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Preface

The decomposition theorem, which was proved by Beilinson, Bernstein, Deligne
(and Gabber) in [BBD82], is a powerful result which describes the derived push-
forward Rf∗IC

•
X (see [Ive86, §II.4]), where f : X → Y is any proper map between

complex algebraic varieties and IC•
X is the intersection cohomology complex of X

(see [GM80, §1.3], [GM83, §2.1], [BBD82, §2.1, Remark 2.1.18]), as the direct sum
of more elementary objects in the constructible bounded derived category Db

c(Y,K)
of Y , where K is any field of characteristic 0 (see either [dCM09, §1.5] or [Dim04,
§4.1]).

Having said that, this theorem does not provide an explicit description of the
direct summands and it may also happen that some of the expected supports, that
is, the subvarieties of Y on which such direct summands are supported, do not
contribute at all to the decomposition. For example, the Ngo’s support theorem
(see [Ngo10] and [dCM09, §4.6]) is a remarkable result which characterizes the
actual supports of the decomposition theorem in certain circumstances. Therefore,
it is worth looking for instances in which the description of the direct summands
is either more accurate or explicit and examples in which it is possible to improve
the statement of the decomposition theorem by characterizing the supports of non-
trivial direct summands.

Eligible varieties for the above cause are the Schubert varieties S contained in
a Grassmannian Gk(Cl), which are defined as follows. Given a flag, i.e. a strictly
increasing chain of subspaces 0 ̸= Fj1 ⊂ . . . ⊂ Fjω ⊂ Cl, where the subscripts stand
for the dimensions of the corresponding spaces, and an ω-tuple of non-negative
integers (i1, . . . , iω), a Schubert variety S is

S = {V ∈ Gk(Cl) : dimV ∩ Fjα ≥ iα, α = 1, . . . , ω}.

When ω = 1 and S is neither empty nor a Grassmannian, the Schubert variety is
said to be special.

In [DGF19, Theorem 3.1], it has been proved that the decomposition theorem
becomes explicit when certain hypotheses are met. In particular, special Schubert
varieties S with two strata, that is, the ones which have exactly one Grassmannian
as unique Schubert subvariety associated to the same flag of S, have the required
properties and are examined in [DGF19, §4].

Special Schubert varieties with an arbitrary number of strata have been stud-
ied in [Fra20], where the following explicit form of the decomposition theorem is
obtained.
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Theorem 1. [Fra20, Remark 3.3 and Theorem 3.5]. Let 0 ̸= Fj ⊂ Cl be a
vector space and consider the special Schubert variety S = {V ∈ Gk(Cl) : dim(V ∩
Fj) ≥ i} and the projection on the second factor

π : S̃ := {(Z, V ) ∈ Gi(F )×Gk(Cl) : Z ⊆ V } → S,

which is a resolution of singularities (see [Fra20, §2]), i.e. S̃ is nonsingular and π
is birational (in other words, there is an open dense subset U of S such that the
restriction π−1(U) → U is an isomorphism). Assume1 that k ≤ j. Then, if π is
small, i.e., codim{V ∈ S : dimπ−1(V ) ≥ α} > 2α for any α > 0,

Rπ∗QS̃ [dimS] ∼= IC•
S

and
IC•

S [− dimS]|∆0
q
∼=
⊕
α≥0

Hα(Gi(Ci+q))⊗Q∆0
q
[−α],

otherwise

Rπ∗QS̃ [dimS] ∼=
k−i⊕
τ=0

⊕
α∈Z

Hδ0τ+α(Gk−i−τ (Ck−l+j))⊗ IC•
∆τ

[−α]

and

IC•
∆τ

[− dim∆τ ]|∆0
q
∼=
⊕
β≥0

Hβ(Gq−τ (Cl−j−k+i+q))⊗Q∆0
q
[−β],

where

i) q and τ are non-negative integers such that q ≥ τ and the Schubert varieties
∆q = {V ∈ Gk(Cl) : dim(V ∩ Fj) ≥ i + q} and ∆τ , defined analogously, are
non-empty;

ii) ∆0
q is the smooth locus of ∆q (see [Fra20, §2.2]);

iii) δ0τ := 2 dim π−1(∆0
τ )− (dimS − dim∆τ ).

As an application of this fact, two classes of Poincaré polynomial identities are
inferred in [CFS21, Theorems 2 and 3]; this is possible because all terms can be
described by means of Poincaré polynomials of suitable Grassmannians, for which
there is an explicit formula (see [CGM82, p. 329]). In particular, one of the above
classes involves some of the so-called Kazhdan-Lusztig polynomials (see [dCM09,
§4.4] and [BL00, §6.1]), which, by [KL80, Theorem 4.3], coincide with the Poincaré
polynomials of the stalks Hα(IC•

S′)x of the cohomology sheaves of the intersection
cohomology complexes of the Schubert varieties S ′ (not only the ones contained in
a Grassmannian).

The conclusive generalization to all Schubert varieties contained in a Grass-
mannian has been recently achieved in [CFS22]. The reasoning exhibited in [Fra20,
§3], which had led to the explicit form of the decomposition theorem stated in
Theorem 1, still holds for non-special Schubert varieties.

1This is not a restrictive hypothesis; see Sections 2.1.1 and 2.4.1
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Theorem 2. [CFS22, Theorem 3.6]. Let S be a non-empty Schubert variety.
Assume that each of the ω conditions dim(V ∩ Fjα) ≥ iα neither implies another
such inequality nor is satisfied by all V ∈ Gk(Cl). Consider the projection on the
last factor

π : S̃ :=

{
(Z1, . . . , Zω, V ) ∈ Gi1(Fj1)× . . .×Giω(Fjω)×Gk(Cl)

s.t. Z1 ⊂ . . . ⊂ Zω ⊂ V

}
→ S,

which is a resolution of singularities. Then

Rπ∗QS̃ [dimS] ∼=
⊕
τ

⊕
α∈Z

Dδ0τ+α
0τ ⊗ IC•

∆τ
[−α]

and
IC•

∆τ
[− dim∆τ ]|∆τq

∼=
⊕
β≥0

Bβ
τq ⊗Q∆τq [−β],

where

i) q and τ are ω-tuples of non-negative integers such that the Schubert varieties
∆q and ∆τ , defined respectively by the conditions dim(V ∩Fjα) ≥ iα+ qα and
dim(V ∩ Fjα) ≥ iα + τα, are non-empty and such that ∆q ⊂ ∆τ ;

ii) ∆τq is a suitable smooth open dense subset of ∆q (see Section 2.2.1);

iii) δ0τ := 2 dim π−1(∆τq)− (dimS − dim∆τ );

iv) Dδ0τ+α
pτ are suitable vector spaces symmetric with respect to α, that is, for any

α ≥ 0, Dδ0τ+α
pτ

∼= Dδ0τ−α
pτ ;

v) Bβ
τq are other suitable vector spaces.

As opposed to the case of special Schubert varieties, an explicit description
of the vector spaces Dδ0τ+α

0τ and Bβ
τq is not available, unless the resolution π is

small. Indeed, by [GM83, Corollary §6.2], if χ : W → S is a small resolution
of singularities, then IC•

S
∼= Rχ∗QW [dimS] and, by [BL00, Theorem 9.1.3], the

Kazhdan-Lusztig polynomials coincide with the Poincaré polynomials of the fibres
χ−1(V ). Anyway, the Poincaré polynomial identities deduced in [CFS21] are, in
general, expressions of the following form.

Corollary 1. [CFS22, Corollary 3.12]. Under the same hypotheses and nota-
tions as Theorem 2, if ∆q = S, then a00 = g00 = b00 = 1; otherwise

a0q = b0q + g0q +
∑
τ

g0τbτq,

where

a0q :=
∑
α∈Z

dimHα(π−1(∆0
q)) · tα, bτq :=

∑
α∈Z

dimBα
τq · tα,

g0τ :=
∑
α∈Z

dimDα
0τ · tα+2d0τ , d0τ := dimS − dim∆τ − dimπ−1(∆0

τ ).
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The only explicit term in the formula of the preceding corollary is the Poincaré
polynomial a0q of the fibre π−1(V ); moreover, all polynomials g0τ and bτq cor-
responding to suitable (see item i) of Theorem 2) Schubert subvarieties ∆τ are
involved. This suggests that the computation of g0q and b0q has to be performed
inductively and this is achieved by means of an algorithm, named KaLu, which
exploits the explicitness of the polynomial a0q and the fact that the intersection
cohomology complexes satisfy the support conditions (see [dCM09, formula 12]
and [GM83, p.78, Theorem, item (c)]). Before giving the result concerning the
algorithm, it has to be acknowledged that a formula for the computation of this
class of Kazhdan-Lusztig polynomials exists in literature; namely, it is [Zel83, The-
orem 2]. In a nutshell, an inductive construction of resolution of singularities is
given in [Zel83, §3] along with a sufficient condition for the smallness of such maps
(see [Zel83, Theorem 1]). Consequently, all Kazhdan-Lusztig polynomials related
to Schubert varieties in a Grassmannian are explicit, being the Poincaré polyno-
mial of the fibre of some of these small resolutions as explained after Theorem 2.
Nonetheless, these resolution are not that explicit in the sense that, in general,
the induction required for their construction makes the description of their fibres,
usually highly singular and reducible, not easy. On the contrary, the resolutions
π (see Theorem 2) chosen in [CFS22] are explicit and have smooth fibres which
are immediate to determine. The drawback of this approach is that the maps π
are usually non-small, thus, in this cases, the computation of the Kazhdan-Lusztig
polynomials requires the inductive formula described below.

Corollary 2. [CFS22, Corollary 4.1]. Set

Uβ :
∑
α≥0

cαt
α ∈ Z [t] 7→

∑
α≥β

cαt
α ∈ Z [t] ∀β ≥ 0,

S :
∑
α≥0

cαt
α ∈ Z [t] 7→ c0 +

∑
α≥1

cα(t
α + t−α) ∈ Z

[
t, t−1

]
,

t̃β :
∑
α≥0

cαt
α ∈ Z [t] 7→

∑
α≥0

cαt
α+β ∈ Z [t] ∀β ≥ 0.

Under the same hypotheses and notations as Theorem 2, if ∆q ⊂ S, then{
g0q = Ũ0q(a0q −

∑
τ g0τbτq)

b0q = a0q − g0q

where Ũ0q := t̃dimS−dim∆q ◦ S ◦ t̃−(dimS−dim∆q) ◦ UdimS−dim∆q .

An implementation of KaLu in CoCoa5 [ABR] is available at http://wpage.
unina.it/carmine.sessa2/KaLu.

KaLu also highlights the existence of supports which do not give any contribu-
tion to the decomposition of Rπ∗QS̃ . So far, the geometrical reason behind this
phenomenon has not been unravelled yet and the question of the characterization
of such supports is open.

To conclude, recall that another algorithm for the computation of Kazhdan-
Lusztig polynomials of Schubert varieties in Grassmannians can be deduced by a
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closed formula given in [Zel83], which uses suitable small resolutions. The result
of [Zel83] starts from a setting presented in [LS81], where a different method is
also introduced, together with a table of the Kazhdan-Lusztig polynomials of a
particular case of Schubert varieties in Grassmannians. As far as we know, there
has not been an implementation of these methods up to now.

Conversely, implementations for the computation of Kazhdan-Lusztig polynomi-
als of Schubert varieties in flag manifolds, instead of Grassmannians, are available.
Among them, it is worth quoting the implementation due to Fokko du Cloux in
the program Coxeter 3 [dC05]. Interesting tables of Kazhdan-Lusztig polynomi-
als of Schubert varieties in flag manifolds are published at https://www.math.

ias.edu/~goresky/tables.html. For some detailed treatments see, for example,
[BL00, Bre04, dC96, dC02, L2̈0] and the references therein.

Consider again the decomposition theorem. Another indispensable hypothesis of
this result is that sheaves must be taken with coefficients in a field of characteristic
0; therefore, it would be useful to understand the extent to which a decomposition
of the derived direct image Rf∗AX of a map f : X → Y exists when A is not such
a field. This problem is tackled with in [GFS22], where the idea of resorting to
bivariant theory (see [FH91] and Section 3.1.1) turns out to be effective.

Suppose that X and Y are locally compact Hausdorff spaces embeddable as
closed subspaces of RN for some N and that f is a proper continuous map of finite
cohomological dimension (see Example 3.1.2). The morphism f is associated to
the abelian groups HomDb(Y,A)(Rf!AX ,AY [α]), whereD

b(Y,A) denotes the bounded
derived category of sheaves of A-modules on Y , f! is the exceptional direct image
of f and α ∈ Z. The elements θ of these groups are called the bivariant classes
of f and, as explained in [FH91, pp. 8, 9, 25], they induce Gysin morphisms θβ :
Hβ(X) → Hβ(Y ) in singular cohomology. In particular, when θ0 transforms the
unit (with respect to cup product) of H0(X) into the one of H0(Y ), θ is said to
have degree one for f .

The existence of a bivariant class of degree one is exactly what characterizes
a wide class of proper maps whose derived pushforwards admit a decomposition
analogous to the one given by decomposition theorem.

Theorem 3. [GFS22, p. 3, Theorem 1.1]. Let f : X → Y be a proper con-
tinuous map, with Y path-connected. Let U ⊆ Y be a non-empty open subset such
that the restriction h : V → U of f to V := f−1(U) is a homeomorphism. Set

W = Y \ U and W̃ = f−1(W ). The following properties are equivalent.

i) There exists a bivariant class θ ∈ HomDb
c(Y,A)(Rf∗AX ,AY ) of degree one.

ii) There is a cross isomorphism Rf∗AX ⊕ AW
∼= Rf∗AW̃ ⊕ AY in Db

c(Y,A).
iii) There exists a decomposition Rf∗AX

∼= AY ⊕K• in Db
c(Y,A).

Some explicit isomorphisms in cohomology and Borel-Moore homology (see
[BM60], [Ive86, §IX], [Ful98, §19.1]), compatible with the duality morphisms, ensue
from the decompositions provided by the above theorem.

Notice, however, that Theorem 3 and its consequences in (co)homology are not
completely new; in fact, analogous results had been proved, for example, in [Ful98,
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§6.7], [Jou77, §8] and [DGF14, §2]. On the contrary, their application in the study
of the relation between the existence of a bivariant class of degree one for f and the
property of X and Y of being A-homology manifolds (see [Lef33, p. 487, Definition]
and [Wil49, §VIII.1]) does not seem to have been proved elsewhere.

Theorem 4. [GFS22, Theorem 1.2]. Let f : X → Y be a projective birational
morphism between complex irreducible quasi-projective varieties of the same com-
plex dimension n. Let U ⊆ Y be a non-empty Zariski open subset such that the
restriction h : V → U of f to V := f−1(U) is an isomorphism.

i) If Y is an A-homology manifold, then

▲ there is a unique bivariant class θ ∈ HomDb
c(Y,A)(Rf∗AX ,AY ) of degree

one;

▲ there exists a decomposition Rf∗AX
∼= AY ⊕ K• in Db

c(Y,A), with K•

supported on W := Y \ U ;
▲ if X is an A-homology manifold, K•[n] is self-dual.

ii) If X is an A-homology manifold and there is a bivariant class of degree one
θ ∈ HomDb

c(Y,A)(Rf∗AX ,AY ), then Y is an A-homology manifold, as well.

As an outcome of this theorem, a simple proof of the fact that the nilpotent
cone of any connected reductive complex algebraic group is a homology manifold
ensues.

Here is how the thesis is organized. Since decomposition theorem plays a cen-
tral role, Chapter 1 is meant to settle notations and to make the statement of the
theorem intelligible also to readers who are not familiar with the subject. More
precisely, the first two sections are devoted to (abelian, derived, triangulated) cate-
gories and sheaves, while the third one recalls what perverse sheaves and intersection
cohomology are.

Chapter 2 is devoted to the application of decomposition theorem to Schubert
varieties contained in a Grassmannian. This part of the dissertation does not re-
spect the chronological order of the results; indeed the general case of any Schubert
variety are discussed first, while the results about special Schubert variety, in Sec-
tion 2.4, are inferred from the general ones. The last section discusses cases in which
the Poincaré polynomial expressions are identities and contains several examples
of Ferrer’s diagrams (for the definition, see Section 2.1.2), which make the study of
Schubert varieties easier.

Chapter 3, begins with a preliminary section on bivariant theory and Borel-
Moore homology. In Section 3.2, a generalization of the decomposition theorem
in circumstances in which this result does not hold is achieved and consequent
applications to the study of homology manifolds are obtained in Section 3.3. In
particular, nilpotent cones are shown to be homology manifolds in Section 3.4.

I would like to thank the professors I worked with for their constant support
and my professional growth.
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Chapter 1

The decomposition theorem

In this introductory chapter, several definitions about categories and sheaves are
recalled. The aim is to provide the reader the minimum information necessary
to make the statement of the decomposition theorem 1.3.7 intelligible and this
is achieved in three steps. First, the basics of category theory are recalled in
Section 1.1. Secondly, the definition and a few properties of sheaves, cohomology
with coefficients on sheaves and operations on sheaves are recalled in Section 1.2.
Lastly, all notions of the preceding steps are used in Section 1.3 to remind the
category in which the decomposition theorem 1.3.7 holds and what intersection
cohomology complexes are.

1.1 Categories

The basic definitions of category theory are recalled in this section so as to talk
about abelian, derived and triangulated categories, which are fundamental in the
study of the (co)homological properties of certain objects. Precisely, (co)homology
can be defined in abelian categories because of the existence of kernels and cokernels,
while functors which are not exact can be “fixed” if the abelian category is replaced
by its derived one. Triangulated categories allow the study (co)homology even when
not all morphisms have either kernel or cokernel. This is achieved by suitable axioms
and, in particular, by substituting exact sequences for the more general notion of
distinguished triangles.

1.1.1 Abelian categories

Definition 1.1.1. A category C is given by the following data.

i) A class Ob(C), which, with abuse of notations, will often be denoted by C,
whose elements are called objects;

ii) for any pair (A,B) of objects, a set HomC(A,B), denoted by Hom(A,B) when
no confusion arises, whose elements are called morphisms;

1



iii) an operation, called composition, defined for every triple (A,B,C) of objects
in C.

◦ : (f, g) ∈ Hom(A,B)× Hom(B,C) 7→ gf := g ◦ f ∈ Hom(A,C).

The following axioms must be verified:

a. for any object A, Hom(A,A) ̸= ∅ and it contains the identity morphism
idA, also denoted by id when there is no need to highlight A, which has
the following property. For any object B, any f ∈ Hom(A,B) and any
g ∈ Hom(B,A), idA ◦ g = g and f ◦ idA = f ;

b. composition is associative, i.e. h(gf) = (hg)f for any A,B,C,D ∈ C, f ∈
Hom(A,B), g ∈ Hom(B,C) and h ∈ Hom(C,D);

c. Hom(A,B) ∩ Hom(C,D) ̸= ∅ if and only if A = C and B = D.

A morphism f is often denoted by f : A → B when the underlying category
is known. f is said to be an isomorphism if there is g :∈ HomC(B,A) such that
gf = idA and fg = idB.

Examples of categories are Sets and Ab, whose objects are sets and abelian
groups, respectively, and whose morphisms are functions and group homomor-
phisms, respectively. Another one is the opposite category Cop, whose objects are
the ones of C and whose morphisms are the ones of C, but with reversed arrows (e.g.
if f ∈ HomC(A,B), then there is f op ∈ HomCop(B,A)). Moreover, f opgop := (gf)op

is defined whenever gf makes sense in C.
Given two categories, it is possible to define a “function” between them.

Definition 1.1.2. Let C and D be two categories. A covariant functor F : C →
D is given by the following data.

i) For any A ∈ C, F (A) ∈ D;

ii) for any f ∈ HomC(A,B), F (f) ∈ HomD(F (A), F (B));

iii) for any A ∈ C, F (idA) = idF (A);

iv) for any f ∈ HomC(A,B) and g ∈ HomC(B,C), F (gf) = F (g)F (f).

The notion of contravariant functor F : C → D is dual (see [Mac71, §II.1])
to the one of covariant functor; in other words, it is obtained by the definition of
covariant functor by “reversing arrows” (e.g. F (f) : F (B) → F (A) in (ii)).

Let C be a category and let A be an object. Hom(A,−) is the covariant functor
which associates any B ∈ C to Hom(A,B) and any f ∈ Hom(B,C) to the morphism
f∗ = Hom(A, f), given by f∗(g) = fg for any g ∈ Hom(A,B). Similarly, there is
a contravariant functor Hom(−, A); it associates any object B ∈ C to Hom(B,A)
and any morphism φ ∈ Hom(B,C) to φ∗ := Hom(φ,A), given by φ∗(ψ) = ψφ for
any ψ ∈ Hom(C,A).

A A

B C B C

g f∗g

f

φ∗ψ

φ

ψ
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It is also possible to define “functions” between functors.

Definition 1.1.3. Let F,G : C → D be functors of the same variance. A natural
transformation τ : F → G is a collection {τC : F (C) → G(C)}C∈C of morphisms
in D such that the diagram below commutes for every f ∈ HomC(A,B). Moreover,
τ is said to be an isomorphism if all τC are isomorphisms in D.

F (C) F (D)

G(C) G(D)

τC

F (f)

τD

G(f)

In order to introduce additive and abelian categories, it is necessary to give
further notions which are the solutions to certain universal mapping problems (see
[Rot09, Remark p. 217]).

Definition 1.1.4. Let C be a category and let A,B ∈ C. Their coproduct is a
triple (A ⊔ B,α, β), where A ⊔ B ∈ C, α : A → A ⊔ B and β : B → A ⊔ B satisfy
the following property. For any X ∈ C, any f : A → X and any g : B → Y , there
is a unique morphism θ : A ⊔B → X making the diagram on the left commute.

The product (A⊓B, γ, δ) of A and B, instead, is dual notion of coproduct and
can be described by means of the diagram on the right.

A A

A ⊔B X A ⊓B X

B B

α f

∃!θ

γ

δ

∃!ϑ

h

kβ g

The product and the coproduct of two objects may either not exist or not
coincide. For instance, given A,B ∈ Sets, A ⊔ B is their disjoint union, whereas
A ⊓B is their cartesian product.

For the next definition, the concept of zero object is required. Given a category
C, I ∈ C is called an initial object if, for any A ∈ C, HomC(I, A) = {∗} is a
singleton. Dually, T ∈ C is called a terminal object if HomC(A, T ) = {∗} for
any A ∈ C. Lastly, a zero object, denoted by 0, is both an initial and a terminal
object. In this case, the unique morphisms having 0 either as domain or target
are denoted by 0, as well. Notice that I, T and 0, when exist, are unique up to a
unique morphism (see [Rot09, Lemmas 5.3 and 5.6]), yet, I and T may occur to be
different. For instance, I = ∅ and T = {∗} in Sets.

Definition 1.1.5. Assume that C has a zero object and consider two morphisms
f : B → A and h : A → B. A triple (ker f, 0, β), where ker f ∈ C, 0 : 0 → A and
β : ker f → B are such that fβ = 0, is called a kernel of f if, for any X ∈ C and
any β′ : X → B such that fβ′ = 0, there is a unique θ : X → ker f making the
diagram on the left commute.
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The cokernel (cokerh, 0, δ) of h is, instead, the dual notion of the kernel and
can be described by virtue of the diagram on the right.

A B A B

0 ker f 0 cokerh

X X

f

h

0 δ
δ′

0 β

0

0

0

∃!ϑ

β′

0

∃!θ

In the following, the (co)kernel of a morphism f will be simply denoted by
(co)kerf .

Kernels and cokernels are examples of pullbacks and pushouts, respectively,
whose definitions are given, for instance, in [Rot09, Definitions pp. 221, 222].

Definition 1.1.6. A category C is said to be additive if the following axioms are
satisfied.

A1. For any A,B ∈ C, HomC(A,B) is an abelian group and the composition of
morphisms is bi-additive; in other words, whenever there are morphisms as
in the sequence below, k(f + g) = kf + kg and (f + g)h = fh+ gh.

A B C Dh
f

g

k

A2. C has a zero object;

A3. for any two objects A,B ∈ C, A ⊔B and A ⊓B exist in C.

It is possible to prove that products and coproducts are isomorphic in additive
categories (see [Rot09, Lemma 5.87]); for this reason, it makes sense to denote
A ⊔B ∼= A ⊓B by A⊕B and call them the direct sum of A and B.

Definition 1.1.7. An additive category A is said to be abelian if

A4. for any morphism f : A→ B, there is a sequence

ker f A X B coker fi α β p

where βα = f and X = ker p = coker i.

In abelian categories, it makes sense to talk about the image of a morphism
f im f := ker(coker f). This allows to talk about exactness of (possibly infinite)
sequences of objects and morphisms

Aα−1 Aα Aα+1aα−1 aα

Namely, a sequence as the one above is said to be exact at Aα if ker aα = im aα−1.
It is called exact if so is it at each Aα. In particular, an exact sequence of the form
0 → A→ B → C → 0 is called a short exact sequence.
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Let A be a category. A (chain) complex A• is a sequence of objects Aα, called
the terms of A•, and morphisms dαA, called the differentials, such that dα+1

A dαA = 0
for any n ∈ Z. A morphism of complexes f : A• → B• is a family of morphisms
{fα : Aα → Bα}α∈Z in C making all squares commute in the diagram below.

A• : An−1 An An+1

B• : Bn−1 Bn Bn+1

dn−1
A

fn−1

dnA

fn fn+1

dn−1
B dnB

The category Comp(A) is the one whose objects are the complexes in A and
whose morphisms are the ones just described. The Hom functor on Comp(A), with
A abelian, has a generalization

Hom• : Comp(A)◦ × Comp(A) → Comp(Ab) (1.1.1)

which sends any pair (A•, B•) of complexes into the complex Hom•(A•, B•), whose
terms are

Homα(A•, B•) :=
∏
β∈Z

Hom(Aβ, Bα+β)

and whose differentials are given by

dαφ = (dα+βB• φβ + (−1)α+1φβ+1dβA•)β∈Z,

where φ := (φβ)β∈Z ∈ Homα(A•, B•).
A can be thought of as a full subcategory of Comp(A), which means that any

object A of A is also in Comp(A) (indeed, A ∈ A can be identified with the complex
having A concentrated in degree 0, that is, the complex A• with A0 = A and Aα = 0
for α ̸= 0) and, for any A,B ∈ A, HomA(A,B) = HomComp(A)(A,B) (for a subgat-
egory, the inclusion ⊆ is required; the adjective full means that equality holds). In
fact, f ∈ HomA(A,B) can be identified with {fα : f0 = f and fα = 0 otherwise}.
Besides, there are other three important full subcategories of Comp(A), whose ob-
jects are called the bounded below, bounded above and bounded complexes,
respectively:

Comp(A)+ := {A• ∈ Comp(A) : ∃β ∈ Z : Aα = 0 ∀α ≥ β},
Comp(A)− := {A• ∈ Comp(A) : ∃β ∈ Z : Aα = 0 ∀α ≤ β},
Comp(A)b := {A• ∈ Comp(A) : ∃β ≤ γ ∈ Z : Aα = 0 ∀α : β ≤ α ≤ γ}.

