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Abstract

This thesis is concerned with the model theory of ordered abelian groups, in particular,
in relation to the properties of eliminating imaginaries and having definable types. The
theory of ordered abelian groups was initially studied by Y. Gurevich and P. Schmitt in
the second half of the 20th century. They classified up to elementary equivalence the
class of ordered abelian groups by a sequence of coloured chains, called spines, arising
from every ordered abelian group.

The analysis of imaginaries and the description of definable types are two active
research areas in model theory. We investigate the property of elimination of imagi-
naries for some special cases of ordered abelian groups. We prove that certain Hahn
products of ordered abelian groups do not eliminate imaginaries in the pure language of
ordered abelian groups. Moreover, we show that, adding finitely many constants to the
language of ordered abelian groups, the theories of the finite lexicographic products Z"
and Z" x Q have definable Skolem functions. We then study the property for an ordered
abelian group to be stably embedded (i.e. to have definable types). We identify a suffi-
cient and necessary condition for certain ordered abelian groups to be stably embedded.
These include regular ordered abelian groups, ordered abelian groups with finite regular
rank and models of the theory of a maximal ordered abelian group satisfying a condition
on the definability of its principal convex subgroups. For the last class of groups G, we
establish, in particular, a transfer principle for stable embeddedness from G to the spine
of G in the spirit of the work of Gurevich and Schmitt.
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Chapter 1
Introduction

Ordered abelian groups form a class of first order structures widely studied in model
theory, and several results, including quantifier elimination results and classifications of
the model theoretic complexity, have been obtained (see for example [17], [49], [50],
[6], [13] and [10]). They are all unstable structures, so that their model theory is very
different and more complex than that of abelian groups, whose theory is stable. In his
pioneering paper [16], Gurevich determined how to transfer the elementary properties
of an ordered abelian group to simpler and more manageable structures. Indeed, for any
natural number n > 2, one can associate with every ordered abelian group G a linear
order with unary predicates (coloured chain) Sp,(G), called the n-spine of G. Roughly
speaking, the collection of the n-spines of G "contains" all the information of the group
expressible in the language. This leads to some fundamental transfer principles from
G to Sp,(G), introduced by Gurevich first and revisited later by Schmitt in [41]. For
instance, one can reduce the elementary equivalence of two ordered abelian groups G
and H to the elementary equivalence of the corresponding n-spines Sp,(G) and Sp,(H),
for any n > 2. Furthermore, using that the theory of linear orders is decidable ([11]),
Gurevich proved the decidability of the theory of ordered abelian groups.

Ordered abelian groups play an important role also in the context of valued fields. In-
deed, since the fundamental results obtained by Ax, Kochen and Ershov for henselian
valued fields, one can reduce, in many cases, the study of a property for a valued field
to the study of the same property for its residue field and value group. Since the value

group is an ordered abelian group, this gives an extra motivation for better understand-
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ing the model theory of ordered abelian groups. For contributions in this direction see
[18], [1] and [47].

In this thesis we will investigate two model-theoretical properties in the class of
ordered abelian groups, both somehow related to a definability issue: elimination of
imaginaries and stable embeddedness.

The imaginary elements of a given first order structure M are equivalence classes of
0-definable equivalence relations. Shelah, in [43], introduced for any structure M the
expanded structure M®4, in order to make the imaginary elements of M real elements
of the structure. Adding the imaginaries to M has several advantages. For instance,
it allows to consider interpretations as subsets of the structure, and it entails "nice"
properties, as the Galois correspondence. In some cases, one can find already in the
structure canonical codes which identify the imaginary elements and, in this case, we
do not need to expand M to M°®4. If this occurs, we say that M eliminates imaginaries.
We may say that in a structure eliminating imaginaries, some quotient structures, in
general not definable, can essentially be treated as definable. In the literature there are
partial results on elimination of imaginaries in ordered abelian groups. Examples of
ordered abelian groups that eliminate imaginaries are divisible ordered abelian groups,
see [31], and discretely ordered abelian groups elementarily equivalent to Z, see [5] and
Appendix A of [9]. But examples of ordered abelian groups that do not have elimination
of imaginaries in the language Ly, = {0,+,—, <} are not present in the literature.
Providing such examples is the first goal of this thesis.

The second property we will examine is related to the definability of types. One
of the main results of Shelah’s classification theory is the characterization of stable
theories in terms of properties for types. In particular, a theory T is stable if and only if
all types over any model of T are definable. Then, in unstable theories, one can ask if the
definability of types holds for at least some model M. This is equivalent to saying that,
for any elementary extension N and every definable set ¢(N) with parameters from N,
the intersection M ng(N) is definable with parameters from M. If this is the case, we say
that M is stably embedded in all elementary extensions or simply it is stably embedded.
If the same holds, not for all elementary extensions of M, but for a fixed elementary
extension N, we say that M is stably embbeded in AV or that the pair (N, M) is stably
embedded. In [46], stably embedded pairs of models in a particular class of valued

fields were studied. Touchard proved that, in some cases, an elementary pair of valued
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fields is stably embedded if and only if the extension is separated and the corresponding
pairs of value groups and residue fields are stably embedded. This result motivates then
an analysis of stably embedded ordered abelian groups, which is the second goal of this
thesis. In particular, we aim at characterizing stable embeddedness for ordered abelian
groups, establishing a result similar to that obtained for valued fields.

We outline the structure and the main results of the thesis in the following. After col-
lecting some preliminaries on general model theory in the next section, we introduce the
class of ordered abelian groups in Chapter 2. In this chapter, we review definitions and
results we will need through the thesis. We adapt, in particular, some notions from gen-
eral valuation theory to the context of ordered abelian groups, and we present the state
of art of the model theory of ordered abelian groups, summarizing the most important
results that have been achieved in the last years.

In Chapter 3, we prove that elimination of imaginaries fails for the theories of the
Hahn products H._,Z and [

related to the elimination of imaginaries is the existence of definable Skolem functions.

i<a Z x Q, with @ well-ordered index set. A property
In particular, definable Skolem functions allow to reduce the goal of finding a code for
every imaginary to coding just one dimensional definable sets. We prove that, once we
add finitely many judiciously chosen elements as new constants to L, the theories of
Z" and Z" x Q, for any n > 1, have definable Skolem functions. These results are part
of the preprint [27].

Chapter 4 is dedicated to the study of the ordered abelian groups which are stably
embedded in all elementary extensions. To this purpose, we firstly study stably embed-
ded coloured chains. We show that a coloured chain is stably embedded if and only if all
cuts are definable. Then, for certain ordered abelian groups G, we identify some neces-
sary and sufficient conditions for G to be stably embedded. These involve in particular
the non-existence of proper immediate extensions and the stable embeddedness of the
spine, establishing a transfer principle for stable embeddedness in the same spirit of that
of Gurevich and Schmitt for elementary equivalence. Moreover, we exhibit some con-
crete examples of stably embedded ordered abelian groups, including the Hahn product
G = H._.,Z. To this end, we deduce from [6] a specific language in which G eliminates
quantifiers. Some of the results presented in this chapter have been obtained jointly with
M. Hils and P. Touchard and will appear in [19].
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1.1 Notation and preliminaries

We recall here some notions and results of model theory that we will use throughout the
thesis. For the most basic notions, one may refer to any model theory text, such as [20],
[35], [28] or [45].

We use the convention that 0 € N. We write N* and P for the set N\{0} and the
set of primes, respectively. We denote the successor of an ordinal @ by @ + 1 and, if
a set S has order-type «, the order type of the reverse order of S is denoted by a*. A
tuple of variables (xo, ..., x,) or of elements in an L-structure (ay, . . .,a,) is denoted by
X or a. Moreover, the notations |X| and |a| stand for the arity of the tuple. Curvy letters
M, N, K, ... typically denote structures, whereas M, N, K, ... denote the correspond-
ing underlying sets. If M is an L-structure, by "definable" we will mean definable in L

with parameters in M, and by "0-definable" we will mean definable without parameters.

Elimination of imaginaries

Let M be an L-structure, L any first order language. Let m be a positive integer and
E(%,7) a O-definable equivalence relation on M™. The E-equivalence classes of M"
are called imaginary elements of M, and we say that M eliminates imaginaries if each
imaginary can be coded in the structure. More precisely, the notion of elimination of

imaginaries is stated in the following definition.

Definition 1.1.1 ([20]). An L-structure M has elimination of imaginaries if for any
positive integer m, any 0-definable equivalence relation E(X,y) on M™ and any E-class
X, there is an L-formula 9¥(X, z) such that X = (M™, b) for some UNIQUE tuple b = M.

Moreover, such a tuple b is called a canonical parameter for X.

Let M be an L-structure. We denote by Aut(M) the group of automorphisms of M.
Moreover, let S < Aut(M). By Fix(S) we mean the set

Fix(S) ={ae M| f(a) =aforall feS }.

Let A < M. By Aut(M/A) and Stab,(A) we mean the group of all automorphisms of
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M fixing A pointwise and fixing A setwise, respectively. Namely,

Aut(M/A) = { f € Aut(M) | f(a)
Stabp((A) = { f € Aut(M)

aforeveryae A}

fA)=A}.

Remark 1.1.2. Let M be an L-structure that admits elimination of imaginaries and let
b be a canonical parameter for an E-class X, where E(X, ) is a 0-definable equivalence
relation on M™. Then b is fixed by the same automorphisms of M which leave X
invariant. Therefore, if M eliminates imaginaries, for every E-class X there exists a
tuple b = M such that, for any automorphism f of M, f € Staby(X) if and only if
f € Aut(M/b).

Definition 1.1.3. An L-structure M has uniform elimination of imaginaries if for any
positive integer m, and any 0-definable equivalence relation E(X,y) on M", there is an
L-formula (%, 7) such that for every E-class X, there is a unique tuple » = M such that
X = 9(M™,b).

In other words, M uniformly eliminates imaginaries if one can find a formula 9(%, 2)
as in Definition 1.1.1 depending only on the equivalence relation E(%,y) and not on
the equivalence class X. Notice that uniform elimination of imaginaries is preserved
under elementary equivalence. Moreover, one can easily see that, in this case, every
0-definable equivalence relation is the fibration of a O-definable function. In particular,
it holds that

Proposition 1.1.4. M has uniform elimination of imaginaries if and only if for every
O-definable equivalence relation E(X,y) there is a 0-definable function fr on M™ such
that for all by, b,
E(b_l,b_Z) if and only iffE(b_l) = fE(b_Z)'
We say that a theory 7" in L has (uniform) elimination of imaginaries if every model
of T has (uniform) elimination of imaginaries. The uniformity of elimination of imagi-
naries, in the sense of Definition 1.1.3, holds under the condition stated in the following

well-known result (see, for example, [35, Theorem 16.16]).

Theorem 1.1.5. Let T be an L-theory. Suppose T has elimination of imaginaries and,
in every model of T, there are at least two elements 0-definable. Then T has uniform

elimination of imaginaries.
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Note that the existence of at least two 0-definable elements in order to have uniform
elimination of imaginaries cannot be avoided. Indeed, both classes of the equivalence
relation (x; = x; Ay = y2) v (X1 # X2 A y; # yz) are definable without parameters
by the formulas x; = x, and x; # x,, respectively, but there is no way of using a unique
tuple to pick out one of these formulas.

Another form of elimination of imaginaries is the following.

Definition 1.1.6. We say that an L-structure M has weak elimination of imaginaries if
for any positive integer m, any 0-definable equivalence relation E(%,y) on M™ and any
E-class X, there are an L-formula (X, Z) and a riNiTE set B of tuples of M such that
X = 9(M™,b) if and only if b € B.

We say that a theory 7T in L has weak elimination of imaginaries if every model of 7" has

weak elimination of imaginaries.

Fact 1.1.7 ([36]). Let T be an expansion of the theory of linear order. If T weakly

eliminates imaginaries, then T eliminates imaginaries.

Stable embeddedness

Definition 1.1.8. Let NV be an elementary extension of M. M is said to be stably
embedded in N if for every definable set ¢(N",a), a < N, its trace o(N",a) n M™ is
L(M)-definable, i.e. there exist an L-formula ¢(X,z) and a tuple b of parameters in M
such that

o(N",a) n M"™ = y(M™,b). (1.1)

Note that (X, 7) may depend on the parameters a. If y(%,z) depends only on the
formula ¢(%, ) and not on a, M is said to be uniformly stably embedded in N.

Definition 1.1.9. We say that M is stably embedded if M is stably embedded in every
elementary extension of M. Similarly, we say that M is uniformly stably embedded.

It is easy to see that the property of being stably embedded in an elementary exten-
sion is equivalent to the definability of the types realized in that extension. First of all

we recall the notion of definable type over an arbitrary subset of M.
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Definition 1.1.10. Let A = M. A type p(X) € S,(A) is said to be definable if for every
L-formula ¢(X, 7), there exists an L(A)-formula d,¢(y) such that foralla < A

p(X) = ¢(x,a) if and only if M |= d,¢(a). (1.2)

The collection (d,¢), is called a defining scheme for p.

Example 1.1.11. Every realized type is definable: let @ € M", then tp(a/M) is defin-
able. Indeed, trivially, (d,¢), with d,¢(3) = ¢(@,¥) is a defining scheme for p.

Example 1.1.12. Let T be a stable theory, then all types over all models of T are defin-
able (Shelah’s theorem). In particular, for any formula ¢ (¥, ¥), there is a formula (¥, 7)

such that for any M |= T, for every type p(%) over M there is b = M such that

dpp(¥) = ¥(5, D). (1.3)
In this case, we say that all the types are uniformly definable.
One can see immediately the following fact:

Fact 1.1.13. M is stably embedded in N if and only if all n-types over M realized in N
are definable, i.e. for every @ — N, p(X) = tp(@/M) is definable.

Similarly, M is uniformly stably embedded in N if and only if all n-types over M
realized in N are uniformly definable (dy does not depend on p, i.e. on @ < N).

It is worth mentioning that uniform stable embeddedness of elementary pairs is pre-
served by elementary extension. Recall that an elementary pair is a pair of L-structures
(N, M) such that M < N. Let P be a unary predicate, then (N, M) can be seen as a
Lp = L u {P}-structure by interpreting P as the underlying set of M. One can prove
that, if M is uniformly stably embedded in N, then M’ is uniformly stably embedded
in N for any elementary extension (N’, M') of (N, M) in Lp.

Remark 1.1.14. The following are equivalent:

1. M s (uniformly) stably embedded in every elementary extension,

2. M s (uniformly) stably embedded in a monster model U of Th(M).
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In order to characterize the definability of types, we now introduce the notion of

“heir’ of a type p.

Definition 1.1.15. Let p € S,,(M), and N be an elementary extension of M. An exten-
sion g of p over N is called an heir of p if for every formula (X, §) with parameters from
M and every i < N such that g - ¢(X, 71), there exists a tuple m — M with p - ¢(X,m).

The following result is well-known [26]:

Theorem 1.1.16 (Lascar-Poizat). Let p € S,(M). Then p is definable if and only if p

has only one heir over every elementary extension of M.

Another important result about the definability of types which we recall is Marker-
Steinhorn’s Theorem. In [29], Marker and Steinhorn showed that, in o-minimal struc-
tures, one can reduce the question of definability of types to the question of definability

of 1-types:

Theorem 1.1.17 (Marker-Steinhorn). Let T be an o-minimal theory, and let M < N be
two models of T. Then, all types over M realized in N are (uniformly) definable if and
only if all 1-types over M realized in N are (uniformly) definable.

Note that since Marker-Steinhorn’s theorem, the question whether definability of 1-
types implies definability of n-types has been studied and analogue versions of Marker-
Steinhorn’s result are known in other contexts, see, for example, [7, Theorem 3.3] in the
class of algebraically closed valued fields and, more generally, [23, Lemma 6.2.7] and
[33, Lemma 2.7].

Relative quantifier elimination

Let us recall here some terminology and basic facts about relative quantifier elimination.
The material presented here is taken essentially from [38, Annex A]. In this section, L
will denote a many-sorted language and { IT, X } a partition of its sorts. Moreover, we
denote by L[y the language of all function symbols and relation symbols in L involving

only sorts in Z.

Definition 1.1.18. Let L* M be the definitional extension of L obtained by adding a
new predicate P, (%) for each Ly formula ¢(X). The Morleyization of 7 on X is the
L¥ Mo theory T> ™M := T U { P,(X) < ¢(X) | (%) L|s formula }.
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Definition 1.1.19. Let 7" be an L-theory. We say that

o T eliminates [1-quantifiers if every L-formula is equivalent modulo 7 to a formula

where quantification only occurs on variables from the sorts in X.

e T eliminates quantifiers relatively to X if the Morleyzation of T on T, T>"Mor,

eliminates quantifiers.

As observed in [38, Annex A], if T eliminates quantifiers relatively to X, then T

eliminates IT-quantifiers. But the converse is not in general true.

Definition 1.1.20. We say that X is closed if any relation symbol involving a sort in X
or any function symbol with a domain involving a sort in X only involves sorts in X.
Equivalently, every symbol involving sorts from both II and X are function symbols of
the form f: [[,P; — S, where P, e [Tand § € X.

If ¥ is a closed set of sorts, we will denote the set of functions f: [ [, P; — S by F.

Fact 1.1.21. If X is a closed set of sorts, then T eliminates I1-quantifiers if and only if T

eliminates quantifiers relatively to .

Fact 1.1.22. IfX is a closed set of sorts and T eliminates quantifiers relatively to X, then
for any M |= T, any L(M)-definable subset of (M) is defined by a formula of the form

(%, f(a),b),
where ¢ is an L|s-formula, @ is a tuple from TI(M), b a tuple from (M) and f are
functions from F.

In particular, we have that if 2 is a closed set of sorts and 7" eliminates quantifiers
relatively to X, then any L(M )-definable subset of £(M) is L|s(X(M))-definable. In that
case, we say that X is purely stably embedded.



Chapter 2

Generalities on ordered abelian groups

2.1 Algebraic properties

In this section we review some preliminaries on ordered abelian groups that we shall

need throughout the thesis, and for which we refer mainly to [14].

