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1. Introduction and aims of the study 

Mineral resources are essential to modern industrial society and human needs to 

promote their development, as well as, social progression and material prosperity. 

The dependence on mineral resources represents complex human tasks related to 

sustainability, new supplies and how to mitigate the environmental impacts of mining 

activities. Indeed, the mineral exploitation can produce a significant effect on the 

local environment, and in severe cases resulting in damages, also, leading to 

geological disasters and environmental pollution. The presence of excavations, 

dumps and emissions of fine materials resulting from the processing of minerals 

compromises the quality of the surrounding environment due to the spreading of 

contaminated elements, mainly heavy metals, responsible for potential risk for the 

ecosystem (Rodbell et al., 2014). The mining activity can be a major reason of severe 

environmental and health damage due to the high level of concentration of heavy 

metals in surface and underground water (Yidana et al., 2008; Armah et al., 2010). In 

some mining areas was reported the growth of carbon emission and its impact due to 

the increase of extraction activities(Yang et al., 2021). Sometimes, the carbon 

emission can rise depending on the mining methods, geological conditions, and coal 

mine deployment (Wang et al., 2018). Furthermore, subsidence is another unwanted 

effect of the consequences of mining, with impacts on the environment, buildings and 

communities (Lopez et al., 2010; Abdallah et al., 2017). The overburden strata above 

mines may not have suitable support and can collapse generating surface subsidence, 

both during mining or long after mining has ended (Bell et al., 2000). The size and 

condition of the subsoil and the geologic features may influence the mode, scale, 

structure and magnitude of subsidence (Van Sambeek et al.,1997; Potts et al., 2011; 

Sanmiquel et al., 2018; Marian et al., 2020). Most mining areas are adjacent to dense 

towns, where ground subsidence causes damage to buildings, outages of transmission 

networks, and transport (Villegas et al., 2011; Tong et al. 2013; Teng et al., 2016; 

Vušovićet al., 2020; Li et al., 2021; Akcin et al., 2021). Sometimes, the subsidence 

can be sudden and its chain effect may be catastrophic, such as increasing the gas 

pressure and setting up the mine fire (Ünver et al., 2019). From this point of view, it 

is essential to not underestimate the potential effects of mining activities. Constant 

monitoring of mineral resource exploitation and its effects on the ecological 

environment is essential for improving the sustainable development of mine 

operations, reducing and mitigating damage caused by exploitation. Furthermore, 
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mining monitoring is of greatest importance, not only for the scientific community 

but also for the mine companies, to reduce the potential effects and consequences. 

However, some mining monitoring techniques, as well as GPS and levelling have a 

cost of implementation that is significantly expensive for the management and the 

acquisition of information on large spatial and temporal scales of the entire mining 

area. One of the most important and valuable time-savings techniques, that has been 

recently developed, is remote sensing. The method allows to prevent and investigate 

instabilities and environmental impacts, through a rapid acquisition mode and simple 

data management, at relatively low costs. Among the different existing techniques, 

satellite monitoring is a technology that represents nowadays a very helpful and 

relevant supporting tool for the monitoring of mining areas. For instance, the 

interferometric Synthetic Aperture Radar (InSAR) technique was successfully used 

for the monitoring and measurement of surface deformation in several mining areas 

(Guéguen et al., 2009; Samsonov et al., 2013; Zhao et al., 2013; Pawluszek et al., 

2020; Chen et al. 2021). The InSAR technique can not only overcome the limitations 

of traditional methods but can also obtain higher resolution, also reaching the 

centimeters level surface deformations. The application of the interferometric 

technique in mining areas improves the study of the temporal evolution of mining 

deformation (Zhang et al., 2015; Grzovic et al., 2015; Dong et al.,2015; Mura et al., 

2016; Antonielli et al., 2021; Pawluszek et al., 2020;).  This remote analysis was a 

very valuable instrument for monitoring, also, in mining infrastructure such as 

tailings dams identifying surface displacements useful for the prediction of 

catastrophic failures  (Mura et a., 2018; Iannacone et al., 2018; Mazzanti et al., 2021). 

In addition to interferometric techniques, the use of optical sensors, such as the 

Multispectral Instrument (MSI), provides an excellent way to study the potential 

effects of mining activities on the environment. Last year, the increasing availability 

of high-resolution satellite imagery offered data with optimal spatial and temporal 

scales. The multispectral images allow the quantification of changes in land cover 

and land use over time (Demirel et al., 2011; Nascimiento et al., 2020). The MSI 

technique is very useful to detect unauthorized mining activities that cause negative 

effects on the environment (Lobo et al., 2017; Londoño et al., 2022).  

The general idea of this research project was to assess the integration of different 

remote sensing techniques to carry out comprehensive mining monitoring. The 

development of an integrated platform in near-real time for mine safety is of 
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fundamental importance to identify, in a preliminary way and on a large scale, critical 

situations, allowing savings in terms of costs and investigation time as well as 

minimizing the risk for operators. The Ph.D. project is composed of four study cases, 

each one explaining in detail the application of remote sensing to mining monitoring 

and management. The chapters are organized following the structure of several 

papers that have been published during the Ph.D. or that are now in revision. The 

thesis ends with a discussion and conclusion chapter, which includes a summary of 

the knowledge acquired during this work. The areas of interest were located in three 

different nations: Ecuador, Brazil and Italy. The work provided the application of two 

satellite-based remote sensing methods: the DInSAR technique and the multispectral 

analysis. 

▪ The DInSAR technique was used for three cases: 1) the investigation of 

terrain deformation associated with shallow artisanal mining in the Zaruma city in 

Ecuador, 2) the investigation of subsidence phenomena due to underground mining in 

the municipality of Nuraxi Figus (Carbonia-Iglesias province) in south-west Sardinia, 

Italy, and 3) the analysis of surficial displacements related with a tailing dam located 

in Brumadinho area in Minas Gerais region, Brazil. 

▪ The multispectral analysis was used for investigating the areas affected by the 

huge flood related to the collapse of the upstream tailing dam of Vale’s Córrego do 

Feijão located to Minas Gerais, Brazil, occurred on the 25 January 2019. The system 

allowed to classify at different times, the land, vegetation, and water using surficial 

spectral properties. The MSI technique was used to analyze a possible cause/effect 

relationship due to the tailing dam failure and to try to understand if this type of 

monitoring is reliable and able to recognize any changes in the concentration of 

pollutants.  

In this Ph.D. project, the interferometric and multispectral products derived from 

Sentinel-2 (More details chapter 2.3.2), COSMO-SkyMed and Sentinel-1(More 

details chapter 2.2.2) satellites were acquired, processed, and examined.  

As written above, several parts of this Ph.D. thesis correspond to the content of the 

following papers published or submitted:  

I. Monitoring Land Surface Deformation Associated with Gold Artisanal 

Mining in the Zaruma City (Ecuador) Published in “Remote Sensing 

Journal” 
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Reference: Ammirati, L.; Mondillo, N.; Rodas, R.A.; Sellers, C.; Di 

Martire, D. Monitoring Land Surface Deformation Associated with 

Gold Artisanal Mining in the Zaruma City (Ecuador). Remote Sensing 

2020, 12, 2135. https://doi.org/10.3390/rs12132135. 

Contributions of L.Ammirati to the paper: methodology, DinSAR 

processing, interpretation of the data.  L.Ammirati wrote the first 

version of the manuscript that was revised and integrated by the co-

authors. 

II. Semi-real time systems for subsidence monitoring in areas affected by 

underground mining: the example of the Nuraxi-Figus coal district 

(Sardinia, Italy). Submitted in Engineering Geology. 

Reference: Ammirati, L; Mondillo, N; Di Martire, D.; Russo, G.; 

Bordicchia, F.; Calcaterra, D. Semi-real time systems for subsidence 

monitoring in areas affected by underground mining: the example of 

the Nuraxi-Figus coal district (Sardinia, Italy). Submitted. 

Contributions of L.Ammirati to the paper: methodology, DinSAR 

processing, interpretation of the data, numerical modelling.  

L.Ammirati wrote the first version of the manuscript that was revised 

and integrated by the co-authors. 

III. Sentinel-1 data for monitoring a pre-failure event of the tailings dam. 

Published in “Lecture Notes in Civil Engineering, Springer Cham”. 

Reference: Ammirati L., Mondillo N., Calcaterra D., Di Martire D. 

(2021) Sentinel-1 Data for Monitoring a Pre-failure Event of Tailings 

Dam. In: Rizzo P., Milazzo A. (eds) European Workshop on Structural 

Health Monitoring. EWSHM 2020. Lecture Notes in Civil 

Engineering, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-

030-64908-1_13. 

Contributions of L.Ammirati to the paper: methodology, 

conceptualization, DinSAR processing, interpretation of the data. 

L.Ammirati wrote the first version of the manuscript that was revised 

and integrated by the co-authors. 

IV. Application of multispectral remote sensing for mapping flood-

affected zones in the Brumadinho mining district (Minas Gerais, 

Brasil). Submitted in Remote Sensing Journal. 

https://doi.org/10.3390/rs12132135
https://doi.org/10.1007/978-3-030-64908-1_13
https://doi.org/10.1007/978-3-030-64908-1_13
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Reference: Application of multispectral remote sensing for mapping 

flood-affected zones in the Brumadinho mining district (Minas Gerais, 

Brasil). Submitted.  

Contributions of L.Ammirati to the paper: methodology, 

conceptualization, Sentinel-2 processing, interpretation of the data.  

L.Ammirati wrote the first version of the manuscript that was revised 

and integrated by the co-authors. 
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2. Earth Observation (EO) technique  

2.1. Introduction to Satellite based remote sensing 

Satellite based remote sensing is an earth observation (EO) technique allowing to 

acquire qualitative and quantitative information from a sensor (active or passive) 

placed on a platform (satellite-based) at a certain distance from the object of study. 

The technology provides a valuable structure to accurately map and monitor large-

scale phenomena in a well-timed approach. Whatever the used sensor, when the 

electromagnetic radiation hits an object, it may be transmitted, absorbed, or reflected. 

In the last three decades, many applications have developed for using satellite-based 

remote sensing, but all are based on two types of sensors: active or passive (Fig. 2.1). 

The former emits radiation in the direction of the target to be examined and detects 

the scattered reflectance, whereas the latter detects natural radiation that is emitted or 

reflected by the object or scene being observed. The remote sensors can measure 

radiation in the visible or infrared wavelengths (700 nm – 1 mm), but also in the 

larger wavelengths as microwave (1 mm – 1 m) (Figure 2.2).  
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Figure 2.1. Active optical and SAR satellites, on right the revisiting time (Casagli et al., 2017). 

 

The majority of active sensors operate in the microwave portion of the 

electromagnetic spectrum, as radio detection and ranging (Radar) remote sensing, 

which makes them able to penetrate the atmosphere under most conditions. Another 

active system is the Light Detection And Ranging (LiDAR). An active technique, like 

the SAR interferometry, views the target from either end of a baseline of known 
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length. The change in apparent view direction is related to the absolute distance 

between the instrument and target. The passive sensor types receive object 

reflectance that is illuminated from an additional light source, for instance, the sun. 

Passive sensors include different types of radiometers and spectrometers. Most 

passive systems used in remote sensing applications operate in the visible, infrared, 

thermal infrared, and microwave portions of the electromagnetic spectrum. Optical 

sensors are usually passive sensors, such as multispectral satellites. These sensors 

collect different spectral ranges, that are called bands and can vary in their number 

and width per sensor. The remote sensing applied to mine activity allows to analyze 

large areas and examine the distribution of an event, observing how the phenomenon 

evolves, even in the short term, such as the subsidence that is often linked to heavily 

exploited mining areas. Multispectral imagery allows the application of processing 

techniques to distinguish or enhance certain properties of materials. Combining the 

different remote sensing data with other types of information (field data), it is 

possible to improve the results. The study is based on two types of spaceborne 

datasets, the Synthetic Aperture Radar (SAR) imagery for the analysis of the ground 

deformation evolution and the Multispectral imagery (MSI) for the identification of 

the environmental footprint of mining operations due to the extraction site, tailing 

pond, and processing plant. 

 

Figure 2.2.  The spectrum of electromagnetic radiation with bands used in satellite remote sensing 

(SRS) (Pettorelli et al., 2014). 
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2.2. Synthetic Aperture Radar (SAR)  

Synthetic Aperture Radar (SAR) is an instrument consisting of a conventional radar 

mounted on a platform (the ground, airplane, or satellite) that transmits radiation 

reflected by the target and acquired again. SAR image is a projection in the sensor’s 

acquisition plane, slant-range plane, of the targets placed on the Earth surface, the 

ground-range plane. The radar antenna is pointed to the ground orthogonally to the 

direction of motion of the platform with an angle between 20 and 60 degrees 

compared to the direction of Nadir (called off-nadir) (Ferretti et al., 1998). The SAR 

can generally distinguish the reflected signals coming from different targets only 

according to the return time of the signal. The wavelength of the sensor determines 

the diffusion of the signal into targets. The most used frequency bands in civilian 

spaceborne SAR missions are the L-band, C-band, and X-band. Different kinds of 

geometries acquisition characterized the SAR imagery (Fig. 2.3), according to the 

system configuration:  

Figure 2.3. SAR Stripmap (a), ScanSAR (b), and Spotlight (c) acquisition modes (Moreira et al., 

2013) 

• Stripmap: Antenna pointing is fixed relative to the flight line. In this case, the 

result of the acquisition is a moving antenna footprint sweeping along a terrain 

strip parallel to path motion. The stripmap mode is usually applied for the 

mapping of large areas. 

• ScanSAR: The sensor drives the antenna beam to illuminate a strip of terrain at 

any angle to the path of platform motion. The assumption is that with the 

ScanSAR mode, it is possible to share the radar operation time between two or 

more separate sub-swaths to obtain full image coverage of each of them. 

• Spotlight: the sensor steers its antenna beam to continuously illuminate the 

terrain patch being imaged. The spotlight acquisition allows to have finer 
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azimuth resolution than in the other ways, even using the same physical antenna; 

moreover, spotlight imagery provides the possibility of imaging a scene at 

multiple viewing angles during one single pass. 

Sometimes the SAR acquisition produces a geometric distortion or shadow 

depending on the relationship between the off nadir angle and the terrain relief 

(Figure 2.4). When the radar beam reaches the base of a tall feature tilted towards the 

radar before it reaches the top, foreshortening will occur. The fore-shortened areas 

appear brighter in the SAR image, due to the compression into a smaller image part 

of the backscattered slope. If the radar ray reaches the top of a tall feature before the 

base, the return signal receives the information from the bottom. As a result, the top 

of the feature is displaced towards the radar from its true position on the ground, and 

pose on top of the base of the feature. Layover areas are usually characterized by very 

high-intensity values. The foreshortening and layover can produce radar shadow. 

Radar shadow occurs when the radar beam is not able to illuminate the ground 

surface. The consequence of shadowing on the final image is the darkness on objects 

on the surface not backscattered. 

 

Figure 2.4. Geometric distortions in SAR imagery due to topography (Tempfli et al., 2009). 

 

Among the main spaceborne SAR satellites, the ERS-1, and ERS-2 (European 

Remote Sensing Satellites) were launched in  1991  and  1995, respectively.  These, 

in C-band and with an incidence angle of 23° and a resolution of 20m x 4m, were in 

charge of collecting data associated with the land surface, ocean, polar caps, and 
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natural disasters. The satellites were deactivated in 2000 (ERS-1) and 2011 (ERS-2). 

The Advanced Synthetic Aperture Radar (ASAR) on the ENVISAT satellite is an 

improved version of the sensors occurring on ERS. With a moderate resolution of  20  

m,  ENVISAT has been used for extracting information from local to global, on the 

management of Earth’s resources, including insights into factors contributing to 

climate changes. The ENVISAT mission ended in 2012. More recently, several SAR 

sensors are operating at radar wavelengths L-band (23 cm), C-band (5 cm), and X-

band (3 cm), such as RADARSAT-2 (RCM, C-band), Sentinel-1 (C-band), 

TerraSAR-X (X-band), COSMO-SkyMed (CSK1-4, X-band), ALOS (L-band), 

SAOCOM (L-Band) the satellites (Figure 2.1). In particular, the COSMO-SkyMed 

(COnstellation of small Satellites for Mediterranean basin Observation) is a satellite 

mission managed by the ASI (Italian Space Agency) and the Italian Ministry of 

Defense. The CSK system is made up of four satellites and it is equipped with High-

Resolution SAR, in sun-synchronous polar orbits, phased in the same orbital plane. 

This results in varied intervals between the satellites along the same ground track of 

between 1 and 16 days. The Sentinel-1  mission is expected to deliver a wealth of 

data and imagery that are central to the Copernicus joint initiative of the European 

Commission (EC) and European Space Agency (ESA). As the first member of the 

constellation of two satellites, launched in 2014 and the second in 2016. Sentinel-1 

includes C-band imaging Synthetic Aperture Radar (SAR) in four exclusive imaging 

modes: Interferometric Wide  Swath  Mode (IW),  Wave-Mode(WM),  Strip Map 

Mode (SM), and Extra-Wide Swath Mode (EW). With different resolutions (from 5m 

to 40m) and  coverage  (from  80  km  to  400  km),  the  four  modes can meet  the  

demanding  image  quality  and swath width requirements (More details about the 

spaceborne Sar missions and their applications: Schmullius et al. 1997, Musa et al. 

2015, McNairn et al. 2016, Zakhvatkina et al. 2019, Baek et al. 2019, El Kamali et al. 

2020, Ho Tong Minh et al. 2020) 
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2.2.1. Interferometric SAR (InSAR) 

The Interferometric Synthetic Aperture Radar (InSAR – Gabriel et al., 1989) is a 

method largely used to study deformations caused by earthquakes, volcanic 

eruptions, glacier movements, landslides, and subsidence to a precision of a few 

centimeters or less (Massonnet et al.,1998; Franceschetti et al., 1999; Bürgmann et 

al., 2000; Madsen  et al., 2000; Sansosti et al., 2006; Bozzano et al., 2011; Carlà et 

al., 2019; Meng et al., 2020). The interferometry technique uses two SAR images of 

the same area acquired at different times and processes them, resulting in maps called 

interferograms that show ground-surface displacement between the two time periods. 

