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by Raffaele MATTERA

The present work, divided into three main chapters, discusses the development and

the application of novel statistical techniques for portfolio selection problems. The

first chapter is devoted to the estimation theory, and a new estimator for the preci-

sion matrix, called precision shrinkage, is developed to reduce the estimation er-

ror. The analysis provided in the chapter show that the use of precision shrinkage

lead to the construction of more desirable portfolios in terms of return/risk trade-off

with respect to well established alternatives. The second chapter studies the abil-

ity of forecasting techniques in constructing more attractive portfolios than strategies

based on static estimation. Classical model-based econometric methods are com-

pared with data-driven machine learning ones. We find that, for both low and large

dimensions, the use of forecasts improves the out-of-sample portfolio performances

if model-based approaches are employed. The last chapter discusses the usefulness

of clustering in portfolio selection. Clustering can be used to reduce the asset allo-

cation dimensionality. Several algorithms are compared in terms of out-of-sample

profitability. As a main result, we show that clustering-based portfolios dominate

the classical approaches.
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1

Thesis overview

Asset allocation involves the decision about how many and which kind of assets to

include in a portfolio for investment purposes. As argued by Markowitz (1952), the

portfolio selection process can be divided into two stages. In the first stage, the in-

vestor observes the historical assets’ returns and, in the second one, he/she estimate

or predict their current or future characteristics. According to the mean-variance

framework of Markowitz (1952), two main characteristics are used by the investor

in order to make optimal choices: the expected value of asset’s returns, which are

contained in a vector µ, and the inverse of the assets’ covariance matrix Σ, that is

called precision matrix and denoted by Σ−1. Note that optimal choices are referred

to those that maximize the investor’s utility function that is supposed to be mean-

variance in Markowitz (1952).

In general, asset allocations can be based on either historical data or forecasts. An

asset allocation based only on historical data involves the estimation of the current

vector of expected returns and the current covariance structure Σ. However, the in-

vestor can also chose to adopt a forward looking approach, by anticipating future

market conditions. This can be done by predicting what will be the future expected

returns and covariances. When the investor uses some forecasts instead of static es-

timates, we say that he/she is implementing a timing asset allocation strategy.

The main problem related to Mean-Variance (MV, Markowitz, 1952) allocations1 is

that both µ and Σ are unknown quantities and need to be estimated or predicted.

How close are the investor’s estimates, called µ̂ and Σ̂, to the true mean vector µ and

covariance matrix Σ? The fact that economic agents provide estimates and forecasts

about unknown quantities rise the so-called estimation error problem. Every time

something is estimated, there is a certain probability of making mistakes. Hence, if

the investors do not accurately estimate all the required quantities, asset allocation

becomes sub-optimal and performs poorly in out-of-sample. Moreover, estimation

error further increases in a so-called large dimensional setting, where the number of

1Note that actually, the same problem applies to any asset allocation strategy.
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assets N is larger than the time series observations T, i.e. N > T. In this case, the

covariance matrix cannot be inverted, and the precision matrix cannot be computed.

Estimation error makes optimal portfolios less attractive than a naive asset alloca-

tion strategy where all the assets are equally weighted (e.g. see Frost and Savarino,

1986a; Michaud, 1989; Chopra and Ziemba, 1993; De Miguel, Garlappi, and Uppal,

2007). Among the others, De Miguel, Garlappi, and Uppal (2007) explicitly show

that the naive (also called the 1/N) strategy leads to the construction of a more de-

sirable portfolio in terms of return/risk trade-off compared to more complex and

advanced techniques. This result holds because an equally weighted strategy has

zero estimation error because nothing is estimated. From this empirical fact, an im-

portant question arises: how can the estimation error be reduced in an asset allo-

cation strategy? Can means and covariances be estimated or predicted so that the

out-of-sample performance is maximized? How can investors deal with highly di-

mensional settings? These are the main research questions underlying this thesis.

In what follows, we provide some insights into such questions. In particular, we de-

cided to focus on the covariance matrix estimation for implementation of the static

asset allocation. However, for the forecasts-based asset allocation we consider the

problem of predicting both means and covariances. There is an important motiva-

tion that justifies a specific focus on the covariance matrix estimation for static asset

allocation. Indeed, Kourtis, Dotsis, and Markellos (2012) demonstrated that a Global

Minimum Variance (GMV) strategy, where only the covariance structure is used to

build the optimal portfolios, contains a lower estimation error than a Mean-Variance

(MV) allocation. Intuitively, this happens because GMV avoids the estimation error

contained in the expected returns’ vector µ̂. As a result, throughout the thesis, we

will consider both MV and GMV asset allocation strategies.

The thesis is structured as follows.

In the first Chapter, following most of previous literature (Barry, 1974; Frost and

Savarino, 1986b; Kan and Zhou, 2007; De Miguel, Garlappi, and Uppal, 2007), we

focus on static asset allocation within a standard low-dimensional setting where there

are more time observations than assets (i.e. T > N). More in detail, we study how

different ways of estimating the covariance matrix affect the estimation error. In-

tending to reduce the estimation error, we propose a new estimator for the covari-

ance inverse (the precision matrix) based on the shrinkage technique of Stein (1956)

and Ledoit and Wolf (2003) and Ledoit and Wolf (2004a). In particular, in the case
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of MV allocation, we are able to find a closed formula for the optimal shrinkage in-

tensity derived to maximize the investor’s expected utility. Unfortunately, the same

does not apply in the case of the GMV setting. In this second setting, we still de-

rive the optimal shrinkage intensity from maximizing investor preferences but only

through simulations. For both MV and GMV strategies, we provide simulation stud-

ies to demonstrate the superiority of the proposed precision shrinkage estimator with

respect to the most important alternative estimators. We conclude the first Chap-

ter by considering an application to real data of the developed precision shrinkage

estimator in the case of MV asset allocation, providing evidence of its superiority in

out-of-sample.

In the second Chapter, we consider the case of forecasts-based asset allocation in

order to deeper understand the usefulness of forecasting in portfolio selection prob-

lems. The idea is based on the evidence highlighted by some studies (e.g. Pesaran

and Timmermann, 1995; Fleming, Kirby, and Ostdiek, 2001; Fleming, Kirby, and

Ostdiek, 2003; Marquering and Verbeek, 2004) that forecasting improves the prof-

itability of asset allocation strategies. As stated previously, the over performances

of these approaches can be found in the concept of timing, i.e. anticipating the fu-

ture market conditions. Two important novelties are introduced in Chapter 2. First

of all, we assess if and how much a mean-variance investor gains from using pre-

dictions rather than static estimated quantities for both low and high-dimensional

settings. Studying the usefulness of forecasting in high-dimensional asset allocation

is still an unexplored topic and this Chapter provides the first attempt in this direc-

tion. Second, we provide the first comparison between econometric (model-based)

approaches and novel machine learning (data-driven) ones for the implementation

of timing strategies. Briefly, we demonstrate that forecasting either the mean or the

covariance seems better than predicting both (i.e. full-timing) and that forecasting

is helpful for portfolio selection problems in large dimensional settings. Then, we

show that machine learning forecasts are not useful, especially in low dimension.

However, this result could be driven by the adopted methodological framework (as

in DeMiguel, Garlappi, and Uppal, 2009) based on rolling-window approach, where

relatively few time observations are used for training the ML algorithm in each re-

cursion. Perhaps, this number is not enough large to ensure an accurate training of

the ML algorithm. Therefore, the results simply show that machine-learning based
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timing strategies are not appropriate for long-run (low-frequency) portfolio analy-

sis.

The third Chapter explores the usefulness of clustering for portfolio selection prob-

lems in both low and large dimensional frameworks. Clustering is an unsupervised

learning technique used to alleviate the course of dimensionality. Indeed, cluster-

ing can be used to build roughly diversified portfolios that than become the input

of a low-dimensional asset allocation problem. Although clustering is recently be-

ing applied for portfolio selection, it is still unclear which technique provides more

desirable portfolios in out-of-sample. Therefore, different clustering approaches are

compared and a new clustering technique based on the time series distribution char-

acteristics is also developed in the Chapter. The performances of investment strate-

gies based on clustering are evaluated in detail. Overall, the empirical findings sug-

gest that in the case of common stocks, clustering-based asset allocation is helpful

to the extent to which roughly diversified funds are constructed. However, there is

not a single clustering algorithm that consistently outperforms the others for all the

experiments (i.e different datasets and portfolio rules), but the distribution-based

approaches are the best in the majority of the cases. Therefore, the last Chapter

shows that clustering is useful when dealing with common stocks, especially the

approaches based on distributional characteristics developed therein.
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Chapter 1

Improved asset allocation with

precision shrinkage

1.1 Uncertainty on portfolio weights: the mean-variance in-

vestor

Asset allocation involves deciding how many and which kind of assets to include in

a portfolio for investment purposes. The critical contribution of financial economics

literature to this topic is given by the mean-variance approach of Markowitz (1952).

The Mean-variance asset (MV) allocation can be summarized as follows.

Suppose to have a N × N matrix X of jointly normally distributed N asset returns

X ∼ N (µ, Σ) , observed for T times. To find the vector of optimal portfolio weights

w, we suppose that the investor maximizes the following utility function:

U(w) = w′µ− γ

2
w′Σw (1.1)

where w′µ is the portfolio’s expected return and w′Σw its portfolio variance. Hence

the optimal portfolio weights vector is:

w∗ =
1
γ

Σ−1µ (1.2)

However, in practice, the optimal weights vector w∗ is not observable because the

mean and the covariance are unknown. Hence, to implement a mean-variance strat-

egy, the portfolio weights are usually estimated by the plug-in of the sample estimates
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µ̂ and Σ̂. This is the source of the estimation error. A standard approach of measur-

ing the estimation error is to compute the loss in utility the investors face because of

estimation. An intuitive measure of this economic loss is the following difference in

certainty equivalents:

E[L(w∗, ŵ)] = U(w∗)− E[U(ŵ)], (1.3)

where both U(w∗) and U(ŵ) are defined as (1.1). The (1.3) can be interpreted as an

opportunity cost of using estimated quantities rather than the true unobserved ones.

While for the mean, the sample counterpart µ̂ = T−1 ∑ Xt is usually considered,

for the covariance matrix Σ we study the estimation error obtained with different

estimators. The standard alternatives that we use as a benchmark are:

• Maximum Likelihood (ML) Estimator: Σ̂ML = T−1D′D,

• Sample Covariance (SC) Estimator: Σ̂SC = (T − 1)−1D′D,

• Unbiased Precision Matrix (PM) Estimator: Σ̂PM = (T − N − 2)−1D′D.

where D = ∑T
t=1(Xt − µ̂), Obviously, with different estimators we get different allo-

cations, namely ŵML, ŵSC and ŵPM and, as we are going to show, different estima-

tion errors.

1.1.1 Markowitz with standard sample estimates

The most simple plug-in strategy is the one based on maximum likelihood esti-

mation. As briefly mentioned above, it involves the estimator Σ̂ML for covariance

matrix assuming joint i.i.d Gaussian distribution of asset returns. The maximum

likelihood estimator is biased for the actual covariance matrix Σ as well as its asset

allocation since:

E[ŵML] =
T

(T − N − 2)
w∗ 6= w∗.

In particular, being T/(T− N − 2) > 1, this asset allocation is more aggressive than

the optimal one since the investor does not recognize estimation error and risky
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assets are in a certain sense considered less risky. Then Kan and Zhou (2007) an-

alytically derived closed form of the estimation error for the maximum likelihood

strategy by considering the following expected loss function:

E [L(w∗, ŵ)] = U(w∗)− E [U(ŵ)] =

w∗
′
µ− γ

2
w∗
′
Σw∗ − E

[
ŵ′µ− γ

2
ŵ′Σŵ

]
.

Since we know that w∗ = γ−1Σ−1µ and that ŵ = γ−1Σ̂−1
MLµ̂, we have to replace these

quantities inside (1.3). As showed by Kan and Zhou (2007), estimation error with a

maximum likelihood strategy is:

E[L(w∗, ŵML)] = (1− k1)
θ2

2γ
+

1
2γ

T(T − 2)N
(T − N − 1)(T − N − 2)(T − N − 4)

.

Given:

k1 =
T

(T − N − 2)

[
2− T(T − 2)

(T − N − 1)(T − N − 4)

]
,

As noted by Frost and Savarino (1986b), the estimation error is inversely related to

the precision of the estimates. The precision is calculated as the difference between

the number of observations T and the number of assets N. In other words, increas-

ing N or decreasing T leads to a higher estimation error. An explanation could be

the following. In the extreme case where T → ∞, the actual parameters are learned,

so the loss is zero. On the other hand, the greater the number of assets N, the greater

the number of elements of µ̂ that have to be estimated, the more the errors and the

greater is the loss.

Therefore, we could reduce estimation error by selecting an "appropriate" sample.

Nevertheless, as it will be shown later on, employing a different estimator for the

covariance matrix has an essential role in reducing parameter uncertainty.

The Maximum likelihood is a biased estimator for the covariance matrix. A more
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efficient alternative is to invest in an allocation based on sample covariance estima-

tor Σ̂SC which is unbiased for the actual covariance matrix Σ. It has the following

relationship with the maximum likelihood estimator Σ̂ML:

Σ̂SC =
T

T − 1
Σ̂ML

Nevertheless, also this strategy ŵSC is biased since the inverse of sample the covari-

ance is a biased estimator for the true inverse Σ−1:

E[ŵSC] =
(T − 1)

(T − N − 2)
w∗.

Also, this strategy is more aggressive than the optimal w∗ but is a bit more conser-

vative than the maximum likelihood allocation ŵML. It is possible to show that the

estimation error associated with sample covariance strategy is:

E[L(w∗, ŵSC)] = (1− k2)
θ2

2γ
+

1
2γ

(T − 1)2(T − 2)N
T(T − N − 1)(T − N − 2)(T − N − 4)

,

given k2:

k2 =
T − 1

(T − N − 2)

[
2− (T − 1)(T − 2)

(T − N − 1)(T − N − 4)

]
.

As proved by Kan and Zhou (2007), E[L(ŵSC, ŵML)] > 0. Therefore, estimation error

could be reduced by estimating differently the covariance matrix.

Starting from the fact that the inverse of the sample covariance estimator is biased,

an alternative estimator is the following Σ̂PM:

Σ̂PM =
T

T − N − 2
Σ̂ML,

This estimator is unbiased for the actual covariance matrix inverse (i.e. the precision

matrix, PM), such that it leads to an unbiased asset allocation. In other words, the
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investor who uses ŵPM will, on average, invest the same amount of money in the

risky asset as would be in the optimal portfolio w∗. The loss function associated

with the scaled strategy w̃ is:

E[L(w∗, ŵPM)] = (1− k3)
θ2

2γ
+

1
2γ

(T − N − 2)(T − 2)N
T(T − N − 1)(T − N − 4)

,

where k3 is:

k3 = 2− (T − N − 2)(T − 2)
(T − N − 1)(T − N − 4)

.

It is possible to verify that E[U(ŵPM)] > E[U(ŵSC)], so we can further reduce esti-

mation error by employing this plug-in strategy. One can think that the overperfor-

mance of this approach is due to unbiasedness, but it is not true. Indeed, Kan and

Zhou (2007) consider a general asset allocation as follows:

ŵc =
c
γ

Σ̂−1
MLµ̂

where c is a scaling constant. It is easy to recognize that if c = 1 we get ŵML, while

with c = T−1
T we obtain ŵSC and for c = T−N−2

T we end up with ŵPM. Kan and Zhou

(2007) demonstrated the existence of an optimal scalar c∗ that maximize expected

utility:

c∗ =
[
(T − N − 1)(T − N − 4)

T(T − 2)

](
θ2

θ2 + N
T

)

These allocation strategies can be viewed as a plug-in approach that estimates co-

variance matrix with an estimator of the form Σ̂c = Σ̂/c. Moreover, although it is

optimal in terms of utility maximization, it leads to a biased asset allocation since

E[ŵc] 6= w∗. Not only ŵc∗ rule is biased respect to w∗ but also the associated estima-

tor Σ̂c∗ is biased.

However, this optimal scaling strategy is not directly observable because of θ2. A

way to overcome this issue is to consider a quasi-optimal, always biased, alternative

where the scaling c = c3 = (T − N − 1)(T − N − 4)/T(T − 2) represents the first

term in the square bracket. It could be easily obtained supposing that θ2 → ∞.



10 Chapter 1. Improved asset allocation with precision shrinkage

In conclusion, the discussion made so far highlight some relevant points. First, it

is possible to reduce the estimation error by estimating the covariance matrix dif-

ferently by taking advantage of some estimators that reduce investors’ opportunity

costs. Secondly, such estimators do not need to be unbiased concerning the actual

unobserved covariance matrix or lead unbiased asset allocation rule.

These two facts are essential since shrinkage estimators usually miss these two char-

acteristics, as we will show in the next section. They do not ensure unbiasedness but

are able to reduce estimation error through diversification further.

1.1.2 Precision matrix shrinkage estimator

Stein (1956) noted that, for N > 2 independent normal random variables, the sample

mean estimator µ̂ is dominated in terms of mean-squared error by a convex combi-

nation of the sample means and a common constant µ0:

µ̂s = αµ̂ + (1− α)µ0, (1.4)

The estimator (1.4) is called shrinkage with 0 < α < 1 the shrinkage intensity, that

represents the optimal trade-off between bias and variance. Jorion (1986) and Jorion

(1991) propose the use of shrinkage in finance for better estimating the expected

returns vector. Shrinkage can also be applied to covariance matrix estimation. In

the portfolio selection context, Ledoit and Wolf (2003) and Ledoit and Wolf (2004a)

propose a covariance matrix estimator equal to a convex combinations of the usual

sample covariance matrix Σ̄ and a shrinkage target Ω̂:

Σ̂s = αΣ̂SC + (1− α)Ω̂ (1.5)

It is straightforward to verify that shrinkage estimators as (1.5) are unbiased only if

both Σ̂SC and Ω̂ are both unbiased.

The selection of the shrinkage target Ω̂ as well as the optimal shrinkage intensity α∗

is crucial for constructing a shrinkage estimator. What Ledoit and Wolf (2003) pro-

posed is an operation called "shrinkage towards the market". It consists in shrinking

the sample covariance estimator towards the covariance matrix of a single factor

model of Sharpe (1963) Σ̂F. Ledoit and Wolf (2003) justify this choice by assessing
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that, even if there is no consensus about which and how many factors to consider,

the market return is the most intuitive and accepted factor for explaining the cross-

section of asset returns. Moreover, they derived optimal shrinkage intensity by min-

imizing the following Fornebious norm:

min
α

E[||αΣ̂SC + (1− α)Σ̂F − Σ||2] (1.6)

The resulting α∗ is not observable, since it involves several unknown quantities.

Therefore Ledoit and Wolf (2003) derived a consistent estimator for α̂∗. By plugging-

in the Ledoit and Wolf (2003) linear shrinkage estimator in (1.2) we obtain the allo-

cation ŵs.

Ideally, the shrinkage estimators allow the diversification of estimation risk by the

averaging approach. As we have seen, shrinkage is a trade-off between bias and

variance. Shrinking towards a constant (Stein, 1956) means shrinking towards a

highly biased target with zero variance. Ledoit and Wolf (2003) derived the optimal

shrinkage intensity claiming that α∗ depends on the correlation between the estima-

tion error in the sample covariance and the estimation error in the target. According

to the authors, if the two are positively (negatively) correlated, the benefit of com-

bining the information they contain is smaller (larger).

As in the case of the other approaches mentioned above for covariance estimation,

we were interested in computing the expected loss using this shrinkage estimator.

Unfortunately, this is not an easy task because of the difficulties in computing the

inverse of two matrices weighted sum.

Moreover, an additional limitation of the Ledoit and Wolf (2003) shrinkage approach

lies in the way in which optimal shrinkage intensity is determined. Indeed, since it is

based on statistical arguments, the resulting α∗ is not necessarily consistent with the

portfolio selection problem. Therefore in what follows, we overcome this limitation

by proposing a utility-maximizer shrinkage estimator.

Estimation framework

In order to build a preferences-maximizer shrinkage estimator, first, we need to ac-

curately specify the value of the expected utility when the covariance matrix is esti-

mated with the shrinkage approach. As we have already mentioned, it is impossible
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with a classical shrinkage approach because of difficulties in inverting the sum of

matrices. To overcome the problem, following the idea of several authors in litera-

ture (e.g. see Efron and Morris, 1973; Haff, 1977; Haff, 1979; Dey, 1987; Kubokawa

and Srivastava, 2008; Kourtis, Dotsis, and Markellos, 2012; Sun, Ma, and Liu, 2018),

we propose to shrink what matters for portfolio selection: the inverse of covariance

matrix Σ−1, also called the precision matrix. More specifically, we propose the follow-

ing shrinkage estimator:

Σ̂−1
s = αΩ̂−1

1 + (1− α)Ω̂−1
2 (1.7)

where Ω̂−1
1 and Ω̂−1

2 are the inverse of two symmetric and positive definite N × N

covariance matrices. We define the estimator (1.7) as precision shrinkage estimator.

A natural choice for Ω̂−1
1 is Σ̂−1

PM, that is the inverse of the Unbiased Precision Ma-

trix covariance. This choice, if fairly motivated by its unbiasedness, respect the true

covariance matrix inverse (Marx and Hocking, 1977) and because of its superior effi-

ciency in terms of economic loss compared to usual maximum likelihood or sample

covariance estimators. Similar arguments have been used by Tu and Zhou (2011) for

combining portfolio rules based on this estimator instead of maximum likelihood.

Before analysing the estimation error of the proposed estimator, we want to high-

light that with the plug-in of the precision shrinkage estimator we obtain a three-

fund rule.

Proposition 1. The portfolio rule constructed trough the precision matrix shrink-

age Σ̂−1
s could be interpreted as two fund rule, whatever Ω̂1 and Ω̂2 are.

Proof. To see that, we can define the proposed ŵs strategy as:

ŵs =
1
γ

Σ̂−1
s µ̂ =

=
1
γ
(αΩ̂−1

1 + (1− α)Ω̂−1
2 )µ̂ =

=
α

γ
Ω̂−1

1 µ̂ +
(1− α)

γ
Ω̂−1

2 µ̂ =

ŵs = αŵ1 + (1− α)ŵ2. (1.8)
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Therefore, by estimating covariance matrix with this shrinkage approach, we invest

in both portfolios ŵ1 and ŵ2. Hence, the relationship (1.8) highlights that our asset

allocation strategy can be interpreted as a combination of portfolio rules, where the

combination coefficient α is equal to the optimal shrinkage intensity α∗.

Once the prior matrix Ω̂1 has been defined, the shrinkage target Ω̂2 has to be carried

out. The main idea is to find a target which estimation error is weakly correlated to

the one of the prior Ω̂−1
1 . A natural candidate is the Identity matrix I as proposed

by several authors (e.g. Haff, 1979; Ledoit and Wolf, 2004a; Kourtis, Dotsis, and

Markellos, 2012):

I =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1



There is a simple explanation that justifies the usage of this target. Indeed, even if

highly biased, I does not contain estimation error at all. Therefore the estimation

error in Σ̂−1
PM is orthogonal to that of I. Moreover, following the idea highlighted by

Proposition 1, another interesting target matrix could be the implied covariance of

the equally weighted portfolio:

ΣEW =


Nµ̂1 0 · · · 0

0 Nµ̂2 · · · 0
...

...
. . .

...

0 0 · · · Nµ̂N

 (1.9)

That represents the implicit covariance structure assumed by a mean-variance in-

vestor who decides to invest across all the N assets equally. In other words, by

plug-in of the estimator (1.9) within mean-variance rule (1.2), we obtain the equally

weighted portfolio if γ = 1. For γ 6= 1, we end up with a two-fund rule where the

agent invests a proportion of his wealth in an equally weighted portfolio and the

rest in the riskless asset. Interestingly, with the following shrinkage estimator:

Σ̂−1
s = αΣ̂−1

PM + (1− α)Σ−1
EW
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if γ = 1 we end up with Tu and Zhou (2011) combination rule between Markwoitz

mean-variance portfolio and equally weighted one:

w̃s = αŵPM + (1− α)wEW

On the other hand, another crucial aspect for shrinkage estimation is how the opti-

mal shrinkage intensity α∗ is derived. In what follows, we find α∗ to maximize the

investor’s expected utility.

Optimal shrinkage intensity

In what follows, we propose to find optimal shrinkage intensity that maximize in-

vestor’s preferences. In other words, given a general precision shrinkage estimator

Σ̂−1
s , the α∗ is determined by:

max
α

E[U(ŵs)]. (1.10)

Expanding the expression:

E[U(ŵs)] = E
[

1
γ

µ̂′Σ̂−1
s µ

]
− γ

2
E

[(
1
γ

Σ̂−1
s µ̂

)′
Σ
(

1
γ

Σ̂−1
s µ̂

)]
=

E
[

1
γ

(
αΩ̂−1

1 + (1− α)Ω̂−1
2

)′
µ̂

]
− γ

2
E

[(
1
γ
(αΩ̂−1

1 + (1− α)Ω̂−1
2 )µ̂

)′
Σ
(

1
γ
(αΩ̂−1

1 + (1− α)Ω̂−1
2 )µ̂

)]
.

Theorem 1. The optimal solution to the problem (1.10) is:

α∗ =
E[a′µ]− E[b′µ] + E[b′Σb]− E[a′Σb]

E[a′Σa] + E[b′Σb]− 2E[a′Σb]
.

Therefore, the oracle estimator of precision matrix from a mean-variance perspective

is:
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Σ̂−1
s =

E[a′µ]− E[b′µ] + E[b′Σb]− E[a′Σb]
E[a′Σa] + E[b′Σb]− 2E[a′Σb]

Ω̂−1
s +

E[b′µ]− E[a′µ] + E[a′Σa]− E[a′Σb]
E[a′Σa] + E[b′Σb]− 2E[a′Σb]

Ω̂−1
2

Proof. We start treating the two expressions separately for convenience. The first

part of the expression:

E[w̃′s]µ = E
[

1
γ
(αΩ̂−1

1 + (1− α)Ω̂−1
2 )µ̂

]′
µ =

= E
[

α

γ
µ̂′Ω̂−1

1 µ +
(1− α)

γ
µ̂′Ω̂−1

2 µ

]
=

=
α

γ
E[µ̂′Ω̂−1

1 µ] +
(1− α)

γ
E[µ̂′Ω̂−1

2 µ].

where the first term is the squared Sharpe ratio associated to the first portfolio rule

while the second is the squared Sharpe ratio of a portfolio with Σ−1 = Ω̂−1
2 . Then

we can evaluate the second part of the utility function:

E[w̃′sΣw̃s] = E

[(
α

γ
Ω̂−1

1 µ̂ +
(1− α)

γ
Ω̂−1

2 µ̂

)′
Σ
(

α

γ
Ω̂−1

1 µ̂ +
(1− α)

γ
Ω̂−1

2 µ̂

)]
=

= E
[(

α

γ
µ̂′Ω̂−1

1 Σ +
(1− α)

γ
µ̂′Ω̂−1

2 Σ
)(

α

γ
Ω̂−1

1 µ̂ +
(1− α)

γ
Ω̂−1

2 µ̂

)]
=

= E
[

α2

γ2 µ̂′Ω̂−1
1 ΣΩ̂−1

1 µ̂ +
(1− α)2

γ
µ̂′Ω̂−1

2 ΣΩ̂−1
2 µ̂ +

2α(1− α)

γ2 µ̂′Ω̂−1
1 ΣΩ̂−1

2 µ̂

]
.

Considering the overall equation:

E[U(ŵs)] = E[ŵ′s]µ−
γ

2
E[w̃′sΣw̃s] =

=
α

γ
E[µ̂′Ω̂−1

1 µ] +
(1− α)

γ
E[µ̂′Ω̂−1

2 µ]− γ

2
E

[
α2

γ2 µ̂′Ω̂−1
1 ΣΩ̂−1

1 µ̂ +
(1− α)2

γ
µ̂′Ω̂−1

2 ΣΩ̂−1
2 µ̂+

+
2α(1− α)

γ2 µ̂′Ω̂−1
1 ΣΩ̂−1

2 µ̂

]
.
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Defining a = Ω̂−1
1 µ̂ and b = Ω̂−1

2 µ̂:

E[U(ŵs)] = E[ŵ′s]µ−
γ

2
E[w̃′sΣw̃s] =

=
α

γ
E[a′µ] +

(1− α)

γ
E[b′µ]− γ

2
E

[
α2

γ2 a′Σa +
(1− α)2

γ
b′Σb +

2α(1− α)

γ2 a′Σb

]
=

=
α

γ
E[a′µ] +

(1− α)

γ
E[b′µ]− α2

2γ
E[a′Σa]− (1− α)2

2γ
E[b′Σb]− α(1− α)

γ
E[a′Σb].

(1.11)

The expression (1.11) is the expected utility associated to a generic precision shrink-

age (1.7), whatever the objective and the target matrices are. In the end, we obtain

the optimal shrinkage intensity α∗ by deriving the (1.11) with respect to α:

∂E[U(ŵs)]

∂α
= 0

1
γ

E[a′µ]− 1
γ

E[b′µ]− α

γ
E[a′Σa]− (α− 1)

γ
E[b′Σb]− (1− 2α)

γ
E[a′Σb] = 0

1
γ

[
E[a′µ]− E[b′µ] + E[b′Σb]− E[a′Σb]

]
=

α

γ

[
E[a′Σa] + E[b′Σb]− 2E[a′Σb]

]

α∗ =
E[a′µ]− E[b′µ] + E[b′Σb]− E[a′Σb]

E[a′Σa] + E[b′Σb]− 2E[a′Σb]
. (1.12)

Hence (1− α∗) is equal to:

(1− α∗) = 1−
(

E[a′µ]− E[b′µ] + E[b′Σb]− E[a′Σb]
E[a′Σa] + E[b′Σb]− 2E[a′Σb]

)
=

=
E[a′Σa] + E[b′Σb]− 2E[a′Σb]− E[a′µ] + E[b′µ]− E[b′Σb] + E[a′Σb]

E[a′Σa] + E[b′Σb]− 2E[a′Σb]
=

(1− α∗) =
E[b′µ]− E[a′µ] + E[a′Σa]− E[a′Σb]

E[a′Σa] + E[b′Σb]− 2E[a′Σb]
.

Interestingly, the optimal shrinkage intensity does not depend on the investor risk

aversion coefficient γ. What matters, instead, is only the estimation error associated

with the involved estimators and their correlation. More in details, α∗ depends by
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the squared Sharpe ratio of the proposed strategies (E[a′µ] and E[b′µ]), the estima-

tion error of asset allocation with Ω̂−1
1 as plug-in (E[a′Σa]), the estimation error of

asset allocation with Ω̂−1
2 (E[b′Σb]) and the quantity E[a′Σb]. Ceteris paribus, we as-

sign a higher weight to the strategy with a higher squared Sharpe ratio.

In the end, as the shrinkage estimator of Ledoit and Wolf (2003), Ledoit and Wolf

(2004b), and Ledoit and Wolf (2004a), the precision shrinkage belong to the class of

rotation-equivariant estimators.

Proposition 2.

The proposed shrinkage estimator is equivalent of shrinking eigenvalues’ reciprocal

of prior matrix Ω̂1 towards the target’s (Ω̂2) one such that:

λs = α∗λ−1
1 + (1− α∗)λ−1

2

with λ1 be the prior matrix eigenvalues and λ2 the one of target matrix. Clearly,

we can write our new estimator as Σ̂s = UΛsU′ with Λs = Diag(λs). The proof is

provided in the Appendix A.

What rotation-equivariant estimation means is that rotating the original variables

results in the same rotation being applied to the covariance estimator. Rotation

equivariance is appropriate in the general case where we do not have a priori in-

formation about the orientation of the eigenvectors of the actual covariance matrix

(Ledoit and Wolf (2012)).

The fact that we keep the sample eigenvectors does not mean that we assume they

are close to the population one. Differently, we do not know how to improve upon

them. If we believed that the sample eigenvectors were close to the population one,

then the optimal covariance matrix estimator would have eigenvalues very close to

the population eigenvalues. This is not necessarily optimal from the portfolio se-

lection point of view. What we do, instead, is to find the optimal way of shrinking

eigenvalues such that it maximizes investor’s preferences.
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Shrinkage rules

Here we develop different shrinkage rules with their optimal shrinkage intensities.

All the proofs are provided in Appendix A. Suppose, first, that Ω̂1 = Σ̂PM. This

choice is natural since it is common to consider an unbiased prior estimator Ω̂1. We

shrink the Unbiased Precision estimator towards three different targets: the Identity

matrix I, the equally weighted portfolio ΣEW and the optimal scaling c∗. In the case

of shrinkage, Σ̂−1
PM towards the Identity I, the optimal shrinkage intensity is:

α∗PM,I =
θ2 − 2λ2 + Q

c1
N
T + c1θ2 + Q− 2λ2

(1.13)

with λ = tr(Σ) + µ′µ and Q = tr(ΣΣ) + µ′Σµ. Both the results are showed in the

Appendix A and are based on the trace-expectation relationship. It is evident that

the (1.13) is not observable and, therefore, we need an estimate for it. In order to

estimate θ2 we take advantage of the unbiased estimator of Kan and Zhou (2007):

θ̂2
u =

(T − N − 2)θ̂2 − N
T

(1.14)

where θ̂ = µ̂′Σ̂−1µ̂ is the, biased, sample counterpart of θ2. Then, an unbiased esti-

mator for Q is (T − 1)/(T − N − 2)Q̂, where Q̂ = µ̂′Σ̂SCµ̂. The corrective factor is

necessary to ensure unbiasedeness of the estimator (see Appendix A). Then, for λ2

its sample counterpart λ̂2 = µ̂′µ̂ is unbiased since:

E[λ̂2] = E[µ̂′ Iµ̂] = µ′µ + tr(Σ) = λ2.

By expectation-trace relationship (Appendix A). Then, we evaluate the case where

the shrinkage target is the implied equally weighted covariance matrix (1.9). It is

equal to:

α∗PM,EW =
θ2 − 2w′eµ + w′eΣwe

c1
N
T + c1θ2 + w′eΣwe − 2w′eµ

. (1.15)

with we = (1/N, . . . , 1/N) a constant vector with equal weights and c1 = (T −
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2)(T−N− 2)/(T−N− 1)(T−N− 4). In the end, we also define a shrinkage oper-

ation of the Unbiased Precision Matrix estimator towards another scaled estimator

that, even if biased, is truly a utility maximizer. Since the estimator c∗ is not observ-

able because of θ2, we consider the quasi-optimal version based on the assumption

θ2 → ∞. In other words, we study the performance of the following shrinkage esti-

mator:

Σ̂−1
s = αΣ̂−1

PM + (1− α)Σ̂−1
c3

Optimal shrinkage intensity is given by:

α∗PM,c3
=

(
1−c1

c1

)
N
T(

(1−c1)2

c1

)
N
T +

(
(1−c1)2

c1

)
θ2

. (1.16)

Suppose we believe in doing better by shrinking the Unbiased Precision Matrix es-

timator towards the optimal Σc∗ without assuming θ2 → ∞. In this case, the optimal

shrinkage intensity is α∗ = 0 because, from the utility maximization point of view,

c∗ is already the best one.

Despite it is possible to prove this result analytically, for convenience we include the

proof in the Appendix A. For the same reason, the same result applies if we shrink

the two optimal c∗ estimators, namely c3 (c∗ with θ2 → ∞) and c∗ (with estimated

θ2). Suppose, instead, Ω̂1 = Σ̂c∗ and Ω̂2 = Σ̂c3 . In this case α∗ = 1 (see Appendix A).

The main conclusion is that, if we shrink any plug-in covariance (e.g. maximum

likelihood, sample covariance) towards the Σ̂c∗ estimator, the resulting optimal α∗ is

always zero or one, depending on if the estimator with optimal c∗ is considered as

prior matrix Ω̂1 or as target Ω̂2.

Suppose, now, to consider Ω̂1 = Σ̂c3 . We study the shrinkage of c3 towards both

Identity and equally weighted. In the case of shrinkage Σ̂−1
c3

towards Identity opti-

mal shrinkage intensity is equal to:

α∗c3,I =

1
c1

θ2 −
(

1 + 1
c1

)
λ2 + Q

1
c1

(
θ2 + N

T − 2λ2
)
+ Q

. (1.17)

where c1 is defined as before and we replace estimators for λ and Q. Then, suppose
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to shrink the same estimator towards the implied equally weighted covariance:

α∗c3,EW =

1
c1

θ2 −
(

1 + 1
c1

)
w′eµ + w′eΣwe

1
c1

N
T + 1

c1
θ2 + w′eΣwe − 2w′eµ

. (1.18)

The last shrinkage rule that we develop is the case of Ω̂1 = Σ̂c∗ . As we proved in

Appendix A, any sample estimator we use lead to an optimal shrinkage intensity

equal to either zero or one. Therefore, we directly shrink Σ̂c∗ with the Identity I and

the implied covariance ΣEW . For the shrinkage towards the Identity, the optimal

shrinkage intensity is:

α∗c∗,I =

1
c1

(
θ4

θ2+N/T

)
− λ2 + Q− 1

c1

(
θ2

θ2+ N
T

)
λ2

1
c1

(N
T + θ2

)
+ Q− 2 1

c1

(
θ2

θ2+ N
T

)
λ2

. (1.19)

The last exercise is to shrink c∗ towards the equally weighted covariance matrix ΣEW .

In this case we get:

α∗c∗,EW =

1
c1

(
θ4

θ2+N/T

)
− w′eµ + w′eΣwe − 1

c1

(
θ2

θ2+ N
T

)
w′eµ

1
c1

(N
T + θ2

)
+ w′eΣwe − 2 1

c1

(
θ2

θ2+ N
T

)
w′eµ

. (1.20)

All the presented strategies based on shrinkage are 3-fund rules, where the agent

invests in riskless assets and two different risky portfolios with the same goal (mean-

variance optimization).

1.1.3 A simulation study

In what follows, we evaluate the expected out-of-sample performance of the pro-

posed precision shrinkage estimator through a simulation study as in Kan and Zhou

(2007). In doing so, we compare its performance with the alternative plug-in strate-

gies shown in the paper.

More in detail, we assume a mean-variance investor with different risk aversion co-

efficients, γ = 1 and γ = 3, where the simulation parameters are calibrated from real

data under the assumption of multivariate normality for stock returns. At this aim,

we develop different scenarios. First, we assume there are N = 5 risky assets of dif-

ferent lengths T = 60, 120, 240, 480, 960 with mean and covariances calibrated based

on real data. For calibration, we develop the sample estimates of the Fama-French
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five industry portfolio monthly excess returns1 from July 1926 to October 2019. The

expected out-of-sample performances are determined as the average of M = 10000

replications. Results are showed in Tab. 1.1.

TABLE 1.1: Economic loss (3) with N = 5 risky assets

T=60 T=120 T=240 T=480 T=960
Panel A: γ = 1
1/N 12.45284 12.45284 12.45284 12.45284 12.45284
I 473.9204 394.6301 352.6923 334.92783 325.8351
EW 12.45284 12.45284 12.45284 12.45284 12.45284
Maximum Likelihood 0.053788 0.0242263 0.0114308 0.0056082 0.0027802
Sample Covariance 0.051930 0.0238023 0.0113317 0.0055838 0.0027742
Unbiased Precision Covariance 0.041751 0.0214083 0.0107638 0.0054431 0.0027393
Optimal c∗ = c3 (with θ2 → ∞) 0.033863 0.0193509 0.0102518 0.0053132 0.0027068
Optimal c∗ (with θ̂2

u) 0.021993 0.0140119 0.0084696 0.0048443 0.0026099
Unbiased Precision towards I 0.042343 0.0214288 0.0107432 0.0054384 0.0027383
Unbiased Precision towards EW 0.042205 0.0214852 0.0107740 0.0054457 0.0027399
Tu and Zhou (2011) 0.042205 0.0214852 0.0107740 0.0054457 0.0027399
Unbiased Precision towards c3 0.021993 0.0140119 0.0084696 0.0048443 0.0026099
Optimal c∗ = c3 towards I 0.036466 0.0198455 0.0103400 0.0053359 0.0027126
Optimal c∗ = c3 towards EW 0.032352 0.0189597 0.0101524 0.0052882 0.0027006
Optimal c∗ towards I 0.026670 0.0144855 0.0080667 0.0045324 0.0024660
Optimal c∗ towards EW 0.025316 0.0143474 0.0080626 0.0045196 0.0024587
Ledoit and Wolf (2004a) 0.045716 0.0222611 0.0110882 0.0055211 0.0027591
Ledoit and Wolf (2003) 0.063583 0.0265632 0.0121394 0.0057821 0.0028240

T=60 T=120 T=240 T=480 T=960
Panel B: γ = 3
1/N 39.26009 39.26009 39.260090 39.26009 39.26009
I 158.50539 131.11738 118.97522 112.542477 108.992236
EW 4.1509496 4.1509496 4.1509496 4.15094960 4.15094960
Maximum Likelihood 0.0177424 0.0079754 0.0038491 0.00186997 0.00091713
Sample Covariance 0.0171269 0.0078367 0.0038155 0.00186179 0.00091514
Unbiased Precision Covariance 0.0137572 0.0070541 0.0036226 0.00181457 0.00090357
Optimal c∗ = c3 (with θ2 → ∞) 0.0111486 0.0063819 0.0034486 0.00177094 0.00089277
Optimal c∗ (with θ̂2

u) 0.0072304 0.0046407 0.0028367 0.00161301 0.00086097
Unbiased Precision towards I 0.0139577 0.0070592 0.0036167 0.00181315 0.00090327
Unbiased Precision towards EW 0.0138005 0.0070618 0.0036244 0.00181511 0.00090369
Tu and Zhou (2011) 0.0139079 0.0070789 0.0036279 0.00181617 0.00090392
Unbiased Precision towards c3 0.0072304 0.0046407 0.0028367 0.00161301 0.00086097
Optimal c∗ = c3 towards I 0.0119930 0.0065443 0.0034815 0.00177958 0.00089492
Optimal c∗ = c3 towards EW 0.0106757 0.0062511 0.0034146 0.00176221 0.00089060
Optimal c∗ towards I 0.0087343 0.0047937 0.0027224 0.00151719 0.00081510
Optimal c∗ towards EW 0.0082680 0.0047518 0.0027233 0.00151457 0.00081317
Ledoit and Wolf (2004a) 0.0152734 0.0036993 0.0036993 0.00183161 0.00091867
Ledoit and Wolf (2003) 0.0212171 0.0040517 0.0040517 0.00191788 0.00094024

Naive approaches. The first three strategies are the most simple and, at the same

time, the most biased. In particular, the first one (that we call 1/N) suppose an in-

vestment based on just one fund, where the investor splits all his wealth equally

across the risky assets. The strategy defined as EW is a scaled version of the former

1/N, where we suppose a mean-variance investor that estimates the covariance ma-

trix with the estimator (1.9). As it appears from the Panel A of Tab. 1.1, the resulting

EW strategy is equivalent to 1/N when γ = 1. The strategy that we call I represents

a mean-variance rule where the covariance matrix is estimated with the Identity.

