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Abstract

Tyre may be one of the most critical and complex components in vehicle
dynamics, it is usually the only one interfacing with the road. The pneumatic
tyre has three fundamental functions: (i) generating proper forces during
vehicle cornering or traction/braking, (ii) absorbing the shock and vibration
caused by surface irregularity, and (iii) supporting the weight on various
terrains. During the motion, due to the multi-material interaction and to
the viscoelastic rubber matrix compositions, the dynamic characteristics of
such part may vary considerably, even considering to modify only one pa-
rameter among inner pressure, track and ambient temperatures, pavement
surface, etc. Another variable to take into account is that the structure and
compound characteristics inevitably change within his life-cycle because of
ageing, leading to a modification of cornering characteristics and to a decrease
of the level of available grip. Therefore, starting from the earliest phases of
design of the vehicle and its control systems, the understanding of tyres is
critical to govern the overall dynamics. Moreover, the ability of the vehicles
to drive themselves in a safe manner highly depends on their prior capability
to understand the external environment and to correctly estimate the vehicle
state in all the possible operating and environment conditions, which implies
adverse environmental scenarios like heavy rain, snow, or ice on the road
surface. Nevertheless, the current tools to estimated the vehicle state are still
not designed to exploit the entire vehicle dynamics potential, preferring to
assure the minimum requirements in the worst possible operating conditions
instead. Furthermore, their calibration is typically performed in a pre-defined
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strict range of operating conditions, established by specific regulations or
OEM routines. For this reason, their performance can considerably decrease
in particularly crucial safety-critical situations, where the environmental con-
ditions, the road singularities, and the tyre thermal and ageing phenomena can
deeply affect the adherence potential. Hence, in order to guarantee a greater
safety-level with respect to environmental conditions [1–4], it is necessary
to account for their effect since from the very beginning of the ADAS de-
sign phase, introducing advanced control strategies that could leverage both
real-time measurements, coming from different in-vehicles sensors (camera,
radar, lidar and combinations of those via sensor-based fusion techniques
[5–8]), and on-board environmental estimation modules. Indeed, only the
use of sensors’ measurements could be not enough to perceive properly the
external environment, since the vehicle control system has also to predict and
discern how heavy rain, snow, ice condition or road singularities (e.g., oil
stains, puddles, holes, or disconnected cobblestone) could impact on safety,
so that the driving policy is to be tuned according to the actual environmental
adversities. Moreover, in extreme scenarios vehicle dynamics may be deeply
affected by the non-linearity of tyres’ dynamic behavior, therefore limiting
the maneuverability in terms of both longitudinal and lateral accelerations and
significantly reducing drive-ability and steer-ability. This thesis is focused on
the evaluation of the control strategy performance when a better estimated
tyre and vehicle parameters are given to the control model take into account
the variations in terms of the dynamic behavior of the tyres and of the vehicle
boundary conditions. For these reasons the thesis flow is the following:

• MULTI-PHYSICAL TYRE MODEL ANALYSIS: starting from the
study of tyre’s viscoelastic properties an experimental analysis on the
real tyre tread specimens has been done in order to evaluate the friction
coefficient dependencies with temperature, sliding velocity and wear
level. Later, a multy-physical tyre model, called MF-evo, has been
presented and parametrized since data carried out by outdoor track test.
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• VEHICLE STATE ESTIMATOR: the real-time knowledge of the
correct vehicle state is needed not only to properly feed low-level
control systems commonly used in commercial cars such as ABS, ESP
and traction control, but also to allow the development of more accurate
advanced driver assistance systems (ADAS) up to fully autonomous
driving scenarios. Therefore, a benchmark on the vehicle state estimator
has been presented.

• MOTION PLANNING TO TAKE INTO ACCOUNT THE ESTI-
MATED PARAMETERS: the objective of the work is to investigate
the possibility of the physical model-based control to take into account
the variations in terms of the dynamic behavior of the systems and of the
boundary conditions. Different scenarios with specific tyre thermal and
wear conditions have been tested on diverse road surfaces validating
the designed model predictive control algorithm and demonstrating the
augmented reliability of an advanced virtual driver aware of available
information concerning the tyre dynamic limits.

• VEHICLE FOLLOWING CONTROL STRATEGY TO EXPLOIT
THE FRICTION ESTIMATION ON-BOARD: a new model-based
technique is proposed for real-time road friction estimation in dif-
ferent environmental conditions. The results, in terms of the maxi-
mum achievable grip value, have been involved in autonomous driving
vehicle-following maneuvers, as well as the operating condition of the
vehicle at which such grip value can be reached.
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• ABS CONTROL STRATEGY TO MAKE USE OF THE TYRE
THERMAL DYNAMICS: a simplified tyre thermal model has been
integrated into a model predictive control technique in order to exploit
the thermal dynamics dependencies in an abs system to reduce the
braking distance.

This thesis is intended to highlight a necessary shift in strategy devel-
opment and a solid step toward greater development of driving automation
systems and physical modeling of vehicle control, capable of exploiting and
taking into account multi-physical variations in tire.
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Chapter 1

State of art

1.1 Background and motivation

In the recent years the mobility industry is growing at a rapid pace in the
autonomous direction, is an intrinsically multidisciplinary field that aims at
designing advanced onboard control strategies by integrating principles from
different disciplines including Mechanical, Control and Computer Science
Engineering, Legal, Social and Economic fields.

This revolution in the automotive field has produced a reduction in the
number of accidents and their severity even if, according to the World Health
Organization, the number of deaths on the world’s roads remains unacceptably
high. Indeed, in 2018, 40 million people were injured and 1.35 million died
due to road traffic related injuries. Otherwise, the Americas and Europe
have the lowest regional rates of 15.6 and 9.3 deaths per 100,000 population
respectively. In terms of progress made, in three of the six regions (Americas,
Europe, Western Pacific), the rates of death have decreased since 2013 [20].

The high number of accidents is also a great economical issue: according
to the Paris-based Organization for Economic Cooperation and Development,
the great number of accidents accounts for 1-3% of the entire world’s Gross
Domestic Product (considering the cost of the hospital bills, properties’ dam-



2 State of art

age and so on): this means the Unites States alone have to pay about 200
billion dollar every year to handle road accidents [21].

To identify and quantify road safety problems throughout the European
roads and to evaluate the different roads’ efficiency, the European Commission
created in 1993 a global database, named CARE - Community database on
Accidents on the Roads in Europe. One widely adopted strategy to reduce
such accidents is through partial or full automation of the driving task. Thanks
to the introduction of assisted driving systems the number of road accidents
reported by CARE and confirmed by NHTSA (National Highway Traffic
Safety Administration) and British Columbia police report has decreased of
more than 30% in 10 years [1].

In the Fig 1.1 the number of fatal accidents occurred every year on Euro-
pean roads has been reported, starting from year 2001.

Fig. 1.1 Diagram showing the number of deaths deriving from road accidents
in European Union over the years, starting from 2001. The blue curve
represents the target death reduction the European Commission’s ‘Road
Safety Program’ aims to.
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1.1.1 Contributing factors to road crashes

The contributing factors to road crashes (Fig 1.4) could be grouped on the
basis of speed (exceeding speed limits), distracted driving/inattention, alcohol
impairment, driver error, aggressive driving (following too closely; ignoring
traffic control device, or officer/flagman/guard), environmental conditions
(road with ice, snow, slush, water), and tyre condition (inflation pressure and
trad depth). Studies conducted in the US indicate that the cause behind the
vast majority (94%) of accidents is human error [22], and that 24% occur at
poor operational conditions, e.g., fog, rain, sleet, snow, etc. [23].

Good condition requires regular monitoring and timely maintenance of
all tyres on, or associated with, the vehicle. Nevertheless, it is not uncommon
to find vehicles on the road, running on one or more underinflated/overin-
flated tyres or tyres with inadequate tread depth. Tyre pressure below the
recommended pressure can cause high heat generation that in turn can cause
rapid tyre wear and blowout. Similarly, inadequate tread depth can also cause
blowouts of tyres. Tyre-related events such as tyre failure or blowout resulting
from tyre deficiencies or other factors are risky and often add to the likelihood
of crash occurrence. According to a 2003 NHTSA report, an estimated 414
fatalities, 10,275 non-fatal injuries, and 78,392 crashes occurred annually
due to flat tyres or blowouts before tyre pressure monitoring systems were
installed in vehicles.

The effect of tyre tread depth, an adequate tyre tread depth on all tyres
of a vehicle is important to maintain proper grip on the road under different
road conditions. The data show that of all the tyres observed with tread depth
between 0 and 2/32”, 26.2% were mounted on tyre-related crash vehicles (Fig
1.2).

In addition, it is worth to underline that under extreme temperatures, tyres
are vulnerable to tyre degradation, significant loss of tyre pressure, additional
flexing, and stress on the sidewalls. These tyre conditions may lead to tyre
failure or even blow out. In this analysis, three climatic conditions, cold
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Fig. 1.2 Percentage of tyre-related crash vehicles in each category of tyre
tread depth (Data Source: NMVCCS 2005-2007).

(November to February), hot (July to September), and mild (March to June,
October) are considered based on the month of the year in which a crash
occurred (Fig 1.3).

Fig. 1.3 Percentage of tyre-related crash vehicles by climatic condition (Data
Source: NMVCCS 2005-2007).

Indeed, in vehicle operating conditions, referring to impervious environ-
mental scenarios or to those linked to the tyre-road friction reduction, there
could be a considerable performance decrease of the control onboard systems
[24] [25] [26].
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Fig. 1.4 Major factors contributing to fatalities.The percentage of each factor
per age and gender of the driver in the hypothetical road accident scenarios
is reported. The red color identifies the most frequent and the green one the
least frequent factors.

1.1.2 The Road to Full Automation

The Fig. 1.5 introduces the levels of automation as defined in SAE J3016
Surface Vehicle Recommended Practice.

Systems at the lower automation levels (1 - Driver Assistance and 2 -
Partial Automation) are already widespread in traffic systems throughout the
world. Some provide convenience functions like Adaptive Cruise Control
(ACC) and some are designed to avoid and/or reduce the severity of accidents.
Such Advanced Driver Assistance Systems (ADAS) monitor the traffic scene
and the driver during operation, and provides warning or intervenes to assist
the driver if particular conditions indicate that there is increased risk of an
accident. Forward Collision Warning, Automatic Emergency Braking, Lane
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Fig. 1.5 SAE J3016 Levels of Automation [9].

Departure Warning, Lane Keeping Assistance, and Blind Spot Monitoring
are a few of the functions that are currently available. Such features are
gradually becoming included among standard features of road vehicles. For
example, Automatic Emergency Brake is now required to get the highest
safety rating from European New Car Assessment Programme (Euro NCAP),
and requirements are likely to continue to increase towards more sophisticated
accident Research and development for higher levels of automated driving
(4 - High Automation and 5 Full Automation) have progressed immensely
in the past two decades, to the point where several of the leading companies
are offering level 4 autonomous taxi services to the general public, albeit
in limited geographical areas. At levels 4 and 5, the vehicle is responsible
for the complete driving operation. This has the potential of strong positive
impact on traffic safety in terms of alleviating accidents caused by human
error. At this level of sophistication, the vehicle can operate without human
supervision. Level 4+ automated vehicles use a range of sensors to register
their own state and the state of the surrounding traffic scene, for example
radar, lidar, cameras, ultrasonic sensors, inertial measurement units, wheel
and steering angle encoders and GPS/GNSS. In addition, prerecorded high
definition 3d maps are often used to complement the vehicle’s own sensors.
Perception software processes all of this information and produces an internal
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digital representation of the traffic scene in terms of the vehicle’s position
relative to lanes and drivable area, road infrastructure like stop signs and
traffic lights, as well as the predicted motions of all non-static traffic agents
such as pedestrians, cyclists and other vehicles. This internal representation
forms the basis for motion planning and control of the vehicle. Current
sensor technologies are subject to fundamental limitations in terms of e.g.,
weather/light disturbances, occlusions, range and resolution which can only
partially be overcome through sensor fusion and clever perception algorithms.

Within this technological paradigm, the ability of the vehicles to drive
themselves in a safe manner highly depends on their prior capability to
understand the external environment and to correctly estimate the vehicle
state in all the possible operating and environment conditions [27–29]. It is
worth to note that, as stated by SAE International, the difference between a
Level 4 and Level 5 autonomous vehicle is the capability of driving itself in
any situation, which implies adverse environmental scenarios like heavy rain,
snow, or ice on the road surface [30].

Hence, in order to guarantee a greater safety-level with respect to envi-
ronmental conditions [1–4], it is necessary to account for their effect since
from the very beginning of the ADAS design phase, introducing advanced
control strategies that could leverage both real-time measurements, coming
from different in-vehicles sensors (camera, radar, lidar and combinations of
those via sensor-based fusion techniques [5–8]), and on-board environmental
estimation modules. Indeed, the use of only sensors’ measurements could be
not enough to perceive properly the external environment, since the vehicle
control system has also to predict and discern how heavy rain, snow, ice
condition or road singularities (e.g., oil stains, puddles, holes, or disconnected
cobblestone) could impact on safety, so that the driving policy is to be tuned
according to the actual environmental adversities.

Moreover, in extreme scenarios vehicle dynamics may be deeply affected
by the non-linearity of tyres’ dynamic behavior, therefore limiting the ma-



8 State of art

neuverability in terms of both longitudinal and lateral accelerations and
significantly reducing drive-ability and steer-ability. Furthermore, during
emergency situations, which typically involve abrupt deceleration or steering,
the tyres can be easily pushed to their unstable dynamic region, thus requiring
a specific control policy depending from the current dynamics of the vehicle
and its sub-components, that hence have to be estimated at each time instant
[31].

1.1.3 Objective and research questions

This thesis aims to investigate on the potential of tyre-centered strategies into
autonomous driving and safety mobility employing the physical model-based
control to take into account the variations in terms of the dynamic behavior of
the tyres and of the vehicle boundary conditions validating them in simulation
environment. The information concerning the vehicle non-linear physical
limits depending on the thermal and wear states of tyres, the pavement char-
acteristics and the boundary conditions (wet or icy ground, under-inflated
or worn tyre, etc) represents a fundamental additional value for the optimal
behaviour of safety- and performance-oriented control strategy. Therefore,
the advanced driving systems will become adaptive due a continuous physical
evaluation of adherence, sensitive to environmental conditions, based on a
scientifically reliable model-based fusion methodologies.

Being currently mainly based on mere empirical calibration, the physical
model-based estimation can represent a crucial factor towards the improve-
ment of the pedestrians’ and passengers’ active safety, enabling the man-
agement of the activation threshold ranges on the basis of the instantaneous
operating and the environment boundary conditions. This can be already
employed in the current ADAS to communicate to the driver the necessity to
co-act in specific situations, but it also constitutes a fundamental root for the
future driving automatization.
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A proper understanding of the tyre dynamic behaviour and of its multiple
intrinsic dependencies is a crucial topic for tyre manufacturers, to improve tyre
performance and durability, for users, to set the optimal working conditions,
and for researchers, to develop computationally efficient mathematical models
able to represent the experimental behaviour with a high degree of accuracy.
Friction phenomenon (Eq. 1.1), arising at the tyre-road interface, originates
from three physical contributions: the adhesive term relative to molecular Van
der Waals links arising between the two counter surfaces in mutual contact,
the hysteretic term linked to the deformation losses within the elastomeric
material, and the wear term. [32, 33].

Ftot = Fad +Fhys +Fw (1.1)

All of them are deeply interconnected and dependent on the specific tyre
working conditions, in terms of sliding velocity, temperature and pressure
distributions, arising at the tyre contact patch as a result of different excitation
spatial frequency spectra, representative of diverse types of road pavement
[34]. Furthermore, tyres may deeply modify their dynamic behaviour over
time due to ageing effects, influencing the dynamic potential of the overall
vehicle [35].

The enrichment of the vehicle state with the information concerning the
tyre instantaneous and potential friction will allow, taking into account the
tyre multiphysical variations, represents a key point in the development of
control strategies, able to adapt to sudden variation in boundary conditions in
order to guarantee the vehicles higher stability in critical scenarios.

Therefore, the research questions that fall as a subset of the project objec-
tive and the thesis flow are as follows:

• How it is possible taking into account the grip multi-physical depen-
dence cited before into a tyre model? To this end in the Chapter 2 the
analysis on the mentioned dependencies is described since the study
on the viscoelastic propertied of the tyre compound. Moreover, an
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(a) (b)

Fig. 1.6 Tyre behaviour variations. (a) Compound temperature influence on
the characteristic interaction shape. (b) Wear effect on available grip.

(a) (b) (c)

Fig. 1.7 MF-based tyre modelling in three thermal ranges (camber angle =
−2deg | vertical load = 3000N).

experimental analysis to the evaluation of the friction coefficient at
different temperture and wear level has been carried out on real tyre
tread specimens. Finally, starting from the experimental data obtained
on track test, a multiphysical MF tyre model has been described.

• How the state estimation provide use full information regarding the
vehicle parameters? To this purpose in the Chapter 3 a benchmark on
the state estimator technique has been described.

• How the variation of tyre limits affect the performance of model-based
control in critical scenario? Therefore, in the Chapter 4 an investigation
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on the control strategies which exploits the estimation of the parameters
of the vehicle system has been done.

• It is possible to estimate in real-time the road friction and how a correct
friction estimation improve the performance of a vehicle control strat-
egy in a critical scenario? For this reason, in the Chapter 5 a friction
estimator in co-simulation with a control strategy has been developed.

• It is a model-based optimal controller/s able to provide improved per-
formance in terms of longitudinal behaviour by considering the tyre
thermodynamics in the controller model? In the Chapter 6 has been
studied the dynamics of the vehicle system that exploits at best the
temperature magnitude that it evolves in the controller model.

1.2 Tyre mechanics

The tyre plays a fundamental role in vehicle dynamics field and many auto-
motive companies spend a lot of time and resources on the development of
tyre structure in order to improve its behaviour within the contact are with the
road. Therefore, the tyres must fulfil several functions [36] [37], such as the
providing sufficient traction for driving and braking manoeuvres or adequate
steering control and direction stability. For these purposes, the analysis of the
tyre mechanics is essential for comprehending the vehicle performances.

1.2.1 Tyre reference system

To describe the phenomena involved in tyre-road interaction and its forces and
moments systems arising during the vehicle motion, an axis reference system
need to be defined. One of the commonest used axis systems is recommended
by ISO855 standard and it is shown in 1.8 [38].

In this reference system, the road is considered as flat and non-deformable.
The x-axis is along the intersection line of the tyre-plane and the ground. The
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Fig. 1.8 Tyre ISO reference system

tyre plane is defined as the plane made by narrowing the tyre to a flat disk.
The z-axis is perpendicular to the ground and upward, and the y-axis direction
is chosen so that the axis system satisfies the right-hand rule.

The tyre orientation is defined by two angles. The camber angle γ is the
angle between the tyre-plane and the equatorial plane passing through the
x-axis; the sideslip angle α is the angle between the x-axis and the forward
velocity vector v as shown in 1.8

The resultant force system occurring during the tyre-road interaction
is assumed to be located at the centre of the tyre footprint and it can be
decomposed along x, y and z axes. Therefore, the interaction of the tyre with
the road generates a three-dimensional force system including three forces
and moments shown in 1.8:

• Longitudinal force Fx is the tangential force acting along the x-axis and
it is also called forward force. This force is positive during accelerations
manoeuvres; otherwise is negative.

• Normal force Fz is the vertical force normal to the ground plane. It
is also defined as wheel load. If the resultant force is upward, this
magnitude is positive.
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• Lateral force Fy is the force tangent to the ground and orthogonal to
both Fx and Fz. This force is positive if its application direction matches
with y-axis.

• Roll moment Mx is the longitudinal moment about the x-axis. It is also
called overturning moment.

• Pitch moment My is the lateral moment about the y-axis and it is known
as rolling resistance torque. This magnitude is positive if tends to turn
the tyre about the y-axis and moves it forward.

• Yaw moment Mz is the upward moment about the z-axis and it is defined
as aligning moment or self-aligning moment.

1.2.2 Tyre kinematics

Let Q be a point on the rim axis yc (see Fig 1.9). The position of the rim with
respect to the flat road depends only on the height h of the point Q and on the
camber angle γ .

Fig. 1.9 Reference system planes
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The latter is the angle between the rim axis and the road plane. The rim,
being a rigid body, has a defined angular velocity Ω. Therefore, the velocity
of any point P of the space moving together with the rim is given by the well
– known equation:

VP =VQ +Ω×QP (1.2)

where VQ is the velocity of the point Q and QP is the vector connecting Q
to P. The three components of VQ together with the Ω ones are the six param-
eters that completely determine the rim velocity field. The angle between the
velocity VCP corresponding to the centre of contact patch, which is parallel
to the flat road, and the x axis of the reference system is called slip angle α .
The latter is fundamental in the lateral interaction between the tyre and road.
In order to describe the wheel motion, it is used to evaluate the following
vectorial magnitude, also called slip:

s =
V −Ω×R

Vx
(1.3)

where V is the wheel centre velocity, which is parallel to the flat road,
Ω is the angular velocity of the wheel, R is the effective rolling radius and
Vx is the x axis component of the wheel centre velocity. The quantity Ω×R
is defined pure rolling velocity and matches with the wheel centre velocity
as soon as the tyre works in free rolling conditions. Distinguishing the slip
components along x and y axis, we can define the following magnitudes:sx =

V−Ω×R
Vx

sy =
Vy
Vx

= tanα ≈ α

(1.4)

The first quantity is called longitudinal slip, whereas lateral slip is the
second one. About the longitudinal slip, it is possible to differentiate the
following cases:



1.2 Tyre mechanics 15

• Wheel working in pure rolling condition: there are any differences
between the wheel centre and each rim point velocity

• Wheel working in global slip condition (traction phase): the tyre rotates
among the wheel axis, but the vehicle does not move forward

• Wheel working in global locking condition (braking phase): the tyre
behaves as a rigid body during the vehicle-braking phase

However, taking into account what happens in the contact patch (Fig.
1.10), the tyre tread usually works in pseudo – slippage condition.

Fig. 1.10 Reference system planes

Actually, the tread of a tyre is deformable, whereas its belt is not stretch-
able. Consequently, for example, when a vehicle brakes, the road surface
pulls the contact patch backwards, but only the tread is distorted. The tread
blocks recline, and this outcomes in a relative movement between the bottom
of the rubber block, in contact with the road surface, and the belt. This is the
shear phase (or pseudo – slippage), which occurs at the leading edge of the
contact patch [39]. As the rubber tread block gets closer to the trailing edge of
the contact patch, the stress increases and the rubber block, whilst remaining
sheared, goes into effective slippage condition with the road surface. This
means that a mismatch in the velocity value occurs between the points of the
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tread in contact with the road (red points, Fig. 1.10) and the road surface ones
(blue point).

1.2.3 Tyre dynamics

The tyre plays a fundamental role in the vehicle dynamics which in its turn
is subjected to three different types of force fields: the gravitational forces
field, the aerodynamic forces and the tyre – road interaction forces one. The
interaction forces field refers to the phenomena occurring in the contact patch
between the tyre and the road. This field is due to the application of a torque
– driving or braking – around the wheel axis and a force applied on quantities
are transmitted to the road thanks to the tyre contact patch. This force–torque
system at a given point of the contact patch is statically equivalent to any set
of forces or distributed load. Therefore, regardless of the degree of roughness
of the road, the distributed normal and tangential loads in the contact patch
yield a resultant force F and a resultant torque vector M:

F = Fxi+Fy j+Fzk

M = Mxi+My j+Mzk (1.5)

The resultant couple M is simply the moment about the point O, but any
other point could be selected. The traditionally components of the magnitudes
in equation set 1.5 are the following: Fx is the longitudinal force, Fy is the
lateral force; Fz is the vertical load (or normal force); Mx is the over-tuning
moment, My is the rolling resistance moment and Mz is the self–aligning
torque [40][41]. Thanks to the experimental tests carried out on tyres and the
physical–analytic models, it is possible to determine the tyre–road interaction
forces law, nowadays. These expressions state that the vertical load depends
on tyre crushing, whereas the longitudinal an lateral forces on the correspond-
ing slip factor, longitudinal and lateral slips, respectively. In the following
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paragraph, the longitudinal and lateral load will be briefly described; for more
details about the tyre–road interaction, see the suggested references [40] [41]
[42].

Pure Longitudinal Interaction

The tyre testing aims at the full identification of the functions that are the
relationships between the motion and the position of the rim and the force
and moment exchanged with the road in the contact patch. It is meaningful to
perform experimental tests for the so-called pure slip conditions. It means
setting that the longitudinal and lateral forces depend only on the correspond-
ing slip factors and on the vertical load, whereas the self – aligning moment
on the vertical load and lateral slip factor [40] [41] [43].

Fig. 1.11 Longitudinal interaction physics.

To comprehend the phenomena involved in the contact patch during the
longitudinal interaction, we should take into account a vehicle, which is going
to brake. If no sliding takes place on the contact patch, the relationship be-
tween the longitudinal force Fx and the longitudinal slip sx can be considered
as linear:

Fx =Cxsx (1.6)
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where sx can be sx,DT in traction phase or sx,BT in braking phase. Cx is the
tyre longitudinal stiffness, often called braking stiffness:

Cx =
∂Fx

∂ sx

∣∣∣∣
sx=0

(1.7)

In Fig. 1.12, the typical behaviour of the longitudinal Force Fx as a
function of the practical longitudinal slip under braking conditions, for several
values of the vertical load Fz, is shown.

Fig. 1.12 Longitudinal interaction

It is important to point out that the longitudinal forces decrease as a linear
function of the slippage ratio in a small range of longitudinal slip ratio sx. In
this case, the longitudinal tyre stiffness definition (eq. 1.7) is correct and the
tyre blocks work in adherence. Moreover, the vertical load influence on the
longitudinal force Fx: the latter grows less than proportionally with respect to
the vertical one. Hence, the global longitudinal friction coefficient µx can be
defined as the ratio between the peak value of the longitudinal force and the
corresponding vertical load.
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Pure lateral interaction

When a tyre is not subject to any force perpendicular to the wheel plane, it
will move along this last; if a side force Fs is applied to a wheel, a lateral
force will be developed at the contact patch, and the tyre will move along a
path at an angle equal to the slip angle α with the wheel plane, mainly due to
the lateral elasticity of the tyre, as shown in Fig. 1.13.

Fig. 1.13 Lateral interaction physics

The lateral force developed at the tyre/ground contact patch is usually
called cornering force Fyα when the camber angle of the wheel is zero; the
relationship between the cornering force and the slip angle is of fundamental
importance to the directional control and stability of road vehicles. When
the tyre is moving at a uniform speed, the side force Fs applied at the wheel
centre and the cornering force Fyα developed in the ground plane are usually
not collinear: at small slip angles, the cornering force in the ground plane is
normally behind the applied side force, giving rise to a torque which tends to
align the wheel plane with the direction of motion. This torque is called the
"aligning" or "self-aligning torque", and it is one of the restoring moments
which help the steered tyre return to the original position after performing a
curving manoeuvre. The distance tp between the side force and the cornering
force is called the "pneumatic trail", and the product of the cornering force
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and the pneumatic trail determines the self-aligning torque. To properly
approach a vehicle within a turn, the driver has to act on the steering wheel.
Every vehicle taking a turn is subjected to a side force, which tends to force
it out of its curve. To keep vehicle on the path, in each tyre-road contact
area must arise a centripetal force, Fy, which globally stabilize the side force
[40] [41]. The relationship between the cornering force and the slip angle
is of fundamental importance to the vehicle handling and stability of road.
Typical plots of the cornering force as function of the slip angle show that for
angles below a certain range, the lateral force is approximately proportional
to the slip values. Beyond them, the cornering force increases at a lower rate
with an increment of the slip angle and reaches its maximum value as soon
as the tyre begins sliding laterally. It is clear from the above diagram above,
that for low slip angle values the lateral force increases linearly. Therefore,
the relationship between the friction force and the corresponding kinematic
parameter can be expressed as follows:

Cyα =
∂Fyα

∂α

∣∣∣∣
α=0

(1.8)

where Cyα is known as cornering stiffness. This quantity indicates the
slope of the curve at the origin of the coordinate axis system. The cornering
stiffness generally increases with the load, but the rate of increase declines
as load increases (see Fig. 1.14). High performance vehicles on a dry road
will exhibit their maximum cornering ability using large tyres operating at
relatively light loads. Inflation pressure usually has a moderate effect on the
cornering properties of a tyre, but in general, cornering stiffness increases
with an increase of the inflation pressure.

However, the relationship between the cornering force and the normal
load is non-linear (Fig.1.14); it means that the transfer of load from the
inside to the outside tyre during a turning manoeuvre will reduce the total
cornering force that a pair of tyres can perform, making so possible to act on
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Fig. 1.14 Tyre cornering stiffness

the under/over steering behaviour of the whole vehicle modifying the value
of the roll stiffness, able to manage the load transfers [37] [44].

It is further necessary to point out that the centrifugal force Fc applied
at the wheel centre and the cornering force Fyα developed in the ground are
usually not collinear, when a vehicle takes a bend path. At small slip angles,
the cornering force is usually behind the applied centrifugal force, giving
rise to a torque, which tends to align the wheel plane with the direction of
motion. This torque is called self–aligning torque and depends on the slip
angles values and vertical load ones.

Camber thrust

Camber causes a lateral force usually referred to as "camber thrust" Fyγ ,
and the development of this thrust may be explained in the following way: a
free-rolling tyre with a camber angle would revolve about point O, as shown
in Fig. 1.15; however, the cambered tyre in a vehicle is constrained to move
in a straight line, developing therefore a lateral force in the direction of the
camber in the ground plane. It has been shown that the camber thrust is
approximately one fifth the value of the cornering force obtained from an
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equivalent slip angle for a bias-ply tyre and somewhat less for a radial-ply
tyre.

Fig. 1.15 Cambered tyre behaviour

To provide a measure for comparing the camber characteristics of different
tyres, a parameter called "camber stiffness" is often used; it is defined as the
derivative of the camber thrust with respect to the camber angle evaluated at
zero camber angle:

Cyγ =
∂Fyγ

∂γ

∣∣∣∣
γ=0

(1.9)

Similarly to the cornering stiffness, normal load and inflation pressure have
an influence on the camber stiffness. It has been calculated that for truck
tyres, the value of the camber stiffness is approximately one tenth to one fifth
of that of the cornering stiffness under similar operating conditions. The total
lateral force of a cambered tyre operating at a certain slip angle is the sum of
the cornering force Fyα and the camber thrust Fyγ :

Fy = Fyα ±Fyγ (1.10)

If the cornering force and the camber thrust are in the same direction, the
positive sign should be used in the above equation. For small slip and camber
angles, the relationship between the cornering force and the slip angle and the
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one between the camber thrust and the camber angle are essentially linear;
the total lateral force of a cambered tyre at a slip angle can, therefore, be
determined by:

Fy =Cyαα ±Fyγγ (1.11)

As discussed previously, the lateral forces due to slip angle and camber
angle produce a torque, but the component due to slip angle, however, is
usually much greater and mainly responsible of the aligning torque acting on
tyres in ordinary driving conditions.

Interaction between tangential forces

In the discussion about the cornering behaviour of tyres, the effect of the
longitudinal force has not been considered. However, quite often both the
side force and the longitudinal force are present, such as braking in a turn. In
general, tractive (or braking) effort will reduce the cornering force that can
be generated for a given slip angle; the cornering force decreases gradually
with an increase of the tractive or braking effort. At low values of tractive
(or braking) effort, the decrease in the cornering force is mainly caused by
the reduction of the cornering stiffness of the tyre. A further increase of the
tractive (or braking) force results in a pronounced decrease of the cornering
force for a given slip angle. This is due to the mobilization of the available
local adhesion by the tractive (or braking) effort, which reduces the amount
of adhesion available in the lateral direction. It is interesting to point out that
if an envelope around each family of curves of figure 1.16 is drawn, a curve
approximately semi-elliptical in shape may be obtained. This enveloping
curve is often referred to as the friction ellipse.

The friction ellipse concept is based on the assumption that the tyre may
slide on the ground in any direction if the resultant of the longitudinal force
(either tractive or braking) and lateral (cornering) force reaches the maximum
value defined by the coefficient of friction and by the normal load on the
tyre. However, the longitudinal and lateral force components may not exceed
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Fig. 1.16 Effect of longitudinal force on the cornering characteristics.

their respective maximum values Fx,max and Fy,max, as shown in Fig. 1.17.
Fx,max and Fy,max can be identified from measured tyre data and constitute
respectively the major and minor axis of the friction ellipse.

Fig. 1.17 Friction ellipse
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1.2.4 Tyre multi-physical dependencies

The vehicle usually operates under a range of different external conditions, so
the passenger or race tyres are subjected to varying load, pressure, speed and
temperature. All these conditions influence not only the rolling resistance,
but also the tyre tread response in transient phenomena during the interaction
of the road [36] [11] [45].

Friction occurs between two surfaces that are in contact and being urged
to slide over each other in the plane of contact. Strictly, there are two types,
static and dynamic friction. Static friction describes the force necessary to
get the relative motion started, whilst dynamic friction describes the force
necessary to keep the relative motion going once started. In general, dynamic
friction is less than static friction. Under a microscope, even very smoothest
surfaces show irregular shapes in the form of local peaks and troughs. This
means that only a very small part of the two objects is actually in contact as
is shown in Fig 1.18.

Fig. 1.18 Traditional model of friction.

The friction generated in the road-rubber interface is the result of a set of
complex interactions between the tyre and the road, which can be summarised
by two stress mechanisms: road roughness effect and molecular adhesion.
Such effects arise from the viscoelastic properties of the tyre, which can be
approximated by a spring K connected in parallel to a damper of damping



26 State of art

coefficient η . The friction force between the tyre and the road is generated as
a result of the relative slippage between the elastomer and the road surface. If
there is no relative slippage then there is no tyre force.

• Molecular adhesion: The grip derived from the adhesion between
the rubber and the road is the result of the Van der Waals bonding
phenomena. The rubber’s molecular chains form, stretch and break,
following a cycle of stretching and breaking, and generating visco-
elastic work. The bonding phenomena can be explained in a simplified
manner by three steps. In the first step, the bond is created. After that,
in the second step , the molecular chain is stretched, and a friction force
which opposes the tyre skidding is generated. Finally, in the last step,
the bond breaks and new bonds form again successively.

• Road roughness effect: As the aggregate indents the tyre, it engages
with it in a way that is similar to a pinion engaging on a geared rack.
This allows additional force to be generated at each indentation of the
tyre. The road texture (with rough spots that vary from 1 centimetre
to 1 micron) induce a high-frequency excitation on the rubber, which
is distorted and undergoes several compression-relaxation cycles. As
the rubber presents an inherent hysteresis, the rubber does not return
immediately to its initial position. Such asymmetrical movement of
the rubber block around the rough spot results in a force field, with a
tangential component which opposes the slippage and is seen as the
tyre force.

Tyre properties K, η are function of temperature. The tyre’s modulus of
elasticity, represented by the spring K, is maximum below the glass transition
temperature T g, and reduces for temperatures greater than that. The tyre’s
damping mechanism, also known as hysteresis or energy loss, represented by
η is maximum at the glass transition temperature. For temperatures different
to that, the energy loss is smaller. In fact, winter tyres are designed to have a
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lower glass transition temperature compared to summer tyres. When only the
tyre force between the tyre and the road is considered, winter tyres generate
larger forces at low temperatures compared to summer tyres and summer
tyres generate larger forces at increased temperatures.

Tyre properties are also a function of stress frequency, the frequency at
which the load is applied. At low excitation frequencies/velocity y˙, the
damper η does not contribute much, therefore the influence of the spring K is
dominant. The opposite happens at higher frequencies, where the damper η

becomes more important.
Hence, to understand how a tyre behaves, the tyre type needs to be consid-

ered and the temperature and stress frequency monitored. When temperature
increases the material becomes softer (lower modulus of elasticity), while
when stress frequency increases the material becomes more rigid (higher mod-
ulus of elasticity). Other parameters, such as the tyre inflation pressure, also
influence the rigidity of the tyre, and therefore are expected to be monitored:

• Temperature : An increase in temperature will make the rubber softer
and so allow it to form around the aggregate more easily, thus increasing
mechanical grip. In addition, a warmer tyre will be more easily be
penetrated by the aggregate, and the chemical reactions governing the
bonding will happen more quickly making for increased chemical grip.
Increasing the temperature will also reduce the shear modulus and yield
stress in shear will drop, that means the tyre performance are reduced.
At modest temperatures, for example, 50 or 60°C, the former effects
dominate, and an increase in temperature results in better grip. Much
beyond 100–120 degrees, the latter effects dominate, and an increase
in temperature is accompanied by a reduction in grip. The typical
performance of a tyre is shown in Fig. 1.19.

• Inflation Pressure: An overinflated or underinflated tyre will compro-
mise performance, and in this case, the reason is very simple; unless
the tyre is correctly inflated, the carcass will be out of shape, and the
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Fig. 1.19 Effect of temperature on grip.

contact patch area reduced. In Fig. 1.20, the normal inflation pressure
is shown on the left. Racing tyres are in general rather larger than the
road-going equivalents per unit weight, and so, inflation pressures are
proportionately lower. Overinflation leads to the position shown in
the centre of the figure with the tyre running only on the centre of the
contact patch. In response, the central region gets overheated since
a level of shear force sufficient for the whole tyre passes through a
reduced region. This reduces the level of grip beyond that loss expected
from the ratio of areas involved. The situation for underinflated tyres is
shown on the right where the majority of the load is carried on the outer
regions of the contact patch and similar problems are encountered.

• Ambient Conditions: The nature of the surface the car is used on can
have a significant effect. If, for example, at the start of a racing session,
the track is dusty and devoid of any rubber laid down from previous
laps, then the first cars out will be at a considerable disadvantage and
will clean the track up for the later cars who will no doubt be much
faster. Rain and temperature change are also clearly important.
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Fig. 1.20 Degree of inflation.

• Tyre Carcass Design: The main design aims for the tyre manufacturer
are maintaining the static contact patch unchanged under tractive, brak-
ing or lateral force conditions. Controlling damping so that internal
friction generates the desired working temperature. Using the tread
pattern to reduce noise generation. Isolating the rim from vibrational
input from, or contact with, the road. Arranging for the tread to expel
water when in rain.

• Compound: The properties of rubber can be altered and controlled
by heat treatment and chemical additions. The most obvious region
where the material properties play a major role is the composition of the
rubber tread in contact directly with the road. The choice of compound
is simple. The softer it is, the better the grip will be, but the shorter the
life and vice versa.

• Wear: Tyre wear is a topic of particular interest both for road safety
enhancement and for vehicle performance optimization. In the first
case, the reduction of the braking and directional capabilities due to the
thinning of the tyre tread layer is one of the main responsible of the
ineffective water drainage on wet soils and in general of the tyre-related
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accidents. As concerns handling performances, in particular in the
racing field, wear reduces the maximum available friction coefficient
value (Fig. 1.6) provided by tyres, that can implicate a considerable
decrease in the driving forces at the ground, a way out of the optimal
trajectory and a consequential increase in the lap-time.

1.3 Analytical tyre model approaches

The design of a pneumatic tyre is vital to vehicle performance. To achieve
a proper tyre design that meets all the requirements, it is essential to under-
stand the tyre dynamics characteristics experimentally and/or analytically.
Experimental approach is ultimately considered to be necessary, direct and
reliable, but expensive, time consuming and practically impossible to cover
all operating conditions. Alternatively, analytical method via modelling and
simulation becomes more and more popular for its significant advantages in
many ways [46].

Like any other virtual models, the accuracy and predictability of a tyre
model is most important. Ideally if one tyre model could be applied accurately
for all operating conditions, it would be highly accepted by users. Unfortu-
nately such an “ideal” tyre model may not be viable in engineering practice.
Therefore in the past decades, various tyre models have been developed for
different applications, such as handling and stability analysis, ride comfort
analysis, and road load analysis, etc., and with different approach which can
be both analitical and empirical [47]. Brush model is one of the earliest
analytical tyre models, and it is an origin of many other analytical models,
e.g. Fiala’s theory [48], Gim’s analytical model [49], Levin’s tyre model [50]
and CF-SAT system model [51]. As for the empirical tyre models, Pacejka’s
Magic Formula tyre model [52] is the most popular one and is still undergo-
ing development. The latest version of MF tyre model is TNO MF-SWIFT
[53, 52]. Other empirical tyre models include TMeasy tyre model [54] and
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Svendentius’s Semi-empirical tyre model [55]. Several authors refer to the
tyre modelling using the Finite Element Method (FEM), adopted to evalu-
ate static characteristics or to the multi-body tyre approaches, as [56–58],
commonly adopted to study dynamic phenomena on uneven surfaces.

The main purposes for tyre models to be used for driving/braking and
handling analysis are to predict the longitudinal force during braking/traction
and/or the lateral force and self-align torque during cornering at on-road
situation. For these types of analyses, the road is usually assumed to be flat
and rigid and the tyre model is required to be valid up to around 8 Hz [59].

The second group of tyre models is the ride comfort tyre models [60],
Takayama’s tyre model [61]. More recent ride comfort tyre models include
Belluzzo’s road-noise model [62], Kim’s 2D analytical tyre model [63] and
Hegazy’s quarter and half vehicle model [64]. The major concern is the
human comfort and the tyre acts as a filter which is able to absorb the shock
generated by the obstacle between the road and tyre. Human body sensitive
frequency range is less than 20 Hz (ISO 2631-1, 1997).

Tyre models for load analysis are typically more complex. This type of
models is required to be valid up to around 50 Hz [65] and is primarily applied
for predicting the vehicle durability road loads.

Although, the above modelling techniques should be evaluated carefully
to the purpose of their employment within the embedded on-board control
electronics due to their particularly significant computational cost. It becomes,
therefore, necessary the adoption of simpler modelling approaches, as semi-
empirical and analytical models [47], whose computational cost is compliant
with the capabilities of the modern on-board systems. In the next paragraph
three different tyre model will be described in detail:

• Linear tyre model

• Dugoff tyre model

• Pacejka tyre model
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1.3.1 Linear tyre model

It is the simplest one and assumes a linear relationship between the force
and the corresponding slip. Remembering what said about the tyre working
regions, it well fit only the initial linear region. The only input that this
model requires is the corresponding slip, so no information about the effect of
vertical load is taking into account. Additionally, the lateral and longitudinal
forces are dis-joined, they do not affect one with each other. The tyre force
formulation is:

Fxi j =Cxi jki j

Fyi j =Cαi jαi j
(1.12)

In order to take into account the effect of load transfer between wheels of
the same axle in cornering maneuvers, a modified version can be found
in literature, in which the stiffness is the sum between the value in static
condition and a term that takes into account the amount of vertical force
transferred. The absence of the saturation effect is the main flaw of this
model.

1.3.2 Dugoff tyre model

It is a model reduced number of parameters but that could takes into account
some basic phenomena such as the saturation, the behaviour with a peak in
lateral and longitudinal forces, and the dependency on the vertical load. In
other words it is a compromise between a little number of parameters and an
adequate tyre forces description. The longitudinal and lateral forces are given
by the following relationships:

Fxi j =Cxi j

σxi j

1+σxi j

f (λ )

Fyi j =Cαi j

tan(α)

1+σxi j

f (λ )
(1.13)



1.3 Analytical tyre model approaches 33

where the term σxi j refers to a different formulation of the longitudinal slip,
while all the other terms are the same as before. The term σxi j is:

σxi j =
ωi jRri j −Vxi j

ωi jRri j

=
ki j

1− ki j
(1.14)

the function f (λ ) is given by

λi j =
µmaxFzi j(1+σxi j)

2
√
(Cxi jσxi j)

2 +(Cαi j tan(αi j))

f (λi j) =

(2−λi j)λi j, if λi j < 1

1 if λi j ≥ 1

(1.15)

as can be seen, the Dugoff tyre model takes into account the combined
interaction effect thanks to the function f (λ ). Even if this model overcomes
the linear tyre model’s flaws, it is not the best accurate tyre model. In [10] the
differences between the Dugoff tyre model and the Pacejka Magic formula
(shown in the next section) are highlighted. In the figure (1.21) can be seen
that the difference between the two models increases with slip, in fact the
Dugoff model continuously increasing with slip and no peak point is reached.

Fig. 1.21 Tyre forces computed using Dugoff model and Magic Formula [10]
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in the same paper a modified version of the Dugoff model is presented, it
exhibits good results if compared to the Magic formula, as shown in the
following figure.

Fig. 1.22 Tyre forces computed using Dugoff model and Magic Formula [10]

1.3.3 Pacejka tyre model

It is one of the most diffused tyre-road interaction models and offers a full
description of the tyre behaviour. It is a semi-empirical model that fit experi-
mental tyre response curve, the formulation is also known as Magic Formula.
However, this formulation has been improved over the years in order to
achieve better performance, but all are based on the following anti-symmetric
function:

F0 = D sin{C arctan [B xs −E(B xs − arctan(B xs))]}+Sv (1.16)

with
xs = Xs +Sh (1.17)

First of all the fact that this is a mathematical function that fit the experimental
data has to be underlined, this means that all the parameters can be tuned in
order to better fit the data. The formulation is the same for both planar forces,
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the independent variable Xs identify the longitudinal or the lateral condition,
for example if one wants to fit the lateral force data, the independent variable
is the tyre slip angle, on the other hand if the independent variable is the slip
ratio, the relationship refers to the longitudinal force. Thus, this formulation
refers to a pure condition, for this reason the computed force is indicated
with the subscription "0". The tunable parameters may be fixed numbers or
polynomial or exponential functions. In all the cases they are usually referred
to as:

• B stiffness factor

• C shape factor

• D peak value

• E curvature factor

In addition, the parameters Sv and Sh are the shifts from the Cartesian axes
centre.