The interferometric images are processed in such a way that both amplitude and 

phase information is preserved for each pixel. Where the amplitude identifies the 

portion of the electromagnetic field incident on all objects of the ground resolution 

cell and backscattered towards the sensor. The phase values are the basic information 

for all interferometric techniques, summarised in the following equation:  

                                              Φ = 𝜓 +
4𝜋

𝜆
𝑟 + 𝛼 + 𝑛 

Where ψ represents the target reflectivity, λ is the radar wavelength used, α is the 

atmospheric factor, r is the distance between the sensor and the target, n is the noise 

due to Earth's curvature, the signal-to-noise ratio (SNR) and the instrument noise. 

The interferometric phase difference between the two observations, corresponding to 

the path difference between two acquisitions, is proportional to the relationship 

between a complete phase cycle in radians and the wavelength λ, which is the 

distance between the two following points, all multiplied for Δr (Ferretti et al., 2007).  

The phase can be influenced by different factors, due to the interferometry or by 

instrumental sources. Geometrical decorrelation and temporal decorrelation belong to 

the first category, mean-while in the second group instability of radar frequency and 

thermic instrumental noises can be mentioned. The map describing the phase 

difference between two SAR images is the so-called interferogram where the phase is 

highly correlated to the terrain topography and deformation patterns can be mapped. 
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2.2.2. Differential Sar Interferometry (DInSAR) 

The DInSAR is the combining the phase using multi-temporal SAR images where the 

phase shift related to topography is removed from the interferograms and the 

difference between the resulting products will show surface deformation patterns that 

occurred between the different acquisition dates. Through the development of more 

advanced techniques, the deformation velocity is calculated as a weighted average 

computed from the single interferograms, allowing then to retrieve the mean 

deformation rate of the investigated area. There are three processing approaches 

grouped into categories: Persistent Scatterers (PS) (Ferretti et al., 2000; Costantini et 

al., 2000; Werner et al., 2003; Crosetto et al., 2008),Small Baselines Subset (SBAS) 

(Berardino et al., 2002; Mora et al., 2003; Samsonov & d’Oreye, 2012) and methods 

that combine PS and SBAS as SqueeSAR (Ferretti et al., 2011). The first so-called 

Permanent Scatterers Interferometry SAR (PSInSAR, Ferretti, et al., 2001) is one of 

the basic algorithms belonging to the PS category. Phase and amplitude are the main 

parameters exploited by the PSInSAR method: Amplitude gives information about 

the reflectivity of the target, while the phase indicates the sensor-target distance; 

therefore, amplitude allows to individuate PS and phase to estimate the movement of 

the PS. Persistent Scatterers (PS) are targets that keep stable the electromagnetic 

signal (hence, their reflectivity property) during the period of acquisition of the 

image. Usually, PSs correspond to man-made structures (i.e. buildings, dams, 

infrastructures, etc.) or to rocky outcrops, while vegetated areas, due to the frequent 

variation of their electromagnetic properties, cannot be considered as good scatterers. 

The PS detection is based on the amplitude dispersion, which is calculated by 

dividing the temporal standard deviation of the amplitude by the temporal mean of 

the amplitude of a certain pixel in a stack of SAR images. The concept is that a pixel 

characterized by a high and more or less constant amplitude value is assumed to show 

a low phase dispersion (Ferretti et al., 2001). The result is a precise measurement of 

the movements along the SAR Line Of Sight (LOS velocities) of each PS, concerning 

an assumed reference point (regard as stable), in the time interval. While the SBAS 

approach is an algorithm capable of retrieving temporal series of deformation 

exploiting interferograms characterized by small temporal and spatial baseline. This 

algorithm aims to limit the spatial decorrelation taking into account the spatial and 

the temporal information from the SAR data (Berardino et al., 2002). These 

interferograms are used as inputs to calculate the unwrapping stage, from which the 
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estimation of the topographic contribution and the extraction of the Low Pass (LP) 

temporal deformation, which will be subtracted from the wrapped interferogram 

module 2π, is done. Therefore, the interferograms will be considered as residual 

phase and be unwrapped. Therefore, the spatial and temporal filters are applied to 

unwrapping the temporal deformation and the topographic phase residual. Finally, the 

inversion of the stack of interferograms is guaranteed using the singular value 

decomposition (SVD) method. The advantage of the SBAS technique is represented 

by the high coherence and the high spatial density of the final product, and the 

reduction of the errors due to the redundancy of the information (more interferograms 

for every image), although disadvantages are due to the high computational requests. 

The third approach is a hybrid methodology that uses the process PS and retrieving 

phase from many small targets with similar scattering, called distributed scatterers 

(DS).  

DS is mainly over natural land covers and is affected by temporal and geometrical 

decorrelation. The mixed approach increases the spatial density of measurement 

points over areas characterized by DS, preserving the quality information obtained 

using the PS technique. SqueeSAR™ is the algorithm, mixed PS and DS process-

based, that provides significantly increase coverage points, mainly in non-urban 

areas. In particular, starting to spatially average the data over statistically 

homogeneous areas, it is possible to increase the signal-to-noise ratio (SNR), obtain a 

high coherent of the point scatterers without the need to perform a time-consuming 

phase unwrapping procedures on hundreds of interferograms. The SqueeSAR 

advantages are an increase of the spatial density of valid pixels, and an achieve a 

larger coverage of the measurement. In addition, the mixed approach provides a high 

quality of the displacement time-series of the DS. 
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2.3.  Multispectral imaging (MSI) 

A multispectral image measures the Earth's reflected radiance in specific wavelength 

bandwidths or spectral bands, from visible and near-infrared (VNIR) to Short-wave 

infrared (SWIR). The MSI image of an object is acquired, registered, and calibrated 

in a series of spectral bands, and uploaded into the reflectance. The structure can be 

associated to a cube. This is characterized by the X and Y axes related to the pixels of 

each image, while the Z dimension symbolizes the reflectance information of spectral 

bands (Figure 2.5). From the cube, it is possible to reconstruct the reflectance 

spectrum for each pixel of the image. Typically the multispectral imaging measures 

light in a number of tens of spectral bands, from 3 to 15.  

Figure 2.5.  In the multispectral image cube, the λ is reflectance information (a). (b) Spectrum at pixel 

P(I,j) (Wu et al., 2009). 

Wavelengths can be separated by filters or using sensitive instruments to particular 

wavelengths, including light from frequencies beyond the range of visible light, 

infrared and ultraviolet. Spectral imaging can allow the extraction of additional 

information that the human eye cannot capture with its red, green, and blue receptors. 

The MSI sensors usually installed on mobile platforms (satellite or airborne), can 

collect and record the energy reflected or emitted from the surface, allowing to 

determine the characteristics of the material targeted. In principle, a material can be 

identified from its spectral reflectance signature if the sensing system has sufficient 
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spectral resolution to distinguish its spectrum from those of other materials. The 

percent reflectance values for each pixel of MSI image may be associated with 

features such as water, sand, roads, forests, etc. can be plotted and compared with 

each other (Fig.2.6). 

Figure 2.6. The main spectra reflectance (or curves) for distinct types of land cover (Pettorelli et al., 

2014). 

Such information is comprised in spectral response curves or spectral signatures. The 

more detailed the spectral information recorded by a sensor, the more information 

that can be extracted from the spectral signatures. Differences in spectral signatures 

are used to help classify remotely sensed images into classes of landscape features 

since the spectral signatures of like features have similar shapes. For instance, it is 

possible to recognize different groups of minerals and rocks, for example, 

hydroxides, carbonates, and some hydrothermal alteration minerals (Bedell, 2004; 

Roberts et al., 2019; Qiu et al., 2021).  
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2.3.1. Multispectral satellites  

One of the first MSI satellite date back to 1967 with the Earth Resource Technology 

Satellite (ERTS) program (later Landsat). The satellite had a mid-resolution and 

allowed to study the land use, vegetation and agricultural developments, water and 

environmental quality, soils, geology. More recently, the main high-resolution MSI 

satellites with the best spatial and temporal resolution for the analysis of land cover 

changes are Landsat-8 and Sentinel-2. These satellites managed, respectively, by the 

United States Geological Survey and the European Space Agency allowed to obtain a 

temporal resolution of images every 3-5 days, and therefore, to develop products at 

higher spatial resolution (10-30 m). Landsat-8 offers moderate resolution (15 m–100 

m, depending on spectral frequency) measurements of the Earth’s terrestrial and polar 

regions in the visible, near-infrared, short wave infrared, and thermal infrared. The 

satellite is configured by two science instruments the Operational Land Imager (OLI) 

and the Thermal InfraRed Sensor (TIRS). These two sensors provide seasonal 

coverage of the global land at a spatial resolution of 30 meters (visible, NIR, SWIR), 

100 meters (thermal), and 15 meters (panchromatic). The spectral coverage and 

radiometric performance are designed to detect and characterize the multi-decadal 

land cover change in concert with historic Landsat data. The scene size is 185 km 

cross-track by 180 km along the track. The satellite measures different ranges of 

frequencies along the electromagnetic spectrum in 11 bands. Landsat numbers its red, 

green, and blue sensors as 4, 3, and 2, so when we combine them we get a true-color 

image (Figure 2.7). The Sentinel-2 is a polar-orbiting, multispectral high-resolution 

imaging mission for land monitoring specifically designed for the operational needs 

of the Copernicus program managed by the ESA. The Sentinel-2 mission comprises a 

constellation of two polar-orbiting satellites (Sentinel-2A and Sentinel-2B) placed in 

the same orbit, phased at 180° to each other. It aims at monitoring variability in land 

surface conditions with a 5 day revisit time at the equator. Sentinel-2A was launched 

on 23 June 2015 and Sentinel-2B followed on 7 March 2017. The thirteen Sentinel-2 

bands and their combinations the visible (Figure 2.7), Near-Infrared (NIR), and 

Short-wave Infrared (SWIR). The Global coverage of land is between 84° S and 

84°N with the revisiting time of 5 days or 10 days. Multispectral image acquisition in 

13 visible and infrared bands and the resolution depending on the spectrum band of 

10, 20, and 60 meters. Sentinel-2 carries an innovative wide swath high-resolution 

multispectral imager with 13 spectral bands for a new perspective of our land and 
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vegetation. The combination of high resolution, novel spectral capabilities, a swath 

width of 290 km, and frequent revisit times provides unprecedented views of Earth.   

Figure 2.7. Comparison of Landsat 7 and 8 bands with Sentinel-2 (www.usgs.gov). 

2.3.2. Sentinel-2 data  

In this Ph.D. project, the Sentinel-2 MSI products have been used. There are several 

different types of MSI available products, which are distinguished as follows: Level-

0, Level-1A, Level-1B, Level-1C, and Level-2A.  Level-0 and Level-1A are not 

made available to common users.  The least processed product type that is made 

available to all users is Level-1B. The product delivers radiometrically corrected Top 

of Atmosphere (TOA) reflectance. The latter is the measurement that provides the 

ratio of radiation reflected by the incident solar radiation on a given surface. The 

radiometric corrections that are applied to a Level-1B product are dark signal, pixel 

response non-uniformity, crosstalk correction, defective pixel interpolation, high 

spatial bands restoration, and binning for 60m bands (www.sentinels.copernicus.eu). 

The Level-1C product consists of 100 km2 images in UTM/WGS84 projection. This 

product is the result of using a DEM to project the image. The measurements are 

provided per pixel and it is necessary the TOA reflectance correction. This product 

also contains Land/Water and Cloud masks and data that contain information on the 

total column of ozone/water vapor and the mean sea level pressure. The Level-2A 

product is also divided into tiles of 100 km2, which are projected in UTM/WGS84.  

This type of product contains Bottom-of-atmosphere (BOA) reflectance images,  

which are the actual reflectance of the areas on the surface of the Earth. The Level-

1C and Level-2A product can be processed and examined by using the Sentinel-2 

Toolbox.  
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The Sentinel-2 toolbox, available online is part of the Sentinel Application Platform 

(SNAP) (ESA), the common architecture for  Sentinel-1, -2, and -3  made available 

by ESA. This software contains a lot of tools to exploit the data from the MSI 

instrument of the Sentinel-2 mission. It is also possible to use Landsat 8 (or MODIS) 

data with SNAP but the data is presented in individual bands. Sometimes it is 

necessary to use the Level-1C products and apply the TOA correction to convert 

them to a Level-2A product. The atmospheric correction is critical when comparing 

images acquired from different sensors. This is done by algorithms, which have been 

developed by DLR/Telespazio and can be run from the Sentinel-2 Toolbox.  The 

module is called Sen2Cor and has to be installed manually and depending on the 

operating system available online (http://step.esa.int). The algorithm executes at the 

native resolution of the bands (either  10,  20, or  60m). The tool starts by processing 

with the data at a 60m resolution, followed by processing at 20m, and finally ending 

at a 10m resolution. After the TOA correction, it is possible to choose to process the 

data at 10,  20, and  60 m  resolution for several applications. A useful function is 

Band Maths used to create new image sample values derived from existing bands, tie-

point grids, and flags. The source data can originate from all currently open and 

spatially compatible input products. This can be combined with arbitrary 

mathematical expressions to generate the target data. By default, a new image view is 

automatically opened for the new sample values. This tool can be used to obtain the 

spectral indices developed based on the spectral properties of the object of interest. 

The indices are used to enhance particular land surface features or properties, e.g. 

vegetation, soil, water (https://custom-scripts.sentinel-hub.com/custom-

scripts/sentinel-2/indexdb).   

For instance, the spectral indices of vegetation are developed based on the principle 

that the healthy vegetation reflects strongly in the near-infrared (NIR) spectrum while 

absorbing strongly in the visible red (Asner, 1998; Xue et al., 2017). One of the most 

popular spectral indices is the Normalized Difference Vegetation Index (NDVI) 

(JARS, 1993), defined as 

 𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑟𝑒𝑑

𝑁𝐼𝑅+𝑟𝑒𝑑
 

NDVI values range from -1 to 1, where higher values demonstrate healthy vegetation, 

while non-vegetated areas show low values. Negative values of NDVI correspond to 

http://step.esa.int/main/third-party-plugins-2/sen2cor/
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water. Values close to zero (-0.1 to 0.1) generally correspond to barren areas of rock, 

sand, or snow (Figure 2.3.2.1).  

 

Figure 2.3.2.1. An example of NDVI maps in the Vesuvian area (Naples, Campania) 

Another application is to display a Colour Composite of bands. Often, a combination 

is created of three individual monochrome images, in which each is assigned a given 

color. Color composites are usually expressed as R G B where:  R is for red color,  G 

stands for green color, and B for blue color. It is possible to assign whichever band 

information to RGB to the aim of the study. For instance,  the RGB combination of 

the bands 7,3,2 corresponds to the “False Color” map (Figure 2.3.2.2) that uses near-

infrared, red, and green bands common to assess plant density and health.  
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Figure 2.3.2.2. The 7,3,2 band compositive maps of Ischia and Procida (Naples, Campania) 

Since the vegetation reflects more near-infrared than green, appears deep red. While 

the cities and exposed ground are gray and water appears blue or black 

(https://earthobservatory.nasa.gov/features/FalseColor). 

 

 

 

 

 

 

 

 

 

 

 

 

https://earthobservatory.nasa.gov/features/FalseColor


26 

 

3. Monitoring Land Surface Deformation Associated with Gold 

Artisanal Mining in the Zaruma City (Ecuador)  

3.1.  Abstract 

Underground mining can produce subsidence phenomena, especially if orebodies are 

surficial or occur in soft rocks. In some countries, illegal mining is a big problem for 

environmental, social, and economic reasons. However, when unauthorized 

excavation is conducted underground, it is even more dangerous because it can 

produce unexpected surficial collapses in areas not adequately monitored. For this 

reason, it is important to find quick and economic techniques able to give information 

about the spatial and temporal development of uncontrolled underground activities in 

order to improve the risk management. In this work, the differential interferometric 

synthetic aperture radar (DInSAR) technique, implemented in the SUBSOFT 

software, has been used to study terrain deformation related to illegal artisanal mining 

in Ecuador. The study area is located in Zaruma (southeast of El Oro province), a 

remarkable site for Ecuadorian cultural heritage where, at the beginning of the 2017, 

a local school collapsed, due to sinkhole phenomena that occurred around the 

historical center. The school, named “Inmaculada Fe y Alegria”, was located in an 

area where mining activity was forbidden. For this study, the surface deformations 

that occurred in the Zaruma area from 2015 to 2019 were detected by using the 

Sentinel-1 data derived from the Europe Space Agency of the Copernicus Program. 

Deformations of the order of five centimeters were revealed both in correspondence 

of known exploitation tunnels, but also in areas where the presence of tunnels had not 

been verified. In conclusion, this study allowed to detect land surface movements 

related to underground mining activity, confirming that the DInSAR technique can be 

applied for monitoring mining-related subsidence. 
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3.2. Introduction 

In several countries, mining activity is vital for social and economic development. 

Sometimes, the exploitation of deposits is related to resources of high economic 

value, increasing the interest both of mining companies and artisanal miners. 

Artisanal and small-scale mining (AMS) is recognized as a considerable source of 

revenue for millions of people in about 80 countries worldwide (www.gold.org). 