1We get data from Kenneth French website https://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/data_library.html

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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A first interesting aspect to highlight is that the Identity-based allocation is the worst

one among all the alternatives considered in the Tab. 1.1, even asymptotically. The

reason is that the bias contained in the Identity matrix is very high2. Moreover, the

simulation results show that the equally weighted strategy is one of the worst, even

if the empirical evidence suggests the opposite. With this respect, we have to stress

that the simulated economy is risk factor free as in Kan and Zhou (2007). Surpris-

ingly, Kan and Zhou (2007) did not show performance comparisons of such strategy

with the others within their simulations. In this sense, the results presented on the

Tab. 1.1 are the first in showing the performances of the equally weighted strategy

in terms of the loss function. Nevertheless, in this ideal setting, the evidence of such

poor performances of the naive rule can potentially explain why it is so effective in

the real world. Indeed, risk factors that affect the fluctuations in stock prices make

reality a complex system.

Moreover, some interesting results are also highlighted from Panel B of the Tab. 1.1

that shows the estimation error for an investor with a three times higher risk aver-

sion than in Panel A. First of all, the loss in utility due to the 1/N strategy becomes

larger, from a value of 12 to a value of 39. Moreover, the EW is different from the

1/N one because it represents a two fund rule where a proportion of wealth is also

invested in the riskless asset. The resulting naive two fund rule implies a consid-

erable reduction in the utility’s loss from 39 to a value of 4. Moreover, the Identity

matrix plug-in becomes more attractive than before, especially asymptotically but

with a very high estimation error level.

Sample estimators. While the naive rules show inferior performances, the op-

timal mean-variance strategies show low estimation error. However, as discussed

previously, different covariance estimators are associated with different levels of es-

timation error. What both Panel A and Panel B of the Tab. 1.1 show is that among

the classical plug-in approaches, the maximum likelihood-based strategy contains

the highest estimation error. In contrast, the Kan and Zhou (2007) optimal estimator

Σ̂c∗ has the lowest one. However, the differences among different estimators vanish

asymptotically. These results confirm those of Kan and Zhou (2007).

Precision shrinkage estimators. Now let us consider the performances of the

2On one hand, it is reasonable to assume a unitary main diagonal for Σ if we consider it as a corre-
lation matrix. On the other hand, it is tough to believe that all the assets have zero correlation. Indeed,
we have to note that the calibrated actual covariance matrix has not zero off-diagonal elements.
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shrinkage estimators. In the simulation study, we develop different linear shrink-

age estimators, the shrinkage towards the Identity of Ledoit and Wolf (2004a), the

shrinkage towards the market of Ledoit and Wolf (2003) and all the proposed preci-

sion shrinkage estimators that we have developed in the Chapter.

First of all, we have to note that shrinkage of the unbiased precision matrix Σ̂PM

towards the implied covariance of the equally weighted strategy has the same per-

formance of the Tu and Zhou (2011) combination rule. However, as shown in Panel

B of the Tab. 1.1, the performance is higher for the proposed precision shrinkage

than the former combination rule since we are genuinely diversifying the estimation

error contained in the covariance matrix.

A second relevant aspect is that with the precision shrinkage approaches, we im-

prove the performances concerning the classical plug-in, with overperformances

that always become greater with an increasing sample. For example, if we shrink

the unbiased precision estimator Σ̂PM towards the Identity I we obtain, asymptot-

ically, a loss reduction as well as the shrinkage of Σ̂c3 towards the implied equally

weighted covariance matrix Σ̂EW .

Another interesting example of this result is the case of the shrinkage of the unbi-

ased precision matrix estimator towards Σ̂c3. Indeed, in this case, we get the same

performance of the optimal estimator of Kan and Zhou (2007) Σ̂c∗ , so with the pre-

cision shrinkage, we improve upon both estimators. Moreover, it is not possible to

perform better of Σ̂c∗ if we shrink two estimators that proportional to the maximum

likelihood, since it results in an optimal shrinkage intensity equal to 1, as shown in

Appendix A.

Moreover, we also found that the greatest improvements in the asset allocation per-

formances are achieved using the information from equally weighting. Indeed, if

we shrink the Σ̂c∗ estimator towards the implied equally weighted covariance (1.9),

the overall loss is considerably lower asymptotically. Actually we need T ≥ 240 to

get this result, that is valid for both γ = 1 and γ = 3. In particular, the following

shrinkage estimator:

Σ̂−1
s = αΣ̂−1

c∗ + (1− α)Σ̂−1
EW

Is the best plug-in in terms of the loss function is the optimal shrinkage intensity is
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derived as in Theorem 1. However, also with the shrinkage of Σ̂c∗ towards Identity,

we obtain excellent results since it is the second-best strategy.

This result can be explained by the fact that the estimation error of the involved es-

timators is weakly correlated. Indeed, if we shrink Σ̂c∗ towards Identity I and/or

ΣEW the loss is lower than Σ̂c∗ alone because the estimation errors associated to both

I and ΣEW are orthogonal to the estimation error contained inΣ̂c∗ . Therefore, their

combination improves the out of sample performance.

In the end, another interesting comparison is between the proposed precision shrink-

age approaches and the linear shrinkage estimators of Ledoit and Wolf (2003) and

Ledoit and Wolf (2004a). The comparison in Tab. 1.1 shows that the shrinkage

towards the Identity (Ledoit and Wolf (2004a)) always performs better than the

shrinkage towards the market (Ledoit and Wolf (2003)). Moreover, the averaging ap-

proach reduces the estimation error concerning the sample covariance matrix, since

the Ledoit and Wolf (2004a) has a lower estimation error than Σ̂SC also for a small

sample size. However, it is worst than the unbiased precision matrix Σ̂PM. On the

other hand, despite the empirical evidence of previous papers showing superior per-

formances of this shrinkage approach, the shrinkage towards the market performs

poorer than both the sample covariance and the shrinkage towards the Identity.

A possible explanation can be found in the economy under consideration. Indeed,

as in Kan and Zhou (2007), the economy of the simulation study is i.i.d. Gaussian

without risk factors. If we assume the presence of risk factors (e.g. the market), the

difference in the two linear shrinkage approaches results is likely to be overthrown.

Nevertheless, it is also interesting to highlight that both the linear shrinkage of

Ledoit and Wolf (2003) and Ledoit and Wolf (2004a) have much poorer performances

than the proposed precision shrinkage estimators.

The reason for this result lies in how the optimal shrinkage intensity is derived. In-

deed, while the linear shrinkage approach of Ledoit and Wolf (2003), Ledoit and

Wolf (2003), and Ledoit and Wolf (2004b) is based on statistical arguments, the pro-

posed precision shrinkage derive α∗ from maximizing investor’s preferences. In

other words, despite the Ledoit & Wolf approach being more general and can also be

used in other sciences (e.g. biology, chemometrics), the proposed approach based on

precision shrinkage is more appropriate for the portfolio selection problem. There-

fore, it returns much higher performances than the alternatives. However, we have

to mention that the Ledoit and Wolf (2003) and Ledoit and Wolf (2004a) approaches
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are taught to be applied in large dimensional settings, where the number of assets N

is greater than the observations T, such that the resulting sample estimators are all

ill-conditioned. Despite our precision estimators cannot be applied in this setting, in

a standard scenario where T is large enough if compared with N (e.g. daily returns’

data), it represents the best estimator possible.

These conclusions are valid for the case of N = 5 assets. What if the number of as-

sets increases? In the second scenario, the number of assets is six times larger, so we

have N = 30 assets. The time series, with different lengths T = 60, 120, 240, 480, 960,

are simulated from a multivariate normal distribution with a mean vector and co-

variance matrix calibrated from the sample estimates of the monthly excess returns

the 30-industry portfolio of Fama-French.

The results are shown in Tab. 1.2. Also, in this case, the ranking of the classical sam-

ple estimators is the same of Kan and Zhou (2007), confirming that the maximum

likelihood covariance estimator is the one with the highest level of estimation. In

contrast, the optimal scaling covariance Σ̂c∗ is the estimator with the lowest estima-

tion error.



26 Chapter 1. Improved asset allocation with precision shrinkage

TABLE 1.2: Economic loss (3) with N = 30 risky assets

T=60 T=120 T=240 T=480 T=960
Panel A: γ = 1
1/N 14.55155 14.55155 14.55155 14.55155 14.55155
I 22115.24 18358.98 15926.51 14883.06 14469.55
EW 14.55155 14.55155 14.55155 14.55155 14.55155
Maximum Likelihood 0.869859 0.205889 0.080465 0.036273 0.0173473
Sample Covariance 0.839873 0.202262 0.079755 0.036113 0.0173091
Unbiased PrecisionCovariance 0.183397 0.108915 0.060083 0.031518 0.0161919
Optimal c∗ = c3 (with θ2 → ∞) 0.055685 0.063321 0.046595 0.027862 0.0152383
Optimal c∗ (with θ̂2

u) 0.041339 0.040276 0.031052 0.020525 0.0125020
Unbiased Precisiontowards I 0.185097 0.109077 0.060080 0.031514 0.0161912
Unbiased Precision towards EW 0.229433 0.110878 0.060078 0.031483 0.0161825
Tu and Zhou (2011) 0.229433 0.110878 0.060078 0.031483 0.0161825
Unbiased Precision towards c3 0.041339 0.040276 0.031052 0.027862 0.0125020
Optimal c∗ = c3 towards I 0.062772 0.065278 0.047019 0.027965 0.0152679
Optimal c∗ = c3 towards EW 0.063049 0.063122 0.046311 0.027765 0.0152097
Optimal c∗ towards I 0.047650 0.040944 0.030282 0.019774 0.0120458
Optimal c∗ towards EW 0.044228 0.040856 0.030194 0.019664 0.0119894
Ledoit and Wolf (2004a) 0.6679396 0.2064624 0.06149322 0.02113893 0.01270083
Ledoit and Wolf (2003) 0.4201915 0.1560763 0.05248413 0.0199346 0.01200532

T=60 T=120 T=240 T=480 T=960
Panel B: γ = 3
1/N 45.53245 45.53245 45.53245 45.53245 45.53245
I 7431.359 5921.821 5313.502 4988.945 4793.515
EW 4.850518 4.850518 4.850518 4.850518 4.850518
Maximum Likelihood 0.291843 0.068181 0.0268983 0.0121100 0.0057678
Sample Covariance 0.281787 0.066984 0.0266604 0.0120565 0.0057551
Unbiased Precision Covariance 0.061572 0.036174 0.0200691 0.0105234 0.0053849
Optimal c∗ = c3 (with θ2 → ∞) 0.018669 0.021116 0.0155491 0.0093034 0.0050690
Optimal c∗ (with θ̂2

u) 0.013833 0.013476 0.0103367 0.0068515 0.0041652
Unbiased Precision towards I 0.062133 0.036228 0.0200673 0.0105223 0.0053846
Unbiased Precision towards EW 0.076904 0.036675 0.0200670 0.0105124 0.0053801
Tu and Zhou (2011) 0.063793 0.036257 0.0200752 0.0105232 0.0053843
Unbiased Precision towards c3 0.013833 0.013476 0.0103367 0.0068515 0.0041652
Optimal c∗ = c3 towards I 0.021045 0.021712 0.0156861 0.0093385 0.0050773
Optimal c∗ = c3 towards EW 0.021201 0.021041 0.0154574 0.0092714 0.0050597
Optimal c∗ towards I 0.015963 0.013624 0.0100701 0.0066037 0.0040044
Optimal c∗ towards EW 0.014866 0.013496 0.0100453 0.0065670 0.0039832
Ledoit and Wolf (2004a) 0.232274 0.078929 0.0305392 0.01322661 0.006154851
Ledoit and Wolf (2003) 0.149943 0.062082 0.0275302 0.01269284 0.006053937

About the naive strategies 1/N, EW, and the Identity I plug-in, the same conclu-

sion of Tab. 1.1 can be highlighted. Indeed, with γ = 1, we have that 1/N and EW

are equivalent, while with γ = 3, the proposed two fund rule EW is less affected by

the estimation error. Moreover, it is interesting to note how the estimation error con-

tained in the Identity matrix dramatically increases with respect to the case N = 5.

This is another evidence of the fact that the number of assets N is a vital quantity to

account for to explain the estimation error problem.

Moreover, in this second scenario, the benefit of estimating the covariance matrix

differently becomes more prominent than before. Indeed, in this case, estimating

the covariance matrix with the Σ̂c∗ estimator reduces almost ten times the estimation

error concerning the maximum likelihood or the sample covariance estimators.

The precision shrinkage estimators also provide, in this case, the best response in

reducing the estimation error problem. While with γ = 1 the unbiased precision
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estimator returns the same performance of Tu and Zhou (2011) combination rule if

it is shrunk towards the implied covariance matrix Σ̂EW , with γ = 3 the two ap-

proaches differs. Moreover, the precision shrinkage Σ̂−1
s = α∗Σ̂−1

PM + (1− α∗)Σ̂−1
EW

overperforms asymptotically. Further, if we shrink any prior matrix towards a tar-

get according to Theorem 1, we considerably reduce the estimation error in all the

cases. Asymptotically the benefit is always increasing.

The best shrinkage approach is the shrinkage of the optimal scaling estimation Σ̂c∗

towards the implied equally weighted portfolio’s covariance Σ̂EW , precisely as in

the previous case of N = 5. Even if a tiny sample size (e.g. T = 60) is the second-

best, the precision shrinkage is the best estimator in reducing the estimation error

for T ≥ 240. With monthly data, T = 240 means 20 years of observation usually

available in empirical applications.

In the end, the comparison between the proposed approach and the linear shrinkage

estimators of Ledoit and Wolf (2003) and Ledoit and Wolf (2004a) has to be carried

out. Briefly, the results in Tab. 1.2 are consistent with those of Tab. 1.1, where the

proposed precision matrix shrinkage has been revealed to perform better.

1.1.4 Full parameter uncertainty

What Kan and Zhou (2007) showed is, however, still an ideal setting. Even if we

admit the possibility of making mistakes in weights estimation because of uncer-

tainty on parameters µ and Σ, we assume the actual parameters in determining the

expectations. This is logical if we want to understand the utility loss due to the un-

der/overestimation of portfolio weights. Indeed, what changes between U(w∗) and

E[U(ŵ)] is just the presence of some estimation within the weights in the second one,

but the rest of the utility is the same. Therefore, by computing the difference as (1.3),

we are determining the loss in the utility only due to the weights’ uncertainty. How-

ever, what if the investors do not know anything about the actual parameters? It is

reasonable to assume that they make a mistake in estimating the portfolio’s weights

and estimating the utility that they get from the implementation of a given asset al-

location strategy.

Let suppose an investor with mean-variance preferences. There is an effortless way

to analyse this "miss perception" that replaces the actual parameters within the ex-

pectation with the investor’s estimates (his/her beliefs about the actual parameters).
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Hence, in this case, the expected utility associated with a given asset allocation strat-

egy ŵ is:

E[U(ŵ)|Σ̂, µ̂] = E[ŵ′µ̂]− γ

2
E[ŵ′Σ̂ŵ]. (1.21)

We can evaluate the "full" impact of parameter uncertainty on investors’ expected

utility within this setting. Suppose, first, that the investor knows the actual covari-

ance matrix but does not know the mean and suppose that she estimates it by the

maximum likelihood estimator. The investor’s perceived utility is equal to (the proof

is provided in Appendix A):

E[U(ŵ)|Σ, µ̂] =
1

2γ

(
N
T

+ θ2
)

. (1.22)

Which reduces with increasing risk aversion and the number of assets while reduc-

ing with increasing observations T. Suppose, instead, that the investor does not

know the true covariance, which is estimated via maximum likelihood, while the

actual mean vector is known. In this case, the perceived utility is equal to:

E[U(ŵ)|Σ̂, µ] =
1

2γ

T − N − 2
T

θ2. (1.23)

Kan and Zhou (2007) showed that when the ratio N/T is small, the estimation error

in the mean is larger than the estimation error in the covariance and that when it is

large, the reverse applies.

In the following Table 1.3 we analyse differences in estimation error severity due

to mean and covariance within this setting. Some important conclusions can be

derived in the case of N = 5 assets. First, the perceived utility is decreasing with

sample size T. This evidence suggests that once more information is available, the

investors understand that their utility is lower than what they believed. Second, the

utility with the estimated mean is greater than the one associated with the covariance

estimation. Therefore, mean estimation increase miss perception.

Moreover, the perceived utility with the estimated expected returns vector is not

reducing quickly with increasing T. On the other hand, the perceived utility with

estimated covariances reduces significantly with an increasing sample size T. Hence,
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we can conclude that overall utility’s miss perception is mainly due to the errors in

estimating the mean vector. The same conclusions almost apply when N = 30.

Nevertheless, with increasing N and fixed T, the perceived utility is greater and,

therefore, the miss perception increases with a higher N/T ratio.

The way the miss perception is affected by N and T is similar to estimation error.

Therefore in a setting with no information, the utility’s miss perception represents

an additional source of deviation from the first best.

N T Σ, µ̂ Σ̂, µ

γ = 0.3
5 60 0.01979254 0.08255701

120 0.01354254 0.007744286
240 0.01041754 0.007511625
480 0.008855036 0.007400459

30 60 0.02606017 0.01535114
120 0.01981017 0.01440018
240 0.01668517 0.01396756
480 0.01512267 0.01376085

γ = 1
5 60 0.06597512 0.027519

120 0.04514179 0.02581429
240 0.03472512 0.02503875
480 0.02951679 0.0246682

30 60 0.08686724 0.05117046
120 0.06603391 0.04800061
240 0.05561724 0.04655853
480 0.05040891 0.0458695

γ = 3
5 60 0.1979254 0.08255701

120 0.1354254 0.07744286
240 0.1041754 0.07511625
480 0.08855036 0.07400459

30 60 0.2606017 0.1535114
120 0.1981017 0.1440018
240 0.1668517 0.1396756
480 0.1512267 0.1376085

TABLE 1.3: Percieved Expected Utilities (1)

Now, suppose that the investor does not know the covariance and the expected

returns vector. Assuming that the investor estimates these quantities by maximum

likelihood, the perceived utility is:

E[U(ŵML)|Σ̂, µ̂] =
1

2γ

1
T − N − 2

(
N + Tθ2) (1.24)

Suppose she believes that the sample covariance estimator’s estimates are the same

as the true covariances. In this case, the perceived utility is equal to:
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E[U(ŵSC)|Σ̂, µ̂] =
1

2γ

T − 1
T − N − 2

(
N
T

+ θ2
)

. (1.25)

Then, if we develop the Unbiased Precision (PM) estimator:

E[U(ŵPM)|Σ̂, µ̂] =
1

2γ

(
N
T

+ θ2
)

. (1.26)

As in Kan and Zhou (2007), all the covariance estimators differ each other by a scal-

ing factor c, such that exists a general estimator of the form Σ̂c = Σ̂ML/c as suggested

also by Haff (1979). Indeed, in the case of MLE c = 1, for the sample covariance

c = (T − 1)/T while for the unbiased precision matrix c = (T − N − 2)/T.

An interesting question to answer is whether there is an optimal constant c∗ within

this framework. Surprisingly, within a perceived utility framework, the optimal scal-

ing is c∗ = 1 and, therefore, the maximum likelihood estimator is the one that maxi-

mizes the investor’s utility.

This result is significant since, within a perceived utility framework, the optimal

two-fund rule is a maximum likelihood-based strategy, which is the worst one within

Kan and Zhou (2007) framework. This means, in other words, that despite all the in-

vestors making their choices rationally (maximizing their utilities), they will choose

the worst allocation strategy in the case of full uncertainty.

One can think that there is a straightforward way to reduce errors due to uncer-

tainty: avoid estimation at all. Hence, the solution could be employing an equally

weighted strategy. This does not seem right. Indeed, equally-weighted is a way of

reducing errors since no weight is estimated. However, the investor assumes a cer-

tain mean and covariance for computing her utility, not only the weights. In the case

of equally-weighted strategy, where the investor estimate means and covariance via

MLE, perceived utility is:

E[U(ŵew)|Σ̂, µ̂] = w′eµ−
γ

2
T − N − 2

T
w′eΣwe. (1.27)

where we = (1/N, . . . , 1/N) is a constant vector. Table 1.4 reports comparisons in

terms of perceived utilities between strategies.
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N T ML SC US EW

γ = 0.3

5 60 0.2489627 0.2448133 0.2199171 -2.570922

120 0.1597939 0.1584623 0.1504726 -2.8056269

240 0.1192279 0.1187311 0.1157504 -2.9229795

480 0.09984537 0.09963736 0.09838929 -2.98165580

30 60 2.1085755 2.0734326 0.9840019 -1.1716088

120 0.7736390 0.7671920 0.5673352 -2.4120503

240 0.4142330 0.4125070 0.3590019 -3.0322710

480 0.2730378 0.2724689 0.2548352 -3.3423814

γ = 1

5 60 0.07468882 0.07344400 0.06597512 -10.86383898

120 0.04793818 0.04753870 0.04514179 -11.64618967

240 0.03576836 0.03561933 0.03472512 -12.03736501

480 0.02995361 0.02989121 0.02951679 -12.23295268

30 60 0.6325727 0.6220298 0.2952006 -6.2367448

120 0.2320917 0.2301576 0.1702006 -10.3715496

240 0.1242699 0.1237521 0.1077006 -12.4389521

480 0.08191133 0.08174068 0.07645057 -13.47265328

γ = 3

5 60 0.02489627 0.02448133 0.02199171 -34.55788836

120 0.01597939 0.01584623 0.01504726 -36.90494042

240 0.01192279 0.01187311 0.01157504 -38.07846646

480 0.009984537 0.009963736 0.009838929 -38.66522947

30 60 0.21085755 0.20734326 0.09840019 -20.70856177

120 0.07736390 0.07671920 0.05673352 -33.11298

240 0.04142330 0.04125070 0.03590019 -39.31518

480 0.02730378 0.02724689 0.02548352 -42.41629

TABLE 1.4: Percieved Expected Utilities (2)

The results show that, first, the differences in expected utilities between alterna-

tive strategies become lower with increasing sample size. Bigger sample size means

higher information about the actual data distribution. Asymptotically, we have sim-

ilar results to Kan and Zhou (2007).

Second, we have to note that, with N = 30, the expected utility differences seem to be

much more significant from the investor’s point of view. For example, with T = 60,

a mean-variance strategy with maximum likelihood estimation has a perceived util-

ity two times greater than an unbiased precision matrix estimator. This does not

seem right. Nevertheless, a higher number of assets implies a greater estimation
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error and, therefore, we also have a greater level of miss perception. Also, with a

greater number of assets we have, asymptotically, the differences become lower, and

the perceived utility becomes almost ten times lower. Third, the equally weighted

strategy has still a negatively perceived utility and, therefore, it is not possible to

reduce the estimation error without estimation. Again, the bigger is the sample size,

the lower is the perceived utility.

One can ask if we would also be able to construct an optimal precision shrinkage

estimator within this setting. Unfortunately, here this is not possible. To see why it

is sufficient to write the perceived utility for a general precision shrinkage estimator:

E
[
U(ŵs)|Σ̂, µ̂

]
= E

[
ŵ′sµ̂

]
− γ

2
E
[
ŵ′sΣ̂sŵs

]
=

= E
[

1
γ

µ̂′Σ̂−1
s µ̂

]
− γ

2
E
[

1
γ2 µ̂′Σ̂−1

s Σ̂sΣ̂−1
s µ̂

]
=

=
1
γ

E
[
µ̂′Σ̂−1

s µ̂
]
− 1

2γ
E
[
µ̂′Σ̂−1

s µ̂
]
=

=
1

2γ
E
[
µ̂′(αΩ̂−1

1 + (1− α)Ω̂−1
2 )µ̂

]
=

=
1

2γ
αE
[
µ̂′Ω̂−1

1 µ̂
]
+

1
2γ

(1− α)E
[
µ̂′Ω̂−1

2 µ̂
]

. (1.28)

Clearly, there is no α that maximizes perceived utility, since first derivative of (1.28)

does not depend by α.

1.2 Uncertainty on portfolio weights: the minimum variance

investor

The mean-variance setting of Markowitz (1952) involves the estimation of both means

and covariance. However, it is known that estimating expected returns is much more

challenging than estimating covariances (Merton, 1980). Therefore, several scholars

focused on the following portfolio problem for reducing estimation error: find an as-

set allocation that minimizes portfolio variance instead of maximizing the investor’s

expected utility. This is called the "global minimum variance" (GMV) strategy and

involves only the estimation of the covariance matrix inverse. Kourtis, Dotsis, and

Markellos (2012) demonstrated that the estimation error contained in a Global Mini-

mum Variance (GMV) strategy, where only the covariance structure is used to build
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the optimal portfolios, contains a lower estimation error than a Mean-Variance (MV)

allocation. Intuitively, this happens because GMV avoids the estimation error con-

tained in the expected returns’ vector µ̂. In what follows, we study the estimation

error for this asset allocation strategy.

1.2.1 Minimum variance with standard sample estimates

Unlike classical mean-variance allocations, such a strategy involves just risky assets:

no proportion of an investor’s wealth has to be used to buy a riskless asset. Let us

assume to have N risky assets in the investment universe. The portfolio problem can

be writen as:

min
w

w′Σw

s.t.
N

∑
i=1

wi = 1

The optimal global minimum variance weight w∗ vector, as solution of the mini-

mization problem above, is given by:

w∗ =
Σ−11N

1′NΣ−11N
(1.29)

where 1N = (1, 1, . . . , 1) and 1′NΣ−11N is the sum of all elements within the vec-

tor Σ−11N . By replacing Σ−1 with Σ̂−1 we get the optimal estimated GMV portfolio

weights that we call ŵ. In what follows we provide some insights about the estima-

tion error for this type of strategy.

As proved by Okhrin and Schmid (2006), the sample counterpart of weights (2.3)

follows an elliptical t-distribution with T − N − 1 degrees of freedom. The first two

moments are equal to:

E[ŵ] = w (1.30)

and:
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Var[ŵ] =
1

T − N − 1
R

1′NΣ̂−1
ML1N

(1.31)

where:

R =
Σ̂−1

ML1N1′NΣ̂−1
ML

1′NΣ̂−1
ML1N

.

About the expected return and variance of a GMV portfolio, Kourtis, Dotsis, and

Markellos (2012) provided some useful results. In particular, the authors demon-

strate that the following relationships hold:

E[ŵ′µ] = w′µ (1.32)

and:

E[ŵ′Σŵ] =
T − 2

T − N − 1
w′Σw. (1.33)

where (1.32) is the portfolio expected returns and (1.33) its expected variance.

Using these results makes it possible to derive a closed formula for estimation error

for such a strategy. In this case, however, we compute the estimation error as the

deviation of portfolio variance under actual weights from the variance under the

estimated portfolio weights. Intuitively, we follow an approach similar to the one of

Kan and Zhou (2007) but for a GMV setting.

The estimation error for a maximum likelihood-based GMV strategy is:

`(w, ŵ) = w′Σw− E[ŵ′Σŵ] =

= w′Σw− T − 2
T − N − 1

w′Σw =

`(w, ŵ) =

(
1− T − 2

T − N − 1

)
w′Σw. (1.34)

where the loss is a negative number. Indeed, the variance of the estimated portfolio
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weights is greater since T − 2 > T − N − 1 so T − 2/T − N − 1 > 1.

Can we reduce estimation error by estimating differently precision matrices? The

answer is no, at least with usual sample estimators. The reason is that all of them

are proportional to maximum likelihood covariance. Suppose to consider the case of

the Unbiased Precision estimator that is unbiased with respect to the true covariance

inverse:

Σ̂US =
1

T − N − 2

T

∑
t=1

(Xt − µ̂)′(Xt − µ̂) =
T − N − 2

T
Σ̂ML

where Σ̂ML = T−1 ∑T
t=1(Xt − µ̂)′(Xt − µ̂) be the usual maximum likelihood estima-

tor for covariance matrix. Expected portfolio variance by plug-in of Σ̂−1
US in (2.3) is:

E[ŵ′Σŵ] = E

[
1′NΣ̂−1

US

1′NΣ̂−1
US1N

Σ
Σ̂−1

US1N

1′NΣ̂−1
US1N

]
=

E

[
T−N−2

T 1′NΣ̂−1
ML

T−N−2
T 1′NΣ̂−1

ML1N
Σ

T−N−2
T Σ̂−1

ML1N
T−N−2

T 1′NΣ̂−1
ML1N

]
=

E[ŵ′Σŵ] = E

[
1′NΣ̂−1

ML

1′NΣ̂−1
ML1N

Σ
Σ̂−1

ML1N

1′NΣ̂−1
ML1N

]
=

T − 2
T − N − 1

w′Σw.

Hence, the portfolio variance is equivalent in the case of Unbiased Precision with

respect maximum likelihood case. Obviously, the same applies to portfolio expected

return since:

E[ŵ′µ] = E[ŵ′]µ = E

[
1′NΣ̂−1

US

1′NΣ̂−1
US1N

]
µ =

= E

[
T−N−2

T 1′NΣ̂−1
ML

T−N−2
T 1′NΣ̂−1

ML1N

]
µ = E

[
1′NΣ̂−1

ML

1′NΣ̂−1
ML1N

]
µ = w′µ.

Therefore, by the plug-in of whatever estimator is proportional to maximum likeli-

hood in this framework, we cannot reduce estimation error.

As further evidence, we provide simulation results (see Tab. 1.5) as well. We assume

there are N = 5 and N = 30 risky assets with mean and covariances are chosen
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based on the sample estimates from the monthly excess returns on the 5 and 30 in-

dustry portfolios of Fama-French3 from July 1926 to October 2019. Expected out of

sample performances are determined for all the cases by M = 10000 simulations.

N T ML SC US

5 60 -1.670225 -1.670225 -1.670225

120 -0.7964584 -0.7964584 -0.7964584

240 -0.3896277 -0.3896277 -0.3896277

480 -0.1948903 -0.1948903 -0.1948903

30 60 -11.59008 -11.59008 -11.59008

120 -3.801216 -3.801216 -3.801216

240 -1.619598 -1.619598 -1.619598

480 -0.7515538 -0.7515538 -0.7515538

TABLE 1.5: Estimation Error for alternative GMV strategies

The estimation error dynamics do not change with respect to the mean-variance

case. In other words, it increases with N as T is fixed while it decreases with increas-

ing sample size since more information is available. Nevertheless, the estimation

error can be reduced by the plug-in of not proportional estimators. In what follows,

we discuss if and how the precision shrinkage estimator can be helpful to this aim.

1.2.2 The precision shrinkage estimator

In the whole chapter, we claim that a limitation of the existing shrinkage estimators

relies on how optimal shrinkage intensity is determined. Indeed, in all the cases, it is

based on statistical arguments, and it is not necessarily consistent with the portfolio

selection problem: finding portfolio composition that maximizes investors’ prefer-

ences.

Therefore in what follows, we aim to overcome this limitation, proposing a portfolio

volatility-minimizer shrinkage estimator of the precision matrix.

Estimation framework and optimal shrinkage intensity

From Ledoit and Wolf (2017) we know that minimizing the following loss function:

3Also, in this case, we get data from Kenneth French website https://mba.tuck.dartmouth.edu/
pages/faculty/ken.french/data_library.html

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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`(Σ̂−1, Σ, 1N) = ŵ′Σŵ =
1′NΣ̂−1ΣΣ̂−11N(

1′NΣ̂−11N
)2 (1.35)

essentially means that we are minimizing the portfolio variance. Moreover, mini-

mizing the loss (1.35) is also equivalent of maximizing out of sample Sharpe ratio

(Ledoit and Wolf, 2017). Consider now the following general shrinkage estimator of

precision matrix:

Σ̂−1
s = αΩ̂−1

1 + (1− α)Ω̂−1
2 (1.36)

where, as previously, Ω̂−1
1 is called prior and Ω̂−1

2 is the target. The quantity α is

called optimal shrinkage intensity. By substituting (1.36) in (1.35) we get:

E
[
`(Σ̂−1

s , Σ, 1N)
]
= E

[
ŵ′Σŵ

]
=

= E

1′N

[
αΩ̂−1

1 + (1− α)Ω̂−1
2

]
Σ
[
αΩ̂−1

1 + (1− α)Ω̂−1
2

]
1N[

1′N

[
αΩ̂−1

1 + (1− α)Ω̂−1
2

]
1N

]2

 .

(1.37)

Given two general estimators Ω̂−1
1 and Ω̂−1

2 , we can find optimal shrinkage intensity

α∗ that minimize portfolio variance or, equivalently, the loss (1.37):

min
α

E
[
`(Σ̂−1

s , Σ, 1N)
]

. (1.38)

Unfortunately, a closed formula in this case cannot be obtained. To overcome this

issue, we develop the following algorithm able to optimally choose α∗:

1. Consider a sequence of possible intensities ranging from 0 to 1 with a sequence

increment of k, so you have a vector α of length k;

2. Given a value of αk compute the shrinkage estimator Σ̂−1
s ;

3. Given Σ̂−1
s determine optimal portfolio weights ŵs;

4. Compute portfolio variance σk = ŵ′sΣŵs;
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5. Repeat points 3 and 4 M times for each value of αk and store results in a matrix

Φ of dimension M× k:

Φ =


σ1,α1 σ1,α2 · · · σ1,αk

σ2,α1 σ2,α2 · · · σ2,αk

...
. . .

...

σM,α1 σM,α2 · · · σM,αk


6. Compute column means of Φ to get expected out of sample variances E[σk] for

each αk.

7. Choose the optimal α∗ is the value with the minimum expected out of sample

variance.

An important choice is related to the prior and the target that has to be optimally

combined. The obvious choice for the prior is the Unbiased Precision covariance

matrix. Its estimation error is equivalent to all the other classical plug-ins, but, dif-

ferently from the others, it is unbiased with respect to the actual precision matrix. On

the other side, a natural candidate as the target is the Identity matrix I (Haff (1979),

Ledoit and Wolf (2004a), and Kourtis, Dotsis, and Markellos (2012)).

Two simple explanations justify the usage of such a target. First of all, the Identity

matrix I does not contain estimation error.

However, another interesting argument arises in the minimum variance setting. In-

deed, within this setting, we have additional motivation: if we plug in the Identity

matrix in (2.3), we exactly get the equally weighted portfolio. Showing this result is

straightforward. Just remember that I1N = 1N and 1′N I1N is the sum of all elements

within the vector I1N that is 1′N1N = N. Therefore, GMV weights with Identity

plug-in is:

ŵ =
Σ̂−11N

1′NΣ̂−11N
=

I1N

1′N I1N
=

1N

1′N1N
= we.

with we = (1/N, . . . , 1/N). In other words, the Identity matrix is the implied covari-

ance assumed by a GMV investor that invests in an equally weighted portfolio. As

showed by De Miguel, Garlappi, and Uppal (2007), surprisingly, this strategy is in
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the empirical application the one with the highest out of sample Sharpe ratio. Hence

we propose the following shrinkage estimator of the precision matrix:

Σ̂−1
sI = αΣ̂−1

US + (1− α)I (1.39)

where α∗ is chosen by the recursive algorithm presented above. If we apply (1.39)

to estimate the GMV weights (2.3), another interpretation can be provided. Indeed,

plug-in of the precision matrix shrinkage leads to a portfolio that is the result of the

combination of the other two portfolios (Kourtis, Dotsis, and Markellos (2012)). In

the specific case of (1.39), we obtain the following portfolio:

ŵs =
αΣ̂−11N + (1− α)I1N

α1′NΣ̂−11N + (1− α)1′N I1N
= δŵ + (1− δ)we (1.40)

where:

δ =
αΣ̂−11N

α1′NΣ̂−11N + (1− α)1′N I1N

In other words, by plug-in of precision matrix estimator (1.39) we invest a wealth’s

proportion δ in the sample global minimum variance portfolio and (1 − δ) in the

equally weighted portfolio. Clearly, if we substitute α with α∗ in (1.40), we get the

optimal δ∗.

Shrinkage targets

Since the shrinkage intensities are derived through simulations instead of closed for-

mulas, we can easily consider the performances of more complex targets for which

closed solutions for the expectations are not available. Among them, we have the

Sharpe (1963) single index implied covariance matrix that has also been used by

Ledoit and Wolf (2003) and a general factor model covariance matrix Σ̂F. In this

case, the two competitive estimators are:

Σ̂−1
sF = αΣ̂−1

US + (1− α)Σ̂−1
F (1.41)
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Σ̂−1
sM = αΣ̂−1

US + (1− α)Σ̂−1
M (1.42)

For a review on the possible targets that can be considered, see Bai and Shi (2011).

In what follows we provide more details about the employed targets.

The first target, considered in 1.41 is the covariance matrix implied by a factor model.

The factor models have been widely applied in both theoretical and empirical fi-

nance. Derived by Ross (1976) and Chamberlain (1983), according to the multi-factor

model the excess return of any asset ri,t over the risk free rate satisfies:

ri,t = αi + bi1 f1,t + · · ·+ bi,K fK,t + εi,t (1.43)

Where K are the number of factors, f the factors themselves and bij are the param-

eters associated with the factors with εi the idiosyncratic error associated with the

return i, orthogonal to the K factors. The model presented in (2.15) is a general one,

allowing for multiple factors. Nevertheless, a factor model can also be based on a

single factor. A widespread single-factor model is the single-index of Sharpe (1963).

Moreover, factor models can be either static or dynamic. First of all, in a static factor

model, the intercept αi and the parameters bij are time-invariant. Second, the condi-

tional covariance matrix of the factors and the errors are also time-invariant.

Then, another critical distinction has to be made between observed and latent factor

models. Observed factors are known (e.g. macroeconomic variables or firm charac-

teristics) and based on outside information, either from economic theory or empir-

ical facts. The leading example is the Fama and French (1993) three-factor model,

but a vast literature exists on the so-called "return predictive signals" (RPS). Green,

Hand, and Zhang (2013) found more than 330 RPS from previous papers. From a

macroeconomic factors point o view, an example is Chen, Roll, and Ross (1986). On

the other side, latent factors are unknown and need to be estimated. The most com-

mon approach in estimating static latent factors is through the principal components

(e.g. Bai and Ng (2013)). Observed factor models are the simplest and the most con-

venient from the parsimony point of view. Indeed, instead of having a covariance

matrix with N(N + 1)/2 parameters, with a three-factor model, we have just 4N
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of them to estimate. Nevertheless, with observed factor models, the probability of

omitting some relevant ones is high. Moreover, there is no consensus regarding the

factors to be included. This is the main reason why latent factor models are usually

preferred.

In a static factor model4, once the factor parameters are stored in a matrix B, given

Σ f the covariance matrix of factors and Σε the (diagonal) covariance matrix of the

errors, the returns’ actual covariance matrix is (Bai, 2003):

Σ = BΣFB′ + Σε (1.44)

What we need is an estimator for both ΣF and Σε, with also the estimated factor

parameters B̂.

What we can do is the following. Starting from the (2.15), we estimate the intercept

and the parameters by OLS in order to obtain B̂ and, then, we use the "textbook

estimator to get the factors’ covariance matrix Σ̂F. In the end, if Σε is diagonal,

we take the residuals from the OLS regression and compute Σ̂e. In this way the

estimated covariance matrix of returns in a factor model is given by:

Σ̂ = B̂Σ̂FB̂′ + Σ̂e (1.45)

An estimate of precision matrix could be obtained just inverting (1.45). We could do

that by using the Sherman–Morrison–Woodbury formula:

Σ̂−1 = Σ̂−1
e − Σ̂−1

e B̂
[
Σ̂−1

F + B̂′Σ̂−1
e B̂

]−1
B̂′Σ̂−1

e (1.46)

The theoretical properties of the estimators (1.45) and (1.46) are studied by Fan, Fan,

and Lv (2008).

The main problem with the observed factor model is that, as we have mentioned,

there is not a common consensus about which factor to include. For this reason, la-

tent factor models are popular. Moreover, Ledoit and Wolf (2003) claim that factors

working well in a dataset may not work for another dataset (Ledoit and Wolf, 2003).

4De Nard, Ledoit, and Wolf (2019) shown that dynamic factor models do not provide better results
than static ones, that are easier to estimate.
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An alternative way to get a reasonable estimate of the covariance matrix is based

on the so-called shrinkage method due to Stein (1956), which we have already dis-

cussed. This statistical technique consists of taking a weighted average between two

estimators to build a new one with some desirable properties.

The shrinkage method has been applied for the covariance matrix estimation by

Ledoit and Wolf (2004a), shrinking the sample covariance matrix with the identity

I. The most important element is the associated weights to the two matrices called

"shrinkage intensity".

The optimal shrinkage intensity can be computed according to a loss function to

be minimized. Ledoit and Wolf (2004a) proposed the Frobenius norm between the

shrinkage estimator Σ∗ and the true covariance matrix as follows:

min
ρ1,ρ2

E[||Σ∗ − Σ||2]

given that:

Σ∗ = ρ1 I + ρ2Σ̂ (1.47)

With the key assumption that returns have finite fourth moments, the optima shrink-

age intensity as solution of the previous problem is given by:

ρ1 =
β2

δ2

ρ2 =
α2

δ2

where α2 = E[||Σ− µI||2], β2 = E[||Σ̂− Σ||2] and δ2 = E[||Σ̂− µI||2].

The main drawback of this shrinkage estimator is that it needs the knowledge of

four scalar functions of the true (and unobserved) covariance matrix Σ, namely µ,

α2, β2 and δ2. The authors overcome this problem by providing asymptotically con-

sistent estimators for all of them under certain assumptions in a general asymptotic

framework, where both N → ∞ and T → ∞.

The former is just one of the possible shrinkages for the covariance matrix, and it is

useful when no obvious other shrinkage targets are available.
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Indeed, shrinkage is also related to the factor models previously described. For ex-

ample, Ledoit and Wolf (2003) proposed a shrinkage where the target matrix was

the covariance from a factor model as (2.15). However, in their specification, the fac-

tor was just one, the market returns, according to the single-index model of Sharpe.

They called this operation "shrinkage towards the market". They justify this choice

by assessing that, even if there is no consensus about which factor to include in

(2.15), the market returns is the most intuitive and accepted factor for the case of

portfolio selection.

