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Abstract

This thesis is concerned with the model theory of ordered abelian groups, in particular,
in relation to the properties of eliminating imaginaries and having definable types. The
theory of ordered abelian groups was initially studied by Y. Gurevich and P. Schmitt in
the second half of the 20th century. They classified up to elementary equivalence the
class of ordered abelian groups by a sequence of coloured chains, called spines, arising
from every ordered abelian group.

The analysis of imaginaries and the description of definable types are two active
research areas in model theory. We investigate the property of elimination of imagi-
naries for some special cases of ordered abelian groups. We prove that certain Hahn
products of ordered abelian groups do not eliminate imaginaries in the pure language of
ordered abelian groups. Moreover, we show that, adding finitely many constants to the
language of ordered abelian groups, the theories of the finite lexicographic products Zn

and ZnˆQ have definable Skolem functions. We then study the property for an ordered
abelian group to be stably embedded (i.e. to have definable types). We identify a suffi-
cient and necessary condition for certain ordered abelian groups to be stably embedded.
These include regular ordered abelian groups, ordered abelian groups with finite regular
rank and models of the theory of a maximal ordered abelian group satisfying a condition
on the definability of its principal convex subgroups. For the last class of groups G, we
establish, in particular, a transfer principle for stable embeddedness from G to the spine
of G in the spirit of the work of Gurevich and Schmitt.
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Chapter 1

Introduction

Ordered abelian groups form a class of first order structures widely studied in model
theory, and several results, including quantifier elimination results and classifications of
the model theoretic complexity, have been obtained (see for example [17], [49], [50],
[6], [13] and [10]). They are all unstable structures, so that their model theory is very
different and more complex than that of abelian groups, whose theory is stable. In his
pioneering paper [16], Gurevich determined how to transfer the elementary properties
of an ordered abelian group to simpler and more manageable structures. Indeed, for any
natural number n ě 2, one can associate with every ordered abelian group G a linear
order with unary predicates (coloured chain) SpnpGq, called the n-spine of G. Roughly
speaking, the collection of the n-spines of G "contains" all the information of the group
expressible in the language. This leads to some fundamental transfer principles from
G to SpnpGq, introduced by Gurevich first and revisited later by Schmitt in [41]. For
instance, one can reduce the elementary equivalence of two ordered abelian groups G

and H to the elementary equivalence of the corresponding n-spines SpnpGq and SpnpHq,
for any n ě 2. Furthermore, using that the theory of linear orders is decidable ([11]),
Gurevich proved the decidability of the theory of ordered abelian groups.
Ordered abelian groups play an important role also in the context of valued fields. In-
deed, since the fundamental results obtained by Ax, Kochen and Ershov for henselian
valued fields, one can reduce, in many cases, the study of a property for a valued field
to the study of the same property for its residue field and value group. Since the value
group is an ordered abelian group, this gives an extra motivation for better understand-
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1. INTRODUCTION 2

ing the model theory of ordered abelian groups. For contributions in this direction see
[18], [1] and [47].

In this thesis we will investigate two model-theoretical properties in the class of
ordered abelian groups, both somehow related to a definability issue: elimination of

imaginaries and stable embeddedness.
The imaginary elements of a given first order structureM are equivalence classes of

0-definable equivalence relations. Shelah, in [43], introduced for any structureM the
expanded structureMeq, in order to make the imaginary elements ofM real elements
of the structure. Adding the imaginaries to M has several advantages. For instance,
it allows to consider interpretations as subsets of the structure, and it entails "nice"
properties, as the Galois correspondence. In some cases, one can find already in the
structure canonical codes which identify the imaginary elements and, in this case, we
do not need to expandM toMeq. If this occurs, we say thatM eliminates imaginaries.
We may say that in a structure eliminating imaginaries, some quotient structures, in
general not definable, can essentially be treated as definable. In the literature there are
partial results on elimination of imaginaries in ordered abelian groups. Examples of
ordered abelian groups that eliminate imaginaries are divisible ordered abelian groups,
see [31], and discretely ordered abelian groups elementarily equivalent to Z, see [5] and
Appendix A of [9]. But examples of ordered abelian groups that do not have elimination
of imaginaries in the language Loag “ t 0,`,´,ă u are not present in the literature.
Providing such examples is the first goal of this thesis.

The second property we will examine is related to the definability of types. One
of the main results of Shelah’s classification theory is the characterization of stable
theories in terms of properties for types. In particular, a theory T is stable if and only if
all types over any model of T are definable. Then, in unstable theories, one can ask if the
definability of types holds for at least some modelM. This is equivalent to saying that,
for any elementary extension N and every definable set ϕpNq with parameters from N,
the intersection MXϕpNq is definable with parameters from M. If this is the case, we say
thatM is stably embedded in all elementary extensions or simply it is stably embedded.
If the same holds, not for all elementary extensions of M, but for a fixed elementary
extension N , we say thatM is stably embbeded in N or that the pair pN ,Mq is stably
embedded. In [46], stably embedded pairs of models in a particular class of valued
fields were studied. Touchard proved that, in some cases, an elementary pair of valued
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fields is stably embedded if and only if the extension is separated and the corresponding
pairs of value groups and residue fields are stably embedded. This result motivates then
an analysis of stably embedded ordered abelian groups, which is the second goal of this
thesis. In particular, we aim at characterizing stable embeddedness for ordered abelian
groups, establishing a result similar to that obtained for valued fields.

We outline the structure and the main results of the thesis in the following. After col-
lecting some preliminaries on general model theory in the next section, we introduce the
class of ordered abelian groups in Chapter 2. In this chapter, we review definitions and
results we will need through the thesis. We adapt, in particular, some notions from gen-
eral valuation theory to the context of ordered abelian groups, and we present the state
of art of the model theory of ordered abelian groups, summarizing the most important
results that have been achieved in the last years.

In Chapter 3, we prove that elimination of imaginaries fails for the theories of the
Hahn products H iăα Z and H iăα Z ˆ Q, with α well-ordered index set. A property
related to the elimination of imaginaries is the existence of definable Skolem functions.
In particular, definable Skolem functions allow to reduce the goal of finding a code for
every imaginary to coding just one dimensional definable sets. We prove that, once we
add finitely many judiciously chosen elements as new constants to Loag, the theories of
Zn and Zn ˆ Q, for any n ě 1, have definable Skolem functions. These results are part
of the preprint [27].

Chapter 4 is dedicated to the study of the ordered abelian groups which are stably
embedded in all elementary extensions. To this purpose, we firstly study stably embed-
ded coloured chains. We show that a coloured chain is stably embedded if and only if all
cuts are definable. Then, for certain ordered abelian groups G, we identify some neces-
sary and sufficient conditions for G to be stably embedded. These involve in particular
the non-existence of proper immediate extensions and the stable embeddedness of the
spine, establishing a transfer principle for stable embeddedness in the same spirit of that
of Gurevich and Schmitt for elementary equivalence. Moreover, we exhibit some con-
crete examples of stably embedded ordered abelian groups, including the Hahn product
G “ H iăω Z. To this end, we deduce from [6] a specific language in which G eliminates
quantifiers. Some of the results presented in this chapter have been obtained jointly with
M. Hils and P. Touchard and will appear in [19].
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1.1 Notation and preliminaries

We recall here some notions and results of model theory that we will use throughout the
thesis. For the most basic notions, one may refer to any model theory text, such as [20],
[35], [28] or [45].

We use the convention that 0 P N. We write N˚ and P for the set Nzt0u and the
set of primes, respectively. We denote the successor of an ordinal α by α ` 1 and, if
a set S has order-type α, the order type of the reverse order of S is denoted by α˚. A
tuple of variables px0, . . . , xnq or of elements in an L-structure pa0, . . . , anq is denoted by
x̄ or ā. Moreover, the notations |x̄| and |ā| stand for the arity of the tuple. Curvy letters
M,N ,K , . . . typically denote structures, whereas M,N,K, . . . denote the correspond-
ing underlying sets. IfM is an L-structure, by "definable" we will mean definable in L

with parameters in M, and by "0-definable" we will mean definable without parameters.

Elimination of imaginaries

Let M be an L-structure, L any first order language. Let m be a positive integer and
Epx̄, ȳq a 0-definable equivalence relation on Mm. The E-equivalence classes of Mm

are called imaginary elements ofM, and we say thatM eliminates imaginaries if each
imaginary can be coded in the structure. More precisely, the notion of elimination of
imaginaries is stated in the following definition.

Definition 1.1.1 ([20]). An L-structure M has elimination of imaginaries if for any
positive integer m, any 0-definable equivalence relation Epx̄, ȳq onMm and any E-class
X, there is an L-formula ϑpx̄, z̄q such that X “ ϑpMm, b̄q for some unique tuple b̄ Ď M.
Moreover, such a tuple b̄ is called a canonical parameter for X.

LetM be an L-structure. We denote by AutpMq the group of automorphisms ofM.
Moreover, let S Ď AutpMq. By FixpS q we mean the set

FixpS q “ t a P M | f paq “ a for all f P S u .

Let A Ď M. By AutpM{Aq and StabMpAq we mean the group of all automorphisms of
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M fixing A pointwise and fixing A setwise, respectively. Namely,

AutpM{Aq “ t f P AutpMq | f paq “ a for every a P A u

StabMpAq “ t f P AutpMq | f pAq “ A u .

Remark 1.1.2. LetM be an L-structure that admits elimination of imaginaries and let
b̄ be a canonical parameter for an E-class X, where Epx̄, ȳq is a 0-definable equivalence
relation on Mm. Then b̄ is fixed by the same automorphisms of M which leave X

invariant. Therefore, if M eliminates imaginaries, for every E-class X there exists a
tuple b̄ Ď M such that, for any automorphism f of M, f P StabMpXq if and only if
f P AutpM{b̄q.

Definition 1.1.3. An L-structureM has uniform elimination of imaginaries if for any
positive integer m, and any 0-definable equivalence relation Epx̄, ȳq on Mm, there is an
L-formula ϑpx̄, z̄q such that for every E-class X, there is a unique tuple b̄ Ď M such that
X “ ϑpMm, b̄q.

In other words,M uniformly eliminates imaginaries if one can find a formula ϑpx̄, z̄q
as in Definition 1.1.1 depending only on the equivalence relation Epx̄, ȳq and not on
the equivalence class X. Notice that uniform elimination of imaginaries is preserved
under elementary equivalence. Moreover, one can easily see that, in this case, every
0-definable equivalence relation is the fibration of a 0-definable function. In particular,
it holds that

Proposition 1.1.4. M has uniform elimination of imaginaries if and only if for every

0-definable equivalence relation Epx̄, ȳq there is a 0-definable function fE on M |x̄| such

that for all b̄1, b̄2,

Epb̄1, b̄2q if and only if fEpb̄1q “ fEpb̄2q.

We say that a theory T in L has (uniform) elimination of imaginaries if every model
of T has (uniform) elimination of imaginaries. The uniformity of elimination of imagi-
naries, in the sense of Definition 1.1.3, holds under the condition stated in the following
well-known result (see, for example, [35, Theorem 16.16]).

Theorem 1.1.5. Let T be an L-theory. Suppose T has elimination of imaginaries and,

in every model of T , there are at least two elements 0-definable. Then T has uniform

elimination of imaginaries.



1. INTRODUCTION 6

Note that the existence of at least two 0-definable elements in order to have uniform
elimination of imaginaries cannot be avoided. Indeed, both classes of the equivalence
relation px1 “ x2 ^ y1 “ y2q _ px1 ‰ x2 ^ y1 ‰ y2q are definable without parameters
by the formulas x1 “ x2 and x1 ‰ x2, respectively, but there is no way of using a unique
tuple to pick out one of these formulas.

Another form of elimination of imaginaries is the following.

Definition 1.1.6. We say that an L-structureM has weak elimination of imaginaries if
for any positive integer m, any 0-definable equivalence relation Epx̄, ȳq onMm and any
E-class X, there are an L-formula ϑpx̄, z̄q and a finite set B of tuples of M such that
X “ ϑpMm, b̄q if and only if b̄ P B.
We say that a theory T in L has weak elimination of imaginaries if every model of T has
weak elimination of imaginaries.

Fact 1.1.7 ([36]). Let T be an expansion of the theory of linear order. If T weakly

eliminates imaginaries, then T eliminates imaginaries.

Stable embeddedness

Definition 1.1.8. Let N be an elementary extension of M. M is said to be stably

embedded in N if for every definable set ϕpNm, āq, ā Ă N, its trace ϕpNm, āq X Mm is
LpMq-definable, i.e. there exist an L-formula ψpx̄, z̄q and a tuple b̄ of parameters in M

such that
ϕpNm, āq X Mm

“ ψpMm, b̄q. (1.1)

Note that ψpx̄, z̄q may depend on the parameters ā. If ψpx̄, z̄q depends only on the
formula ϕpx̄, ȳq and not on ā,M is said to be uniformly stably embedded in N .

Definition 1.1.9. We say thatM is stably embedded ifM is stably embedded in every
elementary extension ofM. Similarly, we say thatM is uniformly stably embedded.

It is easy to see that the property of being stably embedded in an elementary exten-
sion is equivalent to the definability of the types realized in that extension. First of all
we recall the notion of definable type over an arbitrary subset of M.
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Definition 1.1.10. Let A Ď M. A type ppx̄q P S npAq is said to be definable if for every
L-formula ϕpx̄, ȳq, there exists an LpAq-formula dpϕpȳq such that for all ā Ď A

ppx̄q $ ϕpx̄, āq if and only if M |ù dpϕpāq. (1.2)

The collection pdpϕqϕ is called a defining scheme for p.

Example 1.1.11. Every realized type is definable: let ᾱ P Mn, then tppᾱ{Mq is defin-
able. Indeed, trivially, pdpϕqϕ with dpϕpȳq “ ϕpᾱ, ȳq is a defining scheme for p.

Example 1.1.12. Let T be a stable theory, then all types over all models of T are defin-
able (Shelah’s theorem). In particular, for any formula ϕpx̄, ȳq, there is a formula ψpȳ, z̄q
such that for anyM |ù T , for every type ppx̄q over M there is b̄ Ă M such that

dpϕpȳq “ ψpȳ, b̄q. (1.3)

In this case, we say that all the types are uniformly definable.

One can see immediately the following fact:

Fact 1.1.13. M is stably embedded in N if and only if all n-types over M realized in N

are definable, i.e. for every ᾱ Ă N, ppx̄q “ tppᾱ{Mq is definable.

Similarly, M is uniformly stably embedded in N if and only if all n-types over M

realized in N are uniformly definable (dϕ does not depend on p, i.e. on ᾱ Ă N).

It is worth mentioning that uniform stable embeddedness of elementary pairs is pre-
served by elementary extension. Recall that an elementary pair is a pair of L-structures
pN ,Mq such thatM ĺ N . Let P be a unary predicate, then pN ,Mq can be seen as a
LP “ L Y tPu-structure by interpreting P as the underlying set of M. One can prove
that, ifM is uniformly stably embedded in N , thenM1 is uniformly stably embedded
in N 1 for any elementary extension pN 1,M1q of pN ,Mq in LP.

Remark 1.1.14. The following are equivalent:

1. M is (uniformly) stably embedded in every elementary extension,

2. M is (uniformly) stably embedded in a monster modelU of ThpMq.
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In order to characterize the definability of types, we now introduce the notion of
’heir’ of a type p.

Definition 1.1.15. Let p P S npMq, and N be an elementary extension ofM. An exten-
sion q of p over N is called an heir of p if for every formula ϕpx̄, ȳqwith parameters from
M and every n̄ Ă N such that q $ ϕpx̄, n̄q, there exists a tuple m̄ Ă M with p $ ϕpx̄, m̄q.

The following result is well-known [26]:

Theorem 1.1.16 (Lascar-Poizat). Let p P S npMq. Then p is definable if and only if p

has only one heir over every elementary extension ofM.

Another important result about the definability of types which we recall is Marker-
Steinhorn’s Theorem. In [29], Marker and Steinhorn showed that, in o-minimal struc-
tures, one can reduce the question of definability of types to the question of definability
of 1-types:

Theorem 1.1.17 (Marker-Steinhorn). Let T be an o-minimal theory, and letM ĺ N be

two models of T . Then, all types over M realized in N are (uniformly) definable if and

only if all 1-types over M realized in N are (uniformly) definable.

Note that since Marker-Steinhorn’s theorem, the question whether definability of 1-
types implies definability of n-types has been studied and analogue versions of Marker-
Steinhorn’s result are known in other contexts, see, for example, [7, Theorem 3.3] in the
class of algebraically closed valued fields and, more generally, [23, Lemma 6.2.7] and
[33, Lemma 2.7].

Relative quantifier elimination

Let us recall here some terminology and basic facts about relative quantifier elimination.
The material presented here is taken essentially from [38, Annex A]. In this section, L

will denote a many-sorted language and t Π,Σ u a partition of its sorts. Moreover, we
denote by LæΣ the language of all function symbols and relation symbols in L involving
only sorts in Σ.

Definition 1.1.18. Let LΣ´Mor be the definitional extension of L obtained by adding a
new predicate Pϕpx̄q for each LæΣ formula ϕpx̄q. The Morleyization of T on Σ is the
LΣ´Mor-theory T Σ´Mor :“ T Y t Pϕpx̄q Ø ϕpx̄q | ϕpx̄q LæΣ formula u.
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Definition 1.1.19. Let T be an L-theory. We say that

• T eliminates Π-quantifiers if every L-formula is equivalent modulo T to a formula
where quantification only occurs on variables from the sorts in Σ.

• T eliminates quantifiers relatively to Σ if the Morleyzation of T on Σ, T Σ´Mor,
eliminates quantifiers.

As observed in [38, Annex A], if T eliminates quantifiers relatively to Σ, then T

eliminates Π-quantifiers. But the converse is not in general true.

Definition 1.1.20. We say that Σ is closed if any relation symbol involving a sort in Σ

or any function symbol with a domain involving a sort in Σ only involves sorts in Σ.
Equivalently, every symbol involving sorts from both Π and Σ are function symbols of
the form f :

ś

i Pi Ñ S , where Pi P Π and S P Σ.

If Σ is a closed set of sorts, we will denote the set of functions f :
ś

i Pi Ñ S by F .

Fact 1.1.21. If Σ is a closed set of sorts, then T eliminates Π-quantifiers if and only if T

eliminates quantifiers relatively to Σ.

Fact 1.1.22. If Σ is a closed set of sorts and T eliminates quantifiers relatively to Σ, then

for anyM |ù T, any LpMq-definable subset of ΣpMq is defined by a formula of the form

ϕpx̄, f̄ pāq, b̄q,

where ϕ is an LæΣ-formula, ā is a tuple from ΠpMq, b̄ a tuple from ΣpMq and f̄ are

functions from F .

In particular, we have that if Σ is a closed set of sorts and T eliminates quantifiers
relatively to Σ, then any LpMq-definable subset of ΣpMq is LæΣpΣpMqq-definable. In that
case, we say that Σ is purely stably embedded.



Chapter 2

Generalities on ordered abelian groups

2.1 Algebraic properties

In this section we review some preliminaries on ordered abelian groups that we shall
need throughout the thesis, and for which we refer mainly to [14].

Basic notions and notations

Let G be an ordered abelian group, that is an abelian group endowed with a linear order
which is compatible with the group operation: a ă a1 if and only if a ` b ă a1 ` b

for all a, a1, b P G. Clearly, such a group is always torsion-free. Conversely, using a
compactness argument, one can easily see that any abelian group which is torsion-free
can be endowed with a linear order that makes it into an ordered group (see [20, Exercise
6.2.13]). For every a P G, a ‰ 0, we say that a is positive if a ą 0; otherwise, we have
a ă 0 and we say that a is negative. We say that G is discrete if there exists a minimal
positive element, and dense otherwise.

Notation. By divpGq, we denote the divisible hull of G, that is the minimal (unique up
to isomorphism) divisible group that contains G. Moreover, let a P G, and H be any
subgroup of G, we write a mod H for the coset of a in G{H, i.e. a mod H denotes the
set t a` b | b P H u.

