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barca a vela si piega al montare dei venti, e il movimento della barca cede al

montare delle onde.

Piegandoci e cedendo riconosciamo la forza del mondo; indurendoci e resistendo

riconosciamo la forza di noi stessi.”

Ray Grigg
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Abstract

Wearable devices are electronic systems that, due to their characteristics, can
be worn and used to detect, analyse and transmit vital signs. The interest of the
clinical field in wearable systems thus arises from the opportunity to follow and
monitor the patient for long periods of time and in any environment, according to
the principles of telemedicine and overcoming the limitations of the ambulatory
approach. The current trend shifts the focus from the general concept of wearable
technology to the more specific concept of Electronic Textiles. E-Textiles are
textiles that integrate electronic components and represent an ideal solution for
the realisation of sensors in direct contact with the body, ensuring comfort and
ease of use at the same time. The development of e-textile devices for medical
applications therefore represents an interesting challenge to face up in the near
future, while large companies, that are active in the sector, are already engaged
in the development of wearable systems to be placed on the market.
This work presents the design and development of several devices based on e-
textile technology that can be applied to the medical field, according to the
typical patterns of remote monitoring and telemedicine systems. The prototype
devices realised are: a smart T-shirt, smart socks and a sensorised ankle-foot
orthosis. The smart T-shirt integrates textile electrodes for measuring ECG
and EMG signals and a wearable sensor for detecting trunk accelerations. The
smart socks integrate sensors capable of detecting foot plantar pressures and
angular velocities of the lower limbs while walking. These devices have also
been tested on patients to verify their performance, using gold standard systems
employed in clinical settings as a reference. The ankle-foot orthosis uses similar
textile pressure sensors, EMG electrodes and accelerometers, in order to show
how e-textile solutions can be applied to different areas of medicine for different
purposes. In the end, it was tested a commercially available medical system based
on textile technologies, with the aim of providing support to the manufacturing
company in the validation and engineering of the device.

Keywords: wearable device, e-textile, telemedicine, healthcare, health monitor-
ing.



Sintesi in lingua italiana

I dispositivi indossabili sono sistemi elettronici che, per le loro caratteris-
tiche, possono essere indossati ed utilizzati per rilevare, analizzare e trasmettere
biosegnali. L’interesse dell’ambito clinico per i sistemi indossabili deriva dunque
dall’opportunità di seguire e monitorare il paziente per lunghi periodi di tempo
ed in qualsiasi ambiente, secondo i principi della telemedicina e superando le
limitazioni dell’approccio ambulatoriale. La tendenza attuale sposta l’attenzione
dal concetto generale di tecnologia indossabile a quello più specifico di Electronic
Textile. Gli E-Textile sono tessuti che integrano componenti elettronici e rapp-
resentano una soluzione ideale per la realizzazione di sensori a diretto contatto
con il corpo, garantendo allo stesso tempo comfort e semplicità di utilizzo. Lo
sviluppo di dispositivi tessili per applicazioni mediche rappresenta dunque una
interessante sfida da affrontare nel futuro prossimo, mentre già grandi aziende,
attive nel settore, sono impegnate nello sviluppo di sistemi indossabili da immet-
tere sul mercato.
In questo lavoro viene presentata la progettazione e realizzazione di diversi dispos-
itivi basati su tecnologia e-textile applicabili al campo medico, secondo i tipici
schemi propri dei sistemi di monitoraggio remoto e telemedicina. I dispositivi
prototipali realizzati sono: una maglietta, dei calzini ed un’ortesi caviglia-piede.
La maglietta integra elettrodi tessili per la misura di segnali ECG ed EMG ed
un sensore indossabile per la rilevazione delle accelerazioni del tronco. I calzini
integrano sensori in grado di rilevare le pressioni dell’arco plantare e le velocità
angolari degli arti inferiori durante la deambulazione. Tali dispositivi sono stati
anche testati su pazienti per verificarne le prestazioni, adottando come riferi-
mento sistemi gold standard utilizzati in ambito clinico. L’ortesi caviglia-piede
prevede l’impiego dei medesimi sensori tessili di pressione, elettrodi per EMG
ed accelerometri, allo scopo di mostrare come le soluzioni offerte dall’e-textile
possano essere applicate ai diversi ambiti della medicina per varie finalità. Per
concludere, è stato testato un sistema commerciale disponibile in ambito medico
basato su tecnologie tessili, con l’obiettivo di fornire supporto all’azienda produt-
trice nella validazione ed ingegnerizzazione del dispositivo.

Parole chiave: dispositivi indossabili, tecnologie tessili, telemedicina, sanità,
tele-monitoraggio.
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Chapter 1
Introduction

The rapid progress in the electronic and digital fields continuously produces
innovative resources available for several applications in every-day life, including
healthcare, determining the increase in human life expectancy and quality of life.
A classic example is the use of mobile devices, which, at present, have no longer
communication purposes only, but are used for various activities of daily life,
including banking, health monitoring and fitness [24]. Similarly, textiles are no
longer only used to be worn, but also assume a functional role [169, 178, 161].
Initially, these concepts originated and were developed in the medical sector, in
order to monitor, diagnose and treat several pathological conditions. Nowadays,
the use of smart textiles has extended to numerous sectors, including sports,
military and in various defence projects [77, 165, 143]. The ’smart’ textiles are
usually also referred to as e-textiles, wearable electronics, smart clothing, tex-
tronics, etc. [178, 122]. This name is derived from the innovative solution of
integrating electronic components into textiles, extending the utility and func-
tionality of ordinary garments. These components can be textile or non-textile
in nature, integrated with the various techniques available, such as weaving, em-
broidery, knitting, etc. Depending on the requirements, these components may
include sensors, active or passive, actuators, LEDs, antennas, processing units,
devices for storing, producing and collecting energy, and transmitting energy
[1, 81].

1.1 Smart Textile

According to the definition by Stoppa et al. [152] and Simegnaw et al. [149],
an e-textile can be defined as "A textile structure (fibre, yarn, fabric or finished
product) permanently integrated, sewn or attached, etc., with electrical and/or
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electronic functionality" [149]. Consequently, the e-textile system is configured
as a complex system, with different inputs from textiles, wearable electronics and
information technology [152, 36, 113]. The discovery of shape memory materials
in the 1960s and smart polymer gels in the 1970s has been generally accepted
as the birth of smart materials [123]. However, the term smart material was
first introduced in Japan in 1989. The first textile material in history that was
referred to as ’smart fabric’ was a shape memory silk yarn. The introduction of
the first smart material in textiles took place in the late 1990s, while the first
semiconductor electronic components for textiles was created in the early 2000s
[123]. Intelligent textiles are able to sense and respond to stimuli from the external
environment, and can therefore be distinguished into: passive and active smart
textiles. The former change their properties according to external inputs, while
active smart textiles detect external signals (e.g. temperature, light intensity,
etc.) and react accordingly through textile-based, flexible or miniaturised sensors
and actuators. Thus, e-textile systems are widely used in different applications
and their use depends on customer requirements.

1.2 E-textile Market

Considering the features offered by smart textiles, several digital applications
can potentially be developed on a textile substrate. This interesting opportunity
is causing a revolution in the wearable device market, with large companies aim-
ing to move from wearable electronic hardware to more convenient electronic
textiles. In fact, the market of smart textiles is constantly growing and this is
due to changes in daily habits that have underlined the potentialities of e-textiles
in the common textile market. This progressive development has also had an
impact on the reduction of production costs resulting in easy access to these
emerging systems by customers. However, it cannot yet be said that e-textile
systems are fully integrated into the Internet of Things (IoT) infrastructure, but
as the infrastructure (5G technology) progresses, there will be an increase of such
products in the market. A survey conducted by ‘Markets And Markets’ (wear-
able healthcare devices market) underlines that the global wearable healthcare
market is expected to reach USD 46.6 billion in 2025.

Healthcare remains one of the most interesting and promising markets: e-
textile features are very suitable for the development of innovative medical de-
vices or applications that can potentially lead to significant cost reductions for
healthcare systems. Wearable health monitoring devices can be easily used by the
patient in the home environment and, when integrated in a complete communi-
cation infrastructure, enable intelligent remote monitoring with great benefits for
healthcare professionals and the patient himself. Electronics-sensitive garments

https://www.marketsandmarkets.com/Market-Reports/wearable-medical-device-market-81753973.html
https://www.marketsandmarkets.com/Market-Reports/wearable-medical-device-market-81753973.html
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can be developed to acquire and react to biophysical and biochemical signals
from the human body, with some interesting advantages: firstly, the nature of
textiles makes them the best solution to realise sensors in direct contact with
the skin; secondly, textiles are flexible and well adaptable to the human body,
offering technological possibilities not available with common electronics; thirdly,
textiles are cheap, comfortable, washable and easily customisable [40]. Therefore,
the proper integration of these e-textiles into garments potentially represents an
innovative tool for continuous biomonitoring of vital signs, combining the func-
tion of sophisticated medical devices with the comfort and ease of use of clothing
products. Such systems can thus be exploited to assess the patient state of health
at an early stage, allowing clinicians to quickly detect critical conditions, thereby
reducing the time needed to obtain a diagnostic result and, finally, enabling the
transition from a healthcare model focused on treating illness to one focused
on prevention and health promotion [109]. Furthermore, the opportunity to inte-
grate these innovative devices into IoT networks makes it possible to create smart
solutions for remote health monitoring, exploring the growing field of m-health
and supporting cost reduction in the healthcare system by facilitating early hos-
pital discharge. The possibility of remote diagnosis plays a key role in healthcare
worldwide by facilitating timely, convenient and rapid assessment of health sta-
tus and providing surveillance data for emergencies and chronic diseases. Many
E-Textile solutions for health monitoring have been proposed in the literature,
but most of them are stuck in the research field and are not destined to flow into
the pragmatic healthcare world. Regulatory issues regarding patient safety, pri-
vacy, data management, and the need for a secure degree of reliability for device
performance are the main obstacles to the widespread commercial deployment of
these types of devices. Two of the main issues to be addressed are the washa-
bility and reliability of wearable textiles [77, 164, 137]. Washing reliability is
assessed by testing the functioning of the entire textile system after a predefined
number of washing cycles. There are standard protocols for washing textiles, but
these cannot be applied to electronic textiles. Currently, there is not much work
addressing this issue applied in the healthcare sector, and for this reason there
are not many commercial systems available for purchase. Nevertheless, some
experiments on washing reliability have been conducted by some researchers for
their products; but reliability issues are still a major obstacle for these products
[140, 82, 147, 137, 139, 94].

This thesis is the result of the research activity conducted on wearable and
e-textile solutions for the remote health monitoring. The research was firstly fo-
cused, but not limited, on the information-theoretic aspects, then flowing to the
practice, with the development of several wearable e-textile prototypical devices
for health remote monitoring. The aim of the work was to demonstrate the feasi-
bility and the advantages of this kind of approach based on textile electronics in
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healthcare, also exploring the reliability of such devices. The innovative features
of the proposed systems lie in their multi-parameter approach to health monitor-
ing and their ease of use. The “wearabilit” of the system and its convenience of
use make it very suitable for use in the home environment for continuous remote
health monitoring of dehospitalized patients. In addition, the literature review
work, reported below, revealed the lack of wearable devices in e–textile technol-
ogy fully integrated into an Information and Communications Technology (ICT)
infrastructure for health monitoring. The solutions proposed in this dissertation
work aim to fill this gap.
The outline of the thesis is the following:

In this Chapter 1 it is presented a review of the literature about the biomed-
ical application of e-textile sensors and system. The review explores the progress
in smart e–textiles design and manufacturing, with a focus on biomedical devices
developed for healthcare monitoring. The main aim is to provide a complete
overview of the state-of-art in this promising area, investigating the various ap-
plications and the different approaches and solutions proposed by research groups
working on these themes.

Chapter 2 presents the first prototypical device developed during the re-
search activity: a smart T-shirt. The smart garment integrates textile electrodes
for measuring Electrocardiogram (ECG) and Electromyography (EMG) signals
and a wearable sensor for detecting trunk accelerations. The wearable device is
integrated in a complete infrastructure for telemedicine service, including a mo-
bile application as access point for collecting data, a dedicated cloud and a user
interface to present raw and processed data to the clinician. Details about the
design and development of the system are provided and a validation analysis is
also performed in order to verify the reliability of the system in comparison with
gold-standard methods used in clinical practice.

Chapter 3 introduces another application based on e-textile smart socks.
The smart socks were developed using textile pressure sensors, placed on the sole
of the garments, and a wearable gyroscope. The system allows the detection of the
distribution of plantar pressures and angular velocities of lower limbs, providing
static postural and dynamic gait analysis. This prototypical device is integrated
in a health monitoring system analogous to the above-mentioned, demonstrating
the potentialities of these solutions that can be used for several applications in
healthcare sector. The reliability of the system in performing gait analysis is also
explored through experimental trials.

Chapter 4 addresses the development of a passive ankle-foot orthosis with
embedded textile sensors. This orthotic device exploits similar textile pressure
sensors, EMG electrodes and accelerometers, in order to show how e-textile so-
lutions can be applied to different areas of healthcare for different purposes.

Finally Chapter 5 addresses the experimental validation of a commercially



1.3. Biomedical Applications of E-Textile 5

available medical system for gait analysis based on smart wearable socks. The
study was conducted on the request of the manufacturing company, with the aim
of providing support to the developers in the validation and development of the
device.

1.3 Biomedical Applications of E-Textile

In this Section a review of biomedical applications of e-textile sensors and sys-
tems presented in literature is presented, in order to provide a complete overview
of the state-of-art in this promising area. Table 1.1 organises the scientific articles
included in this review according to the type of acquired data. The researches
are also organized in macro-categories regarding the medical field of potential
diagnosis. The following paragraphs analyse each macro-categories with insights
about the selected works.

1.3.1 The Applications in Cardiology

The first line of Table 1.1 have summarized in a concise and schematic form
the principal acquired data – in the field of cardiology diagnostics – using e-
textiles systems.

The electrocardiographic signal – called equivalently Electrocardiogram (ECG)
– has been over years one of the most appropriate tools to diagnose in advance
and, consequently, try to prevent the clinical complications caused by chronic and
cardiovascular diseases [146, 110]; in recent years, wearable sensors have proved
as novel possible alternatives for the ECG acquisition [28], because the e-textiles
(used as ECG diagnostic systems) have indicated to address – or potentially ad-
dress – several advantages[146].

The researches in this field are summarized in Table 1.2. A first prototype of
ECG e-textile system was presented by Wu et al. [172]. The authors fabricated
a cloth electrode into which Multi-Walled Carbon Nano-Tubes (MWCNTs) were
randomly distributed into the fabric which one side was connected and fastened
with traditional Ag/AgCl electrodes. The ECG acquisition performed on a sin-
gle Healthy Control (HC) demonstrated the novel cloth electrode showed similar
performances to the traditional Ag/AgCl electrodes, which might be potentially
replaced for the daily and long-term monitoring of the ECG [172]. Similar stud-
ies were performed by Acar and Le and the respective co-workers [2, 89] which
also tested the e-textiles applying the electrodes on smart garments. In particu-
lar, Acar et al. fabricated nylon Graphene Oxide (GO) coated fibers which were
later embedded in an elastic armband; the evaluations on a single HC showed
a 96% correlation between the ECG waveforms acquired with graphene textile
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Table 1.1. Number of instances for each acquired data, data type and po-
tential diagnosis combined with the related references.

Potential Diagnosis Acquired Data Instances

Cardiac

ECG 17 [22, 87, 129, 50, 150, 53, 90,
173, 89, 80, 2, 172, 104, 99, 148,
5, 11]

Heart Rate 3 [31, 104, 99]
Blood Pulse 2 [5, 154]
LEVOP 1 [62]

Muscular EMG 9 [142, 150, 120, 119, 12, 173,
80, 117, 116]

Pressure signal from muscles 1 [26]

Physiatry/Orthopaedics

Finger flexion angle 3 [167, 69, 174]
Acceleration data 3 [52, 14, 157]
Angle of inclination 2 [104, 99]
Body motion 2 [173, 154]
Motion tracking 2 [80, 131]
Elbow and knee bending angles 1 [91]
Knee flexion angle 1 [174]
Knee and scapular flexion an-
gles

1 [101]

Motion signals 1 [168]
Sleep posture 1 [142]
FS and LL indexes 1 [67]
Back movements 1 [54]
Strain signals 1 [92]

Respiratory
Respiratory Rate 4 [75, 96, 142, 50]
Breath Pressure 2 [26, 93]
Breathing Patterns 1 [132]

Other Themes

EOG 3 [58, 57, 56]
EDA 2 [150, 63]
SKC 1 [129]
GSR 1 [68]
Skin Temperature 4 [102, 99, 104, 50]
Biomedical microwave sensing 1 [108]
Pharynx motion 1 [167]
Sodium and lactate concentra-
tion in human sweat

1 [179]

Humidity 1 [79]
Resistance signals 1 [25]
Alert of the volume of leaked
urine

1 [97]

electrodes and the conventional Ag/AgCl ones [2]. More accurate statistical data,
on the other hand, were presented by Le et al. to compare the performances of
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silver-based textile electrodes (embedded in a smart bra) and Ag/AgCl gel coun-
terparts [89]. A similar bra was designed and fabricated by Shathi et al. [148]
which proved their reduced GO/poly(3,4-ethyelenedioxythiophne polystyrene sul-
fonate) (PEDOT:PSS) electrodes showed an improved ECG signal response in
both wet and dry conditions; additionally, their e-textile electrodes demonstrated
an improved flexibility, bendability, and stretchability if compared with conven-
tional electrodes. The manufactured ones – integrated in the sport bra – were
the final product of a fabrication study in which even other kinds of e-textile
electrodes were analysed [5]. Sinha et al. [150] fabricated and analysed in the
same period similar PEDOT:PSS coated electrodes demonstrating the capability
of such devices to record ECG – and even Electrodermal Activity (EDA) and
Electromyography (EMG) – for a single HC in both dry and wet conditions.

Another interesting approach to fabricate e-textiles for ECG monitoring was
proposed by Li et al. [90]. The authors designed and fabricated an e-textile
solution combining the advantages of both the Japanese Kirigami pattering and
the inkjet printing strategy demonstrating an ECG stable signal acquisition on
a single HC with more than 100% strain of the electrodes. Another solution
based on micro/nanofabrication strategies was proposed by Yao et al. [173] who
manufactured Silver Nanowire (AgNW)/thermoplastic polyurethane electrodes
to be later integrated on commercial patches. The authors demonstrated these
devices were capable to acquire EGC – in dry state – of a quality comparable
to the commercial gel electrodes; moreover, they did not find signal degradation
up to 50% strain and 100 cycles. As shown in Table 1.2, in addition to ECG,
even EMG and body motion signals were collected. Similar signals were analysed
even by Jin et al. [80] who used an e-textile sportswear in which an EMG sensor,
a strain sensor and a fluoroelastomer conductor - reinforced with Polyvinylidene
Fluoride (PVDF) nanofibers - were integrated. The system showed the possibility
to acquire ECG signal without significant degradation during a 1h exercise of an
HC.

In the last few years, although the research on the ECG monitoring in the
field of wearable e-textiles seems still in a preliminary stage, few authors have
anyway tried to develop slightly complex e-textile solutions. For instance, in 2013
Kuroda et al. [87] proposed two prototypes of e-textile sensing vests, where dif-
ferent combinations of conductive and non-conductive yarns were investigated.
The first prototype demonstrated the Japanese NISHIJIN production process
was suitable to acquire a clean ECG signal as well as the second more advanced
prototype (albeit fabricated – for an eventual mass production – using a different
manufacturing technique), although some limitations in the ECG acquisition ap-
peared [87]. In the same period, Catarino et al. [22] investigated the capabilities
of a novel shirt prototype; specifically, three electrodes were knitted with Elitex
for a double purpose: firstly, to allow the integration of electrical connections in
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the textile substrate, and secondly to fix the electrodes in specific areas of the
shirt prototype. Even if the ECG signals demonstrated different in case of either
dry or wet electrodes, the authors claimed the results were of acceptable quality
(considering conventional gel electrodes performances) and a tailor-made design
of the shirt (according to the target patient) could potentially maximize the ECG
acquisition performance [22].

