University of Naples Federico II

Ph.D. Program in Biomorphological and Surgical Sciences XXXIV Cycle

Program Coordinator: Prof. Alberto Cuocolo

Ph.D. Thesis

Design of Additive Manufactured Scaffolds with Tailored Morphology and Properties for Bone Tissue Regeneration

Tutor
Prof. Giovanni Improta
Prof. Teresa Russo
Prof. Massimo Martorelli

Ph.D. Student **Dr. Pierpaolo Fucile**

TABLE OF CONTENTS

CHAPTER 1 - Tissue Engineering and additively manufactured scaffolds for tissue regeneration: state of the art	1
1.1 Introduction	
1.2 Conventional Scaffolds fabrication techniques	
1.3 Biofabrication: the introduction of Additive Manufacturing technologies	
1.4 Reverse Engineering (RE)	
1.5 Design for Additive Manufacturing (DfAM)	
1.6 Generative Design	
1.7 AM towards Biomedical Applications	
1.8 Bone Tissue Engineering	
REFERENCES	
CHAPTER 2 - Reverse Engineering and Additive Manufacturing towards the design of advanced scaffolds for hard tissue regeneration	of 3D
2.1 Introduction	
2.2 Materials and Methods	
2.3 Results and Discussion	54
2.4 Conclusions	62
REFERENCES	64
CHAPTER 3 - Integrated Design Strategy for Additively Manufactured Surface-Modi Scaffolds in Tissue Engineering	
3.1 Introduction	71
3.2 Materials and Methods	72
3.3 Results and Discussion	73
3.4 Conclusions	76
REFERENCES	77
CHAPTER 4 - Design Strategies Toward the Development Of 3D Hybrid Additive Manufactured Scaffolds For Enhanced Tissue Regeneration	81
4.1 Introduction	81
4.2 Materials and Methods	82
4.3 Results and Discussion	84
4.4 Conclusions	91
DEEDDENCES	0.2

LIST OF FIGURES

Figure 1.1: Basic principles of Tissue Engineering	3
Figure 1.2: Scaffolds for Tissue Engineering	4
Figure 1.3: Solvent Casting process [20]	6
Figure 1.4: Gas Foaming Process [20].	7
Figure 1.5: Phase Separation Process [20].	8
Figure 1.6: Electrospinning Process [20].	9
Figure 1.7: Freeze-Drying Process [20].	9
Figure 1.8: Biofabrication for TE as the result of different disciplines interaction [10]	10
Figure 1.9: Fused Deposition Modelling (FDM) representative scheme.	16
Figure 1.10: 3D Bioplotting representative scheme [18]	17
Figure 1.11: Topology Optimization of a mechanical part	20
Figure 1.12: Examples of lattice structures cells unit	22
Figure 1.13: Generative Design of a mechanical part.	23
Figure 1.14: Design and fabrication process of custom-made scaffolds for TE [5]	26
Figure 1.15: Main scaffolds parameters [119]	29
Figure 2.1: Typical results from compression tests. Stress-strain curves for 3D PCL scaffolds with	i
specific lay-down pattern and geometric features, tested up to a strain of 0.4 mm/mm.	54
Figure 2.2: Results obtained from nanoindentation tests on PCL fibres. Hardness as a function of t	the
applied load. Data are reported as mean value and error bar represents the standard deviation	55
Figure 2.3 : Interaction plot for RW (μm).	59
Figure 2.4: Interaction plot for maximum stress (MPa).	60
Figure 2.5: Interaction plot for the compressive modulus (MPa)	60
Figure 2.6: Percentage of Alamar Blue reduction as a function of time for PCL and PCL/HA	
nanocomposite scaffolds. Data are reported as mean value and error bar represents the standard	
deviation	61