10
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Convex subgroups

A subgroup C of an ordered abelian group G is convex in G if, for every g, h P G

such that 0 ă g ă h and h P C, we also have g P C. It is easy to see that the
intersection of convex subgroups is again a convex subgroup. Hence, we can define the
convex subgroup generated by a subset X of G, xXyconv, as the smallest convex subgroup
containing X. In particular, we mean by a principal convex subgroup C one generated
by a single element a P G, i.e. if C “ xayconv for some a P G. Clearly, all other convex
subgroups are unions of principal ones.

Proposition 2.1.1. (a) The set of all convex subgroups of G is linearly ordered by

inclusion.

(b) If C is a convex subgroup of G, then G{C is an ordered abelian group with respect

to the ordering relation defined by, for any a, b P G,

a mod C ă b mod C if and only if a ă b and b´ a R C.

(c) If C is a convex subgroup of G, then C is a pure subgroup of G, i.e. for any n P N

and g P G, if ng P C, then g P C.

The order-type of the set of all proper convex subgroups of G is called the rank of
G and it is an invariant under isomorphisms of G.

Definition 2.1.2. We say that G is archimedean if t0u and G are the only convex sub-
groups of G.

Proposition 2.1.3. If G is non trivial, the following conditions are equivalent.

(i) G is archimedean.

(ii) G has rank one.

(iii) For every pair of positive elements a, b P G there exists n P N, n ą 0 such that

na ą b.

The following notable result holds.
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Theorem 2.1.4 (Hölder’s Theorem). Every archimedean group is isomorphic (as or-

dered group) to a subgroup of R.

Clearly, the converse is also true, i.e. every subgroup of R is archimedean.

Cuts in ordered abelian groups

Let X be a totally ordered set. A cut in X is a pair pL,Rq of subsets of X such that
L Y R “ X and L ă R, i.e. a ă b for all a P L, b P R. Trivially, the pairs pH, Xq
and pX,Hq are cuts in X and are denoted by ´8,`8, respectively. If Y Ď X, then Y`

denotes the cut pL,Rq with R “ t x P X | x ą Y u and L “ XzR. Similarly, Y´ is the
cut pL,Rq with L “ t x P X | x ă Y u and R “ XzL. In particular, by a principal cut we
mean one of the form ´8,`8 or the form a`, a´ for some a P X.

Let pL,Rq be a cut in an ordered abelian group G. For any g P G, we define g`pL,Rq

as the cut pg` L, g`Rq. Then, to every cut pL,Rq in G, we may associate the following
subgroup of G

HpL,Rq :“ t g P G | g` pL,Rq “ pL,Rq u ,

which is called the invariance group of pL,Rq. It is straightforward that HpL,Rq is a
convex subgroup of G. Moreover, for every convex subgroup C and any g P G, we have

C “ Hpg`C`q “ Hpg`C´q.

When the context is clear, we will denote the cut pL,Rq by just the set L as well.

Hahn product and lexicographic sum

Let pI,ăq be an ordered set, and for each i P I let Gi be an ordered abelian group. From
the family tGiuiPI , we can construct two ordered abelian groups in the following way.
Consider the direct product of the groups Gi,

ś

iPI Gi, that is, the group of functions
f : I Ñ

Ť

iPI Gi such that for all i P I, f piq P Gi. For every f P
ś

iPI Gi, the support of
f is the set suppp f q :“ t i P I | f piq ‰ 0 u. Let H be the following subgroup of

ś

iPI Gi:

#

f P
ź

iPI

Gi | suppp f q is a well-ordered subset of pI,ăq

+

,
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where the empty-set is assumed to be well-ordered. It is easily checked that H is an
ordered abelian group with respect the lexicographic order, whose positive cone is given
by

f ąlex 0 ðñ f pminpsuppp f qqq ą 0.

The group H endowed with this order is called the Hahn product of the family tGiuiPI

and is denoted by H iPI Gi. The ordered subgroup

t f P H iPI Gi | suppp f q is finite u

is the lexicographic sum of the family tGiuiPI and is denoted by
ř

iPI Gi or
š

iPI Gi.
The lexicographic sum and the Hahn product of a family of ordered abelian groups

are indistinguishable by first order properties. Indeed, the following holds.

Proposition 2.1.5 ([41, Corollary 6.3]). Let pI,ăq be an ordered set and for each i P I

let Gi be an ordered abelian group. The lexicographic sum
ř

iPI Gi is an elementary

substructure of the Hahn product H iPI Gi.

The skeleton and the natural valuation

We introduce a fundamental algebraic invariant of an ordered abelian group.

Definition 2.1.6. Let G be an ordered abelian group. We denote by ΓG or simply Γ a set
indexing the set txayconv

uaPG of principal convex subgroups of G, and inversely ordered,
i.e. we set, for any γ, δ P ΓG,

γ ă δ ðñ Cδ Ă Cγ,

where, for any γ P ΓG, Cγ denotes the corresponding principal convex subgroup. Then,
ΓG has a maximal element corresponding to t0u, which we denote by8.
For every γ P ΓGzt8u, let Vγ be the union of all convex subgroups strictly contained in
Cγ, that is the largest convex subgroup which does not contain a, with a P G, a ‰ 0 such
that Cγ “ xay

conv. For γ “ 8, set Vγ “ t0u. For any γ P ΓG, the quotient Gγ “ Cγ{Vγ

is an archimedean group, and the pair

pΓG, pGγqγPΓGq
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is called the skeleton of G. Moreover, we call the set ΓG the archimedean spine of G, a
pair pγ,Gγq a bone of G, and Gγ a rib of G, for any γ P ΓG.

Example 2.1.7. Excluding the index for the zero set t0u, the skeleton of the lexico-
graphic sum G “

ř

iPI Hi of the family tHiuiPI is (isomorphic to) the pair pI, pHiqiPIq,
namely, ΓGzt8u – I and Gi – Hi for every i P I. The same holds for the skeleton of
the Hahn product G1 “ H iPI Hi.

It follows immediately that

Proposition 2.1.8. If ΓG is well-ordered, then all convex subgroups of G are principal.

One of the deepest results in the theory of ordered abelian groups states that every
ordered abelian group lives, as ordered subgroup, in the lexicographically ordered real
function space determined by the skeleton of its divisible hull. More precisely:

Theorem 2.1.9 (Hahn Embedding Theorem). Consider an ordered abelian group G,

and let pΓG, pGγqγPΓGq be the skeleton of G. Then G embeds (as an ordered abelian

group) into HγPΓG
divpGγq, where divpGγq is the divisible hull of Gγ.

The order structure on G induces a metric structure, coming from the natural valua-
tion, defined as follows.

Definition 2.1.10. The natural valuation on G is the map

val : G Ñ ΓG

defined by
valpaq “ γ,where xayconv

“ Cγ.

For any a P G, we will denote by Ca, Va, and Ga the corresponding ordered abelian
groups Cvalpaq, Vvalpaq, Gvalpaq, respectively.

It is straightforward to show that val satisfies the following properties, for all a, b P G

(i) valpaq “ 8 ðñ a “ 0,

(ii) valpa´ bq ě mintvalpaq, valpbqu,
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(iii) valpnaq “ valpaq for every integer n ‰ 0,

(iv) valpaq ‰ valpbq ùñ valpa´ bq “ mintvalpaq, valpbqu.

Moreover, note that, for every a P G, a ‰ 0,

Ca “ t g P G | valpgq ě valpaq u , and Va “ t g P G | valpgq ą valpaq u .

We recall that an abelian group G equipped with a map v : G Ñ Γ, with Γ totally
ordered set with8 as maximal element, satisfying (i)-(ii) is called a valued group, and,
in this case, v is called a valuation. Therefore, we can see any ordered abelian group as a
valued group with respect to the natural valuation, and we will refer to the archimedean
spine ΓG of G as the value set of G.

Then, the natural valuation allows to establish a relation between the two invariants
of an ordered abelian group we have introduced so far: the archimedean spine ΓG of G

and the rank of G. To this end, we recall that an endsegment of ΓG is a subset of ΓG that
is closed upward. One can easily see that

Proposition 2.1.11. 1. If C is a convex subgroup of G, then the set

∆C “ t valp f q P ΓG | f P C u

is an endsegment of ΓG.

2. If ∆ is an endsegment of ΓG, then the set

C∆ “ t f P G | valp f q P ∆ u

is a convex subgroup of G.

Moreover, we have that for any convex subgroup of C, C∆C “ C and, for any endsegment

∆ of ΓG, ∆C∆
“ ∆. Then, there exists an order-preserving bijection between the set of

all endsegments of ΓG and the set of all convex subgroups of G.

Therefore, the rank of G is isomorphic to the set of endsegments of ΓG, totally
ordered by inclusion. Moreover, notice that

Proposition 2.1.12. The following are equivalent:
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(i) C is a principal convex subgroup.

(ii) ∆´C is a principal cut.

2.2 Kaplansky theory for ordered abelian groups

In this section, we discuss extensions of ordered abelian groups. In particular, we will
need the notion of maximality from general valuation theory, and the characterization of
this notion in terms of sequence completion (Theorem 2.2.7). The relationship between
these two properties was originally proved by Kaplansky in the context of valued fields
[24]. Then his ideas have been adapted in other contexts; see e.g. [15] for the case of
valued vector spaces and [21] for the case of ordered groups, even non-commutative.

Firstly, notice that an embedding of ordered abelian groups induces an embedding
between their skeletons (see Definition 2.1.6). Particularly notable is the case where the
skeletons are actually equal. Indeed, we have the following definitions.

Definition 2.2.1. Let G be an ordered abelian group. We say that an extension H of G

is immediate if it preserves the skeleton, i.e. if ΓG “ ΓH and for each value γ P ΓG,
Gγ “ Hγ. Moreover, we say that G is maximal if it has no proper immediate extension.

Example 2.2.2. Let I be any ordered set and tGiuiPI a family of ordered abelian groups.
Then the Hahn product G1 “ H iPI Gi of the family is an immediate extension of the
lexicographic sum G “

ř

iPI Gi.

Remark 2.2.3. Not every immediate extension of an ordered abelian group G is iso-
morphic to G, neither it is an elementary extension of G. Indeed, consider for instance
the lexicographic sum G “

ř

iăωQ, and the element a P H iăωQ such that apiq “ 1 for
every i ă ω. Then, the ordered group G1 “ xG, ay generated by G and a is an immediate
extension of G, but it is not elementarily equivalent: a is not divisible by 2 (or by any
integer).

The notions of skeleton, immediate extension and maximality from general valua-
tion theory (see e.g. [25, Chapter 0]) coincide in this context with the definitions given
so far. We now recall the main results in [21]. First of all, we have to show that the
definition of immediate extension introduced here is equivalent to that of "c-extension"
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presented in the paper. In particular, we have the following characterization of immedi-
ate extensions.

Fact 2.2.4. Let G,H be ordered abelian groups such that G Ă H. Then the following

are equivalent:

1. H is an immediate extension of G,

2. for every h P Hzt0u there exists g P G such that valph´ gq ą valphq,

3. for every h P HzG, the set of values ∆ “ t valph´ gq | g P G u does not admit a

maximal element,

4. for every 0 ă h P H there exists g P G such that for all integers n, nph´ gq ă h.

Proof. It is trivial to show the equivalences 2 ô 3 and 2 ô 4. We prove 1 ô 2.
(1 ñ 2) Let H be an immediate extension of G and h P H, h ‰ 0. Let g P G. Then,
there is some g1 P G such that valph ´ gq “ valpg1q and h ´ g mod Vh “ g1 mod Vh.
It follows that valph´ g´ g1q ą valph´ gq. This shows that ∆ “ t valph´ gq | g P G u

does not admit a maximal element.
(1 ð 2) Let h P H, h ‰ 0 and g P G such that valph ´ gq ą valphq. Then, the bone
of h is equal to the the bone of g. Indeed, by (iv), valphq “ valpgq, and h mod Vh “ g

mod Vh. �

In [21], a c-extension is defined as an extension H of G satisfying condition 4. in the
above Fact, and, thus, we have showed that it is equivalent to an immediate extension.
So the notion of c-closed ordered abelian group, i.e. an ordered abelian group without
proper c-extensions, is equivalent to that of maximal ordered abelian group.

Definition 2.2.5. Let G be a valued group with respect to the valuation v. Consider
a sequence paiqiPI of elements in G, where I is a well-ordered set with no maximal
element.

• The sequence paiqiPI is called eventually pseudo-Cauchy or just pseudo-Cauchy if
there is α P I such that for all α ă i ă j ă k, vpai ´ a jq ă vpa j ´ akq.

• An element a of G is called a pseudo-limit of paiqiPI if there exists α P I such that
for all α ă i ă j, vpai ´ aq “ vpai ´ a jq.
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Moreover, we say that G is pseudo-complete if every pseudo-Cauchy sequence in G

admits a pseudo-limit in G.

Note that a pseudo-Cauchy sequence may admit more than one limit. Henceforth,
if paiqiPI is a sequence of elements in a valued group G, we will say that an assertation
about its elements holds for eventually all i if there is some i0 P I such that it holds for
all ai with i ě i0.

We can state the following results.

Proposition 2.2.6 ([21, Theorem C1]). Let G,H be ordered abelian groups such that

G Ă H. If H is an immediate extension of G and h P HzG, then there is a pseudo-

Cauchy sequence of elements of G with pseudo-limit h and with no pseudo-limits in

G.

Theorem 2.2.7 ([21, Theorem C6]). An ordered abelian group G is maximal if and only

if it is pseudo-complete.

Important examples of maximal ordered abelian groups are the Hahn products of
archimedean groups. Indeed,

Proposition 2.2.8 ([21, Lemma C4]). Let I be an ordered set, and pGiqiPI be a collection

of archimedian groups. Then the Hahn product H iPI Gi is pseudo-complete and, thus,

maximal.

We conclude this section introducing a characterization of pseudo-completeness in
terms of another notion of completion: the spherical completeness. Let G be a valued
group with respect to the valuation v : G Ñ Γ. Recall that the (closed) ball around a

with radius γ is the set

Bγpaq :“ t x P G | vpx´ aq ě γ u

where a P G and γ P Γ.

Definition 2.2.9. We say that G is spherically complete if every nested family of balls
has non-empty intersection, i.e. if whenever tBγipaiquiPI is such that for any i, j, either
Bγipaiq Ď Bγ jpa jq or Bγ jpa jq Ď Bγipaiq, then

Ş

iPI Bγipaiq ‰ H.
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The following result is well-known (see, for example, [30, pag.34] in the more gen-
eral context of ultra-metric spaces):

Theorem 2.2.10. A valued group G is spherically complete if and only if it is pseudo-

complete.

In particular, by Theorem 2.2.7, we have

Theorem 2.2.11. An ordered abelian group G is maximal if and only if it is spherically

complete.

2.3 Model theory of ordered abelian groups

Elementary classes of ordered abelian groups

The model theory of ordered abelian groups is complex and varied. Not all ordered
abelian groups satisfy the same model-theoretic properties and, since the sixties, several
subclasses of ordered abelian groups with a "good" model theoretic behaviour have been
isolated.

The first complete theory of ordered abelian groups to be studied was Presburger

arithmetic, i.e. the theory of pZ, 0,`,ăq. Let Loag denote the language t0,`,´,ău
of ordered abelian groups. Assume that G is elementarily equivalent to Z in Loag. The
Presburger language, denoted by LPres, is the definitional extension of Loag consisting
of the symbols 0, 1,`,´,ă and a binary relation symbol ”m for each m P N˚, where
0,`,´,ă take their obvious interpretation, 1 is interpreted as the minimal positive ele-
ment and ”m is interpreted as the equivalence relation modulo m defined by

a ”m b if and only if a´ b P mG.

It is well known that

Theorem 2.3.1 (Presburger’s Theorem, [37]). Presburger arithmetic admits quantifier

elimination in LPres.

Another notable class of ordered abelian groups is given by the models of the theory
of divisible ordered abelian groups: DOAG. It is well known that DOAG is complete
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and eliminate quantifiers in Loag ([39]). Recall that a structureM “ pM,ă, . . . qwhich is
totally ordered byă is said to be o-minimal if any definable subset of M is a finite union
of points and intervals with endpoints in M Y t˘8u. It follows that divisible ordered
abelian groups are o-minimal. In particular, these groups are exactly all the o-minimal
ordered groups, as the following result shows [32, Theorem 2.1].

Theorem 2.3.2. Any o-minimal ordered group is abelian and divisible. In particular, it

is elementarily equivalent to pQ, 0,`,ăq.

In [40], Robinson and Zakon identified a first elementary class of ordered abelian
groups, which includes both the models of Presburger arithmetic and DOAG, the class
of regular groups.

Definition 2.3.3. • Let n P N, n ě 2. An ordered abelian group G is said to be
n-regular if any interval with at least n points contains an element divisible by n.

• An ordered abelian group is said to be regular if it is n-regular for any n P N, n ě

2.

Fact 2.3.4. For an ordered abelian group G, the following are equivalent:

1. G is regular;

2. G is p-regular for every prime p;

3. there exists an archimedean group G1 elementarily equivalent to G;

4. the only definable convex subgroups of G are t0u and G.

Robinson and Zakon characterized completely all possible completions of the theory
of regular groups as well. Indeed, they proved

Theorem 2.3.5. • The theory of discrete regular groups is complete, and it is the

theory of pZ, 0,`,ăq.

• If G,H are dense regular groups, then G ” H if and only if, for each prime p,

G{pG and H{pG are either both infinite or have the same finite cardinality.
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Note that every ordered abelian group can be seen as an LPres-structure, once 1 is
interpreted by 0 if there is no minimal positive element. However, in [50], Weispfenning
proved that the regular groups are the only ordered abelian groups that admit quantifier
elimination in LPres:

Theorem 2.3.6. An ordered abelian group G is regular if and only if it admits elimina-

tion of quantifiers in LPres.

In [2], Belegradek studied the following ordered abelian groups, which include the
regular groups.

Definition 2.3.7. An ordered abelian group G is said to have finite regular rank if it has
a finite series of convex subgroups

p0q “ B0 ă B1 ă ¨ ¨ ¨ ă Bd “ G

with regular quotients Bi`1{Bi for any i ă d.

Note that such a series is not necessarily unique. However, in any ordered abelian
group of finite regular rank, there exists a unique finite series of convex subgroups p0q “
B0 ă B1 ă ¨ ¨ ¨ ă Bm “ G such that

• for each 0 ď i ă m, Bi`1{Bi is regular,

• for each 0 ă i ă m, Bi`1{Bi is not divisible.

Such a natural number m is called the regular rank of the group. Moreover, one can
prove that such convex subgroups are 0-definable [2, Corollary 3.5].

Fact 2.3.8. For an ordered abelian group G, the following are equivalent:

1. G has finite regular rank;

2. G has finitely many definable convex subgroups;

3. G is elementarily equivalent to a subgroup of the lexicographically ordered group

Rm, for some m P N.

The class of ordered abelian groups of rank at most m is an elementary class, as it
follows from
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Theorem 2.3.9 ([2, Theorem 3.8]). For any positive integer m, the class of ordered

abelian groups of rank at most m is first order axiomatizable.

In [49], Weispfenning obtained a quantifier elimination for the class of ordered
abelian groups of finite regular rank, in the language of ordered abelian groups extended
with predicates to distinguish the subgroups C`nG, where C is a definable convex sub-
group and n P N, n ‰ 1, and constants for a representative of the least positive element
of Bi`1{Bi for any i ă m such that Bi`1{Bi is discrete.

A further generalization can be obtained extending the notion of regular rank to that
of n-regular rank, as follows (see [13]). Let n P N, n ě 2. We say that an ordered abelian
group G has n-regular rank equal to m if there are Bpnq0 , . . . , Bpnqm convex subgroups of G

such that

• p0q “ Bpnq0 ă ¨ ¨ ¨ ă Bpnqm “ G,

• for each 0 ď i ă m, Bpnqi`1{B
pnq
i is n-regular,

• for each 0 ă i ă m, Bpnqi`1{B
pnq
i is not n-divisible.

Let RnpGq denote the set of convex subgroups
!

Bpnq0 , . . . , Bpnqm

)

.

Definition 2.3.10. If G has finite n-regular rank for all n P N, n ě 2, then the cardinality
of RpGq :“

Ť

ně2 RnpGq is either finite or ℵ0, and it is called the regular rank of G. In
this case, we say that G has bounded regular rank.

