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Abstract

Nowadays, the ability to locate targets is crucial for a huge number of
applications which demand an ever increasing accuracy. For this reason,
the design of advanced sensing systems has attracted a lot of attention in
both academic and industrial contexts.

The main aim of this thesis is the development of innovative localization
algorithms for some sensing systems of practical relevance. Specifically,
three novel techniques have been devised.

The first strategy, referred to as Angular and Active Constrained Least
Square (AACLS), is an algorithm for 2D Passive Bistatic Radar (PBR)
localization via joint exploitation of multiple illuminators of opportunity
and measurements gathered by a co-located active radar, thus representing
a basic version of a Multiplatform Radar Network (MPRN). This technique
exploits angular and range constraints resulting from prior knowledge of
the PBR beam extent and uncertainty of active radar data.

The second algorithm, denoted as Angular and Range Constrained
Estimator (ARCE), is a 3D localization technique for MPRNSs, comprising
one transmitter and multiple receivers. In particular, ARCE leverages
ad-hoc constraints in order to capitalize on the information embedded into
the monostatic sensor radiation pattern features.

The third technique is obtained combining ARCE and the Sum-Product
Algorithm (SPA)-based Multitarget Tracking (MTT) technique. Specifi-
cally, the latter is enhanced through a bespoke particles generation process

exploiting the ARCE position estimate.

Keywords: Multiplatform Radar Network (MPRN), Active Radar, Passive
Bistatic Radar (PBR), Bistatic and Monostatic Measurements, Constrained

Least Squares Estimation, Non-Convex Optimization.



Sintesi in lingua italiana

Al giorno d’oggi, la capacita di localizzare bersagli ¢ fondamentale per
un gran numero di applicazioni, le quali richiedono un’accuratezza sempre
maggiore. Per questo motivo, la progettazione di sistemi di sensing avanzati
ha attirato molta attenzione in ambito sia accademico sia industriale.

Questa tesi tratta lo sviluppo di algoritmi di localizzazione innovativi per
alcuni sistemi di sensing di notevole rilevanza. In particolare, si propongono
tre nuove stragie per il posizionamento dei bersagli.

La prima strategia, denominata Angular and Active Constrained Least
Square (AACLS), ¢ un algoritmo per la localizzazione 2D in sistemi radar
passivi bistatici che sfruttino le misure ottenute da molteplici trasmettitori
d’opportunita e un radar attivo co-locato, rappresentando cosi una versione
base di un sistema multipiattaforma. Questa tecnica porta in conto i vincoli
angolari e di range che derivano dalla conoscenza dell’estensione del fascio
del radar passivo bistatico e dall’incertezza dei dati del radar attivo.

La seconda tecnica, denominata Angular and Range Constrained Es-
timator (ARCE), consiste in un algoritmo per la localizzazione 3D in
sistemi multipiattaforma, comprendenti un trasmettitore e pit ricevitori
(di cui uno co-locato con il trasmettitore). Attraverso ARCE, il processo
di localizzazione ¢é in grado di capitalizzare le informazioni derivanti dalle
caratteristiche del diagramma di radiazione del sensore monostatico.

11 terzo algoritmo & ottenuto combinando ARCE e la tecnica Multitarget
Tracking (MTT) basata su Sum-Product Algorithm (SPA). Precisamente,
quest’ultima viene potenziata attraverso un processo di generazione di
particles ad hoc che sfrutta la stima della posizione fornita da ARCE a

partire dalle misure associate ad uno specifico bersaglio.

Parole chiave: Rete Radar Multipiattaforma, Radar Attivo, Radar
Passivo Bistatico, Misure Bistatiche e Monostatiche, Stima dei Minimi

Quadrati Vincolata, Ottimizzazione Non-Convessa.
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Chapter

Introduction

Localization is defined as the process of estimating the position of
a target or multiple targets, including aircrafts, missiles, lost humans,
protected wildlife, users of location-based services, just to list a few.
Specifically, the basic idea of localization is to exploit the characteris-
tics of the signals captured by the receivers to determine the position
of an object that emits or reflects such signals.

Localization is essential for a wide range of applications, including
autonomous vehicles [1], industrial /environmental surveillance and
control [2], public safety [3], as well as assistive healthcare [4] and
social networks [5]. Emergency response is one of the most significant
applications for localization. Indeed, during emergencies like building
fires, real-time location estimations of trapped occupants (and first
responders) are needed when planning the search and rescue routes.
The success of these applications clearly depends on the precision
and reliability in positioning the target of interest; consequently,
many efforts have been devoted to the development of strategies and
techniques capable of improving localization accuracy.

