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Abstract

Current and forthcoming Astronomical observatories are rapidly in-
creasing the quantity, velocity and complexity of their data products push-
ing Astronomy in the Big Data regime. Extracting scientifically usable
data from such instruments involves the resolution of ill-posed inverse
problems traditionally solved with algorithms which cannot cope anymore
with the rising complexity. In the last decade, Machine Learning has seen
a deep rise in its use both within and outside Astronomy. In this Thesis,
I have developed a set of Deep Learning (DL) based pipelines aimed at
the resolution of two such problems: the Radio Interferometric Deconvo-
lution, Source Detection and Characterisation problem for two different
radio interferometers, the Atacama Large Millimeter/submillimeter Ar-
ray (ALMA) and the Square Kilometer Array (SKA), and the TOLIMAN
space telescope Astrometric signal detection problem. Given the novelty
of the instruments and the need for controlled experiments for the devel-
opment and comparison of solutions, all studies carried out in this Thesis
use simulated data. SKA and TOLIMAN data were acquired through my
participation in the SKA Data Challenge 2 and COIN TOLIMAN Focus
meeting, while I developed a simulation framework able to generate the
needed ALMA observations by levering parallel computing. The ALMA
pipeline is composed of six DL models: a Convolutional Autoencoder
(CAE) for source detection within the spatial domain of the integrated
data cubes, a Recurrent Neural Network (RNN) for denoising and peak
detection within the frequency domain, and four Residual Neural Networks
(ResNets) for source characterisation. The detection performances of the
pipeline were compared to those of other state-of-the-art methods within
the field and significant improvements in performances and computational
times are achieved. Source morphologies are detected with subpixel ac-
curacies obtaining mean residual errors of 10�3 pixel (0.1 mas) and 10�1
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mJy/beam on positions and flux estimations, respectively. Projection an-
gles and flux densities are also recovered within 10% of the true values for
80% and 73% of all sources in the test set, respectively. A direct compar-
ison with tCLEAN, the current image deconvolution method employed
by CASA, the ALMA data reduction pipeline, is made on simplified mock
data achieving a substantial improvement in reconstruction quality and
speed. The SKA pipeline, which I developed to address the shortcomings
of the baseline pipeline developed during the Challenge in collaboration
with COIN, is based on a combination of a classical Compressed Sensing
algorithm, my 3D implementation of the Multi Vision Model, with six DL
models: A 3D CAE for source detection, a 3D ResNet classifier to de-
tect and remove false detections, and four 3D ResNet regressors to predict
sources morphological parameters. The performances of the debugged,
re-trained and optimised baseline pipeline and the revised pipeline are
compared with those of the other solutions to the challenge. The revised
pipeline reaches the highest score with slight improvements over the chal-
lenge winners. The TOLIMAN pipeline is the only unsupervised pipeline
developed in this Thesis and it is based on a CAE tasked with compress-
ing the TOLIMAN image time series into a monodimensional latent space
which is then analysed through a Lomb-Scargle periodogram in search of
periodic components. The pipeline performances in detecting increasingly
small and realistic Astrometric signals embedded within a series of simu-
lated TOLIMAN observations of the Alpha Cen star system are compared
to those of other sparsity-based state-of-the-art solutions within the field.
The signals are simulated as time-dependent shifts in the positions of two
overlapping point spread functions in the TOLIMAN images. Our pipeline
is the only one which can reliably detect the signal with an amplitude of
10�6 times the pixel size. The simulations contained only Poisson noise, in
future works, all the more realistic sources of noise and systematic effects
present in the real-world satellites will be injected into the simulations.
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Sintesi in lingua italiana

Gli attuali e futuri osservatori continuano ad incrementare la quan-
tità, la velocità e la complessità dei dati prodotti spingendo l’Astronomia
nel regime dei Big Data. L’estrazione di dati scientificamente utilizz-
abili da tali strumenti richiede la risoluzione di problemi inversi mal posti
tradizionalmente risolti con algoritmi che non sono più in grado di tener
testa all incrementale complessità dei dati. Nell’ultimo decennio l’utilizzo
del Machine Learning ha visto un notevole incremento sia all’interno che
al di fuori dell’Astronomia. In questo lavoro di Tesi, ho sviluppato una
serie di "pipeline" basate su modelli di Deep Learning (DL) con lo scopo
di risolvere due problemi inversi: il problema di deconvoluzione radio in-
terferometrica e successiva rilevazione e classificazione delle sorgenti astro-
nomiche per l’Atacama Large Millimeter/submillimeter Array (ALMA) e
lo Square Kilometer Array (SKA), ed il problema di rilevazione del seg-
nale astrometrico per il telescopio spaziale TOLIMAN. Data la natura
degli strumenti e la necessità di eseguire esperimenti controllati necessari
alo sviluppo ed il confronto di soluzioni ai problemi preposti, tutti gli
studi portati avanti in questa Tesi usano dati simulati. I dati di SKA e
TOLIMAN sono stati acquisiti tramite la mia partecipazione, rispettiva-
mente, alla SKA Data Challenge 2 e al COIN TOLIMAN Focus meeting.
I dati di ALMA sono stati creati tramite simulazioni in grado di gener-
are i dati necessari sfruttando il paradigma di computazione parallela. La
pipeline per ALMA è formato da sei modelli di DL: un Convolutional Au-
toencoder (CAE) per il relevamento delle sorgenti nel dominio spaziale
dei data cubi integrati, una Recurrent Network (RNN) per ridurre il ru-
more e rilevare picchi di emissione in frequenza, e quattro Residual Neural
Networks (ResNets) per caratterizzare le sorgenti. Le prestazioni della
pipeline proposta sono state comparate a quelle di altri metodi che rapp-
resentano lo stato dell’arte nel settore, dimostrando migliori prestazioni e
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tempi computazionali. Le caratteristiche delle sorgenti sono registrate con
accuratezze inferiori alle dimensioni del pixel ottenendo errori residui medi
di 10�3 pixel (0.1 mas) e 10�1 mJy/beam rispettivamente sulle posizioni e
sui flussi. Gli angoli di proiezione e i flussi sono entro il 10% del loro val-
ore vero per rispettivamente l’80% ed il 73% di tutte le sorgenti presenti
nel test set. Si è anche eseguita una comparazione diretta della qualità
di ricostruzione con tCLEAN, l’algoritmo di deconvoluzione attualmente
utilizzato dalla pipeline di riduzione dati di ALMA, sui nostri semplici
dati simulati ottenendo sostanziali miglioramenti nella qualità della ri-
costruzione e nei tempi computazionali. La pipeline per SKA, è stata
sviluppata per correggere le principali carenze dimostrate dalla pipeline,
usata nel contesto della Tesi come "baseline", che ho sviluppato, durante
la SKA Data Challenge 2, in collaborazione con altri membri COIN. La
pipeline è basata sulla combinazione di un classico algoritmo di Com-
pressed Sensing, un’implementazione 3D del Multi Vision Model, con sei
algoritmi di DL: un 3D CAE per rilevare le sorgenti, una 3D ResNet usata
come classificatore per rilevare e rimuovere falsi rilevamenti, e quattro 3D
ResNet usate come regressori per predirre i parametri morfologici delle sor-
genti. Le prestazioni della pipeline di baseline, dopo aver eseguito estensivo
debugging, riaddestramento e ottimizzazione, e quelle della pipeline da me
sviluppata sono confrontate con quelle degli altri partecipanti alla Chal-
lenge. La pipeline proposta ha notevolmente migliorato i risultati ottenuti
nella Challenge con prestazioni leggemente superiori rispetto ai vincitori.
La pipeline per TOLIMAN è l’unica non supervisionata tra quelle presen-
tate nella Tesi ed è basata su un CAE addestrato per comprimere la serie di
immagini di TOLIMAN in uno spazio latente monodimensionale, per poi
essere analizzato in cerca di componenti periodiche con il periodogramma
di Lomb-Scargle. Le prestazioni della pipeline proposta nel rilevare segnali
incrementalmente più deboli e realistici ignettati all’interno di una serie di
osservazioni da parte di TOLIMAN del sistema stellare Alpha Cen, sono



comparate con quelle di altre soluzioni basate su sparsità rappresentanti
lo stato dell’arte nel settore. I segnali sono simulati come variazioni dipen-
denti dal tempo delle posizioni relative di due Point Spread Functions
sovrapposte nelle imagini di TOLIMAN. La pipeline proposta è l’unica
in grado di rilevare il segnale con ampiezza di 10�6 volte le dimensioni
del pixel. I dati simulati contenenvano unicamente rumore Poissoniano,
in lavori futuri prevediamo di considerare le ulteriori sorgenti di rumore e
sistemetiche presenti nei satelliti reali.

Parole chiave: methods: data analysis, methods: machine learning,
techniques: image processing, techniques: interferometric, techniques: as-
trometric, software: simulations
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Chapter 1
Introduction

Hello there!

Master Obi-Wan Kenobi, Revenge of
the Sith

In the last two decades, astronomical datasets underwent a rapid growth
in size and complexity thus pushing Astronomy in the Big Data regime
[97, 11, 119, 167, 22]. These early trends are even more relevant nowadays
since new instruments, which are either ready to enter the operation phase
(e.g. the Large Synoptic Survey Vera Rubin Telescope - LSST, or EU-
CLID) or will become operational in the next three years (e.g. the Square
Kilometre Array - SKA and the Extremely Large Telescope - ELT), not
to mention the already operational James Webb Telescope, will push the
stream of newly processed data to unprecedented ranges of ' 30 � 100
TBs per day. Extracting scientific data from raw observations usually
requires the resolution of ill-posed inverse problems and traditional ap-
proaches cannot cope anymore with the rising data complexity. Comes
thus with no surprise, given that astronomers had pioneered and embraced
data virtuous strategies and "data driven" approaches to optimise the
data collection, distribution, and processing for most astronomical instru-
ments (see, for example, early virtuous examples such as the creation of
an accurate "astronomical ontology" or the Virtual Observatory Alliance
- IVOA1 or the creation of specific professional societies such as the the

1https://ivoa.net
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Astrostatistics International Society and the International Astroinformat-
ics Society2), that the ability of machine learning methodologies, both
supervised and unsupervised, to cope with very complex data, has been
extensively exploited by the community to solve a wide variety of problems
spanning all aspects of the astronomical data life, from instrument moni-
toring to data acquisition and ingestion, to data analysis and interpretation
[12, 82, 73, 102, 84, 109, 147, 169, 93, 43, 29, 41, 90, 123]. Chapter 2 sum-
marises the basic concepts about inverse problems and briefly describes
those which are encountered in this Thesis: the Radio Interferometric de-
convolution and the subsequent source detection and characterisation prob-
lems and the Telescope for Orbital Locus Interferometric Monitoring of our
Astrometric Neighbourhood Telescope for Orbital Locus Interferometric
Monitoring of our Astrometric Neighbourhood (TOLIMAN) satellite sig-
nal detection problem. The Chapter shows how each of these problems can
be formulated as an ill-conditioned inverse problem, what are the general
strategies to solve it, and provides an outline of widely accepted strate-
gies adopted by the community. Finding the solution to an ill-conditioned
inverse-problem poses several difficulties regardless of whether analytical
or numerical techniques are used, and, in order to make this problem well-
conditioned (solvable), regularization techniques and iterative strategies
can be employed. Regularization allows in fact to reduce the space of can-
didate solutions by incorporating some knowledge about the nature of the
data. This is achieved by reformulating the problem in such a way that
the solution to the new problem is less sensitive to perturbations. Prior
information usually accounts for the "smoothness" class of solution and
can go from the simple assumption of uniform smoothness to a much more
complex knowledge about the geometrical structures of the solutions (e.g.:
the shape of the Point Spread Function Point Spread Function (PSF), sym-
metry of the sources, isotropy, non-negativity etc.). An outline of Machine
Learning based solutions to these problems is instead presented in Chapter
3. As a matter of fact, in recent years, Machine Learning has become more
and more a powerful tool to solve ill-conditioned imaging inverse problems
in many fields of science and industry. ML offers in fact the possibility to
learn how to solve problems by automatically identifying patterns with-
out human assistance. This is crucially important in astrophysics which

2http://astroinformatics.info/astroinfo
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relies on observations and incomplete models of the underlying phenom-
ena. Furthermore, the relatively large errors in the data may result in
poorly constrained models which makes the solution to these problems
even more problematic. Chapter 3 aims therefore at introducing those ba-
sic concepts behind Machine Learning Machine Learning (ML) and Deep
Learning Deep Learning (DL) which are needed to understand the inner
workings of all the DL models I built to solve the problems addressed in
this Thesis. First, I present a broad overview of the AI field and the basic
definitions and structures which are required by all ML models, and then
I showcase a detailed analysis of all the DL and ML models I implemented
and utilised in this Thesis. Finally, I also showcase some ML and DL ap-
plications to the resolution of other astrophysical inverse problems.

Chapters 4, 5 and 6 present my original work: i.e. the development
of three DL pipelines for the resolution of three different inverse problems
within the field of Astronomy, the first two in the setting of Radio Inter-
ferometry, the latter in the field of Narrow-Angle Astrometry. The three
problems addressed in the respective Chapters are listed below:

• Chapter 4: Detection and characterisation of the Atacama
Large Millimeter Array Atacama Large Millimeter/submil-
limeter Array (ALMA) Sources through Deep Learning: the
fourth Chapter focuses on the performances of a DL-based pipeline I
implemented in order to reconstruct, detect and characterise sources
within simulated ALMA observations. These are 3D, noisy dat-
acubes obtained by passing simulated sources through the mathe-
matical model of the ALMA interferometric array. This investiga-
tion was needed to test if DL-based pipelines could be used to deliver
improvements in both speed and performance over more traditional
solutions. This involves the creation of realistic simulations of the
ALMA data products, which are made available to the Astronomical
community, and the comparison of the DL pipeline with competing
solutions and other traditional counterparts in solving the image de-
convolution and denoising problem, and then the source detection
and characterisation problems;

• Chapter 5: The Square Kilometre Array Square Kilometer
Array (SKA) Data Challenge 2: Detection and Character-
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ization of SKA Sources through Deep Learning: the fifth
Chapter of the Thesis investigates the performance of two novel DL-
based pipeline in detecting and characterising sources within a sim-
ulated Square Kilometre Array (SKA) data cube. The investigation
started with my participation, in collaboration with several members
of the Cosmostatistic Initiative (COIN), in the SKA Data Challenge
2, which ended up developing a first pipeline that is used as a baseline
in the Chapter. Two revised pipelines based on the baseline are pre-
sented and compared against other DL-based and classical pipelines
which participated in the challenge. While the original pipeline did
not show competing performances, nevertheless being in the top 10
scorer of the Challenge, the newly revised pipeline I implemented to
address the shortcomings of our previous attempt, was able to com-
pete with the winners of the Challenge.

• Chapter 6: The TOLIMAN Signal Detection Problem: the
sixth Chapter of the Thesis investigates the performances of a DL-
based pipeline I implemented to recover the astrometric signal em-
bedded in TOLIMAN simulated data. Astrometric detection involves
precise measurements of stellar positions, and it is regarded among
the leading methods to find Earth-mass planets in temperate (i.e.
within the habitability zone) orbits around nearby sun-like stars.
The TOLIMAN space telescope [152] is a low-cost, agile space mis-
sion which will be devoted to performing narrow-angle astrometric
monitoring of bright binary stars. In particular, the task will be op-
timised to search for habitable-zone planets around ↵ Centauri AB.
If the separation between these two stars can be monitored with suf-
ficient precision, tiny perturbations due to the gravitational tug from
an unseen planet can be witnessed and, given the configuration of
the optical system, the scale of the shifts in the image plane is about
one-millionth of a pixel. The Chapter showcases how a Convolutional
Auto-Encoder is able to retrieve the astrometric signal from simpli-
fied simulations of the TOLIMAN data and we present the entire
experimental pipeline to recreate our experiments from the simula-
tions to the signal analysis. The performance of the unsupervised
DL model is then compared with other state-of-the-art algorithms in
the field of compress sensing.
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While the three problems are presented in the above order, the research
was carried out along a different path: the TOLIMAN signal detection was
the first problem I tackled. Then came the SKA Data Challenge 2 and my
stay in Groningen (NL) in which I worked on my revised solution based on
the experience acquired within the COIN collaboration. Finally, I used the
knowledge acquired on the SKA problem to revise a customised solution
to the ALMA problem which became the main focus of this Thesis.

Chapter 7 summarises the work done and the main scientific results
achieved, outlines whether DL algorithms can provide fast and reliable so-
lutions for many challenges within Astronomy and outlines some future
perspectives for the work done so far.





Chapter 2
Inverse Problems in

Astrophysics

There is a theory which states that if
ever anyone discovers exactly what
the Universe is for and why it is
here, it will instantly disappear and
be replaced by something even more
bizarre and inexplicable.
There is another theory which states
that this has already happened.

Douglas Adams

2.1 Inverse Problems

Many problems in science and engineering are about the derivation
from a set of observations of the causal factors that produced them. In
other words, we wish to find the relation connecting the physical parame-
ters of a given model m, to a set of measurements b assuming that there is
a causal relationship G connecting one to the other. Mathematically this
kind of problem can be formulated as a set of equations:

G(m) = b (2.1)
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where b 2 Rn are the observable quantities (or functions of observable
quantities such as measurements), m is the mathematical model of the
physical processes involved in the observing process (also a function of
some analytical or numerical parameters), and G is the functional map-
ping relating the observations to the model. In this formalism, the forward
problem consists in finding b given m, i.e. in predicting the observations
given our knowledge about the phenomenon (simulations are forward prob-
lems). On the other hand, inverse problems consist in finding m given b.
For that reason G is also known as the forward operator and, depending on
the problem, it can be an ordinary differential equation (ODE), a partial
differential equation (PDE) or a linear or nonlinear system of equations.
In most imaging systems the noiseless observation can be approximately
considered as a linear function of the model or, in other words, the G op-
erator is linear [14]. Moreover, most imaging systems used in Astronomy
are space invariant, and, as we will see later in this Chapter, this implies
that the forward operator is a convolution with the Point Spread Function
PSF of the imaging system. The considerations made so far do not take
into account explicitly the fact that, in reality, measurements are always
affected by errors and models are always an imperfect approximation of
the true physics behind the phenomenon or the experimental setup. For
this reason, it is better to formulate inverse problems as:

b = G(m) + ✏ (2.2)

where ✏ represents our uncertainty about the measurement process and the
underlying physical process and it is commonly referred to as noise. This
expression does not mean that we are assuming additive noise but only
that there is a difference between the observed and the detected noiseless
image. The aspect of inverse problems which makes them interesting and
difficult to solve is that they tend to be ill-posed or in other words, they
tend not to obey the Hadamard conditions. Namely: the existence of the
solution; uniqueness of the solution; stability of the solution. These three
conditions may be explained as follows:

1. Existence: for example, there may be no model that exactly fits the
data and thus there is no analytical solution to the problem. This
may happen because the model is not complex enough to fully cap-
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ture the underlying physical processes or because the data contains
noise;

2. Uniqueness: if an exact solution exists, it may not be unique, or
in other words, there may be some other solutions G⇤ which fit the
data.

3. Instability: an arbitrarily small perturbation of the data (or of the
measurement process) may lead to an arbitrarily large perturbation
of the solution.

To give a mathematical representation of the aforementioned conditions,
let’s start by recapitulating some basic concepts of integral equations. An
operator G is a map between two functions domains X and Y that applies
the function � 2 X to the function  2 Y as it follows:

G : X ! Y
�!  = G�

(2.3)

we can also define the inverse operator G�1 where

G�1 : G(X)! X
 ! � = G�1 

(2.4)

The existence and uniqueness of a solution for an equation using operators
can be expressed as the existence of the inverse operator G�1 : Y ! X (i.e
the operator needs to be invertible). If this is the case then the solution
can be expressed as G�1b = m and the operator is said to be bijective.
The set of functions G(X) = {G� : � 2 X} is known as the rank of the
operator. Given the problems addressed in this thesis, we can restrict our
discussion to linear operators, i.e. one for which:

G(↵�1 + ��2) = ↵G�1 + �G�2 (2.5)

Two interesting properties of linear operators are boundness and compact-
ness. An operator is said to be bounded if 9C > 0 so that k G� k C k � k.
If a linear operator is closed and bounded it is said to be compact. It can be
demonstrated that in order for a linear operator to be invertible it suffices
that its inverse operator is bounded and that for a compact linear operator
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this is true only if its rank has finite dimensions. If the inverse operator
is also continuous, then the third condition is satisfied, and the problem is
considered well-conditioned. In practice, if any of these properties are not
fulfilled, the problem is ill-conditioned and the search for the solution (if
any) will encounter many numerical difficulties. Given the nature of the
problems addressed in this Thesis, which are continuous, we can make a
further step and confine our discussion to linear integral operators. Let us,
therefore, assume that the inverse problem described by Eq. 2.1 is contin-
uous, so we can express G as a linear integral operator

Z b

a
g(x, ⇠)m(⇠)d⇠ = b(x) (2.6)

the function g(x, ⇠) is known as the kernel or PSF of the imaging system,
and equations of this form (which arise in many inverse problems), where
m(x) is the unknown, are known as Fredholm Integral Equations of the first
kind Fredholm Integral Equations of the first kind (IFK). These equations
are ill-conditioned problems unless constraints on the functional space exist
or can be set by imposing that the spaces where the b and m functions
belong have a finite dimension. This, of course, as we shall see later in
this chapter, is not always possible. In many cases, the kernel can be
written as explicitly dependent from x� ⇠ thus leading to what is known
as convolution equations

Z +1

�1
g(x� ⇠)m(⇠)d⇠ = b(x) (2.7)

For instance, the problem of inverting a Fourier transform

 (f) =

Z +1

�1
e�i2⇡fx�(x)dx (2.8)

to get �(x) involves the resolution of an IFK.

A remarkable property of linear time-invariant (or space-variant prob-
lems in 2D and in 3D) is that the forward problem can be described as a
convolution

b(t) =

Z +1

�1
g(t� ⌧)m(⌧)d⌧ (2.9)
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in this case, the independent variable is the time, and the observations, the
model and the kernel are all functions of time. Convolution generally can
be used to describe all the mappings between models and observations of
any linear spatially or time-invariant physical process, including the output
of instruments such as radio interferometers. We can show that any linear
time-invariant operator G which transforms an unknown model m(t) into
a set of observables b(t) and that follows the principles of superimposition

G(m1(t) +m2(t)) = G(m1(t)) +G(m2(t)) (2.10)

and scaling
G(↵m(t)) = ↵G(m(t)) (2.11)

can be reformulated as a convolution by utilising the sifting property of
delta functions �(t). Where the delta (or Dirac) function is described as

�(t) = lim
⌧!1

⌧�1⇧(t/⌧) (2.12)

where ⌧�1⇧(t/⌧) is an unit area rectangle function with a height of ⌧�1 and
a width of ⌧ . To see that we can reformulate this problem as a convolution,
we can employ the sifting property to compute the value of a function
within the integral

Z b

a
f(t)�(t� ⌧)dt =

(
f(t0), if a  t0  b.

0, otherwise.
(2.13)

for any f(t) continuous at finite t = t0. Thus any input signal, m(t), can
be rewritten as a summation of delta functions

m(t) =

Z +1

�1
m(⌧)�(t� ⌧)d⌧ (2.14)

and the general linear system response b(t) to the input m(t) can be written
as

b(t) = G

"Z +1

�1
m(⌧)�(t� ⌧)d⌧

#
(2.15)

and by rewriting the integral as a limit of quadrature sum of infinitesimal
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areas of area �t as �t goes to zero

b(t) = G

"
lim

�⌧!0

1X

n=�1
m(⌧n)�(t� ⌧n)�⌧

#
(2.16)

Because G is linear, we can move it inside the summation (superimposition
property) and factor out m(⌧n) obtaining

b(t) = lim
�⌧!0

1X

n=�1
m(⌧n)G[�(t� ⌧n)]�⌧ (2.17)

which, taking the limit, becomes Eq. 2.9. Hence, the inversion of a Fourier
transform is an IFK and the known relationship between convolution and
the Fourier transform exists

G(f) = F [g(t)] =

Z +1

�1
g(t)e�i2⇡ftdt (2.18)

and its inverse operation

g(t) = F�1[G(t)] =

Z +1

�1
G(f)ei2⇡ftdf (2.19)

where F is the Fourier operator and F�1 is its inverse. An important
property of Fourier transforms which we will use later is the Convolution
Theorem which states the convolution of two functions in the time domain
(or image domain in case of 2D and 3D data) equals the multiplication of
their Fourier transforms in the frequency domain (also known as uv space
for radio interferometers).

F [m(t) ⇤ g(t)] =
Z +1

�1

⇣Z +1

�1
m(t)g(t� ⌧)d⌧

!
e�i2⇡ftdt (2.20)

which, introducing the change of variables ⇠ = t� ⌧ , can be demonstrated
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as follows

F [m(t) ⇤ g(t)] =
R +1
�1 m(t)

 
g(t� ⌧)e�i2⇡ftdt

!
d⌧

=
R +1
�1 m(t)

 
g(⇠)e�i2⇡(⇠+⌧)d⇠)

!
d⌧

=

 
R +1
�1 m(⌧)e�i2⇡f⌧d⌧

! 
R +1
�1 g(⇠)e�i2⇡f⇠d⇠

!

= M(f)G(f)

(2.21)

By utilising the convolution theorem and by denoting with the capital letter
the Fourier Transform of a function, from Eq. 2.1 and Eq. 2.7, we get:

B(f) = G(f)M(f) (2.22)

where G(f) is known as the transfer function Transfer Function (TF) and
describes the behaviour of the system in Fourier space. If the TF is zero
outside a bounded domain (i.e. the operator is bounded), then the PSF
is said to be band-limited (and thus well posed), but the addition of noise
(which is not band-limited) and the limitation of the observing instruments
(which make the uncertainty outside the physical bound of the detector
impossible to tackle) make these problems ill-posed.

2.1.1 Classes of Inverse Problems in Astrophysics

As was already mentioned, given the nature of most telescopes, most
data processing problems in Astrophysics can be reformulated as linear
inverse problems

Y = HX •N (2.23)

where Y is a set of measurements, N is the unknown noise term and the
operator • encodes the way noise contaminates the data. The noise term
can be either a stochastic measurement noise induced by the sensor or a
deterministic effect due, for example, to an imperfect forward model. X is
the solution of the problem, and H is the linear operator. There are many
such inverse problems in Astrophysics. I shall shortly describe the most
relevant ones for the purposes of the present work:
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1. Deconvolution: if the observing system is linear and shift-invariant,
the relation between the data Y and the unknown signal X is a
convolution with a blurring kernel also known as the Point Spread
Function of the system (PSF);

2. Radio-Interferometric Image Reconstruction: this is a special case
of a deconvolution problem in which the observed data correspond
to a subset of the Fourier components of the unknown X. In this
case, the PSF, called dirty beam, is not compact in direct space and
contains many zeroes in the Fourier domain;

3. "Blind" Source Separation (also known as Signal Detection, Source
Detection or Image Segmentation): in this case, each measurement
is the linear mixture of n source processes. As each measurement is
a different mixture, source separation techniques aim at recovering
the original sources by utilising information on how the signals are
mixed in the observed data.

As we have seen previously if proper conditions are not ensured, these
problems are ill-posed and regularization is necessary in order to find a
solution. Regularization involves reformulating the problem by taking into
consideration all available information both on the observation process and
the signal of interest (a priori knowledge such as non-negativity in images).
Several regularization techniques have been developed but all are based on
the principle that the best transformation should be the simplest which
can describe the forward model. In the following Sections, first, we give
a description of the Radio-Interferometric Image Reconstruction problem,
which is the main focus of this Thesis, and then traditional strategies for
the resolution of the problem are presented.

2.2 An introduction to Radio Astronomy and the

Radio Interferometric Image Reconstruction

problem

Radio Astronomy is the study of astronomical objects within the radio
regime of the electromagnetic spectrum of light. While a unique and exact
definition of what constitutes the radio regime is not formally defined, radio
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astronomical surveys have been observing the sky between 10 MHz and 1
THz. This range is not arbitrarily defined, but it is bound by the physics
of the interaction between the radio waves and the Earth’s atmosphere.
All waves with frequencies between 30 MHz and 50 GHz can penetrate the
atmosphere without undergoing any particular interaction, while the at-
mosphere reflects all radio waves below its characteristic plasma frequency
of 10 MHz, and water vapour shows a significant absorption signature in
the radio above 50 GHz in the troposphere. While the reflection at low
frequencies could only be avoided by removing the atmosphere, i.e. by ob-
serving in space, the absorption at high frequencies is drastically reduced
by building telescopes in particularly dry places on Earth, such as the At-
acama desert in Chile where the Atacama Large Millimeter/submillimeter
Array (ALMA) is operated. This broad range of observational frequencies
allows for the study of a large variety of astronomical sources thanks to the
wide range of physical mechanisms which emit in that range: synchrotron
radiation, atom and molecular transitions, black body radiation, free-free
radiation and inverse Compton scattering. This allows the investigation
of properties of a large variety of objects: radio galaxies, active galactic
nuclei, quasars, inter-galactic and interstellar medium, the centre of the
Milky Way, supernova remnants, supernovas, black holes, stars, planets
and even extra-terrestrial intelligence. This simple list clearly shows how
relevant is to optimise data reduction and analysis in the radio regime.
Radio waves are received by both dipole antennas and dishes, but the
majority of modern radio telescopes are built in the form of parabolic an-
tennas (dishes) which can directly focus the radiation on the receiver and
can be used more efficiently on the wide frequency ranges in which radio
telescopes operate. A dish is an electromagnetic transductor which trans-
forms the incoming electromagnetic waves into electric signals that can be
recovered and processed. The area of the sky to which the antenna is sensi-
tive is called the field of view Field of View (FoV) and, given the geometry
of the antenna and the observing wavelength, an antenna is characterised
by a directional gain pattern (or beam) which describes the variation of
the antenna response to the electromagnetic waves across the FoV. The
beam pattern of a dish is constituted by the main lobe, which defines the
angular resolution or resolution power of the antenna, and by several side
lobes created by various types of interferences between the electromagnetic
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waves incoming to the dish [17]. At a given wavelength �, the resolution
power of a dish, i.e. the smallest angle ✓ under which two point sources
(sources which are so distant from the observer that can be approximated
as points without loss of generability) are detected as separate entities, is
connected to the diameter D of the dish through the Rayleigh criterion:

✓ = 1.22
�

D
(2.24)

Where ✓ is in radians. This equation tells us that the wider is the dish, the
higher it is the resolution power but, as can be seen, to achieve resolving
powers similar to optical telescopes (0.01 arcsec), impossibly large dishes
are required. For example, to resolve a source emitting at a wavelength of 1
meter with the resolution of 1 arcsecond, a dish with a diameter of 251 km
would be required. At the time of writing this thesis, the largest single-dish
radio telescope in the world is the Five-hundred-meter Aperture Spherical
Telescope Five hundred meter Aperture Spherical Telescope (FAST) in
China with an astonishing diameter of 500 m.

Since the beginning of the sixties, Astronomers have started to com-
bine several radio dishes arranged in such a way as to replicate a single
instrument through the correlation of the electromagnetic signal in a pair-
wise fashion. The instrument is called an interferometer and the imaging
technique is called aperture synthesis. Each antenna observes simultane-
ously the same source at the same frequency ⌫. Since each wave takes
a slightly different path to reach each antenna, the difference in distance
travelled creates a phase difference between them which creates an interfer-
ometric pattern on the receiver or, in other words, a measurable geometric
delay in the arrival time of the wave at each antenna. This delay is con-
nected to the distance between each pair of antennas, which is called the
baseline length B, and the resolving power of an interferometer, in a first
approximation, is obtained by substituting D with B in Eq. 2.24. After
performing the delay compensation on each baseline signal, the signals are
averaged together in time and frequency and then stored. Each baseline
produces a fringe interference pattern multiplied by the beam pattern to
form the instrument Point Spread Function (PSF). Interferometers, with
respect to single-dish radio telescopes, can vary the baseline lengths be-
tween antennas by moving them over rail tracks. Larger baselines allow the
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Figure 2.1. A spectacular bird-view of the FAST Radio Telescope in Pingtang
county, China. The telescope observes the radio sky between 70 MHz and 4
GHz with an angular resolution of 4 arcseconds.
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observation of compact structures, while smaller baselines, the observation
of extended sources. To understand how an interferometric measurement
is made, let us consider a set of two antennas and an emitting source so far
away from the two antennas that the emitted waves can be approximated
as planar. The electric signal received by the antennas at the frequency ⌫
are, respectively:

E1(t) = E0(t, x̂)exp
h
2⇡i(t⌫ + ~x · ~k)

i
(2.25)

E2(t) = E0(t, x̂)exp
h
2⇡i(t⌫ + (~x��~x) · ~k)

i
(2.26)

where ~x is the source position, �~x is the difference in path length between
the two antennas, and ~k is the wave vector which is equal for both the
antennas given the planar approximation of the wavefront. Since the whole
field of view of the antennas contributes to the collected signal, we can
integrate over all directions x̂ = ~x/|~x|

E1(t) =

Z
d2x̂E0(tmx̂)exp


2⇡i(t⌫ + ~x · x̂

�
)

�
(2.27)

E2(t) =

Z
d2x̂E0(tmx̂)exp


2⇡i(t⌫ + (~x��~x) · x̂

�
)

�
(2.28)

The two signals are then correlated by averaging their product. The
resulting quantity is usually called the visibility pair W12

W12 =
1

T

Z
dt ¯E1(t)E2(t) (2.29)

where the bar indicates that we have taken the complex conjugate of the
vector. If we assume that the incoming radiation is uncorrelated (which
is true for all astronomical sources), then we can simplify the integral as
follows:

W12 =
1

T

Z
dt ¯E1(t)E2(t) ' �(x̂� ŷ)|E0(x̂)|2 (2.30)

The correlated signal can, then, be written in the form

W (~u) =

Z
I(x̂)exp[2⇡i~u · x̂]d2x̂ (2.31)
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Figure 2.2. The Atacama Large Millimeter / submillimeter Array (ALMA)
(Chile) (image courtesy of the European Southern Observatory (ESO))

where ~u = �x
� is the displacement vector between the two antennas divided

by the observing wavelength, and I(x̂) = |E0(x̂)|2 is the intensity of the
sky. Equation 2.31 is known as the radio interferometry measurement
equation and the space on which the visibilities are defined, it is called the
visibility space.

The equation resembles a spherical Fourier transforms, and we already
know from Sec. 2.1 that inverting it implies the resolution of an IFK. Given
that the intensities are only measured at the Fourier-like vectors ~u which
corresponds to the antenna’s displacements, the visibility space is only
partially sampled. Moreover, the dirty beam is not compact in the image
space and thus solving this equation constitutes an ill-posed deconvolution
problem. In order to solve this problem, in practice, a way of filling the
visibility space must be found. The main difference between an interfer-
ometer and a single-dish detector is that in the latter case the visibility
space is continuous and not discrete. Since the dishes cannot take arbi-
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trarily close positions, there are usually "gaps" in various positions of the
visibility space which are partially filled by changing the configuration of
the array and by utilising the rotation of the Earth to sweep a higher frac-
tion of the visibility space. One could be content with not trying to invert
Eq. 2.31, but the problem is that interferometers do not directly produce
images of the sky but instead they measure the brightness distribution or
intensity of the sky at a given frequency I⌫ for a given angular resolution in
Fourier space (visibilities), and an image can be obtained after performing
a Fourier transform on the sampled visibilities.

In the case that all baselines can be reduced to a plane, the u, v plane,
then the theory of aperture synthesis (see the convolution theorem in
Sec. 2.1) states that the map obtained by taking the Fourier transform
of the measured visibilities W (u, v) is proportional to the convolution of
the true brightness distribution Tb (convolved with the primary beam of
the P antennas configuration) and the synthetized beam G:

P (l,m) ⇤ T (l,m) ⇤G(l,m) _
Z Z

W (u, v)g(u, v)e2⇡i(ul+vm)dudv (2.32)

where l and m are the sky coordinates in the image plane (directional
cosines with respect to the u and v axes) and g(u, v) is the function used
to weight the complex measured visibilities W (u, v). u and v are usually
expressed in wavelenghts. We call synthesized beam or dirty beam the
normalized Fourier transform of this weighting function

G(l,m) = Cn

Z Z
g(u, v)e2⇡i(ul+vm)dudv (2.33)

where Cn is a suitable normalization function. Even if we assume, that
all visibilities lie on a plane, in order to calculate the Fourier integral in
Eq. 2.2 the product W ⇥ g must be known for all baselines. However, due
to the gaps in the visibility space, the correlation function W (u, v) is only
known for the positions at which it has been measured. A simple way to
fill the gaps is to set, for all positions in which W is not measured, g = 0.
This weighting scheme, however, leads to the creation of spurious patterns
in the produced image. The image resulting from the Fourier inversion
is called the principal solution or dirty map, i.e. a member of an infinite
family of possible solutions which all are in agreement with the measure-
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ments. The sidelobes cause oscillations in the principal solution around
strong sources and sharp edges which make recognising weak features in
the image a very difficult task. The dirty image or dirty map is thus the
convolution of the true sky brightness distribution with the instrument
PSF or dirty beam and for the aforementioned reasons it is not usable for
scientific purposes (i.e. to study the properties of the astrophysical sources
within it) and a series of steps are applied to the image in order to remove
as much as possible the instrumental response. Several algorithms have
been developed over the years to solve this ill-posed interferometric decon-
volution problem, i.e. to recover the true sky distribution from the dirty
map. To reduce the effect of sidelobes and high-frequency noise, one could
think of convolving this map with a suitable smoothing function such as a
Gaussian. Unfortunately, filtering cuts high-frequency components making
faint features (or faint sources) detection in the image more difficult if not
plainly impossible. Furthermore, given that convolution is a linear opera-
tion, it cannot generate nonzero values at unmeasured spatial frequencies,
nor can extrapolate into noise-contaminated regions of the visibility space.
For these reasons, the community has developed several nonlinear meth-
ods which use prior information about the data to fill the gaps in the
visibility plane with non-zero values. Solving the linear system of equa-
tions

�!
V = [F ][Sdd]

�!
T where

�!
V are the calibrated visibilities, F represent

a 2D Fourier transform, Sdd represents a 2D spatial frequency sampling
function that can include direction dependent instrumental effects such as
the primary beam, and

�!
( T ) are a list of parameters that model the sky

brightness (for example the image pixels), given the ill-posedness of the
problem, forces the algorithms to be iterative, which necessarily involves
repeated passages between the image and Fourier space. In fact, in order
to constraint solutions, whatever reconstruction is obtained in the image
domain, can be transformed back into the Fourier domain to measure
the agreement with the observations through a single constraint statistical
metric (usually chi-squared). Through the minimisation of this metric,
the optimal solution may be found. Iterations begin with an initial guess
for the image model, each major cycle consists of the prediction of model
visibilities, the calculation of residual visibilities and the construction of a
residual image. This residual image contains the effects of the incomplete
sampling of the spatial-frequency plane but is otherwise normalized to the
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correct sky flux units. The minor cycle is to iteratively build up a model
of the true sky by separating it from the point spread function. This step
is also called deconvolution and it is equivalent to the process of solving
the normal equations as part of a least squares solution [42]. Different
reconstruction algorithms can operate as minor cycle iterations, allowing
for flexibility in (for example) how the sky brightness is parameterised.

2.3 Source Detection and Deconvolution Algorithms

in Radio Astronomy

The detection of sources in Astronomical images, i.e. the task of sep-
arating pixels belonging to the sources from those belonging to the back-
ground (a task also known as image segmentation), is a crucial step for
the extraction of scientific results from astronomical observations and it
is one of the obligatory steps for the measurement of their properties.
While the task of separating luminous spots from a much darker and noisy
background may seem trivial with respect to other problems in computer
vision, reality shows that it is not simple at all. Astronomical objects have
not clearly defined boundaries since: their surface brightness steeply de-
creases outwards and quickly become fainter than the noisy background
(hence the signal is heavily contaminated), their size and intensity may
vary greatly resulting in an image with a large dynamic range (the ratio
between the brightest and dimmest pixels within the image) and a large
spatial dynamic range (the ratio between the largest and the smallest de-
tectable structure in the image). Given the ever-growing size and rate of
data coming from astronomical instruments, the astronomical community
has devoted much time to the development of automatic source detection
algorithms. These usually employ knowledge about the data and a likeli-
hood or loss function to measure the probability that the predicted model
of the underlying emission has produced the detected image. Once this
is set, and the non-negativity of the emission is imposed, the problem is
reformulated as a classical Least Squares problem and the general solution
is found through gradient descent. Classical source detection algorithms
in Astronomy can be broadly categorised into three main categories:
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2.3.1 The Bayesian approach

Algorithms that fall under the Bayesian approach are based on the
framework of Information Field Theory [45] and employ Bayesian inference
where a set of observations is used to update the probability that the
models representing them are true. In other words, it tries to estimate
the values of a set of parameters ✓ in some reasonable model of the data
b, which in our case are images. To make this estimation, the likelihood
i.e. an expression of the probability that any given model may provide the
observed data under a certain parametric configuration is considered. Also,
it needs to impose a prior probability on the parameters based on some
(prior) knowledge about their values. The approach itself then consists in
constructing the conditional probability density function:

p(✓|I) = p(I|✓)p(✓)
P (I)

(2.34)

which gives the posterior distribution p(✓|I) in terms of the likelihood
p(I|✓), the prior p(✓) and the evidence p(I). The evidence is usually set to
a constant parameter which results in an un-normalised posterior distribu-
tion. The maximum a posteriori Maximum A Posteriori (MAP) method,
searches for the best solution by maximising the likelihood so that, under
the assumed statistical model, the observed data is most probable. In prac-
tice, the likelihood is often based on exponential models which account for
the signal and the noise model (Gaussian, Poisson, etc.). Known examples
of this kind of algorithm are [53, 80];

2.3.2 The Matched Filtering and Thresholding approach

Algorithms that fall under this approach use convolving kernels to
highlight sources and suppress background fluctuation and noise. Mod-
ern implementations of such algorithms usually smooth the data with sev-
eral kernels with variegated shapes and resolutions and after employing
a threshold, based on the dynamic range of the convolved image, select
source pixels. A known and widely used algorithm in Radio Interferome-
try which utilises this approach is Sofia [135] which is a state-of-the-art
flexible line finding algorithm capable of detecting and parameterising HI
sources within 3D radio data cubes. It uses the Smooth and Clip algorithm
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Smooth and Clip (S + C), to detect meaningful emission in the cube by
convolving it with 3D kernels specified by the user at multiple angular and
velocity resolutions. At each resolution, voxels are detected if their abso-
lute value is above a threshold given by the user (in noise units). The final
mask is the union of the masks constructed at various resolutions. The
algorithm was updated and renamed Sofia-2 [159], rewritten in the C
programming language while making use of OpenMP for multi-threading
of the most time-critical algorithms. Sofia-2 is substantially faster and
comes with a much-reduced memory footprint compared to its predeces-
sor. Another widely used algorithm is BlobCat[57] which employs the
flood fill algorithm to detect and catalogue islands of pixels representing
sources in 2D astronomical images. The algorithm determines the Root
Mean Squared Root Mean Square (RMS) noise at each spatial pixel in an
image by extracting the distribution of pixel values within a local mesh,
iteratively clipping the most deviant values until convergence is reached
at 3� about the median. The choice of mesh size (in pixels) is critical for
successful source retrieval and thus it is a parameter that the user needs to
fine-tune. If it is too small, the local RMS estimate may be biased due to
the lack of statistically independent measurements or overestimated due
to the presence of real sources. If it is too large, any true small-scale vari-
ations in local RMS noise may be washed out. The RMS of the noise is
utilised to create a signal-to-noise rate (SNR) map of the image and two
threshold values: detection (Td) and cut (Tf ), are used to decide which
peaks in the image are good candidates for blobs and where to cut the
blobs boundaries around them (in other words: pixels with an SNR higher
than Tf are selected to form islands and island boundaries are defined by
Td);

2.3.3 Compressed Sensing and the Multi Scale Approach

A signal, considered as a vector in RN, is sparse if most of its entries
are equal to zero. If the number of zero entries is k with k << N , then the
signal is said to be k-sparse. In the case where only a selected few entries
to have large values and the rest is close to zero, the signal is said to
be weakly sparse or compressible. Generally, signals are not compressible
but can be made so by suitable transformations. For example, the Fourier
transform of a sinusoidal signal is certainly 1-sparse in the Fourier domain,
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but it is not sparse at all in the time domain. If a signal is sparse, then it
can be represented as a linear expansion

X =  ↵ =
TX

i=0

 i↵[i] (2.35)

where ↵[i] are the coefficients of X,  is the dictionary, and  i are the
atoms of the dictionary, i.e. the elementary waveforms in which the signal
is decomposed. When no constrain on the dictionary or the coefficients are
set, the problem amounts to computing the singular value decomposition
of X or, equivalently, the diagonalisation of the variance matrix of X. As
we have seen (see Sec. 2.1), this route is most of the time unfeasible,
and the problem may be simplified by adding priors or constraints on the
dictionary  [100], on the coefficients ↵ or on both. For example, an l0 or l1
norm penalty on the coefficients yields a sparse representation of the data.
Techniques that employ sparsity are based on the concept that the optimal
dictionary is the one in which the function has the sparsest representation,
and Compressed Sensing is a framework of techniques that search for that
solution. In practice, the dictionary is a N ⇥ T matrix whose columns are
the normalised coefficient vectors. For example, these could be normalised
to a unit l2-norm, i.e.

