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Abstract 

Recently, wearable sensors, including electronic textiles, have been developed in order to 

allow the assessment of human motion in several medical fields, ranging from rehabilitation 

medicine to ergonomics. About the latter, many activities may elicit a biomechanical 

overload. Among these, lifting loads can cause work-related musculoskeletal disorders. 

Aspiring to improve risk prevention, the National Institute for Occupational Safety and 

Health (NIOSH) established a methodology for assessing lifting actions by means of a 

quantitative method based on intensity, duration, frequency and other geometrical 

characteristics of lifting. Therefore these approaches are time consuming, operator 

dependent and costly in terms of resources. To overcome these limits, recent advances in 

pervasive sensing, mobile, communication technology, wearable and e-textiles have led to 

the deployment of new smart sensors that can be worn without affecting a person’s daily 

activities. These sensors are able to measure several kinematics quantities, such as 

acceleration, magnetic field and angular rate and biosignals such as electrocardiography and 

electromyography. 

In this thesis, a new e-textile-based system for the remote monitoring of biomedical signals 

is presented. The system includes a textile sensing shirt, an electronic unit for data 

transmission, a custom-made Android application for real-time signal visualization and a 

software desktop for advanced digital signal processing. The device allows for the 

acquisition of electrocardiographic, bicep electromyographic and trunk acceleration signals. 

The sensors, electrodes, and bus structures are all integrated within the textile garment, 

without any discomfort for users. A wide-ranging set of algorithms for signal processing 

were also developed for use within the system, allowing to rapidly obtain a complete and 

schematic overview of a worker’s status. 

Moreover in this thesis, the machine learning feasibility to classify biomechanical risk 

according to the revised NIOSH lifting equation was explored. Acceleration and EMG 

signals from the biceps were collected using the e-textile shirt proposed during lifting tasks 

performed by five subjects and further segmented to extract time-domain and frequency-

domain features. The features were fed to several machine learning algorithms. Interesting 

results were obtained in terms of evaluation metrics for a binary risk/no risk classification. 

In conclusion, this study indicates the proposed combination of features and algorithms 

represents a valuable approach to automatically classify work activities in two NIOSH risk 
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groups. These data confirm the potential of this methodology to assess the biomechanical 

risk to which subjects are exposed during their work activity. Future investigation on 

enriched study population will be able to confirm the potentiality of this methodology in the 

biomechanical risk assessment.  
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Dissertation outline 

The dissertation is organized as follows: 

Chapter 1 presents an introduction of the themes developed along the thesis underlining the 

diffusion of the e-textile and wearable sensors in the occupational medicine and ergonomics. 

Moreover, several work-related musculoskeletal disorders are presented and the state-of-the-

art methods and indexes for biomechanical risk assessment are reported. Finally, new 

potential solution based on wearable sensors and artificial intelligence are proposed. 

Chapter 2 presents two e-textile devices developed, namely an e-textile sock and an e-textile 

shirt able to monitor several physiological signal and parameters useful also in the 

occupational medicine and ergonomics. 

Chapter 3 presents an interesting methodology to assess the biomechanical risk to which 

workers are exposed during manual handling and lifting based on machine learning 

algorithms fed with features extracted from acceleration and angular velocity signals 

acquired by means of an inertial measurement unit placed in the lumbar region. Moreover, 

the influence of the weight on gait performances and postures was studied. 

Chapter 4 presents an e-textile shirt coupled with dedicated software able to discriminate 

risk classes according to the Revised NIOSH lifting equation presenting a new solution to 

assess the biomechanical risk in an automatic, non-invasive and quantitative way. 
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Chapter 1 

1. Introduction 

1.1 E-textile in the medical field 

The term Electronic-Textiles, or E-Textiles, refers to a wide range of studies and products 

that extend the usefulness and functionalities of common fabrics. The innovative feature 

taken by this novel application regards the embedding of digital components, such as 

batteries, LEDs, and, in general, electronic components, in common fabrics. Thus, through 

E-Textile technology, every kind of digital application can be potentially developed on a 

textile substrate. The advances in e-textile technologies have led to the development of 

comfortable wearable garments directly integrated in internet of things (IoT) networks. 

Many applications have been developed exploiting this background in the field of remote 

monitoring, with the aim of ensuring and increasing the patient’s comfort, quality of life and 

safety. This attractive opportunity is bringing a revolution in the market of wearable devices, 

with the involvement of big companies which are trying to shift from the wearable electronic 

hardware to the more comfortable electronic textiles. The market of wearable technologies 

has a compound annual growth rate of 15.5%, with great opportunities of expansion, it is 

expected to reach 51.6 billion USD by 2022 (IDTechEx). 

Nevertheless, almost all the attendant projects remain within the research field and are not 

intended for entry into the commercial market. Here, the main barriers include the regulatory 

issues related to patient safety, privacy, and data management [1,2], as well as the need for 

a certain degree of reliability in terms of device performance. 

Despite the above mentioned problems, E-textile is gradually covering the market of 

wearable devices, offering cheap and comfortable solution in different sectors, such as 

fashion, entertainment, military and defense, space exploration, health, and wellness. 

Healthcare remains one of the most interesting and promising markets: e-textile features are 

very suitable for the development of innovative medical devices or applications that can 

potentially establish significant cost reductions for healthcare systems. Wearable devices for 

health monitoring can be easily used by patient in domestic environment and, when they are 

integrated in a complete communication chain, they allow smart remote monitoring with 

great benefits for caregivers and patient himself. E-textile sensitive fabrics can be developed 
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to acquire and react to clinical signals detectable on body, with some interesting advantages: 

first, the nature of fabrics makes them the best solution to realize sensors in direct contact 

with the skin; second, fabrics are flexible and well adaptable to human body offering 

technological possibilities not available with the common electronics; and third, fabrics are 

cheap, comfortable, washable, and easily customizable [3]. Thus, smart biomedical clothes 

potentially represent an innovative tool for the continuous monitoring of vital signs, 

combining the function of sophisticated medical devices with the comfort and ease of use of 

clothing products. 

Moreover, the opportunity to integrate these innovative devices in IoT networks makes 

possible to establish smart solution for remote health monitoring, exploring the growing field 

of m-health and supporting cost reduction in healthcare system by facilitating early hospital 

discharges. Many E-Textile solutions for health monitoring have been proposed in literature, 

but most of them are blocked in the research field and are not intended to flow to the 

pragmatic healthcare world. Regulatory issues regarding patient safety, privacy, data 

management [1,2], and the need of a safe degree of reliability for device performances 

represent the main obstacles to the large commercial diffusion of such types of devices. 

A detailed review of the wearable systems for health monitoring introduced up to 2010 is 

provided in [4], with a dedicated section on textile-based devices. The field of 

electrocardiography (ECG) signal monitoring is one of the fields most covered by e-textile 

applications. Pani et al. (2018) provided a complete survey on textile-electrode technologies 

for ECG monitoring [5], with all the examined prototypes exclusively used in the scientific 

research field with the aim of investigating the feasibility of this form of biosignal 

monitoring. A number of the prototypes are used as stand-alone devices to record ECG 

signals in a clinical environment, rather than as part of an integrated tele-monitoring system 

[6,7]. Meanwhile, other works have presented remote tele-monitoring systems focused on 

collecting ECG signals and other important biosignals, such as those related to 

electromyography (EMG) [8], breathing [9-11], accelerometry [6,12], and galvanic skin 

response [7]. The systems presented in [7] also provide tools for off-line digital signal 

processing, gathering the principal parameters assessed from signals, including heart rate, 

blood pressure, respiratory rate, and activity classification. 
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1.2 Work-related musculoskeletal disorders 

Musculoskeletal disorders (MSD) are injuries or pain affecting muscles, joints and tendons. 

MSD result from incorrect postures and manipulation activities such as: energetic efforts in 

lifting or transporting loads, bending and twisting the back or limbs, exposure to vibrations 

or repetitive movements (including typing on the keyboard). If these activities are related to 

work, the resulting injuries and disorders are referred to as Work-related musculoskeletal 

disorders (WMSD) [13]. Diseases and MSD due to biomechanical overload are widespread 

among workers and are one of the main causes of illness in many activities. The 

consequences of MSD are very heavy, from a social and economic point of view, for 

workers, to whom they cause personal suffering and possible income reduction; for 

employers, because they reduce the business efficiency; for the country, because they affect 

health and social security expenditure. The principle problem regard both lower and upper 

limbs but in particular the back. This issue involves also the healthcare field, with regard to 

the manual handling of patients.  

Several epidemiological studies provided a strong correlation between physical work 

exposures and the increased risk of WMSD [14-16]. Radwin et al. showed the relationship 

between MSD and repeated and long durations of external load handling during the workday 

[17]. With regard to the health sector, Smedley et al. [18] showed that low back pain is highly 

prevalent among nurses and it is associated with a high level of sickness absence. A review 

[19] in this sector confirm that tasks such as assisting patients with deficit in ambulation may 

possibly contribute to low back pain, especially bariatric patients [20]. 

Biomechanical exposures during physical work are mainly due to three main factors: 

intensity (load magnitudes and extent of non-neutral postures), repetition (frequency or 

number of force exertions and motions) and duration (the time of a physical activity) [21]. 

1.3 Methods and indexes for biomechanical risk assessment 

To avoid WMSD, many government agencies, universities and companies have developed 

techniques and proposed guidelines to evaluate, modify and reduce in number of accidents 

and occupational diseases [22]. 

To achieve this goal, three different general approaches have been applied: 

1. Self-assessment 

2. Observation 

3. Direct measurement 
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In self-assessment, workers are asked to provide risk-related information. Although this 

approach has a low initial cost and it is simple, researchers have argued that workers' self-

assessments of exposure levels are often inaccurate, unreliable and distorted. 

The observation-based approach involves a real-time evaluation or analysis of the recorded 

video. It is mostly impractical because of the substantial cost, time and technical knowledge 

required for post-analysis of large amounts of non-heterogeneous data. 

Differently from the two previous approaches, direct measurement uses tools to collect data 

on the posture and movement of workers. Examples of this approach include, but are not 

limited to, the use of mechanical micro electro-mechanical sensors (MEMS), such as Inertial 

Measurement Unit (IMU) sensors [23]. 

Several indexes have been proposed to evaluate the biomechanical risk to which the workers 

are exposed: 

• NIOSH. The Revised NIOSH Lifting Equation (RNLE) is a method published by 

NIOSH (National Institute for Occupational Safety and Health) to assess the risk of 

work-related low back disorders (WLBDs). The method determines the 

recommended weight limit during lifting tasks and compute the lifting index that is 

function of geometric characteristics, frequency, weight lifted and sex [24]. 

• OWAS. The OWAS (Owako Working Posture Analysing System) was developed by 

the steel company Owako with the aim of redesigning its production line. It identifies 

and evaluates bad working postures on the basis of the daily routine of workers [25]. 

The postures are classified in more than 250 different positions, evaluating the 

position of the trunk, arms and legs, as well as the weight of the load. Each posture 

is coded to allow risk assessment of WMSD. 

• PATH. The PATH (Posture, Activity, Tools and Handling), proposed by Buchholz 

et al. [26], codify postures as originally suggested by Karhu et al. [26] in the OWAS 

method, adding new codes for different activities, loads and equipment. By 

evaluating the images recorded during work activities, evaluators identify the 

percentage of time workers spend in coded postures classified as "neutral" or "non-

neutral". 

• RULA. The RULA (Rapid Upper Limb Assessment) was proposed by McAtamney 

and Corlett [27] to evaluate some positions related to neck, torso and upper limbs.  

The ergonomists codify each posture by visually evaluating the angles between the 
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body parts studied, and obtaining a score that is used to decide whether a movement 

is considered acceptable or whether some changes need to be made. 

• REBA. The REBA (Rapid Entire Body Assessment), proposed by Hignett and 

McAtamney [28] was developed to improve and extend the RULA. As well as the 

RULA index, the REBA evaluates the postures of workers, but it takes into account 

also the visual assessment of the lower limbs. Moreover the REBA index evaluates 

the uncomfortable positions of the upper limbs such as if the arms are rotated or if 

the shoulders are raised. 

• MAPO. The MAPO (Movimentazione Assistita dei Pazienti Ospedalizzati) is an 

index developed by the Ergonomic Research Unit of Posture and Movement in Milan 

for the assessment of the risk of manual patient handling in hospital departments. 

The index allows a detailed analysis of the main risk determinants for low back pain 

in healthcare professionals [29]. 

1.4 Wearable devices for ergonomics 

In addition to the more traditional quantitative or semiquantitative observational methods 

presented in the previous paragraph, occupational ergonomics studies in the field can employ 

instrumental methods that offer greater agility, precision and duration of measurement. 

Among the direct measurement methods, wearable inertial systems based on IMU play an 

important role in the biomechanical risk assessment [30], and they look very promising for 

occupational medicine and ergonomics applications [31]. In the field of risk assessment, in 

fact, wearable inertial technology represents a significant advance in comparison to the 

evaluation tools traditionally used in ergonomics [32], especially regarding the degree of 

precision and possibility of automatic measurement detection. IMUs are based on triaxial 

accelerometers and gyroscopes able to measure 3D acceleration and angular velocity of the 

sensor with respect to gravity [33]. Often, IMUs also include a triaxial magnetometer useful 

to give information about the orientation of the sensor in the three-dimensional space. In the 

absence of standards on the positioning of sensors on the human body [34], the dorsal part 

of the back was recommended for the ergonomic study of trunk position [35], while the waist 

was suggested for analyzing the overall motion, as representative of center body mass [36]. 

In occupational ergonomics, body-worn inertial sensor technology and motion tracking 

system could be combined to noninvasively collect large amounts of body movement data 

during physical work [31] and explore their association with occupational risk as assessed 

with standard methods [37]. The portability and wearability of this technology represents an 
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advantageous alternative to camera-based motion tracking systems [38]. Information on 

worker exposure obtained through wearable sensors could help to pre-evaluate heavy work, 

match workers’ skills with physical activity requirements, verify the sustainability of work 

shift combinations as well as prioritize work modification interventions based on the type 

and severity of the level of exposure [32]. The success and diffusion of IMUs systems are 

linked to their relative low cost, the low complexity of the experimental setup and data 

processing procedures, the limited time constraints and the feasibility of evaluation outside 

the research laboratories [39]. Several IMUs positioned on the body were used in studies 

[40,41], where the purpose was to predict, by the same accelerometric data, the geometric 

(initial and final height, horizontal distance, asymmetry and inclination of the trunk) and 

temporal (frequency and duration) variables related to lifting, thereby validating the 

measures that the systems produced. 

Among the wearable technologies, e-textile devices are also spreading in the ergonomics 

context even if as preliminary prototypes [42-44]. 

1.5 Machine learning in ergonomics 

Machine learning (ML) algorithms are gaining popularity in the ergonomic field for 

biomechanical risk assessment by means of data acquired by wearable inertial systems. 

Several publications have appeared in recent years documenting several strategies [45-47]. 

IMU systems, which incorporate machine learning into their data analysis pathways, have 

been found effective in automated exercise detection and in classifying movement quality 

across a range of lower limb exercises, including lifting, despite studies in this field having 

so far involved few samples [48]. 
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Chapter 2 

2 E-textile devices 

2.1 E-textile sock  

The first e-textile prototype developed during the research activity was a sock named 

SWEET Sock [49]. The prototype, based on an e-textile sensing sock, is able to collect the 

angular velocities of lower limbs, using IMUs, and the plantar pressures, by means of textile 

sensors. The device can be considered a wearable and portable system for the assessment of 

both postural and gait tasks, exploiting the recent advances in the field of the e-textile, 

electronic and signal processing. In particular, the system is intended to provide the 

assessment of spatio-temporal gait parameters by processing the angular velocities signals 

while the pressure signals are used to assess the Center of Pressure (COP) displacements 

during static postural tests. The details of the prototype design and development are 

presented below followed by its validation. 

The first version of this device, presented in [50], has been improved with new more efficient 

textile and electronic components and through the addition of a set of signal processing 

algorithms. 

SWEET Sock is a wearable sensing device which allows the acquisition of accelerometric 

and pressure signals. It can be integrated in a complete system for remote health monitoring, 

presented in the schematic diagram in Figure 1. 

 
Figure 1. System Architecture: (1) SWEET Sock: Textile Unit; (2) SWEET Sock: Control Unit; (3) SWEET 

App; (4) Web Server; (5) SWEET Lab 

The wearable sensor unit allows the acquisition of bio-signals when connected to the 

analogue front-end located in the electronic unit. This unit also contains a microcontroller 

and allows data transmission through an integrated Bluetooth Low Energy (BLE) module. 

A custom-made Android mobile application has been developed to receive and visualize 

real-time signals on a smartphone, and to upload data on a dedicated web server afterwards. 
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This is a restricted area that is accessible after prior authentication, exclusively by authorized 

and appointed health professionals, who can download, analyze, and process data using the 

custom-made MATLAB desktop software. 

Below, the functional modules of the system are individually presented. 

The wearable sensing unit consists of a commercial sports sock in which three pressure 

sensors, in e-textile technology, have been integrated as sensing elements in three strategic 

points of the foot arch. The number and placement of sensors were based on anatomical 

considerations: in standing position, the main force transmitted onto the foot originates at 

the bones of the lower leg. At the ankle, this force is divided into three smaller forces in the 

style of a tripod. Within the foot, one of these three forces is directly transmitted onto the 

calcaneus, the second one onto the first metatarsal, and the third one is distributed across the 

second to fifth metatarsal [51]. Therefore, it was decided to use three pressure sensors per 

foot: one under the heel (HEEL), one under the first metatarsal bone (MTB1) and one under 

the fifth metatarsal bone (MTB5) as shown in Figure 2c. The use of the minimum number 

of sensors needed for the analysis reduces the complexity of textile design and can improve 

the comfort and wearability for users. Sensors have been realized by using 2 by 4 cm sheets 

of EeonTex fabric, a conductive and nonwoven microfiber with piezo-resistive functionality 

(surface resistivity 2000 ohm/sq), offering a reduction of the electrical resistance to the 

application of force. Their characterization was carried out with load tests using a controlled 

mechanical clamp with decreasing/increasing loads. The three conductive sensors have been 

covered by non-conductive fabric to prevent degradation by contact with the skin and are 

thin enough to provide postural monitoring at natural in-shoe conditions, without distortion 

of plantar pressure. A conductive ribbon (5 mm tick), with a resistance of less than 0.1 ohm 

per cm, has been used to connect sensors to the output connectors of the wearable unit. 

Compared to the conductive wires available on the market, the ribbon has a lower resistance 

(0.1 vs 0.9 ohm per cm) and it is more robust as it does not break due to stretch. The design 

of conductive pathways provides a placement of all connectors of the data acquisition 

system, represented by snap buttons, on the lateral part of the sock, which essentially 

improves the system usability. The textile connections have been sewn on the side of the 

sock avoiding, when possible, the passage under the sole of the feet, where they could be 

deteriorated. Connection lengths have also been minimized by studying the shortest path in 

order to reduce noise and interference. Figure 2 shows the complete device with its sartorial 

design.  