ASM takes place in several regions of the world, mostly in the global South—sub-

Saharan Africa, Asia, Oceania, Central and South America. In 2017, about 40 million 

people worldwide were working in the artisanal mining sector and the industry had a 

significant impact on global mining (www.mining-technology.com ). These small-

scale operations, which are typically undertaken outside the law and without 

compliance with industry standards, can promise great rewards. However, violations 

of rules are quite common, and these activities can damage and pollute the territory 

environment. In certain environments, mining activity can produce subsidence 

phenomena (Bell et al., 2000, Gee et al., 2017) and can be even more dangerous if it 

is carried out illegally because it can produce unexpected sinkholes (Gutiérrez et al., 

2014; Parise et al., 2015; Gee et al.,2017; Fazio et al., 2017) in areas not adequately 

monitored. Monitoring and parameterization of these dynamic processes are 

particularly relevant. Over the last years, several monitoring methods have been used, 

including remote sensing techniques. Remote sensing has proved to be highly 

suitable for these and for many other necessities, since it captures data covering vast 

study areas. Among the different types of remote sensing techniques, one that very 

well meets dynamic processes requirements is the differential interferometric 

synthetic aperture radar (DInSAR). In recent years, DInSAR techniques have been 

effectively used to measure surficial deformations related to subsidence phenomena 

(Fiaschi et al., 2017) and to monitor underground mining activity (Fan et al., 2015; 

Przylucka et al., 2015; Du et al., 2016; Pawluszek et al., 2020; Pawluszek et al., 

2020).The hills of Zaruma and Portovelo (El Oro province, Ecuador) have been 

mined for gold and silver for centuries. The Incas were already extracting gold and 

silver in the area with hydraulic mining of the oxidized parts of veins. In 1549, 

Mercadillo, one of Pizzarro’s force, following upstream the Amarillo River 

encountered the Inca mine and founded the town of Zaruma (Billingsley 1926). Since 

then, legal and illegal mining has been the reality of the area, bringing many 

problems that range from poor land and city planification, to criminal and illegal 
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activities. In the last 10 to 15 years, a big concern in the city and its surroundings is 

represented by land subsidence related to the combination of geology, morphology 

and mining activity (Cando et al., 2020). In fact, one of the principal triggers of this 

phenomenon is considered the presence of old/new legal/illegal galleries, shafts and 

other underground excavations. In this work, we have studied surficial deformations 

that occurred in the Zaruma historical center, between 2015 and 2019, in order to 

compare such deformations, on one hand, to known tunnel mining and, on the other, 

to detect possible locations of unknown tunnels. To pursue this aim, we used 

SENTINEL-1 image processing derived from the Europe Space Agency of the 

Copernicus Program. The work is structured as follows: first the mining activity at 

the Zaruma site is described, then a geological setting of the area is performed. A 

brief description of the data and the interferometric technique are carried out. Finally, 

the results are reported, and conclusions are drawn on the application made and 

possible future developments. 

3.3.  Zaruma Geological Setting and Mining Activity 

The city of Zaruma or “Villa del Cerro del Oro de San Antonio de Zaruma” is located 

in southwestern Ecuador. The geology of the study area is characterized by pre-

Mesozoic metamorphic rocks, which comprise the Amotape-Tahuin (Ta) massif in 

the south, and the Chaucha metamorphic and volcanic rocks in the north (Pilatasig et 

al., 2015) overlaid by younger volcanic rocks. In the Zaruma area, the basement, 

called the El Oro metamorphic complex, is covered by calc-alkaline volcanic 

materials of the Saraguro formation (FmSa) (Figure 3.1 a,b). The FmSa is widespread 

all over southern Ecuador, characterized by variable lithology, comprising andesitic 

and andesitic basalt lavas, highly weathered andesitic tuffs and dacitic tuffs, and 

ignimbrites (Litherland, 1994; Pratt et al.,1997). 

The pyroclastic rocks range from fine-grained tobaceous to agglomerated (tuffs and 

thick agglomerates with blocks of lava) and alternating porphyritic andesite lavas 

(Baldock, 1982; Pratt et al., 1997; Vikentyev et al.,2005). Another lithology 

occurring within the study area is represented by the Zaruma Urcu Rhryolite (RZU), 

mostly consisting of dyke stocks and other forms of rhyolitic intrusions (Van 

Thournout et al., 1996). Small occurrences of metamorphosed gray sandstones, 

interspersed with limolites and dark gray shales, likely corresponding to the 

Paleozoic Ta, can be locally observed (Baldock, 1982; Vikentyev et al., 2005). 
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According to the results of geological and geotechnical studies, the predominant 

volcanic rocks in the study area are characterized by a high weathering degree, very 

intense surficial reworking ranging from poor to very poor quality. These 

characteristics notably increase terrain instability. The epithermal gold orebodies 

mined at Zaruma are genetically associated with calc-alkaline Eocene to Late 

Miocene igneous complexes occurring in central and southwestern Ecuador (Van 

Thournout et al., 1996). Mineralization within the area is considered to be an 

intermediate to low-sulphidation epithermal to a mesothermal gold-silver-lead-zinc-

copper system (Hedenquist et al., 2000; Chiaradia et al., 2004). In the Portovelo-

Zaruma area, the gold-bearing quartz vein system shows a north–south trend, 

characterized by sub-parallel structures exclusively located within the Cretaceous 

semi-high altered andesitic rocks. Three main types of gold-bearing veins are present 

in the study area (Figure 3.1c): the quartz-pyrite zone: quartz veins with disseminated 

pyrite, minor chlorite strikes, bands and patches; the sulphide zone: quartz veins with 

high pyrite, chalcopyrite, galena and sphalerite in bands, patches and coarse 

disseminations; and the calcite zone: carbonate veins with coarse calcite and calcite-

quartz, galena, sphalerite and chlorite in occasional nodules (Billngsley, 1926; 

Litherland, 1994; Pratt et al., ; 1997). These metallogenetic features make the Zaruma 

area enhanced with several gold mineralization. The city is well known because of 

gold mining as most of the population works or lives nearby and is in contact with 

mining zones (Gonzàlez et al., 2017). The mining activity of Zaruma started during 

the 16th century because of the presence of gold veins and big quantities of gold in 

the rivers, and the city took the name of “Asiento de Minas de Zaruma”. Recently, 

the mining industry in Zaruma has gone through different phases. In the early 20th 

century, the mining activity was first controlled by the company SADCO and then by 

CIMA corporation, but also by individuals carrying out artisanal activity, following 

the main gold vein called “Sweet Water” (Murillo, 2000). Later on, a lot of people 

working in the gold exploration and exploitation in Zaruma independently built their 

houses, causing a disordered and accelerated growth of the urban area (Gonzàlez et 

al., 2017). Contextually to the licensed mining activity, widespread illegal gold 

exploitation all around the city area has been developed and many tunnels and 

galleries were built there. The uncontrolled mining increased the environmental and 

economic dangers in Zaruma. One of the most relevant infrastructure problems that 
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occurred in Zaruma is the collapse of the school, named “Inmaculada Fe y Alegria”, 

in 2017. 

 

Figure 3.1. (a) Geological sketch map wih Cross section (A–A’); (b) the study area with 

the location of pictures (a, b, c) in Figure 3.2; (c) Simplified cross-section of Portovelo-

Zaruma field (modified from (Vikentyv et al., 2005)). Reference system: WGS84-UTM-17S. 

 

The school collapsed into the ground after a big sinkhole episode (Figure 3.2a), and 

over the years other problems have occurred in the surrounding areas (Figure 3.2b,c). 

Most of the mentioned problems were related to illegal artisanal mining, carried out 

with low and poor technical standards and minimum control, along the old SADCO 

and CIMA galleries, which were built without any regulation 
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Figure 3.2. (a) Sinkhole near the school “Inmaculada Fe y Alegria” (GAD ZARUMA on 

Twitter); (b) subsidence in Zaruma (www.machalamovil.com);(c) tunnel under city patrimonial 

zone (www.elcomercio.com). 

 

In order to manage problems of illegal mining that affect the cities of the El Oro 

province, the Ministry of Energy and Non-Renewable Natural Resources and the 

Risk Management Services (SGR) organized a plan called “Zaruma - Portovelo 

2022” (www.controlminero.gob.ec). The project has several actions aimed at 

studying the deformation due to outlaw activity and restore the urban area. Among 

the first actions implemented by the SGR, geoelectrical surveys were carried out in 

the Zaruma historical center, which allowed a preliminary identification of some 

tunnels. Subsequently, other studies, carried out by the University of Cuenca 

Politecnica Salesiana, allowed to obtain an updated map of the tunnels (Ludizca et 

al., 2018) (Figure 3.3). It is worth to point out that these studies were certainly not 

exhaustive, as they were only limited to the historical part of the city. 
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 Figure 3.3. Mining tunnels in the Zaruma urban area (modified from 

(Ludizaca et al., 2018)). 

 

3.4.  Materials and Methods 

It is now almost three decades (early 1990s) that the differential interferometry SAR 

technique (DInSAR) (Franceschetti et al. 1992) used for monitoring surface 

deformations has caught the attention of the scientific community. DInSAR, in fact, 

is a very effective technique for the accurate measurement of slow ground 

movements, structures and infrastructures due to subsidence, landslides, earthquakes 

and volcanic phenomena (Cigna et al., 2016; Pappalardo et al., 2018; Pastor et al., 

2019; Pepe et al., 2019). By means of DInSAR, it is possible to measure ground 

displacements with sub-centimetric accuracy, starting from data acquired from 

satellites orbiting the earth at an average height of 600 km. The DInSAR approach is 

based on the analysis of phase difference in interferometric stacks of radar images: 

this technique operates at a full spatial resolution and identifies reliable scatterers 

(permanent scatterers—(Ferretti et al., 2001)) by measuring their multitemporal 

coherence related to the phase stability. In particular, DInSAR techniques allow to 

analyze long data series producing mean displacement rate maps and time series of 

deformations along the direction between the SAR sensor and the target (line of 

sights—LoS). In this work, TOPS IW Sentinel-1A and B ascending and descending 

mode images, obtained via the Sentinel Scientific Data Hub (ESA - 

www.scihub.copernicus.eu), acquired in the time span from June 2015 to June 2019 

(Table 3.1), were processed by the SUBSOFT software, which uses the coherent 

pixel technique-temporal sublook coherence (CPT-TSC, more details in Appendix 1) 
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approach (Mora et al., 2003; Iglesias et al., 2015), and developed at the Remote 

Sensing Laboratory (RSLab) of the Universitat Politecnica de Catalunya of 

Barcelona. 

Table 3.1. Synthetic aperture radar (SAR) data stacks analyzed in this study. 
 

Satellite Orbit Period Nr Scenes 

Sentinel1 A/B Ascending 17/01/2016–12/062019 89 

Sentinel1 A/B Descending 05/062015–23/092018 51 

 

Specifically, the interferometric chain implemented in SUBSOFT is divided into the 

following main steps: the first is the generation and selection of interferograms, 

which consists of selecting a quality set of interferograms, considering the temporal 

and spatial thresholds, from all the possible combinations among available images. 

The second step is the pixel selection, named stable coherence scatterers (SCS— 

(Iglesias et al., 2015)), characterized by a reliable phase. In order to select SCS, a 

TSC estimator (Igleasias et al., 2015) has been used. The third one is the evaluation 

of the linear term of deformation to define the linear velocity and location of the 

targets; then the evaluation of the non-linear deformation component and atmospheric 

artifacts to assess the deformation evolution of selected pixels; and finally, the 

geocoding of the results in WGS84 and WGS84-UTM. Further details can be found 

in (Mora et al., 2003; Iglesias et al., 2015). After the processing step, the 

interferometric results were post-processed by the application of the kernel density 

estimation (KDE) algorithm (Silverman, 1986), which allowed to identify in a rapid 

way the unstable areas (UAs) affected by meaningful deformations (Lu et al., 2012; 

Bonì et al., 2016; Di Martire et al., 2016; Solari et al., 2018; Solari et al., 2019). 

Specifically, the “Heatmap” plugin in the Qgis software has been used. This creates a 

density map (heatmap) of an input point, using the following formula: 

1) 𝐾𝐷𝐸 =
1

Bandwidth2
∑ [

3

𝜋
(𝑤𝑖) (1 − (

𝐿𝑖

Bandwidth
)
2
)
2

]𝑛
𝑖=1  

2) f or Li < Bandwidth 

where  

• Bandwidth is the radius; 
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• wi is the weight; 

 • Li is the distance between point i and the (x, y) location. 

The density is a function of the number of points, or the sum of the weight parameter. 

In fact, the use of this parameter allows to increase the influence that some points 

have on the resulting density map. In this study, the mean displacement rate is 

considered as a weight parameter. Heatmaps allow quick identification of “hotspots” 

of points. As for the kernel map, the first feature to set is the choice of bandwidth or 

the search radius. The bandwidth controls the smoothing of the results, larger values 

result in greater density, but smaller values may show finer details. Therefore, it is 

important to estimate the bandwidth starting from the presence data available in order 

to use the best radius value. In order to calculate the best radius that must be used in 

the kernel density, the formula of Silverman, 1986, has been adopted: 

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = 0.9 ×min⁡(SD, √
1

ln(2)
× 𝐷m) × 𝑛−0.2 

*SD=√
∑ wi(yi-Xw)

2n
i=1

∑ wi
n
i=1

+
∑ wi(yi-Yw)

2n
i=1

∑ wi
n
i=1

 

Where  

▪ in is the minimum value between the two in the interlude; 

▪ SD is the standard distance; 

▪ Dm is the (weighted) median distance from (weighted) the mean center; 

▪ n is the number of points; 

▪ xi, yi are the coordinates; 

▪ wi is the weight. 

 

The radius was calculated using Qgis tools: in detail, the centroid was considered 

through the Mean Coordinate tool and then the Raster Calculator was used to 

estimate the bandwidth for each satellite geometry. The values obtained were inserted 

in the Heatmap tool and the mean displacement rate as the weight field has been used 

(wi) to increase the quality of the results. 

Finally, thanks to the availability of images acquired in the two ascending and 

descending geometries, it has been possible to obtain the vertical (Z) and E–W 
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components of the displacements. This operation is possible (system resolution of 2 

equations in 2 unknowns (Equation (5)) under the hypothesis that the motion 

component in the north–south direction is negligible (Colesanti et al., 2006; Cascini 

et al., 2010). This is an intrinsic limit of the acquisition system, since the north–south 

motion component is strongly underestimated since the SAR sensor’s direction of 

view is almost orthogonal to the north–south direction (the satellite travels along 

quasi-polar orbits with antennae oriented orthogonally to the flight direction) and is 

therefore not very sensitive to variations in this direction.  

5. 𝐷𝑎 = ⁡𝐷𝑥𝑠𝑥𝑎𝑠𝑐 ⁡× 𝐷𝑦𝑆𝑎𝑠𝑐 ⁡× ⁡𝐷𝑍𝑆𝑧𝑎𝑠𝑐  

           𝐷𝑑 = 𝐷𝑥𝑆𝑥𝑑𝑒𝑠𝑐 ⁡× 𝐷𝑦𝑆𝑦𝑑𝑒𝑠𝑐 × 𝐷𝑧𝑆𝑧𝑑𝑒𝑠𝑐  
where Da and Dd are, respectively, the displacement values in ascending and 

descending geometry, Dh and Dv are the displacement vector components along the 

horizontal (E–W) and vertical directions and Sxasc, Syasc, Szasc, Sxdesc, Sydesc, 

and Szdesc are the incidence angles in the two geometries. 
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3.5.  Results 

The datasets available from this study consist of 89 images acquired in ascending 

geometry with a time-revisiting variable between 12 and 36 days in the time span 

January 2016–June 2019, and 51 images acquired in descending geometry with a 

time-revisiting variable between 12 and 96 days in the time interval June 2015–

September 2018. From all possible pairs of interferograms, only those characterized 

by spatial and temporal baseline thresholds of 50 m and 150 days, respectively, have 

been selected. In particular, 793 and 271 interferograms in ascending and descending 

orbits, respectively, have been identified (Figure 3.4). 

Figure 3.4. Interferograms distribution in (a) ascending; (b) descending. 
 

The following step consisted of SCS selection. CPT-TSC allowed to select points in 

the detected area characterized by a phase quality higher than a threshold value set 

by the operator according to the error in the displacement evaluation considered 

acceptable (in this case less than 1.5 mm), which in turn is a function of the expected 

mean displacement rate. In this case, a TSC value equal to 0.65 has been set in both 

geometries (Figure 3.5) in order to obtain an acceptable displacement error, lower 
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than 1.5 mm, and to select an adequate number of points. Using the CPT-TSC 

approach, two mean displacement rate maps have been obtained, each for both 

acquisition geometries. In the El Oro province territory about twenty and twenty-one 

thousand targets (ascending and descending) located in the Portovelo, Piñas and 

Zaruma districts have been detected. Specifically, in the Zaruma town, about 4000 

and 5200 targets have been detected, in ascending and descending orbits, 

respectively. The results allowed to evaluate the surface ground displacements in 

terms of mean displacement rate and time series of deformation along the LoS of the 

satellite. Figure 3.6  shows the mean displacement rate in terms of cm\year recorded in 

the time span 2015–2019. The maps have been represented using a color scale from 

red to blue, where the negative values conventionally indicate a movement of the 

target towards the satellite, while the positive values indicate movement far from the 

sensor, and the green color identifies stable areas. 

 

Figure 3.5. Temporal sublook coherence maps: ascending (a), and (c). Stable coherence scatterers 

(SCS) maps: (b) ascending, (d) descending. 
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In order to identify the displacement rate threshold for which areas should be 

considered stable, a coefficient of variation, given by the ratio between the standard 

deviation and the velocity average module, for all selected SCS, has been evaluated. 

The threshold value obtained is about 0.3 cm/year, corresponding to a value for 

which standard deviation is higher than the mean displacement rate value (Colesanti 

et al., 2006). To detect the presence of UAs in the urban area of Zaruma, the KDE 

algorithm was applied to both analyzed datasets (Figure 3.7). Such a figure shows the 

hotmaps in the area of the Zaruma historical center displaying the density of targets 

weighted on mean displacement rate values during the covering period for each 

satellite orbit. Both blue and red hotmaps highlight where surface deformations are 

present. As already described above, the color blue indicates movements far from the 

satellite, while red movements are towards the satellite. Moreover, the intensity of the 

color gives information on the magnitude of the deformations, while the radius 

indicates the potential extension of the phenomenon. 
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Figure 3.6. Mean displacement rate map: (a) ascending orbit; (b) descending orbit. A1–6 and D1–6, 

ascending and descending, respectively, are points for which vertical and horizontal components have 

been calculated (see Discussion section). 
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Figure 3.7. Kernel density map: (a) ascending orbits; (b) descending orbits. 
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In detail, the detected UAs are distributed as reported in Table 3.2: (a) south of the 

Inmaculada school (UA1), where displacement rates of about 3 cm/year have been 

recorded and where tunnels are known; (b) around the school (UA2), which collapsed 

in 2017, where significant deformation rates can still be observed (about 1 cm/year). 

