
UNIVERSITY OF NAPLES
“FEDERICO II”

Department of Mathematics and Applications:

Renato Caccioppoli

Ph.D. Program in “Matematica e Applicazioni”

Cycle XXXIV

DOMAIN DECOMPOSITION APPROACHES FOR
MULTISCALE/MULTIPHYSICS DATA ASSIMILATION

Supervisor:

Prof.ssa Luisa D’Amore

Ph.D. Candidate:

Rosalba Cacciapuoti

Contents

1 Introduction 1

1.1 Data assimilation (DA): a large scale inverse ill posed problem 1

1.2 DA methods coupled with PDE-based predictive models: related works and

contribution of the present work . 2

1.3 Outline of the work . 12

2 Data Assimilation methods 14

2.1 The DA inverse problem . 15

2.1.1 The 3D and 4DVAR DA problems . 18

2.1.2 Kalman Filter (KF) . 21

3 The DA-driven Space and Time decomposition approach 24

3.1 Domain Decomposition of physical domain 25

3.2 Domain Decomposition of 3DVAR problem (DD–3DVAR) 29

3.3 Domain Decomposition of 4DVAR problem (DD–4DVAR) 35

3.3.1 Algorithm . 41

3.3.2 Sensitivity analysis . 45

3.3.3 Consistency, convergence and stability 47

3.4 DD-KF-CLS: Domain Decomposition of KF on CLS problem 62

ii

CONTENTS iii

3.4.1 KF-CLS: KF algorithm solving CLS problems 63

3.4.2 DD-CLS problems: DD of CLS model 66

3.4.3 DD–KF solving DD–CLS problems 68

3.4.4 DD–KF-CLS: Performance Analysis 73

3.5 Domain Decomposition of KF (DD–KF) . 78

3.5.1 DD-KF method in {Ωi ×∆k}i=1,2;k=1,...,Nt 79

3.5.2 DD-KF method in {Ωi ×∆k}i=1,...,Nsub;k=1,...,Nt 86

3.5.3 Algorithm . 89

3.5.4 Reliability assessment . 92

4 Parallel Domain Decomposition 95

4.1 Dynamic Domain Decomposition in Space (DyDD) 95

4.2 Dynamic Domain Decomposition in Space and Time (DyDDST) 103

5 Validation Analysis 107

5.1 DD-KF applied to CLS problem . 108

5.1.1 Trustworthy analysis . 112

5.2 DD–KF applied to SWEs problem . 116

5.2.1 The algorithm . 124

5.3 DD–4DVAR applied to SWEs problem . 130

5.3.1 Performance analysis and scalability prediction 137

5.3.2 The role of the overlapping region . 141

5.3.3 Sensitivity Analysis: consistency and stability 150

5.4 DyDD: Performance analysis . 151

5.5 DyDDST: Performance analysis . 160

6 Conclusions 185

CONTENTS iv

A Appendix 188

A.1 Constrained Least Squares (CLS) Problem . 188

A.2 Shallow Water Equations (SWEs) set up . 189

A.3 Regional Ocean Modeling System (ROMS) 192

A.3.1 DD–4DVAR DA in ROMS model . 194

A.3.2 DD–4DVAR DA in ROMS code . 202

A.4 MATLAB codes . 211

References 240

Notations

DA Data Assimilation

3DVAR 3D Variational DA

4DVAR 4D Variational DA

KF Kalman Filter

EnKF ensemble Kalman filter

ROMS Regional Ocean Modeling System

PinT Parallel in time

ASM Additive Schwarz Method

Ω spatial domain

∆ time interval

Np number of nodes in Ω

N number of instants of time in ∆

Ml−1,l mathematical model from tl−1 to tl

M mathematical model from t0 to tN

Ml,l−1 discretization of a linear approximation of Mtl−1,tl

M discretization of a linear approximation of M

H non-linear observations mapping

Hl linear approximation of H

R covariance matrices of the errors on observations

v

CONTENTS vi

B covariance matrices of the errors on background

Rl covariance matrices of the errors on observations at time tl

Bl covariance matrices of the errors on background at time tl

uM state function of M

uM solution of discrete model

xl KF solution at time tl

uDA solution of 3DVAR/4DVAR problem

yl observations at time tl

J 3DVAR/4DVAR functional

Chapter 1

Introduction

1.1 Data assimilation (DA): a large scale inverse ill posed prob-

lem

Predictive Science is the paradigm shift of the emerging CSE (Computational Science and Engi-

neering) tightly integrating the numerical simulations of Computational Science and Engineer-

ing with Validation and Verification. The aim of Predictive Science is to not only to reproduce

with high-fidelity an observed phenomenon, but also to predict the reality in situations for which

the numerical simulation has not been specifically validated nor tested. To this end, reliable nu-

merical predictions require complex non linear physical models as well as a systematic and

comprehensive treatment of calibration and validation procedure, including the quantification

of inherent uncertainties (Uncertainty Quantifcation (UQ) and Sensitivity Analysis (SA)). Data

assimilation (DA) has long been playing a crucial role in the quantification of uncertainties

in numerical weather prediction (NWP) and oceanography [57]-[102] and more in general, in

data science; recently, DA started to be applied more widely to numerical simulations beyond

geophysical applications [19], medicine and biological science [51] for improving the accuracy

1

CHAPTER 1. INTRODUCTION 2

and reliability of computational approaches. DA encompasses the entire sequence of operations

that, starting from observations/measurements of physical quantities and from additional infor-

mation - such as a mathematical model governing the evolution of these quantities - improve

their estimate minimizing a suitable functional. In order to understand how such functional

comes out, we start saying that from the mathematical viewpoint DA is an inverse and ill posed

problem. Hence, regularization methods are used to introduce prior knowledge. Usually, the ob-

jective function measures the mismatch between the model predictions and the observed system

states, weighted by the inverse of the error covariance matrices [25, 106, 128]. In this way, DA

provides mathematical methods for finding an optimal trade–off between the current estimate

of the model’s state and the observations, knowing that both carry their own uncertainties. Due

to the scale of the forecasting area and the number of state variables, DA are very large scale

problems [92]. In operational DA the amount of observations is insufficient to fully describe

the system and one cannot strongly rely on a data driven approach: the model is paramount. It

is the model that fills the spatial and temporal gaps in the observational network: it propagates

information from observed to unobserved areas. Thus, DA methods are designed to achieve the

best possible use of a never sufficient (albeit constantly growing) amount of data, and to attain

an efficient data model fusion, in a short period of time. This poses a formidable computational

challenge, and makes DA an example of big data inverse problems [9, 7, 10, 33].

1.2 DA methods coupled with PDE-based predictive models:

related works and contribution of the present work

There is a lot of DA algorithms. Two main approaches gained acceptance as powerful methods:

variational approaches (namely 3DVAR and 4DVAR) and Kalman Filter (KF) [53, 71, 116, 77].

Variational approaches are based on the minimization of the objective function estimating the

discrepancy between numerical results and observations. These approaches assume that the two

CHAPTER 1. INTRODUCTION 3

sources of information, forecast and observations, have errors that are adequately described by

stationary error covariances. In contrast to variational methods, KF (and its variants) is a re-

cursive filter solving the Euler-Lagrange equations. It uses a dynamic error covariance estimate

evolving over a given time interval. The process is sequential, meaning that observations are

assimilated in chronological order, and KF alternates a forecast step, when the covariance is

evolved, with an analysis step in which covariance of the filtering conditional is updated. In

both kind of methods the model is integrated forward in time and the result is used to reinitial-

ize the model before the integration continues [72]. DA is dealing with the joint assimilation of

observational data from different spatial scales and different data type, namely multiscale and

multiphysics data. Multiscale and multiphysics DA [94, 61] refers to the assimilation of data

obtained at a different resolution than the model resolution. Most of DA methods scale data

and the simulation model, but with loss of important information. Multiscale and multiphysics

DA leads itself to Domain Decomposition (DD) approaches such that data can be processed for

distinct spatial scales. Most approaches for delivering parallel solutions of simulations based

on DA methods integrated with Partial Differential Equations (PDEs)–based models essentially

takes full advantage of existing parallel DD solvers where the solver is suitably modified to also

handle the adjoint system [5, 87, 103, 122]. Further, these approaches follow the path optimize–

then–discretize to build a discrete Lagrangian. At the heart of these schemes lies the solution of

a linear system (the Karush–Kuhn–Tucker (KKT) system) which is finally solved using Schwarz

preconditioners [15]. In contrast, when DA problems are posed as PDEs–constrained nonlinear

optimization problem, their numerical solution uses nonlinear solvers such as Newton–Krylov

methods or one its variants (such as Gauss-Newton, L-BFGS, Levenberg-Marquardt). Large

scale nonlinear solvers basically rely on linear algebra solvers, such as Krylov–based iterative

methods, and direct solvers, mainly based on QR and SVD factorizations [8, 30, 45, 41, 117].

These approaches follow the path discretize–then–optimize approach. A different approach is

the combination of DD–methods in space and DA, where spatial domain–decomposed uncer-

CHAPTER 1. INTRODUCTION 4

tainty quantification approach performs DA at the local level by using Monte Carlo sampling

[5, 1, 82]. The Parallel DA Framework [105] implements parallel ensemble–based Kalman Fil-

ters algorithms coupled within the PDE–model solver. A common drawback of such parallel

algorithms is their limited scalability, due to the fact that the most computationally demanding

components are adapted for parallel execution. Amdhal’s law [2] clearly applied in these sit-

uations because the computational cost of the component that are not parallelized provides a

lower bound on the execution time of the parallel algorithm1. On the contrary, the challenge is

to consider parallelization from the beginning of the computational problem solving.

Most PDEs–based simulations contains time–stepping both in the mathematical modelling and

in its numeric approximation. Several approaches have been proposed to reduce the overall

time-to-solution. Among them, there are KF simplifications reducing computational complex-

ity. Approximations are designed on the basis of a reduction in the order of the system model

(usually the approximation is performed trough the use of the Empirical Orthogonal Functions

(EOF)) [60, 111], or they are based on the Ensemble methods, where a prediction of the error

at a future time is computed by integrating each ensemble state independently by the model.

Integration is typically performed until observations are available. At this time, the information

from the observations and the ensemble are combined by performing an analysis step based on

KF [53]. However, the choice of the dimension of the reduced-state space or of the ensemble

size giving an accurate approximation of KF still remains a delicate question [8]. Besides these

variants, there are parallel approaches to KF algorithm. Traditional algorithms based on paral-

lelized linear algebra implementations make little or no use of parallelism in the time domain:

time-stepping is currently treated as a serial process. Approaches able to develop effective

1Speedup is defined as sequential execution time over parallel execution time in parallel processing. Let f be the

portion of the workload that can be parallelized; when the number of processors increases to infinity, the speedup

upper bound is 1/(1− f), where 1− f clearly represents the part of the algorithm that cannot be parallelized [2].

CHAPTER 1. INTRODUCTION 5

scalable algorithms, taking a step–change beyond traditional high perfromance computing ap-

proaches, are strongly recommended. A revolutionary approach for solving PDEs-based model

is the Parallel in Time (PinT) strategy [11, 14, 84, 55, 85]. By introducing parallelization from

the beginning of the computational problem solving, PinT approach overcomes the inherent bot-

tleneck of time–marching solvers (such as those of traditional algorithms based on parallelized

linear algebra). In order to introduce a consistent DD along the time direction, PinT methods

share this general idea: they use a coarse/global/predictor propagator to obtain approximate

initial values of local models on the coarse time-grid; a fine/local/corrector solver to obtain the

solution of local models starting from the approximate initial values; an iterative procedure to

smooth out the discontinuities of the global model on the overlapping domains. Nevertheless,

one of the key limitation of any PinT-based methods is data dependencies of the local solvers

from the coarse solver: the coarse solver must always be executed serially for the full duration

of the simulation and local solver have to wait for the approximate initial values provided by

the coarse solver. The strength of the DD approach we are going to present in this thesis is

the exploitation of the coupling between the DA functional and the PDE model. The idea goes

back to the work of Schwarz [114] on overlapping domains, nevertheless in contrast to Schwarz

methods which uses as boundary conditions the approximation of the numerical solution com-

puted on the interfaces between adjacent subdomains, here the proposed approach uses the DA

model as a predictor for the local PDE-based model, providing the approximations needed for

locally solving the initial value problems on each subinterval, concurrently.

The primary motivation of Schwarz based DD methods was the inherent parallelism arising

from a flexible, adaptive and independent decomposition of the given problem into several

subproblems, though they can also reduce the complexity of sequential solvers. DD–DA frame-

work allows to employ a model reduction in space and time which is coherent with the filter

localization. There is a quite different rationale behind such DD framework and the so called

MOR methods, even though they are closely related each other. The primary motivation of

CHAPTER 1. INTRODUCTION 6

DD methods based on Schwarz DD methods was the inherent parallelism arising from a flex-

ible, adaptive and independent decomposition of the given problem into several sub problems,

though they can also reduce the complexity of sequential solvers. MOR techniques are based on

projection of the full order model onto a lower dimensional space spanned by a reduced order

basis. These methods has been used extensively in a variety of fields for efficient simulations

of highly intensive computational problems. But all numerical issues concerning the quality

of approximation still are of paramount importance [64]. As previously mentioned, DD–DA

framework makes it natural to switch from a full scale solver to a model order reduction solver

for solution of subproblems for which no relevant low-dimensional reduced space should be

constructed. In the same way, DD–DA framework allows to employ a model reduction in space

and time which is coherent with the filter localization. Main advantage of the DD–DA is to

combine in one theoretical framework, model reduction, along the space and time directions,

and filter localization, while providing a flexible, adaptive, reliable and robust decomposition.

Summarizing, we partition initial domain along space and time, then we extend each subdomain

to overlap its neighbors by an amount; partitioning can be adapted according to the availability

of measurements and data. Accordingly, we reduce dynamic model both in space and time. As

initial and boundary values of local models, according to PinT approach, we employ estimates

provided by 4DVAR and KF itself, as soon as these are available. In this way, concurrency of

local models is achieved. On each subdomain we formulate a local 4DVAR and KF problem

analogous to the original one, defined on local models. In order to enforce the matching of

local solutions on overlapping regions, local 4DVAR and KF problems are slightly modified by

adding a correction term; such a correction term, acting as a regularization constraint on local

solutions, keeps track of contributions of adjacent domains to overlapping regions; localization

excludes remote observations from each analyzed location, thereby improving the conditioning

of the error covariance matrices. To the best of our knowledge, such a full decomposition of

4DVAR and KF in space and time has never been investigated before.

CHAPTER 1. INTRODUCTION 7

Any interest reader who wants to apply DD framework in a real-world application, i.e. with a

(PDE-based) model state and an observation mapping, once the dynamic (PDE-based) model

state has been discretized, he should rewrite the state estimation problem under consideration

as a Constrained Least Square (CLS) model problem (cfr Section A.1) and then to apply DD

algorithm. In other words, she/he should follow the discretize-then-optmize approach, common

to most DA problems and state estimation problems, before employing the DD framework.

However, a static and or a priori DD strategy could not ensure a well balanced work load, while

a way to re-partition the mesh so that the subdomains maintain a nearly equal number of ob-

servations plays an essential role in the success of any effective DD approach. There has been

widespread interests in load balancing since the introduction of large scale multiprocessors.

Applications requiring dynamic load balancing varies from the parallel solution of a PDE by

finite elements on an unstructured grids [43] to parallelized particle simulations [80]. Load bal-

ancing is one of the central problems which have to be solved in parallel computing. Moreover,

problems whose load changes during the computation or it depends on data layout which may

be unknown a priori, will necessitate the redistribution of the data in order to retain efficiency.

Such a strategy is known as dynamic load balancing. Algorithms for dynamic load balancing, as

in [27, 20, 126, 125], are based on transferring an amount of work among processors to neigh-

bours; the process is iterated until the load difference between any two processors is smaller

than a specified value, consequently it will not provide a balanced solution immediately. One of

disadvantages of this approach is its possible slow convergence. A multilevel diffusion method

for dynamic load balancing, as in [65], is based on bisection of processor graph. The disad-

vantage is that can occur movement of data between non-neighbouring processors to ensure the

connectivity of subgraphs and must be avoided. The mentioned algorithms do not take into

account one important factor, namely that the data movement resulting from the load balancing

schedule should be kept to minimum. We apply a dynamic load balancing to maintain a nearly

equal number of observations between subdomains. Main feature of the this approach is the

CHAPTER 1. INTRODUCTION 8

Migration step, i.e. the shifting of the boundaries of adjacent subdomains in order to achieve a

balanced load. The disadvantage is that the final balance between subdomains depends strongly

on the degree of the vertices of processors graph, i.e. number of neighbouring subdomains for

each subdomain.

In conclusion, in this thesis, we present a DD-based parallel framework for solution of large

scale variational 3D, 4D DA and KF problems, involving decomposition of the physical do-

main, partitioning of the solution and modification of the regularization functional describing

the variational DA problem. We address DA problems where the observations are non uniformly

distributed, general sparse and its distribution changes during the time window, consequently,

we present Dynamic Domain Decomposition (DyDD) and Dynamic Domain Decomposition in

Space and Time (DyDDST) methods to employ a load balancing scheme involving an adaptive

and dynamic workload redistribution both along Space and Time directions for solving Data

Assimilation problems.

Main topics of DD–DA coupled with DyDD or DyDDST can be listed as follows.

1. DD step: we begin by partitioning along space and time the domain into subdomains and

then extending each subdomain to overlap its neighbors by an amount. Partitioning can

be adapted according to the availability of measurements and data.

2. DyDD or DyDDST: if workload is not well balanced, it involves an adaptive and dy-

namic repartitioning of load among spatial subdomains (DyDD) at each time interval

(DyDDST).

3. Filter Localization and Model Order Reduction (MOR): on each subdomain we formulate

a local DA problem analogous to the original one, combining filter localization and model

order reduction approaches.

4. Regularization constraints: in order to enforce the matching of local solutions on the

CHAPTER 1. INTRODUCTION 9

overlapping regions, local DA problems are slightly modified by adding a correction term.

Such a correction term balances localization errors and computational efforts, acting as

a regularization constraint on local solutions. This is a typical approach for solving ill

posed inverse problems (see for instance [40]).

5. Parallel in Time: as the dynamic model is coupled with DA operator, at each integration

step we employ, as initial and boundary values of all reduced models, estimates provided

by the DA model itself, as soon as these are available.

6. Conditioning: localization excludes remote observations from each analyzed location,

thereby improving the conditioning of the error covariance matrices. We give a new

definition of conditioning of DD-DA problem depending on reduced models and local

covariance matrices. To the best of our knowledge, such ab-initio space and time decom-

position of DA models has never been investigated before.

In the following we briefly resume our contribution concerning DD–DA [32, 33, 48, 35],

DyDD[34] and DyDDST [47].

• DD–DA methods:

– DD–3DVAR [32]: We prove that the functional decomposition of the 3DVAR DA

operator, previously introduced in [9, 7, 8, 32, 30, 46, 45], is equivalent to apply

Additive Schwarz Method (ASM) to the Euler–Lagrange equations resulting from

the variational functional.

– DD–4DVAR [33]: We present a space–and–time decomposition approach consist-

ing of a decomposition of the whole domain, i.e. both along the spacial and tem-

poral direction, and of a reduction of the whole operator, i.e. both the DA varia-

tional functional and the PDE–based model. We begin by partitioning the domain

into subdomains and then extending each subdomain to overlap its neighbors by

CHAPTER 1. INTRODUCTION 10

an amount. On each subdomain we formulate a discrete 4DVAR problem analo-

gous to the original decomposing both the variational functional and the model both

in space and in time. In addition, in order to enforce the matching of local solu-

tions on the overlapping regions, local problems are slightly modified by using a

local correction. To the best of our knowledge, space and time decomposition of

4DVAR has never been investigated before. We provide a mathematical formula-

tion of this approach and a feasibility analysis on Shallow Water Equations (SWEs)

including convergence analysis and error propagation. We will describe the main

components of DD–4DVAR method to Regional Ocean Modeling System (ROMS)

(https://www.myroms.org) software, by highlighting the topics that we will address

both on the mathematical problem underlying ROMS and the code implementation.

– DD–KF [48, 35]: DD–KF involves decomposition of the whole computational prob-

lem, partitioning of the solution and a slight modification of KF algorithm allowing a

correction at run-time of local solutions. The resulted parallel algorithm consists of

concurrent copies of KF algorithm, each one requiring the same amount of computa-

tions on each subdomain and an exchange of boundary conditions between adjacent

subdomains. It partitions the whole problem, including filter equations and dynamic

model along space and time directions. As a consequence, instead of solving one

larger KF problem we solve local problems reproducing the original one at smaller

dimensions. Also, sub problems could be solved in parallel. We derive and discuss

DD–KF algorithm for solving CLS models, which underlie any data sampling and

estimation problems arising from the so-called discretize-then-optimize approach,

and DA problems. We start considering CLS model, seen as a prototype of DA

model [56]. CLS is obtained combining two overdetermined linear systems, repre-

senting the state and the observation mapping, respectively. In this regards, in [35]

we presented a feasibility analysis on CLS models of an innovative DD framework

CHAPTER 1. INTRODUCTION 11

for using CLS in large scale applications.

• DyDD [34] and DyDDST [47] to DD–DA: in many problems within the earth and envi-

ronmental sciences observations are non uniformly distributed and its distribution change

during time. DyDD and DyDDST algorithms are proposed to support real time appli-

cation where load measurement is necessary to determine when load imbalance occurs.

Firstly, we introduce DyDD method based on adaptive and dynamic redefining of the

boundaries of initial DD in space, then, we introduce DyDDST by extending DyDD to

DD in space and time. We apply DyDD and DyDDST on algorithm proposed in [67] in

order to ensure a balanced distribution of load among processes.

Main advantage of the DD–DA coupled with DyDD or DyDDST is to combine in the

same theoretical framework model reduction, along the space and time directions, with

filter localization, while providing a flexible, adaptive and dynamic decomposition. We

present a revision of DD framework such that a DyDD and DyDDST algorithms allow

for a minimal data movement restricted to the neighboring processors.

This is achieved by considering a connected graph induced by the domain partitioning

whose vertices represent a subdomain associated with a scalar representing the number

of observations on that subdomain. Main step of DyDD and DyDDST framework can be

listed as follows.

– Scheduling step: DyDD and DyDDST compute the amount of observations needed

for achieving the average load in each physical subdomain; this is performed by

introducing a diffusion type algorithm derived by minimizing the Euclidean norm

of the cost transfer.

– Migration step: DyDD and DyDDST shift the boundaries of adjacent subdomains

to achieve a balanced load.

The most intensive kernel is the scheduling step which defines a schedule for comput-

CHAPTER 1. INTRODUCTION 12

ing the load imbalance (which we quantify in terms of number of observations) among

neighbouring subdomains. Such quantity is then used to update the shifting the adjacent

boundaries of subdomains (Migration step) which are finally re mapped to achieve a bal-

anced decomposition. We are assuming that load balancing is restricted to the neighbour-

ing domains so that we reduce the overhead processing time. Finally, following [67] we

use a diffusion type scheduling algorithm minimizing the euclidean norm of data move-

ment. The resulting constrained optimization problem leads to normal equations whose

matrix is associated to the decomposition graph. The disadvantage is that the overhead

time, due to the final balance between subdomains, strongly depends on the degree of the

vertices of processors graph, i.e. on the number of neighbouring subdomains for each

subdomain. Such overhead represents the surface-to-volume ratio whose impact on the

overall performance of the parallel algorithm decreases as the problem size increases.

1.3 Outline of the work

The thesis is organized as follows.

• In Chapter 2 we firstly introduce DA problem. Then, we define 3DVAR and 4DVAR DA

problem and introduce KF algorithm.

• In Chapter 3 we introduce the space and time decomposition approach. Firstly, we de-

scribe DD of physical domain Ω×∆, then we introduce DD approach to 3DVAR, 4DVAR

DA problem and KF. We call them DD–3DVAR, DD–4DVAR and DD-KF, respectively.

We perform sensitivity analysis of DD-DA. In particular we discuss consistency, conver-

gence, stability and round-off error propagation of DD–4DVAR method, giving the defi-

nition of condition number of the method. Then, we introduce DD–KF for solving CLS

models and DA problems and discuss its performance analysis and reliability assessment.

CHAPTER 1. INTRODUCTION 13

• In Chapter 4 we introduce dynamic domain decomposition in space and time (DyDD and

DyDDST), since a static and or a priori DD strategy could not ensure a well balanced

work load. DyDD and DyDDST ensure a well balanced workload with DA problems

where observations are non uniformly distributed and general spare and its distribution

change during time.

• In Chapter 5 we present validation analysis of the method. We prove the consistence,

convergence and stability. We carry on performance analysis of DD–KF to CLS and

SWEs problems. Then, we address performance and scalability of DD–4DVAR algorithm

and address the role of overlapping region in DD–4DVAR algorithm. We prove that

the experimental order of consistency of DD–4DVAR corresponds to the theoretical one

derived in Chapter 3 and that DD–4DVAR with the initial boundary problem of SWEs one

dimensional is well-conditioned according to the definition of condition number given in

Chapter 3.

• In Chapter 6 we summarise the work in this thesis. We present the main conclusions and

suggestions on further work that could be done in this area.

• In Appendix we introduce CLS, SWEs problem and its discrete formulation. Then, we

present ROMS, an open-source, mature numerical framework used by both the scientific

and operational communities to study ocean dynamics over 3D spatial domain and time

interval. We describe the main components of DD–4DVAR method to ROMS model

and code, highlighting the topics that we will address both on the mathematical problem

underlying ROMS and the code implementation. Finally, we report MATLAB codes to

perform validation analysis in Chapter 5.

Chapter 2

Data Assimilation methods

From the mathematical viewpoint the overall concept underpinning DA is an inverse model-

ing problem. The forward modelling seeks to predict output observables (such as magnitude

and process of micro-seismic events at seismometer locations, or the ground motion at a milli-

metric precision by satellite images) given the parameters by solving the governing equations.

The forward problem is usually well posed (the solution exists, is unique, and is stable to per-

turbations in inputs). The inverse modeling reverses this relationship, however, by seeking to

determine parameter values that are consistent with particular measurements. Solving inverse

modeling can be very challenging for the following reasons: (1) the mapping from observations

(i.e., measurements) to parameters generally is not one to one, particularly when the number of

parameters is large and the number of measurements is small; (2) small changes in the measure-

ment value may lead to changes in many, or all parameters, particularly when the forward model

is nonlinear, i.e., the problem is severely ill-conditioned; and (3) typically, the computational

model approximately solves the forward problem taking into account only a limited number of

physical processes. The popular approach to obtain a unique “solution” to the inverse problem

in these circumstances is to formulate it as a variational problem minimizing the sum of two

terms: the first is a combination of the residual between observed and predicted outputs (the

14

CHAPTER 2. DATA ASSIMILATION METHODS 15

so-called misfit) in an appropriate norm, and the second is a regularization term that penalizes

unwanted features of the parameters. The inverse problem thus leads to a nonlinear variational

problem in which the forward simulation model is embedded in the residual term.

When the forward model takes the form of partial differential equations (PDEs) or some other

expensive model, the result is a PDE-based variational problem that may be extremely large

scale in the state variables, even when the number of inversion parameters is small. More

generally, uncertain parameters can be taken from numbers on a continuum (such as initial or

boundary conditions, heterogeneous material parameters, or heterogeneous sources) that, when

discretized, result in an inverse problem that is very large scale in the inversion parameters

as well. An estimation of parameters using the regularization approach to inverse problems

as described above will yield an estimate of the “best” parameter values that minimize the

combined misfit and penalty function. We will start from the high-level problem definition in

terms of a set of mathematical equations subject to boundary and initial conditions over some

space-time domain where the spatial domain is expressed in terms of a mathematical definition.

From this point, a reasonable starting mesh for that space-and-time domain must be constructed,

and a numerical discretization on the mesh must be solved. The resulting solution would be

analyzed to determine if the combination of the mesh and its discretization yielded the desired

accuracy.

2.1 The DA inverse problem

If Ω ⊂ Rn, n ∈ N, is a spatial domain with a Lipschitz boundary and ∆ := [0, T] ⊂ R, T ∈ R,

is time interval, let:⎧⎪⎪⎪⎨⎪⎪⎪⎩
uM(x, t+∆t) = Mt,t+∆t[u(x, t)] ∀x ∈ Ω, t, t+∆t ∈ ∆, (∆t > 0)

uM(x, t0) = u0(x) t0 ≡ 0, x ∈ Ω

uM(x, t) = f(x) x ∈ ∂Ω, ∀t ∈ ∆

, (2.1)

CHAPTER 2. DATA ASSIMILATION METHODS 16

be a symbolic description of the DA model of interest where

uM : (x, t) ∈ Ω×∆ ↦→ u(x, t) = [uM[1](x, t), uM[2](x, t), . . . , uM[pv](x, t)], (2.2)

is the state function of M (i.e. model on Ω×∆) with pv ∈ N the number of physical variables,

f is a known function defined on the boundary ∂Ω, and let

y : (x, t) ∈ Ω×∆ ↦→ v(x, t),

be the observations function, and

Ht+h : uM(x, t+ h) ↦→ y(x, t+ h), ∀(x, t) ∈ Ω×∆,

denote the non-linear observations mapping. To simplify future treatments we assume pv ≡ 1.

The first equation in 2.1 is often an approximation of an evolutionary PDE, consequently the

operator Mt,t+∆t is linear PDE model. While, the observations y are in general not direct mea-

surements of state variable uM, the observation operator Ht+h allows to compare observations

vector with the state vector.

In order to describe a numerical method for solving DA problems, we introduce the following

discretization of domain Ω×∆.

Definition 1. (Discretization of domain Ω×∆) Let

ΩI ≡ {xĩ}ĩ∈I ⊂ Ω (2.3)

be discretization of spatial domain Ω where

I = {1, . . . , Np} and Np = |I|1 (2.4)

are respectively the set of indices of nodes in Ω and its cardinality i.e. the number of inner

nodes in Ω. Let

∆K ≡ {tk̃}k̃∈K ⊂ ∆

1We refer to |I| as cardinality of set I .

CHAPTER 2. DATA ASSIMILATION METHODS 17

be discretization of time interval ∆ where

K = {0, 1, . . . , N − 1} and N = |K| (2.5)

are respectively the set of indices of time in ∆ and its cardinality i.e. number of instants of time

in time interval ∆. Consequently, we define

ΩI ×∆K ≡ {(xĩ, tk̃)}ĩ∈I; k̃∈K ⊂ Ω×∆ (2.6)

as the discrete domain.

We define the DA inverse problem in discrete form [36, 8].

Definition 2. (The DA inverse problem in discrete form). DA problem concerns the computation

of

uDA := {uDA(j, l)}j=1,...,Np;l=0,1,...,N−1 ∈ RNp×(N)

such that

y = G · uDA, (2.7)

subject to the constraint that

uDA(·, 0) = u0.

where

• Np: is the number of nodes in Ω ⊂ Rn defined in (2.4);

• nobs: is the number of observations in Ω, where nobs << Np;

• N : is the number of instants of time in ∆ defined in (2.5);

• u0 = {u0,j}j=1,...,Np ≡ {u0(xj)}j=1,...,Np ∈ RNp: is the state at time t0;

• y := {y(zj, tl)}j=1,...,nobs;l=0,1,...,N−1 ∈ Rnobs×N : representing observations in Ω×∆;

CHAPTER 2. DATA ASSIMILATION METHODS 18

• Hl ∈ Rnobs×Np , l = 0, . . . , N − 1, : is a linear approximation of observation mapping

Htl;

• G := GN−1 ∈ R(N×nobs)×Np:

Gl =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣
H0

H1

...

Hl

⎤⎥⎥⎥⎥⎥⎥⎦ l > 0

H0 l = 0

. (2.8)

In the next section, we introduce the regularized DA inverse problems, i.e. the 3DVAR DA and

4DVAR DA problems.

2.1.1 The 3D and 4DVAR DA problems

In the following we introduce variational approaches i.e. 3DVAR and 4DVAR DA approaches

based on the minimization of the objective function estimating the discrepancy between numer-

ical results and observations. These approaches assume that the two sources of information,

forecast and observations, have errors that are adequately described by error covariances. We

first present the 4DVAR problem.

Definition 3. (The 4DVAR DA problem). The 4DVAR DA problem concerns the computation

of:

uDA = argminu∈RNp×NJ(u), (2.9)

with

J(u) = α∥u− uM∥2B−1 + ∥Gu− y∥2R−1 (2.10)

where

CHAPTER 2. DATA ASSIMILATION METHODS 19

• Np: is the number of nodes in Ω ⊂ Rn defined in (2.4);

• nobs: is the number of observations in Ω, where nobs << Np;

• N : is the number of instants of time in ∆ defined in (2.5);

• u0 = {uj,0}j=1,...,Np ≡ {u0(xj)}j=1,...,Np ∈ RNp: is the state at time t0;

• the operator

Ml−1,l ∈ RNp×Np , l = 1, . . . , N, (2.11)

representing a discretization of a linear approximation of Mtl−1,tl from tl−1 to tl,

• the operator

M ∈ RNp×Np , (2.12)

representing a discretization of a linear approximation of M from t0 to tN ;

• the matrix

uM := {uMj,l}j=1,...,Np;l=1,...,N ≡ {uM(xj, tl)}j=1,...,Np;l=0,1,...,N−1 ∈ RNp×N (2.13)

representing the solution of model M i.e. the background;

• α: is the regularization parameter;

• y := {y(zj, tl)}j=1,...,nobs;l=0,1,...,N−1 ∈ Rnobs×N : representing observations in Ω×∆;

• G := GN−1 ∈ R(N×nobs)×Np: where GN−1 is defined in (2.8);

• R = diag(R0, R1, . . . , RN−1) ∈ RN ·nobs×N ·nobs and B= VVT ∈ RNp×Np: are respec-

tively covariance matrices of the errors on observations and background where Rk−1 ∈

Rnobs×nobs , ∀k = 1, . . . , N .

CHAPTER 2. DATA ASSIMILATION METHODS 20

The 3DVAR problem is stationary case of 4DVAR problem namely 3DVAR misses the time-

dependency.

Definition 4. (The 3DVAR DA problem) The 3DVAR DA problem concerns the computation of

uDA defined in (2.9) at fixed time tl.

The 4DVAR algorithm can be considered as an extension of the 3DVAR to the time dimen-

sion by including the dynamical models to evolve in time the state [109]. 4DVAR algorithm

consider the time distribution of observations differently from 3DVAR. The cost function is the

same, provided that the observation operators are generalized to include a forecast model that

will allow a comparison between the model state and the observations at the appropriate time.

Remark 1. It is worth noting that here we are considering a linear approximation of the obser-

vation operator, hence a linear operator G, although this is not at all required, at least in the

formulation of the 3D and 4DVAR problem. A more general approach for numerically linearize

and solve 3D and 4DVAR DA problem consists in defining a sequence of local approximations

of J where each member of the sequence is minimized by employing Newton’s method or one

its variants [42]. More precisely, two approaches could be employed:

(a) by truncating Taylor’s series expansion of J at the second order, giving a quadratic ap-

proximation of J, let us say JQN . Newton’methods (including LBFGS and Levenberg-

Marquardt) use JQD. The minimum is computed solving the linear system involving the

Hessian matrix∇2J, and the negative gradient −∇J.

(b) by truncating Taylor’s series expansion of J at the first order which gives a linear approx-

imation of J, let us say let us say JTL. Gauss-Newton’s methods (including Truncated or

Approximated Gauss-Newton uses JTL). The minimum is computed solving the normal

equations arising from the local Linear Least Squares problem.

CHAPTER 2. DATA ASSIMILATION METHODS 21

Both approaches will employ the Tangent Linear Model (TLM) and the adjoint operator of the

observation mapping and of the model of interest [18, 129].

2.1.2 Kalman Filter (KF)

In the past years Kalman Filter (KF) [71] has become a main component in satellite navigation,

economics, or telecommunications and in the validation of the mathematical models used in

meteorology, climatology, geophysics, geology and hydrology. Today, KF is one of the most

important and common estimation algorithms. Its main strength is its recursive property: new

measurements can be processed as they arrive. Nevertheless, the standard formulation of the KF

becomes computationally intractable for solving large scale estimation problems due to matrix

storage and inversion requirements. Consequently, several approaches have been proposed to

reduce the overall time-to-solution. In this regards, in Sections 3.4 and 3.5, we presented an

innovative DD framework for using KF in large scale applications. In the following we will

refer to discretization of Ω×∆ in Definition 1, section (2.1).

We define KF state function of a dynamic system in Ω×∆ at time tl+1 as follows:

xl+1 ≡ x(tl+1) := {uM(xĩ, tk̃)}ĩ∈I; k̃∈K

where uM and {(xĩ, tk̃)}ĩ∈I; k̃∈K are defined in (2.1) and Definition 1, respectively.

In the context of DA methods, KF aims to bring the state x(tl+1) as close as possible to the mea-

surements/observations y(tl+1). One can do this by discretizing then optimize or first optimize

and then discretize. Here, with the aim of making the best use of Schwarz and PinT methods in

a linear algebra settings, we first discretize then optimize.

We will use the following discrete formulation of KF method [116]:

• Np: number of inner nodes in Ω defined in (2.4);

• N := r + 2: number of instants of time in ∆ defined in (2.5), where r ∈ N;

CHAPTER 2. DATA ASSIMILATION METHODS 22

• xl ≡ x(tl) ∈ RNp: the state of system at time tl, for l = 0, 1, . . . , r + 1;

• ˆ︁x0 ≡ x0: the state estimate at time t0 ≡ 0;

• ˆ︁xl: the state estimate at time tl, for l = 1, . . . , r + 1;

• wl ∈ RNp and vl ∈ Rnobs: model and observation errors with normal distribution and zero

mean such that E[wlv
T
j] = 0, for j, l = 0, 1, . . . , r + 1, where E[·] denotes the expected

value;

• Bl ∈ RNp×Np and Rl ∈ Rnobs×nobs: covariance matrices of the errors on the model and on

the observations, respectively i.e.

Bl := E[wlw
T
l] Rl := E[vlv

T
l] ∀ l = 0, 1, . . . , r + 1.

These matrices are symmetric and positive definite.

KF method: KF method consists in calculating an estimate ˆ︁xl+1, at time tl+1, of the state

xl+1 ∈ RNp:

xl+1 =Ml,l+1xl + wl, ∀l = 0, 1, . . . , r (2.14)

such that

yl+1 = Hl+1xl+1 + vl+1, ∀l = 0, 1, . . . , r. (2.15)

KF algorithm: Given ˆ︁x0 ∈ RNp and P0 = O ∈ RNp×Np a null matrix, for each l = 0, 1, . . . , r

KF algorithm is made by:

• Predicted phase.

– Compute predicted state estimate:

xl+1 =Ml,l+1ˆ︁xl; (2.16)

CHAPTER 2. DATA ASSIMILATION METHODS 23

– Compute predicted covariance matrix:

Pl+1 =Ml,l+1PlM
T
l,l+1 +Bl. (2.17)

• Corrector phase.

– Compute Kalman gain:

Kl+1 = Pl+1H
T
l+1(Hl+1Pl+1H

T
l+1 +Rl+1)

−1. (2.18)

– Update covariance matrix:

Pl+1 = (I −Kl+1Hl+1)Pl+1, (2.19)

– Update state estimate:

ˆ︁xl+1 = xl+1 +Kl+1(yl+1 −Hl+1xl+1). (2.20)

When the measurement uncertainty Rl is large, then the Kl+1 defined in (2.18) will be low,

this means that the model data are more reliable than observations data. However, when the

measurement uncertainty Rl is small, then the Kl+1 defined in (2.18) will be high, this means

that the observations data are more reliable than model data.

Chapter 3

The DA-driven Space and Time

decomposition approach

Main approaches for delivering scalable solutions of simulations based on DA methods inte-

grated with a PDE-based model essentially only takes full advantage of existing parallel PDE

solvers, and in particular those based on Domain Decomposition (DD) methods in space, where

the DD-solver is suitably modified to also handle the adjoint system. While this scheme is effi-

cient, it has a limited scalability, due to the strong synchronization between the PDE integration

and the DA solver. Time-parallel approaches provide a new avenue to achieve scaling on new

generation computing environments. The core of our PinT-based algorithm is that PDE&DA

models are tightly coupled so that, once the whole space-and-time domain is decomposed (by

using PinT-based approaches for decomposing the PDE model and variational calculus for de-

composing the DA functional), DA model acts as coarse/predictor of the local PDE model, by

providing the background values as initial conditions of the local PDE model. Moreover, in

contrast to other PinT-based approaches, in our DA-driven PinT-based approach, local solvers

run concurrently, so that the resulting algorithm only requires exchange of boundary conditions

between adjacent sub-domains. In this way it leads to an ”adaptive composition of local solvers”

24

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 25

in which, following a tree configuration manner, its customization varies from sub-problem to

sub-problem. Finally, the proposed approach is non-intrusive, allowing the incremental tran-

sition of existing software (as for instance, the Regional Ocean Modelling System-ROMS). In

this Chapter, we present a domain decomposition-based frameworks for solution of 3DVAR,

4DVAR DA and KF problems, involving decomposition of the physical domain, partitioning

of the solution and modification of the regularization functional describing the variational DA

problem. We call them DD–3DVAR, DD–4DVAR and DD–KF.

3.1 Domain Decomposition of physical domain

In the following we introduce the main modules of DD–DA algorithm:

Domain Decomposition of Ω×∆.

We describe DD of Ω×∆ and ΩI ×∆k.

• DD of Ω×∆ consists of:

– DD of Ω: decomposition of Ω ⊂ Rn into a sequence of subdomains Ωi such that:

Ω =

Nsub⋃︂
i=1

Ωi (3.1)

and definition of set of indices of subdomains adjacent to Ωi and its cardinality, as

follows

Ji ⊂ {1, . . . , Nsub} and adi = |Ji| (3.2)

in particular, adi is the number of subdomains adjacent to Ωi.

For i = 1, . . . , Nsub, definition of overlap regions Ωij as follows

Ωij := Ωi ∩ Ωj ̸= ∅ ∀j ∈ Ji. (3.3)

Definition of interfaces Ωi, for i = 1, . . . , Nsub:

Γij := ∂Ωi ∩ Ωj j ∈ Ji. (3.4)

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 26

– DD of ∆: decomposition of time interval ∆ ⊂ R into a sequence of time interval

∆k such that:

∆ =
Nt⋃︂
k=1

∆k.

Consequently, we define

{Ωi ×∆k}i=1,...,Nsub;k=1,...,Nt (3.5)

as local domains.

• DD of ΩI ×∆K defined in (2.6) consists of:

– DD of ΩI :

identification of inner nodes of subdomains {Ωi}i=1,...,Nsub
: for i = 1, . . . , Nsub

ΩIi ≡ {xĩ}ĩ∈Ii ⊂ Ωi

are inner nodes of Ωi where Ii is set defined as follows

Ii :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{︂
1, . . . , Np

Nsub
+ δ

2

}︂
if i = 1{︂

(i− 1)× Np

Nsub
− δ

2
+ 1, . . . , i× Np

Nsub
+ δ

2

}︂
if 1 < i < Nsub{︂

(Nsub − 1)× Np

Nsub
− δ

2
+ 1, . . . , Np

}︂
if i = Nsub

(3.6)

such that

I =

Nsub⋃︂
i=1

Ii. (3.7)

with I set of indices of inner nodes in Ω defined in (2.4) and

δ := |Ii,j| (3.8)

the number of inner nodes in overlap region Ωij defined in (3.3).

Identification of inner nodes of overlap regions {Ωij}i=1,...,Nsub,j∈Ji: for i = 1, . . . , Nsub

{xj̃}j̃∈Iij ⊂ Ωij ∀j ∈ Ji

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 27

are inner nodes of Ωij where

Iij := Ii ∩ Ij ̸= ∅ ∀j ∈ Ji (3.9)

is the set of indices of nodes in overlap region. Consequently, for i = 1, . . . , Nsub

we define the cardinality of Ii as follows:

Nloc := |Ii| =
Np

Nsub

+
δ

2
(3.10)

i.e. number of inner nodes of spatial subdomain Ωi.

– DD of ∆K : identification of instants of time in time intervals {∆k}k=1,...,Nt: for

k = 1, . . . , Nt

∆Kk
≡ {tk̃}k̃∈Kk

⊂ ∆.

are equispaced time instants in ∆k where Kk is set defined as follows:

Kk :=

{︃
(k − 1)× N

Nt

, . . . , k × N

Nt

}︃
where

Kk ∩Kk+1 =

{︃
k × N

Nt

}︃
̸= ∅ ∀k = 1, . . . , Nt − 1

and

Nk := |Kk| =
N

Nt

its cardinality of Kk i.e. number of instants of time in Kk, such that

K =
Nt⋃︂
k=1

Kk. (3.11)

with K set defined in (2.5).

Consistently with Definition 1, for i = 1, . . . , Nsub, k = 1, . . . , Nt

ΩIi ×∆Kk
:= {(xĩ, tk̃)}ĩ∈Ii;k̃∈Kk

⊂ Ωi ×∆k

is local discrete domain.

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 28

We are able to define the restriction and extension spatial operator.

Definition 5. (Restriction Operator) For i = 1, . . . , Nsub we define restriction matrices

Ri : Ω× Y → Ωi × Y

on Ωi and

Rij : Ω× Y → Ωij × Y

on Ωi where Y ⊂ N and |Y | its cardinality. Given x ∈ RNp×|Y | and z ∈ RNp×N we define

restriction of x to Ωi :

x/Ωi := Rix = {x(ĩ, k̃)}ĩ∈Ii,k̃∈|Y | ∈ RNloc× N
Nt (3.12)

x/Ωij := Rijx = {x(j̃, k̃)}j̃∈Iij ,k̃∈Kk
∈ Rδ× N

Nt

and restriction of z to Ωi ×∆k

z/(Ωi ×∆k) := {z(·, k̃)}k̃∈Kk
/Ωi = Ri · {z(·, k̃)}k̃∈Kk

= {z(ĩ, k̃)}ĩ∈Ii,k̃∈Kk
∈ RNloc×Nk

z/(Ωij ×∆k) := {z(·, k̃)}k̃∈Kk
/Ωij = Rij · {z(·, k̃)}k̃∈Kk

= {z(ĩ, k̃)}ĩ∈Iij ,k̃∈Kk
∈ RNloc×Nk

where Ii and Iij are respectively set of indices of inner nodes in Ωi and Ωij , ∀j ∈ Ji.

Definition 6. (Extension operator) We define the Extension Operator (EO). If x ∈ RNloc×Nk , it

is

EO(x) := RT
i x =

⎧⎨⎩ x(ĩ, k̃) if (ĩ, k̃) ∈ Ii ×Kk

0 elsewhere

where RT
i is the transpose of Ri in (3.12) and EO(x) ≡ xEO.

We underline that Ri is the restriction matrix to subdomain Ωi differently from Rl that is co-

variance matrices of the error on the observations at time tl. In the next sections we introduce

the DD–DA methods: DD–3DVAR, DD–4DVAR and DD–KF.