Basic notions and notations

Let G be an ordered abelian group, that is an abelian group endowed with a linear order
which is compatible with the group operation: @ < &' if and only ifa + b < ' + b
for all a,d’,b € G. Clearly, such a group is always torsion-free. Conversely, using a
compactness argument, one can easily see that any abelian group which is torsion-free
can be endowed with a linear order that makes it into an ordered group (see [20, Exercise
6.2.13]). For every a € G,a # 0, we say that a is positive if a > 0; otherwise, we have
a < 0 and we say that a is negative. We say that G is discrete if there exists a minimal

positive element, and dense otherwise.

Notation. By div(G), we denote the divisible hull of G, that is the minimal (unique up
to isomorphism) divisible group that contains G. Moreover, let a € G, and H be any
subgroup of G, we write ¢ mod H for the coset of a in G/H, i.e. a mod H denotes the
set{a+b|beH}.

10
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Convex subgroups

A subgroup C of an ordered abelian group G is convex in G if, for every g,h € G
such that 0 < ¢ < hand h € C, we also have g € C. It is easy to see that the
intersection of convex subgroups is again a convex subgroup. Hence, we can define the

conv

convex subgroup generated by a subset X of G, (X)™", as the smallest convex subgroup

containing X. In particular, we mean by a principal convex subgroup C one generated

conv

by a single element a € G, i.e. if C = (a)"" for some a € G. Clearly, all other convex

subgroups are unions of principal ones.

Proposition 2.1.1. (a) The set of all convex subgroups of G is linearly ordered by

inclusion.

(b) If C is a convex subgroup of G, then G /C is an ordered abelian group with respect
to the ordering relation defined by, for any a,b € G,

a mod C <b mod Cifandonlyifa <bandb—a ¢ C.
(c) If C is a convex subgroup of G, then C is a pure subgroup of G, i.e. for anyn € N
and g e G, ifng € C, then g € C.

The order-type of the set of all proper convex subgroups of G is called the rank of

G and it is an invariant under isomorphisms of G.

Definition 2.1.2. We say that G is archimedean if {0} and G are the only convex sub-
groups of G.

Proposition 2.1.3. If G is non trivial, the following conditions are equivalent.
(i) G is archimedean.
(ii) G has rank one.

(iii) For every pair of positive elements a,b € G there exists n € N,n > 0 such that

na > b.

The following notable result holds.
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Theorem 2.1.4 (Holder’s Theorem). Every archimedean group is isomorphic (as or-

dered group) to a subgroup of R.

Clearly, the converse is also true, i.e. every subgroup of R is archimedean.

Cuts in ordered abelian groups

Let X be a totally ordered set. A cut in X is a pair (L, R) of subsets of X such that
LUR=XandL < R,ie. a < bforallae L, b e R. Trivially, the pairs (&, X)
and (X, ¢J) are cuts in X and are denoted by —o0, +00, respectively. If Y < X, then Y™
denotes the cut (L,R) withR = {xe€ X | x> Y } and L = X\R. Similarly, Y~ is the
cut (L,R)withL = {xe X | x <Y } and R = X\L. In particular, by a principal cut we
mean one of the form —oo, +o0 or the form a™, a~ for some a € X.

Let (L, R) be a cut in an ordered abelian group G. For any g € G, we define g+ (L, R)
as the cut (g + L, g + R). Then, to every cut (L, R) in G, we may associate the following
subgroup of G

H(L,R):={geG|g+ (L,R) = (L,R) },

which is called the invariance group of (L,R). It is straightforward that H(L,R) is a
convex subgroup of G. Moreover, for every convex subgroup C and any g € G, we have

C=H(g+C")=H(g+C).

When the context is clear, we will denote the cut (L, R) by just the set L as well.

Hahn product and lexicographic sum

Let (1, <) be an ordered set, and for each i € I let G; be an ordered abelian group. From
the family {G;},c;, we can construct two ordered abelian groups in the following way.
Consider the direct product of the groups G, | [,; Gi, that is, the group of functions
f 1 — J;;Gisuchthat forall i € I, f(i) € G;. For every f € [ [.; Gi, the support of
fisthe setsupp(f) :={iel| f(i) # 0}. Let H be the following subgroup of [ [,; G::

{ fe H G; | supp(f) is a well-ordered subset of (I, <) } ,

iel
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where the empty-set is assumed to be well-ordered. It is easily checked that H is an
ordered abelian group with respect the lexicographic order, whose positive cone is given
by

f >1ex 0 < f(min(supp(f))) > 0.

The group H endowed with this order is called the Hahn product of the family {G;};
and is denoted by [ .., G;. The ordered subgroup

{f € Hic;Gi | supp(f) is finite }

is the lexicographic sum of the family {G,}; and is denoted by >, G; or [ [, G:.
The lexicographic sum and the Hahn product of a family of ordered abelian groups

are indistinguishable by first order properties. Indeed, the following holds.

Proposition 2.1.5 ([41, Corollary 6.3]). Let (I, <) be an ordered set and for each i € 1
let G; be an ordered abelian group. The lexicographic sum )
substructure of the Hahn product H .., G;.

; Gi is an elementary

The skeleton and the natural valuation
We introduce a fundamental algebraic invariant of an ordered abelian group.

Definition 2.1.6. Let G be an ordered abelian group. We denote by I'; or simply I a set

conv }

indexing the set {(a)"" },ec of principal convex subgroups of G, and inversely ordered,

i.e. we set, for any y,0 € I'g,
y<6 < Csc(,,

where, for any y € I'i, C, denotes the corresponding principal convex subgroup. Then,
I'c has a maximal element corresponding to {0}, which we denote by oo.

For every y € I'c\{o0}, let V, be the union of all convex subgroups strictly contained in
C,, that is the largest convex subgroup which does not contain a, with a € G, a # 0 such
that C, = {a)™. Fory = o, set V,, = {0}. For any y € I', the quotient G, = C,/V,

is an archimedean group, and the pair

(FG’ (G7)7€FG>
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is called the skeleton of G. Moreover, we call the set I'; the archimedean spine of G, a

pair (y, G,) a bone of G, and G, a rib of G, for any y € I';.

Example 2.1.7. Excluding the index for the zero set {0}, the skeleton of the lexico-
graphic sum G = » ., H; of the family {H,};c, is (isomorphic to) the pair (7, (H;)r),
namely, I'c\{0} = I and G; = H; for every i € I. The same holds for the skeleton of
the Hahn product G’ = H ., H..

It follows immediately that
Proposition 2.1.8. IfT'; is well-ordered, then all convex subgroups of G are principal.

One of the deepest results in the theory of ordered abelian groups states that every
ordered abelian group lives, as ordered subgroup, in the lexicographically ordered real

function space determined by the skeleton of its divisible hull. More precisely:

Theorem 2.1.9 (Hahn Embedding Theorem). Consider an ordered abelian group G,
and let (I'g, (G, )yer,) be the skeleton of G. Then G embeds (as an ordered abelian
group) into H 1. div(G,), where div(G,) is the divisible hull of G,.

The order structure on G induces a metric structure, coming from the natural valua-

tion, defined as follows.

Definition 2.1.10. The natural valuation on G is the map
val: G —» Ig

defined by
val(a) = y, where ()" = C,,.

For any a € G, we will denote by C,, V,, and G, the corresponding ordered abelian

groups Cval(a)a Val(a)s Gval(a), respectively.
It is straightforward to show that val satisfies the following properties, for all a, b € G
(i) val(a) =0 < a=0,

(ii) val(a — b) = min{val(a), val(b)},
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(iii) val(na) = val(a) for every integer n # 0,
(iv) val(a) # val(b) = val(a — b) = min{val(a), val(b)}.

Moreover, note that, for every a € G, a # 0,
C,={geG|val(g) >val(a)}, andV,={geG |val(g) > val(a) }.

We recall that an abelian group G equipped with a map v : G — I, with I" totally
ordered set with co as maximal element, satisfying (1)-(ii) is called a valued group, and,
in this case, v is called a valuation. Therefore, we can see any ordered abelian group as a
valued group with respect to the natural valuation, and we will refer to the archimedean
spine I'; of G as the value set of G.

Then, the natural valuation allows to establish a relation between the two invariants
of an ordered abelian group we have introduced so far: the archimedean spine I'; of G
and the rank of G. To this end, we recall that an endsegment of I'; is a subset of ['; that

is closed upward. One can easily see that

Proposition 2.1.11. 1. If C is a convex subgroup of G, then the set

AC:{Val(f)EFG|fEC}

is an endsegment of I'g.

2. If Ais an endsegment of T, then the set
Cr={feG|val(f)eA}

is a convex subgroup of G.
Moreover, we have that for any convex subgroup of C, Ca. = C and, for any endsegment
A of I'g, Ac, = A. Then, there exists an order-preserving bijection between the set of

all endsegments of I'g and the set of all convex subgroups of G.

Therefore, the rank of G is isomorphic to the set of endsegments of I';, totally

ordered by inclusion. Moreover, notice that

Proposition 2.1.12. The following are equivalent:
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(i) C is a principal convex subgroup.

(ii) A¢ is a principal cut.

2.2 Kaplansky theory for ordered abelian groups

In this section, we discuss extensions of ordered abelian groups. In particular, we will
need the notion of maximality from general valuation theory, and the characterization of
this notion in terms of sequence completion (Theorem 2.2.7). The relationship between
these two properties was originally proved by Kaplansky in the context of valued fields
[24]. Then his ideas have been adapted in other contexts; see e.g. [15] for the case of
valued vector spaces and [21] for the case of ordered groups, even non-commutative.
Firstly, notice that an embedding of ordered abelian groups induces an embedding
between their skeletons (see Definition 2.1.6). Particularly notable is the case where the

skeletons are actually equal. Indeed, we have the following definitions.

Definition 2.2.1. Let G be an ordered abelian group. We say that an extension H of G
is immediate if it preserves the skeleton, i.e. if ' = 'y and for each value y € I,

G, = H,. Moreover, we say that G is maximal if it has no proper immediate extension.

Example 2.2.2. Let [ be any ordered set and {G,}; a family of ordered abelian groups.
Then the Hahn product G’ = H ., G; of the family is an immediate extension of the
lexicographic sum G =, G..

Remark 2.2.3. Not every immediate extension of an ordered abelian group G is iso-
morphic to G, neither it is an elementary extension of G. Indeed, consider for instance
Q, and the element a € [ ,_, Q such that a(i) = 1 for
every i < w. Then, the ordered group G’ = (G, a) generated by G and a is an immediate

the lexicographic sum G = ) ._ <o
extension of G, but it is not elementarily equivalent: a is not divisible by 2 (or by any

integer).

The notions of skeleton, immediate extension and maximality from general valua-
tion theory (see e.g. [25, Chapter 0]) coincide in this context with the definitions given
so far. We now recall the main results in [21]. First of all, we have to show that the

definition of immediate extension introduced here is equivalent to that of "c-extension"
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presented in the paper. In particular, we have the following characterization of immedi-

ate extensions.

Fact 2.2.4. Let G, H be ordered abelian groups such that G — H. Then the following

are equivalent:
1. H is an immediate extension of G,
2. for every h € H\{0} there exists g € G such that val(h — g) > val(h),

3. for every h € H\G, the set of values A = { val(h — g) | g € G } does not admit a

maximal element,
4. for every 0 < h € H there exists g € G such that for all integers n, n(h — g) < h.

Proof. 1t is trivial to show the equivalences 2 < 3 and 2 < 4. We prove 1 < 2.

(1 = 2) Let H be an immediate extension of G and h € H,h # 0. Let g € G. Then,
there is some g’ € G such that val(h — g) = val(g’) and h — g mod V, = g’ mod V.
It follows that val(h — g — g’) > val(h — g). This shows that A = { val(h — g) | g€ G }
does not admit a maximal element.

(1 «2)Leth e Hh # 0and g € G such that val(h — g) > val(h). Then, the bone
of h is equal to the the bone of g. Indeed, by (iv), val(h) = val(g), and 2 mod V,, = g
mod V. O

In [21], a c-extension is defined as an extension H of G satisfying condition 4. in the
above Fact, and, thus, we have showed that it is equivalent to an immediate extension.
So the notion of c-closed ordered abelian group, i.e. an ordered abelian group without

proper c-extensions, is equivalent to that of maximal ordered abelian group.

Definition 2.2.5. Let G be a valued group with respect to the valuation v. Consider
a sequence (a;);c; of elements in G, where [ is a well-ordered set with no maximal

element.

e The sequence (a;)c; is called eventually pseudo-Cauchy or just pseudo-Cauchy if

there is @ € I such thatforall @ < i < j < k, v(a; — a;) < v(a; — ay).

e An element a of G is called a pseudo-limit of (a;);c; if there exists @ € I such that

forall o <i < j,v(a; —a) = v(a; — a;).
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Moreover, we say that G is pseudo-complete if every pseudo-Cauchy sequence in G

admits a pseudo-limit in G.

Note that a pseudo-Cauchy sequence may admit more than one limit. Henceforth,
if (a;);c; is a sequence of elements in a valued group G, we will say that an assertation
about its elements holds for eventually all i if there is some iy € I such that it holds for
all a; with i > .

We can state the following results.

Proposition 2.2.6 ([21, Theorem C1]). Let G, H be ordered abelian groups such that
G < H. If H is an immediate extension of G and h € H\G, then there is a pseudo-

Cauchy sequence of elements of G with pseudo-limit h and with no pseudo-limits in
G.

Theorem 2.2.7 ([21, Theorem C6]). An ordered abelian group G is maximal if and only

if it is pseudo-complete.

Important examples of maximal ordered abelian groups are the Hahn products of

archimedean groups. Indeed,

Proposition 2.2.8 ([21, Lemma C4]). Let I be an ordered set, and (G;)c; be a collection
of archimedian groups. Then the Hahn product H ., G; is pseudo-complete and, thus,

maximal.

We conclude this section introducing a characterization of pseudo-completeness in
terms of another notion of completion: the spherical completeness. Let G be a valued
group with respect to the valuation v: G — I'. Recall that the (closed) ball around a

with radius vy is the set
By(a) :={xeG|v(x—a) =y}

whereae Gandy e I.

Definition 2.2.9. We say that G is spherically complete if every nested family of balls
has non-empty intersection, i.e. if whenever {B,,(a;)}; is such that for any i, j, either
B%‘(ai) - B)’j(aj) or B)’j(aj) - B%‘(ai)’ then ﬂiel B)’i(“!') 7 @
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The following result is well-known (see, for example, [30, pag.34] in the more gen-

eral context of ultra-metric spaces):

Theorem 2.2.10. A valued group G is spherically complete if and only if it is pseudo-

complete.
In particular, by Theorem 2.2.7, we have

Theorem 2.2.11. An ordered abelian group G is maximal if and only if it is spherically

complete.

2.3 Model theory of ordered abelian groups

Elementary classes of ordered abelian groups

The model theory of ordered abelian groups is complex and varied. Not all ordered
abelian groups satisfy the same model-theoretic properties and, since the sixties, several
subclasses of ordered abelian groups with a "good" model theoretic behaviour have been
isolated.

The first complete theory of ordered abelian groups to be studied was Presburger
arithmetic, i.e. the theory of (Z,0,+, <). Let Ly, denote the language {0, +, —, <}
of ordered abelian groups. Assume that G is elementarily equivalent to Z in L,,,. The
Presburger language, denoted by Lp,, 1s the definitional extension of L.,, consisting
of the symbols 0, 1, +, —, < and a binary relation symbol =,, for each m € N*, where
0, +, —, < take their obvious interpretation, 1 is interpreted as the minimal positive ele-

ment and =,, is interpreted as the equivalence relation modulo m defined by
a =, bifand only ifa — b € mG.

It is well known that

Theorem 2.3.1 (Presburger’s Theorem, [37]). Presburger arithmetic admits quantifier

elimination in Lp,;.

Another notable class of ordered abelian groups is given by the models of the theory
of divisible ordered abelian groups: DOAG. It is well known that DOAG is complete
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and eliminate quantifiers in Lo,, ([39]). Recall that a structure M = (M, <, ...) which is
totally ordered by < is said to be o-minimal if any definable subset of M is a finite union
of points and intervals with endpoints in M U {too}. It follows that divisible ordered
abelian groups are o-minimal. In particular, these groups are exactly all the o-minimal

ordered groups, as the following result shows [32, Theorem 2.1].

Theorem 2.3.2. Any o-minimal ordered group is abelian and divisible. In particular, it

is elementarily equivalent to (Q,0, +, <).

In [40], Robinson and Zakon identified a first elementary class of ordered abelian
groups, which includes both the models of Presburger arithmetic and DOAG, the class

of regular groups.

Definition 2.3.3. e Letn € N,n > 2. An ordered abelian group G is said to be

n-regular if any interval with at least n points contains an element divisible by n.

e An ordered abelian group is said to be regular if it is n-regular for any n € N, n >
2.

Fact 2.3.4. For an ordered abelian group G, the following are equivalent:
1. G is regular;
2. G is p-regular for every prime p;
3. there exists an archimedean group G' elementarily equivalent to G,
4. the only definable convex subgroups of G are {0} and G.

Robinson and Zakon characterized completely all possible completions of the theory

of regular groups as well. Indeed, they proved

Theorem 2.3.5. e The theory of discrete regular groups is complete, and it is the
theory of (Z,0,+, <).

o [f G, H are dense regular groups, then G = H if and only if, for each prime p,
G/pG and H/pG are either both infinite or have the same finite cardinality.
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Note that every ordered abelian group can be seen as an Lps-structure, once 1 is
interpreted by O if there is no minimal positive element. However, in [50], Weispfenning
proved that the regular groups are the only ordered abelian groups that admit quantifier

elimination in Lpes:

Theorem 2.3.6. An ordered abelian group G is regular if and only if it admits elimina-

tion of quantifiers in Lp,,y.

In [2], Belegradek studied the following ordered abelian groups, which include the

regular groups.

Definition 2.3.7. An ordered abelian group G is said to have finite regular rank if it has

a finite series of convex subgroups
(O)ZB()<B1<"'<Bd=G

with regular quotients B, |/B; for any i < d.

Note that such a series is not necessarily unique. However, in any ordered abelian
group of finite regular rank, there exists a unique finite series of convex subgroups (0) =
By < B; < --- < B,, = G such that

e foreach 0 < i < m, B;,/B; is regular,
e foreach 0 < i < m, B;;1/B; is not divisible.

