
Università degli Studi di Napoli Federico II
Ph.D. Program in

Information Technology and Electrical Engineering
XXXV Cycle

Thesis for the Degree of Doctor of Philosophy

Improving End-to-End Testing
for Web and Mobile Applications

by
Luigi Libero Lucio Starace

Advisor: Prof. Sergio Di Martino

Co-advisor: Prof. Adriano Peron

Scuola Politecnica e delle Scienze di Base

Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione

To N.

Improving End-to-End Testing
for Web and Mobile Applications

Ph.D. Thesis presented
for the fulfillment of the Degree of Doctor of Philosophy
in Information Technology and Electrical Engineering

by

Luigi Libero Lucio Starace

October 2022

Approved as to style and content by

Prof. Sergio Di Martino, Advisor

Prof. Adriano Peron, Co-advisor

Università degli Studi di Napoli Federico II
Ph.D. Program in Information Technology and Electrical Engineering
XXXV cycle - Chairman: Prof. Stefano Russo

http://itee.dieti.unina.it

Candidate’s declaration

I hereby declare that this thesis submitted to obtain the academic degree
of Philosophiæ Doctor (Ph.D.) in Information Technology and Electrical
Engineering is my own unaided work, that I have not used other than the
sources indicated, and that all direct and indirect sources are
acknowledged as references.
Parts of this dissertation have been published in international journals
and/or conference articles (see list of the author’s publications at the end
of the thesis).

Napoli, December 13, 2022

Luigi Libero Lucio Starace

Abstract

End-to-End (E2E) testing is widely-used to improve the quality of web
and mobile applications. In this kind of activity, the Application Under
Test (AUT) is tested as a whole, in its entirety, simulating real-world usage
scenarios. The goal of the research presented in this thesis is to improve
the effectiveness of E2E testing processes from multiple perspectives.

In the domain of GUI-level testing of web applications, research pre-
sented in this thesis work tackles the problem of near-duplicate web page
detection in automatic model inference, which is a prerequisite for the
application of many automatic test generation techniques for web apps.
Two novel near-duplicate detection techniques are proposed, based on a
common underlying framework, and their effectiveness is assessed in an
empirical study.

In the domain of performance testing of web applications, we face the
problem of workload generation, presenting a novel technique to support
their automatic generation from existing E2E GUI-level web tests. The
effectiveness of the proposed technique is then evaluated in a preliminary
industrial case study, with promising results.

Lastly, in the domain of GUI-level testing of mobile applications, this
thesis presents research aimed at supporting Software Project Managers
in deciding which techniques to use to test a given mobile application.
To this end, two empirical studies are conducted. The first study aims
at comparing the testing effectiveness of state-of-the-art automatic testing
tools against that of unskilled practitioners using Capture and Replay tools
with exploratory testing strategies. The second study investigates the
effectiveness of crowdtesting in generating executable test suites for mobile
apps.

Keywords: End-to-End Testing, Web Applications, Mobile Applications,
Performance Testing, Software Testing.

Sintesi in lingua italiana

Il testing End-to-End (E2E) è una pratica largamente usata per miglio-
rare la qualità di applicazioni web e mobile. In questo tipo di attività,
l’applicazione viene testata nella sua interezza, simulando scenari realis-
tici di utilizzo. Le attività di ricerca presentate in questa tesi mirano al
miglioramento dei processi di testing E2E in diversi ambiti.

Nell’ambito del testing di applicazioni web a livello di interfaccia utente,
le attività presentate mirano a migliorare l’efficacia delle tecniche di gen-
erazione automatica di test allo stato dell’arte. A tal fine, vengono pro-
poste due nuove tecniche per affrontare il problema dell’individuazione di
pagine web quasi-duplicate nel processo di inferenza automatica di mod-
elli. L’efficacia delle tecniche proposte e il loro impatto sulla qualità dei
test generati automaticamente sono valutati sperimentalmente.

Nell’ambito del testing di performance, viene affrontato il problema
della generazione di workload, presentando una nuova tecnica che perme-
tte di generare automaticamente workload partendo da test E2E a livello di
interfaccia utente. L’efficacia dell’approccio proposto viene valutata sper-
imentalmente in un caso di studio industriale.

Infine, nell’ambito del testing E2E a livello di interfaccia utente per
applicazioni mobile, si investiga l’efficacia di diversi approcci, al fine di
supportare i manager di progetti software nella scelta degli approcci da
utilizzare per una data applicazione. A tal fine, vengono descritti due
studi empirici. Il primo studio mira a confrontare l’efficacia di strumenti
automatici di generazione di test con quella di test generati da sviluppatori
inesperti con strumenti di Capture and Replay (C&R). Il secondo studio
investiga l’efficacia di strumenti di C&R in scenari di crowdtesting.

Parole chiave: Testing End-to-End, Applicazioni Web, Applicazioni
Mobile, Performance Testing, Testing di Software.

Contents

Abstract . i
Sintesi in Lingua Italiana . ii
Contents . vi
Acknowledgements . vii
List of Acronyms . x
List of Figures . xiii
List of Tables . xvi
List of Algorithms . xvii
List of Listings . xix

1 Introduction 1
1.1 Thesis Outline . 3
1.2 Origin of Chapters . 4

2 End-to-End Testing: Background and Related Work 5
2.1 End-to-End Testing . 6
2.2 GUI-level Testing . 6

2.2.1 Overview of Approaches for GUI-level Testing 7
2.2.2 Test Design with Exploratory Testing 9
2.2.3 GUI-level Testing of Web Applications 9
2.2.4 GUI-level Testing of Mobile Applications 18

iii

2.2.5 Crowdtesting . 22
2.3 Performance Testing . 24

2.3.1 Types of Performance Testing 24
2.3.2 Phases of Performance Testing 25
2.3.3 State of the Art . 28
2.3.4 Challenges in the Definition of Performance Tests . . 31

3 Improving Automatic Web Test Generation with Near-
duplicate Detection 35
3.1 Reference Scenario for Automatic Web Test Generation . . 36

3.1.1 Crawling . 36
3.2 Proposed Framework for Near-duplicate Detection 38
3.3 Tree Kernel-based Near-duplicate Detection 39

3.3.1 Tree Kernel Functions 39
3.3.2 Proposed Approach 40

3.4 Neural Embedding-based Near-duplicate Detection 42
3.4.1 Neural Embeddings 42
3.4.2 Proposed Approach 44

3.5 Empirical Study Design . 49
3.5.1 Research Questions 50
3.5.2 Datasets . 50
3.5.3 Baselines . 51
3.5.4 Use Cases . 52
3.5.5 Procedure and Metrics 53

3.6 Results . 56
3.6.1 RQ1: Near-duplicate detection effectiveness 56
3.6.2 RQ2: Accuracy of the inferred models 60
3.6.3 RQ3: Impact on automatically generated tests . . . 61
3.6.4 Final Remarks . 62

3.7 Threats to Validity . 62

iv

3.8 Summary and Future Works 63

4 Automating Workload Generation for Web Apps leverag-
ing existing E2E functional tests 65
4.1 The Proposed Solution: E2E-Loader 65

4.1.1 Overview of the proposed approach 65
4.1.2 Managing Data Correlations: The Correlation Ex-

tractor component 67
4.1.3 Performance Test Configurator 69
4.1.4 Performance Test Generator 71

4.2 Empirical Study Design . 71
4.2.1 Subject System . 72
4.2.2 Workloads . 72
4.2.3 Gold Standard Implementation 73
4.2.4 Metrics . 73
4.2.5 Procedure . 73

4.3 Results . 75
4.4 Threats to Validity . 77
4.5 Summary and Future Works 78

5 Investigating Exploratory E2E Functional testing of An-
droid Apps 81
5.1 Comparing Automated Tools and Practitioners using C&R . 82

5.1.1 Empirical Study Design 83
5.1.2 Results . 93
5.1.3 Final Remarks . 113

5.2 Investigating Exploratory Crowdtesting 114
5.2.1 Empirical Study Design 115
5.2.2 Results . 118

5.3 Threats to Validity . 130
5.4 Summary and Future Works 132

v

6 Conclusions 135

Bibliography 139

Author’s Publications 167

vi

Acknowledgements

I enjoyed (almost!) every minute of the research I carried out during my
PhD, part of which has been described in this thesis. I owe that enjoyment
largely to the interaction I have had with my advisors, colleagues and
people I met and worked with along the way.

I feel very honoured to have worked with my advisors, Sergio Di Mar-
tino, Adriano Peron and, even though not officially an advisor, Anna
Corazza. I’m very grateful to each of them for the patience, inspiration,
support and friendship they granted me throughout my studies. From
them, I learned a lot about software engineering, research, and academia.

I’m also grateful to Paolo Tonella for hosting me at the Software In-
stitute of the Università della Svizzera Italiana in Lugano, Switzerland,
for my research period abroad, and to Andrea Stocco, for his guidance
in my research on near-duplicate detection. In Lugano, I spent countless
enjoyable hours with researchers and fellow PhD students at the Testing
AUtomated (TAU) lab, chatting about our research in a rich and stimu-
lating environment.

I sincerely thank Ciro D’Addio, Alfredo Troiano and Enrico Landolfi,
for the fruitful discussions that allowed me to better understand industrial
needs in the field of End-to-End testing of web and mobile applications,
as well as NetCom Group SpA, which funded the PhD scholarship that
supported my work.

I would also like to thank my family, including those who are no longer
with us, who have always been understanding and supportive of my studies.
Last but not least, I’d like to thank my wonderful partner, Natalia, who
has encouraged and supported me so much over the years.

vii

List of Acronyms

The following acronyms are used throughout the thesis.

AIG Automated Input Generation

AUT Application Under Test

C&R Capture & Replay

DOM Document Object Model

E2E End-to-End

ET Exploratory Testing

GUI Graphical User Interface

HTTP Hypter-Text Transfer Protocol

IDE Integrated Development Environment

IET Informed Exploratory Testing

LOC Lines of Code

SAF State Abstraction Function

SUT System Under Test

ix

SVM Support Vector Machines

TK Tree Kernel

UET Uninformed Exploratory Testing

x

List of Figures

1.1 Highlights of the contributions of this thesis work. 3

2.1 Example of an e-commerce web application. 13

2.2 Optimal web app model. 13

2.3 Incomplete crawl model w.r.t. the “Buy” functionality due
to redundant near-duplicate states for the same “Detail page”. 14

2.4 Example of a user group behaviour. 26

2.5 Connection lifecycles with HTTP (left) and with WebSocket
(right). 33

3.1 Considered reference scenario for automatic web test gener-
ation. 36

3.2 Overview of the proposed framework for near-duplicate de-
tection. 38

3.3 An HTML document (left) and its DOM representation (right) 40

3.4 Overview of the proposed TK-based approach. 41

3.5 Overview of the WebEmbed approach. 45

4.1 Overview of the E2E-Loader approach. 66

4.2 Example of HTTP response and subsequent request, with
data correlations. 68

xi

4.3 Example of workload definition using the E2E-Loader GUI. 70

4.4 CPU loads (%) over time in the considered workloads. . . . 75

5.1 Screenshots of the considered AUTs. 89

5.2 Boxplots representing the LOC coverage achieved with the
UET approach . 96

5.3 Boxplots representing the Branch coverage achieved with
the UET approach . 96

5.4 A Screenshot of the A1 App, in Landscape Mode 101

5.5 Boxplots representing the LOC coverage achieved with an
IET approach . 109

5.6 Boxplots representing the Branch coverage achieved with an
IET approach . 109

5.7 Average, median, and St. Dev. of the LOC coverage achieved
by different-sized crowds of testers. 120

5.8 Difference in LOC coverage percentage achieved by different-
sized crowds of testers using the same exploratory testing
strategy. 120

5.9 Results of hypotheses testing: comparing the effectiveness
of test suites generated by different-sized crowds using the
same exploratory strategy. 121

5.10 Measured effect size (Cliff’s Delta): comparing the effective-
ness of test suites generated by different-sized crowds using
the same exploratory strategy. 123

5.11 Difference in LOC coverage achieved by different numbers
of testers using different testing strategies. 124

5.12 Results of alternative hypotheses testing: comparing the ef-
fectiveness of test suites generated by different-sized crowds
using different exploratory strategies. 127

xii

5.13 Measured effect size (Cliff’s Delta): comparing the effective-
ness of test suites generated by different-sized crowds using
different exploratory strategies. 127

xiii

List of Tables

2.1 Comparison of Performance Testing tools 29

3.1 Considered DOM transformation strategies 41

3.2 Web page characteristics across the datasets 51

3.3 Considered use cases . 53

3.4 Ground Truth Models for the considered web apps. 54

3.5 RQ1 - Near-duplicate Detection (Beyond Apps use case).
Best averages are boldfaced. 57

3.6 RQ1 - Near-duplicate Detection (Across Apps use case).
Best averages are boldfaced. 57

3.7 RQ1 - Near-duplicate Detection (Within Apps use case).
Best averages are boldfaced. 58

3.8 RQ2 - Model Coverage (Beyond Apps Scenario). The best
average F1 score is highlighted in bold. 59

3.9 RQ2 - Model Coverage (Across Apps Scenario). The best
average F1 score is highlighted in bold. 59

3.10 RQ2 - Model Coverage (Within Apps Scenario). The best
average F1 score is highlighted in bold. 60

3.11 RQ3 - Code Coverage Percentages. Best average scores are
boldfaced. 61

xv

4.1 Formalization of the five workloads selected for the case study 71
4.2 Results of the Statistical Tests (SUT-level CPU load) 75
4.3 Results of the statistical tests (Container-level CPU loads) . 76

5.1 Main Characteristics of the AIG Tools Considered in the
Experiment . 87

5.2 The Android apps used in our study 87
5.3 Maximum achievable LOC coverage and branch coverage

(BC) percentage for the AUTs. 93
5.4 LOC/Branch Coverage (%) and Number of Events of Test

Suites Produced with UET Approach 95
5.5 Partition of Branches with respect to the Number of Stu-

dents Covering Them in UET Approach 100
5.6 LOC/Branch Coverage Percentage and Number of Events

of Test Suites Produced with IET Approach 107
5.7 Partition of Branches with respect to the Number of Stu-

dents Covering Them in IET Approach 110
5.8 Details on the investigated crowds of testers. 117
5.9 Average LOC coverage percentage achieved by different-

sized crowds of testers. 119
5.10 LOC coverage percentage achieved using different strategies,

with the same overall man-hours effort. 129

xvi

List of Algorithms

1 Web app crawling process . 37
2 Token Extraction . 45
3 Web App Crawling with WebEmbed 48

xvii

List of Listings

2.1 Example of GUI-level test case written in Java using the
Selenium automation framework. 8

3.1 HTML document corresponding to the Detail page for Book
A shown in Figure 2.1. 46

5.1 Source Code of B1 Branches 112

xix

Chapter 1
Introduction

Web and mobile applications have become pervasive and are involved
in many aspects of our daily lives. From home banking to public transit
trip planning, from e-commerce to social networks, modern society relies
on web and mobile applications to an ever-growing extent for a multitude
of economic, social, and recreational activities. The impact of failures in
such applications may range from simple inconveniences for end-users up
to complete business interruption, and can potentially cause significant
damages. Hence, ensuring the quality and correctness of web and mobile
applications is of undeniable importance [169].

End-to-End (E2E) testing is one of the main approaches to improve the
quality of these software systems. In this kind of activity, the Application
Under Test (AUT) is tested as a whole, simulating real-world usage sce-
narios. In most cases, E2E testing aims at exercising the AUT from the
perspective of an end-user, typically interacting with its Graphical User
Interface (GUI). The goal is typically to verify functional correctness, i.e.,
that the application behaves as intended in response to user-generated
events and interactions with the GUI (e.g., clicks, scrolls, forms filling and
submissions, etc.).

Moreover, especially for web applications, which may have to serve a
large number of concurrent users, additional testing activities aimed at
assessing that the application behaves as expected under different load
conditions may be put in place [46]. This kind of testing activities are
collectively referred to in the literature as Performance Testing.

2 Chapter 1. Introduction

The research work presented in this thesis is aimed at improving the
effectiveness of E2E testing processes for web and mobile applications, from
multiple perspectives.

In the domain of GUI-level testing of web applications, the thesis work
tackles the problem of near-duplicate web page detection during automatic
model inference, which is a prerequisite for applying many automatic test
generation techniques for web apps. Indeed, as recent studies highlighted,
existing approaches for the detection of near-duplicate web pages are gen-
erally not able to produce accurate models, hindering the effectiveness
of automatic test generation techniques as well. To address this issue,
two novel near-duplicate detection techniques, specifically geared towards
model inference for web testing purposes, are proposed, based on a com-
mon underlying framework. The effectiveness of the proposed techniques,
as well as their practical impact on the quality of automatically generated
tests, is assessed in an empirical study involving massive datasets from
the literature and open-source web applications. Results show that the
proposed techniques outperform state-of-the-art near-duplicate detection
solutions, and lead to remarkable practical benefits when employed in au-
tomatic test generation for web apps.

In the domain of performance testing of web applications, the thesis
tackles the problem of workload generation. Indeed, manually generating
workloads is a very time-consuming and error-prone activity, and existing
techniques supporting their automatic generation typically leverage real-
world system logs, which are not available before the actual release of the
software. To overcome these limitations, a novel technique to automati-
cally generate workloads starting from existing E2E functional web tests
is proposed. The effectiveness of the proposed technique is then evaluated
in a preliminary industrial case study. Results are promising and show
that workloads generated automatically using the proposed approach are
comparable to those that are generated manually by practitioners.

Lastly, in the domain of GUI-level testing of mobile applications, the
thesis work aims at addressing a lack in the literature and at supporting
Software Project Managers in deciding which techniques to use to test a
given mobile application. To this end, two empirical studies are conducted,
involving twenty master’s students as subjects. The first study com-
pares the effectiveness of state-of-the-art automatic testing tools against

1.1. Thesis Outline 3

ContributionsDomain Activity

En
d

-t
o

-E
n

d
 t

es
ti

n
g

Web
Apps

GUI-level
Testing

Contribution 1:
Tree Kernel-based near-duplicate detection.

Contribution 2:
Neural embeddings-based near-duplicate
detection.

Performance
Testing

Contribution 3:
Automatic Workload Generation from
existing GUI-level E2E tests.

Mobile
Apps

GUI-level
testing

Contribution 4:
Empirical Study Comparing Automated Tools
vs Practitioners using C&R tools.

Contribution 5:
Empirical Study on the effectiveness of
Exploratory Crowdtesting for mobile apps.

Figure 1.1. Highlights of the contributions of this thesis work.

that of unskilled practitioners using Capture and Replay tools with ex-
ploratory testing strategies. The second study investigates the effective-
ness of crowdtesting in generating executable test suites for mobile apps,
requiring crowdtesters to use exploratory testing strategies and capture
and replay tools.

The main contributions of this thesis work are summarized in Fig-
ure 1.1.

1.1 Thesis Outline

The remainder of the thesis is structured as follows. Chapter 2 in-
troduces some background notions on E2E testing and on its application
in the Web and Mobile Applications domain, hinting at open challenges
and limitations of existing approaches. Chapter 3 presents the work we
conducted to improve the effectiveness of automatic E2E test generation
techniques for web applications, by tackling the problem of near-duplicate
states in web application model inference. In this chapter, we propose
two different solutions for near-duplicate detection, and assess their ef-

4 Chapter 1. Introduction

fectiveness with an empirical study. Chapter 4 focuses on performance
testing of web applications and presents a novel approach for automating
the generation of workloads, starting from existing E2E GUI-level tests.
The effectiveness of the proposed approach is evaluated in an industrial
case study. In Chapter 5, we investigate the effectiveness of E2E testing
techniques for Android applications by conducting two empirical studies.
In the first study, we compare the effectiveness of automated test genera-
tion tools w.r.t. unskilled practitioners using capture and replay tools and
exploratory approaches. Subsequently, we elaborate on the data collected
in the first study and conduct a second study, aimed at investigating the
effectiveness of Crowdtesting in generating test suites for Android apps.
Lastly, in Chapter 6, we give some final remarks and highlight future re-
search directions.

1.2 Origin of Chapters

In Chapter 3, the definition of the framework for near-duplicate de-
tection (Section 3.2) is novel, currently unpublished work. The key ideas
behind the Tree Kernel-based near duplicate detection (Section 3.3) have
been published in a conference paper by Corazza et al. [61], and presented
by the author of this thesis at the 2021 edition of the ECOOP/ISSTA
Doctoral Symposium1. The work on the neural embeddings-based near
duplicate detection (Section 3.4) is unpublished and currently under re-
vision. Chapter 4 is based on unpublished work, currently under review.
Chapter 5 includes work (Section 5.1) that has been published in the jour-
nal paper [66], and contains additional work (Section 5.2) that is currently
under peer review.

1https://conf.researchr.org/track/issta-2021/ecoop-issta-2021-doctoral-
symposium

https://conf.researchr.org/track/issta-2021/ecoop-issta-2021-doctoral-symposium
https://conf.researchr.org/track/issta-2021/ecoop-issta-2021-doctoral-symposium

Chapter 2
End-to-End Testing:
Background and Related Work

This chapter provides some background notions on End-to-End (E2E)
testing, focusing on the web and mobile apps domains, as well as an
overview of the state of the art in this field, hinting at challenges and
open issues.

The chapter is structured as follows. Section 2.1 introduces the E2E
testing process. Section 2.2 focuses on GUI-level E2E testing, describing
the main existing approaches (Section 2.2.1), the state of the art in the
web applications domain (Section 2.2.3) and in the mobile apps domain
(Section 2.2.4).

Subsequently, Section 2.3 focuses on performance testing, a particular
type of non-functional E2E testing that is largely applied in the web appli-
cations domain. Section 2.3.1 provides an overview of the different kinds of
performance testing activities, while Section 2.3.2 discusses the key com-
mon phases of performance testing. Section 2.3.3 presents an overview
of the state of the art w.r.t. to performance testing, and Section 2.3.3
describes in detail and compares existing tools supporting performance
testing activities.

6 Chapter 2. End-to-End Testing: Background and Related Work

2.1 End-to-End Testing

E2E testing is one of the main approaches to improve the quality of
web and mobile applications [119, 43, 32, 46]. In this kind of activity,
testers exercise the Application Under Test (AUT) as a whole, in its en-
tirety, simulating real-world usage scenarios. Typically, E2E testing aims
at stressing the AUT from the perspective of an end-user interacting with
its Graphical User Interface (GUI), to assess its functional correctness.
More in detail, these GUI-level testing activities aim at verifying that the
application behaves as intended in response to user-generated events and
interactions with the GUI (e.g., clicks, scrolls, forms filling and submis-
sions, etc.).

Moreover, E2E testing approaches can also be used to validate non-
functional requirements. For example, performance testing techniques are
typically used to ensure that a web application and its current deployment
configuration can handle expected workloads while guaranteeing the re-
quired Quality of Service.

In the remainder of this chapter, we describe in greater detail GUI-level
testing (Section 2.2.3) and performance testing (Section 2.3) in the web
and mobile apps domain, providing, for each, background information and
an overview of the state of the art.

2.2 GUI-level Testing

In this section, we start by providing, in Section 2.2.1, an overview
of the existing approaches for GUI-level testing of web and mobile apps,
from a technical point of view. Then, we present Exploratory Testing
(ET) (Section 2.2.2), a widely used strategy to design effective GUI-level
test cases, and crowdtesting (Section 2.2.5), an emerging testing paradigm
that proved its effectiveness in E2E testing for the considered domains.
Subsequently, in Section 2.2.3 and Section 2.2.4, we present the state of
the art for GUI-level testing for the web and mobile applications domains,
respectively.

2.2. GUI-level Testing 7

2.2.1 Overview of Approaches for GUI-level Testing

In the following, we consider existing approaches for GUI-level testing
in increasing order of automation level.

Manual Testing

The easiest approach to E2E functional testing consists in requiring
testers to manually interact with the AUT, visually assessing that it be-
haves as specified in its requirements. In this case, practitioners can either
be assigned a set of test cases to be manually replicated [191] (also referred
to as scripted testing [111]), or be left free to follow their own sensibility
in interacting with the AUT, in so-called ET approaches [109, 100, 99].

Manual testing is affected by many drawbacks, severely limiting its
effectiveness [228]. Firstly, it is remarkably time- and resource-consuming.
For complex applications, it may take up to several workdays to manually
complete the testing process, which needs to be repeated on each new
release of the software [169]. Secondly, it can be error-prone. Practitioners
performing repetitive and tedious interactions with the AUT are likely to
make mistakes, which may have an impact on software quality [187].

Programmable Tests with Automation Frameworks

To overcome the limitations of manual testing, E2E test automation
frameworks, such as Selenium [179] or Espresso [71] have been proposed.
These frameworks allow testers to easily write code that interacts with the
AUT, generating GUI events such as button clicks, scrolls, filling of input
fields, etc. By using these frameworks, testers can manually implement
automated test cases that simulate user interactions with the AUT, and
automatically verify assertions. An example of Java code implementing
an E2E test case using the well-known Selenium automation framework is
shown in Listing 2.1.

Automated test suites can be readily re-executed every time the need
arises, for example, to check for non-regression on each new release in
evolutionary scenarios. Still, developing a thorough E2E test suite using
automation frameworks is a time-consuming and error-prone task, and
requires testers with adequate programming expertise [111]. Moreover,
tests implemented with automation frameworks are also prone to breakage,

8 Chapter 2. End-to-End Testing: Background and Related Work

Listing 2.1. Example of GUI-level test case written in Java using the Sele-
nium automation framework.

@Test
public void testAddReview(){

driver.get("http://localhost/e-shop/"); //go to homepage
driver.findElement(By.name("book-a")).click();
driver.findElement(By.name("add_review")).click();
driver.findElement(By.name("rev")).sendKeys("review1");
driver.findElement(By.name("submit")).click();
String actualTitle = driver.getTitle();
String expectedTitle = "Review added correctly!";
Assert.assertEquals(expectedTitle, actualTitle);

}

i.e., they can stop working in presence of even minor changes to the GUI
of the AUT [123]. Thus, they need appropriate (and costly) maintenance
[58].

Capture & Replay

Capture & Replay (C&R) tools allow testers to automatically generate
re-executable tests by simply interacting with the AUT and “capturing”
(recording) these usage scenarios. From an ease-of-use perspective, C&R
is a very effective alternative to manually writing test scripts, as it enables
even testers with limited testing knowledge to generate tests, reflecting real
usage scenarios, in little time. Anyhow, the C&R approach is not exempt
from limitations. For example, just as manually-implemented tests, those
recorded with C&R tools are fragile w.r.t. app evolution, and may require
re-recording when the GUI of the AUT changes.

Automatic Test Generation

Even with C&R approaches, generating recordings and maintaining
test cases remains a costly manual practice. Automated test generation
techniques aim at completely automating the test generation process, thus
relieving developers and testers from such a burden. Indeed, these tech-
niques can automatically exercise the AUT by generating input events
according to different exploration strategies, like pseudo-random fashion

2.2. GUI-level Testing 9

[139], by following a model-based approach [38], or other systematic ap-
proaches [14].

Automatic test generation tools, however, generally lack domain knowl-
edge, and may generate either unrealistic test cases or fail to find test cases
that explore aspects of functionality that matter to users [40, 136], also
due to the presence of the so-called ‘gate’ GUIs, i.e., screens that require
a very specific input to proceed with the exploration [193].

2.2.2 Test Design with Exploratory Testing

E2E test design is a creative activity, that can greatly benefit from
leveraging testers with different backgrounds and experience. The diversity
of testers’ performance has been the subject of numerous empirical studies
in the past [214, 34, 108, 17], with the aim of comparing the capability of
students and/or professionals in fault-finding tasks with those of testing
techniques or automatic tools.

In the design of E2E GUI-level test cases, i.e., deciding which sequences
of user actions should be used to test the AUT, ET [3, 109] is a widely-
adopted strategy in the web and mobile apps domains [100, 98, 99, 210],
recognized as fundamental, especially in manual testing activities such as
recording test cases using C&R tools [99]. ET emphasizes the personal
freedom and responsibility of the individual tester to continually optimize
the quality of their work by considering test design, execution, and re-
sult interpretation as mutually supportive activities that run in parallel
throughout the project, in a creative, experience-driven approach [99].

2.2.3 GUI-level Testing of Web Applications

In this section, we discuss the state-of-the-art of GUI-level testing of
web applications. We start by describing automation frameworks for pro-
grammable web testing and C&R tools and then focus on automatic web
test generation and its challenges.

Web Test Automation Frameworks

In the web apps domain, most test automation frameworks operate at
GUI-level by leveraging the Document Object Model (DOM) representa-
tion of web pages to locate and interact with GUI elements. Examples

10 Chapter 2. End-to-End Testing: Background and Related Work

of frameworks using such an approach include Selenium [179], Cypress
[103], and Playwright [150]. These solutions have reached a high level of
maturity and popularity [169]. A crucial aspect of developing tests using
DOM-based automation frameworks is the specification of adequate loca-
tors, i.e., constructs used by automation frameworks to identify the web
elements on which the interactions or assertions should be performed [122].
XPath [54] expressions are widely used to this end, due to their flexibil-
ity and expressive power. Selecting effective locators can be a challenging
task. Indeed, locators that are too specific or too general tend to be more
prone to breakage when applied on new versions of the AUT, with changes
in the layout of the web page. In the last years, a competing category of
tools has also appeared, based on computer vision techniques to identify
the elements on which interactions should be performed. Examples of this
kind of framework include Sikuli [222] and JAutomate [6], and identify the
elements with which to interact using screen captures and image matching
techniques. Using a visual approach usually results in more robust tests,
when evolutionary changes in the AUT do not affect the looks of the web
elements. In [121], Leotta et al. conducted an empirical study comparing
layout-based and visual locators in the web context, finding that layout-
based locators are generally more robust, and associated with lower test
development and test execution times. Their study also highlighted that,
in some web applications in which structural changes were more frequent,
visual locators performed better.

Capture and Replay

A number of solutions exist to support C&R of web application inter-
actions. For example, Selenium IDE [1] allows users to record interactions
and automatically generate executable Selenium tests. Similarly, frame-
works such as JAutomate [6] or EyeAutomate [72] allow for the recording
of usage scenarios and automatically generate executable tests using vi-
sual locators. As for the effectiveness of C&R in the web domain, Leotta
et al. [120] conducted an empirical study comparing programmable web
testing (using Selenium) and C&R (using Selenium IDE) in the context of
web test evolution. Their analysis confirmed that, as expected, the initial
development costs of a web test suite are noticeably greater when using
the programmable test approach. On the other hand, however, their re-

2.2. GUI-level Testing 11

sults highlighted that programmable tests required significantly less main-
tenance as the AUT evolved, making the cumulative costs of programmable
web testing become lower than those of C&R after a small number of new
AUT releases.

Automatic Generation of GUI-level E2E Tests

A number of works have investigated techniques for the automatic gen-
eration of E2E GUI-level web tests. Most of these works rely on state-based
models of the AUT. Typically, in these models, each state represents a dis-
tinct high-level functionality of the AUT, while transitions between states
represent navigability relationships.

Andrews et al. [18] propose a test generation approach based on a hi-
erarchical finite state machine model of the AUT, aimed at reaching full
transition coverage. Biagiola et al. [36, 39] use Page Objects defined by
developers to guide the generation of tests. Marchetto et al. [140] propose
a combination of static and dynamic analysis to model the AUT into a
finite state machine and generate tests based on multiple coverage criteria.
Mesbah et al. [149] propose ATUSA, a tool that leverages the model of the
AUT produced by Crawljax to automatically generate test cases to cover
all the transitions of the model, with a set of customizable invariants as
test oracles. Biagiola et al. [38] propose DANTE, an automated approach
to test generation, aimed at producing minimal test suites from web app
crawlings. DANTE turns the raw output of a crawler into executable test
cases by reusing the same inputs used upon crawling, resolving dependen-
cies among tests, and eliminating redundant tests. Sunman et al. [189]
AWET, an approach that leverages existing test cases, possibly obtained
via capture-and-replay in an exploratory testing fashion, to guide crawling.

The state-based models used in these approaches can be either manu-
ally generated by developers, or automatically inferred, e.g., through crawl-
ing. Broadly speaking, crawling-based model inference techniques dynam-
ically and systematically analyze the AUT starting at an initial web page
and then explore the application by generating GUI events and checking
the responses. When, as a consequence of a fired event, changes in the web
page are detected, a new state is added to the model. From a testing view-
point, these inferred models should contain a minimal set of significantly
different states, yet adequately cover all the functionalities of the AUT.

12 Chapter 2. End-to-End Testing: Background and Related Work

In practice, however, models inferred automatically through crawling, like
those of the above-mentioned works, are often affected by near-duplicate
states [78, 65, 89, 135], i.e., replicas of the same functional web page dif-
fering only by minor changes. Near-duplicates have a detrimental impact
on the quality of automatically-inferred models, and thus on the effective-
ness of the resulting automatically-generated E2E web test suites [218], as
explained in the following.

Near-duplicate States in Web App Model Inference

As the detection of near-duplicate states in web app models is a key
issue faced in this thesis work, in this section, we provide a deeper insight
on the problem and the state of the art of automatically retrieving an
accurate web app model for test generation, and on the detecting its near-
duplicate states.

Automated Web Model Inference Automated web model inference
techniques, such as crawling, operate through state exploration by trig-
gering events (e.g., clicks) and by generating inputs that cause state tran-
sitions in the web app. Whenever significant changes in the current web
page are detected, a new state is added to the model. A state can be
viewed as an abstraction of all the dynamic, runtime versions of the same
logical web page, often represented by their DOMs. The final model is a
set of states, i.e., the set of abstract web pages of the web app, and edges
that represent transitions between states.

We use as a running example a simple e-commerce web app showing
a product catalogue. A user can view the details of each product, add
a review, and buy it (Figure 2.1). From a functional testing viewpoint,
a manually-generated web app model for the running example, in terms
of logical states and functionalities, is shown in Figure 2.2. The model
includes four states, namely Catalog page, Detail page, Review Page, and
Buy page. From the Catalog page, it is possible to navigate to the Detail
page by clicking on a product. From a product Detail page, it is possible
to either write a review for the product, which leads back to the Review
page or buy the product, which causes a transition to the Buy page. Upon
submitting a review from the Review page, the web app returns to the
detail page for that product. On the Buy page, after filling out a form,

2.2. GUI-level Testing 13

Review Book A

Marketplace

Book A – 4.99 $
★★★★

Book B – 9.99 $
★★★

Book C – 14.99 $
★★★★★

Book A
4.99 $

Reviews
Good! by Alice ★★★

Liked it! by Bob ★★★★★

BUY

Description for Book A.

+ Add review

Book B
9.99 $

Reviews
Good! by Dina ★★★★
Meh. by Emma ★★

BUY

Description for Book B.

+ Add review

Catalog Book A detailsBook B details

SUBMIT REVIEW

Author:
Text:
Stars: ★★★★★

Insert name

Insert comment

Buy Book

SUBMIT ORDER

CC info:
Address:

Book B – 9.99 $
★★★

CC number

Insert address

Review BookBuy Book

Previous Reviews
Good! by Alice ★★★

Liked it! by Bob ★★★★★

Figure 2.1. Example of an e-commerce web application.

Catalog
Page

Book Detail
Page

Buy Page

click(book)

back()back()

buy()

buy()

review()

Review
Page

add()

back()

Figure 2.2. Optimal web app model.

14 Chapter 2. End-to-End Testing: Background and Related Work

Catalog
Page

1

Detail Page
for Book A

2

Review Page
for Book A

3

Detail Page
for Book A +

Review 1

4
Detail Page
for Book A +
Review 1, 2

6
Review Page
for Book A +

Review 1

5

Review Page
for Book A +
Review 1, 2

7
Detail Page
for Book A +

Review 1, 2, 3

8

click(book) review()

add()review()add()

review() add() review()

Figure 2.3. Incomplete crawl model w.r.t. the “Buy” functionality due to
redundant near-duplicate states for the same “Detail page”.

users can place orders and are subsequently redirected to the Catalog page.

Near-duplicate States and their impact on testing Figure 2.3
shows a crawl model for the running example, generated by the state-of-
the-art crawler Crawljax [149] with its default configuration, i.e., (1) exact
matching is used to determine whether a new web page needs to be added
to the model, i.e., all dynamic states corresponding to slightly different
web pages are regarded as new states; (2) an ordered GUI events queuing
strategy that considers HMTL elements from top to bottom and from left
to right; (3) a depth-first exploration strategy.

This model is affected by both redundancy (i.e., contains a number of
near-duplicate states for the Detail and Review states) and completeness
issues (i.e., it got stuck in a loop adding reviews, and will never get to visit
the Buy page). To clarify the reasons behind these issues, in the following,

2.2. GUI-level Testing 15

we describe the crawling process in a step-by-step fashion. Firstly, once
the web app is loaded, the crawler saves the initial home page (also called
index page) as the first state of the crawl model (i.e. State 1). In our
running example, the index page is the Catalog page. Then, the crawler
clicks on the first displayed product, i.e., Book A, which leads to the web
page showing details for that book. Such page is saved as a state into
the crawl model (Detail Page for Book A, i.e. State 2) and marked as
unvisited. Next, the crawler clicks on the “Add Review ” button and is
redirected to the Review Page for Book A, which is added to the model as
State 3 . Upon filling out the form and submitting a review, the crawler
is then redirected back to the Detail Page for Book A, which now displays
also the newly added review. Since the “new ” version of the detail page is
different from the previously visited version added to the model as State
2 , the default state abstraction strategy regards it as a new state, which is
added to the model as State 4 and marked as unvisited. The crawler then
continues its exploration for State 4 , adding a new review and resulting
in States 5 and 6 being added to the model. This process repeats until
the crawler runs out of its allowed time budget.

In the model obtained via crawling, a number of states representing the
Detail page for Item A are present. In the literature, such replicas of the
same logical page, like the detail pages of our example, are known as clones,
or near-duplicate states [217]. The presence of near-duplicate states in web
app models has a detrimental effect on the effectiveness of model-based test
generation techniques, in terms of conciseness and completeness.

Concerning the former, the presence of near-duplicates typically leads
to test suites containing many redundant tests exercising the same func-
tionality. In our running example, it would be sufficient to cover the De-
tail page only once with a test case, as covering all potential detail pages
with many redundant test cases is unlikely to increase the code coverage
achieved by the test suite or to expose new faults [217].

As for completeness, when exploring large web apps, crawlers may
waste a considerable part of their time budget visiting near-duplicate
states, without exploring other relevant parts of the application. This
harms the completeness of the inferred models, and thus the associated
test suites.

In the running example, the crawler failed to recognize that the ‘new’

16 Chapter 2. End-to-End Testing: Background and Related Work

updated Detail page for Book A, featuring the reviews, was a near-duplicate
of the previously-visited Detail page. Therefore, the crawler consumed the
entire time budget stuck on these pages, failing to explore other significant
parts of the application, such as the “Buy” functionality, leading to an
incomplete model.

Notice that configuring the crawler to run with a breadth-first strategy
in place of the default depth-first one would solve neither the conciseness
issue nor the completeness one. Indeed, in that case, the crawler would add
a new Detail page state to the model for each of the (possibly many) books
in the catalogue. This would result in a model with significant redundancy,
as well as possibly consuming most of the allowed time budget, leading to
an incomplete model as well.

State Abstraction Function In practice, web crawlers try to detect
whether a certain web page is a near-duplicate of another previously-visited
page in the model, and thus should not be added to the model, by means
of State Abstraction Functions (SAFs).

The problem of designing a SAF can be framed as an equivalence prob-
lem [217]: given two web pages p1 and p2, the SAF determines whether
p1 ≃ p2. The SAF used by the crawler is the main root cause for the lack of
conciseness and completeness of automated crawl models [217]. Yandra-
pally et al. [217] showed that even state-of-the-art structural and visual
SAF implementations lead to large numbers of near-duplicate states in
automatically-inferred models. Moreover, their study showed that state-
of-the-art SAF implementations are generally not “able to accurately detect
all functional near-duplicates within apps”, and highlights “the need for fur-
ther research in devising techniques geared specifically toward the inference
of web test models”.