If A is additive or abelian, respectively, so is Comp(A) (see [Rot09, Proposi-
tion 5.100]). In the former case, it makes sense to define, for any n ∈ Z, the α-th
cohomology functor

Hα :

{
A• ∈ Comp(A) 7→ ker dα+1/ im dα ∈ A
f : A• → B• 7→ Hα(f) : Hα(A•) → Hα(B•)

and a complex A• is said to be acyclic at the α-th term if Hα(A•) = 0; acyclic
if so is it at all its terms.
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1.1.2 Derived categories

Until the end of the subsection, A shall denote an abelian category and its elements
will be denoted by a capital letter and a bullet as superscript (e.g. A•).

The definition of derived categories is reminiscent of the one of the rings of
fractions; in that case, a multiplicative subset S of a unitary commutative ring R is
taken and the ring S−1R, whose elements are fractions with denominators in S, is
defined. Hence, the derived category D(A) of A plays the role of S−1R, while the
homotopy category K(A), which shall be defined presently, and the set of quasi-
isomorphisms (i.e., morphisms f : A• → B• such that Hn(f) is an isomorphism
for all n ∈ Z) represent the ring R and the set S, respectively.

Definition 1.1.8. Let f, g : A• → B• be two morphisms. A homotopy between
them is a family of morphisms h = {hn : An → Bn−1}n∈Z in A such that fn− gn =
dn−1
B hn + hn+1dnA for each n ∈ Z. In this case, the notation f ∼ g is adopted.

An−1 An An+1

Bn−1 Bn Bn+1

dn−1
A dnA

fngnh
n

h
n+

1

dn−1
B

dnB

The homotopy category K(A) is nothing but the quotient of Comp(A) with
respect to the homotopy relation ∼; in other words,

Ob(K(A)) = Ob(Comp(A)),

[A•, B•] := HomK(A)(A
•, B•) = HomComp(A)(A

•, B•)/ ∼ ∀A•, B•.

Similarly, the homotopy categories K∗(A), where ∗ = +,−, b, are defined.
The reason why K(A) is needed to define the derived category is that quasi-

isomorphisms Comp(A) do not form a localizing class (see below) as opposed to
their classes in K(A).

Definition 1.1.9. A class of morphisms S inA is said to be localizing if it is closed
under composition, contains idA for any A ∈ A and have the following properties.

i) Any two morphisms f : B → A and s : C → A, with s ∈ S, can be completed
to a commutative square whose edge opposite to s is a morphism in S.

D C

B A

∈S s

f

ii) Given f, g : A → B, there is s ∈ S such that sf = sg if and only if there is
t ∈ S such that ft = gt.

Theorem 1.1.10. [GM03, Proposition III.4.2 and Theorem III.4.4]. The
derived category D(A) is canonically isomorphic to the localization of K(A) by
quasi-isomorphisms, which form a localizing class.
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For the formal definition of localization, see [GM03, §III.2.2]. Here, the derived
category shall be described by saying what its objects, morphisms and composition
are.

Definition 1.1.11. The objects of the derived category D(A) of A are the same
as the ones of Comp(A) and its morphisms A• → B• are classes of (left) roofs
(see the diagram below on the left), that is, pairs (s, f) with s ∈ HomK(A)(A

•
1, A

•)
a quasi-isomorphism and f ∈ HomK(A)(A

•
1, B

•). Two roofs (s, f) and (t, g) are
equivalent if there is another one (r, e) making the diagram on the right commute
in K(A).

A•
3

A•
1 A•

1 A•
2

A• B• A• B•

r
e

s f s

ft

g

For any object A•, idA• is, with abuse of notations, the class of (idA• , idA•).
Lastly, the composition of two classes roofs (s, f) and (u, h) is the class of

(sv, hk), where the roof (v, k) obtained by virtue of Definition 1.1.9 i)

A•
2

A•
1 B•

1

A• B• C•

v
k

s

f

u
h

The derived categories D(A)∗, where ∗ = +,−, b, are defined analogously.
Derived categories are additive (see [GM03, §III.4.5]), yet not abelian, in general.

1.1.3 Triangulated categories

Let C, D be additive categories. A functor F : C → D is said to be additive if
HomC(C,D) → HomD(F (C), F (D)) is a homomorphism of abelian groups for any
C,D ∈ C.
Definition 1.1.12. Let T be an additive category and assume that there is an
automorphism

T :

{
A ∈ T 7→ A[1] ∈ T
f ∈ Hom(A,B) 7→ f [1] ∈ Hom(A[1], B[1])

called the translation functor (be careful; A[1] and f [1] simply stand for the
image of A and f by T , respectively). Any sequence of objects and morphisms of
any of the two equivalent representations

A

A B C A[1] C B
[1]

[1]
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is called a triangle and a morphism (. . . , a, b, c, a[1], . . .) of triangles is any family
of morphisms in T making the diagram below commute.

A B C A[1]

A′ B′ C ′ A′[1]

a b

[1]

c a[1]

[1]

Lastly, an octahedron is the diagram consisting of an upper and a lower cap (left
and right diagrams, respectively),

A′ C A′ C

⋆ ⟲

⟲ B ⟲ ⋆ B′ ⋆

⋆ ⟲

C ′ A C ′ A

[1]

[1]

[1]

[1]

[1] [1]

where the triangles marked by the symbol ⟲ are commutative and the ones with a
⋆ inside are distinguished (see below), such that the following squares commute.

B B′

C ′ C A′ A

B′ B

[1]

[1]

T is said to be triangulated if it satisfies axioms TR1-TR4 below and is en-
dowed with a translation functor and a class of distinguished triangles, charac-
terized by axioms TR1 and TR2.

TR1. ▲ For any A ∈ T , A → A → 0 → A[1], where the first morphism is the
identity, is distinguished;

▲ triangles isomorphic to distinguished ones are distinguished;

▲ any morphism A → B can be completed to a distinguished triangle
A→ B → C → A[1] (C is sometimes called the cone of A→ B).

TR2. A → B → C → A[1] is distinguished if and only if so is B → C → A[1] →
B[1].

TR3. Any diagram as the one below on the left, whose rows are distinguished
triangles and with squares commutative, can be completed to a morphism of
triangles as the one on the right below.

A B C A[1] A B C A[1]

A′ B′ C ′ A′[1] A′ B′ C ′ A′[1]

[1] [1]

[1] [1]
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TR4. Any upper cap diagram can be completed to an octahedron (equivalently, any
lower cap diagram can be completed to an octahedron; see [BBD82, pp. 21,
22]).

The homotopy and the derived categories of an abelian category are examples
of triangulated categories, as proved in [GM03, IV.1.9-14 and IV.2].

Here is a hint to remember the construction of the upper cap. Take a com-
mutative triangle of vertices A, B and C and complete A → B and B → C to
distinguished triangles using TR1. The missing map A′ → C ′ is just the composi-
tion A′ → B → C ′ (mind the [1]).

The octahedron diagram can also be depicted in the following way, which high-
lights the morphisms between the distinguished triangles. Begin with a commuta-
tive triangle of vertices A,B,C, as before, and complete all morphisms to distin-
guished triangles so as to obtain a diagram in which any three consecutive arrows
represent a distinguished triangle and all triangles and the square are commutative.

C ′

B B′

C

A A′

Let T be a triangulated category and denote the image of an object A under
the inverse of the translation functor T by A[−1]. Then, for any n ∈ Z,

A[n] :=


A if n = 0,

T (A[n− 1]) if n > 0,

T−1(A[n+ 1]) if n < 0.

Definition 1.1.13. Let T be a triangulated category. A pair (D≤0,D≥0) of two
strictly (̸= T ) full subcategories is called a t-structure on T if

i) Hom(A,B) = 0 for any A ∈ D≤0 and any B ∈ D≥1, where D≥n := D≥0[−n] =
T−n(D≥0) for any n ∈ Z (analogously, D≤n := D≤0[−n]);

ii) D≥0 ⊂ D≥1 and D≤0 ⊃ D≤1 (⊂ means that the category on the left is a strict
subcategory of the one on the right);

iii) for any X ∈ T , there are A ∈ D≤0 and B ∈ D≥1 such that A → X → B →
A[1] is distinguished.

C := D≤0 ∩ D≥0 is called the core of the t-structure.

If T is a triangulated category endowed with a t-structure, then the core of
the t-structure is an abelian category by [BBD82, Theorem 1.3.6]; the objects A,B
in Definition 1.1.13 (iii) are unique up to isomorphism by [GM03, IV.4.5] and are
denoted by τ≤0A and τ≥1A, respectively. In addition, τ≤0 and τ≥1 are called the
truncation functors and the composition H0 := τ≤0◦τ≥0

∼= τ≤0◦τ≥0 (see [BBD82,
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Proposition 1.3.5]), where τ≥0A := τ≥1A[−1] for any object A, is called the 0-th
cohomology functor. For any α ∈ Z, the α-th cohomology functor Hα is
obtained by H0 by translation; namely, Hα(A) := H0(A[α]) for any object A.

Example 1.1.14. Any abelian category A is the core of its derived category D(A)
with respect to the natural t-structure (see [GM03, IV.4.3])

D≥0 = {A• ∈ D(A) : Hα(A•) = 0 ∀α < 0},
D≤0 = {A• ∈ D(A) : Hα(A•) = 0 ∀α > 0}.

The truncation functor τ≤0 is defined on objects by

τ≤0(A
•) : A−2 A−1 ker d0A 0

and τ≥1 := idD(A)/τ≤0.

1.2 Sheaves

Here are the basics of sheaf theory. The definition of (pre)sheaves, their stalks
and section functors are recalled in Section 1.2.1, along with some indispensable
properties. Section 1.2.2 is devoted to (left/right) exact and derived functors, with
particular attention to the section functors, which give rise to cohomology with
coefficients in a sheaf. Section 1.2.3 concerns operations on functors and duality on
complexes of sheaves.

1.2.1 The category of sheaves

Throughout the subsection, (X,U) will be a topological space.
The topology U can be made into a category, denoted by U , as well, whose

objects are the open sets, whose morphisms are the inclusions between open sets
and with obvious composition.

Definition 1.2.1. A presheaf of abelian groups on X is a contravariant functor

P :

{
U ∈ U 7→ P(U) ∈ Ab

iUV : U ↪→ V 7→ ρUV : P(V ) → P(U).

The elements s ∈ P(V ) are called sections on V , while s|U := ρUV (s) is usually
called the restriction of s to U .

Presheaves of sets, rings, etc. can be defined by replacing the target category
Ab suitably.

From the definition, it follows that a morphism of presheaves τ : P → P ′ is a
natural transformation.

Given a presheaf P , it is quite common to think of sections as functions defined
on some open set. In many applications, however, some conditions are imposed
to them so that they have a “good behaviour”; for instance, sections representing
continuous functions are expected to glue together when they agree on the overlaps
of their domains and such an extension should be unique.
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Definition 1.2.2. A sheaf F of abelian groups on X is a presheaf such that
F(∅) = 0 and, if U ∈ U \ {∅} and {Uα}α is an open cover of U , then

i) if s, t ∈ F(U) are such that s|Uα = t|Uα for all α, then s = t;

ii) if there are section sα ∈ F(Uα) for all α and sα|Uα∩Uβ
= sβ|Uα∩Uβ

whenever
Uα ∩ Uβ ̸= ∅, then there is a unique s ∈ F(U) such that s|Uα = sα for any α.

Presheaves and sheaves on X form two categories, pSh(X) and Sh(X), respec-
tively; the latter a full subcategory of the former. Let τ : P → P ′ be a morphism
between presheaves on X of abelian groups. The kernel ker τ : U 7→ ker τ(U) and
the image im τ : U 7→ im τ(U) of τ are presheaves, whereas, if P and P ′ are sheaves,
only ker τ is always a sheaf. The construction of a sheaf playing the same role as
the image of a presheaf map is achieved by means of the notion of sheafification.

Definition 1.2.3. Let (I,⪯) be a partially ordered set and let C be a category. A
direct system in C is a pair ({Ci}i∈I , {φij : Ci → Cj}i⪯j) consisting of a family of
objects and a family of morphisms in C such that φik = φjkφij whenever i ⪯ j ⪯ k.

The direct limit of a direct system is a pair (lim−→Ch, {γi : Ci → lim−→Ch}i∈I),
consisting of an object and a family of morphisms such that γjφij = γi whenever
i ⪯ j, which is the solution of the following universal problem.

For any X ∈ C and any family of morphisms {fi : Ci → X}i∈I such that
fjφij = fi whenever i ⪯ j, there is a unique morphism θ : lim−→Ch → X making the
following diagram commute

lim−→Ch X

Ci

Cj

θ

γi fi

φijγj fj

Direct systems and limits have their dual notions: inverse systems and limits
(see [Rot09, Definitions pp. 230, 231]).

In the categories of abelian groups, (left/right) modules and rings, which will
be considered while working with sheaves, the direct limits exist by [Rot09, Propo-
sition 5.23]. Moreover, when I is a directed set, that is, when for any i, j ∈ I,
there is k ∈ I such that i ⪯ k and j ⪯ k,

lim−→Ch =
⊔i∈ICi
∼

,

where ci ∼ cj ⇔ ∃k ∈ I : i, j ⪯ k and φik(ci) = φjk(cj) (see [Rot09, Corol-
lary 5.31]). In particular, [ci] = 0 if and only if φij(ci) = 0 for some j ⪰ i.

Let P be a (pre)sheaf of abelian groups on X and let x ∈ X. The family of open
sets containing x can be thought of as a directed set with respect to the reversed
inclusion ⪯, i.e., V ⪯ U if and only if U ⊆ V . The stalk of P at x is the direct
limit

Px := lim−→
U∋x

P(U),
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which can be thought of as the set of classes of sections on open sets containing
x such that [s] = [t] if and only if s ∈ P(U), t ∈ P(V ) and s|W = t|W for some
W ⊆ U ∩ V containing x.

Definition 1.2.4. The sheafification P̃ of a presheaf P is the sheaf whose sections
on U are the elements s = (sx)x∈U ∈

∏
x∈U Px of the direct product of the stalks

of P on elements of U such that, for any y ∈ U , there are an open set V ⊆ U
containing y and t ∈ P(V ) such that sv = [t] ∈ Pv for all v ∈ V .

Proposition 1.2 of [Har77, Chapter II] states that P̃ is actually a sheaf and that

any morphism P → F , where F is a sheaf, factors through P̃ . Moreover, Px ∼= P̃x
for any x ∈ X by construction.

Example 1.2.5. Let A be an abelian group. The constant presheaf AX on X,
sometimes denoted also by A, is given by

AX(U) := {f : U → A : f is constant}.

This is not a sheaf (see [Rot09, Example 5.64]), in general, and its sheafification,
called the constant sheaf on X associated to A and denoted by AX , as well, is
the sheaf of locally constant functions on X.

Definition 1.2.6. Let τ : F → F ′ be a morphism between sheaves. The cokernel
sheaf of τ is the sheafification of coker τ and, with abuse of notations, is denoted
by coker τ , too. The image sheaf is, instead, im τ = ker(coker τ).

Let τ : F → F ′ be a morphism between (pre)sheaves. There is a well defined
morphism τx : Fx → F ′

x for any x ∈ X; (ker τ)x = ker(τx) by [Rot09, Proposi-
tion 5.80 (iii)] and, consequently, (im τ)x = im(τx). It follows that a complex of
(pre)sheaves is a short exact sequence if and only if so is the corresponding sequence
of stalks at any point x ∈ X [Rot09, Theorem 5.85]. This result is fundamental in
proving that both pSh(X) and Sh(X) are abelian categories [Rot09, Theorem 5.91].
Then, in particular, the cohomology functors Hn are defined.

The cohomology sheaves Hn(F•) of a complex of sheaves F• can be accu-
rately described by means of the following functor.

Definition 1.2.7. For any open subset U ⊆ X,

Γ(U,−) :

{
F ∈ Sh(U) 7→ F(U) ∈ Ab

τ : F → F ′ 7→ τU : F(U) → F ′(U)

is called the section functor on U . If U = X, Γ(X,−) is called the global section
functor.

Given a sheaf F and a section s ∈ F(X), the support supp s of s is the closure
of {x ∈ X : [s] ̸= 0 ∈ Fx}.

If X is a locally compact Hausdorff space, the functor Γc(X,−) : Sh → Ab
defined on objects by Γc(X,F) := {s ∈ Γ(X,F) : supp s is compact} is called the
global section functor with compact support.

Given a complex of sheaves F•, Hα(F•) is the sheafification of the presheaf U ⊆
X open 7→ Hα(Γ(U,F•)) as explained in [Ive86, p. 89]. Similarly, the compactly
supported cohomology Hα

c (F•) of F• is defined.
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1.2.2 Cohomology

In algebraic topology, the (co)homology of a topological space X is usually in-
troduced with coefficient in Z and, later, it is shown how to change the ring of
coefficients by means of the universal coefficient theorems. Sheaves permit a fur-
ther generalization; in fact, it is possible to study cohomology with coefficients in a
sheaf F , which is the topic of this subsection.

To start with, remember that an additive functor F : A → A′ between abelian
categories is said to be exact if it preserves the exactness of short exact sequences
0 → A → B → C → 0; left (right, respectively) exact if exactness is lost at the
term C on the right (A on the left, respectively).

Definition 1.2.8. Let F : A → A′ be a left (right, respectively) exact functor
between abelian categories. A class of objects R is said to be adapted to F if

i) R is closed under finite direct sums;

ii) F transforms acyclic bounded below (above, respectively) complexes of ob-
jects of R into acyclic complexes;

iii) A has enough objects of R. In other words, for any object A ∈ A, there is
B ∈ R and a monomorphism f : A→ B, i.e. ker f = 0 (an epimorphism
g : B → A, i.e. coker g = 0, respectively). Moreover, if there is another
monomorphism f ′ : A′ → B (epimorphism g′ : B → A′), then A and A′ are
isomorphic.

If F : A → A′ is a right exact functor, R is a class of objects adapted to F if i)
and the following requirements are met.

ii’) F transforms acyclic bounded above complexes of objects of R into acyclic
complexes;

iii’) A has enough objects of R. In other words, for any object A ∈ A, there is
B ∈ R and an epimorphism g : B → A, i.e. coker g = 0. Moreover, if there
is another epimorphism g′ : B → A′, then A and A′ are isomorphic.

If F is a left exact functor for which there exists an adapted class of objects R,
then any complex A• ∈ Comp(A) is quasi-isomorphic to a complex consisting of
objects of R and D+(A) is equivalent to the localization of K+(A) with respect to
the class of quasi-isomorphisms in R (see [GM03, §III.6.4] and its proof). Under
these hypotheses, it can be proved the existence of the solution, called the right
derived functor RF : D+(A) → D+(B) of F , to a certain universal mapping prob-
lem (see [BGK+87, §I.9]). In the following, it will be enough to know that RF is
defined on complexes of terms adapted to F by

RαF (A•) := (RF (A•))α = F (Aα) ∀α

and that this definition extends the “classical” one (see [GM03, §III.6.13] and
[Ive86, §I.7]). Precisely, take a resolution of objects adapted to F , i.e. a quasi-
isomorphism

A• → A•
1
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with A•
1 a complex consisting of terms adapted to F . Then,

RαF (A•) := Hα(RF (A•)) = Hα(A•
1), ∀α.

As proved in [Rot09, Theorem 6.16], the definition does not depend on the choice
of the quasi-isomorphism.

Similarly, if F is a right exact functor and R is an adapted class of objects to
F , the left derived functor LF : D−(A) → D−(B) of F exists.

Example 1.2.9. Consider the functors Hom in any abelian category A and ⊗
in the category of (left/right) modules. In general, they are not exact and the
corresponding derived functors are denoted by Ext and Tor, respectively. An ob-
ject A ∈ A is said to be injective or projective, respectively, if Hom(A,−) or
Hom(−, A) is exact. A left (right, respectively) module M is called flat if −⊗M
(M ⊗−, respectively) is exact.

Consider again a topological space X. A sheaf F on X is said to be flabby if
the restriction F(X) → F(U) is surjective for any open set U ; soft if the restriction
F(X) → F(K) is surjective for any compact subset1 K. The following implications
hold: injective⇒ flabby⇒ soft (see [Ive86, p. 93, Theorem 3.5] and [KS94, p. 104]).

Proposition 1.2.10.

i) The functors Γ(X,−) and Γc(X,−) are left exact (see [Rot09, Lemma 6.68]
and [Ive86, p. 147]);

ii) the class of flabby sheaves is adapted to Γ(X,−) (see [Ive86, p. 93, Theo-
rem 3.5] and [Rot09, Propositions 6.72 and 6.73]);

iii) the class of soft sheaves is adapted to Γc(X,−) (see [Ive86, p. 152, Theo-
rem 2.7]). If X is also countable at infinity, then the class of soft sheaves is
adapted to Γ(X,−) (see [KS94, Proposition 2.5.10]).

Definition 1.2.11. The n-th cohomology group of X with coefficients in F
is the n-th right derived functor

Hn(X,F) := Hn(RΓ(X,F)).

Analogously, the cohomology groupsHn
c (X,F) := Hn(RΓc(X,F)) ofX with com-

pact support are defined.

1.2.3 Operations on sheaves

Given a sheaf on X, it is possible either to construct new sheaves on other topo-
logical spaces or to define sections over subspaces which are not open. Here, only
the definitions of certain functors will be recalled.

1F(K) requires the definition of pullback of a sheaf, given in §1.2.3.
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Let f : X → Y be a continuous function. The pullback f ∗ : Sh(Y ) → Sh(X)
and the pushforward f∗ : Sh(X) → Sh(Y ) functors are defined on objects by

f ∗(G)(U) := lim−→
V⊇f(U)
V open

G(V ), f∗(F)(V ) := F(f−1(V )),

respectively. In particular, when X is a subspace of Y and f is inclusion, f ∗(G) is
denoted by G|X and called the restriction of G to X.

Example 1.2.12. Let A be a commutative ring and let Sh(X,A) be the category
of sheaves of A-modules, called the A-sheaves. An A-sheaf L is called an A-local
system if it is locally constant; i.e. there are an open cover {Uα}α of X and a
family {Mα}α of A-modules such that L|Uα is the constant sheaf associated to Mα

for all α. A local system is called trivial if it is the constant sheaf on X.
It is natural to ask how to determine whether a local system L is trivial. Such

a problem can be tackled with by studying the monodromy representation of L
(see [BT82, §13]). Indeed, under certain hypotheses on X, the category of A-
local systems on X with values in an A-module M is equivalent to the category
of representations π1(X, x) → Aut(M) of the fundamental group of X on M (see
[Dim04, Proposition 2.5.1]); therefore, L is constant if and only if π1(X, x) = 0.

If both X and Y are locally compact Hausdorff, then the pushforward with
proper support functor f! : Sh(X) → Sh(Y ) is given by

f!(F)(V ) := {s ∈ f∗(F)(V ) : f |supp s : supp s→ Y is a proper map}.

The functors defined so far extend to the categories of complexes of sheaves by
applying them term by term; precisely, if F• and G• are complexes of sheaves on X
and Y , respectively, then f ∗(G•), f∗(F•) and f!(F•) are the complexes whose α-th
terms are f ∗(Gα), f∗(Fα) and f!(Fα), respectively.

When h : W ↪→ X is the inclusion of a locally closed subspace (i.e. the
intersection of an open and a closed subset), the functors h∗ and h! have several
interesting properties. For instance, h! is exact and so is h∗ ifW is closed, as opposed
to the fact that the functors f∗ and f! are only left exact in general (f ∗ is, instead,
always exact). Moreover, h! has a right adjoint h! : Sh(X) → Sh(W ) (it means that
Hom(G, h!(F)) = Hom(h!(G),F) for any F ∈ Sh(X) and any G ∈ Sh(W )), given
by (see [Ive86, p. 108, Proposition 6.6])

h!(F) := h∗(FW ),

where
FW (U) := {s ∈ F(U) : supp s ⊆ W} ∀U ⊆ X open.

If A is a Noetherian ring and X and Y are locally compact Hausdorff spaces
of finite homological dimension n (which means that Hn+1

c (X,F) = 0 for
any sheaf on X), then the right derived functor Rf! : D+(X,A) → D+(Y,A),
where D+(−,K) denotes the derived category of Sh(−,A), has a right adjoint f ! :
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D+(Y,A) → D+(X,A), called the exceptional inverse image. For its accurate
definition, see the proof of [Ive86, p. 324, Theorem 3.1].

Here are the last two operations. Let A be a commutative ring. For any pair
of A-sheaves F and G on a topological space X, Hom(F ,G) is the sheaf given on
objects by

Hom(F ,G)(U) := HomSh(U,A)(F|U ,G|U) ∀U ⊆ X open,

whereas F ⊗ G is the sheafification of

U ⊆ X open 7→ F(U)⊗A G(U) ∈ A-mod,

where ⊗A stands for the tensor product between A-modules.
The extension of Hom and ⊗ is immediate. On the one hand, Hom• is defined

exactly as the Hom• functor (1.1.1). On the other hand, ⊗ transforms two bounded
above complexes of A-sheaves F• and G• into the complex of A-modules F• ⊗ G•

whose terms are
(F• ⊗ G•)α :=

⊕
β∈Z

Fβ ⊗ Gα−β

and whose differentials dα⊗ : (F• ⊗ G•)α → (F• ⊗ G•)α+1 are given by

dα⊗ := (dβF• ⊗ idGα−β + (−1)αidFβ ⊗ dα−βG• )β∈Z.

The derived functors of Hom• and ⊗ are denoted, respectively, by

RHom• : D−(X)◦ ×D+(X) → D(X),
L
⊗: D−(X)×D−(X) → D−(X).