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 29

3.2 Domain Decomposition of 3DVAR problem (DD–3DVAR)

The basic idea of of ASM is to divide the region into several overlapping subregions and then

to solve the subproblems in the subregions alternatively with boundary information from the

neighboring subregions. Let us review the main steps of ASM method applied to 3DVAR DA

problem ([23]). It is composed of the following modules:

1. DD of Ω: as described in section 3.1 and definition of restriction matrices Ri ≡ ROi and

extension matrices RT
i ≡ EOi, for i = 1, ..., Nsub as follows:

Ri =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

si−1 + 1 · · · si−1 + ri

0 · · · 0 0 · · · 0 0 · · · 0
...

...
...

...
...

...

0 · · · 0 · · · 0 0 · · · 0

si−1 + 1 0 · · · 0 1 0 · · · 0
...

...
... . . .

si−1 + ri 0 · · · 0 0 1 0 · · · 0

0 · · · 0 0 · · · 0 0 · · · 0
...

...
...

...
...

...

0 · · · 0 0 · · · 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.13)

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 30

RT
i =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s̄i−1,i + 1 · · · s̄i−1,i + ri

0 · · · 0 0 · · · 0 0 · · · 0
...

...
...

...
...

...

0 · · · 0 · · · 0 0 · · · 0

s̄i−1,i + 1 0 · · · 0 1 0 · · · 0
...

...
... . . .

s̄i−1,i + ri 0 · · · 0 0 1 0 · · · 0

0 · · · 0 0 · · · 0 0 · · · 0
...

...
...

...
...

...

0 · · · 0 0 · · · 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.14)

where si,j = ri−Ci,j , s̄i,j = si,j + tij , and ri, ti,j , Ci,j points of subdomain Ωi, interfaces

Γij and subdomain Ωij = Ωi ∩ Ωj , respectively.

In order to compute local estimates on local domains defined in (3.5) we introduce the

following notation. For i = 1, . . . , Nsub, we pose

zi = {z(ĩ)}ĩ∈Ii ∈ RNloc×1

i.e. a vector defined in local domain Ωi.

For n = 0, 1, 2, ... until convergence is reached.

2. Model Reduction: For i = 1, . . . , Nsub, let un+1
i solution of local problem P n+1

i defined

as follows:

argminun+1
i ∈RNloc Ji(u

n+1
i) = argminun+1

i ∈RNloc

[︁
||Hiu

n+1
i − yi||2Ri

+

α ·
(︂
||un+1

i − (ui
M)||2Bi

+ ||un+1
i /Γij − unk/Γij||2B/Γij

)︂]︂
;

(3.15)

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 31

Bi = RiBRT
i is a covariance matrix, B/Γij = RijBRT

ij is restriction of matrix B to Γij;

Hi = RiHR
T
i , Ri = RiRRT

i are restriction of matrices H and R to subdomain Ωi,

ubi = Riu
M , un+1

i /Γij = Riju
n+1
i , unj /Γij = Riju

n
j are restriction of vectors uM , un+1

i ,

unj to subdomain Ωi and interface Γij for ∀i, j = 1, 2, ..., Nsub.

For simplicity of notations, in the following we pose parameter α = 1.

The gradient of Ji, by direct computation, reads as:

∇Ji(wn+1
i) = wn+1

i + VT
i H

T
i R−1

i (HiViwn+1
i − di) + VT

ij(Vijwn+1
i − Vijwn

j)

which can be written as follows

∇Ji(wn+1
i) = (VT

i H
T
i R−1

i HiVi + Ii +B/Γij)wn+1
i − ci + B/Γijwn

j , (3.16)

where

ci = (VT
i H

T
i R−1

i HiVidi), di = (yi −Hiu
n+1
i) (3.17)

Ii ∈ RNloc×Nloc is the identity matrix, Ri is defined in (3.13) and B = VVT is covariance

matrix of the errors on background.

3. ASM: from (3.16), according to ASM method and considering the Euler-Lagrange equa-

tions corresponding to (3.15), for i, j = 1, ..., Nsub, the systems (SASM
i)

n+1 defined as:

(SASM
i)

n+1
: AASM

i wn+1
i = ci −

∑︂
j ̸=i

Ai,jwn
j , (3.18)

where

AASM
i = (VT

i H
T
i R−1

i HiVi + Ii + B/Γij), (3.19)

and Aij = B/Γij .

4. DD–3DVAR approximation in Ωi: computation of un+1
i , related to subdomain Ωi as:

un+1
i = uMi + B−1

i Viwn+1
i , for i = 1, ..., J. (3.20)

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 32

5. DD–3DVAR solution in Ωi: computation of ˜︁uDD−DA, solution of 3DVAR DA problem

in (2.9), by patching together vectors un+1
i , i.e.:

˜︁uDD−DA(j) =

⎧⎨⎩ un̄i (j) se xj ∈ Ωi

un̄k(j) se xj ∈ Ωk o xj ∈ Ωi ∩ Ωk,
, (3.21)

for i, k = 1, ...Nsub, and n̄ corresponding iterations needed to stop of the iterative proce-

dure.

The DD method introduced in [30] provides the minimum of functional J in (2.10) (defined on

the entire domain) as a piecewise function by collecting the minimum of each local functional

Ji defined in (3.15) by adding a local constraint about the entire overlap region. The DD method

in [30] is composed of the following steps:

i. DD of Ω as described in section 3.1;

ii. definition of restriction RO and extension EO operators;

iii. for n = 0, 1, 2, ..., solution of Nsub subproblems (PDD−DA
i)

n+1
where

(PDD−DA
i)

n+1
argminun+1

i ∈RNloc JDD−DA
i (un+1

i) =

argminun+1
i ∈RNloc (||Hiu

RO − yRO||2Ri
+ λ · ||uRO − (uM)

RO||2Bi
+

β · ||uRO/Ωij − uRO/Ωij||2Bij
),

(3.22)

where Bij is restriction of matrix B to overlap region Ωij , and Hi, Bi restriction of matri-

ces H, B to subdomain Ωi for i = 1, ..., Nsub, according the description in [30]. Finally β

is non negative parameter and RO is restricted operator of DD method in [8].

From (3.22) the Euler-Lagrange equations give rise to the following systems (SDD−DA
i)

n+1

[30]:

(SDD−DA
i)

n+1
: ADD−DA

i wn+1
i = cDD−DA

i , (3.23)

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 33

to solve for n = 0, 1, ..., while the vectors cDD−DA
i and matrices ADD−DA

i are defined as

follows:

cDD−DA
i = (VT

i H
T
i R−1

i HiVidi), (3.24)

ADD−DA
i = (VT

i H
T
i R−1

i HiVi + Ii) (3.25)

and Ii is the identity matrix, for i = 1, ..., Nsub.

iv. computation of un+1
i , as in (3.20), for i = 1, ..., Nsub.

v. computation of ˜︁uDD−DA, solution of problem 3DVAR DA in (2.9) obtained by gathering

un̄i solution of (PDD−DA
i)

n̄
defined in (3.22), where n̄ is latest iteration.

In order to prove equivalence between the DD method in [30] and ASM for solving the DA

problem, firstly we note that the following equivalence holds on:

EO ≡ Ri, RO ≡ RT
i ,

where RO and EO are restriction and extension operator in Definitions 3.116 and 6. Then if

we let A ∈ RNP×NP and consider Nloc points of Ωi, it is

RO(A) ≡ RiAR
T
i ,

for i = 1, ..., Nsub. We now prove the following result.

Proposition 1. Let ˜︁uDD−DA in (3.21) be the solution 3DVAR DA problem in (2.9) obtained

applying the DD method in [8], that is, by solving for n = 0, 1, ... systems (SDD−DA
i)

n+1
in

(3.23). Similarly, the ASM, provides ūDD−DA by solving for n = 0, 1, ... systems (SASM
i)

n+1 in

(3.18). We prove that systems in (3.18) and (3.23) are equivalent.

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 34

Proof. Let us assume that J = 2. We consider subdomains Ω1, Ω2 and interfaces Γ12 :=

∂Ω1 ∩ Ω2, Γ21 := ∂Ω2 ∩ Ω1.

By using the DD method in [8] it follows that:

(SDD−DA
1)

n+1
: ADD−DA

1 wn+1
1 = cDD−DA

1 −→ wn+1
1 = (ADD−DA

1)
−1
cDD−DA
1 (3.26)

and

(SDD−DA
2)

n
: ADD−DA

2 wn
1 = cDD−DA

1 −→ wn
2 = (ADD−DA

2)
−1
cDD−DA
2

by using ASM we get

(SASM
1)

n+1
: AASM

1 wn+1
1 = c1 + A12wn

2

(SASM
2)

n+1
: AASM

2 wn+1
2 = c2 + A21wn

1 .
(3.27)

We prove the equivalence between (SDD−DA
1)

n+1
in (3.26) and (SASM

1)
n+1 in (3.27), i.e. we

prove that solutions obtained from (SDD−DA
1)

n+1
and (SDD−DA

2)
n

in (3.26) satisfy (SASM
1)

n+1

in (3.27).

Replacing wn+1
1 by (ADD−DA

1)
−1
cDD−DA
1 in (3.27), it follows that:

AASM
1 (ADD−DA

1)−1cDD−DDA
1 = c1 + A12wn

2 ; (3.28)

matrix AASM
1 in (3.19) can be rewritten as

AASM
1 := (VT

1H
T
1 R−1

1 H1V1 + I1 + B/Γ12) = ADD−DA
1 + A12,

where ADD−DA
1 is defined in (3.25). Then, the (3.28) becomes:

(ADD−DA
1 + A12)(A

DD−DA
1)−1cDD−DA

1 = c1 + A12wn
2 . (3.29)

Replacing wn
2 with (ADD−DA

2)
−1
cDD−DA
2 in (3.29), it follows that:

cDD−DA
1 + A12((A

DD−DA
1)−1cDD−DA

1)|Γ12 = c1 + A12((A
DD−DA
2)−1cDD−DA

2)|Γ12

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 35

then, we obtain

cDD−DA
1 = c1. (3.30)

From (3.17) and (3.24) we have

cDD−DA
1 = (VT

i H
T
i R−1

i HiVidi) = c1,

and the proof is complete.

3.3 Domain Decomposition of 4DVAR problem (DD–4DVAR)

The proposed DD method consists in decomposing the domain of computation Ω × ∆ into

subdomains in space and time and solving reduced forecast models and local 4DVAR DA prob-

lems. The modules of DD method are: domain decomposition of Ω × ∆, model reduction,

ASM method based on Additive Schwarz method idea [44], DD–4DVAR local solution and

DD–4DVAR global solution. The method is made of two nested loops: the outer loop (over

index n) defines approximations of the reduced models, while the inner loop (over index r)

solve reduced 4DVAR DA problems. The schematic description of DD–4DVAR algorithm is

reported in Figure 3.1.

1. DD of Ω: as described in section 3.1.

In order to compute local approximation in local domains defined in (3.5) we introduce

the following notation. For i = 1, . . . , Nsub, k = 1, . . . , Nt, we pose

zi,k = {z(ĩ, k̃)}ĩ∈Ii; k̃∈Kk
∈ RNloc×Nk

i.e. a vector defined in local domain Ωi ×∆k.

We introduce an outer-loop. The outer-loops solve the nonlinear aspects of the assim-

ilation problem which for DD–4DVAR, in general for 4DVAR techniques, includes the

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 36

Figure 3.1: Schematic description of DD–4DVAR algorithm. The modules of DD–4DVAR: DD,

Model Reduction, ASM, DD–4DVAR local solution and DD–4DVAR global solution are identified

and the Arabic numbers in parentheses refer to the corresponding module in section 3.3. For each

module we report the corresponding solution.

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 37

integration of the nonlinear model.

For n = 0, 1, . . . , n̄, do

2. Model reduction: for i = 1, . . . , Nsub; k = 1, . . . , Nt, posed u0i,k := {uM(xĩ, tk̃)}ĩ∈Iij ,k̃∈Kk

i.e. by using the background as local initial values, let uMi,k,n+1

i,k be the solution of the local

model (PMi,k,n

i,k)i=1...,Nsub,k=1,...,Nt:

(P
Mi,k,n

i,k)i=1...,Nsub,k=1,...,Nt :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u
Mi,k,n

i,k =Mi,k · uni,k−1 + bni,k,

uni,k−1 = u
Mi,k,n

i,k−1

uni,k/Γij = unj,k/Γij, j ∈ Ji

(3.31)

where uMi,k, bni,k are respectively the background in Ωi×∆k, the vector accounting bound-

ary conditions of Ωi and

Mi,k :=Mk/Ωi (3.32)

the restriction to Ωi of the matrix

Mk ≡Ms̄k−1,s̄k :=Ms̄k−1,s̄k−1+1 · · ·Ms̄k−1,s̄k . (3.33)

where

s̄k :=
k−1∑︂
j=1

Nj − (N − 1) and s̄0 := 0 (3.34)

are respectively the first index of ∆KK
and ∆K1 and bni,k is vector computed from infor-

mation in boundary of Ωi at interval time ∆k that depends on discretization scheme used.

Let:

(P n
i,k)i=1,...,Nsub ,k=1,...,Nt : uASM,n

i,k = argmin
un
i,k

Ji,k(u
n
i,k) (3.35)

be the local 4DVAR DA model with

Ji,k(u
n
i,k) = J(uni,k)/(Ωi ×∆k) + Oij. (3.36)

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 38

We let

Oij =
∑︂
j∈Ji

βj · ∥uni,k/Ωij − unj,k/Ωij∥2B−1
ij

(3.37)

be the overlapping operator in Ωij , and

Ji,k(u
n
i,k)/(Ωi ×∆k) = αi,k · ∥uni,k − u

Mi,k,n

i,k ∥B−1
i

+ ∥Gi,ku
n
i,k − yi,k∥2R−1

i

be the restriction of J in Ωi × ∆k. Parameters αi,k and βj in (3.37) denotes the regular-

ization parameters. Following, we let αi,k = βj = 1, j ∈ Ji.

3. ASM: according to ASM [44] we compute solution of (P n
i,k)i=1,...,Nsub ,k=1,...,Nt . Gradient

of Ji,k is [8]:

∇Ji,k(wn
i,k) = (VT

i (Gi,k)
T (Ri,k)

−1Gi,kVi + Ii + adi · Bij)wn
i,k

−ci +
∑︁

j∈Ji Bijwn
j,k,

where

wn
i,k = V−1

i (uni,k − u
Mi,k,n

i,k), (3.38)

di = (vi −Gi,ku
Mi,k,n

i,k) ci = (VT
i (Gi,k)

T (Ri,k)
−1di)

and Ii the identity matrix, adi number of subdomains adjacent to Ωi defined in (3.2).

Solution of (P n
i,k)i=1,...,Nsub ,k=1,...,Nt is obtained by requiring ∇Ji,k(wn

i,k) = 0. This gives

rise to the linear system:

Ai,kwn
i,k = ci −

∑︂
j∈Ji

Bijwn
j,k, (3.39)

where

Ai,k = (VT
i (Gi,k)

TR−1
i,kGi,kVi + Ii + adi · Bij). (3.40)

(3.1) For each iteration n, r.h.s. of (3.39) depends on unknown value wn
j,k defined in

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 39

adjacent subdomains Ωij of Ωi, j ∈ Ji. Hence, for solving the system in (3.39).

We introduce an inner-loops related to minimization of local 4DVAR model defined in

(3.35). For r = 0, 1, . . . , r̄

Ai,kwr+1,n
i,k = ci −

∑︂
j∈Ji

Bijwr,n
j,k , (3.41)

where at each step r + 1, Ωi receives wr,n
i,k from Ωij , j ∈ Ji for computing the r.h.s. of

(3.41) then it computes wr+1,n
i,k by using Conjugate Gradient (CG) method and finally it

sends wr+1,n
i,k to Ωij , j ∈ Ji for updating the r.h.s. of (3.41) needed to the next iteration.

w0,n
ij ,k

is an arbitrary initial value. Finally, we pose

wn
i,k ≡ wr̄,n

i,k ,

consequently

uASM,n
i,k := uASM,r̄

i,k . (3.42)

4. DD–4DVAR approximation in Ωi ×∆k: final solution update, using (A.40) and (3.38):

un+1
i,k = u

Mi,k,n+1

i,k + Viwn
i,k = u

Mi,k,n+1

i,k + [uASM,n
i,k − uMi,k,n

i,k]. (3.43)

Endfor n

5. DD–4DVAR solution in Ω×∆: computation of DD–4DVAR approximation in Ω×∆:

let

˜︁uDD−DA,n :=

Nsub∑︂
i=1

Nt∑︂
k=1

(uni,k)
EO. (3.44)

be DD–4DVAR approximation at iteration n where (uni,k)
EO is extension to Ω × ∆ of

DD–4DVAR approximations in Ωi ×∆k, we define

˜︁uDD−DA := ˜︁uDD−DA,n̄ (3.45)

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 40

as DD–4DVAR solution in Ω×∆.

Note that Bi = RiBRT
i and Bij := B/Γij = RiBRT

ij are the restrictions of covariance ma-

trix B, respectively, to subdomain Ωi and interface Γij in (3.4), Gi,k, Ri,k are the restriction

of matrices Gk := Gs̄k and Rk := diag(R0,R1, . . . ,Rs̄k) to Ωi, and finally uMi,k = Riu
M
k ,

un+1
i,k /Γij = Riju

n+1
i,k , unj,k/Γij = Riju

n
k are the restriction of vectors ubk, un+1

i,k , unj,k to Ωi and

Γij , for i = 1, 2, . . . , Nsub, j ∈ Ji.

It is worth noting that each local functional Ji,k is obtained starting from a restriction of the

global functional J and adding a local term (3.37) defined in the overlapping regions. In ad-

dition, regarding the decomposition in time direction, we use DA as predictor operator for the

local PDE-based model, providing the approximations needed for solving the initial value prob-

lem in each sub interval.

We prove that the minimum of J can be obtained by patching together all the local solution

obtained as minimum of local function Ji,k. We are able to prove the following result.

Theorem 1. If J is convex:

J(uDA) = J(˜︁uDD−DA). (3.46)

Proof. As uDA is the global minimum of J it follows that:

J(uDA) ≤ J

(︄
Nsub∑︂
i=1

Nt∑︂
k=1

(un̄
i,k)

EO

)︄
, ∀ i, k (3.47)

then, from the (3.45) it follows that

J(uDA) ≤ J
(︁˜︁uDD−DA

)︁
. (3.48)

Now we prove that if J is convex, then

J(uDA) = J(˜︁uDD−DA)

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 41

by reduction to the absurd. Assume that

J(uDA) < J(˜︁uDD−DA). (3.49)

In particular,

J(uDA) < J

(︄
Nsub∑︂
i=1

Nt∑︂
k=1

˜︁ui,k

)︄
≤

Nsub∑︂
i=1

Nt∑︂
k=1

Ji,k(u
n̄
i,k) . (3.50)

This means that

J(uDA) <

Nsub∑︂
i=1

Nt∑︂
k=1

Ji,k(u
n̄
i,k) . (3.51)

From the (3.51) and the (3.50), it is:

∇J(uDA) < ∇
Nsub∑︂
i=1

Nt∑︂
k=1

Ji,k(u
n̄
i,k) =

Nsub∑︂
i=1

Nt∑︂
k=1

∇Ji,k(u
n̄
i,k) (3.52)

uDA is global minimum of J i.e. ∇J(uDA) = 0, from (3.52) it is

∇Ji,k(ui,k) > 0 ∀(i, k). (3.53)

The (3.53) is an absurd as the values of un̄i,k are the minimum for Ji,k for ∀(i, k). Hence, the

(3.46) is proved.

In the next section we will show that this formulation leads to local numerical solutions conver-

gent to the numerical solution of the global problem.

3.3.1 Algorithm

In Table 3.1 we report DD procedure for solving 4DVAR DA problems in Ω×∆. For a fixed sub-

domain in space and time, i.e. Ωi ×∆k+1, the procedure is made of two nested loops: the outer

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 42

loop over index n, defines an approximation of local models by calling the Predictor–Update

procedure (Table 3.2), while the inner loop over index r solves local 4DVAR DA problems

calling the ASM Procedure (Table 3.3).

Iterative schemes are stopped when convergence is satisfied, i.e. at the minimum value of n and

r, respectively, such that

Er,Ωi×∆k = ∥wr+1
i,k − wr

i,k∥ < tolsub, i = 1, . . . , Nsub, k = 1, .., Nt (3.54)

and

En,Ωi×∆k = ∥un+1
i,k − u

n
i,k∥ < tolt, i = 1, . . . , Nsub, k = 1, .., Nt (3.55)

where tolsub and tolt are fixed. Note that, for each value of n, convergence of ASM in [44]

involves convergence of (wr
i,k)r∈N0 i.e.

wr
i,k = V−1

i (uASM,r
i,k − uMi,k,n

i,k) −−−→
r→∞

V−1
i (uni,k − u

Mi,n
i,k) =: wi,k

Table 3.1: DD algorithm in Ω×∆.

Procedure DD-Procedure(in:Nt, Nsub,M, v, uM , u0,B,R, G; out : ˜︁uDD−DA)

Begin of DD Step:

Ω← (Ω1,Ω2, . . . ,ΩNsub
) % decomposition of spatial domain and

Define adi % number of adjacent subdomains (module 1, section 3.3).

Define Γij % interfaces of domain Ωi % (module 2, section 3.3).

∆← (∆1,∆2, . . . ,∆Nt)% decomposition of the spatial domain (module 3, section 3.3)

For i = 1, . . . , Nsub

For k = 1, . . . , Nt

u0i,k ← uMi,k

EndFor

End of DD step

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 43

n← 0

While convergence do % the outer loop (module 4, section 3.3).

For k = 1, . . . , Nt

uni,0 ← uMi,0

% restriction procedure

Call RΩi×∆k (in:M,R,B, G, y, uM , u0; out:Mi,k+1,Ri,k+1,Bi,Bi,1,

. . . ,Bi,adi , Gi,k+1, y
k
i , u

M
i,k, ui,0)

uni,0 ← ui,0

Receive interfaces conditions from adjacent subdomains

Compute bi,k % compute the vector accounting of information received

from adjacent subdomains.

Send interfaces conditions to adjacent subdomains

% procedure solving and updating the solution of local models

(modules 5-8, section 3.3).

Call Predictor-Corrector (in:asi, uni,k−1, bi,k,Mi,k,Mj,k, yi,k,Bi,Ri,k, Gi,k;

out:un+1
i,k)

Endfor

n← n+ 1

EndWhile

n̄← n

EndFor

% gather of local solutions (module 9, section 3.3).

Gather of ui,k: ˜︁uDD−DA = {un̄i,k}i=1,...,Nsub,k=1,...,Nt

EndProcedure

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 44

Table 3.2: Predictor–Corrector procedure in Ωi ×∆k.

Procedure Predictor–Corrector (in:adi, uni,k−1, bi,k,Mi,k,Mj,k, yi,k,Bi,Ri,k, Gi,k; out:un+1
i,k)

% Procedure solving and updating the solution of local models (modules 5–8, section 3.3).

Compute uMi,k,n+1

i,k ←Mi,ku
n
i,k−1 + bni,k

% procedure solving local 4DVAR DA problems (module 7, section 3.3).

Call ASM–Procedure(in:adi, uni,k,Mi,k,Mj,k, yi,k,Bi,Ri,k, Gi,k; out:wr̄
i,k)

Define wn
i ← wr̄

i

Compute un+1
i,k ← u

Mi,k,n+1

i,k + Viwn
i,k

EndProcedure

Table 3.3: ASM algorithm in Ωi ×∆k with adi ∈ N adjacent subdomains.

Procedure ASM–Procedure(in:adi, uni,k,Mi,k,Mj,k, yi,k,Bi,Ri,k, Gi,k; out:wr̄
i,k)

% Procedure for solving local 4DVAR DA problems (module 7, section 3.3).

r ← 0

Factorization Vi = chol(Bi) % Cholesky factor of Bi

Initialize wr
i,k, wr

j,k

While convergence do % the inner loop that solve local 4DVAR DA

problems (module 7, section 3.3).

Compute di ← yi,k −Gi,ku
M
i,k

Compute Ai,k ← VT
i (Gi,k)

TR−1
i,kViGi,k + Ii + ni · Bij

Compute ci ← VT
i (G

k
i)

T (Ri,k)
−1di

Compute ci −
∑︁adi

j=1 Bijwr
ij ,k

% CG method for solving the linear system Ai,kwr+1
i,k = ci −

∑︁adi
j=1 Bijwr

ij ,k

Call CG(in: Ai,k, ci −
∑︁ni

j=1 Bijwr
ij ,k

; out : wr+1
i,k)

r ← r + 1

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 45

EndWhile

Define r̄ ← r

EndProcedure

Hence, convergence of (wr
i,k)r∈N0 and Theorem 2 justifies convergence conditions in (3.54) and

(3.55) of loops over index n and r.

Note that, for each value of n, local 4DVAR DA problems in Ωi × ∆k+1 are independent on

each other, hence, they can be solved in parallel.

3.3.2 Sensitivity analysis

In the following, we analyze error propagation. To this aim, we introduce the following Lemma

[100]. We pose ∥ · ∥ = ∥ · ∥21.

Lemma 1. Let Nt ∈ N and R > 0, H ≥ 0. If for k = 1, . . . , Nt we have that:

|Ek| ≤ (1 +R)|Ek−1|+H for k = 1, 2, . . . , Nt

then it holds that

|Ek| ≤ eNtR|E1|+
eNtR − 1

R
H for k = 1, 2, . . . , Nt.

We consider round off errors propagation.

Definition 7. Let un+1
i,k and ũn+1

i,k be respectively the numerical solution at iteration (n + 1)

in (3.43) and the corresponding floating point representation. Fixed iteration n, for i =

1, . . . , Nsub, k = 1, . . . , Nt let

Rn+1
i,k := un+1

i,k − ũ
n+1
i,k (3.56)

be global round-off error in Ωi ×∆k.
1We refer to ∥zi,k∥2 = ∥{zi,k(ī, k̄)}ī∈Ii,k̄∈Kk

∥2 where z ∈ RNp×N and zi,k := z/(Ωi ×∆k) and Ii and Kk

are defined in (3.7) and (3.7), respectively.

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 46

From (3.31) the numerical solution at iteration (n+ 1) can be written as follows

un+1
i,k = (Mi,ku

n+1
k−1 + bn+1

i,k) + [uASM,n
i,k − (Mi,ku

n
i,k−1 + bni,k)]

=Mi,ku
n+1
i,k−1 + δ(uni,k)

and consequently the corresponding floating point representation is

ũn+1
i,k =Mi,kũ

n+1
i,k−1 + δ(ũni,k) + ρn+1

k

where δ(uni,k) := (uASM,n
i,k −Mi,ku

n
i,k−1) + (bn+1

i,k − bni,k) and ρn+1
k is local round-off error.

Fixed (n+ 1), we have that

∥Rn+1
i,k ∥ = ∥un+1

i,k − ũ
n+1
i,k ∥ = ∥Mi,ku

n+1
i,k−1 + δ(uni,k)−Mi,kũ

n+1
i,k−1 − δ(ũni,k)− ρ

n+1
k ∥

≤ ∥Mi,ku
n+1
i,k−1 −Mi,kũ

n+1
i,k−1∥+ ∥δ(uni,k)− δ(ũni,k)∥+ |ρ

n+1
k |

≤ ∥Mi,k∥∥un+1
k−1 − ũ

n+1
k−1∥+ ∥u

ASM,n
k − ũASM,n

k ∥

+∥Mi,ku
n
i,k−1 + bni,k − (Mi,kũ

n
i,k−1 + b̃

n

i,k)∥+ ∥bn+1
k − b̃n+1

i,k ∥

+∥bni,k − b̃
n

i,k∥+ |ρn+1
k |

from (3.31) we have

∥bn+1
i,k − b̃

n+1

i,k ∥ = ∥Mi,ku
n+1
i,k−1 −Mi,kũ

n+1
i,k−1∥

and as in [8] we let the condition index µ(Mi,k) ≥ ∥Mi,k∥ then

∥Rn+1
i,k ∥ ≤ µ(Mk

i)∥un+1
k−1 − ũ

n+1
k−1∥+ ∥u

ASM,n
k − ũASM,n

k ∥+ ∥uMi,k,n

i,k − ũMi,k,n

i,k ∥

+µ(Mi,k)∥un+1
k−1 − ũ

n+1
k−1∥+ µ(Mi,k)∥uni,k−1 − ũni,k−1∥+ |ρki |

and in compact form

∥Rn+1
i,k ∥ ≤ 2µ(Mi,k)∥Rn+1

i,k−1∥+ ∥R
ASM,n
i,k ∥+ ∥RM,n

i,k ∥+ µ(Mi,k)∥Rn
i,k−1∥+ |ρki |

where

RASM,n
i,k := uASM,n

i,k − ũASM,n
i,k R

Mi,k,n

i,k := u
Mi,k,n

i,k − ũMi,k,n

i,k . (3.57)

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 47

From Lemma 1, with R = 2µ(Mi,k)− 1 and H = RASM,n
i,k +R

Mi,k,n+1

i,k + µ(Mi,k)R
n
i,k−1 + ρki it

follows that:

∥Rn+1
i,k ∥ ≤ eNtR∥Rn+1

i,1 ∥+
eNtR − 1

Rµ(Mi,k)

[︂
∥RASM,n

i,k ∥+ ∥RMi,k,n

i,k ∥+ µ(Mi,k)∥Rn
k−1∥+ ρki

]︂
.

then, it is

∥Rn+1
i,k ∥ ≤ eNtR∥Rn+1

i,1 ∥+
eNtR − 1

R

[︂
∥RASM,n

i,k ∥+ ∥RMi,k,n

i,k ∥+ ∥Rn
i,k−1∥

]︂
+
eNtR − 1

R
ρki .

(3.58)

The upper bound in (3.58) is made of three terms: the first one represents the propagation

of the error introduced on the first time interval, the second represents the propagation of the

error introduced at previous step and the last term depends on the local round-off error. In

particular, we note that, as expected, round-off error propagation grows withNt, i.e. the number

of subdomains of ∆.

3.3.3 Consistency, convergence and stability

We first prove convergence results (see Figure 3.1). We pose ∥ · ∥ = ∥ · ∥22.

Theorem 2. (Convergence of outer loop) DD-4DVAR is a convergent method i.e.

limn→∞∥ũDD−DA,n+1 − ũDD−DA,n∥ = 0 (3.59)

where ũDD−DA,n is defined in (3.44).

Proof. From (3.46) and (3.45), it is

J(uDA) = J(˜︁uDD−DA) = J(˜︁uDD−DA,n̄) (3.60)

2We refer to ∥zi,k∥2 = ∥{zi,k(ī, k̄)}ī∈Ii,k̄∈Kk
∥2 where z ∈ RNp×N and zi,k := z/(Ωi ×∆k) and Ii and Kk

are defined in (3.7) and (3.7), respectively.

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 48

where n̄ is the latest iteration of the outer loop (see Figure 3.1). By minimum properties of˜︁uDD−DA,n̄, we get

J(˜︁uDD−DA,n̄) ≤ J(˜︁uDD−DA,n̄−1). (3.61)

From (3.61), by recurring we obtain

0 ≤ J(˜︁uDD−DA,n̄) ≤ J(˜︁uDD−DA,n−1¯) ≤ . . . ≤ J(˜︁uDD−DA,1) ≤ J(˜︁uDD−DA,0)

then {J(˜︁uDD−DA,n)}n∈N is monotonically decreasing and bounded from below by zero, then it

is convergent i.e.

limn→∞
[︁
J(˜︁uDD−DA,n+1)− J(˜︁uDD−DA,n)

]︁
= 0. (3.62)

Concerning iteration n of the outer loop, we get

J(˜︁uDD−DA,n) = ∥˜︁uDD−DA,n − uM∥2B−1 + ∥G˜︁uDD−DA,n − v∥2R−1 ≥ ∥˜︁uDD−DA,n − uM∥B−1

(3.63)

from the triangle inequality we get

J(˜︁uDD−DA,n) ≥ |∥˜︁uDD−DA,n∥B−1 − ∥uM∥B−1| (3.64)

where uM is defined in (2.13) and does not depend on n then {˜︁uDD−DA,n}n∈N is convergent

respect to ∥ · ∥B−1 , consequently respect to ∥ · ∥. Then we get the thesis in (3.59).

The convergence of ASM is proved in [44].

We also analyse the convergence of DD-4DVAR modules in terms of local truncation errors

E
Mi,k

i,k , EASM
i,k , Ei,k and Eg reported in Figure 3.2. Similar to the differential equations case

[29], local truncation errors EMi,k

i,k , EASM
i,k , Ei,k in Ωi ×∆k and Eg in Ω×∆ are defined as the

remainder after solutions uM of (2.1) and uDA of 4D-DA problem (2.9) are substituted into the

discrete models. To this aim, we give the following definitions.

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 49

Definition 8. We define

uM→M :=M · {uM(xi, tk)}ĩ∈I; k̃∈K (3.65)

approximation of uM in (2.1) in Ω×∆ obtained by replacing uM evaluated in ΩI ×∆K defined

in Definition 1, into M defined in (2.12).

Definition 9. (Local truncation errors in Ωi ×∆k) ∀(i, k), i = 1, . . . , Nsub and k = 1, . . . , Nt,

at at iteration n̄ we define

E
Mi,k,n̄

i,k :=
⃦⃦⃦
uM→M/(Ωi ×∆k)− u

Mi,k,n̄

i,k

⃦⃦⃦
(3.66)

as local truncation error of the numerical model restricted to Ωi ×∆k ;

EASM,n̄
i,k :=

⃦⃦⃦
uDA/(Ωi ×∆k)− uASM,n̄

i,k

⃦⃦⃦
(3.67)

as local truncation error of ASM restricted to Ωi ×∆k ;

En̄
i,k :=

⃦⃦
uDA/(Ωi ×∆k)− un̄i,k

⃦⃦
(3.68)

as local truncation error of DD–4DVAR method restricted to Ωi ×∆k ;

Eg :=
⃦⃦
uDA − ˜︁uDD−DA

⃦⃦
(3.69)

as local truncation error of DD–4DVAR method in Ω×∆.

DD-4DVAR method needs few iterations of DD–4DVAR outer loop on n to update DD-4DVAR

approximation in (3.43). Consequently, in the next, we neglect the dependency on n̄ of uMi,k,n̄

i,k ,

uASM,n̄
i,k and uni,k defined respectively in (3.31), (3.35) and (3.43) and EMi,k,n̄

i,k , EASM,n̄
i,k and En̄

i,k

in Ωi ×∆k defined respectively in (3.66), (3.67) and (3.68).

For (i, k), i = 1, . . . , Nsub and k = 1, . . . , Nt, we pose

˜︁ui,k := un̄i,k. (3.70)

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 50

Figure 3.2: Local truncation errors related to each module of DD–4DVAR method.

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 51

From (3.70), the DD–4DVAR approximation in Ω×∆ defined in (3.45) becomes

˜︁uDD−DA =

Nsub∑︂
i=1

Nt∑︂
k=1

˜︁uEO
i,k . (3.71)

For i = 1, . . . , Nsub and k = 1, . . . , Nt, we pose

uASM
i,k = uASM,n̄

i,k ;

u
Mi,k

i,k = u
Mi,k,n̄

i,k ;

ui,k = un̄i,k.

(3.72)

Consequently, from (3.72) we pose

E
Mi,k

i,k = E
Mi,k,n̄

i,k , (3.73)

as local model truncation error in Ωi ×∆k,

EASM
i,k = EASM,n̄

i,k , (3.74)

as local ASM truncation error in Ωi ×∆k in (3.67),

Ei,k = En̄
i,k. (3.75)

as local truncation error Ωi ×∆k in (3.68).

We introduce the definition of consistency of DD–4DVAR method.

Definition 10. (Consistency of DD–4DVAR method) Let Eg be local truncation error of DD–

4DVAR in Ω×∆ defined in (3.69). The DD–4DVAR method is said to be consistent, if Eg → 0

as ∆x, ∆t→ 0, where

• ∆x := maxi=1,...,Nsub
(∆x)i, where {(∆x)i}i=1,...,Nsub

are spatial step sizes of Mi,k de-

fined in (3.32);

• ∆t := maxk=1,...,Nt(∆t)k, where {(∆t)k}k=1,...,Nt are temporal step sizes of Mi,k defined

in (3.32).

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 52

In order to prove the consistency of DD–4DVAR method, we perform the analysis of local trun-

cation errors EMi,k

i,k , EASM
i,k , Ei,k and Eg defined respectively in (3.73), (3.74), (3.75) and (3.69)

related to Module Reduction, ASM, DD–4DVAR local solution and DD–4DVAR solution mod-

ules as described in Figure 3.3.

Assumption 1. (Local truncation error of Model Reduction in Ωi ×∆k) Let

E
Mi,k

i,k = O((∆x)pi + (∆t)qk), ∀(i, k) ∈ {1, . . . , Nsub} × {1, . . . , Nt} (3.76)

be local truncation error defined in (3.73) where (∆x)i and (∆t)k are spatial and temporal step

sizes of Mi,k defined in (3.32) and p and q are the order of convergence in space and in time.

In the experimental analysis (see section 5), in order to discretize the SWEs model we consider

Lax–Wendroff scheme [81]. Hence, in that case, p = q = 2.

Lemma 2. (Local truncation error of ASM in Ωi ×∆k) Let us consider

• σ2
0: be observational error variance;

• Bi = ViV
T
i : be restriction of covariance matrices of the error on background to Ωi;

• Gi,k: be restriction to Ωi ×∆k of matrix G defined in (2.8);

• adi: be number of subdomains adjacent to Ωi, defined in (3.2);

• Bij = VijV
T
ij: be restriction to Ωij of variance matrix of the error on background;

• Mi,k: be matrix defined in (3.33), restricted to Ωi ×∆k;

• µ(Vi), µ(Gi,k), µ(Mi,k) and µ(Vij): be condition number of matrices Vi, Gi,k, Mi,k and

Vij , respectively.

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 53

Then, ∀i = 1, . . . , Nsub; k = 1, . . . , Nt, it holds that:

EASM
i,k ≤ µDD−DA

i,k · EASM
i,1 (3.77)

where

µDD−DA
i,k :=

[︃
1 +

1

σ2
0

µ2(Vi)µ
2(Gi,k) + adi · µ2(Vij)

]︃
µ(Mi,k). (3.78)

Proof. By applying error approximation in [8], we have

∥uDA/(Ωi ×∆k)− uASM
i,k ∥ ≤ µ(Ji,k)µ(Mi,k) · ∥uDA/(Ωi ×∆1)− uASM

i,1 ∥ (3.79)

where ∥uDA/(Ωi ×∆1)− uASM
i,1 ∥ is the error in Ωi ×∆1. As proved in [8], it is

µ(Ji,k) = µ(Ai,k) (3.80)

where Ji,k andAi,k are respectively defined in (3.36) and (3.40) and form the triangle inequality,

it is

µ(Ai,k) ≤ 1 +
1

σ2
0

µ2(Vi)µ
2(Gi,k) + adi · µ(Bij) (3.81)

≤ 1 +
1

σ2
0

µ2(Vi)µ
2(Gi,k) + adi · µ2(Vij), (3.82)

From (3.79) and (3.81), the (3.77) follows.

Lemma 3. (Local truncation error of DD-4DVAR method in Ωi×∆k) ∀(i, k), i = 1, . . . , Nsub; k =

1, . . . , Nt, it holds that:

Ei,k ≤ µDD−DA
i,k · EASM

i,1 + 2 · EMi,k

i,k
(3.83)

where µDD−DA
i,k is defined in (3.78).

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 54

Figure 3.3: Assumption, Lemmas, Theorems related to each module of DD-4DVAR method.

Proof. From (3.72) and (3.43), Ei,k defined in (3.75) can be rewritten as follows

Ei,k := ∥uDA/(Ωi ×∆k)− ui,k∥

= ∥uDA/(Ωi ×∆k)− u
Mi,k,n̄

i,k − (uASM,n̄−1
i,k − uMi,k,n̄−1

i,k)∥

from the triangle inequality

Ei,k ≤ ∥uDA/(Ωi ×∆k)− uASM,n̄
i,k ∥+ ∥uMi,k,n̄−1

i,k − uMi,k,n̄

i,k ∥ (3.84)

as consequence of Lemma 2 and (3.74) we have

Ei,k ≤ µDD−DA
i,k · EASM

i,1 + ∥uMi,k,n̄−1

i,k − uMi,k,n̄

i,k ∥ (3.85)

where EASM
i,1 is defined in (3.74) and µDD−DA

i,k is defined in (3.78).

In particular, by adding and subtracting uM→M/(Ωi ×∆k) in ∥uMi,k,n̄−1

i,k − uMi,k,n̄

i,k ∥ we get:

∥uMi,k,n̄−1

i,k − uMi,k,n̄

i,k ∥ = ∥(uMi,k,n̄−1

i,k − uM→M/(Ωi ×∆k))

+ (uM→M/(Ωi ×∆k)− u
Mi,k,n̄

i,k)∥

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 55

and from the triangle inequality

∥uMi,k,n̄−1

i,k − uMi,k,n̄

i,k ∥ ≤ ∥uMi,k,n̄−1

i,k − uM→M/(Ωi ×∆k)∥

+ ∥uM→M/(Ωi ×∆k)− u
Mi,k,n̄

i,k ∥

= E
Mi,k,n̄

i,k + E
Mi,k,n̄−1

i,k

(3.86)

From Theorem 2, we get that {˜︁uDD−DA,n}n∈N is a convergent sequence, then it is a Cauchy

sequence. From (3.44), we get that {uMi,k,n

i,k }n∈N is also a Cauchy sequence, i.e.

∀ ϵ > 0 ∃N > 0 : ∥uMi,k,n

i,k − uMi,k,m

i,k ∥ ≤ ϵ ∀n,m > N. (3.87)

In particular, (3.87) is true for n = n̄ and m = n̄ − 1, assuming that n̄ is large enough.

Consequently, we can neglect the dependency on outer loop in EMi,k,n̄

i,k and EMi,k,n̄−1

i,k in (3.86)

i.e.

∥uMi,k,n̄−1

i,k − uMi,k,n̄

i,k ∥ ≤ 2 · EMi,k

i,k (3.88)

where EMi,k

i,k is defined in (3.73). From (3.85), (3.86) and (3.88) we get the thesis in (3.83).

Lemma 4. Under Assumption (1),if e0, the error on initial condition of M in (2.12) is equal to

zero i.e.

e0 = 0 (3.89)

then

Ei,k ≤ c · ((∆x)pi + ·(∆t)
q
k) (3.90)

where Ei,k is the local truncation error defined in (3.75) and c is positive constant independent

on DD.

Proof. By applying the Lemma 3.74 to local ASM truncation error EASM
i,1 in Ωi ×∆1, we get

EASM
i,1 ≤ µDD−DA

i,1 · e0/Ωi. (3.91)

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 56

where µDD−DA
i,1 is defined in (3.78) and e0/Ωi is the restriction of e0 to Ωi. From the assumptions

it is e0/Ωi = 0 and by replacing it in (3.91) we have

EASM
i,1 = 0 (3.92)

consequently local ASM truncation error in Ωi ×∆k is

EASM
i,k = 0. (3.93)

From (3.93), (3.76) and (3.83) we get the thesis in (3.90).

Now, we are able to prove the following result on global truncation error.

Theorem 3. (Local truncation error in Ω×∆) Let assume the assumption of Lemma 4 in (3.89).

The local truncation error in Ω×∆ is

Eg ≤ c · (Nsub ·Nt) · [(∆x)p + (∆t)q], (3.94)

where

• ∆x := maxi=1,...,Nsub
(∆x)i: where {(∆x)i}i=1,...,Nsub

are spatial step sizes of Mi,k de-

fined in (3.32);

• ∆t := maxk=1,...,Nt(∆t)k: where {(∆t)k}k=1,...,Nt are temporal step sizes of Mi,k defined

in (3.32);

• c > 0: is positive constant independent on DD.

Proof. From (3.71) Eg defined in (3.69) can be rewritten as follows

Eg :=
⃦⃦
uDA − ũDD−DA

⃦⃦
=

⃦⃦⃦⃦
⃦uDA −

Nsub∑︂
i=1

Nt∑︂
k=1

˜︁ui,k

⃦⃦⃦⃦
⃦

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 57

by applying the restriction and extension operator (Definitions 5 and 6) to uDA, we get

Eg =

⃦⃦⃦⃦
⃦
Nsub∑︂
i=1

Nt∑︂
k=1

[︁
(uDA/(Ωi ×∆k))

EO − ˜︁ui,k

]︁⃦⃦⃦⃦⃦
from triangle inequality, it is

Eg =

⃦⃦⃦⃦
⃦
Nsub∑︂
i=1

Nt∑︂
k=1

[︁
(uDA/(Ωi ×∆k))

EO − ˜︁ui,k

]︁⃦⃦⃦⃦⃦
≤

Nsub∑︂
i=1

Nt∑︂
k=1

⃦⃦
(uDA

i,k)EO − ˜︁ui,k

⃦⃦
=

Nsub∑︂
i=1

Nt∑︂
k=1

Ei,k

(3.95)

where Ei,k is defined in (3.75). From Lemma 4 we have
Nsub∑︂
i=1

Nt∑︂
k=1

Ei,k ≤ c ·
Nsub∑︂
i=1

Nt∑︂
k=1

((∆x)pi + ·(∆t)
q
k)

= c ·

[︄
Nt ·

Nsub∑︂
i=1

(∆x)pi +Nsub

Nt∑︂
k=1

(∆t)qk

]︄ (3.96)

consequently

Eg ≤ c ·

[︄
Nt ·

Nsub∑︂
i=1

(∆x)pi +Nsub

Nt∑︂
k=1

(∆t)qk

]︄
.

By defining

∆x := maxi=1,...,Nsub
(∆x)i

∆t := maxk=1,...,Nt(∆t)k

we get

Eg ≤ c ·

[︄
Nt ·

Nsub∑︂
i=1

(∆x)pi +Nsub

Nt∑︂
k=1

(∆t)qk

]︄

≤ c ·

[︄
Nt ·

Nsub∑︂
i=1

(∆x)p +Nsub

Nt∑︂
k=1

(∆t)q

]︄
≤ c · (Nsub ·Nt) · [(∆x)p + (∆t)q].

Hence, the (3.94) is proved.

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 58

In Figure 3.4, we show the schematic description of results obtained from local truncation anal-

ysis.

Now, we prove the stability by studying the propagation of the error from each time interval to

the next, assuming that the predictive model is stable.

Assumption 2. (Stability of discrete model) The discrete model applied to M in (2.1) is stable

i.e. ∃D > 0 such that

∥uM − vM∥ ≤ D · e0, (3.97)

where

• uM : is solution of M in (2.12);

• vM : is solution of M̄ , where M̄ is obtained by considering initial error e0 on initial

condition;

• e0: is initial error on initial condition of M in (2.12).

Definition 11. (Propagation error from ∆k−1 to ∆k) Let us consider

• ṽDD−DA: be the solution in Ω × ∆ computed by adding a perturbation ek to initial

condition of PMi,k,n

i,k defined in (3.31).

We define

Ēk := ∥ũDD−DA/∆k − ṽDD−DA/∆k∥ (3.98)

the propagation error from ∆k−1 to ∆k.