Automated Near-duplicate Detection

Many techniques from different domains have been defined, in different
contexts, to design effective SAFs for the near-duplicate detection of web
pages, especially across different web applications. For instance, the prob-
lem of detecting duplicate and near-duplicate web pages arises naturally
in the web indexing process of search engines. In this field, the concept
of duplication and near-duplication is mainly related to the content of the

2.2. GUI-level Testing 17

web page, and hence Information Retrieval techniques have been found to
be quite effective [89]. Since performance is a crucial issue in this domain,
due to the amount of involved data, content hashing techniques have been
widely adopted thanks to their design simplicity and speed of comparison.
Notable examples include the shingling algorithm presented by Broder et
al. in [41], and the Simhash algorithm [45], which is also used by Google in
its web page indexing process [135]. In [89], Henzinger carried out a large-
scale evaluation of these algorithms on a set of 1.6B distinct web pages,
showing that both achieve high precision in detecting near-duplicate web
page pairs across different websites, while performing significantly worse
in detecting near-duplicated within the same website.

Detecting near-duplicate pages is also a challenge for automatic phish-
ing detection. In this context, malicious websites are often designed to
look as similar as possible to the original website they try to impersonate
while maintaining an entirely different HTML structure to avoid detection.
Hence, techniques from the Computer Vision domain have often been ap-
plied to screen captures of web pages with good results [5, 209].

Among those visual-based techniques, the most fine-grained approaches
focus on individual pixels composing the image. Examples of such tech-
niques are colour-histogram [190] and Perceptual Diff (PDiff) [220], which
have also been successfully applied in a previous web testing work for
detecting cross-browser incompatibilities [133]. Some visual approaches
operate at a coarser-grained scale, aiming at quantifying structural sim-
ilarity or at extracting features from images. Structural similarity-based
techniques leverage the intuition that images (and in particular screen cap-
tures of web applications) are typically highly structured, and their pixels,
especially when they are spatially close, exhibit strong dependencies that
convey important information about the structure of the represented ob-
jects. Similarity measures such as Structural Similarity Index (SSIM) [208],
which has been successfully applied in the detection of phishing websites
[47], take into account these spatial correlations.

Other visual techniques are based on image hashing, aiming at com-
puting identical or nearly-identical digests for similar images, e.g. the
screen captures corresponding to near-duplicate web pages [80]. Examples
of image hashing algorithms include block-mean hash [219] and perceptual
hash (pHash) [225]. Less work, however, has been directed towards defin-

18 Chapter 2. End-to-End Testing: Background and Related Work

ing SAFs for the detection of near-duplicate web pages within the same
web application and with the specific goal of supporting web application
testing.

Notable examples of techniques used to detect near-duplicate web pages
in the web testing domain include the Tree Edit Distance, which is defined
as the minimum number of node edit operations that transform one tree
into another, and the Levenshtein Distance [124], defined as the number
of character deletions, insertions, or substitutions required to transform
a string into another. Tree Edit Distance, which can be computed effi-
ciently using the Robust Tree Edit Distance (RTED) algorithm [166], can
be straightforwardly applied to tree-structured DOM representation of web
pages and has been employed in web crawling to detect near-duplicate web
pages [74]. The Levenshtein distance, on the other hand, can measure the
similarity of two web pages by comparing their HTML contents as strings,
as done in [148].

More recently, in [218], Yandrapally, Stocco, and Mesbah presented a
comparative study in which 10 different SAFs, based on techniques from
different domains (including the aforementioned simhash, PDiff, color-
histogram, SSIM, pHash, RTED), are applied and evaluated in the context
of model inference. That study showed that none of the considered algo-
rithms borrowed from the domains of information retrieval and computer
vision “is able to accurately detect all functional near-duplicates within
apps”, and “underlined the need for further research in devising techniques
geared specifically toward web test models”.

2.2.4 GUI-level Testing of Mobile Applications

In this section, we give an overview of the C&R and Automated Input
Generation (AIG) techniques and tools for mobile applications, hinting
at their strengths and weaknesses, and at the studies carried out in the
literature to evaluate and compare their effectiveness.

Programmable GUI Testing for Mobile Applications

A number of test automation frameworks have been proposed and are
used to achieve test automation in GUI-level testing of mobile apps. On the
Android platform, solutions such as Robotium [170], UI Automator [198],

2.2. GUI-level Testing 19

Monkeyrunner [153], XCTest [96], or Espresso [71] exist. These solutions
provide primitives to programmatically interact with the GUI of the AUT,
access the mobile platform functionality, and monitor its behaviour via
assertion statements.

Also in the mobile apps domain, manually writing test scripts is rec-
ognized as a time-consuming and error-prone activity, and requires testers
with adequate programming knowledge. Moreover, functional tests gener-
ated using this approach are usually quite fragile [59, 58], i.e. they often
fail or need maintenance in presence of GUI modifications, that are part
of the natural evolution of the AUT. This fragility issue makes manually-
written test scripts quite expensive to maintain as the app evolves, and
this can also lead to inertia when there is a need to change the GUI and
discourages many developers from using this GUI testing approach in the
first place [105].

Capture and Replay Techniques and Tools

Some C&R tools for mobile applications are coordinate-based, i.e., they
completely disregard the AUT GUI and record events by saving the ex-
act display coordinates at which they occur. Notable examples of tools
belonging to this category include Appetizer replaykit [30], RERAN [84],
VALERA, proposed by Hu, Azim, and Neamtiu in [95], which besides
recording GUI input events is also capable of recording sensor and net-
work input, RandR [174], Mosaic [86], and OBDR [154].

Other approaches to C&R are layout-based, i.e., identify the GUI el-
ements involved in the recorded events based on some unambiguous GUI
layout property (e.g. unique IDs, query language expressions). Well-known
examples of tools belonging to this category are Robotium Recorder [85]
and Espresso Test Recorder [62], which is developed by Google as part
of the Android Studio IDE and allows testers to generate Espresso test
scripts. Both tools generate Android JUnit test cases by recording usage
scenarios on a real or emulated Android device. Barista [75] is another tool
supporting the capture of user events directly, but only on a real device.

Lastly, visual C&R tools such as Sikuli [222, 44] and EyeStudio [72],
previously discussed in Section 2.2.3, can generally be applied also on mo-
bile apps running inside an emulator.

Despite its appeal and ease of use, the C&R approach is not exempt

20 Chapter 2. End-to-End Testing: Background and Related Work

from limitations. Other than the previoulsy-mentioned fragility issue,
C&R tools usually suffer from a trade-off between event-recording accu-
racy and portability of the recorded scripts: the more accurate the recorded
events are (timing, exact position of touch events), the more coupled the
generated test is to the device characteristics it was recorded on [127].

Some works compared the performance of different C&R tools. Garousi
et al. [81] compared two visual GUI testing tools, namely Sikuli and JAu-
tomate, in a real-world industrial scenario, in terms of features, robustness
of the recorded traces, and test development effort. In [116], Lam et al.
compared 11 different C&R tools with respect to three different aspects:
their ability to reproduce common usage scenarios, the size of the traces
created by the tools, and the robustness of traces created by the tools
when being replayed on devices with different resolutions. A comparative
experiment involving students has been recently presented by Ardito et al.
[32], evaluating a layout-based tool (Espresso Test Recorder) vs. a visual
one (EyeAutomate) in terms of productivity, i.e. the number of valid test
cases recorded by students. Ardito et al. observed no significant produc-
tivity difference between the two tools.

Automated Input Generation Techniques and Tools

Even with C&R approaches, generating recordings and maintaining
test cases remains a costly manual practice. AIG tools are capable of com-
pletely automating the input generation process, thus relieving developers
and testers from such a burden. Indeed, AIG tools can automatically ex-
ercise an app by generating input events according to different exploration
strategies, like pseudo-random fashion, or by following a model-based ap-
proach, or other systematic approaches.

The implementation of fully automatic testing tools able to stress the
GUI of Android apps is a popular topic since 2011, as surveyed by some
systematic mapping studies providing a view of the state of the art of the
literature in this field [226, 13, 114, 193].

The first fully automatic testing tool, provided in all the Android re-
leases, is Monkey1, a simple tool able to generate sequences of random
user and system events on the AUT. In order to perform more efficient

1https://developer.android.com/studio/test/monkey.html

https://developer.android.com/studio/test/monkey.html

2.2. GUI-level Testing 21

testing techniques, several different tools supporting the automatic and
systematic exploration of the AUT, based on the analysis of its GUI, have
been proposed. In particular, Android Ripper [12], Dynodroid [132], A3E
[33], SwiftHand [50] are all able to explore a dynamically built GUI model
of the AUT with different exploration strategies, including random and
systematic ones.

The performance of these tools was compared in [51], revealing that the
better ones were barely able to compete with the totally random testing
tool Monkey, when executed for the same amount of time. The main reason
for the success of Monkey is that it is able to generate random events faster
than the other tools since it does not analyze the GUI of the application
under test.

A more effective testing tool called Sapienz [139] was proposed in 2016.
It is able to generate a set of executable test cases on an Android app,
guided by a multi-objective search-based testing strategy aimed at opti-
mising code coverage, failure-finding capability and test sequence length.
It combines random and systematic strategies for test case generation and,
as shown in [139], its performance overcomes the ones of all the other tools
previously presented in the literature.

At last, some experimental cloud-based AIG testing tools have been
proposed. A notable example of this is Google Robo2, an automatic testing
tool available on the Firebase platform that is able to generate user events
according to a systematic testing strategy.

Comparisons between C&R and AIG testing tools

In the Android context, a recent study by Mohammed et al. [152]
focused on the comparison between the traces generated by the random
AIG tool Monkey and the executions performed by eight human users
on five selected Android applications, without using a C&R tool. The
comparison in this study uses an effectiveness metric based on the number
of distinct triggered events. No significant difference was observed between
the traces generated by Monkey and by the human users.

In a study by Mao et al. [136], the performance of the Sapienz tool has
been compared with the ones obtained by a set of 434 testers in the context

2https://firebase.google.com/docs/test-lab/android/robo-ux-test

https://firebase.google.com/docs/test-lab/android/robo-ux-test

22 Chapter 2. End-to-End Testing: Background and Related Work

of a crowd-sourcing testing experiment. In this experiment, specific testing
tasks were assigned to crowd testers and their effectiveness was measured
in terms of the accomplished tasks and the coverage of the Activity classes
of nine AUTs. The testers involved in this study have testing skills similar
to the ones of graduate students. The study showed that the automatic
tool and the crowd testers were able to achieve different results, thus the
use of tests generated by crowd testers may represent a valid starting point
for search-based approaches such as the one implemented in the Sapienz
tool.

2.2.5 Crowdtesting

According to the widely-accepted definition presented by Howe et al.
[94], crowdsourcing is the act of an organization outsourcing their work
to an undefined, networked labour using an open call for participation.
Crowdsourced Software Engineering (CSE) derives from crowdsourcing.
Using an open call, CSE aims at recruiting global online labour to carry
out various types of software engineering tasks, such as requirements ex-
traction, design, coding, and testing [137]. The validity of the adoption
of these approaches in the testing context (also referred to as crowdtest-
ing) and the opportunity to use them in conjunction with automatic tech-
niques and tools have been first recognized by Xie et al. [216]. Since then,
crowdtesting has been assessed by the scientific community in several dif-
ferent contexts, including GUI-level testing of web [49, 197] and mobile
[199, 67, 113, 7, 82] applications. Especially in the mobile applications
domain, crowdtesting has proven to be particularly effective [137, 227, 88],
and has been adopted by an increasing number of software organizations
including Microsoft, Google, PayPal, and Uber [31], to test their mobile
apps.

As reported by Steiner [186], a testing task can vary in three dimen-
sions: (I) it can be divisible or unitary; (II) it can be characterized by an
objective to maximize or optimize; and (III) the results obtained by differ-
ent individuals can be additive, conjunctive or disjunctive. Crowdtesting
tasks often are not divisible, thus the same task is assigned to a crowd of
different testers. Moreover, they are based on effectiveness objectives to
maximize, such as the number of found faults, covered scenarios, or cov-
ered code. Lastly, they are generally conjunctive because they contribute

2.2. GUI-level Testing 23

to the objective with possible overlapping of the results.
Due to the differences in skills and backgrounds of different testers, se-

lecting more than one tester generally provides better effectiveness, with an
increase in costs. However, it is also possible that increases in the number
of testers correspond only to slight increases in the overall effectiveness of
the tests [204]. More specifically, a linear increase in the number of testers
may cause a less-than-linear increase in their overall effectiveness and a
reduction in their overall efficiency. The trade-off between the number of
testers (and thus costs) and achieved testing effectiveness has been studied
in several works, in particular in the context of crowdtesting. The problem
of the optimal selection of a set of crowd workers in order to maximize the
coverage of test requirements, and minimize the number of testers (and the
consequent cost) is addressed in many papers [215, 201, 202] by propos-
ing different search-based approaches. These approaches were tested on a
series of historical data on the effectiveness of crowd workers who worked
on the Baidu platform. These data show how there is a significant differ-
ence in terms of effectiveness between crowd workers and how it can be
related to their experience measured from their performance on past tasks
solved in the same platform. They also show how the growth trend of test
effectiveness is slower and slower as the number of testers independently
dealing with the same test task increases. Kamangar et al. [106], instead,
try to correlate the test effectiveness of crowd workers to their personality
type classified by a psychological approach.

Several other papers in the literature directly studied the relationship
between the number of testers and the overall effectiveness of the produced
tests. In the context of usability testing, Nielsen et al. [160] evaluated the
influence of the number of testers and of their experience (distinguishing
by students or professionals) on the overall capability of finding usability
issues. They found that sets of five students were able, on average, to find
50% of the issues, while sets of 14 students were able to find 75% of issues.
On the other hand, sets of five professionals were able, on average, to find
90% of issues, while the overall set of 15 professionals was able to find all
the usability issues. Also in the context of usability testing, Sears et al.
[178] found that the percentage of found issues increased from 41% to 61%
when the number of testers was increased from 2 to 5.

In the mobile apps domain, a pilot study presented by Wang et al.

24 Chapter 2. End-to-End Testing: Background and Related Work

[204] on the basis of data from the Baidu crowdtesting platform observed
three distinct phenomena: large variation in bug detection rapidity and
cost among different applications, decreasing bug detection rates over time
and plateau effect of bug finding curve. They proposed iSense [205], an
estimation technique to evaluate the optimal trade-off between testing ef-
fectiveness (in terms of the number of different bugs detected) and cost. In
addition, an analysis of the same dataset reported in [203] found that there
is a large number of similar bug reports finding the same bugs, confirming
the previously observed phenomena.

In a study by Mao et al. [136], an experiment involving 434 testers
in the context of a crowd-testing experiment carried out on the Amazon
Mechanical Turk platform showed that crowdtesters were able to achieve
greatly varying results, complementary with the ones of automatic tools,
thus the use of tests generated by crowd testers may represent a valid
starting point for search-based approaches.

2.3 Performance Testing

Performance testing is an umbrella term including any kind of testing
task focused on assessing that the System Under Test (SUT) behaves as ex-
pected, under different workloads. Broadly speaking, performance testing
consists in generating synthetic workloads for the SUT, and in monitoring
its behaviour to detect load-related issues. These testing activities play a
critical role in providing acceptable quality levels for end users [223].

2.3.1 Types of Performance Testing

Depending on the specific goals at hand, it is possible to identify dif-
ferent types of performance testing. In the following, we discuss some of
the most commonly-used ones.

• Load testing aims at ensuring that the SUT behaves as expected in
production, under anticipated realistic load conditions resulting from
interactions by controlled numbers of concurrent users or processes
[104, 164].

• Stress testing focuses on evaluating the behaviour of a system un-
der extreme load conditions, exceeding the expected field loads. It

2.3. Performance Testing 25

can also be used to evaluate the system’s ability to handle reduced
availability of resources (e.g.: access to memory or servers) [9]. Stress
tests can typically be derived from load tests, by extending the load
beyond the expected limits, and can help in determining the maxi-
mum load a system can handle.

• Spike testing aims at evaluating the ability of a system to respond
correctly to sudden bursts of peak loads and return afterwards to a
steady state [223].

Performance testing is particularly important in the web applications
domain [46], as such systems are often business-critical [61], and in many
cases they must meet contractually-specified Service Level Agreements.
Therefore, load-related issues can often cost companies up to millions of
dollars. For example, it has been estimated that increasing the load time
of Amazon.com web pages by merely one second may cost the company as
much as $1.6 billion in lost sales per year [48, 68].

Workloads for web applications are typically characterized in terms of
user sessions [146, 91]. A user session is a sequence of related requests
or service invocations issued by the same user when interacting with the
application. Each user generally interacts with the web application by al-
ternating the sending of requests (e.g.: requesting a web page) and waiting
for a time period (the so-called think time) after it has received the server
response, before sending the next request.

2.3.2 Phases of Performance Testing

As previously mentioned, different types of performance testing exist,
each with different purposes and peculiarities. Nonetheless, all of them
share the same core phases: Test Design, Test Execution and Test Analysis.
In what follows, we discuss each of these phases in detail.

Test Design Phase

The goal of the Test Design phase is to define suitable synthetic work-
loads. A workload is characterized by the behaviours of different groups of
users. Each group represents concurrent users performing the same kind

26 Chapter 2. End-to-End Testing: Background and Related Work

Initial

delay

Startup

time

Hold load time Shutdown

time

0

25

50

0 5 15 45 50 60
Time (minutes)

N
um

be
r

of
 a

ct
iv

e
us

er
s

Figure 2.4. Example of a user group behaviour.

of interaction (i.e., the same user session). More formally, a user group is
characterized by the following variables:

• User session The sequence of requests performed by all users in the
group;

• Number of users The number of concurrent users in the group.

• Initial delay Indicates after how much time from the beginning of
the performance test the user group becomes active.

• Startup time The time required to go from zero to the specified
number of active users. Start-up time will be divided among each
user as (Start Threads Count / Start-up Time).

• Hold load time The time for which all concurrent users will remain
active.

• Shutdown time The time within which all active users must stop
to send requests to the server.

As an example, consider the user group behaviour depicted in Figure
2.4. In the example, after an initial delay of 5 minutes, the user group acti-
vates. In the subsequent 10 minutes of startup time, an increasing number
of users start interacting with the web application (5 additional users for
each minute), until all the required 50 users are active. All these users will

2.3. Performance Testing 27

remain active and continue interacting with the application for an hold
load time of 30 minutes. Then, in the subsequent 5 minutes of shutdown
time, users gradually stop interacting with the application, until no active
user remains. Notice that a performance test is typically designed as a
composition of several different user group behaviours, executed concur-
rently.

Test Execution Phase

Once a suitable workload has been designed, the performance test can
be executed. The Test Execution phase includes (I) a setup step, focusing
on deploying the SUT and the test execution environment; (II) workload
execution, consisting in suitably generating synthetic traffic to the web
application, as specified by the workload; and (III) test monitoring and
data collection, which includes logging system behaviour (e.g.: CPU and/or
memory usage metrics) during workload execution. The recorded data is
then used in the subsequent Test Analysis phase [104].

Two approaches to workload execution exist, namely Live-user-based
execution and Driver-based execution. The former is the most intuitive
workload test execution approach and consists of leveraging a group of
human testers. This approach reflects realistic user behaviours and allows
performance testers to obtain real user feedback. On the other hand, it
does not scale well, as it is limited by the number of available testers.
Driver-based execution overcomes this scalability problem by leveraging
suitably-defined scripts to automatically generate user requests, possibly
using specialized tools such as Apache JMeter [20].

Test Analysis Phase

During the Test Execution phase, the system behaviour (e.g., logs and
metrics) is recorded. These data must be then analyzed to assess whether
the SUT meets the test objectives and if any load-related problem is un-
covered. Huge amounts of performance counters (e.g., CPU, memory and
throughput) and logs may be collected over extended periods of time, mak-
ing a manual analysis basically unfeasible [48]. Hence, heuristics are typ-
ically used to detect potential problems. Some approaches verify that
system metrics (such as CPU and memory usage) do not exceed prede-

28 Chapter 2. End-to-End Testing: Background and Related Work

fined threshold values, while other approaches focus on analyzing system
behaviour data in search for known patterns linked to load issues [48, 104,
134].

2.3.3 State of the Art

Most of the approaches proposed in the literature for the automatic de-
sign of workloads leverage system log analysis. The idea behind these ap-
proaches is to start from real user behaviours, as captured by system logs,
to infer realistic workloads. In [147], Menascè et al. proposed a workload
characterization methodology to model the interactions between customers
and e-commerce websites. Their approach consists of two phases. Firstly,
it extracts a number of distinct user session logs from raw HTTP logs. Sec-
ondly, starting from the previously generated user session logs, a clustering
analysis is conducted to group user sessions characterized by similar navi-
gational patterns. For each cluster, they produce a state-transition graph
describing the possible behaviours of that group of users. These models
can then be used to generate realistic sequences of requests, and thus work-
loads, for e-commerce web applications. Other works proved that Markov
chain models can be effective in representing the possible behaviours of
users and thus in generating realistic workloads [141, 126, 172].

However, approaches based on state-transition models of user behaviours
are affected by two key limitations. Firstly, they assume first-order de-
pendencies between requests (i.e.: the next request depends only on the
previous one), which is a limitation, given the articulate structure of many
web applications.

Secondly, they do not allow for modelling data dependencies between
subsequent requests. Indeed, in many scenarios, the parameters used in a
given request may depend on values contained in the response to a previ-
ous request. For example, in applications that require authentication, the
authentication token that is sent in each request is obtained by the client
in the response to an initial authentication request. Similarly, the ID of
a purchased item in a checkout request in an e-commerce web application
must correspond to the ID of the item that was added to the cart in a pre-
vious request. Accounting for such data dependencies when modelling the
behaviour of classes of users is crucial to guarantee that valid sequences of
requests are generated.

2.3. Performance Testing 29

Table 2.1. Comparison of Performance Testing tools

Characteristic Load Runner JMeter LoadComplete Gatling

Licensing Commercial Open-Source Commercial Open-Source/
Commercial

Capture & Replay ✓ ✓ ✓ ✓

WebSocket support ✓
Via external

libraries ✓ ✓

WebSocket support
(C&R) ✓ ✗ ✓ ✗

Data Correlation
detection

Manually
specified

rules.

Manually
specified

rules.

Manually
specified

rules.
✗

SUT monitoring ✓
Via external

plugin . ✓ ✗

Shams et al. [180] proposed a new application modelling methodology
to overcome these limitations. Their approach relies on manually-defined
Extended Finite State Machines (EFSM) models of the AUT, that can
represent higher-order request dependencies, and allow testers to manually
specify data dependencies between requests. Vögele et al. [200] further
extend the approach proposed by Shams et al. and presented WESSBAS,
a tool that is capable of automatically extracting an EFSM model from
system logs. In that work, however, the authors do not address the problem
of data correlation between requests.

Still, these approaches require the collection of large amounts of system
logs, which limits their applicability in scenarios in which the SUT has not
been yet released and alpha/beta testers are not available [48]. Moreover,
analyzing large quantities of log data is a challenging and time-consuming
task [165], which also lengthens the time to market in evolutionary scenar-
ios in which the SUT changes and updated workloads should be generated
as well.

Parrott et. al [165] proposed Lodestone, a solution to overcome the
problem of obsolete workloads. Lodestone is a real-time data science ap-
proach to load testing, leveraging streaming of log data to dynamically
generate and update user behaviour patterns, group them into similar
behaviour profiles, and instantiate the distributed workload of software

30 Chapter 2. End-to-End Testing: Background and Related Work

systems. However, this approach is very expensive in terms of architecture
and complexity, and its applicability is limited in scenarios in which the
SUT has not been yet released.

State of Practice Overview

In this section, we briefly present state-of-practice tools for perfor-
mance testing, focusing on the strengths and shortcomings of each one. In
particular, we consider two largely used open-source tools, namely Apache
JMeter [20] and Gatling [4], and two well-known commercial solutions,
namely LoadRunner [129] and LoadComplete [128]. In Table 2.1, we sum-
marize their characteristics.

Apache JMeter JMeter is an open-source, multi-platform framework
for performance testing, supporting both the definition of workloads and
their execution. JMeter allows practitioners to design workloads by either
manually specifying a sequence of requests, through its Graphical User
Interface (GUI), or by leveraging a Capture and Replay (C&R) module.
With the latter approach, a tester can directly interact with the SUT as an
end-user, and JMeter generates an executable workload by automatically
capturing the requests that are sent to the SUT during the interaction. A
key limitation of the C&R approach is the inability to record Websocket
requests, which must be managed manually using an external module [173].
Furthermore, JMeter does not provide automatic correlation capabilities to
address data dependencies, but only a third-party plugin [142] to support
correlation detection through the use of manually-defined correlation rules
[2, 118, 87]. As for monitoring the behaviour of the SUT, JMeter can be
extended with the PerfMon plugin, which allows for the collection of load
metrics (e.g.: CPU usage, RAM usage) on the SUT.

Gatling Gatling [4] is an open-source performance testing solution, de-
signed to be easily integrated into continuous integration/continuous de-
ployment pipelines. A commercial enterprise version is available, including
support and additional features. In what follows, we consider the open-
source version. Gatling does not allow practitioners to manually specify
the requests in a workload but offers the possibility of using a C&R ap-
proach. Similarly to JMeter, however, the capture component in Gatling is

2.3. Performance Testing 31

incapable of managing WebSocket requests and offers no automatic/partial
correlation feature to cope with data dependencies, forcing practitioners
to carry out additional time-consuming and tedious manual work. Gatling
does not feature built-in monitoring capabilities, and practitioners need to
set up appropriate tooling to collect relevant metrics on the SUT.

LoadRunner LoadRunner [129] is a widely-used commercial perfor-
mance testing solution developed by Micro Focus [87]. Similarly to JMeter,
LoadRunner allows users to manually design a workload by specifying a
sequence of requests (using the VUGen IDE included with the tool) or to
use a C&R approach. Unlike JMeter, however, the C&R feature shipped
by LoadRunner is capable of recording also WebSocket requests. As for
data dependencies, LoadRunner includes a plugin to support the detection
of correlations, but the tool requires a time-consuming and tedious con-
figuration of manually-defined rules. LoadRunner includes extensive SUT
monitoring capabilities. Licences for using this tool, however, can cost up
to several thousand USD per year, and, depending on the selected licens-
ing plan, limitations on the number of virtual users and/or the duration
of workloads might apply.

LoadComplete LoadComplete [128] is a commercial performance test-
ing solution developed by SmartBear. It provides a GUI allowing practi-
tioners to design performance tests manually or by using a built-in C&R
tool, which is also capable of capturing WebSocket requests. Additionally,
LoadComplete includes a plugin to support data dependency detection,
but only using manually-specified rules [87, 102]. LoadComplete also fea-
tures SUT monitoring capabilities and can generate custom reports [102].
Similarly to LoadRunner, LoadComplete is a costly commercial tool. Li-
cences can cost up to several thousand USD per year, and limitations on
the number of concurrent users and/or on the duration of workloads might
exist depending on the licence.

2.3.4 Challenges in the Definition of Performance Tests

Summarizing, from our analysis of the state of the art, we identified
a number of challenges that limit the productivity of practitioners and
the effectiveness of the performance testing process. Such challenges are

32 Chapter 2. End-to-End Testing: Background and Related Work

reported in the following.

Avoiding the necessity of a deployed system to automatically
generate performance tests The approaches proposed in the liter-
ature require large amounts of user logs. To collect adequate amounts of
log data, the system under test needs to be deployed, but deploying an
untested application is not a good practice [163].

Automatically managing data dependencies between subsequent
requests For a test to run correctly, a request that is sent to a server
might need to use a dynamic value that was returned by a previous re-
sponse in the same session [180]. For example, when a user logs in to a
web application, the server might issue a session ID, which is used to iden-
tify that user in subsequent requests and is dynamic (i.e.: after each login,
the user receives a different session ID). In a similar scenario, performance
tests must be parametric, i.e., take into account this data dependency
[142].

Existing tools typically offer only partial support for this correlation
task, allowing practitioners manually define a set of rules (regular expres-
sions) for identifying correlations. Nonetheless, manually defining rules is
still a time-consuming and tedious task, and requires practitioners to be
familiar with the data flow between subsequent requests.

Coping with the evolution of workloads Web applications are con-
stantly evolving, with new features being added or existing ones being
updated. Moreover, the way users use a web application also can change
over time. As a consequence, workloads may become rapidly obsolete, and
need to be updated as well. In this evolutionary scenario, workload gener-
ation techniques that require long analysis times may become inapplicable
[46, 165, 48].

Supporting emerging protocols such as WebSocket WebSocket
[77] is an emerging network protocol supporting bidirectional connections
where data is simultaneously exchanged in both directions. As shown in
Figure 2.5, unlike classic Hypter-Text Transfer Protocol (HTTP), in which
requests and responses alternate, with WebSocket, updates are sent imme-

2.3. Performance Testing 33

HTTP

Client Server

WebSocket

Client Server

bidirectional messages

connection closed

Client Server

Connection lifecycle

Figure 2.5. Connection lifecycles with HTTP (left) and with WebSocket
(right).

diately when they are available, in a bidirectional fashion. These asyn-
chronous, bidirectional communication patterns enabled by WebSocket al-
low practitioners to build true real-time functionalities, including chat,
collaborative document editing, etc [184].

The introduction of WebSocket leads to an increase in Performance
Testing complexity. Indeed, WebSocket messages in performance tests
are difficult to handle, as they are not constrained by the alternation of
requests and responses as in HTTP. With WebSocket, a single connec-
tion may correspond to multiple requests and multiple response messages,
which significantly complicates the data correlation task.

Chapter 3
Improving Automatic Web
Test Generation with
Near-duplicate Detection

As discussed in Section 2.2.3, most automatic test generation tech-
niques for web applications proposed in the literature leverage state-based
models of the Application Under Test (AUT), in which states represent
high-level features of the AUT, whereas transitions represent navigabil-
ity relations. These models can be either defined manually by testers,
which is a time-consuming and costly practice, or automatically inferred
via systematic exploration (i.e., crawling) of the AUT. In the latter case,
automatically inferred models are typically affected by the so-called near-
duplicate states, i.e. states that correspond to slightly different web pages
that nonetheless represent the same functionality from a testing viewpoint.
Using models containing near-duplicate states has a negative impact on the
quality of the resulting test suites, leading to a number of redundant tests
and completeness issues.

The goal of the research presented in this chapter is to improve the
effectiveness of automatic web test generation by improving the quality
of automatically inferred models. To this end, two novel near-duplicate
detection techniques are presented and their effectiveness as well as the
practical impact of adopting them in automatic test generation are empir-
ically evaluated.

36
Chapter 3. Improving Automatic Web Test Generation with Near-duplicate

Detection

Web
Application

Crawling
Automatic Test

Generation
Test
Suite

State-based model

Figure 3.1. Considered reference scenario for automatic web test generation.

The remainder of this chapter is structured as follows. In Section 3.1,
the automatic web test generation scenario we consider as a reference is
described in greater detail, focusing on the key phases of model inference
via crawling. Subsequently, the general framework for near-duplicate de-
tection we propose is sketched in Section 3.2, and two novel techniques for
near-duplicate detection are presented in Section 3.3 and in Section 3.4,
respectively. Lastly, Section 3.8 presents some closing remarks and future
works directions.

3.1 Reference Scenario for Automatic Web Test
Generation

In this chapter, we consider a generic reference scenario for automatic
web test generation, in which a state-based functional model of the AUT is
automatically inferred via crawling. Subsequently, such an automatically-
inferred model is used to automatically generate tests according to suitable
strategies. Such a scenario, depicted in Figure 3.1, can be considered
an abstraction of most automatic web test generation proposed in the
literature (see Section 2.2.3).

In the remainder of this section, we discuss in greater detail the key
crawling step in the reference scenario.

3.1.1 Crawling

The crawler loads the web pages in a web browser and exercises client-
side JavaScript code to simulate user-like interactions with the web app
pages. This allows the crawler to support modern, client-side intensive,
single-page web applications. The main conceptual steps performed when

3.1. Reference Scenario for Automatic Web Test Generation 37

exploring a web application are outlined in the Crawl function of Algo-
rithm 1.

Algorithm 1: Web app crawling process
1 Function Crawl(initial URL):
2 s1 ← getState(initial URL)
3 model ← initializeModel(s1)
4 while ¬ timeout do
5 next← nextStateToExplore(model)
6 if next = nil then ▷ app exhaustively explored
7 break

8 s← getToState(next)
9 for e ∈ getCandidateEvents(s) do

10 fireEvent(e)
11 sc ← current state after firing the event e
12 if ¬ IsDuplicate(sc,model) then
13 add sc to model

14 return model

15 Function IsDuplicate(sc, model):
16 foreach state s′ in model do
17 if SAF(sc, s′) = ‘clone or near-duplicate’ then
18 return True ▷ s is a duplicate of s′

19 return False

Crawling starts at an initial URL, the homepage is loaded into the
browser and the initial DOM state, typically called index, is added to the
model (Line 3). Subsequently, the main loop (Lines 4–14) is executed until
the given time budget expires or there are no more states to visit (i.e., the
web app has been exhaustively explored according to the crawler). In each
iteration of the main loop, the first unvisited state in the model is selected
(line 5), and the crawler puts in place adequate actions to reach said state.
If the state cannot be reached directly, it retrieves the path from the in-
dex page and fires the events corresponding to each transition in the path.
Upon reaching the unvisited state, the clickable web elements are collected
(i.e., the web elements on which interaction is possible, line 9), and user
events such as filling forms or clicking items are generated (line 10). After
firing an event, the current DOM state sc is captured (line 11). The is-
Duplicate function supervises the construction of the model and checks
whether sc is a duplicate of an existing state (lines 16–19) by computing

38
Chapter 3. Improving Automatic Web Test Generation with Near-duplicate

Detection

Book A
4.99 $

Reviews
Good! by Alice ★★★★
Fine. by Bob ★★★
Liked it! by Carl ★★★★★

BUY

Description for Book A.

+ Add review

Book B
9.99 $

Reviews
Good! by Dina ★★★★
Meh. by Emma ★★★

BUY

Description for Book B.

+ Add review

Near-duplicate detection

Web Page
Preprocessing

Similarity
Computation

Classification
distinct

near-duplicate

Figure 3.2. Overview of the proposed framework for near-duplicate detection.

pairwise comparisons with all existing states in the model using WebE-
mbed State Abstraction Function (SAF). The state sc is added to the
model if the SAF regards it as a distinct state, i.e., a state that is not a
duplicate of another existing state in the model (lines 12–13). Otherwise,
it is rejected and the crawler continues its exploration from the next avail-
able unvisited state until the timeout is reached.

3.2 Proposed Framework for Near-duplicate De-
tection

In this section, we describe the generic framework we abstracted to
support the definition of novel near-duplicate detection techniques and
the investigation of existing ones. The framework, which is depicted in
Figure 3.2, identifies three key, abstract, steps in the process of detecting
near-duplicates, namely: (1) Web Page Preprocessing, (2) Similarity Com-
putation, and (3) Classification.

The Web Page Preprocessing step takes care of manipulating the in-
put web pages, which are HTML documents, to make them suitable for
similarity computation. Examples of preprocessing steps include generat-
ing a tree-based representation of web pages using the standard Document
Object Model (DOM), obtaining a visual representation of the web pages
by loading them in a web browser and capturing snapshots, or removing
certain parts that are not deemed important in similarity computation.

The Similarity Computation step is responsible for computing a rep-

3.3. Tree Kernel-based Near-duplicate Detection 39

resentation of the degree of similarity between the two web pages. The
most simple representation of similarity is a numeric similarity score, but
in general, the similarity representation can be complex, structured ob-
jects, describing similarity w.r.t. a number of different aspects.

The Classification step takes as input a similarity representation and is
responsible for classifying the web page pair as distinct or near-duplicate.
The most simple classification approaches are threshold-based, i.e., dis-
criminate between distinct and near-duplicates based on whether similar-
ity is below or above given thresholds. In general, classification can be
performed by training more sophisticated classification models, such as
Decision Trees, Neural Networks, or Support Vector Machines (SVM).

3.3 Tree Kernel-based Near-duplicate Detection

In this section, we start by giving some preliminary notions on Tree
Kernel functions in Section 3.3.1, and then we introduce the Tree Kernel-
based near-duplicate detection approach we are investigating in Section 3.3.2.

3.3.1 Tree Kernel Functions

Tree Kernel (TK) functions are a particular family of kernel functions
which specifically evaluate the similarity between two tree-structured ob-
jects. These functions have been extensively studied in Natural Language
Processing [157].

To compute the similarity between two trees T1 and T2, TK functions
consider, for each tree, a set of tree fragments. A tree fragment is a subset
of nodes and edges of the original tree. Then, the similarity between the
tree fragments of the two trees is evaluated, and the overall similarity
of the two trees is computed by aggregating, in some meaningful way, the
similarities of the single fragments. Depending on how the set of fragments
to consider is defined, it is possible to characterize different classes of tree
kernel functions. Widely-used classes include [156]:

• Subtree Kernels, which consider only proper subtrees of the original
trees, i.e., a node and all of its descendants, as fragments.

• Subset Tree Kernels, which consider as fragments a more general
structure than the one considered by subtree kernels, relaxing the

40
Chapter 3. Improving Automatic Web Test Generation with Near-duplicate

Detection

<html>
<head>
<title></title>
<link/>

</head>
<body>
<section>
<h1></h1>
<p><a></p>
<figure>

</figure>

</section>
</body>

</html>

html

head

title link

body

section

h1 p

a

figure

img

Figure 3.3. An HTML document (left) and its DOM representation (right)

constraint of taking all descendants of a given node and thus allowing
for incomplete subtrees, limited at any arbitrary depth.

• Partial Tree Kernels, which consider an even more general notion
of fragments, in which the constraint of taking either all children of
a tree node or none at all is relaxed. In this case, it is possible to
include only some of the children of a node in a fragment.

Tree Kernels in Software Engineering

TKs have also been applied with promising results in the Software
Engineering domain. In particular, TKs have been applied on Abstract
Syntax Tree representations of source code for clone detection [60], and
their usage is also being investigated for test case prioritization tasks [11,
10]. More recently, [97, 181] presented an effective approach to fake website
detection, which leveraged TK functions.

3.3.2 Proposed Approach

The key intuition behind the proposed TK-based near-duplicate detec-
tion approach is to use TK functions to compute the degree of similarity
between two web pages which, as shown in Figure 3.3, can be naturally
modelled using their tree-structured DOM representation. In the proposed
solution we consider three well-known TK functions, namely subtree ker-
nel, subset-tree kernel and partial tree kernel.

3.3. Tree Kernel-based Near-duplicate Detection 41

Table 3.1. Considered DOM transformation strategies

Strategy Description

As-is This transformation strategy leaves the DOM unchanged;
Only body This transformation strategy considers only the DOM subtree rooted

in the body element of the web page.
Only body, no scripts This transformation strategy is the same as the “Only body” one, but

also removes script elements along with their subtrees.

Book A
4.99 $

Reviews
Good! by Alice ★★★★
Fine. by Bob ★★★
Liked it! by Carl ★★★★★

BUY

Description for Book A.

+ Add review

Book B
9.99 $

Reviews
Good! by Dina ★★★★
Meh. by Emma ★★★

BUY

Description for Book B.

+ Add review

Tree Kernel-based Near-duplicate Detection

Web Page
Preprocessing

Similarity
Computation

Classification

Distinct

Similarity
Vector

DOM A

DOM B

Near-duplicate

Subtree Kernel

Subset Tree
Kernel

Partial Tree
Kernel

DOM
Transformation

Strategies:
1. As is
2. Only body
3. Only body,
no scripts

Classifier
(e.g.: SVM,

Decision Trees,
KNN, MLP)

Figure 3.4. Overview of the proposed TK-based approach.

As for web page preprocessing, in addition to representing web pages
using their DOM, we devised three different kinds of transformations, de-
signed to investigate how different portions of the DOM tree impact sim-
ilarity computation and near-duplicate detection, and to make the ap-
proach more general and customizable. In particular, we consider three
basic DOM transformation strategies, as detailed in Table 3.1.