The functor RHom• gives rise to the dual of any complex of sheaves. Let A be a
Noetherian commutative ring and let K be a field. To start with, remember that the
dual of an A-module M is M∨ := HomA−mod(M,A) and, if A is replaced by K, the
dual of a K-vector space is obtained. For complexes of sheaves, duality is defined
either for A-sheaves on a locally compact Hausdorff space X of finite homological
dimension or for K-sheaves on locally compact Hausdorff spaces and the role of
A and K in the case of modules and vector spaces, respectively, is played by a
particular complex of sheaves, called the dualizing complex ωX (for its definition,
see [Ive86, V.2 and VI.2]).

Definition 1.2.13. The dual of F• ∈ Db(X,−) (here, − can be either A or K) is
the complex of sheaves

DF• := RHom•(F•, ωX)

and D : Db(X,−) → Db(X,−) is called the duality functor.

Properties concerning duality shall not be listed here, but will be recalled if
used.
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1.3 Statement of the decomposition theorem

This last section contains the statement of the decomposition theorem 1.3.7, which
holds in the derived category of bounded constructible complex of sheaves (see
Section 1.3.1) and involves the intersection cohomology complexes, whose definition
is recalled in Section 1.3.2.

1.3.1 Perverse sheaves

To begin with, recall the following two definitions. First, remember that an ad-
ditive functor between triangulated categories is said to be exact if it transforms
distinguished triangles into distinguished ones. Secondly, a functor G : C → D is
said to be full if HomC(A,B) → HomD(G(A), G(B)) is surjective for any A,B ∈ C;
faithful if such map is injective for any A,B ∈ C; fully faithful if it is both full
and faithful.

Let DU , DF and D be triangulated categories related by two exact functors
i∗ : DF → D and j∗ : D → DU such that

i) i∗ has a left adjoint i∗ and a right adjoint i!;

ii) j∗ has a left adjoint j! and a right adjoint j∗;

iii) j∗i∗ = 0 and HomD(j!B, i∗A) = 0 and HomD(i∗A, j∗B) = 0 for any A ∈ DF

and any B ∈ DU ;

iv) for any K ∈ D, there are a unique morphism i∗i
∗K → j!j

∗K[1] and a unique
morphism j∗j

∗K → i∗i
!K[1], respectively, for which the following triangles

are distinguished

j!j
∗K → K → i∗i

∗K → j!j
∗K[1], i∗i

!K → K → j∗j
∗K → i∗i

!K[1];

v) i∗, j! and j
∗ are fully faithful.

In the above hypotheses, if (D≤0
U ,D≥0

U ) and (D≤0
F ,D≥0

F ) are t-structures on DU

and DF , respectively, D can be endowed with a t-structure obtained by means of
the ones of DU and DF .

Theorem 1.3.1. [BBD82, Theorem 1.4.10]. The pair (D≤0,D≥0) of full sub-
categories of D, where

D≤0 := {K ∈ D : j∗K ∈ D≤0
U and i∗K ∈ D≤0

V },
D≥0 := {K ∈ D : j∗K ∈ D≥0

U and i!K ∈ D≥0
V },

is a t-structure on D and it is said to be obtained by gluing the ones of DU and
DF .

Consider a stratified topological space X, i.e. there is a family SX , called
a stratification of X, of pairwise disjoint locally closed subsets S whose union is
X. Let O be a sheaf of rings on X and let p : SX → Z be a function, called a
perversity.
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Definition 1.3.2. A sheaf of O-modules over X is a sheaf F such that F(U) is
an O(U)-module for any open subset U ⊆ X. The category whose objects are these
sheaves is denoted by Sh(X,O), while its derived category is denoted by D(X,O).

As an application of Theorem 1.3.1, D(X,O) can be endowed with the following
t-structure.

Corollary 1.3.3. [BBD82, Corollary 2.1.4]. The pair (pD≤0, pD≥0) of full sub-
categories of D(X,O), where

pD≤0 := {F• ∈ D(X,O) : HαF•|S = Hαi∗SF• = 0, ∀α > p(S), ∀S ∈ SX},
pD≥0 := {F• ∈ D(X,O) : Hαi!SF• = 0, ∀α < p(S), ∀S ∈ SX},

is a t-structure on D(X,O), called the t-structure of perversity p. The core of
such t-structure is called the the category of p-perverse sheaves of O-modules on
X.

Since D(X,O) has both the natural and the p-perversity t-structures, the op-
erations on sheaves and the truncation and homology functors with respect to the
latter t-structure are usually denoted with a p as a right superscript (e.g. pHα).

Now, let X be a complex algebraic variety, let O = AX be the constant sheaf
on X over a Noetherian commutative ring A such that any A-module M has an
injective resolution of finite length. By [Ver76, Theorem 2.2], X admits a Whitney
stratification SX (for the definition, see also [Mat12, §5]).

A complex F• ∈ D+(X,A) is said to constructible (with respect to SX) if the
stalks of its cohomology sheaves Hα(F•) are finite dimensional A-modules and the
restrictions Hα(F•)|S are locally constant. The constructible derived category
Dc(X,A) is the full subcategory of D(X,A) consisting of constructible complexes
and its full subcategory made of bounded complexes is denoted by Db

c(X,A).
When p is decreasing, the p-perversity t-structure of Db

c(X,A) can be described
by means of the so-called support and cosupport conditions as shown in [Dim04,
Proposition 5.1.16]. In particular, if A := K is a field and p is the middle perver-
sity function p1/2 : S ∈ SX 7→ − dimC S, the cosupport conditions can be described
as written below by means of the Verdier duality (see [dCM09, §2.3]).

Definition 1.3.4. If p = p1/2, a complex of K-sheaves F• is said to satisfy the

▲ support condition if dim {x ∈ X : Hα
x(F•) ̸= 0} ≤ −α, ∀α ∈ Z,

▲ cosupport condition if dim {x ∈ X : Hα
c,x(F•) ̸= 0} ≤ α ∀α ∈ Z,

where Hα
x (and Hα

c,x) denote the stalks of the cohomology (with compact support)
sheaves at x.

Proposition 1.3.5. [Dim04, Proposition 5.1.16]. Let F• ∈ Db
c(X,K) and let

p be a decreasing perversity function.

▲ F• ∈ pD≤0 if and only if it satisfies the support condition;

▲ F• ∈ pD≥0 if and only if it satisfies the cosupport condition.
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1.3.2 Decomposition theorem

There is one last ingredient needed to state the decomposition theorem; namely
the intersection (co)homology complexes.

Intersection homology complexes were defined for the first time in [GM80].
There, topological pseudomanifolds are considered and the intersection homol-
ogy complex ICX

• := ICp
•(X) of X with respect to a sequence of integers p =

(0, p3, . . . , pn), with pk+1 = pk or pk+1 = pk + 1 for any k, called a perversity, is
defined as a suitable subcomplex of the one of simplicial chains (see [GM80, §1.3]).
The corresponding homology groups IHX

α := IHp
α(X) are called the intersection

homology groups.
Later, in [GM83], intersection cohomology complexes IC•

X (IC−α
X := ICX

α for
all α) were defined as complexes of sheaves in Db(X). This point of view enables
an axiomatic characterization of intersection cohomology complexes and the proof
of the independence of the definition from the choice of a stratification (see [GM83,
§4]).

The just mentioned sheaf-theoretical definition of IC•
X is a particular case of

a more general result. To be precise, in the most general setting discussed in
Section 1.3.1, it can be shown the existence of a functor j!∗, sometimes called
the intermediate extension functor. Its definition and several characterizations are
provided in [BBD82, Remark 1.4.14.1 and 1.4.22-26]; however, in the case of a
stratified topological space X, the following result holds.

Proposition 1.3.6. [BBD82, Proposition 2.1.11]. Let SX be a stratification of
X and let p be a perversity such that, whenever S, T ∈ SX and S is contained in
the closure of T , then p(S) ≥ p(T ). For any n ∈ N, let Un be the union of all strata
S such that p(S) ≤ n and let jn : Un−1 ↪→ Un be the inclusion. Moreover, let F• be
a p-perverse sheaf on Uk for some k ∈ N, let m ≥ max{k,max{p(S) : S ∈ SX}} be
an integer and let j : Uk ↪→ X = Um be the inclusion. Then

j!∗F• = τ≤m−1Rjm∗(. . . (τ≤kRjk+1∗F•)),

where each τ≤α is the truncation functor with respect to the natural t-structure.

In particular, in the case of sheaves of modules over a regular Noetherian ring A
of finite Krull dimension (see [GM83, §3.0]) the intersection cohomology complex
of X with respect to p is defined as IC•

X := j!∗AX\Σ[dimCX], where Σ is a closed
subspace such that dimΣ ≤ dimX − 2 and X \ Σ is a dense manifold of the same
dimension as X (see [GM80, §1.1]). When the constant sheaf AX\Σ is replaced
by a local system L on X \ Σ, the intersection cohomology sheaf IC•

X(L) :=
j!∗L[dimCX] of L is obtained.

At long last, here is the statement of the decomposition theorem [BBD82, The-
orem 6.2.5] as maintained in [dCM09, Theorem 1.6.1]. An outline of the several
steps of its proof is given, for instance, in [dCM09, §3.1].

Theorem 1.3.7. (Decomposition theorem) Let f : X → Y be a proper map of
complex algebraic varieties. There is an isomorphism in the constructible bounded
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derived category Db
c(Y,Q)

Rf∗IC
•
X
∼=
⊕
α∈Z

pHα(Rf∗IC
•
X) [−α] . (1.3.1)

Furthermore, the perverse sheaves pHα(Rf∗IC
•
X) are semisimple; i.e. there is a

decomposition into finitely many disjoint locally closed and nonsingular subvarieties
Y =

∐
Sβ and a canonical decomposition into a direct sum of intersection complexes

of semisimple local systems

pHα(Rf∗IC
•
X)

∼=
⊕
β

IC•
Sβ
(Lα,Sβ

). (1.3.2)

The combination of formulae (1.3.1) and (1.3.2) gives

Rf∗IC
•
X
∼=
⊕
α∈Z

pHα(Rf∗IC
•
X)[−α] ∼=

⊕
α∈Z

⊕
β

IC•
Sβ
(Lα,Sβ

)[−α], (1.3.3)

which can be written in the form

Rf∗IC
•
X
∼=
⊕
α∈Z

pHα(Rf∗IC
•
X)[−α] ∼=

⊕
α∈Z

⊕
S

pHα(Rf∗IC
•
X)S[−α],

where S, called a support of f , is any Sβ associated to a non-zero local system
Lα,Sβ

(see [Max19, Definition 9.3.41]).
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Chapter 2

Application of decomposition
theorem to Schubert varieties

This chapter is devoted to the application of decomposition theorem to the resolu-
tion of singularities π (see Theorem 2) and is organized as follows.

In Section 2.1, notations are settled once and for all and some basic definitions
and facts are recalled. In Section 2.2, a more accurate description of the direct sum-
mands appearing in the decomposition theorem is provided and, as a consequence,
some families of polynomial expressions are inferred in Corollary 2.2.7. Section 2.3
is devoted to the description of the algorithm, KaLu, which computes the unknown
polynomials involved in the expressions mentioned above and can be used to deter-
mine whether a support actually gives a contribution in the decomposition. Some
ancillary files are available at http://wpage.unina.it/carmine.sessa2/KaLu,
along with an implementation of KaLu in CoCoA5 [ABR]. The case of special
Schubert varieties is treated in Section 2.4; Theorem 2.2.4 is restated coherently
and families of polynomial identities are exhibited. The last section consists of
several instances in which the polynomial expressions of Corollary 2.2.7 become
identities and examples concerning (some of) the properties of Schubert varieties
that can be deduced by means of their Ferrer’s diagrams (defined in Section 2.1.2).

2.1 Schubert varieties

To begin with, well known facts concerning Grassmannians and Schubert varieties
are given so as to settle notations.

Sections 2.1.1 and 2.1.2 are devoted to the description of Schubert varieties and
their representation by means of Ferrer’s diagrams. In Section 2.1.3, a peculiar
class of subvarieties of a given Schubert variety S is introduced. It is recommended
looking at the examples available in Section 2.5.2, which show how most properties
of Schubert varieties are conveyed by their Ferrer’s diagrams.
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2.1.1 Definition and remarks

Hereby, it will be assumed that cohomology groups are with Q-coefficients and that
the chosen perversity p is the middle one.

Let k be a positive integer and let H be a complex vector space. The Grass-
mannian of k-dimensional subspaces of H shall be denoted by Gk(H) := {V ⊆ H :
dimV = k}.

Any complex vector bundle ψ : E → B (see [GH94, §0.5]) will be simply denoted
by E whenever ψ and B are clear in the context. In particular, Gh(E) → B
stands for the Grassmannian h-plane bundle of E, whose fibre at any b ∈ B is
Gh(E)b = Gh(ψ

−1(b)).
Let ω and l be positive integers with ω < l. A flag (of length ω) in Cl is a finite

sequence of vector subspaces H : H1 ⊂ . . . ⊂ Hω with H1 ̸= 0 and Hω ⊂ Cl. It is
called complete if ω = l − 1 and partial otherwise. Another flag H′ : H ′

1 ⊂ . . . ⊂
H ′
ω′ is said to be a subflag of H (in formulae, H′ ⊆ H), if and only if, for each

α ∈ {1, . . . , ω′}, there is β ∈ {1, . . . , ω} such that H ′
α = Hβ.

All flags considered later on shall be assumed to be subflags of a chosen complete
flag Fc : F1 ⊂ . . . ⊂ Fl−1 in Cl.

Definition 2.1.1. Given a flag F : Fj1 ⊂ · · · ⊂ Fjω of Cl, where dimFjα = jα
for every α ∈ {1, . . . , ω}, and an ω-tuple of non-negative integers I = (ij1 , . . . , ijω),
the Schubert variety associated to the pair (F , I) is the subvariety of Gk(Cl)
given by

S := {V ∈ Gk(Cl) : dim(V ∩ Fjα) ≥ ijα , α ∈ {1, . . . , ω}}.

Let S be the Schubert variety associated to (F , I). From the definition, it
immediately follows that j1 < . . . < jω < l. Notice that S is neither empty nor
contained in a smaller Grassmannian Gk(Fjα) if and only if

0 < ijα < min{k, jα} ∀α ∈ {1, . . . , ω}.

Moreover, even when S ̸= ∅, some incidence conditions dim(V ∩ Fjα) ≥ ijα might
be superfluous (e.g. some of them may happen to be implied by the others). It is
easy to check, by means of the well known Grassmann’s formula, that this is not
the case if and only if, for every α,

ijα < ijα+1 , ijα+1 − ijα < jα+1 − jα, k − ijα < l − jα.

To sum up, given a non-empty Schubert variety S associated to (F , I), it is
possible to get rid of the redundant conditions so as to describe S by means of the
necessary conditions only. This leads to the following

Definition 2.1.2. Let S be a non-empty Schubert variety associated to (F , I).
The pair (F , I) is said to be essential if and only if it conveys the minimum
information needed to define S; equivalently,

0 < ij1 < . . . < ijω ≤ k < l + ijω − jω, ijα < jα ∀α
ijα+1 − ijα < jα+1 − jα ∀α < ω.
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In particular, S is called either a special or a single condition Schubert variety
if ω = 1 and ijω < k.

Later on, the phrase “the flag of the essential pair of S” will often be shortened
to “the essential flag of S” for brevity.

Notice that the property of being essential implies ω ≤ k, otherwise ijω >
k, against the above conditions. Moreover, each non-empty Schubert variety is
uniquely determined by its essential pair. Nevertheless, when two or more Schubert
varieties need comparing, it is more convenient, as shown in the next pages, to
describe them by virtue of pairs having the same flag.

Remark 2.1.3. Chosen a non-empty Schubert variety S and a flag F , the pair (F , I)
associated to S is unique if

0 ≤ ij1 ≤ . . . ≤ ijω ≤ k ≤ l + ijω − jω, ijα ≤ jα ∀α
ijα+1 − ijα ≤ jα+1 − jα ∀α < ω.

(2.1.1)

Indeed, assume that S is associated to (F , I). The condition dim(V ∩Fjα) ≥ ijα
is superfluous if and only if either ijα−1 ≥ ijα or ijα+1 − ijα ≥ jα+1 − jα or ijα ≤
k − l + jα. To fix ideas, suppose that ijα−1 ≥ ijα (a similar argument holds in the
other cases). Then, if ijα is replaced by ijα−1 − β, with β ≥ 0, then the condition
dim(V ∩ Fjα) ≥ ijα−1 − β is again redundant. In other words, S is associated to
(F , (ij1 , . . . , ijα−1 , ijα−1 − β, ijα+1 , . . . , ijω)) for any β ≥ 0.

2.1.2 Ferrer’s diagrams

Definition 2.1.4. Let λ = (λ1, . . . , λk) be a decreasing sequence of k non-negative
integers. The Ferrer’s diagram of λ is the diagram obtained by piling up k rows
of length λ1, . . . , λk, from top to bottom, so that their left edges are aligned.

Example 2.1.5. The Ferrer’s diagram of λ = (6, 6, 5, 4, 3) is

0

1

2

3

4

5

3 4 5 6

Given a non-empty Schubert variety S described by a pair (F , I), with F of
length ω, it is possible to associate to it the sequence of integers λS = (λSα)α=1,...,k

defined as follows:

λSα =



l − k − j1 + ij1 if α ∈ {1, . . . , ij1},
l − k − j2 + ij2 if α ∈ {ij1 + 1, . . . , ij2},
. . .

l − k − jω + ijω if α ∈ {iω−1 + 1, . . . , ijω},
0 if α ∈ {ijω + 1, . . . , k}.
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It is worth pointing out that λS is independent of the choice of (F , I), hence it
suffices to consider the essential pair of S. Moreover, from the definition of Schubert
variety, it follows that the sequence λS is decreasing, with each entry non-negative
and strictly lower than l − k. Therefore, it makes sense to consider the Ferrer’s
diagram of λS , which shall be called the Ferrer’s diagram of S. When (F , I) is
essential, λS contains exactly ω different integers with their repetitions, if any.

Several properties of Schubert varieties are conveyed by their Ferrer’s diagrams,
as pointed out throughout the chapter. At the moment, just observe that the
(complex) codimension with respect to Gk(Cl) of the Schubert variety associated to
the sequence λS = (λSα)α=1,...,k equals the area of its Ferrer’s diagram (see [GH94,
pp. 194-196]).

2.1.3 Families of subvarieties

From now on, S is going to be a non-empty Schubert variety associated to the
essential pair (F , I), where F : Fj1 ⊂ . . . ⊂ Fjω and I = (ij1 , . . . , ijω) with ijω < k.

Definition 2.1.6. An S-variety is a non-empty Schubert subvariety of S whose
essential flag is a subflag of F .

Equivalently, setting Fp : Fjp1 ⊂ . . . ⊂ Fj
ω
p
p
and Ip := (ijp1 , . . . , ij

p
ωp
) + p, where

p := (pjp1 , . . . , pj
p
ωp
) is an ωp-tuple of non-negative integers,

∆p := {V ∈ Gk(Cl) : dim(V ∩ Fjpα) ≥ ijpα + pjpα , α = 1, . . . , ωp}

is the S-variety associated to (Fp, Ip) if and only if such pair satisfies conditions
(2.1.1).

For instance, S is the S-variety given by 0 := (0, . . . , 0).

Remark 2.1.7. With the same notations as Definition 2.1.6, the pair (Fp, Ip) satisfies
conditions (2.1.1) if and only if

0 ≤ pjp1 ≤ jp1 − ijp1
Mα ≤ pjpα ≤ Nα ∀α = 2, . . . , ω − 1

max{Mω, k − l + jpω − ijpω} ≤ pjpω ≤ min{Nω, k − ijpω}

where, for all α ∈ {2, . . . , ω},

Mα = max{0, ijpα−1
− ijpα + pjpα−1

}
Nα = min{jpα − ijpα , j

p
α − jpα−1 − ijpα + ijpα−1

+ pjpα−1
}.

In Section 2.1.2, a way to represent S by means of its Ferrer’s diagram was
described. Needless to say, all S-varieties ∆p can be depicted in the same way and
their associated sequences shall be denoted by λp.

If ∆p and ∆q are S-varieties, ∆q is said to be a ∆p-variety if it has the properties
written in Definition 2.1.6 with S replaced by ∆p. In this case, q is said to be p-
admissible.
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Now, assume that ∆p and ∆q are associated to (Fp, Ip) and (Fq, Iq), respectively.
If Fp = Fq = F , it is straightforward to see that ∆q ⊆ ∆p if and only if qjqα ≥ pjpα
for any α ∈ {1, . . . , ω}. In the general case, the pairs (Fp, Ip) and (Fq, Iq) can
be changed by adding redundant conditions so that Fp = Fq = F again (see
Example 2.5.9). In a similar fashion, it is possible to compare any pair of Schubert
varieties (e.g. by describing them with respect to Fc).

Notation 2.1.8. Given two S-varieties ∆p, ∆q associated to pairs whose flags are
F , set p ≤ q ⇔ ∆q ⊆ ∆p. If ∆q ⊆ ∆p, put d(p, q) :=

∑
α qjqα − pjpα and call it the

distance (with respect to F) between either p and q or ∆p and ∆q.

In terms of Ferrer’s diagrams, ∆q ⊆ ∆p if and only if the Ferrer’s diagram
of ∆p is contained in the one of ∆q (see [Man01, Proposition 3.2.3 (4)]). When
S is a special Schubert variety, p and q are integers and, as such, comparable.
Consequently, in this case, the set of all S-varieties is totally ordered by inclusion.
On the contrary, when ω > 1, ∆p and ∆q are unlikely to be comparable with respect
to the inclusion relation (see Examples 2.5.9 and 2.5.10).

Remark 2.1.9. If ∆p is an S-variety, then the families of ∆p-varieties and S-varieties
contained in ∆p do not coincide, unless the essential flag of ∆p is F . Indeed, the
notion of ∆p-variety is stronger (see Example 2.5.10).

Later, for any chosen Schubert variety S, the attention will be focused on the
family of S-varieties. However, several results (see Section 2.2.2) provide useful
information on Schubert varieties S ′ ⊂ S whose essential flags are not subflags of
F if S ′ is replaced with the S-variety S ′

F having the conditions of S ′ corresponding
to vector spaces of F . Namely, assume that S ′ is associated to the pair (Fc, I ′

c =
(i′1, . . . , i

′
l−1)). Then

S ′
F := {V ∈ Gk(Cl) : dim(V ∩ Fjα) ≥ i′jα , α = 1, . . . , ω}.

Observe that S ′
F = S ′ if and only if S ′ is an S-variety.

In the particular case of two S-varieties ∆p and S ′ := ∆q associated to the
pairs (Fp, Ip) and (Fc, Iq), respectively, such that (Fp, Ip) is essential, the following
notation is adopted:

∆qp := S ′
F = {V ∈ Gk(Cl) : dim(V ∩ Fjpα) ≥ ijpα + qjpα , α = 1, . . . , ω}.

If ∆q is not a ∆p-variety, the distance between ∆qp and ∆p is strictly lower than
the one between ∆q and ∆p, since the extra indispensable conditions of ∆q (with
respect to ∆p) are redundant in ∆qp (otherwise they would be necessary also for
∆qp , contradicting the fact that the corresponding vector spaces do not belong to
Fp). See Example 2.5.11.

2.2 Schubert varieties and decomposition theo-

rem

Here, a class of resolution of singularities π0 : S̃ → S is defined (see Section 2.2.1).
One of the main reasons why this particular family has been chosen is that it is
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always possible control the fibres of these maps, which is fundamental in what
follows. Decomposition theorem is applied to them so as to obtain information on
the involved direct summands (see Theorem 2.2.4) and, in Section 2.2.3, certain
classes of polynomial expressions.

2.2.1 A family of resolution of singularities

Let H1 ⊂ . . . ⊂ Hn be complex vector spaces and let k1, . . . , kn be positive integers
such that kα < dimHα for any α = 1, . . . , n. Put

F(k1, . . . , kn;H1, . . . , Hn) :=

{
(K1, . . . , Kn) ∈ Gk1(H1)× . . .×Gkn(Hn)

s.t. K1 ⊂ . . . ⊂ Kn

}
.

Proposition 2.2.1. [CFS22, Proposition 3.1]. F(k1, . . . , kn;H1, . . . , Hn) is
smooth.

Proof. If n = 1, F(k1;H1) = Gk1(H1) is smooth.
Let n ≥ 2. There is a chain of projections

F(k1, . . . , kn;H1, . . . , Hn) F(k1, . . . , kn−1;H1, . . . , Hn−1) . . .

F(k1, k2;H1, H2) Gk1(H1)

and each F(k1, . . . , kα;H1, . . . , Hα) is the Grassmannian bundle of a vector bundle
over the space F(k1, . . . , kα−1;H1, . . . , Hα−1). In fact, for any 2 ≤ α ≤ n, there is
an exact sequence of vector bundles

0 SGkα−1
(Hα−1) Hα Qα−1 0

Gkα−1(Hα−1)

where SGkα−1
(Hα−1) andHα are the tautological and trivial bundle overGkα−1(Hα−1),

respectively, while Qα−1 = coker(SGkα−1
(Hα−1) → Hα).

Let ψjα−1 : F(k1, . . . , kα−1;H1, . . . , Hα−1) → Gkα−1(Hα−1) be the projection map
and let ψ∗

jα−1
be its pullback. Then

F(k1, . . . , kα;H1, . . . , Hα) ∼= Gkα−kα−1(ψ
∗
jα−1

Qα−1).

The result above is going to be applied to certain maps defined on Schubert
varieties. Up to some amendments, the next results are, respectively, [CFS22,
Proposition 3.2 and Corollary 3.3].

Proposition 2.2.2. The smooth locus of S is

S◦ = {V ∈ Gk(Cl) : dim(V ∩ Fjα) = ijα , α = 1, . . . , ω}.
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Proof. The aim is to show that S◦ = S\ SingS.
The singular locus of S coincides with the union of all S-varieties whose distance

from S is 1 (see [Man01, Example 3.4.3, Theorem 3.4.4]). As a consequence, the
smooth locus of S is

S\(∆(1,0,...,0) ∪ . . . ∪∆(0,...,0,1))

= S\∆(1,0,...,0) ∩ . . . ∩ S\∆(0,...,0,1)

= {V ∈ ∆p : dim(V ∩ Fj1) = ij1} ∩ . . . ∩ {V ∈ ∆p : dim(V ∩ Fjω) = ijω}
= {V ∈ S : dim(V ∩ Fjα) = ijα , α = 1, . . . , ω} = S◦.

Set

S̃ := F(ij1 , . . . , ijω , k;Fj1 , . . . , Fjω ,Cl)

=

{
(Z1, . . . , Zω, V ) ∈ Gij1

(Fj1)× . . .×Gijω
(Fjω)×Gk(Cl)

s.t. Z1 ⊂ . . . ⊂ Zω ⊂ V

}
.

