). It basically relies on the materials that
produced the results shown in the three previous chapters. The objective of COMB-
CL is to provide a code that calculates shear profiles and mass estimates for galaxy
clusters.

The module essentially inputs catalogs of sources and lenses, stacks shears over a
given radial profile, computes statistical and systematic covariance matrices, defines a
flexible halo density model with dependent or independent parameters, fits a lensing
signal given a model and covariances, and finally returns halo parameters, including
mass, and corresponding shear profiles for each individual galaxy cluster. These steps
are more extensively described in the following sections. The module has been devel-
oped in such a way that it can be used from any data model, as soon as input catalogs
have the correct Euclid-like shape recognizable with the python script.

The project consists of a developer team, that gather weekly for a year to build
COMB-CL in a proper format for Euclid. It is settled in regular and technical telecon-
ferences every Monday, freely accessible to everyone concerned with the project. The
purposes of these meetings are centered on fixing development and management issues,
continuously resumed with minute notes to keep track of the evolution of COMB-CL.
The main leaders of COMB-CL are Samuel Farrens4, Mauro Sereno5, Martin Vannier6

and myself7.
The current status of COMB-CL is a prototype version that is tested for vali-

dation using observational and simulated data and external codes. For instance, we
use X-ray detected clusters in the Hyper Suprime-Cam (HSC, Umetsu et al., 2020)
survey to compare their shear profiles and extract WL masses with COMB-CL. Al-
ternatively, galaxy clusters modeled with hydrodynamical simulations are useful to
test their masses, as for the three hundred project (Cui et al., 2018). Finally,
CosmoBolognaLib (CBL, Marulli, Veropalumbo, and Moresco, 2016) is a C++ li-
brary that collects numerous WL calculations helpful for testing the theoretical side
of COMB-CL.

Finally, COMB-CL has been selected as one of the Pre-Launch science Key Project
(KP) papers. It occupies the KP-LE3-CL-2 study regarding the “Characterization
of the properties of detected galaxy clusters”. These KPs coordinate the materials
provided by the EC publication group science and SWG units for Euclid data analysis

3https://gitlab.euclid-sgs.uk/PF-LE3-CL/COMB-CL
4samuel.farrens@cea.fr
5mauro.sereno@inaf.it
6martin.vannier@oca.eu
7lorenzo.ingoglia@unina.it

https://gitlab.euclid-sgs.uk/PF-LE3-CL/COMB-CL
mailto:samuel.farrens@cea.fr
mailto:mauro.sereno@inaf.it
mailto:martin.vannier@oca.eu
mailto:lorenzo.ingoglia@unina.it
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Figure 4.3: The COMB-CL inputs and outputs data in the frame-
work of the EC SGS.

in a list of publications distributed over EC members. This coordination aims to avoid
overlapping issues and values the cross-exchanges between the sciences processing
units.

4.2.2 Data products

The data products are the data that are generated and used by the SGS pipeline.
It is described in a public detailed document8 to better organize the interactions
between the numerous OUs. In particular, it details the inputs and outputs required
for the different processing functions. Figure 4.3 displays the schematic input-output
organization of COMB-CL in Euclid.

The processing functions called by COMB-CL come from level 2 and level 3 OUs
of the EC SGS. More specifically, we find:

• The galaxy catalog produced by the OU-MER. It contains most of the data from
the list of galaxies and their characteristics. We are particularly interested in
the identification number of the sources, their (RA,Dec) positions, and their
magnitudes to better select them as background objects.

• The shear catalog given by the OU-SHE. This catalog of data provides the crucial
WL information as the ellipticity components of the galaxies, the correction
factors (multiplicative and additive), the SNR of the detection to attribute the
statistical weight to the source.

• The galaxy redshift catalog, as computed in the OU-PHZ for photometric redshifts
or the OU-SPE for spectroscopic redshifts. This is mainly used to select the
sources relative to each individual lens, and test the efficiency of these selections
with high-resolution spectroscopic redshifts produced within the same data set.

• The galaxy cluster catalog processed by the OU-LE3-DET-CL. This processing
function detects clusters of galaxies with two independent algorithms: AMICO

8https://euclid.esac.esa.int/dm/dpdd/latest/index.html

https://euclid.esac.esa.int/dm/dpdd/latest/index.html
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and PZWav (Gonzalez, 2014), a code that searches for overdensities on fixed
physical scales. The catalog account for the cluster identification, the (RA,Dec)
position, and the SNR of the detection. It also stores the cluster redshift and
richness, as computed by the OU-LE3-Z-CL and OU-LE3-RICH-CL processing
functions for the characterization of the clusters (e.g. binning the profiles in
cluster property criteria).

COMB-CL ingests this information and first returns shear profiles and covariance
matrices tables, corresponding to each galaxy cluster. With KiDS-DR3 data, the
computational time for this process is relatively short (∼ 7 s per cluster). Then WL
masses are returned for these shear profiles, which requires defining a halo density
model previously. It is realized with the emcee (Foreman-Mackey et al., 2013) ensem-
ble sampler. This step lasts also a few seconds (∼ 30 s per cluster), which allows fast
computations for WL masses.

4.2.3 Prototype structure

COMB-CL prototype is an assembly of interconnected classes. These processing func-
tions are called in different submodules of the python package, which can be run in-
dependently or in a whole script configured for a complete WL mass measurement.
Figure 4.4 highlights the configuration of COMB-CL described in this section. In addi-
tion, the package possesses several python notebook tutorials to introduce COMB-CL
formally.

First of all, the Cosmology() class defines the cosmological framework of the run.
It inputs cosmological parameters preset in a yaml file. The user can select the
cosmology of interest, or either create a new one from an internal method of the class.
The module encapsulates most of the functions seen in Chapter 1. Basically, we find
the cosmological parameters and distances, as evolving with redshift, the matter power
spectrum, the variance of the overdensity field, or the correlation function. This class
is central in the COMB-CL structure, as all the other modules depend on this one.

The children classes HaloConcentration() and HaloBias() provide the theoret-
ical routines as defined in Sections 2.3.1 and 2.3.2, respectively. This gives the full
dependency of COMB-CL to mass measurements, as these functions calculate the halo
parameters in terms of the halo mass.

HaloModel() is the children class of the two previous methods, and thus the
grandchildren of Cosmology(). It defines the terms of the model of the halo density
profile, particularly the one- and two-halo terms (see Section 2.2). The parameters
of the model are identified in this class, namely the halo concentration, bias, or mass
given in a region with overdensity ∆.

A central class in COMB-CL is the ShearProcess(), as it provides the observa-
tional materials to the mass estimates. It inputs the catalogs of sources and lenses,
discriminates the background sources according to a selection model, computes the
lensing signal by stacking the shears and radii of the sources over a given radial range,
bootstraps the stacking process, and calculates the uncorrelated large-scale structure
(LSS) covariances. We discuss this last specificity in the next section. The returned
outputs are then the shear density profiles and the LSS covariances of the lens catalog.

Finally, the MCMCFit() class inputs the density model and measurements described
by the HaloModel() and ShearProcess() classes, to constrain the parameters of
interest, which for Euclid clusters is the mass. The user can play with the size of the
Markov chains to better fit the data on a suitable computational time and power. This
closes the articulation of the module by returning the catalog of measured parameters
for the lenses.
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4.2.4 LSS covariance

As discussed in the previous sections, COMB-CL returns shear profiles of individual
lenses. Therefore, it is crucial to estimate properly the statistical and systematic
fluctuations recovered in the shear measurements. While the covariance terms were
computed by bootstrapping the sources over a population of KiDS clusters in the
stacked WL analysis, this method to estimate the statistical noise is less significant
over a single galaxy cluster. Indeed, line of sight structures that are not physically
linked to the cluster affect its lensing signal. As no random signal can be measured
when considering an isolated lens, it is difficult to assess the uncorrelated large-scale
structure impacts in the shears with simple bootstraps. Instead we prefer to model
this effect using the convergence matter power spectrum as defined in Equation (2.32)
as (see Schneider et al., 1998; Hoekstra, 2003):

Cij = 2πΣ2
cr

∫
Pκ(l)gi(l)gj(l)dl . (4.1)

The function gi filters the signal between the angular boundaries θ1, θ2 of the i-th
radial bin (Sereno et al., 2018):

g(l) =
1

π(θ21 – θ22)l

[
2
l
(J0(lθ2) – J0(lθ1)) + θ2J1(lθ2) – θ1J1(lθ1)

]
, (4.2)

where J0 and J1 are the spherical Bessel functions of the first kind of order 0 and 1,
respectively.

In addition to this estimate, we consider the variance terms defined as in Equa-
tion (3.16) to contribute to the statistical noise of the profiles of single galaxy clusters.
For example, we show in Figure 4.5 the correlation matrices as computed in Equa-
tion (3.25). We see that the uncorrelated LSS terms contribute at large scales to the
signal, while on the full profile the diagonal terms arising from the statistical variance
dominate. With this method, we account both for the intrinsic scattering of the shear
signal and the effects of the uncorrelated materials over the line of sight.

4.2.5 Development forecasts

COMB-CL is still a prototype and requires to be improved and tested again. Until
now, COMB-CL is built to run on KiDS-DR3 data. In that respect, many devel-
opment works remain to be done. For example, the source selection is suitable for
KiDS-450, but novel selections should be implemented with future redshift and color
measurements that Euclid will bring. In KiDS-DR3, the shear is only corrected with
the multiplicative calibration factor, while Euclid shear correction will account for the
additive calibration parameter as shown in Equation (3.1). Some of the dependencies
should be removed, as they could not be validated by the EC maturity assessment
process. Until now the module runs calling individually the python classes, while the
EC community requires a command-line script to be run as part of the COMB-CL
pipeline.

In the upcoming year, we are also interested to bring new implementations to
the cosmological toolkit. Measurements of WL masses for individual galaxy clusters
remain a priority, but stacking the shear density profiles over galaxy clusters could
be a prominent additional feature for users that are interested in such stacked WL
profiles. Therefore we will also develop the miscentering effect in the halo model
routines and bootstrap covariance / cross-covariances in the shear process. Novel
halo bias and halo concentration theoretical relations may be implemented in the
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module following the last outcomes of the scientific community. The fitting process
of the shear may be improved by replacing emcee with the dynesty python package
to estimate Bayesian posteriors, which shows a higher efficiency by about 25% over a
fixed sample size (Speagle, 2020). In addition, parallelizing the chains would improve
the computational time of the MCMC run.

COMB-CL will be complete during the year 2022, with the validation of the KP-
LE3-CL-2 paper. The idea of such a toolkit is that it is predominantly used for Euclid
people, but also anyone interested in WL processing functions. Full accessibility of the
package and clear documentation are keys for reaching as large as possible the scientific
community. Some remaining works have to be completed on this domain since not all
the processing functions are clearly detailed. Feedbacks of users are therefore relevant
since they report many computational mistakes, unclear descriptions, or difficulties
using COMB-CL.
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Chapter 5

Conclusion

Observational cosmology is a wide field of research, that requires various methodolog-
ical approaches. Weak gravitational lensing is a prominent and effective method to
address challenging problems about the nature of dark matter and dark energy. It is
particularly apt to study clusters of galaxies, considered crucial tracers of the matter
distribution in the Universe. The work presented here is the result of a 3-years thesis
work focused on the analysis of shear measurements in galaxy clusters from the KiDS
data. In this final chapter, we summarize the problems addressed in the thesis and
review the major results of our study. Finally, we will conclude with a personal dis-
cussion on the WL work presented here and with the broad perspectives on the next
short and long terms goals in this research domain.

5.1 Summary

In Chapter 1, we introduced the cosmological framework of our analysis. The Universe
has always been a source of curiosity, and inquiring minds have produced many mod-
els across history to better understand its origin and its evolution. The present-day
standard cosmological model remarkably matches recent observations. It assumes a
homogeneous and isotropic fluid in expansion but requires two enigmatic components,
dark matter and dark energy. Knowledge of the cosmological parameters is crucial
since they characterize the dark components of the model. These parameters of the
standard model allow us to describe the geometry and the contents of the Universe
and thus better grasp the cosmological distances. With this description, we should
recover a very smoothed Universe. However, we observe today matter organized in
a large cosmic web in the large-scale structure. The main hypothesis to explain this
observation is the idea that small inhomogeneities recovered in the early stages of the
Universe evolved and amplified by many orders of magnitude, from the quantum scales
to the present-day large scales. As provided by many cosmological simulations with
the non-linear scenario, matter assembles in overdense regions called halos. Massive
halos are coupled with clusters of galaxies, objects mostly composed of dark matter.
Therefore, observing galaxy clusters gives significant clues on the distribution of mat-
ter in the Universe, although they trace it in a biased way. The connection between
clusters and matter distribution is well described by the so-called halo bias parameter.