From the pairwise combination of the three considered TK functions
and the three DOM transformation strategies, nine different similarity
measures can be computed for a pair of web pages. These different sim-
ilarity measures (or a subset thereof) are then aggregated in a similarity
vector, in which each component corresponds to a different similarity mea-
sure. Leveraging these similarity vectors and existing open datasets with
annotated web page pairs, we use supervised learning approaches to train
an ad-hoc classifier. An overview of the proposed approach is depicted in
Figure 3.4.

42
Chapter 3. Improving Automatic Web Test Generation with Near-duplicate

Detection

3.4 Neural Embedding-based Near-duplicate De-
tection

3.4.1 Neural Embeddings

Vector Space Models, first proposed by Salton et al. [177], allow objects
to be represented as vectors in a multi-dimensional continuous space. In
such vectors, the semantics of objects are “distributed” over vector com-
ponents, so that similar objects correspond to points in the vector space
that lie close to each other. Encoding information into a low-dimensional
fixed-length vector representation enables easy integration in modern ma-
chine learning models, which often require input data to be represented as
vectors, and proved to be very effective in the Natural Language Process-
ing domain [194].

In that domain, the continuous vector space is usually referred to as
the semantic space and the representations of the objects (e.g.: words,
sentences, documents, etc.) are called distributed representations or em-
beddings. A popular, unsupervised way of learning low-dimensional embed-
dings for words or documents from large text corpora consists in leveraging
neural networks, typically trained with some sort of language modelling ob-
jective. For example, Word2Vec [151], one of the most popular approaches
for learning word embeddings, is based on a feed-forward neural archi-
tecture which is trained with language modelling tasks (e.g.: predict the
current word given its context, i.e., the words that surround it). Similarly,
Doc2Vec [117], which extends Word2Vec with the capability of learning
embeddings for paragraphs and documents, is based on training a neural
network on the task of predicting the next word in a document given the
current document id, and a number of preceding words.

Doc2Vec aims to find an optimal embedding model such that simi-
lar text documents would produce embeddings that lie close in the vector
space. Given a document, Doc2Vec creates and projects paragraph em-
beddings, as well as word embeddings, into the vector space and then uses
a trained deep neural network model to predict words of paragraphs or
documents in a corpus [117]. Instead of computing an embedding for each
word like Word2Vec [151], Doc2Vec creates a different embedding for an
entire paragraph or even a document. At inference time, the input para-

3.4. Neural Embedding-based Near-duplicate Detection 43

graph id vector (a one-hot encoded vector) is unknown, hence it is first
derived by gradient descent given the input and output words and it is
concatenated with the one-hot encoded vectors of the paragraph words to
predict the next word in the paragraph. The internal representation used
to make such a prediction is averaged or concatenated across predictions
to get the final document embedding [117].

To learn the best vector representation for each document, Doc2Vec can
be configured to use two different models: Paragraph Vector Distributed
Memory or Distributed Bag Of Words. The former randomly picks a set
of consecutive words in the paragraph and tries to predict the word in
the middle, using the surrounding words, a.k.a., context words, and the
paragraph id. The latter is similar to a Skip-gram model, in which, given
a paragraph id, the model tries to predict the next word of a randomly
picked sequence of words from the chosen paragraph [117].

Embeddings in Software Engineering

Neural embeddings proved to be effective in many code analysis tasks,
such as code completion [52], log statement generation [144], code re-
view [196] and other code-related tasks [143, 145].

Alon et al. [8] present Code2Vec, a neural model for learning embed-
dings for source code, based on its representation as a set of paths in the
abstract syntax tree. Hoang et al. [90] propose CC2Vec, a neural network
model that learns distributed representations of code changes. The model
is applied for log message generation, bug fixing patch identification, and
just-in-time defect prediction. Feng et al. [76] use representation learn-
ing applied across web apps for phishing detection. Lugeon et al. [130]
propose Homepage2Vec, an embedding method for website classification.
Namavar et al. [159] performed a large-scale experiment comparing differ-
ent code representations to aid bug repair tasks. In this work, we propose
an embedding method that works at a finer granularity level and that can
integrate both structural (HTML tags) and textual (content) information.
We study this embedding in the context of automated crawling and testing
of web apps.

Among the grey literature, Ma et al. [131] propose GraphCode2Vec, a
technique that joins code analysis and graph neural networks to learn lexi-
cally and program-dependent features to support method name prediction.

44
Chapter 3. Improving Automatic Web Test Generation with Near-duplicate

Detection

Dakhel et al. [63] propose dev2vec, an approach to embed developers’ do-
main expertise within vectors for the automated assessment of developers’
specialization. Jabbar et al. [101] propose to encode the execution traces
of test cases for test prioritization.

3.4.2 Proposed Approach

The key idea behind the proposed neural embedding-based approach,
which we call WebEmbed, is to leverage specifically-trained neural net-
work embedding models to represent web pages as points in a continuous
vector space. Then, the similarity (or lack thereof) of two web pages can
be simply computed using standard measures such as cosine similarity
[83]. With one or more similarity measures in place, obtained possibly
using different embedding models and/or different similarity measures, it
is possible to compose a similarity vector, as done also in the TK-based
near-duplicate detection approach (see Section 3.3). Such similarity vec-
tors can be used with supervised classification approaches to classify web
page pairs.

More in detail, WebEmbed uses novel neural embedding models for
web pages built on top of Doc2Vec [117] and leveraging different represen-
tations of web pages. WebEmbed requires two separate training phases.
In the first phase, we train neural embedding models, which can be done
using any corpus of web pages and does not require data to be manu-
ally labelled as clone or near-duplicate. In the second phase, a classifier
is trained using supervised machine learning approaches, and a training
set of annotated web page pairs is required. An overview of the proposed
neural embedding-based approach is depicted in Figure 3.5

Web Page Embedding Models

Our approach requires computing embeddings for HTML web pages.
To this end, we extend the well-known Doc2Vec [117] embedding model,
originally conceived for general-purpose textual documents, to support web
pages. In particular, we devised three different token extraction strategies
to extract a convenient representation of web pages for training a Doc2Vec
model, as described in what follows.

3.4. Neural Embedding-based Near-duplicate Detection 45

Book A
4.99 $

Reviews
Good! by Alice ★★★★
Fine. by Bob ★★★
Liked it! by Carl ★★★★★

BUY

Description for Book A.

+ Add review

Book B
9.99 $

Reviews
Good! by Dina ★★★★
Meh. by Emma ★★★

BUY

Description for Book B.

+ Add review

Neural Embeddings-based Near-duplicate Detection

Web Page
Preprocessing

Similarity
Computation

Classification

Distinct

Similarity
Vector

Embeddings
for page A

Embeddings
for page B

Near-duplicate

Cosine
Similarity

Doc2Vec
Embeddings

1. Content
2. Tags
3. Content+tags

Classifier
(e.g.: SVM,

Decision Trees,
KNN, MLP)

Figure 3.5. Overview of the WebEmbed approach.

Token sequence extraction The general procedure to extract token
sequences from a web page is detailed in Algorithm 2. The procedure takes

Algorithm 2: Token Extraction
1 Function extractTokens(n, et): ▷ et: content, tags, or both
2 let tokens be an empty list
3 tokens.append(getTokens(n, et))
4 foreach children node c of n, from left to right do
5 if c is not a script, style, or comment node then
6 tokens.append(extractTokens(c))

7 return tokens

as inputs the root DOM node of the web page and a flag indicating which
type of token sequence to extract, and proceeds as follows: (1) the sequence
of tokens (either tags, content, or content+tags) for the current node are
extracted (line 3); (2) the token extraction procedure is recursively called,
in a depth-first fashion, on all children of the current node, from left to
right. The result of these calls is then appended to the list of extracted
tokens (lines 4–6); (3) the sequence of extracted tokens is returned (line 7).

Throughout this section, let us consider as a running example the
HTML code corresponding to the Detail page for Book A (Listing 3.1).
In the listing, tag names and attribute names are highlighted in boldface,
content is highlighted in blue, and comments in green.

46
Chapter 3. Improving Automatic Web Test Generation with Near-duplicate

Detection

Listing 3.1. HTML document corresponding to the Detail page for Book A
shown in Figure 2.1.

<html lang="en">
<head>
<title>Book A detail page</title>
<link rel="stylesheet" href="styles.css">
<script type="text/javascript" src="utils.js"></script>

</head>
<body>

<h1>Item A</h1>

<p class="price">4.99 $</p>
<p class="descr">Detailed description for Book A.</p>
<h2>Reviews</h2><!-- Reviews listed here -->
+ Add Review
<table class="reviews">
<tr> <!-- First review -->
<td>Good! by Alice</td>
<td></td>

</tr>
<tr> <!-- Second review -->
<td>Liked it! by Bob</td>
<td></td>

</tr>
</table>
BUY

</body>
<script>init_page();</script>

</html>

3.4. Neural Embedding-based Near-duplicate Detection 47

Tags Token Sequence The first extraction function considers only
the name of the tags from an HTML page while discarding comments,
scripts, and CSS. The intuition is that tags indicate the general layout of
an HTML document and may be effective for detecting structurally similar
web pages [188]. Consequently, the tag token sequence of the web page in
Listing 3.1 is as follows: [html, head, title, body, img, h1, img, p, p, h2,
a, table, tr, td, a, td, img, tr, td, a, td, img, a].

Content Token Sequence The second extraction function only re-
trieves the textual content of a web page. Intuitively, two web pages shar-
ing similar textual content have some degree of topical relatedness [188].
Consequently, the HTML in Listing 3.1 is converted to the following to-
kens of DOM content: [Book, A, detail, page, Book, A, 4.99, $, Detailed,
description, for, Book, A, Reviews, +, Add, Review, Good, by, Alice, Liked,
it, by, Bob, BUY].

Content+tags Token Sequence The third extraction function con-
siders both content and tags and combines the output of the two previous
extraction functions. This can be effective in cases where using the tags
or the content only is not enough to accurately classify two web pages.
The HTML in Listing 3.1 is converted to the following content+tags token
sequence: [html, head, title, Book, A, detail, page, body, img, h1, Book,
A, img, p, 4.99, $ p, Detailed, description, for, Book, A, h2, Reviews, a,
+, Add, Review, table, tr, td, Good, by, a, Alice, td, img, tr, td, Liked,
it, by, a, Bob, td, img, a, BUY].

Model Implementation and Training Once the preprocessing for
token sequence extraction is done, three different Doc2Vec models are
trained, i.e., one model for each token-sequence type. Hence, we obtain
three Doc2Vec models that allow us to compare pairs of web pages and
thus compute their similarity based on one token-sequence representation
of the pair at a time. For example, the following embeddings are produced

48
Chapter 3. Improving Automatic Web Test Generation with Near-duplicate

Detection

for the HTML of Listing 3.1:

doc2vec(tags) = [−0.25, 0.48, ..., 0.03]

doc2vec(content) = [−0.55, 0.17, ..., 0.90]

doc2vec(content + tags) = [−0.40, 0.33, ..., 0.44]

Training State Abstraction Functions

Once the embedding models are trained, it is possible to train a classi-
fier implementing a SAF. This task requires a labelled corpus of web pages,
in which each web page pair is manually annotated with a label indicating
whether the web pages in the pair are clones/near-duplicates.

For each pair of web pages in such corpus, we use one of the different
Doc2Vec models to compute their embeddings. Then, we compute the
cosine similarity [183], a widely used metric to assess vector similarity.
A combination of the three similarity scores, based on content, tags, or
content+tags neural embeddings, is used to train a classifier to discriminate
two web pages as being distinct or clones.

Usage of the State Abstraction Function The Classify procedure
in Algorithm 3 illustrates our neural-based SAF. Given two web pages p1,

Algorithm 3: Web App Crawling with WebEmbed
1 Function Classify(p1, p2, ET): ▷ ET : embedding types
2 let s be an empty list
3 foreach embedding type et in ET do
4 r1 ← extractTokens(p1.getRootNode(), et)
5 r2 ← extractTokens(p2.getRootNode(), et)
6 doc2vec← getDoc2VecModel(et)
7 e1 ← doc2vec.infer(r1)
8 e2 ← doc2vec.infer(r2)
9 s.append(cosineSimilarity(e1, e2))

10 return classifier .classify(s)

p2 and a list ET of embedding types to consider, we first extract the token-
sequence representations from each page based on the selected embedding
types (ET can be any non-empty subset of {content, tags, content+tags}),
obtaining one list of tokens for each web page (Lines 4–5). Each of the two
token sequences r1 and r2 is then fed to the appropriate Doc2Vec model

3.5. Empirical Study Design 49

(line 6) to compute an embedding (Lines 7–8). Then, the cosine similarity
between the two resulting embeddings e1 and e2 is computed, obtaining
a similarity score that is appended to the list s of similarities computed
so far (Line 9). Next, the classifier marks the two pages as either distinct
or clones based on the list s of similarity scores and determines the SAF
return value (Line 10), which is ‘clone’ in case of near-duplicate detection
or ‘distinct ’ otherwise.

Example Consider the following embeddings produced for our run-
ning example, for the embedding type ‘tags’ (i.e., ET = [‘tags’]):

p1 = Catalog Page e1 = [−0.45, 0.56, ..., 0.30]

p2 = Detail Page A e2 = [−0.55, 0.17, ..., 0.90]

p3 = Detail Page A + Review 1 e3 = [−0.56, 0.19, ..., 0.95]

During crawling, let us assume that a decision tree classifier flags a pair
of pages as ‘clone’ when the cosine similarity between their embeddings
satisfies the root decision node condition (s > 0.8). If sim(e1, e2) = 0.56,
p2 is added to the model, as p2 is not too similar to p1. Then, when
exploring p3, we obtain sim(e3, e1) = 0.58 and sim(e2, e3) = 0.95. Hence,
page p3 is not added to the model as it is recognized as a near-duplicate
(‘clone’) of p2.

3.5 Empirical Study Design

To assess the effectiveness of the proposed techniques in detecting near-
duplicates, as well as the practical impact of their application in the au-
tomatic web test generation process, we conducted an empirical study
leveraging massive datasets of web pages available in the literature and
nine open-source web applications. In this section, we detail the empirical
study we conducted in terms of investigated research questions, employed
data, baseline techniques, and experimental procedure.

50
Chapter 3. Improving Automatic Web Test Generation with Near-duplicate

Detection

3.5.1 Research Questions

To investigate the effectiveness of the proposed near-duplicate detection
techniques and the practical impact of their application in automatic web
test generation, we consider the following research questions:

RQ1 (near-duplicate detection): How effective are the proposed tech-
niques in distinguishing near-duplicate from distinct web pages?

RQ2 (model accuracy): How do the web app models generated using
the proposed techniques compare to a ground truth model?

RQ3 (code coverage): What is the code coverage of the tests generated
using web app models inferred with the proposed techniques?

RQ1 aims at assessing the effectiveness of the proposed techniques in
detecting near-duplicate web pages, framing the near-duplicate detection
problem as a binary classification task. RQ2 aims at investigating the
quality, in terms of completeness and conciseness, of web app models in-
ferred using the proposed techniques. Lastly, RQ3 focuses on the impact of
the proposed techniques when used in automatic web testing generation,
specifically assessing the test suites generated by crawl models obtained
using the proposed techniques in terms of code coverage of the web apps
under test.

3.5.2 Datasets

We use three existing datasets available from the study by Yandrapally
et al. [217], plus an additional dataset of web pages collected by the Com-
mon Crawl project [57].

The first dataset is called DS and contains 33,394 unique web pages
derived from automated crawls (using Crawljax [148]) of 1,031 randomly
selected websites from the top one million provided by Alexa, a popular
website that ranks sites based on their global popularity (dismissed as of
May 1, 2022). From these web pages, 493,088 distinct same-website web
page pairs can be derived.

The second dataset, referred to as RS, contains 1,000 state-pairs from
DS that Yandrapally et al. [217] manually labelled as either clone, near-
duplicate or distinct. Overall, RS contains 1,826 distinct web pages.

3.5. Empirical Study Design 51

Table 3.2. Web page characteristics across the datasets

Web page metrics

DOM Source Text content
(# nodes) (# chars) (# chars)

Dataset # pages Mean Std. Mean Std. Mean Std.

DS 33,394 821 960 107,055 160,897 7,309 10,503
RS 1,826 665 687 91,124 127,116 5,964 8,487
SS 1,313 212 287 16,234 17,320 1,335 1,262
CC 368,927 401 913 51,097 70,541 6,139 14,642

The third dataset, SS, contains ≈97,500 web page pairs from nine sub-
ject apps, which were also manually labelled by Yandrapally et al. [217] as
clone/near-duplicate or distinct. These nine web apps, which are briefly
described in Table 5.2, have been used as subjects in previous research
on web testing [188, 187, 39, 37]. Five of them are open-source PHP-
based applications, namely Claroline (v. 1.11.10) [23], Addressbook (v.
8.2.5) [22], PPMA (v. 0.6.0) [27], MRBS (v. 1.4.9) [28] and Man-
tisBT (v. 1.1.8) [29]. Four are JavaScript single-page applications—
Dimeshift (commit 261166d) [24], Pagekit (v. 1.0.16) [25], Phoenix (v.
1.1.0) [26] and PetClinic (commit 6010d5) [21]—developed using popu-
lar JavaScript frameworks such as Backbone.js, Vue.js, Phoenix/React and
AngularJS.

As for the additional dataset, which we refer to as CC, it contains
368,927 web pages available from the Common Crawl project [57], also
used in previous research [130]. Similarly to DS, the web pages in CC are
also collected by crawling real-world websites. Table 3.2 reports analytics
information about the web pages of the considered datasets in terms of
DOM size, length of the HTML source, and amount of text content.

3.5.3 Baselines

Based on the study by Yandrapally et al. [217], we selected two baseline
near-duplicate detection techniques for our study, namely RTED (Robust
Tree Edit Distance) [166], and Perceptual Diff (PDiff) [221]. RTED is an
efficient algorithm for computing the tree edit distance, i.e., the minimum
number of node edit operations that can be used to transform one labelled

52
Chapter 3. Improving Automatic Web Test Generation with Near-duplicate

Detection

tree into another. The tree edit distance can be straightforwardly applied
to tree-structured DOM representation of web pages, and has been em-
ployed in web crawling to detect near-duplicate web pages [74]. The other
baseline, PDiff, is a visual-based technique which compares two web pages
by analysing their screen captures, based on a human-like concept of sim-
ilarity that uses spatial, luminance, and colour sensitivity. We chose them
as baselines for the following reasons: (1) they were the best DOM-based
and visual techniques for near-duplicate detection among those considered
in [217], (2) they were used as a SAF for web testing purposes within
Crawljax.

3.5.4 Use Cases

In our empirical study, we consider three different practical use cases,
namely Beyond Apps, Across Apps, and Within Apps. These use cases
differ in what concerns the datasets used to train the classifiers, and the
associated labelling cost for developers, as detailed in what follows.

Beyond apps This use case aims at investigating the feasibility of a
general-purpose model trained on web pages that are different from the
ones it is tested on. Therefore, we train the classifiers on RS and test
them on SS. This use case requires no labelling costs to web developers,
as the classifier we train on RS is supposed to be re-used as-is on any new
web app.

Across apps This use case investigates the generalizability of the pro-
posed solutions when applied to web apps similar to the ones on which the
classifier was trained. Indeed, we train a distinct classifier for each of the
nine web apps in SS in a leave-one-out fashion. In other words, for each i-
th app in SS, we train the classifier on annotated web page pairs from the
remaining eight web apps, using the web page pairs from the current app
as a test set. In this use case, developers are supposed to find and manually
label all pages of web apps similar to the ones under test. A company may
develop a few web apps in a given domain, investing in manual labelling of
the near-duplicates of such apps to save the near-duplicate detection effort
later, when a new app will be developed in the same domain.

3.5. Empirical Study Design 53

Table 3.3. Considered use cases

WebEmbed

Doc2Vec Classifiers

Use case Training Set Training Set Test Set

Beyond apps DS ∪ CC RS SS
Across apps (for each Appi) DS ∪ CC SS \Appi Appi
Within apps (for each Appi) DS ∪ CC 80% Appi 20% Appi

Within apps In this use case, we train an app-specific classifier for each
of the nine subject web apps. For each app in SS, we use 80% of the web
page pairs for training the classifier and the remaining 20% for testing. In
this use case, developers are required to label a significant portion of the
near-duplicate pages of the web app under test before a classifier can be
trained and applied to the other pages of the same web app.

The characteristics of each use case are summarized in Table 3.3. For
all use cases, WebEmbed relies on the embeddings computed by a com-
mon Doc2Vec model trained on the non-annotated pages of the considered
datasets, namely DS ∪ CC.

3.5.5 Procedure and Metrics

RQ1 (near-duplicate detection) For each considered use case, we
evaluate different implementations of the TK-based approach and WebE-
mbed. More in detail, for the TK-based approach, we consider different
compositions of the similarity vector: (1) we use a similarity vector contain-
ing all the nine different similarity scores arising from the combinations of
DOM transformation strategies and tree kernel functions; (2) we use each
distinct similarity score alone; (3) we use the tree best components as in-
dicated by a preliminary Recursive Feature Elimination analysis, namely
the ones obtained using each tree kernel function with the “Only body, no
scripts” DOM transformation strategy.

As for the WebEmbed approach, we vary the token sequence used
to train Doc2Vec. More in detail, we trained three different Doc2Vec
models, one for each representation of the pages in the dataset DS ∪ CC
(tags, content, content+tags). Concerning the training hyperparameters,
we used the default parameters of the gensim [167] Python library and

54
Chapter 3. Improving Automatic Web Test Generation with Near-duplicate

Detection

Table 3.4. Ground Truth Models for the considered web apps.

Logical Pages Concrete Pages

Addressbook 25 131
PetClinic 14 149
Claroline 36 189
Dimeshift 21 153
PageKit 20 140
Phoenix 10 150
PPMA 23 99
MRBS 14 151
MantisBT 53 151

fitted the models for 100 epochs using a vector size of 100.

As for the classifiers, we evaluate a total of eight classifiers. We consider
six machine learning classifiers, namely Decision Tree, Nearest Neighbour,
SVM, Naïve Bayes, Random Forest, and Multi-layer Perceptron. We also
consider their ensemble with majority voting and an additional threshold-
based classifier. To measure the effectiveness in near-duplicate detection,
we compute the accuracy, precision, recall, and F1 scores of all the consid-
ered variants of the proposed approaches.

RQ2 (model accuracy) We compute the accuracy of the models ob-
tained using WebEmbed w.r.t. the labelled ground-truth crawl models of
the nine web apps in SS. The crawl models contain redundant concrete
states (web pages) that Yandrapally et al. [217] aggregated into the corre-
sponding logical pages. Logical pages represent clusters of concrete pages
that are semantically the same (i.e., that are near-duplicate). Table 3.4
reports details on the ground truth models provided by [217] for each of the
nine considered web apps. These figures highlight that models inferred via
automatic crawling can contain significant redundancies. For the Phoenix
app, for example, only 10 distinct logical pages (i.e., features) exist, but
crawling produced a model containing 150 states, with a 1,400% redun-
dancy. To measure WebEmbed’s model accuracy w.r.t. the ground truth,
we compute the precision, recall, and F1 scores considering the intra-pairs
(IP) in common in the given model and the intra-pairs within each man-
ually identified logical page in a given Ground Truth (GT):

3.5. Empirical Study Design 55

p =
|IPGT ∩ IPWebEmbed|

|IPWebEmbed|
r =

|IPGT ∩ IPWebEmbed|
|IPGT |

We also consider the F1 score as the harmonic mean of (intra-pair)
precision and recall. As an example, let us consider a set of 6 web pages
{p1, p2, p3, p4, p5, p6} with the following ground truth (GT) model: {p1, p2},
{p3}, {p4, p5, p6}. This means that p1 and p2 are instances of the same
logical page, and so do p4, p5 and p6, whereas p3 is the only witness of
its logical state. Suppose that a given model inference technique produces
the following model: {p1, p3}, {p2}, {p4, p5}, {p6}. Such inferred model is
affected by a completeness issue (the functionality corresponding to p3 is
not represented in the model, as p3 is assigned the same logical page as
p1) and by conciseness issues (two near-duplicate states exist — the one
with p2 is a near-duplicate of the one containing p1, and the logical state
containing p6 is a near-duplicate of the one containing p4 and p5. The
intra-pairs in a state-based model of a web app are defined as the maximal
set of web page pairs such that both states in the pair correspond to the
same logical page in the model. In our example, the intra-pairs for GT are
⟨p1, p2⟩, ⟨p4, p5⟩, ⟨p4, p6⟩, ⟨p5, p6⟩, whereas the intra-pairs for the WebE-
mbed model are ⟨p1, p3⟩, ⟨p4, p5⟩. Thus, precision and recall for the model
in the example are defined as:

p =
|⟨p4, p5⟩|

|⟨p1, p3⟩, ⟨p4, p5⟩|
= 0.5,

r =
|⟨p4, p5⟩|

|⟨p1, p2⟩, ⟨p4, p5⟩, ⟨p4, p6⟩, ⟨p5, p6⟩|
= 0.25.

The F1 score for the inferred model in the example is F1 = 2pr/(p+ r) =
0.32.

RQ3 (code coverage) To assess the effectiveness of WebEmbed when
used for web testing, we firstly integrate our neural embeddings-based near-
duplicate detection approach within the well-known Crawljax web crawler
[149]. Subsequently, we crawl each web application in SS multiple times,
each time varying the SAF. For all tools and all use cases, we set the same

56
Chapter 3. Improving Automatic Web Test Generation with Near-duplicate

Detection

crawling time of 30 minutes. We use the state-of-the-art DANTE web
test generator [38] to automatically generate Selenium test cases from the
crawl models. Lastly, we execute each test suite, measuring the web app
code coverage. For JavaScript-based apps (Dimeshift, Pagekit, Phoenix,
PetClinic), we measure client-side code coverage using cdp4j 3.0.8 and the
Java implementation of Chrome DevTools. For PHP-based apps (Claro-
line, Addressbook, PPMA, MRBS, MantisBT), we measure the server-
side code coverage using the xdebug (v. 2.2.4) PHP extension and the
php-code-coverage (v. 2.2.3) library.

We assess the statistical significance of the differences between WebE-
mbed and the baselines using the non-parametric Mann-Whitney U test [211]
(with α = 0.05) and the magnitude of the differences, if any, using Cohen’s
d effect size [56].

All our results, the source code of WebEmbed, and all subjects are
available in a replication package [168]

3.6 Results

For the sake of conciseness, in this section, we report only the results
achieved by the SVM classifier, which consistently performed better than
all the other classifiers across all the use cases. Similarly, we report the
results only for the best TK-based implementation, namely the one that
considered similarity vectors containing three components, namely the ones
obtained using each tree kernel function (subtree kernel, subset tree kernel,
and partial tree kernel) with the “Only body, no scripts” DOM transfor-
mation strategy.

3.6.1 RQ1: Near-duplicate detection effectiveness

Results for the Beyond Apps use case are reported in Table 3.5, which
shows, for each considered technique, accuracy (Acc.), precision (Pr.), re-
call (Rec.), and F1 scores. Results highlight that, in the Beyond Apps
scenario, both the TK-based approach and WebEmbed perform similarly
to RTED, whereas they both perform remarkably better than the other
baseline, PDiff, with more than 50% increase in accuracy. No significant
differences in classification performance can be observed among the differ-

3.6. Results 57

Table 3.5. RQ1 - Near-duplicate Detection (Beyond Apps use case). Best
averages are boldfaced.

Beyond Apps

Technique Acc. Pr. Rec. F1

TK-based (three TKs) 0.74 0.91 0.73 0.81

WebEmbed (content) 0.73 0.97 0.67 0.79
WebEmbed (tags) 0.75 0.98 0.70 0.81
WebEmbed (content+tags) 0.75 0.97 0.70 0.81

RTED 0.75 0.86 0.81 0.83
PDiff 0.48 0.81 0.43 0.56

Table 3.6. RQ1 - Near-duplicate Detection (Across Apps use case). Best
averages are boldfaced.

Across Apps

Technique Acc. Pr. Rec. F1

TK-based (three TKs) 0.74 0.86 0.80 0.82

WebEmbed (content) 0.82 0.89 0.88 0.87
WebEmbed (tags) 0.79 0.88 0.86 0.84
WebEmbed (content+tags) 0.83 0.89 0.90 0.87

RTED 0.77 0.85 0.86 0.80
PDiff 0.74 0.86 0.80 0.83

ent implementations of WebEmbed. As for the TK-based approach, it
achieves a similar accuracy w.r.t. WebEmbed, while exhibiting a lower
precision and a greater recall, meaning that its usage leads to a larger
number of false positives (i.e., distinct web page pairs that are classified
as near-duplicates), but to a lower number of false negatives (i.e.: near-
duplicate web page pairs that are classified as distinct).

As for the Across Apps use case, results are reported in Table 3.6. In the
table, we report the scores averaged over the nine considered apps. Results
show that the TK-based approach performs similarly to the baselines, and
slightly worse than WebEmbed which, on the other hand, scores higher
accuracy with respect to the baselines and TK-based (+8% and +12% than
RTED and PDiff/TK-based, respectively). Statistical tests confirmed that
the differences in accuracy between WebEmbed and the baselines/TK-
based are statistically significant (p-value<0.05), with a large effect size.

58
Chapter 3. Improving Automatic Web Test Generation with Near-duplicate

Detection

Table 3.7. RQ1 - Near-duplicate Detection (Within Apps use case). Best
averages are boldfaced.

Within Apps

Technique Acc. Pr. Rec. F1

WebEmbed (content) 0.91 0.92 0.95 0.93
WebEmbed (tags) 0.85 0.91 0.87 0.88
WebEmbed (content+tags) 0.93 0.94 0.97 0.95

RTED 0.84 0.92 0.85 0.86
PDiff 0.86 0.87 0.97 0.91

In the remainder of the empirical evaluation, since training classifiers, exe-
cuting crawls, and automatically generating and running tests to compute
code coverage are time-consuming activities, we limit our analyses to the
most promising of the proposed techniques, namely WebEmbed.

Results from the Within Apps scenario are reported in Table 3.7 and
show that, as expected, training the models on web page pairs belonging
to the same web app on which they are tested leads to better classification
performance. Results highlight that, also in this scenario, WebEmbed
scores higher accuracy than the baseline approaches (+11% and +8% in-
crement in accuracy w.r.t. RTED and PDiff, respectively), with the con-
tent+tags embedding model achieving the best results. As in the Across
App scenario, also in this case statistical tests confirmed that the differ-
ences in accuracy between WebEmbed and the baselines are statistically
significant, with a large effect size.

RQ1: Among the considered techniques, WebEmbed achieves the
highest classification accuracy (75–93%, on average) over all the con-
sidered use cases, when implemented with content+tags embeddings
and SVM classifiers. The differences w.r.t. the baseline approaches
are statistically significant in two out of three use cases, with large
effect size. As for the TK-based approach, it performs similarly to
WebEmbed in the Beyond Apps use case, but worse, in a statisti-
cally significant way, in the Across Apps use case.

3.6. Results 59

Table 3.8. RQ2 - Model Coverage (Beyond Apps Scenario). The best average
F1 score is highlighted in bold.

Beyond Apps

WebEmbed RTED PDiff

Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1

addressbook 0.89 0.95 0.92 0.68 0.72 0.70 0.55 0.58 0.57
claroline 0.93 1.00 0.97 0.93 1.00 0.97 0.93 1.00 0.96
dimeshift 0.84 1.00 0.91 0.81 0.96 0.88 0.56 0.67 0.61
mantisbt 0.84 0.97 0.90 0.58 0.67 0.62 0.75 0.86 0.80
mrbs 0.94 0.98 0.96 0.92 0.96 0.94 0.56 0.58 0.57
pagekit 0.56 0.58 0.57 0.21 0.21 0.21 0.21 0.21 0.21
petclinic 0.72 0.79 0.75 0.70 0.77 0.73 0.53 0.58 0.55
phoenix 0.71 0.73 0.72 0.45 0.47 0.46 0.33 0.34 0.34
ppma 0.82 1.00 0.90 0.82 1.00 0.90 0.82 1.00 0.90

Average 0.81 0.89 0.84 0.68 0.75 0.71 0.58 0.65 0.61

Table 3.9. RQ2 - Model Coverage (Across Apps Scenario). The best average
F1 score is highlighted in bold.

Across Apps

WebEmbed RTED PDiff

Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1

addressbook 0.89 0.95 0.92 0.69 0.73 0.70 0.86 0.91 0.88
claroline 0.93 1.00 0.97 0.93 1.00 0.97 0.93 1.00 0.96
dimeshift 0.76 0.90 0.82 0.81 0.96 0.88 0.56 0.67 0.61
mantisbt 0.81 0.93 0.87 0.58 0.67 0.62 0.75 0.86 0.80
mrbs 0.92 0.96 0.94 0.92 0.96 0.94 0.50 0.52 0.51
pagekit 0.82 0.84 0.83 0.21 0.21 0.21 0.21 0.21 0.21
petclinic 0.77 0.85 0.81 0.70 0.77 0.73 0.53 0.58 0.55
phoenix 0.71 0.73 0.72 0.45 0.47 0.46 0.33 0.34 0.34
ppma 0.79 0.96 0.87 0.82 1.00 0.90 0.82 1.00 0.90

Average 0.82 0.90 0.86 0.68 0.75 0.71 0.61 0.68 0.64

60
Chapter 3. Improving Automatic Web Test Generation with Near-duplicate

Detection

Table 3.10. RQ2 - Model Coverage (Within Apps Scenario). The best aver-
age F1 score is highlighted in bold.

Within Apps

WebEmbed RTED PDiff

Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1

addressbook 0.84 0.89 0.86 0.15 0.16 0.15 0.27 0.28 0.28
claroline 0.93 1.00 0.97 0.93 1.00 0.97 0.93 1.00 0.97
dimeshift 0.84 1.00 0.91 0.83 0.99 0.90 0.62 0.73 0.67
mantisbt 0.87 1.00 0.93 0.87 1.00 0.93 0.87 1.00 0.93
mrbs 0.96 1.00 0.98 0.92 0.96 0.94 0.71 0.73 0.72
pagekit 0.95 0.98 0.96 0.30 0.31 0.30 0.36 0.38 0.37
petclinic 0.91 1.00 0.95 0.82 0.90 0.86 0.91 1.00 0.95
phoenix 0.80 0.83 0.81 0.15 0.16 0.15 0.47 0.48 0.48
ppma 0.82 1.00 0.90 0.82 1.00 0.90 0.82 1.00 0.90

Average 0.88 0.97 0.92 0.64 0.72 0.68 0.66 0.73 0.70

3.6.2 RQ2: Accuracy of the inferred models

We report, for each web app, intra-pairs precision (Pr.), intra-pairs re-
call (Rec.), and intra-pairs F1 scores for the models automatically inferred
by the competing techniques. Model quality results in the Beyond Apps,
Across Apps and Within Apps use cases are reported, respectively, in Ta-
ble 3.8, Table 3.9, and Table 3.10. For WebEmbed, we present the results
for the best configuration resulting from RQ1 (content+tags embeddings
and SVM classifier).

Overall, results show that WebEmbed produces more accurate mod-
els (i.e., models more similar to the ground truth) than the competing
techniques across all use cases. Moreover, WebEmbed benefits from app-
specific information, and model accuracy is noticeably improved in the
Within apps use case. as summarized by the intra-pairs F1 scores.

In the Beyond apps use case, WebEmbed scores +18% and +37%
average F1 w.r.t. RTED and PDiff, respectively. In the Within apps use
case, WebEmbed scores +21% and +34% average F1 w.r.t. RTED and
PDiff, respectively. In the Across apps use case, WebEmbed scores an
average F1 of 92%, a +35% and +31% increase w.r.t. RTED and PDiff,
respectively.

Statistical tests confirmed that the differences in accuracy are statisti-
cally significant (p-value < 0.05) with a large effect size in all use cases,

3.6. Results 61

Table 3.11. RQ3 - Code Coverage Percentages. Best average scores are
boldfaced.

Beyond Apps Across Apps Within Apps

WE RTED PDiff WE RTED PDiff WE RTED PDiff

addressbook 14.54 13.76 10.23 14.68 14.78 13.94 15.19 14.06 14.06
claroline 12.89 12.49 3.50 13.27 7.90 4.71 28.81 23.87 5.45
dimeshift 15.27 15.27 13.78 13.46 13.78 13.78 13.46 13.78 13.78
mantisbt 18.13 13.52 15.80 22.65 15.79 18.36 26.60 16.76 18.35
mrbs 16.19 10.50 8.75 17.55 10.50 8.75 18.94 17.49 9.17
pagekit 56.31 56.11 54.13 56.51 56.11 55.57 58.11 56.98 55.67
petclinic 31.63 32.28 31.94 31.94 32.11 32.11 33.44 32.42 32.11
phoenix 28.78 28.78 28.78 29.06 28.78 28.78 45.51 30.74 30.74
ppma 19.04 15.66 18.39 19.18 15.75 17.44 34.97 22.27 23.08

Average 23.64 22.04 20.59 24.26 21.72 21.49 30.56 25.38 22.49

except Across apps, in which the differences between WebEmbed and
RTED are statistically significant with a medium effect size.

RQ2: WebEmbed achieves the highest F1 scores (84–92%, on av-
erage) in all use cases: neural embeddings are able to approximate the
ground truth model better than structural and visual techniques. The
differences with the baseline approaches are statistically significant in
all use cases, with a medium to large effect size.

3.6.3 RQ3: Impact on automatically generated tests

Table 3.11 shows the code coverage results for each app and for each
considered near-duplicate detection approach, grouped by use case. Con-
sidering the average scores on the nine apps, the scores for WebEmbed
(WE) are consistently the best across all use cases. For the Beyond Apps
use case, WebEmbed achieves +6-14% code coverage w.r.t. RTED and
PDiff. Concerning the Across Apps use case, WebEmbed achieves +12–
13% code coverage w.r.t. RTED and PDiff. About the Within Apps
use case, WebEmbed achieves +20–36% code coverage w.r.t. RTED
and PDiff. The differences in code coverage between WebEmbed and
PDiff are statistically significant for all use cases (i.e., p-value < 0.05, with
small/negligible/medium effect sizes). The differences in code coverage

62
Chapter 3. Improving Automatic Web Test Generation with Near-duplicate

Detection

between WebEmbed and RTED are significant only for the Within App
use case, with a small effect size.

RQ3: The tests generated from WebEmbed crawl models achieve
the highest code coverage scores in all the considered use cases (up to
+36% improvement) thanks to the more accurate and complete web
app models generated using neural embeddings.

3.6.4 Final Remarks

Overall, WebEmbed was more effective than the considered baseline
approaches across all use cases. From a practical point of view, looking at
the accuracy scores in conjunction with code coverage, we suggest: (1) us-
ing WebEmbed (Beyond apps) if no labelling budget is allowed for devel-
opers. Indeed, the effectiveness of this configuration is close to WebEm-
bed (Across apps), which instead requires a non-negligible labelling cost;
(2) using WebEmbed (Within apps) in all other cases, especially if the
labelling cost is affordable. Indeed, the gain in code coverage is remarkable
in this case (+29 w.r.t. the Beyond apps use case, and +26% w.r.t. the
Across apps use case), with corresponding positive implications for fault
detection.

3.7 Threats to Validity

In this section, we discuss threats to validity that could have affected
our empirical study and its results, according to the guidelines proposed
in Wohlin et al. [213].

External validity These threats concern the generalizability of the
results. In this study, we considered nine open-source web applications,
which may not be representative of complex, real-world commercial ap-
plications. To mitigate this threat, we selected web applications from
different domains, having different sizes, and implemented with different
technologies. Still, the limited number of subjects in our evaluation poses
a threat in terms of the generalizability of our results to other web apps.
Moreover, we considered only the embeddings produced by Doc2Vec [117],

3.8. Summary and Future Works 63

and WebEmbed’s effectiveness may change when considering other algo-
rithms.