8i 2 [1, T ], k �i k22=
NX

n=1

|�i[n]|2 = 1 (2.36)

One could try and use a huge over-complete dictionary (T >> N)
but this would lead to prohibitive computational times for calculating the
coefficients. A balance thus must be struck between the complexity of the
dictionary (size of the dictionary) and computational times. In a more
general treatment, we can define for a vector X his lp-norm as |X|pp =P

i |xi|p for p > 0, and by setting p = 0 we get the l0 pseudo norm which
counts the number of non-zero entries in the vector X. A l0 regularised
problem amounts to the minimisation of

↵̃ 2 argmin↵ k Y �H ↵ k22 +� k ↵ k0 (2.37)

where � is the regularization parameter. Regardless of the imposed con-
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straints, Eq. 2.37 is a known NP-complete problem [139], but can be
relaxed by substituting the l0-norm with an l1-norm and thus reformulat-
ing the minimisation problem as

↵̃ 2 argmin↵ k Y �H ↵ k22 +� k ↵ k1 (2.38)

This latter problem can be solved under appropriate transformations and
usually, for many  it is shift-invariant (a set of convolutions). Unfortu-
nately, the resolution of the problem with this formulation does not admit a
closed-form solution and, therefore as already explained, it must be solved
iteratively. Closely related to this problem is that of reducing dimension-
ality [116] of data with minimal information loss which is important for
feature extraction, compact coding and computational efficiency, to elim-
inate redundancies and enforce constraints. Given the interest in finding
methods capable of solving the inverse problem, other constraints have
been imposed and the resulting techniques usually take their name from
them: sparse Principal Component Analysis Principal Component Analy-
sis (PCA) [39] when the sparsity constraint is also imposed on the dictio-
nary and not only the coefficients; independent component analysis (ICA
[74]) when the statistical Independence between the coefficients is imposed;
non-negative matrix factorization (NMF [88]) when a positivity constraint
is imposed on both the coefficients and the dictionary. The third approach
to dictionary learning more similar to that of ML, is that of Wasserstein
dictionary learning [134] Wasserstein Dictionary Learning (WDL) in the
sense that it generates a database of dictionaries  and a set of associated
weights to those dictionaries ⇤. A set of Wasserstein barycenters are gener-
ated and an operator P is set to approximate X as P ( ,⇤). The operator
maps the atoms of the dictionaries and their weights to the barycenters
and the optimal solution is found by searching for minima in a nonconvex
energy function. This is achieved by performing automatic differentiation
on the iterative scheme used to compute the barycenters so that gradients
with respect to both the dictionary atoms and the weights can be obtained.
Weights and dictionaries can be then updated through a quasi-Newtonian
solver.
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The Starlet Transform and the Multi-Vision Model

Astronomical data generally have a complex hierarchical structure, and
for this reason, a more suitable way to represent it is in the multi-scale
space. Thus, images are decomposed into components at different scales
(different spatial frequencies), and objects become highlighted in some
scales. Depending on the nature of the sources, they may appear in several
scales, and closer to low or high-frequency scales. Once the decomposition
is complete, a basic detection algorithm can be applied to the different
scales, as if they were single-scale images. The Starlet wavelet transform
[143] decomposes an image into a set of coefficients as a superimposition:

c0[k, l] = cj [k, l] +
JX

j=1

wj [k, l] (2.39)

where c0 is the original image, cj is a smoothed version of the original
image and wj capture details of the image at spatial scales of 2�j . Thus
the algorithm outputs J + 1 coefficient maps for each input image. The
decomposition is achieved using a filter bank (h2D, g2D = ��h2D, ˜h2D = �,
˜g2D = �) where h2D is the tensor product of two 1D filters. The passage

from one resolution to the next is obtained using the "a trous" (with holes)
algorithm [143]

cj+1[k, l] =
X

m

X

n

h1D[m]h1D[n]cj [k + 2jm, l + 2jn] (2.40)

wj+1[k, l] = cj [k, l]� cj+1[k, l] (2.41)

B3-spline is chosen for the scaling function. The algorithm goes as follows:

1. initialize j to 0 and be k the number of pixels belonging to the signal;

2. carry out a discrete convolution of the data cj,k using a filter h. The
distance between the central pixel and the adjacent ones in 2j ;

3. after this smoothing, the discrete wavelet transform is obtained from
the difference cj,k � cj+1,k;

4. if j is less then the maximum number of resolutions J , the algorithm
increments j and goes back to step 2;
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5. the set W = w1, ....wJ , cJ represents the wavelet transform of the
data.

Using sparse modelling, we can consider the observed signal X as a linear
combination of a few atoms of the wavelet dictionary  = [ 1, ....., T ]
from which different filter banks or kernels can be created. By modelling
the deconvolution (or source detection) problem 2.23 as follows

Y = HX +N = H ↵+N (2.42)

where ↵ = w1, ...., wJ , cJ , we can define the multi-resolution support of the
input image by the following condition

Mj [k, l] =

(
1, if wj [k, l] > K�j .

0, otherwise.
(2.43)

where k�j is a given detection limit usually estimated through noise mod-
elling. The Multi Vision Model describes an object as a hierarchical set
of structures. In fact, at each scale of the multi-resolution support, a set
of significant connected wavelet coefficients form structures which can be
isolated through a clump find algorithm. At each scale, we can define a
structure Sj,k as the set of significant connected wavelet coefficients at scale
j, and an object as a set of connected structures. In fact, by checking if the
pixels belonging to different structures at different scales have significant
overlap (they share common pixels), a link between two structures can be
formed if their overlap is higher than a given threshold. The co-addition
of all the reconstructed objects is a filtered version of the input data. If we
denote with ↵i the set of wavelet coefficients belonging to a given object
in the image, it is clear that they are a subset of the full set of coefficients
↵̃i of the wavelet transform of Xi, ↵̃i = WXi. Given that it is possible
that not all coefficients belonging to Xi have been detected, the image
reconstruction problem consists in searching for the image Xi such that its
wavelet transform reproduces the observed coefficients ↵i. If we set W as
the wavelet transform operator, and Pw as the projection operator in the
subspace of the detected coefficients (i.e. the thresholding operator that
let us select and preserve relevant connected coefficients and set to zero
all the rest), the solution of this problem can be found in the least square
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Figure 2.3. Illustration of the Multi Vision Model linking process between
detected objects at several coefficient scales. Links (dotted lines) are created
if the spatial overlap is registered between objects.
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fashion by setting a positive constrain on the solution

min
Xi

||↵i � Pw(WHXi)||2 (2.44)

In particular, this can be solved with the Van Citter method [142] which
leads to the following iterative scheme:

X(n+1)
i = Xn

i +R
⇣
↵i � Pw(WHX(n)

i )) (2.45)

where R is the inverse wavelet transform.

1. set n = 0;

2. find the initial estimation X(n)
i by applying an inverse wavelet trans-

form to the set ↵i corresponding to the detected wavelet coefficients
in the data;

3. convolve X(n)
i with the PSF H : Y (n)

i = HX(n)
i ;

4. determine the wavelet transform ↵(Y
(n)
i

) or Y (n)
i ;

5. threshold all wavelet coefficients in ↵(Y
(n)
i

) at positions and scales

where nothing has been detected (Pw). We get ↵(Y
(n)
i

)
t ;

6. determine the residuals ↵r = ↵i � ↵t;

7. reconstruct the residual image R(n) by applying an inverse wavelet
transform.;

8. add the residual to the solution X(n+1)
i = X(n)

i +R(n);

9. threshold negative values in X(n+1)
i ;

10. if �(R(n))/�(X(0)
i ) < ✏, then n = n+ 1 and go to step 3;

11. X(n+1)
i contains the deconvolved reconstructed objects.
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2.3.4 CLEAN

In 1973, Hogbom [70] developed the CLEAN algorithm, a procedure to
solve the deconvolution problem, and since then, for more than 40 years,
through constant updates, it has been the standard data cleaning proce-
dure for most radio interferometers. The algorithm is an iterative proce-
dure that operates in the image plane using the known information about
the dirty beam, to separate real structures (the underlying astrophysical
signal) from spurious structures created by the interferometer and noise
(sidelobes and artefacts). There are several variants of the CLEAN al-
gorithm, some operate with delta functions, others with multi-scale sky
models, but all parametrise the sky brightness in a sparse basis. The dirty
beam described before contains both positive and negative sidelobes. These
areas of negative values cannot be real brightness distributions given that
real brightness distributions must be positive definite and thus the differ-
ence between the observed map and the true sky brightness can be reduced
by substituting the negative pixels with zeros. The Fourier Transform of
the resulting map will no longer agree with the known values of W mea-
sured at the baseline but the agreement can be restored by adding Fourier
components that make up for the difference. This operation will produce
new areas of negative intensities which can be processed in the same way
until no change is perceived between one iteration and the next. In order
to understand the main working principle of CLEAN, let’s assume the very
simple example of an ideal noiseless observation of a point source situated
in the centre of the beam. An empty sky image could be obtained by sub-
tracting from the image the dirty beam scaled for the measured amplitude
at the centre of the beam. The convolution of the obtained empty sky
map with a clean beam, i.e. an ideal dirty beam without the presence of
sidelobes, should provide an image which should be equal to that obtained
by applying the inverse Fourier transform to a completely covered visibility
space. In order to restrict the number of solutions, the algorithm makes
the assumption that any significant correlation (higher than the set noise
threshold) between the dirty map (DM) and the dirty beam (DB) will be
caused by a source or source component at the position of the maximum
correlation. And the convolution function is given by the convolution of
the dirty beam with the dirty image. It follows from the convolution the-
orem that
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DM
FT ��WgDB

FT �� gDM ⇤DB
FT ��Wg2 (2.46)

If we have set g = 1 at all measured baselines and zero elsewhere then,
given the complex nature of the visibilities, Wg2 will be equal to Wg and
thus DM ⇤DB must be equal to DM and thus the dirty map is by itself
the correlation functions. By searching for maxima within the dirty map,
sources can be detected. CLEAN starts by making a full analysis of the
map and assumes that all meaningful peaks in the image must be positive.
Negative peaks are used to gauge the noise level in the image. At each
iteration, the algorithm searches for the maximum positive peak in the
image and subtracts from it a fraction of the dirty beam at the location
of the peak. The resulting image is called the residual map, which in
the most optimal outcome should contain only background emission. The
algorithm jointly fills another image (called the CLEAN component map)
with the clean components, i.e. delta functions located at the position of
the detected peaks. The algorithm stops when no more peaks pass the
noise threshold criterion or when the maximum number of iterations is
reached. The CLEAN component map is then convolved with the CLEAN
beam and added to the residual map to form the restored image. Over
the years many improvements have been made to the CLEAN algorithm
to improve its speed, reliability and accuracy of the source characteristic
measured from the restored image. Clark [32] published an updated version
of Hogborn’s algorithm, with two main differences from the predecessor: it
performs residual updates only on a small patch of the PSF (an operation
that speeds up the minor cycle but may introduce aliasing errors; it controls
aliasing errors by transitioning to the major cycle when the peak residual
reaches the level of the highest sidelobe for the strongest feature.

One of the latest versions of CLEAN is the Multi-Scale Multi-Frequency
Synthesis (MS-MFS) [34] algorithm which is an algorithm that models the
sky distribution as a collection of inverted, tapered paraboloids of different
scales and sizes and whose amplitude follows a polynomial in frequency.
A linear-least squares approach is used along with the standard clean-
type iterations to best fit spectral and spatial parameters. It accounts for
extended source characteristics at multiple spatial frequencies within the
image. To conclude, the CLEAN algorithm is an L1-norm basis-pursuit
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method and this means that in a crowded field of point sources, especially
with a PSF with high sidelobes, the algorithm is more error-prone in the
low SNR regime.

2.3.5 CLEAN Limitations

So far in our discussion, we have only talked about images, but as
previously stated, radio interferometers can be used to detect signals over
a wide range of frequencies. When an interferometer is pointed towards
a sky sources source, it usually makes observations at several contiguous
frequencies (frequency channels). The step in frequency that separates one
image from the next is dictated by the frequency resolution (or sensitivity)
of the interferometer. The resulting data product is thus a cube charac-
terized by two spatial axes and a frequency axis. Because radio sources
usually emit at several wavelengths in the radio regime, their signals in the
cube show correlation in both the frequency and spatial domain. CLEAN

was developed to work on images and thus does not take into consideration
correlations along the frequency axis. Without leveraging the correlation
in frequency, the algorithm has no mean of separating a source (peak in
the image) from a particularly high noise spike (which should not show a
correlation in frequency) and, even more problematic, the cleaning process
makes the separation in the restored image even more difficult, given that
a noise peak, if mistaken for a source, would be deconvolved several times
with the instrumental PSF and the recovered delta function would be con-
volved with the clean beam (i.e. a Gaussian approximation of the PSF)
thus producing a structure morphologically similar to the actual sources
that underwent the same iterative deconvolution process. Another issue
with the usage of CLEAN on data cubes is its speed which is affected by
the fact that each image (slice of the cube) is processed independently and
no information about previous slides is used.

2.4 An introduction to Astrometry and the TOLI-

MAN Deconvolution problem

Among the many questions that Astronomy seeks to answer, like many
hard sciences, it also tries to answer our deepest questions. Where did it



34 Chapter 2. Inverse Problems in Astrophysics

all begin and how is it going to end? Are we alone in the Universe? Is
there life beyond our biosphere – or conversely is Earth and our planetary
system in some way unique? Such inquiries have given rise to the fields
of astrobiology and exoplanetary research. Despite our long-term commit-
ment to exploring these questions, the development of instruments capable
of detecting planets around distant stars has proven to be one of the most
challenging astronomical quests [87]. The first exoplanet orbiting a Sun-
like star was detected through small deviations caused in radial velocity
measurements of its host [104], a pioneering work that was subsequently
awarded the 2019 Nobel Prize in Physics. A little more than twenty years
later, there are more than 4000 confirmed exoplanets1. The celestial gar-
den is therefore a fertile ground for discovery, and the synergy between new
astronomical missions and modern statistical and machine-learning tech-
niques promises an exceptionally bright future for this rapidly expanding
field. Discovery and characterisation of exoplanets are particularly suited
to combinations of approaches that can push the boundaries in both the
acquisition of exceptionally clean, low-noise data, as well as the ability to
sift large volumes of observations in order to extract subtle signals that are
often submerged under orders of magnitude of statistical and systematic
noise. Every technology in this area has to face these problems because,
on a cosmic scale, exoplanets are almost completely negligible. They con-
tribute only infinitesimally to the mass or energy budget of galaxies. Even
in our own solar system, major gas-giant planets such as Neptune and
Uranus evaded detection until the advent of the modern telescope; the
challenge of discovery at light-year distance scales can seem forbidding.
The most successful techniques to reveal exoplanets are indirect in that
they do not witness signals from the planet itself, but rather the planet’s
influence on its host star. One is the transit method which witnesses a dip
in starlight as the planet traverses the observer’s line of sight to the star.
An alternative method is through measurements of radial velocity, which
records to-and-from perturbations in the velocity of the star, as it is per-
turbed by the gravitational field of the planet. The TOLIMAN (Telescope
for Orbital Locus Interferometric Monitoring of our Astrometric Neigh-
bourhood) [152] program was motivated by the realisation that neither of
these methods are suited to answer a fundamental question: are there any

1http://exoplanet.eu/catalog/
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potentially habitable exoplanets around the Sun’s nearest neighbour twin
system – ↵ Centauri AB? Unfortunately, the transits require an alignment,
a very rare event, while radial velocity can find massive gas-giant planets,
but not small rocky exo-Earths in the habitable zone of the system. A
very promising alternative method is the most traditional branch of As-
trometry: the study of deviations in the position of the star in the plane
of the celestial sphere that, in this case, are imposed by the motion of the
star and the exoplanet around a common centre of mass. Like all signals
in this domain of science, the deviations in position are very small, of the
order of one micro-arcsecond. To give a sense of scale, for an observer
on Earth, this is the angle subtended by a coin held edge-on (⇠ 2mm)
while standing on the moon. For the specific case we are interested in,
the situation is even more interesting. ↵ Centauri is a binary star system,
with two stars (A and B) orbiting around each other. If their motion could
be monitored, for example by taking a series of images at different epochs
(or time stamps), one would see the distance between the centres of the
stars changing as their orbit evolves. After one orbital period, this pattern
would repeat - thus, by observing the separation between the stars dur-
ing some time one would detect a periodic signal. Given the interactions
between orbital bodies in a gravitational bound system such as a solar sys-
tem, the presence of any significant orbital bodies apart from the two stars
would have an effect on their relative motion. For example, the expected
signal would be slightly different if one considers the presence or absence
of an Earth-like planet as adjoint elements in this system – and that is
the type of perturbation which the TOLIMAN mission aims at measuring.
One can imagine that at such scales even the smallest deviations in the
position of the satellite or thermal effects in its structure and instruments
are enough to build up noise in each image, which is orders of magnitude
higher than the signal. This makes the problem a classical ill-posed in-
verse problem where small perturbations in the system can lead to widely
different solutions. TOLIMAN has been designed to implement innovative
optical principles to deliver a robust estimate of this signal, despite the
inevitable presence of many competing random processes and systematic
noise. Details can be found in [152] and in Ssec. 2.4.3 later in this Chap-
ter. A critical component for the success of the mission is the clear ability
to extract periodic signals at the milliarcsecond level from a data stream
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consisting of over a million of images downlinked from the satellite.

2.4.1 Astrometry

Astrometric detection involves precise measurements of stellar positions
and it is widely regarded as the leading concept presently ready to find
Earth-mass planets in temperate orbits around nearby sun-like stars [136,
56, 149, 101]. The principle for detecting a planet using astrometry is the
same as that adopted by the hunters of unseen companions of stars [21]
about two hundred years ago. As a planet orbits the star, the latter is
tugged in a small ellipse around the centre of mass of the system, thus,
by careful measurements of the position of the star over time (either in
a relative or global frame of reference, that must be more stable than
the signal produced by the invisible companion), these tiny displacements
yield a solution for the planet mass and orbit. Unlike other methods, like
those based on transit timing, photometry or radial velocity measurements,
the signal generated by companions increases with planet-star separation,
converse to both radial velocity and transit methods, following the equation
[51]:

S =
m

M

r

d
(2.47)

where m and M are respectively the masses of the planet and the compan-
ion star, r is the semi-major axis of the planet’s orbit and d is the distance
between the observer and the star. From this equation it can be seen that
the amplitude of the intrinsic signal (the amplitude of the periodic angular
wobble on the sky) is inversely proportional to distance, favouring stars in
the immediate neighbourhood of the Sun, and scales with the planet-mass
ratio, covering thus the search for massive planets around relatively small
stars. However, if enough care is taken in the observation stability, sev-
eral valuable targets of potential close stars are worthy of being observed
through astrometric techniques. Despite the potential promise, astrometric
detection for exoplanetary discovery has not yet entered the mainstream.
The angular excursions induced by habitable-zone Earth-analog planets
are small, of the order of one micro-arcsecond even for best-case targets,
such as Alpha-Centauri (which is the second closest star to the Sun).

Ground-based high-precision astrometry campaigns must fight consid-
erable sources of noise, such as the starlight path through the Earth’s tur-
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bulent atmosphere. Long-baseline optical interferometers have historically
delivered precisions better than 100 micro-arcseconds, with a recent resur-
gence of interest prompted by ESO’s GRAVITY instrument [7] with accu-
racy an order of magnitude better, but still not sufficient to detect Earth-
mass planets around nearby stars. Furthermore, the nearest stars to Earth
present a large apparent angular diameter and are correspondingly difficult
to observe on long baselines, since they are over-resolved objects, and thus
present challenges to the interferometric technique, due to low fringe con-
trast. These intrinsic challenges for ground-based astrometric observation
have increased the interest in space-borne missions which exchange the
aforementioned problems with the challenges connected to satellite obser-
vations (inherent instabilities and data transmission constraints). Global,
large space astrometric surveys over wide angles have proved to be ex-
tremely productive delivering fundamental stellar positions, distances and
kinematics with the ESA/HIPPARCOS mission [1], and its ambitious suc-
cessor ESA/Gaia [8, 6], which is now measuring a billion stars with preci-
sions of the order of ⇠ 10µas. Although the Gaia mission is expected to
deliver a rich harvest of gas giant planets [26, 122], in order to detect and
study Earth-like planets in temperate orbits, we need to push detection
thresholds down to levels better than 1µas, something that will require
dedicated new concepts.

Conventional astrometry approaches measure the position of a star,
using a grid of reference nearby objects. This requires relatively large
fields of view since the distance between science targets and sufficiently
bright reference objects is of the order of several arcminutes. However,
maintaining long-term instrumental stability over such large angles is no-
toriously challenging. Several interesting missions have been proposed by
groups in Europe [149], the US [153] and China [27], addressing differ-
ent concepts, which, at least, theoretically, may be capable to solve this
problem with highly stable and continuously monitored spacecraft and
instruments. This poses, however, an additional non-negligible problem:
the instrumental cost scales significantly with the field of view. Thus it
is natural to ask the question if it is possible to obtain micro-arcsecond
level measurements for certain targets, like Alpha-Centauri, using much
narrower fields-of-view, thus avoiding the high costs associated with the
stability of large field-of-view concepts.
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2.4.2 Narrow-Angle Astrometry

Our ability to perform narrow-field astrometric science ultimately rests
on the ability to precisely register the position of the stellar image in
each exposure. This meets a fundamental photon noise limit, even with
a perfectly stable optical apparatus. Typically, any bright nearby star
will provide enough photons so that this theoretical limit is not a major
problem, requiring only minutes or hours of integration with a telescope
of reasonable aperture. However, the critical limit is not set by photons
from the target star but by the absolute stability of the image plane sen-
sor required to perform the measurement; something that can only be
accomplished with continual monitoring and ongoing calibration. For the
practical narrow-field astrometry, registration of the images is performed
by simultaneous monitoring of a constellation of background stars, which
provides instantaneous information about the exact plate scale and further
order deformations. The astrometric detection error budget is therefore
dominated by the accumulation of sufficient counts on these much fainter
reference stars that, for a field of view of several arcminutes, are likely to
be thousands of times fainter than the target star.

The concept underlying the TOLIMAN mission was developed on the
principle that it is possible to entirely sidestep this dilemma for the spe-
cial case of observations of bright binary stars. In fact, if two bright stars
lie close together in the sky, the precise monitoring of their separation
will deliver the key science with negligible photon noise. In particular,
↵ Centauri is almost ideally tailored for a mission exploiting narrow-angle
self-referenced astrometric detection. As our second nearest celestial neigh-
bour system (the closest one being Proxima Cen), Alpha Cen’s pair of stars,
both similar to our Sun, is at the sweet spot for detectability within an
attainable mission duration yielding signals factors of 2–10 times stronger
than the next-best systems. The two habitable zones have wide enough
orbits to have a good probability of yielding good signals, yet not so wide
as to require an extended mission lifetime for detection.

2.4.3 TOLIMAN

The TOLIMAN space telescope [152] is a low-cost mission which aims
to push the boundaries of astrometric measurements in binary star systems
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and to enable the detection of Earth-like planets around ↵ Centauri. The
mission is optimised to search for habitable-zone planets that, for Alpha
Centauri, implies deflections with amplitudes of the order of ⇠ 1µas over
roughly 1-year orbital periods. The detection of such a small astrometric
signal (i.e. angle) has never been achieved before in any field of applied
science.

To accomplish this task with an affordable spacecraft and mission pro-
file is a daunting engineering problem requiring, among other things an
innovative optical and signal encoding architecture. The project, in its
present status, explores and reformulates the idea of a Diffractive Pupil
based optical system. As originally envisaged, a diffractive pupil telescope
would have a set of diffractive features, most simply a regular array of
small opaque dots, embedded in the entrance pupil of the instrument [55].
These must be anchored to some element with extreme mechanical sta-
bility. The features cause starlight to form a pattern whose features are
exactly known and stable so long as the diffractive pupil remains stable.
For bright sources, this simple concept offers a cunning solution to the key
problem that overwhelmingly dominates astrometric error budgets: the
stability of the instrument. When trying to reference stellar positions at
micro-arcsecond scales, a host of small imperfections and mechanical drifts,
warps and creeps of optical surfaces, generate systematic instabilities that
can be orders of magnitude larger than the true signal. Rather than trying
to directly contain all these errors, the Diffractive Pupil approach sidesteps
them. It creates a new ruler (or system of reference) of patterned starlight
against which to register positions in the image plane. The cleverness of
this approach is that the diffractive grid of starlight suffers identical dis-
tortions and aberrations to the signal that is measured. Therefore, drifts
in the optical system cause identical displacements of both the object and
the ruler used to measure it, thus making the data immune to a large class
of errors that encompasses other precision relative astrometry approaches.
The opaque dots pupil proposed by [55] results in a diffraction pattern
where the image plane is populated by a regular grid of sidelobe images
diffracted from the bright target star. However, when considering broad-
band (i.e. non monochromatic) illumination, bandwidth smearing of the
starlight will draw each sidelobe into a narrow radial streak or ray. The
signal recovery proceeds by registering the location of these rays against
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the background field stars. Because the diffractive ruler takes the form
of long narrow radial rays, positional information recovered must be in
the orthogonal ordinate. Therefore, the primary observable consists of the
recovery of azimuthal positions of (a rich field of) background stars reg-
istered against the nearest diffraction rays. For the TOLIMAN mission,
the diffractive pupil formulation described above has two fatal flaws: (1) it
relies on background field stars and (2) with its radially smeared ruler it is
unable to yield precision measurement of the separation of any binary star.
To summarise, without using diffractive pupils, the observation of only a
single pair of stars, as is the case of Alpha-Centauri, would require radial
information measurements or other stars in the field to detect an orbiting
planet. Instead, TOLIMAN proposes a novel form of diffractive ruler which
generates fine-featured patterns capable of spanning the required separa-
tions between the components of a binary star system. The TOLIMAN
pupil is capable of creating patterns, uniformly filled in the image plane,
with a sharp structure extending in the radial direction. The pattern is
characterised by features that have the highest gradient energy and that
occupy the minimum span in dynamic range thus optimising our ability
to accurately register the resulting pattern and fitting algorithms rely on
regions where the image has the strongest slopes or sharp edges. The latter
condition is required to spread the starlight preventing saturation of the
detector, and spanning the separation of the binary with diffractive fea-
tures so as to enable the diffractive pupil methodology. Figure 2.4 shows
the TOLIMAN diffractive pattern that fills the entire diffractive region, in-
cluding the core, with sharp structure thus creating clear gradients in the
image plane and optimise the ability to precisely register the astrometric
signal.
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Figure 2.4. Left Panel: a conceptual design pupil for the TOLIMAN mission,
with white/black regions indicating discrete phase steps of 0/⇡. Right Panel:
the monochromatic PSF generated yields a complex and strongly featured
pattern extending from the core, uniformly filling the region with sharp fringes.





Chapter 3
Deep Learning and its

application in Astrophysics

I’m sorry, Dave, I’m afraid I can’t
do that

HAL9000, 2001: a Space Odyssey

3.1 Machine Learning

Research on Artificial intelligence Artificial Intelligence (AI) began in
the 1950s when the pioneers of computer science started wondering whether
computers could be able to "think", a topic which is still of the utmost
importance today. Today AI research covers a wide range of disciplines
and it has been subjected to an enormous amount of scrutiny, confusion
and faithful excitement [50]. The quest to truly reproduce and automate
higher intellectual functions characteristic of the human brain within com-
puter programs in order to let them solve problems by themselves has
been the central position in the field. This resulted in the birth of machine
learning and symbolic AI and, more recently, Deep learning. Symbolic
AI was the dominant paradigm between the 1950s and the 1980s when
scientists thought that human-level AI could be achieved by constraining
programs with large sets of rules. While this approach provided solutions
to well-defined logical problems, it failed in solving more complex ill-posed
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problems such as speech recognition, language translation, image classifica-
tion and so on. Thus a new paradigm emerged from a very simple question:
what if instead of giving rules to a program in order to receive an answer
to a problem given the data, we give the program the question and its
answer, and let it choose its own rules to find the correct answer? This
question led to the inversion of the Symbolic AI paradigm: humans create
the rules, and the program applies them, humans provide the answers and
the program finds the rules. This latter approach has a practical and philo-
sophical advantage over its predecessor which led to its widespread success:
it relies way less on the human understanding of the decision process in-
volved in the resolution of the problem or in other words, it requires way
less knowledge of the true mathematical model which governs the processes
involved in the problem. A characteristic of ML models, thus, is that they
are trained or, in other words, presented with a large number of instances
related to the task, in order for them to develop rules based on the sta-
tistical structures within the examples. The main categories that machine
learning techniques fall into are Supervised and Unsupervised learning. In
supervised learning, the answers to the problem at hand (labels in case of
classifications, parameter values in case of regression) are provided with
the training data. Unsupervised learning does not involve the use of labels,
so the algorithm has to infer structures using the data only. In this Thesis,
I have studied and implemented both types.

3.1.1 Artificial Neural Networks

Artificial Neural Networks Artificial Neural Network (ANN) are a class
of ML models which can be used to approximate any nonlinear functional
relationship between a set of inputs and outputs [38]. Each layer of a
neural network transforms a vector of inputs x 2 RN as follows:L

y = f(Wx + b) (3.1)

where W 2 R(N⇥K) is a matrix of weights, b 2 RK is a bias term, and
the nonlinear activation function f : R ! R is applied component-wise.
The bias term shifts the baseline activation function input away from zero,
providing richer behaviour for modelling the functional relationship be-
tween the input and output variables. In networks with multiple layers,



3.1. Machine Learning 45

the output of each layer is connected to the input of the following one,

ˆyl+1 = fl+1(Wlhl + bl) = fl+1(Wlfl(...(f1(W0x+ b0) + bl) (3.2)

where hl is the hidden layer or feature vector of layer l. The input is
processed through all the layers until it reaches the output of the network
ŷ. A network constituted by multiple layers stacked one after the other
is commonly known as Multi Layer Perceptron. The parameters (weights
and biases) of the network are selected to minimize a loss function, such as
a mean square error, summarizing the difference between the network out-
put and a desired or observed target value y. Stochastic gradient descent
Stochastic Gradient Descent (SGD) is a common optimization process for
neural networks: at each stage of training, the network parameters are
updated by a small vector proportional to the gradient of the loss function
with respect to those parameters. This is straightforward for the output
layer; weights and biases in overlying layers can be efficiently calculated
through successive applications of the chain rule for derivatives, in a pro-
cess called backpropagation. The use of derivative information for efficient
network training requires that the loss function be smooth.

3.1.2 Deep Learning

Convolutional Neural Networks Convolutional Neural Network (CNN)
differ from fully connected neural nets only in that their architecture ex-
ploits the localized structure of images to reduce the number of network
parameters needed. Instead of connecting each neuron in a layer to every
other neuron in the next layer, the connection structure of CNN layers is
sparse, and parameters are shared across a layer to enforce the translation
invariance of features extracted on each scale across the image. Five types
of layers are typically used: Convolutional Layers, Pooling Layers, Nor-
malization Layers, Drop Out Layers and Fully-Connected Layers. In the
following, we will analyse in detail their functioning and inner workings.

Convolutional Layer

The Convolutional Layer is the most computationally intensive part
of a CNN architecture; its parameters consist of a set of learnable filters.
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Every filter, also known as a kernel, is spatially small (usual sizes are 3⇥3,
5 ⇥ 5 and so on, where three and five are sizes in the number of pixels),
but includes weights for each channel of its input. For the first layer, these
channels are the data channels (for example R, G, and B in a three-channel
image). In subsequent layers, each channel corresponds to the output of
a single kernel from the previous layer. During the forward pass, each
kernel slides across the spatial dimensions of the input, computing the dot
product between itself and the part of the input volume that it encompasses
(convolution). As the kernel slides, it produces a bi-dimensional activation
map that encodes the responses of the kernel at every spatial position. The
content of the activation map at each location is a direct response to some
visual feature present in the image to which the kernel is sensitive, such as
an edge or a colour. Each convolutional layer employs multiple different
filters, producing a set of activation maps that are stacked along the depth
to produce a multi-channel output. Due to the limited size of the filters,
neurons are not connected to the full extent of the input volume but only
to a small region (the receptive field). The connections are thus local in
space (width and height of the input), but are always fully connected in-
depth (i.e. across learned/extracted features).

The structure of the output volume of a convolutional layer is controlled
by three hyper-parameters:

• depth: the number of filters learned in the layer;

• stride: the number of pixels the filter is shifted along the spatial
dimensions of the input volume. It is usually set to one but it can
be set to higher values, depending on the image geometry, to achieve
less redundancy in the output volume. The stride thus can control
the spatial dimensions of the output volume thus achieving a similar
compression effect to what pooling can achieve;

• padding or zero-padding : the width in pixels of a spatial region on
the borders of the output that is filled with zeros. It controls the
spatial dimensions of the output volume and can be used to preserve
the spatial dimensions through the layer.

Finally, to ensure that each kernel is learning a single feature that has a
consistent interpretation across the spatial extent of the input, all neurons
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in the same depth slice share the same weights and biases, irrespective of
where across the extent of the input they are applied. Thus the action of
each filter in the forward pass becomes a discrete convolution of a single
set of kernel weights with the input.

A convolutional layer acts to encode its inputs into a latent space
spanned by the features it learns. However, some architectures we will
consider in later sections also involve the transformation from the learned
latent space back into the image domain. Thus, while convolutional layers
typically decrease the spatial extent of their inputs and increase the num-
ber of features, we will also need deconvolutional layers which increases the
spatial dimensions and decreases the number of channels, recombining a
potentially large number of learned features into a flat image. Mathemati-
cally both convolutional and deconvolutional layers can be summarized as

lh = f

 
X

i2L
xi ⌦ wh + bh

!
, (3.3)

where lh is the latent representation of the h-th activation map of the
current layer, f is the activation function, and xi is the i-th activation
map of the L-feature activation of the previous layer in the network (or
the l-th channel of an L-channel image in the case of the first convolutional
layer after the input image). wh and bh are, respectively, the weights and
biases of the h-th activation map (shared by all neurons of the map) of the
current layer. Given that xi has size m⇥m and the filters have size k⇥ k,
a convolutional layer produces an output feature map with shape (m�k+
1) ⇥ (m � k + 1), thus reducing the size of the input. A de-convolutional
layer outputs a feature map with shape (m + k � 1) ⇥ (m + k � 1), thus
increasing the size of the input.

Pooling Layer

The architectural function of a Pooling Layer is to reduce the spa-
tial size of the representation, which reduces the number of parameters,
lightens the computational load, and mitigates overfitting. The pooling
operation is carried out independently on each input feature, leaving the
number of input features unchanged. Different criteria in the literature
exist to perform the pooling operation, including max, average and L2-
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norm pooling ; max-pooling is the most commonly used. There are also
un-pooling layers to desegregate and expand activation maps in transfor-
mations back towards the image domain.

A max-pooling layer pools features by computing the maximum within
the feature map and outputs a feature map with reduced size, according to
the chosen size of the pooling kernel. To perform a successive un-pooling,
the max-pooling layer also records a set of switch variables which describe
the positional information relative to the pooled features. The un-pooling
layer restores the max-pooled features to the correct position specified by
the relative switch variable values. The combination of max-pooling and
un-pooling layers is thus able to retain both the image magnitude (an-
swering the "what" question) and the positional information (the "where"
question). An alternative to pooling and un-pooling layers is the use of
the stride parameter of the convolution and de-convolutions.

Normalisation Layer

Training Deep Neural networks can be a tricky endeavour for sev-
eral reasons: a) the distribution of each layer of a DL model can show
highly varying means and variances and thus careful choices of initializa-
tion and learning rate must be taken. While training, the layers distri-
butions change, a phenomenon known as covariate shift [137], and thus
the layers have to constantly need to adapt to new distributions; b) the
deeper and more complex a network is, the more is prone to overfit the
problem and that means that the introduction of regularization is criti-
cal to properly converge to a true minimum of the optimisation process
(see Sec. 2.3.3); c) prepossessing the data before feeding it to a model has
been shown to be beneficial to keep the estimation problem controlled [54].
Batch Normalisation [76], which is the normalisation technique employed
in all DL models developed in this Thesis, conveys all three benefits into a
single solution and it works by standardising its input and then it applies
a scaling coefficient and an offset to recover the lost degrees of freedom

BN(x) = � � x�µB

�B

+ �

µB = 1
|B|
P

x2B x

�B = 1
|B|
P

x2B(1� µB)2 + ✏
(3.4)
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where B is the current input batch and ✏ is a small constant to avoid
division by zero.

Dropout Layer

As previously stated ANNs and CNNs can theoretically map any func-
tional relationship between their input and outputs but, realistically, due
to the limited size of the training data they tend to overfit but this can
also be prevented through regularization. Another issue of DL models is
that they are usually characterised by fairly large number of hyperparam-
eters and thus finding the optimal parameter’s set can be computation-
ally intensive. Dropout achieves regularization and reduces the number of
searches that have to be performed to optimise the model hyperparameters
by randomly dropping out units in the model (and thus their relative con-
nections). Applying dropout thus consists in sampling a "thinned" version
of the model formed by all units which survived the dropout. A model
net with n units can be seen as a collection of 2n possible thinned neural
networks. These networks all share weights so that the total number of
parameters is still O(n2), or less but, for each presentation of each training
case, a new thinned network is sampled and trained. So training a neural
network with dropout can be seen as training a collection of 2n thinned
networks with extensive weight sharing, where each thinned network gets
trained very rarely, if at all. At test time, the prediction is made through a
weighted geometric mean of the predictions from the "thinned models". If
a unit is retained with probability p during training, the outgoing weights
of that unit are multiplied by p at test time.

3.1.3 Architectures for inverse problems in imaging

The main advantage of DL over most classical dimensionality reduction
techniques is that the layered structures of Deep Neural Networks (DNNs)
can encode an input representation with increasing levels of abstraction
in successive layers [86, 50]. For that reason, in the last decade, Deep
Learning has been successfully applied across a wide range of applications
including computer vision, speech recognition, bioinformatics and astroin-
formatics. "CNNs networks are exquisitely well suited for image processing
because they can quickly extract relevant statistics from the input and utilise
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them to solve the inverse problem" [79]. Several DL models are built on
CNNs, in the following I showcase the ones which are relevant to this The-
sis:

Convolutional Autoencocoder

The idea behind an Autoencoder [66] is that relevant features in the
data, such as the shape of the structures within the image, should be
relatively robust with respect to the noise components, and hence can be
learned by compressing the data to a lower dimensional latent space. The
latent space representation can then be used to reconstruct a noiseless
version of the input data. An Auto-Encoder model AutoEncoder (AE)
is composed of an encoder and decoder part; the encoder f : X ! H
transforms the input into a lower-dimensional representation (the latent
space), while the decoder g : H ! X tries to reconstruct the original input
from this representation. By constraining the latent space to be of a lower
dimension than the original input data, we can force the Autoencoder to
capture the most important features of the input data in order to reproduce
it successfully. This type of restriction can be used for feature extraction
and for dimensionality reduction. During the learning process, network
parameters are adjusted to minimize a loss function

L(x, g(f(x))) (3.5)

that encodes the difference between the input x and its reconstruction
g(f(x)). As for the ANNs discussed in Sec. 3.1.1, L must be smooth in
order to use gradient-based minimization algorithms such as SGD. If L is
chosen to be linear, the auto-encoder performs a dimensionality reduction
similar to Principal Component Analysis (PCA); in fact, the latent space
h ends up being the principal subspace of the input data. If instead, L is
non-linear the auto-encoder can learn much more complex representation.
Generally, autoencoders are built by two shallow fully connected NNs
joined through a lower-dimensional latent space. A Convolutional Autoen-
coder Convolutional Autoencoder (CAE), instead, contains, in the encoder
part, a stack of convolutional and max-pooling layers (or strided convolu-
tions) before the fully connected layer and, in the decoder part, a stack of
up-sampling and de-convolutional layers after a fully connected layer. It
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Figure 3.1. Schema of the CAE architecture.

has been shown [170] that CAEs are better suited, with respect to AEs, for
image processing and reconstruction tasks, due to the full utilisation of the
CNNs capacity to extract a hierarchical set of features from the images.
These have been proven to show a better performance over shallow neu-
ral networks when working with noisy or complex images. Moreover, the
combination of a convolutional and max-pooling layer allows the higher-
layers representations to be invariant to small rotations and translations
thus helping with the inevitable systematic characteristic of astronomical
instruments (such as jitters, thermal noise, and atmospheric effects).
In recent years CAEs have been applied to solve a wide range of problems
in the Astrophysical context; to model the Point Spread Function of Wide
Filed Small Aperture Telescope [78], to uncover and separate the faint
cosmological signal from the epoch of reionization [91], to classify galaxies
Spectral Energy Distributions [47], to identify Strong Lenses candidates in
the simulated data of the Euclid Space Telescope [30] and to solve the Star
- Galaxy classification problem [59]. Moreover, in the fields of Computer
Vision and Image Processing, CAEs have been successfully used to recover
structured signals from natural images [110], for image compression [44],
[150], [10], [151], [154], achieving compressing performances similar or bet-
ter than the JPEG 2000.
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Residual Networks and Residual Connections

As we have seen many computer vision tasks have been successfully
solved with CAEs and DL models in general, but it was discovered that
a model, while training, may encounter the degradation problem. Degra-
dation happens when increasing its depth by adding layers, its accuracy
platoes and then degrades rapidly. Unexpectedly it was discovered that
this error it is not due to overfitting [63, 140] but due to increasing network
complexity. Consider a shallower architecture and a deeper counterpart.
The only explainable reason why the two architectures are both converg-
ing is that the added layers of the deeper network are identity mappings
of layers from the shallower model. The existence of this constructed so-
lution implies that the two models should show similar performances, but
experimentally the shallower model shows a lower error. Residual Net-
works [65] solve the degradation problem through the addition of residual
or shortcut connections between layers. Instead of assuming that stacked
layers should fit the underlying mappings, layers are explicitly asked to
fit a residual mapping. The underlying hypothesis is that it is easier to
optimise the residual mapping than to optimise the original mapping. In
practice, shortcut connections perform identity mappings and their out-
puts are added to the outputs of the stacked layers while not increasing the
number of learnable parameters or the model complexity. The basic com-
ponent of a Residual Neural Network Residual Neural Network (ResNet)
is the so-called Residual Block outlined in Fig. 3.2.

3.1.4 Recurrent Neural Networks

Recurrent Neural Networks Recurrent Neural Network (RNN) are deep
learning models that capture the dynamics of sequences via recurrent con-
nections, which can be thought of as cycles in the network of nodes. This
kind of network is unrolled across time steps (or sequence steps), with the
same underlying parameters applied at each step. While the standard con-
nections are applied synchronously to propagate each layer’s activations to
the subsequent layer at the same time step, the recurrent connections are
dynamic, passing information across adjacent time steps. RNNs can be
thought of as feedforward neural networks where each layer’s parameters
(both conventional and recurrent) are shared across time steps. A known
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Figure 3.2. Left: standard convolutional block which has to learn the map-
ping f(x); Right: the residual block which has to learn the residual mapping
f(x) = g(x)� x

problem of RNNs is that of vanishing and exploding gradients [13], i.e.
during model training the gradient approaches zero (vanishing) or infinite
(exploding) which renders the model’s weights unchangeable and usually
results in the optimization process getting stuck in some local minimum.
The problem was partially solved with the introduction of Long Short
Memory Networks Long Short Term Memory Network (LSTM) [67] in
which recurrent nodes are replaced by memory cells containing an internal
state, i.e. a node with a self-connected recurrent connection of fixed weight
set to unity and a number of multiplicative gates that determine whether
i) a given input should have an impact on the internal state (input gate),
ii) the internal state should be flushed to zero (forget gate), or iii) the in-
ternal state of a given neuron should be allowed to affect the cell’s output
(output gate). The Gated Recurrent Unit Gated Recurrent Unit (GRU)
[31] is a streamlined version of the LSTM where the three gates introduced
by the LSTM are replaced by two gates: the reset gate and the update gate
which, respectively, control how much of the previous hidden state must
be remembered and the degree to which the current hidden state is similar
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Figure 3.3. Gated Recurrent Unit architecture showing the flow of data
within the network.

to the previous one at each frequency iteration. The first helps capture
short-term correlations in the data, while the second one captures long-
term correlations. As shown in Fig. 3.3, which outlines the data flow inside
a GRU, these gates are implemented through fully connected layers with
a sigmoid activation function:

Rt = �(XtWxr +Ht�1Whr + br) (3.6)
Zt = �(XtWxz +Ht�1Whz + bz) (3.7)

where Xt is the input vector, Ht is the hidden state at the previous fre-
quency step, and W and b are the weights and biases of the fully connected
layers.

The reset gate is multiplied (element-wise) with the previous hidden
state and the effect of this multiplication is passed along to the candidate
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hidden state

H 0
t = tanh(XtWht + (Rt �Ht�1)Whh + bh) (3.8)

where Wht and Whh are the model weights, bh is the bias term and �
is the Hadamard element-wise product. If the entries of Rt are close to
1, the GRU behaves just as a simple RNN, while if it is close to 0, the
previous hidden state is forgotten and the RNN behaves like a Multi Layer
Perceptron Multi Layer Perceptron (MLP). The final hidden state is given
by the element-wise convex combination of Ht�1 and H 0

t

Ht = Zt �Ht�1 + (1� Zt)�H 0
t (3.9)

If the entries of Zt are close to 1, the hidden state at the previous iteration
is retained and the information brought by the current input Xt is ignored.
Otherwise, if the entries of Zt are close to 0, the old hidden state is updated
with the new candidate hidden state H 0

t. Up until now, we have focused
on defining networks consisting of a sequence input, a single hidden RNN
layer, and an output layer. Despite having just one hidden layer between
the input at any time step and the corresponding output, there is a sense
in these networks are deep. Inputs from the first time step can influence
the outputs at the final time step T . However, we may also wish to retain
the ability to express complex relationships between the inputs at a given
time step and the outputs at that same time step (which is ensured by
having deep chains of nonlinear activation functions [38]). To do so we
could construct RNNs that are deep not only in the time direction but
also in the input-to-output direction. The standard way to achieve this is
to stack multiple RNNs on top of each other. Given a sequence of length T ,
the first RNN produces a sequence of outputs, also of length T . These, in
turn, constitute the inputs to the next RNN layer, and so on. A Deep GRU
is thus obtained by stacking multiple GRUs one after the other interlaced
by layers of non-linear activation functions.

