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Introduction

The reliability theory is a branch of applied mathematics which studies the lifetimes of de-

vices, items or organisms by regarding them as random variables. The first attempts of using

statistical methods in the context of quality control of industrial processes can be found at

the beginning of the 1930s although the birth of the reliability theory dates back to the World

War II during which the quality of missiles was analyzed by a probabilistic point of view.

After World War II, the development of new technologies and more complicated systems has

contributed to further applications of the reliability theory around the world which has since

become a discipline of increasing interest. For further details on the historical background of

the reliability theory one may refer to Hoyland and Rausand [55].

In this work, many topics related to the reliability theory are addressed. The topics can

be traced back to three macro-areas: the measures of uncertainty, the hazard and the reversed

hazard rate functions and the problem of predictions from censored data. Certainly, there will

be topics that will be involved on several occasions, such as stochastic orders and coherent

systems, aimed at linking the different macro-areas together. More precisely, this work is

organized as follows.

In Chapter 1, some fundamental notions of the reliability theory are presented. The con-

cepts introduced there are involved and used throughout all the other chapters. In particular,

the definitions and some properties of the hazard rate function and of the reversed hazard

rate function are given. Then, the definitions and the interrelations among some of the most

important stochastic orders are presented. Finally, some useful definitions and properties of

conditional distributions and coherent systems are studied.

In Chapter 2, it is performed the study of some new measures of uncertainty in the classical

probability theory. Before doing this, some well-known formulations of entropy are recalled

and a particular attention is devoted to the cumulative versions of entropy and their con-

nection with the moments of order statistics. This connection has been introduced in the

paper entitled On cumulative entropies in terms of moments of order statistics by

Narayanaswamy Balakrishnan, Francesco Buono and Maria Longobardi, published in 2022 in

Methodology and Computing in Applied Probability, vol. 24, pp. 345–359. Then, the chapter

proceeds by focusing attention on the extropy, the measure of uncertainty dual of entropy,
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Introduction 4

and by defining some new formulations of it. In particular, the past extropy, the weighted

extropy, the interval extropy and Tsallis extropy are introduced and studied. The results

about these measures of uncertainty are based on the papers On weighted extropies by

Narayanaswamy Balakrishnan, Francesco Buono and Maria Longobardi, published in 2022 in

Communications in Statistics - Theory and Methods, vol. 51, pp. 6250–6267, On Tsallis

extropy with an application to pattern recognition by Narayanaswamy Balakrishnan,

Francesco Buono and Maria Longobardi, published in 2022 in Statistics & Probability Let-

ters, vol. 180, p. 109241, Interval extropy and weighted interval extropy by Francesco

Buono, Osman Kamari and Maria Longobardi published in 2021 in Ricerche di matematica,

DOI: 10.1007/s11587-021-00678-x, and On extropy of past lifetime distribution by Os-

man Kamari and Francesco Buono published in 2021 in Ricerche di Matematica, vol. 70, pp.

505–515. Finally, some properties of the varentropy are introduced and a study on the past

varentropy is performed. This last part of the chapter is based on the paper Varentropy of

past lifetimes by Francesco Buono, Maria Longobardi and Franco Pellerey, published in 2022

in Mathematical Methods of Statistics, vol. 31, pp. 57–73.

Chapter 3 is dedicated to the study of some new measures of uncertainty in the context

of Dempster-Shafer theory of evidence, which is a generalization of the classical probabil-

ity theory. First, some general concepts of this theory are revised and then new measures

of discrimination are presented, namely Deng extropy, fractional Deng entropy and extropy

and the unified formulation of entropy. Finally, these measures of uncertainty are applied to

classification problems and several examples are given. Most of the results presented in this

chapter are based on the papers A unified formulation of entropy and its application by

Narayanaswamy Balakrishnan, Francesco Buono and Maria Longobardi, published in 2022 in

Physica A: Statistical Mechanics and its Applications, vol. 596, p. 127214, A dual measure

of uncertainty: The Deng Extropy by Francesco Buono and Maria Longobardi published

in 2020 in Entropy, vol. 22, p. 582, and Fractional Deng entropy and extropy and some

applications by Mohammad Reza Kazemi, Saeid Tahmasebi, Francesco Buono and Maria

Longobardi published in 2021 in Entropy, vol. 23, p. 623.

In Chapter 4, the extensions of the hazard rate function and of the reversed hazard rate

function to the multivariate case are analyzed. More precisely, these functions are defined by

taking into account the possibility of observing a dynamic history up to a fixed time and so

they are known as multivariate conditional hazard and reversed hazard rate functions. In the

first part of the chapter, the definition and some properties of the multivariate conditional

hazard rate functions are presented. Then, the main properties of a well-known dependence

model, namely the Load-Sharing model with its time-homogeneous version, are pointed out.

In the second part of the chapter, based on the paper Multivariate reversed hazard rates

and inactivity times of systems by Francesco Buono, Emilio De Santis, Maria Longobardi
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and Fabio Spizzichino, published in 2022 in Methodology and Computing in Applied Probability,

vol. 24, pp. 1987–2008, the multivariate conditional reversed hazard rate functions are defined

and studied.

Chapter 5 is devoted to the study of the aging intensity functions. First, the classical

concepts of aging and reversed aging intensity functions are recalled and a recent generalization

of the aging intensity function is also presented. Then, based on the paper On generalized

reversed aging intensity functions by Francesco Buono, Maria Longobardi and Magdalena

Szymkowiak, published in 2022 in Ricerche di matematica, vol. 71, pp. 85–108, the generalized

version of the reversed aging intensity function is introduced, some of its properties are studied

and stochastic comparisons are performed. The last part of the chapter is strictly related to

the developments of Chapter 4. In fact, the multivariate conditional version of the aging

intensity function is studied and some interesting properties are given in the case of the Load-

Sharing models. Most of the results presented in the last part of the chapter, are given in the

paper Multivariate conditional aging intensity functions and load-sharing models

by Francesco Buono, published in 2022 Hacettepe Journal of Mathematics and Statistics, vol.

51, pp. 1710–1722.

Chapter 6 is based on the studies that I have carried out during my visiting period at Uni-

versidad de Murcia under the supervision of Prof. Jorge Navarro. The main task of this chapter

is the prediction of future failures from censored data. In the first part, it is performed a study

based on quantile regression techniques with a special regard to the Proportional Hazard Rate

model. Most of the results related to this analysis are given in the paper Predicting future

failure times by using quantile regression by Jorge Navarro and Francesco Buono, pub-

lished in 2022 in Metrika, DOI: 10.1007/s00184-022-00884-z. In the second part, the problem

of predictions is studied for a generalization of the Load-Sharing model, namely the order de-

pendent Load-Sharing model. Furthermore, an algorithm to simulate random vectors from it is

presented. The results related to the simulations and predictions of the order dependent Load-

Sharing model are based on the paper Simulations and predictions of future values in

the time-homogeneous load-sharing model by Francesco Buono and Jorge Navarro which

is submitted for publication.

Finally, I would like to thank my PhD advisor Prof. Maria Longobardi for guiding and

supporting me over these years.



Chapter 1

Reliability theory

The reliability of an item can be treated as its ability to perform a required function, under

given environmental and operational conditions, for a stated period of time. There are several

tools to measure the reliability, depending on the particular case, and they are strictly related

to some functions of interest in this field. In fact, the reliability of an item can be expressed

in terms of the number of failures per time unit, the mean time to failure, the probability that

the item is available at time t or the probability that the item does not fail in the interval (0, t]

and so on. Those aspects can be easily analyzed through some functions of interest such as

the survival and the hazard rate functions.

With the purpose of studying the reliability of a device, it is possible to proceed in several

and different ways. In fact, it is possible to regard the entire device as a unique structure

characterized by a random lifetime and then study the corresponding distribution properties,

or to study how the different components of the system affect its behavior. In the latter case,

the assumption of the hypothesis of coherence, i.e., the study of coherent systems, brings out

some interesting properties. Moreover, dealing with the random lifetimes of the devices, the

measures of uncertainty and discrimination find many key applications.

In this chapter, some primary functions of reliability theory, as the hazard and reversed

hazard rate functions, are introduced and some of their properties are discussed. In relation

with inspection times, some random variables of interest, as the residual and past lifetimes

and the inactivity time, are then discussed. Furthermore, useful concepts related to coherent

systems and stochastic orders are displayed.

1.1 The hazard rate function

Let X be a non-negative absolutely continuous random variable with probability density func-

tion (pdf) f , cumulative distribution function (cdf) F and survival function F . In reliability

theory, the hazard rate function of X has found many key applications. The hazard rate

6



1. Reliability theory 7

function (or failure rate function) of X at x, for x such that F (x) > 0, is defined as

r(x) = lim
∆x→0+

P(x < X ≤ x+ ∆x|X > x)

∆x

=
1

F (x)
lim

∆x→0+

P(x < X ≤ x+ ∆x)

∆x
=
f(x)

F (x)
, (1.1)

where the last equality follows from the assumption of absolute continuity. In fact, it has to

be noted that the hazard rate function can be defined also without the assumption of absolute

continuity, in particular for discrete distributions, and not necessarily for non-negative random

variables. Here, with the purpose of involving this function in reliability analysis, we will focus

on the case in which the random variable describes a lifetime and hence we will require the

non-negativity and absolute continuity assumptions. The hazard rate r(x) can be interpreted

as the rate of instantaneous failure occurring immediately after the time point x, given that

the unit has survived up to time x.

The hazard rate function characterizes the distribution in the sense that it uniquely deter-

mines the survival function, and then the cdf and the pdf, as stated in the following theorem,

see Barlow and Proschan [11].

Theorem 1.1. Let X be a non-negative absolutely continuous random variable with survival

function F and hazard rate function r. Then, F and r are related by

F (x) = exp

(
−
∫ x

0
r(u) du

)
, x ∈ (0,+∞). (1.2)

It is well known that the exponential distribution is the unique absolutely continuous

probability distribution with the lack of memory property. This means that if X ∼ Exp(λ),

λ > 0, then, for all x, y > 0,

P(X > x+ y|X > y) = P(X > x).

By the lack of memory property, every instant is like the beginning of a new random period,

which has the same distribution regardless of how much time has already elapsed. This property

of the exponential distribution is explained also in terms of the hazard rate function. In fact,

the exponential distribution is the unique absolutely continuous probability distribution with

a constant hazard rate function, r(x) = λ, x > 0. Then, the rate of instantaneous failure does

not change by time and the failures are not caused by aging or degradation.

In reliability theory, it is of wide interest to study the monotonic properties of the hazard

rate function. For instance, there are several materials or devices which wear out with time

and hence the class of distributions with an increasing hazard rate has broad applications.

Moreover, also the class of distributions with decreasing hazard rate is of high interest due to

the debugging of complex systems and the phenomenon of work hardening of some materials.

Hence, it is useful to give the following definitions.
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Definition 1.1. A random variable X is IFR (increasing failure rate) if, and only if, the hazard

rate function r(x) is increasing in x.

Definition 1.2. A random variable X is DFR (decreasing failure rate) if, and only if, the

hazard rate function r(x) is decreasing in x.

It has to be noted that, without requiring a strictly monotonic behavior, the exponential

distribution belongs to both classes of distributions, IFR and DFR. In the following theorem,

alternative ways to establish if a random variable is IFR or DFR are given by the use of the

survival function.

Theorem 1.2. Let X be a non-negative absolutely continuous random variable with survival

function F and hazard rate function r. Then, X is IFR (DFR) if, and only if, logF (x) is

concave (convex) in x.

The distributions in the classes IFR and DFR hold some nice and useful properties. For

instance, an IFR random variable has finite moments of all orders and a DFR distribution

has decreasing probability density function. The following theorem provides bounds based on

quantiles for the survival function of IFR distributions.

Theorem 1.3. Let X be IFR with survival function F , cdf F and let ξp be such that F (ξp) = p,

i.e., ξp is the p-th quantile. Then,

F (x) ≥ exp(−αx), if 0 < x ≤ ξp,

F (x) ≤ exp(−αx), if x ≥ ξp,

with α = − log(1−p)
ξp

.

The following theorem gives an important lower bound for the survival function of X in

the IFR case. In particular, the lower bound is given in terms of the survival functions of

an exponential random variable with the same mean of X and of a degenerate distribution

concentrating at the mean of X.

Theorem 1.4. Let X be a non-negative absolutely continuous random variable with survival

function F and finite mean µ. If X is IFR, then

F (x) ≥ exp

(
−x
µ

)
, if 0 < x < µ,

F (x) ≥ 0, if x ≥ µ.

Since not each distribution exhibits a defined monotonic behavior, it is of interest to study

if such a behavior is presented at least in average and hence the following definitions are given.
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Definition 1.3. A non-negative random variable X is IFRA (increasing in failure rate average)

if, and only if,
∫ x
0 r(t) dt

x is increasing in x > 0.

Definition 1.4. A non-negative random variable X is DFRA (decreasing in failure rate aver-

age) if, and only if,
∫ x
0 r(t) dt

x is decreasing in x > 0.

Another important class of distributions in reliability theory is given by the bathtub shaped

failure rate (BFR) ones. The name of such distributions comes from the shape of the graph of

the function r. In fact, the hazard rate function decreases at first, then remains constant for

a period and finally it increases. Those distributions are of wide interest since these different

periods correspond to three phases of the life of the system. At first, there is the early life in

which failures are caused by manufacturing defects. Then, the useful life in which failures are

caused by chance. Finally, the wear out phase in which the hazard is increasing due to the

aging of the system. In the following, the formal definition of BFR distributions is given and

some properties are presented, see Lai et al. [68] for further details.

Definition 1.5. A non-negative random variable X with hazard rate function r is said to be

BFR if there exists x0 > 0, named change point, such that r is non-increasing in (0, x0) and

non-decreasing in (x0,+∞)

In the above definition, the part in which the hazard rate is constant does not emerge

explicitly. Hence, it can be useful to consider the following equivalent definition.

Definition 1.6. A non-negative random variable X with hazard rate function r is said to be

BFR if there exist 0 ≤ x1 ≤ x2 < +∞ such that

(1) r is strictly decreasing in (0, x1);

(2) r is constant in (x1, x2);

(3) r is strictly increasing in (x2,+∞).

Remark 1.1. For x1 = x2 = 0, BFR distributions reduce to IFR ones. On the contrary, if

x1 = x2 → +∞, BFR distributions reduce to DFR ones. Furthermore, if x1 = x2, i.e., the

interval in which r is constant degenerates, it is more appropriate to talk about U-shaped

hazard rate functions.

We give a further equivalent definition of BFR distributions based on the connection be-

tween the concepts of IFR and DFR and the concavity or convexity of the function logF

expressed in Theorem 1.2.

Definition 1.7. A non-negative random variable X with survival function F is said to be

BFR if there exists x0 > 0 such that − logF (x) is concave in (0, x0) and convex in (x0,+∞).
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In the following proposition, it is presented a comparison between the survival functions of

a BFR distribution and an exponential distribution. It is a comparison in the usual stochastic

order which will be introduced in Section 1.3.

Proposition 1.1. Let X be a non-negative BFR random variable with survival function F and

change point x0 and let Y be exponentially distributed with mean 1
r(x0) with survival function

G. Then, F (x) ≤ G(x), for all x ∈ (0,+∞).

Example 1.1. Let X be a non-negative random variable with quadratic hazard rate function

r(x) = α+ βx+ γx2,

where α ≥ 0, β < 0 and γ > 0. X is BFR, and more precisely with U-shaped hazard rate

function, since r is decreasing in
(

0,− β
2γ

)
and increasing in

(
− β

2γ ,+∞
)

. Furthermore, the

random variable X∗ with hazard rate function r∗(x) = exp[r(x)] is BFR since its failure rate

is obtained by composing r with a strictly increasing function.

The above example shows how it can be important to consider random variables which ex-

hibit a relation among their hazard rate functions. In this perspective, one the most important

classes of models is given by the proportional hazard rate models (PHRM) which were intro-

duced by Cox [31]. The family of absolutely continuous random variables {Xθ : θ > 0} follows

a proportional hazard rate model (PHRM) if there exists a non-negative random variable X

with survival function F and pdf f such that the survival function F θ of Xθ is expressed as

F θ(x) =
[
F (x)

]θ
, x > 0.

Furthermore, the corresponding probability density functions are related by

fθ(x) = θf(x)
[
F (x)

]θ−1
, x > 0,

and hence the hazard rate function of Xθ is expressed as

rθ(x) = θr(x), x > 0, (1.3)

from which the model name follows. From the relation in (1.3), it readily follows that the

hazard rate functions of the random variables Xθ, θ > 0, have the same monotonic properties

of r. Hence, if X is IFR, DFR or BFR, Xθ will belong to the same aging class.

1.2 The reversed hazard rate function

The reversed hazard rate function is in a certain sense the dual function of the hazard rate. It is

related to the probability which the failure occurs immediately before the point of evaluation



1. Reliability theory 11

given that the unit does not survive up to that point. For a non-negative and absolutely

continuous random variable X with pdf f and cdf F , the reversed hazard rate function is

defined as

q(x) = lim
∆x→0+

P(x−∆x < X ≤ x|X ≤ x)

∆x

=
1

F (x)
lim

∆x→0+

P(x−∆x < X ≤ x)

∆x
=
f(x)

F (x)
, (1.4)

where the last equality follows by the assumption of absolute continuity.

As the hazard rate function, the reversed hazard rate function is a useful tool since it

characterizes the distribution uniquely as presented in the following theorem.

Theorem 1.5. Let X be a non-negative and absolutely continuous random variable with cdf

F and reversed hazard rate q. Then, F and q are related by

F (x) = exp

(
−
∫ +∞

x
q(t) dt

)
, x ∈ (0,+∞). (1.5)

It follows that, unlike the hazard rate fucntion, the reversed hazard rate function of a

non-negative random variable cannot be constant over the entire support.

The hazard rate and the reversed hazard rate functions are strictly related and it is possible

to obtain one from the other as presented in the following theorem by Finkelstein [45].

Theorem 1.6. Let X be a non-negative and absolutely continuous random variable with hazard

rate function r and reversed hazard rate function q. Then, r and q are related by

q(x) =
r(x)

exp
(∫ x

0 r(t)dt
)
− 1

, x ∈ (0,+∞). (1.6)

From (1.6), it readily follows the reversed hazard rate function of X ∼ Exp(λ),

q(x) =
λ

exp(λx)− 1
, x > 0,

which is decreasing in x. Moreover, from (1.6), it can be argued that if the hazard rate function

is decreasing then the reversed hazard rate function is also decreasing. About the monotonicity

of the reversed hazard rate function it is essential to mention the following result given by Block

et al. [19].

Theorem 1.7. There does not exist a non-negative random variable having increasing reversed

hazard rate function on its interval of support.