Fig. 1.23 Curve produced by the MF and the meaning of the curve parameters
[11]

A vertical load dependence is adopted for the peak value, so it will be here
considered as a nonlinear function of the vertical load:

D = D(Fz) = µFz = (a1 Fz +a2)Fz with a1 < 0 (1.18)
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in this case the terms a1 and a2 are fixed value parameters. As shown in figure
(1.23), the parameters B, C and D define the slope in the linear region. In
order to create a dependence between them a new parameter is introduced, it
is named k and is the tangent of the slope. The dependence is given by the
formulation:

B =
k

DC
(1.19)

Note that now B depends on the vertical load as well, thanks to the presence
of B in the denominator. It is possible to extend the use of the MF in the
combined slip case as well, introducing the G-function (or Hill function):

G =
cos{Cc arctan[Bc xc −Ec(Bc xc − arctan(Bc xc))]}

cos{Cc arctan[Bc SHc −Ec(Bc SHc − arctan(Bc SHc))]}
(1.20)

with
xc = Xc +SHc (1.21)

Note the difference between (1.21) and (1.17), if Xs is the tyre slip angle so Xc

is the slip ratio and vice versa. Also the G-function’s parameters are different
than the MF’s ones in pure slip case. Finally the formulation of the MF force
in combined slip case is given by:

Fc = F0 G (1.22)

For the sake of completeness, it has to be said that other versions of the
formulation exist, a more complex formulation involves the micro-parameters,
that are much more than the parameters presented above, that are called
macro-parameters. However, this more complex version gives the best results
achievable using the MF-model. In this thesis work a simplified version of
the MF is adopted, it is based on the macro-parameters version of the MF and
the vertical dependence of D is considered, also the dependence in (1.19) is
adopted. The other macro-parameters are fixed value.
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At this point, the mathematical form of the three separate sets of equations
said at the beginning of the section have been presented and commented, now
the forces acting on the vehicle are presented and then the main two vehicle
models are shown.

1.4 Vehicle modelling approaches

In this section the commonly used vehicle models are presented, first the
double-track vehicle model is shown and then its equations are simplified in
order to write the single-track vehicle model. A vehicle model is a collection
of three groups of equations: kinematic (congruence) equations, equilibrium
equations and constitutive tyre equations. Hereafter the equations of the
model are recalled and deepened to have a complete overview of the models.

1.4.1 Double-track vehicle model

Double-track model means that the vehicle model is supposed to have all
four wheels and therefore, two tracks. Using the congruence equations, the
formulation of tyre slip angle and the slip ratio can be obtained. Considering



38 State of art

δ2 j = 0 with j = 1,2:

V x11 = (u− rt1
2
)cos(δ11)+(v+ r a1)sin(δ11)

V y11 = (v+ ra1)cos(δ11)− (u− rt1
2
)sin(δ11)

V x12 = (u+
rt1
2
)cos(δ12)+(v+ r a1)sin(δ12)

V y12 = (v+ r a1)cos(
rt1
2
)sin(δ12)

V x21 = (u− rt2
2
)

V y21 = (v− r a2)

V x22 = (u+
rt2
2
)

V y22 = (v− r a2)

(1.23)

Considering the general formulation of the slip ratio and of the tyre slip angle
reported in (1.4) the slip ratio and tyre slip angle for the double-track model
can be easily obtained substituting the equations above in the (1.4).
The equilibrium equations can be easily written starting from the projections
of the vehicle acceleration vector onto the vehicle reference system gives:

m ax = m (u̇− v r) = X

m ay = m (v̇+u r) = Y

Jz ṙ = N

(1.24)

as stated above, the terms on the right side are the sum of all the forces acting
along/about the vehicle reference system. Considering the projection of the
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tyre forces onto the vehicle reference system, the terms are:

X = (Fx11 cos(δ11)+Fx12 cos(δ12))−
(Fy11 sin(δ11)+Fy12 sin(δ12))+Fx21 +Fx22

Y = (Fy11 cos(δ11)+Fy12 cos(δ12))+

(Fx11 sin(δ11)+Fx12 sin(δ12))+Fy21 +Fy22

N =−Fx11 cos(δ11)
t1
2
+Fx11 sin(δ11) a1 +Fx12 cos(δ12)

t1
2
+Fx12 sin(δ12) a1+

+Fy11 cos(δ11) a1 +Fy11 sin(δ11)
t1
2
+Fy12 cos(δ12) a1 −Fy12 sin(δ12)

t1
2
−

+Fx21

t2
2
+Fx22t22−Fy21 a2 −Fy22 a2

(1.25)

Fig. 1.24 Double-track vehicle model basic scheme

The tyre forces formulation descends from the tyre model adopted.
For what concerns the steering angles, they are computed starting from the
steering wheel by nonlinear functions, the Taylor series expansions up to the
second order of these two functions can be written as :

δ11 ≃−δ
0 + τ δSW + ε

t1
2l
(τ δSW )2

δ12 ≃ δ
0 + τ δSW − ε

t1
2l
(τ δSW )2

(1.26)
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The first term δ 0 is the static toe, positive if toe-in. the second term τ δSW is
called parallel steering and it is the same for both wheels. τ is always positive
and is the gear ratio of the steering system. The last term is the dynamic toe
and ε is the Ackermann coefficient. If ε = 0 and δ 0 = 0 the hypothesis of
parallel steering is adopted.

1.4.2 Single-track vehicle model

There is only one wheel per axle in this model, this means that some additional
hypothesis have to be stated. The Ackermann coefficient is set equal to zero,
this means that if the static toe-in is considered null, the steering angle of
the front wheels is the same (parallel steering). so δ1 will be the front axle
steering angle.

δ11 = δ12 = δ1

δ21 = δ22 = δ2 = 0
(1.27)

Fig. 1.25 Single-track vehicle model basic scheme

Considering the figure above, it is clear the transition from the double-track
to the single-track. In term of equations, the kinematic equations in (1.23)
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simplify as follow:

V x1 = ucos(δ1)+(v+ r a1)sin(δ1)

V y1 = (v+ r a1)cos(δ1)−usin(δ1)

V x2 = u

V y2 = (v− r a2)

(1.28)

substituting these equations in the general formulation of the tyre slip (1.4):

α1 = arctan
(

(v+ r a1)cos(δ1)−usin(δ1)

|ucos(δ1)+(v+ r a1)sin(δ1)|

)
k1 =

ω1Rr1 −ucos(δ1)+(v+ r a1)sin(δ1)−
ucos(δ1)+(v+ r a1)sin(δ1)

α2 = arctan
(
(v− r a2)

|u|

)
k2 =−ω2Rr2 −u

u
(1.29)

Quite often the hypothesis of small steering angle is verified:

δ1 ≪ 1 ⇒


sin(δ1)∼ δ1

cos(δ1)∼ 1

(v+ r a1)sin(δ1)∼ 0

(1.30)
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and the equations simplify as follow:

α1 = arctan
(

v+ r a1 −uδ1

u

)
≃ (v+ r a1)−uδ1

u

k1 =
ω1Rr1 −u

u

α2 = arctan
(

v− r a2

u

)
≃ (v− r a2)

u

k2 =−ω2Rr2 −u
u

(1.31)

Finally the equilibrium equations are:

m (u̇− v r) = X

m (v̇+u r) = Y

Jz ṙ = N (1.32)

where

X = Fx1 cos(δ1)−Fy1 sin(δ1)+Fx2

Y = Fy1 cos(δ1)+Fx1 sin(δ1)+Fy2

N = Fy1 a1 cos(δ1)+Fx1 a1 sin(δ1)−Fy2 a2 (1.33)

1.5 System state estimation

The vehicle correct state estimation and the ability to mathematically describe
such physical system in the widest possible range of operating conditions is
crucial for vehicle control. The real-time knowledge of the correct vehicle
state is needed not only to properly feed low-level control systems commonly
used in commercial cars such as ABS, ESP and traction control, but also to
allow the development of more accurate advanced driver assistance (ADAS)
systems up to fully autonomous driving scenarios [66, 67]. In the automotive
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field, the research on state estimation through Kalman Filtering began in
the late 90s [68], when the first Extended Kalman Filter (EKF) algorithms,
based on single-track models, were proposed. The simplified single-track
vehicle models have the advantage of requiring less computational effort
and parametrization complexity, whereas Kalman filtering technique com-
pensates for model approximations thanks to sensors’ feedback. Usually, a
trade-off has to be defined between the increased accuracy obtainable by a
more detailed and well parametrized model and the computational capability
of the system where the estimation algorithm has to be employed in real-time.
Indeed, over time, the models have become more complex and several au-
thors have begun to propose double-track vehicle models [69–72], which,
at the cost of a higher computational effort, allow to obtain a better overall
estimation accuracy, exploiting all the data and parameters, often available
from OEMs (as tyre models parameters and the suspensions elasto-kinematic
characterization obtained from laboratory tests). Another important scenario,
where the double-track model outperforms a single-track model, regards the
reproduction of vehicle dynamics in case of tyre combined interactions, espe-
cially in braking/accelerating phases during turning, where, due to the transfer
of lateral load, the inner wheels can reach grip saturation, heavily affecting the
cornering stiffness of the front axle [73, 74]. In some of the aforementioned
works [69–71], but also in the more recent [75, 76], the modelling of the
longitudinal dynamics has been tackled also exploiting the rotational angular
velocity sensors as one of the model inputs. The main issue concerning the
tyre-road longitudinal dynamics evaluation based on the measured wheels
angular velocities, consists in the fact that even small errors linked to the
wheel rolling radius estimation, or to the encoder measurement noise, can
create high estimation errors within the forces estimated at the non-driving
axle, which have to be compensated by the driving axle in order to ensure
that the longitudinal acceleration of the model matches the measured one.
Such potentially large misestimation of the longitudinal forces acts reducing
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lateral ones, affecting the estimation of the global grip at the tyre-road inter-
face, which will result from 10% to 30% higher than the real one. Another
critical point regards the fact that the tyre-road interaction characteristics
could potentially considerably change during use, mainly due to the different
road surface characteristics and weather conditions; on the other hand, the
thermal and ageing effects occurring during the life cycle of the tyre have
to be taken into account [35]. For this reason, almost all the papers cited
propose an automatic adaptation of the tyre parameters; some include specific
scaling quantities for the tyre physical parameters [68, 70, 72], others use
more sophisticated methods [76]. It has to be highlighted that all the methods
reported include the wheel model parameters, able to guarantee the maximum
congruence between sensors signals and model estimations. However, none
of these works have taken into account the road inclination effects within
the model dynamics, which, if neglected, can represent an additional source
of misestimation for the tyre parameters. The integration of all the cited
aspects, the simultaneous estimation of side-slip angle, of maximum friction
and banking angle, has been addressed in more recent times. In 2017, Hadum
[77] proposed an estimation algorithm separated in different modules that
included an EKF for the vehicle dynamics estimation, a friction estimation
algorithm based on the steering rack force sensor and an algorithm for the
banking estimation based on a kinematic relation.

In the Chapter 3 a benchmark on the state estimator algorithm, in particular
on kalman and particle filter has been done. Finally, an application on the
described technique in order to estimate the vehicle side slip angle on a
go-kart has been carried out.
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1.6 Introduction to the control theory

Optimal Control Theory (OCT) is a branch of mathematics that helps in
calculating optimal control inputs to drive a dynamic system. This system
could be a mathematical representation of any system.

To state, this theory tries to minimise a cost or maximise an objective
function over a given time period subject to some constraints. These con-
straints are simply the mathematical representation of the system that we are
trying to control. A linear programming problem can be considered as a very
basic form of optimal control theory [78].

The optimal control problem is stated mathematically for a general non-
linear time-invariant dynamical system below in a very general sense. This
system is described in the state space format as follows:

ẋ(t) = f (x(t),u(t), t), where x(0) = xo,

and state x ∈Rn, control input u ∈ Rm and f : Rn ×Rm → Rn
(1.34)

The cost function is defined as follows in general:

J = φ(x(t f ))+
∫ t f

t0
f0(x(t),u(t), t)dt (1.35)

then the optimal control problem is stated as follows:

minimize φ(x(t f ))+
∫ t f

t0
f0(x(t),u(t), t)dt (1.36)

subject to

ẋ(t) = f(x(t),u(t), t) (1.37)

where the cost function is minimised with a given time frame from t0 to t f

such that the state has to optimally propagate from x(t0) to x(t f ). The optimal



46 State of art

control input u(t) obtained that results in minimum value of cost function is
the optimal solution. Such a definition is very general for the reader to get a
glimpse of OCT, avoiding the mathematical details that make the definition
robust. The reader is recommended to go through [78, 79] to get a better
understanding.

1.6.1 State dependent Riccati equation control

This method is a type of piecewise-linearised control method but not in the tra-
ditional sense of linearising the system. The method is actually derived from
the well-known LQR method where the non-linear system is represented in a
linear-like state-space format (State Dependent Coefficient SDC formulation),
where the system matrices become state dependent.

The cost function in this technique is the same as used in the LQR method
i.e. an infinite time quadratic performance index. As stated by Mracek and
Cloutier [80], a non-linear input-affine system (1.38), holding an equilibrium
at the origin f (0) = 0, can be driven to the origin (regulation) by minimising
the infinite time quadratic performance index (1.39).

ẋ(t) = f(x)+B(x)u(t) (1.38)

where the state x ∈ Rn, the control input u ∈ Rm, and t ∈ [0,∞) with C1(Rn)

functions f : Rn → Rn and B : Rn → Rn×m, and B(x) ̸= 0 ∀x as stated by
Çimen [81].

J =
1
2

∫
∞

t0
(xT Q(x)x + uT R(x)u)dt (1.39)

here the matrices Q(x) and R(x) (state and input weighting, respectively) can
also be state dependent and must be positive semi-definite and diagonal. After
this, the system must first be represented in the state-dependent coefficient
SDC formulation 1.40 which is non-unique for multi-variable systems as
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is shown by [81]. This non-uniqueness can also be exploited to tune the
controller performance.

ẋ(t) = A(x)x+B(x)u(t) (1.40)

where

f(x) = A(x)x (1.41)

As Çimen says, this formulation is linear-like and in general any linear
control method could be applied to control this system. Cloutier, Stansbery
and Sznaier [82] also show that the some of the classic methods to check
the controllability and observability of the system can be used to check the
existence of solution. The definition for the stabilisability [81] is stated as
follows, as it’s the most important property to make sure the system can be
driven:

Definition: The SDC representation is a stabilisable parameterisation in a
region Ω ∈ Rn if the pair (A(x),B(x)) is pointwise stabilisable in the linear
sense for all x ∈ Ω.

As shown in [83] and [84], similar to the LQR, using the maximum
principle one can write the Hamiltonian H to combine the performance index
and the system equations using the co-state ζ .

H =
1
2
(xT Q(x)x+uT R(x)u)+ζ

T (A(x)x+B(x)u) (1.42)

then,

ζ̇ =−∂H
∂x

=−(Qx+A(x)T
ζ ) (1.43)

− ∂H
∂u

= (Ru+B(x)T
ζ ) = 0 (1.44)
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then the control becomes

u =−(R−1B(x)T
ζ ) (1.45)

Now, assuming ζ (t) to be as follows:

ζ (t) = P(t)x(t) (1.46)

and using equations 1.43, 1.45, and 1.46, we get the differential Riccati
equation

Ṗ+PA(x)+A(x)T P−PB(x)R−1B(x)T P+Q = 0 (1.47)

when the time horizon is ∞, the Ṗ → 0 [84]. And the result by inserting this
into equation 1.47 gives us the matrix algebraic Riccati equation (MARE).

PA(x)+A(x)T P−PB(x)R−1B(x)T P+Q = 0 (1.48)

Solving such an equation numerically at each sampling instant is much easier
than solving the differential equation, and can be done using various numerical
techniques stated by [85].

Finally, using the solution P of the MARE, we can obtain the gain matrix
as follows

u =−(R−1BT P)x =−Kx (1.49)

This way, at controller’s each sampling time, the system matrices A(x)
and B(x) are assumed constant for the gain K calculation (done by solving
the MARE) and the state feedback helps update them (at each sampling time)
to represent the system non-linearity.

The Figure 1.26 shows how the data flows in a general system with SDRE
controller.
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Plant

SDC MARE solver

Reference

Fig. 1.26 SDRE tracking control - data flow

1.6.2 Non-linear model predictive control

Model predictive control MPC is formulated as the repeated solution of a
finite horizon open-loop (open-loop because in each prediction computation,
there is no feedback except the initial time instant feedback) optimal control
problem subject to system dynamics, and input and state constraints [13].
When the incorporated system dynamics are represented in their non-linear
formulation, the control is simply called non-linear model predictive control
NMPC. It can simply be called as the practical approach of the optimal control
theory with a finite horizon. The essence of this technique is to predict the
performance of the system over a given prediction horizon while minimising
a cost function that results in optimally calculated control inputs to drive
the plant. When only the first control move is applied to the real plant, the
technique is called receding horizon control and is the most common one
used in applications. After the application of this control input, the whole
computation is repeated at the next sampling instant of the controller. This
technique helps involve the feedback aspect in the inevitable presence of
plant-model mismatch in applications [86]. Figure 1.27 shows the above
mentioned principle.

Below, we will see the mathematical form of the OCP description given
above. The plant dynamics that act as a constraint in the OCP can be stated
as follows:

ẋ(t) = f(x(t),u(t), t) (1.50)
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Fig. 1.27 Model predictive control illustration [12]

with an algebraic output equation

y(t) = g(x(t),u(t), t) (1.51)

where the state x ∈ Rn, control input u ∈ Rm, the output y ∈ Rp for time
t ∈ [0,∞), and the functions f : Rn ×Rm → Rn and g : Rn ×Rm → Rp being
C1(Rn) and C1(Rp) respectively.

Now, the OCP that must be solved at each controller’s sampling instant is
stated as follows, where the cost function is being minimised:

minimise
y(·),u(·)

∫ t0+TP

t0

(
∥y(t)−yref(t)∥2

Q +∥u(t)−uref(t)∥2
R

)
dt

+ ∥y(t0 +TP)−yref(t0 +TP)∥2
P

(1.52)

subject to
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x(ti) = x̂0 Initial conditions
(1.53a)

ẋ(t) = f(x(t),u(t), t) Plant dynamics
(1.53b)

y(t) = g(x(t),u(t), t) Output mapping
(1.53c)

x(t)≤ x(t)≤ x̄(t) State constraints
(1.53d)

u(t)≤ u(t)≤ ū(t) Input constraints
(1.53e)

where the weighting matrices are as follows: Q∈Rp
≥0, R∈Rm

≥0, and P∈Rp
≥0

and x̂0 is the measurement of the current state of the plant.
Although one would be interested in a closed-form solution of the OCP

stated above, such that no on-line computation will be needed but the closed
form solution cannot be found analytically [13]. Thus, the OCP is converted
into a numerical optimisation problem using finite paramterisation of the
input and state (piece-wise constant functions) which is solved using direct
optimisation methods [13]. The most common and widely used method
for which many open-source packages exist is the direct single or multiple
shooting method. The direct multiple-shooting method is used in this work.

In these direct shooting methods, the prediction horizon is broken down
into NP shooting intervals like in any discrete system representation [t0, t1, ...., tNP].
The most common method is to define equidistant grids such that fixed steps
are obtained. The input is parameterised using a piece-wise constant function
defined as follows:

ui = qi for t ∈ [ti, ti+ j) (1.54)
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where j could be anything from 1 to NP, former corresponding to the case
where the input is parameterised into the same size as the prediction horizon
and the latter corresponding to a constant input across the whole prediction
horizon. The choice depends on the move-blocking setting used which helps
lower the number of variables to be optimised.

Fig. 1.28 Multiple shooting approach with simultaneous solutions illustration
[13]

In the direct multiple shooting approach, the sampled prediction horizon
receives local control paramterisations. The integration of the plant dynamics
and the cost is done independently for each interval during each optimisation
iteration as is seen in Figure 1.28. The initial value of states at the beginning
of each interval are the additional optimisation problem parameters, and to
ensure continuity of the final state trajectory there are the additional equality
constraints [13].

This multiple shooting approach is better at handling strong non-linearities
and stabilising the system than the single shooting approach [87]. After the
setup as explained above, one obtains the non-linear programming NLP to be
solved. This whole preparation of NLP from OCP is done using the MATMPC
toolbox in this work [88]. The MATMPC toolbox has various options to solve
the obtained NLP, whereas in this work qpOASES is employed [89], which is
based on the active-set strategy.
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Internally, the NLP is solved using sequential quadratic programming
SQP. Here, the NLP is first converted into a QP and then condensed to obtain
a dense QP problem which is solved by the above stated dense QP solver
- qpOASES. To convert the NLP into a QP, the Gauss Newton method is
used for the Hessian approximation. For more detail the reader can refer to
[90, 13, 89, 91, 88].





Chapter 2

MFevo: Multi-physical MF-based
tyre model

2.1 Introduction

Starting from the earliest phases of design of the vehicle and its control
systems, the understanding of tyres is of fundamental importance to govern
the overall vehicle dynamics and handling behaviour.

A properly characterized tyre-road interaction model is essential to achieve
a reliable vehicle dynamics model on which more design variations can be
studied directly in simulation environment optimizing both cost and time.

The described cost and time-oriented constrained optimization can be
achieved only on the condition that the mathematical representation of the
overall vehicle physical model (comprehending suspensions, powertrain,
tyres, etc) is sufficiently accurate, at least within the domain of interest
(i.e. operating and boundary conditions concerning kinematics, dynamics,
temperature, pressure, road roughness, etc) [92, 93]. In such a scenario,
tyre-road interaction models cover a fundamental role in the modelling of the
vehicle system [94, 37], due to the tyre’s composite structure and intrinsic non-
linearity linked to inter-connected multiphysical phenomena [95–97], which
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must guarantee very strict computational constraints to allow the employment
in even more severe real-time environments concerning onboard estimation
and control logics [98, 99].

As mentioned in the Chapter 1, the Pacejka’s Magic Formula (MF)
[94, 14] is one of the most used ones in real-time automotive simulation
environment because of its ability to fit quite easily a large amount of experi-
mental data able to assure a high level of accuracy and reliability, for at least
what concerns the dependencies upon the kinematics and vertical load [100].

Later, the original formulation did not take into account of the tyre states
concerning its thermodynamics and wear condition, which affect tyre dynam-
ics and are not negligible if full reliability requirement is needed, especially in
the development of control algorithm and safety logics. As it will be possible
in the next paragraph, the tyre exhibits its maximum performance in a narrow
range of temperature and pressure.

The MF model has been further enhanced in [101], where the authors
have proposed an advanced multiphysical MF-based (MF-evo) real-time tyre
model with the aim to extend the Pacejka’s Magic Formula tyre model in
the whole range of the tyre operating conditions, taking into account its
internal temperature distribution [102, 103], inflation pressure [52], tread
wear [104, 35], compound viscoelastic characteristics and road roughness
[32, 105].

In the next paragraphs, this chapter will address the concept at the basis
of tyre’s property variation starting from the study of viscoelastic material
and the parametrization of the compound friction coefficient dependences
in a controlled laboratory environment (a specifically designed experimental
BP-evo rig has been employed) and experimental data acquired in outdoor
testing session carried out with an industrial partner, on different types of
road surface and in a wide range of operating conditions (sliding velocity,
contact pressure, degradation due to abrasive wear). Therefore, a specific
methodology has been developed to characterize and to identify with a high
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grade of accuracy and reliability the parameters of the MF-evo, directly from
experimental data.

2.2 Theory of viscoelasticity

2.2.1 Definitions

The viscoelastic material is a deformable material with a behaviour which
lays between that of viscous liquid and an elastic solid. This kind of solid
does not show a linear relationship between stress and applied strain. Indeed,
their behaviour deviates from Hooke’s law and exhibits elastic and viscous
characteristics at the same time. The most generic equation that describes this
feature is the Newton’s Law [42] [106] [32]:

σ(t) = η
dε(t)
d(t)

(2.1)

This relation defines the connection between the stress and the strain–rate
through the viscosity coefficient η . All materials, which satisfied the Eq. 2.1,
are called viscoelastic materials, with the stress–strain relationship function
of time. Indeed, as concerns a viscoelastic material, the most important
characteristics are the time–dependent behaviour and the load application
speed at an established temperature value. It is necessary to point out that
viscoelasticity is not plasticity [32]. A viscoelastic material will return to its
original shape after any deforming force has been removed, even though it
will take time to do so. The reason of this phenomenon is that the deforma-
tion energy is not totally stored, but partially dissipated through hysteretic
mechanism. Contrariwise, when a perfectly elastic solid, like a spring, is
subjected to a force, it distorts instantaneously in proportion to the applied
load. Then, as soon as the force is no longer applied, the body returns to its
initial shape. Moreover, it is important to highlight that the viscoelasticity of
tyre rubber depends on the material molecular structure. Actually, the main
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constituent rubbers of a tyre are vulcanised elastomers. These elastomeric
materials are made up of one or more polymers, long molecular chains, which
spontaneously take on the shape of a wool ball and became entangled with
each other. During the tyre manufacturing, these materials are vulcanised,
which means they are treated with an incorporation of sulphur. This causes
the creation of sulphur bridges between the polymer chains [32] [107] [108].

To better understand the mechanical behaviour in viscoelastic materials,
two main types of experiment are usually carried out: transient and dynamic.
While static characterization regard the quasi-static application of load or
deformation, transient and dynamic testing procedures concern the analysis of
material response to a time applied deformation or load function (elongation
or shear). Two important categories, regarding the transient material testing,
are commonly performed: creep experiment and stress relaxation experiment.

Creep experiment

In the creep experiment, the material is subjected to uniform load in order to
analyse the strain time changes, as shown in Fig. 2.1. Creep phenomenon is
one of the most important features, which points out the viscoelastic behaviour
of materials. Creep consists in progressive increasing of deformation under
uniform load applied on the specimen.

Fig. 2.1 Creep experiment and creep material compliance.
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Creep phenomenon is one of the most important phenomena to charac-
terize the viscoelastic behaviour of materials. Creep consists in progressive
increasing of deformation under uniform load applied on the specimen. As
described in Fig. 2.1 (on left), the strain quickly with time as the stress step
function is applied, reaching the steady-state conditions at time t1. Further-
more, if the load applied is instantly removed, the strain shows a transitional
period to reach the unload initial conditions. The creep compliance module
J (Fig. 2.1, on right) is defined as the ratio between the strain, obtained at
define instant of time, and the load step applied:

J(t) =
ε(t)
σ0

(2.2)

From eq. 2.2, it is clear that creep compliance is time dependent. Par-
ticularly, the material behaves as a glassy solid if the load is applied with
higher frequency values and it is similar to rubbery solid if the load is applied
quasi statically. In the middle time range, the compliance shows a linear slope
where the solid behaves as a viscoelastic material. In particular, in the middle
time range which characterizes the linear viscoelastic slope trend, the creep
compliance proportionally increases with time [108] [106].

Stress-Relaxation experiment

During the stress-relaxation experiment, material is subjected to a fixed
deformation and the load required to maintain the deformation at a constant
value is measured with time, as represented in Fig. 2.2.

Once the strain is applied to the specimen, the stress trend initially shows
an instantaneous reaction, then it gradually decreases with time. As soon as
the material comes back to undeformed shape, it tends to react with a stress
opposite to the initially applied strain; then this stress tends to zero value. As
well as for the Creep Compliance, we can define the Relaxation Modulus E
is expressed as:
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Fig. 2.2 Stress relaxation test and relaxation modulus.

E(t) =
σ(t)
ε0

(2.3)

In Fig. 2.2 (on right), the relaxation modulus E(t) variation with time is
shown. Moreover, it is also possible to distinguish the rubbery and glassy
plateaus, in which the material exhibits quite opposite behaviours [109].
These transient tests allow us to characterize the viscoelastic material reaction
to a stress/strain load step. Another phenomena class, which describes the
viscoelastic behaviour, is the dynamic experiments. These tests usually
involve analysing the material reaction to a cyclic stress or strain applied:

σ(t) = σ0sin(ωt) (2.4)

where ω the angular frequency of is sinusoidal stress and depends on
the time. In elastic materials, the strain generated by the stress also exhibits
a sinusoidal trend with the same phase of the applied load. Contrarily, in
viscoelastic materials the strain reaction shows a delay compared to stress,
which is characterized by a phase angle δ . Therefore, the strain is given by
[108] [110]:

σ(t) = ε0sin(ωt −δ ) (2.5)
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The phase angle δ identifies the time displacement between applied stress
and strain, as shown in Fig. 2.3:

Fig. 2.3 Stress-strain time displacement.

Because of the phase displacement, the material dynamic stiffness can be
considered as a complex variable E∗, according to Euler’s formulation [108]
[106]:

σ(ω)

ε(ω)
= E∗ = E ′+ iE” (2.6)

Where E ′ is called Storage Modulus and E ′′ is called Loss Modulus.
These quantities are deeply linked to the way the material dissipates a part of
energy provided by means of a load/stress time function. Therefore, the both
moduli are related to the phase angle δ , according to the vector diagram in
Fig. 2.4.

Therefore, the phase angle value can be easily obtained by means of the
ratio between imaginary and real part of the complex modulus E∗:

tan(δ ) =
E”
E ′ (2.7)

The phase angle tangent is called Loss Tangent and it denotes the entity
of damping phenomenon in viscoelastic materials. It is important to see
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Fig. 2.4 E∗ vector diagram.

that all these quantities, which characterized the viscoelastic behaviour, are
function of the frequency at which the sinusoidal load is applied. To easily
comprehend in which way these magnitudes are interconnected, a simple time
load function can be applied to a polymer specimen. Analysing the material
response, a part of the applied load is stored in the polymer to be release once
the applied load is removed, meanwhile another part of the applied load is
lost due to the internal mechanism of energy dissipation. On one hand, an
increase of loss tangent indicates that the tested material dissipates a great
amount of stored energy; on the other hand, a decrease of the loss tangent
means that the polymer has more potential to store the elastic energy rather
than to dissipate it.

2.2.2 Properties

The modulus, the energy loss and hysteresis of a viscoelastic material change
in relation to two parameters: the frequency with which the force is applied
and the material temperature the phenomena are evaluated on. It is important
to point out that load frequency and material temperature produce opposite
effects on the rubber behaviour, as represented in Fig. 2.5.
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Fig. 2.5 Storage and loss moduli in temperature and frequency domains.

Frequency influence

Once the temperature was fixed, the Storage and Loss Modulus tendencies
in frequency domain can be analysed. From a physical point of view, at
low frequency the deformation occurs slowly. Keeping in mind the Voigt
model, this means that the force required to move the dash pots is slight
[111], offering a small resistance. In this case, the spring side is dominant,
and the material appears to be fairly elastic (rubbery region). When this
happens, the material is in a rubbery state and its hysteresis is low. Once the
frequency increases, the force required to move the dashpot also increases due
to its higher resistance. Hence, the material shows a viscoelastic behaviour
(viscoelastic region). This is the most suitable behaviour range for tyre grip,
because the hysteresis term is maximum in this frequency range. Indeed, the
Loss Modulus E” reaches its highest value in this frequency-range. Clearly,
if the frequency increases still further, the viscoelastic features fall again,
and the material behaviour turns into glassy (glassy region). At this point,
it is interesting to understand what happens inside the material. When the
polymer molecular chains are subjected to stress, they start moving and being
stretched in some directions and compressed in others. Each time the force
is released, the chains relaxation occurs. The speed with which the chains
return to undeformed shape depends on molecular mobility. So, there are
three possible cases [112] [113]:
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1. At low stress frequency, the polymer chains are relatively mobile and
appear to be flexible and elastic;

2. If the frequency increases, the return to undeformed shape is delayed
and the energy dissipation is marked (hysteresis phenomenon);

3. If the stress frequency still increases, the chains do not have the time
to move and regress to initial conditions. Hence, the material becomes
glassy and stops being viscoelastic.

All the above information linked to hysteretic behaviour are also valid,
if we analyse the relationship between the Loss Factor (also called Loss
Tangent) and the stress frequency. As soon as the Loss Tangent reaches its
maximum, the material exhibits a hysteretic behaviour with energy loss. The
presence of one loss peak is characteristic of most materials. Their loss factor
peak is, in general, in the order of 0.6 or 0.8, such as for rubbers or rubber –
like materials). Low loss peak (10−1 - 10−3 ) is distinctive of hard plastic and
other structural materials (steel, wood, etc.) [114].

Temperature influence

It has already been affirmed the frequency, with which the force is applied
to polymer, and the temperature of the material affect the rubber in opposite
ways. As shown in the temperature sweep diagram in Fig. 2.5, at very low
temperatures, the storage modulus of the rubber is high. In this condition, at
given frequency, the material is rigid and shows a glassy behaviour. At high
temperature, the storage modulus is decreased, and the material more flexibly
and elastically behaves.

In the intermediate temperature range, situated around the glass transition
temperature, denoted as TG, the material exhibits a viscoelastic behaviour.
The TG is known as the temperature below which the rubber tends closer
to the glassy plateau and above which the polymer shows an increasingly
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rubbery state. At higher temperature, the polymer is sufficiently deformable
in such a way that the chain segments between the sulphur bridges are able to
move. During this motion, they scrub against adjacent chains, slowing down
their movement and producing the energy dissipation (hysteresis) [115] [116].
The Glass Transition Temperature, as illustrated in Fig. 2.5, occurs near to
the loss modulus maximum and is close to the middle point of the storage
modulus into transition area. This feature usually takes place in rubbers with
a very low fillers percentage. Anyway, if the examined rubber is a compound,
just how usually happens in tyre structure, the maxima of loss factor and
loss modulus do not match (see Fig. 2.6). This is due to the complexity of
dynamic mechanical behaviour of these composites, which arises from the
restricted movement of rubber molecules in presences of fillers [21, 23] [116].

Fig. 2.6 Filler effect on the compound.

Moreover, the Loss Tangent diagram sometimes shows two peaks. Each
peak is characteristic of the transition temperature for each filler in the rubber
compound. The first peak usually occurs at low temperature, because it relates
to the dynamic-mechanical behaviour of the rubber matrix, which exhibits the
greatest damping (or hysteretic) effect. The second peak takes place at higher
temperature and it arises from the mechanical behaviour of the additive fillers.
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Time-temperature superposition

As already mentioned, the viscoelastic properties are related to the stress
frequency and the material temperature. Actually, the frequency and tempera-
ture dependences are two phenomena closely interlinked to each other: there
is an inversely proportional relation between an increase in the temperature
and a reduction in the stress frequency. Whenever the stress frequency is
increased at a given temperature, the polymer turns into glassy state; con-
versely, if the material heats up at a given stress frequency, it becomes softer
[117] [106] [118]. These features arise from the balance between molecular
velocity and the strain – rate. On one hand, if the strain-rate is greater than
the speed at which the molecular chains can move in the polymer’s structure,
the material appears glassy; on the other, if the strain rate is lower than the
molecular speed, the compound exhibits rubbery behaviour. Besides, the
motion speed of chains inside the molecular structure is strictly dependent
on the temperature at which the material is. This polymers’ behaviour can be
mathematically and physically explained introducing the Time-temperature
superposition principle (or T.T.S.).

The T.T.S. states that, considering for example the Storage Modulus E ′, at
two different temperature T1 and T0 such that T1 > T0, the value assumed by
the modulus at the frequency ω1 and the temperature T1 will be the same at the
frequency ω0 and temperature T0, which is also called reference temperature.
Therefore, if T1 is higher than T0, the molecular processes are faster, and it is
verified that ω0 < ω1. This phenomenon can be mathematically expressed as
follows:

E ′(ωT1,T1 = E ′(ωT0,T0) (2.8)

All the materials satisfying the equation (2.8) are called simple thermo-
rheologic materials and their behaviour agrees with the time-temperature
superposition theory. In this way, as the temperature changes, for example,
(see Fig. 2.7, on left), the curve corresponding to E ′ = f (ω) relationship
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exhibits a horizontal shift according to the non-linear dependence on the
temperature between the frequencies ω1 and ω0:

ω0 =
ω1

aT (T1)
(2.9)

where the magnitude aT (T ) is called shift factor and is defined by the
following properties:

T1 < T0 → aT (T1)< 1

T1 = T0 → aT (T1) = 1

T1 > T0 → aT (T1)> 1

(2.10)

Fig. 2.7 Temperature shift in frequency domain.

Therefore, the superposition principle is used to determine the temper-
ature dependency for mechanical properties of linear viscoelastic material
from known properties at a reference temperature T0. Moreover, the time –
temperature superposition avoids the inefficiency of measuring a polymer’s
behaviour over long periods of time at a specified temperature by assuming
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that at higher temperatures and longer time the material will behave the same
[108] [117] [118] [119]. In order to represent the E ′ curves at higher or
lower temperatures, which superpose with the master curve at the reference
temperature T0, the shift factor has to be determined. This magnitude aT is
generally computed by means of an empirical relation first established by
Malcolm L. Williams, Robert F. Landel and John D. Ferry. This relationship
is known as W.L.F. equation and is expressed as:

log(aT ) =
−C1 ∗ (T −T0)

C2 +(T −T0)
(2.11)

where T is the temperature, T0 is the reference temperature chosen to
construct the generic master curve, C1 and C2 are empirical constants adjusted
to fit the values of the superposition parameter a(T ). The equation (2.11) can
be used to fit discrete values of the shift factor aT towards the temperature, as
shown in Fig. 2.8.

Fig. 2.8 Shift factor dependence on temperature.

The discrete values of the shift factor in Fig. 2.8 are determined thanks
to experimental viscoelastic curves obtained at a series of temperatures over
a specific time period. The values of the storage modulus frequency sweep
tests estimated by means of a rheometer are shown in the left diagram in
Fig. 2.9. After choosing a specific reference temperature, 120 degrees for
example, the curves are then shifted one by one along the times scale until



2.2 Theory of viscoelasticity 69

they superimpose and the master curve is identified, as shown in the right
diagram in Fig. 2.9. Curves above the reference temperature are shifted to
the right, and those below are shifted to the left [108] [117].

Fig. 2.9 Frequency shift and identified master curve.

Hence, the WLF equation allows to estimate the shift factors for different
temperatures at which the material has been tested. However, when the
WLF constants are found with data at temperatures above the glass transition
temperature, the WLF can be used to temperatures at or above the glass
transition ones.

Another common way to estimated shift factor at temperature below the
glass transition ones is the method based on Arrhenius Law [7, 22 maio]:

log(aT ) =
Ea

2.303R

(
1
T
− 1

T0

)
(2.12)

where Ea is the activation energy, R is the universal gas constant and T0

is the reference temperature expressed in Kelvin. The activation energy in
(2.12) can be evaluated through the modified Arrhenius equation:
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ω = ω0e(
Ea
RT ) (2.13)

where ω is the measuring frequency and ω0 is the frequency when the
temperature approaches to infinity. The shift factor aT , which is obtained
thanks to equation (2.13), has the same value for all viscoelastic functions
and it depends on the temperature chosen.

2.3 Experimental grip measurement in a con-
trolled laboratory

With regard to the tyre grip testing, several methods have been already de-
veloped by many authors in literature, as shown in Fig. 1. Such tests can be
carried out both indoor and outdoor, using proper tyre and tread specimens.
The outdoor tests are usually executed with an instrumented vehicle/trailer
on track to experiment different boundary conditions on the whole tyre. To
evaluate the grip in the indoor tests on the whole tyre, specific test benches are
used, as the rotating drum and flat track. Other indoor tests can be executed
on a tread rubber specimen using pin on disk, in which the rubber specimen
under investigation is approached to a rotating disc coated with different
surfaces, and using a tribological test device called “British Pendulum”, in
which rubber specimen mounted at the end of a pendulum, slides on the
testing asphalt when the pendulum is left free to oscillate from a given angular
position. The analysed results in this section have been obtained by an acqui-
sition campaign on an evolved version of the British Pendulum, described in
detail in the following paragraphs.

2.3.1 BP-evo test rig

The proposed tribological bench available at the Tyre Lab of the Department
of Industrial Engineering (DII) at Federico II University is based on an
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evolved version of the classic British Pendulum tester for skid resistance
measurements. Contrariwise the old configuration of the BP-evo [120], which
was developed during previous collaborations of the DII with Bridgestone
Italia, this updated version has a new configuration of the load cell capable
of reading the three forces channels (the tangential and the normal ones)
according to the sensor reference system. The BP-evo and its conceptual
scheme are shown in Fig. 2.10

Fig. 2.10 a) British Pendulum evolved; b) test bench scheme

As represented in these figures, the tri-axial load cell is fixed on a rigid
support and the rough substrate is fixed above the sensor. The cell is positioned
in order to acquire positive normal load Fz and negative tangential force Fy

along the sliding direction; moreover, the positioning is centred with respect
to the plane of the pendulum motion allowing to acquire of neglectable values
of Fx. The previous layout of the BP-evo included the load cell mounted on
the pendulum arm, making the acquired signals processing more complicated
due to inertial forces calculation and detraction from the global values. An
encoder is installed in the revolute join to measure the angular speed of the
pendulum arm, on which is fixed a mass so that the sliding body exhibits
enough potential energy to win the frictional resistance forces. On the opposite
side of the arm, a 100 N pre-loaded spring is mounted and a levers system
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exploits the spring reaction on the tread specimen holder. The pre-load spring
is changeable and particular attention is dedicated to the levers system with
spring, whose stiffness is responsible for the contact pressure reached at the
specimen/road interface, as shown in Fig. 2.11. The 20x20 mm specimens
are usually obtained from tyre tread or compound slabs and then fixed on
the holder, which can be regulated so that the material correctly slides. The
distance between the revolute join and the substrate is adjustable thanks to a
regulation mechanism beyond the pendulum. This regulation is fundamental
in order to set the proper sliding distance. The forces and encoder signals are
acquired by an A/D board and processed in Matlab environment to convert
the respectively from Volt to N/m and rad/s.

Fig. 2.11 a) Levers-spring system acting on specimen; b) specimen fixed on
suitable holder

A regulable release mechanism of the pendulum arm is available in order
to change the starting position and perform a set of measurements with high
repeatability, as shown in Fig. 2.12. It is important to change the drop position
because different sliding velocity ranges can be reached during the motion
and therefore, the friction coefficient values with respect to vs can be analysed
in the post-processing phase.
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Fig. 2.12 a) Pendulum drop button; b) Different starting position of the mass

Testing procedure

The testing procedure consists of performing 10 measurements for the DOE
outlined in Table 2.1 on different compound specimens. For each substrate-
temperature-starting position combination, 100 N pre-load spring is taken into
account, because higher pre-load values do not affect the friction coefficient
due to the levers system acting on the specimen holder and lowers give rise to
nominal contact pressure far from the working range of the tested compounds,
which belongs to truck/passenger automotive fields. The four different starting
positions are chosen in order to analyse the friction coefficient in the sliding
velocity range [1, 2] m/s.

Table 2.1 DOE for BP-evo testing - temperature and sliding velocity depen-
dence

Temperature 20°C 45°C 70°C
Starting Position H0 H1 H2
Pre-load Spring 100N 100N 100N

Wear level 0 % 0% 0%
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Moreover, in order to taking into account the wear dependencies on
the friction coefficient, the same procedure has been carried out in a fixed
temperature of 45°C (corresponding to the nominal working temperature for
a passenger tyre) for the DOE in Table 2.2

Table 2.2 DOE for BP-evo testing - wear and sliding velocity dependence

Temperature 45°C 45°C 45°C
Starting Position H1 H1 H1
Pre-load Spring 100N 100N 100N

Wear level 0 % 30% 50%

Lower values of sliding velocity cannot be reached through the BP-evo
testing because it would require very small contact lengths to avoid the pen-
dulum stop during the specimen/road interaction: actually, if the motion starts
from an almost vertical position of the mass with respect to the asphalt, the
pendulum does not have enough potential energy to overcome the frictional
resistance and the test is not useful. The friction coefficient of each specimen
can be easily analysed with respect to the compound temperature: before
starting the single test, a thermal gun is used to warm the specimen up to the
temperature of interest, which is measured and checked by means of an IR
pyrometer. It is important to highlight that a sort of “scrubbing” of the new
specimen is always carried out on the selected asphalt because the requires
a sort of “stabilization” before exploiting the effective friction coefficient.
The scrubbing procedure consists of N test at ambient temperature, in which
the pendulum slides starting from the same initial position, H0 for example.
The amount of repetition N depends on the compound behaviour unless the
corresponding friction coefficient reaches a stable average value as shown
in Fig.2.13. Regarding the analysis on abrasive wear, the wear level on the
specimens has been accelerated employing a sandpaper in order to accelerate
the process.
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Fig. 2.13 Scrubbing procedure on a new tread compound specimen

Post-processing procedure

The friction coefficient can be estimated by processing the raw data acquired
through BP-evo testing. For this purpose, the forces and sliding velocity
have to be analysed in the time range corresponding to the contact phase
between the compound specimen and the instrumented substrate. In the
approach proposed in this paragraph, it is assumed that the contact starts
when the maximum pendulum velocity is reached and it finishes when the
Fz is close to 10 N. This threshold has been chosen because a significant
part of the specimen area would no longer be in contact with the asphalt in
correspondence with this normal load value. The signals extrapolated are
displayed in red in Fig. 2.14

Once extrapolated the signals in the contact phase, the ratio of the absolute
value of Fy respect to the normal force, Fz, is analysed towards the measured
velocity. In Fig. 2.15 a, the ratio values towards the velocity for each test at
ambient temperature and starting position H10 are shown. In this diagram,
the friction coefficient exhibits a stable trend in the middle-velocity range (or
time range), where a full contact with the rubber area and the substrate usually
occurs; in the lower and higher velocity ranges, this ratio exhibits a little noise
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Fig. 2.14 Signals extrapolated in the contact phase (red lines)

since the contact at the leading edges is not complete and therefore, these
areas are excluded in the analysis. In Fig. 2.15 b, the average value of the
Fy/Fz in the highlighted area are displayed for every single test. The standard
deviation of the µavg over 10 measurements is very low ( 0.03) as proof of
the trustworthiness of the test procedure repeatability, except for the first test,
whose mean value is a bit out of the range. This processing approach can be
carried out on experimental data acquired also for other starting positions test.