It is worth to point out that probably higher displacements affected the school during 

the 2017 event. Such displacements were not detected, related to their extreme 

rapidity in a short time span, not allowing the interferometric technique to detect a 

coherent signal because of its inability to analyze such rapid deformations (Colesanti 

et al., 2006). Meanwhile, it was possible to verify that the subsidence phenomenon 

affecting the area was already in place before the collapse; (c) on the eastern hill of 

the inhabited center (Mirador La Colina—UA3), with mean displacement rates of the 

order of 1 cm/year, where tunnels have been mapped; (d) UA4 has been identified to 

the south, in correspondence of the Humberto Molina Hospital with rates of the order 

of 1 cm/year. In this case, due to the absence of known tunnels and the morphology 

of the site, these displacement rates could be caused by landslides (rotational slide) 

which affect the slope or subsidence induced by the presence of lawless activities; (e) 

as for UA4 and the UA5, located on the west side of the Marcelo Zambrano Stadium, 

they can be associated with a landslide phenomenon (rotational slide), due to the 

presence of a steepness slope or lawless activities; (f) UA6, located in 

correspondence of the Marcelo Zambrano Stadium, is characterized by null slopes, 

and by the absence of reported tunnels. Therefore, these peculiarities lead to the 

interpretation of recorded deformation rates due to the presence of illegal activities; 

and finally, (g) UAs 7 and 10, in the northern sector of the town and UAs 8 and 9, in 

the westernmost sector of Zaruma (near the IESS Hospital), showed mean 

displacement rates of the order of 1–2 cm/year, even though there are no tunnels in 

the official inventory. It was not possible to validate the results by comparing them 

with in situ measurements, due to the absence of the latter, but only by consulting 

several newspaper articles and scientific papers (Cando et al., 2020; 

www.twitter.comgadzaruma; www.machamovil.com; www.elcommercio.com; 

Ludizaca et al., 2018). 
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Table 3.2. List of unstable areas (UAs) and probable cause of the observed SAR displacement rates. 

Unstable Area Probable Cause 

UA1 Reported tunnels 

UA2 Reported tunnels 

UA3 Reported tunnels 

UA4 Unknown tunnels/Landslide 

UA5 Unknown tunnels/Landslide 

UA6 Unknown tunnels 

UA7 Reported and unknown tunnels 

UA8 Unknown tunnels 

UA9 Unknown tunnels 

UA10 Unknown tunnels 

Finally, a comparison between UAs and reported mining tunnels have been carried 

out, highlighting that out among the 10 UAs identified, 40% of these have at least 

one tunnel mapped in the official inventory, while for the remaining 60% there are no 

reported tunnels, so the presence of lawless activities could be assumed.  

3.6.  Discussion 

The results obtained in this work have, on the one hand, confirmed the phenomena of 

instability, induced by the presence of underground activities, legal and illegal, which 

affect a large part of the urban center of Zaruma, and on the other, highlighted the 

need to implement a deformation monitoring system in order to mitigate the risks 

present. Actually, the aim of this paper was to evaluate the capability of Sentinel-1 

data to detect and characterize the possible deformations due to mining activity. The 

processing of interferometric data by means of the DInSAR technique and the 

subsequent interpretation (kernel density) allowed to identify unstable areas (UAs) 

affected by subsidence and other gravitational phenomena. The use of the 

interferometric technique to monitor mining areas affected by subsidence phenomena 

which induce damage to structures has been carried out in several works. Many 

papers focus on areas where mining activities are known and often where in situ 

monitoring systems are implemented (Pawluszek et al., 2020). The most complex 

situation is that of unauthorized mining areas. In this case, the main purpose is the 

identification of areas potentially subject to subsidence and then the deformation rate. 

An example is a recent work (Cando et al., 2020), implemented in Zaruma, where the 

authors, by processing a limited number of images only in ascending orbit, have 

identified potential unstable areas, for an extension of about 40% of the urban center, 

but without evaluating their temporal evolution. Unlike what (Cando et al., 2020) 
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carried out, in this work, the images in both acquisition geometries (ascending and 

descending) were processed for a longer time interval (2015–2019). Moreover, a 

post-processing phase, using the kernel density algorithm, has been implemented, in 

order to identify about 0.45 km2 of unstable areas. Finally, thanks to the availability 

of ascending and descending results, the time series of deformations of horizontal and 

vertical components have been obtained using the selected points reported in Figure 

3.6. Within all the UAs identified, six have been selected, based on the highest values 

of displacement rates, which can be divided into three categories (reported, unknown 

tunnels and landslides) as shown in Table 3.2. In order to reconstruct the kinematic of 

the deformation, vertical and horizontal components have been calculated (Table 3.3) 

by means of the composition of ascending and descending data for the time span 

when both acquisitions were present (from January 2016 to September 2018) (Figure 

3.8). 

Table 3.3. Line of sights (LoS), vertical and horizontal displacement components for ascending and 

descending orbits. (Incident angle: 34◦ ascending; 43◦ descending). 

 DLoS Ascending DLoS Descending Dvertical Dhorizontal 

(cm) (cm) (cm) (cm) 

UA1 5.0 3.0 4.0 2.0 

UA2 2.5 2.0 2.0 0.2 

UA3 3.0 2.0 2.5 0.5 

UA4 3.5 6.0 6.0 3.0 

UA5 2.0 2.5 2.5 0.2 

UA6 1.5 2.5 2.5 1.5 

 

Specifically, the cumulated LoS displacements for the A1/D1, A2/D2 and A3/D3 are 

about 5.0/−3.0, 2.5/2.0 and 2.5/2.0 cm. The composition of the ascending and 

descending data made it possible to evaluate the horizontal and vertical components, 

highlighting in all three cases how the vertical component is always the predominant 

one, varying between 2.0 and 4.0 cm. This result, combined with the morphology of 

the sites (flat areas), allows us to state that a subsidence phenomenon is taking place 

in the area. Moreover, as far as UA2 concerns where the “Inmaculada Fe y Alegria” 

school was located, it is possible to highlight that the subsidence was already active 

before the event occurred in 2017 and nowadays it seems to move southward 

(Mojeron et al., 2019). In the second categories, UA4 and UA5, cumulated LoS 

displacements are about 3.5 and 2.0 cm in ascending and 6.0 and 2.5 cm for the 

descending orbit, respectively. Therefore, as previously done, the horizontal and 
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vertical components have been calculated (Table 3.3). In this case, the vertical 

components recorded higher values than the horizontal ones, varying between 2.5 and 

6.0 cm, but unlike the first three UAs, it can be assumed that rotational landslides are 

taking place, due to the morphology of the sites (steep slopes). These results are also 

confirmed by ARCOM (www.elcomercio.com), which reported an increase in 

damage to structures in the area after the 2017 earthquake. 

 

Figure 3.8. The time series of cumulated vertical and horizontal components. Displacement standard 

deviation, for each differential interferometric synthetic aperture radar (DInSAR) measurement, are 

also reported (black). 

Finally, in the last category (UA6), displacements along the LoS of about 1.5 cm in 

ascending and 2.5 cm in descending, respectively, were recorded. In this case, the 

vertical component was higher than the horizontal one (Table 3.3), 2.5 with respect to 

1.5 cm, confirming the subsidence phenomenon of the area, even in the absence of 

reported tunnels. 
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3.7.  Conclusions 

The Zaruma town has been known for ages for gold mineralization and for its mining 

activity which were considered the main sources of the country economy from the 

beginning of the 20th century. The activity was divided between small mining 

concessions released to private local miners, as well as to a few foreign companies. 

However, simultaneously with the licensed mining activity, a widespread illegal gold 

exploitation also developed in areas outside the allowed concessions. The forbidden 

mining area created in 1992, covering 0.7 Km2 of the Zaruma urban area, recently has 

been expanded to 1.73 Km2 due to the development of illegal mining activity. 

Nowadays, numerous subsidence events occurred in the city, sometimes caused by 

the mining activities, as the sinkhole generated near the “La Immaculada de fe y 

alegría” school. Ecuador’s Agency for Mining Control and Regulation (ARCOM) 

detected in the country about 65 km of tunnel mining, where an unquantified number 

of illegal miners work, and open, new mines beneath from about 10 to 20 m 

(www.controlminero.gob.ec) have been reported. Considering the extension of the 

underground tunnels, it is difficult to carry out internal controls. According to the 

Undersecretary of Zaruma Risk Management, the ground surface vulnerability is 

probably due either to the illegal underground mining or to incorrect urban planning 

(www.elcomercio.com). 

Thus, it is essential not to underestimate the potential effects of ground surface 

displacements and it is useful to monitor these to minimize negative environmental 

and social impacts. Several studies affirmed that in order to decrease the damage due 

to anthropogenic subsidence phenomena, it is important to identify and to map them 

(Sunwoo et al., 2010;Taheri et al., 2019). Recently, the management of terrain 

deformation has increased in importance and several monitoring techniques have 

been implemented, among which is the differential interferometric synthetic aperture 

radar (DInSAR) technique. 

The DInSAR technique has proved effective in identifying areas subject to 

subsidence in the Zaruma town, making it possible to recognize critical zones both in 

areas where the presence of tunnels is known, but especially in those areas where 

tunnels have never been identified. The latter, which represent a serious problem for 

the city of Zaruma, as highlighted by several newspaper articles and as the 

intervention of the Ecuadorian authorities testified, was the main goal and novelty of 
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this work. This result will certainly be very useful to forecast the occurrence of events 

such as the one recorded in 2017 in the “La Immaculada de fe y alegría” school and 

in order to help the authorities that have to manage the territory through the 

identification of the most appropriate risk mitigation actions. 

Finally, this result has a double value: on one hand, it will be possible to keep the 

ground deformation rates under control, in correspondence to the already known 

tunnels, by carrying out continuous monitoring and integrating it with in situ 

measurements, thanks to the availability of images of the SENTINEL-1 constellation 

which have a revisiting time of 12 days; on the other hand, it will be possible to carry 

out a validation through field detection by focusing attention directly on the areas 

where anomalous displacement rates have been identified, but where, up to now, 

there is no certainty of the presence of reported tunnels. Updating the tunnel map, by 

means of the integration of remote sensing and fields surveys, will therefore be 

fundamental to subsequently carry out a sinkhole hazard study (Pellicani et al., 2017; 

Parise et al., 2013; Ardau et al., 2007; Intrieti et al., 2018; Todd et al., 2020;), which 

will allow the authorities in charge of land management to implement risk mitigation 

actions. 
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4. Semi-real time systems for subsidence monitoring in areas 

affected by underground mining: the example of the Nuraxi-Figus 

coal district (Sardinia, Italy) 

4.1.  Abstract 

Underground mining can produce subsidence, which can be coincident with mining 

activities or delayed in response to the time-dependent deformation of the rocks. 

Therefore, in these cases, it is essential to effectively monitoring the soils 

deformations at different times during and after mining activity.  In the present work, 

an integrated approach based on geotechnical numerical modeling and Advanced 

Differential Interferometric Synthetic Aperture Radar (A-DInSAR) method was 

applied to detect, study and monitor the subsidence related to mining activity in the 

Nuraxi Figus coal district (Sardinia, Italy). Two datasets of high-resolution COSMO-

Skymed (CSK) images were acquired, respectively in two covering periods: from 

2011 and 2014, and from 2013 to 2020. The A-DInSAR results show that the 

predominant displacement rates are located in correspondence with the panels. The 

cumulated satellite-based LoS displacements vary in the first period between −130 

and +28 mm and −293 and +28.4 mm, while, during the sec-ond period between -6.9 

and +1.6 mm and -8.72 and +4.33 mm in ascending and descending geometries, 

respectively. The geotechnical numerical model allowed to obtain a ground 

displacement threshold. By using the vertical and hori-zontal components it was 

possible to reconstruct the kinematics of the deformation considering three phases: 

pre-mining, syn-mining activity, and post-mining activity. The temporal evolution of 

displacements started during the mining extraction in 2011, achieved the major 

values in correspondence of post-mining operations, during the period 2013 to 2014 

and continued slowly until 2020.  The near real-time monitoring system applied in 

this study proved to be very useful for detecting subsidence during the mining 

activity and in the post-mining period. 
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4.2.  Introduction  

Mining and mineral extraction is useful for human development, social progression, 

and material prosperity. However, these activities strongly interact with surrounding 

environments and could produce significant negative effects, on atmosphere, soil, and 

water (Bell et al., 2000). One of the main issues in many parts of the world is 

represented by the subsidence induced by underground mining (Villegas et al., 2011, 

Zhou et al., 2015, Przyłucka M. et al., 2015, Vu Khac et al., 2021). Such effects are 

more harmful when the activities legal or not authorized are in correspondence or 

nearby urban areas (Bell et al. 2005, Prakash et al. 2010, Ji et al. 2011, Villegas et al. 

2011, Marschalko et al. 2012). Subsidence can either coincide with mining activities 

or be delayed in response to the time-dependent deformation of rocks. Several studies 

determined the rate of expected subsidence by means of physical or numerical 

modeling and analysis (Whittaker 1989, Singh et al. 1998, Al Heib et al. 2001, Ye et 

al. 2016, Xie et al. 2020, Gazzola et al. 2021). In any case, to avoid possible 

environmental harms it is important monitoring areas subjected to underground 

mining activity. Mining-related subsidence can be analyzed with piezometers, useful 

to register pore pressure variations of the overburden strata (Guo et al. 2012). 

Monitoring can be also conducted by using extensometers installed at different 

heights in boreholes located above the exploited panels: in this way, displacements 

are measured (Holla et al. 2000). In addition to the above-mentioned conventional 

survey methods, remote sensing can be a convenient technique. Specifically, among 

the different types of remote sensing techniques, the Advanced Differential 

Interferometric Synthetic Aperture Radar (A-DInSAR – Franceschetti et al., 1992) 

proved to be a very powerful tool, being sensitive to sub-centimetric ground 

movements (Colesanti et al., 2006) and/or terrain displacements, induced by 

landslides (Wasowski and Bovenga 2022, Scifoni et al., 2016, Pappalardo et al., 

2018, Giardina et al., 2019, Guerriero et al., 2019), earthquakes (De Novellis et al., 

2018, Zhao et al., 2021), volcanoes (Foumelis et al., 2016, Casu et al., 2019) and 

valid to detect harms to structures and infrastructures (Milillo et al., 2018, Ullo et al., 

2019, Pastor et al., 2019, Miano et al., 2021). In the last three decades, A-DinSAR 

has been applied also in mining areas to detect the subsidence due to underground 

activity (Yue et al., 2011, Du et al. 2016, Ammirati et al., 2020, Pawluszek et al., 

2020, Chen et al. 2021), monitoring the stability of tailings dam (Necsoiu et al., 2015, 

Gama et al., 2019, Ammirati et al., 2021), and to identify surface movements in open-
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pit mines (Paradella et al., 2015, Carlà et al., 2018). The scientific community has 

studied many cases of mining subsidence in coal districts (Salmi et al., 2017, Jing et 

al., 2018, Zingano et al., 2019). In these areas, A-DinSAR resulted to be an effective 

technique for ground movement survey (Dong et al., 2013, Xu et al., 2020). In 

several studies, the subsidence maps generated from satellite images proved to be 

consistent with field observations (Ismaya et al., 2012, Samsonov et al., 2013, 

Pawluszek et al., 2020). In this work, an integrated approach based on geotechnical 

numerical modelling and A-DInSAR method was applied for investigating 

subsidence phenomena occurred in a coal mining area interested by underground 

exploitation. The study area is represented by an historic coal mining district located 

in south-west Sardinia, Italy, in the municipality of Nuraxi Figus (Carbonia-Iglesias 

province). The study area occurs in the Carbosulcis S.p.A. mining concession called 

“Monte Sinni” (total extension of about 0.6 Km2), where a subsidence phenomenon 

occurred between the years 2011 to 2014 (Tessitore et al., 2018). In the present study 

we analyzed the remote sensing data to correlate the 2011-2014 subsidence 

phenomenon with the underground mining activity and the excavation development, 

also using numerical modeling to reconstruct the kinematic evolution of ground 

displacements. Moreover, radar satellite data, derived from COSMO-SkyMed (CSK) 

datasets, were acquired and processed by SUBSIDENCE software, which implements 

the Coherent Pixels Technique algorithm (Mora et al., 2003, Iglesias et al., 2015), for 

the period from 2013 to 2020, to understand the temporal evolution of ground surface 

deformation. The study allowed to understand the cause-effect mechanism between 

extraction and ground deformation and confirmed that ground surface deformations 

can continue at lower rates a few years after completion of mining activities. 

4.3.  History of the mining activity in the Sulcis coal basin 

In the Sulcis coal district, the mining activity started around 1850 through the 

exploitation of productive coal outcrops occurring in the sedimentary rocks of the 

Lignitifero Formation (Figure 4.1). During this period, the coal became the primary 

national resource and was mostly exploited in open-pits. In the Sulcis district, the 

underground mining activity started in 1950 in association with increasing economic 

necessities of the country and thanks to the discovery of new exploitation techniques. 

In 1956, the coal exploitation started in the underground Seruci mine, located in 

center of Sulcis basin.  
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Figure 4.1. Study area red box. Geological sketch map on right. Below the geological cross-section  

At that time, the Seruci mine represented one of the most advanced and modern 

mines in Europe, exploiting coal seams occurring at a depth between 200 to 500 m 

below ground level. Since 1976, Carbosulcis S.p.A., which is the current owner of 

the mining licenses in the Sulcis district, started mining activity south of Seruci, in 

the Monte Sinni area, nearby the Nuraxi Figus village (Fadda et al. 1994). The Monte 

Sinni coal panels are located at a depth of about 400 m b.g.l., extend for an area of 55 

km2 and are mined through 30 km of tunnels (15 km of which correspond to 

permanent infrastructures). Mining activity was conducted in correspondence of 

some exploitation panels, called W1, W2, W3, etc., with average dimensions of 300 

m x 600 m (width x length) and a height of about 3 m. In the initial period of activity, 

mining was developed through room and pillars method, whereas from the 1980s 

coal extraction was carried out with a different method, called “longwall cutting in 

retreat”. The latter is based on the continuous extraction of the coal panel by means 

of a shearer that digs along the coal face, while a transporter belt carries away the 

grained coal. When the shearer moves on, the roof of the gallery at the back of the 

active face collapses. The Carbosulcis S.p.A. used the longwall method to extract the 

W3 and W4 panels, in the periods between from 2008 to 2010 and from 2011 to 
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2012, respectively. In 2018, following the progress of environmental regulations on 

the cessation of the use of coal, the Company started the closure plan that 

progressively will bring to reclaim all the areas by 2027 (Figure 4.2). 

