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Abstract

Nowadays, the ability to locate targets is crucial for a huge number of
applications which demand an ever increasing accuracy. For this reason,
the design of advanced sensing systems has attracted a lot of attention in
both academic and industrial contexts.

The main aim of this thesis is the development of innovative localization
algorithms for some sensing systems of practical relevance. Specifically,
three novel techniques have been devised.

The first strategy, referred to as Angular and Active Constrained Least
Square (AACLS), is an algorithm for 2D Passive Bistatic Radar (PBR)
localization via joint exploitation of multiple illuminators of opportunity
and measurements gathered by a co-located active radar, thus representing
a basic version of a Multiplatform Radar Network (MPRN). This technique
exploits angular and range constraints resulting from prior knowledge of
the PBR beam extent and uncertainty of active radar data.

The second algorithm, denoted as Angular and Range Constrained
Estimator (ARCE), is a 3D localization technique for MPRNs, comprising
one transmitter and multiple receivers. In particular, ARCE leverages
ad-hoc constraints in order to capitalize on the information embedded into
the monostatic sensor radiation pattern features.

The third technique is obtained combining ARCE and the Sum-Product
Algorithm (SPA)-based Multitarget Tracking (MTT) technique. Specifi-
cally, the latter is enhanced through a bespoke particles generation process
exploiting the ARCE position estimate.

Keywords: Multiplatform Radar Network (MPRN), Active Radar, Passive
Bistatic Radar (PBR), Bistatic and Monostatic Measurements, Constrained
Least Squares Estimation, Non-Convex Optimization.



Sintesi in lingua italiana

Al giorno d’oggi, la capacità di localizzare bersagli è fondamentale per
un gran numero di applicazioni, le quali richiedono un’accuratezza sempre
maggiore. Per questo motivo, la progettazione di sistemi di sensing avanzati
ha attirato molta attenzione in ambito sia accademico sia industriale.

Questa tesi tratta lo sviluppo di algoritmi di localizzazione innovativi per
alcuni sistemi di sensing di notevole rilevanza. In particolare, si propongono
tre nuove stragie per il posizionamento dei bersagli.

La prima strategia, denominata Angular and Active Constrained Least
Square (AACLS), è un algoritmo per la localizzazione 2D in sistemi radar
passivi bistatici che sfruttino le misure ottenute da molteplici trasmettitori
d’opportunità e un radar attivo co-locato, rappresentando così una versione
base di un sistema multipiattaforma. Questa tecnica porta in conto i vincoli
angolari e di range che derivano dalla conoscenza dell’estensione del fascio
del radar passivo bistatico e dall’incertezza dei dati del radar attivo.

La seconda tecnica, denominata Angular and Range Constrained Es-
timator (ARCE), consiste in un algoritmo per la localizzazione 3D in
sistemi multipiattaforma, comprendenti un trasmettitore e più ricevitori
(di cui uno co-locato con il trasmettitore). Attraverso ARCE, il processo
di localizzazione è in grado di capitalizzare le informazioni derivanti dalle
caratteristiche del diagramma di radiazione del sensore monostatico.

Il terzo algoritmo è ottenuto combinando ARCE e la tecnica Multitarget
Tracking (MTT) basata su Sum-Product Algorithm (SPA). Precisamente,
quest’ultima viene potenziata attraverso un processo di generazione di
particles ad hoc che sfrutta la stima della posizione fornita da ARCE a
partire dalle misure associate ad uno specifico bersaglio.

Parole chiave: Rete Radar Multipiattaforma, Radar Attivo, Radar
Passivo Bistatico, Misure Bistatiche e Monostatiche, Stima dei Minimi
Quadrati Vincolata, Ottimizzazione Non-Convessa.
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Chapter 1
Introduction

Localization is defined as the process of estimating the position of
a target or multiple targets, including aircrafts, missiles, lost humans,
protected wildlife, users of location-based services, just to list a few.
Specifically, the basic idea of localization is to exploit the characteris-
tics of the signals captured by the receivers to determine the position
of an object that emits or reflects such signals.

Localization is essential for a wide range of applications, including
autonomous vehicles [1], industrial/environmental surveillance and
control [2], public safety [3], as well as assistive healthcare [4] and
social networks [5]. Emergency response is one of the most significant
applications for localization. Indeed, during emergencies like building
fires, real-time location estimations of trapped occupants (and first
responders) are needed when planning the search and rescue routes.
The success of these applications clearly depends on the precision
and reliability in positioning the target of interest; consequently,
many efforts have been devoted to the development of strategies and
techniques capable of improving localization accuracy.

In general, target localization can be accomplished following two
different paradigms: direct positioning and two-step positioning [6].
In direct positioning, the overall received signals are jointly processed,
so as to exploit all the available information regarding the unknown
position in order to determine it. In the two-step positioning scheme,
the first stage is designed for extracting position-related parameters;
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then, these measurements are usually sent to a central fusion node,
which jointly process them, and a specific data fusion localization
algorithm is employed to determine the target location.

This thesis focuses on the latter paradigm, which is of great interest;
indeed, the two-step scheme can have a significantly lower complexity
than the direct approach due to decreased storage and communication
requirements [7], while the performance of the two methods is usually
quite close for sufficiently high Signal to Noise Ratio (SNR) value
and/or signal bandwidths [8]. Furthermore, it is remarkably less costly
to send to a central unit the position-related parameters estimates
rather than the entire received signals.

Notably, there are many types of location-related measurements.
Among them, it is worth mentioning time-based information such
as Time Of Arrival (TOA) [9, 10] and Time Difference Of Arrival
(TDOA) [11,12], amplitude-based information, i.e., Received Signal
Strength (RSS) [13], spatial-based information, i.e., Angle Of Arrival
(AOA) [14], frequency-based information, i.e., Frequency Difference
Of Arrival (FDOA) [15], or a combination of them [16–18]. All
the (possible heterogeneous) measurements collected by the available
sensors are then jointly processed to find target position.

TOA refers to the time instant at which the transmitted signal
impinges on the receiver. TOA-based localization algorithms require
the receiving sensors and transmitter to be synchronized, usually by
sharing the same reference clock; moreover, the receivers know the
start transmission time of the transmitter. Note that such a type of
measurements can be performed exploiting signals of different nature,
including Radio Frequency (RF), acoustic, infrared, and ultrasound.
However, in many applications the synchronization requirement cannot
be satisfied. Thus, without knowing the actual signal transmission
time at the transmitter, the receiver is unable to determine the signal
propagation time. One way to tackle this problem and duly address
target localization is to exploit TDOA measurements. TDOA is the
difference between the arrival time of the transmitted signal to a
receiver and that to a reference node. In order to obtain the TDOA
at a specific station, one method is to first estimate the TOAs at
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the station and at the reference node and then subtract one from
the other. This approach requires an accurate knowledge of the
transmitted signal by the receivers. In practice, the most commonly
used method is to apply the generalized cross-correlation between the
signal collected by the receiver of interest and the signal received at
the reference node. The location of the peak of the cross-correlation
function gives the TDOA estimate. Noteworthy, this approach just
requires synchronization among receivers.

RSS is a measure of the power of the detected radio signal at a
receiver. Target localization exploiting this type of measurements can
be classified in two categories: map-based and model-based strategies
[19]. The former consists in building a database of RSS measurements
associated with their corresponding locations. When a target has to
be localized, the RSS measurements collected from the receivers are
matched against the ones stored in the map, in order to find the closest
correspondence. Map-based algorithms require a burdensome data
collection phase where a large number of signal strength measurements
must be recorded along with the corresponding locations. Model-
based techniques, instead, aim at establishing a mathematical model
capturing the variation of the RSS as a function of the distance, thus
requiring knowledge of the transmitted signal’s power.

As to AOA information, it provides knowledge about the line con-
necting the source and the receiver, with respect to a reference system.
AOA is measured via antenna arrays or scanning antenna. AOA
estimation via antenna arrays (for which the geometry is assumed
known) determines, in general, the angles information analyzing the
differences in signal arrival times at different antenna elements. Al-
ternatively, AOA estimate (for a two dimensional sensing scenario)
can be obtained through scanning antenna exploiting the centroid
method.

If there is relative motion between the receivers and the target,
the differences in received Doppler frequency shifts can be used for
target localization. This type of measurement is named FDOA and
is mostly used together with TDOA. However, if the bandwidths of
the received signals are very narrow, TDOA accuracy is relatively
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low [20]. In such cases, localization techniques relying only on FDOA
can be exploited. The cross ambiguity function approach is usually
employed to measure TDOA and FDOA.

Before proceeding further, it is worth pointing out that, from
a practical point of view, it is very important to account for the
trade-off between localization accuracy and computational demand as
well as cost, for the selection of the appropriate sensing system. For
example, the localization systems based on TOA or TDOA provide
high estimation accuracy, but require timing and synchronization thus
making the localization cost-expensive [21]. As to RSS-based meth-
ods, they demand very low-cost (possibly inexpensive) hardware and
less processing and communication resources [22], thus making them
attractive low-cost solutions to accomplish localization. Nonetheless,
they usually provide worse localization accuracy than alternatives.
AOA localization does not require time synchronization, but it de-
mands extra hardware at the receiver to estimate angles [22] and its
positioning accuracy is generally worse than that provided by TOA or
TDOA. Finally, FDOA requires a quite demanding measurement pro-
cess and the achievable precision is generally lower than TDOA-based
strategies. However, FDOAs information can improve localization per-
formance when used in combination with other type of measurements
and it can be used alone profitably for narrow bandwidth signals [23].

Noteworthy, most of the localization systems are based on range-
related measurements and, for this reason, this thesis focuses on such
systems. In the following a brief description on some sensing archi-
tectures and processing strategies relying on range measurements to
accomplish the localization task is provided.

Overview of the localization techniques relying on range-related mea-
surements. The most well known localization systems based on range-
related measurements are the active radar and the Passive Bistatic
Radar (PBR). Active radars [24] require transmitters which emit
bespoke signals. Their standard implementation relies on a receiver
that is co-located with the transmitter (monostatic radar) and gather
the environment echo in order to detect and localize targets. In this
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respect, note that monostatic radars also exploit beam pointing di-
rection to position the target. PBR [25, 26], also known as “Green
Radar” [27], uses bistatic target range measurements obtained collect-
ing the target echoes resulting from the signals transmitted by multiple
illuminators of opportunity [28] [ [29], Chap. 11]. To this end, PBR
receivers are equipped with two receiving channels per transmitter
to acquire both the signal transmitted by the emitter and the signal
backscattered by the target. Then, leveraging these measurements
the target localization process determines an ellipsoid (ellipse in a 2D
geometry) for each illuminator-receiver pair and, substantially, the
intersection of multiple ellipsoids identifies the target position [28,30].
As a result, the PBR problem falls within the elliptical class [31–33].
Some interesting and technically sound localization algorithms for
PBR can be found in [29,34–36].

In the last decades, due to technology advances and new require-
ments in terms of performance and operating environments, great
interest has been focused on the development of novel and more ad-
vanced networks, able to achieve better accuracy and reliability than
monostatic and bistatic radars. In this context, MPRNs (see Fig. 1.1)
are envisioned as next-generation sensing systems [37]. Among them,
hybrid active-passive systems assume an important role and have
been extensively addressed in the scientific panorama [38]. Indeed,
combining passive and active radars in various deployment configura-
tions can provide geometric, signal, and scattering diversity to reach
an enhanced situation awareness [39,40].

Target localization via the joint use of passive/active radars is
of particular interest for instance in the case of harbour surveillance
where an active rotating radar is complemented with a PBR. In
fact, the antenna scanning velocity is typically about 6 seconds per
rotation, and it could be necessary to employ the PBR for acquiring
further measurements and correctly localize fast possibly manoeuvring
threats targets.

In [39,41–44] some attempts to exploit PBR capitalizing informa-
tion gathered by an active radar have been pursued to boost detection
and localization capabilities.
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Figure 1.1. A MPRN with one transmitting-receiving node and four receiving
nodes.

Specifically, reference [39] addresses the exploitation of active
and passive radars that are present in the surveillance area aimed
at maximizing the Signal-to-Interference-plus-Noise Ratio (SINR).
Reference [41], instead, focuses on the implications of having different
surveillance system configurations, i.e., co-located or dislocated passive
and active radars, also in terms of sensors infrastructure survivability.

In [42], a hybrid active-passive radar network for Air Defense
employing decentralized data fusion processing is introduced, i.e.,
the Deployable Multiband Passive/Active Radar (DMPAR). The
effectiveness of DMPAR systems is assessed in [43,44] for co-located
and distributed net of sensors and proved via experimental results.
Remarkably, these studies show that performance improvement and
robustness with respect to the stand-alone system using only the
passive or the active radar can be achieved via the hybrid active-
passive radar system.

More applied research in the context of hybrid passive/active
sensing is conducted by NATO SET-242 RTG and SET-258 [45]
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where the focus is on deployment and assessment in military scenarios
of ground based multiband passive/active radars [46].

MPRNs which are currently attracting even higher interest are
systems employing a constellation of multiple deployable platforms.
Such systems allow to enlarge the surveillance area, to improve data
reliability and accuracy, and endow a better resistance to electronic
countermeasures [47]. Furthermore, such multistatic configurations
reduce effects of shadowing and, exploiting spatial diversity, improve
target detectability, especially against low-observable and stealth
targets [48,49].

Finally, a great advantage of MPRNs relies on the possibility for the
units to collaborate and change their configuration dynamically [50].

Target localization with a multistatic radar is addressed in [51],
where two methods for calculating the Cartesian positions are pre-
sented resorting to Spherical Interpolation (SI) and Spherical Inter-
section (SX). A localization scheme exploiting both TOA from the
transmitter to a specific receiver and AOA is proposed in [52], that
applies the Weighted Least Squares (WLS) method to estimate the
target location and shows that the RMSE decreases as the number of
multistatic radar receivers increases under the assumption of Gaussian
measurement errors.

An improved method for moving target localization with a nonco-
herent Multi-Input Multi-Output (MIMO) radar system having widely
separated antennas is proposed in [53]. Specifically, the proposed
method is based on the Two-Stage WLS, and a closed-form solution
is derived [53]. In [54], for the same problem of moving target local-
ization, the authors propose two methods, in which the parameters
used are a combination of AOA, Frequency Of Arrival (FOA), and
TOA.

Contributions and Dissertation Outline. This thesis deals with the
design of innovative range-based localization algorithms for some sens-
ing systems of practical interest. The thesis contribution is threefold.

The first contribution concerns a novel approach for elliptic local-
ization in a PBR aided with side-information provided by an active
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radar, thus representing a basic version of MPRN. Precisely, angular
and range constraints are forced on the target position to capitalize
target state gleaned by the active radar and the a priori knowledge
of the PBR main-beam width size. The positioning problem is formu-
lated as a constrained Least Squares (LS) estimation. The resulting
non-convex optimization is solved in closed-form, exploiting a smart
partition of the feasible set as well as the regularity of its points. At
the analysis stage, some illustrative case studies are provided to show
the effectiveness of the developed localization method, referred to
as AACLS, also in comparison with some counterparts available in
the open literature. The proposed algorithm is tested in a dynamic
scenario where the target of interest is approaching the surveillance
system, so as to further highlight the accuracy improvement provided
by AACLS with respect to alternatives.

The second contribution is an innovative approach for 3D local-
ization in MPRNs comprising one transmitter and multiple receivers.
The monostatic radiation pattern features have been wisely exploited
in the positioning process restricting the angular location of any illu-
minated target. Therefore, the localization is cast as a non-convex
optimization problem and a quasi-closed-form global optimal solution
is computed by means of an ad hoc partition of the feasible set. The
proposed localization method, indicated as ARCE, is tested in differ-
ent illustrative examples and is proved to ensure interesting accuracy
gains over some counterparts.

Last, a localization-enhanced MTT technique for MPRNs is pro-
posed, which capitalizes past information via a sequential estimation
process, often referred to as filtering, and manages missed detections,
false alarms, and Measurement-Origin Uncertainty (MOU). This
algorithm is obtained through a combination of ARCE with a MTT
method based on the SPA [55,56]. Precisely, a particles enrichment
process is introduced within the SPA-based MTT that exploits the
ARCE estimate to achieve a more effective sampling of the target
state space. Angular constraints are forced such that the localization
process exploits the available information about both the antenna
beamwidth of the transmitter and the virtual beamwidth obtained
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from the target predicted uncertainty. Hence, the particle enrichment
process replaces a subset of predicted particles with a new set of
particles drawn from a distribution whose parameters depend on the
ARCE location estimate. This novel technique is analyzed, showing
its benefits in comparison with the conventional baseline SPA-based
MTT and the stand-alone ARCE localization.

The above contributions have been subject of some of the author’s
publications listed at the end of this thesis. Specifically:

• The novel approach for elliptic localization in a PBR aided with
an active radar has been presented in the author’s publications
[P3] and [P4];
The technique proposed in [P3] ranked third to the Student Con-
test of the 1st International Virtual School on Radar Signal
Processing, held at University of Electronic Science and Tech-
nology of China (UESTC), 22-23 December 2020.

• The 3D localization algorithm in MPRNs comprising one trans-
mitter and multiple has been presented in publications [P6], [P7],
and [P8].
For contribution [P6], the author received the first prize at the
Young Scientist Contest Award of the Signal Processing Sympo-
sium (SPSympo), Lodz, Poland, 21-23 September 2021.

The localization-enhanced MTT technique for MPRNs will be pre-
sented in future work.