Fig. 2.15 a) Forces ratio towards the measured speed; b) average friction
coefficient over 10 tests
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2.3.2 Experimental campaign results

The experimental analysis of friction coefficient is performed on different
slabs specimens belonging to different tyre tread compound application. Each
compound has been characterised employing the data given by the industrial
partner obtained through dynamic mechanical analysis (DMA). In Fig. 2.16
the master curves normalised to the maximum value is reported for 6 com-
pounds used for experimental analysis through BP-evo. Due to confidential
agreement the compound have been called A-B-C-D-E-F.

Fig. 2.16 DMA 1Hz normalised master curves for compounds of interest
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Temperature effect

The experimental friction measurements are performed following the DOE
outlined in Table 2.1. The results are displayed in terms of subplot for each
tyre tread specimen with the aim to identify the friction coefficient variations
due to temperature – sliding conditions effects. The author highlights that
the experimental results at low speed could be affected by inaccuracies due
to the low sliding distance for the completion of the pendulum motion. In
the Fig. 2.17, it is possible to observe with different color the the trend
friction coefficient with the temperature, in particular at 20°C, 45°C and 70°C
highlited respectively in blue, red and black.
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Fig. 2.17 Friction results on 6 different compound at three different tempera-
ture

The graphs show a small difference on the maximum value of the friction
coefficient, an expected result because the viscoelastic properties of the six
compounds are too similar (Fig. 2.16. In addition, the results are in line
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with the literature, because a downward slope path with the sliding velocity
can be observed for all the analyzed compounds, and a parabolic trend with
temperature that emphasizes a thermal dependence for the friction coefficient
and an optimal working temperature.

Wear effect

The experimental friction measurements are performed following the DOE
outlined in Table 2.2. The test campaign aimed at establishing how the friction
coefficient varies was therefore carried out under nominal conditions of fixed
temperature and sliding (45°C, 1.5 m/s and 100N preload).
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Fig. 2.18 Friction results on 6 different compound at three different wear level

The abrasive wear process was accelerated using sandpaper for three
levels of wear in terms of percentage by abraded weight: 0%, 30% and 50%
corresponding to New, Middle age and Worn tyre conditions. It was not
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possible to investigate beyond 50% wear due to constructional limitations
of the pendulum. From the above graphs a decreasing trend of the friction
coefficient with wear can be seen.

2.4 MF-evo tyre model

The general expression of the MF can be analytically described as follows:

y(x) = D · sin [C · arctan{B · x−E · (B · x− arctan(B · x)}] (2.14)

with

Y (x) = y(x)+Sv

x = X +Sh

where Y (x) is a dynamic output (Fx, Fy or Mz), X is the kinematic input (slip
ratio or slip angle), B is the rigidity factor, C is the shape factor, D is the peak
value, E is the bending factor, Sv and Sh are the vertical and horizontal shifts,
respectively.

The above six quantities are known as MF macro-coefficients, defining
Pacejka’s curve shape. Each macro-coefficient is itself a polynomial (linear,
quadratic, trigonometric, exponential) function of tyre’s kinematic and dy-
namic variables, combining several micro-parameters without a clear physical
meaning (Figure 2.19a)). The equation (2.14) describes only the pure con-
ditions, which can be extended to the combined ones, introducing the "hill
function" G (Figure 2.19b)):

G =
cos(C · arctan(B · x−E · (B · x− arctan(B · x)))

cos(C · arctan(B ·Sh,x −E · (B ·Sh,x − arctan(B ·Sh,x)))
(2.15)
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(a) Pacejka’s pure interaction curves (b) Pacejka’s hill function G for combined
interactions

Fig. 2.19 Pacejka’s Magic Formula [14]

Despite the fact that the MF model offers several advantages, embodying a
good robustness and a relatively low computational cost, its original analytical
form does not take into account of tyre’s thermodynamic and wear conditions,
which could considerably affect the tyre dynamics, especially in motorsport
applications. It is possible to observe that the use of the standard MF (in
dashed) formulation does not allow to take into account of the influence
of compound temperature and internal pressure on the friction coefficient
(Fig. 2.21a)), of tyre temperature on the tyre stiffness (Fig. 2.21b)), and of
the grip variation due to tread thickness variation and chemical degradation
(Fig. 2.21c)).

The temperature of the different internal tyre layers are acquirable by
invasive thermocouples inserted at different levels levels of the tread thickness
to evaluate the temperature gradient with reference to the deep layers usually
not reachable by IR measurement instrumentation. On the other hand, the
wear level could be in theory acquirable by optical vehicle onboard or test
bench systems.

Reference temperature used to underline the stiffness-temperature correla-
tion is Tread Core temperature. Tread Core (in red, Figure 2.20) is situated
between Tread Surface (in blue) and Tread Base (in black), whereas Tread
Base represents the part of the compound in direct contact with the tyre belt
layer.
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Fig. 2.20 Tyre thermal layers

By means of a tyre thermal model, it is possible to predict the temperature
gradient with a high level of accuracy within the entire tyre structure. Starting
from the model outputs in terms of temperatures and local thermal exchanges,
the physical considerations particularly suitable to distinguish the optimal
thermal range of each compound and the variation of tyre dynamic behaviour
due to the thermal effect, can be further performed.

(a) Compound temperature
effect

(b) Slip angle variation (c) Wear influence

Fig. 2.21 MF-std and MF-evo in a multiphysical data domain.

To overcome the above modelling limits, the authors have proposed
in [101] an advanced methodology making use of the additional polyno-
mial formulations for the analytical description of the macro- and micro-
parameters:
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yevo = f (xstd,xevo,Tcompound,Tcarcass, pinternalAir,w) (2.16)

where xstd is the original set of MF parameters, xevo represents an array
of additional polynomial coefficients, accounting for the thermodynamic
Tcompound (tyre compound temperature), Tcarcass (tyre carcass temperature),
pinternalAir (tyre internal pressure), and the wear w (compound wear level)
dependencies. With MF-evo, the original MF macro- and micro- coefficients
are modified on the basis of the compound and carcass temperatures, inner air
pressure and wear level, allowing to extend the analytical formulation validity
within the whole tyre working range.

The above MF-evo outputs have been calculated employing the friction
coefficient µ (Fig. 2.22d)) and the stiffness quantity C (Fig. 2.22e)), evaluated
starting from the polynomial representation of the micro-parameters of Magic
Formula towards the temperature (Fig. 2.22a)), the pressure (Fig. 2.22b))
and the wear level (Fig. 2.22c)) effects. The visual representation clearly
evidences the optimal window towards the tyre temperature and the inflation
pressure quantities, where the maximum amount of friction performance can
be achieved. Friction coefficient µ and stiffness C can be evaluated for each
combination of tyre compound temperature and internal inflation pressure,
and of tyre carcass temperature and inflation pressure, respectively. However,
the above quantities remain valid only for a specific wear level condition,
since usually the amount of grip available decreases due to wear phenomenon,
as well as tyre can become stiffer with abrasive phenomena and chemical
degradation, linked to the thermal fatigue within the tyre compound. This
means that the mentioned surfaces will differ for different wear levels, adding
a further necessary variable dimension to the multiphysical operating domain
of the tyre integrated system.

It follows that such a complex and multiphysical model, based on the MF
empirical formulation and data-driven parametrization, has to be properly
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(a) Temperature effect (b) Pressure effect (c) Wear effect

(d) Friction multiphysical depen-
dencies

(e) Stiffness multiphysical depen-
dencies

Fig. 2.22 MF-evo micro-parameters and tyre characteristics.

calibrated, acting on a set of micro- and macro-parameters able to reproduce
the overall behaviour shown by the experimental evidences. This work focuses
on the calibration of the MF-evo model addressing the specific procedure
developed to pre-select the nominal range towards temperature, internal
pressure and wear level conditions, where the standard set of Pacejka’s Magic
Formula parameters can be identified, describing the additional necessary
steps allowing to extend the analytical formulation validity within the entire
operating domain of the tyre. The procedure has been developed and validated
with an industrial motorsport partner; therefore, figures are reported in non-
dimensional scale due confidentiality agreements.

It appears clear that the standard MF model can be calibrated only to
reproduce the response of the tyre towards kinematic and dynamic inputs
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without taking into account the variations of the tyre characteristics towards
further physical effects, as evidenced with black lines in the above figures.

2.4.1 Data analysis

Grip analysis

The analysis shows that grip depends on both tread-surface and tread-core
temperatures. The tyre external surface temperature varies with faster dynam-
ics, which is not well correlated with the grip variation which does not show
fast dynamics. This means that the surface temperature is not able to modify
in so short time the whole tread mechanical characteristic. The grip shows
an excellent correlation with a temperature weighted averages between tread
surface and tread core, the tread-core layer shows a slower dynamic, so the
mean average temperature dynamics have the same trend of the grip. The
tyre frictional behaviour can be practically linked to the tread core-surface
weighted averages temperature which can be used to optimize the compound
mechanical characteristics starting from its thermal behaviour. The above
temperature can clearly be evaluated only by means of a specific tyre thermal
model. After a sensitive analysis, the most suitable temperature to identify the
grip variation is a weighted average between tread-surface and the tread-core,
in particular:

TGRIP = 0.25 ·Ttreadsur f ace +0.75 ·Ttreadcore (2.17)

The trend of the grip shows the presence of a temperature range in which
grip reaches its maximum values. Moreover, the trend of grip with the wear
show a not linear trend. With the aim of modelling the noted trend, grip law
as function of temperature and grip has been assumed as a Gaussian function.
Moreover, Gaussian function for each pressure and wear level shows its
maximum value at increasing temperature values as pressure increases and
initial tread thickness.
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In this way, it is possible to scale the Pacejka curves, identified at about
maximum performance-temperature, pressure and wear levels, and to get the
interaction forces at any temperature or pressure value, multiplying the scale
factor LMUY for lateral interaction and LMUX for longitudinal interaction
by the gain-function output corresponding to that temperature or pressure and
wear value.

Stiffness analysis

It is possible to say that cornering stiffness and braking stiffness depend on
both tread-base and tread-core temperatures and therefore wear level. Thus,
reference temperature for stiffness functions identification has been evaluated
as a weighted average of tread-base and tread-core temperature, provided by
a tyre thermal model:

TST IFFNESS = 0.7 ·Ttreadsur f ace +0.3 ·Ttreadcore (2.18)

The functions displayed assume a unitary value in correspondence with
maximum performance-temperature and pressure and allows to scale Pacejka
curves depending on the temperature and pressure level by multiplying the
scaling factor LKY for lateral interaction and LKX for longitudinal interac-
tion.

2.4.2 Calibration approaches

In order to obtain a correct Pacejka’s MF microparameters identification,
starting from the experimental data, it is necessary to prepare and accurately
select the data to be identified. Indoor testing (See par. 2.3.1) is commonly
performed on specific test benches [120], aiming to reproduce the tyre operat-
ing conditions in completely controlled environment. Diverse methodologies,
making use of Inertial Measurement Unit (IMU), Global Position System
(GPS), vehicle side slip sensors (See Chapter 3, wheel force transducers,
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encoders and sophisticated moving benches, have been developed for outdoor
testing.

The operation of data pre-processing is of fundamental importance con-
sidering that the optimizer is blind to the correctness and, above all, to the
physicality of the data itself.

The concept of intelligent tool lies in guiding the user in a series of
fundamental steps for data cleaning. In fact, when collecting data from several
streams and with manual input from users, information can carry mistakes,
be incorrectly inputted, or have gaps. Incorrect or inconsistent data can lead
the optimization algorithm to misidentification and false conclusions. Data
cleaning is the process of preparing data for analysis by detecting data that is
incorrect, incomplete, irrelevant, duplicated and then replacing, modifying,
or deleting them. These data are usually not necessary or helpful when it
comes to analyse data because it may hinder the identification process or
provide inaccurate results. Data cleaning is not simply whereas the purpose is
to find a way to maximize a data set’s accuracy without deleting information.
The first step within data pre-processing is outliers’ detection. The second
step consist in the identification of the starting MF parameters set valid in a
specific range of thermodynamic and wear conditions which will be extended
to reproduce the entire operative range by means of the specific multiphysical
dependencies of the MF parameters towards temperature, pressure and wear
effects.

Data pre-processing

The techniques regarding the outliers’ detection can be generally classified
in statistical and data-mining methods. Statistical models were the earliest
adopted for outlier detections. They are mostly based on the comparison
of some statistical properties to test whether outliers exist. Anscombe and
Guttman proposed a general principle for statistical models for outlier detec-
tion - An outlier is an observation which is suspected of being partially or
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wholly irrelevant because it is not generated by the stochastic model assumed
.

In the case under study, since a distribution function isn’t known and
it cannot be identified a priori on the data, non-statistical or data-mining
methodologies should be preferable. Furthermore, one of the main advances
of the proposed technique compared to [121] regards the fact that any a priori
assumptions are assumed about the underlying data distribution. Data-mining
methods do not require any prior assumptions about the data distribution and
they are comparatively simple to implement, but the associated computational
effort is not always negligible [122].

• Data clustering is a classification method where observations are clas-
sified into groups (clusters) so that observations within a cluster are
more similar to each other than they are to observations belonging to
another cluster. While clustering methods’ main objective is the classi-
fication, they can also be utilized in outlier detection by for example
considering clusters of small sizes or clusters of one as outliers [122].

A partitioning method creates k partitions, called clusters, from given
set of n data objects. Initially, each data objects are assigned to some
of the partitions. An iterative relocation technique is used to improve
the partitioning by moving objects from one group to another. Each
partition is represented by either a centroid or a medoid. A centroid is
an average of all data objects in a partition, while the medoid is the most
representative point of a cluster. The fundamental requirements of the
partitioning based methods are each cluster must contain at least one
data object, and each data objects must belong to exactly one cluster.

One of simplest and widely used clustering algorithm is k-means, which
is firstly proposed by MacQueen (1967) [123]. k-Means can be used
to automatically recognize groups of similar instances/items/object-
s/points in data training. The algorithm classifies instances to a pre-
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defined number of clusters specified by the use (e.g. assume k clusters).
The first important step is to choose a set of k instances as centroids
(centers of the clusters) randomly, usually choose one for each cluster
as far as possible from each other. Next, the algorithm continues to
read each instance from the dataset and assigns it to the nearest cluster.
There are some methods to measure the distance between instance and
the centroid but the most popular one is Euclidian distance. The cluster
centroids are always recalculated after every instance insertion. This
process is iterated until no more changes are made.

• Distance - based models outlier detection methods determine the label
of an instance based on the distance to its neighbors, and they are also
known as Nearest Neighbor (NN)-based algorithms [123]. As non-
parametric approaches, they make no assumptions about the underlying
distribution from which the datasets are generated. Instead, the most
important motivation is the local similarity. It suggests that when the
distance between instances in feature space are small under a specific
distance metric, they share similar mode of behavior. In other words,
the proximity of an outlier object to its neighbors is very different from
that of a normal object. The region of the neighbors is determined
by the top k instances of the ascending sequence of distances to the
reference point. A distance-based outlier is defined by Ng and Knorr as
follows: A point p in a dataset is an outlier with respect to parameters
k and δ if at least k points in the data set lies greater than distance δ

from p. This definition generalizes the definition of outlier in statistics
and it is suitable when the dataset does not fit any standard distribution.

• Ramaswamy outliers’ detection method.Among the data-mining
related methods [124, 125, 111, 126], the Ramaswamy distance-based
technique described in [124], has been chosen. In the context of the tyre-
road interaction data, where the forces are function of a considerable
number of inputs and the parameters, a distance-based measure Dk(P)
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is adopted to objectively quantify the similarity between objects in
feature spaces (i.e. longitudinal and lateral interaction characteristics),
where the forces and the torques instances not respecting the above
threshold for the same input conditions u are disregarded as outliers.
Ramaswamy algorithm detects the outliers on the basis of the distance
Dk(P) between each point P and a set of k data points nearest to it.
To detect outliers, a partition-based algorithm is presented that first
partitions the input points using a clustering algorithm and computes
lower and upper bounds on D f or points in each partition. It then
uses this information to identify the partitions that cannot possibly
contain the top n outliers and prunes them. Outliers are then computed
from the remaining points (belonging to unpruned partitions) in a final
phase. The key idea underlying the partition-based algorithm is to first
partition the data space, and then prune partitions as soon as it can be
determined that they cannot contain outliers. Since n is typically small,
our algorithm prunes a significant number of points, and thus results
in substantial savings in the amount of computation. Consequently, kth

nearest neighbor computations need to be performed for very few points,
thus speeding up the computation of outliers. The steps performed by
the partition-based algorithm are described below:

where k is user-specified parameter controlling the smoothing effect, to
be defined on the basis of the data quality and the expected accuracy
of measurement and estimation methodologies. The following figures
show the influence of the parameter K on the outliers’ detection for
an experimental dataset provided by a top-ranking motorsport team.
Data have been adimensionalized due to confidentiality agreements.
Experimental points have been colored from blue to red for increasing
log(Dk) values.

The data pre-processing phase should also include a specific binning
process, in order to remove redundancies and to prepare the dataset for the
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(a) k = 5 (b) k = 50

(c) k = 500

Fig. 2.23 Ramaswamy method for outliers detection - k sensitivity.

ultimate model parameterization phase. Among the binning methods available
in the literature, the equal-frequency methods, which divide the data into bins
of equal number of samples, and the equal-width methods, which cluster
the data into bins of equal width, could be highlighted. An equal-width
method is be more suitable for a highly non homogeneous dataset, avoiding
penalization in the low-frequency observation areas (i.e. possible transient
unstable operating conditions) which could be essential to ensure the correct
modelling extrapolation [127]. The choice of the number of bins is certainly
decisive for the model calibration, since a too high number would not give
consistent results, while a too small number could lead to an excessive loss of
information.
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Identification of MF-evo parameters

Once the data have been properly pre-processed and clustered, the determina-
tion of the above reference range can be achieved employing multidimensional
heat maps, coloured respect to quantity of samples belonging to each cluster
for every dimension of interest (temperature, pressure and wear).

Once the reference multidimensional range for the parametrization of the
MF-std model has been determined, the MF identification procedure consists
of three consecutive steps: pure MF identification, combined model MF
identification, and MF refinement.

(a) Longitudinal acquired (b) Longitudinal pre-processed

(c) Lateral acquired (d) Lateral pre-processed

Fig. 2.24 Pacejka’s standard MF in a reference multidimensional cluster.

In particular, the pure MF parameters are identified considering the working
conditions characterized by slip ratio values lower than 0.1% to parametrize
the pure lateral interaction, and slip angle values lower than 0.1deg to identify
the pure longitudinal interaction; the combined MF identification is carried out
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keeping pure interactions parameters constant. The final phase concerns the
refinement of the micro-coefficients’ set by means of an iterative procedure
in an increasingly narrow range per each step k until the convergence criteria
are reached. The results of the implemented methodology are reported in the
figures 2.24a) and b), corresponding to longitudinal and lateral interactions,
respectively.

It is worth noting that the minimization procedure using the pre-processed
dataset, represented in the figures 2.24b) and 2.24d), allows not only to guide
better the identification towards the optimum solution, but also to minimize
the computational time and the identification-linked resources involved.

(a) Acquired data (b) Processed data (c) Binned data

Fig. 2.25 Comparison of the MF model towards data for two different micro-
parameters sets

Table 2.3 MF model error towards the experimental data.

MF set #
Mean percentage error (%) R-squared error (-)

acquired processed binned acquired processed binned

identified 1 13.07 8.64 6.41 0.85 0.88 0.89
expected 2 14.28 8.78 4.44 0.84 0.87 0.95

More specifically, the necessity and the importance of a proper preliminary
data processing and the consequent improvement in the micro-coefficients’
identification can be clearly appreciated in the figure 2.25 and in the table 2.3.
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Two diverse data-driven identifications have been computed starting from raw
experimental data (MF set 1 - dashed lines) and from pre-processed data (MF
set 2 - lines) and compared towards differently processed data samples: the
raw experimental data (Fig. 2.25a)), the processed data with the removal of
outliers (Fig. 2.25b)), and fully pre-processed data (Fig. 2.25c)). The relative
percentage spread and the R-squared error have been also reported in the
table 2.3. It is easy to note that in all the cases the data pre-processing allows
to achieve an obvious reduction of the model error. However, with respect to
the raw data, the MF set 1 provides a higher R-squared value than the MF set
2, even if the MF set 1 presents a non-physical trend (without any decay after
the peak), due to the majority of samples concentrated in the linear working
range.

(a) MF-evo curves with data (b) MF-evo identified trend to-
wards temperature

Fig. 2.26 MF-evo - lateral interaction towards tyre temperature.

Once the MF micro-coefficients have been properly pre-identified in a
reference operating range, the variations of the MF-evo coefficients, taking
into account of the thermal and wear state, can be introduced. In particular, as
shown in figure 2.26, the stiffness of the MF-evo lateral interaction decreases
with increasing temperature, while the friction peak is maximum in corre-
spondence of an optimal thermal range and decreasing in both under-heating
and over-heating conditions.
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2.4.3 Results

A motorsport case study, making use of the presented methodology for the
correct calibration of a MF-based multiphysical tyre model, is presented in
the results section. The experimental data employed to calibrate the MF-
evo multiphysical model and to validate the calibration methodology have
been collected with a motorsport research partner: for this reason, due to
confidentiality agreements, the scales in all the following figures are non-
dimensional.

The data employed for the tyre parametrization have been acquired during
the common handling tests on track, where the purpose is usually not to ex-
plore as many different operating conditions possible, but rather to maximize
the vehicle overall performance (i.e. with tyres employed in a linear range
and in a narrow thermodynamic working window). To exclude the impact
that different asphalts could have on the maximum achievable performance,
only runs belonging to a single track have been employed within the case
study. The experimental session has consisted of:

1. long run tests, allowing to investigate the warm-up, stabilized and
over-heating phases, both in terms of the tyre thermal dynamics and
wear;

2. qualifying tests, aiming to achieve the tyre maximum performance
for diverse initial conditions of the tyre (i.e. temperature and internal
pressure) and of the vehicle setup;

3. specific maneuvers (i.e. wheel locking in braking or wheel-spin), al-
lowing to explore unstable operating zone with higher slip values.

Several tests have been also performed with tyres with different initial wear
levels to investigate the effect of wear phenomenon on the tyre dynamic
behaviour.
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The vehicle has been equipped with a significant amount of instrumenta-
tion to evaluate the kinematics and the dynamics at each corner, as well as the
thermodynamics of each tyre:

1. encoders mounted on the wheel spindles, measuring the wheel angular
velocity [128];

2. an inertial measurement unit to acquire angular velocities and linear
accelerations [129];

3. an optical speed sensor, measuring the vehicle’s linear velocities [130];

4. infrared temperature sensors pointing on the tread external and internal
surfaces [131, 132];

5. TPMS sensors, monitoring inner air pressure and temperature [132];

6. a steering-angle sensor [128].

The kinematic and the dynamic quantities concerning a single corner can
be reliably acquired and estimated [44] [35] [103]. Compound and carcass
temperatures, inner air pressure and wear level are among the additional
inputs of the MF-evo model, and they can be provided by means of both
additional sensors and physical predictive models. The temperatures of the
different internal tyre layers are acquirable by invasive thermocouples inserted
at different levels of tread thickness to evaluate the temperature gradient with
reference to the deep layers usually not reachable by IR measurement instru-
mentation, but in this way their presence could arise singularities within the
stress-strain distribution and therefore the thermal state of the tyre. On the
other hand, the wear level could be in theory acquirable by optical vehicle
onboard or test bench systems. In the light of the above, the availability of
the tyre physical thermodynamic and wear real-time models, able to evalu-
ate in run-time all the necessary additional physical quantities concerning
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the tyre integrated system, becomes absolutely crucial. Indeed, once prop-
erly calibrated and validated towards experimental data, the MF-evo-based
real-time co-simulation tyre system can be employed within offline vehicle
setup optimization routines, advanced data analysis algorithms, hard real-
time simulation environments for driver-in-the-loop, software-in-the-loop and
hardware-in-the-loop, and, finally, embedded onboard model-based control
logics. In [102] [103] the authors describe the real-time tyre thermal model,
able to calculate the temperatures governing the grip and stiffness properties,
whereas the procedure to take into account of tread wear and compound
degradation thanks to physical grip model is presented in [35].

(a) Thermal model outputs (b) Wear model outputs

Fig. 2.27 Validation of the physical models on experimental data

As an example, the impossibility to represent the tyre behaviour at differ-
ent thermal ranges has been quantified for a given long run of a representative
track testing session in the table 2.4, where the model percentage spread for
grip µ and stiffness C has been evaluated through the equation (2.19) for both
MF-std and MF-evo formulations with respect to the data collected in cold
initial and hot tyre working conditions.

e%(x) =
∑

n
i=1

∣∣∣yi(ui)− f (x,ui)
yi(ui)

∣∣∣
n

·100 (2.19)
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As demonstrated by the experimental evidences, it appears clear that the
standard MF model can be calibrated only to reproduce the response of
the tyre towards kinematic and dynamic inputs without taking into account
the variations of the tyre characteristics towards further physical effects,
as evidenced with black lines in the above figures and synthesized in the
table 2.4.

Table 2.4 MF-std and MF-evo model error comparison towards track experi-
mental data.

µcold Ccold µhot Chot

MF-std 6.62% 18.91% 4.47% 11.49%
MF-evo 2.45% 5.48% 2.12% 4.27%

A properly calibrated MF-evo model can be employed in co-simulation
with thermodynamic and wear models in software-in-the-loop, hardware-
in-the-loop or driver-in-the-loop scenarios. An example of a possible MF-
evo employment advantage is illustrated in figure 2.28, where the steering
angles, resulting from the simulation and the acquired ones, are compared.
It is evident that the MF-evo model allows to simulate the effect of stiffness
reduction as observed experimentally with increasing temperature, highlighted
by the fact that the demand in steering increases through time as the thermal
tyre state evolves.

Thanks to the availability of a multiphysical tyre model, the reliability of
the whole vehicle model radically increases, providing an important instru-
ment to better study the possible safety and performance strategies, allowing
to optimize the vehicle setup directly in the simulation environment.
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(a) Warm-up (b) Thermal steady-state

Fig. 2.28 Comparison within the steering angle employed in reality and in
simulations using the MF standard and MF-evo models





Chapter 3

System state estimation
approaches

3.1 Introduction

State estimators adopted are based on the filtering technique and only their
discrete-time form is considered in this thesis work, in order to be easily
implemented in a recursive algorithm.
The term "filtering" assumes a new meaning in state estimation, it is well
beyond the idea of separation of the components of a mixture. According to
[133] it can be seen as the solution of an inversion problem, in which one
knows how to represent the measurable variables as functions of the variables
of principal interest, called state variables. In essence, it inverts this functional
relationship and estimates the independent variables as inverted functions
of the dependent measurable variables. These variables of interest are also
allowed to be dynamic, with dynamics that are only partially predictable.
However one needs to define what the term "state" means before presenting
the state estimators. The states of a system are those variables of principal
interest that provide a complete representation of the status of the system at
a given instant of time. If the values of the measurable variables are known
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at the present time, it is possible to estimate the values of the output of the
system using state-space models. State-space models can be generally divided
into linear models and nonlinear.

Fig. 3.1 Discrete Kalman filter cycle

All state estimators presented in this chapter can be summarized using
the flow chart in figure 3.1. Considering a discrete representation of the time,
the figure is representative of what happen in a generic time step, from the
previous time step k− 1 to the current one k. Starting with the statistical
knowledge of the state (mean value and covariance) at k−1, it is possible to
propagate them with time using the system model equations.
In the Process box there are two sets of equations, the first one propagates
the state with time using the system equations, giving the a-priori state
estimate as output, the second one computes the measurement estimate based
on the knowledge of the a-priori state estimate. The measurement estimate
is compared to the actual measurement in order to correct the a-priori state
estimate and then to obtain the a-posteriori state estimate, that is the state
estimate referring to the time step k. This is what happen in the Correction
box, whose output is the current time state estimate. The acquired (actual)
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measurements are available at each time step using the filtering technique,
unlike smoothing technique. An initial state estimate must be defined at the
beginning and this is the first previous time state estimate of the iterative
algorithm.

The system equations and the measurement equations constitute the plant
model, represented in figure 3.1 as the process box. Both sets of equations are
obtained from the single track vehicle model presented in the previous chapter.
The forward Euler method is adopted to write them in a discrete-time form.
It is important to highlight that the equations listed below are the same for
all the implemented state estimators, they represent the physical core of the
state estimator. There is the need for state estimator because only the physical
model of the vehicle is not able to replicate the actual vehicle behaviour in
different maneuvers. The state estimator is a mathematical tool that is able to
correct the state estimate given by the physical model. It is possible to take
into account the inaccuracy of the physical model introducing the process
noise. In the same way one introduces the measurement noise in order to take
into account the noisy acquired measurements. There are several noise models
in probability theory literature, only the white noise model is considered in
this thesis work. Also the noise is Gaussian, zero-mean, uncorrelated and
considered as additive.
For what said above a general form of the equations is:

x̂−k = f (x̂+k−1,uk−1)+wk−1

zk = h(x̂−k ,uk)+ vk
(3.1)

where x+k−1 is the a-posteriori state estimate at the previous time step and x−k
is the a-priori state estimate at the current time step, also f (·) and h(·) are
respectively representative of the system equations and of the measurements
equations. The other measurable variables in f (·) and h(·) are indicated
as uk and uk−1. Finally wk−1 and vk are respectively the process noise and
the measurement noise, considered additive. In addition they are Gaussian,
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zero-mean and uncorrelated with Q and R as their covariance matrix.

w ∼ (0,Q)

v ∼ (0,R)
(3.2)

3.2 Kalman filter

3.2.1 Linear Kalman filter

The linear Kalman filter manages how the mean of the state and the covariance
of the state propagate with time. From now on it is referred to as KF.
It only deals with linear dynamic systems, estimating the state x̂ ∈ ℜn, where
n is the number of states.

At the generic time step k an estimation of xk is computed before process-
ing the measurements acquired at the time step k, this is called a-priori state
estimate and indicated as x̂−k , also its covariance is computed and indicated
as P−

k . Then the estimate of xk is refined processing the measurement, the
resulting estimate is the a-posteriori state estimate and indicated as x̂+k , and
its covariance as P+

k . What said can be summarized in a mathematical form:

x̂−k = E[xk|y1,y2, ..,yk−1]

P−
k = E[(xk − x̂−k )(xk − x̂−k )]

T

x̂+k = E[xk|y1,y2, ..,yk]

P+
k = E[(xk − x̂+k )(xk − x̂+k )]

T

(3.3)

Let now introduce a generic linear system written in the matrix formulation
and also adopting the discrete-time form, in order to be implemented in the
KF recursive algorithm.

xk = Fk−1xk−1 +Gk−1uk−1 +wk−1 (3.4)
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the matrix Fk−1 relates the state at the previous time step to the state at the
current one, while the latter is related to the other measurable variables by
the matrix Gk−1. Both matrices can be constant or time-dependent, in (3.4)
time-dependent matrices are considered and each matrix element is referred to
the previous time step k−1. Moreover in (3.4) an additive noise is considered.
The measurement equation can be defined under the same hypothesis:

zk = Hkxk + vk (3.5)

this equation uses the current time state computed by (3.4) in order to update
the measurements z to the current time. The matrix Hk can be constant or
time-dependent as well, also note that in (3.5) its elements refer to the current
time step. An additional noise is present in (3.5) as in (3.4), they fulfil the
hypothesis stated in (3.2).
Both the equations constitute the process model, that is the physical core of
the KF .
The KF algorithm can be divided into two step:

• Time update, it projects the last computed state estimate ahead in time.
It is also called prediction step.

• Measurement update, it adjusts the projected estimate by an actual
measurement at that time. It is also called correction step [134].

The KF equations can be written using the nomenclature adopted in (3.3)
and the hypothesis in (3.2). The time update equations are:

x̂−k = Fk−1x̂+k−1 +Gk−1uk−1

P−
k = Fk−1P+

k−1FT
k−1 +Qk−1

zk = Hkx̂−k

(3.6)
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while the measurement update equations are:

Kk =
P−

k HT
k

HkP−
k HT

k +Rk

x̂+k = x̂−k +Kk(yk − zk)

P+
k = (I −KkHk)P−

k

(3.7)

Equations (3.6) and (3.7) can be easily implemented in a recursive algo-
rithm, but the first previous time state estimate and its covariance must be
defined. They are indicated as:

x̂+0 = E[x0]

P+
0 = E[(x0 − x̂+0 )(x0 − x̂+0 )]

T
(3.8)

where x0 is an initial value of the state. Note that in (3.7) the amount of the
correction is proportional to the residual error between the actual measure-
ments, yk, and the predicted value of the measurements, zk. Also, the Kalman
gain takes into account the process noise and the measurement noise through
their covariance matrices.
This section is necessary in order to point out the basis of the next KFs, in
fact the equations (3.6) and (3.7) are common to every KFs but each one
is characterized by the strategy adopted to deal with the nonlinearity of the
process.

3.2.2 Extended Kalman Filter

The EKF is based on the linearization of the nonlinear system around the state
estimate.
It is necessary to rewrite the process equations with the aim to translate into
a mathematical form what that means. The actual state and measurement
vectors can be written using the general form of the process equations with
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nonadditive noise1:
xk = f (xk−1,uk−1,wk)

yk = h(xk,uk,vk)
(3.9)

Performing now a first-order Taylor expansion of the equations around the
previous time state estimate, x̂+k−1

xk ≈ f (x̂+k−1,uk−1)+
∂ f
∂x

∣∣∣∣
x̂+k−1

(xk−1 − x̂+k−1)+
∂ f
∂w

∣∣∣∣
x̂+k−1

wk−1

yk ≈ h(x̂−k ,uk)+
∂h
∂x

∣∣∣∣
x̂−k

(xk − x̂−k )+
∂h
∂v

∣∣∣∣
x̂−k

vk

(3.10)

where the Jacobian matrices are

∂ f
∂x

∣∣∣∣
x̂+k−1

=
∂ f (x̂+k−1,uk−1,0)

∂x
= Fk−1

∂ f
∂w

∣∣∣∣
x̂+k−1

=
∂ f (x̂+k−1,uk−1,0)

∂w
=Wk−1

∂h
∂x

∣∣∣∣
x̂−k

=
∂h(x̂−k ,uk,0)

∂x
= Hk

∂h
∂v

∣∣∣∣
x̂−k

=
∂h(x̂−k ,uk,0)

∂v
=Vk

(3.11)

considering now additive noise, the equations (3.10) are

xk ≈ x̂−k +Fk−1(xk−1 − x̂+k−1)

yk ≈ zk +Hk(xk − x̂−k )
(3.12)

1nonadditive noise is only considered in this case and for reasons of generality, as shown
in [134].
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Defining the prediction error as the difference between the actual vector and
the approximated (predicted) vector:

ẽxk ≡ xk − x̂−k
ẽzk ≡ yk − zk

(3.13)

substituting the (3.13) in (3.10)

ẽxk ≈ Fk−1(xk−1 − x̂+k−1)+ εk

ẽzk ≈ Hk(xk − x̂−k )+νk
(3.14)

where εk and νk represent new indipendent random variable having zero mean
and covariance matrices Wk−1QW T

k−1 and VkRV T
k respectively. those equations

are linear and their form is quite similar to the KF’s time-update equations
(3.6). Thus applying the KF logic:

x̂+k = x̂−k + êk (3.15)

where êk is the estimated error using a hypothetical KF, according to [134],
where the KF’s equation is :

êk = Kkẽzk (3.16)

substituting the latter in the (3.15)

x̂+k = x̂−k +Kkẽzk = x̂−k +Kk(yk − zk) (3.17)

this equation can be used in the measurement-update of the EKF.
This type of filter is referred to as FO-EKF from now on, this is because of
the first-order Taylor expansion (3.10).

It is now possible to write the time update equations and measurement
update equations of the FO-EKF. A generic nonlinear process is considered
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for this purpose, the noise model is now considered additive, Gaussian, zero-
mean and uncorrelated, differently than in (3.9):

xk = f (xk−1,uk−1)+wk

yk = h(xk,uk)+ vk

wk ∼ (0,Q)

vk ∼ (0,R)

(3.18)

The following algorithm is based on the hypothesis stated above, so the
partial derivative of the process equations with respect to noise terms is null
because of that.

Algorithm 1 First-Order Extended Kalman Filter algorithm
1: x̂+0 = E[x0] ▷ Initial state
2: P+

0 = E[(x0 − x̂+0 )(x0 − x̂+0 )
T ] ▷ Initial state Covariance

3: procedure FO-EKF(T , {u}T
k=1)

4: for k = 1 → T do
5: x̂−k = f (x̂+k−1,uk−1,0) ▷ a-priori state estimate
6: P−

k = Fk−1P+
k−1FT

k−1 +Q ▷ a-priori state estimate covariance
7: zk = h(x̂−k ,uk,0) ▷ a-priori measurement estimate
8: Kk = P−

k HT
k (HkP−

k HT
k +R)−1 ▷ Kalman gain

9: x̂+k = x̂−k +Kk(yk − zk) ▷ a-posteriori state estimate
10: P+

k = (I −KkHk)P−
k ▷ a-posteriori state estimate covariance

11: end for
12: end procedure

Iterated Extended Kalman Filter

The Iterated Extended Kalman Filter (I-EKF) reduces the linearization error in
the EKF for highly nonlinear systems, as well as the Second Order Extended
Kalman Filter in the next section.
The FO-EKF approximates measurement equations by expanding it in a Tay-
lor series around x̂−k , the reason is because it is the best estimate of xk before
the measurement at time k is taken into account. But when the a-posteriori
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state estimate is obtained, the best estimate of xk is x̂+k . The basic idea of
the I-EKF is to reduce the linearization error by reformulating the Taylor
series expansion around x̂+k . This process can be repeated as many times as
desired, although for most problems the majority of the possible improvement
is obtained by only relinearizing one time [16].
The main difference between SO-EKF and I-EKF is the iteration cycle that
refines the measurement update equations at time k, so the more the measure-
ment equations are nonlinear the more effective the refinement is.
All the equations used in this type of EKF have the same mathematical form as
seen in the FO-EKF, the algorithm is almost the same, in addition there is the
recursive update of the state estimate using the best state estimate available.

Algorithm 2 Iterated Extended Kalman Filter algorithm
1: x̂+0 = E[x0] ▷ Initial state
2: P+

0 = E[(x0 − x̂+0 )(x0 − x̂+0 )
T ] ▷ Initial state Covariance

3: procedure I-EKF(T , {u}T
k=1, N)

4: for k = 1 → T do
5: x̂−k = f (x̂+k−1,uk−1,0) ▷ a-priori state estimate
6: P−

k = Fk−1P+
k−1FT

k−1 +Q ▷ a-priori state estimate covariance
7: x̂+k,1 = x̂−k
8: for i = 1 → N do
9: zk,i = h(x̂+k,i,uk,0)−Hk,i(x̂−k − x̂+k,i) ▷ a-priori measurement estimate

10: Kk,i = P−
k HT

k,i(Hk,iP−
k HT

k,i +R)−1 ▷ Kalman gain
11: x̂+k,i+1 = x̂−k +Kk,i(yk − zk,i) ▷ a-posteriori state estimate
12: P+

k,i+1 = (I −KkHk)P−
k ▷ a-posteriori state estimate covariance

13: end for
14: end for
15: end procedure

Second Order Extended Kalman Filter

The Second Order Extended Kalman Filter (SO-EKF) perform a second order
Taylor expansion of the process equations, f (·) and h(·).
The SO-EKF presented in this section is based on [135], that provides a
small correction in the original derivations of the SO-EKF. In addition, it
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is a simplified version as reported by [16], that means ignoring the Taylor
expansion around the noise terms.
Starting from the equations in (3.9), performing the second-order Taylor
expansion around the last best state estimate x̂ 2:

xk ≈ f (x̂+k−1,uk−1)+
∂ f
∂x

∣∣∣∣
x̂+k−1

(xk−1 − x̂+k−1)+

+
1
2

n

∑
i=1

φi(xk−1 − x̂+k−1)
T ∂ 2 fi

∂x2

∣∣∣∣
x̂+k−1

(xk−1 − x̂+k−1)

(3.19)

yk ≈ h(x̂−k ,uk)+
∂h
∂x

∣∣∣∣
x̂−k

(xk − x̂−k )+

+
1
2

m

∑
i=1

φi(xk − x̂−k )
T ∂ 2hi

∂x2

∣∣∣∣
x̂−k

(xk − x̂−k )
(3.20)

before evaluating their mathematical form at the last best estimate, lets focus
on the second order term in the Taylor expansion of the system equations. It
is computed by the summation of the product between a nx1 column vector
φi, with all zeros except for a one in the ith element, and the nxn matrix

(xk−1 − x̂+k−1)
T ∂ 2 fi

∂x2

∣∣∣∣
x̂+k−1

(xk−1 − x̂+k−1), where ∂ 2 fi
∂x2 is the Hessian of the system

equations.
The quadratic term of the summation can be written as:

(xk−1 − x̂+k−1)
T ∂ 2 fi

∂x2

∣∣∣∣
x̂+k−1

(xk−1 − x̂+k−1) = Tr
[

∂ 2 fi

∂x2

∣∣∣∣
x̂+k−1

(3.21)

2the last best state estimate x̂ is always the last computed, so it is the previous time
state estimate x̂+k−1 for the system equations and it is the a-priori state estimate x̂−k for the
measurement equations.
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and because of the value of (xk−1 − x̂+k−1) is not known, it can be replaced
with its expected value, which is the covariance of the Kalman filter:

(xk−1 − x̂+k−1)
T ∂ 2 fi

∂x2

∣∣∣∣
x̂+k−1

(xk−1 − x̂+k−1)≈ Tr
[

∂ 2 fi

∂x2

∣∣∣∣
x̂+k−1

P+
k−1

]
(3.22)

hence repeating the same for the one in the Taylor expansion of the
measurements equations

(xk − x̂−k )
T ∂ 2hi

∂x2

∣∣∣∣
x̂−k

(xk − x̂−k ) = Tr
[

∂ 2hi

∂x2

∣∣∣∣
x̂−k

(xk − x̂−k )(xk − x̂−k )
T
]

(3.23)

(xk − x̂−k )
T ∂ 2hi

∂x2

∣∣∣∣
x̂−k

(xk − x̂−k )≈ Tr
[

∂ 2hi

∂x2

∣∣∣∣
x̂−k

P−
k

]
(3.24)

It is now possible to evaluate the modified (3.19) and the (3.20) at x = x̂

xk = f (x̂+k−1,uk−1)+
1
2

n

∑
i=1

φiTr
[

∂ 2 fi

∂x2

∣∣∣∣
x̂+k−1

P+
k−1

]
(3.25)

yk = h(x̂−k ,uk)+
1
2

m

∑
i=1

φiTr
[

∂ 2hi

∂x2

∣∣∣∣
x̂−k

P−
k

]
(3.26)

Finally, the SO-EKF algorithm is reported.