In Chapter 2, we discussed the theoretical foundations of weak gravitational lens-
ing. Since galaxy clusters are composed mostly of a dark component, gravitational
lensing is an adequate method to derive the distribution of invisible matter. It takes
advantage of the deflection of a background object’s light, the source, by a massive
foreground object, the lens. This effect arises from general relativity and is described
with the deflection potential of the lens. It induces a deformation of the apparent
source shape characterized by shear and convergence parameters. In the weak gravi-
tational field regime, the shear is statistically equivalent to the source ellipticity, which
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is a powerful method to measure the density profile of the lens. For more extended
lenses, such as the whole large-scale structure, the distribution of matter toward the
line of sight is well described by the convergence matter power spectrum. Around the
halos, we can model the density distribution accounting for a combination of matter
terms acting at different scales. The one-halo term describes the density of the main
component, the halo. An accurate description is provided by a NFW profile and by
its truncated version, the BMO profile. The miscentering effect contributes to the
displacement of the center of the halo. The two-halo term originates from the contri-
bution of correlated matter, mainly distributed in distinct pairs of halos. The main
parameters of this model are the halo mass, halo concentration, and halo bias. The
last two parameters are directly related to the halo mass, as shown by numerous dark
matter simulations on cosmological scales.

In Chapter 3, we analyzed the KiDS-DR3 data as presented in Ingoglia et al.
(2022). The ESO public survey provides a large sources catalog, the KiDS-450 galax-
ies, combined with a lens catalog, the AMICO clusters. We processed the lensing
signal first by selecting the sources related to each gravitational lens. We relied on
a combination of photometric redshifts and color-color selections to discriminate the
foreground and background objects. This selection has been tested with external data
set to quantify its efficiency. We then stacked the ellipticity of the sources over radial
bins on scales sufficiently large to be sensitive to the halo bias. This signal is also
stacked over clusters redshift and richness bins to improve the statistical efficiency
of the lensing measurements. We estimated the statistical error of the shear using a
bootstrap covariance matrix across the radial profile, which showed significant diago-
nal terms and negligible off-diagonal terms. The systematic effects are accounted for
by measuring the signal around random lenses, and removed from the final stacked
profiles. Using a common Bayesian MCMC method with linear priors, we constrained
the halo parameters with a BMO miscentered profile and a linear two-halo term. Re-
sults are shown in Table 3.3. The mass measurements and their relation with the
richness of AMICO clusters are in remarkable agreement with previous stacked WL
analyses completed on the same data set. In addition to the analysis detailed in the
published paper, we also presented the novel outcomes on the cluster sparsity. We
assessed the scaling relation between the mass and the concentration and found con-
sistent results with the theoretical predictions. The mass-bias relation is the central
purpose of the study, as it allows cosmological inference using theoretical relations.
At this aim, we measured the normalization parameter of the matter power spectrum,
σ8, assuming a constant matter density parameter, Ωm = 0.3. The fitted relations
are in agreement with the bias data, and the constraints on σ8 present a consistency
we alternative studies that measured this cosmological parameter with a fixed matter
density.

In Chapter 4, we described the COMB-CL python toolkit we have built within the
Euclid collaboration. Euclid is an ESA space telescope aiming to be launched in 2023.
The collaboration is organized in a large consortium of international institutes whose
main goal at the moment is to prepare the tools for the scientific exploitation of the
large data set. Euclid observations will allow building large catalogs of photometric
and spectroscopic data in the optical and near-infrared bands over a large fraction of
the sky. The scientific treatment of the data is a major section of the mission and is
organized in different levels of processing functions, from the reduction and calibration
of the raw data to the production of scientific results. COMB-CL has an important
role in the latest stage of this process. The purpose of the package is to measure WL
masses of Euclid-detected clusters. To do so, COMB-CL inputs different sets of data
derived from various processing units of Euclid. Mainly, it takes catalogs of sources



5.2. Discussion 95

and lenses and derives shear density profiles and mass estimates for each individual
lens given a fiducial cosmological model. The python module is divided into several
classes, from the basic cosmological routines to the MCMC fitting process. The code
also provides covariance measurements to assess the systematic effect of the large-scale
structure in the lensing signal. Currently, COMB-CL is a prototype, but it should be
operational in the incoming year since it has been selected as one of the pre-launched
KP-LE3-CL papers in Euclid.

5.2 Discussion

During the thesis, we addressed many issues related to the stacked WL analysis.
The choice of the appropriate color-color selection among the two selections pre-

sented in the paper has been the result of a long discussion because the contamination
fraction on COSMOS sources is sensitively the same for the two selective criteria. It
is only when COSMOS data are cross-matched with KiDS that we recover a non-
negligible difference of contamination.

Another critical point was the choice of the multiplicative calibration parameter
to correct the shear measurements. This has been performed for individual galaxy
clusters, rather than for the population of clusters enclosed in the bin. Since this
correction must be applied as an average quantity and the inner radial bins account
for a small number of sources, this choice was well justified. On the other hand,
averaging the multiplicative shear bias per galaxy cluster is a process already used in
Bellagamba et al. (2019), while we removed the four inner radial bins where the error
budget is dominated by statistical uncertainty.

We also discussed the bootstrap method to estimate the covariance components,
as the matrix does not show any evidence of off-diagonal terms, as observed in Giocoli
et al. (2021a), or with a jackknife process as in Melchior et al. (2017). Nevertheless,
the results showed that this method is solid and sufficient for the statistical accuracy
reached in our analysis.

As we combined the covariance matrices of AMICO lenses and random lenses, we
were also addressed the possible overestimate of the statistical noise of the lensing, as
suggested in Singh et al. (2017). As we propagate the statistical uncertainty resulting
from a subtraction, we verified the contribution of the covariance of the random signal
is smaller than that contributed by the clusters.

In Giocoli et al. (2021b), they provided a similar stacked WL analysis on AMICO
clusters. They measured the shear profiles up to 35 Mpc/h and recovered consistent
mass measurements with respect to Bellagamba et al. (2019) and our analysis. They
defined a different binning scheme since the clusters amplitude as a binning prop-
erty was favored, while we opted for richness. As a consequence, the scaling relation
between the mass and the cluster richness differs from the relation with cluster am-
plitude. They also deeply investigated the impact of the truncation radius, while we
performed a robust analysis of the covariances and cross-covariances and studied the
effects of the lensing signal systematics in each patch of the field through the ran-
dom signal. Both studies were carried out with independent numerical pipelines and
followed a process of cross-validation among the KiDS collaboration.

Data analysis has been carried out with Fornax, the computing cluster at the
Physics Department of the University Federico II of Naples. Since the numerical tools
have been produced from scratch, the codes have been subject to tests and validations.
For instance, we compared the lensing signal on PSZ2LenS galaxy clusters (Sereno et
al., 2017) for single and stacked data, in order to make sure the selection methods and
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the stacking were processed correctly. On the other hand, we have tested the different
terms of the halo density model with CBL (Marulli, Veropalumbo, and Moresco, 2016)
and found consistent results.

In order to build COMB-CL, we rely the structure to colossus (Diemer, 2018).
This module implements many cosmological routines used by COMB-CL and has
been extensively used for checking procedures during the development of COMB-CL.
The package also largely makes use of astropy (Astropy Collaboration et al., 2018), a
python library that contains key functionality and common tools needed in astronomy
and astrophysics.

5.3 Perspectives

The topics addressed in this thesis are centered on galaxy clusters WL measurements,
but this observational method allows many applications for several cosmological stud-
ies. For example, we can play with the different terms and parameters composing
the halo density model to investigate a specific feature of the halo. Alternatively, the
process of stacking shear data allows many possibilities of study, whether the lensing
signal is computed on single lenses or a population of lenses.

The method can be improved, for example with the estimation of surface critical
density, by relying on the PDF of the source redshift detection to calculate the average
of the inverse parameter for each individual lens:

〈Σ–1
cr 〉 =

∫
dzsp(zs)Σ–1

cr (zs) . (5.1)

However, this process requires high-probability tails of the source redshift PDFs, which
is not generally the case for large surveys.

Contaminated sources are known to dilute the lensing signal. This dilution can
be corrected from the stacked density profile around random positions, but it is also
well corrected with the boost factor. Boost factor can be used to compensate the halo
density model (e.g. McClintock et al., 2019), or to boost the stacked shear profile (e.g.
Medezinski et al., 2018).

Another analysis to explore is the combined inference on σ8 with Ωm to constrain
the parameter S8 ≡ σ8

√
Ωm/0.3, which would complement the study on σ8 in Ingoglia

et al. (2022) and Ωm in Giocoli et al. (2021b).
The methodology used in this work will constitute a baseline for future KiDS Data

Releases (Kuijken et al., 2019). The fourth release for galaxy shear measurements is
already available, and AMICO clusters on this data release are being selected. This
will allow an important step forward, as the DR4 includes a 9-band ugriZYJHK source
catalog from a sky region of about 1000 deg2, more than the double of DR3.

The HSC survey is now providing its third data release (Aihara et al., 2021),
including 600 square degrees of deep multi-color data. This large catalog of data
provides the opportunity to run the Euclid cluster cosmology pipeline and operates
COMB-CL to measure WL masses. We will also extend the method on similar but
larger data sets that combine cluster and shear catalogs.

We have seen that the Euclid survey will manage quantitative and qualitative
observations, but we can also rely on Large Synoptic Survey Telescope (LSST, LSST
Dark Energy Science Collaboration, 2012) data. LSST will provide high statistics
catalogs over a wide and deep field (FoV ∼ 20, 000 deg2 and r ∼ 27.5) in 6 photometric
bands accounting for about 4 billion sources. These data sets will be fundamental for
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the study of the halo properties such as mass and bias with stacked WL analyses and
will allow robust estimates of the main cosmological parameters.

Finally, the COMB-CL team is continuing its activity and within the next months,
results will be present in the publication of the KP-LE3-CL-2 paper on the charac-
terization of the properties of detected galaxy clusters. Large and intensive usage
of the SGS pipeline will be performed on Euclid data releases and will permit the
spreading of the application of WL lensing tools such as COMB-CL. When the pack-
age will be publicly available to the scientific community, it will require maintenance
works and novel implementations with the numerical progress of the breakthroughs
on observational cosmology.
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Appendix A

Related publications

As a major part of my thesis, I’ve been involved in the KiDS team to study the weak
lensing signal on AMICO galaxy clusters. To do so I developed numerical tools for the
analysis of the data and derived scientific results showed as python plots. These mate-
rials have been discussed and approved during numerous and regular meetings of the
AMICO working group and internal KiDS discussions. Finally, from this work ensued
a publication in the Monthly Notices of the Royal Astronomical Society (MNRAS)
scientific journal at the latter stage of my Ph.D: Ingoglia et al. (2022). It consists of
a 3-years old collaborative work of 22 authors for this cosmological study.

A parallel study on the halo sparsity, also introduced in Section 3.4.3, has not yet
been sent for review to the KiDS collaboration so I do not include it in the appendix.

Finally, the second paper of the pre-launch key project LE3-CL-2 of the Euclid
consortium will concern the development analysis of the COMB-CL package described
in Section 4.2. This project will result during the year 2022 and the publication nearly
follow as a consistent piece of work of our future projects regarding the emphasis on
the Euclid collaboration.
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ABSTRACT
Galaxy clusters are biased tracers of the underlying matter density field. At very
large radii beyond about 10 Mpc/h, the shear profile shows evidence of a second-halo
term. This is related to the correlated matter distribution around galaxy clusters and
proportional to the so-called halo bias. We present an observational analysis of the
halo bias-mass relation based on the AMICO galaxy cluster catalog, comprising around
7000 candidates detected in the third release of the KiDS survey. We split the cluster
sample into 14 redshift-richness bins and derive the halo bias and the virial mass in
each bin by means of a stacked weak lensing analysis. The observed halo bias-mass
relation and the theoretical predictions based on the ΛCDM standard cosmological
model show an agreement within 2σ. The mean measurements of bias and mass over
the full catalog give M200c = (4.9 ± 0.3) × 1013M�/h and bhσ2

8 = 1.2 ± 0.1. With the
additional prior of a bias-mass relation from numerical simulations, we constrain the
normalization of the power spectrum with a fixed matter density Ωm = 0.3, finding
σ8 = 0.63 ± 0.10.
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1 INTRODUCTION

Clusters of galaxies occupy a special place in the hierarchy of
cosmic structures as they are the most massive gravitation-
ally bound systems in the Universe. According to the hierar-
chical scenario of the evolution of cosmic structure (Peebles
1980; Voit 2005), they arise from the collapse of initial den-
sity perturbations having a typical comoving scale of about
10 Mpc/h (Peebles 1993; Borgani 2008). Above these scales,
gravitational clustering is essentially in a linear regime and
the dynamics are mostly driven by the Hubble flow, while the
non-linear regime is prominent on smaller scales. Moreover,
in the inner cluster regions, astrophysical processes such as
gas cooling, star formation, feedback from supernovae and
active galactic nuclei modify the evolution of the halo prop-
erties like, the density profile, the subhalo mass function,
etc. (Rasia et al. 2004, 2006; Giocoli et al. 2010a; Despali
et al. 2014, 2016; Angelinelli et al. 2020). Galaxy clusters
thus provide an ideal tool to study the physical mechanisms
driving the formation and evolution of cosmic structures in
the mildly non-linear regime (Tormen 1998; Springel et al.
2001).