3.2 Deep Learning applications in Astrophysics

Given the showcased rapid growth in size and complexity of Astro-
nomical datasets, Machine learning methodologies, both supervised and
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unsupervised, given their ability to cope with very complex data, have been
extensively exploited by the community to solve a wide variety of problems
spanning all aspects of the astronomical data life, from instrument moni-
toring to data acquisition and ingestion, to data analysis and interpretation
[12, 82, 73, 102, 84, 109, 147, 169, 93, 43, 29, 46, 162, 108, 128, 120, 126, 23].
This has also led to the implementation of many deep learning-based
pipelines in the field of Astrophysics. To quote only some of the most
recent and interesting applications, [18] utilised a CNN and a UNet to
measure the photometric properties of blended systems of monochromatic
mock simulations of EUCLID observations of high redshift galaxies. To
train and test the models, they utilized artificially blended observations
taken from the CANDELS survey. Despite the simplistic constraints im-
posed on the data: two galaxies per stamp, one galaxy pinned at the
image centre and no blends with completely overlapping galaxy centroids
(also referred to as unrecognized blends), the networks have demonstrated
that, on monochromatic images, they outperform the traditional SEX-

TRACTOR [15] approach with respect to photometric accuracy, preci-
sion, outliers fraction and stability towards different morphological types.
[112] have compared the performances of several architectures (ResNet,
LSTM, 2D and 3D CNN) for the measurements of cosmological parame-
ters from SKA light cone simulations. They found that a simple 3D CNN
was able to reliably infer the cosmological parameters. [77] in their pa-
per they present �-PhysNet, a deep multi-task architecture for gamma-ray
reconstruction from images taken by an Imaging Atmospheric Cerenkov
Telescope (IACT). The architecture is constituted by a backbone feature
extractor (ResNet-56) interlaced by several Dual Attention modules [146]
followed by a multi-task block composed of a global feature network and
a local feature one, both based on fully connected layers. The global fea-
ture part performs a global average pooling followed by a fully connected
layer, while the local takes directly the backbone features, flattens them
and then feeds them to two fully connected layers. [106] proposed to use
a Convolutional Variational Autoencoder (VAE) in an unsupervised fash-
ion to diagnose system health for modern radio telescopes. The model
project the high-dimensional data to a low-dimensional descriptive space
which telescope operators can use to spot failures in the system. More-
over they tested the use of a Support Vector Machine (SVM) classifier [35]
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to automatically classify failures from the low-dimensional projection. A
qualitative assessment of the model performance was performed on real
Low-Frequency Array Telescope (LOFAR) data obtaining a classification
accuracy of 0.9. [25] proposed a novel sequential classification model for as-
tronomical time series based on a Recurrent Convolutional Neural Network
(RCNN) and an image simulation framework capable of simulating seven
classes of astronomical objects (two non-variating ones, and five variating
classes). The RCNN is constituted by a CNN which extracts features from
the input sequence of images and an LSTM which is tasked with classi-
fying the extracted time sequence. Their architecture is tested against a
Random Forest performing classification based on features extracted from
the images through traditional methods (photometric features extracted
through FATS [113]) obtaining a similar classification accuracy but lower
computational times. Their results show that the proposed RCNN model
is able to classify correctly the simulated test set, as well as the real data
set after performing fine-tuning. [62] presented Morpheus a new model for
generating pixel-level morphological classifications of astronomical sources.
Morpheus leverages advances in deep learning to perform source detection,
source segmentation, and morphological classification pixel-by-pixel via a
semantic segmentation algorithm (U-Net). By utilising morphological in-
formation about the flux of real astronomical sources during object detec-
tion, Morpheus shows resiliency to false positives. Morpheus is evaluated
by performing source detection, source segmentation, and morphological
classification on the Hubble Space Telescope data in the five CANDELS
fields with a focus on the GOODS South field, and demonstrates high com-
pleteness in recovering known GOODS South 3D-HST sources with H < 26
AB. [138] employed a variant of a Generative Adversarial Network (GAN)
known as Spatial GAN (SGAN) to generate images resembling Hubble
Space Telescope eXtreme Deep Fields (XDFs) showing that the proper-
ties of the galaxies in the generated images have a high level of fidelity
with respect to those of galaxies in the real XDFs. Their technique can be
generalized to any appropriate imaging training set, offering a new purely
data-driven approach for producing realistic mock surveys. [111] employed
a DeepGRU to provide an early classification of astronomical time series
data (trained on 12 transient classes) in order to identify transients in the
upcoming wide-field surveys such as the Zwicky Transient Facility (ZTF)
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ant the Large Synoptic Survey Telescope (LSST). The classification accu-
racy improves over the lifetime of the transient as more photometric data
becomes available, and across the 12 transient classes, we obtain an average
area under the receiver operating characteristic curve of 0.95 and 0.98 at
early and late epochs, respectively. [85] presented a hybrid Bayesian frame-
work for inverse problems that combines analytic forward modelling for
the likelihood with deep generative models (PixelSNAIL [28] for complex
data-driven signal priors. their approach makes explicit use of physically
motivated problem structure and prior knowledge from high-quality obser-
vations. When applied to the blind-source separation problem of galaxy
blending, the method can retrieve multi-component models of astronomical
scenes that are by construction robust to changes in observational condi-
tions. [40] proposed to combine a CNN with a Mixture Density Network
(MDN) which is a modification of the MLP capable of generating distri-
butions instead of point estimates. In particular, the MDN interprets the
output of the network as the means, standard deviation and weights of a
mixture model employing n Gaussians as basis functions. Substituting the
last fully connected layer with the MDN allows thus to generate Probabil-
ity Density Functions Probability Density Function (PDF) of photometric
redshifts. In order to evaluate the performance of the proposed method,
three experiments have been performed on galaxies, quasars and a mix of
two and the method is compared with an MDM and a Random Forest
showing that the proposed architecture outperforms the two competing
models. [164] utilised a custom deep learning model to detect Low Bright-
ness Galaxies within SDSS images. Their architecture is composed of three
models: a ResNet50 to extract features from the images, a CNN to regress
the class probabilities for the galaxies within the images, and another CNN
to predict the coordinates of the galaxies within the images. As loss func-
tions, they employed the Binary Cross Entropy loss for the classification
problem and a probability-weighted mean squared loss for the regression
problem. [2] proposed a novel deep learning-based pipeline for detecting
quadruply lensed quasars. The pipeline was trained on simulated observa-
tions comprising both lensed and non-lensed quasars and is composed of
several deep learning models combined together to solve a binary classifi-
cation problem: the lower-dimensional representation extracted from four
Variational Autoencoders, two ResNets, one with rectangular convolution,
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one with polar, and a U-Net-like model. [49] presented a novel pipeline
called Removal of BOgus Transients (ROBOTs) in order to assess tran-
sient candidates within the Deeper, Wider, Faster (DWF) program. One
of the main bottlenecks of DWF is the time required to assess candidates
for rapid follow-up and manual inspection prior to triggering space-based
or large ground-based telescopes, the authors create a pipeline to address
this main bottleneck. The pipeline employs a combination of a CNN and
a CART: the CNN is used to classify the input images, while the CART
is used to further classify candidate light curves identified by the CNN. In
fact, the CNN algorithm is used to determine the quality of individual data
points rather than that of the light curves, and thus the CART is used to
incorporate the temporal information within the decision framework. As it
will become clear. As we will demonstrate, their strategy of utilising extra
information in the temporal domain to further classify candidates is similar
to how we use frequency information to deblend the potential candidates
found by the Autoencoder in our ALMA source detection and character-
isation pipeline (see Chapter 4 Sec. 4.2.4 step 8). [117] utilised a CNN
trained with both real observations from the SDSS [16] and simulated ob-
servation from EAGLE [37] to identify galaxy mergers. By comparing the
performances on both real and simulated data, they concluded that a CNN
trained on simulated data could be used to detect mergers in real obser-
vations. Also in the field of Radio Astronomy, some interesting examples
can be found. For instance, [19] introduced attention-gated networks for
radio galaxy classification demonstrating that these networks can perform
similarly to CNN-based classifications while utilising significantly fewer
trainable parameters and thus reducing the complexity of the model and
the risk of overfitting. Moreover, they employed the produced attention
maps [61] to help the interpretation of the results. [168] proposed a novel
deep-learning pipeline, Concat COnvolutional Neural Network (CCNN),
for selecting pulsar candidates within the Commensal Radio Astronomy
FasT Survey [89]. The main idea behind their pipeline is to use several
specialized CNNs to extract the low-dimensional latent information from
the pulse profile, the Dark Matter profile, the frequency versus phase plot,
and the time versus phase plot. The latent spaces are then concatenated
and fed to a Multi-Layer Perceptron that performs a binary classifica-
tion task. [131] employed a CNN to detect point sources within images.



60 Chapter 3. Deep Learning and its application in Astrophysics

The CNN is trained on simulated maps with known point source positions
and learns how to amplify the Signal to Noise Ratio (SNR) in the input
map. The map is then converted into a catalogue using a dynamic blob
detection algorithm. The authors compared their pipeline performances
with PyBDSF (a classical, widely used peak detection algorithm, [107]),
obtaining better results on all metrics. [98] presented a novel deep learn-
ing model called ConvoSource, which utilises 2D Convolutions to map the
input observations to the target signal map using a binary cross-entropy
loss function. The model performance was found to be similar to that of
PyBDSF. Both [131] and [98] use as input images already correlated data
and thus rely on the CLEAN algorithm [69]: an assumption which as
we shall discuss below, may affect the final performances. [33] developed a
novel deep learning pipeline called POLISH for image super-resolution and
deconvolution of radio interferometric images. Their model aims to learn
the mapping between the input "dirty" images and the target sky model
images. Their architecture is a modified version of the Wide Activation for
Efficient and Accurate Image Super-Resolution [166] capable to allow for
high-dynamic range, multifrequency output and uncertainty in the PSF.
To test the performances of their model they generated DSA-2000 [58] sim-
ulated data, and compared the performances of their model on the dirty
images with source extractor applied on cleaned images. The cleaning was
performed with the CLEAN algorithm [69]. POLISH achieved both bet-
ter mean peak signal-to-noise ratio (PSNR) and better structural similarity
index (SSIM) as well as a lower fraction of false detections when compared
to the true sky models. [133] presented a deep-learning architecture for re-
constructing incomplete Fourier data in radio interferometric images. By
reconstructing missing data in the visibility space, a clean sky model im-
age can be obtained by simply taking the inverse 2D Fourier transform
of the reconstructed data. In order to train and test the performances of
their architecture, the authors generated simulated VLBI u�v maps both
noiseless and noisy, corresponding for both point-like and Gaussian sources
and compared the results of their model with those by wsclean [114].

The direct reconstruction of the sky model from the u�v map has been
tackled with classical statistical approaches by several authors [71, 83, 3]
but, to the best of our knowledge, [133] were the first to tackle the problem
using a Deep Learning approach.
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Finally, [127] presented a novel deep learning pipeline (DECORAS)
for detecting and characterising sources in VLBI simulated images. Their
pipeline consists of two Deep Convolutional Autoencoders (similar in scope
and structure to the first deep model of our ALMA pipeline, i.e. Blobs
Finder) used to detect sources within the images and an XGboost model
for the regression of source peak surface brightness. Other morphological
parameters are derived by fitting 2D Gaussian models to the sources. The
authors train and test their pipeline on simulated VLBI simulations and
directly compare with blobcat [57] (see Sec. 2.3 for details) showing that
the two methods have similar completeness levels for SNRs <= 5.5. While
for SNRs > 5.5, DECORAS outperforms blobcat by a factor of two.
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Do. Or do not. There is no try.

Master Yoda, The Empire Strikes
Back

ALMA has been a game changer in high-resolution aperture synthesis
imaging [4], and a development road map [24] has been approved with
the goal of meeting its high standards. One of its main objectives is to
broaden the instantaneous bandwidth of the receivers, upgrading the corre-
lator to process the entire bandwidth. As a consequence, ALMA sensitivity
and observing efficiency will improve, producing imaging products at least
two orders of magnitude larger than the current cube size (which already
resides in the GB regime). As a result of these upgrades, ALMA cube
imaging will become a very demanding task. In this thesis, we introduce
a new approach to the image reconstruction problem capable to overcome
some of the limitations introduced by the CLEAN algorithm outlined in
Sec 2.3.4. We propose a deep-learning-based pipeline developed with the
goal to detect emission lines in ALMA cubes while speeding up traditional
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methods and reducing spurious signal detection. For the aforementioned
reasons, our pipeline uses as input information, ’dirty’ calibrated ALMA
cubes that have not undergone any prior deconvolution. The main novelty
of our proposed pipeline with respect to the previously cited architectures
[131, 98, 33, 133, 127] is that we combine spatial and spectral (frequency)
information to detect and characterize sources. Utilising frequency in-
formation can both help in deblending spatially blended sources in the
integrated images (obtained by integrating the cubes along the frequency
axis), and help in the recovery of faint sources. Our deep learning pipeline
can be decomposed into six logical steps:

1. 2D source detection is performed on the integrated cubes (along fre-
quency) using a Deep Convolutional Autoencoder (hereafter Blobs
Finder);

2. the detections (blobs) found by the Autoencoder are used to extract
spectra which are then fed to a Recurrent Neural Network, capable to
perform spectral denoising (Deep GRU). All the peaks in the spectra
are fitted with 1D Gaussian distribution;

3. sources are spectrally focused by cropping a 64⇥64 pixels box around
their centres (found by Blobs Finder) in the image plane and by inte-
grating within their frequency emission ranges found in the previous
step. False positives are detected in this step;

4. focused images are then fed to three dedicated ResNets that regress
the sources morphological parameters: full-width half maxima in the
x and y directions and the projection angle ✓;

5. the found morphological parameters are used to construct a 3D mod-
els of the sources, which are used to mask the cubes and produce line
emission images and mean continuum images. Once the continuum
is subtracted from the line emission images, they are finally fed to a
specialized ResNet that regresses the source flux densities.

This Chapter is arranged as follows: In Section 4.1 we describe the
simulation data that we used to generate realistic ALMA observations. The
simulation algorithm is used to train and test our pipeline. The simulation
parameters and the characteristics of the output cubes and the sources
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within them are explained. In Section 4.2 the architectures of the employed
deep learning models of our pipeline, together with a complete data flow
are described. The data flow is used to explain the inner workings of the
pipeline, as well as a description of the training strategies adopted for
all the models. In Section 4.3.1 we discuss the pipeline performances in
detecting and characterizing sources within the test set. We compare the
detection performances with those of two traditional methods blobcat

[57], Sofia-2 [160], and another deep learning pipeline decoras [127].
In Section 4.4 we compare the Blobs Finder performances in solving the
ALMA image reconstruction problem (recovery of the true sky model from
dirty images) with those of tCLEAN. Finally, in Section 4.5 we discuss our
results, draw our conclusions, and lay the prospect for future work. Both
the simulations code (ALMASim �) and the pipeline (DeepFocus �) are
written in Python [155], and all software has been made publicly available
through GitHub in order to allow for further developments, testing and
reproducibility.

4.1 Simulations

To train and test the capabilities of the proposed pipeline, we needed
thousands of ALMA model and dirty cube pairs. We generate our own sim-
ple but realistic simulations of ALMA observations by combining python
and bash scripting with the Common Astronomy Software Application
Common Astronomy Software Applications (CASA) v. 6.5.0.15 [105] python
libraries. The need to use simulated data instead of real ALMA observa-
tions arises from several practical necessities: a) in order to evaluate the
pipeline’s performance and reliability and its dependence on sources’ ob-
servational and morphological parameters, we need full control over the
data properties; b) in order to assess the reconstruction quality of our
pipeline and its ability to solve the deconvolution problem without rely-
ing on CLEAN deconvolution, we need noiseless sky observations which
are unattainable for real observations. The closest alternative to the use of
simulated cubes would be to use CLEAN to produce deconvolved cubes of
ALMA observations in which source detection had been performed. These
deconvolved cubes, however, would be dependent on CLEAN solution (of
the deconvolution problem), thus biasing our models. Given that the main
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foreseen scientific application of the pipeline presented in this work is the
search of serendipitous sources within high redshift (z > 3) ALMA obser-
vations, we simulate, in each cube, a central primary source with a given
Signal to Noise Ratio Signal to Noise Ratio (SNR) (simulating this way a
realistic target observation, in the phase centre of the antennas array), sur-
rounded by less bright serendipitous sources that can occupy any position
in the cube. To generate 3D sources, we combine 2D Gaussian Compo-
nents in the spatial plane with 1D Gaussian components (emission lines)
in frequency space. For each source, first, the emission line is generated
by sampling from a uniform distribution of line parameters, i.e., the line
position or central frequency, the line amplitude or the value in dimension-
less units of the peak, and the line Full-Width Half Maximum Full Width
Half Maximum (FWHM) in a number of frequency channels. Once the
parameters have been sampled, the line is generated through the following
equation:

l(z) = ae
� (z�zcen)2

2(FWHMz/2.35482)2 (4.1)

where a is the line amplitude, zcen is the central frequency and FWHMz

is the line full width half maximum.

Then a 2D Gaussian profile is generated by sampling from a uniform
distribution of source parameters, i.e., the source position x, y, the source
FWHMs in both the x and y planes FWHMx and FWHMy, the source
projection angle ✓, the source amplitude a and the source spectral index �,
i.e. the dependence of the source radiative flux density on frequency. Once
the parameters have been sampled, the 3D Gaussian profile is generated
through the following set of equations:

g(x, y, z) = 10(log10(a)+spid⇥log10(v1/v2))·

·e�
((xc�x)/FWHMx)2+((yc�y)/FWHMy)2

2

(4.2)

where
xc = x · cos(pa)� y · sin(pa)
yc = y · sin(pa) + y · cos(pa)
v1 = 230 · 109 � (64 · 106)
v2(z) = v1 · z · 106
G(x, y, z) = g(x, y, z) + l(z) ⇤ g(x, y, z)

(4.3)



4.1. Simulations 67

Table 4.1. Sampling intervals of the model source parameters. Sources are
generated by randomly sampling from the outlined uniform distributions. The
first column shows the parameter name, the second the range from which the
parameter values are sampled, and the third the units.

Parameter Name Range Unit
Number of components [2 – 5] –
Amplitude of 2D Gaussian compoment [1 – 5] arbitrary
FWHM of the 2D Gaussian component [2 – 8] pixel
Spectral index [-2 – 2] –
Position in the xy plane [100 – 250] pixel
Position angle [0 – 90] deg
Line amplitude [1 – 5] arbitrary
Line center [10 – 110] chan
Line FWHM [3 – 10] chan

Each model cube is thus created by first generating a central source and
then a random number between 2 and 5 additional sources such that their
emission peaks are lower or equal to that of the central source. The full list
of parameters, their units, and the ranges from which they are sampled,
are shown in Tab 4.1.

All source parameters are stored in a .csv file in order to use them
as targets for the ResNets in the last stages of the Deep Learning source
detection pipeline (see Sec. 4.2.4).

We feed the sky models to the simobserve task to simulate interfero-
metric measurements sets through a series of observing parameters. The
full list of parameters is outlined in Tab 4.2.

We use the ALMA Cycle 9 C-3 for the antenna configuration, simulat-
ing 43 antennas in the 12-m Array with a maximum baseline of 0.50 km
(ALMA Cycle 9 Technical Handbook). Once the measurement sets have
been produced, to create the dirty cubes, we feed them to the TCLEAN

task initialized with the parameter niter set to zero. This forces the task
not to run the TCLEAN algorithm but only to perform the fast Fourier
transform of the visibility data and the gridding using the pixel parameters
outlined in Tab 4.2. The resulting data products are noisy cubes convolved
with the ALMA synthesized beam with an angular size of 10 squared arc-
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Table 4.2. Full list of simobserve parameters to generate the measurement
sets, i.e. the interferometric visibility data cubes. The first column shows the
parameter name, while the second shows our chosen value.

Parameter Name Value
inbright 0.001 Jy / Pix
indirection J2000 03h59m59.96s -34d59m59.50s
incell 0.1 arcsec
incenter 230 GHz
inwidth 10 MHz
integration 10 seconds
totaltime 2400 seconds
thermalnoise tsys-atm
user_pwd 0.8

seconds and a total bandwidth of 1.28 GHz. The spatial dimensions of the
cubes are 360 ⇥ 360 pixels and they are characterised by 128 channels in
frequency. Nevertheless, the simulations are already using Pardo’s ATM
library to construct an atmospheric profile for the ALMA site comprising
a water layer in the atmosphere and thermal noise. After the dirty cubes
are produced, we inject 3D uncorrelated white Gaussian noise. The RMS
of the noise is automatically adjusted to reach a target SNR measurement
for the central source. This way, we can produce simulations containing
sources with specific SNRs, which helps test the pipeline capabilities and
its detection limits. After the dirty cubes are produced, the morphological
parameters, stored in the .csv parameter file, are used to measure further
source properties of interest, such as the continuum, the SNR, and the
total surface brightness. The sky model and dirty cubes can be produced
both sequentially or in parallel through the Slurm workload manager [165]
if a multi-node architecture is available. Fig. 4.1 and 4.2 show several ex-
amples of frequency-stacked clean and dirty cube pairs.

While we plan to improve our simulation code beyond its current ca-
pabilities, at this stage it does not model galaxies’ internal kinematics, it
does not include complex galaxy morphologies and it does not account for
galaxy interactions. That being said, given the main scientific target of the
present work, these parameters should not play an important role in shap-
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Figure 4.1. Several examples of frequency stacked dirty/clean cube pairs
generated through our simulation code. Sources within the cubes are outlined
with coloured bounding boxes.
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Figure 4.2. Several examples of frequency stacked dirty/clean cube pairs
generated through our simulation code. Sources within the cubes are outlined
with coloured bounding boxes.
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ing the real target morphologies given that they are mostly unresolved.
For this reason, we generate sources with a 2D Spatial Gaussian with an
FWHM between 0.2 and 0.8 arcsec. Regarding the simulation of complex
atmospherical and instrumental effects, the CLEAN SimALMA pipeline,
that we employ to simulate ALMA observations of the sky models, should
produce fairly realistic ALMA observations in case of point-like sources
[148]. While it is out of the scope of this work to present the full simu-
lation pipeline, it is our intention, given the relevance of comparing the
performances of deep learning models on the same data, to make publicly
available on GitHub the simulation code with several baseline datasets,
such as the one we used to train and test our pipeline.

4.1.1 The Data

We generated 5, 000 simulated cube pairs containing 22, 532 simulated
sources and randomly divided them into train, validation, and test sets
using the rather usual 60%, 20%, 20% splitting criterium. We just remind
the reader that the training set is used to train the DL models within the
pipeline; the validation set is used to measure the training progress and
assess generalization capabilities, and the test set is used to measure the
pipeline performances in detecting sources and in regressing their parame-
ters (see Sec. 4.2.4 and 4.2.5). The three sets contain respectively 13, 512,
4, 465, and 4, 556 simulated sources. The distributions of the source pa-
rameters are shown in Figs 4.3, 4.4, 4.5 ,4.8, 4.7, 4.6. Projection angles,
positions, and extensions of sources are uniformly generated in their respec-
tive parameter ranges (see Tab. 4.2), while the SNR, Surface Brightness,
and Continuum Brightness distributions confirm that we are generating a
bright central source with a SNR > 10 surrounded by less bright serendip-
itous sources. The minimum and maximum flux densities generated are
respectively 0.97 and 407.4 mJy/beam. The data were generated on the
Infrastructure for Big data and Scientific Computing (IBISCO-HPC) (In-
frastructure for Big data and Scientific Computing) at the University of
Naples Federico II (IBISCO-HPC).
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Figure 4.3. Distribution of the Signal to Noise Ratio of the simulated sources:
fraction of simulated sources versus measured SNR (see Eq. 4.12). The box in
the top right corner shows the mean SNR ± its standard deviation.
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Figure 4.4. Distribution of the total brightness of the simulated sources.
On the x-axis, the measured total brightness [mJy / beam] is obtained by
summing the voxel values in the dirty cubes within sources bounding boxes.
On the y-axis, the fraction of simulated sources is provided. The box in the
top right corner shows the mean brightness ± and its standard deviation.
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Figure 4.5. Distribution of the continuum mean brightness of the simulated
sources. On the x-axis, the measured mean continuum brightness [mJy / beam]
is obtained by selecting all voxels within the x and y limits of the sources
bounding boxes but outside their boundaries in frequency [z � fwhmz, z +
fwhmz]. On the y-axis, the fraction of simulated sources is shown. The box
in the top right corner provides the mean continuum brightness ± its standard
deviation.
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Figure 4.6. Distribution of the projection angles of the simulated sources:
fraction of simulated sources versus projection angles in degrees.



76
Chapter 4. Detection and Characterization of ALMA Sources through Deep

Learning

Figure 4.7. Distributions of the FWHMs of the simulated sources. In blue,
orange and green, the FWHMs over the x-axis, the y-axis and the z-axis
are provided. On the histogram, the x-axis and y-axis provide the FWHMs
values in pixels and the fraction of simulated sources, respectively.
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Figure 4.8. Scatter plot showing uniformity in the positions on the xy plane
of the simulated sources.
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4.2 The Deep Learning Pipeline

The Deep Learning pipeline we present in this work, as it will be more
apparent in Sec. 4.2.4, can be described as a decision graph interconnect-
ing six deep learning models, each one taking a specialised role in order to
detect and characterise sources within the input dirty cubes. The types of
architectures were chosen on the basis of their strengths: Convolutional ar-
chitectures (Blobs Finder and ResNets) to process spatial information, and
the Recurrent Neural Network (Deep GRU) to process sequential informa-
tion. Before describing the flow of data within the pipeline, we shortly
describe the individual DL models. Note that all our models were imple-
mented through the PyTorch library [115].

4.2.1 Blobs Finder

Blobs Finder is a 2D Deep Convolutional Autoencoder trained to solve
the image deconvolution problem

D[x, y] = P [x, y]⇥M [x, y] +N [x, y] (4.4)

where D[x, y] is the integrated dirty cube produced integrating along the
frequency the dirty cube, P [x, y] is the dirty PSF, and N [x, y] is the com-
bination of all noise patterns in the data. M [x, y] is the reconstructed
and denoised integrated sky image. To guide the autoencoder towards
the best possible solution, two factors are critical [50]: the preprocessing
and augmentation of input and target variables, and the choice of the loss
function used to measure the error between the target variable and the
Autoencoder’s prediction. In our case, Blobs Finder is trained with the in-
tegrated dirty cubes as inputs, and the sky model images as targets. Both
input and target image are normalized to the [0, 1] range, which helps with
the training process and allows us to make a probabilistic interpretation of
the Autoencoder’s output. Blobs Finder architecture, as shown in Fig. 3.1,
is that of a Convolutional Autoencoder [103]. The Encoder is structured
by four convolutional blocks that progressively reduce the spatial dimen-
sion of the input while increasing the number of channels or feature maps.
More in detail, each block contains a 2D Convolution layer with stride
2 and a kernel size of 3, a Leaky Rectified Linear Unit Rectified Linear
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Unit (ReLU) activation function and a 2D Batch Normalization layer fol-
lowed by a 2D Convolution layer with a stride of 1 and a kernel size of 3,
another Leaky ReLU activation and a 2D Batch Normalization Layer. In
this way, each block halves the spatial extent of the input and doubles the
number of channels. After the convolutional blocks, there is the final fully
connected layer.

The Decoder has a symmetric architecture, i.e. a fully connected layer,
followed by four deconvolutional blocks and a final identity layer which is
constituted by a 2D Convolution followed by a Sigmoid activation function.
Each deconvolutional block is constituted by a 2D Bilinear interpolation
with stride of 2, followed by a Leaky ReLU activation function and a 2D
Batch Normalization layer (upsampling block), a 2D Transposed Convo-
lution layer with a stride of 2 and a kernel size of 3, followed by a Leaky
ReLU activation function and a 2D Batch Normalization layer (learnable
upsampling block). The output of the upsampling block and learnable up-
sampling block are then concatenated and passed along to a convolutional
block constituted by a 2D Convolution layer with stride 2 and a kernel size
of 3, a Leaky ReLU activation function and a 2D Batch Normalization layer
followed by a 2D Convolution layer with a stride of 1 and a kernel size of
3. The bilinear upsampling operation transforms the input layer in the
desired spatial resolution without using any parameters and the resulting
features should contain most of the information of the original features.
These upsampled features are concatenated to the output of the paramet-
ric upsampling performed through the Transposed Convolution in order to
create a residual-like connection. This additive upsampling [161] should
improve prediction capabilities and remove gridding artefacts produced by
the subsequent Transposed Convolutions. The final block is a 2D Convo-
lution layer with a stride of 1 and a kernel size of 1, followed by a Sigmoid
activation function. The scope of this final layer is to normalize its input
to the [0, 1] range. A detailed description of the spatial transformation
performed by Blobs Finder can be seen in Tab. 4.3. To train Blobs Finder,
we selected as a loss function the weighted combination of two well-known
losses in the DL image reconstruction and denoising framework: the l1
loss and the Structural dissimilarity loss Difference of Structural Similar-
ity (DSSIM) which is based on Structural Similarity Index measurement.
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Block Name Input Size Output Size
Conv Block 1 [b, 1, 256, 256] [b, 8, 128, 128]
Conv Block 2 [b, 8, 128, 128] [b, 16, 64, 64]
Conv Block 3 [b, 16, 64, 64] [b, 32, 32, 32]
Conv Block 4 [b, 32, 32, 32] [b, 64, 16, 16]
FC 1 [b, 64⇥ 16⇥ 16] [b, 1024]
FC 2 [b, 1024] [b, 64⇥ 16⇥ 16]
DeConv Block 1 [b, 64, 16, 16] [b, 32, 32, 32]
DeConv Block 2 [b, 32, 32, 32] [b, 16, 64, 64]
DeConv Block 3 [b, 16, 64, 64] [b, 8, 128, 128]
DeConv Block 4 [b, 8, 128, 128] [b, 1, 256, 256]
Final Block [b, 1, 256, 256] [b, 1, 256, 256]

Table 4.3. Input and Output shapes for each layer of Blobs Finder, where
b indicates the batch size, and the horizontal line separates the Encoder from
the Decoder network.

The losses are mathematically defined as follows:

l1(x, y) = MAE(x, y) = mean([l1, ......, lN ]T ) (4.5)

where N is the number of pixels in the images and

DSSIM(x, y) =
1� SSIM(x, y)

2
(4.6)

SSIM(x, y) =
(2µxµy + c1)(2�xy + c2)

(µ2
x + µ2

y + c1)(�2x + �2y + c2)
(4.7)

c1 = (k1L)
2 (4.8)

c2 = (k2L)
2 (4.9)

L = 2precision � 1 (4.10)

where µx and µy are the averages of x and y, �2x and �2y are their variances,
�xy the covariance, c1 and c2 two variables needed to stabilize the division
with small denominator values, and, finally, L is the dynamic range of the
pixel values. In our case, the images are stored in single-precision floating-
point format and thus L = 232 � 1 and the two constants are respectively
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Figure 4.9. Deep GRU’s architecture is constituted by two layers of GRUs
followed by a Fully connected layer and a Sigmoid activation function.

k1 = 0.01 and k2 = 0.03.
The choice of these two losses was empirically determined by trial and

error in our experiments, while the remaining hyperparameters such as the
hidden layer size, the number of channels in each Block, and the choice of
activation function were optimized through a grid-search strategy. More
information about how these losses are used and their weighting during
training is outlined in Sec. 4.2.5.

4.2.2 Deep Gated Recurrent Unit (GRU)

Deep Gated Recurrent Unit (GRU) is a Recurrent Neural Network
(RNN) [130] constructed by combining together two layers of GRUs and
a fully connected layer, as shown in Fig. 4.9. For a detailed description of
GRUs see Chapt. 3 Sec. 3.1.4. In our case, we want to use the Deep GRU
to solve the denoising problem

Y [z] = X[z] +N [z] with z 2 [1, 128] (4.11)
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where z is the frequency index in the cube, Y [z] are noisy galaxy spectra,
X[z] are the underlying emissions, and N [z] are the various noise com-
ponents. When a spectrum is fed to the network, each hidden state at
frequency step t is passed to both the next frequency step of the current
layer and the current frequency step of the next layer. Because there is
no preferable frequency direction in the data, the two layers pass along
information in opposite directions: one from low frequencies to high fre-
quencies, and the other in the opposite direction. In our implementation,
each layer of GRUs outputs 32 hidden states (or channels) which are then
concatenated to form a latent vector of size [b, 64⇥128] before being fed to
a fully connected layer. The layer transforms its input into a vector with
the same size as the input signal and then a Sigmoid activation function is
applied to normalize it to the [0, 1] range. As a loss function, we use again
the l1 loss (see Eq. 4.5).

4.2.3 ResNet

Residual Neural Networks [64] are a class of Deep Convolutional Neu-
ral Networks (CNNs) which implements skip connections between adjacent
layers in order to avoid the problem of vanishing gradients [141] by easing
the process of information flow in the layers and to mitigate the degrada-
tion problem, a phenomenon for which the more layers are added to a CNN
the more training error and instability increase. The basic component of
a ResNet is the so-called Residual Block outlined in Fig. 4.10.

Our implementation of the ResBlock depends on whether spatial down-
sampling is applied to the input or not. If spatial downsampling is needed,
the input is processed via two convolutional blocks constituted by a 2D
Convolutional Layer with kernel size of 3 and a stride of 2 (which downsam-
ples the input), a ReLU activation function and a 2D Batch Normalization
layer. While the first convolutional block increases the number of channels
by a factor of two, the second maintains constant the number of channels.
In parallel, the input is also processed by a single convolutional block, and
the two outputs are concatenated together (skip-connection) before being
fed to a final ReLU layer. In the other case, if downsampling is not nec-
essary, the input is processed via two convolutional blocks with a stride of
1 (which thus does not downsample the input) and is concatenated with
the unaltered input (skip-connection) before being fed to the final ReLU.
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Figure 4.10. Architecture of a Residual Block, the basic component of a
ResNet. The architecture is divided into two main pathways depending if
downsampling must be applied in the layer. In the affirmative case, the 2D
Convolutions are applied with a kernel size of 3 and with a stride of 2 or 1. As
it can be seen the output of the previous layer is brought forward through a
skip-connection and concatenated with the output of the current layer before
applying the final activation function.

Figure 4.11. Our implementation of the ResNet architecture. The input
image is first preprocessed by a 2D Convolution layer, followed by 2D Max
Pooling, 2D Batch Normalization, and a ReLU activation function, and then
is forwarded through four blocks of two Residual Blocks (see Fig. 4.10). The
output is then processed via an Adaptive Max Pooling layer and fed to two
fully connected layers which map the latent vector of 512 elements to a single
scalar (the value of the parameter of interest for the ResNet).
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The ResNet architecture, which is shown in Fig. 4.11, is constructed
by a first convolutional block that performs 2D Max Pooling followed by
four ResBlocks which gradually spatially downsample the input image of
size [b, 1, 64, 64] to [b, 512, 4, 4] where 64 ⇥ 64 are the spatial dimensions
of the input image, b is the batch size, 1 is the initial number of channels
and 512 is the number of feature maps which are fed to the final MLP.
Average Max Pooling is applied to collapse the spatial dimensions to a
single vector which is then fed to two fully connected layers interconnected
by a ReLU activation function (MLP). This final layer outputs a single
scalar value, i.e. the predicted parameter of interest. In other words,
the first part of the network extrapolates a vector of 512 features from
the input image, which is then fed to a Multi-Layer Perceptron (MLP)
that makes the functional mapping between the features space and the
target parameter space. In our pipeline, we use several ResNets; each one
specialized in solving the regression of specific morphological parameters of
the input source. Technically, these parameters could be regressed at the
same time by a single ResNets with an output vector of size m instead of a
scalar (where m is the number of parameters one wants to regress). Given
that the dynamical range of the parameters varies a lot from one parameter
to the other (see Sec. 4.1.1), we expect that such a general network would
show lower performances with respect to the specialized counterparts. This
expectation was empirically confirmed by us on a trial and error base. As
a loss function to train the ResNets, we used again the l1 loss (see Eq. 4.5).
The architectural choices such as the number of convolutional layers within
a Residual Block, the number of Blocks, the choice of activation function,
the kernel sizes, the number of channels and the number of extrapolated
features were optimized to improve performance. First, we optimize for
the number of Residual layers and depth of those layers by fixing all other
parameters, and then, once the best ResNet architecture has been found,
we performed the optimization of the remaining parameters through a
grid-search strategy. In fact, by changing the number of residual blocks
and the depths (i.e. number of convolutions within each Block) and by
introducing bottlenecks (i.e. a chain of a 1⇥ 1 convolution, followed by a
3⇥3 convolution and a 1⇥1 convolution) several ResNet architectures can
be reproduced and tested (ResNet-18, ResNet-34, ResNet-50, ResNet-101,
ResNet-152). All these architectures share the same first convolutional
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block and the same final MLP and are only distinguished by the number
and depth of the central layers. We tested the performance of each network
on the flux parameter estimation by training each one of them for 50 epochs
with the Adam optimizer and a fixed kernel size of 3. To register the
models’ performances, we measure the average l1 loss on the entire test
set. No meaningful difference in performance was registered between the
five tested architectures and thus our choice fell upon the lighter and faster
of them, i.e. the one showcased in Fig. 4.11. Once the architecture was
chosen, the remaining hyperparameters were fine-tuned through a grid-
search strategy.

4.2.4 The Pipeline

The overall objective of the pipeline is to detect and fit the sources
within calibrated ALMA image cubes. A full overview of the pipeline
can be seen in Fig. 4.12, where the arrows outline the flow of data in the
pipeline. The order in which the operations are performed can be under-
stood by the numbering (in orange). As already explained, the pipeline can
be divided into six logical blocks: 2D source detection, frequency denoising,
emission detection, source focusing, morphological parameters estimation,
3D model construction and flux density estimation. To relate the logical
blocks to the pipeline schema shown in Fig. 4.12, in the following explana-
tion, we mark the logical blocks with the corresponding numbers as shown
in Fig. 4.12. To ease the logical flow of the pipeline, we assume that all the
DL models have been trained to act as simple, functional maps between
their inputs and outputs. In Sec 4.2.5 we go over the details of how each
Deep Learning model is trained within the pipeline. All the images shown
in this section are relative to the Test set; more examples and a detailed
description of the pipeline performances are described in Sec. 4.3.1.

The flow of an input dirty cube in the pipeline goes as it follows:

1. 2D Sources Detection (1 - 4): the image cube is normalized to the
[0, 1] range and integrated along frequency to create a 2D image. We
refer to this image as the integrated dirty cube (1). The integrated
dirty cube is first cropped from the centre to a shape of [256, 256]
pixels which removes the edge of the images characterized by a low
SNR (See Sec. 4.1), then it is normalized to the [0, 1] range (2) and,
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Figure 4.12. The full pipeline schema for source detection and characterisa-
tion within the input ALMA dirty data cube (top left of the schema). Numbers
show the logical flow of the data within the pipeline. The pipeline takes as
input an ALMA dirty data cube, performs source detection and false detection
removal, and then proceeds to characterize the detected sources. A detailed
explanation of all the steps outlined in the schema is given in 4.2.4.
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finally, it is fed to the first DL model Blobs Finder (Sec. 4.2.1). The
autoencoder processes the image and predicts a 2D probabilistic
map of source detection (3). A hard thresholding value of 0.15 is
used to binarize the probabilistic map and then the scikit-learn [118]
label and regionprops functions are used to extract bounding boxes
around all blobs of connected pixels (or source candidates) (4). The
thresholding value is chosen to be 0.15 in order to peak all the sig-
nals detected by Blobs Finder, while excluding small fluctuations in
the background. The exact thresholding value was empirically deter-
mined in order to strike a compromise between the number of false
detections and the percentage of the detected signal. Figures 4.13,
4.14, and 4.15 show, respectively, an example of an input integrated
dirty cube containing 6 simulated sources (outlined by green bound-
ing boxes and two of which are spatially blended), the target sky
model image (with in green the target bounding boxes and in red
the predicted bounding boxes extracted through the thresholding of
the predicted 2D probabilistic map), and the 2D prediction map with
the predicted bounding boxes highlighted in red.

2. Frequency Denoising and Line Detection (5 - 7): bounding
boxes around source candidates are used to extract dirty spectra
from the input cube. The spectrum for each source candidate is
extracted by adding the pixels inside its bounding box over all the
128 frequency slices of the cube. The spectra of the detected source
candidates are extracted from the cube, standardized, i.e. rescaled
to have null mean and standard deviation with unity value, and then
fed to Deep GRU (Sec. 4.2.2). The Deep Gated Recurrent Unit de-
noises the standardized spectra and outputs 1D probabilistic maps
of source emission lines or cleaned spectra (6). The cleaned spec-
tra are then analysed with the scipy [157] find_peaks functions with
a threshold value of 0.1 in order to detect emission peaks. Each
peak is then fitted with a 1D Gaussian model through the astropy
[9] models.Gaussian1D function. As fitting algorithm, we employ the
LevMarLSQFitter algorithm, and as the initial values for the mean
and amplitude of the 1D Gaussian model, we use, respectively, the
previously detected peak position and its relative amplitude. All
detected Gaussian peaks’ positions over the frequency axis (z) are
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Figure 4.13. An example of Blobs Finder’s input 2D integrated dirty cube
produced by integrating an input dirty cube over the entire frequency range.
Superimposed in green, are the target bounding boxes outlining the emissions
of the 6 sources present in the cube. The image contains an example of two
spatially blended sources located around the centre of the image, one is a
bright point-like source, the other a fainter and diffuse source laying behind.
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Figure 4.14. An example of Blobs Finder’s target 2D Sky Model image with
the target bounding boxes highlighted in green and the predicted bounding
boxes extracted through the thresholding operation on Blobs Finder’s proba-
bilistic output, highlighted in red. Predicted and true bounding box centres
are also plotted as, respectively, red and green dots.
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Figure 4.15. An example of Blobs Finder’s output 2D probabilistic source
detection map with the predicted bounding boxes extracted through thresh-
olding, highlighted in red.
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Figure 4.16. In blue the dirty spectrum extracted from the central source
bounding box predicted by Blobs Finder (Fig. 4.14), in dotted-red the Deep
GRU’s prediction. Vertical blue bars delimit the true emission ranges, while
red bars are the predicted emission ranges. A secondary fainter source emission
peak is detected by Deep GRU and thus the source is flagged for deblending.

recorded alongside their extensions �z defined as �z = 2⇤FWHMz

where FWHMz is the FWHM of the Gaussian peak (7). In order to
detect possible false positives produced by Blobs Finder, all potential
candidates showing no meaningful peak in their spectra are removed.
If more than one peak is found alongside the spectrum, the candi-
date is likely the superimposition of blended sources and thus it is
flagged for deblending. All the remaining detections are then passed
to the next stage. The peaks �z are used to cut out the emission
regions from the dirty spectra, which are fitted with a simple linear
model implemented through the astropy models.Linear1D function
in order to take into account any possible trend of the continuum
with frequency. Fig. 4.16 shows the dirty spectrum extracted from
the two blended sources showcased in Fig. 4.15, and the Deep GRU’s
predicted emission probability map. Blue vertical bars limit the true
emission ranges of the two sources within the spectrum, while red
ones limit the predicted emission ranges.

3. Source Spectral Focusing (8 - 9): this phase has three main
objectives: (i) to feed to the ResNets the best possible input image
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of the potential candidates in order to ease as much as possible the
morphological parameters detection; (ii) to deblend the sources, and
(iii) to remove false detections. Regarding the first objective, the idea
is to increase as much as possible the Signal to Noise Ratio (SNR)
of the source in the image by cropping a [64, 64] pixel box around its
bounding box and integrating it only within its peak FWHM. This
operation is what we call spectral focusing and the resulting image is
the spectrally focused image. In order to estimate the SNR of a
source, we introduce two SNR measurements:

• Global SNR: we define the Global SNR as:

SNR =
median(xs(r))

var(xn(R� r))
(4.12)

where xs(r) are the values of the source pixels contained within
the circumference of radius r that inscribes the source bounding
box, and xn(R � r) are the pixel values within an annulus of
internal radius r and external radius R which has the same area
of the inscribed circumference;

• Pixel SNR: we define the Pixel SNR as:

snr =
xi

var(X)
(4.13)

where xi is the value of the given pixel, and var(X) is the
variance computed on the full image.