As a generalization of the PHRM model, now we present the proportional reversed hazard

rate model (PRHRM) introduced and studied by Gupta et al. [52]. The family of absolutely

continuous random variables {Xθ : θ > 0} follows a proportional reversed hazard rate model
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if there exists a non-negative random variable X with cdf F , pdf f and reversed hazard rate

function q such that the cdf of Xθ is expressed as

Fθ(x) = [F (x)]θ, x > 0.

Then, the pdf of Xθ is related to the one of X by

fθ(x) = θ[F (x)]θ−1f(x),

and the reversed hazard rate of Xθ is expressed as

qθ(x) = θq(x), x > 0. (1.7)

In the following, two important functions related to the hazard rate and the reversed hazard

rate functions are introduced, for further properties on these functions see [86]. Let X be a

non-negative random variable. The log-odds of X is defined for x > 0 as the natural logarithm

of the ratio between the cdf and the survival function of X,

LOX(x) = log
F (x)

F (x)
. (1.8)

Furthermore, the log-odds rate of X is defined for x > 0 as the derivative of the log-odds of

X,

LORX(x) =
d

dx
LOX(x).

If X is an absolutely continuous random variable, then the log-odds rate is expressed in different

ways by involving the hazard rate and reversed hazard rate functions

LORX(x) =
f(x)

F (x)F (x)
=

r(x)

F (x)
=

q(x)

F (x)
, (1.9)

and the following relation holds

r(x) + q(x) = LOR(x).

1.3 Stochastic orders

In this section, some of the most important stochastic orders are presented. For more details

on these concepts, one can see Shaked and Shanthikumar [106]. The stochastic orders are

useful tools to compare random variables from different perspectives. The simplest way of

comparing two distributions is by the comparison of the associated means. However, such a

comparison is based on only two numbers and often it is not so much informative. Moreover,

the mean sometimes does not exist and there may be situations in which two distributions

have the same mean. Furthermore, we often have more information and it is fruitful to use

them. In the following definition, some of the most important classical stochastic orders are

recalled.
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Definition 1.8. Let X and Y be non-negative absolutely continuous random variables with

survival functions F , G, pdf’s f , g, hazard rate functions rX , rY and reversed hazard rate

functions qX , qY , respectively. Then,

1. X is smaller than Y in the usual stochastic order, denoted by X ≤st Y , if F (x) ≤ G(x)

for all x > 0 or, equivalently, F (x) ≥ G(x) for all x > 0;

2. X is smaller than Y in the likelihood ratio ordering, denoted by X ≤lr Y, if g(x)
f(x) is

increasing in x > 0;

3. X is smaller than Y in the hazard rate order, denoted by X ≤hr Y , if rX(x) ≥ rY (x) for

all x > 0;

4. X is smaller than Y in the reversed hazard rate order, denoted by X ≤rh Y , if qX(x) ≤
qY (x) for all x > 0;

5. X is smaller than Y in the dispersive order, denoted by X ≤disp Y , if f(F−1(u)) ≥
g(G−1(u)) for all u ∈ (0, 1), where F−1 and G−1 are right continuous inverses of F and

G, respectively;

6. X is smaller than Y in the convex transform order, denoted by X ≤c Y , if G−1(F (x)) is

a convex function on the support of X;

7. X is smaller than Y in the star order, denoted by X ≤∗ Y , if G−1F (x)
x is increasing in

x > 0;

8. X is smaller than Y in the superadditive order, denoted by X ≤su Y , if G−1(F (x+ t)) ≥
G−1(F (x)) +G−1(F (t)) for x > 0, t > 0;

9. X is smaller than Y in the log-odds rate order, denoted by X ≤LOR Y , if LORX(x) ≥
LORY (x) for all x > 0.

Different stochastic orders are often related each other in the sense that a stochastic order

may imply a different one without additional assumptions, whereas sometimes specific con-

ditions are required to obtain an implication. In the following propositions, some relations

among the stochastic orders given in Definition 1.8 are presented.

Proposition 1.2. Let X and Y be non-negative and absolutely continuous random variables.

Then,

X ≤hr Y =⇒ X ≤st Y,

X ≤rh Y =⇒ X ≤st Y.
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Proposition 1.3. Let X and Y be non-negative and absolutely continuous random variables.

Then,

X ≤lr Y =⇒ X ≤hr Y,

X ≤lr Y =⇒ X ≤rh Y,

and, by Proposition 1.2, X ≤lr Y =⇒ X ≤st Y .

Proposition 1.4. Let X and Y be non-negative and absolutely continuous random variables.

Then,

X ≤disp Y =⇒ X ≤st Y.

Proposition 1.5. Let X and Y be non-negative and absolutely continuous random variables.

Then,

X ≤c Y =⇒ X ≤∗ Y =⇒ X ≤su Y.

Without any additional assumption, the reversed implications of the relations given in

Proposition 1.2 cannot be obtained. In order to obtain such a result, it is necessary to give an

assumption related to the log-odds rate order, as presented in the following proposition.

Proposition 1.6. Let X and Y be non-negative and absolutely continuous random variables

such that X ≤LOR Y . Then,

X ≤st Y ⇐⇒ X ≤hr Y.

Furthermore, if X ≥LOR Y , then

X ≤st Y ⇐⇒ X ≤rh Y.

By taking in consideration some monotonic properties of the hazard rate function, it is

possible to obtain some connections between the hazard rate and the dispersive orders.

Proposition 1.7. Let X and Y be non-negative and absolutely continuous random variables.

(a) If X ≤hr Y and X or Y is DFR, then X ≤disp Y ;

(b) If X ≤disp Y and X or Y is IFR, then X ≤hr Y .

The star order and the dispersive order are related as presented in the following proposition.

Proposition 1.8. Let X and Y be non-negative and absolutely continuous random variables.

Then,

X ≤∗ Y ⇐⇒ logX ≤disp log Y,

or, equivalently,

X ≤disp Y ⇐⇒ eX ≤∗ eY .
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By considering an additional assumption, the superadditive order (and then, by virtue of

Proposition 1.5, also the star and the convex orders) implies the dispersive order as presented

in the following proposition.

Proposition 1.9. Let X and Y be non-negative and absolutely continuous random variables

such that X ≤st Y . Then,

X ≤su Y =⇒ X ≤disp Y.

1.4 Residual and past lifetimes, inactivity time

In this section, some useful conditional distributions are recalled and some of their properties

are discussed. These distributions are related to the possibility of making an inspection at a

fixed time. Suppose that X is the random lifetime of a device. It may happen that making

an inspection at time t, the device is found working and then it is of interest to study the

corresponding residual lifetime Xt = [X − t|X > t]. It is a non-negative random variable

whose cdf and survival function are expressed as

FXt(x) = P(X − t ≤ x|X > t) =
FX(x+ t)− FX(t)

FX(t)
, x ∈ (0,+∞)

FXt(x) =
FX(x+ t)

FX(t)
, x ∈ (0,+∞),

where FX(·) and FX(·) are the cdf and survival function of X, respectively. Moreover, the pdf

and the hazard rate function of Xt are given by

fXt(x) =
fX(x+ t)

FX(t)
, x ∈ (0,+∞)

rXt(x) =
fX(x+ t)

FX(x+ t)
= rX(x+ t), x ∈ (0,+∞),

where fX(·) and rX(·) are the pdf and hazard rate function of X, respectively.

Since Xt is a random variable, it is possible to evaluate its mean that is an important

concept in reliability theory, known as mean residual life, i.e., mrl(t) = E(Xt). If X is a

non-negative random variable with finite mean, the mean residual life can be expressed as

mrl(t) =

∫ +∞
t FX(x) dx

FX(t)
. (1.10)

Moreover, the mean residual life and the hazard rate function are connected through the

following relation

mrl(t) =

∫ +∞

t
exp

(
−
∫ x

t
rX(u) du

)
dx, (1.11)

and, by using (1.10), it readily follows

rX(t) =
mrl′(t) + 1

mrl(t)
, (1.12)
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see Ebrahimi [43] for further details. Furthermore, it is possible to introduce a stochastic order

by comparing the mean residual lives, as presented in the following definition (see Shaked and

Shanthikumar [106]).

Definition 1.9. Let X and Y be non-negative absolutely continuous random variables with

mean residual life functions mrlX and mrlY , respectively. Then, X is smaller than Y in the

mean residual life order, denoted by X ≤mrl Y , if mrlX(t) ≤ mrlY (t) for all t > 0.

By using (1.11), a connection between the hazard rate and the mean residual life orders

follows.

Proposition 1.10. Let X and Y be non-negative and absolutely continuous random variables.

Then,

X ≤hr Y =⇒ X ≤mrl Y.

Conversely, it may happen that at the time of inspection t the device is out of order. In this

scenario, it is of interest to study two random variables: the past lifetime and the inactivity

time. They are strictly connected but essentially different since they focus attention on two

different aspects. In fact, the past lifetime is defined as tX = [X|X ≤ t] and the inactivity

time as X[t] = [t − X|X ≤ t], so that the inactivity time consider the time elapsed between

the failure and the inspection time whereas the past lifetime is related to the random lifetime

with a left censoring.

The past lifetime is a random variable with support (0, t) and whose cdf and pdf are

expressed as

FtX(x) =
FX(x)

FX(t)
x ∈ (0, t),

ftX(x) =
fX(x)

FX(t)
x ∈ (0, t).

Furthermore, the mean of tX, known as mean past lifetime, is given by

µ̃X(t) =

∫ t

0

(
1− FX(x)

FX(t)

)
dx = t− 1

FX(t)

∫ t

0
FX(x)dx, (1.13)

see Di Crescenzo and Longobardi [37] for further details.

The inactivity time has the same support of the past lifetime and the pdf and cdf are

expressed as

FX[t]
(x) =

FX(t)− FX(t− x)

FX(t)
x ∈ (0, t),

fX[t]
(x) =

fX(t− x)

FX(t)
x ∈ (0, t).
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In the applications, it is of great interest the mean inactivity time, see, for instance Finkelstein

[45], that is expressed as

mX(t) =
1

FX(t)

∫ t

0
FX(x)dx = t− µ̃X(t). (1.14)

Assuming that mX(t) is differentiable, it readily follows

q(t) =
1−m′X(t)

mX(t)
, (1.15)

and then, by using (1.5) it is possible to obtain the cdf in function of the mean inactivity time

F (t) = exp

(
−
∫ +∞

t

1−m′X(x)

mX(x)
dx

)
, t ∈ (0,+∞).

1.5 Coherent systems

In this section, some general definitions and results on coherent systems are presented. For

a more detailed discussion one may refer to Navarro [82]. The systems are one of the most

important concepts in reliability theory. A system is a structure made up of components which

determine its functioning. Here, we suppose to have only two possible states for the systems

and the components, the functioning state represented by 1 and the failure state represented by

0, and then we talk about binary systems. The behavior of a system is governed by a function,

known as structure function. For a system with n components, the structure function is defined

as

φ : {0, 1}n → {0, 1},

where φ(x1, . . . , xn) represents the state of the system and xi the state of the i-th component,

i = 1, . . . , n. It is reasonable to require that the function φ satisfies some properties. In fact it

is reasonable to assume that if all the components work then the system works and if all the

components do not work then the system does not work. Moreover, it is rational to require

that if a broken component is replaced by a functioning one, the behavior of the system cannot

get worse. The last sentence refers to the increasing property of the function φ, where we mean

that if x1 ≤ y1, . . . , xn ≤ yn, then φ(x1, . . . , xn) ≤ φ(y1, . . . , yn). These assumptions conduct

to the definition of semi-coherent system.

Definition 1.10. A system S with structure function φ is semi-coherent if

1. φ(0, . . . , 0) = 0;

2. φ(1, . . . , 1) = 1;

3. φ is increasing.
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In order to give the definition of coherent system, an additional assumption is needed.

In fact, semi-coherent system may have irrelevant components. A component is said to be

irrelevant if the state of the system is independent of the state of that component, in the sense

that

φ(x1, . . . , xi−1, 0, xi+1, . . . , xn) = φ(x1, . . . , xi−1, 1, xi+1, . . . , xn), (1.16)

for all x1, . . . , xi−1, xi+1, . . . , xn ∈ {0, 1}.

Definition 1.11. A system S with structure function φ is coherent if

1. φ is increasing;

2. φ is strictly increasing in each variable in at last one point.

Obviously, all the coherent systems are semi-coherent but the converse is not true. For

example, a system with 2 components and structure function φ(x1, x2) = x1 is semi-coherent

but not coherent since it has an irrelevant component.

It has to be noted that some systems are equivalent under permutations in the sense that

there exists a permutation σ ∈ P, where P is the set of permutation over n elements, such

that two structure functions φ1 and φ2 are related by φ1(x1, . . . , xn) = φ2(xσ(1), . . . , xσ(n)). In

this case, we write φ1 ∼ φ2.

A coherent system can be determined by the sets of components that assure that the system

works when these components work or by the set of components that assure the system fails

when these components fail.

Definition 1.12. A non-empty set P ⊆ [n] = {1, . . . , n} is a path set of a system φ if

φ(x1, . . . , xn) = 1 when xi = 1 for all i ∈ P . A path set is a minimal path set if it does not

contain other path sets. A non-empty set C ⊆ [n] is a cut set of φ if φ(x1, . . . , xn) = 0 when

xi = 0 for all i ∈ C. A cut set is a minimal cut set if it does not contain other cut sets.

A system is completely determined by its minimal path (or cut) sets, as presented in the

following proposition.

Proposition 1.11. The non-empty sets P1, . . . , Pr ⊆ [n] are the minimal path (or cut) sets of

a coherent system if and only if the two following properties hold:

1. Pi is not contained in Pj for all i 6= j;

2. P1 ∪ · · · ∪ Pr = [n].

The above proposition was applied by Navarro and Rubio [85] to determine all the coherent

systems of order n with a recursive algorithm.
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Dealing with a system φ, it is always possible to consider its dual φD. The structure

function of a system and its dual are related, for all x1, . . . , xn ∈ {0, 1}, by

φD(x1, . . . , xn) = 1− φ(1− x1, . . . , 1− xn). (1.17)

A system and its dual are strictly related and share many properties. Naturally, if φ is a

coherent system then φD is a coherent system and (φD)D = φ. Moreover, a set is a path set

of φ if and only if it is a cut set of φD, and a set is a cut set of φ if and only if it is a path set

of φD. The same equivalences hold when considering minimal cut sets and minimal path sets.

Two of the most well-known systems are the series and the parallel ones, which are one the

dual of the other. The series system of order n has a structure function defined as

φ1:n(x1, . . . , xn) = min(x1, . . . , xn).

The parallel system of order n has a structure function defined as

φn:n(x1, . . . , xn) = max(x1, . . . , xn).

Series and parallel systems may be considered as special cases of k-out-of-n systems. The

structure function of a k-out-of-n system is expressed as

φn−k+1:n(x1, . . . , xn) =

1, if x1 + · · ·+ xn ≥ k,

0, if x1 + · · ·+ xn < k,
(1.18)

for k = 1, . . . , n. A k-out-of-n system works if at least k of its n components work. So series

systems are n-out-of-n systems and parallel systems are 1-out-of-n systems. The minimal path

sets of k-out-of-n systems are all the sets with exactly k elements and then they have
(
n
k

)
minimal path sets.

One of the most known ways to describe the structure function of a system is in terms of

minimal path sets or minimal cut sets as presented in the following theorem.

Theorem 1.8. Let φ be a coherent system of order n and let P1, . . . , Pr and C1, . . . , Cs be its

minimal path sets and minimal cut sets, respectively. Then,

φ(x1, . . . , xn) = max
i=1,...,r

min
j∈Pi

xj ,

φ(x1, . . . , xn) = min
i=1,...,s

max
j∈Ci

xj ,

for all (x1, . . . , xn) ∈ {0, 1}n.

The expressions in Theorem 1.8 hold since a coherent system works if and only if at least

one of the series systems obtained from its minimal path sets works and fails if and only if at

least one of the parallel systems obtained from its minimal cut sets fails.
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The signature of a system is an index which, although less general than a structure func-

tion, has the virtues of being both quite manageable and easily interpreted. In the following

definition the signature of a system is introduced, see Samaniego [100] for further details on

this concept. The definition in based on the concept of order statistics. We recall that, if

we have n independent and identically distributed (IID) random variables X1, . . . , Xn, we can

introduce the order statistics Xk:n, k = 1, . . . , n. The k-th order statistic is equal to the k-th

smallest value from the sample. The cdf of Xk:n can be given in terms of the cdf of the parent

distribution as

Fk:n(x) =
n∑
j=k

(
n

j

)
[F (x)]j [1− F (x)]n−j ,

and the pdf of Xk:n is expressed as

fk:n(x) =

(
n

k

)
k[F (x)]k−1[1− F (x)]n−kf(x).

By choosing k = 1 and k = n, we get the smallest and largest order statistics, respectively.

Their cdf and pdf are given by

F1:n(x) = 1− [1− F (x)]n, f1:n(x) = n[1− F (x)]n−1f(x),

Fn:n(x) = [F (x)]n, fn:n(x) = n[F (x)]n−1f(x).

Definition 1.13. Let φ be a coherent system of order n. Assume that the lifetimes of the

components of the system are independent and identically distributed according to the contin-

uous distribution F . The signature of the system, denoted by s is an n-dimensional probability

vector whose i-th element si is equal to the probability that the i-th component failure causes

the system to fail. In brief, si = P(T = Xi:n), where T is the failure time of the system and Xi:n

is the i-th order statistic of the n component failure times, i.e., the time of the i-th component

failure.

From the definition, it readily follows that the signature of the series system is (1, 0, . . . , 0)

and the signature of the parallel system is (0, . . . , 0, 1). More in general, the signature of k-

out-of-n system is a vector with all zeros and a one in the n− k+ 1-th position. The signature

is a useful tool to describe the lifetime of a system as presented in the following proposition.

Proposition 1.12. Let T be the lifetime of a coherent system with independent and identically

distributed component lifetimes X1, . . . , Xn having a common continuous distribution function

F . Then,

F T (t) =
n∑
i=1

siF i:n(t), (1.19)

for all t, where s = (s1, . . . , sn) is the signature of the system.



Chapter 2

New measures of uncertainty in the

classical probability theory

The measure of the uncertainty associated to a random variable, which may represent the

lifetime of an item or a human being, is a task of great and increasing interest. Since the

pioneering work of Shannon [108], in which the concept of Shannon entropy was defined as

the average level of information or uncertainty related to a random event, several measures of

uncertainty with different purposes have been defined and studied. Among them, one of the

most interesting is the extropy, considered as the dual measure of Shannon entropy, defined

by Lad et al. [67]. In this chapter, we will first give an overview of some well-known measures

of uncertainty and provide a connection between cumulative entropies and the moments of

order statistics (see Balakrishnan, Buono and Longobardi [6]). Then, based on Balakrishnan,

Buono and Longobardi [7, 8], Buono, Kamari and Longobardi [24], Buono, Longobardi and

Pellerey [26] and Kamari and Buono [58], new measures of uncertainty will be presented and

their properties will be explained.