9 
 

 
Figure 2. SWEET Sock sensing unit: (a) external view; (b) internal view of textile connections; (c) textile 

pressure sensors 

The electronic unit is a compact module containing all the electric and electronic elements 

to allow acquisition, digitalization, storage, and wireless transmission of the signals. A 

conditioning circuit, for each conductive sensor, has been realized in order to read a voltage 

signal proportional to the applied force. This circuit is realized by means of a voltage divider 

consisting of two resistors: one of which is of known value and the other represented by the 

e-textile sensor. The known resistance value is fixed to 18 kohm, around which the 

conductive sensor resistance ranges, to reach the condition of maximal sensitivity. The IMU 

FLORA 9-DOF (Adafruit Inc.: New York, NY, USA) has been integrated in the electronic 

unit to acquire gyroscopic signal. It consists of a small electronic board mounting LSM9DS1 

module, a system-in-package featuring a 3D digital linear acceleration sensor, a 3D digital 

angular rate sensor, and a 3D digital magnetic sensor. A LilyPad SimbleeTM BLE Board 

(Sparkfun Inc.: Niwot, CO, USA) has been used as microcontroller. It provides the 

digitalization of pressure signals, and it is connected to Flora IMU through the I2C serial bus 

interface. LilyPad Simblee also allows to send data via BLE protocol, using SimbleeTM 

Bluetooth R Smart Module integrated on the shield. BLE technology represents a perfect 

trade-off between energy consumption, latency, piconet size, and throughput. Its control 

features are implemented exploiting the ARM RCortexM0 microcontroller that can be 

programmed using the Arduino IDE. The control unit is programmed to sample pressure 

analogue signals with a sample period of 15 ms (66.7 Hz), and to receive digital data from 

the gyroscope with the same rate. Data are collected in 16-bytes-sized packets (2 bytes for 

each information: Packet, Time, x-y-z axes of the gyroscope, MTB1, MTB5, and HEEL 

pressure data) and real-time sent, via BLE, to the smartphone using SWEET App. Other 

signals deriving from IMUs (signals from accelerometer and magnetometer) are not recorded 

by the device because they do not provide any essential information for the planned 

assessments. A gyroscope-based algorithm able to evaluate all spatio-temporal parameters 

was implemented, the choice to use gyroscope signals in the place of the accelerometer 
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signals was due to the fact that accelerometer signals are affected by gravity and are sensitive 

to sensor location [52]. When using accelerometers, it is important that they are placed in 

the same location each time as the signal is affected by how far from the center of rotation 

they are. The advantage of using a shank mounted gyroscope compared to accelerometers is 

that, as long as the gyroscope is recording data in the correct plane, it does not matter where 

on the shank the sensor is placed [53,54]. This reduction in the amount of acquired and sent 

data allows to improve signals sampling and sending rate. All modules making up the 

electronic unit are powered by a 190 mAh/3.7 V lithium battery, placed on the back of the 

same unit. The electronic unit is housed in a 3D-printed plastic case (73 mm x 52 mm x 21 

mm). On the top part of the case, four snap buttons allow the connection to the wearable 

sensing unit, in order to provide the input signals for the analogue front ends. In Figure 3 the 

electronic unit, with its main details, is shown. 

 
Figure 3. SWEET Sock Electronic Unit: (a) internal electronic unit; (b) complete unit external view 

SWEET App is a custom-made Java language application for mobile devices requiring 

Android 6.0 or higher operating system and BLE technology. The application allows the 

smartphone to communicate and receive data coming from the electronic unit, via BLE 

protocol. When the application is started it is possible to associate and connect the wearable 

device, using its MAC address. Then, the measurement session can start, data are transferred 

from the electronic unit to the mobile device, which allows signals real time plotting. At the 

end of the session data are automatically saved in a “.csv” file, which is stored locally and 

can be uploaded at any time to a dedicated web server. In Figure 4 the main frames of the 

app are shown. 
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Figure 4. SWEET App main frames: (a) login; (b) unit connection; (c) signal recording; (d) results summary 
A custom-made Matlab GUI software, named SWEET Lab, has been developed to allow 

signal visualization and digital processing. Health professionals have the possibility to 

download data from the server and analyze them using the tools offered by this software. 

Pressure and gyroscope signals gathered by the hardware are individually processed to 

respectively perform posturographic assessment and spatio-temporal gait analysis. The two 

types of signal were not integrated because they are used in the analysis of two separate 

phases: pressure signals for static postural assessment while angular velocities in dynamic 

walking tasks analysis. A gyroscope-based algorithm for gait analysis has been developed. 

The angular velocity signals on the sagittal plane are selected and low-pass filtered with 5th 

order Butterworth filter (cut-off frequency 5 Hz) to reduce noise. Mid-swing, heel-strike, 

and toe-off events are then identified on the filtered signals for both feet, using a threshold-

based algorithm [55]. The starting point of the algorithm is the identification of the time 

events corresponding to the mid-swing, identified as the local maximum peaks of the signal. 

In the next step, local minimum peaks prior and after the mid-swing point are selected as, 

respectively, toe-off and heel-strike time events. Starting from these gait events times, all 

temporal parameters of gait analysis are calculated. In Table 1, the list of temporal 

parameters is provided with a description clearly outlining the methods used to calculate 

them. Spatial parameters are assessed using a single pendulum model described in [53], 

where the distance from the foot to the top vertex of the rotation is modeled as equal to the 

height of the subject multiplied by a scaling factor. The following equation shows how the 

stride length is calculated: 

!"#$%&'&()"ℎ(,) = !	0	1	0	2(1 − cos8) 
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S represents the scaling factor chosen equal to 0.52 [53], H represents subject height [m] and 

8 is the angular displacement in the sagittal plane during the stride [rad], assessed by 

integration of the gyroscope signal. Plantar pressure signals collected by the sensorized socks 

are used to perform sway analysis, as a systematic assessment of the readiness and stability 

of the human body to achieve and maintain equilibrium. This analysis starts with the 

estimation of the COP, whose displacement during stand task is a meaningful parameter for 

a quantitative evaluation of the ability to maintain equilibrium. At each instant, COP 

coordinates in the medio-lateral (9!"#) and antero-posterior (:!"#) directions have been 

calculated by processing raw pressure data according to the following equations: 

9!"# =
∑ 9$<$%
$&'
∑ <$%
$&'

 

:!"# =
∑ :$<$%
$&'
∑ <$%
$&'

 

where N denotes the total number of sensors, and X and Y are the sensor coordinate inside 

the whole foot shape area and P the pressure value. The resulting signals express COP 

displacement along time in the medio-lateral (M-L) and antero-posterior (AP) directions, 

with respect to a reference point located in the middle between the feet. The mono-

dimensional representations of these signals constitute the M-L and AP stabilograms, while 

the combined bidimensional plot is referred to as statokinesigram, representing the ground 

projection of the COP during the stand task. 
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Table 1. Spatio-temporal gait parameters 
Temporal Measures 

Variable  Description 

Gait Cycle Time (GCT) [s] Defined as the time between two successive heel 
strikes of the same foot 

Stance Time [s] 

The amount of time a foot is in contact with the 
ground within a single gait cycle. It is the time 
between the heel-strike and the successive toe-off of 
the same foot 

Stance Phase [%] Stance time expressed in percentage of the GCT 

Swing Time [s] 

Duration of the swing phase, in which the foot is not 
in contact with the ground. It is calculated as the 
time between the toe-off and the successive heel 
strike of the same foot 

Swing Phase [%] Swing time expressed in percentage of the GCT 

Single Support [%] 

Part of the GCT in which a single foot is in contact 
with the ground. It is the time between the toe-off of 
the opposite foot and the successive heel-strike of 
the opposite foot, expressed in percentage of the 
GCT 

Double Support [%] 

Part of the GCT in which both feet are in contact 
with the ground. It is the time between the heel-
strike of a foot and the successive toe-off of the 
opposite foot, expressed in percentage of the GCT 

Cadence [steps/min] Number of steps per minute 
Spatial Measures 

Variable  Description 
Stride Length [m] Distance covered during GCT 
Stride Velocity [m/s] Defined as the ratio between Stride Length and GCT 

Signals are filtered with a low-pass 4th-order Butterworth digital filter with a cut-off 

frequency of 5 Hz [56], and then analyzed in time domain to calculate a set of parameters 

describing the stability of the subject during the task (Table 2) [57-59]. 

Stabilometric signals were also analyzed in frequency domain. The Matlab periodogram 

algorithm is used to estimate power spectral density (PSD), modified using the Hamming 

window. Frequency assessment is provided by means of a set of measures describing the 

distribution of PSD, such as peak and centroidal frequencies, band powers, and others. All 

the parameters assessed are listed in Table 2. The description clarifies the methods used to 

evaluate both spatial and frequency domain metrics starting from stabilometric signals and 

ground projection of the COP trajectory. 
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Table 2. Static postural assessment parameters 
Time Domain Measures 

Variable  Description 

Mean COP coordinates [cm] M-L and AP mean COP displacements during 
time 

Mean Distance [cm] Mean distance of COP trajectory from the center 
of the trajectory itself 

COP Trajectory Range [cm] Maximum distance between 2 points of COP 
trajectory in M-L and AP directions 

Root Mean Square (RMS) [cm] RMS of COP trajectory. It is provided also for 
single M-L and AP directions 

Angle form AP axis [deg] Mean angle formed by the segments composing 
COP trajectory and AP direction 

Sway Path [cm] 
Total length of COP trajectory, computed as the 
sum of distances between successivepoints of 
the trajectory 

Mean Velocity [cm/s] 
Mean velocity of COP trajectory, computed as 
the ratio between sway path length and duration 
of the test 

95% Ellipse Area [cm2] Area of 95% confidence ellipse encompassing 
the COP trajectory in transverse plane 

95% Ellipse Angle [deg] 95% confidence ellipse inclination with respect 
to the M-L direction 

Frequency Domain Measures 
Variable  Description 
Peak Frequency [Hz] Peak frequency for M-L and AP power spectrum 

Median Frequency [Hz] Frequency below which the 50th percentile of 
total power is present 

80% Frequency [Hz] Frequency below which the 80th percentile of 
total power is present 

Centroidal Frequency [Hz] 
Spectral centroid of power spectrum. It indicates 
where the center of mass of the spectrum is 
located 

Band Power [cm2] 
Power comprised in low [0.1–0.2 Hz], mid [0.2–
0.3 Hz], and high [0.3–1 Hz] frequency bands, 
expressed as absolute and percentage values 

The proposed system was validate through a benchmarking study with a reference system. 

The reference system chosen for the validation analysis is SMART-DX 700 by BTS 

Bioengineering, an optoelectronic stereophotogrammetric system used in the gait analysis 

field. Stereophotogrammetry is usually considered a “gold standard” in gait analysis when 

used appropriately. The system is made of 6 infrared digital cameras, with a sensor resolution 

of 1.5 megapixel, an acquisition frequency from 250 fps (at maximum resolution) to 1000 

fps and an accuracy lower than 0.1mm. The recognition of body segments during movement 

is achieved through the use of twenty-two retro-reflective passive markers (diameter 14 

mm), which are attached to subject’s skin at specific landmarks. Video data are processed 
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on a PC workstation running SMART Clinic software, able to store and compute a set of 

parameters concerning kinematic (spatiotemporal parameters, joint angles) and dynamic 

(forces exchanged). In [60], a first validation analysis was performed by comparing the raw 

accelerometric and plantar pressure signals acquired by the prototype with those recorded 

by reference systems. Following the results obtained, in this work it has been explored the 

results of gait assessment, in order to carry out any possible unconformity in measurement 

and/or processing phases managed by the new prototype. Spatio-temporal gait parameters 

calculated by the proposed device with those found by an optoelectronic 

stereophotogrammetric system were compared. The comparison was carried out by means 

of statistical methods. 

One-hundred-and-eight records were acquired on three healthy subjects: two males (aged 27 

and 26) and one female (aged 25). Participants were free of neurological, muscular, and 

skeletal comorbidities affecting mobility and gait. The subject wore the sensorized socks 

connected to the electronic unit and was equipped with the markers of the 

stereophotogrammetric system, in order to perform simultaneous recording of the walking 

tasks with the two systems under test (Figure 5). The markers were attached to subject’s skin 

according to the protocol described by Davis et al. [61]. 

 
Figure 5. Subject equipped with both systems: SWEET Sock and reflective markers 

The trials involved free walking tests on a 11 m walkway. Each subject was instructed to 

perform eight independent trials respectively at preferred, slow and fast self-selected 
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walking speed. After that, the use of a metronome was introduced to force subjects walking 

at fixed normal, slow and high speed. Metronome rate was set at 100%, 67%, and 133% of 

the average cadence previously assessed for each subject over 5 free walking tests using the 

accelerometers-based gait analysis system Opal by APDM. Subjects performed four walking 

trials at each speed imposed by metronome. The trials were performed at different walking 

speed in order to obtain a dataset covering a wider range of values. Doing so, we expect a 

more specific characterization of the relationship existing between the two methods over all 

the range of measurement. 

In order to validate the proposed e-textile wearable system, the gait analysis parameters 

obtained from this device have been compared with those obtained by the reference system. 

Starting from gyroscope signals measured by the Sock, spatio-temporal gait parameters were 

computed by the custom-made MATLAB algorithms shown previously. The corresponding 

parameters assessed by the reference system were retrieved from the reports generated by 

SMART CLINIC software. 

The following spatiotemporal parameters were considered for the benchmarking analysis: 

Gait Cycle Time (s), Cadence (step/min), Stance Time (s), Swing Time (s), and Step Length 

(m). 

The agreement between measurements computed by the two systems - the Sock and 

SMART-DX 700 - was investigated by means of two-tailed paired t-test, Passing–Bablok 

regression, and Bland–Altman analysis. The paired t-test has been performed for all the 

parameters selected for the analysis, in its parametric or nonparametric form (Wilcoxon 

matched pairs signed-rank test) in according to D’Agostino-Pearson omnibus normality test 

result. With the paired t-test, the null hypothesis of no difference between the two systems 

in mean values of each spatio-temporal parameter was tested. A two-tail test was used and 

the nominal alpha level was set to 0.05 [62]. In combination with the t-test, the linear 

correlation between each pair of measurements has been assessed, using Pearson’s 

correlation coefficient (r). The agreement was further investigated using Passing-Bablok 

regression and Bland-Altman plots, with the aim to find out any proportional or constant 

systematic error between the two methods of measurement. Passing-Bablok regression is a 

method proposed in 1983 for testing the agreement of two sets of measurement achieved by 

different systems [63]. The novelties taken by this method, with respect to the standard linear 

regression are that it is based on nonparametric model, it is not sensitive towards outliers, 

and it assumes imprecision in both measurement methods and that errors in both methods 

have the same distribution, not necessarily normal. As quantitative outcomes, this method 
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returns slope (proportional systematic error) and intercept (constant systematic error) of the 

fitting linear model. The quantitative-based rules to accept the agreement between systems 

are whether the confidence intervals (CI) of slope and intercept contain respectively 1 and 0 

[63]. Bland-Altman analysis is a graphical method based on the plots of the differences 

between two measurements against their averages, and it is the most popular method used to 

measure agreement between two measurement systems [64]. If the differences are randomly 

distributed around the zero-value axis, no proportional nor systematic error is underlined by 

the analysis. Quantitative assessment is given through the bias, as the mean of the 

differences, and the limits of agreement (LoA) assessed as the bias minus 1.96 times standard 

deviation of the differences [65-68]. If the differences between methods do not have a normal 

and/or symmetric distribution, LoA are considered to be between the 2.5% and 97.5% 

percentiles. Significant statistical errors are said to be present if the confidence interval does 

not contain zero value. Bland and Altman propose to accept the agreement between the 

methods under test if this interval contains zero value [65]. Statistical analyses were 

performed using R software (ver. 4.0.3). 

The analysis of agreement between the two methods of measurement was carried out 

performing a paired t-test on all the parameters considered for the analysis. For each 

parameter, the values deriving from all the trials performed were considered, with no 

separation between subjects or walking speeds adopted. Table 3 shows mean and standard 

deviation values of each analyzed parameter dataset for each system of measure. The results 

of the two tailed paired t-test, with a confidence interval of 95%, are reported using a symbol 

in accordance with the following convention: ns p-value > 0.05, * p-value < 0.05, ** p-value 

< 0.01, *** p-value < 0.001, **** p-value < 0.0001. The hypothesis of no difference between 

systems was tested, so lower p-values suggest rejecting the accordance of systems. In the 

same table (Table 3) Pearson’s r values are reported. 

The Bland-Altman analysis produces the plots shown in Figures 6a-10a. They provide a 

qualitative assessment of the distribution of the differences between methods. The 

descriptive numeric values deriving from the analysis are reported in Table 4. The bias 

represents the mean of the differences between the measures computed by the systems, it is 

provided with the limits of its 95% CI. In the plots, biases are reported as continue red lines, 

while the red dashed lines represent the corresponding confidence intervals. The LoA 

reported in Table 4 are also shown in the graphical representations as black dashed lines. 

They are assessed as the 2.5 and 97.5 percentiles of differences, as they do not have a 

symmetric gaussian distribution. 
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The last analysis on data was performed using Passing-Bablok regression. In addition to the 

previous analyses, this analysis can reveal the presence of a trend between the measures of 

the two systems, thus indicating a proportional error in the tested method according to the 

slope of the fitting regression line. Figures 6b-10b show the scatter plot of the dataset for 

each parameter, with the Passing-Bablok regression line in black. The shaded area around 

the regression line represents its CI, while the red dashed line corresponds to the reference 

identity line, to which the regression line should be tend in a scenario of perfect agreement. 

In the Passing-Bablok plots, Pearson’s correlation coefficient (r) is also shown because high 

values of r justify the choice to perform a linear regression analysis. The quantitative 

outcomes of Passing-Bablok analysis are reported in Table 5: slope and intercept of the 

regression line are listed for each parameter, along with the corresponding 95% CI limits. 