In general, target localization can be accomplished following two
different paradigms: direct positioning and two-step positioning [6].
In direct positioning, the overall received signals are jointly processed,
so as to exploit all the available information regarding the unknown
position in order to determine it. In the two-step positioning scheme,
the first stage is designed for extracting position-related parameters;
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then, these measurements are usually sent to a central fusion node,
which jointly process them, and a specific data fusion localization
algorithm is employed to determine the target location.

This thesis focuses on the latter paradigm, which is of great interest;
indeed, the two-step scheme can have a significantly lower complexity
than the direct approach due to decreased storage and communication
requirements |7], while the performance of the two methods is usually
quite close for sufficiently high Signal to Noise Ratio (SNR) value
and /or signal bandwidths [8]. Furthermore, it is remarkably less costly
to send to a central unit the position-related parameters estimates
rather than the entire received signals.

Notably, there are many types of location-related measurements.
Among them, it is worth mentioning time-based information such
as Time Of Arrival (TOA) [9,10] and Time Difference Of Arrival
(TDOA) [11,12], amplitude-based information, i.e., Received Signal
Strength (RSS) [13], spatial-based information, i.e., Angle Of Arrival
(AOA) [14], frequency-based information, i.e., Frequency Difference
Of Arrival (FDOA) [15], or a combination of them [16-18]. All
the (possible heterogeneous) measurements collected by the available
sensors are then jointly processed to find target position.

TOA refers to the time instant at which the transmitted signal
impinges on the receiver. TOA-based localization algorithms require
the receiving sensors and transmitter to be synchronized, usually by
sharing the same reference clock; moreover, the receivers know the
start transmission time of the transmitter. Note that such a type of
measurements can be performed exploiting signals of different nature,
including Radio Frequency (RF), acoustic, infrared, and ultrasound.
However, in many applications the synchronization requirement cannot
be satisfied. Thus, without knowing the actual signal transmission
time at the transmitter, the receiver is unable to determine the signal
propagation time. One way to tackle this problem and duly address
target localization is to exploit TDOA measurements. TDOA is the
difference between the arrival time of the transmitted signal to a
receiver and that to a reference node. In order to obtain the TDOA
at a specific station, one method is to first estimate the TOAs at




the station and at the reference node and then subtract one from
the other. This approach requires an accurate knowledge of the
transmitted signal by the receivers. In practice, the most commonly
used method is to apply the generalized cross-correlation between the
signal collected by the receiver of interest and the signal received at
the reference node. The location of the peak of the cross-correlation
function gives the TDOA estimate. Noteworthy, this approach just
requires synchronization among receivers.

RSS is a measure of the power of the detected radio signal at a
receiver. Target localization exploiting this type of measurements can
be classified in two categories: map-based and model-based strategies
[19]. The former consists in building a database of RSS measurements
associated with their corresponding locations. When a target has to
be localized, the RSS measurements collected from the receivers are
matched against the ones stored in the map, in order to find the closest
correspondence. Map-based algorithms require a burdensome data
collection phase where a large number of signal strength measurements
must be recorded along with the corresponding locations. Model-
based techniques, instead, aim at establishing a mathematical model
capturing the variation of the RSS as a function of the distance, thus
requiring knowledge of the transmitted signal’s power.

As to AOA information, it provides knowledge about the line con-
necting the source and the receiver, with respect to a reference system.
AOA is measured via antenna arrays or scanning antenna. AOA
estimation via antenna arrays (for which the geometry is assumed
known) determines, in general, the angles information analyzing the
differences in signal arrival times at different antenna elements. Al-
ternatively, AOA estimate (for a two dimensional sensing scenario)
can be obtained through scanning antenna exploiting the centroid
method.

If there is relative motion between the receivers and the target,
the differences in received Doppler frequency shifts can be used for
target localization. This type of measurement is named FDOA and
is mostly used together with TDOA. However, if the bandwidths of
the received signals are very narrow, TDOA accuracy is relatively
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low [20]. In such cases, localization techniques relying only on FDOA

can be exploited. The cross ambiguity function approach is usually
employed to measure TDOA and FDOA.