2.1 Some formulations of entropy

Let X be a discrete random variable with support S = {x1, . . . , xN} and with corresponding

probability vector p = (p1, . . . , pN ), i.e., P(X = xi) = pi, for i = 1, . . . , N . In 1948, Shannon

[108] introduced a measure of information related to the information content and the uncer-

tainty about an event associated with a discrete random variable. This measure, known as

Shannon entropy, is defined as

H(X) = −
N∑
i=1

pi log pi,

where log is the natural logarithm. For the sake of simplicity, sometimes for discrete random

variables in place of H(X) we will use H(p), and similarly with other measures of discrimina-

21
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tion. The concept of entropy has since been generalized in different ways. Analogous to the

discrete case, the Shannon entropy has been defined in the continuous case as

H(X) = E[IC(X)] = E[− log f(X)] = −
∫ +∞

0
f(x) log f(x)dx, (2.1)

where X is a non-negative random variable with probability density function f and IC(X) =

− log f(X) denotes the information content of X, which can be also understood as the self-

information or “surprise” associated with the possible outcomes of X. It is also known as

differential entropy. Although the definitions are similar, the entropy is always non-negative in

the discrete case while it could be negative in the continuous case. In the literature, different

versions of entropy have been introduced. As a measure of information, the Shannon entropy

is position-free, i.e., a random variable X has the same Shannon entropy of X + b, for any

b ∈ R. To avoid this problem, the concept of weighted entropy has been introduced (see Di

Crescenzo and Longobardi [38]) as

Hw (X) = −E [X log f(X)] = −
∫ +∞

0
xf(x) log f(x)dx.

To measure the uncertainty about the residual lifetime of X at time t, Ebrahimi [43] introduced

the residual entropy as

H(Xt) = −
∫ +∞

t

f(x)

F (t)
log

f(x)

F (t)
dx, (2.2)

where F is the survival function of X, and it is the differential entropy of the residual lifetime

Xt. It is also possible to study the uncertainty about the past lifetime by introducing the past

entropy as

H(tX) = −
∫ t

0

f(x)

F (t)
log

f(x)

F (t)
dx, (2.3)

where F is the cumulative distribution function of X, and it is the differential entropy of the

past lifetime tX, see Di Crescenzo and Longobardi [37].

Among the different generalizations of Shannon entropy, the Tsallis entropy [118] has at-

tracted considerable attention. For a discrete random variable, the Tsallis entropy Sα(X) is

defined as

Sα(X) =
1

α− 1

(
1−

N∑
i=1

pαi

)
, (2.4)

where α > 0 and α 6= 1. It is a generalization of Shannon entropy since it simply follows

lim
α→1

Sα(X) = H(X).

The differential version of the Tsallis entropy is defined as well in the following way

Sα(X) =
1

α− 1

[
1−

∫ +∞

0
fα(x)dx

]
; α 6= 1, α > 0.
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Another interesting generalization of Shannon entropy was given by Ubriaco [119] which defined

a new entropy based on fractional calculus as follows:

Hq(X) =

n∑
i=1

pi[− log pi]
q, 0 < q ≤ 1. (2.5)

It is known as fractional entropy and it is concave, positive and non-additive. Moreover, for

q = 1, the fractional entropy reduces to the Shannon entropy. From a physical sense, it also

satisfies Lesche and thermodynamic stability.

Lad et al. [67] introduced the extropy, a measure of uncertainty, as a dual version of the

entropy. For a discrete random variable X, the extropy J(X) is defined as

J(X) = −
N∑
i=1

(1− pi) log(1− pi), (2.6)

and it is always non-negative. An important connection between the entropy and the extropy

emerges by analyzing their sum. In fact, the sum of entropy and extropy can be expressed as

H(X) + J(X) =
n∑
i=1

H(pi, 1− pi) =
n∑
i=1

J(pi, 1− pi), (2.7)

where H(pi, 1 − pi) = J(pi, 1 − pi) = −pi log pi − (1 − pi) log(1 − pi) are the entropy and the

extropy of a discrete random variable which support has cardinality two and whose probability

mass function vector is (pi, 1 − pi). We remark that the entropy and the extropy coincide

for the variables whose support has cardinality two. Moreover, for a non-negative absolutely

continuous random variable X, the extropy is defined as

J (X) = −1

2
E [f(X)] = −1

2

∫ +∞

0
f2(x)dx.

2.1.1 On cumulative entropies in terms of the moments of order statistics

Among the generalizations of the entropy, a great interest is devoted to the cumulative versions

since they not require any assumptions on the probability density function of the random

variable. In this section, we recall the definitions of two cumulative entropies: the Cumulative

Residual Entropy (CRE) defined in Rao et al. [95] as

E(X) = −
∫ +∞

0
F (x) logF (x)dx,

and the Cumulative Entropy (CE) introduced in Di Crescenzo and Longobardi [39] as

CE(X) = −
∫ +∞

0
F (x) logF (x)dx. (2.8)

Now, based on the results of Balakrishnan, Buono and Longobardi [6], we will provide a

connection of the above measures with the moments of order statistics and we will present

some bounds.
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Let X be a random variable with finite expectation µ. The Cumulative Residual Entropy

(CRE) of X can also be written in terms of order statistics as

E(X) = −
∫ +∞

0
(1− F (x)) log(1− F (x))dx

= −x(1− F (x)) log(1− F (x))
∣∣+∞
0
−
∫ +∞

0
x log(1− F (x))f(x)dx−

∫ +∞

0
xf(x)dx

=

∫ +∞

0
x[− log(1− F (x))]f(x)dx− µ =

∫ +∞

0
x

[
+∞∑
n=1

F (x)n

n

]
f(x)dx− µ

=
+∞∑
n=1

1

n(n+ 1)
µn+1:n+1 − µ, (2.9)

where µn+1:n+1 = E(Xn+1:n+1), provided that limx→+∞−x(1−F (x)) log(1−F (x)) exists and

CRE is finite. In this case, the previous limit is equal to 0. Note that (2.9) can be rewritten as

E(X) =
+∞∑
n=1

(
1

n
− 1

n+ 1

)
µn+1:n+1 − µ. (2.10)

Remark 2.1. We want to emphasize that, under the assumptions made, the steps in (2.9) are

correct. The improper integral can be written as

lim
t→+∞

∫ t

0
x lim
N→+∞

N∑
n=1

F (x)n

n
f(x)dx. (2.11)

Hence, the sequence SN (x) =
∑N

n=1
F (x)n

n is increasing and converges pointwise to the contin-

uous function − log(1− F (x)) for each x ∈ [0, t] and, by applying Dini’s theorem for uniform

convergence [14], the convergence is uniform. Thus, (2.11) can be written as

lim
t→+∞

lim
N→+∞

N∑
n=1

∫ t

0
x
F (x)n

n
f(x)dx. (2.12)

In order to apply Moore-Osgood theorem for the iterated limit [116], we have to show that

lim
t→+∞

N∑
n=1

∫ t

0
x
F (x)n

n
f(x)dx =

N∑
n=1

1

n(n+ 1)
µn+1:n+1

converges pointwise for each fixed N , and this is satisfied if X has finite mean. Hence, by

applying Moore-Osgood theorem for the iterated limit, (2.12) can be written as

lim
N→+∞

lim
t→+∞

N∑
n=1

∫ t

0
x
F (x)n

n
f(x)dx =

+∞∑
n=1

1

n(n+ 1)
µn+1:n+1.

In the following example, we use (2.10) to evaluate the CRE for the standard exponential

distribution.
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Example 2.1. Consider the standard exponential distribution with pdf f(x) = e−x, x > 0. It

is known that

µ = 1 and µn:n = 1 +
1

2
+ · · ·+ 1

n
,

see [3] for further details. Hence, from (2.10), it follows

E(X) =

(
1− 1

2

)
µ2:2 +

(
1

2
− 1

3

)
µ3:3 +

(
1

3
− 1

4

)
µ4:4 + · · · − µ

= (µ2:2 − µ) +
1

2
(µ3:3 − µ2:2) +

1

3
(µ4:4 − µ3:3) + · · · = 1

2
+

1

2 · 3
+

1

3 · 4
+ . . .

=
+∞∑
n=1

1

n(n+ 1)
= 1.

In analogy with (2.9), it is also possible to provide a connection of the Cumulative Entropy

(CE) with the moments of order statistics. More precisely, the CE of X, with finite expectation

µ, can also be rewritten in terms of the mean of the minimum order statistic. From (2.8), we

easily obtain

CE(X) = −xF (x) logF (x)
∣∣+∞
0

+

∫ +∞

0
x logF (x)f(x)dx+

∫ +∞

0
xf(x)dx

=

∫ +∞

0
x log[1− (1− F (x))]f(x)dx+ µ = −

∫ +∞

0
x

+∞∑
n=1

(1− F (x))n

n
f(x)dx+ µ

= −
+∞∑
n=1

1

n(n+ 1)
µ1:n+1 + µ, (2.13)

provided that limx→+∞−xF (x) logF (x) exists and CE is finite. Note that (2.13) can be also

written as

CE(X) = −
+∞∑
n=1

(
1

n
− 1

n+ 1

)
µ1:n+1 + µ. (2.14)

In the following example, we apply (2.14) to the standard exponential distribution.

Example 2.2. For the standard exponential distribution, it is known that

µ1:n =
1

n
,

and so from (2.14), by the use of Euler’s identity, we get

CE(X) = −
+∞∑
n=1

(
1

n
− 1

n+ 1

)
1

n+ 1
+ 1 = −

+∞∑
n=1

1

n(n+ 1)
+

+∞∑
n=1

1

(n+ 1)2
+ 1

=
π2

6
− 1.

Now, based on the expressions given in (2.9) and (2.13), we provide some bound for the

CRE and the CE. With this purpose, let Z denote the standard version of the random variable

X, i.e.,

Z =
X − µ
σ

,
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where σ is the standard deviation of X. By construction, the relation between a variable and

its standard version holds for order statistics and so we have

Zk:n =
Xk:n − µ

σ
,

for k = 1, . . . , n. Hence, the mean of Xk:n and the mean of Zk:n are directly related and, in

particular, for the largest order statistic, we have

E(Zn:n) =
µn:n − µ

σ
.

Note that this formula also holds by considering a generalization of the random variable Z

with an arbitrary location parameter µ in place of the mean, and an arbitrary scale parameter

σ in place of the standard deviation.

Consider a sample with parent distribution Z such that E(Z) = 0 and E(Z2) = 1. Hartley

and David [54] and Gumbel [51] have then shown that

E(Zn:n) ≤ n− 1√
2n− 1

. (2.15)

The inequality in (2.15) is known as Hartley-David-Gumbel bound. Then, by using the Hartley-

David-Gumbel bound for a parent distribution with mean µ and variance σ2, we get

µn:n = σE(Zn:n) + µ ≤ σ n− 1√
2n− 1

+ µ. (2.16)

Theorem 2.1. Let X be a random variable with mean µ and variance σ2. Then, an upper

bound for the CRE of X is given as

E(X) ≤
+∞∑
n=1

σ

(n+ 1)
√

2n+ 1
' 1.21 σ. (2.17)

Proof. From (2.9) and (2.16), we get

E(X) =

+∞∑
n=1

1

n(n+ 1)
µn+1:n+1 − µ ≤

+∞∑
n=1

1

n(n+ 1)

(
σ

n√
2n+ 1

+ µ

)
− µ

=

+∞∑
n=1

σ

(n+ 1)
√

2n+ 1
' 1.21 σ,

which is the upper bound given in (2.17).

Remark 2.2. If X is a non-negative random variable, we have µn+1:n+1 ≥ 0 and µ1:n+1 ≥ 0,

for all n ∈ N. For this reason, by using finite series approximations in (2.9) and (2.13), we get

bounds for E(X) and CE(X) as

E(X) ≥
m∑
n=1

1

n(n+ 1)
µn+1:n+1 − µ,

CE(X) ≤ −
m∑
n=1

1

n(n+ 1)
µ1:n+1 + µ,

for all m ∈ N.
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In the following theorem, we provide a lower bound of CE for decreasing failure rate dis-

tributions (DFR).

Theorem 2.2. Let X be DFR. Then, a lower bound for CE(X) is given as

CE(X) ≥ µ−
√
µ(2)

2

(
2− π2

6

)
,

where µ(2) = E(X2) is the second moment of X.

Proof. Let X be DFR. From Theorem 12 of Rychlik [99], if in a sample of size n

δj,n =

j∑
k=1

1

n+ 1− k
≤ 2 j ∈ {1, . . . , n},

then

µj:n ≤
δj,n√

2

√
µ(2).

For j = 1, we have δ1,n = 1
n ≤ 2 for all n ∈ N, so that

µ1:n ≤
√
µ(2)

√
2 n

.

Then, from (2.13), we get the following lower bound for CE(X):

CE(X) ≥ −
+∞∑
n=1

1

n(n+ 1)2

√
µ(2)

2
+ µ = µ−

√
µ(2)

2

(
2− π2

6

)
.

Remark 2.3. Note that we cannot provide an analogous bound for E(X) since δn,n ≤ 2 is not

fulfilled for n ≥ 4.

The connection with the moments of order statistics can be done also for the weighted

versions of the CRE and CE. Moreover, by using these relations, it is possible to compute

estimations of the cumulative entropies, see Balakrishnan, Buono and Longobardi [6] for further

details.

2.2 Past extropy

In this section based on the results given in Kamari and Buono [58], we study the extropy for

tX, where X is a non-negative random variable. This measure is known as the past extropy

and is defined as

J (tX) = −1

2

∫ +∞

0
f2
tX(x)dx = − 1

2F 2(t)

∫ t

0
f2(x)dx. (2.18)
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It is clear that J (+∞X) = J(X) and that the past extropy is non-positive, i.e., J(tX) ≤ 0.

Moreover, it can be expressed also by using the reversed hazard rate function as

J (tX) =
−q2(t)

2f2(t)

∫ t

0
f2(x)dx.

Example 2.3. a) If X ∼ Exp(λ), then J (tX) = −λ
4

1+e−λt

1−e−λt for t > 0. This shows that the

past extropy of exponential distribution is an increasing function of t.

b) If X ∼ U(0, b), then J (tX) = − 1
2t .

c) If X has power distribution with parameter α > 0, i.e., f(x) = αx(α−1), 0 < x < 1, then

J (tX) = −α2

2(2α−1)t .

d) If X has Pareto distribution with parameters θ > 0, x0 > 0, i.e., f(x) = θ
x0

xθ+1
0

xθ+1 , x > x0,

then J (tX) = θ2

2(2θ+1)(tθ−xθ0)2

[
x2θ0
t −

t2θ

x0

]
.

The past extropy can be considered as a measure dual to the residual extropy, defined in

Qiu and Jia [94] to study the uncertainty about the residual lifetime Xt as

J (Xt) = −1

2

∫ +∞

0
f2
Xt(x)dx = − 1

2F
2
(t)

∫ +∞

t
f2(x)dx.

There is a functional relation between past extropy and residual extropy expressed as follows:

J(X) = F 2(t)J (tX) + F
2
(t)J (Xt) , for all t > 0.

Definition 2.1. A random variable is said to be increasing (decreasing) in past extropy if

J (tX) is an increasing (decreasing) function of t.

Proposition 2.1. J (tX) is increasing (decreasing) if and only if J (tX) ≤ (≥)−1
4 q(t).

Proof. By differentiating with respect to t in (2.18), we get

d

dt
J (tX) = −2q(t)J (tX)− 1

2
q2(t).

Then, the past extropy J (tX) is increasing if, and only if,

2q(t)J (tX) +
1

2
q2(t) ≤ 0,

but the reversed hazard rate q(t) is non-negative and so this is equivalent to

J (tX) ≤ −1

4
q(t).
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Theorem 2.3. The past extropy J (tX) of X is uniquely determined by the reversed hazard

rate q(t).

Proof. From (2.18) we get

d

dt
J (tX) = −2q(t)J (tX)− 1

2
q2(t).

This is a linear differential equation of order one and it is solved by

J (tX) = e
−2
∫ t
t0
q(s)ds

[
J (t0X)−

∫ t

t0

1

2
q2(s)e

2
∫ s
t0
q(y)dy

ds

]
,

where by the use of the boundary condition J (+∞X) = J(X), we obtain

J (tX) = e2
∫+∞
t q(s)ds

[
J (X) +

∫ +∞

t

1

2
q2(s)e−2

∫+∞
s q(y)dyds

]
.

By using the usual stochastic order and the likelihood ratio order, we show a result related

to the monotinicity of J (tX). In order to do this, we recall that X ≤st Y if and only if

E(ϕ(Y )) ≤ (≥)E(ϕ(X)) for any decreasing (increasing) function ϕ.

Theorem 2.4. Let X be a random variable with cdf F and pdf f . If f
(
F−1(x)

)
is decreasing

in x ≥ 0, then J (tX) is increasing in t ≥ 0.

Proof. Let Ut be a random variable with uniform distribution on (0, F (t)) with pdf gt(x) = 1
F (t)

for x ∈ (0, F (t)). Then, by (2.18) we have

J (tX) = − 1

2F 2(t)

∫ F (t)

0
f
(
F−1(u)

)
du = − 1

2F (t)

∫ F (t)

0
gt(u)f

(
F−1(u)

)
du

= − 1

2F (t)
E
[
f
(
F−1(Ut)

)]
.

Let 0 ≤ t1 ≤ t2. If 0 < x ≤ F (t1), then
gt1 (x)

gt2 (x) = F (t2)
F (t1) is a non-negative constant. If

F (t1) < x ≤ F (t2), then
gt1 (x)

gt2 (x) = 0. Therefore
gt1 (x)

gt2 (x) is decreasing in x ∈ (0, F (t2)), which

implies Ut1 ≤lr Ut2 . Hence Ut1 ≤st Ut2 and so

0 ≤ E
[
f
(
F−1(Ut2)

)]
≤ E

[
f
(
F−1(Ut1

)]
,

by using the assumption that f
(
F−1(Ut)

)
is a decreasing function. Since 0 ≤ 1

F (t2) ≤
1

F (t1)

then

J (t1X) = − 1

2F (t1)
E
[
f
(
F−1(Ut1)

)]
≤ − 1

2F (t2)
E
[
f
(
F−1(Ut2)

)]
= J (t2X) .
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Remark 2.4. Let X be a random variable with cdf F (x) = x2, for x ∈ (0, 1). Then

f
(
F−1(x)

)
= 2
√
x is increasing in x ∈ (0, 1). However J (tX) = − 2

3t is increasing in t ∈ (0, 1).

So the condition in Theorem 2.4 that f
(
F−1(x)

)
is decreasing in x is sufficient but not neces-

sary.

Let X1, X2, . . . , Xn be continuous and IID random variables with cdf F representing the

lifetimes of n components in a parallel system. Let X1:n, X2:n, . . . , Xn:n be the ordered lifetimes

of the components. The past extropy of Xn:n is given by

J (tXn:n) = − n2

2(F (t))2n

∫ t

0
f2(x)[F (x)]2n−2dx.