Pros and Cons of the Extended Kalman Filters

The EKFs presented are the most used and popular form, there are other
different forms. The EKFs provide a simple state representation, because
they only exploits the first two moments of the estimate random variable:
the mean is the first moment and its variance is the second moment. The
EKFs rely on the computation of the Jacobian matrices and also Hessian
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Algorithm 3 Second Order Extended Kalman Filter algorithm
1: x̂+0 = E[x0] ▷ Initial state
2: P+

0 = E[(x0 − x̂+0 )(x0 − x̂+0 )
T ] ▷ Initial state Covariance

3: procedure SO-EKF(T , {u}T
k=1)

4: for k = 1 → T do
5: x̂−k = f (x̂+k−1,uk−1,0)+ 1

2

n
∑

i=1
φiTr

[
∂ 2 fi
∂x2

∣∣∣∣
x̂+k−1

P+
k−1

]
▷ a-priori state estimate

6: P−
k = Fk−1P+

k−1FT
k−1 +Q ▷ a-priori state estimate covariance

7: zk = h(x̂−k ,uk,0)+ 1
2

m
∑

i=1
φiTr

[
∂ 2hi
∂x2

∣∣∣∣
x̂−k

P−
k

]
▷ a-priori measurement estimate

8: Kk = P−
k HT

k (HkP−
k HT

k +R)−1 ▷ Kalman gain
9: x̂+k = x̂−k +Kk(yk − zk) ▷ a-posteriori state estimate

10: P+
k = (I −KkHk)P−

k ▷ a-posteriori state estimate covariance
11: end for
12: end procedure

matrices in SO-EKF, their computation may be quite difficult expecially for
high nonlinear systems. They can be evaluated analytically or numerically, in
the first case the computational burden required is smaller than in the second
case, but at the same time the first approach could lead to mathematical and
algebraic errors during the execution of partial derivatives or the conversion in
code. Another flaw of the EKFs concerns the impossibility of linearization of
the process, in fact some processes could be discontinuous, have singularities
and the Jacobian matrix can’t be computed. Considering a general process,
whose linearization is possible, the main EKFs flaw is the linearization of a
nonlinear process, in fact the linearized transformation is a good estimation
method only when error propagation can be well approximated by a linear
model. At best it affects the performance and the quality of the estimation,
at worst it brings to a divergence of the estimated state. This could force the
use of very small sampling times, in which the linearization is not a so high
approximation of the nonlinear process.
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3.2.3 Unscented Kalman Filter

Unscented Kalman Filter (UKF) aims to overcome the main EKFs’ flaw, it
provides a simpler and more immediate way to propagate mean and covari-
ance of random variables through a non-linear transformation. Suppose that
x is a random variable with mean x̄ and covariance Pxx, a second random
variable y is related to x through the nonlinear function y = f (x), the goal is
to calculate the mean ȳ and the covariance Pyy of y. The statistics of y are
calculated by determining the density function of the transformed distribution
and by evaluating the statistics from that distribution. In some special cases
(for example when f (·) is linear) exact closed form solutions exist, this is the
KF case. However, such solutions do not exist in general and approximate
methods must be used. The method should yield consistent statistics. Ide-
ally, these should be efficient and unbiased. The transformed statistics are
consistent if the inequality holds

Pyy −E[(y− ȳ)(y− ȳ)T ]≥ 0 (3.27)

This condition is extremely important for the validity of the transformation
method. If the statistics are not consistent, the value of Pyy is under-estimated.
If a Kalman filter uses the inconsistent set of statistics, it will place too much
weight on the information and under estimate the covariance, raising the
possibility that the filter will diverge. By ensuring that the transformation
is consistent, the filter is guaranteed to be consistent as well. However,
consistency does not necessary imply usefulness because the calculated value
of Pyy might be greatly in excess of the actual mean squared error. It is
desirable that the value of the left hand side should be minimised (efficient
transformation). Finally, it is desirable that the estimate is unbiased or ȳ ≈
E[y]. As remarked by [15], the problem of developing a consistent, efficient
and unbiased transformation procedure can be examined by considering the
Taylor series expansion of the nonlinear equation about x̄. This series can be
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expressed as:

f (x) = f (x̄+∆x) = f (x̄)+∇ f ∆x+
1
2

∇
2 f ∆x2+

1
3!

∇
3 f ∆x3+

1
4!

∇
4 f ∆x4+ . . .

(3.28)
where ∆x is a zero mean Gaussian variable with covariance Pxx, and ∇n f ∆xn

is the appropriate nth order term in the multidimensional Taylor Series. Ac-
cording to [15], it can be shown that the transformed mean and covariance
are

ȳ = f (x̄)+
1
2

∇
2 f Pxx +

1
2

∇
4 f E[∆x4]+ . . .

Pyy = ∇ f Pxx(∇ f )T +
1

2x4!
∇

2 f (E[∆x4]−E[∆x2Pyy]−E[Pyy∆x2]+P2
yy)(∇

2 f )T+

+
1
3!

∇
3 f E[∆x4](∇ f )T + . . .

(3.29)
In other words, the nth order term in the series for x̄ is a function of the nth
order moments of x multiplied by the nth order derivatives of f (·) evaluated
at x = x̄. If the moments and derivatives can be evaluated correctly up to the
nth order, the mean is correct up to the nth order as well. Similar comments
hold for the covariance equation as well, although the structure of each term
is more complicated. Since each term in the series is scaled by a progressively
smaller and smaller term, the lowest order terms in the series are likely to
have the greatest impact. Therefore, the prediction procedure should be
concentrated on evaluating the lower order terms. Linearization assumes
that the second and higher order terms of ∆x can be neglected. Under this
assumption

ȳ = f (x̄)

Pyy = ∇ f Pxx(∇ f )T
(3.30)

it is clear that these approximations are accurate only if the second and higher
order terms in the mean and fourth and higher order terms in the covariance
are negligible. However, in many practical situations linearization introduces
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significant biases or errors. In practice the inconsistency can be resolved
by introducing additional stabilising noise which increases the size of the
transformed covariance. This is one possible of why EKFs are so difficult to
tune, in other words sufficient noise must be introduced to offset the defects
of linearization. However, introducing stabilising noise is an undesirable
solution since the estimate remains biased and there is no general guarantee
that the transformed estimate remains consistent or efficient. In the figure
below are shown the mean and standard deviation ellipses for the actual and
linearized form of the transformation, for a highly nonlinear process as shown
in [15]. The true mean is at x and the uncertainty ellipse is solid. Linearization
calculates the mean at o and the uncertainty ellipse is dashed.

Fig. 3.2 True and linearized mean and standard deviation ellipse [15]



3.2 Kalman filter 117

After describing the problem statement for applying a Kalman filter to
nonlinear systems, in which the main EKFs flaw is highlight, it is time to
introduce the UKFs’ basic idea. The unscented transformation is used to
calculate the statistics of a random variable which undergoes a nonlinear
transformation. It is based on two fundamental principles. First, it is easy to
perform a nonlinear transformation on a single point (rather than an entire
pdf). Second, it is not too hard to find a set of individual points in state space
whose sample pdf approximates the true pdf of a state vector. Those points
are called sigma points. This means that the nonlinear function is applied
to each sigma points in turn to yield a cloud of transformed points. This
approach has something in common with the Monte Carlo method, that will
be the basic idea of the Particle Filter, but there is an extremely important and
fundamental difference. In this case, the samples are not drawn at random but
rather according to a specific, deterministic algorithm. Since the problems
of statistical convergence are not an issue, high order information about
the distribution can be captured using only a very small number of points.
Keeping the notation using above, if x is an nx1 vector that is transformed by
the nonlinear function y = f (x), the 2n sigma points are

x(i) = x̄+ x̃(i) i = 1, . . . ,2n

x̃(i) = (
√

nPxx)
T
i i = 1, . . . ,n

x̃(n+i) =−(
√

nPxx)
T
i i = 1, . . . ,n

(3.31)

where
√

nPxx is the matrix square root of nPxx such that (
√

nPxx)
T√nPxx =

nPxx, and (
√

nPxx)i is the ith row of
√

nPxx. The Cholesky factorization can
be used to find a matrix square root, but other methods may be found in
literature. Applying the nonlinear function to each individual sigma points,
the transformed sigma points are computed as follows:

y(i) = f (x(i)) i = 1, . . . ,2n (3.32)



118 System state estimation approaches

the approximated mean of y is given by

ȳ =
1

2n

2n

∑
i=1

y(i) (3.33)

therefore it is the mean value of the the transformed sigma points. It may be
shown that the computed mean matches the true mean of y correctly up to the
third order, whereas linearization only matches the true mean of y up to the
first order as seen before. The same may be shown concerning the estimate
covariance.

Pyy =
1
2n

2n

∑
i=1

[ f (x(i))− ȳ][ f (x(i))− ȳ]T (3.34)

The equations in (3.31), (3.33) and (3.34) represent the unscented trans-
formation for a generic nonlinear function y = f (x).

The UKFs rely on the unscented transformation, so their algorithm is
slightly different than the EKFs’. In general, the UKFs propagate the mean
and covariance of the sigma points using system nonlinear equations and
the a-priori state estimate is the weighted mean of them. As well, predicted
measurements for each propagated sigma point can be computed the us-
ing the measurement equations and the predicted measurements vector is
the weighted mean of them. Unlike the EKFs, in UKFs there is the cross-
covariance matrix. The following algorithm is the simpliest UKF because it
uses 2n sigma points and also they have the same weight. For this reason it is
here called Simply Unscented Kalman Filter (S-UKF). Considering as for the
previous algorithm a generic nonlinear system as in (3.18).

The unscented transformation as presented in (3.31), (3.33) and (3.34)
is not the only one that exists. In the next sections several other possible
transformations are presented.
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Algorithm 4 Simply Unscented Kalman Filter algorithm
1: x̂+0 = E[x0] ▷ Initial state
2: P+

0 = E[(x0 − x̂+0 )(x0 − x̂+0 )
T ] ▷ Initial state Covariance

3: procedure S-UKF(T , {u}T
k=1)

4: for k = 1 → T do

5: x̂(i)k−1 = x̂+k−1 +

(√
nP+

k−1

)T

i
i = 1, . . . ,n ▷ first n sigma points

6: x̂(n+i)
k−1 = x̂+k−1 −

(√
nP+

k−1

)T

i
i = 1, . . . ,n ▷ second n sigma points

7: x̂(i)k = f (x̂(i)k−1,uk−1,0) ▷ time update of sigma points

8: x̂−k = 1
2n

2n
∑

i=1
x̂(i)k ▷ a-priori state estimate

9: P−
k = 1

2n

2n
∑

i=1
(x̂(i)k − x̂(−)

k )(x̂(i)k − x̂(−)
k )T +Q ▷ a-priori state estimate covariance

10: z(i)k = h(x̂i
k,uk,0) ▷ predicted measurements for each propagated sigma point

11: zk =
1
2n

2n
∑

i=1
z(i)k ▷ predicted measurements

12: Py
k = 1

2n

2n
∑

i=1
(z(i)k − zk)(z

(i)
k − zk)

T +R ▷ predicted measurements covariance

13: Pxy
k = 1

2n

2n
∑

i=1
(x̂(i)k − x̂(−)

k )(z(i)k − zk)
T ▷ cross covariance

14: Kk = Pxy
k (Py

k )
−1 ▷ Kalman gain

15: x̂+k = x̂−k +Kk(yk − zk) ▷ a-posteriori state estimate
16: P+

k = P−
k −KkP−

k KT
k ▷ a-posteriori state estimate covariance

17: end for
18: end procedure
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General Unscented Kalman Filter

Based on [136] and [137], it can be shown the same order of mean and
covariance estimation accuracy can be obtained by choosing (2n+1) sigma
points instead of (2n) as before. This type of UKF il called General Unscented
Kalman Filter (G-UKF). The new sigma points are:

x(0) = x̄

x(i) = x̄+ x̃(i) i = 1, . . . ,2n

x̃(i) = (
√

(n+ k)Pxx)
T
i i = 1, . . . ,n

x̃(n+i) =−(
√

(n+ k)Pxx)
T
i i = 1, . . . ,n

(3.35)

unlike before, now the sigma points have a different weight factors:

W (0) =
k

n+ k

W (i) =
1

2(n+ k)
i = 1, . . . ,2n (3.36)

this means that the 2n sigma points are symmetrically distributed around the
mean value x̄. The term k can be used to reduce the higher-order errors of
the mean and covariance approximation. As reported in [136] and [137] if x
is Gaussian then k = 3−n minimizes some of the errors in the fourth-order
terms in the mean and covariance approximation. Therefore applying the
nonlinear function (3.32) to each individual sigma points the unscented mean
and coraviance are:

ȳ =
2n

∑
i=0

W (i)y(i)

Pyy =
2n

∑
i=0

W (i)[ f (x(i))− ȳ][ f (x(i))− ȳ]T
(3.37)
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Note that if k = 0, the sigma points are 2n and they have the same weight
factor, as reported in (3.33) and (3.34).
The G-UKF’s algorithm and the S-UKF’s algorithm are quite the same, the
main difference is the number of sigma points computed at each time step
and their weight factors. For this reason the algorithm is not reported here.
Sometimes a different version of this type of UKF can be found in literature
and applied in case study. It is based on [138]. In this version the spread of
the sigma points around the mean state value is controlled by two parameters
α and k. A third parameter, β , impacts the weights of the transformed points
during state and measurement covariance calculations. α determines the
spread of the sigma points around the mean state value. It is a scalar value
between 0 and 1, and usually it is a small value. Smaller values correspond
to sigma points closer to the mean state. k is a second scaling parameter that
is typically set to 0. Smaller values correspond to sigma points closer to the
mean state. The spread is proportional to the square-root of k. β incorporates
prior knowledge of the distribution of the state. For Gaussian distributions,
β = 2 is optimal. These three parameters can be used to tune the filter. Using
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these adjustable parameters, the sigma points and weight factor are:

x(0) = x̄

x(i) = x̄+ x̃(i) i = 1, . . . ,2n

x̃(i) = (
√

α2(n+ k)Pxx)
T
i i = 1, . . . ,n

x̃(n+i) =−(
√

α2(n+ k)Pxx)
T
i i = 1, . . . ,n

W (0)
m =

α2(n+ k)−n
α2(n+ k)

W (i)
m =

1
2α2(n+ k)

i = 1, . . . ,2n

W (0)
c = (2−α

2 +β )− n
α2(n+ k)

W (i)
c =

1
2α2(n+ k)

i = 1, . . . ,2n

(3.38)

in this case the weight factors of the mean and the weight factors of the
covariance are different. This means:

ȳ =
2n

∑
i=0

W (i)
m y(i)

Pyy =
2n

∑
i=0

W (i)
c [ f (x(i))− ȳ][ f (x(i))− ȳ]T

(3.39)

Simplex Unscented Kalman Filter

Considering again [137], a new set of sigma points and weight factors can
be introduced. It can be shown that if x has n elements then the minimum
number of sigma points that gives the order of estimation accuracy of the
previous section is equal to (n+1). These sigma points are called simplex
sigma points. It is here reported the case in which (n+2) sigma points are
used, but the number can be reduced to (n+1) by choosing one of the weights
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to be zero. This type of filter aims to reduce the computational effort reducing
the number of sigma points without losing in estimation accuracy.
The sigma points are computed as reported in the following algorithm.

Algorithm 5 Simplex Unscented Transformation

1: W (0) ∈ [0,1) ▷ Initial choice

2: W (i) =

{
2−n(1−W (0)) i = 1,2
2i−2W (1) i = 3, . . . ,n+1

▷ Weights initialization

3: σ
(1)
0 = 0 σ

(1)
1 = −1√

2W (1)
σ
(1)
2 = 1√

2W (1)
▷ Sigma vector initialization

4: for j = 2 → n do

5: σ
( j)
i =



[
σ
( j−1)
0

0

]
i = 0 σ

( j−1)
i
−1√

2W ( j+1)

 i = 1, . . . , j[
0( j−1)

j√
2W ( j+1)

]
i = j+1

▷ Sigma vector building

6: end for
7: x(i) = x̄+σ

(n)
i

√
Pxx i = 0, . . . ,n+1 ▷ Sigma points

Note that 0 j−1 is the column vector containing j zeros and σ
(n)
i is an n-element

row vector because (i = 0, . . . ,n+1).
Choosing W (0) = 0 in the algorithm, the number of sigma points will be
(n+1) instead of (n+2), the algorithm is then modified in the obvious way.
The problem with the SIMP-UKF is that the ratio of W (n) to W (1) is equal
to 2n−2, where n is the dimension of the state vector x. It can be shown that
the ratio of the largest element of σ

(n)
i to the smallest element is 2n−2 as well.

As the dimension of the state increases, this ratio increases and can quickly
cause numerical problems. The only reason for using the SIMP-UKF is the
computational savings as said, and computational savings is an issue only
for problems of high dimension (in general). This makes the SIMP-UKF of
limited utility and leads to the Spherical Unscented Transformation in the
following section.
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Spherical Unscented Kalman Filter

The Spherical Unscented Transformation aims to rearrange the sigma points
of the simplex algorithm in order to obtain better numerical stability, as
reported in [139] and [137]. The filter based on this transformation is called
Spherical Unscented Kalman Filter (SPHE-UKF). The spherical sigma points
are computed as reported in the following algorithm.

Algorithm 6 Spherical Unscented Transformation

1: W (0) ∈ [0,1) ▷ Initial choice
2: W (i) = 1−W (0)

n+1 i = 1, . . . ,n+1 ▷ Weights initialization

3: σ
(1)
0 = 0 σ

(1)
1 = −1√

2W (1)
σ
(1)
2 = 1√

2W (1)
▷ Sigma vector initialization

4: for j = 2 → n do

5: σ
( j)
i =



[
σ
( j−1)
0

0

]
i = 0 σ

( j−1)
i
−1√

j( j+1)W (1)

 i = 1, . . . , j[
0( j−1)

j√
j( j+1)W (1)

]
i = j+1

▷ Sigma vector building

6: end for
7: x(i) = x̄+σ

(n)
i

√
Pxx i = 0, . . . ,n+1 ▷ Sigma points

in this case, all the weight factors are identical, in contrast to the Simplex
Unscented Transformation. The ratio of the largest element of σ

(n)
i to the

smallest element is

n√
n(n+1)W (1)

/
1√

n(n+1)W (1)
= n (3.40)

therefore the Spherical Unscented Transformation is less affect by numerical
problem than the Simplex Unscented Transformation when the number of
element of the state vector increases.
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Pros and Cons of the Unscented Kalman Filters

The UKFs don’t require the computation of Jacobian o Hessian, unlike the
EKFs, this is a great advantage that make them easily usable for all the non-
linear system. The main obstacle is that the state covariance matrices must be
positive semidefinite in order to have real matrices after applying the Cholesky
decomposition. This goal can be achieved tuning the noise covariance ma-
trices or considering the use of the Square-root Unscented Kalman Filter,
in fact the Square-Root form have the added benefit of numerical stability
and guaranteed positive semi-definiteness of the state covariances [138]. As
seen, numerical stability problems could occur when the number of state
vector increases, but adopting the SIMP-UKF or SPHE-UKF this problems
can be overcome, saving computational cost as well. If the number of state
vector increases, the computational cost could be a drawback because of the
evaluation of the sigma points is required ad each time step. This aspect
doesn’t affect the EKFs, especially if the Jacobian and Hessian matrices are
computed analytically rather than numerically.

3.3 Particle Filter

Particle Filter (PF) aims to estimate the state of a nonlinear process investigat-
ing the properties of sets of particles rather than the properties of individual
particles. It is a completely nonlinear state estimator, unlike the UKFs and the
EKFs presented before, that are based on the approximation of the nonlinear
system.
The PF is a numerical implementation of the Bayesian estimator, so a brief
introduction to the Bayesian approach to state estimation is required.
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3.3.1 Bayesian State Estimation

Considering a generic nonlinear process, with uncorrelated and white noise,
of which pdf is known, as in (3.9)3. The goal of a Bayesian estimator is to
approximate the conditional pdf of xk based on measurements y1,y2, . . . ,yk .
This conditional pdf is denoted as p(xk|Yk), where Yk is the vector containing
the measurements acquired till the k-th time step. The first measurements
is obtained at k = 1, so the initial condition of the estimator is the pdf of x0,
p(x0) = p(x0|Y0), where Y0 is defined as the set of no measurements. The
conditional pdf may be multimodal, in which case the mean xk of the estimate
may be not useful. In [16] there is an example, reported here in figure, in
which the mean of x is 0, but there is zero probability that x is equal to 0.

Fig. 3.3 An example of a multimodal probability density function. [16]

However, before finding the conditional pdf p(xk|Yk), it is necessary to find
the conditional pdf of xk given all the measurements prior to the time k,
p(xk|Yk−1), or in other words the conditional pdf of the a-priori state estimate.

3nonadditive noise is only considered in this case and for reasons of generality, as shown
in [16]
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It may be shown that

p(xk|Yk−1) =
∫

p[(xk,xk−1)|Yk−1]dxk−1

=
∫

p[xk|(xk−1,Yk−1)]p[xk−1|Yk−1]dxk−1

(3.41)

The two pdf on the right side of the equation can now be analyzed. As seen in
(3.9) xK is entirely determined by xK−1, uK−1 and wK , so p[xk|(xk−1,Yk−1)] =

p[xk|xk−1], it is the pdf of the state at time k given a specific state at time
(k− 1). Therefore the first term is known thanks to the knowledge of the
system equation f (·) and of the pdf of the noise wk. The second term is not
available yet, but it is available at the initial time.
As shown in[16], the conditional pdf of the a-posteriori state estimate is given
by:

p(xk|Yk) =
p(yk|xk)

p(yk|Yk−1)
p(xk|Yk−1) (3.42)

all the pdf’s on the right side are available. Analyzing all the term: the pdf
p(yk|xk) is available from the knowledge of the measurement equation h(·)
and of the pdf of the noise vk, the pdf p(xk|Yk−1) is the a-priori conditional
pdf, finally the pdf p(yk|Yk−1) is given by

p(yk|Yk−1) =
∫

p[(yk,xk)|Yk−1]dxk =
∫

p[yk|(xk,Yk−1)]p(xk|Yk−1)dxk

(3.43)
but zk is completely determined by xk,uk and vk, so p[yk|(xk,Yk−1)] = p(yk|xk).
As shown both terms of the above equation are available, thus all the terms
on the right side of the a-posteriori conditional pdf are available. Analytical
solutions to these equations are available only if f (·) and h(·) are linear, and
x0,Wk, and vk are additive, independent, and Gaussian, then the solution is
the Kalman filter discussed in section (3.2.1). This way of obtaining the
Kalman filter is more complicated than the least squares approach usually
used. It is important to highlight that when the Kalman filter is derived
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using the least squares approach, then no conclusions can be drawn about
the optimality of the filter when the noise is not Gaussian. In fact, other
optimal (nonKalman) filters have been derived for other noise distributions.
Nevertheless, the Bayesian derivation proves that when the noise is Gaussian,
the Kalman filter is the optimal filter. However, the least squares derivation
shows that the Kalman filter is the optimal linear filter, regardless of the pdf
of the noise.
After the presentation of the Bayesian approach to state estimation, that is a
recursive approach, its numerical implementation is shown in the next section,
this is the Particle filtering.

3.3.2 Particle Filtering

The Particle filters (PFs), is a sequential Monte Carlo (MC) based filter. It is
a technique for implementing a recursive Bayesian filter by MC simulations.
The key idea is to represent the required posterior density function by a set of
random samples with associated weights and to compute estimates based on
these samples and weights. As the number of samples becomes very large,
this MC characterization becomes an equivalent representation to the usual
functional description of the posterior pdf [140]. Therefore the basic idea is
to randomly generate a given number N state vectors based on the initial pdf
p(x0), that is known. These state vectoris are called particles and are denoted
as x+0,i, with i = 1, . . . ,N. At each time step, the particles are propagated to
the next time step using the system equation f (·):

x̂−k,i = f (x̂+k−1,i,uk−1)+w(i)
k−1 i = 1, . . . ,N (3.44)

In the above equation a nonlinear system is considered and an additive noise
is supposed, this is in order to use the same system equation and the same
type of noise in all the filter implemented. The additive noise term w(i)

k−1 is
the noise vector, randomly generated on the basis of the known pdf of wk−1.
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After that the measurements at time k is received, the conditional relative
likelihood of each particle x̂−k,i can be computed using the conditional pdf
p(zk|x̂−k,i). In fact, thanks to the knowledge of the measurement equation and
of the pdf of the measurement noise, the relative likelihood qi that the estimate
measurement zk is equal to a specific measurement yk, given the premise that
xk is equal to the particle x̂−k,i, can be computed as follow:

qi = P[(zk = yK)|(xk = x̂−k,i)] = P[vk = yK −h(x̂−k,i)]

∼ 1
(2π)m/2|R|1/2 exp

(−[yk −h(x̂−k,i)]
T R−1

2
[yk −h(x̂−k,i)]

) (3.45)

In the expression above on the right side there is the definition of the multivari-
ate Gaussian probability distribution of an m-element random variable, and R
is the noise covariance matrix. The ∼ symbol means that the probability in
not really given by the expression on the right side. So if this equation is used
for all the particles x̂−k,i, then the relative likelihoods that the state is equal to
each particle will be correct. The relative likelihoods obtained is normalized,
in order to ensure that the sum of all the likelihoods is equal to one.

qi =
qi

∑
N
j=1 q j

(3.46)

At this point of the filter a resampling strategy is applied, in other words a
brand new set of particles is computed, these are randomly generated on the
basis of the relative likelihoods qi. A lot of resampling strategy can be found
in literature, in the next section only three strategies will be presented and
then implemented. The basic idea of resampling is to eliminate particles that
have small relative likelihood and to concentrate on particles with large one.
The last step of a generic resampling strategy is

x̂+k,i = x̂−k, j with probability q j (i, j = 1, . . . ,N) (3.47)
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so it is a resample (with replacement) that takes into account the relative
likelihood of each particle. The output of the resampling strategy is the set of
particles x̂+k,i, that are distributed according to the pdf p(xk|yk). Finally, for
each step time the a-posteriori state estimate is computed as a weighted sum
of the resampled particles:

x̂+k =
N

∑
j=1

q jx̂−k, j (3.48)

The following algorithm refers to a generic particle filter as described in [140],
the resampling strategies are here only mentioned and listed below in detail.
Ns is the number of particle.

Algorithm 7 General Particle Filter algorithm
1: x̂+0 = E[x0] ▷ Initial state
2: x̂+0,i = N (x0,P0) i = 1, . . . ,Ns ▷ random particles from initial state
3: q0,i = 1/Ns ▷ initial particles weights
4: procedure G-PF(T , {u}T

k=1)
5: for k = 1 → T do
6: x̂−k,i = f (x̂+k−1,i,uk−1)+wk−1,i ▷ time update of particles
7: zk,i = h(x̂−k,i,uk) ▷ measurements estimate based on particles
8: pi(yk|x̂−k,i) = N ((yk − zk,i),R) ▷ observation likelihood pdf
9: pi(x̂−k,i|x̂

+
k−1,i) = N ((x̂−k,i − f (x̂+k−1,i,uk−1)),Q)▷ a-priori estimate likelihood pdf

10: qk,i = qk−1,i pi(yk|x̂−k,i)pi(x̂−k,i|x̂
+
k−1,i) ▷ a-posteriori particles weight

11: qk,i =
qk,i

∑
Ns
i=1 qk,i

▷ normalization

12: [x̂+k, j,qk, j] = RESAMPLE(x̂−k,i,qk,i) ▷ resampling strategy
13: x̂+k = ∑

Ns
j=1 qk, j x̂+k, j ▷ a-posteriori state estimate

14: end for
15: end procedure

3.3.3 Resampling Strategies

The resampling strategies implemented are listed in this section, and also
their algorithm are shown in detail. In literature there are a lot of strategies an
exhaustive collection is done in [141].
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Multinomial Resampling

The core idea of multinomial resampling is to generate independently Ns
random numbers, ui

k with i = 1, . . . ,n, from the uniform distribution on (0,1]
and use them to select particles from x̂−k,i. In the n-th selection, the particle
x̂−k,m is chosen when the following condition is satisfied

Q(m−1)
k < u(n)k ≤ Q(m)

k where Q(m)
k =

m

∑
i=1

qk,i (3.49)

Thus, the probability of selecting x̂−k,m is the same as that of u(n)k being in the
interval bounded by the cumulative sum of the normalized weights as shown.
This sampling scheme satisfies the unbiasedness condition. Multinomial re-
sampling is also referred to as simple random resampling. Since the sampling
of each particle is random, the upper and lower limits of the number of times a
given particle is resampled are zero (not sampled) and Nt (sampled Nt times),
respectively. This yields the maximum variance of the resampled particles.

Algorithm 8 Multinomial Resampling
1: procedure MULTI-RES(x̂−k,i, qk,i, Ns)
2: for m = 1 → Ns do
3: Q(m)

k = ∑
m
i=1 qk,i ▷ cumulative sum vector

4: end for
5: n = 0 ▷ counter
6: while n < Ns do
7: u ∈ (0,1] ▷ random number
8: m = 1
9: while Q(m)

k < u do
10: m = m+1 ▷ resampled index
11: end while
12: n = n+1
13: idx(n) = m
14: end while
15: x̂+k,i = x̂−k,idx ▷ resampling
16: qk, j = 1/Ns ▷ equal weights for resampled particles
17: end procedure
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As reported in [141], multinomial resampling is not efficient, and this has
motivated a search for faster methods. The variance of the number of times a
particle is resampled can be reduced by stratification sampling.

Stratified Resampling

Stratified resampling divides the whole population of particles into subpopu-
lations called strata. It prepartitions the (0,1] interval into N disjoint subin-
tervals (0,1/Ns]∪ ·· · ∪ (1−1/Ns,1]. The random numbers u(n)k are drawn
independently in each of these subintervals and then the bounding method
based on the cumulative sum of normalized weights as shown in (3.49).

Algorithm 9 STRATIFIED RESAMPLING
1: procedure STRA-RES(x̂−k,i, qk,i, Ns)
2: for m = 1 → Ns do
3: Q(m)

k = ∑
m
i=1 qk,i ▷ cumulative sum vector

4: end for
5: T = linspace(0,1−1/Ns,Ns)+ rand(1,Ns)/Ns ▷ subintervals
6: n = 1 m = 1 ▷ counter
7: while n ≤ Ns and j ≤ Ns do
8: while Q(m)

k < T (n) do
9: m = m+1 ▷ resampled index

10: end while
11: idx(n) = m
12: n = n+1
13: end while
14: x̂+k, j = x̂−k,idx ▷ resampling
15: qk, j = 1/Ns ▷ equal weights for resampled particles
16: end procedure

Systematic Resampling

Systematic resampling also exploits the idea of strata but in a different way.
Now,u(1)k is drawn from the uniform distribution on (0,1/Ns], and the rest
of the numbers are obtained deterministically, u(n)k = u(1)k + n−1

Ns with n =

2,3, . . . ,Ns. As seen the algorithms of SYST-res and STRA-res are quite
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Algorithm 10 SYSTEMATIC RESAMPLING
1: procedure SYST-RES(x̂−k,i, qk,i, Ns)
2: for m = 1 → Ns do
3: Q(m)

k = ∑
m
i=1 qk,i ▷ cumulative sum vector

4: end for
5: T = linspace(0,1−1/Ns,Ns)+ rand/Ns ▷ subintervals
6: n = 1 m = 1 ▷ counter
7: while n ≤ Ns and m ≤ Ns do
8: while Q(m)

k < T (n) do
9: m = m+1 ▷ resampled index

10: end while
11: idx(n) = m
12: n = n+1
13: end while
14: x̂+k, j = x̂−k,idx ▷ resampling
15: qk, j = 1/Ns ▷ equal weights for resampled particles
16: end procedure

the same.the systematic method is computationally more efficient than the
stratified method because of the smaller number of random numbers that are
generated.

3.3.4 Pros and Cons of the Particle Filters

The price that must be paid for the high performance of the particle filter
is an increased level of computational effort. There may be problems for
which the improved performance of the particle filter is worth the increased
computational effort. There may be other applications for which the improved
performance is not worth the extra computational effort. These trade-offs are
problem dependent and must be investigated on an individual basis. The main
implementation issue is the sample impoverishment, the region of state space
in which the pdf p(yk|xk) has significant values does not overlap with the
pdf p(xk|Yk−1). This means that if all of the a-priori particles are distributed
according to p(xk|Yk−1), and then the computed pdf p(yk|xk) is used to resam-
ple the particles, only a few particles will be resampled to become a-posteriori
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particles. This is because only a few of the a-priori particles will be in a
region of state space where the computed pdf p(yk|xk) has a significant value.
Eventually, all of the particles could collapse to the same value. This can be
overcome by a brute-force method of simply increasing the number of parti-
cles Ns, but this can quickly lead to unreasonable computational demands,
and often simply delays the inevitable sample impoverishment. Several ways
of dealing with this problem can be used, as regularized particle filtering,
Markov chain Monte Carlo resampling, and auxiliary particle filtering. In
addition, one approach that has been proposed for improving particle filtering
is to combine it with another filter such as the EKFs or the UKFs. In this
approach, each particle is updated at the measurement time using the EKFs
or the UKFs, and then resampling is performed using the measurement. This
is like running a bank of N Kalman filters (one for each particle) and then
adding a resampling step after each measurement.

3.4 Calibration of filters

All the filters presented are characterized by the noise terms presence, they
capture what the deterministic model fails to. As reported in [142], the noise
is usually the result of a number of different effects:

1. Mis-modeled system and measurement dynamics.

2. The existence of hidden state in the environment not modeled by the
filter.

3. The discretization of time, which introduces additional error.

4. The algorithmic approximations of the filter itself, such as the Taylor
approximation commonly used for linearization.

In order to reduce the perturbations in state estimation, several optimization
algorithms are proposed in the paper, in this thesis work only two of them are
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considered and implemented. Despite the algorithms are based on Kalman
Filter training, and applied in the paper using EKF, they work quite well
for the UKFs and PFs as well. The basic idea is to "train" the filter using
an optimizator, in order to find the process noise covariance matrix and
the measurements noise covariance matrix that minimize the error between
the "real state" and the state estimate. The techniques presented below use
additional measurements provided by high-end sensors, called y1,y2, . . . ,ym

and the measure of the full or partial state x1,x2, . . . ,xn acquired by high-end
sensors as well. 4. A generic function g(·) is a projection which extracts the
subset of the variables in xt that correspond to the yt , where t is the generic
time step.

yt = g(xt)+ γt (3.50)

In other words, the equation above uses the high-end sensors measures
of the state vector in order to obtain the value of the additional measures
y1,y2, . . . ,ym, taking into account the process. The more the process model is
an approximation of the real one, the more the difference between y1,y2, . . . ,yn

and g(xk)+ γk is. The term γk is the noise term with covariance P. The dif-
ference between high-end measurements and the measurements commonly
used to feed the filter is very important, this because the first ones are used
only during the training phase, the second ones are used during the filter
execution. To better highlight this difference, the second ones are called
low-end measurements because they are acquired using cheaper sensors. The
two algorithm chosen are different, the main difference is that the first one
presented doesn’t run the filter, while the second needs to run the filter.

4note that these measurements are different than the ones used in the filter, despite the
same nomenclature. In this case they are acquired by high-end sensors, that are not used
during the filter execution.
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Generative Approach: Maximizing The Joint Likelihood

This approach requires access to the full state vector, although it is not always
possible. Assuming that this is possible, the function h(·) is the identity
function and the noise γ is so small that it can safely be neglected. Let x0:T

denote the entire state sequence (x0,x1, . . . ,xT ), also let u1:T , y0:T and z0:T

denote the known input, the first two are high-end measurements and the last
is low-end measurement. Assuming the initial probability distribution p(x0),
the joint probability distribution till the time step T is:

p(x0:T ,y0:T ,z0:T |u1:T ) = p(x0)
T

∏
t=1

p(xt |xt−1,ut)
T

∏
t=0

p(yt |xt−1)p(zt |xt−1)

(3.51)
where

p(xt |xt−1,ut) = N (xt ; f (xt−1,ut),Q)

p(yt |xt−1) = N (yt ;g(xt),P)

p(zt |xt−1) = N (zt ;h(xt),R)

(3.52)

The method proceeds by maximizing the likelihood of all the data. Since
the full state vector is observed (yk = xk), the covariance matrices R joint and
Q joint are estimated as follows:

[R joint ,Q joint ] = arg maxQ,R [log
(

p(x0:T ,z0:T |u1:T )
)
] (3.53)

it can be shown that subtistuting the (3.51) and the (3.52) in the above equa-
tion, it decomposes into the two equations listed below

Q joint = arg maxQ [−T log(2πQ)−
T

∑
t=1

(xt − f (xt−1,ut))
T Q−1(xt − f (xt−1,ut))]

R joint = arg maxR [−(T +1)log(2πR)−
T

∑
t=0

(zt −g(xt))
T R−1(zt −g(xt))]

(3.54)
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However the optimal R joint and Q joint can actually be computed in closed
form and are given by:

Q joint =
1
T

T

∑
t=1

(xt − f (xt−1,ut))(xt − f (xt−1,ut))
T

R joint =
1

1+T

T

∑
t=0

(zt −g(xt))(zt −g(xt))
T

(3.55)

As said, this approach never actually run the filter, it trains the elements of the
filter. It therefore implicitly assumes that training the elements individually is
as good as training the filter as a whole.

Minimizing The Residual Prediction Error

The above technique requires the full state knowledge and doesn’t execute
the filter. It is here presented a technique that overcome these potential limits.
This technique minimizes the prediction error for the values of yt given by

E[yt |u1:t ,z0:t ] = g(x̂t) (3.56)

x̂t is the state estimate provided by the filter algorithm adopted. This is the
a-posteriori state estimate, so it takes into account the observations z0:t and
the additional input (as known as control input) u1:t , considered acquired by
high-end sensors. Therefore x̂t depends implicitly on R and Q. This technique
seeks the parameters R and Q that minimize the quadratic deviation of yt , and
so the expectation above, weighted by the inverse covariance P.

⟨Qres,Rres⟩= arg minQ,R

T

∑
t=0

(yt −g(x̂t))
T P−1(yt −g(x̂t)) (3.57)
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but if P is any multiple of the identity matrix, this simplifies to

⟨Qres,Rres⟩= arg minQ,R

T

∑
t=0

∥yt −g(x̂t)∥2
2 (3.58)

in other words this technique choose the parameters R and Q that cause the
filter to output the state estimates that minimize the squared differences to
the measured values yt . Unlike the previous technique, this one evaluates
the actual performance of the filter. In order to implement this technique a
genetic algorithm or a surrogate optimization algorithm may be used, fixing
the lower and the upper boundaries to guide the optimizator.

3.5 Case study: Vehicle model-based estimation
of go-kart side-slip angle

The typical active safety systems that control the dynamics of passenger cars
rely on real-time monitoring of vehicle side-slip angle (VSA), but the VSA
is not measured directly because it requires the use of high-end instruments,
which usually cannot be equipped in the passenger cars due to the significant
related costs and bulky instrumentation [143]. However, this is not the only
application field, indeed an accurate knowledge of the VSA may improve the
ADAS system or may be used to improve the trajectory in autonomous vehicle
[144]. In the motorsport field, the application of the VSA is used to enhance
the overall vehicle performance during the race. In all these application fields
the VSA estimation is increasingly diffused, and it is evaluated employing
different measurements available onboard, such as wheel velocities, linear
and angular accelerations [145] [146].

The technical literature is plenty of articles about VSA estimation. There
are different approaches to estimate the VSA starting from the observer-based
methods [147], [148], [149] up to neural network data-based techniques
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[150], [151]. The observer-based methods are characterized by the type
of state estimator adopted, e.g. Extended Kalman filters [152], in which
the Jacobian matrix computation is required and the nonlinear problem is
linearized through a Taylor expansion. In [27] and [153], Unscented Kalman
filters are adopted. The application of such filters is widely used due to an
easier implementation because they do not require the computation (analytical
or numerical) of the Jacobian matrix. In this work, another type of state
estimator is considered in addition to the ones mentioned above, consisting
in the Particle filter. The main applications of this latter involve the tracking
problems, as reported in [140].

All the filters are based on the mathematical modeling of the process
to estimate, a mathematical representation of the vehicle is required in this
application. Different assumption have to be stated in order to model the
vehicle dynamics. Two kinds of vehicle models can be found in the literature,
which are denoted respectively as kinematic and dynamic [37]. The kinematic
model is concerned with the vehicle motion with no reference to forces; thus,
it does not need complex parameters such as those regarding tyres, which
often are the cause of the non-linearity of the vehicle model. However, the
main issue of VSA estimation using a kinematic vehicle model lays in the
fact that it does not work when the vehicle yaw rate is relatively small or zero,
this leads to the system unobservability, as reported in [154]. The dynamic
model, on the other hand, provides a more detailed description of the vehicle
dynamics, as it is based on the equilibrium equations. It can have different
levels of detail/complexity and hypotheses used, each of them affects the
estimation accuracy. Several authors introduce simplifying hypotheses, such
as a single-track vehicle model as in [155] and [156]. Additional assumptions
may be adopted, as the availability of the vehicle longitudinal speed or the
hypothesis of small steering angles. Quite often the equilibrium equations
are coupled with a tyre model but it is not strictly necessary as proposed in
[157], there are several approaches, the most used are: linear models, Pacejka
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Fig. 3.4 GoKart employed in order to estimate the vehicle sideslip angle

models, rational tyre model [158] and Dugoff model [10]. The use of a
dynamic model can lead to a good VSA estimation, however, the accuracy
of the results strongly depends on the tyre model parameters. Unmodeled
effects, such as road conditions and tyre wear, can dramatically worsen the
reliability of the estimation, meanwhile other secondary effects as the type of
suspension adopted [159] and the thermodynamics of the tyre inner chamber
[160] can be neglected easier in certain hypothesis. Several authors attempt to
deal with this issue employing algorithms which provide an online update of
tyre parameters as in [161] and [162]. In this chapter, a single-track vehicle
model and a simplified Pacejka tyre model are adopted in order to compare
the performance of different types of state estimators using the same plant
model. The benchmark is not only based on the estimate accuracy but also on
the run-time capability of each proposed algorithm.

The data-set employed to this aim has been provided by an electric go-kart
of the Eidgenössische Technische Hochschule (ETH) Zürich (Fig. 3.4). It is
equipped with sensors, described in the following section, in order to acquire
the necessary input signals to feed the process model of the filters. In addition,
an S-motion is used to acquire the true VSA and to validate the estimate one.
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3.5.1 Kalman filtering

All the filters implemented attempt to estimate the vehicle side slip angle
(VSA) but not directly evaluating it, in fact it is given by:

β = arctan
(

v
u

)
(3.59)

Being the process equations are separated into two sets of equations: the
first one is the set of the system equations which propagates the state from the
time step k−1 to k and provides the a-priori state estimate, the second one
is the set of measurement equations which use the a-priori state estimate in
order to compute the estimate values of some measurements. First of all the
state to be estimated and the measurements must be defined. The state vector
elements are:

xk = [uk,vk,rk]
T (3.60)

longitudinal and lateral vehicle velocity [m/s] and yaw rate [rad/s] respec-
tively. 5 The measurement vector elements are:

zk = [ω1,1k ,ω1,2k ,rk,ayk ,axk ]
T (3.61)

respectively rotational velocity of the front-left and front-right wheels [rad/s],
yaw rate [rad/s] and longitudinal and lateral vehicle linear acceleration
[m/s2].

The implemented vehicle model refers to an electric go-kart. It is equipped
with two electric motors at the rear axle, one per wheel, and also the braking
system operates only on the rear axle. Therefore the front axle has not braking
or tractive powered. The two electric motors work in order to simulate an

5Note that in (3.1) and (3.60) the same letter refers to different things, for example in
(3.60) uk is the vehicle longitudinal velocity while in (3.1) it represents the measurable
variables in system equations and also it is a vector. This is because it preserves the nomen-
clature adopted in the respective literature despite the ambiguity that this might create in this
application.
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open differential, so no torque vectoring effects are present. In addition, the
same can be said about the braking system. The go-kart has no suspension
system and the chassis deflection and tyre vertical deformations are assumed
to be null. There are no aerodynamic devices and the drag force effect on
the vehicle dynamics is neglected. These vehicle characteristics fulfill in a
certain way the assumptions stated about the vehicle model. However the
hypothesis of small steering angle can not be considered, in fact the steering
angle reached by the vehicle during the tests are not so small to be neglected.
This is because the tests are made with the aim to reach high value of VSA as
will be shown. It is important to highlight that the front axle wheels have no
braking or tractive power, so the longitudinal slip are very small and can be
easily neglected in the vehicle model. This leads to the fact that the rotational
velocity of the front wheels can be evaluated using the kinematic equations as
shown in the section about the measurement equations.

3.5.2 System equations

As shown in the equation (3.1), the set of system equations uses the state
estimate and additional input at the previous time step to compute the time
propagation of the state. The process noise terms are considered additive and
Gaussian, zero-mean and uncorrelated with Q as covariance matrix. It is here
reported the general form of the system equation:

x̂−k = f (x̂+k−1,uk−1)+wk−1 (3.62)

The vehicle model implemented is nonlinear, or in other words the functions
f (·) are nonlinear functions. The functions f (·) are linearized using a first-
order Taylor expansion, only in the SO-EKF a second-order Taylor expansion
is considered.
The discrete-time form of the equations is reached using the forward Euler
method. Considering the state at time k−1, the time propagation of the state
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is given by:
xk = xk−1 +∆t ẋk−1 (3.63)

The mathematical form of the vector ẋk−1 is obtained using the equations
(1.32) and (1.33). In fact the vector is ẋk−1 = [u̇k−1, v̇k−1, ṙk−1]

T which can
be obtained by the equations below:

m (u̇− v r) = Fx1 cos(δ1)−Fy1 sin(δ1)+Fx2

m (v̇+u r) = Fy1 cos(δ1)+Fx1 sin(δ1)+Fy2

Jz ṙ = Fy1 a1 cos(δ1)+Fx1 a1 sin(δ1)−Fy2 a2

(3.64)

Handling them in order to obtain the formulation for the elements of ẋk−1 :

u̇k−1 = vk−1 rk−1 +
1
m

(
Fx1,k−1 cos(δ1,k−1)−Fy1,k−1 sin(δ1,k−1)+Fx2,k−1

)
v̇k−1 =−uk−1 rk−1 +

1
m

(
Fy1,k−1 cos(δ1,k−1)+Fx1,k−1 sin(δ1,k−1)+Fy2,k−1

)
ṙk−1 =

1
Jz

(
Fy1,k−1 a1 cos(δ1,k−1)+Fx1,k−1 a1 sin(δ1,k−1)−Fy2,k−1 a2

)
(3.65)

Finally the f (·) equations are given by:
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uk = uk−1 +∆t
(

vk−1rk−1 +
1
m

(
Fx1,k−1 cos(δ1,k−1)−

Fy1,k−1)sin(δ1,k−1)+Fx2,k−1

))
(3.66)

vk = vk−1 +∆t
(
−uk−1rk−1 +

1
m

(
Fy1,k−1 cos(δ1,k−1)+Fx1,k−1

sin(δ1,k−1)+Fy2,k−1

))
(3.67)

rk = rk−1 +∆t
(

1
Jz

(
Fy1,k−1a1 cos(δ1,k−1)+Fx1,k−1

a1 sin(δ1,k−1)−Fy2,k−1a2
))

(3.68)

Unlike in (3.63), in the other equations presented above the a-priori and a-
posteriori nomenclature is not reported for sake of simplicity, but note that all
the terms on the left side are the a-priori state estimate at time k and all the
term on the right side are the a-posteriori state estimate at time step (k−1).

