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Introduction

Quantum Mechanics was born to describe phenomena happening at very small length scale, which
Classical Physics was not able to predict, such as the behaviour of electrons in the atoms and the
consequent atomic spectra observed. However, from the early days of its development it was clear
to its founding fathers that in the energy (or length) regimes where Classical Physics successfully
predicted reality, Quantum Mechanics should have produced predictions in accordance to those of
Classical Physics. This belief is testified, for instance, by the following words of N. Bohr :

[...] it seems possible to throw some light on the outstanding difficulties of the quantum
theory by trying to trace the analogy between the quantum theory and the classical theory
of radiation as close as possible. In order to obtain the necessary connection [...] to the
ordinary theory of radiation in the limit of small vibrations, we must claim that a relation,
as that just proved for frequencies, will, in the limit of large n, hold also for the intensities
of the different lines of the spectrum.

contained in the treatise [Boh18] where he posed the basis of Quantum Mechanics. With this idea in
mind, thousands of scientists along the last century were motivated in studying the relation between
Classical and Quantum Physics and, in particular, how to make mathematically precise Bohr’s claim.
This produced thousands of contributions, going from the so-called WKB approach, named after G.
Wentzel, H. A. Kramers and L. Brillouin [Wen26,Kra26,Bri26], to the Moyal bracket approach
that goes under the names of J. E. Moyal and H. J. Groenewold [MB49,Gro46], passing through the
coherent states approach developed by R. J. Glauber and E. C. G. Sudarshan [Gla63,Sud63]
and arriving to the more modern approaches in terms of Wigner measures [HMR87, FLP12].
Nonetheless, we still cannot claim that we have a mathematically rigorous proof of Bohr’s claim and
this issue has involved (and keeps involving) some of the most brilliant minds of the last century.
However, going back again to the founding fathers of Quantum Mechanics, a first milestone in this
direction was already put by P. A. M. Dirac who, in a paper of 1925 [Dir25] wrote:

We will now consider to what the expression xy-yx corresponds on the classical theory.
[...] the difference of the Heisenberg product of two quantum quantities is equal to ih

2π times
their Poisson bracket expression. In simbols:

ih

2π (xy − yx) = {x, y } .
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These words may be interpreted in the following way. Thanks to W. K. Heisenberg’s contributions it
was already more or less clear that a fundamental mathematical structure appearing in Quantum
Mechanics is that of Lie algebra. Indeed, nowadays we know that physical observable quantities
in Quantum Mechanics can be modelled as elements of the Lie algebra of linear operators over a
separable complex Hilbert space and, by looking at Heisenberg’s equation, that the dynamical
content of the theory is also encoded into this structure. On the other hand, it was also clear that
within Classical Mechanics the fundamental structure on the space of (classical) observables and in
terms of which the dynamics is described is that of a Poisson algebra. Thus, what Dirac was claiming
is that there should be some (hopefully mathematically rigorous) limiting procedure relating the
"Quantum" Lie algebra structure to the "Classical" Poisson structure. This is what is often called
Correspondence Principle or Analogy Principle and is what Dirac himself in [Dir25] referred
to as Quantum Condition. The way Dirac stated the correspondence principle in 1925 is not really
different to how it is formulated nowadays in most Quantum Mechanics textbooks. Indeed, even with
the development of Quantum Field Theory as the theory that best describes fundamental Physics,
namely, the theory of fundamental interactions, the correspondence principle stated by Dirac kept
being the guiding principle in the relation between Quantum and Classical Field Theories. However,
within field theories an other, fundamental, ingredient comes into play: Special Relativity. Indeed,
it is a well established fact that quantum field theories describing fundamental interactions should
exhibit Poincaré invariance as one of the fundamental symmetries of the theory. With this in mind,
and recalling the Bohr-Dirac formulation of the correspondence principle, it is clear that in classical
field theories the fundamental structure in terms of which the space of observables and the dynamics
must be modelled must be that of a Poisson bracket being invariant with respect to the Poincarè
group (covariant Poisson bracket, for short). The first contribution in this direction was given by R.
E. Peierls in his seminal paper [Pei52] of 1952 where he introduced an algorithmic way to produce
covariant Poisson brackets within classical field theories in terms of the causal Green’s function of
the linearized equations of the motion. However, as testified by the following B. DeWitt’s words
appearing in the introduction of [DeW03]:

There exists an anomaly today in the pedagogy of physics. When expounding the fun-
damentals of quantum field theory physicists almost universally fail to apply the lessons
that relativity theory taught them early in the twentieth century. Although they usually
carry out their calculations in a covariant way, in deriving their calculational rules they
seem unable to wean themselves from canonical methods and Hamiltonians, which are
holdovers from the nineteenth century and are tied to the cumbersome (3 + 1)-dimensional
baggage of conjugate momenta, bigger-than-physical Hilbert spaces, and constraints. There
seems to be a feeling that only canonical methods are safe; only they guarantee unitarity.
This is a pity because such a belief is wrong, and it makes the foundations of field theory
unnecessarily cluttered. One of the unfortunate results of this belief is that physicists,
over the years, have almost totally neglected the beautiful covariant replacement for the
canonical Poisson bracket that Peierls invented in 1952.
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Peierls’ construction went largely unnoticed or neglected, with only a few exceptions. It was DeWitt
himself who carried on Peierls’ approach, applying it to the gravitational field (see [DeW60]) and
adopting Peierl’s bracket in [DeW65,DeW03] as the fundamental structure to construct a coherent
covariant description of classical field theories.
Although providing a breakthrough in the formulation of field theories from a relativistic point of view,
the above mentioned contributions lack a deep analysis of the very geometrical structures involved in
the construction of the covariant brackets.
Indeed, a mathematical framework that fits the geometrical description of covariant field theories
is the multi-symplectic formalism, which started to be developed few years later, with the seminal
contributions given by [Kij73, KS76, TK79, GPR69, GPR71]. These papers were conceived as a
generalisation to field theories of the symplectic geometry approach so successful in geometrically
describing Classical Mechanics. In the successive decades several contributions to the development of
multi-symplectic geometry appeared. Among them, the contributions [KKS10,KKS12,Kru97] (and
references therein) focusing on the geometrical formulation of Lagrangian variational principles and
on the generalizations of the definition of the Poincaré-Cartan form within higher order field theories
should be mentioned as well as [FF03] (and references therein) which aims to use multi-symplectic
geometry to geometrically formulate General Relativity as a field theory. Other relevant contributions
to the development of multi-symplectic geometry are in the following, far from exhaustive, list [GS73,
Got91a,Got91b,GMS97,CCI91, IS17,BSF88,EEMLRR00,EEMLRR96,RR09,BMMRL21,MBV21].
After the development of multi-symplectic geometry, the construction of a covariant Poisson bracket
for field theories has received a renewed interest, although under a slightly different perspective, that
of studying the very differential geometrical structures involved in the construction of the brackets
introduced in the literature cited above (see [MMMT86,FR05,FS15,Kha14,ACD+17,ACDI17,CDI+20c,
CDI+20b,Gie21]).
The aim of this manuscript is that of offering a unified account of the description of covariant
brackets covering all field theories describing fundamental interactions, i.e, all (possibly non-Abelian)
gauge theories as well as General Relativity, providing a consistent analysis of the geometric and
global-analytic structures involved in the construction of such a bracket. Our approach originates
from an observation by J. M. Souriau contained in his book [Sou97], which provides a very elegant
way of preserving the covariance under the Poincaré group at each step in describing a dynamical
system. The idea was that of abandoning the classical concept of phase space which do not possesses
the required properties of covariance:

Analytical mechanics is not an outdated theory, but it appears that the categories
which one classically attributes to it such as configuration space, phase space, Lagrangian
formalism, Hamiltonian formalism, are, simply because they do not have the required
covariance; in other words, because these categories are in contradiction with Galilean
relativity. A fortiori, they are inadequate for the formulation of relativistic mechanics in
the sense of Einstein.
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and referring to the space of solutions of the equations of the motion as the carrier space on which
one should settle the geometrical description of the dynamical system under investigation. Indeed,
if the theory under investigation is covariant with respect to the Poincaré group, then it preserves
the space of solutions, in the sense that elements of the Poincaré group map solutions into solutions.
Thus, the idea underlying this manuscript is that of having in mind the Bohr-Dirac correspondence
principle within the context of field theories and adopting Souriau’s point of view to construct the
covariant Poisson bracket. This means that we will try to exhibit a Poisson bracket structure directly
defined on the space of solutions of the equations of the motion (solution space, for short) of field
theories. It is interesting to recall that a closed form on the solution space were already introduced
in [Zuc87] and, within the examples given by Yang-Mills theories, General Relativity and String
Theory in [CW86] and [Crn88], at least at a formal level from the point of view of differential geometry.
Such a closed form turned out to be pre-symplectic within gauge theories, its kernel being related to
the gauge invariance of the equations, and the authors do not address the problem of constructing an
associated Poisson bracket. We will proceed such a step further. An analysis of this problem has
been performed in [FR05] even if restricted only to non-gauge theories and in [Kha14] (within the
variational bi-complex approach) with the purpose of constructing a Poisson structure on the quotient
of the solution space of the equations modulo gauge symmetries, while a Lie bracket on a space of
gauge invariant functions is described in [Vit09] within the so-called secondary calculus approach.
With respect to these papers we adopt a slightly different point of view, namely we will provide a
bracket given in terms of a suitable Poisson bivector which is globally defined on the solution space
(prior to quotienting it modulo gauge symmetries), and this will allow us to highlight the geometrical
necessity of introducing ghost fields (via a trick related to the coisotropic embedding theorem) within
those gauge theories for which gauge fixing can not be global in the space of fields, i.e. for theories
presenting the so called Gribov’s ambiguities (note that, for instance, all non-Abelian gauge theories
fall into this case).
Another step further we perform with respect to the existing literature is that we avoid the usual
approach of dealing with the space of smooth fields as a formal differential manifold on which a formal
differential calculus à la Cartan is defined and we deal, in all the examples we analyse, with well
defined Banach or Hilbert manifolds on which all the geometrical objects and the differential calculus
are rigorously defined.

The basic idea underlying the construction of the Poisson bracket we will perform in this manuscript
is that we will try to construct a bijection

Ψ : EL Σ → EL . (1)

between the solution space, that we will denote by EL for reasons that will be clear in the sequel,
and the space of Cauchy data EL Σ1.

1This notation is due to the fact that along the manuscript we will denote by Σ the hypersurface of the space-time
on which the field theory is settled, on which we will take Cauchy data for the equations of the motion.
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On the other hand, we will show that within the multi-symplectic formulation of field theories a
canonical 2-form on the solution space naturally emerges from the variational principle. Moreover, we
will show that such a 2-form can be written as

Ω = Ψ−1⋆Ω̃ , (2)

where Ω̃ is a suitable 2-form on EL Σ. Depending on the properties of EL Σ and Ω̃ we discuss cases
(in increasing order of difficulty) in which these structures are used to define a Poisson bracket on
EL :

• For point particle mechanical systems it turns out that EL Σ is a finite-dimensional manifold
and that Ω̃ is a symplectic form. Therefore, since Ψ−1 is a diffeomorphism, the form Ψ−1⋆Ω̃
is symplectic as well and corresponds to a Poisson bracket. Note that being the spaces
diffeomorphic, it is equivalent working on (EL , Ω) or on (EL Σ, Ω̃).

• Within field theories, one has that EL Σ is infinite-dimensional and Ω̃ is proved to be the
structure emerging from the pre-symplectic constraint algorithm developed when dealing with
pre-symplectic Hamiltonian systems. When the theory under investigation does not exhibit
gauge symmetries, one has that Ω̃ is symplectic. It then follows that Ψ−1⋆Ω̃ is symplectic and
gives rise to a Poisson bracket. Note that, again, it is equivalent working on (EL , Ω) or on
(EL Σ, Ω̃).

• The last case we analyse is that of gauge theories for which the pre-symplectic constraint
algorithm ends up with a degenerate 2-form Ω̃. We will define a Poisson bracket by using
such a pre-symplectic structure and by using a regularization technique related with the so-
called coisotropic embedding theorem that allows to define a Poisson bracket on a canonical
enlargement of EL Σ. In particular we will distinguish two sub-cases. The first one, exemplified
by Abelian gauge theories, where the Poisson bracket constructed on such enlargement can
be "projected" to a Poisson bracket on EL Σ. The second one, exemplified by non-Abelian
gauge theories, in which such a projection is impossible and, thus, one is forced to work on the
enlargement of EL Σ obtained out of the coisotropic embedding theorem in order to have a well
defined Poisson bracket. Here, we will note that the additional degrees of freedom related to
the enlargement procedure can be interpreted in terms of the well known concept of ghost
fields which is known to be necessary to quantize non-Abelian gauge theories within the BRST
approach [HT94].

The manuscript is organized as follows. Chapter 1 is a collection of mathematical preliminaries useful
for the reading. In Chapter 2 we describe the multi-symplectic formulation of classical field theories
giving a geometrical definition of the solution space coming from an (geometrically) intrinsic definition
of the variational principle. In this chapter, as well as in the subsequent, we will consider always in
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parallel both the Lagrangian and the Hamiltonian formulation within particle mechanics as well as in
field theories.
Chap. 3 is the core of the manuscript. In Sec. 3.1 we will see how from the intrinsic variational
formulation mentioned above, a canonical 2-form emerges on the solution space. In Sec. 3.2 we will
see how to use such a canonical structure in formulating the dynamical system under investigation
as a pre-symplectic Hamiltonian system. It will result that this approach allows to algorithmically
construct the space of Cauhcy data for our system that turns out to be equipped with a canonical
2-form as well. Finally, in Sec. 3.3 we will construct the Poisson bracket on the solution space of the
theory by the aid of the canonical structure on the space of Cauchy data just mentioned.

Part of the material of the present manuscript appears in the following list of contribution of the
author together with some co-authors [CDI+20c,CDI+20b,CDI+20a,Sch21,CDI+22,CDI+a,CDI+b].
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Chapter 1

Preliminaries

As it is clear from the introduction, the research project from which this manuscript originates is a
very interdisciplinary one. Even if the main focus is on the study of geometric structures, it is evident
that Differential Geometry is not the only branch of Mathematics involved. On the one hand, since a
great part of the dissertation will take place on infinite-dimensional spaces, Functional Analysis will
play a crucial role along the whole manuscript. On the other hand, since geometric structures we are
interested in comes from Physical systems, Group Theory is everywhere along the discussion as well
as many results from Algebra, in general, will be used here and there.

For these reasons, the program of writing a "Mathematical preliminaries" chapter turns into a very
hard issue and the idea of collecting all the results needed in order to make the manuscript readable
from a transversally wide audience is an hopeless one. Indeed, we abandon from the very beginning
the presumption of writing a comprehensive account on all the Mathematical Methods needed to
safely start the reading of this manuscript. We assume the average reader to be quite familiar with
the fundamentals of Differential Geometry, Lie Group theory, Mathematical Analysis and Theoretical
Physics and we intend the present chapter just as a collection of results that we consider either
not standard or of crucial importance because used extensively along the text. Moreover, we take
the existence of this chapter also as an opportunity to fix many notations and conventions used
throughout the manuscript.

In particular, we will devote Sec. 1.1 to recall the differential calculus on, possibly infinite-
dimensional, manifolds restricting ourselves to the Banach setting. Sec. 1.2 and 1.3 deal with the
notions of symplectic and pre-symplectic manifold, on the issue of modelling a dynamical system
as a (pre-symplectic) Hamiltonian system and how this formulation is useful in dealing with the
symmetries of the dynamical system. In Sec. 1.4 we recall the main aspects of the theory of jet
bundles that are the arena on which the multi-symplectic formulation of field theories addressed in the
successive chapters takes place. The chapter ends with an appendix (1.A) in which the construction
of the prolongation of vector fields from a fibre bundle to its first jet prolongation is recalled.
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1.1 Banach differential manifolds
This section is devoted to recall the main notions about Banach differential manifolds we will use
throughout the manuscript, focusing mainly on finite-dimensional differential manifolds and Banach
manifolds of mappings. Again, this should not be intended as an exhaustive account on the subject,
for which we refer, for instance, to [AMR88,MKS93,Mic80,Lan85] and references therein. We start
recalling the differential calculus on Banach spaces in Sec. 1.1.1. Then we proceed with the notion of
smooth Banach manifold in Sec. 1.1.2 and with the definition of a differential calculus on it in Sec.
1.1.3. We end the chapter with Sec. 1.1.4 where some notations about vector fields and differential
forms on infinite-dimensional Banach manifolds, that will be useful throughout the manuscript, are
fixed.

1.1.1 Differential calculus on Banach spaces
We first recall some basic concepts about Banach spaces that will be necessary for the definition of
smooth Banach manifolds.

Definition 1.1.1 (Banach space). A Banach space, (E, ∥ · ∥E) is a couple made by a (possibly
infinite-dimensional) vector space together with a norm ∥ · ∥E for which the vector space is complete.
By norm, we mean a map:

∥ · ∥E : E → R : b 7→ ∥ b ∥E , (1.1)
such that:

• ∥ b ∥E ≥ 0 ∀ b ∈ E,

• ∥ b ∥E = 0 if and only if b = 0,

• ∥α b ∥E = |α|∥ b ∥E ∀ α ∈ R,

• ∥ b1 + b2 ∥E ≤ ∥ b1 ∥E + ∥ b2 ∥E ∀ b1, b2 ∈ E.

By complete we mean that any Cauchy sequence converges in E, that is, for any sequence { en }n∈N

such that ∥ en − em ∥E →n,m→∞ 0 there exists an element e ∈ E such that:

limn→∞∥ en − e ∥E = 0 . (1.2)

Definition 1.1.2 (Fréchet derivative). Consider two Banach spaces E and F and a map f from
E to F. We say that f is Frechet differentiable at e0 ∈ E if there exists a bounded, linear
function, say δf(e0) from E to F such that:

lim∥e−e0∥E→0
∥ f(e) − f(e0) − δf(e0) [e− e0] ∥F

∥ e− e0 ∥E
= 0 . (1.3)
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δf(e0) is said to be the Fréchet derivative of f at e0. The element e0 is sometimes referred to
as the direction of the derivative. If δf(e) exists for all e ∈ E, then f is said to be Fréchet
differentiable in E.

Remark 1.1.3. It is worth recalling that a generalization of the Fréchet derivative to functions
between locally convex spaces and which is not necessarily linear exists, i.e., the Gateaux derivative.
However, since throughout the manuscript we are going to work within the context of Banach manifolds,
where it coincides with the Fréchet derivative defined above, from now on we will use simply the
expression "derivative" and we will always mean "Fréchet derivative".

Let us now define the concept of second derivative in the following way.
Definition 1.1.4 (Second derivative). Consider a differentiable function f between two Banach
spaces (E, ∥ · ∥E) and (F, ∥ · ∥F). It is said to be twice differentiable at e0 if there exists a bounded
linear function, say δ2f(e0), from E to L(E, F) such that:

lim∥e−e0∥E→0
∥ δf(e) − δf(e0) − δ2f(e0) [e− e0] ∥L(E,F)

∥ e− e0 ∥E
= 0 , (1.4)

where L(E, F) denotes the Banach space of bounded linear functions from (E, ∥ · ∥E) to (F, ∥ · ∥F)
equipped with the norm:

∥A ∥L(E,F) := supe∈E
∥A[e] ∥F

∥ e ∥E
. (1.5)

In other words, δf : E → L(E, F) is differentiable. Moreover, f is said to be twice differentiable in
E if it is twice differentiable at any e ∈ E.

Definition 1.1.5 (Ck and smooth). If a function f between two Banach spaces (E, ∥ · ∥E), (F, ∥ · ∥F)
is differentiable and δf(e) is a continuous map with respect to the norm:

∥ δf(e) ∥L(E,F) := supẽ∈E
∥ δf(e) [ ẽ ] ∥F

∥ ẽ ∥E
, (1.6)

then f is said to be a C1 function.
If a function f between two Banach spaces (E, ∥ · ∥E), (F, ∥ · ∥F) is twice differentiable and

δ2f(e) is a continuous map with respect to the norm:

∥ δ2f(e) ∥L(E,L(E,F)) := supẽ∈E
∥ δ2f(e) [ ẽ ] ∥L(E,F)

∥ ẽ ∥E
, (1.7)

where L(E, L(E, F)) denotes the space of bounded linear functions from (E, ∥ · ∥E) to
(

L(E, F), ∥ · ∥L(E,F)
)
,

then f is said to be a C2 function. Recursively, it is possible to define the concept of Ck function for
any k ∈ N+.

In particular if a function is a Ck function for any k ∈ N+, it is said to be a smooth (C∞)
function.
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Definition 1.1.6 (Ck and smooth diffeomorphisms). A Ck (resp. smooth) diffeomorphism between
two Banach spaces (E, ∥ · ∥E), (F, ∥ · ∥F) is a Ck (resp. smooth) function between (E, ∥ · ∥E) and
(F, ∥ · ∥F) admitting an inverse and such that the inverse function is a Ck (resp. smooth) function
itself.

Note that in the next section we will often need the concept of Ck or smooth functions (or
diffeomorphisms) between open sets of Banach spaces, say U ⊂ E, V ⊂ F. The definitions in this
case can be given analogously, by replacing E and F by U and V in the definitions 1.1.4, 1.1.5, 1.1.6.

1.1.2 Banach smooth manifolds
We are now ready to define the concept of smooth Banach manifold.

Definition 1.1.7 (Atlas). An atlas A over a set M is a collection {Uj, ψj }j∈J (J denoting an
index set) where ⋃j∈J Uj = M and ψj is, for all j ∈ J, a bijection between Uj and an open set of a
fixed Banach space E. Any pair (Uj, ψj) is called a chart on M. The charts of the atlas are also
required to be compatible in the sense that for any pair (Uj, Uk) such that Uj ∩ Uk ̸= ∅, the function:

ψk ◦ ψ−1
j : ψj(Uj ∩ Uk) → ψk(Uj ∩ Uk) , (1.8)

is a Ck diffeomorphism between an open set of E and itself.

Definition 1.1.8 (Differential structure). A Ck differential structure, D , over a set
M is an equivalence class of Ck atlases on M where two atlases A1, A2 are said to be equivalent if
A1 ∪ A2 is a Ck atlas.

An atlas and, consequently, a differential structure are said to be smooth if the maps ψk ◦ ψ−1
j of

Def. 1.1.7 are C∞.

Definition 1.1.9 (Banach manifold). A Ck (resp. smooth) Banach manifold is a triple
(M, A, E) where:

• M is a set;

• D is a Ck (resp. smooth) differential structure on M.

• E is the Banach space where the charts of the atlases of D take values, called the model space
of the maifold;

A smooth Banach manifold is often denoted simply by M, omitting an explicit reference to the model
space and the differential structure. When the model space E is a Hilbert space, the manifold is said
to be a Hilbert manifold.
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From now on, we will focus on smooth Banach manifolds even if most of the concepts we will
introduce can be properly discussed within Ck Banach manifold for a suitable k.

Along the whole manuscript we will mainly consider two kinds of smooth Banach manifolds:

• finite-dimensional smooth Banach manifolds, namely, smooth Banach manifolds modelled over
E = Rn for some finite n. In this case the charts of the atlas we will use will be denoted by
(Uj, ψj)j∈J with:

ψj : M ⊇ Uj → Ũj ⊆ Rn : m 7→ ψj(m) = x = (x1, ..., xn) . (1.9)

• suitable (Banach) completions of spaces of maps between two finite dimensional smooth
manifolds, say M of dimension l and N of dimension k, namely, E = F(M ; N). In this
case the charts of the atlas we will use will be denoted by (Uj, ψj)j∈J, with:

ψj : M ⊇ Uj → Ũj ⊆ F(M ; N) : ϕ 7→ ψj(ϕ) = ϕa (1.10)

where a is an index running over the dimension of the manifold N .

We will often refer to the chart maps ψj as system of local coordinates on M.

Definition 1.1.10 (Open). Given a smooth Banach manifold M, an open set of M is a subset
O ⊂ M such that for all m ∈ O there exists a chart (U, ψ) such that m ∈ U and U ⊂ O.

It is possible to prove ( [AMR88, Prop. 3.1.6]) that a smooth Banach manifold, equipped with its
open sets, is a topological space.

Definition 1.1.11 (Ck and smooth maps between Banach manifolds). A map f from the
Banach manifold M (modelled on the Banach space E) to the Banach manifold N (modelled on the
Banach space F) is said to be a Ck function at m ∈ M if, given any chart (U, ψ) around m ∈ M
and any chart (V, ϕ) around f(m) ∈ N , the function ϕ ◦ f ◦ ψ−1 is a Ck function from ψ(U) ⊂ E to
ϕ(V ) ⊂ F in the sense of Banach spaces, following the definitions of the previous section.

1.1.3 Tangent and cotangent bundles and Cartan’s differential calculus
Let us now give the definition of the tangent bundle over a smooth Banach manifold. In order to
do so, we should first define the concept of tangency of curves over a manifold.

Definition 1.1.12 (Operational tangent space). Given a smooth Banach manifold M, the
operational tangent space at a point m is defined to be the space of operators:

δ : C∞(U) → R , (1.11)
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with U ⊂ M, which are linear and satisfy a Leibniz rule at m, i.e.:

δ(f + g) = δf + δg ,

δ(fg) = δ(f)g + fδ(g)
(1.12)

and, accordingly, any derivation is called an operational tangent vector at m ∈ M. One
proves that any derivation at m ∈ U ⊂ M can be written, given the chart (U, ψ) around m and an
element vm of the model space, in terms of the Fréchet derivative as follows:

δvm : C∞(U) → R : f 7→ δ
(
f ◦ ψ−1

)
(ψ(m))[vm] , (1.13)

where δ (f ◦ ψ−1) (ψ(m))[vm] is the derivative of the function f ◦ ψ on the Banach model space E at
ψ(m) along the direction vm.

Remark 1.1.13. Another approach to define the tangent space of a smooth Banach manifold is the
so called kinematical approach (see [AMR88]), where tangent vectors at a point are defined to be
equivalence classes of curves passing through the point being tangent at that point. Such an approach
is more often used within the context of finite-dimensional smooth Banach manifolds where the two
approaches indeed coincide. Within the more general context of infinite-dimensional Banach manifolds
the two approaches do not coincide in general, even if every kinematical tangent vector is also an
operational tangent vector (see [BGT18]). The converse is true only if the Banach model space of
the Banach manifold is reflexive and satisfies the so called Bornological approximation
property (see [MK97, Theorem 28.7]).

From now on, we will simply use the expression "tangent vector" referring to "operational tangent
vector".

In the case of finite-dimensional smooth manifolds, a tangent vector at some point m, i.e. a
derivation at m, can be expressed in the chart (1.9), as:

V j ∂

∂xj

(
f ◦ ψ−1

)
(x)
∣∣∣∣∣
x=ψ(m)

, (1.14)

where V j are real numbers and Einstein convention over repeated indices is used. Essentially it was
used the fact that the derivations along the coordinates xj are a basis for the derivations at a point
and any derivation can be written as a linear combination of them. Usually, a tangent vector is simply
denoted by:

V = V j ∂

∂xj

∣∣∣
x
. (1.15)

Regarding the second kind of smooth Banach manifold we will consider, namely, those modelled
over F(M ; N) with chart (1.10), we will explain the notational convention on tangent vectors in Sec.
1.1.4.
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Definition 1.1.14 (Tangent bundle). The tangent bundle over a smooth Banach manifold is
defined to be the following set:

TM :=
⊔

m∈M
TmM . (1.16)

The natural projection (m, vm = δ( · )(m)[vm]) 7→ m is denoted by τ and it is called tangent bundle
projection.

To describe the differential structure of TM as a smooth Banach manifold, it is necessary to first
introduce the concept of tangent of a map.

Definition 1.1.15 (Tangent of a map). Consider two smooth Banach manifolds, say M and N ,
and a Ck (k ≥ 1) function, f , from M to N . The tangent map of f , say Tf is the following map:

Tf : TM → TN : (m, δ( · )(m)[vm]) 7→ (f(m), δ( · ◦ f )(m)[vm]) , (1.17)

where the dot ( · ) gives the action of the operator δ upon any smooth real valued map on M. The
corresponding map from TmM to Tf(m)N given by the restriction of Tf to TmM is denoted by Tmf
or dfm or f⋆ and is called push forward of f .

Now, we are ready to claim that TM is a smooth Banach manifold modelled over E × E and
where the differential structure is made by atlases whose charts are ( τ−1(Uj), Tψj )j∈J (see [AMR88]),
where i denotes a canonical map (that exists, as it is proven in [AMR88]) from (Uj × E) to an open
set inside TM.

With the notion of tangent map at hand, we are able to define the concepts of immersion,
submersion and embedding of smooth Banach manifolds.

Definition 1.1.16 (Immersion). Given two smooth Banach manifolds, M and N , and a Ck (resp.
smooth) map from M to N , say i, we say that i is a Ck (resp. smooth) immersion if the map f⋆ is
injective ∀ m ∈ M and its image is closed in Tf(m)N and admits a complement.

Definition 1.1.17 (Embedding). An immersion i : M → N is a (smooth) embedding if it is a
homeomorphism onto its image i(M) ⊆ N with respect to the subspace topology on i(M) induced by
the topology on N .

Definition 1.1.18 (Submanifold). A smooth Banach manifold N is said to be a (immersed)
submanifold of a smooth Banach manifold M, if N is a subset of M and if the natural inclusion
map i : N → M is a smooth immersion. Moreover, it is said to be an embedded submanifold
if i is a smooth embedding.

The concept of tangent bundle is a particular instance of the more general concept of vector
bundle over a smooth Banach manifold.
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Definition 1.1.19 (Vector bundle structure). Given a set S, a local bundle chart on it is
defined as a pair (U, ψ), with U ⊂ S and ψ a bijection between U and U ′ × F for some Banach space
F. A vector bundle atlas is a family {Uj, ψj }j∈J of local bundle charts such that ⋃j Uj = S and
the functions ψj are compatible in the same sense of the chart maps of a smooth Banach manifold.
Then, a vector bundle structure on S is an equivalence class of vector bundle atlases, say B,
where two atlases are said to be equivalent if their union1 is a vector bundle atlas.

Definition 1.1.20 (Vector bundle). A vector bundle is a set equipped with a vector bundle
structure, say V = (S, B). Given a vector bundle, its base manifold reads:

M =
{
p ∈ S : ∃ (U, ψ) ∈ V and u ∈ U : p = ψ−1(u, 0)

}
. (1.18)

As it is proven in [AMR88], M is a submanifold of S and there always exists a smooth surjective
submersion π from S to M. Sometimes, a vector bundle is denoted by specifying V , the projection
π and the base M, say (V , π, M). Moreover, given a vector bundle, it is possible, for instance, to
construct the tangent bundle over it by considering, at each point its tangent space. Furthermore,
one could also consider, at each point p, only those tangent vectors Vp such that π⋆Vp = 0, which are
called vertical tangent vectors. The space of vertical tangent vectors is called the vertical
tangent space and denoted by Vpπ. Now, we can define the concept of vertical bundle over a
smooth fibre bundle, which will be useful throughout the manuscript.

Definition 1.1.21 (Vertical bundle). Given a vector bundle (S, V), its vertical bundle is:

Vπ =
⊔
p∈V

Vpπ , (1.19)

where π is the projection of (S, V) onto its base.

The vertical bundle over a fibre bundle is a smooth Banach manifold with respect to the same
differential structure that makes the tangent bundle over a smooth Banach manifold, a smooth Banach
manifold.

For smooth vector bundles the concept of subbundle will be relevant.

Definition 1.1.22 (Subbundle). A subbundle W of a vector bundle (S, V) is a subset W ⊂ V
such that for each m ∈ M there exists a chart (π−1(U), ψ) of V around m:

ψ : π−1(U) → U ′ × F , (1.20)

for some U ′ ⊂ E, E being the Banach model space of M, and for some Banach space F, such that
there exists a closed subspace G of F admitting a closed complement for which:

ψ(π−1(U) ∩ W) = U ′ × (G × { 0 }) . (1.21)
1The union of two atlases {Uj , ψj }j∈J and {Vi, ϕi }i∈I reads the atlas {Uj , Vi, ψj , ϕi }j∈J, i∈I.
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Definition 1.1.23 (Vector field). A Ck (resp. smooth) vector field over a smooth Banach
manifold M is a Ck (smooth resp.) map σ : M → TM which is the right inverse of the tangent
bundle projection, that is τ ◦ σ = 1M. A vector field over M can therefore be represented locally
as maps:

X : Uj ∋ m → TmM , (1.22)
that on the intersections Uj ∩ Uk are suitably glued together and:

σ : M → TM : m 7→ (m, X(m)) . (1.23)

The space of smooth vector fields over a smooth Banach manifold M will be denoted by X(M)
and it can be proved that each element X of X(M) gives a derivation of C∞(M) that we will denote
by δX . The set X(M) is a (infinite-dimensional) Lie algebra equipped with the Lie bracket:

[ · , · ] : (X, Y ) 7→ [X, Y ] , (1.24)

where [X, Y ] is the vector field on M that at m agree with the unique tangent vector [X, Y ]m
associated with the derivation δXδY − δY δX

∣∣∣
m

.
Having said that a vector field gives a derivation of C∞(M) and having in mind the notation

(1.15) for tangent vectors in the finite-dimensional case, we will denote, in this case, vector fields
locally as:

V = V j(x) ∂

∂xj
, (1.25)

where V j(x) are functions on ψj(Uj) ⊂ Rn. The corresponding notation in the infinite-dimensional
case will be explained in Sec. 1.1.4.

A smooth vector field X over a smooth Banach manifold M defines a class of curves over M, its
integral curves.

Definition 1.1.24 (Integral curves). Given a smooth vector field X over a smooth Banach
manifold M, an integral curve through m ∈ M is defined to be a curve γ through m ∈ M
satisfying the following ordinary differential equation (ODE, for short):

d

ds
γ(s) = X(γ(s)) , (1.26)

for all s ∈ I ⊂ R where I is the interval of definition of γ, which gives, for each point γ(s) in M, a
relation in Tγ(s)M between the tangent vector to the curve dγ

ds
and the image X(γ(s)).

Given a chart (U, ψ) around m ∈ M, the ODE over M defining the integral curves of X can be
rephrased as an ODE over the model Banach space of M, say E:

d

ds
γ̃(s) = X̃(γ̃(s)) , (1.27)
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where γ̃(s) := ψ [ γ(s) ] and X̃(e) is defined by the tangent map of ψ as follows:

Tψ : TM ⊃ TU → E × E : (m, vm = X(m)) 7→
(
ψ(m) = e, [ Tmψ( vm ) ]e =: X̃(e)

)
,

(1.28)
where e is a point of E. Eq. (1.27) has a unique solution for any fixed initial condition γ̃(0) = e0
since X̃(e) is a smooth (and, thus, Lipschitz) function on E by virtue of the Picard theorem. We
will always keep this assumption for any vector field we will consider. Consequently, Eq. (1.26) has
a unique solution for any fixed initial condition γ(0) = m0. We will denote it by γ(s; m0) where
s ∈ I ⊆ R is the evolution parameter of the curve γ in a suitable defining domain I.

Definition 1.1.25 (Flow of a vector field). Given a smooth vector field X over a smooth
Banach manifold M, its flow is the map:

FX : M × R ⊃ O → M : (m0, s) 7→ FX
s (m0) := γ(s; m0) , (1.29)

where O is the so-called flow domain of X.

Definition 1.1.26 (Distribution). A distribution over a smooth Banach manifold M is a
collection of subspaces of TmM for all m ∈ M, say Dm ⊂ TmM.

Definition 1.1.27 (Regular distribution). A regular distribution over a smooth Banach
manifold M is a subbundle of TM.

The concepts of involutive and integrable distributions, related by Frobenius’ theorem,
are relevant.

Definition 1.1.28 (Involutive distribution). A regular distribution D over a smooth Banach
manifold M is said to be involutive if for any couple of vector fields X, Y taking value, at each
point, in D, then [X, Y ] takes value, at each point, in D.

Definition 1.1.29 (Integrable distribution). A regular distribution D over a smooth Banach
manifold M is said to be integrable if at each m ∈ M there exists a submanifold N ⊂ M with
m ∈ N such that TN coincides with D restricted to N .

Theorem 1.1.30 (Frobenius’ theorem). A distribution D over a smooth Banach manifold M is
integrable iff it is involutive.

Let us now pass to the definition of the cotangent bundle over a smooth Banach manifold
and to the definition of a Cartan’s differential calculus.

Definition 1.1.31 (Cotangent bundle). The cotangent bundle over a smooth Banach
manifold is defined to be the following set:

T⋆M :=
⊔

m∈M
T⋆
mM , (1.30)
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where T⋆
mM is the dual to the vector space TmM, i.e. the space of continuous linear functions on

TmM, which is L(E, R). Here, we will denote by ρ : T⋆M → M the projection onto the first
factor.

To describe the differential structure of the cotangent bundle, let us stress that, in general, it is
possible to define more general tensor bundles by considering the set made by disjoint unions
of the space of (n, k)-tensors on M, say the space T(n,k)

mM of smooth multilinear maps from the
cartesian product of n copies of E⋆ and k copies of E to R, and equipping it with a suitable differential
structure being also a vector bundle structure. The bundles obtained in this way are denoted by
T(n,k)M. Note that T(1,0)M = TM and T(0,1)M = T⋆M.

Definition 1.1.32 (Pull-back of functions). Given a real valued Ck (k ≥ 1) function F on a
smooth Banach manifold N and a Ck (k ≥ 1) map from another Banach manifold M to N , say f ,
the pull-back of F via f is the real valued Ck (k ≥ 1) function on N defined by:

f ⋆F = F ◦ f . (1.31)

The notion of pull-back can be extended to elements of T(n,k)
mM.

Definition 1.1.33 (Pull-back of tensors). Given an element of T(n,k)
nN for some smooth

Banach manifold N , say T , and a Cl (l ≥ 1) map f from another smooth Banach manifold M to N ,
the pull-back of T via f is the element of T(n,k)

mM (with f(m) = n) given by:

f ⋆Tn(α1, ..., αn, v1, ..., vk) = Tm(f−1⋆α1, ..., f
−1⋆αn, f⋆v1, ..., f⋆vk) . (1.32)

Now, we are ready to claim that T⋆M is a smooth Banach manifold modelled over E × E⋆ and
where the differential structure is made by atlases whose charts are (ρ−1(Uj), ψj × ψ−1

j
⋆)j∈J,m∈Uj

where ψ−1⋆ is the pull-back map on tensors defined above (see [AMR88]). It is also a vector bundle
according to Def. 1.1.20. In this case the base is M and the projection is the projection onto the first
factor, that we denote by ρ.

Definition 1.1.34 (Differential 1-forms). A Ck (resp. smooth) 1-form over a smooth Banach
manifold M is a Ck (resp. smooth) section of T⋆M, i.e. a point by point Ck (resp. smooth) inverse
of the cotangent bundle projection ρ, i.e. map σ such that ρ ◦ σ = 1M. A 1-form over M can be
locally written in terms of maps:

α : m ∈ Uj → T⋆
mM , (1.33)

such that on the intersections Uj ∩ Uk are suitably glued together and:

σ : M → TM : m 7→ (m, α(m)) . (1.34)
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Having in mind the expression (1.25) for a vector field over M in the finite-dimensional case, a
1-form, i.e. a linear functional over X(M) will be locally denoted (when acting on vector fields), in
the finite-dimensional case, as:

α(V ) = αj(x)V j(x) , (1.35)
or simply as:

α = αj(x)dxj , (1.36)

where dxj is the dual basis2 to the basis of derivations
{

∂
∂xj

}
j=1,...,n

. The corresponding notation in
the infinite-dimensional case will be explained in Sec. 1.1.4.

As for T⋆M, it is possible to show that T(0,n)M is a smooth Banach manifold modelled over
E × E⋆ × ... × E⋆ (n copies of E⋆) and where the differential structure is made by atlases whose
charts are (ρn−1(Uj), ψj × ψ−1

j
⋆)j∈J,m∈Uj where ψ−1

j
⋆ is the pull-back map on tensors defined above

and ρn : T(0,n)M → M is the projection onto the first factor. It is also a vector bundle according
to Def. 1.1.20. In this case the base is M and the projection is ρn.

Definition 1.1.35 ((0, n)-tensor fields). A Ck (resp. smooth) (0, n)-tensor field (or a n-
covector field) over a smooth Banach manifold M is a Ck (resp. smooth) section of T(0,n)M,
i.e. Ck (resp. smooth) right inverse of the bundle projection ρn. Locally a n-covector field over
M can be written as a Ck (resp. smooth) association of an element of T(0,n)

mM to each point of M:

α : M → T(0,n)M : m 7→ (m, α(m)) . (1.37)

n-covector fields being skew-symmetric, that is, satisfying:

α(X1, ..., Xn) = −α(Xσ(1), ..., Xσ(n)) , (1.38)

for any odd permutation σ of the indices (1, ..., n) and where Xj ∈ X(M) ∀ j, is called a n-form.
The space of n-forms over a smooth Banach manifold M is denoted by Ωn(M).

As for T(0,n)M, it is possible to show that T(n,0)M is a smooth Banach manifold modelled over
E × E × ...× E (n copies of E) and where the differential structure is made by atlases whose charts
are (Uj × T(n,0)

mM, ψj ×∏
n Tψj)j∈J,m∈Uj . It is also a vector bundle according to Def. 1.1.20. In

this case the base is M and the projection is the projection onto the first factor that we denote by τn.

Definition 1.1.36 ((n, 0)-tensor fields). A Ck (resp. smooth) (n, 0)-tensor field over a smooth
Banach manifold M is a Ck (resp. smooth) section of T(n,0)M, i.e. a Ck (resp. smooth) right inverse
of the bundle projection τn. A (n, 0)-vector field over M can be locally written as a Ck (resp.
smooth) association of an element of T(n,0)

mM to each point of M:

W : M → T(n,0)M : m 7→ (m, W (m)) . (1.39)
2In the sense of vector spaces.
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(n, 0)-tensor fields being skew-symmetric, that is, satisfying:

α1 ⊗ ...⊗ αn(W ) = −ασ(1) ⊗ ...⊗ ασ(n)(W ) , (1.40)

for any odd permutation σ of the indices (1, ..., n) and where αj ∈ Ω1(M) ∀ j, are called a n-vector
fields. The space of n-vector fields over a smooth Banach manifold M is denoted by Λn(M).

It is possible to show that T(n,k)M is a smooth Banach manifold modelled over E × E × ... ×
E × E⋆ × ...× E⋆ (n copies of E and k copies of E⋆) and where the differential structure is made by
atlases whose charts are (Uj × T(n,k)

mM, ψj × ψ−1⋆)j∈J,m∈Uj where ψ−1⋆ is the pull-back of tensors
defined in Def. 1.1.33. It is also a vector bundle according to Def. 1.1.20. In this case the base is M
and the projection is, again, the projection onto the first factor.

Given a n-form and a l-form, there is a way to canonically construct a (n+ k)-form, the so called
wedge product, ∧.

Definition 1.1.37 (Wedge product). Consider a n-form α and a l-form β over a smooth Banach
manifold M. Their wedge product is the (n+ l)-form defined by:

(α ∧ β)(X1, ..., Xn+l) = 1
n!l!

∑
σ

sign(σ)α(Xσ(1), ..., Xσ(n)) β(Xσ(n+1), ..., Xσ(n+l)) , (1.41)

where σ is any permutation of the indices (1, ..., n+ l).

Definition 1.1.38 (Exterior derivative). The exterior derivative, say d, of a n-form α, is
a map from Ωn(M) to Ωn+1(M) such that:

dα(X0, ..., Xn) =
n∑
j=0

(−1)jα(X0, ..., X̂j, ..., Xn) +
∑
j<k

α([Xj, Xk], X1, ..., X̂j, ..., X̂k, ..., Xn) .

(1.42)

Definition 1.1.39 (Contraction). For a fixed X ∈ X(M) and a n-form α, the contraction of
α along X, say iXα, is a map from Ωn(M) to Ωn−1(M) such that:

iXα(X1, ..., Xn) = α(X, X1, ..., Xn) . (1.43)

Definition 1.1.40 (Lie derivative of n-forms). For a fixed X ∈ X(M) and a n-form α over a
smooth Banach manifold M, the Lie derivative, say L, of α along X is the n-form:

LXα = d

ds

(
FX
s

⋆
α
)
t=0

. (1.44)

It is possible to prove (see [MKS93, Sec. 7.6]) the following useful properties of the pull-back, the
exterior derivative, the interior product and the Lie derivative:
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• LX = iX ◦ d + d ◦ iX ∀ X ∈ X(M),

• d ◦ d = 0,

• f ⋆ ◦ d = d ◦ f ⋆ for all smooth functions f from a smooth Banach manifold M to a smooth
Banach manifold N ,

• LX ◦ d = d ◦ LX ∀ X ∈ X(M).

The condition d ◦ d = 0 gives the de Rham complex:

C∞(M) =: Ω0(M) Ω1(M) ...d d (1.45)

Elements α for which dα = 0 are called closed, elements of the type α = dβ are called exact.

1.1.4 Notational conventions for the differential calculus on Banach
manifolds modelled over spaces of maps

As we said in the previous section, along the manuscript we will only consider finite-dimensional smooth
manifolds or spaces of maps between two finite-dimensional smooth manifolds. In particular we will
always consider cases in which the "range manifold" N is a fibre bundle over the "domain manifold" M ,
i.e., our smooth Banach manifold M will be a suitable completion (as we will see in more detail) of the
space of sections of π : N → M . Consider a system of local coordinates denoted by {xµ }µ=1,...,dimM
on M and a system of fibered local coordinates denoted by {xµ, yA }µ=1,...,dimM ;A=1,...,dimN on N . By
using the characterization of the tangent space to a space of sections given in [MK97, Theorem 42.20],
it is possible to see that the tangent space to M at ϕ is isomorphic to the space of π-vertical vector
fields on the finite-dimensional manifold N defined along the image of ϕ in N . Denote a tangent
vector to M at ϕ as Xϕ and denote by X an extension of Xϕ to a vector field on the finite-dimensional
manifold N defined on a neighborhood of the image of ϕ in N . The flow of X, say FX

s defines a curve
on M, say ϕs = FX

s ◦ ϕ. This is a consequence of the fact that, since X is π-vertical, then:

π ◦ ϕs = π ◦ FX
s ◦ ϕ︸ ︷︷ ︸
1M◦ϕ

= π ◦ ϕ = 1M . (1.46)

We will always assume M to be equipped with a volume form, volM . Consider on M a function
of the type:

F : M ⊃ ψ(U) → R :
(
F ◦ ψ−1

)
(ϕ) =

∫
M
ϕ⋆ [F (x, y)volM ] =

∫
M
F (x, ϕ(x))volM , (1.47)

where ψ is the chart map (1.10) and F : N → R is an integrable function with respect to volM .
With a slight abuse of notation we will denote F ◦ ψ−1 simply by F . The differential of F along the
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direction of Xϕ is defined to be:

δXϕFϕ = d

ds

∫
M
ϕs

⋆ [F (x, y)volM ]
∣∣∣∣∣
s=0

, (1.48)

which, as it will be proved in Sec. 2.1.1, amounts to:

δXϕFϕ =
∫
M
ϕ⋆ [ LX F (x, y)volM ] =

∫
M
ϕ⋆
[
XA ∂F

∂yA
volM

]
, (1.49)

where the last equality follows from the fact that X is π-vertical and where following the notation
(1.25):

X = XA ∂

∂yA
, (1.50)

XA being a function on N . Computing the pull-back via ϕ, one gets:

δXϕFϕ =
∫
M
XA(x, ϕ(x)) ∂F

∂yA

∣∣∣∣∣
ϕ(x)

volM =:
∫
M

XA
ϕ

δF

δϕA
volM . (1.51)

Therefore, by looking at the latter equation, and in analogy with the notation (1.15), we will denote
the derivation Xϕ (acting on the algebra C∞(M)) as:

Xϕ = XA
ϕ

δ

δϕA
, (1.52)

where an integration over M is implicitly assumed. Consequently, in analogy to the notation (1.25)
we will denote vector fields on M by:

X = XA δ

δϕA
, (1.53)

where XA is a function on M.
On the other hand, we will always consider covectors on M at ϕ, of the type:

αϕ(Xϕ) =
∫
M
ϕ⋆ [ iX ᾱ ] (1.54)

where X is an extension of Xϕ of the type considered above and ᾱ is what some authors call a
semibasic (l+ 1)-form on N (l being the dimension of M), i.e. a differential form on N which vanishes
when contracted along two π-vertical vector fields on N . It has the form:

ᾱ = ᾱAdyA ∧ volM . (1.55)

Consequently αϕ reads:

αϕ(Xϕ) =
∫
M
ϕ⋆
[
ᾱAX

AvolM
]

=
∫
M
ᾱA(ϕ(x))XA volM . (1.56)

23



Therefore, by looking at the latter equation and in analogy with the notation (1.52) we will denote
the covector αϕ simply by:

αϕ = αAϕδϕ
A , (1.57)

where
{
δϕA

}
A=1,...,dimN

denotes a basis of the dual space of TϕM and a differential 1-form α ∈ Ω1(M)
by:

α = αAδϕ
A , (1.58)

where αA is a function on M.
Regarding the 2-forms, let us consider a 2-form being the exterior derivative of 1-forms of the type

just described. Using the definition of exterior derivative 1.1.38, it is a matter of direct computation
to prove that:

ωϕ(Xϕ, Yϕ) = dαϕ(Xϕ, Yϕ) =
∫
M
ϕ⋆ [ iXiY dᾱ ] , (1.59)

where, again, X and Y are extensions of Xϕ and Yϕ to vertical vector fields on N defined in a
neighborhood of the image of ϕ. Being X and Y π-vertical, the following equalities can be proved:

dαϕ(Xϕ, Yϕ) =
∫
M
ϕ⋆
[
∂ᾱA
∂yB

X [BXA] volM

]
=
∫
M

∂ᾱA
∂yB

∣∣∣∣∣
ϕ(x)

X[B
ϕ YA]

ϕ volM =:
∫
M

δᾱA
δϕB

X[B
ϕ YA]

ϕ volM .