Figure 4.2. Location of exploitation panels, W1, W2, W3,W4. On right the maps of underground 

tunnels and excavation areas. 

4.4.  Geology of the Sulcis district  

Geology of the Sulcis district is characterized by Cenozoic sedimentary and volcanic 

rocks, unconformably overlaying a Paleozoic basement. The Cenozoic sedimentary 

rocks, deposited in extensional basins, which were filled by a sedimentary succession 

consisting of limestones, sandstones, conglomerates, marls, and silty clays, have been 

subdivided in four stratigraphic formations. Proceeding from the bottom of the 

Cenozoic succession, the oldest rocks are represented by the limestones of the Macro-

foraminifera Formation, which are covered by the sandstones, marls and limestones 

of the Miliolitico Formation (20–70 m thick; Lower Eocene age). The following 

stratigraphic interval is represented by clays, marly limestones, bituminous 

limestones, marls, and conglomerates of the Lignitifero Formation (70–150 m thick; 

Lower-Middle Eocene age). This formation hosts various coal horizons. Coal seams 

commonly are 10 cm thick, rarely reaching 30–50 cm, and are interbedded with clays 

(Assorgia et al. 1992a and b). The Lignitifero Formation is covered by about 300 

meters of sandstones, conglomerates, and marls of the Cixerri Formation (Eocene-
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Oligocene; Pasci et al. 2012). This sedimentary succession is in turn covered by 

volcanic rocks, represented by twelve andesitic, dacitic to rhyolitic ignimbrite 

plateaus belonging to several stages of explosive volcanic activity of Oligo-Miocene 

age (Morra et al., 1994). The distinct plateaus are separated by paleosoils, indicating 

periods of volcanic inactivity (Assorgia et al., 1990), which allow recognition of the 

twelve units (Assorgia et al. 1992a and b). The youngest unit, called Nuraxi 

ignimbrite (NU), has an average thickness of 20 m and covers as a mantle most of the 

study area. The whole district has been dislocated by normal faults, which lower the 

sedimentary succession to various hundred meters of depths within the basin (Barca 

et al. 2000). These geological features allow the existence in the area of two types of 

aquifers: one occurring in the volcanic rocks and a second one in the Miliolitico 

Formation, which have been both dewatered by Carbosulcis S.p.A. before the start of 

the underground mining activity. From a geotechnical point of view, the Rock Mass 

Rating (RMR) (Bieniawski 1989) was used to numerically define the characteristics 

of the rocks, by means of "RMR value" which allows defining five quality classes 

(from very poor to very good). In particular, 89% of the volcanic rocks correspond to 

the fair class (III), whereas the sedimentary Formations are characterized by 57% to 

the fair class (III), 28% to the poor class (IV) and 10% to the good class (II) (Fadda et 

al. 1994). Such geotechnical features evidence that the Cixerri Formation has a 

heterogeneous structure, where conglomerate and marls layers belong to the lowest 

classes, while sandstones are characterized by the best performance. 

4.5.  Materials and methods  

For the present study, as summarized in the flow chart of Figure 4.3, satellite data and 

mining information were used to create a near-real time monitoring system. Satellite 

data were collected in ascending and descending orbits covering the time span 2011-

2020, to study subsidence by the vertical deformation maps and the displacement 

time series. Two datasets composed of the high-resolution COSMO-SkyMed (CSK) 

images have been used and two distinct A-DInSAR algorithms were applied to the 

CSK in two periods of time:  

• Satellite data 1 (SD1): PSP-IFSAR algorithm (Costantini et al., 2008), time 

span 2011-2014, obtained in the framework of Not-Ordinary Plan of Environmental 

Remote Sensing (Piano Straordinario di Telerilevamento Ambientale – in italian), 
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funded by the Italian Ministry of Environment (Costantini et al., 2017, Di Martire et 

al., 2017). 

• Satellite data 2 (SD2): SUBSIDENCE software (Mora et al., 2003; Iglesias et 

al., 2015), covering the period 2013 – 2020. 

Figure 4.3. Materials and methods summarized in the flow chart. 

SD1 consist of 41 images acquired in ascending geometry and 58 images acquired in 

descending geometry in the time interval May 2011– March 2014. SD2 contain 102 

and 116 images in ascending and descending orbit, respectively related to the time 

span October 2013 to July 2020. First data set derived from the interferometric 
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processing within the framework of the third stage of the PST-A project (Not-

Ordinary Plan of Environmental Remote Sensing) funded by the Ministry for the 

Environment and Protection of the Territory and the Sea (Italian National Geoportal, 

www.pcn.minambiente.it). The second dataset was obtained by the processing of 

SD2 by means of SUBSIDENCE software, which implements the Coherent Pixels 

Technique (CPT) algorithm, developed at the Remote Sensing Laboratory (RSLab) of 

the Universitat Politecnica de Catalunya of Barcelona. SUBSIDENCE uses the CPT-

Temporal Phase Coherence (CPT-TPC) approach to extract from a stack of 

differential interferograms the deformation evolution over wide areas during large 

time spans (Mora et al., 2003, Iglesias et al., 2015). The processing is structured in 

three main phases: 

1) Interferogram generation: the generation of the best interferogram set among all 

the available images of the zone under study; 

2) The Stable Coherence Scatterers (SCS) selection: the points in the detected area 

characterized by signal stability and higher than the threshold in a specific percentage 

of interferograms. To get enough SCS’s a coherence limit of 0.6 was considered, 

assuming an error in mean displacement rate lower than 1.5 mm; 

3) Linear velocity of deformation (Iglesias et al., 2015): linear deformation time 

series (TS) were calculated starting from phase analysis. The Delaunay triangulation 

was used to check an offset among the different interferograms. Then, it was applied 

a filtering process to assess the deformation evolution of selected pixels (SCS) 

(Blanco et al., 2008); the geocoding of the results was carried out in WGS84-UTM. 

This process allowed to elaborate PS (Permanent Scatters) maps for each acquisition 

geometry in terms of mean displacement rate and time series of deformation, along 

the Line of Sight (LoS) of the satellite. After this, by using images acquired in 

ascending and descending geometries the vertical displacement component was 

calculated (Cascini et al., 2010; Di Martire et al., 2013). Subsequently, to improve the 

analysis of the Nuraxi Figus subsidence, satellite datasets were integrated with the 

following information, provided by Carbosulcis S.p.A.: stratigraphic logs of 9 

drillholes, geotechnical parameters of country rocks, mining reports regarding the 

exploitation of panels W3 and W4, and maps of underground tunnels and excavation 

areas. Spatial migration in time of the excavation front within the mining panels W3 

and W4 was compared with the evolution of vertical ground displacements detected 
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with the satellite data during the mining activity. The 3D geological model of 

subsurface was elaborated by using lithostratigraphic data from 7 boreholes through 

the software Rockworks® (Figure 4.4). The model allowed to determine the 

thickness of the overburden strata in the various parts of the study area. A 

stratigraphic section perpendicular to the W3 and W4 exploitation panels was 

extracted from the 3D geological model to produce a numerical subsoil model 

through the Plaxis® 2D software (Brinkgreve et al., 2008). The finite element 

numerical model allowed to model the excavation process in two-dimensions in order 

to quantify the subsidence induced at surface level. The characteristic values of 

geotechnical rock parameters used for modelling (Table 4.1) were obtained by 

Carbosulcis S.p.A.  

Figure 4.4. Location of stratigraphic logs used to elaborate 3D geological model of subsurface (on 

right). 
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  Geology layer Unit weight Young’s modulus  Poisson’s ratio  

 γ E ν 

kN/m3 [kN/m2] [-] 

Volcanic 1 22 2.60 x 107 0.25 

Volcanic 2  14 1.94 x 106 0.25 

Volcanic 3 22 2.00 x 107 0.21 

Volcanic 4 23 1.06 x 107 0.12 

Conglomeratic 

Cixerri Fm. 

22 1.00 x 106 0.40 

Cixerri Fm. 24 9.00 x 106 0.30 

Lignitifero 

Fm. 

13 1.00 x 105 0.28 

Miliolitico Fm. 26 1.50 x 1010 0.30 

Table 4.1. Geotechnical  parameters used for modelling. The volcano-pyroclastic rocks and 

ignimbrites are named Volcanic 1 to 4. The Cixerri Fm. is subdivided into two patterns.   

  

As reported in Table 4.1, due to similar geotechnical parameters, the twelve 

ignimbrite plateaus overlying the sedimentary units were grouped in four 

geotechnical layers. Cross sections (width = 200 m, height = 3 m) of panels W3 and 

W4 were considered into the 2D model at the depth of 400 m. Each rock layer has 

been considered in the numerical modal as linear elastic, with Young modulus E and 

Poisson ratio n as reported in Table 1. Evaluation of the overall subsidence (total 

vertical displacements of the surface) has been performed at the end of the following 

calculation steps: 1) initial in situ stresses (geostatic stresses), 2) excavation of W4 

panel, and 3) excavation of W3 panel. 

4.6.  Results  

4.6.1.  Processing phase  

Starting from two satellite datasets, four PS-displacement rate maps for both 

acquisition geometries (ascending, descending) have been created. The PSs obtained 

were imported into GIS platform and subsequently made visible according to a colour 

scale: negative values conventionally indicate a movement of the target away from 

the satellite (LoS), while positive values indicate movement towards the sensor; 

stable areas are shown by using the green color. The maps represent the average 

velocity recorded during the period covered by the acquisitions (Figure 4.5). The 

results of both ascending and descending geometries show that the predominant 
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displacement rates are located in correspondence of the panels. In the central part of 

the monitored area, in the first period considered (2011-2014), PS-deformation 

velocities exceed the detection limits (Colesanti et al., 2006), and no satellite-based 

measurements are available. On the contrary, in the second period analyzed (2013-

2020), the same zone is covered by PS-measurements.  

Figure 4.5. Mean displacement rate map in  ascending and descending orbit. 

This fact is likely related to the decrease of displacement velocities. Indeed, the 

cumulated satellite-based LoS displacements vary between −130 and +28 mm (until 

January 2014), −293 and +28.4 mm (until March 2014) and between -6.9 and +1.6 

mm (until March 2020), -8.72 and +4.33 mm (until March 2020) in ascending and 

descending geometries, respectively. 

4.6.2. Post-processing phase  

The numerical model produced a simulation of the subsidence induced at the surface 

by the two mined panels. The model was produced along a N-S section crossing both 

the W3 and W4 panels (Figure 4.4). In order to reproduce the chronology of the 

events and analyzing if the differential exploitation of the two panels influenced the 

total measured subsidence, two calculation steps were performed. The first was 
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related to the sole exploitation of the panel W4 (occurred from 2008 to 2010), 

whereas the second was related to the excavation of W3 panel (occurred from 2010 to 

2012). The Figure 4.6 shows that vertical displacements reach a maximum value of 

32 cm. The lateral extent of the subsidence covers a horizontal length of about 1100 

m, that is quite wider than the mined panel size. At the surface, the expected vertical 

displacement reaches a maximum value of 18 cm.  

Figure 4.6. Vertical displacements were obtained with the geotechnical numerical model. On top 

subsidence profile related to the section AA’. 

The availability of both ascending and descending datasets allowed to reconstruct the 

kinematics of the deformation by means of the displacement vector decomposition 

(Figures 4.7 and 4.8). The results, as shown in Figures 4.7 and 4.8, are maps of 

vertical (VC) and horizontal (HC) components, with the total amount of displacement 

calculated in the time span 2011-2020.  Considering a x, y, z Cartesian coordinate 

system, HC maps coincide with the horizontal E-W and the VC maps with the 

vertical components. VC and HC were calculated considering three phases: pre-

mining, syn-mining and post-mining activity. The availability of satellite dataset 

allowed to obtain one map during the pre-mining activity related to September 2011, 

where no displacement has been detected. During the W3 panel extraction carried out 

in the period 2011-2012 the displacement vector components were analyzed every 

two months. To understand the temporal evolution of displacements the progress of 
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mining exploitation (i.e. the position of the exploitation front) has been integrated to 

the vector maps.  

The post-mining activity was investigated every year from January 2013 onward. It is 

important to note that during the extraction of W3 panel, between November 2011 

and October 2012, only slight deformations can be identified. In detail, displacements 

started in November 2011 and developed until October 2012 with maximum 

cumulated vertical displacements of ca. 11 cm and horizontal ones between -14 cm 

and 4 cm. On the contrary, the largest deformations were detected in correspondence 

of post-mining operations, during the time span January 2013 to January 2014. 

Subsequently, subsidence continued slowly until January 2020 with maximum 

cumulated vertical displacements of ca. 26 cm and horizontal ones between -24 cm 

and 7 cm, with a variability of 1.5 - 6 cm. 

Figure 4.7. Vertical deformation maps pre-mining, syn-mining, and post-mining activity. Black 

dashed lines in the figure represent the mining panels. 
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Figure 4.8. Horizontal deformation maps pre-mining, syn-mining, and post-mining activity. Black 

dashed lines in the figure represent the mining panels. 

4.7. Discussion 

The aim of this work is to create a near-real time system for monitoring mining 

activity starting from PS-maps and using a subsurface3D geological model. The 

threshold subsidence was defined in the geotechnical numerical model of the rocks 

overlaying the two mining panels W4 and W3. Subsequently, the temporal vertical 

and horizontal component maps were created for monitoring the mining area during 

the exploitation and post-exploitation activity. Figure 4.9 shows the temporal 

evolution of vertical displacements along the N-S oriented profile cross-cutting the 

mined panels, compared with the expected subsidence along with the same profile, as 

it was generated by the numerical model. The deformation started in November 2011, 

in correspondence with the W4 panel, and developed and extended until 2020, with 

maximum cumulated vertical displacements of ca. 26 cm located in the centre of two 



61 

 

panels. It is important to note that most of the subsidence was temporally delayed 

respect to the coal exploitation.  

 

Figure 4.9. Cumulated vertical deformation profiles during the pre-mining, syn-mining, and post-

mining activity. Yellow dashed lines in the figure represent the subsidence threshold 

In fact, during the mining activity the subsidence threshold was not exceeded, 

whereas the maximum deformation occurred during the post-mining operations. The 

delayed occurrence of the maximum deformation depends on several factors: peculiar 

features of the overburden geology, thickness of the panels, depth of the excavation 

area, and characteristics of the mining method. Several coal mining districts located 

in different countries, characterized by variable geological settings, show temporal 

delays in the occurrence of maximum surface deformations. This particular 

subsidence phenomenon, that is called residual subsidence (Al Heib et al., 2005), 

continues after the extraction and in some cases can occur some months or years after 

the end of the underground mining activity (Huang et al., 2020, Cui et al., 2020, 

Modeste et al., 2021). Sometimes the residual surface deformation could be also 

characterized by uplift phenomena (Vervoort 2020). To understand the surface 

displacement, in Table 6.2 maximum horizontal (E-W direction) and vertical 

components are compared with mining progress. During the extraction in 2011-2012, 

the major displacement reported showed a horizontal component. This was likely due 

to the position of the new mined zone. Subsequently, it is possible to note that the 

vertical displacement increases respect to the horizontal one. After the conclusion of 

mining activity, the deformation is concentrated between the two panels in the area 

characterized by the greatest geotechnical weakness (Table 6.2).This confirms that 
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the observed displacements are related to the excavation development. W3 panel was 

mined from 2011 to 2012 and the highest deformation increment was detected in 

January 2013, with differential vertical displacements of ca. 10 cm. In later times, the 

increment is of a few centimeters per year, with values decreasing with time until 

now.  

Date 
Mining Progress 

(m) 

Vertical 

displacement 

max (cm) 

Horizontal 

displacement max 

(E-W, cm)  

Horizontal 

displacement max 

(W-E, cm)  

Nov-11 95 -1.00 -1.40 1.00 

Jan-12 102 -2.60 -3.20 1.90 

Mar-12 160 -3.30 -5.80 3.00 

May-12 120 -5.40 -9.60 3.50 

Jul-12 118 -6.80 -10.70 3.70 

Sep-12 78 -8.90 -10.40 4.22 

Oct-12 37 -11.25 -14.50 4.33 

Jan-13 / -13.00 -14.48 5.32 

Jan-14 / -22.21 -19.21 6.15 

Jan-15 / -24.80 -22.30 5.29 

Jan-16 / -25.18 -21.50 6.70 

Jan-17 / -25.20 -21.20 7.50 

Jan-18 / -26.20 -24.60 6.00 

Jan-19 / -26.30 -23.48 7.37 

Jan-20 / -26.40 -24.30 7.23 

 Table 6.2. Maximum vertical and horizontal displacements related to mining progress. 

According to several authors (Cui et al. 2000, Al Heib et al. 2005, Cui et al. 2020, 

Tajduś et al. 2021), subsidence due to longwall mining is structured into three 

intervals. The first called initial subsidence is the period when the surface movement 

lightly starts with low velocity. The second phase, called “principal”, is considered 

when displacements increase, generally up to 80 to 90 % of final subsidence. The 

final phase, named “delayed” or “residual” period, is associated with surface 
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subsidence that continues after the end of mining activity, and can be characterized 

by 10 to 15 % of final subsidence. This “delayed” period can start around 12 to 18 

months, or also around 3 to 4 months after the end of the underground excavation, 

depending on the high or low geotechnical quality of the overburden strata, 

respectively. In the Nuraxi-Figus study case, the second subsidence phase ends one 

year after the end extraction (Figure 6.10), when the vertical displacement achieves 

about 84% of final subsidence. The delayed subsidence starts in January 2015 and 

develops slowly with a rate of about 20 mm/a (7% of final subsidence).  

 

Figure 6.10. Profile of vertical cumulated displacement max. The three subsidence phases: initial 

(green), principal (red), residual (yellow). 