The tyre forces are given by:

Fxi = F0,xi Gxi

F0,xi = Dxi sin{Cxi arctan [BxiKi −Exi(Bxiki − arctan(Bxiki))]}
Gxi = cos{Cc,xi arctan[Bc,xi αi −Ec,xi(Bc,xi αi − arctan(Bc,xi αi))]}

Fyi = F0,yi Gyi

F0,yi = Dyi sin
{

Cyi arctan [Byiαi −Eyi(Byiαi − arctan(Byiαi))]
}

Gyi = cos
{

Cc,yi arctan[Bc,yi ki −Ec,yi(Bc,yi ki − arctan(Bc,yi αi))]
}

(3.69)

where αi and ki are given by (1.29) and the subscript i refers to the axle (i = 1
if front axle and i = 2 if rear axle). As seen before the macro-parameter D
is given by (1.18), it is a quadratic function of the tyre vertical load. In this
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case the vertical load is referred to the axle, and sum the forces referring to
the same axle:

Fz1 = F0
z1
− ∆Zx

2
=

m g a2

l
− m ax h

l

Fz2 = F0
z2
+

∆Zx

2
=

m g a1

l
+

m ax h
l

(3.70)

Note that the term ∆Zyi is not present.
Only in the SO-EKF, the system equations include the second-order Taylor

expansion of f (·). Here is reported the general formulation6:

x̂−k = f (x̂+k−1,uk−1,0)+
1
2

n

∑
i=1

φiTr
[

∂ 2 fi

∂x2

∣∣∣∣
x̂+k−1

P+
k−1

]
+wk−1 (3.71)

where f (x̂+k−1,uk−1,0) is given by the equations (3.68) and P+
k−1 is the covari-

ance matrix of the a-posteriori state estimate at the time step (k− 1). The
second term at the right side is a three elements column vector.

3.5.3 Measurements equations

The measurements equations evaluate the measurements estimation zk at time
step k, knowing the a-priori state estimate x̂−k and the additional input values
uk at the same time step. In a mathematical form this means:

zk = h(x̂−k ,uk)+ vk (3.72)

The estimated measurement vector is

zk = [ω1,1k ,ω1,2k ,rk,ayk ,axk ]
T (3.73)

6Note that the argument uk−1 in the f (·) notation refers to all the additional input required
by the vehicle model, that are acquired by sensors. Do not confuse them with the longitudinal
velocity uk which is an element of the state vector, despite the same notation is used
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while the acquired signal vector is

yk = [ωENCODER
1,1k

,ωENCODER
1,2k

,rIMU
k ,aIMU

yk
,aIMU

xk
]T (3.74)

The functions h(·) attempt to estimate the yk using the vehicle dynamics
equations presented in Chapter 1. These latter are an approximation of the
real vehicle behaviour, so the estimated measurements are named zk.
As said before the first two equations descend from the kinematic longitudinal
tyre velocity, because the front wheel longitudinal slip can be considered null.
Considering the equation (1.23) :

V x11,k = (uK − rKt1/2)cos(δ11,k)+(vK + rK a1)sin(δ11,k) = ω11kRr1

V x12,k = (uK + rKt1/2)cos(δ12,k)+(vK + rK a1)sin(δ12,k) = ω12kRr2

(3.75)
where the tyre radius is considered constant and equal to the tyre geometric
radius. Thus handling the equations above:

ω11k =
cos(δ11,k)

Rr1

uk +
sin(δ11,k)

Rr1

vk +
a1 sin(δ11,k)− t1/2cos(δ11,k)

Rr1

rk

ω12k =
cos(δ12,k)

Rr2

uk +
sin(δ12,k)

Rr2

vk +
a1 sin(δ12,k)− t1/2cos(δ12,k)

Rr2

rk

(3.76)
unlike the system equations, in this case the two front wheels are considered
individually. Each steering angle is computed by the nonlinear equations
δ11,k = δ11,k(δSW ) and δ12,k = δ12,k(δSW ), where δSW is the steering wheel
angle.
The yaw rate is a state variable and an element of the estimated measurement
vector as well. It is acquired by the IMU, so the third equations of h(·) is an
identity:

rk = rk (3.77)
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The other two equations of h(·) descend from the single-track equilibrium
equations in (3.64):

ayk =
1
m

(
Fy1,k cos(δ1,k)+Fx1,k sin(δ1,k)+Fy2,k

)
axk =

1
m

(
Fx1,k cos(δ1,k)−Fy1,k sin(δ1,k)+Fx2,k

) (3.78)

Finally the functions of h(·) are given by (3.76), (3.77) and (3.78). Note that
it is not reported the nomenclature indicating the estimated value, for sake of
simplicity, but the terms uk, vk and rk are the a-priori state estimate value. The
tyre forces in (3.78) are the estimated value, which are based on the a-priori
state estimate (used for computing the slips).

3.5.4 Additional inputs

In the previous sections additional inputs are mentioned, they are measure-
ments acquired by sensor. These measurements require sensors which are
commonly used for the basic data acquisition, sometimes they equip common
vehicle and are used to prevent critical events. The additional inputs in this
application are:

• Steering wheel angle δSW

• Wheels rotational velocity ωi j

• Longitudinal acceleration ax

The first one is used to compute the steering angle of the front wheels in
(3.76), using a nonlinear steering law. In the other process equations the mean
value of the two steering angles is considered. The rotational velocity of the
wheels is used to evaluate the slip ratio in f (·) and h(·), again the mean value
of the angular velocities referring to the same axle is considered. Note that the
front wheels rotational velocity is used in yk. The Longitudinal acceleration
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is used in the computation of the tyre forces, because the macro-parameter
D is a quadratic function of the vertical load, as shown in (1.18). The tyre
vertical forces are given by (3.70).

3.5.5 Vehicle sensor description

The sensors employed are:

• Steering wheel encoder

• Front wheels encoder

• Electric motor encoder

• IMU

• S-motion

• Lidar

The first four sensors are necessary for filters working, the S-motion is used
to compare the results and the Lidar acquired data are not used in this thesis
work.

The front wheel encoder uses the Hall effect in order to provide the angu-
lar wheel velocity. One of the two poles rotates integrally with the wheel hub.
The sampling frequency is proportional to the angular velocity, so there is not
a fixed value.
The IMU used is produced by Izze-Racing and provides the two linear ac-
celerations and the yaw rate. The sampling frequency is 240 Hz and the
acceleration accuracy is minus than 1% of full scale (FS) and the angular rate
accuracy is minus than 1.5% FS. The default measurement range is ±8 g for
acceleration and ±245 °/s for angular rate.

The S-motion is produced by Kistler and enable direct, slip-free mea-
surement of longitudinal and transverse speed as well as Side-slip angle in
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Fig. 3.5 Strumented vehicle and sensors position

vehicle driving dynamics tests. It is used to compare the filter results, in fact
it acquires the longitudinal and lateral velocities (the vehicle side slip angle
is obtained using (3.59). The sampling frequency is 500 Hz and the speed
accuracy is minus than ±0.2% FS and the guaranteed angle measurement
accuracy is minus than ±0.2°. The default measurement range is ±200 km/h
for speed and ±30 ° for angles.
The lidar is produced by Velodine and provides high definition 3-dimensional
information about the surrounding environment. The sampling frequency is
20 Hz, but the acquired data are interpolated in order to reach 50 Hz.
The entire data-set is down-scaled to 50 Hz in order to be processed at the
same frequency, which will be the filter frequency.

3.6 Results and validation

In this section the obtained results are presented, comparing each estimate
VSA to the experimental one acquired by the S-Motion in four different test.
In fact the root mean square error (RMSE) of the estimated VSA is used as
term of comparison. The RMSE is computed each time step, at the generic
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time step k it is:

RMSEV SA
k =

√√√√ k

∑
i=1

β̂i −βi

k
(3.79)

Where β̂i is computed using (3.59) in which v̂i and ûi are the estimated value
at time step i, and βi is acquired by the S-motion. The map of the track is
here reported using the data acquired by the lidar.

Fig. 3.6 Track map

Moreover, the axle longitudinal and lateral forces against the correspond-
ing slip are reported for each test, the target values are obtained using a
technique based on the T.R.I.C.K. [44].The longitudinal forces at the front
axle, due to the rear wheel drive, are caused by the rolling resistance.

3.6.1 EKFs

This type of filters rely on the approximation of the nonlinear process. The
Jacobian and Hessian matrices are analytically computed and numerically
validated, this means that the filter does not execute the derivatives at each
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time step, saving computational burden. The results in term of VSA estimation
and RMSE are shown in the next figures.

The I-EKF is characterized by a low RMSE value at the beginning of each
run, this is because of the iteration cycles executed at each time step, which
refines the estimation. The number of iterations that the implemented I-EKF
execute each time step is 5, it is obtained by a sensitivity analysis, higher
value does not introduce any improvement in this case study. Comparing
the FO-EKF and the SO-EKF estimations, they are almost equal despite
the greater accuracy expected by the SO-EKF, due to the Hessian use. The
overall performance of the implemented EKFs are quite similar, but the
implementation of each filter does not. In fact, the FO-EKF is the most easy
to implement, it only needs the Jacobians computation, whereas the SO-EKF
requires the Hessians computation as well, that is quite tough considering the
implemented tyre model. The I-EKF is the most time consuming among the
EKFs, this is due to the iteration cycle.

Fig. 3.7 VSA estimated by EKFs and acquired by S-motion during test #1
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Fig. 3.8 Lateral and Longitudinal axle forces estimated by EKFs - test #1

Another filter’s index of performance taken into account in this work is
the run-time. The mean run-time required by each algorithm is reported in
the table 3.2. This may be useful in the real-time application, for this reason
the time taken by each implemented filter to estimate 1 s of real time acquired
data is considered.

Table 3.1 EKF RMSE mean values for each test.

[deg] TEST 1 TEST 2 TEST 3 TEST 4 MEAN
FO-EKF 2.52 1.18 2.23 2.02 2.03
I-EKF 2.46 1.26 2.09 2.26 2.02
SO-EKF 2.48 1.20 2.36 2.22 2.06

3.6.2 UKFs

This type of filters rely on the unscented transformation. The main difference
concerns the weights associated to the sigma points, the S-UKF does not
consider the central sigma point, all the others does. In the following figure
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Table 3.2 Time taken by each EKF implemented filter to estimate 1 s of real
time acquired data.

[ms/s] TEST 1 TEST 2 TEST 3 TEST 4 MEAN
FO-EKF 8.20 8.86 8.64 7.49 8.30
I-EKF 22.91 24.35 25.19 22.37 23.71
SO-EKF 18.26 20.63 19.31 17.84 19.01

the results of the filters in term of VSA estimation with RMSE and planar
forces is shown.

The G-UKF implemented is the version in (3.38), the parameters value
are:

α = 0.6

β = 2

k = 0

(3.80)

These values are the result of a sensitivity analysis. Note that α is higher
than the commonly used value (about 0.001), this means that the sigma points
are not so close to the mean state. In other words the central sigma point
affect the state estimation in a negative way in this application, in fact lower
values of α give higher RMSE values. In addition, considering the weights as
defined in (3.36) and also considering that for random variable with Gaussian
distribution k = 3− n with n = 3 in this application, therefore the G-UKF
becomes an S-UKF.

The SIMP-UKF and SPHE-UKF tunable parameters are the result of a
sensitivity analysis as well, in this case the tunable parameter is the central
sigma point weight, but this value affects all the other weight values as shown
in sections (3.2.3) and (3.2.3). They are both equal to 0.6.

The UKFs implemented exhibit different overall performance, there is
no one of them that is the best for each test. An optimization analysis of the
tunable parameters, integrated in the Q and R optimization method adopted,
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could lead to better results in term of VSA estimation. However unphysical
results may be obtained, this is because the optimizator attempts to minimize
the residual prediction error acting on the tunable parameters but it does not
take into account the physical effect of these values on the axle forces for
example. In other words, different local minimum of the prediction error
could be reached but this does not mean that all the others physical quantity
have reached their optimal values consistent with the expected or acquired
ones. This happens because the filter and the optimizator attempt to minimize
only the error between the state estimate and the true state measurement,
during training phase no information about the other quantities are provided.
In order to reach better results and above all consistent with the expected
ones, the optimization phase could take into account additional quantities.
Considering the implemented filters, better results have been reached in term
of RMSE but the axle forces does not exhibit the saturation effect that are
expected to be in according to the "target" value.

Fig. 3.9 VSA estimated by UKFs and acquired by S-motion during test #1
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Fig. 3.10 Lateral and Longitudinal axle forces estimated by UKFs - test #1

Table 3.3 UKF RMSE mean values for each test.

[deg] TEST 1 TEST 2 TEST 3 TEST 4 MEAN
S-UKF 2.10 1.32 2.38 1.59 1.85
G-UKF 2.40 1.06 2.72 2.87 2.26
SIMP-UKF 2.60 1.39 2.95 1.86 2.20
SPHE-UKF 2.17 1.43 2.82 2.70 2.28

3.6.3 PFs

This type of filter is based on the idea of represent the probability density
function using a set of random samples with associated weights, these samples
are randomly computed starting from the previous time step state estimate.
In order to compare the filters, based on different resampling strategies, the
random number generator is fixed.The number of particles is fundamental,
an higher number may lead to better accuracy in state estimation but the
sample impoverishment is always lurking. The simplest resampling strategies
are implemented, although the literature is plenty of other type of strategies.
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Table 3.4 Time taken by each UKF implemented filter to estimate 1 s of real
time acquired data.

[ms/s] TEST 1 TEST 2 TEST 3 TEST 4 MEAN
S-UKF 27.78 27.36 27.79 25.952 27.22
G-UKF 39.08 37.20 35.98 34.08 36.59
SIMP-UKF 25.73 25.13 23.28 22.24 24.10
SPHE-UKF 25.08 25.42 23.52 22.45 24.12

The aim of this choice is to explore the use of the PFs in vehicle dynamics
estimation, in particular in the VSA estimation, in fact no works about that
have been found in common literature. The main works available in common
literature use the PFs for tracking problem.
In the following figure the results of the filters in term of VSA estimation
with RMSE and planar forces is shown. The number of particles adopted is
30, it is a trade of between computational burden and estimation accuracy.
The resampling strategy is applied each time step, it is possible to not execute
it at each time step but several tests shown that better results in term of RMSE
are always achieved in the first case.
The estimated VSA, but all the other estimated quantities as well, are char-
acterized by a noisy trend. This is due to the fact that the sample are very
close one each other but the same sample has different weight factors at each
time stem, this means that at consecutive time step the estimated value is
not so close to the previous as in the previous filters. This effect is more
visible in the SYSres-PF and STRAres-PF, in which the random number of the
resampling strategy is always different (see algorithm (9) and (10)), however
in the MULTIres-PF could happen that the random number are very close
or even the same. Having different random number lead to a more effective
resampling e thus better filter accuracy.
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Fig. 3.11 VSA estimated by PFs and acquired by S-motion during test #1

Table 3.5 PF RMSE mean values for each test.

[deg] TEST 1 TEST 2 TEST 3 TEST 4 MEAN
MULTIres-PF 4.62 1.32 3.53 3.80 3.32
SYSTres-PF 3.26 1.38 3.24 3.65 2.88
STRAres-PF 4.28 1.44 3.88 3.99 3.40

3.6.4 Overall performance analysis

Concerning the obtained results, the EKFs and the UKFs show a better state
estimation using the vehicle model presented and the Pacejka macroparame-
ters computed. Considering the mean value of the RMSE computed per each
tests, the S-UKF exhibits the lowest value whereas the other UKFs exhibit a
value which is about the 20% higher; the EKFs show the same mean value
if compared one each other but this is about the 10% higher than the one
reached by the S-UKF; Finally, the SYSTres-PF shows the lowest RMSE
mean value if compared with the other implemented PFs, but if compared to
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Fig. 3.12 Lateral and Longitudinal axle forces estimated by PFs - test #1

Table 3.6 Time taken by each implemented PF filter to estimate 1 s of real
time acquired data.

[ms/s] TEST 1 TEST 2 TEST 3 TEST 4 MEAN
MULTIres-PF 311.0 310.9 306.0 305.8 308.5
SYSTres-PF 309.4 303.2 306.1 304.0 305.7
STRAres-PF 308.2 302.9 308.1 306.8 306.5

the others the PFs exhibit the higher values, in particular the STRAres-PF
shows the highest one. Concerning the computational burden required by
each state estimator which can be considered as proportional to the time taken
by the filter to estimate 1 second of real time, the FO-EKF is characterized by
the lowest amount of time required, thanks to its simple algorithm. The other
EKFs present a value which is about the 150% higher. Considering the UKFs,
the SIMP-UKF and the SPHE-UKF require lower run-time than the S-UKF
and the G-UKF, this latter is characterized by the highest one if considering
only the Kalman-based filters, it is about the 340% higher than the lowest
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one. Considering the PFs, the time required is one order of magnitude higher
than the Kalman-based one, they take about one-third of second to estimate 1
second of real time. However, the overall state estimate is not always accurate,
in same cases the estimate VSA is quite different than the actual one, this may
be mitigated adopting a complete Magic Formula, with micro-parameters
instead of macro-parameters. Moreover, it may be interesting to consider a
tricycle vehicle model instead of a bicycle one in order to take into account
the lateral load transfer effect.

In order to improve the VSA estimation the tyre model may be a key
factor, in this work the macro-parameters are fixed, but considering their
update during filter execution, due to thermodynamics and wear effect, could
lead to better results, and more important it could be possible, as mentioned
in the introduction of this chapter, estimate the multi-physical dynamics of
the tyre employing the described methodology.

Table 3.7 Overall RMSE mean values for each test.

[deg] TEST 1 TEST 2 TEST 3 TEST 4 MEAN
FO-EKF 2.52 1.18 2.23 2.02 2.03
I-EKF 2.46 1.26 2.09 2.26 2.02
SO-EKF 2.48 1.20 2.36 2.22 2.06
S-UKF 2.10 1.32 2.38 1.59 1.85
G-UKF 2.40 1.06 2.72 2.87 2.26
SIMP-UKF 2.60 1.39 2.95 1.86 2.20
SPHE-UKF 2.17 1.43 2.82 2.70 2.28
MULTIres-PF 4.62 1.32 3.53 3.80 3.32
SYSTres-PF 3.26 1.38 3.24 3.65 2.88
STRAres-PF 4.28 1.44 3.88 3.99 3.40
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Table 3.8 Time taken by each implemented filter to estimate 1 s of real time
acquired data.

[ms/s] TEST 1 TEST 2 TEST 3 TEST 4 MEAN
FO-EKF 8.20 8.86 8.64 7.49 8.30
I-EKF 22.91 24.35 25.19 22.37 23.71
SO-EKF 18.26 20.63 19.31 17.84 19.01
S-UKF 27.78 27.36 27.79 25.952 27.22
G-UKF 39.08 37.20 35.98 34.08 36.59
SIMP-UKF 25.73 25.13 23.28 22.24 24.10
SPHE-UKF 25.08 25.42 23.52 22.45 24.12
MULTIres-PF 311.0 310.9 306.0 305.8 308.5
SYSTres-PF 309.4 303.2 306.1 304.0 305.7
STRAres-PF 308.2 302.9 308.1 306.8 306.5



Chapter 4

Advantages of tyre state
knowledge in motion planning

4.1 Introduction

The information concerning the vehicle’s non-linear physical limits depending
on the thermal and wear states of tyres, the pavement characteristics, and the
boundary conditions (wet or icy ground, under-inflated or worn tyre, etc.),
as shown in the previous chapters, represents a fundamental additional value
for the optimal behavior of safety- and performance-oriented control logics
[18, 163, 164].

The objective of this chapter consists in the integration of the information
concerning the tyre dynamic limits within the definition of a virtual driver
(VD), implemented as a vehicle controller aiming at testing the vehicle behav-
ior at limit of handling condition, and demonstrating the advantages in terms
of both enhanced active safety and optimized performance.

An interesting VD definition that addresses the problem of real-time
obstacle avoidance on low-friction road surfaces has been proposed in [165],
where the code generation tool ACADO [166] has been used to define and
solve the NMPC problem.
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The main advantages of the NMPC approach are the capability of the
controller of handling all significant features of the process dynamics directly:
in this way, the constraints on variables involved in the task (track limits,
actuator constraints) can be easily integrated into the optimal control problem,
hence guaranteeing the maximal exploitation of vehicle capabilities. More-
over, it is a predictive technique that allows optimizing the vehicle behavior
over a future horizon in time, and therein system states and controls. In this
way, the controller is allowed to retrieve information about future vehicle be-
havior and about possible dangerous situations, aiming at anticipating actions
and providing suitable controls for challenging vehicle handling.

The information concerning the vehicle non-linear physical limits depend-
ing on the thermal and wear states of tyres, the pavement characteristics and
the boundary conditions (wet or icy ground, under-inflated or worn tyre, etc.)
represents a fundamental additional value for the optimal behavior of safety-
and performance-oriented control logics [167–169], as it allows to maximize
the potential to avoid obstacles and to reduce the severity of collisions [25].

This study aim to lay the foundation of the future advanced driving sys-
tems, sensitive to environmental conditions and adaptive to continuously
varying characteristics of the underlying non-linear system. Being currently
mainly based on mere empirical calibration, the physical model-based estima-
tion can represent a crucial factor towards the improvement of the pedestrians’
and passengers’ active safety, enabling the management of the activation
threshold ranges on the basis of the instantaneous operating and the environ-
mental boundary conditions [170, 171]. This can be already employed in the
current ADAS to communicate to the driver the necessity to co-act in specific
situations, but it also constitutes a fundamental root for the future driving
automatization [172, 173].
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4.2 Plant model

The plant model has to reproduce with high fidelity the real vehicle in order
to test the control logic with a good level of accuracy. For this reason, to
parametrize the vehicle and the tyre model, have been collected data with a
chosen GT vehicle in a specific test session on track. Due to a non-disclosure
agreement with the industrial research partner, the vehicle and the track will
not be specified. The described vehicle model will be considered also for the
application reported in the Chapter 5 and 6.

The track session has consisted of handling tests in the widest possible
range of tyre operating conditions in terms of temperature, pressure, and wear
level. Following the vehicle model parametrization and the tyre parameters’
estimation procedures described in [44, 121], the vehicle non-linear system
has been completely characterized in all the conditions of interest, being able
to faithfully reproduce the experimental data in the virtual environment.

The vehicle plant has been modelled in 14 degrees of freedom (DoF),
based on the mathematical representation described in [174], has been mod-
eled in a MATLAB/Simulink environment as follows:

• 6 DoF to reproduce longitudinal, lateral, vertical, pitch, roll, and yaw
motion of the vehicle body;

• 4 DoF concerning the wheel rotation and 4 DoF for the wheel normal
displacement, with the hypothesis that the degrees of freedom to the
relative motion between the wheel and the vehicle body can be ne-
glected along the longitudinal and lateral directions, allowing only the
independent rotational and vertical displacements.

Furthermore, the parameterized vehicle is rear-wheel drive with front
steering and internal combustion engine. The tyre model is described by
Pacejka’s magic formula model, whose parameters have been characterized
for different conditions of temperature, pressure, and wear as described in
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the Chapter 2. Per each road surface under study (dry, wet, snowy, and icy),
the tyre-road friction coefficient has been supposed constant and is applied
as an additional scaling factor of the λµx and λµy parameters [94], linearly
combining the tyre characteristics identified on a reference road with the ones
potentially achievable on diverse pavement surfaces.

The vehicle dynamic behavior in the reference tyre conditions has been
validated in a slow-ramp-steer maneuver, whose parameters are summarised
in the Table 4.1 and outputs are illustrated in the Figure 4.1, feeding the model
with the steering input presented in the Figure 4.2a):

Table 4.1 Slow-ramp-steer inputs

Description Value Unit

start time 13.26 s
end time 20.3 s

initial velocity 27.9 m/s
initial gear 3 -

ramp duration 7.04 s
initial steer 0 deg
slope steer −22.29 deg/s

4.2.1 Validation

For the validation purpose, lateral acceleration ay, steering angle δ , side
slip angle β have been compared for the same inputs. Figure 4.1 shows the
comparisons between experimental data and model outputs shown on the
classic ay −δ and ay −β diagrams. An aspect that is worth pointing out is
the difference between the black dashed and continuous lines: the first one
is obtained using the starting parameters provided by the research partner,
the second one is obtained employing the calibration procedure described in
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Fig. 4.1 Comparison between outdoor acquisitions and simulation output. (a)
Steering angle vs. lateral acceleration diagram. (b) Sideslip angle vs lateral
acceleration diagram.
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Fig. 4.2 Example of lateral maneuver’s input reproduction. (a) Experimental
and simulation steering angle comparison. (b) Slow-ramp-steer trajectory in
virtual environment.

[121]. In particular, the starting under-steering characteristics (dashed lines)
have been revised better identifying the parameters linked to the anti-roll
bars stiffness and the steering maps, leading to a less under-steering behavior
within the handling diagram, in agreement with the experimental data.

The enhanced parametrization has led to a higher slope in the linear
section (Figure 4.1a), but also higher lateral grip and side-slip angle values,
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related to the rear axle behavior (Figure 4.1b). Once the vehicle and the
tyres’ subsystems have been properly characterized in the specific range of
temperature, pressure, and wear, the validity range of the MF tyre model has
been extended adopting the MF-Evo one, described in [101]. In particular,
the tyre model calibration process can be summarized in three fundamental
steps: the first one is related to the pre-processing of the experimental data
(which allows to discern useful information contained in the acquired data
and to eliminate the non-physical outliers); the second one concerns the
identification of the standard MF micro-coefficients in a specific range of
temperature, pressure, and wear; the third step aims at the calibration of
the additional multi-physical analytical formulations, taking into account of
the entire dataset and, thus, extending the tyre model towards thermal and
degradation phenomena.

The calibration results are visible in terms of adherence ellipse in the
Figure 1.6, where the experimental data have been compared towards the MF
and MF-evo outputs within different temperature working ranges of the tyre.
Finally, the parameters of the MF-evo model have been further modified to
extend the applicability of the tyre model on different road surfaces, modifying
the identified friction factors towards the pavement characteristics, as reported
in the Table 4.2. The resulting interaction characteristics for different tyres, in
diverse thermodynamic conditions and in contact with different road surfaces
have been summarized in Figures 4.3 and 4.4.

In steady-state conditions, the global force exerted by the tyres is in a dy-
namic equilibrium with the centrifugal force, as a function of the longitudinal
velocity of the vehicle v and the instantaneous cornering radius R, relating the
lateral acceleration ay and the longitudinal velocity v of the vehicle’s center
of mass (CM) by the equation:

ay =
v2

R
; (4.1)
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Fig. 4.3 New tyre in optimal thermal condition in contact with different road
surfaces. (a) Lateral interaction characteristics. (b) Adherence ellipse.

Table 4.2 Summary of the velocity maximum values assumed for each road
scenario.

Friction Coefficient Lateral Acceleration Longitudinal Velocity
[−] [m/s2] [m/s]

0.35 0.35 5.92
0.55 0.70 8.37
0.80 1.50 12.2
1.00 2.52 15.9

To demonstrate the potential influence of the road surface characteristics
on the overall vehicle behavior, a set of simulations has been conducted with
different tyre parameters described in Figure 4.3 in a steady-state lateral slow-
ramp-steer (SRS) maneuver. The maximum achievable value of the forward
velocity v for a given curvature and ay −δ characteristics are reported for dry,
wet, snowy, and icy pavement conditions in the Figure 4.5a,b, respectively.
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Fig. 4.4 New and worn tyres in diverse thermal conditions in contact with the
dry road. (a) Lateral interaction characteristics. (b) Adherence ellipse.

(a) (b)

Fig. 4.5 SRS maneuver on different road surfaces. (a) Vehicle understeer
characteristics. (b) Maximum velocity achieved.

4.3 Motion planning

4.3.1 Model predictive control

Model Predictive Control (MPC) is a control technique that utilizes an analyt-
ical model of the system, along with possible constraints, in order to predict
its future evolution. The main concern of MPC is to obtain a control input that
minimizes a certain objective function which represents the future behavior of
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Fig. 4.6 MPC block scheme.

the system in a specific, finite prediction time horizon [t0, t f ]. However, only
the first step of the optimal input is actually applied to the system. Indeed
the prediction horizon is shifted forward by one step and the minimization
problem is solved again using the new systems states as initial conditions.
This procedure is repeated at each sampling instant, so the overall control
technique solves a sequence of optimization problems in an on-line fashion,
based on the last measurement of the system state.

An MPC-based control strategy has several positive aspects, namely the
ability to handle multiple-input multiple-output (MIMO) systems, the possi-
bility to include the constraints of the system in the minimization problem and
the achievement of an optimal behavior operating in closedloop. However,
the computational cost of solving the minimization problem is often quite
high, which can prevent a real-time implementation of the control scheme.
Fig. 4.6 shows the block diagram of a typical MPC workflow.

4.3.2 NMPC

If the considered system follows a non-linear evolution model, MPC is termed
Nonlinear Model Predictive Control (NMPC). The non-linearities of the
model give a more detailed representation of the system, leading to a more
precise control response, while increasing the complexity of the optimization
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problems involved with respect to a linear system. For this reason, the
minimization problem could be too complex for a real-time solution, and
other strategies are in order like the choice of a sub-optimal solution that still
satisfies the constraints. The MPC schemes with a sub-optimal solution can be
classified according to the solution method. Numerical methods for solving
optimization problems are divided into direct and indirect methods. The first
are based on a suitable parametrization of the problem in continuous time, in
order to obtain a finite-dimensional non-linear programming problem. The
second exploit calculus of variations or the Pontryagin’s Maximum Principle.

Optimal control problem

Consider a non-linear system with system state vector x ∈ Rnx , control in-
put vector z ∈ Rnz and denote by p ∈ Rnp the vector containing the system
parameters. The system model can be written as

ẋ(t) = f (t,x(t),u(t); p) (4.2)

Eq. 4.2 refers to a system of ordinary differential equations (ODE) and
represents the dynamics of the process to be controlled. Given an initial
condition x(t0) = x0 and a control trajectory u(t), the existence of a unique
solution x(t) on a certain interval, i.e. t ∈ [t0, t f ], is ensure by Picard’s
existence theorem, under the hypothesis that f is uniformly Lipschitz in x and
u and continuous in t [175]. The MPC formulation is based on the solution at
each time instant of a minimization problem of the form
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min
x(·),u(·)

J̃ =
∫ t f

t0
φ(t,x(t),u(t); p),dt +Φ(x(t f ))

s.t. x(t0) = x0

ẋ(t) = f (t,x(t),u(t); p) ∀t ∈ [t0, t f ]

r(x(t),u(t); p)≤ 0 ∀t ∈ [t0, t f ]

l(t f )≤ 0

(4.3)

where φ and Φ are the objective functions, r the constraints on the trajec-
tories, l the limit conditions. Given the current state x0, an optimal solution
(x(·),u(·)) in the prediction horizon [t0, t f ] can be computed using Eq. 4.3.

Direct multiple Shooting

Direct methods for solving optimal control problems are very popular, due to
their flexibility and the fast implementations of numerical solvers. The basic
idea is to parametrize the minimization problem in such a way that it can be
solved by available advanced numerical solvers. There are several ways to
parametrize the state and the control variables in Eq. 4.3, in particular we
mention multiple shooting as an effective approach in NMPC applications
[176]. In direct multiple shooting the prediction horizon is divided into N
temporal intervals (also called shooting intervals) defined as [tk, tk+1] with
k = 0,1, . . . ,N−1, and is therefore decomposed in N+1 points on a temporal
grid: t0 < t1 < .. . < tN = t f . The control trajectory is then parametrized on
these intervals, utilizing a piecewise linear representation defined as:

u(t) = uk ∀y ∈ [tk, tk+1] (4.4)

The state x(t) is also parametrized on N intervals, and N + 1 shooting
points (s0,s1, ...,sN) are introduced as additional optimization variables. Each
point sk is defined exactly on the points tk of the temporal grid and represents
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the initial condition of the subsequent initial value problem on the shooting
interval [tk, tk+1]:

ẋ(t) = f (t,xk(t),uk(t); p) ∀t ∈ [tk, tk+1], xk(tk) = sk (4.5)

The dynamic constraints defined in Eq. 4.3 become then continuity
constraints:

sk+1 = Ξ(tk,sk,uk; p) k = 0,1, ...,N −1 (4.6)

where Ξ(·) is an integration operator that solves the initial value problem
in Eq. 4.5 and returns the solution evaluated in the final point tk+1. Similarly,
the constraints on the trajectories in Eq. 4.3 are parametrized on the points
defined in discrete time:

r(sk,uk; p)≤ 0 k = 0,1, ...,N −1 (4.7)

Finally, the objective function J̃ is rewritten as follows

N−1

∑
k=0

J̄k =
N−1

∑
k=0

∫ t f

t0
φ(tk,sk,uk; p),dt +Φ(sN) (4.8)

and can be approximated using a discrete sum

N−1

∑
k=0

J̄k =
N−1

∑
k=0

φ(tk,sk,uk; p)dt +Φ(sN) (4.9)

Therefore, given the parametrizations in Eq. 4.5, 4.7 and 4.9, the opti-
mization problem in Eq. 4.3 can be rewritten as follows
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min
x(·),u(·)

N−1

∑
k=0

φ(tk,sk,uk; p)dt +Φ(x(t f ))

s.t. s0 = x0

sk+1 = Ξ(tk,sk,uk; p) k = 0,1, . . . ,N −1

r(sk,uk; p)≤ 0 k = 0,1, . . . ,N −1

l(sN)≤ 0

(4.10)

where s = [sT
0 ,s

T
1 , . . . ,s

T
N ]

T , and u = [uT
0 ,u

T
1 , . . . ,u

T
N ]

T are the state and
input variables, respectively. An explanatory plot for the direct multiple
shooting is depicted in Fig. 4.7 and Fig.4.8. In the first step, a guess of the
total state and of the control trajectory is necessary to solve the problem,
however this guess may not satisfy all the constraints. In practice, all the
constraints in Eq. 4.10, in particular the continuity constraints of Eq. 4.5
are usually violated in the beginning and during the solution of the non-
linear programming problem, while they are completely satisfied only when
reaching the optimal solution.

Fig. 4.7 Multiple shooting initial discontinuous trajectory.
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Fig. 4.8 Multiple shooting final continuous trajectory.

NLP algorithm

Consider now the problem in Eq. 4.10 which can be rewritten in standard
form as

min
z

a(z)

s.t. b(z) = 0

c(z)≤ 0

(4.11)

where

z = [zT
0 ,z

T
1 , . . . ,z

T
N−1,sN ] ∈ Rnz

zk = [sT
k ,u

T
k ] ∈ Rnx+nz k = 0,1, . . . ,N −1

(4.12)

is a vector that contains all the optimization variables, while the functions
b : Rnb → Rnz , c : Rnc → Rnz contain all the constraints given as
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b(z) =


x0 − s0

Ξ(s0,u0)− s1
...

Ξ(sN−1,uN−1)− sN

 c(z) =


r(s0,u0)

...
r(sN−1,uN−1)

l(sN)

 (4.13)

A possible way of solving such non-linear programming problem involves
using the Sequential Quadratic Programming (SQP) technique [177]. In SQP
the solution is reached iteratively, using a local quadratic approximation of
the objective function and linearizing the constraints. The optimal solution
z∗ is reached when the Karush-Kuhn-Tucker (KKT) firstorder optimality
condition relatively to problem 4.12 is satisfied with a user-defined level
of approximation. A possible improvement on the above algorithm can be
derived by noticing that the non-linear program does not vary substantially
between two consecutive sampling instants (if a sufficiently high sampling
frequency is used) . Moreover, a lower precision of the optimal solution
could be enough given that it is often the case where it is not required with
perfect accuracy. The Real-Time Iteration (RTI) [175] scheme exploits the
above considerations and allows obtaining a fast implementation stopping the
SQP method at the first iteration and returning a suboptimal solution of the
problem.

MATMPC

Recently, many open-source softwares have been developed for the solution
of MPC problems, but not many are at the same time easy to use, efficient and
suited to NMPC problems. Indeed, the difficulty of an efficient linearization
and the complexity of non-convex optimization make the adaptation of MPC
solvers for NMPC problems difficult. In this thesis, the MATMPC packet
was used. This software is MATLAB-based and tailored for solving NMPC
problems; it was developed at the University of Padova by Yutao Chen [175].
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Fig. 4.9 MPC block scheme.

Among the advantages of using MATLAB as a base software it can be
count the simplicity of utilization, the availability of many linear algebra
routines, and the computational efficiency granted by MATLAB Executable
(MEX) functions which allow the seamless integration of C or Fortran code
into the process. The MATMPC workflow is presented in Fig. 4.9 . MATMPC
requires a continuous-time model, implemented with the CasADi program-
ming language [20], which is discretized with the multiple shooting described
in Section 4.3.2 exploiting the Runge-Kutta numerical integrator. At this
point the problem is prepared for a specific solver. In particular in this thesis
the hpipm sparse solver is employed, which uses interior point method (IPM)
for solving sparse QP problems. Next, an iterative procedure is executed to
reach an optimal solution where the local minima is found using a line-search
algorithm. Then, the KKT first-order optimality conditions are evaluated at
this point: the lower the KKT value, the more the solution is close to the real
one.

4.4 Controller model

A four-wheel vehicle model based on the description in [178] has been used
as the internal model for the NMPC controller. Specific characterization of
load transfers, gear shift predictions, longitudinal force saturation, and an
ellipsoidal tyre friction constraint have been also introduced in the model



4.4 Controller model 177

definition to improve the overall prediction capabilities of the controller.
Finally, the model dynamics have been reformulated in spatial coordinates
with respect to the curvilinear abscissa s along the track. In this way, track
constraints can be defined with respect to space and the time can be considered
as a minimization variable, as already highlighted in previous works [179,
180, 178].

The continuous-time dynamics model is described as

ξ̇ = φ(ξ (t),u(t); p(t)) (4.14)

where the state is represented by ξ (t) ∈ Rnx , u(t) ∈ Rnu is the input, whereas
the time-varying parameter vector is p(t) ∈ Rnp .
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where longitudinal and lateral positions are x, y, while ψ is the yaw angle.
m and Iz are the mass and the inertia around the vertical axis of the vehicle,
respectively. a,b,c are the vehicle dimensional parameters, front wheels
to CM longitudinal distance, rear wheels to CM longitudinal distance, and
wheels to CM lateral distance, respectively. F{x,y}{i, j} are the lateral and
longitudinal forces on the wheels and Fd

x is the longitudinal drag force in the
vehicle’s reference frame. Subscripts i ∈ { f ,r} refer to front or rear wheels,
j ∈ {l,r} left or right wheels. Figure 4.10 illustrates the physical quantities
involved and the reference systems chosen. δ f is the steering angle of the
front wheels, assumed the same for the both front tyres, and β f , j is the side
slip angle of the f , j-th tyre. The projection of cornering and longitudinal
forces in the vehicle frame, the position and the dynamics of the vehicle’s
CM in the inertial frame X ,Y , and the vehicle side slip angle β are described
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in [178], whereas the longitudinal drag force and the down-force are modeled
as [181].

Fig. 4.10 Internal vehicle model for control.

Differently from [178], the longitudinal tyre forces in each wheel reference
frame are computed as

Fli, j = fengi, j − fbrki, j (4.16)

where the engine and braking forces are

fengi, j = sat
(

τengi

rw
µFzi, j

)
, fbrki, j = sat

(
τbrki

rw
µFzi, j

)
(4.17)

where µ is the tyre friction coefficient, rw is the wheel radius and the saturation
function is defined in (4.20). Then, the engine and braking torques at the
wheels are:

τengi = γt (τ
max
eng,i − τ

min
engi)+ τ

min
eng,i, τbrki = γb τ

max
brk,i (4.18)

where γt,b are the normalized throttle and braking efforts, τmax
brk,i is the maxi-

mum torque given by the braking system to front/rear wheels, τmax
eng,i and τmin

eng,i
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are the maximum and minimum torque values expressed by the engine at
front/rear wheels at a given gear and are changed as a time-varying param-
eter to the actual model gearshift. To compute the torques in the prediction
horizon, an iterative strategy predicting the engine rpm, and, hence, gearshift,
based on the predicted velocity is used [178]. Specifically, the engine rpm
quantity is computed as

rpmpred =
vpred

x

rw

diffratio

gearratio

60
2π

(4.19)

where diffratio and gearratio are the input/output torque ratios at the differential
and at the gearbox (in a specific gear), respectively. The dependence of
τ

max,min
eng,i w.r.t. the engine rotational velocity has been neglected. Finally, the

saturation function is defined as:

sat( fa, fb) =
fb

1+ exp(−5( fa
fb
− 1

2))
(4.20)

The normal forces Fzi, j are modeled considering the load transfer in steady-
state condition as described in [37]. The algebraic loop in the model has
been avoided by considering Fsat0

x (total longitudinal force expressed in the
vehicle frame saturated at nominal Fz) and Fstatic

y (the sum of the lateral forces
computed at nominal Fz on each wheel) as the forces used for the load transfer
dynamics.

Finally, the lateral forces model is based on the simplified MF model
described in [11], expressed by means of the macro-parameters B,C,D,E.

4.4.1 NMPC Algorithm

The goal of the NMPC controller for the virtual driver is to compute a reliable
sequence of steering, throttle, brake commands in a prediction horizon, given a
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tailored cost function. The NMPC algorithm is based on MATMPC [182, 183],
described in the previous paragraphs.

In MATMPC, a non-linear programming problem (NLP) is formulated at
sampling instant i by applying direct multiple shooting [184] to an optimal
control problem (OCP) over the prediction horizon S = [s0,s f ], which is
divided into N shooting intervals [s0,s1, . . . ,sN ], as follows

min
ξ·|i,u·|i

N−1

∑
k=0

1
2
∥hk(ξk|i,uk|i)∥2

W +
1
2
∥hN(ξN|i)∥2

WN
(4.21)

s.t.0 = ξ0|i − ξ̂0 (4.22)

0 = ξk+1|i −φk(ξk|i,uk|i; pk|i), k ∈ [0,N −1] (4.23)

rk|i ≤ rk(ξk|i,uk|i)≤ rk|i, k ∈ [0,N −1] (4.24)

rN|i ≤ rN(ξN|i)≤ rN|i (4.25)

where ξ·|i = (ξ⊤
0|i,ξ

⊤
1|i, . . . ,ξ

⊤
N|i)

⊤, and u·|i = (u⊤0|i,u
⊤
1|i, . . . ,u

⊤
N−1|i)

⊤, while ξ̂0

represents the measurement of the current state. System states ξk|i ∈ Rnξ are
defined at the discrete arc-length point sk for k = 0, . . . ,N and the control
inputs uk|i ∈Rnu for k = 0, . . . ,N−1 are piece-wise constant. Their definitions
are given in (4.26) and (4.27). Here, (4.24) is defined by r(ξk|i,uk|i) : Rnξ ×
Rnu → Rnr and r(ξN|i) : Rnξ → Rnl with lower and upper bound rk|i,rk|i.
Equation (4.23) refers to the continuity constraint where φk(ξk|i,uk|i; pk|i)

is a numerical integration operator that solves (4.28) with initial condition
ξ (0) = ξ0|i and returns the solution at sk+1. The time has been included as a
state variable with the following ODE ṫ = 1

ṡ to fulfil the minimization of the
travel time over the prediction horizon. The full state vector is then given by:

ξ = [ẋ, ẏ, ψ̇,eψ , ey, δ f , γt , γb, t]T (4.26)
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where eψ , ey are orientation and lateral error of the vehicle with respect to the
center-line of the path, respectively. The input computed by the algorithm is
then:

u = [δ̇ f , γ̇t , γ̇b, εslip εerr, εgg]
T (4.27)

where δ̇ f , γ̇t , γ̇b are the derivatives of the actual input to the vehicle and ε are
slack variables. This formulation allows a smooth action of the controller and
avoids too aggressive, unrealistic behaviors.

The dynamics equation of the model used in the NMPC algorithm can be
compactly written as

ξ
′ = φ(ξ (s),u(s); p(s)), (4.28)

where p(s) =
[
ζ (s),τMAX,min

eng,i (s)
]T

.
The real-time iteration scheme (RTI) [185] is employed to reduce the

time required to solve the (4.21) problem. Moreover, a non-uniform grid
strategy [186] has been used for lowering the computational burden and
let the controller predict a sufficiently long horizon (chosen 400 meters in
advance for the specific vehicle).

The cost function for the NMPC is defined as:

hk(ξk,uk) = [β ,γt · γb,ζ · γt , t, δ̇ f , γ̇t , γ̇b,εslip,εerr,εgg]
⊤,

hN(ξN) = [β ,γt · γb,ζ · γt , t,ey − eref
y , ėy,eψ − eref

ψ +

+β , ėψ ]
⊤.

(4.29)

The penalty on the vehicle side slip β is used to limit the sliding behavior
of the vehicle; simultaneous throttling and braking are penalized by the cost
γt · γb. The ζ · γt cost is included to make the controller accelerate smoothly
during the final phase of the track corner exit. The objective variable time t is
added to minimize the time on the prediction horizon. Smooth control actions
are ensured by the objective terms on the inputs. The three slack variables are
also adopted to define the soft constraints [187], which increase the robustness
of the overall procedure. Finally, the terms related to errors ey and eψ , used
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only as terminal objective variables, are introduced to integrate information
about the trajectory over the prediction horizon.