Corollary 2.2.3. S̃ is smooth and the projection

π0 : (Z1, . . . , Zω, V ) ∈ S̃ 7→ V ∈ S

is a resolution of singularities.

Proof. Smoothness is a consequence of Lemma 2.2.1.
If V ∈ S◦, then dim(V ∩ Fjα) = ijα for all α = 1, . . . , ω and, consequently,

π−1
0 (V ) ∼= {(V ∩ Fj1 , . . . , V ∩ Fjω)}

gives the inverse map of π0 on the open set S◦.

Let S ′ ⊆ S be a Schubert variety. The Schubert cell ΩS′ of S ′ is the set whose
elements are the vector spaces V ∈ Gk(Cl) such that

dim(V ∩ Fβ) =



0 if β ≤ l − k − λS
′

1

1 if l − k + 1− λS
′

1 ≤ β ≤ l − k + 1− λS
′

2

. . .

k − 1 if l − k + (k − 1)− λS
′

k−1 ≤ β ≤ l − k + (k − 1)− λS
′

k

k if β ≥ l − λS
′

k .

Let F ′ be the essential flag of S ′ and suppose that such variety is associated to
the pair (Fc, I ′

c), as well. Consider the subset ∆SS′ of S ′ whose elements satisfy
the conditions corresponding to vector spaces of the essential flags of both S ′ and
S with an equality. Namely,

∆SS′ :=

{
V ∈ Gk(Cl) : dim(V ∩ Fjα) = i′jα , α = 1, . . . , ω

and dim(V ∩ Fj′α) = i′j′α , α = 1, . . . , ω′

}
.
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By construction, ΩS′ ⊆ ∆SS′ ⊆ S ′◦. When S ′ := ∆q is an S-variety, the following
notation is adopted:

∆0q := ∆SS′ = {V ∈ Gk(Cl) : dim(V ∩ Fjα) = ijα + qjα , α = 1, . . . , ω}.

It follows from the definition that, if S ′ ⊆ S is a Schubert variety and ∆q := S ′
F ,

then ∆SS′ ⊆ ∆0q. Furthermore, S is the disjoint union of the sets ∆0q with q 0-
admissible.

For any S-variety ∆q, put

∆̃0q := π−1
0 (∆0q) =

{
(Z1, . . . , Zω, V ) ∈ S̃

s.t. dim(V ∩ Fjα) = ijα + qjα , α = 1, . . . , ω

}
.

The restriction of π0

ρ0q : (Z1, . . . , Zω, V ) ∈ ∆̃0q 7→ V ∈ ∆0q

is a smooth and proper fibration with fibres

F0q := ρ−1
0q (V ) ∼=

{
(Z1, . . . , Zω) ∈ Gij1

(V ∩ Fj1)× . . .×Gijω
(V ∩ Fjω)

s.t. dim(V ∩ Fjα) = ijα + qjα , α = 1, . . . , ω

}
∼= F(ij1 , . . . , ijω ;Cij1+qj1 , . . . ,Cijω+qjω ),

whose dimensions are

dimF0q = ij1 · qj1 +
ω∑
α=2

qjα(ijα − ijα−1).

All spaces and maps defined up to now fit in a cartesian
square (see either Example 3.1.1 or [Ive86, Definition
5.1, p. 34]) like the one on the right, whose horizontal
arrows are inclusions. In particular, i′0q is the restric-
tion of the inclusion i0q : ∆q ↪→ S.

∆̃0q S̃

∆0q S

j0q

ρ0q π0

i′0q

(2.2.1)

2.2.2 Application of the decomposition theorem

Let ∆q be an S-variety. Put

mq := dim∆q, k0q := dimF0q, d0q := m0 −mq − k0q,

δ0q := k0q − d0q, Aα0q := Hα(F0q).

Proper base change [Ive86, p. 322, 2.6] applied to the square (2.2.1), Deligne’s
theorem on smooth morphisms [dCM09, Theorem 5.2.2] and the global invariant
cycle theorem [dCM09, Theorem 1.2.4] (see also [Fra20, formula (15) and Remark
3.1]) give

Rπ0∗QS̃ [m0] |∆0q
∼= Rρ0q∗Q∆̃0q

[m0] ∼=
2k0q⊕
α=0

Aα0q ⊗Q∆0q [m0 − α] (2.2.2)

and, for any α ∈ Z,
pHα(Rπ0∗QS̃ |∆0q)

∼= A
α−mq

0q ⊗Q∆0q [mq]. (2.2.3)
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Theorem 2.2.4.

i) Up to identifying IC•
∆q

with its derived direct image Ri0h∗IC
•
∆q
,

pHα(Rπ0∗QS̃ [m0]) ∼=
⊕
q≥0

0−adm.

D
δ0q+α
0q ⊗ IC•

∆q

for suitable vector spaces such that D
δ0q−α
0q

∼= D
δ0q+α
0q ∀α ≥ 0. In particular, the

family of supports of π0 coincides with the one of S-varieties.
ii) Given a Schubert variety S ′ ⊆ S,

IC•
S [−m0]|∆SS′

∼=
⊕
α≥0

Bα
0q ⊗Q∆SS′ [−α] (2.2.4)

for suitable vector spaces Bα
0q, where q is the vector such that ∆q := S ′

F .

Proof. The proof, inspired by [BM83, Theorem p. 49], is an improvement and a
correction of the one of [CFS22, Theorem 3.6].

To start with, notice two facts. Firstly,

pHα(Rπ0∗QS̃ [m0]) ∼= pH−α(Rπ0∗QS̃ [m0]) ∀α ≥ 0

by virtue of the relative hard Lefschetz theorem [dCM09, Theorem 1.6.3]. In par-

ticular, this implies that D
δ0q−α
0q

∼= D
δ0q+α
0q for any α ≥ 0. Secondly, if S ′ ⊂ S is

not an S-variety, it suffices to consider ∆q := S ′
F (which is an S-variety) because

∆SS′ ⊆ ∆0q and, thus, if item ii) holds for S-varieties (∆q, in particular), then

IC•
S [−m0]|∆SS′

∼= IC•
S [−m0]|∆0q |∆SS′

∼=
⊕
α≥0

Bα
0q ⊗Q∆SS′ [−α]. (2.2.5)

In other words, it suffices to prove isomorphism (2.2.4) only for S-varieties.
Set, for any µ ≥ 0,

Cµ :=
⋃
q

∆q,

where q runs through the set of 0-admissible vectors such that d(0, q) = µ, so as to
obtain a strictly decreasing finite sequence of closed subsets of S

S = C0 ⊇ C1 ⊇ C2 ⊇ . . .

Claim: if S is a support such that S ⊆ Cµ and S ⊈ Cµ+1, then there is a
0-admissible q such that d(0, q) = µ, S ⊆ ∆q and S ∩∆0q ̸= ∅.

In fact, on the one hand, S ⊆ ∆q because S is irreducible by definition (remem-
ber that so are Schubert varieties, as well). On the other hand, if ∆q is assumed to
be associated to the pair with flag F , then (S ⊆ ∆q is used here)

S ∩∆0q = ∅ ⇒ (V ∈ S ⇒ ∃α ∈ {1, . . . , ω} : dim(V ∩ Fjα) > ijα + qjα)

⇔

(
V ∈ S ⇒ ∃ϵ = (ϵ1, . . . , ϵω) ∈ Nω :

∑
α

ϵα = 1 ∧ ∆q+ϵ ∋ V

)
⇔ S ⊆

⋃
ϵ∈Nω :∑
α ϵα=1

∆q+ε.
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For any such ε, d(q + ε, 0) = d(0, q) + 1 = µ + 1, hence S ∩∆0q = ∅ would imply
S ⊆ Cµ+1.

For any µ ≥ 0 and any S-variety ∆q with d(0, q) = µ, put

S := {S : S is a support such that S ⊆ ∆q ∧ S ∩∆0q ̸= ∅}.

By induction on µ and for any S-variety ∆q with d(0, q) = µ at a time, it shall
be proved that

i.1) S = {∆q}, which means that the supports of π0 are exactly the S-varieties;
i.2) for any α ≥ 0,

pHα(Rπ0∗QS̃ [m0])∆q |∆0q
∼= D

δ0q+α
0q ⊗Q∆0q [mq] (2.2.6)

ii)

IC•
S [−m0]|∆0q

∼=
⊕
α≥0

Bα
0q ⊗Q∆0q [−α].

The base step is straightforward (remember that QS◦ [m0] ∼= IC•
S |S◦ by [GM83,

Theorem p. 78, (a)]).
Inductive step.

i) Decomposition theorem 1.3.7 gives

Rπ0∗QS̃ [m0]|∆0q
∼=
⊕
α∈Z

pHα(Rπ0∗QS̃ [m0])|∆0q [−α]

∼=
⊕
α∈Z

⊕
S∈S

pHα(Rπ0∗QS̃ [m0])S|∆0q [−α]⊕
α∈Z

pHα(Rπ0∗QS̃ [m0])S |∆0q [−α]⊕
α∈Z

⊕
0<τ<q
0−adm.

pHα(Rπ0∗QS̃ [m0])∆τ |∆0q [−α].

(2.2.7)

By inductive hypothesis, for any 0-admissible τ with 0 < τ < q,

pHα(Rπ0∗QS̃ [m0])∆τ |∆0q
∼= Dδ0τ+α

0τ ⊗Ri0τ∗IC
•
∆τ

|∆0q

∼= Dδ0τ+α
0τ ⊗ i′∗qq ◦ i∗0q ◦Ri0τ∗IC•

∆τ

∼= Dδ0τ+α
0τ ⊗ i′∗qq ◦ i∗τq ◦ i∗0τ ◦Ri0τ∗IC•

∆τ

∼= Dδ0τ+α
0τ ⊗ IC•

∆τ
|∆0q

∼=
⊕
β≥0

Dδ0τ+α
0τ ⊗

(
Bβ
τq ⊗Q∆0q [mτ − β]

)
,

where functoriality and exactness of the pullback have been used, along with the
fact that i∗0τ ◦ i0τ∗ = id by [Ive86, p. 110]. Substitute this in isomorphism (2.2.7)
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and combine it with formula (2.2.2) so as to obtain

2k0q⊕
α=0

Aα+m0
0q ⊗Q∆0q [−α] ∼=

⊕
α∈Z

⊕
S∈S

pHα(Rπ0∗QS̃ [m0])S|∆0q [−α]⊕
α∈Z

Rα(IC•
S |∆0q)[−α]⊕

0<τ<q
0−adm.

⊕
α∈Z
β≥0

Dδ0τ+α
0τ ⊗Bβ+mτ

τq ⊗Q∆0q [−α− β].

It follows that, for every fixed γ ∈ Z,

Aγ+m0

0q ⊗Q∆0q
∼=
⊕
S∈S

pHγ+mq(Rπ0∗QS̃ [m0])S|∆0q⊕
Rγ(IC•

S |∆0q)⊕
α+β=γ

⊕
0<τ<q
0−adm.

Dδ0τ+α
0τ ⊗Bβ+mτ

τq ⊗Q∆0q .

(2.2.8)

Remember that it is enough to prove equation (2.2.6) for non-negative expo-
nents; that is, for any γ ≥ −mq. For such integers, Rγ(IC•

S |∆0q) = 0 because
the intersection cohomology complexes satisfy the support conditions and, as a
consequence, isomorphism (2.2.8) becomes

Aγ+m0

0q ⊗Q∆0q
∼=
⊕
S∈S

pHγ+mq(Rπ0∗QS̃ [m0])S|∆0q⊕
α+β=γ

⊕
0<τ<q
0−adm.

Dδ0τ+α
0τ ⊗Bβ+mτ

τq ⊗Q∆0q .

The category of perverse sheaves on ∆0q is semisimple, thus⊕
S∈S

pHγ+mq(Rπ0∗QS̃ [m0])S|∆0q

has S = ∆q as unique direct summand. Furthermore, it is a trivial local system
on ∆0q (see [Dim04, Proposition 2.5.1]); consequently, there are suitable vector
spaces for which (2.2.6) holds.

ii) Now that i) has been proved, formula (2.2.8), which holds by induction, can be
written as follows:

Aγ+m0

0q ⊗Q∆0q
∼=Dδ0q+γ+mq

0q ⊗Q∆0q ⊕Rγ(IC•
S |∆0q)⊕

α+β=γ

⊕
0<τ<q
0−adm.

Dδ0τ+α
0τ ⊗Bβ+mτ

τq ⊗Q∆0q .

In particular, Rγ(IC•
S |∆0q) is a trivial local system on ∆0q and the assertion

follows from [dCM09, Remark 1.5.1].
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2.2.3 Polynomial expressions

Given a topological space X, the Poincaré polynomial of X shall be denoted by

HX :=
∑
α≥0

dimHα(X) · tα.

In particular, when X = Gk(Cl), it is known that (see [CGM82, §5.2])

HGk(Cl) =
Pl

PkPl−k
,

where

Pα :=


0 if α < 0

1 if α = 0

h0 . . . hα−1 if α > 0

hβ :=

β∑
α=0

t2α ∀β ∈ Z.

Let S ′ ⊆ S be a Schubert variety, set ∆q := S ′
F and

a0q :=
∑
α∈Z

dimAα0qt
α, b0q :=

∑
α∈Z

dimBα
0qt

α.

Here, a0q is the Poincaré polynomial of the fibre F0q, while, due to the fact that
Ω∆q ⊆ ∆0q, b0q is one of the so-called Kazhdan-Lusztig polynomials, which have
been named after the mathematicians who defined them for the first time in [KL79]
and who related them to intersection cohomology groups in [KL80] (see also [BL00,
§6] and [dCM09, §4.4]).

Notice that a0q coincides with the Poincaré polynomial of the fibre of π0 at any
point of S ′ because such resolution takes into account only the conditions corre-
sponding to the vector spaces of F . Analogously, b0q coincides with the Kazhdan-
Lusztig polynomial of the pair (S,ΩS′) owing to formula (2.2.5). In other words, it
is not restrictive to work only with S-varieties in the study of the Poincaré polyno-
mials of the fibres of π0 and the Kazhdan-Lusztig polynomials.

Now, assume that S ′ = ∆q (i.e. it is an S-variety) and put

f0q :=
∑
α∈Z

dimDα
0qt

α g0q := f0qt
2d0q =

∑
α∈Z

dimDα
0qt

α+2d0q .

Remark 2.2.5 (Decomposition of Rπ0∗QS̃). All ingredients to describe Rπ0∗QS̃ as
the direct sum of more elementary objects are available. Indeed, the combination
of decomposition theorem 1.3.7 with Theorem 2.2.4 gives

Rπ0∗QS̃
∼=

⊕
α∈Z

0−adm. q

D
δ0q+α
0q ⊗ IC•

∆q
[− dimS − α]

∼=
⊕
α∈Z

0−adm. q

IC•
∆q
[− dimS − α]⊕ dimD

δ0q+α

0q ,

Among the above polynomials, the ones always explicit are the a0q.
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Proposition 2.2.6. [CFS22, Proposition 3.11].

a0q =
Pij1+qj1
Pij1Pqj1

·
ω∏
α=2

Pijα+qjα−ijα−1

Pijα−ijα−1
Pqjα

.

Proof. Recall that a0q =
∑

α dimHα(F0q) = HF0q . For any α ∈ {1, . . . , ω}, the
projection

F(ij1 , . . . , ijα ;Cij1+qj1 , . . . ,Cijα+qjα )

F(ij1 , . . . , ijα−1 ;Cij1+qj1 , . . . ,Cijα−1
+qjα−1 )

is a fibration with fibres

Gijα−ijα−1
(Cijα+qjα−ijα−1 ).

By Leray-Hirsch theorem [Hat02, Theorem 4D.1],

H•(F0q) ∼= H•(Gij1
(Cij1+qj1 ))⊗H•(Gij2−ij1 (C

ij2+qj2−ij1 ))

⊗ . . .⊗H•(Gijω−iω−1(C
ijω+qjω−ijω−1 )).

The assertion follows by taking the Poincaré polynomials.

A family of (Poincaré) polynomial expressions is going to be exhibited as a
consequence of Theorem 2.2.4. Notice that, if ∆τ and ∆σ are S-variety, it is possible
to define polynomials aτσ and bτσ by taking S := ∆τ and ∆q := ∆σ in the definitions
of a0q and b0q, respectively. Likewise, fτσ and gτσ can be defined when, in addition,
∆σ is a ∆τ -variety.

Corollary 2.2.7. [CFS22, Corollary 3.12]. Let ∆q be an S-variety. If ∆q = S,

a00 = g00 = b00 = 1,

otherwise

a0q = b0q + g0q +
∑

0<τ<q
0−adm.

g0τbτq.

Proof. Assume q ̸= 0. Theorem 2.2.4 asserts that

pHα(Rπ0∗QS̃ [m0])|∆0q
∼=
⊕

0≤τ≤q
0−adm.

Dδ0τ+α
0τ ⊗ IC•

∆τ
|∆0q

and
IC•

∆τ
|∆0q

∼=
⊕
β∈Z

Bβ
τq ⊗Q∆0q [mτ − β] ∼=

⊕
β∈Z

Bβ+mτ
τq ⊗Q∆0q [−β].
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Combining these results with formula (2.2.3), it follows⊕
α∈Z

A
α+m0−mq

0q ⊗Q∆0q [mq − α]

∼=
⊕
α∈Z

 ⊕
0≤τ≤q
0−adm.

Dδ0τ+α
0τ ⊗

⊕
β∈Z

Bβ+mτ
τq ⊗Q∆0q [−β]

 [−α],

which can be written as⊕
α≥−m0

Aα+m0
0q ⊗Q∆0q [−α] ∼=

⊕
α,β≥−m0

⊕
0≤τ≤q
0−adm.

Dδ0τ+α
0τ ⊗Bβ+mτ

τq ⊗Q∆0q [−α− β].

For any γ ≥ −m0,

Aγ+m0

0q ⊗Q∆0q
∼=
⊕
α+β=γ

⊕
0≤τ≤q
0−adm.

Dδ0τ+α
0τ ⊗Bβ+mτ

τq ⊗Q∆0q . (2.2.9)

When τ = 0, δ00 = 0 and

Dα
00 =

{
Q if α = 0,

0 otherwise.

Therefore ⊕
α+β=γ

Dδ00+α
00 ⊗Bβ+m0

0q ⊗Q∆0q
∼= Bγ+m0

0q ⊗Q∆0q .

On the other hand, when τ = q,

Bβ+mq
qq =

{
Q if β = −mq,

0 otherwise.

Therefore ⊕
α+β=γ

D
δ0q+α
0q ⊗Bβ+mq

qq ⊗Q∆0q
∼= D

δ0q+γ+mq

0q ⊗Q∆0q .

Taking into account these facts, isomorphism (2.2.9) becomes

Aγ+m0

0q ⊗Q∆0q
∼= Bγ+m0

0q ⊗Q∆0q ⊕D
δ0q+γ+mq

0q ⊗Q∆0q⊕
α+β=γ

⊕
0<τ<q
0−adm.

Dδ0τ+α
0τ ⊗Bβ+mτ

τq ⊗Q∆0q .

Put s = γ +m0 (≥ 0) and use the equality m0 −mτ − δ0τ = 2d0τ so as to have

As0q ⊗Q∆0q
∼= Bs

0q ⊗Q∆0q ⊕D
s−2d0q
0q ⊗Q∆0q⊕

α+β=s

⊕
0<τ<q
0−adm.

Dα−2d0τ
0τ ⊗Bβ

τq ⊗Q∆0q .
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From this formula it can be inferred that, for any s ≥ 0,

dimAs0q = dimBs
0q + dimD

s−2d0q
0q +

∑
α+β=s

∑
0<τ<q
0−adm.

dimDα−2d0τ
0τ dimBβ

τq,

If both sides are formally multiplied by ts and the sum over s is taken, the desired
expression is achieved:

a0q =
∑
s≥0

dimAs0qt
s

=
∑
s≥0

dimBs
0qt

s +
∑
s≥0

(dimD
s−2d0q
0q ts−2d0q)t2d0q

+
∑

0<τ<q
0−adm.

(∑
α≥0

dimDα−2d0τ
0τ tα−2d0τ

)(∑
β≥0

dimBβ
τqt

β

)
t2d0τ

= b0q + f0qt
2d0q +

∑
0<τ<q
0−adm.

f0τbτqt
2d0τ

= b0q + g0q +
∑

0<τ<q
0−adm.

g0τbτq.

Now, consider the case q = 0. First, a00 = 1 either by Proposition 2.2.6 or by the
fact that π0 : π

−1
0 (S◦) → S◦ is an isomorphism. Secondly, g00 = 1, being Dα

00 = Q
for α = 0 and 0 otherwise (as remarked in the preceding case). Lastly, b00 = 1, as
well, because all but the first coefficients of the Kazhdan-Lusztig polynomial are 0,
being IC•

S |S◦ [−m0] ∼= QS◦ by [GM83, Theorem p. 78, (a)].

2.3 Computation of certain Poincaré polynomi-

als

In this section, the theoretical results seen up to now are used so as to obtain an
iterative algorithm, named KaLu, for the computation of the polynomials g0q and
b0q (see Section 2.3.1). In Section 2.3.2, the fact that not all S-varieties contribute
to the decomposition of Rπ0∗QS̃ is highlighted.

2.3.1 KaLu, the iterative algorithm

From now on, all S-varieties are supposed to be described with respect to the essen-
tial flag F of S.

The polynomial expressions attained in Corollary 2.2.7 shall be written in the
form

g0q + b0q = R0q, (2.3.1)
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where
R0q = a0q −

∑
0<τ<q
0−adm.

g0τbτq, (2.3.2)

for any S-variety ∆q. The fact that the Poincaré polynomials a0q are explicit
is fundamental in the achievement of KaLu, described below. By the way, the
following functions need introducing:

Uβ :
∑
α≥0

cαt
α ∈ Z [t] 7→

∑
α≥β

cαt
α ∈ Z [t] ∀β ≥ 0,

Sym :
∑
α≥0

cαt
α ∈ Z [t] 7→ c0 +

∑
α≥1

cα(t
α + t−α) ∈ Z

[
t, t−1

]
,

t̃β :
∑
α≥0

cαt
α ∈ Z [t] 7→

∑
α≥0

cαt
α+β ∈ Z [t] ∀β ≥ 0.

Corollary 2.3.1. [CFS22, Corollary 4.1]. If ∆q ̸= S,{
g0q = Ũ0q(R0q)

b0q = R0q − g0q

where Ũ0q := t̃m0q ◦ Sym ◦ t̃−m0q ◦ Um0q and m0q := m0 −mq.

Proof. Theorem 2.2.4 states that the vector spaces Dα
0q are symmetric with respect

to the exponent δ0q; that is, the polynomials f0q are symmetric with respect to the
degree δ0q. Since g0q = f0qt

2d0q , these polynomials are symmetric, as well, but with
respect to the degree m0q := 2d0q + δ0q = m0 −mq. On the other hand, the vector
spaces Bα

0q were obtained by studying the intersection cohomology complexes IC•
S

locally; that is, their restrictions to the locally closed subsets ∆0q. Being IC•
S a

perverse sheaf, it satisfies, in particular, the support conditions, thus Bα
0q = 0 for

any α ≥ m0q.
Assume that g0τ and bτq are known for any 0 < τ < q; in other words, suppose

that R0q is known (when
∑ω

α=1 qjα = 1, R0q = a0q is given by Proposition 2.2.6).
The polynomial g0q can be obtained by R0q by deleting all terms of degree < m0q

and by making the new polynomial symmetric with respect to the term of degree
m0q. Formally, g0q = Ũ0q(R0q); indeed:

i) the function Um0q deletes the terms of degree < m0q of R0q;

ii) the function t̃−m0q is just multiplication by t−m0q ;

iii) the function Sym makes the obtained polynomial symmetric with respect to
the term of degree 0;

iv) the function t̃m0q shifts the polynomial so as to make it symmetric with respect
to the term of degree m0q.

Finally, b0q is obtained by equation (2.3.1); namely, b0q = R0q − g0q.
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The number m0q, which is nothing but the codimension of ∆q in S, plays an
important role in KaLu because of Corollary 2.3.1 and is easily calculated if in-
terpreted by means of Ferrer’s diagrams. In fact, from the remark at the end
of Section 2.1.2, it follows that m0q is exactly the area of the region between the
Ferrer’s diagrams of S and ∆q. In formulas,

m0q = m0 −mq =
k∑

α=1

(λqα − λSα).

Thanks to Proposition 2.2.6 and Corollaries 2.2.7 and 2.3.1, the algorithm
KaLu (see Algorithm 1) for the computation of the Kazhdan-Lusztig polynomi-
als is obtained. An implementation of KaLu in CoCoA5 is available at http:

//wpage.unina.it/carmine.sessa2/KaLu.

Algorithm 1 Algorithm for the computation of the polynomial b0q, where ∆q :=
S ′
F and S ′ ⊆ S. It also computes all the polynomials bτητ , with both τ and η

0-admissible and τ < η, and gτη if η is τ -admissible, as well.

1: KaLu(I,J , k, l, I ′,J ′)
Input: I,J , I ′,J ′ vectors of integers of the same length and k, l integers such that

I,J , k, l and I ′,J ′, k, l satisfy conditions (2.1.1) (hence, determine Schubert
varieties S, S ′) and S ⊆ S ′.

Output: The polynomial b0q.
2: if S ′ = S then
3: b0q := 1;
4: else
5: q := vector such that ∆q = SF ′ ;
6: T := [0] ∪ [τ : τ is 0-admissible and τ < q] ∪ [q];
7: for µ = 1, . . . , d(0, q) do
8: for (τ, σ) ∈ T × T such that τ < σ and d(σ − τ) = µ do
9: if σ is τ -admissible then

10: Rτσ := aτσ −
∑
τ<η<σ
τ−adm.

gτηbηq;

11: gτσ := Ũτσ(Rτσ);
12: bτσ := Rτσ − gτσ;
13: else
14: aτσ := aτστ ; bτσ := bτστ ;
15: end if ;
16: end for
17: end for
18: end if
19: return b0q

Proposition 2.3.2. [CFS22, Proposition 4.2]. Let S ′ ⊆ S be given by means of
the integers k, l and the vectors of integers I, J and I ′, J ′, respectively, standing
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for the conditions and the dimensions of the vector spaces of the flags representing
such varieties. KaLu(I,J , k, l, I ′,J ′) returns b0q, where q is such that ∆q := S ′

F .
In addition, whenever τ and η are 0-admissible and such that τ < η, it computes
the polynomials bτητ and, if η is τ -admissible, gτη.