In the initial stages of underground mining, the caving zone is characterized by 

elastic deformations that recede if the overburden forces are deleted. If extraction 

continues after a certain threshold, deformations become permanents. In this case, the 

pressure on the exploited areas increases, the sides move inward, the floor is 

subjected to uplift and the roof slides down (National Coal Board book 1975; 

Shadbolt et al.1978). According to Whittaker (1989), deformation occurring above a 

mining goaf depends on the following factors: depth of the cover, properties of 

overburden strata, seam thickness, geometry of the extraction panel, surficial 

topography, and extraction techniques. Specifically, in the underground mining four 

zones can be identified in the rock pile occurring above the extraction area. Starting 

from the bottom to the top there are: I - the zone immediately above the extraction 

area (caving zone), II - the fractured zone where the major cracks are present; III - the 

deformation zone, and IV – the surficial zone where subsidence could occur (Peng 
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1992). According to Mills (1998), the maximum subsidence (Sm) expected in an 

underground mining area is related to the width of the extraction panel (W), and 

height of cover strata (H). By using these parameters, it is possible to identify three 

types of excavation areas (Whittaker et al. 1989; Mills 2009): 

• Supercritical (W/H > 1.6): Sm could be between 55% and 65% of the mined 

seam thickness; 

• Critical W/H (from 0.6 to 1.6): Sm could be about 10% of the mined seam 

thickness, depending on changes in panel geometries, on the overburden depth and 

the composition and geotechnical properties of the strata; 

• Subcritical (W/H < 0.6): Sm is negligible. 

Applying the above subsidence model to the study area, it is possible to say that the 

caving zone should be completely included in the Lignitifero formation, whereas the 

fractured zone should affect the lower part of the Cixerri formation. The residual 

overlaying part of Cixerri formation and the volcanic rocks should belong to the 

bending zone. In the geotechnical numerical model it is possible to note that the 

maximum displacement is related to the Cixerri Formation. This is probably due to 

pre-existing structural discontinuities (fractures and faults), occurring in this 

Formation (Fadda et al., 1994).  The surface zone is instead characterized by slight 

surface movements. 
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4.8. Conclusion 

In this study, an integrated approach for near-real time mining monitoring was 

presented. Indeed, the method allowed to detect a subsidence phenomenon that 

occurred during the mining activity and continued also for a few years after the 

completion of mining work. The study confirms that ground surface deformations can 

occur also in areas subjected to very deep underground mining and that the DinSAR 

techniques produce reliable results in terms of monitoring in a certain time span. The 

geotechnical numerical method can be used as subsidence forecasting model allowing 

to obtain a ground displacement threshold. In underground mining areas, it is 

important to use monitoring techniques that can provide cost-effective regional 

perspectives for preventing possible negative environmental effects. The near real-

time monitoring system applied in this study proved to be very useful for detecting 

subsidence during the mining activity and in the post-mining period. Therefore it can 

be used for planning environmental remediation plans. However, to support the 

previous analysis and better investigate the subsidence-related cause-effect 

mechanism, as effectively as possible, might be necessary to also acquire additional 

external data (i.e. leveling surveys, extensometers). 
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5. Sentinel-1 data for monitoring a pre-failure event of tailings dam 

5.1. Abstract 

In the present work, an advanced differential interferometric synthetic aperture radar 

(A-DInSAR) technique has been used to detect the displacements of the upstream 

tailing dam of Vale's Córrego do Feijão. The study area is located to 9 km east of 

Brumadinho, Minas Gerais, Brazil, where on 25 January 2019 the dam was affected 

by a catastrophic failure causing a huge flood that destroyed the mining officers, 

houses, roads and 257 people died as a result of the collapse. The dam was built in 

1976 by Ferteco Mineração using the upstream heightening method, the latter 

consists to build the dam body using the deposited tailings. The vale’s dam height 

was 86 meters and its crest length was 720 meters. The tailings occupied an area of 

249.5 thousand square meters and the disposed volume was 11.7 million cubic 

meters. The study has been carried out using the 64 descending satellite images 

acquired as single look complex (SLC) from Europe space agency of the Copernicus 

programme. The data have been processed by means of coherent pixels technique 

(CPT) algorithm. The result consisted of a map of displacements on the body dam 

from the 2016 to 2019, in the period before the collapse. Furthermore, the study of 

the time series of displacements allowed to assess the evolution of dam structure 

deformations. The study confirms that the A-DInSAR technique could be very useful 

tool for monitoring tailings dam and to reduce the risks. 
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5.2. Introduction 

Nowadays the increase mining activity is aimed to obtain a huge variety of mineral 

resources, which are used to satisfy the diverse needs of men, as energy, construction, 

etc. Such growth, indirectly, generates a large production of residues that must be 

treated and managed to improve the economic efficiency and the environmental 

sustainability. There are several kinds of mining waste management, but a lot of 

companies use the tailings dam. The latter have many features in common with 

embankment dams, but are built to retain impoundments of tailings, and when 

possible, mining material extracted is used in their construction. The tailings dams 

can have several structural problems derived from hydraulic or foundation stability 

and sometimes they can collapse (Azam et al. 2010; Kossoff et al. 2014) In order to 

forecast the effects that a potential breach could induce, it is necessary to implement 

the most effective monitoring techniques. Among them, the Advanced Differential 

Interferometric Synthetic Aperture Radar (A-DInSAR) technique has proved to be 

among the most cost-effective and reliable, allowing, on one hand, to identify a 

"natural" network of targets over wide areas and, on the other hand, to obtain a sub-

centimetric accuracy in the measurement of displacements. As regards the application 

of this technology to the monitoring of artificial barriers, different fields of 

application can be distinguished (Fan et al. 2015; Przyłucka et al. 2015; Ammirati et 

al., 2020); to asset the displacement to dam structure (Di Martire et al., 2014; Milillo 

et al. 2016; Mura et al., 2018; Ullo et al. 2019; Du et al. 2020). In this work, it has 

been investigated surficial displacements, which occurred between 2016 and 2019, in 

association with a tailing dam located in Brumadinho area (Minas Gerais region, 

Brazil).  The latter on 25 January 2019 collapsed, releasing almost of 12 million 

cubic meters of tailings. In particular, the displacements have been investigated in the 

period immediately before the dam breakage and compared with the rainfall data 

recorded in the same period, in order to assess a possible cause/effect relationship. To 

pursue this aim, Sentinel-1 data derived from Europe Space Agency of the 

Copernicus Programme and the rainfall report acquired from Cemaden website 

(www.cemaden.gov.br) have been used. Rainfall data were acquired in order to verify 

the cause-and-effect relationship with the break-age of the dam in 2019. 
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5.3. Study Area 

The study area is in Brumadinho district about 65 km from Belo Horizonte city, in 

Minas Gerais region of Brazil (Figure 5.1). The area is identified for several 

mineralization that have been exploited when the mining industry diversified 

intensely, and the country became one of the six largest mineral producers in the 

world. Specifically, the study area is also known for numerous occurrences of iron 

mineralization. In the last years, the mining licenses have been owned by Vale 

Company, which mined the iron ore in several sectors of the Córrego do Feijão mine. 

The company exploited the ore, mainly with open pit mining, storing tailings in a 

dam, called Dam I. The structure was built in 1976 by Ferteco Mineração S.A. 

company, later acquired by Vale on 2001. The dam height was 86 meters and its crest 

length was 720 meters. The tailings occupied an area of 249.5 thousand square meters 

and the disposed volume was 11.7 million cubic meters. After the 2015, the dam has 

been inactive and according with Vale company the structure was no longer receiving 

tailings, there was no lake present and no other operational activity was in progress. 

Figure 5.1. Study area. On left pre-event; on right post collapse. 

In detail, the Dam I that was collapsed in January is an upstream dam type. Ac-

cording with Vick (1990) this type of dam is the oldest and most economical method. 
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The construction of an upstream starts with a pervious dike at the down-stream toe 

should be capable of passing seepage water. Later, the tailings are discharged from 

the crest of the starter dam generating a new level that becomes the foundation of the 

next dam. Before the next stage, a mechanical compaction of the dike is conducted. 

The upstream dams are of wide area and are composed of coarse material. 

5.4. Dataset 

In order to assess the displacements occurred at the Dam I, two types of data have 

been used. Firstly, we used the Sentinel-1 images consisting in 64 radar images, 

covering the temporal span from 23th October 2016 to 17th January 2019, acquired as 

Single Look Complex (SLC) in descending orbit. Secondly, we also considered 

rainfall data existing in the Minas de Gerais. The daily rainfall data were acquired for 

the period 2016-2019, in three stations: Alberto Flores, Distrito Casa Branca and 

Córrego do Feijão (Figure 5.1). The Coherent Pixels technique (CPT – Mora et al., 

2003; Iglesias et al., 2015) algorithm has applied to satellite images using the 

SUBSOFT software, developed by the Remote Sensing Laboratory (RSLab) group 

from the Universidad Politècnica de Catalunya (UPC). A-DInSAR results consist of 

LoS-projected mean displacement rate map and time series of deformations. The 

database reports the qualitative information on the data, the value of LoS 

displacements and the mean displacement rate relative to the entire data processing 

interval. Using Qgis software, the A-DInSAR data has been showed like a point 

vector map (Figure 5.3). 
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Figure 5.2. A) mean displacement rate map in descending orbit, ts1-3 are points for time series 

profiles. B) the selected area. 

In Minas Gerais area we detected about 37 thousand targets in descending orbit. In 

order to monitoring the Dam I, the interferometric information have been extracted in 

its body. By means of a Qgis function, in the dam area about 100 targets have been 

identified. From the rainfall report it was possible to obtain information related to 

precipitation during the period also covered by the Sentinel-1 data. The dataset was 

obtained from Cemaden website (Centro Nacional de Monitoramento e Alertas de 

Desastres Naturais, http://www.cemaden.gov.br), covering the period from March 

2016 to January 2019. The data report the information of the rainfall measurements 

monthly cumulative (mm) (Table 5.1). In particular, data derived from three 

meteorological stations located near the Dam I have been used (Figure 5.2).  

 

 

 

 

http://www.cemaden.gov.br/
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Table 5.1. Rainfall dataset.  / = not available 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.5. Results and discussion  

The results allowed to determine the surface ground displacements in terms of mean 

displacement rate map and time series of deformation, along the LoS of the satellite. 

In order to study the displacement occurred on the Dam I, the cumulative 

displacement values in correspondence to structure were interpolated using Kriging 

algorithm (Fig. 5.3). 

 Alberto Flores (1)  

[mm] 

Distrito Casa Branca (2)  

[mm] 

Córrego do feijão (3)  

[mm] 

03/2016 142.15 0.2 266.47 

       04/2016 28.33 / 37.19 

05/2016 2.6 / 0.8 

06/2016 55.47 / 77.69 

07/2016 1.2 / 45.06 

08/2016 2.58 / 34.22 

09/2016 62.71 / 89.5 

10/2016 105.56 0.42 69.47 

11/2016 184.29 258.5 170.22 

12/2016 296.19 291.97 347.79 

01/2017 133.11 134.24 159.47 

02/2017 147.18 206.12 109.69 

03/2017 122.39 92.41 / 

04/2017 23.03 27.2 / 

05/2017 23.2 21.67 / 

06/2017 10.66 27.27 / 

07/2017 0.2 0 / 

08/2017 0 0 / 

09/2017 13.43 29.19 / 

10/2017 126.62 29.19 / 

11/2017 118.08 129.73 / 

12/2017 262.62 228.69 / 

01/2018 226.51 132.71 / 

02/2018 247.32 192.4 / 

03/2018 243.15 163.39 / 

04/2018 19.34 19.58 / 

05/2018 6.13 29.19 / 

06/2018 4.54 0 / 

07/2018 0.4 13.95 0.79 

08/2018 44.56 173.51 58.7 

09/2018 110.06 83.52 141.87 

10/2018 116.05 114.56 128.21 

11/2018 210.33 241.23 225.67 

12/2018 174.17 193.18 226.55 

01/2019 41.61 72.52 74.01 

02/2019 170.93 326.55 255.16 

03/2019 100.72 92.7 147.75 
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Figure 5.3. Interpolated Los displacement maps. 

The maps describe the displacement, in cm, recorded during the period covered by 

the acquisitions. The visualization factor is made by using a color scale from red to 

dark green, respectively the negative values conventionally indicate a movement of 

the target away from the satellite, while the positive values indicate movement 

towards the sensor, the light green color identifies the stable area. The figure shows 

the temporal evolution of surface displacements every three months. It is possible to 

note how the ground surface phenomena starts in April 2017 and develops until 

January 2019 eight days before the disaster, with maxi-mum LoS cumulated 

displacement of -3.66 cm. It is important to note that the maximum deformation was 

detected in correspondence with the center of the embankment. In order to analyze 

the possible trigger, we studied the time series selecting three targets, located one in 

the center (Ts2) and the other two in the sides (Ts1, Ts3) of Dam I. Later the results 

have been integrated with the rainfall data. The monthly cumulated rainfall plotted in 

Figure 5.4 show the rain variation during the seasons, with the lowest values for the 

summer and the highest values occurring during wintertime. By comparing the time 

series of deformations for some points on the top of the embankment (see Figure 5.2), 

some considerations can be made with the accumulated monthly rainfall. It is worth 

to point out that among the three available stations, the Corrego do Feijao station did 

not acquire in the period March 2017 - July 2018. The TS1 point would seem to 

increase the displacement rate around March 2017 (blue arrow) and then show a 

quasi-linear trend for the remaining period. The TS2 and TS3 points show a different 
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behaviour. Both seem to accelerate in June 2017 (black arrow) with almost similar 

rates until September 2018. In fact, at this date a further increase was only recorded at 

point TS2 (central sector of the dam - red arrow). Confirming how The TS1 point 

would seem to increase the displacement rate around March 2017 (blue arrow) and 

then show a quasi-linear trend for the remaining period. The TS2 and TS3 points 

show a different behaviour. Both seem to accelerate in June 2017 (black arrow) with 

almost similar rates until September 2018. In fact, at this date a further increase was 

only recorded at point TS2 (central sector of the dam - red arrow). Confirming how 

this was the most stressed sector of the dam. This stress was probably related to an 

anomalous water load present behind the dam. In fact, looking at the graph of rainfall 

data, it is possible to notice that in 2018 the rainy season would seem to have started 

already in August 2018, about 2 months earlier than in previous years. 

 

Figure 5.4. The time series of LoS-cumulated displacement (Ts1-3) integrated to rainfall 

measurements monthly cumulative (mm), highlighting the wet periods. The arrows highlight the 

increase of the displacement rate. 

5.6.  Conclusions  

In the last years the tailings dam failures have represented a big problem in whole 

Brazilian area. According with WISE (World Information Service on Energy, 

https://www.wise-uranium.org/mdaf.html) project, and the chronology of major 

tailings dam failures in the World, during the period from 1961 to 2020, thirty-three 

events have been registered in South America. Specifically, seven of them are 

situated to Minas Gerais region. The greatest dam failure event occurred on 25 
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January 2020 to Brumadinho. Recently, the event has been studied in several work by 

means of the satellite data (Du et al. 2020; Holden et al. 2020). The authors used the 

interferometric technique to monitor the trailing Dam I and detected soils 

deformation in period before the collapsed. According with The New York Times 

work (https://www.nytimes.com/interactive/2019/02/09/world/americas/brazil-dam-

collapse.html.), deformations started in correspondence of the right side of the Dam I 

immediately before the collapse. Materials behind the dam were liquefied, but, due to 

rapid occurrence of the event, it is not clear if the liquefaction was the cause of the 

failure or it was generated later.  In this work, we were able to detect deformations in 

the body of the dam before the collapse. Specifically, deformation started on a side of 

the dam and developed with higher values in the central zone. In addition, taking in 

consideration the meteorological reports and the rainfall data, we recognized an 

increase of LoS-velocity in September 2018, in a period that seems to be 

characterized by an anticipated anomalous rainy season. In conclusion, the A-

DInSAR technique allowed to detect the centimetric displacements occurred well 

before the dam collapse. The integration of the remote sensing with the field surveys, 

could be essential, to carry out the monitoring of tailings dam allowing the authorities 

to manage the risk mitigation action. 
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6. Application of multispectral remote sensing for 

mapping flood-affected zones in the Brumadinho mining 

district (Minas Gerais, Brasil) 

6.1.  Abstract  

The collapse of the tailing “Dam B1” of the Córrego do Feijão Mine (Brumadinho, 

Brasil), that occurred in January 2019, is considered a large socio-environmental 

flood-disaster, counting numerous people died and seriously affecting the local flora 

and fauna, as well as agricultural areas of the Paraopeba River. This study aims to 

map the land area interested by the flood by using multispectral satellite images. To 

pursue this aim, Level-2A multispectral images from the European Space Agency’s 

SENTINEL-2 sensor were acquired before and after the tailing dam collapse in the 

period 2019-2021. The pre- and post-failure event analysis allowed to evidence 

drastic changes in the vegetation rate, as well as in the nature of soil and surficial 

waters. The spectral signatures of the minerals composing the mining products 

allowed to highlight the effective area covered by the flood and to investigate the 

evolution of land properties after the disaster. This technique opens the possibility for 

quickly classifying areas interested by floods, as well as obtaining significant 

information potentially useful for monitoring and planning the reclamation and 

restoration activities in similar cases worldwide, representing an additional tool for 

evaluating the environmental issues related to mining operations in large areas at high 

temporal resolution. 
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6.2.  Introduction 

On the 25th of January 2019, the tailing dam called “Dam B1” of the Córrego do 

Feijão Mine (Brumadinho Iron Mine), one of the upstream iron tailing dams located 

around 9 km east of Brumadinho, Minas Gerais, Brazil, collapsed. The catastrophic 

failure was considered one of the largest environmental disasters in the World 

(Vergilio et al., 2020), and caused a huge flood consisting of more than 11 million m3 

of mining waste spreading about 10 km downhill, that destroyed mining offices, 

houses, roads and resulted in a tragic loss of lives, with 259 people died. The 

polluting flood reached quickly the Paraopeba River: a major tributary of the São 

Francisco River–one of the largest rivers in Brazil. The flood affected decisively 

249.5 thousand m2 of the surrounding area, impacting seriously the local flora and 

fauna and the Paraopeba River aquatic system but also involving the vegetation and 

agriculture areas (Thompson et al., 2020; Silva Rotta et al., 2020). As a result, human 

and social consequences, including water supply in the municipalities, tourism, and 

agriculture economy, were seriously compromised (Vergilio et al., 2020). According 

to Vergilio et al. (2020) the flood event has produced an increase in Paraopeba river 

turbidity levels due to the high amount of fine flood material, mainly composed of 

silt-clay par-ticles and higher contents of Fe and Mn. The water analysis has 

indicated total heavy metals values up to 21 times above the acceptable, representing 

risks to the ecosystem (De Minas Gerais, 2019). The environmental impact after the 

Brumadinho dam disaster has also caused sev-eral issues to the surrounding lands. 