Such a natural number m is called the regular rank of the group. Moreover, one can

prove that such convex subgroups are 0-definable [2, Corollary 3.5].

Fact 2.3.8. For an ordered abelian group G, the following are equivalent:
1. G has finite regular rank;
2. G has finitely many definable convex subgroups;

3. G is elementarily equivalent to a subgroup of the lexicographically ordered group

R™, for some m € N.

The class of ordered abelian groups of rank at most m is an elementary class, as it

follows from
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Theorem 2.3.9 ([2, Theorem 3.8]). For any positive integer m, the class of ordered

abelian groups of rank at most m is first order axiomatizable.

In [49], Weispfenning obtained a quantifier elimination for the class of ordered
abelian groups of finite regular rank, in the language of ordered abelian groups extended
with predicates to distinguish the subgroups C + nG, where C is a definable convex sub-
group and n € N,n # 1, and constants for a representative of the least positive element
of B;,1/B; for any i < m such that B, /B; is discrete.

A further generalization can be obtained extending the notion of regular rank to that
of n-regular rank, as follows (see [13]). Letn € N,n > 2. We say that an ordered abelian
group G has n-regular rank equal to m if there are B(()"), cees B,(: ) convex subgroups of G
such that

e (0)=B" <...<BY =g,
e foreach0 <i<m, Bg?l / Bf") is n-regular,

e foreach0 <i < m, Bfi)l /B™ is not n-divisible.

Let R,(G) denote the set of convex subgroups { B(()"), . ,B,(,f) }

Definition 2.3.10. If G has finite n-regular rank for all n € N, n > 2, then the cardinality
of R(G) := |, Ru(G) is either finite or Ny, and it is called the regular rank of G. In

n=2 v\

this case, we say that G has bounded regular rank.

If G has bounded regular rank, then R(G) is the collection of all proper definable
convex subgroups of G and they are all definable without parameters ([13, Proposition
2.3]). Moreover, it holds that

Fact 2.3.11. If G has finite n-regular rank and H = G, then H has the same n-regular
rank as G. In particular, the value of the regular rank depends only on the theory of G.

It follows that the class of ordered abelian groups of bounded regular rank of a fixed
value is closed under elementary equivalence. In [13, Theorem 2.4], Farre generalized
Weispfenning quantifier elimination as well, identifying a language to eliminate quanti-

fiers for the more general class of ordered abelian groups of bounded regular rank.
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Quantifier elimination and the auxiliary sorts

Since the work of Gurevich [16] and Schmitt [41], it has been clear that linear orders,
up to additional unary predicates, are the key to understand ordered abelian groups. We

call this kind of structures coloured chain. More, precisely:

Definition 2.3.12. Let A be a cardinal. A A-chain, or simply a coloured chain, (C, <
, (P;)ic1) is a linearly ordered set (C, <) equipped with A-many unary predicates P;.

The tool introduced by Gurevich and Schmitt consisted in assigning to every ordered
abelian group G countably many coloured chains, called the n-spines of G, which could
allow to translate formulas about ordered abelian groups into formulas in a simpler
language. Indeed, they proved the so-called Transfer Theorem stating that every formula
of an ordered abelian group can be translated into a formula in some of its spines, plus
a quantifier free formula in a definitional extension of Ly, [41, Theorem 4.5]. A direct

consequence of this result is that:

Theorem 2.3.13. Let G and H be two ordered abelian groups and Sp,(G) and Sp,,(H)
the n-spines of G and H, respectively. Then, G = H if and only if Sp,(G) = Sp, (H) for
allne N,n = 2.

Remark 2.3.14. We have already seen an example of a sequence of invariants under
elementary equivalence of G in the class of ordered abelian groups of bounded regular
rank: the sequence of n-regular ranks (Fact 2.3.11). Actually, as it is proved in [13],
the n-spine of G coincides in this case with the set R,(G) and so the n-regular rank is
nothing more than the cardinality of the n-spine. Indeed, in literature ordered abelian
groups of bounded regular rank are also known as ordered abelian groups with finite

spines (e.g. in [18]).

The Transfer Theorem has been later revisited by Cluckers and Halupczok in [6].
In this paper, they introduced two languages, denoted by Ly and L,y,, which are very
close to that of Gurevich and Schmitt, but in line with the modern notion of many-sorted
language. Roughly speaking, in order to eliminate quantifiers, we need a (many-sorted)
expansion of Lp that can deal with the quotients G/H, where H is a definable convex

subgroup of G.
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Let us review the language L.y, which we will need throughout the thesis. We begin

by describing the set of auxiliary sorts of Lgyy:
A:={8,, T, T, |neN,n> 0}.

Definition 2.3.15. Fix a natural number n > 0.

1. For a € G\nG, let V! be the largest convex subgroup of G such that a ¢ V" + nG;
fora e nG, set V; = {0}. Define S, := G/ ~, witha ~ d'if and only if V] = V",
and let s,: G » S, be the canonical map. Denote by G(«a) the convex subgroup

V! with a = s,(a).

2. Forb e G,set V' = Ueccsgvr Va» where the union over the empty set is declared
to be {0}. Define 7,, := G/ ~, with b ~ &' if and only if V' = V7, and let
t,: G - T, be the canonical map. Denote by G(a) the convex subgroup V”, with
a = t,(b).

3. Denote by 7,7 a copy of 7, ie. 7,5 := {B"}ser,. For each B* e 7., let

n

G(B") = Maes, 6(a)26(s) G(@), where the intersection over the empty set is G. In
particular, if 8 = t,(b), we have G(8") = (e pevr Vi-

Some remarks:

e The notation introduced is slightly different from that adopted in [6].

e Note that for any convex subgroup C of G, a ¢ C +nG if and only if Cna+nG =
. Then, for a ¢ nG, we could define V! as the largest convex subgroup not

intersecting a + nG as well.

e In [6], it is proved that the convex subgroups in each of the three families

{G(a) }GE«Sn’ {G(a) }ae'l',,, {G(a’) }057;,+

are (uniformly) definable in L,,,. It follows that all the auxiliary sorts are imagi-

nary sorts of Lo,.

e The convex subgroups considered by Cluckers and Halupczock are the same sub-

groups introduced by Gurevich and Schmitt for the definition of the n-spine. In
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particular, the underlying set of the n-spine Sp,(G) of G is the set of convex sub-
groups
{VilaeG,a¢nG}u{V!|acGa+0}. (2.1

Adopting the terminology introduced by Gurevich, we will call V the n-fundament
of a and the convex subgroups of this form n-fundamental. Notice that the col-
lection of the n-spines of G is the model-theoretic counterpart of the archimedean
spine I'; introduced in Definition 2.1.6. It is a model-theoretic invariant, whereas

the archimedean spine is an algebraic invariant.

In order to present the complete definition of Lgy,, we have to introduce also, for any
@ € J,eqps0 SnUT,UT," and m € N, m > 0, the subgroup

G(a)™ = N (H + mG).

H2G(a),H convex subgroup of G
Notice that it is definable by [6, Lemma 2.4].
Definition 2.3.16. The language Ly, consists of the following:
(a) The main sort (G, 0, +, —, <, (=) mevm>0);

(b) the auxiliary sorts S,,7,,7,", for each n € N,n > 0, with the binary relations
<on (S,UT, 0T, X (SpUTwUT,T) (each pair (m,n) giving rise to nine binary
relations), defined by @ < « if and only if G(a) < G(d');

(c) the canonical maps s,: G » S, and t,: G » 7, foreachn e N,n > 0;

(d) a unary predicate x =* k. on G, for each k € Z\{0}, defined by g =* k, if and
only if there exists a convex subgroup H of G such that G/H is discrete and g

mod H is equal to k times the smallest positive element of G/H, for every g € G;

(e) a unary predicate x = k, on G, foreachm € Nym > Oandk € {1,...,m — 1},
defined by g =;, k. if and only if there exists a convex subgroup H of G such
that G/H is discrete and g mod H is congruent modulo m to k times the smallest

positive element of G/H, for every g € G;
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(f) a unary predicate Dl[ffs] (x) on G, for each prime p and each r,s € N\{0} with
s = r, defined by DL’ZS] (g) if and only if there exists an @ € S, such that g €
G(@)! + p'G and g ¢ G(a) + p'G, for every g € G;

(2) aunary predicate discr(x) on the sort S,, with p prime, defined by discr(«) if and
only if G/G () is discrete, for every a € S,;

(h) two unary predicates on the sort S,, with p prime, for each /, n € N\ {0}, defining

the sets

{aesS,|dims (G(@)" + pG)/(G(@)” " + pG) = I} and
{aeS, | dimg, (G(@)") + pG)/(G(a) + pG) = 1},
where dimg, () denotes the dimension of the group as F,-vector space.

Fact 2.3.17 ([6, Theorem 1.13]). In the theory of ordered abelian groups, each Ly,-

ormula is equivalent to an L,,-formula without quantifiers ranging over the main sor
l quivalent t Ly, la without quant ging th t
G.

In particular, we have that any L,-formula ¢(%, @), with G-variables X and A-

variables @, is a boolean combination of formulas of the form:
e (X), where ¢ is quantifier free and it lives purely in the main sort G, and

o x(%,@) := &((s,(Xi-, ziXi)s tp (Do, 2iXi) ) pers @), Where ¢ is an A-formula and
205+ +>2n—1 € Z.

The following fact will be useful as well:
Fact 2.3.18 ([6, Lemma 2.12]). For any g € G, we have the following equivalences.

1. g =* k. if and only if G/G(t,(g)) is discrete and g mod G(t,(g)) is equal to k
times the smallest positive element of G /G (t2(g)).

2. g = ke if and only if G/G(s,,(g)) is discrete and g mod G(s,,(g)) is congruent

modulo m to k times the smallest positive element of G/G(5,,(g)).

As remarked in [6], the map t, can be replaced by any other map t,, with p € P.
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Model-theoretic complexity

Shelah’s classification theory [43] aims at identifying a series of properties which would
determine whether a theory is "tame". These properties are characterized by the absence
or presence of different combinatorial configurations and yield a partition of first order
theories in various classes. A classification of ordered abelian groups in this context
was initiated by Gurevich and Schmitt who proved that no ordered abelian group has
the independence property [17]. A more recent development in this direction is the
characterization of strongly dependent ordered abelian groups, obtained independently
by Halevi and Hasson [18], Dolich and Goodrick [10] and Farré [13]. In particular, the
following holds.

Theorem 2.3.19. For an ordered abelian group G, the following are equivalent:
1. G is strongly dependent,
2. G has finite dp-rank,

3. G has bounded regular rank and the cardinality of G/ pG is infinite for only finitely

many prime p.
In [22], the case of dp-rank equal to 1 was also investigated and it was proved that

Theorem 2.3.20. An ordered abelian group G has dp-rank equal to 1 (i.e. it is dp-
minimal) if and only if G/ pG is finite for every prime p.



Chapter 3

Ordered abelian groups that do not

have elimination of imaginaries

3.1 Hahn products of Z over a well-ordered set

In this chapter, we aim at investigating elimination of imaginaries for some ordered
abelian groups, including the Hahn products of Z with the usual order over a well-
ordered set [ with |/| > 1. Notice that the case |I| = 1 corresponds to the ordered group
of integers Z and it has been already studied in [5]. To this purpose, in this section we
are going to observe some basic facts on such groups.

Throughout the chapter, unless otherwise stated, we work in the language of ordered
abelian groups L,,,. Henceforth, we identify I with the corresponding ordinal @, and we
assume that @ > 1. We denote by A and ¥ the groups H;_,Z and >
Note that, since a is well-ordered, the domain of A coincides with the direct product

i<a Z, rEspectively.

Hl. —o Z. Furthermore, we add the symbol oo to @ and set i < oo for all i < @. Then, we

define the following map v: A — a U {oo} where, for any f € A,

o) minsupp(f) if f#0 3.0)

0 otherwise

One can easily prove the following properties:

Fact 3.1.1. (i) v(f) = v(—f) forany f € A;

28
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(ii) v(f + g) = min{v(f), v(g)} for any f,g € A;
(iii) Let f,g € A such that 0 < g < f. Then v(f) < v(g).

Recall that the set @ U {0} is isomorphic to the archimedean spine of A. Hence,
by Proposition 2.1.8, it follows that all the convex subgroups of A are principal. More-
over, it is easy to see that the map v coincides with the natural valuation introduced in

Definition 2.1.10. Therefore, the convex subgroups of A of the form

{fenlv(f) =i}

with i € @ U {0}, are exactly all the convex subgroups of A. In particular, the following
holds.

Proposition 3.1.2. For every ordinal « > 1, A = H,_,Z is of rank (a + 1)*.

In particular, if « is finite, i.e. « = n for some n € N, n > 1, there are exactly n proper

i<a

convex subgroups of A.

Note that the same holds also for ¥ = > .__ Z and, in particular, the sets

{fe¥[v(f) =i}

are exactly all the convex subgroups of W. Throughout this chapter, we will denote by
A; and T'; the convex subgroups of A and W, respectively.

Let i < a, ey; stands for the following element of A:

. ) lif j=1i
(e (/) j<a Where eqy(j) = _ (3.2)
0 otherwise
Note that, for every 7, j < a such thati < j, 0 < e(;; < ey;. Moreover, the family

{e(i}i<a generates ¥ = . Z as an abelian group.

Proposition 3.1.3. If @ = B + 1 for some ordinal B, then A = [H

in particular, e(p) is the minimal positive element of A. Otherwise, if a is a limit ordinal,

i< Z 1s discrete and,

A is dense.

Proof. Leta = 8+ 1 and suppose f € A is such that 0 < f < eggy. Then v(f) = B and
0 < f(B) < 1. Since f(B) € Z, f(B) = 1 and f = eyg.
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Let @ be a limit ordinal and f € A, f > 0. Leti = v(f). Then f(i) > 0 and f(j) =0
for every j < i. Clearly, 0 < efiiqy < f. O

Note that the same is true for ¥ = > . Z: if @ = B+ 1, ey is the minimal positive
element of Y ._ 7Z; otherwise, Y|

Let us show that all the convex subgroups of A are definable. Indeed, one can easily

o i~ Z 1s dense.

see that they coincide with the convex subgroups introduced in Definition 2.3.15. Let us
recall that, forany n € N, n > 0, if f € A\nA, V% denotes the largest convex subgroup
H of A not intersecting f + nA; otherwise Vi = {0}. Firstly, we observe that

Proposition 3.1.4. The family {A;11}i11<q is uniformly definable.

Proof. Leti < abesuchthati+ 1 < a. Then A;;| = Vf{i} and, so, is definable. Indeed,

for every f € ey + 2A, we have v(f) < i. Hence, Vf{l_} ={feA|v(f)>i} =
{feAv(f) =i+ 1} =N 0

More generally, for every f € A\nA, we have

i A ifitl<a
! {0}  otherwise

where i = min{ j < a | f(j) ¢ nZ }.
Now we are able to prove

Corollary 3.1.5. All convex subgroups of A are definable.

Proof. We have only to show the definability of A; for i limit ordinal. Let i < @ be a

limit ordinal, then

A= () A= N A= (] v

{ j<alj<i} { j<a|j<iand jis not limit } {g€A|6{i}EV£,’ }

It is clear that the above statements hold also for ¥ = . __ Z.
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3.1.1 The group of automorphisms of the lexicographic sum of Z

In this subsection, we will describe the group of automorphisms of ¥ = >, _ Z.

First of all, we characterize the automorphisms of I' when « is finite, i.e. @ = n
for some natural number n > 1. In this case, ¥ = >}, | Z = Hoci<, 1 Z, and we
will denote W by its domain Z". For any z € Z", let z(i) = z; forevery 0 < i < n — 1.
Note that Z" is a discrete ordered abelian group. Therefore, every element of the convex

subgroup
21 ={z€Z'|v(z)=2n—1}={(0,...,0,m) |meZ}

is O-definable. Moreover, each convex subgroup Z"; of Z" is 0-definable, as it is proved

in the following lemma.
Lemma 3.1.6. Forevery0 <i<n—172" ={zeZ"|v(z) =i} is 0-definable.

Proof. Fori = 01itis trivial. So, let 0 < i < n — 1 and fix a prime p. For every z € Z",
z € Z"; if and only if the set { w 4+ pZ" | —z < w < z } of the =, - equivalence classes
of elements in the interval [—z, z] has cardinality at most p"~'. Indeed, let z € Z!. Then
[—z,2] < (—efi—1},eqi—1}). Since, for every 0 < j < n — 1 the =, - equivalence classes
in (—eyj,eq;) are exactly p"~ '/, it follows that [{ w + pZ" | —z<w <z} < p"".
Conversely, if z ¢ Z!, then v(z) < i and [—z,z| contains the interval [—e(_1}, egi—1].
Therefore |[{w + pZ" | —z<w<z}|=p"" + 1.
Clearly, the set of z € Z" such that |[{ w + pZ" | —z < w < z }| < p" " is 0-definable.
O

Consider the following upper triangular matrix of size n x n, whose elements are in

I ki ... ki
o 1 "
K - , (3.3)
Do ’ kn—ln
0O ... 0 1

Note that K, is invertible and its inverse is an upper triangular matrix on Z of the

same form, with all the entries of the main diagonal equal to 1. Then the function

fx,iz€Z"' — K, € Z"
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where zK,, is the matrix product of the row vector z = (zi,...,z,) and K, is a group au-
tomorphism of Z". Moreover, it is straightforward to show that fx is order-preserving.
Therefore, every matrix as in (3.3) determines an automorphism of the ordered group
Z". We now prove that every automorphism of Z" is obtained in this way and it can be
represented by a matrix as in (3.3).

Note that, since Z" is a free module of rank n, every group automorphism ¢ of Z" is
given by an invertible matrix M € GL,(Z). In other words, there exists an n x n matrix
M over Z with det(M) = +1 such that ¢(z) = zM for every z € Z". Indeed, the matrix

e(eqy)
M = : (3.4)

leqm)
represents ¢ in the above sense. Hence, it suffices to prove that if ¢ preserves the order

on Z", then M is of the form (3.3).
Let 0 < i < n— 1 and m be any element in Z\{0}, consider

Ay ={z€Z"|v(z) =iand z,;) =m }.