Theorem 4. (Stability of DD–4DVAR) Under Assumption 2, if e0, the error on initial condition

of M in (2.12), is equal to zero i.e.

e0 = 0 (3.99)

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 59

then, ∀k = 1, . . . , Nt ∃ Ck > 0 such that

Ēk ≤ Ck · ēk

where

• Ēk: is the error propagated from ∆k−1 to ∆k and defined in (3.98);

• Ck: is a constant depending on the model reduction and on the ASM;

• ēk: perturbation on initial condition of PMi,k

i,k defined in (3.31).

Proof. To simplify the notations in the proof, we consider ēk = ē, ∀k = 1, . . . , Nt. From

(3.43), (3.72) and triangle inequality, we get

Ēk := ∥ũDD−DA/∆k − ṽDD−DA/∆k∥ ≤ ∥(u
Mi,k,n̄

i,k)EO/∆k − (v
Mi,k,n̄

i,k)EO/∆k∥

+ ∥(uMi,k,n̄−1

i,k)EO/∆k − (v
Mi,k,n̄−1

i,k)EO/∆k∥

+ ∥(uASM,n̄
i,k)EO/∆k − (vASM,n̄

i,k)EO/∆k∥.

(3.100)

From (3.87) and (3.74), we can neglect the dependency on outer loop iteration n̄ i.e.

Ēk ≤2 · ∥(u
Mi,k

i,k)EO/∆k − (v
Mi,k

i,k)EO/∆k∥+ ∥(uASM
i,k)EO/∆k − (vASM

i,k)EO/∆k∥. (3.101)

From Assumption 2, we get that ∃D̄ > 0 such that

∥(uMi,k

i,k)EO/∆k − (v
Mi,k

i,k)EO/∆k∥ ≤ D̄ · e0. (3.102)

where e0 is the error on initial condition of M in (2.12). By adding and subtracting uDA/∆k to[︁
(uASM

i,k)EO/∆k − (vASM
i,k)EO/∆k

]︁
and from triangle inequality, it is

∥(uASM
i,k)EO/∆k − (vASM

i,k)EO/∆k∥ ≤ ∥uDA/∆k − (uASM
i,k)EO/∆k∥

+∥uDA/∆k − (vASM
i,k)EO/∆k∥.

(3.103)

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 60

From (3.103) and (3.77), we get

∥(uASM
i,k)EO/∆k − (vASM

i,k)EO/∆k∥ ≤ µDD−DA
k · EASM

1 + µ̄DD−DA
k · ĒASM

1
(3.104)

where

EASM
1 = ∥uDA/∆1 − (uASM

i,1)EO/∆1∥

Ē
ASM
1 = ∥uDA/∆1 − (vASM

i,1)EO/∆1∥.
(3.105)

and

µDD−DA
k :=

[︃
1 +

1

σ2
0

µ2(V)µ2(G/∆k)

]︃
µ(M/∆k)

µ̄DD−DA
k :=

[︃
1 +

1

σ2
0

µ2(V)µ2(G/∆k)

]︃
µ(M̄/∆k)

(3.106)

with σ0 observational error variance, B = VVT covariance matrix of the error on background

to Ω, G matrix defined in (2.8), M defines in (2.12) and M̄ is discrete model obtained by

considering initial error e0 on initial condition of M . By applying (3.77) to EASM
1 and ĒASM

1

in (3.105), we get

∥(uASM
i,k)EO/∆k − (vASM

i,k)EO/∆k∥ ≤ µDD−DA
k · µDD−DA

1 e0 + µ̄DD−DA
k · µ̄DD−DA

k ē. (3.107)

From (3.101), (3.102) and (3.104), it is

Ēk ≤ 2 · D̄ · e0 + µDD−DA
k · µDD−DA

1 e0 + µ̄DD−DA
k · µ̄DD−DA

1 ē

and from hypothesis in (3.99), we get

Ēk ≤ µ̄DD−DA
k · µ̄DD−DA

1 ē (3.108)

Consequently, for k = 1, . . . , Nt we get that ∃ Ck > 0 such that

Ēk ≤ Ck · ē (3.109)

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 61

Figure 3.4: Schematic description of DD–4DVAR local truncation analysis.

where

Ck := µ̄DD−DA
k · µ̄DD−DA

1 . (3.110)

The thesis is proved.

From Theorem 4, we get the stability of DD–4DVAR method.

Remark 2. (Condition number of DD–4DVAR method) We note that in Theorem 4, to prove

the stability of DD–4DVAR method, we study the propagation error according to the so-called

forward error analysis. In particular, we get that the constant Ck, ∀k = 1, . . . , Nt in (3.110)

depends on the quantity µ̄DD−DA
k defined in (3.106), which is in turn depends on condition num-

bers of M in (2.12), G in (2.8) and B = VVT covariance matrix of the error on background in

Ω. As a consequence of the forward error analysis, we may say that the quantity µ̄DD−DA
k can

be regarded as the condition number of DD–4DVAR method.

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 62

3.4 DD-KF-CLS: Domain Decomposition of KF on CLS prob-

lem

The standard formulation of the KF becomes computationally intractable for solving large

scale estimation problems due to matrix storage and inversion requirements. Then, several

approaches have been proposed to reduce the overall time-to-solution. Among them, there are

KF simplifications reducing computational complexity. Approximations are designed on the

basis of a reduction in the order of the system model (usually the approximation is performed

trough the use of the Empirical Orthogonal Functions (EOF)) [60, 111], or they are based on the

Ensemble methods, where a prediction of the error at a future time is computed by integrating

each ensemble state independently by the model. Integration is typically performed until ob-

servations are available. At this time, the information from the observations and the ensemble

are combined by performing an analysis step based on KF [53]. However, the choice of the

dimension of the reduced-state space or of the ensemble size giving an accurate approximation

of KF still remains a delicate question [8].

Besides these variants, there are parallel approaches to KF algorithm.

• KF-DD: most approaches for delivering parallel solutions of simulations based on KF

algorithm integrated with PDEs-based models essentially takes full advantage of existing

parallel PDEs solvers; in particular, it is worth mention those based on DD [54]. Never-

theless, a common drawback of such parallel algorithms is their limited scalability, due to

the fact that parallelism is achieved adapting the most computationally demanding com-

ponents for parallel execution. Amdhal’s law clearly applied in these situations because

the computational cost of the components that are not parallelized provides a lower bound

on the execution time of the parallel algorithm. On the contrary, the challenge is to con-

sider parallelization from the beginning of the computational problem solving.

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 63

• DD–KF: involves decomposition of the whole computational problem, i.e. data and

model decomposition, partitioning of the solution and a slight modification of KF algo-

rithm allowing a correction at run-time of local solutions, through its exchange between

adjacent subdomains. The analysis carried out in [48] highlighted the reliability of the

proposed framework mainly in terms of the accuracy of local solutions with respect to

the global solution. In order to analyze the benefits arising from decomposition we firstly

present scalability analysis of DD–KF algorithm measuring the scale-up factor which ex-

presses the performance gain of the algorithm in terms of reduction of its time complexity

[39]. As the numerical model underlying variational Data Assimilation problems arising

from the so-called discretize-then-optime approach is the well known Constrained Least

Squares (CLS) defined in Appendix A.1, we will use CLS as a reference state estima-

tion problem and we will employ DD–KF on CLS problems. In Figure 3.5 we give a

schematic picture of these approaches showing how they arise. We see that KF-DD-CLS

is obtained by following the path on the right, while on the left we get DD-KF-CLS.

3.4.1 KF-CLS: KF algorithm solving CLS problems

We prove that solution of CLS problem in (A.4), can be obtained by applying KF to S in

(A.2). To this end, regarding (A.2) as an inverse ill posed problem [8, 50], we rewrite KF as

a Variational problem, the so-called VAR-KF formulation, obtained minimizing the sum of the

weighted Euclidean norm || · ||Bl
of the model error wl = xl+1 −Ml,l+1xl and the weighted

Euclidean norm || · ||Rl+1
of the observation error vl+1 = yl+1 −Hl+1xl+1.

VAR-KF method: VAR-KF method computes, for k = 0, 1, . . . , r:

ˆ︁xl+1 = argminxl+1∈RNpJl+1(xl+1)

= argminxl+1∈RNp

{︂
||xl+1 −Ml,l+1ˆ︁xl||2Bl

+ ||yl+1 −Hl+1xl+1||2Rl+1

}︂
.

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 64

CLS

 DD-CLSDD-CLS

 DD

KF KFKFKFKF

2

1

KF-CLS DD-KF-CLS

KF-DD-CLS

KFKFKFKFKFKFKFKFKF

CLS

 DD DD DD

 DD DD

Figure 3.5: Schematic description of the framework we introduce for using DD in KF.

Remark 3. Besides covariance matrices of the errors, main components of KF algorithm are

dynamic model and observation mapping. These are two main components of any variational

Data Assimilation operator and state estimation problem, too. In this regard, in the following,

as proof of concept of the DD–KF framework, we start considering Constrained Least Squares

(CLS) (cfr Appendix A.1) model as a prototype of a variational Data Assimilation model. CLS is

obtained combining two overdetermined linear systems, representing the state and the observa-

tion mapping, respectively. Then, we introduce the VAR-KF method as reference data sampling

method solving CLS model problem. VAR-KF will be decomposed by using the proposed DD

framework. That said, anyone wants to apply DD framework in a real-world application, i.e.

with a (PDE-based) model state and an observation mapping, once the dynamic (PDE-based)

model state has been discretized, should rewrite the state estimation problem under consider-

ation as a CLS model problem (cfr Appendix A.1) and then to apply KF-CLS algorithm (cfr

Section 3.4). In other words, she/he should follow the discretize-then-optmize approach, com-

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 65

mon to most Data Assimilation problems and state estimation problems, before employing the

DD–KF framework (cfr Sections 3.4.1, 3.1, 3.4.2, 3.4.3).

By using linear algebra results we proved that [48]:

Proposition 2. (KF-CLS) Let S be the overdetermined linear system in (A.2) withA ∈ R(m0+m1)×Np ,

b ∈ Rm0+m1 defined in (A.3). Let us consider

• for l = 0, 1, Hl ∈ Rml×Np and yl ∈ Rml with m0 > Np and m1 > 0;

• M = (HT
0 R0H0)

−1HT
0 R0 ∈ RNp×m0 with R0 ∈ Rm0×m0 , R1 ∈ Rm1×m1 and R =

diag(R0, R1) ∈ R(m0+m1)×(m0+m1) weight matrices;

• ˆ︁x0 =My0 ∈ RNp , least squares solution of system in (A.1);

• ˆ︁x = (ATRA)−1ATRb ∈ RNp least squares solution of S in (A.2).

We pose:

M0,1 ≡ INp,Np ∈ RNp×Np ,

Q0 ≡ ONp,Np ∈ RNp×Np

P0 ≡ (HT
0 R0H0)

−1 ∈ RNp×Np ;

, (3.111)

where INp,Np is the identity matrix and ONp,Np is the null matrix, then by using KF algorithm

2.1.2, for k = 0 we obtain KF estimate ˆ︁x1 in (2.20) such that

ˆ︁x ≡ ˆ︁x1.
Remark 4. By adding (r + 1) · m equations, with r ≥ 0, m > 0, to the system in (A.1) and

posing, for l = 0, 1, . . . , r,

Ml,l+1 := INp,Np ∈ RNp×Np ,

Ql := ONp,Np ∈ RNp×Np

P0 := (HT
0 R0H0)

−1 ∈ RNp×Np

,

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 66

and R ∈ R(r+2)·m×(r+2)·m the weight matrix, KF procedure 2.1.2 can be applied to solve the

overdetermined system

Mz = p (3.112)

where

M =

⎡⎢⎢⎢⎢⎢⎢⎣
H0

H1

...

Hr+1

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R(r+2)·m×Np ; p =

⎡⎢⎢⎢⎢⎢⎢⎣
y0

y1
...

yr+1

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R(r+2)·nobs , z ∈ RNp

and Hl ∈ Rm×Np , yl ∈ Rm, where m0 ≡ m. This means, as proved in Proposition 2, that KF

estimate ˆ︁zl+1 at step l = r coincides with ˆ︁z = (MTRM)−1MTRp, i.e. least squares solution

of (3.112).

3.4.2 DD-CLS problems: DD of CLS model

We apply DD approach for solving system S in (A.2). Here, we consider Nsub = 2 spatial

subdomains i.e. the set I ∈ N is decomposed as I = I1 ∪ I2.

Definition 12. (DD-CLS model) Let S be the overdetermined linear system in (A.2) and A ∈

R(m0+m1)×Np , b ∈ Rm0+m1 the matrix and the vector defined in (A.3) and R0 ∈ Rm0×m0 ,

R1 ∈ Rm1×m1 , R = diag(R0, R1) ∈ R(m0+m1)×(m0+m1) be the weight matrices with n0
obs > Np

and n1
obs > 0. Let us consider the index set of columns of A, I = {1, ..., Np}. DD-CLS model

consists in:

• DD step: DD of I

I1 = {1, . . . , n1}, I2 = {n1 −
δ

2
+ 1, . . . , Np}, (3.113)

where δ ≥ 0 is the number of indexes in common, |I1| = n1 > 0, |I2| = n2 > 0, and the

overlap sets

I1,2 = {n1 −
δ

2
+ 1, . . . , n1}, (3.114)

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 67

If δ = 0, then I is decomposed without using the overlap, i.e. I1 ∩ I2 = ∅ and I1,2 ̸= ∅,

instead if δ > 0 i.e. I is decomposed using overlap, i.e. I1 ∩ I2 ̸= ∅ and I1,2 = ∅.

• restrictions of A to I1 and I2 defined in (3.113)

A1 = A|I1 ∈ R(m0+m1)×n1 , A2 = A|I2 ∈ R(m0+m1)×n2 , (3.115)

• DD-CLS step:

– Model Reduction: let us consider A ∈ R(m0+m1)×Np , b ∈ Rm0+m1 , the matrix and

the vector defined in (A.3), I1 = {1, . . . , n1}, I2 = {1, . . . , n2} with n1, n2 > 0 and

the vectors x ∈ RNp . Let

J |(Ii,Ij) : (x|Ii , x|Ij) ↦−→ J |(Ii,Ij)(x|Ii , x|Ij) ∀i, j = 1, 2

denote the reduction of J defined in (A.5). It is defined as

J |(Ii,Ij)(x|Ii , x|Ij) = ||H0|Iix|Ii−(y0+H0|Ijx|Ij)||2R0
+||H1|Iix|Ii−(y1+H1|Ijx|Ij)||2R1

,

(3.116)

for i, j = 1, 2.

– ASM: given x02 ∈ Rn2 , according to the ASM in [56], DD-CLS approach consists in

solving for n = 0, 1, 2, . . . the following overdetermined linear systems:

Sn+1
1 : A1x

n+1
1 = b− A2x

n
2 ; Sn+1

2 : A2x
n+1
2 = b− A1x

n+1
1 , (3.117)

by employing a regularized VAR-KF model. It means that DD-CLS consists of a

sequence of two subproblems:

P n+1
1 : ˆ︁xn+1

1 = argminxn+1
1 ∈Rn1J1(x

n+1
1 , xn2)

= argminxn+1
1 ∈Rn1

[︁
J |(I1,I2)(xn+1

1 , xn2) + µ · O1,2(x
n+1
1 , xn2)

]︁
(3.118)

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 68

P n+1
2 : ˆ︁xn+1

2 = argminxn+1
2 ∈Rn2J2(x

n+1
2 , xn+1

1)

= argminxn+1
2 ∈Rn2

[︁
J |(I2,I1)(xn+1

2 , xn+1
1) + µ · O1,2(x

n+1
2 , xn+1

1)
]︁

(3.119)

where Ii is defined in (3.113) and J |Ii,Ij is defined in (3.116), O1,2 is the overlapping

operator and µ > 0 is the regularization parameter.

Regarding the operator O1,2, we consider x1 ∈ Rn1 and x2 ∈ Rn2 , and we pose

O1,2(xi, xj) =
1

2
· ∥EOIi(xi|I1,2)− EOIi(xj|I1,2)∥2, i, j = 1, 2

with EOIi(x1|I1,2), EOIi(x2|I1,2) be the extension to Ii, of restriction to I1,2 in (3.114) of x1 ∈

Rn1 and x2 ∈ Rn2 , respectively. Operator O1,2 represents the exchange of data on the overlap

I1,2 in (3.114).

Remark 5. If I is decomposed without using the overlap (i.e. δ = 0) then ˆ︁xn+1
1 ∈ Rn1 andˆ︁xn+1

2 ∈ Rn2 can be written in terms of normal equations as follows

S̃
n+1

1 : (AT
1RA1)ˆ︁xn+1

1 = AT
1R(b− A2x

n
2) ⇒ ˆ︁xn+1

1 = (AT
1RA1)

−1AT
1Rb

n
1

S̃
n+1

2 : (AT
2RA2)ˆ︁xn+1

2 = AT
2R(b− A1x

n+1
1) ⇒ ˆ︁xn+1

2 = (AT
2RA2)

−1AT
2Rb

n+1
2 ,

(3.120)

where bn1 = b− A2x
n
2 and bn+1

2 = b− A1x
n+1
1 .

Remark 6. DD-CLS gives rise to the sequences {xn+1}n∈N0:

xn+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ˆ︁xn+1
1 |I1\I1,2 on I1 \ I1,2

µ
2
(ˆ︁xn+1

2 |I1,2 + ˆ︁xn+1
1 |I1,2) on I1,2ˆ︁xn+1

2 |I2\I1,2 on I2 \ I1,2

, (3.121)

where I1, I2 are defined in (3.113) and I1,2 in (3.114).

3.4.3 DD–KF solving DD–CLS problems

In the same setting of the previous Section, we aim to find an estimate of ˆ︁x = (ATRA)−1ATRb ∈

RNp , i.e. the least squares solution of S in (A.2), by solving DD-CLS by KF algorithm. To this

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 69

end, for n = 0, 1, 2, . . ., we prove that ˆ︁xn+1
1 ∈ Rn1 , ˆ︁xn+1

2 ∈ Rn2 , solutions of P n+1
1 and P n+1

2 in

(3.118) and (3.119) respectively are equal to KF estimates ˆ︁xn+1
1,1 , ˆ︁xn+1

2,1 obtained by applying KF

to P n+1
1 , P n+1

2 .

To apply KF algorithm to P n+1
1 and P n+1

2 in (3.118) and (3.119), we need ˆ︁x1,0 ∈ Rn1 andˆ︁x2,0 ∈ Rn2 (i.e. reduction of ˆ︁x0 = (HT
0 RH0)

−1HT
0 Ry0). This vectors are calculated as follows,

in the case without or with overlap:

1. DD of I without overlap (i.e. δ = 0).

Theorem 5. Let us consider H0 ∈ Rm0×Np , y0 ∈ Rm0 and R0 ∈ Rm0×m0 , where m0 >

Np, m1 > 0, system H0x0 = y0 and the set I . Let us consider the following steps:

• DD of I:

I1 = {1, ..., n1} and I2 = {n1 + 1, ..., Np}. (3.122)

• reduction of H0:

H1,0 = H0|I1 ∈ Rm0×n1 and H2,0 = H0|I2 ∈ Rm0×n2 . (3.123)

• computation of Pi,0 ∈ Rni×ni:

Pi,0 = (HT
i,0R0Hi,0)

−1, i=1,2. (3.124)

• computation of PHi,0
∈ Rm0×m0:

PHi,0
= R0 −R0Hi,0(Pi,0)H

T
i,0R0, i=1,2. (3.125)

• computation of x1 ∈ Rn1 and x2 ∈ RNp−n1:

x1 = (HT
1,0PH2,0H1,0)

−1HT
1,0PH2,0y0, x2 = (HT

2,0PH1,0H2,0)
−1HT

2,0PH1,0y0.

(3.126)

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 70

Then ˆ︁x0 = (HT
0 R0H0)

−1HT
0 R0y0 ∈ RNp , which is the least squares solution of H0x0 =

y0, is obtained as follows: ˆ︁x0|I1 = x1, ˆ︁x0|I2 = x2, (3.127)

where ˆ︁x0|Ii is the restriction of ˆ︁x0 to Ii, for i = 1, 2.

2. DD with overlap i.e. δ ̸= 0 and overlap set I1,2 be as in (3.114).

ˆ︁x0|I1 = x1 ∈ Rn1 ˆ︁x0|I2 =
⎧⎨⎩ x1|I1,2 ∈ Rs on I1,2

x2 ∈ Rn2−δ on I2 \ I1,2
∈ Rn2 , (3.128)

where x1 ∈ Rn1 and x2 ∈ Rn2 are defined in (3.126) and n1 = |I1|, n2 = |I2|, δ = |I1,2|.

Theorem 6. (DD-KF)[48] Let us consider the overdetermined linear system in (A.2), H0 ∈

Rm0×Np , R0 ∈ Rm0×m0 , M = (HT
0 R0H0)

−1HT
0 R0 ∈ RNp×m0 , y0 ∈ Rm0 and ˆ︁x0 = My0 ∈

RNp , where m0 > Np and m1 > 0. DD-KF-CLS approach is composed by the following steps.

• DD step. Decomposition of I = {1, ..., Np}, i.e. columns index set of A ∈ R(m0+m1)×Np

of S in (A.2) into

I1 = {1 . . . , n1} and I2 = {n1 + 1, . . . , Np}, (3.129)

with |I1| = n1 and |I2| = n2.

• KF-CLS step. Computation of ˆ︁x1,0 ≡ ˆ︁x0|I1 ∈ Rn1 and ˆ︁x2,0 ≡ ˆ︁x0|I2 ∈ Rn2 , restrictions ofˆ︁x0 ∈ RNp as in (3.127) to I1 and I2 in (3.129).

Given ˆ︁x02,0 ∈ Rn2 , we consider

M1
0,1 = In1,n1 ∈ Rn1×n1 , M2

0,1 = In2,n2 ∈ Rn2×n2 ,

B1
0 = On1,n1 ∈ Rn1×n1 , B2

0 = On2,n2 ∈ Rn2×n2

P1,0 = (HT
0 |I1R0H0|I1)−1 ∈ Rn1×n1 P2,0 = (HT

0 |I2R0H0|I2)−1 ∈ Rn2×n2

, (3.130)

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 71

where INp,Np is the identity matrix and ONp,Np the null matrix.

For n = 0, 1, 2, . . . and for l = 0, by applying KF algorithm described in (2.1.2) to P n+1
1 and

P n+1
2 in (3.118) and (3.119), we obtained as predicted estimates⎧⎨⎩ x1,1 =M1

0,1ˆ︁x1,0 = ˆ︁x1,0
x2,1 =M2

0,1ˆ︁x2,0 = ˆ︁x2,0 , (3.131)

predicted covariance matrices⎧⎨⎩ P1,1 =M1
0,1P1,0(M

1
0,1)

T +Q1
0 = P1,0

P2,1 =M2
0,1P2,0(M

2
0,1)

T +Q2
0 = P2,0

, (3.132)

Kalman gains ⎧⎨⎩ K1,1 = P1,1H1|TI1(H1|I1P1,1H
T
1 |I1 +R1)

−1

K2,1 = P2,1H1|TI2(H1|I2P2,1H
T
1 |I2 +R1)

−1
, (3.133)

the Kalman covarinace matrices⎧⎨⎩ P1,1 = (I − K1,1H1|I1)P1,1,

P2,1 = (I − K2,1H1|I2)P2,1,
, (3.134)

and the matrices ⎧⎨⎩ K1,2 = P1,1H0|TI1R0

K2,1 = P2,1H0|TI2R0

. (3.135)

So, for n = 0, 1, 2, ... the Kalman estimates are

ˆ︁xn+1
1,1 = ˆ︁x1,0 + K1,1

[︁
(y1 −H1|I2ˆ︁xn2,1)−H1|I1ˆ︁x1,0]︁+ SI1↔I2(ˆ︁xn2,1)ˆ︁xn+1

2,1 = ˆ︁x2,0 + K2,1

[︁
(y1 −H1|I1ˆ︁xn+1

1,1)−H0|I2ˆ︁x2,0]︁+ SI1↔I2(ˆ︁xn+1
1,1)

(3.136)

where for i, j = 1, 2

SI1↔I2(ˆ︁xni,1) := Ki,j

[︁
H0|Ii(ˆ︁xi,0 − ˆ︁xni,1)]︁ (3.137)

represents the exchange of data between the sets I1, I2.

Then, for each n = 0, 1, 2, ..., we obtain KF estimates ˆ︁xn+1
1,1 ∈ Rn1 and ˆ︁xn+1

2,1 ∈ Rn2 in (3.136)

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 72

such that ˆ︁xn+1
1,1 = ˆ︁xn+1

1ˆ︁xn+1
2,1 = ˆ︁xn+1

2

where ˆ︁xn+1
1 , ˆ︁xn+1

2 are least squares solutions of systems S̃
n+1

1 and S̃
n+1

2 defined in (3.120).

Remark 7. DD with overlap i.e. I1 = {1, . . . , n1}, I2 = {n1 − δ
2
+ 1, . . . , Np} and I1,2 =

{n1 − δ
2
+ 1, . . . , n1} with δ ̸= 0 is similarly obtained by considering the initial estimates as in

(3.128). Furthermore, for n = 0, 1, 2, . . ., we add operator O1,2 to P n+1
1 and P n+1

2 in (3.118)

and (3.119). It means that it is

ˆ︁xn+1
1,1 ≡ ˆ︁xn+1

1,1 + µP1,1∇O1,2(EOI1(ˆ︁xn1,1|I1,2), EOI1(ˆ︁xn2,1|I1,2))ˆ︁xn+1
2,1 ≡ ˆ︁xn+1

2,1 + µP2,1∇O1,2(EOI2(ˆ︁xn+1
1,1 |I1,2), EOI1(ˆ︁xn+1

2,1 |I1,2))
(3.138)

where

∇O1,2(EOIi(ˆ︁xni,1|I1,2), EOIi(ˆ︁xnj,1|I1,2)) = [︁EOI1(ˆ︁xnj,1|I1,2)− EOI1(ˆ︁xni,1|I1,2)]︁ , (3.139)

and EOIi(ˆ︁xn1,0|Ĩ1,2) and EOIi(ˆ︁xn2,0|Ĩ1,2), for i = 1, 2 are the extensions to Ii of restrictions to

Ĩ1,2 of ˆ︁xn1,0 and ˆ︁xn2,0 and µ is the regularization parameter.

Finally, in [48] we proved that the sequence of KF estimates {ˆ︁xn+1
1,1 }n∈N0 , {ˆ︁xn+1

2,1 }n∈N0 in (3.138)

converge to ˆ︁x1|I1 , ˆ︁x1|I2 restrictions of KF estimate ˆ︁x1 in (2.20) to I1 and I2, respectively.

Theorem 7. [48] Let S be the over determined linear system in (A.2), A ∈ R(m0+m1)×Np ,

b ∈ Rm0+m1 defined in (A.3) with m0 > Np, m1 > 0, ˆ︁x1 ∈ RNp be the Kalman estimate in

(2.20) of the ˆ︁x as in (A.4) and ˆ︁xn+1
1,1 , ˆ︁xn+1

2,1 in (3.138) Kalman estimates of P n+1
1 , P n+1

2 in (3.118),

(3.119), then ˆ︁xn+1
1,1 → ˆ︁x1|I1 , ˆ︁xn+1

2,1 → ˆ︁x1|I2 .

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 73

3.4.4 DD–KF-CLS: Performance Analysis

In Table 3.5, we summarize time complexity of KF algorithm. The total time complexity is:

TKF (m1, Np) = O(N3
p + 3N2

pm1 +N2
p +Npm

2
1 + 2Npm1 +Np +m3

1 +m2
1 +m1). (3.140)

For i, j = 1, 2 and i ̸= j, in Table 3.6 we report time complexity of DD–KF procedure needed

to solve, at each n = 0, 1, 2, . . ., P n+1
1 in (3.118) and P n+1

2 in (3.119). Then, time complexity

of DD–KF is:

TDD−KF (m1, ni, nj) = O(n3
i (1 + d) + 3n2

im1 + (2 + d)n2
i +m2

1ni + 3nim1 + nim0

+(3 + 2d)ni + nj +m3
1 +m2

1 + 2m1),

(3.141)

where d = 0 or d = 1 if we perform DD without or with overlap, respectively.

Table 3.4: KF algorithm. Time complexity needed to calculate ˆ︁x0 = (HT
0 R

−1
0 H0)

−1HT
0 R

−1
0 y0 ∈

RNp solution (in the least squares sense) in (A.8) of the overdetermined linear system H0x0 = y0 in

(A.1), i.e. predicted state estimate of KF algorithm in (2.16), P0 ∈ RNp×Np in (3.111), i.e. predicted

covariance matrix of KF algorithm in (2.17), where Np,m0 ∈ N is the number of columns and rows

of matrix H0 ∈ Rm0×Np , with m0 > Np; R0 ∈ Rm0×m0 the weight matrix.

matrix/vector operations cost

R−1
0 in (A.8) matrix inversion O(m3

0)

(HT
0 R

−1
0)H0 in (A.8) 2 matrix-matrix products O(m2

0Np +N2
pm0)

P0 in (3.111) matrix inversion O(N3
p)

HT
0 (R0y0) in (A.8) 2 matrix-vector products O(m2

0 +m0Np)ˆ︁x0 in (A.8) matrix-vector product O(N2
p)

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 74

Table 3.5: KF algorithm. Time complexity of each operation of KF in (2.18)-(2.20) for solving

CLS in (A.4), where m1 ∈ N is the number of equations added to the overdetermined linear system

H0x0 = y0 in (A.1); H1 ∈ Rm1×Np is the matrix of the coefficients of the equations added to the

overdetermined linear system H0x0 = y0 in (A.1); R1 ∈ Rm1×m1 is the weight matrix.

matrix/vector operations cost

K1 in (2.18) 2 matrix-matrix products O(m2
1Np +N2

pm1)

and sum of matrices O(m2
1)

a matrix inversion O(m3
1)

2 matrix-matrix products O(N2
pm1 +m2

1Np)

P1 in (2.19) matrix-matrix product, O(N2
pm1)

subtraction of matrices, O(N2
p)

product of matrices O(N3
p)ˆ︁x1 in (2.20) matrix-vector product O(Npm1)

subtraction vectors O(m1)

matrix-vector product O(m1Np)

sum of vectors O(Np)

Table 3.6: DD–KF algorithm. For i = 1, 2 we report time complexity of each operation of DD-

Setup algorithm in (3.123)-(3.126) needed to compute ˆ︁xi,0 = (HT
i,0PHi,0Hi,0)

−1HT
i,0PHi,0y0 ∈ Rni

in (3.126), i.e. predicted state estimate of DD–KF algorithm in (3.131), Pi,0 ∈ RNp×Np in (3.124),

i.e. predicted covariance matrix of DD–KF algorithm in (3.132), where Np ∈ N is the size of

columns index set I of matrix H0 ∈ Rm0×Np ; ni ∈ N is the size of Ii ⊆ I , where ni ≤ Np;

Hi,0 ≡ H0|Ii ∈ Rm0×ni as in (3.123).

matrix/vector operations cost

Pi,0 in (3.124) matrix-matrix product O(m2
0ni)

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 75

matrix-matrix product O(n2
im0)

matrix inversion O(n3
i)

PHi,0
in (3.125) matrix-matrix product O(m2

0ni)

matrix-matrix product O(n2
im0)

matrix-matrix product O(nim
2
0)

subtraction of matrices O(m2
0)

(HT
i,0PHi,0

)Hi,0 in (3.126) 2 matrix-matrix products O(m2
0ni + n2

im0)

HT
i,0(PHi,0

y0) in (3.126) 2 matrix-vector products O(m2
0 +m0ni)ˆ︁xi,0 in (3.126) matrix-vector product O(n2
i)

Table 3.7: Time complexity needed to compute ˆ︁x0 = (HT
0 R

−1
0 H0)

−1HT
0 R

−1
0 y0 in (A.8) and for

i = 1, 2, ˆ︁xi,0 = (HT
i,0PHi,0Hi,0)

−1HT
i,0PHi,0y0 ∈ Rni in (3.126) where Np ∈ N is the size of

columns index set I of matrix H0 ∈ Rm0×Np ; ni ∈ N is the size of the set Ii ⊆ I , where ni ≤ Np;

m0 ∈ N is the number of rows of matrix H0 ∈ Rm0×Np and Hi,0 ∈ Rm0×Np , where m0 > Np.

vectors costˆ︁x0 O(N3
p +N2

p + n2m0 +Npm
2
0 +m0Np + 2m2

0)ˆ︁xi,0 O(n3
i + n2

i + 2n2
im0 + 3nim

2
0 + 2m0ni + 2m2

0)

Table 3.8: For i, j = 1, 2, time complexity of each operation of DD–KF algorithm in (3.133)-

(3.138) solving DD-CLS models in (3.118) and (3.119), where Np ∈ N is the size of columns

index set I of matrix H0 ∈ Rm0×Np ; ni ∈ N is the size of the set Ii ⊆ I , where ni ≤ Np;

m1 ∈ N is the number of equations added to the over determined linear system H0|Iixi = y0;

H1|Ii ∈ Rm1×ni is the matrix of the coefficients of the equations added to the over determined

linear system H0|Iixi = y0; R1 ∈ Rm1×m1 the weight matrix.

matrix/vector operations cost

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 76

Ki,1 in (3.133) 2 matrix-matrix product O(m2
1ni + n2

im1)

and sum of matrices O(m2
1)

product of matrices O(n3
i)

matrix inversion O(m3
1)

matrix-matrix product O(n2
im1)

Pi,1 in (3.134) matrix-matrix product O(n2
im1)

subtraction of matrices O(n2
i)

Ki,j in (3.135) matrix-matrix product O(n3
i)

SI1↔I2 in (3.137) subtraction of vectors O(nj)

product matrix-vector O(n2
i)

∇O1,2(EOI1(ˆ︁x1,1|I1,2), EOI1(ˆ︁x2,1|I1,2)) in (3.139) subtraction of vectors O(ni)ˆ︁xi,1 in (3.138) matrix-vector product O(n2
i)

matrix-vector product O(nim1)

2 subtraction of vectors O(2m1)

2 matrix-vector products O(2m1ni)

3 sum of vectors O(3ni)

subtraction/sum vectors O(ni)

Table 3.9: Time complexity of KF and DD–KF, where Np ∈ N is the size of columns index set

I of matrix H0 ∈ Rm0×Np ; ni ∈ N is the size Ii ⊆ I , and ni ≤ Np; m1 ∈ N is the number of

equations added to the overdetermined linear system H0x0 = y0; d = 0 or d = 1: if we consider a

decomposition without or with overlap, respectively.

algorithm cost

KF O(N3
p + 4N2

pm1 +N2
p +Npm

2
1 + 2Npm1 +Np +m3

1 +m2
1 +m)

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 77

DD–KF
O(n3

i (1 + d) + 3n2
im1 + (2 + d)n2

i +m2
1ni + 3nim1 + (3 + 2d)ni + nj

+m3
1 +m2

1 + 2m1).

In Table 3.9 we compare time complexity of KF and DD–KF algorithms. We note that ni < Np,

so performance gain by using DD-KF is significantly better than using KF, in particular it could

still be improved if m1 i.e. the number of equations added to the system in (A.1) is such that

m1 ≤ min(n1, n2).

Definition 13. (Scale-up factor [30, 39]) Let Np,m1 ∈ N and Nsub ≥ 2 the number of subsets

Ii of I = {1, . . . , Np} such that ni ≡ |Ii|, i = 1, . . . , Nsub. Let TKF (m1, Np), TDD−KF (m1, ni),

i = 1, . . . , Nsub be time complexity of KF algorithm applied to CLS model in (A.4) and DD-KF

algorithm applied at each step n = 0, 1, 2, . . . to P n+1
1 , P n+1

2 problems in (3.118) and (3.119),

respectively. We introduce the following ratio:

ScfNsub,1
(m1, Np) =

TKF (m1, Np)

Nsub · TDD−KF (m1, Np/Nsub)
. (3.142)

Following result allows us to analyze the behaviour of the scale up factor.

Proposition 3. Let Np,m ∈ N and r ≡ Np/Nsub. Then it holds that

ScfNsub,1
(m,Np) = α(Np,m,Nsub)N

2
sub

where

α(Np,m,Nsub) =
a3 + a2

1
Np

+ a1
1
N2

p
+ a0

1
N3

p

b3 + b2
1
r
+ b1

1
r2

+ b0
1
r3

. (3.143)

Proof. TKF (m,Np) = O(p1(Np)), TDD−KF (m, r) = O(p2(r)) are polynomials of degree 3 i.e.

p1, p2 ∈ Π3. We let

a3 = 3 a2 = 2m+ 3 a1 = 2m2 + 2m+ 1 a0 =
2
3
m3 +m2 +m

b3 = 12 b2 = 4m+ 6 b1 = 3m2 + 10m+ 2 b0 =
2
3
m3 + 5m2 +m− δ

2

(3.144)

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 78

and we write TKF (m,Np), TDD−KF (m, r) as follows

TKF (m,Np) = a3N
3
p + a2N

2
p + a1Np + a0

TDD−KF (m,Np) = b3r
3 + b2r

2 + b1r + b0
. (3.145)

It holds

ScfNsub,1
(m,Np) =

a3N3
p+a2N2

p+a1Np+a0
Nsub(b3r3+b2r2+b1r+b0)

· r3 · 1
r3

=
a3N3

sub+a2
n3
sub
Np

+a1
N3
sub
N2
p

+a0
N3
sub
N3
p

Nsub(b3+b2
1
r
+b1

1
r2

+b0
1
r3

)

=
N3

sub·(a3+a2
1

Np
+a1

1

N2
p
+a0

1

N3
p
)

Nsub(b3+b2
1
r
+b1

1
r2

+b0
1
r3

)
=

a3+a2
1

Np
+a1

1

N2
p
+a0

1

N3
p

b3+b2
1
r
+b1

1
r2

+b0
1
r3
·N2

sub

(3.146)

and

ScfNsub,1
(m,Np) = α(Np,m,Nsub)N

2
sub

where

α(Np,m,Nsub) =
a3 + a2

1
Np

+ a1
1
N2

p
+ a0

1
N3

p

b3 + b2
1
r
+ b1

1
r2

+ b0
1
r3

. (3.147)

Recalling that r = Np

Nsub
and ScfNsub,1

(m,Np) = α(Np,m,Nsub)N
2
sub, this result says that

the performance gain of DD-KF algorithm in terms of reduction of time complexity, scales

as the number of subdomains Nsub squared, where the scaling factor depends on parameter

α(Np,m,Nsub).

3.5 Domain Decomposition of KF (DD–KF)

In this Section we extend DD-KF method introduced in Section 3.4 on CLS problem to a DA

problem. Let Ω ⊂ Rn be spatial domain and ∆ ⊂ R be the time winterval. Let us assume: ΩI

discretization of Ω defined in (2.3), ∂ΩI boundary of ΩI and ΩI × ∆K discrete local domain

defined in Definition (1). We get:

xl+1 ≡ x(tl+1) := {u(xj, tl+1)}(xj ,tl+1)∈ΩI×∆K
∈ RNp

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 79

and if we let x∂Ωl+1 ∈ Rbc to be the state at tl+1 on ∂Ω, it is

x∂Ωl+1 ≡ x∂Ω(tl+1) := {u(zp, tl+1)}(zp,tl+1)∈∂ΩI×∆k
∈ Rbc . (3.148)

where

bc := |∂ΩI | (3.149)

number of nodes in ∂ΩI .

In sections 3.5.1 and 3.5.2 we consider respectively a DD of spatial domain Ω into Nsub = 2

and Nsub > 2 subdomains with a generic DD of time interval ∆ into Nt > 1 time intervals.

3.5.1 DD-KF method in {Ωi ×∆k}i=1,2;k=1,...,Nt

In the following, for simplicity of notation, and without loss of generality 3, we consider

Nsub = 2 spatial subdomains.

DD step: as described in section 3.1, we consider DD of Ω ×∆. Let Ω1, Ω2 ⊂ Rn be subsets

of Ω ⊂ Rn such that

Ω = Ω1 ∪ Ω2 (3.150)

where

ΩI1 = {xi}i∈I1 , ΩI2 = {xi}i∈I2 (3.151)

and n1 = |I1|, n2 = |I2|, where Ii is defined in 3.6 and ni < Np; let

Ω1,2 := Ω1 ∩ Ω2, (3.152)

be the overlap region where

ΩI12 := {xi}i∈I1,2 (3.153)

3The general case involving more than two subdomains will be briefly described in section 3.5.2

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 80

denote the discretization of Ω1,2 and

I1 = {1, . . . , n1}, I2 = {n1 −
δ

2
+ 1, . . . , Np}, I1,2 = {n1 −

δ

2
+ 1, . . . , n1} (3.154)

are the corresponding index sets, with δ ∈ N0.

Concerning DD in time, let ∆k be a generic subset of ∆ such that

∆ = ∪Nt
k=1∆k (3.155)

with Dsk(∆k) ⊂ Dr+2(∆) such that

∆Kk
= {tl}l=s̄k−1,...,s̄k−1+sk (3.156)

and

∆k−1,k := ∆k−1 ∩∆k, (3.157)

with

∆Kk−1,k
= ∆Kk−1

∩∆Kk

where in (3.156)

s̄k−1 :=
k−1∑︂
l=1

(sk − sk−1,k), sk−1,k ∈ N0

is the number of elements in common between subsets ∆k−1 and ∆k, and it is such that s0 := 0,

s0,1 := 0 and s̄Nt−1 + sNt := r + 1.

The second step of DD-KF is given in the following

Definition 14. (Model Reduction step) For k = 1, . . . , Nt, let us indicate by ˆ︁x∆k
l+1, the KF

estimate ˆ︁xl+1 ∈ RNp in tl+1 ∈ ∆k, such that:

ˆ︁x∆k
l+1 =Ml,l+1ˆ︁x∆k

l + bl + wl, ∀l = s̄k−1, . . . , s̄k−1 + sk − 1 (3.158)

where ˆ︁x∆k
s̄l−1

= ˆ︁x∆l−1
s̄l−1

, (3.159)

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 81

is the initial value (according to PinT compatibility conditions), such that (according to DA

condition):

yl+1 = Hl+1ˆ︁x∆j

l+1 + vl+1, (3.160)

in particular it is ˆ︁x∆0
0 := x0.

Model Reduction step consists of the block decomposition of M := Ml,l+1 ∈ RNp×Np and

Hl+1 ∈ Rm·d×Np as follows:

M =

⎡⎣ M1 M1,2

M2,1 M2

⎤⎦ , (3.161)

and, if δ = 0

Hl+1 =
[︁
H1

l+1 H
2
l+1

]︁
. (3.162)

or, if δ ̸= 0

Hl+1 =
[︁
H1,1

l+1 H
1,2
l+1 H

2,2
l+1

]︁
(3.163)

where

• if δ = 0, for i, j = 1, 2:

Mi :=M |Ii×Ii ∈ Rni×ni Mi,j :=M |Ii×Ij ∈ Rni×nj , (3.164)

and

H1
l+1 := Hl+1|I1 ∈ Rm·d×n1 , H2

l+1 := Hl+1|I2 ∈ Rm·d×n2 , (3.165)

• if δ ̸= 0, we let:

M1,1 :=M |Ĩ1×Ĩ1
∈ R(n1−s)×(n1−s), M1,2 :=M |Ĩ1×I1,2

∈ R(n1−s)×s,

M1,3 :=M |Ĩ1×Ĩ2
∈ R(n1−s)×(n2−s), M2,1 :=M |I1,2×Ĩ1

∈ Rs×(n1−s),

M2,2 :=M |I1,2×I1,2 ∈ Rs×s, M2,3 :=M |I1,2×Ĩ2
∈ Rs×(n2−s),

M3,1 :=M |Ĩ2×Ĩ1
∈ R(n2−s)×(n1−s), M3,2 :=M |Ĩ2×I1,2

∈ R(n2−s)×s,

M3,3 :=M |Ĩ2×Ĩ2
∈ R(n2−s)×(n2−s),

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 82

and:

H1,1
l+1 := Hl+1|Ĩ1 , H2,2

l+1 := Hl+1|Ĩ2 , H1,2
l+1 := Hl+1|I1,2 , (3.166)

where

Ĩ1 = I1 \ I1,2, Ĩ2 = I2 \ I1,2, (3.167)

and n1 − δ
2
= |Ĩ1|, n2 − δ

2
= |Ĩ2|. Then

M1 :=

⎡⎣ M1,1 M1,2

M2,1 M2,2

⎤⎦ , M1,2 :=

⎡⎣ 0 M1,3

0 M2,3

⎤⎦ ,
M2,1 :=

⎡⎣ M2,1 0

M3,1 0

⎤⎦ , M2 :=

⎡⎣ M2,2 M2,3

M3,2 M2,3

⎤⎦ . (3.168)

and

H1
k+1 :=

[︃
H1,1

k+1

1

2
H1,2

k+1

]︃
H2

k+1 :=

[︃
1

2
H1,2

k+1 H2,2
k+1

]︃
. (3.169)

As initial value of reduced models on adjacent time subsets, DD-KF uses local KF estimates

computed at previous step. In particular, at t0 ≡ 0, DD-KF in ∆1 := [t0, ts1] employs as initial

value x0 ≡ ˆ︁x0 which is the initial condition of the dynamic model appropriately restricted to

Ω1 or Ω2. Hence, we get both boundary and initial conditions of reduced model by using KF

method, as given in the following definition. That said, we now consider local KF in ∆k ⊂ ∆

at time tl+1 ∈ ∆k, ∀ l = s̄k−1, . . . , s̄k−1 + sk − 1.

Definition 15. (Local DD-KF problems) DD-KF problems in ∆k × Ω1 and ∆k × Ω2 are:

P∆k
Ω1

:

⎧⎨⎩ x∆k
1,l+1 =M1x

∆k
1,l + bl|I1 + b1,l + wl|I1

yl+1 = H1
l+1x

∆k
1,l+1 +H2

l+1x
∆k
2,l+1 + vl+1

(3.170)

and

P∆k
Ω2

:

⎧⎨⎩ x∆k
2,l+1 =M2,1x

∆k
1,l + bl|I2 + b2,l + wl|I2

yl+1 = H1
l+1x

∆k
1,l+1 +H2

l+1x
∆k
2,l+1 + vl+1

, (3.171)

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 83

with initial states (according to PinT approach)

x∆k
1,s̄k−1

= x
∆k−1

1,s̄k−1
x∆k
2,s̄k−1

= x
∆k−1

2,s̄k−1
(3.172)

in particular, x∆0
1,s̄0

:= x0|I1 , x∆0
2,s̄0

:= x0|I2 and boundary conditions (according to Schwarz DD)

x∆k
1,l |∂Ω1\Ω2 = x

∂Ω1\Ω2

l

x∆k
1,l |Γ1 = x2,l|Γ1

x∆k
2,l |∂Ω2\Ω1 = x

∂Ω2\Ω1

l

x∆k
2,l |Γ2 = x1,l|Γ2

(3.173)

where

Γ1 := ∂Ω1 ∩ Ω2 , Γ2 := ∂Ω2 ∩ Ω1 (3.174)

and

b1,k :=

⎡⎣ M1,3

M2,3

⎤⎦x∆k
2,l |Γ1 b2,l :=

⎡⎣ M2,1

M3,1

⎤⎦x∆k
1,l |Γ2 . (3.175)

H1
l ∈ Rm·d×n1 and H2

l ∈ Rm·d×n2 are defined in (3.169) and, , for i = 1, 2, x∆k−1
s̄l−1
|Ii , w|Ii are

reductions to Ii of ˆ︁x0 ∈ RNp and w ∈ RNp .