Internal validity These threats concern uncontrolled factors that
may have affected the results. We compared all variants of WebEmbed
and baselines under identical experimental settings and on the same eval-
uation set (Section 3.5.2). The main threat to internal validity concerns
our implementation of the testing scripts to evaluate the scores, which we
tested thoroughly. An additional threat is represented by the manually
created web page pair annotations and ground truth models. This threat
is unavoidable, since there exists no automated method to compute the
ideal classification of web pages. To minimize this threat, the authors of
the original dataset created, in isolation, a ground truth, and then estab-
lished a discussion to reach an agreement [218].

3.8 Summary and Future Works

The goal of the research presented in this chapter is to improve au-
tomatic test generation techniques for web applications by tackling the
problem of near-duplicates in automatically-inferred models. To this aim,
we designed and implemented two novel techniques for near-duplicate de-
tection, based on machine learning approaches, specifically geared towards
model inference for test generation purposes.

The two techniques we proposed can be framed within a general frame-
work for near-duplicate detection we devised. The first technique we pro-
posed leverages TK functions to compute the similarity of two web pages
based on their tree-structured DOM representation. The second technique,
which we called WebEmbed, leverages a novel neural embedding model
specifically designed for web pages to obtain a vector representation of each
page, which can then be used to compute a meaningful similarity measure
between any two given web pages. Both techniques use their specific simi-
larity measures to train machine learning classifiers for the near-duplicate
detection task.

We studied the effectiveness of the proposed techniques in inferring
accurate models for functional testing of web apps, while also discussing
their cost for developers in three settings, namely Beyond, Across and

64
Chapter 3. Improving Automatic Web Test Generation with Near-duplicate

Detection

Within web apps. Furthermore, we investigated their practical impact on
the quality of automatically-generated GUI-level web tests, by integrating
them within a state-of-the-art tool for automatic web test generation.

Results show that the performance of the TK-based approach is in line
w.r.t. the best existing near-duplicate detection techniques in the consid-
ered scenarios. WebEmbed, on the other hand, manages to consistently
outperform all the baselines. Crawl models produced with WebEmbed
are more accurate and lead to the generation of test suites achieving higher
code coverage.

Future work on the near-duplicate detection problem includes exploring
other forms of embeddings to further improve the accuracy of WebEm-
bed. For example, usage of visual embeddings on the web screenshots, e.g.,
with autoencoders, will be explored, as well as hybrid solutions. Moreover,
embedding models capable of taking into account also the intrinsic struc-
ture of web pages, such as the one proposed by Alon et al. [8] for Abstract
Syntax Tree representations of source code, could also prove effective in
the domain of near-duplicate detection of web pages.

In a broader context, the research on near-duplicate detection carried
out in this chapter could be applied in different domains than automatic
model inference/test generation. For example, in web test prioritization
[185], detecting near-duplicate web pages could prove useful in comput-
ing model coverage measures to guide test prioritization so that tests are
executed in an order that maximizes the coverage rate of distinct logical
pages. This could lead to improvements in fault detection rates. More-
over, in the security domain, our approaches could be used for the task of
automatically detecting phishing websites.

Chapter 4
Automating Workload
Generation for Web Apps
leveraging existing E2E
functional tests

The research presented in this chapter aims at addressing some of the
challenges practitioners face in the definition of workloads for performance
testing of web applications, as highlighted in Section 2.3.4. To this end,
we propose a novel solution to automatically generate workloads for per-
formance testing. The remainder of this chapter is structured as follows.
In Section 4.1, we describe in detail the novel solution we propose. In
Section 4.2, we detail the preliminary industrial case study we conducted
to assess the effectiveness of the proposed technique, while in Section 4.3
we present the results, discussing threats to validity in Section 4.4. Lastly,
in Section 4.5 we provide closing remarks and future work directions.

4.1 The Proposed Solution: E2E-Loader

4.1.1 Overview of the proposed approach

The key intuition behind the proposed approach is to leverage auto-
mated End-to-End (E2E) GUI-level tests, widely used for quality assurance

66
Chapter 4. Automating Workload Generation for Web Apps leveraging existing E2E

functional tests

Figure 4.1. Overview of the E2E-Loader approach.

(as discussed in Chapter 3), for the generation of workloads for performance
tests. Indeed, automated E2E GUI-level tests aim at testing web apps as
a whole, from the point of view of end users, simulating the interactions
of a user with the GUI of the system (e.g.: clicking buttons, submitting
forms, etc.) to ensure that the applications behave as expected. Thus,
E2E test cases can be used as a promising starting point to design realistic
user sessions (i.e., sequences of actions performed by a single user).

In order to define a performance testing workload, however, these
pseudo-realistic sequences of user actions need to be heavily processed.
The overview of the process we proposed is presented in Figure 4.1. We
first provide a broad overview of this pipeline, and then in the next Sec-
tions will detail each step.

As the first step, E2E tests must be mapped to a user session, i.e.,
to a sequence of actual user requests. Indeed, a single high-level action,
such as clicking a button, submitting a form, or loading a new page, might
correspond to a number of different web requests to the SUT. To this
end, we exploited the HTTP ARchive (HAR) [162] format, a JSON-based
standard defined by the World Wide Web Consortium for logging of a web
browser’s interaction with a site. In particular, HAR is supported by any
modern web browser [161], to log all network-level interactions occurring,
in a given period, between a browser and the SUT, including HTTP and
WebSocket messages. Thus, while executing E2E tests, we can collect the
corresponding HAR files, which will include all the requests triggered by
those tests, that were sent to the web server. Let us note that, thanks to
the use of the HAR standard, E2E-Loader is completely independent from

4.1. The Proposed Solution: E2E-Loader 67

the technologies used to automate E2E tests, and could possibly be used
also when E2E tests are not automated at all but are rather performed
manually by a tester.

In the next step, E2E-Loader processes the collected HAR files, look-
ing for data correlations between requests. This step is performed by the
Correlation Extractor, which includes a custom heuristic, considering both
values and parameter names. These detected correlations are shown to the
performance tester via a GUI component, the Performance Test Configura-
tor. This component allows testers to confirm or discard the automatically
detected correlations, or to specify new correlations that were not detected
by the heuristic. Moreover, the GUI also allows testers to compose the de-
sired final workload, by characterizing the behaviour of each desired group
of users (see Section 2.3.2) in terms of the number of concurrent users per-
forming that kind of interaction, initial delay, hold load time, shutdown
time, etc.

Lastly, once the tester is satisfied with the current configuration, the
Performance Test Generator component generates executable performance
tests. In our implementation, executable performance tests are generated
in JMeter format, but the component could be easily extended to support
other executable formats as well. An overview of the E2E-Loader approach
is depicted in Figure 4.1. In the remainder of this section, we detail each of
these key components of E2E-Loader, namely the Correlation Extractor,
the Performance Test Configurator and the Performance Test Generator.

4.1.2 Managing Data Correlations: The Correlation Ex-
tractor component

In most web applications, requests that are sent at a given time might
need to use dynamic values obtained by previous responses in the same
session [180]. Keeping track of these correlations and properly managing
them in each user session composing a workload is a crucial task, neces-
sary to properly simulate realistic user behaviours. Consider, for example,
the HTTP response and the subsequent request depicted in Figure 4.2, in
which some parameters in the request depend on values returned in the
previous response. In the example, the Authorization header parameter
in the request corresponds to the auth parameter returned as a field of the
JSON body of the response. Similarly, the sessID cookie parameter sent

68
Chapter 4. Automating Workload Generation for Web Apps leveraging existing E2E

functional tests

Figure 4.2. Example of HTTP response and subsequent request, with data
correlations.

in the request depends on the value set in the Set-Cookie header of the
response. Lastly, the p2 field in the body of the request depends on the
value returned in the data field in the body of the response. Moreover, pa-
rameters returned in a response might be used also as path or query string
parameters in the URL of subsequent requests (see Figure 4.2). In the
literature, to the best of our knowledge, this problem has been addressed
only in the work presented by Shams et al. in [180]. That approach,
however, relies on manually-defined models of the SUT to automatically
identify correlations between requests. Our approach, on the other hand,
is fully automated and based only on the analysis of the requests.

To automatically detect correlations between response and subsequent
requests, the Correlations Extractor component performs a two-step analy-
sis. In the first step, likely correlations are detected by comparing the value
of each request parameter with the value of all the parameters in all previ-
ous responses. In this phase, the comparison is based only on the value of
the parameters and selects as candidate correlations all parameters having
the exact same value. This first step may find multiple correlations for the
same parameter, possibly with different parameter names. For instance, a
request parameter named paymentMethod with value CREDIT_CARD might
match with two different parameters in previous responses, named, respec-
tively, paymentMethod and supportedPayment. The proper correlation
is the one that detects the underlying relation in requests-responses and
makes the recorded sequence of requests reproducible, by instantiating a
new sequence of requests according to the actual server responses gener-

4.1. The Proposed Solution: E2E-Loader 69

ated in the new interactions.
In the second step, in cases in which multiple potential correlations

are detected for a given request parameter, the set of potential correla-
tions is further refined using a custom heuristic we defined, taking into
account also parameter names. The idea is to select the most likely match
for the response parameter whose name is most similar to the name of
the request parameter. The custom heuristic we defined is based on the
Levenshtein distance (also known as edit distance), a widely-used similar-
ity measure for strings [224]. Given two strings, the Levenshtein distance
between them can be defined as the minimum number of character edits
(insertions, deletions and substitutions) for transforming one string into
another. More in detail, potential matches are ranked in decreasing or-
der of similarity, and only the top three matches are selected as potential
candidates. Preliminary experiments suggested that returning the top-
three alternatives included the correct correlation in more than 90% of the
cases. The above-described matching process is applied to both HTTP
and WebSocket messages and is capable of detecting correlations between
any response/request pair, regardless of the specific protocol.

4.1.3 Performance Test Configurator

The Performance Test Configurator component provides testers with
a GUI that can be used to fine-tune the automatically-detected correla-
tions and to better customise the desired workload. In particular, this
module allows testers to graphically choose which correlations to adopt,
among the candidate ones that were automatically individuated by the
Correlation Extractor component, as well as to manually specify new cor-
relations using a rule-based approach similar to the one included in most
existing tools (see Section 2.3.3), had the correct ones not been automat-
ically detected. This component also enables the automatic generation
of parametric tests, leveraging external data sources. For example, in a
workload in which a number of concurrent users buy a book from an online
store, it is possible to provide a list of books to buy as an external CSV
file and to make each distinct synthetic user behaviour parametric w.r.t.
the book. This way, each simulated user buys a distinct book, making the
workload more realistic. Moreover, the GUI also allows testers to compose
the desired final workload, by selecting which user behaviours should be

70
Chapter 4. Automating Workload Generation for Web Apps leveraging existing E2E

functional tests

Figure 4.3. Example of workload definition using the E2E-Loader GUI.

4.2. Empirical Study Design 71

Table 4.1. Formalization of the five workloads selected for the case study

Workload Behavior Thread
Count

Initial
Delay (sec)

Hold Load
For (sec)

Overall
duration (sec)

1 Rename Shopping Cart 10 5 600 605Search Hotel 10 5 600

2

Rename Shopping Cart 10 5 300

605Rename Shopping Cart 5 305 300
Search Hotel 10 5 300
Search Hotel 5 305 300

3
Rename Shopping Cart 5 5 180

545Rename Shopping Cart 10 185 180
Rename Shopping Cart 15 365 180

4
Search Hotel 5 5 180

545Search Hotel 8 185 180
Search Hotel 10 365 180

5

Rename Shopping Cart 5 5 900

1 805Rename Shopping Cart 10 905 900
Search Hotel 5 5 900
Search Hotel 10 905 900

included in the workload, and by characterizing each desired group of users
(see Section 2.3.2) in terms of the number of concurrent users performing
that kind of interaction, initial delay, hold load time, and shutdown time.
The screenshot in Figure 4.3 shows the workload composition feature as
provided by the GUI.

4.1.4 Performance Test Generator

Once the tester has finished modelling the workload using the Perfor-
mance Test Configurator GUI, the Performance Test Generator compo-
nent is responsible for “translating” the workload in an executable perfor-
mance test suite. The current implementation of E2E-Loader generates
executable performance tests in the format used by Apache JMeter, to
support practitioners familiar with the tool, and to be adopted in the au-
tomatic pipelines based on JMeter.

4.2 Empirical Study Design

In this section, we present the industrial case study we conducted to
assess the effectiveness of the proposed approach in generating high-quality
workloads for performance testing. In particular, the goal of the case study
is to answer the following research question:

72
Chapter 4. Automating Workload Generation for Web Apps leveraging existing E2E

functional tests

RQ Are workloads automatically generated with E2E-Loader comparable
to those manually-generated by practitioners using state-of-the-art
tools?

In this section, we detail the case study we conducted, by describing the
adopted experimental procedure in terms of the involved subject system,
considered workloads, gold standard implementation of workloads, and the
metrics we used to compare workloads.

4.2.1 Subject System

The system used for the evaluation is a modern web application de-
signed to support travel agencies in booking hotels and transportation
for customers’ holidays, interacting with a number of third-party services.
The app features a microservices-based architecture and uses Kubernetes
to properly orchestrate containers. As of today, it consists of 51 microser-
vices and makes large use of the WebSocket protocol to provide a swift
user experience and reduce load times. The front end is implemented us-
ing Angular and communicates with the microservices using REST APIs.

During our empirical evaluation, Booking Engine was deployed on a
Kubernetes cluster running in a QA environment, on a server with the
following characteristics: AMD Ryzen 9 5900X 12-Core processor 64 GB
RAM and 1TB SSD. No other applications or services were running on
the server during the execution of the experiments. As for the perfor-
mance tests, they were executed on a different server, featuring an Intel(R)
Core(TM) i9-9940X CPU at 3.30GHz, 64 GB RAM and 1TB SSD.

4.2.2 Workloads

In our study, we consider five different workloads used by our indus-
trial partner to test the app under load. The workloads are detailed in
Table 4.1 and consist of different combinations of two user behaviours:
Rename Shopping Cart and Search Hotel. In the first behaviour, users
navigate to the shopping carts management page and rename one of the
shopping carts. In the second behaviour, users enter the travel planning
page, specify a search query in terms of selected destination, check-in and
check-out dates, and the number of guests per room), and browse the

4.2. Empirical Study Design 73

returned results. In this second usage scenario, the app makes use of
WebSocket to return additional results as soon as they are retrieved from
third-party services. In all workloads, both the start-up time and the shut-
down time are set to zero seconds. Let us note that these workloads involve
15 of the 51 defined microservices.

4.2.3 Gold Standard Implementation

In our empirical evaluation, we consider, as a gold standard, the imple-
mentations of the above-described workloads that were manually defined
by practitioners working with our industrial partner, using the JMeter
tool. It is worth noting that manually implementing these workloads took
a practitioner several days of tedious and error-prone work, as data correla-
tions between responses and subsequent requests and WebSocket messages
had to be managed entirely manually.

4.2.4 Metrics

To compare the different performance test suites (i.e. the one auto-
matically generated by E2E-Loader vs. the one manually generated by a
practitioner), we compare the loads induced by them on the SUT. More in
detail, as done in similar works on performance testing [46], we measure
the load induced on the SUT over time, by collecting statistics on CPU
usage levels (percentage of used CPU) every five seconds. Moreover, since
the subject system features a microservices-based, distributed architecture,
in our analysis we also collected CPU loads at a much finer-grained level
of a single container, using the kubectl command line tool provided by
Kubernetes, to collect the CPU usage in millicores [115] over time.

4.2.5 Procedure

Firstly, we trained a practitioner working with our industrial partner
on how to use E2E-Loader. Let us note that, to avoid biases, this per-
son is not the same one that implemented the gold standard workloads.
Subsequently, the practitioner used E2E-Loader to implement the work-
loads defined in Section 4.2.2, leveraging the available E2E functional tests
for the Rename Shopping Cart and Search Hotel scenarios, implemented

74
Chapter 4. Automating Workload Generation for Web Apps leveraging existing E2E

functional tests

using the Cypress framework. Subsequently, we executed both the gold
standard implementations of the workloads and the ones obtained using
E2E-Loader, measuring, every five seconds, the percentage of CPU used
for the entire QA server running the SUT, and the millicore usage of the
microservices. Thus, for each of the five workloads and for each of the 15
involved containers, we obtained two sequences of millicore usage levels
over time, one for the gold standard implementation and one for the E2E-
Loader implementation.

As done in similar works (e.g.: [46]), to determine whether the loads
induced by the E2E-Loader test suite are comparable to those induced by
the gold standard, we used the Wilcoxon signed-rank test [212] to compare
the two sequences of recorded load levels. More in detail, for each workload,
we tested the following null hypothesis:

H0: the load induced by the E2E-Loader implementation has the same
distribution as the load induced by the gold standard implementa-
tion.

If the test p-value is greater than 0.05, the null hypotheses cannot be re-
jected, and thus we can consider the induced loads to be comparable. If,
on the other hand, the test p-value is smaller than 0.05, the null hypoth-
esis can be rejected with high confidence, thus accepting the alternative
hypothesis that a statistically significant difference exists between the two
induced loads. Even when statistically significant, however, the difference
in the induced loads might be negligible and have no practical impact [46].
Hence, we measured the magnitude of these differences using the Cliff’s
delta effect size [55], a measure that is largely used in software engineer-
ing to determine the degree of difference between two experimental results
[107]. Cliff’s delta ranges between -1 and 1, and can be interpreted as
follows: if |δ| < 0.147, the difference is negligible; if 0.147 ≤ |δ| < 0.33,
the difference is small ; if 0.33 ≤ |δ| < 0.474, the difference is medium; if
|δ| ≥ 0.474 the difference is considered large. In this work, as also done
in [46], we consider two loads comparable even if a statistically significant
difference exists, but the effect size is small or negligible.

4.3. Results 75

Workload 1 Workload 2 Workload 3 Workload 4 Workload 5

0 200 400 600 0 200 400 600 0 200 400 0 200 400 600 0 500 1000 1500

15

20

25

30

35

time (seconds)

C
P

U
 lo

ad
 (

%
)

Implementation technique E2E−Loader Manual Implementation (JMeter)

Figure 4.4. CPU loads (%) over time in the considered workloads.

Table 4.2. Results of the Statistical Tests (SUT-level CPU load)

Workloads

1 2 3 4 5

p-value 0.54 0.66 0.15 0.07 <0.0001
effect size – – – – 0.30 (small)

4.3 Results

The SUT-level CPU loads induced by the performance tests imple-
mented using E2E-Loader and by the gold standard implementations are
depicted in Figure 4.4. The figure highlights that, for all the considered
workloads, the load induced by the performance tests generated using E2E-
Loader are quite similar to those obtained using the manually implemented
performance tests.

As for the statistical tests on the loads measured at SUT level, the
results are reported in Table 4.2. For each workload, we report the p-value
of the statistical test we performed and, in case the p-value is smaller
than 0.05, we report the measured effect size. In four workloads out of five
(Workload 1 to Workload 4), the statistical tests highlighted no statistically
significant difference in the CPU loads. In Workload 5, a statistically
significant difference exists (p-value < 0.0001), but the measured effect
size is small.

The results of our finer-grained statistical analysis considering CPU
loads at container level are reported in Table 4.3. In the table, each row
corresponds to a different container, and values report the p-value of the
statistical test comparing the two loads at millicore level induced on that

76
Chapter 4. Automating Workload Generation for Web Apps leveraging existing E2E

functional tests

Table 4.3. Results of the statistical tests (Container-level CPU loads)

Workloads

Workload 1 Workload 2 Workload 3 Workload 4 Workload 5

C1 p-value < 0.0001 0.74 0.42 0.28 < 0.0001
eff. size 0.16 (small) – – – 0.21 (small)

C2 p-value 0.45 0.009 0.80 < 0.0001 < 0.0001
eff. size – 0.6 (neglig.) – 0.35 (medium) 0.15 (small)

C3 p-value 0.001 0.14 0.001 0.77 < 0.0001
eff. size 0.23 (small) – 0.12 (neglig.) – 0.49 (large)

C4 p-value 0.55 0.44 0.7 0.56 0.19
eff. size – – – – –

C5 p-value < 0.0001 0.0003 0.12 0.26 < 0.0001
eff. size 0.31 (small) 0.26 (small) – – 0.55 (large)

C6 p-value < 0.0001 < 0.0001 0.001 0.05 < 0.0001
eff. size 0.45 (medium) 0.47 (medium) 0.08 (neglig.) – 0.7 (large)

C7 p-value 0.91 0.95 0.43 0.68 0.69
eff. size – – – – –

C8 p-value 0.31 0.17 0.001 0.69 0.47
eff. size – – 0.15 (small) – –

C9 p-value 0.93 0.73 0.67 0.36 0.48
eff. size – – – – –

C10 p-value 0.09 0.02 0.37 0.97 0.70
eff. size – 0.02 (neglig.) – – –

C11 p-value 0.31 0.82 0.04 0.05 0.15
eff. size – – 0.12 (neglig.) – –

C12 p-value 0.66 0.90 0.04 0.87 0.60
eff. size – – 0.17 (small) – –

C13 p-value 0.14 0.31 1.0 0.51 0.24
eff. size – – – – –

C14 p-value 0.001 0.13 0.43 0.01 < 0.0001
eff. size 0.10 (neglig.) – – 0.05 (neglig.) 0.1 (neglig.)

C15 p-value 0.41 0.91 0.49 0.72 0.86
eff. size – – – – –

4.4. Threats to Validity 77

container. Also in this case, when a statistically significant difference exists
between the two loads (p-value < 0.05, we report also the effect size. Re-
sults show that, in 93% of the cases, the loads induced on the containers by
E2E-Loader workloads are comparable to those induced by gold standard
workloads, with the only exceptions being on Container 5 in Workload 5,
in Container 6 for Workloads 1, 2, and 5, and in Container 3 for Workload
5. In these cases, results show a statistically significant difference with a
medium or large effect size.

Summarizing, E2E-Loader provides the following advantages, very ben-
eficial for a software-related industry:

• The approach can be used to automatically define workloads before
the SUT is released and user interactions logs are collected, unlike
most log-based solutions presented in the literature.

• The approach provides a significant time speed-up compared to man-
ually defining workloads with generally available tools used in the
industry, such as the well-known JMeter. The data correlations sug-
gested by the tool while defining workloads were correct in approx-
imately the 90% of the cases, so our heuristic proved to be valid to
effectively assist the testers. Moreover, practitioners are lifted from
the burden of manually managing WebSocket messages.

• The workloads defined by our tool are easier to be maintained during
the product life-cycle. Indeed, within software evolution, new work-
loads can be derived automatically from updated E2E test cases.

4.4 Threats to Validity

In this section, we discuss threats to validity that could have affected
the results of our empirical study, according to the guidelines proposed in
Wohlin et al. [213].

External validity The main threat to external validity that could
affect the generalizability of our preliminary results is linked to the fact
that we consider a single subject system. The subject system is a mod-
ern web application, implemented using state-of-the-art frameworks and

78
Chapter 4. Automating Workload Generation for Web Apps leveraging existing E2E

functional tests

a microservice-based architecture, but nonetheless cannot be considered
as representative of all industrial-strength web applications. Additional
experiments on a wider set of subject systems need to be put in place to
mitigate this threat.

Internal validity We compared the workloads generated automati-
cally using E2E-Loader and those manually implemented by practitioners
under the same experimental settings. The workloads were executed at
night, when no developer interacted with the test environment. Still, un-
controlled factors such as scheduled tasks at OS level may have affected
the measured load levels and thus our results. An additional threat to
internal validity concerns our implementation of the scripts to collect load
metrics on the server as well as to compare the recorded loads and perform
statistical analyses. To mitigate this threat, we thoroughly tested these
software components.

4.5 Summary and Future Works

Performance testing is essential to improve the quality of web applica-
tions and to ensure a good user experience under different load conditions.
A key performance testing activity is the design of synthetic workloads,
i.e., deciding which requests should be sent to the SUT to simulate a given
load condition.

From the analysis of the literature, we found that existing tools and
solutions are affected by some key limitations, hindering the productivity of
performance testers and the effectiveness of the entire performance testing
process.

This chapter presents a novel solution aimed at automatically gener-
ating workloads for performance tests, starting from existing End-to-End
functional test cases. We implemented the solution in a tool named E2E-
Loader, which we make publicly available for interested researchers and
practitioners [35]. We assessed the effectiveness of E2E-Loader in generat-
ing realistic workloads in an industrial case study, based on state-of-the-art
technical solutions. In particular, we compared the performance tests gen-
erated by the tool with a gold standard, intended as tests manually defined
by an IT practitioner. Results show that, in most cases, the server loads

4.5. Summary and Future Works 79

induced by the test suites obtained with E2E-Loader are comparable to
those obtained with manually defined tests, while requiring a fraction of
the time to be generated. Moreover, E2E-Loader tests can also be easily
re-generated from E2E functional tests, to keep performance tests updated
in scenarios in which the SUT evolves.

In future works, we plan to further validate our proposal by comparing
it against log-based workload generation approaches presented in the lit-
erature. Furthermore, we also plan to replicate our study on a broader set
of subject systems, possibly including also open-source ones, to improve
the generalizability of the results. Further work could also be devoted to-
wards extending the tool to introduce support for analysing the results of
performance tests and to automatically detect anomalies.

Chapter 5
Investigating Exploratory E2E
Functional testing of Android
Apps

According to a recent report [64], 4 billion smartphone users have down-
loaded 230 billion apps in 2021, with an app store spend of $170 billion.
In such a competitive market, it is fundamental to adequately test mobile
apps, as high-quality apps have a much higher chance of being well-received
by users and thus of being profitable [110].

As discussed in Section 2.2.4, leveraging Automated Input Genera-
tion (AIG) tools or practitioners using Capture & Replay (C&R) tools
and Exploratory Testing (ET) strategies are two widely-used approaches
for GUI-level testing of mobile apps. From a practical perspective, a Soft-
ware Project Manager might be puzzled in deciding whether to use AIG
tools or human testers implementing ET approaches, for a specific app un-
der development. Moreover, this decision-making scenario is further com-
plicated by the diffusion, in recent years, of crowdsourced testing [227, 137,
92, 207] (or crowdtesting), that allows companies to conveniently recruit
“crowds” of human testers on an on-demand basis and relatively inexpen-
sively [201], thus making ET approaches more appealing.

To the best of our knowledge, little work aimed at supporting these
managerial choices has been conducted in the literature. In this chapter,
we present two empirical studies we conducted, involving state-of-the-art

82 Chapter 5. Investigating Exploratory E2E Functional testing of Android Apps

AIG tools and 20 masters students. The first study, presented in Sec-
tion 5.1, aims at comparing the testing effectiveness of AIG tools against
those of tests generated by practitioners using ET and C&R tools. The
second study, presented in Section 5.2, investigates the effectiveness of
crowdtesting in a scenario in which the goal is to generate a test suite
using ET and C&R tools, analysing the impact of the number of recruited
testers and of the adoption of different (i.e., Uninformed and Informed)
exploratory strategies, on the effectiveness of the resulting test suites.

5.1 Comparing Automated Tools and Practition-
ers using C&R

In real-life industrial scenarios, where there are budget, temporal and
team capability constraints, a Project Manager might need to choose
whether to use fully-automated AIG testing techniques, to employ (pos-
sibly low-skilled) practitioners with C&R techniques, or to consider both
strategies. As for C&R techniques, we can do a further subdivision. In-
deed, the simplest scenario we can consider of Exploratory GUI Testing of
Android apps with C&R techniques is the one where the tester has no pre-
vious knowledge about the AUT nor about its requirements, but is free to
define arbitrary sequences of user interactions based on his/her sensibility.
In the following, we will refer to this scenario as Uninformed Exploratory
Testing (UET). In a more sophisticated scenario, the tester can be driven,
in the definition of sequences of user interaction, not only by his/her sen-
sibility but also by some additional information about the code coverage
achieved by previous tests. In the following, we will refer to this scenario
as Informed Exploratory Testing (IET).

The UET approach can be appealing in mobile application develop-
ment, where the pressure to reduce time-to-market is very strong [112].
Indeed, with this strategy, even naive practitioners, with no knowledge of
the source code of the AUT, can be employed to design and run tests. The
IET approach, on the contrary, requires some insight into the source code
but can lead to test cases stressing parts of the code that could have been
missed by a UET test suite. This clearly requires testers with program-
ming and testing skills.

In the literature, to the best of our knowledge, little work has been di-

5.1. Comparing Automated Tools and Practitioners using C&R 83

rected towards supporting Software Project Managers and Decision Makers
in choosing which strategies to use to test a given Android app.

5.1.1 Empirical Study Design

The goal of the empirical study presented in this section is to compare,
in terms of testing effectiveness, different strategies for End-to-End (E2E)
GUI testing of Android apps. In particular, we consider three testing
strategies:

UET An Exploratory Testing strategy in which test suites are developed
with a C&R approach by testers with a university-level background
of programming and software engineering, basic knowledge of C&R
tools and without knowledge of the structure of the AUT. In addition,
testers have a strict deadline constraint to complete their testing task;

IET An Exploratory Testing strategy in which test suites are generated
with a C&R approach by testers with a university-level background
of programming and software engineering, basic knowledge of C&R
tools and complete knowledge of the structure of the AUT. In ad-
dition, testers can leverage on information about the code coverage
obtained with the previous test cases to improve the effectiveness of
the produced test suite. Finally, testers have no strict deadlines to
complete their work;

AIG A testing strategy relying on fully-automated AIG tools that explore
the GUI of the AUT without the need for any manual intervention.

In the remainder of this section, we detail the empirical study we con-
ducted in terms of research questions, experimental subjects and objects,
employed metrics and procedures.

Research Questions

To compare these testing approaches, we posed the two following re-
search questions:

RQ1 (UET vs AIG) How do test cases generated with an Uninformed
Exploratory Testing strategy compare, in terms of effectiveness, to
those generated by AIG tools?

84 Chapter 5. Investigating Exploratory E2E Functional testing of Android Apps

RQ2 (IET vs AIG) How do test cases generated with an Informed Ex-
ploratory Testing approach compare, in terms of effectiveness, to
those generated AIG tools?

The answers to the research questions will be evaluated either from a
quantitative point of view, by comparing coverage percentages obtained by
different testing techniques with respect to different code coverage metrics,
and by a qualitative point of view, aiming at assessing and classifying the
code portions of the AUT that remain unexplored by the three different
strategies.

Subjects

Our empirical study involved a set of students attending the Advanced
Software Engineering course in the M.Sc. in Computer Engineering pro-
gram at the Università degli Studi di Napoli Federico II, Naples, Italy.
Twenty students were enrolled in the experiments, on a voluntary basis.
All the involved students had a Computer Engineering Bachelor Degree
and a common background in Java programming and software engineer-
ing. Since the Advanced Software Engineering course is mainly focused on
testing, they received seven lectures on testing techniques (including func-
tional and coverage-based testing techniques), testing automation, JUnit,
GUI testing, and C&R techniques. In addition, they attended four lec-
tures on Android programming basics (the final assignment for the course
required them to develop an Android app) and were all Android phone
users. Finally, all the students were given a dedicated lecture on C&R
tools for Android testing.

Objects

C&R Tool The selected C&R tool for this experiment was Robotium
Recorder [171]. The main feature of this tool is the possibility to record
(capture) the interactions of a user with an Android device in the context of
an Android app and to generate a corresponding re-executable JUnit test
case, exploiting JUnit and the Robotium library [170]. The tool can be
straightforwardly integrated with Integrated Development Environments
(IDEs) such as Eclipse and Android Studio.

5.1. Comparing Automated Tools and Practitioners using C&R 85

Moreover, we used the well-known Emma [70] tool to measure the
Lines of Code (LOC) coverage percentage achieved by the test cases at
source code level (with respect to the Executable Lines of Code metric).
According to the operative definition provided by the Emma reference
manual [69], an Executable LOC is a line of source code having at least a
corresponding statement in the bytecode (e.g.: comments are lines of code
that do not yield executable LOCs).

The Automated GUI testing tools Three AIG testing tools were
considered in this experiment, i.e., Android Ripper [14, 13], Sapienz [139]
and Robo [79]. Android Ripper [14, 13] is one of the first automated GUI
testing tools made available to the scientific community. We selected it be-
cause it has been often considered as a benchmark in several works reported
in the literature [51, 16, 125, 155, 175]. Sapienz [139] is a search-based GUI
testing tool, proposed in 2016. We selected it because its performance over-
comes the ones of all the other tools previously presented in the literature.
Robo test is a GUI testing tool integrated into the Google Firebase Test
Lab [79]. We selected this tool because it is the systematic GUI testing
tool provided by Google, and includes also a free plan, making it a viable
choice for developers. In the following, we briefly describe some technical
aspects of these tools.

Android Ripper Android Ripper automatically explores the AUT
in a systematic and deterministic way, by analysing its GUI and triggering
suitable user/system events. The tool includes a strategy aiming at execut-
ing each event handled by the AUT at least once, combined with heuristics
to avoid the re-execution of already triggered events. Consequently, its exe-
cution usually ends after triggering all the events identified by the strategy,
and some empirical evaluations showed that it is not usually required to
set time limits for its execution [13]. Android Ripper allows the Tester to
customize many options of the execution, like for instance the possibility
of selecting a breadth- or a depth-first GUI exploration strategy.

Sapienz Sapienz [139] is a search-based testing tool that executes
random-based user/system events on the AUT, guided by a multi-objective
optimization strategy. Indeed, it uses a genetic algorithm, starting from a

86 Chapter 5. Investigating Exploratory E2E Functional testing of Android Apps

random set of test cases, composed of a sequence of user/system events. At
each iteration, crossover and mutation operators are applied to generate
new test cases. Offspring are selected on the basis of a fitness function,
aimed at maximizing the code coverage and the failure-finding capability
while minimizing the test sequences length. The fact that Sapienz has a
dependency on randomness leads to two practical consequences: (I) it can
obtain a different coverage for each run, thus multiple executions can lead
to more effective test suites; (II) its execution requires setting a timeout
or a number of generations of the genetic algorithm. As a reference, the
authors of the tools defined a one-hour timeout in the experiments they
reported in [139].

Robo Robo is a testing tool integrated into the Google Firebase Test
Lab [79], which explores in a systematic and deterministic way the GUI
of the AUT. Differently from the two other considered tools, Robo is exe-
cuted on the Google cloud infrastructure. Running a test in Robo requires
uploading the APK of the AUT and selecting a device (either virtual or
real) to be used for testing. Optionally, the tester can also define a time-
out. Google suggests using a 5 minutes time-out for “moderately complex
apps”. Robo test is offered with two usage plans: with the free one, it is
possible to execute up to 10 tests per day per Google account on a virtual
device or 5 on a physical one. With a premium account, it uses a pay-per-
use strategy and additional tests can be executed with a cost per hour of
1$ per virtual device or 5$ per physical device. After test execution, Robo
generates log files, saves a series of annotated screenshots, and then creates
a video from those screenshots, showing the user operations performed on
the GUI.

Let us note that all these tools consider only a limited set of user/sys-
tem events, mostly including the ones of the standard widgets belonging
to the Android libraries (e.g. buttons, text fields, spinners, selection boxes
and so on). The characteristics of the three considered AIG tools are sum-
marized in Table 5.1.

The Applications Under Test Well-known limitations of C&R tools
are related to their difficulty in registering and reproducing preconditions
to the test case execution, which can be related to third-party remote

5.1. Comparing Automated Tools and Practitioners using C&R 87

Table 5.1. Main Characteristics of the AIG Tools Considered in the Experi-
ment

Tool Name Description

Android
Ripper

Exploration approach: Systematic and Deterministic.
Objective: Coverage of distinct events.
Termination criteria: Exhaustion of events to trigger.

Sapienz
Exploration approach: Search-Based.
Objective: Maximize an objective function considering both code coverage,
fault detection capability and test sequences length.
Termination criteria: Time limit reached, or fixed number of generations
for the underlying genetic algorithm.

Robo
Exploration approach: Systematic and Deterministic.
Objective: Coverage of distinct events.
Termination criteria: App exhaustively explored, or time limit reached.

Table 5.2. The Android apps used in our study

Id Name Version Classes Activ. Methods LOCs Exec.
LOCs

A1 MunchLife [158] 1.4.4 10 2 28 486 184
A2 SimplyDo [182] 0.9.2 46 3 246 3566 1281
A3 TippyTipper [192] 1.2 42 6 225 2238 999
A4 Trolly [195] 1.4 19 2 64 1062 364

resources (e.g. remote databases or web services, including also authenti-
cation services). In addition, C&R tools may generate unstable test cases
in presence of multi-threaded applications and dependencies on race con-
ditions.

We have selected a set of four small-sized Android applications that
are single-threaded and that have no dependencies on third-party services.
They are all open-source apps (their source codes are also available on
the F-Droid [73] repository or on GitHub) and were also used in other
empirical studies on Android GUI testing [13, 51, 139]

Table 5.2 reports, for each of the selected apps, its name and version,
as well as the total number of classes, activities, methods, LOCs, and
Executable LOCs. We also point out that the number of classes reported in
Table 5.2 includes both statically defined and anonymous classes, including
listener classes related to GUI widgets.

More in detail, MunchLife (A1) is a counter of the score achieved in

88 Chapter 5. Investigating Exploratory E2E Functional testing of Android Apps

the “Munch” card game. It consists of a main GUI showing a number of
different counters and controls to change their values, together with a menu
used for changing configuration preferences (e.g. the maximum counter
value). Simply Do (A2) is a to-do list management utility. Its main GUI
reports the current list of activities organized in a hierarchy, while many
different features to organize, sort, delete, and export a backup of to-do
items are accessible through menus. TippyTipper (A3) is a utility app
for the calculation of tips for restaurant bills. From its three main GUIs,
it allows the user to specify the bill amount, the tipping percentage, and
the number of people splitting the bill. It calculates the amount of money
that anyone has to pay. All the calculation parameters may be modified
by operating on menus. Finally, Trolly (A4) is a shopping list manager
application, that allows users to add/remove objects from lists, and to
maintain a list of the most recently listed objects, as well. It manages
three kinds of lists, i.e. items to buy, bought items, and also “off list”
items (i.e. items that were inserted in past lists and can be inserted in new
lists. This list basically acts as a suggestion list).

The functionalities of these apps are accessible either by app menus
or by context menus. Some of the applications are also sensitive to some
system events such as device rotation. A screenshot of the main Activity
of each of these apps is reported in Figure 5.1. Since the selected apps do
not interact with any remote service, not even for authentication purposes,
GUI testing was possible at system level without the need of dealing with
precondition setting, mocking, and other integration and system-testing
issues.

Variables

To compare the effectiveness of the different GUI testing approaches,
we used two code coverage metrics, widely employed in similar works (e.g.:
[51, 193]): (I) the lines-of-code (LOC) coverage, measured at bytecode
level by the Emma [70] tool with respect to the Executable Lines of Code,
and (II) branch coverage, measured at source code level.

Let us note that, to measure branch coverage, we manually instru-
mented the AUTs, inserting probes in each branch of their Java source
code. Such probes write to the standard log output of Android apps, eas-
ily readable using the well-known Logcat tool. The instrumented versions

5.1. Comparing Automated Tools and Practitioners using C&R 89

(a) MunchLife (A1) (b) SimplyDo (A2)

(c) TippyTipper (A3) (d) Trolly (A4)

Figure 5.1. Screenshots of the considered AUTs.

90 Chapter 5. Investigating Exploratory E2E Functional testing of Android Apps

of the applications are available at http://reverse.dieti.unina.it/i
ndex.php/30-support-material for experiment replication purposes.

Due to the lack of advanced customization features with Robo, it was
not possible to compute its LOC coverage with Emma. Nevertheless,
thanks to the instrumented AUTs, we computed the branch coverage met-
ric with the Robo tool, leveraging the generated log files.

Materials and Procedure

In this subsection, we describe the procedure we adopted for our ex-
periments. Firstly, before the experiments, all the involved students were
given several hours of practical lectures on GUI testing techniques and on
C&R tools, focusing in particular on Robotium Recorder, to ensure that
they all had adequate expertise with the tool.