The two SNR measurements are used respectively to distinguish false
detections from true sources and to deblend overlapping sources
within a blob. Fig. 4.17 summarises the false positive detection
pipeline which works in the following way: if a potential source has a
Global SNR higher than 6 (empirical bright source SNR threshold) in
the integrated dirty cube and was not flagged for deblending (due to
the presence of multiple detected peaks in the extracted spectrum),
it is first focused and then passed along to the next stage of the
pipeline; if it has a SNR lower than 6 in the integrated dirty cube,
but there is an increase in the Global SNR when focused, it is also
passed along to the next stage, otherwise, it is discarded as a false
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detection (a condition marked with 1 in Fig. 4.17). The latter case,
in fact, could only happen if the source is integrated outside its true
emission peak, for example over a noise spike. If more than one peak
is found in the potential source spectrum, then there is a chance that
multiple blended sources make the blob (detected by BlobsFinder).
First, the source is focused on the highest peak (primary peak) by
integrating within its extension and the Global SNR calculation is
made to understand if the potential source must be discarded (see
the previous step). Also, the Pixel SNR measurement is used to find
the highest SNR pixel in the image p(x, y), which will act as a ref-
erence for the next phase of the deblending process. The potential
source is then focused around the secondary peaks. For each of these,
if the peak is not superimposed in frequency with the brightest peak,
then by integrating within the extension of the secondary peak, the
brightest source should disappear from the focused image (because it
is integrated outside its emission range), and the pixel SNR measure-
ment is used to find the highest SNR pixel in the image s(x, y). If
this pixel is different from the previously found reference pixel (their
distance is higher than a user defined number of pixels, in our case
3), then the neighbouring pixels around this pixel are linked with a
friend of friends algorithm in an iterative manner. For each itera-
tion, the Global SNR is measured. Pixels are added in this fashion
until a plateau or saturation level in the Global SNR is reached. A
bounding box is then created in order to encompass all the selected
pixels, and a [64, 64] pixel image is cropped around the bounding
box. If instead, the secondary peak overlaps the primary peak in
frequency, and the two pixels coincide spatially (p(x, y) = s(x, y)),
then the secondary peak is discarded as a false detection (i.e. not
considered an independent source with respect to the primary, a con-
dition marked as 2 in Fig. 4.17). If an increase in SNR is recorded
by integrating over the multiple peaks, then the secondary peak is
deemed as part of the primary source and the source emission range
is extended accordingly, otherwise, it is discarded as a noise spike
(false detection). The first condition may happen if DeepGRU mis-
takenly predicts a single true emission peak as two separate peaks or
if Blobs Finder predicts a single true source as two very close blobs,
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while the latter if DeepGRU overpredicts the true emission range.
Finally, all spectrally focused sources with a global SNR lower than
1 are flagged and removed (9).

The deblending method assumes that all sources can be fairly approx-
imated as 2D Gaussians (in the spatial plane) with a single emission
peak in frequency (1D Gaussian), and thus it will need to be modified
whenever our galaxy models will also simulate the velocity disper-
sion and inclination along the line of sight. The introduction of these
parameters in our simulations would, in fact, create more complex
spectral profiles, for example, a source with a high dispersion or
inclination along the line of sight could show multiple peaks in the
spectrum. In this case, the simple logic that we have described above
will need to be revised.

Fig 4.18 showcases the results of the Spectral Focusing of the po-
tential sources detected by Blobs Finder and Deep GRU in the test
cube already displayed in Fig 4.13. By focusing on the two peaks
detected by the Deep GRU (Fig 4.16, the two blended sources pro-
duce two different images (Focused Source 0 and 1) which now can
be analysed independently. It is also worth noticing that by focusing
the source within its effective emission range, the signal from other
sources is suppressed and noise variation is minimised resulting in
a higher SNR than that registered in the reference dirty integrated
image.

4. Morphological Parameters Estimation (10-11): the spectrally
focused images are normalized to the [0, 1] range and then fed to
three specialized ResNets (Sec. 4.2.3). Each ResNet is specialized
in predicting a given morphological parameter of the source in the
image. Namely: the FWHM in the x and y directions and the pro-
jection angle (pa). The first two parameters are predicted in pixel
values, while the angle is directly predicted in degrees (10) measured
in a clockwise fashion. The x and y positions of the source are com-
puted as the photometric barycenters (pixel-weighted centres) of the
Blobs Finder predicted bounding boxes. The predicted parameters
are then used to generate a 2D model of the source, which is a 2D
Gaussian generated at the source position with the predicted mor-
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Figure 4.17. Schema of the False Positives detection and source deblending
pipeline which constitutes step 9 of the source detection and characterisation
pipeline (Fig. 4.12). The numbers 1 and 2 mark the two possible conditions
which may lead to a potential source being defined as a false positive detec-
tion and thus discarded from further analysis. The under-script FG (focused
global) indicates that the global SNR is measured on the focused source, while
L implies a (local) Pixel SNR measurement. With flagged we indicate that
multiple peaks are detected within the potential source’s spectrum and thus is
flagged for deblending. For an in-detail description of this schema see Sec. 4.2.4
(iii) Source Spectral Focusing.



96
Chapter 4. Detection and Characterization of ALMA Sources through Deep

Learning

Figure 4.18. An example of source spectral focusing of sources within a
test set image. On the Left, as a reference, we plot the dirty integrated cube
with the predicted 2D bounding boxes obtained by Blobs Finder highlighted
in different colours. The legend matches the source number to the bounding
box colour in the image and the measured Global SNR (see Eq. 4.12). On the
right, there are the 6 Spectrally Focused images obtained by integrating over
the predicted line extensions found by the Deep GRU and cropping a [64, 64]
pixel image around Blobs Finder’s predicted bounding boxes centres. In each
focused image it is also showcased the measured Global SNR. As can be seen
there is a substantial increase in SNR when sources are focused around their
actual emission ranges.
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phological parameters;

5. 3D Model construction (12): having fitted the source both in
frequency and in the image plane, we combine the two Gaussians to
create a 3D profile of the source, which then is converted into a 3D
segmentation map, i.e. a binary cube with the same shape as the
input dirty cube with all pixels that belong to the source set to 1 and
the rest set to 0. To account for the fact that the convolution with
the dirty beam spreads both the continuum and the line emission in
the image, we dilate the segmentation map by a factor of 1.5. This is
performed to make sure that all the source signal is contained within
the 3D segmentation map.

6. Flux Estimation (13): the dilated 3D segmentation map is then
used to create the model-masked cube by multiplying it with the
dirty cube. The model-masked cube is, therefore, a version of the
dirty cube in which all the pixels outside the source 3D model are
set to zero. The inverse mask is instead used to capture the contin-
uum cube of shape [128 � �z, 256, 256] where �z is the size of the
segmentation mask in frequency channels. The continuum image is
then created by averaging the continuum cube in frequency and the
line emission cube is created through the following formula:

Lz[x, y] = Mz[x, y]� f(z) ⇤ C[x, y] with z 2 �z (4.14)

where Lz[x, y] it the 2D line emission image at slice z, Mz[x, y] is
the model masked 2D image at slice z, C[x, y] is the continuum
image and f(z) is the 1D continuum model. The line emission cube
is integrated along the frequency to create the line emission image
which is fed to a specialized ResNet predicting the source flux density
in mJy/beam.

4.2.5 Training Strategies

In the pipeline, the data flows from one DL model to the next. In par-
ticular, the dirty spectra extracted from Blobs Finder predicted model im-
ages are the inputs of Deep GRU; the outputs of Deep GRU - the denoised
spectra - are combined to produce the focused images used as input for
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the parametric ResNets, and the 3D models constructed with the ResNets
parameters prediction are used to produce the line images, which are the
input of the flux ResNet. Since we work with simulated data, both the
true model images and the parameters of sources within them are known
to us and thus all models within the pipeline can be trained at the same
time on different GPUs by preemptively using the true source parameters
to extract from the cubes the needed spectra and spectrally focused im-
ages, and the line emission images to train respectively Deep GRU and the
ResNets. The problem with this training strategy is that it would not take
into account the fact that Deep GRU and the ResNets, in production, will
not receive perfectly extracted spectra or focused images but the product
of the imperfect prediction of the previous models in the pipeline schema.
Deep GRU could receive (as input) spectra which contain only partially
the source emission, and the ResNets not perfectly focused images. To
account for this, we first trained all models in parallel in order for them to
learn how to solve their respective problems while optimising the pipeline
total training time (which benefits from the fact that the models’ train-
ings are carried on at the same time), and then we also trained each model
(with the same training strategies that we will outline for each model, and
with the exclusion of Blobs Finder which is the first model in the pipeline)
on the un-augmented training set predictions of the previous model. In
this way, each model should be able to correct the mistakes (biases in the
data) of the previous one.

Blobs Finder is trained on pairs of dirty input images (input dirty data
cubes integrated along frequency) and target sky model images (target
sky model cubes integrated along frequency). To achieve translational and
rotational invariance in the network, at each iteration, both input and
target images are randomly rotated by an angle ✓ with ✓ 2 [0�, 360�],
randomly flipped in the x and y planes with a probability of 1 and then
cropped from [360, 360] pixels to [256, 356]. The cropping operation brings
no loss of data, given that all the values in images outside the primary
beam of the simulated ALMA observations (r ⇠ 138 pix) are set to nan
values, and those at the edges of the beam have unreliable SNR. After
cropping, both integrated dirty cubes and target sky model images are
normalized to the [0, 1] range before being fed to Blobs Finder.

The model is trained with an Adam Optimiser [81], which is the opti-
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mization algorithm used to update the weights of the model on the basis of
the loss function. The amount of change imparted to the model’s weights
to minimize the loss is moderated through the learning rate. Adam utilises
a different learning rate for each parameter and updates them on the ba-
sis of the first and second moments of the gradients. Another problem in
DL model’s training, is the possibility of overfitting the data batches in
the first training iterations, given the model’s inherent initial instability
due to the random initialisation of its weights. To prevent that, we adopt
a warm up strategy for the learning rate [52] in which we start with a
learning rate of 0, and we uniformly increase it to 1⇥ 10�4 in the first 10
iterations. The model is then trained for a maximum of 300 epochs, but
we also employ an early stopping criterion based on the validation loss.
If no improvement of validation loss with respect to the moving average
of the last 10 validation losses is registered for 10 consecutive steps, then
training is halted. As outlined in Sec. 4.2.1, Blobs Finder is trained with
the weighted combination of the l1 loss and the DSSIM loss.

l(x, y, t) = a(t)⇥ l1(x, y) + b(t)⇥DSSIM(x, y) (4.15)

where x and y are the prediction and target variables and t is the epoch
counter. The weighting is performed with two variables a and b, which
depend on the epoch counter t. The training begins with a(0) = 1 and
b(0) = 0 in order to first allow the model to learn a median representation
of the data (which should contain information about the PSF and noise
patterns, assumed roughly constant in the data) through the minimization
of the l1 loss. At each epoch, a is decreased by � and b is increased by
the amount in order to slowly transition to the DSSIM loss. In the last
epochs, only the DSSIM loss is effectively used in order to learn the
nuances in the data, such as source positions or morphological properties
(the shape and sizes of the galaxies).

Deep GRU is trained on pairs of dirty spectra (extracted from the dirty
cubes) and clean spectra (extracted from the sky model cubes) through the
bounding boxes obtained from Blobs Finder Prediction (or the known pa-
rameters in case of parallel training) The input dirty spectra are standard-
ized while the target model spectra are normalized to the [0, 1] range. To
train the model, we again use the Adam optimization algorithm, a warm-
up strategy for the learning rate with a working learning rate of 1⇥ 10�4
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and a weight decay of 1⇥ 10�5 to prevent the model from overfitting the
training set. The model is trained for 300 epochs on spectra extracted
through the known parameters and for 50 iterations on spectra extracted
from Blobs Finder’s predictions. We also employ an early-stopping cri-
terium on the basis of the validation loss. The Deep GRU predictions are
used in combination with Blobs Finder’s predictions to extract the spec-
trally focused galaxy images, i.e., 64 ⇥ 64 pixels images with the source
roughly in the centre and normalized to the [0, 1] range (see Sec. 4.2.4 for
more details). As targets for training, we use the true source parameters
used to produce our simulations. The three ResNets for morphological pa-
rameters estimation are trained simultaneously for 300 iterations with the
same stopping criterion set for Blobs Finder’s training on perfectly spec-
trally focused images (obtained through the know source parameters) and
for 50 iterations on the spectrally focused sources obtained through Blobs
Finder and Deep GRU’s predictions. Finally, the outputs of the ResNets
(i.e., the sources’ morphological parameters) are used to construct 3D mod-
els of the galaxies, which are used to create the segmentation masks from
which we measure the continuum and create the line emission cubes and
then the line emission images (for the details, see Sec. 4.2.4 points v and
vi). The last ResNet is trained with the line emission images as inputs
and the fluxes as targets. We use the same training strategy outlined for
the other ResNets.

4.3 Source Detection and Characterisation

In this section, we present the performances of the different steps of
the pipeline over 1, 000 cubes which belong to the Test set. Whereas
possible we also compare the performances of our pipeline with those of
other pipelines widely used in the community: blobcat [57], Sofia-2

[160] and decoras [127].

4.3.1 Source Detection

We start with Blobs Finder’s performance in detecting sources within
the 2D Test set integrated dirty cubes. Following Sec. 4.2.4 step 1, the
output 2D Probabilistic Maps are binarized through a hard threshold of
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0.15, and bounding boxes around islands of connected pixels are extracted.
To check if a source has been detected by Blobs Finder, we measure the 2D
Intersection over Union 2D Intersection over Union (IoU) between the true
2D bounding box and the predicted one, while for Deep GRU the 1D IoU
is measured between the true emission ranges and the detected ones. In
both cases, a threshold of 0.6 is used. To ensure that the central part of the
source emission of a True Positive True Positive (TP) is always detected,
we require the distance between the centres of the true and predicted
bounding boxes to be smaller than 3 pixels. The combination of these
two thresholds should ensure that at least 60% of the 3D emission range
of a source must be captured in order for its prediction to be deemed a
TP. Also, given that the line emission image is created through the dilated
segmentation map, the 0.6 IoU threshold guarantees that 90% of the true
emission range is captured within it.

Getting a good estimate of the centres is important given that, ex-
cept for blended sources that potentially will get a new centre later on in
the pipeline based on the SNR reasoning outlined in Sec. 4.2.4 step 3, the
ResNets will receive as input focused images cropped around the bounding
boxes centres predicted by Blobs Finder. Hence, the closer the centres are
to the true centres, the more sources will be centred in the focused images.
As an example, by looking at the two blended sources in Fig. 4.14, one
can see that the predicted bounding box (in red) encompasses most of the
emission of the extended faint source and the totality of the emission of
the compact source, so there is the potential of detecting both sources in
the spectrum. When applied to the test set, Blobs Finder predicts 4056
(89%) sources (TP) against the true 4, 556 sources (using both the dis-
tance and IoU criteria). 4, 205 (92.3%) sources pass the 2D IoU criterion
only, meaning that an additional 149 sources are detected by Blobs Finder
but are spatially blended with another source. Blobs Finder also misses
354 sources False Negative (FN) and detects 4 False Positives False Posi-
tive (FP). The 4056 bounding boxes are used to extract a corresponding
number of dirty spectra from the dirty cubes. The Deep GRU detects
4, 202 emission peaks out of the 4, 205 present in the extracted spectra but
also produces 62 false positives. To detect and remove false detections and
confirm true ones, sources are ”spectrally focused” within the predicted
frequency emission ranges �z, and SNR checks are made (see Sec. 4.2.4
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(iii) Source Spectral Focusing). The full logic of the FP removal process
is shown in Fig. 4.17. Regarding the 4 FPs detected by Blobs Finder,
when the spectra extracted from the respective bounding boxes are fed
to DeepGRU, it detects no emission peak within 3 of the 4, and thus the
first 3 FPs are discarded as false detections. The last FP is eliminated
through condition 2 of the schema shown in Fig. 4.17. Regarding the 62
FP peaks detected by DeepGRU, 29 were artificial peaks predicted near
the spectral borders (the boundaries of the spectra may be recognised as
peaks given the presence of a discontinuity in the signal) and, after be-
ing identified as primary sources (given the higher amplitude with respect
to the real peaks), they failed the global SNR test when focused in their
emission range (condition 1 in Fig. 4.17) and thus were discarded as false
detections. Of the remaining 33 false detections made by DeepGRU, 31
are eliminated through condition 2 Fig. 4.17. These false peaks are all
superimposed with their respective primary peaks in the spectra and the
pixels with the highest SNR in the primary and secondary peak’s spectrally
focused images are less than 3 pixels apart and thus were considered either
as noise spike or as part of the primary source. The remaining 2 false peaks
produced spectrally focused images with a measured global SNR less than
1 and thus are flagged as false detections. Fig. 4.21 and 4.22 show some
examples of Blobs Finder predictions on the test set. For each block, the
first row shows the input integrated dirty cubes, the middle row the target
sky models, and the bottom row, Blobs Finder predictions.

To compare with blobcat ([57]) and Sofia-2 ([160]), we run both
algorithms on the 1000 dirty images in the test set. Blobcat requires two
parameters: a detection (Td) and cut (Tf ) SNR threshold to decide which
peaks in the image are good candidates for blobs and where to cut the
blobs boundaries around them (in other words: pixels with an SNR higher
than Tf are selected to form islands and island boundaries are defined
by Td). To make the fairest comparison possible, we measured blobcat

performances with different choices of Td and Tf through a grid-search
strategy (Td 2 [2, 15], Tf 2 [1, 10]) and, in this work, we report the best-
obtained results (Td = 8�, Tf = 4�).

The same criterion used for Blobs Finder was used to measure blob-

cat performances. blobcat successfully detects 2, 779 (61%) sources,
produces 2, 429 false detection and misses 1777 sources. The majority of
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sources missed by blobcat are spatially blended with brighter sources, or
present a SNR <= 5.0, or are located at the edges of the images. The
Sofia-2 smooth and clip algorithm (S + C) algorithm works by iteratively
smoothing the data cube on multiple spatial and spectral scales to extract
statistically significant emissions above a user-specified detection threshold
on each scale.

Guided by the spatial and frequency sizes of the simulated sources, we
employed spatial and frequency kernel sizes of [3, 5, 7, 9, 11], and a source
finding threshold of 0.5. The algorithm proceeds by linking together mean-
ingful detections with a friend-of-friend algorithm; we employed a grid-
searching strategy to find the best possible spatial linking radii in the im-
age and frequency dimensions of the cube within the interval [1, 5] pixels.
Finally, the algorithm removes false positives on the basis of a reliability
score based on the source SNR. We employ a SNR threshold of 2 and we
let the algorithm automatically select the other thresholds. We limit the
detection area of Sofia-2 by setting the masking to a 256 pixel size square
centred in the image. This is performed in order to cut the low SNR out-
skirt of the dirty images. Sofia-2 detects 1010 (22%) sources, produces
4011 false detections and misses 3546 sources. Most false positives are
located at the spatial edges of the image, while it misses most blended
sources by merging their emissions with other sources which leads to all
involved sources failing the 2D IoU or distance-based thresholds.

The decoras ([127]) pipeline is constituted by two Deep Convolu-
tional Autoencoders, the first one works exactly like our Blobs Finder, the
second one takes [128, 128] pixel cropped images around the first Autoen-
coder’s predictions and predicts the source structure which is then fitted
with a 2D Gaussian Function to find the source morphology. Our simulated
cubes contain multiple sources while decoras assumes that there is a sin-
gle source in each cube and thus the characterisation part of the pipeline
cannot be used to detect sources. For such reason, we compare our results
with those by decoras only on the detection part of the problem. First
of all, following the guidelines outlined in their article, we re-implemented
their Convolutional Autoencoder. The main architectural differences be-
tween our Convolutional Autoencoder and theirs are: their latent space
contains 256 atoms, while our 1024; they perform spatial upsampling by
only using chained Transposed Convolutions, while we use a combination
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of Bilinear Interpolation, Transposed Convolutions and Convolutions; and
their Encoder and Decoder contain half our convolutional layers. In their
paper, they train their Autoencoder with two loss functions: the Binary
Cross Entropy Binary Cross Entropy (BCE) loss and the Mean Squared
Logarithm loss (MSLE), and deem as correct predictions only those sources
which are predicted by both models and whose distance (measured from
the source centres found through the blob_dog scikit-image algorithm) is
less than 3 pixels. We trained and tested their model with both loss func-
tions using the same criteria outlined in Sec. 4.2.5 for Blobs Finder. After
seeing that no meaningful result could be obtained with the BCE, we only
use the model trained with the MSLE to perform the source detection on
the 1000 dirty integrated images in the test set. Given that the blob_dog
algorithm only finds coordinates of the sources and does not output their
emission boundaries, needed to create bounding boxes with which measure
the IoUs, we make two performance measurements. The first one relaxes
the source detection criterion and only uses the distance-based threshold,
while the second one uses both the distance and IoU criteria. To get
bounding boxes from blob_dog outputs we use, for each blob detected by
the algorithm, the best matching kernel standard deviations to create a
radius of emission from which derive bounding boxes with the following
equation:

r =
p
(3 ⇤ �b)2 (4.16)

where r is the obtained radius, and �b is the standard deviation of the
best fitting kernel. decoras detects 4, 100 (89.9%) sources, produces 759
false detections and misses 456 (10.1%) sources using only the distance
based threshold. The number of detected sources drops to 3, 560 (78.2%)
if also the IoU-based threshold is used, while the number of false positives
stays the same, and the number of missed sources rises to 996 (21.9%). In
Table 4.4 we summarise the source detection performances for all meth-
ods. The two DL-based pipelines achieve improved performances over their
traditional counterparts. By taking a look at decoras performances, es-
pecially if only the distance-based criterium is used, one can see that they
are similar to those of our Blobs Finder with respect to the number of
TP while the number of FP is much higher. This behaviour could be
connected to the use of subsequent Transposed Convolutions to perform
spatial upsampling in the Decoder part of the network [161] which may
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lead to artefacts being mistaken as blobs by blob_dog. Regarding the FP
detection and removal, we show both the performances without the use of
FP detection and removal pipeline (BF + DeepGRU) and those with it
(Pipeline).
Blobs Finder Blobs Finder (BF) and Deep GRU have a False Positive
Rate False Positives Rate (FPR) respectively of ⇠ 10�3 (Blobs Finder)
and ⇠ 10�2 (Deep GRU) and a combined number of 66 FPs which is al-
ready within acceptable limits. Nevertheless, the FP removal pipeline is
able to correctly identify and remove all of them. While the false detec-
tions made by Blobs Finder were trivial to identify and remove and may
continue to be so in the case of real data (no relevant peak was detected in
the corresponding spectra by Deep GRU), the logic we used in removing
the false detections made by Deep GRU that were due to a single true
emission peak being detected as two superimposed peaks, will require fur-
ther investigation. In fact, if the velocity dispersion and inclination with
respect to the line of sight are taken into account (both factors are not
yet present in our current simulations), the hypothesis that the spatial
position of the brightest pixel of a source should remain constant within
its spectral emission range no longer holds. Thus, the criterium which we
employ to separate a true secondary peak from a false detection cannot
be used anymore and needs to be modified. Blobs Finders’ and decoras’
low numbers of FPs with respect to Sofia-2 and blobcat are explain-
able due to the DL models’ capabilities of approximating the dirty beam.
While Blobs Finder improved performances over decoras is due to ar-
chitectural choices and training strategies, we believe that if dirty beam
variations are increased by simulating multiple antenna configurations and
observing conditions (integration time or azimuth), the number of FPs
detected by both models will probably increase due to the increased com-
plexity required to approximate a more realistic variating PSF. Fig. 4.19
shows the histograms of flux densities (left) and the blendness scores (right)
of the detections made by our pipeline, Blobs Finder, and by decoras.
The blendness score is defined as the maximum IoU between a source true
bounding box and all other source bounding boxes within an image and
can be used as a proxy to quantify how much different sources are spatially
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Figure 4.19. Left: histograms of the detected sources flux densities. Right:
cumulative histogram of the detected sources blendness score (see the text).
In both histograms, we compare our detection pipeline (Blobs Finder + Deep
GRU), our implementation of Blobs Finder, decoras implementation of Blobs
Finder and, we report the histograms for all the test set distribution.

blended. Mathematically we define it as:

bi = max(IoU(boxi, boxj)) for j 2 [1, N ] (4.17)

where N is the total number of sources within the image. If the blend-
ness is 0, it means that the source is spatially isolated in the cube, while
a blendness of 1 means that the source is spatially superimposed to at
least another source in the cube. We also report all the test set values for
comparison. Our implementation of Blobs Finder is equivalent to dec-

oras’s implementation regarding the minimum detected flux density of
1.31 mJy/beam but it seems to be more effective in deblending sources.
Blobs Finder detects sources up to a blendness value of 0.232, while dec-

oras reaches at most 0.021. It has to be said that also this difference in
performance could be connected to the different ways the two pipelines
extract bounding boxes from the model images produced by the Autoen-
coders and not to the quality of the images themselves. To eliminate the
effect of the extraction algorithm from our comparison, we compare the
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Figure 4.20. Left: Blobs Finder predicted 2D probabilistic map; Center: true
sky model image; Right: decoras implementation of Blobs Finder predicted
2D probabilistic map. Predictions and target images have been cropped to
128 by 128 around sources, to better showcase the reconstruction quality.

measured mean structural similarity index (mSSIM) between the true sky
model test set images, Blobs Finder predictions and decoras predictions.
Blobs Finder achieved a mSSIM on the test set of 0.003, while our imple-
mentation of decoras achieved a mSSIM of 0.008. Fig. 4.20 shows the
direct visual comparison between the true target sky model image (centre),
Blobs Finder (left) and decoras (right).

Deep GRU (and Source Spectral Focusing) does not improve on the
minimum detected flux, but deblends sources and in fact pushes the max-
imum detected source blendness to 0.66 which is the maximum blendness
simulated in the data.

4.3.2 Source characterisation

The 4, 202 focused images are fed to the 3 ResNets (steps 10 and 11 of
the pipeline) each one fine-tuned to predict one of the three morphological
parameters: FWHMx, FWHMy, and pa. The source positions x and y
are computed as the pixel-weighted centres of the sources bounding boxes,
while the peaks frequency positions z and extensions �z are computed by
fitting 1D Gaussians to the clean peaks found by Deep GRU. The sources
parameters are used to create the Line Emission Image (see 4.2.4 Flux
Estimation)

Fig 4.23 shows the scatter plots of the true parameters versus the pre-
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Algorithm TP / FP FN
BF + DeepGRU 4202 (92.3%) 63 354 (7.7%)
Pipeline 4202 (92.3%) 0 354 (7.7%)
blobcat 2779 (61%) 2429 1777 (39%)
Sofia-2 1010 (22%) 4011 3546 (78%)
decoras 3560 (78.2%) 759 996 (21.9%)
Algorithm Precision Recall Mean IoU
BF + DeepGRU 0.98 0.923 0.74
Pipeline 1.0 0.923 0.74
blobcat 0.53 0.609 0.61
Sofia-2 0.20 0.22 0.63
decoras 0.82 0.78 0.60

Table 4.4. Comparison between the sequential application of Blobs Finder
and DeepGRU (BF + DeepGRU), the sequential pipeline completed with the
Spectral Focusing for FPs removal and deblending (Pipeline), blobscat, Sofia-
2 and decoras. Columns show true positives (TP), false positives (FP),
false negatives (FN), precision, recall and mean intersection over union (Mean
IoU) between true bounding boxes and predicted ones. TP and FN are also
expressed as fractions over the total number of sources.
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Figure 4.21. Examples of Blobs Finder predictions on the test Set. The
first row shows input integrated dirty cubes, the middle row the target sky
models, and the bottom row, Blobs Finder predicted 2D Source Probability
maps. In green are outlined (in the dirty and sky models images) the true
bounding boxes, while in red are the predicted bounding boxes extracted by
thresholding the probability maps.
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Figure 4.22. Examples of Blobs Finder predictions on the test Set. The first
row shows input integrated dirty cubes, the middle row the target sky models,
and the bottom row, Blobs Finder predicted 2D Source Probability maps. In
green are outlined (in the dirty and sky models images) the true bounding
boxes, while in red the predicted bounding boxes extracted by thresholding
the probability maps.
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Parameter Residual mean std
x (pixels) �0.004 0.73
y (pixels) �0.005 0.67
FWHMx (pixels) �0.04 0.46
FWHMy(pixels) �0.12 0.45
z(slices) 0.0 0.003
�z (slices) 0.0 0.001
pa (degrees) �0.65 20.28
flux (mJy/beam) �9.56 20.08

Table 4.5. This table shows the mean and standard deviation of all the resid-
ual distributions between the true target parameters and the predictions made
by our pipeline. The x and y positions are computed from Blobs Finder pre-
dicted blobs, z positions and extensions �z are computed from Deep GRU pre-
dictions, and the remaining parameters are predicted from the four ResNets.
Alongside each parameter, we also indicate their unit of measurement.

dicted ones and the corresponding residuals histograms. The residuals are
produced, for each parameter through the following equation:

resi = (ti � pi) (4.18)

where resi is the residual for the i-th parameter, ti is the true parameter
value, while pi is the predicted one. Tab. 4.5 summarises the performances
showing, for each parameter, the mean and standard deviation of the resid-
ual distribution.

The source positions (spatial, frequency) and extensions (FWHMx,
FWHMy and �z) are detected with sub-pixel accuracies. Concerning
the performances on the flux densities and projection angle regression, the
relative error is defined as follows:

reli = (ti � pi)/ti (4.19)

where reli, ti and pi are, respectively, the relative error, the true parameter
value and the predicted one for the i-th parameter. The achieved relative
errors for the flux densities are 0.07 with a standard deviation of 0.36. In
particular, 68% of sources have a relative error on the flux density which
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Figure 4.23. Scatter plots of the true parameter values against the models’
predictions and the corresponding residuals histograms. The red dotted lines
in each scatter plot represent the bisector of the quadrant, i.e. if all instances
were perfectly predicted, they would all lie on the red line.
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Figure 4.24. Scatter plot of the sources SNR against their flux densities
relative errors. Vertical bars divide the plot in sections of SNR. The legend
shows, for each SNR interval, the standard deviation of the relative errors.



114
Chapter 4. Detection and Characterization of ALMA Sources through Deep

Learning

Figure 4.25. Scatter plot of the sources’ absolute projection angle residual
errors against their eccentricity, defined as the ratio of their FWHMs. The
vertical bar delimits the 10% mark for the residual error, while the sources
highlighted in orange are circular (e ' 1) and the ones in red have surface
brightness lower than 30 mJy / beam. These sources account for respectively
47.4 and 43.7 of all sources with a relative error higher than 10%.
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is less than 1% away from the true value, 80% less than 10% and 87% less
than 20%. Regarding the projection angles, 53% of sources have a relative
error which is less than 1% away from the true value, 73% less than 10%
and 81% less than 20%. The scatter plot of true pa versus predicted ones
(Fig. 4.23 last row, third panel from the left) shows two regions where
the nets fail to make accurate predictions, namely, around the values of 0
and 90 degrees. This could be expected given the well-known degeneracy
encountered in measuring projection angles for almost circular sources.
Fig. 4.25 shows the scatter plot of the absolute values of the residuals on
the projection angle estimation versus the source eccentricity (defined as
e = FWHMx/FWHMy). 47.4% of all sources with a residual error higher
than 10% are almost circular (e ⇠ 1) and 43.7% have a surface brightness
less than 30 mJy / beam. Regarding the surface brightness estimation,
the scatter plot of the true flux density versus the predicted one shows
that at higher fluxes, the predictive error increases. This behaviour can
be explained due to the fact that the brightest sources represent only 16%
of the data set and that the ResNet is trained, by minimizing the l1 loss,
to predict the median of brightness distribution which is 51.2 in our Train
set. The combination of the choice of the loss function and scarcity of
bright sources in the data encourages the model to focus more on less
bright sources while treating bright sources as outliers. Fig. 4.24 shows
the scatter plot of the sources SNR against relative errors on the flux
estimations. The standard deviation of the flux relative errors distribution
halves for sources with SNR higher than 10 with respect to fainter sources.

4.4 Sky Model Reconstruction, comparison with

tCLEAN

In order to compare the image reconstruction capabilities of Blobs
Finder with respect to tCLEAN, we re-run our simulation code on the
1000 sky-model cubes setting the number of tCLEAN iterations to 200.
This way, for each sky model cube, we obtain the corresponding sky-model
reconstruction cube generated by tCLEAN. The obtained 1000 tCLEAN

cleaned cubes are integrated along frequency to get the integrated images,
and normalized to the [0, 1] range. To measure and compare the true sky
model reconstruction performance, we utilise two metrics: the mean struc-
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Algorithm mSSIM MRS
BF 0.003 �0.0006
tCLEAN 0.45 0.05

Table 4.6. The table shows the mean structural similarity index (mSSIM)
and the mean residual score (MRS) between the true sky model images, Blobs
Finder (BF) and tCLEAN reconstruction over the Test set.

tural similarity index (mSSIM) and the mean residual score Mean Residual
Score (MRS). To compute the mean residual score, first the residual image
is computed as follows:

resij = (tij � pij) 8i, j 2 [256, 256] (4.20)

where tij is the pixel value at index i, j of the sky-model image and pij
is the pixel value of Blobs Finder or tCLEAN reconstructions. The mean
residual is then computed as the mean of the residual image and the mean
score is the average mean residual over the entire Test set.

Table 4.6 shows the mSSIM and MRS computed on the 1000 Test set
images. An improvement of two orders of magnitudes on both metrics is
reached when employing Blobs Finder. Figures 4.26, 4.27, 4.28, 4.29, 4.30,
4.31 show several examples of target Sky Model images reconstructions. In
particular, Fig. 4.27, 4.28 show the residual images (see Eq. 4.20) relative
to the example showcased in the first row of Fig. 4.26, and Fig. 4.30, 4.31
for the first row of Fig. 4.29. Blobs Finder shows better reconstruction ca-
pabilities characterised by residuals centred around zero and with a lower
scatter with respect to that of tCLEAN residuals. Regarding computa-
tional times, Blobs Finder made its predictions on the entire Test set in
23 seconds employing a single NVIDIA Tesla K20, while tCLEAN took
4.3 minutes per cube utilising 8 Intel Xeon E5-2680 CPUs. Given the 400
CPUs at our disposal, we run it on 50 cubes at a time in parallel obtaining
a total computational time of 1.5 hours. Employing BlobsFinder for the
reconstruction task on the entire Test set results in a speed-up factor of
200 on our system with respect to tCLEAN. The speed-up is even more
if tCLEAN is used in a serial fashion.
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Figure 4.26. Examples of Dirty Images (first column), target Sky Models
(second), Blobs Finder’s reconstructions (third) and tCLEAN reconstructions
with niter = 200 (forth). Fig. 4.27 and Fig. 4.28 show the residual images
relative to the first row’s images of this figure.
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Figure 4.27. Residual Image created through Eq. 4.20 between the target
Sky Model and Blobs Finder’s predicted reconstruction. The two scatter plots
show the marginal distributions obtained by summing pixel values along each
row and column of the image, respectively. The Dirty image, The Sky Model
image and Blobs Finder’s prediction relative to the residual image shown in
this figure are showcased in the first row of Fig. 4.26.
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Figure 4.28. Residual Image created through Eq. 4.20 between the target Sky
Model and tCLEAN reconstruction.The two scatter plots show the marginal
distributions obtained by summing pixel values along each row and column
of the image, respectively. The Dirty image, Sky Model image and tCLEAN
reconstruction relative to the residual image shown in this figure are showcased
in the first row of Fig. 4.26.
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Figure 4.29. Examples of Dirty Images (first column), target Sky Models
(second), Blobs Finder’s reconstructions (third) and tCLEAN reconstructions
with niter = 200 (fourth). Fig. 4.30 and Fig. 4.31 show the residual images
relative to the first row’s images of this figure.



4.4. Sky Model Reconstruction, comparison with tCLEAN 121

Figure 4.30. Residual Image created through Eq. 4.20 between the target
Sky Model and Blobs Finder’s predicted reconstruction. The two scatter plots
show the marginal distributions obtained by summing pixel values along each
row and column of the image, respectively. The Dirty image, The Sky Model
image and Blobs Finder’s prediction relative to the residual image shown in
this figure are showcased in the first row of Fig. 4.29.
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Figure 4.31. Residual Image created through Eq. 4.20 between the target
Sky Model and tCLEAN reconstruction. The two scatter plots show the
marginal distributions obtained by summing pixel values along each row and
column of the image, respectively. The Dirty image, Sky Model image and
tCLEAN reconstruction relative to the residual image shown in this figure
are showcased in the first row of Fig. 4.29.
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4.5 Discussion and Conclusions

The transition of many existing and planned radio interferometers to
the Terabyte data regime requires the community to develop automatized
source detection and characterisation pipelines capable to cope with data
streams of ever-increasing size and complexity. In recent years several
attempts have been made to use deep learning in order to speed up proce-
dures and to make the detection pipeline less subjective. In this Chapter
we present a novel deep-learning-based source detection and characteri-
sation pipeline for radio interferometric datacubes. This pipeline works
directly on dirty interferometric calibrated data cubes which have not
undergone any prior de-convolution (i.e., on the results of the Fourier
transform applied to the calibrated visibility data) and combines spatial
and frequency information to detect and characterize sources within the
cubes. The pipeline was fine-tuned on the characteristics of ALMA data
(commonly processed with the CASA software). Nonetheless, given the
similarities existing among radio interferometric data from different in-
struments, the pipeline can be exported (in presence of a large enough
number of simulations for training) to other instruments (such as LOFAR,
SKA, VLBI, VLTI). Given the obtained reconstruction capabilities, the
proposed pipeline has the potential to support CASA with a new de-
sign for image reconstruction and/or to provide a speed-up procedure for
convergence purposes. Regarding the obtained performances, while Blobs
Finder seems to be able to outperform tCLEAN in both speed and perfor-
mance, this result was only obtained on simulated cubes containing simple
point-like sources. Further investigations will be required on cubes con-
taining sources with extended emissions and complex morphologies and
on real data. Summarising: the pipeline is composed of six deep learning
models interconnected through logical operations: Blobs Finder detects
sources within the frequency-integrated data cubes, Deep GRU exploits
the frequency domain and detects emission peaks in the spectra extracted
from sources detected by Blobs Finder, and the ResNets regress the source
parameters from ’spectrally focused’ images created by cropping spatially
around the sources, and integrating within their emission range found by
Deep GRU, and the line emission images created by masking the cube
with the 3D emission models found by combining Blobs Finder and Deep
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GRU predicted emission ranges (in the spatial and frequency planes of the
cube, respectively). In order to test the performances of the pipeline, an
ALMA observation simulation code was developed. The simulation code
is made available through GitHub allows the community to generate thou-
sands of ALMA data cubes in parallel. The source detection capabilities
of the pipeline can be summarised by the performances achieved on the
test set: 92.3% of the simulated sources are detected with no false posi-
tives. While the achieved performances are promising for the prospect of
applying the pipeline to real data, the low FPRs of the DL models and the
subsequent removal of the remaining FPs through SNR and geometrical
criteria (FP detection and source deblending step) are closely related to
the simplified assumptions that were made to generate the mock data. In-
tegration times and antenna configurations are kept constant resulting in
a very low dirty beam variation across the data. Only single peak spectra
are simulated without taking into consideration the effects of inclination
with the observer’s line of sight or velocity dispersion within the galaxy,
resulting in simplified spectral profiles. Quality assessment is performed
by comparing our results with three other methods, blobcat, Sofia-2

and decoras. We notice a substantial improvement in both precision
and recall with respect to the first two methods and a smaller improve-
ment with respect to decoras. Regarding the source characterisation
performances, source positions are found with subpixel errors in spatial
and frequency domains, while projection angles and flux densities esti-
mations show a relative error within the standard amplitude calibration
error of interferometric data (' 10% [36]) for respectively 73% and 80%
of all sources. Regarding the projection angle regression, the ResNet is
not able to correctly predict this parameter for circular sources only, being
trivial. Given the insights obtained from the analysis of the ResNet per-
formances, a way to avoid the futile regression of the projection angle on
circular sources could be to first compute the source eccentricity (from the
predicted FWHMx and FWHMy) and then regress the projection angle
only for non-circular sources. The flux relative error increases with source
brightness and decreases with SNR. While explaining the latter trend is
easy, the first appears to be counterintuitive. In fact, the brighter a source
is, the easier it should be to measure its flux density. This trend comes
from the fact that our simulations contain many more faint sources than
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bright ones (see Fig. 4.4) and from our choice of training the ResNet with
an l1 loss. Regarding the execution time, our pipeline can process a sim-
ulated data cube (67.3 MBs) in ⇠ 10 ms. Although the DL pipeline has
not yet been tailored for use within CASA, the technique is capable to
speed up and improve over tCLEAN by leveraging correlations in all di-
mensions of the cube. In fact, we aim at improving our simulation code to
include more complex galaxy morphologies, using physically-based mod-
els for the galaxy kinematics, and employ spectral catalogues to generate
several spectral profiles for different classes of sources with the primary
goal of improving the quality of our simulations, and the additional goal
of having a publicly available and easy to use simulation code that the
community may use to generate common data sets on which compare dif-
ferent architectures. Alongside we want to modify our pipeline to account
for much more complex spectral profiles. The DL pipeline is currently tai-
lored to detect single-peak emission lines, assuming that celestial sources
have a single positively defined emission peak in their spectra. The above
does not hold for absorption line detection or for sources with multi-peak
spectral profiles. Both the peak detection (on Deep GRUs denoised spec-
tra) and FP detection and removal (on spectrally focused images through
SNR criteria) algorithms will thus need to be modified when dealing with
real observations. I’m also planning to make an assessment on faint sig-
nal detection, especially in the presence of strong sidelobes in the cubes
and asses the pipeline capabilities in the case of data containing several
uv coverages and array configurations, which should result in a greater
variation of the dirty beam within the data, thus posing a more complex
image reconstruction problem. Furthermore, we also plan to make tests
about incorporating the dirty beam within our pipeline in order to im-
prove the image reconstruction capabilities and to test the FP removal
pipeline against a DL classifier based on our ResNet architecture in case
of the aforementioned more complex data. The DL pipeline is going to
be further extended on continuum imaging and applied to real ALMA ob-
servations with the aim of finding new faint serendipitous galaxies in the
neighbourhood of brighter companions. This task has been proven difficult
for classical algorithms.
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Data and Software Availability

The simulation code to generate the data used in this work is made
publicly available through GitHub (ALMASim �). Detailed instructions
on how to set up a python environment with all the pip packages needed to
run the code and generate the data are outlined in the repository. The sim-
ulation code has been tested only on Unix distributions (Ubuntu, CentOS,
macOS) and is composed of two bash scripts and several python scripts
which generate the sky models, run the CASA tasks to simulate ALMA ob-
servations and produce the cubes, control the noise properties, and record
the source parameters. The bash scripts are written for the IBISCO ar-
chitecture which uses the slurm workload manager to split computations
among nodes, and thus they should be changed to reflect the architecture
on which they are executed. On our system, 5, 000 cube pairs were gen-
erated on 400 Intel Xeon E5-2680 CPUs in around a day. The pipeline is
also implemented in python and made publicly available through GitHub
(DeepFocus �). The Deep Learning models, the data loading, augmenta-
tion, training and testing routines are written through the pytorch library.
While the simulation code is fully documented, at the time of writing of
this paper, the documentation for the pipeline is still under construction.
Basic instructions on how to run the training and testing of the pipeline
are outlined on the GitHub page. Also in this case, the script parameters
are tailored for the IBISCO architecture and should be changed accord-
ingly. Blobs Finder’ training lasted ⇠ 4 hours on a 2 NVIDIA Tesla K20
and it made the predictions on the test set in ⇠ 23 seconds including I/O
operations. While Blobs Finder was trained on two GPUS, Deep GRU and
the ResNets were trained on a single NVIDIA Tesla K20. Regarding the
name of the pipeline, given its modularity, it will probably not hold for
long and will be reformulated once more extensive tests are made over the
several problems which are investigated in this paper: image reconstruc-
tion, source detection and source characterisation. Deep GRU’s training
lasted ⇠ 20 minutes on spectra produced from the truth catalogue and
⇠ 3 minutes on Blobs Finder’s predictions on the training set, and it made
the predictions on the test set in ⇠ 9 seconds including I/O operations.
Each ResNet’s training lasted ⇠ 2 hours on spectrally focused images (or
line emission images for flux density regression) produced from the truth
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catalogue, ⇠ 30 minutes on spectrally focused images produced from Blobs
Finder and Deep GRU predictions, and predictions on the test set were
made in ⇠ 5 seconds including I/O operations.
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Chapter 5
The SKA Data Challenge 2:

Detection and

Characterisation of SKA

Sources through Deep

Learning

I must not fear. Fear is the
mind-killer. Fear is the little-death
that brings total obliteration. I will
face my fear. I will permit it to pass
over me and through me. And when
it has gone past I will turn the inner
eye to see its path. Where the fear
has gone there will be nothing. Only
I will remain.

Frank Helbert, Dune

The Square Kilometre Array Observatory SKA Observatory (SKAO)
is a next-generation radio interferometer currently being built by an inter-
national collaboration. The project is currently in a very advanced stage
(with two prototypes: The Australian Square Kilometer Array Pathfinder
(ASKAP) [72] and MERKAAT [5] already operational) and aims at build-
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ing the world’s largest radio telescope, with eventually over a square kilo-
metre (one million square metres) of collecting area. SKA requires a huge
leap forward in both engineering and research & development towards
building and delivering a unique instrument which can be rightly consid-
ered as the largest scientific endeavour in history. SKA will eventually use
thousands of dishes and up to a million low-frequency antennas to explore
the radio sky to new depths marking a paradigm shift not only in the way
we see the Universe but also in how we undertake scientific investigation.
SKA will in fact produce up to 1.5 PBs of raw data/day and more than
100 TBs of processed data/day. This huge amount of data will need to be
captured, transported, processed, stored, shared and analysed using auto-
matic methods. Innovations developed in order to enable the SKA data
journey will drive forward data technologies across software, hardware and
logistics.

In order to support the community to prepare for such rich datasets, the
SKAO has established a series of Science Data Challenges (SDCs). Each
challenge involves some combination of real or simulated datasets designed
to be as similar as possible to the future SKA data. More than 100 par-
ticipants groups, including myself alongside other COIN Cosmostatistics
Initiative (COIN) members, were invited to participate in the SKA Data
Challenge 21 SKA Data Challenge 2 (SKADC2) which run between the
1st February of 2021 and the 31st of July.