The constraints are defined as

rk = [δ f ,γt ,γb, δ̇ f , γ̇t , γ̇b,εslip,εerr,εgg,β + εslip,

ey + εerr,(µx
ẍext

g
)2 +(µy

ÿext

g
)2 + εgg]

⊤,

rN = [δ f ,γt ,γb]
⊤

(4.30)

where the constraints on δ f ,γt , and γb are intrinsic bounds of the actual vehi-
cle controls, while those on δ̇ f , γ̇t , and γ̇b are added in order to improve the
smoothness of the computed inputs and can be used to easily tune the aggres-
sivity of the NMPC driving commands. Additionally, the slack variables have
been constrained in order to help the optimization procedure restricting the
search space of the inputs. The slack variables are used for defining the soft
constraints: the first one is introduced on the side-slip of the vehicle and helps
the controller to regain control of the vehicle in case of high skidding; the
second one is used to correct the trajectory when the vehicle is out of track;
the third one instead is designed to make the controller respect the required gg
diagram, which represent the maximum combined longitudinal-lateral accel-
eration that can be induced by the combined longitudinal-lateral behavior of
the specific tyre spec [188]. µx and µy are the longitudinal and lateral friction
coefficient of the tyres, respectively, whereas the considered accelerations on
the vehicle are

ẍext =
∑i, j Fxi, j−Fx

d

m

ÿext =
∑i, j Fyi, j

m

(4.31)

At the i-th sampling instant, considering that the QP solution is ∆ui∗ , the
control input is updated by

ui∗ = ui−1∗ +∆ui∗ (4.32)
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The first sample of ui∗ is applied to the vehicle, the prediction horizon is
shifted forward and the optimization procedure is repeated with updated state
measurement.

4.5 Co-simulation platform

The co-simulation platform, represented in the Figure 4.11, is composed of
the following subsystems:

• Plant model: a 14 DoF vehicle model reproducing the overall vehicle
dynamics behavior;

• Road pavement: a boundary condition module concerning the asphalt
condition and computing the tyre-road friction coefficient to reproduce
dry, wet, snowy, and icy contact;

• Tyre: MF-Evo tyre model reproducing the tyre dynamic behavior in
different thermal and wear conditions;

• Path reference: the track geometrical representation defined by the
specific maneuver and employed to compute the cost function.

The maneuver chosen for the current study is the emergency double-lane-
change maneuver, generally performed on the highway to overtake another
vehicle [189]. The test is commonly adopted because it correlates the ability
of controlling the vehicle at the limits of handling with an enhanced safety
for the vehicle occupants in scenarios concerning the presence of obstacles
on the path [190]. Given the criteria for ideal lane-change path, prescribing
a minimal length path with a smooth and continuous curvature at a given
vehicle forward velocity, the trajectory of the DLC maneuver is computed
without violating the track boundaries and assuring that all the tyres remain
always in contact with the road surface (possible lift motions are avoided
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Fig. 4.11 Co-simulaton platform.

with constraints modelled within the maximum load transfers, as described in
[191]).

The co-simulation is conducted in MATLAB/Simulink environment, cou-
pling the plant model with NMPC controller and performing the dynamic
simulation of the plant model at fsim = 1000 Hz, while the control action is
updated by NMPC at fctrl = 100 Hz. The simulations have been computed
on a Windows 10 machine with Intel(R) Core(TM) i7-7700HQ @ 2.80GHz
CPU.
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4.6 Scenario and results

The knowledge of the instantaneous and potential grip directly on board
and in real-time potentially allows the vehicle control logic to maximize the
probability of avoiding obstacles and reducing the severity of collisions. To
investigate the possible outcomes of a model-based control within a vehicle
safety-linked scenario, the authors have performed within the DLC maneuver
a complete design of experiment comprehending:

• Case A: the adoption of two different sets of NMPC weights (best and
global) in the definition of the cost function.
The best NMPC set of weights addresses the maximum achievable per-
formance of the underlying vehicle plant model, specifically calibrated
for a new tyre working in the optimal thermal range in contact with
the dry road, whereas the global NMPC set of weights represents the
trade-off solution to guarantee ability of the vehicle to complete the
DLC maneuver in the worst proposed dynamic scenario, i.e., a worn
cold tyre in contact the icy road surface. In this case, the parameters of
the plant and the controller models are the same for each simulation;

• Case B: the analysis of the vehicle dynamic response in case of different
tyre thermal and ageing conditions on the same road and in case of the
tyre with a specific thermal and wear state on different pavements. In
this case, the parameters of the plant and the controller models are the
same for each simulation;

• Case C: the possibility to employ the non-linear model predictive con-
troller calibrated with the average set of weights in conditions where
the parameters of the controller model can be updated in real-time on
the basis of the actual state of the plant model or can be constant and
with an estimation on the friction value affected by a percentage error
respect the real value.
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This particular scenario has been conducted to highlight the importance
of the correct estimation of the parameters of the controller model,
potentially aware of the actual knowledge of tyre-road friction. The
simulation outputs with average tyre parameters within the controller
model have been compared towards the ones obtained with the instan-
taneous parameters of the co-simulated vehicle plant to put in evidence
the importance of the correct information concerning the tyre friction
and stiffness for the vehicle dynamics control.

The simulation outputs have been compared in terms of the vehicle trajec-
tory, the forward velocity, the vehicle side slip angle, and yaw angle.

4.6.1 Case A

In this section, the impact of two possible sets of weights, defined within the
NMPC cost function, is investigated. Both the plant and controller models
share the same model parameters of a new tyre in the optimal thermal window
in contact with the dry road.

The best set of NMPC weights represents the most suitable solution to
perform the DLC maneuver with both the plant model and the controller
model in the maximum performance conditions of the tyre, corresponding the
the maximum dynamic limits of the vehicle. The global set of NMPC weights
stands for the conservative trade-off solution, calibrated to guarantee the
accomplishment of the maneuver in all the possible tyre-linked and boundary
conditions, in which the plant and controller models share the same physical
parameters (i.e., the performance of the vehicle controller is limited by the
worst possible dynamic scenario of a cold and worn tyre in contact with the
icy road).

In the Figure 4.12a the trajectories of the vehicle with the best (red) and
global (black) sets of NMPC weights are compared. It is easy to observe
that the optimized set of weights allows the vehicle performing at a larger
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trajectory and achieving significantly higher velocities both in the first part of
the curves and at the end of the DLC maneuver (Figure 4.12 b). It is worth
highlighting that the best set also demonstrates higher side slip and yaw
angles (Figure 4.13 a,b), because it is specifically optimized to perform in the
scenario of a new optimal tyre in contact with the dry road, therefore allowing
the vehicle to reach the actual friction limits. Furthermore, the best set allows
the vehicle to approach to the DLC manuever and to end the scenario 6.62
and 8.34 seconds before, respectively (Figure 4.13 c).

(a) (b)

Fig. 4.12 (a) Vehicle trajectory performed in the DLC maneuvers in a different
road surface (dry in black, wet in red, snow in blue, and icy in light blue),
but with the same tyre (new tyre in optimal range temperature) for a NMPC
tuned to better perform the maneuver in all road surface, tyre, and temperature
condition. (b) Vehicle velocity.

(a) (b) (c)

Fig. 4.13 (a) β angle. (b) Yaw angle. (c) Time.
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4.6.2 Case B

In this section, only the global set of NMPC weights has been employed to
compare the dynamic response of the vehicle in two scenarios: (1) different
road characteristics (dry, wet, snowy, and icy) with the new tyre within the
optimal thermal range, and (2) different tyre thermal and ageing conditions in
contact with the dry road. The plant and the controller models share the same
physical parameters for each iteration.

• Scenario B1
In the Figure 4.14a it is possible to observe how the vehicle maneu-
ver characterized by the highest friction coefficient (dry pavement)
performs the DLC with a largest trajectory and the highest velocity
Figure 4.14b in minimum amount of time Figure 4.15c and Table 4.3.

(a) (b)

Fig. 4.14 (a) Vehicle trajectory. (b) Vehicle velocity.

Since the global NMPC set is limited by the most critical dynamic con-
dition (worn cold tyre in contact with the icy road), the Figure4.15a shows
higher values in terms of side slip angle for snowy and icy road surfaces,
foreseeing the possibility to perform the maneuver in more aggressive way
for dry and wet road conditions.
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(a) (b) (c)

Fig. 4.15 (a) Side slip angle. (b) Yaw angle. (c) Time.

Table 4.3 Summary of time’s maneuver for each scenario.

Road Surface Time [s]

Dry 24.8
Wet 26.2
Snowy 40.8
Icy 51.7

Such a conservative behavior can be motivated by the fact that the global
set of weights is a result of a trade-off between completely different dynamic
scenarios in the respect of vehicle maneuverability and safety.

• Scenario B2
The comparison between a same road condition (dry) performing with
different tyre condition (new or worn, in the optimal temperature range,
cold or overheated) are shown in the following figure. Regarding
the analysis of trajectories, shown in the Figure 4.16a it is possible
to observe how they are too similar each other due to the same road
pavement, however in the new tyre condition a little largest trajectory
has been carried out to achieve an highest velocity Figure 4.16.

The analysis side slip angle show a dependence of β angle with the
tyre stiffness, indeed the highest value of β has been performed to highest
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(a) (b)

Fig. 4.16 (a) Vehicle trajectory performed in the DLC maneuvers in a dry
road, with different tyre condition (New tyre (continuous lines) and worn
tyre (dashed lines) in optimal (black), cold (blue), and overheated (red)
temperature range. (b) Vehicle velocity.

(a) (b) (c)

Fig. 4.17 (a) Side slip angle. (b) Yaw angle. (c) Time.

cornering stiffness Figure 4.17a. Finally, in the Table 4.4 are shown the
performing time for each condition.

4.6.3 Case C

• Scenario C1
In this paragraph the aim of the authors is to argue the following query:
If the plant and the controller do not share the same model parameters,
i.e., the parameters of the controller model are not updated by a specific
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Table 4.4 Summary of time’s maneuver for each scenario.

Tyre Condition Time [s]

New−Topt 23.0
New−Tcold 23.7
New−Toverheated 23.44
Worn−Topt 24.24
Worn−Tcold 25.8
Worn−Toverheated 24.8

co-simulated estimator of the vehicle parameters and state, and of the
tyres’ and the road conditions are not known a priori, how a controller
model with an average "parameters’" configuration could perform with
different plant model employment scenarios within the DLC maneuver?
With this purpose, the controller model has been fed with the parameters
of friction and stiffness corresponding the mean value of the all possible
tyre-road conditions explored.

It is worth highlighting that, as expected, it is not possible to perform
the DLC maneuver with the icy road with the above configuration.
Indeed, as appears clear in the Figure 4.18, the rear axle achieves the
maximum slip ratio, not allowing to complete the simulation in safety.

For this reason, in the following figures, only dry, wet, and snowy
road conditions are reported. In the Figure 4.19a,b it is possible to
observe how the difference between the three pavement surfaces are
less pronounced towards the results discussed in Scenario B. Moreover,
the vehicle in contact with the wet road achieves a maximum velocity,
even higher than with the dry surface, completing the maneuver in less
time Figure 4.20c).
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Fig. 4.18 Slip ratio achieved for the four tyres.

(a) (b)

Fig. 4.19 (a) Vehicle trajectory performed in the DLC maneuvers in a dry,
wet, and snow road, with new tyre in optimal range temperature. (b) Vehicle
velocity

The reason for such behavior can be conducted to the conservative
control action, particularly visible in dry boundary condition, since the
absolute difference in terms of the friction limit is particularly high
between the plant and the controller models in this scenario. Indeed, in
the Figure 4.20a the the side slip angle is similar for three conditions ex-
plored. Furthermore, even the maneuver in snow conditions is achieved
in a comparable time period, since the friction limit of the average
controller model is similar to the one of the plant model working in
snowy boundary conditions Figure 4.20b.
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(a) (b) (c)

Fig. 4.20 (a) Side slip angle. (b) Yaw angle. (c) Time.

• Scenario C1
Remarking that an accurate online friction coefficient estimation be-
comes absolutely necessary to allow exploiting the vehicle dynamics in
maximum performance conditions within a combined DLC maneuver,
in this paragraph the aim of the authors is to argue another possible
query: In a real scenario, where an onboard tyre-road friction estima-
tor able to estimate (among others) the grip parameter with a certain
degree of accuracy and to update the control model parameters in
run-time, is available, how a controller model with a percentage error
concerning the vehicle instantaneous conditions could perform within
the same maneuver?
With this purpose, the parameter concerning the tyres’ friction of the
controller model has been considered with an intrinsic error with a
supposed standard deviation of ±15% respect to the actual grip value
of the vehicle plant model.

It is worth noting that in a scenario where the grip factor is overestimated,
the controller with the global configuration of the cost function computes more
aggressive control actions leading to out-of cones trajectories and undesirable
sliding effect. To avoid this issue, a robust global configuration has been
introduced in order to let the controller being effective in managing the vehicle
behavior in overestimated grip-linked scenarios. The above new configuration
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leads to more conservative actions and, consequently, to a considerable loss
of performance in terms of velocity. In particular, the loss in performance
in terms of the average speed (in percentage) in the four cases analyzed has
been objectively quantified in Table 4.5.

(a) (b)

Fig. 4.21 (a) Vehicle trajectory performed in the DLC maneuvers in conserva-
tive vs global configuration. (b) Vehicle velocities

(a) (b)

Fig. 4.22 (a) Side slip angles. (b) Yaw angles.

In Figures 4.21 and 4.22, the performance obtained by the two config-
urations in terms of trajectories, speed, side-slips, and yaw angles are also
compared. Notably, the side-slip in Figure 4.22 reaches peaks of 5 degrees,
confirming that the configurations obtained controls the vehicle at the limit of
handling.
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Table 4.5 Summary of the difference in velocity mean values (%) and lateral
error assumed for each road scenario.

Road Surface [−] Friction Estimation [−] Longitudinal Velocity [%]

Icy correct −
Icy overestimation −16.02

Snowy correct −
Snowy overestimation −8.36

Wet correct −
Wet overestimation −8.30

Dry correct −
Dry overestimation −21.00





Chapter 5

Application of friction estimation
algorithm in vehicle following
control strategy

5.1 Introduction

In the previous chapters, the role of the tyre in vehicle dynamics and espe-
cially the concept of potential friction and instantaneous friction has been
extensively discussed. In particular, the friction coefficient has been char-
acterized and it has been seen how this changes during the life cycle of the
tyre in relation to the aging and wear of the tyre itself and in relation to the
boundary conditions and environmental conditions. Specifically, in Chapter 2
the coefficient of friction and the maximum explicable forces of the tyre were
characterized as a function of sliding speed, temperature, wear, road texture
and in dry and wet conditions. In Chapter 4 we introduced the concept of
state estimator and its importance in control systems, since the higher and
more accurate the knowledge of the state of the system we want to control, the
more effective will be the control strategy. In Chapter 4, instead, we investi-
gated how the variation of the tyre properties affect the vehicle dynamics and
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the controller decisions. For these reasons, this chapter will describe a first
control architecture responsible for the longitudinal dynamics of the vehicle
chassis, composed of two ADAS functionalities—namely Adaptive Cruice
Control (ACC) and Autonomous Emergency Braking (AEB)—in addition to
the Antilock Braking System (ABS), which is road-grip aware in the sense
that it is able to properly regulate the vehicle motion on the base of the on-line
estimation of the road friction coefficient per single tyre.

ADAS for the safe automatic driving mostly tackles the stabilization of
the chassis longitudinal motion and the actuation of the emerging braking
via a wide variety of control techniques. Among others, Model Predictive
Control (MPC) has been effectively used in [192–195] in order to synthesize
an ACC system. Regarding the AEB, typically event-based controllers have
been realized through a continuous evaluation of the braking distance [196,
197] or the collision time [198]. Alternative formulations can be found in
[199], where the authors classify the collision risk upon the definition of
potential fields, or in [200] where an impedance controller is synthesized,
thus resulting in a time based controller. Some ADAS combine ACC and
AEB strategies for multiple driving situations: in [201] a Linear Quadratic
Regulator (LQR) works jointly with a Time-To-Collision (TTC)-based logic
and in [202] a Proportional-Integral-Derivative (PID)-based velocity control
embeds a continuous time collision avoidance mechanism with the aim of
reducing excessive jerk. More complex architectures can be found in [203,
204], where nonlinear MPC and reinforcement learning formulations have
been designed for safely steering the longitudinal vehicle’s dynamics.

Consider a front-wheel driven vehicle where the propulsion is obtained
through an electric engine. Moreover assume the vehicle is equipped with
proprioceptive sensors for the measurement of its state variables (e.g., chassis
velocity, acceleration, yaw rate, and tyres’ angular velocities), as well as
with exteroceptive sensors (e.g., radar, camera, lidar, or a combination of
these) for the sensing of the external environment and for the mapping of



5.2 Friction estimation 199

external obstacles (details on sensing technologies can be found in [205] and
the corresponding references).

The aim of this Chapter is to describe a methodology capable to perform
the autonomous vehicle-following process in a safe, controlled and com-
fortable manner even in poor weather conditions, like ice, snow and heavy
rain, starting from the information available thanks to a computationally cost
effective model-based tyre-road friction coefficient technique. The data from
proprioceptive sensors are collected in run-time, processed with the physical
model-based estimator and, then, employed in loop with a vehicle control
strategy. From the point of view of the control, the objective is to develop
grip-aware functionalities in order to improve driving performance and safety,
starting from the strategies for ACC, AEB and ABS longitudinal maneuvers,
leveraging the on-board estimation of the road conditions.

In other words, a new model-based technique is proposed for real-time
road friction estimation under different environmental conditions. The pro-
posed technique is based on both bicycle model to evaluate the state of the
vehicle and a tyre Magic Formula model based on a slip-slope approach to
evaluate the potential friction. The results, in terms of the maximum achiev-
able grip value, have been involved in autonomous driving vehicle-following
maneuvers, as well as the operating condition of the vehicle at which such grip
value can be reached. The effectiveness of the proposed approach is disclosed
via an extensive numerical analysis covering a wide range of environmental,
traffic, and vehicle kinematic conditions. Results confirm the ability of the
approach to properly automatically adapting the inter-vehicle space gap and
to avoiding collisions also in adverse road conditions (e.g., ice, heavy rain).

5.2 Friction estimation

In the Chapter 2 has been described that the tyre friction forces change during
its life cycle due to temperature, wear, road surface etc. It is common knowl-
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edge that the tribological characteristics of an asphalt can vary significantly
depending on the distributed uniform dry, wet, snow or icy conditions (linked
to meteorological aspects), or on the presence of the eventual local singu-
larities as oil spots, puddles, kerbs or potholes (linked to local maintenance
conditions of the road surface). In order to guarantee the optimum employ-
ment of the advanced functionalities of the autonomous driving logic, besides
the information concerning the actual friction condition of the road surface,
it is even more important providing the potential friction coefficient and the
kinematic conditions, in terms of the tyre-road interaction slip ratio quantity.
Attempts to account for the road conditions into specific ADAS driving fea-
tures have only recently been developed; research of the tyre-road friction
estimation is a topic that has been extensively addressed and the study is
continuing to this day. According to [206], it is possible to divide the different
approaches on friction estimation into two main groups: experiment-based
and model-based approaches.

The experimental based methods use additional sensor measurement as
optical or acoustic sensors and cameras to evaluate the friction based on the
fact that wet asphalt is dark grey with a higher clarity of texture than dry
asphalt [207]. Moreover, such methods employ acoustic sensors to classify
the road surface condition exploiting the noise, as well as, tyre tread sensors to
estimate the tyre-road friction as a function of the tread deformation, caused
by the total force acting on the tyre. The disadvantages associated with this
category lie in the high frequency of these sensors get dirty, and therefore
distort the results. In addition, the vehicles are generally not equipped with
the sensors mentioned above and are difficult to maintain.

With regard to the model-based group, the friction information is evaluated
thanks to the mathematical models describing the vehicle system and its
subsystems, starting from the information, measured by the sensors installed
on the vehicle. Such methodology has demonstrated to be able to evaluate the
actual grip in the most environmental condition, but not the potential grip. In
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[167], the authors experimentally evaluate a set of parameters, as peak friction,
interaction shape and curvature factors, for different road environmental
condition (dry, snow, ice) to estimate the tyre stiffness. Then a run-time
switch selects the set of parameters in memory corresponding to the current
stiffness of the tyre, leading to evaluate the potential grip.

The limit of this approach is dictated by the number of parameters to
be stored in the memory, able to describe the different asphalt conditions
[208]. Differently from the [167], the friction peak value has been researched
imposing relatively large magnitudes of braking/accelerating or steer inputs
to achieve sufficient variations in tyres’ dynamic responses. To this purpose,
a different speed control strategies have been developed for the front and rear
wheels in order to identify the stiffness and the tyre road friction coefficient
without severely influencing vehicle forward speed. However, these maneu-
vers may not be practical in every vehicle operating condition, as in [209], in
which the tyre-road friction estimator has been activated when the vehicle
reached constant speeds. The latest methodology belonging to model-based
approaches is the slip-slope [210], based on the assumption that in small
slip ranges the correlation between slip and µ could be represented by a
linear function, and at higher values of slip ratio the normalized longitudinal
interaction force is assumed to saturate. The potential friction coefficient
can be then evaluated starting from knowledge of the slope of the tyre-road
interaction curve even from low slip values, obtainable during not particularly
aggressive driving conditions, employing linear regression models.

5.3 In-Vehicle road-grip estimation

5.3.1 From Vehicle Sensors to Tyres’ State

In recent years the number of sensors installed on vehicles has increased
exponentially, facilitating the modelization of the entire system towards the
target to consider the standard-instrumented vehicle as a mobile laboratory.
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Indeed, starting from the acquisition of the physical signals coming from all
the sensors installed, employing currently widely-available and affordable
mobile calculators, it is possible to properly process the time-evolving dy-
namic quantities with the aim to feed the real-time state estimators directly
on-board. Furthermore, starting from the global quantities referring to the
vehicle total behavior, it is currently possible to evaluate even the kinematic
and dynamic states of its sub-components, as tyres. The developed algorithm,
based on the T.R.I.C.K. methodology described in [44], allows us to evaluate
in a specifically dedicated on-board module the fundamental kinematic and
dynamic quantities for the tyre characterization in real time, starting from the
experimental signals available within the vehicle CAN bus (Controller Area
Network) and s-motion measurement or, as the case in exam, employing a
specific set of sensors pre-configured on the vehicle. Such methodology also
allows us to evaluate the potential of an estimation process in terms of tyre
interaction curves, such as in [211].

The originally designed model, described in [44], referred to a quadricycle
vehicle fully described from the dynamic point of view. Since the study under
analysis aims at simulating the emergency braking manoeuvres et similia,
involving only the vehicle longitudinal dynamics, the model can be simplified
considering its plane of symmetry xz (ISO reference system). Taking into
account the above hypothesis, the vehicle can be represented as a bicycle
model, whose constitutive equations are described by 3 degrees of freedom
within the reference plane xy. The above assumption allows us to reduce also
the analytical computational cost linked to the model state evaluation per step,
as well as the number of parameters to be identified in order to physically
reproduce the model dynamics concerning the longitudinal maneuvers, object
of investigation. The simplified vehicle model, able to evaluate the kinematics
and the dynamics at each axle, feeds the specifically designed logic of the
control system providing both actual and potential friction coefficient in
run-time.
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To perform the analyses, the following modelling and environment as-
sumptions have been considered:

• The road is modelled completely flat with eventual banking and local
geometrical effects (i.e., potholes, kerbs, micro- and macro- roughness)
absent.

• The tyre is modelled only in terms of its kinematic-dynamic transfer
function without taking into account its eventual transient dynamics.
Furthermore, the multi-physical effects, as thermal or wear abrasive
and degradation influences, have not been taken into account at the
current stage.

• Since the vehicle is involved in analyses concerning only the longitu-
dinal dynamic maneuvers and considering the vehicle body symmetry
hypotheses, the steering angle signal is assumed to be always zero and,
therefore, it is not employed within the modelling and the estimation of
the vehicle state.

• The vehicle is described only in terms of its intrinsic global geometric
and mass-inertia parameters. The longitudinal load transfer is con-
sidered taking into account the position of the vehicle body centre of
gravity.

• The vertical load distribution on each axle is evaluated starting from
the static load data, load transfers due to the geometric position of the
vehicle body centre of gravity within the xz plane and the aerodynamic
force. The estimation of the tangential interaction forces, due an intrin-
sic non-linearity of each tyre system, need an additional convergence
algorithm for a correct partition of the global longitudinal force, located
at the centre of gravity, into its two contributes based on the front and on
the rear axles. Indeed, starting from the vertical loads calculated at each
axle the convergence algorithm evaluates the above longitudinal forces,
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consistent with the vertical loads applied, the kinematics evaluated and
the intrinsic dynamic characteristics of a pre-calibrated tyre (neglecting
the tyres’ transient behavior at the current stage).

• The suspensions and steering system kinematics and compliances have
been taking into account by acquiring the invariable KC curves by
means of physical bench testor as an output of simulations performed
by means of a multibody model.

The inputs of the T.R.I.C.K.-based methodology, optimized for the longi-
tudinal vehicle dynamics estimation, comprise the following signals acquired
thanks to the sensors acquired and processed directly on-board:

• Wheels’ angular velocity (rad/s).

• Longitudinal velocity evaluated at the vehicle’s centre of gravity (m/s).

• Longitudinal acceleration evaluated at the vehicle’s centre of gravity
(m/s2).

• Throttle position (%).

• Braking position (%).

The model outputs, referring to the axle kinematic and dynamic quantities
as well as to the additional, are reported below:

• Axles’ slip ratio (-).

• Axles’ vertical interaction force (N).

• Axles’ longitudinal interaction force (N).

• Axles’ actual friction coefficient (-).
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Since the double track model, i.e. since the dynamics of the vehicle axle,
and analyzing a longitudinal maneuvers, the assumption in [37] related to
consider the left and right gear ratio of the steering system almost equal, small
steering angles and negligible of lateral load transfer and the body roll effect
are accepted. Due to the vehicle body symmetry hypotheses made to develop
a single track model, the forces acting on the tyre have been considered equal.
Therefore, the forces acting on the single tyres of a single track model are
equal to the forces of the entire axle. The vehicle model and the reference
system considered are shown in Figure 5.1.

Fig. 5.1 Friction Estimator: Vehicle model and reference system in which the
z axis is perpendicular to the road equivalent plane xy.

In order to evaluate the vertical forces, the loads acting on axles in a
stationary condition (v = 0 and a = 0 ), called ”static loads", Wf and Wr, have
to be evaluated. Such values depend on the position of the vehicle body centre
of gravity:
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Wf =
mglr

L
, (5.1)

Wr =
mgl f

L
. (5.2)

For the longitudinal load equation [37], the load transfer are:

∆Fz =
mhax

l
. (5.3)

The aerodynamic downforces are expressed by following equation:

Fzaeroi =
1
2

ρAvv2Czi, (5.4)

with i = [1,2] are defined the axles (respectively front and rear).
Therefore, the axles vertical loads result equal to:

Fzi =−(Wi −∆Fz +Fzaeroi). (5.5)

The effect due to the inertia resistance of the axles is equal to:

Finertiai =
IwΩ̇i

Rri

. (5.6)

The longitudinal interaction forces can be estimated starting from the
information regarding the velocity estimated at the vehicle centre of grav-
ity, acquirable by means of specific sensors or employing a model-based
technique, taking into account the vehicle kinematics and the vertical load
estimated at each wheel hub [212]. Therefore, in order to obtain the axle
forces, the kinematic and load vehicle state estimator provides the accurate
vehicle speed vx, the longitudinal acceleration ax, the wheel speed Ω, the
inclination angle (IA) and the normal load Fz.
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To this purpose, the global longitudinal dynamic equilibrium of the vehicle
has been implemented considering axles’ longitudinal forces as given by sums
of singular tyres’ forces, distributed equally between the left and the right
side:

Fx = Fxl +Fxr , (5.7)

in which the contribution of the single tyre, for symmetry hypothesis, is
assumed to be equal to:

Fxi =
Fx

2
. (5.8)

The longitudinal interaction forces is a non-linear function of longitudinal
acceleration, normal loads, inclination angle, longitudinal speed evaluated at
the contact point, wheel speed and longitudinal spindle velocity:

Fxi, j = f (ax,Fzi,vxCPi, j
, IAi, j,Ωi, j,vxspindlei, j

). (5.9)

The vxCP has been evaluated as:

vxCPi, j
= Ri, jΩi, j, (5.10)

with Ri, j has been assumed the rolling radius as:

Ri, j = f (Fzi, j , IAi, j,Ωi, j). (5.11)

Finally, the slip ratio (λ ) is:

λi, j =
vxCPi, j

− vxspindlei, j

vxspindlei, j

. (5.12)
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5.3.2 On-Board Estimation of Actual and Potential Friction

The tyre model parameters, employed within the estimation of the potential
friction coefficient, depend on the parameters characterized and identified on
the road characteristics where the experimental activities took part. Starting
from the pre-calibrated set parameters of the tyre model, depending, in its
turn, on the peculiar dynamic set of equation chosen to describe the tyre
dynamics, and on the actual grip quantity obtainable from the vehicle state
information, the potential friction coefficient achievable by each tyre is evalu-
ated. The potential friction quantity is assumed reachable varying only the
slip ratio quantity (i.e., relative velocity within the tyre-road interface) with
all other operating conditions remaining the same (wheel alignment, vertical
load and wheel spindle longitudinal speed). There are different approaches
to tyre modelling in the literature, which can be both physical and empirical.
Several authors refer to the tyre modelling using the Finite Element Method
(FEM), adopted to evaluate static characteristics or to the multi-body tyre
approaches, as [56–58], commonly adopted to study dynamic phenomena
on uneven surfaces. Although, the above modelling techniques should be
evaluated carefully to the purpose of their employment within the embedded
on-board control electronics due to their particularly significant computational
cost. It becomes, therefore, necessary the adoption of simpler modelling ap-
proaches, as semi-empirical and analytical models [47], whose computational
cost is compliant with the capabilities of the modern on-board systems.

The typical tyre characteristics curve is described in Figure 5.2, where
three different regions of tyre working range are represented.
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Fig. 5.2 Tyre characteristics curve and potential friction coefficient.

The ratio between longitudinal and vertical forces gives the instantaneous
friction coefficient, i.e., the actual run-time coefficient between road surface
and tyre, expressed as follows:

µxi,actual =
Fxi

Fzi

. (5.13)

The actual friction coefficient µx depends both on the condition of the
asphalt and on the peculiar operating conditions the tyre is stressed with (i.e.,
vertical load, wheel alignment, slip ratio, longitudinal speed). Therefore, each
tyre operating point, describable by the actual friction coefficient µx and the
corresponding slip ratio λ , can be represented in Figure 5.3, the point 1.
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Fig. 5.3 Procedure to evaluate potential friction coefficient.

The eventual changes in terms of friction coefficient within the tyre-
road interface are assumed to be referred only to the road surface, since
the tyre has been especially pre-calibrated on a reference asphalt surface.
Assuming a linear behaviour of the tyre in the typical working conditions
of the vehicle, a linear proportion between the reference tyre-road and the
actual tyre-road friction coefficients can be assumed. Starting from the actual
friction coefficient quantity, obtained in particular working conditions of the
vehicle and therefore of the tyre, and from the model parameters already able
to properly represent the tyre dynamics in run-time, the potential friction is
evaluated in the following steps, represented in Figure 5.3:

• Once the actual friction coefficient (point 1) has been calculated (5.13),
the equivalent grip for the reference tyre-road (point 2) can be evaluated:

µxi,re f Road =
Fxi,re f Road

Fzi

, (5.14)

• Furthermore, starting from the tyre model parameters calibrated on a
reference road surface, the model is able to provide a valuable output
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in terms of the maximum longitudinal force, achievable for the same
conditions of vertical load, wheel alignment and vehicle longitudinal
speed, at the optimal value λ ∗ of the slip ratio (point 3 in Figure 5.3):

µ
max
xi,re f Road

=
Fmax

xi,re f Road

Fzi

, (5.15)

• The potential friction coefficient (point 4) is obtainable, using the
proportionality criterion already adopted for the point 2, assuming
the linearity of the tyre behavior within the working conditions of the
vehicle, as follows:

µ̂xi =

Fxi
Fzi

Fxi,re f Road
Fzi

µ
max
xi,re f Road

. (5.16)

In Figure 5.4, the overall architecture of the developed model is shown. In
particular, starting from the sensor-acquired input channels (on the left), the
kinematic and load estimator calculate the vehicle state up to the kinematics
on the wheel hubs. Then the tyre model evaluates the state at the tyre-road
interface, and, using the above information, the actual and potential friction
estimator module.
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Fig. 5.4 Architecture of the vehicle state estimation system.

5.4 Control module

The road-grip aware driving functionalities for the four-wheel electric vehicle,
leveraging the in-vehicle road grip estimate as in Equation (5.16) is described
in this section. Specifically µ̂ has been chosen as µ̂xi with i = 1 if only the
front wheel drive is used, and as a weighted sum of µ̂xi with with i = 1,2,
if both axles are used for actuation. The control module is compose by a
predictive ACC and by an AEB.

To achieve the above mentioned tracking capability, the ACC system has
not only to safely adjust the ego-vehicle speed to approach the velocity of
the leading vehicle, but it has also to keep the vehicle spacing to an expected
value ddes that must be adaptable on the base of the estimated road grip, as:

d(t)→ ddes(t,µ), (5.17)

∆v(t)→ 0, (5.18)
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where v(t) is the ego vehicle velocity measured on-board by proprioceptive
sensors, while d(t) is the distance between the ego vehicle and the leading one
and ∆v(t) is the relative velocity w.r.t. the leading vlead , computed leveraging
the on-board exteroceptive sensors. Here, the grip-aware desired space gap
ddes can be set according to the following the headway time rule [213]:

ddes(t,µ) = d0 + τH(µ)v(t), (5.19)

where d0 is the constant spacing at standstill and τH(µ) is the headway time
to be properly adapted on the base of the road friction coefficient to be on-line
estimated.

In order to further reduce the risks of crashes, the ACC works jointly with
the AEB that, sharing the same on-board sensors, continuously monitors the
area in front of the car, automatically detects a risk and hence activates the
vehicle braking system (via the ABS, Anti Brake-locking System) decelerat-
ing the vehicle with the purpose of avoiding or mitigating a possible collision.
It follows that, unlike the ACC, the AEB is activated only when a collision
index highlights the possibility of a crash. Here, we exploit the well-known
TTC index [214] and the AEB is hence activated if its value is under some
threshold depending on the estimate road conditions, as:

T TC =− d(t)
∆v(t)

< T TCth(µ), being ∆v(t)< 0. (5.20)

When the emergency braking is requested by the AEB, the maximum
torque is applied to the wheels via the ABS control chain. The wheel actuation
systems decreases the longitudinal slip value, thus generating a braking force
on the chassis. However, if the slip ratio is below the optimal value, depending
on the actual road condition, the dynamics could become unstable with a
consequent lock of the wheels. It follows that an efficient control strategy for
automatic safe braking during emergency has to adapt the optimal slip value
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on the base of the estimation of the grip in order to enhance the performance
of the ABS, and thus of the overall vehicle.

The above grip-aware ACC, AEB and ABS functionalities have been
embedded into the on-board control architecture depicted in Figure 5.5. The
on-line road-grip estimate module implemented on-board firstly calculates the
actual friction conditions, estimating the tyre-road interaction kinematics and
dynamics, and then it provides the actual and the potential friction coefficients
per each tyre. This estimate, indicated in what follows as µ̂ , is hence exploited
to control the longitudinal dynamics of the ego vehicles via grip-aware ACC,
AEB and ABS controllers. Note that a supervisor (the so called decision-
making unit in Figure 5.5) is responsible of classifying the specific driving
conditions and of choosing the required driving functionality accordingly
[215].

Fig. 5.5 On-board Control Architecture.

5.4.1 ACC Design

The ACC is responsible for longitudinal tracking in the autonomous vehicle-
following process, so that the vehicle velocity is regulated to a desired speed,
while maintaining a safety distance from the preceding vehicle, often named
as leading vehicle in the technical literature. The controller is hierarchical
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and it is composed of a double feedback layer. Namely, the upper-control
layer, acts as a reference governor generating the appropriate acceleration
profile to be tracked, while also complying additional constraints related to
driving comfort and energy consumption. The lower level is responsible
for commanding the actuators and, hence, its robust design depends on the
specific vehicle configuration.

Here, we focus on the design of the upper layer controller generating
reference trajectories able to also improve driving safety leveraging the on-
line prediction of road conditions. The predicted ACC is designed following
the Model Predictive Control (MPC) - described in the Chapter 4 - approach
allowing the continuous constrained optimization of the vehicle longitudinal
dynamics. In contrast to the LQR, the MPC solves the problem over a
finite time window, or prediction horizon, to make it tractable online. The
optimization generates a sequence of control inputs to be imposed over the
control horizon, but, according to the receding horizon principle, only the
first element of the sequence is effectively applied to the plant. New inputs
are received at the following time intervals and the procedure is iteratively
repeated.

In order to design the controller, let us define a control oriented mode
according the vehicle-following paradigm: [216]:

ḋ(t) = ∆v(t), (5.21)

∆̇v(t) = alead(t)−a(t), (5.22)

where d(t) is the distance between the leading vehicle and the ego vehicle,
while ∆v(t) = v− vlead is their relative velocity (while alead is the leading
acceleration) and the velocity of the chassis of the ego vehicle v(t) undergoes
the following longitudinal dynamics: [216]:
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v̇(t) = a(t), (5.23)

ȧ(t) =
1
τ
(−a(t)+u(t)), (5.24)

where a(t) is the actual vehicle acceleration and τ the driveline time constant
and u(t) the acceleration input.

Define now the distance error with respect to the desired space gap as
e(t) = d(t)−ddes(t), where the spacing policy ddes(t) is computed as in Equa-
tion (5.19) with the head-way time being the following piece-wise function
of the road grip:

τH =


τ̃H/0.2 µ̂ ≤ 0.2

τ̃H/µ̂ 0.2 < µ̂ ≤ 1

τ̃H µ̂ > 1

(5.25)

where µ̂ is the estimated maximum available grip and τ̃H is the constant
headway for an ideal dry road [195]. Note that Equation (5.25) ensures that
the safety distance increases as the peak road friction decreases.

Let the state vector x(t) and the output vector y(t) as:

x(t) = [d(t) ∆v(t) v(t) a(t)]T ∈ IR4 (5.26)

y(t) = [e(t) ∆v(t) v(t) a(t)]T ∈ IR4 (5.27)

and w(t) ∈ IR as the leader acceleration, i.e. w(t) = alead(t). The system
in Equations (5.21) and (5.23) can be easily recast in the following state space
representation:
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ẋ(t) = Ax(t)+Bu(t)+Ww(t), (5.28)

y(t) =Cx(t)−Z, (5.29)

being

A=


0 1 0 0
0 0 0 −1
0 0 0 1
0 0 0 −1

τ

 ,B=


0
0
0
1
τ

 ,W =


0
1
0
0

 ,C =


1 −τH 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,Z =


d0

0
0
0

 .
(5.30)

However, in order to synthesize the MPC controller, Equation (5.28) are
discretized with a fixed sample time Ts leveraging the zero-order-hold method,
thus yielding:

x(k+1) = Ax(k)+Bu(k)+Ww(k), (5.31)

y(k) =Cx(k)−Z, (5.32)

where, with an abuse of notation, the discrete-time system matrices have been
labelled as the ones of the continuous-time model. Moreover, by augmenting
the state vector as [x(k) u(k)]T , we can resort to the following off-set free
formulation as:

x(k+1) =

[
A B
0 1

]
x(k)+

[
B
1

]
∆u(k)+

[
W
0

]
w(k), (5.33)

y(k) =
[
C 04×1

]
x(k)−Z. (5.34)
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Note that the above formulation is really beneficial since the increment
(∆u(k)/Ts) is the chassis jerk in discrete time, which is the crucial index for
the driving comfort.

The ACC problem in Equation (5.17) is solved when system in Equation
(5.33) is regulated to the origin while fulfilling at the same time additional
tracking, comfort, consumption and safety constraints for all times k.

With respect to safety, road-grip constraints are introduced for the desired
and actual acceleration, as:

umin(µ̂)≤ u(k)≤ umax(µ̂), (5.35)

amin(µ̂)≤ a(k)≤ amax(µ̂), (5.36)

with amax(µ̂) = umax(µ̂) = min(2, µ̂g), amin(µ̂) = umin(µ̂) =max(−4,−µ̂g),
where µ̂ is the estimated maximum available grip and g the acceleration of
gravity. The saturation values ( i.e., 2 and −4) are chosen as upper and lower
limit, related to the ideal value for the grip set as 1 [195].

The constraints on the spacing and the maximum velocity are given as:

dmin ≤ d(k)≤ dmax, (5.37)

v(k)≤ vmax, (5.38)

where dmin is set to the standstill value d0 (see Equation (5.19)) and vmax is
the maximum admissible speed depending on the legal requirements on the
specific traveled road (urban, extra-urban, etc.). Note that this information can
be acquired from a map-based on board service leveraging the GPS (Global
Positioning System).
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5.4.2 Autonomous Emergency Brake

Road accidents and fatalities statistics are reported annually, showing the
relation between accidents and drivers behaviour [2, 1]. Moreover, the authors
in [217] showed that the collision risk increases with the degradation of road
conditions. The Autonomous Emergency Brake is one of the most effective
driving functionalities for collision prevention and social cost lowering linked
to accidents. Nonetheless, EuroNCAP tests are being carried on roads with
friction peaks of at least 0.9, even if in real situations a lower value reduces
the safeness and the robustness of the whole system.

In this perspective, the aim of the grip-aware AEB system proposed by the
authors is to identify the collision risk depending on the actual road conditions
and, hence, to take control of the brakes to avoid possible accidents or at
least to reduce their severity. Here, we base the decision-making of AEB
according to the Time-To-Collision (TTC) in Equation (5.20), where the
detection threshold depends on the estimated road-grip as:

T TCth(t, µ̂) =
v(t)

µ̂abrk
, (5.39)

where abrk is the deceleration value commanded to the ABS in case of emer-
gency, i.e., 9.8m/s2.

5.4.3 Anti-Lock Braking System

Once an emergency braking is commanded from the AEB, the ABS has
to drive the brake system preventing wheels from locking during the hard
braking maneuver. Here we propose a Sliding Mode (SMC) ABS controller
that leverages the on-line estimation of the road-grip in order to provide
a safe braking automatic maneuver for a vehicle-following process also in
the presence of hard rainy or icy pavement. This choice is due to SMC’s
enhanced stability performances with respect to classical control architectures
[218] (e.g., proportional action). In particular it can be shown that matched
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disturbances (uncertainties entering the system through the same channel as
the control) are rejected, at least below the actuation limits, moreover due to
the controller nonlinear nature, larger stability margins can be achieved.

First, let us define a control-oriented model, i.e., the quarter car model, in
which we neglect the lateral and yaw motion of the wheel, thus obtaining a
model dealing with the wheel rotational dynamics and longitudinal vehicle
dynamics. The rotational dynamics of the wheel is described by

IwΩ̇ =−Tb −RrFx, (5.40)

where Iw is the moment of inertia about the wheel axis of rotation, Ω is the
angular velocity, Tb is the braking torque, Rr is the wheel rolling radius and
Fl is the force produced by the friction reaction. The longitudinal vehicle
dynamics are simply modeled as

mv̇ =−Fx. (5.41)

where m is the vehicle mass.
The control goal is to yield λ to a reference value λ ∗ during braking [219].

To this aim we define the following sliding surface

σ(t) = λ (t)−λ
⋆, (5.42)

where λ ⋆ is the optimal slip obtained from the friction estimator and λ is the
longitudinal slip with dynamics as:

λ̇ =−1
v
(
1−λ

m
+

R2
r

Iw
)Fx +

Rr

vIw
Tb. (5.43)

Due to the inertia differences between wheel and vehicle, we can consider
the velocity v as slowly varying, thus reducing Equation (5.43) to a single-
input single-output system, where the control law can be defined as:
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u(t) = Tb = uc(t)+usw(t), (5.44)

where uc is the continuous term, or equivalent control [218], and usw the
discontinuous term. The equivalent control input is is responsible for keeping
the trajectories on σ , i.e.,

σ̇ = 0 ⇒ uc = (
(1−λ )Iw

mRr
+Rr)Fzµxi,actual , (5.45)

where the force Fx = Fzµxi,actual , where Fz is the tyre vertical load, and µxi,actual

the instantaneous friction value provided by the estimation module; note that
the subscript i = [1,2] identifies front and rear tyre depending from the axle
involved (see Equation (5.13)).

Closed-loop stability can be easily proven by considering the following
Lyapunov function V (λ ) = 1

2σ2 and its derivative V̇ (λ ) = σσ̇ . Substituting
Equations (5.44) and (5.45) into the expression of V̇ , we obtain

V̇ (λ ) = σσ̇ = σ(
Rr

vIw
usw). (5.46)

Hence, selecting usw =−vIw
Rr

ηsgn(σ) it follows that

V̇ (λ ) =−ησsgn(σ) =−η |σ |< 0, (5.47)

where η > 0. In so doing, the surface σ is attractive and the closed-loop is
asymptotically stable.