Massive galaxy clusters, composed of a large amount of
dark matter (about 85%, see e.g. White & Rees 1978), are
expected to grow at the highest peaks of the underlying mat-
ter distribution. This establishes a clear correlation between
the galaxy cluster mass and the underling matter clustering
amplitude. As already shown by Kaiser (1984), the enhanced
clustering of Abell galaxy clusters is explained by assuming
that they form in the high-density regions. As a consequence,
galaxy clusters are biased tracers of the background matter
field. Several groups have further developed this idea within
the framework of the Press & Schechter (1974) formalism
(e.g., Mo & White 1996; Sheth & Tormen 1999; Sheth et al.
2001; Giocoli et al. 2010b), deriving quantitative predictions
for the correlation between the halo density field and the un-
derlying matter distribution within the hierarchical scenario
for the formation of cosmic structures. The relation between
the cluster dark matter halo density contrast, δh, and the
dark matter density contrast in the linear regime, δm, is de-
scribed by the so-called halo bias parameter, bh, defined as
(Tinker et al. 2010)

bh = δh/δm . (1)

Measurements of the halo bias as a function of the halo
mass therefore represent an important test for cosmological
models.

The total matter distribution of a galaxy cluster can
be broken down in a “one-halo” term, which determines its
halo matter component on scales smaller than the halo virial
radius, and a “two-halo” term for the correlated matter of
the surrounding structures, which is prominent on scales
much larger than the virial radius. The first component
is usually identified with the galaxy cluster halo and can
be described by a Navarro-Frenk-White dark matter pro-
file (Navarro et al. 1997). The second component, directly
proportional to the halo bias, stems from mass elements in
distinct pairs of halos. The two terms of the halo profile
correlate in such a way that the bias follows an increasing
function of mass (Kaiser 1984; Cole & Kaiser 1989; Mo et al.
1996). This relation has been shown and modeled in several

studies based on N -body numerical simulations (e.g. Seljak
& Warren 2004; Tinker et al. 2005, 2010).

Weak gravitational lensing (WL) is a suitable approach
to investigate the halo model and to measure its major pa-
rameters: the mass and the bias. Gravitational lensing re-
lates the deflection of light to the mass distribution along
the line-of-sight. As gravitational lensing is based on the
very well-tested theory of general relativity and does not
rely on the hypothesis of dynamical equilibrium, it allows
robust measurements of the mass of cosmic structures and
cosmological parameters. WL by galaxy clusters is detected
via statistical measurement of source galaxy shears, and pro-
vides an efficient way to derive mass density profiles without
requiring any assumption about their composition or dy-
namical state. For example, WL analysis allows us to reach
scales up to ∼ 30 Mpc/h from the center and therefore to
directly measure the halo bias (Covone et al. 2014).

Stacking the shear measurements of cluster background
galaxies is a common practice to increase the lensing sig-
nals and compensate for the typical low signal-to-noise ratio
(SNR hereafter) in the shear profiles of individual galaxy
clusters (see for instance Sereno & Covone 2013). This
method also makes it possible to arrange the stacked density
profiles as a function of the cluster properties, such as their
redshift or their richness.

Several authors have probed the dependence of the halo
bias on mass (Seljak et al. 2005; Johnston et al. 2007a; Cov-
one et al. 2014; Sereno et al. 2015b; van Uitert et al. 2016).
These studies have obtained results consistent with the theo-
retical predictions, but the large uncertainty in the measure-
ments did not allow them to discriminate between different
theoretical models. Moreover, recently Sereno et al. (2018)
found a peculiar galaxy cluster at z ∼ 0.62 in the PZS2LenS
sample (Sereno et al. 2017) showing an extreme value of the
halo bias, well in excess of the theoretical predictions. This
result motivates further observational work in order to probe
with higher accuracy the halo bias-mass relation. Large sky
surveys providing deep and high-quality photometric data
and reliable catalogs of galaxy clusters are essential.

In this work we perform a novel measurement of the
bias-mass relation by using the photometric data from the
third data release of KiDS (de Jong et al. 2013, 2017) and the
galaxy cluster catalog identified using the Adaptive Matched
Identifier of Clustered Objects detection algorithm (AM-
ICO, Bellagamba et al. 2018). This catalog is optimal for
a stacked WL analysis because of its large size (an effective
area of 360.3 square degrees) and its dense field (an effective
galaxy number density of neff = 8.53 arcmin–2), which al-
lows us to split the stacked WL signal into different bins of
cluster redshift and richness while keeping a sufficiently high
SNR in each of them. KiDS images are deep enough (lim-
iting magnitudes are 24.3, 25.1, 24.9, 23.8 in ugri, respec-
tively) to include numerous sources (almost 15 million) and
large enough to compute the profile up to the scales where
the bias dominates. This study is part of a series of papers
based on AMICO galaxy clusters in the third data release
of KiDS. Previous and ongoing publications have presented
the detection algorithm (Bellagamba et al. 2018), the cluster
catalog (Maturi et al. 2019), the calibration of WL masses
(Bellagamba et al. 2019), and constraints on cosmological
parameters otained from cluster counts (Lesci et al. 2020),
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WL (Giocoli et al. 2021) and cluster clustering (Nanni et al.
prep).

Following the method explained in Bellagamba et al.
(2019), we derive mass density profiles from almost 7000
clusters, which is among the largest cluster samples for this
kind of analysis. We stack the lensing signal in richness and
redshift cluster bins, calibrate the halo parameters and in-
vestigate the mass-bias relation. Throughout this paper we
assume a spatially flat ΛCDM model with the following mat-
ter, dark energy and baryonic density parameters at the
present time Ωm = 1 – ΩΛ = 0.3, Ωb = Ωm – Ωc = 0.05 and
Hubble parameter H0 = 100h km s–1 Mpc–1 with h = 0.7.

2 DATA

For an accurate lensing signal, we have to look for deep and
dense source samples in such way that the statistical number
of background sources increases while the contamination of
foreground and cluster member galaxies is small.

Our work is based on the optical wide-field imaging
Kilo-Degree Survey (KiDS, de Jong et al. 2013), split into
an equatorial stripe (KiDS-N), and a second one centered
around the South Galactic Pole (KiDS-S). The survey en-
compasses four broad-band filters (ugri) managed by the
OmegaCAM wide-field imager (Kuijken 2011), presently lo-
cated on the VLT Survey Telescope (VST, Capaccioli &
Schipani 2011). The data set we use for this work is the
Data Release 31 (DR3, de Jong et al. 2017) and covers a total
area of approximately 450 deg2 in five patches following the
GAMA survey convention (Driver et al. 2011, G9/G12/G15
within KiDS-N and G23/GS within KiDS-S). This interme-
diate release includes one third of the final KiDS area, which
will ultimately reach 1350 deg2.

2.1 Cluster catalog

We use the galaxy cluster catalog obtained from the applica-
tion of the Adaptive Matched Identifier of Clustered Objects
algorithm (AMICO, Bellagamba et al. 2018) on KiDS DR3
data (AK3, hereafter). AMICO was selected to form part
of the Euclid analysis pipeline (Euclid Collaboration et al.
2019). The algorithm exploits the Optimal Filtering tech-
nique (Maturi et al. 2005; Bellagamba et al. 2011) and aims
at maximising the SNR for the detection of objects follow-
ing a physical model for clusters. Specifically, it identifies
overdensities of galaxies associated with galaxy clusters tak-
ing into account their spatial, magnitude, and photometric
redshift distributions (Radovich et al. 2017).

The AK3 catalog is fully described in Maturi et al.
(2019). It contains 7988 candidate galaxy clusters covering
an effective area of 377 deg2. Clusters are detected above
a fixed threshold of SNR = 3.5. AK3 encompasses an in-
trinsic richness (defined as the sum of membership prob-
abilities below a consistent radial and magnitude thresh-
old across redshift) range of 2 < λ∗ < 140 and a redshift
range 0.1 ≤ z < 0.8. The richness and redshift distribu-
tions are presented in Figure 1. From the figure we can see
that the richness slightly increases with redshift. Conversely,

1 http://kids.strw.leidenuniv.nl/DR3
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Figure 1. Top panel : Redshift distributions of AK3 clusters (dark

gray) and K450 galaxies (light gray). Bottom panel : AK3 clusters
in the redshift-richness plane with SNR ≥ 3.5. Colored rectan-

gles correspond to the redshift-richness bins used in the following

analysis (see Section 3.4); the number of clusters enclosed in each
bin is displayed. Single colored squares show the mean values in

each redshift bin computed as in Equation (17).

poor and distant clusters are not detected due to their low
SNR. These blank regions are usually associated to low lev-
els of completeness (i.e. the fraction between detected and
mock galaxy clusters), as shown in Figure 13 of Maturi et al.
(2019).

2.2 Shear catalog

The halo lensing signal relies on the selection of background
galaxies relative to galaxy clusters. Hildebrandt et al. (2017)
presented a complete tomographic cosmic shear analysis of
the KiDS-450 catalog (K450), updated from earlier works
on KiDS-DR1 and -DR2 (de Jong et al. 2015; Kuijken et al.
2015). The shear is estimated using the lensfit likelihood
based model-fitting method (Miller et al. 2007, 2013; Kitch-
ing et al. 2008; Fenech Conti et al. 2017) on galaxy r -band
images for which the best-seeing dark time is reserved. Pho-
tometric redshifts are derived from K450 galaxy photome-
try in the ugri-bands. They are estimated with a Bayesian
code (BPZ, Beńıtez 2000) following the methods used for
CFHTLenS data in Hildebrandt et al. (2012). The redshift
distribution of the galaxies is shown on the top panel of
Figure 1 in light-gray.

The survey covers 454 tiles, which after masking over-
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lapping tiles, provides an effective area of 360.3 deg2. It
comprises 14,650,348 sources and has an effective num-
ber density (as defined in Heymans et al. 2012) of neff =
8.53 arcmin–2.

3 METHOD

In this section we provide a short introduction to the WL
formalism. We then describe the numerical method to derive
the WL signal of galaxy clusters from the shapes of back-
ground sources. We discuss the selections of lens-source pairs
that improve the stacked measurement and remove those for
which the shear distorts the final signal. Finally, we stack the
individual lens shear profiles in bins of cluster redshift and
richness for an accurate measurement of the halo parame-
ters.

3.1 Weak-lensing formalism

In gravitational lensing, the matter distribution curves
space-time and modifies the the path of light rays from back-
ground sources, manifesting in a distortion of their intrisic
shape. Shape distortion yields isotropic or anisotropic de-
formation, called convergence, κ, and shear, γ, respectively.
The tangential component of the shear γ+ encodes the den-
sity of the intervening matter distributed between the source
and us. Massive objects such as galaxy clusters are therefore
dominant in the information that γ+ encapsulates, as we will
present later. For a review, see e.g. Bartelmann & Schneider
(2001); Schneider (2006); Kilbinger (2015).

The source shape distortion can be expressed in terms
of the deflection potential ψ. It is described by the Jacobian
matrix through the second derivatives of the potential, ψij ≡
∂i∂jψ

A ≡ (
δij – ψij

)
=

(
1 – κ – γ1 –γ2

–γ2 1 – κ + γ1

)
, (2)

in which the convergence κ is defined by the Poisson equation
52ψ ≡ 2κ and the complex shear γ ≡ γ1 + iγ2 is given by
γ1 = 1

2 (ψ11 – ψ22) and γ2 = ψ12.
Sources initially have an intrinsic unlensed ellipticity

εs, which is converted by cosmic shear into the observed
ellipticity ε. One describes this deformed ellipse by its minor
and major axes (a, b), and from the position angle φ of the
source relatively to the lens, ε = |ε|e2iφ, where |ε| = (a –
b)/(a + b).

It is convenient to factor out the multiplicative term
(1– κ) from Equation (2) and thereby introduce the reduced
shear observable g ≡ γ/(1 – κ) and its conjugate version g∗.
Considering |g| ≤ 1, Seitz & Schneider (1997) relate shear
and ellipticity by

ε =
εs + g

1 + g∗εs
. (3)

In the WL limit γ � 1 and κ � 1, yielding ε ≈ εs + g. As-
suming that sources are randomly oriented, their complex
intrinsic ellipticities average to zero, so 〈ε〉 = 〈γ〉. Therefore,
the average ellipticity of background galaxies is a direct ob-
servable of the shear induced by foreground matter.

The two components of the complex shear are defined

relative to a local Cartesian space and are conveniently de-
composed into a tangential and a cross component,

γ+ = –<
(
γe–2iφ

)
= – (γ1 cos 2φ + γ2 sin 2φ) ,

γx = –=
(
γe–2iφ

)
= – (γ2 cos 2φ – γ1 sin 2φ) ,

(4)

respectively. Noticing the minus sign in the exponential, it
is agreed that for an axially symmetric mass distribution
the tangential component returns a positive value around
an overdensity, while a negative value characterizes under-
densities. On the other hand, the cross component of the
shear does not hold any mass information, and thus aver-
ages to zero, in the absence of systematic uncertainties. It is
possible to relate the shear to a physical quantity, the excess
surface mass density ∆Σ, as (Sheldon et al. 2004)

∆Σ(R) ≡ Σ(< R) – Σ(R) = Σcrγ+(R) , (5)

where Σ(R) is the surface mass density and Σ(< R) its mean
value within the projected radius R, and Σcr is the critical
surface mass density, given by

Σcr ≡ c2

4πG

Ds

DlDls
, (6)

where c is the speed of light, G is the gravitational constant
and Ds, Dl and Dls are the angular diameter distances from
the observer to the source, from the observer to the lens and
from the lens to the source, respectively.