The presence of metals, including iron, aluminum, and manganese, was registered in 

the affected and unaffected soils samples with values above the acceptable thresholds 

(Furlan et al., 2020). Even though the Brumadinho tailing dam stability has been 

subject to local systematic monitoring, it collapsed only three years after the end of 

mining operations. This was due to water accumulation and infiltration through the 

dam, causing the increase of moisture contents and saturation of the tailing dam. In 

this contest, the acceleration of the seepage erosion and internal liquefaction 

processes caused the weakening of the structure of the dam ending into the collapse 

(Silva Rotta et al., 2020). Investigation about surficial displacement and subsidence 

rate measuring during the period before the Dam B1 disaster (2016-2019) has been 

subjected to several studies based on remote sensing techniques and satellite data 

(Holden et al., 2020; Du et al., 2020; Silva Rotta et al., 2020; Ammirati et al., 2021), 

such as Advanced Differen-tial Interferometric Synthetic Aperture Radar (A-
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DInSAR) analysis. These investiga-tions revealed that before the collapse, 

deformations of the body of the dam started on the eastern side and progressively 

developed with higher values in the central zone, in relationship with anomalous 

rainy seasons (Ammirati et al., 2021). The current study aims to map and assess the 

land cover affected by the flood due to dam failure by using multispectral satellite 

data. Spectral sensing quickly allows classifying materials exposed at the Earth's 

surface based on their mineralogy and chemical properties (van der Meer et al., 2012; 

F.D. van der Meer et al., 2014), in this case making easier to evaluate the effective 

area covered by the flood and to investi-gate the evolution of land properties after the 

disaster (Gläßer and Reinartz, 2005; Aamir et al., 2021; Kasmaeeyazdi et al., 2022; 

Sharma et al., 2022; Yan et al., 2022). To pursue this aim, we used SENTINEL-2 

images obtained from the Europe Space Agency of the Copernicus Program. The 

potential of multispectral remote sensing, and more specifically the use of Senti-nel-2 

imagery, for geological applications and mine waste monitoring has been widely 

studied (Mielke et al., 2014; Van der Werff et al., 2015; Ge et al., 2020), mainly 

referring to the VNIR Sentinel-2 bands for the detection of ferric oxides and 

hydroxides. In fact, if compared to other multispectral satellites com-monly used in 

the geology field, Sentinel-2 provides several relatively narrow bands in the VNIR 

region of the electromagnetic spectrum (Van der Werff et al., 2015), i.e. band 4, band 

8/8A, and band 9 of Sentinel-2 (Mielke et al., 2014; Van der Werff et al., 2015; Ge et 

al., 2020) (centered at 665 nm, 842/865 nm, and 940 nm, respectively), which fit with 

the Iron-bearing oxides and hydroxides diagnostic spectral fea-tures associated with 

the electronic transitions involving Fe3+ (Cudahy et al., 1197; Crowley et al., 2003). 

Here below we firstly describe the geology, mineralization, and spectral proprieties of 

the investigated areas. Then a short description of the data and the multispectral 

images processing methods is followed by discussion and conclusions.  

6.2.  Geological setting 

The Córrego do Feijão mine is located along the ENE–WSW-striking Serra do Cur-

ral syncline, in the northwest portion of the so-called Quadrilátero Ferrífero (QF) 

area, located on the southern border of the São Francisco craton in the central portion 

of the Minas  
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Figure 6.1. Study area. The red zones are the principal elements (see Chapter 4). 

Gerais State (northern Brazil) (Figure 6.1). The Serra do Curral is the host of several 

iron ore deposits where, together with the Córrego do Feijão mine, the mains are the 

West-, Central-, and East-Mine of the Usimi-nas mining complex, the Esperança, 

Jangada and the now exhausted Águas Claras ore deposits (Hensler et al., 2015). The 

geology of the QF is characterized by the metavol-canic greenstone belt sequence of 

the Rio das Velhas Supergroup (Dorr, 1969; Chemale et al., 1994), and by the 

Archean granite-gneiss domes, which border the metasedimen-tary units of the Minas 

Supergroup preserved as synclinal keels (Hensler et al., 2017).   

The Minas Supergroup (Siderian to Rhyacian) unconformably overlies the Rio das 

Velhas Supergroup and is divided in the Caraça, Itabira, Piracicaba and Sabará 

Groups (Guimarães, 1935; Dorr, 1969; Alkmim and Marshak, 1998; Klein and 

Ladeira, 2000; Cabral et al., 2012). The Paleo- (Statherian) to Mesoproterozoic 
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metasedimentary rocks Espinhaço Supergroup and the post-Minas intrusive rocks (i. 

e. the Borrachudo granite; (Rosiere and Chemale, 1996; Baltazar and Zucchetti, 

2007) represent the younger se-quences in the QF area. Two orogenic events affected 

the area, (1) the Paleoproterozoic Transamazonian orogeny (2.1–1.9 Ga), which 

caused uplift of the crystalline basement and folding of the Rio das Velhas and Minas 

Supergroups, and (2) the Neoproterozoic Brasiliano orogeny (0.8–0.6 Ga), which 

resulted in complex structures superimposed to the previous deformation, leading to 

the development of a W-verging thrust belt espe-cially in the eastern portion of the 

QF (Hensler et al., 2015). Metamorphic grades vary from west to east: greenschist-

facies with martite-granoblastic hematite ores charac-terize the western domain (low-

strain domain), while amphibolite-facies with micro-platy and specular hematite ores 

occur in the central and NW parts (high-strain do-main) (Herz, 1978; Renger et al., 

1994; Pires, 1995).   

High-grade hypogene and supergene iron ores are mostly hosted by the Cauê 

Formation itabirites (Neoarchean - (Cabral et al., 2012); or Paleoproterozoic - 

(Babinski et al., 1995)), basal unit of the Itabira Group (Minas Supergroup), 

consisting of up to 300m-thick metamorphosed BIFs with sericitic and dolomitic 

phyllites and marbles in-tercalations. The mineralization is mainly characterized by 

veins cross-cutting the above-mentioned metamorphosed iron formation (itabirite) of 

the Itabira Group (Lüders et al., 2005). Itabirites of the QF have been divided into 

three different types: (1) quartz-itabirite, composed of recrystallized quartz and iron 

oxides in alternated bands (Dorr, 1969; Spier et al., 2003; Hensler et al., 2015); (2) 

dolomite-itabirites, characterized by carbonates-rich layers with hematite micro-

inclusions, iron oxides and less quartz (Rosière et al., 2008; Hensler et al., 2015); and 

(3) amphibolite-itabirites, that are de-fined by red carbonates and/or iron oxides with 

less quartz, similar to the dolomite-itabirite, besides of disseminated amphiboles 

(Guild, 1953; Dorr, 1969; Pires, 1995). The supergene alteration, which occurred 

mainly in Paleogene, resulted in the develop-ment of a deep weathering profile where 

goethite is present as the main phase, occur-ring as alteration rims and porosity-filling 

replacing former iron oxides (Hensler et al., 2015; Hensler et al., 2017). 
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6.3 Main features of the Brumadinho tailing Dam B1: 

structure and geochemical characterization 

The 86m-high dam was built in 1976 by Ferteco Mineração using the upstream 

heightening method and was active until 2015 under operations conducted by Vale 

S/A. The upstream method consists of building vertically the dam, depositing the tail-

ings through successive uphill accumulation (Silva Rotta et al ., 2020; De Minas 

Gerais, 2019). The construction starts with an embankment where the tailings are 

discharged from the crest of the starter dam and form the first level. This was 

compacted and then used to form the foundation for subsequent levels of the wall as 

the dam is raised. As such, the crest of the dam moves up-stream with each raise (De 

Minas Gerais, 2019; Furlna et al., 2020). According to Furlan et al. (2020), the 

diffusion of this old type of dam is related to economic advantages, as it is the 

cheapest building method, as well as occu-pies a smaller area compared to the 

conventional downstream model, resulting in con-structing licenses easier to obtain 

(Silva Rotta et al ., 2020). However, the upstream method is considered very 

dangerous and unsafe (De Minas Gerais, 2019), due to the increasing instability after 

operations stop and dam deactivation (Silva Rotta et al ., 2020).  The geochemical 

characterization of the waste material of the Córrego do Feijão mine released from 

the Brumadinho Dam B1 collapse (Vergilio et al., 2020) revealed that the iron ore 

tailings are composed, amongst other elements, of Fe (26.5 wt.%), Al (1.1 wt.%), Mn 

(0.5 wt.%) and Ti (0.043 wt.%), contained in fine particulate material characterized 

by ⁓30% sand and ⁓70% silt-clay fractions, products of the wet processing method 

used to classify and purify the iron ore. Mineralogical characteriza-tion carried out on 

iron ore tailing dams from similar mines within the Quadrilátero Ferrífero area (i. e. 

Fundão Dam, Samarco mining company; (Almeida et al., 2018) showed that the mine 

waste is composed mainly of quartz and hematite, as main phases, and kaolinite, 

goethite, and gibbsite present in minor amounts (Almeida et al., 2018; Souza et al., 

2021). Fe-bearing phases (hematite/magnetite and associated goethite) are classified 

as ultrafine (about 76 % of their particles occurring in the range between 37μm and 

6μm) and totally free (up to 88% of the particles) material (Souza et al., 2021). 
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6.4.  Methods of study  

The present study is based on multispectral products acquired by means of the 

Sentinel-2 Instrument (Multi-Spectral Image - MSI) of the European Space Agency. 

The available images from 2019 to 2021 with cloud coverage <5% were processed. 

In particular, we focused on the months: January 2019, August 2020, and July 2021. 

The orthorectified Level-2A Bottom-Of-Atmosphere (BOA) reflectance product has 

been used. In order to obtain a map of the affected flooded areas, the images were 

selected including the Mi-nas Gerais mining district and covering a period before and 

after the Dam B1 failure. The thirteen Sentinel-2 bands and their combinations in the 

visible, Near-Infrared (NIR), and Short-wave Infrared (SWIR) spectral domains, 

served as proxies for identifying geologic features (F.D. van der Meer et al., 2014), 

mainly for studying the ferric iron, ferrous iron, laterite, gossan, ferrous silicate, and 

ferric oxides products. The Sentinel-2 data were very useful for studying the iron-

bearing minerals because of their spectral absorption in the VNIR region (bands 6, 7, 

8, and 8A), particularly regarding the narrow band 8A, centered at 865 nm (21 nm 

band width) (Ge et al., 2020) (Figure 6.2). The bands were resampled to the spatial 

resolution of band B2 (10m) so that all pixels of other bands with 20x20 m2 pixel size 

were loaded. The main aim of the MSI processing techniques adopted in this study 

was to apply several steps for mapping the flood-affected zones. The work was 

carried out by using the Sentinel Application Platform (SNAP) developed by 

European Space Agency (ESA), and the tool called Spectral Unmixing. The materials 

on the surface are character-ized by their own diagnostic spectral properties, called 

endmembers, and the fractions of each material composing a mixed pixel refer to 

fractional abundances. The spectral unmixing tool uses the decomposition of 

reflectance source spectrum into endmember selected. The result of the spectral 

unmixing is a measure of the contribution of the individual endmember to the source 

spectrum. This measure is related to endmember's relative abundance. Through the 

identification in the pre-event map of materials of in-terest with a spectrally unique 

signature, that are the so-called principal elements, and of their endmember spectral 

signatures, the abundance maps were calculated. Therefore, if 30% of a pixel contains 

the endmember X, 20% of the pixel contains Y, and 50% of the pixel contains 

endmember Z, the spectrum for that pixel is composed by the sum of 0.30, 0.20, and 

0.50 times the single spectra of relative endmembers X, Y, Z. The fully constrained 

algorithm is used to obtain the sum of abundances equal to 1 and elimi-nate the 
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values below zero. An RGB color composite map can be produced, assigning the X, 

Y, and Z abundances, respectively red, green, blue. For the aims of this work, after 

the visual analysis of the pre-failure dam image, col-lected on the 11th of January 

2019, we selected as possible principal elements: the wa-ter, vegetation, and the 

tailing dams and mining areas (Figures 6.1 and 6.2). Generally, water is characterized 

by only reflection in the visible light range, with almost no reflection in the near-

infrared range. However, the reflectance may increase between 400 and 1000 nm 

with turbidity showing maxima between 400 and 700 nm and 800 nm for highly 

turbid waters (Keshava et al., 2002). Vegetation is generally characterized by an 

absorption caused by the chlorophyll in the blue range (450–550 nm), a high 

reflectance in the near-infrared region (⁓ 865 nm), and strong water absorption in the 

mid-infrared region (Adam et al., 2010). The tailing dams and mining areas have the 

spectral signatures of the ferric oxides. The spectral properties of iron-bearing 

oxide/hydroxide (i. e. hematite and goethite) have been studied in detail by several 

authors (Curtiss et al., 1985; Crowley et al., 2003). Hematite and goethite are 

characterized by diagnostic absorption features in the Visible Near InfraRed (VNIR) 

region of the electromagnetic spectrum, in the range between 450 nm and 1200 nm, 

due to electronic processes involving Fe3+ octahedrally bonded to ligands of oxygen 

(hematite α-Fe2O3) or oxygen and hydroxyl (goethite – α-FeO(OH)) (Hensler et al., 

2015). Specifically, goethite generally exhibits the main spectral absorption ⁓ 940 

nm, related to energy level changes in the valence electrons (Crystal Field Absorption 

features - CFA) (Cudahy et al., 1997). Minor absorption features are at 480 nm and 

670 nm (Charge Transfer Feature – CTS) (Cudahy et al., 1997), and the water-related 

bands occur close to 1,400 nm and 1,900 nm. On the other hand, the major CFA 

feature appears shifted to shorter wavelengths for hematite, occurring typically ⁓ 880 

nm (Crowley et al., 2003). Absorption position displacements to longer wave-lengths 

of the main Fe-bearing oxides/hydroxides feature (⁓14 nm; (Scheinost et al., 1999) 

are due to compositional variations related to Al3+ substitution for Fe3+ iron. In the 

present case study, tailing dams and mining areas spectral properties resulted 

comparable to the hematite signature from the official USGS spectral library (Souza 

et al., 2020), detectable through the absorption feature in band 8 of Sentinel-2 

(centered in 842 nm) which is commonly used to investigate all the iron oxides and 

hydroxides, i.e. Ferric oxides (Ge et al., 2020; Mielke et al., 2014) (Figure 6.2). Thus, 
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only water, vegetation, and ferric oxides were considered as valuable endmembers for 

mapping the most relevant features occurring in the study area.  

 

Figure 6.2. The spectral properties of Principal Elements sampled in the pre-event image. The black 

line is the official USGS hematite signature (Kokaly et al., 2017) compared to Sentinel-2 bands (from 

B1 to B12). 

6.5.  Results  

Figure 6.3 shows the thematic maps in the Brumadinho mining district, during the 

pre-and post-failure event, revealing the relative abundances of selected endmember 

spectral signa-tures: i.e. ferric oxides, vegetation, and water. The maps have been 

characterized using a grayscale color, where the zero value indicates that the 

endmembers are not present, while greater values reveal where the endmembers are 

present. The water maps al-lowed to detect the water bodies present in the area, such 

as the river, and the dam corresponding to the principal elements in Figure 6.1. The 

temporal evolution of vegetation shows a different spectral response due to the 

decreasing of vegetated areas. The ferric oxides maps display the distribution of 

open-pit iron mine areas only in 2019, whereas in the years 2020 and 2021 they show 

an increase of the white color in the zones where the flood occurred.  
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Figure 6.3. The relative abundance maps of water, ferric oxides, and vegetation endmembers, at 

different periods. 

An RGB color composite map was produced, assigning the ferric oxides, vegetation, 

and water abundances, respectively red, green, blue. This process was applied for 

post-event satellite images, using the same training dataset as before (i. e. pre-event 

image). In the RGB maps (Figure 6.4) the red-colored ferric oxides-zones allow to 

better highlight the shape of the flooded areas in 2020 and 2021 (post-event) images. 

In all the images most of the considered area is covered by vegetation, but in the post-

event periods (2020 and 2021), it is possi-ble to observe a decreasing vegetative rate 

in flood-affected zones. Four zones have been identified like flood-affected zones 

where a clear change in the soil nature is not-ed. It is worth pointing out that areas 1, 

2, 3 in the top, center, and bottom of the flood-ed area were characterized by an 

increase in the abundance of ferric oxides. In the 4th area, it is possible to detect 

pixels changing in the river bed (R) and riverside (RS). Fig-ure 4 shows how in 2020 
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the affected area was distinguished by an increase in red pix-els that are not present in 

2019, while a decrease is observed in 2021. Figure 6.5 shows the mean spectral 

signatures of the flood-affected zones. The graphs are distinguished for the years 

2019, 2020, and 2021 and shown respectively in red, black, green, blue, and orange 

colors. It has to be noted that the flood-affected zones 4th was divided into two mean 

spectra signatures obtained by the river bed (R) and river side (RS) features. 
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Figure 6.4. The RGB true color on left, the RGB (ferric oxides, vegetation, water) composites with 

endmem-ber abundances on right. The white boxes are the flood-affected zones selected. 

In 2019 (Figure 6.5a), in the Flood-affected zones 1,2,3, and RS, the spectra are 

characterized by a visible ab-sorption band of about 0.56 µm, corresponding to the 
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chlorophyll peak (Sanches et al., 2014), evidencing healthier vegetation. The R 

spectrum was similar to the water signature with absorption from the mid-infrared 

region forward. After the flood event, the 2020 and 2021 spectra change. In 

particular, in 2020 (Figure 6.5b), it is possible to note the main spectral absorption ⁓ 

0.84 µm in the VNIR region characteristic of the ferric oxides (Van der Meer et al., 

2014) that decrease in 2021 (Figure 6.5c). Figures 5 b and c show in blue, the spectral 

signature achieved in 2020 and 2021 corresponding to the river bed area where it is 

possible to note light absorption in the VNIR region characteristic of the IBeM and 

an increase in SWIR domains. 