The rest of the thesis is organized as follows.
Chapter 2 focuses on 2D target localization for a PBR co-located

with an active radar.
In Chapter 3, 3D target localization with an MPRN comprising

an active sensor and multiple synchronized receivers is addressed.
Chapter 4 deals with MTT for MPRNs through a sequential esti-

mation process taking advantage of past information and knowledge
of both the antenna beamwidth of the transmitter and the virtual
beamwidth obtained from the target predicted uncertainty.
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Finally, in Chapter 5 some conclusions are drawn and possible
future research avenues highlighted.



Chapter 2
2D Localization for PBR
Augmented with Active Radar
Measurements

In this chapter, the model for a system consisting of a 2D PBR
exploiting multiple illuminators of opportunity and a co-located active
radar is presented. At the estimation design stage, ad hoc constraints
accounting for both a-priori information related to the PBR receive
antenna main-beam size and to the uncertainty characterizing active
radar data are derived. Hence, the estimation task is cast as an elliptic
positioning problem, according to the constrained LS framework, and
a new 2D localization algorithm [57, 58] is devised for solving the
positioning problem.

Finally, the algorithm performance are analyzed with respect to
some counterparts from literature, in terms of RMSE, for both a static
and a dynamic scenario.

2.1 System Model

A 2D PBR system, aided by a co-located active radar that capi-
talizes the signals emitted by N illuminators of opportunity (Fig. 2.1)
is considered. Let be:



12 Chapter 2. 2D Localization for PBR Augmented with Active Radar Measurements

Figure 2.1. Pictorical representation of a surveillance system including a 2D
PBR co-located with an active radar and N transmitters of opportunity.

• p = [xp, yp]
T ∈ R2 the target position;

• pr0 = [x0, y0]
T ∈ R2 the PBR position (without loss of generality,

it is assumed located at the origin of the reference system, i.e.,
pr0 = [0, 0]T );

• pti
= [xti , yti ]

T ∈ R2 the position of the i-th illuminator of
opportunity, i = 1, . . . , N ;

• Li = ∥pti
− pr0∥ ∈ R the i-th baseline, i = 1, . . . , N, i.e., the

distance between the i-th transmitter and the receiver.

Thus, indicating by

τ̃i =
1

c

(
∥p∥+ ∥p− pti

∥ − Li

)
, i = 1, . . . , N, (2.1)

the noise-free output of the classic PBR cross-correlation based pro-
cessing [59] (with c the speed of light), the following N noisy delay
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measurements are available at the receiver

τi = τ̃i + ni, i = 1, . . . , N. (2.2)

In (2.2), n1, . . . , nN are statistically independent (it is assumed that
each transmitter of opportunity operates on different frequencies, i.e.,
there is no interference between multiple channels) zero-mean (usually
Gaussian distributed) random variables with variance σ2

1, . . . , σ
2
N .

These variances are modeled according to the Cramer Rao Lower
Bound (CRLB) of the delay estimation as [60]

σi =
1

Bi

√
2SNRi

, i = 1, . . . , N, (2.3)

where Bi represents the frequency bandwidth of the i-th transmitter
of opportunity, and SNRi denotes the SNR of the i-th bistatic pair
(i.e., receiver/i-th illuminator) computed via the bistatic radar range
equation [60, 61]. It is worth pointing out that the SNR of each
bistatic pair is dependent on the distance between the target and
the specific receiver/i-th illuminator pair and from the radar cross
section of the target, which is unknown. As a result, the quality
of each measurement depends on the specific bistatic pair, due to
both the spatial (geometric configuration) and the spectral (signal
bandwidth) diversities induced by the transmitters of opportunity.
To proceed further, let us manipulate equations (2.1) to obtain an
equivalent representation of the noise-free model equations. To this
end, denoting by

bi = cτ̃i + Li, i = 1, . . . , N,

equations (2.1) can be cast as

bi − ∥p∥ = ∥p− pti
∥, i = 1, . . . , N,
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or equivalently as
b2i + r2 − 2bir = r2 + r2i − 2xtixp − 2ytiyp
r ≤ bi, i = 1, . . . , N,

r = ∥p∥
(2.4)

with ri = ∥pti
∥, i = 1, . . . , N . Finally, the relationships in (2.4) can

be cast in a more compact matrix form as
Hp̄− g = 0

p̄TBp̄ = 0

p̄3 ≤ bi, i = 1, . . . , N

(2.5)

where
p̄ = [pT , r]T ∈ R3,

HT = [h1,h2, . . . ,hN ] ∈ R3,N ,
with

hi = [−2xti ,−2yti , 2bi]
T ∈ R3 , i = 1, . . . , N

and
g =

[
g1, . . . , gN

]T ∈ RN ,
with

gi = b2i − r2i , i = 1, . . . , N,
and

B = diag {[1, 1,−1]} ∈ R3,3.

2.1.1 Target State Constraints via Active-Radar Measure-
ments & Sensing-System Features

This study is focused on a bi-sensor surveillance system where an
active radar is complemented by a co-located gap-filler PBR which
capitalizes actively-gathered target information to boost its localiza-
tion performance. This is for instance the case where a passive system
equipped with a circular array can exploit the target state estimates
provided at each scanning period by a co-located active rotating radar.
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In this context, it is possible to adapt the surveillance system
measurement rate in a specific search sector of tactical interest staring
the passive radar in that spatial portion, thus overcoming the intrin-
sic fixed-acquisition-rate limitations of the active rotating platform.
This is a very important feature especially in the presence of fast
and manoeuvring targets like the next generation threats, such as
Intercontinental Ballistic Missiles (ICBMs) and cruise missiles.

Furthermore, an additional valuable knowledge related to the
collected passive measurements (2.2) is represented by the 2D PBR
beamwidth size. Thus, in the following, a specific framework to
exploit, via appropriate constraints, the side-information provided by
an active radar and the PBR antenna characteristics, is formalized,
which is fundamental for the proposed estimation algorithm (from
now on referred to as AACLS).

To this end, let us denote by:

• θp = atan2(yp, xp) the target angle of arrival;

• R̂a and θ̂a the target range and azimuth estimates computed
by the co-located active radar, whose uncertainties (related
to measurement precisions as well as the estimation time) are
indicated1 by ρaR and ρaθ , respectively.

Hence, the target state, ruling the passive measurements (2.2), must
comply with

Ra
1 ≤ r ≤ Ra

2 (2.6)

and
θa1 ≤ θp ≤ θa2 , (2.7)

where
Ra

1 = R̂a − ρaR > 0,

1A reasonable choice is to select ρaR = cR3σ
a
R and ρaθ = cθ3σ

a
θ , where σa

R and σa
θ

denote the standard deviations of the active radar estimation errors in range and azimuth,
respectively, while cR ≥ 1 and cθ ≥ 1 are accuracy degradation factors accounting for
the elapsing time between measurements acquisition and their exploitation.
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Ra
2 = R̂a + ρaR,

θa1 = θ̂a − ρaθ ,

and

θa2 = θ̂a + ρaθ ,

provided that an appropriate angular reference system is employed,
for instance if x > 0 belongs to the cone identified by the azimuth
estimate uncertainty then the angular reference system is [−π, π[.
Furthermore, denoting by:

• θp the pointing direction of the PBR system;

• θ̄p the receiving (half-side) antenna beamwidth of the PBR
system;

the beam extent forces the additional angular constraint (in the
apposite angular reference system) [62]

θp1 ≤ θp ≤ θp2, (2.8)

where
θp1 = θp − θ̄p

and

θp2 = θp + θ̄p.

Now, to jointly capitalize on the angular constraints (2.7)-(2.8)
and proceed further into the localization problem formulation, two key
assumptions are made. First, it is supposed that θ̂a, θp ∈ [−π/2, π/2]
and 0 < ρaθ , θ̄

p < π/2 which is tantamount to requiring that the
two sensors point in the same half space as well as that the angular
reference system to adopt is [−π, π[. Second, it is assumed that the
angular constraints are consistent, i.e., the intersection between (2.7)
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Figure 2.2. Notional representation of the angular constraint involved in the
localization process: blue solid lines refer to active-radar restrictions, yellow
solid lines concern PBR beam extent limitations, and red ∗-marked lines define
the resulting angular constraint.

and (2.8) is not empty. Leveraging the above hypotheses, it follows
that (see Fig. 2.2)

θ − θ̄ ≤ θp ≤ θ̄ + θ, (2.9)

where
θ̄ =

min {θa2 , θ
p
2} −max {θa1 , θ

p
1}

2

and
θ =

min {θa2 , θ
p
2}+max {θa1 , θ

p
1}

2
.

Inequalities (2.9) can be cast as:

−θ̄ ≤ θp − θ ≤ θ̄,

or equivalently as:

− tan (θ̄) ≤ tan (θp − θ) ≤ tan (θ̄), (2.10)
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being 0 ≤ θ̄ < π/2.
As shown in [62], the following relationships on the tangent function

hold:

tan(θp − θ) =
sin(θp − θ)

cos(θp − θ)

=
sin(θp) cos(θ)− cos(θp) sin(θ)

cos(θp) cos(θ) + sin(θp) sin(θ)

=
yp cos(θ)− xp sin(θ)

xp cos(θ) + yp sin(θ)
,

(2.11)

where the last equality stems from sin(θp) =
yp√
x2
p+y2p

and cos(θp) =
xp√
x2
p+y2p

.

Hence, exploiting equation (2.11), inequalities (2.10) become

− tan (θ̄) ≤ yp cos(θ)− xp sin(θ)

xp cos(θ) + yp sin(θ)
≤ tan (θ̄). (2.12)

Again, following [62], the previous inequalities can be manipulated
by introducing a new reference system, namely (x1, y1), obtained
rotating the actual one (i.e., the (x, y)-coordinates system) such that
the x1-axis is aligned with the receiving antenna boresight. This is
obtained through the rotation matrix

R̄(θ) =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
(2.13)

by means of the following transformation[
x1

y1

]
= R̄(θ)

[
x
y

]
=

[
x cos(θ) + y sin(θ)
−x sin(θ) + y cos(θ)

]
.

As a consequence, inequalities (2.12) become

− tan (θ̄) ≤ pθ2
pθ1

≤ tan (θ̄)
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where pθ = [pθ1, p
θ
2]

T are the new coordinates associated with p ac-
cording to

pθ = R̄(θ)p.

Additionally, from the relationship

|atan2(pθ2, p
θ
1)| = |atan2(xp, yp)− θ| < π

2
,

it directly follows that pθ1 > 0. Hence, the additional constraints
to consider at the estimator design development as induced by the
antenna beamwidth are given by:{

−pθ1 tan (θ̄) ≤ pθ2 ≤ pθ1 tan (θ̄)

pθ1 > 0
.

Finally, defining γ = tan (θ̄) and since (2.13) is a unitary matrix,
the constraints in (2.6), (2.7), and (2.8) can be expressed as

Ra
1 ≤ r ≤ Ra

2

−pθ1γ ≤ pθ2 ≤ pθ1γ

pθ1 ≥ 0

pθ = R̄(θ)p

. (2.14)

2.2 Target Localization: Problem Formulation &
Algorithm Design

In this section, the PBR localization problem with side-information
is formalized and a solution technique to obtain a closed form target
position estimate developed.

As to the problem formalization, the idea is to jointly account
for PBR model relationships (2.5) and the constraints (2.14) induced
by the available side-information. In this respect, note that, due to
measurement errors impairing the matrix H and the vector g, the
first equation in (2.5) is only approximately true. Hence, a viable
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mean to circumvent this drawback is to resort to the constrained LS
framework so as to satisfy as better as possible (in the LS sense) the
first equation in (2.5) while satisfying all the remaining constraints.
The target position estimation problem is thus formalized as:2

min
p̄

∥Hp̄− g∥2

s.t. p̄TBp̄ = 0

p̄3 ≤ bi, i = 1, . . . , N

Ra
1 ≤ r ≤ Ra

2

−pθ1γ ≤ pθ2 ≤ pθ1γ

pθ1 ≥ 0

pθ = R̄(θ)p

(2.15)

Now, introducing the unitary matrix

U =

[
R̄(θ) 0
0 1

]
,

performing the change of variable p̃ = Up̄, (2.15) is formulated as



min
p̃

∥HUT p̃− g∥2

s.t. p̃TUBUT p̃ = 0

Ra
1 ≤ p̃3 ≤ c1

−p̃1γ ≤ p̃2 ≤ p̃1γ

p̃1 ≥ 0

(2.16)

Finally, introducing H̃ = HUT and since UBUT = B, (2.16)
becomes:

2With a slight abuse of notation, the model parameters in (2.5), i.e., H, g, and
bi, i = 1, . . . , N , are computed exploiting the actual measurements τi, i = 1, . . . , N , in
place of τ̃i, i = 1, . . . , N .
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P



min
p̃

∥H̃p̃− g∥2

s.t. p̃TBp̃ = 0

Ra
1 ≤ p̃3 ≤ c1

− p̃1γ ≤ p̃2 ≤ p̃1γ

p̃1 ≥ 0

(2.17a)
(2.17b)
(2.17c)
(2.17d)

where c1 = min{ min
i=1,...,N

{bi}, Ra
2}.

Problem P is a non-convex optimization problem due to the con-
straint (2.17a). Nevertheless, exploiting the Karush-Kuhn-Tucker
(KKT) optimality conditions, an optimal solution to P can be ob-
tained. The procedure providing a closed-form global minimizer to
the localization Problem P is summarized in the following Proposition.
Therein H̃ =

[
H̃1, h̃3

]
, with h̃3 ∈ R3.

Proposition 2.2.1. An optimal solution to P belongs to the following
finite set of feasible points (whose cardinality is at most fourteen):

1. x̃∗(ηh) =
(
H̃

T
H̃ + ηhB

)−1

H̃
T
g, h ∈ I1 ⊆ {1, . . . , 4}, with ηh

the real-valued solutions to the fourth-order equation

x̃∗(η)TBx̃∗(η) = 0 (2.18)

with

η ∈

− 1

λ2

(
B, H̃

T
H̃
) ,+∞


−

− 1

λ1

(
B, H̃

T
H̃
) ,− 1

λ3

(
B, H̃

T
H̃
)


(2.19)

such that 
Ra

1 < x̃∗
3(ηh) < c1

−γx̃∗
1(ηh) < x̃∗

2(ηh) < γx̃∗
1(ηh)

x̃∗
1(ηh) > 0

. (2.20)
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2. x̃∗(βh) =

[(
g − h̃3c1

)T
H̃1

(
H̃

T

1 H̃1 + βhI
)−1

, c1

]T
, h ∈ I2 ⊆ {1, . . . , 4},

with βh the real-valued solutions to the fourth-order equation∣∣∣∣(H̃T

1 H̃1 + βhI
)−1

H̃
T

1

(
g − h̃3c1

)∣∣∣∣2 = c21 (2.21)

such that
βh ∈

(
−λmax

(
H̃

T

1 H̃1

)
,+∞

)
−
{
−λmin

(
H̃

T

1 H̃1

)}
−γx̃∗

1(βh) < x̃∗
2(βh) < γx̃∗

1(βh)

x̃∗
1(βh) > 0

. (2.22)

3. x̃∗(ζh) =

[(
g − h̃3R

a
1

)T
H̃1

(
H̃

T

1 H̃1 + ζhI
)−1

, Ra
1

]T
, h ∈ I3 ⊆ {1, . . . , 4},

with ζh the real-valued solutions to the fourth-order equation∣∣∣∣(H̃T

1 H̃1 + ζhI
)−1

H̃
T

1

(
g − H̃3R

a
1

)∣∣∣∣2 = Ra
1
2 (2.23)

such that
ζh ∈

(
−λmax

(
H̃

T

1 H̃1

)
,+∞

)
−
{
−λmin

(
H̃

T

1 H̃1

)}
−γx̃∗

1(ζh) < x̃∗
2(ζh) < γx̃∗

1(ζh)

x̃∗
1(ζh) > 0

. (2.24)

4. x∗
4i = α∗

i

[
1, (−1)i+1γ,

√
1 + γ2

]T
, i = 1, 2, with

α∗
i = min

(
max

(
Ra

1√
1 + γ2

,
vT
i g

||vi||2

)
,

c1√
1 + γ2

)

and
vi = H̃

[
1, (−1)i+1γ,

√
1 + γ2

]T
.

Proof. See Appendix A.1

A notional presentation of the proposed localization procedure
is reported in Fig. 2.3. A more detailed and formal description of
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Figure 2.3. AACLS solution technique scheme.

the global optimum search technique, in the following referred to as
AACLS method, is reported in Algorithm 1.

Before concluding this section, some useful considerations are in
order.

Firstly, AACLS does not need any knowledge about measurement
accuracies; this is very important from a practical standpoint as the
foregoing parameters are functionally dependent on the actual target
location (which is of course unknown during the system operation).

Secondly, the envisaged procedure allows for target position es-
timate in closed-form just using elementary functions, blackwith a
global computational complexity given by O(N2), where N is the
number of bistatic range measurements.