Subsequently, we assigned the students two testing tasks. The first task
consisted in generating a test suite for each of the AUTs using Robotium
Recorder and a UET approach. This task was carried out in a controlled
environment, in the Software Engineering laboratory, and all the stu-
dents were supplied with a virtual machine including the Eclipse IDE,
the Application Under Tests (AUTs), and an instance of an Android emu-
lator capable of running the AUTs. During this task, all students had no
prior knowledge of the AUTs, nor they had access to their source code or
to code coverage reports. To prevent the need to set specific preconditions,
we suggested the students to produce a single test case for each app, com-
posed of a single, long sequence of interactions. As an alternative, they
can produce different test cases by returning each time to the initial state
of the virtual machine. We gave the students a time limit of four hours
to complete this task. Within this time frame, the students were free to
decide the order in which to analyse the AUTs, as well as the amount of
time to allocate to each AUT.

The second task was a homework assignment in which the students
had to improve their previously-developed test suites. In this task, each
student had to first measure the code coverage of the previously developed
test cases, as explained during the lectures. Subsequently, based on an
analysis of the source code and of the code coverage reports, the students
had to generate additional tests using Robotium Recorder and the same
testing environment, with the goal of improving code coverage (thus with

http://reverse.dieti.unina.it/index.php/30-support-material
http://reverse.dieti.unina.it/index.php/30-support-material

5.1. Comparing Automated Tools and Practitioners using C&R 91

an IET approach). Notice that performing the IET task after the UET
task on the same applications is not unrealistic. Indeed, even when using
an IET approach, testers typically start by recording an initial test suite
with an Uninformed approach, to get a basic understanding of the AUT
and an initial test suite to be used to compute coverage metrics [19]. The
students submitted the output for this task (i.e.: the resulting test suites
and the corresponding coverage reports) after the end of the Software En-
gineering course, when they were ready to take the final exam. Before
the experiments, we made clear to the students that the achieved coverage
values were not to be considered in the determination of the course grades,
in order to discourage plagiarism among students. On the other hand, the
obtained result and the adopted methodologies were objects of discussion
in the final examination. Upon submitting their work, students were also
asked to report how much time it took them to complete the second task.
On average, the students reported that they completed the second task in
approximately eight hours. All the tests produced by the students were
re-executed to ensure that they worked properly and to validate coverage
data.

As for the experiments with the AIG tools, we executed both Android
Ripper and Sapienz on instances of the same emulator used by students,
for testing each of the four apps. Robo was used on emulators provided by
the Google Cloud platform having the same characteristics (e.g., the same
Android version).

Android Ripper was executed using the configuration named TR9 in
[13], in which the tool automatically explores the GUIs of the AUTs in
breadth-first order, adopting an Active Learning strategy, and by cutting
the exploration branches when the last visited GUI is deemed equivalent
to a previously visited one in terms of widget number and typology. The
total time spent by Android Ripper for testing the four apps was 4 hours
and 50 minutes, varying between 13 minutes (for A1) to 3 hours (for A2),
depending on the complexity of the GUI of the AUTs [13].

The Sapienz tests were executed using the tool version presented in
[139]. Sapienz was configured as recommended in [139] (crossover and
mutation probability set to 0.7 and 0.3 respectively, maximum generations
set to 100, population size to 50 and each individual contains 5 test cases)
and executed for a fixed testing time of one hour for each application.

92 Chapter 5. Investigating Exploratory E2E Functional testing of Android Apps

Both the testing time with Android Ripper and Sapienz were close to the
testing time given to students in the UET scenario. Since the execution
of Sapienz depends on randomness, we executed it 20 times for each app,
and for each execution, we evaluated the coverage values.

In addition, to get a rough estimation of the possible improvements
in coverage that Sapienz may obtain when executed for a longer time,
we performed further executions with a time limit of 24 hours per app,
considering as total coverage the one obtained as the union of the coverage
of all the generated test cases. In order to reduce the dependence on
randomness of these results, we repeated each 24-hour run three times,
reporting in the following, for each AUT, the average total coverage of
these runs.

The Robo tests were executed using the online Firebase platform. With
Robo, only the branch coverage was measured since, as previously de-
scribed, Robo cannot be executed together with the code coverage tool
Emma. At the time of the experiments, a constraint of the available ver-
sion of Robo was that each testing session could last up to 5 minutes, and
longer sessions could not be executed. Nevertheless, none of the AUTs
required more than 3 minutes to be tested.

Finally, let us note that, for both students and AIG tools, each testing
activity started from the state obtained just after app installation.

Analysis of the Uncoverable Code

After the students performed the assigned tasks, we made a preliminary
analysis of the AUTs code to assess whether some LOCs and/or branches
could not be covered with the selected tools (both C&R and AIG), under
the previously discussed experimental configuration. This is fundamental
to obtain an upper bound on the results achievable by both C&R and
AIG tools. All the considered AUTs presented some uncoverable LOC-
s/Branches. The maximum achievable coverage measures are reported in
Table 5.3.

In the following we briefly explain why some parts of the code were
uncoverable:

• Unreachable code. All the AUTs presented some code that cannot
be exercised by any GUI testing solution. For example, there is dead

5.1. Comparing Automated Tools and Practitioners using C&R 93

Table 5.3. Maximum achievable LOC coverage and branch coverage (BC)
percentage for the AUTs.

A1 - MunchLife A2 - SimplyDo A3 - TippyTipper A4 - Trolly

LOC BC LOC BC LOC BC LOC BC

Max Cov. 96% 92% 85% 79% 91% 86% 88% 67%

code corresponding to deleted menu entries, or also code handling
bad data input format exceptions, whose execution is prevented by
the behaviour of the input widgets, as in the case of non-numeric
data that cannot be inputted from the numeric keyboard.

• Code related to system events that cannot be triggered at
application testing level. There are some user or system events
that are not exercisable by the considered GUI testing tools. For ex-
ample, some intent calls can be generated only by other applications
or by the operating system.

• Code that can be activated only after multiple starts of
the AUT. In the experiments, all the testing activities started from
the same initial state of the AUTs, i.e. the one immediately after
the installation. As a consequence, different initial states cannot be
covered. For example, SimplyDo can load a previously saved list of
things to do, if present. This part of the code cannot be executed
under our experimental conditions.

• Code related to not supported widgets/events. Both the used
C&R tool and the AIG tools might not be able to exercise custom
UI controls/events. For example, none of them supported the type
of slider widget used in TippyTipper, and thus the code of the cor-
responding event handlers cannot be covered.

5.1.2 Results

This section presents the experimental results, along with quantitative
and qualitative analysis aimed at addressing the research questions.

94 Chapter 5. Investigating Exploratory E2E Functional testing of Android Apps

RQ1: How do test cases generated with an Uninformed Ex-
ploratory Testing strategy compare, in terms of effectiveness,
to those generated by AIG tools?

This first research question aims at comparing the testing effectiveness,
in terms of code coverage, of test suites produced by students using a C&R
tool in an Uninformed Exploratory Testing scenario, against AIG tools.

Quantitative analysis The first analysis we have carried out regards
the quantitative comparison between the effectiveness of the test cases
generated by students and the one of the considered AIG tools, both in
terms of LOC and Branch coverage.

Table 5.4 reports the measured coverage values achieved by all the
students (named S1 to S20) and by the three AIG tools, for each of the
considered apps (A1 to A4). In details, the first eight columns show the
LOC coverage and Branch Coverage percentages. The last four columns
report the total number of events composing the test cases produced by
each student for each app. The number of events provides a measure of
the complexity of the test suites produced by students.

Table 5.4 also reports average, median, standard deviation values, as
well as the code coverage percentages reached by the union of the cover-
age sets of all the students. The average, median and standard deviation
values of the number of events composing the test cases are also reported.
As regards Sapienz, we have reported the average, median and standard
deviation values of the coverage percentages obtained by 20 one-hour exe-
cutions. For the sake of readability, we also included (on the top row of the
table) the maximum achievable coverage percentages which were already
reported in Table 5.3.

The measured coverage results obtained both by the students with the
C&R tool in a UET scenario and by AIG tools are depicted in Figure 5.2
and in Figure 5.3, with boxplots representing, respectively, the LOC and
Branch coverage percentages obtained by the students and by Sapienz in
its 20 one-hour runs. Moreover, in the figures, we used horizontal lines
to represent the LOC/Branch coverage percentage obtained by Android
Ripper and Robo, and an additional horizontal line showing the maximum
achievable coverage under the experimental conditions and constraints.

When testing A1, the students obtained LOC coverage percentages

5.1. Comparing Automated Tools and Practitioners using C&R 95

Table 5.4. LOC/Branch Coverage (%) and Number of Events of Test Suites
Produced with UET Approach

LOC Coverage Branch Coverage Number of Events

A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4

Max Cov. 96 85 91 88 92 79 86 67

Students

S1 83 77 83 78 62 65 75 62 85 154 207 171
S2 91 84 86 76 80 76 80 60 79 267 240 145
S3 87 80 85 79 69 72 77 63 197 272 219 130
S4 86 61 87 75 70 67 67 62 62 63 122 60
S5 86 81 83 78 70 69 75 62 77 200 208 166
S6 86 82 87 79 64 72 80 64 48 299 159 162
S7 82 82 89 79 62 77 82 63 177 387 351 299
S8 79 82 79 75 56 71 70 58 64 149 124 114
S9 86 79 87 80 69 68 81 64 127 194 220 156
S10 90 77 79 78 74 69 68 62 208 172 204 145
S11 85 78 87 77 66 73 79 58 93 170 288 159
S12 91 79 84 72 87 65 75 55 198 236 270 147
S13 84 82 84 78 64 71 74 62 44 239 212 349
S14 83 82 85 76 59 73 79 58 88 244 135 151
S15 80 70 85 75 57 61 78 60 34 117 125 103
S16 90 74 84 80 82 64 75 62 71 164 150 182
S17 83 82 81 73 61 72 71 54 48 123 67 50
S18 90 82 84 79 75 74 78 63 192 178 154 142
S19 86 82 87 77 69 74 80 60 55 320 174 124
S20 82 78 83 77 70 65 73 62 67 125 114 144

Average 85 79 84 77 68 70 76 61 101 204 187 155
Median 86 81 84 77 69 71 76 62 78 186 189 146
St. Dev. 4 5 3 2 8 4 4 3 59 79 68 67
Union 96 85 91 88 92 79 86 67

AIG tools

Android
Ripper 77 65 74 64 66 56 64 53

Sapienz (1 hour)
Average 85 42 85 64 68 37 76 51
Median 85 41 85 63 68 36 77 50
St.Dev. 0 5 2 3 0 4 2 2

Robo - - - - 47 27 50 21

96 Chapter 5. Investigating Exploratory E2E Functional testing of Android Apps

●

Android Ripper

Max Coverage

●

●●

●

●

Android Ripper

Max Coverage

●

●

●

Android Ripper

Max Coverage

●

Android Ripper

Max Coverage

MunchLife (A1) SimplyDo (A2) TippyTipper (A3) Trolly (A4)

60

70

80

90

75

80

85

90

40

50

60

70

80

80

85

90

95

Apps

LO
C

 C
ov

er
ag

e
%

 (
U

E
T

)

Sapienz Students

Figure 5.2. Boxplots representing the LOC coverage achieved with the UET
approach

●

●

Android Ripper

Robo

Max Coverage

●

●●

Android Ripper

Robo

Max Coverage

●

●

●

Android Ripper

Robo

Max Coverage

●
●
●

Android Ripper

Robo

Max Coverage

MunchLife (A1) SimplyDo (A2) TippyTipper (A3) Trolly (A4)

20

30

40

50

60

70

50

60

70

80

40

60

80

50

60

70

80

90

Apps

B
ra

nc
h

C
ov

er
ag

e
%

 (
U

E
T

)

Sapienz Students

Figure 5.3. Boxplots representing the Branch coverage achieved with the
UET approach

5.1. Comparing Automated Tools and Practitioners using C&R 97

ranging between 79% and 91%, averaging at 85% with a standard de-
viation of 4%. The maximum achievable LOC coverage for A1 is 96%.
With A2, the students covered on average 70% of the LOCs, with cover-
age ranging from 61% to 84% and a standard deviation of 5%, against a
maximum achievable LOC coverage of 85%. As for A3, on average 84% of
the LOCs were covered by the students, with 91% being the upper bound
to the achievable LOC coverage. The students’ coverages ranged between
79% and 87%, with a standard deviation of 3%. At last, for A4, in which
the 88% of the LOCs were coverable, the students reached LOC coverage
percentages in the range 72%-80%, averaging at 77% with a standard de-
viation of 2%.

Differences in LOC coverage between different students when testing
the same app exist, but are quite limited: the standard deviation values
are in the range between 2% (for A4) and 5% (for A2).

These data indicate that, when considering LOC coverage, there is no
relevant difference among the 20 considered students when they perform
Uninformed Exploratory testing in the specified conditions. Moreover,
the data show that none of the students was able to reach the maximum
achievable coverage in the given testing time, but each of them covered at
least more than 60% of the code.

On the other hand, the Branch coverage percentage reached by the
students for A1 is in the range between 57% and 80%, with an average of
68% and a standard deviation of 8%. The maximum branch coverage for
the same app is 95%. As regards A2, in which 85% of the branches are
coverable, the students reached Branch coverage percentages in the range
61%-76%, averaging at 70% with a standard deviation of 4%. With A3, on
average 76% of the branches were covered by the students, against a max-
imum achievable Branch coverage of 85%. The subjects reached Branch
coverage values in the range between 67% and 81%, with a standard devi-
ation of 4%. Finally, when testing A4, the students obtained on average a
branch coverage of 61%, with a standard deviation of 3% and 70% of the
branches being coverable. The best students achieved a branch coverage
of 64%, whereas the worst managed to cover 54% of the branches.

As regards the number of events composing the test cases, we observed
that, differently from coverage percentages, the number of events presents a
large variability among the different students. This datum is witnessed by

98 Chapter 5. Investigating Exploratory E2E Functional testing of Android Apps

high standard deviation values with respect to the corresponding average
values. Moreover, the data we gathered highlights that test cases consisting
of more events do not generally produce larger coverage percentages.

The collected coverage data indicate that, for each of the considered
AUTs, the students obtained much greater values in terms of LOC coverage
than of Branch coverage. This fact is essentially due to the large portion
of code that is automatically executed at the start of each Activity of each
AUT (included in the onCreate methods, which were always covered by
each student). Such portions of code have a considerable weight in the
evaluation of the LOC coverage, whereas, on the contrary, they have a
small impact on the Branch coverage, since they include few branches.

Differences in Branch coverage between different students when testing
the same app are in a larger range with respect to LOC coverage values,
with standard deviation values between 3% (for A4) and 8% (for A1). This
is explained by the above considerations on the magnitude of the LOC and
Branch coverage achieved by the students: the ability of a particular tester
in exploring the AUT has a greater impact on the achieved coverage when
considering branch coverage.

Moreover, we can observe that none of the students was able to obtain
coverage equal to the overall level obtained by all of the students. In fact,
the union of the coverage of the 20 students is always greater than each
coverage obtained by a single one.

Furthermore, it is important to note that the maximum achievable
coverage, both in terms of LOCs and Branches, coincides with the one
obtained by considering the union of the coverage of all the students. In
other words, there is no coverable code under our experimental conditions
that has not been covered by at least one of the students. This is a first
useful indicator of the potential capability of students in designing effective
test suites by using a C&R tool.

As regards the effectiveness of the AIG tools, the measured coverage
percentages are, for the convenience of readers, reported in the lower part
of Table 5.4, where the coverage values can be easily compared against the
students’ results.

The different executions of Sapienz provided different coverage values.
For this reason, we have represented them in form of boxplots in Figures
Figure 5.2 and Figure 5.3. We have observed that, for application A1,

5.1. Comparing Automated Tools and Practitioners using C&R 99

all the executions reached almost the same values of LOC and Branch
coverage percentages, whereas for the other applications we observed larger
deviation standard values, between 2% and 5% in LOCs and between 2%
and 4% in Branches. The Sapienz tool outperformed the other ones, both
in terms of LOC and Branch coverage in A1 and A3. As for A4, the
performance of one-hour executions of Sapienz are similar to the ones of
Android Ripper. As for A2, Android Ripper always overcame Sapienz both
in terms of covered LOCs and Branches. The third tool, Robo, proved to
be less effective than the others, achieving percentages far lower than those
of the other considered tools both in terms of LOC and Branch coverage.

As shown by Figure 5.2, the test suites produced by the students with
the UET approach almost always appear to be more effective than those of
the AIG tools, for all the considered apps. Indeed, with respect to Android
Ripper, there is a remarkable superiority in the coverage achieved by the
students. As for Sapienz, the students’ LOC coverage values are always
better for A2 and A4, while for A1 most of the students cover more LOCs
than Sapienz. Finally, for A3, the performance of students and Sapienz
are similar.

As for the Branch coverage, the results are more contrasting (see Figure
5.3). Indeed, for A1, Sapienz and Android Ripper obtained notable results,
with Sapienz overcoming most of the students. For A2 and A4, instead,
the students obtained better coverage than the AIG tools. For A3 the
coverage achieved by the students and by Sapienz were pretty close and
better than Android Ripper. Finally, the effectiveness of Robo is always
by far the lowest.

On the basis of these results, no general conclusions about the LOC
and Branch coverage comparisons between students and AIG tools could
be made. However, one datum that emerged from our analysis was that
neither every single student nor each tool did cover all the coverable code,
since none of them reached the Max Coverage of each app.

Qualitative Analysis. In this section, we present the results of the fine-
grained qualitative analysis that we carried out to evaluate the capability
of both the students using UET and the AIG tools in covering the app
code. We restricted our analysis to the subset of coverable code obtained
by the analysis reported in Section 5.1.1.

100 Chapter 5. Investigating Exploratory E2E Functional testing of Android Apps

Table 5.5. Partition of Branches with respect to the Number of Students
Covering Them in UET Approach

Branches Branches Covered in UET by

Total Coverable every student the majority
of the students

the minority
of the students

A1 - MunchLife 61 56 26 (46%) 15 (27%) 15 (27%)
A2 - SimplyDo 419 329 101 (31%) 200 (61%) 28 (8%)
A3 - Tippy Tipper 208 178 91 (51%) 75 (44%) 12 (5%)
A4 - Trolly 120 80 55 (69%) 19 (24%) 6 (7%)

Analysis of the coverage of the students in the UET approach.
In order to investigate the capability of the students using UET in cov-
ering the app code, we evaluated for each Branch the number of students
that were able to cover it. Therefore, we did a qualitative analysis of the
Branches that were less frequently covered by the students. Since most
of the uncovered LOCs are included in the code underlying the uncovered
branches, we decided, for sake of space, of performing a detailed analysis
only of the uncovered branches.

To this aim, for each AUT, we classified its branches in three subsets:
(I) those covered by all the students (20 out of 20), (II) those covered
by the majority of the students (10 ≤ #students ≤ 19), and (III) those
covered only by the minority of them (1 ≤ #students ≤ 9). We recall
that, as discussed in the previous section, each branch of each AUT was
covered by at least one student. The resulting numbers are reported in
Table 5.5, together with the total number of branches of each AUT, and
the number of branches that could be executed with the UET approach in
the considered experimental configuration.

To get an insight into the reasons behind the common lack of coverage
of some branches with the UET approach, we did a manual analysis of all
the branches that the majority of the students failed to cover. For each
of these uncovered branches, we also surveyed the students who failed to
cover them, asking for the causes of this shortcoming. In the following, for
each AUT, we group its uncovered branches in subsets containing branches
that were not covered for similar causes. Moreover, we also assess whether
the considered AIG tools had been able to cover these branches.

For the four AUTs, we grouped the uncovered branches in nine sets,

5.1. Comparing Automated Tools and Practitioners using C&R 101

Figure 5.4. A Screenshot of the A1 App, in Landscape Mode

referred to as B1 to B9, described as follows.

B1 This group includes branches of the MunchLife app that could be
covered only by triggering orientation change events. The app in-
deed presents two graphical widgets (representing Male and Female
symbols) that are shown in the home activity of MunchLife (see Fig-
ure 5.4). They can be selected and deselected and different branches
are activated whether the app is rendered in portrait or landscape
mode as these symbols have a different layout in the two orienta-
tions. Only 4 students took into consideration device rotation events
in their test cases, in combination with clicks on these two symbols.
The other ones did not imagine the existence of these branches in
the source code. Sapienz covered these branches, while Android Rip-
per systematically explored only the portrait GUI since it considered
the behaviour of the portrait and landscape modes to be equivalent.
Similarly, also Robo failed to cover these branches.

B2 The home activity of MunchLife shows a counter that can be in-
cremented/decremented until a maximum value (which is set to 10
by default) is reached. This maximum value can be modified from
a menu option. If the user sets a maximum value lower than the
current counter value, a specific branch is executed to update the
counter accordingly. Only 7 students out of 20 have tested this par-

102 Chapter 5. Investigating Exploratory E2E Functional testing of Android Apps

ticular scenario. Analogously, none of the automatic tools triggered
the specific sequence of events to activate this branch group.

B3 The maximum counter value in MunchLife can be set by a numeric
input field. If a non-numeric symbol is inserted (e.g. / or * symbols),
a branch handling a bad data format exception is executed. Only 7
out of 20 students designed this specific validation test case, whereas
the others tested only for valid and invalid numeric inputs. Sapienz is
the only automatic tool covering this branch, since it automatically
generates both valid and invalid input data for numeric input fields.

B4 Long Click event handlers are defined in the source code of SimplyDo
for some widgets (e.g. the ones used to add or edit items of the list),
in addition to Click events handlers. Only one student triggered long-
click events in its test cases and covered the branches corresponding
to these event handlers. None of the considered tools covered these
branches.

B5 The source code of SimplyDo includes some branches responsible for
storing the managed list of items in the internal memory when the
application is stopped and for their restoration when the application
is restarted. The application stop and restart can be triggered by a
device rotation event. Only 2 students triggered a device rotation
after the insertion of items in the list. Sapienz was the only automatic
tool able to cover these branches.

B6 The SimplyDoActivity class source code includes an event handler
corresponding to the triggering of the back event on the device. In
SimplyDo, lists of items are managed according to a tree structure.
If a list contained in another list is shown, the back button can be
used to show the container list. In case the back button is triggered
on the root list, the app stops itself. Only 3 students exercised this
stopping scenario, as most of the students declared that they didn’t
consider the need to test the exit from the app with the back button.
Sapienz and Android Ripper covered this branch.

B7 Similarly to the branches in B4, there are branches related to Long
Click events handlers in TippyTipper. Such branches are related

5.1. Comparing Automated Tools and Practitioners using C&R 103

to the buttons used to reset the input number or to delete a digit
from it. Only 3 out of 20 students defined test cases including these
events. In this case, Sapienz and Robo covered these branches.

B8 In TippyTipper there is a branch related to the opening of a menu
in the SplitBill Activity. The menu in this Activity has no items
(probably the feature is partially unimplemented). Only 6 students
tested it. Sapienz and Android Ripper covered this branch.

B9 Trolly is a shopping list app. It can manage three different lists of
items: the first one includes those to buy, the second one includes
those that have been bought, and the third one (called OffList) in-
cludes the items that were added and then removed in the past from
the first list. This OffList is used by the app to provide input sugges-
tions, and its visualisation can be activated by clicking on the Add
widget without having selected an object to add, provided that at
least one object was added to the list in the past. This feature is not
explained in the app GUI and has not been tested by the majority
of the testers (only 4 students out of 20 designed test cases covering
this branch). None of the automatic tools was able to cover it.

Summing up, we observed two main reasons for the lack of coverage
achieved by the students, as follows:

1. Lack of Information about the AUT. Some code was not covered be-
cause testers had only limited knowledge of the functionalities offered
by the GUI of the AUT. For example, branches B2, B3 and B9 can
be covered by a complex sequence of events, not self-explained by the
GUI. The majority of the students, in their exploration of the GUI,
failed to identify these features. These targets generally were not
even covered by automatic tools. Similarly, branches B4, B7 and B8
correspond to uncommon events, such as long clicks on widgets (for
which they anyhow explored the standard click events), or opening
an empty menu. Most of the AIG tools covered these branches.

2. Strict testing time limit. In the cases of branches B1, B5 and B6,
students reported that they missed them also for lack of time. These
branches, indeed, correspond to interactions between application events

104 Chapter 5. Investigating Exploratory E2E Functional testing of Android Apps

and lifecycle events (e.g. device rotations for B1 and B5, “back” event
for B6). Testing all the possible interactions is an onerous activity
in terms of the number of test cases to be designed and is often ne-
glected by testers (cfr. [15]), also due to the strict time limit. On
the other hand, all these branches have been covered by Sapienz.

In conclusion, we found that the main cause of ineffectiveness for students
using a UET approach lies in the lack of information about the AUTs, and
in strict time constraints for the execution of the testing tasks.

Analysis of the coverage of the AIG tools. When considering
the coverage data of the AIG tools and comparing them to those achieved
by the students, we found that each branch covered by at least one tool
was covered by at least one student, and a remarkable amount of LOCs
(between 9% and 23%) was covered by at least one of the students but
none of the AIG tools.

It is worth to note that Sapienz was able to find a crash in A4 (Trolly)
that was not found by any of the students. This crash is caused by the
input of a single quote ’ character in the text input field, leading to an
unhandled exception due to the execution of a malformed query on the
SQLite database of the app. Since there is no source code for the handling
of this exception, no differences in code coverage were observed.

We analysed in details the parts of code of the AUTs that were covered
by at least one of the students but not by Sapienz (as this is the most
effective of the AIG tools), to understand the causes behind this lack in
coverage.

In the following we report some notable examples of lack of coverage
of all the AIG tools:

• The first example is represented by the branch B2 above described.
This branch can be activated only by a sequence including two or
more counter increments, the opening of a specific entry of the menu,
and the setting of a maximum counter value, lower than the current
counter value. Of course, the probability for a random-based (or
search-based) testing tool to explore this sequence of events is very
low. A similar case is represented by B9.

5.1. Comparing Automated Tools and Practitioners using C&R 105

• To win a game in MunchLife the counter must reach the winning
value (initially set to 10), so a sequence of at least 10 events is needed.
Sapienz has not explored this scenario. Android Ripper, similarly,
incremented the counter just once because it did not observe any
variation in the GUI except for the counter value. On the other
hand, the winning scenario has been considered obvious by all of the
students (20 out of 20 have covered this branch).

• In TippyTipper a branch is covered when (I) the tax rate has been
enabled by selecting a specific entry in the menu, (II) a value is
set for the tax rate by selecting another specific entry of the menu
(enabled by the previous action), and (III) the tip is calculated by
clicking on the corresponding button on the GUI. This scenario has
not been found by any AIG tools, but it has been tested by 14 out
of 20 students.

• Still in TippyTipper, a branch can be tested by (I) setting the round-
ing strategy for the tip from a specific menu entry and (II) executing
a tip calculation requesting for an explicit rounding of the tip. All
the students recognised and covered this branch, but none of the AIG
tools.

• Sapienz does not consider events related to the context menu im-
plemented in Trolly, because the latter is implemented using old
libraries. A similar problem occurs in SimplyDo, where it fails to
acknowledge the existence of events related to a context menu acti-
vated when long-clicking on list items. These two problems are the
most relevant in terms of lack of coverage.

• In TippyTipper there is a NumberPicker widget, being an extension
of old widgets, which was not considered by Sapienz.

As for the cause of the above lacks, we can classify them as follows:

• Technological issues. AIG tools are not able to deal with unsupported
events/widgets. Thus they need to be constantly updated, to keep
the pace of the continuous evolution of the Android framework. Sim-
ilarly, their backward compatibility should also be improved. Fur-
thermore, in presence of custom widgets/events, the effectiveness of
these tools is undermined.

106 Chapter 5. Investigating Exploratory E2E Functional testing of Android Apps

• Methodological issues. AIG tools are not able to deal with long
and/or complex sequences of events needed to activate functional-
ities. In fact, one of the factors optimised by Sapienz is the length of
the executed event sequences, so long event sequences have a lower
probability to be tested. Android Ripper follows a heuristic designed
to avoid repetitions of events on already visited GUIs: in this way
it tries to execute at least once any possible event, but it doesn’t
try them in all possible orders. These portions of code, instead, are
often tested by humans, when they comprehend the existence of a
specific execution scenario involving that sequence of events.

RQ2: How do test cases generated with an Informed Exploratory
Testing strategy compare, in terms of effectiveness, to those gen-
erated by AIG tools?

The second research question aims at the comparison, in terms of
LOC/Branch coverage, between the test suites produced with the Informed
Exploratory Testing (IET) approach and the AIG tools. In the IET ap-
proach, the same students involved in the previous experiment were as-
signed the task of improving the coverage achieved in the first scenario, by
adding further test cases. In this phase of the experiments, the students
had the opportunity to inspect the AUTs source code and to consider the
actual coverage achieved by the test cases as feedback. Furthermore, they
did not have a strict constraint on the testing time. Nevertheless, they
could take the exam only after delivering the test suites. For this reason,
they still were interested in completing the testing task in the shortest
possible time. The students claimed to have taken five to fifteen days to
perform this task, during which they also studied for the exam.

As regards the AIG tools, in order to have a fairer comparison with
the students, we ran Sapienz multiple times for each app, for a longer
testing time (24 hours). Therefore, we evaluated the coverage percentage
of the union of all the generated test suites. We compared the coverage
percentages achieved by the students with the average ones of Sapienz.

As for Android Ripper and Robo, an increment of the testing time
would not lead to any increment in coverage, since, for all the AUTs,
these two tools terminated the exploration of the GUIs not due to time
constraints. Therefore, in this analysis, we considered the same values

5.1. Comparing Automated Tools and Practitioners using C&R 107

Table 5.6. LOC/Branch Coverage Percentage and Number of Events of Test
Suites Produced with IET Approach

LOC Coverage Branch Coverage Number of Events

A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4

Max Cov. 96% 85% 91% 88% 92% 79% 86% 67%

Students

S1 93% 82% 86% 81% 84% 74% 80% 65% 189 199 227 231
S2 95% 85% 89% 82% 89% 77% 82% 66% 87 308 348 282
S3 92% 82% 89% 82% 87% 73% 81% 66% 253 320 277 170
S4 94% 69% 87% 88% 85% 62% 77% 68% 71 97 133 97
S5 92% 82% 86% 83% 89% 73% 80% 67% 115 258 228 200
S6 95% 85% 90% 84% 90% 79% 84% 68% 61 323 194 171
S7 95% 82% 91% 82% 92% 74% 85% 66% 218 387 402 327
S8 91% 83% 86% 83% 80% 76% 78% 67% 109 159 154 136
S9 94% 79% 87% 81% 90% 68% 83% 65% 137 204 242 162
S10 92% 81% 89% 81% 84% 71% 82% 65% 253 205 348 152
S11 95% 80% 89% 81% 92% 72% 81% 67% 318 189 482 177
S12 94% 81% 87% 80% 89% 74% 79% 65% 230 242 538 196
S13 95% 82% 87% 80% 87% 58% 80% 65% 60 255 319 415
S14 90% 82% 85% 81% 84% 64% 79% 64% 99 265 141 170
S15 96% 82% 85% 80% 93% 74% 82% 65% 82 160 168 153
S16 96% 82% 89% 89% 92% 64% 82% 70% 102 232 224 207
S17 94% 84% 85% 81% 89% 75% 78% 66% 93 178 161 100
S18 96% 84% 87% 85% 92% 77% 82% 68% 231 197 177 165
S19 93% 84% 89% 77% 84% 76% 81% 62% 240 344 192 131
S20 96% 85% 88% 84% 95% 78% 81% 66% 76 187 152 155

Average 94% 82% 88% 82% 88% 72% 81% 66% 151 235 255 190
Median 94% 82% 87% 81% 89% 74% 81% 66% 112 219 226 170
St. Dev. 2% 3% 2% 3% 4% 6% 2% 2% 81 73 116 76

AIG tools

Android
Ripper 77% 65% 74% 64% 66% 56% 64% 53%

Sapienz
24 hrs
union avg

88% 54% 87% 72% 71% 48% 81% 57%

Robo - - - - 47% 27% 50% 21%

obtained in the previous experiment.

Quantitative analysis Table 5.6 reports the measured IET coverage
values for the students involved in the experiment. In detail, for each
student, both the LOC/Branch coverage percentages are reported, for each
of the four apps. In addition, the last four columns report the total number
of events composing the test cases produced by the students.

In the last rows of the table, the average, median and standard devi-
ation values are reported, too. For the convenience of readers and ease
of comparison, we also included the maximum achievable coverage values
(which were previously reported also in Table 5.3). In addition, we re-

108 Chapter 5. Investigating Exploratory E2E Functional testing of Android Apps

ported the average values of coverage percentage evaluated by considering
the union of the coverage of the test suites produced by Sapienz in 24
hours, measured with respect to three runs. Finally, we reported the cov-
erage reached by Android Ripper and Robo, from Table 5.4.

The boxplots in Figure 5.5 and in Figure 5.6 graphically show the
distribution of the LOC/Branch coverage percentages achieved by the stu-
dents. Moreover, we added horizontal lines corresponding to the coverage
percentage obtained by the three considered AIG tools and an additional
horizontal line showing the maximum achievable coverage with respect to
the experimental conditions and constraints. As highlighted by the plots,
the coverage achieved by the students is generally better than the one ob-
tained by each automatic AIG tool, both in terms of LOC and Branch
coverage. The only exceptions can be observed for A3, where the longer
Sapienz executions achieved better coverage percentages than two of the
students. We can conclude that the effectiveness of the exploratory testing
highly improved thanks to the source code knowledge and the additional
time given to the students.

As regards the number of events composing the test cases, this measure
presents a large variability also in this case. Moreover, longer test cases do
not generally correspond to test suites achieving greater coverage percent-
ages. In addition, the increase in the number of events of the test suites
obtained by the IET approach with respect to the ones obtained by the
UET approach is not very large. The average increase per app is indeed
less than half the length of the UET test suites.

In order to characterize the code coverage improvements obtained by
the IET approach, we performed a further analysis where we compared
the coverage sets obtained using the UET (see Table 5.4) and the IET
(see Table 5.6) approaches. By these tables, it is possible to observe an
increase in coverage for the apps A2, A3 and A4 between 3% and 5% in
terms of LOC and between 2% and 5% in terms of covered branches. A
larger increase has been observed for app A1, for which the LOC coverage
increased by 9% and the branch coverage by 20%. In addition, a general
reduction of the standard deviation values with respect to both coverage
metrics can be observed.

As regards Sapienz, an increase in coverage can be observed with re-
spect to that of the one-hour runs previously presented. The increase in

5.1. Comparing Automated Tools and Practitioners using C&R 109

Android Ripper

Sapienz (24 hrs avg.)

Max Coverage

●

Android Ripper

Sapienz (24 hrs avg.)

Max Coverage

Android Ripper

Sapienz (24 hrs avg.)

Max Coverage
●

●

●

Android Ripper

Sapienz (24 hrs avg.)

Max Coverage

MunchLife (A1) SimplyDo (A2) TippyTipper (A3) Trolly (A4)

70

80

90

75

80

85

90

60

70

80

80

85

90

95

Apps

LO
C

 C
ov

er
ag

e
%

 (
IE

T
)

Figure 5.5. Boxplots representing the LOC coverage achieved with an IET
approach

Android Ripper

Sapienz (24 hrs avg.)

Robo

Max Coverage

●

Android Ripper

Sapienz (24 hrs avg.)

Robo

Max Coverage

Android Ripper

Sapienz (24 hrs avg.)

Robo

Max Coverage

Android Ripper

Sapienz (24 hrs avg.)

Robo

Max Coverage

MunchLife (A1) SimplyDo (A2) TippyTipper (A3) Trolly (A4)

20

30

40

50

60

70

50

60

70

80

40

60

80

50

60

70

80

90

Apps

B
ra

nc
h

C
ov

er
ag

e
%

 (
IE

T
)

Figure 5.6. Boxplots representing the Branch coverage achieved with an IET
approach

110 Chapter 5. Investigating Exploratory E2E Functional testing of Android Apps

LOC coverage is quite small for A1 and A3 (3% and 2%, respectively),
whereas it is more relevant for A2 and A4 (12% and 8%, respectively). For
all the apps except A3, the LOC coverage provided by Sapienz remains
always smaller than the ones obtained by students adopting the IET ap-
proach. Only for A3, the average coverage obtained by Sapienz is almost
the same as the average of the values obtained by students. Similar results
were obtained as regards the Branch coverage.

Qualitative analysis We have measured, as in the previous case, the
number of branches covered by all the students, by the majority of the
students, and by the minority of the students using the IET approach. In
Table 5.7 we reported the number and percentage of branches covered by
the test suites produced by (I) all the students (20 out of 20), (II) the
majority of the students (10 ≤ #students ≤ 19), and (III) the minority of
them (1 ≤ #students ≤ 9).

Table 5.7. Partition of Branches with respect to the Number of Students
Covering Them in IET Approach

Branches Branches Covered (IET) by

Total Feasible every student the majority
of the students

the minority
of the students

A1 - MunchLife 61 56 34 (61%) 22 (39%) 0 (0%)
A2 - SimplyDo 419 329 147 (45%) 163 (49%) 19 (6%)
A3 - TippyTipper 208 178 136 (76%) 33 (19%) 9 (5%)
A4 - Trolly 120 80 65 (81%) 15 (19%) 0 (0%)

The amount of branches covered by all the students is strongly in-
creased by the IET w.r.t. UET, as can be seen by comparing Table 5.5
and Table 5.7: for the UET test suites, it varied between 31% and 69%
for the four apps, while it is between 45% and 81% for the IET test suites.
We can observe that for three out of four applications, the majority of the
reachable branches have been covered by all the students, whereas in the
other app (A2) the 45% of branches have been covered by all the student’s
test suites. It can also be noted that the number of branches covered only
by a minority of students is sensibly reduced. In particular, in the two
smaller applications A1 and A4, all the branches were covered at least by
the majority of the students (there were 21 branches covered only by the

5.1. Comparing Automated Tools and Practitioners using C&R 111

minority of the students with the UET test suites).
As in the previous qualitative analysis, we focused our attention on

the set of branches B1 to B9, which caused a lack of coverage in the UET
approach. During the final examination of each student, we asked about
how they reached / why they did not reach these branches. In what follows,
we summarised what they reported.

• Branches covered by the majority of students thanks to the knowledge
of the source code. In three cases (B1, B3 and B7) the knowledge of
the source code has allowed the majority of students to design test
cases covering these branches. For example, almost all the students
(17 out of 20) covered the B1 branches, corresponding to the inter-
actions with the male and female widgets of A1 in landscape mode,
too. In fact, in the source code, the branches are explicitly related
to landscape mode and male/female widgets, as can be observed in
Listing 5.1. Analogously, the majority of the students (11 out of 20)
covered the branch B3, since in the source code there is an explicit
NumberFormatException handler related to the numeric input field.
Similarly, the majority of students (17 out of 20) managed to cover
branch B7, due to the presence of an explicit Long Click event han-
dler in the source code. In these cases, the students highlighted that
the uncovered source code was found thanks to the source code level
coverage reports provided by Emma.

• Branches covered by the majority of students thanks to a better com-
prehension of the behaviour of the application under test. In branches
B2 and B9, the uncovered code corresponded to scenarios that were
not identified by students in the UET approach. In both cases, the
branches were covered by the majority of students in the IET ap-
proach (respectively 13 and 16 out of 20 students). These students
reported that they exploited the knowledge of the source code of the
AUTs to identify the uncovered branches and to understand the be-
haviour of the app, also thanks to debugging activities they carried
out. The time needed to perform these activities was not compatible
with the strict time limit imposed in the UET approach.

For the remaining branches (B4, B5, B6 and B8), the number of students
that managed to cover them with their test suites increased, but the ma-

112 Chapter 5. Investigating Exploratory E2E Functional testing of Android Apps

Listing 5.1. Source Code of B1 Branches

private OnClickListener genderClickListener = new OnClickListener() {
@Override
public void onClick(View v) {

if(devDisplay.getRotation() == 0) {
if(gender_female == false) {

gender.setImageResource(R.drawable.female_portrait);
} else {

gender.setImageResource(R.drawable.male_portrait);
}

} else {
if(gender_female == false) {

gender.setImageResource(R.drawable.female_landscape);
} else {

gender.setImageResource(R.drawable.male_landscape);
}

}
gender_female = gender_female == true ? false : true;

}
};

jority of students still failed to cover them. We asked the students who
did not cover these branches why they failed in doing so. Interesting ob-
servations were brought on by the students, summarised as follows:

• In some cases, such as branches B5 and B6, covered only by 5 and
6 students, respectively, they were not able to design effective test
cases. These branches were activated by a combination of user events
and activity life cycle events. Some students did not comprehend the
importance of testing all the scenarios related to these interactions,
whereas some other students did not remember that device rotation
events were able to trigger activity lifecycle events, too.