(1.60)
Thus, the notation analogous to (1.57) we will use for skew-symmetric (0, 2)-tensors at ϕ will be:

ωϕ = ωAB[ϕ]δϕA ∧ δϕB , (1.61)

whereas, for 2-forms we will use the following:

ω = ωABδϕ
A ∧ δϕB . (1.62)

1.2 Symplectic Banach manifolds and dynamical systems
This section is devoted to recall the notion of symplectic manifold within the, possibly infinite-
dimensional, Banach setting. After giving, in Sec. 1.2.1, the basic definitions about symplectic
manifolds, we proceed by dealing with the notion of Hamiltonian system in Sec. 1.2.2 and, in Sec.
1.2.3, with the relation between symmetries and conserved quantities within this setting.

Again, we refer to the huge existing literature on the subject for a more exhaustive account (see,
for instance [AMRC78,Arn89,GS90,OR04] and references therein).
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1.2.1 Symplectic Banach manifolds
Definition 1.2.1 (Weakly symplectic Banach manifold). A weakly symplectic Banach
manifold is a couple (M, ω) where M is a smooth Banach manifold and ω is a closed 2-form on M
such that the set:

Km = {Vm ∈ TmM : ω(Vm, Wm) = 0 ∀Wm ∈ TmM } , (1.63)

i.e. the kernel of ω at the point m, is trivial ∀ m ∈ M.

Definition 1.2.2 (Strongly symplectic Banach manifold). A strongly symplectic Banach
manifold is a couple (M, ω) where M is a smooth Banach manifold and ω is a closed 2-form along
M such that the so called musical map:

♭ : TmM → T⋆
mM : Vm 7→ ωm(Vm, · ) = iVmωm , (1.64)

is an isomorphism ∀ m ∈ M.

Remark 1.2.3. Note that when M is a Hilbert manifold (or, a fortiori, a smooth finite-dimensional
manifold) the two notions of weakly and strongly symplectic manifold coincide since in that case the
tangent space at a point is a Hilbert space which is canonically isomorphic to its dual. Therefore, any
bilinear map with empty kernel induces an isomorphism between TmM and T⋆

mM.

Example 1.2.4 (Weakly but not strongly symplectic manifold). Consider the space
ℓ1 × ℓ∞. It is a Banach manifold which is actually a linear Banach space equipped with the norm:

∥ (q, p) ∥ = ∥ q ∥1 + ∥ p ∥∞ (1.65)

where q = (q1, q2, ..., qk, ...) denotes an element of ℓ1, i.e. the space of absolutely convergent sequences,
p = (p1, p2, ..., pk, ...) denotes an element of ℓ∞, i.e. the space of bounded sequences, (q, p) denotes
an element of ℓ1 × ℓ∞ and:

∥ q ∥1 =
∞∑
k=1

| qk | , (1.66)

∥ p ∥∞ = supk=1,...,∞|pk| . (1.67)
We consider the system of (global) coordinates { q1, q2, ..., p1, p2, ... } associated to the standard
Schauder basis of the vector space. Being a vector space, the tangent space of ℓ1 × ℓ∞ is ℓ1 × ℓ∞ itself.
We will denote tangent vectors to ℓ1 × ℓ∞ at (q, p) as V = (Vq, Vp) where Vq ∈ ℓ1 and Vp ∈ ℓ∞. In
the chosen coordinate system, V = (Vq, Vp) explicitly reads:

V = (Vq, Vp) = Vqk
∂

∂qk
+ Vpk

∂

∂pk
. (1.68)
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The set ℓ1 × ℓ∞ is equipped with the following closed 2-form:

ω(V, W ) = ⟨Wp, Vq⟩ − ⟨Wq, Vp⟩ , (1.69)

where ⟨ · , · ⟩ denotes the action of an element of ℓ∞ = ℓ1
⋆ over ℓ1 as a linear functional. It is clear

that ω is weakly symplectic since ω(V, W ) = 0 ∀ W implies V = 0. However it is not strongly
symplectic since the image of ♭ is ℓ∞ × ℓ1 while T⋆

(q,p)(ℓ1 × ℓ∞) is ℓ1
⋆ × ℓ∞

⋆ = ℓ∞ × ℓ∞
⋆ ⊃ ℓ∞ × ℓ1.

Remark 1.2.5. Note that analogously one can construct examples of weakly symplectic manifolds by
considering M = B × B⋆ with B a non-reflexive Banach space.

Remark 1.2.6. Note that in the same way one can construct examples of strongly symplectic manifolds
by considering M = B × B⋆ with B a reflexive Banach space.

1.2.2 Hamiltonian systems
Definition 1.2.7 (Hamiltonian system). A Hamiltonian system is a triple (M, ω, H) made by
a strongly symplectic smooth manifold (M, ω) and a smooth function H on M called the Hamiltonian
of the system.

Being (M, ω) strongly symplectic, the Hamiltonian H uniquely defines a vector field, the Hamil-
tonian vector field, say XH , associated to H with respect to ω, satisfying:

iXHω = dH . (1.70)

When one describes a dynamical system as a Hamiltonian system, the Hamiltonian vector field models
the dynamics of the system in the sense that its integral curves represent the trajectories of the
dynamical system over the manifold M, which is often called the phase space of the system. Note
that such curves do not necessarily represent the physical trajectories of the system. Indeed, for
instance, often M is the cotangent bundle of the space of configurations of the dynamical system, i.e.
T⋆Q and, therefore, physical trajectories are represented by the projection to Q of the trajectories on
the phase space. Examples of physical systems modelled as Hamiltonian system are addressed along
the manuscript (see, examples 2.1.7, 2.1.14).

The problem in defining a Hamiltonian system on a weakly symplectic manifold is that in that
case Hamiltonian vector fields are not uniquely defined in the sense that equation (1.70) may be not
well posed since, being ♭ not an isomorphism, dH may lie outside its image. Therefore, an obvious
generalization of the notion of Hamiltonian system to the setting of weakly symplectic manifolds
requires one to restrict to those Hamiltonian functions such that dH lies in the image of ♭.

Definition 1.2.8 (C∞
ω (M)). Given a weakly symplectic smooth manifold (M, ω), we denote by

C∞
ω (M) the algebra of smooth functions on M such that their differential lies in ♭(TmM) ∀ m ∈ M.

Definition 1.2.9 (Weak Hamiltonian system). A weak Hamiltonian system is a triple
(M, ω, H) where (M, ω) is a weakly symplectic smooth manifold and H ∈ C∞

ω (M).
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1.2.3 Symmetries and momentum maps
Given a Hamiltonian system (M, ω, H) modelling a dynamical system, if an action of a Lie group G
is defined over M one may ask whether it represents a symmetry for the dynamical system under
investigation, i.e. whether it leaves invariant the space of solutions of Eq. (1.70). In the sequel,
we will give a more precise notion of symmetry within the context of Hamiltonian systems after
recalling how a Lie group can act upon a symplectic manifold. Moreover, we will recall the relation
between symmetries of an Hamiltonian system with conserved quantities along the solutions of Eq.
(1.70), which is the content of the celebrated Noether’s theorems.

Definition 1.2.10 (Action of G upon M). A smooth action of a Lie group G upon the smooth
manifold M is a map:

Φ : G → Diff(M) : g 7→ Φg , (1.71)
where Diff(M) represents the group of diffeomorphisms of M, such that:

Φg·h = Φg ◦ Φh , (1.72)

(i.e. it is a group homomorphism between G and the group of diffeomorphisms Diff(M)) and such
that the action map:

Φ : G × M → M : (g, m) 7→ Φg(m) , (1.73)
is smooth.

Definition 1.2.11 (Canonical action). Given a (weakly or strongly) symplectic manifold (M, ω)
and a Lie group acting upon M, the action is said to be canonical if:

Φ⋆
gω = ω , ∀ g ∈ G . (1.74)

Equivalently, provided G is connected, the action is canonical if:

LXξω = 0 , (1.75)

where Xξ is the infinitesimal generator of (each one-parameter subgroups of) Φg with ξ the element in
the Lie algebra g associated with g ∈ G.

Definition 1.2.12 (Weakly Hamiltonian action). Given a strongly symplectic manifold (M, ω)
and a Lie group acting upon M, the action is said to be weakly Hamiltonian if for any ξ ∈ g
there exists a function, say Jξ such that:

iXξω = dJξ . (1.76)
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Note that if an action is Hamiltonian, it is also canonical, whereas the converse is not true. Indeed,
being ω closed, the fact that iXξω is exact implies that:

LXξω = iXξ dω︸︷︷︸
=0

+d iXξω︸ ︷︷ ︸
dJξ

= d2Jξ = 0 . (1.77)

Viceversa, the fact that d iXξω is zero does not implies that iXξω is globally exact along M.
Definition 1.2.13 (Momentum map). Given a strongly symplectic manifold (M, ω), and a weakly
Hamiltonian action of a Lie group G upon (M, ω), a smooth map:

J : M → g⋆ : m 7→ J(m) , (1.78)

satisfying:
⟨J(m), ξ⟩ = Jξ , (1.79)

where ⟨ · , · ⟩ is the pairing between g and g⋆, is called a momentum map for the action of G.
As the following proposition proves, the momentum map is equivariant with respect to the action

of G up to a g⋆-valued cocycle on G.
Proposition 1.2.14. Given a strongly symplectic connected manifold (M, ω) together with a weakly
Hamiltonian action of a Lie group G upon (M, ω), the function:

ψg,ξ : M → R : m 7→ ψg,ξ(m) = Jξ(Φg ·m) − JAdg−1ξ(m) , (1.80)

where Adg−1ξ is the adjoint action of G upon g, is constant along M for all g and ξ. Moreover, it
satisfies:

ψg, ξ(m) = ⟨σg, ξ⟩ ∀ m ∈ M , (1.81)
where σ is a g⋆-valued cocycle on G, i.e. it is a map:

σ : G → g⋆ : g 7→ σg , (1.82)

such that:
σgh = σg + Ad⋆g−1σh . (1.83)

Proof. See [AMR88, Prop. 4.2.3].
Note that the function ψg,ξ measures how much J is not equivariant with respect to the action of

G. Indeed, when ψg,ξ is zero, that is, when:

Jξ(Φg ·m) = JAdg−1ξ(m) , (1.84)

or, equivalently, when:
J(Φg ·m) = Ad⋆g−1(J(m)) (1.85)

Ad⋆g−1 being the dual, w.r.t. the pairing ⟨ · , · ⟩, of the adjoint action Adg−1 , then the momentum map
is equivariant with respect to the action of G.
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Definition 1.2.15 (Strongly Hamiltonian action). Given a strongly symplectic manifold
(M, ω) and a weakly Hamiltonian action of a Lie-group G upon (M, ω), the action is said to be
strongly Hamiltonian if the momentum map J is equivariant with respect to the action of G, i.e.
if:

J(Φg ·m) = Ad⋆g−1(J(m)) . (1.86)

Before stating two relevant results about Hamiltonian actions upon a strongly symplectic manifold,
recall that, given a strongly symplectic manifold (M, ω), then, a Poisson bracket structure on C∞(M)
is canonically defined and is given by:

{ · , · } : C∞(M) × C∞(M) → C∞(M) : (f, g) 7→ {f, g}ω = ω(Xf , Xg)
= Λ(df, dg) ,

(1.87)

where Xf (resp. Xg) is the Hamiltonian vector field associated with f (resp. g) via ω and Λ is a
bi-vector field on M defined by the latter equation. The bracket defined in this way has the defining
properties of a Poisson bracket, namely, it is skew-symmetric and obeys Leibniz’s rule and Jacobi
identity.

Recalling the definition of Schouten bracket between multivector fields on M:

Definition 1.2.16 (Schouten bracket). Given a n-vector field and a m-vector field over a smooth
Banach manifold of the type X = X1 ∧ ... ∧Xn and Y = Y1 ∧ ... ∧ Ym, their Schouten bracket
is defined to be the (n+m− 1)-vector field given by:

[X, Y ]S =
∑
j,k

(−1)j+k[Xj, Yk] ∧X1 ∧ ... ∧ X̂j ∧ ... ∧ Ŷk ∧ ... ∧ Ym , (1.88)

where X̂j means that the term Xj is missing. Such bracket is extended to generic multi-vector fields
by the additional condition:

[X, f ]S =
∑
j

(−1)j−1Xj(f)X1 ∧ ... ∧ X̂j ∧ ... ∧Xn , (1.89)

for f ∈ C∞(M). Notice that such a condition is well-posed only if M is modelled onto a reflexive
Banach space. The case of a strongly symplectic manifold falls into this condition.

it can be seen that [Tul74] Λ satisfies:

[Λ, Λ]S = 0 , (1.90)

which is a consequence of the fact that ω is closed and strongly non-degenerate and which is the
geometrical property which encodes the Jacobi identity satisfied by the Poisson bracket.

The following two results hold.
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Proposition 1.2.17. Given a strongly symplectic manifold (M, ω) and a (at least) weakly Hamiltonian
action of a Lie group G upon M, the mapping:

J : g → C∞(M) : ξ 7→ Jξ , (1.91)

is a homomorphism from the Lie algebra (g, [ · , · ]) to the Poisson algebra (C∞(M), { · , · }ω), up to
the function:

Ξ : g × g → R : (ξ, ρ) 7→ Ξ(ξ, ρ) = d⟨σe, ρ⟩(ξ) , (1.92)
i.e.

{Jξ, Jρ} = J[ξ, ρ] + Ξ(ξ, ρ) . (1.93)
What is more, if the action of G upon (M, ω) is strongly Hamiltonian, then J is a homomorphism,
i.e.:

{Jξ, Jρ} = J[ξ, ρ] . (1.94)

Proof. See [AMRC78] Theorem 4.2.8 and Corollary 4.2.9.

Being the function Ξ(ξ, ρ) a constant on M, a consequence of the previous proposition is that the
left and right hand side of Eq. (1.93) define the same Hamiltonian vector field.

Proposition 1.2.18. Given a strongly symplectic manifold (M, ω) and a weakly Hamiltonian action
of a Lie group G upon (M, ω), the following holds:

X{Jξ,Jρ} = XJ[ξ,ρ] . (1.95)

We end this section by giving the definition of symmetry group for an Hamiltonian system and
stating Noether’s theorem.

Definition 1.2.19 (Symmetry group). Given a Hamiltonian system (M, ω, H) and a canonical
action of a Lie group G on the strongly symplectic manifold (M, ω), then G is said to be a symmetry
group for (M, ω, H) if the Hamiltonian H is invariant along G, that is, if:

Φ⋆
gH = H ∀ g ∈ G , (1.96)

or, what is the same:
LXξH = 0 ∀ ξ ∈ g , (1.97)

provided G is connected. Since weakly/strongly Hamiltonian actions are canonical this result applies
to them as a particular case.

If the action of G is strongly Hamiltonian, the following celebrated Noether’s theorem holds.
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Theorem 1.2.20 (Noether’s theorem). Given a Hamiltonian system (M, ω, H) and a (at least
weakly) Hamiltonian action of a Lie group upon the strongly symplectic manifold (M, ω), then, if G
is a connected symmetry group for the Hamiltonian system, i.e., if:

LXξH = 0 ∀ ξ ∈ g , (1.98)

the following holds:
LΓJξ = 0 ∀ ξ ∈ g , (1.99)

where Γ is the dynamics of the Hamiltonian system, i.e., it is the solution of:

iΓω = dH . (1.100)

This means that all the functions Jξ associated with the strongly Hamiltonian action of the symmetry
group are conserved along the solutions of the Hamiltonian system.

Proof. The claim comes from the following chain of equalities:

0 = LXξH = iXξ dH = ω(Γ, Xξ) = −ω(Xξ, Γ) = −LΓJξ . (1.101)

1.3 Pre-symplectic Banach manifolds and dynamical systems
In this section we pass to the more general setting of pre-symplectic manifolds, defined in Sec. 1.3.1,
and pre-symplectic Hamiltonian systems, described in Sec. 1.3.2. In this case the definition of a
Poisson bracket as well as the correspondence between symmetries and constants of the motion turns
to be more involved than within the symplectic case and they are discussed, in Sec. 1.3.4 and Sec.
1.3.5, after describing, in Sec. 1.3.3, a regularization technique related to the so called coisotropic
embedding theorem.

As for the symplectic case we refer to the literature for more details (see, for instance, [AMRC78,
OR04] and references therein for more details about pre-symplectic manifolds and pre-symplectic
Hamiltonian systems and [Got79,Got82,GS90] for the coisotropic embedding theorem and some its
applications).

1.3.1 Pre-symplectic Banach manifolds
Definition 1.3.1 (Pre-symplectic Banach manifold). A pre-symplectic Banach manifold
is a couple (M, ω) where M is a smooth Banach manifold and ω is a closed 2-form on M.

In this section we will focus on the case in which the kernel defined in (1.63) is non trivial.
Sometimes we will refer to this case as genuinely pre-symplectic case or as fairly pre-
symplectic case.
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1.3.2 Pre-symplectic Hamiltonian systems and the pre-symplectic con-
straint algorithm

Definition 1.3.2 (Pre-symplectic Hamiltonian system). A pre-symplectic Hamiltonian
system is a triple (M, ω, H) made by a pre-symplectic manifold (M, ω) and a smooth function H
on M called the Hamiltonian of the system.

When (M, ω) is genuinely pre-symplectic, a Hamiltonian vector field associated to H may not
even be defined and, in general, when defined, it is not unique. We will always assume the kernel
of ω at m ∈ M, say Km, to define a regular distribution, K, on M, in order to represent it locally
around each point in terms of vector fields on M. However, even in this pre-symplectic case, one can
still speak about solutions of an equation of the type (1.70) and these are found via the so called
Pre-symplectic Constraint Algorithm (PCA) that we are going to described in the next lines.

Remark 1.3.3. Before proceeding with the description of the PCA, let us stress that, insisting in
defining the concept of solution of Eq. (1.70) even in the genuinely pre-symplectic case is not just
an abstract exercise. Indeed, as we will see, solutions of this type of system will obey a combination
of differential equations together with a set of constraint relations and, therefore, pre-symplectic
Hamiltonian systems are well suited to model those theories, such as gauge theories, for which the
equations of motion split into a set of evolutionary equations and a set of constraint relations. Indeed,
many examples of this instance will appear in the present manuscript.

Let us now proceed with the description of the PCA. Let us consider a pre-symplectic Hamiltonian
system (M, ω, H) and let us consider the equation:

iXHω = dH . (1.102)

It is clear that, in order for this equation to be well posed, a first, obvious, condition that must hold
is that the elements of the kernel of ω at the point m, Km, should lie also in the kernel of the 1-form
dH at m. Indeed, by contracting both sides of the latter equation along an element of Km, the left
hand side vanishes and, thus, the same must happen with the right hand side. In general, such a
condition will be satisfied only at some points of M. We denote such a set of points by M1:

M1 := {m ∈ M : dHm(Vm) = 0 ∀ Vm ∈ Km } , (1.103)

where:
Km = {Vm ∈ TmM : ω(Vm, Wm) = 0 ∀ Wm ∈ TmM } . (1.104)

We assume M1 to be a smooth embedded submanifold of M with smooth embedding map denoted
by i1. The following equation is now well posed:

i⋆1 (iXHω − dH) = 0 , (1.105)
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even if nothing is said about the fact that XH is actually tangent to M1, namely, that it is i1-related
to a vector field in X(M1). However, we want that this would be actually the case since we want
that along the flow of the dynamics XH the constraints imposed by (1.103) were preserved. Imposing
this last condition, that is, that the XH satisfying (1.105) is i1-related with a vector field on M1, it is
straightforward to prove that all the V ∈ X(M) such that:

i⋆1 (iV ω) = 0 , (1.106)

must satisfy:
i⋆1 (iV dH) = 0 . (1.107)

The set of points for which this condition is satisfied will be denoted by M2 and, again, it is assumed
to be a smooth embedded submanifold of M1 with the smooth embedding map denoted by i2. Now,
on such M2 we aim to find a solution of:

i⋆2 (iXHω − dH) = 0 , (1.108)

but, again, nothing is said about the fact that such XH is actually tangent to M2. Therefore, again,
we select a smooth embedded submanifold of M2, say M3, such that all the V ∈ X(M) for which:

i⋆2 (iV ω) = 0 , (1.109)

satisfy:
i⋆2 (iV dH) = 0 . (1.110)

It is clear that we turned into an algorithmic procedure that select, at the k-th step, the following
smooth manifold:

Mk =
{
m ∈ Mk−1 : iV dH = 0 ∀ V ∈ TM⊥

k−1

}
, (1.111)

where:
TM⊥

k = {V ∈ X(M) : i⋆k (iV ω) = 0 } . (1.112)
Such algorithmic procedure is called the Pre-symplectic Constraint Algorithm, PCA from
now on.

If there exists a finite k for which Mk = Mk+1 we say that the PCA converges, we call the
manifold Mk the stable or final manifold of the algorithm and we denote it by Mk = M∞.
Coherently, we denote the embedding ik by i∞. On the stable manifold we are left with the equation:

i⋆∞ (iXHω − dH) = 0 , (1.113)

which, being XH i∞-related to a vector field, say X∞
H on M∞, is equivalent to:

iX∞
H
ω∞ = dH∞ , (1.114)
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where ω∞ = i⋆∞ω and H∞ = i⋆∞H.
At this point two situations may occur: ω∞ may be symplectic or again pre-symplectic.
In the first case, Eq. (1.114) has a unique solution X∞

H . Consequently, we say that the solutions of
the original pre-symplectic Hamiltonian system (M, ω, H) are the integral curves of X∞

H embedded
into M via i∞. That is, given a Cauchy datum γ0(m∞), at some point m∞ ∈ M∞, the unique
integral curve of X∞

H passing through γ0(m∞) reads:

γ∞(s) = FXH
s [ γ0(m∞) ] , (1.115)

where FXH
s is the flow of XH and the unique solution of the pre-symplectic Hamiltonian system

associated with the Cauchy datum γ0(m∞) reads:

γ(s) = i∞ [ γ∞(s) ] . (1.116)

The composition of FXH
s and i∞ is evidently a one-to-one map between M∞ (representing the space

of Cauchy data) and its image (representing the space of solutions of the pre-symplectic Hamiltonian
system). Such a bijection allows for defining a differential structure on the image manifold, namely
the space of solutions and, consequently, the space of Cauchy data and the space of solutions result to
be diffeomorphic. It should be stressed that the solutions constructed in this way result as solutions
of a set of ODEs (the ones defining the vector field XH) and a set of constraints equations (the ones
defining the embedding of M∞ into M) as we anticipated in Remark 1.3.3. Examples of physical
systems modelled as pre-symplectic Hamiltonian systems can be found along the manuscript (see
examples 3.2.5, 3.2.9).

In the second case, the solution X∞
H is only determined up to the kernel of ω∞. Consequently,

given the integral curves of any such X∞
H , an equivalence class of curves obtained by acting with

the flow of any vector field in the kernel of ω∞ is defined. In this case, we say that the solutions
of the original pre-symplectic Hamiltonian system, are all the elements of such equivalence class of
curves on M∞ embedded into M via i∞. Therefore, such solutions result as solutions of a set of
differential equations (the ones defining one of the X∞

H ) up to transformations generated by the kernel
of ω∞ (representing gauge transformations) and a set of constraint equations (the ones defining the
embedding of M∞ into M). Examples of this instance are examples 3.2.6, 3.2.11, 3.2.12, 3.2.13. Here
the final manifold M∞ is, again, diffeomorphic (in the same sense of the previous case) to the space
of solutions of the pre-symplectic Hamiltonian system, even if some of them are equivalent from the
physical point of view since they are just related by gauge transformations.

1.3.3 The coisotropic embedding theorem
In the previous section we saw that the space of solutions of the equations of motion of a theory
modelled as a pre-symplectic Hamiltonian system is in general a pre-symplectic manifold. However,
there are various reasons for which it is more useful having a symplectic structure at hand. Among
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them, the fact that via a symplectic structure one may always construct a Poisson bracket and,
provided with a Hamiltonian action of a Lie group, a set of conserved quantities (see Sec. 1.2.3).
In this section we recall the so called coisotropic embedding theorem, as a tool to construct
a symplectic manifold starting from a pre-symplectic one. We will see in Sec. 1.3.4 how to use
such a theorem to construct a Poisson bracket structure on a class of pre-symplectic manifolds. In
particular Sec. 3.3.5 will be an application of such general theory where the pre-symplectic manifold
is represented by the solution space of gauge theories. On the other hand, in Sec. 1.3.5, we will see
how to use it to construct conserved quantities also in the pre-symplectic case.

Let us consider a pre-symplectic manifold (M, ω). The coisotropic embedding theorem states that
there is a canonical (up to local symplectomorphisms) way of embedding (M, ω) into a symplectic
manifold, that we denote by (M̃, ω̃), of which (M, ω) is a coisotropic submanifold, namely, i⋆ω̃ = ω,
where i is the embedding map.

First we recall the standard proof of the theorem for which we refer to M. Gotay [Got82] (see
also [GS90] for the proof of the theorem). Then, we also provide an alternative proof of the theorem
(see [OP05]) which is more canonical and more suited for our concrete use of the theorem in the
examples considered in Sec. 3.3.

Classical coisotropic embedding theorem. Let us denote by Km the kernel of ω at m ∈ M.
Assume that the distribution given by Km for m ∈ M, say K, defines a subbundle of TM, denote it
by K and let us call it the characteristic bundle over M. Its dual bundle, is again a vector
bundle over M denoted by K⋆, where we will denote by K⋆ the distribution generated by K⋆

m. M can
be immersed into K⋆ as the range of the zero section σ0 w.r.t. the bundle projection τ : K⋆ → M.
Along σ0 the tangent space to K⋆ splits as Tσ0(m)K⋆ = TmM ⊕ K⋆

m. Now, let us assume that a
(closed) complement, Wm, of Km into TmM exists3. Notice that:

Tσ0(m)K⋆ = Wm ⊕Km ⊕K⋆
m . (1.117)

Therefore, since Km ⊕K⋆
m is a symplectic vector space4 and the original pre-symplectic structure ω is

non-degenerate when contracted along elements of Wm, a symplectic structure can be constructed on
σ0(M) in the following way:

ω̃0 = τ ⋆ω + ωK⊕K⋆ ◦ pr , (1.118)
where pr is the projection Tσ0(m)K⋆ → Km ⊕K⋆

m. Extending ω̃0 to K⋆ we get a differential form ω̃ext
0

such that:
σ⋆0ω̃

ext
0 = ω . (1.119)

However, (K⋆, ω̃ext
0 ) is not yet the desired symplectic manifold since ω̃ext

0 is not closed, in general,
outside σ0(M). However a differential form, say α, defined in a tubular neighborhood of σ0(M), M̃,

3This requirement is fulfilled in al the examples considered along the manuscript.
4The symplectic structure is the one we already used in example 1.2.4.
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such that:
dα = −dω̃ext

0 and α
∣∣∣
σ0(M)

= 0 , (1.120)

can always be added to ωext
0 (see [GS90, lemma 39.1 at page 318]). The form α is constructed out

of a retraction ϕt of K⋆ onto M, given by the multiplication by a real parameter t. Given the
one-parameter family of generators of ϕt, say Xt, the form α reads:

α =
∫ 1

0
ϕ⋆t [ iXtω ] dt . (1.121)

Given such an α, the manifold (M̃, ω̃), with ω̃ = ω̃ext
0

∣∣∣
M̃

+ α, is the desired symplectic manifold.
Whether it is weakly or strongly symplectic depends on the model Banach space of our starting
smooth Banach manifold. From now on, we will simply refer to it as a symplectic manifold always
assuming it to be strongly symplectic and we will verify this assumption case by case in the examples
we consider.

Coisotropic embedding theorem via a connection. The construction of the symplectic form
given above is the original one of M. Gotay and is based on some choices, such as that of the retraction
ϕ, that make it not properly canonical. Here, we propose a canonical construction, due to Y. G. Oh
and J. S. Park [OP05], that only makes use of the splitting TM = W ⊕K and that is more suited
to our concrete use of the coisotropic embedding theorem in Sec. 3.3.

Given the splitting above, denote by P the projection:

P : TM → K , (1.122)

and consider the map:
Tτ : TK⋆ → TM . (1.123)

The composition Tτ ◦ P gives a canonical map from TK⋆ to M which, given any point β of K⋆,
allows for defining the following 1-form on K⋆:

ϑPβ (X) = ⟨α, P ◦ Tτ(X) ⟩ , (1.124)

where X ∈ TµK⋆ and ⟨ · , · ⟩ denotes the pairing between Km and K⋆
m. Then, the 2-form:

ω̃ = τ ⋆ω − dϑP , (1.125)

is closed (by construction) and non-degenerate (as it can be easily seen) in a neighborhood of the
zero-section σ0 of τ . Note that now, as it is stressed by the notation ϑP , the construction of ω̃ only
makes use of the projector P . A local expression for such a 2-form can be given by writing the
projection P in local coordinates in terms of the following (1, 1) (idempotent) tensor field:

P = P j ⊗ Vj , (1.126)
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where {Vj }j=1,...,dimK is a subset of a basis of X(M) that generates K at each point and where
{P j }j=1,...,dimK are 1-forms on M that, acting on a vector field X, give its components along K in
the basis {Vj }j=1,...,dimK :

P (X) = P j(X)Vj =: XvjVj ∈ Xv(M) . (1.127)

Denote by {µj }j=1,...,dimK⋆ the system of coordinates on K⋆
m such that the 1-forms dµj are "dual" to

the 1-forms P j in the sense that ωK⊕K⋆ ◦ pr reads:

ωK⊕K⋆ ◦ pr(X, Y ) = dµj ∧ P j(X, Y ) = ⟨Xµj, Y
vj ⟩ − ⟨Yµj, X

vj ⟩ , (1.128)

where ⟨ · , · ⟩ denotes, at each point, the pairing between Km and its dual and where Xµj denotes the
components of X along K⋆

m. Then, the 2-form ω̃ reads:

ω̃ = τ ⋆ω + dµj ∧ P j + µjdP j , (1.129)

and its pull-back to M via σ0 is:
ω̃0 = ω + dµj ∧ P j , (1.130)

from which we see that the form α constructed in the previous section is:

α = µjdP j . (1.131)

Remark 1.3.4. From now on, we assume ω̃ to be actually strongly symplectic and we postpone the
check of this instance to a case by case analysis within the examples considered along the manuscript.

1.3.4 Poisson brackets on pre-symplectic manifolds via coisotropic em-
beddings

In this section we will present the coisotropic embedding theorem as a tool to construct Poisson
brackets on a class of pre-symplectic manifolds selected by geometrical properties of the connection
chosen. In particular we will see that a Poisson bracket can be defined if the connection is closed
or has zero curvature. In the other cases to define a Poisson bracket one is forced to work on the
enlarged manifold M̃.

The closed case

Consider the case where dP j = 0. The symplectic form ω̃, at each m̃ ∈ M̃, is the sum of a form
having components only on Wm and a form having components only on Km ⊕K⋆

m. These are well
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defined along the whole M̃ provided a connection on K⋆ is fixed. We will fix it to be the pull-back of
P via the projection τ : K⋆ → M. The two forms mentioned above read:

ω̃m̃(X̃W + X̃K + X̃K⋆ , ỸW + ỸK + ỸK⋆) = τ ⋆ωm̃(X̃W , ỸW ) + dµj ∧ P j
m̃(X̃K + X̃K⋆ , ỸK + ỸK⋆)

=: ω̃Wm(X̃W , ỸW ) + ω̃Km⊕K⋆
m

(X̃K + X̃K⋆ , ỸK + ỸK⋆)
(1.132)

where X̃W ∈ Wm, X̃K ∈ Km ∀ m̃ ∈ M̃ and X̃K⋆ ∈ K⋆
m ∀ m̃ ∈ M̃. This means that ω̃ results as the

direct sum of two closed forms:
ω̃ = ω̃W ⊕ ω̃K⊕K⋆ (1.133)

which, restricted respectively to the distributions W and K ⊕K⋆, are non-degenerate. Consequently,
the inverse of ω̃ is a Poisson bi-vector field on M̃, say λ̃, which reads:

λ̃ = λ̃W ⊕ λ̃K⊕K⋆ (1.134)

where λ̃W is a Poisson bi-vector field belonging, at each m̃ ∈ M̃, to Wm ∧ Wm whereas λ̃K⊕K⋆ is
a Poisson bi-vector field belonging, at each m̃ ∈ M̃ to (Km ⊕K⋆

m ) ∧ (Km ⊕K⋆
m ). Since λ̃ is the

Poisson bi-vector field associated to a symplectic structure, it satisfies the following:

[λ̃, λ̃]S = 0 (1.135)

where [ · , · ]S denote the Schouten-Njienhuis brackets, which is equivalent to the fact that the bracket
associated to λ̃, {f, g} = λ̃(df, dg), satisfies the Jacobi identity. Now, since λ̃W is the inverse
(restricted to W ) of the closed (and non-degenerate when restricted to W ) form ω̃W , it satisfies:[

λ̃W , λ̃W
]
S

= 0 (1.136)

itself. With this in mind (1.136) is a straightforward consequence. This says that on the subalgebra
of functions on M̃ being the pull-back via τ of functions on M (namely, functions that do not depend
on µj and that are invariant with respect to Vj), the Poisson bracket given by λ̃ restricts to a Poisson
bracket given by λ̃W . What is more, the bi-vector field λ̃W satisfying (1.136) can be used to define
a Poisson bracket on the pre-symplectic manifold M. Indeed, since by construction λ̃W does not
depend on µj, it is easy to see that:[

λ̃W ,
∂

∂µj

]
S

= 0 ∀ j = 1, ..., dimK⋆ . (1.137)

Consequently, the bi-vector field λ̃W is projectable onto M via τ : M̃ → M to the following
bi-vector field:

λW = τ⋆λ̃W ∈
2∧

(M) . (1.138)
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The latter also has a vanishing Schouten bracket with itself because of the following equalities:

[λW , λW ]S = [τ⋆λ̃W , τ⋆λ̃W ]S = τ⋆ [λ̃W , λ̃W ]︸ ︷︷ ︸
=0

= 0 (1.139)

and, thus, it defines a Poisson bracket on M in the following way:

{ f, g } = λW (df, dg) (1.140)

for f, g ∈ F(M).
An example of this type is given in Sec. 3.3.5 when dealing with free Electrodyanamics.

Zero-curvature case

The previous construction can be extended to the case where P j is not closed but only horizontally-
closed, i. e., to the case where:

dHP j = dP j ( (1 − P )( · ), (1 − P )( · ) ) = 0 . (1.141)

Indeed, when P j is not closed, the structure ω̃ reads:

ω̃ = ω̃W ⊕ ω̃K⊕K⋆ ⊕ α (1.142)

where ω̃W is closed and, in general, α = µjdP j has components both on W and on K ⊕K⋆, i.e.:

αm̃(X̃W + X̃K + X̃K⋆ , ỸW + ỸK + ỸK⋆) = αm̃(X̃W , ỸW ) + αm̃(X̃K + X̃K⋆ , ỸK + ỸK⋆)
= αWm̃(X̃W , ỸW ) + αK⊕K⋆m̃(X̃K + X̃K⋆ , ỸK + ỸK⋆)
= µjdHP j

m̃(X̃W , ỸW ) + µjdV P j(X̃K + X̃K⋆ , ỸK + ỸK⋆) ,
(1.143)

where dV P j(X, Y ) = dP j(P (X), P (Y )) and dHP j(X, Y ) = dP j((1 − P )(X), (1 − P )(Y )).
Now, if dHP j = 0, i. e., if P has zero curvature, ω̃ reads:

ω̃ = ω̃W ⊕ ω̃αK⊕K⋆ (1.144)

where ω̃αK⊕K⋆ = ω̃K⊕K⋆ + αK⊕K⋆ . Therefore, again λ̃ reads:

λ̃ = λ̃W ⊕ λ̃αK⊕K⋆ (1.145)

with λ̃W satisfying: [
λ̃W , λ̃W

]
= 0 (1.146)

since it comes from a closed 2-form ω̃W . Therefore, also in this case the previous construction can be
performed, giving rise to the Poisson bracket (1.140) on M.
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The non-closed case

The general case where neither dHP j = 0 nor dV P j = 0 does not allow to directly define a Poisson
bracket on M using the Poisson bracket defined on M̃.

Indeed, in that case the structure ω̃ reads:

ω̃ = ω̃αW ⊕ ω̃αK⊕K⋆ , (1.147)

where:
ω̃αW = ω̃W ⊕ αW , ω̃αK⊕K⋆ = ω̃K⊕K⋆ ⊕ αK⊕K⋆ , (1.148)

with:
αW = µjdHP j , αK⊕K⋆ = µjdV P j . (1.149)

However, in this case even if ω̃αW and ω̃αK⊕K⋆ are non-degenerate when restricted to W and K ⊕K⋆

respectively, they are not closed. Therefore, the corresponding bi-vector fields λ̃αW and λ̃αK⊕K⋆ such
that:

λ̃ = λ̃αW ⊕ λ̃αK⊕K⋆ , (1.150)
do not satisfy: [

λ̃αW , λ̃
α
W

]
S

= 0 ,
[
λ̃αK⊕K⋆ , λ̃αK⊕K⋆

]
S

= 0 , (1.151)

and, thus, λ̃αW can not define a Poisson bracket on M.
The only natural construction in this case seems to be to consider the Poisson bracket associated

with ω̃ on the whole M̃ restricted to the subalgebra of functions on M̃ being pull-back (via τ) of
functions on M. That is, one can consider two functions f̃, g̃ ∈ F(M̃) such that f̃ = τ ⋆f and
g̃ = τ ⋆g with f, g ∈ F(M) and to consider their bracket computed with respect to λ̃

{f̃, g̃} = λ̃(df̃, dg̃) = λ̃αW (df̃, dg̃) . (1.152)

Even if, due to the fact that λ̃ is a bi-vector field coming from a symplectic structure, this bracket
satisfies the Jacobi identity, it can not be used to induce a bracket on M because, in general, since
the term αW added to ω̃W contains a dependence on the variables µj, the function {f̃, g̃} is not the
pull-back of a function on M as well. Indeed, in general it will be of the form

{f̃, g̃} = h̃+H (1.153)

where h̃ = τ ⋆h with h ∈ F(M) and H ∈ F(M̃).
An example of this type is given in Sec. 3.3.5 when dealing with Yang-Mills theories.

To conclude the section, it is worth stressing that, in the first two cases considered, a way to
define a Poisson structure on M already exists and does not make use of the coisotropic embedding
theorem. It is the construction defined in [DGMS93] that the author used in [CDI+a] which gives
rise to the same bracket obtained above. With this in mind, the coisotropic embedding theorem was
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presented in this section as a universal tool to define a Poisson bracket on a suitable enlarged space
starting from a pre-symplectic manifold. Then, in some cases we saw that the Poisson bracket can
be "projected" from the enlarged space to the original pre-symplectic manifold obtaining the same
result obtained by applying the procedure of [DGMS93], whereas in other situations, working with
the enlarged space seems to be necessary in order to have a Poisson structure.

1.3.5 Symmetries and momentum maps via coisotropic embeddings
For pre-symplectic Hamiltonian systems (M, ω, H), given the action of a Lie group G on M,
the concepts of canonical, weakly and strongly Hamiltonian action as well as that of
momentum map and symmetry group can be defined as we did in Sec. 1.2.3. However, since in
this case ω does not induce an isomorphism between TM and T⋆M, it is not possible to construct a
one-to-one correspondence between symmetry group actions and conserved quantities as we did in
Theorem 1.2.20.

In this section, we will see that the coisotropic embedding theorem can be used as a regularization
technique also in this case. Indeed, we will see that the action of a Lie group upon (M, ω) can
be lifted in a canonical way to the enlarged manifold (M̃, ω̃) constructed out of the coisotropic
embedding theorem. What is more, we will see that if the action of G upon (M, ω) is strongly
Hamiltonian, then its lift is strongly Hamiltonian upon (M̃, ω̃) and on this enlarged manifold the
one-to-one correspondence between generators of such lifted action, say X̃ξ, and momentum maps J̃ξ
is recovered. Finally, the functions J̃ξ can be pulled-back to the original manifold M and it can be
proved that they are conserved quantities in the sense of Theorem 1.2.20.

Consider the action of a Lie group G upon a pre-symplectic manifold (M, ω), say Φ. Assume it is
strongly Hamiltonian. Assume also that the splitting given by the connection used to coisotropically
embed M into the symplectic manifold (M̃, ω̃) is equivariant with respect to such action. This
results in the fact that P is an equivariant connection. The action Φg can be lifted to M̃ to the
action Φ̃g which, in local coordinates, takes the following form:

Φ̃g(m̃) =
(

Φg(m), Φg⋆
⋆(µ)

)
, (1.154)

where Φg⋆
⋆ is the dual of the map Φg⋆ in the sense of maps between vector spaces, that is, it is the

map defined by:
⟨ Φg⋆

⋆(µ), Vm ⟩ = ⟨µ, Φg⋆Vm ⟩ , (1.155)
for µ ∈ K⋆

m. Now, as the following proposition shows, under some assumptions, such action is
strongly Hamiltonian on (M̃, ω̃), i.e., it is possible to define an equivariant (w.r.t. G) momentum
map associated to it.

Proposition 1.3.5. Assume the action of G upon M is quasi-free, that is, the map:

ig : g → TmM : ξ 7→ Xξ , (1.156)
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is injective. Consider the subbundle of TM whose fibres are Imig∩Km, call it Kgauge → M. Consider
a connection P on such bundle. Consider, as above, the pull-back of P to M̃, via τ : M̃ → M,
say P̃ . The operator P̃ is, at each point, a projector onto Km, since it is the pull-back of a projector
onto Km. Therefore, its action upon a vector field on M̃ gives its component along K. Then, the
momentum map J̃ defined by:

⟨ J̃(m̃), ξ ⟩ = ⟨ J(m), ξ ⟩ + ⟨µ, P̃ (X̃ξ) ⟩ , (1.157)

for any J being an equivariant momentum map for G acting on M, is an equivariant momentum
map for the action of G lifted to M̃.

Proof. Denote by X̃ξ the lift of Xξ to M̃, i.e., the generator of (each one-parameters group of) the
action of G lifted to M̃ and by X̃ξµ and Xv

ξ the components of X̃ξ along K⋆ and K respectively. That
(1.157) is a momentum map for X̃ξ w.r.t. ω̃ is due to the following equalities:

iX̃ξ ω̃ = iXξω︸ ︷︷ ︸
= d⟨ J(m), ξ ⟩

( · ) + ⟨X̃ξµ, · ⟩ − ⟨ · , Xv
ξ ⟩︸ ︷︷ ︸

= d⟨µ,Xv
ξ

⟩

, (1.158)

where:
d⟨µ, Xv ⟩ = d⟨µ, P̃ (X̃ξ) ⟩ . (1.159)

That J̃ is equivariant is a consequence of the fact that J and P are equivariant by assumption.

Note that, differently from the correspondence between Xξ and J, the correspondence between
X̃ξ and J̃ is one-to-one since ω̃ is strongly symplectic. Now, as we said above, the momentum map
(1.157) can be pulled-back to the original pre-symplectic manifold (M, , ω) by setting µ = 0 obtaining
Jξ = ⟨ J(m), ξ ⟩, which is a constant function along the flow of XH since J is a momentum map for
the strongly Hamiltonian action of G upon (M, ω, H).

1.4 Jet bundle formalism
This section is devoted to discuss first order prolongations of fibre bundles and how to construct their
(affine) dual bundles.

We refer to [Sau89, Kru97, RS14, Kru15] and references therein, for more details and for some
proofs.

1.4.1 Jet prolongations of fibre bundles
Consider a fibre bundle π : E → M . Here, M is an n-dimensional smooth differential manifold
where we denote by {xµ }µ=0,...,n−1 a system of local coordinates on M . We denote by E the typical
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fibre of π and by {xµ, ua }µ=0,...,n−1, a=1,...,r a system of fibered coordinates on E. Sections of π are
denoted by ϕ. The space of (local, in general) sections of π is denoted by Γ(π). At each point m of
M it can be defined an equivalence class of local sections, denoted by j1

mϕ made by all local sections
of π whose Taylor expansions at m coincide up to first order:

ϕ1, ϕ2 ∈ j1
mϕ ⇐⇒ ϕ1(m) = ϕ2(m) and ∂ (ua ◦ ϕ1)

∂xµ

∣∣∣∣∣
m

= ∂ (ua ◦ ϕ2)
∂xµ

∣∣∣∣∣
m

. (1.160)

The following facts hold [Sau89, Sect. 4.1].

Proposition 1.4.1. The set:

J1π =
{
j1
mϕ : m ∈ M , ϕ ∈ Γ(π)

}
, (1.161)

is a n+ r + nr smooth differential manifold provided with the induced coordinate system{
xµ, ua, zaµ

}
µ=0,...,n−1, a=1,...,r

(1.162)

where zaµ are defined by:

zaµ(j1
mϕ) = ∂ (ua ◦ ϕ)

∂xµ

∣∣∣∣∣
m

. (1.163)

Definition 1.4.2 (First order jet manifold). The manifold J1π is called first jet manifold
of π.

Proposition 1.4.3. π1 : J1π → M is a fibre bundle, where the projection π1 reads:

π1 : J1π → M : j1
mϕ 7→ m. (1.164)

Proposition 1.4.4. π1
0 : J1π → E is an affine fibre bundle modelled over the vector bundle

τ : π⋆ (T⋆M ) ⊗ Vπ → E where τ = τ ⋆E
∣∣∣
π⋆(T⋆M )

⊗ τE

∣∣∣
Vπ

, with τE : TE → E and τ ⋆E : T⋆E → E,
and where:

π1
0 : J1π → E : j1

mϕ 7→ ϕ(m) . (1.165)

Definition 1.4.5 (First order jet bundle). The bundle π1 : J1π → M is called first order
jet bundle of the bundle π : E → M .