Table 3. Paired t-test between the two devices for each parameter and study of correlation 

Variable Sock 
(mean ± std) 

BTS 
(mean ± std) 

p-value 
Summary1 Pearson’s r 

Gait Cycle 
Time [s] 1.15 ± 0.25 1.15 ± 0.26 ns 0.992 

Cadence 
[step/min] 109.30 ± 21.85 109.60 ± 22.25 * 0.996 

Stance Time [s] 0.63 ± 0.19 0.70 ± 0.18 **** 0.994 
Swing Time [s] 0.52 ± 0.07 0.45 ± 0.08 **** 0.969 

Step Length 
[m] 0.73 ± 0.08 0.68 ± 0.10 **** 0.283 

1 ns p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 

Table 4. Bland-Altman analysis 

Variable Bias 
Lower 

Bound Bias 
CI 

Upper 
Bound Bias 

CI 

Lower 
Bound LoA 

Upper 
Bound LoA 

Gait Cycle 
Time [s] 0.00 -0.01 0.01 -0.06 0.05 

Cadence 
[step/min] -0.35 -0.74 0.03 -3.83 3.26 

Stance Time 
[s] -0.07 -0.07 -0.06 -0.11 0.01 

Swing Time 
[s] 0.07 0.07 0.08 0.04 0.10 

Step Length 
[m] 0.06 0.03 0.08 -0.13 0.25 
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Table 5. Passing-Bablok regression analysis 

Variable Slope 
Lower 
Bound 

Slope CI 

Upper 
Bound 

Slope CI 
Intercept 

Lower 
Bound 

Intercept 
CI 

Upper 
Bound 

Intercept 
CI 

Gait Cycle 
Time [s] 1.00 0.99 1.02 0.00 -0.02 0.02 

Cadence 
[step/min] 0.99 0.97 1.00 0.74 -0.95 2.38 

Stance 
Time [s] 1.06 1.03 1.08 -0.11 -0.13 -0.09 

Swing 
Time [s] 0.90 0.87 0.94 0.12 0.10 0.13 

Step 
Length [m] 0.70 0.52 0.95 0.25 0.08 0.36 

 
Figure 6. Gait cycle time: (a) Bland–Altman plot; (b) Passing–Bablok regression analysis 

 
Figure 7. Cadence: (a) Bland–Altman plot; (b) Passing–Bablok regression analysis 
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Figure 8. Stance Time: (a) Bland–Altman plot; (b) Passing–Bablok regression analysis 

 

 
Figure 9. Swing Time: (a) Bland–Altman plot; (b) Passing–Bablok regression analysis 



21 
 

 
Figure 10. Step length: (a) Bland–Altman plot; (b) Passing–Bablok regression analysis 

In the assessment of the mean gait cycle time, significant agreement has been pointed out by 

the statistical analysis. The paired t-test leads to a non-significant p-value (p > 0.05), 

suggesting to accept the hypothesis of no difference between systems. The bias value in the 

Bland-Altman analysis is null (0.00 from Table 4) and the LoA are very low (in the order of 

few hundredths of a second). The Pearson’s correlation coefficient is very high (0.992), 

supporting the concept of a linear dependence between the measures, explored by means of 

Passing-Bablok analysis. The regression line obtained with this method coincides with the 

identity line (slope = 1.00, intercept = 0.00), confirming the significant agreement between 

the two methods in assessing gait cycle time. 

Concerning the measure of cadence, a deeper discussion is required. The T-test result 

suggests to refuse the hypothesis of absence of difference between the methods, but with 

low significance (0.05 < p-value < 0.01). The bias pointed out by Bland-Altman analysis is 

very low (-0.35, about 0.3% of the average value of cadence), with its 95% CI containing 

the zero value and limited to few units of steps per minute (-0.74 to 0.03). Passing–Bablok 

regression is legitimated by a high value of Pearson’s r (0.996): its slope is very close to 1 

(0.99 with CI of 0.97–1.00), the intercept is different from 0 (0.74) but its CI contains this 

value (-0.95 to 2.38). Starting from these results and analyzing the Bland-Altman Plot in 

Figure 7a, it can be observed that the SWEET system slightly underestimates the value of 

cadence compared to BTS system. Further exploring data, the cause of the non-perfect 

agreement was identified in the different range of steps analyzed by the two systems. The 

reference system SMART-DX 700 by BTS performs gait analysis on a limited range of steps, 

contained in the central 3 or 4 strides of the walking trial, as they are completely included in 
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the field of view of the cameras. The detected volume cannot be extended because it is 

limited by the configuration of the system which considers the limited volume of the 

laboratory. Instead, SWEET Sock system elaborates the entire signal coming from the IMUs, 

removing only the first and the last steps performed to start and stop walking. The analysis 

of the punctual values of cadence assessed in each single step of the walking trial by SWEET 

Sock system clarify that in the first and last part of walking a lower step cadence is adopted. 

Figure 11 shows, for each step of the walking trial, the average of the differences between 

the punctual cadence assessed by SWEET and the mean step cadence suggested by BTS 

system. It can be observed that in the first and last part of walking the difference is higher in 

absolute value, while in the middle steps it is reduced. Therefore, it can be affirmed that 

probably a better agreement would have been obtained if the same range of steps were 

analyzed by the two systems. It has not chosen to do so for two reasons: the first is that in 

SMART-DX 700 the steps to be considered in the analysis have to be chosen manually, 

while the signal processing of SWEET Sock is entirely automatic, and second because it has 

not chosen to modify the methods of analysis of SWEET system, which can provide more 

accurate results by taking into account the entire walking trial. 
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Figure 11. Mean difference between the punctual cadence assessed by SWEET and the mean step cadence 

suggested by BTS system for each step of the walking trial 

Stance and swing phase durations are complementary parameters, because they are the two 

parts composing the gait cycle time. Gait cycle time is defined as the time between two 

successive initial contacts of the same foot. Stance phase duration is the time between the 

initial contact and the successive terminal contact of the same foot, while swing time goes 

from the terminal contact to the subsequent initial contact. The complementarity of these 

parameters is perfectly reflected in the results of the statistical analyses. The T-test identified 

a significative statistical difference between the systems (p-values < 0.0001), even if a linear 

correlation exists in both stance and swing phase durations as shown by Pearson’s r values, 

respectively 0.994 and 0.969. The Bland-Altman plots clearly show that SWEET system 

underestimates Stance time compared to BTS system (bias = -0.07), and therefore 

overestimates of the same quantity the Swing time (bias = 0.07). Passing-Bablok results 

confirm the presence of a systematic error in the measures: intercepts’ CIs are symmetric for 

the two variables and do not contain zero value (stance CIs = -0.13 to -0.09, swing CIs = 

0.10 to 0.13). It also points out a proportional error proven by the fact that the slopes of the 

two regression lines are different from 1 (the CIs are respectively from 1.03 to 1.08 and, 

symmetrically, from 0.87 to 0.94). Therefore, the difference between the methods of 
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measures is made of a constant part and a proportional part which grows when the value of 

the parameter is increased. The error is to be probably addressed to the wrong detection of 

the initial and terminal contact of the foot with the ground, made by SWEET system through 

the analysis of the filtered gyroscope signal in accordance to the rules illustrated by Doheny 

et al. in [69]. Although the gait cycle time shows very good agreement, it does not mean that 

the initial contacts are well identified in the signal, because they could be all translated in 

time of the same quantity, still resulting in good output values. To understand the error a 

further analysis is required on the mutual position of initial and terminal contacts identified 

on gyroscope signals. 

The last parameter is the step length, which has been selected to investigate the performances 

of SWEET system in the assessment of spatial measures. Results of the statistical analysis 

are not very encouraging. T-test points out a significative statistical difference between the 

measures of the systems (p < 0.0001), that is confirmed by Bland-Altman analysis. Actually, 

even if the CI of bias includes the zero, it is quite wide (-0.13 to 0.25 m) for the precision 

required in this spatial metric. Moreover, the reduced value of Pearson’s coefficient shows 

that no linear correlation exists between the measures (r = 0.283), so it does not make sense 

to perform the Passing-Bablok regression analysis. Actually Passing-Bablok regression line 

in Figure 10b does not fit accurately the points, which are distributed with no detectable 

trend. These results allow to affirm that there is not agreement between the systems in the 

assessment of the step length. Moreover, in this case the cause of the error could be probably 

found in the processing of the gyroscope signal that lead to the assessment of the spatial 

parameters. The algorithm proposed in [69] is based on modeling the movement of the shank 

as a single pendulum, thus deriving the spatial parameters from the calculation of the angle 

covered by the foot during the swing phase and using geometrical consideration. A further 

analysis is required to understand if this model is too simplistic to represent leg swing during 

gait or if other aspects (device positioning, signal filtering, etc.) cause errors in the measure 

of spatial parameters in SWEET Sock system. The first purpose is to try maintaining a 

gyroscope-based algorithm for gait assessment, by considering other more specific models 

proposed in literature regarding the movement of the shank during the swing phase. An 

example is the double segment gait model involving both shank and thigh proposed by Tong 

et al. in [70]. Doing so it can be avoid the use of other sensors data, such as linear 

accelerations, keeping the gyroscope advantages explored in the description of the electronic 

unit, and avoiding the reconfiguration of the entire system. 
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A deeply work based on the exploration of the scientific literature was performed to find out 

and analyze other results from gait analysis systems based on similar measuring principles. 

Some works exist regarding validation analysis of wearable systems for gait analysis based 

on processing of kinematic signals. These studies address comparative analyses with clinical 

instruments, such as instrumented treadmill [71], force platform [72] or pressure sensitive 

walkway (GAITRite R) [73,74]. No works presenting a comparative analysis with the gold 

standard (stereophotogrammetry system) has been found. Results from the analyzed works 

show a common trend: temporal parameters present a better agreement than spatial metrics. 

Among temporal parameters, step time and GCT show the best agreement, while stance and 

swing phases measurements are moderately correlated with reference measures. The 

presented results are in accordance with this trend, confirming the poor performances of 

IMU-based systems in assessing gait spatial metrics. Only in [52] spatial metrics show a 

good agreement level, that could be caused by the different placement of IMUs, placed on 

both feet rather than on shanks. Results from the work in [71] demonstrated that foot 

placement allow a better measurement of spatial gait parameters. However, it was not chosen 

this placement because it can worsen the comfort and wearability of the system for users and 

preclude its in-shoes use. 

In addition to the validation of technical performance, the wearability and comfort 

assessment was carried out in order to evaluate the acceptance of the system by final users 

and to identify possible areas of improvement in terms of design. To carry out this 

conformity assessment, an already validated methodology was used, specifically the 

Comfort Rating Scales (CRSs). The wearability evaluation of a device is a multidimensional 

analysis: wearable devices affect the wearer in different ways. Among the effects to be taken 

into consideration, there are those related to comfort. When wearing something, the level of 

comfort can be affected by several aspects, such as device size and weight, how it affects 

movement, and pain. The design of the sock has been implemented in order to achieve the 

greatest comfort for the user. The integrated pressure sensors are made of textile material, 

therefore are flexible and imperceptible on the skin. The electronic unit has also been 

designed to be as comfortable as possible for the user: it is light and it can be connected to 

the textile sock without the need to use bands. In fact, the use of the latter could cause 

discomfort to the user due to the presence of a narrow element tied to the limb. In addition 

to physical factors, comfort may be affected by psychological responses such as 

embarrassment or anxiety. Consequently, Knight and Baber proposed that comfort should 

be measured across a number of dimensions and for such task they developed the CRSs [75]. 
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The CRSs provide a quick and easy-to-use tool to assess the comfort of wearable devices, 

which attempt to gain a comprehensive assessment of the comfort status of the wearer of any 

item of technology by measuring comfort across the six dimensions described in Table 6. In 

rating perceptions of comfort, the scorer simply marks on the scale his or her level of 

agreement, from low (0) to high (20), with the statements made in the “description” column 

of Table 6. According to Knight and Baber, this range was considered large enough to elicit 

a range of responses that could be used for detailed analysis [75]. The three participants 

involved in the study were invited to fill in the CRSs to provide a judgment on their comfort. 

Table 6 shows the scores assigned, for each field, by the subjects involved in the study. 

Although the evaluation was carried out on only three people, it provides a preliminary 

measure of the comfort of the prototype device. Knight et al. [76] have proposed five 

Wearability Levels (WLs), determined by proportioning the scales into equal parts (Table 

7). The mean score of Emotion dimension is in the WL2 suggesting that users show little 

embarrassment in wearing the system. All the other dimensions were rated in the WL1 

proving a high wearability and comfort of the device. However, to better identify the 

wearability level of the device and how to improve it, future analysis will aim to make a 

significant assessment of comfort, testing the device on a wider cohort of subjects. 

Table 6. Comfort rating scales 
Title Description Subject 

1 
Subject 

2 
Subject 

3 
Mean 

Emotion I am worried about how I look 
when I wear this device. I feel 
tense or on edge because I am 
wearing the device 

7 4 7 6.0 

Attachment I can feel the device on my body. 
I can feel the device moving 3 3 5 3.7 

Harm The device is causing me some 
harm. The device is painful to 
wear 

0 0 0 0.0 

Perceived 
change 

Wearing the device makes me 
feel physically different. I feel 
strange wearing the device 

5 0 0 1.7 

Movement The device affects the way I 
move. The device inhibits or 
restricts my movement 

5 2 1 2.7 

Anxiety I do not feel secure wearing the 
device 0 0 0 0.0 
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Table 7. Wearability Levels 
Wearability 
Level 

CRS 
Score 

Outcome 

WL1 0-4 System is wearable 

WL2 5-8 System is wearable, but changes may be necessary, further 
investigation is needed 

WL3 9-12 System is wearable, but changes are advised, uncomfortable 
WL4 13-16 System is not wearable, fatiguing, very uncomfortable 

WL5 17-20 System is not wearable, extremely stressful, and potentially 
harmful 

Resuming, SWEET Sock is a new wearable and portable device for the measurement and 

analysis of biosignals, based on textile sensors, able to perform posturographic assessment 

and gait analysis. The development of the system and the validation analysis of the 

performances of the novel system in gait assessment was presented. 

The sensing unit is a textile sock in which textile sensors and bus structures are integrated, 

making it possible to use the system during normal daily activities, without any discomfort. 

The system includes a mobile app for real time visualization of the acquired signals and a 

software desktop for off-line plotting and digital signal processing. 

The analysis of the performances of the system in gait assessment was performed by 

comparing the results given by the novel system with the corresponding values computed by 

an optoelectronic stereophotogrammetric system (SMART-DX 700 by BTS Bioengineering) 

in the analysis of 108 walking trials at different walking speeds. Study results showed that 

the agreement is not confirmed for all the spatio-temporal gait parameters analyzed. In 

particular, gait cycle time and cadence are the two parameters presenting the best agreement, 

even if the latter presents a small systematic difference between the values computed by the 

two systems. Stance and swing phase durations presented both systematic and proportional 

errors in the comparison between the methods. Although both errors could be removed by 

taking into account this misalignment, a further analysis need to be performed to understand 

and correct the problems directly in the processing phase. Worse results are achieved in the 

analysis of spatial parameters’ agreement. The measures of step length provided by the two 

systems are not correlated. For this parameter, a further analysis is required to correct the 

issues in the computational process. Based on these findings, it can affirmed that the novel 

system can be safely used in the evaluation of gait cycle time while some issues were found 

in the validation of the other temporal and spatial parameters. Future developments will 
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concern the resolution of the problems encountered in this work and the execution of a 

similar validation analysis regarding the posturographic assessment provided by the system. 

The innovative features of the system rely in the multiparametric approach in health 

monitoring and in its ease of use. The “wearability” of the system and its comfortable use 

make it very suitable to be used in domestic environment for the continuous remote health 

monitoring of de-hospitalized patients. The CRSs were used to assess the comfort of the 

wearable system. The scores provided by the subjects involved in the study, allow to assume 

a good level of comfort when the socks are used. 

Another valid field of interest regards occupational ergonomics, related to the prevention of 

WSMDs in healthcare workers. 

The use of SWEET Sock during working hours by nurses and therapists could help monitor 

postural and dynamic variables in activities most associated with exposure to biomechanical 

overload (i.e., frequent patient handling, pushing and pulling, awkward postures, prolonged 

standing, and significant sideways twisting). 

The biomechanical advantage of using patient handling devices and technological aids, 

including exoskeletons, could be verified through the analysis of postural parameters. Gait 

analysis could help rethink preventive strategies aimed at work organization (for example 

by providing for the alternation of dynamic and static phases, and adequate recovery breaks). 

Last, but not least, balance analysis and COP coordinates could provide insights into the 

prevention of slips, trips, and falls, which are the second most common cause of injuries 

leading to lost working days in hospitals. The advantages combined in a minimally invasive 

device, together with the accuracy and reliability of the measurement, and the future 

opportunity of integration into IoT networks open new perspectives to increase the 

effectiveness of prevention and safety strategies in healthcare workers. 

2.2 E-textile shirt 

The second e-textile prototype developed during the research activity was a shirt named 

SWEET Shirt [77]. 

The SWEET Shirt is a wearable sensing device that allows for the acquisition of ECG, bicep 

EMG and trunk acceleration signals. It can be integrated within a complete system for remote 

healthcare purposes, as illustrated by the schematic shown in Figure 12. 
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Figure 12.  System architecture: 1) wearable sensing device; 2) electronic unit; 3) SWEET App; 4) cloud; 5) 

SWEET Lab 

The wearable sensor unit allows for bio-signal acquisition when connected to the analogue 

front-end located in the electronic unit. This unit also contains a microcontroller and allows 

for data transmission through an integrated BLE module. A custom-made Android mobile 

application was developed to receive and visualize real-time signals on a smartphone, and 

to subsequently upload data on a dedicated web server. This server presents a restricted area 

that is exclusively accessible (following prior authentication) by authorized and appointed 

healthcare professionals, who can download, analyze and process the data using the custom-

made MATLAB desktop software. 

Below, the functional modules of the system are individually presented. 