Before proceeding further, it is worth pointing out that, from
a practical point of view, it is very important to account for the
trade-off between localization accuracy and computational demand as
well as cost, for the selection of the appropriate sensing system. For
example, the localization systems based on TOA or TDOA provide
high estimation accuracy, but require timing and synchronization thus
making the localization cost-expensive [21]|. As to RSS-based meth-
ods, they demand very low-cost (possibly inexpensive) hardware and
less processing and communication resources [22], thus making them
attractive low-cost solutions to accomplish localization. Nonetheless,
they usually provide worse localization accuracy than alternatives.
AOA localization does not require time synchronization, but it de-
mands extra hardware at the receiver to estimate angles [22| and its
positioning accuracy is generally worse than that provided by TOA or
TDOA. Finally, FDOA requires a quite demanding measurement pro-
cess and the achievable precision is generally lower than TDOA-based
strategies. However, FDOAs information can improve localization per-
formance when used in combination with other type of measurements
and it can be used alone profitably for narrow bandwidth signals [23].

Noteworthy, most of the localization systems are based on range-
related measurements and, for this reason, this thesis focuses on such
systems. In the following a brief description on some sensing archi-
tectures and processing strategies relying on range measurements to
accomplish the localization task is provided.

Overview of the localization techniques relying on range-related mea-
surements. The most well known localization systems based on range-
related measurements are the active radar and the Passive Bistatic
Radar (PBR). Active radars [24] require transmitters which emit
bespoke signals. Their standard implementation relies on a receiver
that is co-located with the transmitter (monostatic radar) and gather
the environment echo in order to detect and localize targets. In this




respect, note that monostatic radars also exploit beam pointing di-
rection to position the target. PBR [25,26], also known as “Green
Radar” [27], uses bistatic target range measurements obtained collect-
ing the target echoes resulting from the signals transmitted by multiple
illuminators of opportunity |28 | [29], Chap. 11]. To this end, PBR
receivers are equipped with two receiving channels per transmitter
to acquire both the signal transmitted by the emitter and the signal
backscattered by the target. Then, leveraging these measurements
the target localization process determines an ellipsoid (ellipse in a 2D
geometry) for each illuminator-receiver pair and, substantially, the
intersection of multiple ellipsoids identifies the target position [28,30].
As a result, the PBR problem falls within the elliptical class [31-33].
Some interesting and technically sound localization algorithms for
PBR can be found in [29,34-36|.

In the last decades, due to technology advances and new require-
ments in terms of performance and operating environments, great
interest has been focused on the development of novel and more ad-
vanced networks, able to achieve better accuracy and reliability than
monostatic and bistatic radars. In this context, MPRNs (see Fig. 1.1)
are envisioned as next-generation sensing systems [37]. Among them,
hybrid active-passive systems assume an important role and have
been extensively addressed in the scientific panorama [38|. Indeed,
combining passive and active radars in various deployment configura-
tions can provide geometric, signal, and scattering diversity to reach
an enhanced situation awareness [39,40].

Target localization via the joint use of passive/active radars is
of particular interest for instance in the case of harbour surveillance
where an active rotating radar is complemented with a PBR. In
fact, the antenna scanning velocity is typically about 6 seconds per
rotation, and it could be necessary to employ the PBR for acquiring
further measurements and correctly localize fast possibly manoeuvring
threats targets.

In [39,41-44| some attempts to exploit PBR capitalizing informa-
tion gathered by an active radar have been pursued to boost detection
and localization capabilities.
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Receiver 2

Receiver 3

—_— eceiver
_:in Receiver 4

Receiver 5

Transmitter/Receiver 1

Figure 1.1. A MPRN with one transmitting-receiving node and four receiving
nodes.

Specifically, reference [39] addresses the exploitation of active
and passive radars that are present in the surveillance area aimed
at maximizing the Signal-to-Interference-plus-Noise Ratio (SINR).
Reference [41], instead, focuses on the implications of having different
surveillance system configurations, i.e., co-located or dislocated passive
and active radars, also in terms of sensors infrastructure survivability.

In [42|, a hybrid active-passive radar network for Air Defense
employing decentralized data fusion processing is introduced, i.e.,
the Deployable Multiband Passive/Active Radar (DMPAR). The
effectiveness of DMPAR systems is assessed in [43,44] for co-located
and distributed net of sensors and proved via experimental results.
Remarkably, these studies show that performance improvement and
robustness with respect to the stand-alone system using only the
passive or the active radar can be achieved via the hybrid active-
passive radar system.

More applied research in the context of hybrid passive/active
sensing is conducted by NATO SET-242 RTG and SET-258 [45]




where the focus is on deployment and assessment in military scenarios
of ground based multiband passive/active radars [46].