Given a section ϕ of π, it is canonically defined a particular section of π1, called the first order
jet prolongation of ϕ, say j1ϕ.
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Definition 1.4.6 (First order jet prolongation of a section). Given a local section ϕ of π,
its first order jet prolongation is the unique local section of π1, say j1ϕ, such that:

j1ϕ : M → J1π : m 7→ j1
mϕ , (1.166)

which, in local coordinates, reads the local section of π1 satisfying:

π1
0

(
j1ϕ(m)

)
= ϕ(m) ∀ m ∈ UM and

(
zaµ ◦ j1ϕ(m)

)
= ∂ (ua ◦ j1ϕ)

∂xµ

∣∣∣∣∣
m

. (1.167)

The space of first order jet prolongations of sections of π is denoted by J1Γ(π).

Related to J1Γ(π), there exists a subset of Ω1(J1π) made by differential 1-forms, say η, for which
elements in J1Γ(π) are "critical", that is:(

j1ϕ
)⋆
η = 0 ∀ ϕ ∈ Γ(π) . (1.168)

We will denote by Ω1
1(J1π) such a subset of Ω1(J1π) and we call them 1-contact 1-forms. In general,

n-forms satisfying the property above, are called 1-contact n-forms and lie into a subset of the exterior
algebra of J1π denoted by Ωn

1 (J1π). The set Ωn
1 (J1π) defines a bilateral ideal of the exterior algebra

with respect to the wedge product, since ρ ∧ η ∈ Ωn+k
1 (J1π) if ρ ∈ Ωn

1 (J1π) and η ∈ Ωk
1(J1π). Such

ideal is usually called the contact ideal of J1π [Kru95]. Annihilators of the contact ideal generate
a distribution (a non involutive one) called Cartan distribution, generated by the vector fields:

∂

∂xµ
+ zaµ

∂

∂ua
, and ∂

∂zaµ
. (1.169)

Given a π-projectable vector field X along E, there is a canonical way of defining a prolongation
to a vector field along J1π, called the first order jet prolongation of X and denoted by X1.

Definition 1.4.7 (First order jet prolongation). Given a π-projectable vector field X along
E, i.e. a vector field X such that π⋆X is a vector field along M , say:

X = Xµ
x (x) ∂

∂xµ
+Xa

u(x, u) ∂

∂ua
, (1.170)

then its first order jet prolongation X1 is:

X1 = Xµ
x (x) ∂

∂xµ
+Xa

u(x, u) ∂

∂ua
+ ( dµ − zaνdµX

ν
x ) ∂

∂zaµ
, (1.171)

where:
dµ := ∂

∂xµ
+ zaµ

∂

∂ua
. (1.172)

A detailed exposition about the construction of X1 can be found in [Sau89,Kru15] and we recall
it in App. 1.A.
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1.4.2 Affine dual of jet bundles and the Covariant Phase Space
Now, we recall the construction of the extended and reduced duals of the first order jet bundle we
mentioned. We refer to [Sau89,RS14, IS17] for a more extensive discussion and for some proofs.

Being π1
0 : J1π → E an affine bundle, its dual bundle can be defined by considering the affine

dual of the typical fibre of π1
0. Indeed, the typical fibre of π1

0 over the point e ∈ E is an affine space
modelled over the vector space V = T⋆

mM ⊗ Veπ whose elements can be written in terms of the
basis { dxµ }µ=0,...,n−1 and

{
∂
∂ua

}
a=1,...,r

of T⋆
mM and Veπ as:

zaµdxµ ⊗ ∂

∂ua
. (1.173)

The affine dual of V , say V†, is the space of affine maps over V , say:

V† =
{
ϱ : V → R : vaµ 7→ ρµaz

a
µ + ρ0

}
. (1.174)

It is isomorphic to the space of 1-semibasic5 (skew-symmetric) n-covectors at e ∈ E, say Ωn
1 e(E) ≃ V†

whose generic element can, indeed, be written as:

w = ρµadua ∧ i∂µdnx+ ρ0dnx , (1.175)

where ∂µ = ∂
∂xµ

and dnx = dx0 ∧ ... ∧ dxn−1.

Definition 1.4.8 (Extended dual). The bundle over E obtained by replacing the typical fibre V of
π1

0 with its affine dual V† is called extended dual bundle of π1
0 : J1π → E and is denoted by

τ 1
0 : J†π → E.

Proposition 1.4.9. τ 1
0 : J†π → E is a vector bundle, where the projection map reads:

τ 1
0 : J†π → E : (xµ, ua, ρµa , ρ0) 7→ (xµ, ua) . (1.176)

Proposition 1.4.10. τ1 : J†π → M is a fibre bundle where the projection map reads τ1 := π ◦ τ 1
0 .

We denote by {xµ, ua, ρµa , ρ0 }µ=0,...,n−1, a=1,...,r a system of coordinates on the total space J†π of
the bundles just defined.

Note that the following short exact sequence of vector bundles over E exists:

0 ⟨ dnx ⟩ J†π V⋆ 0 (1.177)

where V⋆ is the vector bundle whose fibres are parametrized by ρµa .
5It means that they vanish when contracted along two π-vertical tangent vectors.
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Proposition 1.4.11 (Reduced dual). The quotient of J†π with respect to ⟨ dnx ⟩ is a fibre bundle
over E which is called reduced dual bundle of π1

0 : J1π → E and is denoted by δ1
0 : J⋆π → E,

where:
δ1

0 : J⋆π → E : (xµ, ua, ρµa) 7→ (xµ, ua) . (1.178)
We will often denote it by P(E) and refer to it as the covariant phase space6.

We denote by {xµ, ua, ρµa }µ=0,...,n−1, a=1,...,r a system of coordinates on the total space, J⋆π, of the
bundles just defined.

The fibre bundles constructed so far fit in the following diagram:

J†π E J⋆π

M

κ

τ1

τ1
0

π

δ1
0

δ1

(1.179)

κ being the projection associated with the quotient of J†π with respect to R.
Given a section ϕ of the bundle π : E → M the analogue for δ1 of the prolongation j1ϕ (Def.

1.4.6) is not canonically defined. However, sections of δ1 split into a section of π (that we will denote
by ϕ) and a section of δ1

0 (that we will denote by P ), in the sense of the following proposition.

Proposition 1.4.12. Given a section of δ1, say χ, and given the section ϕ := δ1
0 ◦ χ of π, there

exists a (not unique) section P of δ1
0 such that χ = P ◦ ϕ.

The space we will interested in throughout the manuscript and where we will settle the variational
calculus is the space of pairs (ϕ, P ) of sections of π and δ1

0. As we will see in Chap. 2 we will get
on such space the same set of equations of motion obtained in the literature settling the variational
calculus on Γ(δ1) [RS14]. However, we choose to work with the space of pairs (ϕ, P ) since it will
allow, for instance, to consider constraints involving the space of momenta P (as we will do in Sec.
2.2.3) and this could not be done by working with the space Γ(δ1) since, having in mind the latter
proposition, elements of Γ(δ1) do not uniquely define momenta P . We will denote such a space of
pairs by Γsplit(δ1) and, with a slight abuse of notation, we will still denote them by χ := (ϕ, P ),
where, in the system of local coordinates adopted ua ◦ ϕ =: ϕa and ρµa ◦ P =: P µ

a .

6Note that this terminology is not standard, since often people refer to the covariant phase space as the space of
solutions of the equations of the motion whereas we are referring to it as the carrier space on which we will describe
the evolution of our dynamical system.
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Appendix

1.A First order jet prolongation of vector fields
This appendix is organized as follows. First, we recall how to prolong vertical vector fields over a fiber
bundle7 to its first order jet bundle. Then, we recall how to prolong generic vector fields from a fiber
bundle to its first order jet bundle. Both procedures will be presented in two alternative ways. The
first one is the most intuitive and deals with prolongations of fibered morphisms. The second one,
dealing with the construction of a particular canonical bijection (surjection) of fiber bundles, even if
less intuitive and more involved, is necessary since it can be applied to generic vector fields over a
fiber bundle differently from the first one which only works with vertical or projectable vector fields.
For the sake of simplicity of notations, we will restrict ourselves to a fibre bundle π : E → M in
which M is an interval of the real line that we will denote by I, even if all the constructions we make
can be analogously reproduced in the case where M is any finite dimensional smooth manifold.

1.A.1 Prolongation of vertical vector fields
Prolongation of fibered morphisms

Definition 1.A.1 (Fibered morphism). Consider two fibre bundles π1 : V1 → M1 and
π2 : V2 → M2. A fibered morphism of the bundles π1 and π2 is a smooth map Φ from V1 to V2,
such that there exists a smooth map Φ̄ from M1 to M2 such that the following diagram commutes:

V1 V2

M1 M2

π1

Φ

π2

Φ

(1.180)

When the fibre bundles π1 and π2 coincide the morphisms is said to be a fibered automorphism.

Consider a fibered morphism of π over a diffeomorphism, i.e., such that Φ is a diffeomorphism.
Consider a section of π1, say ϕ. Then, a section of π2, say ϕΦ, is defined as the one making the

7Actually the construction is valid for generic fibered manifolds.
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following diagram commutative:
V1 V2

M1 M2

π

Φ

πϕ

Φ−1

ϕΦ (1.181)

that is, Φ ◦ ϕ ◦ Φ−1 = ϕΦ. Note that Φ−1 exists by the assumption that Φ is a diffeomorphism. The
first order jet prolongations of ϕ and ϕΦ can be considered:

J1π1 J1π2

V1 V2

M1 M2

π11
0 π21

0

π1

Φ

π2ϕ

j1ϕ

Φ

Φ−1

ϕΦ
j1ϕΦ

(1.182)

Definition 1.A.2 (First order jet prolongation of an automorphism). The first order
jet prolongation of the morphism Φ is defined to be the map j1Φ that makes the following
diagram commutative:

J1π1 J1π2

V1 V2

M1 M2

π11

π11
0

j1Φ

π21

π21
0

π1

Φ

π2

ϕ
j1ϕ

Φ

Φ−1

ϕΦ
j1ϕΦ

(1.183)

that is, the one satisfying:

Φ ◦ π1
1
0 = π2

1
0 ◦ j1Φ , Φ ◦ π11 = π21 ◦ j1Φ , (1.184)

together with:
j1ϕΦ = j1Φ ◦ j1ϕ ◦ Φ−1

. (1.185)

Prolongation of vertical vector fields via prolongation of morphisms

Consider a fibre bundle π : E → I, where I is an interval of the real line8.
8As we already said in Sect. 1.4.1, this requirement is not necessary for most of the forthcoming definitions and

constructions and we will keep it only for the sake of notational convenience.
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Let us consider a π-vertical vector field X along E, that is, a vector field X along E such that
π⋆X = 0. Denote by FX

s its local flow. Since X projects via π onto the null vector field, FX
s is

a particular fibered automorphism of π over a diffeomorphism, namely, an automorphism over the
identity:

E E

I
π

FXs

π
(1.186)

Such automorphism can be prolonged to an automorphism j1FX
s of J1π as explained in the previous

paragraph:
J1π J1π

E E

I

π1
0

j1FXs

π1
0

π

FXs

π

(1.187)

Then, the prolongation of X is defined to be the (unique) vector field X1 on J1π whose local
flow is j1FX

s . Consider local coordinates of the type { t, qj }j=1,...,n on E where { t } represents local
coordinates on I and the induced local coordinate on J1π

{
t, qj, qjt

}
j=1,...,n

. A direct calculation
shows that, given a π-vertical vector field X, whose coordinate expression is:

X = Xj
q (t, q)

∂

∂qj
, (1.188)

its prolongation reads:
X1 = Xj

q (t, q)
∂

∂qj
+ dtX

j
q (t, q)

∂

∂qjt
, (1.189)

where
dt := ∂

∂t
+ vj

∂

∂qj
. (1.190)

Prolongation of vertical vector fields via canonical isomorphism

Consider the bundles:
J1π Vπ

I I

π1 νπ (1.191)
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As a matter of fact the bundles J1νπ and VJ1π are isomorphic (see [Sau89] Theorem 4.4.1 at
page 125), the isomorphism denoted by i1. An easy way to convince yourself about this fact
is to use local coordinates (see [Sau89] for the coordinate-free proof). Denote by { t, qj }j=1,...,n

local coordinates on E. Adapted coordinates on J1π can be denoted by
{
t, qj, qjt

}
j=1,...,n

and on
Vπ1 by

{
t, qj, qjt , v

j
q , v

j
(qt)

}
j=1,...,n

. On the other hand, on Vπ local coordinates can be denoted by{
t, qj, vjq

}
j=1,...,n

and, consequently, on J1νπ by
{
t, qj, vjq , q

j
t , (vq)jt

}
j=1,...,n

. Therefore, the isomorphism
i1 is the linear map that projects onto the identity on I, switches qjt and vjq and that identifies vj(qt)
and (vq)jt .

This isomorphism can be used to prolong a π-vertical vector field on E to a π1-vertical vector field
over J1π. Indeed, a π-vertical vector field on E is a section, say X, of the following bundle:

E Vπ

I
π

X
νπ

ν

(1.192)

As a bundle morphism over the identity, it can be prolonged to a bundle morphism j1X:

J1π J1νπ

E VE

I

j1X

π1
0

π1

νπ1
0

νπ1

π
X

νπ

ν (1.193)

j1X is not yet a (π1-vertical) vector field over J1π since it is not a section of VJ1π → J1π. However,
its image via the isomorphism i1 is, as it is proven in [Sau89] (section 4.4).

Vπ1

J1π J1νπ

E VE

I

i−1
1

νπ1

X1

j1X

π1
0

π1

i1

νπ1
0

νπ1

π X
νπ

ν

(1.194)
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Again, an easy way to convince yourself about this fact is by using local coordinates. Consider a
vertical vector field over E, say:

X = Xj
q (t, q)

∂

∂qj
. (1.195)

As a bundle morphism between π and νπ it reads:

X : E → Vπ : (t, qj) 7→ (t, qj, Xj
q (t,q)) . (1.196)

The first order jet prolongation of such a morphism is readily computed by using the definition
(1.183):

j1X : J1π → J1νπ : (t, qj, qjt ) 7→
(
t, qj, Xj

q (t, q), q
j
t ,

d

dt
Xj
q (t, q)

)
. (1.197)

Finally:

X1 := i1 ◦ j1X : J1π → Vπ1 : (t, qj, qjt ) 7→
(
t, qj, qjt , X

j
q (t, q), d

dt
Xj
q (t, q)

)
. (1.198)

Thus:
X1 = Xj

q (t, q)
∂

∂qj
+ d

dt
Xj
q (t, q)

∂

∂qjt
. (1.199)

1.A.2 Prolongation of generic vector fields
Prolongation of projectable vector fields via prolongation of morphisms

If the vector field we want to prolong is a π-projectable one, the procedure described for vertical
ones which makes use of the concept of prolongation of morphism must be slightly modified. Indeed,
consider a π-projectable vector field on E, say X, and denote its projection to I by X. Denote the
local flow of X by FX

s . Provided with the assumption of π-projectability, it is actually a bundle
morphism over a diffeomorphism on I, namely, the local flow of X, say FX

s . Then, the first order jet
prolongation of the morphism FX

s is the one closing the diagram:

U1 Ũ1

U Ũ

U0 Ũ0

π1

π1
0

j1FXs

π1

π1
0

π

FXs

π
ϕ

j1ϕ

FXs

FXs
−1

ϕs
j1ϕs

(1.200)

51



where U0 and U1 are open sets of I and E on which FX
s and FX

s are, respectively, defined, U1 is the
image of U0 under j1ϕ and Ũ0, Ũ and Ũ1 are the images of U0, U and U1 under FX

s , FX
s and j1FX

s

respectively. Consequently, the first order jet prolongation of the vector field X can be defined as the
unique vector field on J1π whose local flow is the j1FX

s defined above. Its coordinate form is seen to
be (see [Kru97] page 32 or [Kru15] section 1.7):

X1 = Xt
∂

∂t
+Xj

q

∂

∂qj
+
(
d

dt
Xj
q − qjt

d

dt
Xt

)
∂

∂qjt
. (1.201)

Prolongation of vector fields via canonical surjection

For generic vector fields on E the lifting procedure described for vertical ones that makes use of the
isomorphism i1 does not work. Indeed, in this case the vector field X is a section of the tangent
bundle TE. The jet prolongation of X seen as a fibered morphism is a morphism between the J1π
and J1τπ appearing in the following diagram:

J1π J1τπ

E TE

I

π1
0

j1X

τπ1
0

X
π

τ

τπ

(1.202)

Therefore, again, it is not actually a vector field over J1π. However, in this case an analogue
of the isomorphism i1 does not exist, simply because J1τπ is not isomorphic to TJ1π. This can
be easily seen by noting that dimJ1τπ = 3 + 4n (n being the dimension of the fibre of π) while
dimTJ1π = 2(1 + 2n) = 2 + 4n. However a canonical surjection from J1τπ to TJ1π can be
constructed in order to obtain a vector field on J1π from j1X.

Canonical surjection from J1τπ to TJ1π As it is proven in [Sau89] (definition 4.4.7 and
proposition 4.4.8 at page 132), a map r1 can be canonically constructed which is a surjection from
J1τπ to TJ1π. Moreover, it is a bundle morphism over the identity between J1τπ and TJ1π seen as
bundles over TE. We recall very briefly its definition. It is defined upon specifying its action over the
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first order jet prolongation of a generic section ψ of τπ, say j1ψ, which is a section of τπ1 = τπ ◦ τπ1
0:

J1τπ

E TE

I TI

τπ1
0

π

τ

τπ

Tπ

j1ψ

ψ

τI

(1.203)

For any fixed ψ, the sections ψv = τ ◦ ψ and ψh = Tπ ◦ ψ of π and τI are defined:

J1τπ

E TE

I TI

τπ1
0

π

τ

τπ

Tπ

ψh

ψv

j1ψ

ψ

τI

(1.204)

ψh can be seen as the “horizontal” part of ψ, while ψv can be used to extract a canonical vertical
part of ψ. Indeed, it is readily proved that Tψv ◦ ψh is again a section of τπ and that ψ − Tψv ◦ ψh is
Tπ-vertical (see [Sau89] proposition 4.4.8 at page 132). Now, the “horizontal” part of ψ gives rise to
a map onto TJ1π upon composing it with Tj1ϕ:

J1π TJ1π J1τπ

E TE

I TI

π1
0 Tπ1

0

τπ1
0

π

τ

τπ

Tπ

j1ψv

ψh

ψv

j1ψ

ψ

τI

Tj1ψv

(1.205)
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On the other hand, the vertical part of ψ gives rise to a map onto TJ1π upon taking the first jet
and composing it with the isomorphism i1 as we did for vertical vector fields. Thus, the canonical
surjection is defined via its action on a generic j1ψ in the following way

r1(j1
rψ) = i1

[
j1
r (ψ − Tψv ◦ ψh)

]
+
(
Tj1ψv

)
ψhr . (1.206)

r being a point in I. Explicitly, given the section ψ:

ψ : I → TE : t 7→ (t, ϕ(t), Xt(t), Xq(t)) (1.207)

then:

ψh : I → TI : t 7→ (t, Xt(t)) (1.208)
ψv : I → E : t 7→ (t, ϕ(t)) (1.209)

Consequently:

j1ψv : I → J1π : t 7→ (t, ϕ(t), ϕ̇(t)) (1.210)
Tj1ψv : TI → TJ1π : (t, vt) 7→ (t, ϕ(t), ϕ̇(t), vt, vtϕ̇(t), vtϕ̈(t)) (1.211)
Tψv : TI → TE : (t, vt) 7→ (t, ϕ(t), vt, vtϕ̇(t)) (1.212)

and, thus:

Tψv ◦ ψh : I → TE : t 7→ (t, ϕ(t), Xt(t), Xt(t)ϕ̇(t)) (1.213)
Tj1ψv ◦ ψh : I → TJ1π : t 7→ (t, ϕ(t), ϕ̇(t), Xt(t), Xt(t)ϕ̇(t), Xt(t)ϕ̈(t)) (1.214)

from which it is clear that Tψv ◦ ψh is a section of τπ. Finally:

ψ − Tψv ◦ ψh : I → TE : t 7→ (t, 0, 0, Xq(t) −Xt(t)ϕ̇(t)) (1.215)

from which it is clear that ψ − Tψv ◦ ψh is Tπ-vertical. We have:

j1(ψ − Tψv ◦ ψh) : I → J1τπ : t 7→
(
t, 0, 0, Xq(t) −Xt(t)ϕ̇(t),

0, d
dt
Xq(t) − d

dt
Xt(t)ϕ̇(t) −Xt(t)ϕ̈(t)

) (1.216)

and, thus:

i1
[
j1(ψ − Tψv ◦ ψh)

]
: I → TJ1π : t 7→

(
t, 0, 0, 0, Xq(t) −Xt(t)ϕ̇(t),

d

dt
Xq(t) − d

dt
Xt(t)ϕ̇(t) −Xt(t)ϕ̈(t)

) (1.217)
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Now, taking into account (1.217) and (1.214), we obtain the action of the map r1 over the first order
jet prolongation of a section ψ:

r1(j1ψ) : I → TJ1π : t 7→
(
t, ϕ(t), ϕ̇(t), Xt(t), Xq(t),

d

dt
Xq(t) − ϕ̇(t) d

dt
Xt(t)

)
. (1.218)

From the latter equation, the expression of r1 as surjection from J1τπ to TJ1π is readily obtained:

r1 : J1τπ → TJ1π :
(
t, qj, vt, v

j
q , q

j
t , (vt)t, (vjq)t

)
7→
(
t, qj, qjt , vt, v

j
q , (vjq)t − qt(vt)t

)
(1.219)

The map r1 can be used to prolong a generic vector field on E in the following way. Let X be a
vector field on E and let ϕ be a generic section of π. Then, the first order jet prolongation of X is
defined as follows:

X1
j1
rϕ

:= r1
[
j1
r (X ◦ ϕ)

]
. (1.220)

Explicitly, given the vector field:

X = Xt(t, q)
∂

∂t
+Xj

q (t, q)
∂

∂qj
, (1.221)

its first jet prolongation reads:

X1 = Xt(t, q)
∂

∂t
+Xj

q (t, q)
∂

∂qj
+
[
d

dt
Xj
q − qjt

d

dt
Xt

]
∂

∂qjt
. (1.222)
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Chapter 2

Multi-symplectic formulation of classical
field theories

In this chapter we pose the basis for the geometrical description of dynamical systems both finite and
infinite-dimensional that we will carry on in the successive chapters. In particular we will describe the
multi-symplectic formulation of Mechanical systems both in the Lagrangian, addressed in 2.1.1, and
in the Hamiltonian setting, addressed in 2.1.2. We also devote a section (Sec. 2.1.3) to Hamiltonian
mechanical systems with additional constraints where we see how to use the Lagrange multipliers
theorem within the multi-symplectic framework. Following the same path, we proceed by addressing
first order1 Lagrangian field theories, in Sec. 2.2.1, Hamiltonian field theories, addressed in 2.2.2,
and Hamiltonian field theories with additional constraints, addressed in 2.2.3. In particular both in
Mechanics and within field theories, we will show how multi-symplectic geometry provide a suitable
framework to develop an intrinsic (geometric) variational formulation of dynamical systems.

Again we refer to the existing literature for more details and for some proofs. In particular we
refer, for instance, to [Kru97,AA80] and references therein for more details about the multi-symplectic
formulation of Lagrangian and Hamiltonian mechanical systems. Regarding field theories the literature
is huge and we report here a, far from exhaustive, list of references where more details can be found
regarding the multi-symplectic formulation of classical field theories both in the Lagrangian and in
the Hamiltonian formalism [TK79,BSF88,CCI91,GMS97,FF03,GMS09,Kru15, IS17].

2.1 A trivial example: point particle Mechanics
As we said, we start with the multi-symplectic formulation of finite dimensional mechanical systems
that, as it will become clear, can be seen as a trivial example of field theories over a 0 + 1-dimensional

1As we will see this means we will consider only theories where the Lagrangian depends on the fields of the theory
and their derivatives up to the first order.

56



space-time.

2.1.1 Lagrangian formulation
It is a well established fact (see [Kru97] and references therein) that a natural setting for the Lagrangian
description of a mechanical system of the "Newtonian type" (i. e. whose evolution is described by
means of second order differential equations) is the first order jet bundle of a suitable fibration.
We start by assuming that to every dynamical system it is associated an n-dimensional differential
manifold, say Q, called configuration space (see [MSSV85, Chapter 3] for a detailed discussion
about the construction of the configuration space starting from experimental data and about its
mathematical, physical and philosophical implications; see also [CMS19]).

Consider the following trivial fibre bundle:

Q

I

π (2.1)

where Q = I × Q, I is an interval of R and π is the canonical projection onto the second factor.
Trajectories of the dynamical system can be modelled as particular sections of π:

Q

I

πγ (2.2)

emerging as solutions of a variational problem that we are going to describe.
Consider the first order jet bundle of π, J1π, introduced in 1.4.1:

J1π

Q

I

π1
0

π1

π

(2.3)

equipped with the system of local coordinates { t, qj, vj }j=1,...,n.
Definition 2.1.1 (Lagrangian). A Lagrangian is a π1-horizontal 1-form on J1π, i. e., a
differential 1-form on J1π, say λ, such that iV λ = 0 ∀ V being π1-vertical. In the system of local
coordinates chosen it reads:

λ = L (t, q, v) dt , (2.4)
where L is a smooth function on J1π.
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In terms of it, an action functional can be defined on the space of sections of π as follows.
Definition 2.1.2 (Action functional). Given a Lagrangian over J1π, an action functional
is a real-valued function on the space of sections of π, Γ(π), given by:

S : Γ(π) → R : γ 7→ Sγ =
∫

I

(
j1γ

)⋆
λ (2.5)

whose coordinate expression is:
Sγ =

∫
I
L (t, γ(t), γ̇(t))dt , (2.6)

and where j1γ ∈ Γ(π1) is the first order jet prolongation of the section γ defined in 1.4.1.
Remark 2.1.3. Let us stress that two problems arise from the latter definition. First, the integral in
(2.5) may be not well defined for all γ ∈ Γ(π). Moreover, Γ(π) is the space of smooth sections of a
fibre bundle and, therefore, it is not a Banach manifold, in general even if it would be very useful to
deal with it as a Banach manifold in order to being allowed to use the whole machinery introduced
in 1.1. In order to work on a space of γs for which the action is well defined and which has the
structure of a Banach manifold, the idea we will use is the following. We will consider a subset of
Γ(π), say Γ(π)E, of suitably regular sections, such that (2.5) is well defined on it, such that it is
locally isomorphic to a Banach space (E, ∥ · ∥) and such that S is continuous with respect to ∥ · ∥.
Then, we will locally consider the completion Γ(π)E

∥ · ∥ =: FQ. The action functional is now well
defined on the Banach manifold FQ since it can be extended by continuity to the completion above.

From now on, from the abstract point of view, we will proceed by considering S to be directly
defined on the Banach manifold FQ but the fact that a suitable Banach norm exists on Γ(π), in which
S is continuous, should be proved case by case in the examples considered.

Clearly, (2.5) is defined up to the addition of an element in the contact ideal to the Lagrangian λ.
As we will see in the sequel, such an ambiguity can be fixed by asking that the first variation of S
split into a boundary contribution plus a "bulk" contribution.

Let us first describe how to compute the first variation of S . Consider a tangent vector to FQ

at γ, say Xγ being π-vertical. Then, consider an "extension" of it to a vector field, say X, on a
neighborhood U (γ) of the image of γ in Q, i. e., a (π-vertical) vector field on U (γ) which coincides
with Xγ when restricted to the image of γ. Being X π-vertical, its flow FX

s is, for each value of the
parameter s, a bundle morphism of π over the identity. Then, γs := FX

s ◦ γ is again a section of π as
the following chain of equalities shows:

π ◦ γs = π ◦ FX
s ◦ γ = 1 ◦ π ◦ γ︸ ︷︷ ︸

=1

= 1 . (2.7)

Thus γs := FX
s ◦ γ is a family of sections of π commonly called a "variation" of the section γ induced

by the tangent vector Xγ. Note that γ0 = γ. The functional:

Sγs =
∫

I

(
j1γs

)⋆
λ (2.8)
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is a functional depending on the parameter s associated with the flow of the vector field X. Then,
the variation of S induced by the tangent vector Xγ is defined to be:

δXγSγ := d

ds
Sγs

∣∣∣∣
s=0

. (2.9)

Thus:

δX(γ)Sγ = d

ds

∣∣∣∣
s=0

∫
I

(
j1γs

)⋆
λ = d

ds

∣∣∣∣
s=0

∫
I

(
j1FX

s ◦ j1γ
)⋆
λ =

= d

ds

∣∣∣∣
s=0

∫
I

(
j1γ

)⋆
◦
(
j1FX

s

)⋆
λ =

=
∫

I

(
j1γ

)⋆
◦
[
d

ds

(
j1FX

s

)⋆ ∣∣∣∣
s=0

λ

]
=
∫

I

(
j1γ

)⋆
[ LX1 λ ]

(2.10)

where in the first step we used (1.185) for the morphism FX
s , then the fact that (f ◦ g)⋆ = g⋆ ◦ f ⋆,

then the fact that j1FX
s is a smooth function on J1π which is C1 with respect to the parameter s (in

order to put the derivative inside the integral) and finally the definition of the Lie derivative of a
differential form along a vector field together with the definition of first order jet prolongation of a
vector field on Q (see Appendix 1.A). Note that, since we are considering the pull-back via j1γ inside
the integral, the variation of S induced by Xγ does not depend on the particular extension X chosen
to define the variation of γ. Using the properties of the Lie derivative we get two terms out of the
variation of S :

δXγSγ =
∫

I

(
j1γ

)⋆
iX1dλ+

∫
∂I

i⋆∂I

(
j1γ

)⋆
iX1λ , (2.11)

where the fact that the differential is a natural operator with respect to the pull-back and the Stokes‘
theorem were used and where i∂I is the canonical immersion of ∂I into I. The previous equation
has the structure of a "boundary term" plus an integral over the whole I. In order to implement a
variational principle in the sense of Schwinger-Weiss2 and to extract from it a differential equation
with an intrinsic procedure, we must "isolate" the boundary contribution, that is, we must be sure that
the integral over I would not give rise to other boundary terms. By looking at the local expression of
X1 in (1.201) it is clear that this is not the case in general. Indeed, the terms containing the operator
d
dt

in X1 may give rise to boundary contributions after integrations by parts. However, recalling that
the Lagrangian λ is only defined up to elements in the contact ideal, it is possible to use such a
freedom in the definition of the Lagrangian to fix this situation. In order to avoid the emerging of
boundary contributions from the first term in (2.11) we can fix the element in the contact ideal, say
η, in such a way that:

iX1 d(λ+ η ) (2.12)
2The variation only can depend on boundary terms.
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does not depend on the π1
0-vertical component of X1 which is the one containing the total derivative

operator. This is equivalent to ask:

(j1γ)⋆ [iV d(λ+ η)] = 0 (2.13)

for all π1
0-vertical vector field V . A straightforward calculation (see [Kru97] example 3.2.1 at page 43)

shows that in order for this to happen, η must be:

η = ∂L

∂vj
(dqj − vjdt) , (2.14)

and, thus, that the Lagrangian, after fixing η reads:

ΘL := λ+ η = ∂L

∂vj
dqj −

(
vj
∂L

∂vj︸ ︷︷ ︸
∆L

−L

)
dt = ∂L

∂vj
dqj − EL dt =: πL

j dqj − EL dt , (2.15)

where ∆ = vj ∂
∂vj

is the (push-forward to J1π of the) so-called partial linear structure of TQ.
The differential form ΘL obtained by fixing the element in the contact ideal following the previous
prescriptions is called a Lepagean equivalent3 of the Lagrangian λ and the previous result shows
that the Lepage equivalent of a first order4 Lagrangian is the well known Poincaré-Cartan form.
In terms of it, equation (2.11) becomes:

δXγSγ =
∫

I

(
j1γ

)⋆
iX1dΘL +

∫
∂I

i⋆∂I

(
j1γ

)⋆
iX1 ΘL (2.16)

where now, the boundary contributions only come from the second term. Equation (2.16) is usually
called in the literature first variational formula or first fundamental formula. The
differential of ΘL is:

dΘL = −dπL
j ∧ dqj − dEL ∧ dt =: ωL − dEL ∧ dt . (2.17)

3An extensive literature exists on the subject. The Lepagean equivalent of a Lagrangian is uniquely defined by the
previous arguments only for first order jet bundles and when the base manifold is 1-dimensional, i. e., for "Newtonian"
Mechanics [Kru97,KKS10]. Further (canonical) restrictions can be imposed in order to obtain a generalization of the
Poincarè-Cartan form on higher order jet bundles when the base manifold is 1-dimensional but only for first order jet
bundles in case the base manifold has dimension higher then 1 [Sni70,BSF88,Got91a,HK83,SS18]. This means that a
Poincarè-Cartan form can be canonically defined for Mechanics at any order but for Field Theories only in the first
order case excluding higher order Field Theories like the Einstein-Hilbert formulation of Gravity (with this in mind
Palatini’s formulation acquires a particular important role from the geometrical point of view). For higher order Field
Theories it is possible to uniquely define a Poincarè-Cartan form with the additional (not canonical) structure of a
linear connection on the base space [Kol84].

4In the sense that it is defined on a first order jet bundle.
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Now a Schwinger-Weiss variational principle can be implemented in an intrinsic way because the fact
that the variation of S must depend only on boundary contributions is equivalent to the fact that
the first term in (2.16) must vanish ∀ X:∫

I

(
j1γ

)⋆
iX1dΘL = 0 ∀ X ∈ Xv(U (γ)) (2.18)

where Xv(U (γ)) is the module of π-vertical vector fields on the open subset U (γ) of Q. The fundamental
lemma of the Calculus of Variations leads to the following equation:(

j1γ
)⋆
iX1dΘL = 0 ∀ X ∈ Xv(U (γ)) (2.19)

which is a (generally implicit) differential equation whose solutions are given as critical mappings of
a differential form, that is, mappings j1γ along which a differential form (iX1dΘL ) vanishes. The
coordinate expression of (2.19) is the celebrated system of Euler-Lagrange equations:

d

dt

∂L

∂vj
(t, γ(t), γ̇(t)) − ∂L

∂qj
(t, γ(t), γ̇(t)) = 0 , (2.20)

where d
dt

represents the total derivative.
Note that the left hand side of (2.18), i.e., the first term in the right hand side of (2.16), is linear

in X1 and, thus, it can be seen as a differential 1-form on FQ following the definition below.

Definition 2.1.4 (Euler-Lagrange form). Given a Lagrangian λ and the corresponding action
functional S , the Euler-Lagrange form is the differential 1-form on the space FQ on which S
is defined, defined by the first term on the left hand side of (2.16):

EL : FQ → T⋆
γFQ : γ 7→ ELγ , (2.21)

such that:
iXγELγ = ELγ(Xγ) =

∫
I

(
j1γ

)⋆
iX1dΘL , ∀ Xγ ∈ TγFQ , (2.22)

where X1 is the first order jet prolongation of any extension of X to a vector field on an open
neighborhood of the image of γ in Q.

Consequently to the latter definition, it is natural to define the space of solutions of the equations
of motion of our system (the solution space from now on), as follows.

Definition 2.1.5 (Solution space). Given a dynamical system described by the Lagrangian λ, the
solution space associated to it is defined as the set of zeros of the Euler-Lagrange form associated
to λ, say EL :

EL : = { γ ∈ FQ : ELγ = 0 } =
=
{
γ ∈ FQ :

(
j1γ

)⋆
iX1dΘL = 0 ∀ X ∈ X(U (γ))

}
=

= { γ ∈ FQ : solutions of (2.20) } .
(2.23)
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We will always assume EL to be a smooth immersed submanifold of FQ, the immersion denoted by
iEL .

Remark 2.1.6. In order to make contact with the usual description of classical Mechanics on the
tangent bundle of a configuration manifold, let us first note that J1π ≃ I × TQ. Now, if L does not
explicitly depend on t5, i.e., it is the pull-back of a function on TQ, say L̄ , then ωL is the pull-back
of the differential form ω̄L on TQ:

ω̄L = −ddSL̄ , (2.24)
where:

S = dqj ⊗ ∂

∂vj
(2.25)

is the so-called soldering form on TQ and:

dSL̄ = S ◦ dL̄ = ∂L̄

∂vj
dqj , (2.26)

is the so called Nijenhuis differential associated to the (1, 1) tensor S applied to the function
L (see [MFL+90] for a review of differential calculus associated to (1, 1) tensors on manifolds).
Furthermore, also the function EL appearing in (2.17) turns out to be the pull-back of a function on
TQ, say ĒL , and, if ωL is symplectic, solutions of (2.19) turn out to be integral curves of the second
order vector field Γ̄ on TQ satisfying:

iΓ̄ω̄L = dĒL , (2.27)
whereas, if ωL is only pre-symplectic, solutions turn out to be solutions of the pre-symplectic Hamilto-
nian system (TQ, ωL , EL ). The latter equation is the usual form of Euler-Lagrange equations on
the tangent bundle.

Let us stress that throughout the whole manuscript we will always consider dynamical systems of
this type both within Mechanics and within field theories. Within field theories this choice is motivated
by the fact that we are interested in fundamental theories, namely, those describing fundamental
interactions for which the assumptions above are met.

It is interesting to stress that, for autonomous systems, a geometrical interpretation of solutions of
Euler-Lagrange equations can be given within the so called Tulczyjew triples approach, where it
can be proved that they are actually (Lagrangian) submanifolds of TT⋆Q [Tul89]. Having in mind that
an implicit (first order) differential equation over a manifold, M, can be defined as a submanifold of
its tangent bundle (see [MMT95]), this underlines, once more, the fact that Euler-Lagrange equations
are implicit equations (on T⋆Q).

We conclude this section with an example in order to fix the ideas about the machinery introduced
so far.

5Systems of this type are called autonomous
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Example 2.1.7 (Free particle on the line). Let us consider a free particle moving on a line.
In this case the configuration manifold is Q = R and the bundle (2.1) is π : Q = I × R → I where
I = [a, b] ⊂ R. We denote by { t, q} a system of coordinates on Q, where t is the coordinate on the
interval I and by γ the sections of π. The first order jet bundle J1π reads J1π = I × R2 where we
consider { t, q, v } as a system of coordinates. The Lagrangian describing the dynamical systems is:

λ = 1
2mv

2 dt , (2.28)

m representing the mass of the particle, which gives rise to the following action functional:

Sγ =
∫ b

a

(
j1γ

)⋆
λ =

∫ b

a

1
2 mγ̇

2(t) dt . (2.29)

The space Γ(π) of smooth sections of π is not a Banach space. However, it can be equipped with the
following norm:

∥ γ ∥1 = supt∈I| γ(t) | + supt∈I| γ̇(t) | , (2.30)
and, as the following chain of inequalities proves6

∣∣∣Sγ − Sγ̃

∣∣∣ ≤ 1
2m

∫ b

a

∣∣∣ ( γ̇(t)2 − ˙̃γ(t)2
) ∣∣∣ dt ≤

≤ 1
2m

∫ b

a

[ ∣∣∣ γ̇(t)(γ̇(t) − ˙̃γ(t))
∣∣∣+ ∣∣∣ ˙̃γ(t)(γ̇(t) − ˙̃γ(t))

∣∣∣ ] ≤

≤ b− a

2m
[

supt∈I| γ̇(t) | supt∈I| γ̇(t) − ˙̃γ(t) | + supt∈I| ˙̃γ(t) | supt∈I| γ̇(t) − ˙̃γ(t) |
]
,

(2.31)

S is continuous with respect to the ∥ · ∥1-norm defined above. Indeed, the last term of the chain
of inequalities above vanishes as ∥ γ − γ̃ ∥1 approaches zero. Consequently, S can be extended by
continuity to the completion Γ(π)∥ · ∥1 =: FQ which is, indeed, a Banach space. The contact form η in
(2.14) is easily computed to be:

η = mv (dq − vdt) , (2.32)
giving rise to the following Lepage equivalent:

ΘL = mv dq − 1
2mv

2dt . (2.33)

The Lepage equivalent above gives rise to the following first fundamental formula:

δXγSγ =
∫ b

a

(
j1γ

)⋆
[ iX1 (mdv ∧ dq −mvdv ∧ dt )] +

(
j1γ

)⋆ [
iX1

(
mvdq − 1

2mv
2dt

)]∣∣∣∣∣
b

a

, (2.34)

6We are denoting by γ and γ̃ two different sections of π.
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where X1 is the first order jet prolongation of a π-vertical vector field X on Q defined in a neighborhood
of the image of γ, i.e., it is a vector field of the type:

X1 = Xq
∂

∂q
+ v

∂Xq

∂q

∂

∂v
, (2.35)

where Xq is a function on Q = I × R defined for all t ∈ I and for q close7 to γ(t). On the other hand,
Xγ is the map:

Xγ : I → Tγ(t)Q : t 7→ X(γ(t)) = Xq(t, γ(t)) ∂
∂q

∣∣∣∣∣∣
γ(t)

=: Xγ[γ] δ
δγ

, (2.36)

following the notation (1.52). The first term on the left hand side is the (contraction of the tangent
vector Xγ along the) Euler-Lagrange form associated to the Lagrangian describing our dynamical
system. Equation (2.19) reads:

(
j1γ

)⋆ [
i1XdΘL

]
=
(
j1γ

)⋆ [
−mXqdv +mv

∂Xq

∂q
dq −mv2 ∂Xq

∂q
dt
]

=

=
[

−Xγmγ̈ +mγ̇
δXγ

δγ
γ̇ −mγ̇2 δXγ

δγ

]
dt = −Xγmγ̈ dt = 0 ∀ Xγ ,

(2.37)

which gives:
γ̈(t) = 0 . (2.38)

Let us stress that the Lagrangian considered is of the type that in Rem. 2.1.6 we called autonomous.
Indeed, the function L does not depend on t and, thus, it is the pull-back of a function L̄ on
TQ = R2 having the same expression:

L̄ = 1
2mv

2 . (2.39)

Consequently:
ωL = mdq ∧ dv , (2.40)

is the pull-back of the differential form ω̄L on TQ = R2 having the same expression:

ω̄L = mdq ∧ dv , (2.41)

where, as a straightforward computation shows:

ω̄L = −ddSL̄ . (2.42)
7In the sense of the sup-norm defined on FQ.
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On the other hand:
EL = v

∂L

∂v
− L = 1

2mv
2 , (2.43)

is the pull-back of a function, ĒL on TQ = R2 having the same expression:

ĒL = 1
2mv

2 . (2.44)

The Hamiltonian equations associated to the Hamiltonian system (TQ, ω̄L , ĒL ) read:

iΓ̄ω̄L = dĒL , (2.45)

for the vector field Γ̄ on TQ:
Γ̄ = Γ̄q

∂

∂q
+ Γ̄v

∂

∂v
(2.46)

that are:
−Γ̄v dq + Γ̄q dv = v dv , (2.47)

which give:
Γ̄v = 0 , Γ̄q = v . (2.48)

The integral curves of the vector field just defined, are curves (γ(t), v(t)) on TQ satisfying:

γ̇(t) = v(t), v̇(t) = 0 , (2.49)

which are the tangent lift to TQ of the curves on Q satisfying:

γ̈(t) = 0 . (2.50)

2.1.2 Hamiltonian formulation
The Hamiltonian formalism is settled on the reduced dual of J1π, i.e. what we called the Covariant
Phase Space in 1.4.1. Here, being π : Q → I the fibre bundle underlying the theory, we will denote
the Covariant Phase Space by P(Q). Since we used { t, qj, vj }j=1,...,n as local coordinates on J1π, we
will use { t, qj, pj, p0 }j=1,...,n as local coordinates on the extended dual J†π and { t, qj, pj }j=1,...,n as
local coordinates on the Covariant Phase space, P(Q).

Definition 2.1.8 (Hamiltonian). A Hamiltonian is a (local, in general) section of the projection
κ appearing in the diagram (1.179), i.e., a (local, in general) map:

H : J⋆π → P(Q) : (t, qj, pj) 7→
(
t, qj, pj, H(t, q, p)

)
. (2.51)
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Recalling the content of Sec. 1.4.2, the extended dual of π, say J†π, has a canonical 1-semibasic
n-form (actually a 1-form in this case), i.e.:

w = pjdqj + p0dt =: θ + p0dt , (2.52)

where θ is the so called tautological form of T⋆Q. For any fixed Hamiltonian, it is possible to
pull-back the canonical structure above to P(Q), in order to obtain a canonical structure on the latter
space, which, under suitable conditions on H, turns to be a contact form [CDI+20c,CDI+20b], in the
sense that w ∧ dw ∧ ... ∧ dw︸ ︷︷ ︸

n times

̸= 0. The pull-back of (2.52) via −H8 reads:

ΘH := ( −H )⋆ w = θ −Hdt . (2.53)

The latter is the Hamiltonian counterpart of the Lepagean equivalent introduced in the previous
section.

In this section, elements of Γsplit(δ1) defined in Sec. 1.4.2, will be denoted by ξ = (γ, ϱ) where
qj ◦ γ =: γj and pj ◦ ϱ =: ϱj.

Definition 2.1.9 (Action functional). Given a Hamiltonian over P(Q), an action functional
is a real-valued function on Γsplit(δ1) given by:

S : Γsplit(δ1) → R : ξ 7→ Sξ =
∫

I
ξ⋆ ΘH , (2.54)

whose coordinate expression is:

Sξ =
∫

I

[
ϱj(t) γ̇j(t) −H(γ(t), ϱ(t), t)

]
dt . (2.55)

Remark 2.1.10. As in the Lagrangian formalism, let us stress that Γsplit(δ1) is not a Banach
manifold, in general, and that we again assume to be able to perform a completion procedure of the
type described in Rem. 2.1.3 in order to obtain a suitable Banach manifold that we will denote by
FP(Q).

The first variation of S in this case is described as follows. Consider a δ1-vertical tangent
vector to FP(Q) at ξ, say Xξ. Consider an extension of Xξ to a (δ1-vertical) vector field over an open
neighborhood U (ξ) of the image of ξ in P(Q). We will denote it by X. Associated with X there exists
a family of sections of δ1 given by ξs = FX

s ◦ ξ. The fact that ξs is a family of sections of δ1 is readily
proven by noting that, being X δ1-vertical, its flow projects onto the identity and the following chain
of equalities holds:

δ1 ◦ ξs = δ1 ◦ FX
s︸ ︷︷ ︸

1I ◦ δ1

◦ξ = 1I ◦ δ1 ◦ ξ︸ ︷︷ ︸
=1I

= 1I . (2.56)

8The minus sign is just a matter of convention.
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Then, the variation of the action functional induced by Xξ can be defined as:

δXξSξ := d

ds

∣∣∣∣∣
s=0

Sξs = d

ds

∣∣∣∣∣
s=0

∫
I
ξ⋆sΘH . (2.57)

It reads:

δXξSξ = d

ds

∣∣∣∣
s=0

Sξs = d

ds

∫
I
ξ⋆s ΘH

∣∣∣∣
s=0

= d

ds

∫
I

(
FX
s ◦ ξ

)⋆
ΘH

∣∣∣∣
s=0

=

= d

ds

∫
I
ξ⋆ ◦ FX

s

⋆ ΘH

∣∣∣∣
s=0

=
∫

I
ξ⋆ [ LX ΘH ] ,

(2.58)

where we used the fact that (f ◦ g)∗ = g∗ ◦ f ∗ and the definition of the Lie derivative along the vector
field X. Now, using the properties of the Lie derivative we get:

δXξSξ =
∫

I
ξ⋆ [ iXdΘH ] +

∫
∂I
i⋆∂I ξ

⋆ [ iXΘH ] , (2.59)

where, in this case, the form dΘH reads:

dΘH = ω + dH ∧ dt , (2.60)

where ω is the pull-back to P(Q) of the symplectic structure of T⋆Q. The second term on the r.h.s.
of the latter equation, emerging from the application of Stokes’ theorem, is a “boundary term” in the
sense that it depends only on the restriction of ξ to the boundary of I, ξ∂I = ξ ◦ i∂I (i∂I denotes the
canonical immersion of ∂I into I). In the Hamiltonian case, since ξ is not a first order jet prolongation
of a section, no additional boundary terms may appear from the first term on the r.h.s. and, thus,
the problem of searching for a Lepage equivalent does not arise. Equation (2.59) is often called
first variational formula or first fundamental formula. It is worth stressing that all
the expressions in the integrals above only depend on the values assumed by the differential forms
involved on the image of ξ because of the pull-back. Thus, they do not depend on the particular
extension X of Xξ chosen.