The literature on e-textile applications for ECG acquisition showed even ap-
proaches for which the signal acquisition was only one of the milestones. For
instance, Lopez et al. [99, 104] designed and presented a medical Information
Technology (IT) platform – based on multiple subsystems – for patients’ local-
ization and monitoring. The authors proposed as a healthcare monitoring subsys-
tem for ECG acquisition a Nylon/Lycra shirt into which two e-textile electrodes
were integrated. The results – after acquiring ECG on 5 patients with cardio-
logical disease – showed ECG was of a higher quality (also in a dry state) when
the subjects were still, while the signal slightly worsened when sudden move-
ments took place. However, the authors demonstrated the use of a conductive
gel and/or mechanisms to reduce motion artifacts could improve signal quality
[99]. Similar conclusions were further presented in their more recent article [104].
Similarly, Ferreira et al. [50] designed and presented a Smart Wearable Sys-
tem (SWS), the Baby Night Watch IT platform, to monitor infants potentially
affected by Sudden Infant Death Syndrome (SIDS). In this study, a chest belt
– into which electrodes and silver coated polyamide yarns were integrated – was
chosen as healthcare monitoring subsystem, demonstrating a comparable perfor-
mance with counterpart commercial products in terms of ECG measurements.

Finally, it is worth mentioning a few research groups performed also experi-
ments on a relatively significant number of subjects (if compared to the already
cited contributions). For instance, Postolache et al. [129] presented a wheelchair
prototype where e-textiles – namely, electrodes composed by fibers coated by con-
ductive polymer and silver – were integrated in correspondence of the armrests.
The data acquired by 7 HC demonstrated the proposed platform showed results
comparable to the commercial counterparts. A similar number of HC were object
of ECG acquisitions in the study of Arquilla et al. [11]. The authors manufac-
tured a set of three electrodes – made of nylon coated by silver nanoparticles –
stitched on an inextensive fabric baking. Two minutes ECG acquisitions on 8
HC demonstrated once again the capabilities of e-textile electrodes, showing the
potential applicability across a wide range of anthropometries and skin types and
signal invariance during stretch, bend, or wash tests. The most important diag-
nostic example, however, was such proposed by Fouassier et al. [53]. Specifically,
the authors designed and manufactured a t-shirt prototype – into which elec-
trodes made of silver yarn and hydrogel pads were integrated – aimed at working
as a 12-lead ECG acquisition system. This solution allowed – to the best of the
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authors’ knowledge – short-duration 12-lead ECG acquisitions with quality levels
comparable to conventional Holter recordings on 30 HC for 4 different analysed
positions.

Often, in the context of cardiac field, diagnostic data can be acquired also
using simpler and/or different strategies. For instance, Lopez et al. [99, 104] were
also able to acquire simultaneously and show (on their IT platform) the hearth
rate from 5 patients with cardiological disease (Pathological Patients (PP)), us-
ing the same shirt used for ECG acquisition. Later, Dabby et al. [31] showed
similar conclusions using another e-textile prototype; specifically, they demon-
strated their e-textile solutions (bras, shirts, and shorts) were capable to acquire
a heart rate signal comparable to a commercial chest strap. Blood pulse rate
is another potential diagnostic data e-textiles can collect from patients. Shathi
et al. [148], for instance, acquired the pulse rate of a single HC demonstrating
their e-textile electrode – in direct contact with the female volunteer’s wrist –
showed a pulse response in nearly accordance with normal kits; anyway, some
deflections/distortions in pulse rate were found during running. Simultaneously,
Tang et al. [154] designed and manufactured a non-woven fabric e-textile pro-
totype which demonstrated capable to effectively monitor blood pulse. Finally,
in recent years – to the authors’ best knowledge – the last diagnostic solution
in the field of cardiology, by means of e-textiles, was oriented to record Lower
Extremity Venous Occlusion Plethysmography (LEVOP). To this aim, Goy et al.
[62] developed and fabricated a custom-made battery powered plethysmograph,
connected on the one side to an oscilloscope, and on the other side on a set of
different e-textile electrodes. The authors conducted LEVOP recordings on 5
HC demonstrating all the three set of the proposed e-textiles materials can be
used for LEVOP recordings, showing additionally a statistical in-depth analysis
related to the recorded signals from the different materials.

Table 1.2. Insights regarding the cardiac literature: authors, aim, dataset
and acquired data.

Authors Aim Dataset Acquired Data
Lopez et al. (2010a)

[99]

Describing a novel health-
care IT platform for lo-
calization and monitoring
within hospital environ-
ments

5 PP ECG, heart rate, angle
of inclination, activity
index, body tempera-
ture, location, level of
battery, alert

Lopez et al. (2010b)

[104]

Presenting a medical IT
platform platform based
on Wireless Sensor Net-
works and e-textile for
patients’ localization and
monitoring

5 PP ECG, heart rate, an-
gle of inclination, ac-
tivity index, body tem-
perature, patient’s lo-
cation, battery level,
alert code

Continued on next page
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Table 1.2 – continued from previous page
Authors Aim Dataset Acquired Data

Wu et al. (2010) [172] Presenting a novel cloth
electrode for ECG moni-
toring

1 HC ECG

Catarino et al. (2012)

[22]

Designing and fabricat-
ing textile integrated elec-
trodes for ECG continuous
health monitoring for dis-
abled or elderly people

1 HC ECG

Kuroda et al. (2013)

[87]

Prototyping an ECG sens-
ing e-textile vest

1 HC ECG

Goy et al. (2013) [62] Fabricating e-textiles to
monitor LEVOP

5 HC LEVOP

Postolache et al.

(2014) [129]

Presenting a wheelchair
architecture equipped with
e-textiles for ECG and
Skin Conductance (SKC)
sensing

7 HC ECG, SKC

Ferreira et al. (2016)

[50]

Presenting the design and
fabrication of SWS to pre-
vent infants’ SIDS

HC# Breath pressure signal
of the ribcage, pres-
sure signal from biceps
femoris muscle

Dabby et al. (2017)

[31]

Presenting a new method
for building wearable elec-
tronic and textile sensor
systems directly integrated
in garments to detect the
heart rate

1 HC Heart Rate

Acar et al.(2018) [2] IDeveloping a single-arm
ECG armband embedded
with flexible graphene tex-
tiles for ECG data acquisi-
tion

1 HC ECG

Li et al. (2019) [90] Fabricating e-textiles de-
positing conducting mate-
rials thorough inkjet print-
ing on conventional tex-
tiles for monitoring pur-
poses

1 HC ECG

Yao et al. (2019)

[173]

Designing and fabricating
multifunctional e-textiles
with mechanical and func-
tional properties compara-
ble with typical textiles for
monitoring applications

1 HC ECG, EMG (arm),
motion signals

Continued on next page
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Table 1.2 – continued from previous page
Authors Aim Dataset Acquired Data

Le et al. (2019) [89] Comparing differences
in ECG registration
between silver-based
textile electrodes and
silver/silver-chloride gel
electrodes, both integrated
in a smart bra

1 HC ECG

Fouassier et al.

(2019) [53]

Comparing the quality of
the ECG signal regis-
tered using both a 12-lead
Holter and a novel smart
12-lead ECG acquisition
T-shirt

30 HC ECG

Sinha et al. (2020)

[150]

Fabricating PEDOT:PSS
coated electrodes to record
EMG, ECG and EDA

4 HCEMG

1 HCEDA

1 HCECG

EDA, ECG, EMG (bi-
ceps, triceps, tibialis,
and quadriceps)

Shathi et al. (2020b)

[148]

Developing e-textile elec-
trodes for the detection
of high-quality biomedical
signals

1 HC ECG, pulse rate, pres-
sure

Tang et al. (2020)

[154]

Fabricating machine-
washable e-textiles with
high strain sensitivity and
high thermal conduction
for monitoring applica-
tions

1 HC Motion signals, blood
pulse

Arquilla et al. (2020)

[11]

Using sewn textile elec-
trodes for ECG monitoring

8 HC ECG

Shathi et al. (2020a)

[5]

Presenting a highly flexible
and wearable e-textile for
smart clothing and ECG
detection

1 HC ECG

Abbreviations. # number of patients not provided.

1.3.2 The Applications in the Muscular Setting

Surface Electromyography (sEMG) is a non-invasive methodology to measure
muscle activity using surface electrodes placed on the skin overlying a muscle or
a group of muscles [70]. This technique is widely used in rehabilitation research,
sport sciences, kinesiology and ergonomics [73]. Electrodes for sEMG are mostly
combined with electrode gel in order to reduce the electrode-skin impedance [151].
Nevertheless, in recent decades, e-textile sensors - fabrics which are given sensing
properties of different physical nature, such as capacitive, resistive, optical and
solar - are increasingly spreading for their wearable nature [20]. The researches
in this field are summarized in Table 1.3.

Ozturk and Yapici [119], indeed, proposed wearable graphene textile elec-
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trodes to monitor muscular activity showing their feasibility to acquire sEMG
signals. They performed a benchmarking study with wet Ag/AgCl electrodes
showing good agreement between the two technologies of electrodes in terms of
Signal-to-Noise Ratio (SNR) and signal morphology with correlation values up
to 97% for sEMG signals acquired from the biceps brachii muscle. The same
authors, in line with the previous conference paper [119], presented a research
article [120] in which they underlined deeply the use of graphene-coated fab-
rics as textile electrodes in sEMG acquisition, considering not only the biceps
brachii muscle but also triceps brachii and quadriceps femoris muscles. They
performed a benchmarking study between the proposed textile electrodes and
commercial wet Ag/AgCl ones for each muscle in terms of the Skin-Electrode
Impedance (SEI), SNR and cross correlation reaching results within the range
of commercial Ag/AgCl electrodes. Results demonstrated that graphene-coated
textile fabrics could represent a valid alternative to gelled Ag/AgCl electrodes
and therefore they could be used to develop wearable and smart garment.

A similar work was conducted by Awan et al. [12] who investigated the use of
a graphene-based EMG fabric sensor as a comparable alternative to commercial
Ag/AgCl wet electrodes. The authors demonstrated that textile electrodes out-
performed the standard Ag/AgCl electrodes in terms of SNR. Additionally, they,
after tests on 8 HC, underlined graphene-based smart fabrics can potentially rep-
resent a viable alternative to non-reusable Ag/AgCl electrodes for high-quality
EMG monitoring. Other authors proposed wearable devices to monitor EMG
signals through textile electrodes; as first example, Nijima et al. [116] proposed
a wearable EMG sensor for monitoring masticatory muscles with PEDOT:PSS
textile electrodes with the aim to monitor daily activities such as diet, sleep
bruxism, and human motor control. The same authors in a more recent work
[117] used the above-mentioned prototype to monitor muscle fatigue related to
the muscles of the limbs, starting from the acquisition of temporal muscles, based
on the assumption that there is a strong correlation between frowning and jaw
clenching muscle activity and the physical efforts made when exercising.

Choudhry et al. [26] designed textile-based piezoresistive sensors developed
using flexible conductive threads stitched on fabric. They embedded the sensor
inside a garment to measure small pressure changes exerted by human muscles.
Other authors proposed multifunctional e-textiles to monitor several vital signals,
EMG signals included. As described in section 1.3.1, Yao et al. [173] developed
an integrated textile patch comprising four dry electrophysiological electrodes, a
capacitive strain sensor, and a wireless heater for electrophysiological monitoring,
motion tracking, and thermotherapy, respectively. Jin et al. [80] showed their so-
lution demonstrated its feasibility for continuous long-term monitoring of ECG,
EMG signal and motion during 1h of weight-lifting excercises without significant
degradation of signal quality. As third example, Sinha et al. [150] showed how



1.3. Biomedical Applications of E-Textile 13

PEDOT:PSS coated electrodes, integrated in a spandex t-shirt, were effectively
able to record simoultaneously EMG, ECG, and EDA in dry state. The authors
concluded this solution could represent a tool for continuous and simultaneous
measurement of vital signals in at-risk patients. Finally, Samy et al. [142] em-
ployed five EMG electrodes: three were attached to subject’s chin to detect its
muscle movement, which can be indicative of teeth grinding (bruxism), sleep ap-
nea and other sleep disorders, while the other two electrodes were attached to
the legs, between the knee and the ankle, to record leg movement.

Table 1.3. Insights regarding literature in muscular setting: authors, aim,
dataset and acquired data.

Authors Aim Dataset Acquired Data
Samy et al. (2014)

[142]

Performing sleep stage
analysis with a contact-
free unobtrusive system

7 HC Respiratory rate and its
variability and leg EMG
from pressure images,
sleep posture, stages of
sleep

Niijima et al. (2017)

[116]

Designing and fabricat-
ing an EMG-integrated
sensors cap to register
EMG data of the mastica-
tory muscles for monitor-
ing ADL

1 HC1

3 HC2
EMG (temporal mus-
cles)

Niijima et al. (2018)

[117]

Assessing the feasibility of
estimating biceps fatigue
using an e-textile head-
band

10 HC EMG (temporal mus-
cles)

Ozturk & Yapici

(2019) [119]

Studying the performance
of graphene textiles in
muscular activity monitor-
ing (acquisition of sur-
face EMG signals from bi-
ceps brachii muscle), com-
paring the outcome with
Ag/AgCl electrodes

1 HC EMG (biceps brachii)

Awan et al.(2019) [12] Presenting the fabrica-
tion of graphene-based
e-textile for EMG moni-
toring, comparing sensing
performance with com-
mercial Ag/AgCl wet
electrodes

8 HC EMG (arm)

Yao et al.(2019) [173] Designing and fabricating
multifunctional e-textiles
with mechanical and func-
tional properties compara-
ble with typical textiles for
monitoring applications

1 HC ECG, EMG (arm), mo-
tion signals

Continued on next page
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Table 1.3 – continued from previous page
Authors Aim Dataset Acquired Data

Jin et al.(2019) [80] Fabricating a metal - elas-
tomer - nanofibers conduc-
tive material for long-term
monitoring

1 HC ECG, EMG (bicep mus-
cle), motion signals

Choudhry et al.

(2020) [26]

Fabricating piezoresistive
sensors – and studying
their washability – to mon-
itor breathing and muscu-
lar activity

1 HC Breath pressure signal
of the ribcage, pres-
sure signal from biceps
femoris muscle

Sinha et al. (2020)

[150]

Fabricating PEDOT:PSS
coated electrodes to record
EMG, ECG and EDA

4
HCEMG

1 HCEDA

1 HCECG

EDA, ECG, EMG (bi-
ceps, triceps, tibialis,
and quadriceps)

Ozturk & Yapici

(2020) [120]

Investigating the per-
formance of conductive
graphene textiles as sur-
face EMG electrodes,
later integrated in textile
electrodes as pedometer

4 HC ssEMG

1 experiment 1; 2 experiment 2.

1.3.3 The applications in Orthopaedics

Recently, the development and the spread of Inertial Measurement Units
(IMUs) for spatio–temporal and kinematic assessment has represented an innova-
tive progress in the field of biomechanics and wearable sensors. Indeed, wearable
sensors based on IMUs are spreading in the biomedical field showing good perfor-
mances [44, 141] compared to their gold standards. Moreover, considering that
the working principle of IMUs is based on the measurement of inertia, IMUs can
be applied anywhere without a reference [180] and integrated with textile tech-
nology [45]. These applications are particularly appreciated in the orthopaedic
sector. The researches in this field are summarized in Table 1.4.

Bartalesi et al. [14] developed a wearable system that integrates and fuses
information gathered from textile based piezoresistive sensor arrays and triaxial
accelerometers, which demonstrated able to perform a real time estimation of the
local curvature and the length of the spine lumbar arch. The authors performed
a comparative study between their system and a stereophotogrammetric system,
showing a very low error when reconstructing the lumbar arch length of a single
HC. Always considering the same idea (namely, merging several technologies), Li
et al. [91] presented a method to integrate and package a triaxial accelerometer
within a textile as to create an e–textile even fully integrated within the weave
structure of the fabric itself, making it invisible to the wearer. The integrated e–
textile based accelerometer sensor system placed on arm and knee joints was used
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to identify the activity type, such as walking or running, through the calculation
of the joint bending angles. They performed a benchmarking analysis between
the proposed device and the related gold standard showing a good agreement
with an error lower than 1%.

Even other research groups proposed wearable systems for remote monitoring;
for instance, Lorussi et al. [101] proposed a wearable system to remotely monitor
musculoskeletal disorders. The system is composed of IMUs, e-textile sensors and
a decision support system included in a dedicated app able to assist the patient in
performing personalized rehabilitation exercises designed by physician/therapist,
remotely and in real time (also through alerts). Raad et al. [131] proposed
a wearable smart glove for remote monitoring of rheumatoid arthritis patients,
detecting finger flexions while patients performed several activities at home. The
e–textile glove used flex and force sensors, and an Arduino platform to transmit
motion data to the physiotherapists through a mobile phone on which a dedicated
app is installed.

Other authors proposed a complete platform for healthcare monitoring; as
described even in section 1.3.1, Lopez et al. [104] proposed a novel healthcare IT
platform is capable to monitor several physiological parameters, such as ECG,
heart rate, body temperature and tracking the location of a group of patients
within hospital environments through the combination of e–textiles and wireless
sensors. The same authors, in another work [99], proposed a medical IT platform,
based on wireless sensor networks and e–textiles, which supports indoor location-
aware services as well as monitors physiological parameters, such as ECG, heart
rate, body temperature.

Other researchers proposed wearable devices which are completely textile
and do not integrate devices such as IMUs. In this context, Della Toffola et al.
[157] proposed a wearable system for long term monitoring of knee kinematics:
compliance with the use of knee sleeve, indeed, is monitored by using an e–textile
sensor that measures the knee sleeve fabric stretch thus allowing one to infer
whether the subjects under test wears the knee sleeve. Garcia Patino et al. [54]
proposed a compact textile–based wearable platform to track trunk movements
when the considered user bends forward. The smart garment developed for this
purpose was prototyped with an inductive sensor formed by sewing a copper wire
into an elastic fabric in a zigzag pattern. Heo et al. [69] proposed a flexible glove
sensor - which included stretchable and flexible Polydimethylsiloxane (PDMS)
films - to monitor upper extremity prosthesis functions.

Other researchers studied new arrangements of materials for biomedical ap-
plications, Jin et al. [80] studied a highly durable nanofiber-reinforced metal
elastomer composite consisting of metal fillers, an elastomeric binder matrix, and
electro spun PVDF nanofibers for enhancing both cyclic stability and conduc-
tivity, showing a good continuous long-term monitoring of ECG, EMG signal,



16 Chapter 1. Introduction

and motions during weightlifting exercises without significant degradation of sig-
nal quality. Li et al. [92] fabricated a textile–based stretchable sensor by using
an electronic dyeing method; the conductive textile showed good flexibility and
adaptable strain-electric response. The authors demonstrated the excellent per-
formances for monitoring and analysis of several human activities. Tang et al.
[154] reported the conductive, sensitive, wearable and washable vacuum pressure
sensor based on Carbon Nanotubess (CNTs), e–textile with unique nanostruc-
tures growth on the non-woven fabric by using the novel and facile nano-soldering
method. They proved that CNTs e–textile sensor has a good linearity, high sen-
sitivity and low power consumption. Moreover, they showed the good repeata-
bility, washability, durability and super-hydrophobic performance of the CNTs
underling its feasibility to realize smart clothes. Yao et al. [173] presented me-
chanically and electrically robust integration of nanocomposites with textiles by
laser scribing and heat press lamination showing a good washability and good
electromechanical performance up to 50% strain. They underlined the potential
utility of these new materials and methods in healthcare, activity tracking, re-
habilitation, sports, medicine and human-machine interactions. Finally, Ye et al.
[174] reported a scalable dip-coating strategy to construct conductive silk fibers
showing its feasibility to be woven into fabrics, resulting in textiles sensitive to
physical stimuli such as: force, strain and temperature.