MPRNs which are currently attracting even higher interest are
systems employing a constellation of multiple deployable platforms.
Such systems allow to enlarge the surveillance area, to improve data
reliability and accuracy, and endow a better resistance to electronic
countermeasures [47]. Furthermore, such multistatic configurations
reduce effects of shadowing and, exploiting spatial diversity, improve
target detectability, especially against low-observable and stealth
targets [48,49].

Finally, a great advantage of MPRNs relies on the possibility for the
units to collaborate and change their configuration dynamically [50].

Target localization with a multistatic radar is addressed in [51],
where two methods for calculating the Cartesian positions are pre-
sented resorting to Spherical Interpolation (SI) and Spherical Inter-
section (SX). A localization scheme exploiting both TOA from the
transmitter to a specific receiver and AOA is proposed in [52], that
applies the Weighted Least Squares (WLS) method to estimate the
target location and shows that the RMSE decreases as the number of
multistatic radar receivers increases under the assumption of Gaussian
measurement errors.

An improved method for moving target localization with a nonco-
herent Multi-Input Multi-Output (MIMO) radar system having widely
separated antennas is proposed in [53]. Specifically, the proposed
method is based on the Two-Stage WLS, and a closed-form solution
is derived [53]. In [54], for the same problem of moving target local-
ization, the authors propose two methods, in which the parameters
used are a combination of AOA, Frequency Of Arrival (FOA), and
TOA.

Contributions and Dissertation QOutline. This thesis deals with the
design of innovative range-based localization algorithms for some sens-
ing systems of practical interest. The thesis contribution is threefold.

The first contribution concerns a novel approach for elliptic local-
ization in a PBR aided with side-information provided by an active




CHAPTER 1. INTRODUCTION

radar, thus representing a basic version of MPRN. Precisely, angular
and range constraints are forced on the target position to capitalize
target state gleaned by the active radar and the a priori knowledge
of the PBR main-beam width size. The positioning problem is formu-
lated as a constrained Least Squares (LS) estimation. The resulting
non-convex optimization is solved in closed-form, exploiting a smart
partition of the feasible set as well as the regularity of its points. At
the analysis stage, some illustrative case studies are provided to show
the effectiveness of the developed localization method, referred to
as AACLS, also in comparison with some counterparts available in
the open literature. The proposed algorithm is tested in a dynamic
scenario where the target of interest is approaching the surveillance
system, so as to further highlight the accuracy improvement provided
by AACLS with respect to alternatives.

The second contribution is an innovative approach for 3D local-
ization in MPRNs comprising one transmitter and multiple receivers.
The monostatic radiation pattern features have been wisely exploited
in the positioning process restricting the angular location of any illu-
minated target. Therefore, the localization is cast as a non-convex
optimization problem and a quasi-closed-form global optimal solution
is computed by means of an ad hoc partition of the feasible set. The
proposed localization method, indicated as ARCE, is tested in differ-
ent illustrative examples and is proved to ensure interesting accuracy
gains over some counterparts.

Last, a localization-enhanced MTT technique for MPRNs is pro-
posed, which capitalizes past information via a sequential estimation
process, often referred to as filtering, and manages missed detections,
false alarms, and Measurement-Origin Uncertainty (MOU). This
algorithm is obtained through a combination of ARCE with a MTT
method based on the SPA [55,56]. Precisely, a particles enrichment
process is introduced within the SPA-based MTT that exploits the
ARCE estimate to achieve a more effective sampling of the target
state space. Angular constraints are forced such that the localization
process exploits the available information about both the antenna
beamwidth of the transmitter and the virtual beamwidth obtained




from the target predicted uncertainty. Hence, the particle enrichment
process replaces a subset of predicted particles with a new set of
particles drawn from a distribution whose parameters depend on the
ARCE location estimate. This novel technique is analyzed, showing
its benefits in comparison with the conventional baseline SPA-based
MTT and the stand-alone ARCE localization.

The above contributions have been subject of some of the author’s
publications listed at the end of this thesis. Specifically:

e The novel approach for elliptic localization in a PBR aided with
an active radar has been presented in the author’s publications
[P3] and [P4];

The technique proposed in [P3] ranked third to the Student Con-
test of the 1st International Virtual School on Radar Signal
Processing, held at University of Electronic Science and Tech-

nology of China (UESTC), 22-23 December 2020.

e The 3D localization algorithm in MPRNs comprising one trans-
mitter and multiple has been presented in public