Proof. This algorithm deals with a finite number of objects that are described by
a finite number of data each, hence the termination follows straightforwardly. For
the correctness, the command lines have to be analysed.

Impose that all Schubert varieties involved in the computation are represented
with respect to the essential pair (F , I) and satisfy the relations of Remark 2.1.7.
Let ω be the length of I.

If S ′ ̸= S, the algorithm considers ∆q := S ′
F and computes the list T of all the

ω-tuples τ < q that are 0-admissible (line 6). Observe that if τ belongs to T and
another ω-tuple σ is τ -admissible, then σ is 0-admissible, too, and, consequently,
belongs to T (the vice versa does not always hold).

Then, for every µ between 1 and d(0, q), the algorithm considers all pairs (τ, σ)
of elements in T such that d(σ, τ) = µ (lines 7-8). If σ is τ -admissible, then Rτσ, gτσ
and hence bτσ are computed by the formulae of Corollary 2.3.1, being the explicit
computation of aτσ possible thanks to Proposition 2.2.6 (lines 10-12). Note that
the algorithm must consider the values of µ in increasing order (line 7) in order to
apply formula (2.3.2).

If σ is not τ -admissible, the algorithm considers ∆στ in place of ∆σ. In this case,
only the polynomials aτσ = aτστ and bτσ = bτστ are needed (line 15), where equali-
ties hold as observed in Section 2.2.3. As pointed out at the end of Section 2.1.3,
the distance between ∆στ and ∆τ is lower than the one between ∆σ and ∆τ , so
aτστ and bτστ have already been computed.

When µ reaches the value d(0, q), the pair (0, q) is finally considered and b0q
can be computed. Indeed, at that moment, all the necessary data to apply for-
mula (2.3.2) to this pair have been obtained and stored.

2.3.2 Relevant varieties

Here is again the definition of relevant variety, given with the notations introduced
so far.

Definition 2.3.3. An S-variety ∆q ̸= S is said to be π0-relevant if and only if
m0q ≤ 2 dimF0q.

According to Theorem 2.2.4, the set of supports of π0 coincides with the one of S-
varieties; nonetheless, it does not mean that all such varieties ∆q give a contribution
in the decomposition of Rπ0∗QS̃ . For instance, if q is such that m0q > 2 dimF0q, ∆q

does not provide any contribution in the decomposition. It might seem reasonable
to expect that the converse occurs when ∆q is π0-relevant, yet, KaLu shows that
this is not always the case. In Table 2.1 there are some examples of π0-relevant
varieties whose contribution in the decomposition is null; i.e. g0q = 0. Richer lists
are available in the ancillary files at http://wpage.unina.it/carmine.sessa2/

KaLu/Tests_Relevant_Varieties.
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ω I = [ij1 , . . . , iν ] k J = [j1, . . . , jν ] l q = [q1, . . . , qν ]
2 [3, 4] 5 [6, 8] 11 [2, 1]

3 [3, 4, 5] 6 [7, 9, 11] 13
[1, 0, 1]
[1, 2, 1]
[3, 2, 1]

4 [3, 4, 5, 6] 7 [8, 10, 12, 14] 16

[1, 0, 1, 0]
[1, 0, 0, 1]
[1, 1, 0, 1]
[1, 0, 1, 1]
[2, 1, 0, 1]
[1, 2, 1, 0]
[1, 2, 1, 1]
[1, 1, 2, 1]
[3, 2, 1, 0]
[2, 1, 2, 1]
[1, 2, 2, 1]
[3, 2, 1, 1]
[3, 2, 2, 1]
[2, 3, 2, 1]
[3, 3, 2, 1]

Table 2.1: Here is, for ω = 2, 3, 4, a set of input I, k, J, l for which there are π0-
relevant varieties such that g0q = 0.
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At the moment, the explanation of the geometrical reason behind this phe-
nomenon is an open problem; nevertheless, it is immediate to see that KaLu gives
g0q = 0 if m0q > degR0q because g0q is obtained by symmetrizing the polynomial
R0q with respect to the degree m0q. It would be also interesting to understand if
there exists a characterization of the π0-relevant varieties which actually contribute
to the decomposition.

2.4 The case of Special Schubert varieties

In this section, all results proved so far are restated for special Schubert varieties.
The reason why it is worth spending time on these varieties is that the decomposi-
tion theorem becomes explicit for them (see Theorem 2.4.3) and, consequently, the
corresponding polynomial expressions become identities (see Corollary 2.4.4).

In Section 2.4.1, several notations are set in order to restate Theorem 2.2.4 for
special Schubert varieties. As an application of this result, two classes of polynomial
identities are obtained. The former, in Section 2.4.2, is the subclass of the poly-
nomial expressions seen in Section 2.2.3 related to special Schubert varieties. The
latter, in Section 2.4.3, was proved only in this special case and involves the inter-
section cohomology groups (see Definition 2.4.5). The section is concluded with a
partial verification of the last class of identities by means of algebraic manipulation
only.

2.4.1 Restatement of Theorem 2.2.4

Definition 2.4.1. Let F be a j-dimensional vector subspace of Cl and let i and
k be non-negative integers such that1 0 < i < k ≤ j < l and k − i < l − j. The
special Schubert variety associated to (F : F, I := (i)) is the subvariety of
Gk(Cl) given by

S := {V ∈ Gk(Cl) : dim(V ∩ F ) ≥ i}.

In this case, all S-varieties are either the Grassmannian ∆k−i := Gk(F ) or
special Schubert varieties

∆p := {V ∈ Gk(Cl) : dim(V ∩ F ) ≥ i+ p},

with p ∈ {0, . . . , k − i − 1}, associated to the pairs (F , Ip := (i + p)), which are
always essential.

From now on, assume that a special Schubert variety S, associated to the essen-
tial pair (F , I), has been chosen. For the purposes of this section, it will be enough
to consider S-varieties only.

There are two particular resolution of singularities for S:

π0 : S̃ := {(Z, V ) ∈ Gi(F )×Gk(Cl) : Z ⊂ V } 7→ V ∈ S,
ξ0 : DS := {(V, U) ∈ Gk(Cl)×Gk+j−i(Cl) : V ⊂ U} 7→ V ∈ S.

1The assumption k ≤ j is imposed only to make the polynomial identities easier to handle
with. Indeed, in the general case, there is no condition k ≤ jα.
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The map π0 has already been introduced in Section 2.2.1, while the ξ0 will be de-
scribed for any Schubert variety in Section 2.5.1. Their fibres and the corresponding
Poincaré polynomials are easy to write; indeed, if ∆q is an S-variety and V ∈ ∆0q,
then

F0q := π−1
0 (V ) ∼= Gi(V ∩ F ) ∼= Gi(Ci+q),

G0q := ξ−1
0 (V ) ∼= {U ∈ Gk+j−i(Cl) : V + F ⊆ U} ∼= Gq(Cl−k−j+i+q)

and (see §2.2.3 and 2.5.1)

a0q := HF0q =
Pi+q
PiPq

, HG0q =
Pl−k−j+i+q
Pl−k−j+iPq

.

Furthermore, as a consequence of Proposition 2.5.6 either π0 or ξ0 or both are small.
Namely,

Corollary 2.4.2. ξ0 is small if and only if l − j ≤ k. Analogously, π0 is small if
and only if l − j ≥ k. In particular, both resolutions are small if equality holds.

Before the adaptation of Theorem 2.2.4 to special Schubert varieties, which
merges [Fra20, Remark 3.3 and Theorem 3.5], recall the notations given in §2.2.2:

mq := dim∆q = (l − k)(k − i− q) + (j − i− q)(i+ q),

k0q := dimF0q = q · i,
d0q := m0 −mq − k0q = q(l − k − j + i− q),

δ0q := k0q − d0q = −q(l − k − j − q).

Theorem 2.4.3. If l − j ≥ k,

i) Rπ0∗QS̃ [m0] ∼= IC•
S ;

ii) for any S-variety ∆q,

IC•
S [−m0]|∆0

q
∼= Rπ0∗QS̃ |∆0

q
∼=
⊕
α≥0

Hα(Gi(Ci+q))⊗Q∆0
q
[−α].

Instead, if l − j < k,

i’) for any α ∈ Z,

pHα(Rπ0∗QS̃ [m0]) ∼=
k−i⊕
q=0

Hδ0q+α(Gq(Ck−l+j))⊗ IC•
∆q
;

ii’) for any S-variety ∆q,

IC•
S [−m0]|∆0

q
∼=
⊕
α≥0

Hα(Gq(Cl−j−k+i+q))⊗Q∆0
q
[−α].

For the original proof of the theorem, see [Fra20, Theorem 3.5].
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2.4.2 Local polynomial identities

Let ∆q be an S-variety. In Section 2.2.3, the polynomials

g0q :=
∑
α∈Z

dimDα
0qt

α+2d0q , b0q :=
∑
α∈Z

dimBα
0qt

α

were defined. In the case of special Schubert varieties, they are explicit because the
vector spaces Dα

0q and B
α
0q are known; indeed, if l − j ≥ k,

Dα
0q =

{
0 if q ̸= 0 or q = 0 and α ̸= 0,

Q if q = 0 and α = 0.
Bα

0q = Hα(Gi(Ci+q)) ∀α

whereas, if l − j < k,

Dα
0q = Hδ0q+α(Gq(Ck−l+j)) ∀α, Bα

0q = Hα(Gq(Cl−j−k+i+q)) ∀α.

As a consequence, the polynomial expressions of Corollary 2.2.7, which had been
proven for special Schubert varieties beforehand (see [CFS21, Theorem 2]), take
the following form.

Corollary 2.4.4 (Local polynomial identities for special Schubert vari-
eties). If ∆q = S,

a00 = g00 = b00 = 1,

otherwise,

a0q =

{
b0q if l − j ≥ k

b0q + g0q +
∑q−1

τ=1 g0τbτq if l − j < k

In particular, if ∆q ̸= S and l − j < k, then

Pi+q
PiPq

=

q−1∑
τ=1

(
Pk−l+j

PτPk−l+j−τ
· Pl−j−k+i+q
Pq−τPl−j−k+i+τ

· t2d0τ
)

(2.4.1)

+
Pk−l+j

PqPk−l+j−q
· t2d0q + Pl−j−k+i+q

PqPl−j−k+i
. (2.4.2)

Proof. For the original proof, see [CFS21, Theorem 2].
Since Corollary 2.2.7 holds for all Schubert varieties in a Grassmannian, the

only thing which needs proving is formula 2.4.1. Since

b0q = HG0q =
Pl−k−j+i+q
Pl−k−j+iPq

,

it suffices to substitute all terms in the equality

a0q = b0q + g0q +

q−1∑
τ=1

g0τbτq.
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2.4.3 Global polynomial identities

Another class of polynomial identities was obtained for special Schubert variety
in [CFS21, Theorem 3] as an application of [Fra20, Theorem 3.6]. In order to
understand the formulas, it is better to recall the definition of hypercohomology
and set some notations.

Definition 2.4.5. Let F• be a complex of sheaves on a topological space X and
let F• → I• be an injective resolution of F•. For any α ∈ Z, the α-th hyperco-
homology group of F• is

Hα(X,F•) := Hα(X, I•) = Hα(Γ(X, I•)).

When F• := IC•
X [− dimX], the definition of the α-th intersection cohomology

group of X
IHα(X) := Hα(X, IC•

X [− dimX])

is recovered (see [GM83, §2.1]) and thePoincaré polynomial of the intersection
cohomology groups of X is

IHX :=
∑
α∈Z

dim IHα(X) · tα.

Corollary 2.4.6. Let S be a special Schubert variety. If l − j ≥ k, then

IHS = HS̃ ;

otherwise, if l − j < k, then

HS̃ = IHS +
k−i∑
q=1

HGq(Ck−l+j) · IH∆q · t2d0q , (2.4.3)

which can be written in terms of Poincaré polynomials as follows:

PjPl−i
PiPj−iPk−iPl−k

=
Pl−jPk+j−i

Pk−iPl−j−k+iPkPj−i
+

+

min{k−i,k−l+j}∑
q=1

Pk−l+jPl−jPk+j−i−q
PqPk−l+j−qPk−i−qPl−j−k+i+qPkPj−i−q

t2d0q .

Proof. For the original proof, see [CFS21, Theorem 3].
If l − j ≥ k, it suffices to apply hypercohomology to the isomorphism in Theo-

rem 2.4.3 i). Indeed, for any α ∈ Z,

IHα(S) = Hα(S, IC•
S [−mp]) ∼= Hα(S, Rπ0∗QS̃)

= Hα(Γ(S, π0∗J•)) = Hα(Γ(S̃, J•)) = Hα(S̃,QS̃)
∼= Hα(S̃).
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Suppose l − j < k. Combine the decomposition theorem 1.3.7 with Theo-
rem 2.4.3 i’) so as to obtain

Rπ0∗QS̃ [m0] ∼=
⊕
α∈Z

k−i⊕
q=0

Hδ0q+α(Gq(Ck−l+j))⊗ IC•
∆q
[−α],

that is (remember that m0 −mq − δ0q = 2d0q),

Rπ0∗QS̃
∼= IC•

S [−m0]
⊕
α∈Z

⊕
k−i⊕
q=1

Hδ0q+α(Gq(Ck−l+j))⊗ IC•
∆q
[−m0 − α]

∼= IC•
S [−m0]⊕

⊕
α∈Z

k−i⊕
q=1

Hα−2d0q(Gq(Ck−l+j))⊗ IC•
∆q
[−mq − α].

Apply hypercohomology to both sides; for any β ∈ Z,

Hβ(Rπ0∗QS̃)
∼= Hβ(IC•

S [−m0])⊕
α∈Z

k−1⊕
q=1

Hα−2d0q(Gq(Ck−l+j))⊗Hβ−α(IC•
∆q

[−mq]).
(2.4.4)

By Definition 2.4.5,
IHβ(S) = Hβ(IC•

S [−m0]),

while

Hβ(Ri0q∗IC
•
∆q
) = Hβ(Γ(S, i0q∗I•)) =
= Hβ(Γ(i−1

0q (S), I•)) = Hβ(Γ(∆q, I
•)) = Hβ(IC•

∆q
),

where IC•
∆q

→ I• is an injective resolution of IC•
∆q
. Similarly,

Hβ(Rπ0∗QS̃) = Hβ(Γ(S, Rπ0∗QS̃)) = Hβ(Γ(S, π0∗J•)) =

= Hβ(Γ(π−1
0 (S), J•)) = Hβ(Γ(S̃, J•)) =

= Hβ(S̃,QS̃)
∼= Hβ(S̃),

where QS̃ → J• is an injective resolution of QS̃ . Substitute in formula 2.4.4 in
order to obtain

Hβ(S̃) ∼= IHβ(S)⊕
⊕
α∈Z

(
k−i⊕
q=1

Hα−2d0q(Gq(Ck−l+j))⊗ IHβ−α(∆q)

)
.

Formula (2.4.3) is attained by taking the dimensions of the vector spaces appearing
in the last isomorphism, by multiplying both sides of the new equality by tβ and
by taking the sum over β.

The last step is writing all the terms by means of the Poincaré polynomials of
suitable Grassmannians. The Leray-Hirsch theorem (see [Voi02, Theorem 7.33])
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implies that S̃ has the same Poincaré polynomial as Gi(F )×Gk−i(Cl−i). Thus, the
left-hand side is

HS̃ = HGi(F )×Gk−i(Cl−i) = HGi(F ) ·HGk−i(Cl−i).

In addition,

IHα(S) = Hα(S, IC•
S [−m0]) = Hα(S, Rξ0∗QDS ) =

= Hα(DS) ∼=
⊕
β∈Z

Hβ(Gk−i(Cl−j))⊗Hα−β(Gk(Ck+j−i)),

where Rξ0∗QDS
∼= IC•

S [−m0] is due to [GM83, Corollary §6.2], since l − j < k
is equivalent to the smallness of ξ0, and the last isomorphism is a combination of
Leray-Hirsch theorem with Künneth formula. Then,

IHS = HGk−i(Cl−j)×Gk(Ck+j−i) = HGk−i(Cl−j) ·HGk(Ck+j−i).

Now,

HS̃ =
Pj

PiPj−i
· Pl−i
Pk−iPl−k

, IHS =
Pl−j

Pk−iPl−j−k+i
· Pk+j−i
PkPj−i

and

HGq(Ck−l+j) =
Pk−l+j

PqPk−l+j−q
,

hence formula (2.4.3) becomes

PjPl−i
PiPj−iPk−iPl−k

=
Pl−jPk+j−i

Pk−iPl−j−k+iPkPj−i
+

+

min{k−i,k−l+j}∑
q=1

Pk−l+jPl−jPk+j−i−q
PqPk−l+j−qPk−i−qPl−j−k+i+qPkPj−i−q

t2d0q .

An explicit inductive algorithm for the computation of Poincaré polynomials of
the intersection cohomology of special Schubert varieties was obtained in passing.
Indeed, when S = Gk(Cl), IHS = HS̃ is explicit, whereas, when p < k − i, IHS
is obtained inductively by formula (2.4.3). This algorithm can be described by the
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following equality:

IHS
IH∆1

IH∆2

...
IH∆k−i−1

IH∆k−i


=



1 gk−i+1,k−i gk−i+1,k−i−1 . . . gk−i+1,1

0 1 gk−i,k−i−1 . . . gk−i,1
0 0 1 . . . gk−i−1,1
...

...
...

. . .
...

0 0 0 . . . g21
0 0 0 . . . 1



−1 

HS
H∆1

H∆2

...
H∆k−i−1

H∆k−i



=
k−i∑
α=0

(−1)α



0 gk−i+1,k−i gk−i+1,k−i−1 . . . gk−i+1,1

0 0 gk−i,k−i−1 . . . gk−i,1
0 0 0 . . . gk−i−1,1
...

...
...

. . .
...

0 0 0 . . . g21
0 0 0 . . . 0



α 

HS
H∆1

H∆2

...
H∆k−i−1

H∆k−i


2.4.4 Global identities from a symbolic point of view

The polynomial identity of Corollary 2.4.6 symbolically makes sense, i.e. the de-
nominators do not vanish, under the weaker assumptions 0 ≤ i ≤ k ≤ j and
0 ≤ k−i ≤ l−j ≤ k, which are equivalent to 0 ≤ i ≤ j and 0 ≤ k−i ≤ l−j ≤ k ≤ j.

Set r := k − i and c := l − j. In the few further cases r = 0, c = r + i, i = 0 or
i = j, the polynomial identity trivially holds. For the remaining case c = r, there
are some experimental evidences verifying the polynomial identity for the 4-tuples
(i, j, c, r), as c = r, i and j vary, respectively, through [2, 20], [1, 20] and [r + i, 40],
by direct computations performed in CoCoA5 (see [ABR]).

A proof of formula (2.4.3) is going to be provided by a mere algebraic manipula-
tion when 2 = min{k− i, k− c}, which is the first case with a significant geometric
meaning.

By direct computations, the validity of formula (2.4.3) has been verified for all
4-tuples (i, j, c, r) as i, r, j and c run through [1, 20], [2, 20], [r+ i, 40] and [r+1, r+
i−1], respectively. At http://wpage.unina.it/cioffifr/PolynomialIdentity,
some CoCoA5 functions which perform such computations are available.

Case 2 = k - i ≤ k - c With the same notation as Corollary 2.4.6, formula (2.4.3)
becomes, when p = 0,

PjPj+c−i
PiPj−iP2Pj+c−i−2

=
Pi−c+2PcPj+1

Pi−c+1Pc−1Pi+2Pj−i−1

+
PcPj+2

P2Pc−2Pi+2Pj−i
· t2(c−1)

+
Pi−c+2Pj

P2Pi−cPi+2Pj−i−2

· t4c
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where only the parameters i, j, c appear. Note that the above formula does make
sense for every j ≥ i+ 2 and c ≥ 2. Put

H :=
PjPj+c−i

PiPj−iP2Pj+c−i−2

F :=
PcPj+2

P2Pc−2Pi+2Pj−i

F1 :=
Pi−c+2PcPj+1

Pi−c+1Pc−1Pi+2Pj−i−1

· t2(c−1) F2 :=
Pi−c+2Pj

P2Pi−cPi+2Pj−i−2

· t4c.

Since Pα/Pα−β = hα−1 . . . hα−β for every α > β ≥ 0,

F =
hc−2hc−1Pj+2

h1Pi+2Pj−i

and

H =
hj+c−i−2hj+c−i−1hihi+1

hjhj+1hc−2hc−1

· F F1 =
h1hi−c+1hj−i−1

hj+1hc−2

· t2(c−1) · F

F2 =
hi−chi−c+1hj−i−2hj−i−1

hc−2hc−1hjhj+1

· t4c · F

Hence, letting

F (i, j, c) :=
hj+c−i−2hj+c−i−1hihi+1

hjhj+1hc−2hc−1

− h1hi−c+1hj−i−1

hj+1hc−2

· t2(c−1)

− hi−chi−c+1hj−i−2hj−i−1

hc−2hc−1hjhj+1

· t4c,

the identity at the beginning of the paragraph holds if and only if F (i, j, c) = 1.
Observe that F (i, j, c) does make sense for every c ≥ 2 and for every positive
integers i, j.
Caution. In the following, the equality t2αhβ = hα+β − hα−1, which holds for every
α, β ≥ 0, shall be tacitly applied.

Equality F (i, j, c) = 1 shall be proved in two steps.
Step 1. F (i, j, 3) = 1 for any i and j with j ≥ i. First of all, notice that

F (i, j, 3) =
hihi+1hj−i+1hj−i+2

hjhj+1P3

− hi−2hj−i−1

hj+1

· t4

− hj−i−2hj−i−1hi−2hi−3

P3hjhj+1

· t12.

Proceed by induction on i. The base step is i = 2, although i ≥ c = 3 is assumed.
In this case,

F (2, j, 3) =
h2h3hjhj−1

hjhj+1h1h2
− hj−3h1
hj+1h1

· t4 = h3hj−1

hj+1h1
− (hj−1 − h1)h1

h1hj+1

=
(h3 − h1)hj−1 + h21

h1hj+1

=
t4(1 + t2)hj−1 + h21

h1hj+1

=
hj+1 − h1 + h1

hj+1

= 1.

47



Now, suppose F (i− 1, j, 3) = 1 and prove that F (i, j, 3)− F (i− 1, j, 3) is null, for
every i > 2.

F (i, j, 3)− F (i− 1, j, 3) =
hihj−i+2(hi+1hj−i+1 − hi−1hj−i+3)

hjhj+1P3

− hjP3(hi−2hj−i−1 − hi−3hj−i)t
4

hjhj+1P3

− hj−i−1hi−3(hj−i−2hi−2 − hj−ihi−4)t
12

hjhj+1P3

.

Therefore, F (i, j, 3)− F (i− 1, j, 3) = 0 if and only if G0 +G1 +G2 = 0, where

G0 := hihj−i+2(hi+1hj−i+1 − hi−1hj−i+3),

G1 := −t4hjP3(hi−2hj−i−1 − hi−3hj−i),

G2 := −t12hj−i−1hi−3(hj−i−2hi−2 − hj−ihi−4).

Being hi+1 = t4hi−1 + h1 and hj−i+3 = t4hj−i+1 + h1,

G0 = hihj−i+2h1(hj−i+1 − hi−1).

Moreover hi−2 = t2hi−3 + h0, hj−i = t2hj−i−1 + h0, therefore t
4hi−3 = hi−1 − h1,

t4hj−i−1 = hj−i+1 − h1 and

G1 = hjP3(hi−1 − hj−i+1).

Lastly, notice that hj−i = t4hj−i−2 + h1 and hi−2 = t4hi−4 + h1, thus

G2 = t6hj−i−1hi−3h1(hi−1 − hj−i+1).

In conclusion,

G0 +G1 +G2 = h1(hi−1 − hj−i+1)(hihj−i+2 − hjh2 − t6hj−i+1hi−3) = 0.

Step 2. F (i, j, c) = 1 for any i, j, c with j ≥ i.
Proceed by induction on c. The base step is c = 3, but F (i, j, 3) = 1 has

just been shown. Hence, suppose F (i, j, c − 1) = 1 for c > 3 and show that
F (i, j, c)− F (i, j, c− 1) = 0.

F (i, j, c)− F (i, j, c− 1) =

hj+c−i−2hj+c−i−1hihi+1

hjhj+1hc−2hc−1

− hj+c−i−3hj+c−i−2hihi+1

hjhj+1hc−3hc−2

− h1hi−c+1hj−i−1

hj+1hc−2

· t2(c−1) +
h1hi−c+2hj−i−1

hj+1hc−3

· t2(c−2)

− hi−chi−c+1hj−i−2hj−i−1

hc−2hc−1hjhj+1

· t4c + hi−c+1hi−c+2hj−i−2hj−i−1

hc−3hc−2hjhj+1

· t4(c−1).
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Therefore, F (i, j, c)− F (i, j, c− 1) = 0 if and only if Q0 +Q1 +Q2 = 0, where

Q0 := hj+c−i−2hj+c−i−1hihi+1hc−3 − hj+c−i−3hj+c−i−2hihi+1hc−1,

Q1 := −t2(c−1)h1hi−c+1hj−i−1hjhc−1hc−3

+ t2(c−2)h1hi−c+2hj−i−1hjhc−1hc−2,

Q2 := −t4chi−chi−c+1hj−i−2hj−i−1hc−3

+ t4(c−1)hi−c+1hi−c+2hj−i−2hj−i−1hc−1.

Being hj+c−i−1 = t4hj+c−i−3 + h1 and t4hc−3 = hc−1 − h1, then

Q0 = hj+c−i−2h1hihi+1(hc−3 − hj+c−i−3) = −t2(c−2)hj+c−i−2h1hihi+1hj−i−1.

Moreover, t2(c−1)hi−c+1 = hi − hc−2 and t2(c−2)hi−c+2 = hi − hc−3, therefore

Q1 = t2(c−2)h1hihjhc−1hj−i−1.

Lastly, t4hi−c = hi−c+2 − h1, thus

Q2 = t4(c−1)hi−c+1hj−i−2hj−i−1((hi−c+2 − h1)hc−3 + hi−c+2hc−1).

Note that Q0 +Q1 = 0 = Q2 if either j = i or j = i + 1. So, the less obvious case
j > i+ 1 is left. Observe that

Q1 +Q0 = t2(c−2)h1hihj−i−1(hjhc−1 − hi+1hj+c−i−2)

= t2(c−2)h1hihj−i−1hj−i−2(hc−1 − hi+1)

= −t2(c−2)h1hihj−i−1hj−i−2t
2chi−c+1.