Theorem 2.5. If X has an increasing pdf f on [0, T ], with T > t, then J (tXn:n) is decreasing

in n ≥ 1.

Proof. The pdf of (Xn:n|Xn:n ≤ t) can be expressed as

gtn:n(x) =
nf(x)Fn−1(x)

Fn(t)
, x ≤ t.

Note that
gt2n−1:2n−1(x)

gt2n+1:2n+1(x)
=

2n− 1

2n+ 1
· F

2(t)

F 2(x)

is decreasing in x ∈ [0, t] and so (X2n−1:2n−1|X2n−1:2n−1 ≤ t) ≤lr (X2n+1:2n+1|X2n+1:2n+1 ≤ t)
which implies (X2n−1:2n−1|X2n−1:2n−1 ≤ t) ≤st (X2n+1:2n+1|X2n+1:2n+1 ≤ t). If f is increasing

on [0, T ], then

E [f (X2n−1:2n−1) |X2n−1:2n−1 ≤ t] ≤ E [f (X2n+1:2n+1) |X2n+1:2n+1 ≤ t] .

By using the definition of the past extropy, it readily follows

J (tXn:n) = − n2

2F 2n(t)

∫ t

0
f2(x)F 2n−2(x)dx

=
−n2

2(2n− 1)F (t)

∫ t

0

(2n− 1)F 2n−2(x)f(x)

F 2n−1(t)
f(x)dx

=
−n2

2(2n− 1)F (t)
E [f (X2n−1:2n−1) |X2n−1:2n−1 ≤ t] ,

and then

J (tXn:n)

J (tXn+1:n+1)
=

n2

(n+ 1)2

2n− 1

2n+ 1

E [f (X2n−1:2n−1) |X2n−1:2n−1 ≤ t]
E [f (X2n+1:2n+1) |X2n+1:2n+1 ≤ t]

≤ E [f (X2n−1:2n−1) |X2n−1:2n−1 ≤ t]
E [f (X2n+1:2n+1) |X2n+1:2n+1 ≤ t]

≤ 1.

Since the past extropy of a random variable is non-positive, we have J (tXn:n) ≥ J (tXn+1:n+1)

and the proof is completed.
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Example 2.4. Let X be a random variable distribuited as a Weibull with two parameters,

X ∼W2(α, λ), with pdf f(x) = λαxα−1 exp (−λxα). For α > 1 this pdf has a maximum point

T =
(
α−1
λα

) 1
α . Let us consider the case in which X has a Weibull distribution with parameters

α = 2 and λ = 1, X ∼ W2(2, 1), so that T =
√

2
2 . The hypothesis of Theorem 2.5 are

satisfied for t = 0.5 < T =
√

2
2 . Moreover, it can be also graphically observed that the result

in Theorem 2.5 does not hold for the smallest order statistic by considering again t = 0.5.

In the case in which X has an increasing pdf on [0, T ] with T > t we give a lower bound

for J (tX).

Proposition 2.2. If X has an increasing pdf f on [0, T ], with T > t, then J (tX) ≥ − q(t)
2 .

Proof. From the definition of the past extropy we get

J (tX) = − 1

2F 2(t)

∫ t

0
f2(x)dx =

−f(t)

2F (t)
+

1

2F 2(t)

∫ t

0
F (x)f ′(x)dx ≥ −q(t)

2
.

Example 2.5. Let X ∼W2(2, 1), as in Example 2.4, so we know that its pdf is increasing in

[0, T ] with T =
√

2
2 . The hypothesis of Proposition 2.2 are satisfied for t < T =

√
2

2 . Figure

2.1 shows that the function − q(t)
2 is a lower bound for the past extropy. We remark that the

theorem gives information only for t ∈ [0, T ], in fact for larger values of t the function − q(t)
2

could not be a lower bound anymore, as shown in Figure 2.1.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

t
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-0.5

0

Figure 2.1: J (tX) (in black) and − q(t)
2 (in red) of a W2(2, 1).

In the following theorem, we show that the past extropy of the largest order statistic can

uniquely characterize the underlying distribution. The proof is based on the following lemma.
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Lemma 2.1. Let X and Y be non-negative random variables such that J (Xn:n) = J (Yn:n),

for all n ≥ 1. Then X
d
= Y .

Proof. By the definition of the extropy, J (Xn:n) = J (Yn:n) holds if, and only if,∫ +∞

0
F 2n−2
X (x)f2

X(x)dx =

∫ +∞

0
F 2n−2
Y (x)f2

Y (x)dx,

that is equivalent to∫ +∞

0
F 2n−2
X (x)qX(x)dF 2

X(x) =

∫ +∞

0
F 2n−2
Y (x)qY (x)dF 2

Y (x).

By using u = F 2
X(x) in the left hand side of the above equation and u = F 2

Y (x) in the right

hand side, we have ∫ 1

0
un−1qX

(
F−1
X (
√
u)
)
du =

∫ 1

0
un−1qY

(
F−1
Y (
√
u)
)
du,

or, equivalently,∫ 1

0
un−1

[
qX
(
F−1
X (
√
u)
)
− qY

(
F−1
Y (
√
u)
)]
du = 0 for all n ≥ 1.

Then, by Lemma 3.1 of Qiu [93] we get qX
(
F−1
X (
√
u)
)

= qY
(
F−1
Y (
√
u)
)

for all u ∈ (0, 1). By

taking
√
u = v, we have qX

(
F−1
X (v)

)
= qY

(
F−1
Y (v)

)
and so fX

(
F−1
X (v)

)
= fY

(
F−1
Y (v)

)
for

all v ∈ (0, 1). This is equivalent to (F−1
X )′(v) = (F−1

Y )′(v), i.e., F−1
X (v) = F−1

Y (v) + C, for

all v ∈ (0, 1) where C is a constant. But for v = 0 we have F−1
X (0) = F−1

Y (0) = 0 and so

C = 0.

Theorem 2.6. Let X and Y be two non-negative random variables with cumulative distribution

functions F (x) and G(x), respectively. Then F and G belong to the same family of distributions

if and only if for t ≥ 0 and n ≥ 1,

J (tXn:n) = J (tYn:n) .

Proof. We only need to prove the sufficiency. J (tXn:n) is the past extropy for Xn:n but it is also

the extropy for the variable tXn:n. So by Lemma 2.1 we get tX
d
= tY . Then F (t−x)

F (t) = G(t−x)
G(t) ,

for x ∈ (0, t). If there exists t′ such that F (t′) 6= G(t′) then in (0, t′) F (x) = αG(x) with α 6= 1.

But for all t > t′, there exists x ∈ (0, t) such that t− x = t′ and so F (t) 6= G(t) and, as in the

previous step, we have F (x) = αG(x) for x ∈ (0, t). By letting t to +∞ a contradiction occurs

since F and G are both cumulative distribution functions and their common limit is 1.
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2.3 Weighted extropy

The extropy introduced by Lad et al. [67] is a shift-independent information measure just as

the entropy. In analogy with the weighted entropy and to efficiently model statistical data, a

new measure of information, named weighted extropy, was proposed in Balakrishnan, Buono

and Longobardi [8]. It is defined as

Jw (X) = −1

2
E [Xf(X)] = −1

2

∫ +∞

0
xf2(x)dx. (2.19)

We now present two examples of distributions with the same extropy, but different weighted

extropy. By the first example, it is possible to observe that the weighted extropy is indeed

shift-dependent.

Example 2.6. Let X and Y be two random variables such that X ∼ U(0, b), Y ∼ U(a, a+ b),

where a, b > 0. We have fX(x) = 1
b , for x ∈ (0, b), and fY (y) = 1

b , for y ∈ (a, a+ b), and then

J(X) = −1

2

∫ b

0

1

b2
dx = − 1

2b
, J(Y ) = −1

2

∫ a+b

a

1

b2
dy = − 1

2b
,

i.e., X and Y have the same extropy. But, they have different weighted extropy:

Jw(X) = −1

2

∫ b

0
x

1

b2
dx = − 1

2b2
b2

2
= −1

4
,

Jw(Y ) = −1

2

∫ a+b

a
y

1

b2
dy = − 1

2b2
(a+ b)2 − a2

2
= −b

2 + 2ab

4b2
= −b+ 2a

4b
,

and so if a 6= 0, i.e., X and Y are not identically distributed, then Jw(X) 6= Jw(Y ).

Example 2.7. Let X be a random variable with piecewise constant pdf

f(x) =

n∑
k=1

ck1[k−1,k)(x),

where ck ≥ 0, k = 1, . . . , n,
∑n

k=1 ck = 1, and 1[k−1,k)(x) is the indicator function of x in the

interval [k − 1, k). Then, the extropy and the weighted extropy of X are

J(X) = −1

2

∫ n

0

n∑
k=1

c2
k1[k−1,k)(x)dx = −1

2

n∑
k=1

∫ k

k−1
c2
kdx = −1

2

n∑
k=1

c2
k,

Jw(X) = −1

2

∫ n

0
x

n∑
k=1

c2
k1[k−1,k)(x)dx = −1

2

n∑
k=1

∫ k

k−1
xc2
kdx

= −1

2

n∑
k=1

c2
k

k2 − (k − 1)2

2
= −1

4

n∑
k=1

c2
k(2k − 1).

Since we obtain different distributions through a permutation of c1, . . . , cn, we observe that

they have the same extropy, but different weighted extropy (except in some special cases).
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We now present an example of distributions with the same weighted extropy, but different

extropy.

Example 2.8. LetX be a random variable such thatX ∼ U(0, b), with b > 0. By Example 2.6,

we have J(X) = − 1
2b and Jw(X) = −1

4 , and so the extropy depends on b while the weighted

extropy does not. Thus, if we consider Y ∼ U(0, a), with a > 0 and a 6= b, we have random

variables X and Y with the same weighted extropy, but different extropy.

In the following example, the weighted extropy is evaluated for some well-known distribu-

tions.

Example 2.9. (a) Let X be exponentially distributed with parameter λ. Then,

Jw(X) = −1

2

∫ +∞

0
xλ2e−2λxdx =

1

2

[
λx

2
e−2λx

∣∣∣∣+∞
0

−
∫ +∞

0

λ

2
e−2λxdx

]
= −1

8
.

(b) Let X be uniformly distributed over (a, b). Then,

Jw(X) = −1

2

∫ b

a
x

1

(b− a)2
dx = − 1

2(b− a)2

b2 − a2

2
= −1

4

b+ a

b− a
.

Note that in this case the weighted extropy can be expressed as the product

Jw(X) = J(X)E(X),

where E(X) = a+b
2 and J(X) = − 1

2(b−a) . Then, J(X) ≤ Jw(X) if, and only if, E(X) ≤ 1,

since the extropy and the weighted extropy are non-positive.

(c) Let X be gamma distributed with parameters α and β, and with pdf

f(x) =


xα−1e−x/β

βαΓ(α) , if x > 0

0, otherwise.

Then, the weighted extropy of X is expressed as

Jw(X) = −1

2

∫ +∞

0
x
x2α−2e−2x/β

β2αΓ2(α)
dx

= − 1

2β2αΓ2(α)

∫ +∞

0
x2α−1e−2x/βdx = − 1

22α+1

Γ(2α)

Γ2(α)
,

and it is free of the scale parameter β.

(d) Let X be beta distributed with parameters α and β, and with pdf

f(x) =


xα−1(1−x)β−1

B(α,β) , if 0 < x < 1

0, otherwise,
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where

B(α, β) =

∫ 1

0
xα−1(1− x)β−1dx =

Γ(α)Γ(β)

Γ(α+ β)

is the complete beta function. Then, the weighted extropy is evaluated as

Jw(X) = −1

2

∫ 1

0
x
x2α−2(1− x)2β−2

B2(α, β)
dx = −1

2

B(2α, 2β − 1)

B2(α, β)
,

if 2β − 1 > 0, i.e., β > 1
2 , but if 0 < β ≤ 1

2 the weighted extropy is not finite, Jw(X) =

−∞.

Remark 2.5. Let us now focus the attention on the integrability of xf2(x) on the support of

X. If the support is unbounded, i.e., (a,+∞), with a ≥ 0, and the function is bounded, we

have to investigate the behaviour at infinity. As
∫ +∞
a f(x)dx = 1, we have limx→+∞ f(x) = 0

and f(x) is infinitesimal of higher order with respect to 1
x1+ε

, for x → +∞, for some ε > 0.

Then, xf2(x) is infinitesimal of higher order with respect to 1
x1+2ε , for x → +∞ and so it is

integrable, i.e., the weighted extropy is finite. If the support and the density are unbounded, we

also have to study the behaviour at a. Suppose a > 0. If limx→a+ f(x) = +∞, by normalization

condition, we know that f(x) is infinity of lower order with respect to 1
(x−a)1−ε , for x→ a+, for

some 0 < ε < 1. Hence, xf2(x) is infinity of lower order with respect to 1
(x−a)2−2ε , for x→ a+,

and so is integrable if ε ∈
(

1
2 , 1
)
. If a = 0, by normalization condition, we know that f(x) is

infinity of lower order with respect to 1
x1−ε , for x→ 0+, for some 0 < ε < 1. Hence, xf2(x) is

infinity of lower order with respect to 1
x1−2ε , for x→ 0+, and it is integrable. If the support is

bounded and f is bounded, then xf2(x) is bounded and integrable. If the support is bounded

and f is unbounded, then we can refer to the previous cases. Observe that if the support is

(0,+∞), the weighted extropy is always finite.

In the following proposition, we study weighted extropy under monotone transformations.

Proposition 2.3. Let Y = Φ(X), where Φ is strictly monotone and differentiable, with deriva-

tive Φ′. Then, we have

Jw(Y ) =

−
1
2

∫ +∞
0

Φ(x)
Φ′(x)f

2
X(x)dx, if Φ is strictly increasing

−1
2

∫ +∞
0

Φ(x)
|Φ′(x)|f

2
X(x)dx, if Φ is strictly decreasing.

(2.20)

Proof. From (2.19), we have

Jw(Y ) = −1

2

∫ +∞

0
x
f2
X(Φ−1(x))

(Φ′(Φ−1(x)))2
dx.

Let Φ be strictly increasing. Then, with a change of variable in the above integral, it follows

Jw(Y ) = −1

2

∫ +∞

0

Φ(x)

Φ′(x)
f2
X(x)dx,

giving the first expression in (2.20). If Φ is strictly decreasing, the second expression in (2.20)

can be similarly obtained.
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Remark 2.6. If in Theorem 2.3 we consider the increasing transformation Φ(X) = FX(X),

then

Jw(Y ) = −1

2

∫ +∞

0
FX(x)fX(x)dx = −1

4
,

which agrees with the result for U(0, 1) distribution, since it is known in this case that the

probability integral transformation Y = FX(X) is U(0, 1).

In the following proposition, it is recalled how extropy changes under linear transformations.

Proposition 2.4. Let X be a non-negative absolutely continuous random variable, and Y =

aX + b, with a > 0, b ≥ 0. Then, J(Y ) = 1
aJ(X).

Remark 2.7. In Proposition 2.4, if we choose a = 1, we get the known property that extropy

is invariant under translations.

In the following corollary of Proposition 2.3, we discuss how weighted extropy behaves

under linear transformations.

Corollary 2.1. Let X be a non-negative absolutely continuous random variable, and Y =

aX + b, with a > 0, b ≥ 0. Then, Jw(Y ) = Jw(X) + b
aJ(X).

Remark 2.8. In Corollary 2.1, if we choose b = 0, we see that the weighted extropy is

invariant for proportional random variables, as observed in Example 2.8 for the case of uniform

distribution.

In the following proposition, we give bounds for random variables with support (0, b), with

finite b, or (a,+∞), with a > 0. The proof is straightforward and hence it is omitted.

Proposition 2.5. (i) Let X be a continuous random variable with support (0, b), b < +∞.

Then, Jw(X) ≥ bJ(X);

(ii) Let X be a continuous random variable with support (a,+∞), a > 0. Then, Jw(X) ≤
aJ(X).

In the following theorem, it is provided a lower bound for the weighted extropy of the sum

of two independent random variables.

Theorem 2.7. Let X and Y be two non-negative independent random variables with densities

fX and fY , respectively. Then,

Jw(X + Y ) ≥ −2 {J(X)Jw(Y ) + Jw(X)J(Y )} . (2.21)

Proof. As X and Y are non-negative independent random variables, the density function of

Z = X + Y is given, for z > 0, by

fZ(z) =

∫ z

0
fX(x)fY (z − x)dx.
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Hence, the weighted extropy of Z is obtained as

Jw(Z) = −1

2

∫ +∞

0
z

[∫ z

0
fX(x)fY (z − x)dx

]2

dz.

By using Jensen’s inequality, we get

Jw(Z) ≥ −1

2

∫ +∞

0
z

∫ z

0
f2
X(x)f2

Y (z − x)dxdz = −1

2

∫ +∞

0
f2
X(x)

∫ +∞

x
zf2
Y (z − x)dzdx

= −1

2

∫ +∞

0
f2
X(x)

∫ +∞

0
(z + x)f2

Y (z)dzdx =

∫ +∞

0
f2
X(x)(Jw(X) + xJ(Y ))dx

= −2J(X)Jw(Y )− 2J(Y )Jw(X),

as required.

Remark 2.9. Note that if X and Y are independent and identically distributed, by Theo-

rem 2.7 it follows

Jw(X + Y ) ≥ −4J(X)Jw(X).

2.3.1 Weighted residual and past extropies

In this section, we analyze some properties of the weighted residual extropy and the weighted

past extropy, see Balakrishnan, Buono and Longobardi [8].

Definition 2.2. Let X be a non-negative absolutely continuous random variable. For all t in

the support of the pdf f , we define

(i) the weighted residual extropy of X at time t as

Jw (Xt) = − 1

2F
2
(t)

∫ +∞

t
xf2(x)dx; (2.22)

(ii) the weighted past extropy of X at time t as

Jw (tX) = − 1

2F 2(t)

∫ t

0
xf2(x)dx. (2.23)

Remark 2.10. The definition in Equation (2.22) is in conformance with other definitions of

residual entropies in the literature (see, for instance, Di Crescenzo and Longobardi [38] and

Sekeh et al. [103]). Moreover, we can refer to (2.22) as the weighted residual extropy of the

first type and introduce the weighted residual extropy of the second type as

Jw∗ (Xt) = − 1

2F
2
(t)

∫ +∞

t
(x− t)f2(x)dx.

These measures are related by a simple relationship involving the residual extropy

Jw∗ (Xt) = Jw (Xt)− tJ(Xt).
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We remark that the use of the first or the second type of weighted residual extropy is based

on the way in which we want to give a weight to the observations. More precisely, in the first

case, we take into account the time t in the weight, while in the second case we use as weight

the time elapsed between t and the value assumed by X.