The reduced shear is a more direct observable than the
shear, which remains an approximation of the source ellip-
ticities. However, the reduced shear is not directly included
in the definition of the differential excess surface density, so
we link these two quantities using κ ≡ Σ/Σcr in Equation (5)
and derive

g+ =
∆Σ

Σcr – Σ
. (7)

3.2 Measurement of the lensing signal

Since the ellipticity is an indirect observable of the shear,
we denote the corresponding excess surface mass density for
Σcrε+/x as ∆̃Σ+/x. We compute the lensing signal at a given
distance from the cluster center by stacking the radial po-
sition and the ellipticity of the i-th galaxy source over the
j-th radial annulus. Thereby, we assess the two observables
using their weighted mean

Rj =

(∑
i∈j wls,iR

–α
i∑

i∈j wls,i

)–1/α

; ∆̃Σj =

(∑
i∈j wls,iΣcr,iεi∑

i∈j wls,i

)
1

1 + Kj
,

(8)
where the lens-source weight of the i-th source is wls,i =
ws,iΣ–2

cr,i and ws,i is the inverse-variance source weight as

defined in Miller et al. (2013). Here, Kj is the weighted mean
of the lensfit multiplicative bias mi introduced to calibrate
the shear (see Fenech Conti et al. 2017),

Kj =

∑
i∈j wls,imi∑
i∈j wls,i

. (9)

The effective radius is estimated with a shear-weighted
mean and computed by approximating the shear profile as a
power-law, with α = 1. Sereno et al. (2017), which explored
different methods to assess the mean radius, found that this
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configuration is less dependent on the binning scheme. We
compute the average inverse surface critical density to de-
rive the effective redshift of the background sources zback in
each radial bin (Sereno et al. 2017)

Σ–1
cr (zback) =

∑
i∈j ws,iΣ–1

cr,i∑
i∈j ws,i

. (10)

This estimate permits us to compute the modelled reduced
shear in Equation (7) as further described in Section 4.

A preliminary measurement of the statistical errors of
the two observables in Equation (8) is given by the weighted
standard deviation of the radial distances and by the stan-
dard error of the weighted mean, i.e.

σ2
R,j =

∑
i∈j wls,i

(
Ri – Rj

)2∑
i∈j wls,i

; σ2

∆̃Σ,j
=

1∑
i∈j wls,i

, (11)

respectively. A more complete way to assess the uncertainty
given by the averaged signal is to compute the covariance
matrix as in Appendix A. This statistical measurement of
the noise includes the errors which propagate among the
bins.

In the following, we provide lensing profiles sampled in
30 annuli corresponding to 31 logarithmically equi-spaced
radii in the range [0.1, 30] Mpc/h. This choice is justified
since our analysis both requires small and large scales to
identify the two terms of the halo model. We discard the four
inner annuli of the the measured shear profile to avoid con-
tamination from cluster member galaxies and the contribu-
tion of the BCG in the resulting density profiles (Bellagamba
et al. 2019). Effects of miscentering are minimized as the
lensing signal is considered only for R & 0.2 Mpc/h. This
measurement is also repeated around random lens points to
compensate for the systematic signal, as discussed in Ap-
pendix B.

We illustrate the process of stacking the shear signal in
Figure 2, where a 2D distribution of selected sources around
the AK3 cluster J225151.12-332409 is shown (more details
in Section 3.3). For visual convenience in the illustration,
we highlighted only 12 of the 31 radii in the radial range
[0.35, 3] Mpc/h. The tangential and the cross components
of ∆̃Σ associated to the 10 annuli are additionally displayed
in the bottom panel.

3.3 Selection of lens-source pairs

An effective discrimination between background lensed
sources, and foreground and cluster member galaxies is nec-
essary to accurately derive the halo density profile. We sub-
sequently select background galaxies using photometric red-
shifts or their position in the (r -i) vs (g-r)-color-color (here-
after dubbed gri-CC) plane.

3.3.1 Background galaxies

A thorough selection of sources allows us to minimize
contamination from misplaced galaxies and their incorrect
shear. This step is essential as contaminated galaxies usu-
ally dilute the resulting lensing signal (Broadhurst et al.
2005; Medezinski et al. 2007). We first select members in
the source catalog with

zs > zl + ∆z , (12)
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Figure 2. Top panel : Illustration of eleven of the thirty annuli in

the radial range [0.35, 3] Mpc/h,for the cluster AK3 J225151.12-
332409. The sources shown are selected following the cut discussed

in Section 3.3.1. Blank regions indicate masks (Hildebrandt et al.
2017). Bottom panel : Tangential and cross components of the

excess surface mass density (Equation 8) of J225151.12-332409.

Vertical error bars are derived from Equation (11).

where zs is the best-fitting BPZ photometric redshift of the
source, zl is the lens redshift and ∆z = 0.05 is a secure inter-
val to balance uncertainties coming from photometric red-
shifts.

Then, we applied a more accurate redshift filter follow-
ing the work of Bellagamba et al. (2019) and Sereno et al.
(2017),

(0.2 ≤ zs ≤ 1) ∧ (ODDS ≥ 0.8) ∧ (
zs,min > zl + ∆z

)
. (13)

The ODDS parameter from the KiDS shear catalog accounts
for the probability distribution function (PDF) of the red-
shift: a high value indicates a high reliability of the best
photo-z estimate. The parameter zs,min measures the lower
bound of the 2σ confidence interval of the PDF.

A complementary approach for selecting galaxies is
based on the source distribution in the gri-CC plane.
Medezinski et al. (2010) highlight a strong correlation be-
tween the location in the (r -i) vs (g-r) diagram and the
galaxy redshift. Following an original proposal by Oguri
et al. (2012), Bellagamba et al. (2019) exploit a relevant
selection which filters KiDS galaxies beyond zs ' 0.7, ob-
taining

(g – r < 0.3) ∨ (r – i > 1.3) ∨ (g – r < r – i) . (14)

This selection was tested in Covone et al. (2014), Sereno
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Figure 3. The stacked matter density profile of AK3 clusters with

0.1 ≤ zl < 0.6. The signal is computed assuming the combined
selections given in Equation (15). Horizontal and vertical bars are

derived from Equation (11).

et al. (2017, 2018) and Bellagamba et al. (2019), and con-
serves 97 percent of galaxies with CFHTLenS spectroscopic
redshifts above zs & 0.63 (Sereno et al. 2017). In Ap-
pendix C, we discuss the alternative color-color selection
presented in Medezinski et al. (2010) and the contamina-
tion fraction that leads the two colour-colour cuts in the
COSMOS field.

Finally, we formulate the selection of the background
sources by combining the following Equations as follows

(12) ∧ [(13) ∨ (14)] . (15)

As a further restriction for the selection presented in this
study, we restricted the source redshifts to the range zs >
0.2. This complementary selection is assumed since a large
fraction of sources are below this limit, which might increase
the contamination of nearby clusters (Sereno et al. 2017).

3.3.2 Foreground clusters

We consider galaxy clusters selected in the redshift range
zl ∈ [0.1, 0.6[, as done in Bellagamba et al. (2019). We select
clusters at zl < 0.6 because the gri-CC cut is very effective
for sources at zs > 0.6. Furthermore remote clusters convey
a lower density of background sources. Objects at zl < 0.1
are discarded because of the reduced lensing power of low
mass clusters (see Figure 1) and the inferior photometric
redshift accuracy of the sources. The final sample consists
of 6961 clusters (87.1% of the whole catalog). In Figure 3
we plot the mass density profile obtained for the complete
cluster sample assuming the combined selection of sources
given in Equation (15).

3.4 Shear data stacked in bins

Stacking the signal permits us to constrain the two param-
eters of the halo model (see Section 4) and derive a generic
halo bias-mass relation (see Section 6.3). We consider 14

Table 1. Redshift-richness bins for the WL analysis.

zl λ∗

[0.1, 0.3[ [0, 15[ [15, 25[ [25, 35[ [35, 45[ [45, 140[

[0.3, 0.45[ [0, 20[ [20, 30[ [30, 45[ [45, 60[ [60, 140[

[0.45, 0.6[ [0, 25[ [25, 40[ [40, 55[ [55, 140[

cluster bins combined in redshift and richness. Table 1 shows
the binning pattern, also displayed in cells in the zl vs λ∗ di-
agram in Figure 1. The binning scheme mostly follows Bel-
lagamba et al. (2019) to provide nearly uniform WL SNR
per bin. The only difference is for the last redshift bin, in
which a larger number of clusters are considered for inter-
mediate richness ranges. In this way, we compensate for the
numerous galaxy clusters in the higher richness bin and ho-
mogenize the distribution of clusters in this redshift bin with
the two other redshift bins.

Considering the j-th radial bin of the k-th galaxy clus-
ter, the corresponding stacked observable in the K-th cluster
bin is

Oj,K =

∑
k∈K Wj,kOj,k∑

k∈K Wj,k
, (16)

with Wj,k =
∑

i∈j wls,i . The shear estimate is not accurate
since the correction of the multiplicative bias has already
been applied via Equation (8) to the signal of each individual
galaxy cluster, while it should be corrected over the averaged
measure of the bin. We compute the effective value of the
cluster observable Ok, e.g. richness or redshift of cluster k,
among the cluster bins K through a lensing-weighted mean
(e.g. Umetsu et al. 2014)

OK =

∑
k∈K WkOk∑
k∈K Wk

, (17)

where Wk =
∑

j Wj,k is the total weight of the cluster k for
the whole area of the cluster profile.

The analysis of covariance is performed by computing
all the observable quantities using a bootstrap method with
replacement and resampling the source catalog 1000 times.
In addition, we combined the shear signal with a covari-
ance matrix computed over the realizations of the bootstrap
sampling. We also paid attention to the cross-covariances be-
tween the redshift-richness bins. As a final step, we subtract
the signal around random points from the stacked profiles,
and the corresponding error is added in quadrature. The fi-
nal covariance signal can alternatively be assessed with a
jackknife method, where the lensing signal is measured over
regions of the sky. This way, there is no longer any need
to combine cluster and random covariance matrices, since
the statistical covariance is directly computed from the sub-
tracted lensing signal (Singh et al. 2017). Covariances and
random signals aim to compensate for the statistical noise
and the systematic effects. We discuss these two contribu-
tions in detail in Appendices A and B.

4 HALO MODEL

In this section we explore the theoretical mass density distri-
bution of the halo, also called the halo model. A composite
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density profile is then fitted to the measured tangential re-
duced shear given in Equation (7). All the terms in this
relation depend on the surface density Σ. It is computed by
the projection over the line of sight of the excess matter
density ∆ρ in a sphere centered on the halo as

Σ(R) =

∫ ∞

–∞
∆ρ

(√
R2 + χ2

)
dχ . (18)

∆ρ includes the two terms of the halo model from the halo-
matter correlation function ξhm

∆ρ = ρ̄mξhm , (19)

and the mean matter density ρ̄m ≡ Ωmρc must be computed
in physical units at the redshift of the sample. The critical
density ρc is related to the first of the Friedmann equations,
and is defined as

ρc =
3H(z)2

8πG
. (20)

In WL, we average this quantity over the disk to derive the
mean surface density enclosed within the radius R

Σ(< R) =
2

R2

∫ R

0
R′Σ (R′) dR′ . (21)

In the following and for the terms contributing to the
halo model, we are interested in the main lens structure (Sec-
tion 4.1), which comprises the total mass of the halo and its
concentration. In addition, we include the contribution of
possibly miscentered density profiles in Section 4.2. Finally,
Section 4.3 completes the halo model with the correlated
matter component and allows the cosmological study from
the analysis of the halo bias. In Figure 4 we display, as an ex-
ample, the complete model for a given mass, concentration,
bias and redshift of the halo.

4.1 Main halo component

The correlation between the halo and its own matter content
is given by the halo matter density profile ρh

ξ1h =
ρh

ρ̄m
– 1 . (22)

Analytic calculations and numerical simulations suggest that
dark matter halos have a symmetric density profile in a
spherical aperture (Navarro et al. 1996). More recent stud-
ies look at the impact of the triaxiality of the halos as a
new source of uncertainty in the WL signal (Oguri et al.
2005; Meneghetti et al. 2010; Sereno & Umetsu 2011).
This systematic involves a larger scatter of the mass and
over-estimates the concentration when triaxial clusters are
aligned with the line of sight. Several works, such as Navarro
et al. (1997); Bullock et al. (2001) provided a specific analyt-
ical form for the halo distribution, also called the Navarro-
Frenk-White (NFW) density profile, in which the density
varies with the distance from the center r as

ρnfw =
ρs

(r/rs)(1 + r/rs)2
, (23)

where ρs = ρcδc is the scale density and rs the scale radius.
The overdensity contrast δc can be expressed as a function
of the concentration c and the overdensity factor ∆ as

δc =
∆c3

3m (c)
. (24)

0.1 1.0 10.0

R [Mpc/h]

1

10

100

1000

Σ
cr

g +
[h

M
�
/p

c2
]

r200c rt
1h nfw

1h bmo

1h nfwoff

1h bmooff

2h lin.

2h non-lin.