Note that, in order to avoid the well-known chattering problem of slid-
ing mode controllers, for its practical implementation the sign function in
Equation (5.47) has been substituted by the hyperbolic tangent function. Fur-
thermore, since controllability is lost when the vehicle speed is approaching
zero (see Equation (5.43)), following a common practice for implementing
the ABS, the controller is disabled at the very low velocities.
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5.5 Co-simulation platform

The design for improved solutions of safety related features has been signifi-
cantly eased thank to the usage of appropriate simulation platforms, enabling
engineers to design, test and validate the control architectures through models
in a singular platform, and therefore reducing the development cost and the
time to market.

Here, we propose a co-simulation platform for Model-In-the-Loop (MIL),
where autonomous vehicle has been tested in a realistic traffic scenario. This
co-simulation environment, represented in Figure 5.6, has been built leverag-
ing the following four main components :

• MATLAB/Simulink platform, a widely used framework to model dy-
namical systems and to design control architectures. Indeed, through an
easy to use of its graphical interface, it is possible to develop controllers
according to the well-known Model-based Control Design approach.
The vehicle dynamics model, implemented in the MATLAB/Simulink
environment and employed for the evaluation of the control strategy
performance in vehicle-following maneuvers, is the same vehicle plant
model described in the Chapter 4.

• SUMO (Simulation of Urban MObility), an open-source road traffic
simulation package, enabling the user to model entities such as vehicles,
traffic lights, road networks, vehicle routing. Each entity is simulated
microscopically, meaning that it is possible to control each of them
singularly, while the whole scenario is emulated by its internal engine
built upon realistic driving models.

• Friction estimator module, allowing the on-board estimation of the
current tyre-road interaction state and the potential friction value.

In particular, the Simulink environment has been adopted to describe a
highly detailed dynamical behavior of the autonomous vehicle under control,
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while SUMO emulates the traffic scenario and the road network, where
the actual road grip in different scenario can change to mimic the effect of
different environmental conditions to be studied.

The interaction between the different modules for the co-simulation
is allowed by Traci, an integration tool provided by SUMO. The library
TraCI4Matlab has been employed to couple the vehicle, the road and the
SUMO environment model in Simulink.

Fig. 5.6 Co-simulation Platform.

5.6 Results

The co-simulation platform has been exploited to assess the effectiveness of
the proposed grip-aware functionalities.

The illustrative results, reported in the following, refer to a vehicle-
following process along a typical motorway where the ego vehicle moves with
an initial velocity of v(0) = 30 m/s, having an initial space gap d(0) = 90 m
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from its predecessor (leader) that moves with an initial speed of vlead(0) = 20
m/s. The leader is a human-driven vehicle emulated through SUMO, whose
realistic velocity profile accounts for both speed limits and driver imperfection
parameters (details on how to model the human-drivers via SUMO can be
found in [220] and references therein).

The first exemplar driving scenario refers to vehicles moving in the pres-
ence of heavy rain, with actual road grip µ = 0.5 . Due to the presence of an
obstacle, at the time instant t = 150 s the leading vehicle performs a sudden
hard-brake inducing the maximum deceleration allowed by the road grip, i.e.,
µg . Results in Figure 5.7 show how leveraging the on line estimation of
the actual road condition (reported in Figure 5.7c), the ego vehicle is able to
safely perform the velocity tracking while always preserving the desired safe
space gap about ddes(t, µ̂), depending on the grip estimate.
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(a)

(b)

(c)

Fig. 5.7 Road-Grip aware Driving Functionalities: vehicle-following and hard
emergency braking. (a) Time-history of the current distance gap, d, and of the
desired one, ddes. (b) Time-history of the ego velocity v and leader velocity
vlead . (c) On-board road-grip estimate, µ(t) vs. µ̂ .

In addition, it is worth to note that the emergency brake is safely performed
and vehicles correctly reach the required standstill distance when they finally
stops without colliding. According to the theoretical derivation, the Predictive
ACC also guarantees both acceleration and jerk of the ego vehicle fulfill the
comfort constraints until the leading vehicle performs the hard brake at time
instant t = 150 s (see Figure 5.8). Indeed, from this time instant the ACC
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tries to handle this hazardous braking maneuver, but the necessity of hard
deceleration leads to the activation of the AEB, which hence commands the
maximum braking torque to be imposed, obviously ignoring the comfort
constraints which have less priority w.r.t. the safety.

(a) (b)

(c) (d)

Fig. 5.8 Road-Grip aware Driving Functionalities: vehicle-following and hard
emergency braking. Time-history of the ego-vehicle acceleration (a), jerk (c),
front tyre (b) and rear tyre (d) longitudinal slip ratios.

In so doing, the collision is safely avoided (see Figure 5.7), but higher
acceleration and jerk can be appreciated during the braking until the stop, as
shown in Figure 5.8. It is also worth to note that, when the emergency braking
maneuver is commanded from AEB, than the ABS is responsible ensuring
that the longitudinal slips of the tyres are regulated to the optimal reference
value λ ∗ returned by the friction estimator module as described in Section
5.3 (see Figure 5.8b–d).

In order to clearly appreciate the enhancement of the here proposed grip-
aware driving functionalities with respect to classical ACC, AEB and ABS
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strategies, the above maneuver has been repeated without leveraging the
knowledge of the actual road-grip.

Results in Figure 5.9 disclose that in this case the ACC is still capable of
tracking the velocity references, while ensuring a desired gap that obviously
depends only from the actual vehicle velocity, namely ddes(t) = d0 + τ̃Hv(t).
However, when the leading vehicle performs the emergency hard brake, the
safety distance results to be too small, the AEB is activated too late and it is
impossible to avoid the collision that, hence, occurs at the time instant t = 154
s with a velocity of v ≃ 10 m/s = 36 km/h.

(a)

(b)

Fig. 5.9 Driving Functionalities without on-board road-grip estimate: vehicle-
following and hard emergency braking. (a) Time-history of the current
distance gap, d , and of the desired one, ddes. (b) Time-history of the ego
velocity v and leader velocity vlead .

A further investigation of the achievable performance has been performed
in the case when vehicles are moving in variable environmental conditions,
i.e., the actual grip changes in time due to different climatic condition that
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have to be faced during travelling. Specifically, vehicle drives from dry
asphalt to wet road, i.e., the actual maximum road grip starts from µ = 1 and
than decreases, into two steps, until µ = 0.5 (see Figure 5.10c). The initial
dynamic condition of the vehicles match the ones chosen in the previous
driving scenario.

(a)

(b)

(c)

Fig. 5.10 Road-Grip aware Driving Functionalities in case of varying µ:
vehicle-following and hard emergency braking. (a) Time-history of the
current distance gap, d, and of the desired one, ddes. (b) Time-history of the
ego velocity v and leader velocity vlead . (c) On-board road-grip estimate, µ(t)
vs. µ̂ .
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Results depicted in Figure 5.10 show how the on-line road-grip estimate
is performed with good precision (always below 1% at steady state). Fur-
thermore, as the road grip decreases the safe distance is correctly adapted
in order to provide a safer spacing with respect to the current adhesion (see
Figure 5.10a) and the predictive ACC correctly tracks the reference values
without any constraints violation. As in the previous driving scenario, at the
time instant a t = 150 s an emergency situation emerges inducing the hard
braking maneuver. Also in this case the combination of the grip-aware AEB
and ABS is able of ensuring a safe stopping without collision.

Final exemplar results refer to a typical Stop & Go scenario where contin-
uous smooth accelerations and decelerations occur due to traffic congestion.
In order to better assess the collision risk and the safety margins during traffic
jam, we leverage the following well-known non-dimensional collision-index
γ(t) [201]:

γ(t) =
d(t)−dbr

dw −dbr
, (5.48)

where d(t) is the actual distance between the vehicles, dbr is the breaking
critical distance and dw is the warning critical distance. Note that the above
index witnesses the possibility of an incoming crash due to the current driving
situation. Specifically, when it is positive and greater than the unity a safe
situation is detected, while, if it is below the unity, a possible dangerous
scenario is signalized.

Results depicted in Figure 5.11 clearly confirm that, leveraging the road-
aware driving control architecture, the safety index γ(t) never goes below
the unity, while, on the other hand, if the estimate of the road-grip is not
exploited for the automated driving functionalities the collision index alerts
for possible dangerous situations during the deceleration phases (see Figure
5.11), reducing the vehicle safety.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.11 Road-Grip aware Driving Functionalities during Stop&Go. Time-
history of the current distance gap, d, and of the desired one, ddes (a) ego
velocity v and leader velocity vlead (c) safety index, γ (e) with road grip
adaptation. Time-history of the current distance gap, d, and of the desired
one, ddes (b) ego velocity v and leader velocity vlead (d) safety index, γ (f)
without road grip adaptation.

The effectiveness of the approach w.r.t. safety is finally summarized in
Table 5.1. Here, results clearly disclose that, adapting in real-time the driving
policy to the current road-grip, the overall automated driving performance
can be enhanced with the minimal values assumed by the safety indexes [201]
(i.e., time-to-collision, relative distance w.r.t. the predecessor and collision
index γ as in Equation (5.48)) comparable with the ones required in the case
of ideal road conditions.
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Table 5.1 Summary of the minimal values assumed by the safety indexes in
every described scenario.

Scenario min TTC min λ min d(t)

Vehicle following with estimation 2.02 −0.15 10.30
Vehicle following w/o estimation 0 −1.08 0

Stop&Go with estimation 2.73 1.22 3.20
Stop&Go w/o estimation 2.13 0.48 2.70





Chapter 6

Design of advanced longitudinal
control strategy with tyre thermal
dynamics

6.1 Introduction

The dynamic behaviour of the vehicle can be deeply affected by the tyre
operating conditions, including thermodynamic and wear effects. One of
the biggest factors is tyre temperature itself, playing a fundamental role in
high-performance motor sport applications [221]. Figure 2.21 shows the
effect of tyre temperature on pure longitudinal grip. The tyre temperature also
affects the cornering stiffness of the tyre, but the grip dependency is highly
pronounced as shown in the Chapter 2 and [222].

In Formula 1, the drivers can see their tyre temperature on screen and make
decisions based on their skill on how to control the car to extract maximum
grip and manage tyre wear by optimizing the tyre temperature. Similar to a
skilled race car driver, if a vehicle dynamics motion control system can assist
an unskilled driver to make sure the tyres operate in a desirable window of
temperature, it could be beneficial in race championships like FIA-WEC with
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gentlemen drivers, or an autonomous race car and possibly in an active safety
application on road cars.

After explored and demonstrated in the Chapter 4 and 5, the existing
widely accepted vehicle dynamics motion controllers like Anti-lock Brak-
ing System (ABS), Traction Control (TC), and Electronic Stability Control
(ESC) are still sub-optimal in the sense that they don’t consider the various
multi-physical phenomena of the vehicle such as tyre temperature, tyre wear,
possible variations in terms of tyre contact friction (as explored in the Chapter
5), etc. [223, 87], The focus of this Chapter is on the tyre temperature control.

Such systems, could be modified to explore the aforementioned idea. And,
this can prove to be a good research foundation for future research into this
domain of including multi-physical behaviour of sub-systems to improve the
performance of these motion control systems.

A conventional vehicle dynamics motion control system that does not
control tyre temperature won’t be able to make sure that tyre temperatures
are up to requirement whereas a controller that only regulates the tyre tem-
peratures won’t be able to ensure the adequate motion performance rather
it will possibly disrupt the vehicle’s performance, all while employing the
wheel’s longitudinal slip as input. Proposedly, a controller that optimizes
the desired motion performance while making sure the tyre temperatures
are also in the operating window, thus leading to a better performance, will
inevitably need to prioritise its actions. This clearly points us to the problem
of optimal control where a cost/objective function can help us specify relative
priorities using weights, resulting in the best control inputs. In this project,
the aforementioned motion control system is ABS.

To summarise, the chosen topic can possibly lay a foundation for the
future research into autonomous control where, when the detailing of decision-
making of the controllers will reach the level of multi-physics phenomenon
of tyres, specifically tyre thermodynamic behaviour. One paper that addresses
such an issue is [26], by taking into account the effect on the friction limits
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of the tyre due to temperature and eventually helping the Non-linear Model
Predictive Control (NMPC) based controller take driver input decisions with
the knowledge of those changing tyre friction limits deployed inside the
prediction model.

6.1.1 Methodology and co-simulation platform

The modern computer technology has enabled us to solve complex non-linear
problems numerically in finite time and great accuracy, where nowadays
it is very common that organisations develop digital twins of products for
prototyping. This approach has great benefits in the fact that testing variations
are virtually infinite as compared to real world testing. Eventually, products
can be developed quickly while being cost-effective. Of course, the former
statement is true if at least the plant models being used are validated. But
such an approach at least helps cut down a lot of possibilities that would have
been tested in a real-life prototype with no fruitful results.

Such a method, is especially great for research studies where an explo-
ration of the proposed idea is to be checked or the focus is at least not to
develop the whole product but just the concept.

As the application is concerned with vehicle control related to tyre per-
formance, existing control systems such as ABS and ESC instantly come to
mind. ABS, in specific is chosen to be developed and tested. The focus is
kept on high-level control and not the detailing of the low level hydraulic
braking system, i.e. the actuator dynamics.

Concerning the optimal controllers, as stated in the literature survey,
SDRE and NMPC were the two chosen options to test. Figure 6.1 shows the
approach taken for the whole ABS development process. For each controller,
first the quarter-car approach is used. In this system, the plant was modelled
the same as the prediction model used inside the controllers.

After the quarter-car development, the full-car controller is developed
only for the NMPC based controller as the SDRE controller did not provide
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Fig. 6.1 ABS controller development schematic

much opportunity to tune and was very unstable at lower velocities. It is done
using the co-simulation in Simulink environment. The Full-car model is the
same described in the Chapter 4 and is coupled with the validated high-fidelity
multi-physical tyre described in the Chapter 2 and thermal model described
in [103] called "TRT: Thermo Racing Tyre", whereas the prediction model
inside the controller includes a 5-DOF vehicle longitudinal model (6.4.1)
coupled with the same myTyre as used in the case of quarter-car. The whole
controller is modelled in Simulink, and the Simulink is the environment for
the total simulations, with full-car model.

6.2 Tyre model

This section explains the tyre model developed for the prediction model inside
the optimal controllers. It has been named ’myTyre’ so that the reader can
easily understand and pinpoint its exact usage. This model is a combination
of the basic equations of Pacejka tyre model [224] and the tyre tread thermal
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model used to alter the stiffness and the peak force of the pacejka equations.
The literature showed that using a steady-state tyre model (for the optimal
controller predictions) should be good for ABS simulations and so, no tran-
sient effects (like relaxation length for the longitudinal force) were modelled.
The following paragraphs will explain the details of the Pacejka force model,
the thermal model and the connection between the two as shown in Figure
6.2.

 
Thermal model 

 
Connection

 

Pacejka 

Fig. 6.2 Total thermal tyre model schematic with data flow

Tyre Force Model - Pacejka model based

The most famous empirical tyre model’s equation, the Pacejka’s MF Tyre
model [224] described in the Chapter 1 and 2, has been used to represent the
longitudinal tyre forces. It has been used in innumerable applications since
its inception in 1990s. Based on the similarities concept, each parameter
inside the equation is related to different characteristics of the tyre such as
peak force, stiffness, etc. And the dependency of these parameters can be
made a function of the desired variable, for example the tyre normal load.
For high-level ABS controller testing, longitudinal tyre modelling proves
sufficient, especially for the longitudinal tests where no lateral tyre slip is
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encountered. In this study, the focus is only kept on the performance of ABS
in straight line tests with the same coefficient of friction for all the tyres,
hence, a pure longitudinal model is sufficient. In the case of brake test cases
involving cornering or split-µ conditions, the use of a combined-slip tyre is
crucial.

6.2.1 Tyre thermal modelling

Much of the literature on tyre thermal modelling is related to the accuracy
that it provides in the simulations in model-based development of vehicles
[225–228, 17, 18]. These models range from simple empirical-lumped mod-
els to high fidelity Finite-element method (FEM)-based physical models. And
because modern development also involves Driver in the Loop (DiL) sim-
ulations, so the numerical solutions of such models must also converge in
real-time based on the current state-of-the-art financially viable computer tech-
nology. In the following paragraphs, the applicability of the aforementioned
models is discussed.

A purely physical model with 3D FEM-based thermal and structural tyre
model is presented by Calabrese [222], with major heat generation and heat
exchange sources, clearly pointed out. He also presents a setup with force
model based on MF-tyre model with empirical relations for the grip and
stiffness dependency on the temperature. As pointed out by the author, the
latter setup has lower computational cost. Anyways, both setups shows high
accuracy and shows great applications in lap-time simulations or tyre devel-
opment as well, being a physical model. Unquestionably, such a model can’t
be considered for the prediction model inside an optimal-controller, being
computationally heavy, as it involves solving partial differential equations in
3 dimensions.

The physical model (1D-heatflow) presented by Rosa et al. [229] set the
foundations for the 3D physical model later presented by Farroni et al. [221,
102] for motorsport applications "to estimate the temperature distribution even
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of the deepest tyre layers". As stated ny the authors, these models have shown
great real-time applicability for DiL simulations. But the same reasoning as
for the Calabrese’s model [222] goes for it, not to be used as a prediction
model for the controller.

Fig. 6.3 1, 2 and 3 node lumped thermal model schematic, as presented in
[17–19] respectively

The model presented by Tremlett [17] is a great example of a lumped-
parameter model based on the heat flow equation formed using first law of
thermodynamics with the assumption of an isotropic thermal tyre mass. They
treat the tread of the tyre as a lumped mass with 4 dominant heat-flows viz.
friction power, strain energy, air convection, and conduction in the non-sliding
region of the patch. Not to mention that these individual heat flow terms are
fit empirically with their individual efficiency terms. Such, a model involves
a solution of a single Ordinary Differential Equation (ODE) to predict the
tread temperature, which makes it suitable for a prediction model inside an
optimal controller, as compared to a 3D model solved using FEM. As shown
in Figure 6.3, a similarly lumped, 2-node (tread and carcass) thermal model by
West and Limebeer [18], and a 3-node (tread, carcass and internal air) thermal
model by Kelly and Sharp [19] can possibly accommodate bigger variations in
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boundary conditions, respectively, as compared to the aforementioned 1-node
(tread) model. Thus, could also be used in the concerned future applications
with an advantage of robustness.

Thermal Model

As was discussed in the literature survey, the thermal model developed by
Tremlett [17] with some modifications related to the contact patch size related
functions according to Hackl [227] was implemented.

The concerned model is an empirical lumped parameter model of the tyre
tread based on the 1st law of thermodynamics. The tread mass is treated as
an isotropic material. This tyre tread (1-node) model was an obvious starting
choice for this problem not just from the need of a light and simple model
but also the fact that the employed model-based controllers need full-state
feedback. The tread temperature is know to be easily measured with the
use of infrared sensors in the modern cars whereas in the case of a 2-node
model with the additional temperature state of the carcass temperature, state
estimation techniques would be necessary for the requirement of a full-state
feedback.

The following 4 heat flows (Figure 6.4), being the dominant, are consid-
ered while radiation is neglected:

1. Q1: Heat generated due to the friction power in the sliding region of
the contact patch

2. Q2: Heat generated due to the strain energy within the mass

3. Q3: Heat exchange due to the forced convection with ambient air

4. Q4: Heat exchange due to the conductive cooling at the non-sliding
region of the contact patch

The homogeneous temperature of the tread mass (Ts) is given by the
differential equation (6.1):
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Fig. 6.4 Considered heat flows in the thermal model

mtct Ṫs = Q1 +Q2 −Q3 −Q4 (6.1)

where mt is the mass of the tyre tread and ct its specific heat capacity. The
heat generation due to friction power (Q1) is represented as a sum of friction
powers due to Fx (6.2) and the same heat due to Fy is neglected as we are
using the pure longitudinal representation:

Q1 = p1Vx|Fxκ| (6.2)

where, Vx is the tyre ground velocity and p1 represents the ratio of friction
heat entering the tread. All the parameters (viz. pi) in this model are fit
empirically. The heat generation due to strain energy (Q2) is represented as
shown in equation (6.3) where the parameters here are the efficiencies related
to each force i.e. Fx and Fz in this case. These efficiencies directly relate to
the corresponding force’s contribution to the strain energy losses:

Q2 =Vx(p2|Fx|+ p3|Fz|) (6.3)



242
Design of advanced longitudinal control strategy

with tyre thermal dynamics

Next, the heat exchange due to forced convection around the tyre (Q3) with
the ambient air is represented using Newton’s cooling law with an empirical
formulation for the heat transfer coefficient, as seen in equation (6.4):

Q3 = p4V p5
x (Ts −Tamb) (6.4)

where Tamb is the ambient temperature and the heat coefficient is being
represented as p4V p5

x and is empirically fit. The formulation p4V p5
x can very

well represent the flow around a wheel in a car, once fit. Lastly, the heat
exchange due to the conduction of the non-sliding region of the patch (Q4)
with the road is represented using the Fourier’s law as shown in equation
(6.5):

Q4 = htAnsl(Ts −Troad) (6.5a)

where,
Ansl = lwlnsl (6.5b)

lnsl = lp(1− cs) (6.5c)

lp = acpFacpp
z (6.5d)

cs =

(
cs2 − cs1

κmax

)
κ + cs1 (6.5e)

For the non-sliding region area calculation, the whole patch is assumed as
a rectangle with length lp and width lw where it was a safe choice to assume
that the width remains fixed (being a radial tyre). The lw is represented as a
power function of the tyre normal load as shown in equation (6.5d), fit empiri-
cally using separate data. The non-sliding region’s length lnsl is calculated by
first knowing the sliding length lsl of the patch using the proportioning factor
cs as shown in equations (6.5c) and (6.5e). The cs being a linear function of
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the longitudinal slip based on the values proposed by Hackl [227]. Here, cs2

and cs1 are the proportion of patch region that is sliding for the slip value
at maximum force (κmax) and zero slip, respectively. And the heat transfer
coefficient ht is taken as a constant.

Connection Kµ(Ts) and Kk(Ts)

As seen in Calabrese’s work [222], the two main effects that the tyre tem-
perature has on the tyre characteristics is on grip and stiffness, grip being a
considerable change. Although in high-fidelity models like MFevo in Chap-
ter(2), the grip and stiffness change is more precisely represented as a function
of different internal tyre layer temperatures and also pressure as shown in
[230, 231]. In myTyre, the grip and slip stiffness effect was included using
the Kµ(Ts) and Kk(Ts) functions by scaling the Dx and Bx, respectively. These
scaling functions are shown in equation (6.6). Their degree of polynomial
was based on the identification of the data from the reference tyre at a given
pressure. It is safe to assume the pressure as constant for a given manoeuvre,
but across the whole working range of environmental conditions in reality it
is crucial to consider the pressure effect. In all the test performed in this work,
the initial pressure was assumed to be the same (1.4bar) for all the different
environmental conditions.

Although, the cornering stiffness of the tyre is more dependent on the
carcass temperature than the tread temperature, but still because of some
amount of correlation such a cubic polynomial (6.6) shows good enough
empirical fit, at least in terms of the direction of trends:

Kµ = Kµ,aT 2
s +Kµ,bTs +Kµ,c (6.6a)

Kµ = Kk,aT 3
s +Kk,bT 2

s +Kk,cTs +Kk,d (6.6b)
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where Kmu,i and Kk,i are the coefficients of respective polynomials (i ∈
{a,b,c,d} here).

6.3 Vehicle model

6.4 Quarter-car

Quarter car is a model representing one corner of a car which includes the
equivalent mass at that corner and the wheel. This leads to 3 main dynamics to
be modelled viz. wheel slip dynamics, longitudinal velocity of the quarter-car,
and the tread temperature dynamics. Not to mention, that here no load transfer
effect (no moment balance) is considered due to the fact that there is only one
tyre. Figure 6.5 shows us the quarter-car where only the longitudinal force
balance between inertial force and tyre force, and the torque balance between
inertial torque, brake torque and tyre force torque is taken into account. And
the tyre normal load is simply equal to the weight of the quarter-car (mg).

Fig. 6.5 Quarter-car forces and torques illustration

Such a simple model helps us understand the basics of the full-vehicle and
also with better weight tuning for the full-car controller. This model coupled
with myTyre was both used as the plant and prediction model. The following
points state the assumptions in such a simplification:
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• It moves in a straight line and thus, longitudinal dynamics of tyre must
suffice

• No camber (γ) effects

• No suspension/load transfer effects considered

• Purely rigid longitudinal connections

• No coupling effects due to a chassis connecting the four wheels

• No variations in wheel radius

From the longitudinal slip definition in equation 1.4, has been possible
get the following equation (6.7).

κ̇ =
1
Vx

[
Reω̇ −V̇x (1+κ)

]
(6.7)

Balancing the torque around the wheel center, the wheel rotation dynamics
(ω̇) has been evaluated as (6.8):

ω̇ =
Tb −RlFx

I
(6.8)

where, Tb is the braking torque applied to the wheel, Rl is the loaded
radius of the tyre, Fx being the longitudinal tyre force and I being the wheel’s
total rotational inertia about the rotation axis.

A simple longitudinal equilibrium on the quarter-car brings us the equation
(6.9):

V̇x =
Fx

m
(6.9)

where m is the mass of the quarter-car.
Substituting the value of ω̇ from equation (6.8) and V̇x from equation (6.9)

in the equation (6.7), we get the following equation (6.10):
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κ̇ =
1
Vx

[
ReTb

I
−Fx

(
ReRl

I
+

1+κ

m

)]
(6.10)

In the tyre tests it was also seen unlike the loaded radius, the effective radius
does not change much unless with larger values than the maximum force.
So, a constant value was chosen and not modelled as dependent variable on
factors like tyre load, speed, etc.

Finally, using the tread temperature dynamics definition Ṫs from equation
(6.1) we get the quarter-car system’s equation (6.11) in implicit form:

κ̇ − 1
Vx

[
ReTb

I −Fx

(
ReRl

I + 1+κ

m

)]
V̇x − Fx

m

Ṫs − 1
mtct

(Q1 +Q2 −Q3 −Q4)

=


0

0

0

 (6.11)

where the heat flows (Qi) are represented as shown in equations (6.2)-(6.5)
and have been omitted for spatial reasons. All the Fx terms are represented by
the Pacejka tyre force equations.

6.4.1 Full-car

For the full-car analysis the plant and the prediction models have different
fidelity. The plant is the 14-DOF vehicle model described in the Chapter 4
and the prediction model is a 5-DOF vehicle model used inside the controller.

5 DOF vehicle prediction model

The prediction model is much simpler than the plant model, and is used to de-
pict the main dynamics of the system important for this controller application
viz. wheel slip dynamics (κ̇), and the vehicle’s coupled longitudinal dynam-
ics (V̇x). As our considered reference plant model has four wheels, which
corresponds to 4 slip dynamic equations and a single equation representing
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the vehicle’s longitudinal dynamics, leading to 5 degrees of freedom (Figure
6.6).

Fig. 6.6 Full-car 5 DoF Vehicle model - forces and torques illustration

Ideally, The load transfer can be included as a function of the vehicle
longitudinal acceleration. This acceleration being a direct function of the tyre
force, leads to a situation of algebraic loop for numerical simulations requiring
special solver which is not a possibility in the case of Runge-Kutta solver used
in side the NMPC prediction calculations. So, to avoid the issue of algebraic-
loop the load transfer (∆Fz) is modelled as first-order dynamics [232], as a
function of the tyre longitudinal force as shown in (6.12) and (6.13). So, the
load transfer becomes a state in the full-car dynamics, eventually increasing
the DOF from 9 to 10 as seen in (6.15).

∆̇Fz =
1
τ

(
∆̃−∆Fz

)
(6.12)

where,

∆̃ =
Fx,tot hcog

2l
(6.13)
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Here, the τ represents the time constant of the first-order transfer function,
hcog is the height of the centre of gravity of the whole vehicle, l is the
wheelbase and Fx,tot is the summation of all four tyre longitudinal forces. The
time constant is fit empirically based on one of the braking tests performed.

Finally, the load transfer is calculated by subtracting or adding the load
transfer to the static front/rear wheel loads, respectively, as shown in equation
(6.14).

Fzi = Fz,static ±∆Fz (6.14)

The equations for myVeh including the tyre tread dynamics (additional 4
degrees of freedom) are presented in implicit form in equation (6.15). The
index of the variables corresponds to each wheel as shown in the Figure 6.6.



κ̇1 − 1
Vx

[(Re
I

)
Tb1 −

(
ReRl

I

)
Fx1 − (1+κ1)

Fx,tot
M

]
κ̇2 − 1

Vx

[(Re
I

)
Tb2 −

(
ReRl

I

)
Fx2 − (1+κ2)

Fx,tot
M

]
κ̇3 − 1

Vx

[(Re
I

)
Tb3 −

(
ReRl

I

)
Fx3 − (1+κ3)

Fx,tot
M

]
κ̇4 − 1

Vx

[(Re
I

)
Tb4 −

(
ReRl

I

)
Fx4 − (1+κ4)

Fx,tot
M

]
V̇x −

Fx,tot
M

Ṫs1 − 1
mt1ct1

(Q11 +Q21 −Q31 −Q41)

Ṫs2 − 1
mt2ct2

(Q12 +Q22 −Q32 −Q42)

Ṫs3 − 1
mt3ct3

(Q13 +Q23 −Q33 −Q43)

Ṫs4 − 1
mt4ct4

(Q14 +Q24 −Q34 −Q44)

∆̇Fz − 1
τ

(
∆̃−∆Fz

)



=



0

0

0

0

0

0

0

0

0



(6.15)
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where the indices for the variable κi, Tbi, Fxi, Tsi, mti, cti, and Q ji are defined
as i ∈ {1,2,3,4} representing each wheel (Figure 6.6) and j ∈ {1,2,3,4} rep-
resenting each heat flow for individual wheel (equations (6.2)-(6.5)). Similar
to the quarter-car, the Fxi is represented by the Pacejka’s tyre force equations.
And the load transfer state equation is represented as shown in equation (6.12).
M represents the mass of the full-car and Fx,tot represents the sum of all Fxi.
It can also be seen that the Re, Rl , I, mt , ct , and other thermal parameters are
assumed to be the same for all wheels, as all four tyres are represented using
the same parameterisation.

6.4.2 Validation

This section talks about the parameterisation process used for each model
while showing the validation plots for each. The reference tyre model (MFEvo,
described in Chapter 2) used in the plant is a well-validated model and its
validation plots will not be presented here for confidentiality reasons.

Specifically, the validation of the myVeh tyre model and the myVeh full-
car model will be shown here. They are fit onto the data obtained from the
tests performed with the full-car plant model and the MF-evo tyre with the
TRT thermal model.

myTyre validation

The model is made up of 3 sub-models viz. Pacejka-based force equations,
the thermal model, and the connecting equations.

The Pacejka force equation is fit onto the reference curve of MF-evo,
which is present at the optimal temperature of 70◦C. First, the coefficients of
C f α and Dx relation were identified using separate tests for each. Based on
the data, both are made linear functions of Fz. The 3 load values were chosen
based on the average static load on each tyre of the reference vehicle and the
maximum possible static load transfer based on the tyre peak coefficient of



250
Design of advanced longitudinal control strategy

with tyre thermal dynamics

friction. Once, they are identified, Cx and Ex remain, which are identified
using a non-linear numerical fitting routine. The validation plots are as shown
in Figure 6.7. For ABS application, it is expected for the slip to not reach
values much higher than the maximum force slip, so the fitting routine was
kept between [−0.15,0] slip value, although it is evident from the figure that
the fitting will also be good until locked wheel slip value of −1. The fitting
is not expected to be perfect because the horizontal and vertical shift is not
included in the Pacejka equation formulation used in this work. And, so,
including the vertical and horizontal shifts, and also making Ex a function of
load can improve the fit. But, such a fit didn’t pose any problems related to
stability because of plant-model mismatch.

Fig. 6.7 Pacejka-based force equation validation at reference temperature

The next step is the parametrisation of the thermal model, which is done
based on the data produced from the test on full plant coupled with the MF-
evo tyre. The parameters for this model are divided into two categories viz.
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Fig. 6.8 MFevo specific heat capacity variation with tread temperature and
patch length variation with tyre normal load

fixed and optimised. The fixed parameters are taken from the MFevo model.
The specific heat capacity ct is taken as constant in myTyre and so a value
around the optimal temperature is used (Figure 6.8). And the heat transfer
coefficient ht is also taken to be a constant value. The power function for the
patch’s total length lp is fit onto the available data for MF-evo as shown in
Figure 6.8. All the final parameters are presented in the Table 6.1:

Table 6.1 Thermal model fixed coefficients

Coefficient description Symbol Value Unit

Tread mass mt 2.54 kg
Tread specific heat capacity ct 1.6×103 J

K kg
Tread-road heat transfer coefficient ht 4.5×102 W

m2K
Contact patch width lw 2.9×10−1 m
Contact patch length function coefficient acp 2.9×10−3 m
Contact patch length function power acpp 4.9×10−1 −
Fraction of contact patch in sliding at zero slip cs1 3×10−1 −
Fraction of contact patch in sliding at Fmax slip cs2 8×10−1 −
Fmax slip value (assumed fixed) κmax 1×10−1 −
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For the optimised parameter fitting routines, the various input variables
(Fx, Fz, κ , Vx, Tt , Ta) are also taken from the test, whereas in the final compiled
myTyre model, the Fx is fed from the simple Pacejka-based force model as
shown in Figure 6.2. The parameters were identified using a non-linear least
squares fitting routine for a brake test of the plant with the MFevo tyre, which
involved changing tyre load Fz (due to load transfer), decreasing longitudinal
velocity Vx and changing longitudinal slip κ . The test input and output values
of a front tyre were chosen and used for both front and rear tyres.

Whereas the initial and boundary conditions for this test are stated in
Table 6.2.

It is observed that the parameterisation for a given test (initial velocity
and temperature, and boundary conditions) is able to reproduce the thermal
behaviour for the similar conditions with a good accuracy, but fails to show
good accuracy as these conditions change. But because the final selected
value of the prediction horizon of the full-car NMPC controller is small
enough, where the accuracy is always good for each prediction and the
feedback of state helps update it each controller’s sampling time. Hence, this
same optimised paramter set is used for various tests with different initial
and boundary conditions as described in Figure 6.16. Figure 6.9 shows the
validation plot for the myTyre thermal model with the MFevo’s thermal test
data.

Table 6.2 myTyre thermal model validation test conditions

Initial conditions Boundary conditions
Vx0 = 40m/s Ta = 28◦C
Ts0 = 28◦C Tt = 35◦C

Finally, the last part of the myTyre, the connection between the Pacejka-
based force model and the thermal model is parameterised. The MFevo
tyre model modifies the tyre peak grip and stiffness based on complicated
functions of the temperature of the tread’s surface, core and base layer. But in
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Fig. 6.9 myTyre thermal model validation

the case of myTyre due to the availability of only the tread surface temperature,
both the Kµ and Kk are a function of that (6.6). Multiple tests with different
initial homogeneous tyre temperature are run to retrieve the values of Kµ and
Kk. Final validation plots of the polynomial fitting of the functions are shown
in Figure 6.10. The starting tyre pressure across the whole work is taken equal
to 1.4bar and the impact due to its changing value is not taken into account
because the pressure change is extremely small in a braking manoeuvre. In
the real implementation, lookup tables can be setup to compensate for the
impact of different inflation pressures on the grip and stiffness.
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Fig. 6.11 Pacejka and connecting equation’s combined performance - Longi-
tudinal force with longitudinal slip (Fz = 3132N)

Figure 6.11 shows the performance of myTyre vs MFevo for 2 temperature
values. Here the thermal model model is suppressed to check the performance
of Pacejka equation combined with the connecting equation (6.6). The next
section (6.4.2) will also show the performance of the myTyre in terms of
inputs to the output longitudinal tyre force Fx as compared to the MFevo and
also the pure Pacejka-based tyre model (at reference temperature of 70◦C)
without temperature effects.
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myVeh validation

Once the myTyre is validated, the full-car prediction model "myVeh" (6.4.1)
is finally validated. The performance of the model is shown in Figure 6.12.
In this model, all the tyres are the same manufacturer model, hence, are repre-
sented by the same parameterisation. Although, in the case of implementation,
the rear tyres must definitely have a different thermal model parameterisation
as compared to front because of the difference in air flow (being the biggest
factor). It is also due to the fact that the one-node tread model presented in this
work has limited capability, and needs a change in the optimised parameter set
to accommodate for different air flows for front and rear tyres. So, it means
that here it has been assumed that the front and rear tyres of the vehicle have
same airflow around them.

In this test the same brake torque input is given to both the plant and the
prediction model and outputs are validated. All the outputs show a good fit,
especially the tyre normal load shows a good fit when made a state in the
system as shown in 6.4.1. In the transient phase of the tyre normal load, the
prediction model doesn’t fit well because of the lack of suspension modelling
within, as compared to the plant model. Due to this transient phase, the
longitudinal slip and force transients also suffer. The tyre longitudinal force
shows good fit overall, being the important output as it directly propagates
to how much brake torque the controller will apply, which can also lead to
under or over-braking than the required value. It is clear that the velocity
propagation matches perfectly as is also important in a braking manoeuvre.

6.5 Controller and simulation

All the simulations were performed in Simulink environment. A general
data flow of the controller with the plant is shown in Figure 6.13. In the
controller simulations, it has been assumed that the ideal full-state informa-
tion is available which could be either by the means of measurement or an
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Fig. 6.12 Full-car model "myVeh" validation
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estimator. The whole simulation works on the assumption that everything is
deterministic. The driver brake demand affects the reference for the controller
whereas the controller weights can be made dependent on the state values.
The controller’s prediction model parameters can also be updated based on
the different boundary conditions, as this model is not complex enough to
represent the whole set of thermodynamics boundary conditions.

Vehicle
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Fig. 6.13 Full-car simulation general setup

6.5.1 Quarter-car simulation

The quarter-car simulations are done to get an initial understanding of the
response of the controllers, eventually helping mitigate complex problems in
the full-car simulations. The plant and prediction models in this case were
kept the same, such that pure plant-model match is achieved. This helps make
sure the plant-mismatch instabilities are avoided and controller performance
can be assessed. The model equations used are the ones shown in equation
(6.11). These equations were treated differently based on the controller type -
SDRE or NMPC. The next section goes into the detailing of the quarter-car
model used in these simulations.

In these simulations, the reference and controller weighting for the con-
troller is kept constant and not variable based on the state (as is done in the
full-car simulations), to keep the analysis simple. Also, it is evident from
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the system equations that the κ dynamics become fast as the vehicle’s lon-
gitudinal velocity Vx moves towards zero. This tells that the it will become
difficult for the controller to stabilise the slip as the velocity decreases, as is
also evident from the literature [233, 87]. Hence, a cut-off velocity (Vx,cut-off)
is set to mitigate that.

As the plant and prediction model is the same here, the decription below
fits both the models. Based on the model equation (6.11), it is seen that
the state vector in this case is [κ,Vx,Ts]

T whereas the input is simply the
brake torque Tb. The quarter-car is clearly a Single Input Multi Output SIMO
system when the weightage on both the longitudinal slip κ and the tread
surface temperature Ts is non-zero, and it is expected that kappa being the
first direct state (from Tb i.e. the only input) affecting the tread temp, would
be used to quickly heat the tyre in case heating is required, as is also evident
in the quarter-car simulations. A lower bound (κ < 0 in braking) on κ is
important to ensure that the tyre lateral force producing capability doesn’t
deteriorate too much because of running a higher longitudinal slip κ than
required to extract the maximum longitudinal force and vice-versa for the
upper bound when tyre would be hotter than reference temperature (optimal,
70◦C as can be seen in Figure 6.10 (a)). A lower bound on the brake torque is
also set to ensure a realistic brake torque saturation. A Tb value a bit higher
than the torque required to lock the tyre (−2000Nm).

The plant dynamics are simulated with a time step of 1×10−3s to capture
the non-linearities of the longitudinal slip κ dynamics which fluctuate the
fastest.

6.5.2 Quarter-car SDRE controller

This sections explains how the SDRE controller equations were setup includ-
ing that of the prediction model. As mentioned before, there is a need to
represent the non-linear system in a linear-like SDC form. The chosen SDC
representation is then checked for stabilisability across the whole possible
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sets where states and inputs can propagate. The reader can refer to Appendix
A for the detailing of SDC parameterisation.

In the SDRE, the pacejka-based tyre force equations are left out from
the controller parameterisation and the tyre force is computed external to the
SDC computation as is shown in Figure A.1. This technique is taken from
[234, 235]. It helps to leave out the complicated pacejka-based tyre force
function out of the SDC parameterisation and at the same time helps with
including the state dependencies within the tyre force equation.

The MARE solution is implemented as shown in [236] which is based
on the technique showed in [237]. The solution is based on the eigen-
decomposition of the associated Hamiltonian matrix as stated in [85].

Reference generation

An important aspect in controllers is the definition of the reference. Here, the
input for the plant is the product of the computed gain matrix and the error
between the current state and the reference state (Figure 1.26):

u =−Ke (6.16)

where
e = x−xref (6.17)

As seen before, the reference values in the case of quarter-car are kept constant.
An obvious choice for the longitudinal velocity reference is 0 as it’s a braking
manoeuvre. But in the case of SDRE, it was seen that the gain computation
was failing in such a case and so the reference velocity is set as follows by
assuming a fixed deceleration a f ixed of the vehicle and the reference velocity
being the result of achievable velocity change within the controller sampling
time step ∆t :

Vx,re f =Vx −a f ixed∆t (6.18)
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The reference for the longitudinal slip must be kept at the value where the
maximum longitudinal force is achieved. For the given parameterisation, it is
seen that −0.08 is good compromise across different temperature values and
the given mass (tyre normal force, Fz) of the quarter-car (3132N here as the
nominal tyre load of full-car). But here, the reference for the longitudinal slip
κ is kept equal to −0.1 as a fixed value. Because of the inevitable steady state
error, −0.1 helped in achieving the steady state slip value of around −0.08.
Finally, the reference value for the Ts is kept equal to the optimal temperature
of the tyre i.e. 70◦C for the tyre parameterisation used. But it was seen that
when the state error for Ts is very high, the controller didn’t perform well, so
based on the initial condition of Ts a small initial error (by setting a lower
Ts,re f as compared to 70◦C) resulted in a better performance. For example, in
the case of initial temperature of 30◦C a Ts,re f = 50◦C performed much better
as shown in Appendix B.

Tuning

The controller sampling frequency is checked and the value of 1000Hz is
important to keep the system stable, otherwise the control of slip is very noisy
(smaller controller frequencies). Even with a value of 1000Hz the controller
oscillates to some extent when the vehicle velocity is lower than 14m/s, but
because of the cut-off velocity of 10m/s, this is not a problem. There is no
possibility of tuning the prediction horizon as it is set to infinity in the SDRE
setup.

The tuning of weights in an optimal-control based controller is much
simpler as compared to a conventional controller because the weights are
directly connected to the state variables. For the start of tuning, the technique
of setting the corresponding state weighting as a reciprocal of the square
of its maximum achievable value qii = 1/x2

i,max [78] didn’t help in terms of
achieving a solution for gain computation but it gave an idea about where to
start. Also, Mehmet et al. [238] show that the tuning of an SDRE controller is
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not a straightforward procedure and requires some hit and trial. Eventually, it
is seen that the final weighting for κ is needed to be very large because of the
fast dynamics. The weighting on the Vx doesn’t show any performance benefit
and the weighting on Ts is non-zero only in the case where optimising the tyre
temperature is important. Any weighting on the control input Tb would result
in suppressing the optimally calculated torque, so, it is kept equal to 0. All
final weightings are stated in Table 6.3, where the first case is a pure control
of κ only (while a feasible numerical solution of the gain is achieved with a
non-zero weighting on Vx) and another case is where weighting is also given
to control Ts which helps in optimising the tyre temperature that may achieve
higher grip overall but at least heat the tyre faster which can help to simply
heat the tyre quicker over multiple braking manoeuvres. The results of both
these cases for a given set of initial and boundary conditions are shown in
Appendix B.

Table 6.3 Quarter-car (QC) controller weights

QC-SDRE QC-NMPC

State Weight
Variable

Value:
κ - control

Value:
κ and Ts - control

Value:
κ - control

Value:
κ and Ts - control

κ qκ 1×1010 1×1010 1×104 1×104

Vx qVx 1×10−1 1×10−1 0 0
Ts qTs 0 1×106 0 5

6.5.3 Quarter-car NMPC controller

This sections explains how the NMPC controller equations were setup includ-
ing that of the prediction model. Here the prediction model is presented in
the non-linear state-space format as shown in equation (6.11) in an implicit
form. Here, the full non-linear model including the non-linear tyre equation
is computed within the controller and not externally as seen in SDRE.
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In NMPC it is also possible to set state and input bounds within the
optimisation computation. In this work, mainly the bounds on κ and Tb

are important and are implemented (as discussed in 6.5.1). The MATMPC
toolbox requires multiple settings relevant to the numerical solution which
are defined in Table 6.4.

In this work, for the objective function (1.52), the output vector y(t) and
the the terminal output vector y(t0 + TP) are the same as the state vector
[κ.Vx,Ts]

T .