Remark 2.11. Note that

lim
t→0+

Jw (Xt) = lim
t→+∞

Jw (tX) = Jw(X).

In the following lemma, the first derivatives of the weighted residual extropy and the

weighted past extropy are evaluated.

Lemma 2.2. Let X be a non-negative absolutely continuous random variable with weighted

residual extropy Jw(Xt) and weighted past extropy Jw(tX). Then,

(i) d
dtJ

w (Xt) = 2r(t)
[
Jw (Xt) + t r(t)

4

]
, where r(t) is the hazard rate function of X;

(ii) d
dtJ

w (tX) = −2q(t)
[
Jw (tX) + t q(t)

4

]
, where q(t) is the reversed hazard rate function of

X.

Proof. (i) By the definitions of weighted residual extropy and hazard rate function, we have

d

dt
Jw (Xt) = − 1

F
3
(t)
f(t)

∫ +∞

t
xf2(x)dx+

1

2F
2
(t)
tf2(t) = 2r(t)

[
Jw (Xt) +

t r(t)

4

]
;

(ii) By the definition of weighted past extropy and reversed hazard rate function, we have

d

dt
Jw (tX) =

1

F 3(t)
f(t)

∫ t

0
xf2(x)dx− 1

2F 2(t)
tf2(t) = −2q(t)

[
Jw (tX) +

t q(t)

4

]
.

Remark 2.12. We may ask if the weighted residual extropy could be constant over the entire

support of a non-negative absolutely continuous random variable. In this regard, if Jw(Xt) is

constant, then for all t > 0, we have

Jw(Xt) +
t r(t)

4
= 0,

from which ∫ +∞

t
xf2(x)dx =

t

2
f(t)F (t).

By differentiating both sides of the above expression, it follows

2tf2(t) = f(t)F (t) + tf ′(t)F (t).
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It is known that r′(t) = f ′(t)

F (t)
+ r2(t) and so dividing by F

2
(t) both sides of the above equality,

it follows

r′(t) = −r(t)
t

+ 3r2(t),

which is a Bernoulli differential equation with initial condition r(t0) = r0 > 0, t0 > 0. Upon

solving this differential equation, we get

r(t) =
1

t(C − 3 log t)
,

where C = 1
t0r0

+ 3 log t0. Since the hazard rate function is non-negative, this condition is

satisfied if and only if t ≤ eC/3. Hence, the weighted residual extropy cannot be constant over

(0,+∞).

In the following proposition, a connection among the weighted extropy, the weighted resid-

ual extropy and the weighted past extropy is provided. The proof is straightforward and hence

it is omitted.

Proposition 2.6. The weighted extropy, the weighted residual extropy and the weighted past

extropy satisfy the following relationship:

Jw(X) = F 2(t)Jw(tX) + F
2
(t)Jw(Xt).

Theorem 2.8. If X is a non-negative absolutely continuous random variable and if Jw(Xt)

is increasing in t > 0, then Jw(Xt) uniquely determines the distribution of X.

Proof. By Lemma 2.2, we have

d

dt
Jw (Xt) = 2r(t)

[
Jw (Xt) +

t r(t)

4

]
.

Consider the function

g(x) = 2x

[
Jw (Xt) +

tx

4

]
− d

dt
Jw (Xt) .

We know that g(r(t)) = 0 and g(0) = − d
dtJ

w (Xt) ≤ 0 since Jw(Xt) is increasing in t > 0.

Moreover, limx→+∞ g(x) = +∞. If we obtain the derivative of g(x), we observe that there is

only one point at which it vanishes; in fact,

d

dx
g(x) = 2Jw(Xt) + tx

and so
d

dx
g(x) = 0⇐⇒ x = −2

t
Jw(Xt) (≥ 0).

Then, g(x) = 0 has a unique solution and it is r(t) which uniquely determines the distribution,

so that Jw(Xt) uniquely determines the distribution as well.
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Theorem 2.9. If X is a non-negative absolutely continuous random variable and if Jw(tX)

is decreasing in t > 0, then Jw(tX) uniquely determines the distribution of X.

Proof. By Lemma 2.2, we have

d

dt
Jw (tX) = −2q(t)

[
Jw (tX) +

t q(t)

4

]
.

Consider the function

h(x) = 2x

[
Jw (tX) +

tx

4

]
+
d

dt
Jw (tX) .

We know that h(q(t)) = 0 and h(0) = d
dtJ

w (tX) ≤ 0 being Jw(tX) decreasing in t > 0.

Moreover, limx→+∞ h(x) = +∞. If we obtain the derivative of h(x), we observe that there is

only one point at which it vanishes; in fact,

d

dx
h(x) = 2Jw(tX) + tx

and so
d

dx
h(x) = 0⇐⇒ x = −2

t
Jw(tX) (≥ 0).

Then, h(x) = 0 has a unique solution and it is q(t) which uniquely determines the distribution,

so that Jw(tX) uniquely determines the distribution as well.

In the following two propositions, we provide bounds for the weighted residual extropy and

the weighted past extropy under the monotonicity of hazard rate and reversed hazard rate

functions.

Proposition 2.7. If the hazard rate function r(t) is increasing, then

Jw(Xt) ≤ t r2(t)Js (Xt) , (2.24)

where Js (Xt) is the dynamic survival extropy defined by Sathar and Nair [101] as

Js (Xt) = − 1

2F
2
(t)

∫ +∞

t
F

2
(x)dx.

Proof. By the definition of the weighted residual extropy, it follows

Jw (Xt) = − 1

2F
2
(t)

∫ +∞

t
xf2(x)dx = − 1

2F
2
(t)

∫ +∞

t
xr2(x)F

2
(x)dx.

As the hazard rate function is increasing by assumption, we obtain

− 1

2F
2
(t)

∫ +∞

t
xr2(x)F

2
(x)dx ≤ − r2(t)

2F
2
(t)

∫ +∞

t
xF

2
(x)dx

≤ −t r
2(t)

2F
2
(t)

∫ +∞

t
F

2
(x)dx = t r2(t)Js (Xt) ,

as required.
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Proposition 2.8. If the reversed hazard rate function q(t) is decreasing, then

Jw(tX) ≤ 1

4

(
1

2
− t q(t)

)
. (2.25)

Proof. By the definition of the weighted past extropy, we have

Jw (tX) = − 1

2F 2(t)

∫ t

0
xf2(x)dx = − 1

2F 2(t)

∫ t

0
xq(x)F (x)f(x)dx.

Integration by parts gives

Jw (tX) = − 1

2F 2(t)

[
t q(t)

F 2(t)

2
−
∫ t

0

(
q(x) + x q′(x)

) F 2(x)

2
dx

]
.

Furthermore, by using the assumption of monotonicity of the reversed hazard rate function, it

follows

Jw (tX) ≤ − t q(t)
4

+
1

8

yielding (2.25).

In the following proposition, we discuss weighted residual extropy and weighted past ex-

tropy under monotone transformation.

Proposition 2.9. Let Y = Φ(X), where Φ is strictly monotone and differentiable, with deriva-

tive Φ′. Then, for all t > 0, we have

Jw(Yt) =


− 1

2F
2
X(Φ−1(t))

∫ +∞
Φ−1(t)

Φ(x)
Φ′(x)f

2
X(x)dx, if Φ is strictly increasing

− 1
2F 2
X(Φ−1(t))

∫ Φ−1(t)
0

Φ(x)
|Φ′(x)|f

2
X(x)dx, if Φ is strictly decreasing

(2.26)

and

Jw(tY ) =


− 1

2F 2
X(Φ−1(t))

∫ Φ−1(t)
0

Φ(x)
Φ′(x)f

2
X(x)dx, if Φ is strictly increasing

− 1

2F
2
X(Φ−1(t))

∫ +∞
Φ−1(t)

Φ(x)
|Φ′(x)|f

2
X(x)dx, if Φ is strictly decreasing.

(2.27)

Proof. From (2.22), we have

Jw(Yt) = − 1

2F
2
X(Φ−1(t))

∫ +∞

t
x
f2
X(Φ−1(x))

(Φ′(Φ−1(x)))2
dx.

Now, let Φ be strictly increasing. Then, with a change of variable in the above integral, it

follows

Jw(Yt) = − 1

2F
2
X(Φ−1(t))

∫ +∞

Φ−1(t)

Φ(x)

Φ′(x)
f2
X(x)dx,

giving the first expression in (2.26). If Φ is strictly decreasing, the second expression in (2.26)

is similarly obtained. The proof of (2.27) is quite similar and is therefore omitted.
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2.4 Interval extropy

Recently, there has been growing attention to study uncertainty measures for doubly truncated

random variables which are widely applied in several fields as survival analysis and reliability

engineering. In survival analysis, if the lifetime of the item falls in an interval (t1, t2), infor-

mation about lifetime between these two points (also named doubly truncated failure time) is

studied, see, for instance, Betensky and Martin [17] and Khorashadizadeh et al. [63]. Then,

the random variable (X | t1 < X < t2) is introduced with pdf fXt1,t2 (x) = f(x)
F (t2)−F (t1) and

cdf FXt1,t2 (x) = F (x)−F (t1)
F (t2)−F (t1) , t1 < x < t2. With this motivation, Sunoj et al. [111] introduced

the interval entropy to measure uncertainty in truncated random variable (X | t1 < X < t2)

as follows

H(t1, t2) = −
∫ t2

t1

f(x)

F (t2)− F (t1)
log

f(x)

F (t2)− F (t1)
dx. (2.28)

If t2 → +∞, then H(t1, t2) tends to the residual entropy (2.2). Moreover, if t1 → 0, then

H(t1, t2) tends to the past entropy (2.3). Several other properties of the interval entropy were

studied by Misagh and Yari [74]. Furthermore, the weighted interval entropy was introduced

by Misagh and Yari [73] for doubly truncated random variable (X | t1 < X < t2) as

IHw(t1, t2) = −
∫ t2

t1

x
f(x)

F (t2)− F (t1)
log

f(x)

F (t2)− F (t1)
dx.

In analogy with the interval entropy and the weighted interval entropy, in Buono, Kamari and

Longobardi [24] we have introduced the concepts of interval extropy and weighted interval ex-

tropy for doubly truncated random variables and have studied some of the properties presented

in this section.

Let the random variable (X | t1 < X < t2) represent the lifetime of a unit which fails

between t1 and t2 where (t1, t2) ∈ D = {(u, v) ∈ R2
+ : F (u) < F (v)}. The extropy for the

doubly truncated random variable is defined as

IJ(t1, t2) = IJ(X | t1 < X < t2) = − 1

2(F (t2)− F (t1))2

∫ t2

t1

f2(x) dx, (2.29)

and it is an extension of extropy named interval extropy. In (2.29) the dependence of X in the

expression IJ(t1, t2) has been omitted, but when it is necessary we denote by IJX(t1, t2) the

interval extropy of X to distinguish it from the interval extropy of another random variable.

Remark 2.13. Note that IJ(0, t2) = J(t2X), IJ(t1,+∞) = J(Xt1) and IJ(0, +∞) = J(X)

are the past extropy, the residual extropy and the extropy, respectively.

Example 2.10. Let X ∼ Exp(λ), λ > 0. Based on (2.29), for 0 < t1 < t2 < +∞, the interval

extropy of X is given by

IJ(t1, t2) =
−1

2(e−λt1 − e−λt2)2

∫ t2

t1

λ2e−2λxdx = −λ
4
· e
−λt2 + e−λt1

e−λt1 − e−λt2
.
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Figure 2.2: Plot of IJ(t1, t2) in Example 2.10 as a function of t1 (left) or t2 (right) fixing the

other one with ti = 2 (blue), 3 (red), 4 (yellow) and 5 (violet), i = 1, 2.
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Figure 2.3: Plot of IJ(t1, t2) in Example 2.11 as a function of t1 (left) or t2 (right) fixing the

other one with ti = 1 (violet), 2 (blue), 3 (red) and 4 (yellow), i = 1, 2.

In Figure 2.2, the interval extropy is plotted as a function of t1 for fixed t2 (Figure 2.2, left)

and vice versa (Figure 2.2, right) for λ = 1.

Example 2.11. Let X follow the Weibull distribution, W2(α, λ), with parameters α = λ = 2,

X ∼W2(2, 2). The cdf and the pdf of X are expressed as

F (x) = 1− exp(−2x2), f(x) = 4x exp(−2x2), x ∈ (0,+∞).

Since the expression of the interval extropy is not given in terms of elementary functions, in

Figure 2.3, the interval extropy is plotted as a function of t1 for fixed t2 (Figure 2.3, left) and

vice versa (Figure 2.3, right). From Figure 2.3, right, we observe an asymptotic behavior of

the interval extropy as t2 → +∞ towards −t1, i.e., when the interval extropy IJ(t1, t2) reduces
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Figure 2.4: Plot of IJ(t1, t2) in Example 2.12 as a function of t1 (left) or t2 (right) fixing the

other one with ti = 1 (violet), 2 (blue), 3 (red) and 4 (yellow), i = 1, 2.

to the residual extropy J(Xt1). In fact, the residual extropy of X in t can be derived as

J(Xt) = − 1

2 exp(−4t2)

∫ +∞

t
16x2 exp(−4x2)dx

= −t− 1

exp(−4t2)

∫ +∞

t
exp(−4x2)dx

= −t− 1

2
√

2 exp(−4t2)

∫ +∞

2
√

2t
exp

(
−y

2

2

)
dy = −t−

√
π

2

FZ(2
√

2t)

exp(−4t2)
,

where FZ(·) is the survival function of Z ∼ N(0, 1).

Example 2.12. Let X follow the Lognormal distribution, Lognormal(µ, σ2), with parameters

µ = 0, σ2 = 1, X ∼ Lognormal(0, 1). The pdf of X is expressed as

f(x) =
1

x
√

2π
exp

(
− log2 x

2

)
, x ∈ (0,+∞).

The expression of the interval extropy is not given in terms of elementary functions, hence it

is plotted as a function of t1 for fixed t2 (Figure 2.4, left) and vice versa (Figure 2.4, right).

Based on the above examples, it could seem that the interval extropy is always decreasing

with respect to t1 and always increasing with respect to t2. In the following, we provide two

counterexamples to show that the interval extropy can be non-monotonous with respect to t1

and t2.

Example 2.13. Let X be a random variable with support S = (a,+∞), a > 0 and cdf

F (x) = 1−
(
a
x

)b
, b > 0. The interval extropy of X can be obtained as

IJ(t1, t2) = − 1

2

[(
a
t1

)b
−
(
a
t2

)b]2

∫ t2

t1

b2a2b

x2b+2
dx =

b2
(
t2b+1
1 − t2b+1

2

)
2(2b+ 1)t1t2

(
tb2 − tb1

)2 .
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Figure 2.5: Plot of IJ in Example 2.13 as a function of t1 fixing t2 = 2 (blue), 3 (red), 4

(yellow) and 5 (violet) (left). Plot of IJ in Example 2.14 as a function of t2 ∈ (1, 2) fixing

t1 = 0.1 (right).

Consider the case a = 1 and b = 10. In Figure 2.5, left, the interval extropy of X is plotted as

a function of t1 for fixed different values of t2 and we can observe that it is initially increasing

and then decreasing with respect to t1.

Example 2.14. Let X be a random variable with cdf and pdf respectively defined as

F (x) =

exp
(
−1

2 −
1
x

)
, if x ∈ (0, 1]

exp
(
−2 + x2

2

)
, if x ∈ [1, 2)

f(x) =

exp
(
−1

2 −
1
x

)
1
x2
, if x ∈ (0, 1]

exp
(
−2 + x2

2

)
x, if x ∈ [1, 2).

In Figure 2.5, right, the interval extropy is plotted as a function of t2 ∈ (1, 2) with fixed t1 = 0.1

and we can observe a non-monotonic behavior.

In the following proposition, the connection among some different versions of extropy is

displayed. The proof is straightforward and hence it is omitted.

Proposition 2.10. Let X be a non-negative random variable. For all 0 < t1 < t2 < +∞ the

extropy can be decomposed as follows:

J(X) = F 2(t1)J(t1X) + (F (t2)− F (t1))2IJ(t1, t2) + F
2
(t2)J(Xt2), (2.30)

i.e., the extropy is a function of past extropy, residual extropy and interval extropy.

Definition 2.3. Let X be a non-negative and absolutely continuous random variable with

cdf F and pdf f . The Generalized Failure Rate (GFR) functions of X in t1 and t2 (with

F (t2)− F (t1) > 0) are defined in [80] as

hi(t1, t2) =
f(ti)

F (t2)− F (t1)
, i = 1, 2. (2.31)
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An upper bound in terms of GFR is obtained for the interval extropy in the following

proposition.

Proposition 2.11. Let X be an absolutely continuous non-negative random variable. If the

interval extropy is increasing in t2, then

IJ(t1, t2) ≤ −h2(t1, t2)

4
. (2.32)

Proof. By differentiating the interval extropy with respect to t2, we have

∂IJ(t1, t2)

∂t2
= −h

2
2(t1, t2)

2
− 2h2(t1, t2)IJ(t1, t2). (2.33)

If IJ(t1, t2) is increasing in t2, then (2.33) implies (2.32).

In the following proposition, we analyze the effect of linear transformations on the interval

extropy. Note that this result could be generalized to monotonic transformations but, in

those cases, we do not obtain a formula of interest, in the sense that the interval extropy of

the transformed random variable is not expressed in terms of the one of the original random

variable.

Proposition 2.12. Let X be a non-negative and absolutely continuous random variable and

let Y = aX + b where a > 0 and b ≥ 0. The interval extropy of Y is given in terms of the

interval extropy of X as

IJY (t1, t2) =
1

a
IJX

(
t1 − b
a

,
t2 − b
a

)
, (2.34)

where t1, t2 ∈ SY .

Proof. The cdf and the pdf of Y are expressed in terms of FX and fX as

FY (x) = FX

(
x− b
a

)
, fY (x) =

1

a
fX

(
x− b
a

)
.

Hence, the interval extropy of Y is expressed as

IJY (t1, t2) = − 1

2
(
FX

(
t2−b
a

)
− FX

(
t1−b
a

))2

∫ t2

t1

1

a2
f2
X

(
x− b
a

)
dx

= − 1

2
(
FX

(
t2−b
a

)
− FX

(
t1−b
a

))2

∫ t2−b
a

t1−b
a

1

a
f2
X(x) dx

=
1

a
IJX

(
t1 − b
a

,
t2 − b
a

)
,

which completes the proof.
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In the following theorem, we give a characterization of the exponential distribution based

on the interval extropy.

Theorem 2.10. Let X be a random variable with support (0,+∞), differentiable and strictly

positive pdf f and cdf F . Then, X is exponentially distributed if, and only if, for all (t1, t2)

such that 0 < t1 < t2 < +∞, the following relation holds

IJ(t1, t2) = −1

4
[h1(t1, t2) + h2(t1, t2)] . (2.35)

Proof. Suppose X ∼ Exp(λ). By Example 2.10, the interval extropy of X is given by

IJ(t1, t2) = −λ
4
· e
−λt2 + e−λt1

e−λt1 − e−λt2
.