Note that, for i = n — 1, A,_,, is the singleton of (0,...,0,m). For i = 0, Ag,, is the
set {m} x Z"7!, and, for 0 < i <n—1,A;,, = {0} x {m} x Z"=(+D,

Proposition 3.1.7. For every 0 < i < n — 1 and every m € Z\{0}, the set A;,, is
O-definable.

Proof. Fori = n— 1 itisclear. Let 0 < i < n — 1 be fixed and consider the set
A = {z€Z"|v(z) =i}. ByLemma 3.1.6, since A; = Z"\Z";;1, A; is O-definable.
Let a(x) and SB(x) be the formulas defining A; and Z";,,, respectively. Since A,, =
{zeZ"| —z€ A;_, }, it suffices to prove the statement for m > 0. If m = 1, then A;

is defined by the formula

Ui(x) = a(x) A0 <x A Vy((a(y) AO<yAy<x) = ,B(y—x)).

Indeed, it is trivial that any element z in A;; satisfies ¥ (x). Conversely, let x be an

element of Z" satisfying ¢, (x). Then v(x) = i and x,y > 0. If x,, > 1, then
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v(x — e{,-}) = i. Since 0 < ey < x, we get a contradiction and x,,) = 1. Letm > 1
and suppose by induction that A;,,_; is defined by the formula ¢,,_;(x). Consider the

formula

Ym1(X) = V(W1 (y) = y <x).

Then, A,,, is defined by the formula

Un(x) = a(x) A Y1 (x) A VY (Y1 () Ay < x) = By — x)).

Indeed, let x in Z" satisfy ¢,,(x). Then v(x) = i and x,() > m — 1. If x,) > m, then

v(x — megy) = i, and we get a contradiction. Therefore, x,,) = m and x € A; .. O
Now we are able to prove the following

Theorem 3.1.8. Let ¢ be an automorphism of the lexicographic sum Z", where n > 1.

Then there exists an upper triangular matrix K, as in (3.3) such that ¢ = fx,.

Proof. For every z € Z", ¢(z) = zM, where M is the matrix (3.4). By Proposition
3.1.7, ¢ fixes A;; setwise for every 0 < i < n — 1. Therefore, forany 0 <i <n —1,

v(p(eqy)) = iand g(egy), = 1, so the result is proved. O

Henceforth we focus on the case @ > w. Recall that the chain

(0)=¥pc ¥ ¥l =¥Y=>17Z (3.5)
i<a
represents the set of all convex subgroups of . Note that, contrary to the finite case, it
is not a well-ordered set, since it contains an infinite descending chain.
Let ¢ be an automorphism of ¥. For every f € W, there exists a finite subset
{i1,...,in } of @ such that f = >, f(ij)e(;;y. Then, since ¢ is a group homomor-

phism, ¢(f) = 2L, f(i;)¢(efi;y). Forevery i,k < a, we set
my. = (¢(ey)) (k).
Then, we have

(e(f)) (k) = D f(i)m

i<a
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for every k < a. In other words, also in the case of « infinite, we can associate to ¢ an
infinite matrix M = (my);x<, such that ¢(f) = fM for every f € V. Note that any row
of M has only finitely many nonzero elements.

In order to generalize the result of Theorem 3.1.8, we now determine which con-
ditions M has to satisfy, for preserving the order on ¥. We will prove that also in the
infinite case M is upper triangular with all the entries of the main diagonal equal to 1,
ie.

Oifi >k
My, = (3.6)
lifi=k
Lemma 3.1.9. Let ¢ be an automorphism of Y. Then ¢ fixes V; setwise for every 0 <

I <a.

Proof. Note that, for every 0 < i < «, ¢(\¥;) is a convex subgroup of ¥. It follows
that ¢ induces an order-preserving bijection on the set of all convex subgroups of ¥
¥; — ¢(¥;) , which will be denoted again by ¢. We prove that the automorphism
induced by ¢ on the set of convex subgroups of ¥ is the identity. Clearly, ¢(¥y) = ¥y.
Let 0 < i < « and suppose, by induction, ¢(¥;) = ¥, for every j < i. Therefore,
¢(¥;) < ¥;. Let A be a convex subgroup of ¥ such that ¢(A) = ¥;. Then, A = ¥,
for some h > i. It follows that ¥, < ¥; and, since ¢ is order-preserving, ¥; < ¢(¥;).

Therefore, ¢(¥;) = ¥}, and the statement is proved. O
From Lemma 3.1.9, it follows immediately that

Corollary 3.1.10. If ¢ is an automorphism of P, then ¢ fixes { f € U | v(f) = i } setwise

forevery <i < a.

Proof. Leti < abesuchthati+ 1 < @. Then { feV¥|v(f) =i} = ¥Y,\¥;,; and,
by Lemma 3.1.9, it is fixed setwise. Furthermore, if « = 8 + 1 for some 8 < a, each

element of Wz is O-definable and W is fixed pointwise. O

Theorem 3.1.11. Let ¢ be an automorphism of Y. Then there exists M = (my); x<q with
my’s as in (3.6) such that o(f) = fM for every f € V.

Proof. Fix i < « and consider eg;; € . Set my = (¢(eg;;))(k) for every k < «. Then
by Corollary 3.1.10, m;, = O for k < i and m;; > 1 for k = i. Note that Lemma 3.1.9



3. ORDERED ABELIAN GROUPS NOT ELIMINATING IMAGINARIES 35

implies that each ¥; = { f e ¥ | v(f) > i } is generated by {¢(e(;})};>; as an abelian
group. Therefore, for every g € ¥; with v(g) = i we have g(i) = km;; for some k € Z.
Therefore g(i) = 0 ( mod m;;) for every g € ;. Then m;; = 1, and so the statement is

proved. O

Summarizing, we have shown that, for any ordinal @, @ > 1, every automorphism

of ¥ = ) ._ Z can be represented as a matrix M = (my);x<, With my’s as in (3.6).

i<a

3.2 Failure of elimination of imaginaries

Zand A = H
imaginaries of the ordered abelian group that do not admit a code in the group. We have

We now prove that in both cases ¥ = ) Z., there exist some

i<a i<a
seen that a code for an imaginary element is, in particular, a finite tuple of elements fixed
pointwise by the same automorphisms which leave the imaginary invariant. Then, the
argument we will use consists in determining, for a fixed E-equivalence class X, with E

0-definable equivalence relation on the group G,
1. asetS < Stabg(X) with Fix(S) < Fix(Aut(G))
2. an automorphism ¢ € Aut(G)\ Stabg(X).

We will first focus on the case of the lexicographic sum. To this purpose, recall that,

for any m € N,m > 0, =,, denotes the binary relation defined by
f =n gifand only if f — g is divisible by m.

Theorem 3.2.1. Let & > 1 be an ordinal. Then'¥ = ) ._, Z does not admit elimination

of imaginaries in the pure language of ordered abelian groups.

Proof. Suppose by contradiction that ¥ admits elimination of imaginaries.

Let p be a prime and fix an element a € ‘¥ such that a(0) ¢ pZ. Let X = [a]-, be the
=, - equivalence class of a. Since =, is 0-definable, there exists a canonical parameter
b for X, let b = (b;)~, for some positive integer y.

Let ¢ be an automorphism of ¥ and M the matrix (my); s, such that ¢(f) = fM
for every f € . Recall that M is either finite or infinite depending on the cardinality of
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@, and that, for every i,k < @, m; = 1 and my, = 0 for k < i. Suppose ¢ € Staby(X).
Then ¢(a) =, a, namely, (¢(a))(i) — a(i) € pZ for every i < a. Therefore, from
(p(a))(1) = a(0)my, + a(1) and a(0) ¢ pZ, it follows that mg; € pZ. Moreover, since
¢ € Staby(X) then, by Remark 1.1.2, ¢ € Aut(¥/b), namely, ¢(b;) = b; for every
Jj < u. In particular, since for every 0 < k < a, (¢(b;))(k) = b;(k) + > 0<;(b;(i))mi
for every j < p, it follows that

Z (bj(i))my = 0 for every 0 < k < a and for every j < u. 3.7)

0<i<k

Leth < abe suchthat h+ 1 < «, and consider the following matrix M" = (/) r<a
where
1 ifi=k
il ={p ifi=hk=h+1

0 otherwise

In particular, M" is an upper triangular matrix, with all entries of the diagonal equal to
1. Since for every f € ¥, (fM")(h+ 1) = p(f(h)) + f(h+ 1) and (fM")(k) = f(k)
for every k < a, k # h, fM" € T and M" induces the function

i feY — fM"e V.

In particular, @ (f) =, f for every f € Y. Moreover, ¢y is a group automorphism
and is order-preserving, hence @ € Staby(X). From (3.7) it follows that p(b;(h)) = 0
for every j < u, and, so, b;(h) = 0O for every j < u. Now we need to distinguish two

cases, a limit ordinal and « successor ordinal.
case a limit Since for every h < a, h + 1 < @, we obtain b; = 0 for every j < u.

case @ = 8+ 1 for some 8 < @ Then b;(h) = 0 for every i < 8 and for every j < u.
In particular, for every j < u, b; € Wg, 1.e. b; = kjep for some k; € Z. Since ey

is the minimal positive element of ‘P, b; is O-definable for every j < pu.

Therefore, in both cases, all the automorphisms of ¥ fix 5. Hence, by Remark 1.1.2,
any automorphism of ¥ fixes X. This is clearly false. Indeed, for example, the auto-
morphism ¢ : ¥ — ¥ defined by ¥(f) = fM, forevery f € ¥, and M = (iny)ik<a
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with
_ 1 ifeitheri=kori=0,k=1
My =
0 otherwise
does not fix X since my ¢ pZ. The contradiction follows from the existence of a

canonical parameter for X, and so ¥ does not admit elimination of imaginaries. O

Using the same argument as in Theorem 3.2.1, we can prove the failure of elimina-

tion of imaginaries in Lo, also for A = H,;_, Z. Indeed, let p be a prime, a € A be such

i<a
that a(0) ¢ pZ and X = [a]=,. Fix h < a, then the automorphism ¢,: A — A defined
by
. pfG=1)+f() ifj=h+1
(en()) () = ' (3.8)
f() otherwise

for every f € A, fixes X setwise. Therefore, if b is a canonical parameter for X, we
obtain that b is a tuple of keg’s, with k € Z, if @ = B+ 1 for some 8 < @, and b = 0

otherwise. In both cases we have a contradiction. Hence, we have proved

Theorem 3.2.2. Let « > 1 be an ordinal. Then A = [H

of imaginaries in the pure language of ordered abelian groups.

i<a L does not admit elimination

This argument can be adapted for proving the failure of elimination of imaginaries

for other ordered abelian groups, such as [f,_,Z x Q and >,,_ Z x Q, with & > 1

i<a

ordinal. Indeed, in a similar way we can prove

Theorem 3.2.3. Let a > 1 be an ordinal. Then H

of imaginaries in the pure language of ordered abelian groups.

i<a Z x Q does not admit elimination

Proof. LetQ = H
G; = Zforevery i < o and G, = Q. As in the proof of Theorem 3.2.1, let p be a prime,

i<a Z x Q. Then Q is the lexicographic product [;_,., G;, where
a € Q such that a(0) ¢ pGy = pZ and X = [a]=,. Let b be a canonical parameter for X,
b = (b;) <, for some positive integer u.

Fix h < @, and consider the automorphism ¢, : Q — Q defined by

pfU—=1)+f(j) ifj=h+1

()G =4 .
7)) otherwise
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for every f € Q. Since y,(f) =, f for every f € Q, in particular, ;, € Stabg(X).
Then, by Remark 1.1.2, ;, € Aut(T'/b), i.e. Yy,(b;) = b; for every j < u. Therefore,
p(bj(h)) = Oforevery j < u, and, so, b;(h) = 0 for every j < u. From the generality of
h < a, it follows that b;(h) = 0 for every & < @ and every j < u, namely, b; € {0}* xQ
for every j < u.

Now consider the function ¢: Q — Q defined by

2f(j) ifj=a
f(j)  otherwise

(p(MNG) =

for every f € Q. Recall that G, = Q. Then, ¢ is an order-preserving group automor-
phism and, trivially, ¢ € Stabg(X). Therefore, by Remark 1.1.2, ¢(b;) = b; for every
J < u, and, so, b;(a) = O for every j < p. It follows that b; = O for every j < u
and X is O-definable. Hence, y(X) = X for all automorphisms y of Q. This gives a

contradiction, since the automorphism y: Q0 — € defined by

fO)+7() ifj=1
() otherwise

for every f € Q, does not fix X. O

Note that the proof of Theorem 3.2.3 also works for > ._ Z x Q.

The above arguments can be used in order to prove the failure of elimination of

i<a

imaginaries for many other ordered abelian groups, not only for Hahn products and
lexicographic sums. For instance, let p be a prime, p # 2, and consider Z,) as an
ordered abelian group with the order induced from the usual order on Q. Note that this
is a regular ordered abelian group, different from a divisible ordered abelian group and
a model of Presburger arithmetic. Let X = [1]=, = 1 + pZ,) be the =,-equivalence
class of 1. Define ¢: Z(,y — Z¢, by ¢(w) = (p + 1)w. Then, ¢ is bijective and
order-preserving, since p + 1 > 0. Moreover, ¢ € Stabz, (X), and Fix(¢) = {0}.
Therefore, if Z,) eliminates imaginaries (in Ly,), X is 0-definable and, in particular,
Stabz,, (X) = Aut(Z,)). This is clearly false, since the automorphism : Z(,) — Z,)
defined by ¥(w) = 2w does not fix X.



3. ORDERED ABELIAN GROUPS NOT ELIMINATING IMAGINARIES 39

Weak elimination of imaginaries

Z and
H...,Z x Qin terms of "coding" imaginaries is even worse. Indeed, both Th( H,_, Z)

From Fact 1.1.7, one can deduce that the behaviour of the theories of H;_,
and Th(H;_, Z x Q) do not have even weak elimination of imaginaries. Using a similar
argument to that used in the proof of Theorem 3.2.1, we now provide a direct proof of

the failure of weak elimination of imaginaries for the theory of H._,Z.

Theorem 3.2.4. Let a be an ordinal, « > 1. Then T = Th(H ,_, Z) does not have weak

elimination of imaginaries in the pure language of ordered abelian groups.

Proof. Suppose for a contradiction that 7 has weak elimination of imaginaries. For

simplicity, consider ¥ = ) ,_ Z. As in the proof of Theorem 3.2.1, let p be a prime and
consider X = [a]=, the =,-equivalence class of a € ¥ such that a(0) ¢ pZ. Then there
exist a formula 9 (x, w) and B a finite set of |w|-tuples such that X = ¢(¥, b) if and only
if b e B.

Let u = |w| and b = (by,...,b,) € B. Then b is not 0-definable, since X is not
0-definable. In particular, if « is a limit ordinal, then b; # 0 for every j < u, otherwise,
ifa = B + 1 for some B < a, then b; ¢ Wj for every j < u. Fix j < u and consider b;.
Without loss of generality, we may assume j = 0. Let h = v(by) < 0. Ifa = 8+ 1,
then 4 < B. In any case, since h + 1 < a, we can consider the function ¢,: ¥ — ¥,
defined as in (3.8). Therefore, since ¢, € Staby(X), we have X = (¥, ¢,(b)) and
¢n(b) € B. In particular, ¢,(b) = (¢u(bo),-..,eu(b,)) and, by definition of ¢, we
have (¢4(bo))(h + 1) = p(bo(h)) + bo(h + 1). Then, from by(h) # 0, it follows that
(n(bo))(h + 1) # bo(h + 1) and @,(by) # bo. Therefore, @,(b) # b. Now consider
¢, = @u0--- o, for any natural number 6 > 0. For every 6§ > 0, ¢ € Staby(X)

-

¢ times

and, then, ¢ (b) € B. Clearly, (¢%(by))(h + 1) = 6p(bo(h)) + bo(h + 1). It follows
that {¢(b)}sev is an infinite sequence of pairwise distinct elements of ¥. This gives a

contradiction since B is finite. m|

Similarly, we can provide a direct proof of the failure of weak elimination of imagi-

naries for the theory of H._,Z x Q.

i<a
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3.3 Definable Skolem functions

In this section, we prove that the theories of A = Z" and Q = Z" x Q, with n > 1, have
definable Skolem functions once finitely many new constants are added to the language

of ordered abelian groups. Let us recall that

Definition 3.3.1. We say that a theory 7 in L has definable Skolem functions if for every
L-formula ¢(X,y), there is an L-formula (X, y) such that

T = Vx(3yp(x,y) — Aw(x,y) A V(W (X,y) — ¢(X,5)))). (3.9)

First of all, note that the convex subgroup C = {0}" x Q of Z" x Q is 0-definable by
the formula y(x) which says that all elements of [0, |x[] are divisible by 2. We highlight

Fact 3.3.2. Let G be an ordered abelian group.

(1) IfG = Z" withn > 1, then G has n 0-definable proper convex subgroups G =
0) <GY <--. < G"D < GW = G such that GV |GV = Z for every 1 <i < n.
(2)IfG =27Z" x Q, withn = 1, then G has n + 1 0-definable proper convex subgroups
G =(0)<GY <... <G" Y <G = G suchthat G = Qand G /G~ =7

forevery 1l <i<n.

We rely on the following fact from [49]. Consider the first order language Leis =
{ 0,1M, 1) 10, 4 — < (=,)m=0 } where 10, 1@ . 1M are new constant
symbols. In Z" we interpret 10, 13 .. 1™ as (0,...,0,1), (0,...,0,1,0), ...,
(1,0,...,0), respectively. In Z" x Q we interpret 1(V, 1) 10 as (0,...,0,1,0),
(0,...,0,1,0,0), ..., (1,0,...,0), respectively. Namely, we expand Lo, by the equiv-
alence relations =,,, for each positive integer m, and n constants 19,1 < i < n, for
a representative of the smallest positive element in each discretely ordered quotient
G /G~ where either G = Z" or G = Z" x Q for some n > 1. In [49], Weisfenning
proved that

Fact 3.3.3. Both Thy,, (Z") and Thy,, (Z" x Q) admit elimination of quantifiers.