Also, in this case, they derived a formula for the optimal shrinkage intensity based

on a consistent estimator for unknown quantities. Given the single-index factor

model:

rit = αi + βrMt + εit (1.48)

The associated covariance matrix is:

ΣM = σ2
Mββ′ + Σε (1.49)

where σ2
M is the market returns variance, β the parameter from (2.15) and Σε the

covariance matrix of the error. Replacing all the quantities with the estimated values,

the shrinkage estimator becomes:

Σ̂s = αΣ̂M + (1− α)Σ̂ (1.50)

Then, in order to determine the α∗, Ledoit and Wolf (2003) proposed to minimize the

following Frobenius norm:

min
α

E[||αΣ̂M + (1− α)Σ̂− Σ||2]

which leads to the following solution:

α∗ =
∑N

i=1 ∑N
j=1 Var(sij)− Cov( fij, sij)

∑N
i=1 ∑N

j=1 Var( fij − sij) + (φ2
ij − σ2

ij)
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where fij are the entries of the covariance matrix Σ̂M, sij are the entries of Σ̂, φij the

value associated to the unobserved true covariance matrix of the single-index Φ and

σij the entries of the unobserved true covariance matrix Σ. Also here the optimal

shrinkage intensity depends by unobserved quantities. Therefore, the authors pro-

vide some consistent estimator for them.

1.2.3 Simulation study

Case I: i.i.d. Gaussian economy

In what follows, we evaluate the expected out-of-sample performance of the pro-

posed shrinkage estimator through a simulation study5 that adapt the Kan and Zhou

(2007) scheme within the minimum variance framework. Then we compare the per-

formances with several alternative plug-in strategies. Mainly, we compare the pro-

posed estimation approach with the usual sample estimator and the shrinkage of

Ledoit and Wolf (2003) and Ledoit and Wolf (2004a).

More in detail, we assume an investor that aims to find a portfolio with minimum

variance. The problem parameters (the expected returns mean and covariances) are

calibrated from real time seriedata under the assumption of multivariate normal-

ity for stock returns. At this aim, we assume there are N = 5 risky assets with their

mean and covariance matrix chosen based on the sample estimates from the monthly

excess returns on the five industry portfolios of Fama-French6 from July 1926 to Oc-

tober 2019. Expected out of sample performances in terms of out of sample portfolio

variance and Sharpe ratios are determined for all the cases by 1000 simulations.

The portfolio variances respect to different value of α are shown in Figures 1.1-1.3.

Points of the minimum are the selected optimal α∗.

5Unfortunately, we are not able to provide intense simulations because, despite we take advantage
of parallel computing, the proposed algorithm for α∗ becomes too challenging and the computer takes
several days to accomplish the task.

6We get data from Kenneth French website https://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/data_library.html

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html


1.2. Uncertainty on portfolio weights: the minimum variance investor 45

FIGURE 1.1: Portfolio variance of shrinkage towards I

FIGURE 1.2: Portfolio variance of shrinkage towards Σ̂−1
M
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FIGURE 1.3: Portfolio variance of shrinkage towards Σ̂−1
F

7

In Tab. 1.6 the expected out of sample portfolio variances for all alternative strate-

gies is shown. With N = 5 risky assets and T = 60 observations, the worst portfolio

in terms of variance is the equally weighted one. Its variance is incredibly high. On

the other hand, the precision shrinkage estimators best reduce sample portfolio vari-

ance. Notably, the shrinkage towards a factor model returns the best results in terms

of estimation error (the distance from the "true" portfolio variance is the lowest).
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Clearly, in evaluating asset allocation performances, portfolio variance is essen-

tial but not the only important measure. Indeed, most studies analyse the Sharpe

ratio. For a strategy p, its Sharpe ratio is given by the ratio between portfolio return

and variance:

ŜRp =
µ̂p

σ̂p

Results are shown in Tab. 1.7 below. Analysing Sharpe ratios, we get the same

results: the 1/N strategy is the worst one and the shrinkage towards factor model

results in the highest (and the closest to the true one) Sharpe ratio. Moreover, also all

the other shrinkage approaches return improved performances with respect to the

shrinkage estimator of Ledoit and Wolf (2003) and Ledoit and Wolf (2004a).
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Case II: i.i.d. economy with skenwess

All the assumptions we made about stock returns do not fit with real data. For ex-

ample, it is well known that stock returns are neither independent nor normally dis-

tributed. These results are also called "stylized fact" of finance (Cont (2001)). Indeed,

the unconditional distribution of returns is usually asymmetric and heavy-tailed.

Even though with increasing time scale (e.g. annual returns), returns’ distribution

looks closer to a Gaussian, this still represents an unreliable assumption. In what

follows, we consider an economy with independent returns, but we allow for non-

Gaussian distribution.

As before, we assume an investor that aims to find a portfolio with minimum vari-

ance, with problem parameters calibrated from real data. Nevertheless, now the

assumption we make about returns’ distribution is different. Again, we develop

N = 5 risky assets with their mean and covariance matrix chosen based on the

sample estimates from the monthly excess returns on the five industry portfolios of

Fama-French7 from July 1926 to October 2019. First, we generate data from a multi-

variate Skew Normal distribution with skew parameters vector estimated from ac-

tual data. This represents the effect of skewness in returns’ distribution, that was not

considered before.

Within this framework, we aim to evaluate an effect due to skewness. In the follow-

ing Table 1.8 we compare out of sample variances. Also, in this case, the precision

shrinkage estimators allow for a considerable reduction in portfolio variance and,

therefore, estimation error. However, the best strategy is based on the plug-in of

shrinkage towards the market under this scenario. Differently from Ledoit and Wolf

(2003), both the idea of shrinking precision matrix and the way in which optimal

shrinkage intensity is determined to allow to overperform the benchmark even if

the target matrix is the same.

7We get data from Kenneth French website https://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/data_library.html

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Then, the following Table 1.9 reports results in terms of Sharpe ratios. Most of

the strategies are almost equivalent under this scenario. However, despite it being

a portfolio with higher variance, the shrinkage towards the factor model portfolio

returns the highest Sharpe ratio out of the sample. Once again, we overperform

the benchmark shrinkage operations Ledoit and Wolf (2003) and Ledoit and Wolf

(2004a) also in a not Gaussian economy.
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1.2.4 Limitations and future developments

The absence of a closed formula for the shrinkage intensity and the high computa-

tional burden required for the simulations dramatically limit the empirical applica-

bility of the proposed variance-minimizer shrinkage estimators.

With this respect, further studies have to be devoted to overcoming these issues.

Indeed, the simulations show that to some extent, this class of estimator is undoubt-

edly helpful in reducing estimation error also in the case of a minimum variance

setting. These preliminary insights should serve as a good motivation for future

researches on the topic.

1.3 Empirical Analysis

1.3.1 Methodology and datasets

In what follows, we study the empirical performance of the proposed precision

shrinkage estimator with respect to several alternative estimators in the case of a

mean-variance investor. The case of a minimum variance strategy has been excluded

because of the computationally challenging properties of the precision shrinkage in

this setting and the absence of a closed formula for shrinkage intensity that limits its

applicability.

The validity of the proposal is evaluated across a variety of datasets by implement-

ing the strategy of De Miguel, Garlappi, and Uppal (2007). The selected datasets are

the industry-based portfolios of Fama-French8, namely the five industry portfolio

in the case N = 5, the ten industry portfolio for N = 10 and so forth. To evaluate

also the performances in a large dimensional setting, we conducted an experiment

with the French’s 100 portfolios based on size. In the large dimensional setting, all

covariance inverses, with the only exception of Ledoit and Wolf (2003) and Ledoit

and Wolf (2004a) strategies, are defined as Moore-Penrose pseudo-inverse.

Based on a "rolling-sample" approach, the empirical strategy works as follows. Given

a T month-long dataset of asset returns, following De Miguel, Garlappi, and Uppal

(2007) we choose an estimation window of length M = 60, 120. Therefore, we have

a high dimensional setting when N = 100 and M = 60. Then, in each month t,

starting from t = M + 1, we use the M observations to estimate the parameters (the

8We get data from Kenneth French website https://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/data_library.html

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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expected returns vector µ and the covariance matrix Σ) needed for implementing the

mean-variance asset allocation strategy. These estimated parameters are then used

to determine the relative portfolio weights. M represents the number of observa-

tions we use in estimating covariances and means. In this sense, M is the equivalent

of T in the simulation study. Therefore, the greater is the ratio N/M, the more ill-

conditioned is the covariance matrix and its inversion become challenging.

This process is repeated T − M times by adding the return for the next period in

the dataset and dropping the earliest one until the end of the dataset is reached. The

outcome is, for each strategy, a time series of T−M monthly out-of-sample portfolio

returns.

Given the time series of monthly out-of-sample returns generated by each strategy,

we compute the out-of-sample Sharpe ratio of strategy, defined as the sample means

of out-of-sample portfolio returns divided by their standard deviation:

SRp =
µ̂p

σ̂p

where µ̂p is the average of the t−M out of sample returns for the p-th strategy and

σ̂p the standard deviation.

1.3.2 Out of sample Sharpe ratio: results

Consider first the case where M = 60, with an estimation window of 5 years of

monthly observations. Results are reported in Tab. 1.10. Let us analyze first the

scenario with N = 5 assets. In this case, the ratio N/M is enough higher to make

covariance estimation with sample estimators not so reliable. In this sense, the esti-

mation error is high, and the equally weighted strategy much overperforms all the

alternatives. Ledoit and Wolf (2003) and Ledoit and Wolf (2004a) linear shrinkages,

which work better more N/M is higher, provides better out-of-sample performance

with respect to most alternatives. Nevertheless, our shrinkage estimator based on

the shrinkage of c∗ estimator of Kan and Zhou (2007) towards the Identity I im-

proved upon both Ledoit & Wolf estimators. In a large dimensional setting, instead,

shrinkage towards the market of Ledoit and Wolf (2003) is the best strategy. Never-

theless, precision shrinkage estimators that shrink (Moore-Penrose) inverse sample
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estimators towards the implied equally weighted covariance matrix improve upon

Ledoit and Wolf (2004a).

TABLE 1.10: Out of sample Sharpe ratios (M = 60)

Estimators N=5 N=10 N=30 N=100

1/N 19,499% 19.788% 18.742% 15.867%

I 18.803% 10.548% 9.823% 6.755%

Sample Covariance 3.158% -0.178% 6.119% -8.223%*

Unbiased Precision Covariance 3.158% -0.178% 6.119% -8.223%*

Optimal c∗ = c3 (with θ2 → ∞) 3.158% -0.178% 6.119% -8.223%*

Optimal c∗ (with θ̂2
u) 3.158% -0.178% 6.119% -8.223%*

Unbiased Precision towards I 3.158% -0.178% -0.641% -8.223% *

Unbiased Precision towards EW 1.344% 10.384% 6.673% 1.330% *

Optimal c∗ = c3 towards I 3.158% -0.178% -6.641% -8.223% *

Optimal c∗ = c3 towards EW 2.137% 8.936% 4.394% 1.330% *

Optimal c∗ towards I 4.161% -0.067% 2.814% -1.634% *

Optimal c∗ towards EW -3.103% 0.335% 4.653% -1.634% *

Ledoit and Wolf (2003) -2.413% 4.511% 5.007% 3.991%

Ledoit and Wolf (2004a) 3.405% -1.953% -2.479% 1.291%

Note: Ledoit and Wolf (2003) is called "shrinkage towards the market" while Ledoit and Wolf (2004a)

is the "shrinkage towards Identity". *Moore-Penrose inverses are used. Differently from other

columns, the last one with M = 60 and N = 100 is defined as large dimensional setting.

Consider now the case with N = 10 assets. The N/M ratio is lower than the case

analyzed before. In this setting, strategies based on sample estimators have neg-

ative out-of-sample Sharpe ratios, and the 1/N strategy still overperforms all the

alternatives. Once again, linear shrinkage performs better than sample estimators.

Nevertheless, precision shrinkage estimators return the highest out of sample per-

formances. In particular, the "Unbiased Precision towards implied equally weighted

covariance" can be identified as the best strategy. Therefore, also in this setting, the

proposed shrinkage approach over-performs Ledoit and Wolf (2003).

When N = 30, we still have such ahigh estimation error that strategies without

estimation givegive the highest sample performance. Despite that, our shrinkage

approach is still better than the benchmark shrinkage of Ledoit & wolf. Particu-

larly, Ledoit and Wolf (2003) over-performs several of the proposed shrinkage, but,

again, the "Unbiased Precision towards implied equally weighted covariance" per-

forms better.



1.3. Empirical Analysis 57

Hence, from an empirical point of view, the proposed shrinkage improves upon

Ledoit & Wolf, where the optimal shrinkage intensity is defined according to statis-

tical criteria rather than economic. Determining shrinkage intensity from a mean-

variance perspective allows our estimators of covariance inverses to overperform in

a mean-variance asset allocation.

What happens if we increase the estimation window M? Results with M = 120 are

reported in Tab. 1.11.

ł

TABLE 1.11: Out of sample Sharpe ratios (M = 120)

Estimators N=5 N=10 N=30 N=100

1/N 22.612% 23.130% 21.321% 19.049%

I 22.667% 23.601% 23.783% 6.928%

Sample Covariance 26.305% 31.467% 4.852% 2.334%

Unbiased Precision Covariance 26.305% 31.467% 4.852% 2.334%

Optimal c∗ = c3 (with θ2 → ∞) 26.305% 31.467% 4.852% 2.334%

Optimal c∗ (with θ̂2
u) 26.305% 31.467% 4.852% 2.334%

Unbiased Precision towards I 26.305% 31.467% 4.852% 13.138%

Unbiased Precision towards EW 26.619% 32.401% 19.166% 2.333%

Optimal c∗ = c3 towards I 26.305% 31.467% 4.852% 13.138%

Optimal c∗ = c3 towards EW 26.634% 32.481% 23.184% 2.322%

Optimal c∗ towards I 23.927% 31.467% 4.852% 47.984%

Optimal c∗ towards EW 28.296% 35.911% 51.409% 15.186%

Ledoit and Wolf (2003) 26.293% 30.421% 35.215% 4.455%

Ledoit and Wolf (2004a) 26.304% 31.535% 4.907% 2.132%

Note: Ledoit and Wolf (2003) is called "shrinkage towards the market" while Ledoit and Wolf (2004a)

is the "shrinkage towards Identity".

Now estimation window is double than before. The first important result is that

now 1/N is not always the best one. Particularly, for certain small N/M ratios it

is not especially for N = 5 and N = 10. Instead, with an increasing number of

assets, the ratio increases (with N = 30 and N = 100) and fixed window M again

estimation error become so relevant that this biased strategy overperforms. The

same conclusions can be made for plug-in of Identity matrix that does not require

any estimation.

Another significant result confirms that our shrinkage estimators can perform better

than Ledoit & Wolf shrinkages. With N = 5 and N = 10, Ledoit and Wolf (2003)

estimator is even worst than sample estimators, despite being better than equally
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weighted. Within these more ideal settings, we get the same result of simulations:

shrinkage of c∗ estimator towards equally weighted covariance matrix is overall the

best strategy possible. This is because it reduces estimation error more than all the

alternatives.

If we look at what happened with N = 30 or N = 100, it is easy to recognize that

now sample estimators are again the worst one and, as we already said, strategies

without estimation are better. Both Ledoit and Wolf (2003) and Ledoit and Wolf

(2004a) improve upon sample estimators but are not able to reach the performances

of our shrinkages.

1.4 Conclusions

The contributions of this chapter can be summarized as follows. First of all, we

show that the application of shrinkage techniques reduces estimation error also in a

low dimensional setting (when T > N) rather than just in the high dimensional one

(when N > T). With this respect, we developed a new class of shrinkage estima-

tors explicitly taught to deal with this issue, which we call precision shrinkage. The

proposed estimators perform much better than the previous literature ones (e.g. the

linear covariance shrinkage estimators of Ledoit and Wolf (2003), Ledoit and Wolf

(2004a), and Ledoit and Wolf (2004b)).

The main advantage of the proposed precision shrinkage lies in how the optimal

shrinkage intensity is determined. Indeed, while previous literature on shrinkage

estimators derived the optimal shrinkage intensity through statistical arguments, we

determine it consistently with the portfolio selection problem. Indeed, the proposed

shrinkage intensity is obtained by maximizing the investors’ preferences. Moreover,

we have derived a general optimal shrinkage intensity formula valid for any kind of

shrinkage. What we evaluated in this paper are just some possible specifications.

Another relevant contribution consists of deriving a closed formula for the estima-

tion error in the presence of shrinkage estimation. Computing the estimation error

formula is not easy for classical shrinkage estimators because of the difficulties in

computing the inverse of two matrices weighted sum. we overcome this problem by

shrinking the covariance matrix inverse (the precision matrix) directly; that is what

matters for portfolio selection problems.

Further, we proposed an investment strategy that is a scaled version of the naive
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rule. This strategy involves a two fund-rule where the mean-variance investor esti-

mate the covariance matrix through the (1.9). This kind of mean-variance portfolio

rule is more effective in reducing the estimation error within the proposed simulated

economy with respect to the standard 1/N and, if optimally combined with the opti-

mal scaling estimator of Kan and Zhou (2007), it results in the best plug-in possible.

Moreover, we explicitly showed that within a simulated Gaussian i.i.d. economy,

the equally weighted strategy is the best one. This result raises a possible explana-

tion of empirical over performances of the naive strategy: the real world is complex,

and within an economy, with several risk factors such easy diversification strategy

works well, while it should not work under the theoretical assumptions underlying

the Markowitz (1952) mean-variance framework. If investors can correctly identify

all risk factors, they could over-perform the 1/N strategy. Further investigations in

this direction are needed in future works.

Then, we also demonstrated that the investors could improve their utility within a

simple i.i.d. economy by using the information from the equally weighted strategy.

Indeed, shrinking the optimal scaling covariance estimators towards the implied

equally weighted covariance is the best plug-in estimator among all the alternatives.

In the end, we am the first in analyzing a completely new scenario under which no

information at all is available about the actual parameters. we called the expected

utility that investors get within this setting perceived utility. Interestingly, the worst

strategy under an ideal world (i.e. maximum likelihood) in this setting is the best

one from the investor’s point of view. This raises a miss perception problem: any

investor behaving rationally chooses the worst allocation strategy in the absence of

information. The main conclusion we get is that the consequences of parameter un-

certainty are even more severe than what we believed.

The last point to highlight regards the applicability of the precision shrinkage es-

timators in the minimum variance setting. Although some simulations show the

usefulness of this proposal also under this alternative asset allocation rule, several

computational problems limit its applicability in practice. Therefore, future studies

are needed to overcome these issues.
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Chapter 2

Timing asset allocation:

model-based or data-driven

forecasts?

2.1 Introduction

In the first Chapter we focused on the static implementation of portfolio rules, specif-

ically both the Markowitz (1952) mean-variance (MV) and the Global Minimum

Variance (GMV). Static implementation of these portfolio rules involve the estima-

tion of current covariance structure among the assets and, in the case of mean-

variance diversification, current expected returns’ vector.

However, from asset allocation perspective, investors can improve the performances

of their portfolios by statistically guessing the future covariance structure and ex-

pected returns. Indeed, as argued by DeMiguel, Garlappi, and Uppal (2009), if the

first and second moments of returns vary over time and can be predicted, classical

standard models may perform poorer than forecasts-based ones. However, because

of the larger number of parameters that need to be estimated for the implementa-

tion of forecasting models, it is not clear if gains can be achieved in out-of-sample.

Therefore, aim of this Chapter is to deeper understand the usefulness of forecasting

in asset allocation.

The use of predicted rather than current quantities can be motivated by the concept

of market timing, i.e. anticipating future market conditions. More in detail, market

timing refers to the practice of predicting whether the market prices and volatility

will rise or fall, and investing appropriately (Grant, 1978). It has been demonstrated

that the anticipation of future market conditions generates higher performances in
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out-of-sample (e.g. see Fleming, Kirby, and Ostdiek, 2001; Marquering and Verbeek,

2004; Kong et al., 2011; Almadi, Rapach, and Suri, 2014). Indeed, as demonstrated

by Engle and Colacito (2006), the portfolio variance is minimised when the correct

forecast is used to build the portfolio. Moreover, if investors can predict when the

market will go up and down, they can make trades to turn that market move into a

profit. Then, market timing enables traders to curtail the effects of market volatility

and to reap the benefits of short-term price movements.

Since forecasts are used, returns and covariance predictability is an important issue

for the empirical implementation of a timing strategy. The academic literature pro-

vide mixing findings regarding stock market predictability. In particular, while the

prevalent literature of the 1970s argued that stock prices are appropriately described

by a random walk, more recent empirical papers report the evidence that stock re-

turns are to some extent predictable, either from their own past or by the use of

other publicly available information (Breen, Glosten, and Jagannathan, 1989; Fama

and Schwert, 1977; Fama and French, 1993; Fama and French, 2015). Recently Green,

Hand, and Zhang (2013) identify more than 500 predictors, called return predictive

signals. On the other hand, from the seminal papers of Engle (1982) and Schwert

(1989), the evidence of predictability for volatility is generally consistent across a

broad range of assets and econometric specifications, so literature agree on the idea

that volatility is to some extent more predictable than returns.

Overall, because of financial markets’ complexity, it is natural to see timing as a very

complicated task. This is the main reason why static asset allocation is more often

considered. In what follows we aim to show that using predicted quantities, ob-

tained with appropriate statistical models, allows important improvements in portfolio

out-of-sample performances for both MV and GMV portfolio rules. Hence, since

the selection of an appropriate statistical model is crucial, the fundamental aim of this

Chapter is to provide deeper insights about which kind of statistical models have to

be preferred by investors for the implementation of timing strategies.

A first contribution of this Chapter is to assess if and how much timing is useful also

in a large dimensional setting, since previous literature only focused on the standard

low-dimensional one 1.
1The economic significance in a large dimensional setting is studies by considering an economy

where the number of available assets N is higher than the time-span T. In the large dimensional
setting it is well known that estimation error is more severe (Michaud, 1989; Ledoit and Wolf, 2003;
Ledoit and Wolf, 2004b; Ledoit and Wolf, 2017)
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Another, and perhaps the most important, novelty introduced in this chapter is

to study if and to what extent machine learning, also defined as data-driven, ap-

proaches can be successfully used for the implementation of a timing strategy. With

this respect, we compare, in terms of financial performances, the use of standard

model-based approaches and novel machine learning tools for predicting returns

and covariances. A recent literature (e.g. see Gu, Kelly, and Xiu, 2020; Götze,

Gürtler, and Witowski, 2020; Bianchi, Büchner, and Tamoni, 2021) demonstrate the

usefulness of machine learning (ML) techniques in many aspects of finance but it is

still unclear if the predictions obtained with these techniques allow generating eco-

nomic value to the investors.

By considering monthly returns, we show that, for both low and large-dimensional

settings, model-based approaches dominate with respect those based on machine

learning. Even if this result could seem surprising, it is not because the time se-

ries dimension with monthly frequencies is not enough to ensure a correct estima-

tion of any ML-based technique. Therefore, we demonstrate that for this reason the

investors that employ a timing and long-run asset allocation should use standard

model-based (econometric) approaches rather than data-driven (ML) ones.

The portfolio performances are computed with the Sharpe ratio and the Certainty

Equivalent (CEQ) return. However, following other authoritative studies (Fleming,

Kirby, and Ostdiek, 2001; Fleming, Kirby, and Ostdiek, 2003; Marquering and Ver-

beek, 2004; Pesaran and Timmermann, 1995), questioning about the relevance of

market timing means understanding whether predictability has an economic value.

In the context of portfolio selection, the economic value is usually calculated in terms

of gains in utility function. Hence, according to both MV and GMV diversification

rules, we determine the economic value of machine learning by considering an in-

vestor with a quadratic utility function.

Considering an economy with many assets, we compare four optimal strategies: the

first, a static investment strategy that does not employ timing; the second, a return

timing, that uses forecasts from the returns only; the third, a volatility timing, that

forecasts only the volatility; and the last one, a full timing, that uses both return and

covariance forecasts to estimate portfolio weights. Note that in the case of GMV

diversification the full-timing coincides with the volatility timing, while the return-

timing does not exist.

The remainder of the chapter is organized as follows. Paragraph 2.2 introduces the
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framework underlying the Chapter. Paragraph 2 describes the forecasting models

used to build timing portfolios, distinguishing between classical model-based pro-

cedure and novel machine learning ones. Then, in the paragraph 2.4 are discussed

data used for the analysis, while the results related to the economic significance of

the alternative trading strategies are showed in paragraph 2.5 and 2.6. Finally, para-

graph 2.8 concludes with a discussion of the results and some final remarks.

2.2 The underlying framework

2.2.1 Portfolio rules

As already stated in the Introduction, in what follows we consider both Markowitz

(1952) mean-variance and Global Minimum Variance (GMV) diversification rules.

In the canonical mean-variance framework of Markowitz (1952) the investor faces an

asset universe composed by N risky assets and a riskless asset. Particularly, he/she

chooses the amount of wealth invested in the i = 1, . . . , N risky assets that maximize

his utility. At this aim, two main quantities are of interest: the mean of the asset’s re-

turns and their covariance matrix. Supposing to have a matrix Rt of N asset returns

observed for T times, the static portfolio choice can be formalized as follows:

max
w

U(w) = w′µ− γ

2
w′Σw (2.1)

where w is the portfolio weights of the N risky assets, w′µ is the portfolio expected

return and w′Σw the portfolio variance. The solution to problem (1) returns the

optimal portfolio weight vector w∗:

w∗ =
1
γ

Σ−1µ (2.2)

Clearly, both Σ and µ are unknown and need to be estimated properly. The estima-

tion phase rises the problem of estimation error, i.e. the estimated quantities are not

close to the population ones. Moreover, as argued by Merton (1973), estimation error

in the mean is more difficult to handle that the one due to the covariance estimation.

Therefore, differently from classical mean-variance allocations, many scholars pro-

posed to use the so-called Global Minimum Variance (GMV) diversification strategy,
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that does not involve mean estimation. Assuming to have N risky assets in the in-

vestment universe, the GMV portfolio problem can we written as:

min
w

w′Σw

s.t.
N

∑
i=1

wi = 1

The optimal global minimum variance weight w∗ vector, as solution of the mini-

mization problem above, is given by:

w∗ =
Σ−11N

1′NΣ−11N
(2.3)

where 1N = (1, 1, . . . , 1) and 1′NΣ−11N is the sum of all elements within the vec-

tor Σ−11N . By replacing Σ−1 with Σ̂−1 we get the optimal estimated GMV portfolio

weights that we call ŵ. As showed by Kourtis, Dotsis, and Markellos (2012), the

estimation error associated to the GMV strategy is lower than those based on mean-

variance because the estimation of mean vector is not considered.

2.2.2 Static estimation

Clearly, although it is optimal, the allocation (2.2) is not feasible because µ and Σ

are unknown quantities and need to be estimated. A feasible static mean-variance

portfolio in a given point in time t can be obtained by plug-in of some estimates, µ̂

and Σ̂, such that:

ŵt =
1
γ

Σ̂−1µ̂ (2.4)

An easy way to obtain the feasible portfolio (2.4) is to replace µ̂ with the sample

averages of asset returns and Σ̂−1 with some sample covariance estimators. The

most common covariance estimator is its sample counterpart:

Σ̂SC = (T − 1)−1
T

∑
t=1

(Rt − µ̂)(Rt − µ̂)′ (2.5)
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However, the estimator (2.5) is highly affected by the estimation error (Kan and

Zhou, 2007). Therefore, in order to account for estimation error explicitly, we pro-

pose to use the optimal precision shrinkage estimator proposed in the Chapter 1 of the

thesis:

Σ̂−1
sP = α∗Σ̂−1

c∗ + (1− α∗)Σ̂−1
EW (2.6)

that optimally shrinks the inverse of the covariance estimator Σ̂−1
c∗ developed by Kan

and Zhou (2007) with the inverse of the implied covariance matrix of the equally

weighted portfolio2.

However, it is well known that strategies based on the plug-in of the sample covari-

ance estimator3 only works in low-dimensional settings, where N < T. As claimed

before, an interesting aspect is to evaluate the usefulness of timing portfolios also in

a large dimensional setting where N > T or the concentration ratio N/T is such that

usual estimators result in ill-conditioning covariance matrices. In other words, the

matrix cannot be inverted and a feasible asset allocation cannot be obtained.

To obtain feasible static mean-variance and GMV portfolios when the dimension is

large, we plug-in the shrinkage estimator of Ledoit and Wolf (2003) that shrinks the

sample covariance towards the market. This estimation technique considerably re-

duce estimation error in this setting and lead to an invertible covariance estimator.

Another useful estimator for large-dimensional setting is the POET (Fan, Liao, and

Mincheva, 2013) obtained by applying thresholding in an approximate factor model.

2.2.3 Timing strategies

Clearly the aforementioned strategies are static, i.e. not based on timing. How can

we obtain a timing portfolio?

In general, a market timing portfolio can be formed in a very simple way, e.g. invest-

ing the 100% of the wealth on stocks or bonds depending by some predictions (as

in Pesaran and Timmermann, 1995) or trough more sophisticated approaches, based

2The estimator Σ̂−1
sP is optimal because the shrinkage intensity α∗ is chosen such that it maximize in-

vestor’s expected utility and minimize the estimation error. The performances of the estimator Σ̂−1
c∗ are

empirically equivalent to those of the sample covariance. However, if optimally combined, it results
in superior performances.

3Note that the same applies also to the precision shrinkage estimator.
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on Markowitz (1952) mean-variance or GMV optimization.

Pesaran and Timmermann (1995) assess the economic value of predictions consider-

ing the out of sample performances of a simple trading strategy based on the fore-

casts on market portfolio. This strategy, that employs the concept of market timing

defined before, involves the decision of investing entirely in bonds if the return of

the market portfolio is predicted to be negative in the next time period or invest-

ing entirely in the market vice versa. They find that the simple returns timing trad-

ing strategy generates an higher profit than a buy-and-hold strategy in the market

portfolio. The two main limitations of Pesaran and Timmermann (1995) is that the

authors consider an economy with only two assets and that they only predict the

market returns, such that volatility is not considered.

By overcome this limitation, Fleming, Kirby, and Ostdiek (2001) and Fleming, Kirby,

and Ostdiek (2003) provide evidence on the usefulness of volatility predictions in as-

set allocation, considering the out-of-sample performances of a volatility timing trad-

ing strategy. Moreover, they consider the Global Minimum Variance (GMV) portfo-

lio problem with N risky assets. In order to measure the economic value of volatility

predictions, they compare the performances of a timing portfolio where the covari-

ance matrix is predicted following the approach of Foster and Nelson (1996) with a

static strategy that employs the static sample covariance estimator.

Another important contribution on the topic is due to Marquering and Verbeek

(2004) that study the combined effect of returns and volatility predictions. Never-

theless, as in Pesaran and Timmermann (1995), they consider an economy where the

market portfolio and a bond are the only assets available.

In what follows, as in Fleming, Kirby, and Ostdiek (2001), we study the usefulness

of timing in an economy where N risky assets are available. However, since both

Markowitz (1952) MV and GMV diversification rules are involved, we are able to

disentangle, as in Marquering and Verbeek (2004), the economic value of forecasting

return, volatility or both.

In particular, we define a MV full timing portfolio as the one obtained by plug-in of

forecasts for both covariances and means, such that the today’s weights ŵt are equal

to:

ŵt (µt+1, Σt+1) =
1
γ

Σ̂−1
t+1µ̂t+1 (2.7)
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where Σ̂t+1 and µ̂t+1 are the forecasts for the covariance and expected returns vec-

tor, respectively. Then, a simple MV return timing trading rule can be obtained by

employing static covariance estimation and forecasts only for the returns vector:

ŵt (µt+1, Σ) =
1
γ

Σ̂−1µ̂t+1 (2.8)

where µ̂t+1 represents a forecast of the return vector at times t + 1 and Σ̂−1 be a

static sample covariance estimator . Similarly, a MV volatility timing trading rule can

be obtained by means of:

ŵt (µ, Σt+1) =
1
γ

Σ̂−1
t+1µ̂ (2.9)

where Σ̂−1
t+1 is the predicted covariance matrix at time t + 1 and µ̂ is computed with

the sample averages.

The timing strategies (2.7), (2.9) and (2.8) represent a novelty introduced by this

thesis. Then, the Fleming, Kirby, and Ostdiek (2001) timing approach can be defined

as:

wt
(
Σ̂t+1

)
=

Σ̂−1
t+11N

1′NΣ̂−1
t+11N

(2.10)

where Σ̂−1
t+1 is the inverse of the predicted covariance matrix at time t + 1. In this

case, the volatility-timing coincides with the full-timing and the return-timing ap-

proach does not exist.

Clearly, we would get favorable evidence of economic significance for timing port-

folios if the performances associated to these strategies are superior than those of

static portfolios. Therefore it is crucial to discuss how the portfolio’s economic per-

formance is evaluated.
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2.2.4 Economic evaluation

A first approach is to consider traditional measures of financial performance. To

evaluate whether a trading rule outperforms another one, the investors usually com-

pute the Sharpe ratios (SR). The Sharpe ratio of a given portfolio p is defined as the

ratio between the mean excess return on the portfolio p, µp and its standard devia-

tion σp:

SRp =
µp

σp

If the Sharpe ratio of a given portfolio p = a exceeds the one of an alternative port-

folio p = b, we say that portfolio a is more attractive than b. Since Sharpe ratio

increases with increasing portfolio returns and decreases with increasing portfolio

variance it consistent with a mean-variance analysis. However, the risk of the timing

strategies is typically overestimated by the sample standard deviation, because the

ex post unconditional standard deviation is an inappropriate measure for the con-

ditional risk that an investor faces at each point in time (Marquering and Verbeek,

2004). Therefore, it is clear that the Sharpe ratio is not always the most appropriate

measure if the aim is to compare static strategies with forecasts-based ones based on

timing.

An alternative is to account for the preferences of the investor in evaluating strat-

egy’s performance. Assuming a mean-variance investor, it is possible to calculate

the certainty-equivalent (CEQ) return, defined as the riskfree rate that an investor is

willing to accept rather than adopting a particular risky portfolio strategy. The CEQ

return can be computed as:

CEQp = µp −
γ

2
σp (2.11)

Another approach has been suggested by Fleming, Kirby, and Ostdiek (2001) and

Fleming, Kirby, and Ostdiek (2003) and Marquering and Verbeek (2004). Indeed, we

can determine for any given trading rule the economic value of timing portfolios by

calculating the maximum fee ∆, in percent per month, that the investor should be

willing to pay for holding the timing portfolio rather than a static one. It could done

by equating the average utilities of the compared strategies. In the case of minimum
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variance portfolio choice, Fleming, Kirby, and Ostdiek (2001) and Fleming, Kirby,

and Ostdiek (2003) proposed to equate quadratic utilities:

1
T

T

∑
t=1

(ra,t − ∆)− γ

2(1 + γ)
(ra,t − ∆)2 =

1
T

T

∑
t=1

rb,t −
γ

2(1 + γ)
r2

b,t (2.12)

where the indices a, t and b, t refers to two different strategies estimated in a given

point in time t and ra,t is the return of the portfolio a. Such approximation is possible

considering that a quadratic utility function is a second-order approximation to the

investor’s true utility. However, since we are assuming a mean-variance investor,

to compute ∆ we consider as in Marquering and Verbeek (2004) a slightly different

version of the (2.12):

1
T

T

∑
t=1

(ra,t − ∆)− γ

2
(ra,t − ∆)2 =

1
T

T

∑
t=1

rb,t −
γ

2
r2

b,t (2.13)

Clearly this formulation allows also the comparison between both alternative static

and alternative timing strategies. Note that we use the same (2.13) also in the case

which the mean-variance investor uses a GMV diversification rule. In doing so, we

assume that the investor implements a GMV only to reduce the effect of the estima-

tion error contained in the return vector.

In the end, it is well known that naive strategy usually overperforms any kind of

optimal one (De Miguel, Garlappi, and Uppal, 2007) because of the estimation error.

Hence, we also compute, for each strategy, the return-loss with respect to the 1/N

strategy. The return-loss is defined as the additional return needed for strategy p to

perform as well as the 1/N strategy in terms of the Sharpe ratio. To compute the

return-loss per month, we consider µew and σew, the monthly out-of-sample mean

and volatility of the net returns from the 1/N strategy, and µp and σp, i.e. the corre-

sponding quantities for strategy p. Then, the return-loss from strategy p is:

RLp =
µew

σew
× σp − µp (2.14)

Empirically, in order to compute the performances measures, we use the following
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rolling-window approach. We first consider an initial estimation window equal to

M. Such M observations are used to estimate parameters µ̂ and Σ̂−1 in the case of

static portfolio choices at t = M or are considered as the sample size of the infor-

mation set used to make forecasts in the case of timing strategies. In the next time

period t = M + 1, before to rebalance the portfolio, we can assess its return and

variance at time t = M:

rp,t = ŵp,trp,t+1

At the end of this rolling-window approach we obtain, as in as De Miguel, Garlappi,

and Uppal (2007), a time series of T − M observations of portfolio returns rp,t for

each portfolio strategy p that we use in computing the Sharpe ratio, the CEQ return

and the ∆.

2.3 Data-driven timing with machine learning

As previously stated, Fleming, Kirby, and Ostdiek (2001) consider the Foster and

Nelson (1996) approach in forecasting volatility, based on rolling variance estima-

tion. Then, Marquering and Verbeek (2004) use a similarly simple approach, where

the forecasts on the single-asset volatility are obtained by regressing the adjusted

rolling estimator of variability on a set of macroeconomic variables. Then, in Mar-

quering and Verbeek (2004) the forecasts for the expected market returns are ob-

tained by adopting standard model-based approaches suggested by the market pre-

mium forecasting literature (for an overview see Rapach and Zhou, 2013).

Nevertheless, forecasting the entire covariance structure requires multivariate sta-

tistical models. A very common model-based approach taught with the aim of pre-

dicting the future covariance structure is the Dynamic Conditional Correlation de-

veloped by Engle (2002). Fleming, Kirby, and Ostdiek (2001) do not consider DCC

because not yet popularized, while Marquering and Verbeek (2004) explicitly state

that "these techniques were certainly not available to investors in the major part of the sam-

ple". Nevertheless, the DCC-type of models, that are multivariate extensions of the

GARCH processes, are commonly used by investors worldwide because of their

high performances in terms of forecasting accuracy, computational speed and sim-

plicity. Indeed, the great advantage of the model-based procedures is due to their
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simplicity, since these models are based on clear and specific economic intuitions

and can be explained by the financial theory. For this reason they also have a great

degree of interpretability (for a deeper discussion about the motivation and useful-

ness of GARCH-type processes see the Appendix B).

Nevertheless, all the model-based procedures have to deal with possible misspecifi-

cation. The perverse effects induced by the use of misspecified models in forecasting

are well known (e.g. see Davies and Newbold, 1980 and Chatfield, 1996). Indeed,

if the forecasts are obtained on the basis of a misspecified model, that is subject to

estimation error, the prediction error dramatically increases (Patton, 2020). Further,

in the case of financial time series, the presence of features like non linearities and

long memory in stock returns and volatilities makes the forecasts obtained by sim-

ple model-based procedures often unreliable. Choosing the right statistical model is

important as well as the selection of the predictors to be used. Indeed, choosing the

wrong predictors can be seen as an additional source of misspecification (Geweke

and Amisano, 2012).

Nowadays, the economists face a data-rich environment where many variables can

be used in forecasting returns and volatilities. However, not all these variables are

necessarily relevant. As a result, the econometricians have to choose the most im-

portant predictors by looking at the literature or by following established economic

theories. Therefore, it is evident that the implementation of a timing strategy would

potentially benefit from the employment of data-driven procedures.

A very recent literature (e.g. see Gu, Kelly, and Xiu, 2020; Götze, Gürtler, and

Witowski, 2020; Bianchi, Büchner, and Tamoni, 2021) demonstrated the suitability

of machine learning (ML) techniques in overcoming the aforementioned issues. Ac-

tually machine learning and deep learning techniques have a long history in the

statistics’ community. As argued by Mullainathan and Spiess (2017), an explanation

of this slow adoption of ML techniques by the economics community lies on the fact

that these methods are not suitable for structural analysis while they are explicitly

taught for prediction.

In what follows, we first present the classical model-based approaches and, then,

we discuss in detail the machine learning approaches that can be used to forecast

returns and volatilities in the financial market with the aim of obtaining a timing

strategy.
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2.3.1 Classical model-based approaches

Traditionally, returns and volatility forecasts are obtained by means of model-based

approaches. Clear examples are the CAPM for predicting excess returns and the

GARCH (or the DCC in the multivariate case) for volatilities.

The return timing trading rule can be obtained by expected returns forecasting. With

this respect, we consider two simple alternatives. The first one is only based on

statistical arguments, where the one step ahead forecast is obtained by a generic

AR(1) process applied to each i-th stock in the portfolio. On the other hand, we call

the alternative economic model that is based on excess return forecasting literature4.

Factor models are commonly used at this aim. According to the multi-factor model,

the excess return of any asset ri,t over the risk free rate satisfies:

ri,t = αi + bi1 f1,t + · · ·+ bi,K fK,t + εi,t (2.15)

Where K are the number of factors, f the factors themselves and bij are the param-

eters associated with the factors with εi the idiosyncratic error associated with the

return i, orthogonal to the K factors. The model presented in (2.15) is a general one,

allowing for multiple, possibly observed, factors. Nevertheless, a factor model can

also be based on a single factor. A widespread single-factor model is the CAPM,

where it is supposed that the stock’s excess return ri,t depends by the market return

mt:

ri,t = βimt + εi,t (2.16)

Then, according to the market premium forecasting literature (e.g. see Stambaugh,

1999; Ang and Bekaert, 2007; Campbell and Thompson, 2008), we forecast the mar-

ket premium as follows:

mt = δXt + ηt (2.17)

where Xt is a collection of covariates useful in forecasting mt. Then we obtain a

4for an overview see (Rapach and Zhou, 2013)
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forecast for ri,t with the following three step procedure:

1. Estimate β̂i from (2.16)

2. Forecast market premium m̂t+1 with (2.17)

3. Forecast i-th return as: r̂i,t+1 = β̂im̂t+1 (2.18)

On the other side, the volatility timing trading rule is based on some forecasts of the

covariance matrix. The easiest way to forecast a covariance matrix is to assume that

all of the off-diagonal elements in Σt+1, the covariances, are restricted to be zero and

to model each diagonal entries, the volatilities, with a GARCH(1,1) process.