Remark 8. (Filter Localization): We underline that we will consider the errors

e1,l+1 := (x1,l+1 − x1,l) ∈ Rn1

defined in Ω1 and

e2,k+1 := (x2,l+1 − x1,l) ∈ Rn2

defined in Ω2 and consequently, we get to the local covariance matrices

Pi,j := Cov(ei,l+1, ej,l+1)

defined in Ωi and Ωj , i, j = 1, 2 with i ̸= j and ∀l = s̄k−1, . . . , s̄k−1 + sk − 1.

Furthermore, we will consider the matrices

Bl = diag(B1,l, B2,l) ∈ RNp×Np

Rl = Dl

(3.176)

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 84

which are local covariance matrices of errors on model and on observations where, ∀l =

s̄k−1, . . . , s̄k−1 + sk − 1, B1,l ∈ Rn1×n1 and B2,l ∈ Rn2×n2 . Finally, Dl ∈ Rm·d×m·d is a

diagonal matrix.

Now, we describe DD–KF solving P∆k
Ω1

and P∆k
Ω2

in (3.170) and (3.171), respectively.

In the following we let ∆k be fixed, then for simplicity of notation, we refer to ˆ︁x∆k
i,l omitting

superscript ∆k. DD–KF at tl+1 ∈ ∆k, ∀l = s̄k−1, . . . , s̄k−1 + sk − 1 consists of:

• Predictor phase. Computation of state estimates:

x1,l+1 =M1ˆ︁x1,l + bl|I1 + b1,l + wk|I1
x2,l+1 =M2ˆ︁x2,l + bl|I2 + b2,l + wk|I2

; (3.177)

where

b1,l :=

⎡⎣ M1,3

M2,3

⎤⎦ ˆ︁x2,l|Γ1 b2,l :=

⎡⎣ M2,1

M3,1

⎤⎦ ˆ︁x1,l|Γ2 (3.178)

computation of local error covariance matrices between Ω1 and Ω2.

P1,2 =M1P1,2M
T
2 + CΩ1↔Ω2

P2,1 =M2P2,1M
T
1 + CT

Ω1↔Ω2

. (3.179)

and
P1 =M1P1M

T
1 + PΩ1↔Ω2 +Q1,k

P2 =M2P2M
T
2 + PΩ2↔Ω1 +Q2,k

. (3.180)

where

CΩ1↔Ω2 =M1P1M
T
2,1 +M1,2P2,1M

T
2,1 +M1,2P2M

T
2
.

and
PΩ1↔Ω2 =M1,2P2,1M

T
1 +M1P1,2M

T
1,2 +M1,2P2M

T
1,2

PΩ2↔Ω1 =M2,1P1,2M
T
2 +M2P2,1M

T
2,1 +M2,1P1M

T
2,1

; (3.181)

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 85

keep track of contribution of Ω1 and Ω2 to overlapping region.

• Corrector phase. Update of DD–KF gains:

K1 = (P1Hl+1|TI1 + P1,2Hl+1|TI2) · F

K2 = (P2Hl+1|TI2 + P2,1Hl+1|TI1) · F
; (3.182)

where

F = (Hl+1|I1P1Hl+1|TI1 +Hl+1|I2P2Hl+1|TI2 +R1,2 +Rl+1)
−1 (3.183)

and

R1,2 = (Hl+1|I2P2,1Hl+1|TI1 +Hl+1|I1P1,2Hl+1|TI2); (3.184)

keep track of contribution of Ω1 and Ω2 to overlapping region;

update of local covariance matrices:

P1 = (I −K1Hl+1|I1)P1 −K1Hl+1|I2P2,1

P2 = (I −K2Hl+1|I2)P2 −K2Hl+1|I1P1,2

; (3.185)

update of local covariance matrices between e1 ∈ Rn1 and e2 ∈ Rn2 .

P1,2 = (I −K1Hl+1|I1)P1,2 −K1Hl+1|I2P2

P2,1 = (I −K2Hl+1|I2)P2,1 −K2Hl+1|I1P1

. (3.186)

Finally, we get to the update of DD-KF estimates:

ˆ︁x1,l+1 = x1,k+1 + K1 [yl+1 − (Hl+1|I1x1,l +Hl+1|I2x2,l)]ˆ︁x2,l+1 = x2,l+1 + K2 [yl+1 − (Hl+1|I1x1,l +Hl+1|I2x2,l)]
. (3.187)

We underline that if observations are concentrated in spatial subdomains such that the first m1

and the lastm2 are in Ω1 and Ω2, respectively, then at step k+1 these observations influence the

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 86

first n1 and the last n2 components of DD–KF estimates ˆ︁x1,l+1 and ˆ︁x2,l+1, respectively. Con-

sequently, matrices Hl+1|Ii have m − mi null rows and then they can be reduced to mi × ni

matrices, with i = 1, 2.

Remark 9. (Filter Localization): P. L. Houtekamer and H. L. Mitchell [66] made a modifi-

cation to EnKF to localize covariances matrices and consequently the Kalman gain using a

Schur product 4. By using suitably correlation functions ρ1 and ρ2 at each step l + 1, KF

gains K1 = [(ρ1 ◦ (Pl+1H
T
l+1)][ρ1 ◦ (Hl+1Pl+1H

T
l+1) +Rl+1] and K2 = [(ρ2 ◦ (Pl+1H

T
l+1)][ρ2 ◦

(Hl+1Pl+1H
T
l+1) + Rl+1] are equivalent to DD-KF gains K1 and K2 in (3.182). More precisely,

if we choose ρ1 := ⊮Ω1 and ρ2 := ⊮Ω2 , i.e. the indicator functions of Ω1 and Ω2 respec-

tively, it follows K1 ≡ K1 and K2 ≡ K2, i.e. DD-KF is mathematically equivalent to KF with

localization.

3.5.2 DD-KF method in {Ωi ×∆k}i=1,...,Nsub;k=1,...,Nt

DD-KF can be generalised to Nsub > 2 spatial subdomains. Starting from the decomposition

step in space and time given in Section 3.3, with Nsub > 2 spatial subdomains consecutively

arranged along a one dimensional direction5, and assuming that Mk,k+1 is block tridiagonal

(such the matrix in (A.20) arising from discretization of SWEs described in section 5) Model

Reduction step, as given in Definition 1, still holds where instead of (3.161) and (3.162) we will

4Schur product, also named Hadamard product, of two matrices having the same dimensions is denoted A =

B ◦ C and consists of the element-wise product such that Ai,j = Bi,j ◦ Ci,j . If B and C are covariance matrices,

then so is A
5Such assumption allows to simplify the management of the contributions of adjacent domains to overlapping

regions. In this case each subdomain overlaps with two domains and two compatibility conditions needs to be

satisfied. As more than two overlapping regions occurs as more compatibility conditions should be satisfied.

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 87

have respectively:

Ml,l+1 =

⎡⎢⎢⎢⎢⎢⎢⎣
M1 M1,2

M2,1 M2 M2,3

0

0

. . .

MNsub,Nsub−1 MNsub

⎤⎥⎥⎥⎥⎥⎥⎦ (3.188)

and

Hl+1 =
[︂
H1

l+1 H
2
l+1 · · · H

Nsub
l+1

]︂
. (3.189)

In the same way of (3.170) and (3.171), we getNsub local problems P∆k
Ωi

, in the i-th subdomain,

for i = 1, . . . , Nsub. DD-KF step at tl+1 ∈ ∆k, ∀l = s̄k−1, . . . , s̄k−1 + sk − 1 provides solutions

of local problems in the following steps.

Computation of state estimates:

xi,l+1 =Mhˆ︁xi,l + bl|Ii + bi,l + wk|Ii

where

bi,l =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Mi,i+1ˆ︁xi+1,l|Γi

if i = 1

Mi,i−1ˆ︁xi−1,k|Γi
if i = Nsub

Mi,i+1ˆ︁xi+1,k|Γi
+Mi,i−1ˆ︁xi−1,k|Γi

otherwise

;

for h = 1, . . . , Nsub, h ̸= i and

j = i+ 1 if i = 1

j = i− 1 if i = Nsub

j = {i+ 1, i− 1} if 1 < i < Nsub

; (3.190)

computation of local error covariance matrices between Ωi and Ωh

Pi,h =MiPi,hM
T
h + CΩi↔Ωh

,

and

Pi =MiPiM
T
i + PΩi↔Ωj

+Bi,k;

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 88

where

CΩi↔Ωh

6 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(MiPi,h−1 +Mi,i+1Pi+1,h−1)M
T
h,h−1 +Mi,i+1Pi+1,hM

T
h

if i = 1; h = Nsub

(MiPi,h−1 +Mi,i+1Pi+1,h−1)M
T
h,h−1 +Mi,i+1Pi+1,hM

T
h

+(MiPi,h+1 +Mi,i+1Pi+1,h+1)M
T
h,h+1

if i = 1; h ̸= Nsub

(MiPi,h+1 +Mi,i−1Pi−1,h+1)M
T
h,h+1 +Mi,i−1Pi−1,hM

T
h

if i = Nsub; h = 1

(MiPi,h+1 +Mi,i−1Pi−1,h+1)M
T
h,h+1 +Mi,i−1Pi−1,hM

T
h

+(MiPi,h−1 +Mi,i+1Pi−1,h−1)M
T
h,h−1

if i = Nsub; h ̸= 1

(MiPi,h+1 +Mi,i−1Pi−1,h+1 +Mi,i+1Pi+1,h+1)M
T
h,h+1

+(Mi,i+1Pi+1,h +Mi,i−1Pi−1,h)M
T
h

1 < i < Nsub; h = 1

(MiPi,h−1 +Mi,i−1Pi−1,h−1 +Mi,i+1Pi+1,h−1)M
T
h,h−1

+(Mi,i+1Pi+1,h +Mi,i−1Pi−1,h)M
T
h

1 < i < Nsub; h = Nsub

(MiPi,h+1 +Mi,i−1Pi−1,h+1 +Mi,i+1Pi+1,h+1)M
T
h,h+1

+(Mi,i+1Pi+1,h +Mi,i−1Pi−1,h)M
T
h

+(MiPi,h−1 +Mi,i−1Pi−1,h−1 +Mi,i+1Pi+1,h−1)M
T
h,h−1

otherwise

and

PΩi↔Ωj
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mi,i+1Pi+1,iM
T
i +MiPi,i+1M

T
i,i+1 +Mi,i+1Pi+1M

T
i,i+1

if i = 1

Mi,i−1Pi−1,iM
T
i +MiPi,i−1M

T
i,i−1 +Mi,i−1Pi−1M

T
i,i−1

if i = Nsub

(Mi,i+1Pi+1,i +Mi,i−1Pi−1,i)M
T
i +MiPi,i−1M

T
i,i−1

+MiPi,i+1M
T
i,i+1 + (Mi,i+1Pi+1,i−1 +Mi,i−1Pi−1)M

T
i,i−1

+(Mi,i+1Pi+1 +Mi,i−1Pi−1,i+1)M
T
i,i+1

otherwise

6In computation of matrix CΩi↔Ωh
, we refer to covariance matrix Pi instead of Pi,i.

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 89

are the matrices keeping track of contributions of adjacent domains Ωi and Ωh to overlapping

region; update of DD-KF gains:

Ki =

Nsub∑︂
j=1j ̸=i

(PiH
T
l+1|Ii + Pi,jH

T
l+1|Ij) · F ;

where

F = (

Nsub∑︂
i=1

Hl+1|IiPiHl+1|TIi +R1,...,Nsub
+Rk+1)

−1

and

R1,...,Nsub
=

Nsub∑︂
i=1

(

Nsub∑︂
j=1j ̸=i

Hl+1|IjPj,i)Hl+1|TIi ;

update of local covariance matrices:

Pi = (Ii −KiHl+1|Ii)Pi −
Nsub∑︂

j=1j ̸=i

(KiHl+1|IjPj,i);

update of local covariance matrices between ei ∈ Rni and eh ∈ Rnh .

Pi,h = (Ii −Ki ·Hl+1|Ii)Pi,h −
Nsub∑︂

j=1j ̸=i

(KiHk+1|IjPj,h), h = 1, . . . , Nsub h ̸= i;

finally, we get to the update of local estimates:

ˆ︁xi,l+1 = xi,k+1 +Ki · (yl+1 −
Nsub∑︂

j=1j ̸=i

Hl+1|Ijxj,l). (3.191)

3.5.3 Algorithm

DD-KF algorithm is described below.

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 90

Table 3.10: DD-KF procedure.

procedure DD-KF(in:H0, . . . , Hlmax, Q0, . . . , Qlmax−1,R0, . . . , Rlmax, y0, . . . ,

ylmax,µ, δ, out: ˆ︁xi)
Set index j of Ij , i.e. the set adjacent to Ii

if (floor(i/2)× 2 == i) then

j := i− 1 % i is even

else

j := i+ 1 % i is odd

end

Call DD-Setup (in: y0, H0|Ii , H0|Ij , R0,out: ˆ︁xi,0, Pi,0)

Call Local-KF (in: yl, Hl−1|Ii , Hk|Ii , Bl−1|Ii , Rl, Pi,0,µ, δ, ˆ︁xi,l−1, out: ˆ︁xni,l)
Set ˆ︁xi := ˆ︁xni,l % DD-KF estimate in Ii

endprocedure

Table 3.11: DD-Setup procedure.

procedure DD-Setup(in: y0, H0|Ii , H0|Ij , R0, out: ˆ︁xi,0, Pi,0)

Set up reduced matrices: Hi,0 := H0|Ii , Hj,0 := H0|Ij as in (3.123)

Compute predicted covariance matrix Pi,0 = (HT
i,0R0Hi,0)

−1 as in (3.124)

Compute PHj,0
as in (3.125)

Compute Kalman estimate: ˆ︁xi,0 = (HT
i,0PHj,0

Hi,0)
−1HT

i,0PHj,0
y0 as in (3.126)

Table 3.12: Local-KF procedure.

procedure Local-KF(in: yk, Hl−1|Ii , Hl|Ii , Bl−1|Ii , Rl, Pi,0,µ, δ, ˆ︁xi,l−1; out: ˆ︁xni,l)
for l = 1, lmax %loop over KF steps

n := 0, ˆ︁xn+1
i,l := 0

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 91

repeat

n := n+ 1

Set up predicted covariance matrix Pi,l as in (3.132)

Compute Kalman gains Ki,l as in (3.133)

Update covariance matrix Pi,l as in (3.134)

Compute matrices Ki,j as in (3.135)

Send and Receive boundary conditions among adjacent sets

Exchange of data among SIi↔Ij(ˆ︁xni,l) as in (3.137)

Compute Kalman estimate at step n+ 1ˆ︁xn+1
i,l = ˆ︁xi,l−1 + Ki,l

[︁
(yl −Hl|Ijˆ︁xnj,l)−Hl|Iiˆ︁xi,l−1

]︁
+SIi↔Ij(ˆ︁xnj,l) as in (3.136)

if(s ̸= 0) then % decomposition with overlap

Set up of the extensions on Ii of ˆ︁xn+1
i,l given on Ii,j:

EOIi(ˆ︁xni,l|Ii,j), EOIi(ˆ︁xnj,l|Ii,j)
Exchange data on the overlap set Ii,j:

∇Oi,j(EOIi(ˆ︁xni,l|Ii,j), EOIi(ˆ︁xnj,l|Ii,j)) as in (3.139)

Update Kalman estimate at step n+ 1:ˆ︁xn+1
i,k ← ˆ︁xn+1

i,l + µ · Pi,k∇Oi,j(EOIi(ˆ︁xni,l|Ii,j), EOIi(ˆ︁xnj,l|Ii,l)) as in (3.138)

endif

until (∥ˆ︁xn+1
i,l − ˆ︁xni,l∥ < TOL)

endfor % end of the loop over KF steps

end procedure

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 92

3.5.4 Reliability assessment

In this section we assess reliability of the proposed method. In particular, Theorem 8 proves that

state estimates ˆ︁x1,l+1 ∈ Rn1 , ˆ︁x2,l+1 ∈ Rn2 , as in (3.187), are equal to reductions of KF estimateˆ︁xl+1 ∈ RNp to I1 and I2, respectively. This means that the DD not modify the analytical results

of the conventional KF method. Same result can be obtained for Nsub > 2 spatial subdomains

considering DD-KF estimates defined in (3.191) and proceeding as in proof of Theorem 8.

Theorem 8. Let ˆ︁xl+1 ∈ RNp , ∀l = s̄k−1, . . . , s̄k−1 + sk − 1 be KF estimate in (2.20) andˆ︁x1,l+1 ∈ Rn1 , ˆ︁x2,l+1 ∈ Rn2 be the DD-KF estimates in (3.187). Then it holds that

ˆ︁x1,l+1 ≡ ˆ︁xl+1|I1 , ˆ︁x2,l+1 ≡ ˆ︁xl+1|I2 . (3.192)

Proof. For l = s̄k−1, . . . , s̄k−1 + sk − 1, we prove that DD-KF gains K1 ∈ Rn1×m·d, K2 ∈

Rn2×m·d in (3.182) are

K1 ≡ Kl+1|I1 K2 ≡ Kl+1|I2 , (3.193)

where Kl+1 ∈ RNp×m·d is the KF gain in (2.18). We first consider DD-KF without overlapping.

KF gain can be written as follows

Kl+1 ≡ Pl+1H
T
l+1 · (Hl+1Pk+1H

T
l+1 +Rl+1)

−1

=

⎡⎣ Pl+1|I1×I1 Pl+1|I1×I2

Pl+1|I2×I1 Pl+1|I2×I2

⎤⎦⎡⎣ Hl+1|TI1
Hl+1|TI2

⎤⎦
·

⎛⎝[︂ Hl+1|I1 Hl+1|I2
]︂⎡⎣ Pl+1|I1×I1 Pl+1|I1×I2

Pl+1|I2×I1 Pl+1|I2×I2

⎤⎦⎡⎣ Hl+1|TI1
Hl+1|TI2

⎤⎦+Rl+1

⎞⎠−1

,

(3.194)

where Pl+1 ∈ RNp×Np is the predicted covariance matrix, which is defined in (2.17). We define

the matrix

R1,2 := (Hl+1|I2Pl+1|I2×I1Hl+1|TI1 +Hl+1|I1Pl+1|I1×I2Hl+1|TI2); (3.195)

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 93

and we obtain that

Kl+1|I1 = (Pl+1|I1×I1Hl+1|TI1 + Pl+1|I1×I2Hl+1|TI2)

·(Hl+1|I1Pl+1|I1×I1Hl+1|TI2 +Hl+1|I2Pl+1|I2×I2Hl+1|TI2 +R1,2 +Rl+1)
−1

Kl+1|I2 = (Pl+1|I2×I2Hl+1|TI2 + Pl+1|I2×I1Hl+1|TI1)

·(Hl+1|I1Pl+1|I1×I1Hl+1|TI2 +Hl+1|I2Pl+1|I2×I2Hl+1|TI2 +R1,2 +Rl+1)
−1

.

(3.196)

We similarly obtain that

Pl+1|I1×I1 ≡ P1 Pl+1|I1×I2 ≡ P1,2

Pl+1|I2×I2 ≡ P2 Pl+1|I2×I1 ≡ P2,1

(3.197)

where P1, P2 are defined in (3.185) and P1,2, P1,2 in (3.186). From (3.196) and (3.182) we

obtain the equivalence in (3.192). We consider the predicted estimate xl+1 in (2.16) so, KF

estimate ˆ︁xl+1 ∈ Rn in (2.20) can be written as follows⎡⎣ ˆ︁xl+1|I1ˆ︁xl+1|I2

⎤⎦ =

⎡⎣ xl+1|I1
xl+1|I2

⎤⎦+

⎡⎣ K1

K2

⎤⎦⎛⎝yl+1 −
[︂
Hl+1|I1 Hl+1|I2

]︂⎡⎣ xl|I1
xl|I2

⎤⎦⎞⎠ . (3.198)

It is simply to prove that

xl+1|I1 ≡ x1,l+1 xl+1|I2 ≡ x2,l+1,

where x1,l+1 ∈ Rn1 and x2,k+1 ∈ Rn2 are the predicted estimates in (3.187), so we get the thesis

in (3.192).

In case of decomposition of Ω with overlap, DD-KF estimates in (3.187) can be written as

follows: for i = 1, 2

ˆ︁xi,l+1 = xi,l+1 + Ki[yl+1 − (Hl+1|Ĩ1x1,l|Ĩ1 +
1

2
Hl+1|I1,2x1,l|Ĩ1,2 +

1

2
Hl+1|I1,2x2,l|Ĩ1,2 (3.199)

+Hl+1|Ĩ2x2,l)] (3.200)

CHAPTER 3. THE DA-DRIVEN SPACE AND TIME DECOMPOSITION APPROACH 94

Since

xl+1|I1,2 = x1,l+1|I1,2 = x2,l+1|I1,2

(3.199) becomes

ˆ︁xi,l+1 = xi,l+1 + Ki

[︁
yl+1 − (Hl+1|Ĩ1x1,l|Ĩ1 +Hl+1|I1,2xl|I1,2 +Hl+1|Ĩ2x2,l)

]︁
, i = 1, 2 .

(3.201)

Noting that:

Hl+1 =
[︁
Hl+1|Ĩ1 Hl+1|I1,2 Hl+1|Ĩ2

]︁
,

(3.199) becomes:

ˆ︁xl+1|Ii = xl+1|Ii + Ki

[︁
yl+1 − (Hl+1|Ĩ1xl|Ĩ1 +Hl+1|I1,2xl|I1,2 +Hl+1|Ĩ2xl|I2)

]︁
(3.202)

where I1, I1,2, I2 and Ĩ1, Ĩ2 are defined in (3.154) and (3.167), respectively. Moreover, equiv-

alence in (3.193) can be similarly obtained. Supposing (3.192) is true for l, from (3.201) and

(3.202), we obtain (3.192) for l + 1.

Chapter 4

Parallel Domain Decomposition

4.1 Dynamic Domain Decomposition in Space (DyDD)

For effective parallelization of DD based algorithms, domain partitioning into subdomains must

satisfy certain conditions. Firstly the computational load assigned to subdomains must be

equally distributed. Usually, computational cost is proportional to the amount of data entities

assigned to partitions. Good quality partitioning also requires the volume of communication

during calculation to be kept at its minimum. We employ a dynamic load balancing scheme

based on adaptive and dynamic redefining of initial DD aimed to balance workload between

processors. Redefining of initial partitioning is performed by shifting the boundaries of neigh-

bouring domains (this step is referred to as Migration step).

DyDD algorithm we implement is described by procedure DyDD shown in Table 4.1. To the

aim of giving a clear and immediate view of DyDD algorithm, in the following figures (Figures

4.1-4.4) we outline algorithm workout on a reference initial DD configuration made of eight

subdomains. We assume that at each point of the mesh we have the value of numerical simula-

tion result (the so called background) while the circles denote observations. DyDD framework

consists in four steps:

95

CHAPTER 4. PARALLEL DOMAIN DECOMPOSITION 96

1. DD step: starting from the initial partition of Ω provided by DD-DA framework as in

Section 3.1), DyDD performs a check of the initial partitioning. If a subdomain is empty,

it decomposes subdomain adjacent to that domain which has maximum load (decompo-

sition is performed in 2 subdomains). See Figure 4.1.

2. Scheduling step: DyDD computes the amount of observations needed for achieving the

average load in each subdomain; this is performed by introducing a diffusion type algo-

rithm (by using the connected graph G associated to the DD) derived by minimizing the

Euclidean norm of the cost transfer. Solution of the laplacian system associated to the

graph G gives the amount of data to migrate. See Figure 4.2.

3. Migration step: DyDD shifts the boundaries of adjacent subdomains to achieve a balanced

workload. See Figure 4.3.

4. Update step: DyDD redefines subdomains such that each one contains the number of

observations computed during the scheduling step and it redistributes subdomains among

processors grids. See Figure 4.4.

Scheduling step is the computational kernel of DyDD algorithm. In particular, it requires def-

inition of laplacian matrix and load imbalance associated to initial DD and its solution. Let us

give a brief overview of this computation. Generic element Lij of laplacian matrix is defined as

follows[67]:

Lij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 i ̸= j and edge (i, j) ∈ G

deg(i) i = j,

0 otherwise

(4.1)

and the load imbalance of vertex i, b(i) =
(︁
l (i)− l̄

)︁
, where deg(i) (i) is the degree of vertex i,

l (i) and l̄ are the number of observations and the average workload of all vertices, respectively.

Hence, as more edges are in G (as the number of subdomains which are adjacent to each other

increases) as more non zero elements are in L.

CHAPTER 4. PARALLEL DOMAIN DECOMPOSITION 97

Laplacian systemLλ = b, related to the example of Figure 4.2 described below, is the following:

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 −1 0 0 0 0 0

−1 3 −1 −1 0 0 0 0

−1 −1 4 −1 −1 0 0 0

0 −1 −1 3 −1 0 0 0

0 0 −1 −1 3 −1 0 0

0 0 0 0 −1 3 −1 −1

0 0 0 0 0 −1 2 −1

0 0 0 0 0 −1 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.2)

while the right hand side is the vector whose i-th component is given by the load imbalance,

computed with respect to the average load l̄ = 4 as follows:

b(i) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

2

−2

1

−1

1

−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In this example, solution of the laplacian system gives

λ = (3.43, 2.81, 3.05, 1.96, 2.00, 0., 0.,−1)

so that the amount of load (rounded to the nearest integer) which should be migrated from Ωi

to Ωj is

δ1,2 = 1; δ1,3 = 0; δ2,4 = 1; δ3,2 = 0; δ3,4 = 1; δ3,5 = 1;

δ5,4 = 0; δ5,6 = 2; δ6,7 = 0; δ6,8 = 1; δ7,8 = 1;

CHAPTER 4. PARALLEL DOMAIN DECOMPOSITION 98

i.e. δi,j is the nearest integer of (λi − λj).

Table 4.1: Procedure DyDD.

Procedure DyDD-Dynamic Load Balancing(in: p, Ω, out: l1,. . . ,lp)

%Procedure DyDD allows to balance observations between adjacent subdomains

% Domain Ω is decomposed in p subdomains and some of them may be empty.

% DyDD procedure is composed by: DD step, Scheduling step and Migration Step.

% DD step partitions Ω in subdomains and if some subdomains have not any observations,

partitions adjacent subdomains with maximum load

%in 2 subdomains and redefines the subdomains.

% Scheduling step computes the amount of observations needed for shifting boundaries

of neighbouring subdomains

%Migration step decides which subdomains should be reconfigured to achieve

a balanced load.

% Finally, the Update step redefines the DD.

DD step

% DD step partitions Ω in (Ω1,Ω2, . . . ,Ωp)

Define ni: the number of adjacent subdomains of Ωi

Define li: the amount of observations in Ωi

repeat for any i

% identification of Ωm, the adjacent subdomain of Ωi with

the maximum load

Compute m such that lm = maxj=1,...,ni
(lj): the maximum amount of

observations

Decompose Ωm in 2 subdomains: Ωm ← (Ω1
m,Ω

2
m)

CHAPTER 4. PARALLEL DOMAIN DECOMPOSITION 99

until (li ̸= 0)

end of DD Step

Begin Scheduling step

Define G: the graph associated with initial partition: vertex i corresponds to Ωi

Distribute the amount of observations li on Ωi

Define deg(i) = ni, the degree of node i of G:

repeat

Compute the average load: l̄ =
∑︁p

i=1 li
p

Compute load imbalance: b = (li − l̄)i=1,...,p

Compute L, Laplacian matrix of G

Call solve(in:L, b, out:λ) % algorithm solving the linear system Lλ = b

Compute δi,j , the load increment between the adjacent subdomains Ωi

and Ωj . δi,j is the nearest integer of (λi − λj)

Define nsi , nri , number of those subdomains whose configuration

has to be updated

Update graph G

Update amount of observations of Ωi: li = li −
∑︁nsi

j=1 δi,j +
∑︁nri

j=1 δj,i, ∀i

until (maxi∥li − l̄∥ == deg(i)
2

) % i.e. maximum load-difference is deg(i)/2

end Scheduling step

Begin Migration Step

Shift boundaries of two adjacent subdomains in order to achieve a balanced load.

end Migration Step

CHAPTER 4. PARALLEL DOMAIN DECOMPOSITION 100

Update DD of Ω

end Procedure DyDD

CHAPTER 4. PARALLEL DOMAIN DECOMPOSITION 101

(a) Ω1 is identified as having the maximum load w.r.t. its neighbourhoods.

(b) Ω4 and Ω7 are identified as having the maximum load w.r.t. their neighbourhoods.

Figure 4.1: DyDD framework - Step 1. Check of the initial partitioning, identification of sub-

domains which do not have data or they suffer of any load imbalance and redefinition of subdo-

mains. We observe that the workload of each subdomain after this re-partitioning is now lr(1) = 5,

lr(2) = 4, lr(3) = 6, lr(4) = 2, lr(5) = 5, lr(6) = 3, lr(7) = 5 and lr(8) = 2. The average load is

then l̄ = 4.

CHAPTER 4. PARALLEL DOMAIN DECOMPOSITION 102

Figure 4.2: DyDD framework - Step 2. Scheduling. On the right, the graph G associated to the DD

of Ω. In brackets the number lr(i) is displayed.

Figure 4.3: DyDD framework - Step 3. Migration. Redefinition of the boundaries of adjacent

subdomains.

Figure 4.4: DyDD framework - Step 4. Update step. Updating of the processor graph. In brackets,

the number of observations lfi(i) after DyDD is displayed. We observe that the workload of each

subdomain after DyDD is equal to the average load l̄ = 4.

CHAPTER 4. PARALLEL DOMAIN DECOMPOSITION 103

4.2 Dynamic Domain Decomposition in Space and Time (Dy-

DDST)

In many problems within the earth and environmental sciences observations are non uniformly

distributed and its distribution change during time. DYDDST algorithm is proposed to support

real time applications where load measurement is necessary to determine when load imbalance

occurs. DyDDST is an extension to time windows of DyDD introduced in Section 4.1. We apply

DyDDST on algorithm proposed in [8] in order to ensure a balanced distribution of load between

spatial subdomains in each time interval. The load balancing scheme proposed involves, at each

time interval, an adaptive and dynamic repartitioning of load among spatial subdomains. Load

repartition is performed by shifting boundaries of adjacent subdomains defined by the initial

domain partitioning. As shown in Algorithm 4.2, DyDDST framework consists in five steps:

• DD check: starting from the initial DD of Ω × ∆ provided by DD–DA framework as

in Section 3.1, DyDDST performs a check of the partitioning. If a spatial subdomain is

empty, it decomposes in two subdomains the adjacent subdomain which has the maximum

load.

• Scheduling step: DyDDST computes the amount of observations needed for achieving,

in each subdomain Ωi, the average load in ∆k; this is performed by using the connected

graph Gk associated to the DD of Ω in ∆k; i.e. Gk depends on the configuration in ∆k

of spatial subdomains. This is achieved computing the Laplace matrix Lk = {Lk
ij} as

follows [8]:

Lk
i,j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 i ̸= j and (i, j) ∈ Gk

dk(i) i = j

0 otherwise

(4.3)

and the load imbalance bk(i) =
(︂
lk (i)− lk̄

)︂
, where dk (i) is the degree of vertex i in

CHAPTER 4. PARALLEL DOMAIN DECOMPOSITION 104

∆k; finally, lk (i) and lk̄ are the number of observations and the average load in Ωi ×∆k,

respectively. Solution of the Laplacian system:

Lkλk = bk (4.4)

associated to Gk gives the amount of data which should have migrated in ∆k.

• Migration step: DyDDST shifts the boundaries of spatial subdomains.

• Updating step: DyDDST redefines spatial subdomains in ∆k such that each one contains

the number of observations computed in the scheduling step and redistributes subdomains

among processors grids. After, for all subdomains it is necessary to re-evaluate the work-

load to balance the number of observations in ∆k+1.

Table 4.2: Procedure DyDDST

Procedure DyDDST-Dynamic Load Balancing in Space and Time(in: p,Nt, Ω, out: l1,. . . ,lp)

%Procedure DyDDST allows to balance observations between adjacent subdomains in ∆

% Domain Ω×∆ is decomposed in p×Nt subdomains and some of spatial subdomains

may be empty.

Initial DD step

% DD of Ω×∆ in (Ω1,Ω2, . . . ,Ωp) and (∆1,∆2, . . . ,∆Nt)

end of Initial DD step

DD step

Define ni: the number of adjacent subdomains of Ωi

Define lki : the amount of observations in Ωi ×∆k

CHAPTER 4. PARALLEL DOMAIN DECOMPOSITION 105

repeat for any i

% identification of Ωm, the subdomain adjacent to Ωi

with the maximum load

Compute m such that lkm = maxj=1,...,ni
(lkj): the maximum amount

of observations

Decompose Ωm in 2 subdomains: Ωm ← (Ω1
m,Ω

2
m)

until (lki ̸= 0)

end of DD Step

Begin Scheduling step

Define Gk: the graph associated with initial partition of Ω×∆k: vertex i corresponds

to Ωi in ∆k

Distribute the amount of observations lki in Ωi

Define dk(i) = ni, the degree of node i of Gk:

repeat

Compute the average load: l̄k =
∑︁p

i=1 l
k
i

p

Compute load imbalance: bk = (lki − lk̄)i=1,...,p

Compute Lk, Laplacian matrix of Gk

Call PCG(in:Lk, bk, out:λk) % Preconditioned Conjugate Gradient algorithm

solving the linear system Lkλk = bk

Compute δki,j , the load increment between the adjacent subdomains Ωi and Ωj .

δki,j is the nearest integer of (λki − λkj)

Define nk
si
, nk

ri
, number of those subdomains whose configuration

has to be updated

CHAPTER 4. PARALLEL DOMAIN DECOMPOSITION 106

Update Gk

Update amount of observations of Ωk
i : lki = lki −

∑︁nk
si

j=1 δ
k
i,j +

∑︁nk
ri

j=1 δ
k
j,i, ∀i

until (maxi∥lki − l̄
k∥ == dk(i)

2
) % i.e. maximum load-difference is dk(i)/2

end Scheduling step

Begin Migration Step

Shift boundaries of two adjacent subdomains in order to achieve a balanced load in ∆k.

end Migration Step

Update DD of Ω

Update DD

Update lki ≡ lk+1
i the number of observations of subdomain Ωi in ∆k+1 (not yet balanced)

end Update step

Define li ≡ lki on Ωi ×∆k.

endProcedure DyDDST

Chapter 5

Validation Analysis

Simulations were aimed to validate the proposed approaches by measuring the scalability of

DD–4DVAR and DD-KF algorithms. We consider two problems outlined in Appendix A.1 and

A.2 Performance evaluation was carried out using Parallel Computing Toolbox of MATLAB.

We consider two DD configurations, on two different computing environments.

1. Computing environment no.1: we run DD–4DVAR and DD-KF algorithms using MAT-

LABR2018b on a CPU shared memory, namely a Laptop with 1.6GHz CPU, with 2

physical cores and 4 GB of memory. In this case for testing the algorithm we consider

up to Nsub = 8 subdomains equally distributed among the cores. This is essentially an

intra-node DD configuration which realizes a fine-grained parallelization strategy on a

single node with many-core CPU.

2. Computing environment no.2: we run DD–4DVAR and DD-KF algorithms using MAT-

LABR2013a on the high performance hybrid compunting architecture of the SCoPE (Sis-

tema Cooperativo Per Elaborazioni scientifiche multidiscipliari) data center, located in the

University of Naples Federico II. More precisely, the HPC architecture is made of 8 nodes,

107

CHAPTER 5. VALIDATION ANALYSIS 108

consisting of distributed memory DELL M600 blades connected by a 10 Gigabit Ethernet

technology. Each blade consists of 2 Intel Xeon@2.33GHz quadcore processors sharing

16 GB RAM memory for a total of 8 cores/blade and of 64 cores, in total. In this case for

testing the algorithm we consider up to Nsub = 64 subdomains equally distributed among

the cores. This is an intra-node DD configuration implementing a parallelization strategy

on multiprocessor systems with many-core CPUs. Finally, we compare time execution of

parallel KF algorithm with respect to DD–4DVAR and DD-KF algorithms.

5.1 DD-KF applied to CLS problem

We perform validation analysis of the proposed DD-KF approach by considering the intra-node

DD configuration on computing environment no.1.

DD-KF set up:

• H0 ∈ R11×6: random matrix;

• H1 ≡ hT ∈ R1×6: random vector;

• y0 ∈ R11: random vector;

• y1 ∈ R: a random constant;

• b =
[︂
y0, y1

]︂
∈ R12 the vector in (A.2);

• R0 = 0.5 · I: weight matrix, with I ∈ R11×11 identity matrix, R1 = 0.5 and R =

diag(R0, R1) ∈ R12×12 weight matrix.

We calculate:

• ˆ︁x0 ∈ R6: solution of normal equations in (A.1);

CHAPTER 5. VALIDATION ANALYSIS 109

• ˆ︁x ∈ R6: solution of normal equations in (A.6) obtained by using Conjugate Gradient

method;

• ˆ︁x1 ∈ R6 Kalman estimate as in (2.20) at step k = 1.

We apply the DD approach to CLS problem in (A.4) by using:

• nmax = 50: maximum number of iterations;

• tol = 10−6: tolerance;

• ˆ︁x ∈ R6 solution of normal equations in (A.6) by Conjugate Gradient method.

Decomposition of I = {1, 2, 3, 4, 5, 6} without overlap i.e.

• I1 = {1, 2, 3, 4}, I2 = {5, 6};

• Np ≡ |I| = 6,

• n1 ≡ |I1| = 4,

• n2 ≡ |I2| = 2;

• ˆ︁x1,0 ≡ ˆ︁x0|I1 ∈ Rn1 ,

• ˆ︁x2,0 ≡ ˆ︁x0|I2 ∈ Rn2 : as in (3.128) with ˆ︁x0 solution in least squares sense of (A.1);

• for i = 1, 2, ˆ︁x0i,1 ≡ zeros(ni) ∈ Rni , where zeros(ni) is the null vector;

• for n = 1, 2, ..., nmax, ˆ︁xn+1
1,1 ∈ R4, ˆ︁xn+1

2,1 ∈ R2: the Kalman estimates;

• ∥rn+1∥ < tol: stopping criterion, where rn+1 := (ATRA)xn+1 −ATRb is the residual at

iteration n+ 1 in (A.6);

CHAPTER 5. VALIDATION ANALYSIS 110

Figure 5.1: The norm residual ∥rn+1∥ and the error = ∥ˆ︁x − xn+1∥ graph. ∥rn+1|∥ and error

decrease as the number of iterations grows. tolerance tol = 10−6 is exceeded at ns = 20.

• ns the number of iterations needed to stop of the iterative procedure.

xn+1, i.e. the DD solution, is:

xn+1 =

⎧⎨⎩ ˆ︁xn+1
1,1 on I1ˆ︁xn+1
2,1 on I2

. (5.1)

In Figure 5.1, we report the ∥rn+1∥ when n grows. We see that the residual norm exceeds

tol = 10−6 in correspondence of ns = 20. In particular, we note that the order of magnitude of

error = ∥ˆ︁x − xns∥ ≈ 6.2668 × 10−7 is the same of ∥rns∥ ≈ 6.6801 × 10−7. In Table 5.1, we

report values of error and the relative number of iterations (ns).

Decomposition of I = {1, 2, 3, 4, 5, 6} in I1 and I2 with overlap, for δ/2 = 1, 2, 3:

• I1 = {1, 2, 3, 4}, I2 = {4− δ
2
, ..., n} and I1,2 = {4− δ

2
, ..., 4};

• Np ≡ |I| = 6,

CHAPTER 5. VALIDATION ANALYSIS 111

Table 5.1: Values of error = ∥ˆ︁x− xnsδ∥ for different values of tol.

tol nsδ error

10−6 20 6.4037e− 07

10−9 29 4.8394e− 10

10−14 33 6.7045e− 15

• n1 ≡ |I1| = 4,

• n2 ≡ Np +
δ
2
− n1 ≡ |I2| = 2 + δ

2
;

• for i = 1, 2, ˆ︁x0i,1 ≡ zeros(ni) ∈ Rni , where zeros(ni) is the null vector;

• for n = 1, 2, ..., nmax, we compute ˆ︁xn+1
1,1 ∈ R4, ˆ︁xn+1

2,1 ∈ R2: the Kalman estimates as in

(3.138).

DD estimate xn+1
s ∈ R9 is obtained as follows

xn+1
δ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ˆ︁xn+1
1,1 |I1\I1,2 on I1 \ I1,2

µ
2
(ˆ︁xn+1

1 |I1,2 + ˆ︁xn+1
2 |I1,2) on I1,2ˆ︁xn+1

2,1 |I2\I1,2 on I2 \ I1,2

, (5.2)

with µ ≡ 1 regularization parameter; ∥rn+1
δ ∥ < tol the stopping criterion, where rn+1

δ :=

(ATRA)xn+1
δ − ATRb is the residual at iteration n + 1 of (A.6); nsδ is the corresponding

iteration. As expected and shown in Table 5.1, the size of the overlapping set impacts the

convergence behaviour of the algorithm i.e. increasing nsδ, consistently to tolerance tol, the

accuracy improved.

CHAPTER 5. VALIDATION ANALYSIS 112

Table 5.2: Values of errorδ = ∥ˆ︁x− xnsδ ∥ for tol = 10−6.

nss errorδ δ/2

17 7.2526e− 07 1

15 5.1744e− 07 2

22 7.2741e− 07 3

5.1.1 Trustworthy analysis

We perform trustworthy analysis of the proposed DD-KF approach by considering the inter-

node DD configuration on computing environment no.2.

We consider the columnwise domain decomposition of I = {1, . . . , Np} where Np ∈ N, into

Nsub < Np subdomain:

I =

Nsub⋃︂
i=1

Ii

where

Ii :=

{︃
(i− 1)× Np

Nsub

+ 1, . . . , i× Np

Nsub

}︃
.

This choice of data involves exchanges of data only between two adjacent subdomains so that

the surface to volume ratio is minimized.

Communication functions labSend and labReceive transfer data between workers so that each

worker proceeds with the parallel execution of the procedure.

We let:

• H0 ∈ Rm0×Np , H1 ≡ hT ∈ Rm1×Np: identity matrices;

• m := m0 +m1; where m1 ≡ 1, m0 ≡ Np + l, and l := 5;

• y0 ∈ Rm0 , y1 ∈ Rm1: random vectors;

CHAPTER 5. VALIDATION ANALYSIS 113

• b =
[︂
y0, y1

]︂
∈ Rm0+m1;

• R0 = 0.5× I , with I ∈ Rm0×m0 identity matrix,

• R1 = 0.5 and R = diag(R0, R1) ∈ Rm0+m1×m0+m1 weight matrix.

We underline that, as m0 := Np + l where l,m1 ∈ N are fixed, it follows that r := ((m0 +

m1)×Np) = Np + l + 1 in (A.4) only depends on n.

We apply DD-KF to CLS model in (A.4) by using:

• nmax = 50: maximum number of iterations;

• tol = 10−6: tolerance required to the solution accuracy;

• ˆ︁x ∈ RNp: numerical solution of normal equations in (A.6) computed by using Conjugate

Gradient method.

Let nloc := Np

Nsub
be local problem size. Metrics we use for analysing performance of DD-KF

algorithm running on p workers for Nsub subdomains are:

• T 1(m1, Np): amount of time (in seconds) needed to compute CLS solution using KF;

• T 1,p(m1, Np): amount of time (in seconds) needed to solve CLS using a parallel KF

algorithm running on p cores;

• T p (m1, nloc): amount of time (in seconds) needed to perform DD-KF on p workers;

• T p
oh (m1, nloc): amount of overhead time (measured in seconds) due to synchronization,

memory accesses and communication time among p workers;

• S
V

p
(m1, nloc) :=

T p
oh(m1,nloc)

T 1(m1,nloc)
: surface-to-volume ratio;

CHAPTER 5. VALIDATION ANALYSIS 114

• Sp (m1, nloc) :=
T 1(m1,n)

T p(m1,nloc)
: speed-up on p workers;

• Ep (m1, nloc) :=
Sp(m1,nloc)

p
: efficiency on p workers;

• ScfNsub,1
(m1, nloc) =

T 1(m1,Np)

Nsub·T 1(m1,nloc)
: measured value of scale up factor;

Note that measured values of the scale up factor give us an estimate on the real reduction of the

serial execution time of KF algorithm we could expect by sequentially solving the Nsub sub-

problems resulting from DD-KF. This value provides additional and valuable insights into any

real world employment of DD-KF algorithm.

In the following tables and figures we report values of scalability, computed in terms of strong

scaling and weak scaling.

1. Intra-node DD configuration.

In Tables 5.3 and Figure 5.2 we report performance results of the algorithm running on

the CPU shared memory. We note that at Nsub = 2 and Nsub = 4, as the computing envi-

ronment is a dual-core CPU shared memory, overhead is so small that super-linear speed

up arises. At Nsub = 8, instead, overheads due to traffic memory and synchronizations,

measured by the surface-to-communication value, become so predominant to drastically

reduce the speed up.

Note: Strong scaling results at Np = 512, nloc := Np/Nsub and r := (m0 + m1) ×

Np = (Np + 6) · Np for Nsub = 2, 4, 8 subdomains and p = 2. We note that as the

computing environment is a dual-core CPU shared memory, at Nsub = 2 and Nsub = 4

the overhead is negligible so superlinear speed up arises. IfNsub = 8, instead, the surface-

to-communication value becomes predominant so that it drastically turns down speed up.

CHAPTER 5. VALIDATION ANALYSIS 115

Figure 5.2: Intra-node DD configuration. Performance results at Np = 512, nloc := Np/Nsub and

r := (m0+m1)×Np = (Np+6) ·Np forNsub = 2, 4, 8 subdomains and p = 2. We note that as the

computing environment is a dual-core CPU shared memory, atNsub = 2 andNsub = 4 the overhead

is negligible so super-linear speed up arises. If Nsub = 8, instead, the surface-to-communication

value becomes predominant so that it drastically turns down speed up.

CHAPTER 5. VALIDATION ANALYSIS 116

Table 5.3: Internode DD configuration .

Nsub Np T 1(m1, Np)

1 512 2.38 · 10−1

Nsub Np
S
V

p
(m1, nloc) T p(m1, nloc) Sp(m1, nloc) Ep(m1, nloc) ScfNsub,1

(m1, nloc)

2 256 1.13× 10−2 1.24× 10−1 1.92× 100 9.60× 10−1 6.61× 101

4 128 7.58× 10−2 1.01× 10−1 2.36× 100 5.60× 10−1 7.89× 101

8 64 5.28× 100 1.42× 10−1 1.68× 100 2.10× 10−1 8.59× 101

2. Inter-node DD configuration. In these experiments we let

p ≡ Nsub

In Tables 5.4 and 5.5 and Figures 5.3 and 5.5 results related to strong and weak scaling

obtained running DD-KF algorithm on the HPC architecture based on many-core dis-

tributed processors, are reported. In Figure 5.4 we plot Speed up and Efficiency lines

versus p. Moreover, in Table 5.6, we compare execution time of KF algorithm where a

straightforward parallelism at fine grained level is introduced but without using DD, and

DD-KF. We note that DD-KF gets a performance gain of two orders of magnitude with

respect to the parallelism at fine-grained level of KF algorithm.