This Chapter is arranged as follows: In Sec. 5.1 we outline relevant
information about the SKADC2 and the simulated data product that was
made available to its participants; In Sec. 5.2 we describe in details my
team solution to the Challenge, a DL based pipeline, and its revision that
I made, after the challenge completion, in order to address its shortcom-
ings and greatly boost its performances, and other relevant architectures
that participated to the challenge. In Sec. 5.3 we show the results of the
challenge, and the improvements we have obtained after the challenge con-
clusion. In Sec. 5.4 we make our concluding remarks.

1https://sdc2.astronomers.skatelescope.org



5.1. The SKA Data Challenge 2 131

5.1 The SKA Data Challenge 2

The Challenge consisted in the detection and characterisation of HI
sources within a dataset consisting in a 5851 ⇥ 5851 ⇥ 6668 pixels2 HI3
imaging data cube simulating a future SKA MID spectral line observation
with the following specifications:

1. 20 square degrees field of view.

2. 7 arcsec beam size, sampled with 2.8⇥ 2.8 arcsec pixels.

3. 950–1150 MHz bandwidth, sampled with a 30 kHz resolution. This
corresponds to a redshift interval z = 0.235–0.4954.

4. Noise consistent with a 2000-hour total observation.

5. Systematics including imperfect continuum subtraction, simulated
RFI flagging and excess noise due to RFI.

The HI data cube was accompanied by a radio continuum data cube cov-
ering the same field of view at the same spatial resolution, with a 950-1400
MHz frequency range at a 50 MHz frequency resolution. Together with the
full-size Challenge dataset, two smaller datasets were made available for
development and testing purposes. Generated using the same procedure as
the full-size dataset but with a different statistical realisation, the ‘devel-
opment’ and ‘large development’ datasets were provided along with truth
catalogues of HI sources. A further ‘evaluation’ dataset was provided with-
out a truth catalogue, in order to allow teams to validate their methods in

2
The dimension corresponding to two spatial directions on the plane of the sky and

one spectral dimension corresponding to the different frequency channels.
3
HI stands for Neutral Hydrogen. Neutral Hydrogen produces a hyperfine quantum

transition which is detected at 21.1 cm wavelength and is the most used tracer to

investigate the distribution of gas in the universe.
4
Due to the expansion of the universe, distant galaxies recede from us at a speed

which is proportional to their distance. As a result of the relativistic Doppler effect, this

allows us to derive distances by measuring the wavelength shift of any specific spectral

line with respect to its rest frame position. The redshift z is defined as: z = ��

�0
'

D

c
H(t0). Where �� is the shift, �0 is the rest-frame wav., H is the Hubble constant, c

is the speed of light and D is the distance of the galaxy. This simple relation allows once

you have selected a specific line, to convert a given frequency range into an observability

redshift range.
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a blind way prior to application to the full dataset. The evaluation dataset
was also used by teams to gain access to the full-size data cube hosted at a
SKADC2 partner facility. Access was granted upon submission of a source
catalogue based on the evaluation dataset and matching a required format.
The development and evaluation datasets were made available for down-
load prior to and during the Challenge. The Challenge organisers gave
us computational resources through the GENCI-IDRIS – Orsay, France
supercomputer. The challenge consists of two separate steps:

Source finding: defined as the detection of the pixels belonging to the
galaxies in order to provide the coordinates of their dynamical centre
as RA (degrees), Dec (degrees) and central frequency (Hz).

Source characterisation, defined as the recovery of the following proper-
ties:

1. Integrated line flux (Jy Hz): the total line flux integrated over
the signal

R
Fd⌫ .

2. HI size (arcsec): the HI major axis diameter at 1 M� pc�2.
3. Line width (km s�1): the observed line width at 20% of its

peak.
4. Position angle (degrees): the angle of the major axis of the

receding side of the galaxy, measured anticlockwise from North.
5. Inclination angle (degrees): the angle between line-of-sight and

a line normal to the plane of the galaxy.

The scoring of the Challenge also reflects the two separate steps:

1. Source Finding scoring: A cross match procedure is used to check for
detected sources within the truth catalogue. The cross-match proce-
dure considers the position of a source in the 3D cube, identified by
RA, Dec and central frequency. All submitted sources with positions
within which a truth catalogue source is in range are recorded as
matches. For each submitted source, this range in the spatial and
frequency dimensions is determined by the beam-convolved submit-
ted HI size and the line width, respectively. Detections that do not
have a true source within this range are recorded as false positives.
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Matched detections are further filtered by considering the range of
the matched truth sources. Detections which lie outside the beam-
convolved HI size and the line width of the matched truth source
are at this stage also rejected and recorded as false positives. It is
possible that the cross-match returns multiple submitted sources per
true source. In that case, all matches are retained and scored indi-
vidually. The reasoning behind this choice is that components of HI
sources, especially in the velocity field, could be correctly identified
but interpreted as separate sources. If that were the case, classifying
them as false positives would be too much of a penalty. All submitted
sources matched to the same true source are inversely weighted by
the number of multiple matches during the scoring step. During the
cross-matching, it is also possible for more than one true source to
be matched with a single submitted source. In these cases, only the
match between the submitted source and truth source which yields
the lowest multi-parameter error (eq. 5.1) is retained. This procedure
ensures that matches in crowded regions will take into account the
resemblance of a true source to a submitted source, in addition to its
position. A final step is performed to compare the multi-dimensional
error with a threshold value, above which any nominally matched
submitted sources are discarded and counted as false positives. The
multi-parameter error D is calculated using the Euclidean distance
between truth and submitted sources in normalised parameter space:

D = (D2
pos +D2

freq +D2
HI size +D2

line width +D2
flux)

1
2 , (5.1)

where the errors on parameters of spatial position, central frequency,
line width and integrated line flux have been normalised following
the definitions in Table 5.1. The error in HI size is at this stage nor-
malised by the beam-convolved true HI size in order not to lead to the
preferential rejection of unresolved sources. The multi-dimensional
error threshold is set at 5, i.e. the sum in quadrature of unit nor-
malised error values.

2. Source characterisation: For all detections that have been identi-
fied as a match, properties are compared with the truth catalogue
and a score is assigned per property and per source. The following
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properties are considered for accuracy: sky position (RA, Dec), HI
size, integrated line flux, central frequency, position angle, inclina-
tion angle and line width. Each attribute j of a submitted source i
contributes a maximum weighted score wj

i of 1/7, so that the maxi-
mum weighted score wi for a single matched source is 1:

wi =
7X

j=1

wj
i . (5.2)

The weighted score of each property of a source is determined by

wj
i =

1

7
min

(
1,

thrj

errji

)
, (5.3)

where errji is the error on the attribute and thrj is a threshold ap-
plied to that attribute for all sources. Errors calculated in this step
are detailed in Table 5.1, along with corresponding threshold values.
Finally, the weighted scores of submitted sources are averaged over
any duplicate matches with unique truth sources.

The final score is determined by subtracting the number of false positives
Nfalse from the summed weighted scores wi of all Nmatch unique matched
sources:

final score =
NmatchX

i

wi �Nfalse. (5.4)

5.2 The Pipeline

In this chapter two Deep Learning pipelines are presented: the first one,
referred as the COIN pipeline, is showcased in Fig. 5.1 and was developed
in collaboration with other COIN scientists within the SKADC2 challenge;
the second one, referred as the Revised pipeline, is showcased in Fig. 5.2
and has been developed after the completion of the challenge in order
to improve on the obtained results. The second pipeline was built upon
the first one in order to solve its two main shortcomings: a high number
of false detections (FPs), and poor segmentation performances. The two
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Property Error term Threshold

RA and Dec, x, y Dpos =
(x� x0)2 + (y � y0)2

S0 0.3

HI size, S DHI size =
|S � S0|

S0 0.3

Integrated line flux, F Dflux =
|F � F 0|

F 0 0.1

Central frequency, ⌫ Dfreq =
|⌫ � ⌫ 0|
w0
20, Hz

0.3

Position angle, ✓ DPA = |✓ � ✓0| 10

Inclination angle, i Dincl = |i� i0| 10

Line width, w20 Dline width =
|w20 � w0

20|
w0
20

0.3

Table 5.1. Definitions of errors and threshold values for the properties of
sources. Prime denotes the attributes of the truth catalogue, x, y are the pixel
coordinates corresponding to RA, Dec, ⌫ is the central frequency, S is the HI
major axis diameter, f is the source integrated line flux, ✓ is the position angle,
i is the inclination angle, and w20 is the HI line width. Calculations of position
angles take into account potential angle degeneracies by defining the angle
difference as a point on the unit circle and taking the two-argument arctangent
of the coordinates of that point: |✓ � ✓0| = atan2[sin(✓ � ✓0), cos(✓ � ✓0)]
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Figure 5.1. Schema of the source detection pipeline which competed in the
SKADC2 developed in collaboration with COIN members.

pipelines share the same working principles and some common elements.
Both pipelines receive as input a 3D 64 ⇥ 64 ⇥ 128 patch of the input
cube and process it in order to predict a corresponding segmentation map
masking with 1 pixels belonging to the sources within the cube and with
0 the rest. This operation is performed in parallel by two models: a DL
model and our re-implementation of the Starlet Multi-Scale vision model.
The Multi-Scale vision model, explained in 2 Sec. 2.3, has been extended
to work with 3D data and details about its inner workings are explained
later in this Chapter. The DL model is a 3D CAE in the COIN pipeline
and 3D ResNet CAE in the revised pipeline. While the working principles
of this kind of architectures are explained in Chapter 3 Sec. 3.1.3, their
implementations for the purpose of this work are explained later in this
Chapter. The output segmentation maps, one output of the DL model,
and one output of the Starlet Multi-Scale Vision Model are normalized
to the [0, 1] range and combined. For each slice of the resulting cube, a
threshold parameter t is used to select relevant pixels, and a friend-of-friend
algorithm is employed to link pixels into 2D blobs (a combination of the
label and regionprops scikit-learn [118] functions) which are recorded as a
leaf of a graph. The resulting 3D graph is first pruned by removing all blobs
containing less than tp pixels, and then, for each pair of adjoining cube
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Figure 5.2. Schema of the revised pipeline which I developed to address the
shortcomings of the COIN pipeline.
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Figure 5.3. Architectures of the COIN CAE Convolutional and Deconvo-
lutional blocks. The Convolutional block is made by a 3D Convolution with
a stride of 2 and a kernel size of 3, a 3D Batch Norm Layer and a ReLU
activation function. The Deconvolutional block is symmetric with respect to
the convolutional block and its made by a 3D Transposed Convolution layer
with a stride of 2 and a kernel size of 3, a 3D Batch Norm layer and a ReLU
activation function.

slices, a link is set between blobs, if their spatial overlap is more than ts.
In practice, links are created between overlapping blobs in frequency in a
fashion similar to that of how relevant sets of coefficients are linked between
adjoin scales in the Multi-Vision model. The formed structures (linked
blobs) are pruned again by eliminating all structures containing less than
tf links, or in practice, we are eliminating all source candidates which show
relevant emission in less than tf frequency slices. This step is represented
by the Crossmatch + Quality Cuts step of the pipeline. The surviving
candidates (or more precisely the pixels belonging to the candidates) are
preserved in the segmentation map while the remaining pixels are set to
0. In order to account for the fact the Segmentation networks may have
missed source boundaries which, given the nature of the simulated data
and the spreading effect of the dirty beam, could be at or below the noise
level, each source segmentation map is dilated by a factor td.The resulting
processed segmentation map cube is multiplied with the input 3D patch
to get the moment masked cube which contains all the input pixels values
belonging to source candidates and the remaining pixels set to 0. For each
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Figure 5.4. Architectures of the ResNets CAE Convolutional and Decon-
volutional blocks. The Convolutional block is divided in two main pathways
depending if downsampling must be applied in the layer. In the affirmative
case, the 3D convolutions are applied with a stride of 2, otherwise with a stride
of 1. As it can be seen, the output of the previous layer is brought forward
through a skip-connection and concatenated with the output of the current
layer before applying the final activation function. The deconvolutional block
is made by two parallel pathways: the learnable upsampling made by a 3D
Transposed Convolution with a stride of 2, and the upsampling made by a 3D
trilinear interpolation. The output both pathways are concatenated and then
passed along to two convolutional blocks with a stride of 1 followed by a 3D
Batch Normalization layer and a Leaky ReLU activation function.



140
Chapter 5. The SKA Data Challenge 2: Detection and Characterisation of SKA

Sources through Deep Learning

Figure 5.5. From top to bottom: top) architecture of the CAE Segmenter
(COIN Pipeline). The architecture in the Revised Pipeline is obtained by
switching the convolutional layers with ResNet convolutional layers; middle)
the architecture of the ResNet Classifier; bottom) the architecture of the
ResNet parameter regressor.

detected source, we extract two 32⇥32⇥128 pixel patches centred around
the source bounding box, one from the segmentation-masked cube and one
from the moment-masked cube. These are the source 3D segmentation
map and the source 3D source moment-masked cube. In both pipelines,
the source 3D segmentation map is used to estimate the source position in
the cube (RA, Dec and ⌫) as the moment-masked weighted barycenters of
the pixels belonging to the source in the x, y and z axes of the cube. The
source line width w20 is estimated as half the length in the frequency of
the source segmentation map. The moment-masked cubes are then fed to
specialised ResNet regressors each one tasked to predict one of the source
morphological parameters, i.e. the integrated line flux F , the HI size S,
the inclination angle i and the position angle ✓ in the Revised pipeline.
Details about the ResNet regressors architectures are described later in
this Chapter. Two are the main differences between the COIN and the
Revised pipeline:

1. the COIN pipeline estimates the projection angle ✓ by first integrat-
ing the source 3D segmentation map in order to get a 2D image which
is then normalized to 1. An elliptical model (the Astropy [9] ellipse
function) is fitted to the 2D image using as first estimates of the el-
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lipse position, major and minor axes the coordinates and dimensions
extracted from the segmentation map earlier in the pipeline. The
ResNet utilises a specialized ResNet to predict the projection angle
✓ as the other morphological parameters;

2. in order to remove possible false detections, the Revised pipeline,
before estimating the source parameters, employs a 3D ResNet Clas-
sifier. Only source candidates with a probability of being a true
source higher than td are retained and passed along in order to es-
timate their morphological parameters, the remaining sources are
discarded as false detections.

5.2.1 The CAE Segmenter

The CAE Segmenter is made by an Encoder and a Decoder network.
The Encoder is made by four convolutional blocks that progressively reduce
the spatial dimensions of the input while increasing the number of channels
or feature maps and a final fully connected layer followed by a Leaky
ReLU activation function. The Decoder has a symmetric architecture,
i.e. a fully connected layer, followed by four deconvolutional blocks and a
final identity layer which is constituted by a 3D Convolution followed by
a Sigmoid activation function whose purpose is to normalize the output to
the [0, 1] range. The structures of the convolutional and deconvolutional
blocks are showcased in Fig.5.3. Convolutional blocks are made by a 3D
Convolution layer with a kernel size of 3 and a stride of 2 a 3D Batch
Norm layer with a kernel size of 3 and a Leaky ReLU activation function.
Deconvolutional blocks are made by a 3D Transposed Convolution layer
with a kernel size of 3 and a stride of 2, a 3D Batch Norm layer with
a kernel size of 3, and a Leaky ReLU activation function. The Identity
layer is made by a 3D Convolution with a kernel size of 1 and a stride of
2 followed by a 3D Batch Normalization layer and a Sigmoid activation
function. A detailed description of the spatial transformation performed
by the CAE Segmenter can be seen in Tab. 5.2. The CAE is trained with
the Dice loss [145] defined as follows:

DL(x, y) = 1� 2xy + 1

x+ y + 1
(5.5)



142
Chapter 5. The SKA Data Challenge 2: Detection and Characterisation of SKA

Sources through Deep Learning

Block Name Input Size Output Size
Conv Block 1 [b, 1, 64, 64, 128] [b, 8, 32, 32, 64]
Conv Block 2 [b, 8, 32, 32, 64] [b, 16, 16, 16, 32]
Conv Block 3 [b, 16, 16, 16, 32] [b, 32, 8, 8, 16]
Conv Block 4 [b, 32, 8, 8, 16] [b, 64, 4, 4, 8]
FC 1 [b, 64⇥ 4⇥ 4⇥ 8] [b, 1024]
FC 2 [b, 1024] [b, 64⇥ 4⇥ 4⇥ 8]
DeConv Block 1 [b, 64, 4, 4, 8] [b, 32, 8, 8, 16]
DeConv Block 2 [b, 32, 8, 8, 16] [b, 16, 16, 16, 32]
DeConv Block 3 [b, 16, 16, 16, 32] [b, 8, 32, 32, 64]
DeConv Block 4 [b, 8, 32, 32, 64] [b, 1, 64, 64, 128]
Final Block [b, 1, 64, 64, 128] [b, 1, 64, 64, 128]

Table 5.2. Input and Output shapes for each layer of the COIN and ResNet
CAE Segmenter, where b indicates the batch size, and the horizontal line
separates the Encoder from the Decoder network.

where 1 is added in the numerator and denominator to ensure that the
function is not undefined in edge case scenarios such as when y = x = 0.

5.2.2 The ResNet CAE Segmenter

The ResNet CAE Segmenter architecture is obtained by substituting
the Convolutional and Deconvolutional block of the CAE Segmenter with
the respective ResNet-like counterparts which are shown in Fig. 5.4. The
Convolutional block is divided into two main pathways depending if a re-
duction of the spatial dimensions of the input wants to be achieved (down-
sampling). In the affirmative case, the input is first processed with a 3D
Convolution with a kernel size of 3 and a stride of 2, a 3D Batch Normal-
ization layer with a kernel size of 3, a Leaky ReLU activation function and
then processed with a 3D Convolution with a kernel size of 3 and a stride
of 1, a 3D Batch Norm layer and a Leaky ReLU activation function. The
output of the previous operation is concatenated with the output of the
second convolution and processed with a Leaky ReLU activation function.
In the negative case, the input is first processed with two blocks made by
a 3D Convolution with a kernel size of 3 and a stride of 1, a 3D Batch Nor-
malization and a leaky ReLU activation function, and then concatenated
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with the output of the previous layer and processed with a Leaky ReLU
activation function. Each deconvolutional block is constituted by two par-
allel pathways: a 3D Trilinear interpolation with stride of 2, followed by
a 3D Batch Normalization layer and a Leaky ReLU activation function
(upsampling block); and, a 3D Transposed Convolution layer with stride
of 2 and a kernel size of 3, followed by a 3D Batch Normalization layer
and a Leaky ReLU activation function (learnable upsampling block). The
output of the upsampling block and learnable upsampling block are then
concatenated and passed along to two convolutional blocks constituted by
a 3D Convolution layer with stride 1 and a kernel size of 3, a 3D Batch
Normalization layer and a Leaky ReLU activation function. The trilin-
ear upsampling operation transforms the input layer in the desired spatial
resolution without using any parameter (and thus it has a low impact on
model complexity) while the resulting features should preserve most of the
information of the original features. These upsampled features are con-
catenated to the output of the parametric upsampling performed through
the Transposed Convolution in order to create a residual-like connection.
This additive upsampling [161] should improve prediction capabilities and
remove gridding artefacts produced by the subsequent Transposed Convo-
lutions. The ResNet CAE Segmenter performs the same spatial transfor-
mations performed by the CAE Segmenter and showcased in Tab. 5.2 with
the difference that it has almost double the amount of parameters (given
that the number of convolutions is more than doubled). The network is
also trained with the Dice loss.

5.2.3 The ResNet Classifier and Regressor

The ResNet Classifier and Regressor networks share the same archi-
tecture with the exception of the final activation function used in their
last Fully Connected Layer and the choice of loss function we use to train
them. The architectures of both networks are showcased in Fig. 5.5. Both
models start with a Convolutional layer made by a 3D Convolution with
a kernel size of 3 and a stride of 1 followed by a 3D Max Pooling layer,
a 3D Batch Normalization layer and a ReLU activation function. This
first layer preprocesses the input by halving its spatial dimensions and is
followed by 8 ResNet Convolutional block (showcased in Fig. 5.4). Each
pair of 2 consecutive blocks halves the spatial dimensions of its input and
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doubles the number of features. The input is then fed to a 3D Adaptive
Max Pooling layer [94] which performs the same operation as that of Max
Pooling (see Chapter 3 Sec. 3.1.2) but stride and kernel size are automat-
ically computed in order to reduce kernels overlap. The three parameters
are computed, for each dimension of the input, as follows:

• stride = floor(Si/So);

• kernel size = Si � (So � 1)⇥ stride;

where Si and So are the sizes in pixels of respectively input and output.
The flattened feature vector is then passed to the first fully connected layer
followed by a ReLU activation function and then a second fully connected
layer. In the case of the Classifier, this latter fully connected layer maps
the input to a mono-dimensional vector with a length equal to 2 which is
then processed through a Sigmoid activation function in order to normalise
it and give it a probabilistic interpretation. In the case of the Regressor,
the fully connected layer maps the input to a single scalar which is the
value of the parameter of interest for the ResNet. The ResNet Classifier
is trained with the binary cross-entropy (BCE) loss between the output
probabilities and the true class labels. The BCE loss is defined as follows:

BCE(x, y) =
1

N

NX

i=0

 
� yilog(pi) + (1� yi)log(1� pi)

!
(5.6)

where pi is the probability that the ith input patch contains a true source,
while (1 � pi) is the probability that it is empty. The ResNet Regressors
are all trained with the l � 1 loss function defined as follows:

l1(x, y) =
1

N

NX

i=0

|xi � yi| (5.7)

5.2.4 The Multi-Vision Model

Our python implementation of the Multi-Vision Model (see Chapter 2
Sec. 2.3) is based on the pymultiscale5 package from which we take their

5
https://github.com/broxtronix/pymultiscale
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implementation of the 3D Starlet Transform and Inverse Transform, and
the scipy optimize [157] package least_squares method. The method takes
as arguments: a real function which computes, given the input patch and
the output segmentation map and a set of parameters (the 3D array of
coefficients weights, which are the thresholding operator Pw as described
in the Multi-Vision model algorithm), the vector of residuals between the
weighted reconstruction of the input patch and the target output segmen-
tation map; a loss function which in our case is the l1 loss between the
reconstructed 3D patches and the target segmentation map; and a min-
imisation algorithm which in our case is the scipy’s implementation of the
Trust Region Reflective algorithm [20]. We also set the number of function
evaluations or iterations to 10, 000 and optimised the noise threshold for
the selection of significant wavelet coefficients K (see Eq. 2.43) and the
object overlap threshold tO through a grid-search strategy. K was opti-
mised within the close interval [1, 6] with a step size of 0.1 and tO between
0.5 and 0.8 with a step size of 0.1. The purpose of the Multi-Vision model
is that of complementing the DL models which for example, given the low
frequency of bright sources in the data, may disregard them as outliers
with respect ot the way more frequent low brightness sources in the data.
On the contrary, these bright sources are the easiest to find with tradi-
tional algorithms such as The Multi-Vision model or SoFiA.

5.2.5 Training and Optimization Strategies

In both pipelines, the data flows from one DL model to the next. In
particular, the moment masked source patches extracted through the Seg-
menters and Multi Vision model’s segmentations of the input cube patch,
are passed along to the ResNet classifier for false detections identification
and removal and to the ResNet regressors and other pipeline components
to regress the morphological parameters of the detected sources. Given
that the challenge organisers made available to use both data cubes and
the parameters of sources within them, all pipeline models can be trained
at the same time in parallel. All networks are trained using the Adam
Optimizer for a thousand epochs and with a learning rate of 10�3. The
Segmentation networks are trained with pairs of input cube patches and
corresponding segmentation maps (64⇥64⇥128 pixels). The segmentation
maps are produced from the source parameters through the following set
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of equations:
DHIpixel = DHIarcsec/(2⇥�xyarcsec)

b = DHIpixel ⇥
p
cos(i)2 + ↵2sin(i)2

nchannels = ⌫0 ⇥ w20/(c�z)

(5.8)

e(x, y, z) =

8
>>>><

>>>>:

1, if

"
(x�x0)cos✓+(y�y0)sin✓

DHI

#2
+

"
�(x�x0)sin✓+(y�y0)cos✓

b

#2
 1

and z 2 [z0 � nchannels/2, z0 + nchannels/2].

0, otherwise.
(5.9)

where DHI is the galaxy’s major axis, b is the minor axis, i is the inclina-
tion angle, ✓ is the position angle, x0, y0 and z0 are the source coordinates
in pixels over the three cube axes, �xy and �z are the pixel sizes in arc-
seconds and Kms�1, and ↵ is a scaling parameter set to 0.2. The SKA
segmentation problem is highly imbalanced with a ratio between voxels
belonging to sources to the background of ' 10�3. A naive subdivision of
the development cube (1286⇥1286⇥6668 pixels) in patches of 64⇥64⇥128
pixels would thus result in a respective highly imbalance dataset consti-
tuted of mostly of empty 3D patches. For this reason, we subdivide the
development cube along the x-axis setting the upper 80% to train the
networks and the lower 20% to validate their performances and, for each
training iteration, we sample, from galaxies falling within the training and
testing parts of the cube respectively, 128 patches centred around sources
and 128 empty patches. To allow the networks to be rotationally invariant
and also increase the parameter’s sampling in the training set, through
data augmentation. Each time a 3D patch is sampled, it is also randomly
rotated in the xy plane. Source parameters are also modified to account
for the rotation. Through the explained sampling technique, we provide
the segmentation network with a balanced training set. The same training
set is also used to train the ResNet Classifier, while only the patches con-
taining sources and the corresponding parameters (F , i, S, ✓) are used to
train the ResNet Regressors. To prevent overfitting the data batches in the
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first training iterations, given the models’ inherent initial instability due
to the random initialisation of their weights, we adopt a warm up strategy
for the learning rate [52] in which we start with a learning rate of 0, and we
uniformly increase it to 1⇥ 10�3 in the first 10 iterations. The models are
trained for a maximum of 1000 epochs, but we also employ an early stop-
ping criterion based on the validation loss. If no improvement of validation
loss with respect to the moving average of the last 10 validation losses is
registered for 10 consecutive steps, then training is halted. The problem
with this training strategy is that it would not take into account the fact
that the Classification and Regression ResNets, in production, will not re-
ceive perfect source segmentation maps and thus moment masked source
cubes but the product of the imperfect prediction of the previous models in
the pipeline schema. The ResNet Classifier could receive (as input) source
moment masked cubes which contain only partially the source emission,
and the Regression ResNets misclassified false positives or correctly clas-
sified source moment masked cubes containing only partially the source
emission. To account for this, we first train all models in parallel in order
for them to learn how to solve their respective problems while optimis-
ing the pipeline total training time (which benefits from the fact that the
models’ training are carried on at the same time) following the strategies
described above, and then we train each model (with the same training
strategies that we have outlined, and with the exclusion of the Segmen-
tation networks which are the first models in the two pipelines) on the
un-augmented training set predictions of the previous model. In this way,
each model should be able to correct for the mistakes (biases in the data)
of the previous one. Each model is trained in this latter fashion for 300
iterations. The Crossmatch and Quality Cuts step of the pipeline utilises
several threshold-based criteria to preselect and process worthy source can-
didates: the source probability threshold t, the minimum number of pixels
within a blob tp, the spatial overlap threshold ts to link blobs along the
frequency axis, the minimum number of slices within a source tf , and the
segmentation dilation factor td. Also the ResNet Classifier outputs, for
each potential source, a probability score p and thus the threshold which
we use to deem a source as True must be tuned to maximise the Challenge
score. Clearly the number of detected sources and the number of false
positives depends on these parameters and, in order to fine-tune them we
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Table 5.3. Sampling intervals for the optimization of the Crossmatch and
Quality Cuts thresholds. The first column shows the threshold name, the
second the range from which the threshold values are sampled, the third the
sampling interval.

Parameter Name Range
Source probability threshold t [0.1 – 0.9] 0.05
Minimum number of pixels within a blob tp [3 - 10] 1
Blobs spatial overlap for frequency linking ts [0.3 – 0.9] 0.01
Minimum number of frequency slices tf [3 – 10] 1
Segmentation dilatation factor td [1 – 5] 0.5

proceed as follows: once all the models have been trained to solve their
respective problems, we employ them as a functional mapping between
their respective inputs and outputs and optimise the parameters through
a grid search strategy by randomly sampling each parameter value inde-
pendently within the ranges and sampling intervals outlined in Table 5.3.
We perform 1000 validation runs using both the training and validation
sets, and the challenge final score (see. Eq. 5.4) as a loss function. The
performances obtained on the full blind cube reported in Table 5.4 are
obtained utilizing respectively the following configurations:

• COIN: t = 0.65, tp = 6, ts = 0.55, tf = 7, td = 1.5;

• COIN Revised: t = 0.7, tp = 4, ts = 0.72, tf = 9, td = 1.5, p = 0.71

5.2.6 Other Competing Pipelines

Several other DL-based pipeline participated to the challenge:

1. FORSKA-Sweden: their pipeline is made by a combination of a
U-Net Segmenter and SoFiA [160]. The U-Net architecture [129]
was used with an encoder of a ResNet architecture and the initial
weights were pretrained from ImageNet and were provided by the
PyTorch-based Segmentation Models package [75]. Each 2D
k ⇥ k filter of the pretrained model was converted to a 3D filter
through the procedure outlined in [163]. They aligned the 2D filters
to the spatial plane, and repeated the same filter for k frequencies to
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obtain a 3D k⇥k⇥k filter. The Segmenter is trained on binary seg-
mentation map produced in a similar fashion to those created by us
and trained the model with a Dice loss. The training is carried with
an Adam optimizer by sampling 128 32⇥ 32⇥ 32 pixel cube patches
and corresponding 128 empty patches in order to oversample the
number of sources within the dataset and speed-up training. Once
the segmentation map is obtained, they feed it to the SoFiA pack-
age which is tasked to detect sources and regress their morphological
parameters. SoFiA relies on several parametric choices, which they
optimise by directly using the Challenge final score;

2. MINERVA: their pipeline is composed by two parallel pipelines
whose results are combined together: the first pipeline is a highly
customized version of a YOLO (You Only Look Once) network [124]
which is a regression-based CNN developed for image segmentation.
The network is trained on patches of 48⇥48⇥192 pixels and performs
detection based on a grid of size 6 ⇥ 6 ⇥ 12. Each grid element is
associated to a candidate detection with the following parameters:
the positions x, y, z of the object within the grid element, the widths
of the 3D bounding box w, h, d encompassing the object, and an
objectness score O that expresses the probability of said object being
a true source. YOLO networks are usually made to predict a class for
each object, but the MINERVA team modified it to instead regress
the source morphological parameters.

3. Team SoFiA: team SoFiA made use of the homonym package to
detect and characterize sources. After flagging of bright continuum
sources and standardization of each cube channel, the SoFiA S+C
finder was run with a detection threshold of 3.8 times the noise level,
spatial filter sizes of 0, 3, and 6 pixels and spectral filter sizes of
0, 3, 7, 15 and 31 channels, a linking radius of 2 pixels and a min-
imum size requirement of 3 pixels/channels. Based on tests using
the development cube, they optimized the challenge score by remov-
ing all detections with npix < 700, s < �0.00135 ⇥ (npix � 942) or
f > 0.18⇥SNR+0.17 where Npix is the number of pixels within the
3D source mask, s is the skewness of the flux density values within
the mask and f is the filling factor of the source mask within its rect-
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angular bounding box, and SNR is the signal to noise ration of the
detection. As the calculation of the DHI and i requires the spatial
deconvolution of the sources, they employ a constant value of 8.5 arc-
seconds and 57.3 degrees for all unresolved detections. The second
pipeline called the Convolutional Hybrid Ad-Hoc pipeline (CHAD-
HOC) is made by a CNN to classify true sources among the detec-
tions and a set of CNNs to regress the source parameters. For the
detection step, they employ a classical filtering + SNR thresholding
algorithm. First, the cube is pre-processed by convolving it with a
smoothing Gaussian filter with a width of 600 kHz, and then each
frequency slice is converted into an SNR map. All pixels below an
SNR of 2.2 are filtered out, while remaining pixels are aggregated into
sources through a friend-of-friends algorithm with a linking radius of
2 pixels. The position of each source is computed by averaging its
pixel coordinates. The selection step is performed by a CNN made
by 5 convolutional layers (8, 16, 32, 32 and 8 filters) and 3 dense
layers (96, 32 and 2 neurons). Batch normalization, dropout and
pooling are inserted between every convolutional and dense layers.
The network is trained with unsmoothed cutouts of 38 ⇥ 38 ⇥ 100
pixels around the 105 brightest detections made in the development
cube by assigning a True/False label to each detection. The CNN
outputs the probability that the given input patch is a true source
and a cut must be made in order to maximize the Challenge metric.
They optimise this parameter, like us, outside their training. The
CNN Regressors are trained with cutouts made around the 1300
brightest sources in the truth catalogue and data augmentation is
performed by flipping the sampled patches. The catalogues made
by the two pipelines are crossmatched together through a distance-
based threshold and source properties are averaged together. This
latter threshold is also optimized to maximise the Challenge score.

4. NAOC-Tianlai: their pipeline is based on Sofia-2 [159].

5. HI-FRIENDS: their pipeline is also based on Sofia-2 [159].

6. EPFL: their pipeline begins by subdividing the cube along its spa-
tial dimensions and denoising each subcube using 3D wavelet filtering
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(2D spatial filtering with the Isotropic Undecimated Wavelet Trans-
form [142], 1D frequency filtering with the decimated 9/7 wavelet
transform [158]). A joint-likelihood model is computed from the
residual noise in the data cube and it is later used to identify HI
source candidates through null hypothesis testing in a sliding win-
dow fashion along the frequency axis. Voxels with a likelihood higher
than a given threshold are merged into islands and cuts are performed
on the basis of the island’s size and morphologies to reject false pos-
itives. A CNN is then used to classify source candidates and further
reject false positives and then Inception CNNs are used to compute
sources parameters.

7. Spardha: their pipeline is also based on Sofia-2 [159];

8. Starmech: their pipeline is also based on Sofia-2 [159];

9. JLRAT: their pipeline divides the whole dataset into 320⇥320⇥160
patches which are then fed to a CNN which works in the frequency
domain to find signals of interest. The network is trained with spec-
tra as input and the output is a binary mask with the candidate lo-
cation in frequency. The detected spectra are correlated with known
spectral in the development cube true dot product to get correlations
in the spatial domain. A two-dimensional Gaussian function is then
used to fit the moment zero map produced by multiplying the found
3D segmentation map with the original cube to produce a best-fit
ellipse from which source morphological properties can be obtained.
The flux integral is obtained by integrating pixels belonging to the
ellipse both in space and in frequency;

10. HIRAXers: their pipeline is based on two DL models: U2net [121]
to detect sources, and a modified version of HighRes3DNet [92] to
regress their morphological parameters. The U2net model is trained
with 3D segmentation map created from the truth catalogue. The 3D
output of the U2net is analysed with a peak finder algorithm and all
pixels larger than its 27 neighbours are selected as potential sources.
These are then passed along to a modified 8-layer HighRes3DNet
which regresses all source parameters.
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5.3 Results and Analysis

Table 5.4 shows the number of detections Nd, the number of matches
Nm, the number of false positives Nf , the reliability R, completeness C,
and accuracy A for all pipelines on the challenge evaluation full data cube.
Reliability, completeness and accuracy of source properties measurements
are defined as follows:

R =
Nm

Nd
=

Nm

Nm +Nf
(5.10)

C =
Nm

Nt
(5.11)

A =

PNm

i wi

Nm
(5.12)

where Nt = 233, 246 is the total number of sources within the cube and wi

are the weighted scores for each source. We report, alongside those of the
other participating pipelines, the performances obtained on the evaluation
full cube dataset containing 233, 246 sources by three pipelines: 1. with
the acronym COIN-DC we report the results obtained utilising the first
pipeline created in collaboration with the other COIN team members as re-
ported in the Challenge leaderboard and paper. Due to the time constraint
of the challenge, we could only train on part of the smaller development
cube and could not apply the pipeline in time on the entirety of the eval-
uation cube due to several issues: constraints in the job submission on
GENCI-IDRIS – Orsay, France supercomputer which resulted in longer
times to train and debug the pipelines, bugs in the final cross-matching
code, and bugs in the ground truth segmentation maps. This resulted in
the submission of results for only roughly 1/10th of the cube. Moreover, for
the same aforementioned reason, we could not perform the optimization of
the Crossmatch and Quality Cuts parameters resulting in a high number of
false positives; 2. with the acronym COIN we report the results obtained
using the COIN pipeline but this time after debugging, i.e. obtaining re-
sults for the full evaluation cube after performing the hyper-parameters op-
timization; 3. with the acronym COIN-REV we report the performances
obtained using the Revised pipeline. As it can be seen, nevertheless being
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Pipeline Score Nd Nm Nf R C A

COIN-REV 23689 31232 30821 967 0.97 0.132 0.80
MINERVA 23254 32652 30841 1794 0.94 0.132 0.81
FORSKA-Sweden 22489 33294 31507 1798 0.94 0.135 0.77
Team SoFiA 16822 24923 23486 1446 0.94 0.100 0.78
NAOC-Tianlai 14416 29151 26020 3117 0.89 0.111 0.67
HI-FRIENDS 13903 21903 20828 1073 0.95 0.089 0.72
EPFL 8515 19116 16742 2369 0.87 0.071 0.65
COIN 5660 28974 26213 13214 0.66 0.11 0.72
Spardha 5615 18000 13513 4480 0.75 0.057 0.75
Starmech 2096 27799 17560 10224 0.63 0.075 0.70
JLRAT 1080 2100 1918 182 0.91 0.008 0.66
COIN-DC -2 29 17 12 0.58 0.001 0.60
HIRAXers -2 2 0 2 0.00 0.0 0.00
SHAO -471 471 0 471 0.00 0.0 0.00

Table 5.4. Performances obtained by all competing pipelines on the full eval-
uation cube. Columns show the score obtained through Eq. 5.4 (Score), the
number of detected sources (Nd), the number of matched sources (Nm), the
number of false positives Nf , the reliability (R), completeness (C), and accu-
racy A. In bold are highlighted the results obtained with the COIN pipeline at
the challenge’s end without hyperparameters optimization, and with inference
performed only on a subsample of the full evaluation cub (COIN-DC), the
results obtained with the fully optimised COIN pipeline and with inference
performed on the full evaluation cube (COIN), and the results obtained with
the Revised pipeline on the full evaluation cube (COIN-REV).
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in the top 10 scores of 100 participating teams, the COIN-DC pipeline
performed poorly in both the source detection and source characterisation
parts of the Challenge. The main culprit of the poor performance in de-
tecting sources is to be found in a bug within the code which performed the
creation of the ground truth segmentation maps which resulted in masks
shifted (in frequency) with respect to the true source emissions for all but
the brightest and biggest sources within the dataset. This resulted in both
pour segmentation performances and wrongly constructed input moment
masked cubes for the ResNets and other criteria by which source param-
eters are computed. Also, a high number of false positives is detected
achieving roughly a 50:50 ratio between true and false positives for 0.25
deg2 cutouts of the evaluation cube on which we performed the inference.
The frequency shift bias in the pipeline had particularly a great effect on
the integrated line flux estimation given that the moment-masked source
cubes only containing partially the true source emissions. On the other
side, the pipeline obtained competing results on the other morphological
parameters regressions with competing pipelines [60]. While the removal
of the bugs within the pipeline and the optimization of the source selection
hyperparameters greatly increased the number of detected sources from 29
to 28, 974 and substantially increased reliability and completeness, we still
obtained a high number of false positives which heavily penalised the fi-
nal challenge score. The addition of the ResNet Classifier in the Revised
pipeline greatly improves the number of false positives achieving the high-
est reliability among the competing pipelines. Regarding the number of
detected sources and the performances in regressing source parameters,
they are consistent with those of other high-scoring DL-based pipelines
(MINERVA and FORSKA-Sweden) with the difference that our pipeline is
more consistent with other non-ML-based methods (SoFiA, HIFRIENDS)
in the brighter end of the integrated line flux range. This behaviour can
be explained due to the fact that MINERVA and FORSKA-Sweden em-
ploy only DL-based model in the source detection parts of their respective
pipelines. Our ResNet Segmenter, in fact, suffered from the same decrease
in performance.

Figure 5.6 show the number of matched sources plotted over the num-
ber of true sources per bin of integrated line flux integral. To plot the
distribution of matched sources, true line flux values are employed. Fig.
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Figure 5.6. Sources in the full Challenge evaluation dataset are binned by
their integrated line flux value. In dark grey we show the distribution of all
sources within the cube, in light grey truth values of sources detected by the
Revised Pipeline, in cyan those of sources detected by the COIN Pipeline, in
blue those of sources detected by the COIN-DC pipeline and reported in the
Challenge result paper [60].
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Figure 5.7. Reliability, defined as the number of matches divided by the
number of detections, is plotted for the three pipelines as a function of the
integrated line flux: the Revised pipeline (dark gray), the COIN pipeline (light
blue), and the COIN-DC pipeline as reported in the Challenge result paper
[60].
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Figure 5.8. Completeness, defined as the number of matches divided by
the number of truth catalogue sources, is plotted for the three pipelines as a
function of the integrated line flux: the Revised pipeline (dark grey), the COIN
pipeline (light blue), and the COIN-DC pipeline as reported in the Challenge
result paper [60].
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5.7 and Fig. 5.8 show, respectively, the reliability and completeness values
as functions of the integrated line flux. Given the absence of truth values
for false positives, only scores for matched sources are used.

5.4 Discussion and Conclusions

The application of pipelines based on DL has shown promise in the re-
covery and characterisation of HI sources as can be seen by the fact that our
pipeline and the other two DL-based pipelines (MINERVA and FORSKA-
Sweden) achieve the highest scores among all competing pipelines. These
higher scores with respect to the several wrappers of SoFiA-2 which com-
pete in the pipeline (Team SoFiA, NAOC-Tianlai, HI-FRIENDS, Spardha,
Starmech), come with the caveat that all DL models have required exten-
sive training on the simulated data which may differ substantially from the
distribution of real data due to sample selection-bias and overfitting. As
for the case of the detection and characterisation of ALMA sources (see
Chapter 4), also in this setting, all DL-based methods show a fall in char-
acterisation accuracy on the very brightest sources. Again this behaviour
is related to the fact that very few of them were actually simulated in
the data and thus they resulted in being severely undersampled in both
training and validation sets. From the results obtained by improving the
pipeline presented in the Challenge paper, we can confirm that under ' 20
Jy Hz no pipeline can reliably detect sources with completeness and re-
liability rapidly dropping to unreliable ranges. Through the combination
of an ensemble of ML and non-ML models, our pipeline is capable of im-
proving on both classes of pipelines competing in the challenge. While
the COIN-DC pipeline was trained on the GENCI-IDRIS – Orsay, France
supercomputer, all subsequent pipelines were trained and tested on the
IBISCO-HPC (Infrastructure for Big data and Scientific Computing) at
the University of Naples Federico II (IBISCO-HPC). In particular, the Seg-
menters were trained on two NVIDIA Tesla K20 GPUs, and the Classifier
and the Regressor ResNets were trained in parallel each one on a single
GPU. Each segmenter training lasted around 2 days, while the Classifier
and Regressor were around 1 day. Subsequent training in cascade mode on
the previous model output lasted around 6 hours for all combined models.
The trained networks had an inference speed of 32 input cubes (64⇥64⇥128
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pixels) per second using an NVIDIA Tesla K20 GPU on the IBISCO-HPC
but due to overlaps in the cube patch sampling (to avoid missing sources
due to boundary problems caused by accidentally splitting them within
multiple patches by cutting in their emission range) and RAM limitations,
inference on the full cube is made in around 30 hours. Moreover, the pro-
duced catalogues are matched together spatially and if overlapping sources
are found, properties are averaged together. Classification scores are used
to weight the average function after being normalized to the [0, 1] range.
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Chapter 6
The TOLIMAN Signal

Detection Problem: Periodic

Astrometric Signal Recovery

through Deep Learning

In our time this search for
extraterrestrial life will eventually
change our laws, our religions, our
philosophies, our arts, our
recreations, as well as our sciences.
Space, the mirror, waits for life to
come look for itself there.

Ray Bradbury

6.1 The TOLIMAN Signal Detection Problem

In its simplest form, extracting the science signal arising from TOLI-
MAN data requires the exact registration of two overlapping point-spread
functions (PSFs), one for each component of the binary star, in the image
sensor plane of the orbiting space telescope. For an in-detail description
of the scientific settings and characteristics of the TOLIMAN satellite see
Chapter 2 Sec. 2.4. If the separation between these two stellar images
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can be monitored with sufficient precision, tiny perturbations due to the
gravitational tug from an unseen planet can be detected. Given the con-
figuration of the optical system, the scale of the shifts in the image plane
are about one-millionth of a pixel (10�6 pix), thus exquisite stability is re-
quired: these motions are only manifest as a sinusoidal perturbation over
year timescales. Although there are many potential sources of imperfection
and error, this first study restricts itself to the most basic and fundamen-
tal one, with noise processes arising principally from photon noise and the
spatial discretization of the signal. Additional terms, such as imperfect
spacecraft pointing, jitter and roll stability, will be addressed in future
work. For the present study, simulated and laboratory test-bed data were
created to embody such error terms. During the 2nd COIN-Focus: Toliman
Event1 (COIN-Focus #2) held in Rome, Italy, in November 2019, a data-
challenge like event was held in which participants were asked to try and
detect the astrometrical signal. A pictorial illustration of the basic chal-
lenge is shown in Figure 6.1: two patterns exist within the frame of data,
in this case without the noise terms. High degrees of sharp image structure
result in data for which accurate image registration is possible; however,
the extreme measurement precision required to obtain the science signal
moves this from a relatively routine exercise in image processing (at levels
of 10�2 pixel) to an unsolved problem at signal fidelity levels never yet
attempted within astronomy (at levels of 10�6 pixel). For this reason, six
datasets with increasingly smaller signal amplitudes were simulated each
one with an injected astrometric signal. For each dataset, the true signal
period is considered as recovered if its residual error with the predicted
period is within 10% of the true period value. Also, for each dataset, a
corresponding dataset with no embedded signal is simulated. Given the
unknown nature of the ↵ Centauri AB system or of any other star system
to which techniques such the ones tested in this work may be utilised, the
presence or absence or the eventual number of orbiting bodies and thus
astrometric signals cannot be a known parameter. For this reason, only
unsupervised techniques which make no assumption about the presence or
the number of embedded signals are tested and asked to make predictions
on both datasets: the one containing the signal, and the one without it.
For each of the six datasets, the challenge is considered surpassed if a cor-

1https://cosmostatistics-initiative.org/focus/toliman1/
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rect detection is made on the dataset with the embedded signal, and no
detection is made on the dataset containing no signal. The participants
were not told which of the two dataset contained the signal.