Halo model

Figure 4. The halo model (blue) is composed of the BMO halo
mass profile (thick green, Baltz et al. 2009), its off-centered con-

tribution (thick cyan, Johnston et al. 2007b) and the second term
derived from the linear matter power spectrum (thick red, Eisen-

stein & Hu 1999). For comparison, we show the centered / off-

centered NFW mass profile (dashed green / cyan, Navarro et al.
1997) and the surrounding matter term with a non-linear power

spectrum (dashed red, Takahashi et al. 2012). The density pro-

file is computed in this example for a halo at zl = 0.2 with a
total mass M200c = 1014 M�/h, a concentration c200c = 4 and a

bias set at bh = 1 (with σ8 = 0.83). The variance and the frac-

tion of an off-centered population contribute to the profile with
σoff = 0.25 Mpc/h and foff = 0.25. Finally, the reduced shear is

given for an effective source redshift zs = 1, while the non-shaded
area reveals the range allowed by the stacked WL analysis.

The function m(c) depends the choice of density profile and
on the concentration parameter as in Equation(26). There-
fore, we adopt the common virial value ∆ = 200c, relating to
a spherical volume with a density 200 times higher than the
critical density of the Universe. Hence, we parametrize the
scale radius as rs = r200c/c200c. We leave the concentration
within that sphere free in order to study the relation between
the mass and the concentration in Section 6.2. A second ap-
proach would be to consider an existing mass-concentration
scaling relation, e.g. from Merten et al. (2015b) based on X-
ray selected galaxy clusters of the Cluster Lensing And Su-
pernova Survey with Hubble (CLASH, Postman et al. 2012),
or from simulations (e.g. Child et al. 2018). The 3D NFW
profile can be analytically converted into a 2D version and
thereby extended to an excess surface mass density version
following Golse & Kneib (2002).

The NFW profile has a non-physical divergence of its to-
tal mass (Takada & Jain 2003). The Baltz-Marshall-Oguri
(BMO, Baltz et al. 2009) profile is a smoothly truncated
version of the NFW profile which allows to circumvent this
problem with infinite mass. This profile presents the follow-
ing shape

ρbmo =
ρs

(r/rs)(1 + r/rs)2

(
r2t

r2 + r2t

)2
. (25)

We set the truncation radius to rt = 3r200c in the following
analysis (Covone et al. 2014; Sereno et al. 2017; Bellagamba
et al. 2019). The BMO profile also provides less biased esti-
mates of mass and concentration with respect to the NFW
profile, and better describes the density profile at the transi-
tion scales between the one-halo and two-halo terms (Oguri
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& Hamana 2011). Baltz et al. (2009) provide an analytical
expression for the surface mass density. The function m in
Equation (24) differs according to the profile as (Oguri &
Hamana 2011)

mnfw = ln (1 + c) –
c

1 + c

mbmo =
τ2

2(τ2 + 1)3(1 + c)(τ2 + c2)

×
[
c(τ2 + 1)

{
c(c + 1) – τ2(c – 1)(2 + 3x) – 2τ4

}
+ τ(c + 1)(τ2 + c2)

{
2(3τ2 – 1) arctan(c/τ)

+ τ(τ2 – 3) ln(τ2(1 + c)2/(τ2 + c2))
}]

,

(26)

where τ ≡ rt/rs. We display the NFW and BMO surface
mass density profiles in Figure 4. We indicate r200c and rt
locations with vertical arrows.

4.2 Miscentering correction

The detection of clusters is based on the identification of
galaxy overdensities, hence the adopted cluster center cor-
responds to the peak in the projected space of the galaxy
distribution. This peak may not coincide with the barycen-
ter of the DM distribution. In reality, we expect the detected
pixel position of the cluster center to possibly be shifted with
respect to the center of the halo. Skibba & Macciò (2011)
and George et al. (2012) discussed the importance of locat-
ing the centers of dark matter halos in order to properly
estimate their mass profiles. Miscentering is expected to be
a small with respect to the cluster radius, under the assump-
tion that light traces dark matter (Zitrin et al. 2011a,b; Coe
et al. 2012; Merten et al. 2015a; Donahue et al. 2016). How-
ever, radial miscentering is larger for optical clusters selected
in a survey with a complex mask footprint.

Hence, we introduce the radial displacement of the clus-
ter center Roff , while the off-centered density profile is the
average of the centered profile over a circle drawn around the
incorrect center (Yang et al. 2006; Johnston et al. 2007b)

Σoff(R|Roff) =
1

2π

∫ 2π

0
Σcen

(√
R2 + R2

off + 2RRoff cos θ
)

dθ .

(27)
This term holds for an isolated galaxy cluster. We extend
the profile to a global population of galaxy clusters so that
the off-centered contribution is given by

Σoff(R|σoff) =

∫ ∞

0
P(Roff , σoff)Σoff(R|Roff)dRoff , (28)

where the displaced distances Roff follows a Rayleigh dis-
tribution with parameter σ2

off
(Simet et al. 2017; Melchior

et al. 2017)

P(Roff , σoff) =
Roff

σ2
off

exp

[
–

1

2

(
Roff

σoff

)2]
. (29)

Considering foff as the fraction of the off-centered popu-
lation, the total miscentered density profile can be modelled
as

Σmis(R|σoff , foff) = (1 – foff)Σcen(R) + foffΣoff(R|σoff) .
(30)

Since this mainly impacts the central region of the halo pro-
file, we reduce the correction to the one-halo component of

the model. The miscentering effect is illustrated in Figure 4
with the two elements of the above sum. From the figure, we
can also see that the miscentering parameters are degenerate
with the halo concentration.

4.3 Correlated matter component

On large scales, the lensing signal of the halo is dominated
by correlated matter, e.g. neighbouring halos or filaments,
rather than its own matter content. The two-halo term usu-
ally contributes to the whole profile at R & 10 Mpc/h. Fol-
lowing the standard approach, this signal is proportional to
the matter-matter correlation function ξm through the halo
bias bh

ξ2h = bhξm . (31)

We derive the matter correlation function at radius r from
the Fourier transform of the dimensionless matter power
spectrum ∆2(k) ≡ P(k)k3/

(
2π2

)
, and the first-order spheri-

cal Bessel function j0(x) = sin x/x

ξm =

∫ ∞

0

∆2(k)

k
j0(kr)dk . (32)

We illustrate the second term of the surface mass density
profile in Figure 4 assuming bias bh = 1. We also display re-
sults given by the linear matter power spectrum (Eisenstein
& Hu 1998, 1999) and by the non-linear matter power spec-
trum computed assuming the so-called halofit model (Taka-
hashi et al. 2012). A halo mass of M200c = 1014 M�/h and
concentration of c200c = 4 contribute 15% and 25%, resp-
tively, to the whole profile at the intermediate scale R = 3.16
Mpc/h, considering the BMO miscentered profile as the one-
halo term. We focus on the linear version, since we provide
a comparative analysis with theoretical mass-bias relations
(e.g. Tinker et al. 2010) derived from simulations, where re-
sults are given in terms of “peak height” in the linear density
field. However, it is important to keep in mind that the non-
linear version of the power spectrum shows a non-negligible
contribution of mass fluctuations at small and intermediate
scales. The second term of the halo model is parameter-
ized in terms of a degenerate value of the halo bias with
σ2
8. This parameter defines the rms fluctuations σ(M) for

a mass enclosed in a comoving sphere of radius 8 Mpc/h.
This actually corresponds to the typical scale for the forma-
tion of galaxy clusters. The parameter σ2

8 also derives from
the matter power spectrum as a normalization factor and
permits cosmological inference of the product bhσ2

8.

4.4 Total halo model

The total surface mass density profile is modelled with the
following terms and their associated marginalized parame-
ters

Σtot = Σ 1h
bmo
mis

(M200c, c200c, σoff , foff) + Σ2h
lin

(bhσ2
8) . (33)

Mass and bias are the two most critical variables among the
five free parameters since they both act on the amplitudes of
the one-halo and two-halo terms, respectively. For example,
Figure 4 shows Equation (33) in blue with zl = 0.2, zs = 1,
M200c = 1014 M�/h, c200c = 4, σoff = 0.25 Mpc/h, foff =
0.25 and bhσ2

8 = 0.832.
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In Section 5, we describe the numerical method used to
assess the posteriors and best estimates given by the data
derived in Sections 2 and 3 with the model described in this
Section. Bayesian inference allows us to correlate the differ-
ent halo parameters together and completes the cosmological
study.

5 MCMC METHOD

In Bayesian statistics, the Monte Carlo Markov Chain
(MCMC) method is commonly used to sample posterior dis-
tributions. The best parameters are found with the maxi-
mum likelihood distribution, giving the highest probability
of the sample (also given by minimizing the χ2-distribution).
In this specific study, the likelihood function is the joint
probability of getting the measurement ∆̃Σ with the parame-
ters θ = [log10 M200c, c200c, σoff , foff , bhσ2

8] given the model
∆Σ. This probability distribution is assumed to be normal
and multiplied over the radial bins i, j of the profile to pro-
vide a global approximation of the variable

L (θ) ≡ p
(
∆̃Σ|θ

)
∝ exp

(
–

χ2

2

)
, (34)

where

χ2 =
∑
i,j

(
∆̃Σi – ∆Σi

)
C–1
ij

(
∆̃Σj – ∆Σj

)
, (35)

and Cij is the covariance matrix described in Appendix A.
The χ2 parameter is a good indicator of the goodness of

fit of a statistical model. Its probability distribution depends
on the degree of freedom which is the difference between the
number of observations considered in the analysis and the
number of variables in the halo model, here df = 26 – 5 =
21. In a goodness-of-fit test, the null hypothesis assumes
that there is no significant difference between the observed
and the expected values. Considering a significance level of
α = 0.01 defining the critical χ2 values on the left and right
tails of the distribution, the null hypothesis is verified if
8.9 < χ2 < 38.9.

The likelihood is defined in the prior uniform distribu-
tion of the halo parameters having the following conservative
bounds (Bellagamba et al. 2019):

• log10 (M200c/ (M�/h)) ∈ [12.5, 15.5]
• c200c ∈ [1, 20]
• σoff ∈ [0, 0.5] Mpc/h
• foff ∈ [0, 0.5]
• bhσ2

8 ∈ [0, 20]

We based the Bayesian inference on the emcee2 algorithm
(Foreman-Mackey et al. 2013), which uses an affine-invariant
sampling method initially introduced in Goodman & Weare
(2010). The cosmological parameters are defined for the fit
as in Section 1.

We adopted an ensemble sampler with 32 walkers over a
chain of 10,000 steps, giving a total size of 320,000 walkers to
sample the posterior distribution. This scheme was already
adopted in McClintock et al. (2019). We define the burn-in
phase as being twice the integrated autocorrelation time τf

2 https://emcee.readthedocs.io/
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Figure 5. Posterior distributions arising from the halo model

and the density profile derived in this study. The median of the
marginalized distribution of the mass, concentration, off-centering

parameters and bias are displayed as dashed lines. The 2D poste-

rior distributions also show the 68% and 95% confidence regions
in shaded grey regions.

of our chain f. In addition, we tested the convergence of the
MCMC by running the potential scale reduction factor R̂
(see Gelman & Rubin 1992). Convergence is reached if the
criterion R̂ < 1.1 is satisfied.

In Figure 5, we show the joint posterior distributions
given by the sampler for the total profile shown in Figure 3.
In the case of a normal PDF (as for the halo mass and bias),
the 16th-84th and 2th-98th percentiles highlight 1σ and 2σ
confidence regions forming ellipsoids in the 2D parameter
space. In the opposite case, the percentiles show distorted
ellipsoidal regions which define the errors on the parameter.
For example the foff posterior distribution gives errors larger
than the prior boundaries, while we expect the posterior of
the parameter to follow a Gaussian-like distribution within
the limits defined by the prior function. This effect suggests
that the parameter is imprecisely constrained. Nevertheless,
the sampler distributions of the parameters of interest (i.e.
mass, concentration and bias) converge significantly, which
makes it possible to consistently exploit their relation. For
the following, we define the error on the parameters as the
1σ confidence interval, specifically approximated here with
the region where 68% of walkers lie around the mean.

6 RESULTS

We obtain the stacked radial shear profiles for the AM-
ICO KiDS-DR3 galaxy clusters split into 14 redshift-richness
bins, from 0.2 to 30 Mpc/h. We use the MCMC method pre-
sented in Section 5 to fit the profiles with the halo model
discussed in Section 4. Data and fitted models are shown
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Figure 6. The stacked shear profiles and the halo model (blue) corresponding to the fitted parameters, with the 1σ confidence interval

(blue region). Each row corresponds to a redshift bin, while each panel corresponds to an associated richness bin. The top right legends
show the SNR, computed from each radial bin and summed over the [0.2, 30] Mpc/h radial range, and the χ2 computed as in Equation (35)

given by the 50th percentile parameters. The model components: the main halo term (green), the off-centered contribution (cyan), and

the correlated matter term (red). Empty points show the first four radial bins not considered in the fit.