Let G be either a model of Thy,,. (Z") or a model of Thy,, (Z" x Q). In particular,

every formula o(x,a) in Lyeis with parameters a — G, is equivalent modulo G to a
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positive boolean combinations of formulas of the following forms

(1) kx =, t(a),or kx #, t(a),
(2) kx=t(a),kx < t(a),ort(a) < kx,

where k > 0 is a natural number and #(X) is a term in L. Let #(a) = g € G. Since
[G : mG] < o, every formula in (1) is equivalent to a finite disjuction of formulas of
the form kx =, g. If such a formula defines a nonempty set, then there exists 7 € G
such that kx =,, g is equivalent to x =, h for some m’ > 0. So we may assume that
all formulas in (1) are of the form x =,, g. Moreover, every formula in (2) defines a
set which is a finite union of cosets of 2G intersected with intervals, see Theorem 12
and Theorem 15 in [4]. Therefore, every definable set in G is a finite union of cosets of
subgroups mG intersected with intervals with endpoints in G U {£00}, for some positive

integer m. Hence, G is coset-minimal. We recall that

Definition 3.3.4. A totally ordered group (with possibly extra structure) is coset-minimal
if every definable set is a finite union of cosets of definable subgroups intersected with

intervals.

In [34], the groups elementarily equivalent to either Q, or Z", or Z" x Q, for some n >
1, have been characterized as the coset-minimal pure (modulo some constants) groups.
Moreover, since any =,,-equivalence class is 0-definable, any such group provides an
example of a quasi o-minimal structure (see [3]).

We show that the theories of Z" and Z" x Q have definable Skolem functions in Lyy;s
and in a suitable language expanding Ly, respectively. In [42], using proof-theoretic
arguments, Scowcroft identified the following sufficient condition for a model complete

theory in order to have definable Skolem functions.

Proposition 3.3.5. Let L be a first order language with at least one constant symbol
and T be a model complete theory in L. Let £ be a set of VY3-axioms for T and A
be the set of all quantifier free L-formulas §(ii,v) such that Yu3vé(a,v) € X. Suppose
for each 6(i1,v) € A there is an L-formula vys(1,v) such that T + Yua3v ys(aa,v) and
T + VaVv(ys(a,v) — 6(i1,v)). Then T has definable Skolem functions.

Note that by Fact 3.3.3 the theories Thy,  (Z") and Thy, (Z" x Q) are model-

complete and, hence, can be axiomatised by V3-sentences. Consider the following sets
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of sentences introduced in [44, pp. 149-150]:

o =VaxVyVz((x+y) +z2=x+ (y + 2));
Vx(x + 0 = x);
Vx(x —x=0);
VaVy(x+y =y + x);
Vx(—(x < x));
VaVyWz(x <y <z — x < 2);
Vx(x=0vO0<xvx<O0);
VaVy(0 <x A0 <y—>0<x+y).
Y =0<2-19 < 10*) foreachisuch that 1 <i <n— I;
Vx(2x < 19 v 19 < 2x) for each i such that 1 < i < n;
Vx(2x < 19 — mx < 1Y) for each i such that 1 <i < nandm > 2;
Vax(x =, 0 o Fydz(—11 < 27 < 1D A x = my + 7)) for each m > 0;
Vax( \/ (x =, qll(l)+-~—i—qnl()))foreachm> 1;

<£] cqnS<m— 1

V(=11 < 2x < 10 = Jy(x = my)) foreach m > 1.
¥, = Vx(—(0 < x < 1)),
¥ = 3x(0 < x < 1),

It was shown in [44] that the theories Thy,,, (Z") and Thy,  (Z" x Q) are axiomatized
by Xy uX; UZ; and £y U Xy U X3, respectively. Therefore we are able to use Scowcroft’s
criterion for the existence of definable Skolem functions in model complete theories. It

follows easily that
Theorem 3.3.6. The theory Thy,, (Z") has definable Skolem functions.

Proof. We just need to show the existence of definable Skolem functions for the non-

universal axioms:

Vx(x =, 0 < Elyﬂz(—l(l) <2z < 1W A x = my + z)) for each m > 0, and
V(=10 < 2x < 1 = Jy(x = my)) for each m > 1.
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It is sufficient to note that, in any model G of Thy,_ (Z"), if g € G is such that g = mh
for some & € G, then & is unique. Indeed, let g, h, k € G be such that g = mh + k and
—1M < 2k < 1), Trivially, by the interpretation of 1(), the inequalities —1() < 2k <

1) imply k& = 0. Hence, k is unique and, so also % in g = mh is unique. O

In order to prove the same result for Z" x Q, for any n > 1, fix an element ¢ in
C = {0}" x Q such that ¢ > 0. Then the quantifier elimination in Thy,_ (Z" x Q) is not
affected by adding ¢ as a new constant to Lyeis. Let Lyeis(c) denote Lyeis U {c}. Now an

axiomatization of Thy, . ) (Z" x Q) is given by Xy U X; U X3 and the following axiom:
0<2c<1W,

Theorem 3.3.7. The theory Thy,,, ) (Z" x Q) has definable Skolem functions.

Proof. We just need to show the existence of definable Skolem functions for the non-

universal axioms:

Vax(x =, 0 o FyIz(—10 < 27 < 1D A x = my + 7)) for each m > 0, and
Vx(—11 < 2x < 10 — Jy(x = my)) for each m > 1, and
Ix(0 < x < 10,

Note that 0 < ¢ < 1V, Then, as in the proof of Theorem 3.3.6, it suffices to note that,
in any model G of Thy, (Z" x Q), if g € G is such that g = mh for some i € G, then
h is unique. Indeed, let g, i,k € G be such that g = mh + kand —1) < 2k < 1), In
particular, there exists k' € G such that k = mk’, and g = m(h + k’). Therefore, we may

assume k = 0. m|

By the characterization of dp-minimal ordered groups in [22] (see Theorem 2.3.20),
for any n > 1, the finite lexicographic products Z" and Z" x Q are dp-minimal. The
author has recently learned that Vicaria [48] has identified a suitable many-sorted lan-
guage in which dp-minimal ordered abelian groups eliminates imaginaries. We aimed
at identifying a single-sorted language that could suffice for eliminating imaginaries for
the theory of the ordered groups Z", and Z" x Q, for any n > 1. The languages Ly;s and

Lieis(c) seemed to be promising for this goal, since in these languages we can eliminate
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the =,-equivalence classes and, by Theorem 3.3.6 and Theorem 3.3.7, there are defin-
able Skolem functions. Indeed, it is well known that, provided that one can uniformly
associate a canonical parameter to every unary definable set, the existence of definable
Skolem functions is a sufficient condition for uniform elimination of imaginaries (see
[20, Lemma 4.4.3]).

The following example pointed out to the author by M. Hils shows that unfortunately
this is not plausible, and a many-sorted language seems unavoidable. Consider the
lexicographic product G = Z x R x Z in Ly (or in some expansion L of Lyis by
adding new constants) and suppose G admits elimination of imaginaries. By Fact 3.3.3,
we have that every infinite definable set X = G™ is uncountable. In particular, the set of

canonical parameters of cosets a + {0} x R x Z, with a € G, is a definable set, since it is

ZXRXZ
{0} xRXZ

it is uncountable. This is clearly false, since

— (Z x R x Z)" for some m € N, and, hence

{%}XFRX;ZZ ~ 7. The contradiction follows

from the existence of a canonical parameter for a + {0} x R x Z, and so Thy, (Z?)

the image of a definable map f:

does not admit elimination of imaginaries. Similar arguments can be used to show that
the theory of Z", for any n > 1, and the theory of Z" x Q, for any n > 1, do not
admit elimination of imaginaries in any expansion L of L., by adding new constants.
Moreover, it seems plausible that a much more general statement can be proven along
the same lines, namely that whenever G is an ordered abelian group admitting a non-
trivial definable convex subgroup, then G does not eliminate imaginaries, even after

naming constants.

Remark 3.3.8. It is still unsolved the problem of eliminating imaginaries for the theo-
riesof H._,Z and H._,7Z x Q with « any ordinal, since these groups do not belong to

the class of ordered abelian groups of bounded regular rank considered in [48].



Chapter 4

Stably embedded ordered abelian

Sroups

4.1 Stably embedded coloured chains

We initially study stably embedded models of a theory of linear orders with unary pred-
icates, as these structures appear naturally in the study of ordered abelian groups. In
[35, Section 12.6], Poizat has shown that a 1-type p over a coloured chain is definable if
and only if its cut is definable. We strengthen this result, generalizing it to every n-type.

For this purpose, we recall the following fact, which is a fundamental tool in the

model theory of coloured chains. Let C be a coloured chain, and a, b € C. We say that a

sequence ¢ (x), ..., ®,(x) of formulas is realized between a and b if there are n elements
Cly...,Cpy Witha < ¢ < --- < ¢, < b, such that each c; satisfies the corresponding
formula ¢;.

Fact 4.1.1 (Rubin’s Theorem). Let C and D be two coloured chains in the same lan-
guage {<, (P;)ie1}. Two increasing n-tuples, a; < --- < a, inC andb; < --- < b, in

D, have the same type if and only if they satisfy the following conditions:
e foreveryi < n, a; and b; have the same type,

e foreveryi < n, the same finite sequences of formulas are realized between a; and

a1 and between b; and b, .

45
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As a consequence of Rubin’s theorem, we can simply describe the types over a
coloured chain in the following way. Let C be a coloured chain and p(x,...,x,) a n-
type over C. Let p be non-realized in C, since in the case p is realized it is completely
determined by a realization of p in C. Moreover, we may assume that no coordinate
of (x1,...,x,) is realized in C. For any 1 < i < n, the cut determined by p and x; is
defined to be the pair (A?, BY), with

Al ={ceClc<xep}, Bl ={ceC|xi<cep}.

Note that, since for any 1 < i < n the pair (A7, B) is a partition of C, for every
finite subset p of p, p is satisfiable either by an element of Af or by an element of Bf ,
for any 1 < i < n. In particular, if the cut (A?, BY) is definable, that is to say if A}
is definable, then p is finitely satisfiable on one side. Indeed, we can introduce the

following definition.

Definition 4.1.2. Suppose that (A7, B) is a definable cut, and let ¢(x;) be a definition
of A”. We say that p is satisfiable on the left at x; if p - y(x;); otherwise, we say that p
is satisfiable on the right at x;.

Rubin’s theorem implies then that a non-realized type p € §,(C) is completely
determined by its restriction to the empty set of parameters, the sequence of its cuts
(A7, B )1<i<n, and its side of satisfiability at x; for every i such that (A7, BY) is definable.

We deduce from it the following fact:

Proposition 4.1.3. Let p € S,,(C) be a non-realized type over a coloured chain C. Then
p is definable if and only if the cut (A, BY) is definable for every 1 <i < n.

Proof. If p is definable, then trivially (A?, BY) is definable for every 1 < i < n. Con-
versely, suppose that (A?, BY) is definable for every 1 < i < n. Let D be a very saturated
elementary extension of C. By Theorem 1.1.16, it is sufficient to show that p has only
one heir over D. In particular, we need to show that if ¢ € S ,(D) is an heir of p, for each
i, 1 < i< n, there is only one possibility for its cut (A7, Bf) and its side of satisfiability
at x;. Let 1 < i < n be fixed, and let y(x;) be a definition of A”. If ¢ € S,(D) is
an heir of p, then for every d € D, D |= (d) if and only if g - d < x;. Therefore,
A? = {de D |d < x; € q} is necessarily the subset of D defined by y/(x;) and, hence,
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we have no choice for the cut determined by g and x;. The same holds for its side of
satisfiability. Suppose, for instance, that p is satisfiable on the left at x;. Then, p is
finitely satisfiable in A? and, so ¢ is finitely satisfiable in A?. O

Therefore, we obtain the following characterization of stably embedded coloured

chains.

Corollary 4.1.4. A coloured chain C is stably embedded if and only if all cuts of C are
definable.

Examples 4.1.5. The following coloured chains are stably embedded:
l. (w,<);
2. (R,<);

3. (R, Pg, <), where Pg stands for a predicate defining Q.

4.2 The case of ordered abelian groups with finite regu-

lar rank

In the next sections, we aim at characterizing all stably embedded ordered abelian
groups. It is worth analyzing, firstly, the case of ordered abelian groups with finite
regular rank, since in this case one can obtain without great effort a very simple char-
acterization. To this purpose, in the following section we are going to investigate stable
embeddedness for the subclass of regular ordered abelian groups. A similar study for
this class of groups can be also found in [8, Section 4], while the case of models of

DOAG and Presburger arithmetic has been already covered in [46].

4.2.1 Regular ordered abelian groups

We begin by observing a fundamental fact that will be useful also later.

Fact4.2.1. Let G be any ordered abelian group. If G is stably embedded, then all convex
subgroups of G are definable.
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Proof. 1t is sufficient to show that any convex subgroup determines a cut which is de-
finable if and only if the subgroup is definable. Indeed, clearly, if G is stably embedded,
then every cut in G is definable.

Let C be a convex subgroup of G, and consider the cut C* = (L,R), with R =
{geG|g>C}and L = G\R. Trivially, if C is definable, then C* is definable. Con-
versely, suppose C™ is definable. Then, so it is the invariance group of C*, H(C") =
{geG|g+CT=C"}. Since C is a convex subgroup, H(C*) = C and, hence, C is
definable. m|

In particular, it follows that every regular ordered abelian group which is stably
embedded is necessarily archimedean. As a consequence, we will see that both in the
class of divisible ordered abelian groups and in the class of Z-groups there is a unique
stably embedded model.

Divisible ordered abelian groups

We now show that (R, 0, +, <) is stably embedded in any elementary extension and it is
the unique model of DOAG to be stably embedded.

Since divisible ordered abelian groups are o-minimal, by Theorem 1.1.17 it is suf-
ficient to consider just 1-types. Therefore, let D |= DOAG and p(x) € S{(D) be a
non-realized type. Then, p is determined by the cut C? = {d € D | p - d < x} and,
the definability of p is equivalent to the definability of C?. Clearly, the only possible
cuts in R are of the form a—, a*, —o0, +00. Therefore, (R, 0, +, <) is stably embedded.
Moreover, let D = DOAG be such that every p(x) € S (D) is definable. By Fact 4.2.1,
D is a subgroup of R, and so equal to its completion. Hence, we have proved:

Theorem 4.2.2. Let D be a divisible ordered abelian group. Then, D is stably embedded
ifand only if D = R.

Note that, since there are only finitely many kinds of types over R, each one corre-
sponding to a kind of cut among a—,a*, —o0, +00, R is, in particular, uniformly stably
embedded.
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Presburger Arithmetic

We now show that (Z, 0, +, <) is stably embedded in any elementary extension and it is
the unique model of Presburger Arithmetic to be stably embedded.

Let T be the theory of Z in Lp. Let M be a model of 7, and leta = (ao, ..., a, 1)
be a finite tuple of elements in an elementary extension N of M. Then, by quantifier

elimination,

U tP(ZZiai/M) ~ tp(a/M).

Weetn— €L i<n
In particular, if all 1-types over M are definable, then all n-types over M are definable,
for each n. Hence, as in the case of divisible ordered abelian groups, we can concentrate
just on 1-types.

Let Z < M, then M = D x Z, where D |= DOAG. In particular, Z is (isomorphic
to) the non-trivial convex subgroup of M and, it is pure in M. Let p(x) =tp(a/Z),
with @ € M. Then, p(x) is determined by the class modulo n of a and by the cut
Cl ={deZ]| pt+ d < nx}, with n ranging over N. Therefore, the only possible
1-types over Z are the realized types and the types of the form —oo, +00. Moreover, any
other model of T is not archimedean and, hence, not stably embedded by Fact 4.2.1. We
have proved:

Theorem 4.2.3. Let G be a Z-group. Then, G is stably embedded if and only if G = Z.

Note that, in particular, all types over Z are uniformly definable, and then Z is uni-

formly stably embedded.

Dense regular ordered abelian groups

It remains the case of (G,0, +, <) regular ordered abelian group which is neither di-
visible nor discrete. So, let G be any stably embedded regular ordered abelian group,
and assume G < R by Fact 4.2.1. Assume, also, that G is dense. By quantifier elimi-
nation in Lp.s, as in the previous cases, we can use a Marker-Steinhorn-type argument
and deduce the definability of n-types from the definability of 1-types for all regular
ordered abelian groups. Therefore, let G’ > G be an elementary extension of G, and
p(x) = tp(a/G) be a non realized type over G, with a € G'. Then, p is determined by
the classes modulo n of a and by the cuts C; = {d € Z | p + d < nx}, withn € N.
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In particular, p is definable if and only if the type of a over the divisible hull of G is
definable. Then, by Theorem 4.2.2 we have that

Theorem 4.2.4. Let G be any regular ordered abelian group densely ordered. Then G
is stably embedded if and only if G is archimedean and div(G) = R.

Uniform stable embeddedness does not hold in general for any dense regular group
stably embedded, as the following example shows.

Example 4.2.5. Let (b;);e; be a Q-basis of R and consider G = {},,_, 5b; | z € Z,n €
N} < R. Then G is stably embedded, but not uniformly.

Let G’ be an elementary extension of G which contains a realization g/, of (a com-
pletion of) the partial type p,(x) determined by the cut (5;)", for every n € N. If G
is uniformly stably embedded in G’, then we have that for every elementary extension
(G, G) of the pair (G',G), G is stably embedded in G'. This is clearly false. Indeed,
consider any non-principal ultrafilter U on N, and let ¢ = (g/,),en/U an element of
the ultraproduct [ [,, G’. Then, the type p(x) = tp(g’/[ [, G) is not definable, hence,
G = |14 G is not stably embedded in G’ = [[,, G'.

Note that, by a similar argument, one can show that no archimedean ordered abelian

group not isomorphic to Z or R is uniformly stably embedded.

4.2.2 Ordered abelian groups with finite regular rank

In this section, we are going to characterize all stably embedded models in the class of
ordered abelian groups with finite regular rank. Let G be an ordered abelian group with

finitely many definable convex subgroups
0)=~A<- - <A< <A, =G.