The main steps in the implementation of Algorthm 1 are:

1. Computation of the roots of the fourth order equations in (2.18),
(2.21) and (2.23). For each equation, the sought solutions are
available in closed-form via the evaluation of the elementary
functions involved in Cardano-Tartaglia’s formula [63] (i.e., with
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a complexity O(1)) given the equation coefficients; the latters
are still available in closed-form since the eigenvalues and eigen-
vectors of a 3 × 3 real matrix C, can be computed through
elementary functions of its entries Ci,h, (i, h) ∈ {1, 2, 3}2, [64].
The underlying matrix C, given by H̃

T
H̃ and H̃

T

1 H̃1 for the
cases 1) and 2) or 3), respectively, is computed with a computa-
tional complexity of O(N2);

2. Evaluation of x̃∗(ηh), h ∈ I1 ⊆ {1, . . . , 4}, x̃∗(βh), h ∈ I2 ⊆
{1, . . . , 4}, and x̃∗(ζh), h ∈ I3 ⊆ {1, . . . , 4}; for each candidate
optimal solution, the most demanding operation is the compu-
tation of the inverse of a specific 3 × 3 matrix which entails
a computational complexity of O(1), being available in closed
form;. Construction of x̃∗

41
and x̃∗

42
, that are available in closed-

form, i.e., O(1);

3. Selection of the point achieving the lowest objective value; it
requires the evaluation of the objective function value, involving
a computational burden of O(N), for at most fourteen points so
as to pick up the best solution.
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Algorithm 1 AACLS algorithm.
Input: τi, Li, pti

, i = 1, . . . , N , θp1 , θp2 , θ
a
1 , θa2 , Ra

1 , Ra
2 ;

Output: Target location estimate [x̂p, ŷp]
T ;

Parameter setup

• Compute U , R̄(θ), H̃, H̃1, B, h̃3, vi, i = 1, 2, c1, θ, θ̄, γ, and α∗
i , i = 1, 2

1. Roots computation

• Find the roots ηh, h ∈ I1 ⊆ {1, . . . , 4} of equation (2.18) belonging to the
interval (2.19);

• Find the roots βh, h ∈ I2 ⊆ {1, . . . , 4} of equation (2.21) belonging to the
interval in the first relationship of (2.22);

• Find the roots ζh, h ∈ I3 ⊆ {1, . . . , 4} of equation (2.23) belonging to the
interval in the first relationship of (2.24).

2. Candidate points evaluation

• Compute x̃∗(ηh), satisfying the inequalities in (2.20);

• Compute x̃∗(βh), fulfilling the last two relationships in (2.22);

• Compute x̃∗(ζh), fulfilling the last two relationships in (2.24);

• Compute x̃∗
4i , i = 1, 2.

3. Optimal solution selection

• Compute

– vj = ∥H̃x̃∗(ηi)− g∥2, j = 1, . . . , |I1|,
– v|I1|+j = ∥H̃x̃∗(βi)− g∥2, j = 1, . . . , |I2|,
– v|I1|+|I2|+j = ∥H̃x̃∗(ζi)− g∥2, j = 1, . . . , |I3|,
– v|I1|+|I2|+|I3|+j = ∥H̃x̃∗

4i − g∥2, j = 1, 2.

• Determine j∗ = argmin
j

vj and pick up the corresponding solution, i.e.,

x̃∗ =


x̃∗(ηj∗) if 1 ≤ j∗ ≤ |I1|
x̃∗(βj∗) if |I1|+ 1 ≤ j∗ ≤ |I1|+ |I2|
x̃∗(ζj∗) if |I1|+ |I2|+ 1 ≤ j∗ ≤ |I1|+ |I2|+ |I3|
x̃∗

4j∗ if |I1|+ |I2|+ |I3|+ 1 ≤ j∗ ≤ |I1|+ |I2|+ |I3|+ 2,

Output [x̂p, ŷp]
T = R̄(θ)T [x̃∗

1, x̃
∗
2]

T .
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2.3 Other Localization Algorithms

For comparison purposes, also the performance of some counter-
parts available in the open literature, e.g., LS [64], Two-Step Esti-
mation (TSE) [30], and Angular Constrained Least Square (ACLS)
algorithms [62] are illustrated. The observation model for the specific
surveillance system can be expressed, without constraints, as

H̃p̃− g = 0. (2.25)

Starting from equation (2.25) and assuming H̃ full-rank, the afore-
mentioned techniques are derived as in the following.

• The LS approach [64] determines the target location estimate
p̂LS as the first two components of the optimal solution to
Problem P when no constraints are forced, i.e.,

[p̂LS, r̂]
T = arg min

p̃∈R3
∥H̃p̃− g∥2 = (H̃

T
H̃)−1H̃

T
g.

• The TSE procedure [30] provides an approximated Maximum
Likelihood (ML) position estimate, assuming a simplified statis-
tical signal model of the observations.
To this end, a two step procedure is developed. The first step
determines an initial estimate, not accounting for the functional
dependency among the involved unknowns. In the second step
an appropriate refinement is performed to overcome the above
limitation:
A) four well conditioned location estimates are computed;
B) the position estimate is thus obtained selecting among the
four candidates the one providing the best matching with the
range measurements.

• The ACLS algorithm [62] corresponds to a simplified version
of the AACLS strategy, where the constraints induced by the
active-radar information are no longer forced. Unlike AACLS,
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for the ACLS the target feasible positions describe a convex
set. Remarkably, ACLS estimate can be obtained via Algorithm
1, with θ and θ̄ equal to the squint angle and the receiving
(half-side) antenna beamwidth of the PBR antenna boresight,
respectively, as well as Ra

1 = 0, and c1 = mini=1,...,N{bi}.

2.4 Performance Analysis

In this section, the performance assessment of the proposed AACLS
localization algorithm is addressed for a PBR capitalizing echoes
induced by multiple illuminators of opportunity. To this end, N = 3
omni-directional transmitters of opportunity are supposed available
in the analyzed localization scenario.

The simulation setup is depicted in Fig. 2.4. The transmitters
are located at the vertices of an equilateral triangle whose barycenter
coincides with the origin of the reference system, where the receiver is
located. The triangle side is assumed equal to 20 cos(π/6) km, which
corresponds to a distance of 10 km between any transmitter and the
receiver, i.e., Li = 10 km, i = 1, 2, 3. As to the side-information
provided by an active surveillance system, a precision for the range
and azimuth measurements given by 116 m and 0.5◦ respectively, is
assumed. Otherwise stated: ρaR = 116 m and ρaθ = 0.5◦.

Remarkably, this situation is representative of the measurements
precision/quality provided for instance by the AN/SPS-49A(V)1 radar
[65], which is a two-dimensional, long range radar that measures
bearing and range contacts. The AN/SPS-49A(V)1 operates in the
L-band and has a range of 256 nautical miles (474 km), with a narrow
3.3 deg-beam. Moreover it can rotate at either 6 or 12 rpm, to provide
more frequent scans against incoming threats.

In the following, the measurements errors are modeled according to
equations (2.3), where the SNR of the N = 3 bistatic pairs (receiver-
transmitter of opportunity) is set as in [61]:

SNRi = SNR0
∥q0∥2

∥p∥2
∥q0 − pt1∥

2

∥p− pti
∥2

, i = 1, 2, 3,
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Figure 2.4. Surveillance system geometric configuration: a receiver deployed
at the origin of the reference system and N = 3 transmitters of opportunity
located at the vertices of an equilateral triangle (Li = 10 km, i = 1, 2, 3).

where SNR0 is a reference SNR value associated with a reference
bistatic triad pt1 − q0 −0; specifically, SNR0 is computed resorting to
the bistatic radar range equation [60,61], related to a reference point
q0 = [x, y]T , and the transmitter at pt1 .

The performance of the devised localization algorithm is analyzed
in terms of the target position estimate RMSE. In this respect, due
to the lack of a closed-form expression for the RMSE, Monte Carlo
simulation method is exploited, assuming 1000 independent trials.
For comparison purposes, also the performance of some counterparts
available in the open literature, e.g., LS [64], TSE [30], and ACLS
algorithms [66] are illustrated.

In the following subsections two different case studies are analyzed.
The former assumes a static target situation, where the target is
located in a fixed position; the latter considers a dynamic target
scenario, in which the target follows a given trajectory, and PBR is
aided just in some time-instants by active radar-based information.
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2.4.1 Fixed target scenario

This subsection deals with the performance analysis of the AACLS
considering a stationary target. To this end, the target is assumed
located at [r cos θp, r sin θp]

T with r = 40 km; as to θp, to assess the
estimator behaviour for different localization scenarios, diverse values
of the target azimuth are considered, namely, θp = 0◦, 7◦, and 9.7403◦,
as illustrated in Figs. 2.5 (b)-(d)-(f). Therein, it is also reported the
position of the available active measure exploited in the localization
process. Moreover, the receiving antenna is assumed steered at θ = 0◦

with a main-beam width of θ̄ = 10◦.
The results show that AACLS outperforms counterparts, e.g., LS,

TSE, and ACLS algorithms, in the entire range of SNR values and
for all the considered scenarios, clearly highlighting the capabilities
of the proposed strategy to capitalize a-priori information to boost
localization performance. In order to provide increased visibility of
the performance especially at high SNR values, Fig. 2.6 shows the
estimation performance for θp = 0◦ in logarithmic scale.

The results also reveal that, as the SNR increases, all the considered
localization techniques, e.g., AACLS, ACLS, unconstrained LS, and
TSE, achieve better performance providing lower and lower RMSE
values.

Finally, it is worth observing that AACLS for θp = 0◦ performs
almost the same as for θp = 7◦ whereas ACLS improves its estimation
capabilities. This behaviour is not surprising and can be justified
observing that for the ACLS the closer the target to the PBR main-
lobe boundary the more valuable the beampattern extent constraint.
On the other side, the AACLS is totally blind to the PBR angular
extent constraint as long as the state-space limitation induced by
active radar side-information is the most stringent, as for the case
studies of Figs. 2.5(a) and 2.5(c).

To corroborate these insights, it can be observed that in Fig. 2.5(e)
both AACLS and ACLS improve their estimation capabilities; in fact
in such a scenario the PBR angular constraint effectively contributes
to the definition of the target state-space feasible set even in the
presence of the active radar induced limitations.
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(a) θp = 0◦. (b) Target and active measure.

(c) θp = 7◦. (d) Target and active measure.

(e) θp = 9.7403◦. (f) Target and active measure.

Figure 2.5. Estimation capabilities of different localization algorithms: (a)-
(c)-(e) report RMSE verus SNR0 for the setup depicted in (b)-(d)-(f). Therein
blue and violet lines correspond to the range constraint, while the red ∗-marked
lines indicate the angular constraint (the yellow and the cyan curves are related
to the active-radar and the PBR beam-width angular limitations, respectively).
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Figure 2.6. Estimation capabilities of different localization algorithms in
logarithmic scale, when θp = 0◦.

2.4.2 Moving target scenario

In this subsection, the AACLS estimation capabilities are assessed
for a dynamic scenario where the target of interest is approaching
the surveillance system, composed of an active radar and a passive
system. The former is assumed equipped with a vertical fan-shaped-
beam rotating antenna that scans the surveillance area every 10 s,
e.g., it rotates at a rate of 6 rpm. The latter exploits a circular
array steered in the direction triggered by the active radar with a
halfside beamwidth of 10◦, to collect target reflections from emitters
of opportunity (the same scenario as in Fig. 2.4 is considered).

In the following, it is supposed that the PBR radar acquires target
information each second. As a result, assuming, without loss of
generality, that at t0 = 0 the first active measurement is gathered,
in all the time instants that are not multiple of 10 s, no active
side-information is available and a prediction of the active system-
based constraints is required. To this end, provided that the PBR
system possesses an a-priori knowledge about the maximum radial
and angular velocities of the target, upper and lower bounds to
the target range and angular locations can be forced in any time
instant capitalizing the previous active measurement. Specifically,
denoting by vmax and wmax the upper bounds to the range and angular
absolute value velocities, respectively, at a time instant t such that



32 Chapter 2. 2D Localization for PBR Augmented with Active Radar Measurements

k10 ≤ t < (k + 1)10, k = 0, 1, . . . , N0 (with 10N0 the overall target
observation interval), the constraints:

Ra
1(t) = R̂a

k − (ρaR + (t− k10)vmax)

Ra
2(t) = R̂a

k + (ρaR + (t− k10)vmax)

θa1(t) = θ̂ak − (ρaθ + (t− k10)ωmax)

θa2(t) = θ̂ak + (ρaθ + (t− k10)ωmax)

can be forced, where R̂a
k and θ̂ak denote the range and angle estimates

provided by the active surveillance system at the time instant k10 s.
In the following, R̂a

k and θ̂ak are modeled3 as independent Gaussian
random variables with mean equals to the target range r and the
target azimuth angle θp at the time instant k10, and variance ρaR and
ρaθ , respectively.
In the reported case studies, it is assumed that the SNR of the i-th
bistatic pair, i = 1, 2, 3, at a time instant t, is given by:

SNRi(t) = SNR0
∥q0∥2

∥p(t)∥2
∥q0 − pt1∥

2

∥p(t)− pti
∥2
, i = 1, 2, 3,

where p(t) ∈ R2 is the target position at the time instant t and
SNR0 is the SNR of the reference bistatic pair, i.e., of the triad
pt1 − q0 − 0, where q0 is the initial target position with reference to
the scenarios of Fig. 2.7. Moreover, a target moving with a uniform
radial velocity v0 (equals to either 150 or 190 m/s) and initial position
p0 = [r cos θp, r sin θp]

T with r = 20 km and θp given by either 5◦

or 9.6667◦, is considered. Finally, it is supposed that the pointing
direction of the PBR system is at θ = 0, N0 = 20, vmax = 200 m/s
and ωmax = 0.0025 rad/s.

The last two assumptions are representative of a harbour surveil-
lance environment, where possible hostile targets are anti-ship missiles
such as the sea-skimming ones (whose maximum velocity can be larger
than 175 m/s). In this respect, note that a maximum angular veloc-
ity of 0.0025 rad/s at 20 km is tantamount to assuming a maximum

3Only the active-based constraints are considered, if Problem P results infeasible.
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(a) v0 = 150 m/s. (b) v0 = 190 m/s.

Figure 2.7. RMSE versus time, assuming θp = 5◦, for target approaching the
surveillance system: (a) and (b) refer to v0 = 150 and 190 m/s, respectively.

cross-range velocity of 50 m/s, i.e., 97 knots, to possibly accommodate
maneuvers and a not exactly radial trajectory.

Figs. 2.7 display the RMSE versus the observation time provided
by the different localization algorithms, assuming θp = 5◦. Specifically,
the performance of AACLS, ACLS, and active-based localizer4 are re-
ported. Fig. 2.7(a) and Fig. 2.7(b) refer to v0 = 150 and v0 = 190 m/s,
respectively, and SNR0 equals to either 10 or 20 dB is considered. In-
spection of Figs. 2.7 reveals that AACLS strategy outperforms ACLS
and that both the algorithms improve their localization capabilities
as SNR0 increases. Interestingly, the larger the observation time the
better the ACLS performance, due to a higher effective target SNR
(the target is closer and closer to the receiver).

This trend is also partially true for the AACLS technique, where
improvements can be observed among the time instants characterized
by the same accuracy level of active-based constraints, namely with
the same time-lag from the acquisition of the active measurements.
Otherwise stated, for the AACLS the SNR increase may compete

4It only relies on active measurements and assumes the target does not move in the
time instants where measurements are not available. It is referred to as Active-Only in
the following.
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(a) v0 = 150 m/s. (b) v0 = 190 m/s.

Figure 2.8. RMSE versus time, assuming θp = 9.6667◦, for target approaching
the surveillance system: (a) and (b) refer to v0 = 150 and 190 m/s, respectively.

with less accurate constraints, depending on the specific time instant,
i.e., a trade-off between a reduced distance from the receiver and a
larger delay from the temporally closest active measure is present.

The results also show that AACLS exhibits better estimation capa-
bilities than the active-based localizer as long as the latter relies on old
measurements, clearly highlighting the effectiveness of the proposed
localization algorithm. In addition, as expected, AACLS achieves its
best performance (substantially overlapped with that of the active-
based predictor) in the time instants where active measurements are
available. Finally, comparing Figs. 2.7(a) and 2.7(b) it is evident that
the performance of AACLS and ACLS does not change significantly5

with v0, while the active-based localizer experiences a considerable
degradation. This is not surprising, being the assumption of target
stationarity less and less accurate as the velocity increases.

To shed light on the impact of the angular constraint induced by
the PBR, in Figs. 2.8 the performance for a target at θp = 9.6667◦ is
illustrated. The preceding remarks substantially hold true also for this
case study. In addition, the results confirm the insights of Fig. 2.5(e),
namely the PBR constraint can boost the localization performance

5Some gains of Fig. 2.7(b) are reasonably due to a larger effective SNR.
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as long as it is effectively involved in the estimation process.





Chapter 3
3D Localization for Deployable
Multiplatform Radar Networks

In this chapter, the model for a MPRN, comprising one transmitter
and multiple receivers, is presented. At the estimation design stage,
ad hoc constraints accounting for the information embedded into the
monostatic sensor radiation pattern features are derived. Hence, the
positioning problem is formulated as a constrained LS problem, and
a new algorithm for 3D localization [67–69] is proposed.

The performance of the new algorithm is assessed in terms of
RMSE in comparison with the benchmark Root Cramer Rao Lower
Bound (RCRLB) and some competitors from the open literature, for
different numbers of sensors and for the scenario where the radar
antenna pointing direction rotates in the x− y plane.

3.1 System Model

Let us consider a multistatic radar network with an active sensor
and N synchronized receivers, as illustrated in Fig. 3.1, and denote
by:

• p = [xp, yp, zp]
T ∈ R3 the target position;

• pr0 = [x0, y0, z0]
T ∈ R3 the active radar position (without loss
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Figure 3.1. Pictorical representation of a surveillance system including a
monostatic radar and N receiver nodes.

of generality, it is assumed coinciding with the reference system
origin, i.e., pr0 = [0, 0, 0]T );

• pri
= [xri , yri , zri ]

T ∈ R3 the position of the i-th receiver, i =
1, . . . , N .