The wearable sensing unit is comprised of a commercial elastic t-shirt in which e-textile 

electrodes are integrated. A knit conductive fabric with a resistance of less than 0.03 ohm 

per cm in any direction across the textile was used to produce the electrodes. This fabric 

(Adafruit Inc. www.adafruit.com – product ID: 1167) is plated with real silver, which gives 

it highly conductive properties. Two 4 x 2 cm electrodes were integrated within the garment 

as sensing elements for ECG processes, with two 2 x 2 cm electrodes placed on each shirt 

sleeve for EMG acquisition and a 2 x 2 cm electrode integrated within the upper part of the 

chest as a ground electrode for all the biosignals. A conductive ribbon (5 mm in width; 

Adafruit Inc. product ID: 1244) was then used to connect the electrodes to the output 

connectors of the wearable unit, represented by snap buttons placed in a pocket on the chest 

of the shirt. The conductive ribbon is made of woven conductive stainless-steel fibers, with 

a resistance of less than 0.1 ohm per cm. Conductive traces sewn onto the shirt were covered 

by a non-conductive fabric to avoid contact with the skin. Figure 13 shows a schematic of 

the wearable sensing unit, with the complete unit and the main details shown. 
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Figure 13. SWEET shirt sensing unit: a) internal view with textile electrodes and connections; b) external 

view 

The electronic unit is a compact module containing all the electric and electronic elements 

that allow for the acquisition, digitalization and wireless transmission of the signals. It was 

decided to develop a custom-made analogue front-end for the ECG and EMG measurement 

in view of suitably dealing with the higher impedance caused by the fabric electrodes. The 

analogue front-end for ECG measurement comprises four principal stages: an 

instrumentational amplifier INA 118 from Texas Instruments, a high-pass passive filter with 

a cut-off frequency of 0.05 Hz, an isolation stage designed with an OpAmp LM358 in 

voltage follower configuration, and a low-pass active filter with a cut-off frequency of 40 

Hz. The first filter is a first order high-pass CR passive filter, while the last stage is 

represented by a first-order active filter comprising an OpAmp LM324 in non-inverting 

configuration with a RC feedback. In terms of the EMG analogue front-end, three principal 

stages were designed, with the first two similar to those used for the ECG analogue front-

end but with the high-pass cut-off frequency set to 15 Hz. The last stage is a precision 

rectifier circuit with the integration of a low-pass filter. The rectifier circuit comprises an 

OpAmp LM324, two diodes and a resistor on the feedback connection. This form of 

configuration is also known as super-diode configuration. Meanwhile, a capacitor was added 

in parallel to the resistor to ensure this stage acts as a first-order low-pass filter. The various 

components were chosen to set the filter cut-off frequency at 30 Hz. The introduction of this 

rectifying stage was important as we are interested in the EMG envelope signal for 

performing the subsequent processing operations. Generally, an EMG signal is sampled and 

then rectified in the digital domain; however, it was preferred to rectify it in the analogue 
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domain in order to use a lower sampling frequency. The digitalization of EMG signals 

requires a high sampling frequency, around 800 - 1.000 Hz, since the highest spectral 

components are at around 400 - 500 Hz. In contrast, an EMG envelope requires a lower 

sampling rate since its main spectral information is at low frequencies. The use of a lower 

sampling rate facilitates the real-time transmission of the signal. Moreover, using this 

configuration, the mobile application can provide the user with real-time EMG envelope 

signals, without the use of a processing stage that would increase the complexity of the 

system and potentially introduce delays. The electronic board, FLORA 9-DOF (Adafruit 

Inc.), which mounts the triaxial inertial module iNEMO LSM9DS0, was integrated within 

the electronic unit to acquire accelerometric signals, while a LilyPad Simblee™ BLE board 

(Sparkfun Inc.), was used as the system control unit. This unit provides the digitalization of 

the ECG and EMG signals and is connected to the Flora accelerometer through the serial 

I2C bus. The LilyPad Simblee board also allows for sending data via a BLE protocol, using 

the Simblee™ Bluetooth® Smart Module integrated on the shield. In fact, BLE technology 

presents a perfect trade-off between energy consumption, latency, piconet size, and 

throughput [78]. The choice of using BLE technology can also be regarded as a means of 

increasing the battery life of the device as much as possible. Battery life is a central issue in 

the development of portable devices and, in this type of application, it is mostly influenced 

by the data transmission operations. Indeed, BLE is one of the most data-saving transmission 

protocols, while other solutions have been proposed based on reducing the amount of data 

to be sent, using a compression method that does not degrade the signal quality [79,80]. The 

control unit features were implemented through employing an ARM® Cortex M0 

microcontroller that can be programmed using the Arduino IDE. The control unit was 

programmed to digitalize ECG and EMG analogue signals and to receive digital data from 

the accelerometer. Here, the ECG signal is digitalized with a sample rate of 200 Hz, while 

the EMG and accelerometric signals are acquired using a sample period of 15 ms (66.7 Hz). 

All data are collected in 20-bytes-sized packets and are sent in real time via BLE to the 

smartphone using the SWEET app. The packet transfer rate was set to 66.7 Hz, which was 

experimentally identified as the maximum rate supported by BLE transmission without data 

loss. Hence, each packet contains one sample from EMG and triaxial acceleration signals 

and three successive ECG samples in accordance with their sampling rates. Despite the fact 

that the sampling rates chosen for the ECG and EMG signals were lower than those usually 

used, they were in line with the time resolution required by conventional target applications. 

In ECG digital processing, since the focus was not in signal morphology but on heart rate 
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analysis, the latter can be accurately performed with a lower sampling rate [81]. With regard 

to EMG signaling, the envelope signal was extracted in the analogue domain such that it can 

be safely sampled using the chosen rate. All the modules that make up the electronic unit are 

powered by a 1,200 mAh/3.7 V lithium battery placed on the back of the unit, which is 

enclosed in a 3D-printed plastic case (10 x 7.5 x 2 cm³). On the top part of the case, eight 

snap buttons were integrated to allow for connection to the wearable sensing unit, thus 

providing the input signals for the analogue front ends. Figure 14 shows the internal 

electronic board and the complete unit. 

 
Figure 14. SWEET Shirt electronic unit: a) internal electronic unit, b) complete unit, external view 

The SWEET app is a custom-made application for mobile devices requiring an operating 

system of Android 6.0 or higher and BLE technology. The application allows the smartphone 

to communicate and receive data coming from the electronic unit, via the BLE protocol. 

When the application is started, it is possible to associate and connect the wearable device 

using its MAC (media access control) address. Following this, the measurement session can 

commence, with the data transferred from the electronic unit to the mobile device, which 

allows for real-time signal plotting. At the end of the session, the data will be automatically 

saved in a ‘.csv’ file, which is stored locally and can be uploaded at any time to a dedicated 

web server. Figure 15 shows the main frames of the app. 
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Figure 15.  SWEET app main frames: a) login; b) unit connection; c) real-time signal visualization 

Data from the web server can be accessed and downloaded only by authorized healthcare 

professionals. The custom-made MATLAB GUI software, SWEET Lab, can be used to plot 

and post-process signals in order to achieve a huge set of synthetic parameters of clinical 

interest. 

The first step in ECG signal processing involves the detection of QRS complexes using an 

Okada algorithm [82] for the assessment of the tachogram and the discrete series of RR 

intervals. The subsequent analysis is divided into seven frameworks, the first of which relates 

to the heart rate (HR) analysis, with the instantaneous HR assessed as the mean over four 

successive beats. From this series, the minimum, the maximum, the medium and the median 

HRs can be extracted and the tachycardia (HR > 110 bpm) and bradycardia (HR < 60 bpm) 

events subsequently searched and listed. 

The second framework is dedicated to the heart rate variability (HRV) analysis in terms of 

the time, frequency and time–frequency domains. Here, the beats are first classified in terms 

of normal, ectopic, premature ventricular contraction (PVC) and artifacts based on their 

timing before the RR series is edited to exclude any artifacts and any beat-to-beat intervals 

that are too short or too long. The new RR series is then processed in the time domain to 

extract the statistical and geometrical measures, as listed in Table 8 [83]. 
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Table 8. HRV time domain variables 
STATISTICAL MEASURES 

Variable  Description 

SDNN [ms] 
(Standard Deviation NN-
intervals)  

 

Standard deviation of normal-to-normal intervals 
(NN). SDNN reflects all cycles responsible for heart 
rate variation in time, thus representing the total 
variability 

SDANN [ms] 
(Standard Deviation Averaged 
NN-intervals) 

Standard deviation of the average NN intervals 
calculated over 5 min. SDNN is therefore a measure 
of the changes in heart rate due to cycles longer than 
5 min 

SDNNi [ms] 
(SDNN index) 

Mean of SDs of NN intervals, calculated over 5 min 

RMSSD [ms] 
(Root Mean Square of Successive 
Differences) 

Square root of the mean of the squares of the 
successive differences between adjacent NN 
intervals 

NN50 Number of pairs of successive NNs that differ by 
more than 50 ms 

pNN50 in % Proportion of NN50 divided by total number of NN 
intervals 

GEOMETRICAL MEASURES 
Variable Description 
HRV Ti 
(Triangular index) 

Area of the histogram distribution of RR intervals, 
normalized to the maximum value of the histogram 

TINN Base width of the RR intervals histogram 

The HRV is also assessed in the frequency domain by analyzing how the PSD is distributed 

as a function of frequency. The PSD presents three main components in terms of very low 

frequency (VLF), low frequency (LF) and high frequency (HF). The frequency peaks and 

the absolute and relative power values of each component are computed along with the 

LFHF ratio [84]. Three different methods are provided by the software to compute the PSD, 

namely, the Welch Periodogram [85], Burg Periodogram [86] and e Lomb-Scargle 

Periodogram [87] methods. The same analyses are conducted on the windowed periodogram 

of the RR series to obtain a time-frequency domain analysis of the HRV variability.  

The third framework in the ECG processing relates to heart rate turbulence (HRT) analysis. 

This form of analysis presents a non-invasive method that explains the response of the heart 

to ventricular arrythmias [88] and is a good predictor of mortality following acute 

myocardial infarction [89]. Two numerical parameters are assessed by the software to 

describe HRT: turbulence onset (TO: to describe the initial acceleration in heart rate 

following PVC), and turbulence slope (TS: to reflect the subsequent deceleration of the sinus 

rhythm) [88]. Meanwhile, the fourth framework provides a nonlinear analysis of ECG 

signals using four different approaches: sample entropy, detrended fluctuation analysis 
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(DFA), Poincaré plots and fractal dimension analysis (FDA). Here, sample entropy presents 

a nonlinear method for determining the complexity of a RR series, which is computed in 

terms of various values of k and is used for HRV analysis [90]. Meanwhile, DFA is used to 

quantify the fractal properties of brief intervals of the tachogram signal [91], while a 

Poincaré plot is a plot of RR intervals vs. the previous RR intervals used to quantify self-

similarity. Two numerical parameters are assessed in Poincaré plot analysis: SD2 (the 

magnitude of the major axis of the ellipse fitting the data; represents the short-term 

variability) and SD1 (the magnitude of the minor axis of the ellipse; represents the long-term 

variability). Finally, FDA provides the measurement of the fractal dimension of the RR 

series assessed using a Higuchi algorithm [92]. The fractal dimension is a useful indicator in 

cardiology since it assumes different values for different types of heart disease [93]. 

The presented shirt prototype was validated through a benchmarking analysis with a gold 

standard with reference only to the EMG signal. Three different type of analysis were 

conducted in order to address any possible unconformity in the measurement and/or 

processing phases managed by the new prototype. Firstly, the RR intervals identified by the 

SWEET Shirt were compared with those obtained via a reference device. Secondly, the 

similarity between the ECG signals obtained via the different devices was assessed. Finally, 

comparative analysis was carried out to validate a specific subset of parameters derived from 

the SWEET Lab software signal processing. 

A three-channel digital Holter recorder (Oxford Medilog FD5) was used as the reference for 

the ECG signal measurement. The device incorporates seven electrodes and operates with a 

sampling rate of 8000 Hz and a resolution of 15.5 bits. A healthy subject, aged 25, was 

equipped with the clinical Holter device along with the prototypal wearable device, SWEET 

Shirt, for the ECG measurement (Figure 16). Here, the Holter’s electrodes were placed on 

the subject’s thorax (Figure 16a, b) in order to avoid any overlapping with the SWEET Shirt 

e-textile electrodes and to ensure the two ECG waveform were as similar as possible by 

means of visual analysis. The ECG acquisition time was set to 2 h. 
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Figure 16.  ECG electrode configuration used for signal acquisition 

The ECG signals from both measurement units were loaded in the MATLAB environment 

for pre-processing and analysis operations, with both signals passed through a notch digital 

filter to remove any 50 Hz interference. The R peaks in the ECG signal from the SWEET 

Shirt were identified using the Okada algorithm, while those in the Holter ECG were 

automatically detected via its own software and could be loaded in the MATLAB 

environment. The first analysis was carried out to compare the RR intervals by means of 

Passing-Bablok regression. To achieve interval-to-interval correspondence, six RR values 

from the Holter series were removed since they corresponded to a region of artefacts in the 

SWEET ECG signal. Following this, comparative analysis was performed using the 

MATLAB function for Passing-Bablok regression [94]. 

The waves for each beat were subsequently isolated to allow for a beat-to-beat morphology 

comparison. The cut-off point was chosen as the midpoint between two subsequent R peaks 

in order to cover the complete signal. The R peaks was chosen as fiducial points since no 

significant differences were found among the RR locations in the first analysis. A set of a 

total of 6968 corresponding beats were obtained for the analysis. The waveforms were then 

resampled on a normalized axis, with common number of samples in order to allow for 

correlation analysis among the corresponding beats. The number of samples was chosen to 

equal the maximum number of samples found in a non-normalized beat. A resampling 

operation allows for avoiding any signal distortion in the normalizing time axis. It was 

decided to individually analyze the three principal constituent waves, namely, the P-wave, 

the QRS complex and the T-wave. Two cut-off points were set in the normalized time axis 

to divide the three single waves, which were selected to be the two stationary points between 

the three local maxima representing the single waves, as calculated based on the average 

beat waveform from the SWEET Shirt recording (Figure 17). 
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Figure 17.  Average beat waveform from the SWEET Shirt and the cut-off points (red vertical lines) used to 

isolate single waves 

The complete beat and the single waveforms were rearranged in eight matrices (four for each 

device recording), with each column containing the signal corresponding to an occurred beat. 

Correlation analysis for the waveforms was carried out using the MATLAB function, ‘corr’, 

which computes the linear correlation between each pair of columns in the input matrices. 

The diagonal elements of the output matrix hence represent the linear correlations between 

the corresponding waveforms recorded by the devices under examination. The ‘corr’ 

function also returns a matrix of p-values for testing the hypothesis of no correlation vs the 

alternative hypothesis of a non-zero correlation. 

Finally, it was compared a subset of parameters derived from our software to those provided 

by the commercial Holter software in order to validate our signal processing algorithms. To 

this end, a further 2-h ECG recording was measured using a 68-year-old volunteer 

experiencing a pathological disorder (cardiopathic), with the same experimental setup as 

used previously. The two records were then windowed in terms of 24 five-minute segments, 

which were individually processed, carrying out a set of 24 measures for each record and for 

each parameter. The ECG signals were also windowed to enlarge the dataset for the 

comparison, and because five minutes is the recommended duration for short-term ECG 
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analysis [83]. Since Holter software only provides HRV measures in the time and frequency 

domains, validation analysis was carried out on a subset of two representative parameters, 

one for each HRV field, which were computed by both systems, that is, the standard 

deviation of normal-to-normal beats (SDNN) for the time domain, and the ratio between 

low- and high-frequency spectral power (LF/HF ratio) for the frequency domain. The 

agreement between the measures was assessed using root mean square error (RMSE), 

Passing-Bablok regression and Bland-Altman analysis. 

The RR series were compared using Passing-Bablok regression. This method was first 

proposed in 1983 as a method for testing the agreement between two sets of measurements 

obtained via different systems [95]. Here, the Passing-Bablok regression involved searching 

for a linear relationship between the measures from the two systems and the returns slope 

and offset of the fitting linear model. The systems could be considered as equivalent if the 

confidence intervals of slope and offset contained 1 and 0, respectively. Table 9 shows the 

results of the PB regression for the RR intervals. 

Table 9. Summary statistics and results of the Passing-Bablok regression analysis for the RR interval series 
Statistics Mean ± standard deviation 
RR intervals from SWEET Shirt [ms] 1032 ± 77.44 
RR intervals from Holter MEdilog Darwin [ms] 1032 ± 77.41 
PB Regression Mean Confidence interval 
Slope 1.00 [1.00 ÷ 1.00] 
Offset [ms] 0.00 [0.00 ÷ 0.00] 

The ECG waveforms were compared using Pearson’s linear correlation analysis. Figure 18 

shows the distribution of Pearson’s correlation coefficients for the complete ECG waveform, 

the P-wave, the QRS complex and the T-wave. 
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Figure 18. Boxplot of Pearson’s correlation coefficient for complete and single ECG waveforms 

High values of correlation were found for the ECG waveform (mean value ± standard 

deviation: 0.94 ± 0.07), QRS complex (0.96 ± 0.04) and T-wave (0.96 ± 0.09), while lower 

values were returned in the P-wave analysis (- 0.19 ± 0.36). 

The quality of the correlation between each couple of beats was assessed using the following 

rules: (i) high correlation if |r| ≥ 0.7, (ii) moderate correlation if 0.3 ≤ |r| < 0.7 and (iii) low 

correlation when |r| < 0.3. Table 10 shows a summary of the qualitative assessment of the 

correlation in terms of the percentage of beats, indicating high, moderate or low correlation. 

Table 10. Qualitative assessment of correlation for ECG waveforms 
 Quality of correlation 
% of the entire set High Moderate Low 
P-wave 5.97*** 49.13** 44.90 
QRS Complex 99.92*** 0.04** 0.04 
T-wave 98.87*** 0.82** 0.31 
ECG waveform 98.82*** 0.88** 0.30 

**p-value < 0.005; ***p-value < 0.001 

Almost all ECG beats recorded by the prototypal device exhibited a high correlation with 

the corresponding waveforms obtained via the standard instrument, with a p-value excluding 

the hypothesis of null correlation between them. Specifically, the QRS complex and T-wave 
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were the most comparable components, while the P-waves mainly exhibited moderate or 

low correlation values. 

The first approach to the analysis of the parameters generated by the signal processing 

algorithms involved assessing the RMSEs among the different sets of measures. Table 4 

shows the RMSE values and the principal descriptive statistics of the datasets, which were 

divided according to subject. 

In the first section of Table 11, the results from the non-pathological volunteer session are 

reported. In this case, the RMSE values were extremely low for both parameters: ~ 0.3 % of 

the mean value for the SDNN and ~ 3.6 % of the mean value for the LF/HF ratio. However, 

different results were obtained with the pathological subject, with the RMSE values greater 

in terms of both parameters: the SDNN presented a RMSE of almost 20 % of the mean value, 

while the LF/HF ratio RMSE was higher than 50 % of the mean. 

Table 11. Main statistics and RMSE assessed for the HRV variables under examination 
Non-pathological subject 

 Holter 
mean ± std 

Sweet Shirt 
mean ± std RMSE 

SDNN [ms] 63.2 ± 11.2 63.2 ± 11.2 0.184 
LF/HF Ratio [adim] 1.54 ± 0.846 1.53 ± 0.850 0.0561 

Pathological subject 

 Holter 
mean ± std 

Sweet Shirt 
mean ± std RMSE 

SDNN [ms] 20.9 ± 6,15 19.8 ± 5.87 4.41 
LF/HF Ratio [adim] 3.64 ± 3,62 2.96 ± 2.92 1.97 

The analysis of agreement was then further investigated using Passing-Bablok regression 

and Bland-Altman analysis, with the attendant results presented in Table 12. 
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Table 12. Results of Passing-Bablok regression and Bland-Altman analysis for HRV measures 

Passing-Bablok Regression Bland-Altman Analysis 

Non-pathological subject 

 Slope            
[95 % CI] 

Offset            
[95 % CI] 

Bias              
[95 % CI] LoA 

SDNN 1.00             
[0.993÷1.01] 

0.00                
[-0.454÷0.430] 

0.009               
[-0.071÷0.089] [-0.360÷0.377] 

LF/HF Ratio 1.00            
[0.974÷1.04] 

-0.007              
[-0.051÷0.027] 

0.005               
[-0.019÷0.030] [-0.107÷0.117] 

Pathological subject 

 Slope            
[95 % CI] 

Offset            
[95 % CI] 

Bias              
[95 % CI] LoA 

SDNN 0.932           
[0.597÷1.39] 

0.692              
[-8.86÷7.02] 

1.10                 
[-0.711÷2.92] [-7.44÷9.65] 

LF/HF Ratio 0.919          
[0.618÷1.39] 

-0.409             
[-1.50÷0.358] 

0.684                
[-0.101÷1.47] [-3.01÷4.38] 

For each of the analyzed parameters, the slope and offset from the PB regression are 

provided, along with their 95 % CI. Across all the results, the slope values were close to 1 

and their CIs always included values of 1. Similarly, the offset values were close to 0 in all 

analyses, with the CIs always including 0 values. In terms of the pathological subject results, 

the CIs were larger than the corresponding CIs in the non-pathological subject, confirming 

a better agreement in the measurements derived from the recording involving the healthy 

volunteer. 