Now, following Schwinger-Weiss variational principle, the variation of S along any direction Xξ

can only depend on terms like the second one on the r.h.s. of the latter equation. Thus, the first
term on the r.h.s. must vanish for any Xξ:∫

I
ξ⋆ [ iXdΘH ] = 0 ∀ X ∈ Xv(U (ξ)) (2.61)

which, by virtue of the fundamental lemma of the Calculus of Variations, gives:

ξ⋆ [ iXdΘH ] = 0 ∀ X ∈ Xv(U (ξ)) . (2.62)
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The coordinate expression of (2.62) is the celebrated system of Hamilton’s equations:

γ̇j(t) = ∂H

∂pj
(t, γ(t), ρ(t)) , ρ̇j(t) = −∂H

∂qj
(t, γ(t), ρ(t)) , (2.63)

which is, differently from Euler-Lagrange equations, a system of explicit first order differential
equations.

Analogously to the Lagrangian case, the equations of motion can be written in terms of the
following Euler-Lagrange form.

Definition 2.1.11 (Euler-Lagrange form). Given a Hamiltonian H and the corresponding
action functional S , the Euler-Lagrange form is the differential 1-form on the space FP(Q) on
which S is defined, defined by the first term on the left hand side of (2.59):

EL : FP(Q) → T⋆
ξFP(Q) : ξ 7→ ELξ , (2.64)

such that:
iXξELξ = ELξ(Xξ) =

∫
I
ξ⋆ [ iXdΘL ] , ∀ Xξ ∈ TξFP(Q) , (2.65)

where X is any extension of X to a vector field on an open neighborhood of the image of ξ in P(Q).

Consequently, also in this case, it is natural to define the solution space as follows.

Definition 2.1.12 (Solution space). Given a dynamical system described by the Hamiltonian
H, the solution space associated to it is defined as the set of zeros of the Euler-Lagrange form
associated to H, say EL :

EL : =
{
ξ ∈ FP(Q) : ELξ = 0

}
=

=
{
ξ ∈ FP(Q) : ξ⋆ [ iX1dΘL ] = 0 ∀ X ∈ X(U (ξ))

}
=

=
{
ξ ∈ FP(Q) : solutions of (2.63)

}
.

(2.66)

We will always assume EL to be a smooth immersed submanifold of FP(Q), the immersion denoted by
iEL .

Remark 2.1.13. In order to make contact with the usual description of classical Mechanics on
the cotangent bundle of a configuration space, let us stress that a direct computation shows that the
previous equation has solutions ξ coinciding with the integral curves of the vector field Γ satisfying:

iΓdΘH = 0 , (2.67)
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and such that Γt (the t-component of Γ) is equal to 19. With this last condition in mind Γ turns to be
projectable onto T⋆Q and, if H is actually the pull-back of a function H̄ on T⋆Q, equation (2.67)
can be seen as an equation on T⋆Q:

iΓ̄ω̄ = dH̄ (2.68)
where Γ̄ is the projection of Γ onto T⋆Q and ω̄ is the differential form on T⋆Q whose pull-back to
P(Q) is ω. The latter equation is the usual form of Hamilton equations on the cotangent bundle.

Again, we stress that along the entire manuscript we will consider only dynamical systems fulfilling
the assumptions with the motivations explained in Rem. 2.1.6.

A direct computation shows that Γ is fixed by previous equation to be:

Γ = ∂

∂t
+ ∂H

∂pj

∂

∂qj
− ∂H

∂qj
∂

∂pj
, (2.69)

and, thus, eventually, Γ̄ reads:

Γ̄ = ∂H̄

∂pj

∂

∂qj
− ∂H̄

∂qj
∂

∂pj
. (2.70)

Let us conclude the section by addressing the example 2.1.7 within the Hamiltonian formalism.

Example 2.1.14 (Free particle on the line). As in example 2.1.7, we consider a free particle
moving on a line, thus, again, the configuration manifold is Q = R and the fibration (2.1) is
π : Q = I × R → I where I = [a, b] ⊂ R. Again we will use the system of coordinates { t, q }
on Q where t represents the coordinate on I and we will denote by γ the sections of π. Here, the
covariant phase space is P(E) = I × R2 where we consider { t, q, p } as a system of coordinates. We
will denote by ξ = (γ, ϱ) elements of Γsplit(δ1), delta1 denoting the projection δ1 : I × R2 → I. The
Hamiltonian of the dynamical system is:

H = p2

2m , (2.71)

m representing the mass of the particle, which gives rise to the following action functional:

Sξ =
∫ b

a
ξ⋆
[
pdq − p2

2mdt
]

=
∫ b

a

[
ϱ(t)γ̇(t) − ϱ2(t)

2m

]
dt . (2.72)

The space Γsplit(δ1) is not a Banach space. However, it can be equipped with the following norm:

∥ ξ ∥sup = supt∈I| γ(t) | + supt∈I| ϱ(t) | , (2.73)
9This is required in order for ξ to be a section of δ1.
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and, as the following chain of inequalities proves10

∣∣∣Sξ − Sξ̃

∣∣∣ ≤
∫ b

a

∣∣∣∣∣ ϱ(t)γ̇(t) − ϱ̃(t) ˙̃γ(t) + ϱ(t)2

2m − ϱ̃(t)2

2m

∣∣∣∣∣ dt ≤

≤
∫ b

a

[
| (ϱ(t) − ϱ̃(t))γ̇(t) | +

∣∣∣ ϱ̃(t)(γ̇(t) − ˙̃γ)
∣∣∣+

+ 1
2m | ϱ̃(t)(ϱ(t) − ϱ̃(t)) | + 1

2m | ϱ(t)(ϱ(t) − ϱ̃(t)) |
]
dt ≤

≤ (b− a)
[

supt∈I| γ̇(t) | supt∈I| ϱ(t) − ϱ̃(t) | + supt∈I| ϱ̃(t) | supt∈I| γ̇(t) − ˙̃γ(t) |+

+ 1
2msupt∈I| ϱ(t) | supt∈I| ϱ(t) − ϱ̃(t) | + 1

2msupt∈I| ϱ̃(t) | supt∈I| ϱ(t) − ϱ̃(t) |
]
,

(2.74)

S is continuous with respect to the sup-norm defined above. Indeed, the last term of the chain
of inequalities above vanishes as ∥ ξ − ξ̃ ∥sup approaches zero. Consequently, it can be extended by
continuity to the completion Γsplit(δ1)

∥ · ∥sup =: FP(Q) which is, indeed, a Banach space. The first
fundamental formula here reads:

δXξSξ =
∫ b

a
ξ⋆
[
iX

(
dp ∧ dq − p

m
dp ∧ dt

)]
+ ξ⋆

[
iX

(
pdq − p2

2mdt
)]∣∣∣∣∣

b

a

, (2.75)

where X is a δ1-vertical vector field on P(Q) defined in a neighborhood of the image of ξ, i.e., it is a
vector field of the type:

X = Xq
∂

∂q
+Xp

∂

∂p
, (2.76)

where Xq and Xp are functions on P(Q) = I × R2 defined for all t ∈ I and for q and p close11 to γ(t)
and ϱ(t) respectively. On the other hand, Xξ is the map:

Xξ : I → Tξ(t)P(Q) : t 7→ X(ξ(t)) =Xq(t, γ(t), ϱ(t)) ∂
∂q

∣∣∣∣∣∣
ξ(t)

+Xp(t, γ(t), ϱ(t)) ∂
∂p

∣∣∣∣∣∣
ξ(t)

=:

= : Xγ[ξ]
δ

δγ
+ Xϱ[ξ]

δ

δϱ
,

(2.77)
10We are denoting by ξ and ξ̃ two different elements of Γsplit(δ1).
11In the sense of the sup-norm defined on FP(Q).
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following the notation (1.52). The first term on the right hand side is the (contraction of the tangent
vector Xξ along the) Euler-Lagrange form associated to our dynamical system. Equation (2.67) reads:

ξ⋆ [ iXdΘH ] = ξ⋆
[

−Xqdp+Xpdq − p

m
Xpdt

]
=

=
[

−Xγ ϱ̇+ Xϱ γ̇ − ϱ

m
Xϱ

]
dt =

[
−Xγ ϱ̇+ Xϱ

(
γ̇ − ϱ

m

) ]
dt = 0 ∀ Xγ, Xϱ ,

(2.78)

which gives:
γ̇(t) = ϱ(t)

m
, ϱ̇(t) = 0 . (2.79)

Note that solutions of the latter equations coincide with the integral curves of the vector field Γ
satisfying (2.67) with t-component equal to one. Indeed, given a Γ of this type, namely:

Γ = ∂

∂t
+Xq

∂

∂q
+Xp

∂

∂p
, (2.80)

equation (2.67) reads:

iΓ

(
dp ∧ dq − p

m
dp ∧ dt

)
= Xpdq −Xqdp− p

m
Xp dt+ p

m
dp = 0 , (2.81)

which gives:
Xt = 1 , Xp = 0 , Xq = p

m
. (2.82)

The integral curves of Γ are curves (t(s), γ(s), ϱ(s)) on P(Q) satisfying:

ṫ = 1 , γ̇ = ϱ(t)
m

, ϱ̇(t) = 0 , (2.83)

which are equivalent to:
γ̇(t) = ϱ(t)

m
, ϱ̇(t) = 0 . (2.84)

Let us stress that the Hamiltonian considered is of the type that in Rem. 2.1.13 we called
autonomous. Indeed, the function H does not depend on t and, thus, it is the pull-back of a function
H̄ on T⋆Q = R2 having the same expression:

H̄ = p2

2m . (2.85)

Consequently, the equations of motion above are equivalent to the Hamiltonian equations associated to
the Hamiltonian system (T⋆Q, ω, H̄), where:

ω = −dθ = −d(pdq) = dq ∧ dp , (2.86)
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is the symplectic structure of T⋆Q. Hamiltonian equations associated to such a Hamiltonian system
read:

iΓ̄ω = dH̄ , (2.87)
for the vector field Γ̄ on TQ:

Γ̄ = Γ̄q
∂

∂q
+ Γ̄p

∂

∂p
(2.88)

that are:
−Γ̄p dq + Γ̄q dp = p

m
dp , (2.89)

which give:
Γ̄p = 0 , Γ̄q = p

m
. (2.90)

The integral curves of the vector field just defined, are curves (γ(t), ϱ(t)) on T⋆Q satisfying, again:

γ̇(t) = ϱ(t)
m

, ϱ̇(t) = 0 , (2.91)

that collectively says that γ satisfies:
γ̈(t) = 0 . (2.92)

2.1.3 Hamiltonian mechanical systems with constraints
As stressed many times in the previous sections, the main difference between the Lagrangian and the
Hamiltonian formalism is that in the former the equations of motion appear as a system of implicit
differential equations whereas in the latter they are explicit ones. This is related with the fact that
the form ωL appearing in (2.17) is the pull-back to J1π of a generally pre-symplectic structure on
TQ while the form ω appearing in (2.60) is the pull-back to P(Q) of a symplectic structure on T⋆Q.
In the autonomous case, i.e. when the Lagrangian (resp. the Hamiltonian) does not depend explicitly
on t, this results in the fact that solutions of (2.19) are solutions of a pre-symplectic Hamiltonian
system (see (2.27)), whereas solutions of (2.67) are solutions of a Hamiltonian system (see (2.68)).

With this in mind, it is clear that the two formalisms are independent of each other, in general,
and that only when some conditions are met, they can be related.

In order to outline such conditions, let us start by defining the so called fiber derivative.

Definition 2.1.15 (Fibre derivative). Given a Lagrangian, λ = L dt, on J1π, the fibre
derivative associated to L , say FL , is the morphism (over the identity) of fibre bundles from
J1π → Q to P(Q) → Q such that:

iu [ FL (v) ] = d

ds
L (t, q, v + su)

∣∣∣∣∣
s=0

, (2.93)
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for all the v and u belonging to the same fibre of J1π → Q. The morphism of fibre bundles reads:

FL : J1π → P(Q) : (t, qj, vj) 7→
(
t, qj,

∂L

∂vj

)
. (2.94)

If the fibre derivative above is a diffeomorphism of fibre bundles, then, given a Lagrangian, it is
canonically defined a local function on P(Q), i.e. a Hamiltonian, by:

H = F−1
L

⋆
[
pjv

j − L
]
, (2.95)

the structure ωL of (2.17) turns out to be the pull-back of the structure ω of (2.60):

ωL = d
(
∂L

∂vj

)
∧ dqj = d ( F⋆L pj ) ∧ dqj = F⋆Lω , (2.96)

and (2.19) is the pull-back via the diffeomorphism FL of (2.67), that is, the Lagrangian and the
Hamiltonian formalism, being related by a diffeomorphism, are equivalent. In particular, in this
case, also the Euler-Lagrange equations become explicit ones. On the other hand, when FL is not a
diffeomorphism, the two formalisms are completely independent of each other.

It is relevant to stress, at this point, that, having in mind the previous discussion, it is clear that
within the Lagrangian formalism the equations of motion may be explicit or not depending on the
regularity of the Lagrangian (i.e., if it defines a fibre derivative which is a diffeomorphism or not),
whereas within the Hamiltonian formalism the equations of motion always appear as a system of
explicit differential equations. Indeed, in order to take into account the possibility of having, within the
Hamiltonian formalism, equations of motion where, apart from the explicit "evolutionary" equations,
also some constraint relations appear like the ones emerging within the Lagrangian formalism (when
ωL is pre-symplectic), we will use a method related with the Lagrange multipliers theorem. In
particular, we will introduce constraints within the Hamiltonian formulation by extremizing the action
S not on the whole space FP(Q) but rather on a subset of it, say Ξ, obtaining, apart from the explicit
Hamilton equations, also the constraint relations selecting Ξ inside FP(Q) as equations of motion.

To deal with this situation in the examples we will consider along the manuscript it is sufficient to
recall the following version of the Lagrange multipliers theorem on Banach spaces.

Theorem 2.1.16 (Lagrange multipliers theorem). Let M be a Banach space and let F be a
real-valued differentiable function on M. Let N be a Banach space and Φ a smooth injective map
from N to C = Φ(N ) with non-degenerate tangent map. Let M⋆ denote the dual of M and let us
define the real-valued function F ext on M × M⋆ × N :

F ext
(m,Λ,n) = Fm + ⟨Λ, m− Φ(n)⟩ (2.97)

where Λ represents a point in M⋆ and ⟨ · , · ⟩ represents the pairing between M and its dual.
Then, m is a critical point for F

∣∣∣
C

iff (m,Λ, n) is a critical point of F ext.
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Proof. First, let us prove that if m ∈ C is a critical point for F then, there exist Λ ∈ M⋆ and n ∈ N
such that (m, Λ, n) is a critical point for F ext. The n is determined by the fact that, since Φ is
injective and m is in the image of Φ, then there exists a unique n ∈ N such that m = Φ(n). What is
more, since the tangent map of Φ is non-degenerate, for any Xn ∈ TnN there exists a Xm ∈ TΦ(n)C
such that Φ⋆Xn = Xm. Now, since m ∈ C is critical for F , then dFm

∣∣∣
C

= 0. On the other hand
denoting by Xm, XΛ and Xn the components of a tangent vector X(m,Λ,n) ∈ T(m,Λ,n)M × M⋆ × N ,
dF ext is computed to be:

dF ext
(m,Λ,n)(X(m,Λ,n)) = dFm(Xm) + ⟨XΛ, m− Φ(n)⟩ + ⟨Λ, Xm − Φ⋆Xn⟩ . (2.98)

Now, the three terms on the right hand side of the latter equation all vanish because dFm

∣∣∣
C

= 0,
m = Φ(n) and Xm = Φ⋆Xn (i.e. Xm and Xn are Φ-related).

Now, let us prove the converse, that is, that if (m,Λ, n) is a critical point for F ext then m is a
critical point for F . Since (m,Λ, n) is a critical point for F ext then dF ext

(m,Λ,n)(X(m,Λ,n)) = 0 for all
X(m,Λ,n). In particular, if we consider a X(m,Λ,n) only having component XΛ, then Eq. (2.98) gives
m = Φ(n). This tells us that critical points of F ext are such that m is the image via Φ of some
n ∈ N , i.e., m ∈ C. Now, since Φ is injective and its tangent map is non-degenerate then for any
Xn ∈ TnN there exists Xm ∈ TmC such that Xm = Φ⋆Xn. Therefore, tangent vectors to critical
points of F ext are such that the components Xm and Xn are related by the equality Xm = Φ⋆Xn.
Consequently, by looking at Eq. (2.98) we get that if (m,Λ, n) is a critical point for F ext, then
dF ext

(m,Λ,n) = dFm = 0.
By looking at our situation, if FP(Q) is a Banach space (as it will be in the examples considered)

and if the subset of fields Ξ where we want to search for extrema of S is the image into FP(Q) of a
map Φ satisfying the hypothesis of the latter proposition, then we can search for the extrema of S
restricted to Ξ by searching for the extrema of the functional S ext defined on FP(Q) × F⋆

P(Q) × N :

S ext
(ξ,Λ,n) = Sξ + ⟨Λ, ξ − Φ(n)⟩ . (2.99)

Explicitly, in the system of local coordinates chosen, the term ⟨Λ, ξ − Φ(n)⟩ reads:

⟨Λ, ξ − Φ(n)⟩ =
∫

I

[
Λγj

(
γj − γj ◦ Φ(n)

)
+ Λϱ

j (ϱj − ϱj ◦ Φ(n))
]

dt , (2.100)

where (Λγj, Λϱ
j) is a system of local coordinates on F⋆

P(Q). Consequently, S ext explicitly reads:

S ext
(ξ,Λ,n) =

∫
I

[
P µ
a ∂µϕ

a −H(ξ) + Λγj

(
γj − γj ◦ Φ(n)

)
+ Λϱ

j (ϱj − ϱj ◦ Φ(n))
]

dt . (2.101)

2.2 Classical field theories
We now proceed with the multi-symplectic formulation of field theories, both in the Lagrangian and
in the Hamiltonian formalism.
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2.2.1 Lagrangian formulation
The Lagrangian formulation of first order field theories works similarly to that of Newtonian mechanical
systems described in Sec. 2.1.1. The main ingredient here is an n-dimensional (n := d+ 1) space-
time M playing the role of the interval I ⊂ R in Sec.2.1.1 and whose points (events) are used to
parametrize the fields of the theory. We will denote local coordinates on an open neighborhood
of M by {xµ }µ=0,...,d. From the mathematical point of view, the very aspect that will be used to
carry on the theory is that M is orientable and, thus, that a volume form can be fixed on it, say
volM = dx0 ∧ ... ∧ dxd in the local chart considered. Actually in most of the examples considered
M will be a space-time (i.e., a solution of Einstein equations) even if relevant examples (such as
Poisson sigma models) exist, in which M is just an orientable smooth manifold.

In general, M is allowed to be a smooth n-dimensional, orientable manifold with boundary. The
boundary will be assumed to be a smooth (n− 1)-dimensional, orientable manifold (not necessarily
connected) properly embedded in M and, consequently, there exists a collar around it, say
Cϵ = [0, ϵ) × ∂M and an embedding iCϵ : Cϵ ↪→ M , such that i({0} × ∂M ) = ∂M , and
i⋆Cϵ volM = dx0 ∧ vol∂M where vol∂M , is a volume form on ∂M .

The fields of the theory are modelled as local sections of a bundle of the type (2.1), say:

E

M

π
ϕ (2.102)

with typical fibre denoted by E .

Remark 2.2.1. Within the examples considered throughout the manuscript, E will be a vector bundle
over M . However, there exist examples in which E is a Poisson or a Jacobi manifold, like in Poisson
and Jacobi sigma-models [BPV21], or a Lie group, like in Quantum Mechanics where E represents the
complex projective space of a complex separable Hilbert space which, for instance, when the Hilbert
space is C2, is a principal bundle over it.

We will denote local fibered coordinates on E by {xµ, ua }µ=0,...,d; a=1,...,dimE .
As in Newtonian mechanical systems, the theory is settled on the first order jet bundle of E, say:

J1π

E

M

π1
0

π1

π

(2.103)
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equipped with the system of local coordinates {xµ, ua, zaµ }µ=0,...,d; a=1,...,dimE adapted to the fibration
π.

A Lagrangian and an action functional can be defined analogously to Sec. 2.1.1.

Definition 2.2.2 (Lagrangian). A Lagrangian is a π1-horizontal 1-form on J1π, i. e., a
differential 1-form on J1π, say λ, such that iV λ = 0 ∀ V being π1-vertical. In the system of local
coordinates chosen it reads:

λ = L (x, u, z) volM , (2.104)
where L is a smooth function on J1π.

Definition 2.2.3 (Action functional). Given a Lagrangian over J1π, an action functional
is a real-valued function on the space of sections of π, Γ(π), given by:

S : Γ(π) → R : ϕ 7→ Sϕ =
∫

M

(
j1ϕ

)⋆
λ (2.105)

whose coordinate expression is:

Sϕ =
∫

M
L (x, ϕ(x), ∂ϕ(x))volM , (2.106)

and where j1ϕ ∈ Γ(π1) is the first order jet prolongation of the section ϕ defined in 1.4.1.

Remark 2.2.4. As in Sec. 2.1.1, we will assume we are able to perform a suitable completion of the
type described in Rem. 2.1.3 in order to define a suitable Banach manifold of fields on which (2.105)
is well defined, that we will denote by FE. The validity of such assumption will be verified case by
case in the examples considered.

As for the case of Mechanics, because of the form of the action, the Lagrangian is actually defined
up to the addition of a contact form, i. e., a form such that:(

j1ϕ
)⋆
η = 0 ∀ϕ , (2.107)

and that takes the following form in the chart considered:

η = η(1)
aµ1...µd

ωa ∧ dxµ1 ∧ ... ∧ dxµd + η
(2)
aµ1...µd−1b

ν
ωa ∧ dxµ1 ∧ ... ∧ dxµd−1 ∧ dzbν + ...

+η(d)
ab1...bd

ν1...νd
ωa ∧ dzb1

ν1 ∧ ... ∧ dzbdνd + terms of higher order of contactness ,
(2.108)

where ωa = dua − zaµdxµ and by “terms of higher order of contactness” we mean all the other terms
containing two or more ωa. The terms involving one ωa are called 1-contact forms whereas the terms
involving wedge products of k ωa are called k-contact forms.

The variation of the action functional is defined analogously to what we did in Sec. 2.1.1. Consider
a tangent vector Xϕ ∈ TϕFE and an extension of it to a vector field X over E defined in an open

76



neighborhood of the image of ϕ. Denote by FX
s the flow of X and consider the following one-parameter

family of sections of π:
ϕs = FX

s ◦ ϕ . (2.109)
The same steps of equation (2.10) show that the variation of S along the direction Xϕ reads:

δXϕSϕ =
∫

M

(
j1ϕ

)⋆
iX1dλ+

∫
∂M

(
j1ϕ

)⋆
iX1λ , (2.110)

where X1 is the first order jet prolongation of X:

X1 = Xµ
x

∂

∂xµ
+Xa ∂

∂ua
+
(
∂

∂xµ
Xa
u − zaµdλX

λ
x

)
∂

∂zaµ
, (2.111)

where dλ = ∂
∂xλ

+ zaλ
∂
∂ua

is the total derivative operator. The latter formula is the analogous of
equation (1.201). Again, because of the expression of X1, integration by parts may give rise to
boundary terms also from the first integral in the variation of S . Therefore, as we did in Sec. 2.1.1,
we fix the term η that we could add to λ in order to cancel all the possible boundary terms emerging
from the first integral. Differently from the case of Mechanics, here the condition:

(j1ϕ)⋆ [iV d(λ+ η)] = 0 , (2.112)

for all π1
0-vertical vector field is not sufficient to univoquely define η. Indeed, all the terms of higher

order of contactness vanish after the pull-back and remain completely undetermined. Following the
approach of Snyaticki et al. (see [Sni70,BSF88,SS18]) a possibility to fix a unique η is the following
supplementary condition:

iV iU η = 0 , (2.113)

for all U and V π1-vertical vector fields. It is easy to see that condition (2.113) fix η
(2)
aµ1...µd−1b

ν
,

..., η(d)
ab1...bd

ν1...νd together with the coefficients of the higher contact terms to vanish. At this point
condition (2.112) is enough to fix η to be:

η = η(1)
aµ1...µd

ωa ∧ dxµ1 ∧ ... ∧ dxµd (2.114)

where:
η(1)
aµ1...µd

= ϵλµ1...µd

∂L

∂zaλ
, (2.115)

where ϵ denotes the totally skew-symmetric symbol, and, thus, with a ΘL of the form:

ΘL = λ+ η = L volM + ∂L

∂zaλ
(dua − zaνdxν) ∧ iλvolM . (2.116)
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Again, this is the so called Lepagean equivalent of λ. Its differential reads:

dΘL = ωL + dEL ∧ volM , (2.117)

where:
ωL = d

(
∂L

∂zaµ

)
∧ dua ∧ iµvolM , (2.118)

and:
EL = L − zaµ

∂L

∂zaµ
. (2.119)

In terms of the Lepagean equivalent above, the first variational formula reads:

δXϕSϕ =
∫

M

(
j1ϕ

)⋆
iX1dΘL +

∫
∂M

(
j1ϕ

)⋆
iX1ΘL , (2.120)

where, now, the first integral on the right hand side does not give rise to any boundary term. Thus,
in terms of ΘL the Schwinger-Weiss variational principle gives rise to the following equations of the
motion: (

j1ϕ
)⋆

[iX1dΘL ] = 0 ∀ X ∈ Xv(E) , (2.121)
which takes the following form in the chosen system of local coordinates:

dλ
∂L

∂zaλ
(x, ϕ(x), ∂ϕ(x)) − ∂L

∂ua
(x, ϕ(x), ∂ϕ(x)) = 0 . (2.122)

Remark 2.2.5. An interpretation of the solutions of (2.121) as integral curves of a vector field like
the one given in Rem. 2.1.6 require more work and will be given in Sec. 3.2.

Let us conclude the section with a few examples in order to fix the ideas about the machinery
introduced.

Example 2.2.6 (Free Klein-Gordon theory). Let us consider a free real Klein-Gordon field
on the Minkowski space-time, i.e., a field describing a relativistic real boson with mass m evolving
in absence of any external potential. In this case the space-time is the Minkowski space-time M =
(R4, η)12, η being the Minkowski metric, and the space on which the field takes values is E = R.
Consequently, the bundle (2.102) reads π : E = M × R → M . We denote by {xµ, u }µ=0,...,3 a
system of coordinates on E where {xµ }µ=0,...,3 is the system of coordinates chosen on M . Furthermore,
we denote by ϕ the sections of π. The first order jet bundle J1π reads J1π = M × R × R4 where we
consider {xµ, u, zµ }µ=0,...,3 as a system of (global) coordinates. The Lagrangian describing the theory
is:

λ = 1
2
(
ηµνzµzν −m2u2

)
volM , (2.123)

12Here and in the rest of the manuscript we will adopt the signature (+ − −−) for η.
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where ηµν are the coefficients of the inverse of η and where m represents the mass of the boson. The
action functional obtained is:

Sϕ =
∫

M

(
j1ϕ

)⋆
λ =

∫
M

1
2
[
ηµν∂µϕ(x)∂νϕ(x) −m2ϕ2(x)

]
volM . (2.124)

It is clear that such action functional is not well defined on the whole space of smooth sections of π.
Indeed, it is clear that, in order for the integral to be well defined, the ϕ’s should be at least square
integrable (with respect to volM ) together with their first derivatives. Therefore, we will consider it to
be defined on the subset of Γ(π) given by smooth sections for which the norm:

∥ϕ∥2
H1 =

∫
M

 |ϕ(x) |2 +
3∑

µ=0
| ∂µϕ(x) |2

 volM , (2.125)

is finite, say Γ(π)1. The following chain of inequalities:
∣∣∣Sϕ − Sϕ̃

∣∣∣ ≤ 1
2

∫
M

∣∣∣ ηµν∂µϕ∂νϕ− ηµν∂µϕ̃∂νϕ̃+m2(ϕ2 − ϕ̃2)
∣∣∣ volM ≤

≤ 1
2

∫
M

[ ∣∣∣ ηµν∂µϕ(∂νϕ− ∂νϕ̃)
∣∣∣+ ∣∣∣ ηµν∂µϕ̃(∂νϕ− ∂νϕ̃)

∣∣∣+
+m2

∣∣∣ϕ(ϕ− ϕ̃)
∣∣∣+m2

∣∣∣ ϕ̃(ϕ− ϕ̃)
∣∣∣ ]volM ≤

≤ 1
2

[ 3∑
µ=0

∥ ∂µϕ ∥L2 ∥ ∂µϕ− ∂µϕ̃ ∥L2 +
3∑

µ=0
∥ ∂µϕ̃ ∥L2 ∥ ∂µϕ− ∂µϕ̃ ∥L2+

+m2∥ϕ ∥L2 ∥ϕ− ϕ̃ ∥L2 +m2∥ ϕ̃ ∥L2 ∥ϕ− ϕ̃ ∥L2

]
,

(2.126)

shows that S is continuous in the norm ∥ · ∥H1. Indeed, if ∥ϕ − ϕ̃ ∥H1 approaches zero, then also
∥ϕ− ϕ̃ ∥L2 and ∥ ∂µϕ− ∂µϕ̃ ∥L2 approach zero. Consequently, S can be extended by continuity to the
completion Γ(π)1

∥ · ∥H1 = H1(M , volM ) =: FE. The contact form (2.115) here reads:

η = ϵλµ1µ2µ3η
µλzµ (du− zρdxρ) ∧ dx1 ∧ dx2 ∧ dx3 , (2.127)

and it gives rise to the following Lepage equivalent:

ΘL = 1
2
(
ηµνzµzν −m2u2

)
volM + ηµλzµdu ∧ iλvolM . (2.128)

The Lepage equivalent above gives rise to the following first fundamental formula:

δXϕSϕ =
∫

M

(
j1ϕ

)⋆ [
iX1

(
(ηµνzµdzν −m2udu) ∧ volM + ηµλdzµ ∧ du ∧ iλvolM

) ]
, (2.129)
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where X1 is the first order jet prolongation of a π-vertical vector field X on E defined in a neighborhood
of the image of ϕ, i.e., it is a vector field of the type:

X1 = Xu
∂

∂u
+ zµ

∂Xu

∂u

∂

∂zµ
, (2.130)

where Xu is a function on M × R defined for all x ∈ M and for u close13 to ϕ(x). On the other
hand, Xϕ is the map:

Xϕ : M → Tϕ(x)E : x 7→ X(ϕ(x)) = Xu(x, ϕ(x)) ∂
∂u

∣∣∣∣∣∣
ϕ(x)

=: Xϕ
δ

δϕ
, (2.131)

following the notation (1.52). The right hand side of the first fundamental formula above is the
(contraction of the tangent vector Xϕ along the) Euler-Lagrange form associated to the Lagrangian
describing our field theory. Equation (2.121) reads:

(
j1ϕ

)⋆
[ iX1dΘL ] =

(
j1ϕ

)⋆  ( ηµνzµzν ∂Xu

∂u
−m2uXu

)
volM +

+ ηµν
(
zµ
∂Xu

∂u
du−Xudzµ

)
∧ iνvolM

 =

= −Xϕ

(
ηµν∂µ∂νϕ+m2ϕ

)
volM = 0 ∀ Xϕ ,

(2.132)

which gives:
ηµν∂µ∂νϕ+m2ϕ = 0 , (2.133)

being the celebrated Klein-Gordon equations.
Example 2.2.7 (Free Electrodynamics). Let us now consider a sourceless electromagnetic field
on the Minkowski space-time M = (R4, η). This is a gauge field theory (the easiest example, being
an Abelian one) whose structure group is U(1) and, therefore, the fields of the theory are connection
one-forms on the principal bundle P = M × U(1) → M that represent the quadri-potential in the
covariant formulation of classical Electrodynamics. These are represented as u(1)-valued 1-forms
on M where u(1) = iR is the Lie algebra of the Lie group U(1). Thus, they are sections of the
bundle π : E = T⋆M → M . We denote by {xµ, uµ }µ=0,...,3 a system of coordinates on E where
{xµ }µ=0,...,3 is the system of coordinates chosen on M . Furthermore, we denote by A = Aµ(x)dxµ
the sections of π. The first order jet bundle J1π is the trivial bundle over M whose typical fibre
is T⋆

mM ×
(⊗2 T⋆

mM
)

where we consider {xµ, uµ, zµν }µ,ν=0,...,3 as a system of coordinates. The
Lagrangian describing the theory is:

λ = −1
4η

µρηνσz[µν]z[ρσ] volM , (2.134)

13In the sense of the H1-norm defined on FE.
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where the subscript [ · ] denotes that we are considering the skewsymmetric part of the tensor. The
action functional obtained is:

SA =
∫

M

(
j1A

)⋆
λ = −

∫
M

1
4η

µρηνσ∂[µAν]∂[ρAσ] volM =: −
∫

M

1
4η

µρηνσFµνFρσ . (2.135)

Geometrically, the coefficients Fµν represents the components of the curvature of the connection A. It
is clear that such action functional is not well defined on the whole space of smooth sections of π.
Indeed, in order for the integral to be well defined, the A’s should be such that the functions Fµν were
at least square integrable. This is achieved by considering the Aµ to be H1 functions, as we are going
to explain, but let us stress that this is not the minimal requirement in order to get Fµν’s being square
integrable. Indeed, in order to get square integrable Fµν’s one should only require the first derivatives
of the A’s to be square integrable but nothing is required, in principle, about the convergence properties
of the A’s themselves. However, we are going to require the finiteness of the H1-norm because it will
be useful in order to work with a well defined Hilbert space of fields, even if it is clear that from the
physical point of view we are excluding some situations, namely all those (actually never observed in
nature up to now) in which the potential Aµ is different from zero at infinity, such as the magnetic
monopole. Therefore, we will consider the action functional to be defined on the subset of Γ(π) given
by smooth sections for which the norm:

∥A ∥2
H1 =

∫
M

 3∑
µ=0

|Aµ(x)|2 +
3∑

µ,ν=0
|∂µAν(x)|2

 volM , (2.136)

is finite, say Γ(π)1. The following chain of inequalities14

| SA − SÃ | ≤ 1
4

∫
M

∣∣∣FµνF µν − F̃µνF̃
µν
∣∣∣ volM ≤

≤ 1
2

[ ∣∣∣Fµν(F µν − F̃ µν )
∣∣∣+ ∣∣∣ F̃µν(F µν − F̃ µν )

∣∣∣ ] volM ≤

≤ 1
2

[∑
µν

∥Fµν ∥L2 ∥Fµν − F̃µν ∥L2 +
∑
µν

∥ F̃µν ∥L2 ∥Fµν − F̃µν ∥L2

]
,

(2.137)

shows that S is continuous in the norm ∥ · ∥H1. Indeed, the last term of the chain of inequalities
above vanishes as ∥A− Ã ∥H1 approaches zero. Consequently, S can be extended by continuity to the
completion Γ(π)1

∥ · ∥H1 = [ H1(M , volM ) ]4 =: FE. The contact form (2.115) here reads:

η = −ηµρηνσz[ρσ](duν − zτνdxτ ) ∧ iµvolM , (2.138)
14Here A and Ã denote two different sections of π and F̃µν = ∂[µÃν]. Moreover, we raise and lower indices via the

metric η.
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and it gives rise to the following Lepage equivalent:

Θλ = −1
4η

µρηνσz[µν]z[ρσ]volM − ηµρηνσz[ρσ](duν − zτνdxτ ) ∧ iµvolM . (2.139)

The Lepage equivalent above gives rise to the following first fundamental formula:

δXASA =
∫

M

(
j1A

)⋆ [
iX1

(
−1

2η
µνηρσz[µν]dz[ρσ] ∧ volM +

−ηµρηνσdz[ρσ] ∧ duν ∧ iµvolM +

+ηµρηνσ(zµνdz[ρσ] + z[ρσ]dzµν) ∧ volM

)]
,

(2.140)

where X1 is the first order jet prolongation of a π-vertical vector field X on E defined in a neighborhood
of the image of A, i.e., it is a vector field of the type:

X1 = Xuµ

∂

∂uµ
+ zµρ

∂Xuν

∂uρ

∂

∂zµν
, (2.141)

where Xuµ are functions on M × R4 defined for all x ∈ M and for uµ close15 to Aµ(x). On the other
hand, XA is the map:

XA : M → TA(x)E : x 7→ X(A(x)) = Xuµ(x, A(x)) ∂

∂uµ

∣∣∣∣∣∣
A(x)

= XAµ

δ

δAµ
, (2.142)

following the notation (1.52). The right hand side of the latter equation is the (contraction of the
tangent vector XA along the) Euler-Lagrange form associated to the Lagrangian describing our field
theory. Equation (2.121) reads:

(
j1A

)⋆
[ iX1dΘL ] =

(
j1A

)⋆ [
−1

2η
µνηρσz[µν]z[ρτ

∂Xuσ]

∂uτ
∧ volM +

−ηµρηνσ
(
z[ρτ

∂Xuσ]

∂uτ
duν −Xuνdz[ρσ]

)
∧ iµvolM +

+ηµρηνσ
(
zµνz[ρτ

∂Xuσ]

∂uτ
+ z[ρσ]zµτ

∂Xuν

∂uτ

)
volM

]
=

= XAµ η
µσηνρ∂νFρσ = 0 ∀ XAµ ,

(2.143)

which gives:
ηνρ∂νFρσ = 0 , (2.144)

being the celebrated covariant form of sourceless Maxwell’s equations in vacuum.
15In the sense of the H1-norm defined above.
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Example 2.2.8 (Yang-Mills theories). Let us now consider free Yang-Mills theories on the
Minkowski space-time M = (R4, η), that is, gauge theories (without external sources) whose structure
group is a generally semi-simple16 Lie group17. Let us denote the structure group by G and its
Lie algebra by g. In this case the fields of the theory are connection one forms on the bundle
P = M ×G → M , i.e., 1-forms with values in g, namely, sections of π : E = T⋆M ⊗ g → M .
We denote by {xµ, uaµ }µ=0,...,3;a=1,...,dimg a system of coordinates on E, where {xµ }µ=0,...,3 is the system
of coordinates chosen on M . Furthermore, we denote by A = Aaµ(x)dxµ ∧ ξa sections of π, where
{ ξa }a=1,...,dimg is a basis of g. The first order jet bundle J1π in this case is the trivial bundle over M

whose typical is T⋆
mM ⊗ g ×

(⊗2 T⋆
mM ⊗ g

)
where we consider {xµ, uaµ, zaµν }µ=0,...,3;a=1,...,dimg as a

system of coordinates. The Lagrangian describing the theory here is:

λ = −1
4η

µρηνσGab

(
za[µν] + ϵacdu

c
µu

d
ν

) (
zb[ρσ] + ϵbefu

e
ρu

f
σ

)
volM , (2.145)

where G denotes the Killing-Cartan metric on g. The action functional obtained is:

SA =
∫

M

(
j1A

)⋆
λ = −

∫
M

1
4η

µρηνσGabF
a
µνF

b
ρσ volM , (2.146)

where:
F a
µν = ∂[µA

a
ν] + ϵabcA

b
µA

c
ν = ( ∇A )aµν =: ∇µA

a
ν , (2.147)

are the coefficients of the curvature of the connection A and ∇ denotes the covariant derivative
associated to the connection. It is clear that such action functional is not well defined on the whole
space of smooth sections of π. In the next lines we will see that by considering the coefficients of the
A’s to be H3 functions we get a well defined action functional on a well defined Hilbert space of fields,
even if, as in the previous example it is worth mentioning that this is not the minimal requirement.
Therefore, we will consider the action functional to be defined on the subset of Γ(π) given by smooth
sections for which the norm:

∥A ∥2
H3 =

∫
M

∑
µ, a

|Aaµ(x) |2 +
∑
I,µ, a

|DIA
a
µ(x) |2

 volM , (2.148)

is finite, where I is any multi-index of the type I = µ1µ2... of length going from 1 to 3 and
16This assumption is made in order for the Killing-Cartan metric on the Lie algebra of the Lie group to be positive

definite.
17Actually, those of physical interest are those for which the structure group is U(1) (describing Electrodynamics

considered in the previous example), SU(2) (describing the theory of weak interactions), SU(3) (describing Quantum
Chromodynamics) and U(1) × SU(2) × SU(3) (describing their unification).

83



DI = ∂µ1∂µ2 .... Denote such a subset by Γ(π)1. The following inequalities hold:
∣∣∣SA − SÃ

∣∣∣ ≤ 1
4

∫
M

∣∣∣ (∂[µA
a
ν] + ϵabcA

b
µA

c
ν) (∂[µAν] + ϵ de

a AµdA
ν
e)+

− (∂[µÃ
a
ν] + ϵabcÃ

b
µÃ

c
ν) (∂[µÃν] + ϵ de

a ÃµdÃ
ν
e)
∣∣∣ volM ≤

≤ 1
4

∫
M

∣∣∣ ∂[µA
a
ν]∂

[µAν]
a − ∂[µÃ

a
ν]∂

[µÃν]
a

∣∣∣ volM︸ ︷︷ ︸
=: I1

+

+1
4

∫
M

∣∣∣ ϵabcϵ de
a (AbµAcνA

µ
dA

ν
e − ÃbµÃ

c
νÃ

µ
dÃ

ν
e)
∣∣∣ volM︸ ︷︷ ︸

=: I2

+

+1
2

∫
M

∣∣∣ ϵabc(∂[µAν]
a A

b
µA

c
ν − ∂[µÃν]

a Ã
b
µÃ

c
ν)
∣∣∣ volM︸ ︷︷ ︸

=: I3

.

(2.149)

First, a proof analogous to the previous example shows that:

I1 ≤ 2
[ ∑
µ,ν,a

∥ ∂[µAν]a ∥L2 ∥ ∂[µA
a
ν] − ∂[µÃ

a
ν] ∥L2 +

∑
µ,ν,a

∥ ∂[µÃν]a ∥L2 ∥ ∂[µA
a
ν] − ∂[µÃ

a
ν] ∥L2

]
. (2.150)

Now, recall that, being M 4-dimensional, the space of H3 functions on it is a Banach algebra [Ada75],
which means that:

∥AbµAcν ∥H3 = ∥Abµ ∥H3︸ ︷︷ ︸
<∞

∥Aνc ∥H3︸ ︷︷ ︸
<∞

< ∞ , (2.151)

that is, that AbµAνc belongs to H3(M , volM ) ∀ µ, ν, b, c and, a fortiori, that it belongs to H−3(M , volM )
which is the dual, with respect to the L2 scalar product ⟨ · , · ⟩L2, of H3. This implies the following
chain of inequalities:

I2 ≤
∑

µ,ν,b,c,d,e

∫
M

[ ∣∣∣AbµAµd(Ãνc Ãeν − AνcA
e
ν)
∣∣∣+ ∣∣∣ ÃbµÃµd(Ãνc Ãeν − AνcA

e
ν)
∣∣∣ ] volM ≤

≤
∑

µ,ν,b,c,d,e

[
∥AbµA

µ
d ∥H−3 ∥AνcAeν − Ãνc Ã

e
ν ∥H3 + ∥ ÃbµÃ

µ
d ∥H−3 ∥AνcAeν − Ãνc Ã

e
ν ∥H3

]
≤

≤
∑

µ,ν,b,c,d,e

[ (
∥AbµA

µ
d ∥H−3 + ∥ ÃbµÃ

µ
d ∥H−3

) (
∥Aνc (Aeν − Ãeν) ∥H3 + ∥ Ãνc (Aeν − Ãeν) ∥H3

)
+
]

≤

≤
∑

µ,ν,b,c,d,e

[ (
∥AbµA

µ
d ∥H−3 + ∥ ÃbµÃ

µ
d ∥H−3

) (
∥Aνc ∥H3 + ∥ Ãνc ∥H3

)
∥Aeν − Ãeν ∥H3

]
.

(2.152)
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Similar arguments allow to prove the following estimate:

I3 ≤ ∥ ∂[µAν] ∥H−2

(
∥Abµ ∥H3 + ∥ Ãbµ ∥H3

)
∥Acν − Ãcν ∥H3 +∥ ÃbµÃcν ∥L2 ∥ ∂[µAν]

a −∂[µÃν]
a ∥L2 . (2.153)

Estimates (2.150), (2.152) and (2.153), shows that I1, I2 and I3 approach 0 when ∥A − Ã ∥H3

approaches 0, that is, that S is continuous in the norm (2.148). Therefore, S can be extended by
continuity to the completion Γ(π)1

∥ · ∥H3 = [ H3(M , volM ) ]n =: FE, where n = 4dimg. The contact
form (2.115) here reads:

η = −ηµρηνσGab (za[ρσ] + ϵacdu
c
ρu

d
σ) (dubν − zbτνdxτ ) ∧ iµvolM , (2.154)

and it gives rise to the following Lepage equivalent:

Θλ = −1
4η

µρηνσGab

(
za[µν] + ϵacdu

c
µu

d
ν

) (
zb[ρσ] + ϵbefu

e
ρu

f
σ

)
volM +

−ηµρηνσGab (za[ρσ] + ϵacdu
c
ρu

d
σ) (dubν − zbτνdxτ ) ∧ iµvolM .

(2.155)

The Lepage equivalent above gives rise to the following first fundamental formula:

δXASA =
∫

M

(
j1A

)⋆ [
iX1

(
− 1

2η
µρηνσGab

(
dza[µν] + ϵacdducµudν + ϵacdu

c
µdudν

) (
zb[ρσ] + ϵbefu

e
ρu

f
σ

)
volM +

−ηµρηνσGab (dza[ρσ] + ϵacdducρudσ + ϵacdu
c
ρdudσ) ∧ (dubν − zbτνdxτ ) ∧ iµvolM +

+ηµρηνσGab (za[ρσ] + ϵacdu
c
ρu

d
σ) dzbµν ∧ iµvolM

)]
,

(2.156)

where X1 is the first order jet prolongation of a π-vertical vector field X on E defined in a neighborhood
of the image of A, i.e., it is a vector field of the type:

X1 = Xu
a
µ

∂

∂uaµ
+ zaµρ

∂Xu
b
ν

∂uaρ

∂

∂zbµν
, (2.157)

where Xu
a
µ are functions defined on points of T⋆M ⊗ g close18 to Aaµ(x). On the other hand, XA is

the map:

XA : M → TA(x)E : x 7→ X(A(x)) = Xu
a
µ(x, A(x)) ∂

∂uaµ

∣∣∣∣∣∣
A(x)

=: XA
a
µ

δ

δAaµ
, (2.158)

18With respect to the H3-norm defined above.
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following the notation (1.52). The right hand side of the latter equation is the (contraction of the
tangent vector XA along the) Euler-Lagrange form associated to the Lagrangian describing our field
theory. Equation (2.121) reads:

(
j1A

)⋆
[ iX1dΘL ] =

(
j1A

)⋆ [
−1

2η
µρηνσGab

(
zd[ρσ]ϵ

a
bcu

c
ν Xu

b
µ + zd[ρσ]ϵ

a
bcu

b
µXu

c
ν+

+ϵabcϵdefubµueρufσXu
c
ν + ϵabcϵ

d
efu

c
νu

e
ρu

f
σXu

b
µ

)
+

+ηµρηνσGabXu
a
ν

(
dzd[ρσ] + ϵdefu

f
σdueρ + ϵdefu

e
ρdufσ

)) ]
=

2 ηµρηνσGabXA
a
ν ∇µF

b
ρσ = 0 ∀ XA

a
ν ,

(2.159)

which gives:
ηµρ∇µF

a
ρσ = 0 , (2.160)

being the celebrated Yang-Mills equations.