For any i < n, we can associate to G the following short exact sequence of ordered
abelian groups
0— A — Ay —> Aip1/A — 0 4.1)

This simple observation will allow us to deduce some necessary and sufficient condi-
tions for an ordered abelian group with finite regular rank in order to be stably embed-
ded.
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Recall that a short exact sequence of abelian groups is a sequence M = (A, B,C,,v),

where A, B, C are abelian groups and ¢, v homomorphisms such that
e 1: A — Bisinjective
e v: B — C is surjective
o Im¢ =kerv

A short exact sequence

0—>A-"5B-5C—0

is said to be pure if ¢(A) is a pure subgroup of B. In [46], Touchard proved the following

characterization for pure short exact sequences of abelian groups:

Proposition 4.2.6. Let M = (A, B,C,t,v,...) be a pure short exact sequence of abelian
groups, with eventually additional structure on the sort A and on the sort C. Let N =
(A", B',C",,V') be an elementary extension of M.

Then, M is (uniformly) stably embedded in N if and only if A is (uniformly) stably
embedded in A’ and C is stably embedded in C'.

In particular, this proposition can be applied to short exact sequences of ordered
abelian groups
0— (A, <) — (B,<) — (C,<) —0

with A convex subgroup of B and C =~ B/A and, so to the short exact sequences in (4.1)
as well. Indeed, we have that A is a pure subgroup of B and, the order on B can be

recovered from the orderings on A and C. It follows

Theorem 4.2.7. Let G be an ordered abelian group with finite regular rank, and let
0) = Ay < -+ < A < -+ < A, = G be all the definable convex subgroups of
G. Then, G is (uniformly) stably embedded if and only if A;y1/A; is (uniformly) stably
embedded for every i < n.

Proof. By induction on n. For n = 1, it is trivial. Let n > 1 and suppose that the

statement holds for any ordered abelian group with n definable convex subgroups. Let
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G’ be any elementary extension of G. Consider the following short exact sequences

M:0— A =G - G/A — 0

N:0— N -5 G 25 G /A — 0

where ¢, (" are the immersion maps and v, V' the canonical maps. We have M < N and,

since A; is pure in G, M is pure. Therefore, by Proposition 4.2.6, G is (uniformly)

stably embedded in G’ if and only if A, is (uniformly) stably embedded in A} and G/A,

is (uniformly) stably embedded in G'/A|. Moreover, by induction hypothesis, G/A,
Aip1/A

is (uniformly) stably embedded if and only if A S A;+1/A; is (uniformly) stably

embedded for every 1 <i < n. O

Notice that for any i < n, the group A;,;/A; has no proper nonzero definable sub-
groups and hence is regular by Fact 2.3.4. Then, by the characterization of stably em-

bedded regular ordered abelian groups in Section 4.2.1, we have

Corollary 4.2.8. G is stably embedded if and only if A;,1/A,; is archimedean and either
Ai+1/Ai ~ Z or diV(Ai+1/Ai) ~ R.

Example 4.2.9. The ordered abelian groups Z" and Z" x R are uniformly stably embed-
ded, for every n € N, and they are the unique models of their own theory to be stably
embedded.

4.3 Towards a characterization of stable embeddedness

We have seen in the previous section that if an ordered abelian group G is stably em-
bedded, then all its convex subgroups are definable. One can easily see that this is far
from being a sufficient condition for stable embeddedness. Indeed, even if all convex

subgroups of G are definable, stable embeddedness certainly can fail in two cases:

e if a rib G, of G is not stably embedded as an ordered abelian group, for some

v elg, and

e if G is not maximal.
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By Theorem 4.2.4, a very simple example for the first occurrence is given by the group
of the rationals Q and, more generally, by any archimedean group G, which actually
coincides with its unique rib, such that div(G) is a proper subgroup of R. As we will

see in Section 4.3.2, the lexicographic sum »._ 7 represents instead an ordered abelian

i<w
group which is not maximal and not stably embedded.

We are going to prove that, for a certain class of ordered abelian groups, the above
conditions, together with the existence of a convex subgroup which is not definable,
represent actually the only cases where an ordered abelian group is not stably embedded.
In other words, for a class of ordered abelian groups, the maximality of the group, the
definability of all its convex subgroups, and the stable embeddedness of all its ribs are
sufficient to deduce the stable embeddedness of the group (see Theorem 4.3.23 and
Remark 4.3.28.)

In the next sections, we will introduce all the tools we need to attain this goal.

4.3.1 The induced valued group modulo m

Let G be an ordered abelian group. In Section 2.2, we have seen that G is, in particular,
a valued group with respect to the natural valuation. Now we show that we can actually
associate to G a family of valued groups, one for every natural number m. Indeed,
let m € N. As in Definition 2.3.15, for any a € G\mG, let V" be the largest convex
subgroup of G such that a ¢ V" + mG. For any a € mG, set V" = {0}.

Definition 4.3.1. We denote by I} or simply I a set indexing the set of the convex
subgroups {V}'} e, and inversely ordered. In other words, we set {V}'},cc = {V}'}ern,
and, for any y,6 € I'(;,

y<6 = Vic V.

As usual, let co denote the maximal element of I, corresponding to {0}. For every

m € N, we define a map val”: G — I'™, as follows:
val™(a) =y, where V' = V'

Notice that, for any m > 0, " is equal to the underlying set of the auxiliary sort
S introduced in Definition 2.3.15, and val™ corresponds to the canonical map s,. In

particular, for m = 0, I'’ is the archimedean spine I'; of G and val’ is the natural
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valuation on G, and, for m = 1, T'' = {co} and val' is the trivial map sending every
element of G to co.

Clearly, for every m € N, the map val” induces the valuation map val' : G /mG —
I defined by val (g mod mG) = val”(g), for any g € G. We call the valued group
(G/mG,val") the induced valued group modulo m of G and " the m-value set of G. By
abuse of notation, we will also write val™ to refer to the induced valuation val .

The aim of this section is to prove that the property of pseudo-completeness transfers
from G to the induced valued group modulo m’s. We first show that, in the case of G
pseudo-complete ordered abelian group, we can actually identify I with a subset of

I' = I'; (depending on m), for any m € N.

Lemma 4.3.2. Let G be a pseudo-complete ordered abelian group, and m € N be a
natural number such that m > 1. Then, for every g € G,g ¢ mG, there exists g € G
such that g =,, g and V' = V.

Proof. Let g € G\mG be fixed. It is enough to show that the set of values
A:={val(g—ma)|acG}

has a maximal element. Indeed, let @’ € G be such that val(g — ma’) = max A, then,
clearly, V' = Voo = V?_ma,. Suppose A does not admit a maximal element. Let
(a;)ier be a sequence such that val(g —ma;) is increasing and cofinal in A. Then, we have
that (g — ma;)ic; and (a;);; are pseudo-Cauchy sequences. Consider a pseudo-limit a of

(a;)ier- Then, val(g — ma) > val(g — ma;) for all i’s, and so we get a contradiction. O
Henceforth, if G is pseudo-complete, then, for any m € N, we have I, < I';, and

the map val”: G — I'{; is given by:

min{y e I’ V., + mG if mG,
o0 otherwise.

We observe also the following property that will be used repeatedly from now on.

Remark 4.3.3. Let G be a a peudo-complete ordered abelian group, and g € G. From
Vi < V, it follows val”(g) > val(g), for any m € N,m > 1.
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We highlight that I may be a proper subset of I'. In particular, it holds that

Proposition 4.3.4. Let G be a pseudo-complete ordered abelian group, and m € N be a
natural number such that m > 1. Then, I'" is the set { y € I | G, is not divisible by m }.

Proof. Lety € I' be a value for which the corresponding rib G, is not divisible by m.
This means that there exists g € C, such that forall g’ € C,, val(g+mg’) = vy (otherwise,
val(g+mg') > yand, g+V, = mg'+V, forsome g’ € C,). Thus, V, is the largest convex
subgroup of G not intersecting g + mG and, hence, y € I'"". Conversely, if y € I, then
there exists g of m-value y. By Lemma 4.3.2, we may assume that val(g) = y. Then,
we have that g € C, + mG and g ¢ V, + mG, and so G,, is not divisible by m. O

Example 4.3.5. Consider the following ordered abelian group: [ e L(p)-
Clearly, for any p € P, since we have pZ,) < Z,) and gZ,) = Z, forall g # p,I"? =

{p}. Then, T = P = J ., I'” and, in particular, all convex subgroups are definable.

peP

Note that, if G is not pseudo-complete, the convex subgroup V' is not necessarily
equal to a value V; for some i € I'. Consider, for instance, G’ := ZreQ Z, an increasing

sequence of positive rationals (ry)xew converging to v/2 and a := (a,),eq € H ,cq Z with

m if r = r, for some k € N,
a, =
0  otherwise.

Let G be the ordered subgroup generated by G’ U {a} (notice that a is not divisible by
min G). We have that V] = >, 5 Z, but V]! # V, forany g € G.

Theorem 4.3.6. Let G be a pseudo-complete ordered abelian group. Then, for every

m € N,m > 1, the induced valued group modulo m (G/mG,val™) is pseudo-complete.

Proof. Note that, by Lemma 4.3.2, for any coset a mod mG in G/mG, there exists
b, € G such that a =,, b, and val”(a) = val(b,) (if a € mG, we trivially have b, = 0).
We show that a pseudo-Cauchy sequence (a; mod mG);c; in G/mG can be lifted into a
pseudo-Cauchy sequence (a});; in G such that a; =,, a; for every i € 1. We may assume
that val”(a; — a;) < val"(a; — a;) foralli < j < k. Let I = A for some limit ordinal A.

By transfinite induction, we can define the following sequence in G:

e For @ = 0, let a; be any element of G such that a;, =,, ao and val(a;) = val”(ao).
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e For any a < 4, let b, denote an element in G such that b, =,, a, — a,+; and

val(byt1) = val™(a, — aoy1). Wesetdl, | = aj, + bo1.

e Let0 < @ < A be alimit ordinal, and assume val(a; — a.,) = val”(ag — a,), for
eventually all 8 <y < «, and a; =, ag for all B < a. Then, (ag)s<, is pseudo-
Cauchy in G and, in particular, it admits a pseudo-limit ¢, in G. Let b, be such

that b, =,, a, — ¢, and val(b,) = val”(a, — ¢,). We set @, = ¢, + b,.
Note that a, =,, a,, for any @ < A. Let us prove the following claim:

Claim 4.3.7. Let a be a limit ordinal, and suppose (aé)ﬁ@ is pseudo-Cauchy. Then,
there exists By < a such that val(a, — ag) = val(ay,, — ay) for any B > Po. In

particular, a, is a pseudo-limit of (a;)s<q.

Proof of the claim. Clearly, we have that val(a/,—a},) = val(c,+b,—aj,) > min{val(c,—

B B
ay),val(b,)}. Then, since ¢, is a pseudo-limit of (a;)s<., it is sufficient to show that
val(b,) > val(c, — ag) = val(ay, | — ag) for eventually all § < a. Let f < « be fixed
sufficiently large. Then, by definition, val(b,) = val"(a, — ¢,) and, in particular, it

holds that
val”(a, — ¢o) = val"(a, — agy1 + agy1 — co) = min{val”(a, — agy1), val” (agy — ca)}-

Since the sequence (a3 mod mG)s—, is pseudo-Cauchy in G/mG and a5 =, ag for any
B < a, it follows that

L. val"(aq — agi1) > val”(agy1 — ag) = val(ay,, — ap), and

2. val"(agy1 — ¢o) = val"(ag, | — o) = val(ay, | — c,) > val(ay, | — ap).

Therefore, val(b,) > val(ay, | — ag), and val(a;, — a;) = val(ay, | — ap). O

Then, by transfinite induction, it follows easily that val(a; — @) = val”(ag — ay),

for eventually all 8 < y < A. In particular, (a;

mits a pseudo-limit @’ in G. Then, @' mod mG is a pseudo-limit of the sequence (a,

)p<a is pseudo-Cauchy, and it ad-

mod mG),<, in G/mG. Indeed, for any 8 < @ < y < A large enough, we have that

val"(a' — a,) = val"(d' — d,) and

val"(d' — a,) = val(d' — a,) = val(d, — a,) = val"(a, — a,) > val"(a, — ap).
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It follows that val”(a’ — ag) = val”(a, — ag) for eventually all B < A. Hence, '

mod mG is a pseudo-limit of (¢, mod mG),,, and the statement is proved. O

4.3.2 An instructive example

Before analysing the case of a more general class of ordered abelian groups, it is worth
presenting a new interesting example of stably embedded ordered abelian group. Con-
sider the Hahn product G = J,_ Z. We prove that G is stably embedded in every

elementary extension. Note that
1. G is maximal, by Proposition 2.2.8;

2. forany y < w, G, = Z and, hence, every rib of G is stably embedded by Theorem
4.2.3;

3. the archimedean spine I'; of G is the ordered set w U {co} and, hence, it is stably
embedded, by Corollary 4.1.4.

First of all, we look for a language in which G admits quantifier elimination. We
have already mentioned that in [6] Cluckers and Halupczok have introduced two many-
sorted languages, Ly and Ly, in which any ordered abelian group eliminates quantifiers
from G. To our purposes, it is convenient to consider the language Ly, instead of
L. Indeed, although it may seem rather technical, this language has better syntactic
properties, since the only symbols in Ly, connecting the main sort G and the auxiliary
sorts in A are functions from G to a sort in ‘A.

In 3.1 we have seen that all convex subgroups of G = H.__ Z are unifomly de-
finable, and that for any n € N, the n-spine of G is isomorphic as ordered set to the
archimedean spine I'c = w U {oo}. It is well known that the theory of w eliminates
quantifiers in the language {0, <, s}, where 0, < are interpreted in the obvious way and
s is interpreted by the successor function s: n — n + 1 (see e.g. [12, Theorem 32A]).

One can easily see that this is equivalent to the following

Fact 4.3.8. Let T be the theory of w U {0} in the language {<,0, 0, s}, where 0, <, 0
are interpreted in the obvious way and s is interpreted by the function s: w U {0} —
w v {0} defined by s(n) =n+ 1ifn < wand s(o0) = oo. Then T admits elimination

of quantifiers.
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Then, from Facts 2.3.17 and 2.3.18 one can deduce a specific many-sorted language

Ly in which G eliminates quantifiers.
Proposition 4.3.9. Let L be the language consisting of

e the main sort G with the symbols +, —,0, <,=,, for each m € N, interpreted in

the obvious way,

e an auxiliary sort I for I'¢ with the symbols <, 0, o0, s, interpreted as in the above
Fact,

e a function symbol val™ for each m € N, interpreted by the map val" : G — T’
defined in (4.2),

e a unary predicate x =* k, on G for each k € Z\{0}, defined by, for any a €

G, a =* k, if a mod V) is equal to k times the minimal positive element of
G/Vval(u);

e a unary predicate x =}, k, on G for eachm € Nym > Qand k € {1,...,m — 1},
defined, for any a € G, by a =;, k. ifa mod V", (@ is congruent modulo m to k

times the minimal positive element of G/ Vo (@)

Then the theory of G = H,_. Z admits quantifier elimination in Ly.

i<w
Proof. We compute the auxiliary sorts S, 7, 7, and the projection maps s,, t, of Ly,
for G = H._,7Z. We have that, for any n € N,n > 0, the underlying sets of S,,, 7,,, 7,
is the archimedean spine of G, namely, the set w U {00}. We have already noticed that,
forany n € N,n > 0, S, is in order-reversing bijection with I, and s, corresponds to
val" : G — I"". On the other hand, for n # 1, we can actually identify I"" with I'z =
w U {o}. Indeed, let a € G\nG, and j = minsupp(a mod nG). Then, V; = H . 7Z.

Therefore, we have

minsupp(a mod nG ifad¢ nG
I"~wu{w} and val'(a) = pp( ) f
0 otherwise

for any n € N,n > 1. In particular, for any b € G, the convex subgroups Uaec,b¢vg Vi
and ﬂaec,bevg V! are the largest convex subgroup not containing b and the smallest con-

vex subgroup containing b, respectively. Then, for any n € N,n > 1, we can identify
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T, and 7, with w U {0}, and t, = val, where val(a) = minsupp(a) if a # 0 and
val(0) = oo.

For any n € w U {0}, we denote by G, the convex subgroup [ ,_;Z. It remains to
prove that the symbols in Lg,\ Ly can be defined without quantifiers over G in L.

For any n € w u {0}, and m € N, we have

[m] Gl’l—] + mG ifn<w
Gy = (Gi+mG = (4.3)
i<n mG ifn=ow

Moreover, for any n € w,
g € G, +mG if and only if val”(g) > n.

It follows that the unary predicates DL’Z‘Y] (x) on G can be expressed in Ly without G-
quantifiers. The same holds for the unary predicates defined on S, = I'c. Indeed,
clearly, the set of values n such that G/G, is discrete is equal to w. Moreover, from
(4.3), it follows that, for any n < w,

(G + pG)/(G, + pG) =~ Z/p2Z,
and for n = o0, (G¥1 + pG)/(G, + pG) = {0}. Therefore, for each [, s € N\ {0}, the set
{neTg | dimg (G¥ + pG)/(G, + pG) = I}
is either w or the empty set. Similarly, one can deduce that the set
{neTq | dimg (G¥ 4 pG)/(GY™V 4 pG) = 1}

can be defined without quantifiers. Then, by Facts 2.3.17 and 4.2.1, the theory of G
admits quantifier elimination relatively to I' in L. In particular, since I eliminates
quantifiers by Fact 4.3.8, every Ly-formula is equivalent modulo the theory of G to a

Ly-formula without quantifiers. O

As a first consequence of the previous result, we show that the lexicographic sum

Y- Z is not stably embedded in Jf,;_,Z. Note that >,,_ 7 is not maximal, since

i<w
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H ..., Zis an immediate extension.

Example 4.3.10. Let G’ denote the lexicographic sum ».__Z. Consider a = (a;)i<, €

i<w
Hi...72\>,_,Zwitha; =2foreveryi < w. Let C = {ge G’ | g < a}. We prove that
C is not definable with parameters in G’. Assume, by contradiction, that C is definable

in G'. Then, by Proposition 4.3.9, the cut determined by C is one of the form
g+A", g+ A

for some g € G’ and A convex subgroup of G’. One can easily see that the invariance
group H(C,G'\C) of the cut (C,G'\C) is the zero-set {0}. Therefore, the only possi-
bilities for (C, G'\C) are the cuts of the form g* and g~. Thus, we get a contradiction,
from the fact that for any g, g, € G’ with g; < a < g, there are g}, g, in G’ such that
g1 < g} < a < g, < g. Hence, for any g € G’ the cut determined by C cannot be of
the form g~ or of the form g*. Then we have that C is not definable and G’ is not stably
embedded in H.__Z.