• In other cases, such as branches B4 and B8, students did not cover
the branches since they did not consider them as important and they
neglected their coverage in order to save testing time.

In conclusion, our results show that the availability of source code
and longer testing times lead to a remarkable increase in the obtainable
coverage. The remaining lack of coverage can generally be attributed to the

5.1. Comparing Automated Tools and Practitioners using C&R 113

limited testing skills of some students and to their necessity to accomplish
the assigned task in a reasonable time and not delay the examination
schedule.

5.1.3 Final Remarks

The study we performed provided several useful insights about Ex-
ploratory Testing processes based on C&R and AIG tool-based ones.

The experimental results showed that an exploratory testing process
executed by a novice tester with a C&R tool and no prior knowledge of
the AUT (i.e., an uninformed approach) may yield to code coverage com-
parable to that of the best freely-available AIG tool, at least when both
processes are executed in the same amount of time considered in the ex-
periment.

Moreover, the experiment showed that a remarkable increase in cover-
age w.r.t. the UET strategy can be obtained by providing the testers with
more information about the AUTs (i.e., visibility of the source code, de-
tails of the achieved coverage) and a suitably longer testing time. In such
Informed Exploratory Testing (IET) scenario, the novice testers generally
outperformed the AIG tools, even when these were executed for a longer
period of time.

On the other hand, we observed that the effectiveness of the consid-
ered AIG tools is mainly limited by technological issues. These tools can
rapidly become obsolete if they fail to keep the pace of the ever-continuing
evolution of the Android framework, and this limits their effectiveness.
Therefore, these tools have large margins for improvement, as long as they
are kept up to date. As for Sapienz, in particular, we observed that its
performance depends on randomness and that longer testing times may re-
sult in greater coverage percentages. Anyway, the performance of Sapienz
generally remains worse than the ones of students.

Another finding regards the observed diversity between the coverage
obtained by different students in ET scenarios. Different students were able
to cover different testing targets, and the union of the coverage achieved
by multiple students improves significantly w.r.t. the coverage achieved
by single students. This finding indicates that the effectiveness of the
uninformed exploratory testing approach may be significantly improved
by allocating a larger number of testers. Of course, doing so will multiply

114 Chapter 5. Investigating Exploratory E2E Functional testing of Android Apps

the cost of manpower.
Another consideration regards the different typologies of testing tar-

gets that were covered by the different testing techniques. Thanks to their
capability of deducing the possible behaviour of the AUT, based on the
analysis of the app GUI, human testers are generally able to record test
cases covering the main app scenarios, even in absence of documentation
about app requirements. This observation is coherent with the positive
results reported in the literature in the context of exploratory testing.
Moreover, human intelligence proved to be by far superior in testing also
usage scenarios that are only reachable through complex sequences of in-
put events. Vice-versa, humans often failed in systematically testing all
the possible input events for a given widget, or combinations of user and
system events. As a consequence, AIG tools appear more useful in these
cases, as witnessed by the coverage obtained by the tools in the experiment
and by the proliferation in the literature of approaches related to specific
testing issues, e.g. concurrency testing, security testing, performance test-
ing, compatibility testing, energy consumption testing and so on [114].

These findings may provide useful indications for a project manager
who is in charge of deciding on a testing strategy that combines manual
exploratory testing and automated testing, in accordance with the avail-
able testing time and resources.

5.2 Investigating Exploratory Crowdtesting

New perspectives for ET in the mobile apps domain raised in the last
years with the diffusion of the crowdtesting paradigm [227, 137, 92, 88,
207], discussed in Section 2.2.5.

Crowdtesting activities typically combine well with ET strategies. In-
deed, exploratory approaches can greatly benefit from the diverse back-
ground and skill sets of the different crowdworkers, resulting in overall
more reliable testing results [204]. Moreover, by requiring crowdtesters to
record their interactions with the AUT by means of C&R tools, it is also
possible to obtain a re-executable test suite to be used in future regression
testing activities.

On the other hand, well-known software project management chal-
lenges, such as determining the best trade-off between testing costs and

5.2. Investigating Exploratory Crowdtesting 115

software quality, are particularly critical for crowdtesting, due to the com-
plexity of mobile apps and unpredictability of distributed crowdtesting
processes [204]. The decision on how much crowdtesting resources should
be allocated is further complicated by the possibility of employing different
exploratory testing strategies, i.e., Informed and Uninformed approaches
(see Section 5.1). Indeed, a project manager might be puzzled in deciding
which exploratory testing strategy to adopt in a crowdtesting task, with a
fixed budget: is it better to recruit a greater number of crowdtesters with-
out prior knowledge of the AUT, or is it better to pay a smaller number of
crowdtesters to carry out more time-consuming Informed exploration ac-
tivities?

As discussed in Section 2.2.5, number of works in the literature have
proposed decision support systems aimed at assisting practitioners in effec-
tively managing the crowdtesting process by predicting when to stop [204,
205] or by recommending how many and which testers should be recruited
[206]. These works, however, consider a scenario in which the goal is to
detect faults, and not to also produce a re-executable test suite adequately
stressing the AUT, which could be used in subsequent regression testing
activities. Moreover, they do not take into account different exploratory
strategies. To the best of our knowledge, there exists no work in the lit-
erature aimed at supporting the managerial choice of deciding how many
crowdtesters should be recruited, and which exploratory strategy should
be used, in a scenario in which the goal is to obtain re-executable test
suites.

5.2.1 Empirical Study Design

The aim of this study is to investigate the effectiveness of test suites
generated by different-sized non-communicating crowds of testers with
C&R tools and with different exploratory testing strategies. In this sec-
tion, we start by presenting the research questions we investigate. Then
we detail the evaluation we conducted, by describing the involved subjects
(i.e. the testers), the tools, the AUTs, the metrics that we considered when
comparing the effectiveness of test suites, and the experimental procedure.

116 Chapter 5. Investigating Exploratory E2E Functional testing of Android Apps

Research Questions

To investigate the impact of crowd size on the effectiveness of the GUI
test suites generated by independent crowdtesters with C&R techniques
and different exploratory testing strategies, we consider the following re-
search questions.

RQ1 (Impact of increasing crowd size) What is the effect on test ef-
fectiveness of adding additional workers to non-communicating crowds
of testers using a UET (resp., IET) strategy?

RQ2 (Comparing UET and IET) How do test suites generated by
different-sized crowds of testers with a UET strategy compare, in
terms of effectiveness, to those generated by different-sized crowds
of testers with an IET strategy?

RQ3 (Cost-effectiveness of UET, IET and mixes strategies) Under
a fixed budget, how do test suites generated by crowdtesters using a
UET, IET, and mixed approach compare, in terms of effectiveness?

Procedure

The empirical study described in this section elaborates on the results
of the study described in Section 5.1. Indeed, under the assumption that
the master’s students involved in that study can be considered as repre-
sentative of practitioners taking part in crowdtesting activities, we base
our crowdtesting analyses on the test suites each of the students generated
in isolation using UET and IET strategies, as described in Section 5.1.1.
Starting from tests produced by each subject in isolation, we combina-
torially computed, for each of the AUTs, for each ET strategy, and for
each of the 1 048 575 distinct subsets arising from our subject set of 20
testers, the aggregate coverage that particular crowd would have achieved.
In Table 5.8, we report more details on the investigated subsets of testers
and show, for each considered cardinality in [1, . . . , 20], the corresponding
number of subsets. The number of considered subsets ranges from a single
subset of size 20 to 184 756 subsets of size 10. For the sake of compactness,
since the number of subsets of cardinality i and 20 − i is the same for all
i in 1, . . . , 20, we report only one row for both cardinalities. For example,

5.2. Investigating Exploratory Crowdtesting 117

Table 5.8. Details on the investigated crowds of testers.

Subset cardinality Number of distinct subsets

20 1
1 or 19 20
2 or 18 190
3 or 17 1 140
4 or 16 4 845
5 or 15 15 504
6 or 14 38 760
7 or 13 77 520
8 or 12 125 970
9 or 11 167 960
10 184 756

Total 1 048 575

there exist 20 different subsets of a single tester, as well as 20 distinct
subsets of 19 testers.

To answer RQ3 and ensure a fair comparison between different-sized
crowds using different strategies, we took into account the overall effort
(measured in man-hours) required to perform each testing task. Such effort
is directly proportional to the monetary rewards crowdtesters would receive
upon completing the tasks. In particular, in our analysis, we assigned a
one-hour effort to Uninformed testing tasks, and a three-hour effort to
Informed ones (e.g.: three testers using an Uninformed approach cost the
same as one tester performing an Informed approach). We assigned a three-
hour effort to IET tasks because we consider both the initial Uninformed
exploration (which lasted one hour per app) and the subsequent Informed
exploration (which lasted on average two hours per app) as part of the
IET process.

Furthermore, to answer RQ3, we also computed the average LOC cov-
erage achieved by crowds of testers using heterogeneous exploratory strate-
gies (i.e.: some testers in the crowd use a UET approach, whereas some
others use an IET approach). We refer to this heterogeneous approach as
Mixed. Mixed crowds can be a very interesting solution for crowdtesting,
in scenarios in which it is not possible to share the source code of the
AUT with external crowdtesters. Indeed, a project manager might recruit
a number of external crowdtesters using an Uninformed approach, and
have some other workers, internal to the company, record test suites with

118 Chapter 5. Investigating Exploratory E2E Functional testing of Android Apps

an Informed strategy. In this case, to face the combinatorial explosion in
the number of possible subsets to consider, we limited our analysis to the
configurations in which the overall effort in man-hours does not exceed
20 hours. We selected this threshold so that the results of mixed crowds
can be compared with both those of UET and IET crowds, under the same
man-hours budgets. Moreover, for each valid combination of IET and UET
testers not exceeding the 20-hour effort threshold, we randomly sampled
1 000 distinct crowds, guaranteeing that the subsets of testers using a UET
and an IET strategy are always disjoint.

The data and code to replicate our findings are publicly available in a
replication package [35]. In particular, the package contains:

• the source code of the four Android applications we considered in
our study;

• the test suites developed by the students using UET and IET strate-
gies, including code coverage reports;

• Python scripts we developed to compute the aggregate coverage of
all the considered subsets of students’ test suites and of a sample of
the subsets including mixes of test suites produced by UET and IET
tester;

• R scripts we developed to carry out statistical analyses and draw
plots.

5.2.2 Results

RQ1: Impact of Increasing Crowd Size

In Table 5.9, we report, for each AUT, for each exploratory strategy,
and for each considered number of testers, the average LOC coverage per-
centage achieved by crowds of that size. Figure 5.7 shows the average and
median LOC coverage achieved by different-sized crowds of testers, as well
as the measured standard deviation. These plots show that, regardless of
the considered exploratory strategy, the benefit on effectiveness of adding
an additional tester to the crowd is greater the smaller the original crowd,
and becomes negligible as the size of the original crowd increases. To bet-
ter visualize the differences in terms of achieved LOC coverage between

5.2. Investigating Exploratory Crowdtesting 119

Table 5.9. Average LOC coverage percentage achieved by different-sized
crowds of testers.

MunchLife SimplyDo TippyTipper Trolly

Num. of
testers UET IET UET IET UET IET UET IET

1 84,1 93,4 78,5 82,8 83,9 87,3 77,5 83,5
2 89,7 95,9 82,3 84,0 86,9 89,2 79,0 84,3
3 91,7 96,3 82,9 84,6 87,6 89,7 80,0 85,4
4 92,8 96,5 83,1 85,0 88,0 90,1 80,5 86,1
5 93,5 96,6 83,2 85,2 88,3 90,4 80,8 86,7
6 93,9 96,7 83,3 85,4 88,5 90,6 81,0 87,1
7 94,3 96,8 83,5 85,6 88,8 90,7 81,1 87,4
8 94,6 96,8 83,6 85,7 89,0 90,9 81,2 87,6
9 94,8 96,9 83,7 85,8 89,2 91,0 81,3 87,8
10 95,0 97,0 83,8 85,8 89,4 91,2 81,4 87,9
11 95,2 97,1 83,9 85,9 89,6 91,3 81,4 88,1
12 95,4 97,2 84,0 86,0 89,8 91,4 81,4 88,1
13 95,5 97,3 84,1 86,0 90,0 91,5 81,4 88,2
14 95,7 97,3 84,3 86,0 90,2 91,6 81,4 88,2
15 95,8 97,4 84,4 86,1 90,4 91,6 81,4 88,3
16 95,9 97,5 84,5 86,1 90,5 91,7 81,4 88,3
17 96,0 97,6 84,6 86,2 90,7 91,8 81,4 88,3
18 96,1 97,7 84,7 86,2 90,9 91,8 81,4 88,3
19 96,1 97,7 84,8 86,2 91,1 91,9 81,4 88,3
20 96,2 97,8 84.9 86,3 91,2 91,9 82,1 88,9

different-sized crowds of testers using the same exploratory strategy, in
Figure 5.8 we depict such differences using tile diagrams. In that figure,
darker tiles are associated with higher differences in coverage. We can
observe that the area with white tiles (and, in general, lighter tiles) is
more extended in the diagrams corresponding to crowds of IET testers,
independently from the AUT. In other words, the benefit on effectiveness
of adding an additional tester to the crowd is generally greater for UET
testers with respect to IET testers.

To determine whether the differences in LOC coverage percentage among
different-sized crowds are statistically significant, we performed statistical
tests. In particular, for each AUT and exploratory strategy s, and for each
pair of cardinalities (k, k′), with k, k′ ∈ [1, . . . , 19], k > k′, we tested the
null hypothesis:

HAUT,s,k,k′

0 : The LOC coverage achieved using the exploratory strategy

120 Chapter 5. Investigating Exploratory E2E Functional testing of Android Apps

Figure 5.7. Average, median, and St. Dev. of the LOC coverage achieved
by different-sized crowds of testers.

Figure 5.8. Difference in LOC coverage percentage achieved by different-
sized crowds of testers using the same exploratory testing strategy.

5.2. Investigating Exploratory Crowdtesting 121

Figure 5.9. Results of hypotheses testing: comparing the effectiveness of test
suites generated by different-sized crowds using the same exploratory strategy.

s on AUT by k testers is smaller than or equal to the one achieved
by k′ testers.

Notice that we do not include in our statistical analysis crowds of cardi-
nality 20 because, as shown in Table 5.8, only one subset of that cardinality
exists in our setting, and thus the reduced sample size hinders the appli-
cability of statistical tests. To test the null hypotheses, we first tested
the LOC coverage distributions for normality using the Shapiro-Wilk test.
Then, when both distributions of LOC coverage were normal, we used
the Student’s T test to evaluate the null hypotheses. In the other cases,
we used the Mann–Whitney–Wilcoxon test [212], which does not assume
normal distributions. When the test p-value < 0.05, we reject the null
hypothesis with high confidence, accepting the alternative hypothesis that
the LOC coverage achieved by k testers is greater than that achieved by
k′ testers. Statistical test results are reported with tile plots in Figure 5.9.
In the figure, light tiles correspond to null hypotheses that we could not
reject, whereas dark tiles correspond to scenarios in which the tests con-
firmed statistically significant differences in coverage. More in detail, the
dark tiles are associated with scenarios in which the number of testers on

122 Chapter 5. Investigating Exploratory E2E Functional testing of Android Apps

the x-axis achieves a greater coverage than the corresponding number of
testers on the y-axis. As the plot highlights, in almost every scenario, we
detected statistically significant improvements in LOC coverage when in-
creasing the number of testers, with the only exceptions being situations
in which the original crowd had already a large number of testers (light
area in the upper-right corner of each tile plot in Figure 5.9).

Even when statistically significant, however, the difference in LOC cov-
erage achieved by different-sized crowds of testers might be negligible and
have no practical impact. Hence, we measured the magnitude of these dif-
ferences using the Cliff’s delta effect size [55], a metric that is largely used
in software engineering studies to compare the degree of difference between
the two experimental results [107]. Cliff’s delta ranges between -1 and 1,
and can be interpreted as follows: if |δ| < 0.147, the difference is negligi-
ble; if 0.147 ≤ |δ| < 0.33, the difference is small ; if 0.33 ≤ |δ| < 0.474,
the difference is medium; if |δ| ≥ 0.474 the difference is considered large.
Results of this analysis are shown in Figure Figure 5.10.

RQ1: Results highlight that, regardless of the considered exploratory
strategy, increasing the size of the crowd of testers by small amounts
(e.g.: 1 to 3 additional testers) generally leads to small or negligible
improvements in coverage, especially when starting with an already
consistent crowd (e.g.: more than 10 testers).

Figure 5.7 and Figure 5.8 show that the greater sensitivity to the in-
crease in the number of UET testers is observable for MunchLife, for which
there are steeper slopes of the curves related to the average and to the me-
dian of the LOC coverage (cfr. Figure 5.7). Similarly, the darker area is
larger for MunchLife (cfr. Figure 5.8). We analyzed the source code and
the coverage sets produced by the UET testers for this application and we
noticed the presence of relatively large areas of code that were executable
only by test cases including device orientation changes events. The pres-
ence of device orientation-dependent code is unusual in small-sized Android
apps and most UET testers did not consider these events in their test cases
because their systematic inclusion certainly has remarkably increased the
time needed to capture the test cases. In addition, other chunks of code
that have not been covered by many UET testers are related to complex
sequences of events, not self-explained into the GUI screens, as described

5.2. Investigating Exploratory Crowdtesting 123

Figure 5.10. Measured effect size (Cliff’s Delta): comparing the effectiveness
of test suites generated by different-sized crowds using the same exploratory
strategy.

in greater detail in Section 5.1.2.

In conclusion, the lack of knowledge about the application under test
and the strict time limit represents the main causes for the variability of
the coverage results achieved by different UET testers.

On the other hand, residual differences in terms of coverage achieved
can be observed for IET testers, too. For example, some complex interac-
tions in SimplyDo and TippyTipper have been found by a few IET testers.
In addition, a specific undocumented and unintuitive feature of Trolly (i.e.
the ”offlist” list) represented an unsolvable coverage problem for about half
of the IET testers and it is responsible for the few darker tiles observable
in Figure 5.8 for Trolly and IET testers.

In general, it appears that the residual differences in coverage between
different IET testers depend on their ability in producing effective test
cases: although they received a common background, we observed some
significant differences between their results can be observed.

124 Chapter 5. Investigating Exploratory E2E Functional testing of Android Apps

Figure 5.11. Difference in LOC coverage achieved by different numbers of
testers using different testing strategies.

RQ2: Comparing UET and IET

In order to answer this research question, we investigate the differences
in coverage achieved by different-sized crowds of testers using different
exploratory strategies. In particular, for each of the AUTs and for each
combination of the number of testers (k, k′), k, k′ ∈ [1, . . . , 20], we com-
puted the difference between the LOC coverage achieved on average by
a crowd of k non-communicating testers using an IET strategy and the
one achieved by k′ testers using a UET strategy. Negative values corre-
spond to cases in which UET testers achieved a higher coverage, whereas
positive values, on the other hand, correspond to scenarios in which IET
testers achieved a higher coverage. In Figure 5.11, we report the results of
this analysis. The white areas in the figure correspond to cases in which
the coverage achieved using UET and IET strategies is comparable (less
than 1% difference in absolute value), red areas correspond to situations in
which the coverage achieved by UET testers is greater than that achieved
by IET testers, while blue areas correspond to situations in which IET
testers achieved higher coverage. As Figure 5.11 highlights, in three of the
four considered AUTs, namely MunchLife, SimplyDo, and TippyTipper,
a noticeable equivalence area exists, and in some cases, the LOC cover-
age achieved by larger crowds of UET testers (i.e., generally more than 10
testers) is higher than that achieved by smaller crowds of IET testers (i.e.,
1 to 3 testers). In Trolly, on the other hand, the LOC coverage achieved
even by a single IET tester exceeded that of a crowd of 20 UET testers by

5.2. Investigating Exploratory Crowdtesting 125

more than 1%, and therefore no equivalence area exists.
To determine whether these differences in LOC coverage are statisti-

cally significant, we performed statistical tests and measured the effect
size following the same procedure described in the previous subsection.
More in detail, for each AUT and for each pair of cardinalities (k, k′), with
k, k′ ∈ [1, . . . , 19], we tested the null hypotheses:

HAUT,k,k′

0−smaller : The LOC coverage achieved using a UET strategy on AUT
by k testers is smaller than or equal to the one achieved by k′ testers
using an IET strategy.

HAUT,k,k′

0−greater : The LOC coverage achieved using a UET strategy on AUT
by k testers is greater than or equal to the one achieved by k′ testers
using an IET strategy.

To test the null hypotheses, we used the Student’s T test when both the
sample distributions are normal, and the Mann–Whitney–Wilcoxon test
[212] otherwise. When the test p-value < 0.05, we reject the null hypoth-
esis with high confidence, accepting the alternative hypothesis that the
LOC coverage achieved by k testers using UET is greater (resp., smaller)
than that achieved by k′ testers using IET. Statistical test results are re-
ported with a tile plot in Figure 5.9. In the figure, blue tiles correspond
to cases in which we could reject HAUT,k,k′

0−greater , thus accepting the alterna-
tive hypothesis that the LOC coverage achieved by k testers using UET
is smaller than that achieved by k′ testers using IET. Red tiles, on the
other hand, correspond to cases in which we could reject HAUT,k,k′

0−smaller , thus
accepting the alternative hypothesis that the LOC coverage achieved by k
testers using UET is greater than that achieved by k′ testers using IET.
Lastly, white tiles correspond to cases in which we could not reject any
null hypotheses, and thus we can draw no statistical conclusion. Results
show that, in a preponderant number of cases, the coverage achieved by
crowds of testers using UET is smaller, in a statistically significant way,
than that achieved by crowds of IET testers.

In MunchLife and SimplyDo, larger crowds of UET testers manage to
achieve a statistically higher LOC coverage than crowds of IET testers of
sizes 1 and 2. In particular, in MunchLife, sets of 7 or more UET testers
achieve a higher coverage than sets with one IET tester, and it takes 16 or

126 Chapter 5. Investigating Exploratory E2E Functional testing of Android Apps

more UET testers to achieve a higher coverage than a pair of IET testers.
In SimplyDo, it takes 4 or more UET testers to cover more LOCs than a
single IET tester, while 14 or more UET testers are needed to achieve better
coverage than a pair of IET testers. In both MunchLife and SimplyDo,
even 20 UET testers cannot achieve a higher coverage than 3 or more IET
testers. In TippyTipper, there is a bigger number of cases in which UET
crowds achieve a higher coverage than IET crowds, as witnessed by the red
area in the bottom-right corner of the tile diagram. Nonetheless, 9 or more
IET testers achieve a higher or comparable coverage than any number of
UET testers. Lastly, in Trolly, even a single IET tester achieves a higher
coverage than any number of UET testers.

The reason behind the better results obtained by IET testers compared
to large sets of UET testers for Trolly is related to the existence of the ”hid-
den” functionality related to the management of ”offlist” items, which can
only be activated with long click events in a particular execution scenario:
it was discovered almost exclusively by the IET testers who could observe
the source code related to its implementation.

On the contrary, the better results obtained by large sets of UET testers
compared to small sets composed of one or more IET testers observed
for TippyTipper depend on the absence of code that was difficult to be
observed and tested in this app. In these cases, UET testers were limited
mainly by the strict time limit and their diversity allows them to obtain
excellent results by considering the union of the coverage obtained by a
large group of them.

Even when statistically significant, however, the differences in LOC
coverage achieved by different-sized crowds of testers using different ex-
ploratory strategies might be negligible. Hence, we measured the magni-
tude of these differences using the Cliff’s delta effect size, as discussed in
Section 5.2.2. Results of this analysis are shown in Figure 5.13, and high-
light that in three of the considered AUTs, namely MunchLife, SimplyDo,
and TippyTipper, there exists an “equivalence” zone in which different
numbers of UET and IET testers achieve comparable coverage (i.e., the
effect size is small or negligible). In Trolly, on the other hand, the cover-
age achieved by IET testers is always greater than that achieved by any
number of UET testers, with a large or medium effect size.

The performance of both IET and UET crowds and the extent of such

5.2. Investigating Exploratory Crowdtesting 127

Figure 5.12. Results of alternative hypotheses testing: comparing the ef-
fectiveness of test suites generated by different-sized crowds using different
exploratory strategies.

Figure 5.13. Measured effect size (Cliff’s Delta): comparing the effectiveness
of test suites generated by different-sized crowds using different exploratory
strategies.

128 Chapter 5. Investigating Exploratory E2E Functional testing of Android Apps

equivalence areas are significantly influenced by the nature of the AUT. In
AUTs in which some features are unintuitive, Informed approaches prove
to be significantly more effective, as testers using an Uninformed strategy
often fail to stress these ‘hidden’ features. In AUTs featuring a larger
number of functionalities, on the other hand, the coverage achieved by
each tester appears to be mainly limited by the given time budget. In these
cases, leveraging larger numbers of testers using an Uninformed approach
leads to overall better coverage.

RQ2: Results highlight that small crowds of IET testers generally
achieve similar results w.r.t. larger crowds of UET testers. In apps
with unintuitive features, even a single IET tester can achieve better
results than a large crowd of UET testers.

RQ3: Cost-effectiveness of UET, IET, and mixed strategies

Generating tests with an Informed exploratory strategy requires com-
puting and analysing code coverage reports, and is, therefore, more time-
consuming than using a simpler Uninformed exploratory approach. The
goal of this research question is to investigate which exploratory strategy
(or mix thereof) is the most cost-effective. As discussed in Section 5.2.1,
we assigned a one-hour effort to Uninformed testing tasks and a three-hour
effort to Informed ones.

In Table 5.10, we report the average LOC coverage percentage achieved
by different-sized crowds of testers using different strategies, with the same
overall man-hours effort. In particular, we consider: (I) crowds using an
Uninformed approach; (II) crowds using an Informed approach; and (III)
crowds in which some testers use an IET strategy, while some others use
a UET approach (which we refer to as Mixed). For each AUT and for
each overall man-hours budget, we highlight in bold the maximum LOC
coverage achieved by any of the considered strategies. For the sake of
compactness, we report in Table 5.10 only a subset of the overall man-
hours budgets for which an IET crowd exists. Complete data are available
in the replication package [35].

Results show that, under the same effort budget, the coverage achieved
by IET crowds is always greater than or comparable to the one achieved
by UET crowds. In some cases, the difference in coverage between IET

5.2. Investigating Exploratory Crowdtesting 129

Table 5.10. LOC coverage percentage achieved using different strategies,
with the same overall man-hours effort.

Effort Strat. Num.
IET

Num.
UET MunchLife SimplyDo TippyTipper Trolly

3 UET 0 3 91,7 82,9 87,6 80,0
IET 1 0 93,4 82,8 87,3 83,5

6
UET 0 6 93,9 83,3 88,5 81,0
IET 2 0 95,9 84,0 89,2 84,3
Mixed 1 3 95,6 83,7 88,9 83,0

9

UET 0 9 94,8 83,7 89,2 81,3
IET 3 0 96,3 84,6 89,7 85,4
Mixed 1 6 95,9 84,0 89,8 83,1
Mixed 2 3 96,2 84,3 89,6 85,6

12

UET 0 12 95,4 84,0 89,8 81,4
IET 4 0 96,5 85,0 90,1 86,1
Mixed 1 9 96,1 84,3 89,9 83,2
Mixed 2 6 96,3 84,5 90,4 85,1
Mixed 3 3 96,2 84,1 90,0 84,7

15

UET 0 15 95,8 84,4 90,4 81,4
IET 5 0 96,6 85,2 90,4 86,7
Mixed 1 12 96,2 84,6 90,4 83,2
Mixed 2 9 96,1 84,5 90,4 84,4
Mixed 3 6 96,8 85,1 90,6 86,1
Mixed 4 3 96,3 85,2 90,4 85,4

18

UET 0 18 96,1 84,7 90,9 81,4
IET 6 0 96,7 85,4 90,6 87,1
Mixed 1 15 96,2 84,8 90,8 83,2
Mixed 2 12 96,4 85,0 90,7 84,0
Mixed 3 9 96,4 85,1 90,6 85,4
Mixed 4 6 96,6 85,3 90,7 85,2
Mixed 5 3 96,8 85,4 90,6 86,4

130 Chapter 5. Investigating Exploratory E2E Functional testing of Android Apps

and UET crowds is remarkable. In MunchLife, for example, with a 6 hours
overall effort, 2 IET testers achieve on average 2% more coverage than 6
UET testers. Similarly, in Trolly, with an 18 hours budget, 6 IET testers
achieve 5,7% more coverage than 18 UET testers. In most cases, however,
the difference is less noticeable (1% or less). As for mixed crowds, we can
observe that, for small budgets (e.g. 6, 9 or 12 man-hours), the coverage
percentage achieved with mixed approaches has intermediate values w.r.t.
UET and IET testers. In these cases, the effectiveness of the resulting
mixed test suites appears to be generally greater than that of UET crowds,
and comparable (less than 0.5% difference in LOC coverage) to that of IET
crowds. On the contrary, as the budget increases to 15 or 18 man-hours,
there are frequent cases in which combinations including both UET testers
and IET testers provide the best coverage results. For example, with 15
hours of overall effort, a mixed crowd of 3 IET testers and 6 UET testers
achieves higher LOC coverage than an IET crowd of 5 testers on both
MunchLife and TippyTipper. In both cases, however, the difference in
LOC coverage is rather small (0.2%).

These results support the insight of the existence of a trade-off between
the advantages of the IET approach (which provides effective test suites
even with a few testers) and those of the UET approach (which improves its
effectiveness as the number of tester increase, due to the greater diversity
among the results of individual testers). This trade-off could be optimized
by a mixed approach involving both UET and IET testers.

RQ3: Results highlight that, in the considered setting, an Informed ex-
ploratory strategy is generally more cost-effective than an Uninformed
approach or combinations of both approaches. Mixed crowds appear to
be generally more cost-effective than UET ones and can represent a
valid trade-off solution when larger budgets are available.

5.3 Threats to Validity

In this section, we discuss some threats that could have affected the
results of our empirical study and their generalizability, according to the
guidelines proposed in Wohlin et al. [213].

5.3. Threats to Validity 131

Threats to Internal Validity.

To ensure a fair comparison between the effectiveness of Uninformed
Exploratory Testing (UET) tasks and that of Informed Exploratory Test-
ing tasks, we enforced the same experimental conditions for all the exper-
iments. To this aim, each student act on freshly-installed apps, without
any data from previous executions, in the context of an instance of the
same Android emulator with the same Java Virtual Machine. In addition,
we provided students with a pre-installed instance of the Eclipse IDE, in-
tegrated with Robotium Recorder and Android support, and with projects
related to the applications under test. In this way, we mitigated the threat
related to the waste of testing time due to environment setup activities
that could differ between different students. All the students had a basic
knowledge of that environment, which was presented in previous lectures
of the same course. Furthermore, we selected apps with no dependencies
on external resources such as remote data sources or services, so that their
behaviour was not influenced by external factors. We did not control the
order of analysis of the apps, having required that the students freely orga-
nized and accomplished their tasks. Of course, it is not possible to exclude
the threat of a learning effect, in case all the students analysed the apps
exactly in the same order. In addition, we were not able to reconstruct the
time allocated by any student to the testing of each specific application
because we asked only to provide the total time spent on the testing of all
the apps, without tracing the ending time for each application testing.

Threats to External Validity.

These threats limit the generalizability of the results and are often
posed by the way experimental objects and subjects are selected. In this
study, we considered four simple open-source Android apps. We are aware
that the selected apps cannot be considered representative of complex com-
mercial applications. This represents a threat to the possibility of general-
ising our findings to every Android app. Additional experiments involving
industrial-strength apps should be carried out in order to mitigate this
threat.

As for the C&R tool, in our experiments, we used the Robotium
Recorder tool. Currently, Android Espresso Test Recorder, a free tool

132 Chapter 5. Investigating Exploratory E2E Functional testing of Android Apps

included in the Android Studio suite, has surpassed Robotium Recorder
in popularity. Anyhow, the features of the two tools are quite similar.
We performed other experiments with different graduate students using
Android Espresso Test Recorder in a UET scenario on the same AUTs,
and the results showed that there are no significant differences in the effec-
tiveness of the recorded test cases with respect to the ones recorded with
Robotium.

Concerning the selected subjects, the involvement of students as par-
ticipants may affect the generalization of results [42, 53]. Anyway, differ-
ent recent studies state that it is reasonable to recruit crowdworkers from
the researchers’ organization [138, 82]. The 20 students involved in this
experiment had basic experience in Android development and GUI test-
ing, and several studies [93, 49, 176] observed that graduate students and
practitioners perform similarly when applying a new technology during ex-
perimentation. Thus, we suggest that our results could be generalizable
to crowdtesting scenarios in which C&R testers with limited testing skills
are recruited [136].

5.4 Summary and Future Works

E2E testing of mobile apps is a challenging activity, due to the time-to-
market pressure of a very competitive scenario and to the fragmentation
of mobile systems and devices, requiring repeated tests on multiple dif-
ferent devices. Many solutions have been proposed in the literature to
support practitioners, like C&R with ET or AIG tools. From a practi-
cal perspective, a Software Project Manager might be puzzled in deciding
whether to use AIG tools or ET approaches, for a specific app under devel-
opment. Moreover, this decision-making scenario is further complicated by
the diffusion, in recent years, of crowdtesting, which allows companies to
conveniently recruit human testers on an on-demand basis and relatively
inexpensively, thus making ET approaches more appealing.

Nevertheless, to the best of our knowledge, little work aimed at sup-
porting these managerial choices has been conducted in the literature, even
though the choice can be of paramount importance for a Software Project
Manager.

In this chapter, we conducted two empirical studies aimed at addressing

5.4. Summary and Future Works 133

this lack in the literature and providing useful insights to software project
managers, based on which they could make more informed decisions.

In the first study, we measured, using well-known metrics such as LOC
and Branch coverage, the testing effectiveness of unskilled practitioners
using a C&R tool, on four apps on which they had no information at
all, under strict temporal constraints. In this scenario, which we named
Uninformed Exploratory Testing (UET), human testers obtained testing
performances just slightly better than AIG tools. In a second experiment,
we gave the same testers more time and information about the AUTs, i.e.,
source code and coverage reports, and asked them to record more tests
to improve the previously-achieved coverage. In this scenario, which we
called Informed Exploratory Testing (IET), we found that human testers
generally outperformed the considered AIG tools, even when AIG tools
were executed for longer periods of time.

Moreover, we conducted a detailed qualitative analysis of the lack of
coverage obtained by the testers and the AIG tools. This analysis al-
lowed us to investigate the limitations of both approaches. In particular,
we found that the main factors hindering the effectiveness of the human
testers are the lack of time and the lack of information on the AUT. As
for the AIG tools, their effectiveness was limited by both technological and
methodological issues. The technological issues are related to unsupported
GUI events/widgets and could be easily solved by technical improvements
of the tools, which should be adapted to the continuous evolution of the
Android framework. The methodological issues, on the other hand, are
related to the ineffectiveness in testing functionalities that are reachable
only through complex interactions and represent a well-known intrinsic
limitation of AIG testing techniques [13].

In the second study, we elaborated on the results of the first study
to investigate the effectiveness of exploratory strategies and capture and
replay in crowdtesting scenarios, based on the assumption that the 20 in-
volved master’s students can be considered representatives of practitioners
taking part in crowdtesting activities. To this end, we computed, for every
possible distinct subset of subjects, the aggregate code coverage that a
given crowd would have achieved in a crowdtesting scenario.

The analysis of the experimental results provided some interesting con-
clusions and insights. First of all, we confirmed the effectiveness of the

134 Chapter 5. Investigating Exploratory E2E Functional testing of Android Apps

crowdtesting paradigm even in scenarios in which the goal is to produce
re-executable test suites with C&R, and not only to identify bugs. Fur-
thermore, we have observed that increasing the size of the crowd of testers
by small amounts generally leads to small or negligible improvements in
coverage, especially for larger crowds. The comparisons between the cov-
erage results achieved by crowds of UET and IET testers showed that
small crowds of IET testers generally achieve similar results with respect
to larger crowds of UET testers, but the test suites produces by IET testers
are superior with respect to the coverage of complex or unpredictable func-
tionalities. The comparisons between the results of different crowds having
the same overall testing effort (in terms of man-hours) and composed of
UET testers, IET testers or a mix of them, provided some insights about
the optimal composition of crowds. In the context of our experimental set-
ting, IET crowds were generally more cost-effective than UET crowds or
mixed crowds, whereas mixed crowds generally outperform UET crowds,
and appear as a viable alternative when larger budgets are available.

In future work, we plan to replicate our experiments in an industrial
context, involving industrial-strength apps, to evaluate the effect of the
testers’ skill level on the effectiveness of the generated test suites. More-
over, we also plan to replicate the study on crowdtesting involving larger
crowds of real crowdtesters in place of students, to improve the generaliz-
ability of the results, and include real crowdtesting costs in our analyses.

Furthermore, on a broader horizon, similar studies could also be carried
out in the context of web applications, to investigate whether the same
findings apply to that domain as well.

Chapter 6
Conclusions

End-to-End (E2E) testing is a widely-used approach to improve the
quality of web and mobile applications. In this kind of testing activity,
the Application Under Test (AUT) is tested as a whole, in its entirety,
simulating real-world usage scenarios. The research presented in this thesis
aims at improving the effectiveness of E2E testing processes from multiple
perspectives.

In the domain of GUI-level testing of web applications, research pre-
sented in Chapter 3 of this thesis work aims at improving the effectiveness
of automatic GUI-level test generation techniques by tackling the problem
of near-duplicate web pages in automatic model inference, which is a pre-
requisite for the application of many automatic test generation techniques
for web apps. Indeed, most automatic GUI-level test generation tech-
niques for web applications rely on state-based models of the AUT, which
are typically automatically inferred via crawling. In such models, states
represent high-level functionalities of the AUT, while transitions represent
navigability relationships between these functionalities. Automatically-
inferred models, however, are affected by near-duplicate states, i.e., states
corresponding to slightly different web pages that nonetheless represent
the same functionality from a testing point of view. Near-duplicate states
have a negative impact on the quality of automatically-inferred models,
and thus on the quality of the test suites which are automatically gen-
erated from them [217]. To this end, two novel near-duplicate detection
techniques are proposed, based on a common underlying framework. The

136 Chapter 6. Conclusions

effectiveness of the proposed techniques and their impact on the quality
of automatically-generated test suites is assessed in an empirical study
against state-of-the-art baselines. Results show that the proposed tech-
niques outperform state-of-the-art approaches for near-duplicate detection
of web pages, and their usage can lead to remarkable improvements in the
quality of the resulting test suites. Future work in this domain could be
aimed at further improving the effectiveness of the proposed techniques,
for example by using visual embeddings on web screenshots, or by using
more advanced embedding models, capable of taking into account also the
intrinsic structure of web pages, such as the one proposed by Alon et al. [8].
In a broader context, the research on near-duplicate detection carried out
in this thesis could be applied in different domains than automatic model
inference/test generation. For example, in web test prioritization, selec-
tion, and/or minimization [185], similar techniques could be used to define
more advanced model-based coverage measures.

In the domain of performance testing of web applications, the research
described in Chapter 4 faces the problem of workload generation, i.e., speci-
fying which sequence of web requests should be sent to the AUT to simulate
a given load level. In a collaboration with an industrial partner, we found
that existing solutions and tools for the automatic generation of workloads
for web applications are affected by limitations hindering the productiv-
ity of practitioners and the overall effectiveness of the performance testing
process. To overcome these limitations, we presented a novel technique to
support their automatic generation of workloads leveraging existing E2E
GUI-level web tests. The effectiveness of the proposed technique is then
evaluated in a preliminary industrial case study, with promising results.
In future works, we plan to further validate our proposal by conducting
an extensive empirical evaluation and comparing it against state-of-the-
art workload generation approaches presented in the literature and on a
broader set of subject systems, possibly including also open-source ones,
to improve the generalizability of the results.