If G has bounded regular rank, then RpGq is the collection of all proper definable
convex subgroups of G and they are all definable without parameters ([13, Proposition
2.3]). Moreover, it holds that

Fact 2.3.11. If G has finite n-regular rank and H ” G, then H has the same n-regular

rank as G. In particular, the value of the regular rank depends only on the theory of G.

It follows that the class of ordered abelian groups of bounded regular rank of a fixed
value is closed under elementary equivalence. In [13, Theorem 2.4], Farrè generalized
Weispfenning quantifier elimination as well, identifying a language to eliminate quanti-
fiers for the more general class of ordered abelian groups of bounded regular rank.
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Quantifier elimination and the auxiliary sorts

Since the work of Gurevich [16] and Schmitt [41], it has been clear that linear orders,
up to additional unary predicates, are the key to understand ordered abelian groups. We
call this kind of structures coloured chain. More, precisely:

Definition 2.3.12. Let λ be a cardinal. A λ-chain, or simply a coloured chain, pC,ă
, pPiqiPλq is a linearly ordered set pC,ăq equipped with λ-many unary predicates Pi.

The tool introduced by Gurevich and Schmitt consisted in assigning to every ordered
abelian group G countably many coloured chains, called the n-spines of G, which could
allow to translate formulas about ordered abelian groups into formulas in a simpler
language. Indeed, they proved the so-called Transfer Theorem stating that every formula
of an ordered abelian group can be translated into a formula in some of its spines, plus
a quantifier free formula in a definitional extension of Loag [41, Theorem 4.5]. A direct
consequence of this result is that:

Theorem 2.3.13. Let G and H be two ordered abelian groups and SpnpGq and SpnpHq

the n-spines of G and H, respectively. Then, G ” H if and only if SpnpGq ” SpnpHq for

all n P N, n ě 2.

Remark 2.3.14. We have already seen an example of a sequence of invariants under
elementary equivalence of G in the class of ordered abelian groups of bounded regular
rank: the sequence of n-regular ranks (Fact 2.3.11). Actually, as it is proved in [13],
the n-spine of G coincides in this case with the set RnpGq and so the n-regular rank is
nothing more than the cardinality of the n-spine. Indeed, in literature ordered abelian
groups of bounded regular rank are also known as ordered abelian groups with finite
spines (e.g. in [18]).

The Transfer Theorem has been later revisited by Cluckers and Halupczok in [6].
In this paper, they introduced two languages, denoted by Lqe and Lsyn, which are very
close to that of Gurevich and Schmitt, but in line with the modern notion of many-sorted
language. Roughly speaking, in order to eliminate quantifiers, we need a (many-sorted)
expansion of LPres that can deal with the quotients G{H, where H is a definable convex
subgroup of G.
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Let us review the language Lsyn which we will need throughout the thesis. We begin
by describing the set of auxiliary sorts of Lsyn:

A :“ tSn,Tn,T
`
n | n P N, n ą 0u.

Definition 2.3.15. Fix a natural number n ą 0.

1. For a P GznG, let Vn
a be the largest convex subgroup of G such that a R Vn

a ` nG;
for a P nG, set Vn

a “ t0u. Define Sn :“ G{ „, with a „ a1 if and only if Vn
a “ Vn

a1 ,
and let sn : G � Sn be the canonical map. Denote by Gpαq the convex subgroup
Vn

a , with α “ snpaq.

2. For b P G, set V̂n
b “

Ť

aPG,bRVn
a

Vn
a , where the union over the empty set is declared

to be t0u. Define Tn :“ G{ „, with b „ b1 if and only if V̂n
b “ V̂n

b1 , and let
tn : G � Tn be the canonical map. Denote by Gpαq the convex subgroup V̂n

b , with
α “ tnpbq.

3. Denote by T`n a copy of Tn, i.e. T`n :“ tβ`uβPTn . For each β` P T`n , let
Gpβ`q “

Ş

αPSn,GpαqĽGpβqGpαq, where the intersection over the empty set is G. In
particular, if β “ tnpbq, we have Gpβ`q “

Ş

aPG,bPVn
a

Vn
a .

Some remarks:

• The notation introduced is slightly different from that adopted in [6].

• Note that for any convex subgroup C of G, a R C`nG if and only if CXa`nG “

H. Then, for a R nG, we could define Vn
a as the largest convex subgroup not

intersecting a` nG as well.

• In [6], it is proved that the convex subgroups in each of the three families

tGpαquαPSn , tGpαquαPTn , tGpαquαPT`n

are (uniformly) definable in Loag. It follows that all the auxiliary sorts are imagi-
nary sorts of Loag.

• The convex subgroups considered by Cluckers and Halupczock are the same sub-
groups introduced by Gurevich and Schmitt for the definition of the n-spine. In
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particular, the underlying set of the n-spine SpnpGq of G is the set of convex sub-
groups

t Vn
a | a P G, a R nG u Y

 

V̂n
a | a P G, a ‰ 0

(

. (2.1)

Adopting the terminology introduced by Gurevich, we will call Vn
a the n-fundament

of a and the convex subgroups of this form n-fundamental. Notice that the col-
lection of the n-spines of G is the model-theoretic counterpart of the archimedean
spine ΓG introduced in Definition 2.1.6. It is a model-theoretic invariant, whereas
the archimedean spine is an algebraic invariant.

In order to present the complete definition of Lsyn, we have to introduce also, for any
α P

Ť

nPN,ną0 Sn 9YTn 9YT
`
n and m P N,m ą 0, the subgroup

Gpαqrms :“
č

HĽGpαq,H convex subgroup of G

pH ` mGq.

Notice that it is definable by [6, Lemma 2.4].

Definition 2.3.16. The language Lsyn consists of the following:

(a) The main sort pG, 0,`,´,ă, p”mqmPN,mą0q;

(b) the auxiliary sorts Sn,Tn,T
`
n , for each n P N, n ą 0, with the binary relations

ď on (Sn 9YTn 9YT
`
n q ˆ pSm 9YTm 9YT`m q (each pair pm, nq giving rise to nine binary

relations), defined by α ď α1 if and only if Gpαq Ď Gpα1q;

(c) the canonical maps sn : G � Sn and tn : G � Tn, for each n P N, n ą 0;

(d) a unary predicate x “‚ k‚ on G, for each k P Zzt0u, defined by g “‚ k‚ if and
only if there exists a convex subgroup H of G such that G{H is discrete and g

mod H is equal to k times the smallest positive element of G{H, for every g P G;

(e) a unary predicate x ”‚m k‚ on G, for each m P N,m ą 0 and k P t1, . . . ,m ´ 1u,
defined by g ”‚m k‚ if and only if there exists a convex subgroup H of G such
that G{H is discrete and g mod H is congruent modulo m to k times the smallest
positive element of G{H, for every g P G;
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(f) a unary predicate Drp
ss

pr pxq on G, for each prime p and each r, s P Nzt0u with
s ě r, defined by Drp

ss

pr pgq if and only if there exists an α P Sp such that g P

Gpαqrp
ss
` prG and g R Gpαq ` prG, for every g P G;

(g) a unary predicate discrpxq on the sort Sp, with p prime, defined by discrpαq if and
only if G{Gpαq is discrete, for every α P Sp;

(h) two unary predicates on the sort Sp, with p prime, for each l, n P Nzt0u, defining
the sets

tα P Sp | dimFppGpαq
rpns
` pGq{pGpαqrp

n`1s
` pGq “ lu and

tα P Sp | dimFppGpαq
rpns
` pGq{pGpαq ` pGq “ lu,

where dimFpp‚q denotes the dimension of the group as Fp-vector space.

Fact 2.3.17 ([6, Theorem 1.13]). In the theory of ordered abelian groups, each Lsyn-

formula is equivalent to an Lsyn-formula without quantifiers ranging over the main sort

G.

In particular, we have that any Lsyn-formula ϕpx̄, ᾱq, with G-variables x̄ and A-
variables ᾱ, is a boolean combination of formulas of the form:

• ψpx̄q, where ψ is quantifier free and it lives purely in the main sort G, and

• χpx̄, ᾱq :“ ξppspp
ř

iăn zixiq, tpp
ř

iăn zixiqqpPP, ᾱq, where ξ is an A-formula and
z0, . . . , zn´1 P Z.

The following fact will be useful as well:

Fact 2.3.18 ([6, Lemma 2.12]). For any g P G, we have the following equivalences.

1. g “‚ k‚ if and only if G{Gpt2pgqq is discrete and g mod Gpt2pgqq is equal to k

times the smallest positive element of G{Gpt2pgqq.

2. g ”‚m k‚ if and only if G{Gpsmpgqq is discrete and g mod Gpsmpgqq is congruent

modulo m to k times the smallest positive element of G{Gpsmpgqq.

As remarked in [6], the map t2 can be replaced by any other map tp, with p P P.
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Model-theoretic complexity

Shelah’s classification theory [43] aims at identifying a series of properties which would
determine whether a theory is "tame". These properties are characterized by the absence
or presence of different combinatorial configurations and yield a partition of first order
theories in various classes. A classification of ordered abelian groups in this context
was initiated by Gurevich and Schmitt who proved that no ordered abelian group has
the independence property [17]. A more recent development in this direction is the
characterization of strongly dependent ordered abelian groups, obtained independently
by Halevi and Hasson [18], Dolich and Goodrick [10] and Farré [13]. In particular, the
following holds.

Theorem 2.3.19. For an ordered abelian group G, the following are equivalent:

1. G is strongly dependent,

2. G has finite dp-rank,

3. G has bounded regular rank and the cardinality of G{pG is infinite for only finitely

many prime p.

In [22], the case of dp-rank equal to 1 was also investigated and it was proved that

Theorem 2.3.20. An ordered abelian group G has dp-rank equal to 1 (i.e. it is dp-

minimal) if and only if G{pG is finite for every prime p.



Chapter 3

Ordered abelian groups that do not
have elimination of imaginaries

3.1 Hahn products of Z over a well-ordered set

In this chapter, we aim at investigating elimination of imaginaries for some ordered
abelian groups, including the Hahn products of Z with the usual order over a well-
ordered set I with |I| ą 1. Notice that the case |I| “ 1 corresponds to the ordered group
of integers Z and it has been already studied in [5]. To this purpose, in this section we
are going to observe some basic facts on such groups.

Throughout the chapter, unless otherwise stated, we work in the language of ordered
abelian groups Loag. Henceforth, we identify I with the corresponding ordinal α, and we
assume that α ą 1. We denote by Λ and Ψ the groups H iăα Z and

ř

iăα Z, respectively.
Note that, since α is well-ordered, the domain of Λ coincides with the direct product
ś

iăα Z. Furthermore, we add the symbol 8 to α and set i ă 8 for all i ă α. Then, we
define the following map v : Λ Ñ αY t8u where, for any f P Λ,

vp f q “

$

&

%

min suppp f q if f ‰ 0

8 otherwise
(3.1)

One can easily prove the following properties:

Fact 3.1.1. (i) vp f q “ vp´ f q for any f P Λ;

28
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(ii) vp f ` gq ě mintvp f q, vpgqu for any f , g P Λ;

(iii) Let f , g P Λ such that 0 ă g ă f . Then vp f q ď vpgq.

Recall that the set α Y t8u is isomorphic to the archimedean spine of Λ. Hence,
by Proposition 2.1.8, it follows that all the convex subgroups of Λ are principal. More-
over, it is easy to see that the map v coincides with the natural valuation introduced in
Definition 2.1.10. Therefore, the convex subgroups of Λ of the form

t f P Λ | vp f q ě i u

with i P αYt8u, are exactly all the convex subgroups of Λ. In particular, the following
holds.

Proposition 3.1.2. For every ordinal α ą 1, Λ “ H iăα Z is of rank pα` 1q˚.
In particular, if α is finite, i.e. α “ n for some n P N, n ą 1, there are exactly n proper

convex subgroups of Λ.

Note that the same holds also for Ψ “
ř

iăα Z and, in particular, the sets

t f P Ψ | vp f q ě i u

are exactly all the convex subgroups of Ψ. Throughout this chapter, we will denote by
Λi and Γi the convex subgroups of Λ and Ψ, respectively.

Let i ă α, etiu stands for the following element of Λ:

petiup jqq jăα where etiup jq “

$

&

%

1 if j “ i

0 otherwise
(3.2)

Note that, for every i, j ă α such that i ă j, 0 ă et ju ă etiu. Moreover, the family
tetiuuiăα generates Ψ “

ř

iăα Z as an abelian group.

Proposition 3.1.3. If α “ β ` 1 for some ordinal β, then Λ “ H iăα Z is discrete and,

in particular, etβu is the minimal positive element of Λ. Otherwise, if α is a limit ordinal,

Λ is dense.

Proof. Let α “ β` 1 and suppose f P Λ is such that 0 ă f ď etβu. Then vp f q “ β and
0 ă f pβq ď 1. Since f pβq P Z, f pβq “ 1 and f “ etβu.
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Let α be a limit ordinal and f P Λ, f ą 0. Let i “ vp f q. Then f piq ą 0 and f p jq “ 0
for every j ă i. Clearly, 0 ă eti`1u ă f . �

Note that the same is true for Ψ “
ř

iăα Z: if α “ β` 1, etβu is the minimal positive
element of

ř

iăα Z; otherwise,
ř

iăα Z is dense.
Let us show that all the convex subgroups of Λ are definable. Indeed, one can easily

see that they coincide with the convex subgroups introduced in Definition 2.3.15. Let us
recall that, for any n P N, n ą 0, if f P ΛznΛ, Vn

f denotes the largest convex subgroup
H of Λ not intersecting f ` nΛ; otherwise Vn

f “ t0u. Firstly, we observe that

Proposition 3.1.4. The family tΛi`1ui`1ăα is uniformly definable.

Proof. Let i ă α be such that i`1 ă α. Then Λi`1 “ V2
etiu and, so, is definable. Indeed,

for every f P etiu ` 2Λ, we have vp f q ď i. Hence, V2
etiu “ t f P Λ | vp f q ą i u “

t f P Λ | vp f q ě i` 1 u “ Λi`1. �

More generally, for every f P ΛznΛ, we have

Vn
f “

$

&

%

Λi`1 if i` 1 ă α

t0u otherwise

where i “ min t j ă α | f p jq R nZ u.
Now we are able to prove

Corollary 3.1.5. All convex subgroups of Λ are definable.

Proof. We have only to show the definability of Λi for i limit ordinal. Let i ă α be a
limit ordinal, then

Λi “
č

t jăα| jăi u

Λ j “
č

t jăα| jăi and j is not limit u

Λ j “
č

t gPΛ|etiuPVn
g u

Vn
g .

�

It is clear that the above statements hold also for Ψ “
ř

iăα Z.
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3.1.1 The group of automorphisms of the lexicographic sum of Z

In this subsection, we will describe the group of automorphisms of Ψ “
ř

iăα Z.
First of all, we characterize the automorphisms of Γ when α is finite, i.e. α “ n

for some natural number n ą 1. In this case, Ψ “
ř

0ďiďn´1 Z “ H0ďiďn´1 Z, and we
will denote Ψ by its domain Zn. For any z P Zn, let zpiq “ zi for every 0 ď i ď n ´ 1.
Note that Zn is a discrete ordered abelian group. Therefore, every element of the convex
subgroup

Zn
n´1 “ t z P Zn

| vpzq ě n´ 1 u “ t p0, . . . , 0,mq | m P Z u

is 0-definable. Moreover, each convex subgroup Zn
i of Zn is 0-definable, as it is proved

in the following lemma.

Lemma 3.1.6. For every 0 ď i ď n´ 1, Zn
i “ t z P Zn | vpzq ě i u is 0-definable.

Proof. For i “ 0 it is trivial. So, let 0 ă i ď n ´ 1 and fix a prime p. For every z P Zn,
z P Zn

i if and only if the set t w` pZn | ´z ď w ď z u of the ”p - equivalence classes
of elements in the interval r´z, zs has cardinality at most pn´i. Indeed, let z P Zn

i . Then
r´z, zs Ď p´eti´1u, eti´1uq. Since, for every 0 ď j ď n ´ 1 the ”p - equivalence classes
in p´et ju, et juq are exactly pn´1´ j, it follows that |t w` pZn | ´z ď w ď z u| ď pn´i.
Conversely, if z R Zn

i , then vpzq ă i and r´z, zs contains the interval r´eti´1u, eti´1us.
Therefore | t w` pZn | ´z ď w ď z u | ě pn´i ` 1.

Clearly, the set of z P Zn such that |t w` pZn | ´z ď w ď z u| ď pn´i is 0-definable.
�

Consider the following upper triangular matrix of size nˆ n, whose elements are in
Z

Kn “

¨

˚

˚

˚

˚

˚

˝

1 k12 . . . k1n

0 1 . . .
...

...
. . .

. . . kn´1n

0 . . . 0 1

˛

‹

‹

‹

‹

‹

‚

. (3.3)

Note that Kn is invertible and its inverse is an upper triangular matrix on Z of the
same form, with all the entries of the main diagonal equal to 1. Then the function

fKn : z P Zn
ÞÑ zKn P Z

n
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where zKn is the matrix product of the row vector z “ pz1, . . . , znq and Kn, is a group au-
tomorphism of Zn. Moreover, it is straightforward to show that fKn is order-preserving.
Therefore, every matrix as in (3.3) determines an automorphism of the ordered group
Zn. We now prove that every automorphism of Zn is obtained in this way and it can be
represented by a matrix as in (3.3).

Note that, since Zn is a free module of rank n, every group automorphism ϕ of Zn is
given by an invertible matrix M P GLnpZq. In other words, there exists an nˆ n matrix
M over Z with detpMq “ ˘1 such that ϕpzq “ zM for every z P Zn. Indeed, the matrix

M “

¨

˚

˚

˝

ϕpet1uq
...

ϕpetnuq

˛

‹

‹

‚

(3.4)

represents ϕ in the above sense. Hence, it suffices to prove that if ϕ preserves the order
on Zn, then M is of the form (3.3).

Let 0 ď i ď n´ 1 and m be any element in Zzt0u, consider

Ai,m “
 

z P Zn
| vpzq “ i and zvpzq “ m

(

.

Note that, for i “ n ´ 1, An´1,m is the singleton of p0, . . . , 0,mq. For i “ 0, A0,m is the
set tmu ˆ Zn´1, and, for 0 ă i ă n´ 1, Ai,m “ t0ui ˆ tmu ˆ Zn´pi`1q.

Proposition 3.1.7. For every 0 ď i ď n ´ 1 and every m P Zzt0u, the set Ai,m is

0-definable.

Proof. For i “ n ´ 1 it is clear. Let 0 ď i ă n ´ 1 be fixed and consider the set
Ai “ t z P Zn | vpzq “ i u. By Lemma 3.1.6, since Ai “ Z

n
izZ

n
i`1, Ai is 0-definable.

Let αpxq and βpxq be the formulas defining Ai and Zn
i`1, respectively. Since Ai,m “

t z P Zn | ´z P Ai,´m u, it suffices to prove the statement for m ą 0. If m “ 1, then Ai,1

is defined by the formula

ψ1pxq– αpxq ^ 0 ă x^ @y
`

pαpyq ^ 0 ă y^ y ă xq ùñ βpy´ xq
˘

.

Indeed, it is trivial that any element z in Ai,1 satisfies ψ1pxq. Conversely, let x be an
element of Zn satisfying ψ1pxq. Then vpxq “ i and xvpxq ą 0. If xvpxq ą 1, then
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vpx ´ etiuq “ i. Since 0 ă etiu ă x, we get a contradiction and xvpxq “ 1. Let m ą 1
and suppose by induction that Ai,m´1 is defined by the formula ψm´1pxq. Consider the
formula

γm´1pxq– @ypψm´1pyq ùñ y ă xq.

Then, Ai,m is defined by the formula

ψmpxq– αpxq ^ γm´1pxq ^ @y
`

γm´1pyq ^ y ă xq ùñ βpy´ xq
˘

.

Indeed, let x in Zn satisfy ψmpxq. Then vpxq “ i and xvpxq ą m ´ 1. If xvpxq ą m, then
vpx´ metiuq “ i, and we get a contradiction. Therefore, xvpxq “ m and x P Ai,m. �

Now we are able to prove the following

Theorem 3.1.8. Let ϕ be an automorphism of the lexicographic sum Zn, where n ą 1.

Then there exists an upper triangular matrix Kn as in (3.3) such that ϕ “ fKn .