5.2 DD–KF applied to SWEs problem

We apply DD-KF method to the initial boundary problem of SWEs described in Appendix

A.2 by considering the intra-node DD configuration on computing environment no.1. The

discrete model is obtained by using Lax-Wendroff scheme [81]. Experiments are aimed to

prove that DD-KF provide same solutions of KF. Reliability is assessed w.r.t. KF and DA, by

CHAPTER 5. VALIDATION ANALYSIS 117

Figure 5.3: Inter-node DD configuration. Performance results at Np := 1920 and r := (m0 +

m1)×Np = (Np + 6)×Np for Nsub ≡ p = 2, 4, 8, 16, 32, 64 subdomains/workers.

CHAPTER 5. VALIDATION ANALYSIS 118

Figure 5.4: Inter-node DD configuration. (Left) Speed-up; (right) Efficenty.

Table 5.4: Inter-node DD configuration.

Nsub Np T 1(m1, Np)

1 1920 1.46× 10−1

Nsub Np
S
V

p
(m1, nloc) T p(m1, nloc) Sp(m1, nloc) Ep(m1, nloc) ScfNsub,1

(m1, nloc)

2 960 1.09× 10−6 8.89× 10−2 1.64× 100 8.20× 10−1 4.87× 100

4 480 4.34× 10−6 3.86× 10−2 3.78× 100 9.45× 10−1 9.13× 100

8 240 1.74× 10−5 2.09× 10−3 6.99× 100 8.74× 10−1 1.14× 101

16 120 6.94× 10−5 9.30× 10−3 1.57× 101 9.81× 10−1 2.93× 101

32 60 2.78× 10−4 6.60× 10−3 2.21× 101 6.91× 10−1 1.98× 101

64 30 1.11× 10−3 3.20× 10−3 4.56× 101 7.13× 10−1 1.12× 101

CHAPTER 5. VALIDATION ANALYSIS 119

Figure 5.5: Weak Scaling of inter-node configuration. Scalability prediction of DD-KF algorithm

computed fixing nloc = 64, Np = p × nloc, and r := (m0 +m1) × Np = (Np + 6) × Np where

Nsub = p = 2, 4, 8, 16, 32, 64.

CHAPTER 5. VALIDATION ANALYSIS 120

Table 5.5: Weak Scaling of inter-node DD configuration. Scalability prediction of DD-KF algorithm

computed fixing nloc = 64, Np = p × nloc, and r := (m0 +m1) × Np = (Np + 6) × Np where

Nsub = p = 2, 4, 8, 16, 32, 64.

p Np r T 1 (m1, Np) T p (m1, nloc) Sp (m1, nloc) Ep (m1, nloc)

2 128 17, 152 9.59× 10−4 6.18× 10−5 1.55× 100 7.75× 10−1

4 256 67, 072 2.60× 10−3 7.50× 10−4 3.47× 100 8.68× 10−1

8 512 265, 216 9.40× 10−3 1.50× 10−3 6.42× 100 8.03× 10−1

16 1024 1, 054, 720 4.20× 10−2 4.00× 10−3 1.05× 101 6.56× 10−1

32 2048 4, 206, 592 1.79× 10−1 7.40× 10−3 2.42× 101 7.56× 10−1

64 4096 16, 801, 792 7.90× 10−1 1.35× 10−2 5.85× 101 9.14× 10−1

Table 5.6: Inter-node DD configuration. Comparison between execution time of KF algorithm

where a straightforward parallelism at fine grained level is introduced but without using DD, and

DD-KF, at Np := 1920 and Nsub ≡ p = 64 subdomains/workers.

p Np T 1,p(m1, Np) T p(m1, nloc)

64 1920 1.36× 10−1 3.20× 10−3

CHAPTER 5. VALIDATION ANALYSIS 121

using maximum error and RMSE, respectively.

KF configuration. We consider the following experimental scenario:

• Ω = (0, L): where L = 1;

• ∆ = [0, T]: where T = 1.5;

• pv = 2: number of physical variables;

• Np = 500 and bc = 2: numbers of nodes of Ω and ∂Ω, respectively;

• nx := Np + bc = 502 and N = 53: numbers of elements of Ω̄ and ∆, respectively;

• ∆x = 1
500

and ∆t: step size of Ω and ∆, respectively, where ∆t varies to satisfy the

stability condition in (A.28) of Lax-Wendroff method;

• ΩI = {xi}i=0,...,Np−1: discretization of Ω where xi = i ·∆x;

• ∆K = {tk}k=0,...,N−1: discretization of ∆ where tk = tk−1 +∆t;

• for i = 1, 2, xl[i]: KF estimate of height (for i = 1) and horizontal velocity (for i = 2);

• nobs = 14: number of observations at step l = 0, 1, . . . , N − 1;

• vl := 10−2 · v̄l ∈ Rnobs: observations errors, with v̄l a random vector drawn from the

standard normal distribution, for l = 0, 1, . . . , N − 1;

• yl := x(tl, xj)+vl ∈ Rnobs: observations vector for j = 1, . . . ,m at step l = 0, 1, . . . , N−

1; observations are obtained by adding observation errors to the full solution of the SWE’s

without using domain decomposition while using exact initial and boundary conditions.

• Hl ∈ Rnobs×Np: piecewise linear interpolation operator whose coefficients are computed

using the points of the domain nearest to observation values;

CHAPTER 5. VALIDATION ANALYSIS 122

• σ2
m = 5.0× 10−1, σ2

0 = 3.50× 10−1: model and observational error variances;

• B ≡ Bl = σ2
mC: covariance matrix of the model error at step l = 0, 1, . . . , N − 1, where

C ∈ RNp×Np denotes Gaussian correlation structure of model errors in (5.3);

• R ≡ Rk = σ2
0Inobs,nobs

∈ Rnobs×nobs: covariance matrix of the errors of the observations

at step l = 0, 1, . . . , N − 1.

DD-KF configuration. We consider the following experimental scenario:

• δ = 2, 4, . . . , 200: number of inner nodes in spatial overlap;

• n1 = 250 + δ/2, I1 = {1, . . . , 250} with |I1| = n1;

• n2 = 250 + δ/2, I1 = {n1 − δ/2 + 1, . . . , 500} with |I2| = n2;

• s1,2 = 2, 3, . . . , 50: number of instants of time in temporal overlap;

• s̄0 := 0, s0,1 := 0, s1 = 25 + s1,2/2, s̄1 := s1 − s1,2 and s2 = 28 + s1,2/2;

• C := {ci,j}i,j=1,...,Np ∈ RNp×Np: Gaussian correlation structure of model error where1

ci,j = ρ|i−j|2 , ρ = exp

(︃
−∆x2

2L2

)︃
, |i−j| < Np/2

for i = 1, . . . , n1,

j = 1, . . . , n1 − δ/2 and

for i, j = n1 − δ/2 + 1, . . . , Np

.

(5.3)

1. Decomposition Step.

1According to [30] here we assume the model error to be gaussian . As explained in [30], a research collab-

oration between us and CMCC (Centro Euro Mediterraneo per i Cambiamenti Climatici) give us the opportunity

to use the software called OceanVar. OceanVar is used in Italy to combine observational data (Sea level anomaly,

sea-surface temperatures, etc.) with backgrounds produced by computational models of ocean currents for the

Mediterranean Sea (namely, the NEMO framework [22]). OceanVAR assumes gaussian model errors.

CHAPTER 5. VALIDATION ANALYSIS 123

• Decomposition of Ω into two subdomains with overlap region:

Ω1 = [0, xn1]

Ω2 = [xn1−δ/2+1, 1]
(5.4)

where n1 is the number of inner nodes in Ω1 and δ is the number of nodes in overlap

region.

• Decomposition of ∆ into two subsets with overlap region:

∆1 = [0, ts1−1]

∆2 = [ts1−s1,2+1, 1.5],
(5.5)

where s1 is the number of instants of time in ∆1 and s1,2 is the number of instants

of time in common among 2 adjacent time intervals.

2. Local initial conditions on ∆1 and ∆2:

x[1]∆1
0 = h(0, x) =: x[1]∆0

0

x[2]∆1
0 = h(0, x)v(0, x) =: x[2]∆0

0

x[1]∆2
s1−1 = x[1]∆1

s1−1

x[2]∆2
s1−1 = x[2]∆1

s1−1

. (5.6)

3. Model reduction in (A.25).
Decomposition of matrices M [1]l+1 ∈ Rnx−2 at each step l = 0, 1, . . . , nt− 2

M [1]1l,l+1 :=M [1]l,l+1|I1×I1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψl
1 ηl2

−ηl1 ψl
2 ηl3

.

−ηln1−2 ψl
n1−1 ηln1

−ηln1−1 ψl
n1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ Rn1×n1 (5.7)

M [1]1,2l,l+1 :=M [1]l,l+1|I1×I2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · · · · · · · 0 · · · 0

0 · · · · · · · · · 0 · · · 0
...

...

0 · · · 0 ηkn1+1 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ Rn1×n2 (5.8)

CHAPTER 5. VALIDATION ANALYSIS 124

M [1]2,1l,l+1 :=M [1]l,l+1|I1×I2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 0 ηln1
0 · · · 0

0 · · · 0 · · · 0 0 · · · 0
...

...
...

...

0 · · · 0 · · · 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ Rn2×n1 (5.9)

M [1]2l,l+1 :=M [1]l,l+1|I2×I2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψl
n1

ηln1+1

−ηln1
ψl
n1+1 ηln1+2

.

−ηknx−4 ψk
nx−3 ηknx−2

−ηkn1−3 ψk
nx−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ Rn2×n2 . (5.10)

We proceed in the same way to get the decomposition of matrix M [2]l,l+1 ∈ Rnx−2×nx−2

in (A.25) intoM [2]1l,l+1 ∈ Rn1×n1 ,M [2]1,2l,l+1 ∈ Rn1×n2 ,M [2]2,1l,l+1 ∈ Rn2×n1 andM [2]2l,l+1 ∈

Rn2×n2 .

4. Decomposition of Hl+1 ∈ Rnobs×(nx−2) into H1
l+1 ∈ Rnobs×n1 and H2

l+1 ∈ Rnobs×n2 as in

(3.169).

5.2.1 The algorithm

1. For k = 1, 2 and l = s̄k−1 +1, . . . , s̄k−1 + sk, we apply DD-KF method on ∆1 and ∆2 by

considering the following matrices:

M1[i] ≡M [i]1l,l+1 M1,2[i] ≡M [i]1,2l,l+1

M2[i] ≡M [i]2l,l+1 M2,1[i] ≡M [i]2,1l,l+1

P1 = On1×n1 P2 = On2×n2

P1,2 = On1×n2 P2,1 = On2×n1

. (5.11)

In particular, we note:

M1,2[i] ≡

⎡⎣ O M1,3[i]

O M2,3[i]

⎤⎦ M2,1[i] ≡

⎡⎣ M̃1,2[i] O

M̃2,1[i] O

⎤⎦ . (5.12)

CHAPTER 5. VALIDATION ANALYSIS 125

2. Send and receive boundary conditions from adjacent domains and compute the vectors:

b1,l[i] =

⎡⎣ M1,3[i]

M2,3[i]

⎤⎦ ˆ︁x2,l[i]|Γ1 b2,l[i] =

⎡⎣ M̃1,2[i]

M̃2,1[i]

⎤⎦ ˆ︁x1,l[i]|Γ2 . (5.13)

3. For k = 1, 2 and l = s̄k−1 + 1, . . . , s̄k−1 + sk, compute the predicted state estimates

x1,l+1[i] ∈ Rn1 and x2,l+1[i] ∈ Rn2 for i = 1, 2, as follows:

x1,l+1[i] =M1[i]ˆ︁x[i]∆k−1

l |I1 + b̄[i]l|I1 + b1,l

x2,l+1[i] =M2[i]ˆ︁x[i]∆k−1
s̄k |I2 + b̄[i]|I2 + b2,l

, (5.14)

with

b̄[i]l =

⎧⎨⎩ b[1]l in (A.24) if i = 1

b̃[2]l in (A.26) if i = 2
. (5.15)

4. For k = 1, 2 and l = s̄k−1, . . . , s̄k−1 + sk − 1, compute DD-KF estimates as in (3.187)

on ∆k i.e. ˆ︁x∆k
1,l+1[i] ≡ ˆ︁x[i]1,l+1 ∈ Rn1 and ˆ︁x∆k

2,l+1[i] ≡ ˆ︁x[i]2,l+1 ∈ Rn2 . In particular, in the

time interval ∆k, by considering the boundary conditions in (A.13), DD-KF estimates on

Ω1 and Ω2 are

ˆ︁xΩ1×∆k
l+1 [i] :=

⎡⎢⎢⎢⎣
x(tl+1, 0)[i]ˆ︁x∆k
1,l+1[i]ˆ︁x∆k
2,l+1[i](1)

⎤⎥⎥⎥⎦ ∈ Rn1+1

ˆ︁xΩ2×∆k
l+1 [i] :=

⎡⎢⎢⎢⎣
ˆ︁x∆k
1,l+1[i](n1 − δ/2)ˆ︁x∆k
2,l+1[i]

x(tl+1, xnx−1)[i]

⎤⎥⎥⎥⎦ ∈ Rn2+1

(5.16)

where ˆ︁x∆k
r,l+1[i](1), ˆ︁x∆k

r,k+1[i](n1−δ/2) are the first and the n1−δ/2 components of ˆ︁x∆k
r,l+1[i],

r = 1, 2. We refer to

ˆ︁xl+1[i]
Ω×∆k :=

⎡⎢⎢⎢⎣
ˆ︁xΩ1×∆k
l+1 [i]ˆ︁xΩ1,2×∆k

l+1 [i]ˆ︁xΩ2×∆k
l+1 [i]

⎤⎥⎥⎥⎦ ∈ Rnx (5.17)

CHAPTER 5. VALIDATION ANALYSIS 126

as the estimate of the wave height and velocity (if i = 1, 2 respectively) obtained by

applied the DD-KF method on Ω, where on the spatial overlap Ω1,2, we have considered

the arithmetic mean between DD-KF estimates i.e.

ˆ︁xΩ1,2×∆k

l+1 [i] :=
[︂ ˆ︁xΩ1×∆k

l+1 [i]|I1,2+ˆ︁xΩ2×∆k
l+1 [i]|I1,2

2

]︂
(5.18)

with I1,2 the index set defined in (3.154).

Reliability Metrics. For k = 1, 2 and l = s̄k−1+1, . . . , s̄k−1+sk and fixed the size of temporal

overlap s1,2 = 1, we compute ˆ︁xl[1], i.e. KF estimate of the wave height h on Ω. In order to

quantify the difference between KF estimate and DD-KF estimates on ∆ w.r.t. parameter δ, we

introduce the following measure:

errorΩ×∆
δ := max(errorΩ×∆1

δ , errorΩ×∆2
δ)

where

errorΩ×∆k
δ = max

l=s̄k−1+1,...,s̄k−1+sk
(||ˆ︁xl[1]− ˆ︁xl[1]Ω×∆k ||)

where s ∈ N is the size of the spatial overlap.

In the same way, we fix δ and compute the error between KF estimate and DD-KF estimates on

∆ w.r.t. parameter s1,2:

errorΩ×∆k
s1,2

:= max
l=s̄k−1+1,...,s̄k−1+sk

(||ˆ︁xl[1]− ˆ︁xl[1]Ω×∆k ||)

with k = 1, 2, while s1,2 ∈ N is the size of the overlap in time domain.

Reliability of DD-KF estimates w.r.t. DA is measured in terms of the Root Mean Square Error

(RMSE) for l = 0, 1, . . . , nt− 1, which is computed as

RMSEΩ1∪Ω2
l =

√︃∑︁Np
i=1(xl[1](i)−ˆ︁xΩ×∆

l [1](i))2

Np

RMSEΩ
l =

√︂∑︁Np

i=1
(xl[1](i)−ˆ︁xl[1](i))2

Np
.

(5.19)

CHAPTER 5. VALIDATION ANALYSIS 127

Figure 5.6 shows errorΩ×∆
δ versus δ, obtained within the machine precision (10−15). Also,

error
Ω×∆j
s1,2 where s1,2 = 200 is again obtained within the maximum attainable accuracy in dou-

ble precision (i.e. in our case, 10−15), with k = 1, 2 as shown in Figure 5.7. As expected, the

accuracy does not depend on the size of the overlap because, DD-KF is a direct method using

estimates provided by KF as initial and boundary values of the local dynamic model. In partic-

ular, in 5.7 (b) when the size of temporal overlap reaches 50 we observe a relative increment of

the error of one unit, very significant with respect to the overall magnitude of the error. This

effect is due to the increasing impact of round off errors on the accuracy of the solution. As

expected, in a DD method, the extra work performed on the overlapped region with an increas-

ing size can be seen as the effect of a preconditioner on overlapping region [23]. These results

prove the reliability of DD-KF method w.r.t. KF.

Figure 5.8 shows that the RMSEΩ1∪Ω2
l and RMSEΩ

l decrease, in particular as we expected,

RMSEΩ1∪Ω2
l and RMSEΩ

l coincide during the whole assimilation window.

Finally, a qualitative analysis of DD-KF estimate ˆ︁xl+1[1]
Ω×∆k at time t25 ∈ ∆1 and t53 ∈ ∆2,

i.e. for l + 1 = 25, 53 and k = 1, 2, respectively is shown in Figure 5.9. In Figure 5.9 (a),

we note that ˆ︁x25[1]Ω×∆1 moves from the trajectory of the model state x[1]25 to DD-KF estimate

position closer to the observation. At the second observation there is a significantly smaller

alteration of the trajectory towards the observation. At the fifth observation, it is very close to

the observation so we would not expect much effect from the assimilation of this observation.

As the model evolves in time it is clear to see that observations have a diminishing effect on

the correction of the forecast state estimate, as we can note in Figure 5.9 (b). In particular, for

different choices of σ2
m and σ2

0 (model and observation error variances), trajectory of DD-KF

estimates ˆ︁xl+1[1]
Ω×∆k changes, for k = 1, 2. Figure 5.10 (a) shows that for σ2

m = 0, DD-KF

method gives full confidence to the model, indeed, trajectory of ˆ︁x25[1]Ω×∆1 coincides with the

model state x[1]25, otherwise considering σ2
0 = 10−5, DD-KF method gives more confidence to

CHAPTER 5. VALIDATION ANALYSIS 128

observations, as shown in Figure 5.10 (b).

Finally, in order to point out the capability of DD-KF to deal with the presence of different ob-

servation errors, in Figures 5.11 and 5.12 we reports results obtained considering two different

values of observations errors in Ω1 and Ω2, i.e. vl = [v1l v
2
l], respectively; in particular, in Figure

5.11 we set v1l = 10−15 × v̄1l in Ω1 and v2l = 2v̄2l in Ω2; in Figure 5.12 we set v1l = v̄1l in

Ω1 and v2l = 10−15 × v̄2l in Ω2, where v̄1l and v̄2l are random vectors drawn from the standard

normal distribution and l = 10. Results shown in Figure 5.11 confirm the effect of the variance

observations σ2
2,0 = 4.28 × 100 on DD-KF estimate ˆ︁x[1]Ω×∆ in Ω2 ; similarly, it occurs in Ω1

when σ2
1,0 = 1.04× 100, as results in Figure 5.12 show.

Figure 5.6: Graph of errorΩ×∆
δ versus the spatial overlap δ while temporal overlap is fixed to

s1,2 = 1.

CHAPTER 5. VALIDATION ANALYSIS 129

(a) Behaviour of errorΩ×∆1
s1,2 versus the size of temporal overlap s1,2.

(b) Behaviour of errorΩ×∆2
s1,2 versus the size of temporal overlap s1,2.

Figure 5.7: Behaviour of errorΩ×∆1
s1,2 and errorΩ×∆2

s1,2 versus the size of temporal overlap s1,2 while

the size of spatial overlap is s = 200.

CHAPTER 5. VALIDATION ANALYSIS 130

Figure 5.8: Behaviour of RMSEΩ1∪Ω2
l and RMSEΩ

l versus time.

5.3 DD–4DVAR applied to SWEs problem

We perform validation analysis of the proposed approach considering the initial boundary prob-

lem of the SWEs defined in Section A.2 by considering the inter-node DD configuration on

computing environment no.1. The discrete model is obtained using Lax–Wendroff scheme [81].

We underline that results we present are concerned not so much with parallel efficiency as with

the trustworthy and usability of the proposed approach to solve this problem.

4DVAR DA set up. We consider the following experimental set up:

• Ω = (0, 1) ⊂ R: spatial domain;

• ∆0 = [0, 1.5] ⊂ R: time interval;

• pv = 2: number of physical variables;

• Np = 200 and bc = 2: numbers of elements of Ω and ∂Ω, respectively;

• nx := Np + bc = 202 and N = 22: numbers of elements of Ω̄ and ∆, respectively;

CHAPTER 5. VALIDATION ANALYSIS 131

(a) SWEs solution x[1]25 ∈ Rnx and the DD-KF estimateˆ︁xΩ×∆1
25 [1] ∈ Rnx at t25 on Ω.

(b) SWEs solution x[1]53 ∈ Rnx (model estimate) and DD-KF esti-

mate ˆ︁xΩ×∆2
53 [1] ∈ Rnx at t53 on Ω.

Figure 5.9: SWEs solution and its DD-KF estimate.

CHAPTER 5. VALIDATION ANALYSIS 132

• ∆x = 1
200

and ∆t: step size of Ω and ∆, respectively, where ∆t varies to satisfy the

stability condition in (A.27) of the Lax-Wendroff method;

• ΩI = {xi}i=0,...,Np−1: discretization of Ω where xi = i ·∆x;

• ∆K = {tk}k=0,...,N−1: discretization of ∆ where tk = tk−1 +∆t;

• nobs = 2: number of observations considered at each step l = 0, 1, . . . , N ;

• y ∈ RN ·nobs: observations vector at each step l = 0, 1, . . . , N ;

• Hl ∈ Rnobs×Np: piecewise linear interpolation operator whose coefficients are computed

using the nodes of model domain nearest to the observation values;

• G ∈ RN ·nobs×Np: obtained as in (2.8) from the matrix Hl, l = 0, 1, . . . , N ;

• σ2
m = 0.5, σ2

0 = 0.5: model and the observational error variances;

• B ≡ Bl = σ2
m ·C: covariance matrix of the error of the model at each step l = 0, 1, . . . , N ,

where C ∈ RNp×Np denotes the Gaussian correlation structure of the model errors in

(5.3);

• Rl = σ2
0 · Inobs,nobs

∈ Rnobs×nobs: covariance matrix of the errors of the observations at

each step l = 0, 1, . . . , N − 1.

• R := diag(R0, . . . , RN−1) ∈ RN ·nobs×N ·nobs: a diagonal matrix obtained from the matri-

ces Rl, l = 0, 1, . . . , N − 1.

DD–4DVAR set up: we consider the following set up:

• Nt = 2: number of instants of time subdomains;

• ad1 = ad2 = 1: number of subdomains adjacent to Ω1 and Ω2, respectively;

CHAPTER 5. VALIDATION ANALYSIS 133

• δ = 2: the number of inner nodes in overlap regions;

• for k = 1, . . . , N − 1, sk−1,k = 1: number of instants of time in temporal overlap;

• Nloc = Np/2 + δ/2: number of nodes in the interior of subdomains;

• nobs1 = nobs2 = 1;

• N1 = 11 and N2 = 12: number of instants of time tl in time subdomains;

• C := {ci,j}i,j=1,...,Np ∈ RNp×Np: the Gaussian correlation structure of the model error

where

ci,j = ρ|i−j|2 , ρ = exp

(︃
−∆x2

2

)︃
, |i− j| < Np/2 for i, j = 1, . . . , Np . (5.20)

1. Space-Time Decomposition Step.

• Decomposition of Ω into two subdomains with overlap region:

Ω1 = [0, xn1+1]

Ω2 = [xn1 , 1]
(5.21)

where n1 is the numebr of inner nodes in Ω1.

• Decomposition of ∆ into two subsets with overlap region:

∆1 = [0, tN1−1]

∆2 = [tN1−1, 1.5].
(5.22)

where N1 is the number of instants of time in ∆1.

2. Model reduction of SWEs.
Decomposition of matrices M [1]l+1 ∈ RNp×Np , for l = 0, 1, . . . , N − 2 defined in (A.20)

M [1]1l,l+1 :=M [1]l,l+1/Ω1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψl
1 ηl2

−ηl1 ψl
2 ηl3

.

−ηlNp1−2 ψl
Np1−1 ηlNp1

−ηlNp1−1 ψl
Np1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ RNp1×Np1 (5.23)

CHAPTER 5. VALIDATION ANALYSIS 134

M [1]1,2l,l+1 :=M [1]l,l+1/Ω1 × Ω2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0

0 0 · · · 0
...

...

ηlNp1+1 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ RNp1×Np2 (5.24)

M [1]2,3l,l+1 :=M [1]l,l+1/Ω2 × Ω1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 0 ηln1

0 · · · 0 · · · 0
...

...

0 · · · 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ RNp2

×Np1 (5.25)

M [1]2l,l+1 :=M [1]l,l+1/Ω2 × Ω2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψl
Np1+1 ηlNp1+2

−ηlNp1+1 ψl
Np1+2 ηlNp1+2

.

−ηlNp−2 ψl
Np−1 ηlNp

−ηlNp−1 ψl
Np

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ RNp2×Np2 .

(5.26)

We proceed in the same way to get the decomposition of M [2]l,l+1 ∈ RNp×Np in (A.25)

into M [2]1l,l+1 ∈ RNp1×Np1 , M [2]1,2l,l+1 ∈ RNp1×Np2 , M [2]2,3l,l+1 ∈ RNp2×Np1 and M [2]2l,l+1 ∈

RNp2×Np2 .

3. Decomposition of matrices:

• G ∈ R(N ·nobs)×(Np·N) into Gk
i ∈ Rs̄k·nobsi

×Npi , i = 1, 2;

• B = VVT ∈ RNp×Np into Bi = ViVT
i ,Bi,j = B/Γi,j ∈ RNpi×Npi , i, j = 1, 2;

• R ∈ RN ·nobs×N ·nobs into Ri,k ∈ Rs̄k·nobsi
×s̄k·nobsi , i = 1, 2.

DD procedure for solving 4DVAR DA problem for SWEs :

let un
i,0 ≡ u0/Ωi, i.e. uni,0[j] ≡ u0[j]/Ωi, j = 1, 2; computation proceeds on each subdomain in

CHAPTER 5. VALIDATION ANALYSIS 135

space and time, i.e. on Ωi × ∆k, along the assimilation window, i.e. for k = 1, . . . , Nt, in the

following way:

1. defines the reduced models

Mi,k[ĵ] :=M [ĵ]is̄k−1,s̄k
Mk

i [ĵ]
i,i+1 :=M [ĵ]i,i+1

s̄k−1,s̄k .

2. sends and receives boundary conditions from adjacent domains and computes the vectors

b[ĵ]ni,k :=Mi,k[ĵ]
i,i+1unij ,k−1 + b[ĵ]/Ωi ij = 1, 2 : −1, j = 1

3. computes reduced models

u
Mi,k,n+1

i,k [ĵ] =Mi,k[ĵ]u
n+1
i,k−1[ĵ] + b[ĵ]ni,k.

4. computes DA solution wn
i,k[ĵ] by solving systems in (3.39).

(4.1) iterative update of r.h.s of (3.41) for r = 0, 1, . . . , r̄ by sending/receiving wr,n
ij ,k

[ĵ]

and computation of wr+1,n
i,k [ĵ] by solving the system in (3.41) by CG method;

5. updates the solution

un+1
i,k+1[ĵ] = u

Mi,k+1,n+1

i,k+1 [ĵ] +Viw
n
i,k[ĵ].

The algorithm is made of two nested loops: the outer loop over index n, defines approximations

of local model, while the inner loop over index r solve each local 4DVAR DA problems. Step

5 updates the local solution according to the PinT methodology. Final solution is obtained by

gathering local solutions

u[ĵ] := {uk[ĵ]}k=1,...,Nt , (5.27)

where

uk+1[ĵ] := [un̄i,k+1[ĵ]]
′ (5.28)

CHAPTER 5. VALIDATION ANALYSIS 136

and n̄ is the iterations number needed to stop DD algorithm.

Validation results. Figures 5.13-5.14 show u[1], numerical value of h, the SWEs solution on

Ωi ×∆k, with i, k = 1, 2.

• Metrics.

In order to show the convergence behaviour of the algorithm we quantify the error be-

tween two successive approximations using the following metrics:

Er,Ωi×∆k = ∥w[1]r+1
i,k − w[1]ri,k∥,

En,Ωi×∆k = ∥u[1]n+1
i,k − u[1]

n
i,k∥,

estimating the accuracy on the computed solution with respect to r-iterations and with

respect to n-iterations. Then, we define the following quantity

Er,Ωi×∆ = {Er,Ωi×∆k}k=1,...,Nt

accounting for the behavior ofEr+1,Ωi×∆k on the whole time interval ∆, for k = 1, . . . , Nt.

Moreover, as ASM convergence in space demonstrated for 3D problems in [32] also holds

for DD in space of 4DVAR DA problems, in order to show the reliability of the DD in

time, we compute

˜︁uDD−DA
k [1] := {uASM

l [1]}tl∈∆k
= {uASM

i,l [1]}i=1,...,Nsub,l=s̄k−1,...,s̄k+Nk

i.e. the restriction to ∆k of the solution of the 4DVAR DA problem in (A.18) obtained

applying ASM. Then, we show the behaviour of

En
k = ∥˜︁uDD−DA

k [1]− unk [1]∥, k = 1, .., Nt,

where unk [1] := [uni,k[1]]
′.

CHAPTER 5. VALIDATION ANALYSIS 137

• Validation analysis.

Figure 5.15 shows convergence behaviour of the inner loop, i.e. the behaviour ofEr+1,Ω1×∆

and Er+1,Ω2×∆ versus iteration number. Note that in about four steps ASM reaches the

input required tolerance (tol = 10−4).

In Figures 5.16- 5.17 we show convergence history of the outer loop, i.e. the DD in space.

We see that En,Ωi×∆k rapidly decreases, and in about five steps it settle on 10−15, which is

the maximum attainable accuracy in double precision. Considering that the values of u[1]

are in the range [-1,1]. Concerning the trustworthy of the DD in time, finally, in Figure

5.18 the behaviour of En
1 and En

2 versus iteration number is shown. Note that after about

four iterations errors reach the order of 10−13 (resp. 10−14) and the maximum attainable

accuracy in double precision after 13 (resp. 21) iterations.

Time (measured in seconds) needed to compute u[1], which is the solution on Ω × ∆ in

(5.27) when Np = 200, N = 101 is

T (Np, N) = 4.22 secs

while T (nloc, N1) = T (nloc, N1) = 0.71 secs

Results validate the trustworthiness of the proposed algorithm.

5.3.1 Performance analysis and scalability prediction

In this section we discuss the impact of the space and time decomposition approach described

in Section 6 on the performance of the algorithm. Performance metrics are the time complexity

and scalability. As we intend to mainly focus on the benefits arising from using domain decom-

position approaches in data assimilation algorithms we consider the so called scale-up factor

introduced firstly in [30]. Our aim is to highlight the benefits arising from using the space and

CHAPTER 5. VALIDATION ANALYSIS 138

time decomposition approach instead of solving the problem on the whole domain. As we shall

discuss later, the performance gain that we get from using the space and time decomposition

approach is two fold:

1. Instead of solving one larger problem we can solve several smaller problems which are

better conditioned than the former problem. This result leads to a reduction of each local

time complexity.

2. Subproblems reproduce the whole problem at smaller dimensions and they are solved in

parallel. This result leads to a reduction of software execution time.

In our discussion we assume the following set–up

Definition 16. Let

nproc := q × p

be an uniform bi–directional decomposition of domain Ω×∆. Then if

size(Ω×∆) = Np ×N,

denotes the size of the whole domain, then

size(Ωi ×∆k) = Dt ×Ds, j = 1, . . . , q; i = 1, . . . , p

where Ds =
Np

q
≥ 1, and Dt =

Nt

p
≥ 1.

We let

Ntot := Np ×N ; Nloc := Ds ×Dt .

Furthermore, we let mji and lji be the number of steps of the outer/inner-loop, of local algo-

rithm, respectively. Then, let

P (Nloc) = adN
d
loc + ad−1N

d−1
loc + . . .+ a0, ad ̸= 0

CHAPTER 5. VALIDATION ANALYSIS 139

be the polynomial expressing the complexity of most time–consuming operation of local algo-

rithm.

Let

mmax := max
ji

mji; lmax := max
ji

lji.

Observe that mmax and lmax actually are the number of steps of the outer and inner loops of

the whole parallel algorithm. Let mG and lG denote the number of iterations of inner and outer

loop of serial algorithm, we let

ρG := mG × lG ; ρji := mji × lji ; ρDD := mmax × lmax

Following result straightforwardly derives from the definition of the scale-up factor and gives

an asymptotic estimate of the algorithm’s scalability [30, 39]:

Theorem 9 (Scale up factor). if T [AG] denote the computational time of serial algorithm and

T [Aloc] the computational time of the local algorithm, we define

Scnproc :=
1

nproc

× T (AG)

T (Aloc)
,

be the (relative) scale-up factor measuring the performance gain with respect to the serial

algorithm. It is:

Scnproc ≥
ρG

ρDD
α(Nloc, nproc) (nproc)

d−1 (5.29)

where

α(Nloc, nproc) =
ad + ad−1

1
Nloc

+ . . .+ a0
Nd

loc

ad + ad−1
nproc

Nloc
+ . . .+ a0(nproc)d

Nd
loc

,

and, if Nloc = Nproc

lim
nproc→Nloc

α(Nloc, nproc) = β ∈]0, 1]

.

CHAPTER 5. VALIDATION ANALYSIS 140

Furthermore, it holds that

lim
nproc→Nloc

α(Nloc, nproc) = 1

Finally, if nproc is fixed

lim
Nloc→∞

α(Nloc, nproc) = 1.

♠

If Nloc is fixed, it is

lim
nproc→Nloc

Sc1,nproc = β ·Nd−1
loc ;

while, if nproc is fixed

lim
Nloc→∞

Sc1,nproc = const ̸= 0 .

From (5.29) it results that, the growth of the scale up factor of DD algorithm is essentially one

order less than the time complexity of the serial algorithm.

In particular, in our set–up, we get that performance gain of DD algorithm is

Sc1,nproc =
1

4
× 4.22

0.71
= 1.5

Besides the time complexity, scalability is also affected by the communication overhead of the

parallel algorithm. The surface-to-volume ratio is a measure of the amount of data exchange

(proportional to surface area of domain) per unit operation (proportional to volume of domain).

This means that, in order provide the best mapping on the given parallel architecture, it needs

to find the appropriate value of the number of subdomains giving the right trade off between the

scale up and the overhead of the algorithm. This analysis will be provided on the forthcoming

parallel software.

CHAPTER 5. VALIDATION ANALYSIS 141

5.3.2 The role of the overlapping region

We analyse the role of the overlapping region in DD–4DVAR method in chapter (3.3). We

perform DD–4DVAR algorithm on computing environment no.2 by using Parallel Computing

Toolbox of MATLABR2013a. MATLAB does not support multi–level parallelism with the

Parallel Computing Toolbox, consequently, we only run in parallel local problems defined on

{Ω1 ×∆k}k=1,...,Nt, . . ., {Ωnsub ×∆k}k=1,...,Nt.

We consider the following experimental set up.

4DVAR DA set up.

• Ω = (0, 1) ⊂ R: spatial domain;

• ∆ = [0, 1.5] ⊂ R: time interval;

• Np: numbers of inner nodes of Ω defined in (2.4);

• N = 9: numbers of time in ∆;

• nobs = 64: number of observations considered at each step l = 0, 1, . . . , N ;

• y ∈ RN ·nobs: observations vector at each step l = 0, 1, . . . , N ;

• Hl ∈ Rnobs×Np: piecewise linear interpolation operator whose coefficients are computed

using the nodes of model domain nearest to the observation values;

• G ∈ RN ·nobs×Np: obtained as in (2.8) from the matrix Hl, l = 0, 1, . . . , N ;

• σ2
m = 0.5, σ2

0 = 0.5: model and the observational error variances;

• B ≡ Bl = σ2
m ·C: covariance matrix of the error of the model at each step l = 0, 1, . . . , N ,

where C ∈ RNp×Np denotes the Gaussian correlation structure of the model errors in

(5.20);

CHAPTER 5. VALIDATION ANALYSIS 142

• Rl = σ2
0 · Inobs,nobs

∈ Rnobs×nobs: covariance matrix of the errors of the observations at

each step l = 0, 1, . . . , N − 1.

• R ∈ RN ·nobs×N ·nobs: a diagonal matrix obtained from the matricesRl, l = 0, 1, . . . , N−1.

DD–4DVAR set up: we consider the following set up:

• p: number of cores;

• Nsub ≡ p: number of spatial subdomains;

• Nt = 2: number of instants of time intervals;

• n1 = nnsub = 1 and n2 = n3 = . . . = nnsub−1 = 2: number of subdomains adjacent to

Ω1, Ωnsub and Ω2, Ω3, . . . ,Ωnsub−1, respectively;

• δ: number of inner nodes of overlap regions defined in (3.8);

• Nloc: inner nodes of subdomains defined in (3.10);

• C := {ci,j}i,j=1,...,Np ∈ RNp×Np: the Gaussian correlation structure of the model error

where

ci,j = ρ|i−j|2 , ρ = exp

(︃
−∆x2

2

)︃
, |i− j| < Np/2 for i, j = 1, . . . , Np .

• T 1 (Np, N): denoting sequential time (in seconds) to perform DD–4DVAR on Nsub = 1

domain;

• T p (Nloc, N): denoting time (in seconds) needed to perform in parallel DD–4DVAR on

Nsub subdomain;

• Sp (Nloc, N) := T 1(Np,N)

T p(Nloc,N)
: is the speed-up of DD–4DVAR parallel algorithm;

• Ep (Nloc, N) := Sp(Nloc,N)
p

: is the efficiency of DD–4DVAR parallel algorithm.

CHAPTER 5. VALIDATION ANALYSIS 143

We introduce

ep = ep(δ,∆x,∆t, Nsub, Nt) := ∥uDA − ũDD−DA∥2, (5.30)

where uDA denotes the minimum of the 4DVAR (global) functional J in (2.10) while ũDA is

obtained by gathering minimum of the local 4DVAR functionals Ji,k in (3.36) by considering

different values of inner nodes of overlap regions δ defined in (3.8) and p ≡ Nsub. uDA ∈

RNp×N is computed by running DD–4DVar algorithm for Nsub = 1, while ũDA ∈ RNp×N is

computed by gathering local solutions obtained by running DD–4DVAR algorithm for different

values of Nsub > 1 with δ ≥ 0, as shown in Figure (5.19).

In the following experimental results we analyse three aspects of DD–4DVAR algorithm:

1. The impact of δ defined in (3.8) to DD–4DVAR accuracy.

In Table 5.7, fixed ∆x = 1.56 × 10−3 and ∆t = 2.19 × 10−2, we report values of error

ep defined in (5.30) for different values of δ. For Nsub = 2, 4, 8, 16, 32, 64, the order

of magnitude in case δ = 2 × 100 is less than or equal to order of magnitude in cases

δ = 1 × 100, 2 × 101, 1 × 102, 2 × 102, 4 × 102, 6.4 × 102. In particular, as δ increases,

Nsub decreases consequently, DD–4DVAR accuracy improved. The experimental results

indicate that δ = 2 is the optimal number of inner nodes in overlap regions.

2. Strong scaling of DD–4DVAR method.

In Tables 5.8, 5.9, 5.10 and 5.11 we fixed the value of δ = 2 and analyze the efficiency

of DD–4DVAR algorithm. In Tables 5.8, 5.9 and 5.10 we note that efficiency strongly

decreases for Nsub = 16, Nsub = 32 and Nsub = 64, respectively (see Figures 5.20, 5.21

and 5.22). For this reason we increase the value Np defined in (2.4) and report the values

in Tables 5.9, 5.10 and 5.11, respectively.

CHAPTER 5. VALIDATION ANALYSIS 144

3. Isoefficiency of DD–4DVAR method.

In Table 5.12, we report the values of efficiency such that it is constant (isoefficiency)

by increasing the value of Np for each value of Nsub. For different values of Nsub, the

number of inner nodes Np in Ω has to increases at different rates in order to maintain a

constant efficiency as number of subdomains increases. Figure 5.23 shows curve best fit

data (Nsub, Np) reported in Table 5.12. The equation of curve is

Np = a · p2 + b · p+ c (5.31)

where

a = −9.68× 10−2, b = 1.24× 101, c = 6.25× 102

The function in (5.31) dictates how Np must grow to maintain a fixed efficiency as Nsub

increases. From the equations in (5.31), we can infer that the the number of inner nodes

Np of Ω needs to increase with the number of subdomains Nsub, i.e. the number of

processes p ≡ Nsub, at an overall rate of O(p2) to maintain a fixed efficiency.

Table 5.7: Fixed ∆x = 1.56× 10−3 and ∆t = 2.19× 10−2 spatial and temporal step sizes of Mi,k

defined in (3.32), we report the values of Nsub, which is the number of subdomains, Np number of

inner nodes of Ω, Nloc number of inner nodes in each subdomains, ep error defined in (5.30) and δ

number of inner nodes in overlap regions, respectively.

Nsub = 1 Np = 640 e1 = 0

Nsub Nloc δ ep

2 320 0 6.16× 10−4

2 321 2 4.69× 10−4

2 325 10 4.50× 10−4

CHAPTER 5. VALIDATION ANALYSIS 145

2 330 20 4.71× 10−4

2 370 100 3.72× 10−4

2 420 200 3.60× 10−4

2 520 400 2.91× 10−4

1 640 640 0

4 160 0 1.14× 10−3

4 161 2 5.40× 10−4

4 165 10 5.68× 10−2

4 170 20 4.59× 10−3

4 210 100 4.30× 10−3

4 260 200 8.43× 10−3

2 360 400 3.93× 10−4

2 480 640 3.11× 10−4

8 80 0 3.05× 10−3

8 81 2 7.14× 10−4

8 85 10 8.79× 10−2

8 90 20 1.32× 10−2

8 130 100 1.55× 10−2

8 180 200 4.85× 10−3

4 280 400 8.07× 10−3

2 400 640 3.82× 10−4

16 40 0 4.90× 10−3

16 41 2 8.53× 10−4

16 45 10 8.98× 10−2

16 50 20 2.18× 10−2

CHAPTER 5. VALIDATION ANALYSIS 146

8 90 100 1.34× 10−2

8 140 200 4.18× 10−2

4 240 400 9.19× 10−3

2 360 640 3.85× 10−4

32 20 0 1.13× 10−2

32 21 2 4.40× 10−3

32 25 10 5.07× 10−2

32 30 20 2.36× 10−2

16 70 100 3.59× 10−2

8 120 200 1.53× 10−2

4 220 400 4.05× 10−3

2 340 640 3.94× 10−4

64 10 0 1.11× 10−2

64 11 2 9.41× 10−3

64 15 10 2.42× 10−2

32 20 20 2.36× 10−2

16 60 100 2.18× 10−2

8 110 200 1.43× 10−2

4 210 400 4.23× 10−3

2 330 640 4.69× 10−4

Remark 10. The majority of parallelization techniques first decompose domain in nonoverlap-

ping subdomains then extend each subdomain with halo regions to enable stencil operations in

a parallel context 2. Instead, DD–4DVAR algorithm is based on overlapping DD allowing us

2Parallelization technique applied to Regional Ocean Modeling System (ROMS) [62] and Nucleus for European

CHAPTER 5. VALIDATION ANALYSIS 147

Table 5.8: DD–4DVAR performance results at Np = 640 and δ = 2. We report values of Nsub,

which is the number of subdomains, Np number of inner nodes of Ω, Nloc number of inner nodes

in each subdomains, T 1(Np, N) sequential time (in seconds) to perform DD–4DVAR on Nsub = 1

domain, T p(Nloc, N) time (in seconds) needed to perform in parallel DD–4DVAR on Nsub sub-

domain, Sp(Nloc, N) and Ep(Nloc, N) the speed-up and efficiency of DD-KF parallel algorithm,

respectively.

nsub = 1 Np = 640 T 1(Np, N) = 6.04× 100

nsub Nloc T p(Nloc, N) Sp(Nloc, N) Ep(Nloc, N)

2 321 4.14× 100 1.47× 100 7.29× 10−1

4 161 1.55× 100 3.91× 100 9.76× 10−1

8 81 1.44× 100 4.20× 100 5.25× 10−1

16 41 1.52× 100 3.90× 100 2.44× 10−1

Table 5.9: DD–4DVAR performance results at Np = 832 and δ = 2. We report values of Nsub,

which is the number of subdomains, Np number of inner nodes of Ω, Nloc number of inner nodes in

each subdomains, T 1(Np, N) sequential time (in seconds) to perform DD–4DVAR on p ≡ Nsub = 1

domain, T p(Nloc, N) time (in seconds) needed to perform in parallel DD–4DVAR on p ≡ Nsub

subdomain, Sp(Nloc, N) andEp(Nloc, N) the speed-up and efficiency of DD-KF parallel algorithm,

respectively.

nsub = 1 Np = 832 T 1(Np, N) = 2.97× 101

nsub Nloc T p(Nloc, N) Sp(Nloc, N) Ep(Nloc, N)

16 53 1.95× 100 1.52× 101 9.47× 10−1

32 27 1.93× 100 1.58× 101 4.93× 10−1

64 14 2.75× 100 1.12× 101 1.74× 10−1

CHAPTER 5. VALIDATION ANALYSIS 148

Table 5.10: DD–4DVAR performance results at Np = 896 and δ = 2. We report values of Nsub,

which is the number of subdomains, Np number of inner nodes of Ω, Nloc number of inner nodes

in each subdomains, T 1(Np, N) sequential time (in seconds) to perform DD–4DVAR on Nsub = 1

domain, T p(Nloc, N) time (in seconds) needed to perform in parallel DD–4DVAR on p ≡ Nsub

subdomain, Sp(Nloc, N) andEp(Nloc, N) the speed-up and efficiency of DD-KF parallel algorithm,

respectively.

nsub = 1 Np = 896 T 1(Np, N) = 5.90× 101

nsub Nloc T p(Nloc, N) Sp(Nloc, N) Ep(Nloc, N)

32 29 1.89× 100 3.13× 101 9.73× 10−1

64 15 3.11× 100 1.89× 101 2.95× 10−1

Table 5.11: DD–4DVAR performance results at Np = 1024 and δ = 2. We report values of Nsub,

which is the number of subdomains, Np number of inner nodes of Ω, Nloc number of inner nodes

in each subdomains, T 1(Np, N) sequential time (in seconds) to perform DD–4DVAR on Nsub = 1

domain, T p(Nloc, N) time (in seconds) needed to perform in parallel DD–4DVAR on p ≡ Nsub

subdomain, Sp(Nloc, N) andEp(Nloc, N) the speed-up and efficiency of DD-KF parallel algorithm,

respectively.

nsub = 1 Np = 1024 T 1(Np, N) = 1.59× 102

nsub Nloc T p(Nloc, N) Sp(Nloc, N) Ep(Nloc, N)

64 17 2.70× 100 5.89× 101 9.21× 10−1

CHAPTER 5. VALIDATION ANALYSIS 149

Table 5.12: DD–4DVAR isoefficiency: Fixed δ = 2, values of efficiency for different values of

number of inner nodes Np in Ω and number of subdomains Nsub.