However, it is natural to expect that true covariances are different from zero. The

conditional correlation models are nowadays the most used to forecast covariance

matrices. The Dynamic Conditional Correlation model of Engle (2002) separates

the estimation of the volatility and the correlation, by estimating several univariate

GARCH models for volatilities and many GARCH models for correlations. In this

way the model can be applied to a large set of time series with a small computational

effort. The DCC takes adavantage of the decomposition of the conditional covari-

ance matrix Σt into conditional standard deviations Dt and conditional correlations

Γt:

Σt = DtΓtDt (2.19)

Let define Et = Σ̂−1/2Rt the matrix of devolatilized returns, such that covariance of

Et is equal to the identity matrix IN . Then, the DCC(1,1), model of Engle (2002) can

be specified as follows:

Qt = (IN −A− B) ◦ Q̄ + A ◦ (Et−1E′t−1) + B ◦Qt−1 (2.20)

Γt = Diag (Q)−0.5
t QtDiag (Q)−0.5

t (2.21)

where Qt is the pseudo-conditional correlation matrix, Q̄ is the long-run correlation
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matrix usually computed with sample estimator, the symbol ◦ represents the Hadar-

mand product, and Γt is the conditional correlation matrix. The matrix Qt is called

pseudo-correlation because the element on its main diagonal qii,t are close but not

equal to 1 since devolatilized returns are used as input. Therefore, the correction in

(2.21) ensures that the diagonal element of Γt are exactly equal to 1. In the end, the

off-diagonal elements of Qt, called qij,t, are modeled as GARCH-type processes:

qij,t = (1− α− β)ρ̄ij + αei,t−1ej,t−1 + βqij,t−1 (2.22)

with ei,t the i-th column of Et and ρ̄ij the unconditional correlation between ei,t and

ej,t. Parameter estimation could be done by maximum likelihood. The the DCC

model achieves parsimony in the dynamics of conditional correlations and main-

tains enough simple the estimation process.

Alternatively, we can follow the idea that each time series ri,t is explained by some

K uncorrelated unobserved factors yk,t, normalized to have unit variance. In other

words, we are considering an approximate factor structure for stock returns such that:

Rt = ZYt Yt ∼ N (0, Ht) (2.23)

where Z, the linear map that links the unobserved components with the observed

variables, is constant over time and invertible and Ht, the covariance matrix of the

unobserved component, is diagonal such that each element hk,t can be written as a

GARCH(1,1) process:

hk,t = (1− αk − βk) + αky2
k,t−1 + βkhk,t−1 (2.24)

The conditional covariance of Rt is then computed as follows:

Σt = ZHtZ′ (2.25)

This is the idea behind the Generalized Orthogonal GARCH (GO-GARCH) of Weide
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(2002), where the parameter estimation is done by maximum likelihood. A faster es-

timation can be reached by method of moments as showed in Boswijk and Weide

(2011).

In a large dimensional setting it is not possible to compute parameters in the Dynamic

Conditional Correlation since in the likelihood function appears the inverse of the

long-run covariance. If we shall to use the Dynamic Conditional Correlation model,

we have to find the way to make its estimation feasible in large dimension.

Hafner and Reznikova (2012) proposed to use the Ledoit and Wolf (2004a) shrinkage

estimator for Q̄. As alternative, Pakel et al. (2017) proposed to use a composite like-

lihood approach to reduce the course of dimensionality. In the composite likelihood

approach pairs of assets are used to estimate parameters of DCC. Therefore, rather

than using the full N-dimensional Gaussian likelihood, Pakel et al. (2017) use all

pairwise likelihoods to construct a composite likelihood. In the end, Engle, Ledoit,

and Wolf (2019) proposed to combine both aforementioned approaches, using the

non-linear shrinkage estimator of Ledoit and Wolf (2017) for Q̄ together with the

composite likelihood approach. Because of its relative simplicity, in what follows

we use the DCC approach of Hafner and Reznikova (2012) to make forecasts in large

dimension.

2.3.2 Neural networks: generalities

The ML algorithms automatically find patterns in a large amount of data with the

aim of predicting future evolution of the phenomenon under consideration. Among

the many ML algorithms available, the Artificial Neural Networks (ANN) have been

recognized as the most effective in predicting financial returns by several studies5.

There are many reasons why the ANN are useful in forecasting (Zhang, Patuwo,

and Hu, 1998). First of all, the ANN are based on few a priori assumptions about the

model underlying the time series to be predicted. Differently from the traditional

model-based approaches, the ANN learn from the experience and capture suitable

functional relationships among the data even if the underlying relationship is un-

known. Therefore, the ANNs are well suited for problems whose solutions require

knowledge that is difficult to specify but for which there are enough data to train

the network. Second, ANNs can generalize. After learning from the data, the ANNs

5For example see Hill, O’Connor, and Remus, 1996; Kaastra and Boyd, 1996; Enke and Thaworn-
wong, 2005; Ahmed et al., 2010; Wang et al., 2011; Rather, Agarwal, and Sastry, 2015; Hsu et al., 2016
just to mention few examples
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can often correctly infer the unseen part of a population even if the sample data con-

tain noisy information. Third, and perhaps one of the most important, the ANNs are

universal functional approximators (Hornik, Stinchcombe, and White, 1989; Hornik,

1991). It has been shown that a network can approximate any continuous function

to any desired accuracy. Finally, the ANNs are nonlinear. This fact makes them very

well suited for predicting stock market quantities such as returns and volatilities

where strong non-linear relationships are present.

Typically, any ANN consists of three layers: an input layer, which contains the input

variables, one or more hidden layers, and an output layer, with one or more out-

put variables. The number of neurons in each layer and the number of layers are

the hyperparameters of the network. In general, each neuron in the hidden layers

has input, weight and bias terms. In addition, each neuron has a nonlinear activation

function, which produces a cumulative output of the preceding neurons. Commonly

used activation functions are the a logistic or hyperbolic tangent function, and allow

to introduce nonlinearity. The weights are trained from the data by minimizing the

mean squared error, usually trough a backpropagation algorithm (BP). Once the in-

put and the output vectors are read by the BP algorithm, the training starts with

random weights. After calculating the mean squared error between the observed

and the predicted output, the network adjusts the parameters with the aim of reduc-

ing the error until there is no further improvement.

In econometrics, a significant part of the model specification consists in identifying

the explanatory variables and the number of lags leading the most accurate forecasts.

When constructing a neural network, the overall task is much longer, because the

process does not only involve the choice of inputs, but also the identification of the

network architecture. Firstly, a researcher that aims to construct a NN should choose

the type of network to implement: feed-forward or recurrent. In feed-forward neu-

ral network (FNN), the information moves forward from a layer to the next one.

Assuming a single hidden layer architecture, a FNN with multiple outputs can be

depicted as in Figure 2.1.
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FIGURE 2.1: Example of FNN with K = 1 target variable, 1 hidden
layer with 3 nodes and 2 input layers.

The output function of the k-th target variable can be specified as follows:

ŷk,t = F

(
β0,k +

q

∑
j=1

G
(
δjXt

)
β j,k

)
(2.26)

where G(·) is the hidden layer activation function, β j,k is the weight from the j-th

hidden unit to the output unit, Xt = {1, x1,t, . . . , xm,t} is the t × m vector of input

variables at time t, β0,k is the bias of the k-th output unit, δj = {δ1,j, . . . , δm,j} is the

vector of weights of dimension 1 × m connecting the input variables and the j-th

hidden neuron and q is the number of hidden units. Usually, F(·) is an identity

activation function such that F(a) = a but also the logistic or other functions can

be choosen. In the case of Identity activation the equation (2.26) takes the following

form:

ŷk,t = β0,k +
q

∑
j=1

G
(
δjXt

)
β j,k (2.27)

In order to replicate the activation state of a biological neuron, all neural networks

use nonlinear activation functions at some point, usually through G(·). An ideal

activation function should be continuous and differentiable to implement the back-

propagation algorithm. The most common choice is the logistic function, but again

this choice depends by the kind of the problem to be faced. In the case of logistic,

we have a function bounded between 0 and 1, where a value closer to 0 (1) equals to
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a low (high) activation level, and can be specified as follows:

G(x) =
1

1 + e−x (2.28)

However, in some cases can be more appropriate to consider an activation function

bounded to be bounded between -1 and 1. In this case we have the tangent hyper-

bolic (tanh):

G(x) =
ex − e−x

ex + e−x (2.29)

Lastly, another interesting activation function is the Rectified Linear Unit (ReLU):

G(x) = {x = 0 if x ≤ 0} or {x = x if x > 0} (2.30)

if we want an activation function that returns non-negative values.

The FNN can be seen as a static neural network without any autoregressive or lagged

effect. However, if one aims to introduce a lagged effect he/she has to use a recur-

sive neural network (RNN). Indeed, the prediction obtained by a RNN is dependent

on the values of the previous time periods (Eliasy and Przychodzen, 2020). There-

fore, in practical applications RNNs are more appropriate than FNNs in forecasting

nonlinear time series. The difference between a FNN and a RNN is showed in Fig.

2.2
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FIGURE 2.2: Comparison between RNN and FNN (Eliasy and Przy-
chodzen, 2020)

There are several ways of implementing a RNN. For example, in the Elman (1990)

network the hidden nodes with a time delay are used as additional input neurons.

Assuming an identity output function F(·) and a single lag for the hidden nodes, the

output of the Elman (1990) network with multiple outputs can be written as follows:

ŷk,t = β0,k +
q

∑
j=1

ht,jβ j,k (2.31)

with:

ht,j = G
(
δjXt + γjht−1

)
j = 1, . . . , q (2.32)

where ht−1 is the vector of lagged hidden units and γj is the vector of connection

weights between the j-th hidden node and the lagged hidden nodes. Another pos-

sibility is the Jordan (1997) network. The Jordan (1997) network exhibits a feedback

from the output to the input layer. The lagged output units are then used as addi-

tional neurons such that:

ŷk,t = β0,k +
q

∑
j=1

G
(
δjXt + ψj,kŷk,t−1

)
β j,k (2.33)

where ψj,k is the weight between the lagged output and the j-th hidden unit for the
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target variable k.

2.3.3 NN-based return timing

Essentially the implementation of an NN-based timing strategy involves forecasts

on the returns’ vector obtained with a NN. Usually in econometrics the most im-

portant step lies on the selection of the variables to be used in forecasting a given

quantity. If we aim to obtain forecasts within a neural network framework, things

get more complicated. Indeed, in order to implement a NN is important to choose

not only the output and the variables (i.e. the input layers) but also the entire ar-

chitecture of the network. First of all, the kind of NN has to be chosen. Moreover,

the network architecture essentially regards also the choice of the number of hidden

nodes and layers. About the first aspect, it is well known that an architecture with a

single-hidden layer is sufficient to approximate a wide range of nonlinear functions

(Xiang, Ding, and Lee, 2005). The second aspect, i.e. the choice of the number of

nodes, is perhaps the most tricky since there is no a theoretical basis to determine

the appropriate number of hidden layers or nodes in a network. On one side, con-

sidering a small number of hidden units can be not enough in detecting complex

nonlinear patterns in the data. On the other side, considering a too large number

of hidden units may lead to overfitted out-of-sample forecast and dramatically in-

creases the computational complexity of the network.

In what follows, we propose a network architecture based on economic intuitions.

First of all, we consider a feed-forward structure of the neural network. This choice

can be justified by the fact that the FNN has similarities with the CAPM models,

showed in (2.16). Indeed, let us consider the i-th stock return as the single output

layer of the network. The similarity can appear evident if we consider the predictive

signals Xt as the input layers. Remember that Xt can be used to predict mt that fore-

casts rt. In other words, a transformation of the input variables generate forecasts of

the output such that f (Xt)→ rt+1. Therefore, we can consider an hidden layer with

a single node, where nonlinearities in f (·) are accounted by the activation function

G(·). Then, previous values of the transformed predictive signals Xt are used as ad-

ditional predictors. The FNN structure is displayed in Fig. 2.3 in the case of single

stock return.
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FIGURE 2.3: FNN in the case of single stock returns forecasting.

To better understand the parallelism between the architecture in Fig. 2.5 and the

equation (2.16) we can start considering the following relationship (2.17):

mt = δXt + ηt

that states that the market premium can be predicted by a set of Xt variables, defined

predictive signals. By replacing it within (2.16):

rt = β (δXt + ηt) + εt

Let us define ht = δXt + ηt. Hence we can write:

rt = βht + εt

where δXt is equal to the predicted market risk premium m̂t. With the introduction

of the bias term and the usage of an activation function such that ht = G(ht), we
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obtain the following prediction:

r̂t = b0 + βG (δXt) (2.34)

that looks like the one obtained with the FNN (2.27) in the case of a single hidden

layer with one node. As activation function, since returns can assume any value be-

tween (−∞, ∞) we adopt an Identity activation. However, there are several ways of

improving the presented network architecture in order to fully exploit the potential-

ities of ANNs. First of all we aim to forecast the returns within the same network

hence, within a multivariate setting. Second, it is possible to specify more than 1

hidden nodes. The example of 2 hidden nodes is showed in Fig. 2.4.

FIGURE 2.4: Implemented FNN for returns’ forecasting with 2 hidden
nodes.

Another improvement can be the consideration of an Elman (1990) recurrent neu-

ral network (RNN) structure. Indeed a FNN is not well suited for forecasting time

series since it ignores the temporal order within the inputs and every new input is
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considered in isolation (Hewamalage, Bergmeir, and Bandara, 2021). On the other

side, the RNN incorporates time patterns in the network (see Fig. 2.5).

FIGURE 2.5: RNN (Elman, 1990) for returns’ forecasting: example
with 2 hidden nodes.

The main difference with the previous architecture lies on the presence of the addi-

tional lagged term ht−1 such that ht = ht + ht−1. In this case of a single hidden node

we obtain:

r̂t = b0 + βG (δXt + ht−1)

The introduction of ht−1 means that previous values of the inputs are able to explain

future values of the returns. Clearly, as shown in Fig. 2.5, also in this case more than

one node in the hidden layer can be considered.

2.3.4 NN-based volatility timing

Nowadays it is well known that stock market volatility shows heteroskedasticity

and high nonlinearities. Moreover, since Schwert (1989) it is known that there are
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many macroeconomic factors that are able to explain returns’ volatility. These facts

motivated a great debate about the usage of ANNs in forecasting volatility. One

of the first contribution in this direction is due to Donaldson and Kamstra (1997a).

Since this paper many other authors have written about the topic6.

However, while forecasting volatilities has been widely discussed, the forecast of

covariance matrices with ANNs is a still poorly explored topic. Recently, in this di-

rection, Bucci (2020a) proposed a Cholesky-based ANNs approach for forecasting

realized covariances. Nevertheless, in what follows we dot not make use of realized

quantities and a different approach is used. In particular, following many previ-

ous studies (e.g. Wang, 2009; Kristjanpoller, Fadic, and Minutolo, 2014; Kim and

Won, 2018), we consider an hybrid model. However, instead of considering a sim-

ple hybrid NN-GARCH model, we construct a DCC-NN model that is based on the

Dynamic Conditional Correlation of Engle (2002).

First of all, we consider the usual decomposition:

Σt = DtΓtDt

where Dt = Diag (σ1,t, . . . , σN,t) is a diagonal matrix with conditional standard de-

viation and Γt be the conditional correlation matrix. Following Engle (2002), the

conditional standard deviation can be modeled as GARCH-type processes and, by

using the devolatilized returns, the same applies to the conditional correlations. In-

stead of considering GARCH-type processess, we take advantage of ANNs.

Therefore, we use a 2-step approach to forecast the conditional covariance matrix,

where in the first step Dt+1 and Γt+1 are predicted and, then, they are aggregated

to obtain Σt+1 in the second step. Also in this case the most important step lies on

the choice of the network architecture. As noted by Bucci (2020a), the mechanism

underlying the Jordan (1997) network has similarities with GARCH models and this

makes this network structure the most suitable for forecasting volatility and corre-

lations. Since the aim is to forecast the covariance matrix, we necessarily have to

structure a neural network with many output layers. In this case the output cor-

respond to volatilities and correlations. The network architecture, in the case of 1

hidden node, is shown in Fig. 2.6.

6For example see Wang, 2009; Kristjanpoller, Fadic, and Minutolo, 2014; Kristjanpoller and Minu-
tolo, 2015; Kristjanpoller and Minutolo, 2016; Kim and Won, 2018; Bucci, 2020b
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FIGURE 2.6: RNN (Jordan, 1997) for covariance forecasting: example
with 1 hidden nodes.

First of all, we consider a Jordan RNN for predicting conditional volatilities in Dt

where some macroeconomic and financial factors are considered as inputs as well

as GARCH forecasts. Hence, volatilities are in fact predicted by means of an hybrid

NN-GARCH model as in Donaldson and Kamstra (1997b), Kristjanpoller, Fadic, and

Minutolo (2014), and Kim and Won (2018). In this case, since volatility cannot as-

sume negative values, a ReLU activation function is considered in the network.

Then, the predictions for the conditional correlation matrix Γt are obtained by means

of pseudo-conditional correlation Qt forecasts. In doing so, we again consider as in-

puts of the network the set of macroeconomic and financial variables that are used

also in forecasting volatilities. However, in this case a Jordan RNN is applied to

forecasts of devolatilized cross product of returns EtE′t that are the outputs of the

network. In this case a tangent hyperbolic activation function is considered in order

to ensure that the pseudo-conditional correlation forecasts are bounded between -1

and 1.

Clearly, in both settings it is possible to include multiple hidden nodes. The network

architecture with two hidden nodes is shown in Fig. 2.7.
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FIGURE 2.7: RNN (Jordan, 1997) for covariance forecasting: example
with 2 hidden nodes.

Then, in order to reconstruct the conditional correlation Γt we use:

Γ̂t = Diag
(
Q̂t
)−0.5

Q̂tDiag
(
Q̂t
)−0.5

where Q̂t is the forecast of the pseudo-correlation matrix obtained with the Jordan

RNN. At the end the forecast for the covariance matrix Σt by means of the hybrid

DCC-NN model is obtained by means of:

Σ̂t = D̂tΓ̂tD̂t

2.4 Data and strategies

For the empirical assessment, we consider both data in a low dimension (N < T) and

in a large dimension (N > T). Therefore, we’ll have different datasets about stock

returns. The market excess return mt is the one obtained by the Kenneth French

website from the 10/1926 up to the 10/2019. The covariates used to forecast market
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premium are some selected according to Ang and Bekaert (2007) and Campbell and

Thompson (2008) suggestions. At this aim we selected the Industrial Production

Index (code: INDPRO), the inflation rate (code: CUUR0000SA0R) and the short-

term interest rates (code: M1329AUSM193NNBR from 10/1926 to 03/1934 and code:

TB3MS from 03/1934 to 10/2019) obtained from the FRED website7. we use these

variables as inputs Xt of the neural networks as well.

Before to start, a brief description of the implemented strategy is provided. The

µ̂, Σ̂ indicates strategies based on plug-in, where some estimator (models) are used

to estimate (forecast) the covariance matrix or the expected return vector. Imple-

mented choices in the case of expected returns vector are: µ̂ for the sample average

(static); µ̂AR for the AR based forecasts (return timing) and µ̂CAPM for the economic

forecasting approach (return timing) based on the three step procedure specified in

(2.16). Implemented choices for the covariance matrix are, instead: Σ̂SC for the sam-

ple covariance (static); Σ̂sP for the optimal precision shrinkage developed in the first

chapter (static); Σ̂LW for the Ledoit and Wolf (2003) shrinkage estimator of the sam-

ple covariance towards the market (static); Σ̂POET the estimator of Fan, Liao, and

Mincheva (2013) (static); Σ̂DCC for the forecasted covariance froma Dynamic Con-

ditional Correlation model (volatility timing); Σ̂GO the forecasted covariance matrix

from a GO-GARCH model (volatility timing). Moreover, we also implement timing

strategies based on machine learning approaches, namely µ̂ANN for the ANN-based

returns forecasts and Σ̂ANN for the ANN-based covariance forecasts.

In the case of excess return, there is only one static estimator, the sample average,

that we use as a standard choice for implementing the voltatility timing strategies.

Similarly, in order to implement a return timing strategy, we use the sample covari-

ance as the static estimator. In the end, in the case of the full-timing strategy, we take

the best forecasting models for both the returns vector and the covariance matrix by

comparing standard versus machine learning approaches.

As stated previously, in what follows we conduct empirical experiments with both

a low-dimensional setting (with N = 5 and N = 30) where N < T and an high-

dimensional setting where N > T. The economic significance of timing versus static

strategies is studied but also a comparison between classical econometric models

and machine learning one is conducted.

7We get data from Kenneth French website https://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/data_library.html and FRED Database at https://fred.stlouisfed.org/

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://fred.stlouisfed.org/
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2.5 Results: mean-variance diversification

2.5.1 Low-dimension

N=5

First of all, we consider the case in which few assets are available in the universe. As

the N = 5 assets we consider the 5 Industry portfolios of Fama-French. The monthly

time series are sampled from the 10/1926 up to the 10/2019. Therefore, N = 5,

T = 1120, M = 120 and T −M = 1000. Being M the estimation window’s length,

we are in a low-dimensional setting because M > N.

Static strategies. Let’s analyse first the static strategies’ performances. The first re-

sult to note is that large dimensional techniques are not useful in improving financial

performances in a low-dimensional setting. First recommendation for practitioners:

never be fancy. Indeed, the POET estimator of Fan, Liao, and Mincheva (2013) and

the shrinkage estimator of Ledoit and Wolf (2003) provide the lowest performances

in terms of Sharpe ratio, even if the shrinkage estimator of Ledoit and Wolf (2003)

shows very close performances to sample covariance estimator (see the first column

of the Table 2.1). On the other side, instead, the precision shrinkage estimator allows

a considerably improvement in the performance. This is due to the fact that, with

the plug-in of Σ̂sP we are explicitly taking into account and optimally reducing the

estimation error in the sample covariance matrix estimation.
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TABLE 2.1: Results for N = 5 assets

Strategies SR CEQ RL

1/N 22.492% 0.888% 0.000

Static strategies:

µ̂, Σ̂SC 12.781% 0.646% 0.585%

µ̂, Σ̂sP 19.254% 0.866% 0.102%

µ̂, Σ̂LW 12.763% 0.648% 0.591%

µ̂, Σ̂POET 11.836% 0.632% 0.763%

Return-timing:

µ̂AR, Σ̂SC 0.095% -446.595% 63.118%

µ̂CAPM, Σ̂SC 21.342% 0.855% -0.006%

µ̂ANN , Σ̂SC 0.257% -412.143% 60.204%

Volatility-timing:

µ̂, Σ̂DCC 15.789% 0.894% 0.401%

µ̂, Σ̂GO 3.959% -0.937% 3.141%

µ̂, Σ̂ANN−DCC -3.422% -30.424% 18.388%

Full timing:

µ̂CAPM, Σ̂DCC 21.747% 0.896% -0.025%

µ̂ANN , Σ̂ANN−DCC -3.749% -389.103% 68.689%

One can ask whether such Sharpe ratios statistically differs each other. At this aim,

we performed the Ledoit and Wolf (2008) test, an improved and robust version of

the usual Jobson and Korkie (1980) and Jobson and Korkie (1981) test. What we

conclude is that, while the Sharpe ratio associated to the precision matrix shrinkage

statistically differs and outperform the others, the remaining static approaches do

not statistically differ in their performance. In other words, using the sample covari-

ance estimator, the Ledoit and Wolf (2003) or the POET of Fan, Liao, and Mincheva

(2013) lead to exactly the same results. Almost the same results apply if we look at

the CEQ returns. Indeed the plug-in of the Ledoit and Wolf (2003) shrinkage estima-

tor does not improve the performance with respect the sample covariance, and still

the static strategy based on the precision shrinkage provides the best results with a

superior performances.

In the end, confirming the results of De Miguel, Garlappi, and Uppal (2007), none of
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the proposed investment strategies is able to overperform the naive one. However,

the Ledoit and Wolf (2008) test results highlight that, while the other approaches

have statistically different and lower performances with respect the naive strategy,

the strategy based on the precision shrinkage plug-in performs as well as the naive

one. These two strategies are statistically indistinguishable. In other words, the pre-

cision matrix shrinkage is as good as the naive asset allocation.

Timing strategies. For the return-timing strategies we analysed the case of statistical

forecasting with AR models, the 3-step economic forecasting approach and the neu-

ral network-based technique.

Surprisingly both the AR and NN-based timing strategies are not able to outperform

any of the static strategies. On the contrary, the model-based economic forecast-

ing approaches show Sharpe ratios that are also greater than the precision shrink-

age plug-in. In particular, the return timing with CAPM-based forecasts provides a

Sharpe ratio equal to 21.3%, while the volatility timing with DCC forecasts reaches

a Sharpe ratio of 15.7%. Hence, timing strategies based on the mean overperforms

those based on the covariance forecasts. However, the Ledoit and Wolf (2008) test

on the difference between the return-timing strategy with CAPM forecasts and the

static with precision shrinkage shows a p-value equal to 0.53, so the two approaches

lead to statistically equal Sharpe ratios. This is still an interesting result: return-

timing does not improve upon static strategies, if the static strategy correctly accounts

for the estimation error in the covariance matrix. Besides, these results provide an

interesting evidence: forecasting can be useful only if the model we use to make the

forecasts is accurate. Therefore, practitioners should first test their forecasting ability

of the model before to use it in portfolio analysis. On the side of CEQ return, we can

get exactly the same conclusions.

As highlighted before, an interesting result is that the volatility timing strategies are

even less useful than the return-timing one. Indeed, the best timing strategy for

volatility, obtained with the Dynamic Conditional Correlation approach, has a sta-

tistically different and lower Sharpe ratio than the best static approach. It seems,

once again, that a correct static estimation of the covariance matrix is better than a

forecasting approach. Indeed, the portfolio constructed with the precision shrink-

age lead to superior out-of-sample Sharpe ratio with respect to DCC forecasts, even

if this difference is not statistically significant.

From these evidences a natural question rise: is the timing usefull? Actually yes.
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Indeed, a full-timing strategy, where both returns and covariances are predicted, is

able to outperforms with respect the static strategy based on the shrinkage preci-

sion matrix estimator. However, again, the Sharpe ratio of the two strategies are

not statistically significant (the p-value of the test is equal to 0.19). Therefore we

can conclude that, from the financial performance point of view, in this low-asset

world forecasting-based asset allocation have almost the same performance of static

approaches that correctly accounts for the estimation error.

ML-based strategies. Overall, Tab. 2.1 shows that machine learning-based timing

strategies are not useful at all. This could seem a surprising evidence. However, we

should have in mind that the rolling-window approach that we used requires train-

ing the networks with only M = 120 time observations. This number is not enough

large to ensure an accurate training of the network. As argued by Zhang, Patuwo,

and Hu (1998), neural network-based forecasting models have been for long time

considered as unnecessary tools by professional forecasters. The reason lies on their

poor performances within environments with few-data. Nowadays both economists

and investors face data-rich environment, where neural networks perform very well.

Nevertheless, canonical approaches for economic significance evaluation require the

analysis of monthly data, that are known to be less noisy than the daily or infra-daily

data. Therefore, the results of Tab. 2.1 show that machine-learning based timing

strategy are not appropriate for long-run (low-frequency) portfolio selection prob-

lems. This is not a so much unexpected result.

Economic evaluation. By economic evaluation we refer to the approach of Fleming,

Kirby, and Ostdiek (2001) and Fleming, Kirby, and Ostdiek (2003) and Marquering

and Verbeek (2004) in assessing economic performances of alternative trading strate-

gies. As previously discussed, we compute the annualized percentage maximum fee ∆

that a mean-variance investor is willing to pay to switch from a strategy to another

one.

Table 2.6 shows the economic comparison between naive strategy and all the alter-

natives. With this respect, a mean-variance investor would prefer always a naive

strategy. However, the investor requires the highest fees ∆ to switch from a naive

to a data-driven allocation. Indeed, in the case of data-driven approaches as well

as those based on GO-GARCH and AR-based forecasts the mean-variance investor

requires ∆ = 468231 basis points fee for the implementation of a full-timing strategy
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based on machine learning. On the contrary, in the other cases where static estima-

tion is used or where model-based forecasts are employed, the investor requires a

much lower fee. The minimum fee that the investor is willing to accept is associated

to the full-timing strategy where model-based forecasts are employed (in this case

∆ = 112 basis points).

TABLE 2.2: Economic fee ∆ for N = 5 assets: optimal vs naive

µ̂, Σ̂SC µ̂, Σ̂LW µ̂, Σ̂POET µ̂, Σ̂sP

µ̂AR, Σ̂SC µ̂CAPM, Σ̂SC µ̂ANN , Σ̂SC µ̂, Σ̂DCC µ̂, Σ̂GO

µ̂, Σ̂ANN µ̂CAPM, Σ̂DCC µ̂ANN , Σ̂ANN

0.0409 0.0407 0.0427 0.0148

53.6559 0.0159 49.5259 0.0116 0.2306

3.7696 0.0112 46.8288

Table 2.3, instead, is useful for answering the following question: it is useful using

statistical methods explicitly taught to work in large dimensional setting also in a low di-

mension one?

It depends. Indeed, the mean-variance investor asks positive fees ∆ for renounc-

ing to the precision shrinkage estimators in this low-dimensional setting. However,

the Ledoit and Wolf (2003) estimator is preferred respect to the sample covariance

because the investor is willing to pay a low fee of ∆ = 2.32 basis points to use the

first instead of the second. However, the highest fee is required for using the pre-

cision shrinkage instead of the Fan, Fan, and Lv (2008) covariance estimator, with

∆ = 279 basis points. Therefore, in general large-dimensional estimators are useless

in low-dimension if we use appropriate estimators such as the precision shrinkage.

TABLE 2.3: Economic fee ∆ for N = 5 assets: low vs large dimension

µ̂, Σ̂LW µ̂, Σ̂POET

µ̂, Σ̂SC -0.0002320396 0.0018032558

µ̂, Σ̂sP 0.02595272 0.02798802

In the next Table 2.5.1 we have a comparison in the spirit of previous papers between

static and timing strategies. Results are useful to answer to the question: it more

convenient forecasting the excess returns’ mean vector, the covariance matrix or both?

Table 2.5.1 suggests that forecasting has economic utility if model-based procedures
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are employed. Indeed, the static strategies make the investor better of in utility

terms with respect neural network-based approaches. More in details, the precision

shrinkage plug-in is the static strategy for which the investor requires the highest fee

∆.

However, on the side of model-based timing approaches, in most of the cases the

mean-variance investor is willing to pay a fee ∆ to switch from a static to a timing

asset allocation. This is true for all the static strategies with only exception of the

precision shrinkage plug-in. Indeed, while the investor always prefer timing (either

return or volatility or both), the static allocation with the precision shrinkage plug-

in is preferred to a return-timing strategy. However, both volatility timing and full

timing strategy make the investor better of.
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In the last Table 2.4 are reported the comparisons between model-based and data-

driven (machine learning) timing strategies. Briefly, switching from any machine

learning-based timing strategy is costly and fees are very high. In particular, the

highest fee that the investor is willing to pay is the one required to switch from

a neural network-based return timing to a full-timing strategy with model-based

predictions. The most competitive machine-learning strategy in terms of utility is

the volatility-timing one because the fees are overall lower. Overall, the conclusions

do not differ from those of Tab. 2.1.

TABLE 2.4: Economic fee ∆ for N = 5 assets: model-based vs data-
driven timing

µ̂CAPM, Σ̂SC µ̂, Σ̂DCC µ̂, Σ̂GO µ̂CAPM, Σ̂DCC

µ̂AR, Σ̂SC -53.6399 -53.6443 -53.4253 -53.6447

µ̂ANN , Σ̂SC -49.5100 -49.5144 -49.2953 -49.5148

µ̂, Σ̂ANN -3.7536 -3.7580 -3.5389 -3.7584

µ̂ANN , Σ̂ANN -46.8129 -46.8172 -46.5982 -46.8176

In the next section we are moving further to the large dimensional case but still in a

low-dimensional one, analysing an economy in which the number of asset is larger

than 5.

N=30

Here we consider an asset universe of N = 30 risky assets represented by the 30

Industry portfolios of Fama-French. As before, the monthly time series are sampled

from the 10/1926 up to the 10/2019. Therefore, now we have N = 30, T = 1120,

M = 120 and T −M = 1000. Being M the estimation window’s length, we are still

in a low-dimensional setting because M > N.

Static strategies. As the previous Section, let’s have a look, first, to the static strate-

gies’ performances. From Table 2.5 it is evident that results differ from the other

we have seen in the Table 2.1. Now most of the static strategies have extremely bad

performances expect one: the plug-in of the optimal precision matrix estimator Σ̂sP.

This last strategy, based on the plug-in of the estimator developed in the first Chap-

ter of the thesis, ensures a Sharpe ratio equal to 14%. Statistical test of Ledoit and

Wolf (2008) provides further evidence in this direction, because Sharpe ratios are

all statistically different each other. Therefore, the out-performance of this plug-in
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estimator is not sample-driven. The CEQ returns confirm that, while for the static

strategies are negative, a mean-variance investor realizes a gain in her utility by in-

vesting in the static strategy with precision shrinkage plug-in.

Timing strategies. In this case, the return-timing strategy based only on statistical

arguments (i.e. AR and neural network) perform very poor in out-of-sample and

the static strategy based on the precision shrinkage guarantees much higher perfor-

mances. However, the return timing strategy based on the CAPM forecasts provides

a Sharpe ratio equal to 21%. Moreover, with a p-value of 0.018, the Ledoit and Wolf

(2008) test highlights that the performances of the two portfolio are statistically dif-

ferent. Note that the Sharpe ratio of the return-timing with CAPM forecasts is greater

than the one associated to the naive strategy. However, with a p-value of 0.68, the

Ledoit and Wolf (2008) test suggests to accept the null hypothesis of equality be-

tween Sharpe ratios. Therefore, there is not enough statistical evidence to conclude

that the two strategies perform differently in out-of-sample.

The main conclusions do not change by looking at volatility timing strategies. More

in details, using a covariance matrix predicted with neural networks lead to a nega-

tive Sharpe ratio (-2.7%). By using the GO-GARCH model the out-of-sample Sharpe

ratio is much lower than the one given by the precision matrix shrinkage, that is a

static asset allocation (3.9% versus 14.2%). Then, using a DCC model provides al-

most the same out-of-sample performance, in terms of Sharpe ratio, if compared to

the one based on the precision shrinkage (15.8% versus 14.2%). This result is con-

firmed by the Ledoit and Wolf (2008) test with a p-value of 0.63. In the end, we

observe that the full-timing strategy provides exactly the same out-of-sample per-

formance of the return-timing based on CAPM forecasts.

From the CEQ return point of view, we observe that the precision shrinkage ap-

proach provides the highest return in the utility for a mean-variance investor and

that the the model-based full timing improves the investor utility more than the sim-

ple CAPM-based return-timing approach. Hence we can conclude that, once again,

timing strategies improve the performances with respect a static strategy and that

machine-learning is not useful at this aim. Moreover, we also confirm that a static

strategy with the precision shrinkage estimator is very competitive also with respect

to the timing strategies.

ML-based strategies. In terms of utility of data-driven procedures, also in this

case we observe that neural network predictions are not competitive with respect
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to model-based ones. Therefore, these results suggest that investors should avoid

the usage of these techniques for the implementation of a static strategy. However,

also in this case this result can be explained by the small size of the observations

used for estimation (i.e. M = 120). In unreported Tables we also studied the effects

of changes in the estimation window (with M = 240) but results were the same. This

happen because also by doubling the estimation window size, it remains not enough

large for accurate training of the networks. Therefore, in presence of monthly data

the model-based approaches are very recommended.

TABLE 2.5: Results for N = 30 assets

Strategies SR CEQ RL

1/N 21.227% 0.890% 0.000

Static strategies:

µ̂, Σ̂SC 1.443% -11.677% 9.165%

µ̂, Σ̂sP 14.248% 0.738% 0.381%

µ̂, Σ̂LW 5.040% -0.118% 1.782%

µ̂, Σ̂POET 0.868% -3.366% 5.093%

Return-timing:

µ̂AR, Σ̂SC 3.741% -904% 69%

µ̂CAPM, Σ̂SC 21.904% 0.879% -0.090%

µ̂ANN , Σ̂SC -2.148% -255% 49%

Volatility-timing:

µ̂, Σ̂DCC 15.865% 0.898% 0.296%

µ̂, Σ̂GO 3.997% -0.930% 2.886%

µ̂, Σ̂ANN -2.755% -1312% 115%

Full timing:

µ̂CAPM, Σ̂DCC 21.905% 0.902% -0.094%

µ̂ANN , Σ̂ANN -3.741% -388% 64%

Economic evaluation. As the previous case, we compute the annualized percentage

maximum fee ∆ that a mean-variance investor is willing to pay (or to receive) to

switch from a strategy to another one.

Table 2.6 shows the economic comparison between naive strategy and all the alter-

natives. In this case, despite the naive strategy is not the most performing in terms
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of both Sharpe ratio and CEQ return, the investor realized the highest utility by its

implementation. Indeed, the investor requires fees equal to ∆ for switching from the

naive to any other alternative strategy. Among the static strategies, the one based on

precision shrinkage plug-in is the "less costly", i.e. the investor requires the lowest

fee ∆ = 322 basis points. However, overall the model-based full timing strategy is

the most competitive among the considered alternatives with ∆ = 129 basis points.

Evidently, the machine learning based timing strategy are very costly to implement,

because of their poor performance in out-of-sample, so the investor requires very

high annualized fees.

TABLE 2.6: Economic fee ∆ for N = 5 assets: optimal vs naive

µ̂, Σ̂SC µ̂, Σ̂LW µ̂, Σ̂POET µ̂, Σ̂sP

µ̂AR, Σ̂SC µ̂CAPM, Σ̂SC µ̂ANN , Σ̂SC µ̂, Σ̂DCC µ̂, Σ̂GO

µ̂, Σ̂ANN µ̂CAPM, Σ̂DCC µ̂ANN , Σ̂ANN

1.5203 0.1345 0.5238 0.0322

108.7084 0.0162 30.6743 0.0129 0.2314

157.0716 0.0126 46.6447

Interestingly, in the Table 2.7 are reported the costs of using large-dimensional esti-

mators. It is known that with increasing N the estimation error increases and, there-

fore, the sample covariance estimator performs always poorer. In this case using

estimators taught for large-dimensional setting such as the on of Ledoit and Wolf

(2003) makes the investor better of. Therefore, she is willing to pay an high fee of

∆ = 13858 basis points to continue using the Ledoit and Wolf (2003) estimator in-

stead of the sample covariance. However, the same investor requires a positive fee to

use the precision shrinkage estimator instead of both the Ledoit-Wolf and the POET

estimators. In other words, if the investor uses an estimator especially taught for

reducing estimation error in low-dimensional setting, it is very expensive in utility

terms using other tools that are an inappropriate context. As in the previous case,

this lead to a useful indication for practitioners: in low-dimensional setting is better

to use the precision shrinkage estimator.
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TABLE 2.7: Economic fee ∆ for N = 30 assets: low vs large dimension

Strategies µ̂, Σ̂LW µ̂, Σ̂POET

µ̂, Σ̂SC -1.3858368 -0.9965103

µ̂, Σ̂sP 0.1022415 0.4915680

Table 2.5.1 provides useful insights about the economic performance of static strate-

gies compared to the timing one. Overall the timing strategy are preferred to their

static alternatives if model-based procedures are implemented for forecasting. On

the contrary, if NN-based forecasts are used the static strategy will be preferred also

in utility terms. However, we have to note that the precision shrinkage plug-in re-

mains the most competitive static approach.
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Finally we have a comparison between timing strategies, model-based vs data-driven,

in the Table 2.8. What emerges is that the investor is willing to pay to switch from

ML-based to a model-based timing strategy, for all the cases (i.e. return-timing,

volatility-timing, full-timing). Among the alternative timing implementations, the

highest fees are required for the adoption of the model-based full-timing strategy.

TABLE 2.8: Economic fee ∆ for N = 30 assets: model-based vs data-
driven timing

µ̂CAPM, Σ̂SC µ̂, Σ̂DCC µ̂, Σ̂GO µ̂CAPM, Σ̂DCC

µ̂AR, Σ̂SC -108.6931 -108.6955 -108.4770 -108.6958

µ̂ANN , Σ̂SC -30.6590 -30.6614 -30.4429 -30.6617

µ̂, Σ̂ANN -157.0563 -157.0587 -156.8402 -157.0590

µ̂ANN , Σ̂ANN -46.6293 -46.6318 -46.4133 -46.6321

Essentially, we find that model-based strategy are better suited than data-driven

ones and that full-timing is better than partial timing. Therefore, we get the same

conclusion for both N = 5 and N = 30 cases. The static strategy based on the preci-

sion shrinkage estimator reveals again to be very competitive and the best solution

within a low-dimensional setting. However, timing ensures higher performances,

even if not always statistically different from the best static approaches.

In the next Section we am going to investigate the usefulness of forecasting in large

dimensional setting, with a huge increase in the concentration ratio N/T

2.5.2 Large dimension

In this case we consider all the 500 constitutes of the S&P500 Index from the 10/1999

up to 10/2019 in order to consider a similar time span of the previous two examples

with N = 5 and N = 30. In doing so we assume that the asset universe is represented

by only the stocks for which we have a complete time series, so those with missing

values have been excluded. Particularly, we get N = 286 time series with T = 240.

Considering, again, an estimation window of M = 120, we have now that T −M =

120. In this framework, being M our sample size for the estimation, we are in a

large dimensional setting because M < N. We do not have any problem in estimating

and predicting the excess returns but we know that standard sample estimators are

ill-conditioned, resulting in singular matrices. Therefore, here we take advantages

of ad-hoc statistical methods used by previous literature for the estimation and the
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forecasting of large dimensional covariances.

Static strategies. Exactly as the other cases in low dimension, the equally weighted

strategy returns one of the highest performances (see Tab. 2.9). As static estimators

in large dimension we consider the shrinkage of Ledoit and Wolf (2003) and the

POET of Fan, Liao, and Mincheva (2013). Both of them do not guarantee any over-

performance with respect the naive allocation. However, Table 2.9 shows that by

estimating the covariance matrix with the POET estimator the investor gains almost

a 5% greater Sharpe ratio in out-of-sample. Moreover, also in terms of the certainty

equivalent (CEQ) the POET-based allocation guarantees an higher return. However,

despite one can wonder that the POET out-performance with respect to the Ledoit

and Wolf (2003) covariance estimator can be sample driven, we want to highlight

that these results confirm those of Ledoit and Wolf (2017). Indeed, the authors show

that the Sharpe ratio associated to the POET plug-in is higher in all the considered

cases8 where N = 30, 50, 100, 250, 500.