The proof is over because

Q1 +Q0 +Q2

= t4(c−1)hi−c+1hj−i−2hj−i−1(−h1hi + (hi−c+2 − h1)hc−3 + hi−c+2hc−1)

= t4(c−1)hi−c+1hj−i−2hj−i−1hi−c+2(t
2(c−1) + t2(c−2) − h1t

2(c−2)) = 0.

Case 2 = k - c < k - i In this case r + i = k = c + 2, l = j + c, c = r + i− 2
and, for p = 0, the global polynomial identity becomes

PjPj+r−2

PiPj−iPrPj−2

=
Pr+i−2

PrPi−2

Pr+j
Pr+iPj−i

+
P2Pr+i−2Pr+j−1

Pr−1Pi−1Pr+iPj−i−1

· t2(i−1)

+
P2Pr+i−2Pr+j−2

P2Pr−2PiPr+iPj−i−2

· t4i,

where only the parameters i, j, r appear. Note that this formula does make sense
for every r ≥ 2 and 2 ≤ i ≤ j − 2. Let

K :=
PjPj+r−2

PiPj−iPrPj−2

E :=
Pr+i−2

PrPi−2

Pr+j
Pr+iPj−i

E1 :=
P2Pr+i−2Pr+j−1

Pr−1Pi−1Pr+iPj−i−1

· t2(i−1) E2 :=
P2Pr+i−2Pr+j−2

P2Pr−2PiPr+iPj−i−2

· t4i.
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As in the previous case,

K =
hj−1hj−2hr+i−1hr+i−2

hi−1hi−2hr+j−1hr+j−2

· E

E1 =
hr−1h1hj−i−1hi−1hr+j−2

hr+j−1hi−2hi−1hr+j−2

· t2(i−1) · E

E2 =
hr−2hr−1hj−i−2hj−i−1

hr+j−2hr+j−1hi−2hi−1

· t4i · E.

Hence, letting

E ′(i, j, r) :=
hj−1hj−2hr+i−1hr+i−2

hi−1hi−2hr+j−1hr+j−2

− hr−1h1hj−i−1hi−1hr+j−2

hr+j−1hi−2hi−1hr+j−2

· t2(i−1) − hr−2hr−1hj−i−2hj−i−1

hr+j−2hr+j−1hi−2hi−1

· t4i,

the formula at the beginning of the paragraph holds if and only if E ′(i, j, r) = 1.
Observe that E ′(i, j, r) does make sense for all integers j ≥ i ≥ 2 and r ≥ 0. It
is straightforward to check that E ′(i, j, 0) = 1, so assume r > 0 and prove that
E ′(i, j, r)− E ′(i, j, r − 1) = 0. Arguing as in the case k − i = 2, put

H0 := hr+j−3hj−1hj−2hr+i−1hr+i−2 − hr+j−1hj−1hj−2hr+i−2hr+i−3

H1 := t2(i−1)hr+j−1hr−2h1hj−i−1hi−1hr+j−3

− t2(i−1)hr+j−3hr−1h1hj−i−1hi−1hr+j−2

H2 := t4ihr+j−1hr−3hr−2hj−i−2hj−i−1 − t4ihr+j−3hr−2hr−1hj−i−2hj−i−1

so that the thesis becomes H0 +H1 +H2 = 0.
Apply the following replacements to H0, in the given order: hr+i−1 = t4hr+i−3+

h1; hr+j−1 = t4hr+j−3 + h1; hr+j−2 − hr+i−2 = t2(r+i−2)hj−i−1. Hence,

H0 = hj−1hj−2hr+i−2h1t
2(r+i−2)hj−i−1.

Perform the following substitutions in H1, in the given order. First, hr+j−1 =
t2hr+j−2 + h0 and hr−1 = t2hr−2 + h0, then hr−2 − hr+j−2 = −t2(r−1)hj−1. Thus,

H1 = t2(i−1)hr+j−3hj−i−1hi−1(−t2(r−1)hj−1)h1.

Do the following changes in H2, in the given order. First, hr+j−1 = t4hr+j−3 + h1
and hr−1 = t4hr−3 + h1, then hr−3 − hr+j−3 = −t2(r−2)hj−1. Consequently,

H2 = −t2it2(r+i−2)hr−2hj−i−2hj−i−1h1hj−1.

Summing up,

H0 +H1 +H2 =

t2(r+i−2)h1hj−1hj−i−1(hj−2hr+i−2 − hr+j−3hi−1 − t2ihr−2hj−i−2).

Being hj−2 = t2(j−i−1)hi−1 + hj−i−2 and hr+j−3 = t2(j−i−1)hr+i−2 + hj−i−1,

H0 +H1 +H2 = t2(r+i−2)h1hj−1hj−i−1hj−i−2(hr+i−2 − hi−1 − t2ihr−2 = 0.
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2.5 Examples

In Section 2.5.1, some cases in which the Kazhdan-Lusztig polynomials are explicit
and immediate to determine are exhibited, while, in Section 2.5.2, there are a
few examples of Ferrer’s diagrams, each of which stresses out certain properties of
Schubert varieties.

2.5.1 Smallness and polynomial identities

Definition 2.5.1. A resolution of singularities χ : X → Y , is said to be small if
and only if

codim{y ∈ Y : dimχ−1(y) ≥ α} > 2α ∀α > 0.

The smallness of the resolution χ implies that IC•
Y

∼= Rχ∗QX [dimY ] (see
[GM83, Corollary, §6.2]). In particular, when Y := S is a Schubert variety, the
previous isomorphism gives

Hα(IC•
S)V

∼= Hα+dimS(χ−1(V )) ∀V ∈ S;

and, if V ∈ ∆0
q, with ∆q an S-variety, the Kazhdan-Lusztig polynomial correspond-

ing to S and ∆q coincides with the Poincaré polynomial of the fibre χ−1(V ) (see
[dCM09, Theorem 4.4.7], [BL00, Theorem 9.1.3]).

For this reason, it would be useful to have small resolutions so as to speed up
the computation of the Kazhdan-Lustig polynomials. The problem of finding such
maps was successfully tackled with in [Zel83] by Zelevinskii, who proved how to
construct small resolutions by iteration on the length of the essential flag F of
a Schubert variety (actually, on the number of corners in its Ferrer’s diagram).
Nevertheless, only the maps π0, defined in Corollary 2.2.3, along with a new class
of resolutions ξ0 shall be considered here because they have an explicit description
and, as it will be soon proved, there is a straightforward way to determine whether
they are small.

Let S be a Schubert variety associated to the essential pair (F , I).

Proposition 2.5.2.

DS :=

{
(V, U1, . . . , Uω) ∈ Gk(Cl)×Gk+j1−i1(Cl)× . . .×Gk+jω−iω(Cl)

s.t. U1 ⊂ . . . ⊂ Uω ∧ Uα ⊇ V + Fjα , α = 1, . . . , ω

}
is a smooth variety.

Proof. Consider the trivial bundle Cl over Gk+jω−iω(Cl) and its pullback with re-
spect to the inclusion Gk−iω(Cl/Fjω) ↪→ Gk+jω−iω(Cl):

Sω Cl

Gk−iω(Cl/Fjω) Gk+jω−iω(Cl)
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If ω = 1, DS coincides with the Grassmannian k-plane bundle of Sω. If ω > 1, take
the Grassmannian (k + jω−1 − iω−1)-plane bundle of Sω

Gk+jω−1−iω−1(Sω)
∼=
{
(Uω−1, Uω) ∈ Gk+jω−1−iω−1(Cl)×Gk+jω−iω(Cl)

s.t. Uω−1 ⊂ Uω ∧ Fjω ⊂ Uω

}
and the pullback

Sω−1 Gk+jω−1−iω−1(Sω)

Gk−iω−1(Cl/Fω−1) Gk+jω−1−iω−1(Cl).

Again, if ω = 2, DS is the Grassmannian k-plane bundle of Sω−1, otherwise, iterate
the process.

Corollary 2.5.3. The projection on the first factor

ξ0 : (V, U1, . . . , Uω) ∈ DS → V ∈ S

is a resolution of singularities.

The proof of this result is similar to the one of Corollary 2.2.3, hence it will be
omitted.

Let V ∈ S. There is an admissible ω-tuple q such that V ∈ ∆0q, so the fibre of
ξ0 at V is

G0q := ξ−1
0 (V ) ∼=

{
(U1, . . . , Uω) ∈ Gk+j1−i1(Cl)× . . .×Gk+jω−iω(Cl)
s.t. U1 ⊂ . . . ⊂ Uω ∧ Uα ⊇ V + Fjα , α = 1, . . . , ω

}
.

Its dimension is

dimG0q = qjωλ
S
iω +

ω−1∑
α=1

qjα(λ
S
iα − λSiα+1

)

and its Poincaré polynomial is

HG0q = HGqjω
(Cl−k−jω+iω+qjω ) ·

ω−1∏
α=1

HGqjα
(Cjα+1−iα+1−jα+iα+qjα )

=
Pl−k−jω+iω+qjω
PqjωPl−k−jω+iω

·
ω−1∏
α=1

Pjα+1−iα+1−jα+iα+qjα
PqjαPjα+1−iα+1−jα+iα

.

The following fact ensues from the definition of smallness.

Remark 2.5.4. ξ0 is small if and only if m0q = m0 − mq > 2 dimG0q for all S-
varieties ∆q. Similarly, π0 is small if and only if m0q = m0 −mq > 2 dimF0q for all
S-varieties ∆q.
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Remark 2.5.4 permits checking the smallness property by means of the Ferrer’s
diagrams, since all numbers mq, dimF0q and dimG0q have a suitable representa-
tion (see also Example 2.5.13). Nonetheless, it is not convenient to check either
m0q > 2 dimG0q or m0q > 2 dimF0q for all 0-admissible q; yet, the combination of
Remark 2.5.4 with the next lemma yields an easy-to-compute smallness character-
ization.

Put i0 = λSiω+1
= 0.

Lemma 2.5.5. [Zel83, p. 144]. For any S-variety ∆q,

m0q =
ω∑
α=1

qjα(iα − iα−1 + λSiα − λSiα+1
) +B(q), (2.5.1)

where the form

B(q) = q2jω +
ω−1∑
α=1

q2jα − qjαqjα+1

is positive definite (see also Example 2.5.13).

Proposition 2.5.6. ξ0 is small if and only if iα − iα−1 ≥ λSiα − λSiα+1
for any

α ∈ {1, . . . , ω}. Analogously, πp is small if and only if iα − iα−1 ≤ λSiα − λSiα+1
for

any α ∈ {1, . . . , ω}. In particular, both resolutions are small if equality holds.

Proof. We are going to prove the statement for ξ0 only.

⇒ Suppose that ξ0 is small. By Remark 2.5.4, for any 0-admissible q,

0 < m0q − 2 dimG0q

= q2jω +
ω−1∑
α=1

q2jα − qjαqjα+1 +
ω∑
α=1

qjα(iα − iα−1)−
ω∑
α=1

qjα(λ
S
iα − λSiα+1

),

where Lemma 2.5.5 has been used for the equality. This relation holds, in par-
ticular, for all

q ∈ {e1, . . . , eω} = {(1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}
(they are all 0-admissible because S has ω essential conditions). Hence, for any
α ∈ {1, . . . , ω},

0 < m0eα − 2 dimG0eα = 1 + iα − iα−1 − (λSiα − λSiα+1
);

i.e.
iα − iα−1 ≥ λSiα − λSiα+1

.

⇐ Assume that the inequality holds. For any p-admissible q,

m0q =
ω∑
α=1

qjα(iα − iα−1 + λSiα − λSiα+1
) +B(q) formula (2.5.1)

= dimG0q + dimF0q +B(q)

≥ 2 dimG0q +B(q) hypothesis

> 2 dimG0q. B(q) is positive definite

Remark 2.5.4 guarantees that ξ0 is small.
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In terms of Ferrer’s diagrams, ξ0 is small if and only if the α-th vertical line
of the diagram of S is longer than its α-th horizontal line for all α, whereas π0 is
small if and only if the converse is true. If equality holds for all α, both ξ0 and π0
are small.

Corollary 2.5.7 (Polynomial identities). If iα − iα−1 ≥ λSiα − λSiα+1
for any α ∈

{1, . . . , ω} (respectively, ≤), then the Poincaré polynomial HG0q (respectively, HF0q)
of the fibre equals b0q for any 0-admissible q.

It is worth stressing out that, for instance,

▲ π0 is small as opposed to ξ0 if
i1 = 1, i2 = 2, k = 3, j1 = 4, j2 = 6 and l = 9;

▲ ξ0 is small as opposed to π0 if
i1 = 1, i2 = 3, k = 4, j1 = 5, j2 = 8 and l = 10;

▲ both π0 and ξ0 are small if
i1 = 1, i2 = 2, k = 3, j1 = 4, j2 = 6 and l = 8;

▲ neither of π0 and ξ0 is small if
i1 = 2, i2 = 3, k = 4, j1 = 5, j2 = 7 and l = 10.

2.5.2 Ferrer’s diagrams

In order to make symbols easier to read in the diagrams, notations shall be sim-
plified. Instead of the essential pair (F , I) of a Schubert variety S, the compo-
nents i1, . . . , iω of I and the dimensions j1, . . . , jω of the vector spaces of F will be
given. S-varieties ∆p, instead, shall be specified by ω-tuples of non-negative inte-
gers p = (p1, . . . , pω) and, only in few cases, the pair(s) to which they are associated
will be given explicitly.

Example 2.5.8. Let S be the Schubert variety given by

i1 = 1, i2 = 2, i3 = 3, i4 = 4, k = 5,

j1 = 5, j2 = 7, j3 = 9, j4 = 11, l = 15.

The sequence associated to S is λS = (6, 5, 4, 3, 0), which is shown in the picture
below. If p = (1, 1, 1, 1) is taken, the S-variety ∆p, represented by the dashed
diagram below, is associated to λp = (7, 7, 6, 5, 4).

1

2

3

4

5

3 4 5 6 7

S

∆p

p
1

p
2

p
3

p
4

k

l − k
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Now, take q = (1, 2, 1, 1). The first and third conditions are unnecessary since
j2− i2− q2 = j1− i1− q1 = 3 and i2+ q2 = i3+ q3 = 4. In other words, the essential
pair of ∆q is (Fq, Iq) with Fq : Fj2 ⊂ Fj4 , Iq = (i2 + q2, i4 + q4) = (4, 5). Below, ∆q

is depicted by the dashed diagram.

1

2

3

4

5

3 4 5 6 7

S

∆q

q
1

q
2q

3

q
4

Two important facts are deduced from the pictures. First, the number of corners
of a Schubert variety equals the number of its essential conditions. Secondly, when
an S-variety ∆p is associated to the pair with flag F , the components of the ω-tuple
p can be interpreted as its distance from S. In particular, the terms corresponding
to the essential conditions measure the distance between the corners of S and ∆p.

Example 2.5.9. Let S be the Schubert variety given by

i1 = 1, i2 = 3, i3 = 5, k = 7,

j1 = 8, j2 = 12, j3 = 17, l = 20.

Consider the S-varieties ∆p (dashed) and ∆q (dotted), with p = 3 and q = (3, 1),
associated to their essential pairs (Fp : Fj2 , Ip = i2 + p = 6) and (Fq : Fj1 ⊂
Fj3 , Iq = (i1 + q1, i3 + q2) = (4, 6)). Neither of their diagrams contains the other,
therefore ∆p and ∆q are not comparable.

1

3

4

5

6

7

1 2 4 6 7 9

S
∆q

∆p

q
1

p

q
2

The essential pair of an S-variety is the minimum data needed to draw the Ferrer’s
diagram. Anyway, if ∆p and ∆q were described by means of F , then the associated
sequences would be Ip = (2, 6, 6), Iq = (4, 4, 6) and p = (1, 3, 1), q = (3, 1, 1). As
you can see, p1 < q1 and p2 > q2, which confirms the fact that the studied varieties
are not comparable.
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Example 2.5.10. Let S be the Schubert variety given in Example 2.5.9 and take
p = (0, 2, 0). ∆p (dashed) is a special Schubert variety and ∆q (dotted), with
q = (2, 3, 1), is an S-variety contained in ∆p which is not a ∆p-variety (Fq ⊈ Fp,
where Fp and Fq denote the essential flags of ∆p and ∆q, respectively).

1

3

5

6

1 4 6 7 8

S ∆q

∆p

Example 2.5.11. Let S be the Schubert variety given by

i1 = 2, i2 = 4, i3 = 6, k = 10,

j1 = 11, j2 = 14, j3 = 17, l = 22

and put p = (1, 2, 0), q = (4, 3, 1), q′ = (2, 3, 2). ∆p, ∆q and ∆q′ are represented by
the dashed, dotted and dashed-dotted diagrams, respectively, and the grey circle
highlights the common corner of ∆q and ∆q′ . ∆p is a special Schubert variety, while
∆q and ∆q′ have two indispensable conditions, but with respect to different flags.
∆qp and ∆q′p coincide with the special Schubert variety ∆(2,3,1), whose only corner
is represented by the grey circle. It is straightforward to infer from the diagram
that ∆q,∆q′ ̸= ∆qp and that the distance between ∆p and ∆(2,3,1) is strictly lower
than the one between ∆p and either ∆q or ∆q′ .

6

7

2

8

4

31 2 4 5 7

S

∆p ∆q

∆q′
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Example 2.5.12. Let S be the Schubert variety of Example 2.5.9 and let S ′ be
the Schubert variety given by

i′1 = 2, i′2 = 5, i′3 = 6, k = 7

j′1 = 6, j′2 = 11, j′3 = 16, l = 20

The Ferrer’s diagrams of S ′ and ∆q := S ′
F are, respectively, the dashed and dotted

ones below. The diagram of ∆q is easy to obtain because it is the one whose corners
are the intersections (the grey dots in the picture below) of the lines of slope -1
through the corners of S and the diagram of S ′.

1 2 3 4 6 7 9

1

2

3

5

6

S

∆q

S ′

Example 2.5.13. Let S be the Schubert variety in Example 2.5.9.

i1 = 1, i2 = 3, i3 = 5, k = 7,

j1 = 8, j2 = 12, j3 = 17, l = 20.

Take ∆q with q = (1, 3, 2). codimS ∆q is easily seen to be given by Formula (2.5.1).
The grey rectangles in the pictures below represent the fibre of ξ0 (on the top left)
at any point of ∆q; the one of π0 (on the top right); the value q2α (on the bottom
left); the quantity qαqα+1 (on the bottom right). Remember that the sum of q21, q

2
2,

q23, q1q2 and q2q3 is the definite positive form B(q) (see Lemma 2.5.5).

1

3

5

6

7

1 3 4 6 7

S

∆q

dimG0q

1 3 4 6 7

S

∆q

dimF0q

1

3

5

6

7

S

q21 , q22 , q23

∆q

S

∆q

q1q2, q2q3
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Chapter 3

Decomposition theorem and
bivariant theory

In this final chapter, it is shown how to obtain a decomposition of the derived direct
image Rf∗AX , where f and A are, respectively, a suitable map and ring, analogous
to the ones given by the decomposition theorem in circumstances in which the
hypotheses of this result are not met. Namely, it is proved that the possibility to
have such decompositions is equivalent to the existence of a bivariant class of degree
one (defined in Section 3.2.1). Moreover, it is also shown that such classes play an
important role in discernment of A-homology manifolds (see Section 3.3.4).

In Section 3.1, the axioms of bivariant theory are recalled along with the defi-
nition of Borel-Moore homology. Bivariant classes of degree one are introduced in
Section 3.2, which is devoted to the proof of a partial generalization of the decom-
position theorem; namely, Theorem 3.2.8. Section 3.3 consists of applications of
the just mentioned result. Several consequences in cohomology and Borel-Moore
homology are inferred so as to describe the duality morphism (3.3.5) as maintained
in Corollary 3.3.4 and Theorem 3.3.6, which provides a description of the relation
between A-homology manifolds and the existence of a bivariant class of degree one
for a suitable morphism, is proved. Lastly, as a consequence of Theorem 3.3.6,
Nilpotent cones are proved to be homology manifolds in Section 3.4.

3.1 Preliminaries

This preliminary section is meant to settle notations and is a reminder of bivariant
theory and Borel-Moore homology.
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3.1.1 Bivariant theory

Let C be a category endowed with a class of morphisms, called the confined maps
and a class of commutative squares,

A1 A

B1 B

g1

f1 f

g

(3.1.1)

called the independent squares, satisfying the following axioms:

i) all identity morphisms are confined and the composition of confined maps is
confined;

ii) for any A,B ∈ C and any f : A → B, the square on the
right is independent;

A A

B B

idA

f f

idB

iii) In the two diagrams below, if the inner squares are independent, so is the
outer square.

A2 A1 A

B2 B1 B

A1 A

B1 B

C1 C

iv) in any independent square as (3.1.1), if f (g, respectively) is confined, so is
f1 (g1, respectively).

Observe that, if a square is independent, its transpose (e.g. change B1 with A
and vice versa in (3.1.1)) may not be independent.

Example 3.1.1. Consider the category of topological spaces embeddable as closed
subspaces of RN for some N ∈ N and continuous maps. A possible choice of
confined morphisms and independent squares is given, respectively, by proper maps
and fibre (also called cartesian) squares, i.e. the ones as (3.1.1) for which A1 is
homeomorphic to {(b, a) ∈ B1⊕A : g(b) = f(a)} (notice that this is the categorical
pullback of f and g).

Example 3.1.2. In the category of locally compact Hausdorff spaces and contin-
uous maps f : X → Y of finite cohomological dimension, that is, the ones
for which there is α ∈ N such that Rβf!F = 0 for any sheaf of abelian groups F
and any β > α, classes of confined morphisms and independent squares can be,
respectively, proper maps and fibre squares.

A bivariant theory B on a category C as above consists of the following data.
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i) For any morphisms f : A→ B, there is a graded abelian group

B(A f→ B) :=
⊕
α∈Z

Bα(A f→ B),

also denoted by either B(A → B) or B(f). In diagrams, the elements of
B(A→ B) shall be denoted by underlined symbols so as to distinguish them
from the maps’ names.

ii) Given f : A→ B and g : B → C, there is a product

· : (a, b) ∈ Bα(f)× Bβ(g) 7→ a · b ∈ Bα+β(gf).
B

A C

b

a·b

a

iii) Given f : A → B and g : B → C with f confined,
there is a pushforward

f∗ : a ∈ Bα(gf) 7→ f∗a ∈ Bα(g).

B

A C

f∗a

a

f

iv) For any independent square as (3.1.1), there is a pull-
back

g∗ : a ∈ Bα(f) 7→ g∗a ∈ Bα(f1).

A1 A

B1 B

g∗a a

g

v) B has units; in other words, for any A ∈ C, there is 1A ∈ B0(idA) such that
a · 1A = a and 1A · b = b whenever product makes sense and h∗(1A) = 1B for
any B ∈ C and any morphism h : B → A.

In addition, the above three operations must satisfy the following axioms. Let
f : A→ B, g : B → C and h : C → D be morphisms and let a ∈ Bα(f), b ∈ Bβ(g)
and c ∈ Bγ(h).

▲ Associativity of product. (a · b) · c = a · (b · c) ∈ Bα+β+γ(hgf), where

A B C D
f

a

g

b

h
c

▲ Functoriality of pushforward. (gf)∗a = g∗(f∗a) ∈ Bα(h), where f , g are
confined and

A B C D
f

a

g h

▲ Functoriality of pullback.
(gh)∗a = h∗(g∗a) ∈ Bα(f2), where the diagram
on the right has independent squares.

A2 A1 A

B2 B1 B

f2 a

h g

▲ Product and pushforward commute. f∗(a · b) = (f∗a) · b ∈ Bα+β(hg), where f
is confined and

A B C D
f

a

g h

b
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▲ Product and pullback commute.
h∗(a · b) = (h∗1a) · (h∗b) ∈ Bα+β(g1f1), where the dia-
gram on the right has independent squares.

A1 A

B1 B

C1 C

f1 a

h1

g1 b

h

▲ Pushforward and pullback commute.
f1∗(h

∗a) = h∗(f∗a) ∈ Bα(g1), where f is con-
fined and the diagram on the right has independent
squares.

A1 A

B1 B

C1 C

f1 f

a

g1 b

h

▲ Projection formula.
h1∗((h

∗a) · b) = a · (h∗b) ∈ Bα+β(gf1), where
g is confined and the square on the right is
independent.

A2 A1

B2 B1 B

h1

f1a

h

b

g

In the definition of a bivariant theory, it has been assumed that B(A→ B) is a
graded abelian group; yet, it is possible to define bivariant theories for which such
objects belong to any arbitrary category (see [FH91, p. 22, Remark]). If B(f) is
not graded the superscript of Bα is dropped in the axioms.

Example 3.1.3. Consider the category of Example 3.1.1 and a cohomology theory
(see [Rot88, pp. 230, 231]) with values in a commutative ring A. For any f : X → Y ,
there is a morphism ϕ : X → RN such that (f, ϕ) : X → Y × RN is a closed
embedding. Set Xϕ := im(f, ϕ).

The topological bivariant homology theory BTop is the one that associates
any f to

BαTop(f) := Hα+N(Y × RN , (Y × RN) \Xϕ)

and whose products, pushforwards and pullbacks are the ones described in [FH91,
Part I, §3.1.6-8]. The definition is independent from the choice of ϕ, as proved in
[FH91, Part I, §3.1.5, Remark].

Example 3.1.4. Consider the category of Example 3.1.2 and let A be a Noetherian
ring. Remember that (see [Dim04, §1.4])

Extα(−,−) := RαHom•
Db(−,A)(−,−) = HomDb(−,A)(−,−[α]).

The sheaf-theoretical bivariant holomogy theory BSh is the one that as-
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sociates any morphism f : X → Y to

BαSh(f) := Extα(Rf!AX ,AY )

∼= Extα(AX , f
!AY ) [Dim04, Theorem 3.2.3]

∼= Hα(X, f !AY ) [Dim04, Remark 2.1.2]

and which has the following operations. Let h : Y → Z be a morphism and consider
the fibre square

X1 X

Y1 Y

g1

f1 f

g

▲ Product. It is the composition

Extα(Rf!AX ,AY )⊗ Extβ(Rh!AY ,AZ)

Extα(Rh!Rf!AX , Rh!AY )⊗ Extβ(Rh!AY ,AZ)

Extα+β(Rh!Rf!AX ,AZ)

Rh!⊗idAZ

where the second map is induced by composition.