Nsub Np Ep(Nloc, N)

2 640 7.29× 10−1

4 660 9.44× 10−1

8 728 6.03× 10−1

16 832 9.47× 10−1

32 896 9.73× 10−1

64 1024 9.21× 10−1

to minimize the communications among subdomains adjacent to only nodes in interfaces Γij

defined in (3.4) ∀i = 1, . . . Nsub and j ∈ Ji where Ji is set of indices of adjacent subdomains to

Ωi. In particular, if width of halo regions are equal to one grids nodes wide, the halo nodes are

actually the nodes of Γij , ∀i = 1, . . . Nsub and j ∈ Ji (see Figure 5.24). Otherwise halo regions

contain more nodes than interfaces nodes and this means more communications among adja-

cent subdomains. Hence, DD–4DVAR algorithm reduces communications times and increases

memory overhead due to increase of number of inner nodes Nloc in (3.10) which depends on

number of inner nodes in overlap regions δ in (3.8). We analyse the accuracy and efficiency of

DD–4DVAR algorithm for different choices of δ and we prove that optimal value of number of

inner nodes is δ = 2, in order that it is the number of nodes required to discretization scheme

(i.e. Lax- Wendroff scheme [81]).

Modelling of the Ocean (NEMO) [22, 52] needed respectively a halo of width two (or three for advection scheme)

and one grid nodes.

CHAPTER 5. VALIDATION ANALYSIS 150

5.3.3 Sensitivity Analysis: consistency and stability

We refer to 4DVAR and DD–4DVAR set in section 5.3.2. In the following, we present exper-

imental results of the consistency and stability of DD–4DVAR method considering the initial

boundary problem of the SWEs 1D. The discrete model is obtained using Lax–Wendroff scheme

[81] on Ω×∆ where the orders of convergence in space and time are p = q = 2.

• Consistency of DD–4DVAR method.

From Table 1.1, we could assume that3

ep
(︃
∆x

d
,
∆t

d

)︃
≈ ep(∆x,∆t)

d2
d = 1, 2, 4, 6, 8, 10. (5.32)

As shown in Table 5.13 and Figure 5.25, the experimental order of consistency corre-

sponds to the theoretical one obtained in Theorem 3.

• Stability of DD–4DVAR method.

In Table 5.13 and Figure 5.26, we report values of Ēk for different values of perturba-

tion ēk on initial condition of PMi,k

i,k defined in (3.31). From the values in Table 5.13, we

experimentally estimate Ck in (3.110), in particular

Ck ≈ 2.00× 101 ∀k = 1, . . . , Nt.

Consequently, DD–4DVAR with the initial boundary problem of SWEs 1D is well-conditioned.

3By fixing the values of Nsub = Nt = 4 and δ = 2, we get ep(2,∆x,∆t, 4, 4) = ep(∆x,∆t) i.e. ep depends

only on ∆x and ∆t.

CHAPTER 5. VALIDATION ANALYSIS 151

d ∆x
d

∆t
d

ep
(︁
∆x
d
, ∆t

d

)︁ ep(∆x,∆t)
d2

1 7.87××10−3 1.09× 10−1 1.53× 10−2 1.53× 10−2

2 3.92××10−3 5.47× 10−2 9.01× 10−4 3.83× 10−3

4 1.96××10−3 2.74× 10−2 6.45× 10−4 9.56× 10−4

6 1.30××10−3 1.83× 10−2 3.65× 10−4 2.39× 10−4

8 9.78××10−4 1.37× 10−2 3.99× 10−4 4.25× 10−4

10 7.81××10−4 1.10× 10−2 3.77× 10−4 1.53× 10−4

Table 5.13: Fixed Np = 640 number of inner nodes in Ω, N = 9 number of instants of time in

∆, Nsub = 4 number of spatial subdomain and Nt = 4 time intervals. We report the values of ep

defined in (5.30) for different values of ∆x and ∆t spatial and temporal step sizes of Mi,k defined

in (3.32).

ēk Ēk

3.03× 10−6 6.06× 10−5

3.03× 10−5 6.06× 10−4

3.03× 10−4 6.06× 10−3

3.03× 10−3 6.06× 10−2

Table 5.14: Fixed Np = 640 number of inner nodes in Ω, N = 20 number of instants of time in ∆,

Nsub = 4 number of spatial subdomains and Nt = 4 time intervals. For k = 1, 2, 3, 4, we report the

values of Ēk defined in (3.98) for different values of perturbation ēk to initial condition of PMi,k

i,k

defined in (3.31).

5.4 DyDD: Performance analysis

Simulations were aimed to validate the proposed approach by measuring performance of DyDD

algorithm. Performance evaluation was carried out by considering a intra-node DD configura-

tion on computing environment no.2.

CHAPTER 5. VALIDATION ANALYSIS 152

DyDD set up. We will refer to the following quantities:

• Ω ⊂ R2: spatial domain;

• Np = 2048: mesh size;

• nobs : number of observations;

• p: number of subdomains and processing units;

• i: identification number of processing unit, which is the same of the associated subdo-

main;

• for i = 1, . . . , p, deg(i): degree of i, i.e. number of subdomains adjacent to Ωi;

• iad(i) ∈ N: identification of subdomains adjacent to Ωi;

• lin(i) ∈ N: number of observations in Ωi before the dynamic load balancing;

• lr(i) ∈ N: number of observations in Ωi after DD step of DyDD procedure;

• lfi(i) ∈ N: number of observations in Ωi after the dynamic load balancing;

• T p
DyDD(nobs): time (in seconds) needed to perform DyDD on p processing units;

• Tr(nobs): time (in seconds) needed to perform re-partitioning of Ω;

• OhDyDD(nobs) =
Tr(nobs)

T p
DyDD(nobs)

overhead time to the dynamic load balancing.

As measure of the load balance introduced by DyDD algorithm, we use:

E =
mini(lfi(i))

maxi(lfi(i))

i.e. we compute the ratio of the minimum to the maximum of the number of observations of

subdomains Ω1, . . . ,Ωp after DyDD, respectively. As a consequence, E = 1 indicates a perfectly

CHAPTER 5. VALIDATION ANALYSIS 153

balanced system.

Regarding DD–DA, we let nloc := Np

p
be local problem size and we consider as performance

metrics, the following quantities:

• T 1 (nobs, Np) denoting sequential time (in seconds) to perform KF solving CLS problem;

• T p
DD−DA (nobs, nloc) denoting time (in seconds) needed to perform in parallel DD-KF

solving CLS problem after DyDD;

• T p
oh (nobs, nloc) being the overhead time (measured in seconds) due to synchronization,

memory accesses and communication time among p cores;

• ˆ︁xKF ∈ RNp denoting KF estimate obtained by applying the KF procedure on CLS prob-

lem after DyDD;

• ˆ︁xDD−DA ∈ RNp denoting DD estimate obtained by applying DD-KF on CLS problem

after DyDD;

• errorDD−DA := ∥ˆ︁xKF − ˆ︁xDD−DA∥ denoting the error introduced by the DD framework;

• Sp (nobs, nloc) :=
T 1(nobs,n)

T p
DD−DA(nobs,nloc)

, which refers to the speed-up of DD-KF parallel algo-

rithm;

• Ep (nobs, nloc) :=
Sp(nobs,nloc)

p
which denotes the efficiency of DD-KF parallel algorithm.

In the following tables we report results obtained by employing three scenarios, which are

defined such that each one is gradually more articulated than the previous one. It means that

the number of subdomains which are adjacent to each subdomain increases, or the number of

observations and the number of subdomains increase. In this way the workload re distribution

increases. Example 1: First configuration: p = 2 subdomains and m = 1500 observations. In

CHAPTER 5. VALIDATION ANALYSIS 154

Table 5.15: Example 1. DyDD parameters in Case 1. Both subdomains have data but they are

unbalanced. We report values of p, which is the number of subdomains, i the identification number

of processing unit, deg(i) degree of i, i.e. number of subdomains adjacent to Ωi, lin(i) which is

number of observations in Ωi before dynamic load balancing, lfi(i) number of observations in Ωi

after dynamic load balancing, iad identification of subdomains adjacent to Ωi.

p i deg(i) lin lfin iad

2 1 1 1000 750 2

2 1 500 750 1

Case1, both Ω1 and Ω2 have data i.e. observations, but they are unbalanced. In Case2, Ω1 has

observations and Ω2 is empty. In Table 5.15 and Table 5.16, respectively, we report values of

the parameters after applying DyDD algorithm. This is the simplest configuration we consider

just to validate DyDD framework. In both cases, lfi(1) and lfi(2), i.e. number of observations

of Ω1 and Ω2, are equal to the average load l̄ = 750 and E = 1. As the workload re distribution

of Case 1 and Case 2 is the same, DD-KF performance results of Case 1 and Case 2 are the

same, and they are reported in Table 5.23, for p = 2 only. In Table 5.17 we report performance

results of DyDD algorithm.

Example 2: Second configuration. In this experiment we consider p = 4 subdomains and

nobs = 1500 observations, and four cases which are such that the number of subdomains not

having observations, increases from 0 up to 3. In particular, in Case 1, all subdomains have

observations. See Table 5.18. In Case 2, only one subdomain is empty, namely Ω2. See Table

5.19. In Case 3, two subdomains are empty, namely Ω1 and Ω2 are empty. See Table 5.20.

In Case 4, three subdomains are empty, namely Ωj , for j = 1, 2, 3, is empty. See Table 5.21.

In all cases, E reaches the ideal value 1 and lfin(i) = l̄ = 375, i = 1, 2, 3, 4. Then, DD-KF

performance results of all cases are the same and they are reported in Table 5.23 for p = 4. In

CHAPTER 5. VALIDATION ANALYSIS 155

Table 5.16: Example 1. DyDD parameters in Case 2. Ω2 is empty. We report values of p i.e.

number of subdomains, i identification number of processing unit, deg(i) degree of i, i.e. number

of subdomains adjacent to Ωi, lin(i) which is number of observations in Ωi before dynamic load

balancing, lr(i) number of observations in Ωi after DD step of DyDD procedure, lfi(i) number of

observations in Ωi after dynamic load balancing, iad which is identification of subdomains which

are adjacent to Ωi.

p i deg(i) lin lr lfin iad

2 1 1 1500 1000 750 2

2 1 0 500 750 1

Table 5.17: Example 1. Execution times: we report values of T p
DyDD(nobs), time (in seconds)

needed to perform DyDD on p processing units, Tr(nobs), time (in seconds) needed to perform re-

partitioning of Ω, OhDyDD(nobs) overhead time due to dynamic load balancing and E measuring

load balance.

Case T p
DyDD(nobs) Tr(nobs) OhDyDD(m) E

1 4.11× 10−2 0 0 1

2 3.49× 10−2 4.00× 10−6 1.15× 10−4 1

CHAPTER 5. VALIDATION ANALYSIS 156

Table 5.22 we report performance results of the four cases.

Example 3. We consider nobs = 1032 observations and a number of subdomains p equals to

p = 2, 4, 8, 16, 32. We assume that all subdomains Ωi has observations, i.e. for i = 1, . . . , p,

lin(i) ̸= 0; Ω1 has p−1 adjacent subdomains, i.e. nad := deg(1) = p−1; Ωi has 1 adjacent sub-

domain i.e. for i = 2, . . . , p, deg(i) = 1; finally i = 1, . . . , p, we let the maximum and the mini-

mum number of observations in Ωi be such that lmax = maxi(lfin(i)) and lmin = mini(lfin(i)).

Table 5.24 shows performance results and Figure 5.27 reports the error of DD-KF with respect

to KF.

Example 4 We consider nobs = 2000 observations and p = 2, 4, 8, 16, 32 we assume that Ωi

has observations, i.e. for i = 1, . . . , p, lin(i) ̸= 0; Ω1 and Ωp have 1 adjacent subdomain

i.e. deg(1) = deg(p) = 1; Ωi and Ωp have 2 adjacent subdomains i.e. for i = 2, . . . , p − 1,

deg(i) = 2. In Table 5.26 we report performance results and in Figure 5.27 the error of DD-KF

with respect to KF is shown.

Finally, regarding the accuracy of the DD-DA framework with respect to computed solution, in

Table 5.25 (Examples 1-2) and in Figure 5.27 (Examples 3-4), we get values of errorDD−DA.

We observe that the order of magnitude is about 10−11 consequently, we may say that the ac-

curacy of local solutions of DD-DA and hence of local KF estimates, are not impaired by DD

approach.

CHAPTER 5. VALIDATION ANALYSIS 157

Table 5.18: Example 2. DyDD parameters in Case 1. All subdomains have data. We report values

of p, which is the number of subdomains, i identification number of processing unit, deg(i) degree

of i, i.e. number of subdomains adjacent to Ωi, lin(i) the number of observations in Ωi before

dynamic load balancing, lfi(i) the number of observations in Ωi after dynamic load balancing, iad

identification of subdomains which are adjacent to Ωi.

p i deg(i) lin lfin iad

4 1 2 150 375 [2 4]

2 2 300 375 [3 1]

3 2 450 375 [4 2]

4 2 600 375 [3 1]

Table 5.19: Example 2. DyDD parameters in Case 2. Ω2 is empty. We report values of p, which

is number of subdomains, i i.e. identification number of processing unit, deg(i) i.e. degree of

i, i.e. number of subdomains which are adjacent to Ωi, lin(i) i.e. number of observations in Ωi

before dynamic load balancing, lfi(i) number of observations in Ωi after dynamic load balancing,

iad identification of subdomains adjacent to Ωi.

p i deg(i) lin lr lfin iad

4 1 2 450 450 375 [2 4]

2 2 0 225 375 [3 1]

3 2 450 225 375 [4 2]

4 2 600 600 375 [3 1]

CHAPTER 5. VALIDATION ANALYSIS 158

Table 5.20: Example 2. DyDD parameters in Case 3. Ω1 and Ω2 are empty. We report values of p,

which is the number of subdomains, i identification number of processing unit, deg(i) i.e. degree

of i, i.e. number of subdomains adjacent to Ωi, lin(i) number of observations in Ωi before dynamic

load balancing, lfi(i) number of observations in Ωi after dynamic load balancing, iad identification

of subdomains which are adjacent to Ωi.

p i deg(i) lin lr lfin iad

4 1 2 0 300 375 [2 4]

2 2 0 450 375 [3 1]

3 2 900 450 375 [4 2]

4 2 300 600 375 [3 1]

Table 5.21: Example 2. DyDD parameters in Case 4. Ω1, Ω2 and Ω3 are empty. We report values

of p i.e. number of subdomains, i identification number of processing unit, deg(i) degree of i, i.e.

i.e. number of subdomains which are adjacent to Ωi, lin(i) the number of observations in Ωi before

dynamic load balancing, lfi(i) number of observations in Ωi after dynamic load balancing and iad

identification of subdomains which are adjacent to Ωi.

p i deg(i) lin lr lfin iad

4 1 2 0 500 375 [2 4]

2 2 0 250 375 [3 1]

3 2 0 250 375 [4 2]

4 2 1500 500 375 [3 1]

CHAPTER 5. VALIDATION ANALYSIS 159

Table 5.22: Example2. Execution times: we report values of T p
DyDD(nobs), i.e. time (in seconds)

needed to perform DyDD algorithm on p processing units, Tr(nobs) time (in seconds) needed to

perform re-partitioning of Ω, OhDyDD(nobs) overhead time to the dynamic load balancing and E

parameter of load balance.

Case T p
DyDD(nobs) Tr(nobs) OhDyDD(nobs) E

1 5.40× 10−2 0 0 1

2 5.84× 10−2 2.35× 10−4 0.4 · 10−2 1

3 4.98× 10−2 3.92× 10−4 0.8 · 10−2 1

4 4.63× 10−2 5.78× 10−4 0.1 · 10−1 1

From these experiments, we observe that as the number of adjacent subdomains increases, data

communications required by the workload re-partitioning among subdomains increases too.

Accordingly, the overhead due to the load balancing increases (for instance see Table 5.22).

As expected, the impact of such overhead on the performance of the whole algorithm strongly

depends on the problem size and the number of available computing elements. Indeed, in Case

1 of Example 1 and of Example 2, when p is small in relation to nloc (see Table 5.23) this

aspect is quite evident. In Example 4, instead, as p increases up to 32, and nloc decreases the

overhead does not affect performance results (see Table 5.26). In conclusion, we recognize a

sort of trade off between the overhead due to the workload re-partitioning and the subsequent

parallel computation.

CHAPTER 5. VALIDATION ANALYSIS 160

Table 5.23: Example 1-2: DD-KF performance results in Example 1 and Example 2. We report

values of p, which is the number of subdomains, Np mesh size, nloc i.e. local problem size, m

number of observations, T 1 (nobs, Np) sequential time (in seconds) to perform KF solving CLS

problem, T p
DD−DA (nobs, nloc) time (in seconds) needed to perform in parallel DD–KF solving CLS

problem with DyDD, Sp (nobs, nloc) and Ep (nobs, nloc) the speed-up and efficiency of DD–KF

parallel algorithm, respectively. We applied DyDD to all cases of Example 1 and Example 2 and

obtained the perfect load balance, as reported in Table 5.17 and Table 5.22, respectively. As the

workload distribution is the same, DD–KF performance results are the same in all cases of Example

1, then we show results for p = 2, only. In the same way, for all cases of Example 2, we show results

for p = 4, only.

p = 1 Np = 2048 nobs = 1500 T 1(nobs, Np) = 5.67× 100

p nloc T p
DD−DA (nobs, nloc) Sp (nobs, nloc) Ep (nobs, nloc)

2 1024 4.95× 100 1.15× 100 5.73× 10−1

4 512 2.48× 100 2.29× 100 5.72× 10−1

5.5 DyDDST: Performance analysis

Validation of DyDDST algorithm is performed by considering a intra-node DD configuration

on computing environment no.2. DyDDST set up:

• Ω ⊂R2: spatial domain;

• Np = 2048: mesh size;

• N = 64: number of elements of ∆;

• Ntot = Np ×N : problem size;

• p: number of spatial subdomains and processing units;

CHAPTER 5. VALIDATION ANALYSIS 161

Table 5.24: Example 3. Execution times: we report values of p, i.e. the number of subdomains,

nad, the number of adjacent subdomains to Ω1, T p
DyDD(nobs), time (in seconds) needed to perform

DyDD on p processing units, E which measures load balance, lmax and lmin i.e. maximum and

minimum number of observations between subdomains after DyDD, respectively. E depends on

nad(≡ deg(1)), i.e. as nad(≡ deg(1)) increases (consequently p increases), then E decreases. For

i = 1, . . . , p, subdomain Ωi has observations, i.e. lin(i) ̸= 0, consequently we do not need to

perform re-partitioning of Ω, then Tr(m) ≡ 0.

p nad T p
DyDD(nobs) lmax lmin E

2 1 6.20× 10−3 516 515 9.98× 10−1

4 3 2.60× 10−2 258 257 9.96× 10−1

8 7 9.29× 10−2 129 128 9.92× 10−1

16 15 1.11× 10−1 71 64 8.88× 10−1

32 31 1.36× 10−1 39 32 8.21× 10−1

Table 5.25: Examples 1-2. We report values of errorDD−DA, i.e. the error introduced by the DyDD

framework, in Example 1 (with p = 2) and Example 2 (with p = 4).

p errorDD−DA

2 8.16× 10−11

4 8.82× 10−11

CHAPTER 5. VALIDATION ANALYSIS 162

Table 5.26: Example 4. Performance results of DyDD framework: we report values of p, whic is

the number of subdomains, Np i.e. the mesh size, nloc i.e. the local problem size, nobs the number

of observations, T 1 (nobs, Np) i.e. sequential time (in seconds) needed to perform KF, T p
DyDD(nobs)

i.e. time (in seconds) needed to perform DyDD on p processing units, T p
DD−DA (nobs, nloc) i.e. time

(in seconds) needed to perform in parallel DD-DA with DyDD, Sp (nobs, nloc) and Ep (nobs, nloc),

i.e. speed-up and efficiency of DD-DA parallel algorithm, respectively.

p Np = 2048 nobs = 2000 T 1(nobs, Np) = 4.88× 100

p nloc T p
DyDD(m) T p

DD−DA (nobs, nloc) Sp (nobs, nloc) Ep (nobs, nloc)

2 1024 4.10× 10−3 4.71× 100 1.04× 100 5.18× 10−1

4 512 4.29× 10−2 2.61× 100 1.87× 100 4.67× 10−1

8 256 1.07× 10−1 8.43× 10−1 5.79× 100 6.72× 10−1

16 128 1.42× 10−1 3.46× 10−1 1.41× 101 8.81× 10−1

32 64 3.49× 10−1 1.66× 10−1 2.94× 101 9.19× 10−1

• Nt = p: number of instants of time intervals;

• i: identification number of processing unit, which is the same of the associated subdo-

main;

• for k = 1, . . . , Nt, mk: number of observations in ∆k;

• nobs := [nobs(1), . . . , nobs(Nt)] ∈ NNt: vector of number of observations in ∆;

• for i = 1, . . . , p, k = 1, . . . , Nt

– dk (i): degree of i in ∆k, i.e. number of subdomains adjacent to Ωi in ∆k;

– lkin (i) ∈ N: number of observations in Ωi in ∆k before the dynamic load balancing;

– lkfi (i) ∈ N: number of observations in Ωi in ∆k after the dynamic load balancing.

CHAPTER 5. VALIDATION ANALYSIS 163

• Iter = maxk=1,...,Nt (Iter (k)): maximum between the number of iterations needed to

solve Laplacian system in (4.4) associated to Gk with Preconditioned Conjugate Gradient

(PCG) method in each time interval ∆k;

• T p
DyDDST (nobs): time (in seconds) needed to perform DyDDST on p processing units;

• Tr (nobs): time (in seconds) needed to perform re-partitioning of Ω;

• OhDyDDST (nobs) =
Tr(nobs)

T p
DyDDST (nobs)

: overhead time to the dynamic load balancing.

Regarding DD-DA, we let:

• nloc :=
Np

p
× N

p
: be local problem size;

• T 1 (nobs, Np): sequential time (in seconds) needed to DA;

• T p
DD−DA (nobs, nloc): time (in seconds) needed to perform in parallel DD-DA solving

CLS problem after DyDDST procedure;

• Sp (nobs, nloc) :=
T 1(nobs,n)

T p
DD−DA(nobs,nloc)

: algorithm speed-up;

• Ep (nobs, nloc) :=
Sp(nobs,nloc)

p
: algorithm efficiency.

As measure of the load balance of DyDDST algorithm, for k = 1, . . . , Nt, we use [80]:

Ek =
mini

(︁
lkfi (i)

)︁
maxi

(︁
lkfi (i)

)︁ (5.33)

i.e. we compute the ratio of the minimum to the maximum of the number of observations of

subdomains Ω1, . . . ,Ωp in ∆k after applying DyDDST algorithm, respectively. Further, Ek = 1

indicates a perfectly balanced system in ∆k. In the following tables we report results obtained

by employing three configurations. More precisely, fixed p = 4, for k = 1, . . . , 4 configuration

considered in Example 1 changes in ∆k i.e. some subdomains are such that its number of adja-

cent subdomains changes in ∆k, and the degree dk (i) of the vertex i of processor graph changes.

CHAPTER 5. VALIDATION ANALYSIS 164

In Examples 2 and 3, for p = 2, 4, 8, 32, 64 and k = 1, . . . , 64 configurations are the same in ∆k

while it changes the number of subdomains adjacent to each subdomain. Namely, in Example 2,

subdomains Ω1 and Ωp have 1 adjacent subdomain and for i = 2, . . . , p− 1, Ωi has 2 adjacent

subdomains while in Example 3 Ω1 has p − 1 adjacent subdomains and for i = 2, . . . , p, Ωi

has 1 adjacent subdomain. From these experiments, we observe that the number of subdomains

adjacent to each subdomain increases parameter Ek. On the contrary, as the number of ad-

jacent subdomains increases, communications required by the workload repartitioning among

subdomains increases, accordingly, the number of operations needed to compute the amount of

observations required to obtain load balance increases, increasing T p
DyDDST (nobs).

Example 1. (Tables 5.27-5.29) First configuration: p=4 spatial subdomains and time intervals

such that:

1. k=1:

• for i = 1, . . . , p : Ωi ×∆k: have data i.e. observations;

• dk (1) = dk (4) = 1, dk (2) = dk (3) = 2.

2. k=2:

• Ω1 ×∆k: is empty;

• for j = 2, 3, 4: Ωj ×∆k have data;

• dk (1) = dk (2) = 2, dk (3) = 1, dk (4) = 3.

3. k=3:

• for i = 1, 2 : Ωi ×∆k: is empty;

• for j = 3, 4 : Ωi ×∆k: have data;

CHAPTER 5. VALIDATION ANALYSIS 165

• dk (1) = dk (4) = 1, dk (2) = dk (3) = 2.

4. k=4:

• for i = 1, 2, 3: Ωi ×∆k: is empty;

• Ω4 ×∆k: have data;

• dk (1) = dk (4) = 1, dk (2) = dk (3) = 2.

Table 5.27: Example 1. For k = 1 all subdomains have data, consequently, it is not necessary to

perform re-partitioning of Ω and Tr(nobs(k)) ≡ 0.

p k nobs(k) T p
DyDDST (nobs(k)) Tr (nobs(k)) OhDyDDST (nobs(k))

4 1 2217 2.58× 10−1 0 0

2 2933 8.11× 10−2 8.00× 10−4 9.90× 10−3

3 1925 7.05× 10−2 8.00× 10−4 1.13× 10−2

4 1678 5.82× 10−2 1.20× 10−4 1.37× 10−2

Table 5.28: Example 1. We report the values of Ek and Iter (k). For k = 1 all subdomains have

data, consequently, it is not necessary to perform re-partitioning of Ω and Tr(nobs(k)) ≡ 0.

p k nobs(k) Ek Iter (k)

4 1 2217 9.98× 10−1 1

2 2933 9.99× 10−1 2

3 1925 9.98× 10−1 2

4 1678 9.98× 10−1 2

CHAPTER 5. VALIDATION ANALYSIS 166

Table 5.29: Example 1: We report values obtained by applying DD-DA after DyDDST in Example

1 (Tables 5.27- 5.28) where nobs = [1617 2894 1098 2445].

p = 1 Np = 131072 T 1 (nobs, Np) = 11.92× 100

p nloc T p
DD−DA (nloc, nloc) Sp (nobs, nloc) Ep (nobs, nloc)

4 8192 3.45× 100 3.46× 100 8.65× 10−1

Example 2. (Table 5.30 and Figure 5.28): We consider p = 2, 4, 8, 16, 32, 64 such that: for

k = 1, . . . , 64

• dk(1) = dk(p) = 1: Ω1 and Ωp have 1 adjacent subdomain in ∆k;

• for i = 2, . . . , p− 1, dk(i) = 2: Ωi has 2 adjacent subdomains in ∆k;

• nobs(k): number of observations available in ∆k as defined in Table 5.32.

Example 3. (Table 5.31 and Figure 5.29) Second configuration: we consider p=2, 4, 8, 16, 32,

64 such that: for k = 1, . . . , 64

• dk(1) = p− 1: Ω1 has p− 1 adjacent subdomains in ∆k;

• for i = 2, . . . , p, dk(i) = 1: Ωi has 1 adjacent subdomain in ∆k;

• nobs(k): number of observations available in ∆k defined in Table 5.32.

We note that in Example 2 the number of subdomains which are adjacent to Ω1 increases along

the time window, while in Example 3 it equals to 2. Consequently, in Example 2, iterations

needed to solve linear system in (4.4) (see Tables 5.30-5.31) are less than in Example 3.

Table 5.30: Example 2. Performance results where nobs are defined in Table 5.32 .

p T 1 (nobs, Np)

CHAPTER 5. VALIDATION ANALYSIS 167

1 6.41× 102

p nloc T p
DyDDST (nobs) T p

DD−DA (nobs, nloc) Sp (nobs, nloc) Ep (nobs, nloc) Iter

2 32768 9.34× 10−1 3.62× 102 1.78× 100 8.89× 10−1 1

4 8192 3.13× 100 1.65× 102 3.88× 100 9.69× 10−1 3

8 2048 8.12× 100 9.95× 101 6.65× 100 8.07× 10−1 7

16 512 1.65× 101 5.70× 101 1.11× 101 6.93× 10−1 15

32 128 3.08× 101 3.26× 101 1.98× 101 6.15× 10−1 20

64 32 5.77× 101 3.18× 101 2.02× 101 3.56× 10−1 20

Table 5.31: Example 3. Performance results where nobs are defined in Table 5.32.

p = 1 Np T 1 (nobs, Np)

1 131072 6.41× 102

p nloc T p
DyDDST (nobs) T p

DD−DA (nobs, nloc) Sp (nobs, nloc) Ep (nobs, nloc) Iter

2 32768 9.34× 10−1 3.62× 102 1.78× 100 8.89× 10−1 1

4 8192 2.44× 100 1.65× 102 3.90× 100 9.74× 10−1 2

8 2048 6.72× 100 1.02× 102 6.31× 100 7.89× 10−1 2

16 512 1.21× 101 5.53× 101 1.16× 101 7.26× 10−1 2

32 128 2.14× 101 3.37× 101 1.91× 101 5.96× 10−1 2

64 32 3.78× 101 2.76× 101 2.33× 101 3.64× 10−1 2

Table 5.32: Example 2-3. For k = 1, . . . , 64, values of nobs(k) ∈ ∆k.

k nobs(k) k nobs(k) k nobs(k) k nobs(k) k nobs(k) k nobs(k)

1 1618 9 2327 17 1579 25 2651 33 1209 41 2256

2 2419 10 1678 18 2744 26 2571 34 2626 42 1343

CHAPTER 5. VALIDATION ANALYSIS 168

3 2523 11 1739 19 1493 27 2174 35 1683 43 2048

4 2869 12 1968 20 1912 28 2555 36 2332 44 2667

5 2260 13 2078 21 28906 29 1603 37 1691 45 2687

6 1874 14 2512 22 2439 30 963 38 2146 46 2184

7 2036 15 2613 23 2214 31 2270 39 233 47 2763

8 2536 16 2584 24 2476 32 2611 40 1772 48 2392

k nobs(k) k nobs(k)

49 1552 57 2148

50 2397 58 2375

51 1547 59 1852

52 2987 60 2338

53 1656 61 2356

54 2581 62 2869

55 2332 63 1524

56 2477 64 1462

CHAPTER 5. VALIDATION ANALYSIS 169

(a) SWEs solution x[1]53 ∈ Rnx (model estimate) and DD-KF esti-

mates ˆ︁xΩ×∆1
53 [1] ∈ Rnx at t53 on Ω (Kalman estimate 1 and Kalman

estimate 2) by considering σ2
m = 0. As expected, Kalman estimates

and model estimate overlap.

(b) SWEs solution x[1]99 ∈ Rnx (model estimate) and DD-KF esti-

mates ˆ︁xΩ×∆1
25 [1] ∈ Rnx at t53 on Ω1 and Ω2 (Kalman estimate 1 and

Kalman estimate 2) by considering the error variance σ2
0 = 10−5.

Figure 5.10: SWEs solution and DD-KF estimates for different choices of σ2m and σ20 .

CHAPTER 5. VALIDATION ANALYSIS 170

Figure 5.11: SWEs solution x[1]10 ∈ Rnx (model estimate) and DD-KF estimate ˆ︁xΩ×∆
10 [1] ∈ Rnx at

t10 on Ω (Kalman estimate 1 and Kalman estimare 2) by considering different errors and variances

observations; i.e. v110 = 10−15 · v̄110 and σ21,0 = 6.67 × 10−1 in Ω1 and v210 = 2 · v̄210 and σ22,0 =

4.28× 100 in Ω2. v̄110 and v̄210 are random vectors drawn from the standard normal distribution.

CHAPTER 5. VALIDATION ANALYSIS 171

Figure 5.12: SWEs solution x[1]10 ∈ Rnx (model estimate) and DD-KF estimates ˆ︁xΩ×∆
10 [1] ∈

Rnx (Kalman estimate 1 and Kalman estimate 2) at t10 on Ω by considering different errors and

variances observations; i.e. v110 = 1 · v̄110 and σ21,0 = 1.04 × 100 in Ω1 and v210 = 10−15 · v̄210 and

σ22,0 = 2.22×10−1 in Ω2. v̄110 and v̄210 are random vectors drawn from standard normal distribution.

CHAPTER 5. VALIDATION ANALYSIS 172

(a) Numerical solution u[1] of the SWEs solution h on Ω1 ×∆1.

(b) Numerical solution u[1] of the SWEs solution h on Ω1 ×∆2.

Figure 5.13: For i, j = 1, 2, numerical solution u[1] on Ωi ×∆j .

CHAPTER 5. VALIDATION ANALYSIS 173

(a) Numerical solution u[1] of the SWEs solution h on Ω1 ×∆1.

(b) Numerical solution u[1] of the SWEs solution h on Ω1 ×∆2.

Figure 5.14: For i, j = 1, 2, numerical solution u[1] on Ωi ×∆j .

CHAPTER 5. VALIDATION ANALYSIS 174

(a) Behaviour of EΩ1×∆ versus iterations.

(b) Behaviour of errorΩ2×∆ versus iterations.

Figure 5.15: Behaviour of EΩ1×∆ and EΩ2×∆ versus iterations.

CHAPTER 5. VALIDATION ANALYSIS 175

(a) Behaviour of EΩ1×∆1 versus iterations.

(b) Behaviour of EΩ1×∆2 versus iterations.

Figure 5.16: Behaviour of EΩ1×∆1 and EΩ1×∆2 versus iterations.

CHAPTER 5. VALIDATION ANALYSIS 176

(a) Behaviour of EΩ2×∆1 versus iterations.

Behaviour of EΩ2×∆2 versus iterations.

Figure 5.17: (b) Behaviour of EΩ2×∆1 and EΩ2×∆2 versus iterations.

CHAPTER 5. VALIDATION ANALYSIS 177

(a) Behaviour of En
1 versus iterations.

(b) Behaviour of En
2 versus iterations.

Figure 5.18: Behaviour of En
1 and En

2 versus iterations.

CHAPTER 5. VALIDATION ANALYSIS 178

Figure 5.19: Decomposition of spatial domain Ω ⊂ R in two subdomains {Ωi}i=1,2 by identifying

overlap region Ω12 defined in (3.3) and interfaces Γ12 and Γ21 defined in (3.4). On the left case

δ = 0 i.e. no inner nodes in Ω12, on the right case δ = 2 i.e. two inner nodes in overlap region Ω12.

Figure 5.20: Performance results at Np = 640 for Nsub = 2, 4, 8, 16. The values of speed up (left)

and efficiency (right) are reported in Table 5.8. For Nsub = 16, speed up and efficiency strongly

decrease.

CHAPTER 5. VALIDATION ANALYSIS 179

Figure 5.21: Performance results at Np = 832 for Nsub = 16, 32, 64. The values of speed up (left)

and efficiency (right) are reported in Table 5.9. For Nsub = 64, speed up and efficiency strongly

decrease.

Figure 5.22: Performance results at Np = 896 for Nsub = 32, 64. The values of speed up (left)

and efficiency (right) are reported in Table 5.10. For Nsub = 64, speed up and efficiency strongly

decrease.

CHAPTER 5. VALIDATION ANALYSIS 180

Figure 5.23: DD–4DVAR isoefficiency: curve best fit data (Nsub, Np) reported in Table 5.12.

CHAPTER 5. VALIDATION ANALYSIS 181

Figure 5.24: Decomposition of a spatial domain Ω ⊂ R2 in 4 subdomains {Ωi}i=1,2,3,4 by iden-

tifying for i = 1, 2, 3, 4 overlap regions Ωij defined in (3.3) and interfaces Γij defined in (3.4)

∀j ∈ Ji := {s ∈ {1, . . . , Nsub} : s ̸= i}

.

CHAPTER 5. VALIDATION ANALYSIS 182

Figure 5.25: Plot of values of ep
(︁
∆x
d ,

∆t
d

)︁
(orange dashed line) and ep(∆x,∆t)

d2
(blue full line) for

d = 1, 2, 4, 6, 8, 10 reported in Table 1.1.

Figure 5.26: Plot of values (ēk, Ēk) reported in Table 1.2.

CHAPTER 5. VALIDATION ANALYSIS 183

Figure 5.27: Examples 3 (left)- 4 (right). We report values of errorDD−DA versus p.

Figure 5.28: Example 2. For k = 1, . . . , 64, value of parameter Ek ∈ ∆k.

CHAPTER 5. VALIDATION ANALYSIS 184

Figure 5.29: Example 3. For k = 1, . . . , 64, value of parameter Ek ∈ ∆k.

Chapter 6

Conclusions

The present work is placed in the context of a research activity devoted to the development

of scalable algorithms for using Data Assimilation in large scale applications [9, 10, 32, 30].

Main focus is the mathematical framework for using a DD-based approach for KF, 3DVAR and

4DVAR methods that are computationally efficient. DD approach is based on decomposition

along both spatial and temporal directions, a space-time partitioning of the PDE–based model

and of the DA functional. DA acts as predictor propagator for the local PDE–based model, pro-

viding the approximations needed to the PinT method for solving the initial value problem on

each subinterval concurrently. Leveraging Schwarz and PinT methods consistency constraints

for PDEs-based models, the framework iteratively adjust local solutions by adding the contri-

bution of adjacent subdomains to the local filter, along overlapping regions. Furthermore, in

terms of time complexity reduction it results that applying Schwarz method the performance

gain of DD–DA algorithm scales as the number of subdomains squared. As a consequence this

approach increases the accuracy of local solutions and it allows to apply in parallel both the fine

and coarse solvers, increasing the efficiency of the resulting algorithm. The key point of the

present work is to prove the necessary results that underpin this framework by considering, let

us say, a first-level decomposition. Nevertheless, such configuration should be considered as

185

CHAPTER 6. CONCLUSIONS 186

a part of a multilevel DD scheme designed according to the features of the application and of

the computing environment. An interesting advantage of this approach is that it can be poten-

tially applied in a moderately non-intrusive manner to existing codes in navigation, computer

graphics, robotics, arising from the so-called discretize-then-optimize approach. As DD con-

figuration may depend both on the particular state estimation application (in terms of different

data distribution) and on the mapping on the available parallel computing environment (in terms

of different computing power), we employed a dynamic and adaptive DD configuration which

could be used in concrete scenarios. In particular, we focused on the introduction of a dynamic

redefining of initial DD in order to deal with problems where the observations are non uni-

formly distributed and general sparse. We called them DyDD and DyDDST. Results confirm

that the accuracy of local solutions of the forecast model and hence of local KF and 4DVAR

estimates, are not impaired by DD approach. As a consequence this approach increases the

accuracy of local solutions and it allows to apply in parallel both the fine and coarse solvers,

increasing the efficiency of the resulting algorithm. We derived and discussed main features of

DD–DA framework using shallow water equations which are commonly used for monitoring

and forecasting the water flow in rivers and open channels and constrained least square model

as a reference state estimation problem. In particular, DD–DA methods coupled with DyDD or

DyDDST can be properly modified to be adapted for solving real-world problems in oceanog-

raphy. In discretization phase, DD-DA methods have to deal with the fact that the planet Earth

has emerged land areas, this means that some discretization nodes are located over the land.

Hence, it could be applied a pre-processing phase to identify land and sea nodes and remove

only-land subdomains. Then, applying a DyDD or DyDDST related to sea nodes, we could get

a balanced DD. Nevertheless, this framework has application on the plentiful literature of PDE-

based state estimation real-world problems. This work makes possible numerous extensions.

Among them, it makes it possible to apply deep-learning techniques to develop consistency

constraints which will ensure that the solutions are physically meaningful even at the boundary

CHAPTER 6. CONCLUSIONS 187

of the small domains in the output of the local models [59, 59, 88, 21].

Appendix A

Appendix

A.1 Constrained Least Squares (CLS) Problem

Let

H0x0 = y0, H0 ∈ Rm0×Np , y0 ∈ Rm0 , x0 ∈ RNp (A.1)

be an overdetermined linear system (the state), where rank(H0) = Np > 0, m0 > Np.

Given H1 ∈ Rm1×Np , y1 ∈ Rm1 (the observations), x1 ∈ RNp , x ∈ RNp , we consider the system

which couples state and observations equations

S : Ax = b (A.2)

where

A =

⎡⎣ H0

H1

⎤⎦ ∈ R(m0+m1)×Np , b =

⎡⎣ y0

y1

⎤⎦ ∈ Rm0+m1 , (A.3)

and m1 > 0. Let R0 ∈ Rm0×m0 , R1 ∈ Rm1×m1 be weight matrices and R = diag(R0, R1) ∈

R(m0+m1)×(m0+m1).

CLS problem consists in the computation of ˆ︁x such that:

CLS : ˆ︁x = argminx∈RNpJ(x) (A.4)

188

APPENDIX A. APPENDIX 189

with

J(x) = ||Ax− b||2R = ||H0x− y0||2R0
+ ||H1x− y1||2R1

, (A.5)

where ˆ︁x is hence given by

(ATRA)ˆ︁x = ATRb⇒ ˆ︁x = (ATRA)−1ATRb (A.6)

or, ˆ︁x = (HT
0 R0H0 +HT

1 R1H1)
−1(HT

0 R0y0 +HT
1 R1y1). (A.7)

We refer to ˆ︁x as the least squares solution of system in (A.2).

In particular, ˆ︁x0 = (HT
0 R0H0)

−1HT
0 R0y0, (A.8)

is the least squares solution of system in (A.1)

A.2 Shallow Water Equations (SWEs) set up

Neglecting the Coriolis force and frictional forces and assuming unit width, SWEs are:⎧⎨⎩ ∂h
∂t

+ ∂vh
∂x

= 0

∂vh
∂t

+
∂(v2h+ 1

2
gh2)

∂x
= 0

(A.9)

where the independent variables x and tmake up the spatial dimension and time. The dependent

variables are h, which is the height with respect to the surface and v, i.e. the horizontal velocity,

while g is the gravitational acceleration.

In order to write SWEs in a compact form, we introduce the vectors

u :=

⎡⎣ h

vh

⎤⎦ f(u) :=

⎡⎣ vh

v2h+ 1
2
gh2

⎤⎦ , (A.10)

the SWEs can be rewritten as follows

∂u

∂t
+
∂f(u)

∂x
= 0. (A.11)

APPENDIX A. APPENDIX 190

The initial boundary problem for the SWEs is⎧⎪⎪⎪⎨⎪⎪⎪⎩
u(x, t+∆t) = Mt,t+∆t(u(x, t)) ∀t, t+∆t ∈ [0, 1.5]

u(x, 0) :=

⎡⎣ h(x, 0)

h(x, 0)v(x, 0)

⎤⎦ =

⎡⎣ 2 + sin(2πx)

0

⎤⎦ ∀x ∈ Ω
(A.12)

with the following reflective boundary conditions on v and free boundary conditions on h

u(0, t) :=

⎡⎣ h(x1, t)

−h(x1, t)v(x1, t)

⎤⎦ u(xnx−1, t) :=

⎡⎣ h(xnx−2, t)

−h(xnx−2, t)v(xnx−2, t)

⎤⎦ ∀t ∈ ∆

(A.13)

where

Mt,t+∆t(u(x, t)) := u(x, t)−
∫︂ t+∆t

t

∂f(u)

∂x
ds. (A.14)

We note that Mt,t+∆t(u(x, t)) should include Coriolis forces and also frictional forces, if they

are present in the SWEs; in particular, as these quantities show off as the right hand side of

(A.11), they will be also included in the right hand side of (A.14) as additive terms under the

integral.

The state of the system at each time tl+1 ∈ ∆, l = 0, 1, . . . , N − 2 is:

u(tl+1) ≡ ul+1 :=

⎡⎣ x[1]l+1

x[2]l+1

⎤⎦ ∈ R2(nx−2) (A.15)

where

u[1]l+1 = {u[1](xi, tl+1)}i=1,...,nx−1 := {h(xi, tl+1)}i=1,...,nx−1 ∈ R(nx−2)

u[2]l+1 := {u[2](xi, tl+1)}i=1,...,nx−1 := {v(xi, tl+1)h(xi, tl+1)}i=1,...,nx−1 ∈ R(nx−2)
.

(A.16)

From Lax-Wendroff scheme [81], we obtain the following discrete formulation of the SWEs

ul+1 =Ml,l+1ul + bl + wl (A.17)

and 4DVAR DA problem for the SWEs is

uDA = argminu∈RNp×N ||u− uM ||2B−1 + ||Gu− y||2R−1 (A.18)

APPENDIX A. APPENDIX 191

where uM := {uMl+1}l=0,1,...,N−1 is the background, M ≡M0,N−1 and

Ml,l+1 =

⎡⎣ M [1]l,l+1 Onx−2

M [2, 1]l,l+1 M [2]l,l+1

⎤⎦ ∈ R2(nx−2)×2(nx−2) (A.19)

with Onx−2 ∈ Rnx−2×nx−2 the null matrix and M [1]l,l+1 ∈ R(nx−2)×(nx−2), M [2, 1]l,l+1 ∈
R(nx−2)×(nx−2), M [2]l,l+1 ∈ R(nx−2)×(nx−2) the following tridiagonal matrices

M [1]l,l+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψl
1 ηl2

−ηl1 ψl
2 ηl3

.

−ηlnx−4 ψl
nx−3 ηlnx−2

−ηlnx−3 ψl
nx−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.20)

M [2, 1]l,l+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 χl
2

−χl
1 0 χl

3

.

−χk
nx−4 0 χl

nx−2

−χl
nx−3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.21)

M [2]l,l+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕl1 ξl2

−ξl1 ϕl2 ξl3
.

−ξlnx−4 ϕlnx−3 ξlnx−2

−ξlnx−3 ϕlnx−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.22)

and the vector b ∈ R2(nx−2)

bl :=

⎡⎣ b[1]l

b[2]l

⎤⎦ ∈ R2(nx−2) (A.23)

with

b[1]l :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ηl0h
l
0

0
...

0

ηlnx−1h
l
nx−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ Rnx−2 b[2]l :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξl0v
l
0h

l
0 − χl

0h
l
0

0
...

0

ξlnx−1h
l
nx−1 + ξlnx−1v

l
nx−1h

l
nx−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ Rnx−2 (A.24)

APPENDIX A. APPENDIX 192

where
ηli := α

2
[vli + α((vli)

2 + 1
2
ghli)] ψl

i := 1− 4α2((vli)
2 + 1

2
ghli)

ξli := α
2
[α + vli] ϕl

i := (1 + 4α2)

χl
i :=

1

2
ghli

with α := ∆t
2∆x

and hli := h(tl, xi), vli := v(tl, xi).