Given that no optical test bed of the TOLIMAN satellite had been
constructed at the time of this work, we had to rely on simulations. The
following section briefly describes the data simulations problem and the
properties of the corresponding data product.

6.2 Simulating the TOLIMAN data

The first challenge in developing a method capable of extracting a
signal as small as one-millionth of a pixel is to develop a computational
model capable of emulating such signal under varying conditions of noise.
Although injecting a signal into an image may seem a rather trivial task,
conventional approaches fall short when pushed to the limits of precision
required by the TOLIMAN mission, often resulting in large computational
costs. The traditional simulation approach consists of generating a super-
sampled Point Spread Function (PSF). Since stars can be considered point
sources, to simulate a stellar field as it would appear on the detector, we
simply need to shift and downsample that PSF in the sensor grid. Thus, by
assigning it to either random or specified positions within the image and
repeating the procedure for many different point sources, we can recreate a
stellar field. While this can be made computationally efficient today using
the widespread GPU accelerators, such traditional methods, unfortunately,
introduce errors orders of magnitude greater than the signal we expect to
measure, thus requiring alternative approaches to the generation of the
mock data.

6.2.1 Simulating the TOLIMAN PSF

Generating the TOLIMAN PSF is conceptually straightforward, re-
quiring only the representation of the electric field at the aperture E(x, y,�) =
A(x, y)ei✓(x,y,�) as its amplitude A(x, y) and phase ✓(x, y), and combining
these terms into a complex array. The PSF in the (u, v) focal plane is then
found by taking the power of the resultant Fast Fourier Transform (FFT)
of the complex array:
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Figure 6.1. A simulated binary star as observed with the conceptual design
TOLIMAN pupil discussed above.
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PSF (u, v) = |F{E(x, y,�)}|2 = |F{A(x, y)ei✓(x,y,�)}|2. (6.1)

Positional information can then be injected by applying a linear gradient
to the phase ✓. An Optical Path Difference (OPD) is introduced across the
aperture by any source off-axis from the normal of the telescope pointing.
Easily calculated through the angular offset from the normal, the OPD
simply translates into phase as a function of the observation wavelength,

✓slope(x, y,�) =
2⇡

�
OPD(x, y). (6.2)

This mathematical representation of the telescope spatial response function
allows for arbitrary signals to be introduced. The TOLIMAN diffractive
pupil (whose FFT is the PSF) ✓Pupil(x, y,�) can be formulated as a mirror
with ‘steps’ cut in which can be mathematically modelled through the
following equation

✓Pupil(x, y,�) =
2⇡

�
2h(x, y) (6.3)

where h(x, y) is the height of each step in the mirror which can be trans-
lated to phase by taking the OPD as twice the height of the step. The
total phase ✓ can be then reconstructed as a linear combination of these
effects. Taking the field amplitude A(x, y) as unity for all non-masked re-
gions (steps within the mirror) of the aperture gives the full description of
the electric field E(x, y,�). Having formulated the electric field response
to the system, we must introduce a complete description of the optical
architecture. This is described by a handful of parameters: aperture di-
ameter D, effective focal length FL Focal Length (FL) and pixel size dpix.
Desiring computational efficiency through the inclusion of our optical sys-
tem, we define some value Nout to be the size of the array that we pass
to the Fast Fourier Transform Fast Fourier Transform (FFT). This is the
primary driver behind the computational cost. Using this value and the
previously described parameters, the size of the array NE representing our
electric field E(x, y,�) can be found. Not all arrays are taken to be of
size N ⇥N . These two values necessarily differ as a way to encode optical
parameters without focal plane interpolation. The ratio between Nout and
NE determines sampling in the focal plane matching that of our system,
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NE = Nout
dpix ⇥ �
D ⇥ FL

. (6.4)

Embedding this array representing the electric field into an Nout sized
array, we use equation 6.1 to generate a PSF that requires no interpolation
and can have positional signals of any size injected, limited only by floating-
point precision. Further details and descriptions of these processes can be
found in [125].

6.2.2 The data

With the tools to simulate PSF’s through our optical system, we must
now generate a data set. By adding basic noise processes, stellar spectra
and astrometric signals we can create a comprehensive set of images that
can be used to test the recovery and reconstruction abilities of signal de-
tection techniques. Here a balance must be struck, as generating a truly
comprehensive data set for the TOLIMAN mission is merely intractable.
With a full signal period of order one year, any data set must present the
fundamental challenges of the mission in an efficient way. Here we examine
choices such as the number of wavelengths, stars and images to simulate,
along with the included noise processes.

One of the first things to consider is the size of the data set, and the
total number of images produced. The TOLIMAN signal is introduced
to the ↵ Cen system through the gravitational tug of an orbiting planet
and so our signal is sinusoidal by nature. The orbital period that we are
searching for is of order of a single year, and so producing a ‘frame by
frame’ data set would be computationally intractable. Consequently, we
need to generate each ‘image’ as a representation of a collection of multiple
from the actual telescope. We chose to represent three full signal cycles
over 1095 images, with each image representing approximately a full day.
Observing in the visible spectrum over a 100 nm bandwidth, the choice
of spectral resolution is essential. The wavelength dependence of the PSF
demands that the image at each wavelength be computed individually. To
represent the real world as closely as possible, a spectral resolution of 1
nm was chosen for several reasons:

1. the Toliman PSF is spread over many diffraction limits (10�/D), so
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Figure 6.2. TOLIMAN PSF at different bandwidths. Left: Monochromatic
600nm. Centre: 550-600nm (best resembles actual mission). Right: 500-
700nm.

at the outer reaches bandwidth smearing begins to have a substantial
effect on the PSF shape (for an example see figure 6.2); 2);

2. by choosing to maintain the stellar alignment on the detector con-
stant and keeping one of the stars stationary, we can massively reduce
the number of PSFs we must compute. A stationary star only re-
quires the calculation of a single broadband PSF. For the moving
star, since the TOLIMAN signal is sinusoidal by nature and the stel-
lar alignment is kept stationary, we only need to calculate the PSFs
for a single signal cycle.

The result is a large overhead for small simulations, but with the benefit
of being able to produce large and accurate simulations efficiently.

Given our chosen spectral resolution, we can use one of the many li-
braries available to generate spectra that reflect the true stellar parameters
for each star. These libraries access existing stellar databases and recreate
synthetic spectra for a host of variable stellar parameters such an effective
temperature, metallicity and observational flux. We used Pysynphot [144]
to generate stellar spectra and fluxes for our system. This package uses
models built from HST observations across the HR diagram to simulate
atmospheric emissions from different stars. Taking the relative fluxes and
total photon counts output from this system, we can scale each monochro-
matic PSF by its relative power to recreate accurate PSFs. While real
data will feature many varied noise processes, here we only consider two
noise sources: photon and detector noise. These are dictated by Poisson
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and Gaussian statistics respectively. Detector noise is primarily driven by
random thermal fluctuations of the discrete electrons that carry the signal
through the detector. With available modern low-noise sensors, this noise
is not expected to limit the extraction of the signal since it averages out to
some constant value over many frames. The addition of even modest lev-
els of this noise also serves a separate motivation: to allow for a smoother
error space. This helps numerical algorithms converge faster as fine struc-
tures in the gradients are rounded and the algorithms can follow a smooth
descent to the optimum. On the other hand, photon noise is an essen-
tial process that must be examined. Arising from the discrete nature of
photons, this noise is simulated at each pixel by drawing from the Poisson
distribution whose mean is dictated by the PSF. When performing image
registration of small signals such as those anticipated in the TOLIMAN
mission, the total number of photons that arrive in each image becomes
an important factor. As shown in [55], there is a fundamental relationship
between the number of photons received and the positional information
carried by those photons. With insufficient photons, signals can not be
extracted. Simulations proceeded with the production of a comprehensive
batch of noisy image data sets, with sinusoidal signals in the separation of
the binary star injected with decreasing amplitude to mimic increasingly
more challenging planets, up to the limiting deflection of one-millionth of
a pixel. These simulations closely resemble the expected response of the
TOLIMAN optical system to the observation of the ↵ Cen system. In
particular six datasets were generated, respectively, with signals with am-
plitudes of 10�2, 10�3, 10�4, 10�5 and 10�6 the pixel size, constant flux
PSFs (each of the two binaries’ PSF presenting the same flux over time),
an image peak value of 109 photons and photon noise arising from the Pois-
son statistics. Due to the absence of any realistic noise components (jitter,
rotations, aberrations, etc.), each image was cropped with a 256⇥256 pix-
els window centred around the image barycenter. This preprocessing was
needed in order to eliminate any spurious shift in the image pixels which
would result in adjoin noise components with amplitudes several orders of
magnitudes higher than any of the injected signals. To summarise, the
TOLIMAN signal registration problem consists in detecting signals with
increasingly low levels of amplitude to capture the variation in separation
between two overlapping PSFs within a noisy unevenly sampled time series
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Figure 6.3. Concept workflow. The underlying concept of the proposed data
analysis is based on finding a lower-dimensional representation (a compression)
of the raw data which preserves periodic signals. Once a suitable representation
is found, the effect caused by the presence of the planet can be detected using
a time series analysis.

of images.

6.3 The Signal Detection Pipeline

The proposed pipeline developed for the detection of the astrometrical
signal is a two-step process: a) a Convolutional Autoencoder (CAE) is used
to compress the image sequence into a mono-dimensional latent space; and
then b) the latent space is analysed through a Lomb-Scargle periodogram
[96, 132, 156] in order to detect periodic components within the latent
space and recover the period. An overview of the workflow of the pipeline
can be seen in Fig. 6.3.

6.3.1 CAE Architecture

The architecture of the CAE implemented in this work, as shown in
Fig. 6.4, is composed by five convolutional and five deconvolutional blocks.
Each convolutional block is composed by a 2D Convolution layer with a
kernel size of 3 and a stride of 1 followed by an ELU activation function,
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Figure 6.4. Architecture of the Deep Convolutional Auto-Encoder

a 2D Max Pool layer with a kernel size of 3 and a stride of 2, and a 2D
Batch Normalization layer. Each deconvolutional block is composed by
a 2D Transposed-Convolution layer witha a kernel size of 3 and a stride
of 1 followed by an ELU activation function, a 2D Unpooling layer and a
Batch Normalization layer. The Network latent space was chosen to be
uni-dimensional (represented by the single ATOM in Figure 6.4), for the
following reasons: (i) when a higher dimensional latent space was used,
the Pearson correlation coefficient between the latent variables was found
to be compatible with a value of 1.0; (ii) given that the separation of the
star’s PSFs is radial, and, given that the only varying feature in the images
is the signal, it seems reasonable to think that the only information the
network needs to recover from the latent space in order to decode, and
thus reproduce, the images is the shift in phase. The remaining constant
information (pixel luminosity and image geometry) can be stored in the
network weights.

6.3.2 The Lomb-Scargle Periodogram

The most commonly used tool for period components searching in ir-
regular time series is the Lomb-Scargle periodogram Lomb-Scargle Peri-
odogram (LSP) [96, 132]. It is a generalisation of the Schuster periodogram
in Fourier analysis,
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but for irregular cadences. Apart from the normalization factor, Eq. 6.5 is
the power spectrum computed for a continuous signal observed with uni-
form sampling defined by Dirac deltas and it follows that it should encode
all the relevant frequency information within the data. In fact when the
classical periodogram is applied to uniformly-sapled Gaussian noise, the
values of the resulting periodogram show a chi-squared dstribution. This
property, which in practice is used to distinguish between periodic and
non-periodic components no longer holds in case of non-uniform sampling.
To address this Scargle [132] considered a generalized form of the peri-
odogram:
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where A, B and ⌧ are functions of the frequency f and sampling times ti
and showed that by choosing A, B and ⌧ as follows:
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the periodogram behaves as the classical one in case of uniformly sampled
observations, is analytically computable and is insensitive to global time-
shifts in the data. This modified periodogram differs from the classical
periodogram only to the extent that the denominators

P
n sin

2(2⇡ftn) andP
n cos

2(2⇡ftn) differ by N/2, which is the expected value of each of these
quantities in the limit of complete phase sampling at each frequency. The
results obtained through the Lomb-Scargle periodogram are identical to
those obtained by fitting a sinusoidal model to the data at each frequency
and by constructing a periodogram from the �2 goodness of fit at each
frequency. If the problem is reformulated in this way, ⌧ can be trough as
a factor to orthogonalize the normal equations used in the least squares
analysis.



172
Chapter 6. The TOLIMAN Signal Detection Problem: Periodic Astrometric Signal

Recovery through Deep Learning

6.3.3 Atom Time Series Analysis

To find periodic trends within the trained CAE latent space, we use
the Lomb-Scargle periodogram and, to validate the goodness of the period
estimation, we employ the following metrics:

• False Alarm Probability False Alarm Probability (FAP): encodes
the probability of measuring a peak of a given height (or higher)
conditioned on the assumption that the data consists of Gaussian
noise with no periodic component;

• Full Width at Half Maximum FWHM: this expresses the extent
of a function produced by the difference between the two extreme
values of the independent variable at which the dependent variable
is equal to half of its maximum value. Treating the FWHM as an
error measure, we derive an error on the period through the following
expression:

P =
1

f(peak)
, (6.9)
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where peak stands for the peak of the power spectrum and f(peak) its
relative frequency.

6.3.4 Training Strategies

Each of the six simulated datasets contained 1095 images simulating
three years of observations and three expected full planet orbits and a
corresponding .csv file containing the mono-dimensional noiseless target
astrometric signal. Each dataset was split into Train and Validation re-
spectively containing 985 and 110 images. The Train and Validation sets
are created by cutting time-contiguous chunks of the image time series.
This is done in order to ensure that the Validation set contains an ordered
sequence of images from which the embedded astrometric signal could be
recovered. The CAE is trained on pairs of sampled Training set images
and as a loss, we use a weighted combination of the l1 loss and the DSSIM



6.4. Experiments 173

loss (see Chapter 4 Sec. 4.2.1 for the mathematical details of the loss func-
tions).

l(x, y, t) = a(t)⇥ l1(x, y) + b(t)⇥DSSIM(x, y) (6.11)

where x and y are the prediction and target variables and t is the epoch
counter. The weighting is performed with two variables a and b, which
depend on the epoch counter t. The training begins with a(0) = 1 and
b(0) = 0 in order to first allow the model to learn a median representation
of the data (which should contain information about the TOLIMAN PSF
and noise patterns, assumed roughly constant in the data) through the
minimization of the l1 loss. At each epoch, a is decreased by � and b is
increased by the amount in order to slowly transition to the DSSIM loss.
In the last epochs, only the DSSIM loss is effectively used in order to learn
the nuances in the data, such as the contours of the fringe patterns. The
model is trained with an Adam Optimiser [81] and, in order not to overfit
the data in the first training iterations, we adopt a warm up strategy for
the learning rate [52] in which we start with a learning rate of 0, and we
uniformly increase it to 1⇥ 10�4 in the first 100 iterations. The model is
trained for 10, 000 epochs, but we also employ an early stopping criterion
based on the validation loss. If no improvement of validation loss with
respect to the moving average of the last 100 validation losses is registered
for 10 consecutive steps, then training is halted.

6.4 Experiments

On each of the six couples of datasets, we run and compare our pro-
posed DL-based pipeline, with Wasserstein dictionary learning [134] fol-
lowed by LSP and PCA followed by LSP as a baseline. For details about
the two techniques see Chapter. 2, Sec. 2.3.3. The two methodologies are
utilised as follows:

1. Principal Component Analysis (PCA) + LSP (Baseline Method):
each image is flattened resulting in an array of 256 ⇥ 256 values
which is then compressed through PCA to a single scalar. The re-
sulting monodimensional time series is analyzed with LSP to search
for periodic patterns;

2. Wasserstein dictionary learning (WDL) + LSP: the algorithm is
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Dataset PCA + LSP WDL + LSP CAE + LSP
10�2 pixels X X X
10�3 pixels ⇥ X X
10�4 pixels ⇥ X X
10�5 pixels ⇥ ⇥ X
10�6 pixels ⇥ ⇥ X

Table 6.1. Hit or miss table showing whether the three compared methods
are able to solve the signal detection problems. The five problems are ranked
by the amplitude in pixels of the embedded astrometric signal. A problem is
deemed as solved (X) if the period of the astrometric signal is detected within
10% of its true value in the dataset containing the signal and no spurious signal
is detected in the corresponding empty data. A failure may come from failing
one of the two conditions or both of them.

trained on each full dataset using the Kullback-Leibler divergence
[99] between the input images and those reconstructed from the dic-
tionary.

L(ypred, ytrue) = ytrue · log
ytrue
ypred

= ytrue · (logytrue� logypred) (6.12)

where ypred and ytrue are pixels from respectively the prediction and
input image. The Kullback-Leibler loss is obtained by taking the
mean over all image pixels. The method depends on three param-
eters: the number of iterations L, the � coefficients for the choice
of the Optimal Transport distance, and the number of atoms within
each dictionary S. L was set to 1000, � to 0 in order to use the
Wasserstein distance, while several choices of S were tested and the
best results have been obtained with S = 3.

To measure the CAE image reconstruction capabilities we utilise two met-
rics: the mean structural similarity index (SSIM) and the mean residual
score (MRS) (for details on the mSSIM and MRS see respectively Chapter
4 Sec. 4.2.1 and Sec. 4.4).

Table 6.1 shows, for each dataset (row of the table) which models were
able to solve the signal detection problem. A problem is deemed as solved
if the period of the astrometric signal is detected within 10% of its true
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Figure 6.5. Example of CAE image reconstructions on the Validation set.
The first row contains a random subset of Validation TOLIMAN images, the
second row shows their respective reconstructions produced by the trained
CAE model.

Time Series Period FAP
Target Noiseless Signal 0.33± 0.05 0

CAE ATOM Time Series 0.33± 0.06 7.2⇥ 10�68

Table 6.2. Period and FAP obtained by analysing the LSP of the noiseless
10�6 pixels size (True Signal) and the CAE mono-dimensional latent-space
time series.
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Figure 6.6. In the left panels, a perfect signal is represented at the top and the
relative Lomb Scargle Periodogram obtained from its analysis is represented
at the bottom. On the right, a time series from the atoms obtained with the
deep convolutional auto-encoder applied to TOLIMAN simulation with a 10�6-
level astrometric shift is shown at the top, and its Lomb Scargle Periodogram
is represented at the bottom. The power peaks and their relative FWHM are
shown in red over the power spectrum.
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value in the time series containing the embedded astrometric signal and
no spurious signal is detected in the one containing no signal. As it can
be seen, PCA is able to encode the periodic trend only for the 10�2 sig-
nal, while WDL is able to embed the periodic trend up to 10�4. Our
CAE architecture is able to embed the periodic trend up to 10�6. We
are thus focusing on the detection results of this latter, harder, detection
problem. The final MRS and mSSIM on the Validation set are found to be
respectively 4.4⇥10�8 and 2⇥10�6 and thus the images are reconstructed
with a good enough precision (with respect to the accuracy needed) to
recover the signal. Although the image reconstruction capability of the
network directly correlates with these losses (as one should expect), we do
not find any direct correlation with the signal reconstruction capabilities.
Although after 1000 epochs the l1 Loss gradient flattened, the DSSIM Loss
keeps decreasing up to 5000 epochs while the latent space began showing
an increasing sinusoidal trend in time. To have a loss function that corre-
lates with the signal reconstruction in the latent space, we would need an
architecture that makes use of the time dimension of the images: some-
thing not anticipated at the time of the publication of this work. For this
reason, the network encodes only the detection of the signal and not its
amplitude. The CAE latent space did not show any periodic trend for
all the simulations with no signal injected. Table 6.2 shows the detected
period and its relative error derived through Eq.6.10 and its False Alarm
Probability obtaining analysing respectively the target noiseless signal and
the CAE mono-dimensional Atom time series. The relative Lomb-Scargle
Periodogram, are shown in Fig. 6.6. In yellow we highlighted the power
peak and the FWHM of the power spectrum around that peak.

6.4.1 Discussion of Results

Sec. 6.4 describes both the CAE’s reconstruction capabilities and the
analysis on the atom time series to find its periodicity. We have shown
that the recovered periodicity is compatible with the injected astrometric
signal period and thus that the architecture is able to recover the signal
directly from the TOLIMAN simulation images. One of the main current
issues is the lack of correlation between the Network reconstruction of the
TOLIMAN images and the presence of a periodic trend in the atom time
series. Since the Network is only training with spatial information, in re-
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ality, there is no encoded reason why the latent space should present a
sinusoidal trend with time. The only thing that the latent space should
be encoding is how to reconstruct the images. That being said, given our
knowledge of the sinusoidal nature of the astrometric signal, and since the
astrometric shift is the only element changing through the images in time
apart from uncorrelated Gaussian noise, we do not see any reason why the
latent space should not present a sinusoidal trend with time, regardless of
the fact that we did not apply any constraint (at the architectural level)
to enforce it. As seen in Fig. 6.6, in fact, given enough epochs, the time
series actually shows a sinusoidal behaviour.
A necessary step forward in this work is to produce simulations with in-
creasing noise realism and complexity, in order to evaluate whether Deep
Learning can still be used to recover the astrometric signal. It must be
expected that this simple approach would fail to recover the signal if noise
patterns which show correlations in time are simulated.

6.5 Conclusions

In this work, we have shown how Deep Learning, in particular Deep
Convolutional Autoencoders, can be used to extract, in a completely unsu-
pervised way, periodic astrometric signals with amplitudes of the order of
10�6 with respect to the size of a pixel in simplistic noise conditions. This
is the magnitude of the signals that would be produced by an Earth-like
planet at the habitable zone of a star in the Alpha Centauri binary system
(see Chapter. 2 Sec. 2.4).
We presented a detailed explanation of the adopted network architecture
(see Sec. 6.3) and of the simulations used, which were created using FFT
techniques (see Sec. 6.2). Although the present simulations do not yet
contain some realistic systematic noise components, such as telescope jit-
ter, rotations and aberrations, they pose a significant challenge to classical
unsupervised techniques, due to the small amplitude of the signal with
respect to the pixel size. We have shown that, from the obtained CAE
latent space, we can obtain a time-trend that can be analysed for period-
icity, using any time-domain signal extraction technique. Here we used a
standard Lomb-Scargle technique and were able to find a period consistent
with that of the injected signal (see Sec. 6.4). Finally, we note that in this
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work we only explored a fully unsupervised method for the compression,
although semi-supervised and hybrid methods can be a natural extension,
by considering that we may constrain the problem’s dimensionality – for
instance, a first-order approximation of the shape of the PSF. A further
step will be the generation of increasingly realistic systematic noise con-
tributions, to design network architectures that can handle them and still
allow for the detection of the planetary signal. This work opens an exciting
path that we believe should be further studied, towards the extraction of
periodic signals of binary systems at the milliarcsecond level, directly from
times series of satellite imaging data.
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Chapter 7
Conclusions and Future

Prospects

So Long, and Thanks for All the
Fish.

Douglas Adams

In this Thesis, I have developed a set of Deep Learning based pipelines
to solve several ill-conditioned inverse problems within the fields of Ra-
dio Interferometry and Narrow-Angle Astrometry. The purpose of this
conclusive Chapter is to showcase the main scientific conclusions obtained
addressing the three problems tackled in the Thesis and outline future
prospects and directions. The chapter is divided into three sections, one
for each problem, in which a short summary of the relative Chapter is
given, before outlining future prospects.

7.1 Detection and Characterisation of ALMA

Sources through Deep Learning

The planned upgrades to correlators and broadening of the receiver’s
bandwidth will bring ALMA in the Terabyte regime. As a result ALMA
cube imaging will become a very demanding task necessitating novel auto-
mated pipelines capable of tackling the interferometric deconvolution prob-
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lem and performing source detection and characterization with matching
speeds and with the performances required to reliably use the obtained pro-
cessed data products (such as sources morphological parameters and prop-
erties) for scientific purposes. To address this, in collaboration with several
ESO researchers, I developed a Deep Learning source detection and char-
acterization pipeline which, by working directly on dirty interferometric
calibrated data cubes which have not undergone any prior de-convolution,
is able to combine spatial and frequency information to reliably detect and
characterize embedded Astronomical sources. The performed experiments
and the developed pipeline are optimized to address two separate prob-
lems:

1. can Deep Learning be used to solve the ALMA image deconvolution
problem in order to speed up and improve on the performance of
tCLEAN [70]?

2. Can Deep Learning be used to reliably detect and characterise sources
in the prevision of its use to search for serendipitous high-redshift
sources within targeted ALMA observation or in a blind-search fash-
ion on the full ALMA database?

To train and test the capabilities of the proposed pipeline, we needed
thousands of ALMA models and dirty cube pairs and, for that reason, we
created our own simple but realistic simulations of ALMA observations by
combining Python and bash scripting with the Common Astronomy Soft-
ware Application (CASA) v. 6.5.0.15 [105] Python libraries. The need to
use simulated data instead of real ALMA observations arises from several
practical necessities: a) in order to evaluate the pipeline’s performance
and reliability and its dependence on sources’ observational and morpho-
logical parameters, we need full control over the data properties; b) in
order to assess the reconstruction quality of our pipeline and its ability
to solve the deconvolution problem without relying on CLEAN deconvo-
lution, we need noiseless sky observations which are unattainable for real
observations. Given that the foreseen scientific application of the pipeline
is the search of serendipitous sources within high redshift (z > 3) ALMA
observations, we simulate, in each cube, a central primary source with a
given SNR, surrounded by less bright serendipitous sources that can occupy
any position in the cube. The simulation code is made available through



7.1. Detection and Characterisation of ALMA

Sources through Deep Learning 183

GitHub allows the community to generate thousands of ALMA data cubes
in parallel. Regarding the architecture of the proposed architecture, it is
composed of six deep learning models interconnected through logical oper-
ations: Blobs Finder, a Convolutional Autoencoder, detects sources within
the frequency-integrated data cubes, Deep GRU a Deep Recurrent Neural
Network, exploits the frequency domain and detects emission peaks in the
spectra extracted from sources detected by Blobs Finder, and the ResNets
regress the source parameters from ’spectrally focused’ images created by
cropping spatially around the sources, and integrating within their emis-
sion range found by Deep GRU, and the line emission images created by
masking the cube with the 3D emission models found by combining Blobs
Finder and Deep GRU predicted emission ranges (in the spatial and fre-
quency planes of the cube, respectively). 5, 000 simulated cube pairs were
generated containing 22, 532 simulated sources and randomly divided into
a train, validation, and test sets using the rather usual 60%, 20%, 20%
splitting criterion. The proposed pipeline successfully detected 92.3% of
the simulated test set sources with no false positives. While the achieved
performances are promising for the prospect of applying the pipeline to
real data, the low FPRs of the DL models and the subsequent removal of
the remaining FPs through SNR and geometrical criteria (FP detection
and source deblending step) are closely related to the simplified assump-
tions that were made to generate the mock data. Integration times and
antenna configurations are kept constant resulting in a very low dirty beam
variation across the data. Only single peak spectra are simulated without
taking into consideration the effects of inclination with the observer’s line
of sight or velocity dispersion within the galaxy, resulting in simplified
spectral profiles. Quality assessment is performed by comparing our re-
sults against three other methods, blobcat, Sofia-2 and decoras. The
first two are widely known traditional methods used for source detection
and characterisation in Radio Astronomy, while the latter is another DL
pipeline constructed to solve a similar problem for another Radio Interfer-
ometer, the Very Long Baseline Array (VLBA). We notice a substantial
improvement in both precision and recall with respect to the first two
methods and a smaller improvement with respect to decoras in both
the number of the detected sources and the quality of the reconstructed
true sky models. Blobs Finders’ and decoras’ low numbers of FPs with
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respect to Sofia-2 and blobcat are explainable due to the DL models ca-
pabilities of approximating the dirty beam. While Blobs Finder improved
performances over decoras are due to architectural choices and training
strategies, we believe that if dirty beam variations are increased by simulat-
ing multiple antenna configurations and observing conditions (integration
time or azimuth), the number of FPs detected by both models will prob-
ably increase due to the increased complexity required to approximate a
more realistic variating PSF. Regarding the source characterisation per-
formances, source positions are found with subpixel errors in spatial and
frequency domains, while projection angles and flux densities estimations
show a relative error within the standard amplitude calibration error of
interferometric data (' 10% [36]) for respectively 73% and 80% of all
sources. A direct comparison with tCLEAN is performed on the radio-
interferometric deconvolution task over the 1000 simulated test set cubes
and shows that Blobs Finder is able to outperform tCLEAN in both speed
and sky model reconstruction performance. This result was only obtained
on simulated cubes containing simple point-like sources and further in-
vestigations will be required on cubes containing sources with extended
emissions and complex morphologies and on real data before definitive
conclusions can be drown. Several interesting scientific questions rise up
from the results obtained so far on the solution of the ALMA image re-
construction and source detection and characterisation problems through
Deep Learning: can we maintain the obtained performances on the detec-
tion and characterisation problem in case of more complex and realistic
beam variation and source morphology? Can we outperform tCLEAN

in case of extended emission? In future work, we plan to answer both
questions. In fact, we aim to improve our simulation code to include more
complex galaxy morphologies and extended emission simulation which re-
quires the use of physically-based models for the galaxy kinematics and
employ spectral catalogues to generate several spectral profiles for differ-
ent classes of sources with the primary goal of improving the quality of
our simulations, and the additional goal of having a publicly available and
easy to use simulation code that the community may use to generate com-
mon data sets on which compare different architectures. Alongside we
want to modify our pipeline to account for much more complex spectral
profiles. The DL pipeline is currently tailored to detect single-peak emis-
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sion lines, assuming that celestial sources have a single positively defined
emission peak in their spectra. The above does not hold for absorption
line detection or for sources with multi-peak spectral profiles. Both the
peak detection (on Deep GRUs denoised spectra) and FP detection and
removal (on spectrally focused images through SNR criteria) algorithms
will thus need to be modified when dealing with real observations. For
example, the latter could be substituted by a similar ResNet Classifier to
that that we have employed in the Revised SKA pipeline. We are also
planning to make an assessment on faint signal detection, especially in the
presence of strong sidelobes in the cubes and asses the pipeline capabilities
in the case of data containing several uv coverages and array configura-
tions, which should result in a greater variation of the dirty beam within
the data, thus posing a more complex image reconstruction problem. Fur-
thermore, we also plan to make tests about incorporating the dirty beam
within our pipeline in order to improve the image reconstruction capabil-
ities. Regarding the solution of the ALMA deconvolution problem, given
the obtained performances on simplified simulations with Deep Learning
and the improvements obtained on both speed and reconstruction quality
with respect to tCLEAN, we think that this should be explored in greater
detail through the use of the planned improved simulations and real data.
Regarding the foreseen scientific application of the developed pipeline, i.e.
the detection of high-redshift galaxies, we are already carrying out the
necessary operations of data retrieval from the archive in search of high-
redshift observations which may contain star-forming galaxies. In fact,
among the many key drivers of galaxy evolution (AGNs feedback, mergers,
clumps), the Star Formation Rate (SFR) is one of the key points neces-
sary to achieve a complete galaxy evolution theory. While up to z ' 3,
we have a robust understanding of the star formation history thanks to
several multiwavelength surveys, constraints at z > 3 are mostly based
on the ultraviolet rest-frame, which is very sensitive to dust reddening.
In fact, when young stars and their surrounding HII regions coexist with
dust, a small amount of their short-wavelength emission is absorbed by
the dust and re-emitted in the far infrared (FIR) and, at high redshifts,
these wavelengths are observed in the sub-millimetre regime [68]. For such
reason, as well as for their faintness, the demographic of dusty galaxies at
z > 3 is still very uncertain, thus undermining our understanding of the
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initial phases of galaxy evolution. ALMA offers the possibility to tackle
this problem and in fact, the frequency range covered by the ALMA bands
probes the thermal dust spectrum of high-redshift galaxies, covering it
from the long-wavelength Rayleigh-Jeans tail to the Spectral Energy Dis-
tribution (SED) peak features [68]. The logical answer to fill the described
observational bias at high redshift is to perform dedicated surveys with
ALMA. However, in this case, two main problems arise: to resolve such
high redshift galaxies long exposure times are needed (2 - 10 hrs); and,
given the small field of view of ALMA, scans contain a single scientific tar-
get. These limitations imply that any high redshift survey would require a
serious commitment in telescope time. Still, the ‘Origins of Galaxies’ is one
of the three fundamental science drivers for ALMA in the next decades,
and the community has devoted and will devote telescope time to per-
form targeted observations of high redshift galaxies (Large Programs such
ASPECS, ALPINE, ALCS, REBELS, CRISTAL, ASPIRE). To increase
the number of detectable galaxies, the community has also searched for
serendipitous sources within known high redshift ALMA observations and
performed blind detection on the available data [95, 48]. To my knowl-
edge, all these source detection studies employ similar methodologies for
data cleaning and source detection: CASA (tCLEAN) for data clean-
ing and S/N threshold-based algorithms that utilise convolving kernels to
search for statistically meaningful correlations within the data (findclumps,
clumpfind), for source detection. In future work, I plan to optimise and em-
ploy the developed pipeline to search in a blind search fashion for serendip-
itous high redshift galaxies within data collected in the above-mentioned
ALMA Large Programs and in other high redshift targets already within
the ESO Science Archive Facility. For that reason, I’m beginning the re-
trieval of targeted high redshift Quasi Stellar Objects (QSO) observations
with known serendipitous sources in order to have the first test on real
ALMA data.



7.2. The SKA Data Challenge 2: Detection and Characterisation of SKA Sources

through Deep Learning 187

7.2 The SKA Data Challenge 2: Detection and

Characterisation of SKA Sources

through Deep Learning

The Square Kilometre Array (SKA) first observations will mark a
paradigm shift not only in our knowledge of the primordial universe thanks
to its sensibility but also in how scientific investigations are carried on to
gain knowledge from such observations. In order to perform such sensi-
tive observations and extract meaningful scientific information from them,
an unprecedented amount of data will need to be captured, transported,
processed, stored, shared and analysed. This will require extensive inno-
vations in the way these tasks are traditionally carried out. With this
goal in mind, the SKA Observatory (SKAO) has set up several data chal-
lenges, the latter of which, the SKA Data Challenge 2 consisted of the
detection and characterisation of astronomical sources embedded in a 931
GBs data cube (5851⇥ 5851⇥ 6668 pixels) simulating an HI imaging dat-
acube representative of future SKA MID spectral line observations. In
the Chapter, we showcase our two attempts at solving the Challenge, two
DL-based pipelines. The first one was devised in collaboration with other
Cosmostatistic Initiative (COIN) members and directly participated in the
Challenge (COIN pipeline), while the second one was developed by me
and built upon the previous one in order to solve its main shortcomings
and issues (Revised pipeline): a high number of false positive detections,
poor segmentation performances, and several bugs within the data prepro-
cessing. The two pipelines share the same working principles and some
common elements. Both pipelines receive as input a 3D 64 ⇥ 64 ⇥ 128
patch of the input cube and process it in order to predict a corresponding
segmentation map masking with 1 pixels belonging to the sources within
the cube and with 0 the rest. The operation is carried out in parallel
by two models: a DL model and our 3D re-implementation of the Starlet
Multi-Scale vision model. The DL model is a 3D Convolutional Autoen-
coder in the COIN pipeline and 3D ResNet CAE in the revised pipeline.
The two predicted segmentation maps are combined together (averaged)
and post-processed in order to detect meaningful emissions. This is the
Crossmatch + Quality Cuts step of the pipeline. The surviving candidates
(or more precisely the pixels belonging to the candidates) are preserved
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in the segmentation map while the remaining pixels are set to 0. In or-
der to account for the fact the Segmentation networks may have missed
source boundaries which, given the nature of the simulated data and the
spreading effect of the dirty beam, could be at or below the noise level,
each source segmentation map is dilated by a factor td. The resulting
processed segmentation map cube is multiplied with the input 3D patch
to get the moment masked cube which contains all the input pixels val-
ues belonging to source candidates and the remaining pixels set to 0. For
each detected source, we extract two 32 ⇥ 32 ⇥ 128 pixel patches centred
around the source bounding box, one from the segmentation-masked cube
and one from the moment-masked cube. These are the 3D source segmen-
tation map and the 3D source moment-masked cube. In both pipelines,
the source 3D segmentation map is used to estimate the source position
in the cube. In the Revised pipeline a 3D ResNet Classifier is used to
flag and eliminate false detections. In the COIN Pipeline, the projection
angle ✓ was instead estimated to simple ellipse fitting to the integrated
source segmentation map. Sources moment masked cubes are then passed
along to a series of specialized ResNets which regress the embedded sources
morphological parameters. The performances of the two DL pipelines are
compared with the other 12 DL and traditional pipelines which competed
in the challenge. Our revised pipeline achieves the highest score reach-
ing similar results to the two winning DL-based pipelines MINERVA and
FORSKA-Sweden with the advantage of being able to retain performances
on the brightest end of the data-integrated line flux distribution. This is
achieved through the combination of the DL models with a traditional
compressed sensing technique such as the Multi Vision model. In fact,
nevertheless, the DL Segmenter suffers from the under-representation of
bright sources within the training set, the same bright sources are easier
to detect for the Multi Vision model. The success obtained by pipelines
combining multiple models to detect sources within SKA Data (Revised,
MINERVA, FORSKA-Sweden) seems to suggest that ensembling may be
the key to further pushing the overall performance. We believe that fur-
ther increases may be obtaining increasing the amount of prior information
used by the pipelines. As an example, the dirty beam should be known
fairly well for a given observation with only minor fluctuations due to at-
mospheric and observational uncertainties to still be accounted for. In
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future work, we plan to introduce the dirty beam as a first approximation
of the PSF, and to reformulate the problem in a residual fashion in order
to ease the problem complexity and try and push down the flux detection
limit of our pipeline.

7.3 The TOLIMAN Signal Detection Problem: pe-

riodic Astrometric Signal Recovery through

Deep Learning

The TOLIMAN space telescope [152] is a low-cost mission which aims
to push the boundaries of astrometric measurements in binary star systems
and to enable the detection of Earth-like planets around ↵ Centauri, our
closest extra-solar system and other close candidate star systems. The mis-
sion is optimised to search for habitable-zone planets that, for ↵ Centauri,
imply deflections with amplitudes of the order of ⇠ 1µas over roughly
1-year orbital periods. The detection of such a small astrometric signal
has never been reported before in the Astronomical literature. We have
investigated the use of DL for the detection of such astronomical signals,
expressed as shifts in the position of two overlapping Point Spread Func-
tions (PSF), embedded in realistic simulations of the TOLIMAN’s mission:
a three-year observation of the ↵ Centauri star system. Given the config-
uration of the optical system, the scale of the shifts in the image plane
is about one-millionth of a pixel (10�6 pix), thus exquisite stability is re-
quired: these motions are only manifest as a sinusoidal perturbation over
year timescales. Although there are many potential sources of imperfection
and error, this first study restricts itself to the most basic and fundamen-
tal one, with noise processes arising principally from photon noise and the
spatial discretisation of the signal. Additional terms, such as imperfect
spacecraft pointing, jitter and roll stability, will be addressed in future
work. The simulated data products consisted of six datasets containing,
respectively, signals with amplitudes of 10�2, 10�3, 10�4, 10�5 and 10�6

times the pixel size, constant flux PSFs (each of the two binaries’ PSF
presenting the same flux over time), an image peak value of 109 photons
and photon noise arising from the Poisson statistics. Due to the absence
of any realistic noise components (jitter, rotations, aberrations, etc.), each
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image can be cropped with a 256⇥ 256 pixels window centred around the
image barycenter. This preprocessing is needed in order to eliminate any
spurious shift in the image pixels which would result in adjoining noise
components with amplitudes several orders of magnitude higher than any
of the injected signals. The proposed pipeline is based on a custom Convo-
lutional Autoencoder (CAE) tasked with compressing the image sequence
into a mono-dimensional latent space followed by the analysis of the latent
space through a Lomb-Scargle periodogram (LSP) [96, 132, 156] in order to
detect periodic components within the latent space and recover the target
period. The signal compression performances obtained by the CAE and
the correlated capability of extracting the signal through the LSP are com-
pared with Principal Component Analysis (as baseline) and Wasserstein
dictionary learning (WDL) [133] showing improved detection capabilities.
While PCA was able to capture the periodic trend only for the easiest of
problems (10�2), and WDL managed to push it up to 10�4, the CAE was
the only model that was able to capture a periodic trend consistent with
that of the injected signal up to the required amplitude of 10�6 times the
size of the pixel. In future work, we plan to investigate the signal detection
capabilities in case of further and increasingly realistic noise contributions,
and we plan to modify the architecture by employing a first estimate of
the TOLIMAN PSF as a prior to constraint thus regularising the problem.



Bibliography

[1] The European Space Agency. The HIPPARCOS and TYCHO catalogues.
Astrometric and photometric star catalogues derived from the ESA HIP-
PARCOS Space Astrometry Mission. In ESA Special Publication, volume
1200 of ESA Special Publication, January 1997.

[2] A Akhazhanov, A More, A Amini, C Hazlett, T Treu, S Birrer, A Shajib,
K Liao, C Lemon, A Agnello, B Nord, M Aguena, S Allam, F Andrade-
Oliveira, J Annis, D Brooks, E Buckley-Geer, D L Burke, A Carnero Rosell,
M Carrasco Kind, J Carretero, A Choi, C Conselice, M Costanzi, L N
da Costa, M E S Pereira, J De Vicente, S Desai, J P Dietrich, P Doel, S Ev-
erett, I Ferrero, D A Finley, B Flaugher, J Frieman, J García-Bellido, D W
Gerdes, D Gruen, R A Gruendl, J Gschwend, G Gutierrez, S R Hinton, D L
Hollowood, K Honscheid, D J James, A G Kim, K Kuehn, N Kuropatkin,
O Lahav, M Lima, H Lin, M A G Maia, M March, F Menanteau, R Miquel,
R Morgan, A Palmese, F Paz-Chinchón, A Pieres, A A Plazas Malagón,
E Sanchez, V Scarpine, S Serrano, I Sevilla-Noarbe, M Smith, M Soares-
Santos, E Suchyta, M E C Swanson, G Tarle, C To, T N Varga, and J Weller
and. Finding quadruply imaged quasars with machine learning – i. meth-
ods. Monthly Notices of the Royal Astronomical Society, 513(2):2407–2421,
April 2022.

[3] Kazunori Akiyama, Shiro Ikeda, Mollie Pleau, Vincent L. Fish, Fumie
Tazaki, Kazuki Kuramochi, Avery E. Broderick, Jason Dexter, Monika
Mościbrodzka, Michael Gowanlock, Mareki Honma, and Sheperd S. Doele-
man. Superresolution full-polarimetric imaging for radio interferometry
with sparse modeling. The Astronomical Journal, 153(4):159, mar 2017.

[4] ALMA Partnership, C. L. Brogan, L. M. Pérez, T. R. Hunter, W. R. F.
Dent, A. S. Hales, R. E. Hills, S. Corder, E. B. Fomalont, C. Vlahakis,
Y. Asaki, D. Barkats, A. Hirota, J. A. Hodge, C. M. V. Impellizzeri,

191



192 Bibliography

R. Kneissl, E. Liuzzo, R. Lucas, N. Marcelino, S. Matsushita, K. Nakan-
ishi, N. Phillips, A. M. S. Richards, I. Toledo, R. Aladro, D. Broguiere,
J. R. Cortes, P. C. Cortes, D. Espada, F. Galarza, D. Garcia-Appadoo,
L. Guzman-Ramirez, E. M. Humphreys, T. Jung, S. Kameno, R. A. Laing,
S. Leon, G. Marconi, A. Mignano, B. Nikolic, L.-A. Nyman, M. Radis-
zcz, A. Remijan, J. A. Rodón, T. Sawada, S. Takahashi, R. P. J. Tilanus,
B. Vila Vilaro, L. C. Watson, T. Wiklind, E. Akiyama, E. Chapillon,
I. de Gregorio-Monsalvo, J. Di Francesco, F. Gueth, A. Kawamura, C.-
F. Lee, Q. Nguyen Luong, J. Mangum, V. Pietu, P. Sanhueza, K. Saigo,
S. Takakuwa, C. Ubach, T. van Kempen, A. Wootten, A. Castro-Carrizo,
H. Francke, J. Gallardo, J. Garcia, S. Gonzalez, T. Hill, T. Kaminski,
Y. Kurono, H.-Y. Liu, C. Lopez, F. Morales, K. Plarre, G. Schieven,
L. Testi, L. Videla, E. Villard, P. Andreani, J. E. Hibbard, and K. Tatem-
atsu. THE 2014 ALMA LONG BASELINE CAMPAIGN: FIRST RE-
SULTS FROM HIGH ANGULAR RESOLUTION OBSERVATIONS TO-
WARD THE HL TAU REGION. The Astrophysics Journal, 808(1):L3, jul
2015.

[5] Justin Jonas and. The MeerKAT radio telescope. In Proceedings of
MeerKAT Science: On the Pathway to the SKA — PoS(MeerKAT2016).
Sissa Medialab, February 2018.