  

Figure 6.5. Mean spectral signatures obtained by flood-affected zones 1st, 2nd, 3rd and 4th (divided 

the river bed (R) and river side (RS) features) in 2019 (a), 2020 (b), 2021 (c). 
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6.6.  Discussion  

As reported by Silva Rotta et al. (2020) the flood resulted in a massive loss of local 

vegetation and agri-cultural areas comprising 49 % and 24 % of the areas most 

affected by the floods. In the present study, the obtained results allowed to investigate 

the Brumadinho zone affected by the flood phenomena occurred in January 2019. 

The dam failure provoked fatalities, infrastructure damage, as well as caused 

considerably environmental aftermaths, which are still now present. This paper aimed 

to use the potential of multispectral Sentinel-2 data (MSI) to map the flood-affected 

zones one and two years after the disaster to remotely detect possible signatures still 

existing in the area. The Spectral Unmixing tool, using the different spectral 

responses of each material, allowed to identify areas, called Flood-affected zones, 

where the ferric oxides signature was observed. Satellite Multispectral data have been 

recently used (Syifa et al., 2019), for studying the Brumadinho dam collapse. The 

authors, by using artificial intelligence (AI) techniques based on the Landsat-8 and 

Sentinel-2 bands, defined the pixel classifica-tion for the pre-and post-dam failure. 

The maps produced by using each satellite data (Syifa et al., 2019) allowed to divide 

the study area into seven and five classes, respectively from the Landsat-8 and the 

Sentinel-2. The authors affirmed that difference was attributed to the cloud that did 

not appear. (Syifa et al., 2019) used the AI classifications to differentiate the flood 

area from other land cover types, that could be negatively influenced by the input 

source data. Differently from (Syifa et al., 2019), we considered for our study a 

longer time interval (2019, 2020, 2021), and we used the specific spectral signatures 

of exposed materials (Figures 6.5). With this study, four areas were selected within 

the mining district, based on the ferric oxides impact. Considering that the images 

were acquired during the months of January, August, and July, the general decrease 

of the vegetation cover in the district from 2019 to 20211, could be associated with 

the seasons. However, the influence of ferric oxides related to the dam collapse 

doesn’t depend on the seasonal vegetation rate. Figures 6.5 displays the mean spectral 

signatures, extracted in the selected zones, as a function of the wavelength band of 

the satellite. It is possible to notice that, still one year after the dam failure, the 

influence of ferric oxides is well defined in all the spectra (Figure 6.5b), where it is 

possible to note the ferric oxides absorption feature centered in 833 nm. In 2021 the 

ferric oxides impact continues to be highlighted by a weak absorption. Spectra 

collected in the river bed (Figure 6.5A) are characterized by spectral properties which 
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may be associated with water turbidity in the visible region. According to Gholizadeh 

et al. 2016 the effects of turbidity, due to suspended particles in surface waters, occur 

in the band range between 700 and 800 nm. Indeed, in 2019 it is possible to note a re-

flectance maximum at the same wavelength values, diagnostic of turbidity. While in 

2020 and 2021 it is notable the ferric oxides absorption (Figure 6.5B, C), thus 

suggesting that waste material still occurs in the river. According to Fang et al. 2018 

the clay minerals in soils show diagnostic absorptions features in the shortwave-

infrared domain (SWIR), and their reflectance spectra exhibit OH-H2O-related 

absorptions approximately around 1400 nm and 1900 nm, and Al-OH absorption near 

2200 nm, the latter covered by Sentinel-2 in band 12 (2100–2280 nm) (Sekandari et 

al., 2020). In Figure 6.5 the signatures obtained in 2020 and 2021 show a spectral 

absorption feature in the SWIR region, which may be related to clay minerals 

occurring in the waste material. Indeed, the latter could be associated with the 

presence of kaolinite composing the silty-clayey fractions of the tailing dam material 

that after the failure moved in the flood and affected the surrounding areas. This 

observation is consistent with the mineralogical and geochemical composition of the 

tailing dam materials, discussed in previous studies on the Córrego do Feijão mine 

(Vergilio et al., 2020) and other tailing dams in the Quadrilatero Ferrifero area 

(Fundão Dam, Samarco mining company) (Thompson et al., 2020, Almeida et al., 

2018). According to Almeida et al. 2018, hematite occurs as the main phase in the 

mine waste of the Fundão Dam, followed by goethite, kaolinite and, gibbsite, in line 

with Vergilio et al. 2020, which observed Fe concentrations up to 26.5 wt.% and Al 

up to 1.1 wt%, for the fine waste material of the Córrego do Feijão mine. As Sentinel-

2 cannot accurately detect the clay mineral content due to the low spectral resolu-tion 

in the SWIR region, it didn't allow to use of this observation to produce specific clay 

distribution maps. 
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6.7. Conclusions 

In this paper, a multispectral approach was used to determine affected areas by the 

flood generated after the dam collapse. Starting from the spectral analysis and using 

the SNAP tool, the absorption features of the mining products, vegetation and wa-ter 

were recognized, and land cover maps were produced. The methodology uses a lin-

ear approach to obtain rapidly RGB composite maps useful to detect the flood-

affected zones. The multispectral bands of the Sentinel-2 data have proved to be an 

extremely useful tool for mapping flooded areas. The method allows obtaining 

significant infor-mation potentially useful for monitoring lands affected by floods 

related to tailing dam collapse and planning the post activities management. To 

support the study and better examine the environmental impact, as essentially as 

possible, might be necessary to carry out a soils sampling of the flood-affected zones. 
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7. Discussions and conclusions  
The considerable presence of worldwide-mining activities, although ensuring a 

continuous and fundamental supply of mineral resources, could have various negative 

environmental consequences. The mining activities generally can cause several 

geohazards (Yidana et al., 2008; Altun et  al., 2010; Armah et al., 2010; Yang et al., 

2020). Regardless of the progress of new technologies and security measures, we find 

ourselves still in situations of geological and geomorphological problems. 

Consequently, Earth Observation methods can be essential for mining monitoring, 

mechanism interpretation, and its related geohazard assessment. This thesis highlights 

the importance of the combination of remote sensing methods for the development of 

tools allowing to identify critical situations in a near-real-time or in advance and to 

minimize on a large scale the time needed for mining monitoring.  

It is worth pointing out that a typical underground mining project follows a series of 

significant technical phases from planning mining to the final mine reclamation, 

which can be summarized in an initial development stage, that precedes the 

exploitation activity, which is finally followed by post-mining work. The methods 

developed in this thesis proved to be useful applications during the several stages of a 

typical underground mining operation. Specifically, in the first and second study 

cases, two areas affected by different types of underground mining were monitored 

by using the DInSAR technology that was effective for detecting the ground surface 

deformations. The first case regarded the Zaruma area (Ecuador), where the 

interferometric technique allowed to monitor urban mining areas characterized by 

unauthorized excavating activity that induced damage to structures. In this case, the 

identified subsidence events are very dangerous because excavation is carried out 

illegally producing unexpected sinkholes (Gutiérrez et al., 2014; Parise et al., 2015; 

Gee et al.,2017; Fazio et al., 2017), as it was reported near the “La Immaculada de Fe 

y alegría” school (Ludizaca et al., 2018; Cando et al., 2020). The horizontal and 

vertical components of deformations measured in selected unstable areas (called UA, 

chapter 3.5) varied between 2.0 and 6.0 cm. The vertical component is commonly 

predominant over the horizontal component, clearly indicating the occurrence of 

subsidence phenomena.  

In the second study case, the DinSAR techniques allow detecting ground surface 

deformations that occurred in an area interested by underground mining in the Nuraxi 
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Figus coal district (Italy). The subsidence recognized in Nuraxi Figus area started in 

2011 in correspondence of two panels where coal seams were mined at a depth of 450 

m below the surface and was characterized by three subsidence phases: initial, 

principal, residual (Cui et al. 2000, Al Heib et al. 2005, Cui et al. 2020, Tajduś et al. 

2021). The maximum cumulated vertical displacements were of ca. 26 cm in 2020. It 

is important to note that during the coal extraction between 2011 and 2012, the 

subsidence reported the major displacement as a horizontal component. While during 

the post-mining operations the vertical displacement increased respect to the 

horizontal components, reaching the maximum values with temporal delay respect to 

the end of excavation activity. According to Al Heib et al. (2005), various coal 

mining districts are characterized by temporal delays in the occurrence of maximum 

surface deformation. The residual subsidence continues after the extraction and in 

some cases can occur after some months or years (Huang et al., 2020, Cui et al., 

2020, Modeste et al., 2021). 

 It is important to note that in Zaruma study case, the residual subsidence is not 

present and the vertical time series is more linear than the Nuraxi Figus study case. 

One of UA's is developed in a sinkhole which generated the collapse of the “La 

Immaculada de Fe y alegría” school (Chapter 3.7). The absence of residual 

subsidence can be associated with shallower mining activity. Therefore, in presence 

of shallow and very surficial underground mining activity, the monitoring method 

used in this thesis can be only useful for monitoring initial excavation phases, 

allowing to identify unstable areas that could be possibly interested in future 

sinkholes. In presence of deep underground mining, instead, it is possible to apply the 

method in all mining phases, identifying and monitoring the subsidence during the 

extraction, and studying its evolution after the end of mining activities. Additionally, 

the method was tested for monitoring other infrastructures occurring in mining sites, 

such as tailings dams, which are often in unstable conditions and can be affected by 

collapses (Azam et al. 2010; Kossoff et al. 2014, WISE www.wise-

uranium.org/mdaf.html). The designated study area was the Brumadinho district 

(Brazil), where on 25 January 2019 a tailings dam collapsed, generating a 

catastrophic flood that caused deaths and serious environmental pollution (Vergilio et 

al., 2020; Thompson  et al., 2020). Specifically, an integrated approach of satellite 

radar data and multispectral data was used to investigate possible deformations 

occurring in the tailing dam before the collapse, and to characterize the 
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environmental effects occurred after the flooding. According to Furlan et al. (2020) 

heavy metals, including iron, aluminum, and manganese still occur with values above 

the acceptable in the flood-affected areas. The Sentinel-1 dataset allowed identifying 

maximum LoS cumulated displacement of -3.66 cm, detected in correspondence of 

the center of the dam. The ground surface movements started in 2017 and developed 

eight days before the disaster. Integrating this information with rainfall data, it was 

possible to notice an anomaly of rainfalls that could have triggered the event, 

producing an increase in the displacement rate. The environmental impact of the 

Brumadinho flood on the surrounding lands was studied by using the Sentinel-2 data 

and spectral properties of materials occurring in the area. Four distinct areas that were 

affected by the flood and were located at various kilometers from the dam, were 

selected for remote sensing spectral analysis. The investigation allowed to detect the 

presence in the soils of tailing dam materials (mostly Fe-oxy-hydroxides) still two 

years after the dam failure. This study demonstrates that the capability of combining 

both Sentinel-1 and Sentinel-2 data, with the addition of ancillary data (like rainfalls 

dataset, spectral information, etc.) can be strategic for monitoring tailings dams. It 

was possible to realize the monitoring and assessment of pre-collapse surface 

deformations and also to quickly determine the soil pollution at various times after 

the dam collapse. In conclusion, the methodology developed in this Ph.D. thesis 

could be effectively used to monitor mining areas and communicate the results in 

near time, allowing fact-based discussions and being of support to managing the pre-

and post-mining activities. Future perspectives could be the development of an 

automated software able to manage the data from EO techniques integrated with 

other information that will provide support for mining stakeholders. 
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Appendix 1 

1. SUBSIDENCE software and Coherent Pixels Technique (CPT) 

The algorithm implemented by Mora et al., 2003 - Coherent Pixels Technique (CPT) 

at the Remote Sensing Laboratory (RSLab) of the Universitat Politecnica de 

Catalunya (UPC), considered one of the top universities in terms of research of Radar 

Technology in the world. The developed SUBSIDENCE Satellite Radar software can 

process data coming from all different SAR sensors and acquired through different 

mode settings.  CPT algorithm can extract from a stack of differential interferograms 

the deformation evolution over wide areas during large periods. The former is 

achieved thanks to the coverage provided by current SAR satellites, like ESA’s 

Sentinel-1, Japanese satellites ALOS-1 and ALOS-2, Terrasar-X, Radarsat-1 and 2 

and Cosmo-SkyMed, while the latter is due to the large archive of images acquired 

since 1992 (ERS1-2). The interferometric chain is divided into two phases: PRISAR 

and CPT.  

The first refers to the registration and generation of interferograms, coherence maps 

and differential phase matrices. PRISAR chain is in charge of preparing the inputs of 

the second phase. The latter was implemented in Subsoft where the advanced 

DInSAR algorithm is used. The Radar chain algorithm consists of four main parts 

(Fig. A1): 

1) Pixel selection of distributed and point-like scatterers. Radar chains can work 

with different methods and provide deformation measures at different 

resolutions to maximize the total number of processed points. 

2) Linear estimation process. This step estimates the main component of the 

displacement and the point height. 

3) Estimation and removal of atmospheric artifacts and retrieval of the temporal 

evolution of the deformation also called non-linear deformation. 

4) Geocoding and projection of the maps are saved in different format files, such 

as Google Earth or GIS programs, to increase the flexibility and make easier 

the interpretation and representation of the final products. 
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Figure A1. CPT general workflow. The outcomes correspond to maps of linear and non-linear 

deformations.  

The generation of the best interferogram set aims to identify the minimum number of 

interferograms in the stack which have the maximum quality overall. To do the 

selection, from all the available images, the spatial baseline, the temporal baseline 

(Bt), and the Doppler frequency (Df) are considered. To estimate the perpendicular 

baseline values (Bn) a reference image (master) is selected (Figure A2).  
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Figure A2. Interferogram selection (top) considering the complete list available (down) to minimize 

geometrical and temporal decorrelation.  

Generally, the image is used as the reference in the co-registering process. After that, 

interferograms selection is done through Delaunay triangulation of the available 

images in the space, so every connecting pair of images represents an interferogram. 

The pixel selection is a very important step to obtain reliable results. Only pixels 

characterized by a considerable phase quality are selected. There are several criteria 

for selecting pixels, one based on the coherence stability (Berardino et al., 2002), the 

other one based on the amplitude dispersion (Ferretti et al., 2001). More recently, also 
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the Temporal Sublook Coherence method (TSC, Iglesias, et al., 2015) has been 

produced. The first one is based on the spatial coherence estimator (Seymour et al., 

1994) and the pixel will be selected if it shows a coherence higher than an assigned 

threshold; the second one, as a PS-like method, exploits the dispersion index, where 

all the pixels characterized by a Da value below a certain threshold are selected; the 

latter is a selection method able to detect point-like scatterer analyzing the spectral 

properties of the scattered signal. The advantage of the PS selection based on the 

amplitude dispersion is that there is no need of applying a radiometric calibration. 

Hence, in this case, pixel selection is carried out by exploiting the spectral properties 

of point-like scatterers. The last step consists of the phase analysis, to calculate their 

linear deformation time series within the observation period. In this case, the CPT 

algorithm employs the Delaunay triangulation allowing the connection between 

neighboring pixels, and, after that, to evaluate the phase increment between two 

neighboring pixels. CPT algorithm applies both the Delaunay and the Spider-Web 

triangulation simultaneously (Figure A3). 

  

Figure A3. implementation of CPT triangulation methods to cancel the phase offsets between 

interferograms. 

 Finally, an integration process is necessary to obtain the velocity values for each 

pixel: it is necessary to identify a control point (named seed) characterized by linear 

velocity and height well known. A good distribution of control points helps to reduce 

the offsets that could appear among zones badly connected. Depending on the chosen 

threshold, selected pixels may vary in a wide quality range, and consequently, so it 

will the quality of the estimations on the increments of the linear parameters. Selected 

pixels are divided into different layers according to their quality (Blanco et al., 2006). 

After that, beginning with the top layer, the linear block is iteratively executed by 

adding successive layers, so the obtained absolute values of each layer act as the seed 
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values to the following integration process. In this way, the results obtained with the 

high-quality layers are preserved and the estimation of the low-quality layers 

improves. Consequently, multi-layer processing improves linear results and rises 

pixel density while providing a quality label for each one. Subsequently, the non-

linear component has been calculated to obtain the complete evolution of 

deformation. The first step of the non-linear model consists of the calculation of the 

phase residues φresidue (equation 6), obtained by subtracting the absolute linear 

phase model φ model from the original interferometric phases φ for the selected 

pixels: 

𝜑𝑟𝑒𝑠𝑖𝑑𝑢𝑒 = 𝜑 − 𝜑𝑚𝑜𝑑𝑒𝑙 

The residual phases are calculated only in correspondence with reliable pixels and 

consist of two conditions:  

a) Atmospheric perturbations. This term can be explained as a low spatial 

frequency signal in each image due to its correlation distance. However, for 

each acquisition date atmospheric conditions can be considered random. 

b) Non-Linear deformation. This term can be assumed to present a narrower 

correlation window in space (or at least much narrower than atmospheric 

artifacts) and a low pass behavior in time. Starting from these considerations is 

possible to separate the atmospheric artifacts from the non-linear deformation 

by applying a filtering process in both spatial and temporal domains to obtain 

the time-series of the deformation. 

Figure A4 shows the end of the analysis of the time-series deformation and its 

temporal evolution for each PS individuated can be computed combing the estimated 

linear model and the non-linear component. 
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Figure A4. Time-series evolution with the integration of linear and non-linear components. 

SUBSIDENCE outcomes can be exported in the .csv format allowing the reading, 

consultation and analysis of them. Geocoded data can be also exported in the ESRI 

Shapefile (.shp) format which is suitable for loading the associated features on GIS 

platforms and web maps. For each point (PS), the output files give information on 

height (meters a.s.l.), incidence angle (degrees), rate of displacement (cm/year), the 

quality of the InSAR measurement and the accumulated displacement for each 

satellite acquisition date (cm). 

 