TABLE 2.9: Results for N = 286 assets

Strategies SR CEQ RL

1/N 30.125% 1.182% 0.000

Static strategies:

µ̂, Σ̂LW 22.330% 0.833% 0.320%

µ̂, Σ̂POET 27.607% 0.946% 0.092%

Return-timing:

µ̂AR, Σ̂LW 11.893% -46.609% 19.905%

µ̂CAPM, Σ̂LW 31.667% 1.386% -0.073%

µ̂ANN , Σ̂LW 15.357% -0.861% 5.251%

Volatility-timing:

µ̂, Σ̂DCC 28.533% 1.316% 0.081%

µ̂, Σ̂ANN 6.872% -40.236% 22.519%

Full timing:

µ̂CAPM, Σ̂DCC 16.664% 0.759% 0.733%

µ̂ANN , Σ̂ANN 20.746% -21.276% 8.366%

8Note that the Ledoit and Wolf (2017) assumes daily returns of a Global Minimum Variance (GMV)
diversification strategy while in this paper we construct portfolios with monthly returns according to
the more standard Markowitz mean-variance rule. However the POET over-performance is confirmed
here, especially where the scenario of a large asset universe is considered.
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Timing strategies. On the side of the timing strategies, we analyse first those based

on return-timing. The Tab. 2.9 shows that model-based return-timing strategy is the

one with the highest out-of-sample Sharpe ratio, also higher than the naive. Never-

theless, this difference is very small and also the Ledoit and Wolf (2008) test do not

reject the null with a p-value of 0.89. In other words, the two approaches provide

the same out-of-sample performance. This evidence documents the fact that naive

strategy is very hard to defeat in out-of-sample, also if we use timing approaches.

Volatility-timing strategies are overall less competitive with respect to the return-

timing in a large dimensional framework. Even if this result holds also for the other

two analysed low-dimensional settings, it is reasonable in a large-dimensional one.

Indeed, the analysis of covariance matrices is more problematic in large dimension

respect to the mean vector and this fact has a consequence also in the forecasting

activity.

Surprisingly, the data-driven approaches provides quite well in large dimension. In-

deed, a return-timing strategy with AR forecasts guarantees a Sharpe ratio of 12%,

while a neural-network one returns a Sharpe ratio of 15%. These values are much

higher than those (negative) that we found in both low-dimensional settings. Nev-

ertheless, their performances remain lower than the the model-based return-timing

(Sharpe ratio close to 32%).

In the end, full-timing strategies seem to be less competitive than those based on

either return or volatility timing. Indeed, while in previous cases the performances

of return-timing strategies were very close to full-timing, in this setting we observe

the opposite. Moreover, machine learning based full timing seems to perform bet-

ter than the model-based approach. In terms of Sharpe ratio, however, the Ledoit

and Wolf (2008) test does not allow to reject the null hypothesis. Hence, the wo

approaches are not statistically different in out-of-sample even if the ML-based ap-

proach shows a 4% higher Sharpe ratio.

Economic evaluation. As in the low-dimensional setting, in what follows we report

the annualized percentage maximum fee ∆, that a mean-variance investor is willing

to pay to switch from a strategy to another one, for the large dimensional case.

Table 2.5.2 shows the economic comparison between naive strategy and all the op-

timal alternatives. In this case all the considered static strategies are less appeal-

ing to the mean-variance investor than the naive. Therefore, the investor requires
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the payment of fees ∆ to implement those strategies instead of the naive. How-

ever, among the timing strategies, there are some that are preferred by the investor.

Indeed, the model-based volatility-timing with covariance matrix predicted by the

Hafner and Reznikova (2012) approach and the model-based CAPM return timing

provide utility gains to the investor that is implementing a naive asset allocation.

Indeed, the investor is willing to pay ∆ = 126 basis points to switch the naive for

the CAPM-based return timing and ∆ = 43 basis points to buy the Hafner and

Reznikova (2012) volatility-timing. In the case of full-timing strategies, instead, the

investor prefers the naive allocation. However, even if the machine learning full-

timing returns higher out-of-sample Sharpe ratio than the model-based full-timing

strategy, the investor asks a lower fee (∆ = 618 basis points for model-based versus

∆ = 28740 basis points for the data-driven) for implementing the second one.
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Table 2.5.2 reports the economic comparison between static and timing strategies.

The most important result to highlight is the negative fee associated to the timing

strategies. This means that the investor in large dimension is willing to pay to switch

from a static strategy to a timing one. However, the mean-variance investor prefers

the static strategy to full-timing and, among the partial model-based timing strate-

gies, she prefers the return timing. Then, static strategies are preferred to data-driven

timing approaches. Therefore, forecasting is at some extent useful but only if model-

based approaches are used.
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The last Table 2.10 shows a comparison across different timing strategies. As pre-

viously, the investor is always willing to pay a fee ∆ to avoid the usage of data-driven

timing strategies. This result confirm the lack of economic usefulness for the ma-

chine learning predictions. Note that, differently from the previous low-dimensional

cases, in large dimension the data-driven approach perform quite well in out-of-

sample. However, despite their good performances, data-driven approaches pro-

vide considerable losses in utility terms.

TABLE 2.10: Economic fee ∆ for N = 286 assets: model-based vs
data-driven timing

µ̂CAPM, Σ̂LW µ̂, Σ̂DCC µ̂CAPM, Σ̂DCC

µ̂AR, Σ̂LW -5.8039 -5.7956 -5.7295

µ̂ANN , Σ̂LW -0.2805 -0.2721 -0.2061

µ̂, Σ̂ANN -4.9763 -4.9680 -4.9019

µ̂ANN , Σ̂ANN -2.8866 -2.8783 -2.8122

These results highlight that forecasting is much more useful in large dimensional

setting than in low dimension. However, model-based approaches are better suited

than data-driven ones. In the end, the strategy based on return-timing seem to be

the better suited for increasing investor utility and performances than full-timing.

2.6 Results: minimum variance diversification

As stated above, Kourtis, Dotsis, and Markellos (2012) showed that estimation error

can be reduced by avoiding mean estimation. Following this intuition, in what fol-

lows we consider the case of a mean-variance investor that constructs her portfolios

according to a minimum variance strategy.

2.6.1 Low-dimension

N=5

As previously, first of all we consider the case in which few assets are available. So,

we consider N = 5 assets given by the 5 Industry portfolios of Fama-French. The

monthly time series are sampled from the 10/1926 up to the 10/2019. Therefore,

N = 5, T = 1120, M = 120 and T −M = 1000. Being M the estimation window’s
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length, we are in a low-dimensional setting because M > N. The strategies under in-

vestigation are not the same of those showed in previous paragraphs. Indeed, now

there are not return-timing strategies and full-timing because mean vector is not

considered in GMV asset allocation. Moreover, we excluded GO-GARCH because

its poor performances compared to the DCC model. Estimating less models allows

for a reduction in the computational time of the procedure.

Static strategies. Let’s analyse, first, the static strategies’ performances (see Tab.

2.11). First of all, we note that the static strategies perform better than the naive. This

fact highlights the role of estimation error in the mean: estimating the mean vector

lead static strategies to perform poorer than the naive. On the contrary, avoiding

mean estimation makes the static approaches more competitive than the 1/N diver-

sification rule.

Interestingly, the sample covariance plug-in provides the highest out-of-sample Sharpe

ratio. The Ledoit and Wolf (2003) shrinkage estimator performs very closely to sam-

ple covariance, while POET ranks as third.

Moreover, another interesting aspect to highlight is that now, differently from the

mean-variance scenario, the GMV asset allocation with the precision shrinkage plug-

in results in the wort performances among the static approaches. This happen be-

cause the precision shrinkage estimator is optimal under mean-variance allocation

but not under GMV setting.

TABLE 2.11: Results for N = 5 assets - GMV approach

Strategies SR CEQ RL

1/N 22.492% 0.888% 0.000

Static strategies:

µ̂, Σ̂SC 23.968% 0.876% -0.059%

µ̂, Σ̂sP 18.594% 0.759% 0.182%

µ̂, Σ̂LW 23.875% 0.872% -0.055%

µ̂, Σ̂POET 22.814% 0.858% -0.013%

Volatility-timing:

µ̂, Σ̂DCC 24.528% 0.896% -0.081%

µ̂, Σ̂ANN−DCC 5.114% -432% 52%

One can ask whether such Sharpe ratios statistically differs each other. At this
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aim, we performed the Ledoit and Wolf (2008) test. With this respect, as found by

DeMiguel, Garlappi, and Uppal (2009), the sample covariance and naive approaches

are statistically the same, since the test p-value is equal to 0.76 meaning that the

Sharpe ratio are equal. Surprisingly, also the static GMV allocation with precision

shrinkage plug-in provides the same Sharpe ratio of the naive strategy, because also

in this case we do not reject the null hypothesis with a p-value of 0.47. In terms of

CEQ return, instead, the naive strategy seems to lead to the highest performances.

Timing strategies. As stated before, in this setting there is not other timing strat-

egy than the one based on volatility. In particular, we are mainly interested in un-

derstanding the differences between model-based (DCC forecasts) and data-driven

(NN-DCC forecasts) approaches in implementing the volatility-timing within GMV

setting.

Also in this case we get evidence of timing strategies over-performance. Indeed,

the DCC-based approach ensures an out-of-sample Sharpe ratio equal to 24.5% ver-

sus the 23.9% of the static sample covariance. In other words, in this example with

N = 5 assets we have that timing strategy based on econometric methods provides

the highest performances in out-of-sample. On the contrary the timing strategy

based on neural network forecasts is the worst to implement with a Sharpe ratio

of 5%. Clearly, we should once again have in mind that the estimation window is

not enough large to ensure accurate training of the networks. This fact can in prin-

ciple explain the so poor performances of NN-based timing strategy. Then, is the

performance of volatility timing statistically different than the naive approach? The

answer is not. Indeed, the Ledoit and Wolf (2008) test does not reject the null with

a p-value of 0.67. Hence, once again, the over performance that we get with timing

strategy could be sample-driven and does not extend to population.

Economic evaluation. As previously, the economic evaluation is conducted by fal-

lowing the approach of Fleming, Kirby, and Ostdiek (2001) and Fleming, Kirby, and

Ostdiek (2003) and Marquering and Verbeek (2004). So, we compute the annualized

percentage maximum fee ∆ that a mean-variance investor is willing to pay to switch

from a kind of GMV strategy to another one.

Table 2.12 shows the economic comparison between naive strategy and all the al-

ternatives. With this respect, none of them is preferred to the naive. The minimum

fee the investor would accept is associated to the volatility-timing strategy, where the

covariance matrix is predicted with a model-based approach (i.e. the DCC model).
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TABLE 2.12: Economic fee ∆ for N = 5 assets: optimal vs naive

µ̂, Σ̂SC µ̂, Σ̂LW µ̂, Σ̂POET µ̂, Σ̂sP µ̂, Σ̂DCC µ̂, Σ̂ANN

1/N 0.0135 0.0140 0.0156 0.0274 0.0111 52.0933

Table 2.13, instead, is useful for answering the following question: it is useful using

statistical methods explicitly taught to work in large dimensional setting also in a low di-

mension one?

The answer is no. Indeed, the investor requires a fee ∆ = 5.21 basis points to switch

from sample covariance to the Ledoit and Wolf (2003) and another higher ∆ = 21.37

basis points for the POET estimator of Fan, Fan, and Lv (2008). However, large

dimensional estimators are preferred with respect to the precision shrinkage in this

case since the investor is willing to pay ∆ = 133 basis points for using the Ledoit and

Wolf (2003) estimator. This happen because the precision shrinkage is not optimal

for minimum variance setting.

TABLE 2.13: Economic fee ∆ for N = 5 assets: low vs large dimension

µ̂, Σ̂LW µ̂, Σ̂POET

µ̂, Σ̂SC 0.0005205708 0.0021375964

µ̂, Σ̂sP -0.01338207 -0.01176505

In the next Table 2.14 we have a comparison in the spirit of previous papers between

static and timing strategies. From Table 2.14 we understand that, from the point

of view of the mean-variance investor, the static strategies are worst than timing.

However, this result holds only if timing is adopted by employing model-based ap-

proaches rather than data driven. Indeed, the investor is willing to pay a fee ∆ for

implementing a model-based volatility timing strategy, while she requires the pay-

ment of a positive fee ∆ for implementing any of the static strategies instead of a

data-driven timing.
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TABLE 2.14: Economic fee ∆ for N = 5 assets: static vs timing

µ̂, Σ̂DCC µ̂, Σ̂ANN

µ̂, Σ̂SC -0.0024 52.0798

µ̂, Σ̂LW -0.0029 52.0793

µ̂, Σ̂POET -0.0045 52.0776

µ̂, Σ̂sP -0.0163 52.0659

This means, in other words, that forecasting is useful. In the end, we have to make a

comparisons between the two different timing strategies, we can compute a fee equal

to ∆ = 520800, meaning that the investor requires the payment of the annualized fee

∆ = 520800 basis points to switch from the model-based timing to the data-driven

one. Hence, model-based procedure makes the investor better off.

N=30

Here we consider an asset universe of N = 30 risky assets represented by the 30

Industry portfolios of Fama-French. As before, the monthly time series are sampled

from the 10/1926 up to the 10/2019. Therefore, now we have N = 30, T = 1120,

M = 120 and T −M = 1000. Being M the estimation window’s length, we are still

in a low-dimensional setting because M > N.

Static strategies. Also in this case with N = 30 assets we have that the naive strat-

egy is no longer the best one in terms of out-of-sample Sharpe ratio (see Tab. 2.15).

This happen because we get rid of mean estimation, such that the estimation er-

ror reduces and the performances of alternatives. With increasing number of assets

we have that the Ledoit and Wolf (2003) estimator improves with respect the sam-

ple covariance. Indeed, now the Ledoit and Wolf (2003) provides an out-of-sample

Sharpe ratio of 24.9% versus the 22.4% of the sample covariance. With a p-value

of 0.0012, the Ledoit and Wolf (2008) test suggests that the two strategies are sta-

tistically different, hence the shrinkage towards the market operation is definitively

better. However, the Ledoit and Wolf (2003) static approach is not statistically differ-

ent than the naive strategy, since the test on the equality between Sharpe ratios does

not reject the null with a p-value of 0.43. Hence, the static and the naive approaches

are indistinguishable in the population. This result confirm those of DeMiguel, Gar-

lappi, and Uppal (2009). The precision shrinkage provides very bad performances
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with a negative Sharpe ratio. This result confirm those showed in the case of N = 5,

meaning that the precision shrinkage has to be used only for the implementation of

the mean-variance allocation.

Timing strategies. Also in this case timing strategies provide quite good perfor-

mances in out-of-sample only if a model-based approach is used to obtain the pre-

dictions. On the contrary, the machine learning (data-driven) approach performs

very poorly with a negative Sharpe ratio equal to -2.6%. It performs even poorer

than the static strategy based on the precision shrinkage plug-in (-1.4%). Moreover,

in terms of CEQ the under performances is dramatically huge with respect all the

alternatives.

However, the volatility-timing is not the best investment strategy because in terms

of Sharpe ratio of the static strategy involving the Ledoit and Wolf (2003) plug-in re-

turns higher performances. However, in this case timing allows for a greater Sharpe

ration than the naive strategy.

TABLE 2.15: Results for N = 30 assets - GMV approach

Strategies SR CEQ RL

1/N 21.227% 0.891% 0.000

Static strategies:

µ̂, Σ̂SC 22.483% 0.738% -0.045%

µ̂, Σ̂sP -1.410% -9.446% 9.525%

µ̂, Σ̂LW 24.961% 0.775% -0.124%

µ̂, Σ̂POET 21.872% 0.726% -0.023%

Volatility-timing:

µ̂, Σ̂DCC 22.088% 0.743% -0.032%

µ̂, Σ̂ANN−DCC -2.606% -28590% 569%

Economic evaluation. As the previous case, we compute the annualized percentage

maximum fee ∆ that a mean-variance investor is willing to pay to switch from a

strategy to another one. Table 2.16 shows the economic comparison between naive

strategy and the alternatives.
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TABLE 2.16: Economic fee ∆ for N = 30 assets: optimal vs naive

µ̂, Σ̂SC µ̂, Σ̂LW µ̂, Σ̂POET µ̂, Σ̂sP

µ̂, Σ̂DCC µ̂, Σ̂ANN

0.0320 0.0276 0.0334 1.2529

0.0314 3429.9109

Table 2.16 shows that the naive allocation is preferred respect to all the alternative

strategies, either static or based on timing. In fact the investor requires the payment

of a fee ∆ to change the naive strategy with another one. The strategy associated

with the lowest fee ∆ to pay is the static one based on Ledoit and Wolf (2003) estima-

tion of the covariance matrix. Hence, volatility-timing in this framework does not

guarantees over performances with respect the static approaches.

Interestingly, in the Table 2.17 are reported the costs of using large-dimensional esti-

mator instead of low-dimensional one within the GMV setting.

TABLE 2.17: Economic fee ∆ for N = 30 assets: low vs large dimen-
sion

Strategies µ̂, Σ̂LW µ̂, Σ̂POET

µ̂, Σ̂SC -0.004337182 0.001452158

µ̂, Σ̂sP -1.225293 -1.219504

Overall, Tab. 2.17 shows that in this case using large dimensional tool within this

low dimensional environment is beneficial. Indeed, the investor is willing to pay for

using the large dimensional estimators instead of the low dimensional ones. This re-

sult is in contrast with respect to what we found with the other experiments. Never-

theless, sample covariance is still more attractive than the POET estimstor, meaning

that not all the tools build for large dimension are useful.

About the economic performance of static strategies compared to the timing one

is reported in Table 2.18. The data-driven volatility timing approach is the worst

strategy and, therefore, the investor requires huge fees ∆ to change a static for a

data-driven. Then, the model-based timing is preferred to the static approaches in

most of the cases. For example, the investor is willing to pay a small fee of ∆ = 6

basis points to use model-based timing instead of sample covariance, ∆ = 20 basis
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points to change the POET and a very huge fee ∆ = 12215 basis points to use tim-

ing instead of precision shrinkage. Nevertheless, the investor prefers the Ledoit and

Wolf (2003) estimator, such that she required the payment of ∆ = 38 basis points to

change this static strategy with the model-based timing.

TABLE 2.18: Economic fee ∆ for N = 30 assets: static vs timing

µ̂, Σ̂DCC µ̂, Σ̂ANN

µ̂, Σ̂SC -0.0006 3429.8790

µ̂, Σ̂LW 0.0038 3429.8833

µ̂, Σ̂POET -0.0020 3429.8775

µ̂, Σ̂sP -1.2215 3428.6580

Finally by comparing timing strategies, it is possible to note that the investor re-

quires a fee of ∆ = 3428 to switch from the model-based to data-driven approach.

Hence, we can conclude that while the model-based timing has economic utility,

data-driven timing does not.

In conclusion, in this experiment we find that forecasting is useful at some extent

but is not able to defeat particular static strategies. In what follows, we analyse

what happen in a large dimensional setting.

2.6.2 Large dimension

In this case we consider all the 500 constitutes of the S&P500 Index from 10/1999

to 10/2019, assuming that the asset universe N is represented by only the stocks for

which we have a complete time series. Particularly, we get N = 286 time series with

T = 240. Considering, again, an estimation window of M = 120, we have now that

T−M = 120. In this framework, being M our sample size for the estimation, we are

in a large dimensional setting because M < N.

Static strategies. In this case static approaches provide very good performances if

compared to the naive 1/N strategy. Indeed, the naive strategy guarantees an out-of-

sample Sharpe ratio of 30%, while the Ledoit and Wolf (2003) and POET estimators

provide Sharpe ratios equal to 41.3% and 37.2% respectively. However, also in this

case the Ledoit and Wolf (2008) test does not reject the null hypothesis of Sharpe

ratios equality with p-values equal to 0.37 and 0.58 for both shrinkage and POET

estimators. This means that, as for almost all experiments conducted in this Chapter,
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the naive and the best strategy are statistically indistinguishable in the population.

In other words, the over performance of optimal strategies could be sample driven.

TABLE 2.19: Results for N = 286 assets - GMV approach

Strategies SR CEQ RL

1/N 30.125% 1.182% 0.000

Static strategies:

µ̂, Σ̂LW 41.357% 1.072% -0.301%

µ̂, Σ̂POET 37.252% 0.997% -0.198%

Volatility-timing:

µ̂, Σ̂DCC 41.824% 1.157% -0.335%

µ̂, Σ̂ANN−DCC -4.407% -10.340% 14.256%

Timing strategies. Volatility timing with model-based predictions performs even

better than the static allocation with Ledoit and Wolf (2003) plug-in (Sharpe ratio

equal to 41.8%), confirming the utility of forecasting. However, the Ledoit and Wolf

(2008) test of Sharpe ratio equality suggest that the two approaches (DCC timing and

Ledoit & Wolf static) are statistically the same (p-value equal to 0.38). Hence, timing

is useful but is not able to provide statistically over performances with respect the

best static approach. Data-driven timing is useless and leads to negative Sharpe ratio

(-4.4%).

Economic evaluation. As in the low-dimensional setting, in what follows we report

the annualized percentage maximum fee ∆, that the investor is willing to pay to

switch from a strategy to another one. Table 2.20 shows the economic comparison

between naive strategy and all the optimal alternatives. Surprisingly, despite it is not

the best strategy in terms of Sharpe ratio, the naive provides the highest economic

benefit compared to the alternatives. Indeed, the investor requires the payment of a

fee ∆ for renouncing to this strategy. The less costly is the volatility timing. Hence,

in economic terms the volatility timing represents the best alternative even if it is not

able to perform better than the naive strategy. Clearly, as volatility timing we refer to

the model-based one, because the data-driven timing approach is the worst among

all the considered investment strategies.
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TABLE 2.20: Economic fee ∆ for N = 286 assets: optimal vs naive

µ̂, Σ̂LW µ̂, Σ̂POET µ̂, Σ̂DCC µ̂, Σ̂ANN

0.0246 0.0334 0.0144 1.3874

Table 2.21 reports the economic comparison between static and timing strategies. As

expected, the investor is willing to pay ∆ to use the model-based timing strategy

instead of both the static ones. In particular, she is willin to pay ∆ = 102 basis points

for changing the static with Ledoit and Wolf (2003) estimation and ∆ = 190 basis

points for the POET. On the contrary, static approaches are much better than the

data-driven timing.

TABLE 2.21: Economic fee ∆ for N = 286 assets: static vs timing

µ̂, Σ̂DCC µ̂, Σ̂ANN

µ̂, Σ̂LW -0.0102 1.3628

µ̂, Σ̂POET -0.0190 1.3540

Finally, we can conclude that overall forecasting is useful in economic terms even

if the naive allocation remains the best one for the mean-variance investor. This is

due to estimation error perhaps. However, we note that overall timing should be

preferred to static estimation. Moreover, we also find that data-driven approaches

are very scars in this setting if compared to standard (econometric) model-based

approaches.

2.7 Conclusions

In this second Chapter we studied the usefulness of forecasting in portfolio selection

problem. What we found is that, in a low dimensional setting, forecasting is useful as

documented by previous studies. However if a static estimation strategy that prop-

erly accounts for estimation error is used, instead, the investment strategies based

on forecasts becomes less competitive. This does not mean that forecasting becomes

useless, but the difference in terms of performances between specific static strategies

and timing become thinner. Indeed, the case of precision shrinkage estimator devel-

oped in the first Chapter is a perfect example of this result. However, the results for
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global minimum variance asset allocation show that the precision shrinkage perfor-

mances are very poor. This happen because the precision shrinkage is taught to be

optimal within a mean-variance rather than minimum variance allocation.

An important contribution of this chapter lies on the assessment of the forecasting

usefulness in the case of large dimensional setting. This second case has never been

considered by previous studied. In such a case, the implementation of forecasting

becomes even more important from the point of view of return/risk trade-off. From

the side of CEQ returns the results are not very different. Overall, a perhaps surpris-

ing result is that full-timing strategies are not generally as good as partial-timing

ones, where only mean or covariances are predicted. In general, for mean-variance

asset allocation (where both mean and covariance are involved) it seems that mean

predictions provide much better results than covariance forecasts. Therefore, fore-

casting can be seen as a useful tool for reducing estimation error in the mean vector,

especially in large dimension.

In the end, another important novelty introduced in this chapter lies on the com-

parison between machine learning (data-driven) versus econometric (model-based)

approaches in forecasting for timing strategies’ implementation. Almost everywhere

in this chapter we showed that machine learning forecasts are not useful, especially

in low dimension. As explained above, this result could be driven by the adopted

rolling-window approach (DeMiguel, Garlappi, and Uppal, 2009). Indeed, we used

only M = 120 time observations for training the networks. Perhaps, this number

is not enough large to ensure an accurate training. As argued by Zhang, Patuwo,

and Hu (1998), neural network-based forecasting models have been for long time

considered as unnecessary tools by professional forecasters. The reason lies on their

poor performances within environments with few-data. Nowadays both economists

and investors face data-rich environment, where neural networks perform very well.

Nevertheless, canonical approaches for economic significance evaluation require the

analysis of monthly data, that are known to be less noisy than the daily or infra-

daily data. Therefore, the results simply show that machine-learning based timing

strategy are not appropriate for long-run (low-frequency) portfolio selection prob-

lems. Further studies should be devoted to the analysis of high-frequency portfolios,

where much more observations are available for training the machine learning algo-

rithm. In this case it is more reasonable to expect an economic usefulness of ML.
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Chapter 3

On the performance of clustered

portfolios

3.1 Introduction

Clustering is one of the most important data mining algorithms, usually imple-

mented for exploratory purposes and more complex tasks like anomaly detection

or classification. Once a dissimilarity matrix is computed, several algorithms can

be used get a final classification. When time series are involved, the clustering task

becomes more complicated because it is difficult to define a proper distance among

the time series: what does it mean that two time series are similar?

Moreover, the task further complicates when time series of a peculiar type, such as

stock prices and returns, are considered. If we aim to reach an accurate classification,

the empirical regularities of financial time series, defined stylized facts (Cont, 2001),

must be considered in calculating the dissimilarities. First of all, stock prices are

generally integrated time series. Therefore, it is more common to consider returns

rather than prices in financial time series clustering. Moreover, we have to consider

that the squared returns (as well as the absolute values) are viewed as proxies for

volatility (Forsberg and Ghysels, 2007). With this respect, a second crucial stylized

fact lies in the evidence that squared (or absolute) returns are highly auto-correlated.

This phenomenon is known as volatility clustering, meaning that volatility tends to

be clustered in groups of low/high values over time. Hence, time variation in the

volatility is usually considered for clustering financial time series. In the end, we

should also take into account the fact that the empirical densities of the returns’ time

series are usually non-Gaussian, asymmetric and heavy-tailed.

When applied to stock returns, an immediate application of time series clustering
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can be found in the portfolio construction (Mantegna, 1999; Caiado and Crato, 2010;

Iorio et al., 2018; Raffinot, 2017), also defined as the asset allocation task. The asset

allocation task involves deciding how many and which kind of assets to include in

a portfolio for investment purposes.

Nowadays, investors usually face the problem of having many available assets N

greater than the number of time observations T. Because of dimensionality, there

are difficulties in estimating the inverse of asset returns’ covariance matrix, which is

singular. The impossibility of inverting the covariance matrix, which is a crucial op-

eration needed to implement most optimization strategies, increases the estimation

error. As a consequence, in a high-dimensional setting (i.e. when N > T) the estima-

tion error cause a reduction of portfolio performances in out-of-sample (Michaud,

1989; Ledoit and Wolf, 2003; Jagannathan and Ma, 2003).

Following this evidence, clustering can be a very powerful tool for portfolio selec-

tion. Indeed, it allows to alleviate the course of dimensionality by finding smaller

sets of stocks that can be used to build roughly diversified funds. Then, these funds

become the input of a portfolio optimization strategy.

For example, DeMiguel, Garlappi, and Uppal (2009) grouped stocks on the basis

of industry sectors rather than defining the clusters with an unsupervised learning

approach. Caiado and Crato (2010), using an hierarchical unsupervised learning al-

gorithm, proposed to define clusters of stocks with similar conditional volatilities

by employing a GARCH-based distance across time series. D’Urso et al. (2013) fol-

lowed a similar approach by considering a partitioning clustering algorithm rather

than hierarchical. Lahmiri (2016) studied the idea of using time series’ self-similarity

(i.e. the Hurst exponent) to this aim. Raffinot (2017) considered a correlation-based

distance to build portfolio of stocks. Iorio et al. (2018) proposed the adoption of a

p-spline based distance in the definition of portfolios. More recently, Mattera, Gi-

acalone, and Gibert (2021) exploited the role of stock returns’ distributional char-

acteristics in defining clustered portfolios. The aforementioned papers are just few

examples that document the use of unsupervised learning in asset allocation.

These studies show the validity of using clustering in portfolio selection, by con-

sidering alternative approaches of measuring time series distances. However, it is

still unclear which clustering approach is better than others from the portfolio selec-

tion task perspective, under what conditions and if the performances are robust for

different datasets. In other words, a comparative study of the different clustering
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approaches from an asset allocation perspective is still missing. This chapter aims to

fill this gap, understanding not only the merits of clustering in finance but also un-

der what conditions the portfolios constructed with different clustering approaches

can be expected to perform better than others consistently.

Hence, this question turns back to the problem of measuring similarity. The most

common approach employed for measuring distances in clustering is the standard

Euclidean distance. However, it is well known that in the context of time series,

the simple Euclidean distance between observations is not appropriate because it

does not take into account important aspects of the time series, such as the auto-

correlation structures trends and so on.

The general approaches for time series classification can be divided into three well-

known classes: observation-based clustering, feature-based and model-based (for a

detailed discussion, see Liao (2005)). Briefly, while observation-based approaches

(Coppi and D’Urso, 2006; D’Urso, De Giovanni, and Massari, 2018) are useful for

clustering short time series, they do not consider the data features that are very im-

portant, especially in clustering of financial time series (Bastos and Caiado, 2021).

The features-based approaches, on the other hand, aim to cluster time series with

similar characteristics like the auto-correlation or the partial auto-correlation func-

tion (D’Urso and Maharaj, 2009), conditional moments (Cerqueti, Giacalone, and

Mattera, 2021), periodogram ordinates (Caiado, Crato, and Peña, 2006) or cepstral

coefficients (Maharaj and D’Urso, 2011; D’Urso et al., 2020). In the end, the model-

based approaches aim to cluster time series according to parameters estimated by

statistical models (D’Urso, De Giovanni, and Massari, 2016; Piccolo, 1990; Otranto,

2008; Iorio et al., 2016; D’Urso, Maharaj, and Alonso, 2017; Mattera, Giacalone, and

Gibert, 2021). Several ways of defining distances between financial time series will

be reviewed in paragraph 3.2 of this chapter.

Moreover, this chapter also introduces a new approach for clustering financial time

series based on the "deviation from Gaussianity" stylized fact. The deviation from

Gaussianity relates to the assumption about the returns’ probability distribution. In-

deed, the Gaussian distribution is not a reliable choice for stock return modelling

purposes, and more sophisticated probabilistic assumptions which account for nor-

mality deviation are needed. A vast literature considered an extension for non-

Gaussian distribution of standard statistical models (e.g. GARCH) for forecasting
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purposes, finding that alternative skewed and fat-tailed distribution allow for im-

provements in forecasting accuracy of both returns and volatilities (Bollerslev, 1987;

Harvey and Zhou, 1993; Wilhelmsson, 2006; Curto, Pinto, and Tavares, 2009; Cer-

queti, Giacalone, and Mattera, 2020). More in detail, we develop a clustering proce-

dure of model-based type, assuming that the time series are generated by the same

underlying probability distribution but with different parameters. Therefore, stock

clusters can be formed by inspecting the differences across distribution parameters.

Clearly, by specifying a very general underlying distribution, we can account for a

wide range of possible exceptional cases. Different stock returns can be generated

by different distributions that are exceptional cases of a more general family of prob-

ability distribution. Since the parameters are not allowed to change over time, we

define this clustering model as distribution-based clustering with static parameters. On

the contrary, in the time series context, the assumption of static parameters is not re-

liable because parameters are likely to be time-varying. If we introduce time-varying

parameters, the clustering procedure becomes much more complex because the time

variation in the distribution parameters has to be adequately modelled. As an ad-

ditional source of innovation, this chapter introduces the so-called distribution-based

clustering with time-varying parameters.

The structure of the rest of the chapter is as follows. In paragraph 3.2, an overview

of clustering models developed for financial time series is provided. Paragraph 3.2.1

discusses the most common approaches for computing distances between financial

time series, while paragraph 3.2.2 explains the clustering algorithm adopted in the

entire chapter. In particular, we consider a Partition Around Medodids (PAM) clus-

tering algorithm. The motivation of this choice over well-known alternatives is dis-

cussed in detail therein. Then, in paragraph 3.3, the new clustering procedures (i.e.

static and time-varying distribution-based clustering). Paragraph 3.4 provide two

application of the discussed clustering approaches to portfolio selection.

3.2 Clustering of financial time series

As argued by De Miguel, Garlappi, and Uppal (2007), allocating the wealth across

portfolios of stocks rather than individual stocks reduces estimation error because

diversified portfolios have lower idiosyncratic volatility than individual assets. There-

fore, investing in already diversified funds can be seen as a good tool for alleviating
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the problem of estimation error. Moreover, clustering reduces the course of dimen-

sionality, which causes problems in asset allocation in high-dimensional settings. A

clear advantage of the 1/N rule is that it is straightforward to apply to a large num-

ber of assets, in contrast to optimizing models, which typically require additional

parameters to be estimated as the number of assets increases.

In what follows, we describe the most common approaches for measuring distances

among financial time series and the clustering algorithm that will be used in the

empirical experiments.

3.2.1 Measuring time series similarity

Given a pair of stocks returns’ time series rn,t and rn′,t, a first approach for clustering

the time series could be simply the Euclidean distance between the two raw time

series:

dEUCLn,n′ =

√√√√ T

∑
t=1

(rn,t − rn′,t)2 (3.1)

There are at least two reasons why this measure is inadequate for clustering finan-

cial time series. First of all, it does not account for the serial correlation structure of

the data. This makes the simple Euclidean distance useless for time series in general

(Díaz and Vilar, 2010). Moreover, it ignores the correlation structure of the assets, a

crucial aspect of portfolio selection.

Starting from this idea, Mantegna (1999) and Raffinot (2017) proposed to quantify

the dissimilarity among different stocks according to their estimated correlation co-

efficient. The simple difference between estimated correlation coefficients cannot be

used as a distance since it does not fulfil the axioms that define a metric. To overcome

this issue, Mantegna (1999) proposed to use the following distance:

dCORn,n′ =
√

2(1− ρn,n′) (3.2)

that depends by the correlation ρn,j between the n-th stock returns rn,t and the n′-th

returns rn′,t. However, the correlation coefficient is still a static measure that does not

properly account for the dynamic structure of the time series. If we aim to cluster
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similar stocks according to the correlation structure, an alternative is to consider a

distance based on their auto-correlation functions:

dACFn,n′ =

√√√√ L

∑
l=1

(ρn,l − ρn′,l)
2 (3.3)

with ρn,l and ρn′,l be the estimated autocorrelations of the time series n and n′, re-

spectively, for some lags l(l : 1, . . . , L).

As briefly mentioned above, other approaches are based on the frequency domain

representation of the time series. Frequency domain approaches consider the spec-

tral density of the time series. An unbiased estimator of the actual spectral density

is the periodogram. Hence, let:

In(λl) =
1

2πT

∣∣∣∣∣ T

∑
t=1

rn,te−iλt

∣∣∣∣∣
2

λ ∈ [−π, π]

be the periodogram of the n-th returns’ time series rn,t at frequencies λl = 2πl/T,

given {l = −L, . . . , L} with L = (T − 1)/2. Given σ2
n be the sample variance of rn,t,

Caiado, Crato, and Peña (2006) proposed to consider the following distance between

the log normalized periodograms:

dNPERn,n′ =

√√√√ L

∑
l=1

(
log

In(λl)

σ2
n
− log

In′(λl)

σ2
n′

)2

(3.4)

Another interesting approach for clustering financial time series can be found in the

fact that the returns are usually characterized by long memory. In a stationary time

series, the term “long memory” means that exists a significant dependence between

the present and all points in the past (Lo, 1991). Sometimes, it is also defined as

“long-range dependence” or “long term persistence”. Lahmiri (2016) proposed to

cluster time series according to their long-memory values. The study of the “long-

memory” behaviour of a time series is usually done through the Hurst exponent

that the R/S analysis can estimate, that is, the range of partial sums of deviations of

a time series from its mean, re-scaled by its standard deviation. More in detail, in

the R/S analysis, estimation of the Hurst exponent H can be summarized as follows.

Let (r1, r2, . . . , rT) be the time series vector and denote by r̄ the sample mean of these
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observations. Then the usual re-scaled range statistic, that we call Q̃, can be obtained

as:

Q̃ =
1
σ

[
max

1≤k≤T

k

∑
t=1

(rt − r̄)− min
1≤k≤T

k

∑
t=1

(rt − r̄)

]

with σ is the standard deviation of rt. The time series of length T is firstly divided

into K blocks where each k(k = 1, . . . , K)-th block is of size K/T. Then, we compute

the R/S statistics Q̃ for each k. Finally, the Hurst exponent H is obtained as the

coefficient of linear regression where the logarithm of Q̃ is the dependent variable

and log(T) is the regressor. Then, we can compute a dissimilarity measure based on

the H estimates as follows (Lahmiri, 2016):

dHURSTn,n′ =
√
(Hn − Hn′)2 (3.5)

Instead, a different approach is to consider that the returns’ time series are generated

by a specific statistical model, such that we can measure the proximity between the

fitted models. With this respect, an important contribution is Piccolo (1990) that

defined a metric in the class of invertible ARIMA processes as the Euclidean distance

between the AR(∞) representation of a given stock returns series rn,t. In practice,

we compute an AR(K) representation where K is selected according to information

criteria. Then, the AR-distance of Piccolo (1990) could be written as:

dARMAn,n′ =

√√√√ K

∑
k=1

(πn,k − πn′,k)2 (3.6)

with πn,k and πn′,k the vector of the autoregressive coefficients for the n-th and n′-th

stocks, respectively. If K1 6= K2, we take K = max(K1, K2) and πn,k = 0 for K > K1

and, similarly, πn′,k = 0 for K > K2.

All these measures ignore a crucial stylized fact: the time-varying nature of volatility.

As proposed by many authors (Otranto, 2008; Caiado and Crato, 2010; D’Urso et al.,

2013), if we aim to cluster time series with similar volatility behaviour, we should

consider a distance of model-based type between estimated parameters of GARCH

processes. The standard GARCH(p,q) model of Bollerslev (1986) can be specified as
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follows:

rt − µt = εt

εt = σtzt with zt ∼ N (0, 1)

where zt is called innovation and it is a process with zero mean and unit variance,

while σt is a univariate stochastic process independent from zt of the following form:

σ2
t = ω +

p

∑
i=1

αiε
2
t−p +

q

∑
j=1

β jσ
2
t−q

with ω > 0, 0 ≤ αi < 1, 0 ≤ β j < 1 and ∑
p
i=1 αi + ∑

q
j=1 β j < 1. Parameters’ esti-

mation can be easily done by maximum likelihood. According to Caiado and Crato,

2010; D’Urso et al., 2013, assuming a GARCH(1,1) process1, the estimated param-

eters α̂ and β̂ for each i-th time series can be stored into a matrix T = (α̂, β̂) with

Ω the covariance matrix associated to the estimates contained in the T’s. Therefore,

we can consider the following Mahalanobis-like distance between two returns time

series rn,t and rn′,t:

dGARCHn,n′ =
√
(Tn − Tn′)

′Ω−1 (Tn − Tn′) (3.7)

where trough the weighting matrix inverse Ω−1 we also account for the uncertainty

in the parameter estimation step. Nevertheless, it could also be set equal to the

Identity matrix I.

3.2.2 Clustering algorithms

Once a dissimilarity measure between the objects has been specified, a clustering

algorithm must be chosen to obtain the partitions. Indeed, as stated by Liao, 2005,

most clustering techniques for time series "try to modify the existing algorithms for

clustering static data in such a way that time series can be handled". This is usually done

using proper time series distance matrices.

1The specification of a GARCH(1,1) model is a parsimonious representation of an ARCH(∞) model
(for the proof see Bollerslev, 1986).
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Most of the applications to financial time series clustering have been based on ei-

ther the hierarchical Mantegna, 1999; Caiado and Crato, 2010; Raffinot, 2017 or the

k-means algorithms Nanda, Mahanty, and Tiwari, 2010; D’Urso et al., 2013; D’Urso,

De Giovanni, and Massari, 2016; D’Urso et al., 2020.

Hierarchical clustering methods work by grouping time series into a tree of clus-

ters Nanda, Mahanty, and Tiwari, 2010. However, the performance of a hierarchical

clustering method often suffers from its inability to adjust once a merge decision has

been executed Liu et al., 2021. Moreover, the hierarchical algorithms typically are

time-consuming Xie et al., 2020 with quadratic complexity, while one of k-means like

algorithms is linear. In other words, despite it representing a widely used alterna-

tive for clustering financial time series, hierarchical clustering is not recommended

when there are many assets with long time series. This is especially true when deal-

ing with high-dimensional settings, when very large N is involved. In this case the

hierarchical approaches are proved to perform quite poorly.

Differently, the k-means based approaches are computationally less challenging. There-

fore, in this Chapter, we consider k-means like clustering algorithms. The k-Means

algorithm is one of the most popular clustering approaches aiming to partition the

time series into a predetermined number of clusters. It relies on an iterative scheme

based on the minimization of an objective function, which is usually chosen to be

the total distance between all patterns from their respective cluster centres:

min :
N

∑
i=1

C

∑
c=1

di,c (3.8)

where N is the number of the time series to be grouped, C is the number of clusters

(a priori fixed), c represents the centre such that di,c is the distance between each time

series i from the centroid of the c-th cluster.

However, instead of considering all time series, one can analyze prototypal time

series, i.e., time series that retain the main features of similar time series classified

in the same group. To this end, we adopt the so-called Partitioning Around Medoid

(PAM) approach. To summarize, the PAM approach provides a robustification of the

usual k-means clustering algorithm. To see why, with the PAM approach, the cen-

troid object is randomly selected before calculating the distances of each time series

data concerning the centroid itself, such that initial partition is made based on the
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closeness of each object to the clustering centroid. The prototypes of each group, the

medoid time series, are time series that belongs to the sample and are not virtual, as

happen with the k-means algorithm Ushakov and Vasilyev, 2021.