The Bland-Altman analysis results included some bias with the 95 % CI and the LoA. In 

terms of the results from the non-pathological volunteer, the bias values were very close to 

0, while both the bias CIs and LoA exhibited a low width and always included a 0 value. 

Meanwhile, in terms of the results for the pathological subject, the bias values for the SDNN 

and the LF/HF ratio were higher, with a wider LoA including 0. 

The Bland-Altman plots are presented in Figure 19 and Figure 20. While the differences 

between the methods were greater in terms of both parameters assessed using the 

pathological subject, they exhibited a random distribution, meaning no systematic or 

proportional error could be confirmed from this analysis 
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Figure 19.  Bland-Altman plots of the parameters for the non-pathological volunteer. The red lines represent 

the bias, while the blue dashed lines represent the LoA 
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Figure 20. Bland-Altman plots of the parameters for the pathological volunteer. The red lines represent the 

bias, while the blue dashed lines represent the LoA 

In the first analysis, the RR intervals obtained via the two systems under examination were 

compared by means of Passing-Bablok regression. The results (Table 9) confirmed that the 

systems can be considered as equivalent in terms of the identification of the R peaks along 

the ECG signal as beat reference points. 

Moreover, the signal waveforms by means of Pearson’s correlation analysis were compared. 

This assessment demonstrated that good agreement existed between the signals, particularly 

in terms of the QRS complex and T-wave, while less correspondence was found in the 

comparison of the P-waves (see Figure 18 and Table 10). Figure 21 shows the averaged ECG 

waveforms recorded by the two systems. Here, the P-waves were less visible in the Holter 

signal than in the SWEET Shirt recording. This was due to the non-standard electrode 

placement used for the Holter system (see Figure 16), which was chosen to avoid the 
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overlapping with the textile electrodes enclosed in the shirt. Therefore, the lower agreement 

level with the P-waves can be attributed to the different electrode placements used, which is 

all but compulsory in a simultaneous recording. Therefore, it can be affirmed that the 

prototypal shirt has the capacity to clearly record an ECG signal that is comparable with 

those acquired by commonly used clinical portable devices. 

 
Figure 21. Comparison of averaged ECG beat waveforms from the Holter device (blue) and the sensorized 

shirt (red) 

Finally, the performances of the developed software in terms of signal processing was 

investigated. As shown in Figure 19, Table 11 and Table 12, excellent results were achieved 

in the analysis of the parameters assessed using the non-pathological subject. The RMSE for 

both parameters under examination was extremely low, as were the biases assessed via the 

Bland-Altman analysis. Meanwhile, the Passing-Bablok analysis revealed that there was a 

regression line very close to the identity line, underlining a strict correspondence between 

the measurements from the two devices. However, lower agreement was found in the 

analysis involving the pathological subject. Here, the RMSE and bias values were higher 

(Table 11) and the Passing-Bablok CIs were wider (Table 12), albeit that they still involved 

values that allowed for concluding that there was some agreement between the two methods. 

However, the Bland-Altman plots (see Figure 20) did not exhibit any prevalent trend in the 
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distribution of the differences, thus suggesting that no systematic or proportional differences 

existed between the measurement systems. 

Based on these results, the lower agreement level in the parameters related to the 

pathological subject can be attributed to the greater presence of artefacts in the SWEET Shirt 

record, which was likely due to the weak adherence of the textile electrodes on the patient’s 

skin or the higher number of movements made by the subject during the recording session. 

The ECG signal from the SWEET Shirt was clearly visible in 94.66 % of the registration 

time, while the signal from the Holter recorder did not present any artefacts. The presence 

of artefact regions will affect any signal processing results since the artefacts must be 

replaced by a specific number of normative RR intervals to ensure the continuity of the RR 

series. In this case, the results were further affected by the fact that they were averaged using 

a reduced window of 5 min. 
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Chapter 3 

3 Wearable for ergonomics 

3.1 Work-related risk assessment during lifting tasks 

Among the activities involving biomechanical overloading, material handling and lifting is 

one of the most studied in the scientific literature, including its association with the 

development of work-related MSDs. With a view to prevention, NIOSH established a 

methodology for assessing lifting actions by means of a quantitative method based on 

intensity, duration and frequency of the task, and other geometrical characteristics of lifting 

[24]. The method determines the Recommended Weight Limit (RWL) for the lifting tasks 

and calculates the risk index namely Lifting Index (LI). 

In the scientific literature, among the many applications of wearable technology to 

ergonomics, and in particular among those which use the NIOSH methodology [96], the 

association of features extracted directly from raw signals (acceleration and angular velocity) 

with NIOSH risk classes related to repeated load lifting activities has not yet been explored. 

The question remains whether it is possible to classify lifting tasks belonging to different 

risk classes according to the value of LI using a machine learning approach by means of 

features extracted from raw signals. 

A study was carried out with two objectives: 

1. Exploring the possibility to use a single IMU placed on the lumbar region to monitor 

the biomechanical risk 

2. Assessing if the time-domain features extracted from acceleration and angular 

velocity signals acquired by the IMU sensor allowed to classify risk/no-risk tasks 

according to the NIOSH methodology 

To classify lifting tasks belonging to different LI classes according to the RNLE, several ML 

algorithms were fed with time-domain features extracted from acceleration and angular 

velocity signals. The signals relating to the lifting activities were acquired through the 

wearable Opal System. The validation of the methodology was carried out through the 

tenfold cross-validation and different evaluation metrics in order to make the result more 

robust [97]. 
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The Opal System by APDM Inc., a commercial IMU-based wearable system, was used 

(Figure 22). 

 
Figure 22. Opal System: Access Point, Docking Station, Opal Sensor and Mobility Lab software 

The system is composed of several Opal sensors worn by the participants kept in position by 

straps. Each Opal sensor is composed by a 3-axes accelerometer with 14-bit resolution and 

two alternative ranges of values (± 16 g and ± 200 g, where g is the gravitational constant), 

a 3-axes gyroscope (16-bit, range ± 2000 deg/s) and a 3-axes magnetometer (12-bit, range ± 

8 Gauss). The sampling frequency of the acceleration and angular velocity signals was 20 

Hz. Opal sensors communicate with a laptop equipped by the Mobility Lab Software by the 

Bluetooth 3.0. The Access Point manages the communication between the Opal sensors and 

the laptop, while the Docking Station allows charging and configuring of Opal sensors. The 

Opal system has proved to be a repeatable [68], reliable [98,52] and accurate [99], and it was 

used in several scientific studies, e.g., to compute the main spatiotemporal and kinematic 

parameters relating to the lower limb, upper limb and spine [100,101]. It also allows users 

to access raw signals such as acceleration and angular velocity. In this study, we used a 

single Opal sensor positioned on the lumbar region (Figure 23) [102,103] to acquire raw 

signals (acceleration and angular velocity) during lifting activities designed to correspond to 

different risk classes according to the NIOSH methodology. 
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Figure 23. Placement of the Opal Sensor in lumbosacral region through an elastic belt 

Figure 24 shows the Opal sensor with the direction of the axes. 

 
Figure 24. Opal Sensor with the illustration of the x-axis, y-axis and z-axis 

The RNLE is a method published by NIOSH to assess the risk of WLBDs [104]. An equation 

provides the RWL, namely the weight limit for a healthy worker to safely perform lift tasks 

during a work shift, starting from a load constant (25-15 kg for the Italian legislation) and 

through a multiplicative model with six variables relating to the lifting task. 
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LI, namely the ratio of actual weight to RWL for lifting activity, is a good indicator of the 

risk of WLBDs for manual lifting [105,106]. 

In the preventive approach, RNLE is useful for verifying that LI is not greater than 1 in 

lifting activities. Lifting activities with LI values between 1 and 3 are associated with an 

increased biomechanical risk in the working population, while lifting activities with LI less 

than 1 indicate acceptable conditions and no risk of WLBDs [24]. 

The RWL equation is as follows: 

=>' = '?	0	1@	0	A@	0	B@	0	C@	0	D@	0	?@ 

Where: 

• LC: Load Constant = 25/20 kg (males, <45/>45 years old respectively), 20/15 kg 

(females, <45/>45 years old respectively); 

• HM: Horizontal Multiplier; 

• VM: Vertical Multiplier; 

• DM: Distance Multiplier; 

• AM: Asymmetric Multiplier; 

• FM: Frequency Multiplier. 

Healthy volunteers were recruited. Subjects were included if they were between the ages of 

20 and 60, and excluded if they had hypertension (i.e., blood pressure above 100/160 

mmHg), or any other heart disease (i.e., congestive heart failure), or a musculoskeletal 

disorder (i.e., low back pain, herniated disc or trunk surgery). Seven subjects were selected 

for this preliminary study, whose anthropometric characteristics are shown in Table 13. 

Table 13. Anthropometric characteristics of the study population presented as mean ± standard deviation 
Age (years) 27.71 ± 1.60 
Height (cm) 167.40 ± 4.86 
Weight (kg) 68.71 ± 10.17 
Body Mass Index (kg/m2) 24.43 ± 2.60 

Each subject performed a task session based on two trials. Each trial consisted of 30 

consecutive lifting tasks. Between the two trials, a pause of 1 h was considered. Specifically, 

the first trial consisted of repeated liftings in a condition of LI less than one (LI = 0.5) named 

the NO RISK class, while the second one consisted of repeated liftings in a condition of LI 

greater than one (LI = 1.3) named the RISK class. LI of 0.5 and 1.3 were derived from the 

RNLE [24] by variously combining height, frequency and weight of lifting tasks. The details 

of the combinations are displayed in Table 14. Five out of seven subjects performed the task 

lifting the load from 50 cm to 125 cm, namely, the optimal geometric condition. One subject 
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performed the task lifting the load from 30 cm to 125 cm, namely, non-optimal geometric 

conditions (start point: height < 50 cm); one subject performed the task lifting the load from 

50 cm to 150 cm, namely, non-optimal geometric conditions (end point: height > 125 cm). 

The choice of different geometric conditions was adopted to assess the proposed data mining 

system for the prediction of biomechanical risk in a general context in order to have more 

interesting and generalizable results. 

Table 14. Combinations of the height, frequency and weight variables for lifting activities corresponding to LI 
0.5 and 1.3 

First Trial 
LI < 1 (0.5) 

Second Trial 
LI > 1 (1.3) 

Displacement 
[Start-End] 

(cm) 

Frequency 
(Lifts/min) 

Weight 
Lifted 
(kg) 

Displacement 
[Start-End] 

(cm) 

Frequency 
(Lifts/min) 

Weight 
Lifted 
(kg) 

 m & f m f  m f m f 
[50 - 125] 2.5 7 5 [50 – 125] 6 4 15 10 
[30 – 125] 2.5 5 4 [30 – 125] 5 3 13 8 
[50 – 150] 2.5 5 4 [50 – 150] 5 3 13 8 

The trial (Figure 25) was performed using a plastic container (56 x 35 x 31 cm3) with weights 

equally distributed inside; the size of the plastic container is such that it can be held close to 

the barycenter of the body during the lifting task. The subjects were instructed to adopt a 

stable upright posture with the lower limbs slightly apart and to perform the squat technique 

with a two-handed grip. Each lifting task was performed in a slow, controlled manner 

without any jerk or sudden acceleration [107]. The researcher was in charge of visually 

checking the performance, and possibly having the subject repeat the execution to acquire 

the signal again if the task was carried out in an uncontrolled manner. 

 
Figure 25. Lifting phases of the lifting task: picking point (a) with squatting technique, intermediate points 

(b,c) with trunk extension, and destination point (d) up to the final height, and then restart the cycle 

Acceleration and angular velocity signals were not filtered (Figure 26). The signals 

underwent a segmentation process in order to extract the region of interest (ROI) 
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corresponding to the window time in which the subject performed the lifting task. A temporal 

synchronization was performed to pick up the portion of the signal corresponding to the time 

point of the start and end of the lifting task. For each ROI, several features were extracted in 

the time-domain. Four features were extracted from each of the three axes of the 

accelerometer and from each of the three axes of the gyroscope, giving a total of twenty-four 

attributes. 

The feature extracted were: 

• Root mean square (RMS); 

• Standard Deviation (SD); 

• Minimum (MIN); 

• Maximum (MAX). 

As during the lifting activity the subject moved in two different directions (from bottom to 

top, and vice versa), giving rise to positive or negative variants of the signals, it was 

considered that RMS represented the potential differences in the two different study 

conditions (LI < 1 and LI > 1) better than the average. SD captured the fact that the range of 

possible acceleration and values of the angular velocity signals can differ for different LI 

values, as the SD of the acceleration data was associated with the intensity of motion [108]. 

Both RMS and SD were predictive features in monitoring physical activities [109]. MIN and 

MAX values were collected as the task was performed in two opposite directions. 
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Figure 26. (a) Acceleration and angular velocity signals along the 3 axes associated to the NO RISK class, 

lifting task performed with a LI < 1. (b) Acceleration and angular velocity signals along the 3 axes associated 
to the RISK class, lifting task performed with a LI > 1 

Several ML algorithms were trained to evaluate the performance of our predictive model 

based on features in the time-domain extracted from raw signals (acceleration and angular 

velocity) to discriminate two risk conditions according to the RNLE. 

The following ML algorithms were implemented. 

Random Forest (RF) is a ML algorithm based on bagging and randomization. RF uses 

several decision trees. An instance is assigned to a certain class through a majority vote 

procedure on the basis of the decision given by the trees that make up the forest. Although 

this type of ML shows optimal performance on large datasets, it was chosen for its simplicity 

of parameterization and for its stability to noise and outliers [110]. 

Decision Tree (DT) is a hierarchical classifier method, as well as representing the simplest 

and most used logic-based classification technique [111]. The test data are classified by 

ordering them as trees based on the values of their characteristics. 

Gradient Boost Tree (GBT) redefines boosting as a numerical optimization problem with the 

goal of minimizing model loss of function by adding learning weaknesses and using gradient 
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descent to set the local minimum of the differential function [112]. The GB method 

implemented is a combination of a decision trees measure and boosting technique. 

The AdaBoost Tree (ABT) algorithm [113], short for Adaptive Boosting, is a ML meta 

algorithm used as an ensemble method. Weights are reassigned to each instance, with higher 

weights for instances classified incorrectly. Boosting reduces the bias and variance for 

supervised learning. A set of decision stumps (decision trees with only one node and two 

leaves) was considered. 

k-Nearest Neighbor (kNN) ranks the unlabeled instance vector on the basis of the majority 

label class between its nearest k neighbors in the training set. Several distance metrics, 

employed to recognize the nearest neighbors, are present in the literature and can influence 

the algorithm performance. Without prior knowledge, typically the distance metric 

implemented is the Euclidean distance [114], as in the case analyzed. The algorithm usually 

assumes that the training instances are uniformly distributed across classes, an assumption 

in line with our perfectly balanced dataset with reference to the two classes. The choice of k 

has a significant impact on the classification performance [115]; a k equal to 3 was 

considered. 

Naive Bayes (NB) is a probabilistic ML algorithm, based on Bayes’ Theorem. It calculates 

the probability of each class for a specified instance and then returns the class with the 

highest probability. This algorithm, which requires little data for training and little storage 

space, is suitable for the small size of the datasets that perform the analysis for each subject 

in our study. It is also fast during training without many parameters to set, based on the 

assumption of the conditional independence of the characteristics [116]. 

Multilayer Perceptron (MLP) consists of multiple layers of simple, two-state sigmoid 

processing elements, i.e., nodes or neurons interacting using weighted connections, only 

between neurons of adjacent layers [117]. A configuration with a single hidden layer and 10 

neurons was considered. 

Support Vector Machine (SVM) in a binary classification, as in the case under study, creates 

a hyperplane that separates data from two different classes. The largest possible distance is 

established between the separating hyperplane by maximizing the margin, thus creating the 

separation [118]. The kernel choice determines the separation boundary of the classes. The 

Radial Basis Function (RBF) or Gaussian Kernels are the most popular kernels used as 

default for any nonlinear model, but also polynomial kernels are very popular [119]. A SVM 

with a linear kernel was implemented. 
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Logistic Regression (LR) is an efficient and powerful way to analyze the effect of several 

independent variables on a binary outcome, as in the case under study, and allows 

quantifying the contribution of each feature. LR iteratively identifies the strongest linear 

combination of variables with the highest probability to detect the observed outcome [120]. 

K-fold cross-validation is one of the most widely used approaches for estimating classifier 

error and was employed as tenfold cross-validation (CV) to validate the predictive models 

described above and provide more robust evidence on the proposed predictive biomechanical 

risk model, based on features extracted from raw signals. Tenfold CV involves splitting a 

dataset into ten subsets, with the iterative use of nine to train the model and one to evaluate 

its performance [121]. A stratified CV was adopted in order to keep the proportions between 

the two classes unaltered among the folds [122]. 

Moreover, in order to better generalize the validation of the proposed approach, a leave-one-

subject-out cross-validation using six subjects to train the predictive models and one subject 

to test the algorithms was implemented. 

The performance of the predictive models proposed was evaluated through the following 

evaluation metrics: Accuracy, Sensitivity, Specificity and Area under the curve Receiver 

operator characteristic (AucRoc). The Accuracy metric is a measure of the ratio of correct 

predictions over the total number of instances considered. The Sensitivity metric is employed 

to measure the fraction of positive patterns that are correctly classified, while the Specificity 

metric is used to measure the fraction of negative patterns that are correctly classified. 

Finally, the AucRoc reveals the generally ranking performance of a classification algorithm. 

The Confusion Matrix of the best algorithm in terms of evaluation metrics scores was also 

reported, with matching between instances in an expected class and an actual class [123]. 

Finally, the Feature Importance was also reported through the calculation of the Information 

Gain (IG), an indicator of the amount of information provided by the features [124]. A 

feature selection on the basis of the IG was implemented as filter method before the 

classification task. WEKA data mining software was used for the feature importance analysis 

[125], selecting InfoGainAttributeEval as Attribute Evaluator and Ranker as Search Method. 