Moreover, the GFR functions of X are expressed as

h1(t1, t2) =
λe−λt1

e−λt1 − e−λt2
, h2(t1, t2) =

λe−λt2

e−λt1 − e−λt2
,

and then the first part of the proof is completed.

Conversely, suppose (2.35) holds. Then, by making explicit the interval extropy and GFR

functions, we obtain

− 1

2(F (t2)− F (t1))2

∫ t2

t1

f2(x) dx = − f(t1) + f(t2)

4(F (t2)− F (t1))
,

from which it follows ∫ t2

t1

f2(x) dx =
1

2
(F (t2)− F (t1))(f(t1) + f(t2)). (2.36)

By differentiating both sides of (2.36) with respect to t1, we get

−f2(t1) = −1

2
f(t1)(f(t1) + f(t2)) +

1

2
f ′(t1)(F (t2)− F (t1)),

which reduces to

−f2(t1) + f(t1)f(t2) = f ′(t1)(F (t2)− F (t1)). (2.37)

By differentiating both sides of (2.37) with respect to t2, we obtain

f(t1)f ′(t2) = f ′(t1)f(t2),

which is equivalent to

f ′(t1)

f(t1)
=
f ′(t2)

f(t2)
,

i.e., the ratio is constant for x > 0,
f ′(x)

f(x)
= A. (2.38)
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Hence, by integrating both sides of (2.38) from 0 to t, we get

f(t) = f(0) eAt,

and in order to satisfy the condition of normalization for the pdf f , we need A = −f(0), i.e.,

f is the pdf of an exponential distribution.

It is possible to introduce the weighted version of the interval extropy, namely the weighted

interval extropy. Let X be a non-negative absolutely continuous random variable. For all t1

and t2 such that (t1, t2) ∈ D = {(u, v) ∈ R2
+ : F (u) < F (v)} the weighted interval extropy of

X is defined as

IJw(t1, t2) = − 1

2(F (t2)− F (t1))2

∫ t2

t1

xf2(x) dx. (2.39)

In analogy with the interval extropy, it is possible to study some properties of the weighted

interval extropy and provide bounds connected with the generalized failure rate functions. For

further details, see Buono, Kamari and Longobardi [24].

2.5 Tsallis extropy

In this section, by resorting to Balakrishnan, Buono and Longobardi [7], the definition of

the Tsallis extropy, dual to the Tsallis entropy in (2.4), is given. It is defined to preserve a

relationship similar to the one about the sum of Shannon entropy and extropy in (2.7).

Definition 2.4. Let X be a discrete random variable with support S = {x1, . . . , xN} and with

probability vector p = (p1, . . . , pN ), and let α > 0, α 6= 1. Then, the Tsallis extropy of X,

JSα(X), is defined as

JSα(X) =
1

α− 1

(
N − 1−

N∑
i=1

(1− pi)α
)
. (2.40)

Remark 2.14. By using the normalization condition, the Tsallis entropy can be expressed as

Sα(X) =
1

α− 1

N∑
i=1

pi(1− pα−1
i ).

Hence, it seems that we can simply introduce the Tsallis extropy as

1

α− 1

N∑
i=1

(1− pi)
(
1− (1− pi)α−1

)
=

1

α− 1

(
N∑
i=1

(1− pi)−
N∑
i=1

(1− pi)α
)
, (2.41)

i.e., by replacing all the occurrences of pi by (1− pi). Although the expression is the same of

the one given in (2.40), we will show in Proposition 2.15 that the above definition has a deeper

meaning as it preserves the invariance property about the sum of entropy and extropy in (2.7).
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Proposition 2.13. The Tsallis extropy in non-negative.

Proof. Consider the expression of Tsallis extropy in the LHS of (2.41). For α > 1, the function

h(x) = xα−1 is increasing in x > 0, and so 1 − (1 − pi)
α−1 ≥ 0, and the Tsallis extropy

is non-negative. For 0 < α < 1, the function h(x) = xα−1 is decreasing in x > 0, that is

1 − (1 − pi)α−1 ≤ 0, and then the Tsallis extropy is non-negative due to the multiplicative

factor 1
α−1 being negative.

In the following proposition, we show that the Tsallis extropy reduces to the extropy in

(2.6) when α goes to 1. Notice that this is a classical property of Tsallis and Shannon entropies.

Proposition 2.14. Let X be a discrete random variable with finite support S and with corre-

sponding probability vector p. Then,

lim
α→1

JSα(X) = J(X). (2.42)

Proof. From (2.40) and by using L’Hôpital’s rule, we obtain

lim
α→1

JSα(X) = lim
α→1

1

α− 1

(
N − 1−

N∑
i=1

(1− pi)α
)

= − lim
α→1

N∑
i=1

(1− pi)α log(1− pi) = −
N∑
i=1

(1− pi) log(1− pi) = J(X).

Before discussing the sum of Tsallis entropy and extropy, we need the following lemma

about random variables with support of cardinality two.

Lemma 2.3. Let X be a discrete random variable taking on two values with corresponding

probabilities (p, 1− p). Then,

JSα(X) = Sα(X). (2.43)

Proof. From (2.40), with N = 2, it follows

JSα(X) =
1

α− 1
[1− (1− p)α − {1− (1− p)}α]

=
1

α− 1
{1− pα − (1− p)α} = Sα(X).

Proposition 2.15. Let X be a discrete random variable with finite support S and with prob-

ability vector p. Then,

Sα(X) + JSα(X) =
N∑
i=1

Sα(pi, 1− pi) =

N∑
i=1

JSα(pi, 1− pi), (2.44)

where Sα(pi, 1−pi) and JSα(pi, 1−pi) are the Tsallis entropy and extropy of a discrete random

variable taking on two values with corresponding probabilities (pi, 1− pi).
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Proof. We have to prove only the first equality, since the second one is given by Lemma 2.3.

From (2.4) and (2.40), we have

Sα(X) + JSα(X) =
1

α− 1

{
N −

N∑
i=1

pαi −
N∑
i=1

(1− pi)α
}

=
1

α− 1

N∑
i=1

{1− pαi − (1− pi)α} =

N∑
i=1

Sα(pi, 1− pi),

which completes the proof.

In the following proposition, we observe that the Tsallis entropy and extropy coincide for

α = 2.

Proposition 2.16. Let X be a discrete random variable with finite support S of cardinality

N . Then, S2(X) = JS2(X).

Proof. From (2.40), by choosing α = 2, we obtain

JS2(X) =
1

2− 1

(
N − 1−

N∑
i=1

(1− pi)2

)
= N − 1−

N∑
i=1

(1 + p2
i − 2pi)

= N − 1−N −
N∑
i=1

p2
i + 2

N∑
i=1

pi = 1−
N∑
i=1

p2
i = S2(X).

In the following theorem, we show that the Tsallis entropy is always greater than the Tsallis

extropy for α < 2 and that the reverse inequality holds for α > 2.

Theorem 2.11. For any discrete random variable X with support of cardinality N ≥ 3, we

have

Sα(X) ≥ JSα(X) if 0 < α < 2,

Sα(X) ≤ JSα(X) if α > 2.

Proof. Note that for α = 1 we mean the limit case in which we obtain the well-known result

about entropy and extropy. Consider the difference between Tsallis entropy and extropy

Sα(X)− JSα(X) =
1

α− 1

[
2−N −

N∑
i=1

pαi +

N∑
i=1

(1− pi)α
]
.

Then, consider the Lagrange function L defined as

L = Sα(X)− JSα(X) + λ

(
N∑
i=1

pi − 1

)
,
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for which the partial derivatives with respect to pi are

∂L

∂pi
=
−α
α− 1

(
pα−1
i + (1− pi)α−1

)
+ λ,

which vanish if, and only if,

pα−1
i + (1− pi)α−1 = C, (2.45)

being C a constant. Consider, for 0 ≤ x ≤ 1, the function h(x) = xα−1 + (1−x)α−1, such that

h(x) = h(1 − x) and h(0) = h(1) = 1. The function h has a minimum at x = 1
2 , if α > 2 or

0 < α < 1, and a maximum at the same point for 1 < α < 2. Then, to satisfy both (2.45) and

the normalization condition, we have only two possibilities. The first one is given by choosing

one pi equal to 1 and all the others equal to 0, whereas the second one is given by pi = 1
N ,

i = 1, . . . , N . These are the cases in which the difference between Tsallis entropy and extropy

takes the maximum and the minimum values. In the first case, we have Sα(X)− JSα(X) = 0

whereas in the second one

Sα(X)− JSα(X) =
1

α− 1

[
2−N −

N∑
i=1

1

Nα
+

N∑
i=1

(
1− 1

N

)α]

=
2Nα−1 −Nα − 1 + (N − 1)α

(α− 1)Nα−1
. (2.46)

Consider the numerator of (2.46) as a function of α, g(α) = 2Nα−1−Nα−1+(N−1)α. Then,

g′(α) = Nα−1(logN)(2−N) + (N − 1)α log(N − 1),

which is non-negative if, and only if,

α ≤
log
[

N
N−2

log(N−1)
logN

]
log
(

N
N−1

) = G(N).

We have that, for N ≥ 3,

1 < G(N) < 2⇐⇒ N − 2

N − 1
<

log(N − 1)

logN
<
N(N − 2)

(N − 1)2
, (2.47)

which holds as can be seen in Figure 2.6.

Then, the function g has a maximum between 1 and 2 and g(1) = g(2) = 0. Hence, we

have g(α) > 0 if 1 < α < 2 and g(α) < 0 if 0 < α < 1 or α > 2. By recalling the definition

of g and (2.46), we obtain that the difference between Tsallis entropy and extropy for uniform

distribution is greater than 0 if 0 < α < 1 or 1 < α < 2 and less than 0 if α > 2. Hence,

Sα(X) − JSα(X) has minimum of 0 and maximum for the uniform distribution if 0 < α < 2

and vice versa if α > 2.
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Figure 2.6: Plot of the functions on the RHS of (2.47) in red, black and blue, respectively.

2.5.1 The maximum Tsallis extropy

Dealing with a measure of information, it is useful to know its maximum value. The Tsallis

extropy reaches its maximum value if the random variable X is uniformly distributed, as

established in the following theorem.

Theorem 2.12. Let X be a discrete random variable with finite support S of cardinality N ,

and let α > 0, α 6= 1. Then, X has maximum Tsallis extropy for fixed N and α if, and only

if, it is uniformly distributed.

Proof. Let N and α be fixed. Then, we need to maximize the function of N variables given by

JSα (p) =
1

α− 1

(
N − 1−

N∑
i=1

(1− pi)α
)
,

subject to the normalization condition

N∑
i=1

pi = 1. (2.48)

Consider the Lagrange function defined by

JS∗α (p) =
1

α− 1

(
N − 1−

N∑
i=1

(1− pi)α
)

+ λ

(
N∑
i=1

pi − 1

)
,

whose partial derivatives with respect to pi, i = 1, . . . , N , are

∂JS∗α (p)

∂pi
=

α

α− 1
(1− pi)α−1 + λ.

Then, we obtain the stationary points as

α

α− 1
(1− pi)α−1 + λ = 0⇐⇒ pi = 1−

(
(1− α)λ

α

) 1
α−1

= K,

where K is a constant. In order to satisfy the condition in (2.48), we need K = 1
N , and then

p becomes the probability mass function vector of a discrete uniform distribution.
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Remark 2.15. Let X be a discrete random variable uniformly distributed over {1, . . . , N}.
Then, the maximum Tsallis extropy is given by

JSα(X) =
1

α− 1

{
N − 1−

N∑
i=1

(
1− 1

N

)α}

=
1

α− 1

{
N − 1− (N − 1)α

Nα−1

}
=
N − 1

α− 1

{Nα−1 − (N − 1)α−1}
Nα−1

. (2.49)

Theorem 2.13. The Tsallis extropy is less than 1.

Proof. To prove the statement, we show that the Tsallis extropy of a discrete uniform distri-

bution increases to 1 as the size of the support N increases. Let XN be a discrete random

variable uniformly distributed over a finite support of size N . From (2.49), the corresponding

Tsallis extropy is given by

JSα(XN ) =
1

α− 1

(
N − 1− (N − 1)α

Nα−1

)
.

Consider the function

g(N) = N − 1− (N − 1)α

Nα−1
, (2.50)

we show that it increases for α > 1 and decreases for 0 < α < 1. In this way, we will prove

that JSα(XN ) is increasing in N . By treating g as a function of a continuous variable N , its

first derivative is given as

g′(N) = 1− (N − 1)α−1

Nα
(α+N − 1) =

Nα − (N − 1)α−1(α+N − 1)

Nα
,

whose sign is determined by

Nα − (N − 1)α−1(α+N − 1) = Nα − (N − 1)α − α(N − 1)α−1,

which, by the mean value theorem, is equal to

α(N − 1 + ε)α−1 − α(N − 1)α−1,

for some ε ∈ (0, 1). Hence, by using that the function h(x) = xα−1 is increasing in x > 0 for

α > 1 and decreasing for 0 < α < 1, we get the monotonicity of g(N) in (2.50).

Now, we evaluate the limit of JSα(XN ) as N tends to infinity and we obtain

lim
N→+∞

N − 1

α− 1

(Nα−1 − (N − 1)α−1)

Nα−1
= lim

N→+∞

N − 1

α− 1

[
1−

(
1− 1

N

)α−1
]

= lim
N→+∞

N − 1

N
= 1.

Finally, by using the result in Theorem 2.12 about the maximum Tsallis extropy, we conclude

that the Tsallis extropy is less than 1 for any discrete random variable.
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Corollary 2.2. For any discrete random variable X, we have

0 ≤ JSα(X) < 1.

Proof. The result follows by Proposition 2.13 and Theorem 2.13.

2.6 Past varentropy

As already mentioned, it follows from (2.1) that the Shannon entropy represents the expectation

of the (random) information content IC(X). But for different purposes (see, for instance,

Bobkov and Madiman [20]), it is also possible to consider its variance, in order to evaluate the

concentration of the information content around the entropy H(X). Thus, we can be interested

in the varentropy of X (also known as minimal coding variance of X, whenever X is discrete),

defined as

Ve(X) = Var[IC(X)] = Var[− log f(X)] (2.51)

= Var[log f(X)] = E
[
(log f(X))2

]
− [H(X)]2

=

∫ +∞

0
f(x)[log f(x)]2dx−

[∫ +∞

0
f(x) log f(x)dx

]2

.

In recent literature, several papers deal with properties and applications of the varentropy, such

as Madiman and Wang [72], Arikan [2] and references therein. Furthermore, by the entropy and

the varentropy, it is possible to define reference intervals for the information content IC(X) as

E[IC(X)]± k
√

Var[IC(X)] = H(X)± k
√
Ve(X) (2.52)

for suitable choices of k. In the statistics field, such intervals can be used to evaluate the

uncertainty about likelihood estimates.

We remind that the Shannon entropy, as well as the varentropy, provides a measure of

information for the random lifetime of an item which is new, when X represents its lifetime.

For such reason, different time dependent versions of this measure have been proposed in the

context of reliability and survival analysis, as the residual entropy recalled in (2.2). In analogy,

it can be defined a dynamic version of the varentropy, useful to evaluate the concentration of

the information content in residual lifetimes. This is the residual varentropy, studied in details

in Di Crescenzo and Paolillo [40] and Paolillo et al. [91], defined as

Ve(Xt) = Var[IC(Xt)] = Var[− log fXt(Xt)]

= Var[log fXt(Xt)] = E
[
(log fXt(Xt))

2
]
− [H(Xt)]

2

=

∫ +∞

t

f(x)

F (t)

[
log

f(x)

F (t)

]2

dx−
[∫ +∞

t

f(x)

F (t)
log

f(x)

F (t)
dx

]2

.
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A large number of studies in reliability theory deals with past lifetime, that is the random

variable conditioned on the fact that the failure occurs before a specified inspection time t. In

many situations, uncertainty can refer to the past instead of the future. Recall that given the

absolutely continuous random lifetime X, having support S ⊆ R+, cdf F and pdf f , its past

lifetime at time t ∈ S is the variable tX = (X|X ≤ t). The corresponding past entropy has

been recalled in (2.3) as

H(tX) = E[IC(tX)] = E[− log ftX(tX)] = −
∫ t

0

f(x)

F (t)
log

f(x)

F (t)
dx. (2.53)

In this section based on Buono, Longobardi and Pellerey [26], the past varentropy is defined

and some of its properties are studied. The past varentropy can be defined, for all t ∈ S, as

Ve(tX) = Var[IC(tX)] = Var[− log ftX(tX)]

= Var[log ftX(tX)] = E
[
(log ftX(tX))2

]
− [H(tX)]2

=

∫ t

0

f(x)

F (t)

[
log

f(x)

F (t)

]2

dx−
[∫ t

0

f(x)

F (t)
log

f(x)

F (t)
dx

]2

. (2.54)

It can be expressed in a different way by using the reversed hazard rate function q given in

(1.4) and the cumulative reversed hazard rate function defined as

Q(t) =

∫ +∞

t
q(x)dx = − logF (t), (2.55)

see, for instance, Li and Li [69]. Also, note that the past entropy can be expressed as

H(tX) = −Q(t)− 1

F (t)

∫ t

0
f(x) log f(x)dx

= 1− 1

F (t)

∫ t

0
f(x) log q(x)dx, (2.56)

as shown in Di Crescenzo and Longobardi [37]. Thus, by (2.54) and (2.56), it follows for t ∈ S

Ve(tX) =

∫ t

0

f(x)

F (t)

[
log

f(x)

F (t)

]2

dx− [H(tX)]2

=
1

F (t)

∫ t

0
f(x)(log f(x))2dx+ log2 F (t)− 2 logF (t)

F (t)

∫ t

0
f(x) log f(x)dx− [H(tX)]2

=
1

F (t)

∫ t

0
f(x)(log f(x))2dx+ (Q(t))2 +

2Q(t)

F (t)

∫ t

0
f(x) log f(x)dx− [H(tX)]2

=
1

F (t)

∫ t

0
f(x)(log f(x))2dx+ (Q(t))2 − 2Q(t) [Q(t) +H(tX)]− [H(tX)]2

=
1

F (t)

∫ t

0
f(x)(log f(x))2dx− (Q(t) +H(tX))2. (2.57)

Remark 2.16. As well as, when t tends to the supremum of the support S, uX , the past

entropy tends to Shannon entropy, also the past varentropy reduces to the varentropy, i.e.,
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limt→uX Ve(tX) = Ve(X). Now, consider the case in which t tends to the infimum of the

support, lX . If the pdf f of X is differentiable and such that

lim
t→l+X

f(t) 6= 0 and lim
t→l+X

f ′(t) 6= +∞, (2.58)

then limt→l+X
Ve(tX) = 0. In fact, from (2.57) the past varentropy can be expressed as

Ve(tX) =
F (t)

∫ t
lX
f(x) (log f(x))2 dx−

(∫ t
lX
f(x) log f(x)dx

)2

F 2(t)
,

and by using L’Hôpital’s rule twice, it readily follows

lim
t→l+X

Ve(tX) = lim
t→l+X

(
f ′(t)F (t)

f2(t)
log f(t)− f ′(t)

f2(t)

∫ t

lX

f(x) log f(x)dx

)
= lim

t→l+X

f ′(t)

f2(t)

∫ t

lX

F (x)f ′(x)

f(x)
dx = 0,

where the last equality depends on the assumptions in (2.58).