Other authors focused on activity recognition and monitoring. Fevgas et al.
[52], indeed, presented a platform and a methodology for rapid prototype develop-
ment of e-textile applications for human activity monitoring in order to deal with
human motion and gesture monitoring, posture recognition and fall detection. Vu
et al. [168] introduced a new approach to classify human body movements, by
using textile sensors, embedded into fabrics, using Artifical Intelligence (AI) in
order to recognize different standard human motions (e.g. walking, jumping, run-
ning and sprinting) starting from features extracted from strain signals. The last
authors proposed also another work [167] in which they presented an e–textile
strain sensor integrated on a glove to monitor angles of finger motions. They also
proved the feasibility of this sensor placing it onto the skin of the neck in order to
record the pharynx motions when speaking, coughing and swallowing. Samy et al.
[142] proposed an unobtrusive framework for sleep stage identification based on a
high–resolution pressure–sensitive e–textile bed sheet able to acquire information
related to body movement, posture and body orientation. Finally, Hayashi et al.
[67] proposed a smart wheelchair, composed of e–textile pressure sensors placed
on the seat and back support, able to monitor the patients posture on the basis
of quantitative sitting-posture scores.
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Table 1.4. Insights regarding orthopaedics literature: authors, aim, dataset
and acquired data.

Authors Aim Dataset Acquired Data
Bartalesi et al. (2010)

[14]

Designing, developing, and
testing a wearable system
to perform the real time
estimation of the local cur-
vature and the length of
the spine lumbar arch

1 HC Acceleration data, me-
chanical deformation

Lopez et al. (2010a)

[99]

Describing a novel health-
care IT platform for lo-
calization and monitoring
within hospital environ-
ments

5 PP ECG, heart rate, an-
gle of inclination, activ-
ity index, body temper-
ature, location, level of
battery, alert

Lopez et al. (2010b)

[104]

Presenting a medical IT
platform platform based
on Wireless Sensor Net-
works and e-textile for
patients’ localization and
monitoring

5 PP ECG, heart rate, an-
gle of inclination, ac-
tivity index, body tem-
perature, patient’s loca-
tion, battery level, alert
code

Fevgas et al. (2010)

[52]

Presenting a platform and
a methodology for the
rapid prototype develop-
ment of e-textile applica-
tions for human activity
monitoring

3 HC Acceleration data

Della Toffola et al.

(2012) [157]

Presenting a wearable sys-
tem for long-term monitor-
ing of knee kinematics in
the home and community
settings

1 HC Acceleration data, me-
chanical deformation

Samy et al. (2014)

[142]

Performing sleep stage
analysis with a contact-
free unobtrusive system

7 HC Respiratory rate and its
variability and leg EMG
from pressure images,
sleep posture, stages of
sleep

Hayashi et al. (2017)

[67]

Using smart wheelchairs to
monitor posture

3 HC FS index and LL index

Li et al. (2017) [92] Presenting an electronic
dyeing method to fabri-
cate wearable silver-based
e-textile sensors for hu-
man motion monitoring
and analysis

1 HC Strain signals at heel,
lower and upper knee

Vu & Kim (2018)

[168]

Introducing a new ap-
proach to classify human
body movements using
textile sensors integrated
into smart muscle pants

1 HC Motion Signals

Continued on next page
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Table 1.4 – continued from previous page
Authors Aim Dataset Acquired Data

Lorussi et al. (2018)

[101]

Developing a sensing plat-
form constituted by wear-
able sensors for musculo-
skeletal rehabilitation

5 HC Knee and scapular flex-
ion angles

Ye et al. (2019) [174] Fabricating e-textile sen-
sors sensible to body and
environmental stimuli
modifying the surface of
natural silks with CNTs

1 HC Knee flexion angle, fin-
ger flexion angle

Yao et al.(2019) [173] Designing and fabricating
multifunctional e-textiles
with mechanical and func-
tional properties compara-
ble with typical textiles for
monitoring applications

1 HC ECG, EMG (arm), mo-
tion signals

Jin et al. (2019) [80] Fabricating a metal–
elastomer–nanofibers
conductive material for
long-term monitoring

1 HC ECG, EMG (bicep mus-
cle), motion signals

Raad et al. (2019)

[131]

Proposing a novel Smart
Glove for both live and on-
demand monitoring

1 HC Motion signals (hand
and finger movement)

Vu & Kim (2020)

[167]

Fabricating and optimiz-
ing the performance of e-
textile strain sensors

1 HC Finger flexion angle,
signal of pharynx mo-
tion

Heo et al. (2019) [69] Introducing, characteriz-
ing, and experimenting
novel textile strain sensors
based on AgNW

1 HC Finger flexion angles

Li et al. (2020) [91] Describing a miniature ac-
celerometer solution inte-
grated seamlessly within
the fabric of a sleeve to
monitor movement

3 HC Elbow and knee bend-
ing angle

Tang et al. (2020)

[154]

Fabricating machine-
washable e-textiles with
high strain sensitivity and
high thermal conduction
for monitoring applica-
tions

1 HC Motion signals, blood
pulse

Garcia Patino et al.

(2020) [54]

Designing a textile-based
wearable platform to pre-
vent low back pain

1 HC Motion signals (Back
movements)

1.3.4 The Applications in the Respiratory Tract

Respiration is a crucial vital function for humans; abnormalities in such a
function may have a different origin and can lead to patient deterioration and,
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ultimately, death. Previous research has extensively documented the clinical
importance of respiratory rate diagnosis and how the precise and routinely mon-
itoring is far to be achieved, on the one side for intrinsic difficulties (linked both
to human and machines limitations) and on the other side for the limited use
and/or the small diffusion of advanced respiratory monitoring systems [135, 115].
To reach this gap, several methods have been proposed and have been widely
investigated over time [95, 166]; among these, several e-textile applications were
also proposed. The researches in this field are summarized in Table 1.5.

To the best of the authors’ knowledge, Huang et al. [75] proposed the first ex-
ample in this field. Specifically, they manufactured an e-textile bed sheet (where
the e-textile piezoresistive layer is enclosed between two sheets of conventional
fabric layers) aimed to indirectly acquire respiratory rate data; additionally, the
authors designed an IT platform capable to non-invasively and accurately process
the acquired data. The analyses performed on 14 HC demonstrated the overall
system was effectively capable to inconspicuously monitor patients’ respiratory
rate when they slept in supine position. Albeit patients’ movements effectively
invalidated respiratory rate monitoring, the system demonstrated a valid tool to
track diseases (e.g. apnea) for which patients movements can be limited.

Similar e-textiles and IT platforms were used later from the same research
group and other colleagues. On the one hand, Liu et al. [96] conducted new
investigations to automatically monitor respiratory rate, considering either the
analysis of a restricted patient area (e.g. torso) or different bed configurations
(e.g. tilted bed setups); on the other hand, Samy et al. [142] concentrated, as al-
ready described in section 1.3.2, on new objectives, among which we can mention
the sleep stage analysis. In this case, the respiratory rate (even when acquired
by the e–textile bedsheet) demonstrated a different output during the different
sleep stages of the patients. This finding can help to design and implement the
proposed device as an unobtrusive sleep stage identification system, which would
help to potentially perform early diagnoses of sleep disorders and chronic dis-
eases.

Respiratory rate demonstrated important even in the case of infants sleeping
monitoring [75]. It is not by chance if Ferreira et al. [50] investigated – using their
custom-made chest belt and the Baby Night Watch IT platform (see also section
1.3.1) – respiratory rate variations in infants to monitor eventual SIDS events;
nevertheless, it should be pointed out that – albeit the chest belt represents, for
all intents and purposes, an e-textile system – respiratory rate was acquired by
the authors using a triaxial accelerometer integrated in the chest belt, differently
from the ECG signal.

In the same period, Ramos-Garcia et al. [132] designed and fabricated a
Respiratory Inductive Plethysmograph (RIP) based breathing system aimed at
potentially monitoring breathing rate. The proposed system was a polyester/s-
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pandex t-shirt on which a stretch e-textile sensor was placed around the chest
of a HC. The preliminary results indicated the proposed system – which needs
further improvements to be properly used for multiple tasks – was capable to
effectively monitor breathing rate of 3 HCs. Recently, Choudhry et al. [26] pro-
posed a similar approach, namely they integrated on a vest a different multilayer
sensor around the ribcage area of HCs. The preliminary results indicated the
system was capable to recognize changes in sensor resistance while breathing and
that the acquired signal was coherent with average adult breaths count. Finally,
Lian et al. [93] proposed a multifunctional e–textile material – whose layers were
composed of high-density AgNWs and a sensing fabric, respectively – which was
used to fabricate a face mask, though which they showed the feasibility to indi-
rectly evaluate variations in breathing rate. This prototype could show potentials
applications also for healthcare monitoring (e.g. cardiac and respiratory illnesses
linked to particulate matter 2.5 penetration in human body), albeit – to the best
of the authors’ knowledge – the authors did not consider this particular case as
the main application for the multifunctional e–textile.

1.3.5 Other Themes

The previous subsections have dealt with the main themes on which the
applications and developments of e–textile technologies have focused. However,
there are applications of e–textile on less common themes, which confirm the
wide development of these technologies in the last decade and testify the variety
of purposes to which textile technologies can be applied. In this paragraph we
have collected works that offer applications on ’other themes’ different from those
described in detail in the previous subsections, widening the horizon of biomedical
applications of e–textile technologies. The researches presented in this subsection
are summarized in Table 1.6.

Golpravar and Yapici focused their work on the use of e–textiles in the field
of Electroocoulography (EOG), proposing, for the first time, the use of graphene-
coated fabric electrodes for EOG acquisition. In [56] they performed a compar-
ative study between conventional Ag/AgCl electrodes and their e–textile elec-
trodes demonstrating high degree of flexibility, elasticity and the possibility of
incorporating the novel electrodes into various types of personal clothing. The
following year, the same authors presented two research articles [58, 57] in which
they designed a devoted unit for textile-based EOG that can achieve on-board
noise removal and signal amplification. Moreover, they have developed and im-
plemented a controlled automatic blink detection algorithm, able to detect vol-
untary blinks in real-time. The performances of the device in recording EOG
signal during specific eye movement patterns and in detecting voluntary blinks
have been explored in their works resulting in good agreement with the reference
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Table 1.5. Insights regarding literature in respiratory field: authors, aim,
dataset and acquired data.

Authors Aim DatasetAcquired Data

Huang et al.
(2013) [75]

Presenting an e-textile bed-
sheet to measure human res-
piratory rate

14
HC

Respiratory rate

Samy et al. (2014)
[142]

Performing sleep stage anal-
ysis with a contact-free un-
obtrusive system

7 HC Respiratory rate and its
variability and leg EMG
from pressure images, sleep
posture, stages of sleep

Liu et al. (2014)
[96]

Presenting an unobtrusive
on-bed respiration system

12
HC

Respiratory rate

Ramos-Garcia et
al. (2016) [132]

Using a coverstitched stretch
sensor in a commercial shirt
to monitor respiration

3 HC Breathing patterns

Ferreira et al.
(2016) [50]

Presenting the design and
fabrication of SWS to pre-
vent infants’ SIDS

HC# Body temperature, respira-
tory rate, ECG

Choundry et al.
(2020) [26]

Fabricating piezoresistive
sensors – and studying their
washability – to monitor
breathing and muscular
activity

1 HC Breath pressure signal of
the ribcage, pressure signal
from biceps femoris muscle

Lian et al. (2020)
[93]

Fabricating a multifunc-
tional e-textile for multiple
applications (such as diag-
nostics and environmental)

1 HC Breath pressure signal

EOG systems based on Ag/AgCl electrodes.
EDA, also known as Galvanic Skin Response (GSR), is another bioelectri-

cal signal, usually recorded with common Ag/AgCl electrodes, which has been
one of the subject of study and applications of textile-based electrodes and de-
vices. Sinha et al. [150] employed the same PEDOT:PSS based electrodes used
for ECG and EMG recording even to collect EDA signal from fingers and wrist.
To this aim, they developed a sensing shirt able to simultaneously record the
three biosignals, finding potential applications in continuous health monitoring
as well as physiotherapy. Similarly, Postolache et al. [129] developed e–textile
electrodes for measuring skin conductance using the same materials employed
for ECG recording (textile made of fibers coated with conductive polymer and
silver). E–textile electrodes were attached to the wheelchair armrests in order
to monitor physiological stress parameters of the wheelchair user in unobtrusive
way. Haddad et al. [63] used a different approach to develop EDA electrodes;
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specifically, they integrated Ag/AgCl uniformly coated yarns within three dif-
ferent textile substrates (100% cotton, 100% nylon, and 100% polyester). The
e–textile electrodes were used to record EDA on the distal phalanx of the fingers,
and their performances were compared with the standard rigid Ag/AgCl elec-
trodes, resulting in higher stability for e–textile electrodes when changes in skin
temperature occurred. Jennifer Healey [68] proposed a different application of
GSR measurement, developing a ‘GSR sock’ by integrating two fabric electrodes
from a commercial heart rate monitor strap into a standard sock. The electrodes
were placed to make contact with the ball and heel foot of a HC. The experi-
mental testing showed that the sock prototype provided a meaningful measure of
GSR activity that can be used unobtrusively in daily monitoring.
Chen et al. [25] applied their expertise in flexible electronics and polymers to de-
velop a fiber-shaped e-textile strain sensor using polyurethane fibers, AgNWs and
Styrene–Butadiene–Styrene (SBS) via knitting and simple dip-coating processes.
Due to the textile-based structures and hierarchical fibers, the e–textile exhib-
ited good capability of detecting multiple deformation, including tensile strain
and pressure, which enables a wide range of biomedical purposes. In particular,
the authors proposed different applications in health monitoring such as pulse
beating detection, phonation detection, scoliosis correction, and Restless Legs
Syndrome (RLS) diagnosing.
Another important biomedical application, which is particularly suited with wear-
able and textile-based electronic, is the measure of skin temperature. This is
an important parameter for a variety of health monitoring applications, where
changes in temperature can indicate changes in health. Embedding temperature
sensors within textiles provides an easy method for directly measuring body tem-
perature in defined areas. As first example, Lopez et al. [99, 104] embedded a
thermometer in the Wearable Data Acquisition Device to include the body tem-
perature as a further parameter provided by the proposed healthcare monitoring
system. Ferreira et al. [50] used an infrared thermopile sensor embedded in the
wearable chest belt, to measure the body temperature of infants, adding this pa-
rameter to the other signals registered by the device and previously discussed in
the other subsections. Moving to more specific textile-based sensors, Lugoda et
al. [102] developed a temperature sensing yarn, using a micro thermistor covered
with packing fibers and a warp knitted tube. The temperature sensing yarns
were then used to create a series of temperature sensing garments: armbands, a
glove, and a sock. The performances of the temperature sensing wearable devices
were investigated and, from the outcomes of the conducted analyses, the authors
found some limitations in measuring skin temperature due to the deformation of
the yarn structure and also depending on the fit of the garment.

Jiang et al. [79] also proposed a wearable sensing device with embedded
temperature and humidity sensors, the latter used as sweat sensor. However, the
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authors focused on the use of a textile based Near Field Communication (NFC)
antenna, which is able to power the system and transmit sensors data. The
measurement results have shown that the textile NFC antennas can still perform
properly under bending up to 150°, with a maximum range of 6 cm to access sensor
data. This innovation figures to be a very attractive field of development towards
self-powered wearable devices, to overcome the limitations of power supplies, very
critical challenges for the e–textile field.

Lactate and sodium are other commonly analysed markers in sweat, directly
measured on body and, thus, very suitable for wearable textile application. Sweat
lactate is a biochemical indicator of anaerobic metabolism in patients with cir-
culatory failure, while sweat sodium is an excellent marker for potential elec-
trolyte imbalance during exercise. Zhao et al. [179] presented a thread-based
wearable electrochemical biosensor with ZnO-NW-decorated sensing electrodes,
for on-body, simultaneous detection of lactate and sodium ion in sweat during
perspiration. The biosensor and its signal readout and transmission circuits were
fully integrated into a wearable sweat headband, which can wireless communicate
with a smartphone for data transmission. Real-time on-body sweat collection and
analysis were performed on a HC during intense exercise, confirming the accuracy
and stability of biosensor in real use.

A very interesting application of textile electronics was presented by Mason et
al. [108]. The authors investigated the response of a smart fabric, with integrated
conductive pathways and strain gauges, at microwave frequencies region for both
biomedical sensing and signal transmission purposes. In terms of sensing, this
early work showed that it is possible to detect dielectric change, thus meaning
that it may be possible to incorporate complex dielectric sensing capability into
garments which could be used to identify patient’s health indicators via analysis
of bodily temperature, ECG and EMG, sweat rate and its composition to infer
bodily fluid parameters such as blood glucose or alcohol level, or to monitor the
performance of drugs for chronic patients. This novel sensor was even patented
owing to the great potentialities shown in biomedical applications.

Finally, Rong Liu et al. [97] presented a peculiar application of e–textile, de-
veloping intelligent pants for monitoring incontinence status. The smart garment
was developed incorporating conductive yarns in fabrics, using advanced circu-
lar seamless knitting technology. The presence of urine causes the variation of
the measured electrical resistance of the conductive pathways, allowing to sense,
monitor, and alert wearers and care providers on urinary incontinence status.
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Table 1.6. Insights regarding e–textile literature in other fields: authors, aim,
dataset and data.

Authors Aim Dataset Acquired Data
Bartalesi et al. (2010)

[14]

Designing, developing, and
testing a wearable system
to perform the real time
estimation of the local cur-
vature and the length of
the spine lumbar arch

1 HC Acceleration data, me-
chanical deformation

Lopez et al. (2010a)

[99]

Describing a novel health-
care IT platform for lo-
calization and monitoring
within hospital environ-
ments

5 PP ECG, heart rate, angle
of inclination, activity
index, body tempera-
ture, location, level of
battery, alert

Lopez et al. (2010b)

[104]

Presenting a medical IT
platform platform based
on Wireless Sensor Net-
works and e-textile for
patients’ localization and
monitoring

5 PP ECG, heart rate, an-
gle of inclination, ac-
tivity index, body tem-
perature, patient’s lo-
cation, battery level,
alert code

Healey et al. (2011)

[68]

Presenting and validating
performances of a novel e-
textile sock for measuring
GSR

1 HC Foot GSR

Liu et al. (2012) [97] Manufacturing intelligent
incontinence pants made
of conductive yarns to
monitor the incontinence
status

HC# Volume of leaked urine

Della Toffola et al.

(2012) [157]

Presenting a wearable sys-
tem for long-term monitor-
ing of knee kinematics in
the home and community
settings

1 HC Acceleration data, me-
chanical deformation

Samy et al. (2014)

[142]

Performing sleep stage
analysis with a contact-
free unobtrusive system

7 HC Respiratory rate and
its variability and leg
EMG from pressure
images, sleep posture,
stages of sleep

Postolache et al.

(2014) [129]

Presenting a wheelchair
architecture equipped with
e-textiles for ECG and
SKC sensing

7 HC ECG, SKC

Liu et al. (2014) [96] Presenting an unobtrusive
on-bed respiration system

12 HC Respiratory rate

Ferreira et al. (2016)

[50]

Presenting the design and
fabrication of SWS to pre-
vent infants’ SIDS

HC# Breath pressure signal
of the ribcage, pres-
sure signal from biceps
femoris muscle

Continued on next page



1.3. Biomedical Applications of E-Textile 25

Table 1.6 – continued from previous page
Authors Aim Dataset Acquired Data

Golparvar et al.

(2017) [56]

Acquiring EOG signals
with graphene textile
electrodes comparing the
outcome with conventional
Ag/AgCl electrodes

1 HC EOG

Li et al. (2017) [92] Presenting an electronic
dyeing method to fabri-
cate wearable silver-based
e-textile sensors for hu-
man motion monitoring
and analysis

1 HC Strain signals at heel,
lower and upper knee

Mason et al. (2017)

[108]

Evaluating the perfor-
mance of a flexible sensor
with an embedded e-
textile cloth for sensing
applications

1 HC Biomedical microwave
sensing

Golparvar et al.