Letting

τ̃i =
1

c

(
∥p∥+ ∥p− pri

∥
)
, i = 0, . . . , N (3.1)

the noise-free propagation delay (with c the speed of light) associated
with the i-th bistatic (or monostatic, if i = 0) pair, the following
N + 1 noisy delay measurements are available at the i-th receiver,
e.g., leveraging cross-correlation based processing,

τi = τ̃i + ni, i = 0, . . . , N. (3.2)
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They are sent to the active radar that plays the role of a fusion node,
to determine an estimate of the target position. In equations (3.2),
n0, . . . , nN are statistically independent zero-mean (usually Gaussian
distributed) random variables with variance σ2

0, . . . , σ
2
N given by [60]

σi =
1

B
√
2SNRi

, i = 0, . . . , N, (3.3)

where B represents the frequency bandwidth of the active sensor
transmitted waveform and SNRi denotes the SNR of the i-th bistatic
pair (i.e., radar/i-th receiver) or, if i = 0, of the monostatic radar,
computed via the bistatic and monostatic radar range equation [61,70],
respectively. It is worth pointing out that SNRi depends on the
distance between the target and the specific bistatic pair or monostatic
radar and from the radar cross section of the target, which is unknown.
Now, elaborating on equations (3.1), it is possible to get an equivalent
form which is fundamental for the development of the proposed
estimation algorithm. To this end, let

bi = cτ̃i −
cτ̃0
2
, i = 1, . . . , N,

and, for i = 0,

b0 =
cτ̃0
2
.

Equation (3.1) can be recast as:

∥p∥2 − 2xpxri − 2ypyri+

− 2zpzri + ∥pri
∥2 = b2i , i = 0, . . . , N,

which is equivalent to
−2xpxri − 2ypyri − 2zpzri − gi = 0

gi = b2i − b20 − x2
ri
− y2ri − z2ri , i = 1, . . . , N,

b0 =
√

x2
p + y2p + z2p

(3.4)

where it is assumed bi ≥ 0, i = 1, . . . , N . All the relationships
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described in (3.4) can be grouped in a more compact matrix form as{
Hp− g = 0

pTp = b20
(3.5)

where

HT = [h1,h2, . . . ,hN ] ∈ R3,N ,
with

hi = [−2xri ,−2yri ,−2zri ]
T ∈ R3 , i = 1, . . . , N

and
g =

[
g1, . . . , gN

]T ∈ RN ,
with

gi = b2i − b20 − x2
ri
− y2ri − z2ri , i = 1, . . . , N.

3.1.1 Monostatic Acquisition System and Target Position
Constraints

To perform the measurement process, the active radar employs
an antenna characterized by a specific transmit/receive beampattern
with a given main-lobe width and pointing direction, without loss
of generality, coincident with the x-axis of the reference system. In
this subsection, some constraints able to capitalize such a priori infor-
mation are formalized with the goal of improving target positioning
reliability. To this end, let us denote by:

• θ̄ and ϕ̄ the (half-side) antenna beamwidths in the x − y and
x− z plane, respectively, as shown in Fig. 3.2;

• θp = atan2(yp, xp) and ϕp = atan2(zp, xp) the azimuth (in the
x− y plane) and elevation (in the x− z plane) target angular
coordinates, respectively.

Hence, let us observe that the limited main-lobe extension of the
active radar demands the angular location of any illuminated target
to comply with
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Figure 3.2. Representation of the antenna beamwidth.

{
−θ̄ ≤ θp ≤ θ̄

−ϕ̄ ≤ ϕp ≤ ϕ̄
. (3.6)

The relationship (3.6) coupled with the assumptions 0 ≤ θ̄ < π
2

and 0
≤ ϕ̄ < π

2
, can be equivalently rewritten as{

− tan θ̄ ≤ tan (θp) ≤ tan θ̄

− tan ϕ̄ ≤ tan (ϕp) ≤ tan ϕ̄
,

which boils down to 
−xpγa ≤ yp ≤ xpγa

−xpγe ≤ zp ≤ xpγe

xp ≥ 0

, (3.7)

where γa = tan θ̄ and γe = tan ϕ̄. It is worth pointing out that, with
reference to a 2D problem, angular constraints have been also used
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in [62] for target localization with a passive radar and in [57,66] to
realize a passive radar positioning aided by some a priori information
provided by an active radar sensing system.

3.2 Problem Formulation and 3D Localization Al-
gorithm

This section deals with the formalization of the localization prob-
lem and the development of the resulting estimation technique. To
this end, both model equations (3.5) and constraints (3.7), induced by
the monostatic acquisition system1, are exploited. In this respect, it
is important to highlight that the vector g and the target range b0 are
corrupted by noise, and, consequently, the relationships in (3.5) are
not exactly satisfied. This issue is handled resorting to the constrained
LS framework by forcing the target range to be the projection of the
noisy range measurement within the detected range-bin, and looking
for the best fitting of the model to observations according to a squared
norm cost function. Specifically, indicating the mentioned projection
by b̄0 = max(min(b0, rU), rL), with rL and rU the extremes of the
detected range-bin, the target positioning process can be formalized
as the following non-convex optimization problem

P



min
p

∥Hp− g∥2

s.t.∥p∥2 = b̄20
− xpγa ≤ yp ≤ xpγa

− xpγe ≤ zp ≤ xpγe

xp ≥ 0

(3.8a)
(3.8b)
(3.8c)
(3.8d)

Although P is difficult to solve, through the use of optimization
techniques based on KKT optimality [71] conditions, a quasi-closed-
form (i.e., whose computation involves only elementary functions

1To lighten the notation, with a slight abuse of notation, the same symbols as in
(3.5), where the quantities are noise-free, are used.
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and roots of polynomial equations) optimal solution can be derived.
Indeed, the following proposition holds true.

Proposition 3.2.1. An optimal solution to P belongs to the following
finite set of feasible points (whose cardinality is at most twenty-six):

1. x∗(λ̄h) =
(
HTH + λ̄hI

)−1
HTg, h ∈ I1 ⊆ {1, . . . , 6}, with λ̄h

the real-valued solutions to the sixth-order equation

x∗(λ̄)Tx∗(λ̄) = b̄20 (3.9)

such that 
−γax

∗
p(λ̄h) < y∗p(λ̄h) < γax

∗
p(λ̄h)

−γex
∗
p(λ̄h) < z∗p(λ̄h) < γex

∗
p(λ̄h)

x∗
p(λ̄h) > 0

. (3.10)

2. x∗(βi
h) = [q∗1(β

i
h), (−1)i+1γaq

∗
1(β

i
h), q

∗
2(β

i
h)]

T , i = 1, 2 with

q∗(βi
h) =

(
Ha

i
THa

i + βi
hB

a
)−1

Ha
i
Tg

where

Ha
i = H

 1 0
(−1)i+1γa 0

0 1

 , i = 1, 2,

Ba =

[
1 + γ2

a 0
0 1

]
,

and βi
h, h ∈ I i2 ⊆ {1, . . . , 4} the real-valued solutions to the

fourth-order equation

q∗T (βi)Baq∗(βi) = b̄20 (3.11)
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such that {
−γeq

∗
1(β

i
h) < q∗2(β

i
h) < γeq

∗
1(β

i
h)

q∗1(β
i
h) > 0

. (3.12)

3. x∗(ηih) = [p∗1(η
i
h), p

∗
2(η

i
h), (−1)i+1γep

∗
1(η

i
h)]

T , i = 1, 2 with

p∗(ηih) =
(
He

i
THe

i + ηihB
e
)−1

He
i
Tg

where

He
i = H

 1 0
0 1

(−1)i+1γe 0

 , i = 1, 2,

Be =

[
1 + γ2

e 0
0 1

]
,

and ηih, h ∈ I i3 ⊆ {1, . . . , 4} the real-valued solutions to the
fourth-order equation

p∗T (ηi)Bep∗(ηi) = b̄20 (3.13)

such that {
−γap

∗
1(η

i
h) < p∗2(η

i
h) < γap

∗
1(η

i
h)

p∗1(η
i
h) > 0

. (3.14)

4. x∗
4i,j

= α [1, (−1)1+iγa, (−1)1+jγe]
T
, (i, j) ∈ {1, 2}2, with

α =
b̄0√

1 + γ2
a + γ2

e

.
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Proof. See Appendix B.1

In a nutshell, Proposition 3.2.1 defines the optimal candidate
solutions to Problem P . Precisely, each subset of solutions refers to a
specific portion of the feasible target locations. A complete description
of the global optimum search procedure is reported in Algorithm 2. It
is worth observing that the determination of each subset of candidates
requires the evaluation of the roots of a specific polynomial equation,
whose efficient computation is discussed in the following subsection.

3.2.1 Evaluation of the Roots and Algorithm Computa-
tional Complexity

Algorithm 2 involves the solution of equations (3.9), (3.11), and
(3.13). Guidelines and insights to the rooting process are now provided
with reference to equation2 (3.9). As shown in Appendix B.2 (the
interested reader may refer to it for technical details and parameters
definitions) solving equation (3.9) is tantamount to finding the real-
valued roots3 of

3∑
j=1

|zj|2

(λ̄+ λj)2
− b̄20. (3.15)

Evidently, each root of (3.15) must belong to one of the four subsets
J1 = (−∞,−λ3), J2 = (−λ3,−λ2), J3 = (−λ2,−λ1), and J4 =
(−λ1,+∞).

Now, being (3.15) strictly increasing (decreasing) over J1 (J4)
with a range (−b̄20,+∞), a unique root exists within J1 (J4) and it
can be found through the standard bisection method, as also depicted
in [72].

In J2 (J3), instead, zero, one, or even two roots can exist,
depending on the range of (3.15) over J2 (J3). Leveraging the strict
convexity of (3.15), these points can be determined according to a

2Analogous considerations hold true for equations (3.11) and (3.13).
3In Appendix B.2, a normalized version of (3.15) is analyzed.
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novel and ad hoc two-stage process involving at most three bisection
loops each of them applied to either (3.15) or its derivative4.

As discussed in Appendix B.2, the parameters of (3.15) can be
computed via elementary functions applied to the entries of (HTH),
whose evaluation involves O(N2) operations. Now, denoting by ϵ0
the maximum size (among the different bisections) of the initial
search interval (see Appendix B.2 for their determination) and by
ϵ the desired accuracy level of any root, the number n of bisection
iterations, in each search process, is upper bounded by:

n = ⌈log2
(ϵ0
ϵ

)
⌉.

Finally, each bisection cycle is performed with a computational com-
plexity of O(1), being involved just elementary functions and compar-
isons. Hence, for a given accuracy ϵ, the roots search process entails
O(1) operations, given (HTH). It is worth pointing out that similar
conclusions apply to the solution of equations (3.11) and (3.13).

Let us now deal with the computational complexity of Algorithm
1. Given the solutions to equations (3.9), (3.11), and (3.13), it mainly
entails:

a) the evaluation of the resulting candidate optimal solutions, and

b) the computation of the corresponding objective values.

The former can be accomplished with a computational burden
of O(1), being embroiled (as the most demanding operations) the
evaluation of the inverse of the matrices (HTH), (Ha

i
THa

i ), and
(He

i
THe

i ), which are already calculated in the bisection processes.
The latter requires O(N) operations to evaluate the squared norms.

As a result, the overall computational complexity of Algorithm 2 is
O(N2).

4It is worth observing that this novel strategy can be exploited by the procedure in [72]
(in place of standard root search routines) to determine the possible roots belonging to
the involved bounded intervals.
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Algorithm 2 ARCE algorithm.
Input: θ̄, ϕ̄, τi,pri

, i = 0, . . . , N, ϵ.
Output: Target position estimate [x̂p, ŷp, ẑp]

T ;
Parameter setup:

• Compute H,Ba,Be,Ha
i ,H

e
i , i = 1, 2, b̄0, γa, γe, α.

1. Roots computation

• Find the roots (with the accuracy ϵ) λ̄h, h ∈ I1 ⊆ {1, 2, . . . , 6} of equation
(3.9) satisfying (3.10);

• Find the roots (with the accuracy ϵ) βi
h, h ∈ Ii2 ⊆ {1, 2, 3, 4}, i = 1, 2 of

equation (3.11) satisfying (3.12);

• Find the roots (with the accuracy ϵ) ηi
h, h ∈ Ii3 ⊆ {1, 2, 3, 4}, i = 1, 2 of

equation (3.13) satisfying (3.14).

2. Candidate points evaluation

• Compute x∗(λ̄h), x∗(βi
h), x

∗(ηi
h), x

∗
4i,j , (i, j) ∈ {1, 2}2.

3. Optimal solution selection

• Compute:
– vj = ∥Hx∗(λ̄j)− g∥, j = 1, . . . , |I1|
– v|I1|+j = ∥Hx∗(β1

j )− g∥, j = 1, . . . , |I12 |
– v|I1|+|I12 |+j = ∥Hx∗(β2

j )− g∥, j = 1, . . . , |I22 |

– v|I1|+|I12 |+|I22 |+j = ∥Hx∗(η1j )− g∥, j = 1, . . . , |I13 |

– v|I1|+|I12 |+|I22 |+|I13 |+j = ∥Hx∗(η2j )− g∥, j = 1, . . . , |I23 |

– v|I1|+|I12 |+|I22 |+|I13 |+|I23 |+j = ∥Hx∗
4j,1

− g∥, j = 1, 2

– v|I1|+|I12 |+|I22 |+|I13 |+|I23 |+2+j = ∥Hx∗
4j,2

− g∥, j = 1, 2.

• Determine j∗ = arg min
j

vj and pick up the corresponding solution, i.e.,

x̃∗ =



x∗(λ̄j∗ ) if 1 ≤ j∗ ≤ |I1|
x∗(β1

j∗ ) if |I1|+ 1 ≤ j∗ ≤ |I1|+ |I12 |
x∗(β2

j∗ ) if |I1|+ |I12 |+ 1 ≤ j∗ ≤ |I1|+ |I12 |+ |I22 |
x∗(η1j∗ ) if |I1|+ |I12 |+ |I22 |+ 1 ≤ j∗ ≤ |I1|+ |I12 |+ |I22 |+ |I13 |
x∗(η2j∗ ) if |I1|+ |I12 |+ |I22 |+ |I13 |+ 1 ≤ j∗ ≤ |I1|+ |I12 |+ |I22 |+ |I13 |+ |I23 |
x∗
4j∗,1

if |I1|+ |I12 |+ |I22 |+ |I13 |+ |I23 |+ 1 ≤ j∗ ≤ |I1|+ |I12 |+ |I22 |+ |I13 |+ |I23 |+ 2

x∗
4j∗,2

otherwise

Output: [x̂p, ŷp, ẑp]
T = [x̄∗

1, x̄
∗
2, x̄

∗
3]

T .
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3.3 Performance Analysis

Radiolocation systems composed of N = 4 and N = 5 receive-only
sensors and one active radar are considered. Focusing first on the
N = 4 case, the receiving nodes are located at pr1 = [916, 941, 95]T

m, pr2 = [973, 541, 764]T m, pr3 = [955, 483, 191]T m, and pr4 =
[936, 350, 477]T m.

Moreover, the measurement errors are modeled as zero-mean inde-
pendent Gaussian random variables with standard deviations given
in equations (3.3). Therein, the SNR of the N = 4 bistatic pairs
(transmitter-receiver) and of the active radar are calculated as

SNRi =
SNR0

LFi

∥q0∥2

∥p∥2
∥q0∥2

∥p− pri
∥2
, i = 0, 1, . . . , 4

where SNR0 is a reference SNR computed via the monostatic radar
range equation [61] at the nominal point q0 = [20, 0, 0]T km and
LFi, i = 0, . . . , 4, accounts for a loss factor due to different receive
gains of the active sensor and the receive-only units. In particular,
LF0 = 0 dB, while LFi = 6 dB, i = 1, . . . , 4.

The performance of the developed localization algorithm is evalu-
ated considering as a figure of merit the RMSE of the target position
estimate, formally defined as

√
E[∥p̂− p∥2], where p̂ is the estimated

position.
Since the RMSE does not present a closed-form expression, Monte

Carlo simulation with 1000 independent trials is exploited. Addi-
tionally, the RCRLB5, defined as

√
tr(FIM−1), where FIM denotes

the Fisher Information Matrix associated with the unknown param-
eters [74], is provided as performance benchmark. For comparison
purposes, also the performance of some counterparts are illustrated.

Specifically, the performance of the procedures developed6 in [30]
and [75], denoted hereafter as TSE-1 and TSE-2, respectively, is

5Note that, based on [73, Lemma 4], for the estimation problem at hand the uncon-
strained CRLB coincides with the constrained CRLB, being γa > 0 and γe > 0.

6Their implementation for the 3D case with a transmitter co-located with one of the
receivers at a known location is considered.
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reported, along with two alternative methods for target positioning
relying on model (3.5). The additional strategies are:

• U-TDOA-Like Estimator Unconstrained U-TDOA resorts to a
standard LS framework and, assuming H full-rank, gives the
following position estimate

p̂TDOA = arg min
p∈R3

∥Hp− g∥2 =
(
HTH

)−1
HTg.

• Range-Only Constrained Estimator (ROCE) Giving up the main-
lobe constraint, the estimation problem can be framed as

P

min
p

∥Hp− g∥2

s.t.∥p∥2 = b̄20

and the resulting position can be retrieved as

x̂ = argmin
i∈I1

∥Hx∗
i − g∥2

where
x∗
i = x∗(ζ̄i) =

(
HTH + ζ̄iI

)−1
HTg,

i ∈ I1 ⊆ {1, . . . , 6},

with ζ̄i the real-valued solutions to the sixth-order equation

x∗(ζ̄)Tx∗(ζ̄) = b̄20.