Lastly, in the domain of GUI-level testing of mobile applications, the
research activities described in Chapter 5 aim at investigating the effective-
ness of different GUI-level testing approaches for mobile apps, to support
Software Project Managers in deciding which techniques to use to test
a given mobile application. To this end, two empirical studies are con-

137

ducted, comparing among themselves Automated Input Generation (AIG)
tools, practitioners using Capture & Replay (C&R) tools and different
exploratory testing strategies, and crowdtesting scenarios involving prac-
titioners using C&R tools. Experimental results provided some interesting
insights that could prove useful to both software project managers decid-
ing which testing strategies to adopt for their mobile app projects, and to
researchers and practitioners working on novel AIG tools. Future works in
this domain will aim at replicating the experiments in an industrial con-
text, involving industrial-strength apps, to also evaluate the effect of the
testers’ skill level on the effectiveness of the generated test suites. More-
over, we also plan to replicate the study on crowdtesting involving larger
crowds of real crowdtesters in place of students, to improve the generaliz-
ability of the results, and include real crowdtesting costs in our analyses.
Furthermore, on a broader horizon, similar studies could also be carried
out in the context of web applications, to investigate whether the same
findings apply to that domain as well.

Bibliography

[1] Software Freedom Conservancy (SFC). Selenium IDE - Open source
record and playback test automation for the web. url: https://ww
w.selenium.dev/selenium-ide/.

[2] Rabiya Abbas, Zainab Sultan, and Shahid Nazir Bhatti. “Compar-
ative analysis of automated load testing tools: Apache JMeter, Mi-
crosoft Visual Studio (TFS), LoadRunner, Siege”. In: 2017 Inter-
national Conference on Communication Technologies (ComTech).
2017, pp. 39–44. doi: 10.1109/COMTECH.2017.8065747.

[3] Alain Abran, James W Moore, Pierre Bourque, Robert Dupuis,
and L Tripp. “Software engineering body of knowledge”. In: IEEE
Computer Society, Angela Burgess (2004), p. 25.

[4] Admin. Open Source Load Testing. Oct. 2022. url: https://gatl
ing.io/open-source/.

[5] Sadia Afroz and Rachel Greenstadt. “Phishzoo: Detecting phishing
websites by looking at them”. In: 2011 IEEE fifth international con-
ference on semantic computing. IEEE. 2011, pp. 368–375.

[6] Emil Alegroth, Michel Nass, and Helena H Olsson. “JAutomate: A
tool for system-and acceptance-test automation”. In: 2013 IEEE
Sixth International Conference on Software Testing, Verification
and Validation. IEEE. 2013, pp. 439–446.

[7] Mario Almeida, Muhammad Bilal, Alessandro Finamore, Ilias Leon-
tiadis, Yan Grunenberger, Matteo Varvello, and Jeremy Blackburn.
“CHIMP: Crowdsourcing Human Inputs for Mobile Phones”. In:

139

https://www.selenium.dev/selenium-ide/
https://www.selenium.dev/selenium-ide/
https://doi.org/10.1109/COMTECH.2017.8065747
https://gatling.io/open-source/
https://gatling.io/open-source/

140 Bibliography

Proceedings of the 2018 World Wide Web Conference. WWW ’18.
WWW. Lyon, France: International World Wide Web Conferences
Steering Committee, 2018, pp. 45–54. isbn: 9781450356398. doi:
10.1145/3178876.3186035. url: https://doi.org/10.1145/317
8876.3186035.

[8] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. “code2vec:
Learning distributed representations of code”. In: Proceedings of the
ACM on Programming Languages 3.POPL (2019), pp. 1–29.

[9] Karen M Alsante, Linda Martin, and Steven W Baertschi. “A stress
testing benchmarking study”. In: Pharmaceutical technology 27.2
(2003), pp. 60–73.

[10] Francesco Altiero, Giovanni Colella, Anna Corazza, Sergio Di Mar-
tino, Adriano Peron, and Luigi Libero Lucio Starace. “Change-
Aware Regression Test Prioritization using Genetic Algorithm”. In:
Proceedings of the 48th Euromicro Conference on Software Engi-
neering and Advanced Applications. To appear in the proceedings.
IEEE. 2022.

[12] D. Amalfitano, A.R. Fasolino, P. Tramontana, S. De Carmine, and
G. Imparato. “A toolset for GUI testing of Android applications”.
In: cited By 16. 2012, pp. 650–653. doi: 10.1109/ICSM.2012.6405
345.

[13] Domenico Amalfitano, Nicola Amatucci, Atif M. Memon, Porfirio
Tramontana, and Anna Rita Fasolino. “A general framework for
comparing automatic testing techniques of Android mobile apps”.
In: Journal of Systems and Software 125 (2017), pp. 322–343. doi:
10.1016/j.jss.2016.12.017. url: http://dx.doi.org/10.1016
/j.jss.2016.12.017.

[14] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana,
Salvatore De Carmine, and Atif M Memon. “Using GUI ripping for
automated testing of Android applications”. In: Proceedings of the
27th IEEE/ACM International Conference on Automated Software
Engineering. ACM. 2012, pp. 258–261.

https://doi.org/10.1145/3178876.3186035
https://doi.org/10.1145/3178876.3186035
https://doi.org/10.1145/3178876.3186035
https://doi.org/10.1109/ICSM.2012.6405345
https://doi.org/10.1109/ICSM.2012.6405345
https://doi.org/10.1016/j.jss.2016.12.017
http://dx.doi.org/10.1016/j.jss.2016.12.017
http://dx.doi.org/10.1016/j.jss.2016.12.017

Bibliography 141

[15] Domenico Amalfitano, Vincenzo Riccio, Ana C. R. Paiva, and Anna
Rita Fasolino. “Why does the orientation change mess up my An-
droid application? From GUI failures to code faults”. In: Software
Testing, Verification and Reliability 28.1 (2018). e1654 stvr.1654,
e1654. doi: 10.1002/stvr.1654. eprint: https://onlinelibrary
.wiley.com/doi/pdf/10.1002/stvr.1654. url: https://online
library.wiley.com/doi/abs/10.1002/stvr.1654.

[16] R. Anbunathan and A. Basu. “A recursive crawler algorithm to
detect crash in Android application”. In: cited By 0. 2015, pp. 256–
267. doi: 10.1109/ICCIC.2014.7238518.

[17] C. Andersson, T. Thelin, P. Runeson, and N. Dzamashvili. “An
experimental evaluation of inspection and testing for detection of
design faults”. In: 2003 International Symposium on Empirical Soft-
ware Engineering, 2003. ISESE 2003. Proceedings. 2003, pp. 174–
184.

[18] Anneliese A Andrews, Jeff Offutt, and Roger T Alexander. “Testing
web applications by modeling with FSMs”. In: Software & Systems
Modeling 4.3 (2005), pp. 326–345.

[19] Mauricio Aniche, Christoph Treude, and Andy Zaidman. “How De-
velopers Engineer Test Cases: An Observational Study”. In: IEEE
Transactions on Software Engineering (2021), pp. 1–1. doi: 10.11
09/TSE.2021.3129889.

[20] Apache JMeter. url: https://jmeter.apache.org/.

[21] Angular version of the Spring PetClinic web application. https:
//github.com/spring-petclinic/spring-petclinic-angular.
2018.

[22] Simple, web-based address & phone book. http://sourceforge.ne
t/projects/php-addressbook. Accessed: 2018-10-01. 2015.

[23] Claroline. Open Source Learning Management System. https://s
ourceforge.net/projects/claroline/. 2015.

[24] DimeShift: easiest way to track your expenses. https://github.c
om/jeka-kiselyov/dimeshift. 2018.

[25] Pagekit: modular and lightweight CMS. https://github.com/pag
ekit/pagekit. 2018.

https://doi.org/10.1002/stvr.1654
https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1654
https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1654
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1654
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1654
https://doi.org/10.1109/ICCIC.2014.7238518
https://doi.org/10.1109/TSE.2021.3129889
https://doi.org/10.1109/TSE.2021.3129889
https://jmeter.apache.org/
https://github.com/spring-petclinic/spring-petclinic-angular
https://github.com/spring-petclinic/spring-petclinic-angular
http://sourceforge.net/projects/php-addressbook
http://sourceforge.net/projects/php-addressbook
https://sourceforge.net/projects/claroline/
https://sourceforge.net/projects/claroline/
https://github.com/jeka-kiselyov/dimeshift
https://github.com/jeka-kiselyov/dimeshift
https://github.com/pagekit/ pagekit
https://github.com/pagekit/ pagekit

142 Bibliography

[26] Phoenix: Trello tribute done in Elixir, Phoenix Framework, React
and Redux. https://github.com/bigardone/phoenix-trello.
2018.

[27] PHP Password Manager. https://github.com/pklink/ppma.
2018.

[28] Meeting Room Booking System. https://mrbs.sourceforge.io/.
2018.

[29] Mantis Bug Tracker. https://github.com/mantisbt/mantisbt.
2018.

[30] Appetizer replaykit – GitHub repository. url: https://github.co
m/appetizerio/replaykit (visited on 05/09/2019).

[31] Applause. Customer Stories. https://www.applause.com/custom
ers. Seen on Oct. 22, 2022. url: https://www.applause.com/cus
tomers.

[32] Luca Ardito, Riccardo Coppola, Maurizio Morisio, and Marco Torchi-
ano. “Espresso vs. EyeAutomate: An Experiment for the Compar-
ison of Two Generations of Android GUI Testing”. In: Proceedings
of the Evaluation and Assessment on Software Engineering. ACM.
2019, pp. 13–22.

[33] Tanzirul Azim and Iulian Neamtiu. “Targeted and Depth-first Ex-
ploration for Systematic Testing of Android Apps”. In: SIGPLAN
Not. 48.10 (Oct. 2013), pp. 641–660. issn: 0362-1340. doi: 10.114
5/2544173.2509549.

[34] V. R. Basili and R. W. Selby. “Comparing the Effectiveness of Soft-
ware Testing Strategies”. In: IEEE Transactions on Software Engi-
neering SE-13.12 (1987), pp. 1278–1296.

[35] Ermanno Battista, Sergio Di Martino, Sergio Di Meglio, Fabio Scip-
pacercola, and Luigi Libero Lucio Starace. E2E-Loader: A Frame-
work to Support Performance Testing of Web Applications. Ver-
sion 1.0.0. Nov. 2022. doi: 10.5281/zenodo.7286734. url: htt
ps://doi.org/10.5281/zenodo.7286734.

 https://github.com/bigardone/phoenix-trello
https://github.com/pklink/ppma
https://mrbs.sourceforge.io/
https://github.com/mantisbt/mantisbt
https://github.com/appetizerio/replaykit
https://github.com/appetizerio/replaykit
https://www.applause.com/customers
https://www.applause.com/customers
https://www.applause.com/customers
https://www.applause.com/customers
https://doi.org/10.1145/2544173.2509549
https://doi.org/10.1145/2544173.2509549
https://doi.org/10.5281/zenodo.7286734
https://doi.org/10.5281/zenodo.7286734
https://doi.org/10.5281/zenodo.7286734

Bibliography 143

[36] Matteo Biagiola, Filippo Ricca, and Paolo Tonella. “Search based
path and input data generation for web application testing”. In:
International Symposium on Search Based Software Engineering.
Springer. 2017, pp. 18–32.

[37] Matteo Biagiola, Andrea Stocco, Ali Mesbah, Filippo Ricca, and
Paolo Tonella. “Web Test Dependency Detection”. In: Proceedings
of 27th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ESEC/FSE
2019. ACM, 2019, 12 pages.

[38] Matteo Biagiola, Andrea Stocco, Filippo Ricca, and Paolo Tonella.
“Dependency-aware web test generation”. In: 2020 IEEE 13th In-
ternational Conference on Software Testing, Validation and Verifi-
cation (ICST). IEEE. 2020, pp. 175–185.

[39] Matteo Biagiola, Andrea Stocco, Filippo Ricca, and Paolo Tonella.
“Diversity-based Web Test Generation”. In: Proceedings of 27th ACM
Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. ESEC/FSE 2019. ACM,
2019.

[40] Mustafa Bozkurt and Mark Harman. “Automatically generating re-
alistic test input from web services”. In: Proceedings of 2011 IEEE
6th International Symposium on Service Oriented System (SOSE).
IEEE. 2011, pp. 13–24.

[41] Andrei Z Broder, Steven C Glassman, Mark S Manasse, and Geof-
frey Zweig. “Syntactic clustering of the web”. In: Computer networks
and ISDN systems 29.8-13 (1997), pp. 1157–1166.

[42] J. Carver, L. Jaccheri, S. Morasca, and F. Shull. “Issues in using
students in empirical studies in software engineering education”. In:
Proceedings. 5th International Workshop on Enterprise Networking
and Computing in Healthcare Industry (IEEE Cat. No.03EX717).
IEEE. Sept. 2003, pp. 239–249. doi: 10.1109/METRIC.2003.12324
71.

[43] Hari Sankar Chaini and Sateesh Kumar Pradhan. “Test script exe-
cution and effective result analysis in hybrid test automation frame-
work”. In: 2015 International Conference on Advances in Computer
Engineering and Applications. IEEE. 2015, pp. 214–217.

https://doi.org/10.1109/METRIC.2003.1232471
https://doi.org/10.1109/METRIC.2003.1232471

144 Bibliography

[44] Tsung-Hsiang Chang, Tom Yeh, and Robert C Miller. “GUI testing
using computer vision”. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. ACM. 2010, pp. 1535–
1544.

[45] Moses S Charikar. “Similarity estimation techniques from rounding
algorithms”. In: Proceedings of the thiry-fourth annual ACM sym-
posium on Theory of computing. 2002, pp. 380–388.

[46] Jinfu Chen, Weiyi Shang, Ahmed E Hassan, Yong Wang, and Jiang-
bin Lin. “An experience report of generating load tests using log-
recovered workloads at varying granularities of user behaviour”.
In: 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE. 2019, pp. 669–681.

[47] Teh-Chung Chen, Scott Dick, and James Miller. “Detecting visu-
ally similar web pages: Application to phishing detection”. In: ACM
Transactions on Internet Technology (TOIT) 10.2 (2010), pp. 1–38.

[48] Tse-Hsun Chen, Mark D. Syer, Weiyi Shang, Zhen Ming Jiang,
Ahmed E. Hassan, Mohamed Nasser, and Parminder Flora. “Analytics-
Driven Load Testing: An Industrial Experience Report on Load
Testing of Large-Scale Systems”. In: 2017 IEEE/ACM 39th Inter-
national Conference on Software Engineering: Software Engineering
in Practice Track (ICSE-SEIP). 2017, pp. 243–252. doi: 10.1109
/ICSE-SEIP.2017.26.

[49] Zhenyu Chen and Bin Luo. “Quasi-Crowdsourcing Testing for Edu-
cational Projects”. In: Companion Proceedings of the 36th Interna-
tional Conference on Software Engineering. ICSE Companion 2014.
IEEE/ACM. Hyderabad, India: Association for Computing Machin-
ery, 2014, pp. 272–275. isbn: 9781450327688. doi: 10.1145/25910
62.2591153. url: https://doi.org/10.1145/2591062.2591153.

[50] Wontae Choi, George Necula, and Koushik Sen. “Guided GUI test-
ing of android apps with minimal restart and approximate learning”.
In: Proceedings of the 2013 ACM SIGPLAN international confer-
ence on Object oriented programming systems languages & applica-
tions. ACM. 2013, pp. 623–640.

https://doi.org/10.1109/ICSE-SEIP.2017.26
https://doi.org/10.1109/ICSE-SEIP.2017.26
https://doi.org/10.1145/2591062.2591153
https://doi.org/10.1145/2591062.2591153
https://doi.org/10.1145/2591062.2591153

Bibliography 145

[51] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso.
“Automated test input generation for android: Are we there yet?(e)”.
In: 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE. 2015, pp. 429–440.

[52] Matteo Ciniselli, Nathan Cooper, Luca Pascarella, Antonio Mas-
tropaolo, Emad Aghajani, Denys Poshyvanyk, Massimiliano Di Penta,
and Gabriele Bavota. “An Empirical Study on the Usage of Trans-
former Models for Code Completion”. In: CoRR abs/2108.01585
(2021). arXiv: 2108.01585.

[53] M. Ciolkowski, D. Muthig, and J. Rech. “Using academic courses
for empirical validation of software development processes”. In: Pro-
ceedings. 30th Euromicro Conference, 2004. Euromicro. Sept. 2004,
pp. 354–361. doi: 10.1109/EURMIC.2004.1333390.

[54] James Clark, Steve DeRose, et al. XML path language (XPath).
1999.

[55] Norman Cliff. Ordinal methods for behavioral data analysis. Psy-
chology Press, 2014.

[56] Jacob Cohen. Statistical power analysis for the behavioral sciences.
Hillsdale, N.J: L. Erlbaum Associates, 1988. isbn: 978-1-134-74270-
7.

[57] commoncrawl.org. https://commoncrawl.org/the-data/get-sta
rted/.

[58] Riccardo Coppola, Maurizio Morisio, and Marco Torchiano. “Mobile
GUI Testing Fragility: A Study on Open-Source Android Applica-
tions”. In: IEEE Transactions on Reliability 68.1 (2019), pp. 67–90.

[59] Riccardo Coppola, Maurizio Morisio, and Marco Torchiano. “Scripted
gui testing of android apps: A study on diffusion, evolution and
fragility”. In: Proceedings of the 13th International Conference on
Predictive Models and Data Analytics in Software Engineering. ACM.
2017, pp. 22–32.

[60] Anna Corazza, Sergio Di Martino, Valerio Maggio, and Giuseppe
Scanniello. “A tree kernel based approach for clone detection”. In:
2010 IEEE International Conference on Software Maintenance. IEEE.
2010, pp. 1–5.

https://arxiv.org/abs/2108.01585
https://doi.org/10.1109/EURMIC.2004.1333390
https://commoncrawl.org/the-data/get-started/
https://commoncrawl.org/the-data/get-started/

146 Bibliography

[61] Anna Corazza, Sergio Di Martino, Adriano Peron, and Luigi Libero
Lucio Starace. “Web Application Testing: Using Tree Kernels to
Detect Near-duplicate States in Automated Model Inference”. In:
Proceedings of the 15th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM). 2021,
pp. 1–6.

[62] Create UI tests with Espresso Test Recorder. https://developer
.android.com/studio/test/espresso-test-recorder. Seen on
Oct. 22, 2022. url: https://developer.android.com/studio/te
st/espresso-test-recorder.

[63] Arghavan Moradi Dakhel, Michel C. Desmarais, and Foutse Khomh.
Dev2vec: Representing Domain Expertise of Developers in an Em-
bedding Space. 2022. doi: 10.48550/ARXIV.2207.05132.

[64] data.ai. State of Mobile 2022. https://www.data.ai/en/go/sta
te-of-mobile-2022/. Last accessed: Oct. 25, 2022. url: https:
//www.data.ai/en/go/state-of-mobile-2022/.

[65] Giuseppe Antonio Di Lucca, Massimiliano Di Penta, Anna Rita
Fasolino, and Pasquale Granato. “Clone analysis in the web era:
An approach to identify cloned web pages”. In: Seventh Workshop
on Empirical Studies of Software Maintenance. 2001, p. 107.

[66] Sergio Di Martino, Anna Rita Fasolino, Luigi Libero Lucio Starace,
and Porfirio Tramontana. “Comparing the effectiveness of capture
and replay against automatic input generation for Android graph-
ical user interface testing”. In: Software Testing, Verification and
Reliability 31.3 (2021), e1754.

[67] Eelco Dolstra, Raynor Vliegendhart, and Johan Pouwelse. “Crowd-
sourcing GUI Tests”. In: Proceedings of the 2013 IEEE Sixth Inter-
national Conference on Software Testing, Verification and Valida-
tion. ICST ’13. IEEE. USA: IEEE Computer Society, 2013, pp. 332–
341. isbn: 9780769549682. doi: 10.1109/ICST.2013.44. url: htt
ps://doi.org/10.1109/ICST.2013.44.

[68] Kit Eaton. How One Second Could Cost Amazon $1.6 Billion In
Sales. Last accessed: Oct. 24, 2022. 2012. url: https://web.arch
ive.org/web/20221006004855/https://www.fastcompany.com/1

https://developer.android.com/studio/test/espresso-test-recorder
https://developer.android.com/studio/test/espresso-test-recorder
https://developer.android.com/studio/test/espresso-test-recorder
https://developer.android.com/studio/test/espresso-test-recorder
https://doi.org/10.48550/ARXIV.2207.05132
https://www.data.ai/en/go/state-of-mobile-2022/
https://www.data.ai/en/go/state-of-mobile-2022/
https://www.data.ai/en/go/state-of-mobile-2022/
https://www.data.ai/en/go/state-of-mobile-2022/
https://doi.org/10.1109/ICST.2013.44
https://doi.org/10.1109/ICST.2013.44
https://doi.org/10.1109/ICST.2013.44
https://web.archive.org/web/20221006004855/https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
https://web.archive.org/web/20221006004855/https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
https://web.archive.org/web/20221006004855/https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
https://web.archive.org/web/20221006004855/https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales

Bibliography 147

825005/how-one-second-could-cost-amazon-16-billion-sale
s.

[69] Emma Reference Manual. https://emma.sourceforge.net/userg
uide_single/userguide.html. Seen on Oct. 22, 2022. url: https
://emma.sourceforge.net/userguide_single/userguide.html.

[70] EMMA: a free Java code coverage tool. Seen on Oct. 22, 2022. url:
http://emma.sourceforge.net/.

[71] Espresso. Seen on Oct. 22, 2022. url: https://developer.andro
id.com/training/testing/espresso.

[72] Eyestudio. url: http://www.eyeautomate.com/eyestudio.html
(visited on 05/09/2019).

[73] F-Droid - Free and Open Source Android App Repository. https:
//f-droid.org. Seen on Oct. 22, 2022. url: https://f-droid.o
rg.

[74] Amin Milani Fard and Ali Mesbah. “Feedback-directed exploration
of web applications to derive test models.” In: ISSRE. Vol. 13. 2013,
pp. 278–287.

[75] M. Fazzini, E. N. D. A. Freitas, S. R. Choudhary, and A. Orso.
“Barista: A Technique for Recording, Encoding, and Running Plat-
form Independent Android Tests”. In: 2017 IEEE International Con-
ference on Software Testing, Verification and Validation (ICST).
Mar. 2017, pp. 149–160. doi: 10.1109/ICST.2017.21.

[76] Jian Feng, Lianyang Zou, Ou Ye, and Jingzhou Han. “Web2Vec:
Phishing Webpage Detection Method Based on Multidimensional
Features Driven by Deep Learning”. In: IEEE Access 8 (2020),
pp. 221214–221224. doi: 10.1109/ACCESS.2020.3043188.

[77] Ian Fette and Alexey Melnikov. “The WebSocket Protocol”. In: RFC
6455 (2011), pp. 1–71. url: https://www.rfc-editor.org/rfc/r
fc6455.

[78] Dennis Fetterly, Mark Manasse, and Marc Najork. “On the evo-
lution of clusters of near-duplicate web pages”. In: Proceedings of
the IEEE/LEOS 3rd International Conference on Numerical Sim-
ulation of Semiconductor Optoelectronic Devices (IEEE Cat. No.
03EX726). IEEE. 2003, pp. 37–45.

https://web.archive.org/web/20221006004855/https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
https://web.archive.org/web/20221006004855/https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
https://web.archive.org/web/20221006004855/https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
https://web.archive.org/web/20221006004855/https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
https://web.archive.org/web/20221006004855/https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
https://emma.sourceforge.net/userguide_single/userguide.html
https://emma.sourceforge.net/userguide_single/userguide.html
https://emma.sourceforge.net/userguide_single/userguide.html
https://emma.sourceforge.net/userguide_single/userguide.html
http://emma.sourceforge.net/
https://developer.android.com/training/testing/espresso
https://developer.android.com/training/testing/espresso
http://www.eyeautomate.com/eyestudio.html
https://f-droid.org
https://f-droid.org
https://f-droid.org
https://f-droid.org
https://doi.org/10.1109/ICST.2017.21
https://doi.org/10.1109/ACCESS.2020.3043188
https://www.rfc-editor.org/rfc/rfc6455
https://www.rfc-editor.org/rfc/rfc6455

148 Bibliography

[79] Firebase Test Lab Robo Test. Seen on Oct. 22, 2022. url: https://f
irebase.google.com/docs/test-lab/android/robo-ux-test.

[80] Abhishek Gangwar, Eduardo Fidalgo, Enrique Alegre, and Vıc-
tor González-Castro. “PhishFingerprint: A Practical Approach for
Phishing Web Page Identity Retrieval Based on Visual Cues”. In: In-
ternational Conference of Applications of Intelligent Systems. 2018.

[81] Vahid Garousi, Wasif Afzal, Adem Cauglar, Ihsan Berk Icsik, Berker
Baydan, Seckin Caylak, Ahmet Zeki Boyraz, Burak Yolacan, and
Kadir Herkiloglu. “Comparing Automated Visual GUI Testing Tools:
An Industrial Case Study”. In: Proceedings of the 8th ACM SIG-
SOFT International Workshop on Automated Software Testing. A-
TEST 2017. Paderborn, Germany: ACM, 2017, pp. 21–28. isbn:
978-1-4503-5155-3. doi: 10.1145/3121245.3121250. url: http:
//doi.acm.org/10.1145/3121245.3121250.

[82] Xiuting Ge, Shengcheng Yu, Chunrong Fang, Qi Zhu, and Zhihong
Zhao. “Leveraging Android Automated Testing to Assist Crowd-
sourced Testing”. In: IEEE Transactions on Software Engineering
(2022), pp. 1–18. doi: 10.1109/TSE.2022.3216879.

[83] Wael H Gomaa, Aly A Fahmy, et al. “A survey of text similarity ap-
proaches”. In: international journal of Computer Applications 68.13
(2013), pp. 13–18.

[84] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd Mill-
stein. “Reran: Timing-and touch-sensitive record and replay for an-
droid”. In: Proceedings of the 2013 International Conference on Soft-
ware Engineering. IEEE Press. 2013, pp. 72–81.

[85] S Gunasekaran and V Bargavi. “Survey on automation testing tools
for mobile applications”. In: International Journal of Advanced En-
gineering Research and Science 2.11 (2015), pp. 2349–6495.

[86] Matthew Halpern, Yuhao Zhu, Ramesh Peri, and Vijay Janapa
Reddi. “Mosaic: cross-platform user-interaction record and replay
for the fragmented android ecosystem”. In: 2015 IEEE International
Symposium on Performance Analysis of Systems and Software (IS-
PASS). IEEE. 2015, pp. 215–224.

https://firebase.google.com/docs/test-lab/android/robo-ux-test
https://firebase.google.com/docs/test-lab/android/robo-ux-test
https://doi.org/10.1145/3121245.3121250
http://doi.acm.org/10.1145/3121245.3121250
http://doi.acm.org/10.1145/3121245.3121250
https://doi.org/10.1109/TSE.2022.3216879

Bibliography 149

[87] Maher Hayek, Peter Farhat, Youssef Yamout, Charbel Ghorra, and
Ramzi A. Haraty. “Web 2.0 Testing Tools: A Compendium”. In:
2019 International Conference on Innovation and Intelligence for
Informatics, Computing, and Technologies (3ICT). 2019, pp. 1–6.
doi: 10.1109/3ICT.2019.8910274.

[88] Gilber van der Heiden and Susan Matson. Market Guide for Appli-
cation Crowdtesting Services. Ed. by Gartner Research. https://w
ww.gartner.com/en/documents/3890079. url: https://www.gar
tner.com/en/documents/3890079.

[89] Monika Henzinger. “Finding near-duplicate web pages: a large-scale
evaluation of algorithms”. In: Proceedings of the 29th annual inter-
national ACM SIGIR conference on Research and development in
information retrieval. 2006, pp. 284–291.

[90] Thong Hoang, Hong Jin Kang, David Lo, and Julia Lawall. “CC2Vec:
Distributed Representations of Code Changes”. In: Proceedings of
the ACM/IEEE 42nd International Conference on Software Engi-
neering. ICSE ’20. Seoul, South Korea: ACM, 2020, pp. 518–529.
isbn: 9781450371216. doi: 10.1145/3377811.3380361.

[91] André van Hoorn, Matthias Rohr, and Wilhelm Hasselbring. “Gen-
erating Probabilistic and Intensity-Varying Workload for Web-Based
Software Systems”. In: Performance Evaluation: Metrics, Models
and Benchmarks. Ed. by Samuel Kounev, Ian Gorton, and Kai
Sachs. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 124–
143. isbn: 978-3-540-69814-2.

[92] Mahmood Hosseini, Keith Phalp, Jacqui Taylor, and Raian Ali.
“The four pillars of crowdsourcing: A reference model”. In: 2014
IEEE Eighth International Conference on Research Challenges in
Information Science (RCIS). IEEE. 2014, pp. 1–12.

[93] Martin Host, Bjorn Regnell, and Claes Wohlin. “Using students as
subjects a comparative study of students and professionals in lead-
time impact assessment”. In: Empirical Software Engineering 5.3
(2000), pp. 201–214.

[94] J. Howe. “The rise of crowdsourcing”. In: Wired Magazine 14.6
(2006), pp. 1–4.

https://doi.org/10.1109/3ICT.2019.8910274
https://www.gartner.com/en/documents/3890079
https://www.gartner.com/en/documents/3890079
https://www.gartner.com/en/documents/3890079
https://www.gartner.com/en/documents/3890079
https://doi.org/10.1145/3377811.3380361

150 Bibliography

[95] Yongjian Hu, Tanzirul Azim, and Iulian Neamtiu. “Versatile yet
lightweight record-and-replay for android”. In: ACM SIGPLAN No-
tices 50.10 (2015), pp. 349–366.

[96] Apple Inc. XCTest Framework - Create and run unit tests, perfor-
mance tests, and UI tests for your Xcode project. url: https://d
eveloper.apple.com/documentation/xctest.

[97] Taichi Ishikawa, Yu-Lu Liu, David Lawrence Shepard, and Kilho
Shin. “Machine learning for tree structures in fake site detection”.
In: Proceedings of the 15th International Conference on Availability,
Reliability and Security. 2020, pp. 1–10.

[98] J. Itkonen, M. V. Mäntylä, and C. Lassenius. “The Role of the
Tester’s Knowledge in Exploratory Software Testing”. In: IEEE
Transactions on Software Engineering 39.5 (May 2013), pp. 707–
724. issn: 2326-3881. doi: 10.1109/TSE.2012.55.

[99] J. Itkonen and M.V. Mäntylä. “Are test cases needed? Replicated
comparison between exploratory and test-case-based software test-
ing”. In: Empirical Software Engineering 19.2 (2014). cited By 25,
pp. 303–342. doi: 10.1007/s10664-013-9266-8.

[100] Juha Itkonen and Kristian Rautiainen. “Exploratory testing: a mul-
tiple case study”. In: 2005 International Symposium on Empirical
Software Engineering, 2005. IEEE. 2005, 10–pp.

[101] Emad Jabbar, Soheila Zangeneh, Hadi Hemmati, and Robert Feldt.
Test2Vec: An Execution Trace Embedding for Test Case Prioritiza-
tion. 2022. doi: 10.48550/ARXIV.2206.15428.

[102] Manisha Jailia, Manisha Agarwal, and Ashok Kumar. “Compara-
tive Study of N-Tier and Cloud-Based Web Application Using Au-
tomated Load Testing Tool”. In: Information and Communication
Technology. Springer, 2018, pp. 239–250.

[103] JavaScript End to End Testing Framework | cypress.io testing tools.
url: https://www.cypress.io/.

[104] Zhen Ming Jiang and Ahmed E. Hassan. “A Survey on Load Test-
ing of Large-Scale Software Systems”. In: IEEE Transactions on
Software Engineering 41.11 (2015), pp. 1091–1118. doi: 10.1109
/TSE.2015.2445340.

https://developer.apple.com/documentation/xctest
https://developer.apple.com/documentation/xctest
https://doi.org/10.1109/TSE.2012.55
https://doi.org/10.1007/s10664-013-9266-8
https://doi.org/10.48550/ARXIV.2206.15428
https://www.cypress.io/
https://doi.org/10.1109/TSE.2015.2445340
https://doi.org/10.1109/TSE.2015.2445340

Bibliography 151

[105] Mona Erfani Joorabchi, Ali Mesbah, and Philippe Kruchten. “Real
challenges in mobile app development”. In: 2013 ACM/IEEE Inter-
national Symposium on Empirical Software Engineering and Mea-
surement. IEEE. 2013, pp. 15–24.

[106] Z.U. Kamangar, U.A. Kamangar, Q. Ali, I. Farah, S. Nizamani,
and T.H. Ali. “To enhance effectiveness of crowdsource software
testing by applying personality types”. In: ACM. Association for
Computing Machinery, 2019, pp. 15–19. doi: 10.1145/3328833.3
328838.

[107] Vigdis By Kampenes, Tore Dybå, Jo E Hannay, and Dag IK Sjøberg.
“A systematic review of effect size in software engineering experi-
ments”. In: Information and Software Technology 49.11-12 (2007),
pp. 1073–1086.

[108] Erik Kamsties and Christopher M. Lott. “An Empirical Evalua-
tion of Three Defect-Detection Techniques”. In: Proceedings of the
5th European Software Engineering Conference. Berlin, Heidelberg:
Springer-Verlag, 1995, pp. 362–383. isbn: 3540604065.

[109] Cem Kaner. A Tutorial in Exploratory Testing. https://www.kan
er.com/pdfs/QAIExploring.pdf. 2008. url: https://www.kaner
.com/pdfs/QAIExploring.pdf.

[110] Hammad Khalid, Emad Shihab, Meiyappan Nagappan, and Ahmed
E Hassan. “What do mobile app users complain about?” In: IEEE
Software 32.3 (2015), pp. 70–77.

[111] Hiroyuki Kirinuki and Haruto Tanno. “Automating End-to-End
Web Testing via Manual Testing”. In: Journal of Information Pro-
cessing 30 (2022), pp. 294–306.

[112] Pavneet Singh Kochhar, Ferdian Thung, Nachiappan Nagappan,
Thomas Zimmermann, and David Lo. “Understanding the test au-
tomation culture of app developers”. In: 2015 IEEE 8th Interna-
tional Conference on Software Testing, Verification and Validation
(ICST). IEEE. 2015, pp. 1–10.

https://doi.org/10.1145/3328833.3328838
https://doi.org/10.1145/3328833.3328838
https://www.kaner.com/pdfs/QAIExploring.pdf
https://www.kaner.com/pdfs/QAIExploring.pdf
https://www.kaner.com/pdfs/QAIExploring.pdf
https://www.kaner.com/pdfs/QAIExploring.pdf

152 Bibliography

[113] Steven Komarov, Katharina Reinecke, and Krzysztof Z. Gajos. “Crowd-
sourcing Performance Evaluations of User Interfaces”. In: Proceed-
ings of the SIGCHI Conference on Human Factors in Computing
Systems. CHI ’13. ACM. Paris, France: Association for Computing
Machinery, 2013, pp. 207–216. isbn: 9781450318990. doi: 10.1145
/2470654.2470684. url: https://doi.org/10.1145/2470654.24
70684.

[114] P. Kong, L. Li, J. Gao, K. Liu, T. F. Bissyandé, and J. Klein. “Auto-
mated Testing of Android Apps: A Systematic Literature Review”.
In: IEEE Transactions on Reliability 68.1 (Mar. 2019), pp. 45–66.
issn: 1558-1721. doi: 10.1109/TR.2018.2865733.

[115] Kubernetes. Resource Management for Pods and Containers. Last
seen: Nov. 11, 2022. url: https://kubernetes.io/docs/concept
s/configuration/manage-resources-containers/.

[116] Wing Lam, Zhengkai Wu, Dengfeng Li, Wenyu Wang, Haibing Zheng,
Hui Luo, Peng Yan, Yuetang Deng, and Tao Xie. “Record and replay
for Android: are we there yet in industrial cases?” In: Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engi-
neering. ACM. 2017, pp. 854–859.

[117] Quoc Le and Tomas Mikolov. “Distributed representations of sen-
tences and documents”. In: International conference on machine
learning. PMLR. 2014, pp. 1188–1196.

[118] Rakesh Kumar Lenka, Sunakshi Mamgain, Srikant Kumar, and Ra-
bindra Kumar Barik. “Performance Analysis of Automated Testing
Tools: JMeter and TestComplete”. In: 2018 International Confer-
ence on Advances in Computing, Communication Control and Net-
working (ICACCCN). 2018, pp. 399–407. doi: 10.1109/ICACCCN.2
018.8748521.

[119] Maurizio Leotta, Diego Clerissi, Filippo Ricca, and Paolo Tonella.
“Approaches and Tools for Automated End-to-End Web Testing”.
In: Advances in Computers 101 (Jan. 2016), pp. 193–237.

[120] Maurizio Leotta, Diego Clerissi, Filippo Ricca, and Paolo Tonella.
“Capture-replay vs. programmable web testing: An empirical assess-
ment during test case evolution”. In: 2013 20th Working Conference
on Reverse Engineering (WCRE). IEEE. 2013, pp. 272–281.

https://doi.org/10.1145/2470654.2470684
https://doi.org/10.1145/2470654.2470684
https://doi.org/10.1145/2470654.2470684
https://doi.org/10.1145/2470654.2470684
https://doi.org/10.1109/TR.2018.2865733
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://doi.org/10.1109/ICACCCN.2018.8748521
https://doi.org/10.1109/ICACCCN.2018.8748521

Bibliography 153

[121] Maurizio Leotta, Diego Clerissi, Filippo Ricca, and Paolo Tonella.
“Visual vs. DOM-based web locators: An empirical study”. In: Inter-
national Conference on Web Engineering. Springer. 2014, pp. 322–
340.

[122] Maurizio Leotta, Filippo Ricca, and Paolo Tonella. “SIDEREAL:
Statistical adaptive generation of robust locators for Web testing”.
In: Software Testing, Verification and Reliability 31.3 (2021), e1767.

[123] Maurizio Leotta, Andrea Stocco, Filippo Ricca, and Paolo Tonella.
“ROBULA+: An Algorithm for Generating Robust XPath Locators
for Web Testing”. In: Journal of Software: Evolution and Process
(2016), 28:177–204.

[124] VI Levenshtein. “Binary Codes Capable of Correcting Deletions,
Insertions and Reversals”. In: Soviet Physics Doklady 10 (1966),
p. 707.

[125] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. “Droid-
Bot: A Lightweight UI-guided Test Input Generator for Android”.
In: Proceedings of the 39th International Conference on Software
Engineering Companion. ICSE-C ’17. Buenos Aires, Argentina: IEEE
Press, 2017, pp. 23–26. isbn: 978-1-5386-1589-8. doi: 10.1109/ICS
E-C.2017.8.

[126] Zhao Li and J. Tian. “Testing the suitability of Markov chains
as Web usage models”. In: Proceedings 27th Annual International
Computer Software and Applications Conference. COMPAC 2003.
2003, pp. 356–361. doi: 10.1109/CMPSAC.2003.1245365.

[127] Mario Linares-Vásquez, Kevin Moran, and Denys Poshyvanyk. “Con-
tinuous, evolutionary and large-scale: A new perspective for au-
tomated mobile app testing”. In: 2017 IEEE International Con-
ference on Software Maintenance and Evolution (ICSME). IEEE.
2017, pp. 399–410.

[128] LoadComplete | TestComplete Documentation. url: https://supp
ort.smartbear.com/testcomplete/docs/other-tools/loadcom
plete.html.

https://doi.org/10.1109/ICSE-C.2017.8
https://doi.org/10.1109/ICSE-C.2017.8
https://doi.org/10.1109/CMPSAC.2003.1245365
https://support.smartbear.com/testcomplete/docs/other-tools/loadcomplete.html
https://support.smartbear.com/testcomplete/docs/other-tools/loadcomplete.html
https://support.smartbear.com/testcomplete/docs/other-tools/loadcomplete.html

154 Bibliography

[129] Loadrunner: Strumenti per il test di carico delle applicazioni: Micro
focus. url: https://www.microfocus.com/it-it/products/load
runner-professional/overview.