Table 2. Mass, concentration and bias resulting from the fit with their errors given in separate rows as different redshift and richness
bins. These values correspond to the 16th, 50th and 84th percentiles of the posterior distributions. We also show the mass measurement

in the radial range [0.2, 3.16] Mpc/h in brackets. Mean richness (λ̄∗), lens redshift (z̄l) and source redshift (z̄s) are computed from

Equations (17) and (10) and their errors are assumed to be the rms weighted sample deviation. We report both the number of clusters
Nl and the fraction of clusters relative to the full selected cluster sample in each redshift-richness bin (column 6).

zl λ∗ z̄l λ̄∗ z̄s Nl log10 (M200c/ (M�/h)) c200c bhσ2
8

[0.1, 0.6[ [0, 140[ 0.372 ± 0.005 19.92 ± 0.50 0.763 ± 0.004 6961 (100.0%) 13.69+0.03
–0.03

(
13.68+0.03

–0.03

)
2.90+1.43

–0.70 1.20+0.10
–0.10

[0.1, 0.3[ [0, 15[ 0.192 ± 0.004 10.25 ± 0.21 0.700 ± 0.004 1246 (17.9%) 13.24+0.08
–0.08

(
13.23+0.08

–0.08

)
9.27+6.85

–5.05 0.60+0.18
–0.18

[0.1, 0.3[ [15, 25[ 0.216 ± 0.005 18.94 ± 0.28 0.726 ± 0.006 683 (9.8%) 13.56+0.08
–0.08

(
13.58+0.08

–0.07

)
4.25+5.18

–2.05 1.71+0.24
–0.25

[0.1, 0.3[ [25, 35[ 0.226 ± 0.009 29.09 ± 0.51 0.742 ± 0.011 209 (3.0%) 14.01+0.07
–0.07

(
14.04+0.07

–0.07

)
1.64+1.00

–0.46 2.19+0.46
–0.46

[0.1, 0.3[ [35, 45[ 0.232 ± 0.017 39.61 ± 0.83 0.740 ± 0.020 83 (1.2%) 14.29+0.06
–0.07

(
14.30+0.06

–0.07

)
3.17+2.23

–1.10 3.07+0.76
–0.77

[0.1, 0.3[ [45, 140[ 0.228 ± 0.019 56.05 ± 5.86 0.747 ± 0.022 44 (0.6%) 14.53+0.05
–0.06

(
14.52+0.06

–0.06

)
3.95+2.25

–1.21 3.56+1.01
–1.04

[0.3, 0.45[ [0, 20[ 0.374 ± 0.005 15.13 ± 0.38 0.860 ± 0.002 1110 (15.9%) 13.60+0.08
–0.08

(
13.60+0.08

–0.08

)
9.31+6.57

–4.58 0.52+0.28
–0.26

[0.3, 0.45[ [20, 30[ 0.388 ± 0.005 24.16 ± 0.39 0.863 ± 0.003 769 (11.0%) 13.87+0.07
–0.07

(
13.93+0.07

–0.07

)
3.65+3.71

–1.54 1.57+0.36
–0.35

[0.3, 0.45[ [30, 45[ 0.390 ± 0.008 35.94 ± 0.94 0.863 ± 0.004 320 (4.6%) 14.20+0.06
–0.06

(
14.19+0.06

–0.06

)
1.63+0.82

–0.43 0.83+0.52
–0.47

[0.3, 0.45[ [45, 60[ 0.393 ± 0.015 50.94 ± 1.86 0.866 ± 0.008 87 (1.2%) 14.40+0.08
–0.08

(
14.39+0.07

–0.08

)
10.65+5.73

–4.52 2.51+1.02
–1.02

[0.3, 0.45[ [60, 140[ 0.381 ± 0.022 75.81 ± 9.29 0.860 ± 0.012 45 (0.6%) 14.64+0.06
–0.06

(
14.66+0.06

–0.06

)
5.11+3.15

–1.62 4.20+1.42
–1.43

[0.45, 0.6[ [0, 25[ 0.498 ± 0.006 19.76 ± 0.53 0.887 ± 0.003 1107 (15.9%) 13.60+0.10
–0.11

(
13.58+0.10

–0.11

)
6.53+7.74

–3.97 0.82+0.40
–0.39

[0.45, 0.6[ [25, 40[ 0.518 ± 0.008 30.75 ± 0.74 0.888 ± 0.003 952 (13.7%) 13.94+0.06
–0.06

(
13.93+0.06

–0.06

)
8.43+6.54

–3.76 1.68+0.47
–0.46

[0.45, 0.6[ [40, 55[ 0.513 ± 0.018 46.14 ± 1.54 0.888 ± 0.006 232 (3.3%) 14.19+0.07
–0.08

(
14.23+0.07

–0.08

)
6.18+5.77

–2.65 5.16+0.89
–0.91

[0.45, 0.6[ [55, 140[ 0.516 ± 0.028 66.69 ± 8.22 0.888 ± 0.012 74 (1.1%) 14.56+0.08
–0.10

(
14.54+0.10

–0.11

)
1.50+0.77

–0.36 1.07+1.21
–0.75
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in Figure 6. The SNR is computed as ∆̃Σj/σ∆̃Σj
from Equa-

tions (8) and (11) and summed over the radial bins j.
Table 2 shows the best fit values for the halo mass, the

concentration and the halo bias in each cluster bin with the
68% confidence bounds. The parameters computed over the
stacked profile of the full catalog are also displayed in the
first row, and correspond to the dashed values shown in Fig-
ure 5 with χ2 = 29.8, which suggests that the goodness-of-fit
test has been passed, as for the other bins. The mean redshift
and the mean richness of the lenses are computed as in Equa-
tion (17), while the mean redshift of the sources is the effec-
tive redshift zback in Equation (10). We additionally measure
the mass from a fitting in the radial range [0.2, 3.16] Mpc/h
assuming the same priors for the full profile, unlike the bias
derived from Tinker et al. (2010). These measurements are
in good agreements with Bellagamba et al. (2019) and show
for the two lower redshift bins a relative percentage differ-
ence within ∼ 5% (see Figure 7). This variation could be
explained by the different choice for the radial bins within
3.16 Mpc/h: 14 logarithmically equispaced annuli were used
in the previous study, while in this work we selected the ra-
dial bins within 3.16 Mpc/h over the full radial range of the
shear profile. These two definitions make the profiles and the
derived measurements of the mass slightly different.

In the following, we investigate the correlations of the
mass with the cluster richness (see Section 6.1), with the
concentration (see Section 6.2) and with the bias (see Sec-
tion 6.3).

6.1 Halo mass-richness relation

The average redshift and richness of the lenses in each red-
shift bin are shown in Figure 1, and follow the global trend
given by the removal of low mass clusters at high redshift
for AK3 clusters with SNR < 3.5. Figure 6 shows that the
differential density at a given radius increases with richness,
suggesting a clear correlation between cluster mass and rich-
ness. Figure 7 shows the relation between the mass and the
effective richness of the cluster bins. We fit this relation as-
suming the following power law in logarithmic scale

log10
M200c

Mpiv
= α + β log10

λ∗
λpiv

+ γ log10
E(z)

E(zpiv)
, (36)

where E(z) ≡ H(z)/H0 and Mpiv = 1014M�/h, λpiv = 30,
and zpiv = 0.35 corresponding to the median values for AK3
(Bellagamba et al. 2019). We estimate the parameters of this
multi-linear function applying an orthogonal distance regres-
sion method (ODR3), involving mass, richness and redshift
uncertainties. The fit gives

• α = 0.007 ± 0.019
• β = 1.72 ± 0.09
• γ = –1.35 ± 0.70.

As Figure 7 shows, these results are in remarkable agreement
with Bellagamba et al. (2019) despite the different definition
of richness bins at high redshifts and the different fitting
method. In addition, they are also perfectly consistent with
Lesci et al. (2020) and Sereno et al. (2020), regardless of the
different approaches employed to fit the scaling relation.

3 https://docs.scipy.org/doc/scipy/reference/odr.html
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Figure 7. Mass-richness scaling relation for the full catalog

(black) and for the low (blue), intermediate (red) and high (green)
redshift bins. The thick line corresponds to the model formulated

in Equation (36). Full and empty data points represent the mea-

surements over the whole radial profile and over the central region
of the halo, respectively. We compared our results with those pre-

sented in Bellagamba et al. (2019). The fainter colored points

represent the data and the dashed lines represent the model. The
relative change with respect to the results of this work is displayed

in the bottom panel.

The positive correlation between shear signal and rich-
ness is shown in Figure 6 at large radii and implies a strong
correlation between the bias and the mass. The SNR of indi-
vidual radial bins at large scales is relatively low due to the
poor quality of the shear produced by low mass clusters, and
increases with the richness. The highest redshift-richness bin
shows a particularly low SNR with a low amplitude for the
shear profile, where usually we expect the signal amplitudes
at small and large scales to be high in large richness bins.
The poor quality of the lensing signal in this specific bin also
impacts the halo mass and bias with a downward trend.

6.2 Halo mass-concentration relation

Halo concentration is determined by the mean density of the
Universe at the epoch of halo formation (Neto et al. 2007;
Giocoli et al. 2012). Thus, clusters that assemble later are
expected to have a lower concentration than older clusters,
formed when the mean density was higher. This determines
a clear correlation with the halo mass in such a way that the
halo concentration is expected to be a decreasing function
of the halo mass. This is supported by our results shown in
Figure 8. We compare the results with the concentration and
mass measured with stacked WL data from 130,000 SDSS
galaxy groups and clusters (Johnston et al. 2007a) and 1176
CFHTLenS galaxy clusters (Covone et al. 2014). These anal-
yses are consistent within 1σ. The large and asymmetric er-
ror bars for the concentration reflect the high sensitivity of
this parameter to the inner region, which is poorly covered
by our WL analysis. Sereno & Covone (2013), Umetsu et al.
(2014) and Sereno et al. (2015a) discussed the effects stem-
ming from the different choices and forms of the priors, and
found a log-uniform prior might underestimate the concen-
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tration. As done for the redshift-mass-richness relation, we
fitted the redshift-concentration-mass relation with a power-
law function (Duffy et al. 2008), given as

log10 c200c = α + β log10
M200c

Mpiv
+ γ log10

1 + z

1 + zpiv
. (37)

We assume the pivot mass and redshift have the same val-
ues as in Equation (36), while the multi-linear regression is
processed with the ODR routine over the full sample. We find

• α = 0.62 ± 0.10
• β = –0.32 ± 0.24
• γ = 0.71 ± 2.51.

The large error on γ suggests a weak constraint of the red-
shift evolution due to the sparse number of data points
(Sereno et al. 2017). The black line in Figure 8 shows the
fitted power law with the 1σ uncertainty interval, assumed
as the range defined by the standard deviations of the es-
timated parameters and derived from the diagonal terms
of the asymptotic form of the covariance matrix (see Fuller
1987). Because of the small set of data points, the fit in
each redshift bin does not provide consistent results for the
coefficients. In Figure 8, we also show the theoretical rela-
tions between mass and concentration given by six different
analyses of numerical simulations (Duffy et al. 2008; Dutton
& Macciò 2014; Meneghetti et al. 2014; Diemer & Kravtsov
2015; Child et al. 2018; Diemer & Joyce 2019; Ishiyama et al.
2020). In the corresponding mass range, our results are in
good agreement with the theoretical predictions, but have
a steeper and lower relation with respect to the results ob-
tained by Sereno et al. (2017) on the PSZ2LenS sample.
The average concentration for the full AK3 catalog seems to
show a lower value than Equation (37) and the theoretical
expectations, but still remains in the 1σ confidence interval.

6.3 Halo mass-bias relation

In Figure 9 we show the correlation between the cluster mass
and the halo bias for the different redshift bins. The cor-
responding values are also reported in Table 2. These re-
sults are also in good agreement with previous results based
on stacked WL studies on SDSS (Johnston et al. 2007a)
and CFHTLens (Covone et al. 2014; Sereno et al. 2015b)
galaxy clusters. As expected with the fourth richness bin at
the highest redshift, the Bayesian inference of the halo bias
shows a low SNR consistent with the poor quality of the
lensing signal at large scales.

Tinker et al. (2010) calibrated the dependence of the
large-scale bias on the mass by analysing the clustering of
dark matter halos based on dark-matter only cosmological
simulations, and obtained a 6% scatter from simulation to
simulation. Alternatively, Seljak & Warren (2004) and Bhat-
tacharya et al. (2011) also derived the average halo bias re-
lation as a function of the cluster mass from N -body sim-
ulations. These bias-mass theoretical relations are reported
in Figure 9 using the corresponding values of σ8 in Table 3.
Due to the limited number of points, the data in each red-
shift bin do not exhibit a strong correlation with the theoret-
ical bias given at the effective redshift of the bin. The black
lines present an agreement within 2σ with all our measure-
ments except the third richness point for the high redshift
bin, which agrees within 3σ due to its high amplitude. We
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Figure 8. The relation between the mass and the halo concen-
tration for the full catalog (black) and for the low (blue), inter-

mediate (red) and high (green) redshift bins. The results on the

concentration are compared with calibrated data from a stacked
WL analysis on SDSS and CFHTLenS galaxy clusters (Johnston

et al. 2007a; Covone et al. 2014). The thick black line reports

the best estimate of the linear regression for Equation (37) with
its 1σ confidence region. The relation is contrasted with results

given by different theoretical analyses (Duffy et al. 2008; Dutton

& Macciò 2014; Meneghetti et al. 2014; Diemer & Kravtsov 2015;
Child et al. 2018; Diemer & Joyce 2019; Ishiyama et al. 2020).
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Figure 9. Halo bias-mass relation for the full catalog (black)
and for the low (blue), intermediate (red) and high (green) red-

shift bins. The results on the halo bias are compared with cali-

brated data from a stacked WL analysis on SDSS and CFHTLenS
galaxy clusters (Johnston et al. 2007a; Covone et al. 2014; Sereno

et al. 2015b). Theoretical relations are derived from Seljak & War-

ren (2004); Tinker et al. (2010); Bhattacharya et al. (2011) and
respectively displayed as dotted, thick and dashed lines. These

functions are computed within their confidence interval using the
values of σ8 reported in Table 3.

attribute this statistical fluctuation to the low number of
clusters in this region of richness-redshift space, since the
few and uneven number of objects results in a poorer statis-
tical measurement of the stacked lensing signal.
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Table 3. Median, 16th and 84th percentiles of the posterior dis-
tribution for σ8. We also show the difference, ∆σ8, between σ8

measured on the median mass values, and σ8 measured on the

mass 16th and 84th percentile values.