▲ Pushforward. It is induced by the map AY → Rf!AX adjoint to the isomor-
phism f ∗AY

∼= AX (f∗ = f! because f is proper).

Extα(Rg!Rf!AX ,AZ) → Extα(Rg!AY ,AZ).

▲ Pullback. It is the composite

Extα(Rf!AX ,AY )
g∗→Extα(g∗Rf!AX , g

∗AY )
∼= Extα(Rf1!AX1 ,AY1) [Ive86, p. 322, Base change].

Let B be a bivariant theory on a category having final object pt. The associated
contravariant B∗ and covariant groups B∗ are, respectively,

Bα(A) := Bα(idA), Bα(A) := B−α(A→ pt).

The operations given by the axioms induce cup, cap, cross, external and slant
products; besides, any morphism f : A → B induces a pullback f ∗

B : Bα(B) →
Bα(A) and, if f is also confined, a pushforward fB

∗ : Bα(A) → Bα(B) as explained
in [FH91, pp. 23-25]. Furthermore, such operations permit the construction of the
Gysin maps associated to any θ ∈ Bα(f); namely

θ∗ : a ∈ Bβ(B) 7→ θ · a ∈ Bβ−α(A)
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and, if f is confined,

θ∗ : a ∈ Bβ(A) 7→ f∗(a · θ) ∈ Bα+β(B).

Gysin maps can be also described by means of the diagrams below. For their main
properties, see [FH91, p. 26].

A B A B

pt A B

f

θ

θ∗a a

f

a
a·θ

θ∗a

f

θ

Example 3.1.5. The associated contravariant functor to BTop is the cohomology
theory itself; namely, BαTop(idX) = Hα(X). Instead, the associated covariant func-
tor to BTop is given by BTop,α(X) = HN−α(RN ,RN \X).

Let f : A → B be a morphism. An element θ ∈ B(f) is called a strong
orientation for f if, for any morphism h : W → X, product by θ

·θ : a ∈ B(h) 7→ a · θ ∈ B(fh)

is an isomorphism. In such case, f is said to be strongly orientable and θ is said
to have either dimension −d or codimension d if θ ∈ Bd(f).

The product of strong orientations is a strong orientation. Moreover, if a strong
orientation exists, it is unique up to multiplication by unit; in other words, if θ and
θ′ are strong orientations for f , there is a unit u ∈ B(idA) such that θ′ = u · θ (see
[FH91, p. 27]).

Let S be a class of maps in C closed under composition and containing all
identity morphisms. A canonical orientation for S is a correspondence that
associates each f : A → B in S to an element θ(f) ∈ B(f) (denoted by θB(f) if B
has to be highlighted), called a canonical orientation for f , so that

θ(gf) = θ(f) · θ(g) ∀f : A→ B, g : B → C in S,

θ(idA) = 1A ∀A ∈ C.

The Gysin maps induced by θ(f) are denoted by f !
B := θ(f)∗ and fB

! := θ(f)∗. By
definition, the functions f 7→ f !

B and f 7→ fB
! are functors.

Example 3.1.6. In BSh, a morphism f : X → Y has a strong orientation in B−α
Sh (f)

if and only if f !AY is quasi-isomorphic to AX [α] by [FH91, p. 85, Proposition]. As
a consequence, BSh coincides with BTop (with coefficients in A) on the subcategory
of topological spaces embeddable in Euclidean spaces (see [FH91, p. 86, Corollary]
and [BSY07, Theorem 3.3]).

Let B and B̄ be two bivariant theories with underlying categories C and C̄,
respectively. Assume there is a functor C → C̄ which sends the final object of C
into the one of C̄ and preserves confined maps and independent squares. The images
of objects A and morphisms f in C shall be denoted by Ā and f̄ , respectively.
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A Grothendieck transformation is a collection of morphisms

t : B → B̄, t := (tf : B(f) → B̄(f̄))f ,

where f varies through the class of morphisms in C, which commutes with products,
pushforwards and pullbacks.

Mind that t may not preserve degrees. From the definition, it follows that a
Grothendieck transformation commutes with all products defined on a bivariant
theory and it induces natural transformations

tGr : B∗ → B̄∗, tGr : B∗ → B̄∗.

If θ ∈ B(A→ B), then t(θ) ∈ B̄(Ā→ B̄) and

(t(θ))∗t
Gr = tGrθ∗ : B∗(A) → B̄∗(B̄), (t(θ))∗tGr = tGrθ

∗ : B∗(A) → B̄∗(B̄);

in other words, tGr and tGr commute with Gysin maps.
Lastly, let f : A → B be a morphism having a canonical orientation θB(f) and

assume that f̄ has a canonical orientation θB̄(f̄). A formula of the form

t(θB(f)) = uf · θB̄(f̄), uf ∈ B̄∗(Ā)

is called a Riemann-Roch formula.
Notice that, if θB̄(f̄) is a strong orientation, uf is unique. In addition, there are

two commutative diagrams (see [FH91, p. 11, 31]).

B∗(A) B̄∗(Ā) B∗(B) B̄∗(B̄)

B∗(B) B̄∗(B̄) B∗(A) B̄∗(Ā)

tGr

f! f!(−·uf )

tGr

f ! uf ·(f !(−))

tGr tGr

3.1.2 Borel-Moore homology

Borel-Moore homology was introduced in [BM60] by Borel and Moore in order to
obtain a Poincaré duality theorem for generalized (also known as (co)homology)
manifolds, which had been defined for the first time by Lefschetz in [Lef33] and
Čech in [Č33] independently.

LetX be a locally compact Hausdorff space and let A be a commutative Noethe-
rian ring.

Definition 3.1.7. The Borel-Moore homology groups of X are

HBM
α (X,A) := H−α(Hom•

A−mod(RΓc(X,AX), A
•)),

where A → A• is an injective resolution of A in the category of A-modules.
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The definition of Borel-Moore homology given above is the one of [Ive86, §IX.1];
nevertheless, there are others equivalent to it. IfX has finite homological dimension,
then (see [Ive86, p. 380, formula 4.1])

HBM
α (X,A) ∼= H−α(Γ(X,ωX)),

where ωX is the dualizing complex of X. If, in addition, X is an oriented n-
manifold, then (see [Ive86, p. 249, Definition 8.1 and p. 481, Theorem 4.7], [Bre97,
Theorem 12.1] with ϕ the family of all closed subsets of X)

HBM
α (X,A) ∼= Hn−α(X,X \ Z;AX) ∼= Hn−α(X,X \ Z;A)

for any closed subspace Z, where the term on the right is the singular cohomology
group of the pair (X,W ) with coefficients in A, where W := X \ Z, and the last
isomorphism is a combination of the following facts:

i) for any paracompact space (i.e. any open covering has a locally finite
refinement, which means that any point has a neighbourhood which intersects
at most a finite number of elements of the refinement), Čech (see [Rot09,
§6.3.1]) and sheaf cohomology coincide by [God73, Theorem 5.1.10];

ii) for any locally contractible (that is, for any point x and any open set
U containing it, there is an open contractible set V such that x ∈ V ⊆
U) paracompact Hausdorff space, Čech and singular cohomology coincide by
[Spa66, p. 334, Corollary and p. 340, Corollary];

iii) application of five lemma to the commutative diagram whose rows are the
long exact sequences in singular and sheaf cohomology of the pair (X,W )
(see [Bre97, p. 84, formula 22] and [Rot88, Theorem 12.9])

0 H0(X,W ;AX) H0(X,AX) H0(W,AZ) H1(X,W ;AX)

0 H0(X,W ;A) H0(X;A) H0(W ;A) H1(X,W ;A)

∼= ∼=

In particular, if X is a locally compact Hausdorff space embeddable as a closed
subspace of an oriented manifold M , then

HBM
α (X,A) ∼= HdimM−α(M,M \X;A).

3.2 Bivariant classes of degree one and pushfor-

wards

The section begins with the definition of bivariant classes of degree one. After
the preliminary lemmas of Section 3.2.2, the generalization of the decomposition
theorem, that is, Theorem 3.2.8, is provided.
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3.2.1 Bivariant classes of degree one

Until the end of the chapter, A will be a Noetherian unitary commutative ring,
unless otherwise stated; every topological space shall be assumed to be a locally
compact Hausdorff space embeddable as a closed subspace of RN for some N ∈ N and
all morphisms will be supposed to be proper continuous maps of finite cohomological
dimension. All singular cohomology and Borel-Moore homology groups will be
taken with coefficients in A and denoted by Hα(X) and HBM

α (X), respectively.
Let f : X → Y be a proper continuous map, let

θ ∈ H0(f) := HomDb
c(Y,A)(Rf∗AX ,AY )

be a bivariant class and let θ0 : H0(X) → H0(Y ) be the induced Gysin map. θ is
said to have degree one (for the map f) if θ0(1X) = 1Y ∈ H0(Y ).

Clearly, if θ0(1X) = d · 1Y with d a unit in A, then d−1 · θ is a bivariant class of
degree one. Here are other elementary facts concerning such classes.

Remark 3.2.1. [GFS22, Remark 2.1 (ii)]. The pullback θ′ of a bivariant class
θ ∈ H0(f) of degree one under the inclusion of any subspace is of degree one.
Conversely, if Y is path-connected and θ′ is of degree one, then so is θ.

Indeed, let i : Z ↪→ Y be the inclusion of a non-empty subspace of Y , let
g : f−1(Z) → Z be the restriction of f to f−1(Z) and set θ′ = i∗(θ) ∈ H0(g). By
[FM81, p. 26, (G2) (ii)], i∗θ0(1X) = θ′0j

∗(1X), where j : f
−1(Z) ↪→ X is inclusion.

Remark 3.2.2. [GFS22, Remark 2.1 (iii)]. Assume that f : X → Y is a birational
projective locally complete intersection morphism between complex irreducible quasi-
projective varieties. If θ ∈ H0(f) is the orientation class of f (see [FM81, §4.1.3,
Part I, and p. 131] and [Ful98, §19.2]), then θ has degree one.

In fact, let U be a non-empty Zariski open subset of Y , such that f−1(U) ∼=
U . Let θ′ be the restriction of θ on f−1(U) → U . θ′ is the orientation class of
f−1(U) → U by [Ful98, p. 379, Lemma 19.2 (a)], therefore θ′ has degree one and
the preceding remark implies that θ has degree one, as well.

Remark 3.2.3. [GFS22, Remark 2.1 (vi)]. Let f : X → Y be a projective map
between irreducible quasi-projective varieties with dimX = n and dimY = m and
assume the existence of a bivariant class θ of degree one. For any α, f∗θ

∗ = idHBM
α (Y )

by [DGF17, Remark 2.5], hence the pushforward f∗ induces an inclusionHBM
α (Y ) ⊆

HBM
α (X) and m ≤ n. Moreover, f is surjective, otherwise the pushforward f∗ :

HBM
2m (X) → HBM

2m (Y ) would vanish. Since the restriction of θ to some special fibre
is a bivariant class of degree one, it may happen that m < n. If n = m, f is
birational.

The following result will be used frequently later on.

Lemma 3.2.4. [GFS22, Remark 2.1 (i)]. θ has degree one if and only if θ is a
section of the pullback f : AY → Rf∗AX (see [Voi07, §4.3.1]); in other words,

θ0(1X) = 1Y ⇔ θf ∗ = idAY
.
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Proof. ⇒ For any α and y ∈ Hα(Y ), [FM81, p. 26, (G4) (i)] and [Spa66, p. 251,
9] imply

θ∗(f
∗(y)) = θ∗(f

∗(y) ∪ 1X) = y ∪ θ∗(1X) = y ∪ 1Y = y.

Being y arbitrary, this means that θf ∗ induced the identity θ∗f
∗ = idHα(Y ) for

any α. On the other hand, θf ∗ ∈ HomDb
c(Y,A)(AY ,AY ) ∼= H0(Y ), hence θf ∗ = idAY

.

⇐ If θf ∗ = idAY
, the composite

H0(Y ) H0(X) H0(Y )
f∗ θ0

is the identity of H0(Y ). Since f ∗(1Y ) = 1X , θ0(1X) = 1Y .

3.2.2 Results on triangulated categories and sheaves

Lemma 3.2.5. [GFS22, Lemma 3.1]. Let T be a triangulated category and let
a ∈ HomT (A,B). Assume that there exists b ∈ HomT (B,A) such that ba = idA.
Then B ∼= A⊕ C for some C ∈ T .

Proof. Axiom TR1 implies that a : A → B can be completed to a distinguished
triangle A → B → C. Thus, the combination of the hypothesis ba = idA with
axioms TR1 and TR3 gives a morphism of distinguished triangles

A B C

A A 0

a

id b

id

Axiom TR2 provides the following morphism of distinguished triangles

C A[1] B[1]

0 A[1] A[1]

b

id b[1]

from which b = 0 follows. As a consequence, A → B → C splits by [Huy06,
Exercise 1.38].

Lemma 3.2.6. [GFS22, Lemma 3.4]. Consider the following morphisms of
distinguished triangles in a triangulated category T .

A B1 C1 A B1 C1

A B C A B C

idA b′ c′idA b c

If b′b = idB, c
′c = idC and HomT (A,C1[−1]) = 0, there is a “cross” isomor-

phism
B1 ⊕ C ∼= B ⊕ C1.
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Proof. Consider the following commutative diagram,

A A 0 A[1]

B B1 B2 B[1]

C C1 C2 C[1]

A[1] A[1] 0 A[2]

idA

b

c

idA[1]

(3.2.1)

where the first and second columns are the ones given in the hypothesis, and the
fourth column is obtained by the first one by means of TR2. The first row, which
gives the fourth one by means of TR2, is distinguished by TR1. The second and
third rows are given by completion of b and c, respectively, by means of TR1.
Lastly, the arrows in the third column are given by TR3. Observe that the third
column, a priori, is not a distinguished triangle.

Since b′b = idB and c′c = idC , Lemma 3.2.5 guarantees that B1
∼= B ⊕ B2 and

that C1
∼= C ⊕ C2. Therefore, it suffices to prove that B2

∼= C2.
Consider the upper cap diagram obtained by the commutative triangle of ver-

tices A, B, B1 (see below on the left), which can be completed to an octahedron
by TR4, whose lower cap is the one drawn below on the right.

B2 B1 B2 B1

⋆ ⟲

⟲ B ⟲ ⋆ C1 ⋆

⋆ ⟲

C A C A

[1]

[1]

[1]

[1]

[1]

φ

[1]

In particular, C
φ→ C1 → B2 → C[1] is a distinguished triangle. In addition,

C

B C1

B1

A B2

φ

b

the octahedron shows the existence of a morphism of distinguished triangles

B C A[1]

B1 C1 A[1]

b φ id
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This morphism also appears in Diagram (3.2.1), yet with φ instead of c. Never-
theless, [GM03, Corollary IV.1.5] implies that φ = c. As a consequence, the diagram
below, whose rows are distinguished triangles and whose squares commute, can be
completed to a morphism of distinguished triangles by TR3.

C C1 B2 C[1]

C C1 C2 C[1]

c

idC idC1 id

c

The dashed vertical arrow is unique because of [GM03, loc. cit.] and is an isomor-
phism by [GM03, Corollary IV.1.4 (a)].

Let f : X → Y be a proper continuous map and assume the existence of an
open subset U ⊆ Y such that the restriction h : V → U of f to V := f−1(U) is

an isomorphism. Set W := Y \ U and W̃ := X \ V and let g : W̃ → W be the

restriction of f to W̃ . Then, there is a commutative diagram

W̃ X V

W Y U

g

i
W̃

f

jV

h

iW

jU

(3.2.2)

whose horizontal arrows are inclusions.

Lemma 3.2.7. [GFS22, Lemma 3.3]. f∗jV ! = jU !h!. Furthermore, f∗ induces an
exact equivalence between

ShV (X,A) := {F ∈ Sh(X,A) : Fx = 0 ∀x ∈ W̃}

and
ShU(Y,A) := {G ∈ Sh(Y,A) : Gy = 0 ∀y ∈ W},

whose inverse is induced by its pullback f ∗.

Proof.

▲ f∗jV ! = jU !h!.
Indeed, f∗ = f! for f is proper, while the commutativity of the diagram

and [Dim04, Proposition 2.3.23] imply

f!jV ! = (fjV )! = (jUh)! = jU !h!.

▲ f∗ induces an equivalence between ShV (X,A) and ShU(Y,A).
By [Ive86, Proposition II.6.4], jU ! and jV ! induce equivalence of categories

j̃U ! : Sh(U,A) → ShU(Y,A) j̃V ! : Sh(V,A) → ShV (X,A).

On the other hand, h is an isomorphism, thus h! : Sh(V,A) → Sh(U,A) is an
equivalence, as well. Then, the desired equivalence of categories is

f̃! := (j̃V !)
−1 ◦ h! ◦ j̃U !.
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▲ f̃! is exact.
This follows from the definition, since h! j̃U ! are exact by [Ive86, p. 106,

II.6.3] and (j̃V !)
−1 is induced by j∗V (see [Ive86, Proposition II.6.4]), which is

exact.

3.2.3 Decomposition of the (derived) pushforward

Theorem 3.2.8. [GFS22, Theorem 1.1]. Let f : X → Y be a proper continuous
map, with Y path-connected. Let U ⊆ Y be a non-empty open subset such that the
restriction h : V → U of f to V := f−1(U) is a homeomorphism. Set W =

Y \U , W̃ = f−1(W ) and consider the commutative diagram (3.2.2). The following
properties are equivalent:

i) there exists a bivariant class θ ∈ HomDb
c(Y,A)(Rf∗AX ,AY ) of degree one;

ii) there is a cross isomorphism Rf∗AX ⊕ AW
∼= Rf∗AW̃ ⊕ AY in Db

c(Y,A);
iii) there exists a decomposition Rf∗AX

∼= AY ⊕K• in Db
c(Y,A).

Proof. i) ⇒ iii) By Remark 3.2.4, θf ∗ = idAY
. The desired decomposition is

achieved by taking T = Db
c(Y,A), A = AY and B = Rf∗AX in Lemma 3.2.5.

iii) ⇒ i) The projection on the first summand η : Rf∗AX → AY induces a bivariant
class. Let U ′ be a path-connected component of U . Since the restriction η′ :=
η|U ′ is an automorphism of AU ′ , it follows that η′0(1U ′) = d · 1U ′ ∈ H0(U ′) for
some unit d ∈ A. Hence, d−1 · η is a bivariant class of degree one.

ii) ⇒ i) The proof is the same as iii) ⇒ i); it suffices to take the projection
Rf∗AX → AY .

i) ⇒ ii) To start with, recall that

0 → jU !AU → AY → iV ∗AV → 0

is exact (see [Dim04, Remark 2.4.5]). It follows that there is a morphism of
distinguished triangles in Db

c(Y,A) [Dim04, p. 46]

Rf∗(jV !AV ) Rf∗AX Rf∗iW̃∗AW̃

jU !AU AY iW∗AW

a

∼=

b

f∗ g∗ (3.2.3)

Lemma 3.2.7 ensures that the left vertical map is actually an isomorphism in
Db
c(Y,A).
On the other hand, there is another morphism of distinguished triangles

Rf∗(jV !AU) Rf∗AX Rf∗iW̃∗AW̃

jU !AU AY iW∗AW

a

φ∼= θ η

b

(3.2.4)
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In fact, the left square commutes, for

θa = θ(f ∗bφ) = (θf ∗)bφ = idAY
bφ = bφ,

and η : Rf∗iW̃∗AW̃ → iW∗AW , unique by [GM03, Corollary IV.1.5] (bear in mind
that Rf∗(jV !AU) is isomorphic to jU !AU), is given by TR3.

Since θf ∗ = idAY
, the combination of (3.2.3) with (3.2.4) gives the morphism

of distinguished triangles

jU !AU AY iW∗AW

jU !AU AY iW∗AW

id id ηg∗

Corollaries IV.1.4 (a) and IV.1.5 of [GM03] guarantee that ηg∗ = id, thus the
hypotheses of Lemma 3.2.6, which provides the wanted result, are met (take the
numbered diagrams).

Notice that in the proof of i) ⇒ iii) the existence of U is unnecessary.

Remark 3.2.9. [GFS22, remark 3.6]. Bivariant theory provides a pullback morphism
(see [FM81, p. 19, (3)])

η1 := i∗W (θ) : Rf∗i
∗
W̃
AW̃ → iW∗AW

of degree one and, consequently, η1g
∗ = id. However, it is not known if η = η1.

3.3 Bivariant classes of degree one and homology

manifolds

This section is an application of Theorem 3.2.8 to the study of homology manifolds.
To begin with, the decomposition of item ii) of such theorem implies the existence
of isomorphisms between certain cohomology and Borel-Moore homology groups,
explicated in Sections 3.3.1 and 3.3.2, respectively. Consequently, in Section 3.3.3,
a suitable description of the duality morphism DX (see (3.3.5)) induced by X is
achieved. Theorem 3.3.6, which gives a relation between the existence of a bivariant
class of degree one for a morphism f : X → Y and the property of X and Y of
being A-homology manifolds, is finally proved in Section 3.3.4. Examples and
consequences of such theorem are exhibited in Section 3.3.5.

3.3.1 Decompositions in cohomology

Throughout the section, the hypotheses of Theorem 3.2.8 are supposed to hold and
the same notations are adopted. Moreover, θ shall denote a bivariant class of degree
one for f .
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By taking hypercohomology and hypercohomology with compact support in
the isomorphism Rf∗AX ⊕ AW

∼= Rf∗AW̃ ⊕ AY , it follows, for any α (see [Dim04,
Corollaries 2.3.4 and 2.3.24]),

Hα(X)⊕Hα(W ) ∼= Hα(W̃ )⊕Hα(Y )

HBM
α (X)⊕HBM

α (W ) ∼= HBM
α (W̃ )⊕HBM

α (Y ).

The aim of this and the following subsection is to make theses isomorphisms explicit.
Taking hypercohomology, morphisms (3.2.3) and (3.2.4) induce the following

commutative diagram with exact rows (see [Dim04, Remark 2.4.5]).

Hα(Y,W ) Hα(Y ) Hα(W ) Hα+1(Y,W )

Hα(X, W̃ ) Hα(X) Hα(W̃ ) Hα+1(X, W̃ )

Hα(Y,W ) Hα(Y ) Hα(W ) Hα+1(Y,W )

∼=

i∗

f∗ g∗ ∼=

∼=

j∗

θ∗ η∗ ∼=

i∗

From the fact that θ∗f
∗ = idHα(Y ) and η∗g

∗ = idHα(W ) for any α, a diagram
chase shows the exactness of the sequence (compare with [Ful98, p. 114, 115,
Proposition 6.7 (e)])

0 Hα(X) Hα(W̃ )⊕Hα(Y ) Hα(W ) 0,ν ϱ

where
ν(x) := (j∗(x),−θ∗(x)), ϱ(w̃, y) := η∗(w̃) + i∗(y).

Moreover, such sequence has a right section, that is, a right inverse of ϱ,

w ∈ Hα(W ) 7→ (g∗(w), 0) ∈ Hα(W̃ )⊕Hα(Y ).

Therefore, the sequence is split and there is an isomorphism (see [Rot09, Propo-
sition 2.28])

φ∗ : (x,w) ∈ Hα(X)⊕Hα(W ) 7→ (j∗(x) + g∗(w),−θ∗(x)) ∈ Hα(W̃ )⊕Hα(Y )

that can be represented as (compare with [Jou77, p. 328])[
w̃
y

]
=

[
j∗ g∗

−θ∗ 0

]
·
[
x
w

]
Since φ∗(−f ∗y, i∗y) = (0, y), the inverse map (φ∗)−1 can be represented as[

x
w

]
=

[
λ∗ −f ∗

µ∗ i∗

]
·
[
w̃
y

]
,
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where λ∗ : H
α(W̃ ) → Hα(X) and µ∗ : H

α(W̃ ) → Hα(W ) are uniquely determined
by the condition that the two matrices above are inverse to one other

λ∗j
∗ + f ∗θ∗ = idHα(X) ∀α

λ∗g
∗ = 0

µ∗j
∗ − i∗θ∗ = 0

µ∗g
∗ = idHα(W ) ∀α,

(3.3.1)

which, in turn, are equivalent to the equations
j∗λ∗ + g∗µ∗ = idHα(W̃ ) ∀α
θ∗λ∗ = 0

j∗f ∗ = g∗i∗

θ∗f
∗ = idHα(Y ) ∀α.

(3.3.2)

In particular, η∗ = µ∗ follows.
The isomorphisms Hα(X)⊕Hα(W ) ∼= Hα(W̃ )⊕Hα(Y ) can be finally described

explicitly. Beforehand, observe that, since η∗g
∗ = idHα(W ) for all α, H

α(W ) can be

thought of, via g∗, as a direct summand of Hα(W̃ ) for every integer α.

Proposition 3.3.1. [GFS22, Lemma 4.3]. For every k ∈ Z,

x ∈ Hα(X) 7→ (θ∗x, j
∗x) ∈ Hα(Y )⊕ Hα(W̃ )

Hα(W )

is an isomorphism with inverse

(y, w̃) ∈ Hα(Y )⊕ Hα(W̃ )

Hα(W )
7→ f ∗(y) + λ∗w̃ ∈ Hα(X).

Proof. Firstly, the function

x ∈ Hα(X) 7→ (θ∗x, x− f ∗θ∗x) ∈ Hα(Y )⊕ ker θ∗

is an isomorphism; in fact,

▲ if x is such that (θ∗x, x − f ∗θ∗x) = 0, then the first component is θ∗x = 0
and, consequently, the second one gives x = 0.

▲ Let (y, z) ∈ Hα ⊕ ker θ∗. θ∗f
∗ = idHα(Y ), thus θ∗f

∗y = y and (y, z) is the
image of f ∗y + z.

Secondly, equations (3.3.1) and (3.3.2) show that j∗ induces an isomorphism
ker θ∗ → ker η∗, whose inverse acts as λ∗. Indeed,

▲ the map is injective because, for all x ∈ ker θ∗, λ∗j
∗x = λ∗j

∗x+ f ∗θ∗x = x;

▲ it is injective because, for any y ∈ ker η∗, j
∗λ∗y = j∗λ∗y + g∗η∗y = y.

Lastly, the equality η∗g
∗ = idHα(W ) implies ker η∗ ∼= coker g∗ and, consequently,

there is an isomorphism

w̃ ∈ ker η∗ 7→ w̃ ∈ Hα(W̃ )

Hα(W )
.
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3.3.2 Decompositions in Borel-Moore homology

Consider again the morphisms (3.2.3) and (3.2.4). The following commutative
diagram with exact rows is obtained by taking hypercohomology with compact
support.