While, G ∈ RN ·nobs×nx is a matrix interpolating the background fields to the observation loca-

tions and transforming the model variables to observed quantities, and y ∈ RN×nobs is observa-

tions in Ω×∆.

We note that the discrete model in (A.17) can be rewritten as follows

x[1]l+1 =M [1]l,l+1x[1]l + b[1]l

x[2]l+1 =M [2]l,l+1x[2]l + b̃[2]l
(A.25)

with

b̃[2]l := b[2]−M [2, 1]l,l+1x[1]l. (A.26)

In particular, if we define

S := max
(︂
|v −

√︁
gh|, |v +

√︁
gh|
)︂
, (A.27)

the stability condition of Lax-Wendroff is

S · ∆t
∆x
≤ 1, (A.28)

for the condition (A.28) to be satisfied, at each iteration k = 0, 1, . . . , nt we choose: ∆t =

0.8 · ∆x
S

.

A.3 Regional Ocean Modeling System (ROMS)

Regional Ocean Modeling System (ROMS) is an open-source, mature numerical framework

used by both the scientific and operational communities to study ocean dynamics over 3D spa-

tial domain and time interval.

APPENDIX A. APPENDIX 193

ROMS supports different 4DVAR DA methodologies IS4D-Var and RBL4DVAR search best

circulation estimate in space spanned by control vector and observations, respectively. IS4D-

Var and RBL4DVAR algorithm consist of two nested loop, the outer-loop involves the module

(1), namely nonlinear ROMS (NLROM) solving ROMS equations, the inner-loop involves mod-

ules (2)-(3), namely tangent linear approximation of ROMS (TLROMS) and adjoint model of

ROMS (ADROMS); TLROMS and ADROMS are used for minimizing 4DVAR functional [98]

(see Figures A.1-A.2).

NLROMS is a three-dimensional, free-surface, terrain-following ocean model that solves the

Reynolds-averaged Navier-Stokes equations using the hydrostatic vertical momentum balance

and Boussinesq approximation.

NLROMS computes

xROMS(tl) =Ml−1,l(x(tl−1), f(tl), b(tl)) (A.29)

with the state-vector xROMS(tl) = (T, S, ς, u, v)T , temperature T , salinity S, (x, y) components

of vector velocity u, v, sea surface displacement ς . Ml−1,l represents nonlinear ROMS acting

on xROMS(tl−1), and subject to forcing f(tl), and boundary conditions b(tl) during the time

interval [tl−1, tl].

Minimization of the 4DVAR functional:

JROMS(δz) =
1

2
δzB−1δz +

1

2
(Gδz − d)TR−1(Gδz − d) (A.30)

where δz are the control variable increments, d is vector of innovations, G = (..., HT
l , ...)

T ,

where Hl is the observation matrix; R is observation error covariance matrix and B is covari-

ance matrix of model error, is computed in the inner-loop in Figure A.1.

Analysis increment, δza, that minimizes 4DVAR function in (A.30) corresponds to the solution

of the equation ∂JROMS/∂δz = 0, and is given by:

δza = (B−1 +GTR−1G)−1GTR−1d (A.31)

APPENDIX A. APPENDIX 194

or, equivalently

δza = BGT (GBGT +R)−1d. (A.32)

Equation (A.31) is referred to as the dual form (RBL4DVAR), while (A.32) is referred to as the

primal form (IS4DVAR). In particular, we define

K = BGT (GBGT +R)−1 (A.33)

as Kalman gain matrix.

TLROMS computes

δxROMS(tl) ≃Ml−1,lu(tl−1) (A.34)

where δxROMS(tl) = xROMS(tl) − xb(tl), δf(tl) = f(tl) − f b(tl), δb(tl) = b(tl) − bb(tl), and

xb(tl), f b(t), bb(tl) are the background of the circulation, surface forcing and open boundary

conditions respectively, and

u(tl−1) = ((δxROMS)T (tl−1), δf
T (tl), δb

T (tl))
T .

Equation (A.34) is obtained from first-order Taylor expansion of NLROMS in (A.29).

ADROMS computes

u∗(tl−1) =MT
l−1,lp(tl) (A.35)

where u∗(tl−1) = (pT (tl−1), δf
T (tl), δb

∗T (tl))
T where p is the adjoint state-vector, δfT and

δb∗T are the adjoint of the surface forcing and the open boundary condition increments.

A.3.1 DD–4DVAR DA in ROMS model

The DD method proposed in Section 3.3 is made up of decomposition of the domain of com-

putation Ω ×∆ into subdomains where Ω is the 3D spatial domain and ∆ is the time interval,

APPENDIX A. APPENDIX 195

Figure A.1: A flow chart illustrating IS4D-Var algorithm.

solution of reduced forecast model and minimization of local 4DVAR functionals. Relying on

the existing software implementation, in the next we describe the main components of DD–

4DVAR method, highlighting the topics that we will address both on the mathematical problem

APPENDIX A. APPENDIX 196

Figure A.2: A flow chart illustrating RBL4DVAR algorithm.

underlying ROMS and the code implementation.

We focus on IS4DVAR formulation described in Section A.3.

APPENDIX A. APPENDIX 197

In the following, we introduce the decomposition in space and time of the ocean model.

• Decomposition of spatial domain Ω.

We will consider a 2D decomposition of Ω ⊆ R3 in x- and y-direction and denote Ωxy the

spatial domain to decompose.

ROMS uses a parallelization1 approach that partitions domain Ωxy into tiles (see Figure

A.3).

Ωxy =

Nsub−1⋃︂
i=0

tilei (A.36)

where Nsub = NtileI × NtileJ ; NtileI and NtileJ are the number of tiles set in the

input file in x- and y-direction, respectively.

We denote by HI and HJ the overlapping tiles regions (i.e ghost or halo area in ROMS2)

in x- and y-direction, respectively.

Step 0: DD of Ω in ROMS.

In our study we will assume the decomposition available in ROMS, as given in

(A.36).

• Decomposition of time interval ∆.

ROMS does not implement a decomposition in time direction.

1https://www.myroms.org/wiki/Parallelization
2In ROMS, the halo area would be two grids points wide unless the MPDATA advection scheme is used, in

which case it needs three.

APPENDIX A. APPENDIX 198

Step 1: DD of ∆ in ROMS.

In our study we will introduce a decomposition of time interval ∆ intoNt intervals:

∆ =
Nt⋃︂
k=1

∆k :=
Nt⋃︂
k=1

[ts̄k−1
, ts̄k−1+Nk

], (A.37)

where Nk = |D(∆k)| are respectively the number of subdomains of [0, T] and of

time tl ∈ ∆k such that
∑︁Nt

k=1Nk− (Nt− 1) = N , s̄k−1 :=
∑︁k−1

j=1 Nj − (k− 1) and

s̄0 := 0.

Figure A.3: A tiled grid in xy-plane with some internal ROMS parameters.

• Ocean model reduction.

ROMS allows each tile (or subdomain, see Figure A.3) to compute local solutions of TL-

ROMS and ADROMS.

APPENDIX A. APPENDIX 199

For i = 0, 1, . . . , Nsub − 1 and k = 1, . . . , Nt local3 TLROMS on local domain tilei

computes

δxROMS
i (tl) ≃Mi,(l−1,l)ui(tl−1) (A.38)

and local ADROMS on local domain tilei computes

u∗i (tl−1) =MT
i,(l−1,l)pi(tl), (A.39)

where xi, ui, u∗i , Mi, pi are the restriction on tilei of variables x, u, u∗, M and p and

Mi,(l−1,l) is discrete model from tl−1 to tl.

DD–4DVAR method introduces the model reduction by using the background xb as local

initial values. For n = 0, 1, . . . , n̄ (outer loop of DD–4DVAR method [33]) do: for

k = 1, . . . , Nt, posed x0i,k ≡ xbi,k ∀i = 0, 1, . . . , Nsub − 1, we let xMi,k

i,k be the solution of

the local model

(P
Mi,k,n

i,k)i=0,1...,Nsub−1,r=1,...,Nt :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x
Mi,k,n

i,k =Mi,kx
n
i,k−1 + bi,k,

xni,k−1 = x
Mi,k,n

i,k ,

xni,k−1/HI = xniI ,k−1/HI, (A.40.1)

xni,k−1/HJ = xniJ ,k−1/HJ, (A.40.2)

(A.40)

where iI = 0, . . . , nI − 1, iJ = 0, . . . , nJ − 1, nI and nJ are respectively numbers

of adjacent tiles in x- and y-direction, bki,r and M r
i are respectively the background on

tilei ×∆r, the vector accounting boundary conditions of tilei and the restriction in tilei

of the matrix in (A.29) that is

Mk ≡Ms̄r−1,s̄r :=Ms̄r−1,s̄r−1+1 · · ·Ms̄r−1,s̄r .

3Let x ∈ RNp and y ∈ RNp×N be vectors, for simplicity of notations, we refer to xi as a restriction of x

to Ωi, i.e. xi ≡ x/Ωi and xi,k ≡ x/(Ωi × ∆k), similarly for matrix A ∈ RNp×Np , i.e. Ai ≡ A/Ωi and

Ai,k ≡ A/(Ωi ×∆k), according the description in [8].

APPENDIX A. APPENDIX 200

In the following, we neglect the dependency on outer loop iteration n of DD–4DVAR

method. We underline that local TLROMS and ADROMS in (A.34) and (A.35) are ob-

tained with MPI exchange for boundary conditions, regardless of local solution on over-

lap area, namely they not consider overlapping tiles conditions in (A.40.1) and (A.40.2).

Consequently, we need to modify local TLROMS and ADROMS in (A.38) and (A.39)

taking into account of (A.40.1) and (A.40.1) conditions. More precisely,

Step 2: TLROMS.

for k = 1, . . . , Nt, ∀i = 0, 1, . . . , Nsub − 1, local TLROMS on tilei ×∆k will be

modified such that

δxi,k ≃Mi,kui,k−1 + θI(ui,k−1) + θJ(ui,k−1) (A.41)

where

θJ(ui,k−1) :=
∑︁nJ

iJ=1 γiJ (Mi,k/HJ · ui,k−1/HJ−

Mk/HJ · ui,k−1/HJ)
(A.42)

and

θI(ui,r−1) :=
∑︁nI

iI=1 γiI (M
r
i /HI · ui,r−1/HI−

M r
i /HI · ui,r−1/HI)

(A.43)

are overlapping vectors in x- and y-direction, respectively; where parameters γiI ,

γiJ denote weights.

Similarly, we need to modify local ADROMS in (A.39). More precisely,

APPENDIX A. APPENDIX 201

Step 3: ADROMS.

for k = 1, . . . , Nt, ∀i = 0, 1, . . . , Nsub − 1, local ADROMS in (A.39) on local

domain tilei ×∆k will be modified such that

ui,k−1 = (Mi,r)
T · pi,k + θJ(pi,k−1) + θI(pi,k−1) (A.44)

where θJ and θI are defined in (A.42) and (A.43).

• 4DVAR DA Operator Reduction. Operator reduction involves the inner loop in Figure

A.1.

ROMS computes and minimizes the operator

JROMS
tilei

:= JROMS/tilei (A.45)

where JROMS is defined in (A.30) and JROMS/(tilei) is the IS4D-Var functional in each

tile tilei with MPI exchange of boundary conditions, ∀i = 0, 1, ..., Nsub − 1.

Local 4D–VAR DA functional in [33] is defined as follows

JDD−4DV AR
tilei×∆r

:= Ji,k(xi,k) = J(xi,k)/(tilei ×∆k) + OIJ(xi,k) (A.46)

where

J(x) = α∥x− xb∥2B−1 + ∥Gx− y∥2R−1 , (A.47)

is the DD–4DVAR functional in [33],

OIJ(xi,k) =

nI∑︂
iI=1

βiI ,k · ∥xi,k/HI −xiI ,k/HI∥2B−1
iI

+

nJ∑︂
iJ=1

βiJ ,k · ∥xi,k/HJ −xiJ ,k/HJ∥2B−1
ij

(A.48)

is the overlapping operator on overlapping tiles region HI and HJ , and

Ji,k(xi,k)/(tilei ×∆k) = αi,k · ∥xi,k − x
Mi,k

i,k ∥B−1
i

+ ∥Gi,rxi,k − yi,k∥2R−1
i

(A.49)

APPENDIX A. APPENDIX 202

is the restriction of J on tilei × ∆k, where xb is background, y is observations vector

in ∆, yi,k is observations vector in ∆k; Bi, BiI , BiJ are respectively the restrictions of

covariance matrix B to tilei, HI and HJ ; Gi,r, Ri are the restriction of matrices G

and R to tilei in ∆k. Parameters αi,r, βiI and βiJ in (A.48) denotes the regularization

parameters. We let αi,k = βiI ,k = βiJ ,k = 1, ∀iI = 1, . . . , nI and ∀iJ = 1, . . . , nJ .

Incremental formulation of local 4D–VAR DA functional in (A.46) is

Ji,k(δzi,k) = J(δzk)/(tilei ×∆k) + OIJ(δzi,k)

where δzi,k are the control variable increments in tilei ×∆k.

Step 4: IS4D-Var.

From (A.47) local IS4D-Var function in (A.45) can be written

JROMS
loc = JDD−4DV AR

tilei×∆ − OIJ (A.50)

Consequently, we need to add overlapping operator in order to enforce the

matching of local solutions on the overlapping tiles in each time interval.

A.3.2 DD–4DVAR DA in ROMS code

In Figure A.5 the ROMS directory structure is shown. We focus on ROMS folder, in

particular, on its folders: Tangent and Adjoint.

1. ROMS.

We need to modify routines in ROMS folder implementing decomposition as in

APPENDIX A. APPENDIX 203

Figure A.4: Placement of variables on an Arakawa C grid.

(A.37) (see step 1).

Decomposition of time interval involves modification of initial conditions of non-

linear model, in TLROMS and ADROMS.

Routines involving initialization are (see Figure A.5):

(a) initial routine in Nonlinear folder: initializes all model variables (it is called in

main3d).

Note 1.1 (see step 1)

Initial routine initializes all model variable before calling main3d

routine (in Nonlinear folder). Main3d routine is the main driver solving

nonlinear ROMS model (background).

APPENDIX A. APPENDIX 204

Figure A.5: ROMS directory structure.

DD in x- and y- directions is not applied for computing background, i.e.

there are not MPI communications among processes.

This means that background is computed without using DD in space,

consequently we not apply DD in time.

Moreover, some values of u, v (components velocity) are not set to zero

at the end of time step, because its values on some grid points are neces-

sary for the next time step.

APPENDIX A. APPENDIX 205

(b) tl initial routine in Tangent folder: initializes all tangent model variables (it is

called in i4dvar).

Note 1.2 (see step 1).

We consider tl initial routine. Parts involving initializations are:

– line 123: Initializes time stepping indices and counter.

– line 162: initialization time.

(c) ad initial routine in Adjoint folder: initializes all adjoint model variables(it is

called in i4dvar).

Note 1.3 (see step 1).

We consider ad initial routine. Parts involving initializations are:

– line 113: Initializes time stepping indices and counter.

– line 152: initialization time.

Main actions to apply DD in time in ROMS are described below.

APPENDIX A. APPENDIX 206

Action 1.1 (see step 1).

(a) Modify initials routines by adding MPI communications for initial con-

ditions to tangent and adjoint routines in each time interval.

(b) Decompose time interval (RunInterval variable in routines). One pos-

sible way forward:

– We need to use OMP threadprivate directive for replicating vari-

ables related to time interval such that each thread has its own

copy. (see mod parallel routine in Module folder at line 51 re-

lated to DD in space).

Allocate routine in mod parallel allocates tiles; equally we can

allocate local time interval and related variables.

– We can add allocation and OMP threadprivate directive of lo-

cal time intervals in mod parallel routine. We can define

first time interval (first time interval) and last time interval

(last time interval) and add a for loop, after for loop involving

tiles, started from first time interval up to last time interval adding

a time step (dt) defined in driver.

* tl main3d: at line 277 stars for loop involves tiles.

* ad main3d: at line 629 stars for loop involves tiles.

– Identify tangent and adjoint variables for MPI communications in

time.

(c) Introduce MPI communications in time.

APPENDIX A. APPENDIX 207

– We need to split ROMS MPI communicator (OCN COMM WORLD)

for obtaining MPI communicators needed to communications among

processes related to same spatial subdomain but different time inter-

vals.

By splitting ROMS MPI communicator we obtained a new MPI com-

municator namely one single communicator for the current process.

Action 1.2 (see step 1).

Step 1 involves:

– tl main3d routine: at line 142 starts while loop on time interval (Run-

Interval) by increasing the step time (my steptime). Moreover, at lines

278 and 280 it calls tl set massflux and tl rho eos, i.e. the routines

we need to modify (see Action 2.1,2,3,4). Consequently, we probably

need to introduce in tl main3d MPI communications in time after the

tl set massflux and tl rho eos routines.

– ad main3d routine: at line 177 starts while loop on time interval (Run-

Interval) by increasing the step time (my steptime). Moreover, at lines

632 and 634 it calls ad rho eos and ad set massflux, i.e. the routines

we need to modify (see Action 3.1 and 3.2). Consequently, we proba-

bly need to introduce in ad main3d MPI communications in time after

the ad set massflux and ad rho eos routines.

2. TLROMS.

We need to modify TLROMS as in (A.41) (see step 2), namely we need to compute

the overlapping vector in (A.42) and (A.43) and add them to tangent variables.

APPENDIX A. APPENDIX 208

Action 2.1 (see step 2).

We could consider another inner loop (inside the loop over m in Figure A.1)

over index n and initial approximation of solution on local tiles at n = 0. For

each iteration we need local solution on tile adjacent to each tile, this means

using MPI exchange of information between adjacent tiles (in two direction

see Figure A.4).

We note that primitive equations of motion [99] are written in flux form transformed

using orthogonal curvilinear coordinates (ξ, η) (see Figure A.4).

We consider tl main3d routine. In tangent folder (see Figure A.5) this routine is the

main driver of TLROMS configurated as a full 3D baroclinic ocean model.

tl main3d routine calls the following subrountines.

(a) tl set massflux calls tl set massflux tile.

tl set massflux tile: computes “in situ” tangent linear horizontal mass flux.

Action 2.2 (see step 2).

Taking into account (A.42) and (A.43) we need to modify the code start-

ing from line 155.

(b) tl rho eos calls tl rho eos tile.

tl rho eos tile: computes “in situ” the density and other quantities (tempera-

ture, salinity,. . .).

APPENDIX A. APPENDIX 209

Action 2.3 (see step 2).

Parts to be modified:

i. Line 505: computes ”in situ” density anomaly;

ii. Line 591: computes ”in situ” Brunt-Vaisala frequency;

iii. Line 1158: computes ”in situ” Brunt-Vaisala frequency;

(c) tl omega: computes vertical velocity (no modifications because DD is only

horizontal, there are not overlap region along vertical direction).

3. ADROMS.

Similarly to TLROMS, we need to modify ADROMS as in (A.44) (see step 3),

namely we need to compute and add the overlapping vector in (A.42) and (A.43) to

adjoint variables.

We consider ad main3d routine. In Adjoint folder (see Figure A.5) this routine is

the main driver of ADROMS configurated as a full 3D baroclinic ocean model.

ad main3d routine calls the following subrountines.

(a) ad rho eos: computes “in situ” density and other associated quantities.

Action 3.1 (see step 3).

Parts that should be modified:

i. Lines 797 and 1758: compute ”in situ” adjoint Brut-Vaisala fre-

quency at horizontal points.

ii. Line 1070: computes ”in situ” adjoint density anomaly.

APPENDIX A. APPENDIX 210

(b) ad set mass flux: compute “in situ” adjoint horizontal mass fluxes.

Action 3.2 (see step 3).

Part that should be modified:

i. Line 201: computes ”in situ” adjoint horizontal mass fluxes

(c) ad set avg: accumulates and computes output time-averaged adjoint fields. (prob-

ably no modifications are needed).

4. IS4D-Var.

We need to modify routines in ROMS folder as in (A.50) (see step 4).

Action 4.1 (see step 4).

We need to modify IS4DVAR cost function in (A.30) to take in account over-

lap region i.e. halo region.

Main modification to apply DD in time in ROMS is described by point (c) in Action 1.1, i.e.

introduction of MPI communications in time. More precisely, we need to introduce and man-

age the MPI communication in space and time. The introduction of DD in time involves the

following communications among processes:

• Intra communications: by splitting MPI communicator (OCN COMM WORLD) to cre-

ate local communicators (TASK COMM WORLD) to allow communications among pro-

cesses related to same spatial subdomain but different time intervals.

MPI commands are

– MPI Comm split: partitions the group of MPI processes into disjoint subgroups and

APPENDIX A. APPENDIX 211

Figure A.6: Scheme of M-File functions related to DyDDST algorithm: DYDD S T.m and redis-

tribution.m; DD–4DVAR algorithm: DD 4DVAR sov.m; DD-KF-CLS algorithm: DD KF CLS.m;

and DD-KF algorithm: dd kf modello.m.

creates a new communicator (TASK COMM WORLD) for each subgroup.

– MPI Isend and MPI Irecv: sends and receives initial conditions by setting the new

communicator obtained from MPI Comm split.

• Inter communications: by creating new communicators (OCNi COMM WORLD) to al-

low communications among processes related to different spatial subdomains but same

time interval.

MPI commands are

– MPI Intercomm create: creates an intercommunicator for each subgroup.

– MPI Isend and MPI Irecv: sends and receives boundary conditions by setting the

new communicator obtained from MPI Intercomm create.

A.4 MATLAB codes

In this section, we report M-files used to obtain the results in section 5.

APPENDIX A. APPENDIX 212

DD KF CLS.m

function [Xk_1,T_tot_i] = DD_KF_CLS(R,A_tot,Xk_prev_tot,Q2,b,n1,m,nsub,a,m1,nt)

%function of DD-KF algorithm to CLS problem

%input

%a_tot,A_tot:matrices to costruct a CLS problem

%m,n:matrices dimensions

%Xk_prev_tot: initial estimate

%X: KF estimate

%R,Q,Q1:covariance matrices

%nsub:number of workers

%output

%Xk_1: DD-KF estimete

%T_tot_i: execution time

%%

%%

%costriction of local matrices

%initializzazion

A=zeros(size(A_tot,1),n1/p,p);

K=zeros(size(A_tot,2),size(A_tot,2),p);

Xk_prev=zeros(n1/p,p);

for i=1:p

A(:,:,i)=A_tot(:,1+n1/p*(i-1):n1/p*i);

K(:,:,i)=A(:,:,i)’*Q2(1:m,1:m)*A(:,:,i);

Xk_prev(:,i)=Xk_prev_tot(1+n1/p*(i-1):n1/p*i);

end

%initializzation local solution

Xk=zeros(n1/p,1);

%covariance matrices

P=zeros(n1,n1,nsub);

for h=1:nsub

P((h-1)*(n1)+1:(h)*(n1),:,h)=0.5*eye(n1,n1);

end

APPENDIX A. APPENDIX 213

%paralell section

spmd(p)

h=labindex;

t1=tic;

for j_1=1:nt

%send and receive informations to compute local Kalman gains

for h_ad=1:nsub

if(h_ad˜=h)

labSend(P((h-1)*(n1)+1:(h)*(n1),:,h),h_ad)

P_adi2((h_ad-1)*(n1)+1:(h_ad)*(n1),:)=labReceive(h_ad);

end

end

P_adi2((h-1)*(n1)+1:(h)*(n1),(h-1)*(n1)+1:h*(n1)) =P((h-1)*(n1)+1:h*(n1),(h-1)*(n1)+1:h*(n1),h);

H=a;

Somma=zeros(size(H,1),n1);

for j=1:nsub

S_d1=Somma+H(:,(j-1)*(n1)+1:j*(n1))*P_adi2((j-1)*(n1)+1:j*(n1),(h-1)*(n1)+1:h*(n1));

Somma= S_d1;

end

S_d= (S_d1)*H(:,(h-1)*(n1)+1:h*(n1))’;

Sd_tot=zeros(size(H,1),size(H,1),nsub);

for h_ad=1:nsub

if(h_ad˜=h)

labSend(S_d,h_ad)

Sd_tot(:,:,h_ad)=labReceive(h_ad);

end

end

somma5=zeros(size(H,1),size(H,1));

Sd_tot(:,:,h)=S_d;

for j=1:nsub

S_d=somma5+Sd_tot(:,:,j);

somma5=S_d;

end

S_d=S_d+R;

Somma1=zeros(n1,size(H,1));

for j=1:nsub-1

APPENDIX A. APPENDIX 214

K=Somma1+P((h-1)*(n1)+1:h*(n1),(j-1)*(n1)+1:(j)*(n1),h)*H(:,(j-1)*(n1)+1:(j)*(n1))’;

Somma1=K;

end

K=K*inv(S_d);

%computation con covariances matrices

P_n2=zeros(n,n,nsub);

for h_ad=1:nsub

if(h˜=h_ad)

labSend(P((h-1)*(n1)+1:(h)*(n1),:,h),h_ad)

P_adi((h_ad-1)*(n1)+1:(h_ad)*(n1),:)=labReceive(h_ad);

end

end

for j=1:nsub

Somma2=zeros(n1,n1);

for i=1:nsub

if (i˜=h)

Somma2=-K*H(:,(i-1)*(n1)+1:(i)*(n1))*P_adi((i-1)*(n1)+1:(i)*(n1),(j-1)*(n1)+1:j*(n1))

+Somma2;

end

end

P_n2((h-1)*(n1)+1:h*(n1),(j-1)*(n1)+1:j*(n1),h)=(eye(n1,n1)-K*H(:,(h-1)*(n1)+1:(h)*(n1)))

P((h-1)(n1)+1:h*(n1),(j-1)*(n1)+1:j*(n1),h)+Somma2;

end

P=P_n2;

%send and receive information to compute local KF solution

if (h==1)

Xk_prev_AD=zeros(n1,nsub);

for h_ad=1:nsub

if(h˜=h_ad)

labSend(Xk_prev(:,h),h_ad);

Xk_prev_AD(:,h_ad)=labReceive(h_ad);

end

end

APPENDIX A. APPENDIX 215

somma=zeros(size(H,1),1);

for j=1:nsub

if(j˜=h)

somma=somma+(H(:,(j-1)*(n1)+1:(j)*(n1))*Xk_prev_AD(:,j));

end

end

Xk_1 = Xk_prev(:,h)+K*(b((h-1)*m1+1:h*m1,j_t)-((H(:,(h-1)*(n1)+1:(h)*(n1))*Xk_prev(:,h)+somma)));

%send and receive information to compute local KF solutin

labSend(Xk_1,2);

Xk_prev(:,h+1)=labReceive(2);

%local KF solution

Xk_prev(:,h)=Xk_1;

elseif(h==nsub)

Xk_prev_AD=zeros(n1,nsub);

for h_ad=1:nsub

if(h˜=h_ad)

labSend(Xk_prev(:,h),h_ad)

Xk_prev_AD(:,h_ad)=labReceive(h_ad);

end

end

somma=zeros(size(H,1),1);

for j=1:nsub

if(j˜=h)

somma=somma+(H(:,(j-1)*(n1)+1:(j)*(n1))*Xk_prev_AD(:,j));

end

end

Xk_1 = Xk_prev(:,h)+K*(y(:,j_t)-((H(:,(h-1)*(n1)+1:(h)*(n1))*Xk_prev(:,h)+somma)));

labSend(Xk_1,h-1);

Xk_prev(:,h-1)=labReceive(h-1);

%local KF solution

Xk_prev(:,h)=Xk_1;

else

Xk_prev_AD=zeros(n1,nsub);

for h_ad=1:nsub

if(h˜=h_ad)

APPENDIX A. APPENDIX 216

labSend(Xk_prev(:,h),h_ad)

Xk_prev_AD(:,h_ad)=labReceive(h_ad);

end

end

somma=zeros(size(H,1),1);

for j=1:nsub

if(j˜=h)

somma=somma+(H(:,(j-1)*(n1)+1:(j)*(n1))*Xk_prev_AD(:,j));

end

end

Xk_1 = Xk_prev(:,h)+K*(b((h-1)*m1+1:h*m1,j_t)-((H(:,(h-1)*(n1)+1:(h)*(n1))*Xk_prev(:,h)+somma)));

labSend(Xk_1,h-1);

Xk_prev(:,h-1)=labReceive(h-1);

labSend(Xk_1,h+1);

Xk_prev(:,h+1)=labReceive(h+1);

%local KF solution

Xk_prev(:,h)=Xk_1;

end

end

Tp=gop(@max,toc(t1));

Xk_1=gcat(Xk,1);

end

toc

%execution time

T_tot_i=Tp{1};

Xk_1=Xk_1{1};

end

dd kf modello.m

function [Xk_1,Xk]=dd_kf_modello(Nx,nt,y,b_t,eta,psi,Xk_prev_t,r_n,r_f,R,nsub)

%function for DD-KF algorithm to the initial boundary problem of SWEs.

%input

APPENDIX A. APPENDIX 217

%Nx: number of discretization points in spatial domain

%s: size of overlap pf spatial subdomains

%nt:number of istants time

%y: observations vector

%b_t: vector concerning boundaries conditions

%eta,psi: vector to costruct model matrix

%Xk_prev_t:background

%r_n: initial istant time of time intrerval

%r_f: final istant time of time intrerval

%R: observation error covariance matrix;

%nsub: number of workers

%output

%Xk_1: DD-KF estimate

%Xk:KF estimate

%define local size

n=Nx;

n1=n/nsub;

%number of observations

k=size(y,1);

%%%Vector of the indices in correspondence of which corresponds a

%%%observation

vett=(1:n);

vett=vett(1:k);

%determine the observations matrix H

H=zeros(k,n);

for i=1:k

for j=1:n

if (j==vett(i))

H(i,j)=1;

else

H(i,j)=0;

end

end

end

%costruction of covariances matrices

C=zeros(n,n);

APPENDIX A. APPENDIX 218

for i=1:n

for j=1:n

if (abs(i-j)<n/2)

C(i,j)=exp(-1/2)ˆabs(i-j)ˆ2;

end

end

end

%costruction of covariance matrices

Q1=rand(n1,n1);

Q=blkdiag(Q1,Q1,Q1,Q1);

% schattering of background among subdomains

Xk_prev=zeros(n,nsub);

for h=1:nsub

Xk_prev(:,h)=Xk_prev_t((h-1)*(n1)+1:h*(n1));

end

%initialization

P_tot=zeros(n,n);

%KF algorithm in sequentially

for j=1:nt

%model matrix

M_h_t=diag(psi(1:n,j))+diag(eta(2:n,j),1)-diag(eta(1:n-1,j),-1);

% Predicted phase.

Xk_prev_t=M_h_t*Xk_prev_t(1:n)+b_t;

P_tot=M_h_t*P_tot*M_h_t’+Q;

%Corrector phase.

S=H_s*P_tot*H_s’+R;

%kalman gain

K_tot = P_tot*H_s’*inv(S);

%KF estimate

Xk = Xk_prev_t+K_tot*(y(:,j)-(H_s*Xk_prev_t));

Xk_prev_t=Xk;

Xk_array(:,j)=Xk;

end

%initialization

inno=zeros(k,nt);

APPENDIX A. APPENDIX 219

P=zeros(n,n,nsub);

for j1=1:nsub

P(:,:,j1)=zeros(n,n);

end

%parallel section

spmd(nsub)

h=labindex;

for j_t=r_n:r_f

M_h=diag(psi(1:n,j_t))+diag(eta(2:n,j_t),1)-diag(eta(1:n-1,j_t),-1);

% Predicted phase

if(h==1)

for i=1:nsub

somma_p=zeros(n1,n1);

for j=1:nsub

Tem=somma_p+(M_h((h-1)*(n1)+1:h*(n1),(h-1)*(n1)+1:h*(n1))*P((h-1)*(n1)+1:h*(n1),

(j-1)*(n1)+1:j*(n1),h)+(M_h((h-1)*(n1)+1:h*(n1),(h)*(n1)+1:(h+1)*(n1))*

P((h)*(n1)+1:(h+1)*(n1),(j-1)*(n1)+1:j*

(n1))))*M_h((i-1)*(n1)+1:i*(n1),(j-1)*(n1)+1:(j)*(n1))’;

somma_p=Tem;

end

P((h-1)*(n1)+1:h*(n1),(i-1)*(n1)+1:i*(n1),h)=Tem

+Q((h-1)*(n1)+1:h*(n1),(i-1)*(n1)+1:i*(n1));

end

Xk_prev(:,h)=M_h((h-1)*(n1)+1:h*(n1),(h-1)*(n1)+1:h*(n1))

Xk_prev(:,h)+M_h((h-1)(n1)+1:h*(n1),(h)*(n1)+1:(h+1)*(n1))

Xk_prev(:,h+1)+b((h-1)(n1)+1:h*(n1),j_t);

elseif(h==nsub)

for i=1:nsub

somma_p=zeros(n1,n1);

for j=1:nsub

Tem=somma_p+(M_h((h-1)*(n1)+1:h*(n1),(h-1)*(n1)+1:h*(n1))*

P((h-1)*(n1)+1:h*(n1),(j-1)*(n1)+1:j*(n1),h)

+(M_h((h-1)*(n1)+1:h*(n1),(h-2)*(n1)+1:(h-1)*(n1))

P((h-2)(n1)+1:(h-1)*(n1),(j-1)*(n1)+1:j*(n1),h)))

M_h((i-1)(n1)+1:i*(n1),(j-1)*(n1)+1:(j)*(n1))’;

somma_p=Tem;

end

P((h-1)*(n1)+1:h*(n1),(i-1)*(n1)+1:i*(n1),h)=Tem+

Q((h-1)*(n1)+1:h*(n1),(i-1)*(n1)+1:i*(n1));

end

APPENDIX A. APPENDIX 220

Xk_prev(:,h)=M_h((h-1)*(n1)+1:h*(n1),(h-1)*(n1)+1:h*(n1))

Xk_prev(:,h)+M_h((h-1)(n1)+1:h*(n1),(h-2)*(n1)+1:(h-1)*(n1))

*Xk_prev(:,h-1)

+b((h-1)*(n1)+1:h*(n1),j_t);

else

for i=1:nsub

somma_p=zeros(n1,n1);

for j=1:nsub

Tem=somma_p+

(M_h((h-1)*(n1)+1:h*(n1),(h-1)*(n1)+1:h*(n1))

P((h-1)(n1)+1:h*(n1),(j-1)*(n1)+1:j*(n1),h)+

(M_h((h-1)*(n1)+1:h*(n1),(h-2)*(n1)+1:(h-1)*(n1))

P((h-2)(n1)+1:(h-1)*(n1),(j-1)*(n1)+1:j*(n1)))

+(M_h((h-1)*(n1)+1:h*(n1),(h)*(n1)+1:(h+1)*(n1))*

P((h)*(n1)+1:(h+1)*(n1),(j-1)*(n1)+1:j*(n1))))

M_h((i-1)(n1)+1:i*(n1),(j-1)*(n1)+1:(j)*(n1))’;

somma_p=Tem;

end

P((h-1)*(n1)+1:h*(n1),(i-1)*(n1)+1:i*(n1),h)=Tem+Q((h-1)*(n1)+1:h*(n1),(i-1)*(n1)+1:i*(n1));

end

Xk_prev(:,h)=M_h((h-1)*(n1)+1:h*(n1),(h-1)*(n1)+1:h*(n1))

Xk_prev(:,h)+M_h((h-1)(n1)+1:h*(n1),(h-2)*(n1)+1:(h-1)*(n1))

Xk_prev(:,h-1)+M_h((h-1)(n1)+1:h*(n1),(h)*(n1)+1:(h+1)*(n1))

Xk_prev(:,h+1)+b((h-1)(n1)+1:h*(n1),j_t);

end

%Corrector phase.

Somma=zeros(size(H,1),n1);

if(h==1)

S_d1=Somma+H(:,(j-1)*(n1)+1:j*(n1))*P((j-1)*(n1)+1:j*(n1),(j-1)*(n1)+1:j*(n1),j);

S_d= S_d1*H(:,1:1*(n1))’+R;

labSend(S_d,2:nsub);

else

S_d=labReceive(1);

end

Somma1=zeros(n1,size(H,1));

for j=1:nsub-1

K=Somma1+P((h-1)*(n1)+1:h*(n1),(j+1-1)*(n1)+1:(j+1)*(n1),h)*H(:,(j+1-1)*(n1)+1:(j+1)*(n1))’;

Somma1=K;

end

APPENDIX A. APPENDIX 221

K=(P((h-1)*(n1)+1:h*(n1),(h-1)*(n1)+1:h*(n1),h)*H(:,(h-1)*(n1)+1:(h)*(n1))’)*inv(S_d);

Somma2=zeros(n1,n1);

for j=1:nsub-1

P((h-1)*(n1)+1:h*(n1),(j-1)*(n1)+1:j*(n1),h)=

-K*H(:,(j+1-1)*(n1)+1:(j+1)*(n1))*

P((h-1)*(n1)+1:h*(n1),(j+1-1)*(n1)+1:(j+1)*(n1),h)

+Somma2;

Somma2=P((h-1)*(n1)+1:h*(n1),(j-1)*(n1)+1:j*(n1),h);

end

for j=1:nsub-1

P((h-1)*(n1)+1:h*(n1),(j-1)*(n1)+1:j*(n1),h)=P((h-1)*(n1)+1:h*(n1),(j-1)*(n1)+1:j*(n1),h)

+(eye(n1,n1)-K*H(:,(h-1)*(n1)+1:(h)*(n1)))*P((h-1)*(n1)+1:h*(n1),(j-1)*(n1)+1:j*(n1),h);

end

P((h-1)*(n1)+1:h*(n1),:,h)=(eye(n1,n1)-

K*H(:,(h-1)*(n1)+1:(h)*(n1)))

P((h-1)(n1)+1:h*(n1),:,h);

P_tot((h-1)*(n1)+1:h*(n1),:)

%send and receive

if (h==1)

labSend(Xk_prev(:,h),2);

Xk_prev(:,h+1)=labReceive(2);

Xk_1 = Xk_prev(:,h)+K*(y(:,j_t)

-((H(:,(h-1)*(n1)+1:(h)*(n1))*Xk_prev(:,h)

+H(:,(h)*(n1)+1:(h+1)*(n1))*Xk_prev(:,h+1))));

Xk_prev(:,h)=Xk_1;

elseif(h==nsub)

labSend(Xk_prev(:,h),h-1);

Xk_prev(:,h-1)=labReceive(h-1);

Xk_1 = Xk_prev(:,h)+K

(y(:,j_t)-((H(:,(h-1-1)(n1)+1:(h-1)*(n1))

*Xk_prev(:,h-1)

+H(:,(h-1)*(n1)+1:(h)*(n1))*Xk_prev(:,h))));

Xk_prev(:,h)=Xk_1;

else

labSend(Xk_prev(:,h),h-1);

Xk_prev(:,h-1)=labReceive(h-1);

labSend(Xk_prev(:,h),h+1);

Xk_prev(:,h+1)=labReceive(h+1);

APPENDIX A. APPENDIX 222

Xk_1 = Xk_prev(:,h)+

K*(y(:,j_t)

-((H(:,(h-1-1)*(n1)+1:(h-1)*(n1))

Xk_prev(:,h-1)+H(:,(h-1)(n1)+1:(h)*(n1))

Xk_prev(:,h)+H(:,(h)(n1)+1:(h+1)*(n1))*Xk_prev(:,h+1))));

Xk_prev(:,h)=Xk_1;

end

end

%gathering of local solution

Xk_1=gcat(Xk_1,1);

%gathering background

Xk_prev=gcat(Xk_prev);

end

Xk_1=Xk_1{1};

Xk_prev=Xk_prev{1};

end

function [X,error_globale_1,Tp,iter] = DD_4DVAR_sov(h_array,n1,s,r,b1_m,y_s,eta,psi,

n,nsub,u1_array_globale,r_n,r_f,beta,eo)

%function for running DD-4DVAR algorithm on nsub computing elements in case

%of size of overlap s>2

n2=n1;

%INPUT:

%h_array:background;

%n1: local size proble

%r: number of istants time

%b1_m: vector for boundary conditions;

%y_s:vector of observations;

%eta,psi: vector to costruct model matrix

%nsub:number of spatial subdomains;

%N:number of discretizations points of global spatial domains;

%b: vector for boundary conditions;

%r_n:initial istant time;

%r_f: final istant time.

%u1_array_globale: solution on global domain.

%beta:overlap parameter

APPENDIX A. APPENDIX 223

%OUTPUT:

%X: matrix that contains local solution;

%T1: sequential time.

%e1_p: error between local model solution e DD-4dvar estimate;

%error_global: error between global estimate and estimate obtained by

%gathering local DD-4DVAR estimates.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%numbers of observations

r1=size(y_s,1);

%vector of observations

y=y_s;

%%%Vector of the indices in correspondence of which corresponds a

%%%observation (+ random error (see SWE_DamBreak_JA.m function))

vett=round(linspace(1,n,r1));

%determine the observations matrix H

H1=zeros(r,n+1);

H1_b=zeros(r1,n+1);

for j=1:r1

for i=1:n

if(i==vett(j))

H1_b(j,i)=1;

else

H1_b(j,i)=0;

end

end

end

%observation matrix in each istant time

%(I suppose i t s always the same matrix for each istant)

for k=1:r

H1((k-1)*r1+1:r1*k,:)=H1_b;

end

%costruction of covariances matrices

%Matrix construction of the covariances of errors on the model to obtain

% a diagonal block matrix.