ML algorithms have been implemented through the artificial intelligence platform Knime 

Analytics Platform (version 3.7.1), which finds increasing diffusion in the scientific 

literature [126,127]. 

First, a ML analysis for each subject to assess the feasibility of the proposed data mining 

system to assess the biomechanical risk for a single subject was carried out. For each subject, 

two datasets were considered: the first dataset is composed of 60 instances, 30 for each class 
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(NO RISK, RISK), and 12 features extracted from the acceleration signals; the second 

dataset is composed of 60 instances, 30 for each class (NO RISK, RISK), and 12 features 

extracted from the angular velocity signals. For each dataset, the ML analysis was performed 

by averaging the results among the seven subjects, and the standard deviation was further 

showed in order to include prediction uncertainty. The results for each dataset are shown in 

Tables 15 and 16, respectively, where Sensitivity and Specificity were computed considered 

as reference for the NO RISK class. 

Table 15. Scores from stratified tenfold cross-validation (CV) evaluation metrics averaged over the seven 
subjects (mean ± standard deviation) using the features extracted from the acceleration signals along the three 
axes 

Algorithms Accuracy Sensitivity Specificity AucRoc 
DT 0.97 ± 0.05 0.97 ± 0.04 0.97 ± 0.05 0.97 ± 0.03 
RF 0.98 ± 0.02 0.98 ± 0.03 0.99 ± 0.02 0.99 ± 0.01 

GBT 0.97 ± 0.04 0.98 ± 0.03 0.96 ± 0.06 0.98 ± 0.02 
ABT 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.04 0.97 ± 0.03 
kNN 0.90 ± 0.09 0.88 ± 0.10 0.91 ± 0.11 0.94 ± 0.06 
NB 0.96 ± 0.03 0.96 ± 0.04 0.96 ± 0.04 0.99 ± 0.01 

MLP 0.95 ± 0.06 0.93 ± 0.07 0.96 ± 0.06 0.97 ± 0.03 
SVM 0.83 ± 0.20 0.83 ± 0.29 0.82 ± 0.37 0.85 ± 0.22 
LR 0.79 ± 0.15 0.79 ± 0.14 0.79 ± 0.19 0.84 ± 0.13 

Abbreviations. ABT: AdaBoost Tree; AucRoc: Area under the curve Receiver operator characteristic; DT: Decision Tree; 
GBT: Gradient Boost Tree; kNN: k-Nearest Neighbor; LR: Logistic Regression; NB: Naïve Bayes; MLP: Multilayer 
Perceptron; RF: Random Forest; SVM: Support Vector Machine 

Table 16. Scores from stratified tenfold CV evaluation metrics averaged over the seven subjects (mean ± 
standard deviation) using the features extracted from the angular velocity signals along the three axes 

Algorithms Accuracy Sensitivity Specificity AucRoc 
DT 0.88 ± 0.11 0.87 ± 0.14 0.88 ± 0.08 0.88 ± 0.12 
RF 0.90 ± 0.11 0.90 ± 0.13 0.89 ± 0.09 0.94 ± 0.10 

GBT 0.89 ± 0.13 0.90 ± 0.14 0.88 ± 0.13 0.92 ± 0.09 
ABT 0.89 ± 0.14 0.89 ± 0.16 0.89 ± 0.12 0.92 ± 0.12 
kNN 0.82 ± 0.10 0.81 ± 0.14 0.82 ± 0.09 0.88 ± 0.09 
NB 0.86 ± 0.12 0.83 ± 0.17 0.89 ± 0.08 0.92 ± 0.08 

MLP 0.90 ± 0.12 0.88 ± 0.16 0.92 ± 0.09 0.94 ± 0.08 
SVM 0.68 ± 0.19 0.91 ± 0.13 0.44 ± 0.42 0.82 ± 0.16 
LR 0.84 ± 0.08 0.84 ± 0.13 0.84 ± 0.05 0.90 ± 0.07 

Abbreviations. ABT: AdaBoost Tree; AucRoc: Area under the curve Receiver operator characteristic; DT: Decision Tree; 
GBT: Gradient Boost Tree; kNN: k-Nearest Neighbor; LR: Logistic Regression; NB: Naïve Bayes; MLP: Multilayer 
Perceptron; RF: Random Forest; SVM: Support Vector Machine 

Second, a Feature Importance by means of the calculation of the IG was performed, 

considering the entire study sample and the features extracted from both the acceleration and 

angular velocity signals along the three axes (Figure 27). 
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Figure 27. Feature importance based on the Information Gain value. Abbreviations. aRMSx: x-axis 

acceleration Root Mean Square; aRMSy: y-axis acceleration Root Mean Square; aRMSz: z-axis acceleration 
Root Mean Square; aSTDx: x-axis acceleration Standard Deviation; aSTDy: y-axis acceleration Standard 

Deviation; aSTDz: z-axis acceleration Standard Deviation; aMINx: x-axis acceleration Minimum; aMINy: y-
axis acceleration Minimum; aMINz: z-axis acceleration Minimum; aMAXx: x-axis acceleration Maximum; 

aMAXy: y-axis acceleration Maximum; aMAXz: z-axis acceleration Maximum; vRMSx: x-axis angular 
velocity Root Mean Square; vRMSy: y-axis angular velocity Root Mean Square; vRMSz: z-axis angular 
velocity Root Mean Square; vSTDx: x-axis angular velocity Standard Deviation; vSTDy: y-axis angular 
velocity Standard Deviation; vSTDz: z-axis angular velocity Standard Deviation; vMINx: x-axis angular 

velocity Minimum; vMINy: y-axis angular velocity Minimum; vMINz: z-axis angular velocity Minimum; 
vMAXx: x-axis angular velocity Maximum; vMAXy: y-axis angular velocity Maximum; vMAXz: z-axis 

angular velocity Maximum 

Third, a ML analysis considering all seven subjects to assess the feasibility of the proposed 

data mining system for biomechanical risk assessment for a general study population was 

performed. In this analysis, a unique dataset consisting of 420 (60 x 7) instances, 210 for 

each class (NO RISK, RISK), and 18 features extracted from both acceleration and angular 

velocity signals excluding the six features with IG equal to zero (Figure 27) was considered. 

In this study, the general rule is respected that foresees at least equal to 10 the ratio n/d, 

between the number n of instances available in the training set and the dimension d of the 

feature space [128]. This strengthens and makes the result of the analysis shareable. 

The results of the ML analysis on the entire dataset are shown in Table 17, where the NO 

RISK class was considered as the reference class for Sensitivity and Specificity. 
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Table 17. Scores from stratified tenfold CV evaluation metrics considering the entire study sample and using 
the features extracted from both acceleration and angular velocity signals along the three axes with a non-zero 
IG 

Algorithms Accuracy Sensitivity Specificity AucRoc 
DT 0.91 0.89 0.92 0.93 
RF 0.95 0.94 0.95 0.99 

GBT 0.95 0.94 0.96 0.99 
ABT 0.80 0.72 0.87 0.90 
kNN 0.84 0.83 0.85 0.91 
NB 0.67 0.63 0.71 0.75 

MLP 0.91 0.91 0.91 0.97 
SVM 0.71 0.70 0.71 0.79 
LR 0.66 0.67 0.66 0.68 

Abbreviations. ABT: AdaBoost Tree; AucRoc: Area under the curve Receiver operator characteristic; DT: Decision Tree; 
GBT: Gradient Boost Tree; kNN: k-Nearest Neighbor; LR: Logistic Regression; NB: Naïve Bayes; MLP: Multilayer 
Perceptron; RF: Random Forest; SVM: Support Vector Machine 

Table 18 shows the Confusion Matrix of the best algorithm (GB) resulting from the analysis 

on the entire study sample and according to the scores of the evaluation metrics: Accuracy, 

Sensitivity, Specificity and AucRoc. The resulting confusion matrix is perfectly balanced 

with the following values: TP = 197, FP = 13, FN = 8, TN = 202. 

Table 18. Confusion matrix of the best algorithm in terms of evaluation metrics scores: the GBT 
 NO RISK YES RISK 

NO RISK 197 13 
YES RISK 8 202 

Finally, a ML analysis on the entire dataset was performed using as validation strategy the 

leave-one-subject-out, namely, using six subjects for the training set and one subject for the 

test set. Results are shown in the Table 19. 

Table 19. Scores from leave-one-subject-out evaluation metrics considering the entire study sample and using 
the features extracted from both acceleration and angular velocity signals along the three axes 

Algorithms Accuracy Sensitivity Specificity AucRoc 
DT 0.88 0.93 0.83 0.88 
RF 0.88 0.97 0.80 0.97 

GBT 0.75 0.97 0.53 0.92 
ABT 0.88 0.97 0.80 0.96 
kNN 0.50 0.00 1.00 0.48 
NB 0.82 0.97 0.67 0.97 

MLP 0.73 0.97 0.50 0.87 
SVM 0.77 0.97 0.57 0.82 
LR 0.70 0.97 0.43 0.72 

Abbreviations. ABT: AdaBoost Tree; AucRoc: Area under the curve Receiver operator characteristic; DT: Decision Tree; 
GBT: Gradient Boost Tree; kNN: k-Nearest Neighbor; LR: Logistic Regression; NB: Naïve Bayes; MLP: Multilayer 
Perceptron; RF: Random Forest; SVM: Support Vector Machine 

The goal of this research was to explore the feasibility of several state-of-the-art ML 

algorithms - fed with specific time-domain features extracted from the acceleration and 
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angular velocities signals during a lifting activity - to classify the lifting risk classes based 

on the LI values according to the RNLE. The results obtained suggest ML algorithms - 

operating on the time-domain features (RMS, SD, MIN and MAX) extracted during lifting 

activities from the acceleration and angular velocity signals along the three dimensions of 

space - can offer valid help to experts in ergonomics for the precise and automatic 

classification of the biomechanical risk of workers engaged in load-lifting activities. 

The ML analysis performed was aimed at the classification of lifting activities based on the 

presence or absence of risk, defined by the LI index. 

First, having carried out a ML analysis for each subject, we obtained the average scores and 

the standard deviations of the evaluation metrics of the seven subjects by considering 

separately the characteristics extracted from the acceleration signal and the angular velocity 

signal. As shown in Tables 15 and 16, the application of state-of-the-art algorithms on the 

time-domain features extracted from the acceleration signal provides superior performance 

(evaluation metric scores) compared to that achieved by using the angular velocity signal, 

albeit with satisfactory results for the latter as well. The proposed combination of algorithms 

and features extracted from the acceleration signal achieved an accuracy of between 0.79 

and 0.98, a sensitivity between 0.79 and 0.98, a specificity between 0.79 and 0.99, and 

AucRoc between 0.84 and 0.99. The proposed combination of algorithms and features 

extracted from the angular velocity signal achieved an accuracy between 0.68 and 0.90, a 

sensitivity between 0.84 and 0.91, a specificity between 0.44 and 0.92, and an AucRoc score 

between 0.82 and 0.94. 

Second, in this study, eighteen out of twenty-five features showed a non-zero IG (Figure 27), 

highlighting their predictive power for this specific classification task. Specifically, the most 

informative features, according to IG, were those associated with the acceleration of the y 

axis, i.e., the mediolateral direction (Figure 24). This means that the trajectory of the 

subject’s center of gravity along the y axis during the lifting task (Figure 25) tends to have a 

greater information to separate risk classes, despite the load being moved along the x 

trajectory. In particular, the aRMSy alone shows an information gain equal to 20%, 

highlighting its high discriminating power between the two risk conditions. 

As for the features relating to the acceleration along the y axis, the most informative ones 

according to IG (Figure 27) are, once again, those relating to the angular velocity around the 

y axis. Approximately 60% of the information provided by the features derives from those 

relating to the angular velocity and acceleration of the y axis, and this result must be taken 

into account. 
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Third, as shown in Table 17, a ML analysis was performed considering the whole sample of 

the study in order to have more generalizable results and to evaluate if the proposed method 

was applicable not only to the single subject, but also to a whole sample. This property could 

in fact represent a substantial advantage for using the proposed methodology during 

preventive interventions for the health and safety of workers in the workplace. This further 

analysis was carried out using the features extracted from both acceleration and angular 

velocity signals relating to the three axes (considering the entire study sample, and excluding 

the features with IG equal to zero). All classifiers (with the exception of the NB, SVM and 

LR algorithms) showed an accuracy between 0.80 and 0.95, a sensitivity between 0.72 and 

0.94, a specificity between 0.85 and 0.96, and AucRoc between 0.90 and 0.99. As shown in 

Table 5, six out of nine ML algorithms discriminated excellently (AucRoc values > 0.90) 

the two risk classes. Conventionally, AucRoc values > 0.70 are considered to represent 

moderate discrimination, value > 0.80 good discrimination and values > 0.90 excellent 

discrimination; on the basis of the results, as shown in the Table 17, six of nine ML 

algorithms showed an excellent discrimination of the two risk classes. The poor performance 

of the NB algorithm was due to the presence of a statistically significant correlation between 

characteristics [129] (correlation study not shown). The LR algorithm, as the NB one, is 

based on the concept of probability, and this could explain the limited performances of LR. 

Instead, the poor performance of the SVM with linear kernel could be explained by the fact 

data are not linearly separable. The best algorithm was the GBT which reached values of 

0.95, 0.94, 0.96 and 0.99 in Accuracy, Sensitivity, Specificity and AucRoc, respectively. As 

shown in Table 18, the almost symmetric Confusion Matrix of GBT presents only 21 

instances wrongly classified out of 240 total instances, confirming the potential of this 

methodology applied to biomechanical evaluation. 

Finally, to better generalize the performance of the proposed models, they were tested using 

leave-one-subject-out, training the classifiers on six subjects and testing them on one subject. 

Although the metrics resulted slightly lower, the data shown in Table 19 are comparable 

with the ones obtained from the stratified tenfold CV. Once again, the tree-based ML 

algorithms has proven more efficient in terms of evaluation metrics for this purpose. 

This is the first study that considers risk discrimination (by ML) according to NIOSH using 

a single IMU placed on the subject’s pelvis to extract four basic time-domain features. The 

achieved results, when compared with the recent ones described by other research groups, 

are in line or superior to those based on more complex methodologies. 
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In the study by Varecchia et al. [130], the combination of an artificial neural network fed 

with time-domain and frequency-domain features extracted from surface electromyography 

and optoelectronic systems resulted in classification Accuracy of up to 90% against three 

NIOSH risk classes (LI = 1, LI = 2, LI = 3). In a subsequent work by the same authors [131], 

the new feature of Lifting Energy Consumption [132] was used to feed a neural network 

similar to the previous one, demonstrating an Accuracy up to 100%. The limit of this 

methodology, as pointed out by the authors themselves, is due to the poor applicability in 

the workplace, an aspect that is solved using wearable inertial sensors as in the case 

proposed. 

Snyder et al. [133] proposed a modified Convolutional Neural Network model to distinguish 

three risk levels (low, medium and high) according to the American Conference of 

Governmental Industrial Hygienist Threshold Limit Values for lifting. Similar to our work, 

they used IMU sensors, albeit in larger number, to achieve 90% Accuracy. 

With a similar goal to ours, Brandt et al. [107] tried to classify lifting activities into low and 

high-risk categories according to the guidelines of the Danish Working Environment 

Authority, reaching an Accuracy score equal to 65% using a Linear Discriminant Analysis 

algorithm. In the study by Conforti et al. [134], which aimed to distinguish between correct 

and incorrect postures, the extraction of data from an IMU positioned on the pelvis of the 

subject, and coupled with an IMU placed on the trunk, did not allow obtaining scores higher 

than 75% using a Support Vector Machines algorithm with four different kernels. 

Although the presented methodology is powerful, doubts could be raised about the effective 

capabilities of a single IMU for the validation of such results. Although a single IMU on the 

pelvis is not sufficient to fully predict the parameters associated with lifting (e.g., the weight 

of the object to be handled, the horizontal distance, etc.), this solution estimates the lumbar 

load fairly well, when the displaced mass is known and is in a consistent position with respect 

to the body [103]. In addition to significantly increasing the convenience in field trials, the 

use of a single IMU, positioned on the back, is considered sufficient to provide the data 

necessary to distinguish lifting classes [133]. 

Based on these results, the experimented approach - which combines time-domain features 

and machine learning algorithms - proved to be a valid indicator, although preliminary 

because of the low number of samples analyzed, of the risk of WLBDs for manual lifting 

(according to the NIOSH index) to which workers are potentially exposed during their 

working activity. 
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In conclusion, the results showed that the proposed combinations of features – extracted 

from acceleration and angular velocity signals acquired by a single IMU placed at pelvis - 

and state-of-the-art ML algorithms represents a potential valid approach to automatically 

classify the biomechanical risk to which subjects may be exposed during lifting activities, 

for example, at work. The presented methodology could represent a valid integration to the 

established protocols (e.g., NIOSH lifting equation) to evaluate the biomechanical risk more 

quickly and easily. Moreover, it could represent a valid alternative when the conditions 

required for the application of standardized evaluation methods do not exist. These results 

are of direct practical relevance for occupational ergonomics, as they present the opportunity 

for automatic, economic and non-invasive detection (by placing an IMU on the pelvis of the 

subjects), to assess the musculoskeletal and biomechanical risk associated with lifting. Based 

on the promising results presented in this article, the next phase of the research could 

consider an extension of the sample under consideration to further validate the methodology, 

new experiments that consider more than two LI values, and the integration of additional 

features from the time-domain and possibly the frequency-domain. The main limitation of 

the study is in fact the low sample size making this a preliminary study. Future work will 

benefit both from the inclusion of larger groups of participants as well as the use of deep 

learning techniques for classification such as convolutional neural networks [135]. It is 

known these are especially advantageous for analyzing time series data, reducing the risk of 

overfitting and improving system Accuracy. 

3.2 Estimating lifted load from features extracted from inertial data 

Work-related MSD are among the main occupational health problems. Substantial evidence 

has shown that work-related physical risk factors are the main source of low back 

complaints, particularly affecting heavy and repetitive manual lifting activities. The aim of 

the study published in [136] is, during load lifting tasks, to explore the correlation between 

the time domain features extracted from the acceleration and angular velocity signals of the 

performing subject and the load lifted, and to explore the feasibility of a multiple linear 

regression model to predict the lifted load. 

The study was conducted on a sample made up of seven healthy subjects. The 

anthropometric characteristics of the study sample are shown in Table 20. Exclusion criteria 

were musculoskeletal disorders (i.e. low back pain, herniated disk, trunk surgery). All the 

participants signed the informed consent. 
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Table 20. Anthropometric characteristics of the study sample 
Age [years] 27.71 ± 1.60 

Body Height [cm] 167.40 ± 4.86 
Body Weight [kg] 69.00 ± 10.89 

Body Mass Index [kg/m2] 24.51 ± 2.74 

In this study the Opal System, an IMU-based wearable system, was used. 