Notably, the computational complexity of all the considered com-
petitors is substantially O(N2). In the considered numerical analy-
sis, the target is positioned at [r cos θp cosϕp, r sin θp cosϕp, r sinϕp]

T ,
with r = 20 km and different values of θp and ϕp are considered, i.e.,
(θp, ϕp) ∈ {(0◦, 0◦), (4◦, 0◦), (6.9◦, 4.9◦)}. Furthermore, the main-beam
width in azimuth and elevation for the monostatic radar are θ̄ = 7◦

and ϕ̄ = 5◦, respectively. Finally, the transmit signal bandwidth is
equal to B = 2 MHz. The considered target positions along with the
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Figure 3.3. Geometric configuration of the radiolocation system and target
location scenarios. In the figure legend, p1, p2, and p3 are the considered
target positions, located at range r = 20 km and with azimuth-elevation
(0◦, 0◦), (4◦, 0◦), and (6.9◦, 4.9◦), respectively.

radiolocation system and the radar main-lobe radiation pattern are
displayed in Fig. 3.3.

In Fig. 3.4, the RMSE versus SNR0 is illustrated, where each sub-
figure refers to a specific scenario for the target position. Inspection of
Fig. 3.4 shows that the devised estimator achieves some performance
gains in comparison with the counterparts, for SNR0 ranging from 0
to 20 dB, clearly revealing the effectiveness of the new procedure to
capitalize on the available a priori knowledge about the beampattern
features. Fig. 3.5 shows the estimation behaviour of the different
localization algorithms when (θp, ϕp) = (0◦, 0◦) in logarithmic scale,
in order to provide increased visibility of the performance. In this
respect, it is also worth highlighting that the RMSE levels achieved
by ARCE are very close to the RCRLB and at low SNR0 even smaller
values than the benchmark are observed, indicating that the proposed
estimator exhibits a bias under this SNR regime.

From the results displayed in Figs. 3.4(a)-(b)-(c) it is also evident
that ROCE, TSE-1, and TSE-2 (which are the major competitors for
ARCE) attain performance levels comparable with the new proposed
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(a) θp = 0◦, ϕp = 0◦. (b) θp = 4◦, ϕp = 0◦.

(c) θp = 6.9◦, ϕp = 4.9◦

Figure 3.4. RMSE versus SNR0, when θ̄ = 7◦, ϕ̄ = 5◦, and the radiolocation
system comprises N = 4 receive-only sensors.
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Figure 3.5. RMSE in algorithmic scale versus SNR0, when θ̄ = 7◦, ϕ̄ = 5◦,
θp = 0◦, ϕp = 0◦, and the radiolocation system comprises N = 4 receive-only
sensors.

localization algorithm for ever greater values of SNR0 as the target
distance from the antenna’s pointing direction increases.

This behaviour is not surprising since the beampattern extent
constraint is more valuable when the target is closer and closer to
the main-lobe boundary. These insights are confirmed by the plots in
Fig. 3.4(c) pinpointing that the proposed estimator achieves its best
performance when (θp, ϕp) = (6.9◦, 4.9◦).

As a further confirmation of the effectiveness of the devised lo-
calization procedure, the square RAMSE — where the average is
with respect to the target position is analyzed — in Table 3.1, for
different values of SNR0 i.e., SNR0 ∈ {0, 5, 10, 15} dB, and target
range r = 20 km. A uniform 2D grid of points is considered for the
target angular locations, where both the azimuth and the elevation
are discretized in ten angular locations, i.e., θp = {∆θi, i = 0, . . . , 9}
and ϕp = {∆ϕi, i = 0, . . . , 9}, with ∆θ = 6.9◦/9 and ∆ϕ = 4.9◦/9.
The ARCE performance in terms of RAMSE is uniformly superior
over the counterparts, with relevant gains, especially at low SNR.

To assess the computational complexity of ARCE, U-TDOA,
ROCE, TSE-1, and TSE-2, Tables 3.2, 3.3, and 3.4 report the average
times (with respect to Monte Carlo trials) required by the mentioned
strategies to calculate the target position estimate. Different sce-
narios are analyzed, i.e., (θp, ϕp) ∈ {(0◦, 0◦), (4◦, 0◦), (6.9◦, 4.9◦)} and
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Table 3.1. RAMSE values, θ̄ = 7◦, ϕ̄ = 5◦, and N = 4.

SNR0 ARCE U-TDOA ROCE TSE-1 TSE-2
0 dB 2.6× 103 m 1.6× 104 m 1.2× 104 m 1.2× 104 m 1.3× 104 m
5 dB 2.2× 103 m 9.1× 103 m 7.8× 103 m 7.7× 103 m 8.3× 103 m
10 dB 1.6× 103 m 5.1× 103 m 3.5× 103 m 3.4× 103 m 3.6× 103 m
15 dB 1.1× 103 m 2.9× 103 m 1.4× 103 m 1.5× 103 m 1.5× 103 m

Table 3.2. Average execution times, θp = 0◦, ϕp = 0◦, θ̄ = 7◦, ϕ̄ = 5◦, and
N = 4.

SNR0 ARCE U-TDOA ROCE TSE-1 TSE-2
0 dB 4.1 ms 0.063 ms 1.3 ms 0.64 ms 0.25 ms
5 dB 4.3 ms 0.087 ms 1.3 ms 0.39 ms 0.19 ms
10 dB 8.0 ms 0.070 ms 2.0 ms 0.72 ms 0.30 ms
15 dB 3.5 ms 0.30 ms 1.3 ms 0.32 ms 0.16 ms

SNR0 ∈ {0, 5, 10, 15} dB.
As expected, the computational time of ARCE is larger than

that of U-TDOA and ROCE methods (being U-TDOA and ROCE
optimization problems easier to solve). Furthermore, ARCE requires
a larger execution time also with respect to TSE-1 and TSE-2; this
is mainly due to the non-optimized MATLAB implementation of the
bisection algorithms, which is well-known to perform inefficiently in
presence of loops.

The computational time of the overall rooting process can sensibly
be improved adopting a parallelized implementation, over the different
search intervals. The analysis of the aforementioned efficient strategy
will be carried out in a future work. With the current implementation
it is worthwhile to stress that often the ARCE computational time is
comparable with ROCE, in the sense that in the worst case ARCE is
10 ms and ROCE is 2 ms, while in the best case ARCE is 2.9 ms and
ROCE is 1.1 ms. However, the difference in terms of accuracy can
easily reach one order of magnitude in favor of ARCE at low SNR.

In Figs. 3.6 the RMSE is analyzed assuming the scenario of Figs. 3.4
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Table 3.3. Average execution times, θp = 4◦, ϕp = 0◦, θ̄ = 7◦, ϕ̄ = 5◦, and
N = 4.

SNR0 ARCE U-TDOA ROCE TSE-1 TSE-2
0 dB 6.3 ms 0.21 ms 1.6 ms 0.58 0.18 ms
5 dB 10 ms 0.22 ms 1.6 ms 0.86 ms 0.26 ms
10 dB 6.2 ms 0.19 ms 1.4 ms 0.47 ms 0.23 ms
15 dB 7.1 ms 0.23 ms 1.5 ms 0.63 ms 0.27 ms

Table 3.4. Average execution times, θp = 6.9◦, ϕp = 4.9◦, θ̄ = 7◦, ϕ̄ = 5◦, and
N = 4.

SNR0 ARCE U-TDOA ROCE TSE-1 TSE-2
0 dB 5.1 ms 0.092 ms 1.2 ms 0.73 ms 0.54 ms
5 dB 6.3 ms 0.098 ms 1.1 ms 0.91 ms 0.49 ms
10 dB 3.2 ms 0.11 ms 1.1 ms 0.44 ms 0.35 ms
15 dB 2.9 ms 0.32 ms 1.7 ms 0.41 ms 0.22 ms

and an additional receive unit located at pr5 = [760, 860, 477]T m.
Inspection of the figures corroborates the merits of the proposed
algorithm with respect to the counterparts. As expected, all the con-
sidered procedures provide better estimates than the case of Figs. 3.4
with N = 4. To gather further insights about the impact of the
number of receivers on the proposed technique, in Fig. 3.7 the RMSE
of the devised localization method is displayed versus the SNR0, for
N = 4 and N = 5. As expected, the results in Fig. 3.7 highlight
that the presence of the additional receiver can grant a performance
improvement ranging between 100 and 400 meters, for SNR0 values
from 0 to 20 dB.

The case of a wider main-lobe width is considered in Fig. 3.8,
where θ̄ = 10◦ and ϕ̄ = 7◦. The performance in terms of RMSE
for the ARCE estimator is plotted versus the elevation angle ϕp,
for three values of the target azimuth. The curves show that the
proposed algorithm provides more accurate estimates when θp = 9.9◦,
as compared with θp = 0◦ and θp = 4◦. It is worth mentioning that the
performance improves as ϕp increases regardless of θp. This behavior



3.3. Performance Analysis 55

(a) θp = 0◦, ϕp = 0◦. (b) θp = 4◦, ϕp = 0◦.

(c) θp = 6.9◦, ϕp = 4.9◦

Figure 3.6. RMSE versus SNR0, when θ̄ = 7◦, ϕ̄ = 5◦, and the radiolocation
system comprises N = 5 receive-only sensors.
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Figure 3.7. RMSE versus SNR0, when θ̄ = 7◦, ϕ̄ = 5◦, and the radiolocation
system comprises N = 4 and N = 5 receive-only sensors.

confirms that the estimation error decreases when the target is closer
to the boundary of the angular region.

In Fig. 3.9 the localization capabilities are analyzed when the
radar antenna pointing direction rotates in the x− y plane, assuming
SNR0 = 10 dB. The target is supposed fixed and centered in the radar
beam, regardless of the pointing direction. This case study allows
to evaluate one of the main skills of interest that such a multistatic
radar network presents, i.e., the geometric diversity provided by the
system, which depends on the spatial configuration of the receiver
nodes with respect to the active radar main beam direction.

The curves in Fig. 3.9 pinpoint that ARCE strategy is sensibly
more accurate and robust than the alternative methods, especially in
comparison with TSE-1. Indeed, the improvement is observed for all
the rotation angles.



3.3. Performance Analysis 57

Figure 3.8. RMSE versus ϕp, for SNR0 = 10 dB, when θ̄ = 10◦, ϕ̄ = 7◦, and
the radiolocation system comprises N = 4 receive-only sensors.
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Figure 3.9. RMSE versus radar pointing direction, for SNR0 = 10 dB, when
θ̄ = 10◦, ϕ̄ = 7◦, and the radiolocation system comprises N = 4 receive-only
sensors.



Chapter 4
Multitarget Localization and
Tracking for Multiplatform
Radar Network

This chapter illustrates a solution to combine the ARCE [69]
localization method described in Chapter 3 and the SPA-based MTT
approach of [55,56]. Specifically, a particle enrichment process using
ARCE localization estimate is introduced within the SPA-based MTT
in order to have a more effective sampling of the target state space.
Angular constraints are forced such that the localization process
exploits the available information about both the antenna beamwidth
of the transmitter and the virtual beamwidth obtained from the target
predicted uncertainty. Hence, the particle enrichment process replaces
a subset of predicted particles with a new set of particles drawn from
a distribution whose parameters depend on the ARCE localization
estimate.

Experiments1 are presented to analyze the proposed algorithm in
comparison with the conventional baseline SPA-based MTT and the
stand-alone ARCE localization, in a 3D sensing scenario.

1I would like to acknowledge Dr. Giovanni Soldi and Dr. Domenico Gaglione from
the NATO STO Centre for Maritime Research and Experimentation (CMRE), La Spezia,
Italy, for the fruitful collaboration in the achievement of the results in this chapter.
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4.1 MTT Algorithms for MPRNs

4.1.1 Objective and Challenges

MTT algorithms aim at sequentially estimating — across multiple
time scans — the states, i.e., positions and velocities, of multiple
targets by exploiting both the measurements generated by multiple
sensors and an a priori knowledge on the target dynamics. Let us
denote with sk,1, . . . , sk,L the unknown states of L targets at time k,
where sk,ℓ ≜ [pT

k,ℓ,v
T
k,ℓ]

T , and pk,ℓ and vk,ℓ are 3D position and 3D
velocity, respectively, of the ℓ-th target.2 An MPRN comprising a
single transmitter ptk and S receivers p

(i)
rk with the receiver labeled

i = 1 co-located with the transmitter is considered. Unlike the
previous chapter though, here the presence of multiple measurements
at each receiver is accounted. Specifically, receiver i produces M (i)

k ⩾ 0
range measurements at time k, due to both the presence of multiple
targets and clutter. At time k, each target ℓ either does not generate
any measurement at receiver i, i.e., it is missed detected by receiver i,
or it can generate the m-th measurement ρ(i)k,m at receiver i, i.e., it is
detected by receiver i, with probability P

(i)
d . If the m-th measurement

ρ
(i)
k,m at receiver i is generated by the ℓ-th target then it is modeled as

ρ
(i)
k,m = ∥pk,ℓ − ptk∥+ ∥pk,ℓ − p(i)

rk
∥+ n

(i)
k,m, (4.1)

where w
(i)
k,m are zero-mean (usually Gaussian distributed) random

variables independent across k, i, and m. It is worth noting that the
measurement only depends on the target’s position pk,ℓ and not on
its velocity vk,ℓ, which remain unobserved and can only be inferred if
the target’s dynamics is taken into account.

The presence of multiple targets and the availability of multiple
measurements — some of which might be clutter-generated (i.e., false
alarms) — is the cause of the MOU problem, i.e., the unknown

2Higher order kinematics might be included in the target state, i.e., acceleration and
jerk, depending on the modeling of the target dynamics.
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association of measurements with targets, whose complexity scales
exponentially with the number of targets, sensors, and measurements.
Indeed, even considering a single sensor with no false alarm, and
assuming that each target may generate at most one measurement,3
known as point-target assumption [76, Sec. 2.3], the number of possible
associations between the L targets and the M

(i)
k measurements is

L!/(L −M
(i)
k )!. As an example, consider a case with L = 4 targets

and M
(i)
k = 2 measurements: the number of possible associations is

12. Adding one more target and one more measurement, the number
of associations becomes 60. Clearly, the number of associations also
increases if measurements may stem from false alarms [77].

Up to this point the number of targets, L, has been assumed
time-invariant, either known or unknown. For many tracking scenar-
ios, however, this assumption does not hold. Indeed, targets may
enter the field-of-view of the sensors or, in other words, appear in
the tracking scenario; because of this, not-associated measurements
are not necessarily false alarms, but they might be raised by newly
observed targets. Likewise, targets may leave the coverage area, or
disappear from the tracking scenario, thus not generating any more
measurements at the sensors. In these cases, the number of targets
Lk needs to be modeled as time-variant and, if unknown, can be
estimated alongside the target states. Several approaches can be used
to handle these appearance and disappearance phases, known as track
formation or initialization, and track termination [76, Sec. 3.3].

4.1.2 SPA-based Multisensor MTT Algorithm

The issue of computational complexity and scalability of state-of-
the-art MTT methods is well addressed by a recent and innovative
particle-based Bayesian MTT approach, which relies on the use of
a factor graph and the SPA [55, 56, 78–81]. The factor graph is
used to represent the statistical dependencies among the random
variables of the MTT model, while the Bayesian inference is efficiently

3In general, when a target does not produce any measurement at a given receiver, it
is considered missed detected at that receiver.
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and reliably approximated by the SPA. This technique is able to
exploit conditional independence properties of random variables to
achieve a drastic reduction of the computational complexity, handling
efficiently both the data association and the fusion of measurements
from multiple receivers — even heterogeneous [81]. In this respect,
the SPA enables an efficient calculation of association probabilities
for soft4 target-measurement associations. For this reason the SPA-
based MTT method is particularly suitable for large-scale MPRNs
tracking scenarios involving a large number of targets, receivers, and
measurements, and enabling its use on resource-limited devices.

To account for the estimation of both the number of targets and
their states, the state of each target sk,ℓ is augmented by a Bernoulli
random variable rk,ℓ that is equal to 1 if the target is present, and
0 otherwise; consequently, Lk represents the number of potential or
tentative targets. The Bayesian inference about the presence and
the state of potential target ℓ at time k is then based on the joint
posterior pdf f(sk,ℓ, rk,ℓ|ρ1:k), where ρ1:k is the vector comprising all
the measurements from all the receivers since the initial time up to
the current time k. Specifically, the existence of potential target
ℓ is confirmed if the marginal posterior probability mass function
(pmf) p(rk,ℓ = 1|ρ1:k) is above a prefixed threshold5 Pth [82, Ch. 2],
and an estimate of the potential target’s state is obtained from the
marginal posterior pdf f(sk,ℓ|rk,ℓ = 1,ρ1:k) through, for example, the
minimum mean square error estimator. Note that these marginal
posterior pdf/pmf can be obtained from the joint posterior pdf above
by simple elementary operations, including marginalization. The
SPA-based MTT algorithm computes an approximated version of the
joint posterior pdf — called belief — for all the potential targets

4A single-sensor MTT algorithm that uses a soft data association technique does not
select a specific measurement to update a target’s state; it rather updates the target’s
state by averaging over all possible target-measurement combinations suitably weighted
by their association probabilities. Conversely, with a hard data association technique
a single-sensor MTT algorithm updates a target’s state with a single measurement,
selected as the one maximizing the association probability [76, Sec. 2.4].

5The estimated number of targets is the cardinality of the set {ℓ : p(rk,ℓ = 1|ρ1:k) >
Pth}.
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by employing an iterative version of the SPA on a suitably devised
factor graph [56]; for future reference, the belief approximating the
joint posterior pdf for potential target ℓ at time k is referred to as
f̃(sk,ℓ, rk,ℓ). The complexity of the SPA-based MTT algorithm scales
only quadratically in the number of potential targets, linearly in
the number of transmitter-receiver pairs, and linearly in the number
of measurements per receiver, and outperforms previously proposed
methods in terms of accuracy [55,56,80]. Finally, since the SPA-based
MTT method uses a particle-based implementation, it is potentially
suitable for arbitrary non-linear and non-Gaussian problems [55,56,
78–81].