In the following, some examples of evaluation of the past entropy and the past varentropy

are given by using (2.53) and (2.57).

� Let X be a random variable with uniform distribution over (0, b), X ∼ U(0, b), b > 0.

Hence, for t ∈ (0, b) we have

H(tX) = log t, Ve(tX) = 0.

� Let X be a random variable with exponential distribution, X ∼ Exp(λ), for λ > 0.

Then, for t > 0 we have

H(tX) = 1 + log

(
1− e−λt

λ

)
− λte−λt

1− e−λt

Ve(tX) = 1− λ2t2e−λt

(1− e−λt)2
.

The plots of past entropy and past varentropy are shown in Figure 2.7 for different choices

of λ. Note that limt→0+ Ve(tX) = 0, as expected, since the exponential distribution

satisfies the assumptions given in (2.58) for any value of λ.

� Let X be a random variable such that f(x) = 2x and F (x) = x2, x ∈ (0, 1). Hence, for

t ∈ (0, 1) we have

H(tX) =
1

2
+ log

t

2
, Ve(tX) =

1

4
.
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Figure 2.7: Plots of past entropy (left) and past varentropy (right) of exponential distribution

with parameter λ = 1, 2, 3, 4 (black, blue, red and green, respectively).
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Figure 2.8: Plots of past entropy (left) and past varentropy (right) of X ∼ Beta(2, 2).

� Let X be a random variable with Beta(2, 2) distribution, i.e., f(x) = 6x(1 − x) and

F (x) = 3x2 − 2x3, x ∈ (0, 1). Hence, for t ∈ (0, 1) we have

H(tX) =
1

t2/2− t3/3

[(
t2

2
− t3

3

)
log

(
6(1− t)
t(3− 2t)

)
+

2

9
t3 − 1

3
t2 − 1

6
t− 1

6
log(1− t)

]
Ve(tX) =

1

t2/2− t3/3

[(
t2

2
− t3

3

)
log2

(
6(1− t)
t(3− 2t)

)
+

1

3

(
4

3
t3 − 2t2 − t

)
log

(
6(1− t)
t(3− 2t)

)
+

1

9

(
−8

3
t3 + 4t2 + 8t+ 5 log(1− t)

)
− 1

3
log

(
1

t2/2− t3/3

)
log(1− t)

−1

6
log2(1− t)− π2

18
+

1

3
Li2(1− t))

]
− [H(tX)]2

where Li2 is the Spence’s function or dilogarithm function, see Morris [75]. The plots of

these past entropy and past varentropy are shown in Figure 2.8.

� Let X be a random variable with cdf F (x) = 1−
(
b−x
b

)α
, for x ∈ (0, b) ⊆ R+ and α > 0.
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Figure 2.9: Plots of past entropy (left) and past varentropy (right) of X with cdf F (x) =

1−
(
b−x
b

)α
for b = 5 and α = 2, 3, 4, 5 (black, blue, red and green, respectively).

Then, for t ∈ (0, b)

H(tX) =
bα

bα − (b− t)α
log

(
αb(α−1)

bα − (b− t)α

)
− (b− t)α

bα − (b− t)α
log

(
α(b− t)(α−1)

bα − (b− t)α

)
− α− 1

α

Ve(tX) =

(
α− 1

α

)2

− bα(b− t)α

[bα − (b− t)α]2
log2

[(
b

b− t

)α−1
]
.

The plots of this past entropy and of the corresponding past varentropy are shown in

Figure 2.9.

Note that the past varentropy is constant in two of the cases described above, increasing

in one case, and non-monotone in the other one. Thus, monotonicity of the varentropy is not

always guaranteed. We recall that, if the reversed hazard rate is decreasing in t, then the past

entropy is increasing in t (see Di Crescenzo and Longobardi [37], Proposition 2.2). However,

the monotonicity of the reversed hazard rate is not a sufficient condition for the monotonicity

of the past varentropy, as shown for the Beta(2, 2) distribution whose past varentropy is not

monotone but whose reversed hazard rate q(t) = 6(1 − t)/(3t − 2t2) is decreasing. For this

reason, conditions for the monotonicity of Ve(tX) and an implicit formula for the derivative

of the past varentropy are now described. Before stating the following result, we remind the

definition of two stochastic comparisons orders used in the proof. Given the random variables

X1 and X2 with distributions F1 and F2, respectively, we say that X1 is smaller than X2 in

the convex transform order, X1 ≤c X2, if F−1
2 (F1(x)) is convex on the support of F1. We say

that X1 is smaller than X2 in the star order, X1 ≤∗ X2, if F−1
2 (F1(x))/x is increasing on the

support of F1. See Shaked and Shanthikumar [106] for further details.

Proposition 2.17. Let X be a random lifetime with an absolutely continuous cdf F and a
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strictly decreasing [increasing] pdf f . If the ratio

f(F−1(pF (s)))

f(F−1(pF (t)))
(2.59)

is increasing in p ∈ (0, 1) for all s ≤ t, then the corresponding past varentropy Ve(tX) is

increasing [decreasing] in t ∈ S.

Proof. Recall that, for any t ∈ S, the past lifetime tX has pdf ftX(x) = f(x)/F (t) and cdf

FtX(x) = F (x)/F (t), with x ≤ t. Then, the corresponding quantile function is F−1
tX

(p) =

F−1(pF (t)), for p ∈ (0, 1). Also observe that, for s ≤ t,

fsX(F−1
sX

(p))

ftX(F−1
tX

(p))
=
f(F−1(pF (s)))

F (s)
· F (t)

f(F−1(pF (t)))
=
f(F−1(pF (s)))

f(F−1(pF (t)))
· F (t)

F (s)
,

where the latter is increasing in p by assumption (2.59). Then, it follows sX ≤c tX (see Remark

4.3 in Paolillo et al. [91]). Observe that, since f is decreasing [increasing] by assumption, also

fsX and ftX are decreasing [increasing]. Thus, by the equivalence pointed out in Remark 4.6

in Paolillo et al. [91], one also has fsX(sX) ≤∗ ftX(tX) [fsX(sX) ≥∗ ftX(tX)], which implies

Ve(sX) ≤ Ve(tX) [Ve(sX) ≥ Ve(tX)] by Theorem 5.2 in the same paper.

It is easy to verify, for example, that exponential distributions satisfy the assumptions of

Proposition 2.17 for any value of λ. The following result provides an implicit formula for the

derivative of the past varentropy, useful to describe distributions with constant varentropy.

Proposition 2.18. For all t ∈ S, the derivative of the past varentropy is

V ′e (tX) = −q(t)
[
Ve(tX)− (H(tX) + log q(t))2

]
.

Proof. First observe that by differentiating both sides of (2.56) we get the following expression

for the derivative of the past entropy:

H ′(tX) = q(t)[1−H(tX)− log q(t)]. (2.60)

Consider now (2.57). By differentiating both sides it follows

V ′e (tX) =
q(t)

F (t)

∫ t

0
f(x)(log f(x))2dx+ q(t)(log f(t))2 − 2(Q(t) +H(tX))(−q(t) +H ′(tX)).

(2.61)

Hence, recalling (2.60) and (2.57), from (2.61) we get

V ′e (tX) = −q(t)
[
Ve(tX) + (Q(t) +H(tX))2 − log2 f(t)− 2(Q(t) +H(tX))(H(tX) + log q(t))

]
and, after straightforward calculations, the proof is completed.
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From Proposition 2.18 one can obtain conditions such that absolutely continuous distribu-

tions, with continuous densities, have a corresponding constant past varentropy. Consider first

the case of random variables having support S = [0, 1].

Proposition 2.19. Let X have support S = [0, 1]. Then, its varentropy Ve(tX) is constant if,

and only if, X has cdf

F (x) = xα, x ∈ [0, 1], (2.62)

where α > 0 is a parameter. In this case, Ve(tX) = (1− 1/α)2 for all t ∈ [0, 1].

Proof. If X has the cdf defined in (2.62), then the pdf is given by

f(x) = αxα−1, x ∈ (0, 1),

and, for t ∈ (0, 1), the past varentropy is

Ve(tX) =

∫ t

0

αxα−1

tα

[
log

(
αxα−1

tα

)]2

dx−
[∫ t

0

αxα−1

tα
log

(
αxα−1

tα

)
dx

]2

.

By the change of variable y =
(
x
t

)α
, we get

Ve(tX) =

∫ 1

0

[
log

(
αy(α−1)/α

t

)]2

dy −

[∫ 1

0
log

(
αy(α−1)/α

t

)
dy

]2

= log2
(α
t

)
− 2

(
α− 1

α

)
log
(α
t

)
+ 2

(
α− 1

α

)2

−
[
log
(α
t

)
− α− 1

α

]2

.

Thus Ve(tX) is constant and equal to (1− 1/α)2. It follows now, from Proposition 2.18, that

(H(tX) + log q(t))2 = (1− 1/α)2,

and so

|H(tX) + log q(t)| = |1− 1/α|, ∀t ∈ [0, 1]. (2.63)

Since the pdf f is continuous by assumption, then also q and H(Xt) are continuous. Thus,

H(tX) + log q(t) is continuous in t ∈ [0, 1], so that equality (2.63) implies

H(tX) + log q(t) = c, ∀t ∈ [0, 1]. (2.64)

for some c ∈ R. As shown in Kundu et al. [66], Theorem 2.1, there exist only three families of

distributions for which (2.64) is satisfied. Two of them have infinite support on the left, i.e.,

of the form (−∞, b], for b ∈ R (thus they cannot be distributions of random lifetimes), and

the only one having support entirely contained in R+ (and in [0, 1] in particular) is the one

defined in (2.62).
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To generalize the above result to random lifetimes having different supports, we can use the

following proposition, based on the past varentropy under linear transformations. We recall

that if Y = aX + b for a > 0 and b ≥ 0, then, as shown in Di Crescenzo and Longobardi [37],

the past entropies of X and Y are related by

H(tY ) = H
(
t−b
a
X
)

+ log a ∀t. (2.65)

Proposition 2.20. Let Y = aX + b, with a > 0 and b ≥ 0. Then, their past varentropies are

related by

Ve(tY ) = Ve

(
t−b
a
X
)
, ∀t. (2.66)

Proof. From Y = aX + b we know that FY (x) = FX
(
x−b
a

)
and fY (x) = 1

afX
(
x−b
a

)
. Hence,

from (2.54) and (2.65), we get

Ve(tY ) =

∫ t−b
a

0

fX(x)

FX
(
t−b
a

) (log
1
afX (x)

FX
(
t−b
a

))2

dx−
(
H
(
t−b
a
X
)

+ log a
)2
. (2.67)

By writing

log
1
afX (x)

FX
(
t−b
a

) = log
fX (x)

FX
(
t−b
a

) − log a,

and developing the two squares in (2.67), the statement easily follows.

From Propositions 2.19 and 2.20, the following corollary immediately follows.

Corollary 2.3. Let X be an absolutely continuous random lifetime with continuous pdf f .

Then, its varentropy Ve(tX) is constant if, and only if, X has cdf in the family

F (x) =

(
x− b
a

)α
, x ∈ [b, a+ b], (2.68)

for a parameter α > 0.

A generalization of Proposition 2.20 will now be stated. Let φ be a differentiable and strictly

monotone function and let Y = φ(X) for a given X. It has been shown in Di Crescenzo and

Longobardi [37] that the past entropies of X and Y are related by

H(tY ) =

H
(
φ−1(t)X

)
+ E[log φ′(X)|X < φ−1(t)], if φ is strictly increasing,

H
(
Xφ−1(t)

)
+ E[log(−φ′(X))|X > φ−1(t)], if φ is strictly decreasing.

(2.69)

Similar results can be proved for the past varentropy.

Proposition 2.21. Let Y = φ(X), where φ is a differentiable and strictly monotone function.

Then, if φ is strictly increasing, for the past varentropy of Y we have

Ve(tY ) = Ve
(
φ−1(t)X

)
− 2E

[
log

fX(X)

FX(φ−1(t))
log φ′(X)

∣∣∣∣X < φ−1(t)

]
+Var[log φ′(X)|X < φ−1(t)]− 2H

(
φ−1(t)X

)
E[log φ′(X)|X < φ−1(t)], (2.70)
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whereas, if φ is strictly decreasing

Ve(tY ) = Ve
(
Xφ−1(t)

)
− 2E

[
log

fX(X)

FX(φ−1(t))
log(−φ′(X))

∣∣∣∣X > φ−1(t)

]
+ Var[log(−φ′(X))|X > φ−1(t)]− 2H

(
Xφ−1(t)

)
E[log(−φ′(X))|X > φ−1(t)].

(2.71)

Proof. Suppose that φ is strictly increasing. From Y = φ(X) we know that FY (x) = FX
(
φ−1(x)

)
and fY (x) = fX(φ−1(x))

φ′(φ−1(x))
. Hence, by using (2.54) and (2.69), we get

Ve(tY ) =

∫ φ−1(t)

0

fX(x)

FX (φ−1(t))

(
log

fX (x)

FX (φ−1(t))
− log φ′(x)

)2

dx

−
[
H
(
φ−1(t)X

)
+ E[log φ′(X)|X < φ−1(t)]

]2
.

Then, the result follows by developing the two squares in the above equality and observing

that ∫ φ−1(t)

0

fX(x)

FX (φ−1(t))

(
log φ′(x)

)2
dx − E2[log φ′(X)|X < φ−1(t)]

= Var[log φ′(X)|X < φ−1(t)].

The proof is similar if φ is strictly decreasing and hence it is omitted.

Example 2.15. The Inverted Exponential distribution (invExp), introduced as a lifetime

model in Lin et al. [70], has been considered by many authors in reliability studies (see, for

instance, Krishna and Kumar [65] and references therein). The past varentropy of an inverted

exponential distribution can be obtained by using Proposition 2.21. Consider X ∼ Exp(λ) and

Y = φ(X) = 1/X so that φ is strictly decreasing and Y ∼ invExp(λ). The past varentropy of

Y can be evaluated by using (2.71)

Ve(tY ) = Ve
(
X1/t

)
− 2E

[
log

λe−λX

e−λ/t
log

(
1

X2

)∣∣∣∣X >
1

t

]
+Var

[
log

(
1

X2

)∣∣∣∣X >
1

t

]
− 2H

(
X1/t

)
E
[

log

(
1

X2

)∣∣∣∣X >
1

t

]
.

The residual entropy and the residual varentropy for the exponential distribution are

H(Xt) = 1− log λ, Ve(Xt) = 1,

and then the past varentropy of Y is expressed as

Ve(tY ) = 1− 2E
[

log
λe−λX

e−λ/t
log

(
1

X2

)∣∣∣∣X >
1

t

]
+Var

[
log

(
1

X2

)∣∣∣∣X >
1

t

]
− 2(1− log λ)E

[
log

(
1

X2

)∣∣∣∣X >
1

t

]
.
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Figure 2.10: Plots of past varentropies of inverse exponential distributions with parameter

λ = 1, 2, 3, 4 (black, blue, red and green, respectively).

With several calculations, the above expression reduces to

Ve(tY ) = −3 +
4λ

t
log

1

t2
+

8t

λ
+

(
8− 4λ

t

)
1

e−λ/t
Ei

(
−λ
t

)
− 4

e−2λ/t
Ei2

(
−λ
t

)
+

4

e−λ/t
log

1

t2
Ei

(
−λ
t

)
− 4

λe−λ/t

∫ +∞

1/t

log x2

x2
e−λxdx,

where Ei(·) is the exponential integral function (see Gautschi and Gahill [48]). The plot of

this past varentropy is shown in Figure 2.10 for different choices of λ.

In the following, we give some bounds for the past varentropy. A very simple upper bound

can be provided for a large class of distributions, as stated in the following proposition.

Proposition 2.22. Let X be a non-negative random variable with support S and log-concave

pdf f . Then

Ve(tX) ≤ 1 for all t ∈ S.

Proof. Observe that if f(x) is log-concave, then also ftX(x) = f(x)
F (t) is log-concave. From

Theorem 2.3 of Fradelizi et al. [47], we know that if X has a log-concave pdf, then Ve(X) ≤ 1

and the proof is completed.

For example, the pdf f(x) = 6x(1− x), x ∈ [0, 1] of X ∼ Beta(2, 2) is logconcave, so that

the past varentropy of X is always smaller than 1, as confirmed by its plot shown in Figure

2.8, right. However, by comparing this bound with the plot of Ve(tX), one can immediately

observe that it is a really large bound. Better upper bounds can be provided, for any X, by

using results available in the literature. Recall that, for a random lifetime X, the inactivity

time at t is defined as X[t] = (t − X|X ≤ t) = t − tX. The following upper bound for

Var[− log fX[t]
(X[t])] has been proved in Goodarzi et al. [50], Proposition 1, making use of an
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upper bound for variances proved in Cacoullos and Papathanasiou [29]:

Var[− log fX[t]
(X[t])] ≤ E

[
η2(t−X[t])

q(t−X[t])

(
mX(t−X[t])−mX(t) +X[t]

)]
(2.72)

for all t ∈ S, where η(x) = −f ′(x)/f(x) is the eta function and mX(x) = x − µ̃X(x) is the

mean inactivity time given in (1.14), and where µ̃X(x) is defined in (1.13). Now observe that

Ve(X[t]) = Var[− log fX[t]
(X[t])] = E[log2 fX[t]

(X[t])]−
[
H(X[t]))

]2
=

∫ t

0

f(t− x)

F (t)
log2

(
f(t− x)

F (t)

)
dx−

[∫ t

0

f(t− x)

F (t)
log

(
f(t− x)

F (t)

)
dx

]2

=

∫ t

0

f(x)

F (t)
log2

(
f(x)

F (t)

)
dx−

[∫ t

0

f(x)

F (t)
log

(
f(x)

F (t)

)
dx

]2

= Var[− log ftX(tX)]

= Ve(tX).

Thus, by recalling that mX(x) = x− µ̃X(x) and X[t] = t− tX, from (2.72) one gets the upper

bound

Ve(tX) ≤ E
[
η2(tX)

q(tX)
(µ̃(t)− µ̃(tX))

]
∀ t ∈ S.