[6] and A. G. A. Brown, A. Vallenari, T. Prusti, J. H. J. de Bruijne,
C. Babusiaux, C. A. L. Bailer-Jones, M. Biermann, D. W. Evans, L. Eyer,
F. Jansen, C. Jordi, S. A. Klioner, U. Lammers, L. Lindegren, X. Luri,
F. Mignard, C. Panem, D. Pourbaix, S. Randich, P. Sartoretti, H. I. Sid-
diqui, C. Soubiran, F. van Leeuwen, N. A. Walton, F. Arenou, U. Bastian,
M. Cropper, R. Drimmel, D. Katz, M. G. Lattanzi, J. Bakker, C. Cac-
ciari, J. Castañeda, L. Chaoul, N. Cheek, F. De Angeli, C. Fabricius,
R. Guerra, B. Holl, E. Masana, R. Messineo, N. Mowlavi, K. Nienartowicz,
P. Panuzzo, J. Portell, M. Riello, G. M. Seabroke, P. Tanga, F. Thévenin,
G. Gracia-Abril, G. Comoretto, M. Garcia-Reinaldos, D. Teyssier, M. Alt-
mann, R. Andrae, M. Audard, I. Bellas-Velidis, K. Benson, J. Berthier,
R. Blomme, P. Burgess, G. Busso, B. Carry, A. Cellino, G. Clemen-
tini, M. Clotet, O. Creevey, M. Davidson, J. De Ridder, L. Delchambre,
A. Dell’Oro, C. Ducourant, J. Fernández-Hernández, M. Fouesneau, Y. Fré-
mat, L. Galluccio, M. García-Torres, J. González-Núñez, J. J. González-
Vidal, E. Gosset, L. P. Guy, J.-L. Halbwachs, N. C. Hambly, D. L. Harri-
son, J. Hernández, D. Hestroffer, S. T. Hodgkin, A. Hutton, G. Jasniewicz,
A. Jean-Antoine-Piccolo, S. Jordan, A. J. Korn, A. Krone-Martins, A. C.
Lanzafame, T. Lebzelter, W. Löffler, M. Manteiga, P. M. Marrese, J. M.
Martín-Fleitas, A. Moitinho, A. Mora, K. Muinonen, J. Osinde, E. Pan-



Bibliography 193

cino, T. Pauwels, J.-M. Petit, A. Recio-Blanco, P. J. Richards, L. Rimoldini,
A. C. Robin, L. M. Sarro, C. Siopis, M. Smith, A. Sozzetti, M. Süveges,
J. Torra, W. van Reeven, U. Abbas, A. Abreu Aramburu, S. Accart,
C. Aerts, G. Altavilla, M. A. Álvarez, R. Alvarez, J. Alves, R. I. Ander-
son, A. H. Andrei, E. Anglada Varela, E. Antiche, T. Antoja, B. Arcay,
T. L. Astraatmadja, N. Bach, S. G. Baker, L. Balaguer-Núñez, P. Balm,
C. Barache, C. Barata, D. Barbato, F. Barblan, P. S. Barklem, D. Barrado,
M. Barros, M. A. Barstow, S. Bartholomé Muñoz, J.-L. Bassilana, U. Bec-
ciani, M. Bellazzini, A. Berihuete, S. Bertone, L. Bianchi, O. Bienaymé,
S. Blanco-Cuaresma, T. Boch, C. Boeche, A. Bombrun, R. Borrachero,
D. Bossini, S. Bouquillon, G. Bourda, A. Bragaglia, L. Bramante, M. A.
Breddels, A. Bressan, N. Brouillet, T. Brüsemeister, E. Brugaletta, B. Buc-
ciarelli, A. Burlacu, D. Busonero, A. G. Butkevich, R. Buzzi, E. Caffau,
R. Cancelliere, G. Cannizzaro, T. Cantat-Gaudin, R. Carballo, T. Carlucci,
J. M. Carrasco, L. Casamiquela, M. Castellani, A. Castro-Ginard, P. Char-
lot, L. Chemin, A. Chiavassa, G. Cocozza, G. Costigan, S. Cowell, F. Crifo,
M. Crosta, C. Crowley, J. Cuypers†, C. Dafonte, Y. Damerdji, A. Daper-
golas, P. David, M. David, P. de Laverny, F. De Luise, R. De March,
D. de Martino, R. de Souza, A. de Torres, J. Debosscher, E. del Pozo,
M. Delbo, A. Delgado, H. E. Delgado, P. Di Matteo, S. Diakite, C. Diener,
E. Distefano, C. Dolding, P. Drazinos, J. Durán, B. Edvardsson, H. Enke,
K. Eriksson, P. Esquej, G. Eynard Bontemps, C. Fabre, M. Fabrizio,
S. Faigler, A. J. Falcão, M. Farràs Casas, L. Federici, G. Fedorets, P. Fer-
nique, F. Figueras, F. Filippi, K. Findeisen, A. Fonti, E. Fraile, M. Fraser,
B. Frézouls, M. Gai, S. Galleti, D. Garabato, F. García-Sedano, A. Garo-
falo, N. Garralda, A. Gavel, P. Gavras, J. Gerssen, R. Geyer, P. Giacobbe,
G. Gilmore, S. Girona, G. Giuffrida, F. Glass, M. Gomes, M. Granvik,
A. Gueguen, A. Guerrier, J. Guiraud, R. Gutiérrez-Sánchez, R. Haigron,
D. Hatzidimitriou, M. Hauser, M. Haywood, U. Heiter, A. Helmi, J. Heu,
T. Hilger, D. Hobbs, W. Hofmann, G. Holland, H. E. Huckle, A. Hypki,
V. Icardi, K. Janßen, G. Jevardat de Fombelle, P. G. Jonker, Á. L. Juhász,
F. Julbe, A. Karampelas, A. Kewley, J. Klar, A. Kochoska, R. Kohley,
K. Kolenberg, M. Kontizas, E. Kontizas, S. E. Koposov, G. Kordopatis,
Z. Kostrzewa-Rutkowska, P. Koubsky, S. Lambert, A. F. Lanza, Y. Lasne,
J.-B. Lavigne, Y. Le Fustec, C. Le Poncin-Lafitte, Y. Lebreton, S. Lec-
cia, N. Leclerc, I. Lecoeur-Taibi, H. Lenhardt, F. Leroux, S. Liao, E. Li-
cata, H. E. P. Lindstrøm, T. A. Lister, E. Livanou, A. Lobel, M. López,
S. Managau, R. G. Mann, G. Mantelet, O. Marchal, J. M. Marchant,
M. Marconi, S. Marinoni, G. Marschalkó, D. J. Marshall, M. Martino,
G. Marton, N. Mary, D. Massari, G. Matijevič, T. Mazeh, P. J. McMillan,
S. Messina, D. Michalik, N. R. Millar, D. Molina, R. Molinaro, L. Mol-



194 Bibliography

nár, P. Montegriffo, R. Mor, R. Morbidelli, T. Morel, D. Morris, A. F.
Mulone, T. Muraveva, I. Musella, G. Nelemans, L. Nicastro, L. Noval,
W. O’Mullane, C. Ordénovic, D. Ordóñez-Blanco, P. Osborne, C. Pagani,
I. Pagano, F. Pailler, H. Palacin, L. Palaversa, A. Panahi, M. Pawlak, A. M.
Piersimoni, F.-X. Pineau, E. Plachy, G. Plum, E. Poggio, E. Poujoulet,
A. Prša, L. Pulone, E. Racero, S. Ragaini, N. Rambaux, M. Ramos-Lerate,
S. Regibo, C. Reylé, F. Riclet, V. Ripepi, A. Riva, A. Rivard, G. Rixon,
T. Roegiers, M. Roelens, M. Romero-Gómez, N. Rowell, F. Royer, L. Ruiz-
Dern, G. Sadowski, T. Sagristà Sellés, J. Sahlmann, J. Salgado, E. Salguero,
N. Sanna, T. Santana-Ros, M. Sarasso, H. Savietto, M. Schultheis, E. Sci-
acca, M. Segol, J. C. Segovia, D. Ségransan, I-C. Shih, L. Siltala, A. F.
Silva, R. L. Smart, K. W. Smith, E. Solano, F. Solitro, R. Sordo, S. Soria
Nieto, J. Souchay, A. Spagna, F. Spoto, U. Stampa, I. A. Steele, H. Stei-
delmüller, C. A. Stephenson, H. Stoev, F. F. Suess, J. Surdej, L. Szabados,
E. Szegedi-Elek, D. Tapiador, F. Taris, G. Tauran, M. B. Taylor, R. Teix-
eira, D. Terrett, P. Teyssandier, W. Thuillot, A. Titarenko, F. Torra Clotet,
C. Turon, A. Ulla, E. Utrilla, S. Uzzi, M. Vaillant, G. Valentini, V. Valette,
A. van Elteren, E. Van Hemelryck, M. van Leeuwen, M. Vaschetto, A. Vec-
chiato, J. Veljanoski, Y. Viala, D. Vicente, S. Vogt, C. von Essen, H. Voss,
V. Votruba, S. Voutsinas, G. Walmsley, M. Weiler, O. Wertz, T. Wevers,
Ł. Wyrzykowski, A. Yoldas, M. Žerjal, H. Ziaeepour, J. Zorec, S. Zschocke,
S. Zucker, C. Zurbach, and T. Zwitter. Gaia data release 2. AStronomy &
Astrophysics, 616:A1, August 2018.

[7] and R. Abuter, M. Accardo, A. Amorim, N. Anugu, G. Ávila, N. Azouaoui,
M. Benisty, J. P. Berger, N. Blind, H. Bonnet, P. Bourget, W. Brandner,
R. Brast, A. Buron, L. Burtscher, F. Cassaing, F. Chapron, É. Choquet,
Y. Clénet, C. Collin, V. Coudé du Foresto, W. de Wit, P. T. de Zeeuw,
C. Deen, F. Delplancke-Ströbele, R. Dembet, F. Derie, J. Dexter, G. Du-
vert, M. Ebert, A. Eckart, F. Eisenhauer, M. Esselborn, P. Fédou, G. Fin-
ger, P. Garcia, C. E. Garcia Dabo, R. Garcia Lopez, E. Gendron, R. Gen-
zel, S. Gillessen, F. Gonte, P. Gordo, M. Grould, U. Grözinger, S. Guieu,
P. Haguenauer, O. Hans, X. Haubois, M. Haug, F. Haussmann, Th. Hen-
ning, S. Hippler, M. Horrobin, A. Huber, Z. Hubert, N. Hubin, C. A.
Hummel, G. Jakob, A. Janssen, L. Jochum, L. Jocou, A. Kaufer, S. Kell-
ner, S. Kendrew, L. Kern, P. Kervella, M. Kiekebusch, R. Klein, Y. Kok,
J. Kolb, M. Kulas, S. Lacour, V. Lapeyrère, B. Lazareff, J.-B. Le Bouquin,
P. Lèna, R. Lenzen, S. Lévêque, M. Lippa, Y. Magnard, L. Mehrgan,
M. Mellein, A. Mérand, J. Moreno-Ventas, T. Moulin, E. Müller, F. Müller,
U. Neumann, S. Oberti, T. Ott, L. Pallanca, J. Panduro, L. Pasquini,
T. Paumard, I. Percheron, K. Perraut, G. Perrin, A. Pflüger, O. Pfuhl,
T. Phan Duc, P. M. Plewa, D. Popovic, S. Rabien, A. Ramírez, J. Ramos,



Bibliography 195

C. Rau, M. Riquelme, R.-R. Rohloff, G. Rousset, J. Sanchez-Bermudez,
S. Scheithauer, M. Schöller, N. Schuhler, J. Spyromilio, C. Straubmeier,
E. Sturm, M. Suarez, K. R. W. Tristram, N. Ventura, F. Vincent, I. Wais-
berg, I. Wank, J. Weber, E. Wieprecht, M. Wiest, E. Wiezorrek, M. Wit-
tkowski, J. Woillez, B. Wolff, S. Yazici, D. Ziegler, and G. Zins. First light
for GRAVITY: Phase referencing optical interferometry for the very large
telescope interferometer. AStronomy & Astrophysics, 602:A94, June 2017.

[8] and T. Prusti, J. H. J. de Bruijne, A. G. A. Brown, A. Vallenari, C. Babu-
siaux, C. A. L. Bailer-Jones, U. Bastian, M. Biermann, D. W. Evans,
L. Eyer, F. Jansen, C. Jordi, S. A. Klioner, U. Lammers, L. Lindegren,
X. Luri, F. Mignard, D. J. Milligan, C. Panem, V. Poinsignon, D. Pourbaix,
S. Randich, G. Sarri, P. Sartoretti, H. I. Siddiqui, C. Soubiran, V. Valette,
F. van Leeuwen, N. A. Walton, C. Aerts, F. Arenou, M. Cropper, R. Drim-
mel, E. Høg, D. Katz, M. G. Lattanzi, W. O’Mullane, E. K. Grebel,
A. D. Holland, C. Huc, X. Passot, L. Bramante, C. Cacciari, J. Castañeda,
L. Chaoul, N. Cheek, F. De Angeli, C. Fabricius, R. Guerra, J. Hernández,
A. Jean-Antoine-Piccolo, E. Masana, R. Messineo, N. Mowlavi, K. Nienar-
towicz, D. Ordóñez-Blanco, P. Panuzzo, J. Portell, P. J. Richards, M. Riello,
G. M. Seabroke, P. Tanga, F. Thévenin, J. Torra, S. G. Els, G. Gracia-Abril,
G. Comoretto, M. Garcia-Reinaldos, T. Lock, E. Mercier, M. Altmann,
R. Andrae, T. L. Astraatmadja, I. Bellas-Velidis, K. Benson, J. Berthier,
R. Blomme, G. Busso, B. Carry, A. Cellino, G. Clementini, S. Cow-
ell, O. Creevey, J. Cuypers, M. Davidson, J. De Ridder, A. de Torres,
L. Delchambre, A. Dell’Oro, C. Ducourant, Y. Frémat, M. García-Torres,
E. Gosset, J.-L. Halbwachs, N. C. Hambly, D. L. Harrison, M. Hauser,
D. Hestroffer, S. T. Hodgkin, H. E. Huckle, A. Hutton, G. Jasniewicz,
S. Jordan, M. Kontizas, A. J. Korn, A. C. Lanzafame, M. Manteiga,
A. Moitinho, K. Muinonen, J. Osinde, E. Pancino, T. Pauwels, J.-M.
Petit, A. Recio-Blanco, A. C. Robin, L. M. Sarro, C. Siopis, M. Smith,
K. W. Smith, A. Sozzetti, W. Thuillot, W. van Reeven, Y. Viala, U. Ab-
bas, A. Abreu Aramburu, S. Accart, J. J. Aguado, P. M. Allan, W. Alla-
sia, G. Altavilla, M. A. Álvarez, J. Alves, R. I. Anderson, A. H. Andrei,
E. Anglada Varela, E. Antiche, T. Antoja, S. Antón, B. Arcay, A. Atzei,
L. Ayache, N. Bach, S. G. Baker, L. Balaguer-Núñez, C. Barache, C. Barata,
A. Barbier, F. Barblan, M. Baroni, D. Barrado y Navascués, M. Barros,
M. A. Barstow, U. Becciani, M. Bellazzini, G. Bellei, A. Bello García, V. Be-
lokurov, P. Bendjoya, A. Berihuete, L. Bianchi, O. Bienaymé, F. Billebaud,
N. Blagorodnova, S. Blanco-Cuaresma, T. Boch, A. Bombrun, R. Bor-
rachero, S. Bouquillon, G. Bourda, H. Bouy, A. Bragaglia, M. A. Bred-
dels, N. Brouillet, T. Brüsemeister, B. Bucciarelli, F. Budnik, P. Burgess,
R. Burgon, A. Burlacu, D. Busonero, R. Buzzi, E. Caffau, J. Cambras,



196 Bibliography

H. Campbell, R. Cancelliere, T. Cantat-Gaudin, T. Carlucci, J. M. Car-
rasco, M. Castellani, P. Charlot, J. Charnas, P. Charvet, F. Chassat,
A. Chiavassa, M. Clotet, G. Cocozza, R. S. Collins, P. Collins, G. Costigan,
F. Crifo, N. J. G. Cross, M. Crosta, C. Crowley, C. Dafonte, Y. Damerdji,
A. Dapergolas, P. David, M. David, P. De Cat, F. de Felice, P. de Laverny,
F. De Luise, R. De March, D. de Martino, R. de Souza, J. Debosscher, E. del
Pozo, M. Delbo, A. Delgado, H. E. Delgado, F. di Marco, P. Di Matteo,
S. Diakite, E. Distefano, C. Dolding, S. Dos Anjos, P. Drazinos, J. Durán,
Y. Dzigan, E. Ecale, B. Edvardsson, H. Enke, M. Erdmann, D. Escolar,
M. Espina, N. W. Evans, G. Eynard Bontemps, C. Fabre, M. Fabrizio,
S. Faigler, A. J. Falcão, M. Farràs Casas, F. Faye, L. Federici, G. Fedorets,
J. Fernández-Hernández, P. Fernique, A. Fienga, F. Figueras, F. Filippi,
K. Findeisen, A. Fonti, M. Fouesneau, E. Fraile, M. Fraser, J. Fuchs, R. Fur-
nell, M. Gai, S. Galleti, L. Galluccio, D. Garabato, F. García-Sedano,
P. Garé, A. Garofalo, N. Garralda, P. Gavras, J. Gerssen, R. Geyer,
G. Gilmore, S. Girona, G. Giuffrida, M. Gomes, A. González-Marcos,
J. González-Núñez, J. J. González-Vidal, M. Granvik, A. Guerrier, P. Guill-
out, J. Guiraud, A. Gúrpide, R. Gutiérrez-Sánchez, L. P. Guy, R. Haigron,
D. Hatzidimitriou, M. Haywood, U. Heiter, A. Helmi, D. Hobbs, W. Hof-
mann, B. Holl, G. Holland, J. A. S. Hunt, A. Hypki, V. Icardi, M. Irwin,
G. Jevardat de Fombelle, P. Jofré, P. G. Jonker, A. Jorissen, F. Julbe,
A. Karampelas, A. Kochoska, R. Kohley, K. Kolenberg, E. Kontizas, S. E.
Koposov, G. Kordopatis, P. Koubsky, A. Kowalczyk, A. Krone-Martins,
M. Kudryashova, I. Kull, R. K. Bachchan, F. Lacoste-Seris, A. F. Lanza,
J.-B. Lavigne, C. Le Poncin-Lafitte, Y. Lebreton, T. Lebzelter, S. Lec-
cia, N. Leclerc, I. Lecoeur-Taibi, V. Lemaitre, H. Lenhardt, F. Leroux,
S. Liao, E. Licata, H. E. P. Lindstrøm, T. A. Lister, E. Livanou, A. Lobel,
W. Löffler, M. López, A. Lopez-Lozano, D. Lorenz, T. Loureiro, I. Mac-
Donald, T. Magalhães Fernandes, S. Managau, R. G. Mann, G. Mantelet,
O. Marchal, J. M. Marchant, M. Marconi, J. Marie, S. Marinoni, P. M.
Marrese, G. Marschalkó, D. J. Marshall, J. M. Martín-Fleitas, M. Martino,
N. Mary, G. Matijevič, T. Mazeh, P. J. McMillan, S. Messina, A. Mestre,
D. Michalik, N. R. Millar, B. M. H. Miranda, D. Molina, R. Molinaro,
M. Molinaro, L. Molnár, M. Moniez, P. Montegriffo, D. Monteiro, R. Mor,
A. Mora, R. Morbidelli, T. Morel, S. Morgenthaler, T. Morley, D. Mor-
ris, A. F. Mulone, T. Muraveva, I. Musella, J. Narbonne, G. Nelemans,
L. Nicastro, L. Noval, C. Ordénovic, J. Ordieres-Meré, P. Osborne, C. Pa-
gani, I. Pagano, F. Pailler, H. Palacin, L. Palaversa, P. Parsons, T. Paulsen,
M. Pecoraro, R. Pedrosa, H. Pentikäinen, J. Pereira, B. Pichon, A. M. Pier-
simoni, F.-X. Pineau, E. Plachy, G. Plum, E. Poujoulet, A. Prša, L. Pulone,
S. Ragaini, S. Rago, N. Rambaux, M. Ramos-Lerate, P. Ranalli, G. Rauw,



Bibliography 197

A. Read, S. Regibo, F. Renk, C. Reylé, R. A. Ribeiro, L. Rimoldini,
V. Ripepi, A. Riva, G. Rixon, M. Roelens, M. Romero-Gómez, N. Row-
ell, F. Royer, A. Rudolph, L. Ruiz-Dern, G. Sadowski, T. Sagristà Sellés,
J. Sahlmann, J. Salgado, E. Salguero, M. Sarasso, H. Savietto, A. Schnorhk,
M. Schultheis, E. Sciacca, M. Segol, J. C. Segovia, D. Segransan, E. Ser-
pell, I-C. Shih, R. Smareglia, R. L. Smart, C. Smith, E. Solano, F. Solitro,
R. Sordo, S. Soria Nieto, J. Souchay, A. Spagna, F. Spoto, U. Stampa,
I. A. Steele, H. Steidelmüller, C. A. Stephenson, H. Stoev, F. F. Suess,
M. Süveges, J. Surdej, L. Szabados, E. Szegedi-Elek, D. Tapiador, F. Taris,
G. Tauran, M. B. Taylor, R. Teixeira, D. Terrett, B. Tingley, S. C.
Trager, C. Turon, A. Ulla, E. Utrilla, G. Valentini, A. van Elteren, E. Van
Hemelryck, M. van Leeuwen, M. Varadi, A. Vecchiato, J. Veljanoski,
T. Via, D. Vicente, S. Vogt, H. Voss, V. Votruba, S. Voutsinas, G. Walm-
sley, M. Weiler, K. Weingrill, D. Werner, T. Wevers, G. Whitehead,
Ł. Wyrzykowski, A. Yoldas, M. Žerjal, S. Zucker, C. Zurbach, T. Zwitter,
A. Alecu, M. Allen, C. Allende Prieto, A. Amorim, G. Anglada-Escudé,
V. Arsenijevic, S. Azaz, P. Balm, M. Beck, H.-H. Bernstein, L. Bigot,
A. Bijaoui, C. Blasco, M. Bonfigli, G. Bono, S. Boudreault, A. Bressan,
S. Brown, P.-M. Brunet, P. Bunclark, R. Buonanno, A. G. Butkevich,
C. Carret, C. Carrion, L. Chemin, F. Chéreau, L. Corcione, E. Darmigny,
K. S. de Boer, P. de Teodoro, P. T. de Zeeuw, C. Delle Luche, C. D.
Domingues, P. Dubath, F. Fodor, B. Frézouls, A. Fries, D. Fustes, D. Fyfe,
E. Gallardo, J. Gallegos, D. Gardiol, M. Gebran, A. Gomboc, A. Gómez,
E. Grux, A. Gueguen, A. Heyrovsky, J. Hoar, G. Iannicola, Y. Isasi Parache,
A.-M. Janotto, E. Joliet, A. Jonckheere, R. Keil, D.-W. Kim, P. Klagyivik,
J. Klar, J. Knude, O. Kochukhov, I. Kolka, J. Kos, A. Kutka, V. Lainey,
D. LeBouquin, C. Liu, D. Loreggia, V. V. Makarov, M. G. Marseille,
C. Martayan, O. Martinez-Rubi, B. Massart, F. Meynadier, S. Mignot,
U. Munari, A.-T. Nguyen, T. Nordlander, P. Ocvirk, K. S. O’Flaherty,
A. Olias Sanz, P. Ortiz, J. Osorio, D. Oszkiewicz, A. Ouzounis, M. Palmer,
P. Park, E. Pasquato, C. Peltzer, J. Peralta, F. Péturaud, T. Pieniluoma,
E. Pigozzi, J. Poels, G. Prat, T. Prod’homme, F. Raison, J. M. Rebordao,
D. Risquez, B. Rocca-Volmerange, S. Rosen, M. I. Ruiz-Fuertes, F. Russo,
S. Sembay, I. Serraller Vizcaino, A. Short, A. Siebert, H. Silva, D. Sina-
chopoulos, E. Slezak, M. Soffel, D. Sosnowska, V. Straižys, M. ter Linden,
D. Terrell, S. Theil, C. Tiede, L. Troisi, P. Tsalmantza, D. Tur, M. Vaccari,
F. Vachier, P. Valles, W. Van Hamme, L. Veltz, J. Virtanen, J.-M. Wallut,
R. Wichmann, M. I. Wilkinson, H. Ziaeepour, and S. Zschocke. The gaia
mission. AStronomy & Astrophysics, 595:A1, November 2016.

[9] Astropy Collaboration, A. M. Price-Whelan, B. M. Sipőcz, H. M. Gün-
ther, P. L. Lim, S. M. Crawford, S. Conseil, D. L. Shupe, M. W. Craig,



198 Bibliography

N. Dencheva, A. Ginsburg, J. T. Vand erPlas, L. D. Bradley, D. Pérez-
Suárez, M. de Val-Borro, T. L. Aldcroft, K. L. Cruz, T. P. Robitaille, E. J.
Tollerud, C. Ardelean, T. Babej, Y. P. Bach, M. Bachetti, A. V. Bakanov,
S. P. Bamford, G. Barentsen, P. Barmby, A. Baumbach, K. L. Berry,
F. Biscani, M. Boquien, K. A. Bostroem, L. G. Bouma, G. B. Brammer,
E. M. Bray, H. Breytenbach, H. Buddelmeijer, D. J. Burke, G. Calderone,
J. L. Cano Rodríguez, M. Cara, J. V. M. Cardoso, S. Cheedella, Y. Copin,
L. Corrales, D. Crichton, D. D’Avella, C. Deil, É. Depagne, J. P. Dietrich,
A. Donath, M. Droettboom, N. Earl, T. Erben, S. Fabbro, L. A. Ferreira,
T. Finethy, R. T. Fox, L. H. Garrison, S. L. J. Gibbons, D. A. Gold-
stein, R. Gommers, J. P. Greco, P. Greenfield, A. M. Groener, F. Grollier,
A. Hagen, P. Hirst, D. Homeier, A. J. Horton, G. Hosseinzadeh, L. Hu, J. S.
Hunkeler, Ž. Ivezić, A. Jain, T. Jenness, G. Kanarek, S. Kendrew, N. S.
Kern, W. E. Kerzendorf, A. Khvalko, J. King, D. Kirkby, A. M. Kulka-
rni, A. Kumar, A. Lee, D. Lenz, S. P. Littlefair, Z. Ma, D. M. Macleod,
M. Mastropietro, C. McCully, S. Montagnac, B. M. Morris, M. Mueller,
S. J. Mumford, D. Muna, N. A. Murphy, S. Nelson, G. H. Nguyen, J. P.
Ninan, M. Nöthe, S. Ogaz, S. Oh, J. K. Parejko, N. Parley, S. Pascual,
R. Patil, A. A. Patil, A. L. Plunkett, J. X. Prochaska, T. Rastogi, V. Reddy
Janga, J. Sabater, P. Sakurikar, M. Seifert, L. E. Sherbert, H. Sherwood-
Taylor, A. Y. Shih, J. Sick, M. T. Silbiger, S. Singanamalla, L. P. Singer,
P. H. Sladen, K. A. Sooley, S. Sornarajah, O. Streicher, P. Teuben, S. W.
Thomas, G. R. Tremblay, J. E. H. Turner, V. Terrón, M. H. van Kerkwijk,
A. de la Vega, L. L. Watkins, B. A. Weaver, J. B. Whitmore, J. Woillez,
V. Zabalza, and Astropy Contributors. The Astropy Project: Building an
Open-science Project and Status of the v2.0 Core Package. The Astronom-
ical Journal, 156(3):123, September 2018.

[10] Johannes Ballé, Valero Laparra, and Eero P. Simoncelli. End-to-end op-
timization of nonlinear transform codes for perceptual quality. In 2016
Picture Coding Symposium (PCS), pages 1–5, 2016.

[11] Dalya Baron. Machine learning in astronomy: a practical overview, 2019.

[12] I Becker, K Pichara, M Catelan, P Protopapas, C Aguirre, and F Nikzat.
Scalable end-to-end recurrent neural network for variable star classification.
Monthly Notices of the Royal Astronomical Society, 493(2):2981–2995, 02
2020.

[13] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies
with gradient descent is difficult. IEEE Transactions on Neural Networks,
5(2):157–166, March 1994.



Bibliography 199

[14] M. Bertero and P. Boccacci. Image deconvolution. In NATO Security
through Science Series, pages 349–370. Springer Netherlands, 2005.

[15] E. Bertin and S. Arnouts. SExtractor: Software for source extraction.
Astrophysics and Space Science, 117:393–404, June 1996.

[16] Michael R. Blanton, Matthew A. Bershady, Bela Abolfathi, Franco D.
Albareti, Carlos Allende Prieto, Andres Almeida, Javier Alonso-García,
Friedrich Anders, Scott F. Anderson, Brett Andrews, Erik Aquino-Ortíz,
Alfonso Aragón-Salamanca, Maria Argudo-Fernández, Eric Armengaud,
Eric Aubourg, Vladimir Avila-Reese, Carles Badenes, Stephen Bailey,
Kathleen A. Barger, Jorge Barrera-Ballesteros, Curtis Bartosz, Dominic
Bates, Falk Baumgarten, Julian Bautista, Rachael Beaton, Timothy C.
Beers, Francesco Belfiore, Chad F. Bender, Andreas A. Berlind, Mar-
iangela Bernardi, Florian Beutler, Jonathan C. Bird, Dmitry Bizyaev,
Guillermo A. Blanc, Michael Blomqvist, Adam S. Bolton, Médéric Bo-
quien, Jura Borissova, Remco van den Bosch, Jo Bovy, William N. Brandt,
Jonathan Brinkmann, Joel R. Brownstein, Kevin Bundy, Adam J. Bur-
gasser, Etienne Burtin, Nicolás G. Busca, Michele Cappellari, Maria Leticia
Delgado Carigi, Joleen K. Carlberg, Aurelio Carnero Rosell, Ricardo Car-
rera, Nancy J. Chanover, Brian Cherinka, Edmond Cheung, Yilen Gómez
Maqueo Chew, Cristina Chiappini, Peter Doohyun Choi, Drew Chojnowski,
Chia-Hsun Chuang, Haeun Chung, Rafael Fernando Cirolini, Nicolas Clerc,
Roger E. Cohen, Johan Comparat, Luiz da Costa, Marie-Claude Cousinou,
Kevin Covey, Jeffrey D. Crane, Rupert A. C. Croft, Irene Cruz-Gonzalez,
Daniel Garrido Cuadra, Katia Cunha, Guillermo J. Damke, Jeremy Dar-
ling, Roger Davies, Kyle Dawson, Axel de la Macorra, Flavia Dell’Agli,
Nathan De Lee, Timothée Delubac, Francesco Di Mille, Aleks Diamond-
Stanic, Mariana Cano-Díaz, John Donor, Juan José Downes, Niv Drory,
Hélion du Mas des Bourboux, Christopher J. Duckworth, Tom Dwelly,
Jamie Dyer, Garrett Ebelke, Arthur D. Eigenbrot, Daniel J. Eisenstein, Eric
Emsellem, Mike Eracleous, Stephanie Escoffier, Michael L. Evans, Xiaohui
Fan, Emma Fernández-Alvar, J. G. Fernandez-Trincado, Diane K. Feuil-
let, Alexis Finoguenov, Scott W. Fleming, Andreu Font-Ribera, Alexander
Fredrickson, Gordon Freischlad, Peter M. Frinchaboy, Carla E. Fuentes,
Lluís Galbany, R. Garcia-Dias, D. A. García-Hernández, Patrick Gaulme,
Doug Geisler, Joseph D. Gelfand, Héctor Gil-Marín, Bruce A. Gillespie,
Daniel Goddard, Violeta Gonzalez-Perez, Kathleen Grabowski, Paul J.
Green, Catherine J. Grier, James E. Gunn, Hong Guo, Julien Guy, Alex
Hagen, ChangHoon Hahn, Matthew Hall, Paul Harding, Sten Hasselquist,
Suzanne L. Hawley, Fred Hearty, Jonay I. Gonzalez Hernández, Shirley Ho,
David W. Hogg, Kelly Holley-Bockelmann, Jon A. Holtzman, Parker H.



200 Bibliography

Holzer, Joseph Huehnerhoff, Timothy A. Hutchinson, Ho Seong Hwang,
Héctor J. Ibarra-Medel, Gabriele da Silva Ilha, Inese I. Ivans, KeShawn
Ivory, Kelly Jackson, Trey W. Jensen, Jennifer A. Johnson, Amy Jones,
Henrik Jönsson, Eric Jullo, Vikrant Kamble, Karen Kinemuchi, David
Kirkby, Francisco-Shu Kitaura, Mark Klaene, Gillian R. Knapp, Jean-
Paul Kneib, Juna A. Kollmeier, Ivan Lacerna, Richard R. Lane, Dustin
Lang, David R. Law, Daniel Lazarz, Youngbae Lee, Jean-Marc Le Goff,
Fu-Heng Liang, Cheng Li, Hongyu Li, Jianhui Lian, Marcos Lima, Lih-
wai Lin, Yen-Ting Lin, Sara Bertran de Lis, Chao Liu, Miguel Angel C. de
Icaza Lizaola, Dan Long, Sara Lucatello, Britt Lundgren, Nicholas K. Mac-
Donald, Alice Deconto Machado, Chelsea L. MacLeod, Suvrath Mahade-
van, Marcio Antonio Geimba Maia, Roberto Maiolino, Steven R. Majew-
ski, Elena Malanushenko, Viktor Malanushenko, Arturo Manchado, Shude
Mao, Claudia Maraston, Rui Marques-Chaves, Thomas Masseron, Karen L.
Masters, Cameron K. McBride, Richard M. McDermid, Brianne McGrath,
Ian D. McGreer, Nicolás Medina Peña, Matthew Melendez, Andrea Mer-
loni, Michael R. Merrifield, Szabolcs Meszaros, Andres Meza, Ivan Minchev,
Dante Minniti, Takamitsu Miyaji, Surhud More, John Mulchaey, Fran-
cisco Müller-Sánchez, Demitri Muna, Ricardo R. Munoz, Adam D. Myers,
Preethi Nair, Kirpal Nandra, Janaina Correa do Nascimento, Alenka Ne-
grete, Melissa Ness, Jeffrey A. Newman, Robert C. Nichol, David L. Nide-
ver, Christian Nitschelm, Pierros Ntelis, Julia E. O’Connell, Ryan J. Oelk-
ers, Audrey Oravetz, Daniel Oravetz, Zach Pace, Nelson Padilla, Nathalie
Palanque-Delabrouille, Pedro Alonso Palicio, Kaike Pan, John K. Parejko,
Taniya Parikh, Isabelle Pâris, Changbom Park, Alim Y. Patten, Sebastien
Peirani, Marcos Pellejero-Ibanez, Samantha Penny, Will J. Percival, Is-
mael Perez-Fournon, Patrick Petitjean, Matthew M. Pieri, Marc Pinson-
neault, Alice Pisani, Radosław Poleski, Francisco Prada, Abhishek Prakash,
Anna Bárbara de Andrade Queiroz, M. Jordan Raddick, Anand Raichoor,
Sandro Barboza Rembold, Hannah Richstein, Rogemar A. Riffel, Rogério
Riffel, Hans-Walter Rix, Annie C. Robin, Constance M. Rockosi, Ser-
gio Rodríguez-Torres, A. Roman-Lopes, Carlos Román-Zúñiga, Margarita
Rosado, Ashley J. Ross, Graziano Rossi, John Ruan, Rossana Ruggeri,
Eli S. Rykoff, Salvador Salazar-Albornoz, Mara Salvato, Ariel G. Sánchez,
D. S. Aguado, José R. Sánchez-Gallego, Felipe A. Santana, Basílio Xavier
Santiago, Conor Sayres, Ricardo P. Schiavon, Jaderson da Silva Schi-
moia, Edward F. Schlafly, David J. Schlegel, Donald P. Schneider, Math-
ias Schultheis, William J. Schuster, Axel Schwope, Hee-Jong Seo, Zhengyi
Shao, Shiyin Shen, Matthew Shetrone, Michael Shull, Joshua D. Simon,
Danielle Skinner, M. F. Skrutskie, Anže Slosar, Verne V. Smith, Jen-
nifer S. Sobeck, Flavia Sobreira, Garrett Somers, Diogo Souto, David V.



Bibliography 201

Stark, Keivan Stassun, Fritz Stauffer, Matthias Steinmetz, Thaisa Storchi-
Bergmann, Alina Streblyanska, Guy S. Stringfellow, Genaro Suárez, Jing
Sun, Nao Suzuki, Laszlo Szigeti, Manuchehr Taghizadeh-Popp, Baitian
Tang, Charling Tao, Jamie Tayar, Mita Tembe, Johanna Teske, Anirud-
dha R. Thakar, Daniel Thomas, Benjamin A. Thompson, Jeremy L. Tin-
ker, Patricia Tissera, Rita Tojeiro, Hector Hernandez Toledo, Sylvain de la
Torre, Christy Tremonti, Nicholas W. Troup, Octavio Valenzuela, Inma
Martinez Valpuesta, Jaime Vargas-González, Mariana Vargas-Magaña,
Jose Alberto Vazquez, Sandro Villanova, M. Vivek, Nicole Vogt, David
Wake, Rene Walterbos, Yuting Wang, Benjamin Alan Weaver, Anne-Marie
Weijmans, David H. Weinberg, Kyle B. Westfall, David G. Whelan, Vivi-
enne Wild, John Wilson, W. M. Wood-Vasey, Dominika Wylezalek, Ting
Xiao, Renbin Yan, Meng Yang, Jason E. Ybarra, Christophe Yèche, Na-
dia Zakamska, Olga Zamora, Pauline Zarrouk, Gail Zasowski, Kai Zhang,
Gong-Bo Zhao, Zheng Zheng, Zheng Zheng, Xu Zhou, Zhi-Min Zhou,
Guangtun B. Zhu, Manuela Zoccali, and Hu Zou. Sloan Digital Sky Survey
IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe.
The Astronomical Journal, 154(1):28, July 2017.

[17] M. Born and E. Wolf. Principles of Optics: Electromagnetic Theory of
Propagation, Interference and Diffraction of Light. Pergamon Press, 1959.

[18] Alexandre Boucaud, Marc Huertas-Company, Caroline Heneka, Emille E O
Ishida, Nima Sedaghat, Rafael S de Souza, Ben Moews, Hervé Dole, Marco
Castellano, Emiliano Merlin, Valerio Roscani, Andrea Tramacere, Mad-
hura Killedar, Arlindo M M Trindade, and Collaboration for the COIN.
Photometry of high-redshift blended galaxies using deep learning. Monthly
Notices of the Royal Astronomical Society, 491(2):2481–2495, 12 2019.

[19] Micah Bowles, Anna M M Scaife, Fiona Porter, Hongming Tang, and
David J Bastien. Attention-gating for improved radio galaxy classification.
Monthly Notices of the Royal Astronomical Society, 501(3):4579–4595, De-
cember 2020.

[20] Mary Ann Branch, Thomas F. Coleman, and Yuying Li. A subspace, in-
terior, and conjugate gradient method for large-scale bound-constrained
minimization problems. SIAM Journal on Scientific Computing, 21(1):1–
23, January 1999.

[21] G. Brand. XI. observations of altitude and azimuth of the great comet
of 1843, made at st. helena. Monthly Notices of the Royal Astronomical
Society, 6(11):136–136, December 1844.

[22] Massimo Brescia, S G Djorgovski, Eric D Feigelson, Giuseppe Longo, and
Stefano Cavuoti, editors. Proceedings of the International Astronomical



202 Bibliography

Union Symposia and Colloquia: Astroinformatics (IAU S325). Cambridge
University Press, Cambridge, England, June 2017.

[23] Guillermo Cabrera-Vives, Ignacio Reyes, Francisco Förster, Pablo A. Es-
tévez, and Juan-Carlos Maureira. Deep-hits: Rotation invariant convolu-
tional neural network for transient detection. The Astrophysical Journal,
836(1):97, feb 2017.

[24] John M. Carpenter, Andrea Corvilló n, Jennifer Donovan Meyer, Adele L.
Plunkett, Robert Kurowski, Alex Chalevin, and Enrique Macías. Update
on the systematics in the ALMA proposal review process after cycle 8.
Publications of the Astronomical Society of the Pacific, 134(1034):045001,
apr 2022.

[25] Rodrigo Carrasco-Davis, Guillermo Cabrera-Vives, Francisco Förster,
Pablo A. Estévez, Pablo Huijse, Pavlos Protopapas, Ignacio Reyes, Jorge
Martínez-Palomera, and Cristóbal Donoso. Deep learning for image se-
quence classification of astronomical events. Publications of the Astronom-
ical Society of the Pacific, 131(1004):108006, sep 2019.

[26] S. Casertano, M. G. Lattanzi, A. Sozzetti, A. Spagna, S. Jancart, R. Mor-
bidelli, R. Pannunzio, D. Pourbaix, and D. Queloz. Double-blind test
program for astrometric planet detection with gaia. AStronomy & As-
trophysics, 482(2):699–729, February 2008.

[27] D Chen. Step mission: high-precision space astrometry to search for terres-
trial exoplanets. Journal of Instrumentation, 9(4):C04040–C04040, April
2014.

[28] XI Chen, Nikhil Mishra, Mostafa Rohaninejad, and Pieter Abbeel. Pixel-
SNAIL: An improved autoregressive generative model. In Jennifer Dy and
Andreas Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning Re-
search, pages 864–872. PMLR, 10–15 Jul 2018.

[29] Ting-Yun Cheng, Christopher J Conselice, Alfonso Aragón-Salamanca, Nan
Li, Asa F L Bluck, Will G Hartley, James Annis, David Brooks, Peter Doel,
Juan García-Bellido, David J James, Kyler Kuehn, Nikolay Kuropatkin,
Mathew Smith, Flavia Sobreira, and Gregory Tarle. Optimizing automatic
morphological classification of galaxies with machine learning and deep
learning using dark energy survey imaging. Monthly Notices of the Royal
Astronomical Society, 493(3):4209–4228, February 2020.

[30] Ting-Yun Cheng, Nan Li, Christopher J. Conselice, Alfonso Aragón-
Salamanca, Simon Dye, and Robert B. Metcalf. Identifying strong



Bibliography 203

lenses with unsupervised machine learning using convolutional autoen-
coder. Monthly Notices of the Royal Astronomical Society, 494(3):3750–
3765, April 2020.

[31] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio.
Empirical evaluation of gated recurrent neural networks on sequence mod-
eling. CoRR, abs/1412.3555, 2014.

[32] B. G. Clark. An efficient implementation of the algorithm ’clean’. Astron-
omy and Astrophysiscs, 89(3):377, sep 1980.

[33] Liam Connor, Katherine L Bouman, Vikram Ravi, and Gregg Hallinan.
Deep radio-interferometric imaging with POLISH: DSA-2000 and weak
lensing. Monthly Notices of the Royal Astronomical Society, 514(2):2614–
2626, May 2022.

[34] Tim J. Cornwell. Multiscale CLEAN deconvolution of radio synthesis im-
ages. IEEE Journal of Selected Topics in Signal Processing, 2(5):793–801,
October 2008.

[35] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
learning, 20(3):273–297, 1995.

[36] Paulo Cortes, Anthony Remijan, Andy Biggs, Bill Dent, John Carpen-
ter, Ed Fomalont, Antonio Hales, Seiji Kameno, Brian Mason, N. Philips,
Kamaljeet Saini, Felix Stoehr, Baltasar Vila Vilaro, and Eric Villard.
ALMA Cycle 8 2021 Technical Handbook, March 2021. Additional con-
tributors to this edition: Tim Bastian, Crystal Brogan, John Carpenter,
Chinshin Chang, Geoff Crew, Paul Fisher, Misato Fukagawa, Melissa Hoff-
man, Chat Hull, Hugo Messias, Todd Hunter, Ruediger Kneissl, Andy Lip-
nicky, Ryan Loomis, Sergio Martin, Lynn Matthews, Luke Maud, Yusuke
Miyamoto, Tony Mroczkowski, Hiroshi Nagai, Kouichiro Nakanishi, Ma-
sumi Shimojo, Richard Simon, Jeremy Thorley, MCarmen Toribio, Cata-
rina Ubach, Catherine Vlahakis, Martin Zwaan.

[37] Robert A. Crain, Joop Schaye, Richard G. Bower, Michelle Furlong,
Matthieu Schaller, Tom Theuns, Claudio Dalla Vecchia, Carlos S. Frenk,
Ian G. McCarthy, John C. Helly, Adrian Jenkins, Yetli M. Rosas-Guevara,
Simon D. M. White, and James W. Trayford. The EAGLE simula-
tions of galaxy formation: calibration of subgrid physics and model vari-
ations. Monthly Notices of the Royal Astronomical Society, 450(2):1937–
1961, April 2015.

[38] G. Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems, 2(4):303–314, 1989.



204 Bibliography

[39] Alexandre d’Aspremont, Laurent E Ghaoui, Michael I Jordan, and Gert R
Lanckriet. A direct formulation for sparse pca using semidefinite program-
ming. In Advances in neural information processing systems, pages 41–48,
2005.

[40] A. D’Isanto and K. L. Polsterer. Photometric redshift estimation via deep
learning. Astronomy & Astrophysics, 609:A111, January 2018.

[41] Lars Doorenbos, Olena Torbaniuk, Stefano Cavuoti, Maurizio Paolillo,
Giuseppe Longo, Massimo Brescia, Raphael Sznitman, and Pablo Márquez-
Neila. ulisse: A tool for one-shot sky exploration and its application for
detection of active galactic nuclei. Astronomy & Astrophysics, 666:A171,
October 2022.