The possibility of obtaining non-fictitious representative time series in the clusters

is very appealing and helpful in many applications. Moreover, the fact that the cen-

troids are real-time series also improves interpretability results. As a further advan-

tage, as shown by Arora, Varshney, et al., 2016, the PAM approach is better in terms

of execution time, less sensitive to outliers and reduces noise with respect to the k-

means. Moreover, as argued by D’Urso, De Giovanni, and Massari, 2016, since the

medoids are observed time series the constraints on the GARCH coefficients needed

to compute the GARCH-based dissimilarity are always satisfied. This is not guar-

anteed when using the k-means approach. Therefore we claim that a PAM approach

should be preferred to a classical k-means, especially if financial time series are in-

volved.

The main drawback of k-means and k-medoids algorithms is that the number of

clusters has to be identified in advance. Several approaches can be used to this aim.

In this paper, following many other authoritative studies Arbelaitz et al., 2013; Ba-

tool and Hennig, 2021, we choose the number of clusters employing the Average

Silhouette Width (ASW) criterion of Rousseeuw, 1987.

3.3 A unified framework for distribution-based clustering

There is pervasive evidence documenting the distributional characteristics of stock

returns. Due to the relevance of returns’ distribution in finance, clustering stocks on

the basis of this information can be handy.

The idea of clustering time series based on their distributional characteristics is

mainly due to Nanopoulos, Alcock, and Manolopoulos (2001) that considered both

skewness and kurtosis in the clustering process. Successively, Wang, Smith, and

Hyndman (2006), and Fulcher and Jones (2014) proposed approaches of clustering

based on multiple features, including static mean, variance, skewness and kurtosis.

The studies mentioned above do not assume any underlying probability distribu-

tion for the time series but use sample estimators for those features. Differently,

following a model-based approach, D’Urso, Maharaj, and Alonso (2017) proposed

to cluster time series using extremes, i.e. according to static parameters estimated
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by a Generalized Extreme Value (GEV) distribution. Similarly, in a recent contribu-

tion (Mattera, Giacalone, and Gibert, 2021) we considered an approach of cluster-

ing based on (static) parameters estimated by a Skewed Generalized Error Distri-

bution (SGED). In that paper, we applied a distribution-based clustering algorithm

with static parameters to financial time series, demonstrating that portfolios can be

formed based on the obtained clusters. Further, we demonstrated the overperfor-

mance of the asset allocation strategy based on this clustering approach concerning

to alternative clustering methods.

In the next paragraph 3.3.1, we provide the details about the clustering approaches

with static parameters. Then, the extension to time-varying parameters is discussed

in paragraph 3.3.2.

3.3.1 Static parameters

The distribution-based clustering approach with static parameters can be formalized

as follows. Let Y{yn,t : n = 1, . . . , N; t = 1, . . . , T} be the matrix containing the N

time series of length T:

Y =


y1,1 . . . yn,1 . . . yN,1

... . . . yn,t . . .
...

y1,T . . . yn,T . . . yN,T

 (3.9)

Let us suppose that each column of the (3.9) is generated by a probability density

function p(·) that is characterized by the presence of J parameters. The number of

J parameters depends on the underlying distributional assumption. For example, if

we suppose a Gaussian density:

p(y; µ, σ2) =
1

σ
√

2π
e−(y−µ)2

/
2σ2

(3.10)

we have J = 2 because p ∼ N
(
µ, σ2), where µ is the mean and σ2 is the variance.

In presence of a general p(·) density, the distribution-based clustering considers the

following (N × J) matrix F as the input of the algorithm:
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F =



f1,1 f1,2 . . . f1,J

f2,1 f2,2 . . . f2,J
...

...
...

...

fn,1 fn,2 . . . fn,J
...

...
...

...

fN,1 fN,2 . . . fN,J


(3.11)

where on the J columns of F there are the j = 1, . . . , J parameters for the N assets

that are indexed by the rows. In the case of Gaussian density (3.24) the matrix (3.11)

becomes:

Fnorm =



µ1 σ2
1

µ2 σ2
2

...
...

µn σ2
n

...
...

µN σ2
N


(3.12)

Clearly, in specifying the density p(·), it would be advantageous to choose a very

general distribution to account for a wide range of possible exceptional cases. In-

deed, the observed characteristics of financial time series motivated the exploration

of distributions that can accommodate properties such as fat-tailedness and skew-

ness. A critical desired property of these classes is that maximum likelihood estima-

tion of the parameters is possible.

In finance, a commonly employed distribution for relaxing the gaussianity assump-

tion is the t-student with fatter tails than the Gaussian. The t-student distribution is

characterized by J = 3 parameters with the following density function:

p(y; µ, φ, v) =
Γ
( v+1

2

)
Γ
( v

2

)
φ
√

πv

(
1 +

(y− µ)2

vφ

) v+1
2

(3.13)

where µ is the location, φ is the scale, and v is the shape parameter that controls

the degree of tails’ fatness. Supposing that the time series in (3.9) are distributed as

t-student with different parameters lead to the construction of the following matrix:
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Fstd =



µ1 φ1 v1

µ2 φ2 v2
...

...
...

µn φn vn
...

...
...

µN φN vN


(3.14)

that then becomes the input of the clustering algorithm. However, a class of asym-

metric distributions that accommodate heavy tails and skewness is represented by

the Skewed Exponential Power Distribution (SEPD) Fernandez, Osiewalski, and

Steel, 1995; Fernández and Steel, 1998; Theodossiou, 2015; Komunjer, 2007, that gen-

eralizes the Exponential Power Distribution for skewness. The SEPD is character-

ized by 4 parameters, i.e. location µ, scale φ, skewness λ and shape v. A random

variable Y is said to have a Skewed Exponential Power Distribution if its probability

density function is the following (Ayebo and Kozubowski, 2003):

p(y; µ, σ, v, λ) =
v

σΓ
(
1 + 1

v

) λ

1 + λ2 exp
(
−λp

σv [(z− µ)+]v − 1
σvλv [(z− µ)−]v

)
(3.15)

where:

(z− µ)+ = max (z− µ; 0) and (z− µ)− = max (µ− z; 0)

Some papers (for example see Ayebo and Kozubowski, 2003; Komunjer, 2007; Zhu

and Zinde-Walsh, 2009; Theodossiou, 2015) constructed seemingly different classes

of SEPD distributions. However, as suggested by Zhu and Zinde-Walsh, 2009, all

of them are reparametrizations of the SEPD proposed by Fernandez, Osiewalski,

and Steel, 1995; Fernández and Steel, 1998. An essential feature of the EPD is that

it includes many common distributions as special cases, depending on the value of

shape v and skewness λ parameters (Fig. 3.1).
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FIGURE 3.1: Skewed Exponential Power Distribution for different
values of shape and skewness.

In particular, for λ = 1, the distribution is symmetric about µ so we obtain the

symmetric exponential power distribution. If λ = 1 and v = 2 we obtain the Gaus-

sian distribution. In the case λ 6= 1, by letting v = 1 we obtain the skewed Laplace

distribution. Moreover, for v = 2 and λ 6= 1, we obtain the skewed normal distribu-

tion as defined in Mudholkar and Hutson, 2000. Many financial applications of the

EPD as well as its skewed extensions have been considered2.

The great flexibility of the SEPD can be successfully exploited in the clustering pro-

cess if the aim is to form distribution-based clusters. In the case which the time se-

ries that are generated by a Skewed Exponential Power Distribution of parameters

µn, σn, pn and λn, the matrix (3.11) becomes:

Fsepd =



µ1 σ1 p1 λ1

µ2 σ2 p2 λ2
...

...
...

...

µn σn pn λn
...

...
...

...

µN σN pN λN


(3.16)

As we have already said, regardless of the specified distribution, the main idea un-

derlying the distribution-based approach with static parameters is to use the matrix

(3.11) as the input of the clustering procedure. For the sake of consistency, in what

2For example see Hsieh, 1989; Nelson, 1991; Duan, 1999; Ayebo and Kozubowski, 2003; Komunjer,
2007; Christoffersen et al., 2010; Theodossiou, 2015; Cerqueti, Giacalone, and Panarello, 2019; Cerqueti,
Giacalone, and Mattera, 2020
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follows differently from Mattera, Giacalone, and Gibert (2021)3 we use a Partition

Around Medoids (PAM) as shown in (3.32) to generate clusters once the dissimilar-

ity is computed. In the case of a generic distribution-based clustering with static

parameters, a reasonable dissimilarity is given by the Euclidean distance between

parameters such that:

dn,n′ =

√√√√ J

∑
j=1

Fn − Fn′ (3.17)

where Fn represents the n-th row of the matrix (3.11). Therefore, the clustering prob-

lem can be written as follows:

min :
N

∑
i=1

C

∑
c=1

di,c =
N

∑
i=1

C

∑
c=1

√√√√ J

∑
j=1

Fn − Fc (3.18)

where c is the centroid time series of the c-th cluster. Clearly, in the case of Gaussian

distribution the distance becomes:

dn,n′ =

√√√√ 2

∑
j=1

Fnorm,n − Fnorm,n′ (3.19)

because J = 2, while in the case of t-student it is equal to:

dn,n′ =

√√√√ 3

∑
j=1

Fstd,n − Fstd,n′ (3.20)

because J = 3 and so forth. In conclusion, we can define the solution to the prob-

lem (3.18) as the distribution-based clustering with static parameters. This clustering

approach can potentially be applied to any time series with known distribution. For

example, interesting applications of this clustering method can be devoted to classi-

fying count time series that follow a Poisson distribution.

3In that paper, we used the Entropy-weighted k-means clustering algorithm of Jing, Ng, and Huang
(2007) in order to assign specific weight to each static parameter. In what follows, instead, we implicitly
suppose that all the parameters have the same importance. This assumption can be relaxed but not
considered in the thesis and is the object of future research. Note that most of the previous studies also
considered an implicit equal weighting scheme.
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3.3.2 Time-varying parameters

The main drawback of the clustering approach discussed so far is that it consid-

ers static distribution features (i.e. static mean, static variance, etc.). In time series

context, these parameters are likely time-varying. Despite there is a vast literature

documenting this evidence with many statistical tools developed for modeling time

variation in the parameters (Cox et al., 1981; León, Rubio, and Serna, 2005; Har-

vey, 2013; Creal, Koopman, and Lucas, 2013; Harvey and Sucarrat, 2014; Caivano

and Harvey, 2014; Harvey and Lange, 2017), a clustering approach based on time-

varying parameters has been only recently explored by Cerqueti, Giacalone, and

Mattera (2021).

The idea underlying the clustering with time-varying parameters is, in principle,

straightforward. Let us suppose to consider the matrix Y as in (3.9), that contains

the N time series on the columns with their T observations in the rows. Let us now

consider the simple case of Gaussian density p(·) with time-varying parameters,

where p ∼ N
(
µt, σ2

t
)
, i.e.:

p(yt; µt, σ2
t ) =

1
σt
√

2π
e−(yt−µt)

2
/

2σ2
t (3.21)

Also, in this case, the goal is to cluster time series with the same parameters µt and

σ2
t . However, differently from the static case, now the distribution parameters are

time series themselves. Therefore, the similarity between time series is defined as

the degree to which their parameters vary over time. In other words, two-time se-

ries n and n′ belong to the same cluster if they share similar time patterns in the

time-varying mean µt and/or in the time-varying variance σ2
t . For example, Cer-

queti, Giacalone, and Mattera (2021) considered a distance similar to the (3.3), i.e.

based on the auto-correlation structure of the time-varying parameters. Therefore,

to some extent, the distribution-based clustering with time-varying parameters is

even more related to the time series clustering literature with respect to its alterna-

tive with static parameters.

However, considering more than one time-varying parameter in the clustering pro-

cess has a consequence in terms of the dataset structure. Indeed, for each n-th time

series, there are J ≥ 1 parameters that vary over time as well. In other words, in this
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case, instead of dealing with a matrix F we have a three-dimensional tensor, specifi-

cally a time data array (D’urso, 2004; D’Urso and Maharaj, 2012; D’Urso et al., 2019),

where three dimensions (N time series, J parameters, T time) are involved such that:

F =
{

fn,j,t : n = 1, . . . , N; j = 1, . . . , J; t = 1, . . . , T
}

(3.22)

The graphical representation of the tensor is showed in Fig. 3.2.

FIGURE 3.2: Graphical representation of F{ fn,j,t : n = 1, . . . , N; j =
1, . . . , J; t = 1, . . . , T}

Clustering time series within a tensor input is more difficult than the standard case

where a matrix is involved. To overcome this issue, in Cerqueti, Giacalone, and

Mattera (2021) we considered a clustering problem with a target time-varying param-

eter. In doing so, one can obtain J alternative classifications based on each j-th time-

varying parameter. For example, in the case of Gaussian density, is it possible to get

a mean-based or a variance-based classification.

Differently from Cerqueti, Giacalone, and Mattera (2021), in what follows, we pro-

pose a novel clustering approach that, instead of choosing a single target parameter,

is based on multiple time-varying parameters. Therefore, it represents a direct ex-

tension for time-varying parameters of the model previously discussed in paragraph

3.3.1.
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The proposed clustering procedure is based on three main steps. In the first one,

the time-varying parameters are estimated and stored in a three-dimensional tensor

F, i.e. the time data array. Then, the elements of the resulting time data array are

clustered according to the two-step procedure of D’URSO (2004).

In order to model and estimate the time varying parameters we use the Gener-

alized Autoregressive Score (GAS) model Creal, Koopman, and Lucas, 2013. Let

Y{yn,t : n = 1, . . . , N; t = 1, . . . , T} be the matrix containing N time series of length

T generated by the following observation density p(·):

yn,t ∼ p(yn,t| fn,t,Fn,t; θn), (3.23)

where θn is a vector of static parameters, Fn,t is the information set at time t, fn,t

is a vector of length J(j = 1, . . . , J) of time-varying parameters depending by the

probability distribution. The model’s information set at a given point in time t, Fn,t,

is obtained by the previous realizations of the time series yn,t and the time varying

parameters fn,t.

In this context, crucial is the role of the time-varying parameter vector fn,t since it

represents the input of the proposed clustering procedure. In the paper we first

suppose that all the time series are generated by a Gaussian density with different

time-varying parameters. Therefore, for each n-th time series we have that the (3.23)

is equal to:

p(yt| ft,Ft; θ) =
1

σt
√

2π
e−(yt−µt)

2
/

2σ2
t (3.24)

where the time-varying parameters are fn,t = (µn,t, σ2
n,t) with J = 2, where µn,t and

σ2
n,t represent respectively the conditional mean and the conditional variance for the

n-th time series. By assuming different density functions, we get more (or less) J-th

time varying parameters. An interesting example exploited in the paper is given

by the assumption of t-student distribution for the density (3.23) for each n-th time

series:

p(yt| ft,Ft; θ) =
Γ
(

vt+1
2

)
Γ
( vt

2

)
φt
√

πvt

(
1 +

(yt − µt)2

vtφt

) vt+1
2

(3.25)
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where the time-varying parameters ft = (µt, φt, vt) are the conditional location µt,

the conditional scale φt and the conditional shape vt, respectively. The assumption

of t-student distribution is crucial for modelling time series with heavy-tails. Ad-

ditional probability distributions can be considered in this framework, such as the

Skew Normal, the Generalized Skew-t and many others.

In what follows, we propose to estimate the time-varying parameters (i.e. the con-

ditional moments) by the Generalized Autoregressive Score model of order one,

namely the GAS(1, 1). The GAS(1, 1), for any specification of the density in (3.23),

can be written as:

fn,j,t = ωn,j + An,j,1sn,j,t−1 + Bn,j,1 fn,j,t−1 (3.26)

where ωn,j is a real vector and An,j,1 and Bn,j,1 are diagonal matrices. All the scalar

parameters ωn,j, An,j,1, Bn,j,1 are collected in the vector θn. An appealing feature of

the GAS model is that the vector of parameters θn is estimated by maximum like-

lihood (for the details see Creal, Koopman, and Lucas, 2013). Moreover, sn,j,t is the

scaled score of the conditional density (3.23) in a time t with respect to a j-th param-

eter of the n-th time series.

In other words, in the GAS model we suppose that the evolution of the time-varying

parameter vector fn,t depends both by a vector sn,t, called scaled score since it is pro-

portional to the score of the density, and by an autoregressive component.

Clearly, the choice of the underlying probability distribution in (3.23) is very im-

portant since it changes the kind of score considered in (3.26) and, therefore, the

considered GAS model. The scaled score sn,t is given by:

sn,j,t = Sn,j,t · ∇n,j,t (3.27)

where ∇n,j,t is the conditional j-th score at time t for the n-th time series and it com-

puted as:

∇n,j,t =
∂ log p(yn,t| fn,t,Fn,t; θn)

∂ fn,t
(3.28)
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and Sn,j,t is a scaling matrix of appropriate dimension that is usually given by the

inverse of the Fisher information matrix:

Sn,j,t =
(

E
[
∇n,j,t∇′n,j,t

])−1
(3.29)

The aforementioned approach is the standard GAS proposed by Creal, Koopman,

and Lucas, 2013. However, different GAS model can be considered, for example

assuming a different scaling matrix Sn,j,t. As previously mentioned, the assumption

about the predictive density (3.23) is crucial also because it completely changes the

kind of score considered in the model. For example, assuming a Gaussian density as

in (3.24), the conditional score vector (3.28) is given by:

∇n,1,t =
(yt − µt)

σ2
t

∇n,2,t =
(yt − µt)2

2σ4
t

− T
2σ2

t

with∇n,j,t = (∇n,1,t,∇n,2,t) where∇n,1,t is the conditional score for the first moment

(i.e. the conditional mean) and ∇n,2,t is the one for the second conditional moment

(i.e. the conditional variance). Therefore the model’s variables and parameters are

given by:

ft =

µt

σ2
t

 , ω =

ω1

ω2

 , A =

a1 0

0 a2

 and B =

b1 0

0 b2



Moreover, in the case of t-student density (3.13) the conditional score vector is given

by:
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∇n,1,t =
(vt + 1)(yt − µt)

vtφt + (yt − µt)2

∇n,2,t =
1

2φt

[
(vt + 1)(yt − µt)2

vtφt + (yt − µt)2 − 1
]

∇n,3,t =
1
2

{
ψ

(
vt + 1

2

)
− ψ

(vt

2

)
− 1

vt
− log

(
1 +

(yt − µt)2

vtφt

)
+

(vt + 1)(yt − µt)2

vt [vtφt + (yt − µt)2]

}

where ψ(·) is the Digamma function. In this case the conditional score vector ∇t =

(∇n,1,t,∇n,2,t,∇n,3,t) is composed by the conditional location score ∇n,1,t, the condi-

tional scale score ∇n,2,t and the conditional shape score ∇n,3,t. In compact form we

have:

ft =


µt

φt

vt

 , ω =


ωµ

ωφ

ωv

 , A =


aµ 0 0

0 aφ 0

0 0 av

 and B =


bµ 0 0

0 bφ 0

0 0 bv



This model has also been defined as Beta-t-EGARCH model by Harvey (2013) and

Harvey and Sucarrat (2014).

Once the score are computed, the parameters in (3.26) are estimated by maximum

likelihood. Then, the conditional moments can be obtained by the in-sample predic-

tions f̂n,j,t as in Cerqueti, Giacalone, and Mattera (2021):

f̂n,j,t = ω̂n,j + Ân,j,1sn,j,t−1 + B̂n,j,1 fn,j,t−1 (3.30)

In order to cluster the objects contained into a time data array, we take inspiration

from the two-step procedure of D’urso (2004). In the first step, we compute, for

each n-th time series, the dissimilarity matrix between each pair of the J conditional

moments observed at T times. Thus, we obtain N distance matrices Dn. Then, in

the second step, we classify the N time series by considering a diversity measure

between each pair of distances Dn.

In more details, given the data time array F, we compute the dissimilarity Dn ={
dn,j,j′ : j, j′ = 1, J; j 6= j′

}
for the n-th object between the moments j and j′, observed
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at T times. Because the dissimilarity matrices are squared and symmetric with a

null diagonal, we can vectorize their lower triangular Ln obtaining vec (Ln). Then,

we define the following pairwise Euclidean dissimilarity between the time series n

and n′:

dn,n′ = ‖vec (Ln)− vec (Ln′)‖ (3.31)

For clustering, we adopt the fast k-medoids algorithm of Park and Jun, 2009. By

using an object in the sample rather than a fictitious one as a medoid, the k-medoids

algorithm leads to more interpretable results. Moreover, it is proved to be more

robust to outliers than the k-means, and it is also faster in terms of computational

time. The proposed clustering model can be formalized as follows:

min :
N

∑
n=1

C

∑
c=1

d2
n,c =

N

∑
n=1

C

∑
c=1
‖vec (Ln)− vec (Lc)‖2 (3.32)

where subscript c represents the centroid time series.

3.3.3 A simulation study

To show the validity of the proposed distribution-based clustering procedure, we

provide a simulation study. In particular, we compare the classification accuracy of

the proposed clustering approaches, based on both static and time-varying param-

eters, with other classical alternatives such as the Euclidean distance on raw time

series, based on correlations auto-correlations and periodogram ordinates.

Since in this case the ground truth is available, we measure the quality of classifica-

tion of the different clustering approaches by means of the Rand index Rand (1971).

Let Y be a set of N time series, a clustering K on Y allows to partition the set of

time series into non-overlapping grpups {K1, K2, . . . , KC}, where ∪C
i=1Ki = Y and

Ki ∩ Kj = ∅ for i 6= j. Let define with N11 the number of objects that are in the same

cluster in both K and K̃, N00 those that are in different clusters in both K and K̃ N01

the onse that are in the same cluster in K but in different clusters in K̃, and N10 the

number of time series that are in different clusters in K but in the same cluster in K̃.

As noted by Rand (1971), N11 and N00 can be used as measures about the degree of
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agreement in the classification between K and K̃ while, conversely, N01 and N10 can

be seen as measures of disagreement. The Rand index is defined as:

RI =
(N00 + N11) N

2

 (3.33)

However, since the RI often lies within the the range of [0.5, 1], Hubert and Arabie

(1985) proposed the following adjustment:

ARI =
2 (N00N11 − N01N10)

(N00 + N01) (N01 + N11) + (N00 + N10) (N10 + N11)
(3.34)

that is always between the range [0, 1]. It is called the Adjusted Rand Index (ARI).

An ARI value close to 0 indicates randomness in the partition, while a value close to

1 indicates a perfect classification. The comparison is made in terms of the average

Adjusted Rand Index (ARI) over 300 trials as in Díaz and Vilar (2010).

A first simulation scenario is generated as follows. A first set of N = 5 time series

is simulated considering a Gaussian distribution with a time-varying mean µ1,t and

variance σ2
1,t whose process are given by the Gaussian-GAS with parameters:

ω1 = (0.0490, 0.0154); A1 =

0.0001 0

0 0.0534

 ; B1 =

0.0485 0

0 0.9891



Then, we simulate another set of N = 5 Gaussian time series with µ2,t and σ2
2,t gen-

erated by a Gaussian-GAS process with the following parameters:

ω2 = (0.0840, 0.0456); A2 =

0.00001 0

0 0.0139

 ; B2 =

0.0660 0

0 0.0968



These parameters are calibrated according to two different, randomly selected, real

time series belonging to the Dow Jones 30 financial market index. we consider three

different scenarios in terms of time series’ length, namely T = {250, 1000, 2500, 5000}.
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In the first scenario, we have the shortest time series, while the last three have an al-

ways increasing size. The results are shown in Tab. 3.1.

T = 250 T = 1000 T = 2500 T = 5000

EUCL 0.0020 0.0007 0.0002 0.0010

COR 0.0019 0.0064 0.0195 0.0040

ACF 0.0123 0.0146 0.0017 0.0030

PER 0.0001 0.0002 0.0000 0.0010

DIST 0.0139 0.0408 0.1222 0.2530

DISTt 0.1581 0.6001 0.9352 0.9879

TABLE 3.1: Results of the simulation study: average adjusted Rand
index for N = 10 time series

Simulations in Tab. 3.1 clearly show that the distribution-based clustering with time-

varying parameters is the best clustering approach among the considered alterna-

tives. Indeed, its ARI is always the highest for all the simulated scenarios. Moreover,

the approach based on static distribution parameters dominates with respect to the

alternatives but performs worst than the approach with time-varying parameters.

This is because the underlying DGP assumes dynamic rather than static distribu-

tion parameters. Overall, all the approaches improve their performances with an

increasing time series length. Asymptotically, the distribution-based clustering with

time-varying parameters approaches to the value of 1, where a perfect classification

is achieved. On the other side, Euclidean and frequency domain distances provide

very random partition.

Let now consider the case of an increasing number of time series. So, instead of

considering N = 5 for both groups, we now consider N = 15 such that the to-

tal number of time series is three times greater. As in the previous experiment,

three different scenarios in terms of time series’ length have been simulated, namely

T = {250, 1000, 2500, 5000}. The results are shown in Tab. 3.2.
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T = 250 T = 1000 T = 2500 T = 5000

EUCL 0.0015 0.0006 0.0004 0.0023

COR 0.0036 0.0027 0.0015 0.0031

ACF 0.0015 0.0037 0.0035 0.0008

PER 0.0003 0.0000 0.0000 0.0000

DIST 0.0223 0.0549 0.1258 0.2389

DISTt 0.1499 0.6407 0.9352 0.9951

TABLE 3.2: Results of the simulation study: average adjusted Rand
index for N = 30 time series

In general, the results highlighted by Tab. 3.2 are not very different concerning those

of Tab. 3.1, meaning that the proposed clustering approaches based on distribu-

tion’s parameters perform well regardless of the dimensionality of the dataset. Tab.

3.2 confirm that the distribution-based clustering with time-varying parameters pro-

vides the best classification. Moreover, asymptotically we reach an ARI value close

to 1. Moreover, the static distribution-based approach remains the second-best clus-

tering model, even if the performances are lower than those of Tab. 3.1. Therefore,

the approach with static parameters seems to be more sensitive to the size of the

dataset.

3.4 Methodology

In what follows, we study the empirical performances of clustering in portfolio se-

lection, by evaluating if clustered portfolios return higher performances than stan-

dard ones. As briefly stated previously, clustered portfolios can be formed by the

application of any diversification rule to the C ≥ 2 subsets of stocks. In other words,

in order to build clustered portfolios the first step requires the selection of the clus-

tering approach (i.e. the employed distance and the kind of algorithm used). Once

a partition into C groups is found, C clustered portfolios can be obtained on the ba-

sis of the stocks belonging to each of the c ∈ C clusters. In the end, the optimal

amount of wealth associated to each of the C funds can be defined according to any

kind of optimization strategy. A simple approach consist in forming C roughly di-

versified portfolios by means of a naive diversification rule and, then, apply optimal
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diversification across the C funds. For example, we can use the minimum-variance

criterion:

min
w

w′Σw, s.t.
C

∑
c=1

wc = 1→ w∗ =
Σ−11N

1′NΣ−11N
(3.35)

where Σ−1 is the inverse of the C funds covariance matrix and:

w = (w1, . . . , wc, . . . , wC)

is the vector of C weights associated to each c-th clustered portfolio. However, an

investor can in principle construct C minimum variance portfolios and, then, uses

the same diversification criterion to diversify across the C minimum-variance funds.

Another alternative that we consider is to adopt a mean-variance diversification rule

across clustered portfolios, i.e. by means of the following optimal weighting scheme:

max
w

w′µ− γw′Σw→ w∗ =
1
γ

Σ−1µ (3.36)

with γ is the investor’s risk aversion coefficient. In what follows, we assume γ = 1.

Clustered portfolios can be formed on the basis of an either large or small asset uni-

verse N. In the first case, where N > T, we have a large dimensional setting, while in

the case N < T we have the standard low dimensional setting. It is well known that as-

set allocation in the first case is much more complex than in the second one because

when N > T the covariance matrix Σ is ill-conditioned and cannot be inverted. This

fact leads to an asset allocation that is is unfeasible. By alleviating the course of

dimensionality, clustering can be used as a tool to transform an high-dimensional

problem into C low-dimensional ones. Nevertheless, using clustered portfolio can

be in principle useful also in a low-dimensional setting.

In order to study the performances of clustered portfolios, we use the following

rolling-window strategy (DeMiguel, Garlappi, and Uppal, 2009). Given a matrix

Y with N time series of returns observed for T months, we choose an estimation

widow equal to M, to form C clustered according to the different clustering proce-

dures discussed so far in parapraph 3.2 and 3.3 that are used to form C naive clus-

tered portfolios. Then, we estimate the covariance structure across the C funds that
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is needed for the implementation of the minimum-variance strategy. To estimate the

covariance structure we use the static sample covariance estimator.

This process is recursively repeated by adding the return for the next period in the

dataset and dropping the earliest one until the end of the dataset is reached. The

result is, therefore, a time series of length (T −M) of returns.

Usually, a common choice is M = 120 for monthly data (see DeMiguel, Garlappi,

and Uppal (2009)). However, the clustering algorithms perform differently for long

and short time series (Díaz and Vilar, 2010). Indeed, it can be the case that clustering

approaches that work well with short time series perform instead poorly with very

long time series and vice versa. Since M represents the time series length within

each iteration, we consider different values, i.e. short, medium and long M.

Given the time series of monthly out-of-sample portfolio returns, we compute the

out-of-sample Sharpe ratio of the portfolio obtained using the k-th strategy, SRk, de-

fined as the sample mean of out-of-sample portfolio returns divided by its standard

deviation:

SRk =
µ̂k

σ̂k
(3.37)

where µ̂k is the average of the (T −M) out of sample returns for the portfolio using

the k-th clustering approach and σ̂k its standard deviation. Another approach that

can be used for assessing the out-of-sample performance lies, by assuming a mean-

variance investor, on the calculation of the certainty-equivalent (CEQ) return. The

CEQ return is defined as the risk-free rate that an investor is willing to accept rather

than adopting a particular risky portfolio strategy. The CEQ return can be computed

as follows:

CEQk = µ̂k −
γ

2
σ̂k (3.38)

Clearly, the approach with clustering is compared with the standard approaches

where clustering is not involved. In the case of high-dimensional experiment, where

N < T, the minimum-variance with Ledoit and Wolf (2003) covariance estimator

is used as benchmark. In the low-dimensional setting standard minimum-variance

with sample covariance is instead considered. Table 3.3 summarizes the investment
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strategies that are implemented.

Symbol Description

Benchmark

wSC investment strategy with sample covariance plug-in

wLW investment strategy with Ledoit and Wolf (2003) plug-in

Clustered portfolios

wEUCL investment strategy with Euclidean distance

wCOR investment strategy with correlation-based distance

wACF investment strategy with ACF-based distance

wNPER investment strategy with peridiogram-based distance

wHURST investment strategy with Hurst-based distance

wARMA investment strategy with ARMA-based distance

wGARCH investment strategy with GARCH-based distance

wnorm investment strategy with static Gaussian distance

wstd investment strategy with static t-student distance

wnormt investment strategy with time-varying Gaussian distance

wstdt investment strategy with time-varying t-student distance

TABLE 3.3: Implemented investment strategies

3.5 Experiments with common stocks

Common stocks have higher idiosyncratic risk if compared with already diversified

funds. In what follows, we consider common stocks that belong to market indices

as the input of asset allocation.

3.5.1 Low-dimension: Dow Jones constitutes

In what follows, we provide an application of clustered portfolios to Dow Jones

Index constitutes. More in details, as in the other empirical applications within this

thesis, we considered the monthly stock returns in the time period 10/1999-10/2019

and we excluded the stocks showing missing values. Hence, in this setting there are

N = 28 stocks observed for T = 240. The stock returns are showed in Fig. 3.3.



3.5. Experiments with common stocks 149

FIGURE 3.3: Dow Jones constitutes: returns

Main descriptive statistics are reported in Tab. 3.4. It is evident that stock returns

show different mean and standard deviations. Moreover, most of them are nega-

tively skewed and present excess of kurtosis larger than 0, meaning that most of

them do not follow a Gaussian distribution. This evidence, that is in line with styl-

ized facts, is also supported by the Jarque and Bera (1987) statistics that is very large

for most of the stocks in the sample.

The descriptive analysis of distributional features is important in motivating the

distribution-based clustering discussed so far. In particular, the fat tails justify the

adoption of a non-Gaussian distribution for clustering, for example by means of the

t-student density.
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Stock Mean St. Dev. Skewness Kurtosis JB

AA -0.0024 0.1177 -0.8173 4.6474 239.0056

AIG -0.0105 0.1975 -2.8406 41.5773 17459.1260

AXP 0.0066 0.0843 0.8403 12.9748 1692.6804

BA 0.0114 0.0826 -0.9460 3.0664 127.9152

BAC 0.0016 0.1177 -1.2942 10.2555 1106.2475

C -0.0039 0.1258 -1.7257 12.7357 1723.4572

CAT 0.0093 0.0944 -0.4415 2.9940 95.3566

CVX 0.0076 0.0586 -0.0434 0.5928 3.2804

DD 0.0050 0.1016 0.4732 8.5129 724.0188

DIS 0.0066 0.0709 -0.5472 2.2548 61.4368

GE -0.0029 0.0821 -0.4405 2.5041 68.8359

HD 0.0086 0.0741 -0.3331 0.9234 12.4918

HPQ 0.0027 0.1017 -0.3548 1.4433 25.0519

IBM 0.0034 0.0734 -0.1781 3.0076 89.5785

INTC 0.0033 0.1018 -1.2556 5.4498 355.6687

JNJ 0.0066 0.0490 -0.4096 1.4962 28.2570

JPM 0.0057 0.0890 -0.5694 1.5053 34.8375

KO 0.0042 0.0542 -0.5569 2.3146 64.5525

MCD 0.0088 0.0571 -0.8881 3.4394 147.5299

MMM 0.0079 0.0588 -0.0464 1.1873 13.5030

MRK 0.0036 0.0720 -0.5244 1.8045 42.5302

MSFT 0.0064 0.0857 -0.2992 3.4143 117.6315

PFE 0.0020 0.0580 -0.3336 0.2964 5.2234

PG 0.0062 0.0543 -2.4535 17.4012 3239.0990

T 0.0025 0.0666 -0.1888 1.3945 20.0616

VZ 0.0041 0.0654 0.3658 2.9530 90.4976

WMT 0.0056 0.0584 -0.3555 1.6771 32.1953

XOM 0.0050 0.0509 0.0017 1.1780 13.2006

TABLE 3.4: Descriptive statistics of the Dow Jones constitues. Jarque
and Bera (1987) statistics is also reported.



3.5. Experiments with common stocks 151

Minimum-variance approach

As stated previously, the estimation window used for the construction of minimum-

variance portfolios is initially set to be equal to M = 120. Hence, we start with a

medium sized estimation window. Since M > N we are in a low-dimensional setting.

In this scenario the sample covariance can be used for the estimating covariances

necessary for the implementation of the minimum-variance strategy. However, in

what follows, we also study the possibility of adopting a minimum-variance strat-

egy on the basis of clustered portfolios. In doing so, we recursively perform the

cluster analysis in order to build C portfolios that then become the input of the di-

versification strategy.

As stated previously, in each recursive step we choose the optimal number of clus-

ters according to the Average Silhouette Width (ASW) criterion. The maximum num-

ber of clusters is set to be equal to N/2, hence in this case we have that Cmax = 14. In

other words, in the worst case we have that C < M, hence a low-dimensional setting

is ensured.

The comparison in terms of out-of-sample performances is shown in Tab. 3.5.

Strategy Sharpe ratio CEQ

wSC 34.33% 1.12%

wEUCL 24.82% 0.83%

wCOR 27.93% 0.82%

wACF 33.77% 1.11%

wPER 22.82% 0.94%

wHURST 39.21% 1.23%

wARMA 36.22% 1.12%

wGARCH 33.99% 1.15%

wnorm 32.92% 1.04%

wstd 31.28% 1.22%

wnormt 28.36% 0.98%

wstdt 38.59% 1.44%

TABLE 3.5: Clustered portfolios: experiment with Dow Jones consti-
tutes (M = 120)- GMV approach



152 Chapter 3. On the performance of clustered portfolios

First of all, we note that not all clustering procedures are able to outperform the stan-

dard miniumum variance strategy. Therefore, clustering is not always useful. Nev-

ertheless, there are some strategies that perform very well compared to the bench-

mark. For example, the ACF-based clustered portfolios, as well as the GARCH-

based and the static distribution based ones, perform almost the same. Most of them

show also higher CEQ returns compared to the benchmark.

Moreover, there are also many strategies based on clustering that outperform the

benchmark. This is the case of the Hurst-based clustered portfolios, ARMA-based

and the student t-based with time varying parameters. In particular, the investment

strategy with Hurst-based clustered portfolio has the highest Sharpe ratio (39.2%),

followed by the student-t with time-varying parameters (38.6%). Note that in terms

of CEQ return the student-t clustered portfolio with time-varying parameters is the

best strategy. This means that the investor can improve the performances of her in-

vestment strategy by using clustering.

As stated above, the algorithms have different classification accuracy on the basis of

the time series lengths. To exploit this evidence, we repeated the experiment by as-

suming an estimation window equal to M = 60, i.e. where the clustering of shorter

time series is involved. The performances of the portfolios constructed in this way

are reported in Tab. 3.6.
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Strategy Sharpe ratio CEQ

wSC 24.87% 0.92%

wEUCL 17.35% 0.65%

wCOR 27.76% 0.81%

wACF 17.56% 0.55%

wPER 12.68% 0.45%

wHURST 17.33% 0.51%

wARMA 11.52% 0.38%

wGARCH 19.69% 0.63%

wnorm 15.83% 0.50%

wstd 39.93% 1.49%

wnormt 20.88% 0.68%

wstdt 12.52% 0.42%

TABLE 3.6: Clustered portfolios: experiment with Dow Jones consti-
tutes (M = 60) - GMV approach

Tab. 3.6 highlights that the strategy based on the Hurst-based clustering portfolios

is not anymore the best one. Moreover, only fewer clustering techniques perform

better than the benchmark with respect to the results of Tab. 3.5 (with M = 120).

Among the alternatives, however, the distribution-based clustering approach is con-

firmed to be one of best from the point of view of portfolio construction. Indeed, in

the case of Tab. 3.6 this strategy leads to the highest performances in terms of both

out-of-sample Sharpe ratio and CEQ return. More precisely, the t-student based

clustered portfolios guarantees a Sharpe ratio close to 40%, versus the 25% of the

benchmark. Therefore, we get again evidence in favor of clustering in portfolio se-

lection.

Then, we also suppose a larger estimation window with M = 180, that is the case

with the longest time series are considered for clustering. The results are showed in

Tab. 3.7.
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Strategy Sharpe ratio CEQ

wSC 33.16% 1.06%

wEUCL 22.50% 0.73%

wCOR 26.20% 0.74%

wACF 39.10% 1.13%

wPER 22.50% 0.73%

wHURST 30.61% 0.92%

wARMA 31.57% 0.86%

wGARCH 27.23% 0.75%

wnorm 31.17% 0.85%

wstd 25.28% 0.74%

wnormt 16.36% 0.50%

wstdt 16.34% 0.45%

TABLE 3.7: Clustered portfolios: experiment with Dow Jones consti-
tutes (M = 180) - GMV approach

In this case the ACF-based clustering provides the highest performances in terms of

out-of-sample Sharpe ratio and CEQ return. More in detail, the ACF-based clus-

tered portfolios return a Sharpe ratio of 39% while the benchmark 33%. In this

framework the distribution-based clustering approaches show enough robust per-

formances, even if other approaches seem to work better with longer time series.

In conclusion, this first experiment within a low-dimensional setting with minimum-

variance diversification across the C clustered funds reveal the usefulness of cluster-

ing in portfolio selection. The distribution-based approaches guarantee the most

robust performances among the different scenarios, while the highest outcome in

the case with short time series.

Mean-variance approach

Following the procedure explained in the methodology paragraph, we now consider

the case of mean-variance diversification rule across clustered portfolios. Also in this

case we consider a maximum number of clusters within each iteration of Cmax = 14.

The comparison in terms of out-of-sample performances is shown in Tab. 3.8.
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Strategy Sharpe ratio CEQ

wSC 19.77% 1.15%

wEUCL 6.68% 0.15%

wCOR 7.05% 0.25%

wACF 14.30% 0.92%

wPER 10.31% -20.22%

wHURST 9.40% -1.03%

wARMA 18.93% 1.21%

wGARCH -6.68% -10.56%

wnorm 10.22% 0.49%

wstd 29.78% 1.74%

wnormt 12.97% -1.06%

wstdt 28.85% 2.52%

TABLE 3.8: Clustered portfolios: experiment with Dow Jones consti-
tutes (M = 120) - Mean-Variance approach

Tab. 3.8 highlights that the best investment strategy is once again one based on clus-

tered funds. More in detail, the distribution-based clustering still returns the highest

out-of-sample performances when the student-t distribution is considered. In partic-

ular, both the static and dynamic approaches provide almost the same performances

in terms of Sharpe ratio (29.7% versus 28.8%) but there is a bigger difference in terms

of CEQ return, where the dynamic approach outperforms the static one.

The results obtained by considering the experiment with M = 60 (short time series)

are showed in Tab. 3.9.
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Strategy Sharpe ratio CEQ

wSC 22.33% 0.83%

wEUCL -12.39% -3.88%

wCOR 11.10% -3290%

wACF 40.75% 1.31%

wPER 38.96% 1.28%

wHURST 1.18% -0.52%

wARMA 10.66% 0.48%

wGARCH 23.87% 1.07%

wnorm 40.97% 1.23%

wstd 46.52% 1.59%

wnormt 16.40% 1.11%

wstdt 8.21% 0.33%

TABLE 3.9: Clustered portfolios: experiment with Dow Jones consti-
tutes (M = 60) - Mean-Variance approach

In this case many clustering-based investment strategies perform better than the

benchmark (with a Sharpe ratio of 22.3%). More in detail, the most competitive ap-

proach is given again by a distribution-based clustering with student-t distribution

(Sharpe ratio 46.5%). This result is confirmed also by looking at the CEQ return.

Then, the second best strategy is represented by the Gaussian distribution-based

clustering and, then, the ACF-based one. Note that in this case the approach with

time-varying parameters perform very poor with respect to the static approaches.

Therefore, while it can be an useful tool for clustering similar time series, it does not

seem to help much with respect the static approach from the portfolio selection task.