Proof. For every z P Zn, ϕpzq “ zM, where M is the matrix (3.4). By Proposition
3.1.7, ϕ fixes Ai,1 setwise for every 0 ď i ď n ´ 1. Therefore, for any 0 ď i ď n ´ 1,
vpϕpetiuqq “ i and ϕpetiuqi “ 1, so the result is proved. �

Henceforth we focus on the case α ě ω. Recall that the chain

p0q “ Ψ8 Ă ¨ ¨ ¨ Ă Ψn Ă ¨ ¨ ¨ Ă Ψ1 Ă Γ0 “ Ψ “
ÿ

iăα

Z (3.5)

represents the set of all convex subgroups of Ψ. Note that, contrary to the finite case, it
is not a well-ordered set, since it contains an infinite descending chain.

Let ϕ be an automorphism of Ψ. For every f P Ψ, there exists a finite subset
t i1, . . . , im u of α such that f “

řm
j“1 f pi jqeti ju. Then, since ϕ is a group homomor-

phism, ϕp f q “
řm

j“1 f pi jqϕpeti juq. For every i, k ă α, we set

mik “ pϕpetiuqqpkq.

Then, we have
pϕp f qqpkq “

ÿ

iăα

f piqmik
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for every k ă α. In other words, also in the case of α infinite, we can associate to ϕ an
infinite matrix M “ pmikqi,kăα such that ϕp f q “ f M for every f P Ψ. Note that any row
of M has only finitely many nonzero elements.

In order to generalize the result of Theorem 3.1.8, we now determine which con-
ditions M has to satisfy, for preserving the order on Ψ. We will prove that also in the
infinite case M is upper triangular with all the entries of the main diagonal equal to 1,
i.e.

mik “

$

&

%

0 if i ą k

1 if i “ k
(3.6)

Lemma 3.1.9. Let ϕ be an automorphism of Ψ. Then ϕ fixes Ψi setwise for every 0 ď
i ă α.

Proof. Note that, for every 0 ď i ă α, ϕpΨiq is a convex subgroup of Ψ. It follows
that ϕ induces an order-preserving bijection on the set of all convex subgroups of Ψ

Ψi ÞÑ ϕpΨiq , which will be denoted again by ϕ. We prove that the automorphism
induced by ϕ on the set of convex subgroups of Ψ is the identity. Clearly, ϕpΨ0q “ Ψ0.
Let 0 ă i ă α and suppose, by induction, ϕpΨ jq “ Ψ j for every j ă i. Therefore,
ϕpΨiq Ď Ψi. Let ∆ be a convex subgroup of Ψ such that ϕp∆q “ Ψi. Then, ∆ “ Ψh

for some h ě i. It follows that Ψh Ď Ψi and, since ϕ is order-preserving, Ψi Ď ϕpΨiq.
Therefore, ϕpΨiq “ Ψi, and the statement is proved. �

From Lemma 3.1.9, it follows immediately that

Corollary 3.1.10. If ϕ is an automorphism of Ψ, then ϕ fixes t f P Γ | vp f q “ i u setwise

for every 0 ď i ă α.

Proof. Let i ă α be such that i ` 1 ă α. Then t f P Ψ | vp f q “ i u “ ΨizΨi`1 and,
by Lemma 3.1.9, it is fixed setwise. Furthermore, if α “ β ` 1 for some β ă α, each
element of Ψβ is 0-definable and Ψβ is fixed pointwise. �

Theorem 3.1.11. Let ϕ be an automorphism of Ψ. Then there exists M “ pmikqi,kăα with

mik’s as in (3.6) such that ϕp f q “ f M for every f P Ψ.

Proof. Fix i ă α and consider etiu P Ψ. Set mik “ pϕpetiuqqpkq for every k ă α. Then
by Corollary 3.1.10, mik “ 0 for k ă i and mik ě 1 for k “ i. Note that Lemma 3.1.9
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implies that each Ψi “ t f P Ψ | vp f q ě i u is generated by tϕpet juqu jěi as an abelian
group. Therefore, for every g P Ψi with vpgq “ i we have gpiq “ kmii for some k P Z.
Therefore gpiq ” 0 p mod miiq for every g P Ψi. Then mii “ 1, and so the statement is
proved. �

Summarizing, we have shown that, for any ordinal α, α ą 1, every automorphism
of Ψ “

ř

iăα Z can be represented as a matrix M “ pmikqi,kăα with mik’s as in (3.6).

3.2 Failure of elimination of imaginaries

We now prove that in both cases Ψ “
ř

iăα Z and Λ “ H iăα Z, there exist some
imaginaries of the ordered abelian group that do not admit a code in the group. We have
seen that a code for an imaginary element is, in particular, a finite tuple of elements fixed
pointwise by the same automorphisms which leave the imaginary invariant. Then, the
argument we will use consists in determining, for a fixed E-equivalence class X, with E

0-definable equivalence relation on the group G,

1. a set S Ď StabGpXq with FixpS q Ď FixpAutpGqq

2. an automorphism ϕ P AutpGqzStabGpXq.

We will first focus on the case of the lexicographic sum. To this purpose, recall that,
for any m P N,m ą 0, ”m denotes the binary relation defined by

f ”m g if and only if f ´ g is divisible by m.

Theorem 3.2.1. Let α ą 1 be an ordinal. Then Ψ “
ř

iăα Z does not admit elimination

of imaginaries in the pure language of ordered abelian groups.

Proof. Suppose by contradiction that Ψ admits elimination of imaginaries.
Let p be a prime and fix an element a P Ψ such that ap0q R pZ. Let X “ ras”p be the

”p - equivalence class of a. Since ”p is 0-definable, there exists a canonical parameter
b̄ for X, let b̄ “ pb jq jăµ for some positive integer µ.

Let ϕ be an automorphism of Ψ and M the matrix pmikqi,kăα such that ϕp f q “ f M

for every f P Ψ. Recall that M is either finite or infinite depending on the cardinality of
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α, and that, for every i, k ă α, mii “ 1 and mik “ 0 for k ă i. Suppose ϕ P StabΨpXq.
Then ϕpaq ”p a, namely, pϕpaqqpiq ´ apiq P pZ for every i ă α. Therefore, from
pϕpaqqp1q “ ap0qm01 ` ap1q and ap0q R pZ, it follows that m01 P pZ. Moreover, since
ϕ P StabΨpXq then, by Remark 1.1.2, ϕ P AutpΨ{b̄q, namely, ϕpb jq “ b j for every
j ă µ. In particular, since for every 0 ă k ă α, pϕpb jqqpkq “ b jpkq `

ř

0ďiăkpb jpiqqmik

for every j ă µ, it follows that

ÿ

0ďiăk

pb jpiqqmik “ 0 for every 0 ă k ă α and for every j ă µ. (3.7)

Let h ă α be such that h`1 ă α, and consider the following matrix M̃h “ pm̃h
ikqi,kăα

where

m̃h
ik “

$

’

’

’

&

’

’

’

%

1 if i “ k

p if i “ h, k “ h` 1

0 otherwise

In particular, M̃h is an upper triangular matrix, with all entries of the diagonal equal to
1. Since for every f P Ψ, p f M̃hqph ` 1q “ pp f phqq ` f ph ` 1q and p f M̃hqpkq “ f pkq

for every k ă α, k ‰ h, f M̃h P Γ and M̃h induces the function

ϕM̃ : f P Ψ ÞÑ f M̃h
P Ψ.

In particular, ϕM̃hp f q ”p f for every f P Ψ. Moreover, ϕM̃h is a group automorphism
and is order-preserving, hence ϕM̃h P StabΨpXq. From (3.7) it follows that ppb jphqq “ 0
for every j ă µ, and, so, b jphq “ 0 for every j ă µ. Now we need to distinguish two
cases, α limit ordinal and α successor ordinal.

case α limit Since for every h ă α, h` 1 ă α, we obtain b j “ 0 for every j ă µ.

case α “ β` 1 for some β ă α Then b jphq “ 0 for every h ă β and for every j ă µ.
In particular, for every j ă µ, b j P Ψβ, i.e. b j “ k jetβu for some k j P Z. Since etβu
is the minimal positive element of Ψ, b j is 0-definable for every j ă µ.

Therefore, in both cases, all the automorphisms of Ψ fix b̄. Hence, by Remark 1.1.2,
any automorphism of Ψ fixes X. This is clearly false. Indeed, for example, the auto-
morphism ψ : Ψ Ñ Ψ defined by ψp f q “ f M̄, for every f P Ψ, and M̄ “ pm̄ikqi,kăα
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with

m̄ik “

$

&

%

1 if either i “ k or i “ 0, k “ 1

0 otherwise

does not fix X since m̄01 R pZ. The contradiction follows from the existence of a
canonical parameter for X, and so Ψ does not admit elimination of imaginaries. �

Using the same argument as in Theorem 3.2.1, we can prove the failure of elimina-
tion of imaginaries in Loag also for Λ “ H iăα Z. Indeed, let p be a prime, a P Λ be such
that ap0q R pZ and X “ ras”p . Fix h ă α, then the automorphism ϕh : Λ Ñ Λ defined
by

pϕhp f qqp jq “

$

&

%

p f p j´ 1q ` f p jq if j “ h` 1

f p jq otherwise
(3.8)

for every f P Λ, fixes X setwise. Therefore, if b̄ is a canonical parameter for X, we
obtain that b̄ is a tuple of ketβu’s, with k P Z, if α “ β ` 1 for some β ă α, and b̄ “ 0̄
otherwise. In both cases we have a contradiction. Hence, we have proved

Theorem 3.2.2. Let α ą 1 be an ordinal. Then Λ “ H iăα Z does not admit elimination

of imaginaries in the pure language of ordered abelian groups.

This argument can be adapted for proving the failure of elimination of imaginaries
for other ordered abelian groups, such as H iăα Z ˆ Q and

ř

iăα Z ˆ Q, with α ą 1
ordinal. Indeed, in a similar way we can prove

Theorem 3.2.3. Let α ą 1 be an ordinal. Then H iăα ZˆQ does not admit elimination

of imaginaries in the pure language of ordered abelian groups.

Proof. Let Ω “ H iăα Z ˆ Q. Then Ω is the lexicographic product H iăα`1 Gi, where
Gi “ Z for every i ă α and Gα “ Q. As in the proof of Theorem 3.2.1, let p be a prime,
a P Ω such that ap0q R pG0 “ pZ and X “ ras”p . Let b̄ be a canonical parameter for X,
b̄ “ pb jq jăµ for some positive integer µ.

Fix h ă α, and consider the automorphism ψh : Ω Ñ Ω defined by

pψhp f qqp jq “

$

&

%

p f p j´ 1q ` f p jq if j “ h` 1

f p jq otherwise
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for every f P Ω. Since ψhp f q ”p f for every f P Ω, in particular, ψh P StabΩpXq.
Then, by Remark 1.1.2, ψh P AutpΓ{b̄q, i.e. ψhpb jq “ b j for every j ă µ. Therefore,
ppb jphqq “ 0 for every j ă µ, and, so, b jphq “ 0 for every j ă µ. From the generality of
h ă α, it follows that b jphq “ 0 for every h ă α and every j ă µ, namely, b j P t0uαˆQ
for every j ă µ.

Now consider the function ϕ : Ω Ñ Ω defined by

pϕp f qqp jq “

$

&

%

2 f p jq if j “ α

f p jq otherwise

for every f P Ω. Recall that Gα “ Q. Then, ϕ is an order-preserving group automor-
phism and, trivially, ϕ P StabΩpXq. Therefore, by Remark 1.1.2, ϕpb jq “ b j for every
j ă µ, and, so, b jpαq “ 0 for every j ă µ. It follows that b j “ 0 for every j ă µ

and X is 0-definable. Hence, χpXq “ X for all automorphisms χ of Ω. This gives a
contradiction, since the automorphism χ : Ω Ñ Ω defined by

pχp f qqp jq “

$

&

%

f p0q ` f p1q if j “ 1

f p jq otherwise

for every f P Ω, does not fix X. �

Note that the proof of Theorem 3.2.3 also works for
ř

iăα Zˆ Q.
The above arguments can be used in order to prove the failure of elimination of

imaginaries for many other ordered abelian groups, not only for Hahn products and
lexicographic sums. For instance, let p be a prime, p ‰ 2, and consider Zppq as an
ordered abelian group with the order induced from the usual order on Q. Note that this
is a regular ordered abelian group, different from a divisible ordered abelian group and
a model of Presburger arithmetic. Let X “ r1s”p “ 1 ` pZppq be the ”p-equivalence
class of 1. Define ϕ : Zppq Ñ Zppq by ϕpwq “ pp ` 1qw. Then, ϕ is bijective and
order-preserving, since p ` 1 ą 0. Moreover, ϕ P StabZppqpXq, and Fixpϕq “ t0u.
Therefore, if Zppq eliminates imaginaries (in Loag), X is 0-definable and, in particular,
StabZppqpXq “ AutpZppqq. This is clearly false, since the automorphism ψ : Zppq Ñ Zppq
defined by ψpwq “ 2w does not fix X.



3. ORDERED ABELIAN GROUPS NOT ELIMINATING IMAGINARIES 39

Weak elimination of imaginaries

From Fact 1.1.7, one can deduce that the behaviour of the theories of H iăα Z and

H iăα Zˆ Q in terms of "coding" imaginaries is even worse. Indeed, both ThpH iăα Zq

and ThpH iăα ZˆQq do not have even weak elimination of imaginaries. Using a similar
argument to that used in the proof of Theorem 3.2.1, we now provide a direct proof of
the failure of weak elimination of imaginaries for the theory of H iăα Z.

Theorem 3.2.4. Let α be an ordinal, α ą 1. Then T “ ThpH iăα Zq does not have weak

elimination of imaginaries in the pure language of ordered abelian groups.

Proof. Suppose for a contradiction that T has weak elimination of imaginaries. For
simplicity, consider Ψ “

ř

iăα Z. As in the proof of Theorem 3.2.1, let p be a prime and
consider X “ ras”p the ”p-equivalence class of a P Ψ such that ap0q R pZ. Then there
exist a formula ϑpx, w̄q and B a finite set of |w̄|-tuples such that X “ ϑpΨ, b̄q if and only
if b̄ P B.

Let µ “ |w̄| and b̄ “ pb0, . . . , bµq P B. Then b̄ is not 0-definable, since X is not
0-definable. In particular, if α is a limit ordinal, then b j ‰ 0 for every j ď µ, otherwise,
if α “ β ` 1 for some β ă α, then b j R Ψβ for every j ď µ. Fix j ď µ and consider b j.
Without loss of generality, we may assume j “ 0. Let h “ vpb0q ă 8. If α “ β ` 1,
then h ă β. In any case, since h ` 1 ă α, we can consider the function ϕh : Ψ Ñ Ψ,
defined as in (3.8). Therefore, since ϕh P StabΨpXq, we have X “ ϑpΨ, ϕhpb̄qq and
ϕhpb̄q P B. In particular, ϕhpb̄q “ pϕhpb0q, . . . , ϕhpbµqq and, by definition of ϕh, we
have pϕhpb0qqph ` 1q “ ppb0phqq ` b0ph ` 1q. Then, from b0phq ‰ 0, it follows that
pϕhpb0qqph ` 1q ‰ b0ph ` 1q and ϕhpb0q ‰ b0. Therefore, ϕhpb̄q ‰ b̄. Now consider
ϕδh “ ϕh ˝ ¨ ¨ ¨ ˝ ϕh

looooomooooon

δ times

for any natural number δ ą 0. For every δ ą 0, ϕδh P StabΨpXq

and, then, ϕδhpb̄q P B. Clearly, pϕδhpb0qqph ` 1q “ δppb0phqq ` b0ph ` 1q. It follows
that tϕδhpb̄quδPN is an infinite sequence of pairwise distinct elements of Ψ. This gives a
contradiction since B is finite. �

Similarly, we can provide a direct proof of the failure of weak elimination of imagi-
naries for the theory of H iăα Zˆ Q.
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3.3 Definable Skolem functions

In this section, we prove that the theories of Λ “ Zn and Ω “ Zn ˆ Q, with n ě 1, have
definable Skolem functions once finitely many new constants are added to the language
of ordered abelian groups. Let us recall that

Definition 3.3.1. We say that a theory T in L has definable Skolem functions if for every
L-formula ϕpx̄, yq, there is an L-formula ψpx̄, yq such that

T $ @x̄pDyϕpx̄, yq Ñ pD!yψpx̄, yq ^ @ypψpx̄, yq Ñ ϕpx̄, yqqqq. (3.9)

First of all, note that the convex subgroup C “ t0unˆQ of ZnˆQ is 0-definable by
the formula γpxq which says that all elements of r0, |x|s are divisible by 2. We highlight

Fact 3.3.2. Let G be an ordered abelian group.

(1) If G ” Zn, with n ě 1, then G has n 0-definable proper convex subgroups Gp0q “

p0q ă Gp1q ă ¨ ¨ ¨ ă Gpn´1q ă Gpnq “ G such that Gpiq{Gpi´1q ” Z for every 1 ď i ď n.

(2) If G ” Zn ˆ Q, with n ě 1, then G has n ` 1 0-definable proper convex subgroups

Gp´1q “ p0q ă Gp0q ă ¨ ¨ ¨ ă Gpn´1q ă Gpnq “ G such that Gp0q ” Q and Gpiq{Gpi´1q ” Z

for every 1 ď i ď n.

We rely on the following fact from [49]. Consider the first order language LWeis “
 

0, 1p1q, 1p2q, . . . , 1pnq,`,´,ă, p”mqmą0
(

, where 1p1q, 1p2q, . . . , 1pnq are new constant
symbols. In Zn we interpret 1p1q, 1p2q, . . . , 1pnq as p0, . . . , 0, 1q, p0, . . . , 0, 1, 0q, . . . ,
p1, 0, . . . , 0q, respectively. In Zn ˆ Q we interpret 1p1q, 1p2q, . . . , 1pnq as p0, . . . , 0, 1, 0q,
p0, . . . , 0, 1, 0, 0q, . . . , p1, 0, . . . , 0q, respectively. Namely, we expand Loag by the equiv-
alence relations ”m, for each positive integer m, and n constants 1piq, 1 ď i ď n, for
a representative of the smallest positive element in each discretely ordered quotient
Gpiq{Gpi´1q, where either G ” Zn or G ” Zn ˆ Q for some n ě 1. In [49], Weisfenning
proved that

Fact 3.3.3. Both ThLWeispZ
nq and ThLWeispZ

n ˆ Qq admit elimination of quantifiers.

Let G be either a model of ThLWeispZ
nq or a model of ThLWeispZ

n ˆ Qq. In particular,
every formula σpx, āq in LWeis with parameters ā Ă G, is equivalent modulo G to a
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positive boolean combinations of formulas of the following forms

p1q kx ”m tpāq, or kx ım tpāq,

p2q kx “ tpāq, kx ă tpāq, or tpāq ă kx,

where k ą 0 is a natural number and tpx̄q is a term in LWeis. Let tpāq “ g P G. Since
rG : mGs ă 8, every formula in (1) is equivalent to a finite disjuction of formulas of
the form kx ”m g. If such a formula defines a nonempty set, then there exists h P G

such that kx ”m g is equivalent to x ”m1 h for some m1 ą 0. So we may assume that
all formulas in (1) are of the form x ”m g. Moreover, every formula in (2) defines a
set which is a finite union of cosets of 2G intersected with intervals, see Theorem 12
and Theorem 15 in [4]. Therefore, every definable set in G is a finite union of cosets of
subgroups mG intersected with intervals with endpoints in GYt˘8u, for some positive
integer m. Hence, G is coset-minimal. We recall that

Definition 3.3.4. A totally ordered group (with possibly extra structure) is coset-minimal

if every definable set is a finite union of cosets of definable subgroups intersected with
intervals.

In [34], the groups elementarily equivalent to eitherQ, or Zn, or ZnˆQ, for some n ě

1, have been characterized as the coset-minimal pure (modulo some constants) groups.
Moreover, since any ”m-equivalence class is 0-definable, any such group provides an
example of a quasi o-minimal structure (see [3]).

We show that the theories of Zn and ZnˆQ have definable Skolem functions in LWeis

and in a suitable language expanding LWeis, respectively. In [42], using proof-theoretic
arguments, Scowcroft identified the following sufficient condition for a model complete
theory in order to have definable Skolem functions.