In the following section combination of the ARCE localization
method described in Chapter 3 with the SPA-based MTT approach
is illustrated.

4.2 Combination of the ARCE Localization with
the SPA-based MTT Algorithm

The SPA-based MTT algorithm has shown its advantages in terms
of both accuracy and computational complexity compared to alterna-
tive approaches. Nonetheless, its computational burden can rapidly
grow in a 3D scenario, because of the high number of particles required
to effectively sample the 6D potential target state space. The use of a
limited number of particles is thus desired, which, however, can lead
to particle degeneracy and impoverishment,6 and more generally to
an inaccurate representation of the pdfs/beliefs. This is particularly
relevant in the range-only sensing context considered in this work,
when initializing the state of a newly observed target from a bistatic
measurement at the single receiver node.

Indeed, the lack of any angle information requires the prior pdf of
the potential target state, in particular the component related to the

6Degeneracy occurs when, over time, most of the weight of the entire set of particles
is concentrated on few particles, whereas the remaining particles have a negligible weight.
This effect is generally addressed through resampling, which however might cause particle
impoverishment, that is, a reduction of particle diversity [83].
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3D position, to cover a large volume, potentially the entire focaloid
induced by the bistatic range measurement as well as transmitter
and receiver positions;7 clearly, the resulting prior pdf cannot be
reliable represented by a small number of particles. Moreover, both
an inaccurate prior distribution choice and its rough representation
can propagate via the target dynamic over time, degrading the overall
tracking performance.

Inspired by the rationale behind the ARCE localization, here
the aim is to capitalize on some prior angular information, related
to the potential target position, in order to mitigate the negative
effects caused by the use of a limited number of particles, and thus
improve the tracking performance. The angular side information can
be acquired either through physical considerations, e.g., the antenna
beamwidth of the transmitter as in the plain ARCE strategy, or
leveraging the knowledge about the predicted distribution of the
potential target state. Thus, a particles enrichment process within
the SPA-based MTT algorithm that enables a smarter sampling of
the potential target state space is proposed; this process is driven
by the ARCE location estimate, which is substantially memoryless,
i.e., unaffected by the past, and mainly depends on the measurements
available at current time.

Fig. 4.1 shows the steps of the proposed ARCE-enhanced SPA-
based MTT algorithm. The beliefs computed at the previous time
scan k − 1, representative of the potential targets observed so far,
are predicted to current time k by means of a kinematic model.
Meanwhile, new potential target states are initialized so that newly
observed targets, i.e., targets recently appeared, are promptly tracked.
Ideally, this initialization should involve the measurements collected
by all the receivers at current time k, procedure that demands a high
computational cost.

As an example, let us consider S = 2 receivers each with a single
measurement, that is, M

(i)
k = 1 for i = 1, 2. Both measurements

can be false alarms or be generated by the same newly observed
7A focaloid is a shell bounded by two confocal ellipsoids; it reduces to a spherical

shell when transmitter and receiver are co-located.
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2) Iterative SPA-Based
Data Association

3) ARCE Localization

4) Particles Enrichment

5) Update

1a) Prediction 1b) Initialization

Previous Beliefs

f̃(sk−1,ℓ, rk−1,ℓ)

Current Beliefs f̃(sk,ℓ, rk,ℓ)

Figure 4.1. Block diagram reporting the steps of the proposed ARCE-
enhanced SPA-based MTT algorithm performed at time k.

target; or each measurement can be generated by different newly
observed targets; or the measurement from the first receiver can
be generated by a newly observed target while the other be a false
alarm, and vice versa. As seen, even in this simple case with only
two measurements from two receivers, the initialization step should
account for five different scenarios. Therefore, in order to limit the
complexity, only measurements from one of the receivers are considered
for the initialization step; specifically, the M (1)

k measurements collected
by the monostatic active radar (i.e., the receiver labeled i = 1 co-
located with the transmitter), since this sensor is more reliable, in
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terms of detectability, compared to the other passive receivers. Then,
the iterative SPA-based data association procedure computes the
soft association probabilities for each potential target-measurement
combination. These association probabilities are used as they are in
the update step, according to the common SPA-based MTT framework
[56], and are transformed into hard potential target-measurement
association in order to cluster the measurements and accomplish
single-snapshot ARCE localization based of each group.

The ARCE localization algorithm leverages also some prior an-
gular information to compute a potential target’s position estimate.
Two approaches are herein pursued, based on how this information
is acquired. The non-adaptive (NAD) approach uses the physical
beamwidth and looking direction of the active radar antenna to estab-
lish the angular constraints; hence, these constraints are time-invariant
and equal for all the potential targets. The adaptive (AD) counterpart
exploits an appropriate virtual beam to define bespoke angular con-
straints in the ARCE process. This virtual beam is unique for each
potential target, and is given by the intersection of the active antenna
beam and a tailored beam: the latter points towards the potential
target’s predicted position, and its beamwidth is proportional to the
uncertainty of such predicted position.

The last two steps refer to the particles enrichment, used to obtain
a smarter sampling of the potential target state space based on the
ARCE localization estimates, and the update step used to eventually
obtain the beliefs at current time. Hereafter, a detailed description of
each step performed at time k is provided.

4.2.1 Prediction and Initialization

The input to the prediction step is the set of Lk−1 previous beliefs
f̃(sk−1,ℓ, rk−1,ℓ), ℓ ∈ {1, . . . , Lk−1}, representing the joint posterior
pdfs f(sk−1,ℓ, rk−1,ℓ|ρ1:k−1) computed at time k − 1. Following the
derivation in [55, Sec. VI], the previous belief of potential target
ℓ for rk−1,ℓ = 1, i.e., f̃(sk−1,ℓ, rk−1,ℓ = 1), is represented by a set
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of Np weighted particles8 {s(p)k−1|k−1,ℓ, ω
(p)
k−1|k−1,ℓ}

Np
p=1, whose weights,

contrary to conventional particle filtering [84], do not sum to one.
Indeed, it is straightforward to verify that pe

k−1|k−1,ℓ ≜
∑Np

p=1 ω
(p)
k−1|k−1,ℓ

is approximately equal to p(rk−1,ℓ = 1|ρ1:k−1), i.e., the posterior
probability of existence of potential target ℓ at time k− 1. During the
prediction step, this set of weighted particles is converted into a new set
of weighted particles {s(p)k|k−1,ℓ, ω

(p)
k|k−1,ℓ}

Np
p=1, that approximates the joint

predicted pdf f(sk,ℓ, rk,ℓ|ρ1:k−1). Specifically, ω(p)
k|k−1,ℓ = psω

(p)
k−1|k−1,ℓ,

where ps is the target surviving probability. Besides, such a particles
evolution is achieved by utilizing an appropriate kinematic model,
described by the transition pdf f(sk,ℓ|sk−1,ℓ).

Meanwhile, as mentioned above, new potential target states are
initialized to account for newly observed targets. Let us recall that,
in order to limit the computational cost, only the M

(1)
k measurements

produced by the monostatic active radar are used in the initialization
step; precisely, a set of weighted particles {s(p)k|k−1,m′ , ω

(p)
k|k−1,m′}Np

p=1, with
m′ = Lk−1 +m, is added9 for each measurement m ∈ {1, . . . ,M (1)

k }.
The 3D position component of each particle, i.e., p(p)

k|k−1,m′ , is drawn
from a distribution — usually Gaussian, according to the measurement
model in equations (4.1) — with mean the range measurement ρ

(1)
k,m

converted into Cartesian coordinates assuming an angle uniformly
distributed within the transmitter’s antenna beam, and standard
deviation in accordance to the noise w

(1)
k,m in equations (4.1); the

3D velocity component, i.e., v
(p)
k|k−1,m′ , is drawn from a Gaussian

distribution independent of k, m′, and p, with mean zero and scalar
covariance matrix whose non-zero element is related to the target’s
maximum speed, according to the one-point initialization provided
in [76, Sec. 3.2.2]. Finally, homogeneous particle weights are set,

8The notation i|j as subscript indicates a random variable/vector evaluated at time i
given the measurements from the initial time up to time j.

9The subscript k|k−1 is kept for consistency with the notation used for the predicted
sets of particles. Clearly, new potential targets are independent of the previous time
scan k − 1.
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i.e., ω(p)
k|k−1,m′ =

pb

Np
, with pb ≪ 1 the assumed birth probability. It is

worth noting that by using this mechanism, the number of potential
targets — i.e., of particle sets — grows indefinitely over time; indeed,
following the initialization, the number of potential targets at time k

becomes Lk ≜ Lk−1 +M
(1)
k . Therefore, in order to keep a tractable

computational complexity, a pruning step is performed at each time
scan k, before prediction and initialization, in order to remove all
potential targets whose probability of existence is below a prefixed
threshold [56,78].

4.2.2 Iterative SPA-Based Data Association

The sets of weighted particles obtained at the previous step, and all
measurements collected by all receivers at time k are used to compute
the soft association probabilities for each potential target-measurement
combination according to the SPA-based data association algorithm
as described in [56,80]. These soft association probabilities are used
as they are in the update step, whereas they are transformed into
hard potential target-measurement association so as to cluster the
measurements into groups to be used in the next ARCE localization
step. The hard potential target-measurement associations are obtained
by applying a maximum-a-posteriori criterion to the approximated
measurement-oriented data association pmfs, computed as described
in [56, Sec. VI-B].

4.2.3 ARCE Localization

During this step an estimate of each potential target position,
denoted by pARCE

k,ℓ , is obtained using the ARCE localization algorithm.
As widely explained in Chapter 3, in order to compute pARCE

k,ℓ the
ARCE localization algorithm requires as input a set of bistatic-range
measurements associated to potential target ℓ, as well as specific
angular constraints. The set of measurements is obtained through
the hard potential target-measurement associations computed at the
previous step. The angular constraints are selected according to
two different approaches. When using the NAD – non-adaptive -
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approach, the angular constraints just reflect the physical beam of
the transmitter antenna; therefore, they are the same for all the
potential targets. The AD – adaptive - approach defines different
angular constraints for each potential target ℓ according to a bespoke
virtual beam, obtained as the intersection of the physical beam of
the transmitter antenna and a tailored beam. This tailored beam is
steered towards the predicted potential target position obtained as
the weighted sum (according to ω

(p)
k|k−1,ℓ) of the particles p

(p)
k|k−1,ℓ.

To compute the width of the tailored beam in azimuth (x−y plane)
and elevation (x− z plane), first the particles p

(p)
k|k−1,ℓ are converted

from Cartesian to spherical coordinates; then, the standard deviations
of azimuth and elevation, denoted by σ az

k,ℓ and σ el
k,ℓ, respectively, are

computed to measure the potential target spreading along the principal
planes. Finally, the widths in azimuth and elevation are set to,
respectively, d az

k,ℓ = 2C̃σ az
k,ℓ and d el

k,ℓ = 2C̃σ el
k,ℓ, where C̃ is a scaling

factor to widen (C̃ > 1) or narrow (C̃ < 1) the tailored beam.

4.2.4 Particles Enrichment

Objective of this step is to provide a more accurate/reliable sam-
pling of the potential target state space, or, equivalently, a more
accurate representation of the potential target belief, exploiting the
position estimate pARCE

k,ℓ provided by the ARCE.
The idea comes from the consideration that the number of particles

— limited to keep a tractable computational complexity – might not
be enough to well describe the potential target belief. Moreover, this
coarse representation can propagate over time, eventually leading to
the particle impoverishment and a performance degradation. Hence,
to prevent these impairments, the intuition is to replace the less sig-
nificant particles representing the predicted potential target position,
i.e., p(p)

k|k−1,ℓ, with new particles drawn from a suitable distribution
centered in the ARCE localization estimate. The aforementioned
distribution, referred to as ARCE-based distribution, is a Gaussian
with mean pARCE

k,ℓ and prefixed standard deviation σARCE used to
model the uncertainty of the estimated ARCE location. A detailed
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description of the substitution procedure follows.
For each potential target ℓ, let us assume without loss of generality

that the weights ω
(p)
k|k−1,ℓ are ordered from the smallest to the largest,

i.e., ω(p)
k|k−1,ℓ ⩽ ω

(q)
k|k−1,ℓ for p < q.

Then, let us denote with P ≜ {1, . . . , Ng} the set of indices
representing the fraction 1−αr, αr ∈ (0, 1), of less significant particles
that will be replaced; Ng is therefore the largest possible value in
{1, . . . , Np} such that the following holds:10

∑Ng
q=1 ω

(q)
k|k−1,ℓ∑Np

p=1 ω
(p)
k|k−1,ℓ

⩽ (1− αr).

The enriched set of weighted particles, denoted by {s(p)k|k−1,ℓ,

ω
(p)
k|k−1,ℓ}

Np
p=1, is built as follows. The particle s

(p)
k|k−1,ℓ is

s
(p)
k|k−1,ℓ =


[
p̌
(p)T
k|k−1,ℓ,v

(p)T
k|k−1,ℓ

]T
, p ∈ P ,

s
(p)
k|k−1,ℓ , p /∈ P ,

where p̌
(p)
k|k−1,ℓ is drawn from the ARCE-based distribution; note that

only the 3D position component of the particle is replaced if p ∈ P,
whereas the 3D velocity component v

(p)
k|k−1,ℓ is kept since the ARCE

localization algorithm does not provide any velocity information.
The weight ω

(p)
k|k−1,ℓ is

ω
(p)
k|k−1,ℓ =

(
Np∑
d=1

ω
(d)
k|k−1,ℓ

)
×


1− αr

Ng
, p ∈ P ,

αr ω
(p)
k|k−1,ℓ∑

q /∈P ω
(q)
k|k−1,ℓ

, p /∈ P .

10Note that if the weights are uniform — as for the new potential targets – this
procedure is equivalent to a random selection of the particles to replace. Specifically,
each particle p is replaced with probability 1− αr and maintained with probability αr.
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(a) Non-adaptive (NAD) Approach -
XY-Plane

(b) Non-adaptive (NAD) Approach -
XZ-Plane

(c) Adaptive (AD) Approach - XY-
Plane

(d) Adaptive (AD) Approach - XZ-
Plane

Figure 4.2. Illustrations of the proposed ARCE-enhanced SPA-based MTT
algorithm — both the non-adaptive (top plots) and the adaptive (bottom
graphs) approaches — in a 3D single target scenario, assuming the active radar
located at [0, 0, 0]T with its antenna pointing towards the x-axis; the plots
show the x− y planes (left panels) and the x− z planes (right panels). The
non-adaptive approach considers the active radar beam to establish the angular
constraints used for the computation of the ARCE estimate; the adaptive
approach, instead, utilizes a virtual beam as described in Section 4.2.3.

This construction ensures that i) the weights of the substituted par-
ticles are uniform and retain a fraction 1 − αr of the total weight
of the set; ii) the weights of the remaining particles are unchanged
except that for a normalization factor that let them retain a fraction
αr of the total weight of the set; and iii) the sum of all the weights is
unchanged, that is,

∑Np
p=1 ω

(p)
k|k−1,ℓ =

∑Np
q=1 ω

(q)
k|k−1,ℓ.

At the end of this step, the a-priori knowledge of the monostatic
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active radar beam can be also used to penalize the particles lying
outside the constrained region by applying an acceptance/rejection
process as described in [85].

4.2.5 Update

According to the implementation of the SPA-based MTT al-
gorithm in [55, Sec. VI], the enriched sets of weighted particles
{s(p)k|k−1,ℓ, ω

(p)
k|k−1,ℓ}

Np
p=1, ℓ ∈ {1, . . . , Lk}, are updated using the measure-

ments collected by all the receivers at current time k and the soft
association probabilities computed at the iterative SPA-based data
association step. The updated sets of weighted particles, denoted
{s(p)k|k,ℓ, ω

(p)
k|k,ℓ}

Np
p=1, represent the beliefs of the potential targets at cur-

rent time, i.e., f̃(sk,ℓ, rk,ℓ = 1), which in turn approximate the joint
posterior pdfs f(sk,ℓ, rk,ℓ = 1|ρ1:k). The potential target ℓ is confirmed
if the marginal posterior pmf p(rk,ℓ = 1|ρ1:k) ≈ pe

k|k,ℓ is above the
threshold Pth, and that an estimate of its state is obtained from the
marginal posterior pdf f(sk,ℓ|rk,ℓ = 1,ρ1:k) ≈ f̃(sk,ℓ, rk,ℓ = 1)/pe

k|k,ℓ.
Following the update, a resampling of the particles may be required

as to reduce the degeneracy effect [83]; this process results in the
weights ω(p)

k|k,ℓ to be all equal and whose sum is the posterior probability
of existence pe

k|k,ℓ.
Figs. 4.2 provide illustrations of the proposed ARCE-enhanced

SPA-based MTT algorithm in a 3D single target scenario at a generic
time scan k, assuming that the active radar is located at ptk = [0, 0, 0]T

and the antenna pointing direction is steered towards the x-axis; the
left-hand side plots (panels (a) and (c)) and the right-hand side plots
(panels (b) and (d)) show the projections of all the 3D points onto,
respectively, the x− y and the x− z planes.