The cosmological parameter is given for three relations derived
from numerical simulations.

simulation σ8 ∆σ8

Seljak & Warren (2004) 1.01+0.05
–0.05 0.02

Tinker et al. (2010) 0.63+0.11
–0.10 0.01

Bhattacharya et al. (2011) 0.66+0.19
–0.27 0.12

6.4 Constraint on σ8

Since the halo bias is degenerate with σ2
8, it is important

to obtain independent constraints on this cosmological pa-
rameter within a ΛCDM framework. Here we let σ8 be a
free parameter in the theoretical mass-bias relation and fit
the bhσ2

8 results with the method described in Section 5,
assuming a uniform prior σ8 ∈ [0.2, 2.0]. We use a diagonal
covariance matrix, where the variance terms are the square
of the errors on the bias defined by the 68% confidence re-
gions. We do not account for the errors on the mass, hence
accurate mass measurements are essential to constrain σ8.

The resulting best fit values are shown in Table 3. Bhat-
tacharya et al. (2011) used the “peak-background split” ap-
proach of Sheth & Tormen (1999) to fit the parameters of
the mass function. The authors note that the bias function
does not match the numerical results as well as direct cali-
brations, which could explain the discrepancy with respect
to the results obtained with the two other relations. In order
to estimate the effect of the mass uncertainty on cosmolog-
ical inference, we measured σ8 at masses corresponding to
the 16th and 84th percentiles and noticed a difference with
the median masses smaller than the statistical uncertainty
of the parameter (see Table 3).

Figure 10 shows the three posterior distributions
for σ8 obtained in this work compared with the re-
sults from the cosmic microwave backround measurements
by Planck (Planck Collaboration et al. 2020, Table 2,
TT,TE,EE+lowE+lensing) and WMAP (Hinshaw et al.
2013, Table 3, WMAP-only Nine-year). Our constraint on σ8

with the Seljak & Warren (2004) model, which has a sharp
posterior that peaks around σ8 ∼ 1, highlights a discrepancy
larger than 3σ with CMB values. The posteriors given by the
Tinker et al. (2010) and Bhattacharya et al. (2011) models
overlap within 2σ and 1σ with the CMB data, respectively,
but the Bhattacharya et al. (2011) posterior is clearly differ-
ent from a normal distribution. Because of the small size of
the sample and the poor quality of the bias-mass measure-
ments in some bins, our results yield quite broad posteriors
that are necessarily in agreement with WMAP and Planck
median values.

Finally in Figure 11 we present our reference result from
Tinker et al. (2010) in the broader context of recent measure-
ments of σ8. This model was calibrated for a range of over-
densities with respect to the mean density of the universe
and can easily be converted to overdensities with respect
to the critical density, which makes the bias more reliable
for the mass definition M200c. In addition, our bhσ2

8 results
given by the Tinker et al. (2010) relation are more reliable
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Figure 10. Posterior distribution for σ8. The probability function

is shown for three halo bias-mass relations, i.e. Seljak & Warren

(2004), Tinker et al. (2010) and Bhattacharya et al. (2011), shown
in blue, red and green, respectively. The dark to light shaded re-

gions correspond to the 1 – 2 – 3σ intervals. We compare these

distributions with the median values of Planck (cyan, Planck Col-
laboration et al. 2020, Table 2, TT,TE,EE+lowE+lensing) and

WMAP (magenta, Hinshaw et al. 2013, Table 3, WMAP-only

Nine-year).

in comparative terms, since studies referenced in this paper
base their analyses on this relation. In particular, we display
the results from clustering and cluster counts studies based
on the AK3 galaxy clusters sample (Nanni et al. prep; Lesci
et al. 2020), from cluster counts analyses done on SDSS-DR8
and 2500 deg2 SPT-SZ Survey data (Costanzi et al. 2019;
Bocquet et al. 2019), from galaxy clustering and weak lens-
ing in DES-Y3 (DES Collaboration et al. 2021), and from
cosmic shear analysis based on the HSC-Y1 and KiDS-DR4
catalogs (Hikage et al. 2019; Asgari et al. 2021, respectively).
We also show the results from Planck (Planck Collaboration
et al. 2020, Table 2) and WMAP (Hinshaw et al. 2013, Table
3) measurements.

Since the amplitude of the matter power spectrum cor-
relates with the mean matter density, all these studies de-
rived the combined parameter S8 ≡ σ8

√
Ωm/0.3. In this work

we computed a direct measurement of σ8, dependent on
the specific cosmological model assumed in our analysis. In
the figure, we indicate with different symbols the measure-
ments of σ8 obtained without assuming specific values of the
cosmological parameters (empty dots) and those assuming
Ωm = 0.3 (filled dots). Our results are closer to those ob-
tained fixing Ωm = 0.3, as a low inference of Ωm induces a
higher estimate of σ8, and vice versa. For example, Planck
Collaboration et al. (2020) results show a posterior mean
slightly higher than Ωm = 0.3, while for cosmic shear stud-
ies it is slightly lower, hence when fixing Ωm to 0.3 there is
a shift in σ8 to larger values for Planck Collaboration et al.
(2020) and lower values for cosmic shear surveys. However,
the 2 – 3σ regions for the posteriors of the three theoretical
relations agree with the results of these external references,
regardless of the cosmological dependencies considered, but
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Figure 11. Comparison with literature results. Our reference σ8

value is obtained assuming the Tinker et al. (2010) model. We

show the median, 16th and 84th percentiles. We present from top
to bottom results obtained in this work (black), Planck Collab-

oration et al. (2020) (blue), Hinshaw et al. (2013) (red), Nanni

et al. (prep) (magenta), Lesci et al. (2020) (cyan), Costanzi et al.
(2019) (turquoise), Bocquet et al. (2019) (green), DES Collabora-

tion et al. (2021) (light green), Hikage et al. (2019) (yellow) and

Asgari et al. (2021) (orange). We show the relative constraints
on σ8 in a free cosmology (empty dots) and assuming Ωm = 0.3

(filled dots). The shaded regions correspond to the 99.7%, 95%

and 68% confidence intervals.

still have to be taken carefully into consideration because
of the poor constraint. The gap of σ8 results from Seljak &
Warren (2004) to Tinker et al. (2010) or Bhattacharya et al.
(2011) also stresses the importance of the theoretical model
when constraining cosmological parameters in a stacked WL
analysis.

7 SUMMARY AND DISCUSSION

We investigated the halo bias from a revised stacked WL
analysis presented in Bellagamba et al. (2019) on 6961 AM-
ICO galaxy clusters identified in the recent KiDS-DR3 field.
We divided the catalog into 14 bins in redshift and richness
and for each of them we derived the excess surface mass
density profiles. We selected sources from their photomet-
ric redshifts or gri-colors. We compared the two color-color
selections presented in Medezinski et al. (2010) and Oguri
et al. (2012) with COSMOS accurate photometric redshifts
in order to carry the most effective cut out for KiDS sources.
The final WL profiles are obtained by subtracting the signals
given by a large number of random lenses. We computed the

covariances by applying the bootstrap technique to the clus-
ter and random shears, and added together the matrices to
assess the uncertainties of the final profiles. We performed
the Bayesian inference of the halo parameters with a MCMC
method run over a radial range from 0.2 to 30 Mpc/h.

We modelled the WL signal from galaxy clusters by
including the contribution of a truncated version of the
NFW profile, which includes a correction for the off-centered
galaxy clusters and a correlated matter term originating
from the linear matter power spectrum.

Our measurements of the halo mass within 3.16 Mpc/h
agree with the results obtained by Bellagamba et al. (2019)
with a relative difference estimated on the order of 5%.
From the full radial range, we obtained halo masses and de-
rived the mass-richness relation given by Equation (36) with
α = 0.007±0.019, β = 1.72±0.09 and γ = –1.35±0.70, in re-
markable agreement with Bellagamba et al. (2019). We also
studied the halo mass-concentration relation modelled as in
Equation (37). We obtained α = 0.62±0.10, β = –0.32±0.24
and γ = 0.71±2.51. The constraints show a steeper but con-
sistent relation with respect to theoretical results derived
from the analysis of numerical simulations.

Our results on the halo bias are consistent with previous
measurements and with simulations in a ΛCDM framework.
Some data points are affected by a relatively low SNR, as the
number of galaxy clusters in the given redshift-richness bins
is limited. These effects and the small number of richness
bins prohibited the detection of any trend for the halo bias
with the effective redshift of the clusters in each redshift bin.
The measurements over the stacked profile of the full AK3
catalog give bhσ2

8 = 1.2 ± 0.1 located at M200c = 4.9 ± 0.3 ×
1013M�/h, in good agreement with ΛCDM predictions.

In the fitting procedure, the halo bias parameter is de-
generate with the amplitude of the power spectrum σ8. This
last cosmological parameter is fitted with the theoretical
mass-bias relations given in Seljak & Warren (2004), Tin-
ker et al. (2010) and Bhattacharya et al. (2011). Assuming
a flat ΛCDM cosmological model with Ωm = 1 – ΩΛ = 0.3,
we found σ8 = 1.01+0.05

–0.05 ; 0.63+0.11
–0.10 ; 0.66+0.19

–0.27 for the three
above mentioned relations. These results present slight de-
viations with respect to the latest WMAP or Planck σ8 esti-
mates, but agree within 2σ, with the exception of the results
based on the Seljak & Warren (2004) posterior, which shows
a sharper distribution centered on a larger value of σ8. Other
works, based on cluster clustering, cluster counts and cos-
mic shear analyses, report values of σ8 in agreement with
our estimates within 2σ, either assuming Ωm fixed or free.
The importance of the choice of the theoretical model for
the halo bias also highlights the difficulty in constraining
this cosmological parameter in a WL analysis.

For future work, we are interested in combining the in-
ference on σ8 with Ωm to constrain the parameter S8 ≡
σ8

√
Ωm/0.3, which would compliment the study on σ8 in

this paper and Ωm in Giocoli et al. (2021). Specifically, Gio-
coli et al. (2021) provided a similar analysis on the AK3
galaxy clusters with a stacked shear profile up to 35 Mpc/h
and recovered consistent mass measurements with respect to
Bellagamba et al. (2019) and this paper. The binning scheme
differs from this work since the cluster amplitude as a bin-
ning property was favored, while we opted for richness. This
mainly affects the scaling relation between the mass and the
cluster richness or amplitude. The impact of the truncation
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radius has been deeply investigated in Giocoli et al. (2021),
here we performed a robust analysis of the covariances and
cross-covariances and studied the effects of the lensing signal
systematics in each patch of the field through the random
signal. Both studies were carried out with independent nu-
merical pipelines and followed a process of cross-validation
among the KiDS collaboration.

The methodology used in this work will constitute a
baseline for future KiDS Data Releases (Kuijken et al. 2019)
and similar but larger data sets that combine cluster and
shear catalogs. Upcoming surveys, such as Euclid (Euclid
Collaboration et al. 2019) and LSST (LSST Dark Energy
Science Collaboration 2012), will provide promising data
sets allowing for further statistical analyses in deeper and
wider fields. These data sets will be fundamental for the
study of the halo properties such as mass and bias with
stacked WL analyses, and will allow robust estimates of the
main cosmological parameters.
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APPENDIX A: COVARIANCES

Stacked WL signals are a comprehensive assessment of the
profile given by a galaxy cluster population, but possible de-
viations arise due to statistical uncertainties and systematic
biases. While the systematic noise can be efficiently cor-
rected for using the random fields (see Appendix B), the
statistical uncertainty of the stacked shear is essentially de-
scribed by its covariance matrix. It can be decomposed into
the contributions of large intrinsic variations of the shapes of
galaxies (shape noise, e.g. Mandelbaum et al. 2013; Sereno &
Ettori 2015; Viola et al. 2015), correlated and uncorrelated
structures (e.g. Hoekstra 2001, 2003; Hoekstra et al. 2011;
Umetsu et al. 2011; Gruen et al. 2015), and intrinsic scatter
of the mass measurement (e.g. Metzler et al. 2001; Gruen
et al. 2011; Becker & Kravtsov 2011; Gruen et al. 2015).
The statistical uncertainty is dominated by the shape noise
of the sources (McClintock et al. 2019), which has already
been accounted for in Equation (11). However, since galax-
ies contribute to the signal in different radial and redshift-
richness bins, we may expect covariance terms to be signifi-
cant between radii in identical and distinct stacked profiles.
We therefore construct the covariance matrix from each pair
of radial bins ij over N = 1000 bootstrap realizations of the
source catalog,

Cij =

∑
n∈N

(
∆̃Σi,n – ∆̃Σi

) (
∆̃Σj,n – ∆̃Σj

)
N – 1

, (A1)

with ∆̃Σ =
∑

n∈N ∆̃Σn/N.
Figure A1 displays the correlation matrices Rij =

Cij/
√

CiiCjj derived from the covariance profile for the clus-
ter bin zl ⊗λ∗ = [0.3, 0.45[⊗[30, 45[ and the cross-covariances
with the low and high redshift-richness bins [0.1, 0.3[⊗[0, 15[
and [0.45, 0.6[⊗[55, 140[. The correlation matrix does not
show any strong contribution from off-diagonal terms, while
the diagonal components encompass the majority of the sta-
tistical noise. We still consider the full covariance of each
individual cluster bin to quantify the statistical uncertainty
of the stacked WL signal, in order to account for the depen-
dency between the radii of the bin when fitting the data.
Furthermore, we combine uncertainties of the galaxy clus-
ter signal and the random signal detailed in Appendix B by
summing their covariances. These matrices are used when
measuring the halo parameters in Section 5.