Each subject performed a lifting task session based on three consecutive trials for each load. 

The load was increased linearly by 1 kg from 0 kg to 18 kg for each session. Each trial 

consisted in lifting a load from 50 cm to 125 cm (optimal geometric conditions), as shown 

in Figure 28. Each subject performed 3 x 19 trials. The data obtained from the three trials of 

each session were averaged and an average of the data among subjects was computed for the 

specific session based on a specific load. 

 
Figure 28. The lifting task; on the left the start point (50 cm above the floor), on the right the end point (125 

cm above the floor) 

The trial was performed using a plastic container with weights equally distributed inside (40 

x 40 x 10 cm). A two-handed grip and stable support on the feet with the lower limbs slightly 

apart were the indications given to the subjects to perform the lifting task as a squat. During 

the lifting task acceleration and angular velocity signals along the three direction of the space 

were acquired by means of an inertial sensor, namely Opal sensor, placed on the chest. The 

direction of three axes are shown in Figure 24. 

The acquired acceleration and angular velocity signals were not filtered (Figure 29 and 

Figure 30). The signals were segmented to extract the ROI related to the lifting activity. For 
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each signal, for each ROI and for each axis (x, y, z), the following three features in the time 

domain were extracted: 

• Root Mean Square (RMS), the arithmetic mean of the squares of a group of values; 

• Standard Deviation (SD), a measure of the amount of variation or dispersion of a 

set of values; 

• MinMax value (MINMAX), the difference between maximum and minimum for 
each ROI. 

 
Figure 29. Acceleration signals along the x,y,z axes 

 
Figure 30. Angular velocity signals around the x,y,z axes 

A correlation analysis was performed between each feature extracted from the raw signals 

(acceleration and angular velocity) and the load. Pearson's correlation coefficient was 

calculated by first evaluating the Gaussian distribution of the data according to the Shapiro-

Wilk test considering a two-tailed 95% confidence interval. Furthermore, on the basis of the 
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most informative signals (variation during lifting) and the most informative features (value 

of the correlation coefficient) a multiple linear regression was performed to find a predictive 

linear equation to compute the load lifted (function of the selected features), using MATLAB 

R2020a. Regress function in MATLAB implements the Multiple linear regression using 

least squares. B = regress(Y,X) returns the vector B of regression coefficients in the linear 

model Y = X*B. X is an n-by-p design matrix, with rows corresponding to observations and 

columns to predictor variables. Y is a n-ny-1 vector of response observations. Regress 

function also returns a vector STATS containing, in the following order: the R-square 

statistic, the F-statistic and p-value for the full model, and an estimate of the error variance. 

X should include a column of ones so that the model contains a constant term. The F statistic 

and p value are computed under the assumption that the model contains a constant term, and 

they are not correct for models without a constant. The R-square value is one minus the ratio 

of the error sum of squares to the total sum of squares. This value can be negative for models 

without a constant, which indicates that the model is not appropriate for the data. 

Table 21 summarizes the results of the correlation analysis, with the p-value (p) and 

correlation coefficient (r) for each feature and for each signal. Table 22 reports the results of 

the multiple linear regression analysis. 

Tabella 21. Results of the correlation analysis 
 RMS MINMAX STD 

WEIGHT p r p r p r 

x-axes acceleration 0.0001 
s *** -0.77 0.0033 

s *** 0.64 0.0152 
s * -0.55 

y-axes acceleration 0.7764 
ns 0.07 0.5399 

ns 0.15 0.0002 
s *** 0.75 

z-axes acceleration <0.0001 
s **** 0.83 <0.0001 

s **** 0.84 0.0004 
s *** 0.73 

x-axes angular 
velocity 

0.0005 
s *** 0.72 <0.0001 

s **** 0.80 <0.0001 
s **** 0.78 

y-axes angular 
velocity 

<0.0001 
s **** 0.87 <0.0001 

s **** 0.92 <0.0001 
s **** 0.92 

z-axes angular 
velocity 

0.0002 
s *** 0.76 0.0002 

s *** 0.75 <0.0001 
s **** 0.83 

RMS: Root Mean Square; MINMAX: Min Max value; STD: Standard Deviation; s: significant; p: p-value; r: Pearson 

correlation coefficient; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 

Tabella 22. The multiple linear regression analysis 
R F p EV 

0.90 18.11 0.0000 4.72 
R: R-square; F: F-statistic; p: p-value; EV: Error Variance 
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The linear equation to calculate the lifted weight (LW) as a function of the features extracted 

from raw signals, weighted with the coefficient calculated through multiple regression 

analysis, is as follows: 

'> = −17.91 + 0.61 ∗ L=@!M + 	0.94 ∗ L@OP@C9M − 0.03 ∗ L!RBM − 42.07

∗ S=@!T + 1.63 ∗ S@OP@C9T + 48.49 ∗ S!RBT 

The goal of this research was to explore the correlation between features extracted from raw 

signals (acceleration and angular velocity) by means of a wearable inertial system and loads 

lifted, and to find a linear equation to estimate the lifted load using the most informative 

extracted features according to the correlation analysis. The results suggest that there is a 

correlation between the time domain features and the load lifted, and a multiple linear 

regression analysis with an R-squared greater than 0.9 confirms the feasibility of this 

methodology for predicting the load lifted. Correlation study was carried out through the 

calculation of the Pearson correlation coefficient while the lifted load was estimated through 

a multiple linear regression analysis. Our results showed that the z-axes acceleration and y-

axes angular velocity were the most informative signals in terms of correlation and 

variability, therefore the features extracted from these two signals were used to feed the 

multiple linear regression model obtaining a valuable R-square. This methodology looks 

promising in the field of ergonomics and prevention of WRMDs. Continuous and 

quantitative monitoring of the lifting activities performed by workers could be used in 

applications to automatically detect critical phases during the work shift. This would allow 

safety operators and ergonomists to plan remediation and preventive interventions, and 

occupational doctors to verify the compatibility of work requirements with individual 

conditions. 

In conclusion, the results showed that the proposed combination of features extracted from 

inertial data and the multiple linear regression model represents a valid approach to 

automatically monitor the load lifted during manual handling activities. Further studies on 

enriched datasets and new features (both in the time domain and in the frequency domain) 

will further confirm the potential of this methodology and verify its applicability in the 

workplace. 

3.3 Influence of the weight on gait performances and postures 

Studies and reviews show that the vast majority of students around the world use heavy and 

uncomfortable backpacks, which could negatively affect their musculoskeletal development 

or at least generate a non-physiological functional overload. In this regard, non-invasive 



66 
 

analyses were carried out on a sample of 150 healthy students aged between 14 and 15 years 

using a wearable inertial device for gait analysis: G-Walk System by BTS Bioengineering. 

Each student performed a gait analysis session consisting in a walk of 15 meters along a 

straight path in two different conditions: free walk and walk with backpack. A backpack 

with a sturdy backrest, wide and padded straps and abdominal belt with buckle was chosen. 

The weight inside the backpack was fixed at 9.3 kg in accordance with scientific studies 

conducted by Stefano Negrini of ISICO (Istituto Scientifico Italiano Colonna Vertebrale). 

Aim of this work is to understand, through an accurate analysis both instrumental and 

statistical, if we can talk about differential influence of musculoskeletal type generated by a 

school backpack full load compared to no backpack, trying to find out if and how much this 

affects walking both in terms of space-time parameters and detachment from normality 

values, and in terms of kinematic parameters such as pelvic rotations angles. Results showed 

a statistically significant difference between the space-time parameters computed in the two 

different study conditions, moreover a qualitative and quantitative difference was found for 

kinematic parameters too, which could imply potential musculoskeletal disorders associated 

with prolonged and long-lasting use of heavy and uncomfortable backpacks. This study has 

the ambition to raise awareness of this issue in order to extend legislative limits to the 

“working” environment of children, that is the school, as it is done for working environments 

adults (D. lgs 81/08 related to manual maintenance of loads) [1]. 

The study was carried out considering a study population composed of 150 healthy students 

aged between 14 and 15 years (86 males). The anthropometric characteristics of the study 

population are reported in the Table 23. 

Table 23. Anthropometric characteristics of the study population 
Weight (kg) 59.64 ± 11.60 
Height (cm) 166.82 ± 7.93 

Left lower limb length (cm) 86.40 ± 4.60 
Rigth lower limb length (cm) 86.32 ± 4.63 

All the subjects wore the inertial sensor G-Walk through a belt placed in the lumbosacral 

region as shown in Figure 31. 
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Figure 31. Placement of the inertial sensor G-Walk 

Each subject performed two sessions. The first session consisted in 4 consecutive trials 

consisting in a free walk on a 15 meters straight path. The second session consisted in 4 

consecutive trial consisting in a walk with backpack on a 15 meters straight path. Several 

kinematic parameters were recorded: 

• Cadence (steps/min) 

• Stride length (m) 

• Stance Phase (% cycle) 

• Swing Phase (% cycle) 

• Double Initial Support Phase (% cycle) 

• Propulsion (adimensional) 

Moreover the following pelvis angles were recorded: 

• Pelvic tilt (degrees) 

• Pelvic obliquity (degrees) 

• Pelvic rotation (degrees) 

In the Table 24 are reported the results of the t-test between the two study condition: free 

walk and walk with backpack for each kinematic parameter. 

Table 24. Paired t-test between Free Walk and Walk with backpack for each kinematic parameter 
Parameters Free Walk Walk with Backpack 

Cadence (steps/min) 114.80 ± 8.68 113.70 ± 8.08*** 
Stride Length (m) 1.48 ± 0.15 1.51 ± 0.14**** 
Stance Phase (%) 59.09 ± 1.41 61.38 ± 1.33**** 
Swing Phase (%) 40.91 ± 1.41 38.62 ± 1.33**** 

Initial Double Support Phase (%) 9.11 ± 1.38 11.40 ± 1.34**** 
Propulsion (adim) 9.74 ± 1.84 9.12 ± 1.49**** 
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The average component of the weight force along the spine during free walk is: 

D(,' = < cos 10° = ,) cos 10° ≃ 573	P 

The average component of the weight force along the spine during walk with backpack is: 

D(,* = (< + <+) cos 7° = (< +,,)) cos 7° ≃ 670	P 

Where m: the mean mass of the reference sample, g: gravitational acceleration, m-: backpack 

weight (9.3 kg). 

The percentage variation of the force exerted on the spine in the two different walking 

conditions is: 

SL#% =
(670 − 573)

573
≃ 17% 

In the Figures 32-34 the variations of the pelvic rotation angles during the two different 

walking conditions (with and without backpack) are shown. 

 
Figure 32. Pelvic tilt with and without backpack 

 
Figure 33. Pelvic obliquity with and without backpack 
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Figure 34. Pelvic rotation with and without backpack 

Considering the results obtained, it can be seen that the cadence decrease in a significant 

statistical way because of the backpack in according with the study of Ahmad et al. [138] 

while the stride length increase. 

About the stance phase and swing phase, these parameters in the free walk are close to the 

normal values presented in the scientific literature namely 60% for the stance phase and 40% 

for the swing phase. Because of the backpack, a variation of about 2% is observed. More 

precisely, in according with the study of Hong et al. [139], the stance phase increases of 2% 

and consequently the swing phase decrease of 2% because of the backpack; this variation is 

due to the fact that when subjects wearing the backpack tend to increase durability of the 

support phase to compensate for the instability that generates in the swing phase. 

With regard to the Initial double support phase, it is noted that there is an increase in 

accordance with the results obtained by Hong et al. [139] of 2.5% in the case of walking 

with backpack compared to the free walking condition that leaves assume that, because of 

the backpack, increases the initial double support phase thus remaining for a longer time 

anchored to the ground so as to provide to the instability that is generated during the single 

support phase when the weight is supported by only one limb; a detachment is always 

observed in relation to this parameter from the literature standard value of 10%. 

Finally, a statistically significant decrease is observed in the propulsion index during the 

walk with backpack compared to free walk. The higher value of this parameter in the case 

of walking without backpack indicates greater capacity during the advancement movement 

in the supporting phase. This result can be associated with a greater effort that is not able to 

compensate for the weight of the backpack and thus a potential biomechanical overload of 

musculoskeletal structures. 
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As for pelvic tilt (Figure 32), it can be observed that the subject is more antiverse when it 

makes the walk without the additional load of the backpack. The trend of the curve without 

backpack has an average value of about 10 degrees, and an excursion not particularly 

significant during the gait cycle. The curve that identifies the pelvic tilt in case of walking 

with backpack is, instead, translated downwards of a few degrees, with an average value of 

about 7 degrees presenting greater variability during the gait cycle. This difference is 

attributable to the non-negligible weight of the backpack that therefore brings the subject to 

walk less antiverse; this also suggests a small variation of the center of gravity of the body 

which, moving posteriorly, involves a reduction in the stability of the subject, which in 

response tends to remain more anchored to the soil justifying the increase in the support 

phase and that of double support both initial and final. It can be observed variations also for 

the other two angles: pelvic obliquity and pelvic rotation. 

Finally, A 17% percentage increase in the force exerted on the spine during walking with 

backpack can determine a biomechanical overload on the spine which could determine 

potential associated musculoskeletal disorders. 

It can therefore be concluded that all spatiotemporal parameters analyzed are negatively 

affected in statistically significant way because of the backpack, determining a potential 

biomechanical overload on musculoskeletal structures in students exposed to such prolonged 

conditions. The angles related to the kinematics also undergo a qualitative and quantitative 

variation. 

 

 

 

 

 

 

 

 

 

 



71 
 

Chapter 4 

E-textile for Ergonomics 

4.1 An E-textile shirt for the biomechanical risk assessment 

The e-textile shirt prototype presented in the Chapter 2 coupled with a dedicated software 

developed has been used as device for the biomechanical risk assessment. 

The software has been developed using MATLAB. The software is able to segment the EMG 

signals and the acceleration signals during the time window corresponding to the lifting task.  

The proposed methodology has been tested on a study population composed of 5 males and 

healthy subjects whose anthropometric characteristics are shown in the Table 25. 

Table 25. Anthropometric characteristics of the study population 
Subject id Age [years] Height [cm] Weight [kg] BMI [kg/cm2] 

1 27 173 77 25.73 
2 27 175 65 21.22 
3 30 171 61 20.86 
4 27 175 65 21.22 
5 30 170 80 27.68 

Each subject performed a session based on two trials. Each trial consisted in 20 consecutive 

lifting. The first trial was performed in a condition with LI < 1 (LI = 0.5) which corresponds 

to the NO RISK class while the second trial was performed in a condition with LI > 1 (LI = 

1.3) which correspond to the RISK class. LI of 0.5 and 1.3 were derived from the RNLE by 

variously combining height, frequency and weight of lifting tasks. The details of the 

combinations are displayed in Table 26. 

Table 26. Combinations of the height, frequency and weight variables for lifting activities corresponding to 
LI 0.5 and 1.3 for a study population based on male subjects under the age of 45 according to the RNLE 

First Trial 
LI < 1 (0.5) 

Second Trial 
LI > 1 (1.3) 

Displacement 
[Start-End] 

(cm) 

Frequency 
(Lifts/min) 

Weight 
Lifted 
(kg) 

Displacement 
[Start-End] 

(cm) 

Frequency 
(Lifts/min) 

Weight 
Lifted 
(kg) 

[50 - 125] 2.5 7 [50 – 125] 6 15 

Each trial was performed using a plastic container (56 x 35 x 31 cm3) with weights equally 

distributed inside; the size of the plastic container is such that it can be held close to the 

barycenter of the body during the lifting task. The subjects were instructed to adopt a stable 

upright posture with the lower limbs slightly apart and to perform the squat technique with 
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a two-handed grip. Each lifting task was performed in a slow, controlled manner without 

any jerk or sudden acceleration. The researcher was in charge of visually checking the 

performance, and possibly having the subject repeat the execution to acquire the signal again 

if the task was carried out in an uncontrolled manner. 

In Figure 35 is reported the surface Electromiography (sEMG) biceps signal for the NO 

RISK and RISK trials while in Figure 36 is reported the z-axis acceleration (component 

perpendicular to the plane of the body) for the NO RISK AND RISK trials. 

 

Figure 35. sEMG bicep signal acquired during the NO RISK trial (green) and during the RISK trial (red) 

 
Figure 36. z-axis acceleration acquired during the NO RISK trial (green) and the RISK trial (red) 

The sEMG bicep signal and the z-axis acceleration were segmented capturing the lifting 

activity in order to extract predictive features both in the time and frequency domains able 

to discriminate the risk classes according to the RNLE. 
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The following time-domain features were extracted: 

• Area 

• Root mean square 

• Mean 

• Standard deviation 

• Maximum 

The following frequency-domain features were extracted: 

• Power 

• Peak frequency 

• Maximum frequency 

• Mean frequency 

• Median frequency 

• Kurtosis 

• Skewness 

The segmentation process started from the EMG signal extracting the ROI corresponding to 

the lifting action and therefore the start and the end points were used to segment the z-axis 

acceleration signal in order to have the same time window for both signal. 

In Figure 37 is shown the sEMG bicep signal and z-axis acceleration signal for one specific 

lifting corresponding to the trial NO RISK while in Figure 38 is shown the z-axis 

acceleration for one specific lifting corresponding to the the trial RISK. 

 
Figure 37. sEMG bicep and z-axis acceleration signals corresponding to a lifting action for the NO RISK trial 
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Figure 38. sEMG bicep and z-axis acceleration signals corresponding to a lifting action for the RISK trial 

The EMG signal was filtered with a 8 order Butterworth band-pass filter with a band pass 

ranging from 5 Hz to 400 Hz. Therefore the signal was rectified and then filtered with a 4 

order Butterworth low-pass filter with a cut-off frequency equal to 20 Hz. Finally a Savitzky-

Golay filter was applied on the resulting signal. The filtering was implemented in Matlab 

using butter and sgolayfilt functions. Sgolayfilt (x, ORDER, FRAMELEN) smooths the 

signal x using a Savitzky-Golay (polynomial) smoothing filter. The polynomial order, 

ORDER, must be less than the frame length, FRAMELEN, and FRAMELEN must be odd. 

The length of the input x must be >= FRAMELEN. In our case ORDER and FRAMELEN 

was set to 3 and 3001 respectively. Successively, a threshold equal to the maximum of the 

signal divided for 12 was set to calculate the start and end points in order to segment the 

EMG signal and extract the related Region of Interest. 
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In Figure 39 is shown the EMG envelope and the EMG signal after having applied the 

Savitzky-Golay filter for the sEMG bicep signal corresponding to a single lifting action 

while in the Figure 40 is reported the whole acquisition. 

 
Figure 39.  sEMG bicep envelope (blue) and sEMG bicep envelope filtered with a Savitzky-Golay filter 

(red) for a single contraction related to a single lifting 

 
Figure 40. sEMG bicep envelope (blue) and sEMG bicep envelope filtered with a Savitzky-Golay filter (red) 

for the whole acquisition corresponding to 20 lifting 

Successively, a threshold has been set in order to extract the vectors containing the start 

points and the end points in order to extract the ROI associated to each lifting and therefore 

to segment the signal. 