C1=zeros(n,n);

APPENDIX A. APPENDIX 224

for i=1:n

for j=1:n

if (abs(i-j)<n/2)

C1(i,j)=exp(-1/2)ˆabs(i-j)ˆ2;

end

end

end

c=0.5;

cr=0.5;

R=cr*eye(r1*r,r1*r);

C2=zeros(n,n);

C2(1:n1-s,1:n1-s)=C1(1:n1-s,1:n1-s);

h=nsub;

C2((h-1)*(n1-s)+1:h*(n1-s),(h-1)*(n1-s)+1:h*(n1-s))=C1(1:n1-s,1:n1-s);

for h=1:nsub

C2((h-1)*(n1-s)+1:h*(n1-s),(h-1)*(n1-s)+1:h*(n1-s))=C1(1:n1-s,1:n1-s);

end

%computation of root means square of covariance matrix B

V=zeros(n1,n1,nsub);

V(:,:,1)=chol(c*C2(1:n1,1:n1));

for h=2:nsub

V(:,:,h)=V(:,:,1);

end

V(n1,n1,nsub)=0;

V(1:s,1:s,nsub)=V(n1-s,n1-s,1);

V(s+1:n1,s+1:n1,nsub)=V(1:n1-s,1:n1-s,1);

B=zeros(n1,n1,nsub);

for h=1:nsub

B(:,:,h)=c*C2(1:n1,1:n1);

end

%costruction of matrices on overlapping region

B_r1=zeros(n1,n1,nsub);

B_r2=zeros(n2,n2,nsub);

for h=1:nsub

B_r1(n1+1-s:n1,n1+1-s:n1,h)=1/nsub*B(n1+1-s:n1,n1+1-s:n1,h);

B_r2(1:s,1:s,h)=1/nsub*B(1:s,1:s,h);

end

%number of observation in each subdomains

m1=r1/nsub;

APPENDIX A. APPENDIX 225

for h=1:nsub

condizionamento(h)=cond(B_r1(n1+1-s:n1,n1+1-s:n1,h))

%determine the observations matrix H for each subdomain

end

H=zeros(r*m1,n1,nsub);

for k=1:r

H((k-1)*m1+1:(k)*m1,1:n1,1)=H1((k-1)*r1+1:(k-1)*r1+m1,1:n1);

for h=2:nsub-1

H((k-1)*m1+1:(k)*m1,:,h)=H1((k-1)*r1+(h-1)*m1+1:(k-1)*r1+(h)*m1,(h-1)*(n1-s)+1:h*(n1-s)+s);

end

H((k-1)*m1+1:(k)*m1,:,nsub)=H1((k-1)*r1+(nsub-1)*m1+1:(k-1)*r1+(nsub)*m1,(nsub-1)*(n1-s)-(s-1):n);

end

% rhs vectors

d1=zeros(r*m1,nsub);

v=zeros(r*m1,nsub);

for k=1:r

for h=1:nsub

for j=1:m1

v((k-1)*m1+j,h)=h_array(vett(j+(h-1)*m1),k);

d1((k-1)*m1+j,h)=y(j+(h-1)*m1,k)’-v((k-1)*m1+j,h);

end

end

end

% schattering of background among subdomains

u0=h_array;

u_m(:,1:r,1)=h_array(1:n1,1:r);

for h=2:nsub-1

u_m(:,1:r,h)=h_array((h-1)*(n1-s)+1:h*(n1-s)+s,1:r);

end

u_m(:,1:r,nsub)=h_array((nsub-1)*(n1-s)-(s-1):n,1:r);

u01=zeros(n1,r,nsub);

u01(:,1:r,1)=u0(1:n1,1:r);

for h=2:nsub-1

u01(:,1:r,h)=u0((h-1)*(n1-s)+1:h*(n1-s)+s,1:r);

end

u01(:,1:r,nsub)=u0((nsub-1)*(n1-s)-(s-1):n,1:r);

u1_array_pp=zeros(n1,r,nsub);

u_p1_array_g=zeros(n1,size(u_m,2),nsub);

for h=1:nsub

APPENDIX A. APPENDIX 226

u_p1_array_g(:,:,h)=u_m(:,:,h);

end

%initializzation

maxiter_DD=10;

%iter_DD=1;

tol=10ˆ-3;

e1_b=1000*ones(maxiter_DD,1);

%e2_b(iter_DD,h)=1000;

w1_p=zeros(n1,1);

u1_array=zeros(n1,r);

M1=zeros(n1,n1,nsub);

%parallel section

%tic

spmd(nsub)

%initializzation

u1_p=zeros(n1,r);

w1=zeros(n1,1);

u1=zeros(n1,r);

u1_array_p=zeros(n1,r);

r1=m1;

errore_seq=zeros(r,1);

h=labindex;

%function for execution time

t1=tic;

%%% loop in time for the fist iteration respect to n.

for k=r_n:r_f

%solving local 4DVAR problem

if h==1

A1_tot=V(:,:,h)’*H(1:k*r1,:,h)’*R(1:k*r1,1:k*r1)*H(1:k*r1,:,h)*V(:,:,h)+eye(n1,n1);

A1_tot=A1_tot+1*B_r1(:,:,h);

c1=(V(:,:,h)’*(H(1:k*r1,:,h)’*(R(1:k*r1,1:k*r1)*d1(1:k*r1,h))));

elseif(h==nsub)

A1_tot=V(:,:,h)’*H(1:k*r1,:,h)’*R(1:k*r1,1:k*r1)*H(1:k*r1,:,h)*V(:,:,h)+eye(n1,n1);

A1_tot=A1_tot+1*B_r2(:,:,h);

c1=(V(:,:,h)’*(H(1:k*r1,:,h)’*(R(1:k*r1,1:k*r1)*d1(1:k*r1,h))));

else

A1_tot=V(:,:,h)’*H(1:k*r1,:,h)’*R(1:k*r1,1:k*r1)*H(1:k*r1,:,h)*V(:,:,h)+eye(n1,n1);

A1_tot=A1_tot+B_r1(:,:,h)+B_r2(:,:,h);

c1=(V(:,:,h)’*(H(1:k*r1,:,h)’*(R(1:k*r1,1:k*r1)*d1(1:k*r1,h))));

end

APPENDIX A. APPENDIX 227

%vector on boundaries

w1_r=zeros(n1,1);

w2_r=zeros(n1,1);

%initializzation

iter_DD1=1;

e1_b2=100*ones(maxiter_DD,1);

while (iter_DD1<maxiter_DD && e1_b2(iter_DD1)>tol)

if h==1

b1=c1+beta*B_r1(:,:,h)*w1_r;

elseif(h==nsub)

b1=c1+beta*B_r2(:,:,h)*w2_r;

else

b1=c1+beta*B_r1(:,:,h)*w1_r+beta*B_r2(:,:,h)*w2_r;

end

[w1,˜,˜,ITER]=pcg(A1_tot,b1,10ˆ-4,size(B,1),B(:,:,h));

%DD error

e1_b2(iter_DD1)=norm(w1-w1_p);

w1_p=w1;

iter_DD1=iter_DD1+1;

%define indices

if h < numlabs

rcvWkrIdx = labindex + 1;

else

rcvWkrIdx = [];

end

if labindex > 1

srcWkrIdx = labindex - 1;

else

srcWkrIdx = [];

end

%send and receive to adjcent subdomains

w1_pr2 = labSendReceive(rcvWkrIdx,srcWkrIdx,w1_p((n1)-s+1:(n1)));

APPENDIX A. APPENDIX 228

%define indices

if h>1

rcvWkrIdx = labindex - 1;

else

rcvWkrIdx = [];

end

if h<numlabs

srcWkrIdx = labindex + 1;

else

srcWkrIdx = [];

end

%send and receive to adjcent subdomains

w1_pr1 = labSendReceive(rcvWkrIdx,srcWkrIdx,w1_p(1:s));

w1_r=[zeros(n1-s,1)’ w1_pr1’]’;

w2_r=[w1_pr2’ zeros(n1-s,1)’]’;

end

%local solutions

if(h==1)

u1_p(:,k)=u_m(:,k,h)+V(:,:,h)*w1;

elseif(h==nsub)

u1_p(:,k)=u_m(:,k,h)+V(:,:,h)*w1;

else

u1_p(:,k)=u_m(:,k,h)+V(:,:,h)*w1;

end

u1_array(:,k)=u1_p(:,k);

end

%initializzation

iter=1;

maxiter=5;

error_iter(1)=100;

error_iter(2:maxiter)=zeros(maxiter-1,1);

while (iter<maxiter && error_iter(iter)>tol)

%initial condition to local models

u1_k=u01;

%initialization

e1_p=zeros(maxiter_DD,r,nsub);

APPENDIX A. APPENDIX 229

for k=r_n+1:r_f

M=diag(psi(1:n,k))+diag(eta(2:n,k),1)-diag(eta(1:n-1,k),-1);

if(h==1)

M1(:,:,h)=M(1:n1,1:n1);

elseif(h==nsub)

M1(:,:,h)=M((h-1)*(n1-s)-(s-1):n,(h-1)*(n1-s)-(s-1):n);

else

M1(:,:,h)=M((h-1)*(n1-s)+1:(h)*(n1-s)+s,(h-1)*(n1-s)+1:(h)*(n1-s)+s);

end

%solving local models

if (h==nsub)

u1_g=M1(:,:,h)*u1_k(:,k-1,h)+[M((h-1)*(n1-s)-(s-1):h*(n1-s),(h-2)*(n1-s)+1:(h-1)*(n1-s)-s)

zeros(n1,2*s)]

*u1_k(:,k-1,h-1)+b1_m(:,k,h);

elseif(h==1)

u1_g=M1(:,:,h)*u1_k(:,k-1,h)+

[zeros(n1,s) M((h-1)*(n1-s)+1:h*(n1-s)+s,(h)*(n1-s)+1:(h+1)*(n1-s))]

*u1_k(:,k-1,h+1)+b1_m(:,k,h);

elseif(h==2)

u1_g=M1(:,:,h)*u1_k(:,k-1,h)+

[zeros(n1,s) M((h-1)*(n1-s)+1:h*(n1-s)+s,(h)*(n1-s)+1+s:(h+1)*(n1-s)) zeros(n1,s)]

u1_k(:,k-1,h+1)+[M((h-1)(n1-s)+1:h*(n1-s)+(s),(h-2)*(n1-s)+1:(h-1)*(n1-s)) zeros(n1,s)]

*u1_k(:,k-1,h-1)+b1_m(:,k,h);

elseif(h==nsub-1)

u1_g=M1(:,:,h)*u1_k(:,k-1,h)+

[zeros(n1,2*s) M((h-1)*(n1-s):h*(n1-s)+(s-1),(h)*(n1-s)+1:(h+1)*(n1-s)-s)]

*u1_k(:,k-1,h+1)+

[M((h-1)*(n1-s)+1:h*(n1-s)+s,(h-2)*(n1-s)+1:(h-1)*(n1-s)) zeros(n1,s)]

*u1_k(:,k-1,h-1)+b1_m(:,k,h);

else

u1_g=M1(:,:,h)*u1_k(:,k-1,h)+

[zeros(n1,s) M((h-1)*(n1-s):h*(n1-s)+(s-1),(h)*(n1-s)+1:(h+1)*(n1-s)-2*s+1+(s-1)) zeros(n1,s)]

u1_k(:,k-1,h+1)+[M((h-1)(n1-s)+1:h*(n1-s)+s,(h-2)*(n1-s)+1:(h-1)*(n1-s)) zeros(n1,s)]

*u1_k(:,k-1,h-1)+b1_m(:,k,h);

end

%DD-4DVar solution on subdomains

u1(:,k)=u1_g+u1_array(:,k)-u_p1_array_g(:,k,h);

u1_array_p(:,k)=u1(:,k);

u_p1_array_g(:,1,h)=u1(:,1);

APPENDIX A. APPENDIX 230

u_p1_array_g(:,k,h)=u1_g;

%error

if(iter==1)

e1_p(iter,k,h)=norm(u1(:,k)-u_m(:,k,h));

end

end

%initializzation

%iter_DD2=1;

%e1=zeros(maxiter_DD,nsub);

%e1(iter_DD2,h)=100;

for k=r_n:r_f

%solving local 4DVAR

if h==1

A1_tot=V(:,:,h)’*H(1:k*r1,:,h)’*R(1:k*r1,1:k*r1)*H(1:k*r1,:,h)*V(:,:,h)+eye(n1,n1);

A1_tot=A1_tot+B_r1(:,:,h);

c1=(V(:,:,h)’*(H(1:k*r1,:,h)’*(R(1:k*r1,1:k*r1)*d1(1:k*r1,h))));

elseif(h==nsub)

A1_tot=V(:,:,h)’*H(1:k*r1,:,h)’*R(1:k*r1,1:k*r1)*H(1:k*r1,:,h)*V(:,:,h)+eye(n1,n1);

A1_tot=A1_tot+B_r2(:,:,h);

c1=(V(:,:,h)’*(H(1:k*r1,:,h)’*(R(1:k*r1,1:k*r1)*d1(1:k*r1,h))));

else

A1_tot=V(:,:,h)’*H(1:k*r1,:,h)’*R(1:k*r1,1:k*r1)*H(1:k*r1,:,h)*V(:,:,h)+eye(n1,n1);

A1_tot=A1_tot+B_r1(:,:,h)+B_r2(:,:,h);

c1=(V(:,:,h)’*(H(1:k*r1,:,h)’*(R(1:k*r1,1:k*r1)*d1(1:k*r1,h))));

end

iter_DD2=1;

while (iter_DD2<maxiter_DD && e1_b(iter_DD2)>tol)

if h==1

b1=c1+beta*B_r1(:,:,h)*w1_r;

elseif(h==nsub)

b1=c1+beta*B_r2(:,:,h)*w2_r;

else

b1=c1+beta*B_r1(:,:,h)*w1_r+beta*B_r2(:,:,h)*w2_r;

end

[w1,˜,˜,ITER2]=pcg(A1_tot,b1,10ˆ-4,size(B,1),B(:,:,h));

iter_DD2=iter_DD2+1;

e1_b(iter_DD2)=norm(w1-w1_p);

w1_p=w1;

iter_DD2=iter_DD2+1;

if h < numlabs

APPENDIX A. APPENDIX 231

rcvWkrIdx = labindex + 1;

else

rcvWkrIdx = [];

end

if labindex > 1

srcWkrIdx = labindex - 1;

else

srcWkrIdx = [];

end

%communication send/receive

w1_pr2 = labSendReceive(rcvWkrIdx,srcWkrIdx,w1_p((n1)-s+1:(n1)));

if h>1

rcvWkrIdx = labindex - 1;

else

rcvWkrIdx = [];

end

if h<numlabs

srcWkrIdx = labindex + 1;

else

srcWkrIdx = [];

end

%communication send/receive

w1_pr1 = labSendReceive(rcvWkrIdx,srcWkrIdx,w1_p(1:s));

w1_r=[zeros(n1-s,1)’ w1_pr1’]’;

w2_r=[w1_pr2’ zeros(n1-s,1)’]’;

end

%update

u1_array(:,k)=u_p1_array_g(:,k,h)+V(:,:,h)*w1;

%e1_p(iter,h)=norm(u1_array_pp(:,1:r/2,h)-u1_array_p(:,1:r/2,h))

u1_array_pp(:,k,h)=u1_array_p(:,k);

u1_array_p(:,k)=u1_array(:,k);

%error between iterations

e1_p(iter,k,h)=norm(u1_array_pp(:,k,h)-u1_array_p(:,k));

if (h==1)

u1_array(:,1)=h_array(1:n1,1);

elseif(h==nsub)

u1_array(:,1)=h_array((nsub-1)*(n1-s)-(s-1):n,1);

APPENDIX A. APPENDIX 232

else

u1_array(:,1)=h_array((h-1)*(n1-s)-s+1:h*(n1-s),1);

end

end

%error

error_iter(iter)=norm(u1_array(:,k)-u1(:,k)) ;

iter=iter+1

end

%execution time

Tp=gop(@max,toc(t1));

%gathering

e1_p=gather(e1_p);

e1_b=gather(e1_b);

X=gcat(u1_array);

error_seq_par=gcat(errore_seq);

Iter_max=gcat(ITER);

Iter_max2=gcat(ITER2);

%eo(1)

end

Tp=Tp{1};

e1_p=e1_p{1};

e1_b=e1_b{1};

X=X{1};

iter_h=Iter_max{1};

iter_pcg=max(iter_h);

iter_h2=Iter_max2{1};

iter_pcg2=max(iter_h2);

iter=max([iter_pcg2 iter_h2]);

u1_array=(u1_array{1});

error_seq_par=error_seq_par{1};

vector_seq=u1_array_globale(1:n1-2*s,r_n:r_f);

vector_dd=X(1:n1-2*s,r_n:r_f);

for h=2:nsub-1

vector_seq=[vector_seq;u1_array_globale(1+s:n1-s,(h-1)*r_f+1:h*r_f)];

vector_dd=[vector_dd; X(1+s:n1-s,(h-1)*r_f+1:h*r_f)];

end

vector_seq=[vector_seq;u1_array_globale(1+s:n1,(nsub-1)*r_f+1:nsub*r_f)];

vector_dd=[vector_dd; X(1+s:n1,(nsub-1)*r_f+1:nsub*r_f)];

APPENDIX A. APPENDIX 233

error_global=norm(vector_seq(:,r_n+1:r_f)-vector_dd(:,r_n+1:r_f));

end

DYDD S T.m

function[l_p1,l_bar,T,ITER,T_totale,T_tot,Tempo_L]=DYDD_S_T(p,l,ntem)

%FUNCTION for parallel dynamic distribution in space and time of

%observations.

%input

%p number of workers

%l initial distribution

%ntem number of time intervals

%output

%l_p1: finale balanced observations

%l_bar: average load

%T: executuion time of parallel section

%ITER: numer of iterations

%T_totale: time execution for each time iterval

%T_tot: total execution time

%Tempo_L: execution time to costruct Laplacian matrix

%initialization

r=zeros(p,p);

%define decomposition:

%%%% DECOMPOSITION WITH P-1 ADJACENT SUBDOMINES TO OMEGA 1

for i=1:p

r(1,i)=i;

r(i,1)=1;

r(i,i)=i;

end

for i=2:p

for j=2:p

if (i˜=1)

r(i,j)=i;

end

if (j˜=1)

r(i,j)=i;

end

APPENDIX A. APPENDIX 234

end

end

ad_dom=zeros(p,p);

for i=1:p

ad_dom(1,i)=1;

end

for i=2:p

ad_dom(i,i)=1;

ad_dom(i,1)=1;

end

%define degree of graph’s nodes

deg=zeros(1,p);

deg(1)=p-1;

for i=2:p

deg(i)=1;

end

%%%%%%% HORIZONTAL DECOMPOSITION (3 adjacent subdomains and 2 for omega 1,2, p-1, p)

%%%_________

%%% 1 | 2 |

%%%_________|

%%% 3 | 4 |

%%%_________|

%%% 5 | 6 |

%%%_________|

%%% 7 | 8 |

%%%_________|

r_in=zeros(p,p);

for i=1:p

r_in(i,:)=i;

end

for i=3:p-2

if (floor(i/2)*2 == i)

r_in(i,i-2)=i-2;

r_in(i,i-1)=i-1;

r_in(i,i+2)=i+2;

else

r_in(i,i-2)=i-2;

r_in(i,i+1)=i+1;

APPENDIX A. APPENDIX 235

r_in(i,i+2)=i+2;

end

end

r_in(1,2)=2;

r_in(1,3)=3;

r_in(2,1)=1;

r_in(2,4)=4;

r_in(p-1,p-3)=p-3;

r_in(p-1,p)=p;

r_in(p,p-1)=p-1;

r_in(p,p-2)=p-2;

ad_dom_in=zeros(p,p);

for i=1:p

for j=1:p

if (r_in(i,j)˜=i)

ad_dom_in(i,j)=1;

end

end

ad_dom_in(i,i)=1;

end

deg_in=zeros(1,p);

for i=1:p

deg_in(i)=sum(ad_dom_in(i,:))-1;

end

r=r_in;

ad_dom=ad_dom_in;

deg=deg_in;

%DD-CHECK

for j=1:ntem

r=r_in;

ad_dom=ad_dom_in;

deg=deg_in;

tic;

for i=1:p

if(l(j,i)==0)

%call routine to redistribute the observations

[l(j,:),r,ad_dom,deg]=redistribution(l(j,:),r,ad_dom,p);

APPENDIX A. APPENDIX 236

end

end

t_r=toc;

tic;

%computation of average load

l_bar=sum(l(j,:))/p;

%computation of misfit

b=l(j,:)’-l_bar*ones(p,1);

%execution time

T1(j)=toc;

tic

%costruction of Laplacian matrix

L1=zeros(p,p);

for i=1:p

for j_1=1:p

if(ad_dom(i,j_1)==1)

L1(i,j_1)=-1;

else

L1(i,j_1)=0;

end

L1(j_1,i)=L1(i,j_1);

end

L1(i,i)=deg(i);

end

Tempo_L(j)=toc;

tic

%solving laplaciansistem

[lambda,FLAG,RELRES,ITER(j)]=pcg(L1,b);

%execution time

Tempo_pcg(j)=toc;

%compute the adjacent subdomains for each spatial subdomains

tic

n_ad=zeros(p,1);

for i=1:p

for j1=1:p

if (r(i,j1)˜=i)

n_ad(i)=n_ad(i)+1;

end

end

end

APPENDIX A. APPENDIX 237

T2(j)=toc;

spmd(p)

%codistribution of misfit

b=codistributed(b,codistributor(’1d’,1));

end

%paralle section

spmd(p)

t1=tic;

l_in=l(j,labindex);

%parallel dynamic distribution

for i=1:p

if(r(labindex,i)˜=labindex)

c=lambda(r(labindex,i));

lambda(labindex);

delta1=lambda(labindex)-c;

l_p=l_in-round((delta1));

l_in=l_p;

end

i=i+1;

end

%gathering of solutions

l_p=gcat(l_p);

%execution time in parallel

Tp=gop(@max,toc(t1));

end

l_p=l_p{1};

T(j)=Tp{1};

l_p1(j,:)=l_p;

delta1=delta1{1};

delta=(delta1);

tic

T3(j)=toc;

% execution time

T_tot(j)=T3(j)+T2(j)+T(j)+Tempo_pcg(j)+T1(j)+Tempo_L(1);

end

%total execution time

T_totale=sum(T_tot);

end

APPENDIX A. APPENDIX 238

redistribution.m

function [l,r,ad_dom,deg]=redistribution(l,r,ad_dom,p,deg)

%Function to redistribute the observations after during dd-check some

%subdomains are empty (no observation)

%input

%l: vector initial distribution

%r,ad_dom:vector contains informations about adjacent subdomains

%p: number of workers

%deg: degree of nodes’s processor graph

%output

%l: vector of observation distribution after redistribution

%r,ad_dom: update vector contains informations about adjacent subdomains

%deg: update degree of nodes’s processor graph

for i=1:p

for j=1:p

if (l(i)==0)

if (l(r(i,j))==max(l(r(i,:))))

j_1=r(i,j);

l(i)=round(l(j_1)/2);

l(j_1)=l(j_1)-l(i);

if (p-2>=i>=3)

if (floor(i/2)*2 == i)

r(i,i-3)=i-3;

r(i,i-1)=i-1;

r(i,i+1)=i+1;

else

r(i,i+3)=i+3;

r(i,i-1)=i-1;

r(i,i+1)=i+1;

end

end

APPENDIX A. APPENDIX 239

if (i==1)

r(1,2)=2;

r(1,4)=4;

elseif(i==2)

r(2,1)=1;

r(2,4)=3;

elseif(i==p-1)

r(p-1,p-2)=p-2;

r(p-1,p)=p;

elseif(i==p)

r(p,p-1)=p-1;

r(p,p-3)=p-3;

end

for j1=1:p

if (r(i,j1)˜=j1)

r(i,j1)=i;

end

end

r(i,i)=i;

end

end

end

end

for i=1:p

for j1=1:p

if (r(i,j1)==i)

r(j1,i)=j1;

end

end

end

for i=1:p

for j1=1:p

if (r(i,j1)˜=i)

ad_dom(i,j1)=1;

else

APPENDIX A. APPENDIX 240

ad_dom(i,j1)=0;

end

end

ad_dom(i,i)=1;

end

for i=1:p

deg(i)=sum(ad_dom(i,:))-1;

end

end

Bibliography

[1] S. Amaral, D. Allaire, and K. Willcox. A decomposition-based approach to uncertainty

analysis of feed-forward multicomponent systems. Internat. J. Numer. Methods Engrg.,

100(13):982–1005, 2014.

[2] G. M. Amdahl. Validity of the single processor approach to achieving large scale com-

puting capabilities. In Proceedings of the April 18-20, 1967, spring joint computer con-

ference, pages 483–485, 1967.

[3] G. M. Amdahl. Validity of the single processor approach to achieving large scale com-

puting capabilities. In Proceedings of the April 18-20, 1967, spring joint computer con-

ference, pages 483–485, 1967.

[4] J. L. Anderson. An ensemble adjustment kalman filter for data assimilation. Monthly

weather review, 129(12):2884–2903, 2001.

[5] H. Antil, M. Heinkenschloss, R. H. W. Hoppe, and D. C. Sorensen. Domain decompo-

sition and model reduction for the numerical solution of PDE constrained optimization

problems with localized optimization variables. Comput. Vis. Sci., 13(6):249–264, 2010.

[6] L. Antonelli, L. Carracciuolo, M. Ceccarelli, L. D’Amore, and A. Murli. Total varia-

tion regularization for edge preserving 3d spect imaging in high performance computing

241

BIBLIOGRAPHY 242

environments. In International Conference on Computational Science, pages 171–180.

Springer, 2002.

[7] R. Arcucci, L. D’Amore, and L. Carracciuolo. On the problem-decomposition of scalable

4d-var data assimilation models. In 2015 International Conference on High Performance

Computing & Simulation (HPCS), pages 589–594. IEEE, 2015.

[8] R. Arcucci, L. D’Amore, J. Pistoia, R. Toumi, and A. Murli. On the variational data

assimilation problem solving and sensitivity analysis. J. Comput. Phys., 335:311–326,

2017.

[9] R. Arcucci, L. D’Amore, L. Carracciuolo, G. Scotti, and G. Laccetti. A decomposition of

the tikhonov regularization functional oriented to exploit hybrid multilevel parallelism.

International Journal of Parallel Programming, 45(5):1214–1235, 2017.

[10] R. Arcucci, L. D’Amore, S. Celestino, G. Laccetti, and A. Murli. A scalable numeri-

cal algorithm for solving tikhonov regularization problems. In Parallel Processing and

Applied Mathematics, pages 45–54. Springer, 2016.

[11] L. Baffico, S. Bernard, Y. Maday, G. Turinici, and G. Zérah. Parallel-in-time molecular-

dynamics simulations. Physical Review E, 66(5):057701, 2002.

[12] J. K. Baksalary and O. M. Baksalary. Particular formulae for the moore–penrose inverse

of a columnwise partitioned matrix. Linear algebra and its applications, 421(1):16–23,

2007.

[13] G. Bal. On the convergence and the stability of the parareal algorithm to solve partial

differential equations. In Domain decomposition methods in science and engineering,

pages 425–432. Springer, 2005.

BIBLIOGRAPHY 243

[14] G. Bal and Y. Maday. A “parareal” time discretization for non-linear PDE’s with applica-

tion to the pricing of an American put. In Recent developments in domain decomposition

methods (Zürich, 2001), volume 23 of Lect. Notes Comput. Sci. Eng., pages 189–202.

Springer, Berlin, 2002.

[15] A. T. Barker and M. Stoll. Domain decomposition in time for PDE-constrained optimiza-

tion. Comput. Phys. Commun., 197:136–143, 2015.

[16] G. Battistelli and L. Chisci. Stability of consensus extended kalman filter for distributed

state estimation. Automatica, 68:169–178, 2016.

[17] E. Benhamou. Kalman filter demystified: from intuition to probabilistic graphical model

to real case in financial markets. Available at SSRN 3292762, 2018.

[18] C. H. Bischof. Automatic differentiation, tangent linear models, and (pseudo) adjoints.

In High Performance Computing in the Geosciences, pages 59–80. Springer, 1995.

[19] J. Blum, F. Le Dimet, and I. Navon. Data assimilation for geophysical fluids, volume xiv

of handbook of numerical analysis, chapter 9, 2005.

[20] J. E. Boillat. Load balancing and poisson equation in a graph. Concurrency: practice

and experience, 2(4):289–313, 1990.

[21] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geometric deep

learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42,

2017.

[22] D. Bruciaferri, M. Tonani, H. W. Lewis, J. R. Siddorn, A. Saulter, J. M. Castillo, N. G.

Valiente, D. Conley, P. Sykes, I. Ascione, and et al. Nemo community ocean model for

multifarious space and time scales, Jan 1970.

BIBLIOGRAPHY 244

[23] T. F. Chan and T. P. Mathew. Domain decomposition algorithms. Acta numerica, 3:61–

143, 1994.

[24] S. Clerc. Etude de schémas décentrés implicites pour le calcul numérique en mécanique

des fluides. Résolution par décomposition de domaines-These de l’université Paris VI-

1997 (non publiée), 1997.

[25] S. E. Cohn. An introduction to estimation theory (gtspecial issueltdata assimilation in

meteology and oceanography: theory and practice). Journal of the Meteorological Soci-

ety of Japan. Ser. II, 75(1B):257–288, 1997.

[26] S. Cuomo, A. Galletti, G. Giunta, and L. Marcellino. Numerical effects of the gaussian

recursive filters in solving linear systems in the 3dvar case study. Numerical Mathemat-

ics: Theory, Methods and Applications, 10(3):520–540, 2017.

[27] G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. Journal

of parallel and distributed computing, 7(2):279–301, 1989.

[28] D. N. Daescu and I. M. Navon. Part b: Sensitivity analysis in non-linear variational

data assimilation: Theoretical aspects and applications. Advanced numerical methods

for complex environmental models: needs and availability, edited by: Farago, I., Havasi,

A., and Zlatev, Z., Bentham Science Publishers, pages 276–300, 2013.

[29] G. Dahlquist. Convergence and stability in the numerical integration of ordinary differ-

ential equations. Mathematica Scandinavica, pages 33–53, 1956.

[30] L. D’Amore, R. Arcucci, L. Carracciuolo, and A. Murli. A scalable approach for varia-

tional data assimilation. J. Sci. Comput., 61(2):239–257, 2014.

BIBLIOGRAPHY 245

[31] L. D’Amore, R. Arcucci, L. Marcellino, and A. Murli. HPC computation issues of the

incremental 3D variational data assimilation scheme in OceanVar software. JNAIAM. J.

Numer. Anal. Ind. Appl. Math., 7(3-4):91–105, 2012.

[32] L. D’Amore and R. Cacciapuoti. A note on domain decomposition approaches for solv-

ing 3D variational data assimilation models. Ric. Mat., 68(2):679–691, 2019.

[33] L. D’Amore and R. Cacciapuoti. Model reduction in space and time for ab initio decom-

position of 4d variational data assimilation problems. Applied Numerical Mathematics,

160:242–264, 2021.

[34] L. D’Amore and R. Cacciapuoti. Parallel framework for dynamic domain decomposition

of data assimilation problems: a case study on kalman filter algorithm. Computational

and Mathematical Methods, page e1145, 2021.

[35] L. D’Amore, R. Cacciapuoti, and V. Mele. A scalable kalman filter algorithm: Trustwor-

thy analysis on constrained least square model. Concurrency and Computation: Practice

and Experience, 33(4):e6022, 2021.

[36] L. D’Amore, R. Campagna, A. Galletti, L. Marcellino, and A. Murli. A smoothing spline

that approximates Laplace transform functions only known on measurements on the real

axis. Inverse Problems, 28(2):025007, 37, 2012.

[37] L. D’amore, R. Campagna, V. Mele, and A. Murli. Algorithm 946: Reliadiff—a c++ soft-

ware package for real laplace transform inversion based on algorithmic differentiation.

ACM Transactions on Mathematical Software (TOMS), 40(4):1–20, 2014.

[38] L. D’Amore, G. Laccetti, D. Romano, G. Scotti, and A. Murli. Towards a parallel com-

ponent in a gpu–cuda environment: a case study with the l-bfgs harwell routine. Inter-

national Journal of Computer Mathematics, 92(1):59–76, 2015.

BIBLIOGRAPHY 246

[39] L. D’Amore, V. Mele, D. Romano, and G. Laccetti. Multilevel algebraic approach for

performance analysis of parallel algorithms. Computing and Informatics, 38(4):817–850,

2019.

[40] L. D’Amore and A. Murli. Regularization of a fourier series method for the laplace

transform inversion with real data. Inverse Problems, 18(4):1185, 2002.

[41] M. D’Elia and A. Veneziani. A bayesian approach to data assimilation for the in-

compressible navier-stokes equations with applications to hemodynamics. online open,

https://www. linkedin. com/in/marta-delia-04551a44, 2012.

[42] J. E. Dennis, Jr. and R. B. Schnabel. Numerical methods for unconstrained optimization

and nonlinear equations, volume 16 of Classics in Applied Mathematics. Society for

Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. Corrected reprint

of the 1983 original.

[43] P. Diniz, S. Plimpton, B. Hendrickson, and R. Leland. Parallel algorithms for dynam-

ically partitioning unstructured grids. Technical report, Sandia National Labs., Albu-

querque, NM (United States), 1994.

[44] M. Dryja and O. B. Widlund. Some domain decomposition algorithms for elliptic prob-

lems. In Iterative methods for large linear systems (Austin, TX, 1988), pages 273–291.

Academic Press, Boston, MA, 1990.

[45] L. D’Amore, R. Arcucci, L. Carracciuolo, and A. Murli. Dd-oceanvar: A domain de-

composition fully parallel data assimilation software for the mediterranean forecasting

system. Procedia Computer Science, 18:1235–1244, 2013.

[46] L. D’Amore, R. Arcucci, L. Marcellino, and A. Murli. A parallel three-dimensional

variational data assimilation scheme. In AIP Conference Proceedings, volume 1389,

pages 1829–1831. American Institute of Physics, 2011.

BIBLIOGRAPHY 247

[47] L. D’Amore and R. Cacciapuoti. Parallel dynamic domain decomposition in space-time

for data assimilation problems. In Journal of Physics: Conference Series, volume 1828,

page 012131. IOP Publishing, 2021.

[48] L. D’Amore, R. Cacciapuoti, and V. Mele. Ab-initio functional decomposition of kalman

filter: A feasibility analysis on constrained least squares problems. In International

Conference on Parallel Processing and Applied Mathematics, pages 75–92. Springer,

2019.

[49] L. D’Amore, R. Campagna, V. Mele, and A. Murli. Relative. an ansi c90 software pack-

age for the real laplace transform inversion. Numerical Algorithms, 63(1):187–211, 2013.

[50] L. D’Amore, V. Mele, G. Laccetti, and A. Murli. Mathematical approach to the per-

formance evaluation of matrix multiply algorithm. In Parallel Processing and Applied

Mathematics, pages 25–34. Springer, 2016.

[51] M. D’Elia, M. Perego, and A. Veneziani. A variational data assimilation procedure for

the incompressible navier-stokes equations in hemodynamics. Journal of Scientific Com-

puting, 52(2):340–359, 2012.

[52] I. Epicoco, S. Mocavero, F. Macchia, M. Vichi, T. Lovato, S. Masina, and G. Aloisio.

Performance and results of the high-resolution biogeochemical model pelagos025 v1. 0

within nemo v3. 4. Geoscientific Model Development, 9(6):2115–2128, 2016.

[53] G. Evensen. The ensemble kalman filter: Theoretical formulation and practical imple-

mentation. Ocean dynamics, 53(4):343–367, 2003.

[54] M. FUJIMOTO and M. KAWAHARA. 34. domain decomposition for kalman filter

method and its application to tidal flow at onjuku coast. In Proceedings of 12th In-

ternational Conference on Domain Decomposition Methods. Citeseer, 2001.

BIBLIOGRAPHY 248

[55] M. J. Gander and S. Vandewalle. Analysis of the parareal time-parallel time-integration

method. SIAM Journal on Scientific Computing, 29(2):556–578, 2007.

[56] W. Gander. Least squares with a quadratic constraint. Numerische Mathematik,

36(3):291–307, 1980.

[57] M. Ghil and P. Malanotte-Rizzoli. Data assimilation in meteorology and oceanography.

Advances in geophysics, 33:141–266, 1991.

[58] S. Gürol, A. T. Weaver, A. M. Moore, A. Piacentini, H. G. Arango, and S. Gratton. B-

preconditioned minimization algorithms for variational data assimilation with the dual

formulation. Quarterly Journal of the Royal Meteorological Society, 140(679):539–556,

2014.

[59] P. Hähnel, J. Mareček, J. Monteil, and F. O’Donncha. Using deep learning to extend the

range of air pollution monitoring and forecasting. Journal of Computational Physics,

408:109278, 2020.

[60] A. Hannachi, I. T. Jolliffe, and D. B. Stephenson. Empirical orthogonal functions and re-

lated techniques in atmospheric science: A review. International Journal of Climatology:

A Journal of the Royal Meteorological Society, 27(9):1119–1152, 2007.

[61] Q. He, D. Barajas-Solano, G. Tartakovsky, and A. M. Tartakovsky. Physics-informed

neural networks for multiphysics data assimilation with application to subsurface trans-

port. Advances in Water Resources, 141:103610, 2020.

[62] K. Hedstrom. Technical manual for a coupled sea-ice/ocean circulation model (version

5). u.s. dept. of the interior, bureau of ocean energy management, alaska ocs region. ocs

study boem 2018-007 182 pp. 2018.

BIBLIOGRAPHY 249

[63] L. Heidari, V. Gervais, M. Le Ravalec, and H. Wackernagel. History matching of reser-

voir models by ensemble kalman filtering: The state of the art and a sensitivity study.

2011.

[64] C. Homescu, L. R. Petzold, and R. Serban. Error estimation for reduced-order models of

dynamical systems. SIAM Journal on Numerical Analysis, 43(4):1693–1714, 2005.

[65] G. Horton. A multi-level diffusion method for dynamic load balancing. Parallel Com-

puting, 19(2):209–218, 1993.

[66] P. L. Houtekamer and H. L. Mitchell. A sequential ensemble kalman filter for atmo-

spheric data assimilation. Monthly Weather Review, 129(1):123–137, 2001.

[67] Y. Hu, R. J. Blake, and D. R. Emerson. An optimal migration algorithm for dynamic

load balancing. Concurrency: practice and experience, 10(6):467–483, 1998.

[68] Y. Hu, R. J. Blake, and D. R. Emerson. An optimal migration algorithm for dynamic

load balancing. Concurrency: practice and experience, 10(6):467–483, 1998.

[69] B. R. Hunt, E. J. Kostelich, and I. Szunyogh. Efficient data assimilation for spatiotempo-

ral chaos: A local ensemble transform kalman filter. Physica D: Nonlinear Phenomena,

230(1-2):112–126, 2007.

[70] T. Janjić, L. Nerger, A. Albertella, J. Schröter, and S. Skachko. On domain localization in

ensemble-based kalman filter algorithms. Monthly Weather Review, 139(7):2046–2060,

2011.

[71] R. E. Kalman. A new approach to linear filtering and prediction problems. ASME Journal

of Basic Engineering, 82:35–45, 1960.

[72] E. Kalnay. Atmospheric modeling, data assimilation and predictability. Cambridge

university press, 2003.

BIBLIOGRAPHY 250

[73] E. Kalnay, B. Hunt, E. Ott, and I. Szunyogh. Ensemble forecasting and data assimilation:

two problems with the same solution. Predictability of weather and climate, 157:180,

2006.

[74] V. Karavasilis, C. Nikou, and A. Likas. Visual tracking by adaptive kalman filtering and

mean shift. In Hellenic Conference on Artificial Intelligence, pages 153–162. Springer,

2010.

[75] C. L. Keppenne. Data assimilation into a primitive-equation model with a parallel en-

semble kalman filter. Monthly Weather Review, 128(6):1971–1981, 2000.

[76] C. L. Keppenne and M. M. Rienecker. Initial testing of a massively parallel ensemble

kalman filter with the poseidon isopycnal ocean general circulation model. Monthly

weather review, 130(12):2951–2965, 2002.

[77] U. A. Khan and J. M. Moura. Distributing the kalman filter for large-scale systems. IEEE

Transactions on Signal Processing, 56(10):4919–4935, 2008.

[78] U. A. Khan and J. M. Moura. Distributing the kalman filter for large-scale systems. IEEE

Transactions on Signal Processing, 56(10):4919–4935, 2008.

[79] Y. Kim and H. Bang. Introduction to kalman filter and its applications. Introduction and

Implementations of the Kalman Filter, F. Govaers, Ed. IntechOpen, 2019.

[80] G. A. Kohring. Dynamic load balancing for parallelized particle simulations on mimd

computers. Parallel computing, 21(4):683–693, 1995.

[81] R. J. LeVeque and R. J. Leveque. Numerical methods for conservation laws, volume 132.

Springer, 1992.

[82] Q. Liao and K. Willcox. A domain decomposition approach for uncertainty analysis.

SIAM J. Sci. Comput., 37(1):A103–A133, 2015.

BIBLIOGRAPHY 251

[83] J. Lions, Y. Maday, and G. Turinici. A “parareal” in time discretization of pde’s. comptes

rendus de l’acadmie des sciences-series i-mathematics 332, 661–668, 2001.

[84] J.-L. Lions, Y. Maday, and G. Turinici. Résolution d’EDP par un schéma en temps

“pararéel”. C. R. Acad. Sci. Paris Sér. I Math., 332(7):661–668, 2001.

[85] P.-L. Lions. On the schwarz alternating method. iii: a variant for nonoverlapping subdo-

mains. In Third international symposium on domain decomposition methods for partial

differential equations, volume 6, pages 202–223. SIAM Philadelphia, PA, 1990.

[86] P.-L. Lions et al. On the schwarz alternating method. i. In First international symposium

on domain decomposition methods for partial differential equations, volume 1, page 42.

Paris, France, 1988.

[87] J. Liu and Z. Wang. Efficient time domain decomposition algorithms for parabolic PDE-

constrained optimization problems. Comput. Math. Appl., 75(6):2115–2133, 2018.

[88] Z. Long, Y. Lu, and B. Dong. Pde-net 2.0: Learning pdes from data with a numeric-

symbolic hybrid deep network. Journal of Computational Physics, 399:108925, 2019.

[89] F. Lu and H. Zeng. Application of kalman filter model in the landslide deformation

forecast. Scientific reports, 10(1):1–12, 2020.

[90] P. Lyster, J. Guo, T. Clune, and J. Larson. The computational complexity and parallel

scalability of atmospheric data assimilation algorithms. Journal of Atmospheric and

Oceanic Technology, 21(11):1689–1700, 2004.

[91] G. Meurant. Domain decomposition methods for partial differential equations on parallel

computers. The International Journal of Supercomputing Applications, 2(4):5–12, 1988.

[92] T. Miyoshi. Computational challenges in big data assimilation with extreme-scale simu-

lations, talk at bdec workshop. Charleston, SC, 2013.

BIBLIOGRAPHY 252

[93] R. Montella, D. Di Luccio, P. Troiano, A. Riccio, A. Brizius, and I. Foster. Wacomm:

A parallel water quality community model for pollutant transport and dispersion opera-

tional predictions. In 2016 12th International Conference on Signal-Image Technology

& Internet-Based Systems (SITIS), pages 717–724. IEEE, 2016.

[94] C. Montzka, V. Pauwels, H.-J. H. Franssen, X. Han, and H. Vereecken. Multivariate and

multiscale data assimilation in terrestrial systems: A review. Sensors, 12(12):16291–

16333, 2012.

[95] A. M. Moore, H. G. Arango, G. Broquet, C. Edwards, M. Veneziani, B. Powell, D. Foley,

J. D. Doyle, D. Costa, and P. Robinson. The regional ocean modeling system (roms) 4-

dimensional variational data assimilation systems: part ii–performance and application

to the california current system. Progress in Oceanography, 91(1):50–73, 2011.

[96] A. M. Moore, H. G. Arango, G. Broquet, C. Edwards, M. Veneziani, B. Powell, D. Foley,

J. D. Doyle, D. Costa, and P. Robinson. The regional ocean modeling system (roms) 4-

dimensional variational data assimilation systems: Part iii–observation impact and obser-

vation sensitivity in the california current system. Progress in Oceanography, 91(1):74–

94, 2011.

[97] A. M. Moore, H. G. Arango, G. Broquet, B. S. Powell, A. T. Weaver, and J. Zavala-Garay.

The regional ocean modeling system (roms) 4-dimensional variational data assimilation

systems: Part i–system overview and formulation. Progress in Oceanography, 91(1):34–

49, 2011.

[98] A. M. Moore, H. G. Arango, G. Broquet, B. S. Powell, A. T. Weaver, and J. Zavala-Garay.

The regional ocean modeling system (roms) 4-dimensional variational data assimilation

systems: Part i–system overview and formulation. Progress in Oceanography, 91(1):34–

49, 2011.

BIBLIOGRAPHY 253

[99] A. M. Moore, H. G. Arango, E. Di Lorenzo, B. D. Cornuelle, A. J. Miller, and D. J.

Neilson. A comprehensive ocean prediction and analysis system based on the tangent

linear and adjoint of a regional ocean model. Ocean Modelling, 7(1-2):227–258, 2004.

[100] A. Murli. Matematica numerica: metodi, algoritmi e software, volume 2. Liguori Editore

Srl, 2013.

[101] A. Murli, L. D’Amore, G. Laccetti, F. Gregoretti, and G. Oliva. A multi-grained dis-

tributed implementation of the parallel block conjugate gradient algorithm. Concurrency

and Computation: Practice and Experience, 22(15):2053–2072, 2010.

[102] I. M. Navon. Data assimilation for numerical weather prediction: a review. Data assim-

ilation for atmospheric, oceanic and hydrologic applications, pages 21–65, 2009.

[103] L. Nerger. Parallel filter algorithms for data assimilation in oceanography. PhD thesis,

Universität Bremen, 2004.

[104] L. Nerger, S. Danilov, W. Hiller, and J. Schröter. Using sea-level data to constrain a

finite-element primitive-equation ocean model with a local seik filter. Ocean Dynamics,

56(5):634–649, 2006.

[105] L. Nerger, W. Hiller, and J. Schröter. The parallel data assimilation framework: experi-

ences with kalman filtering. In Use of High Performance in Meteorology, Proceedings of

the 11th ECMWF Workshop, World Scientific, Singapore, pages 63–86, 2005.

[106] N. K. Nichols. Mathematical concepts of data assimilation. In Data assimilation, pages

13–39. Springer, 2010.

[107] J. Nocedal and S. Wright. Numerical optimization. Springer Science & Business Media,

2006.

BIBLIOGRAPHY 254

[108] A. Quarteroni, R. Sacco, and F. Saleri. Matematica numerica. Springer Science &

Business Media, 2010.

[109] F. Rabier and Z. Liu. Variational data assimilation: theory and overview. In Proc.

ECMWF Seminar on Recent Developments in Data Assimilation for Atmosphere and

Ocean, Reading, UK, September 8–12, pages 29–43, 2003.

[110] M. Rafiee, A. Tinka, J. Thai, and A. M. Bayen. Combined state-parameter estimation

for shallow water equations. In Proceedings of the 2011 American Control Conference,

pages 1333–1339. IEEE, 2011.

[111] D. Rozier, F. Birol, E. Cosme, P. Brasseur, J.-M. Brankart, and J. Verron. A reduced-order

kalman filter for data assimilation in physical oceanography. SIAM review, 49(3):449–

465, 2007.

[112] Y. Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[113] I. Schur. Gesammelte Abhandlungen. New York: Springer, 1973.

[114] H. A. Schwarz. Ueber einige abbildungsaufgaben. J. reine angew. Math., 70:105–120,

1869.

[115] J. Sherman. Adjustment of an inverse matrix corresponding to changes in the elements of

a given column or a given row of the original matrix. Annals of mathematical statistics,

20(4):621, 1949.

[116] H. W. Sorenson. Least-squares estimation: from gauss to kalman. IEEE spectrum,

7(7):63–68, 1970.

[117] M. Stoll and A. Wathen. All-at-once solution of time-dependent stokes control. Journal

of Computational Physics, 232(1):498–515, 2013.

BIBLIOGRAPHY 255

[118] X. Tang, G. Falco, E. Falletti, and L. L. Presti. Complexity reduction of the kalman

filter-based tracking loops in gnss receivers. Gps Solutions, 21(2):685–699, 2017.

[119] A. Teruzzi, P. Di Cerbo, G. Cossarini, E. Pascolo, and S. Salon. Parallel implementation

of a data assimilation scheme for operational oceanography: The case of the medbfm

model system. Computers & Geosciences, 124:103–114, 2019.

[120] S. Tirupathi, T. T. Tchrakian, S. Zhuk, and S. McKenna. Shock capturing data assimi-

lation algorithm for 1d shallow water equations. Advances in Water Resources, 88:198–

210, 2016.

[121] O.-P. Tossavainen, J. Percelay, A. Tinka, Q. Wu, and A. M. Bayen. Ensemble kalman

filter based state estimation in 2d shallow water equations using lagrangian sensing and

state augmentation. In 2008 47th IEEE Conference on Decision and Control, pages

1783–1790. IEEE, 2008.

[122] S. Ulbrich. Generalized sqp methods with “parareal” time-domain decomposition for

time-dependent pde-constrained optimization. In Real-time PDE-constrained optimiza-

tion, pages 145–168. SIAM, 2007.

[123] C. K. Wikle and N. Cressie. A dimension-reduced approach to space-time kalman filter-

ing. Biometrika, 86(4):815–829, 1999.

[124] Y. Wu, Y. Sui, and G. Wang. Vision-based real-time aerial object localization and track-

ing for uav sensing system. IEEE Access, 5:23969–23978, 2017.

[125] C.-Z. Xu and F. C. Lau. The generalized dimension exchange method for load balancing

in k-ary n-cubes and variants. Journal of parallel and distributed computing, 24(1):72–

85, 1995.

BIBLIOGRAPHY 256

[126] C.-Z. Xu and F. C. M. Lau. Analysis of the generalized dimension exchange method for

dynamic load balancing. Journal of Parallel and Distributed Computing, 16(4):385–393,

1992.

[127] L. Yong. A feasible interior point algorithm for a class of nonnegative least squares prob-

lems. In 2009 ETP International Conference on Future Computer and Communication,

pages 157–159. IEEE, 2009.

[128] Z. Zhang and J. C. Moore. Mathematical and physical fundamentals of climate change.

Elsevier, 2014.

[129] G. Zhao, B. A. Bryan, and X. Song. Sensitivity and uncertainty analysis of the apsim-

wheat model: Interactions between cultivar, environmental, and management parameters.

Ecological Modelling, 279:1–11, 2014.

	Introduction
	Data assimilation (DA): a large scale inverse ill posed problem
	DA methods coupled with PDE-based predictive models: related works and contribution of the present work
	Outline of the work

	Data Assimilation methods
	The DA inverse problem
	The 3D and 4DVAR DA problems
	Kalman Filter (KF)

	The DA-driven Space and Time decomposition approach
	Domain Decomposition of physical domain
	Domain Decomposition of 3DVAR problem (DD–3DVAR)
	Domain Decomposition of 4DVAR problem (DD–4DVAR)
	Algorithm
	Sensitivity analysis
	Consistency, convergence and stability

	DD-KF-CLS: Domain Decomposition of KF on CLS problem
	KF-CLS: KF algorithm solving CLS problems
	DD-CLS problems: DD of CLS model
	DD–KF solving DD–CLS problems
	DD–KF-CLS: Performance Analysis

	Domain Decomposition of KF (DD–KF)
	DD-KF method in {Ωi×Δk}i=1,2; k=1,…,Nt
	DD-KF method in {Ωi×Δk}i=1,…,Nsub; k=1,…,Nt
	Algorithm
	Reliability assessment

	Parallel Domain Decomposition
	Dynamic Domain Decomposition in Space (DyDD)
	Dynamic Domain Decomposition in Space and Time (DyDDST)

	Validation Analysis
	DD-KF applied to CLS problem
	Trustworthy analysis

	DD–KF applied to SWEs problem
	The algorithm

	DD–4DVAR applied to SWEs problem
	Performance analysis and scalability prediction
	The role of the overlapping region
	Sensitivity Analysis: consistency and stability

	DyDD: Performance analysis
	DyDDST: Performance analysis

	Conclusions
	Appendix
	Constrained Least Squares (CLS) Problem
	Shallow Water Equations (SWEs) set up
	Regional Ocean Modeling System (ROMS)
	DD–4DVAR DA in ROMS model
	DD–4DVAR DA in ROMS code

	MATLAB codes

	References