Proposition 3.3.5. Let L be a first order language with at least one constant symbol

and T be a model complete theory in L. Let Σ be a set of @D-axioms for T and ∆

be the set of all quantifier free L-formulas δpū, v̄q such that @ūDv̄δpū, v̄q P Σ. Suppose

for each δpū, v̄q P ∆ there is an L-formula γδpū, v̄q such that T $ @ūD!v̄ γδpū, v̄q and

T $ @ū@v̄pγδpū, v̄q Ñ δpū, v̄qq. Then T has definable Skolem functions.

Note that by Fact 3.3.3 the theories ThLWeispZ
nq and ThLWeispZ

n ˆ Qq are model-
complete and, hence, can be axiomatised by @D-sentences. Consider the following sets
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of sentences introduced in [44, pp. 149-150]:

Σ0 “@x@y@zppx` yq ` z “ x` py` zqq;

@xpx` 0 “ xq;

@xpx´ x “ 0q;

@x@ypx` y “ y` xq;

@xp px ă xqq;

@x@y@zpx ă y ă z Ñ x ă zq;

@xpx “ 0_ 0 ă x_ x ă 0q;

@x@yp0 ă x^ 0 ă y Ñ 0 ă x` yq.

Σ1 “ 0 ă 2 ¨ 1piq ă 1pi`1q for each i such that 1 ď i ď n´ 1;

@xp2x ă 1piq _ 1piq ă 2xq for each i such that 1 ď i ď n;

@xp2x ă 1piq Ñ mx ă 1piqq for each i such that 1 ď i ď n and m ě 2;

@xpx ”m 0 Ø DyDzp´1p1q ă 2z ă 1p1q ^ x “ my` zqq for each m ą 0;

@xp
ł

0ďq1,...,qnďm´1

px ”m q11p1q ` ¨ ¨ ¨ ` qn1pnqqq for each m ą 1;

@xp´1p1q ă 2x ă 1p1q Ñ Dypx “ myqq for each m ą 1.

Σ2 “ @xp p0 ă x ă 1p1qqq.

Σ3 “ Dxp0 ă x ă 1p1qq.

It was shown in [44] that the theories ThLWeispZ
nq and ThLWeispZ

n ˆ Qq are axiomatized
by Σ0YΣ1YΣ2 and Σ0YΣ1YΣ3, respectively. Therefore we are able to use Scowcroft’s
criterion for the existence of definable Skolem functions in model complete theories. It
follows easily that

Theorem 3.3.6. The theory ThLWeispZ
nq has definable Skolem functions.

Proof. We just need to show the existence of definable Skolem functions for the non-
universal axioms:

@xpx ”m 0 Ø DyDzp´1p1q ă 2z ă 1p1q ^ x “ my` zqq for each m ą 0, and

@xp´1p1q ă 2x ă 1p1q Ñ Dypx “ myqq for each m ą 1.
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It is sufficient to note that, in any model G of ThLWeispZ
nq, if g P G is such that g “ mh

for some h P G, then h is unique. Indeed, let g, h, k P G be such that g “ mh ` k and
´1p1q ă 2k ă 1p1q. Trivially, by the interpretation of 1p1q, the inequalities ´1p1q ă 2k ă

1p1q imply k “ 0. Hence, k is unique and, so also h in g “ mh is unique. �

In order to prove the same result for Zn ˆ Q, for any n ě 1, fix an element c in
C “ t0un ˆQ such that c ą 0. Then the quantifier elimination in ThLWeispZ

n ˆQq is not
affected by adding c as a new constant to LWeis. Let LWeispcq denote LWeisYtcu. Now an
axiomatization of ThLWeispcqpZ

n ˆ Qq is given by Σ0 Y Σ1 Y Σ3 and the following axiom:

0 ă 2c ă 1p1q.

Theorem 3.3.7. The theory ThLWeispcqpZ
n ˆ Qq has definable Skolem functions.

Proof. We just need to show the existence of definable Skolem functions for the non-
universal axioms:

@xpx ”m 0 Ø DyDzp´1p1q ă 2z ă 1p1q ^ x “ my` zqq for each m ą 0, and

@xp´1p1q ă 2x ă 1p1q Ñ Dypx “ myqq for each m ą 1, and

Dxp0 ă x ă 1p1qq.

Note that 0 ă c ă 1p1q. Then, as in the proof of Theorem 3.3.6, it suffices to note that,
in any model G of ThLWeispZ

n ˆ Qq, if g P G is such that g “ mh for some h P G, then
h is unique. Indeed, let g, h, k P G be such that g “ mh ` k and ´1p1q ă 2k ă 1p1q. In
particular, there exists k1 P G such that k “ mk1, and g “ mph` k1q. Therefore, we may
assume k “ 0. �

By the characterization of dp-minimal ordered groups in [22] (see Theorem 2.3.20),
for any n ě 1, the finite lexicographic products Zn and Zn ˆ Q are dp-minimal. The
author has recently learned that Vicaria [48] has identified a suitable many-sorted lan-
guage in which dp-minimal ordered abelian groups eliminates imaginaries. We aimed
at identifying a single-sorted language that could suffice for eliminating imaginaries for
the theory of the ordered groups Zn, and ZnˆQ, for any n ě 1. The languages LWeis and
LWeispcq seemed to be promising for this goal, since in these languages we can eliminate
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the ”p-equivalence classes and, by Theorem 3.3.6 and Theorem 3.3.7, there are defin-
able Skolem functions. Indeed, it is well known that, provided that one can uniformly
associate a canonical parameter to every unary definable set, the existence of definable
Skolem functions is a sufficient condition for uniform elimination of imaginaries (see
[20, Lemma 4.4.3]).

The following example pointed out to the author by M. Hils shows that unfortunately
this is not plausible, and a many-sorted language seems unavoidable. Consider the
lexicographic product G “ Z ˆ R ˆ Z in LWeis (or in some expansion L of LWeis by
adding new constants) and suppose G admits elimination of imaginaries. By Fact 3.3.3,
we have that every infinite definable set X Ď Gm is uncountable. In particular, the set of
canonical parameters of cosets a`t0uˆRˆZ, with a P G, is a definable set, since it is
the image of a definable map f : ZˆRˆZ

t0uˆRˆZ Ñ pZˆ Rˆ Zq
m for some m P N, and, hence

it is uncountable. This is clearly false, since ZˆRˆZ
t0uˆRˆZ – Z. The contradiction follows

from the existence of a canonical parameter for a ` t0u ˆ R ˆ Z, and so ThLWeispZ
2q

does not admit elimination of imaginaries. Similar arguments can be used to show that
the theory of Zn, for any n ą 1, and the theory of Zn ˆ Q, for any n ě 1, do not
admit elimination of imaginaries in any expansion L of Loag by adding new constants.
Moreover, it seems plausible that a much more general statement can be proven along
the same lines, namely that whenever G is an ordered abelian group admitting a non-
trivial definable convex subgroup, then G does not eliminate imaginaries, even after
naming constants.

Remark 3.3.8. It is still unsolved the problem of eliminating imaginaries for the theo-
ries of H iăα Z and H iăα ZˆQ with α any ordinal, since these groups do not belong to
the class of ordered abelian groups of bounded regular rank considered in [48].



Chapter 4

Stably embedded ordered abelian
groups

4.1 Stably embedded coloured chains

We initially study stably embedded models of a theory of linear orders with unary pred-
icates, as these structures appear naturally in the study of ordered abelian groups. In
[35, Section 12.6], Poizat has shown that a 1-type p over a coloured chain is definable if
and only if its cut is definable. We strengthen this result, generalizing it to every n-type.

For this purpose, we recall the following fact, which is a fundamental tool in the
model theory of coloured chains. Let C be a coloured chain, and a, b P C. We say that a
sequence ϕ1pxq, . . . , ϕnpxq of formulas is realized between a and b if there are n elements
c1, . . . , cn, with a ă c1 ă ¨ ¨ ¨ ă cn ă b, such that each ci satisfies the corresponding
formula ϕi.

Fact 4.1.1 (Rubin’s Theorem). Let C and D be two coloured chains in the same lan-

guage tă, pPiqiPIu. Two increasing n-tuples, a1 ă ¨ ¨ ¨ ă an in C and b1 ă ¨ ¨ ¨ ă bn in

D, have the same type if and only if they satisfy the following conditions:

• for every i ď n , ai and bi have the same type,

• for every i ă n , the same finite sequences of formulas are realized between ai and

ai`1 and between bi and bi`1.

45
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As a consequence of Rubin’s theorem, we can simply describe the types over a
coloured chain in the following way. Let C be a coloured chain and ppx1, . . . , xnq a n-
type over C. Let p be non-realized in C, since in the case p is realized it is completely
determined by a realization of p in C. Moreover, we may assume that no coordinate
of px1, . . . , xnq is realized in C. For any 1 ď i ď n, the cut determined by p and xi is
defined to be the pair pAp

i , B
p
i q, with

Ap
i “ t c P C | c ă xi P p u , Bp

i “ t c P C | xi ă c P p u .

Note that, since for any 1 ď i ď n the pair pAp
i , B

p
i q is a partition of C, for every

finite subset p of p, p is satisfiable either by an element of Ap
i or by an element of Bp

i ,
for any 1 ď i ď n. In particular, if the cut pAp

i , B
p
i q is definable, that is to say if Ap

i

is definable, then p is finitely satisfiable on one side. Indeed, we can introduce the
following definition.

Definition 4.1.2. Suppose that pAp
i , B

p
i q is a definable cut, and let ψpxiq be a definition

of Ap
i . We say that p is satisfiable on the left at xi if p $ ψpxiq; otherwise, we say that p

is satisfiable on the right at xi.

Rubin’s theorem implies then that a non-realized type p P S npCq is completely
determined by its restriction to the empty set of parameters, the sequence of its cuts
pAp

i , B
p
i q1ďiďn, and its side of satisfiability at xi for every i such that pAp

i , B
p
i q is definable.

We deduce from it the following fact:

Proposition 4.1.3. Let p P S npCq be a non-realized type over a coloured chain C. Then

p is definable if and only if the cut pAp
i , B

p
i q is definable for every 1 ď i ď n.

Proof. If p is definable, then trivially pAp
i , B

p
i q is definable for every 1 ď i ď n. Con-

versely, suppose that pAp
i , B

p
i q is definable for every 1 ď i ď n. Let D be a very saturated

elementary extension of C. By Theorem 1.1.16, it is sufficient to show that p has only
one heir over D. In particular, we need to show that if q P S npDq is an heir of p, for each
i, 1 ď i ď n, there is only one possibility for its cut pAq

i , B
q
i q and its side of satisfiability

at xi. Let 1 ď i ď n be fixed, and let ψpxiq be a definition of Ap
i . If q P S npDq is

an heir of p, then for every d P D, D |ù ψpdq if and only if q $ d ă xi. Therefore,
Aq

i “ t d P D | d ă xi P q u is necessarily the subset of D defined by ψpxiq and, hence,
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we have no choice for the cut determined by q and xi. The same holds for its side of
satisfiability. Suppose, for instance, that p is satisfiable on the left at xi. Then, p is
finitely satisfiable in Ap

i and, so q is finitely satisfiable in Aq
i . �

Therefore, we obtain the following characterization of stably embedded coloured
chains.

Corollary 4.1.4. A coloured chain C is stably embedded if and only if all cuts of C are

definable.

Examples 4.1.5. The following coloured chains are stably embedded:

1. pω,ăq;

2. pR,ăq;

3. pR, PQ,ăq, where PQ stands for a predicate defining Q.

4.2 The case of ordered abelian groups with finite regu-
lar rank

In the next sections, we aim at characterizing all stably embedded ordered abelian
groups. It is worth analyzing, firstly, the case of ordered abelian groups with finite
regular rank, since in this case one can obtain without great effort a very simple char-
acterization. To this purpose, in the following section we are going to investigate stable
embeddedness for the subclass of regular ordered abelian groups. A similar study for
this class of groups can be also found in [8, Section 4], while the case of models of
DOAG and Presburger arithmetic has been already covered in [46].

4.2.1 Regular ordered abelian groups

We begin by observing a fundamental fact that will be useful also later.

Fact 4.2.1. Let G be any ordered abelian group. If G is stably embedded, then all convex

subgroups of G are definable.
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Proof. It is sufficient to show that any convex subgroup determines a cut which is de-
finable if and only if the subgroup is definable. Indeed, clearly, if G is stably embedded,
then every cut in G is definable.

Let C be a convex subgroup of G, and consider the cut C` “ pL,Rq, with R “

t g P G | g ą C u and L “ GzR. Trivially, if C is definable, then C` is definable. Con-
versely, suppose C` is definable. Then, so it is the invariance group of C`, HpC`q “

t g P G | g`C` “ C` u. Since C is a convex subgroup, HpC`q “ C and, hence, C is
definable. �

In particular, it follows that every regular ordered abelian group which is stably
embedded is necessarily archimedean. As a consequence, we will see that both in the
class of divisible ordered abelian groups and in the class of Z-groups there is a unique
stably embedded model.

Divisible ordered abelian groups

We now show that pR, 0,`,ăq is stably embedded in any elementary extension and it is
the unique model of DOAG to be stably embedded.

Since divisible ordered abelian groups are o-minimal, by Theorem 1.1.17 it is suf-
ficient to consider just 1-types. Therefore, let D |ù DOAG and ppxq P S 1pDq be a
non-realized type. Then, p is determined by the cut Cp “ td P D | p $ d ă xu and,
the definability of p is equivalent to the definability of Cp. Clearly, the only possible
cuts in R are of the form a´, a`,´8,`8. Therefore, pR, 0,`,ăq is stably embedded.
Moreover, let D |ù DOAG be such that every ppxq P S 1pDq is definable. By Fact 4.2.1,
D is a subgroup of R, and so equal to its completion. Hence, we have proved:

Theorem 4.2.2. Let D be a divisible ordered abelian group. Then, D is stably embedded

if and only if D – R.

Note that, since there are only finitely many kinds of types over R, each one corre-
sponding to a kind of cut among a´, a`,´8,`8, R is, in particular, uniformly stably
embedded.
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Presburger Arithmetic

We now show that pZ, 0,`,ăq is stably embedded in any elementary extension and it is
the unique model of Presburger Arithmetic to be stably embedded.

Let T be the theory of Z in LPres. LetM be a model of T , and let ā “ pa0, . . . , an´1q

be a finite tuple of elements in an elementary extension N ofM. Then, by quantifier
elimination,

ď

z0,...,zn´1PZ

tpp
ÿ

iăn

ziai{Mq $ tppā{Mq.

In particular, if all 1-types over M are definable, then all n-types over M are definable,
for each n. Hence, as in the case of divisible ordered abelian groups, we can concentrate
just on 1-types.

Let Z ĺM, thenM “ D ˆ Z, where D |ù DOAG. In particular, Z is (isomorphic
to) the non-trivial convex subgroup of M and, it is pure in M. Let ppxq “tppa{Zq,
with a P M. Then, ppxq is determined by the class modulo n of a and by the cut
Cp

n “ td P Z | p $ d ă nxu, with n ranging over N. Therefore, the only possible
1-types over Z are the realized types and the types of the form ´8,`8. Moreover, any
other model of T is not archimedean and, hence, not stably embedded by Fact 4.2.1. We
have proved:

Theorem 4.2.3. Let G be a Z-group. Then, G is stably embedded if and only if G – Z.

Note that, in particular, all types over Z are uniformly definable, and then Z is uni-
formly stably embedded.

Dense regular ordered abelian groups

It remains the case of pG, 0,`,ăq regular ordered abelian group which is neither di-
visible nor discrete. So, let G be any stably embedded regular ordered abelian group,
and assume G ď R by Fact 4.2.1. Assume, also, that G is dense. By quantifier elimi-
nation in LPres, as in the previous cases, we can use a Marker-Steinhorn-type argument

and deduce the definability of n-types from the definability of 1-types for all regular
ordered abelian groups. Therefore, let G1 ľ G be an elementary extension of G, and
ppxq “ tppa{Gq be a non realized type over G, with a P G1. Then, p is determined by
the classes modulo n of a and by the cuts Cp

n “ td P Z | p $ d ă nxu, with n P N.
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In particular, p is definable if and only if the type of a over the divisible hull of G is
definable. Then, by Theorem 4.2.2 we have that

Theorem 4.2.4. Let G be any regular ordered abelian group densely ordered. Then G

is stably embedded if and only if G is archimedean and divpGq – R.

Uniform stable embeddedness does not hold in general for any dense regular group
stably embedded, as the following example shows.

Example 4.2.5. Let pbiqiPI be a Q-basis of R and consider G “ t
ř

iPI
zi
2n bi | zi P Z, n P

Nu ď R. Then G is stably embedded, but not uniformly.
Let G1 be an elementary extension of G which contains a realization g1n of (a com-

pletion of) the partial type pnpxq determined by the cut p 1
2n q

`, for every n P N. If G

is uniformly stably embedded in G1, then we have that for every elementary extension
pG̃1, G̃q of the pair pG1,Gq, G̃ is stably embedded in G̃1. This is clearly false. Indeed,
consider any non-principal ultrafilter U on N, and let g1 “ pg1nqnPN{U an element of
the ultraproduct

ś

UG1. Then, the type ppxq “ tppg1{
ś

UGq is not definable, hence,
G̃ “

ś

UG is not stably embedded in G̃1 “
ś

UG1.

Note that, by a similar argument, one can show that no archimedean ordered abelian
group not isomorphic to Z or R is uniformly stably embedded.

4.2.2 Ordered abelian groups with finite regular rank

In this section, we are going to characterize all stably embedded models in the class of
ordered abelian groups with finite regular rank. Let G be an ordered abelian group with
finitely many definable convex subgroups

p0q “ ∆0 ă ¨ ¨ ¨ ă ∆i ă ¨ ¨ ¨ ă ∆n “ G.

For any i ă n, we can associate to G the following short exact sequence of ordered
abelian groups

0 ÝÑ ∆i
ι
ÝÑ ∆i`1

ν
ÝÑ ∆i`1{∆i ÝÑ 0 (4.1)

This simple observation will allow us to deduce some necessary and sufficient condi-
tions for an ordered abelian group with finite regular rank in order to be stably embed-
ded.
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Recall that a short exact sequence of abelian groups is a sequenceM “ pA, B,C, ι, νq,
where A, B,C are abelian groups and ι, ν homomorphisms such that

• ι : A Ñ B is injective

• ν : B Ñ C is surjective

• Imι “kerν

A short exact sequence
0 ÝÑ A ι

ÝÑ B ν
ÝÑ C ÝÑ 0

is said to be pure if ιpAq is a pure subgroup of B. In [46], Touchard proved the following
characterization for pure short exact sequences of abelian groups:

Proposition 4.2.6. LetM “ pA, B,C, ι, ν, . . . q be a pure short exact sequence of abelian

groups, with eventually additional structure on the sort A and on the sort C. Let N “

pA1, B1,C1, ι1, ν1q be an elementary extension ofM.

Then, M is (uniformly) stably embedded in N if and only if A is (uniformly) stably

embedded in A1 and C is stably embedded in C1.

In particular, this proposition can be applied to short exact sequences of ordered
abelian groups

0 ÝÑ pA,ăq ι
ÝÑ pB,ăq ν

ÝÑ pC,ăq ÝÑ 0

with A convex subgroup of B and C – B{A and, so to the short exact sequences in (4.1)
as well. Indeed, we have that A is a pure subgroup of B and, the order on B can be
recovered from the orderings on A and C. It follows

Theorem 4.2.7. Let G be an ordered abelian group with finite regular rank, and let

p0q “ ∆0 ă ¨ ¨ ¨ ă ∆i ă ¨ ¨ ¨ ă ∆n “ G be all the definable convex subgroups of

G. Then, G is (uniformly) stably embedded if and only if ∆i`1{∆i is (uniformly) stably

embedded for every i ă n.