Remark 4.3.11. Notice that for an arbitrary model G’ of Th(}H;_, Z) in Ly, the aux-

iliary sort I'(G’) is not necessarily interpreted, as ordered set, by the archimedean spine

i<w

I'c: of G’. However, it still represents the "definable" spine in the sense given by model
theorists, that is to say a (multi-sorted) linear order of definable convex subgroups (see
Definition 2.3.15 and Equation (2.1)). In particular, the function symbol val may be no
longer interpreted by the natural valuation. Clearly, its interpretation is still a valuation
of ordered abelian groups, i.e. a map v: G’ — I'(G’) such that, for all a,b € G’,

() v(a) =0 <= a=0,
(ii) v(a —b) = min{v(a),v(b)},
(iii) v(na) = v(a) for every integer n # 0.

Note that from (i) and (ii), it follows that
v(a) # v(b) = v(a — b) = min{v(a),v(D)}.
Then, for every y € I'(G’), we can define the ordered abelian group C,/V,, where

C,={geG |v(g)=y}, andV,={geG |v(g)>vy}.
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By abuse of notation, we will not distinguish between the function symbol val and its
interpretation, even if it is not interpreted as the natural valuation. Moreover, we denote
the group C,/V, by G, and we will call it the rib of G’ as well. Notice that, by elementary

equivalence, for any y € I'(G’), G/, is a model of Presburger arithmetic.

The following result is true for any pseudo-complete valued group (G, v) and, so in

particular for G = [ ,__ Z with respect to the natural valuation.

i<w

Proposition 4.3.12. Let (Gy,v,), (G2, Vv2) be two valued groups such that (G,,v,) is an
extension of (Gy,vy), i.e. such that G\ < G, and v2(g) = vi(g) for every g € G,. If G,

is pseudo-complete, then, for any a € G, the set of values

{mwa—g)lgeG}
admits a maximal element.

Proof. If a € Gy, it is trivial. Then, suppose a € G,\G;. Assume for a contradiction
that { v,(a — g) | g € G; } has no maximal element and consider a sequence (g;);c; of
elements in G such that (v,(a — g;))ies is cofinal and strictly increasing in {v,(a — g) |
g € G }. We have that (g;)c; is pseudo-Cauchy. Indeed, from v,(a—g;) > v,(a—g;) for
alli < j, it follows that v, (g; — g;) = v2(a — g;) depends only on j and increases with j.
Thus, since G| is pseudo-complete, (g;);e; admits a limit g’ in G,. Then, we show that
va(a — g') is maximal in the set { v,(a — g) | g € G, }. Indeed, for eventually all i € I,

v (a—g') = min{va(a—g;),vi(¢ — &)} = va(a—gi:). Hence, we get a contradiction. O
Therefore, we can introduce the following definition.

Definition 4.3.13. Let G be a pseudo-complete valued group and a be a new element in
a proper extension of valued groups of G. We say that g’ € G is a best approximation of
ainG,ifvia—g)=max{va—g)|geG}.

Note that a best approximation is not in general unique.

Now we are able to prove

Theorem 4.3.14. Let G be the Hahn product [H ;_, Z. Then, G is stably embedded.

i<w
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Proof. Tt is enough to prove that all types over G are definable in L. First of all, we
show that every 1-type over G is definable in L. Then, consider a proper elementary
extension (G',T'(G")) of (G,T(G) =Tg) in Ly, and let a € G'\G. Denote by O the set

O(a) :={val"(na—g) |neZ,ge G,me N} = T'(G').
Note that the sort I" is purely stably embedded in the theory of G in L. Then, we have

tpTh(rG)(@/rG) = tpThLH(G)(G)/G)'

Therefore, in order to deduce the definability of tpr,, (g (a/G) it suffices to show that
the types

P, (G) (a/G v ®) and tpyyr,)(0/T¢)

are definable. Clearly, since ['c = w U {0} is stably embedded as ordered set, the type
tPrh(ry) (®/TG) is definable. Let us prove the definability of tpy, £,(6) (a/G U 0@).

By Proposition 4.3.9, it is sufficient to show the existence of a defining formula
with parameters in G U ©® for the sets defined by the following formulas with variables

X, X1, X from the sort G and variable y from the sort I and with parameter a:
a) na— x>0,
b) na—x=,0,
¢c) na—x="k,,
d) na — x =}, k.,
e) s'(val™ (na — x)) o s2(y),
f) 5" (val™ (na — x,)) o s (val™(n'a — x,)),

where o € { >, =}, n,n',k € Z\{0}, m,l;, 1, € N\{0} and m’, m/, m, € N.

By Theorems 2.2.7 and 4.3.6, (G, val) and (G/mG, val™) are pseudo-complete val-
ued groups. Therefore, by Proposition 4.3.12, for every n € Z, one can find a best
approximation g, of na in G and a best approximation g” mod mG of na mod mG’ in

G/mG, forany m e N,m > 1.
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Claim 4.3.15. If B, = val(na — g,) and B = val"(na — g"), then, for any g € G, we

have

val(na — g) = min{val(g, — g),B.} 4.4)
val”(na — g) = min{val”(g; — g),8;'} (4.5)

Proof of the claim. Clearly, val(na—g) = val(na—g,+g,—g) = min{val(g, —g),5,}
If val(g, — g) # B, then, trivially, val(na — g) = min{val(g, — g),8.}. Hence, suppose
val(g, — g) = B,. Then, val(na — g) > ,. Moreover, by the maximality of 3, in the
set { val(na — g) | g € G }, we have 8, > val(na — g). Therefore, val(na — g) = B, =
val(g,—g). Thus, in both cases we have obtained that val(na—g) = min{val(g,—g),8.}-

Similarly, we have val”(na — g) = min{val”(g" — g),8"}. O

Note that, since I'(G’) > I'c = w u {0}, we have either 8, € w or B, > w and
similarly for 8. In particular, we have 8! > w for any m € N,m > 1. Indeed, if

" € w, then na — g mod V[’;,” =, & mod Vg%l for some g € G since

Gy GV
G v~ gy <
B B

Therefore, val” (na— (g +g)) > val”(na—g') = B and this contradicts the maximality
of B in { val"(na — g) | g € G }. Moreover, from (4.4) it follows that if 8, > w, then
there exists a unique best approximation of na in G. Indeed, if g’ # g, is such that
val(na — g') = By, then B, < val(g, — g’) € w. Similarly, one can show that for any
g € G, val"(na — g) = B" if and only if g =, g”. Then, there exists a unique best
approximation of na mod mG’ in G/mG.

By (4.4) and (4.5) we have a definition with parameters in G U {,, 87}~ of the
sets

E:={(g.9)eG x0|s"(val" (na — g)) o s*(9)}

and
F:={(g0,8)€ G? | sh (Valmll (na — go)) o slz(valmé(n’a - g1))}-
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‘We show that the sets

A:={geG|na—g>0},
B:={geG|na—g=,0},
C:={geG|na—g=, k.},
D:={geG|na—g="k}

are definable with parameters in G U ®. To this purpose, for any k € N, k # 0 and % € O,

we denote by ky a representative in G’ of k times the minimal positive element of G’/ V.

A = {g e G |na— g > 0}. Assume, for instance, that na — g, > 0. We distinguish the
cases 8, € w and 8, > w.
If B, > w, then, clearly, g € A if and only if g, — g > O.
So, let 8, € w. Then, we have that g € A if and only if either g, — g > 0 or
val(g, — g) = B,. It is sufficient to notice that if g is such that val(g, — g) = B,
then g is a best approximation of na in G and, in particular, na — g > 0. Indeed,
if ¢ € G is such that val(na — g’) = B, and na — g < 0 < na — g,, then there
exists an integer k > O such that val(na — g’ + kg,) > val(na — g,), where kg, € G.
By the maximality of val(na — g,) in { val(na — g) | g € G }, this is clearly a
contradiction. Therefore, in particular, the sign of na — g, does not depend on the
choice of the best approximation.
If na—g, < 0, similarly one can find a definition of A with parameters in G U {8, }.

In any case we obtain that A is definable over G U {8, }.

B ={geG|na—g=,0}. Clearly, g € Bif and only if val” (na — g) = co. Then, by
(4.5), B is not empty if and only if na =,, g7. In that case, g € B if and only if

g =n & In particular, B is definable over G.
C ={geG|na—g=, k.}. Recall that na — g =, k, if and only if

na—g mOd V\’Zlm(na_g) =m kval’”(na—g) mOd V\’Zl]m(l’la—g)'

Set 8 := val"(na — g) = min{val” (g —g),Br}. If val” (g — g) < B, then, from

Vg’ o Vg,‘,, it follows that na — g' € V[’;,” + mG’. Hence, in that case, g € C if and

only if g" — g =° k,. Otherwise, since B > w, if val”(g" — g) > B, then we
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have necessarily val” (g — g) = co. In this case, g =,, g and g € C if and only
if na — g =, k., which depends only a. Therefore, we obtain that C is definable
over G U {B'}.

D ={ge G |na—g="k,} Recall that na — g =* k, if and only if
ha—g mod Vval(na—g) = kva](na—g) mod Vval(na—g)-

We use a similar argument to that used for C, considering val and g, instead of
val” and g'. Set B := val(na — g) = min{val(g, — g),B.}. If val(g, — g) < B,
then, by (4.4), 8 = val(g, — g), and, since V; > Vg , na — g, € V5. Hence, in that
case, g € D if and only if g, — g =* k.. Suppose val(g — g,) = B,. We need to
distinguish between the cases

(1) na — gn =* ko
(il) na — g, =* k, for some k' € Z\{0}, k" # k
(iii) —(na — g,) =* k. for any k € Z\{0}.

If (i) holds, then, clearly, g € D if and only if 8, < val(g, — g). Suppose (ii)
and ¥ < k. Then, g € D if and only if 8, = val(g, — g) and g, — ¢ =°
(k — k')o. Similarly, if k < k’, then g € C if and only if 8, = val(g, — g) and
gn— & =* (K — k).. To conclude, assume (iii). Then, there is no g € G such
that val(g — g,) = B, and g € D. In any case, we obtain that D is definable over
G U {Bu}-

Therefore, tpr,, () (a/G U @) is definable, and so it is P, (6) (a/G). Now let a =
(ap, - . .,ar—1) be any tuple of new elements in G’. The type of tp(a/G) is determined by

the following set of formulas:

U 9 za/G) U tpryr,)(©(@)/To),

20500,k —1EZ i<k

where ©(a) = |, .,z ®(2 zia;). Then, from the definability of 1-types over G and
i<k

the stable embeddedness of I'g, it follows that tp(a/G) is definable. This concludes our
proof. O
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4.3.3 Maximal ordered abelian groups with uniformly definable prin-

cipal convex subgroups

We have already seen that, by Fact 4.2.1, if G is stably embedded, then all convex sub-
groups of G are definable, and so they are, in particular, all principal convex subgroups
of G. We consider the case where all principal convex subgroups are uniformly defin-
able. (We recall that the principal convex subgroups of an ordered abelian group are in

general not even definable.)

Proposition 4.3.16. Let G be such that all principal convex subgroups of G are uni-
formly definable. Then, (I'g, <) is interpretable in G. Moreover, the natural valuation

val: G — I'; is definable, once we add a sort T for I'g.

conv

Proof. Assume that the family { (a)"" | a € G } of principal convex subgroups of G
is uniformly defined by the formula ¢(x,y). Without loss of generality, we may also
assume that for all b € GP!, ¢(x, b) is a convex subgroup. Then, the structure (Tg, <)
is interpreted in G as the quotient (G/ ~, <), where the equivalence relation ~ and the

ordering relation < are defined as follows: for all a,d’ € G,

a~d <= Yy (¢(a,y) < ¢(d,y)),

and

la]. < [d]. < V¥ (¢(d.) = ¢(a.7)) A F5(— (¢(a.5) = ¢(d.7)) ).

Moreover, notice that the natural valuation is the projection map G — G/ ~ and, clearly,
its graph is the set
{(a,d)eGxGla~d}.

We now introduce the following definition:

Definition 4.3.17. In analogy with the terminology adopted by Gurevich for the convex
subgroups of the form V7, for any g € G, g # 0 we call the largest convex subgroup not

containing g, V,, the fundament of g and the convex subgroups of this form fundamental.
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Then, it is easy to show that the uniform definability of the principal convex sub-
groups is equivalent to the uniform definability of the fundamental convex subgroups.

Indeed, we have

Proposition 4.3.18. Let G be any ordered abelian group. The following are equivalent:
1. all principal convex subgroups of G are uniformly definable,
2. all fundamental convex subgroups of G are uniformly definable,

Proof. (1 = 2). Let ¢(x,¥) be a formula defining the family {(a)

O™ e of principal

convex subgroups of G. Moreover, assume that every instance of ¢ defines a convex

subgroup whenever it defines a non-empty set. Clearly, the following formula

W(z,9) = ¢(z,5) A YW (w(z, w) — (VX(QO(X’ y) — ol(x, W)))>

defines the set of pairs (a, b) such that ¢(G, b) is the convex subgroup generated by a.
Leta € G, a # 0, and let b be a tuple of parameters such that ¢(G,b) = {a)*". Note
that V, is the set { x € G | (x)*™™ < (a)*™™ }, then, it is defined by the formula

V¥ (¥ (x,5) — n(3)),

where 77(7) expresses the property that ¢(G,y) is strictly contained in (G, b). Simi-

larly, we can deduce (2 = 1) from the fact that, for any a € G, a # 0, {a) =
{xeG|V,cV,}. O

We now look for a class of ordered abelian groups which allow us to consider a
language for eliminating quantifiers relatively to a single auxiliary sort I'. To this end,

we introduce the following condition for an ordered abelian group G:
« There is n € N,n > 1 such that, for any a € G, C, = (@)™ = [Nicpngeyn V-

It easily follows from the uniform definability of the family {Vg}geg (see [6, Lemma
2.1]) that an ordered abelian group G satisfying » has uniformly definable principal con-
vex subgroups. Moreover, in this particular case, I' is in order-reversing bijection with
the underlying set of the auxiliary sort 7, and 7, (introduced in Definition 2.3.15), for

some n € N,n > 1. If G is also maximal, we can deduce from Facts 2.3.17 and 2.3.18
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the following language in which this kind of maximal ordered abelian groups with in-
terpretable archimedean spine eliminate G-quantifiers (see Section 1.1 for definitions of
relative quantifier elimination and their equivalence in the case of closed sorts). Note

that the ordered abelian group J,_. Z analyzed in Section 4.3.2 is an instance of this

i<w

kind of groups.

Definition 4.3.19. Assume that G is maximal and satisfies ». Let £ be the language

consisting of

e the main sort G, with the symbols +, —, 0, <, =,, for each m € N, interpreted in

the obvious way,

e an auxiliary sort I' for I'g, with a binary relation <, interpreted by the ordering
relation on I'; a unary predicate C,(x) for each sentence ¢ in L,,,, defined, for

any y € I', by C,(y) if and only if G, |= ¢,

e a function symbol val™ for each integer m, interpreted by the map val” : G — I
defined in (4.2),

e a unary predicate x =* k, on G for each k € Z\{0}, defined by, for any a €
G, a =* k, if the quotient G/ Vial(a) 18 discrete and @ mod Vg (4) 1s k times the

minimal positive element of G/Vya(a),

e a unary predicate x =° k, on G for eachm € Nym > Oand k € {1,...,m — 1},

18

defined by, for any a € G, a =, k. if G/ Vo @ is discrete and ¢ mod Vo @

congruent modulo m to k times the minimal positive element of G/ V;’;lm(a).

Note that, since the divisibility by m of the rib G, is definable by a first order formula

in Ly,, the language £ defined above contains a unary predicate for the m-value set I,

for each m > 1.

Theorem 4.3.20. Assume that G is maximal and satisfies *. Then the theory of G elim-

inates quantifiers relatively to the sort I in the language L.

Proof. We deduce it from the more general Fact 2.3.17. For the notation involved, see
Definition 2.3.16. We have to recover G-quantifier freely the language Ly, using the
language L.
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By hypothesis, there exists n € N,n > 1 such that I' = 7, and the valuation map
val can be identified with t,. Moreover, by Proposition 4.3.4, for every m € N, I'™
corresponds to S,,, and the m-valuation map val™ corresponds to the map s,,. Therefore,
it remains to show that we can interpret the sorts 7, 7, and the projection maps t,, for
all m > 0 without using quantifiers over G.

Let m > 0 be fixed. We show that 7, is interpretable in £ without using quantifiers
over G. Take a € G and let B = t,(a). The convex subgroup G(f) is the union of all
principal convex subgroups G(a) which do not contain a, where @ € I'"" = S, i.e. it is
the set

{xeG|3§ €S, val(x) =& > val(a)}.

It follows that 7, is interpretable in 7, = I as the quotient I'/ ~,, where ~,, is the

equivalence relation defined by y ~,, v/ if and only if
{6eT]36€S,6=26 >y} ={6eT |30 €S,6=6 >9}.

We interpret the order < between 7, and 77 as the ordering relation defined by [y]., <
[y']~, if and only if

(6eT |35 €8,6=6 >y} c{6el |36 e85, 6=6 >

The projection map t,, : G — 7" is interpreted by the map a € G — [val(a)].,,.
We show that 7, is interpretable in £ without using quantifiers over G as well. Take
a € G and let B = t!(a). The convex subgroup G () is the intersection of all principal

convex subgroups G(a) which contain a, where @ € I = S,,,, i.e. it is the set
{xeG|VyeS,y<val(a) -y < val(x)}.