2.2.2 Hamiltonian formulation
The Hamiltonian formulation of first order field theories follows the lines of Sec. 2.1.2 with the
obvious generalizations. It is settled on the Covariant Phase Space associated with the fibration
π : E → M , say P(E). As in Sec. 1.4.2 we will denote local coordinates on the extended dual of J1π
by {xµ, ua, ρµa , ρ0 }µ=0,...,d; a=1,...,dimE and local coordinates on P(E) by {xµ, ua, ρµa }µ=0,...,d; a=1,...,dimE .

Definition 2.2.9 (Hamiltonian). A Hamiltonian is a section of the projection κ appearing in
the diagram (1.179), i.e., a local map:

H : J⋆π → P(E) : (xµ, ua, ρµa) 7→ (xµ, ua, ρµa , H(x, u, ρ)) . (2.161)

Recalling the content of Sec. 1.4.2, the extended dual of π, J†π, has a canonical 1-semibasic
(n+ 1)-form, i.e.:

w = ρµadua ∧ iµvolM + ρ0volM . (2.162)
For any fixed Hamiltonian, the pull-back of the canonical multi-symplectic structure (2.162) to P(E),
gives a canonical structure on the latter space which reads:

ΘH := ( −H )⋆ w = ρµadua ∧ volM −HvolM . (2.163)

Its differential reads:
dΘH = ω − dH ∧ volM , (2.164)

where:
ω = dρµa ∧ dua ∧ volM . (2.165)
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As we discussed in Sec. 2.1.2, on P(E), since the counterpart of the first order jet prolongation
of sections of π does not exist, we will work with elements of Γsplit(δ1), namely pairs, denoted by
χ = (ϕ, P ), of sections of π and δ1

0 respectively.

Definition 2.2.10 (Action functional). Given a Hamiltonian over P(E), an action functional
is a real-valued function on Γsplit(δ1) given by:

S : Γsplit(δ1) → R : χ 7→ Sχ =
∫

I
χ⋆ ΘH , (2.166)

whose coordinate expression is:

Sχ =
∫

M
[P µ

a (x)∂µϕa(x) −H(x, ϕ(x), P (x, ϕ(x))) ] volM . (2.167)

Remark 2.2.11. Also in this case we are going to assume the possibility of performing a completion
of the type of Rem. 2.1.3 in order to obtain a suitable Banach manifold of fields on which the action
functional is well defined and that we will denote by FP(E). We will refer to elements of FP(E) as
dynamical fields. We will take care of the validity of the assumption above case by case in the
examples.

Following the same steps made in Sec. 2.1.2 one gets the first variational formula:

δXχSχ =
∫

M
χ⋆ [ iXdΘH ] +

∫
∂M

i⋆∂M χ⋆ [ iXΘH ] . (2.168)

As in the Lagrangian formalism, the second term on the r.h.s. is a “boundary term” in the sense
that it depends only on the restriction of χ to the boundary of M , χ∂M = χ ◦ i∂M (i∂M denotes
the canonical immersion of ∂M into M ). As in the mechanical case, since χ is not a first order jet
prolongation of a section, no additional boundary terms may appear from the first term on the r.h.s.
and, thus, the problem of searching for a Lepage equivalent does not arise.

In this case the Schwinger-Weiss variational principle gives the following equations of motion:

χ⋆ [ iXdΘH ] = 0 ∀ X ∈ Xv(U (χ)) , (2.169)

whose coordinate expression is:

∂ϕa

∂xµ
= ∂H

∂ρµa

∣∣∣∣∣
χ

,
∂P µ

a

∂xµ
= −∂H

∂ua

∣∣∣∣∣
χ

, (2.170)

that are the so called covariant Hamilton equations or De Donder-Weyl equations.

Remark 2.2.12. Also in this case, an interpretation of the solutions of De Donder-Weyl equations
as integral curves of a vector field like the one given in Rem. 2.1.13 require more work and will be
given in Sec. 3.2.
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Example 2.2.13 (Free Klein-Gordon theory). As in example 2.2.6, we consider a free, massive,
boson field on the Minkowski space-time. Therefore, here, the bundle (2.102) is π : E = M ×R → M
where M = (R4, η), η being the Minkowski metric. Again, we denote by {xµ, u }µ=0,...,3 a system of
(global) coordinates on E where {xµ }µ=0,...,3 is the system of (global) coordinates chosen on M and,
again, we denote by ϕ the sections of π. Here, the covariant phase space is P(E) = M × R × R4

where we consider {xµ, u, ρµ }µ=0,...,3 as a system of (global, again) coordinates. We will denote by
χ = (ϕ, P ) = (ϕ, P µ) elements of Γsplit(δ1), δ1 denoting the projection M × R × R4 → M . The
Hamiltonian of the theory is:

H = 1
2
(
ηµνρ

µρν +m2u2
)
, (2.171)

m representing the mass of the boson field. The action functional obtained is:

Sχ =
∫

M
χ⋆
[
ρµdu ∧ iµvolM − 1

2
(
ηµνρ

µρν +m2u2
)
volM

]
=

=
∫

M

[
P µ(x)∂µϕ(x) − 1

2ηµνP
µ(x)P ν(x) − 1

2m
2ϕ2(x)

]
volM .

(2.172)

Again, it is clear that such action functional is not well defined on the whole space of smooth splitting
sections Γsplit(δ1). Indeed, in order for the integral to be well defined, the ϕ’s should be at least square
integrable (with respect to volM ) as well as the P ’s, and the product of the P ’s with the first derivatives
of ϕ’s should be integrable. Thus, the first derivatives of the ϕ’s should be square integrable as well.
For technical reasons that will be clear in Sec. 3.2, we will actually ask for more regularity, and we
will consider S to be defined on the subset of Γsplit(δ1) given by smooth splitting sections for which
the norm:

∥χ∥2 = ∥ϕ∥2
H2 +

3∑
µ=0

∥P µ∥2
H1 , (2.173)
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is finite, say Γsplit(δ1)1. The following chain of inequalities19

|Sχ − Sχ̃| ≤
∫

M

∣∣∣∣P µ∂µϕ− P̃ µ∂µϕ̃− 1
2P

µPµ + 1
2 P̃

µP̃µ − 1
2m

2ϕ2 + 1
2m

2ϕ̃2
∣∣∣∣ volM ≤

≤
∫

M

[ ∣∣∣P µ(∂µϕ− ∂µϕ̃)
∣∣∣+ ∣∣∣ (P µ − P̃ µ)∂µϕ̃

∣∣∣+
+1

2
∣∣∣P µ(Pµ − P̃µ)

∣∣∣+ 1
2
∣∣∣ P̃ µ(Pµ − P̃µ)

∣∣∣+
+1

2m
2
∣∣∣ϕ(ϕ− ϕ̃)

∣∣∣+ 1
2m

2
∣∣∣ ϕ̃(ϕ− ϕ̃)

∣∣∣ ]volM ≤

≤
3∑

µ=0
∥P µ ∥L2 ∥ ∂µ(ϕ− ϕ̃) ∥L2 +

3∑
µ=0

∥P µ − P̃ µ ∥L2 ∥ ∂µϕ ∥L2+

+
3∑

µ=0
∥P µ ∥L2 ∥P µ − P̃ µ ∥L2 +

3∑
µ=0

∥ P̃ µ ∥L2 ∥P µ − P̃ µ ∥L2+

+1
2m

2∥ϕ ∥L2 ∥ϕ− ϕ̃ ∥L2 + 1
2m

2∥ ϕ̃ ∥L2 ∥ϕ− ϕ̃ ∥L2 ,

(2.174)

shows that S is continuous in the norm defined above. Indeed, the last term in the chain of inequalities
above vanishes as ∥χ− χ̃ ∥ approaches zero. Consequently, S can be extended by continuity to the
completion Γsplit(δ1)1

∥ · ∥ = H2(M , volM ) × [ H1(M , volM ) ]4 =: FP(E). The first fundamental
formula here reads:

δXχSχ =
∫

M
χ⋆
[
iX
(

dρµ ∧ du ∧ iµvolM − (ηµνρµdρν +m2udu) ∧ volM
) ]

, (2.175)

where X is a δ1-vertical vector field on P(E) defined in a neighborhood of the image of χ, i.e., it is a
vector field of the type:

X = Xu
∂

∂u
+Xρ

µ ∂

∂ρµ
, (2.176)

where Xu and Xρ
µ are functions on P(E) = M × R × R4 defined for all x ∈ M and for u and ρµ

19Here χ = (ϕ, Pµ) and χ̃ = (ϕ̃, P̃µ) denote two different sections of δ1.
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close20 to ϕ(x) and P µ(x) respectively. On the other hand, Xχ is the map:

Xχ : M → Tχ(x)P(E) : x 7→ X(χ(x)) =Xu(x, ϕ(x), P (x)) ∂
∂u

∣∣∣∣∣∣
χ(x)

+

+Xρ
µ(x, ϕ(x), P (x)) ∂

∂ρµ

∣∣∣∣∣∣
χ(x)

=:

=: Xϕ[χ] δ
δϕ

+ XP
µ[χ] δ

δP µ
,

(2.177)

following the notation (1.52). The right hand side is the (contraction of the tangent vector Xχ along
the) Euler-Lagrange form associated to our field theory. Equation (2.169) reads:

χ⋆ [ iXdΘH ] = χ⋆
[

(Xρ
µdu−Xudρµ ) ∧ iµvolM −

(
ηµνρ

µXρ
ν +m2uXu

)
volM

]
=

=
[

XP
µ∂µϕ− Xϕ∂µP

µ − ηµνP
µXP

ν +m2ϕXϕ

]
volM =

=
[

−Xϕ

(
∂µP

µ +m2ϕ
)

+ XP
µ ( ∂µϕ− ηµνP

µ )
]
volM = 0 ∀ Xϕ, XP

µ ,

(2.178)

which gives:
∂µP

µ +m2ϕ = 0 , ∂µϕ = ηµνP
µ , (2.179)

that collectively says that the field ϕ obeys the celebrated Klein-Gordon equation:

ηµν∂µ∂νϕ(x) +m2ϕ(x) = 0 . (2.180)

2.2.3 Hamiltonian theories with constraints
The content of Sec. 2.1.3 can be generalized in a straightforward way to the case of field theories.

In this case the morphism (2.94) is a bundle morphism between J1π → E and P(E) that reads:

FL : J1π → P(E) : (xµ, ua, zaµ) 7→
(
xµ, ua,

∂L

∂zaµ

)
. (2.181)

Again, if the fibre derivative above is a diffeomorphism of fibre bundles, then, given a Lagrangian, it
is canonically defined a local function on P(E), i.e. a Hamiltonian, by:

H = F−1
L

⋆
[
ρµaz

a
µ − L

]
, (2.182)

and the structure dΘL of (2.117) turns out to be the pull-back of the structure dΘ of (2.164).
20In the sense of the norm defined above on FP(E).
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Also the formulation of Hamiltonian theories with constraints goes along the lines of Sec. 2.1.3.
After proving Thm. 2.1.16, one can find the extrema of S within the subset Ξ of FP(E). Again, if
FP(E) is a Banach space (as it will be in all the examples considered) and if the subset of fields Ξ where
we want to search for extrema of S is the image into FP(E) of a map Φ satisfying the hypothesis of
the latter proposition, then we can search for the extrema of S restricted to Ξ by searching for the
extrema of the functional S ext defined on FP(E) × F⋆

P(E) × N :

S ext
(χ,Λ,n) = Sχ + ⟨Λ, χ− Φ(n)⟩ . (2.183)

Here, in the system of local coordinates chosen, ⟨Λ, χ− Φ(n)⟩ is:

⟨Λ, χ− Φ(n)⟩ =
∫

M

[
Λϕa (ϕa − ϕa ◦ Φ(n)) + ΛP

µ
a

(
P a
µ − P a

µ ◦ Φ(n)
) ]
volM , (2.184)

where (Λϕa, ΛP
µ
a) is a system of local coordinates on F⋆

P(E). Consequently, S ext explicitly reads:

S ext
(χ,Λ,n) =

∫
M

[
P µ
a ∂µϕ

a −H(ξ) + Λϕa (ϕa − ϕa ◦ Φ(n)) + ΛP
µ
a (P µ

a − P µ
a ◦ Φ(n))

]
volM . (2.185)

Example 2.2.14 (Free Electrodynamics). As in example 2.2.7, we consider a sourceless
electromagnetic field on the Minkowski space-time M = (R4, η). As we argued in example 2.2.7, the
bundle underlying the theory is π : E = T⋆M → M whose sections, denoted by A = Aµ(x)dxµ,
represent the quadri-potential in terms of which the covariant description of classical Electrodynamics
is given. On E we denote by {xµ, uµ }µ=0,...,3 a system of coordinates where {xµ }µ=0,...,3 is the
system of coordinates chosen on M . The covariant phase space P(E) is the reduced dual of the
bundle J1π constructed in example 2.2.7, namely the trivial bundle over M whose typical fibre is
T⋆
mM ×

(⊗2 TmM
)

where we consider {xµ, uµ, ρµν }µ, ν=0,...,3 as a system of coordinates. We will
denote by χ = (A, P ) = (Aµ, P µν) elements of Γsplit(δ1), δ1 denoting the projection P(E) → M .
The Hamiltonian of the theory is:

H = 1
2ηµρηνσρ

µνρρσ . (2.186)

The action functional obtained is:

Sχ =
∫

M
χ⋆
[
ρµν duµ ∧ iνvolM − 1

2ηµρηνσρ
µνρρσ volM

]
=

=
∫

M

[
P µν(x)∂νAµ − 1

2ηµρηνσP
µν(x)P ρσ(x)

]
volM .

(2.187)

As in example 2.2.7, it is clear that such action functional is not well defined on the whole space
of smooth splitting sections, Γsplit(δ1). Indeed, in order for the integral to be well defined, the P ’s
should be at least square integrable and the product of the P ’s with the first derivatives of the A’s
should be integrable. Thus, the first derivatives of the A’s should be square integrable as well. Actually,
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for technical reasons that will be clear in Sec. 3.2, we will ask for even more regularity and we will
consider those A’s being H2 functions and those P ’s being H1 functions and this will allow us to work
with well defined Hilbert spaces of fields. However, as in example 2.2.7, it should be stressed that this
is not the minimal requirement in order for S to be well defined and this choice may exclude some
physical systems (even if it seems that only systems never observed in nature up to now are excluded).
We will consider S to be defined on the subset of Γsplit(δ1) given by smooth splitting sections for
which the norm:

∥χ ∥2 =
3∑

µ=0
∥Aµ ∥2

H2 +
3∑

µ, ν=0
∥P µν ∥2

H1 , (2.188)

is finite, say Γsplit(δ1)1. The following chain of inequalities:
∣∣∣Sχ − Sχ̃

∣∣∣ ≤
∫

M

∣∣∣∣P µν∂νAµ − P̃ µν∂νÃµ + 1
2P

µνPµν − 1
2 P̃

µνP̃µν

∣∣∣∣ volM ≤

≤
∫

M

[ ∣∣∣P µν(∂νAµ − ∂νÃµ)
∣∣∣+ ∣∣∣ ∂νAµ(P µν − P̃ µν)

∣∣∣+
+
∣∣∣P µν(Pµν − P̃µν)

∣∣∣+ ∣∣∣ P̃ µν(Pµν − P̃µν)
∣∣∣ ] volM ≤

≤
∑
µ,ν

∥P µν ∥L2 ∥ ∂νAµ − ∂νÃµ ∥L2 +
∑
µ,ν

∥ ∂νAµ ∥L2 ∥P µν − P̃ µν ∥L2+

+1
2
∑
µ,ν

(
∥P µν ∥L2 + ∥ P̃ µν ∥L2

)
∥Pµν − P̃µν ∥L2 ,

(2.189)

shows that S is continuous in the norm defined above. Indeed, the last term in the chain of inequalities
above vanishes as ∥χ− χ̃ ∥ approaches zero. Consequently, S can be extended by continuity to the
completion Γsplit(δ1)1

∥ · ∥ = [ H2(M , volM ) ]4 × [ H1(M , volM ) ]16 =: FP(E).
As we will show, the correct dynamics of a sourceless electromagnetic field in vacuum is described

via a variational principle applied to the action functional defined above, constrained to the image of
the following map:

Φ : FP(E) → FP(E) : (Aµ, P µν) 7→ Φ [ (Aµ, P µν) ] = (Aµ, P [µν]) , (2.190)

where by P [µν] we mean the skew-symmetric part of P µν. Thus, we can use the theory developed in
the current section in order to find extrema of S restricted to the image of Φ and we can assert that
they coincide with extrema of the functional:

S ext
(χ,Λ) =

∫
M
χ⋆ΘH +

∫
M

ΛP µν

(
P µν − P [µν]

)
volM =

=
∫

M
χ⋆ΘH +

∫
M

ΛP µν(x)P (µν)(x) volM ,
(2.191)
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where P (µν) denotes the symmetric part of P µν, the manifold N in this case coincides with FP(E) and
we are denoting by Λ = (ΛA

µ, ΛP
µν) elements of F⋆

P(E) which, in this case, coincide with FP(E) itself,
since FP(E) is a Hilbert space and, thus, it is isomorphic to its dual space. Here the first fundamental
formula reads:

δX(χ,Λ)S
ext =

∫
M
χ⋆ [ iXdΘH ] +

∫
M

[
XΛP µνP

(µν)(x) + ΛP µνXP
(µν)

]
volM , (2.192)

where X is a δ1-vertical vector field on P(E) defined in a neighborhood of the image of χ, i.e., it is a
vector field of the type:

X = Xuµ

∂

∂uµ
+Xρ

µν ∂

∂ρµν
, (2.193)

where Xuµ and Xρ
µν are functions on P(E) defined for all x ∈ M and for uµ and ρµν close21 to

Aµ(x) and P µν(x) respectively. On the other hand, by looking at the proof of Prop. 2.1.16, X(χ,Λ) is a
tangent vector to FP(E) × F⋆

P(E) which is Φ-related to the tangent vector Xχ (namely, it preserves the
constraints):

Xχ : M → Tχ(x)P(E) : x 7→ X(χ(x)) =Xuµ(x, A(x), P (x)) ∂

∂uµ

∣∣∣∣∣∣
χ(x)

+

+Xρ
µν(x,A(x), P (x)) ∂

∂ρµν

∣∣∣∣∣∣
χ(x)

=:

=: XA[χ]µ
δ

δAµ
+ XP

µν [χ] δ

δP µν
,

(2.194)

following the notation (1.52). Thus, X(χ,Λ) reads:

X(χ,Λ) = XA[χ]µ
δ

δAµ
+ XP

[µν][χ] δ

δP [µν] + XΛµν [(χ,Λ)] δ

δΛP µν

. (2.195)

In this case, the equations of motion read:

χ⋆ [ iXdΘH ] + XΛP µνP
(µν)(x) = χ⋆

[
Xρ

µνduµ ∧ iνvolM +

−Xuµdρµν ∧ iνvolM − ηµρηνσρ
µνXρ

ρσvolM
]
+

+XΛP µνP
(µν) =

= XP
[µν] ( ∂νAµ − ηµρηνσP

ρσ ) − XAµ ∂νP
µν + XΛP µνP

(µν) =

= − XP
[µν]

(
Fµν + η[µρην]σP

ρσ
)

− XAµ ∂νP
µν + XΛP (µν)P

(µν) = 0
∀ XAµ, XP

µν , XΛµν ,

(2.196)
21With respect to the Sobolev norm defined above.

93



where Fµν = ∂[µAν] and which gives:

Fµν + η[µρην]σP
ρσ = 0 , ∂νP

µν = 0 , P (µν) = 0 , (2.197)

that collectively amounts to:
ηµν∂µFνρ = 0 , (2.198)

being the celebrated covariant form of sourceless Maxwell’s equations in vacuum.
A formulation of the equations of motion in terms of a (pre-symplectic) Hamiltonian system

similar to that given at the end of example 2.1.14 will be given in Sec. 3.2.5.

Example 2.2.15 (Yang-Mills theories). As in example 2.2.8, we consider free Yang-Mills
theories on the Minkowski space-time M = (R4, η). As we argued in example 2.2.8, the bundle
underlying the theory is π : E = T⋆M ⊗ g → M , where g is the Lie algebra of a semi-
simple Lie group G. The sections of π, denoted by A = Aaµ(x)dxµ ⊗ ξa, are Lie algebra valued
1-forms representing the analogue of the quadri-potential of the previous example. On E we denote
by {xµ, uaµ }µ=0,...,3;a=1,...,dimg a system of coordinates, where {xµ }µ=0,...,3 is the system of coordinates
chosen on M . The covariant phase space P(E), is the reduced dual of the bundle J1π constructed in
example 2.2.8, namely the trivial bundle over M whose typical fibre is T⋆

m ⊗ gM ×
(⊗2 TmM ⊗ g⋆

)
where we consider {xµ, uaµ, ρµνa }µ, ν=0,...,3;a=1,...,dimg as a system of coordinates. We will denote by
χ = (A, P ) = (Aaµ, P µν

a ) elements of Γsplit(δ1), δ1 denoting the projection P(E) → M . The
Hamiltonian of the theory is:

H = 1
2ηµρηνσG

abρµνa ρ
ρσ
b + ϵabcρ

µν
a u

b
µu

c
ν , (2.199)

G denoting the Killing-Cartan metric on g. The action functional obtained is:

Sχ =
∫

M
χ⋆
[
ρµνa duaµ ∧ iνvolM −

( 1
2ηµρηνσG

abρµνa ρ
ρσ
b + ϵabcρ

µν
a u

b
µu

c
ν

)
volM

]
=

=
∫

M

[
P µν
a (x)∂νAaµ −

( 1
2ηµρηνσG

abP µν
a (x)P ρσ

b (x) + ϵabcP
µν
a AbµA

c
ν

) ]
volM .

(2.200)

Also in this case, it is clear that such action functional is not well defined on the whole space of
smooth splitting sections, Γsplit(δ1). Indeed, in order for the integral to be well defined, the P ’s should
be at least square integrable and the product of the P ’s with the first derivatives of the A’s should be
integrable. Thus, the first derivatives of the A’s should be square integrable as well. Actually, for
technical reasons that will be clear in Sec. 3.2, we will ask for even more regularity, namely, we will
consider those A’s being H3 functions and those P ’s being H2 functions and this will allow us to work
with well defined Hilbert spaces of fields. However, as in the previous example, it should be stressed
that this is not the minimal requirement in order for S to be well defined and that this choice may
exclude some physical system (even if it seems that only systems never observed in nature up to now
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are excluded). We will consider S to be defined on the subset of Γsplit(δ1) given by smooth splitting
sections for which the norm:

∥χ ∥2 =
∑
µ,a

∥Aaµ ∥2
H3 +

∑
µ,ν,a

∥P µν
a ∥2

H2 , (2.201)

is finite, say Γsplit(δ1)1. The same techniques used in example 2.2.8 and 2.2.14 allow to prove
that S is continuous in the norm defined above and, thus, it can be extended by continuity to the
completion Γsplit(δ1)1

∥ · ∥ = [ H3(M , volM ) ]n × [ H2(M , volM ) ]m =: FP(E) where n = 4dimg and
m = 16dimg.

As we will show, the correct dynamics of a free Yang-Mills field is described via a variational
principle applied to the action functional defined above, constrained to the image of the following map:

Φ : FP(E) → FP(E) : (Aaµ, P µν
a ) 7→ Φ

[
(Aaµ, P µν

a )
]

= (Aaµ, P [µν]
a ) , (2.202)

where by P [µν]
a we mean the skew-symmetric part of P µν

a . Thus, we can use the theory developed in
the current section in order to find extrema of S restricted to the image of Φ and we can assert that
they coincide with extrema of the functional:

S ext
(χ,Λ) =

∫
M
χ⋆ΘH +

∫
M

ΛP
a
µν

(
P µν
a − P [µν]

a

)
volM =

=
∫

M
χ⋆ΘH +

∫
M

ΛP
a
µν(x)P (µν)

a (x) volM ,
(2.203)

where P (µν)
a denotes the symmetric part of P µν

a , the manifold N in this case coincides with FP(E) and
we are denoting by Λ = (ΛA

µ
a , ΛP

µν
a ) elements of F⋆

P(E) which, in this case, coincide with FP(E) itself,
since FP(E) is a Hilbert space and, thus, it is isomorphic to its dual space. Here the first fundamental
formula reads:

δX(χ,Λ)S
ext

(χ,Λ) =
∫

M
χ⋆ [ iXdΘH ] +

∫
M

[
XΛP

a
µνP

(µν)
a (x) + ΛP

a
µνXP

(µν)
a

]
volM , (2.204)

where X is a δ1-vertical vector field on P(E) defined in a neighborhood of the image of χ, i.e., it is a
vector field of the type:

X = Xu
a
µ

∂

∂uaµ
+Xρ

µν
a

∂

∂ρµν a
, (2.205)

where Xu
a
µ and Xρ

µν
a are functions on P(E) defined for all x ∈ M and for uaµ and ρµνa close22 to

Aaµ(x) and P µν
a (x) respectively. On the other hand, X(χ,Λ) is a tangent vector to FP(E) × F⋆

P(E) which

22With respect to the Sobolev norm defined above.
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is Φ-related to the tangent vector Xχ:

Xχ : M → Tχ(x)P(E) : x 7→ X(χ(x)) =Xu
a
µ(x, A(x), P (x)) ∂

∂uaµ

∣∣∣∣∣∣
χ(x)

+

+Xρ
µν
a (x,A(x), P (x)) ∂

∂ρµνa

∣∣∣∣∣∣
χ(x)

=:

=: XA
a
µ[χ] δ

δAaµ
+ XP

µν
a [χ] δ

δP µν
a
,

(2.206)

following the notation (1.52). Thus, X(χ,Λ) reads:

X(χ,Λ) = XA
a
µ[χ] δ

δAaµ
+ XP

[µν]
a [χ] δ

δP [µν] + XΛ
a
µν [(χ,Λ)] δ

δΛP
a
µν

. (2.207)

In this case, the equations of motion read:

χ⋆ [ iXdΘH ] + XΛP µνP
(µν)(x) = χ⋆

[
Xρ

µν
a duaµ ∧ iνvolM −Xu

a
µdρµνa ∧ iνvolM +

−(ηµρηνσρµνa GabXρ
ρσ
b + ϵabcXρ

µν
a u

b
µu

c
ν+

+ϵabcρµνa ucνXu
b
µ + ϵabcρ

µν
a u

b
µXu

c
ν) volM

]
+

+XΛP µνP
(µν) =

= XP
[µν]
a

(
∂νA

a
µ − ϵabcA

b
µA

c
ν − ηµρηνσG

abP ρσ
b

)
+

−XA
a
µ ∇νP

µν
a + XΛP

a
µνP

(µν)
a =

= − XP
[µν]
a

(
F a
µν + η[µρην]σG

abP ρσ
b

)
+

−XA
a
µ ∇νP

µν
a + XΛP

a
(µν)P

(µν)
a = 0

∀ XA
a
µ, XP

µν
a , XΛ

a
µν ,

(2.208)

where F a
µν = ∂[µAν] + ϵabcA

b
µA

c
ν =: ∇µA

a
ν and ∇νP

µν
a = ∂νP

µν
a − ϵcbaP

νµ
c Abν − ϵbacP

µν
b Acν are the

covariant derivatives of A and P with respect to the connection A, and which gives:

F a
µν + η[µρην]σG

abP ρσ
b = 0 , ∇νP

µν
a = 0 , P (µν)

a = 0 , (2.209)

that collectively amounts to:
ηµν∇µF

a
νρ = 0 , (2.210)

being the celebrated Yang-Mills equations.
A formulation of the equations of motion in terms of a (pre-symplectic) Hamiltonian system

similar to that given at the end of example 2.1.14 will be given in Sec. 3.2.5.
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Example 2.2.16 (Palatini’s Gravity). In this example we consider General Relativity in the so-
called Palatini’s approach. General Relativity can be described as a field theory over a space-time
(M , g) where the metric g is the configuration field of the theory. Historically, the first variational
formulation of the theory is due to A. Einstein and D. Hilbert. It can be proved [BM94, Chap. 3], that
Einstein equations can be obtained as Euler-Lagrange equations for the following action functional:

SE-Hg =
∫

M
R ϵ volM , (2.211)

which is called the Einstein-Hilbert action, where R is the scalar curvature of g, ϵ =
√

−detg and
volM = dx0 ∧ ... ∧ dxd.

We briefly recall how R is defined in order to introduce the notation we will use when we will pass
to the tetradic formalism. Being TM a vector bundle, a linear connection can always be defined on
it [GMS10, Appendix 11.4]. It can be encoded into a vertical valued 1-form on TM of the type:

A =
(

dvµ − A µ
ν ρv

ρdxν
)

⊗ ∂

∂vµ
, (2.212)

where {xµ, vµ }µ=0,...,d is a local coordinate system on TM and A µ
ν ρ are the so-called connection

coefficients. The curvature of the connection Γ is defined to be the Frolicher-Nijenhuis bracket
between A and itself:

R := [A, A]F−N = R ν
λµ ρv

ρdxλ ∧ dxµ ⊗ ∂

∂vν
, (2.213)

where:
R ν
λµ ρ = 1

2
(
∂λA

ν
µ ρ − ∂µA

ν
λ ρ + A σ

λ ρA
ν
µ σ − A σ

µ ρA
ν
λ σ

)
. (2.214)

The torsion of the connection is defined as the Frolicher-Nijenhuis bracket between R and the
soldering form:

S = dxµ ⊗ ∂

∂vµ
, (2.215)

of TM , i.e.:
T = [R, S]F−N = T ν

µ ρdxρ ∧ dxµ ⊗ ∂

∂xν
, (2.216)

where:
T ν
µ ρ = T ν

µ ρ − T µ
ν ρ . (2.217)

The Ricci tensor, R, of the connection A is the (0, 2)-tensor on M whose coefficients are Rµν = R ρ
µρ ν

and the scalar curvature R is:
R = gµνRµν . (2.218)

When a metric is defined on M , a particular connection on M can always be defined, i.e., the so
called Levi-Civita connection, which is the (unique) connection on TM such that T = 0 and
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such that the covariant derivative of g with respect to the connection vanishes. The scalar curvature
appearing in the Einstein-Hilbert action above is the scalar curvature constructed from the Levi-Civita
connection associated to the metric g. For this reason, in the Einstein-Hilbert formulation, General
Relativity is a second order theory. Indeed, being R the scalar curvature of the Levi-Civita connection
of the metric, it depends on g and its first and second order derivatives. Consequently, the action
functional depends on the fields and their derivatives up to second order. Even if a quite solid
geometrical theory to work with higher order field theories exists (see [Kru15] and references therein),
it is much easier to work with first order theories when possible. Indeed, General Relativity can be
put into a first order theory by considering the metric g and the connection A as independent objects.
This is the so-called Palatini’s variational formulation of General Relativity.

Palatini’s action reads [BM94]:

SP(g,A) =
∫

M
gµνRµν ϵ volM , (2.219)

where R is the Ricci curvature of the connection A.
There are several good reasons for not taking g as the fundamental field of the theory, but rather

the so-called tetrad fields23. A tetrad at a point m ∈ M is defined to be a map from a basis of the
tangent space of M at m to elements of the tangent space of a flat n-dimensional24 manifold (which
is isomorphic to Rn) equipped with a Lorentzian metric:

e(x) : TmM → Rn : ∂

∂xµ
7→ e(x)

(
∂

∂xµ

)
= eIµ(x)ξI , I = 1, ..., n , (2.220)

where ξI is a basis of the vector space Rn. Therefore, e(x) can be thought of as a (1, 1) tensor on
TmM ⊗ Rn of the type:

e(x) = eIµ(x)dxµ ⊗ ξI , (2.221)
which satisfies:

gµνe
µ
I e
ν
J = ηIJ , (2.222)

η being the Minkowski metric which Rn is equipped with. The existence of such a map is ensured by
the existence around any point m of M of normal (or Gauss) coordinates in which the metric g is the
Minkowski metric and its first derivatives in m vanish (see [Spi99]). Now, a tetrad field is defined to
be a local section e of the bundle TM ⊗ Rn → M satisfying, at each point, a condition of the type
(2.222).

23The use of the e’s instead of g as fundamental field of the theory is widespread nowadays. Indeed, within the most
common approaches to Quantum Gravity the use of tetrads is necessary to describe fermions. Moreover, as we will see
in the next lines, tetrads describe very well the idea of the gravitational field as a deviation of the space-time from
being flat and, therefore, many authors prefer to use e instead of g also from the point of view of the sake of Physical
conceptual clearness (see [Rov04]).

24Actually, even if the definition does not depend on the dimension, the name tetrad is devoted to the 4-dimensional
case, which is the case we will address.
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The duals of the tetrad fields are defined by considering the following map:

e⋆(x) : T⋆
mM → Rn : dxµ 7→ e⋆(x) (dxµ) = eµI (x)ξI , I = 1, ..., n , (2.223)

where
{
ξI
}
I=1,...,n

is the dual basis of { ξI }I=1,...,n. e⋆(x) can be thought of as a (1, 1) tensor on
T⋆
mM ⊗ Rn of the type:

e⋆(x) = eµI (x) ∂

∂xµ
⊗ ξI , (2.224)

which satisfies:
gµνeIµe

J
ν = ηIJ . (2.225)

Therefore, a dual tetrad field is defined to be a local section of the bundle T⋆M ⊗ Rn → M satisfying,
at each point, the condition (2.225).

Now, the action SP can be expressed in terms of the connection A and the tetrad fields in the
following way. The curvature (2.213) can be expressed in the basis of the ξI ’s by taking the pull-back
of R via the inverse of the map e⋆:

(
e⋆−1

)⋆
R = R ν

λµ ρe
λ
I e
µ
Jv

ρξI ∧ ξJ ⊗ ∂

∂vν
=: R ν

IJ ρv
ρξI ∧ ξJ ⊗ ∂

∂vν
. (2.226)

Consequently, the Ricci tensor can be expressed in terms of the tetrad fields as follows:

Rµν = R σ
µσ ν = R σ

IJ νe
I
µe
J
σ , (2.227)

and the scalar curvature reads:

R = gµνRµν = ηIJeµI e
ν
JR

σ
KL νe

K
µ e

L
σ = −eνKeσLRKL

νσ . (2.228)

Therefore, in terms of tetrad fields, the action 2.219 reads:

SP(e,A) = −
∫

M
ϵeµI e

ν
JR

IJ
µνvolM . (2.229)

which is the so-called tetradic Palatini’s action.
It is worth noting that RIJ

µν are the coefficient of a 2-form on M with values in (Rn ∧ Rn, η).
When n = 4, (Rn∧R4, η) is isomorphic with the Lie algebra of the orthogonal group O(1, 3). Therefore,
the indices IJ can be considered as a collective index a = IJ = 1, ..., dimo(1, 3) and RIJ

µν can be
seen as the coefficients of the curvature of a connection one-form on M with values in o(1, 3).

Now we are ready to see how to develop the multi-symplectic formulation of the tetradic Palatini’s
action. In particular, we will see that (2.229) can be regarded as a Yang-Mills action in a suitable
limit, the so-called topological limit, and constrained to a suitable subset of fields. For this reason
we will necessitate the theory developed in Sect. 2.2.3 to deal with such a theory.
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Let us consider the Yang-Mills action written in the previous example with a dimensional constant
multiplying the quadratic term in the momenta fields:

SY-Mχ = −
∫

M

[
P µν
a F a

µν + 1
4gP

µν
a P a

µν

]
volM . (2.230)

Its topological limit25 is defined to be:

S 0
Y-Mχ = limg→∞SY-Mχ = −

∫
M
P µν
a F a

µν volM . (2.231)

Note that such a topological limit is obtained by considering the limit for g → ∞ of the Yang-Mills
Hamiltonian of the previous example with a dimensional constant g:

H = 1
4gρ

µν
a ρ

a
µν + 1

2ϵ
a
bcρ

µν
a α

b
µα

c
ν . (2.232)

Having in mind what we said a few lines ago about the indices IJ appearing in the tetradic
Palatini’s action, the action (2.229) can be seen as the topological limit of the action of a Yang-Mills
theory with structure group O(1, 3) with the identification of the momenta of the theory P µν

a with the
expression ϵeµI e

ν
J appearing in Eq. (2.219). Let us make this last claim more precise. Indeed, the

internal indices of a O(1, 3) Yang-Mills configuration fields can be written as a = IJ where I, J
runs from 0 to 3 and IJ must be considered as a collective index running on {0, ..., 3} ∧ {0, ..., 3}.
Therefore, here we denote Yang-Mills configuration fields as:

A = A(x)IJµ dxµ ⊗ ξI ∧ ξJ , (2.233)

where { ξI }I=0,...,3 represents a basis of R4, { ξI ∧ ξJ }I,J=0,...,3 represents a basis of o(1, 3). On the
other hand, momenta fields will be denoted as:

P = P µν
IJ (x) ∂

∂xµ
∧ ∂

∂xν
⊗ ξI ∧ ξJ , (2.234)

where { ξI }I=0,...,3 is a basis of R4, { ξI∧ξJ }I,J=0,...,3 represents a basis of o(1, 3)⋆. As usual, dynamical
fields of the theory are denoted by χ = (A, P ) ∈ FP(E). On the other hand, we saw that tetrad fields
are defined as sections of the bundle TM ⊗ R4 → M which reads:

e = eµI (x) ∂

∂xµ
⊗ ξI . (2.235)

Let us denote by E the space of tetrad fields. Then, the following map can be defined:

P : FE × E → FP(E) : (A, e) 7→
(
A, P = ϵeµI e

ν
J

∂

∂xµ
∧ ∂

∂xν
⊗ ξI ∧ ξJ

)
. (2.236)

25The reason for this name is that the theory it will give rise is a topological one, in the sense that the dynamics of
the theory will lie entirely into the kernel of a pre-symplectic structure, as it will be clear in Sec. 3.2.
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We will refer to it as Palatini map or Palatini constraint. Then, the tetradic Palatini’s action
is nothing but the pull-back via P of the topological limit of the Yang-Mills action:

SP = P⋆S 0
Y-M , (2.237)

whose extrema are the extrema of S 0
Y-M constrained along the image of P. Therefore, being P a

map satisfying the hypothesis of Prop. 2.1.16, we are in the situation depicted in Sec. 2.2.3 where
FP(E) is the space of dynamical fields of a O(1, 3) Yang-Mills theory and Ξ is the subset of FP(E) being
the image of E via the map Φ = P.

Therefore, now we will find extrema of SP by using the theory developed in Sect. 2.2.3. In this
case the manifold N of Prop. 2.1.16 does not coincide with FP(E), and it reads N = FE × E . Thus,
the extended action functional is defined on FP(E) × FP(E)

⋆ × E , whose elements will be denoted by
(χ, Λ, e). Here, the analogue of (2.203) reads:

S ext
(χ,Λ, e) =

∫
M
χ⋆Θ0

H +
∫

M
ΛP

IJ
µν

(
P µν
IJ − ϵ e

[µ
I e

ν]
J

)
volM , (2.238)

where:
Θ0
H = ρµνIJduIJµ ∧ iνvolM − ϵIJKLMNρ

µν
IJu

KL
µ uMN

ν volM , (2.239)
is the topological limit of the ΘH of the previous example. Consequently:

δX(χ,Λ,e)S
ext

(χ,Λ,e) =
∫

M
χ⋆
[
iXdΘ0

H

]
+
∫

M

[
XΛP

IJ
µν

(
P µν
IJ − ϵ e

[µ
I e

ν]
J

)
+

+ΛP
µν
IJ

(
XP

IJ
µν − 2ϵe[µ

I (eρKe
ν]
J Xe

ρ
K + Xe

ν]
J )
) ]
volM ,

(2.240)

where the second term in the second integral vanishes because of the fact that the tangent vector

X(χ,Λ,e) = XA
IJ
µ

δ

δAIJµ
+ XP

µν
IJ

δ

δP µν
IJ

+ XΛA
µ
IJ

δ

δΛA
µ
IJ

+ XΛP
IJ
µν

δ

δΛP
IJ
µν

+ Xe
µ
I

δ

δeµI
, (2.241)

must be tangent to the image of P, as explained in Prop. 2.1.16 and, thus, is such that:

XP
µν
IJ = 2ϵe[µ

I (eρKe
ν]
J Xe

ρ
K + Xe

ν]
J ) . (2.242)

Following the same steps of the previous example, one sees that the equations of motion read:

χ⋆[ iXdΘH ] + XΛP
IJ
µν

(
P µν
IJ − ϵ e

[µ
I e

ν]
J

)
=
(
eKρ e

ν]
J Xe

ρ
K + Xe

ν]
J

)
2ϵeµ]

I F
IJ
µν +

−XA
IJ
µ ∇νP

µν
IJ +

+XΛP
IJ
µν

(
P µν
IJ − ϵ e

[µ
I e

ν]
J

)
= 0 ∀ XA

IJ
µ , XP

µν
IJ , Xe

µ
I ,

(2.243)

which gives:
eµIF

IJ
µν = 0 , ∇νP

µν
IJ = 0 , P µν

IJ = ϵ e
[µ
I e

ν]
J , (2.244)
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that collectively amounts to:

eµIF
IJ
µν = 0 , ∇ν

(
ϵ e

[µ
I e

ν]
J

)
= 0 , (2.245)

being, respectively, Einstein’s equations in vacuum and the torsionless condition for the
connection associated to the metric.
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Chapter 3

The geometry of the solution space

In this chapter, which is the core of the manuscript, we pass to our main aim, namely the study of the
geometry of the space of solutions of the equations of motion (solution space, for short) geometrically
formulated in the previous chapter and, in particular, the possibility of equipping it with a Poisson
structure. The chapter is organized as follows. In Sec. 3.1 we will show how from the intrinsic
variational formulation of dynamical system described in the previous chapter, a canonical 2-form
defined on the space of solutions of the equations of motion emerges. Then, in Sec. 3.2 we will show
the role of such canonical structure in formulating, at least locally around particular 1-codimension
hypersurfaces of the space-time of the theory, the dynamical system as a pre-symplectic Hamiltonian
system. We will discover how this approach allows to algorithmically find the Cauhcy data space for
our system that turns out to be automatically equipped with a canonical 2-form as well. Finally, in
Sec. 3.3 we will show how to consistently use such a canonical structure on the space of Cauchy data
to induce a Poisson bracket structure on the solution space of the theory.

3.1 The canonical structure on the solution space
We start by showing the emergence of a canonical 2-form on the solution space from the intrinsic
variational principle defined in the previous chapter. As in the previous chapter we will do it both
within mechanical systems and within field theories in the Lagrangian formulation as well as in the
Hamiltonian one and in the Hamiltonian theories with additional constraints.

3.1.1 Lagrangian Mechanics
Let us start this section by noting that also the second term on the right hand side of (2.16) can be
interpreted as the contraction of a differential form on F(Q) along a tangent vector, even if in this
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case more comments are needed. Indeed, since the second term on the right hand side of (2.16), i.e.:∫
∂I
i⋆∂I

(
j1γ

)⋆
iX1ΘL , (3.1)

only depends on the restriction of j1γ to the boundary ∂I, it can be seen only as the pull-back of a
differential form on the space of restrictions of elements j1γ to ∂I. Recall that the γs belong to a
suitable completion of the space of sections of π. We assume, from now on, that, given the norm
with respect to which F(Q) is constructed, a norm on the space of jets of sections restricted to ∂I is
naturally induced and which allows to define a smooth Banach manifold structure. We will denote
the smooth Banach manifold obtained by F∂I

Q and we will often refer to it as the space of restrictions
of jets of sections to ∂I. Denote by Π∂I the map:

Π∂I : FQ → F∂I
Q : γ 7→ j1γ

∣∣∣
∂I

=: j1γ∂I , (3.2)

Then, the second term in the right hand side of (2.16) can be seen as the pull-back (via Π∂I) to FQ of
a differential 1-form, say α∂I, on F∂I

Q contracted along a tangent vector:

iXγ
[

Π⋆
∂Iα

∂I
]

= Π⋆
∂Iα

∂I(Xγ) =
∫
∂I
i⋆∂I

(
j1γ

)⋆
iX1ΘL ∀ Xγ ∈ TγFQ , (3.3)

where X1 is the first order jet prolongation of any extension of Xγ to an open neighborhood of the
image of γ into Q. Note that in terms of such a differential form and the Euler-Lagrange form, the
first fundamental formula reads:

dSγ = ELγ + Π⋆
∂Iα

∂I
γ . (3.4)

The goal of this section is to show that, starting from Π⋆
∂Iα

∂I, it is possible to define a canonical
differential 2-form on the solution space of the theory.

First, let us recall that I is a differential manifold with boundary. What is more, it is an orientable
differential manifold on which we could fix the orientation to be the positive (outer) one, for instance.
It means that at each point of the boundary, i.e. the two extrema of the interval, say a and b, we are
considering the versor pointing outside the interval, thus, having opposite directions in the two cases.
The boundary is the following disconnected manifold made by two points, ∂I = { a } ∪ { b } which is
in turn a topological manifold, actually an orientable one with the orientation inherited from I. Thus,
the differential one-form defined above reads:

Π⋆
∂Iα

∂I
γ ( Xγ ) =

∫
∂I
i⋆∂I

(
j1γ

)⋆
iX1ΘL =

(
j1γ

)⋆
[ iX1ΘL ]

∣∣∣
b

−
(
j1γ

)⋆
[ iX1ΘL ]

∣∣∣
a

=

=: Π⋆
bα

b
γ ( Xγ ) − Π⋆

aα
a
γ ( Xγ ) ,

(3.5)

where αa (resp. αb) is a differential form on the space of restrictions of elements of FQ to a (resp. b),
say Fa

Q (resp. F b
Q) and Πa (resp. Πb) is the corresponding restriction map analogous to Π∂I. Referring

to the system of local coordinates chosen on J1π, the differential form above reads:

Π⋆
∂Iα

∂I
γ = Π⋆

bα
b
γ − Π⋆

aα
a
γ =

(
j1γ

)⋆ [
πL jdqj

]∣∣∣
b

−
(
j1γ

)⋆ [
πL jdqj

]∣∣∣
a
. (3.6)
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Its differential reads:

Π⋆
∂IΩ∂I

γ := −dΠ⋆
∂Iα

∂I
γ = −dΠ⋆

bα
b
ξ + dΠ⋆

aα
a
γ = Π⋆

b dαbγ − Π⋆
a dαaγ =: −Π⋆

bΩb
γ + Π⋆

aΩa
γ . (3.7)

where, again Ωa (resp Ωb) is a differential form on Fa
Q (resp. F b

Q). A direct computation shows the
explicit expression of the latter 2-form, i.e.:

Π⋆
∂IΩ∂I

γ ( Xγ, Yγ ) = −
∫
∂I
i⋆∂I

(
j1γ

)⋆
[ iY 1 iX1 dΘL ] , (3.8)

where X1 and Y 1 are first order jet prolongations of two arbitrary extensions of Xγ and Yγ to an open
neighborhood of the image of γ into Q. Consequently, Π⋆

aΩa
γ and Π⋆

bΩb
γ read:

Π⋆
aΩa

γ(Xγ, Yγ) = −
(
j1γ

)⋆
[ iY 1 iX1 dΘL ]

∣∣∣
a

(3.9)

Π⋆
bΩb

γ(Xγ, Yγ) = −
(
j1γ

)⋆
[ iY 1 iX1 dΘL ]

∣∣∣
b

(3.10)
which, in the system of local coordinates chosen, are:

Π⋆
aΩa

γ =
(
j1γ

)⋆ [
dqj ∧ dπL j

]∣∣∣
a
, (3.11)

Π⋆
bΩb

γ =
(
j1γ

)⋆ [
dqj ∧ dπL j

]∣∣∣
b
. (3.12)

For any t ∈ I, it is possible to define the 2-form:

Π⋆
tΩt

γ(Xγ, Yγ) =
(
j1γ

)⋆
[ iY 1 iX1 dΘL ]

∣∣∣
t

(3.13)

The goal of the rest of the section is to prove that the structure Π⋆
tΩt at each point t ∈ I is the

same if evaluated at γ ∈ EL , i. e., Π⋆
tΩt is a canonical structure on the solution space of the theory.