Proof. By induction on n. For n “ 1, it is trivial. Let n ą 1 and suppose that the
statement holds for any ordered abelian group with n definable convex subgroups. Let
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G1 be any elementary extension of G. Consider the following short exact sequences

M : 0 ÝÑ ∆1
ι
ÝÑ G ν

ÝÑ G{∆1 ÝÑ 0

N : 0 ÝÑ ∆11
ι1
ÝÑ G1 ν1

ÝÑ G1{∆11 ÝÑ 0

where ι, ι1 are the immersion maps and ν, ν1 the canonical maps. We haveM ĺ N and,
since ∆1 is pure in G, M is pure. Therefore, by Proposition 4.2.6, G is (uniformly)
stably embedded in G1 if and only if ∆1 is (uniformly) stably embedded in ∆11 and G{∆1

is (uniformly) stably embedded in G1{∆11. Moreover, by induction hypothesis, G{∆1

is (uniformly) stably embedded if and only if ∆i`1{∆1

∆i{∆1
» ∆i`1{∆i is (uniformly) stably

embedded for every 1 ď i ă n. �

Notice that for any i ă n, the group ∆i`1{∆i has no proper nonzero definable sub-
groups and hence is regular by Fact 2.3.4. Then, by the characterization of stably em-
bedded regular ordered abelian groups in Section 4.2.1, we have

Corollary 4.2.8. G is stably embedded if and only if ∆i`1{∆i is archimedean and either

∆i`1{∆i – Z or divp∆i`1{∆iq – R.

Example 4.2.9. The ordered abelian groups Zn and ZnˆR are uniformly stably embed-
ded, for every n P N, and they are the unique models of their own theory to be stably
embedded.

4.3 Towards a characterization of stable embeddedness

We have seen in the previous section that if an ordered abelian group G is stably em-
bedded, then all its convex subgroups are definable. One can easily see that this is far
from being a sufficient condition for stable embeddedness. Indeed, even if all convex
subgroups of G are definable, stable embeddedness certainly can fail in two cases:

• if a rib Gγ of G is not stably embedded as an ordered abelian group, for some
γ P ΓG, and

• if G is not maximal.
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By Theorem 4.2.4, a very simple example for the first occurrence is given by the group
of the rationals Q and, more generally, by any archimedean group G, which actually
coincides with its unique rib, such that divpGq is a proper subgroup of R. As we will
see in Section 4.3.2, the lexicographic sum

ř

iăω Z represents instead an ordered abelian
group which is not maximal and not stably embedded.

We are going to prove that, for a certain class of ordered abelian groups, the above
conditions, together with the existence of a convex subgroup which is not definable,
represent actually the only cases where an ordered abelian group is not stably embedded.
In other words, for a class of ordered abelian groups, the maximality of the group, the
definability of all its convex subgroups, and the stable embeddedness of all its ribs are
sufficient to deduce the stable embeddedness of the group (see Theorem 4.3.23 and
Remark 4.3.28.)

In the next sections, we will introduce all the tools we need to attain this goal.

4.3.1 The induced valued group modulo m

Let G be an ordered abelian group. In Section 2.2, we have seen that G is, in particular,
a valued group with respect to the natural valuation. Now we show that we can actually
associate to G a family of valued groups, one for every natural number m. Indeed,
let m P N. As in Definition 2.3.15, for any a P GzmG, let Vm

a be the largest convex
subgroup of G such that a R Vm

a ` mG. For any a P mG, set Vm
a “ t0u.

Definition 4.3.1. We denote by Γm
G or simply Γm a set indexing the set of the convex

subgroups tVm
g ugPG, and inversely ordered. In other words, we set tVm

g ugPG “ tVm
γ uγPΓm

G
,

and, for any γ, δ P Γm
G,

γ ă δ ðñ Vm
δ Ă Vm

γ .

As usual, let 8 denote the maximal element of Γm, corresponding to t0u. For every
m P N, we define a map valm : G Ñ Γm, as follows:

valm
paq “ γ, where Vm

a “ Vm
γ

Notice that, for any m ą 0, Γm is equal to the underlying set of the auxiliary sort
S m introduced in Definition 2.3.15, and valm corresponds to the canonical map sm. In
particular, for m “ 0, Γ0 is the archimedean spine ΓG of G and val0 is the natural
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valuation on G, and, for m “ 1, Γ1 “ t8u and val1 is the trivial map sending every
element of G to8.

Clearly, for every m P N, the map valm induces the valuation map ˆval
m

: G{mG Ñ

Γm defined by ˆval
m
pg mod mGq “ valm

pgq, for any g P G. We call the valued group
pG{mG, ˆval

m
q the induced valued group modulo m of G and Γm

G the m-value set of G. By
abuse of notation, we will also write valm to refer to the induced valuation ˆval

m
.

The aim of this section is to prove that the property of pseudo-completeness transfers
from G to the induced valued group modulo m’s. We first show that, in the case of G

pseudo-complete ordered abelian group, we can actually identify Γm with a subset of
Γ “ ΓG (depending on m), for any m P N.

Lemma 4.3.2. Let G be a pseudo-complete ordered abelian group, and m P N be a

natural number such that m ą 1. Then, for every g P G, g R mG, there exists g1 P G

such that g ”m g1 and Vm
g “ Vg1 .

Proof. Let g P GzmG be fixed. It is enough to show that the set of values

∆ :“ t valpg´ maq | a P G u

has a maximal element. Indeed, let a1 P G be such that valpg ´ ma1q “ max ∆, then,
clearly, Vm

g “ Vg´ma1 “ Vm
g´ma1 . Suppose ∆ does not admit a maximal element. Let

paiqiPI be a sequence such that valpg´maiq is increasing and cofinal in ∆. Then, we have
that pg´maiqiPI and paiqiPI are pseudo-Cauchy sequences. Consider a pseudo-limit a of
paiqiPI . Then, valpg´ maq ą valpg´ maiq for all i’s, and so we get a contradiction. �

Henceforth, if G is pseudo-complete, then, for any m P N, we have Γm
G Ď ΓG, and

the map valm : G Ñ Γm
G is given by:

valm
pgq “

$

&

%

mintγ P ΓG | g R Vγ ` mGu if g R mG,

8 otherwise.
(4.2)

We observe also the following property that will be used repeatedly from now on.

Remark 4.3.3. Let G be a a peudo-complete ordered abelian group, and g P G. From
Vm

g Ď Vg it follows valm
pgq ě valpgq, for any m P N,m ą 1.
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We highlight that Γm may be a proper subset of Γ. In particular, it holds that

Proposition 4.3.4. Let G be a pseudo-complete ordered abelian group, and m P N be a

natural number such that m ą 1. Then, Γm is the set t γ P Γ | Gγ is not divisible by m u.

Proof. Let γ P Γ be a value for which the corresponding rib Gγ is not divisible by m.
This means that there exists g P Cγ such that for all g1 P Cγ, valpg`mg1q “ γ (otherwise,
valpg`mg1q ą γ and, g`Vγ “ mg1`Vγ for some g1 P Cγ). Thus, Vγ is the largest convex
subgroup of G not intersecting g ` mG and, hence, γ P Γm. Conversely, if γ P Γm, then
there exists g of m-value γ. By Lemma 4.3.2, we may assume that valpgq “ γ. Then,
we have that g P Cγ ` mG and g R Vγ ` mG, and so Gγ is not divisible by m. �

Example 4.3.5. Consider the following ordered abelian group: H pPP Zppq.
Clearly, for any p P P, since we have pZppq Ĺ Zppq and qZppq “ Zppq for all q ‰ p, Γp “

tpu. Then, Γ “ P “
Ť

pPP Γp and, in particular, all convex subgroups are definable.

Note that, if G is not pseudo-complete, the convex subgroup Vm
g is not necessarily

equal to a value Vi for some i P Γ. Consider, for instance, G1 :“
ř

rPQ Z, an increasing
sequence of positive rationals prkqkPN converging to

?
2 and a :“ parqrPQ P HrPQ Zwith

ar “

$

&

%

m if r “ rk for some k P N,

0 otherwise.

Let G be the ordered subgroup generated by G1 Y tau (notice that a is not divisible by
m in G). We have that Vm

a “
ř

ią
?

2 Z, but Vm
a ‰ Vg for any g P G.

Theorem 4.3.6. Let G be a pseudo-complete ordered abelian group. Then, for every

m P N,m ą 1, the induced valued group modulo m pG{mG, valm
q is pseudo-complete.

Proof. Note that, by Lemma 4.3.2, for any coset a mod mG in G{mG, there exists
ba P G such that a ”m ba and valm

paq “ valpbaq (if a P mG, we trivially have ba “ 0).
We show that a pseudo-Cauchy sequence pai mod mGqiPI in G{mG can be lifted into a
pseudo-Cauchy sequence pa1iqiPI in G such that ai ”m a1i for every i P I. We may assume
that valm

pai ´ a jq ă valm
pa j ´ akq for all i ă j ă k. Let I “ λ for some limit ordinal λ.

By transfinite induction, we can define the following sequence in G:

• For α “ 0, let a10 be any element of G such that a10 ”m a0 and valpa10q “ valm
pa0q.
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• For any α ă λ, let bα`1 denote an element in G such that bα`1 ”m aα ´ aα`1 and
valpbα`1q “ valm

paα ´ aα`1q. We set a1α`1 “ a1α ` bα`1.

• Let 0 ă α ă λ be a limit ordinal, and assume valpa1β ´ a1γq “ valm
paβ ´ aγq, for

eventually all β ă γ ă α, and a1β ”m aβ for all β ă α. Then, pa1βqβăα is pseudo-
Cauchy in G and, in particular, it admits a pseudo-limit cα in G. Let bα be such
that bα ”m aα ´ cα and valpbαq “ valm

paα ´ cαq. We set a1α “ cα ` bα.

Note that aα ”m a1α for any α ă λ. Let us prove the following claim:

Claim 4.3.7. Let α be a limit ordinal, and suppose pa1βqβăα is pseudo-Cauchy. Then,

there exists β0 ă α such that valpa1α ´ a1βq “ valpa1β`1 ´ a1βq for any β ě β0. In

particular, a1α is a pseudo-limit of pa1βqβăα.

Proof of the claim. Clearly, we have that valpa1α´a1βq “ valpcα`bα´a1βq ě mintvalpcα´
a1βq, valpbαqu. Then, since cα is a pseudo-limit of pa1βqβăα, it is sufficient to show that
valpbαq ą valpcα ´ a1βq “ valpa1β`1 ´ a1βq for eventually all β ă α. Let β ă α be fixed
sufficiently large. Then, by definition, valpbαq “ valm

paα ´ cαq and, in particular, it
holds that

valm
paα´ cαq “ valm

paα´ aβ`1` aβ`1´ cαq ě mintvalm
paα´ aβ`1q, valm

paβ`1´ cαqu.

Since the sequence paβ mod mGqβăα is pseudo-Cauchy in G{mG and aβ ”m a1β for any
β ă α, it follows that

1. valm
paα ´ aβ`1q ą valm

paβ`1 ´ aβq “ valpa1β`1 ´ a1βq, and

2. valm
paβ`1 ´ cαq “ valm

pa1β`1 ´ cαq ě valpa1β`1 ´ cαq ą valpa1β`1 ´ a1βq.

Therefore, valpbαq ą valpa1β`1 ´ a1βq, and valpa1α ´ a1βq “ valpa1β`1 ´ a1βq. �

Then, by transfinite induction, it follows easily that valpa1β ´ a1γq “ valm
paβ ´ aγq,

for eventually all β ă γ ă λ. In particular, pa1βqβăλ is pseudo-Cauchy, and it ad-
mits a pseudo-limit a1 in G. Then, a1 mod mG is a pseudo-limit of the sequence paα
mod mGqαăλ in G{mG. Indeed, for any β ă α ă γ ă λ large enough, we have that
valm

pa1 ´ aαq “ valm
pa1 ´ a1αq and

valm
pa1 ´ a1αq ě valpa1 ´ a1αq “ valpa1γ ´ a1αq “ valm

paγ ´ aαq ą valm
paα ´ aβq.
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It follows that valm
pa1 ´ aβq “ valm

paα ´ aβq for eventually all β ă λ. Hence, a1

mod mG is a pseudo-limit of paα mod mGqαăλ, and the statement is proved. �

4.3.2 An instructive example

Before analysing the case of a more general class of ordered abelian groups, it is worth
presenting a new interesting example of stably embedded ordered abelian group. Con-
sider the Hahn product G “ H iăω Z. We prove that G is stably embedded in every
elementary extension. Note that

1. G is maximal, by Proposition 2.2.8;

2. for any γ ă ω, Gγ “ Z and, hence, every rib of G is stably embedded by Theorem
4.2.3;

3. the archimedean spine ΓG of G is the ordered set ωY t8u and, hence, it is stably
embedded, by Corollary 4.1.4.

First of all, we look for a language in which G admits quantifier elimination. We
have already mentioned that in [6] Cluckers and Halupczok have introduced two many-
sorted languages, Lqe and Lsyn, in which any ordered abelian group eliminates quantifiers
from G. To our purposes, it is convenient to consider the language Lsyn, instead of
Lqe. Indeed, although it may seem rather technical, this language has better syntactic
properties, since the only symbols in Lsyn connecting the main sort G and the auxiliary
sorts inA are functions from G to a sort inA.

In 3.1 we have seen that all convex subgroups of G “ H iăω Z are unifomly de-
finable, and that for any n P N, the n-spine of G is isomorphic as ordered set to the
archimedean spine ΓG “ ω Y t8u. It is well known that the theory of ω eliminates
quantifiers in the language t0,ă, su, where 0,ă are interpreted in the obvious way and
s is interpreted by the successor function s : n ÞÑ n ` 1 (see e.g. [12, Theorem 32A]).
One can easily see that this is equivalent to the following

Fact 4.3.8. Let T be the theory of ωY t8u in the language tă, 0,8, su, where 0,ă,8
are interpreted in the obvious way and s is interpreted by the function s : ω Y t8u Ñ
ω Y t8u defined by spnq “ n ` 1 if n ă ω and sp8q “ 8. Then T admits elimination

of quantifiers.
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Then, from Facts 2.3.17 and 2.3.18 one can deduce a specific many-sorted language
LH in which G eliminates quantifiers.

Proposition 4.3.9. Let LH be the language consisting of

• the main sort G with the symbols `,´, 0,ă,”m for each m P N, interpreted in

the obvious way,

• an auxiliary sort Γ for ΓG with the symbols ă, 0,8, s, interpreted as in the above

Fact,

• a function symbol valm for each m P N, interpreted by the map valm : G Ñ Γ

defined in (4.2),

• a unary predicate x “‚ k‚ on G for each k P Zzt0u, defined by, for any a P

G, a “‚ k‚ if a mod Vvalpaq is equal to k times the minimal positive element of

G{Vvalpaq,

• a unary predicate x ”‚m k‚ on G for each m P N,m ą 0 and k P t1, . . . ,m ´ 1u,
defined, for any a P G, by a ”‚m k‚ if a mod Vm

valmpaq is congruent modulo m to k

times the minimal positive element of G{Vm
valmpaq.

Then the theory of G “ H iăω Z admits quantifier elimination in LH.

Proof. We compute the auxiliary sorts Sn,Tn,T
`
n and the projection maps sn, tn of Lsyn

for G “ H iăω Z. We have that, for any n P N, n ą 0, the underlying sets of Sn,Tn,T
`
n

is the archimedean spine of G, namely, the set ω Y t8u. We have already noticed that,
for any n P N, n ą 0, Sn is in order-reversing bijection with Γn, and sn corresponds to
valn : G Ñ Γn. On the other hand, for n ‰ 1, we can actually identify Γn with ΓG “

ω Y t8u. Indeed, let a P GznG, and j “ min supppa mod nGq. Then, Vn
a “ H ią j Z.

Therefore, we have

Γn
– ωY t8u and valn

paq “

$

&

%

min supppa mod nGq if a R nG

8 otherwise

for any n P N, n ą 1. In particular, for any b P G, the convex subgroups
Ť

aPG,bRVn
a

Vn
a

and
Ş

aPG,bPVn
a

Vn
a are the largest convex subgroup not containing b and the smallest con-

vex subgroup containing b, respectively. Then, for any n P N, n ą 1, we can identify
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Tn and T`n with ω Y t8u, and tn “ val, where valpaq “ min supppaq if a ‰ 0 and
valp0q “ 8.

For any n P ω Y t8u, we denote by Gn the convex subgroup Hnďi Z. It remains to
prove that the symbols in LsynzLH can be defined without quantifiers over G in LH.

For any n P ωY t8u, and m P N, we have

Grmsn “
č

iăn

Gi ` mG “

$

&

%

Gn´1 ` mG if n ă ω

mG if n “ 8
(4.3)

Moreover, for any n P ω,

g P Gn ` mG if and only if valm
pgq ě n.

It follows that the unary predicates Drp
ss

pr pxq on G can be expressed in LH without G-
quantifiers. The same holds for the unary predicates defined on Sp “ ΓG. Indeed,
clearly, the set of values n such that G{Gn is discrete is equal to ω. Moreover, from
(4.3), it follows that, for any n ă ω,

pGrp
ss

n ` pGq{pGn ` pGq – Z{pZ,

and for n “ 8, pGrp
ss

n ` pGq{pGn` pGq “ t0u. Therefore, for each l, s P Nzt0u, the set

tn P ΓG | dimFppG
rpss
n ` pGq{pGn ` pGq “ lu

is either ω or the empty set. Similarly, one can deduce that the set

tn P ΓG | dimFppG
rpss
n ` pGq{pGrp

s`1s
n ` pGq “ lu

can be defined without quantifiers. Then, by Facts 2.3.17 and 4.2.1, the theory of G

admits quantifier elimination relatively to Γ in LH. In particular, since Γ eliminates
quantifiers by Fact 4.3.8, every LH-formula is equivalent modulo the theory of G to a
LH-formula without quantifiers. �

As a first consequence of the previous result, we show that the lexicographic sum
ř

iăω Z is not stably embedded in H iăω Z. Note that
ř

iăω Z is not maximal, since
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H iăω Z is an immediate extension.

Example 4.3.10. Let G1 denote the lexicographic sum
ř

iăω Z. Consider a “ paiqiăω P

H iăω Zz
ř

iăω Z with ai “ 2 for every i ă ω. Let C “ tg P G1 | g ă au. We prove that
C is not definable with parameters in G1. Assume, by contradiction, that C is definable
in G1. Then, by Proposition 4.3.9, the cut determined by C is one of the form

g` ∆`, g` ∆´

for some g P G1 and ∆ convex subgroup of G1. One can easily see that the invariance
group HpC,G1zCq of the cut pC,G1zCq is the zero-set t0u. Therefore, the only possi-
bilities for pC,G1zCq are the cuts of the form g` and g´. Thus, we get a contradiction,
from the fact that for any g1, g2 P G1 with g1 ă a ă g2, there are g11, g

1
2 in G1 such that

g1 ă g11 ă a ă g12 ă g2. Hence, for any g P G1 the cut determined by C cannot be of
the form g´ or of the form g`. Then we have that C is not definable and G1 is not stably
embedded in H iăω Z.

Remark 4.3.11. Notice that for an arbitrary model G1 of ThpH iăω Zq in LH, the aux-
iliary sort ΓpG1q is not necessarily interpreted, as ordered set, by the archimedean spine
ΓG1 of G1. However, it still represents the "definable" spine in the sense given by model
theorists, that is to say a (multi-sorted) linear order of definable convex subgroups (see
Definition 2.3.15 and Equation (2.1)). In particular, the function symbol val may be no
longer interpreted by the natural valuation. Clearly, its interpretation is still a valuation
of ordered abelian groups, i.e. a map v : G1 Ñ ΓpG1q such that, for all a, b P G1,

(i) vpaq “ 8 ðñ a “ 0,

(ii) vpa´ bq ě mintvpaq, vpbqu,

(iii) vpnaq “ vpaq for every integer n ‰ 0.

Note that from (i) and (ii), it follows that

vpaq ‰ vpbq ùñ vpa´ bq “ mintvpaq, vpbqu.

Then, for every γ P ΓpG1q, we can define the ordered abelian group Cγ{Vγ, where

Cγ “ t g P G1 | vpgq ě γ u , and Vγ “ t g P G1 | vpgq ą γ u .
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By abuse of notation, we will not distinguish between the function symbol val and its
interpretation, even if it is not interpreted as the natural valuation. Moreover, we denote
the group Cγ{Vγ by G1γ and we will call it the rib of G1 as well. Notice that, by elementary
equivalence, for any γ P ΓpG1q, G1γ is a model of Presburger arithmetic.