[42] T.A. Driscoll and R.J. Braun. Fundamentals of Numerical Computation.
Other Titles in Applied Mathematics. Society for Industrial and Applied
Mathematics, 2017.

[43] Roberta Duarte, Rodrigo Nemmen, and João Paulo Navarro. Black hole
weather forecasting with deep learning: a pilot study. Monthly Notices of
the Royal Astronomical Society, 512(4):5848–5861, March 2022.

[44] Thierry Dumas, Aline Roumy, and Christine Guillemot. Autoencoder based
image compression: Can the learning be quantization independent? In 2018
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1188–1192, 2018.

[45] Torsten A. Enßlin, Mona Frommert, and Francisco S. Kitaura. Information
field theory for cosmological perturbation reconstruction and nonlinear sig-
nal analysis. Phys. Rev. D, 80:105005, Nov 2009.

[46] F. Förster, G. Cabrera-Vives, E. Castillo-Navarrete, P. A. Estévez,
P. Sánchez-Sáez, J. Arredondo, F. E. Bauer, R. Carrasco-Davis, M. Cate-
lan, F. Elorrieta, S. Eyheramendy, P. Huijse, G. Pignata, E. Reyes,
I. Reyes, D. Rodríguez-Mancini, D. Ruz-Mieres, C. Valenzuela, I. Álvarez-
Maldonado, N. Astorga, J. Borissova, A. Clocchiatti, D. De Cicco,
C. Donoso-Oliva, L. Hernández-García, M. J. Graham, A. Jordán,
R. Kurtev, A. Mahabal, J. C. Maureira, A. Muñoz-Arancibia, R. Molina-
Ferreiro, A. Moya, W. Palma, M. Pérez-Carrasco, P. Protopapas,
M. Romero, L. Sabatini-Gacitua, A. Sánchez, J. San Martín, C. Sepúlveda-
Cobo, E. Vera, and J. R. Vergara. The automatic learning for the rapid
classification of events (ALeRCE) alert broker. The Astronomical Journal,
161(5):242, April 2021.



Bibliography 205

[47] Joana Frontera-Pons, Florent Sureau, Jerome Bobin, and Emeric Le Floc’h.
Unsupervised feature-learning for galaxy seds with denoising autoencoders.
Astronomy & Astrophysics, 2017.

[48] Seiji Fujimoto, Masamune Oguri, Gabriel Brammer, Yuki Yoshimura, Nico-
las Laporte, Jorge González-López, Gabriel B. Caminha, Kotaro Kohno,
Adi Zitrin, Johan Richard, Masami Ouchi, Franz E. Bauer, Ian Smail,
Bunyo Hatsukade, Yoshiaki Ono, Vasily Kokorev, Hideki Umehata, Daniel
Schaerer, Kirsten Knudsen, Fengwu Sun, Georgios Magdis, Francesco
Valentino, Yiping Ao, Sune Toft, Miroslava Dessauges-Zavadsky, Kazuhiro
Shimasaku, Karina Caputi, Haruka Kusakabe, Kana Morokuma-Matsui,
Kikuchihara Shotaro, Eiichi Egami, Minju M. Lee, Timothy Rawle, and
Daniel Espada. ALMA lensing cluster survey: Bright [c ii] 158 µm lines
from a multiply imaged sub-l galaxy at z = 6.0719. The Astrophysical Jour-
nal, 911(2):99, April 2021.

[49] Simon Goode, Jeff Cooke, Jielai Zhang, Ashish Mahabal, Sara Webb,
and Sarah Hegarty. Machine learning for fast transients for the deeper,
wider, faster programme with the removal of BOgus transients (ROBOT)
pipeline. Monthly Notices of the Royal Astronomical Society, 513(2):1742–
1754, April 2022.

[50] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[51] John T Gosling. The solar wind. In Encyclopedia of the Solar System,
pages 99–116. Elsevier, 2007.

[52] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz
Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming
He. Accurate, large minibatch SGD: training imagenet in 1 hour. CoRR,
abs/1706.02677, 2017.

[53] F. Guglielmetti, R. Fischer, and V. Dose. Background-source separation
in astronomical images with bayesian probability theory - i. the method.
Monthly Notices of the Royal Astronomical Society, 396(1):165–190, June
2009.

[54] Isabelle Guyon, Masoud Nikravesh, Steve Gunn, and Lotfi A. Zadeh, edi-
tors. Feature Extraction. Springer Berlin Heidelberg, 2006.

[55] Olivier Guyon, Eduardo A Bendek, Josh A Eisner, Roger Angel, Neville J
Woolf, Thomas D Milster, S Mark Ammons, Michael Shao, Stuart Shaklan,
Marie Levine, et al. High-precision astrometry with a diffractive pupil
telescope. The Astrophysical Journal Supplement Series, 200(2):11, 2012.



206 Bibliography

[56] Olivier Guyon, Josh A. Eisner, Roger Angel, Neville J. Woolf, Eduardo A.
Bendek, Thomas D. Milster, S. Mark Ammons, Michael Shao, Stuart
Shaklan, Marie Levine, Bijan Nemati, Frantz Martinache, Joe Pitman,
Robert A. Woodruff, and Ruslan Belikov. Simultaneous exoplanet char-
acterization and deep wide-field imaging with a diffractive pupil telescope.
The Astrophysical Journal, 767(1):11, March 2013.

[57] C. A. Hales, T. Murphy, J. R. Curran, E. Middelberg, B. M. Gaensler,
and R. P. Norris. blobcat: software to catalogue flood-filled blobs in radio
images of total intensity and linear polarization. Monthly Notices of the
Royal Astronomical Society, 425(2):979–996, August 2012.

[58] G. Hallinan, V. Ravi, S. Weinreb, J. Kocz, Y. Huang, D. P. Woody,
J. Lamb, L. D’Addario, M. Catha, J. Shi, C. Law, S. R. Kulkarni, E. S.
Phinney, M. W. Eastwood, K. L. Bouman, M. A. McLaughlin, S. M. Ran-
som, X. Siemens, J. M. Cordes, R. S. Lynch, D. L. Kaplan, S. Chatterjee,
J. Lazio, A. Brazier, S. Bhatnagar, S. T. Myers, F. Walter, and B. M.
Gaensler. The dsa-2000 – a radio survey camera, 2019.

[59] Qin Hao-ran, Lin Ji-ming, and Wang Jun-yi. Stacked denoising autoen-
coders applied to star/galaxy classification. Chinese Astronomy and As-
trophysics, 41(2):282 – 292, 2017.

[60] P. Hartley, A. Bonaldi, R. Braun, J. N. H. S. Aditya, S. Aicardi, L. Ale-
gre, A. Chakraborty, X. Chen, S. Choudhuri, A. O. Clarke, J. Coles, J. S.
Collinson, D. Cornu, L. Darriba, M. Delli Veneri, J. Forbrich, B. Fraga,
A. Galan, J. Garrido, F. Gubanov, H. Håkansson, M. J. Hardcastle,
C. Heneka, D. Herranz, K. M. Hess, M. Jagannath, S. Jaiswa, R. J.
Jurek, D. Korber, S. Kitaeff, D. Kleiner, B. Lao, X. Lu, A. Mazumder,
J. Moldón, R. Mondal, S. Ni, M. Önnheim, M. Parra, N. Patra, A. Peel,
P. Salomé, S. Sánchez-Expósito, M. Sargent, B. Semelin, P. Serra, A. K.
Shaw, A. X. Shen, A. Sjöberg, L. Smith, A. Soroka, V. Stolyarov, E. Tolley,
M. C. Toribio, J. M. van der Hulst, A. Vafaei Sadr, L. Verdes-Montenegro,
T. Westmeier, K. Yu7 L. Yu, L. Zhang, X. Zhang, Y. Zhang, A. Alberdi,
M. Ashdown, C.R. Bom, M. Brüggen, J. Cannon, R. Chen, F. Combes,
J. Conway36, F. Courbin, J. Ding, G. Fourestey, J. Freundlich, L. Gao,
C. Gheller, Q. Guo, E. Gustavsson, M. Jirstrand, M. G. Jones, G. Józsa,
P. Kamphuis, J.-P. Kneib, M. Lindqvist, B. Liu, Y. Liu, Y. Mao, A. Mar-
chal, I. Márquez, A. Meshcheryakov, M. Olberg, N. Oozeer, M. Pandey-
Pommier, W. Pe, B. Peng, J. Sabater, A. Sorgho, J.L.Starck, C. Tasse,
A. Wang, Y. Wang, H. Xi, X. Yang, H. Zhang, J. Zhang, M. Zhao, and
S. Zuo. Ska science data challenge 2: analysis and results. 2022.



Bibliography 207

[61] Mohammed Hassanin, Saeed Anwar, Ibrahim Radwan, Fahad S Khan, and
Ajmal Mian. Visual attention methods in deep learning: An in-depth sur-
vey, 2022.

[62] Ryan Hausen and Brant E. Robertson. Morpheus: A deep learning frame-
work for the pixel-level analysis of astronomical image data. The Astro-
physical Journal Supplement Series, 248(1):20, may 2020.

[63] Kaiming He and Jian Sun. Convolutional neural networks at constrained
time cost. In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5353–5360, 2015.

[64] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. CoRR, abs/1512.03385, 2015.

[65] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

[66] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of
data with neural networks. Science, 313(5786):504–507, 2006.

[67] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neu-
ral Computation, 9(8):1735–1780, November 1997.

[68] Jacqueline A. Hodge and Elisabete da Cunha. High-redshift star formation
in the atacama large millimetre/submillimetre array era. Royal Society
Open Science, 7, 2020.

[69] J. A. Högbom. Aperture Synthesis with a Non-Regular Distribution of
Interferometer Baselines. Astronomy & Astrophysics, 15:417, June 1974.

[70] JA HÖGBOM. Aperture synthesis with a non-regular distribution of in-
terferometer baselines. ON THE COLLECTION AND ANALYSES OF
ASTROPHYSICAL, DATA, 15:417, 1972.

[71] Mareki Honma, Kazunori Akiyama, Makoto Uemura, and Shiro Ikeda.
Super-resolution imaging with radio interferometry using sparse modeling.
Publications of the Astronomical Society of Japan, 66(5), September 2014.

[72] A. W. Hotan, J. D. Bunton, A. P. Chippendale, M. Whiting, J. Tuthill,
V. A. Moss, D. McConnell, S. W. Amy, M. T. Huynh, J. R. Allison, C. S.
Anderson, K. W. Bannister, E. Bastholm, R. Beresford, D. C.-J. Bock,
R. Bolton, J. M. Chapman, K. Chow, J. D. Collier, F. R. Cooray, T. J.
Cornwell, P. J. Diamond, P. G. Edwards, I. J. Feain, T. M. O. Franzen,
D. George, N. Gupta, G. A. Hampson, L. Harvey-Smith, D. B. Hayman,



208 Bibliography

I. Heywood, C. Jacka, C. A. Jackson, S. Jackson, K. Jeganathan, S. John-
ston, M. Kesteven, D. Kleiner, B. S. Koribalski, K. Lee-Waddell, E. Lenc,
E. S. Lensson, S. Mackay, E. K. Mahony, N. M. McClure-Griffiths, R. Mc-
Conigley, P. Mirtschin, A. K. Ng, R. P. Norris, S. E. Pearce, C. Phillips,
M. A. Pilawa, W. Raja, J. E. Reynolds, P. Roberts, D. N. Roxby, E. M.
Sadler, M. Shields, A. E. T. Schinckel, P. Serra, R. D. Shaw, T. Sweetnam,
E. R. Troup, A. Tzioumis, M. A. Voronkov, and T. Westmeier. Australian
square kilometre array pathfinder: I. system description. Publications of
the Astronomical Society of Australia, 38, 2021.

[73] M. Huertas-Company, J. R. Primack, A. Dekel, D. C. Koo, S. Lap-
iner, D. Ceverino, R. C. Simons, G. F. Snyder, M. Bernardi, Z. Chen,
H. Domínguez-Sánchez, C. T. Lee, B. Margalef-Bentabol, and D. Tuccillo.
Deep learning identifies high-z galaxies in a central blue nugget phase in
a characteristic mass range. The Astrophysical Journal, 858(2):114, may
2018.

[74] A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Analysis.
Adaptive and Cognitive Dynamic Systems: Signal Processing, Learning,
Communications and Control. Wiley, 2004.

[75] Pavel Iakubovskii. Segmentation models pytorch. https://github.com/
qubvel/segmentation_models.pytorch, 2019.

[76] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift, 2015.

[77] Mikaël Jacquemont, Thomas Vuillaume, Alexandre Benoit, Gilles Maurin,
and Patrick Lambert. Deep learning for astrophysics, understanding the im-
pact of attention on variability induced by parameter initialization. In Al-
berto Del Bimbo, Rita Cucchiara, Stan Sclaroff, Giovanni Maria Farinella,
Tao Mei, Marco Bertini, Hugo Jair Escalante, and Roberto Vezzani, edi-
tors, Pattern Recognition. ICPR International Workshops and Challenges,
pages 174–188, Cham, 2021. Springer International Publishing.

[78] Peng Jia, Xiyu Li, Zhengyang Li, Weinan Wang, and Dongmei Cai. Point
spread function modelling for wide-field small-aperture telescopes with a
denoising autoencoder. Monthly Notices of the Royal Astronomical Society,
493(1):651–660, 02 2020.

[79] Kyong Hwan Jin, Michael T. McCann, Emmanuel Froustey, and Michael
Unser. Deep convolutional neural network for inverse problems in imag-
ing. IEEE Transactions on Image Processing, 26(9):4509–4522, September
2017.



Bibliography 209

[80] H. Junklewitz, M. R. Bell, M. Selig, and T. A. Enßlin. RESOLVE: A
new algorithm for aperture synthesis imaging of extended emission in radio
astronomy. Astronomy & Astrophysics, 586:A76, January 2016.

[81] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. CoRR, abs/1412.6980, 2014.

[82] M Kovačević, G Chiaro, S Cutini, and G Tosti. Classification of blazar
candidates of uncertain type from the fermi LAT 8-yr source catalogue with
an artificial neural network. Monthly Notices of the Royal Astronomical
Society, 493(2):1926–1935, February 2020.

[83] Kazuki Kuramochi, Kazunori Akiyama, Shiro Ikeda, Fumie Tazaki, Vin-
cent L. Fish, Hung-Yi Pu, Keiichi Asada, and Mareki Honma. Superres-
olution interferometric imaging with sparse modeling using total squared
variation: Application to imaging the black hole shadow. The Astrophysical
Journal, 858(1):56, may 2018.

[84] François Lanusse, Rachel Mandelbaum, Siamak Ravanbakhsh, Chun-Liang
Li, Peter Freeman, and Barnabás Póczos. Deep generative models for
galaxy image simulations. Monthly Notices of the Royal Astronomical So-
ciety, 504(4):5543–5555, May 2021.

[85] Francois Lanusse, Peter Melchior, and Fred Moolekamp. Hybrid physical-
deep learning model for astronomical inverse problems, 2019.

[86] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[87] Chien-Hsiu Lee. Exoplanets: Past, present, and future. Galaxies, 6(2):51,
April 2018.

[88] Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by non-
negative matrix factorization. Nature, 401(6755):788–791, October 1999.

[89] Di Li, Pei Wang, Lei Qian, Marko Krco, Alex Dunning, Peng Jiang, Youling
Yue, Chenjin Jin, Yan Zhu, Zhichen Pan, and Rendong Nan. FAST in space:
Considerations for a multibeam, multipurpose survey using china's 500-m
aperture spherical radio telescope (FAST). IEEE Microwave Magazine,
19(3):112–119, May 2018.

[90] Rui Li, Nicola R. Napolitano, Haicheng Feng, Ran Li, Valeria Amaro,
Linghua Xie, Crescenzo Tortora, Maciej Bilicki, Massimo Brescia, Stefano
Cavuoti, and Mario Radovich. Galaxy morphoto-z with neural networks
(GaZNets). Astronomy & Astrophysics, 666:A85, October 2022.



210 Bibliography

[91] Weitian Li, Haiguang Xu, Zhixian Ma, Ruimin Zhu, Dan Hu, Zhenghao
Zhu, Junhua Gu, Chenxi Shan, Jie Zhu, and Xiang-Ping Wu. Separat-
ing the EoR signal with a convolutional denoising autoencoder: a deep-
learning-based method. Monthly Notices of the Royal Astronomical Soci-
ety, 485(2):2628–2637, 02 2019.

[92] Wenqi Li, Guotai Wang, Lucas Fidon, Sebastien Ourselin, M. Jorge Car-
doso, and Tom Vercauteren. On the compactness, efficiency, and represen-
tation of 3d convolutional networks: Brain parcellation as a pretext task. In
Lecture Notes in Computer Science, pages 348–360. Springer International
Publishing, 2017.

[93] Sheng-Chieh Lin, Yuanyuan Su, Gongbo Liang, Yuanyuan Zhang, Nathan
Jacobs, and Yu Zhang. Estimating cluster masses from SDSS multiband
images with transfer learning. Monthly Notices of the Royal Astronomical
Society, 512(3):3885–3894, March 2022.

[94] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia. Path aggregation
network for instance segmentation. In 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 8759–8768, 2018.

[95] Federica Loiacono, Roberto Decarli, Carlotta Gruppioni, Margherita Talia,
Andrea Cimatti, Gianni Zamorani, Francesca Pozzi, Lin Yan, Brian C.
Lemaux, Dominik A. Riechers, Olivier Le Fèvre, Matthieu Bèthermin, Pe-
ter Capak, Paolo Cassata, Andreas Faisst, Daniel Schaerer, John D. Sil-
verman, Sandro Bardelli, Médéric Boquien, Sandra Burkutean, Miroslava
Dessauges-Zavadsky, Yoshinobu Fudamoto, Seiji Fujimoto, Michele Ginolfi,
Nimish P. Hathi, Gareth C. Jones, Yana Khusanova, Anton M. Koeke-
moer, Guilaine Lagache, Lori M. Lubin, Marcella Massardi, Pascal Oesch,
Michael Romano, Livia Vallini, Daniela Vergani, and Elena Zucca. The
ALPINE–ALMA [c II] survey. Astronomy & Astrophysics, 646:A76, Febru-
ary 2021.

[96] N. R. Lomb. Least-Squares Frequency Analysis of Unequally Spaced Data.
Astrophysics and Space Science, 39(2):447–462, February 1976.

[97] Giuseppe Longo, Erzsébet Merényi, and Peter Tiňo. Foreword to the focus
issue on machine intelligence in astronomy and astrophysics. Publications
of the Astronomical Society of the Pacific, 131(1004):1–6, 2019.

[98] Vesna Lukic, Francesco de Gasperin, and Marcus Brüggen. ConvoSource:
Radio-astronomical source-finding with convolutional neural networks.
Galaxies, 8(1):3, December 2019.

[99] David J. C. MacKay. Information Theory, Inference, and Learning Algo-
rithms. Copyright Cambridge University Press, 2003.



Bibliography 211

[100] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online
dictionary learning for sparse coding. In Proceedings of the 26th annual
international conference on machine learning, pages 689–696, 2009.

[101] Fabien Malbet, Céline Boehm, Alberto Krone-Martins, Antonio Amorim,
Guillem Anglada-Escudé, Alexis Brandeker, Frédéric Courbin, Torsten
Enßlin, Antonio Falcão, Katherine Freese, Berry Holl, Lucas Labadie, Alain
Léger, Gary A. Mamon, Barbara McArthur, Alcione Mora, Mike Shao,
Alessandro Sozzetti, Douglas Spolyar, Eva Villaver, Ummi Abbas, Conrado
Albertus, João Alves, Rory Barnes, Aldo Stefano Bonomo, Hervé Bouy,
Warren R. Brown, Vitor Cardoso, Marco Castellani, Laurent Chemin,
Hamish Clark, Alexandre C. M. Correia, Mariateresa Crosta, Antoine
Crouzier, Mario Damasso, Jeremy Darling, Melvyn B. Davies, Antonaldo
Diaferio, Morgane Fortin, Malcolm Fridlund, Mario Gai, Paulo Garcia,
Oleg Gnedin, Ariel Goobar, Paulo Gordo, Renaud Goullioud, David Hall,
Nigel Hambly, Diana Harrison, David Hobbs, Andrew Holland, Erik Høg,
Carme Jordi, Sergei Klioner, Ariane Lançon, Jacques Laskar, Mario Lat-
tanzi, Christophe Le Poncin-Lafitte, Xavier Luri, Daniel Michalik, An-
dré Moitinho de Almeida, Ana Mourão, Leonidas Moustakas, Neil J. Mur-
ray, Matthew Muterspaugh, Micaela Oertel, Luisa Ostorero, Jordi Portell,
Jean-Pierre Prost, Andreas Quirrenbach, Jean Schneider, Pat Scott, Ar-
naud Siebert, Antonio da Silva, Manuel Silva, Philippe Thébault, John
Tomsick, Wesley Traub, Miguel de Val-Borro, Monica Valluri, Nicholas A.
Walton, Laura L. Watkins, Glenn White, Lukasz Wyrzykowski, Rosemary
Wyse, and Yoshiyuki Yamada. Faint objects in motion: the new frontier of
high precision astrometry. Experimental Astronomy, 51(3):845–886, June
2021.

[102] Berta Margalef-Bentabol, Marc Huertas-Company, Tom Charnock, Carla
Margalef-Bentabol, Mariangela Bernardi, Yohan Dubois, Kate Storey-
Fisher, and Lorenzo Zanisi. Detecting outliers in astronomical images with
deep generative networks. Monthly Notices of the Royal Astronomical So-
ciety, 496(2):2346–2361, June 2020.

[103] Jonathan Masci, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber.
Stacked convolutional auto-encoders for hierarchical feature extraction. In
Timo Honkela, Włodzisław Duch, Mark Girolami, and Samuel Kaski, ed-
itors, Artificial Neural Networks and Machine Learning – ICANN 2011,
pages 52–59, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[104] Michel Mayor and Didier Queloz. A jupiter-mass companion to a solar-type
star. Nature, 378(6555):355–359, November 1995.



212 Bibliography

[105] J. P McMullin, B. Waters, D. Shiebel, W. Young, and K. Golap. CASA
Architecture and Applications. Astronomical Data Analysis Software and
Systems XVI ASP Conference Series, Vol. 376, proceedings of the confer-
ence held 15-18 October 2006 in Tucson, Arizona, USA. Edited by Richard
A. Shaw, Frank Hill and David J. Bell., p.127, 376, October 2007.

[106] Michael Mesarcik, Albert-Jan Boonstra, Christiaan Meijer, Walter Jansen,
Elena Ranguelova, and Rob V van Nieuwpoort. Deep learning assisted data
inspection for radio astronomy. Monthly Notices of the Royal Astronomical
Society, 496(2):1517–1529, 05 2020.

[107] Niruj R. Mohan and David A. Rafferty. Pybdsf: Python blob detection
and source finder. In https://www.astron.nl/citt/pybdsf/, 2015.

[108] Robert Morgan, Brian Nord, Keith Bechtol, SJ González, E Buckley-Geer,
A Möller, JW Park, AG Kim, S Birrer, M Aguena, et al. Deepzipper: A
novel deep-learning architecture for lensed supernovae identification. The
Astrophysical Journal, 927(1):109, 2022.

[109] Warren R. Morningstar, Laurence Perreault Levasseur, Yashar D. Hezaveh,
Roger Blandford, Phil Marshall, Patrick Putzky, Thomas D. Rueter, Risa
Wechsler, and Max Welling. Data-driven reconstruction of gravitationally
lensed galaxies using recurrent inference machines. The Astrophysical Jour-
nal, 883(1):14, September 2019.

[110] Ali Mousavi, Ankit B. Patel, and Richard G. Baraniuk. A deep learn-
ing approach to structured signal recovery. In In Proceeding of 2015 53rd
Annual Allerton Conference on Communication, Control, and Computing
(Allerton), 2015.

[111] Daniel Muthukrishna, Gautham Narayan, Kaisey S. Mandel, Rahul Biswas,
and Renée Hložek. Rapid: Early classification of explosive transients us-
ing deep learning. Publications of the Astronomical Society of the Pacific,
131(1005):118002, sep 2019.

[112] Steffen Neutsch, Caroline Heneka, and Marcus Brüggen. Inferring astro-
physics and dark matter properties from 21 cm tomography using deep
learning. Monthly Notices of the Royal Astronomical Society, 511(3):3446–
3462, 01 2022.

[113] Isadora Nun, Pavlos Protopapas, Brandon Sim, Ming Zhu, Rahul Dave,
Nicolas Castro, and Karim Pichara. Fats: Feature analysis for time series,
2015.

[114] A. R. Offringa, B. McKinley, Hurley-Walker, et al. WSClean: an imple-
mentation of a fast, generic wide-field imager for radio astronomy. MNRAS,
444(1):606–619, 2014.



Bibliography 213

[115] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative
style, high-performance deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems 32, pages 8024–8035. Curran
Associates, Inc., 2019.

[116] K Pearson. On lines of closes fit to system of points in space, london, e
dinb. Dublin Philos. Mag. J. Sci, 2:559–572, 1901.

[117] W. J. Pearson, L. Wang, J. W. Trayford, C. E. Petrillo, and F. F. S. van der
Tak. Identifying galaxy mergers in observations and simulations with deep
learning. Astronomy & Astrophysics, 626:49, June 2019.

[118] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[119] Meyer Z. Pesenson, Isaac Z. Pesenson, and Bruce McCollum. The data
big bang and the expanding digital universe: High-dimensional, complex
and massive data sets in an inflationary epoch. Advances in Astronomy,
2010:1–16, 2010.

[120] Óscar Pimentel, Pablo A. Estévez, and Francisco Förster. Deep attention-
based supernovae classification of multiband light curves. The Astronomical
Journal, 165(1):18, December 2022.

[121] Xuebin Qin, Zichen Zhang, Chenyang Huang, Masood Dehghan, Osmar R.
Zaiane, and Martin Jagersand. U2-net: Going deeper with nested u-
structure for salient object detection. Pattern Recognition, 106:107404,
oct 2020.

[122] P. Ranalli, D. Hobbs, and L. Lindegren. Astrometry and exoplanets in
the gaia era: a bayesian approach to detection and parameter recovery.
AStronomy & Astrophysics, 614:A30, June 2018.

[123] Oleksandra Razim, Stefano Cavuoti, Massimo Brescia, Giuseppe Riccio,
Mara Salvato, and Giuseppe Longo. Improving the reliability of photomet-
ric redshift with machine learning. Monthly Notices of the Royal Astro-
nomical Society, 507(4):5034–5052, August 2021.



214 Bibliography

[124] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only
look once: Unified, real-time object detection. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 779–788, 2016.

[125] Andrew Resnick. Fourier optics and computational imaging, by kedar
khare. Contemporary Physics, 58(1):102–103, 2017.

[126] Esteban Reyes and Pablo A. Estévez. Transformation based deep anomaly
detection in astronomical images. In 2020 International Joint Conference
on Neural Networks (IJCNN), pages 1–8, 2020.

[127] S Rezaei, J P McKean, M Biehl, and A Javadpour. DECORAS: detec-
tion and characterization of radio-astronomical sources using deep learn-
ing. Monthly Notices of the Royal Astronomical Society, 510(4):5891–5907,
December 2021.

[128] Alejandra Rocha-Solache, Iván Rodríguez-Montoya, David Sánchez-
Argüelles, and Itziar Aretxaga. Time-domain deep-learning filtering of
structured atmospheric noise for ground-based millimeter astronomy. The
Astrophysical Journal Supplement Series, 260(1):15, 2022.

[129] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convo-
lutional networks for biomedical image segmentation. In Nassir Navab,
Joachim Hornegger, William M. Wells, and Alejandro F. Frangi, editors,
Medical Image Computing and Computer-Assisted Intervention – MICCAI
2015, pages 234–241, Cham, 2015. Springer International Publishing.

[130] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
internal representations by error propagation. In David E. Rumelhart and
James L. Mcclelland, editors, Parallel Distributed Processing: Explorations
in the Microstructure of Cognition, Volume 1: Foundations, pages 318–
362. MIT Press, Cambridge, MA, 1986.

[131] A Vafaei Sadr, Etienne E Vos, Bruce A Bassett, Zafiirah Hosenie, N Oozeer,
and Michelle Lochner. Deepsource: point source detection using deep learn-
ing. Monthly Notices of the Royal Astronomical Society, 484(2):2793–2806,
February 2019.

[132] J. D. Scargle. Studies in astronomical time series analysis. II. Statistical
aspects of spectral analysis of unevenly spaced data. Astrophys. J., 263:835–
853, December 1982.

[133] K. Schmidt, F. Geyer, S. Fröse, P.-S. Blomenkamp, M. Brüggen,
F. de Gasperin, D. Elsässer, and W. Rhode. Deep learning-based imag-
ing in radio interferometry. Astronomy & Astrophysics, April 2022.



Bibliography 215

[134] Morgan A. Schmitz, Matthieu Heitz, Nicolas Bonneel, Fred Ngolè , David
Coeurjolly, Marco Cuturi, Gabriel Peyré, and Jean-Luc Starck. Wasser-
stein dictionary learning: Optimal transport-based unsupervised nonlinear
dictionary learning. SIAM Journal on Imaging Sciences, 11(1):643–678,
jan 2018.

[135] Paolo Serra, Tobias Westmeier, Nadine Giese, Russell Jurek, Lars Flöer,
Attila Popping, Benjamin Winkel, Thijs van der Hulst, Martin Meyer, Bär-
bel S. Koribalski, Lister Staveley-Smith, and Hélène Courtois. Sofia: a flex-
ible source finder for 3d spectral line data. Monthly Notices of the Royal
Astronomical Society, 448(2):1922–1929, 02 2015.

[136] Michael Shao, Geoff Marcy, Joseph H. Catanzarite, Stephen J. Edberg,
Alain Léger, Fabien Malbet, Didier Queloz, Matthew W. Muterspaugh,
Charles A. Beichman, Debra A. Fischer, Eric B. Ford, Rob P. Olling, Shrini-
vas R. Kulkarni, Stephen C. Unwin, and Wesley A. Traub. Astrometric
detection of earthlike planets. arXiv: Earth and Planetary Astrophysics,
2009.

[137] Hidetoshi Shimodaira. Improving predictive inference under covariate shift
by weighting the log-likelihood function. Journal of Statistical Planning
and Inference, 90(2):227–244, 2000.

[138] Michael J Smith and James E Geach. Generative deep fields: arbitrar-
ily sized, random synthetic astronomical images through deep learning.
Monthly Notices of the Royal Astronomical Society, 490(4):4985–4990, 10
2019.

[139] Charles Soussen, Jérôme Idier, David Brie, and Junbo Duan. From
Bernoulli-Gaussian deconvolution to sparse signal restoration. technical
report, 34 pages, January 2010.

[140] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway
networks, 2015.

[141] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Training
very deep networks. CoRR, abs/1507.06228, 2015.

[142] Jean-Luc Starck, Jalal Fadili, and Fionn Murtagh. The undecimated
wavelet decomposition and its reconstruction. IEEE Transactions on Im-
age Processing, 16(2):297–309, 2007.

[143] Jean-Luc Starck and Fionn Murtagh. Astronomical Image and Data Anal-
ysis. Springer Berlin Heidelberg, 2002.

[144] STScI Development Team. pysynphot: Synthetic photometry software
package, March 2013.



216 Bibliography

[145] Carole H. Sudre, Wenqi Li, Tom Vercauteren, Sebastien Ourselin, and
M. Jorge Cardoso. Generalised dice overlap as a deep learning loss func-
tion for highly unbalanced segmentations. In Deep Learning in Medical
Image Analysis and Multimodal Learning for Clinical Decision Support,
pages 240–248. Springer International Publishing, 2017.

[146] Jesse Sun, Fatemeh Darbehani, Mark Zaidi, and Bo Wang. Saunet: Shape
attentive u-net for interpretable medical image segmentation. In Anne L.
Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A.
Zuluaga, S. Kevin Zhou, Daniel Racoceanu, and Leo Joskowicz, editors,
Medical Image Computing and Computer Assisted Intervention – MICCAI
2020, pages 797–806, Cham, 2020. Springer International Publishing.

[147] Sam F. Sweere, Ivan Valtchanov, Maggie Lieu, Antonia Vojtekova, Eva
Verdugo, Maria Santos-Lleo, Florian Pacaud, Alexia Briassouli, and
Daniel Cámpora Pérez. Deep learning-based super-resolution and de-
noising for xmm-newton images, 2022.

[148] THE CASA TEAM, Ben Bean, Sanjay Bhatnagar, Sandra Castro, Jen-
nifer Donovan Meyer, Bjorn Emonts, Enrique Garcia, Robert Garwood,
Kumar Golap, Justo Gonzalez Villalba, Pamela Harris, Yohei Hayashi, Josh
Hoskins, Mingyu Hsieh, Preshanth Jagannathan, Wataru Kawasaki, Aard
Keimpema, Mark Kettenis, Jorge Lopez, Joshua Marvil, Joseph Masters,
Andrew McNichols, David Mehringer, Renaud Miel, George Moellenbrock,
Federico Montesino, Takeshi Nakazato, Juergen Ott, Dirk Petry, Martin
Pokorny, Ryan Raba, Urvashi Rau, Darrell Schiebel, Neal Schweighart,
Srikrishna Sekhar, Kazuhiko Shimada, Des Small, Jan-Willem Steeb,
Kanako Sugimoto, Ville Suoranta, Takahiro Tsutsumi, Ilse M. van Bemmel,
Marjolein Verkouter, Akeem Wells, Wei Xiong, Arpad Szomoru, Morgan
Griffith, Brian Glendenning, and Jeff Kern. Casa, the common astronomy
software applications for radio astronomy. arXiv, 2022.

[149] The Theia Collaboration, Celine Boehm, Alberto Krone-Martins, Antonio
Amorim, Guillem Anglada-Escude, Alexis Brandeker, Frederic Courbin,
Torsten Ensslin, Antonio Falcao, Katherine Freese, Berry Holl, Lucas
Labadie, Alain Leger, Fabien Malbet, Gary Mamon, Barbara McArthur,
Alcione Mora, Michael Shao, Alessandro Sozzetti, Douglas Spolyar, Eva
Villaver, Conrado Albertus, Stefano Bertone, Herve Bouy, Michael Boylan-
Kolchin, Anthony Brown, Warren Brown, Vitor Cardoso, Laurent Chemin,
Riccardo Claudi, Alexandre C. M. Correia, Mariateresa Crosta, Antoine
Crouzier, Francis-Yan Cyr-Racine, Mario Damasso, Antonio da Silva,
Melvyn Davies, Payel Das, Pratika Dayal, Miguel de Val-Borro, Antonaldo
Diaferio, Adrienne Erickcek, Malcolm Fairbairn, Morgane Fortin, Malcolm



Bibliography 217

Fridlund, Paulo Garcia, Oleg Gnedin, Ariel Goobar, Paulo Gordo, Renaud
Goullioud, Nigel Hambly, Nathan Hara, David Hobbs, Erik Hog, Andrew
Holland, Rodrigo Ibata, Carme Jordi, Sergei Klioner, Sergei Kopeikin,
Thomas Lacroix, Jacques Laskar, Christophe Le Poncin-Lafitte, Xavier
Luri, Subhabrata Majumdar, Valeri Makarov, Richard Massey, Bertrand
Mennesson, Daniel Michalik, Andre Moitinho de Almeida, Ana Mourao,
Leonidas Moustakas, Neil Murray, Matthew Muterspaugh, Micaela Oer-
tel, Luisa Ostorero, Angeles Perez-Garcia, Imants Platais, Jordi Portell i
de Mora, Andreas Quirrenbach, Lisa Randall, Justin Read, Eniko Re-
gos, Barnes Rory, Krzysztof Rybicki, Pat Scott, Jean Schneider, Jakub
Scholtz, Arnaud Siebert, Ismael Tereno, John Tomsick, Wesley Traub,
Monica Valluri, Matt Walker, Nicholas Walton, Laura Watkins, Glenn
White, Dafydd Wyn Evans, Lukasz Wyrzykowski, and Rosemary Wyse.
Theia: Faint objects in motion or the new astrometry frontier, 2017.

[150] Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc Huszár. Lossy
image compression with compressive autoencoders. In International Con-
ference on Learning Representations, 2017.

[151] George Toderici, Damien Vincent, Nick Johnston, Sung Jin Hwang, David
Minnen, Joel Shor, and Michele Covell. Full resolution image compression
with recurrent neural networks. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5435–5443, 2017.

[152] Peter G. Tuthill, Eduardo Bendek, Olivier Guyon, Bryn Jeffries, Nemanja
Jovanovic, Pete Klupar, Kieran Larkin, Barnaby Norris, Ben Pope, Michael
Shao, and Anthony Horton. The TOLIMAN space telescope. In Antoine
Mérand, Michelle J. Creech-Eakman, and Peter G. Tuthill, editors, Optical
and Infrared Interferometry and Imaging VI. SPIE, July 2018.

[153] Stephen C. Unwin, Michael Shao, Angelle M. Tanner, Ronald J. Allen,
Charles A. Beichman, David Boboltz, Joseph H. Catanzarite, Brian C.
Chaboyer, David R. Ciardi, Stephen J. Edberg, Alan L. Fey, Debra A. Fis-
cher, Christopher R. Gelino, Andrew P. Gould, Carl Grillmair, Todd J.
Henry, Kathryn V. Johnston, Kenneth J. Johnston, Dayton L. Jones,
Shrinivas R. Kulkarni, Nicholas M. Law, Steven R. Majewski, Valeri V.
Makarov, Geoffrey W. Marcy, David L. Meier, Rob P. Olling, Xiaopei Pan,
Richard J. Patterson, Jo Eliza Pitesky, Andreas Quirrenbach, Stuart B.
Shaklan, Edward J. Shaya, Louis E. Strigari, John A. Tomsick, Ann E.
Wehrle, and Guy Worthey. Taking the measure of the universe: Precision
astrometry with sim planetquest. Publications of the Astronomical Society
of the Pacific, 120(863):38–88, January 2008.



218 Bibliography

[154] Aäron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel
recurrent neural networks. In Maria Florina Balcan and Kilian Q. Wein-
berger, editors, Proceedings of The 33rd International Conference on Ma-
chine Learning, volume 48 of Proceedings of Machine Learning Research,
pages 1747–1756, New York, New York, USA, 20–22 Jun 2016. PMLR.

[155] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. Cre-
ateSpace, Scotts Valley, CA, 2009.

[156] Jacob T. VanderPlas. Understanding the Lomb-Scargle Periodogram. The
Astrophysical Journal Supplements Series, 236(1):16, May 2018.

[157] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland,
Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, War-
ren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett,
Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson,
Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng,
Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert
Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M.
Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and
SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261–272, 2020.

[158] Cédric Vonesch, Thierry Blu, and Michael Unser. Generalized daubechies
wavelet families. IEEE Trans. Signal Process., 55(9):4415–4429, 2007.

[159] T Westmeier, S Kitaeff, D Pallot, P Serra, J M van der Hulst, R J Jurek,
A Elagali, B-Q For, D Kleiner, B S Koribalski, K Lee-Waddell, J R Mould,
T N Reynolds, J Rhee, and L Staveley-Smith. Sofia-2: an automated,
parallel hi source finding pipeline for the wallaby survey. Monthly Notices
of the Royal Astronomical Society, 506(3):3962–3976, July 2021.

[160] T Westmeier, S Kitaeff, D Pallot, P Serra, J M van der Hulst, R J Jurek,
A Elagali, B-Q For, D Kleiner, B S Koribalski, K Lee-Waddell, J R Mould,
T N Reynolds, J Rhee, and L Staveley-Smith. sofia-2 an automated, parallel
hi source finding pipeline for the WALLABY survey. Monthly Notices of
the Royal Astronomical Society, 506(3):3962–3976, July 2021.

[161] Zbigniew Wojna, Vittorio Ferrari, Sergio Guadarrama, Nathan Silberman,
Liang-Chieh Chen, Alireza Fathi, and Jasper R. R. Uijlings. The devil is
in the decoder. CoRR, abs/1707.05847, 2017.

[162] Long Xu, Yihua Yan, and Xin Huang. Deep Learning in Solar Astronomy.
Springer Nature Singapore, 2022.



Bibliography 219

[163] Jiancheng Yang, Xiaoyang Huang, Yi He, Jingwei Xu, Canqian Yang,
Guozheng Xu, and Bingbing Ni. Reinventing 2d convolutions for 3d im-
ages. IEEE Journal of Biomedical and Health Informatics, 25(8):3009–3018,
2021.

[164] Zhenping Yi, Jia Li, Wei Du, Meng Liu, Zengxu Liang, Yongguang Xing,
Jingchang Pan, Yude Bu, Xiaoming Kong, and Hong Wu. Automatic de-
tection of low surface brightness galaxies from sloan digital sky survey
images. Monthly Notices of the Royal Astronomical Society, 513(3):3972–
3981, March 2022.

[165] Andy B. Yoo, Morris A. Jette, and Mark Grondona. Slurm: Simple linux
utility for resource management. In Job Scheduling Strategies for Parallel
Processing, pages 44–60. Springer Berlin Heidelberg, Berlin, Heidelberg,
2003.

[166] Jiahui Yu, Yuchen Fan, Jianchao Yang, Ning Xu, Zhaowen Wang, Xinchao
Wang, and Thomas Huang. Wide activation for efficient and accurate image
super-resolution, 2018.

[167] Ivan Zelinka, Massimo Brescia, and Dalya Baron, editors. Intelligent As-
trophysics. Springer International Publishing, 2021.

[168] Qingguo Zeng, Xiangru Li, and Haitao Lin. Concat convolutional neural
network for pulsar candidate selection. Monthly Notices of the Royal As-
tronomical Society, 494(3):3110–3119, April 2020.

[169] Hongyang Zhao, Jing Jin, Yi Liu, Yi Shen, and Yu Jiang. AdaBoost-
MICNN: a new network framework for pulsar candidate selection. Monthly
Notices of the Royal Astronomical Society, 513(2):2869–2883, 03 2022.

[170] Junbo Jake Zhao, Michaël Mathieu, Ross Goroshin, and Yann LeCun.
Stacked what-where auto-encoders. CoRR, abs/1506.02351, 2015.





Author’s Publications

1. M. Delli Veneri, L. Desdoigts, M. A. Schmitz, A. Krone-Martins, E. E. O.
Ishida, P. Tuthill, R. S. De Souza, R. Scalzo, M. Brescia, G. Longo, A.
Picariello, Periodic Astrometric Signal Recovery Through Convolutional
Autoencoders, Intelligent Astrophysics pp 167 - 195, part of the Emer-
gence, Complexity and Computation book series,
https://link.springer.com/chapter/10.1007/978-3-030-65867-0_8;

2. M. Delli Veneri, S. Cavuoti, R. Abbruzzese, M. Brescia, G. Sperli’, V.
Moscato, G. Longo, HyCASTLE: A Hybrid ClAssification System based
on Typicality, Labels and Entropy, Knowledge-Based Systems, Volume 244,
2022,
https://www.sciencedirect.com/science/article/pii/S0950705122002507?
via=ihub;

3. M. Delli Veneri, L. Tychoniec, F. Guglielmetti, G. Longo, E. Villard, 3D
Detection and characterisation of ALMA sources through Deep Learn-
ing, Monthly Notices of the Royal Astronomical Society, Accepted on
12/11/2022,
https://doi.org/10.1093/mnras/stac3314;

4. V. Amaro, S. Cavuoti, M. Brescia, G. Riccio, C. Tortora, M. D’Addona, M.
Delli Veneri, N. R. Napolitano, M. Radovich, G. Longo, Rejection criteria
based on outliers in the KiDS photometric redshifts and PDF distributions
derived by Machine Learning, Intelligent Astrophysics pp 245 - 265, part
of the Emergence, Complexity and Computation book series,
https://link.springer.com/chapter/10.1007/978-3-030-65867-0_11

5. C. Donaddio, M. Brescia, A. Riccardo, G. Angora, M. Delli Veneri, G. Ric-
cio, A novel approach to the classification of terrestrial drainage networks
based on deep learning and preliminary results on solar system bodies, Sci-



222 Bibliography

entific Reports 11, Nature, a.n. 5875, 2021,
https://www.nature.com/articles/s41598-021-85254-x;

6. C. Patruno, G. Fabbrocini, G. Longo, G. Argenziano, S. M. Ferrucci, L.
Stringendi, K. Peris, M. Ortoncelli, A. Offidani, G. F. Amoruso, M. Ta-
lamonti, G. Girolomoni, T. Grieco, M. Iannone, E. Nettis, C. Foti, F.
Rongieletti, M. Corazza, M. Delli Veneri, M. Napoliatano, DADE Study
Group, Effective and safety of long-term dupilumab treatment in elderly
patients with atopic dermatitis: a multicenter real-life observational study,
American Journal of Clinical Dermatology, 22, 481 - 586, 2021
https://link.springer.com/article/10.1007/s40257-021-00597-5;

7. F. Guglielmetti, P.Arras, M. Delli Veneri, T. Enßlin, G. Longo, Ł. Ty-
choniec, E. Villard, Bayesian and Machine Learning Methods in the Big
Data era for astronomical imaging, proceedings International Workshop on
Bayesian Inference and Maximum Entropy Methods in Science and Engi-
neering, IHP, Paris, July 18-22, 2022,
https://doi.org/10.48550/arXiv.2210.01444;

8. M. Delli Veneri, R. S. De Souza, A. Krone-MArtins, E. E. O. Ishida, M.
L. L. Dantas, N. Kennamer, COIN Collaboration, How have astronomers
cited other fields in the last decade?, Research Notes of the American Astro-
nomical Society, Volume 6, Number 6, June 2022, https://iopscience.
iop.org/article/10.3847/2515-5172/ac74c7.