Let us start by recalling that, provided EL is an immersed Banach submanifold of F(Q), as we
assumed, the following fact holds.
Proposition 3.1.1. EL is an isotropic manifold for the differential 2-form Π⋆

∂IΩ∂I.

Proof. Consider (3.4) and take the differential of both sides:

d d︸︷︷︸
=0

Sγ = dELγ + dΠ⋆
∂Iα

∂I
γ = dELγ − Π⋆

∂IΩ
∂I
γ , (3.14)

i.e.:
dELξ − Π⋆

∂IΩ
∂I
γ = 0 . (3.15)

Consider the pull-back of the left hand side of the latter equation via iEL . The pull-back acts naturally
with respect to d and EL is the space of zeroes of EL, thus, i⋆EL dEL = di⋆EL EL = 0. Therefore:

i⋆EL Π⋆
∂IΩ∂I

γ = 0 . (3.16)
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In particular, by looking at (3.7), the previous proposition gives:

Π⋆
bΩ

b
γ = Π⋆

aΩ
a
γ , ∀ γ ∈ EL . (3.17)

Also the following, apparently obvious, fact holds.

Proposition 3.1.2. Consider a (connected) closed subinterval of I, say Ĩ. Denote by ˜EL the solution
space related with the variational principle formulated on Ĩ instead of I. Then, the restrictions of the
elements in EL to Ĩ belong to ˜EL .

Proof. Let us denote by ĩ the canonical immersion of Ĩ into I. Given ĩ, the space Q̃ = Ĩ × Q is
canonically immersed into Q via the map ĩQ := ĩ×1Q and ˜J1π (i.e. the first order jet bundle of Q̃ → Ĩ)
is canonically immersed into J1π via j 1̃iQ. We will denote by γ̃ and by γ sections of π̃ : Q̃ → Ĩ and
of π : Q → I respectively. Denote by π̃1

0 and π̃1 the projections of ˜J1π onto Q̃ and Ĩ respectively.
For all γ there exists a γ̃ (its restriction γ |̃I) such that the following diagram commutes:

˜J1π J1π

Q̃ Q

Ĩ I

j1 ĩQ

π̃1
0 π1

0

ĩQ
j1γ̃

γ̃

ĩ

j1γ

γ

(3.18)

The variational principle formulated on ˜J1π gives the following equations of motion:(
j1γ̃

)⋆ [
iX̃1

[
(j 1̃iQ)⋆dΘL

] ]
= 0 ∀ X̃ ∈ Xπ̃(U (γ̃)) , (3.19)

where Xπ̃(U (γ̃)) denotes the module of vertical (with respect to π̃) vector fields defined on an open
neighborhood of the image of γ̃ in Q̃. The left hand side of the previous equation can be rewritten as:(

j1γ̃
)⋆ [

iX̃1

[
(j 1̃iQ)⋆dΘL

] ]
=
(
j1γ̃

)⋆ [
(j 1̃iQ)⋆ iX1dΘL

]
=
(
j 1̃iQ ◦ j1γ̃

)⋆
( iX1dΘL ) =

=
(
j1γ ◦ ĩ

)⋆
( iX1dΘL ) = ĩ⋆

[ (
j1γ

)⋆
iXdΘL

]
,

(3.20)

for some X which is ĩQ-related with X̃ and where γ is one of the sections of π1 that restrict to γ̃. The
previous sequence of equalities clearly shows that if γ is a solution for the variational problem on I, i.
e., if ( j1γ )⋆ ( iX1dΘL ) = 0, then its restriction γ̃ is a solution of the variational principle on Ĩ.

A combination of the previous results allows to prove the following.

Proposition 3.1.3. The structure Π⋆
tΩt does not depend on the particular t chosen if evaluated on γ

belonging to the solution space EL .
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Proof. Let us fix the extremum a of I and consider all the possible subintervals of I of the type [a, t].
Then, a straightforward application of the previous two propositions gives:

Π⋆
aΩa

γ = Π⋆
tΩt

γ , ∀ t ∈ I (3.21)

if γ ∈ ˜EL , where ˜EL is the solution space of the variational problem formulated on [a, t]. In other
words, the structure Π⋆

tΩt
γ is constant along I if evaluated on solutions of the equations of the motion,

and, therefore, we will refer to it as the canonical structure on the solution space of the equations
of the motion.

3.1.2 Hamiltonian Mechanics
The construction of the canonical structure on the solution space within the Hamiltonian formalism
goes along the lines of the previous section.

In this case the differential 1-form defined on the space FP(Q) appearing in the first fundamental
formula reads:

iXξΠ⋆
∂Iα

∂I
ξ = Π⋆

∂Iα
∂I
ξ(Xξ) =

∫
∂I
i⋆∂I ξ

⋆iXΘH ∀ Xξ ∈ TξFP(Q) , (3.22)

where X is any extension of Xξ to an open neighborhood of the image of ξ into P(Q). In terms of it
and of the Euler-Lagrange form, the first fundamental formula reads:

dSξ = ELξ + Π⋆
∂Iα

∂I
ξ . (3.23)

Starting from the latter differential 1-form, it is possible to define a 2-form on FP(Q) for any t ∈ I
analogously to how it was done in the previous section:

Π⋆
tΩt

ξ(Xξ, Yξ) = ξ⋆ [ iY iX dΘH ]
∣∣∣
t

(3.24)

which, in the system of local coordinates chosen on P(Q), reads:

Π⋆
tΩt

ξ = ξ⋆
[
dpj ∧ dqj

]∣∣∣
t
, (3.25)

and it is possible to prove that, if evaluated on ξ ∈ EL , it does not depend on the particular t ∈ I
chosen. In particular, first, it is possible to prove the analogous of Prop. 3.1.1.

Proposition 3.1.4. EL is an isotropic manifold for the differential 2-form Π⋆
∂IΩ∂I.

Then, with the obvious modifications, it is possible to prove the analogue of Prop. 3.1.2.

Proposition 3.1.5. Consider a (connected) subinterval of I, say Ĩ. Denote by ˜EL the solution
space related with the variational principle formulated on Ĩ instead of I. Then, the restrictions of the
elements in EL to Ĩ belong to ˜EL .
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Proof. The proof is analogue to that of Prop. 3.1.2 with the obvious modification. In this case the
analogue of diagram (3.18) is:

˜P(Q) P(Q)

Ĩ I

ĩP

ξ̃

ĩ

ξ
(3.26)

where ĩP is:
ĩP : ˜P(Q) ≃ Ĩ × T⋆Q → P(Q) ≃ I × T⋆Q : ĩP = ĩ × 1T⋆Q . (3.27)

In this case, the variational principle formulated on P(Q) gives the following equations of motion:

ξ̃⋆
(
iX̃ ĩ⋆PΩH

)
= 0 ∀ X̃ ∈ Xδ1(U (ξ̃)) , (3.28)

where Xδ̃1(U (γ̃)) denotes the module of vertical (with respect to δ̃1) vector fields defined on an open
neighborhood of the image of ξ̃ in ˜P(Q). The chain of equalities (3.20) in this case reads:

ξ̃⋆
(
iX̃ ĩ⋆PΩH

)
= ξ̃⋆

(
ĩ⋆P iXΩH

)
=
(̃
iP ◦ ξ̃

)⋆
( iXΩH ) =

(
ξ ◦ ĩ

)⋆
( iXΩH ) = ĩ⋆ [ ξ⋆ ( iXΩH ) ] , (3.29)

for some X which is ĩP-related with X̃ and where ξ is one of the sections of δ1 that restrict to ξ̃.
Again, the sequence of equalities above shows that if ξ is a solution for the variational problem on I, i.
e., if ξ⋆iX1dΘH = 0, then its restriction ξ̃ is a solution of the variational principle on Ĩ.

Also in this case, a straightforward application of Prop. 3.1.4 and 3.1.5 allows to prove the
independence of Π⋆

tΩt on the particular t chosen if evaluated on elements of the solution space.

Proposition 3.1.6. The structure Π⋆
tΩt does not depend on the particular t chosen if evaluated on ξ

belonging to the solution space EL .

3.1.3 Hamiltonian systems with constraints
Within Hamiltonian mechanical systems with additional constrains of the type introduced in Sec.
2.1.3, the canonical structure has the same expression as for Hamiltonian theories without additional
constraints. Indeed, as we saw in Sec. 2.1.3, extrema of S restricted to some Ξ = Φ(N ) ⊂ FP(Q) are
in one-to-one correspondence with extrema of S ext = S + ⟨Λ, ξ − Φ(n)⟩. What is more, by looking
at Eq. (2.98) we see that the additional term appearing in the variation of S ext reads:

⟨XΛ, m− Φ(n)⟩ + ⟨Λ, Xm − Φ⋆Xn⟩ , (3.30)

which is not a boundary term and, thus, does not contribute to the 1-form Π⋆
tα

t. This means that
the canonical structure Π⋆

tω associated to S ext has the same expression as the one associated with
S even if it is defined on the enlarged space of fields FP(Q) × F⋆

P(Q) × N .
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3.1.4 First order Lagrangian field theories
Most of the results of section 3.1.1 can be straightforwardly generalized to the realm of first order
Lagrangian field theories and we will omit the proof for them, while we focus our attention to aspects
that are peculiar of field theories.

The first obvious generalization is that, assuming ∂M to be the disjoint union of k connected
codimension-1 hypersurfaces, say Σ1, ..., Σk, the analogue of the structure Π⋆

∂Iα
∂I on FQ, that we

denote by Π⋆
∂Mα∂M , is the structure on FE given by:

Π⋆
∂Mα∂M

ϕ ( Xϕ ) =
k∑
j=1

oj Π⋆
Σjα

Σj
ϕ ( Xϕ ) , ∀ Xϕ ∈ TϕFE , (3.31)

where oj is the verse chosen for the orientation inherited by Σj, Π⋆
Σjα

Σj
ϕ ( Xϕ ) is:

Π⋆
Σjα

Σj
ϕ ( Xϕ ) =

∫
Σj

i⋆∂M

(
j1ϕ

)⋆
[ iX1ΘL ] , (3.32)

and X1 is the first order jet prolongation of any extension of Xϕ to an open neighborhood of the image
of ϕ in E. In a system of local coordinates in which Σj is the hypersurface given by x0 = x0

Σj = const,
and using the notation introduced in Sec. 1.1.4 it reads:

Π⋆
Σjα

Σj
ϕ =

(
j1ϕ

)⋆ ∂L
∂za0

δϕa
∣∣∣∣
Σj

= δL

δφ̇a
(φa, φ̇a, ∂kφa) δφa , (3.33)

where φa denotes the restriction of ϕa to Σj, φ̇a denotes ∂0ϕ
a restricted to Σj and ∂kφa = ∂φa

∂xj
. This

is a straightforward generalization of (3.5). The differential of the form above gives the following
differential 2-form on FE:

Π⋆
∂M Ω∂M

ϕ ( Xϕ, Yϕ ) = −
∫
∂M

i⋆∂M

(
j1ϕ

)⋆
[ iY 1 iX1 dΘL ] , (3.34)

that can be equivalently defined for any 1-codimension hypersurface of M , say Σ:

Π⋆
ΣΩΣ

ϕ ( Xϕ, Yϕ ) = −
∫

Σ
i⋆Σ
(
j1ϕ

)⋆
[ iY 1 iX1 dΘL ] , (3.35)

where iΣ denotes the immersion of Σ into M . In particular, from now on, we are going to assume that
Σ is a slice of the space-time M , that is, that it splits the space-time into two regions, say M + and
M − being space-times themselves. In a system of local coordinates for which Σ is the hypersurface
given by x0 = x0

Σ = const and using the notation introduced in Sec. 1.1.4, the two form Π⋆
ΣΩΣ

ϕ

reads:
Π⋆

ΣΩΣ
ϕ = δ2L

δφbδφ̇a
δφa ∧ δφb + δ2L

δφ̇bδφ̇a
δφa ∧ δφ̇b + δ2L

δ∂jφbδφ̇a
δφa ∧ ∂jδφ

b . (3.36)

Provided EL is a smooth immersed Banach submanifold of F(E), as we assumed, Proposition
3.1.1, being a direct consequence of the first fundamental formula, can be generalized as follows.
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Proposition 3.1.7. ELM is an isotropic manifold for the differential 2-form Π⋆
∂M Ω∂M .

On the other hand, proposition 3.1.2 can be generalized to the following proposition.

Proposition 3.1.8. Consider a closed (connected) submanifold of M , say M̃ , having the same
dimension of M . Denote by ˜EL the solution space related with the variational principle formulated
on M̃ instead of M . Then the restrictions of elements in EL to M̃ belong to ˜EL .

And, again, the combination of these two results allows for proving the following proposition.

Proposition 3.1.9. The structure Π⋆
ΣΩΣ only depends on the homology classe of the slice Σ chosen,

if evaluated on ϕ belonging to the solution space EL .

Proof. Consider two arbitrary slices, Σ1 and Σ2 such that they select a region of the space-time, say
M12, being a submanifold of the type considered in Prop. 3.1.8 and whose boundary is made of the
two slices considered, both carrying the orientation pointing outside the region. Then (3.31) and
Prop. 3.1.7 and 3.1.8 gives:

Π⋆
Σ1ΩΣ1

ϕ = Π⋆
Σ2ΩΣ2

ϕ , (3.37)

if ϕ ∈ ˜EL , i.e., the solution space associated with the variational principle formulated on M12. Note
that any slice defines a class of slices made by all those slices whose union with Σ is the boundary of
a region of M of the type of Prop. 3.1.8. Thus, from Eq. (3.37) we conclude that Π⋆

ΣΩΣ is the same
on any slice Σ belonging to the same class.

The thesis follows from the observation that given any couple of slices belonging to different classes,
there exists another one belonging to both the previous classes.

3.1.5 First order Hamiltonian field theories
The content of the previous section can be adapted to the setting of first order Hamiltonian field
theories straightforwardly.

The analogue of the structure appearing in (3.31) is the 1-form on FP(E) given by:

Π⋆
∂Mα∂M

χ ( Xχ ) =
k∑
j=1

oj Π⋆
Σjα

Σj
χ ( Xχ ) , ∀ Xχ ∈ TϕFP(E) , (3.38)

where ∂M is the disjoint union of Σ1, ..., Σk, oj is the orientation chosen on Σj, Π⋆
Σjα

Σj
χ ( Xχ ) is:

Π⋆
Σjα

Σj
χ ( Xχ ) =

∫
Σj

i⋆∂Mχ⋆ [ iXΘH ] , (3.39)
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and X is any extension of Xχ to an open neighborhood of the image of χ in P(E). In a system of
local coordinates in which Σj is the hypersurface given by x0 = x0

Σj = const, and using the notation
introduced in Sec. 1.1.4 it reads:

Π⋆
Σjα

Σj
χ = χ⋆

(
ρ0
a

)
δϕa

∣∣∣∣
Σj

= paδφ
a , (3.40)

where φa and pa denote the restrictions of ϕa and P 0
a to Σ0 respectively.

The differential of the form above gives the differential 2-form on FP(E):

Π⋆
∂M Ω∂M

χ ( Xχ, Yχ ) = −
∫
∂M

i⋆∂Mχ⋆ [ iY iX dΘH ] , (3.41)

that can be equivalently defined for any slice Σ of M :

Π⋆
ΣΩΣ

χ ( Xχ, Yχ ) = −
∫

Σ
i⋆Σχ

⋆ [ iY iX dΘH ] , (3.42)

where iΣ denotes the immersion of Σ into M . In a system of local coordinates for which Σ is the
hypersurface given by x0 = x0

Σ = const and using the notation introduced in Sec. 1.1.4, the two
form Π⋆

ΣΩΣ
χ reads:

Π⋆
ΣΩΣ

χ = δφa ∧ δpa . (3.43)
Propositions 3.1.7, 3.1.8 and 3.1.9 can be straightforwardly adapted to the following propositions

with analogous proofs.
Proposition 3.1.10. ELM is an isotropic manifold for the differential 2-form Π⋆

∂M Ω∂M .
Proposition 3.1.11. Consider a (connected) submanifold of M , say M̃ , open into M and having
the same dimension of M . Denote by ˜EL the solution space related with the variational principle
formulated on M̃ instead of M . Then the restrictions of elements in EL to M̃ belong to ˜EL .
Proposition 3.1.12. The structure Π⋆

ΣΩΣ does not depend on the particular slice Σ chosen if
evaluated on χ belonging to the solution space EL .

3.1.6 First order Hamiltonian field theories with constraints
Within first order Hamiltonian field theories with additional constrains of the type introduced in Sec.
2.2.3, the canonical structure has the same expression as for Hamiltonian theories without additional
constraints. Indeed, as we saw in Sec. 2.2.3, extrema of S restricted to some Ξ = Φ(N ) ⊂ FP(E) are
in one-to-one correspondence with extrema of S ext = S + ⟨Λ, χ− Φ(n)⟩. What is more, by looking
at Eq. (2.98) we see that the additional term appearing in the variation of S ext reads:

⟨XΛ, m− Φ(n)⟩ + ⟨Λ, Xm − Φ⋆Xn⟩ , (3.44)
which is not a boundary term and, thus, does not contribute to the 1-form Π⋆

Σα
Σ. This means that

the canonical structure Π⋆
ΣΩΣ associated to S ext has the same expression as the one associated with

S even if it is defined on the enlarged space of fields FP(E) × F⋆
P(E) × N .
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3.2 Pre-symplectic formalism near a slice and the pre-symplectic
constraint algorithm

In this section we show how the canonical structure on the solution space constructed in the previous
section can be used to model, for any slice of the space-time of the theory1, the solution space as the
space of solutions of a pre-symplectic Hamiltonian system. As usual we will perform the construction
both within mechanical systems and within field theories in the Lagrangian formalism as well as in
the Hamiltonian and Hamiltonian+constraints ones. We also end this section by discussing, in Sec.
3.2.7, how this formulation in terms of pre-symplectic Hamiltonian systems can be consistently used
to deal with the correspondence between symmetries and conserved quantities within field theories.

3.2.1 Lagrangian Mechanics
As we said in Rem. 2.1.6, within Lagrangian Mechanics we always consider autonomous dynamical
systems for which the dynamics is described as a (generally pre-symplectic) Hamiltonian system
(TQ, ωL , EL ). It is worth stressing that TQ coincides with the space of jets of sections2 of π
restricted to any t ∈ I, say F t

Q and ωL coincides with the structure Ωt from which the canonical
structure Π⋆

tΩt comes from. Indeed, F t
Q is a space of maps from the space { t }, made by a single

point, to TQ and, thus, it coincides with the space of values, namely, TQ. On the other hand, the
canonical structure Π⋆

tΩt reads:

Π⋆
tΩt

γ(Xγ, Yγ) =
(
j1γ

)⋆
[ iX1iY 1dΘL ]

∣∣∣
t
, (3.45)

which, recalling that:
dΘL = ωL + dEL ∧ dt , (3.46)

and taking into account that Xγ and Yγ are vertical with respect to π1, gives:

Π⋆
tΩt

γ(Xγ, Yγ) =
(
j1γ

)⋆
[ iX1iY 1ωL ]

∣∣∣
t

= ωL (X1, Y 1)
∣∣∣
j1γ(t)

, (3.47)

which says that the canonical structure Π⋆
tΩt is the pull-back to FQ of the structure ωL on TQ and,

thus, that Ωt = ωL , ∀ t ∈ I.
Now, being ωL pre-symplectic in general, one should apply the pre-symplectic constraint algorithm

described in Sec. 1.3.2 in order to obtain well defined dynamical equations on the so-called stable
manifold of the algorithm, denoted by M∞. They take the form:

iΓ∞ωL ∞ = dEL ∞ , (3.48)
1That within mechanical systems seen as field theories over a 0 + 1-dimensional space-time, amounts to a single

point on the time interval.
2Whose structure of smooth Banach manifold is assumed to be obtained as described in the beginning of Sec. 3.1.1
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where ωL ∞ and EL ∞ are the pull-back of ωL and EL respectively to M∞ which is assumed to be a
smooth immersed submanifold of TQ, the immersion map denoted by i∞. As a matter of fact ωL ∞
may be symplectic or pre-symplectic, depending on the particular Lagrangian considered.

Let us consider for a moment the former case, namely, that ωL ∞ is non-degenerate. Then, for
any smooth function on M∞ the Hamiltonian vector field is uniquely defined and, in particular, this
is true for EL ∞. Consequently Eq. (3.48) defines a unique smooth vector field Γ∞ whose integral
curves, immersed into TQ via i∞, are elements of FQ being solutions of the Hamiltonian system.
Being Γ∞ a smooth vector field, to each point m∞ ∈ M∞ it is associated a unique curve on M∞,
the integral curve, γ∞, of Γ∞ passing through m∞, which is obtained by "evolving" m∞ via the flow
of Γ∞:

γ∞(s) = F Γ∞
s ·m∞ . (3.49)

Furthermore, to such a curve γ∞, it is associated a unique solution of the Hamiltonian system, say
γ ∈ EL :

γ(s) = i∞
[
F Γ∞
s ·m∞

]
:= Ψ ·m∞ , (3.50)

and the correspondence between m∞ ∈ M and γ ∈ EL is one-to-one. Indeed, Ψ is injective since
F Γ∞
s is a diffeomorphism and i∞ is a smooth immersion. Moreover, Ψ is surjective onto EL since

by definition EL is made by those elements of FQ which are in the image of i∞. Therefore, Ψ is
a bijection between M∞ and EL (and, being smooth, can be used to induce a smooth manifold
structure on EL ). For this reason the manifold M∞ can be considered that space of Cauchy data
for the equations of motion.

The situation may be resumed via the following diagram:

EL Π⋆
tωL

TQ ωL

M∞ ωL ∞

Πt

Ψ−1

Ψ

i∞

(3.51)

from which, noting that Πt = i∞ ◦ Ψ−1, it is also clear the relation between Π⋆
tωL and ωL ∞:

Π⋆
tωL =

(
i∞ ◦ Ψ−1

)⋆
ωL = Ψ−1⋆i⋆∞ωL = Ψ−1⋆ωL ∞ . (3.52)

The discussion above can be resumed by saying that when the structure ωL ∞ emerging from the
pre-symplectic constraint algorithm applied to the pre-symplectic Hamiltonian system describing
our Lagrangian dynamical system is symplectic, then the solution space EL is diffeomorphic to the
stable manifold emerging from the algorithm and, thus, it is a symplectic manifold. Being the two
manifolds diffeomorphic, all the geometric structures on the former are related via a diffeomorphism
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to those on the latter, and working on EL or on M∞ is completely equivalent. The convenience in
working directly on M∞ rather than on EL is that the latter solution space is determined by solving
the equations of motion whereas the former is determined via an algorithmic geometrical procedure
that does not require one to actually solve the equations of motion. For this reason from now on, we
will often refer directly to M∞ as the solution space of our system.

On the other hand, when ωL is pre-symplectic (and with constant rank, as we will assume from
now on), the vector field Γ∞ is determined up to elements in the kernel of ωL . This means that, for
any point m∞ ∈ M∞, the curve γ∞ solution of (3.48) is not unique, but rather is of the type:

γ∞(s) = F Γ∞
s ·m∞ , (3.53)

modulo the action of FW , for any W belonging, at each point, to the kernel of ωL ∞. Thus, in this
case, solutions of (3.48) passing through m∞ are parametrized by the elements W in the kernel of
ωL . Solutions associated to different W are said to be gauge equivalent and are indistinguishable
from the physical point of view. Therefore, the usual approach of theoretical physicists is to collect all
the them into equivalence classes and to refer to the space of equivalence classes as the solution space.
Instead, also in this case we will refer to the whole M∞ as the solution space, since it contains all the
solutions of the equations of motion, even if some of them are gauge equivalent, and this will allow
to classify theories being gauge theories or not as those theories for which M∞ is pre-symplectic or
symplectic.

Example 3.2.1 (Free particle on the line). In example 2.1.7 we already saw that the solutions
of the equations of motion of a free particle moving on a line (Q = R) coincide with the integral
curves of the vector field Γ satisfying:

iΓωL = dEL , (3.54)
where:

ωL = −ddSL , (3.55)
with:

L = 1
2mv

2 , (3.56)

and:
EL = 1

2mv
2 . (3.57)

This gives an explicit example of what we said in the present section, namely, that the dynamics of a
free particle moving on a line can be formulated in terms of the (symplectic, in this case) Hamiltonian
system (TR, ωL , EL ). Since in this case the 2-form:

ωL = m dq ∧ dv , (3.58)
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is symplectic, there is no need of performing the pre-symplectic constraint algorithm and the space
of Cauchy data M∞ coincide with TR itself. Moreover M∞ = TR is diffeomorphic to the solution
space EL as it can be seen by explicitly writing the solutions of the equations of motion:

γ(t) = q + v(t− t0) , (3.59)

which shows how, for any point (q, v) ∈ TR = M∞ there exists a unique solution γ(t) ∈ EL and
vice-versa.

3.2.2 Hamiltonian Mechanics
Within Hamiltonian Mechanics, as it was stressed in Rem. 2.1.13, we considered dynamical systems
for which the dynamics is modelled as the Hamiltonian system (T⋆Q, ω, H), where, again T⋆Q
coincides with the space of elements of FP(Q) restricted to { t } ⊂ I, say F t

P(Q), the canonical structure
Π⋆
tΩt is:

Π⋆
tΩt

ξ(Xξ, Yξ) = ω(X, Y )
∣∣∣
ξ(t)

, (3.60)

that is, Ωt = ω , ∀ t ∈ I, and H is the function on T⋆Q that in Remark 2.1.13 we denoted by H̄.
However, in this case, since ω is the canonical symplectic structure of T⋆Q, there is no need to apply
the pre-symplectic constraint algorithm and the final stable manifold, i.e., the space of Cauchy data
M∞, coincides with T⋆Q itself. The situation is resumed in the following diagram:

EL Π⋆
tω

T⋆Q ω

M∞ ω

Πt

Ψ−1

Ψ

(3.61)

where, now, Ψ is simply the flow of the Hamiltonian vector field ΓH satisfying:

iΓHω = dH , (3.62)

i.e. Ψ = F ΓH
s and Ψ−1 = Πt. In this case Eq. (3.52) reads:

Π⋆
tΩt = Ψ−1⋆ω . (3.63)

Thus, here we lie in the symplectic case of the previous section for which the solution space EL
is diffeomorphic to the space of Cauchy data M∞ which coincides with the symplectic manifold
(T⋆Q, ω).
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Example 3.2.2 (Free particle on the line). In example 2.1.14 we already saw that the solutions
of the equations of motion of a free particle moving on a line (Q = R), within the Hamiltonian
formalism, coincide with the integral curves of the vector field Γ satisfying:

iΓω = dH , (3.64)

where:
ω = dq ∧ dp , (3.65)

is the canonical symplectic structure of T⋆R and

H = p2

2m . (3.66)

This gives an explicit example of what we said in the present section, namely, that the dynamics of a
free particle moving on a line can be formulated in terms of the Hamiltonian system (T⋆R, ω, H).
As said above, there is no need of performing the pre-symplectic constraint algorithm and the space
of Cauchy data M∞ coincide with TR itself. Moreover M∞ = TR is diffeomorphic to the solution
space EL as it can be seen by explicitly writing the solutions of the equations of motion:

γ(t) = q + p

m
(t− t0) , ϱ(t) = p , (3.67)

which shows how, for any point (q, p) ∈ T⋆R = M∞ there exists a unique solution ξ(t) =
(γ(t), ϱ(t)) ∈ EL and vice-versa.

3.2.3 Hamiltonian systems with constraints
Within Hamiltonian mechanical systems with additional constraints of the type considered in Sec.
2.1.3, we saw that the canonical structure on the solution space has the same expression as for theories
without additional constraints.

On the other hand, as it is clear from Eq. (2.101), the additional term ⟨Λ, χ − Φ(n)⟩ in the
modified action, S ext, on the extended space of fields, FP(Q) × F⋆

P(Q) × N , has the net result
of subtracting to the Hamiltonian H, the function

[
Λγ
j (γj − γj ◦ Φ(n)) + Λϱj (ϱj − ϱj ◦ Φ(n))

]
t
.

Consequently, the pre-symplectic Hamiltonian system which is associated to the modified action, S ext,
is (T⋆Q × F⋆

P(Q)
Σ × N , ωext, Hext), where F⋆

P(Q)
Σ is made by the restrictions to Σ of the elements in

the dual of FP(Q), ωext = τ ⋆ω, τ being the projection τ : T⋆Q × F⋆
P(Q)

Σ × N → T⋆Q and:

Hext = H −
[

Λγ
j

(
γj − γj ◦ Φ(n)

)
+ Λϱj (ϱj − ϱj ◦ Φ(n))

]
t

(3.68)

for any t ∈ I. Thus, the following proposition holds.

Proposition 3.2.3. Extrema of the functional S ext in (2.101) are the solutions of the pre-symplectic
system (T⋆Q × F⋆

P(Q)
Σ × N , ωext, Hext).
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3.2.4 First order Lagrangian field theories
Within first order Lagrangian field theories, the fact that, at least locally around a slice Σ ⊂ M , the
dynamics can be described in terms of a pre-symplectic Hamiltonian system, is a consequence of the
observation that, at least locally around Σ, the space of fields FE is diffeomorphic to the space of
curves on the space of restrictions to Σ, say FΣ

E .
More precisely, consider a slice Σ ⊂ M . By means of the immersion theorem [AMR88], there

always exists a system of local coordinates {xµ }µ=0,...,d on M such that Σ = {x0 = x0
Σ = const }.

Sometimes we will refer to x0 as the transversal coordinate to Σ to say that x0 together with a
system of coordinates on Σ provides a system of coordinates for the whole M in a neighborhood of Σ.
Consider the space of fields restricted to Σ, say FΣ

E :

FΣ
E = {ϕ |Σ =: φ =: ϕΣ } , (3.69)

that, again, we assume to be a smooth Banach manifold. Moreover, we will denote by φ̇ the restriction
to Σ of ∂0ϕ and by ∂jφ the restriction of ∂jϕ to Σ. Consider the collar CΣ

ϵ = [x0
Σ, x

0
Σ + ϵ) × Σ close

to Σ, such that the volume reads volCΣ
ϵ

= dx0 ∧ volΣ. Denote by iϵ the immersion of CΣ
ϵ into M , by

S ϵ := i⋆ϵS and by F ϵ
E the space of dynamical fields restricted to CΣ

ϵ , that, again, is assumed to be
a smooth Banach manifold. F ϵ

E is diffeomorphic to the space of curves on FΣ
E , whose elements are

denoted by σs = φs. The isomorphism, say ϖ, reads:

φas (x) = ϕa
(
x0 = s, x

)
, (3.70)

with s ∈ [x0
Σ, x

0
Σ + ϵ). In other words, ϖ is the identification of the coordinate transversal to Σ with

the evolution parameter describing the curve on FΣ
E . Therefore, it is also continuous and differentiable

together with its inverse and, thus, it can be used to induce a smooth manifold structure on Γ(FΣ
E ).

Consequently, ϖ is a diffeomorphism. We will denote by Γ
(
FΣ

E

)
= ϖ (F ϵ

E) the space of curves σ(·).
With the above notations in mind, the pull-back of S to Γ

(
FΣ

P(E)

)
reads:

(S ϵ
ϖ)σ :=

(
ϖ−1⋆S ϵ

)
σ

=
∫ x0

Σ+ϵ

x0
Σ

ds
∫

Σ
L (φas , φ̇as , ∂jφas)volΣ =:

∫ x0
Σ+ϵ

x0
Σ

L(σs, σ̇s)ds , (3.71)

where the dot denotes the derivative with respect to s and where we are interpreting the integrand as a
Lagrangian function L on T(FΣ

E ) which, evaluated along the tangent lift of σs, namely, tσs = (σs, σ̇s),
reads:

L (φ, vφ) |tσs=
∫

Σ
L (φas , φ̇as , ∂jφas)volΣ , (3.72)

where {φ} is a system of local coordinates on FΣ
E and {φ, vφ } is a system of local coordinates on

TFΣ
E .
First note that, as a direct consequence of proposition 3.1.11, extrema of S ϵ are in one-to-one

correspondence, via iϵ
3, with extrema of S for x0 in [x0

Σ, x
0
Σ + ϵ). What is more, the above discussion

3Restricted to its range.
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shows that extrema of S ϵ are in one-to-one correspondence (via ϖ) with extrema of ϖ−1⋆S ϵ =: S ϵ
ϖ.

On the other hand, as we recalled in Rem. 2.1.6, extrema of an action functional written in terms of
a Lagrangian function on some tangent bundle of the type (3.72) are the solutions of a pre-symplectic
Hamiltonian system where the pre-symplectic form reads:

ωL = −d dSL , (3.73)

S being the soldering tensor on the tangent bundle and where the Hamiltonian is:

EL = ∆(L) − L . (3.74)

In particular, in our case, the Lagrangian L is defined on the tangent bundle of FΣ
E , i.e. TFΣ

E , whose
soldering form reads (using the notation introduced in Sec. 1.1.4 for vector fields and 1-forms):

S = δφa ⊗ δ

δφ̇a
, (3.75)

and whose partial linear structure reads:

∆ = φ̇a
δ

δφ̇a
. (3.76)

Consequently, a direct computation gives:

ωL = −ddSL = δ2L

δφbδφ̇a
δφa ∧ δφb + δ2L

δφ̇bδφ̇a
δφa ∧ δφ̇b + δ2L

δ∂jφbδφ̇a
δφa ∧ ∂jδφ

b , (3.77)

which coincides with the evaluation of the 2-form on FΣ
E appearing in (3.36) on the tangent lift of the

curve φs. The discussion above amounts to say that extrema of S ϵ
ϖ are solutions of the pre-symplectic

Hamiltonian system (TFΣ
E , ΩΣ, EL). What is more, such solutions are in one-to-one correspondence

with extrema of the action functional restricted to the collar CΣ
ϵ , i.e. S ϵ.

Thus, the following holds.

Proposition 3.2.4. Extrema of the functional S ϵ, i.e., solutions restricted to the collar CΣ
ϵ around

a slice Σ ⊂ M , are in one-to-one correspondence with solutions of the pre-symplectic Hamiltonian
system (TFΣ

E , ΩΣ, EL).

Example 3.2.5 (Free Klein-Gordon theory). As first example, let us consider the theory
developed in example 2.2.6, that is the free real Klein-Gordon field on the Minkowski space-time.
As explained in example 2.2.6, the space of fields reads FE = H1(M , volM ). Now, without loss of
generality, consider a slice that locally is of the type Σ = {x0 = x0

Σ }4 such that, around Σ, volM =
4Since Σ is an embedded submanifold of M , a system of local coordinates such that Σ is of this type always exists.
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dx0 ∧volΣ where volΣ is a volume form on Σ. Following the notation introduced in the present section,
the space FΣ

E = FE

∣∣∣
Σ
, reads, by means of the trace theorem (see [DL90]), FΣ

E = H 1
2 (Σ, volΣ)

and its elements will be denoted by φ(x) ∈ H 1
2 (Σ, volΣ), x denoting a point in Σ. H 1

2 (Σ, volΣ) is a
Hilbert space and, thus, it is isomorphic to its tangent space. Consequently TFΣ

E =
[

H 1
2 (Σ, volΣ)

]2
whose elements will be denoted by (φ(x), φ̇(x)). Recalling that the Lagrangian describing the theory is
(2.123), the 2-form ΩΣ on TFΣ

E is readily computed according to (3.77) and reads:

ΩΣ = δφ̇ ∧ δφ . (3.78)

On the other hand, the function EL is computed, according to (3.74), to be:

EL = −1
2
(
φ̇2 + δjk∂jφ∂kφ+m2φ2

)
(3.79)

The 2-form ΩΣ has an empty kernel and, since TFΣ
E is a Hilbert space, it is strongly symplectic.

Therefore, there is no need for applying the pre-symplectic constraint algorithm and the Hamiltonian
system (TFΣ

E , ΩΣ, EL) gives the following Hamiltonian equations:

iΓΩΣ = dEL , (3.80)

where Γ is a vector field on TFΣ
E which reads:

Γ = Xφ
δ

δφ
+ Xφ̇

δ

δφ̇
. (3.81)

A straightforward computation gives:

Xφ̇ = δjk∂jφ∂kφ−m2φ2 , Xφ = φ̇ , (3.82)

that collectively gives:
d2

ds
φ− δjk∂jφ∂kφ = −m2φ , (3.83)

which is, provided with the identification of the transversal coordinate to Σ (x0) and the parameter s,
Klein-Gordon equation obtained in example 2.2.6.

Example 3.2.6 (Free Electrodynamics). Within free Electrodynamics on the Minkowski space-
time, in example 2.2.7, we saw that the space of fields reads FE = [ H1(M , volM ) ]4. Again, without
loss of generality, consider a slice that locally is of the type Σ = {x0 = x0

Σ } such that, around Σ,
volM = dx0 ∧ volΣ where volΣ is a volume form on Σ. Following the notation introduced in the
present section, the space FΣ

E = FE

∣∣∣
Σ

, reads FΣ
E =

[
H 1

2 (Σ, volΣ)
]

4 and its elements will be denoted
by aµ(x) ∈

[
H 1

2 (Σ, volΣ)
]
, x denoting a point in Σ.

[
H 1

2 (Σ, volΣ)
]

is a Hilbert space and, thus, it
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is isomorphic to its tangent space. Consequently TFΣ
E =

[
H 1

2 (Σ, volΣ)
]4

×
[

H 1
2 (Σ, volΣ)

]4
whose

elements will be denoted by (aµ(x), ȧµ(x)). Recalling that the Lagrangian describing the theory is
(2.134), the 2-form ΩΣ on TFΣ

E is readily computed according to (3.77) and reads:

ΩΣ = 2δjkδaj ∧ ( ∂kδa0 − δȧk ) . (3.84)

On the other hand, the function EL is computed, according to (3.74), to be:

EL = 1
2δ

jk ( ȧj − ∂ja0 ) ( ∂ka0 − ȧk ) − 1
4δ

jlδkm ( ∂jak − ∂kaj ) ( ∂lam − ∂mal ) . (3.85)

In this case the 2-form ΩΣ is pre-symplectic and it can be seen that its kernel is, at each point:

kerΩΣ = ⟨
{
ψ
δ

δa0
+ ∂kψ

δ

δȧk

}
⟩ , (3.86)

for any ψ ∈ H 1
2 (Σ, volΣ) whose gradient lies in

[
H 1

2 (Σ, volΣ)
]3

. Therefore, the first manifold i1 ( M1 )
of the pre-symplectic constraint algorithm is obtained out of the following compatibility condition:

iVdEL = 0 ∀ V ∈ kerΩΣ , (3.87)

which explicitly reads:
2ψδjk∂k ( ȧj − ∂ja0 ) = 0 . (3.88)

Note that, since physically the aµ represent the components of the quadri-potential restricted to Σ,
this is the constraint saying that the divergence of the electric field associated to aµ vanishes on Σ. By
looking at ΩΣ, it can be readily seen that T(a,ȧ)M⊥

1 is:

T(a,ȧ)M⊥
1 = ⟨

{
∂kζ

δ

δak

}
⟩ ⊕ kerΩΣ

(a,ȧ)

∣∣∣
M1

, (3.89)

where ζ is any function in H 3
2 (Σ, volΣ)5. A straightforward computation shows that:

i⋆1

(
i∂kζ δ

δak

dEL
)

= 0 , (3.90)

and, thus, M1 is the final manifold of the algorithm. Here, we are in the case in which the pre-
symplectic constraint algorithm ends up still with a pre-symplectic manifold since the vector field:

∂kζ
δ

δak
, (3.91)

5This is in order for its gradient to belong to
[

H 1
2 (Σ, volΣ)

]3
.
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lies in the kernel of ΩΣ
∞ = i⋆1ΩΣ = i⋆∞ΩΣ. Thus kerΩΣ

∞ = gradH 3
2 (Σ, volΣ), that is, the image of

the Hilbert space H 3
2 (Σ, volΣ) into

[
H 1

2 (Σ, volΣ)
]3

via the grad operator. Consequently, on the final
manifold, the vector field Γ∞ satisfying:

iΓ∞ΩΣ
∞ = dEL∞ , (3.92)

with EL∞ = i⋆∞EL is determined up to the addition of any element of kerΩΣ
∞ and reads:

Γ∞ = Γ∞aµ

δ

δaµ
+ Γ∞ȧµ

δ

δȧµ
(up to the addition of any element of kerΩΣ

∞) , (3.93)

where:
Γ∞aj = −∂ja0 , ∂kΓ∞aj = 0 , Γ∞ȧk = −1

2(∂j ȧ0 − äj) + 1
2δ

lm∂l∂maj , (3.94)

whereas Γ∞a0 and Γ∞ȧ0 remain completely undetermined as a consequence of the fact that we are
dealing with a gauge theory. Therefore, solutions of our pre-symplectic system are integral curves of
any of the Γ∞ above, i.e., solutions of:

d

ds
aj = −∂ja0 ,

d

ds
δjk∂kaj = 0 , d2

ds2aj = ∆aj − ∂j ȧ0 , (3.95)

immersed into the original manifold, namely, provided they obey the constraint:

δjk∂k ( ȧj − ∂ja0 ) = 0 , (3.96)

and such that a0 is completely arbitrary. Arbitrarily fixing a0 amounts to a gauge choice. For instance,
if we fix it to be 0, we are left with the following set of equations:

d2

ds2aj = ∆aj ,
d

ds
δjk∂kaj = 0 , (3.97)

being Maxwell’s equations in vacuum and without sources written in example 2.2.7 when the scalar
potential a0 is fixed to be 0.

3.2.5 First order Hamiltonian field theories
Differently to what happened in Sec. 3.2.2, within first order Hamiltonian field theories, the space of
fields restricted to a slice Σ ⊂ M is not a cotangent bundle. However, at least locally around Σ, one is
able to model the theory as a pre-symplectic Hamiltonian system where the pre-symplectic structure
is again the structure ΩΣ from which the canonical structure Π⋆

ΣΩΣ comes from. More precisely, close
enough to Σ, we will formulate our theory as the pre-symplectic Hamiltonian system (FΣ

P(E), ΩΣ, H),
where FΣ

P(E) is the space of fields in FP(E) restricted to Σ and H is a suitable Hamiltonian.
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Consider a slice Σ. By means of the immersion theorem [AMR88], there always exists a system
of local coordinates {xµ }µ=0,...,d on M such that locally Σ = {x0 = x0

Σ = const }. Sometimes we
will refer to x0 as the transversal coordinate to Σ to say that x0 together with a system of
coordinates on Σ provides a system of coordinates for the whole M in a neighborhood of Σ. Consider
the space of dynamical fields restricted to Σ, say FΣ

P(E):

FΣ
P(E) =

{
χ |Σ = (ϕa |Σ, P µ

a |Σ ) =
(
ϕa |Σ, P 0

a |Σ, P j
a |Σ

)
=:

(
φa, pa, β

j
a

)
=: χΣ

}
=: FΣ

P(E), 0×B ,

(3.98)
where we isolated the component P 0

a of the momentum field transversal to Σ and where (φa, pa) ∈
FΣ

P(E), 0 and βja ∈ B.
Consider the collar CΣ

ϵ = [x0
Σ, x

0
Σ+ϵ)×Σ close to Σ, such that the volume reads volCΣ

ϵ
= dx0∧volΣ.

Denote by iϵ the immersion of CΣ
ϵ into M , by S ϵ := i⋆ϵS and by F ϵ

P(E) the space of dynamical fields
restricted to CΣ

ϵ . F ϵ
P(E) is diffeomorphic to the space of curves on FΣ

P(E), whose elements are denoted
by σs = (φs, ps, βs ). The isomorphism, say ϖ, reads:

φas (x) = ϕa
(
x0 = s, x

)
,

pas (x) = P 0
a

(
x0 = s, x

)
,

βjas (x) = P j
a

(
x0 = s, x

)
,

(3.99)

with s ∈ [x0
Σ, x

0
Σ + ϵ). In other words, ϖ is the identification of the coordinate transversal to Σ with

the evolution parameter describing the curve on FΣ
P(E). For the same reasons of the previous section

ϖ is a diffeomorphism. Let Γ
(
FΣ

P(E)

)
= ϖ

(
F ϵ

P(E)

)
denote the space of curves σ(·). The pull-back of

S to Γ
(
FΣ

P(E)

)
is:

(S ϵ
ϖ)σ :=

(
ϖ−1⋆S ϵ

)
σ

=
∫ x0

Σ+ϵ

x0
Σ

ds
∫

Σ

(
pasφ̇

a
s + βka s∂kφ

a
s −H(σs)

)
volΣ =:

∫ x0
Σ+ϵ

x0
Σ

L(σs, σ̇s)ds ,

(3.100)
where the dot denotes the derivative with respect to s and where we are interpreting the integrand
as a Lagrangian function L on T(FΣ

P(E)) which, evaluated along the tangent lift of σs, namely,
tσs = (σs, σ̇s), reads:

L (φ, vφ, p, vp, β, vβ) |tσs=
∫

Σ

(
pasφ̇

a
s + βka s∂kφ

a −H(γs)
)
volΣ =

=: ⟨p, φ̇⟩ + ⟨β, dΣφ⟩ −
∫

Σ
H(φs, ps, βs)volΣ =: ⟨p, φ̇⟩ − H(γs) ,

(3.101)

where {φ, p, β } is a system of local coordinates on FΣ
P(E) and {φ, vφ, p, vp, β, vβ } is a system of local

coordinates on TFΣ
P(E). In the previous formula dΣ denotes the differential over the smooth 3-manifold
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Σ, the symbol ⟨·, ·⟩ denotes both the integration over Σ and the contraction over all the indices of the
fields, whereas the functional H is:

H(γs) = ⟨β, dΣφ⟩ −
∫

Σ
H(γs)volΣ . (3.102)

It is a direct consequence of proposition 3.1.11 that extrema of S ϵ are in one-to-one correspondence,
via iϵ

6, with extrema of S for x0 in [x0
Σ, x

0
Σ + ϵ). What is more, the above discussion shows that

extrema of S ϵ are in one-to-one correspondence (via ϖ) with extrema of ϖ−1⋆S ϵ =: S ϵ
ϖ.

Now, it is possible to prove [IS17, Theorem 3.1] the result mentioned in the first lines of the
section.

Proposition 3.2.7. Extrema of the functional S ϵ
ϖ, say EL ϵ

ϖ, are the solutions of the pre-symplectic
system

(
FΣ

P(E), ΩΣ, H
)
.