All figures show the true position of the target (white circle), the
ARCE estimate (red square), the set of enriched particles computed
as described in Section 4.2.4 (red crosses), the set of updated particles
obtained as illustrated in Section 4.2.5 (blue crosses), and the final
estimated position of the target (blue circle). The top plots refer to
the non-adaptive case, that is, when the angular constraints used
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within the ARCE localization algorithm (see. Section 4.2.3) coincide
with the physical beam of the transmitter’s antenna.

As expected, the ARCE estimate is within the active radar beam
and, especially looking at the x− z plane in Fig. 4.2(b), close to the
true target position, allowing a better sampling of the state space in
this relevant region. The bottom figures show the same example when
the adaptive approach (exploiting a virtual beam) is adopted. The
ARCE estimate is now restricted to the virtual beam, designed as
described above; this avoids to spread the new Ng particles, generated
during the particles enrichment step in a region where it is less likely
to observe the target, as happens, for example, with the non-adaptive
approach in Fig. 4.2(a).

4.3 Experiments

In this section, the performance of the proposed algorithm de-
scribed in Section 4.2 is assessed in simulations.

4.3.1 Simulation setup

The simulations consider a 3D scenario with a stationary trans-
mitter located at the origin of the reference system (i.e., ptk = pt =

[0, 0, 0]T km) and S = 5 receivers located, respectively, at p
(1)
r =

[0, 0, 0]T km, p(2)
r = [0.916, 0.941, 0.95]T km, p(3)

r = [0.973, 0.541, 0.764]T

km, p(4)
r = [0.955, 0.483, 0.191]T km, and p

(5)
r = [0.936, 0.350, 0.477]T

km. Note that the transmitter and receiver 1 are co-located (monos-
tatic active radar), i.e., pt = p

(1)
r .

Two targets moving radially towards the active radar are simulated.
In particular, target 1 is moving close to the antenna’s beam edge,
while target 2 is moving in the middle of the antenna’s beam. Both
targets are simulated for 100 time steps with a scan time of 10 s, and
their speed is set to 5 m/s.

The monostatic and bistatic measurements generated by the tar-
gets are simulated according to equations (4.1) with n

(i)
k,m ≜ n(i) being

distributed as a Gaussian random variable with mean 0 and standard
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deviation defined as in equations (3.3) Finally, the frequency band-
width of the probing waveform is equal to B = 20 MHz.

The performance of the baseline SPA-based MTT algorithm per-
forming only target tracking [55, 56] are compared with the proposed
method described in Section 4.2. In particular, for the proposed
method the NAD and the AD versions (see Section 4.2.3) for three
values of C̃ = 1, 2, 3 are considered.

The performance of the different methods is measured according
the Generalized Optimal Sub-Pattern Assignment (GOSPA) metric
[86] that accounts for localization errors for correctly confirmed targets,
as well as errors for missed targets and false targets; all the results
are averaged over 200 Monte Carlo trials.

An ideal scenario without missed detections and false alarms is
simulated, as well as a more challenging scenario, where the detection
probabilities of the receivers are lower than 1 and false alarms are
present. For the ideal scenario, the performance of the stand-alone
ARCE localization algorithm at each time step are considered, too.

4.3.2 Results in ideal scenario

First, the ideal scenario is analyzed, in which the active radar
and the receivers do not produce any false alarms and no missed
detections are present, that is the detection probability P

(i)
d = Pd of

each receiver i is equal to 1.
Target 1 and target 2 in two distinct single-target scenarios are

considered; both targets start at a range of 30 km. Simulations are
performed for three different SNR noise levels at 30 km equal for all
receivers and the active radar, i.e., SNRi = SNR for i = 1, . . . , 5, with
SNR = 0 dB, SNR = −10, dB and SNR = −20 dB.

Figs. 4.3 and 4.4 show, respectively for target 1 and target 2, the
comparison between the ARCE localization algorithm, the baseline
SPA-based MTT algorithm, and the proposed algorithm (‘Prop.’)
both NAD and AD versions with C̃ = 1, 2, 3, in terms of the MGOSPA
error, i.e., averaged over the 200 Monte Carlo trials, and for the
different values of SNR. The number of particles Np is 500, αr = 0.7,
Ng = ⌊(1− αr)Np⌉, and σARCE is set to 500 m.
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It is possible to observe that the ARCE method performs worse
than both the proposed and the baseline techniques. Moreover, the
gap among the performances of the different methods reduces as the
level of SNR increases. The proposed methods are those performing
generally better: specifically, the NAD version for SNR = 0 dB and
SNR = −10 dB, and the AD versions for SNR = −20 dB with C̃ = 3
and C̃ = 1 for target 1 and target 2, respectively.

(a) SNR = 0 dB. (b) SNR = −10 dB.

(c) SNR = −20 dB.

Figure 4.3. Comparison between the ARCE localization algorithm, the
baseline SPA-based MTT algorithm, and the proposed algorithm (‘Prop.’) —
both NAD and AD — in an ideal scenario (Pd = 1 and no false alarms) with
target 1 moving close to the antenna’s beam edge, in terms of MGOSPA error
and on varying SNR.
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(a) SNR = 0 dB. (b) SNR = −10 dB.

(c) SNR = −20 dB.

Figure 4.4. Comparison between the ARCE localization algorithm, the
baseline SPA-based MTT algorithm, and the proposed algorithm (‘Prop.’) —
both NAD and AD — in an ideal scenario (Pd = 1 and no false alarms) with
target 2 moving in the middle of the antenna’s beam, in terms of MGOSPA
error and on varying SNR.
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In order to appreciate the main advantage of using ARCE in the
proposed method, the performance of the SPA-based MTT and the
proposed method for a varying number of particles are compared.

Figs. 4.5 show a comparison between the baseline SPA-based
MTT algorithm and the proposed algorithm (‘Prop.’) — AD with
C̃ = 3 — for SNR = −10 dB, in terms of MGOSPA averaged over
two distinct time intervals, i.e., ‘interval A’ from time step 10 to
time step 40 (continuous lines), and ‘interval B’ from time step 41 to
time step 100 (dashed lines), and varying the number of particles Np.
Performance of the ARCE algorithm are reported for reference, even
if it is independent of the number of particles.

Fig. 4.5(a) shows the results for target 1 (moving close to the
antenna’s beam edge), while the Fig. 4.5(b) shows the results for
target 2 (moving in the middle of antenna’s beam). In both cases,
the largest improvement of the proposed algorithm against the SPA-
based MTT algorithm is achieved for a lower number of particles, i.e.,
Np = 500 or Np = 1000, and for interval A, as shown by the blue
and red continuous lines. For interval B the gap in the performances
between the SPA-based MTT and the proposed method is reduced,
as shown by the red and blue dashed lines.

As the number of particles Np increases up to 2500, the perfor-
mances of the SPA-based MTT and the proposed method tend to
converge. This behavior suggests that the ARCE estimates provide
useful hints for an effective sampling of the space in particular when
targets are initialized (i.e., within time interval A) and for a low
number of particles. For a larger number of particles, the sampling
of the space is inherently more effective, making the impact of the
ARCE estimates less significant. Overall, the use of a lower number of
particles is desirable especially when a large number of targets needs
to be tracked.

4.3.3 Results in non-ideal scenario

A multitarget scenario with both target 1 and target 2, clutter-
generated measurements, and missed detections is now analyzed. In
this scenario, target 1 starts at a range of 35 km, while target 2 at
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(a) Target 1 moving close to the antenna’s beam edge.

(b) Target 2 moving in the middle of the antenna’s beam.

Figure 4.5. Comparison between the ARCE localization algorithm, the
baseline SPA-based MTT algorithm, and the proposed algorithm (‘Prop.’) —
AD with C̃ = 3 — in an ideal scenario (Pd = 1 and no false alarms), for
SNR = −10 dB, in terms of MGOSPA averaged over time interval A (step 10
to step 40, continuous lines) and time interval B (step 41 to step 100, dashed
lines) and varying the number of particles Np.
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a range of 30 km. The number of false alarms for each receiver i is
modeled according to a Poisson distribution with mean 1, while the
detection probability P

(i)
d is equal to 0.9 for the active radar i = 1,

and 0.7 for the other receivers i = 2, . . . , 5.
The performances of the baseline and the proposed algorithm,

both NAD and AD versions with C̃ = 1, 2, 3, are shown in Figs. 4.6
in terms of MGOSPA error and for varying SNR. As before, it is set
Np = 500, αr = 0.7, Ng = ⌊(1 − αr)Np⌉, and σARCE = 500 m. It is
worth highlighting that the proposed NAD version and AD version
with C̃ = 3 still perform better than the baseline algorithm, especially
with an SNR equal to 0 dB and -10 dB.

(a) SNR = 0 dB. (b) SNR = −10 dB.

(c) SNR = −20 dB.

Figure 4.6. Comparison between the the baseline SPA-based MTT algorithm
and the proposed algorithm (‘Prop.’) — both NAD and AD — in a non-ideal
scenario with two targets moving within the antenna’s beam, in terms of
MGOSPA error and on varying SNR.





Chapter 5
Conclusions

In this thesis, advanced target localization algorithms for several
sensing systems of interest are developed. In order to boost the per-
formance in terms of estimation accuracy, a constrained optimization
approach is exploited.

A 2D localization algorithm for PBR system capitalizing signals
emitted by multiple illuminators of opportunity and measurements
collected by a co-located active radar is considered in Chapter 2. The
algorithm, i.e., AACLS, is designed resorting to the constrained LS
framework. Specifically, angular and range constraints accounting for
both a-priori information on the PBR receive antenna main-beam size
and the uncertainty characterizing active radar data have been forced
on the localization process. Hence the problem has been formulated as
a constrained LS estimation. The resulting non-convex optimization
problem is efficiently solved invoking the KKT optimality conditions.
Then, an efficient solution technique is derived which searches the
target position estimate among a number of candidate in closed-
form, whose evaluation just rely on the computation of elementary
functions. The analyses, in terms of RMSE, reveal the improvement
of the proposed technique when compared with some counterparts
available in the open literature. In particular, the proposed strategy
outperforms the ACLS algorithm, which considers only the PBR
angular information, demonstrating the effectiveness of a holistic
passive/active radar localization procedure which properly exploits
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the active radar information. The analyses have also shown that
the PBR main-beam size not always affects the localization, in fact
AACLS is totally blind to the PBR angular extent constraint when
the state-space limitation induced by active side-information is the
most stringent. Moreover the effectiveness of the proposed strategy
is demonstrated also for a dynamic scenario, where a surveillance
system equipped with a PBR exploits the measurements at each
scanning period provided by a co-located active rotating radar. In
fact, it is shown that staring the passive radar in a specific area of
tactical interest the localization reliability is assured also in the time
instants where no active information is available, namely the PBR
appropriately works as a gap-filler. This is an important achievement
in particular when the localization of fast and manoeuvring targets is
addressed.

In Chapter 3, a novel strategy for 3D target positioning, i.e.,
ARCE, is developed for a MPRN composed of a master transmit-
receive node and multiple receive sensors. The monostatic radiation
pattern features have been wisely exploited in the proposed positioning
process restricting the angular location of any illuminated target.
Hence, leveraging monostatic and bistatic range measurements, the
Cartesian coordinates of the target have been estimated as the global
optimal solution to a constrained non-convex LS problem. Then, the
KKT optimality conditions are leveraged to obtain an efficient method
for position estimation in quasi-closed-form. In particular, by means
of an ad-hoc partition of the feasible set, a finite number of candidate
optimal solutions has been identified, whose evaluation just rely on
the computation of elementary functions and of the roots of specific
polynomial equations. For this last task a smart rooting method has
been designed capitalizing the structure of the involved equations
and the bisection method. Remarkably, the overall target localization
process demands a computational complexity proportional to the
squared number of receive units. The performance of the proposed
algorithm has been assessed in terms of RMSE also in comparison with
some competitors available in the open literature. For the considered
case studies, the new method achieves interesting accuracy gains



over the counterparts, especially for weak target returns. Besides, it
exhibits performance levels close to the RCRLB benchmark and even
better for small values of SNR0, further corroborating its effectiveness.

Finally, in Chapter 4 a solution to combine the ARCE algorithm
with the scalable SPA-based MTT approach is proposed in order to
boost the accuracy of the overall surveillance system. In particular,
SPA-based MTT technique is enhanced by a particles generation
process which exploits the ARCE estimate. The localization process
accounts for the available information about the antenna beamwidth
of the transmitter and the virtual beamwidth obtained from the target
predicted uncertainty through angular constraints. Hence, a new set
of particles drawn from a distribution whose parameters depend on
the target location estimate is generated. Experimental results in a
simulated 3D scenario have shown that the proposed solution is able
to achieve superior performance than the baseline SPA-based MTT.

Future research may regard experimental validation of the pro-
posed algorithms on measured data, as well as the extention of the
developed framework to a MPRN comprising multiple transmitters
and in scenarios including multipath environments.
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Appendix of Chapter 2

This Appendix contains all the technical details relating to Chapter
2. Specifically, it deals with the regularity of the feasible points for
Problem P along with the proof of Proposition 2.2.1.

A.1 Proof of Proposition 2.2.1

Lemma A.1.1. Any feasible point x̄ to (2.15), is regular for the
optimization Problem P.

Proof. Let x̄ = [x̄1, x̄2, x̄3]
T be a feasible point to P . Before proceeding

further, being Ra
1 > 0 and γ a finite positive value, note that x̄1 > 0,

which implies that the inequality constraint (2.17d) is inactive, at
any feasible point. In fact, if x̄1 = 0, x̄3 = 0, which is impossible
due to the constraint (2.17b). As a result, x̄ = [0, 0, 0]T cannot be
a feasible point, and hereafter the inequality constraint (2.17d) is
assumed inactive, i.e., x̄1 > 0. To study the regularity of a feasible
point x̄, the following cases should be distinguished:

1. constraints (2.17b) and (2.17c) are simultaneously inactive. The
gradient of x̄T x̄ is

∇p̃TBp̃
∣∣
p̃=x̄ = 2[x̄1, x̄2,−x̄3]

T ̸= 0

implying the regularity of x̄.
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2. x̄3 = c1 (or x̄3 = Ra
1) and constraints (2.17c) are inactive. The

gradients
∇p̃TBp̃

∣∣
p̃=x̄ = 2[x̄1, x̄2,−c1]

T

(or ∇p̃TBp̃
∣∣
p̃=x̄ = 2[x̄1, x̄2,−Ra

1]
T )

and
∇p̃3 = [0, 0, 1]T

are linearly independent and hence x̄ is regular.

3. x̄2 = x̄1γ (or x̄2 = −x̄1γ) and (2.17b) are inactive. The gradients

∇p̃TBp̃
∣∣
p̃=x̄ = 2[x̄1, γx̄1,−x̄3]

T

(or ∇p̃TBp̃
∣∣
p̃=x̄ = 2[x̄1,−γx̄1,−x̄3]

T )

and
∇ (p̃2 − p̃1γ) = [−γ, 1, 0]T

(or ∇ (−p̃2 − p̃1γ) = [−γ,−1, 0]T )

are linearly independent and hence x̄ is regular.

4. x̄3 = c1 and x̄2 = x̄1γ (or x̃2 = −x̄1γ). The gradients

∇p̃TBp̃
∣∣
p̃=x̄ = 2[x̄1, γx̄1,−c1]

T

(or ∇p̃TBp̃
∣∣
p̃=x̄ = 2[x̄1,−γx̄1,−c1]

T ),

∇p̃3 = [0, 0, 1]T ,

and
∇ (p̃2 − p̃1γ) = [−γ, 1, 0]T

(or ∇ (−p̃2 − p̃1γ) = [−γ,−1, 0]T )

are linearly independent implying the regularity of x̄.

5. For x̄3 = Ra
1 and x̄2 = x̄1γ (or x̄2 = −x̄1γ) the same results as
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in (4) are obtained, with Ra
1 instead of c1.

Following the same line of reasoning, it can be also shown that the
feasible points for the restricted versions of P, obtained considering
the different regions of the feasible set, of interest fulfill the regularity
condition.

Proof of Proposition 2.2.1

As a first step toward the closed-form target position estimate, note
that Weierstrass theorem ensures the existence of a global minimizer
to P , being the objective function continuous and the constraint set
compact. Furthermore, all the feasible points of P are regular, (as
shown in Lemma A.1.1), and both the objective and the constraint
functions are twice continuously differentiable. Hence, the key idea
of the subsequent proof is to establish candidate optimal solutions,
searching for KKT-points [71, Proposition 3.3.1] (or directly optimal
solutions), within the subsets induced by specific problem constraints.
In this respect, different cases, related to diverse portions of the
feasible set, are examined in the sequel. Note that, p̃1 > 0 for any
feasible point being Ra

1 > 0 and θ̄ ≤ π/2.

a) Assume all the inequality constraints inactive, candidate optimal
solutions to P can be found among the regular points of

P1

 min
p̃

∥H̃p̃− g∥2

s.t. p̃TBp̃ = 0
,

which satisfy the necessary first- and second-order optimality
conditions [71], [70], [87, Theorem 3.1], as well as the inequality
constraints 

Ra
1 < p̃∗3 < c1

−γp̃∗1 < p̃∗2 < γp̃∗1
p̃∗1 > 0

.

This set of inequalities account for the specific feasible set of
Problem (2.17) and differs from that involved in the ACLS
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counterpart, where the target feasible positions describe a convex
set. These solutions1 are among the points [62]

x̃∗(ηh) =
(
H̃

T
H̃ + ηhB

)−1

H̃
T
g

with ηh, h ∈ Ī1 ⊆ {1, . . . , 4}, the real-valued roots of the fourth-
order equation

x̃∗(ηh)
TBx̃∗(ηh) = 0,

which belong to− 1

λ2

(
B, H̃

T
H̃
) ,+∞


−

− 1

λ1

(
B, H̃

T
H̃
) ,− 1

λ3

(
B, H̃

T
H̃
)
 .