(2018b) [57]

Characterization of
graphene-coated elec-
troconductive textile
electrodes for EOG acqui-
sition

4 HC
4 PP

Monitoring EOG-
related pathologies

Lugoda et al. (2018)

[102]

Fabricating temperature
sensing yarns to manufac-
ture temperature sensing
garments

5 HC Skin temperature

Golparvar & Yapici

(2017) [58]

Acquiring EOG signals
with graphene textile
electrodes comparing the
outcome with conventional
Ag/AgCl electrodes

1 HC EOG

Chen et al. (2018)

[25]

Fabricating a multifunc-
tional e-textile for multi-
detection of strain, pres-
sure, and force maps

1 HC Resistance signals

Haddad et al. (2018)

[63]

Designing and integrating
Ag/AgCl e–textile elec-
trodes to monitor EDA
comparing the outcome
with standard electrodes

1 HC EDA stimulus re-
sponses

Vu & Kim (2020)

[167]

Fabricating and optimiz-
ing the performance of e-
textile strain sensors

1 HC Finger flexion angle,
signal of pharynx mo-
tion

Jiang et al. (2020)

[79]

Integrating textile NFC
antennas with tempera-
ture and humidity sen-
sors to enable battery-free
wireless sensing for moni-
toring purposes

1 HC Temperature and hu-
midity

Continued on next page
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Table 1.6 – continued from previous page
Authors Aim Dataset Acquired Data

Sinha et al. (2019)

[150]

Fabricating PEDOT:PSS
coated electrodes to record
EMG, ECG and EDA

4 HCEMG

1 HCEDA

1 HCECG

EDA, ECG, EMG (bi-
ceps, triceps, tibialis,
and quadriceps

Zhao et al. (2020)

[179]

Presenting a thread-based
wearable nanobiosensor to
detect lactate and sodium
concentrations during per-
spiration

1 HC Sodium and lactate
concentration in hu-
man sweat

Abbreviations. # number of patients not provided.

1.3.6 Conclusions

The proposed review of literature showed the development of e–textile ap-
plications in the medical field in the last decade. In recent years, several fields
of medicine have been analysed: cardiology, physiatry and orthopaedics, respi-
ratory tract but also sparse studies on other themes were found. The studies
differed in purposes but with one major limitation emerging from this review:
most studies focused on development and testing on a healthy subject the new
device, and only few studies considered a dataset consisting of more than tens
of HC. Therefore, researchers should consider validating their novel devices on
a larger cohort of subjects (healthy and pathological) for further studies. This
improvement would also enable to conduct studies with AI techniques on more
populated dataset since using machine learning on poor dataset would not gen-
erate reliable results.



Chapter 2
Development of Smart T-Shirt
for Remote Health Monitoring

The first e–textile device developed during the research activity was a smart
shirt, named SWEET Shirt. The smart e–textile device was designed to provide
a system for the remote health monitoring of patients, in every condition and
environment. It can be configured as an excellent solution for de-hospitalized
chronic patients who need to constantly monitor their health status. The pro-
posed system combines all the elements for the development of a telemedicine
infrastructure: the wearable device, a mobile application for gathering data, a
dedicated cloud based service for data storage and a user interface for processing
and presenting data to the clinician. The first section of this Chapter presents
the design and development of the wearable system, including the mobile applica-
tion and the signal processing algorithms. The second section is dedicated to the
experimental validation analysis carried out on healthy and pathological subjects
in order to verify the reliability of the system in comparison with gold-standard
methods used in clinical practice.

2.1 Wearable System

The SWEET Shirt is a wearable sensing device that allows for the acquisition
of ECG, brachial biceps EMG and trunk acceleration signals. It can be integrated
within a complete system for remote healthcare purposes, as illustrated by the
schematic shown in Figure 2.1.

The wearable sensor unit allows the bio-signals acquisition when connected
to the analogue front-end located in the electronic unit. This unit also contains
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a microcontroller and allows data transmission through an integrated Bluetooth
Low Energy (BLE) module. A custom-made Android mobile application has
been developed to receive and visualize real-time signals on a smartphone, and
to upload data on a dedicated web server afterwards. This server presents a
restricted area that is exclusively accessible (following prior authentication) by
authorised and appointed healthcare professionals, who can download, analyse
and process the data using the custom-made MATLAB desktop software.

In the following sections the functional modules of the system are individually
presented.

Figure 2.1. System Architecture: (1) SWEET Shirt–Textile Unit; (2)
SWEET Shirt–Control Unit; (3) SWEET App; (4) Web Server; (5) SWEET
Lab.

2.1.1 Wearable Sensing Unit

The wearable sensing unit is made up of a commercial elastic t-shirt in which
e-textile electrodes are integrated. A knit conductive fabric with a resistance of
less than 0.03 Ω per cm in any direction across the textile was used to produce
the electrodes. This fabric (Adafruit Inc. www.adafruit.com – product ID:
1167) is plated with real silver, which gives it highly conductive properties and
has been used in several applications for biosignal acquisition [60, 163, 156, 155].
Two 4-by-2 cm electrodes were integrated within the garment as sensing elements
for electrocardiography, two 2-by-2 cm electrodes placed on each shirt sleeve for
sEMG acquisition and a 2-by-2 cm electrode integrated within the upper part of
the chest as a ground electrode for all the biosignals. A conductive ribbon (5 mm
in width, Adafruit Inc. product ID: 1244) was then used to connect electrodes to
the output connectors of the wearable unit, represented by snap buttons placed
in a pocket on the chest of the shirt. The conductive ribbon is made of woven
conductive stainless-steel fibres, with a resistance of less than 0.1 Ω per cm.
Conductive traces sewed on the shirt have been covered by non-conductive fabric
to avoid contact with skin. Figure 2.2 shows the wearable sensing unit, with the
complete unit and the main details highlighted.

www.adafruit.com
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Figure 2.2. SWEET shirt sensing unit: (a) internal view with textile elec-
trodes and connections, (b) external view.

2.1.2 Electronic Unit

The electronic unit is a compact module containing all the electric and elec-
tronic elements that allow for the acquisition, digitisation and wireless transmis-
sion of the signals.

A custom-made analogue front-end for ECG and EMG measurement was
developed, in order to opportunely face the higher impedance caused by the
fabric electrodes. The analogue front-end for ECG measurement comprises four
principal stages: an instrumentational amplifier INA 118 from Texas Instruments,
a high-pass passive filter with a cut-off frequency of 0.05 Hz, an isolation stage
designed with an OpAmp LM358 in voltage follower configuration, and a low-
pass active filter with a cut-off frequency of 40 Hz. The first filter is a first order
high-pass CR passive filter, while the last stage is represented by a first-order
active filter comprising an OpAmp LM324 in non-inverting configuration with a
RC feedback.

In terms of the EMG analogue front-end, three principal stages were designed,
with the first two similar to those used for the ECG analogue front-end but with
the high-pass cut-off frequency set to 15 Hz. The last stage is a precision rectifier
circuit with the integration of a low-pass filter. The rectifier circuit comprises
an OpAmp LM324, two diodes and a resistor on the feedback connection. This
form of configuration is also known as super-diode configuration. A capacitor was
added in parallel to the resistor to ensure this stage acts as a first-order low-pass
filter. The various components were chosen to set the filter cut-off frequency
at 30 Hz. The introduction of this rectifying stage was important as we are
interested in the EMG envelope signal for performing the subsequent processing
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operations. Generally, an EMG signal is sampled and then rectified in the digital
domain, however, in this case it is rectified in the analog domain in order to
use a lower sampling frequency. The digitisation of EMG signals requires high
sampling frequency, around 800-1000 Hz, since the highest spectral components
are around 400-500 Hz. Otherwise, EMG envelope requires lower sampling rate
as its main spectral information is at low frequencies. The use of lower sampling
rate facilitates the real-time transmission of the signal. Moreover, using this
configuration, the mobile application can provide the user with real time EMG
envelope signals, without the use of a processing stage, that would increases the
complexity of the system and potentially introduce delays.

The electronic board FLORA 9-DOF (Adafruit Inc.), which mounts the tri-
axial inertial module iNEMO LSM9DS0, was integrated within the electronic unit
to acquire accelerometric signals, while a LilyPad Simblee™ BLE Board (Spark-
fun Inc.) was used as system control unit. This unit provides the digitisation
of ECG and sEMG signals, and it is connected to Flora accelerometer through
the serial Inter-Integrated Circuit (I2C) bus. LilyPad Simblee board was selected
because it integrates Simblee™ Bluetooth® Smart Module, allowing data trans-
mission via BLE. BLE technology presents a perfect trade-off between energy
consumption, latency, piconet size, and throughput [59]. The choice to use BLE
technology can also be regarded as a means of increasing the battery life of the
device as much as possible. Battery life is a central issue in the development of
portable devices and, in this type of application, it is mostly influenced by the
data transmission operations. Indeed, BLE is one of the most saving data-saving
transmission protocols, while other solutions have been proposed based on reduc-
ing the amount of data to be sent, using a compression method that does not
degrade the signal quality [13, 128].

The control unit features were implemented through employing an ARM®

Cortex M0 microcontroller that can be programmed using the Arduino IDE. The
control unit was programmed to digitise ECG and sEMG analogue signals, and to
receive digital data from the accelerometer. Here, ECG signal is digitised with a
sample rate of 200 Hz, while sEMG and accelerometric signals are acquired using
a sample period of 15ms (66.7 Hz). All data are collected in 20-bytes-sized packets
and are sent in real-time, via BLE, to the smartphone launching the SWEET App.
The packet transfer rate was set to 66.7 Hz, which was experimentally identified
as the maximum rate supported by BLE transmission without data loss. Hence,
each packet contains one sample from sEMG and triaxial acceleration signals,
and three successive ECG samples, in accordance with their sampling rates.

Despite the fact that the sampling rates chosen for ECG and sEMG signals
were lower than those usually used, they were in line with the time resolution
required by the target clinical applications. ECG digital processing was focused
on hearth rate analysis, which can be accurately done also with lower sampling
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rate [105], than the frequencies required for signal morphology analysis. With
regard to sEMG, the envelope signal was extracted in the analog domain such
that it can be safely sampled with the chosen rate.

All the modules that make up the electronic unit are powered by a 1200
mAh/3.7 V lithium battery, placed on the back of the same unit, which is enclosed
in a 3D-printed plastic case (10cm x 7.5cm x 2cm). On the top part of the case,
eight snap buttons were integrated to allow for connection to the wearable sensing
unit, thus providing the input signals for the analogue front ends. Figure 2.3
shows the internal electronic board and the complete unit.

Figure 2.3. SWEET Shirt Electronic Unit: (a) internal electronic unit, (b)
complete unit, external view.

2.1.3 Mobile Application

SWEET App is a custom-made application for mobile devices requiring an
operating system of Android 6.0 or higher and BLE technology. The applica-
tion allows the smartphone to communicate and receive data coming from the
electronic unit, via the BLE protocol. When the application is started, it is
possible to associate and connect the wearable device using its Media Access
Control (MAC) address. Following this, the measurement session can start, with
the data transferred from the electronic unit to the mobile device, which allows
for real-time signal plotting. At the end of the session, the data will be automat-
ically saved in a “.csv” file, which is stored locally and can be uploaded at any
time to a dedicated web server. Figure 2.4 shows the main frames of the app.

2.1.4 Signal Processing Algorithm

Data from web server can be accessed and downloaded only by authorised
healthcare professionals. The custom-made MATLAB GUI software, SWEET
Lab, can be used to plot and post-process signals in order to achieve a huge set
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Figure 2.4. SWEET App main frames: (a) login, (b) unit connection and
(c) real time signal visualization.

of synthetic parameters of clinical interest. The algorithms used to process ECG,
sEMG and accelerometric signals coming from the smart shirt are here briefly
discussed.

The first step in ECG signal processing involves the detection of QRS com-
plexes using Okada algorithm [118], for the assessment of the tachogram and the
discrete series of RR intervals. The subsequent analysis is divided into several
frameworks, the first of which relates to the Heart Rate (HR) analysis, with the
instantaneous HR assessed as the mean over four successive beats. From this
series, the minimum, the maximum, the medium and the median HRs can be
extracted and tachycardia (HR>110 bpm) and bradycardia (HR<60bpm) events
subsequently searched and listed.

The second framework is dedicated to the Heart Rate Variability (HRV) anal-
ysis in terms of the time, frequency and time-frequency domains. Here, the beats
are first classified in terms of normal, ectopic, Premature Ventricular Contrac-
tion (PVC) and artifact based on their timing before the RR series is edited to
exclude any artifacts and any beat-to-beat intervals that are too short or too long.
The new RR series is then processed in time domain to extract the statistical and
geometrical measures, as listed in Table 2.1[46].
HRV is also assessed in frequency domain, by analysing how the Power Spectral
Density (PSD) is distributed as a function of frequency. The PSD presents three
main components in terms of Very Low Frequency (VLF), Low Frequency (LF)
and High Frequency (HF). The frequency peaks and the absolute and the rela-
tive power values of each component are computed along with the LFHF ratio
[106]. Three different methods are provided by the software to compute the PSD,
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namely, the Welch Periodogram [171], Burg Periodogram [18] and Lomb-Scargle
Periodogram [98] methods. The same analyses are conducted on the windowed
periodogram of the RR series to obtain a time-frequency domain analysis of HRV.

Table 2.1. HRV time domain variables

Statistical Measures

Variable Description

Standard Deviation of
Normal-to-Normal beats
(SDNN) (ms)

Standard Deviation of normal-to-normal intervals (NN).
SDNN reflects all cycles responsible for HR variation in
time, thus representing the total variability.

SDANN (ms) Standard Deviation of the average NN intervals calcu-
lated over 5 minutes. SDNN is therefore a measure of
changes in HR due to cycles longer than 5 minutes.

SDNNi (ms) Mean of SDs of NN intervals, calculated over 5 minutes.

RMSSD (ms) Square root of the mean of the squares of the successive
differences between adjacent NN intervals.

NN50 Number of pairs of successive NNs that differ by more
than 50 ms.

pNN50 (%) Proportion of NN50 divided by total number of NN in-
tervals.

Geometrical Measures

Variable Description

HRV Ti Area of the histogram distribution of RR intervals, nor-
malized to the maximum value of the histogram.

TINN Base width of the RR intervals histogram.

The third framework in the ECG processing relates Heart Rate Turbulence
(HRT) analysis. This form of analysis represents a non-invasive method that
explains the response of the heart to ventricular arrythmias [30] and is a good
predictor of mortality following acute myocardial infarction [144]. Two numerical
parameters are assessed by the software to describe HRT: Turbulence Onset (TO)
to describe the initial acceleration of HR after a PVC, and Turbulence Slope (TS)
to reflect the subsequent deceleration of the sinus rhythm [30].

The fourth framework provides a nonlinear analysis of ECG signals using four
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different approaches: sample entropy, Detrended Fluctuation Analysis (DFA),
Poincarè plot and Fractal Dimension Analysis (FDA). Here, sample entropy
presents a nonlinear method for determining the complexity of a RR series, which
is computed in terms of various values of k and is used for HRV analysis [6].
Meanwhile, DFA is used to quantify the fractal properties of brief intervals of the
tachogram signal [76], while a Poincaré plot is a plot of RR intervals versus the
previous RR intervals used to quantify self-similarity. Two numerical parameters
are assessed in Poincarè plot analysis: SD2 (the magnitude of the major axis of
the ellipse fitting the data; represents the short-term variability) and SD1 (the
magnitude of the minor axis of the ellipse; represents the long-term variability).
Finally, FDA provides the measurement of the fractal dimension of the RR series
assessed using a Higuchi algorithm [72]. Fractal dimension is a useful indicator
in cardiology since it assumes different values for different heart disease [3].

The sEMG signals are processed using two different methods. The first one
allows for the detection of muscle activation and deactivation. For this purpose
a dual threshold algorithm is applied to the sEMG envelope. When the signal
passes one of the thresholds for a given period of time, the muscle is considered
activated or deactivated. The quantitative assessment of the muscle pattern is
provided by means of the following parameters: start and stop time of the muscle
activations, activation time, area between the curve and the threshold, temporal
position of the maximum activation and number of activations registered.

The second framework of analysis of sEMG is based on the Gaussian decom-
position of the signal, which is expressed as a sum of non-normalized Gaussian
functions with different amplitudes and standard deviations. The parameters of
the component functions are estimated using the maximum likelihood method.
The decomposition of the linear envelope into Gaussian curves allows the assess-
ment of the effective intensity of muscular activation, identifying the Gaussian
function with the greatest area included in the active phase of the muscle.

From the accelerometric signal acquired by the sensor placed on the chest, it
is possible to clinically estimate the physical activity and mobility of a patient,
important information especially in the field of rehabilitation medicine. The
assessment is made by a series of parameters obtained from the processing of the
accelerometric signal. The recording is divided into epochs lasting one minute
and, for each of them, a comparison takes place between the values assumed
by the modulus of acceleration and a threshold, chosen to be 200 mg (with
g=gravity acceleration), a value that guarantees a better discrimination between
different physical activities performed. This processing produces the following
metrics which are important to estimate the level of physical activity: number
of threshold crossings, time above threshold, integrated area between the signal
and the threshold, variance of the signal and number of epochs analysed. The
linear combination of this set of parameters can provide an estimate of the MET
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(metabolic equivalent of task), which is the objective measure of the ratio of the
rate at which a person expends energy, relative to the mass of that person, while
performing some specific physical activity compared to a reference.

2.2 Validation Analysis

The performances of the smart shirt in acquiring ECG signal were validated
through a benchmarking analysis with a gold standard system. Three different
type of analysis were conducted in order to address any possible non-conformity
in the measurement and/or processing phases managed by the proposed proto-
type. Firstly, the RR intervals identified by the SWEET Shirt were compared
with those obtained via a reference device. Secondly, the similarity between the
ECG signals obtained via the different devices was assessed. Finally, comparative
analysis was carried out to validate a specific subset of parameters derived from
the SWEET Lab software signal processing.

2.2.1 Experimental Setup

A three-channel digital Holter recorder (Oxford Medilog FD5, Schiller, Doral,
FL, United States of America) was used as the reference for the ECG signal
measurement. The device incorporates seven electrodes and operates with a
sampling rate of 8000 Hz. One healthy subject, aged 25, was equipped with
the clinical Holter device along with the wearable device, SWEET Shirt, for the
ECG measurement (Figure 2.5). Here, the Holter’s electrodes were placed on
the subject’s thorax (Figure 2.5a, b) in order to avoid any overlapping with the
SWEET Shirt e-textile electrodes and to ensure the two ECG waveform were as
similar as possible by means of visual analysis. The ECG acquisition time was
set to 2 h.

2.2.2 Digital Processing and Analysis

ECG signals from both measurement units were loaded in the MATLAB
environment for pre-processing and analysis operations, with both signals passed
through a notch digital filter to remove any 50 Hz interference. The R peaks in
the ECG signal from SWEET Shirt were identified using Okada algorithm, while
those in the Holter ECG were automatically detected via its own software and
could be loaded in the MATLAB environment. The first analysis was carried out
to compare the RR intervals by means of Passing–Bablok (PB) regression. To
achieve interval-to-interval correspondence, six RR values from the Holter series
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Figure 2.5. ECG electrodes configuration used for signal acquisition.

were removed since they corresponded to a region of artefacts in the SWEET ECG
signal. Following this, comparative analysis was performed using the MATLAB
function for PB regression (PB function).