The following result is true for any pseudo-complete valued group pG, vq and, so in
particular for G “ H iăω Z with respect to the natural valuation.

Proposition 4.3.12. Let pG1, v1q, pG2, v2q be two valued groups such that pG2, v2q is an

extension of pG1, v1q, i.e. such that G1 Ď G2 and v2pgq “ v1pgq for every g P G1. If G1

is pseudo-complete, then, for any a P G2, the set of values

t v2pa´ gq | g P G1 u

admits a maximal element.

Proof. If a P G1, it is trivial. Then, suppose a P G2zG1. Assume for a contradiction
that t v2pa´ gq | g P G1 u has no maximal element and consider a sequence pgiqiPI of
elements in G1 such that pv2pa ´ giqqiPI is cofinal and strictly increasing in tv2pa ´ gq |

g P G1u. We have that pgiqiPI is pseudo-Cauchy. Indeed, from v2pa´giq ą v2pa´g jq for
all i ă j, it follows that v1pg j´ giq “ v2pa´ g jq depends only on j and increases with j.
Thus, since G1 is pseudo-complete, pgiqiPI admits a limit g1 in G1. Then, we show that
v2pa ´ g1q is maximal in the set t v2pa´ gq | g P G1 u. Indeed, for eventually all i P I,
v2pa´g1q ě mintv2pa´giq, v1pg1´giqu “ v2pa´giq. Hence, we get a contradiction. �

Therefore, we can introduce the following definition.

Definition 4.3.13. Let G be a pseudo-complete valued group and a be a new element in
a proper extension of valued groups of G. We say that g1 P G is a best approximation of
a in G, if vpa´ g1q “ max t vpa´ gq | g P G u.

Note that a best approximation is not in general unique.
Now we are able to prove

Theorem 4.3.14. Let G be the Hahn product H iăω Z. Then, G is stably embedded.
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Proof. It is enough to prove that all types over G are definable in LH. First of all, we
show that every 1-type over G is definable in LH. Then, consider a proper elementary
extension pG1,ΓpG1qq of pG,ΓpGq “ ΓG) in LH, and let a P G1zG. Denote by Θ the set

Θpaq :“ tvalm
pna´ gq | n P Z, g P G,m P Nu Ď ΓpG1q.

Note that the sort Γ is purely stably embedded in the theory of G in LH. Then, we have

tpThpΓGq
pΘ{ΓGq $ tpThLH pGq

pΘ{Gq.

Therefore, in order to deduce the definability of tpThLH pGq
pa{Gq it suffices to show that

the types
tpThLH pGq

pa{G Y Θq and tpThpΓGq
pΘ{ΓGq

are definable. Clearly, since ΓG “ ωY t8u is stably embedded as ordered set, the type
tpThpΓGq

pΘ{ΓGq is definable. Let us prove the definability of tpThLH pGq
pa{G Y Θq.

By Proposition 4.3.9, it is sufficient to show the existence of a defining formula
with parameters in G Y Θ for the sets defined by the following formulas with variables
x, x1, x2 from the sort G and variable y from the sort Γ and with parameter a:

a) na´ x ą 0,

b) na´ x ”m 0,

c) na´ x “‚ k‚ ,

d) na´ x ”‚m k‚,

e) sl1pvalm1
pna´ xqq ˝ sl2pyq,

f) sl1pvalm11pna´ x1qq ˝ sl2pvalm12pn1a´ x2qq,

where ˝ P t ą,“ u, n, n1, k P Zzt0u, m, l1, l2 P Nzt0u and m1,m11,m
1
2 P N.

By Theorems 2.2.7 and 4.3.6, pG, valq and pG{mG, valm
q are pseudo-complete val-

ued groups. Therefore, by Proposition 4.3.12, for every n P Z, one can find a best
approximation gn of na in G and a best approximation gm

n mod mG of na mod mG1 in
G{mG, for any m P N,m ą 1.
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Claim 4.3.15. If βn “ valpna ´ gnq and βm
n “ valm

pna ´ gm
n q, then, for any g P G, we

have

valpna´ gq “ mintvalpgn ´ gq, βnu (4.4)

valm
pna´ gq “ mintvalm

pgm
n ´ gq, βm

n u (4.5)

Proof of the claim. Clearly, valpna´gq “ valpna´gn`gn´gq ě mintvalpgn´gq, βnu.
If valpgn ´ gq ‰ βn then, trivially, valpna´ gq “ mintvalpgn ´ gq, βnu. Hence, suppose
valpgn ´ gq “ βn. Then, valpna ´ gq ě βn. Moreover, by the maximality of βn in the
set t valpna´ gq | g P G u, we have βn ě valpna ´ gq. Therefore, valpna ´ gq “ βn “

valpgn´gq. Thus, in both cases we have obtained that valpna´gq “ mintvalpgn´gq, βnu.
Similarly, we have valm

pna´ gq “ mintvalm
pgm

n ´ gq, βm
n u. �

Note that, since ΓpG1q ą ΓG “ ω Y t8u, we have either βn P ω or βn ą ω and
similarly for βm

n . In particular, we have βm
n ą ω for any m P N,m ą 1. Indeed, if

βm
n P ω, then na´ gm

n mod Vm
βm

n
”m g mod Vm

βm
n

for some g P G since

|
G1{Vm

βm
n

mG1{Vm
βm

n

| “ |
G{Vm

βm
n

mG{Vm
βm

n

| ă 8

Therefore, valm
pna´pgm

n`gqq ą valm
pna´gm

n q “ βm
n and this contradicts the maximality

of βm
n in t valm

pna´ gq | g P G u. Moreover, from (4.4) it follows that if βn ą ω, then
there exists a unique best approximation of na in G. Indeed, if g1 ‰ gn is such that
valpna ´ g1q “ βn, then βn ď valpgn ´ g1q P ω. Similarly, one can show that for any
g P G, valm

pna ´ gq “ βm
n if and only if g ”m gm

n . Then, there exists a unique best
approximation of na mod mG1 in G{mG.

By (4.4) and (4.5) we have a definition with parameters in G Y tβn, β
m
n umą1 of the

sets
E :“ tpg, ϑq P G ˆ Θ | sl1pvalm1

pna´ gqq ˝ sl2pϑqu

and
F :“ tpg0, g1q P G2

| sl1pvalm11pna´ g0qq ˝ sl2pvalm12pn1a´ g1qqu.
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We show that the sets

A :“ tg P G | na´ g ą 0u,

B :“ tg P G | na´ g ”m 0u,

C :“ tg P G | na´ g ”‚m k‚u,

D :“ tg P G | na´ g “‚ k‚u

are definable with parameters in GYΘ. To this purpose, for any k P N, k ‰ 0 and ϑ P Θ,
we denote by kϑ a representative in G1 of k times the minimal positive element of G1{Vϑ.

A “ tg P G | na´ g ą 0u. Assume, for instance, that na ´ gn ą 0. We distinguish the
cases βn P ω and βn ą ω.
If βn ą ω, then, clearly, g P A if and only if gn ´ g ą 0.
So, let βn P ω. Then, we have that g P A if and only if either gn ´ g ą 0 or
valpgn ´ gq ě βn. It is sufficient to notice that if g is such that valpgn ´ gq “ βn,
then g is a best approximation of na in G and, in particular, na ´ g ą 0. Indeed,
if g1 P G is such that valpna ´ g1q “ βn and na ´ g1 ă 0 ă na ´ gn, then there
exists an integer k ą 0 such that valpna´g1` kβnq ą valpna´gnq, where kβn P G.
By the maximality of valpna ´ gnq in t valpna´ gq | g P G u, this is clearly a
contradiction. Therefore, in particular, the sign of na´ gn does not depend on the
choice of the best approximation.
If na´gn ă 0, similarly one can find a definition of A with parameters in GYtβnu.
In any case we obtain that A is definable over G Y tβnu.

B “ tg P G | na´ g ”m 0u. Clearly, g P B if and only if valm
pna ´ gq “ 8. Then, by

(4.5), B is not empty if and only if na ”m gm
n . In that case, g P B if and only if

g ”m gm
n . In particular, B is definable over G.

C “ tg P G | na´ g ”‚m k‚u. Recall that na´ g ”‚m k‚ if and only if

na´ g mod Vm
valmpna´gq ”m kvalmpna´gq mod Vm

valmpna´gq.

Set β :“ valm
pna´gq “ mintvalm

pgm
n ´gq, βm

n u. If valm
pgm

n ´gq ă βm
n , then, from

Vm
β Ą Vm

βm
n

it follows that na ´ gm
n P Vm

β ` mG1. Hence, in that case, g P C if and
only if gm

n ´ g ”‚m k‚. Otherwise, since βm
n ą ω, if valm

pgm
n ´ gq ě βm

n , then we
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have necessarily valm
pgm

n ´ gq “ 8. In this case, gm
n ”m g and g P C if and only

if na´ gm
n ”

‚
m k‚, which depends only a. Therefore, we obtain that C is definable

over G Y tβm
n u.

D “ tg P G | na´ g “‚ k‚u Recall that na´ g “‚ k‚ if and only if

na´ g mod Vvalpna´gq “ kvalpna´gq mod Vvalpna´gq.

We use a similar argument to that used for C, considering val and gn instead of
valm and gm

n . Set β :“ valpna ´ gq “ mintvalpgn ´ gq, βnu. If valpgn ´ gq ă βn,
then, by (4.4), β “ valpgn ´ gq, and, since Vβ Ą Vβn , na´ gn P Vβ. Hence, in that
case, g P D if and only if gn ´ g “‚ k‚. Suppose valpg ´ gnq ě βn. We need to
distinguish between the cases

(i) na´ gn “
‚ k‚

(ii) na´ gn “
‚ k1‚ for some k1 P Zzt0u, k1 ‰ k

(iii)  pna´ gnq “
‚ k‚ for any k P Zzt0u.

If (i) holds, then, clearly, g P D if and only if βn ă valpgn ´ gq. Suppose (ii)
and k1 ă k. Then, g P D if and only if βn “ valpgn ´ gq and gn ´ g1 “‚

pk ´ k1q‚. Similarly, if k ă k1, then g P C if and only if βn “ valpgn ´ gq and
gn ´ g1 “‚ pk1 ´ kq‚. To conclude, assume (iii). Then, there is no g P G such
that valpg ´ gnq ě βn and g P D. In any case, we obtain that D is definable over
G Y tβnu.

Therefore, tpThLH pGq
pa{G Y Θq is definable, and so it is tpThLH pGq

pa{Gq. Now let ā “

pa0, . . . , ak´1q be any tuple of new elements in G1. The type of tppā{Gq is determined by
the following set of formulas:

ď

z0,...,zk´1PZ

tpp
ÿ

iăk

ziai{Gq Y tpThpΓGq
pΘpāq{ΓGq,

where Θpāq “
Ť

z0,...,zk´1PZ
Θp

ř

iăk
ziaiq. Then, from the definability of 1-types over G and

the stable embeddedness of ΓG, it follows that tppā{Gq is definable. This concludes our
proof. �
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4.3.3 Maximal ordered abelian groups with uniformly definable prin-
cipal convex subgroups

We have already seen that, by Fact 4.2.1, if G is stably embedded, then all convex sub-
groups of G are definable, and so they are, in particular, all principal convex subgroups
of G. We consider the case where all principal convex subgroups are uniformly defin-
able. (We recall that the principal convex subgroups of an ordered abelian group are in
general not even definable.)

Proposition 4.3.16. Let G be such that all principal convex subgroups of G are uni-

formly definable. Then, pΓG,ăq is interpretable in G. Moreover, the natural valuation

val : G Ñ ΓG is definable, once we add a sort Γ for ΓG.

Proof. Assume that the family t xayconv
| a P G u of principal convex subgroups of G

is uniformly defined by the formula ϕpx, ȳq. Without loss of generality, we may also
assume that for all b̄ P G|ȳ|, ϕpx, b̄q is a convex subgroup. Then, the structure pΓG,ăq

is interpreted in G as the quotient pG{ „,ăq, where the equivalence relation „ and the
ordering relation ă are defined as follows: for all a, a1 P G,

a „ a1 ðñ @ȳ pϕpa, ȳq Ø ϕpa1, ȳqq ,

and

ras„ ă ra1s„ ðñ @ȳ pϕpa1, ȳq Ñ ϕpa, ȳqq ^ Dȳ
`

 pϕpa, ȳq Ñ ϕpa1, ȳqq
˘

.

Moreover, notice that the natural valuation is the projection map G Ñ G{ „ and, clearly,
its graph is the set

t pa, a1q P G ˆG | a „ a1 u .

�

We now introduce the following definition:

Definition 4.3.17. In analogy with the terminology adopted by Gurevich for the convex
subgroups of the form Vn

g , for any g P G, g ‰ 0 we call the largest convex subgroup not
containing g, Vg, the fundament of g and the convex subgroups of this form fundamental.
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Then, it is easy to show that the uniform definability of the principal convex sub-
groups is equivalent to the uniform definability of the fundamental convex subgroups.
Indeed, we have

Proposition 4.3.18. Let G be any ordered abelian group. The following are equivalent:

1. all principal convex subgroups of G are uniformly definable,

2. all fundamental convex subgroups of G are uniformly definable,

Proof. p1 ñ 2q. Let ϕpx, ȳq be a formula defining the family txayconv
uaPG of principal

convex subgroups of G. Moreover, assume that every instance of ϕ defines a convex
subgroup whenever it defines a non-empty set. Clearly, the following formula

ψpz, ȳq :“ ϕpz, ȳq ^ @w̄
ˆ

ϕpz, w̄q Ñ
´

@x
`

ϕpx, ȳq Ñ ϕpx, w̄q
˘

¯

˙

defines the set of pairs pa, b̄q such that ϕpG, b̄q is the convex subgroup generated by a.
Let a P G, a ‰ 0, and let b̄ be a tuple of parameters such that ϕpG, b̄q “ xayconv. Note
that Va is the set t x P G | xxyconv

Ĺ xayconv
u, then, it is defined by the formula

@ȳ
`

ψpx, ȳq Ñ ηpȳq
˘

,

where ηpȳq expresses the property that ϕpG, ȳq is strictly contained in ϕpG, b̄q. Simi-
larly, we can deduce (2 ñ 1) from the fact that, for any a P G, a ‰ 0, xayconv

“

t x P G | Vx Ď Va u. �

We now look for a class of ordered abelian groups which allow us to consider a
language for eliminating quantifiers relatively to a single auxiliary sort Γ. To this end,
we introduce the following condition for an ordered abelian group G:

‹ There is n P N, n ą 1 such that, for any a P G, Ca “ xay
conv

“
Ş

iPΓn,aPVn
i

Vn
i .

It easily follows from the uniform definability of the family tVn
gugPG (see [6, Lemma

2.1]) that an ordered abelian group G satisfying ‹ has uniformly definable principal con-
vex subgroups. Moreover, in this particular case, Γ is in order-reversing bijection with
the underlying set of the auxiliary sort Tn and T`n (introduced in Definition 2.3.15), for
some n P N, n ą 1. If G is also maximal, we can deduce from Facts 2.3.17 and 2.3.18
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the following language in which this kind of maximal ordered abelian groups with in-
terpretable archimedean spine eliminate G-quantifiers (see Section 1.1 for definitions of
relative quantifier elimination and their equivalence in the case of closed sorts). Note
that the ordered abelian group H iăω Z analyzed in Section 4.3.2 is an instance of this
kind of groups.

Definition 4.3.19. Assume that G is maximal and satisfies ‹. Let L be the language
consisting of

• the main sort G, with the symbols `,´, 0,ă,”m for each m P N, interpreted in
the obvious way,

• an auxiliary sort Γ for ΓG, with a binary relation ă, interpreted by the ordering
relation on ΓG; a unary predicate Cϕpxq for each sentence ϕ in Loag, defined, for
any γ P Γ, by Cϕpγq if and only if Gγ |ù ϕ,

• a function symbol valm for each integer m, interpreted by the map valm : G Ñ Γm

defined in (4.2),

• a unary predicate x “‚ k‚ on G for each k P Zzt0u, defined by, for any a P

G, a “‚ k‚ if the quotient G{Vvalpaq is discrete and a mod Vvalpaq is k times the
minimal positive element of G{Vvalpaq,

• a unary predicate x ”‚m k‚ on G for each m P N,m ą 0 and k P t1, . . . ,m ´ 1u,
defined by, for any a P G, a ”‚m k‚ if G{Vm

valmpaq is discrete and a mod Vm
valmpaq is

congruent modulo m to k times the minimal positive element of G{Vm
valmpaq.

Note that, since the divisibility by m of the rib Gγ is definable by a first order formula
in Loag, the language L defined above contains a unary predicate for the m-value set Γm,
for each m ą 1.

Theorem 4.3.20. Assume that G is maximal and satisfies ‹. Then the theory of G elim-

inates quantifiers relatively to the sort Γ in the language L.

Proof. We deduce it from the more general Fact 2.3.17. For the notation involved, see
Definition 2.3.16. We have to recover G-quantifier freely the language Lsyn using the
language L.
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By hypothesis, there exists n P N, n ą 1 such that Γ – Tn and the valuation map
val can be identified with tn. Moreover, by Proposition 4.3.4, for every m P N, Γm

corresponds to Sm, and the m-valuation map valm corresponds to the map sm. Therefore,
it remains to show that we can interpret the sorts Tm, T`m and the projection maps tm for
all m ą 0 without using quantifiers over G.

Let m ą 0 be fixed. We show that Tm is interpretable in L without using quantifiers
over G. Take a P G and let β “ tmpaq. The convex subgroup Gpβq is the union of all
principal convex subgroups Gpαq which do not contain a, where α P Γm “ Sm, i.e. it is
the set

tx P G | Dδ1 P Sm valpxq ě δ1 ą valpaqu.

It follows that Tm is interpretable in Tn “ Γ as the quotient Γ{ „m where „m is the
equivalence relation defined by γ „m γ

1 if and only if

tδ P Γ | Dδ1 P S m δ ě δ1 ą γu “ tδ P Γ | Dδ1 P S m δ ě δ1 ą γ1u.

We interpret the orderă between Tm and Tk as the ordering relation defined by rγs„m ď

rγ1s„k if and only if

tδ P Γ | Dδ1 P S m δ ě δ1 ą γu Ď tδ P Γ | Dδ1 P S k δ ě δ1 ą γ1u.

The projection map tm : G Ñ T m is interpreted by the map a P G ÞÑ rvalpaqs„m .
We show that T`m is interpretable inLwithout using quantifiers over G as well. Take

a P G and let β “ t`mpaq. The convex subgroup Gpβq is the intersection of all principal
convex subgroups Gpαq which contain a, where α P Γm “ Sm, i.e. it is the set

tx P G | @γ P Sm γ ď valpaq Ñ γ ď valpxqu.

It follows that T`k can be interpretable as Tk; the ordering ă between Tm and T`k is
interpreted by tmpaq ď t`k pbq if and only if

tδ P Γ | Dδ1 P S m δ ě δ1 ě valpaqu Ď tδ P Γ | @δ1 P S k δ
1
ď valpbq Ñ δ1 ď δu.

Finally, we show that the predicates Drp
ss

pr pxq on G are not required, as for all α P
Ť

n Sn,
Gpαqrms “ Cα`mG, for some principal convex subgroup Cα. Recall that for α P

Ť

n Sn
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Gpαqrms :“
č

HĽGpαq,H convex subgroup of G

pH ` mGq.

This intersection can be restricted to principal convex subgroups. Firstly, note that if
Cβ :“ tx P G | valpxq ě βu is a principal convex subgroup, then Cβ ` mG is the set
tx P G | valm

pxq ě βu. Indeed, the inclusion Cβ ` mG Ě tx | valm
pxq ě βu follows

from Lemma 4.3.2, as for all x there is x1 such that x1 ”m x and valm
pxq “ valpxq. The

other inclusion is clear. Then, we have that

Gpαqrms “
č

βăα

Cβ ` mG

“ tx | @β ă α valm
pxq ě βu

“ tx | valm
pxq ě α1u “ Cα1 ` mG

where α1 is the immediate predecessor of α in Γm if it exists, or is equal to α otherwise.
It follows that the unary predicates Drp

ss

pr pxq on G can be expressed in L without G-
quantifiers. Moreover, all unary predicate symbols on the sort A of Lsyn correspond
to a predicate Cϕ in L for some sentence ϕ in Loag. Notice that since we have only
quantified over Γ in order to recover the language Lsyn, all G-quantifier-free formulas in
the language Lsyn are equivalent to a G-quantifier-free formula in the language L. �

Remark 4.3.21. Note that, since the auxiliary sort pΓ, pCϕqϕPLoag ,ăq is closed, we obtain
that it is a pure coloured chain and is stably embedded in G (see Fact 1.1.22).