Proof. By looking at (3.42), the structure ΩΣ in the system of local coordinates chosen, reads:

ΩΣ(XχΣ , YχΣ) =
∫

Σ
χ⋆Σ [ iXiY dΘH ] =

∫
Σ

[
Xa
φYpa − XpaY

a
φ

]
volΣ , (3.103)

where we used the notation (1.52) for the tangent vectors XχΣ and YχΣ to FΣ
P(E). It is evident from

the latter expression that kerΩΣ is made by tangent vectors only having components along βja, i.e.:

kerΩΣ = span
{

δ

δβja

}
. (3.104)

The first step of the pre-symplectic constrain algorithm consists in imposing elements of kerΩΣ to
belong to kerdH. A direct computation shows that this imposes the following compatibility condition:

δH
δβja

= ∂φa

∂xj
− ∂H

∂ρja
(φ, p, β) = 0 . (3.105)

If one is able to express the β’s in terms of the φ’s and the p’s (as it will be the case in all the examples
considered in the sequel), then the algorithm stops at the first step and the stable manifold reads
M∞ = FΣ

P(E), 0 = { (φa, pa) } which is a smooth immersed submanifold of FΣ
P(E) whose immersion is

given by the expression of the β’s in terms of φ’s and p’s. The structure ΩΣ
∞ reads:

ΩΣ
∞(Xm∞ , Ym∞) =

∫
Σ

[
Xa
φYpa − XpaY

a
φ

]
volΣ , (3.106)

6Restricted to its range.
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where m∞ = (φa, pa) is a point in M∞ and, now, Xa
φ, Ypa, Xpa and Yaφ denote, following the notation

(1.52), the components (along φa and pa) of the tangent vectors Xm∞ and Ym∞ to M∞ at m∞.
Evidently, ΩΣ

∞ is symplectic7 and the Hamiltonian vector field XH∞ associated to H∞ = i⋆∞H reads:

XH∞
a
φ = dφas

ds
= δH

δpa
= −∂H

∂ρ0
a

(φs, ps, βs) ,

XH∞pa
= dpas

ds
= − δH

δφa
= ∂βka s

∂xk
+ ∂H

∂ua
(φs, ps, βs) .

(3.107)

The thesis of the proposition follows from the fact that the latter equations, together with (3.105)
formally coincide with De Donder-Weyl equations (2.170) provided the parameter s is identified with
the transversal coordinate x0.

Thus, we obtained that extrema of S ϵ, i. e., the elements of the solution space restricted to
the collar CΣ

ϵ , are in one-to-one correspondence, via ϖ, with solutions of the pre-symplectic system
(FΣ

P(E), ΩΣ, H).

Remark 3.2.8. Notice that all the previous arguments are local in the space-time, in the sense that
they are all valid for the parameter ϵ small enough. The possibility of being global depends on the
particular space-time considered. In particular, in the cases where M has a preassigned metric, the
space EL ϵ can be substituted with the whole EL in the previous discussion when M is diffeomorphic
to Σ × R for some codimension-one hypersurface Σ, i.e., for globally hyperbolic space-times.
They are a large class of physically interesting space-times and in the examples considered in this
manuscript, only space-times of this kind will appear.

Having formulated the dynamical content of our theory as a pre-symplectic Hamiltonian system,
now the story proceeds like in Sec. 3.2.1, i.e., we should apply the pre-symplectic constraint algorithm
in order to obtain the space of Cauchy data M∞ which we again assume to be a smooth immersed
submanifold of FΣ

P(E), i∞ denoting the immersion map. As well as in Sec. 3.2.1, if the structure
ΩΣ

∞ = i⋆∞ΩΣ is (strongly) symplectic we will end up with the situation depicted by the following
diagram:

EL ϵ
ϖ EL ϵ Π⋆

ΣΩΣ

FΣ
P(E) ΩΣ

M∞ ΩΣ
∞

ΠΣ

Ψ−1

ϖ−1

ϖ

Ψ

i∞

(3.108)

7That this is actually strongly symplectic should be proved case by case.
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where Ψ is a diffeomorphism. From the diagram above one is able to prove the analogue of (3.52),
namely:

Π⋆
ΣΩΣ =

(
Ψ−1 ◦ϖ

)⋆
ΩΣ

∞ , (3.109)

which shows how it is equivalent to work with EL equipped with Π⋆
ΣΩΣ or with M∞ equipped with

ΩΣ
∞. Therefore, we will often refer to M∞ itself as "solution space" of the theory. Again, also in case

ΩΣ
∞ is only pre-symplectic we will refer to the whole M∞ (without quotienting with respect to the

kernel of ΩΣ
∞) as "solution space" and we will distinguish theories with or without gauge symmetries

as those for which the solution space is a (strongly) symplectic or a pre-symplectic manifold.

Example 3.2.9 (Free Klein-Gordon theory). Here we consider, as a first example, the
theory developed in example 2.2.13, namely the free real Klein-Gordon field on the Minkowski space-
time. As explained in example 2.2.13, the space of dynamical fields reads FP(E) = H2(M , volM ) ×
[ H1(M , volM ) ]4. Again, without loss of generality, consider a slice Σ = {x0 = X0

Σ } such that,
around Σ, volM = dx0 ∧volΣ where volΣ is a volume form on Σ. Following the notation introduced in
the present section, the space FΣ

P(E) = FP(E)

∣∣∣
Σ

, reads FΣ
P(E) = H 3

2 (Σ, volΣ) ×
[

H 1
2
]4

and its elements
will be denoted by χΣ =

(
ϕ
∣∣∣
Σ
, P 0

∣∣∣
Σ
, P j

∣∣∣
Σ

)
=: (φ(x), p(x), βj(x)) ∈ H 3

2 (Σ, volΣ) × H 1
2 (Σ, volΣ) ×[

H 1
2 (Σ, volΣ)

]3
, where x denotes a point in Σ and we separated the tangent components of the

momenta fields to Σ and the transversal one. By looking at (3.42), ΩΣ is computed to be:

ΩΣ = δφ ∧ δp . (3.110)

On the other hand the Hamiltonian functional (3.102) is computed to be:

H =
∫

Σ

[
βj∂jφ− 1

2
(
p2 − δjk∂jφ∂kφ+m2φ2

) ]
volΣ . (3.111)

As it was pointed out in the proof of Prop. 3.2.7, the kernel of ΩΣ is:

kerΩΣ = ⟨
{

δ

δβµ

}
⟩ . (3.112)

The first manifold i1 ( M1 ) of the pre-symplectic constraint algorithm is obtained out of the following
compatibility condition:

i δ
δβµ

dH = 0 , (3.113)

which explicitly reads:
βj = −∂jφ . (3.114)

Consequently, since the β’s can be expressed in terms of the φ’s, as it was pointed out in Prop. 3.2.7
the manifold M1 reads:

M1 = FΣ
P(E), 0 = H

2
2 (Σ, volΣ) × H

1
2 (Σ, volΣ) ∋ (φ, p) , (3.115)
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whose immersion into FΣ
P(E) is given by the condition (3.114). TχΣM⊥

1 is seen to coincide with the
kernel of ΩΣ restricted to M1. Therefore, no additional constraints emerge and M1 = M∞. The
structure:

ΩΣ
∞ = i⋆∞ΩΣ = i⋆1ΩΣ = δφ ∧ δp , (3.116)

is symplectic and the pull-back of Hamiltonian functional to M∞ reads:

H∞ = i⋆∞H = −1
2

∫
Σ

[
δjk∂jφ∂kφ+ p2 +m2φ2

]
volΣ . (3.117)

Therefore, the vector field Γ∞ satisfying:

iΓ∞ΩΣ
∞ = dH∞ , (3.118)

is:
Γ∞ = Γ∞φ

δ

δφ
+ Γ∞p

δ

δp
, (3.119)

where:
Γ∞φ = −p , Γ∞p = −m2φ+ δjk∂j∂kφ , (3.120)

Therefore, solutions of our pre-symplectic Hamiltonian system are integral curves of Γ∞, i.e., solutions
of:

d

ds
φ̇s = −ps ,

d

ds
ps = −m2φs + δjk∂j∂kφs , (3.121)

immersed into the original manifold, namely, provided they obey:

βsj = −∂jφs . (3.122)

The equations above, provided we identify the parameter s with the coordinate transversal to Σ,
collectively amounts to:

∂µP
µ +m2ϕ = 0 , ∂µϕ = ηµνP

µ , (3.123)
and, consequently, to the Klein-Gordon equation:

ηµν∂µ∂νϕ(x) +m2ϕ(x) = 0 , (3.124)

obtained in the end of example 2.2.13.

3.2.6 First order Hamiltonian field theories with constraints
Within first order Hamiltonian field theories with additional constraints of the type considered in
Sec. 2.2.3, we saw that the canonical structure on the solution space has the same expression as for
theories without additional constraints.
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On the other hand, as it is clear from Eq. (2.185), the additional term ⟨Λ, χ−Φ(n)⟩ in the modified
action on the extended space of fields, S ext, has the net result of subtracting to the Hamiltonian H,
the function Λϕ

a (ϕa − ua ◦ Φ(n)) + ΛP a
µ (P µ

a − ρµa ◦ Φ(n)). Consequently, the Hamiltonian functional
(3.102) obtained from S ext turns out to be modified in the following way:

Hext(χΣ, ΛΣ, n) =
∫

Σ

{
βka∂kφ

a −H(χΣ)+

+
[
λφa
(
φa − ua ◦ Φ(n)

∣∣∣
Σ

)
+ λP

a

0

(
pa − ρ0

a ◦ Φ(n)
∣∣∣
Σ

)
+ λP

a

k

(
βka − ρka ◦ Φ(n)

∣∣∣
Σ

)]}
volΣ ,

(3.125)

where λφa := Λϕ
a

∣∣∣
Σ

and λP µa =: ΛP µ
a

∣∣∣
Σ

. Therefore, in this case the pre-symplectic Hamiltonian system
associated to the modified action, S ext, is

(
FΣ

P(E) × FΣ
P(E)

⋆ × N , ΩΣext
, Hext

)
where ΩΣext = τ ⋆ΩΣ,

τ being the projection τ : FΣ
P(E) × FΣ

P(E)
⋆ × N → FΣ

P(E). With this in mind, Prop. 3.2.3, in this case
is generalized as follows.

Proposition 3.2.10. Extrema of the functional S extϵ
ϖ, say EL extϵ

ϖ, are the solutions of the pre-
symplectic system

(
FΣ

P(E) × FΣ
P(E)

⋆ × N , ΩΣext
, Hext

)
.

Example 3.2.11 (Free Electrodynamics). Within free Electrodynamics, as explained in example
2.2.14, we considered the space of dynamical fields FP(E) = [ H2(M , volM ) ]4 × [ H1(M , volM ) ]16.
Again, without loss of generality, consider a slice Σ = {x0 = X0

Σ } such that, around Σ, volM =
dx0 ∧volΣ where volΣ is a volume form on Σ. Following the notation introduced in the present section,
the space FΣ

P(E) = FP(E)

∣∣∣
Σ

, reads FΣ
P(E) =

[
H 3

2 (Σ, volΣ)
]4

×
[

H 1
2
]16

and its elements will be denoted

by
(
Aµ
∣∣∣
Σ
, P 00

∣∣∣
Σ
, P k0

∣∣∣
Σ
, P 0k

∣∣∣
Σ
, P jk

∣∣∣
Σ

)
=: (aµ(x), p0(x), pk(x), p̃k(x), βjk(x)) ∈

[
H 3

2 (Σ, volΣ)
]4

×

H 1
2 (Σ, volΣ) ×

[
H 1

2 (Σ, volΣ)
]3

×
[

H 1
2 (Σ, volΣ)

]3
×
[

H 1
2 (Σ, volΣ)

]9
, where x denotes a point in Σ

and we separated the tangent components of the momenta fields to Σ and the transversal one. As
discussed in the present section, the fact that we are considering a theory with constraints does not
affect the expression of the 2-form ΩΣext, which is explicitly computed to be:

ΩΣext = δaµ ∧ δpµ . (3.126)

On the other hand, the Hamiltonian functional (3.125) reads:

Hext
χΣ

=
∫

Σ

[
pµ∂µa0 + βjk∂kaj − ηµνp

µpν + ηjlηµνβ
jµβlν + λpk(p

k + p̃k) + λp0p
0 + λβjkβ

(jk)
]
volM ,

(3.127)
where λp0 ∈ H 1

2 (Σ, volΣ)⋆ = H 1
2 (Σ, volΣ), λpk, λp̃k ∈

[
H 1

2 (Σ, volΣ)⋆
]3

=
[

H 1
2 (Σ, volΣ)

]3
and

λβjk ∈
[

H 1
2 (Σ, volΣ)⋆

]9
=
[

H 1
2 (Σ, volΣ)

]9
and χΣ = (aµ, pµ, p̃k, βjk, λpµ, λβjk) denotes a point in

127



the extended space of dynamical fields. The kernel of ΩΣ is readily seen to be:

kerΩΣext = ⟨
{

δ

δp̃k
,

δ

δβjk
,

δ

δλpµ
,

δ

δλβjk

}
⟩ . (3.128)

Consequently, the first manifold of the pre-symplectic constraint algorithm is obtained by imposing:

iVΩΣext = 0 ∀ V ∈ kerΩΣext
, (3.129)

which explicitly gives the following constraints:

λpk = 0, ∂kaj + 2δjlδkmβlm + λβjk = 0 ,
p0 = 0 , pk = −p̃k , β(jk) = 0 .

(3.130)

Thus:

M1 =
[

H
3
2 (Σ, volΣ)

]4
×
[

H
1
2 (Σ, volΣ)

]3
×
[

H
1
2 (Σ, volΣ)

]12
∋ (aµ, pk, λβjk) , (3.131)

whose immersion into the original manifold is given by the relations (3.130). TχΣM⊥
1 is seen to be:

TχΣM⊥
1 = ⟨

{
δ

δa0

}
⟩ ⊕ kerΩΣext

χΣ

∣∣∣
M1

, (3.132)

and, thus, the second manifold of the algorithm is obtained imposing:

i⋆1

[
i δ
δa0

ΩΣext
]

= 0 , (3.133)

which explicitly reads:
∂kp

k = 0 . (3.134)
Therefore, the second manifold of the algorithm reads:

M2 =
[

H
3
2 (Σ, volΣ)

]4
×
[

H
1
2 (Σ, volΣ, div0)

]3
×
[

H
1
2 (Σ, volΣ)

]9
∋

∋ (aµ, pk, λβjk) ,
(3.135)

where by
[

H 1
2 (Σ, volΣ, div0)

]3
we mean the elements pk of

[
H 1

2 (Σ, volΣ)
]3

such that ∂kpk = 0. As

we will prove in the next section
[

H 1
2 (Σ, volΣ, div0)

]3
is a closed (Hilbert) subspace of

[
H 1

2 (Σ, volΣ)
]3

and, thus, it is canonically immersed into it via an immersion denoted by i2. By virtue of this last
constraint, TχΣM⊥

2 is seen to be:

TχΣM⊥
2 = ⟨

{
∂kψ

δ

δak

}
⟩ ⊕ TχΣM⊥

1

∣∣∣
M2

. (3.136)
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A direct computation shows that:
i⋆2

[
i∂kψ δ

δak

Hext
]

= 0 , (3.137)

thus, no other constraints emerge and M2 = M∞. The structure:

ΩΣext
∞ = i⋆∞ΩΣext = i⋆2ΩΣext = δak ∧ δpk , (3.138)

is still pre-symplectic whose kernel is:

kerΩΣext
∞ = ⟨

{
δ

δa0
, ∂kψ

δ

δak
,

δ

δλβjk

}
⟩ . (3.139)

Consequently, the vector field Γ∞ satisfying:

iΓ∞ΩΣext
∞ = dHext

∞ , (3.140)

where:
H∞ = i⋆∞H =

∫
Σ

[ 1
4δ

jlδkm∂[jak]∂[lam] − δjkp
jpk

]
volΣ , (3.141)

is determined up to elements in kerΩΣ
∞ and reads:

Γ∞ = Γ∞ak

δ

δak
+ Γ∞p

k δ

δpk
(up to the addition of elements in kerΩΣ

∞) , (3.142)

where:
Γ∞ak = 2δjkpj , Γ∞p

k = 1
2δ

kmδjl∂j∂lam . (3.143)

Thus, we obtain that solutions of our pre-symplectic Hamiltonian system are the integral curves of
any of the Γ∞ above, i.e., solutions of:

d

ds
ak = 2δjkpj ,

d

ds
pk = 1

2δ
kmδjl∂j∂lam , (3.144)

with a0, λp0 and λβjk remaining completely undetermined, immersed back into FΣ
P(E), i.e., provided

with the constraint:
∂kp

k = 0 . (3.145)
If we fix arbitrary a0 = 0 as in example 3.2.6 and also λp0 and λβjk to be zero (as we are allowed to)
the equations above collectively give:

d2

ds2aj = ∆aj ,
d

ds
δjk∂kaj = 0 , (3.146)

being the equations written in the end of example 3.2.6, namely, Maxwell’s equations in vacuum and
without sources of example 2.2.7 and 2.2.14 when the scalar potential a0 is fixed to be 0.
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Example 3.2.12 (Yang-Mills theories). Let us now consider Yang-Mills theories. As discussed in
example 2.2.15, here the space of dynamical fields reads FP(E) = [ H3(M , volM ) ]n× [ H2(M , volM ) ]m
with n = 4dimg and m = 16dimg. Again, without loss of generality, consider a slice Σ =
{x0 = X0

Σ } such that, around Σ, volM = dx0∧volΣ where volΣ is a volume form on Σ. Consequently,
the space of dynamical fields restricted to Σ reads FΣ

P(E) =
[

H 5
2 (Σ, volΣ)

]n
×
[

H 3
2 (Σ, volΣ)

]m
and its

elements will be denoted by
(
Aaµ
∣∣∣
Σ
, P 00

a

∣∣∣
Σ
, P k0

a

∣∣∣
Σ
, P 0k

a

∣∣∣
Σ
, P jk

a

∣∣∣
Σ

)
=: (aaµ(x), p0

a(x), pka(x), p̃ka(x), βjka (x)) ∈[
H 5

2 (Σ, volΣ)
]n

×
[

H 3
2 (Σ, volΣ)

]dimg
×
[

H 3
2 (Σ, volΣ)

]3dimg
×
[

H 3
2 (Σ, volΣ)

]3dimg
×
[

H 3
2 (Σ, volΣ)

]9dimg
,

where x denotes a point in Σ and we separated the tangent components of the momenta fields to Σ
and the transversal one. Here, the 2-form ΩΣext reads:

ΩΣext = δaaµ ∧ δpµa . (3.147)

On the other hand, the Hamiltonian functional (3.125) is:

Hext
χΣ

=
∫

Σ

[
p̃ka∇ka

a
0 + βjka ∇ka

a
j − 1

2G
abηµνp

µ
ap

ν
b − 1

2G
abδjkp̃

j
ap̃
j
b − 1

2G
abδjlδkmβ

jk
a β

lm
b +

+pµa [aµ, a0]a + λp
a
k(p

k
a + p̃ka) + λp

a
0p

0 + λβ
a
jkβ

(jk)
a

]
volΣ ,

(3.148)

where λp
a
0 ∈

[
H 3

2 (Σ, volΣ)⋆
]dimg

=
[

H 3
2 (Σ, volΣ)

]dimg
, λpak and λp̃

a
k ∈

[
H 3

2 (Σ, volΣ)⋆
]3dimg

=[
H 3

2 (Σ, volΣ)
]3dimg

and λβajk ∈
[

H 3
2 (Σ, volΣ)⋆

]9dimg
=
[

H 3
2 (Σ, volΣ)

]9dimg
and:

χΣ =
(
aaµ, p

µ
a , p̃

k
a, β

jk
a , λp

a
µ, λp̃

a
k, λβ

a
jk

)
, (3.149)

denotes a point in the extended space of fields. The kernel of ΩΣext is readily seen to be:

kerΩΣext = ⟨
{

δ

δp̃ka
,

δ

δβjka
,

δ

δλp
a
µ

,
δ

δλp̃
a
k

,
δ

δλβ
a
jk

}
⟩ . (3.150)

Consequently, the first manifold of the pre-symplectic constraint algorithm is obtained by imposing:

iVΩΣext = 0 ∀ V ∈ kerΩΣext
, (3.151)

which explicitly gives:

λp
a
k+∇ka

a
0 = δjkG

abp̃jb , ∇ka
a
j = δjkG

abβjkb ,

p0
a = 0 , p̃ka = −pka , β(jk)

a = 0 .
(3.152)

Thus:

M1 =
[

H
5
2 (Σ, volΣ)

]n
×
[

H
3
2 (Σ, volΣ)

]3dimg
×
[

H
3
2 (Σ, volΣ)

]9dimg
∋
(
aaµ, p

k
a, λβ

a
jk

)
, (3.153)
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whose immersion into original manifold is given by the relations (3.152). TχΣM⊥
1 is seen to be:

TχΣM⊥
1 = ⟨

{
δ

δaa0

}
⟩ ⊕ kerΩΣext

χΣ

∣∣∣
M1

, (3.154)

and, thus, the second manifold of the algorithm is obtained by imposing:

i⋆∞

[
i δ
δaa0

ΩΣext
]

= 0 , (3.155)

which explicitly reads:
∇kp

k
a = 0 . (3.156)

Therefore, the second manifold of the algorithm reads:

M2 =
[

H
5
2 (Σ, volΣ)

]n
×
[

H
3
2 (Σ, volΣ,∇0)

]3dimg
×
[

H
3
2 (Σ, volΣ)

]9dimg
∋

∋ (aaµ, pka, λβajk) ,
(3.157)

where by
[

H 3
2 (Σ, volΣ,∇0)

]3dimg
we mean elements pka of

[
H 3

2 (Σ, volΣ)
]3dimg

such that ∇kp
k
a =

0. As we will prove in the next section
[

H 3
2 (Σ, volΣ,∇0)

]3dimg
is a closed (Hilbert) subspace of[

H 3
2 (Σ, volΣ)

]3dimg
and, thus, it is canonically immersed into it via an immersion denoted by i2. By

virtue of this last constraint, TχΣM⊥
2 is seen to be:

TχΣM⊥
2 = ⟨

{
Vψ = ∇kψ

a δ

δak
+ [pk, ψ]a

δ

δpka

}
⟩ ⊕ TχΣM⊥

1

∣∣∣
M2

, (3.158)

for any ψa belonging to
[

H 7
2
]dimg8. A direct computation shows that:

i⋆2
[
iVψHext

]
= 0 , (3.161)

8We are choosing ψa ∈
[

H 7
2 (Σ, volΣ)

]dimg

so that its covariant derivative is still
[

H 5
2 (Σ, volΣ)

]3dimg

function.
Indeed, since H 5

2 (Σ, volΣ) is a Banach algebra (see [Ada75]), the following inequality holds:∑
k,a

∥∇kψ
a∥

H
5
2

≤
∑
k,a

∥∂kψ
a∥

H
5
2

+
∑
k,a

|ϵabc|∥ab
kψ

c∥ 5
2

≤ 3
∑
k,a

∥ψa∥
H

7
2

+
∑
k,a

|ϵabc|Bb,c,k∥ab
k∥

H
5
2

∥ψc∥ 5
2
, (3.159)

for some constants Bb,c,k, where the inequality
∑

k,a ∥∂kψ
a∥

H
5
2

≤ 3
∑

k,a ∥ψa∥
H

7
2

is due to∑
k,a

∥∂kψ
a∥

H
5
2

=
∑
k,a

∥∥∥|k| 5
2 kkψ̃

a
∥∥∥

L2
≤ 3

∑
a

∥∥∥|k| 7
2 ψ̃a

∥∥∥
L2

= 3
∑

a

∥ψa∥
H

7
2
, (3.160)

where ψ̃a is the Fourier transform of ψa.
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thus, no other constraints emerge and M2 = M∞. Actually, as we will see, aa0 and λβ
a
jk will not

appear in Hext
∞ and, thus, they turn out to be not dynamical, in the sense that they do not appear at

all in the equations of motion. Thus, they can be fixed once and for all without affecting the rest of
the discussion. For this reason we consider M∞ to be actually:

M∞ =
[

H
5
2 (Σ, volΣ)

]3dimg
×
[

H
3
2 (Σ, volΣ,∇0)

]3dimg
∋

∋ (aak, pka) ,
(3.162)

The structure:
ΩΣext

∞ = i⋆∞ΩΣext = i⋆2ΩΣext = δaak ∧ δpka , (3.163)
is still pre-symplectic whose kernel is:

kerΩΣext
∞ = ⟨

{
δ

δa0
, Vψ,

δ

δλβjk

}
⟩ . (3.164)

Consequently, the vector field Γ∞ satisfying:

iΓ∞ΩΣext
∞ = dHext

∞ , (3.165)

where H∞ = i⋆∞H, is determined up to elements in kerΩΣ
∞ and reads:

Γ∞ = Γ∞a
a
k

δ

δaak
+ Γ∞p

k
a

δ

δpka
(up to the addition of elements in kerΩΣ

∞) , (3.166)

where:
Γ∞a

a
k = 2δjkGabpjb , Γ∞p

k
a

= 1
2δ

kmδjlGab∇j∇la
b
m . (3.167)

Thus, we obtain that solutions of our pre-symplectic Hamiltonian system are the integral curves of
any of the Γ∞ above, i.e., solutions of:

d

ds
aak = 2δjkGabpjb ,

d

ds
pk = 1

2δ
kmδjlGab∇j∇la

b
m , (3.168)

with a0 and λβjk remaining completely undetermined, immersed back into FΣ
P(E), i.e., provided with

the constraints (3.152) and (3.156). It is immediate to see that the combination of the equations above
together with the constraints are equivalent, provided one identify the parameter s with the coordinate
transversal to Σ, to Yang-Mills equations we wrote in the end of example 2.2.15.

Example 3.2.13 (Palatini’s Gravity). Within Palatini’s Gravity developed in example 2.2.16,
we saw that the extended space of dynamical fields used to describe it as a Hamiltonian theory
with additional constraints is FP(E) × F⋆

P(E) × E , where FP(E) is the space of dynamical fields of
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a Yang-Mills theory with gauge group O(1, 3) and E is the space of tetrads on the space-time. As
usual, we consider a slice Σ = {x0 = X0

Σ } such that, around Σ, volM = dx0 ∧ volΣ where volΣ
is a volume form on Σ. The extended space of fields restricted to Σ reads FΣ

P(E) × FΣ
P(E) × E Σ

whose elements are denoted by χΣ =
(
AIJµ

∣∣∣
Σ
, P µ0

IJ

∣∣∣
Σ
, P 0k

IJ

∣∣∣
Σ
, P jk

IJ

∣∣∣
Σ
, ΛA

µ
IJ

∣∣∣
Σ
, ΛP

IJ
0µ

∣∣∣
Σ
, ΛP

IJ
jk

∣∣∣
Σ
, eµI

∣∣∣
Σ

)
=(

aIJµ (x), pµIJ(x), p̃k(x), βjkIJ(x), λpIJ0µ(x), λβIJjk (x), eµI (x)
)

where x denotes a point in Σ and with a
slight abuse of notation we still denote tetrads restricted to Σ by e. The 2-form ΩΣ is computed to be:

ΩΣext = δaIJµ ∧ δpµIJ , (3.169)

whereas the Hamiltonian functional (3.125) is:

Hext
χΣ

=
∫

Σ

[
p0
IJ∂0a

IJ
0 + pkIJ∇ka

IJ
0 + 2βIJkj ∇ja

IJ
k − 2p0

IJ [a0, a0]IJ + λp
IJ
µ (pµIJ − ϵe

[µ
I e

0]
J )+

+λpIJ0 p0
IJ + λp̃

IJ
k (p̃kIJ − ϵe

[0
I e

k]
J ) + λβ

IJ
jk (βjkIJ − ϵe

[j
I e

k]
J )
]
volΣ ,

(3.170)

where [ · , · ] denotes the Lie product of the Lie algebra of the structure group. The kernel of ΩΣext is
seen to be:

kerΩΣext = ⟨

 δ

δp̃kIJ
,

δ

δβjkIJ
,
δ

δe0
I

,
δ

δekI
,

δ

δλp
IJ
µ

,
δ

δλp̃
IJ
k

,
δ

δλβ
IJ
jk

⟩ . (3.171)

The first manifold of the pre-symplectic constraint algorithm is obtained by imposing:

iVdHext = 0 ∀ V ∈ kerΩΣext
, (3.172)

which explicitly gives the following conditions:

∇ka0 = −λp̃IJk , ∇ka
IJ
j = −λβIJjk ,

ekJλp̃
IJ
k = 0 , e0

J(λpIJj − λp̃
IJ
j ) + 2ekJλβIJjk = 0 ,

pµIJ = ϵe
[µ
I e

0]
J , p̃kIJ = ϵe

[0
I e

k]
J , βjkIJ = ϵe

[j
I e

k]
J .

(3.173)

These constraints allows to eliminate the fields pµIJ , p̃kIJ , βjkIJ , λp̃IJj and λβ
IJ
jk and, therefore, the

manifold M1 is:

M1 =
{ (
aIJµ , e

µ
I , λp

IJ
µ

)
: ∇ka

IJ
0 = λp

IJ
k , ∇ja

IJ
k = λβ

IJ
jk ,

ekJλp
IJ
k = 0 , e0

Jλp
IJ
j + ekJλβ

IJ
jk = 0

}
,

(3.174)

and its immersion into M is given by the remaining conditions:

pµIJ = ϵe
[µ
I e

0]
J , p̃kIJ = ϵe

[0
I e

k]
J , βjkIJ = ϵe

[j
I e

k]
J . (3.175)
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TχΣM⊥
1 is computed to be:

TχΣM⊥
1 = ⟨

{
δ

δaIJ0

}
⟩ ⊕ kerΩΣext∣∣∣

M1
, (3.176)

and, consequently, the second manifold M2 is obtained by imposing:

i⋆1

[
i δ

δaIJ0

ΩΣext
]

= 0 , (3.177)

which explicitly reads:
∇k(ϵe[k

I e
0]
J ) = 0 . (3.178)

Thus:

M2 =
{ (
aIJµ , e

µ
I , λp

IJ
k

)
: ∇ka

IJ
0 = λp

IJ
k , ∇ja

IJ
k = λβ

IJ
jk ,

ekJλp
IJ
k = 0 , e0

Jλp
IJ
j + ekJλβ

IJ
jk = 0

∇k(ϵe[k
I e

0]
J ) = 0

}
.

(3.179)

The vector fields:

(∇ka
IJ
0 − λp

IJ
k ) δ

δaIJk
, −

(
∇j(ϵe[j

I e
k]
J ) + [pk, a0]IJ

) δ

δpkIJ
(3.180)

are computed to belong to TχΣM⊥
2 but, since they preserve the Hamiltonian functional, no other

constraints emerge and M2 = M∞. It is a matter of direct computation to show that i⋆2Hext = 0.
Therefore, on the final manifold the canonical equation reads:(

iΓΩΣext − dHext
)

M∞
= 0 , (3.181)

which, since, as we said above, i⋆∞Hext = 0, reduce to:(
iΓΩΣext )

M∞
= 0 . (3.182)

This means that the dynamics lies, at each point, entirely in TχΣM⊥
∞. Therefore, solutions of the

original pre-symplectic system are the integral curves (restricted to M∞) of a vector field Γ that, at
each point of M lies in TχΣM⊥

∞.
Now, TχΣM⊥

∞ contains a part of vectors being tangent to M∞ and a part of vectors being tangent
to M but not tangent to M∞, we will denote them respectively by:

TχΣM⊥
∞ = TχΣM⊥

∞
∥⋃TχΣM⊥

∞
⊥
. (3.183)
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We already found the "transversal" part, because it is spanned by the tangent vectors in (3.180). The
integral curves of a vector field which at each point of M coincides with X are the solutions of:

daIJk
ds

= ∇ka
IJ
0 − λp

IJ
k ,

dpkIJ
ds

= −∇j

(
ϵej[Ie

k
J ]

)
−
[
pk, a0

]
IJ
.

(3.184)

Their restriction to M∞ are the solutions of the combination of (3.184) and the constraints selecting
M∞, which reads:

∇µ

(
ϵeµ[Ie

ν
J ]

)
= 0 , eµIF

IJ
µν = 0 , (3.185)

where F IJ
µν = ∇µA

IJ
ν . The first of the latter equations is the condition for the metric g associated with

e to be torsion-less, whereas the second set of equations are Einstein equations in vacuum (see [Rov04]).
Regarding the remaining part of TχΣM⊥

∞, say the tangent one TχΣM⊥
∞

∥, we will show how it is
made by the generators of gauge transformations of the theory. It is a matter of direct computation
to prove that the kernel of ΩΣext

∞ is spanned, at each point, by the infinity (parametrized by Lie
algebra-valued functions ψIJ) of tangent vectors Xg

ψ with components:
(
Xg
ψ

)
a

IJ

k
= ∇kψ

IJ ,
(
Xg
ψ

)
e

µ

I
= ψKI e

µ
K , (3.186)

and by the infinity (parametrized by vector fields on Σ) of tangent vectors Xd with components:
(
Xd
ξ

)
a

IJ

k
= ξj∇ka

IJ
j ,

(
Xd
ξ

)
e

0

I
= −ξj∇je

0
K ,

(
Xd
ξ

)
e

k

I
= −ξj∇je

k
I , (3.187)

where ξj are the components of a vector field on Σ. The vector fields which, at each point, coincide
with the tangent vectors Xg satisfy:

[Xg
ψ, Xg

ϕ] = Xg
[ψ,ϕ] (3.188)

and, therefore, they are a representation of the Lie algebra o(1, 3) on M∞ given by the following
action:

aIJµ 7→ ψIKa
KL
µ ψ−1LJ + ψ−1J

K∂µψ
KJ ,

eµI 7→ ψKI e
µ
K ,

(3.189)

which agree with the gauge transformation written in [Rov04, Chap. 2, page 41] (this justifies the
notation Xg). On the other hand, the vector fields which, at each point, coincide with the tangent
vectors XD satisfy:

[Xd
ξ , Xd

ζ ] = X[ξ,ζ] , (3.190)
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provided that ξ and ζ are divergenceless and, therefore, they are a representation of the group of
volume-preserving diffeomorphisms (which justifies the notation Xd) of Σ on M∞ given by the following
action:

aIJk 7→
(
T ξ

∇a
)IJ
k
,

eµI 7→ −
(
T ξ

∇e
)µ
I
,

(3.191)

where T ξ
∇ is the parallel transport along the flow of ξ associated with the connection ∇. The tangent

vectors Xg and Xd are i∞-related with the tangent vectors to the original manifold of the pre-symplectic
constraint algorithm having, respectively, components:(

Xg
ψ

)
a

IJ

k
= ∇kψ

IJ ,
(
Xg
ψ

)
p

k

IJ
= ϵ

(
UL

[Iψ
K
L e

0
Ke

k
J ] −W kL

j[Je
0
I]ψ

K
L e

j
K

)
(3.192)

and: (
Xd
ξ

)
a

IJ

k
= ξjF IJ

kj ,
(
Xd
ξ

)
p

k

IJ
= −

(
UK

[I e
k
J ]ξ

j∇je
0
K −W kK

j[J e
0
I]ξ

l∇le
j
K

)
, (3.193)

where UL
[I = δL[I − e0

[Ie
L
0 , W kL

j[J = δkj δ
L
[J + eLj e

k
[J and being actually tangent to M∞. The latter tangent

vectors span, at each point, TχΣM⊥
∞

∥ and, therefore, the whole TχΣM⊥
∞ is now characterized.

To resume the above discussion, we saw that solutions of the pre-symplectic Hamiltonian system(
FΣ

P(E) × FΣ
P(E)

⋆ × E , ΩΣext
, Hext

)
, which, at least locally, coincide with extrema of the tetradic Pala-

tini’s action, are integral curves of the vector field (3.180) restricted to the final manifold M∞ of the
PCA, that is, torsionless solutions of Einstein’s equations (see (3.185)), up to gauge transformations
(3.189) and (3.191) obtained as the tangent part of the kernel of the pre-symplectic form.

3.2.7 Symmetries and momentum maps on the solution space
Since we have shown that, at least locally around a slice Σ of the space-time, the dynamical content
of field theories is encoded into a pre-symplectic Hamiltonian system, we can now apply the theory of
Sec. 1.2.3 and 1.3.5 to show the correspondence between symmetries and momentum maps (that is,
conserved quantities) within this setting. In particular, to show the procedure both in the symplectic
and in the pre-symplectic case, we will apply it to the case of Klein-Gordon theory and to free
Electrodynamics in the Hamiltonian formalism.

Example 3.2.14 (Klein-Gordon theory). We saw that, given a slice Σ of the Minkowski space-
time M , Klein-Gordon theory can be formulated in terms of the pre-symplectic Hamiltonian system
(M∞, ΩΣ

∞, H∞), where:
M∞ = H

3
2 (Σ, volΣ) × H

1
2 (Σ, volΣ) , (3.194)

whose elements are denoted by (φ, p),

ΩΣ
∞ = δφ ∧ δp , (3.195)
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and:
H∞ = −1

2

∫
Σ

[
δjk∂jφ∂kφ+ p2 +m2φ2

]
volΣ . (3.196)

We consider the group of symmetries of the space-time M , that is, the Poincaré group P = τ ⋊L,
which contains the subgroup of translations, denoted by τ , spatial rotations, denoted by R and the
Lorentz boosts, denoted by B. P can be represented via the following action on M by means of 5 × 5
matrices:

ΦM
τ =


1 0 0 0 a0

0 1 0 0 a1

0 0 1 0 a2

0 0 0 1 a3

0 0 0 0 1

 , (3.197)

ΦM
R =


1 0 0 0 0
0 R11 R12 R13 0
0 R21 R22 R23 0
0 R31 R32 R33 0
0 0 0 0 1

 , (3.198)

ΦM
B =


B00 B01 B02 B03 0
B10 B11 B12 B13 0
B20 B21 B22 B23 0
B30 B31 B32 B33 0

0 0 0 0 1

 , (3.199)

obtained by taking the first 4 components of the action of the elements in the Poincaré group on the
point (x0, x1, x2, x3, 1):

ΦM
τ ·m =


1 0 0 0 a0

0 1 0 0 a1

0 0 1 0 a2

0 0 0 1 a3

0 0 0 0 1




x0

x1

x2

x3

1

 =


x0 + a0

x1 + a1

x2 + a2

x3 + a3

1

 , (3.200)

ΦM
R ·m =

1 0 0
0 Rj

k 0
0 0 1


x

0

xk

1

 =

 x0

Rj
kx

k

1

 , (3.201)

where Rj
k is a matrix in O(3), and:

ΦM
B ·m =

[
Bµ
ν 0

0 1

] [
xµ

1

]
=
[
Bµ
νx

ν

1

]
, (3.202)
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where Bµ
ν is a matrix in SO(1, 3). The actions above can be lifted to the bundle E → M , to P(E)

(see [AIS17]), and to EL in the following way:

ΦP(E)
τ : P(E) → P(E) : (xµ, u, ρµ) 7→ ΦP(E)

τ (xµ, u, ρµ) = (xµ + aµ, u, ρµ) , (3.203)

ΦP(E)
R : P(E) → P(E) : (xµ, u, ρµ) 7→ ΦP(E)

R (xµ, u, ρµ) =
(
x0, Rj

kx
k, u, ρ0, Rj

kρ
k
)
, (3.204)

ΦP(E)
B : P(E) → P(E) : (xµ, u, ρµ) 7→ ΦP(E)

B (xµ, u, ρµ) = (Bµ
νx

ν , u, Bµ
ν ρ

ν) , (3.205)

ΦEL
τ : EL → EL : (xµ, ϕ(xµ), P µ(xµ)) 7→ ΦEL

τ (xµ, ϕ(xµ), P µ(xµ)) =
= (xµ + aµ, ϕ(xµ + aµ), P µ(xµ + aµ)) ,

(3.206)

ΦEL
R : EL → EL : (xµ, ϕ(xµ), P µ(xµ)) 7→ ΦEL

R (xµ, ϕ(xµ), P µ(xµ)) =
=
(
x0, Rj

kx
k, ϕ(x0, Rj

kx
k), P 0(x0, Rj

kP
k(x0, Rj

kx
k), Rj

kx
k)
)
,

(3.207)

ΦEL
B : EL → EL : (xµ, ϕ(xµ), P µ(xµ)) 7→ ΦEL

B (xµ, ϕ(xµ), P µ(xµ)) =
= (Bµ

νx
ν , ϕ(Bµ

νx
ν), Bµ

νP
ν(Bµ

νx
ν)) .

(3.208)

In particular we are interested in the action on EL . That they represent symmetries for our pre-
symplectic Hamiltonian system can be verified in two ways. The first is by computing the generators
of the transformations above, that are vector fields on EL , by taking their push-forward via Ψ−1 ◦ϖ,
that are vector fields on M∞ and by proving that they preserve H∞ and the pre-symplectic form.
The second way, which is the more viable is to take the pull-back of H∞ and the pre-symplectic form
to EL via ϖ−1 ◦ Ψ and by checking the invariance under the generators on EL . By looking at
diagram (3.108) this is the same as taking the pull-back of H via ΠΣ and checking its invariance.
Straightforward calculations show that this is the case for all the transformations above.

To compute the momentum maps associated to the symmetries above one could proceed, again,
in two ways. First, by pushing-forward the generators of the symmetries on EL to M∞ and, then,
by computing the momentum maps associated to the symplectic structure ΩΣ

∞. The second one is to
pull-back ΩΣ

∞ to EL , which gives the canonical structure Π⋆
ΣΩΣ, and computing the momentum maps

associated with it. We will use this second option in the present example.
Consider ξ = ξτ0, i.e, the element in the Lie algebra g = R4 ⋊ so(1, 3) of the Poincaré group P,

generating the translation xµ 7→ (x0 + a0, xj). The generator associated reads:

Xξτ0 = d

da0

[
Φ
e
a0ξ

τ0 · χ
]
a0=0

= −P 0 δ

δϕ
− (m2ϕ+ ∆ϕ) δ

δP 0 − ∂P 0

∂x(j)
δ

δP (j) , (3.209)

where (j) means that no sums must be taken over the index. Consequently:

Π⋆
ΣΩΣ(Xξτ0 , · ) = −P 0δP 0 + (m2ϕ+ ∆ϕ)δϕ . (3.210)
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Therefore, the function Jξτ0 satisfying:

Π⋆
ΣΩΣ(Xξτ0 , · ) = dJξτ0 , (3.211)

can be straightforwardly computed to be:

Jξτ0 =
∫

Σ

1
2

[
m2ϕ2 − δjk

∂ϕ

∂xj
∂ϕ

∂xk
− P 02

]
Σ
volΣ . (3.212)

A similar computation can be performed for the elements ξτk ∈ g generating the translation xµ 7→
(x0, xj + δjka

k), obtaining the function Jξ
τk

:

Jξ
τk

=
∫

Σ
P 0 ∂ϕ

∂xk

∣∣∣∣∣
Σ
volΣ . (3.213)

Note that Jξτ0 and Jξ
τk

coincide with the charges associated with the energy-momentum tensor of the
Klein-Gordon theory. The momentum map is the map between EL and g⋆ satisfying:

J : EL → g⋆ : ⟨ J(χ) , ξ ⟩ = Jξ . (3.214)

Let us compute it in the case ξ = ξτ0. The element ξτ0 ∈ g such that ea0ξτ0 = ΦM
τ0 is represented as:

Φξτ0 =


0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 . (3.215)

Therefore, if we represent J(χ) as:

ΦJ =


J00(χ) · · · J04(χ)

... ...
J40(χ) · · · J44(χ)

 , (3.216)

we get:
⟨ J(χ) , ξτ0 ⟩ = Tr

[
ΦJ

† ΦM
ξτ0

]
= J04(χ) , (3.217)

and, consequently:
J04(χ) = Jξτ0 . (3.218)

A similar computation for ξ = ξτk gives:

J0(4−k)(χ) = Jξ
τk
. (3.219)
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Analogous computations can be done to compute the momentum maps associated to the other
transformations in the Poincarè group. Here we report the results for the sake of completeness. The
conserved quantities associated to the three spatial rotations are:

JξR3 =
∫

Σ

[
P 0

(
x2 ∂ϕ

∂x1 − x1 ∂ϕ

∂x2

)]
Σ
volΣ ,

Jξ
Rx2 =

∫
Σ

[
P 0

(
x1 ∂ϕ

∂x3 − x3 ∂ϕ

∂x1

)]
Σ
volΣ ,

Jξ
Rx1 =

∫
Σ

[
P 0

(
x2 ∂ϕ

∂x3 − x3 ∂ϕ

∂x2

)]
Σ
volΣ .

(3.220)

Note that Jξ
Rxj

are the j-components (j going from 1 to 3) of the divergence of the generalized angular
momentum of the Klein-Gordon field. Regarding the momentum maps, by using the definition one
gets:

J(χ)j = Jξ
Rxj

j = 1, 2, 3 . (3.221)

Regarding the three Lorentz boosts, one gets the following conserved functions :

Jξ
Bx1 = −

∫
Σ

[
P 0

(
x1 ∂ϕ

∂x0 + x0 ∂ϕ

∂x1

)
+ P 1ϕ

]
Σ
volΣ

Jξ
Bx2 = −

∫
Σ

[
P 0

(
x2 ∂ϕ

∂x0 + x0 ∂ϕ

∂x2

)
+ P 2ϕ

]
Σ
volΣ

Jξ
Bx3 = −

∫
Σ

[
P 0

(
x3 ∂ϕ

∂x0 + x0 ∂ϕ

∂x3

)
+ P 3ϕ

]
Σ
volΣ ,

(3.222)

which are the remaining three independent components of the divergence of the generalized angular
momentum usually found in Field Theory textbooks. The components of the momentum map in this
case are:

J(χ)j = Jξ
Bxj

j = 1, 2, 3 . (3.223)

Example 3.2.15 (Free Electrodynamics). As it was shown in example 3.2.11, given a slice Σ of
the Minkowski space-time M , free Electrodynamics can be formulated in terms of the pre-symplectic
Hamiltonian system (M∞, ΩΣ

∞, H∞), where:

M∞ =
[

H
3
2 (Σ, volΣ)

]3
×
[

H
1
2 (Σ, volΣ; div0)

]3
, (3.224)

whose elements are denoted by (ak, pk),

ΩΣ
∞ = δak ∧ δpk , (3.225)
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and:
H∞ =

∫
Σ

[ 1
4δ

jlδkm∂[jak]∂[lam] − δjkp
jpk

]
volΣ (3.226)

The kernel of ΩΣ
∞ consists of vector fields of the type:

Vψ = ∂kψ
δ

δak
, (3.227)

for some ψ ∈ H 5
2 (Σ, volΣ). They generate (via their flow) the following action on M∞:

ΦVψ : M∞ → M∞ : m∞ 7→ ΦVψ ·m∞ = (ak + ∂kψ, p
k) . (3.228)

As we will prove in the next section, the tangent space of M∞ at some point m∞ splits as:

Tm∞M∞ ≃ M∞ =
[

H
3
2 (Σ, volΣ; div0)

]3
⊕ gradH

5
2 ×

[
H

1
2 (Σ, volΣ; div0)

]3
, (3.229)

the second term representing the kernel of ΩΣ
∞, say K. On the bundle M∞ → M∞/K we consider

the connection represented by the following (1, 1) tensor field:

P = Pk ⊗ δ

δak
, (3.230)

where:
Pk = ∂k

∫
Σ
G∆(x, y)δjl∂jδal(y) d3y , (3.231)

with G∆ being the Green’s function of the Laplacian operator, x, y points in Σ and { δaj }j=1,2,3 a dual
basis of

{
δ
δaj

}
j=1,2,3

. Note that the complement of kerΩΣ
∞ = gradH 5

2 represents exactly the horizontal
distribution associated with the connection chosen.