ECG waves for each beat were subsequently isolated to allow for a beat-
to-beat morphology comparison. The cut-off point was chosen as the midpoint
between two subsequent R peaks in order to cover the complete signal. We chose
R peaks as fiducial points since no significant differences were found among the
RR locations in the first analysis (see the results section). A set of a total of
6968 corresponding beats were obtained for the analysis. The waveforms were
then resampled on a normalised axis, with a common number of samples in order
to allow for correlation analysis among the corresponding beats. The number
of samples was chosen to equal the maximum number of samples found in a
non-normalised beat. A resampling operation allows for avoiding any signal dis-
tortion in the normalising time axis. We also decided to individually analyse
the three principal constituent waves, namely, the P-wave, the QRS complex and
the T-wave. Two cut-off points were set in the normalised time axis to divide
the three single waves, which were selected to be the two stationary points be-
tween the three local maxima representing the single waves, as calculated based
on the average beat waveform from the SWEET Shirt recording (Figure 2.6).
The complete beat and the single waveforms were rearranged in eight matrices
(four for each device recording), with each column containing the signal corre-
sponding to an occurred beat. Correlation analysis for the waveforms was carried
out using the MATLAB function, ‘corr’, which computes the linear correlation
between each pair of columns in the input matrices. The diagonal elements of the
output matrix hence represent the linear correlations between the corresponding
waveforms recorded by the devices under examination. The ‘corr’ function also
returns a matrix of p-values for testing the hypothesis of no correlation versus
the alternative hypothesis of a non-zero correlation.

https://it.mathworks.com/matlabcentral/fileexchange/24894-passing-and-bablok-regression
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Figure 2.6. Average beat waveform from SWEET shirt and cut points (red
vertical lines) used to isolate single waves.

Moreover, a subset of parameters deriving from the processing software was
compared to those offered by the commercial Holter software, in order to vali-
date signal processing algorithms. To this end, a further 2-h ECG recording was
measured on a 68-year-old volunteer experiencing a pathological disorder (cardio-
pathic), with the same experimental setup as used previously. The two records
were then windowed in terms of 24 five-minute segments, which were individu-
ally processed, carrying out a set of 24 measures for each record and for each
parameter. ECG signals were windowed both to enlarge the dataset for the com-
parison, and because five minutes is the recommended duration for short-term
ECG analysis [46]. Since Holter software only provides HRV measures in time
and frequency domains, validation analysis was carried out on a subset of two
representative parameters, one for each HRV field, which were computed by both
systems, that is, the SDNN for time domain, and the LFHF ratio for frequency
domain. The agreement between measures was assessed using Root Mean Square
Error (RMSE), PB regression and Bland–Altman (BA) analysis.

PB regression is a method proposed in 1983 for testing the agreement of two
sets of measurement achieved by different systems [124]. The novelties taken
by this method, with respect to the standard linear regression are that it is
based on nonparametric model, it is not sensitive towards outliers, and it assumes
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imprecision in both measurement methods and that errors in both methods have
the same distribution, not necessarily normal. As quantitative outcomes, this
method returns slope (proportional systematic error) and intercept (constant
systematic error) of the fitting linear model. The quantitative-based rules to
accept the agreement between systems are whether the Confidence Intervals (CI)
of slope and intercept contain respectively 1 and 0 [124].

BA analysis is a graphical method based on the plots of the differences
between two measurements against their averages, and it is the most popular
method used to measure agreement between two measurement systems [177]. If
the differences are randomly distributed around the zero-value axis, no propor-
tional nor systematic error is underlined by the analysis. Quantitative assess-
ment is given through the bias, as the mean of the differences, and the Limits of
Agreement (LoA) assessed as the bias ±1.96 times standard deviation of the dif-
ferences [7, 16]. If the differences between methods do not have a normal and/or
symmetric distribution, LoA are considered to be between the 2.5% and 97.5%
percentiles. Significant statistical errors are said to be present if the confidence
interval does not contain zero value. Bland and Altman proposed to accept the
agreement between the methods under test if this interval contains zero value [7].

2.2.3 Results

RR Intervals Comparison

RR series were compared using PB regression. Here, the PB regression in-
volved searching for a linear relationship between the measures from the two
systems and returns slope and offset of the fitting linear model. The systems
could be considered as equivalent if the confidence intervals of slope and offset
contained 1 and 0, respectively. Table 2.2 shows the results of the PB regression
for the RR intervals.

Signal Waveform Comparison

ECG waveforms were compared using Pearson’s linear correlation analysis.
Figure 2.7 shows the distribution of Pearson’s correlation coefficients for the com-
plete ECG waveform, P-wave, QRS complex and T-wave. High values of correla-
tion have been pointed out for ECG waveform (mean value ± standard deviation:
(0.94±0.07), for QRS complex (0.96±0.04) and T-wave (0.96±0.09), while lower
values were returned in P-wave analysis (−0.19± 0.36).
The quality of correlation between each couple of beats was assessed using the
following rule: (i) high correlation if |r| >= 0.7, (ii) moderate correlation if
0.3 <= |r| < 0.7 and (iii) low correlation when |r| < 0.3. Table 2.3 shows a
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Table 2.2. Summary statistics and results of Passing–Bablok regression anal-
ysis for RR interval series.

Statistics Mean±std

RR intervals from SWEET Shirt (ms) 1032± 77

RR intervals from Holter MEdilog Darwin 1032± 77

Passing–Bablok Regression Mean Confidence interval

Slope 1.00 1.00 to 1.00

Offset (ms) 0 0 to 0

summary of the qualitative assessment of correlation, in terms of percentage of
beats, indicating high, moderate or low correlation.
Almost all ECG beats recorded by the prototypical device exhibited a high corre-
lation with the corresponding waveforms obtained via the standard instrument,
with a p-value excluding the hypothesis of null correlation between them. Specifi-
cally, the QRS complex and T-wave were the most comparable components, while
the P-waves mainly exhibited moderate or low correlation values.

Table 2.3. Qualitative assessment of correlation for ECG waveforms.

Quality of Correlation

% of the entire set High Moderate Low

P wave 5.97*** 49.13** 44.90

QRS complex 99.92*** 0.04** 0.04

T wave 98.87*** 0.82** 0.31

ECG waveform 98.82*** 0.88** 0.30
1 ns p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

Signal Processing Algorithms Validation

The first approach to the analysis of the parameters generated by the signal
processing algorithms involved assessing the RMSEs among the different sets of
measures. Table 2.4 shows values of RMSE and the principal descriptive statistics
of the datasets, which were divided according to subject.
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Figure 2.7. Boxplot of Pearson’s correlation coefficient for complete and
single ECG waveforms.

In the first section of Table 2.4, results from non-pathological volunteer ses-
sion are reported. In this case the RMSE values were extremely low for both
parameters: 0.3% of the mean value for SDNN and 3.6% of the mean value
for LFHF ratio. However, different results were obtained with the pathological
subject, with the RMSE values greater in terms of both parameters: SDNN pre-
sented a RMSE of almost 20% of the mean value, while LFHF ratio RMSE was
higher than 50% of the mean.

The analysis of agreement was then further investigated by means of PB
regression and BA analysis, with the results presented in Table 2.5.
For each of the analysed parameters, slope and offset from PB regression are
provided, along with their 95% CI. Across all the results, slope values were close
to 1 and their CIs always include 1. Similarly, the offset values were close to 0
in all analyses, with CIs always including 0 values. In terms of the pathological
subject results, CIs were larger than the corresponding CIs in the measurements
derived from the recording involving the healthy volunteer.

BA analysis results included some bias with the 95% CI and the LoA. In
terms of the results from non-pathological volunteer, the bias values were very
close to 0, while both bias CIs and LoA exhibited a low width and always included
a 0 value. However, in terms of the results for the pathological subject, the bias
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Table 2.4. Main statistics and RMSE assessed for the HRV variables under
test.

Non-Pathological Subject
Holter

(mean±std)
SWEET

(mean±std)
RMSE

SDNN (ms) 63± 11 63± 11 0.184

LFHF Ratio (adim) 1.5± 0.8 1.5± 0.9 0.0561
Pathological Subject

Holter
(mean±std)

SWEET
(mean±std)

RMSE

SDNN (ms) 21± 6 20± 6 4.41
LFHF Ratio (adim) 4± 4 3± 3 1.97

Table 2.5. Results of Passing–Bablok regression and Bland–Altman analysis
for HRV measures.

Non-Pathological Subject
SDNN LFHF Ratio

PB Regression

Slope 1.00 1.00
Slope CI 0.993 to 1.01 0.974 to 1.04

Offset 0 -0.00740
Offset CI -0.454 to 0.430 -0.0506 to 0.0273

BA Analysis
Bias 0.00870 0.00539

Bias CI -0.0713 to 0.0887 -0.0189 to 0.0297
LoA -0.360 to 0.377 -0.107 to 0.117

Pathological Subject

PB Regression

Slope 0.932 0.919
Slope CI 0.597 to 1.39 0.618 to 1.39

Offset 0.692 -0.409
Offset CI -8.86 to 7.02 -1.50 to 0.358

BA Analysis
Bias 1.10 0.684

Bias CI -0.711 to 2.92 -0.101 to 1.47
LoA -7.44 to 9.65 -3.01 to 4.38

values for SDNN and LFHF ratio were higher, with a wider LoA including 0.
BA plots are presented in Figure 2.8a and Figure 2.8b. While the differences
between the methods were greater in terms of both parameters assessed using
the pathological subject, they exhibited a random distribution, meaning no sys-
tematic or proportional error could be confirmed from this analysis.
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Figure 2.8. Bland–Altman plots of the parameters for: (a) non-pathological
volunteer; (b) pathological subject. Red lines represent bias, blue dashed lines
represent LoA.

2.2.4 Discussion

In the first analysis, the RR intervals detected by the two systems under in-
vestigation were compared by PB regression. Results shown in Table 2.2 confirm
that systems can be considered equivalent in the identification of R peaks along
ECG signal as beat reference points.
Signal waveforms were then compared by means of Pearson’s correlation analysis.
This assessment demonstrated that good agreement existed between the signals,
particularly in terms of the QRS complex and T-wave, while less correspondence
was found in the comparison of the P-waves (see Figure 2.7 and Table 2.3). Fig-
ure 2.9 shows the averaged ECG waveforms recorded by the two systems. Here,
P-waves are less visible in the Holter signal than in SWEET Shirt recording.
This was due to the non-standard electrode placement used for the Holter sys-
tem (see Figure 2.5), which was chosen to avoid the overlapping with the textile
electrodes enclosed in the shirt. Therefore, the lower agreement level with the
P-waves can be attributed to the different electrode placements used, which is
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almost mandatory in a simultaneous recording. It can be therefore affirmed that
the prototypical shirt has the capacity to clearly record an ECG signal that is
comparable with those acquired by commonly used clinical portable devices. In
the end, the performances of the developed software for signal processing was
analysed. As shown in Figure 2.8a, Table 2.4 and Table 2.5 very good results
have been achieved in the analysis of parameters assessed on non-pathological
subject. The RMSE for both parameters under examination was extremely low,
as were the biases assessed via the BA analysis. Meanwhile, PB analysis revealed
that there was a regression line very close to the identity line, underlining a strict
correspondence between the measurements from the two devices. However, lower
agreement was found in the analysis involving the pathological subject. Here,
RMSE and bias values were higher (Table 2.4), and PB CIs were wider (Table
2.5), albeit that they still involved values that allowed for concluding that there
was some agreement between the two methods. However, BA plots (see 2.8b)
did not exhibit any prevalent trend in the distribution of the differences, thus
suggesting that no systematic or proportional differences existed between the
measurement systems.

Figure 2.9. Comparison of averaged ECG beat waveforms from Holter device
(blue) and sensorised shirt (red).
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Based on these results, the lower agreement level in the parameters related
to the pathological subject can be attributed to the greater presence of artefacts
in the SWEET Shirt record, which was likely due to the weak adherence of the
textile electrodes on the patient’s skin or the higher number of movements made
by the subject during the recording session. ECG signal from SWEET Shirt was
clearly visible in 94.66% of the registration time, while the signal from the Holter
recorder did not present any artefact. The presence of artefact regions will affect
any signal processing results since the artefacts must be replaced by a specific
number of normative RR intervals to ensure the continuity of the RR series. In
this case, the results were further affected by the fact that they were averaged
using a reduced window of 5 min.



Chapter 3
Development of Smart Socks
for Remote Health Monitoring

Gait is a complex motor function that, involving the central nervous system
and the musculoskeletal system, requires the activation and coordination of nu-
merous muscles and joints. Consequently, a deficit in either system can alter the
motor pattern. Technological advances have enabled the quantitative analysis of
gait with the possibility of: formulating a prognosis, making a diagnosis but also
evaluating the rehabilitation outcome of therapeutic interventions. However, the
current technologies used for gait assessment are expensive, typically require the
supervision of healthcare professionals and should therefore be used in clinical
settings. Specific clinical trials sometimes do not reflect the true variability of
the subject’s gait, which may instead occur in response to contextual variables
and changing environments encountered in daily life. In addition, a further factor
to be considered, which may affect gait, is the performance of a test under the
supervision of a healthcare professional, which therefore induces the subject to
make a greater effort and modify the actual motor pattern accordingly. As a
result of these considerations, several researchers support the potential value of
remote monitoring of free-living walking behaviour at home or in the community
[38, 153].

In this scenario the second e-textile system developed during the research
activity was based on smart socks named SWEET Socks. The system is able
to collect the angular velocities of lower limbs, using IMUs, and the plantar
pressures, by means of textile sensors. The device can be considered a wearable
and portable system for the assessment of both postural and gait tasks, exploiting
the recent advances in the field of the e-textile, electronic and signal processing. In
particular, the system is intended to provide the assessment of spatio-temporal
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gait parameters by processing the angular velocities signals while the pressure
signals are used to assess the Center Of Pressure (COP) displacements during
static postural tests. The details of the prototype design and development are
presented below followed by its experimental validation. The wearable smart
socks are integrated in a complete system for remote health monitoring, presented
in the schematic diagram in Figure 3.1.

Figure 3.1. System Architecture: (1) SWEET Sock–Textile Unit; (2)
SWEET Sock—Control Unit; (3) SWEET App; (4) Web Server; (5) SWEET
Lab.

3.1 Wearable System

The wearable sensor unit allows the acquisition of bio-signals when connected
to the analogue front-end located in the electronic unit. This unit also contains a
microcontroller and allows data transmission through an integrated BLE module.
A custom-made Android mobile application has been developed to receive and
visualize real-time signals on a smartphone, and to upload data on a dedicated
web server afterwards. This is a restricted area that is accessible after prior au-
thentication, exclusively by authorized and appointed health professionals, who
can download, analyze, and process data using the custom-made MATLAB desk-
top software.

In the following sections, the functional modules of the system are individually
presented.

3.1.1 Wearable Sensing Unit

The wearable sensing unit consists of a commercial sports sock in which three
pressure sensors, in e-textile technology, have been integrated as sensing elements
in three strategic points of the foot arch. The number and placement of sensors
were based on anatomical considerations: in standing position, the main force
transmitted onto the foot originates at the bones of the lower leg. At the ankle,
this force is divided into three smaller forces in the style of a tripod. Within
the foot, one of these three forces is directly transmitted onto the calcaneus, the
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second one onto the first metatarsal, and the third one is distributed across the
second to fifth metatarsal [74]. Therefore, three pressure sensors per foot were
used: one under the heel (HEEL), one under the first metatarsal bone (MTB1),
and one under the fifth metatarsal bone (MTB5) (Figure 3.2c). Besides the ex-
perimental device presented in [74], also the commercial smart socks Sensoria are
designed with the same number and placement of the pressure sensors. The per-
formances of the latter in static postural assessment have been also investigated,
with good results, in comparison with a stabilometric platform [34]. The use of
the minimum number of sensors needed for the analysis reduces the complexity
of textile design and can improve the comfort and wearability for users. Sen-
sors have been realized by using 2-by-4 cm sheets of EeonTex fabric (EeonTex
Eeonyx, Pinole USA), a conductive and non-woven microfiber with piezoresistive
functionality (surface resistivity 2000 Ω/sq), offering a reduction of the electrical
resistance to the application of force. Their characterization was carried out with
load tests using a controlled mechanical clamp with decreasing/increasing loads
[33]. The three conductive sensors have been covered by non-conductive fabric
to prevent degradation by contact with the skin and are thin enough to provide
postural monitoring at natural in-shoe conditions, without distortion of plantar
pressure. A conductive ribbon (5 mm tick), with a resistance of less than 0.1 Ω
per cm, has been used to connect sensors to the output connectors of the wear-
able unit. Compared to the conductive wires available on the market, the ribbon
has a lower resistance (0.1 vs. 0.9 Ω per cm) and is more robust as it does not
break due to stretch. The design of conductive pathways provides a placement
of all connectors of the data acquisition system, represented by snap buttons,
on the lateral part of the sock, which essentially improves the system usability.
The textile connections have been sewn on the side of the sock avoiding, when
possible, the passage under the sole of the feet, where they could be deteriorated.
Connection lengths have also been minimized by studying the shortest path in
order to reduce noise and interference. Figure 3.2 shows the complete device with
its sartorial design.
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Figure 3.2. SWEET Sock sensing unit: (a) external view; (b) internal view
of textile connections; (c) textile pressure sensors.

3.1.2 Electronic Unit

The electronic unit is a compact module containing all the electric and elec-
tronic elements to allow acquisition, digitisation, storage, and wireless transmis-
sion of the signals.

A conditioning circuit, for each conductive sensor, has been realized in order
to read a voltage signal proportional to the applied force. This circuit is realized
by means of a voltage divider consisting of two resistors: one of which is of known
value and the other represented by the e-textile sensor. The known resistance
value is fixed to 18 kΩ, around which the conductive sensor resistance ranges, to
reach the condition of maximal sensitivity.

The IMU FLORA 9-DOF (Adafruit Inc.: New York City, New York, USA)
has been integrated in the electronic unit to acquire gyroscopic signal. It consists
of a small electronic board mounting LSM9DS1 module, a system-in-package
featuring a 3D digital linear acceleration sensor, a 3D digital angular velocity
sensor, and a 3D digital magnetic sensor.

A LilyPad Simblee™ BLE Board (Sparkfun Inc.: Niwot, Colorado, USA) has
been used as the microcontroller. It provides the digitisation of pressure signals,
and it is connected to Flora IMU through the I2C serial bus interface. LilyPad
Simblee also allows to send data via BLE protocol (or Bluetooth 4.0), using Sim-
blee™ Bluetooth® Smart Module integrated on the shield. BLE technology rep-
resents a perfect trade-off between energy consumption, latency, piconet size, and
throughput. Its control features are implemented exploiting the ARM® Cortex
M0 microcontroller that can be programmed using the Arduino IDE. The control
unit is programmed to sample pressure analogue signals with a sample period of
15 ms (66.7 Hz), and to receive digital data from the gyroscope with the same
rate. Data are collected in 16-bytes-sized packets (2 bytes for each information:
Packet, Time, x-y-z axes of the gyroscope, MTB1, MTB5, and HEEL pressure
data) and real-time sent, via BLE, to the smartphone using SWEET App. Other
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signals deriving from IMUs (signals from accelerometer and magnetometer) are
not recorded by the device because they do not provide any essential information
for the planned assessments. An algorithm based only on angular velocity signals
was implemented to evaluate all spatio-temporal metrics, because accelerometer
signals are affected by gravity and are sensitive to sensor location [112]. When
using accelerometers, it is important that they are placed in the same location
each time as the signal is affected by how far from the center of rotation they are.
The advantage of using a shank mounted gyroscope compared to accelerometers
is that, as long as the gyroscope is recording data in the correct plane, it does
not matter where on the shank the sensor is placed [41, 133]. This reduction in
the amount of acquired and sent data allows to improve signals sampling and
sending rate.
All modules making up the electronic unit are powered by a 190 mAh/3.7 V
lithium battery, placed on the back of the same unit. The electronic unit is
housed in a 3D-printed plastic case (73 mm × 52 mm × 21 mm). On the top
part of the case, 4 snap buttons allow the connection to the wearable sensing
unit, in order to provide the input signals for the analogue front ends. In Fig-
ure 3.3 the electronic unit, with its main details, is shown.

Figure 3.3. SWEET Sock Electronic Unit: (a) internal electronic unit; (b)
complete unit external view.