APPENDIX B: RANDOM FIELDS

We performed stacked shear analysis around random lens
points following the same process used in Section 3. This
spurious signal characterizes the residual systematic effects,
usually coming either from the edges of the detector (Miy-
atake et al. 2015), the imperfect correction of optical distor-
tion (Mandelbaum et al. 2005) or the incorrect estimation of

4 https://github.com/tmcclintock/cluster_toolkit/
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Figure A1. Bootstrap correlation matrix of ∆̃Σ, computed

from zl ⊗ λ∗ selected bins. Here, we investigate the bin

[0.3, 0.45[⊗[30, 45[ correlated with itself (bottom left panel),
with the bin [0.1, 0.3[⊗[0, 15[ (top panel) and with the bin

[0.45, 0.6[⊗[55, 140[ (bottom right panel). The statistical uncer-

tainty is mainly provided by the diagonal terms, while the off-
diagonal terms are nearly consistent with zero, suggesting that

radial and redshift-richness bins do not correlate.

the redshift (McClintock et al. 2019). If none of these effects
impact the profile, the random stacked shear should vanish,
while it deviates from zero as soon as the systematic bias
is apparent (Miyatake et al. 2015). The random signal is fi-
nally subtracted from the shear profiles of the stacked bins
to correct for these uncertainties.

We built a random catalog over the full [RA,Dec]
sources range considering the K450 footprint of masked ar-
eas. Each equatorial random position is uniformly sampled
over a Nside=2048 pixel healpix map and associated to a
redshift random position. We sample random redshift from
an inverse transform method, assuming AK3 redshifts to fol-
low a Weibull distribution (e.g. Pen et al. 2003),

n ≡ β

Γ
(
1+α

β

) 1

z0

(
zl
z0

)α
exp

[
–

(
zl
z0

)β
]

. (B1)

The parameters α, β and z0 are marginalized and con-
strained to track the real distribution of AK3 redshifts. We
find

• α = 1.06
• β = 4.81
• z0 = 0.59

Figure B1 shows the distribution of random and AK3
lenses. Random redshifts follow the Weibull distribution and
tend to recover the same distribution as clusters of galaxies
for a more realistic representation of the random signal.

Rykoff et al. (2016) suggest an efficient way to gener-
ate a random richness component from a depth map of the
source catalog. However, their study is based on the redMaP-
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Figure B1. The redshift distribution of AK3 and random lenses.

The random redshifts are sampled with an inverse transform

method from the PDF described in Equation (B1). The black
curve describes this function and aims at simulating the distri-

bution of the AK3 redshifts. The shaded regions delineate the

redshift range of selected clusters discussed in Section 3.3.2.

Per algorithm for cluster detection which considerably dif-
fers from AMICO. Moreover, due to the absence of a depth
map in K450 we cannot assign richness parameters to our
random catalog. Still, the presence of random redshifts is a
robust feature for the random catalog as we can associate
the stacked random signal to each redshift bin. Finally, the
number of random points exceed the number of real galaxy
clusters by 15976 lenses in order to fully cover the 3D field
of AK3 lenses.

A simple test to check the correct processing of the sub-
traction of the systematics is to look at the tangential and
cross stacked shear profile of the random lenses. The top
panels of Figure B2 presents three different profiles derived
from AK3 cross, random cross and random tangential sig-
nals. While the tangential component of random points re-
main consistent with zero, the cross signal of the lower red-
shift bin reveals that systematics largely impact the shear
in the last radial bins, and consequently might distort the
estimation of the halo bias if no correction is applied. Look-
ing deeply in the cross signal of the five KiDS DR3 patches,
we observe that only three of them are significantly affected.
We relate this systematic to the geometry of the field, which
at some point is irregular in those specific patches. Indeed,
since the lower redshift bin needs a larger field of view (FoV)
to compute stacked shear over a fixed large radial profile,
the resulting signal is much more sensitive to the disconti-
nuities of the field (e.g. isolated tiles). Hamana et al. (2013)
suggest that the point spread function (PSF) in the shape
measurement of galaxies located at the edge of the FoV is im-
perfectly corrected. This biased PSF anisotropy sensitively
impacts the shear of galaxies, which consequently breaks the
symmetry of the intrinsic ellipticity and leads to a non-zero
cross component. However, since the subtraction of the two
signals gives a signal consistent with zero, the correction
suppresses this systematic effect and the final version of the
data is ready for the analysis (see Section 5).
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Figure B2. Differential density profiles of the cross component of AK3 lenses and the cross and tangential components of random lenses
in the three redshift bins. The cross signals in the five KiDS DR3 patches of the lower redshift bin are also displayed. A significant

deviation from the zero horizontal line indicates the presence of a systematic effect. It reveals an incomplete correction of the PSF of

galaxies located close to the FoV edge.

APPENDIX C: COLOR-COLOR SELECTIONS

In this section we compare the color-color selection discussed
in Section 3.3.1 with an additional gri-CC cut. More specif-
ically, Figure 3 in Medezinski et al. (2010) lays out in col-
ored areas various populations of sources for three different
Subaru clusters (e.g. cluster members in green). The paper
shows in particular gri-CC selected sources in the galaxy
cluster A1703, for which Broadhurst et al. (2008) and Oguri
et al. (2009) initially performed a WL analysis. Two sin-
gular areas in the color-color plane are clearly identified as
background sources of A1703, efficiently selected at zs & 0.6
and displayed in blue/red in the figure of the study. They
present the following segmentation

[(g – r < 2.17(r – i) – 0.37) ∧ (g – r < 1.85 – 0.6(r – i))]

∨ (g – r < 0.47 – 0.4(r – i)) ∨ (r – i < –0.06) .
(C1)

In order to evaluate the efficiency of the gri-CC cuts
explored in this study (Equations 14 and C1), we are in-
terested in testing them over the COSMOS 30-Bands pho-
tometric catalog5 (Ilbert et al. 2009). The full sample con-
sists of 385,065 galaxies with very accurate photometric red-
shifts reliable up to magnitude i < 25. In Figure C1, we

5 https://irsa.ipac.caltech.edu/data/COSMOS/

present the COSMOS sources selected with the two gri-CC
criteria. As a comparison, we generate evolving tracks using
the galev6 code (Kotulla et al. 2009) for the Hubble - de
Vaucouleurs galaxy morphological types (Non-barred spiral
Sa-type, Barred-spiral Sb-type, Lenticular S0-type and El-
liptical E-type). We are interested in the contamination of
objects belonging to the redshift range of 0.2 < zs < 0.6,
in agreement with the selection of clusters done in Sec-
tion 3.3.2. The cut shown in Oguri et al. (2012) encompasses
125,754 galaxies with 96.2% background sources for the cor-
responding redshift threshold zs ≥ 0.6. On the other hand,
the selection done by Medezinski et al. (2010) counts 170,429
(35.5% more), and 94.6% of them lie over zs ≥ 0.6. Both cuts
efficiently remove contaminating members, we see a higher
number of background COSMOS galaxies for Equation (C1),
while the contamination fraction given by Equation (14) is
fully consistent with Sereno et al. (2017).

Besides this observation, a more reliable analysis would
be to consider the cross-matched catalog COSMOS⊗K450 as
the 47,619 COSMOS sources within K450. The lower panel
of the figure provides this distribution and shows 14,857 of
them to be filtered by Oguri et al. (2012) and 20,540 by
Medezinski et al. (2010). Respectively, 94.3% and 85.2% of
selected sources appear to be uncontaminated. These statis-

6 http://www.galev.org/
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Figure C1. Top panel : (r -i) vs (g-r) diagram. We show the selec-
tions discussed in this article, following previous complementary

works (Equations 14 and C1, Oguri et al. 2012; Medezinski et al.

2010, respectively). We additionally show the evolving tracks of
spiral, lenticular and elliptical galaxies in the gri-CC plane ob-

tained using the galev code (Kotulla et al. 2009). Bottom panels:

COSMOS (Ilbert et al. 2009) and COSMOS⊗K450 photometric
redshift distributions for the full samples and for their dedicated

gri-CC selections. The shaded region highlights the contamina-

tion area, which corresponds to the cluster redshift range [0.1, 0.6[

covered in Section 3.3.2.

tics highlights a higher contamination from Equation (C1)
and a more efficient removal of contaminated K450 sources
for Equation (14), but still has some drawbacks due to the
limited number of objects. Another explanation for the main
difference between the two cuts is the unequal reduction of
galaxies from COSMOS to the cross match data set. K450
sources in COSMOS are few at zs > 1, where Medezinski
et al. (2010) is consequently selecting more sources than
Oguri et al. (2012) in COSMOS only, while the proportion
of galaxies at zs < 1 remains high in both catalogs. In that
sense, we prefer to retain Equation (14) as the principal gri-
CC selection for this work.
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M. S., Yepes G., Gottlöber S., 2010, ApJ, 724, 878

Tormen G., 1998, MNRAS, 297, 648

Umetsu K., Broadhurst T., Zitrin A., Medezinski E., Coe D.,

Postman M., 2011, ApJ, 738, 41

Umetsu K., et al., 2014, ApJ, 795, 163

Viola M., et al., 2015, MNRAS, 452, 3529

Virtanen P., et al., 2020, Nature Methods, 17, 261

Voit G. M., 2005, Reviews of Modern Physics, 77, 207

White S. D. M., Rees M. J., 1978, MNRAS, 183, 341

Yang X., Mo H. J., Van Den Bosch F. C., Jing Y. P., Weinmann
S. M., Meneghetti M., 2006, Monthly Notices of the Royal

Astronomical Society, 373, 1159

Zitrin A., Broadhurst T., Barkana R., Rephaeli Y., Beńıtez N.,
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Beńıtez N., Meneghetti M., et al. M., 2011b, ApJ, 742, 117

de Jong J. T. A., Verdoes Kleijn G. A., Kuijken K. H., Valentijn
E. A., 2013, Experimental Astronomy, 35, 25

de Jong J. T. A., et al., 2015, aap, 582, A62

de Jong J. T. A., et al., 2017, aap, 604, A134
van Uitert E., Gilbank D. G., Hoekstra H., Semboloni E., Glad-

ders M. D., Yee H. K. C., 2016, A&A, 586, A43

The data underlying this article will be shared on reasonable re-
quest to the corresponding author. This paper has been typeset

from a TEX/LATEX file prepared by the author.

MNRAS 000, 1–20 (2021)


	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Overview of the Universe
	History of cosmology
	Timeline of the Universe
	Expansion of the Universe

	Standard model of cosmology
	Cosmological principle
	Cosmological probes
	General relativity
	FLRW metric
	Cosmological parameters
	Cosmological distances

	Growth of structures
	Density perturbations
	Matter distribution
	Non-linear evolution
	Bias of halos

	Clusters of galaxies
	Cluster formation
	Cluster properties
	Cluster observations

	Purposes of the thesis

	Theoretical framework
	Formalism of weak gravitational lensing
	Lens equations
	Convergence and shear
	Convergence power spectrum

	Models of the halo density
	One-halo term
	Miscentering correction
	Two-halo term

	Predictions of the halo mass
	Halo concentration
	Halo bias


	Data analysis
	Description of the KiDS data
	Third data release
	Sources catalog
	AMICO clusters

	Lensing processing of catalogs
	Lensing computation
	Stacked signal
	Selection method

	Sources of error and fitting process
	Statistical uncertainty
	Systematic effect
	MCMC method

	Results of the study
	Primary outcomes
	Mass-richness relation
	Cluster sparsity
	Mass-concentration relation
	Mass-bias relation
	Cosmological inference


	Euclid project
	Mission of the Euclid consortium
	Scientific objectives
	Ground segment

	COMB-CL numerical toolkit
	Global description
	Data products
	Prototype structure
	LSS covariance
	Development forecasts


	Conclusion
	Summary
	Discussion
	Perspectives

	Bibliography
	Related publications