Table 6.4 NMPC - MATMPC toolbox settings used

Setting parameter Value
Hessian approximation Gauss-Newton

Integrator-type Implicit Runge-Kutta 3rd order
QP condensing full

QP solver qpOASES (full-condensed QP)
hotstart no

RTI scheme no

Reference generation

The reference for κ is kept the same as in the quarter-car SDRE as shown in
the section 6.5.2. For Vx the reference is simply kept equal to 0 because it is a
braking manoeuvre and the car aims to stop/slow down. And, the reference
for Ts is kept equal to the optimal temperature value 70◦C for the tyre as it
was easy to achieve consistent performance across different conditions in
the NMPC controller and a changing Ts,re f was not needed like in SDRE. A
non-uniform grid of references is also possible in the NMPC-based controller
but currently is not available within the MATMPC toolbox. Although, the
performance without that is satisfactory and it will only increase the amount
of tuning variables, thus complicating the development.
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Tuning

For the controller sampling time Ts selection, the fastest and unstable dynam-
ics of the system are important to consider (here κ̇). The κ dynamics are
seen to be around 20-30 Hz, as is also seen in the literature. As a rule of
thumb in control theory, the controller’s sampling time must be 4-10 times
faster than that of the process time constant. The faster the controller, the
easier it will be to catch the changes in the states of the system, such that
they can be controlled. Considering the 20 Hz of κ̇ , we see that at least 100
Hz (5 times) of controller frequency is necessary. Based on that, 3 values
for the controller frequency are chosen [100,150,200]Hz, corresponding to
[10,7,5]ms of sampling time Ts. The difference between the rise time for a
step change in κ is seen to be within 5ms and so the smallest value of 100Hz
is chosen. In terms of settling time, it lags only by 10ms and has a negligible
overshoot. For these tests, only the slip state is weighted (with a value of
1e04) and the number of horizon steps (N) is kept constant at 2, correspond-
ing to prediction horizons of [20,14,10]ms. Now comes the selection of the
prediction horizon (TP with N samples). Increasing N is costlier in terms of
computation, on the other hand it helps the controller look into the future and
improve stability. In this work, Increasing N also helps in controlling Ts (by
running a higher |κ| initially to heat the tyre quickly and then come back to
zero error in slip. But the same effect is also seen by increasing the relative
weight on the Ts. Between N and the weight on Ts, N is more costly as it
has a direct positive correlation with the computation time of the controller.
Although the computation time is out of scope of this thesis but in the future
if this technique is implemented then computation time will become a big
factor for real-time performance.

Once the controller settings (Ts and N) are selected, focus is shifted
towards the weights set on the states and control input in the cost function
(1.52). As NMPC is a model-based controller, this leads to the tuning being
done based on the parameters directly connected with the states of the system
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model. Also, another benefit is the fact that the number of tuning parameters
are less as compared to the industry standard rule-based controllers like the
ABS in production cars [87].

As is seen in the quarter-car system model (6.11), there are 3 states, i.e.
x = [κ,Vx,Ts] and the control input being u = Tb. It is obvious not to put any
non-zero weight on the control input Tb as that would lead to suppressing
the optimal Tb value. In an ABS system, to meet the objective of generating
the maximum longitudinal force (or maximum longitudinal acceleration)
while maintaining steer ability is simply by following the reference set for the
optimum longitudinal slip κ . If the reference longitudinal slip κ is maintained,
it will automatically ensure that the desired velocity of 0 (Vdes = 0) is met as
soon as possible, so the weighting on it was set to zero. And the weight on
κ is decided by using a range of values. It is seen that a weight of 1×104 is
sufficient and increasing the weight beyond that didn’t result in any reductions
in rise time to a step response. Finally, the weight on Ts produces two cases, as
seen in 6.5.2 and Table 6.3. For the case of only κ control (Case 1), the weight
qTs is simply 0. And in the case of κ and Ts control (Case 2), the weight
qTs is non-zero. Although the quarter-car is not tested extensively across a
range of initial and boundary conditions, by some preliminary tests it was
evident that varying the qTs with the initial conditions of Ts and Vx in a braking
manoeuvre and also making it 0 when the velocity drops below a certain
threshold (Vx,cut−o f f = 20m/s here) helps with a consistent performance. It is
seen that in a braking manoeuvre as the velocity drops, the heating of the tyre
stagnates, thus, heating the tyre provides no benefit after that, so the weight on
Ts is made 0 below this Vx,cut−o f f . Finally, this concept of variable weights is
applied in the full-car NMPC controller. Table 6.3 states the chosen weights in
the case of quarter-car NMPC, tested on a case with Ts0 = 30◦C, Vx0 = 40m/s
and boundary conditions of Ta = 28◦C and Tt = 35◦C. For the lower bound
on κ , an arbitrary value of −0.12 is chosen. For real implementation, there
can be a number of factors that can affect the choice. To name a few, drop in
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lateral grip, hydraulic system capability to stabilise slip beyond peak, gains
in temperature, gains in braking distance performance, etc. can affect the
choice.

6.6 Full-car simulation and NMPC controller

The quarter-car simulations already give a good idea on how the system will
response without representing all the details of the full-car, but to see the
real world applicability, the details like connection between the 4-wheels
and load transfer are important to consider. The full-car simulation data-flow
architecture which is representative of the setup in Simulink is shown in
Figure 6.13. The plant used in these simulations is completely different than
the prediction model inside the controller. The plant is composed of the
full-car model coupled with the MF-evo. Whereas the prediction model is the
"myVeh" as defined in 6.4.1.

For the full-car simulations it is chosen to move forward only with the
NMPC based controller because the implementation of the SDRE based
controller on quarter-car shows infeasibility in MARE solutions and would
have become even more complicated to debug in the case of a full-car. Also,
the instability of quarter-car SDRE controller is high as compared to NMPC
(Figure B.1 and B.2). In this respect, the NMPC shows good robustness in
terms of tuning the system.

The concerned states in the full-car case are simply based on the states that
are modelled in the prediction model "myVeh", x = [κ1,κ2,κ3,κ4,Vx,Ts1,Ts2,-
Ts3,Ts4,∆Fz]

T . These state variables are especially required as feedback
from the plant as the NMPC-based control requires full-state feedback. The
subscript numbers here are defined for each wheel as is also described in
6.4.1. Here, the control input is u = [Tb1,Tb2,Tb3,Tb4]

T , i.e. the brake torques
corresponding to each wheel. Here, as will be discussed below, the references
are made variable based on the state feedback and some of the weights are also
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made a function of initial conditions and the state feedback. The lower bound
on the κ belonging to the rear wheels is tighter as compared to the front wheels
to ensure a stable behaviour (κ1,bound = −0.12 and κ3,bound = −0.11). An
accurate quantification of these bounds must depend on the real application.
Also, the torque bounds on the front and rear wheels are different (front higher
than the rear - Tb1,bound =−2200Nm and Tb3,bound =−2000Nm), set higher
than the wheel locking limits, as is also discussed in 6.5.1. Lastly, the plant
dynamics here are simulated with a time step of 1× 10−3s to capture the
non-linearities of the system.

The representation of the prediction model is done in the same way as
described in 6.5.3. The optimisation at each controller sampling instant is
done with the MATMPC toolbox with the settings as defined in Table 6.4. The
cases of in-feasibility are not discovered in the work and so no such techniques
like limiting the maximum iterations are applied. For the objective function
(1.52), the output vector y(t) and the terminal output vector y(t0 +TP) are the
same as the state vector x = [κ1,κ2,κ3,κ4,Vx,Ts1,Ts2,Ts3,Ts4,∆Fz]

T and the
input vector is u = [Ts1,Ts2,Ts3,Ts4]

T .

Reference generation

Here, the reference for the κi was especially required to be variable with the
state as the peak of the Fx characteristic curve moves with changing load.
In addition, the impact of the tread temperature is also included. The κmax

values as a function for the reference tyre model are as shown in Figure 6.14.
As seen in quarter-car NMPC controller, the reference for Vx is set equal to 0.
Also, for the load transfer state ∆Fz there is no concern about controlling it, so
their reference and weight are set as 0. Finally, as seen in 6.5.3, the reference
for the tread temperatures of all the tyres is set as 70◦C.
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(a) Longitudinal slip κ reference for the
controller - κmax(Fz,Ts)

(b) Full-car variable controller weights -
qTs1 and qTs3

Fig. 6.14 Variable reference as a function of Ts and Fz and variable weights
on Tsi for (κ &Ts)-control

Tuning

In a full-car simulation, the tyres experience changing loads especially be-
cause of the longitudinal load transfer in braking. This leads to a change in the
sharpness of the peak of tyre characteristic curves, especially the tyres with
higher loads have sharper Fx vs κ peaks. In a braking manoeuvre, the front
tyres experience higher loads. Due to this reason, it becomes difficult for the
controller to stabilise κ1/2, as is seen in the preliminary tests, especially when
the vehicle velocity is small. To mitigate this, it is seen that increasing the
controller’s sampling frequency makes a huge difference. So, the adequate
controller sampling frequency is seen to be 1000Hz, which still struggles to
stabilise the κ1/2 at the steady-state value with a zero error (as seen in the
full-car controller results, Figures C.1 to C.6) Appendix C. The prediction
horizon TP is kept the same as 20ms which leads to N = 20, as seen in the
case of quarter-car NMPC 6.5.3.

Coming to the weights in the cost function (1.52), first, the weights for the
κi (qκi) are finalised with higher weight given to the slip of the front wheels to



268
Design of advanced longitudinal control strategy

with tyre thermal dynamics

ensure stability because of the reason of higher load as explained above. The
weights related to Vx and ∆Fz (qVx and q∆Fz) are kept equal to 0 as is explained
in the reference generation section above.

As seen in the quarter-car weights tuning §6.5.3, the weights related to the
tread temperature for the case of (κ and Ts) - control, are made a function of
the initial conditions Ts0 and Vx0 including the zero value when Vx < 20m/s
(as shown for qTs in Table 6.3). Of course, the values for the weights on Tsi in
the full-car case are different but the dependencies are similar to the quarter-
car case. This is achieved with the use of look-up table in Simulink, which is
depicted in Figure 6.14. The variable weights for Tsi (qTsi) were chosen based
on tests with different initial conditions and to achieve a consistent overall
performance the weight values were tuned. Specifically, as the (qTsi) values
are non-zero only in the case of (κ and Ts) - control, it was made sure that
the increase in braking distance didn’t rise higher than 2% and the maximum
temperature in the manoeuvre is at least greater than 5% as compared to the
pure κ - control case. The final weights used are as shown in Table 6.5. As
the vehicle model is symmetric, the left (1,3) and right (2,4) values are the
same and so, only the values for the left are stated.

Table 6.5 Full-car NMPC controller weights

State Weight variable Value:
κ - control

Value:
κ and Ts - control

κ1 qκ1 1×104 1×104

κ3 qκ3 1×103 1×103

Vx qVx 0 0

Ts1 qTs1 0 f (Ts0,Vx0) and 0 ⇐⇒ (Vx <20 ∨ dTs
dt <0)

(Fig. 6.14 B)

Ts3 qTs3 0 f (Ts0,Vx0) and 0 ⇐⇒ (Vx <20 ∨ dTs
dt <0)

(Fig. 6.14 B)
∆Fz q∆Fz 0 0
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6.6.1 Tests and Metrics

When all the simulation setups have been explained, there are 3 final full-car
controller setups used for the final tests. These 3 setups are explained as
follows:

Setups

 

SETUP A 

 Tyre Force: 
Pure Pacejka

SETUP C

Tyre Force: 
Pacejka - Temperature modified

(myTyre)

 

 Tyre Force: 
Pacejka - Temperature modified

(myTyre)

SETUP B
B

en
ch

m
ar

k

Same controllers:
different tuning

Fig. 6.15 Controller setups

Controller setups

• Setup A [Pacejka:(κ -contr)]: This controller setup’s prediction model
consists of "myVeh" (6.4.1) model with the reference Pacejka model (as
used in "myTyre" (6.2) without any tread surface temperature dynamics
(so, states [Ts1,Ts2,Ts3,Ts4]

T are not available). Hence, the prediction
model only consists of 6 states [κ1,κ2,κ3,κ4,Vx,∆Fz]

T . The parame-
terisation of this tyre model is taken as of the tyre operating at (40◦C).
Such a setup, to a good extent, replicates the controller as shown by
Pretagostini et al. [87], which he shows performs much better than
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the state of the art rule-based controllers. The only difference here
is that the first order torque rate dynamics haven’t been considered
inside the prediction model and the tyre force equations have been
included inside the controller instead of feeding as inputs from wheel
load sensors. Hence, this setup can be considered a benchmark for
this work and results of the proposed controller setups (Setup B and
C) can be compared relative to this setup. As regards the selection of
tyre force model’s parameterisation at 40◦C, it is like representing the
tyre behaviour that acts like an average amongst the whole range of Ts0

shown in Table 6.16. Even when a parameterisation at some other tem-
perature is selected, the controller performance is expected to degrade
at temperatures far above or below that. The reference generation being
another important factor, Pretagostini et al. [87] use the slip reference
input as a function of tyre load Fz for the the parameterisation used
in their work. In this work, the reference is taken as the value that
can perform well across the whole temperature range and maintain a
stable behaviour (not go beyond the peak of Fx characteristic). And
so, here, the reference generation is only a function of the tyre normal
load (Fz). Such a setup of parameterisation and the reference slip values
helps a controller with no knowledge of temperature to perform good
enough across all the tests. The controller weights on the longitudinal
slips (κi) are set as is shown in 6.6. For ease of readability, it is named
"Pacejka:(κ -contr)" meaning that it’s tyre model is only based on the
Pacejka tyre force equation and has no temperature effects, and only
tries to control the longitudinal slips i.e. κi.

• Setup B [TempKnwl:(κ-contr)]: This controller setup’s prediction
model consists of the full "myVeh" (6.4.1) model combined with the
"myTyre" (6.2) i.e. with the tread surface temperature dynamics. Hence,
this controller is able to also predict the change in tyre grip and stiffness
with the changing temperature conditions throughout and between each
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test. This helps it control the tyre slip more precisely as compared
to Setup A Pacejka:(κ-contr). Here, the controller weights are non-
zero only for the longitudinal slips (κi) and equal to the values used
for Setup A (as defined for the case of κ - control in Table 6.5). For
convenience, it is named "TempKnwl:(κ -contr)" meaning that it has
the Temperature Knowledge (TempKnwl) and just controls the κi.

• Setup C [TempKnwl:(κ & Ts-contr)]: This controller setup is the
same as described in Setup B with a slight difference being that, here
the controller weights on tyre tread temperature states (Tsi) are non-zero
(as defined for the case of κ and Ts - control in Table 6.5). Especially,
the weighting on Ts is kept non-zero to check how heating the tyre
more towards the optimal temperature could help in terms of braking
distance. For convenience, it is named "TempKnwl:(κ & Ts-contr)"
meaning that it has the temperature knowledge the same as Setup B,
and it tries to control the κi as well as the Tsi. Hence, Setup B and Setup
C only differ in terms of the weights (Figure 6.15).

The Setup B acts like a controller that has better knowledge of the plant
dynamics as compared to the Setup A and so, these 2 are compared across
the various tests. And, Setup C tries to optimise the tyre temperature while
ensuring the slip dynamics are stable which can potentially lead to faster
heating times or possible reduction in the braking distance as compared to
both the other setups. Hence, for all the described tests, these 3 controllers
will be compared while keeping the Setup A as the reference/benchmark.

Tests

The manoeuvre being performed here is a braking manoeuvre starting at some
initial velocity Vx0 and then a full brake demand is provided by the driver,
which activates the NMPC-based ABS, eventually leading to optimally cal-
culated brake torques going to each wheel. The road is assumed smooth and
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with a coefficient of friction of 1. As our main concern lies around thermody-
namic boundary conditions, various tests with different track (Tt) and ambient
(Ta) temperatures (fixed boundary conditions) are chosen, relating to the 3
different weather conditions, viz. Winter, Autumn/Spring, and Summer. For
each of these boundary conditions, 3 initial condition temperatures are defined
in the tests, viz. cold, warm, and hot. These tests are then performed with 2
different initial velocities viz. 40m/s, and 70m/s. Two initial velocities were
chosen as the temperature behaviour linked to friction power and convection
is highly dependent on the velocity. In each test, the simulation is stopped
at 10m/s concerning the controller’s instability at lower velocities (as can be
seen in the κ̇ equation (6.7) and is also discussed in 6.5.1). In total there are
18 tests per controller setup, as shown in Figure 6.16. In the results section,
the test names (Test 1, Test 2, ...) as shown in this figure and the setups as
previously mentioned will be used.

Cold Warm Hot

Test 9Test 8

12

Test 13

Test 10

Test 4

Test 15Test 14

Test 12Test 11

Test 6Test 5

5030

70 m/s

Winter

Autumn/Spring

Summer

Summer

Winter

Autumn/Spring

Initial Velocity
[m/s]

Weather [deg. C]

-2 9 18
Test 1 Test 2 Test 3

40 m/s

Initial Temperature [deg. C]

Test 18Test 17

655028

503012

Test 16

189-2

655028

Test 7

𝑻𝒕 = 0
𝑻𝒂 = -2

𝑻𝒕 = 18
𝑻𝒂 = 12

𝑻𝒕 = 35
𝑻𝒂 = 28

𝑻𝒕 = 0
𝑻𝒂 = -2

𝑻𝒕 = 18
𝑻𝒂 = 12

𝑻𝒕 = 35
𝑻𝒂 = 28

Fig. 6.16 Test conditions

To assess the performance of each setup, there must be defined some
metrics to quantify the time history of various state variables. As this work
mainly focuses on high-level controller decision making, it is not relevant to
include all the metrics that are in general used to assess ABS performance
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(like human related factors). Also, as the number of tests are large due to the
various boundary conditions, it is better to choose a few important factors
than a variety.

Here, for each test, 2 main metrics were chosen to assess the performance
of the proposed controller setups:

1. Braking distance (sbr): This is defined as the distance the vehicle
covers from the time the brake input is given to the time it reaches the
set cut-off velocity (Vx,cut−o f f ) of 10m/s as defined above. As, the main
objective of ABS is to ensure the tyre deliver the maximum possible
force, so, braking distance is the perfect metric for that. To assess the
performance of this high-level controller, this metric is enough to show
the difference in performance.

2. Maximum tread temperature (Tsi,max): This is the maximum value of
the tread surface temperature that is reached in each test. The subscript
i refers to the wheel identity on the car (1, 2, 3, 4)≡(FL, FR, RL, RR).
The higher its value the more the carcass of the tyre heats up using
the heat coming from the tread, of course depending on the initial
temperature of the carcass. In such a short braking manoeuvre, an
increase in the maximum temperature value can easily depict that there
is faster and overall more heating of the tread.

6.7 Results

6.7.1 Full-car results

The test results mentioned in 6.6.1 for the full-car are presented. As the total
number of tests are 54 (18 tests for each setup), the results are presented in
the form of a plot of the relative metrics, to keep things comprehensible. The
variables’ and inputs’ trajectories over time are shown in Appendix C while
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for one of the tests (Test 5), is presented here for better understanding (Figure
6.21). For both the metrics, results are presented as percentage change with
respect to the value of the Setup A (as discussed in 6.6.1). For the maximum
temperature, only the results of the left side of the vehicle are provided as the
differences between left and right tyres was insignificant due to the manoeuvre
being symmetric ( 6.6.1).

Braking distance

In this section the braking distance performance is compared with respect to
the chosen benchmark setup (Setup A [Pacejka:(κ-contr)]). As previously
mentioned, all the values are in percentage change with respect to the Setup
A. For absolute values, the reader can refer to Tables C.1 and C.2 in Appendix
C.

Fig. 6.17 Change in braking distance relative to standard MF starting at 40
m/s

The results are presented in 2 plots (Figure 6.17 and 6.18), for each initial
velocity for the manoeuvre (40m/s and 70m/s). Now, comparing Setup B
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[TempKnwl:(κ-contr)] to Setup A, it is seen that there is improvement in
the braking distance as the boundary and initial conditions get hotter and
hotter, with a maximum improvement of 1%. This clearly shows that giving
the controller the knowledge of tyre temperature leads to better performance
where the parameterisation of Setup A doesn’t match well with the reality.
Now, comparing Setup C [TempKnwl:(κ & Ts-contr)] to Setup B, it is seen
that as the controller’s energy is also spent in controlling the tyre temperature
(making it closer to optimal temperature 70◦C for better grip) there is no
improvement in braking distance, although tyre temperature increases more
(Figure 6.19), which could at least provide benefits in heating the tyres faster.
A clear reasoning for this comes from the fact that an increase in temperature
comes at the cost of running higher slip than the slip reference, which leads
to a decrease in the tyre force (thus, the increase in braking distance) and
the increase in grip is not enough to compensate for the lost tyre force. A
clear reasoning why the temperature is controlled at the cost of slip is that the
connection between the input brake torque Tb and the tyre temperature Ts is
not direct, but via longitudinal slip κ . This behaviour is even easier to see in
the quarter-car equations (6.11).

Now, similarly looking at the results of 70m/s, comparing Setup B to
Setup A similar improvements are seen as compared to the results of 40m/s.
And, comparing Setup C to Setup B, the loss in braking distance is less as
compared to the results of 40m/s because at higher velocities (higher friction
power) the tyre heating is higher which leads to more gains in grip due to
temperature over the manoeuvre. But, still this increased grip is not enough
to compensate for the lost braking force to heat the tyre.

And finally, comparing Setup C to Setup A, it is seen that braking distance
performance is poor until the warm tyre conditions in Autumn/Spring (Test
5), and after that it shows improvements. But as will be seen in next section
of temperature, the Setup C is heating the tyre more in all conditions as
compared to Setup A and Setup B.
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Fig. 6.18 Change in braking distance relative to standard MF starting at 70
m/s

Temperature behaviour

Now, looking at the thermal performance for both initial velocities (Figures
6.19 and 6.20), it is seen that both the Setup B and Setup C lead to more
heating as compared to Setup A in all the weather conditions (test cases - Table
6.16). Although Setup A and Setup B have no consideration of optimising
the tyre temperature, still the Setup B [TempKnwl:(κ-contr)] shows better
performance as compared to Setup A.

Finally, comparing Setup C to Setup B where these two setups differ only
in the sense that Setup C additionally tries to optimise the tyre temperature, a
huge improvement is seen in terms of maximum temperature, whereas the
maximum gain is 20−25% as compared to Setup B. And, looking at the trend,
it’s clearly visible that the performance is much better in Winter conditions as
compared to Summer. The reason being the fact that the difference between
boundary conditions and tyre temperature is very large in Summer conditions,
which leads to higher convective cooling and so, less heating gains.
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Fig. 6.19 Percentage change in maximum front and rear tyre tread temperature
(Ts1/3,max) relative to Setup A starting at 40 m/s

6.8 Discussion

In a braking manoeuvre it was anyways expected that the temperature won’t
rise a lot due to the short duration of the manoeuvre, but for example in a lap
on a race track, such small consistent efforts towards optimising the temp can
lead to big improvements over the warm-up lap/race for a gentlemen driver.

Even if the Setup C is not able to provide decreased braking distance (and
only gives an advantage in the increased tyre temperature, which can result
in quicker tyre heating), it can at least work as a controller (Setup B) that is
aware of the changing grip factor with the temperature (as seen in Chapter 2)
and can take better decisions on torque input.

Another weight setting that is tested on the proposed controller (Temp-
Knwl controller), is to set the weights on Longitudinal slip κi and Ts as zero
and set a high weighting on the longitudinal velocity (qVx = 1×105) of the
vehicle. This setting is like telling the controller to optimise the slips and
temperature by itself to achieve the quickest (optimal) drop in velocity. This
setting is called Setup D for convenience and is explained better in Appendix
C. Ideally, the prediction horizon must also be long enough to cover a consid-
erable part of the braking manoeuvre, which would also enable it to see the



278
Design of advanced longitudinal control strategy

with tyre thermal dynamics

Fig. 6.20 Percentage change in maximum front and rear tyre tread temperature
(Ts1/3,max) relative to Setup A starting at 70 m/s

slowly (relative to κ) varying tyre temperature effect on grip. But the SQP
solution failed in that case. As a consequence of that, a smaller prediction
horizon is tested (N = 2 and Ts = 0.001s → TP = 0.002s). In this latter case,
the SQP solved successfully and the optimally calculated brake torques by
the controller simply lead to longitudinal slips being the κi,max for each tyre,
which is simply the same as what is achieved in Setup B [TempKnwl:(κ-
contr)]. Not to mention, the computation times of this controller are much
longer than the Setup B, as the controller has to solve a heavier QP as com-
pared to Setup B. And the computed solutions are very noisy, as is seen in
Figure C.7
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(a) Longitudinal slip κ1/3 (b) Tread temperatures Ts1/3

(c) Vehicle longitudinal velocity Vx (d) Brake torque control input Tb1/3

Fig. 6.21 Time histories of variables and control inputs for the 3 setups of
Full-car NMPC ABS controller in Test 5 (Table 6.16)





Conclusions and Further
Developments

An innovative model-based control logic technique that take into account the
multi-physical dependencies of the tyre properties on temperature, wear and
aging effect and their variation during the entire life cycle, and the capability to
understand the external environment and to correctly estimate the vehicle state
in all the possible operating and environment conditions, in order to increase
the vehicle performance and safety in critical scenario, has been presented.
Therefore, an advanced procedure for a calibration of a multi-physical MF-
based tyre model has been described. The identified set of MF-evo parameters
has been compared to the experimental data acquired on track in a particularly
demanding long-run motorsport application where both thermodynamic and
wear effects can not be neglected, highlighting a good agreement between the
model outputs and the dynamic behaviour of the real tyres. The co-simulation
of the MF-evo model with additional tyre real-time thermal and wear models
can represent a valuable instrument for the development of both safety and
performance applications, in which tyre characteristics can vary significantly
across the entire tyre life. Moreover, in order to correctly estimate the vehicle
state the performance of different model-based state estimators (Extended
Kalman Filters, Unscented Kalman Filters and Particle Filters) has been
compared in terms of estimation accuracy and the computational cost for a
chosen vehicle. Concerning the obtained results, the EKFs and the UKFs
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show a better state estimation using the vehicle model presented and the
Pacejka macroparameters computed. Considering the mean value of the
RMSE computed per each tests, the S-UKF exhibits the lowest value whereas
the other UKFs exhibit a value which is about the 20% higher; the EKFs show
the same mean value if compared one each other but this is about the 10%
higher than the one reached by the S-UKF; Finally, the SYSTres-PF shows the
lowest RMSE mean value if compared with the other implemented PFs, but
if compared to the others the PFs exhibit the higher values, in particular the
STRAres-PF shows the highest one. Concerning the computational burden
required by each state estimator which can be considered as proportional to
the time taken by the filter to estimate 1 second of real time, the FO-EKF
is characterized by the lowest amount of time required, thanks to its simple
algorithm. The other EKFs present a value which is about the 150% higher.
Considering the UKFs, the SIMP-UKF and the SPHE-UKF require lower
run-time than the S-UKF and the G-UKF, this latter is characterized by the
highest one if considering only the Kalman-based filters, it is about the 340%
higher than the lowest one. Considering the PFs, the time required is one order
of magnitude higher than the Kalman-based one, they take about one-third of
second to estimate 1 second of real time. However, the overall state estimate
is not always accurate, this may be mitigated adopting a complete Magic
Formula, with micro-parameters instead of macro-parameters. Moreover, it
may be interesting to consider a tricycle vehicle model instead of a bicycle
one in order to take into account the lateral load transfer effect. In order
to improve the VSA estimation the tyre model may be a key factor, in this
work the macro-parameters are fixed, but considering their update during
filter execution, due to thermodynamics and wear effect, could lead to better
results. An investigation on how accurate information regarding the state
of the real system of the parameters concerning the controller model could
affect the behavior of the real system, represented in the form of the high-
fidelity validated plant model has been presented. The influence of the tyre
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thermal dynamics, the impact of the possible ageing effects and the contact
with different road pavements have been examined. Wrong parameters in
the definition of the internal model of the NMPC might compromise the
control performance, especially when the vehicle is supposed to drive at the
limit of handling conditions. Specifically, a controller characterized by an
overestimation of the grip conditions is forced to compute too aggressive
control actions that might bring the vehicle in unstable and unsafe conditions,
that are very difficult to handle for the controller itself. On the contrary, an
underestimation of the grip might reduce the performance of the controller,
which is forced to compute too conservative control actions. Moreover, the
parameters of the cost function play an important role in defining the level
of performance that the controller is required to achieve. A high weight on
the travel time forces the vehicle to drive fast along the path, hence requiring
effective proper internal model parameters to describe the vehicle behavior at
the limit of handling. Instead, a more conservative tuning (i.e., high weights
on side-slip, lateral error, orientation error) can be effective with also less
precise coefficients, as the vehicle is not supposed to travel at the limit of
handling. Due to these statements, future development could include a real-
time estimate of the tyre and the environment states, along with an adapting
strategy for the weights of the cost function will be included in the whole
analysis.

A new control architecture for vehicles, based on the estimation of the
maximum achievable road friction coefficient in different environmental
conditions, based on both bicycle model to evaluate the state of the vehicle
and a tire Magic Formula model based on a slip-slope approach is presented.
The introduction of the grip value in ADAS application, in particular for
the longitudinal dynamics of the vehicle chassis, composed of Adaptive
Cruise Control (ACC) and Autonomous Emergency Brake (AEB), and the
Antilock Braking System (ABS), allows the vehicle to work at the maximum
performance in all operating conditions. According to the results, the control
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system has been improved by the involvement of the current and potential
friction coefficient evaluated in run-time. The improvement basically results
from the development of a control system that is able to avoid collisions in any
environmental condition. The potential grip has been therefore demonstrated
to be crucial for the autonomous driving systems.

Finally an application of model-based optimal control based controller
(NMPC) to a vehicle dynamics control system with the inclusion of tyre
tread thermal dynamics. The chosen tyre tread thermal model for the full-car
prediction model is chosen as the simplest possible (based on first order
dynamics) that shows good performance in terms of the main effects that
the tyre temperature has on the tyre performance i.e. grip and stiffness, in a
braking manoeuvre. The proposed controller is developed into two setups,
one that just controls the slip and the other that controls both slip and the
tyre temperature, both fed with the reference slip state for maximum tyre
longitudinal force. The test results show that when the slip-controller is given
the knowledge of tyre temperature, it performs better across the whole range
of temperature conditions from the Winter to Summer, whereas the biggest
improvements in braking distance are seen to be 1%. Whereas, when the slip
and temperature both are controlled, based on the tuning, so as to not lose
a big chunk of braking distance, a maximum of 20−25% improvements in
maximum tyre temperature in the manoeuvre are seen.

Another solution that was expected, was that the controller would try to
heat the tyre to increase the grip which would eventually lead to improvements
in braking distance, in addition to the increased temperature.

The µ value is taken equal to 1 across all cases in this project to cut down
on the possibilities of combinations. But it is recommended in the future
research to take the variations of different µ conditions into account as it
directly affects the friction power.

Future developments will also comprehend the lateral dynamics, the
impact of the road bank angle and slope, the tire combined interaction charac-
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teristics, as well as, the variations of the vehicle dynamic behaviour due to
the tire intrinsic multi-physics (i.e., wear effects).
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Appendix A

SDC parameterisation - Quarter
car

This section shows the quarter-car SDC paramterisation used for the controller.
This parameterisation also passed the controllability/stabilisability test (as
discussed in Chapter 5) as is described in the literature [82].

SDC MARE solver

Tyre Force
computation

Fig. A.1 Tyre force computation done external to the SDC parameterisation

The quarter-car system is composed of 3 dynamic equations [κ̇,V̇x, Ṫs].
The reader can refer to Chapter 5 for the origin of these equations. Below,
these equations (A.2,A.3 and A.4) are rearranged and shown in their final SDC
parameterisation form, as were used within the controller. As is mentioned
in 6.5.2, the tyre force Fx was used as input to the SDC paramaterisation
and was represented as a linear parameterisation [234] of κ and Ts with the
coefficients ακ and αTs , as shown in equation A.1. This parameterisation of
Fx is inserted into the 3 dynamic equations. In these equations, the Re and
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Rl were written as R, one can simply represent them with different values,
if necessary. For easy readability, the states (not the ones belonging to the
coefficients) are colored green and the input blue.

These parameterisation were done based on the rules defined by Cloutier
and Stansbery [239]. In the tread surface dynamics, some terms had to be
expanded to represent the appropriate state dependencies, which led to the
origin of some free-parameters (φi). The value of the free parameters wasn’t
affecting the performance by large amounts so both their values were chosen
to be equal to 0.5.

Fx = ακκ +αTsTs (A.1a)

where ακ = Fx (A.1b)

αTs = Fx

(
1−κ

Ts

)
(A.1c)
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I
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m
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αTs

m
αTsTs +(0)Tb (A.3)
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(a) ακ (b) αTs

Fig. A.2 Tyre force paramterisation function - continuity over the domain

Ṫs =
1

mtct

[
(φ1 p1ακVxκ −φ2 p2ακVx +η1
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p2ακκ + p4Fz + p5TaVx
p6−1)Vx+

+(p1αTsVxκ − p2αTsVx − p5Vx
p6−

η1(1+
∆csκ

κmax
− cs1 +

Tt(cs1 −1)
Ts

))Ts +(0)Tb

]
(A.4)

It is clearly seen that the coefficients of each state are state dependent (that
become the elements of A(x) and B(x)). In the implementation, the terms
with the modulus are appropriately compensated with negative signs, as is
seen in the temperature equation.

Another important thing with the tyre force parameterisation A.1 was that
it must be continuous, which was true as can be seen in Figure A.2.





Appendix B

Quarter-car results

This appendix presents the results of the final tuned quarter-car SDRE and
quarter-car NMPC based controllers for a given set of initial (Vx0 = 40m/s)
and boundary conditions (Ta = 28◦C and Tt = 35◦C). The results are presented
in the form of time history plots of the variable and the control input (Figures
B.1 and B.2). For each controller type, two setups are shown, Setup A (κ-
control) with only κ control and Setup B (κ & Ts-control) with κ and Ts

control. Not to mention, the quarter car analysis consists of the "myTyre" tyre
model within both the prediction model and the plant model.

We see that the steady state tracking of NMPC is perfect as compared to
SDRE, the exact reason being that NMPC in each instant tries to stabilise the
states to the terminal references, whereas SDRE is a regulator that calculates
the gain values to reach the equilibrium (all states 0) as soon as possible in
the optimal sense, and the gain is simply multiplied by the state error vector
which no where guarantees steady state zero error. One solution to improve
the steady state tracking in SDRE is is to introduce integral states for the
desired states.

Another difference between the 2 controllers is the early onset of instabil-
ity in the case of SDRE as compared to NMPC, with the longitudinal velocity
Vx. Lastly, NMPC controller is able to achieve a stable behaviour with a
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sampling frequency of 100Hz whereas the SDRE controller needs a sampling
frequency of at least 1000Hz.

Table B.1 Results (metrics) of the 2 Setups (A and B) for both QC-SDRE and
QC-NMPC controllers

Controller-type Setup sbr [m] Ts,max [◦C]

QC SDRE
A 54.34 46.0
B 55.15 48.3

QC NMPC
A 54.23 45.2
B 55.14 48.2
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(a) Longitudinal slip κ (b) Tread temperatures Ts

(c) Vehicle longitudinal velocity Vx (d) Brake torque control input Tb

(e) Vehicle longitudinal acceleration
(f) Tyre longitudinal force Fx and Tyre
vertical load Fz

Fig. B.1 Time histories of variables and control inputs for all the Setups (A
and B) of quarter-car SDRE ABS controller with Ta = 28◦C and Tt = 35◦C,
starting at 40m/s
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(a) Longitudinal slip κ (b) Tread temperatures Ts

(c) Vehicle longitudinal velocity Vx (d) Brake torque control input Tb

(e) Vehicle longitudinal acceleration
(f) Tyre longitudinal force Fx and Tyre
vertical load Fz

Fig. B.2 Time histories of variables and control inputs for all the Setups (A
and B) of quarter-car NMPC ABS controller with Ta = 28◦C and Tt = 35◦C,
starting at 40m/s



Appendix C

Full-car results

This appendix presents the results of the different setups of the full-car NMPC
setup in the form of Table and Time history plots. The reader may again refer
to Table 6.16 to understand all the types of tests that are performed. The
Tables C.1 and C.2 represent the values of the metrics defined in 6.6.1 for all
the tests. All the percentage change of metrics are presented with respect to
the benchmark i.e. Setup A [Pacejka:(κ-contr)].

For the time histories of the tests, due to spatial reasons it is chosen to
present only the results of warm conditions of each weather for both the initial
velocities (so, Tests 2, 5, 8, 11, 14, and 17). Anyway, the reader can easily
predict the behaviour of the tests not presented here due to the continuous
behaviour across all the tests.
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Table C.1 Results of the 3 Setups (A, B, and C) for Test 1 to Test 9 (here
Vx0 = 40m/s, Table 6.16)

Setup sbr [m]
% sbr

w.r.t. A Ts1,max [◦C]
% Ts1,max
w.r.t. A Ts3,max [◦C]

% Ts3,max
w.r.t. A

Test 1 A 61.6 0.0 6.7 0.0 5.6 0.0
B 61.5 -0.2 6.4 -4.5 5.2 -7.1
C 62.4 1.3 8.7 29.9 6.9 23.2

Test 2 A 58.31 0.0 15.3 0.0 14.7 0.0
B 58.4 0.2 15.3 0.0 14.7 0.0
C 59.2 1.5 18 17.6 16.6 12.9

Test 3 A 56.3 0.0 22.3 0.0 22.2 0.0
B 56.3 0.0 22.6 1.3 22.6 1.8
C 57 1.2 25.6 14.8 24.5 10.4

Test 4 A 57.4 0.0 21.8 0.0 20.1 0.0
B 57.4 0.0 22.0 0.9 20.4 1.5
C 58.2 1.4 24.6 12.8 22.2 10.4

Test 5 A 54.1 0.0 35.5 0.0 35.1 0.0
B 54.1 0.0 36.5 2.8 35.9 2.3
C 54.7 1.1 39.3 10.7 37.7 7.4

Test 6 A 52.3 0.0 51.1 0.0 51.8 0.0
B 52.1 -0.4 52.7 3.1 53.3 2.9
C 52.4 0.2 54.9 7.4 54.5 5.2

Test 7 A 54.3 0.0 38.1 0.0 36.3 0.0
B 54.2 -0.2 39.2 2.9 37.2 2.5
C 54.9 1.1 41.6 9.2 38.9 7.2

Test 8 A 52.3 0.0 54.9 0.0 54.6 0.0
B 52.0 -0.6 56.7 3.3 56.2 2.9
C 52.3 0.0 58.5 6.6 57.3 4.9

Test 9 A 52 0.0 66.6 0.0 67.1 0.0
B 51.5 -1.0 68.8 3.3 69.3 3.3
C 51.6 -0.8 69.3 4.1 69.6 3.7
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Table C.2 Results of the 3 Setups (A, B, and C) for Test 10 to Test 18 (here
Vx0 = 70m/s, Table 6.16)

Setup sbr [m]
% sbr

w.r.t. A Ts1,max [◦C]
% Ts1,max
w.r.t. A Ts3,max [◦C]

% Ts3,max
w.r.t. A

Test 10 A 191.2 0.0 16.6 0.0 14.4 0.0
B 191.2 0.0 16.7 0.6 14.4 0.0
C 192.6 0.7 21.8 31.3 17.3 20.1

Test 11 A 182 0.0 24.4 0.0 22.8 0.0
B 182 0.0 25.4 4.1 23.6 3.5
C 183.2 0.7 31.1 27.5 26.7 17.1

Test 12 A 176.1 0.0 30.9 0.0 29.8 0.0
B 176.0 -0.1 32.5 5.2 31.3 5.0
C 177.1 0.6 38.3 23.9 34.3 15.1

Test 13 A 178.9 0.0 32.1 0.0 29.3 0.0
B 178.9 0.0 33.7 5.0 30.6 4.4
C 180.1 0.7 39 21.5 33.6 14.7

Test 14 A 169.83 0.0 44.7 0.0 43.1 0.0
B 169.4 -0.3 47.6 6.5 45.6 5.8
C 170.3 0.3 52.5 17.4 48.1 11.6

Test 15 A 165 0.0 58.8 0.0 58.6 0.0
B 164.0 -0.6 63.0 7.1 62.5 6.7
C 164.5 -0.3 65.8 11.9 63.8 8.9

Test 16 A 170.1 0.0 48.8 0.0 45.7 0.0
B 169.6 -0.3 52.0 6.6 48.4 5.9
C 170.5 0.2 56.3 15.4 50.8 11.2

Test 17 A 164.7 0.0 64 0.0 62.6 0.0
B 163.8 -0.6 68.8 7.5 66.8 6.7
C 164.1 -0.4 70.4 10.0 67.8 8.3

Test 18 A 164.4 0.0 74.4 0.0 74.1 0.0
B 162.8 -1.0 80.4 8.1 79.6 7.4
C 162.8 -1.0 79.1 6.3 79.1 6.7
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(a) Longitudinal slip κ1/3 (b) Tread temperatures Ts1/3

(c) Vehicle longitudinal velocity Vx (d) Brake torque control input Tb1/3

(e) Vehicle longitudinal acceleration
(f) Tyre longitudinal force Fx1/3 and
Tyre vertical load Fz1/3

Fig. C.1 Time histories of variables and control inputs for all the Setups (A,
B and C) of Full-car NMPC ABS controller in Test 2 (warm tyre in Winter
starting at 40m/s, Table 6.16)
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(a) Longitudinal slip κ1/3 (b) Tread temperatures Ts1/3

(c) Vehicle longitudinal velocity Vx (d) Brake torque control input Tb1/3

(e) Vehicle longitudinal acceleration
(f) Tyre longitudinal force Fx1/3 and
Tyre vertical load Fz1/3

Fig. C.2 Time histories of variables and control inputs for all the Setups
(A, B and C) of Full-car NMPC ABS controller in Test 5 (warm tyre in
Autumn/Spring starting at 40m/s, Table 6.16)
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(a) Longitudinal slip κ1/3 (b) Tread temperatures Ts1/3

(c) Vehicle longitudinal velocity Vx (d) Brake torque control input Tb1/3

(e) Vehicle longitudinal acceleration
(f) Tyre longitudinal force Fx1/3 and
Tyre vertical load Fz1/3

Fig. C.3 Time histories of variables and control inputs for all the Setups (A,
B and C) of Full-car NMPC ABS controller in Test 8 (warm tyre in Summer
starting at 40m/s, Table 6.16)
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(a) Longitudinal slip κ1/3 (b) Tread temperatures Ts1/3

(c) Vehicle longitudinal velocity Vx (d) Brake torque control input Tb1/3

(e) Vehicle longitudinal acceleration
(f) Tyre longitudinal force Fx1/3 and
Tyre vertical load Fz1/3

Fig. C.4 Time histories of variables and control inputs for all the Setups (A,
B and C) of Full-car NMPC ABS controller in Test 11 (warm tyre in Winter
starting at 70m/s, Table 6.16)
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(a) Longitudinal slip κ1/3 (b) Tread temperatures Ts1/3

(c) Vehicle longitudinal velocity Vx (d) Brake torque control input Tb1/3

(e) Vehicle longitudinal acceleration
(f) Tyre longitudinal force Fx1/3 and
Tyre vertical load Fz1/3

Fig. C.5 Time histories of variables and control inputs for all the Setups
(A, B and C) of Full-car NMPC ABS controller in Test 14 (warm tyre in
Autumn/Spring starting at 70m/s, Table 6.16)
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(a) Longitudinal slip κ1/3 (b) Tread temperatures Ts1/3

(c) Vehicle longitudinal velocity Vx (d) Brake torque control input Tb1/3

(e) Vehicle longitudinal acceleration
(f) Tyre longitudinal force Fx1/3 and
Tyre vertical load Fz1/3

Fig. C.6 Time histories of variables and control inputs for all the Setups (A,
B and C) of Full-car NMPC ABS controller in Test 17 (warm tyre in Summer
starting at 70m/s, Table 6.16)
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As is discussed in the 6.8, a special setting of weights is tested. This
setting is called Setup D for convenience. The controller setup here is the
same as in Setup B and Setup C (TempKnwl) but the weights differ. That is,
only Vx is weighted here (zero weights and no references are given for the
κi and Ts) which makes the NMPC controller optimally compute by itself
what brake torques must be given to achieve the quickest drop in the vehicle’s
longitudinal velocity Vx. As is already discussed, the QP solution failed when
the prediction horizon is kept long, whereas it worked perfectly with a small
prediction horizon. Also, the optimal results calculated in this case are very
noisy. But the main discussion point for this results is the fact that this (Setup
D) setup’s performance is the same as that of Setup B, where the weighting is
only set on the κi and optimal reference generation (κre f = κmax = f (Fz,Ts)),
such that the tyre longitudinal force Fx is always at maximum. Figure C.7
shows that the optimal state trajectories for κi and Tsi are almost an overlay
of each other. This only proves that, at least when the prediction horizon
is small, the best strategy is not to heat the tyre but to only maintain the
maximum longitudinal force (achieve κmax) to achieve the quickest drop
in vehicle longitudinal velocity. Although the solution in the case of bigger
prediction horizon (equivalent to the total manoeuvre) failed, it is possible that
by making some changes in the settings of the QP solver, one can achieve the
right results. Due to the limited time for this work, it could not be achieved.
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(a) Longitudinal slip κ1/3 (b) Tread temperatures Ts1/3

(c) Vehicle longitudinal velocity Vx (d) Brake torque control input Tb1/3

(e) Vehicle longitudinal acceleration
(f) Tyre longitudinal force Fx1/3 and
Tyre vertical load Fz1/3

Fig. C.7 Time histories of variables and control inputs for the Setup B and
Setup D of Full-car NMPC ABS controller in Test 1 (Table 6.16)
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