3.1.3 Mobile Application

A custom-made Java language application for mobile devices requiring An-
droid 6.0 or higher operating system and BLE technology was developed. The
application allows the smartphone to communicate and receive data coming from
the electronic unit, via BLE protocol. When the application is started it is
possible to associate and connect the wearable device, using its MAC address.
Then, the measurement session can start, data are transferred from the electronic
unit to the mobile device, which allows signals real time plotting. At the end of
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the session data are automatically saved in a “.csv” file, which is stored locally
and can be uploaded at any time to a dedicated web server. In Figure 3.4 the
main frames of the app are shown.

3.1.4 Signal Processing Algorithms

A custom-made MATLAB GUI software has been developed to allow signal
visualization and digital processing. Health professionals have the possibility to
download data from the server and analyze them using the tools offered by this
software. Pressure and gyroscope signals gathered by the hardware are individ-
ually processed to respectively perform posturographic assessment and spatio-
temporal gait analysis. The two types of signal were not integrated because they
are used in the analysis of two separate phases: pressure signals for static postu-
ral assessment while angular velocities in dynamic walking tasks analysis.
A gyroscope-based algorithm for gait analysis has been developed. The angu-
lar velocity signals on the sagittal plane are selected and low-pass filtered with
4th-order Butterworth filter (cut-off frequency 5 Hz) to reduce noise. Mid-swing,
heel-strike, and toe-off events are then identified on the filtered signals for both
feet, using a threshold-based algorithm [138]. The starting point of the algorithm
is the identification of the time events corresponding to the mid-swing, identi-
fied as the local maximum peaks of the signal. In the next step, local minimum
peaks prior and after the mid-swing point are selected as, respectively, toe-off
and heel-strike time events. Starting from these gait events times, all temporal
parameters of gait analysis are calculated. Algorithms exploiting angular veloc-
ity signals, were proven to be more repeatable than acceleration-based algorithm

Figure 3.4. SWEET App main frames: (a) login; (b) unit connection; (c)
signal recording; (d) results summary.
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in detecting gait events [121]. Moreover, considering IMUs positioned on the
shanks, algorithms using ‘peak identification’ showed the best performance in
the detection of heel-strike and toe-off [159, 65]. In Table 3.1, the list of temporal
parameters is provided with a description clearly outlining the methods used to
calculate them. Spatial parameters are assessed using a single pendulum model
described in [41], where the distance from the foot to the top vertex of the ro-
tation is modeled as equal to the height of the subject multiplied by a scaling
factor. Equation (3.1) shows how the stride length is calculated:

StrideLength(m) = S ×H × 2(1− cos θ) (3.1)

S represents the scaling factor chosen equal to 0.52 [41], H represents subject
height (m) and θ is the angular displacement in the sagittal plane during the
stride (rad), assessed by integration of the gyroscope signal.

Plantar pressure signals collected by the smart socks are used to perform
sway analysis, as a systematic assessment of the readiness and stability of the
human body to achieve and maintain equilibrium. This analysis starts with the
estimation of the COP, whose displacement during stand task is a meaningful
parameter for a quantitative evaluation of the ability to maintain equilibrium. At
each instant, COP coordinates in the Medio-Lateral (ML) (XCOP ) and Antero-
Posterior (AP) (YCOP ) directions have been calculated by processing raw pressure
data according to the following Equation (3.2),

XCOP =

∑N
i=1 XiPi∑N
i=1 Pi

YCOP =

∑N
i=1 YiPi∑N
i=1 Pi

(3.2)

where N denotes the total number of sensors, and X and Y are the sensor coor-
dinate inside the whole foot shape area and P the pressure value. The resulting
signals express COP displacement along time in the ML and AP directions, with
respect to a reference point located in the middle between the feet. The mono-
dimensional representations of these signals constitute the ML and AP stabilo-
grams, while the combined bidimensional plot is referred to as statokinesigram,
representing the ground projection of the COP during the stand task.
Signals are filtered with a low-pass 4th-order Butterworth digital filter with a
cut-off frequency of 5 Hz [130], and then analysed in time domain to calculate a
set of parameters describing the stability of the subject during the task (Table
3.2) [134, 4, 34].
Stabilometric signals are also analyzed in frequency domain. The MATLAB pe-
riodogram algorithm is used to estimate PSD, modified using the Hamming win-
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Table 3.1. Spatio-temporal gait parameters.

Temporal Measures

Variable Description

Gait Cycle Time (s) Defined as the time between two successive heel strikes
of the same foot.

Stance Time (s) The amount of time a foot is in contact with the ground
within a single gait cycle. It is the time between the heel-
strike and the successive toe-off of the same foot.

Stance Phase (%) Stance time expressed in percentage of the Gait Cycle
Time (GCT).

Swing Time (s) Duration of the swing phase, in which the foot is not
in contact with the ground. It is calculated as the time
between the toe-off and the successive heel strike of the
same foot.

Swing Phase (%) Swing time expressed in percentage of the GCT.
Single Support (%) Part of the GCT in which a single foot is in contact with

the ground. It is the time between the toe-off of the op-
posite foot and the successive heel-strike of the opposite
foot, expressed in percentage of the GCT.

Double Support (%) Part of the GCT in which both feet are in contact with
the ground. It is the time between the heel-strike of a foot
and the successive toe-off of the opposite foot, expressed
in percentage of the GCT.

Cadence (steps/min) Number of steps per minute.

Spatial Measures

Variable Description

Stride Length (m) Distance covered during GCT.
Stride Velocity (m/s) Defined as the ratio between Stride Length and GCT.

dow. Frequency assessment is provided by means of a set of measures describing
the distribution of PSD, such as peak and centroidal frequencies, band powers,
and others. All the parameters assessed are listed in Table 3.2. The description
clarifies the methods used to evaluate both spatial and frequency domain metrics
starting from stabilometric signals and ground projection of the COP trajectory.



3.2. Validation Analysis 53

Table 3.2. Static postural assessment parameters.

Time Domain Measures

Variable Description

Mean COP coordinates (cm) ML and AP mean COP displacements during time.
Mean Distance (cm) Mean distance of COP trajectory from the center

of the trajectory itself.
COP Trajectory Range (cm) Maximum distance between 2 points of COP tra-

jectory in ML and AP directions.

Root Mean Square (RMS)
(cm)

RMS of COP trajectory. It is provided also for
single ML and AP directions.

Angle form AP axis (deg) Mean angle formed by the segments composing
COP trajectory and AP direction.

Sway Path (cm) Total length of COP trajectory, computed as the
sum of distances between successive points of the
trajectory.

Mean Velocity (cm/s) Mean velocity of COP trajectory, computed as the
ratio between sway path length and duration of the
test.

95% Ellipse Area (cm2) Area of 95% confidence ellipse encompassing the
COP trajectory in transverse plane.

95% Ellipse Angle (deg) 95% confidence ellipse inclination with respect to
the ML direction.

Frequency Domain Measures

Variable Description

Peak Frequency (Hz) Peak frequency for ML and AP power spectrum.
Median Frequency (Hz) Frequency below which the 50th percentile of total

power is present.
80% Frequency (Hz) Frequency below which the 80th percentile of total

power is present.
Centroidal Frequency (Hz) Spectral centroid of power spectrum. It indicates

where the center of mass of the spectrum is located.
Band Power (cm2) Power comprised in low [0.1–0.2 Hz], mid [0.2–

0.3 Hz], and high [0.3–1 Hz] frequency bands, ex-
pressed as absolute and percentage values.

3.2 Validation Analysis

The proposed system was validated through a benchmarking study with a
reference system.
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In [10], a first validation analysis was performed by comparing the raw accelero-
metric and plantar pressure signals acquired by the prototype with those recorded
by reference systems. Following the results obtained, a further goal was to val-
idate the performance of the device by exploring the results of gait assessment,
in order to identify any non-conformities in the measurement and/or processing
phases managed by the new prototype. Spatio-temporal gait parameters calcu-
lated by SWEET Sock were compared with those measured by the optoelectronic
stereophotogrammetric system. The comparison has been carried out by means
of statistical methods. This section describes the methods used for data acquisi-
tion and analysis.

3.2.1 Stereophotogrammetric System for Gait Analysis

The reference system chosen for the validation analysis is SMART-DX 700
by BTS Bioengineering, an optoelectronic stereophotogrammetric system used
for movement analysis. Stereophotogrammetry is usually considered a ‘gold stan-
dard’ in gait analysis when used appropriately. The system is made of 6 infrared
digital cameras, with a sensor resolution of 1.5 megapixel, an acquisition fre-
quency from 250 fps (at maximum resolution) to 1000 fps and an accuracy lower
than 0.1 mm. The recognition of body segments during movement is achieved
through the use of twenty-two retro-reflective passive markers (diameter 14 mm),
which are attached to subject’s skin at specific landmarks. Video data are pro-
cessed on a PC workstation running SMART Clinic software, able to store and
compute a set of parameters concerning kinematic (spatio-temporal parameters,
joint angles) and dynamic (forces exchanged).

3.2.2 Experimental Setup

One-hundred-and-eight records were acquired on three HCs: two males (aged
27 and 26) and one female (aged 25). Participants were free of neurological, mus-
cular, and skeletal comorbidities affecting mobility and gait. Each subject wore
the sensorised socks connected to the electronic unit and was equipped with the
markers of the stereophotogrammetric system, in order to perform simultane-
ous recording of the walking tasks with the two systems under test (Figure 3.5).
The markers were attached to subject’s skin according to the protocol described
by Davis et al. [35].
The trials involved free walking tests on a 11 m walkway in the movement analy-
sis laboratory of University Hospital ‘Ruggi D’Aragona’ of Salerno (Italy). This
walking trial is the standard clinical protocol used in the laboratory, and it is also
used in gait analysis for scientific purposes [64, 47]. Each subject was instructed
to perform eight independent trials respectively at preferred, slow and fast self-
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selected walking speed. After that, the use of a metronome was introduced to
force subjects walking at fixed normal, slow and high speed. Metronome rate
was set at 100%, 67%, and 133% of the average cadence previously assessed for
each subject over 5 free walking tests using the accelerometers-based gait analy-
sis system Opal by APDM. Subjects performed four walking trials at each speed
imposed by metronome. The trials were performed at different walking speed in
order to obtain a dataset covering a wider range of values. The sample size would
be better increased including additional participants, however the prototypical
nature of the device, along with problems due to the COVID-19 pandemic, made
it difficult to involve a larger cohort of subjects. Future developments will cer-
tainly include more subjects in order to take into account the gait variability
between subjects.
In order to validate the proposed e–textile wearable system, the gait analysis pa-
rameters obtained from this device have been compared with those obtained by
the reference system. Starting from gyroscope signals measured by SWEET Sock,
spatio-temporal gait parameters were computed by the custom-made MATLAB
algorithms shown in the previous paragraph (Subsection 3.1.4). The correspond-
ing parameters assessed by the reference system were retrieved from the reports
generated by SMART CLINIC software.
The following spatio-temporal parameters were considered for the benchmarking
analysis; GCT (s), Cadence (step/min), Stance Time (s), Swing Time (s), and
Step Length (m).

3.2.3 Statistical Analysis

The agreement between measurements computed by the two systems–SWEET
Sock and SMART-DX 700–was investigated by means of two-tailed paired t-test,
PB regression, and BA analysis. The paired t-test has been performed for all
the parameters selected for the analysis, in its parametric or nonparametric form
(Wilcoxon matched pairs signed-rank test) in according to D’Agostino–Pearson
omnibus normality test result. With the paired t-test, the null hypothesis of
no difference between the two systems in mean values of each spatio-temporal
parameter was tested. A two-tailed test was used and the nominal alpha level
was set to 0.05 [15]. In combination with the t-test, the linear correlation be-
tween each pair of measurements has been assessed, using Pearson’s correlation
coefficient (r). The agreement was further investigated using PB regression and
BA plots (see Subsection 2.2.2), with the aim to find out any proportional or
constant systematic error between the two methods of measurement.
Statistical analyses were performed using R software (ver. 4.0.3).
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Figure 3.5. Subject equipped with both systems: SWEET Sock and reflective
markers.

3.2.4 Results

The analysis of agreement between the two methods of measurement was
firstly tested performing a paired t-test on all the parameters considered for the
analysis. For each parameter, the values deriving from all the trials performed
were considered, with no separation between subjects or walking speeds adopted.
Table 3.3 shows mean and standard deviation values of each analysed parameter
dataset for each system of measure. The results of the two tailed paired t-test,
with a confidence interval of 95%, are reported using a symbol in accordance
with the following convention: ns p-value > 0.05, * p-value < 0.05, ** p-value <
0.01, *** p-value < 0.001, **** p-value < 0.0001. The hypothesis of no difference
between systems was tested, so lower p-values suggest rejecting the accordance
of systems. In the same table Pearson’s r values are reported.
The BA analysis produces the plots shown in Figures 3.6a–3.10a. They provide
a qualitative assessment of the distribution of the differences between methods.
The descriptive numeric values deriving from the analysis are reported in Table
3.4. The bias represents the mean of the differences between the measures com-
puted by the systems, it is provided with the limits of its 95% CI. In the plots,
biases are reported as continue red lines, while the red dashed lines represent the



3.2. Validation Analysis 57

corresponding confidence intervals. The LoA reported in table are also shown
in the graphical representations as black dashed lines. They are assessed as the
2.5 and 97.5 percentiles of differences, as they do not have a symmetric gaussian
distribution.
The last analysis on data was performed using PB regression. In addition to the
previous analyses, this analysis can reveal the presence of a trend between the
measures of the two systems, thus indicating a proportional error in the tested
method according to the slope of the fitting regression line. Figures 3.6b–3.10b
show the scatter plot of the dataset for each parameter, with the PB regression
line in black. The shaded area around the regression line represents its CI, while
the red dashed line corresponds to the reference identity line, to which the re-
gression line should be tend in a scenario of perfect agreement. In the PB plots,
Pearson’s correlation coefficient (r) is also shown because high values of r justify
the choice to perform a linear regression analysis. The quantitative outcomes of
PB analysis are reported in Table 3.5: slope and intercept of the regression line
are listed for each parameter, along with the corresponding 95% CI limits.

Table 3.3. Paired-T test.

Variable SWEET BTS p-value Pearson’s r
(mean±std) (mean±std) Summary 1

GCT (s) 1.1± 0.3 1.1± 0.3 ns 0.992
Cadence (step/min) 109± 22 109± 22 0.013* 0.996
Stance Time (s) 0.6± 0.2 0.7± 0.2 <0.0001**** 0.994
Swing Time (s) 0.52± 0.07 0.45± 0.08 <0.0001**** 0.969
Step Length (m) 0.73± 0.08 0.7± 0.1 <0.0001**** 0.283
1 ns p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

Table 3.4. Bland–Altman analysis.

Variable Bias Limits of Agreement
Value Bias CI CI

GCT 8.70× 10−5 -0.00650 to 0.00633 -0.0582 to 0.0471
Cadence (step/min) −0.353 -0.736 to 0.0300 -3.83 to 3.26
Stance Time (s) −0.0671 -0.0716 to -0.0626 -0.108 to -0.00890
Swing Time (s) 0.0731 0.0695 to 0.0767 0.0365 to 0.0977
Step Length (m) 0.0557 0.0326 to 0.0788 -0.133 to 0.255



58 Chapter 3. Development of Smart Socks for Remote Health Monitoring

Table 3.5. Passing–Bablok regression analysis.

Variable Slope Intercept
Value Slope CI Value Intercept CI

GCT 1.00 0.988 to 1.02 −0.001 55 -0.0179 to 0.0176
Cadence (step/min) 0.989 0.972 to 1.00 0.737 -0.950 to 2.38
Stance Time (s) 1.06 1.03 to 1.08 −0.109 -0.126 to -0.0429
Swing Time (s) 0.904 0.869 to 0.941 0.116 0.0999 to 0.132
Step Length (m) 0.695 0.521 to 0.945 0.249 0.0759 to 0.363

Figure 3.6. Gait Cycle Time: (a) Bland–Altman plot; (b) Passing–Bablok regres-
sion analysis.

Figure 3.7. Cadence: (a) Bland–Altman plot; (b) Passing–Bablok regression
analysis.
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Figure 3.8. Stance Time: (a) Bland–Altman plot; (b) Passing–Bablok regression
analysis.

Figure 3.9. Swing Time: (a) Bland–Altman plot; (b) Passing–Bablok regression
analysis.
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Figure 3.10. Step length: (a) Bland–Altman plot; (b) Passing–Bablok regression
analysis.

3.2.5 Discussion

In the assessment of the mean GCT, significant agreement has been pointed
out by the statistical analysis. The paired t-test leads to a non-significant p-value
(p > 0.05), suggesting to accept the hypothesis of no difference between systems.
The bias value in the BA analysis is null (0.00 from Table 3.4) and the LoA are
very low (in the order of few hundredths of a second). The evidenced error value
is consistent with the literature. The bias is lower than the mean differences
found in the evaluation of the GCT between IMU and gold standard methods in
other works [17, 55, 83]. The Pearson’s correlation coefficient is very high (0.992),
supporting the concept of a linear dependence between the measures, explored by
means of PB analysis. The regression line obtained with this method coincides
with the identity line (slope = 1.00, intercept = 0.00), confirming the significant
agreement between the two methods in assessing GCT.

Concerning the measure of cadence, a deeper discussion is required. The T-
test result suggests to refuse the hypothesis of absence of difference between the
methods, but with low significance (0.05 < p-value < 0.01). The bias pointed out
by BA analysis is very low (−0.35, about 0.3% of the average value of cadence),
with its 95% CI containing the zero value and limited to few units of steps per
minute (−0.74 to 0.03). The bias value obtained is consistent with the results
proposed by Bugané et al. [17] and Hartmann et al. [66], although their methods
were based on the use of just one IMU.PB regression is legitimated by a high
value of Pearson’s r (0.996): its slope is very close to 1 (0.99 with CI of 0.97–
1.00), the intercept is different from 0 (0.74) but its CI contains this value (−0.95
to 2.38). Starting from these results and analysing the BA Plot in Figure 3.7a,
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it can be observed that the SWEET system slightly underestimates the value
of cadence compared to BTS system. Further exploring data, the cause of the
non-perfect agreement was identified in the different range of steps analysed by
the two systems. The reference system SMART-DX 700 by BTS performs gait
analysis on a limited range of steps, contained in the central 3 or 4 strides of
the walking trial, as they are completely included in the field of view of the
cameras. The detected volume cannot be extended because it is limited by the
configuration of the system which considers the limited volume of the laboratory.
Instead, SWEET Sock system elaborates the entire signal coming from the IMUs,
removing only the first and the last steps performed to start and stop walking.
The analysis of the punctual values of cadence assessed in each single step of
the walking trial by SWEET Sock system clarify that in the first and last part
of walking a lower step cadence is adopted. Figure 3.11 shows, for each step of
the walking trial, the average of the differences between the punctual cadence
assessed by SWEET and the mean step cadence suggested by BTS system. It
can be observed that in the first and last part of walking the difference is higher
in absolute value, while in the middle steps it is reduced. It can therefore be said
that a better agreement would probably have been obtained if the two systems
had analysed the same range of steps. This was not performed for two reasons:
firstly, because in SMART-DX 700 the steps to be considered in the analysis
have to be chosen manually, whereas the signal processing of SWEET Sock is
fully automatic, and secondly, because it was chosen not to modify the analysis
methods of the SWEET system, which can provide more accurate results by
taking the entire walking process into account.
For the same purpose, it would have been interesting to consider the raw data
from the stereophotogrammetric system to obtain the point cadence by analysing
the tracks of the heel markers alone. However, it was not possible to access the
raw data for these experimental sessions, but future studies will take this into
consideration.
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Figure 3.11. Mean difference between the punctual cadence assessed by
SWEET and the mean step cadence suggested by BTS system for each step
of the walking trial.