It follows that 7," can be interpretable as 77; the ordering < between 7, and 7, is
interpreted by t,,(a) < t[(b) if and only if

{6eT ]38 €S,6=6 =val(a)} = {6eT | V8 €S, <val(b) - & <6}

Finally, we show that the predicates D{[)z'f] (x) on G are not required, as forall@ € |, S,

G(a) "l — ¢, + mG, for some principal convex subgroup C,. Recall that for @ € U, S,
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G(a)™ = ﬂ (H + mG).
H2G(a),H convex subgroup of G
This intersection can be restricted to principal convex subgroups. Firstly, note that if
Cs := {x € G| val(x) > B} is a principal convex subgroup, then Cz + mG is the set
{x € G| val"(x) > B}. Indeed, the inclusion Cs + mG = {x | val”(x) > B} follows
from Lemma 4.3.2, as for all x there is x’ such that x’ =,, x and val”(x) = val(x). The

other inclusion is clear. Then, we have that

G(a)™ = ﬂ Cs + mG

B<a
= {x| VB < a val"(x) = B}
= {x]| val"(x) = @'} = Cy + mG

where o’ is the immediate predecessor of a in I if it exists, or is equal to « otherwise.
It follows that the unary predicates Dl[ffs] (x) on G can be expressed in L without G-
quantifiers. Moreover, all unary predicate symbols on the sort A of L, correspond
to a predicate C, in L for some sentence ¢ in Ly,. Notice that since we have only
quantified over I' in order to recover the language Lgy,, all G-quantifier-free formulas in

the language Ly, are equivalent to a G-quantifier-free formula in the language L. |

Remark 4.3.21. Note that, since the auxiliary sort (T, (Cy)yeL,,,» <) is closed, we obtain

that it is a pure coloured chain and is stably embedded in G (see Fact 1.1.22).

Henceforward, let G be any ordered abelian group with uniformly definable princi-
pal convex subgroups (not necessarily maximal). One can expand G to the many-sorted
structure G = ((G,0, +, —, <), (T, (Cy) peLoye» <) val), where the sort I' is interpreted by
the archimedean spine I'; and the function symbol val is interpreted by the natural valu-
ation val: G — I';. In particular, by Proposition 4.3.16, every formula in G is equivalent
to a formula in G. As already noticed in Remark 4.3.11 for the case of G = H,_,Z,
when we consider an arbitrary model G’ = (G',T'(G’), val) of the theory of G, the sort I"
and the function symbol val can no longer be interpreted as the archimedean spine and
the natural valuation of G’, respectively. However, since val is always interpreted as a

valuation of ordered abelian groups, we adopt the same notation, and G/, will denote the
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ordered abelian group C,/V, as defined in Remark 4.3.11. Notice, in particular, that, if

G’ is an elementary extension of G, then
e I'(G) < T'(G’) as coloured chains;
e G, < G/, as ordered abelian groups, for any y € T'(G).

Moreover, by elementary equivalence, G/, is a regular ordered abelian group for any
y € I'(G’). Therefore, we may say that I'(G’) and G/, for any y € I'(G’), are the regular
spine and a regular rib of G', respectively.

Let G’ be any maximal ordered abelian group with uniformly definable principal
convex subgroups. We prove that the non-existence of immediate extensions is actually

a necessary condition for any model of the theory of G’ in order to be stably embedded.

Proposition 4.3.22. Let G’ be any maximal ordered abelian group with uniformly de-
finable principal convex subgroups, and let G be any model of Th(G'). If G is stably

embedded, then G is maximal.

Proof. We expand G to the many-sorted structure G = (G, T, val). First of all, note
that by Fact 2.2.4, all convex subgroups of G are definable. In particular, for any
y € I'(G), G, is archimedean and the interpretation of val coincides with the natural
valuation of G. It follows that it suffices to show that (G, val) is pseudo-complete. By
contradiction, suppose that G is not pseudo-complete, and so there exists a pseudo-
Cauchy sequence (g;)ic; of elements of G with no pseudo-limits in G. Let a be a
pseudo-limit of (g;);c; in an elementary extension G of G. Then, for any g € G,
val(a — g) € T'(G). Indeed, since by assumption (g;),c; does not have a pseudo-limit
in G, there exists i € I such that val(a — g) < val(a — g;). In particular, we have that
val(a — g) = val(g — &) € I'(G). Therefore, for any g € G, we can consider the ball
B, :={he G| val(a—h) > val(a — g) }. We show that (,.; B, # .

Since G is stably embedded in G, the subset

{(h,g)eG2|v(a—h)>v(a—g)}

of G*> may be defined with a formula ¢(x,y, ), where ¢(x,y,Z) is a formula without
parameters and ¢ is a tuple from G. Moreover, we may assume that, for any tuple of

parameters ¢, the non-empty instances of ¢(x, g, ¢), with g € G, define a nested family of



4. STABLY EMBEDDED ORDERED ABELIAN GROUPS 72

balls. Notice that the property of ¢(x, y, ¢) to define a nested family of balls is first-order
expressible. By hypothesis G’ is maximal, then, by Theorem 2.2.11,

G' = VZAxYy(Qwe(w,y,2) — ¢(x,9,2)),

and so also

G = VZ3xVy(@we(w, y,2) — ¢(x,y,7)),

since G = G'. In particular, we have that (\,.; B, # &. Let b € [, B,. Clearly,
val(a — b) > val(a — g;) for eventually all i € I. Hence, val(b — g;) = val(a — g;), and

b is a pseudo-limit of (g;),; in G. We get a contradiction. |
Now we are able to prove the main theorem of this chapter.

Theorem 4.3.23. Let G = (G,I'(G),val) be any model of the theory of a maximal
ordered abelian group G’ such that

* there is n € N,n > 1 such that, for any a € G',C, = {a)*"" = ﬂ Vi

i€l ae V;’

Then, G is stably embedded if and only if it is maximal, its regular ribs (Gy, +,0,<) are
stably embedded for all y € T'(G) and its regular spine (I'(G), (Cy)geL,,,» <) is stably
embedded.

Proof. (=) By Proposition 4.3.22, G is maximal. We show that G, is stably embedded,
for any y € I'(G). Let y be any value in I'(G) and consider a proper elementary extension
G of G, in Ly,,. We need to show that G, is stably embedded in G. Note that G,isa
pure ordered abelian group. Moreover, since G, is regular, it is sufficient to consider
just 1-types (see Section 4.2.1). Clearly, there exists an elementary extension G' =
(G'.I'(G'),val) of G = (G,T(G), val) such that G}, > G > G,. It is enough to show
then that G, is stably embedded in G/,. Let a € G'\G with val(a) = y. By hypothesis, G
is stably embedded in G’. Then, the type of a over G is definable and, thus, so it is the
type of a mod V, over G,. Therefore, G, is stably embedded in G, as ordered abelian
groups. It follows that G, is stably embedded for any y € I'(G).

Similarly, we show that I'(G) is stably embedded in every elementary extension.

Let [ be a proper elementary extension of ['(G), and an elementary extension G’ =
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(G',T(G"),val) of G = (G,T'(G), val) such that I'(G’) > I" > I'(G). Let y e I(G')\I'(G)
and consider an element a € G’ of value y. Since the type of a over G is definable and
I'(G) is purely stably embedded, it follows that the type of y = val(a) over I'(G) is
definable. Therefore, every 1-type over I'(G) is definable. Hence, by Corollary 4.1.4,
['(G) is stably embedded.

(«) First of all, note that, for every y € I'(G), G, is archimedean by Fact 4.2.1. It
follows that the interpretation of val coincides with the natural valuation of G, and, in
particular, all principal convex subgroups of G are uniformly definable.

We show that every 1-type over G is definable in £. Consider an elementary exten-
sionG = (G',T(G’),val") of G = (G,T'(G), val") in £, and let « € G'\G. In particular,
by the maximality of G, G’ is not an immediate extension of G. As in the proof of
Theorem 4.3.14, denote by @ the set @(a) := {val"(a — g) | n € N, g € G}. We want
to show that tp(a/G U ) is definable. Then, since I'(G) is purely stably embedded and
tp(3/T(G)) is definable for all 3 € ®F by hypothesis, we deduce that the type tp(a/G)
of a over G is definable. By Theorem 4.3.20, a formula ¢(x, g,7) in the language £
with parameters in G U O is a finite Boolean combination of formulas of the form:

a) nx —g >0,

b) nx —g=,0,
C) nx — g = ke,
d) nx —g =*k,,

e) Y(val™ (nox — go),...,val™ " (ny_1x — gn_1), Fo, ..., 1),
where y is formula in (T, (Cy)geroy,» <)s 170, - - .- -1,k € Z\{O}, mo, ..., my_; € N,
m € N\{0} and g, g¢,...,81—1 € G, Uo,...,%y_; € O. Since (G,val) is pseudo-
complete, as in Claim 4.3.15, from Proposition 4.3.12, it follows that for any n € Z

and g € G we have that

val(na — g) = min{val(a’ — g),8°} (4.6)
val”(na — g) = min{val”(a — g),B8"'}. 4.7)

where a°,a” are a best approximation of na in G and a representative of a best ap-

n’>'n

proximation of na mod mG in G/mG, respectively, and 8° := val(na — a°) and B" :=
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val” (na—a"). Therefore, by (4.6) and (4.7) we clearly have a definition with parameters
inG U {B% 8"} ,.m1 of the set

E:={(z,9) e G" x O" | y(val™(noa — go),...,val"™ (ny_1a — gn_1),Fo, ..., %w_1)}.

Claim 4.3.24. The set
A:={geG|na—g>0}

is definable with parameters in G U ©.

Proof of the claim. Let g € G, and set 3 := val(na—g) = min{val(a® — g),8}. Clearly,
the sign of na — g is determined by the sign of na — g mod Vj. If val(a) — g) < B,
then, in particular, na — g mod Vs = a? — g mod Viat(ad—g)
g € Aif and only if a° — g > 0. Then, suppose val(a? — g) = g°.

. Therefore, in that case,

0

ne

If B < val(a) — g), then, the sign of na — g is determined by the sign of na — a
Otherwise, suppose val(a® — g) = ° for some g € G. Then, we have § = 8° € I'(G) and
na —g mod Vg € Gé. By hypothesis Gg is stably embedded in G;; and, in particular,
the type of na — g mod Vj over Gg is definable. Hence, there exists a formula with
parameters in Gg, and so in G, defining the set of g € G such that na — g mod Vs >
0. Therefore, we obtain that one can find ¢ (x),¥>(x),¥3(x) with parameters in G
equivalent to the formula na — g > 0 for each of the occurrences val(a® — g) < B2,
val(a® — g) > BY and val(a® — g) = B°. Thus A is definable with parameters in G U {8°}
by the formula

(val(a) —x) < BoAyi(x)) v (val(a) —x) > B2 Aga(x)) v (val(a) —x) = B Ays(x)).
|

Moreover, we observe that the set
B:={geG|na—g=,0}

is definable with parameters in G since g € B if and only if a)' — g =, 0 and 8 = 0.

Claim 4.3.25. The set
C:={geG|na—g= k}
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is definable with parameters in G U ©.

Proof of the claim. Let g € G, and set 8 := val"(na — g) = min{val”(a! — g),B}.
Similarly to the proof of the Claim 4.3.24, we show that one can find ¥ (x), ¥ (x), ¥3(x)
with parameters in G equivalent to the formula na — g =;, k. for each of the occurrences
val”(a) —g) < By, val"(a) —g) > By and val”(a) —g) = B,'. Then, C will be definable

with parameters in G U {8} by the following disjunction

(val"(ay—x) < By Ay (x)) v (val” (@) —x) > B atpa(x)) v (val™ (a —x) = By Ar3(x)).

If val”(ay — g) < B, then we simply need to observe that na — g mod V}' + mG' =
a, —g mod V", @-o T mG’. In particular, na — g =), k, if and only if & — g =3 k.,
so take ¥ (x) 1= al! — g =2 k.

If By < val"(a; —g), then we have na— g mod V' +mG' = na—a;! mod Vj, +mG'.
In particular, na — g =7 k, if and only if na — a] =7 k., which depends only on a.
Then, if na — a] =}, k., take ¥ (x) := x = x; otherwise, take ¥,(x) := —(x = x).
Suppose either 8 ¢ I'(G) or G is not discrete. Then, trivially, there is no g € G such
that val”(a”—g) = B and g € C. So, in both cases, take y3(x) := —(x = x). Therefore,
suppose that val”(a! — g) = B and Gg» is discrete. By (the proof of) Lemma 4.3.2,
there exists @’ € G’ such thata’—g =,, na—g and val” (a'—g) = val(d’—g). In particular,
we have that val”(a’ — g) = val"(na —g) = fand,d — g mod Vs + mG' = d — g
mod Vi'+mG' = na—g mod Vi'+mG'. Then, na—g ={' k. if and only if &' — g =’ k..
Since @' — g mod Vs € Gj; and Gy is stably embedded in Gy, there is a formula y3(x)
with parameters in Gy, and so in G, defining the set of g’s such thata’—g mod V' =,, kg
mod V', where kg denotes a representative in G’ of k times the minimal positive element

of G'/Vy'. Thus C is definable with parameters in G U {8}'}. O

Claim 4.3.26. The set
D:={geG|na—g ="k}
is definable with parameters in G U ©.
Proof of the claim. Consider g € G, and set 8 := val(na — g) = min{val(a® — g),°}.
Similarly to the proof of Claim 4.3.24, we show that one can find ¥ (x), ¥ (x), ¥3(x)

with parameters in G equivalent to the formula na — g =* k, for each of the occurrences
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val(a® — g) < B2, val(a® — g) > % and val(a® — g) = 8°. Then, D will be definable with

parameters in G U {°} by the following disjunction

(val(a, —x) < By Ay (x)) v (val(a) —x) > B0 Aga(x)) v (val(d) —x) = B Ags(x)).

If val(a) —g) < ), then we simply observe that na—g mod V = a)—g mod V.0,
In particular, na — g =* k, if and only if a® — g =* k., so take ¥ (x) := a — g =" k..

If B < val(a) — g), then we have na — g mod Vs = na — a; mod V. In particular,
0 _e

na—g ="k, if and only if na — a® =* k,, which depends only on a. Then, if na —a° =
k., take Y, (x) := x = x; otherwise, take ¥, (x) := —(x = x).

Suppose either 80 ¢ I'(G) or Gp is not discrete. Then, trivially, there is no g € G such
that val(a® — g) = 8° and g € D. So, in both cases, take ¢3(x) := —(x = x). Therefore,
suppose that val(a? — g) = 8% and Gy is discrete. Since Gy is stably embedded in G,
there exists a formula y3(x) with parameters in Gg, and so in G, defining the set of g’s
such that na — g mod Vs = kg mod Vj, where kg denotes a representative in G of k
times the minimal positive element of Gg. Therefore, we obtain that D is definable with

parameters in G U {°}. O

Now let @ = (ay, . . .,a,—1) be any tuple of new elements in G’. The type of tp(a/G)

is determined by the following set of formulas:

U ®(Qaa/G) vt (©(a)/To),

205e-sZk—1€EZ i<k

where ©(a) = ., ..,z ©(2za). Since each of these types are definable over G, so
i<k

is tp(a/G). This concludes our proof. O

We have studied stably embedded regular ordered abelian groups and stably embed-

ded coloured chains in Sections 4.2.1 and 4.1, respectively. Therefore, from Theorems

4.2.3 and 4.2.4 and Corollary 4.1.4, it follows that

Corollary 4.3.27. Let G = (G,I'(G),val) be any model of the theory of a maximal
ordered abelian group G’ satisfying

* there is n € N,n > 1 such that, for any a € G',C, = {a)" = ﬂ Ve

iel"”,aeVl."
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Then, G is stably embedded if and only if
1. G is maximal;
2. for everyy € I'(G), either G, = Z, or G, is densely ordered and div(G,) = R;
3. all cuts of (T(G), (Cy)yeL,,,» <) are definable.

Remark 4.3.28. Let G be an ordered abelian group with uniformly definable principal
convex subgroups. By Proposition 2.1.11, every cut A = (Ar, Ag) in the archimedean

spine I'; corresponds to a convex subgroup of G by the bijection
F:ARHCAR:{gEG‘Val(g>EAR}.

By Proposition 4.3.16 it follows that the definability of all cuts in (I'g, (Cy)peLyy,» <) 18

equivalent to the definability of all convex subgroups of G.

Remark 4.3.29. We can deduce that the ordered abelian group G := [

in Section 4.3.2 is the unique model of its own theory to be stably embedded. Indeed,

i<w Z analyzed
one can easily see that the lexicographic sum ,__Z is a prime model of T = Th(G)
and, hence, any maximal model of T contains G. It is clear that any proper extension of
G is not stably embedded, since, by maximality of G, it is not immediate and no proper

extension of a rib (Z, +, 0, <) nor of the archimedean spine (w, <) is stably embedded.

The next step in the study of stable embeddedness for ordered abelian groups could
be looking for a similar characterization for stably embedded pairs (G, G’) of ordered

abelian groups. More precisely, it is natural to ask whether the following is true.

Conjecture 4.3.30. Consider the complete theory T of a maximal ordered abelian group
G such that

* there is n € N,n > 1 such that, for any a € G,C, = {a)*"" = ﬂ Vi

i€l ae Vl,"

Consider an extension of models Gy < G, of T in L. Then, G, is stably embedded in
G, if and only if the following occurs:

e G is maximal in G,: there is no intermediate immediate extensions of Gy in G,;
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e for everyy e I'(Gy), (Gy), is stably embedded in (G»),;
o (I'(G1), (Cy)geLyy» <) is stably embedded in (T'(G2), (Cy)geL,n» <)-

As an application of Theorem 4.3.23, we conclude presenting a new example of
stably embedded ordered abelian group:

Example 4.3.31. The ordered abelian group G = H ... G; where

7, if i is rational

R if i is irrational

is stably embedded in every elementary extension. Indeed, G is maximal by Fact 2.2.8.
Moreover, one can easily see that, as ordered sets, S, =~ Q U {0} and 7, =~ 7, =
R U {0} (see for example [6, Section 4.2]). Therefore, the archimedean spine I'; is
interpretable in the language of ordered abelian groups, and the natural valuation is
given by t,. Then, the auxiliary sort (I, (Cy)eer,,,» <) is interpreted by the coloured
chain (R,Q, <). Moreover, the ribs of G are equal to either Z or R. Therefore, by
Corollary 4.3.27 G is stably embedded.
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