Then, we consider the case with M = 180, where longer time series are available

for recursive clustering procedure. The results in terms of financial performance are

reported in Tab. 3.10.
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Strategy Sharpe ratio CEQ

wSC 36.49% 1.96%

wEUCL 22.89% 0.76%

wCOR 23.86% 0.75%

wACF 41.27% 1.37%

wPER 22.89% 0.76%

wHURST 32.47% 1.16%

wARMA 35.88% 1.00%

wGARCH 21.89% 0.72%

wnorm 28.14% 0.83%

wstd 25.60% 0.83%

wnormt 8.67% 0.32%

wstdt 17.95% 0.77%

TABLE 3.10: Clustered portfolios: experiment with Dow Jones consti-
tutes (M = 180) - Mean-Variance approach

The results from Tab. 3.10 somehow confirm those of Tab. 3.7 because with longer

time series the ACF-based clustering approach provides the highest out-of-sample

performances. The Sharpe ratio associated to the strategy is equal to 41.2% versus

the 36.4% of the benchmark. Therefore, we get again the same evidence: not all clus-

tering algorithms are always useful but the ACF-based approach seems to lead to

higher performances with long time series, while the distribution-based approaches

are better suited if short time series (long-run portfolio analysis) are involved.

3.5.2 Large-dimension: S&P500 constitutes

In what follows we provide an experiment in a large-dimensional (or high-dimensional)

setting, where the estimation window M is lower than the number of assets N. In

this case, the covariance matrix is ill-conditioned and not invertible, so the asset al-

location becomes unfeasible. To fix this issue, Ledoit and Wolf (2003) and Ledoit and

Wolf (2004a) developed a covariance estimator with the shrinkage technique that is

invertible within this setting. Hence, in such a way the standard minimum-variance

or mean-variance allocation becomes feasible.

To study the usefulness of clustering in large dimensional setting we consider the

S&P500 constitutes from the 10/1999 to 10/2019. From all the stocks, we exclude
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those with missing values. Hence, we get a total asset universe of N = 286. Since

M = 60, 120, 180, we always have that M < N.

Clustering is standard technique used to reduce the course of dimensionality. In this

case, it is used to form C < M < N clustered funds that are used as the input of

a standard low-dimensional asset allocation. The diversification under Ledoit and

Wolf (2003) shrinkage estimator is assumed as benchmark.

Providing descriptive statistics and plots of the time series is prohibitive in this set-

ting and for this reason are skipped. Nevertheless, it is evident that there is a very

high degree of heterogeneity within the N = 286 stocks included in the sample.

According to unreported Jarque and Bera (1987) tests, most of the stock returns are

non-Gaussian and with heavy tailed distribution. This evidence justifies the use of

the student-t distribution for the implementation of the distribution-based cluster-

ing approach.

Minimum-variance approach

As usual, we first analyse the case with M = 120. The comparison of the different

approaches in terms of out-of-sample performances is shown in Tab. 3.11.

Strategy Sharpe ratio CEQ

wLW 41.36% 1.07%

wEUCL 22.42% 1.01%

wCOR -4.99% -0.49%

wACF 39.05% 1.38%

wPER 40.44% 1.32%

wHURST 30.50% 1.21%

wARMA 24.63% 1.10%

wGARCH 40.67% 1.43%

wnorm 42.26% 1.30%

wstd 43.64% 1.54%

wnormt 33.32% 1.35%

wstdt 15.47% 0.58%

TABLE 3.11: Clustered portfolios: experiment with S&P500 consti-
tutes (M = 120) - GMV approach
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In this setting, the Ledoit and Wolf (2003) is very competitive with a 41.3% of Sharpe

ratio but it does not provide the highest performances. Indeed, the distribution-

based clustering approaches, both with Gaussian and t-student distributions, pro-

vide superior performances. For example, in terms of Shapre ratio the Gaussian-

based clustering provides a value of 42.2% and the t-student one the 43.6% (it is the

highest value). In terms of CEQ return, similarly, we have that the t-student based

approach has a value of 1.54% that is again the highest return among all the alter-

natives. In other words, also in this setting clustering is useful. Despite the good

performances of the benchmark, the distribution-based clustering is the most effec-

tive to build portfolios. However, also other clustering-based strategies are as good

as the benchmark. With this respect, the GARCH clustering, the ACF-based and

the peridiogram-based clustering approaches return Sharpe ratios close or equal to

40%. In terms of CEQ return, instead, they show superior performances respect the

benchmark. Indeed, considering the CEQ return of 1.07% of the benchmark, the

ACF-based clustering has a CEQ return of 1.38%, the peridiogram-based a CEQ of

1.32% and the GARCH-based approach a CEQ of 1.43%. Moreover, in terms of CEQ

return the benchmark performs even poorer than the Hurst-based clustered portfo-

lios (1.21%) and the ARMA (1.1%).

Let now consider the experiment with M = 60, such that the concentration ratio

N/T is bigger than the previous case. Note that bigger is concentration ratio, higher

is the estimation error. This is true for any kind of asset allocation problem. The

out-of-sample comparisons are showed in Tab. 3.12.
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Strategy Sharpe ratio CEQ

wLW 32.65% 0.82%

wEUCL 25.71% 0.8%7

wCOR 29.80% 0.85%

wACF 30.48% 1.32%

wPER 20.60% 0.66%

wHURST 8.89% 0.39%

wARMA 5.41% 0.13%

wGARCH 26.28% 0.97%

wnorm 28.46% 0.83%

wstd 24.97% 0.88%

wnormt 13.10% 0.73%

wstdt 37.93% 2.41%

TABLE 3.12: Clustered portfolios: experiment with S&P500 consti-
tutes (M = 60) - GMV approach

In this case the considered algorithms take into account short time series for the defi-

nition of the clusters. The Ledoit & Wolf plug-in approach remains very competitive

but, still we are able to find a clustered portfolios with higher performance. In par-

ticular, the distribution-based clustering provide again the highest financial perfor-

mances. In particular, the clustering approach with time-varying parameters outper-

form all the alternatives in terms of both Sharpe ratio and CEQ return. The Sharpe

ratio associated to this strategy is more than 5% higher respect to the benchmark,

while the CEQ return is 1.5% higher as well. Moreover, we have to note that many

clustering algorithms overpeform the benchmark in terms of CEQ return, thus they

are able to generate greater economic benefits to the investor with mean-variance

utility.

Let now consider the case with an expanded time dimension, i.e. M = 180. The

results are reported in Tab. 3.13
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Strategy Sharpe ratio CEQ

wLW 41.05% 1.04%

wEUCL 23.35% 0.73%

wCOR 24.97% 0.82%

wACF 24.35% 0.76%

wPER 42.89% 1.11%

wHURST 24.65% 0.79%

wARMA 38.84% 1.18%

wGARCH 24.56% 0.73%

wnorm 41.62% 1.09%

wstd 37.02% 1.20%

wnormt 24.01% 0.78%

wstdt 45.53% 1.27%

TABLE 3.13: Clustered portfolios: experiment with S&P500 consti-
tutes (M = 180) - GMV approach

Also in this setting with relatively larger time series the distribution-based clustering

approach with time-varying parameters provides the highest out-of-sample perfor-

mances. In details, it guarantees a Sharpe ratio equal to 45.5%, versus the 41% of

the benchmark. Moreover, also the CEQ return is higher for the clustered portfolio.

However, also the approach with static parameters ensures relatively high perfor-

mances if compared with the alternatives.

Overall, from this experiment is evident that the distribution-based clustering algo-

rithms perform much better than the considered alternatives in out-of-sample, also

within a large dimensional setting.

Mean-variance approach

Let analyse the case of mean-variance diversification within the large dimensional

setting with common stocks. The out-of-sample comparisons for the experiment

with estimation window M = 120 are reported in Tab. 3.14.
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Strategy Sharpe ratio CEQ

wLW 17.49% 1.52%

wEUCL 11.13% 0.55%

wCOR 11.18% 0.60%

wACF 7.15% -5115%

wPER 8.13% 0.19%

wHURST 1.95% -0.52%

wARMA -2.29% -12%

wGARCH 13.57% 0.80%

wnorm 19.34% 0.93%

wstd 22.69% -13%

wnormt 7.97% -332%

wstdt 12.97% 0.38%

TABLE 3.14: Clustered portfolios: experiment with S&P500 consti-
tutes (M = 120) - Mean-Variance approach

In this case most of the clustering-based strategies perform poorer than the bench-

mark. Nevertheless, the distribution-based clustering approaches with static param-

eters ensure higher out-of-sample return/risk trade-off. Indeed, the Gaussian-based

approach has a Sharpe ratio equal to 19.3% versus the 17.4% of the benchmark, while

the t-sudent approach has a Sharpe ratio equal to 22.6%. However, in terms of CEQ

return the benchmark provides higher performances and the Gaussian-based clus-

tered portfolios approach is the second best. Overall, the Tab. 3.14 again confirms the

superiority of the distribution-based clustering in forming high performance portfo-

lios.

The results associated to the experiment with M = 60 are showed in Tab. 3.15.
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Strategy Sharpe ratio CEQ

wLW 22.24% 0.90 %

wEUCL 13.38% 0.48%

wCOR 17.12% 0.62 %

wACF -6.55% -7.37%

wPER 15.48% 0.51%

wHURST -11.81% -6.61%

wARMA 12.22% -7.19%

wGARCH 16.86% 0.71%

wnorm 28.70% 0.83%

wstd 18.17% 0.81%

wnormt 12.85% -6.37%

wstdt 7.17% -1.49%

TABLE 3.15: Clustered portfolios: experiment with S&P500 consti-
tutes (M = 60) - Mean-variance approach

The superiority of the distribution-based clustering is confirmed also for this sce-

nario. Indeed, the Gaussian distribution-based approach ensures a 6.5% additional

overperformance with respect the benchmark in terms of Sharpe ratio. According

to the CEQ returns, instead, the two strategies share almost the same performance

(0.07% of difference). Moreover, the distribution-based approach with t-student den-

sity is the second best strategy.

Let us consider the last case where M = 180. The performances are showed in Tab.

3.16.
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Strategy Sharpe ratio CEQ

wLW 26.01% 0.82%

wEUCL 33.32% 1.39%

wCOR 22.47% 1.10%

wACF 22.85% 0.71%

wPER 43.18% 1.13 %

wHURST 9.48% 0.33%

wARMA 28.66% 1.03%

wGARCH 28.26% 0.86%

wnorm 41.95 % 1.12%

wstd 32.56% 1.10%

wnormt 14.51% 0.60%

wstdt 18.40% 0.81%

TABLE 3.16: Clustered portfolios: experiment with S&P500 consti-
tutes (M = 180) - Mean-variance approach

In this last experiment, the frequency domain distance surprisingly performs very

well. Indeed, it is the strategy with the highest performances, with a Sharpe ratio

equal to 43.2% versus the 26% of the benchmark. Moreover, the distribution-based

clustering represents the second best alternative with a Sharpe ratio much greater

than the benchmark (it is equal to 42%). Moreover, it is interesting to note as most of

the clustering-based investment strategies perform better than the benchmark.

From these results we can surely conclude that clustering is potentially useful and

can improve the performances of an asset allocation strategy. In general, we do not

find that the same clustering procedure ensures the highest performances, and the

results changes on the basis of the considered sample. Nevertheless, it appear clearly

that the clustering approaches based on distribution parameters are those with the

most robust results, since they appear constantly to be the best approaches from

asset allocation perspective.
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3.6 Experiments with already diversified funds

While in the previous experiments we considered as starting points the stocks that

virtually contain high idiosyncratic risk, in what follows we work with already di-

versified funds. In the previous experiments we showed the usefulness of clustering

common stocks. In the following we study if those results hold also in this other

setting.

3.6.1 Low-dimension: 49 Industry Portfolios

First of all, we consider a low-dimensional setting where the number of assets is

greater than the estimation window N > M. To this aim, we take the 49 Industry

Portfolios from the Kenneth French website, from the time period between 10/1999-

10/2019. Therefore we have that N = 49 and T = 240. Fig. 3.4

FIGURE 3.4: 49 Industry Portfolio: returns

As in the other experiments, we study the out-of-sample performances of the invest-

ment strategies based on both minimum-variance and mean-variance approaches.

we start by presenting with the minimum-variance diversification rule.
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Minimum-variance approach

Let us start with the analysis of this low dimensional setting where an investor build

portfolios with a GMV diversification in the case of medium sized estimation win-

dow M = 120. Also in this case, in each recursive step we choose the optimal num-

ber of clusters according to the Average Silhouette Width (ASW) criterion. The max-

imum number of clusters is set to be equal to N/2, hence in this case we have that

Cmax = 24.

The comparison of the out-of-sample performances is reported in Tab. 3.17.

Strategy Sharpe ratio CEQ

wSC 24.56% -531.45%

wEUCL 21.31% -926.80%

wCOR 20.46% -879.16%

wACF 25.83% -813.52%

wPER -43.60% -23284.84%

wHURST 21.83% -760.57%

wARMA 22.04% -748.75%

wGARCH 19.18% -956.65%

wnorm 22.03% -935.02%

wstd 22.27% -941.25%

wnormt 21.04% -882.23%

wstdt 22.85% -906.41%

TABLE 3.17: Clustered portfolios: experiment with 49 Industry Port-
folio constitutes (M=120) - minimum variance approach

In this first case, most of the clustering-based portfolios show lower (but very simi-

lar) performances than the benchmark. The only strategy that allows a superior out-

of-sample Sharpe ratio is represented by the clustering with ACF-based distance. In

terms of CEQ returns, instead, all the strategies show negative values.

Tab. 3.24 shows the results in the case of a lower sample size for clustering, since

M = 60.
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Strategy Sharpe ratio CEQ

wSC 26.04% -497.29%

wEULC 17.19% -1057.17%

wCOR 24.84% -871.54%

wACF 22.53% -815.66%

wPER -51.26% -30867.76%

wHURST 23.32% -768.09%

wARMA 21.44% -835.57%

wGARCH 21.19% -1004.03%

wnorm 21.30% -881.13%

wstd 16.53% -1379.03%

wnormt 25.01% -890.48%

wstdt 18.79% -1173.34%

TABLE 3.18: Clustered portfolios: experiment with 49 Industry Port-
folio constitutes (M=60) - minimum variance approach

The results are in line with those of Tab. 3.17. The benchmark guarantees the highest

performances in this case but many clustering-based portfolios show very close per-

formances. In particular, the correlation-based and the distribution-based distances

are those with the highest out-of-sample Sharpe ratios. Also in this case, all the in-

vestment strategies provide negative CEQ returns.

Let now consider the last experiment with an increasing estimation window M =

180. The results are showed in Tab. 3.25.
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Strategy Sharpe ratio CEQ

wSC 26.71% -492.49%

wEUCL 20.23% -972.50%

wCOR 20.74% -871.35%

wACF 21.42% -898.18%

wPER -35.44% -13545.61%

wHURST 23.06% -879.98%

wARMA 22.25% -756.05%

wGARCH 20.12% -1006.42%

wnorm 21.94% -947.54%

wstd 18.52% -961.99%

wnormt 20.76% -955.42%

wstdt 24.03% -822.61%

TABLE 3.19: Clustered portfolios: experiment with 49 Industry Port-
folio constitutes (M=180) - minimum variance approach

As in the Tab. 3.18, the Tab. 3.25 shows that the benchmark outperform in out-of-

sample the clustering-based alternatives. This happen, perhaps, because the stocks

are already diversified funds.

Therefore, for the GMV setting, we observe that the clustering-based strategies do

not improve the benchmark, when we consider already diversified portfolios. These

results suggest that clustering is useful in presence of high idiosyncratic risk, as hap-

pen with common stock returns. Indeed, clustering-based portfolios are useful in the

extent to which roughly diversified funds are constructed in the first step.

Mean-variance approach

Within GMV setting we get evidence against the usefulness of clustering-based port-

folios for already diversified funds. In what follows, we repeat the same experiments

by considering a mean-variance diversification rule. Let us start with the case of

medium sized estimation window M = 120. The results in terms of out-of-sample

Sharpe ration and CEQ returns are showed in Tab. 3.14.
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Strategy Sharpe ratio CEQ

wSC -3.26% -159129.03%

wEUCL 1.68% -447897.27%

wCOR 13.11% -1690.40%

wACF 6.79% -389463.72%

wPER -11.62% -217010.49%

wHURST 2.07% -14611.38%

wARMA 4.55% -4728.59%

wGARCH -0.80% -20000.32%

wnorm 6.48% -1862019.74%

wstd -1.60% -86709.07%

wnormt -3.39% -8392544.39%

wstdt 20.18% -3551.03%

TABLE 3.20: Clustered portfolios: experiment with 49 Industry Port-
folio constitutes (M=120) - Mean-variance approach

In this case the benchmark has a negative Sharpe ratio and it is one of the worst

strategies in terms of out-of-sample performances. Indeed, almost all clustering-

based portfolios outperform the mean-variance allocation with sample covariance

plug-in on the whole sample. The investment strategy with the highest performance

is represented by the distribution-based clustering with time-varying parameters,

with the t-student as the underlying probability distribution (Sharpe ratio of 20.1%

versus the -3.2% of the benchmark).

The experiment with a shorter estimation window (M=60) is shown in Tab. 3.21.
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Strategy Sharpe ratio CEQ

wSC 4.43% -125484.39%

wEUCL 1.57% -1980045.08%

wCOR 12.02% -14048.78%

wACF -0.74% -59569.32%

wPER -16.79% -207499.87%

wHURST 3.52% -901507.27%

wARMA -3.84% -110652188.30%

wGARCH 3.90% -605960.59%

wnorm 6.93% -490497.18%

wstd 4.44% -59738.79%

wnormt 8.49% -22766.73%

wstdt -2.46% -109084.91%

TABLE 3.21: Clustered portfolios: experiment with 49 Industry Port-
folio constitutes (M=60) - Mean-variance approach

In this case the benchmark has a positive Sharpe ratio equal to 4.4% but still many

clustering-based portfolios outperform it. In particular, the strategy constructed

with correlation-based clustering ensures a Sharpe ratio equal to 12%. Moreover, we

have that the distribution-based clustering is associated to the second best Sharpe

ratio. Indeed, the approach with time varying parameters under Gaussian density

ensures a Sharpe ratio of 8.5%.

In the end, we analyze the case with M = 180, hence with an extended estimation

window (see Tab. 3.22).
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Strategy Sharpe ratio CEQ

wSC 2.91% -40929.36%

wEUCL 5.32% -314768.48%

wCOR 13.23% -1225.61%

wACF 7.52% -48985.90%

wPER -8.06% -558912.65%

wHURST 13.12% -1803.10%

wARMA 8.83% -1552.75%

wGARCH 0.77% -27783.10%

wnorm 5.23% -300801.94%

wstd 4.20% -44890.47%

wnormt 2.43% -42570.01%

wstdt 5.45% -95376.47%

TABLE 3.22: Clustered portfolios: experiment with 49 Industry Port-
folio constitutes (M=180) - Mean-variance approach

Also in this last case most of the clustering-based approaches outperform the bench-

mark. Hence, clustering is surely useful tool for asset allocation. In details, the

approach based on the correlation provides the highest out-of-sample Sharpe ratio

13.2% versus the 2.9% of the benchmark.

Overall, in the case of already diversified funds, the mean-variance diversification

rule the clustering-based approach generate important improvements in the out-of-

sample financial performances.

3.6.2 Large-dimension: 100 Industry Portfolios

In the previous sub-section we have studied the usefulness of clustering in asset allo-

cation involving already diversified funds within a low-dimensional setting. Over-

all, we find that clustering is useful only within a mean-variance diversification. This

fact can be explained by the ability of clustering in performing better in situations

where estimation error is higher. Therefore, following this intuition, in what follows

we analyze the case of large-dimensional setting where M < N and estimation error

further increases.

To this aim, we consider the 100 industry portfolios, from the Kenneth French web-

site, from the time period 10/1999-10/2019. Hence, in this case we have that N =
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100 and T = 240. In order to force the analysis to be in a large dimensional setting,

we consider two estimation windows M = 50 and M = 100. In both cases we have

that N ≥ M.

In particular, the case M = 50 represents a standard high dimensional setting, with

a concentration ratio equal to N/M = 2. The second case with M = 100 is a limit

one, where the concentration ratio takes value of 1. Within this framework, we study

the benefit of implementing clustering-based asset allocation strategies by following

both a Global Minimum Variance and a Mean-variance diversifications.

Minimum-variance approach

Let consider the GMV diversification strategy. The limit case with M = 100 is

showed in Tab. 3.23.

Strategy Sharpe ratio CEQ

wLW 20.97% -485.75%

wEUCL 18.40% -981.78%

wCOR 17.82% -962.08%

wACF 17.44% -1018.16%

wPER 20.24% -1000.73%

wHURST 17.32% -940.86%

wARMA 17.69% -900.97%

wGARCH 17.71% -1040.10%

wnorm 19.91% -826.14%

wstd 15.72% -1154.53%

wnormt 16.72% -985.56%

wstdt 16.79% -1245.54%

TABLE 3.23: Clustered portfolios: experiment with 100 Industry Port-
folio constitutes (M=100) - minimum variance approach

As we have seen for the low-dimensional setting, the benchmark with the Ledoit

& Wolf estimator outperforms the alternatives with a Sharpe ratio equal to 20.9%.

Nevertheless, the overperformance is not very high: both the peridiogram-based

clustering portfolios and those based on distribution parameters (under Gaussian

density) have Sharpe ratio equal to 20.2% and 19.9% respectively.
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Let now consider the more standard case with M = 50 < N. The results are showed

in Tab. 3.24.

Strategy Sharpe ratio CEQ

wLW 14.21% -696.72%

wEUCL 17.27% -947.70%

wCOR 15.24% -999.64%

wACF 13.16% -1171.05%

wPER 14.76% -910.51%

wHURST 16.80% -1216.09%

wARMA 12.03% -1277.90%

wGARCH 16.09% -1159.04%

wnorm 17.58% -858.81%

wstd 11.56% -1325.09%

wnormt 11.51% -1213.19%

wstdt 15.52% -1499.82%

TABLE 3.24: Clustered portfolios: experiment with 100 Industry Port-
folio constitutes (M=50) - minimum variance approach

In this experiment we observe that many clustering-based investment strategies per-

form better than the benchmark. Among them, the one with the highest performance

is the Gaussian distribution-based approach. Tab. 3.24 is the only exception where,

under GMV diversification with already diversified funds, the clustering-based ap-

proaches guarantee higher performances than the benchmark.

Mean-variance approach

If clustering seems to be less usefull for allocating wealth across already diversified

funds under GMV diversification, in this last section we study what happen if the

ideal investor uses a mean-variance rule.

Tab. 3.25 shows the results in the limit case with M = 100.
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Strategy Sharpe ratio CEQ

wLW 7.63% -68720.64%

wEUCL -3.83% -3026235.27%

wCOR -4.83% -2091844.24%

wACF 0.96% -1397942.58%

wPER 17.00% -5368.76%

wHURST 2.66% -671136.81%

wARMA -5.01% -2449516.68%

wGARCH -1.03% -2548425.76%

wnorm -10.14% -30613.70%

wstd 4.81% -522367.62%

wnormt 7.48% -1041184.55%

wstdt 0.74% -7142.56%

TABLE 3.25: Clustered portfolios: experiment with 100 Industry Port-
folio constitutes (M=100) - Mean-variance approach

These results confirm those of previous tables. Despite the benchmark performs

quite well (Sharpe ratio 7.6%), we am still able to find at least a clustering-based

allocation whose performances are higher. In this case, the peridiogram-based dis-

tance ensures a Sharpe ratio of 17% and also the CEQ return, even if negative, is the

highest among the alternatives.

The case with shorter estimation window is reported in Tab. 3.26 below.
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Strategy Sharpe ratio CEQ

wLW -4.18% -415428.85%

wEUCL 1.48% -545694.03%

wCOR 3.04% -23614126.54%

wACF 1.00% -23773485.37%

wPER 1.31% -2074317.43%

wHURST 0.09% -1876150.70%

wARMA 6.00% -3992195.84%

wGARCH 3.08% -1283954.12%

wnorm 2.09% -545669.80%

wstd 1.33% -539718.66%

wnormt 5.40% -1112853.14%

wstdt -1.78% -79671.87%

TABLE 3.26: Clustered portfolios: experiment with 100 Industry Port-
folio constitutes (M=50) - Mean-variance approach

In this scenario all the clustering approaches are better than the benchmark, despite

the fact that the algorithms deal with relatively short time series. The benchmark

Sharpe ratio is negative and equal to -4.2%. Among the considered alternatives, the

ARMA-based approach guarantees an out-of-sample Sharpe ratio equal to 6%. The

second best approach is represented by the Gaussian distribution-based clustering

with time-varying parameters.

3.7 Conclusions

Overall, the empirical findings suggest that in the case of common stocks (that con-

tain high idiosyncratic risk), clustering-based asset allocation is useful to the extent

to which, in the first step, they construct roughly diversified funds. With this re-

spect, it is important to highlight that clustering allows to build already diversified

funds on the basis of a better suited definition of similarity across time series.

In general, for common stocks we can always find clustering procedures that over-

perform the benchmark, regardless of the employed diversification rule (i.e. minimum-

variance or mean-variance). In the case of already diversified funds (proxied by the
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industry portfolios), with a minimum-variance diversification rule, the clustering-

based approach seems not to generate a substantial improvement in the out-of-

sample financial performances. In the case of mean-variance diversification, how-

ever, the opposite result hold. This evidence holds if both large and low dimensional

settings are considered. The fact that clustering-based portfolios perform better with

a mean-variance diversification suggests that clustering is useful to alleviate the es-

timation error problem that, as showed by Kourtis, Dotsis, and Markellos (2012),

contains ceteris paribus more estimation error than minimum-variance.

Nevertheless, even if this evidence seems promising, we do not find a single clus-

tering algorithm that performs better for all the datasets. Hence, the conclusions

highlighted above cannot be considered general. Indeed, the findings of this study

show that clustering is undoubtedly helpful if we deal with common stocks, but the

best algorithm should be chosen case-by-case based on backtesting activities.

Among the considered alternatives, the distribution-based approaches show the

most robust financial performances in out-of-sample. However, in this case, we

cannot find a specific underlying distributional assumption that consistently outper-

forms the others. This may be due to the best fit obtained in each recursion needed

to implement the asset allocation under the distribution-based clustering. Moreover,

it is also clear that the hypothesis of time-varying parameters is beneficial and leads

to better results, but not for all the considered experiments. This aspect deserves a

deeper investigation.

The future development of the proposed work can be related to comparing different

clustering algorithms rather than only dissimilarity measures. Indeed, we consider

only PAM clustering because of its higher computational speed, interpretability and

robustness to outliers than the k-means and the hierarchical clustering models. How-

ever, it would be interesting to evaluate the different algorithms’ ability to generate

high-performance portfolios.
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Appendix A

Appendix for the Chapter 1

A.1 Proofs of Chapter 1

A.1.1 Expectation-trace relationship

Given X ∼ N (µ, Σ) the quadratic form:

X′AX =
n

∑
i=1

n

∑
j=1

ai,jXiXj.

The expectation is:

E[X′AX] = E

[
n

∑
i=1

n

∑
j=1

ai,jXiXj

]
=

=
n

∑
i=1

n

∑
j=1

ai,jE
[
XiXj

]
=

=
n

∑
i=1

n

∑
j=1

ai,j(σi,j + µiµj) =

=
n

∑
i=1

n

∑
j=1

ai,jσj,i +
n

∑
i=1

n

∑
j=1

ai,jµiµj =

= tr(AΣ) + µ′Aµ.

If we have an idempotent matrix A the quadratic form above is distributed as a chi-

square with n degrees of freedom. (Muirhead (1982))

In the case A = Σ−1 we get E[X′Σ−1X] = tr(I) + µΣ−1µ = N + µ′Σ−1µ that follows

a not centered chi-square distribution. In the paper we used this identity in the case

A = I and A = Σ when we shrink the Unbiased Precision estimator towards the
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Identity. Hence we get E[X′ IX] = tr(Σ) + µ′ Iµ = λ2 and E[X′ΣX] = tr(ΣΣ) +

µ′Σµ = Q.

A.1.2 Proposition 2: Proof

All covariances admit the classical spectral decomposition as Σ = UΛU′, where U

is an ortoghonal matrix such that UU′ = U′U = I and Λ is a diagonal matrix con-

taining eigenvalues Λ = Diag(λ) with λ = (λ1, . . . , λN)
′. Therefore, also portfolio

weights could be decomposed similarly. Following Ledoit and Wolf, 2017:

ŵ =
1
γ

UΛ̂−1U′µ̂

Hence, given two matrices Ω̂1 and Ω̂2 that both admit the spectral decomposition

Ω̂1 = UΛ̂−1
1 U′ and Ω̂2 = UΛ̂−1

2 U′, we can write our maximization problem as

follows:

E[U(ŵs)] = E
[

1
γ

µ̂′UΛ̂−1
s U′µ

]
− γ

2
E

[(
1
γ

UΛ̂−1
s U′µ̂

)′
UΛU′

(
1
γ

UΛ̂−1
s U′µ̂

)]

where Λs = α∗Λ−1
1 + (1− α∗)Λ−1

2 . Hence:

E[U(ŵs)] = E
[

1
γ

µ̂′U(αΛ−1
1 + (1− α)Λ−1

2 )U′µ
]
+

− γ

2
E
[

1
γ2 µ̂′U

(
αΛ−1

1 + (1− α)Λ−1
2

)
U′UΛU′U

(
αΛ−1

1 + (1− α)Λ−1
2

)
U′µ̂

]
=

= E
[

α

γ
µ̂′UΛ−1

1 U′µ +
(1− α)

γ
µ̂′UΛ−1

1 U′µ
]
+

− 1
2γ

E
[(

αµ̂′UΛ−1
1 Λ + (1− α)µ̂′UΛ−1

2 Λ
) (

αΛ−1
1 U′µ̂ + (1− α)Λ−1

2 U′µ̂
)]

.

Given orthogonality of U. The first term is exactly equivalent to E
[

α
γ µ̂′Ω̂−1

2 µ + (1−α)
γ µ̂′Ω̂−1

2 µ
]
.

Let’s analyse the second term:
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1
2γ

E
[(

αµ̂′UΛ−1
1 Λ + (1− α)µ̂′UΛ−1

2 Λ
) (

αΛ−1
1 U′µ̂ + (1− α)Λ−1

2 U′µ̂
)]

=

=
1

2γ
E
[
α2µ̂′UΛ−1

1 ΛΛ−1
1 U′µ̂ + (1− α)2µ̂′UΛ−1

2 ΛΛ−1
2 U′µ̂ + 2α(1− α)µ̂′UΛ−1

1 ΛΛ−1
2 U′µ̂

]

Now, recognizing that UΛ−1
1 ΛΛ−1

1 U′ = Ω̂−1
1 ΣΩ̂−1

1 , UΛ−1
2 ΛΛ−1

2 U′ = Ω̂−1
2 ΣΩ̂−1

2 and

UΛ−1
1 ΛΛ−1

2 U′ = Ω̂−1
1 ΣΩ̂−1

2 , the proof is completed.

A.1.3 Shrinkage rules

To prove that, we have to recall some properties. First of all, assuming that re-

turns are jointly normally distributed and i.i.d., maximum likelihood estimators of

mean and covariance are independent each other, where the covariance follows a

Wishart distribution Σ̂ ∼ W(T− 1, Σ). Therefore we use the following relationships.

First, W = Σ−1/2Σ̂MLΣ−1/2 that implies Σ̂−1
ML = Σ−1/2W−1Σ−1/2, where E[W−1] =

T/(T − N − 2). Second, E[W−2] = T2(T − 2)/(T − N − 1)(T − N − 2)(T − N − 4).

Third, the quadratic form µ̂′Σ−1µ̂ follows a not centered chi-square distribution

which expected value is E[µ̂′Σ−1µ̂] = (N + Tµ′Σ−1µ)/T. (Muirhead (1982))

Suppose that Ω̂1 = Σ̂PM. In this case, a = E[Σ̂−1
PMµ̂]. Hence, we have to deter-

mine two quantities: E[µ̂Σ̂−1
PMµ] and E[µ̂Σ̂−1

PMΣΣ̂−1
PMµ̂]. The first, namely the squared

Sharpe ratio of the strategy, is equal to:

E[a′µ] = E
[
µ̂′Σ̂−1

PMµ
]
=

= E
[
(T − N − 2)

T
µ̂′Σ̂−1

MLµ

]
=

=
(T − N − 2)

T
E
[
µ̂′Σ−1/2W−1Σ−1/2µ

]
=

=
(T − N − 2)

T
T

(T − N − 2)
E
[
µ̂′Σ−1/2Σ−1/2µ

]
= µ′Σ−1µ =

E[a′µ] = θ2.

Then the quantity E[a′Σa] is equal to:
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E[a′Σa] = E
[(

Σ̂−1
PMµ̂

)′
Σ
(

Σ̂−1
PMµ̂

)]
=

=
(T − N − 2)2

T2 E
[(

µ̂′Σ̂−1
MLΣΣ̂−1

MLµ̂
)]

=

=
(T − N − 2)2

T2 E
[(

µ̂′Σ−1/2W−2Σ−1/2µ̂
)]

=

=
(T − N − 2)2

T2
T2(T − 2)

(T − N − 1)(T − N − 2)(T − N − 4)

(
N + Tθ2

T

)
=

=
(T − 2)(T − N − 2)

(T − N − 1)(T − N − 4)

(
N + Tθ2

T

)
=

E[a′Σa] = c1
N
T

+ c1θ2,

where c1 = (T− 2)(T−N− 2)/(T−N− 1)(T−N− 4) as defined by Tu and Zhou,

2011. This two quantities will be always the same in our shrinkage operations. Now

let us consider first the case where Ω̂2 = I, hence b = Iµ̂. In this case, the squared

Sharpe ratio of this strategy is simply:

E[b′µ] = E
[
µ̂′µ̂
]
= tr(Σ) + µ′µ = λ2.

That could be derived by the expectation-trace identity showed in A.1. Then, with

the same identity, we can find the value of the associated estimation error:

E[b′Σb] = E
[
µ̂′Σµ̂

]
= tr(ΣΣ) + µ′Σµ = Q.

The last ingredient we need to determine optimal shrinkage intensity is the quantity

E[a′Σb]:
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E[a′Σb] = E
[
µ̂′Σ̂−1

PMΣµ̂
]
=

=
(T − N − 2)

T
E
[
µ̂′Σ̂−1

MLΣµ̂
]
=

=
(T − N − 2)

T
E
[
µ̂′Σ−1/2W−1Σ−1/2Σµ̂

]
=

=
(T − N − 2)

T
T

(T − N − 2)
E
[
µ̂′µ̂
]
= tr(Σ) + µ′µ =

E[b′µ] = λ2.

Hence, optimal shrinkage intensity is:

α∗ =
θ2 − 2λ2 + Q

c1
N
T + c1θ2 + Q− 2λ2

Consider now the case Ω̂2 = ΣEW . As the Identity case, we need to determine E[b′µ

and E[b′Σb]. Since b = Σ−1
EW µ̂ = 1/N = we, we get that E[b′µ] = w′eµ and E[b′Σb] =

w′eΣwe. So we need to determine E[a′Σb] for this second shrinkage operation:

E[a′Σb] = E
[
µ̂′Σ̂−1

PMΣwe

]
=

=
(T − N − 2)

T
E
[
µ̂′Σ̂−1

MLΣwe

]
=

=
(T − N − 2)

T
E
[
µ̂′Σ−1/2W−1Σ−1/2Σwe

]
=

=
(T − N − 2)

T
T

(T − N − 2)
E
[
µ̂′we

]
= µ′we =

E[a′Σb] = µ′we.

Since numerically µ′we = w′eµ, we get the following optimal shrinkage intensity:

α∗ =
θ2 − 2w′eµ + w′eΣwe

c1
N
T + c1θ2 + w′eΣwe − 2w′eµ

.

So we have easily proved that this equation is exactly the same of Tu and Zhou, 2011.

Then, we study the performance of the following shrinkage estimator:
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Σ̂−1
s = αΣ̂−1

PM + (1− α)Σ̂−1
c3

Also here we have to determine the value of the three quantities. Starting from

E[b′µ]:

E[b′µ] = E
[
µ̂′Σ̂−1

c3
µ
]
=

= E
[
(T − N − 1)(T − N − 4)

T(T − 2)
µ̂′Σ̂−1

MLµ

]
=

=
(T − N − 1)(T − N − 4)

T(T − 2)
E
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µ̂′Σ−1/2W−1Σ−1/2µ

]
=
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(T − N − 1)(T − N − 4)

T(T − 2)
T

(T − N − 2)
E
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µ̂′Σ−1/2Σ−1/2µ

]
=

=
(T − N − 1)(T − N − 4)

(T − N − 2)(T − 2)
µ′Σ−1µ =

E[b′µ] =
1
c1

θ2.

Then E[b′Σb] is:

E[b′Σb] = E
[(

Σ̂−1
c3

µ̂
)′

Σ
(

Σ̂−1
c3

µ̂
)]

=

=
(T − N − 1)2(T − N − 4)2

T2(T − 2)2 E
[(

µ̂′Σ̂−1
MLΣΣ̂−1

MLµ̂
)]

=

=
(T − N − 1)2(T − N − 4)2

T2(T − 2)2 E
[(

µ̂′Σ−1/2W−2Σ−1/2µ̂
)]

=

=
(T − N − 1)2(T − N − 4)2

T2(T − 2)2
T2(T − 2)

(T − N − 1)(T − N − 2)(T − N − 4)

(
N + Tθ2

T

)
=

=
(T − N − 1)(T − N − 4)

(T − N − 2)(T − 2)

(
N + Tθ2

T

)
=

E[b′Σb] =
1
c1

N
T

+
1
c1

θ2.

In the end, we have to determine E[a′Σb]:
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E[a′Σb] = E
[(

Σ̂−1
PMµ̂

)′
Σ
(

Σ̂−1
c3

µ̂
)]

=

=
(T − N − 1)(T − N − 2)(T − N − 4)

T2(T − 2)
E
[(

µ̂′Σ̂−1
MLΣΣ̂−1

MLµ̂
)]

=

=
(T − N − 1)(T − N − 2)(T − N − 4)

T2(T − 2)
E
[(

µ̂′Σ−1/2W−2Σ−1/2µ̂
)]

=

=
(T − N − 1)(T − N − 2)(T − N − 4)

T2(T − 2)
T2(T − 2)

(T − N − 1)(T − N − 2)(T − N − 4)

(
N + Tθ2

T

)
=

E[a′Σb] =
N
T

+ θ2.

Hence, optimal shrinkage intensity is:

α∗ =
θ2 − 1

c1
θ2 + 1

c1

N
T + 1

c1
θ2 − N

T − θ2

c1
N
T + c1θ2 + 1

c1

N
T + 1

c1
θ2 − 2 N

T − 2θ2
=

=
( 1

c1
− 1)N

T

(c1 +
1
c1
− 2)N

T +
(

c1 +
1
c1
− 2
)

θ2
=

=

(
1−c1

c1

)
N
T(

1+c2
1−2c1
c1

)
N
T +

(
1+c2

1−2c1
c1

)
θ2

=

α∗ =

(
1−c1

c1

)
N
T(

(1−c1)2

c1

)
N
T +

(
(1−c1)2

c1

)
θ2

.

Suppose, now, to consider Ω̂1 = Σ̂c3 . We study the shrinkage of c3 towards both

Identity and equally weighted. Above we have already defined all the involved

quantities, despite E[a′Σb] that in this case is:
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E[a′Σb] = E
[(

Σ̂−1
c3

µ̂
)′

Σ (Iµ̂)

]
=

=
(T − N − 1)(T − N − 4)

T(T − 2)
E
[(

µ̂′Σ̂−1
MLΣµ̂

)]
=

=
(T − N − 1)(T − N − 4)

T(T − 2)
E
[(

µ̂′Σ−1/2W−1Σ−1/2Σµ̂
)]

=

=
(T − N − 1)(T − N − 4)

T(T − 2)
T

(T − N − 2)
E
[(

µ̂′Σ−1/2Σ−1/2Σµ̂
)]

=

E[a′Σb] =
1
c1

λ2.

Therefore, for shrinkage Σ̂−1
c3

towards Identity I, the optimal shrinkage intensity is:

α∗ =
1
c1

θ2 − λ2 + Q− 1
c1

λ2

1
c1

N
T + 1

c1
θ2 + Q− 2 1

c1
λ2

=

α∗ =

1
c1

θ2 −
(

1 + 1
c1

)
λ2 + Q

1
c1

(
θ2 + N

T − 2λ2
)
+ Q

.

Then, we suppose to shrink Σ̂−1
c3

towards the implied equally weighted covariace

Σ−1
EW . Now E[a′Σb] is equal to:

E[a′Σb] = E
[(

Σ̂−1
c3

µ̂
)′

Σ
(

Σ−1
EW µ̂

)]
=

=
(T − N − 1)(T − N − 4)

T(T − 2)
E
[(

µ̂′Σ̂−1
MLΣwe

)]
=

=
(T − N − 1)(T − N − 4)

T(T − 2)
E
[(

µ̂′Σ−1/2W−1Σ−1/2Σwe

)]
=

=
(T − N − 1)(T − N − 4)

T(T − 2)
T

(T − N − 2)
E
[(

µ̂′we
)]

=

E[a′Σb] =
1
c1

µ′we =
1
c1

w′eµ.

Hence optimal shrinkage intensity is:
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α∗ =
1
c1

θ2 − w′eµ + w′eΣwe − 1
c1

w′eµ
1
c1

N
T + 1

c1
θ2 + w′eΣwe − 2w′eµ

=

α∗ =

1
c1

θ2 −
(

1 + 1
c1

)
w′eµ + w′eΣwe

1
c1

N
T + 1

c1
θ2 + w′eΣwe − 2w′eµ

.

In the end, suppose Ω̂1 = Σ̂c∗ and that we shrink c∗ towards equally Identity matrix

I. In this case E[a′Σb]:

E[a′Σb] = E
[(

Σ̂−1
c∗ µ̂

)′
Σ (Iµ̂)

]
=

=
(T − N − 1)(T − N − 4)

T(T − 2)

(
θ2

θ2 + N
T

)
E
[(

µ̂′Σ̂−1
MLΣµ̂

)]
=

=
(T − N − 1)(T − N − 4)

T(T − 2)

(
θ2

θ2 + N
T

)
E
[(

µ̂′Σ−1/2W−1Σ−1/2Σµ̂
)]

=

=
(T − N − 1)(T − N − 4)

(T − N − 2)(T − 2)

(
θ2

θ2 + N
T

)
λ2 =

E[a′Σb] =
1
c1

(
θ2

θ2 + N
T

)
λ2.

Then optimal α∗ is:

α∗ =

1
c1

(
θ4

θ2+N/T

)
− λ2 + Q− 1

c1

(
θ2

θ2+ N
T

)
λ2

1
c1

(N
T + θ2

)
+ Q− 2 1

c1

(
θ2

θ2+ N
T

)
λ2

.