Stance and swing phase durations are complementary parameters, because
they are the two parts composing the GCT. GCT is defined as the time between
two successive initial contacts of the same foot. Stance phase duration is the time
between the initial contact and the successive terminal contact of the same foot,
while swing time goes from the terminal contact to the subsequent initial contact.
The complementarity of these parameters is perfectly reflected in the results of
the statistical analyses. The t-test identified a significant statistical difference
between the systems(p-values < 0.0001), even if a linear correlation exists in both
stance and swing phase durations, as shown by Pearson’s r values, respectively
0.994 and 0.969. The BA plots clearly show that SWEET system underestimates
Stance time compared to BTS system (bias = −0.07), and therefore overestimates
of the same quantity the Swing time (bias = 0.07). Also in this case, the results
are in line with the literature where several authors, using a different number of
IMUs, different experimental settings and different reference systems, have shown
a significant error in the evaluation of the stance and swing phases duration
[55, 39, 83]. The BA plots also highlight heteroscedasticity in Stance measures
with larger variance at higher values (i.e. lower walking speed). This behaviour



3.2. Validation Analysis 63

support the hypothesis that faster movement is more consistent [107, 114]. When
heteroscedasticity is assessed, a log− transformation of the data could be useful
to eliminate a proportional bias. However, in this case the systematic error is
predominant, reducing the need to correct heteroscedasticity. PB results confirm
the presence of a systematic error in the measures: intercepts’ CIs are symmetric
for the two variables and do not contain zero value (stance CIs = −0.13 to −0.09,
swing CIs = 0.10 to 0.13). It also points out a proportional error proven by the
fact that the slopes of the two regression lines are different from 1 (the CIs are
respectively from 1.03 to 1.08 and, symmetrically, from 0.87 to 0.94). Therefore,
the difference between the methods of measures is made of a constant part and
a proportional part which grows when the value of the parameter is increased.
The error is to be probably addressed to the wrong detection of the initial and
terminal contact of the foot with the ground, made by SWEET system through
the analysis of the filtered gyroscope signal in accordance to the rules illustrated
by Doheny et al. in [41]. Although the GCT shows very good agreement, it
does not mean that the initial contacts are well identified in the signal, because
they could be all translated in time of the same quantity, still resulting in good
output values. To understand the error a further analysis is required on the
mutual position of initial and terminal contacts identified on gyroscope signals.
One aspect to be taken into account is that reported by Catalfamo et al., who
pointed out that the detection of gait events is affected by the choice of the filter
cut-off frequency [21].

The last parameter is the step length, which has been selected to investi-
gate the performances of SWEET system in the assessment of spatial measures.
Results of the statistical analysis are not very encouraging. T-test points out a
significant statistical difference between the measures of the systems (p < 0.0001),
that is confirmed by BA analysis. Actually, even if the CI of bias includes the
zero, it is quite wide (−0.13 to 0.25 m) for the precision required in this spatial
metric. Moreover, the reduced value of Pearson’s coefficient shows that no linear
correlation exists between the measures (r = 0.283), so it does not make sense
to perform the PB regression analysis. Actually PB regression line in Figure
3.10b does not fit accurately the points, which are distributed with no detectable
trend. These results allow to affirm that there is not agreement between the
systems in the assessment of the step length. Tunca et al. [162] demonstrated
good agreement with a reference system in the evaluation of the spatial metric
stride length, using a system based on two IMUs placed on the feet. Similarly,
the meta-analysis conducted by Petraglia et al. [127] indicated no statistically
significant difference between IMUs-based systems and gold standard measure-
ments for step length, although higher variance was found in this parameter with
respect to the other temporal metrics.
The cause of the error could be probably found in the processing of the gyroscope
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signal that lead to the assessment of the spatial parameters. The error in the
detection of gait events, demonstrated by the results on the temporal parameters
of stance and swing, consequently leads to an error in the evaluation of the spa-
tial parameter obtained from a direct integration of the angular velocity signal
recorded during a step. Direct integration methods also require the implemen-
tation of countermeasures for drift compensation [23], not applied at this stage
of development. Moreover, the algorithm adopted, proposed in [41], is based on
modeling the movement of the shank as a single pendulum, thus deriving the spa-
tial parameters from the calculation of the angle covered by the foot during the
swing phase and using geometrical consideration. A further analysis is required
to understand if this model is too simplistic to represent leg swing during gait
or if other aspects (device positioning, signal filtering, etc.) cause errors in the
measure of spatial parameters in SWEET Sock system. The first purpose is to
try maintaining a gyroscope-based algorithm for gait assessment, by considering
other more specific models proposed in literature regarding the movement of the
shank during the swing phase. An example is the double segment gait model
involving both shank and thigh proposed by Aminian et al. in [158]. Doing so
the use of other sensor data, such as linear accelerations, can be avoided, while
retaining the advantages of the gyroscope explored in the description of the elec-
tronic unit, and avoiding reconfiguration of the entire system.

A deep work based on the exploration of the scientific literature was per-
formed to find out and analyse other results from gait analysis systems based
on similar measuring principles. Some works exist regarding validation analysis
of wearable systems for gait analysis based on processing of kinematic signals.
These studies address comparative analyses with clinical instruments, such as
instrumented treadmill [170], force platform [125] or pressure sensitive walkway
(GAITRite®) [111, 37, 112, 159, 39, 55, 160, 78, 66, 19, 100, 145, 71]. To the
best of our knowledge, few works present similar experimental setting. In three
scientific researches the stereophotogrammetric system was used as reference sys-
tem: Köse et al. [88] used BTS SmartD (10 cameras), Kluge et al. [83] used
Simi Reality Motion System (8 cameras) and Esser et al. [49] used Qualisys
OMCS. Among these, only the method proposed by Kluge et al. [83] requires
two IMUs on the lower limbs, although the positions is slightly different with
respect to the presented smart device. Results from the analysed works show
a common trend: temporal parameters present a better agreement than spatial
metrics. Among temporal parameters, step time and GCT show the best agree-
ment, while stance and swing phases measurements are moderately correlated
with reference measures. Results presented in this article are in accordance with
this trend, confirming the poor performances of IMU-based systems in assessing
gait spatial metrics. Only in [112] spatial metrics show a good agreement level,
that could be caused by the different placement of IMUs, placed on both feet
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rather than on shanks. Results from the works in [112, 170] demonstrated that
foot placement allow a better measurement of spatial gait parameters. This po-
sitioning was not chosen in this research work because it may worsen the comfort
and wearability of the system for users and preclude its in-shoes use.

Comfort Assessment

In addition to the validation of technical performance, the wearability and
comfort assessment was carried out in order to evaluate the acceptance of the
system by final users and to identify possible areas of improvement in terms of
design. To carry out this conformity assessment, an already validated methodol-
ogy was used, specifically the Comfort Rating Scales (CRSs).
The wearability evaluation of a device is a multidimensional analysis: wearable
devices affect the wearer in different ways. Among the effects to be taken into
consideration, there are those related to comfort. When wearing something, the
level of comfort can be affected by several aspects, such as device size and weight,
how it affects movement, and pain.
The design of the sock has been implemented in order to achieve the greatest
comfort for the user. The integrated pressure sensors are made of textile mate-
rial, therefore are flexible and imperceptible on the skin. The electronic unit has
also been designed to be as comfortable as possible for the user: it is lightweight
and it can be connected to the textile sock without the need to use bands. In
fact, the use of the latter could cause discomfort to the user due to the presence
of a narrow element tied to the limb.
In addition to physical factors, comfort may be affected by psychological re-
sponses such as embarrassment or anxiety. Consequently, Knight and Baber
proposed that comfort should be measured across a number of dimensions and
for such task they developed the CRSs [84].
The CRSs provide a quick and easy-to-use tool to assess the comfort of wearable
devices, which attempt to gain a comprehensive assessment of the comfort sta-
tus of the wearer of any item of technology by measuring comfort across the six
dimensions described in Table 3.6.
In rating perceptions of comfort, the scorer simply marks on the scale his or her
level of agreement, from low (0) to high (20), with the statements made in the
“description” column of Table 3.6. According to Knight and Baber, this range
was considered large enough to elicit a range of responses that could be used for
detailed analysis [84].
The three participants involved in the study were invited to fill in the CRSs to
provide a judgment on their comfort. Table 3.6 shows the scores assigned, for
each field, by the subjects involved in the study.
Although the evaluation was carried out on only three people, it provides a pre-
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liminary measure of the comfort of the prototype device. Knight et al. [85] have
proposed five Wearability Levels (WLs), determined by proportioning the scales
into equal parts (Table 3.7). The mean score of Emotion dimension is in the WL2
suggesting that users show little embarrassment in wearing the system. All the
other dimensions were rated in the WL1 proving a high wearability and com-
fort of the device. However, to better identify the WL of the device and how to
improve it, future analysis will aim to make a significant assessment of comfort,
testing the device on a wider cohort of subjects.
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Table 3.6. Comfort rating scales.

Title Description Subject 1 Subject 2 Subject 3 Mean

Emotion I am worried about
how I look when I wear
this device. I feel tense
or on edge because I
am wearing the device.

7 4 7 6.0

Attachment I can feel the device on
my body. I can feel the
device moving.

3 3 5 3.7

Harm The device is causing
me some harm. The
device is painful to
wear.

0 0 0 0.0

Perceived
change

Wearing the device
makes me feel physi-
cally different. I feel
strange wearing the
device.

5 0 0 1.7

Movement The device affects the
way I move. The de-
vice inhibits or re-
stricts my movement.

5 2 1 2.7

Anxiety I do not feel secure
wearing the device.

0 0 0 0.0

Table 3.7. Wearability Level.

Wearability CRS Score Outcome
Level

WL1 0–4 System is wearable
WL2 5–8 System is wearable, but changes may be necessary, fur-

ther investigation is needed
WL3 9–12 System is wearable, but changes are advised, uncomfort-

able
WL4 13–16 System is not wearable, fatiguing, very uncomfortable
WL5 17–20 System is not wearable, extremely stressful, and poten-

tially harmful





Chapter 4
Development of a Smart
Ankle – Foot Orthosis
4.1 Background

A further device in e-textile technology developed during the research activity
is a sensorised Ankle-Foot Orthosis (AFO). The AFO is an orthopaedic aid used
for the management of patients suffering from drop foot. The drop foot syndrome
is a common problem with varied aetiology, generally caused by total or partial
paralysis of the muscles innervated by the peroneal nerve, the tibialis anterior
muscle and the peroneal group. The disorder is characterised by the lack of
voluntary control of ankle dorsiflexion and subtalar eversion. As a result, the
deambulation of patients is characterised by steppage gait, i.e., during the ground
contact phase, the toes initiate contact, followed by the lateral crest of the foot
and, finally, the heel. ‘Foot-slap’ and toe-dragging are the main complications of
patients with weakness of the dorsiflexor muscles. ‘Foot-slap’ is the uncontrolled
and rapid striking of the foot on the ground that produces the characteristic heel
sound; ‘toe-drag’ is the dragging of the forefoot during walking due to inadequate
elevation from the ground during the swing phase of the gait cycle. Thus, the
gait is asymmetrical, inharmonious and unstable, with high risk of falling and
stumbling.

Treatments for foot drop vary depending on the specific causes. Treatments
such as braces and orthoses [8, 29], functional electrical stimulation [103, 126, 86]
and surgery [175] have been shown to be effective for foot drop. In order to
monitor patients suffering from this syndrome, quantitative feedback acquired
during the use of an AFO could be useful and interesting. For this reason, a
sensorised orthosis has been developed that can detect angular velocity signals of
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the ankle joint, surface electromyographic activity of the agonist and antagonist
muscles of the calf, and plantar pressure signals. These signals can be very
interesting in the monitoring of the performances of patient, as they can be used
to perform a complete postural and gait analysis, enriched with information about
the muscular activation patterns.

The wearable sensor unit allows the bio-signals acquisition when connected
to the analogue front-end located in the electronic unit. This unit also contains a
microcontroller and allows data transmission through an integrated BLE module.
The following sections present the design and development of this novel device.

4.2 Wearable Device

The wearable device is made up of three elements: an orthopaedic insole, an
L-shaped AFO and the e-textile sensing unit. The first two elements are produced
by means of 3D printing technology, and are used as supporting elements on which
the textile sensors are embedded. In the following sections the single elements
constituting the device are described.

4.2.1 Orthopaedic Insole

A typical workflow for the design and 3D printing of insoles was used to realise
the foot orthosis. In particular, the process started with the use of Sensor Med-
ica Freemed baropodometric platform (Sensor Medica srl, Guidonia Montecelio,
Roma), an instrument that allows static and dynamic plantar pressure mapping.
For the intended purpose, both static and dynamic acquisitions were carried out.
In the static trial the subject stands in orthostatic position on the platform, while
in dynamic trials the subject performs several steps over the platform.

The pressure maps obtained from static and dynamic trials were then im-
ported into the easyCAD InsoleTM (Sensor Medica srl, Guidonia Montecelio,
Roma), a 3D CAD modelling software, which allows the creation of the model of
the orthopaedic insole. The software prompts the user to select a template based
on the patient’s foot size, and a plantar orthosis is automatically generated to
harmonically redistribute pressures over the foot plantar arch.

At the end of the design, an STL model describing the upper surface of the
foot orthosis was exported from easyCAD, and a smoothing operation was per-
formed using the MeshMixer software (Autodesk Inc.)
The 3D model of the orthosis was then imported into Simplify3D slicing soft-
ware to prepare the GCode file to be fed into the 3D printer, based on Fused
Deposition Modelling technology. At the end of the printing process, the plantar
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orthosis shown in Figure 4.1 was finally obtained, to be used as support for the
development of the sensorised devices.

Figure 4.1. Orthopedic Insole Prototype.

4.2.2 Ankle-Foot Orthosis

The AFO used as support was produced through the Selective Laser Sintering
(SLS) 3D printing. The supporting element has an L-shape with a rigid sole and
a posterior leaf covering the calf.

The first step in the creation of the AFO orthosis was the import of the STL
file from the 3D scan of the limb of the patient into the Cube software. The
3D model was then post-processed to remove portions not of interest. Within
the main working interface, smoothing operations were performed on the mesh
and the ankle joint was modified to reach the standard position (90 degrees).
Then, the surface of the orthosis, described as a mesh, was created. On the new
surface, the cut lines of the areas to be opened on the orthosis were created. In
addition, the surface was also subjected to the ‘Thickening’ tool to give the brace
the desired thickness.

To enable the brace to be printed correctly, it was necessary to divide the
3D model into two sub-parts, since the 3D printing volume was too small to
contain the entire AFO. The two sub-parts were then exported as two separate
STL files. Both files were imported into the Sinterit Studio software (Sinterit
sp. z o.o., Kraków, Poland) to generate the Sinterit Lisa Pro SLS printer control
gcode. After importing the two STL files, they were positioned within the printing
volume, and the print process was pre-screened and, finally, launched. Once the
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printing process was complete and the material reached a core temperature of
less than 60 degrees Celsius, the compacted block of material is removed from
the 3D printer and placed on the workstation for the mechanical removal of the
non-sintered material.

The two parts generated by the printer are joined to obtain the final orthosis
shown in Figure 4.2.

Figure 4.2. Ankle-Foot Orthosis Prototype.

4.2.3 Wearable Sensing Units

The first wearable sensing unit consists of a felt insole in which three pressure
sensors, in e-textile technology, have been integrated as sensing elements at three
strategic points of the arch of the foot. The number and positioning of the
sensors is based on the similar considerations made for the smart socks. Three
pressure sensors per foot were therefore used: one under the heel, one under
the first metatarsal bone and one under the fifth metatarsal bone. The decision
to integrate the sensors on an insole came from the idea of creating a modular
structure in which the insole can be removed from the orthosis and, if necessary,
be washed.

The sensors were manufactured using EeonTex fabric sheets. The difference
with respect to the above described smart socks is that, in this case, it was
decided to abandon the rectangular configuration of the sensor in favour of a
circular shape with a diameter of 1 cm. This choice allows for a limited and
specific detection area at the identified anatomical points of the plantar arch.
The three pressure sensors were covered with felt patches to prevent degradation
of the sensor in contact with the skin. The sensors were connected to the output
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connectors using conductive tape, with a thickness of 5 mm and a resistance of less
than 0.1Ω per cm. The connectors were realised using metal clips, sewn directly
to the four free edges of the conductive tape and positioned at the top of the
insole, which extends to the back of the heel. Specifically, before being applied to
the insole, the clips were sewn with conductive thread onto a conductive textile
backing plated with real silver that gives it highly conductive properties. The
length of the connections was minimised by studying the shortest path to reduce
noise and interference. Figure 4.3 shows the complete device with its sartorial
details. The textile sensing felt insole was fixed on the supporting orthopaedic
insole, which in turn was placed on the sole of the AFO.

Figure 4.3. AFO wearable sensing unit: (a) circular Eeontex fabric sensor,
in direct contact with the conductive tape and covered with a non-conductive
fabric patch; (b) four conductive metal clips, sewn onto conductive textile
backing, allowing the textile part to be connected to the electronics unit; (c)
textile sensorized insole integrated in printed AFO.

Another textile unit was developed for the acquisition of sEMG signals. To
this end, four circular textile electrodes, with a diameter of 1cm, were integrated
inside an elastic textile band. The band is worn on the calf, just below the knee,
to acquire signals from two muscles of interest: tibialis anterior and gastrocne-
mius lateralis. Since the leg is not a perfect cylinder, the band is designed and
manufactured in a trapezoidal shape, so that the upper part is wider than the
lower part. It is equipped with internal channels to arrange the connections, in
order to avoid their contact with the skin. Figure 4.4 shows the complete device
with its custom-made design.
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Figure 4.4. sEMG textile elastic band: (a) schematic diagram of the band
seen internally (upper part) and externally (lower part); (b) textile electrodes
placed on a rubber shim to promote adhesion to the skin; (c) final version of
the band with integrated sensors.

The textile electrodes were placed on the elastic band according to SENIAM
recommendations (SENIAM), 3 cm apart so that they could be directly connected
to the MyoWare acquisition board. A single reference electrode, with a larger
diameter (1.5cm), was placed on the tibial tuberosity. The electrodes were made
of conductive fabric (www.adafruit.com - product ID: 1167) fixed on a soft thick
backing to force electrode-to-cute contact. Six metal clips for the connection of
two acquisition boards were fixed on the outside part of the band with conductive
thread.

The two separate textile units are both opportunely connected to the central
electronic unit, which allows for the acquisition and transmission of the biomed-
ical signals.

4.3 Electronic Unit

The electronic unit contains all electrical and electronic elements to enable
the acquisition and wireless transmission of signals. The central core contains the
microcontroller and the IMU, moreover two electronic boards for the acquisition
of the sEMG signals were used, directly connected to the textile sensing band.

In particular, the sEMG signals are gathered by MyoWare™ Muscle Sensor
boards (AT-04-001), by SparkFun Electronics® (6333 Dry Creek Parkway, Niwot,
Colorado). This module offers a very high input impedance value (110GΩ) to
overcome the problem of high skin-electrode contact impedance. The MyoWare
board acts by measuring the electrical activity of a muscle. The output signal
ranges 0 − V sV olts, where V s indicates the voltage of the power supply. It

http://www.seniam.org/
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presents two female clips in order to connect to electrodes. In the development of
the wearable device these connectors are used to directly connect the MyoWare
boards to the elastic textile band, thus avoiding the use of further connections.
The boards contain a conditioning circuit for sEMG, so that the output is the
amplified, rectified and integrated signal (sEMG envelope) that can be directly
connected to the microcontroller Analogue-to-Digital Converter (ADC) input.

The IMU FLORA 9-DOF (Adafruit Inc.: New York City, New York, USA)
has been integrated into the electronic core to acquire gyroscopic signals. It
consists of a small electronic board mounting LSM9DS1 module, a system-in-
package featuring a 3D digital linear accelerometer, a 3D digital gyroscope, and
a 3D digital magnetometer.

The STM32WB55 Nucleo board (STMicroelectronics, Geneva, Switzerland)
was used as the control unit for the system, and is placed in the electronic core. It
provides for digitisation of the analog sEMG and pressure signals and is connected
to the inertial unit FLORA via the I2C serial bus. The Nucleus board also allows
data to be sent via the BLE 5.0 protocol.