[130] Sylvain Lugeon, Tiziano Piccardi, and Robert West. “Homepage2Vec:
Language-Agnostic Website Embedding and Classification”. In: Pro-
ceedings of the International AAAI Conference on Web and Social
Media. Vol. 16. 2022, pp. 1285–1291.

[131] Wei Ma, Mengjie Zhao, Ezekiel Soremekun, Qiang Hu, Jie Zhang,
Mike Papadakis, Maxime Cordy, Xiaofei Xie, and Yves Le Traon.
GraphCode2Vec: Generic Code Embedding via Lexical and Program
Dependence Analyses. 2021. doi: 10.48550/ARXIV.2112.01218.

[132] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. “Dynodroid:
An input generation system for android apps”. In: Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering.
ACM. 2013, pp. 224–234.

[133] Sonal Mahajan and William GJ Halfond. “Finding HTML presenta-
tion failures using image comparison techniques”. In: Proceedings of
the 29th ACM/IEEE international conference on Automated soft-
ware engineering. 2014, pp. 91–96.

[134] Haroon Malik, Bram Adams, and Ahmed E. Hassan. “Pinpoint-
ing the Subsystems Responsible for the Performance Deviations
in a Load Test”. In: 2010 IEEE 21st International Symposium on
Software Reliability Engineering. 2010, pp. 201–210. doi: 10.1109
/ISSRE.2010.43.

[135] Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. “De-
tecting near-duplicates for web crawling”. In: Proceedings of the 16th
international conference on World Wide Web. 2007, pp. 141–150.

[136] K. Mao, M. Harman, and Y. Jia. “Crowd intelligence enhances au-
tomated mobile testing”. In: 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE/ACM.
Oct. 2017, pp. 16–26. doi: 10.1109/ASE.2017.8115614.

https://www.microfocus.com/it-it/products/loadrunner-professional/overview
https://www.microfocus.com/it-it/products/loadrunner-professional/overview
https://doi.org/10.48550/ARXIV.2112.01218
https://doi.org/10.1109/ISSRE.2010.43
https://doi.org/10.1109/ISSRE.2010.43
https://doi.org/10.1109/ASE.2017.8115614

Bibliography 155

[137] Ke Mao, Licia Capra, Mark Harman, and Yue Jia. “A survey of
the use of crowdsourcing in software engineering”. In: Journal of
Systems and Software 126 (2017), pp. 57–84. issn: 0164-1212. doi:
https://doi.org/10.1016/j.jss.2016.09.015. url: http://ww
w.sciencedirect.com/science/article/pii/S016412121630183
2.

[138] Ke Mao, Licia Capra, Mark Harman, and Yue Jia. “A survey of
the use of crowdsourcing in software engineering”. In: Journal of
Systems and Software 126 (2017), pp. 57–84. issn: 0164-1212. doi:
https://doi.org/10.1016/j.jss.2016.09.015. url: https://w
ww.sciencedirect.com/science/article/pii/S01641212163018
32.

[139] Ke Mao, Mark Harman, and Yue Jia. “Sapienz: Multi-objective au-
tomated testing for Android applications”. In: Proceedings of the
25th International Symposium on Software Testing and Analysis.
ACM. 2016, pp. 94–105.

[140] Alessandro Marchetto, Paolo Tonella, and Filippo Ricca. “State-
based testing of Ajax web applications”. In: 2008 1st International
Conference on Software Testing, Verification, and Validation. IEEE.
2008, pp. 121–130.

[141] Kaszo Mark and Legany Csaba. “Analyzing Customer Behavior
Model Graph (CBMG) using Markov Chains”. In: 2007 11th In-
ternational Conference on Intelligent Engineering Systems. 2007,
pp. 71–76. doi: 10.1109/INES.2007.4283675.

[142] Vincenzo Marrazzo. How to handle correlation in jmeter: Blazeme-
ter by perforce. url: https://www.blazemeter.com/blog/correl
ation-in-jmeter#what.

[143] Antonio Mastropaolo, Nathan Cooper, David Nader Palacio, Si-
mone Scalabrino, Denys Poshyvanyk, Rocco Oliveto, and Gabriele
Bavota. Using Transfer Learning for Code-Related Tasks. 2022. doi:
10.48550/ARXIV.2206.08574.

[144] Antonio Mastropaolo, Luca Pascarella, and Gabriele Bavota. “Using
Deep Learning to Generate Complete Log Statements”. In: Proceed-
ings of the 44th International Conference on Software Engineering.

https://doi.org/https://doi.org/10.1016/j.jss.2016.09.015
http://www.sciencedirect.com/science/article/pii/S0164121216301832
http://www.sciencedirect.com/science/article/pii/S0164121216301832
http://www.sciencedirect.com/science/article/pii/S0164121216301832
https://doi.org/https://doi.org/10.1016/j.jss.2016.09.015
https://www.sciencedirect.com/science/article/pii/S0164121216301832
https://www.sciencedirect.com/science/article/pii/S0164121216301832
https://www.sciencedirect.com/science/article/pii/S0164121216301832
https://doi.org/10.1109/INES.2007.4283675
https://www.blazemeter.com/blog/correlation-in-jmeter#what
https://www.blazemeter.com/blog/correlation-in-jmeter#what
https://doi.org/10.48550/ARXIV.2206.08574

156 Bibliography

ICSE ’22. Pittsburgh, Pennsylvania: ACM, 2022, pp. 2279–2290.
isbn: 9781450392211. doi: 10.1145/3510003.3511561.

[145] Antonio Mastropaolo, Simone Scalabrino, Nathan Cooper, David
Nader Palacio, Denys Poshyvanyk, Rocco Oliveto, and Gabriele
Bavota. “Studying the Usage of Text-To-Text Transfer Transformer
to Support Code-Related Tasks”. In: Proceedings of the 43rd Inter-
national Conference on Software Engineering. ICSE ’21. Madrid,
Spain: IEEE, 2021, pp. 336–347. isbn: 9781450390859. doi: 10.11
09/ICSE43902.2021.00041.

[146] Daniel A Menascé. “Load testing of web sites”. In: IEEE internet
computing 6.4 (2002), pp. 70–74.

[147] Daniel A Menascé, Virgilio AF Almeida, Rodrigo Fonseca, and
Marco A Mendes. “A methodology for workload characterization
of e-commerce sites”. In: Proceedings of the 1st ACM conference on
Electronic commerce. 1999, pp. 119–128.

[148] Ali Mesbah, Arie van Deursen, and Stefan Lenselink. “Crawling
Ajax-based Web Applications through Dynamic Analysis of User In-
terface State Changes”. In: ACM Transactions on the Web. TWEB
6.1 (2012), 3:1–3:30.

[149] Ali Mesbah, Arie van Deursen, and Danny Roest. “Invariant-based
Automatic Testing of Modern Web Applications”. In: IEEE Trans-
actions on Software Engineering (TSE) 38.1 (2012), pp. 35–53.

[150] Microsoft. Fast and reliable end-to-end testing for modern web apps
| Playwright. url: https://playwright.dev/.

[151] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and
Jeff Dean. “Distributed representations of words and phrases and
their compositionality”. In: Advances in neural information process-
ing systems 26 (2013).

[152] Mostafa Mohammed, Haipeng Cai, and Na Meng. “An Empirical
Comparison Between Monkey Testing and Human Testing (WIP
Paper)”. In: Proceedings of the 20th ACM SIGPLAN/SIGBED In-
ternational Conference on Languages, Compilers, and Tools for Em-
bedded Systems. LCTES 2019. Phoenix, AZ, USA: ACM, 2019,

https://doi.org/10.1145/3510003.3511561
https://doi.org/10.1109/ICSE43902.2021.00041
https://doi.org/10.1109/ICSE43902.2021.00041
https://playwright.dev/

Bibliography 157

pp. 188–192. isbn: 978-1-4503-6724-0. doi: 10.1145/3316482.3
326342. url: http://doi.acm.org/10.1145/3316482.3326342.

[153] Monkeyrunner. url: https://developer.android.com/studio/t
est/monkeyrunner/index.html (visited on 05/08/2019).

[154] K. Moran, R. Bonett, C. Bernal-Cárdenas, B. Otten, D. Park, and
D. Poshyvanyk. “On-Device Bug Reporting for Android Applica-
tions”. In: 2017 IEEE/ACM 4th International Conference on Mo-
bile Software Engineering and Systems (MOBILESoft). May 2017,
pp. 215–216. doi: 10.1109/MOBILESoft.2017.36.

[155] Kevin Moran, Mario Linares-Vásquez, Carlos Bernal-Cárdenas, Christo-
pher Vendome, and Denys Poshyvanyk. “Automatically discovering,
reporting and reproducing android application crashes”. In: 2016
IEEE international conference on software testing, verification and
validation (icst). IEEE. 2016, pp. 33–44.

[156] Alessandro Moschitti. “Efficient convolution kernels for dependency
and constituent syntactic trees”. In: European Conference on Ma-
chine Learning. Springer. 2006, pp. 318–329.

[157] Alessandro Moschitti. “Making tree kernels practical for natural
language learning”. In: 11th conference of the European Chapter of
the Association for Computational Linguistics. 2006.

[158] MunchLife: A Munchkin level counter for Android - GitHub repos-
itory. Seen on Oct. 22, 2022. url: https://github.com/pacebl
/MunchLife.

[159] Marjane Namavar, Noor Nashid, and Ali Mesbah. “A Controlled
Experiment of Different Code Representations for Learning-Based
Bug Repair”. In: Empirical Software Engineering (2022).

[160] Jakob Nielsen. “Finding Usability Problems through Heuristic Eval-
uation”. In: Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems. CHI ’92. ACM. Monterey, California,
USA: Association for Computing Machinery, 1992, pp. 373–380.
isbn: 0897915135. doi: 10.1145/142750.142834. url: https://d
oi.org/10.1145/142750.142834.

[161] Jan Odvarko. Har Adopters. Last seen: Nov. 11, 2022. url: http:
//www.softwareishard.com/blog/har-adopters/.

https://doi.org/10.1145/3316482.3326342
https://doi.org/10.1145/3316482.3326342
http://doi.acm.org/10.1145/3316482.3326342
https://developer.android.com/studio/test/monkeyrunner/index.html
https://developer.android.com/studio/test/monkeyrunner/index.html
https://doi.org/10.1109/MOBILESoft.2017.36
https://github.com/pacebl/MunchLife
https://github.com/pacebl/MunchLife
https://doi.org/10.1145/142750.142834
https://doi.org/10.1145/142750.142834
https://doi.org/10.1145/142750.142834
http://www.softwareishard.com/blog/har-adopters/
http://www.softwareishard.com/blog/har-adopters/

158 Bibliography

[162] Jan Odvarko, Arvind Jain, and Andy Davies. HTTP Archive (HAR)
format. url: https://w3c.github.io/web-performance/specs
/HAR/Overview.html.

[163] Alessandro Orso. “Monitoring, analysis, and testing of deployed
software”. In: Proceedings of the FSE/SDP workshop on Future of
software engineering research. 2010, pp. 263–268.

[164] Ramakanth P., Kalpan Bhargav, and M Tech. “A Survey on Perfor-
mance Testing Approaches of Web Application and Importance of
WAN Simulation in Performance Testing”. In: International Jour-
nal on Computer Science and Engineering 4 (May 2012).

[165] Chester Parrott and Doris Carver. “Lodestone: A Streaming Ap-
proach to Behavior Modeling and Load Testing”. In: 2020 3rd In-
ternational Conference on Data Intelligence and Security (ICDIS).
2020, pp. 109–116. doi: 10.1109/ICDIS50059.2020.00021.

[166] Mateusz Pawlik and Nikolaus Augsten. “Efficient computation of
the tree edit distance”. In: ACM Transactions on Database Systems
(TODS) 40.1 (2015), pp. 1–40.

[167] Radim Řehůřek and Petr Sojka. “Software Framework for Topic
Modelling with Large Corpora”. In: Proceedings of the LREC 2010
Workshop on New Challenges for NLP Frameworks. Malta: ELRA,
May 2010, pp. 45–50.

[168] Replication Package. https://github.com/anonymousconference
submitter/icse2023. 2022.

[169] Filippo Ricca, Maurizio Leotta, and Andrea Stocco. “Three open
problems in the context of E2E web testing and a vision: NEONATE”.
In: Advances in Computers. Vol. 113. Elsevier, 2019, pp. 89–133.

[170] Robotium: User Scenario Testing for Android – GitHub repository.
Seen on Oct. 22, 2022. url: https://github.com/RobotiumTech
/robotium.

[171] Robotium: User Scenario Testing for Android – GitHub repository.
Seen on Oct. 22, 2022. url: https://marketplace.eclipse.org
/content/robotium-recorder.

https://w3c.github.io/web-performance/specs/HAR/Overview.html
https://w3c.github.io/web-performance/specs/HAR/Overview.html
https://doi.org/10.1109/ICDIS50059.2020.00021
https://github.com/anonymousconferencesubmitter/icse2023
https://github.com/anonymousconferencesubmitter/icse2023
https://github.com/RobotiumTech/robotium
https://github.com/RobotiumTech/robotium
https://marketplace.eclipse.org/content/robotium-recorder
https://marketplace.eclipse.org/content/robotium-recorder

Bibliography 159

[172] Giancarlo Ruffo, Rossano Schifanella, Matteo Sereno, and Roberto
Politi. “Walty: a user behavior tailored tool for evaluating web ap-
plication performance”. In: Third IEEE International Symposium
on Network Computing and Applications, 2004.(NCA 2004). Pro-
ceedings. IEEE. 2004, pp. 77–86.

[173] Divya Saharan, Yogesh Kumar, and Rahul Rishi. “Analytical Study
and Implementation of Web Performance Testing Tools”. In: 2018
International Conference on Recent Innovations in Electrical, Elec-
tronics & Communication Engineering (ICRIEECE). 2018, pp. 2370–
2377. doi: 10.1109/ICRIEECE44171.2018.9008408.

[174] Onur Sahin, Assel Aliyeva, Hariharan Mathavan, Ayse Coskun, and
Manuel Egele. “Towards Practical Record and Replay for Mobile
Applications”. In: Proceedings of the 56th Annual Design Automa-
tion Conference 2019. DAC ’19. Las Vegas, NV, USA: ACM, 2019,
230:1–230:2. isbn: 978-1-4503-6725-7. doi: 10.1145/3316781.332
2476. url: http://doi.acm.org/10.1145/3316781.3322476.

[175] Ibrahim Anka Salihu and Rosziati Ibrahim. “Systematic Explo-
ration of Android Apps’ Events for Automated Testing”. In: Pro-
ceedings of the 14th International Conference on Advances in Mo-
bile Computing and Multi Media. MoMM ’16. Singapore, Singapore:
ACM, 2016, pp. 50–54. isbn: 978-1-4503-4806-5. doi: 10.1145/30
07120.3011072.

[176] Iflaah Salman, Ayse Tosun Misirli, and Natalia Juristo. “Are stu-
dents representatives of professionals in software engineering exper-
iments?” In: 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering. Vol. 1. IEEE. 2015, pp. 666–676.

[177] Gerard Salton, Anita Wong, and Chung-Shu Yang. “A vector space
model for automatic indexing”. In: Communications of the ACM
18.11 (1975), pp. 613–620.

[178] Andrew Sears. “Heuristic Walkthroughs: Finding the Problems With-
out the Noise”. In: International Journal of Human–Computer In-
teraction 9.3 (1997), pp. 213–234.

[179] SeleniumHQ Web Browser Automation. http://www.seleniumhq
.org/. Accessed: 2017-08-01. 2018.

https://doi.org/10.1109/ICRIEECE44171.2018.9008408
https://doi.org/10.1145/3316781.3322476
https://doi.org/10.1145/3316781.3322476
http://doi.acm.org/10.1145/3316781.3322476
https://doi.org/10.1145/3007120.3011072
https://doi.org/10.1145/3007120.3011072
http://www.seleniumhq.org/
http://www.seleniumhq.org/

160 Bibliography

[180] Mahnaz Shams, Diwakar Krishnamurthy, and Behrouz Far. “A Model-
Based Approach for Testing the Performance of Web Applications”.
In: Proceedings of the 3rd International Workshop on Software Qual-
ity Assurance. SOQUA ’06. Portland, Oregon: Association for Com-
puting Machinery, 2006, pp. 54–61. isbn: 1595935843. doi: 10.114
5/1188895.1188909. url: https://doi.org/10.1145/1188895.1
188909.

[181] Kilho Shin, Taichi Ishikawa, Yu-Lu Liu, and David Lawrence Shep-
ard. “Learning DOM Trees of Web Pages by Subpath Kernel and
Detecting Fake e-Commerce Sites”. In: Machine Learning and Knowl-
edge Extraction 3.1 (2021), pp. 95–122.

[182] Simply Do – F-Droid. Seen on Oct. 22, 2022. url: https://f-dro
id.org/en/packages/kdk.android.simplydo/.

[183] Amit Singhal. “Modern Information Retrieval: A Brief Overview.”
In: IEEE Data Eng. Bull. 24.4 (2001), pp. 35–43.

[184] D. Skvorc, M. Horvat, and S. Srbljic. “Performance evaluation of
Websocket protocol for implementation of full-duplex web streams”.
In: 2014 37th International Convention on Information and Com-
munication Technology, Electronics and Microelectronics (MIPRO).
2014, pp. 1003–1008. doi: 10.1109/MIPRO.2014.6859715.

[185] Óscar Soto-Sánchez, Michel Maes-Bermejo, Micael Gallego, and
Francisco Gortázar. “A dataset of regressions in web applications
detected by end-to-end tests”. In: Software Quality Journal 30.2
(2022), pp. 425–454.

[186] I.D. Steiner. Group Process and Productivity. New York, NY, USA:
Academic Press, 1972.

[187] Andrea Stocco, Maurizio Leotta, Filippo Ricca, and Paolo Tonella.
“APOGEN: automatic page object generator for web testing”. In:
Software Quality Journal 25.3 (2017), pp. 1007–1039.

[188] Andrea Stocco, Maurizio Leotta, Filippo Ricca, and Paolo Tonella.
“Clustering-Aided Page Object Generation for Web Testing”. In:
Proceedings of 16th International Conference on Web Engineering.
ICWE 2016. Springer, 2016, pp. 132–151.

https://doi.org/10.1145/1188895.1188909
https://doi.org/10.1145/1188895.1188909
https://doi.org/10.1145/1188895.1188909
https://doi.org/10.1145/1188895.1188909
https://f-droid.org/en/packages/kdk.android.simplydo/
https://f-droid.org/en/packages/kdk.android.simplydo/
https://doi.org/10.1109/MIPRO.2014.6859715

Bibliography 161

[189] Nezih Sunman, Yiğit Soydan, and Hasan Sözer. “Automated web
application testing driven by pre-recorded test cases”. In: Journal
of Systems and Software (2022), p. 111441. issn: 0164-1212. doi:
https://doi.org/10.1016/j.jss.2022.111441.

[190] Michael J Swain and Dana H Ballard. “Indexing via color his-
tograms”. In: Active perception and robot vision. Springer, 1992,
pp. 261–273.

[191] Suresh Thummalapenta, Pranavadatta Devaki, Saurabh Sinha, Satish
Chandra, Sivagami Gnanasundaram, Deepa D Nagaraj, Sampath
Kumar, and Sathish Kumar. “Efficient and change-resilient test au-
tomation: An industrial case study”. In: 2013 35th International
Conference on Software Engineering (ICSE). IEEE. 2013, pp. 1002–
1011.

[192] Tippy Tipper (Tip Calculator) – Github Repository. Seen on Oct.
22, 2022. url: https://github.com/mandlar/tippytipper.

[193] Porfirio Tramontana, Domenico Amalfitano, Nicola Amatucci, and
Anna Rita Fasolino. “Automated functional testing of mobile appli-
cations: a systematic mapping study”. In: Software Quality Journal
27.1 (Mar. 2019), pp. 149–201. issn: 1573-1367. doi: 10.1007/s11
219-018-9418-6. url: https://doi.org/10.1007/s11219-018-
9418-6.

[194] Jatin Karthik Tripathy, Sibi Chakkaravarthy Sethuraman, Meenalosini
Vimal Cruz, Anupama Namburu, P Mangalraj, Vaidehi Vijayaku-
mar, et al. “Comprehensive analysis of embeddings and pre-training
in NLP”. In: Computer Science Review 42 (2021), p. 100433.

[195] Trolly – F-Droid. Seen on Oct. 22, 2022. url: https://f-droid.o
rg/en/packages/caldwell.ben.trolly/.

[196] Rosalia Tufano, Luca Pascarella, Michele Tufano, Denys Poshy-
vanyk, and Gabriele Bavota. “Towards Automating Code Review
Activities”. In: Proceedings of the 43rd International Conference
on Software Engineering. ICSE ’21. Madrid, Spain: IEEE, 2021,
pp. 163–174. isbn: 9781450390859. doi: 10.1109/ICSE43902.2021
.00027.

https://doi.org/https://doi.org/10.1016/j.jss.2022.111441
https://github.com/mandlar/tippytipper
https://doi.org/10.1007/s11219-018-9418-6
https://doi.org/10.1007/s11219-018-9418-6
https://doi.org/10.1007/s11219-018-9418-6
https://doi.org/10.1007/s11219-018-9418-6
https://f-droid.org/en/packages/caldwell.ben.trolly/
https://f-droid.org/en/packages/caldwell.ben.trolly/
https://doi.org/10.1109/ICSE43902.2021.00027
https://doi.org/10.1109/ICSE43902.2021.00027

162 Bibliography

[197] Yuan-Hsin Tung and Shian-Shyong Tseng. “A novel approach to
collaborative testing in a crowdsourcing environment”. In: Journal
of Systems and Software 86.8 (2013), pp. 2143–2153. issn: 0164-
1212. doi: https://doi.org/10.1016/j.jss.2013.03.079. url:
http://www.sciencedirect.com/science/article/pii/S016412
1213000782.

[198] UI Automator. Seen on Oct. 22, 2022. url: https://developer.a
ndroid.com/training/testing/ui-automator.

[199] Raynor Vliegendhart, Eelco Dolstra, and Johan Pouwelse. “Crowd-
sourced User Interface Testing for Multimedia Applications”. In:
Proceedings of the ACM Multimedia 2012 Workshop on Crowdsourc-
ing for Multimedia. CrowdMM ’12. ACM. Nara, Japan: Association
for Computing Machinery, 2012, pp. 21–22. isbn: 9781450315890.
doi: 10.1145/2390803.2390813. url: https://doi.org/10.1145
/2390803.2390813.

[200] Christian Vögele, André van Hoorn, Eike Schulz, Wilhelm Hassel-
bring, and Helmut Krcmar. “WESSBAS: extraction of probabilistic
workload specifications for load testing and performance predic-
tion—a model-driven approach for session-based application sys-
tems”. In: Software & Systems Modeling 17.2 (2018), pp. 443–477.

[201] J. Wang, S. Wang, J. Chen, T. Menzies, Q. Cui, M. Xie, and Q.
Wang. “Characterizing Crowds to Better Optimize Worker Recom-
mendation in Crowdsourced Testing”. In: IEEE Transactions on
Software Engineering (2019). doi: 10.1109/TSE.2019.2918520.

[202] J. Wang, Y. Yang, S. Wang, C. Chen, D. Wang, and Q. Wang.
“Context-Aware Personalized Crowdtesting Task Recommendation”.
In: IEEE Transactions on Software Engineering 48.8 (2022). cited
By 2, pp. 3131–3144. doi: 10.1109/TSE.2021.3081171. url: http
s://www.scopus.com/inward/record.uri?eid=2-s2.0-8510672
9716&doi=10.1109%5C%2fTSE.2021.3081171&partnerID=40&md5
=67f37fe295058a12ed25afe41c5f8b51.

[203] Junjie Wang, Mingyang Li, Song Wang, Tim Menzies, and Qing
Wang. “Images don’t lie: Duplicate crowdtesting reports detection
with screenshot information”. In: Information and Software Tech-
nology 110 (2019), pp. 139–155. issn: 0950-5849. doi: https://do

https://doi.org/https://doi.org/10.1016/j.jss.2013.03.079
http://www.sciencedirect.com/science/article/pii/S0164121213000782
http://www.sciencedirect.com/science/article/pii/S0164121213000782
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/ui-automator
https://doi.org/10.1145/2390803.2390813
https://doi.org/10.1145/2390803.2390813
https://doi.org/10.1145/2390803.2390813
https://doi.org/10.1109/TSE.2019.2918520
https://doi.org/10.1109/TSE.2021.3081171
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106729716&doi=10.1109%5C%2fTSE.2021.3081171&partnerID=40&md5=67f37fe295058a12ed25afe41c5f8b51
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106729716&doi=10.1109%5C%2fTSE.2021.3081171&partnerID=40&md5=67f37fe295058a12ed25afe41c5f8b51
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106729716&doi=10.1109%5C%2fTSE.2021.3081171&partnerID=40&md5=67f37fe295058a12ed25afe41c5f8b51
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106729716&doi=10.1109%5C%2fTSE.2021.3081171&partnerID=40&md5=67f37fe295058a12ed25afe41c5f8b51
https://doi.org/https://doi.org/10.1016/j.infsof.2019.03.003
https://doi.org/https://doi.org/10.1016/j.infsof.2019.03.003
https://doi.org/https://doi.org/10.1016/j.infsof.2019.03.003

Bibliography 163

i.org/10.1016/j.infsof.2019.03.003. url: https://www.scie
ncedirect.com/science/article/pii/S0950584919300503.

[204] Junjie Wang, Ye Yang, Rahul Krishna, Tim Menzies, and Qing
Wang. “iSENSE: Completion-aware crowdtesting management”. In:
2019 IEEE/ACM 41st International Conference on Software Engi-
neering (ICSE). IEEE. 2019, pp. 912–923.

[205] Junjie Wang, Ye Yang, Tim Menzies, and Qing Wang. “isense2. 0:
Improving completion-aware crowdtesting management with dupli-
cate tagger and sanity checker”. In: ACM Transactions on Software
Engineering and Methodology (TOSEM) 29.4 (2020), pp. 1–27.

[206] Junjie Wang, Ye Yang, Song Wang, Yuanzhe Hu, Dandan Wang,
and Qing Wang. “Context-aware in-process crowdworker recom-
mendation”. In: Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering. ACM/IEEE. 2020, pp. 1535–
1546.

[207] Yihong Wang, Konstantinos Papangelis, Ioanna Lykourentzou, Vassilis-
Javed Khan, Michael Saker, Yong Yue, and Jonathan Grudin. “The
Dawn of Crowdfarms”. In: Commun. ACM 65.8 (July 2022), pp. 64–
70. issn: 0001-0782. doi: 10.1145/3490698. url: https://doi.o
rg/10.1145/3490698.

[208] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simon-
celli. “Image quality assessment: from error visibility to structural
similarity”. In: IEEE transactions on image processing 13.4 (2004),
pp. 600–612.

[209] Liu Wenyin, Guanglin Huang, Liu Xiaoyue, Zhang Min, and Xiaotie
Deng. “Detection of phishing webpages based on visual similarity”.
In: Special interest tracks and posters of the 14th international con-
ference on World Wide Web. 2005, pp. 1060–1061.

[210] James A Whittaker. Exploratory software testing: tips, tricks, tours,
and techniques to guide test design. Pearson Education, 2009.

[211] Frank Wilcoxon. “Individual Comparisons by Ranking Methods”.
In: Biometrics Bulletin 1.6 (Dec. 1945), p. 80. doi: 10.2307/3001
968.

https://doi.org/https://doi.org/10.1016/j.infsof.2019.03.003
https://doi.org/https://doi.org/10.1016/j.infsof.2019.03.003
https://doi.org/https://doi.org/10.1016/j.infsof.2019.03.003
https://doi.org/https://doi.org/10.1016/j.infsof.2019.03.003
https://www.sciencedirect.com/science/article/pii/S0950584919300503
https://www.sciencedirect.com/science/article/pii/S0950584919300503
https://doi.org/10.1145/3490698
https://doi.org/10.1145/3490698
https://doi.org/10.1145/3490698
https://doi.org/10.2307/3001968
https://doi.org/10.2307/3001968

164 Bibliography

[212] Frank Wilcoxon. “Individual comparisons by ranking methods”. In:
Breakthroughs in statistics. Springer, 1992, pp. 196–202.

[213] C. Wohlin, P. Runeson, M. Host, M.C. Ohlsson, B. Regnell, and A.
Wesslen. Experimentation in Software Engineering. Springer, 2012.

[214] Murray Wood, Marc Roper, Andrew Brooks, and James Miller.
“Comparing and Combining Software Defect Detection Techniques:
A Replicated Empirical Study”. In: Proceedings of the 6th Euro-
pean SOFTWARE ENGINEERING Conference Held Jointly with
the 5th ACM SIGSOFT International Symposium on Foundations
of Software Engineering. ESEC ’97/FSE-5. ACM. Zurich, Switzer-
land: Springer-Verlag, 1997, pp. 262–277. isbn: 3540635319. doi:
10.1145/267895.267915. url: https://doi.org/10.1145/26789
5.267915.

[215] M. Xie, Q. Wang, Q. Cui, G. Yang, and M. Li. “CQM: Coverage-
constrained quality maximization in crowdsourcing test”. In: IEEE/ACM.
Institute of Electrical and Electronics Engineers Inc., 2017, pp. 192–
194. doi: 10.1109/ICSE-C.2017.112.

[216] T. Xie. “Cooperative testing and analysis: Human-tool, tool-tool
and human-human cooperations to get work done”. In: cited By 10.
IEEE. 2012, pp. 1–3. doi: 10.1109/SCAM.2012.31. url: https:
//www.scopus.com/inward/record.uri?eid=2-s2.0-848723276
10&doi=10.1109%2fSCAM.2012.31&partnerID=40&md5=b3ffc3cbe
f1d6f00b28e3b8a09e8b5b3.

[217] Rahulkrishna Yandrapally, Andrea Stocco, and Ali Mesbah. “Near-
Duplicate Detection in Web App Model Inference”. In: Proceedings
of 42nd International Conference on Software Engineering. ICSE
’20. ACM, 2020, 12 pages.

[218] Rahulkrishna Yandrapally, Andrea Stocco, and Ali Mesbah. “Near-
duplicate detection in web app model inference”. In: Proceedings of
the ACM/IEEE 42nd International Conference on Software Engi-
neering. 2020, pp. 186–197.

[219] Bian Yang, Fan Gu, and Xiamu Niu. “Block mean value based image
perceptual hashing”. In: 2006 International Conference on Intelli-
gent Information Hiding and Multimedia. IEEE. 2006, pp. 167–172.

https://doi.org/10.1145/267895.267915
https://doi.org/10.1145/267895.267915
https://doi.org/10.1145/267895.267915
https://doi.org/10.1109/ICSE-C.2017.112
https://doi.org/10.1109/SCAM.2012.31
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84872327610&doi=10.1109%2fSCAM.2012.31&partnerID=40&md5=b3ffc3cbef1d6f00b28e3b8a09e8b5b3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84872327610&doi=10.1109%2fSCAM.2012.31&partnerID=40&md5=b3ffc3cbef1d6f00b28e3b8a09e8b5b3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84872327610&doi=10.1109%2fSCAM.2012.31&partnerID=40&md5=b3ffc3cbef1d6f00b28e3b8a09e8b5b3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84872327610&doi=10.1109%2fSCAM.2012.31&partnerID=40&md5=b3ffc3cbef1d6f00b28e3b8a09e8b5b3

Bibliography 165

[220] Hector Yee, Sumanita Pattanaik, and Donald P Greenberg. “Spa-
tiotemporal sensitivity and visual attention for efficient rendering of
dynamic environments”. In: ACM Transactions on Graphics (TOG)
20.1 (2001), pp. 39–65.

[221] Hector Yee, Sumanita Pattanaik, and Donald P. Greenberg. “Spa-
tiotemporal Sensitivity and Visual Attention for Efficient Render-
ing of Dynamic Environments”. In: ACM Trans. Graph. 20.1 (Jan.
2001), pp. 39–65. issn: 0730-0301.

[222] Tom Yeh, Tsung-Hsiang Chang, and Robert C Miller. “Sikuli: us-
ing GUI screenshots for search and automation”. In: Proceedings of
the 22nd annual ACM symposium on User interface software and
technology. ACM. 2009, pp. 183–192.

[223] Keith Yorkston. “Performance Testing Tasks”. In: Performance Test-
ing: An ISTQB Certified Tester Foundation Level Specialist Cer-
tification Review. Berkeley, CA: Apress, 2021, pp. 195–354. isbn:
978-1-4842-7255-8. doi: 10.1007/978-1-4842-7255-8_4. url:
https://doi.org/10.1007/978-1-4842-7255-8%5C_4.

[224] Li Yujian and Liu Bo. “A normalized Levenshtein distance metric”.
In: IEEE transactions on pattern analysis and machine intelligence
29.6 (2007), pp. 1091–1095.

[225] Christoph Zauner. “Implementation and benchmarking of percep-
tual image hash functions”. In: (2010).

[226] Samer Zein, Norsaremah Salleh, and John Grundy. “A Systematic
Mapping Study of Mobile Application Testing Techniques”. In: J.
Syst. Softw. 117.C (July 2016), pp. 334–356. issn: 0164-1212. doi:
10.1016/j.jss.2016.03.065. url: https://doi.org/10.1016/j
.jss.2016.03.065.

[227] Xiaofang Zhang, Yang Feng, Di Liu, Zhenyu Chen, and Baowen Xu.
“Research progress of crowdsourced software testing”. In: Journal of
Software 29.1 (2018), pp. 69–88.

[228] Yan Zheng, Yi Liu, Xiaofei Xie, Yepang Liu, Lei Ma, Jianye Hao,
and Yang Liu. “Automatic web testing using curiosity-driven rein-
forcement learning”. In: 2021 IEEE/ACM 43rd International Con-
ference on Software Engineering (ICSE). IEEE. 2021, pp. 423–435.

https://doi.org/10.1007/978-1-4842-7255-8_4
https://doi.org/10.1007/978-1-4842-7255-8%5C_4
https://doi.org/10.1016/j.jss.2016.03.065
https://doi.org/10.1016/j.jss.2016.03.065
https://doi.org/10.1016/j.jss.2016.03.065

Author’s Publications

Journal Papers

Sergio Di Martino and Luigi Libero Lucio Starace. “Towards Uniform Ur-
ban Map Coverage in Vehicular Crowd-Sensing: a Decentralized Incen-
tivization Solution”. In: IEEE Open Journal of Intelligent Transporta-
tion Systems (2022).

Dario Asprone, Sergio Di Martino, Paola Festa, and Luigi Libero Lu-
cio Starace. “Vehicular crowd-sensing: a parametric routing algorithm
to increase spatio-temporal road network coverage”. In: International
Journal of Geographical Information Science 35.9 (2021), pp. 1876–
1904.

Sergio Di Martino, Anna Rita Fasolino, Luigi Libero Lucio Starace, and
Porfirio Tramontana. “Comparing the effectiveness of capture and re-
play against automatic input generation for Android graphical user in-
terface testing”. In: Software Testing, Verification and Reliability 31.3
(2021), e1754.

Valentina Casola, Alessandra De Benedictis, Sergio Di Martino, Nicola
Mazzocca, and Luigi Libero Lucio Starace. “Security-Aware Deploy-
ment Optimization of Cloud–Edge Systems in Industrial IoT”. In: IEEE
Internet of Things Journal 8.16 (2020), pp. 12724–12733.

168 Bibliography

Conference Papers

Francesco Altiero, Giovanni Colella, Anna Corazza, Sergio Di Martino,
Adriano Peron, and Luigi Libero Lucio Starace. “Change-Aware Re-
gression Test Prioritization using Genetic Algorithm”. In: Proceedings
of the 48th Euromicro Conference on Software Engineering and Ad-
vanced Applications. To appear in the proceedings. IEEE. 2022.

Francesco Altiero, Anna Corazza, Sergio Di Martino, Adriano Peron, and
Luigi Libero Lucio Starace. “ReCover: a curated dataset for regression
testing research”. In: Proceedings of the 19th International Conference
on Mining Software Repositories. 2022, pp. 196–200.

Sergio Di Martino and Luigi Libero Lucio Starace. “Vehicular Crowd-
Sensing on Complex Urban Road Networks: A Case Study in the City
of Porto”. In: vol. 62. Elsevier, 2022, pp. 350–357.

Luigi Libero Lucio Starace, Andrea Romdhana, and Sergio Di Martino.
“GenRL at the SBST 2022 Tool Competition”. In: 2022 IEEE/ACM
15th International Workshop on Search-Based Software Testing (SBST).
IEEE. 2022, pp. 49–50.

Massimo Benerecetti, Fabio Mogavero, Adriano Peron, and Luigi Libero
Lucio Starace. “Expressing Structural Temporal Properties of Safety
Critical Hierarchical Systems”. In: International Conference on the Qual-
ity of Information and Communications Technology. Springer. 2021,
pp. 356–369.

Anna Corazza, Sergio Di Martino, Adriano Peron, and Luigi Libero Lucio
Starace. “Web Application Testing: Using Tree Kernels to Detect Near-
duplicate States in Automated Model Inference”. In: Proceedings of
the 15th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM). 2021, pp. 1–6.

Francesco Altiero, Anna Corazza, Sergio Di Martino, Adriano Peron, and
Luigi Libero Lucio Starace. “Inspecting code churns to prioritize test
cases”. In: IFIP International Conference on Testing Software and Sys-
tems. Springer. 2020, pp. 272–285.

Conference Papers 169

Massimo Benerecetti, Ugo Gentile, Stefano Marrone, Roberto Nardone,
Adriano Peron, Luigi Libero Lucio Starace, and Valeria Vittorini. “From
dynamic state machines to promela”. In: International Symposium on
Model Checking Software. Springer. 2019, pp. 56–73.

	Abstract
	Sintesi in Lingua Italiana
	Contents
	Acknowledgements
	List of Acronyms
	List of Figures
	List of Tables
	List of Algorithms
	List of Listings
	Introduction
	Thesis Outline
	Origin of Chapters

	End-to-End Testing: Background and Related Work
	End-to-End Testing
	GUI-level Testing
	Overview of Approaches for GUI-level Testing
	Test Design with Exploratory Testing
	GUI-level Testing of Web Applications
	GUI-level Testing of Mobile Applications
	Crowdtesting

	Performance Testing
	Types of Performance Testing
	Phases of Performance Testing
	State of the Art
	Challenges in the Definition of Performance Tests

	Improving Automatic Web Test Generation with Near-duplicate Detection
	Reference Scenario for Automatic Web Test Generation
	Crawling

	Proposed Framework for Near-duplicate Detection
	Tree Kernel-based Near-duplicate Detection
	Tree Kernel Functions
	Proposed Approach

	Neural Embedding-based Near-duplicate Detection
	Neural Embeddings
	Proposed Approach

	Empirical Study Design
	Research Questions
	Datasets
	Baselines
	Use Cases
	Procedure and Metrics

	Results
	RQ1: Near-duplicate detection effectiveness
	RQ2: Accuracy of the inferred models
	RQ3: Impact on automatically generated tests
	Final Remarks

	Threats to Validity
	Summary and Future Works

	Automating Workload Generation for Web Apps leveraging existing E2E functional tests
	The Proposed Solution: E2E-Loader
	Overview of the proposed approach
	Managing Data Correlations: The Correlation Extractor component
	Performance Test Configurator
	Performance Test Generator

	Empirical Study Design
	Subject System
	Workloads
	Gold Standard Implementation
	Metrics
	Procedure

	Results
	Threats to Validity
	Summary and Future Works

	Investigating Exploratory E2E Functional testing of Android Apps
	Comparing Automated Tools and Practitioners using C&R
	Empirical Study Design
	Results
	Final Remarks

	Investigating Exploratory Crowdtesting
	Empirical Study Design
	Results

	Threats to Validity
	Summary and Future Works

	Conclusions
	Bibliography
	Author's Publications