The last exercise is to shrink c∗ towards equally weighted covariance matrix ΣEW . In

this case E[a′Σb] is:



186 Appendix A. Appendix for the Chapter 1

E[a′Σb] = E
[(

Σ̂−1
c∗ µ̂

)′
Σ
(

Σ̂−1
EW µ̂

)]
=

=
(T − N − 1)(T − N − 4)

T(T − 2)

(
θ2

θ2 + N
T

)
E
[(

µ̂′Σ̂−1
MLΣwe

)]
=

=
(T − N − 1)(T − N − 4)

T(T − 2)

(
θ2

θ2 + N
T

)
E
[(

µ̂′Σ−1/2W−1Σ−1/2Σwe

)]
=

=
(T − N − 1)(T − N − 4)

(T − N − 2)(T − 2)

(
θ2

θ2 + N
T

)
µ′we =

E[a′Σb] =
1
c1

(
θ2

θ2 + N
T

)
w′eµ.

Then optimal α∗ is:

α∗ =

1
c1

(
θ4

θ2+N/T

)
− w′eµ + w′eΣwe − 1

c1

(
θ2

θ2+ N
T

)
w′eµ

1
c1

(N
T + θ2

)
+ w′eΣwe − 2 1

c1

(
θ2

θ2+ N
T

)
w′eµ

.

A.1.4 Unbiased estimator for Q

In what follows we derived the unbiased estimator for Q = tr(ΣΣ) + µ′Σµ. Its

sample counterpart Q̂ = µ̂′Σ̂SCµ̂ is biased since:

E[Q̂] = E
[
µ̂′Σ̂SCµ̂

]
=

T
T − 1

E
[
µ̂′Σ̂MLµ̂

]
=

=
T

T − 1
E
[
µ̂′Σ1/2WΣ1/2µ̂

]
=

T
T − 1

T − N − 2
T

E
[
µ̂′Σµ̂

]
=

E[Q̂] =
T − N − 2

T − 1
[
tr(ΣΣ) + µ′Σµ

]
6= Q.

Hence, with the corrective factor (T − 1)/(T − N − 2) we get unibiasdeness.

A.1.5 Shrinkage of any sample estimate towards c∗

As mentioned in the main text, if we shrink any plug-in towards Biased Optimal

Scaled with c∗ as in (1.19) and in (1.20) lead to an α∗ = 0. This happen because,

from an utility maximization point of view, the BOS is already an utility maximizer
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estimator. To show that, consider first the case of shrinking Unbiased Precision esti-

mator towards BOS. The value of E[b′µ] in this case:

E[b′µ] = E
[
µ̂′Σ̂−1

c∗ µ
]
=

= E

[
(T − N − 1)(T − N − 4)

T(T − 2)

(
θ2

θ2 + N
T

)
µ̂′Σ̂−1

MLµ

]
=

=
(T − N − 1)(T − N − 4)

T(T − 2)

(
θ2

θ2 + N
T

)
E
[
µ̂′Σ−1/2W−1Σ−1/2µ

]
=

=
(T − N − 1)(T − N − 4)

T(T − 2)
T

(T − N − 2)

(
θ2

θ2 + N
T

)
E
[
µ̂′Σ−1/2Σ−1/2µ

]
=

=
(T − N − 1)(T − N − 4)

(T − N − 2)(T − 2)

(
θ2

θ2 + N
T

)
θ2 =

E[b′µ] =
1
c1

(
θ4

θ2 + N
T

)

Then E[b′Σb] is:

E[b′Σb] = E
[(

Σ̂−1
c∗ µ̂

)′
Σ
(

Σ̂−1
c∗ µ̂

)]
=

=
(T − N − 1)2(T − N − 4)2

T2(T − 2)2

(
θ2

θ2 + N
T

)2

E
[(

µ̂′Σ̂−1
MLΣΣ̂−1

MLµ̂
)]

=

=
(T − N − 1)2(T − N − 4)2

T2(T − 2)2

(
θ2

θ2 + N
T

)2

E
[(

µ̂′Σ−1/2W−2Σ−1/2µ̂
)]

=

=
(T − N − 1)2(T − N − 4)2

T2(T − 2)2
T2(T − 2)

(T − N − 1)(T − N − 2)(T − N − 4)

(
θ2

θ2 + N
T

)2 (
N
T

+ θ2
)
=

=
(T − N − 1)(T − N − 4)

(T − N − 2)(T − 2)

(
θ2

θ2 + N
T

)2 (
N
T

+ θ2
)
=

E[b′Σb] =
1
c1

(
θ4

θ2 + N
T

)
.

In the end, we have to determine E[a′Σb]:
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E[a′Σb] = E
[(

Σ̂−1
PMµ̂

)′
Σ
(

Σ̂−1
c∗ µ̂

)]
=

=
(T − N − 1)(T − N − 2)(T − N − 4)

T2(T − 2)

(
θ2

θ2 + N
T

)
E
[(

µ̂′Σ̂−1
MLΣΣ̂−1

MLµ̂
)]

=

=
(T − N − 1)(T − N − 2)(T − N − 4)

T2(T − 2)

(
θ2

θ2 + N
T

)
E
[(

µ̂′Σ−1/2W−2Σ−1/2µ̂
)]

=

=

(
θ2

θ2 + N
T

)(
N
T

+ θ2
)
=

E[a′Σb] = θ2.

Hence, optimal shrinkage intensity is:

α∗ =
E[a′µ]− E[b′µ] + E[b′Σb]− E[a′Σb]

E[a′Σa] + E[b′Σb]− 2E[a′Σb]
=

α∗ =
θ2 − 1

c1

(
θ4

θ2+ N
T

)
+ 1

c1

(
θ4

θ2+ N
T

)
− θ2

c1
(N

T + θ2
)
+ 1

c1

(
θ2

θ2+ N
T

)
− 2θ2

.

That is clearly equal to zero because of the numerator. Equally, (1− α∗) = 1 since:

(1− α∗) =
E[b′µ]− E[a′µ] + E[a′Σa]− E[a′Σb]

E[a′Σa] + E[b′Σb]− 2E[a′Σb]
=

(1− α∗) =

1
c1

(
θ2

θ2+ N
T

)
− θ2 + c1

(N
T + θ2)− θ2

c1
(N

T + θ2
)
+ 1

c1

(
θ2

θ2+ N
T

)
− 2θ2

= 1.

Then, the same apply if we shrink c3 towards c∗ estimators. Suppose now BOS is

Ω̂1. Optimal shrinkage intensity α∗ = 1. Remember the following quantities in this

case, all that have already been derived in the Appendix A.1.3:

• E[a′µ] = 1
c1

(
θ4

θ2+N/T

)
;

• E[b′µ] = 1
c1

θ2;

• E[b′Σb] = 1
c1

(N
T + θ2);
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• E[a′Σa] = 1
c1

(
θ4

θ2+N/T

)
;

• while E[a′Σb] is:

E[a′Σb] = E
[(

Σ̂−1
c∗ µ̂

)′
Σ
(

Σ̂−1
c3

µ̂
)]

=

=
(T − N − 1)2(T − N − 4)2

T2(T − 2)2

(
θ2

θ2 + N
T

)
E
[(

µ̂′Σ̂−1
MLΣΣ̂−1

MLµ̂
)]

=

=
(T − N − 1)2(T − N − 4)2

T2(T − 2)2

(
θ2

θ2 + N
T

)
E
[(

µ̂′Σ−1/2W−2Σ−1/2µ̂
)]

=

=
(T − N − 1)(T − N − 4)

(T − N − 2)(T − 2)

(
θ2

θ2 + N
T

)(
N
T

+ θ2
)
=

E[a′Σb] =
1
c1

θ2.

Hence α∗ is:

α∗ =
E[a′µ]− E[b′µ] + E[b′Σb]− E[a′Σb]

E[a′Σa] + E[b′Σb]− 2E[a′Σb]
=

α∗ =

1
c1

(
θ4

θ2+N/T

)
− 1

c1
θ2 + 1

c1

(N
T + θ2)− 1

c1
θ2

1
c1

(N
T + θ2

)
+ 1

c1

(N
T + θ2

)
− 2 1

c1
θ2

= 1.

As we were claiming before.

A.1.6 Percieved expected utilities

Statistical tools that we used to derive results here are the same of Appendix A.1.3.

Suppose, first, the case where Σ is known while µ it is not:
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E[U(ŵ)|Σ, µ̂] = E
[

1
γ

µ̂′Σ−1µ̂

]
− γ

2
E
[

1
γ

µ̂′Σ−1Σ
1
γ

Σ−1µ̂

]
=

=
1
γ

E
[
µ̂′Σ−1µ̂

]
− γ

2
1

γ2 E
[
µ̂′Σ−1ΣΣ−1µ̂

]
=

=
1
γ

E
[
µ̂′Σ−1µ̂

]
− 1

2γ
E
[
µ̂′Σ−1µ̂

]
=

1
2γ

E
[
µ̂′Σ−1µ̂

]
=

1
2γ

(
N
T

+ θ2
)

.

Then, suppose now the case where Σ is unknown while µ is known:

E[U(ŵ)|Σ̂ML, µ] = E
[

1
γ

µ′Σ̂−1
MLµ

]
− γ

2
E
[

1
γ

µ′Σ̂−1
MLΣ̂ML

1
γ

Σ̂−1
MLµ

]
=

=
1
γ

µ′E
[
Σ̂−1

ML

]
µ− γ

2
1

γ2 µ′E
[
Σ̂−1

MLΣ̂MLΣ̂−1
ML

]
µ =

=
1
γ

µ′E
[
Σ̂−1

ML

]
µ− 1

2γ
µ′E

[
Σ̂−1

ML

]
µ =

=
1

2γ
µ′E

[
Σ−1/2W−1Σ−1/2

]
µ =

1
2γ

T − N − 2
T

θ2.

Suppose, instead, that both are unknown, where Σ = Σ̂ML:

E[U(ŵML)|Σ̂, µ̂] = E
[

1
γ

µ̂′Σ̂−1
MLµ̂

]
− γ

2
E
[

1
γ

µ̂′Σ̂−1
MLΣ̂ML

1
γ

Σ̂−1
MLµ̂

]
=

=
1
γ

E
[
µ̂′Σ̂−1

MLµ̂
]
− 1

2γ
E
[
µ̂′Σ̂−1

MLµ̂
]
=

1
2γ

E
[
µ̂′Σ̂−1

MLµ̂
]
=

=
1

2γ
E
[
µ̂′Σ−1/2W−1Σ−1/2µ̂

]
=

1
2γ

T
T − N − 2

E
[
µ̂′Σ−1µ̂

]
=

=
1

2γ

T
T − N − 2

(
N
T

+ θ2
)
=

1
2γ

N
T − N − 2

+
1

2γ

T
T − N − 2

θ2 =⇒

E[U(ŵML)] =
1

2γ

1
T − N − 2

(
N + Tθ2)

Suppose, then, the case of sample covariance. In this case percieved utility is:
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E[U(ŵSC)|Σ̂, µ̂] = E
[

1
γ

µ̂′Σ̂−1
SC µ̂

]
− γ

2
E
[

1
γ

µ̂′Σ̂−1
SC Σ̂SC

1
γ

Σ̂−1
SC µ̂

]
=

=
1
γ

T − 1
T

E
[
µ̂′Σ̂−1

MLµ̂
]
− 1

2γ

T − 1
T

E
[
µ̂′Σ̂−1

MLµ̂
]
=

1
2γ

T − 1
T

E
[
µ̂′Σ̂−1

MLµ̂
]
=

=
1

2γ

T − 1
T

E
[
µ̂′Σ−1/2W−1Σ−1/2µ̂

]
=

1
2γ

T − 1
T

T
T − N − 2

E
[
µ̂′Σ−1µ̂

]
=

E[U(ŵSC)] =
1

2γ

T − 1
T − N − 2

(
N
T

+ θ2
)

.

Then, we consider the Unbiased Precision (PM) Estimator. We have that:

E[U(ŵPM)|Σ̂, µ̂] = E
[

1
γ

µ̂′Σ̂−1
PMµ̂

]
− γ

2
E
[

1
γ

µ̂′Σ̂−1
PMΣ̂PM

1
γ

Σ̂−1
PMµ̂

]
=

=
1
γ

T − N − 2
T

E
[
µ̂′Σ̂−1

MLµ̂
]
− 1

2γ

T − N − 2
T

E
[
µ̂′Σ̂−1

MLµ̂
]
=

1
2γ

T − N − 2
T

E
[
µ̂′Σ̂−1

MLµ̂
]
=

=
1

2γ

T − N − 2
T

E
[
µ̂′Σ−1/2W−1Σ−1/2µ̂

]
=

1
2γ

T − N − 2
T

T
T − N − 2

E
[
µ̂′Σ−1µ̂

]
=

E[U(ŵPM)] =
1

2γ

(
N
T

+ θ2
)

.

In the case of equally weighted strategy, where the investor estimate mean and co-

variance via MLE, perceived utility is:

E[U(ŵew)|Σ̂, µ̂] = E[w′eµ̂]−
γ

2
E
[
w′eΣ̂we

]
= w′eE[µ̂]− γ

2
w′eE[Σ̂ML]we =

= w′eµ−
γ

2
w′eE[Σ1/2WΣ1/2]we = w′eµ−

γ

2
T − N − 2

T
w′eΣwe.

where we = (1/N, . . . , 1/N) is a constant vector.
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A.1.7 Maximum likelihood is the (perceived) optimal strategy

E
[

c
γ

µ̂′Σ̂−1
MLµ̂

]
− γ

2
E
[

c2

γ2 µ̂′Σ̂−1
MLΣ̂MLΣ̂−1

MLµ̂

]
=

=
c
γ

E
[
µ̂′Σ̂−1

MLµ̂
]
− c2

2γ
E
[
µ̂′Σ̂−1

MLµ̂
]
=

c
γ

E
[
µ̂′Σ−1/2W−1Σ−1/2µ̂

]
− c2

2γ
E
[
µ̂′Σ−1/2W−1Σ−1/2µ̂

]
=

c
γ

T
T − N − 2

E
[
µ̂′Σ−1µ̂

]
− c2

2γ

T
T − N − 2

E
[
µ̂′Σ−1µ̂

]
=

c
γ

T
T − N − 2

(
N
T

+ θ2
)
− c2

2γ

T
T − N − 2

(
N
T

+ θ2
)
=

∂ c
γ

T
T−N−2

(N
T + θ2)− c2

2γ
T

T−N−2

(N
T + θ2)

∂c
= 0

1
γ

T
T − N − 2

(
N
T

+ θ2
)
− c

γ

T
T − N − 2

(
N
T

+ θ2
)
= 0

1
γ

T
T − N − 2

(
N
T

+ θ2
)
=

c
γ

T
T − N − 2

(
N
T

+ θ2
)
=

c∗ = 1. (A.1)

A.2 Accuracy of the simulations contained in the Chapter 1

Kan & Zhou (2007) studied analytically the estimation error. Estimation error has

been defined as the loss in investor’s utility due to mistakes in estimating optimal

portfolio weights. In other words, remember formula (1.3):

`(w∗, ŵ) = U(w∗)− E[U(ŵ)]

where w∗ is the vector of optimal portfolio weights and ŵ is the vector of the esti-

mated weights, by plug-in estimators for µ and Σ that we define µ̂ and Σ̂. Here we

have to specify that, while in U(w∗) there is no estimation at all and all quantities

are known, for E[U(ŵ)] parameter estimation is considered just within the weights.

Indeed, note that:

E[U(ŵ)] = E[ŵ′µ]− γ

2
E
[
ŵ′Σŵ

]

where as we know:
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ŵ =
1
γ

Σ̂−1µ̂

Now, as in Kan and Zhou (2007), for µ̂ we always we consider maximum likelihood

estimator, while for Σ̂ we consider several alternative estimators (e.g. maximum

likelihood, sample covariance, Unbiased Precision estimator, Identity and later on a

new shrinkage). Before to start estimators comparisons we want first to show that

our simulations will be correct, in the sense that the expected losses obtained by

simulations have to be very accurate approximations of closed formula derived by

Kan and Zhou (2007). Indeed, differently from Kan and Zhou (2007), we will not

mix closed losses with simulated one but we will instead evaluate all strategies via

simulations for a more fair comparison. This is the reason why simulation results

must be very good approximations of closed results. In order to do so, we focus on

maximum likelihood (therefore, MLE) estimation where both µ̂ and Σ̂ are estimated

via MLE.

Suppose first to consider the case where, in estimating ŵ, Σ is known and µ is esti-

mated via MLE so we have:

ŵ =
1
γ

Σ−1µ̂

Closed loss, that we call `1 in this case is:

`1 =
N

2γT
(A.2)

Tables A.1 and A.2 report a comparison of `1 values with the results obtained from

M simulations, considering N = 5 and N = 30 assets with T = 60 observations and

different values of γ.

From both tables we can recognize that simulation accuracy for this first case is very

good, since difference between `1 and simulated loss is of the order 1/10000 and in

several cases also of 1/1000000. With known covariance there is not a significant

difference in accuracy between N = 5 and N = 30.
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`1 Simulations Difference

γ = 0.3

M=1000 0.1388889 0.1449699 -0.006081043

M=10000 0.1388889 0.139362 -0.0004731072

M=100000 0.1388889 0.1390584 -0.0001694949

γ = 1

M=1000 0.04166667 0.04126821 0.0003984527

M=10000 0.04166667 0.04173014 -6.347148e−05

M=100000 0.04166667 0.04167376 -7.096134e−06

γ = 3

M=1000 0.01388889 0.01403942 -0.0001505312

M=10000 0.01388889 0.01373378 0.0001551044

M=100000 0.01388889 0.0139588 -6.991176e−05

TABLE A.1: Allocation ŵ with Σ and µ̂: closed loss vs simulations
with N = 5

Time series length `1 Simulations Difference

γ = 0.3

M=1000 0.8333333 0.8301875 0.003145805

M=10000 0.8333333 0.8324443 0.0008890506

M=100000 0.8333333 0.833451 -0.0001177057

γ = 1

M=1000 0.25 0.2488644 0.001135552

M=10000 0.25 0.2487208 0.00127924

M=100000 0.25 0.2504122 -0.000412231

γ = 3

M=1000 0.08333333 0.08339203 -5.870147e−05

M=10000 0.08333333 0.08339914 -6.580329e−05

M=100000 0.08333333 0.08330997 2.336758e−05

TABLE A.2: Allocation ŵ with Σ and µ̂: closed loss vs simulations
with N = 30

Then, consider the case where in estimating ŵ, µ is known and Σ is estimated via

MLE so we have:
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ŵ =
1
γ

Σ̂−1µ

Closed loss, that we call `2 in this case is:

`2 = (1− k1)
θ2

2γ
(A.3)

where θ2 is the true squared Sharpe ratio. Tables A.3 and A.4 report a comparison of

`2 values with the results obtained from M simulations.

In this second case simulation accuracy is much higher with N = 5 rather than

N = 30. Indeed, while the approximation order is almost about 1/100000 in the

first case, it is of 1/100 in the second one. This is probably due to covariance matrix

inversion of simulated data that is problematical not only from simulation itself but

also by the fact that T − N is lower in the second scenario.

Time series length `2 Simulations Difference

γ = 0.3

M=1000 0.01347972 0.01321439 0.0002653283

M=10000 0.01347972 0.01290361 0.0005761089

M=100000 0.01347972 0.0127488 0.0007309113

γ = 1

M=1000 0.004043915 0.0039757 6.82147e−05

M=10000 0.004043915 0.003750547 0.0002933673

M=100000 0.004043915 0.003829548 0.0002143666

γ = 3

M=1000 0.001347972 0.001260536 8.743548e−05

M=10000 0.001347972 0.001263504 8.446758e−05

M=100000 0.001347972 0.001270044 7.792721e−05

TABLE A.3: Allocation ŵ with Σ̂ and µ: closed loss vs simulations
with N = 5
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Time series length `2 Simulations Difference

γ = 0.3

M=1000 0.9950749 0.8232067 0.1718681

M=10000 0.9950749 0.8520843 0.1429906

M=100000 0.9950749 0.8534032 0.1416717

γ = 1

M=1000 0.2985225 0.2429061 0.05561637

M=10000 0.2985225 0.2568785 0.04164394

M=100000 0.2985225 0.2564265 0.04209601

γ = 3

M=1000 0.09950749 0.08117736 0.01833013

M=10000 0.09950749 0.08489173 0.01461576

M=100000 0.09950749 0.08577764 0.01372985

TABLE A.4: Allocation ŵ with Σ̂ and µ: closed loss vs simulations
with N = 30

Last, we consider the case where within ŵ both µ and Σ are estimated via MLE

so we have:

ŵ =
1
γ

Σ̂−1µ̂

Closed loss, that we call `3 in this case is:

`3 = (1− k1)
θ2

2γ
+

NT(T − 2)
2γ(T − N − 1)(T − N − 2)(T − N − 4)

(A.4)

Tables A.5 and A.6 report a comparison of `3 values with the results obtained from

M simulations.

In this last case simulation accuracy is not so problematic with N = 5 assets, even

if we need to make a lot of simulations (at least M = 100000) to get a difference of

the order 1/1000. Instead, with N = 30 assets trough simulations we do not get

very good results, in the sense that loss is a bit far from the actual value, even with

M = 100000. Nevertheless, with increasing M we increase our accuracy. Therefore,

in this case we need a lot of simulations (that takes a lot of time to be completed) for
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well approximating `3. In general these results suggests that our simulation scheme

is generally correct. Nevertheless, for a fair comparisons do not seems to be the case

of comparing closed formulas with simulations as in Kan and Zhou (2007), since

in several scenarios simulations under estimate too much the loss with respect to

the closed formula. This point is very important and has to be stressed. Since for

several strategies do not exist any closed loss, if we systemically under estimate that

trough simulation, we can conclude that a certain strategy over performs another

one for which we use a closed loss `. Therefore, if our aim is to compare different

asset allocation strategies for which we have only partially closed losses, we suggest

to use directly simulated losses for all the strategies. In this way we’ll never make

mistakes.

Time series length `3 Simulations Difference

γ = 0.3

M=1000 0.2121616 0.1724365 0.03972505

M=10000 0.2121616 0.1760426 0.03611894

M=100000 0.2121616 0.1768457 0.03531585

γ = 1

M=1000 0.06364847 0.0534151 0.01023337

M=10000 0.06364847 0.05411348 0.009534989

M=100000 0.06364847 0.05321563 0.01043284

γ = 3

M=1000 0.02121616 0.01728941 0.003926747

M=10000 0.02121616 0.01796729 0.003248865

M=100000 0.02121616 0.01776633 0.003449827

TABLE A.5: Allocation ŵ with Σ̂ and µ̂: closed loss vs simulations
with N = 5
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Time series length `3 Simulations Difference

γ = 0.3

M=1000 9.236833 2.892582 6.344251

M=10000 9.236833 2.887576 6.349258

M=100000 9.236833 2.901796 6.335037

γ = 1

M=1000 2.77105 0.8585785 1.912471

M=10000 2.77105 0.8667776 1.904272

M=100000 2.77105 0.8718123 1.899238

γ = 3

M=1000 0.9236833 0.2886334 0.6350499

M=10000 0.9236833 0.2878283 0.635855

M=100000 0.9236833 0.2897285 0.6339548

TABLE A.6: Allocation ŵ with Σ̂ and µ̂: closed loss vs simulations
with N = 30
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Appendix B

Volatility clustering in financial

markets

The following pages are absolutely not intended as a review about the past and

recent developments of statistical techniques for dealing with volatility clustering.

There are many books as well as special issues in field journals with this aim. How-

ever, in what follows I provide some very simple arguments and few evidences to

explain why conditional heteroskedasticity models (mainly GARCH and DCC) are

used by both academics and financial industry practitioners. In few words,we can

argue that "...the GARCH specification does not arise directly out of any economic theory

but, as in the traditional autoregressive moving average time-series analogue, it provides a

close and parsimonious approximation to the form of heteroscedasticity typically encountered

with economic time-series data" (Bollerslev, Engle, and Wooldridge, 1988).

B.1 Modelling conditional heteroskedasticity

The idea of modeling volatility as function of time born 40 years ago and is due to a

Rob Engle’s paper, published in the 1982, in which he introduced the autoregressive

conditional heteroskedasticity (ARCH) model (Engle, 1982). Despite the application

provided in the paper was related to a macroeconomic time series (i.e. the inflation),

is perhaps more common nowadays the application of such methods to financial

markets data. Indeed, the most important developments in conditional volatility

modelling have been introduced by financial econometricians.

The main idea underlying ARCH modelling is the following. Let consider a random

variable Yt that is drawn from a conditional density function f (yt|yt−1), meaning

that the forecast of today’s value are based upon the past information, as happen
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with standard autoregressive models. Under standard assumptions, the forecast is

simply given by its expected value E [yt|yt−1]. What about the variance? Engle (1982)

noted that the variance of the simple one-period forecast is given by V [yt|yt−1],

meaning that the conditional forecast variance depends upon past information and

may therefore be a random variable as well!

However, the main limitation of the classical autoregressive processes is that the

variance of yt is just given by the White Noise variance σ2
ε . A model that accommo-

dates the dependence between the conditional variance and past realization of the

time series is given by:

yt = εtyt−1

which variance is given by σ2
ε y2

t−1. However, for this model the unconditional vari-

ance is either zero or infinity, so a preferable alternative is given by:

yt = εth1/2
t ,

ht = α0 + α1y2
t−1,

that has σ2
ε = 1. This is the simple Autoregressive Conditional Heteroscedastic-

ity (ARCH) model of order one, that can be generalized in order to include P(p =

1, . . . , P) lags of yt. A generalization that includes also Q(q = 1, . . . , Q) moving av-

erage components has been introduced by Bollerslev (1986) (Generalized ARCH or

GARCH). Note that the squared values of yt, included in the variance equation ht,

is used as predictor. Another simple explanation can be found in the fact that the

variance of a random variable Y can be written as V(Y) = E[Y2] − E[Y]2, but for

a zero-mean process it holds that V(Y) = E[Y2]. Hence, it is natural to model the

variance of zero-mean processes as linear combination of previous squared realiza-

tions. Moreover, it is important to highlight that, if we consider Yt as the demeaned

returns’ process, nowadays both squared and absolute returns are used as proxy of

volatility in financial markets (Forsberg and Ghysels, 2007). This happen because

absolute returns show the same empirical properties, in terms of persistency of the

processes, of squared returns.



B.2. Volatility clustering 201

B.2 Volatility clustering

As briefly stated before, although applied to macroeconomic time series, the ARCH

and GARCH models1 were quickly found to be relevant for the conditional volatility

of financial returns. This happen because conditional heteroskedasticity models are

well suited in dealing with the volatility clustering phenomenon, that is common for

returns of any kind of financial asset. Volatility clustering refers to the evidence that

a certain degree of auto-correlation structure is present in volatility dynamics, such

that high volatility periods are followed by high volatility periods and low volatility

is followed by low volatility.

Actually, volatility clustering is common not only for financial markets but also for

macroeconomic time series. Indeed, the first evidence of volatility clustering has

been documented by McNees in 1974. The author, in Forecasting Record for the 1970’s,

wrote that "large and small (forecasting) errors tend to cluster together in contiguous

time periods". Then, Bollerslev (1987) popularized the use of GARCH for modeling

stock returns’ volatility clustering. Since then, hundred of papers that extended or

used the simple GARCH process of Bollerslev (1986) have been published. Engle

(1982) proposed a Lagrange Multiplier (LM) test for the presence of ARCH effects

and Engle (1982) demonstrated the presence of volatility clustering in UK inflation

time series. The LM test can be easily summarized as follows. Let consider the

univariate time series:

yt = µt + εt,

where µt is the conditional mean of the process, and εt is an uncorrelated innovation

process with mean zero. Suppose the innovations are generated by:

εt = h1/2
t zt,

where zt is an independent and identically distributed process with mean 0 and vari-

ance 1. Let Ft denote the history of the process available at time t. The conditional

1As well as their later extensions, that are not included here because of brevity. A very good refer-
ence for an interesting reader is given by the Handbook of Volatility modeling (Bauwens, Hafner, and
Laurent, 2012).
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variance of yt is:

Var (yt | Ft−1) = Var (εt | Ft−1) = E
(
ε2

t | Ft−1
)
= h2

t

Thus, conditional heteroscedasticity in the variance process is equivalent to autocor-

relation in the squared innovation process. Define the residual series:

et = yt − µ̂t

If all autocorrelation in the original series, yt, is accounted for in the conditional

mean model, then the residuals are uncorrelated with mean zero. However, the

residuals can still be serially dependent. The alternative hypothesis for Engle’s

ARCH test is autocorrelation in the squared residuals, given by the regression

Ha : e2
t = α0 + α1e2

t−1 + . . . + αme2
t−m + ut,

where ut is a white noise error process. The null hypothesis is H0 : α0 = α1 = . . . =

αm = 0. Alternatively, it is possible to check for serial dependence (ARCH effects)

in a residual series by conducting a Ljung-Box Q-test on some m lags of the squared

residual series.

To see what does volatility clustering means in practice, let consider the daily S&P500

Index time series in the time period 1/1/1990-1/1/2021. In the following Fig. B.1

are reported the log-prices, de-meaned returns, squared and absolute de-meaned

returns that are used as proxies of volatility.
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FIGURE B.1: S&P 500 Index: prices and returns

From Fig. B.1 it is evident that volatility clustering phenomenon in both squared

and absolute returns. Indeed, it seems that high (low) volatility is followed by high

(low) volatility. In other words, the volatility dynamics show an auto-correlation

structure. As further argument, Fig. B.2 shows the ACFs for prices and the simple,

squared and absolute returns.

(A) S&P500 prices’ ACF (B) Simple returns’ ACF

(C) Squared returns’ ACF (D) Absolute returns’ ACF

FIGURE B.2: Auto-correlation functions at different lags for prices
and simple, squared and absolute S&P500 returns

From Fig. B.2 we observe a very strong ACF structure for the index prices and a
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much weaker for the returns. This is a stylized fact of financial returns (Cont, 2001)

since prices are integrated time series. Nevertheless, the most important message

from Fig. B.2 is that both the proxy of volatility (i.e. squared and absolute returns)

show a strong auto-correlation structure, much greather than simple returns, thus

confirming the hypothesis of volatility clustering.

But why does volatility change over time? Schwert (1989) documented the existence

of a link between the conditional volatility of macroeconomic variables with the one

of stock returns. Moreover, confirming the findings of Christie (1982), he also shown

that financial leverage partly explains the phenomenon.

Despite the contribution of Schwert (1989) is old, it remains dateless. Just to mention

an example, recent advances in GARCH modeling proposed by Engle and Rangel

(2008) and Rangel and Engle (2012) (spline-GARCH models) and Engle, Ghysels,

and Sohn (2013) (GARCH-MIDAS), shown that volatility and correlations can be

decomposed into short and long-run components and that macroeconomic factors

are particularly useful in explaining these quantities in the long-run. Clearly, these

studies take inspiration from the Schwert (1989) findings. Overall, it is reasonable

to agree that nowadays we have a good understanding about what motivates the

dynamic nature of volatility and correlation.

B.3 Modelling conditional variance matrices

If volatility is a time-varying quantity, it is natural to expect that correlation is dy-

namic as well. Modelling conditional correlations can be useful in many context of

finance, such as the portfolio selection, where it is interesting modelling the entire

covariance structure. The ARCH and GARCH models, usually be used for mod-

elling volatility of single time series, can be considered as generating processes of

the correlation between two time series. Let us consider a simple N × N covariance

matrix:

Σ =


σ2

1 σ2,1 · · · σN,1

σ1,2 σ2
2 · · · σN,2

...
...

. . .
...

σ1,N σ2,N · · · σ2
N
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Assuming that both variances and covariances are time-varying, the following dy-

namic covariance should be considered:

Σt =


σ2

1,t σ2,1,t · · · σN,1,t

σ1,2,t σ2
2,t · · · σN,2,t

...
...

. . .
...

σ1,N,t σ2,N,t · · · σ2
N,t



An accurate and parsimonious modelling of both variances and covariances that

accounts for heteroskedasticity can be achieved by multivariate extension of the

GARCH process. Engle, Granger, and Kraft (1984) was the first considering a bivari-

ate ARCH model. In particular, they applied to the forecast errors of two competing

models of US inflation, so that their conditional covariance matrix adapts over time.

The first financial application is due to Bollerslev, Engle, and Wooldridge (1988),

that developed a multivariate GARCH (MGARCH) to model conditional moments

rather than unconditional in the CAPM.

The main problem of the MGARCH is that it has too many parameters to be useful

for modeling more than two asset returns jointly. Indeed, it is known that practi-

tioners face an asset universe N that is large. Hence, later literature tried to design

models that can be estimated for larger dimensions. Important milestones are the

Constant Conditional Correlation (CCC) of Bollerslev et al. (1990) and the BEKK of

Engle and Kroner (1995).

The CCC model introduced the following decomposition:

Σt = DtΓDt

with Dt a diagonal matrix with volatilties (i.e. Dt = H1/2
t with H be the matrix

containing the variances) and Γ a constant matrix of correlations. Obviously, consid-

ering static correlations is counter-intuitive. Indeed, the quantities within Γ should

be time varying as Dt varies through time.

The CCC was followed 12 years later by the Dynamic Conditional Correlation model

(DCC) of Engle (2002), that is nowadays considered as the benchmark approach

for modelling conditional correlations. The DCC model, explained in more details
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within the main text of Chapter 2, simply considers the decomposition:

Σt = DtΓtDt

with a time-varying correlations Γt. Before the introduction of the DCC, a very pop-

ular model for covariance matrix was given by the BEKK (Engle and Kroner, 1995):

Σt = CC′ +
p

∑
i=1

Ai
(
yt−iy′t−i

)
A′i +

q

∑
j=1

BjΣt−jB′j

where {Ai}
p
i=1 and

{
Bj
}q

j=1 are non-negative and symmetric matrices. The sandwich

products are used to ensure the positive semi definiteness property of the covariance

without imposing further constraint. However, despite its merit, the BEKK remains

rather complex to handle and computationally more challenging in large dimension

than the DCC. This is the reason why DCC is so popular nowadays. Clearly, from

the work of Engle (2002) there have been many developments. Discussing or using

these models is outside the scope of this appendix and of the whole Chapter 2.

B.4 Forecasting volatility and covariances

Forecasting volatility is a very difficult task because it is a latent concept. Indeed,

as already discussed, econometricians use some proxies such as squared or absolute

returns as input variables of volatility models.

Adopting this idea, the easiest way to capture volatility clustering is by letting to-

morrow’s variance be the simple average of the most recent m squared observations:

σ̂2
t =

1
m

m

∑
τ=1

y2
t−τ =

m

∑
τ=1

1
m

y2
t−τ

This representation is exactly equivalent of a rolling-window variance estimator for

zero-mean processes such as the demeaned returns. This is called a rolling window

variance forecasting model. However, the fact that the model assigns equal weights on

the past observations often yields unwarranted and hard to justify results. This is

especially true by considering the sample autocorrelation function of the (absolute)

squared returns, that suggest a gradual decline in the effect of past returns on today’s
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variance (see Fig. B.2). An interesting model that takes this fact into account in

forecasting volatility is the JP Morgan’s RiskMetricsr that can be defined as follows:

σ̂2
t = (1− λ)

∞

∑
τ=1

λτ−1y2
t−τ λ ∈ (0, 1)

clearly, here the weights λ on past squared returns declines exponentially. Because of

the mathematical structure, the RiskMetricsr model is also called exponential vari-

ance smoother. Exponential smoothers have a long tradition in forecasting literature.

Actually, it can be proved that the RiskMetricsr can be written as follows:

σ̂2
t = (1− λ)y2

t−1 + λσ2
t−1

meaning that forecasts of the variance are obtained as a weighted average of static

variance and squared return, with weights λ and 1− λ, respectively. A very good

property of RiskMetricsr is that it only contains one unknown parameter to esti-

mate λ. Actually, JP Morgan found that the estimates of λ were quite similar across

different assets, and therefore suggested to simply set it equal for every asset with

daily frequency. In particular they suggest to set = 0.94, so no estimation is neces-

sary at all.

RiskMetricsr can be also applied for predicting covariances rather than only vari-

ances. The covariance matrix of the multivariate Riskmetrics model is defined as:

Ht = (1− λ)εt−1ε′t−1 + λHt−1

where 0 < λ < 1 is a scalar, which according to Riskmetrics r equals to 0.94 for

daily data and 0.97 for monthly and quarterly data. Since multivariate Riskmetricsr

model is guaranteed to be positive definite and does not require the estimation of

any parameters of Ht, it is easy to be used in practice. However, the assumption of

imposing the same dynamics on every component in a multivariate ARCH model is

difficult to justify.

Therefore, nowadays both univariate and multivariate GARCH-type processes are

the most commonly used for predicting volatility in financial markets. This because,

RiskMetricsr can be seen as a special case of GARCH with ω = 0 and α = 1− β,
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but with many shortcomings. First of all, RiskMetricsr ignores the fact that a long-

run variance exists. Second, while a GARCH with α + β < 1 is a stationary process,

RiskMetricsr is not. For the same property, RiskMetricsr assumes that any shock

to current variance is destined to persist forever. Viceversa, the GARCH processes

more realistically assume that the variance will revert to its average value.

This is the reason why GARCH is commonly employed not only by the industry

practitioners, but also among academics. Hansen and Lunde (2005) represents one

of the most famous and cited article about the comparison of statistical models for

volatility forecasting. Interestingly, the authors compared only GARCH-type pro-

cesses for predicting volatility (see. Fig. B.3), confirming the idea that also among

scholars the GARCH are the most useful to this aim.
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FIGURE B.3: List of GARCH-type process studied in Hansen and
Lunde (2005)
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An authoritative and vast overview about forecasting models for volatility is given

in Bauwens, Hafner, and Laurent (2012). In general, forecasting models can be clas-

sified into four main groups (Poon and Granger, 2003):

• Historical (HISVOL): random walk, historical averages (of squared or absolute

returns), moving averages, exponential smoothing (such as RiskMetricsr);

• GARCH: ARCH and GARCH processes;

• Implied (ISD): option-based volatility forecasts;

• Stochastic (SV): stochastic volatility models.

According to a survey conducted by Poon and Granger (2003), the overall ranking

suggests that Implied volatility models provides the best forecasting with Historical

and GARCH almost similarly good. The following Fig. B.4 summarizes the compar-

isons shown in Poon and Granger (2003).

FIGURE B.4: Summary of findings shown in Poon and Granger (2003)

The performances of stochastic volatility models were (and it is still nowadays par-

tially true) not very well understood. Indeed, these models are more difficult to es-

timate and computationally more challenging to be used by not expert users. More-

over, implied volatility forecasts lies on option data that are more difficult to handle

and are commonly based on mathematical models (such as the Black & Scholes one)

that do not account for many stylized facts of financial returns. On the other side,

historical volatility and GARCH models are instead much more simple to under-

stand and computationally easy.
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However, we cannot think as the Poon and Granger (2003) findings as conclusive

and general. First of all, the contribute of Poon and Granger (2003) is quite old

and does not consider returns after the 2008 financial crisis, more advanced GARCH

models and much other important aspects. Second, we should have in mind that the

results change among different studies also on the basis of how the forecasting accu-

racy is evaluated. Therefore, even if authoritative, it is clear that a renewed literature

review can provide much more accurate results than Poon and Granger (2003). With

this respect, the handbook of Bauwens, Hafner, and Laurent (2012) only contains a

deep discussion about the statistical models used for forecasting volatility and cor-

relation but not a comparison across the methods. Nevertheless, also the handbook

deserves much more space to GARCH models rather than more simple alternatives,

documenting the superiority of these class of models with respect of those belonging

to the HISVOL one.

On the side of covariance matrices’ prediction, two extensive review are given in

Caporin and McAleer (2014) and Trucíos et al. (2019). However, these are not the

only studies that provided comparisons of multivariate voaltiltiy models. For exam-

ple Engle and Colacito (2006) showed the superiority of BEKK and DCC-type mod-

els over constant correlation models. Moreover Laurent, Rombouts, and Violante

(2012), considering the Model Confidence Set (MCS) of Hansen, Lunde, and Nason

(2011), showed that over turbulent periods the GO-GARCH and the DCC belonged

to the set of superior models while, on the contrary, during calm periods constant

conditional correlation model was the best one.

Caporin and McAleer (2014) developed a very deep comparison of alternative fore-

casting models in terms of predictive accuracy, computed by considering both real-

ized covariances and cross-products as proxies. The authors showed that naive ap-

proaches such as the EWMA and RiskMetricsr generally underperform compared

with the dynamic models like DCC. Moreover, they also found that during peri-

ods of high volatility, most models provided statistically equivalent forecast, even if

some preference were given to DCC-type and GoO-GARCH models. However, the

same authors concluded assessing that "..the main message from the empirical analysis

ist hat there is no optimal model. The best model must be chosen with respect to a sample

period and by using selection criteria that match the purpose of the analysis...".

More recently, Trucíos et al. (2019) provided another extensive study in terms of

forecasting covariance matrices. Differently from Caporin and McAleer (2014), that
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compared the models’ predictive accuracy, Trucíos et al. (2019) compared the per-

formances of minimum variance portfolios constructed with covariance forecasts.

Therefore, the goal of Trucíos et al. (2019) is closer in the spirit to the Chapter 2 of

the thesis. However, the authors considered daily data with monthly portfolio rebal-

ancing, hence with estimation window much higher than the number of stocks (i.e.

N = 174). Therefore, they do not study a real large-dimensional setting. Moreover,

the authors did not compare the different models in utility terms and considered

only minimum variance portfolios. However, their results, considering the full sam-

ple, can summarized in the following Fig. B.5.
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FIGURE B.5: Summary of findings shown in Trucíos et al. (2019)
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Fig. B.5 shows the very huge comparison in terms of models considered by the

authors. In few words, we can argue that DCC and GO-GARCH-type (called O-

GARCH, i.e. Oroghonal GARCH in Fig. B.5) of models overperform the others. In-

deed, while DCC-type of models allow the construction of portfolios with the lowest

variance (see also Engle and Colacito, 2006), the GO-GARCH models allow to reach

the lowest turnover possible. Interestingly, also the RiskMetricsr provide good per-

formances in terms of Sharpe ratio, due to the high average returns.

However, even if also in this case there is no evidence in favor of a single model,

summarizing the findings of all the previous studies two clear winners arise: the

DCC and the GO-GARCH, based on factor structure. For this reason these two mod-

els are considered in the applications of the Chapter 2 instead of all the others.
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