HBM
α+1(U) HBM

α (W ) HBM
α (Y ) HBM

α (U)

HBM
α+1(V ) HBM

α (W̃ ) HBM
α (X) HBM

α (V )

HBM
α+1(U) HBM

α (W ) HBM
α (Y ) HBM

α (U)

∼=

i∗

η∗ θ∗ ∼=

∼=

j∗

g∗ f∗ ∼=

i∗

From the fact that f∗θ
∗ = idHBM

α (Y ) and g∗η
∗ = idHBM

α (W ) for any α, a diagram
chase shows the exactness of the sequence (compare with [DGF14, pp. 264-266,
Proposition 2.5])

0 HBM
α (W ) HBM

α (W̃ )⊕HBM
α (Y ) HBM

α (X) 0,σ υ

where
σ(w) := (η∗(w),−i∗(w)), υ(w̃, y) := j∗(w̃) + θ∗(y)

Moreover, such sequence has a left section, that is, a left inverse of σ,

(w̃, y) ∈ HBM
α (W̃ )⊕Hα(Y ) 7→ g∗(w̃) ∈ HBM

α (W ).

Therefore, the sequence is split and there is an isomorphism

φ∗ : H
BM
α (W̃ )⊕HBM

α (Y ) → HBM
α (X)⊕HBM

α (W ),

given by φ∗(w̃, y) = (j∗(w̃) + θ∗(y), g∗(w̃)), that can be represented as[
x
w

]
=

[
j∗ θ∗

g∗ 0

]
·
[
w̃
y

]
Since φ∗(η

∗w,−i∗w) = (0, w), the inverse map (φ∗)
−1 can be represented as[

w̃
y

]
=

[
λ∗ η∗

µ∗ −i∗

]
·
[
x
w

]
,

where λ∗ : HBM
α (W̃ ) → HBM

α (X) and µ∗ : HBM
α (W̃ ) → HBM

α (W ) are uniquely
determined by the condition that the two matrices above are inverse to one other

j∗λ
∗ + θ∗µ∗ = idHBM

α (X) ∀α
g∗λ

∗ = 0

j∗η
∗ − θ∗i∗ = 0

g∗η
∗ = idHBM

α (W ) ∀α,

(3.3.3)

74



which, in turn, are equivalent to the equations
λ∗j∗ + η∗g∗ = idHBM

α (W̃ ) ∀α
λ∗θ∗ = 0

µ∗j∗ = i∗g∗

µ∗θ∗ = idHBM
α (Y ) ∀α.

(3.3.4)

In particular, µ∗ = f∗ follows.
The isomorphisms HBM

α (X)⊕HBM
α (W ) ∼= HBM

α (W̃ )⊕HBM
α (Y ) can be finally

described explicitly. Beforehand, observe that, since g∗η
∗ = idHBM

α (W ) for all α,

Hα(W ) can be thought of, via η∗, as a direct summand of Hα(W̃ ) for every integer
α.

Proposition 3.3.2. [GFS22, Lemma 4.5]. For every k ∈ Z,

x ∈ HBM
α (X) 7→ (f∗x, λ

∗x) ∈ HBM
α (Y )⊕ HBM

α (W̃ )

HBM
α (W )

is an isomorphism with inverse

(y, w̃) ∈ HBM
α (Y )⊕ HBM

α (W̃ )

HBM
α (W )

7→ θ∗(y) + j∗λ
∗j∗w̃ ∈ HBM

α (X).

Proof. Firstly, the function

x ∈ HBM
α (X) 7→ (f∗x, x− θ∗f∗x) ∈ HBM

α (Y )⊕ ker f∗

is an isomorphism; in fact,

▲ if x is such that (f∗x, x − θ∗f∗x) = 0, then the first component is f∗x = 0
and, consequently, the second one gives x = 0.

▲ Let (y, z) ∈ HBM
α (Y ) ⊕ ker f∗. f∗θ

∗ = idHα(Y ), thus f∗θ
∗y = y and (y, z) is

the image of θ∗y + z.

Secondly, equations (3.3.3) and (3.3.4) show that λ∗ induces an isomorphism
ker f∗ → ker g∗, whose inverse acts as j∗. Indeed,

▲ λ∗ is injective because, for all x ∈ ker f∗, j∗λ
∗x = j∗λ

∗x+ θ∗f∗x = x;

▲ it is surjective because, for any y ∈ ker g∗, λ
∗j∗y = λ∗j∗y + η∗g∗y = y.

Lastly, the equality g∗η
∗ = idHBM

α (W ) implies ker g∗ ∼= coker η∗ and, conse-
quently, there is an isomorphism

w̃ ∈ ker g∗ 7→ w̃ ∈ HBM
α (W̃ )

HBM
α (W )

.

Remark 3.3.3. [GFS22, Remark 4.2]. Let η1 := i∗(θ) be the pullback of θ on W .
By [FM81, p. 26, (G2)], (η1)∗j

∗ − i∗θ∗ = 0 and (η1)∗g
∗ = idHα(W ) for all α, which

proves that η∗ = (η1)∗. Similarly, η∗ = (η1)
∗.
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3.3.3 The duality morphism

In this subsection, f will also be supposed to be surjective and X and Y shall be
assumed to be open subsets of complex quasi-projective varieties of the same complex
dimension n.

Let [X] ∈ HBM
2n (X) be the fundamental class of X (see [GH94, pp. 60, 61]) and

set
DX : x ∈ Hα(X) 7→ x ∩ [X] ∈ HBM

2n−α(X). (3.3.5)

When X is a compact complex variety, this map is called the duality morphism
(see [McC77, p. 150]). If, in addition, X is smooth, then DX is the Poincaré Duality
isomorphism.

In view of Propositions 3.3.1 and 3.3.2, DX identifies with the map

DX : Hα(Y )⊕ Hα(W̃ )

Hα(W )
→ HBM

2n−k(Y )⊕
HBM

2n−k(W̃ )

HBM
2n−k(W )

given by

DX(y, w̃) = (f∗((f
∗y + λ∗w̃) ∩ [X]), λ∗((f ∗y + λ∗w̃) ∩ [X]))

and induces two projections

P1 : y ∈ Hα(Y ) 7→ f∗(f
∗y ∩ [X]) ∈ HBM

2n−k(Y ),

P2 : w̃ ∈ Hα(W̃ )

Hα(W )
7→ λ∗(λ∗w̃ ∩ [X]) ∈

HBM
2n−k(W̃ )

HBM
2n−k(W )

.

Observe that f∗(f
∗y∩ [X]) = y∩ [Y ] by the projection formula at [FH91, p. 24];

therefore, P1 = DY , i.e. P1 is nothing but the duality morphism on Y .

Corollary 3.3.4. [GFS22, Corollary 5.1]. DX = DY ⊕ P2.

Proof. Notice that θ∗([Y ]) = [X], i.e. the Gysin map sends the fundamental class
of Y to the fundamental class of X. In fact,

θ∗([Y ]) = θ∗f∗[X] = [X]− (j∗λ
∗)([X]) = [X]

follows from equations (3.3.3) (remember that f∗ = µ∗) and the fact that λ∗[X] ∈
HBM

2n (W̃ ) with HBM
2n (W̃ ) = 0 for dimensional reasons.

The decomposition of the statement holds if the claims

i) f∗(λ∗w̃ ∩ [X]) = 0 for every w̃ ∈ Hα(W̃ )/Hα(W ),

ii) λ∗(f ∗y ∩ [X]) = 0 for every y ∈ Hα(Y ),

are true.

i) formula (G4) (ii) at [FM81, p. 26] implies

f∗(λ∗w̃ ∩ [X]) = f∗(λ∗w̃ ∩ θ∗[Y ]) = (θ∗λ∗w̃) ∩ [Y ].

On the other hand, θ∗λ∗ = 0 (see formula (3.3.2)), so f∗(λ∗w̃ ∩ [X]) = 0.
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ii) By [FM81, p. 26, (G4) (iii)],

λ∗(f ∗y ∩ [X]) = λ∗(f ∗y ∩ θ∗[Y ]) = λ∗(θ∗(y ∩ [Y ])).

On the other hand, λ∗θ∗ = 0 (see formula (3.3.4)), thus λ∗(f ∗y ∩ [X]) = 0.

3.3.4 Homology manifolds

Definition 3.3.5. A complex irreducible quasi-projective variety X of complex
dimension n is called an A-homology manifold if, for any x ∈ X,

Hα(X,X \ {x}) =

{
0 if α ̸= 2n,

A if α = 2n.

Notice that, as proved in [BSY07, proof of Theorem 3.7], X is an A-homology
manifold if and only if AX [n] ∼= IC•

X .

Theorem 3.3.6. [GFS22, Theorem 1.2]. Let f : X → Y be a projective bira-
tional morphism between complex irreducible quasi-projective varieties of the same
complex dimension n. Let U ⊆ Y be a non-empty Zariski open subset such that the
restriction h : V → U of f to V := f−1(U) is an isomorphism.

i) If Y is an A-homology manifold, then

▲ there is a unique bivariant class θ ∈ HomDb
c(Y,A)(Rf∗AX ,AY ) of degree

one;

▲ there exists a decomposition Rf∗AX
∼= AY ⊕ K• in Db

c(Y,A), with K•

supported on W := Y \ U ;
▲ if X is an A-homology manifold, K•[n] is self-dual.

ii) If X is an A-homology manifold and there is a bivariant class of degree one
θ ∈ HomDb

c(Y,A)(Rf∗AX ,AY ), then Y is an A-homology manifold, as well.

Proof.

i) By [BSY07, Theorem 3.7], the fundamental class

[Y ] ∈ HBM
2n (Y ) ∼= H−2n(Y → pt)

of Y is a strong orientation. Therefore,

HomDb
c(Y )(Rf∗AX ,AY ) := H0(f)

·[Y ]∼= H−2n(X → pt)

∼= HBM
2n (X) ∼= H0(X).

Since f is birational, the bivariant class corresponding to 1X ∈ H0(X) is of
degree one for f and is unique (compare with Remark 3.2.2).
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By Theorem 3.2.8, there exists a decomposition

Rf∗AX [n] ∼= AY [n]⊕K•[n], (3.3.6)

with K• supported on W . Taking the Verdier dual,

D(Rf∗AX [n]) ∼= D(AY [n])⊕D(K•[n]). (3.3.7)

Let [X] ∈ HBM
2n (X) be the fundamental class of X. Since

HBM
2n (X) ∼= H−2n(X → pt) ∼= HomDb

c(X)(AX [n], D(AX [n])),

[X] corresponds to a morphism

AX [n] → D(AX [n]), (3.3.8)

whose induced map in hypercohomology is the duality morphism (3.3.5).
Assume that X is an A-homology manifold. Morphism (3.3.8) is an iso-

morphism by [BSY07, proof of Theorem 3.7] and, since

D(Rf∗AX [n]) ∼= Rf∗D(AX [n])

by [Dim04, Proposition 3.3.7 (ii)], it induces an isomorphism

Rf∗AX [n] → D(Rf∗AX [n]),

which, in turn, via the decompositions (3.3.6) and (3.3.7), induces two pro-
jections

AY [n] → D(AY [n]) K•[n] → D(K•[n]).

Corollary 3.3.4 implies that the maps induced in hypercohomology by the
morphism K•[n] → D(K•[n]) are isomorphisms. This holds true when re-
stricting to any open subset of Y ; therefore K•[n] ∼= D(K•[n]), i.e. K•[n] is
self-dual.

ii) Arguing as before, Corollary 3.3.4 implies that isomorphism (3.3.8) induces
an isomorphism AY [n] ∼= D(AY [n]). This is equivalent to say that Y is an
A-homology manifold by [BSY07, loc. cit.].

When A := K is a field and both X and Y are K-homology manifolds of the
same complex dimension n,

dimKH
n+α(W̃ )− dimKH

BR
n−α(W̃ ) = dimKH

n+α(W )− dimKH
BR
n−α(W ) (3.3.9)

for any α ∈ Z, where W̃ := X \ V . Indeed,

dimKH
α+n(X)− dimKH

α+n(Y ) = dimK Hα(K•)
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follows by taking hypercohomology in Rf∗KX
∼= KY ⊕ K• in Db

c(Y,K). On the
other hand, K• is self dual, thus

dimKH
BM
α+n(X)− dimKH

BM
α+n(Y ) = dimKHα(K•)

is inferred by taking Verdier dual and hypercohomology in Rf∗KX
∼= KY ⊕ K• in

Db
c(Y,K). The combination of these equalities gives

dimKH
α+n(X)− dimKH

α+n(Y ) = dimKH
α+n(X)− dimKH

α+n(Y )

and formula (3.3.9) is a consequence of Propositions 3.3.1 and 3.3.2.
When A := Q, R or C, item ii) of Theorem 3.3.6 can be proved by means of

decomposition theorem; indeed, it guarantees that

Rf∗AX [n] ∼= IC•
Y ⊕ G,

where G is a sheaf supported on W . On the other hand, Theorem 3.2.8 gives

Rf∗AX [n] ∼= AY [n]⊕A[n],

hence there is a non-zero endomorphism IC•
Y → AY [n] → IC•

Y , which is an isomor-
phism by Schur’s Lemma (see [FH91, Lemma 1.7]), since IC•

Y a simple object of the
core of Db

c(Y ) (see [BBD82, Corollary 1.4.25]). On the other hand, the composition
AY [n] → IC•

Y → AY [n] is an automorphism, because HomDb
c(Y )(AY ,AY ) ∼= H0(Y ).

In conclusion, IC•
Y
∼= AY [n].

3.3.5 Examples and implications

A first class of examples is given by resolutions of singularities of A-homology
manifold Y . Indeed, the hypotheses of Theorem 3.3.6 are met, hence, any such
morphism has a unique bivariant class of degree one.

Example 3.3.7. [GFS22, Remark 2.1 (v)]. Let f : X → Y be a projective map
between complex irreducible quasi-projective varieties of the same complex dimen-
sion n. Assume that Y is smooth (or, more generally, an A-homology manifold).
In this case (compare with [FM81, p. 34, §3.1.4], [Ful96, p. 217, Lemma 2] and the
proof of Theorem 3.3.6) H0(f) ∼= HBM

2n (X) ∼= H0(X). By Remark 3.2.4, if there
exists a bivariant class of degree one for f , then, for every α, Hα(Y ) is contained
in Hα(X) via pullback.

If A = Z and dimZH
α(Y ) > dimZH

α(X) for some α, then H0(f) ̸= 0, yet
θ0 = 0, for every bivariant class θ. However, if, in addition, f is birational, then
the bivariant class θ corresponding to 1X ∈ H0(X) is a bivariant class of degree one.
In fact, if U is a Zariski open subset of Y such that f−1(U) ∼= U , the restriction of
θ to f−1(U) → U has degree one.

The next example shows the existence of a projective birational map f : X → Y
without bivariant classes of degree one such that H0(f) ̸= 0.
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Example 3.3.8. [GFS22, Remark 6.1 (iii)]. Let A := Q, let C ⊂ P3 be a
projective nonsingular curve of genus g ≥ 1, let Y ⊂ P4 be the cone over C and
let f : X → Y be the blowing-up of Y at the vertex y ∈ Y . By the decomposition
theorem,

Rf∗QX
∼= Qy[−2]⊕ IC•

Y [−2].

On the other hand, [Ive86, p. 128, 9.13] and [Dim04, Remark 2.4.5 (i)] give

HomDb
c(Y )(Qy,QY [2]) ∼= H2(Y, Y \ {y}) ∼= H1(L),

where L is the link of Y at the vertex y (see [Dim04, Example 2.3.18]). The Hopf
fibration L→ C induces a Gysin sequence

0 → H1(C) → H1(L) → H0(C) → H2(C) → . . .

from which dimQH
1(L) = dimQH

1(C) = 2g ≥ 2 follows. Then

H0(X → Y ) ∼= HomDb
c(Y )(Rf∗AX ,AY ) ̸= 0

and Y is not a homology manifold. In particular, since X is smooth, Theorem 3.3.6
implies that f cannot have a bivariant class of degree one.

Here are two results concerning strong orientations.

Corollary 3.3.9. [GFS22, Corollary 6.2]. Let f : X → Y be a projective
birational morphism between complex irreducible quasi-projective varieties of the
same complex dimension n. Let θ ∈ H0(f) be a bivariant class.

i) If θ is a strong orientation for f , then θ is of degree one for f , up to multi-
plication by a unit.

ii) If X is an A-homology manifold and θ is of degree one for f , then θ is a
strong orientation for f .

Proof. i) Let U ⊂ Y be a Zariski non-empty open subset of Y such that the
restriction h : V → U of f to V := f−1(U) is an isomorphism. The product
by θ gives an isomorphism

H0(V → X)
·θ→ H0(U → Y ).

On the other hand, the last formula in [BSY07, p. 803] and [Ive86, p. 109,
Proposition II.6.9] imply

H0(V → X) ∼= H0(V ) H0(U → Y ) ∼= H0(U).

Therefore, θ induces an isomorphism H0(V ) → H0(U). It follows that, up to
multiplication by a unit, θ is a bivariant class of degree one.
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ii) By Theorem 3.3.6, Y is an A-homology manifold, as well, and θ corresponds
to 1X in the isomorphism H0(X → Y ) ∼= H0(X). Since X and Y are A-
manifolds,

f !(AY ) = D(f ∗(D(AY ))) = D(f ∗(AY [2n])) = D(AX [2n]) = AX ;

therefore, θ corresponds to an isomorphism in

HomDb
c
(AX , f

!AY ) ∼= HomDb
c
(AX ,AX) ∼= H0(X).

By [FM81, §7.3.2, proof of Proposition], θ is a strong orientation for f .

Proposition 3.3.10. [GFS22, Proposition 6.3]. Let f : X → Y be a projective
birational morphism between complex irreducible quasi-projective varieties of the
same complex dimension n. Let θ ∈ H0(f) be a bivariant class. If θ is a strong
orientation for f and Y is an A-homology manifold, then X is an A-homology
manifold, as well.

Proof. Y is an A-homology manifold, thus

f !(AY ) = D(f ∗(D(AY ))) = D(f ∗(AY [2n])) = D(AX [2n]).

On the other hand, if θ is a strong orientation, then [FM81, loc. cit.] gives f !(AY ) ∼=
AX and, consequently, D(AX [2n]) ∼= AX . This means that AX [n] is self-dual, i.e.
X is an A-homology manifold by [BSY07, proof of Theorem 3.7].

Remark 3.3.11. [GFS22, Remark 6.4]. Let f : X → Y be a birational projective lo-
cally complete intersection morphism between complex irreducible quasi-projective
algebraic varieties. Let θ ∈ H0(f) be the orientation class of f . Then θ has degree
one by Remark 3.2.2, but the previous proposition implies that θ cannot be, in
general, a strong orientation.

3.4 Nilpotent cones are homology manifolds

Here, Theorem 3.3.6 is resort to so as to provide a short proof of a generalization
of a well-known fact (see [BM83, §2.3, Theorem]); namely, that nilpotent cones are
homology manifolds (see Section 3.4.2). In order to do that, several definitions are
recalled in Section 3.4.1.

3.4.1 Lie groups and algebras

Definition 3.4.1. A smooth Lie group G is a set which is both a group and a
smooth manifold, such that the multiplication and inverse operations are smooth.

Likewise, complex and algebraic Lie groups are defined by requiring G to be
a complex manifold and the operations to be holomorphic or, respectively, G an
algebraic variety and the operations regular maps.
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Example 3.4.2. The following are Lie groups. For more details, see [FH91, §7.2].

▲ The general linear groups GLnR and GLnC;
▲ the special linear groups SLnR and SLnC, made of matrices with determinant

1;

▲ the orthogonal groups OnR and OnC, whose automorphisms preserve a sym-
metric positive-definite bilinear form;

▲ the special orthogonal groups SOnR and SOnC, consisting of the elements of
OnR and OnC, respectively, with determinant 1;

▲ the symplectic groups Sp2nR and Sp2nC whose automorphisms preserve a
skew-symmetric non-degenerate bilinear form;

▲ the unitary group UnC, made of automorphisms preserving a positive-definite
Hermitian inner product;

▲ the special unitary group SUnC, consisting of the elements of UnC with de-
terminant 1.

Any Lie group G can be associated to its Lie algebra, as explained, for instance,
in [FH91, §8.1], which is its tangent space g := LieG = TeG at the identity element
e endowed with a certain map [−,−]. The general definition is the following.

Definition 3.4.3. A Lie algebra g is a vector space endowed with a skew-
symmetric bilinear map

[−,−] : g× g → g

satisfying the Jacoby identity:

[X, [Y, Z]] + [Y, [X,Z]] + [Z, [X, Y ]] = 0 ∀X, Y, Z ∈ g.

Example 3.4.4. Let Q : Rn × Rn → R be a bilinear form, let Mn(R) and Tr(X)
denote, respectively, the set of all real n × n matrices and the trace of any such
matrix X. Then, the Lie algebras of SLnR and OnR are, respectively,

slnR = {X ∈Mn(R) : Tr(X) = 0},
onR = {X ∈Mn(R) : Q(X(v), w) +Q(v,X(w)) = 0 ∀v, w ∈ Rn}.

The same formula as the one defining onR gives the Lie algebra sp2nR of Sp2nR.
If H : Cn × Cn → C is a Hermitian inner product, the Lie algebra of UnC is

un := {X ∈Mn(C) : H(X(v), w) +H(v,X(w)) = 0 ∀v, w ∈ Cn}.

For more details, see [FH91, §8.2].

Let g be a Lie algebra. A Lie subalgebra h ⊆ g is called an ideal if

[X, Y ] ∈ h ∀X ∈ h, ∀Y ∈ g.

The Lie algebra g is called solvable if there is α > 0 such that Dαg = 0, where

Dαg :=

{
[g, g] if α = 1,

[Dα−1g,Dα−1g] if α > 1.

The sum of all solvable ideals is called the radical Rad(g) of g.
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Definition 3.4.5. The Lie algebra g is said to be reductive if its centre

Z(g) := {X ∈ g : [X, Y ] = 0, ∀Y ∈ g}

coincides with Rad(g). A Lie group is called reductive if so is its Lie algebra.

3.4.2 The nilpotent cone

Theorem 3.4.6. [DGFS22, Theorem 2.1]. Let π′ : g̃ → g be a projective
morphism between complex quasi-projective nonsingular varieties of the same di-
mension. Assume that π′ is generically finite of degree δ. Let N ⊂ g be a closed
irreducible subvariety. Consider the induced fibre square:

Ñ g̃

N g

π π′

i

where Ñ := N ×g g̃. If Ñ is irreducible and nonsingular and π is birational, then
N is an A-homology manifold for every Noetherian commutative ring with identity
A for which δ is a unit.

Proof. Since π′ : g̃ → g is a projective morphism between complex quasi-projective
nonsingular varieties of the same dimension, it is a local complete intersection
morphism of relative codimension 0 [FM81, p. 130]. Let

θ′ ∈ H0(π′) ∼= HomDb
c(g)

(Rπ′
∗Ag̃,Ag)

be the orientation class of π′ [FM81, p. 131]. Let θ′0 : H0(g̃) → H0(g) be the
induced Gysin map. It is clear that θ′0(1g̃) = δ · 1g ∈ H0(g), where δ is the degree
of π′. Therefore, if the pull-back of θ′ is denoted by

θ := i∗θ′ ∈ H0(π) ∼= HomDb
c(N )(Rπ∗AÑ ,AN ),

then δ−1 ·θ is a bivariant class of degree one for π (see Remark 3.2.1). At this point,
the claim follows by Theorem 3.3.6.

Remark 3.4.7. [DGFS22, Remark 2.2]. Observe that, as a scheme, Ñ could also be
nonreduced, but what matters is that, for the usual topology, it is a nonsingular
variety [FM81, p. 32, 3.1.1].

A simple application of Theorem 3.4.6 shall prove that nilpotent cones, defined
presently, are homology manifolds.

Definition 3.4.8. Let G be a connected reductive complex algebraic group and
let g be its Lie algebra. For any X ∈ g, set

adX : Y ∈ g 7→ [X, Y ] ∈ g.

The nilponent cone of G is the variety (see [AMTT08, §3.1])

N := N (G) = {X ∈ g : ∃α > 0 : adαX = 0},

where adαX is the composition of adX with itself α times.
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Given the nilpotent cone N of G as in the definition, let B denote the variety
of all Borel subgroups (for the definition, see [FH91, §23.3]) of G and set

Ñ := {(X,B) ∈ N × B : X ∈ LieB}.

The Springer resolution of N , which is semismall by [Ste76, Theorem 4.6], is the
projection

π : (X,B) ∈ Ñ 7→ X ∈ N

and it extends to the so-called Grothendieck simultaneous resolution (see
[Ste74, p. 131])

π′ : g̃ → g

defined by omitting the restriction X ∈ N in the definition of π. All these spaces
and maps form a fibre square

Ñ g̃

N g

π π′

i

therefore the hypotheses of Theorem 3.4.6 are met and

Corollary 3.4.9. [DGFS22, Corollary 2.3]. The nilpotent cone is a rational
homology manifold.

Remark 3.4.10. [DGFS22, Remark 2.4]. If the Grothendieck simultaneous resolu-
tion π′ : g̃ → g has degree δ, Theorem 3.4.6 implies that the nilpotent cone N is
an A-homology manifold for every Noetherian commutative ring with identity A for
which δ is a unit. For instance, for the variety N of nilpotent matrices in GL(n,C),
δ = n! and, as a result, N is also a Zh-homology manifold for every integer h
relatively prime with n! in Z.
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1981), volume 101 of Astérisque, pages 23–74. Soc. Math. France, Paris,
1983.

[Bre97] Glen E. Bredon. Sheaf theory, volume 170 of Graduate Texts in Math-
ematics. Springer-Verlag, New York, second edition, 1997.

[Bre04] Francesco Brenti. The intersection cohomology of Schubert varieties
is a combinatorial invariant. European J. Combin., 25(8):1151–1167,
2004.

[BSY07] Jean-Paul Brasselet, Jörg Schürmann, and Shoji Yokura. On the
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pour les grassmanniennes. Astérisque, (87-88):249–266, 1981.

[Mac71] Saunders MacLane. Categories for the working mathematician. Grad-
uate Texts in Mathematics, Vol. 5. Springer-Verlag, New York-Berlin,
1971.

[Man01] Laurent Manivel. Symmetric functions, Schubert polynomials and de-
generacy loci, volume 6 of SMF/AMS Texts and Monographs. Amer-
ican Mathematical Society, Providence, RI; Société Mathématique de
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