Henceforward, let G be any ordered abelian group with uniformly definable princi-
pal convex subgroups (not necessarily maximal). One can expand G to the many-sorted
structure G “ ppG, 0,`,´,ăq, pΓ, pCϕqϕPLoag ,ăq, valq, where the sort Γ is interpreted by
the archimedean spine ΓG and the function symbol val is interpreted by the natural valu-
ation val : G Ñ ΓG. In particular, by Proposition 4.3.16, every formula in G is equivalent
to a formula in G. As already noticed in Remark 4.3.11 for the case of G “ H iăω Z,
when we consider an arbitrary model G1 “ pG1,ΓpG1q, valq of the theory of G, the sort Γ

and the function symbol val can no longer be interpreted as the archimedean spine and
the natural valuation of G1, respectively. However, since val is always interpreted as a
valuation of ordered abelian groups, we adopt the same notation, and G1γ will denote the
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ordered abelian group Cγ{Vγ as defined in Remark 4.3.11. Notice, in particular, that, if
G1 is an elementary extension of G, then

• ΓpGq ĺ ΓpG1q as coloured chains;

• Gγ ĺ G1γ as ordered abelian groups, for any γ P ΓpGq.

Moreover, by elementary equivalence, G1γ is a regular ordered abelian group for any
γ P ΓpG1q. Therefore, we may say that ΓpG1q and G1γ, for any γ P ΓpG1q, are the regular

spine and a regular rib of G1, respectively.
Let G1 be any maximal ordered abelian group with uniformly definable principal

convex subgroups. We prove that the non-existence of immediate extensions is actually
a necessary condition for any model of the theory of G1 in order to be stably embedded.

Proposition 4.3.22. Let G1 be any maximal ordered abelian group with uniformly de-

finable principal convex subgroups, and let G be any model of ThpG1q. If G is stably

embedded, then G is maximal.

Proof. We expand G to the many-sorted structure G “ pG,Γ, valq. First of all, note
that by Fact 2.2.4, all convex subgroups of G are definable. In particular, for any
γ P ΓpGq, Gγ is archimedean and the interpretation of val coincides with the natural
valuation of G. It follows that it suffices to show that pG, valq is pseudo-complete. By
contradiction, suppose that G is not pseudo-complete, and so there exists a pseudo-
Cauchy sequence pgiqiPI of elements of G with no pseudo-limits in G. Let a be a
pseudo-limit of pgiqiPI in an elementary extension Ĝ of G. Then, for any g P G,
valpa ´ gq P ΓpGq. Indeed, since by assumption pgiqiPI does not have a pseudo-limit
in G, there exists i P I such that valpa ´ gq ă valpa ´ giq. In particular, we have that
valpa ´ gq “ valpg ´ giq P ΓpGq. Therefore, for any g P G, we can consider the ball
Bg :“ t h P G | valpa´ hq ě valpa´ gq u. We show that

Ş

gPG Bg ‰ H.
Since G is stably embedded in Ĝ, the subset

 

ph, gq P G2
| vpa´ hq ě vpa´ gq

(

of G2 may be defined with a formula ϕpx, y, c̄q, where ϕpx, y, z̄q is a formula without
parameters and c̄ is a tuple from G. Moreover, we may assume that, for any tuple of
parameters c̄, the non-empty instances of ϕpx, g, c̄q, with g P G, define a nested family of
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balls. Notice that the property of ϕpx, y, c̄q to define a nested family of balls is first-order
expressible. By hypothesis G1 is maximal, then, by Theorem 2.2.11,

G1 |ù @z̄Dx@ypDwϕpw, y, zq Ñ ϕpx, y, z̄qq,

and so also
G |ù @z̄Dx@ypDwϕpw, y, zq Ñ ϕpx, y, z̄qq,

since G ” G1. In particular, we have that
Ş

gPG Bg ‰ H. Let b P
Ş

gPG Bg. Clearly,
valpa ´ bq ą valpa ´ giq for eventually all i P I. Hence, valpb ´ giq “ valpa ´ giq, and
b is a pseudo-limit of pgiqiPI in G. We get a contradiction. �

Now we are able to prove the main theorem of this chapter.

Theorem 4.3.23. Let G “ pG,ΓpGq, valq be any model of the theory of a maximal

ordered abelian group G1 such that

‹ there is n P N, n ą 1 such that, for any a P G1,Ca “ xay
conv

“
č

iPΓn,aPVn
i

Vn
i .

Then, G is stably embedded if and only if it is maximal, its regular ribs pGγ,`, 0,ăq are

stably embedded for all γ P ΓpGq and its regular spine pΓpGq, pCϕqϕPLoag ,ăq is stably

embedded.

Proof. pñq By Proposition 4.3.22, G is maximal. We show that Gγ is stably embedded,
for any γ P ΓpGq. Let γ be any value in ΓpGq and consider a proper elementary extension
Ĝ of Gγ in Loag. We need to show that Gγ is stably embedded in Ĝ. Note that Gγ is a
pure ordered abelian group. Moreover, since Gγ is regular, it is sufficient to consider
just 1-types (see Section 4.2.1). Clearly, there exists an elementary extension G1 “
pG1,ΓpG1q, valq of G “ pG,ΓpGq, valq such that G1γ ľ Ĝ ą Gγ. It is enough to show
then that Gγ is stably embedded in G1γ. Let a P G1zG with valpaq “ γ. By hypothesis, G

is stably embedded in G1. Then, the type of a over G is definable and, thus, so it is the
type of a mod Vγ over Gγ. Therefore, Gγ is stably embedded in G1γ as ordered abelian
groups. It follows that Gγ is stably embedded for any γ P ΓpGq.

Similarly, we show that ΓpGq is stably embedded in every elementary extension.
Let Γ̂ be a proper elementary extension of ΓpGq, and an elementary extension G1 “



4. STABLY EMBEDDED ORDERED ABELIAN GROUPS 73

pG1,ΓpG1q, valq of G “ pG,ΓpGq, valq such that ΓpG1q ľ Γ̂ ą ΓpGq. Let γ P ΓpG1qzΓpGq

and consider an element a P G1 of value γ. Since the type of a over G is definable and
ΓpGq is purely stably embedded, it follows that the type of γ “ valpaq over ΓpGq is
definable. Therefore, every 1-type over ΓpGq is definable. Hence, by Corollary 4.1.4,
ΓpGq is stably embedded.
pðq First of all, note that, for every γ P ΓpGq, Gγ is archimedean by Fact 4.2.1. It
follows that the interpretation of val coincides with the natural valuation of G, and, in
particular, all principal convex subgroups of G are uniformly definable.

We show that every 1-type over G is definable in L. Consider an elementary exten-
sion G1 “ pG1,ΓpG1q, valm

q of G “ pG,ΓpGq, valm
q in L, and let a P G1zG. In particular,

by the maximality of G, G1 is not an immediate extension of G. As in the proof of
Theorem 4.3.14, denote by Θ the set Θpaq :“ tvaln

pa ´ gq | n P N, g P Gu. We want
to show that tppa{G YΘq is definable. Then, since ΓpGq is purely stably embedded and
tppβ̄{ΓpGqq is definable for all β̄ P Θ|β̄| by hypothesis, we deduce that the type tppa{Gq
of a over G is definable. By Theorem 4.3.20, a formula ϕpx, ḡ, ϑ̄q in the language L
with parameters in G Y Θ is a finite Boolean combination of formulas of the form:

a) nx´ g ą 0,

b) nx´ g ”m 0,

c) nx´ g ”‚m k‚,

d) nx´ g “‚ k‚,

e) ψpvalm0pn0x´ g0q, . . . , valmh´1pnh´1x´ gh´1q, ϑ0, . . . , ϑh1´1q,

where ψ is formula in pΓ, pCϕqϕPLoag ,ăq, n, n0, . . . , nh´1, k P Zzt0u, m0, . . . ,mh´1 P N,
m P Nzt0u and g, g0, . . . , gh´1 P G, ϑ0, . . . , ϑh1´1 P Θ. Since pG, valq is pseudo-
complete, as in Claim 4.3.15, from Proposition 4.3.12, it follows that for any n P Z

and g P G we have that

valpna´ gq “ mintvalpa0
n ´ gq, β0

nu (4.6)

valm
pna´ gq “ mintvalm

pam
n ´ gq, βm

n u. (4.7)

where a0
n, a

m
n are a best approximation of na in G and a representative of a best ap-

proximation of na mod mG in G{mG, respectively, and β0
n :“ valpna ´ a0

nq and βm
n :“
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valm
pna´am

n q. Therefore, by (4.6) and (4.7) we clearly have a definition with parameters
in G Y tβ0

n, β
m
n un,mą1 of the set

E :“ tpḡ, ϑ̄q P Gh
ˆ Θh1

| ψpvalm0pn0a´ g0q, . . . , valmh1 pnh´1a´ gh´1q, ϑ0, . . . , ϑh1´1qu.

Claim 4.3.24. The set

A :“ tg P G | na´ g ą 0u

is definable with parameters in G Y Θ.

Proof of the claim. Let g P G, and set β :“ valpna´gq “ mintvalpa0
n´gq, β0

nu. Clearly,
the sign of na ´ g is determined by the sign of na ´ g mod Vβ. If valpa0

n ´ gq ă β0
n,

then, in particular, na ´ g mod Vβ “ a0
n ´ g mod Vvalpa0

n´gq. Therefore, in that case,
g P A if and only if a0

n ´ g ą 0. Then, suppose valpa0
n ´ gq ě β0

n.
If β0

n ă valpa0
n ´ gq, then, the sign of na ´ g is determined by the sign of na ´ a0

n.
Otherwise, suppose valpa0

n´gq “ β0
n for some g P G. Then, we have β “ β0

n P ΓpGq and
na ´ g mod Vβ P G1β. By hypothesis Gβ is stably embedded in G1β and, in particular,
the type of na ´ g mod Vβ over Gβ is definable. Hence, there exists a formula with
parameters in Gβ, and so in G, defining the set of g P G such that na ´ g mod Vβ ą

0. Therefore, we obtain that one can find ψ1pxq, ψ2pxq, ψ3pxq with parameters in G

equivalent to the formula na ´ g ą 0 for each of the occurrences valpa0
n ´ gq ă β0

n,
valpa0

n´ gq ą β0
n and valpa0

n´ gq “ β0
n. Thus A is definable with parameters in GYtβ0

nu

by the formula

`

valpa0
n´ xq ă β0

n^ψ1pxq
˘

_
`

valpa0
n´ xq ą β0

n^ψ2pxq
˘

_
`

valpa0
n´ xq “ β0

n^ψ3pxq
˘

.

�

Moreover, we observe that the set

B :“ tg P G | na´ g ”m 0u

is definable with parameters in G since g P B if and only if am
n ´ g ”m 0 and βm

n “ 8.

Claim 4.3.25. The set

C :“ tg P G | na´ g ”‚m k‚u
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is definable with parameters in G Y Θ.

Proof of the claim. Let g P G, and set β :“ valm
pna ´ gq “ mintvalm

pam
n ´ gq, βm

n u.
Similarly to the proof of the Claim 4.3.24, we show that one can find ψ1pxq, ψ2pxq, ψ3pxq

with parameters in G equivalent to the formula na´g ”‚m k‚ for each of the occurrences
valm

pam
n ´gq ă βm

n , valm
pam

n ´gq ą βm
n and valm

pam
n ´gq “ βm

n . Then, C will be definable
with parameters in G Y tβm

n u by the following disjunction

`

valm
pam

n´xq ă βm
n^ψ1pxq

˘

_
`

valm
pam

n´xq ą βm
n^ψ2pxq

˘

_
`

valm
pam

n´xq “ βm
n^ψ3pxq

˘

.

If valm
pam

n ´ gq ă βm
n , then we simply need to observe that na ´ g mod Vm

β ` mG1 “

am
n ´ g mod Vm

valmpam
n´gq `mG1. In particular, na´ g ”‚m k‚ if and only if am

n ´ g ”‚m k‚,
so take ψ1pxq :“ am

n ´ g ”‚m k‚.
If βm

n ă valm
pam

n ´gq, then we have na´g mod Vm
β `mG1 “ na´am

n mod Vm
βm

n
`mG1.

In particular, na ´ g ”m
‚ k‚ if and only if na ´ am

n ”
m
‚ k‚, which depends only on a.

Then, if na´ am
n ”

‚
m k‚, take ψ2pxq :“ x “ x; otherwise, take ψ2pxq :“  px “ xq.

Suppose either βm
n R ΓpGq or Gβm

n is not discrete. Then, trivially, there is no g P G such
that valm

pam
n´gq “ βm

n and g P C. So, in both cases, take ψ3pxq :“  px “ xq. Therefore,
suppose that valm

pam
n ´ gq “ βm

n and Gβm
n is discrete. By (the proof of) Lemma 4.3.2,

there exists a1 P G1 such that a1´g ”m na´g and valm
pa1´gq “ valpa1´gq. In particular,

we have that valm
pa1 ´ gq “ valm

pna ´ gq “ β and, a1 ´ g mod Vβ ` mG1 “ a1 ´ g

mod Vm
β `mG1 “ na´g mod Vm

β `mG1. Then, na´g ”m
‚ k‚ if and only if a1´g ”m

‚ k‚.
Since a1 ´ g mod Vβ P G1β and Gβ is stably embedded in G1β, there is a formula ψ3pxq

with parameters in Gβ, and so in G, defining the set of g’s such that a1´g mod Vm
β ”m kβ

mod Vm
β , where kβ denotes a representative in G1 of k times the minimal positive element

of G1{Vm
β . Thus C is definable with parameters in G Y tβm

n u. �

Claim 4.3.26. The set

D :“ tg P G |na´ g “‚ k‚u

is definable with parameters in G Y Θ.

Proof of the claim. Consider g P G, and set β :“ valpna ´ gq “ mintvalpa0
n ´ gq, β0

nu.
Similarly to the proof of Claim 4.3.24, we show that one can find ψ1pxq, ψ2pxq, ψ3pxq

with parameters in G equivalent to the formula na´g “‚ k‚ for each of the occurrences
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valpa0
n´gq ă β0

n, valpa0
n´gq ą β0

n and valpa0
n´gq “ β0

n. Then, D will be definable with
parameters in G Y tβ0

nu by the following disjunction

`

valpa0
n´ xq ă β0

n^ψ1pxq
˘

_
`

valpa0
n´ xq ą β0

n^ψ2pxq
˘

_
`

valpa0
n´ xq “ β0

n^ψ3pxq
˘

.

If valpa0
n´gq ă β0

n, then we simply observe that na´g mod Vβ “ a0
n´g mod Vvalpa0

n´gq.
In particular, na´ g “‚ k‚ if and only if a0

n ´ g “‚ k‚, so take ψ1pxq :“ a0
n ´ g “‚ k‚.

If β0
n ă valpa0

n ´ gq, then we have na ´ g mod Vβ “ na ´ a0
n mod Vβ0

n
. In particular,

na´g “‚ k‚ if and only if na´a0
n “

‚ k‚, which depends only on a. Then, if na´a0
n “

‚

k‚, take ψ2pxq :“ x “ x; otherwise, take ψ2pxq :“  px “ xq.
Suppose either β0

n R ΓpGq or Gβ0
n

is not discrete. Then, trivially, there is no g P G such
that valpa0

n ´ gq “ β0
n and g P D. So, in both cases, take ψ3pxq :“  px “ xq. Therefore,

suppose that valpa0
n ´ gq “ β0

n and Gβ0
n

is discrete. Since Gβ is stably embedded in G1β,
there exists a formula ψ3pxq with parameters in Gβ, and so in G, defining the set of g’s
such that na ´ g mod Vβ “ kβ mod Vβ, where kβ denotes a representative in G1 of k

times the minimal positive element of G1β. Therefore, we obtain that D is definable with
parameters in G Y tβ0

nu. �

Now let ā “ pa0, . . . , ak´1q be any tuple of new elements in G1. The type of tppā{Gq
is determined by the following set of formulas:

ď

z0,...,zk´1PZ

tpp
ÿ

iăk

ziai{Gq Y tpThpΓGq
pΘpāq{ΓGq,

where Θpāq “
Ť

z0,...,zk´1PZ
Θp

ř

iăk
ziaiq. Since each of these types are definable over G, so

is tppā{Gq. This concludes our proof. �

We have studied stably embedded regular ordered abelian groups and stably embed-
ded coloured chains in Sections 4.2.1 and 4.1, respectively. Therefore, from Theorems
4.2.3 and 4.2.4 and Corollary 4.1.4, it follows that

Corollary 4.3.27. Let G “ pG,ΓpGq, valq be any model of the theory of a maximal

ordered abelian group G1 satisfying

‹ there is n P N, n ą 1 such that, for any a P G1,Ca “ xay
conv

“
č

iPΓn,aPVn
i

Vn
i .
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Then, G is stably embedded if and only if

1. G is maximal;

2. for every γ P ΓpGq, either Gγ – Z, or Gγ is densely ordered and divpGγq – R;

3. all cuts of pΓpGq, pCϕqϕPLoag ,ăq are definable.

Remark 4.3.28. Let G be an ordered abelian group with uniformly definable principal
convex subgroups. By Proposition 2.1.11, every cut ∆ “ p∆L,∆Rq in the archimedean
spine ΓG corresponds to a convex subgroup of G by the bijection

F : ∆R ÞÑ C∆R “ t g P G | valpgq P ∆R u .

By Proposition 4.3.16 it follows that the definability of all cuts in pΓG, pCϕqϕPLoag ,ăq is
equivalent to the definability of all convex subgroups of G.

Remark 4.3.29. We can deduce that the ordered abelian group G :“ H iăω Z analyzed
in Section 4.3.2 is the unique model of its own theory to be stably embedded. Indeed,
one can easily see that the lexicographic sum

ř

iăω Z is a prime model of T “ ThpGq
and, hence, any maximal model of T contains G. It is clear that any proper extension of
G is not stably embedded, since, by maximality of G, it is not immediate and no proper
extension of a rib pZ,`, 0,ăq nor of the archimedean spine pω,ăq is stably embedded.

The next step in the study of stable embeddedness for ordered abelian groups could
be looking for a similar characterization for stably embedded pairs pG,G1q of ordered
abelian groups. More precisely, it is natural to ask whether the following is true.

Conjecture 4.3.30. Consider the complete theory T of a maximal ordered abelian group

G such that

‹ there is n P N, n ą 1 such that, for any a P G,Ca “ xay
conv

“
č

iPΓn,aPVn
i

Vn
i .

Consider an extension of models G1 ĺ G2 of T in L. Then, G1 is stably embedded in

G2 if and only if the following occurs:

• G1 is maximal in G2: there is no intermediate immediate extensions of G1 in G2;
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• for every γ P ΓpG1q, pG1qγ is stably embedded in pG2qγ;

• pΓpG1q, pCϕqϕPLoag ,ăq is stably embedded in pΓpG2q, pCϕqϕPLoag ,ăq.

As an application of Theorem 4.3.23, we conclude presenting a new example of
stably embedded ordered abelian group:

Example 4.3.31. The ordered abelian group G “ H iPRGi where

Gi “

$

&

%

Z if i is rational

R if i is irrational

is stably embedded in every elementary extension. Indeed, G is maximal by Fact 2.2.8.
Moreover, one can easily see that, as ordered sets, Sn – Q Y t8u and Tn – T

`
n –

R Y t8u (see for example [6, Section 4.2]). Therefore, the archimedean spine ΓG is
interpretable in the language of ordered abelian groups, and the natural valuation is
given by tn. Then, the auxiliary sort pΓ, pCϕqϕPLoag ,ăq is interpreted by the coloured
chain pR,Q,ăq. Moreover, the ribs of G are equal to either Z or R. Therefore, by
Corollary 4.3.27 G is stably embedded.
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