76 
 

In Figure 41 is reported the segmentation of the EMG signal with the extraction of the ROI. 

In Figure 42 it is showed a zoom on a single activity. 

 
Figure 41. sEMG bicep segmentation 

 
Figure 42. Zoom of a single sEMG bicep contraction 

After having segmented the signal, for each ROI the mentioned features were extracted. 

These features were used to build a dataset containing the features extracted for each ROI 

and the risk class, namely NO RISK and RISK. The resulting datasets were used to study 

the potential discriminative power of the extracted features and the capability of several 

state-of-the-art ML algorithms do discriminate risk classes according to the RNLE. 
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A similar procedure was carried out for the z-axis acceleration signal, the details are not 

provided for the sake of brevity. 

First, the machine learning analysis was carried out considering each single subject and each 

signal, namely EMG and z-axis acceleration. 

In Tables 27, 28, 29, 30, 31, 32, 33, 34,35, 36 are reported the evaluation metrics score for 

each ML algorithm using as validation strategy the leave-one-out CV and repeating the 

leave-one-out CV ten time. The ML algorithms implemented were: DT, RF, Rotation Forest 

(Rot-F), GBT, ABT, kNN and NB. 

Table 27. Evaluation metric scores reported as mean ± standard deviation  for the subject id 1 using features 
extracted from sEMG bicep signal 

Table 28. Evaluation metric scores reported as mean ± standard deviation  for the subject id 1 using features 
extracted from z-axis acceleration signal 

Table 29. Evaluation metric scores reported as mean ± standard deviation  for the subject id 2 using features 
extracted from sEMG bicep signal 

 
 

 
 

 Recall Precison Sensitivity Specificity F-measure Accuracy AucRoc 
DT 0.95 ± 0.00 1.00 ± 0.00 0.95 ± 0.00 1.00 ± 0.00 0.97 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 
RF 1.00 ± 0.00 0.95 ± 0.00 1.00 ± 0.00 0.95 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 1.00 ± 0.00 

Rot-F 1.00 ± 0.00 0.95 ± 0.00 1.00 ± 0.00 0.95 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.99 ± 0.00 
GBT 1.00 ± 0.00 0.95 ± 0.00 1.00 ± 0.00 0.95 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 
ABT 1.00 ± 0.00 0.95 ± 0.00 1.00 ± 0.00 0.95 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 
kNN 0.65 ± 0.00 0.68 ± 0.00 0.65 ± 0.00 0.70 ± 0.00 0.67 ± 0.00 0.68 ± 0.00 0.66 ± 0.00 
NB 0.90 ± 0.00 1.00 ± 0.00 0.90 ± 0.00 1.00 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.99 ± 0.00 

 Recall Precison Sensitivity Specificity F-measure Accuracy AucRoc 
DT 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 
RF 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.99 ± 0.00 

Rot-F 1.00 ± 0.00 0.95 ± 0.00 1.00 ± 0.00 0.95 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 1.00 ± 0.00 
GBT 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 
ABT 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 
kNN 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
NB 1.00 ± 0.00 0.95 ± 0.00 1.00 ± 0.00 0.95 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.99 ± 0.00 

 Recall Precison Sensitivity Specificity F-measure Accuracy AucRoc 
DT 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
RF 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 

Rot-F 0.95 ± 0.00 1.00 ± 0.00 0.95 ± 0.00 1.00 ± 0.00 0.97 ± 0.00 0.98 ± 0.00 1.00 ± 0.00 
GBT 1.00 ± 0.00 0.95 ± 0.00 1.00 ± 0.00 0.95 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 
ABT 1.00 ± 0.00 0.95 ± 0.00 1.00 ± 0.00 0.95 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 
kNN 0.85 ± 0.00 0.74 ± 0.00 0.85 ± 0.00 0.70 ± 0.00 0.79 ± 0.00 0.76 ± 0.00 0.80 ± 0.00 
NB 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 



78 
 

Table 30. Evaluation metric scores reported as mean ± standard deviation  for the subject id 2 using features 
extracted from z-axis acceleration signal 

Table 31. Evaluation metric scores reported as mean ± standard deviation  for the subject id 3 using features 
extracted from sEMG bicep signal 

Table 32. Evaluation metric scores reported as mean ± standard deviation  for the subject id 3 using features 
extracted from z-axis acceleration signal 

Table 33. Evaluation metric scores reported as mean ± standard deviation  for the subject id 4 using features 
extracted from sEMG bicep signal 

Table 34. Evaluation metric scores reported as mean ± standard deviation  for the subject id 4 using features 
extracted from z-axis acceleration signal 

 Recall Precison Sensitivity Specificity F-measure Accuracy AucRoc 
DT 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
RF 0.95 ± 0.00 1.00 ± 0.00 0.95 ± 0.00 1.00 ± 0.00 0.97 ± 0.00 0.98 ± 0.00 1.00 ± 0.00 

Rot-F 1.00 ± 0.00 0.95 ± 0.00 1.00 ± 0.00 0.95 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 1.00 ± 0.00 
GBT 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
ABT 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
kNN 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
NB 0.90 ± 0.00 0.82 ± 0.00 0.90 ± 0.00 0.80 ± 0.00 0.86 ± 0.00 0.85 ± 0.00 0.92 ± 0.00 

 Recall Precison Sensitivity Specificity F-measure Accuracy AucRoc 
DT 1.00 ± 0.00 0.91 ± 0.00 1.00 ± 0.00 0.90 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 1.00 ± 0.00 
RF 1.00 ± 0.00 0.87 ± 0.00 1.00 ± 0.00 0.85 ± 0.00 0.93 ± 0.00 0.93 ± 0.00 0.99 ± 0.00 

Rot-F 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
GBT 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
ABT 0.95 ± 0.00 0.91 ± 0.00 0.95 ± 0.00 0.90 ± 0.00 0.93 ± 0.00 0.93 ± 0.00 0.99 ± 0.00 
kNN 0.75 ± 0.00 0.68 ± 0.00 0.75 ± 0.00 0.65 ± 0.00 0.71 ± 0.00 0.70 ± 0.00 0.79 ± 0.00 
NB 1.00 ± 0.00 0.83 ± 0.00 1.00 ± 0.00 0.80 ± 0.00 0.91 ± 0.00 0.90 ± 0.00 0.97 ± 0.00 

 Recall Precison Sensitivity Specificity F-measure Accuracy AucRoc 
DT 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
RF 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 

Rot-F 1.00 ± 0.00 0.95 ± 0.00 1.00 ± 0.00 0.95 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 1.00 ± 0.00 
GBT 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
ABT 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
kNN 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
NB 0.70 ± 0.00 0.78 ± 0.00 0.70 ± 0.00 0.80 ± 0.00 0.74 ± 0.00 0.75 ± 0.00 0.86 ± 0.00 

 Recall Precison Sensitivity Specificity F-measure Accuracy AucRoc 
DT 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
RF 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 

Rot-F 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
GBT 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
ABT 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
kNN 0.70 ± 0.00 0.74 ± 0.00 0.70 ± 0.00 0.75 ± 0.00 0.72 ± 0.00 0.73 ± 0.00 0.73 ± 0.00 
NB 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 

 Recall Precison Sensitivity Specificity F-measure Accuracy AucRoc 
DT 0.95 ± 0.00 1.00 ± 0.00 0.95 ± 0.00 1.00 ± 0.00 0.97 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 
RF 0.95 ± 0.00 1.00 ± 0.00 0.95 ± 0.00 1.00 ± 0.00 0.97 ± 0.00 0.98 ± 0.00 1.00 ± 0.00 

Rot-F 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
GBT 0.95 ± 0.00 1.00 ± 0.00 0.95 ± 0.00 1.00 ± 0.00 0.97 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 
ABT 0.95 ± 0.00 1.00 ± 0.00 0.95 ± 0.00 1.00 ± 0.00 0.97 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 
kNN 1.00 ± 0.00 0.99 ± 0.02 1.00 ± 0.00 0.99 ± 0.02 0.99 ± 0.01 0.99 ± 0.01 1.00 ± 0.00 
NB 0.90 ± 0.00 1.00 ± 0.00 0.90 ± 0.00 1.00 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.99 ± 0.00 
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Table 35. Evaluation metric scores reported as mean ± standard deviation  for the subject id 5 using features 
extracted from sEMG bicep signal 

Table 36. Evaluation metric scores reported as mean ± standard deviation  for the subject id 5 using features 
extracted from z-axis acceleration signal 

Second, a machine learning analysis was carried out considering the entire study population. 

In Tables 37 are reported the evaluation metrics score for each ML algorithm using the 

features extracted from sEMG bicep signal. The ten-fold cross-validation was implemented 

as validation strategy, moreover this validation was repeated ten times. 

Table 37. Evaluation metric scores reported as mean ± standard deviation  for the entire study population using 
features extracted from sEMG bicep signal 

In Table 38 is reported the confusion matrix of the best ML algorithm in terms of evaluation 

metric scores, namely Rot-F for the sEMG bicep signal. 

Tabella 38. Confusion Matrix of the best ML algorithm: Rot-F – sEMG bicep 

 NO RISK RISK 

NO RISK 100 0 

RISK 1 99 

Moreover in Figure 43 is reported the feature importance based on the calculation of the IG 

for the features extracted from the sEMG bicep signal. 

 Recall Precison Sensitivity Specificity F-measure Accuracy AucRoc 
DT 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
RF 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 

Rot-F 0.95 ± 0.00 1.00 ± 0.00 0.95 ± 0.00 1.00 ± 0.00 0.97 ± 0.00 0.98 ± 0.00 1.00 ± 0.00 
GBT 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
ABT 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
kNN 0.35 ± 0.00 0.41 ± 0.00 0.35 ± 0.00 0.50 ± 0.00 0.38 ± 0.00 0.43 ± 0.00 0.42 ± 0.00 
NB 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 

 Recall Precison Sensitivity Specificity F-measure Accuracy AucRoc 
DT 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
RF 1.00 ± 0.00 0.95 ± 0.00 1.00 ± 0.00 0.95 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 1.00 ± 0.00 

Rot-F 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
GBT 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
ABT 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
kNN 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
NB 0.40 ± 0.00 0.89 ± 0.00 0.40 ± 0.00 0.95 ± 0.00 0.56 ± 0.00 0.68 ± 0.00 0.74 ± 0.00 

 Recall Precison Sensitivity Specificity F-measure Accuracy AucRoc 
DT 0.95 ± 0.01 0.98 ± 0.01 0.95 ± 0.01 0.98 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.98 ± 0.01 
RF 0.99 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.98 ± 0.00 0.98 ± 0.00 0.99 ± 0.00 

Rot-F 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.00 
GBT 0.97 ± 0.02 0.97 ± 0.01 0.97 ± 0.02 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.01 0.99 ± 0.01 
ABT 0.95 ± 0.01 0.96 ± 0.01 0.95 ± 0.01 0.96 ± 0.01 0.96 ± 0.00 0.96 ± 0.00 0.98 ± 0.00 
kNN 0.62 ± 0.02 0.69 ± 0.01 0.62 ± 0.02 0.72 ± 0.01 0.66 ± 0.02 0.67 ± 0.01 0.69 ± 0.02 
NB 0.93 ± 0.01 0.72 ± 0.00 0.93 ± 0.01 0.63 ± 0.01 0.81 ± 0.00 0.78 ± 0.00 0.92 ± 0.00 
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Figure 43. Feature Importance by means of IG (%) – sEMG bicep 

In Tables 39 are reported the evaluation metrics score for each ML algorithm using the 

features extracted from the z-axis acceleration signal. The ten-fold CV was implemented as 

validation strategy, moreover this validation was repeated ten times. 

Table 39. Evaluation metric scores reported as mean ± standard deviation  for the entire study population using 
features extracted from z-axis acceleration signal 

In Table 40 is reported the confusion matrix of the best ML algorithms in terms of evaluation 

metric scores, namely DT, RF, GBT, ABT, kNN for the z-axis acceleration signal. 

Tabella 40. Confusion Matrix of the best ML algorithm: DT, RF, GBT, ABT, kNN – z-axis acceleration 
signal 

 NO RISK RISK 

NO RISK 100 0 

RISK 0 100 

Moreover in Figure 44 is reported the feature importance based on the calculation of the IG 

for the features extracted from the z-axis acceleration signal. 

 Recall Precison Sensitivity Specificity F-measure Accuracy AucRoc 
DT 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
RF 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 

Rot-F 0.99 ± 0.01 1.00 ± 0.00 0.99 ± 0.01 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 
GBT 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
ABT 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
kNN 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
NB 0.60 ± 0.02 0.69 ± 0.02 0.60 ± 0.02 0.73 ± 0.02 0.64 ± 0.01 0.67 ± 0.01 0.67 ± 0.01 
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Figure 44. Feature Importance by means of IG (%) – z-axis acceleration 

Finally, a leave-one-subject out validation strategy was performed using 4 subject to train 

the predictive models and 1 subject to validate the model, this procedure was performed in 

an iterative way 5 times in order to test the model on each subject using the remain 4 for the 

training phase. In the Table 41 are showed the results of this analysis considering the features 

extracted from the sEMG bicep signal while in Table 42 are showed the results of this 

analysis considering both the features extracted from the sEMG signal and z-axis 

acceleration signal. 

Table 41. Evaluation metric scores reported as mean ± standard deviation  for the entire study population using 
features extracted from sEMG bicep signal and the leave-one-subject-out as validation strategy 

 

 

 
 

 Recall Precison Sensitivity Specificity F-measure Accuracy AucRoc 
DT 0.81 ± 0.43 0.92 ± 0.13 0.81 ± 0.43 0.89± 0.19 0.77 ± 0.38 0.85 ± 0.20 0.85 ± 0.20 
RF 0.81 ± 0.43 0.78 ± 0.25 0.81 ± 0.43 0.58 ± 0.51 0.68± 0.35 0.69 ± 0.25 0.91 ± 0.13 

Rot-F 0.76 ± 0.41 0.97 ± 0.10 0.76 ± 0.41 0.96 ± 0.10 0.77 ± 0.38 0.86 ± 0.19 0.99 ± 0.01 
GBT 1.00 ± 0.00 0.82 ± 0.22 1.00 ± 0.00 0.69 ± 0.43 0.89 ± 0.14 0.85 ± 0.21 0.81 ± 0.24 
ABT 0.77 ± 0.41 0.74 ± 0.25 0.77 ± 0.41 0.51 ± 0.50 0.63 ± 0.31 0.64 ± 0.19 0.90 ± 0.21 
kNN 0.45 ± 0.15 0.62 ± 0.22 0.45 ± 0.15 0.61 ± 0.25 0.48± 0.10 0.53 ± 0.10 0.54 ± 0.10 
NB 0.81 ± 0.43 0.80 ± 0.25 0.81 ± 0.43 0.63 ± 0.49 0.69 ± 0.36 0.72 ± 0.25 0.99 ± 0.03 
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Table 42. Evaluation metric scores reported as mean ± standard deviation  for the entire study population using 
features extracted from both sEMG bicep signal and z-axis acceleration signal, and the leave-one-subject-out 
as validation strategy 

The results showed that the proposed combinations of features - extracted from sEMG bicep 

signal and z-axis acceleration related to the sternum- and state-of-the-art ML algorithms 

represents a potential valid approach to automatically classify the biomechanical risk to 

which subjects may be exposed during lifting activities, for example, at work. The presented 

methodology could represent a valid integration to the established protocols (e.g., NIOSH 

lifting equation) to evaluate the biomechanical risk more quickly and easily. Moreover, it 

could represent a valid alternative when the conditions required for the application of 

standardized evaluation methods do not exist. These results are of direct practical relevance 

for occupational ergonomics, as they present the opportunity for automatic, economic and 

non-invasive detection (wearing a shirt), to assess the musculoskeletal and biomechanical 

risk associated with lifting. Based on the promising results presented in this article, the next 

phase of thus research could consider an extension of the sample under consideration to 

further validate the methodology, new experiments that consider more than two LI values, 

and the integration of additional features from the time-domain and the frequency-domain. 

 

 

 

 

 

 

 

 

 Recall Precison Sensitivity Specificity F-measure Accuracy AucRoc 
DT 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
RF 0.81 ± 0.43 0.98 ± 0.04 0.81 ± 0.43 0.98 ± 0.10 0.81± 0.40 0.90 ± 0.21 1.00 ± 0.00 

Rot-F 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
GBT 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
ABT 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
kNN 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 
NB 0.75 ± 0.41 0.81 ± 0.26 0.75 ± 0.41 0.64 ± 0.49 0.66 ± 0.34 0.70 ± 0.22 0.99 ± 0.02 
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Conclusion 

In this dissertation, a new textile-sensor-based wearable device for the biomechanical risk 

assessment was developed and presented. 

The innovative features of the system rely on the multi-parametric approach in health 

monitoring and on the wide ranging set of tools available for digital signal processing. In the 

development of the sensing unit, various sensors, electrodes, and bus structures were 

integrated within the textile garment, making it possible for the patient to perform normal 

daily activities without any discomfort. The system includes a custom-based app for real-

time visualization of the acquired signals and a software desktop for off-line plotting and 

digital signal processing. 

The presented e-textile prototype is able to noninvasively collect large amounts of body 

movement data during physical work and explore their association with occupational risk as 

assessed with standard methods. The portability and wearability of this technology 

represents an advantageous alternative to camera-based motion tracking systems. 

Among the activities involving biomechanical overloading, material handling and lifting is 

one of the most studied in the scientific literature, including its association with the 

development of WMSDs. With a view to prevention, NIOSH established a methodology for 

assessing lifting actions by means of a quantitative method based on intensity, duration and 

frequency of the task, and other geometrical characteristics of lifting. The method determines 

RWL for the lifting tasks and calculates LI. 

In the scientific literature, among the many applications of wearable technology to 

ergonomics, and in particular among those which use the NIOSH methodology, the 

association of features extracted directly from raw signals (acceleration and angular velocity) 

with NIOSH risk classes related to repeated load lifting activities has not yet been explored. 

Moreover, ML algorithms are gaining popularity in the ergonomic field for biomechanical 

risk assessment by means of data acquired by wearable systems. 

The aim of this thesis was to prove the feasibility of a wearable e-textile technology coupled 

with a dedicated software developed based on algorithms of digital signal processing and 

ML to classify lifting tasks belonging to different risk classes according to the value of LI 

starting from features extracted from biosignals. 

Based on the results presented, the experimented approach - which combines time-domain 

and frequency-domain features and machine learning algorithms - proved to be a valid 
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indicator, although preliminary because of the low number of samples analyzed, of the risk 

of WMSDs for manual lifting (according to the NIOSH index) to which workers are 

potentially exposed during their working activity. 
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