As a consequence, there are at most four candidate optimal
points to P for case a).

b) If p̃3 = c1, then P is equivalent to

P2


min
q̃

∥H̃1q̃ − g + h̃3c1∥
2

s.t. q̃T q̃ = c21
−γq̃1 ≤ q̃2 ≤ γq̃1
q̃1 ≥ 0

,

where q̃ = [q̃1, q̃2]
T and p̃ = [q̃T , c1]

T . Assuming −γp̃1 < p̃2 <

1If the matrix (H̃
T
H̃ + ηhB) is singular, assuming λ1

(
B, H̃

T
H̃

)
≠

λ2

(
B, H̃

T
H̃

)
≠ λ3

(
B, H̃

T
H̃

)
, a different technique can be used to solve the KKT

equations. Nevertheless, in more than ten thousand trials the above singularity condition
can never lead to candidate optimal solutions.
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γp̃1 and p̃1 > 0, candidate optimal solutions to P2 can be found
among the feasible points of

P3

 min
q̃

∥H̃1q̃ − g + h̃3c1∥
2

s.t. q̃T q̃ = c21

,

which comply with the necessary first- and second-order opti-
mality conditions and satisfy{

−γp̃1 < p̃2 < γp̃1
p̃1 > 0

. (A.1)

These solutions can be obtained from the points2

q̃∗(βh) =
(
H̃

T

1 H̃1 + βhI
)−1

H̃
T

1

(
g − h̃3c1

)
with βh, h ∈ Ī2 ⊆ {1, . . . , 4}, the real-valued roots to the fourth
order equation

q̃∗T (βh)q̃
∗(βh) = c21

such that βh > −λmax

(
H̃

T

1 H̃1

)
and βh ̸= −λmin

(
H̃

T

1 H̃1

)
. As

a consequence, there are at most four candidate optimal points to
P for case b) obtained appending to q̃∗(βh) the last component
c1, i.e., x̃∗(βh) = [q̃∗1(βh), q̃

∗
2(βh), c1]

T , h ∈ I2 ⊆ Ī2.

c) If p̃3 = Ra
1 as well as −γp̃1 < p̃2 < γp̃1 and p̃1 > 0, following the

same line of reasoning as for case b), the candidate optimal solu-
tions are given by the points x̃∗(ζh) = [q̃∗1(βh), q̃

∗
2(βh), R

a
1]

T , with

q̃∗(ζh) =
(
H̃

T

1 H̃1 + ζhI
)−1

H̃
T

1

(
g − h̃3R

a
1

)
fulfilling (A.1), where

q̃ = [q̃1, q̃2]
T ∈ R2 and ζh, h ∈ Ī3 ⊆ {1, . . . , 4} the real-valued

roots to the fourth order equation q̃∗T (ζh)q̃
∗(ζh) = Ra

1
2 such that

2A situation similar to footnote 1 occurs for the case βh = −λmin(H̃
T
1 H̃1) and βh =

−λmax(H̃
T
1 H̃1).
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ζh > −λmax

(
H̃

T

1 H̃1

)
and ζh ≠ −λmin

(
H̃

T

1 H̃1

)
. It is worth

pointing out that this range constraint, which is not present
in [62], provides other four possible candidate optimal solutions
that are not contemplated in the ACLS strategy. In particular,
these points replace x̃∗ = 0.

d) If p̃2 = (−1)i+1γp̃1, i = 1, 2, the candidate solutions are the two
points

x∗
4i
= α∗

i

[
1, (−1)i+1γ,

√
1 + γ2

]T
, i = 1, 2,

with

α∗
i = min

(
max

(
Ra

1√
1 + γ2

,
vT
i g

||vi||2

)
,

c1√
1 + γ2

)
(A.2)

the optimal solution to

P

 min
αi

∥viαi − g∥2

s.t. Ra
1√

1+γ2
≤ αi ≤ c1√

1+γ2

,

where vi = H̃
[
1, (−1)i+1γ,

√
1 + γ2

]T
. Note that, unlike [62],

the lowest value of (A.2) is strictly greater than zero, to comply
with the target positions feasible set of Problem (2.17).
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This Appendix contains all the technical details relating to Chapter
3. Specifically, it comprises two parts. Part B.1 deals with the
regularity of the feasible points for Problem P along with the proof of
Proposition 3.2.1. Part B.2 carries out the design of computationally
efficient techniques to identify candidate optimal solutions of the
problem at hand.

B.1 Proof of Proposition 3.2.1

Lemma B.1.1. Any feasible point x̄ to (3.8) is regular for the opti-
mization Problem P.

Proof. Let x̄ = [x̄1, x̄2, x̄3]
T be a feasible point to P . Note that x̄1 > 0,

i.e., the inequality constraint (3.8d) is inactive. In fact, due to the
constraint (3.8a), x̄ = [0, 0, 0]T cannot be a feasible point. To study
the regularity of x̄, the following situations should be distinguished:

1. constraints (3.8b) and (3.8c) are simultaneously inactive. The
gradient of x̄T x̄ is

∇pTp
∣∣
p=x̄ = 2[x̄1, x̄2, x̄3]

T ̸= 0

implying the regularity of x̄.
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2. x̄2 = γax̄1 (or x̄2 = −γax̄1) and constraints (3.8c) are inactive.
The gradients

∇pTp
∣∣
p=x̄ = 2[x̄1, γax̄1, x̄3]

T

(or ∇pTp
∣∣
p=x̄ = 2[x̄1,−γax̄1, x̄3]

T )

and
∇ (p2 − γap1) = [−γa, 1, 0]

T

(or ∇ (−p2 − γap1) = [−γa,−1, 0]T )

are linearly independent and hence x̄ is regular.

3. x̄3 = γex̄1 (or x̄3 = −γex̄1) and constraints (3.8b) are inactive.
The gradients

∇pTp
∣∣
p=x̄ = 2[x̄1, x̄2, γex̄1]

T

(or ∇pTp
∣∣
p=x̄ = 2[x̄1, x̄2,−γex̄1]

T )

and
∇ (p3 − γep1) = [−γe, 0, 1]

T

(or ∇ (−p3 − γep1) = [−γe, 0,−1]T )

are linearly independent and hence x̄ is regular.

4. x̄3 = γex̄1 and x̄2 = γax̄1 (or x̄2 = −γax̄1). The gradients

∇pTp
∣∣
p=x̄ = 2[x̄1, γax̄1, γex̄1]

T

(or ∇pTp
∣∣
p=x̄ = 2[x̄1,−γax̄1, γex̄1]

T ),

∇ (p3 − γep1) = [−γe, 0, 1]
T

and
∇ (p2 − γap1) = [−γa, 1, 0]

T

(or ∇ (−p2 − γap1) = [−γa,−1, 0]T )
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are linearly independent implying the regularity of x̄.

5. x̄3 = −γex̄1 and x̄2 = γax̄1 (or x̄2 = −γax̄1). The gradients

∇pTp
∣∣
p=x̄ = 2[x̄1, γax̄1,−γex̄1]

T

(or ∇pTp
∣∣
p=x̄ = 2[x̄1,−γax̄1,−γex̄1]

T ),

∇ (−p3 − γep1) = [−γe, 0,−1]T

and
∇ (p2 − γap1) = [−γa, 1, 0]

T

(or ∇ (−p2 − γap1) = [−γa,−1, 0]T )

are linearly independent implying the regularity of x̄.

Following the same line of reasoning, it can be also shown that the
feasible points of the restricted versions of P, obtained considering
the different regions of the feasible set, fulfill the regularity condition.

Proof of Proposition 3.2.1

Let us first observe that Weierstrass theorem ensures the existence
of a global minimizer to P, being the objective function continuous
and the constraint set compact. The basic idea behind the proof is
to establish candidate optimal solutions among the feasible points of
the problem, which are all regular according to Lemma B.1.1. To this
end, different regions of the feasible set are explored.

a) Assuming all the inequality constraints inactive, candidate opti-
mal solutions to P can be found among the regular points of

P1

{
min
p

||Hp− g||2

s.t. ∥p∥2 = b̄20
,
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which satisfy the necessary first-order optimality conditions [71],
as well as the inequality constraints

−γax
∗
p < y∗p < γax

∗
p

−γex
∗
p < z∗p < γex

∗
p

x∗
p > 0

.

These solutions1 are among the points

x∗(λ̄h) =
(
HTH + λ̄hI

)−1
HTg (B.1)

with λ̄h, h ∈ Ī1 ⊆ {1, . . . , 6}, the real-valued roots of the sixth-
order equation

x∗(λ̄)Tx∗(λ̄) = b̄20.

As a consequence, there are at most six candidate optimal points
to P for case a).

b) If yp = (−1)i+1γaxp, i = 1, 2, then P is equivalent to

P i
2


min
q

||Ha
i q − g||2

s.t. qTBaq = b̄20
−q1γe ≤ q2 ≤ q1γe
q1 ≥ 0

,

where q = [xp, zp]
T ,

Ha
i = H

 1 0
(−1)i+1γa 0

0 1

 , i = 1, 2,

1The solutions in (B.1) implicitly assume that (HTH + λ̄hI) is full-rank. However,
almost surely the necessary condition (HTH + λ̄hI)p = HTg when (HTH + λ̄hI) is
rank deficient does not admit solution, provided that H is full-column rank.
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and
Ba =

[
1 + γ2

a 0
0 1

]
.

Assuming −q1γe < q2 < q1γe and q1 > 0, candidate optimal
solutions to P2 can be found among the feasible points of

P i
3

{
min
q

||Ha
i q − g||2

s.t. qTBaq = b̄20
,

which comply with the necessary optimality conditions and
satisfy −q1γe < q2 < q1γe and q1 > 0. These solutions can be
obtained from the points2

q∗(βi
h) =

(
Ha

i
THa

i + βi
hB

a
)−1

Ha
i
Tg

with βi
h, h ∈ Ī i2 ⊆ {1, ..., 4}, the real-valued roots to the fourth-

order equation

q∗T (βi
h)B

aq∗(βi
h) = b̄20.

As a consequence, there are at most eight candidate optimal
points to P for case b) with inequalities strictly satisfied, ob-
tained as [q∗1(β

i
h), (−1)i+1γaq

∗
1(β

i
h), q

∗
2(β

i
h)]

T , i = 1, 2, h ∈ I i2 ⊆
Ī i2.

c) If zp = (−1)i+1γexp, i = 1, 2, and yp ̸= (−1)j+1γaxp, j = 1, 2, the
same technique as in case b) is used.

d) If yp = (−1)i+1γaxp and zp = (−1)j+1γexp, (i, j) ∈ {1, 2}2, the
candidate solutions are the four points

x∗
4i,j

= b̄0√
1+γ2

a+γ2
e

[1, (−1)i+1γa, (−1)j+1γe]
T ,

(i, j) ∈ {1, 2}2.
2A situation similar to footnote 1 occurs, i.e., almost surely candidate optimal

solutions demand Ha
i
THa

i + βi
hB

a to be full-rank.



96 Appendix B. Appendix of Chapter 3

B.2 Efficient Techniques to Identify Candidate So-
lutions

To solve the considered 3D localization problem, an efficient pro-
cedure is required to identify the real-valued solutions to the equa-
tions (3.9), (3.11), and (3.13). To this end, let us focus on equa-
tion (3.9) and let Udiag(λ)UT be the eigenvalue decomposition of
C = HTH , with U ∈ C3,3 containing orthonormal eigenvectors of C
and λ = [λ1, λ2, λ3]

T ∈ C3 collecting the corresponding eigenvalues
arranged in decreasing order; after some manipulations, (3.9) can be
rewritten as

3∑
j=1

|zj|2

(λ̄+ λj)2
= b̄20, (B.2)

where zj is the j-th component of the vector z = UTHTg ∈ C3

and λj is the j-th component of the vector λ. Remarkably, since
the eigenvalues and eigenvectors of C can be computed through
elementary functions of the entries of H, the parameters involved
in (B.2) are available in closed-form. Evidently, solving (B.2) is
tantamount to determining the roots of

f̄(λ̄) =
z̄21

(λ̄+ λ1)2
+

z̄22
(λ̄+ λ2)2

+
z̄23

(λ̄+ λ3)2
− 1, (B.3)

where z̄j =
zj
|b̄0|

, j = 1, 2, 3. To proceed further, let us observe that f̄(λ̄)
is strictly convex within each of the four intervals J1 = (−∞,−λ3),
J2 = (−λ3,−λ2), J3 = (−λ2,−λ1), and J4 = (−λ1,+∞), being
the second-order derivative of f̄(λ̄) always positive. Besides, f̄(λ̄)
is strictly increasing over J1 and strictly decreasing over J4, with
limλ̄→∓∞f̄(λ̄) = −1. Leveraging the above results, it follows that:

• There exists a unique root of (B.3) within J1 and another one
(still unique) over J4;

• With reference to the intervals J2 and J3, the existence of
roots depends on the minimum value v∗i of (B.3) within J2 and
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J3, respectively. In particular, if v∗i > 0 then (B.3) does not
admit roots belonging to J2 (or J3), otherwise there exist two
roots if v∗i < 0 and a unique one if v∗i = 0.

Hence, the unique roots in J1 and J4, can be computed via the
bisection algorithm [88]. As to the intervals J2 and J3, a two-step
strategy is now illustrated. At the first stage, the global minimum
solution λ̄∗

i , over Ji, i = 2, 3, and the corresponding objective value
v∗i are determined resorting to the bisection method applied over
Ji, i = 2, 3, to the first-order derivative of f̄(λ̄), i.e,

f̄ ′(λ̄) = −2

(
z̄21

(λ̄+ λ1)3
+

z̄22
(λ̄+ λ2)3

+
z̄23

(λ̄+ λ3)3

)
.

Then, the possible roots of (B.3) are searched. Specifically, if v∗i < 0
two distinct roots exist, λ̄i,1 < λ̄i,2 say, which are obtained carrying out
the bisection method to the function f̄(λ̄) over the intervals (−λ3, λ̄

∗
i )

and (λ̄∗
i ,−λ2) (or (−λ2, λ̄

∗
i ) and (λ̄∗

i ,−λ1)), respectively. Otherwise,
the root is either λ̄∗

i or does not exist, if v∗i > 0.

Before proceeding further, two important remarks are in order.

Remark 1. Denoting by ϵ the desired accuracy level for the
bisection method, λ̄∗

i and v∗i may differ from the bisection output
ˆ̄λ∗
i and the corresponding objective value v̂∗i at most by ϵ/2 and

|f̄ ′(ˆ̄λ∗
i )|ϵ/2, respectively. Now, if v̂∗i − |f̄ ′(ˆ̄λ∗

i )|ϵ/2 > 0, the absence of
roots is guaranteed. Otherwise, even if v̂∗i > 0, possible roots may
exist, whose ϵ-approximation can be evaluated leveraging ˆ̄λ∗

i . Indeed,
depending on the sign of f̄ ′(ˆ̄λ∗

i ), the potential roots (if existing) must
belong to either [ˆ̄λ∗

i − ϵ/2, ˆ̄λ∗
i ] or [ˆ̄λ∗

i ,
ˆ̄λ∗
i + ϵ/2]. As a result, either

pairs (ˆ̄λ∗
i − ϵ/2, ˆ̄λ∗

i ) or (ˆ̄λ∗
i ,
ˆ̄λ∗
i + ϵ/2) can be used to compute candidate

optimal solutions with a desired accuracy, which will be automatically
discarded, during the screening of the candidates, if the roots do not
exist.
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Remark 2. According to the proposed strategy, it is required to
execute, in general, three times the bisection method, once at the first
stage and twice at the second. However, it is possible to avoid the
first stage and determine the two potential roots with at most two
bisection cycles, conceiving a bisection-like method: at each iteration,
it jointly accounts for the sign of the derivative in correspondence
of the two extremes of the current bisection interval as well as the
objective value at the center of the mentioned interval, to update the
extremes.

Following the same guideline, the solutions of equations (3.11)
and (3.13) can be obtained. It is also worth observing that (3.11)
and (3.13) could be, in principle, solved in closed-form. However,
numerical errors have been experienced demanding the development
of the aforementioned numerically robust solution method.

In the next subsection, details on the bisection initialization are
illustrated.

Bisection Initialization

Without loss generality, let us focus on equation (3.9). To this
end, let us first consider the root search over J1. Being

f̄(λ̄) ≤ ∥z̄∥2

(λ̄+ λ3)2
− 1, λ̄ ≤ −λ3

and
f̄(λ̄) ≥ z̄23

(λ̄+ λ3)2
− 1, λ̄ ≤ −λ3

with z̄ = [z̄1, z̄2, z̄3]
T , it follows that the root λ̄3 ∈ J1 of (3.9) complies

with
λ̄3 ∈ [−λ3 − ∥z̄∥,−λ3 − |z̄3|].

As a consequence, the bisection method can be initialized with the
search interval [−λ3 − ∥z̄∥,−λ3 − |z̄3|]. Leveraging a similar line of
reasoning, it stems that [−λ1−∥z̄∥,−λ1−|z̄1|] can be used to initialize
the bisection method over the interval J4.
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As to the roots lying within J2 (analogous reasoning applies for
J3) the initialization at the first stage can be set as [−λ3,−(λ3 +
λ2)/2], if f̄ ′(−(λ3 + λ2)/2) > 0 or [−(λ3 + λ2)/2,−λ2], if f̄ ′(−(λ3 +
λ2)/2) < 0. The second step, as already said, substantially employs
[−λ3, λ̄

∗
i ] and [λ̄∗

i ,−λ2] to initialize the two bisections.
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