The coisotropic embedding theorem in this case leads to the following symplectic manifold, which
is actually a Hilbert space (and, thus isomorphic to its tangent space):

M̃ ≃ Tm̃M̃ =
[

H
3
2 (Σ, volΣ; div0)

]3
⊕ gradH

5
2 ×

[
H

1
2 (Σ, volΣ; div0)

]3
× gradH

5
2
⋆

≃

≃
[

H
3
2 (Σ, volΣ; div0)

]3
⊕ gradH

5
2 ×

[
H

1
2 (Σ, volΣ; div0)

]3
× gradH

5
2 ,

(3.232)

We denote points in M̃ by m̃∞ = (ãk, ∂kϕ, pk, µk). The symplectic structure Ω̃Σ
∞ reads:

Ω̃(X, Y) =
∫

Σ

(
X̃akYp

k − Xp
kX̃ak

)
volΣ︸ ︷︷ ︸

=ΩW (X,Y)

+ Xµ
k∂kYψ − ∂kXψYµ

k︸ ︷︷ ︸
=ΩK⊕K⋆ (X,Y)

. (3.233)

where Xk
µ is the component of X along the dual of the kernel of ΩΣ

∞.
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Now, as in the previous example, let us consider the group of symmetries of the space-time M ,
i.e., the Poincaré group. In particular, let us focus on the group of spatial rotations. In this case,
since we are working on the manifold M̃ obtained via the coisotropic embedding theorem applied to
M∞, we will lift their action to M∞ and, then, by using the theory developed in Sec. 1.3.5, to M̃.
Spatial rotations act on M by means of SO(3) matrices:

ΦM
R : M → M : xk 7→ ΦM

R (x)k = Rk
j x

j , (3.234)

where Rk
j represent the matrix elements of the SO(3) matrix ΦM

R . Since the configuration fields, ak,
are 1-forms on M and the momenta fields, pk, are contravariant tensors on M , they transform via
the pull-back (via ΦM

R−1) and via the push-forward (via ΦM
R ) respectively. Therefore, the action of R

is lifted to M∞ as:

ΦM∞
R : M∞ → M∞ : (ãk(x), ∂kϕ(x), pk(x)) 7→

7→
(
R−1j

kãj
(
ΦM

R · x
)
, R−1j

k∂jϕ
(
ΦM

R · x
)
, Rk

j p
j(ΦM

R · x)
)
.

(3.235)

Following the theory of Sec. 1.3.5 this action is lifted to M̃ as:

ΦP
R : P → P :

(
ãk(x), ∂kϕ(x), pk(x), µk(x)

)
7→

7→
(
R−1j

kãj
(
ΦM

R · x
)
, R−1j

k∂jϕ
(
ΦM

R · x
)
, Rk

j p
j(ΦM

R · x), Rk
j µ

j
(
ΦM

R · x
))

.

(3.236)

Let us focus for a moment on the case in which R is a rotation around the x3-axis, denoted, for short,
R3. We prove that the action above is canonical by explicitly constructing the momentum map. The
element of the Lie algebra generating rotations around the x3-axis is ξR3 and is an element in so(3)
represented by the matrix:

ΦξR3 =

0 0 −1
0 0 0
1 0 0

 . (3.237)

The generator associated, XξR3 , is:

XξR3 = d

dθ

[
ΦP
e
θξ

R3 · m̃∞
]
θ= 0

=
(
XξR3

)
ãk

δ

δãk
+
(
XξR3

)
∂ψk

δ

δ∂kψ
+

+
(
XξR3

)k
p

δ

δpk
+
(
XξR3

)k
µ

δ

δµk
,

(3.238)

where: (
XξR3

)
ãk

=

 (x2∂1 − x1∂2)ã1 + ã2
−ã1 + (x2∂1 − x1∂2)ã2

(x2∂1 − x1∂2)ã3

 (3.239)
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(
XξR3

)
∂ϕk

=

 (x2∂1 − x1∂2)∂1ϕ+ ∂2ϕ
−∂1ϕ+ (x2∂1 − x1∂2)∂2ϕ

(x2∂1 − x1∂2)∂3ϕ

 , (3.240)

(
XξR3

)k
p

=

 (x2∂1 − x1∂2)p1 + p2

−p1 + (x2∂1 − x1∂2)p2

(x2∂1 − x1∂2)p3

 (3.241)

(
XξR3

)k
µ

=

 (x2∂1 − x1∂2)µ1 + µ2

−µ1 + (x2∂1 − x1∂2)µ2

(x2∂1 − x1∂2)µ3

 . (3.242)

With this in hand, the function JξR3 satisfying:

Ω̃(XξR3 , · ) = dJξR3 , (3.243)

is straightforwardly computed to be:

JξR3 (ãk, ∂kϕ, pk, µk) =

=
∫

Σ

[
(x2∂1 − x1∂2)ã1p

1 + ã2p
1 + (x2∂1 − x1∂2)ã2p

2 − ã1p
2 + (x2∂1 − x1∂2)ã3p

3
]
volΣ

+ ⟨µ1 , (x2∂1 − x1∂2)∂1ϕ− ∂2ϕ⟩ + ⟨µ2 , (x2∂1 − x1∂2)∂2ϕ+ ∂1ϕ⟩ + ⟨µ3 , (x2∂1 − x1∂2)∂3ϕ⟩ .

(3.244)

Let us note that the quantities in the right arguments of the pairings are the vertical components
of XξR3 with respect to the connection on M̃ that extends (constantly along K⋆) the connection P
chosen. With this in mind the function (3.244) has exactly the expression (1.157). The currents Jξ

Rx1

and Jξ
Rx2 can be computed in the same way obtaining:

Jξ
Rx1 =

∫
Σ

[
(x1∂3 − x3∂1)ã1p

1 + (x1∂3 − x3∂1)ã2p
2 + ã3p

2 + (x1∂3 − x3∂1)ã3p
3 − ã2p

3
]
volΣ+

+⟨µ1, (x1∂3 − x3∂1)∂1ϕ⟩ + ⟨µ2, (x1∂3 − x3∂1)∂2ϕ− ∂3ϕ⟩ + ⟨µ3, (x1∂3 − x3∂1)∂3ϕ+ ∂2ϕ⟩ ,
(3.245)

and:

Jξ
Rx2 =

∫
Σ

[
(x3∂2 − x2∂3)ã1p

1 + ã3p
1 + (x3∂2 − x2∂3)ã2p

2 + (x3∂2 − x2∂3)ã3p
3 − ã1p

3
]
volΣ+

+⟨µ1 , (x3∂2 − x2∂3)∂1ϕ− ∂3ϕ⟩ + ⟨µ2 , (x3∂2 − x2∂3)∂2ϕ⟩ + ⟨µ3 , (x3∂2 − x2∂3)∂3ϕ+ ∂1ϕ⟩ .
(3.246)

Now, as we said in Sec. 1.3.5, the three currents computed so far can be pulled back to the physical
space M∞ by putting µ = 0 obtaining the standard components 0jk of the generalized angular
momentum of the Electromagnetic field.
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3.3 Covariant Poisson brackets
We end this chapter, and the manuscript, by showing how the canonical structure on the space of
Cauchy data defined in the previous section can be used to equip the solution space with a Poisson
bracket structure. We will distinguish two cases:

• The case in which the structure is symplectic, of which we will give some examples (for instance
the free particle as mechanical system and the Klein-Gordon theory as an example of field
theory), in which the construction of the Poisson bracket is straightforward, being the standard
one described in Sec. 1.2.1.

• The case in which the structure is pre-symplectic where we will use the regularization procedure
related to the coisotropic embedding theorem described in Sec. 1.3.4 and already used in Sec.
3.2.7, to define a Poisson bracket. Within this approach the Poisson bracket turns out to be
defined, in general, on an enlargement of the solution space and, thus, we will identify two
sub-cases of this situation. The first (exemplified by free Electrodynamics), occurring when
the connection we fix during the coisotropic embedding procedure is flat, in which the Poisson
bi-vector field defined on the enlarged manifold is projectable onto the solution space giving
rise, consequently, to a Poisson bracket on it. The second one (exemplified by free Yang-Mills
theories), occurring when a flat connection can not be fixed during the coisotropic embedding
procedure, in which the Poisson bi-vector field on the enlarged space can not be projected onto
the solution space. In this case, in order to have a Poisson bracket structure, one is forced to
work on such enlarged space where the additional degrees of freedom can be interpreted in terms
of the well known concept of ghost fields necessary to quantize non-Abelian gauge theories.

3.3.1 Covariant Poisson brackets in Lagrangian Mechanics
Let us start by focusing on the case where the solution space EL ≃ M∞ is a symplectic manifold,
that is, the structure ωL ∞ on M∞ coming from the pre-symplectic constraint algorithm applied to
the pre-symplectic Hamiltonian system describing our dynamical system, is symplectic and, thus, the
canonical structure Π⋆

tωL = Ψ−1⋆ωL ∞ on EL related to the latter via the diffeomorphism Ψ−1 is
symplectic.

In this case, how to define a Poisson bracket on the solution space is a straightforward application
of the discussion before and after Eq. (1.87). Indeed, given two functions on EL , say F and G, their
Poisson bracket is given by:

{G, F} = Π⋆
tωL (XG, XF ) = iXF dG , (3.247)

where XF (resp. XG) is the unique solution of:

Π⋆
tωL (XF , · ) = dF . (3.248)
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Equivalently, if we consider the pull-back of F and G to M∞ via Ψ (which amounts to considering F
and G as functions of the unique Cauchy datum in M∞ giving rise to the solution on which F and G
depend), say:

f := Ψ⋆F , g := Ψ⋆G , (3.249)
then, a Poisson bracket between f and g can be immediately defined via the symplectic structure
ωL ∞ as:

{g, f} = ωL ∞(Xf , Xg) = iXfdg , (3.250)
where Xf (resp. Xg) is the unique solution of:

ωL ∞(Xf , · ) = df( · ) . (3.251)

As we stressed several times, being M∞ and EL diffeomorphic, all the geometric structures on
the former are equivalent to the geometric structures on the latter, in the sense that the former can
be pulled-back to the latter via the diffeomorphism Ψ relating them. Of course, this also happens for
the Poisson brackets just defined. Indeed, as a consequence of the relation (3.52) between Π⋆

tωL and
ωL ∞, the following relation can be proved between the brackets above:

{G, F}γ = (Π⋆
tωL )γ (XG, XF ) =

[
Ψ−1⋆ωL ∞

]
γ

(XG, XF ) =

= [ωL ∞]Ψ−1(γ)

(
Ψ−1

⋆ XG, Ψ−1
⋆ XF

)
=

= [ωL ∞]Ψ−1(γ) (Xg, Xf ) = {g, f}Ψ−1(γ) ,

(3.252)

which says that the brackets are equivalent in the sense that the diagram below is commutative:

(F, G) ∈ C∞(EL ) {G, F}Π⋆tωL

(f, g) ∈ C∞(M∞) {g, f}ωL ∞

Ψ⋆

Π⋆tωL

Ψ⋆

ωL ∞

(3.253)

As in Sec. 3.1.1, because of this equivalence, we will always prefer to work directly on the manifold
M∞ in order to construct the Poisson bracket on the solution space.

Within the cases in which M∞ turns out to be pre-symplectic we will use the trick of the coisotropic
embedding theorem presented in Sec. 1.3.4 in order to define a Poisson bracket. As explained in
Sec.1.3.4, given the pre-symplectic manifold (M∞, ωL ∞), for which we assume the kernel of ωL ∞ to
be of constant dimension, given any connection on the bundle K → M∞ with typical fibre given by
K, it is possible to construct a canonical symplectic manifold, say (M̃, ω̃), being an enlargement of
it and such that (M∞, ωL ∞) is a coisotropic submanifold. By looking at Eq. (1.129), denoting by9

P = P j ⊗ Vj , (3.254)
9Using the notation of Sec. 1.3.4, Vj are the elements of a basis of K and P j are 1-forms defining the connection.
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the connection and by {µj }j=1,...,dimK⋆ a suitable choice of coordinates on K⋆, the symplectic structure
reads:

ω̃ = τ ⋆ωL ∞ + dµj ∧ P j + µjdP j , (3.255)
where τ denotes the projection from M̃ to M∞ and which, splitting the differential of P j into its
vertical and horizontal components:

dP j = dHP j + dV P j = dP j ( (1 − P )( · ), (1 − P )( · ) ) + dP j (P ( · ), P ( · ) ) , (3.256)

can be written as:
ω̃ = ω̃αW ⊕ ω̃αK⊕K⋆ , (3.257)

where:
ω̃αW = τ ⋆ωL ∞ + µjdHP j (3.258)

has only components on the horizontal space W defined by the connection, and:

ω̃αK⊕K⋆ = dµj ∧ P j + µjdV P j , (3.259)

has only components on K ⊕K⋆. As discussed in Sec. 1.3.4, if the connection chosen is such that at
least dHP j vanishes for all j (i.e. the connection is flat), then the inverse (restricted to W ) of the
2-form ω̃αW is a Poisson bi-vector field λ̃W on M̃ which is projectable onto M∞ via τ to the Poisson
bi-vector field:

λW = τ⋆λ̃W (3.260)
which gives rise to the Poisson bracket:

{g, f} = λW (dg, df) , (3.261)

on M∞.
On the other hand, if dHP j ̸= 0, a Poisson bracket can only be defined on the enlarged manifold

M̃.
We will see, in the following paragraphs, examples of both situations.

Free particle

To show the procedure of constructing the Poisson bracket on the solution space outlined in the
present section, let us apply it to the example 2.1.7, 3.2.1. In this case we saw that the solution space
EL is diffeomorphic to the space of Cauchy data M∞ which is TQ = TR ≃ R2 where we used
{ q, v } as a system of coordinates. The structure ωL ∞ reads:

ωL ∞ = mdq ∧ dv , (3.262)
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which is symplectic. Thus it gives rise to a Poisson bracket in the usual way without using the
coisotropic embedding procedure. Consider two functions on EL , say:

F [γ] = γ(t1) = q + v(t1 − t0), G[γ] = γ(t2) = q + v(t2 − t0) . (3.263)

Following the procedure outlined above, their pull-back to M∞ = R2 read:

f(q, v) = Ψ⋆F [γ] = q + v(t1 − t0) , g(q, v) = Ψ⋆G[γ] = q + v(t2 − t0) , (3.264)

namely, they have the same expression but now they are seen as functions of q and v. The Poisson
bracket reads:

{g, f} = Xf (g), (3.265)
where Xf is determined by:

iXfωL ∞ = df , (3.266)
and reads:

Xf = t1 − t0
m

∂

∂q
− 1
m

∂

∂v
. (3.267)

Consequently:
{g, f}(q,v) = t1 − t2

m
, (3.268)

and
{G, F}γ = t1 − t2

m
, (3.269)

that, again, have the same expression but should be understood as functions on R2 and on EL
respectively.

3.3.2 Covariant Poisson brackets in Hamiltonian Mechanics
As we stressed in Sec. 3.2.2, within Hamiltonian mechanical systems, the structure emerging from the
pre-symplectic constraint algorithm applied to the pre-symplectic Hamiltonian system describing our
dynamical system is the canonical symplectic structure ω of the cotangent bundle of the configuration
manifold, T⋆Q. Therefore, within Hamiltonian mechanical systems we always lie in the symplectic
case of the previous section, where the Poisson bracket on EL reads:

{G, F} = Π⋆
tω(XG, XF ) = iXF dG , (3.270)

where F and G are functions on EL and XF (resp. XG) is the unique solution of:

Π⋆
tω(XF , · ) = dF . (3.271)
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On the other hand, on M∞ = TQ, the Poisson bracket is:

{g, f} = ω(Xf , Xg) = iXfdg , (3.272)

where Xf (resp. Xg) is the unique solution of:

ω(Xf , · ) = df( · ) , (3.273)

and, again, if
f := Ψ⋆F , g := Ψ⋆G , (3.274)

the relation between the two brackets is:

{G, F}ξ = {g, f}Ψ−1(ξ) (3.275)

that is, they are equivalent in the sense that the following diagram:

(F, G) ∈ C∞(EL ) {G, F}Π⋆tω

(f, g) ∈ C∞(M∞) {g, f}ω

Ψ⋆

Π⋆tω

Ψ⋆

ω

(3.276)

commutes.

Free particle

Let us consider the example 2.1.14, 3.2.2 to show the procedure just outlined to construct a Poisson
bracket on the solution space within Hamiltonian mechanical systems. In this case we saw that EL
is isomorphic to the space of Cauchy data M∞ which is T⋆Q = T⋆R ≃ R2 where we used { q, p } as
a system of coordinates. The structure ω here is the canonical one of T⋆R, namely:

ω = dq ∧ dp , (3.277)

and the Poisson bracket is computed straightforwardly. Consider two functions on EL :

F [ξ] = γ(t1) = q + p

m
(t1 − t0), G[ξ] = ϱ(t2) = p , (3.278)

and take their pull-back to M∞ ≃ R2:

f(q, p) = Ψ⋆[ξ] = q + p

m
(t1 − t0) , g(q, p) = Ψ⋆G[ξ] = p , (3.279)

which, again, have the same expression but should be considered as functions of q and p. The Poisson
bracket reads:

{g, f} = Xf (g) , (3.280)
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where Xf is determined by:
iXfω = df , (3.281)

and reads:
Xf = t1 − t0

m

∂

∂q
− ∂

∂p
. (3.282)

Consequently:
{g, f}(q,p) = −1 , (3.283)

and:
{G, F}ξ = −1 , (3.284)

that, again, have the same expression but should be understood as functions on R2 and on EL
respectively.

3.3.3 Covariant Poisson brackets in Hamiltonian systems with constraints
In this case, as stressed in Sec. 3.2.3, the dynamics our dynamical system is described in terms of the
pre-symplectic Hamiltonian system (T⋆Q × F⋆

P(Q)
Σ × N , ωext, Hext) and nothing is said about the

fact that the final stable manifold of the pre-symplectic constraint algorithm, M∞, (if it exists) is a
symplectic one. Indeed, here we lie, in general, in the pre-symplectic case described in Sec. 3.3.1,
namely, the structure on the Cauchy data space M∞ emerging from the pre-symplectic constraint
algorithm, say ωext

∞ = i⋆∞ω
ext (i∞ denoting, as usual, the immersion of M∞ into T⋆Q × F⋆

P(Q)
Σ × N )

is generally pre-symplectic.
Therefore, in this case, as explained in Sec. 3.3.1, given any connection on the bundle K → M∞

whose typical fibre is the kernel, K, of ωext
∞ , say:

P = P j ⊗ Vj , (3.285)

{Vj }j=1,...,dimK denoting a basis of K, it is defined a symplectic manifold (M̃, ω̃ext
∞ ) with:

ω̃ext
∞ = τ ⋆ωext

∞ + dµj ∧ P j + µjdP j = ω̃ext
∞

α

W ⊕ ω̃ext
∞

α

K⊕K⋆ , (3.286)

where τ denotes the projection of M̃ onto M∞, {µj }j=1,...,dimK⋆ is a suitable system of coordinates
on K⋆ and:

ω̃ext
∞

α

W = τ ⋆ω̃ext
∞ + µjdHP j (3.287)

has only components on the horizontal space W defined by the connection, whereas:

ω̃ext
∞

α

K⊕K⋆ = dµj ∧ P j + µjdV P j , (3.288)

has only components on K ⊕K⋆. With ω̃ext
∞ in hand, a Poisson bracket on M̃ is defined by:

{g, f} = ω̃ext
∞ (Xg, Xf ) = λ̃(dg, df) , (3.289)
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for any couple of functions f and g on M∞, where Xf and Xg denote the Hamiltonian vector fields
of f and g with respect to the symplectic structure ω̃ext

∞ and λ̃ is the inverse of ω̃ext
∞ . As discussed

in Sec. 3.3.1, if the connection is flat, the inverse of ω̃ext
∞

α
K⊕K⋆ , say λ̃W , is projectable to M∞ to a

Poisson bivector field, say λW giving rise to the following Poisson bracket on M∞:

{g, f} = λW (dg, df) . (3.290)

3.3.4 Covariant Poisson brackets within symplectic field theories
In Sec. 3.2.4 and 3.2.5 we defined, both in the Lagrangian and in the Hamiltonian formalism, theories
with or without gauge symmetries as those theories for which the final manifold resulting from the
application of the pre-symplectic constraint algorithm to the pre-symplectic Hamiltonian system
describing the field theory is pre-symplectic or symplectic respectively. In this section we will deal
with theories without gauge symmetries, i.e., those for which the stable manifold M∞ is symplectic,
and we will refer sometimes to them as symplectic field theories.

Basically, both in the Lagrangian and in the Hamiltonian setting, if M∞ is symplectic, all the
constructions given in the beginning of Sec. 3.3.1 and in Sec. 3.3.2 can be reproduced.

More precisely, referring to the Hamiltonian formalism, the structure ΩΣ
∞ on M∞ turns out to be

symplectic and, thus, the canonical structure Π⋆
ΣΩΣ = Ψ−1 ◦ϖ⋆ΩΣ

∞ on EL ϵ related to the latter via
the diffeomorphism (Ψ−1 ◦ϖ) is symplectic as well. On EL ϵ the Poisson bracket associated to Π⋆

ΣΩΣ

reads:
{G, F} = Π⋆

ΣΩΣ(XG, XF ) = iXF dG , (3.291)
where F and G are functions on EL ϵ and XF (resp. XG) is the unique solution of:

Π⋆
ΣΩΣ(XF , · ) = dF . (3.292)

On the other hand, on M∞, the Poisson bracket is:

{g, f} = ΩΣ
∞(Xf , Xg) = iXfdg , (3.293)

where Xf (resp. Xg) is the unique solution of:

ΩΣ
∞(Xf , · ) = df( · ) , (3.294)

and, if
f :=

(
Ψ ◦ϖ−1

)⋆
F , g :=

(
Ψ ◦ϖ−1

)⋆
G , (3.295)

the relation between the two brackets is:

{G, F}χ = {g, f}(Ψ◦ϖ−1)(ξ) (3.296)
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that is, they are equivalent in the sense that the following diagram:

(F, G) ∈ C∞(EL ϵ) {G, F}Π⋆ΣΩΣ

(f, g) ∈ C∞(M∞) {g, f}ΩΣ
∞

(Ψ◦ϖ−1)⋆

Π⋆ΣΩΣ

(Ψ◦ϖ−1)⋆
ΩΣ

∞

(3.297)

commutes.

Klein-Gordon theory

As an example of construction of the Poisson bracket on the solution space of a symplectic field theory,
let us consider the Klein-Gordon theory within the Lagrangian formulation developed in examples
2.2.6, 3.2.5. In this case we showed that the solution space EL is isomorphic to the space of Cauchy
data M∞ which reads:

M∞ =
[

H
1
2 (Σ, volΣ)

]2
∋ (φ, φ̇) . (3.298)

The symplectic structure on M∞ was computed to be:

ΩΣ
∞ = δφ ∧ δφ̇ , . (3.299)

In order to compute the Poisson bracket, let us consider the following two functions on EL :

Fx1 [ϕ] = ϕ(x1) , Gx2 [ϕ] = ∂0ϕ(x2) , (3.300)

where ϕ is a solution of Klein-Gordon equation and x1 and x2 are two points in the Minkowski
space-time M . In order to compute the pull-back of Fx1 and Gx2 via ( Ψ ◦ϖ−1 ), we must explicitly
write the solution ϕ in terms of the Cauchy data φ and φ̇ on Σ which reads:

ϕ(x) =
∫

Σ×Σ

(
φ(x′) cos [ωk(x0 − x0

Σ)] − φ̇(x′)sin [ωk(x0 − x0
Σ)]

ωk

)
eik·(x−x′) d3k d3x′ , (3.301)

where x′ and k are two points in two copies of Σ and ωk =
√

|k|2 +m2. With this explicit solution
in mind, the functions fx1 and gx2 are computed to be:

fx1 [φ, φ̇] =
(

Ψ ◦ϖ−1
)⋆
Fx1 [ϕ] =

=
∫

Σ×Σ

(
φ(x′) cos [ωk(x0

1 − x0
Σ)] − φ̇(x′)sin [ωk(x0

1 − x0
Σ)]

ωk

)
eik·(x1−x′) d3k d3x′ ,

gx2 [φ, φ̇] =
(

Ψ ◦ϖ−1
)⋆
Gx2 [ϕ] =

=
∫

Σ×Σ

(
φ(x′)ωk sin [ωk(x0

2 − x0
Σ)] + φ̇(x′) cos [ωk(x0

2 − x0
Σ)]
)
eik·(x2−x′) d3k d3x′ .

(3.302)
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Then, the bracket between fx1 and gx2 is given by:

{gx2 , fx1} = Xfx1
(g) , (3.303)

where Xfx1
is determined by:

iXfx1
ΩΣ

∞ = dfx1 , (3.304)
and is computed to be:

Xfx1
= −

∫
Σ

sin [ωk(x0
1 − x0

Σ)]
ωk

eik·(x1−x) d3k
δ

δφ
+
∫

Σ
cos [ωk(x0

1 − x0
Σ)] eik·(x1−x) d3k

δ

δφ̇
, (3.305)

using the notation (1.53). Then the bracket between fx1 and gx2 is:

{gx2 , fx1}(φ, φ̇) = Xf (g) =
∫

Σ
cos [ωk(x0

1 − x0
2)] eik·(x1−x2) d3k , (3.306)

and, consequently, the bracket between Fx1 and Gx2 is its pull-back via ϖ ◦ Ψ−1, i.e.:

{Gx2 , Fx1}ϕ =
∫

Σ
cos [ωk(x0

1 − x0
2)] eik·(x1−x2) d3k , (3.307)

which has, again, the same expression as the bracket on M∞ but it should be thought of as a function
on EL .

3.3.5 Covariant Poisson bracket within gauge theories
Here we deal with the case in which the stable manifold obtained out of the pre-symplectic constraint
algorithm is still pre-symplectic. Just to fix the ideas let us focus on the Hamiltonian formalism, in
which the stable manifold reads (M∞, ΩΣ

∞), but the discussion can be performed in the same way
both within Lagrangian field theories and within Hamiltonian theories with additional constraints
where the stable manifold reads (M∞, ΩΣ

∞) and (M∞, ΩΣext
∞ ) respectively.

Again, here we lie in the pre-symplectic case of Sec. 3.3.1 where, given a connection:

P = P j ⊗ Vj , (3.308)

on the bundle K → M∞ with typical fibre given by K, we get a symplectic manifold out of the
coisotroipic embedding theorem equipped with the symplectic structure:

Ω̃Σ
∞ = τ ⋆ΩΣ

∞ + dµj ∧ P j + µjdP j , (3.309)

{µj }j=1,...,dimK⋆ denoting a suitable coordinate system on K⋆. Again, Ω̃Σ
∞ splits locally as follows:

Ω̃Σ
∞ = Ω̃Σα∞W ⊕ Ω̃Σ

∞
α

K⊕K⋆ , (3.310)
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where:
Ω̃Σ

∞
α

W = τ ⋆Ω̃Σ
∞ + µjdHP j , (3.311)

is the term which only has components on W and:

Ω̃Σ
∞
α

K⊕K⋆ = dµj ∧ P j + µjdV P j , (3.312)

is the term which only has components along K ⊕K⋆.
As discussed in Sec. 1.3.4, if P is such that at least dHP j vanishes for all j (i.e. the connection

is flat), then the inverse (restricted to W ) of Ω̃Σα
∞W is a Poisson bi-vector field λ̃W on M̃ which is

projectable onto M∞ via τ to the Poisson bi-vector field:

λW = τ⋆λ̃W (3.313)

which gives rise to a the Poisson bracket:

{g, f} = λW (dg, df) , (3.314)

on M∞.
On the other hand, if dHP j ̸= 0, a Poisson bracket can only be defined on the enlarged manifold

M̃. Note that the number of additional degrees of freedom emerging by working on M̃ instead of
M∞ coincide with the dimension of the kernel of ΩΣ

∞ and, thus, with the number of ghost fields
used within the BRST approach to quantize non-Abelian gauge theories (see, for instance, [HT94]).
Moreover, they are dual to the generators of gauge transformations, as the ghost fields defined
in [HT94]. This means that the additional degrees of freedom we are forced to use in order to defined
a Poisson bracket structure in this case can be interpreted in terms of ghost fields.

As examples of both situations, we will perform explicitly the construction within free Electrody-
namics and within Yang-Mills theories in the Hamiltonian formalism.

Free Electrodynamics

As discussed in example 3.2.11, within free Electrodynamics the formulation of the theory in terms of
a pre-symplectic Hamiltonian system around a slice Σ of the space-time M leads to the following
final stable manifold:

M∞ =
[

H
3
2 (Σ, volΣ)

]3
×
[

H
1
2 (Σ, volΣ; div0)

]3
, (3.315)

whose points are denoted, in a system of local coordinates, by (ak, pk). The latter space turns out to
be a Hilbert space, since one proves that

[
H 1

2 (Σ, volΣ; div0)
]3

is a closed subspace of
[

H 1
2 (Σ, volΣ)

]3
.

Indeed, the following holds.

Proposition 3.3.1. The gradient operator grad : H 3
2 (Σ, volΣ) → H 1

2 (Σ, volΣ) is closed.
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Proof. Consider a sequence {fn}n∈N with fn ∈ H 3
2 (Σ, volΣ) such that

lim
n→∞

fn = f

in H 3
2 (Σ, volΣ). The following inequalities:

∑
j

∥∂j(fn − f)∥
H

1
2

=
∑
j,k

∫
R3

|f̃n − f̃ |2kj kk |k| d3k

≤ 9
∫

R3
|f̃n − f̃ |2 |k|3d3k = 9∥fn − f∥

H
3
2

(3.316)

hold, thus proving that the operator grad maps closed sets into closed sets.

Consequently,
[

H 1
2 (Σ, volΣ; div0)

]3
, being the kernel of the div operator (which is the adjoint of

grad), is – recall the closed range theorem – a closed subspace in
[

H 1
2 (Σ, volΣ)

]3
, whose complement

is the range of the action of the grad operator into H 1
2 (Σ, volΣ), that is the following decomposition

into closed (and, thus, Hilbert) subspaces holds:[
H

1
2 (Σ, volΣ)

]3
=
[

H
1
2 (Σ, volΣ; div0)

]3
⊕ gradH

3
2 (Σ, volΣ) . (3.317)

On the other hand, as we saw in example 3.2.11, the 2-form ΩΣ
∞ reads:

ΩΣ
∞ = δak ∧ δpk , (3.318)

whose kernel, at each point, is:

kerΩΣ
∞ = ⟨

{
∂kζ

δ

δak

}
⟩ , (3.319)

for some ζ ∈ H 5
2 (Σ, volΣ). Notice that a proof similar to that of Prop. 3.3.1 shows that the following

decomposition: [
H

3
2 (Σ, volΣ)

]3
=
[

H
3
2 (Σ, volΣ; div0)

]3
⊕ gradH

5
2 (Σ, volΣ) (3.320)

holds, where the first term is the space of H 3
2 functions with zero divergence and the second term is

the range under the action of the gradient operator upon the set of H 5
2 functions.

In order to perform the coisotropic embedding procedure to construct the Poisson bracket on M∞
let us consider a connection on the bundle M∞ → M∞/K, K denoting the characteristic distribution
of ΩΣ

∞. We consider, as in the previous section, the connection represented by the following (1, 1)
tensor field:

P = Pk ⊗ δ

δak
, (3.321)
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where:
Pk = ∂k

∫
Σ
G∆(x, y)δjl∂jδal(y) d3y , (3.322)

with G∆ being the Green’s function of the Laplacian operator, x, y points in Σ and { δaj }j=1,2,3 a
dual basis of

{
δ
δaj

}
j=1,2,3

. Such a connection, gives rise to the following splitting of Tm∞M∞ ≃ M∞:

Tm∞M∞ ≃ M∞ =
[

H
3
2 (Σ, volΣ; div0)

]3
⊕ gradH

5
2 ×

[
H

1
2 (Σ, volΣ; div0)

]3
, (3.323)

where the complement of kerΩΣ
∞ = gradH 5

2 represents the horizontal distribution associated with
the connection.

The enlarged manifold obtained extending M∞ via the dual of Km∞ via the procedure explained
in the present section is:

M̃ ≃ Tm̃M̃ =
[

H
3
2 (Σ, volΣ; div0)

]3
⊕ gradH

5
2 ×

[
H

1
2 (Σ, volΣ; div0)

]3
× gradH

5
2
⋆

≃

≃
[

H
3
2 (Σ, volΣ; div0)

]3
⊕ gradH

5
2 ×

[
H

1
2 (Σ, volΣ; div0)

]3
× gradH

5
2 ,

(3.324)

where, since we proved that gradH 5
2 is a closed (and, thus, Hilbert) subspace of

[
H 3

2 (Σ, volΣ)
]3

, it
is isomorphic to its dual and where a point will be denoted, in a system of local coordinates, by
(ãk, ∂kψ, pk, µk).

In this case, a direct computation shows that:

dPk = 0 (3.325)

and, thus, we are in the case of Sect. 1.3.4. Consequently, denoting an element of Tm̃M̃ by
X = (X̃ak, ∂kXψ, Xp

k, Xµ
k) the symplectic structure on M̃∞ is:

Ω̃(X, Y) =
∫

Σ

(
X̃akYp

k − Xp
kX̃ak

)
volΣ︸ ︷︷ ︸

=ΩW (X,Y)

+ Xµ
k∂kYψ − ∂kXψYµ

k︸ ︷︷ ︸
=ΩK⊕K⋆ (X,Y)

. (3.326)

The inverse of Ω̃ reads:
Λ̃ = ΛW ⊕ ΛK⊕K⋆ , (3.327)

where:
ΛW = δ

δãk
∧ δ

δpk
, (3.328)

using the notation (1.53). Such a bivector field is a Poisson bivector field being the inverse of a closed
and non-degenerate form on W and it is projectable to the Poisson bivector field over M∞:

λ = δ

δãk
∧ δ

δpk
, (3.329)
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giving rise to the following Poisson bracket between any two functions on M∞:

{ f, g } =
∫

Σ

(
δf

δãk

δg

δpk
− δf

δpk
δg

δãk

)
volΣ . (3.330)

As an explicit example one can consider the following two functions on EL :

F [χ] = Ak1(x1) , G[χ] = Ak2(x2) . (3.331)

Their pull-back via ( Ψ ◦ϖ−1 ) is obtained by explicitly writing the solutions of the equations of
motion and expressing them in terms of the Cauchy data (ak, pk) ∈ M∞. In this case the Hamiltonian
vector field Γ∞ associated to H∞ via ΩΣ

∞ is determined up to elements in the kernel of ΩΣ
∞, i.e., up to

gauge transformations. However, since the Poisson bi-vector field constructed on M∞ belongs to the
horizontal distribution of the connection considered, the vertical part of Γ∞ will not contribute in any
way to the bracket associated to λ. Thus we could fix the (undetermined) vertical part of Γ∞ to be
zero, which means, by noting that the horizontal distribution of the connection chosen is made by
divergence-less a’s and p’s, that we are lead with the equations of motion (3.146) where the second
one is trivial since we are restricting to divergenceless a’s. Thus, we only need a solution of:

d2

ds2aj = ∆aj , (3.332)

which reads:

ak,s(x) = 1
4π

[ ∫
Σ

(
ak(y) + |s− x0

Σ|δkjpjΣ(y)
)
G̃x, |s−x0

Σ|(y) volyΣ

+
∫

Σ
|s− x0

Σ|ak(y) ∂
∂s
G̃x,(s−x0

Σ)(y)(Θ(s− x0
Σ) − Θ(x0

Σ − s)) volyΣ
]
,

(3.333)

where G̃x,a(y) is the characteristic function of the surface of the sphere centered at x with radius a
and Θ is the Heaviside function. Consequently, the bracket is computed to be:

{g, f}(a,p) = δk1k2

16π2

∫
Σ

{(
|x0

2 − x0
Σ| − |x0

1 − x0
Σ|
)
G̃x1,|x0

1−x0
Σ|(y)G̃x2,|x0

2−x0
Σ|(y)

+|x0
1 − x0

Σ||x0
2 − x0

Σ|
[
∂

∂s
G̃x1,(s−x0

Σ)(y)
∣∣∣
s=x0

1

(
Θ(x0

1 − x0
Σ) − Θ(x0

Σ − x0
1)
)
G̃x2,|x0

2−x0
Σ|(y)

− ∂

∂s
G̃x2,(s−x0

Σ)(y)
∣∣∣
s=x0

2

(
Θ(x0

2 − x0
Σ) − Θ(x0

Σ − x0
2)
)
G̃x1,|x0

1−x0
Σ|(y)

]}
vol

y

Σ .

(3.334)

The bracket between F and G is obtained, again, by pulling-back the latter function to EL , which
gives, again, a function with the same expression but that should be thought of as a function on EL .
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Yang-Mills theories

Within Yang-Mills theories, we saw, in example 3.2.12 that the final manifold obtained out of the
pre-symplectic constraint algorithm is:

M∞ =
[

H
5
2 (Σ, volΣ)

]3dimg
×
[

H
3
2 (Σ, volΣ,∇0)

]3dimg
∋

∋ (aak, pka) ,
(3.335)

That this is a Hilbert space, is due to the fact that
[

H 5
2 (Σ, volΣ)

]3dimg
is a Hilbert space and that[

H 3
2 (Σ, volΣ; ∇0)

]3dimg
is a closed (and, thus, Hilbert) subspace of [ H1(Σ, volΣ) ]3dimg. Indeed, ∇

acts as a linear operator between the Hilbert spaces
[

H 5
2 (Σ, volΣ)

]dimg
and

[
H 3

2 (Σ, volΣ)
]3dimg

:

∇ :
[

H
5
2 (Σ, volΣ)

]dimg
→
[

H
3
2 (Σ, volΣ)

]3dimg
: fa 7→ ∇kf

a . (3.336)

Its adjoint is an operator from
[

H 3
2 (Σ, volΣ)⋆

]3dimg
(that can be identified with

[
H 3

2 (Σ, volΣ)
]3dimg

)

itself, to
[

H 5
2 (Σ, volΣ)⋆

]dimg
(that can be identified with

[
H 5

2 (Σ, volΣ)
]dimg

):

∇⋆ :
[

H
3
2 (Σ, volΣ)

]3dimg
→
[

H
5
2 (Σ, volΣ)

]dimg
: pka 7→ ∇kp

k
a . (3.337)

The following holds.

Proposition 3.3.2 (Closedness of ∇ in H 3
2 ). The operator ∇ is a closed operator from[

H 5
2 (Σ, volΣ)

]dimg
to
[

H 3
2 (Σ, volΣ)

]3dimg
.

Proof. Consider a sequence of functions in
[

H 5
2 (Σ, volΣ)

]dimg
, say { fan }n∈N converging to some

fa ∈
[

H 5
2 (Σ, volΣ)

]dimg
in the H 5

2 -norm. Then ∇kf
a
n converges to ∇kf

a in the H 3
2 -norm. Indeed:

∑
k,a

∥∇kf
a
n − ∇kf

a∥
H

3
2

=
∑
k,a

∥∇k(fan − fa)∥
H

3
2

=
∑
k,a

∥∂k(fan − fa) + ϵabca
b
k(f cn − f c)∥

H
3
2

=

≤
∑
k,a

∥∂k(fan − fa)∥
H

3
2

+
∑
k,a

+
∑
k,a

|ϵabc|∥abk(f cn − f c)∥
H

3
2

≤

≤ 3
∑
a

∥fan − fa∥
H

5
2

+
∑
k,a

|ϵabc|∥abk∥H
5
2

∥f cn − f c∥
H

5
2
,

(3.338)

where the last inequality is due to the content of footnote 6 and to the fact that H 5
2 (Σ, volΣ) is

a Banach algebra. Because of the latter inequality, ∑k,a ∥∇kf
a
n − ∇kf

a∥
H

3
3

approaches zero when
∥f cn − f c∥

H
5
2

approaches zero. Thus, by definition of closed operator, ∇ is closed.

157



Therefore, by means of the closed range theorem, the kernel of the adjoint of ∇, i.e.:[
H

3
2 (Σ, volΣ; ∇0)

]3dimg
, (3.339)

is a closed split subspace of
[

H 3
2 (Σ, volΣ)

]3dimg
whose orthogonal complement coincide with the

image of ∇, say ∇
[

H 5
2 (Σ, volΣ)

]dimg
. That is, the following splitting into closed (and, thus, Hilbert)

subspaces exists:[
H

3
2 (Σ, volΣ)

]3dimg
=
[

H
3
2 (Σ, volΣ; ∇0)

]3dimg
⊕ ∇

[
H

5
2 (Σ, volΣ)

]dimg
, (3.340)

and the pka’s of M∞ lie exactly in the first component of such splitting. Being M∞ a Hilbert space is
is isomorphic to its tangent space at each point:

T(a,p)M∞ =
[

H
5
2 (Σ, volΣ)

]3dimg
×
[

H
3
2 (Σ, volΣ,∇0)

]3dimg
. (3.341)

Such tangent space also coincide with the space of solutions of the linearization of the constraint
∇kp

k
a = 0, i.e., with the space of functions Xa

a
k and Xp

k
a (representing the components of the tangent

vector) satisfying:
∇⋆
kXp

k
a = [pk, Xak]a , (3.342)

as the following proposition proves.

Proposition 3.3.3. The space of solutions of:

∇kXp
k
a = [pk, Xak]a , (3.343)

is an affine space modelled over the vector space
[

H 3
2 (Σ, volΣ; ∇0)

]3dimg
.

Proof. As we proved above, H 3
2 (Σ, volΣ) splits as H 3

2 (Σ, volΣ) = H 3
2 (Σ, volΣ; ∇0) ⊕ ∇H 5

2 (Σ, volΣ).
Let us denote by X̃p

k

a and ∇kXa
ψ the components of the pk-component of X in such a splitting. Then,

equation (3.343) reads:
∆Xa

ψ = [pk, Xak]a , (3.344)
where ∆ is the covariant Laplacian. The last equation has a unique solution for any fixed Xa

a
k given

by the action of the Green function of ∆ on the right hand side. This means that solutions of (3.343)
are parametrized by all the X̃p

k

a (belonging to
[

H 3
2 (Σ , volΣ; ∇0)

]3dimg
) and by a particular solution

of (3.344), i.e., it is an affine space modelled over the vector space
[

H 3
2 (Σ , volΣ; ∇0)

]3dimg
.
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Now, following what we said in the present section, we will use ΩΣ
∞ to define a Poisson bracket on

the solution space of the theory. Again we lie in the case in which ΩΣ
∞ is pre-symplectic, therefore,

in order to define a Poisson bracket on M∞, we will use again the coisotropic embedding theorem.
In this case the connection we will fix on the bundle M∞ → M∞/kerΩΣ

∞, is the one introduced
in [NR79,Sin78]. Such a connection is represented by the following (1, 1) tensor field over M∞:

P = P a
k ⊗ δ

δaak
+ [pk,G ]a ⊗ δ

δpka
∈ T 1

1 (M∞) , (3.345)

following the notation (1.53), where:

P a
k = ∇k

∫
Σ
G∆η

lj∇lδa
a
jvolΣ , G a =

∫
Σ
G∆η

lj∇lδa
a
j volΣ , (3.346)

with G∆ being the Green function of the covariant Laplacian opertator ∆ = ηjk∇j∇k and
{
δaaj , δp

j
a

}
being a basis of differential one forms dual to the basis of vector fields

{
δ
δaa
k
, δ
δpka

}
a=1,...,dimg,k=1,2,3

.

Note that, (3.345) is actually a connection on the bundle M∞ → M∞/kerΩΣ
∞ because it is the

identity on vertical tangent vectors, i.e.:

P (Vψ) = Vψ , (3.347)

for Vψ ∈ kerΩΣ
∞ and, as it is proven in [NR79,Sin78], it is equivariant with respect to the vertical

automorphisms of the bundle. We will denote by R := 1 − P the projector over horizontal vector
fields. The latters are indeed defined to be the image of R, say ImR.

Now, in order to apply the coisotropic embedding procedure, we should identify the dual of the
vector space spanned at each point of M∞ by Vψ. By looking at the expression of Vψ, the subspace
of T(a,p)M∞ spanned by Vψ at (a, p), is parametrized by the ψa ∈

[
H 7

2 (Σ, volΣ)
]dimg

and is the

subspace of T(a,p)M∞ given by the image of the operator ∇ ⊕ [pk, · ] acting on
[

H 7
2 (Σ, volΣ)

]dimg
:

V :=
∏
k,a

∇
[

H
7
2 (Σ, volΣ)

]dimg
×
[
pk,

[
H

7
2 (Σ, volΣ)

]dimg
]
, (3.348)

where ∇ is the covariant derivative associated with the fixed connection a of the point (a, p) ∈ M∞.
That V is a Hilbert space itself, is a consequence of the fact that ∇ ⊕ [pk, · ] is a closed operator
acting on

[
H 7

2 (Σ, volΣ)
]dimg

. Indeed, the following two propositions hold.

Proposition 3.3.4 (Closedness of ∇ in H 5
2 ). ∇ is a closed operator from

[
H 7

2 (Σ, volΣ)
]dimg

into
[

H 5
2 (Σ, volΣ)

]3dimg
.
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Proof. The proof is analogous to the of Prop. 3.3.2.

With the same techniques, the following can be proved.

Proposition 3.3.5 (Closedness of [pk, · ]). [pk, · ] is a closed operator from
[

H 7
2 (Σ, volΣ)

]dimg
to[

H 7
2 (Σ, volΣ; ∇0)

]dimg
.

Being V a Hilbert space, it has a well defined dual space (isomorphic with V itself). Let us denote
it by V ⋆ let us denote by Xµ

k
a its elements.

In this case, since dP a
k is different from zero for the connection chosen here, we are in the case

described in Sec. 1.3.4. The symplectic manifold one constructs here is a tubular neinghborhood of
the zero section of the bundle K⋆ over M∞ with typical fibre V ⋆. Denote by M̃ such a manifold and
by (aak, pka, µka) a system of coordinates. Then the symplectic structure on M̃ reads:

Ω̃ = τ ⋆ΩΣ
∞

∣∣∣
ImR

+ dµaka ∧ P a
k + dµpka ∧ [pk, G ]a + µkadP a

k , (3.349)

where τ is the projection from M̃ to M∞. Then, given two functions on M∞, say f and g, the
structure Ω̃ above, allows to write the Poisson bracket between f̃ := τ ⋆f and g̃ := τ ⋆g, which reads:

{ f̃, g̃ } = Ω̃(Xf̃ , Xg̃) , (3.350)

where Xf̃ and Xg̃ are the Hamiltonian vector fields associated with f̃ and g̃ via Ω̃.
For the lack of absence of an analytic solution for Yang-Mills equations, here, as a specific example,

we consider the following functions on M∞:

f = pk1
a1(x1) g = pk2

a2(x2) . (3.351)

Their pull-back to M̃ reads:
f̃ = pk1

a1(x1) g̃ = pk2
a2(x2) . (3.352)

Then, a direct computation shows that:

{
g̃, f̃

}
= Xf̃ (g̃) = −2

∫
Σ

[
µa

k
a(y)∇y

kG∆(y, x)δk1k2ϵaa1a2δ(x, x1)δ(x, x2)+

+µpak(y)G∆(y, x)pkb (y)δk1k2ϵ bca ϵca1a2δ(x, x1)δ(x, x2)
]
d3xd3y ,

(3.353)

where one sees that, even if the functions we started with are pull-back of functions on M∞, that
is, they do not depend on the additional degrees of freedom µa and µp, the latters do appear in the
Poisson bracket.
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Conclusions

In the present manuscript we concluded the program, partially developed in [CDI+20c, CDI+20b,
Sch21,CDI+22,CDI+a,CDI+b], of constructing a Poisson bracket on the space of the solutions of the
equations of motion (always referred to as solution space) of a large class of classical field theories,
namely, the classical counterpart of quantum field theories describing fundamental interactions.

To resume, we showed how, within the multi-symplectic formulation of field theories, the solution
space is canonically equipped with a pre-symplectic 2-form.
In particular we saw that for some theories (those not exhibiting gauge symmetries) it is strongly
symplectic and, thus, it gives rise to a Poisson bracket expressed in terms of the bivector field being
the inverse of the symplectic structure.
On the other hand, for those theories exhibiting a gauge symmetry, the canonical 2-form has instead
a non-trivial kernel. Here, we saw that by means of the coisotropic embedding theorem a symplectic,
and, thus, a Poisson, structure on a suitable enlargement of the solution space can be always defined.
Moreover, we saw that for those theories for which a flat connection can be fixed within the coisotropic
embedding procedure (that amounts to the possibility of performing a global gauge fixing in the space
of fields), such Poisson structure projects to a Poisson structure on the solution space. When this is
not the case (this happens for theories exhibiting Gribov’s ambiguities) the use of additional degrees
of freedom, interpreted as the BRST ghost fields, is necessary in order to define a Poisson structure.
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