Figure 2.7 : Values of shape factor obtained from CLSM images of hMSCs on PCL and PCL/HA
nanocomposite scaffolds. Data are reported as mean value and error bar represents the standard
deviation61
Figure 2.8: Customized nanocomposite scaffolds for mandibular defect regeneration (i.e., symphysis
and ramus)62
Figure 3.1: Typical results from in vitro biological tests: percentage of Alamar Blue reduction
evaluated for the cell-laden scaffolds. Data are reported as mean value and error bar represents the
standard deviation
Figure 4.1: Design of the single scaffold layer (A) and the final assembly (B)
Figure 4.2: SEM images of the 1% Gn scaffolds (a, b, and c) and PCL/Gn 1% hybrid scaffolds (d, e,
and f) before cross-linking.
Figure 4.3: SEM images of the 1% Gn scaffolds (a, b, and c) and PCL/Gn 1% hybrid scaffolds (d, e,
and f) after cross-linking
Figure 4.4: SEM images of the 3% Gn scaffolds (a, b, and c) and PCL/Gn 3% hybrid scaffolds (d, e,
and f) before cross-linking.
Figure 4.5: SEM images of the 3% Gn scaffolds (a, b, and c) and PCL/Gn 3% hybrid scaffolds (d, e,
and f) after cross-linking.
Figure 4.6: SEM images of the 5% Gn scaffolds (a, b, and c) and PCL/Gn 5% hybrid scaffolds (d, e,
and f) before cross-linking.
Figure 4.7: SEM images of the 5% Gn scaffolds (a, b, and c) and PCL/Gn 5% hybrid scaffolds (d, e,
and f) after cross-linking.
Figure 4.8: Results of compression tests on the hybrid PCL/Gn scaffolds. Plain PCL scaffolds were
used as control
Figure 4.9: Typical results obtained from water uptake tests on gelatin samples
Figure 4.10: Typical results obtained from degradation tests on gelatin samples
Figure 4.11: Results obtained from Alamar Blue Assay: (a) Alamar Blue reduction ratio observed on
hybrid and plain PCL scaffolds; (b) Alamar Blue reduction ratio observed on plain gelatin scaffolds.91

LIST OF TABLES

Table 1.1: Most popular AM techniques [18] 12
Table 2.1: Manufacturing parameters: deposition velocity (DV), screw rotation velocity (SRV), slice
thickness (ST), and process temperature (PT)
Table 2.2: porosity, RW, maximum stress, and compressive modulus of 3D PCL/HA scaffolds
achieved for different PT values (DV = 10 mm/s , SRV = 30 rpm and ST = $400 \mu \text{m}$). The data are
reported as mean value ± standard deviation
Table 2.3: porosity, RW, maximum stress, and compressive modulus of 3D PCL/HA scaffolds
achieved for different DV values (PT = 120 °C, SRV = 30 rpm and ST = 400 μ m). The data are
reported as mean value ± standard deviation
Table 2.4: porosity, RW, maximum stress, and compressive modulus of 3D PCL/HA scaffolds
achieved for different SRV values (PT = 120 °C, DV = 10 mm/s and ST = 400 μ m). The data are
reported as mean value ± standard deviation
Table 2.5: porosity, RW, maximum stress, and compressive modulus of 3D PCL/HA scaffolds
achieved for different ST values (PT = $120 ^{\circ}$ C, DV = 10mm/s and SRV = 30rpm). The data are
reported as mean value ± standard deviation
Table 2.6: Optimised set of parameters for the fabrication of PCL/HA (90/10 w/w) scaffolds through a
bioextruder system
Table 3.1 : Typical results from compression tests performed on neat and surface-modified 3D
scaffolds (fibre diameter of 400 μm, strand distance of 600 μm, layer thickness of 300 μm): modulus
(E) and maximum stress (σ_{max}). The results are reported as mean value \pm standard deviation
Table 4.1: Bioprinting parameters: slice thickness (ST), strand distance (SD), deposition velocity
(DV), printing temperature (PT), and operative pressure (P)