The functionality of the control unit was implemented using the STM32-
WB55RGV61 microcontroller programmed using the STM32CubeIDE 1.7.0 in-
tegrated development environment. The control unit is programmed to digitise
the analog sEMG and pressure signals and to receive digital data from the IMU.
Data are collected in 20-bytes packets and sent in real time via BLE to the
smartphone using a dedicated smartphone application. Each packet contains the
following bytes: 2 bytes for the packet sequence number, 2 bytes for the time
stamp, 2 bytes for each pressure signal (6bytes), 2 bytes for each sEMG signal
(4bytes) and 2 bytes for each angular velocity signal axis (6bytes).

The MyoWare boards are connected to the textile band and to the central
electronic core, which is plugged on the other textile unit. Figure 4.5 shows the
electronic schematic between the textile unit and the electronic unit.

4.4 Discussion

The realized device is capable of acquiring all the signals for which it was de-
signed. The system is clearly a prototypical solution that needs to be engineered
in order to be actually used. In any case, the aim has been primarily to start
a study process to design a device that can effectively meet the needs of many
pathological subjects, given the widespread prevalence of the drop foot deficit.
Secondly, the aim was to demonstrate the feasibility of wearable solutions based
on e-textile technology in different areas of medicine for different applications.

1https://www.st.com/en/microcontrollers-microprocessors/stm32wb55rg.html
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Figure 4.5. Electronic schematic of the system.

In this sense, it can be affirmed that the produced devices successfully cover
different needs presented by the healthcare market and, with an appropriate en-
gineering phase, can aim to be relevant solutions for remote patient management
and monitoring.



Chapter 5
Performance Validation of a
Commercial Garment for
Remote Patients Monitoring

This chapter presents Sensoria Smart socks, a novel e-textile based portable
system for gait analysis, and analyse its performance in detecting the major
temporal gait metrics. The results provided by the system are validated in com-
parison with those of the IMU–based gait analysis system OPAL Mobility Lab
by APDM (APDM Inc., Portland, OR, USA).

Sensoria is an American leading company in the sector of smart and electronic
garments. The current aim of the Company is to move to the healthcare sector,
exploiting their expertise to develop smart garments for health applications. The
study presented in this Chapter was conducted on request of the Company, with
the aim of supporting the developers team in validating the methods and algo-
rithms associated with the system, before its marketing, in order to provide the
user robust gait analysis results.

This experimentation is perfectly in line with the focus of this thesis work
because it allowed the use of a wearable, industrially manufactured, compact and
miniaturised e-textile device, fully integrated in a remote telemonitoring chain.
The focus on the market of textile devices for health, which is currently in an
embryonic phase but with ample growth prospects, is crucial in order follow, and
hopefully anticipate, technological progresses, while maintaining a specialised
profile in the sector.
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5.1 Sensoria Smart Socks

Sensoria Smart Socks are wearable sensing devices, produced by Sensoria
Health Inc. (Redmond, WA, USA) (https://www.sensoriahealth.com/), that
enable the calculation of spatio-temporal gait analysis metrics exploiting the two
typologies of embedded sensors: IMU worn at ankle height and textile pressure
sensors placed under the foot plantar arch. The wearable device is integrated into
a complete system for remote health monitoring, including also a dedicated mobile
application and a web service for data storage, as illustrated in the schematic
diagram in Figure 5.1.

Figure 5.1. Sensoria system architecture: 1. Smart socks; 2. mobile appli-
cation; 3. web service.

The wearable textile unit allows for signals acquisition when connected to the
electronic unit. The electronic core can transfer data to any mobile device and to
a cloud-based Health Insurance Portability and Account-ability Act (HIPAA)–
compliant storage system. This is a reserved area, accessible after authentication.
The user can download raw and filtered signals and the parameters obtained from
the digital processing. In the following sections, the functional modules of the
system are presented.

5.1.1 Wearable Device

Sensoria socks are equipped with 3 textile sensors positioned at 3 specific
points of the plantar arch: first and fifth metatarsal bones and calcaneus (heel)
(Figure 5.2c). These sensors are connected to a docking socket, on the lateral
part of the sock, by means of conductive traces that follow a zig-zag pattern to
increase elasticity.

At the lateral superior end of the sock, there is the socket where the Sensoria
electronic Core is connected, which integrates an IMU and a microcontroller for
transmitting the acquired data via Bluetooth (Figure 5.2b).

https://www.sensoriahealth.com/
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Figure 5.2. Sensoria Smart socks: a. Complete Device; b. Electronic Senso-
ria Core; c. Wearable E-textile Units.

5.1.2 Mobile Application

Sensoria Workbench is an application for mobile devices requiring the An-
droid 8.0 operating system. The application is a tool for connecting and acquiring
raw data from Sensoria devices (powered by Sensoria Core). Login credentials
are required when starting the application. Once logged in, a page is displayed
with the Sensoria Gears available for the account. A Sensoria Gear is a particular
Sensoria device (e.g. Sensoria Socks, Sensoria Mat, etc.) provided by Sensoria
that can be used to collect and stream data to Sensoria Workbench App. To
proceed you must select the device you want to use (Figure 5.4a). Once you have
selected the desired gear, you must connect the cores (Figure 5.4b). For all Gears
except “Lab”, the number of Cores to be connected is fixed and the application
will proceed automatically. To connect a Core, simply click on it in the list of
available devices found nearby or bring your smartphone close to it.

On the ‘Footwear Pair’ screen, you can read some useful information about
the Core: raw and/or processed data on acceleration, angular velocity and ori-
entation (Figure 5.4d). The bar at the top also specifies the position of the Core
(right/left in the specific case of sensorised socks).

You can access the settings for the specific Core by clicking on the gear icon
and in this section you can edit all the sampling parameters. The first page
contains the general app settings and applies to all Cores (Figure 5.4e). The
data logging settings allow you to change the type of data that is logged and sent
to the Cloud. It is also possible to send events that occur during data recording
(e.g. a step taken) to the Cloud. The second page contains the settings specific
to the Core currently in use (Figure 5.4f). It is possible to make the desired
changes but also to restore the default settings. Restoring the Core settings will
only restore the settings for that specific Core and not for other Cores or general
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settings.
On the main ‘Footwear Pair’ page, a ‘Record’ button allows for starting the

acquisition. The same button stops the recording when required (Figure 5.4g).
Once the test session has been recorded, you can upload it to the dedicated Cloud
portal and then download it (Figure 5.4h). The portal can be accessed with the
credentials used to access the mobile application (Figure 5.3a). Once logged
in, click on the “Sessions” section on the main page and click on the “.csv” file
generated for the specific session (Figure 5.3c). Six files are generated for each
acquisition session: two files, one for each core, containing raw data from IMU
and pressure sensors; two files, one for each core, containing the filtered data;
one file with aggregated results about COP and one file containing the results
of gait analysis. The latter is the one considered in this analysis, as it contains
the gait parameters calculated after the experimental walking trials. Figure 5.4
shows the main structures of the application.

5.2 Methods

5.2.1 Mobility Lab System

The performances of Sensoria Smart Socks in evaluating gait analysis tem-
poral metrics were validated through a benchmarking analysis with the IMU–
based system for clinical gait analysis Mobility Lab. The Mobility Lab system
by APDM consists of: a set of wireless, body-worn IMUs, called Opal™ sensors,
measuring 43.7 x 39.7 x 13.7 mm (LxWxH), each with a docking station; an
Access Point for wireless data transmission (with a sampling rate of 128Hz) and
synchronisation of the independent sensors; Mobility Lab software to manage the
acquisitions and processing of the recorded data. IMU-based systems are nowa-
days widely used for body movement measurements as they offer accuracy along
with ease of use [43, 51, 32, 10]. Their use is both clinically and scientifically rel-
evant, in various fields such as orthopaedics [61] or ergonomics [42, 43], but it is
also widely used to assess the pathological impact of neurological diseases [48, 27].
The accuracy of IMUs in measuring spatio-temporal gait parameters has been
demonstrated by comparing the performance of these systems with gold standard
3D motion capture [9, 136, 162]. The system used in this study was also validated
with other types of systems, such as a pressure sensor walkway, demonstrating
good accuracy in both temporal and spatial gait metrics [145, 112].

The WALK test protocol was used in this study, one of the plugins offered
by APDM Mobility Lab, which required the use of three IMUs: one on the low
back (just below L5 level) and two on the dorsal surface of the feet.
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Figure 5.3. Sensoria Portal main frames: (a) login page; (b) account infor-
mation page; (c) sessions page.
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Figure 5.4. Sensoria App main frames: (a) device selection; (b) cores con-
nection; (c) opening screen; (d) raw data screen; (e) general app settings; (f)
core specific settings; (g) stop recording; (h) file uploading.

5.2.2 Experimental Procedure

Twelve healthy subjects (9 females, 3 males) were enrolled in this study. Each
subject wore the sensing Sensoria Smart socks and three OPAL Inertial Measure-
ment Units (two on the feet and one in lumbar position), in order to perform
simultaneous recording of the walking. Figure 5.5 shows a subject wearing the
Opals and Sensoria socks simultaneously while performing the walking trial. The
trial consisted of walking 10 metres, turn around a pivot and walk back to the
starting point at preferred speed. Five walking trials for each subject were used
for the benchmarking analysis. The focus was on the following set of temporal
parameters, which have clinical relevance in the gait analysis:
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• GCT (s): the duration of a full gait cycle, measured from the foot initial
contact to the next initial contact of the same foot;

• Stance (%GCT): the percentage of the GCT in which the foot is on the
ground;

• Cadence (steps/min): the number of steps per minute.

The study was conducted at the Sensoria Laboratory, in Naples.
The agreement between measurements computed by the two systems–Sensoria

Sock and Opal system–was investigated by means of PB regression and BA anal-
ysis, with the aim to find out any proportional or constant systematic error
between the two methods of measurement. An in-depth description of these
statistical analyses is provided in the section 2.2.2. Statistical analyses were per-
formed using R version 4.0.3 (R Foundation, Vienna, Austria).

Figure 5.5. Subject equipped with both systems: Sensoria Smart socks and
Opals sensors.

5.3 Results

The plots shown in Figures 5.6a–5.7a–5.8–5.9a represent the BA analysis
results. Table 5.1 reports the quantitative results deriving from the analysis.
The bias represents the mean of the differences between the measures computed
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by the systems, it is provided with the 95% CI. The red lines in the BA plots
represent bias values, while the corresponding CIs is reported in red dashed lines.
The LoA reported in Table 5.1 are also shown in the graphical representations
as black dashed lines. The LoA are assessed as the bias ±1.96 times standard
deviation of the differences [7, 16], as they have a symmetric gaussian distribution.

The PB regression can reveal the presence of a trend between the measures
of the two systems, thus indicating a proportional error in the tested method
according to the slope of the fitting regression line. PB analysis is preceded by
the evaluation of Pearson’s correlation coefficient: if this parameter is very far
from pm1 the correlation between measures is very weak and the PB regression
does not make sense. This situation is registered for the stance phase parameter,
which presents Pearson’s coefficients equal to 0.0824 and 0.591 for left and right
foot respectively. For this parameter the PB regression was not performed.

Figures 5.6b– 5.7b–5.9b show the scatter plot of the dataset for each parame-
ter, with the PB regression line in black. The shaded area around the regression
line represents its CI, while the red dashed line corresponds to the reference
identity line. In the PB plots, Pearson’s correlation coefficient (r) is also shown.
The quantitative outcomes of PB analysis are reported in Table 5.2: slope and
intercept of the regression line are listed for each parameter, along with the cor-
responding 95% CI limits.

Table 5.1. Results of Bland–Altman analysis.

Gait Cycle Time Stance Phase Cadence
Left Right Left Right

Bias 0.00930 0.000251 -8.60 -8.79 -0.530
Lower Bound Bias CI -0.00140 -0.00919 -9.54 -9.51 -1.22
Upper Bound Bias CI 0.0201 0.00969 -7.67 -8.06 0.160
Lower Bound LoA -0.0583 -0.0591 -14.5 -13.4 -4.87
Upper Bound LoA 0.0770 0.0596 -2.71 -4.22 3.81
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Table 5.2. Results of Passing–Bablok regression analysis.

GCT Stance Phase Cadence
Left Right Left Right

Pearson’s r 0.967 0.973 0.0824 0.591 0.974
Slope 1.00 0.966 - - 0.964
Lower Bound Slope CI 0.923 0.886 - - 0.887
Upper Bound Slope CI 1.11 1.04 - - 1.01
Intercept 0.00217 0.0423 - - 3.34
Lower Bound Intercept CI -0.121 -0.0401 - - -1.49
Upper Bound Intercept CI 0.101 0.135 - - 10.8

Figure 5.6. Gait Cycle Time Left: (a) Bland–Altman plot; (b) Passing–
Bablok regression analysis.
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Figure 5.7. Gait Cycle Time Right: (a) Bland–Altman plot; (b) Passing–
Bablok regression analysis.

Figure 5.8. Stance Phase: (a) Bland–Altman plot for left limb; (b) Bland–
Altman plot for right limb.
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Figure 5.9. Cadence: (a) Bland–Altman plot; (b) Passing–Bablok regression
analysis.

5.4 Discussion and Conclusion

In this preliminary study the performances of the wearable Sensoria Smart
socks in evaluating the major temporal gait metrics were investigated. Re-
sults underline a general agreement in measuring GCT on both feet (left foot
bias = 0.00935s, right foot bias = 0.000251s) and mean Cadence (bias = -
0.530steps/min). The CIs of biases include the zero value for these metrics,
indicating that the differences randomly occur and are not systematic. The
Pearson’s correlation coefficients are very high (0.967 for GCT Left, 0.973 for
GCT Right and 0.974 for mean Cadence), supporting the concept of a linear
dependence between the measures, explored by means of PB analysis. The PB
regression lines are very close to the identity line with slope’s CIs and intercept’s
CIs respectively containing 1 and 0 values. These preliminary results point out
a relevant agreement between the two systems in assessing gait cycle time and
cadence.

The BA plots for Stance Phase metric, assessed for the two limbs, show sig-
nificant differences between the measures provided by the two systems: Sensoria
Smart socks underestimate the foot stance phase with respect to the reference
system OPAL Mobility Lab. The bias value for left limb is -8.60% and its CI
does not include zero. The bias value for right limb is -8.79% and its CI does
not include zero. The Pearson’s correlation coefficients are very low (left foot
r = 0.0824, right foot r = 0.591) underlining the absence of linear relationship
between measures. Following these results, the PB analysis on the Stance Phase
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parameter was not performed.
There are not many studies in the literature concerning the study of the

performance of Sensoria Smart Socks devices. Yeung et al. [176] proposed a
validation of the system against the GAITRite for motion analysis. In this study,
they found higher differences in Cadence measurement than in our analysis. It is
difficult to compare the results as the authors used an earlier version of the device,
based on a different positioning of the cores and therefore different processing
algorithms. Furthermore, they did not analyse other more specific temporal
parameters, such as Gait Cycle Time or Stance and Swing phases.

The agreement in GCT values and the simultaneous disagreement of stance
phase demonstrate discrepancies between the two systems in the detection of
intermediate gait events (initial and terminal contact). In conclusion, Smart
socks performance in the detection of GCT and cadence are satisfactory, however
improvements are needed in order to assess more specific gait metrics. In future
studies, the aim is to test the socks on a larger population and in the assessment
of other temporal and spatial gait metrics.



Chapter 6
Conclusions

In this thesis work, the realisation and validation of different remote clinical
monitoring devices using e-textile technology was presented.

The design and development of wearable systems to detect and quantify phys-
ical signals generated by the human body offers an opportunity for the diagnosis,
treatment and monitoring of different pathologies. This field of research has been
the subject of interest in recent decades, as shown by the increasing research and
development efforts in this area. The analysis of electrophysiological signals (such
as ECG, EMG, etc.) represents an important tool for health monitoring. How-
ever, the technologies used to detect such signals are based on the use of electrodes
attached to the body by means of adhesive tape, mechanical clamps or straps. In
order to provide innovative tools for sensing and monitoring electrophysiological
activity and physiological parameters, the interest and study of wearable sensors
with characteristics of light weight, high flexibility, biocompatibility and extensi-
bility has arisen. The rapid development of new sensing materials, manufactur-
ing processes and electrical sensing techniques has contributed to considerable
progress in the realisation of wearable sensors. However, for actual applications
of wearable sensors in human activity monitoring and personal health care, some
challenges remain. These include, for instance, the need to design and customise
sensors and electrodes to detect physiological signals at different locations on the
human body, offering acceptable sensitivity and signal quality for the required
clinical application.

These aspects represent challenges for the development of new devices, tak-
ing advantage of the rapid development of technology. The involvement of large
companies, such as Apple or Google, has encouraged the focus of research ac-
tivities in this field with the goal of developing and deploying wearable products
ready for various applications. Healthcare remains one of the most interesting
markets; the benefits provided by wearable technologies can potentially establish
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significant cost reductions for healthcare systems. However, to date, wearable
technologies that use the full potential of textile electronics are not yet available
in healthcare.
Based on these considerations, the purpose of this thesis was to propose and
evaluate the performance of wearable devices in e-textile technology, applied to
the biomedical field, for detecting different physiological signals.

The first focus provided is about a sensing shirt for the measurement and
analysis of ECG, EMG and acceleration signals, based on textile sensors. The
innovative features of the system rely in the multi-parametric approach in health
monitoring and in the wide set of tools offered for digital signal processing. In
the development of the sensing unit, sensors, electrodes, and bus structures are
all integrated in the textile garment, making it possible to perform normal daily
activities while the clinical status is monitored by a specialist, without any dis-
comfort. The system includes a custom-based app for real time visualization of
the acquired signals and a software desktop for off-line plotting and digital sig-
nal processing, in order to show the feasibility of telemedicine system for remote
monitoring.
The validation analysis regarding ECG measurement and digital processing have
led to encouraging results, indicating that reliable measures can be obtained us-
ing the prototypical wearable device. The research study also pointed out one
of the limitation of the textile electrodes: the adherence with the skin must be
increased to reduce motion artifacts arousing in the signal.

The second focus provided is about sensing socks for the measurement and
analysis of plantar pressure and acceleration signals of the lower limbs, based on
textile sensors. The system presents the same telemedicine chain as the previous
application but it provides posturographic assessment and gait analysis.
The sensing unit is a textile sock in which textile sensors and connections are
integrated, allowing the use during daily activities, without any discomfort.
The validation analysis against an optoelectronic stereophotogrammetric system
for gait analysis, shows that the agreement is not confirmed for all the spatio-
temporal gait parameters analyzed. However, based on the findings, the novel
system offers reliable measures of gait cycle time and cadence while some issues
were found in the validation of the other temporal and spatial parameters.
Comfort of this device was also evaluated, using the CRS scale, as this aspect
appears to be non-negligible in the design and implementation of a wearable
device for use in the outdoor environment.

A further achievement concerns the embedding of textile sensors in an AFO
for posturographic assessment, gait analysis, and muscle activity detection.
This application shows that the concepts previously discussed can be used to
create customized systems which can be applied to different clinical settings.

Finally, in order to analyze the textile device market, the performance of
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Sensoria smart socks was observed and validated. Again, the results show a less
than perfect agreement with reference systems, underscoring the need for further
development to obtain more reliable systems for clinical evaluations.
The proposed devices should not only be considered for use on patients but can
also be used in other areas of medicine. A valid field of interest is occupational
ergonomics, related to the prevention of work–related musculoskeletal disorders
(WRMSDs) in workers. The use of comfortable wearable devices during working
hours could help monitor postural and dynamic variables in activities most asso-
ciated with exposure to biomechanical overload (i.e., frequent material handling,
pushing and pulling, awkward postures, prolonged standing, and significant side-
ways twisting).

The advantages of wearability and portability, combined in a minimally in-
vasive device, together with the future opportunity of integration into Internet
of Things (IoT) networks open new perspectives to increase the effectiveness of
prevention and safety strategies in healthcare.
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