A lower bound for the past varentropy can also be proved. In order to do this, we recall

the definition of the variance past lifetime function ν̃2
X

ν̃2
X(t) = Var(tX) = Var(X|X ≤ t) =

1

F (t)

∫ t

0
x2f(x)dx− (µ̃X(t))2, t ∈ S.

Note that, for every t ∈ S the variance past lifetime function ν̃2
X(t) is the same as the variance

of the inactivity time X[t], see Kandil et al. [59] for details and properties of the variance of

the inactivity time function.

Proposition 2.23. Let tX be the past lifetime of X at time t, and let the mean past lifetime

µ̃X(t) and the variance past lifetime ν̃2
X(t) be finite for all t ∈ S. Then

Ve(tX) ≥ ν̃2
X(t)

[
E(ω′t(tX))

]2
,

where the function ωt(x) is defined by solving the equation

ν̃2
X(t)ωt(x)ftX(x) =

∫ x

0
(µ̃X(z)− z)ftX(z)dz, x ∈ S. (2.73)

Proof. Recall that if X is a random variable with pdf f , mean µX and variance σ2
X , then

Var[g(X)] ≥ σ2
[
E(ω(X)g′(X))

]2
, (2.74)
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where ω(x) is defined by σ2ω(x)f(x) =
∫ x

0 (µ − z)f(z)dz (see Cacoullos and Papathanasiou

[30]). Hence, in (2.74) by choosing g(x) = − log ftX(x) and tX as X, it follows

Var(− log ftX(tX)) ≥ ν̃2
X(t)

[
E
(
ωt(tX)

f ′
tX

(tX)

ftX(tX)

)]2

. (2.75)

By differentiating both sides of (2.73), we have

ω(x)
f ′
tX

(x)

ftX(x)
=
µ̃X(x)− x
ν̃2
X(t)

− ω′t(x),

and then, from (2.75),

V (tX) = Var(− log ftX(tX))

≥ ν̃2
X(t)

[
E
(
µ̃X(t)− tX

ν̃2
X(t)

− ω′(tX)

)]2

= ν̃2
X(t)

[
E(ω′t(tX))

]2
.

2.6.1 Past varentropy and parallel systems

When the past varentropy Ve(tX) of a random lifetime X is available, in some cases it is

possible to easily compute the past varentropy of another lifetime Y whose distribution is a

transformation of that one of X. An example is given by the scale model: the family of random

variables {X(a) : a > 0} follows a Scale model if there exists a non-negative random variable X

with cdf F and pdf f such that X(a) has distribution F (a)(t) = F (at) for all t, where a > 0 is

the parameter of the model. Some examples are the exponential, Weibull (with a fixed shape

parameter) and Pareto (with a fixed shape parameter) distributions. Hence, from Proposition

2.20 it immediately follows

Ve(tX
(a)) = Ve (atX) , ∀t.

A more interesting case is when the family of random variables {X(a) : a > 0} follows

the Proportional Reversed Hazard Rate model introduced in Chapter 1. Then, there exists a

non-negative random variable X with cdf F and pdf f such that

F (a)(t) = P(X(a) ≤ t) = [F (t)]a, f (a)(t) = a[F (t)](a−1)f(t), t ∈ S, (2.76)

being F (a) and f (a) the cdf and the pdf of X(a), respectively. The relation between the

reversed hazard rates of X(a) and X has already been given in (1.7). Moreover, we note that

the cumulative reversed hazard rate function of X(a) is expressed as

QX(a)(t) = − logF (a)(t) = aQ(t).

The proportional reversed hazard rate model finds applications, for example, in analysis of

parallel systems. In fact, if we have a system composed by n units in parallel and characterized
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by IID lifetimes X1, . . . , Xn with cdf F , then the lifetime of the system is given by X(n) =

max{X1, . . . , Xn}. Hence FX(n)(t) = [F (t)]n, so that the system satisfies the PRHR model

(2.76) with a = n. In the following examples, it is highlighted the behavior of the past

varentropy when it refers to the lifetime of a parallel system with IID components. First, we

evaluate the past entropy of X(a) and the past varentropy of X(a), for an arbitrary a > 0,

H
(
tX

(a)
)

= −QX(a)(t)−
1

[F (t)]a

∫ t

0
f (a)(x) log f (a)(x)dx = −aQ(t)− 1

[F (t)]a

∫ [F (t)]a

0
γ(y; a)dy

with the change of variable y = [F (x)]a, and where γ(y; a) = log
[
ay1−1/af(F−1(y1/a))

]
. Hence,

the past varentropy of X(a) is given as

Ve

(
tX

(a)
)

=
1

[F (t)]a

∫ t

0
f (a)(x)(log f (a)(x))2dx−

[
1

[F (t)]a

∫ t

0
f (a)(x) log f (a)(x)dx

]2

=
1

[F (t)]a

∫ [F (t)]a

0
[γ(y; a)]2dy −

[
1

[F (t)]a

∫ [F (t)]a

0
γ(y; a)dy

]2

.

Example 2.16. Let us consider the case in which X has a Pareto type II distribution with cdf

F (t) = t/(1 + t) and pdf f(t) = 1/(1 + t)2, for t ≥ 0. Then, γ(y; a) = log
[
ay1−1/a(1− y1/a)2

]
,

so that

H
(
tX

(a)
)

= a log

(
t

1 + t

)
− 1

[t/(1 + t)]a

∫ [t/(1+t)]a

0
γ(y; a)dy,

Ve

(
tX

(a)
)

=
1

[t/(1 + t)]a

∫ [t/(1+t)]a

0
[γ(y; a)]2dy −

[
1

[t/(1 + t)]a

∫ [t/(1+t)]a

0
γ(y; a)dy

]2

.

If a is an integer, i.e., X(a) represents the lifetime of a parallel system of a number a of IID

components, we obtain the past entropies and past varentropies shown in Figure 2.11 (for

different integer values of a). It is interesting to observe that both the past entropies and the

past varentropies intersect each other for different values of a: for small values of the time t one

has the smaller past entropies and larger past varentropies when the number of components

in parallel is large, and vice versa for large values of the time t. It means, for example, that

in the long run (for large values of the inspection time t) the uncertainty of the information

content of the past lifetime of a parallel system reduces as the number of components in the

system increases (and vice versa for small t).

The same can be observed if X has an exponential distribution with parameter λ. In this

case, γ(y; a) = log
[
λay1−1/a(1− y1/a)

]
, so that

H
(
tX

(a)
)

= a log
(

1− e−λt
)
− 1

[1− e−λt]a

∫ [1−e−λt]a

0
γ(y; a)dy,

Ve

(
tX

(a)
)

=
1

[1− e−λt]a

∫ [1−e−λt]a

0
[γ(y; a)]2dy −

[
1

[1− e−λt]a

∫ [1−e−λt]a

0
γ(y; a)dy

]2

.
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Figure 2.11: Plots of the past entropy (left) and the past varentropy (right) of Pareto type II

PRHR model for a = 1 (dashed line) and a = 2, 3, 4, 5, 6 (blue, red, green, cyan and black,

respectively).
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Figure 2.12: Plots of the past entropy (left) and the past varentropy (right) of exponential

PRHR model for a = 1 (dashed line) and a = 2, 3, 4, 5, 6 (blue, red, green, cyan and black,

respectively).

The plots of H
(
tX

(a)
)

and Ve
(
tX

(a)
)
, for different integer values of a and with λ = 2, are

shown in Figure 2.12. As for the Pareto type II case, both the past entropies and the past

varentropies intersect each other for different values of a, having a similar behavior.

There exists a family for which the past varentropies do not intersect, which is the family

discussed in Proposition 2.19, whose varentropies are constant. Let Xα be a lifetime having

support S = [0, 1] and cdf Fα(x) = xα, for x ∈ S. Then, the corresponding parallel system

with n IID components has distribution Fnα(x) = xnα for x ∈ S, which is still in the family

of distribution having constant past varentropy. Thus, Ve(tXnα) = (1− 1/(nα))2 for all t ∈ S,

and obviously these past varentropies do not intersect as n varies in N+. This is another

interesting property of such a family of distributions.



Chapter 3

New measures of uncertainty in

Dempster-Shafer theory of evidence

Dempster [34] and Shafer [104] introduced a theory to study uncertainty. Their theory of

evidence is a generalization of the classical probability theory. In Dempster-Shafer theory

(DST) of evidence, an uncertain event with a finite number of alternatives is considered,

and a mass function over the power set of the alternatives (i.e., a degree of confidence to all

of its subsets) is defined. If we give positive mass only to singletons, a discrete probability

distribution is obtained. Through DST it is possible to describe situations in which there is less

specific information. In this chapter, some concepts and definitions of DST are given. Then,

based on Balakrishnan, Buono and Longobardi [5], Buono and Longobardi [25] and Kazemi,

Tahmasebi, Buono and Longobardi [62], new measures of uncertainty in DST will be studied

and applications to classifications problems will be given.

3.1 Dempster-Shafer theory of evidence

We start this section by describing a simple example given in [35] to explain how DST extends

the classical probability theory. Consider two boxes, A and B, such that in A there are only

red balls and in B there are only green balls. The number of balls in each box is unknown. A

ball is picked randomly from one of these two boxes. The box A is selected with probability

pA = 0.6 and the box B is selected with probability pB = 1− pA = 0.4. Hence, the probability

of picking up a red ball is 0.6, P(R) = 0.6, whereas the probability of picking up a green ball is

0.4, P(G) = 0.4. Suppose now that in box B there are green and red balls with rates unknown.

The box A is still selected with probability pA = 0.6 and the box B with probability pB = 0.4.

In this case, we cannot obtain the probability of picking up a red ball. To analyze this problem,

we can use DST to express the uncertainty. In particular, we choose a mass function m such

that, m(R) = 0.6 and m(R,G) = 0.4. In the following, we recall some of the basic notions in

68
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DST.

Let X be a frame of discernment (FOD), i.e., a set of mutually exclusive and collectively

exhaustive events indicated by X = {θ1, θ2, . . . , θ|X|}. The power set of X is indicated by 2X

and it has cardinality 2|X|. A function m : 2X → [0, 1] is called a mass function or a basic

probability assignment (BPA) if

m(∅) = 0 and
∑
A∈2X

m(A) = 1.

If m(A) 6= 0 implies |A| = 1 then m is also a probability mass function, i.e., BPAs generalize

discrete random variables. Moreover, the elements A such that m(A) > 0, are known as focal

elements.

In DST, there are different indices to evaluate the degree of belief in a subset of the

FOD. Among them, here we recall the definitions of belief function, plausibility function and

pignistic probability transformation (PPT). The belief function and the plausibility function

are, respectively, defined as

Bel(A) =
∑
∅6=B⊆A

m(B), P l(A) =
∑

B∩A 6=∅

m(B).

Note that the plausibility of A can be expressed also as one minus the sum of the masses of all

sets whose intersection with A is empty. Moreover, both the belief and the plausibility vary

from zero to one and the belief is always less than or equal to the plausibility. Given a BPA,

we can evaluate for each focal element the pignistic probability transformation (PPT) which

represents a point estimate of belief and can be determined as [109]

PPT (A) =
∑

B:A⊆B

m(B)

|B|
. (3.1)

If we have a weight or a reliability of an evidence, represented by a coefficient α ∈ [0, 1],

we can use it to generate a new BPA mα in the following way (see [104])

mα(A) =

α m(A), if A ⊂ X

α m(X) + (1− α), if A = X.
(3.2)

Further, if we have two BPAs m1, m2 for a frame of discernment X, we can introduce a new

BPA m∗ for X by using the Dempster rule of combination, see [34]. We define m∗(A), A ⊆ X,

in the following way

m∗(A) =

0, if A = ∅∑
B,C⊆X:B∩C=Am1(B)m2(C)

1−K , if A 6= ∅
(3.3)

where K =
∑

B,C⊆X:B∩C=∅m1(B)m2(C). Note that if K > 1, we cannot apply the Dempster

rule of combination.
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Recently, several measures of discrimination and uncertainty have been proposed in the

literature and in the context of the Dempster-Shafer evidence theory. Among them, one of

the most important is known as Deng entropy. The Deng entropy was introduced in [35] for a

BPA m as

Ed(m) = −
∑

A⊆X:m(A)>0

m(A) log2

(
m(A)

2|A| − 1

)
. (3.4)

This entropy is similar to Shannon entropy and they coincide if the BPA is also a probability

mass function. The term 2|A| − 1 represents the potential number of states in A. For a fixed

value of m(A), as the cardinality of A increases, 2|A|− 1 increases and then also Deng entropy

does.

In the literature, several properties of Deng entropy have been studied and other measures

of uncertainty based on Deng entropy have been introduced. Other relevant measures of

uncertainty and information known in the Dempster-Shafer theory of evidence are, for example,

Hohle’s confusion measure, Yager’s dissonance measure and Klir and Ramer’s discord measure.

For a detailed review on the measures of uncertainty defined in DST, one may refer to Deng

[36]. Here, as it will be useful in the sequel, we recall the definition of the Tsallis-Deng entropy,

which was defined by Liu et al. [71] as

SDα(m) =
1

α− 1

∑
A⊆X:m(A)>0

m(Ai)

[
1−

(
m(Ai)

2|Ai| − 1

)α−1
]
, (3.5)

where α > 0 and α 6= 1. Note that Tsallis-Deng entropy reduces to Deng entropy when α goes

to 1.

3.2 Deng extropy

In this section, we analyze some properties of the dual measure of Deng entropy, namely Deng

extropy, which was introduced and studied in Buono and Longobardi [25]. The definition was

given in order to preserve the property about the sum of the entropy and the extropy in (2.7).

More precisely, for a BPA m over a FOD X, the Deng extropy is defined by

EXd(m) = −
∑

A⊂X:m(A)>0

(1−m(A)) log2

(
1−m(A)

2|Ac| − 1

)
, (3.6)

where Ac is the complementary set of A in X and |Ac| = |X|−|A|. In the following proposition,

in analogy with the property given in (2.7), we study the sum of Deng entropy and Deng

extropy.
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Proposition 3.1. Let m be a BPA for a frame of discernment X. Then

Ed(m) + EXd(m) =
∑

A⊂X:m(A)>0

Ed(m
∗
A)−m(X) log2

(
m(X)

2|X| − 1

)
(3.7)

=
∑

A⊂X:m(A)>0

EXd(m
∗
A)−m(X) log2

(
m(X)

2|X| − 1

)
, (3.8)

with the convention 0 log 0 = 0, where m∗A is a BPA on X defined as

m∗A(B) =


m(A), if B = A

1−m(A), if B = Ac

0, otherwise.

Proof. By using the definition of the BPA m∗A, it follows

Ed(m
∗
A) = −m(A) log2

m(A)

2|A| − 1
− (1−m(A)) log2

1−m(A)

2|Ac| − 1

EXd(m
∗
A) = −(1−m(A)) log2

1−m(A)

2|Ac| − 1
−m(A) log2

m(A)

2|A| − 1
,

so that they are equal. Hence, for every A ⊂ X such that m(A) > 0, Ed(m
∗
A) (or EXd(m

∗
A))

gives the corresponding addend of Ed(m) +EXd(m). The only exception is given by X, which

could give a contribution in the left hand side of Equation (3.7) if m(X) > 0, and for this

reason there is an extra term in the right side of Equations (3.7) and (3.8).

Now, some examples of evaluation of Deng extropy and the corresponding entropy are

given.

Example 3.1. Given a frame of discernment X, a ∈ X and a BPA m such that m({a}) =

m(a) = 1, we have

EXd(m) = −(1− 1) log2

1− 1

2|X|−1 − 1
= 0,

Ed(m) = − log2 1 = 0.

In this case, Deng entropy coincides with Deng extropy and they are both equal to 0.

Example 3.2. Given a frame of discernment X = {a, b, c} and a BPA m such that m(a) =

m(b) = m(c) = 1
3 , we have

EXd(m) = −2

3
log2

(
2

9

)
· 3 = −2 log2

2

9
,

Ed(m) = −1

3
log2

(
1

3

)
· 3 = − log2

1

3
.
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Example 3.3. Given a frame of discernment X with cardinality n and a BPA m such that

m(i) = 1
n , for i = 1, . . . , n, we have

EXd(m) = −n
(

1− 1

n

)
log2

(
1− 1

n

2n−1 − 1

)
= (n− 1)

[
log2

(
n

n− 1

)
+ log2(2n−1 − 1)

]
,

Ed(m) = log2(n),

which are increasing in n ∈ N.

Example 3.4. Consider a frame of discernment X = {1, 2, . . . , 15} and a BPA m such that

m(3, 4, 5) = 0.05, m(6) = 0.05, m(A)=0.8, m(X) = 0.1. The values for the Deng extropy and

entropy are obtained in Table 3.1 for different choices of A.

Table 3.1: The values of the Deng extropy and the Deng entropy as A changes.

A Deng Extropy Deng Entropy

{1} 28.104 2.6623

{1, 2} 27.904 3.9303

{1, 2, 3} 27.704 4.9082

{1, . . . , 4} 27.504 5.7878

{1, . . . , 5} 27.304 6.6256

{1, . . . , 6} 27.104 7.4441

{1, . . . , 7} 26.903 8.2532

{1, . . . , 8} 26.702 9.0578

{1, . . . , 9} 26.500 9.8600

{1, . . . , 10} 26.295 10.661

{1, . . . , 11} 26.086 11.462

{1, . . . , 12} 25.866 12.262

{1, . . . , 13} 25.621 13.062

{1, . . . , 14} 25.304 13.862

Kang and Deng [60] studied the problem of the maximum Deng entropy. They find out

that the maximum Deng entropy on a frame of discernment X with cardinality |X| is attained

if and only if the BPA m is defined as

m(Ai) =
2|Ai| − 1∑2|X|−1

j=1 (2|Aj | − 1)
, i = 1, . . . , 2|X| − 1,
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where Ai, i = 1, . . . , 2|X| − 1, are all non-empty elements of 2X . Hence, the value of the

maximum Deng entropy is given by

E∗d = −
2|X|−1∑
i=1

2|Ai| − 1∑2|X|−1
j=1 (2|Aj | − 1)

log2

2|Ai|−1∑2|X|−1
j=1 (2|Aj |−1)

2|Ai| − 1
= log2

2|X|−1∑
i=1

(2|Ai| − 1).

In analogy with this result, about the Deng extropy we do not obtain the maximum value but

an upper bound. In the following theorem, we provide conditions to obtain an upper bound

for Deng extropy with a fixed number of focal elements and a fixed value for m(X).

Theorem 3.1. Let m be a BPA for a frame of discernment X. An upper bound for Deng

extropy with fixed values of m(X) and N number of focal elements different from X, N =

|N | = |{A ⊂ X : m(A) > 0}|, is assumed in correspondence of the fictitious BPA m (in the

sense that some values of m(A) may be negative) such that

m(A) = 1− N − (1−m(X))∑
B∈N (2|Bc| − 1)

(2|A
c| − 1), A ∈ N .

The value of the upper bound is

EX∗d = −[N − (1−m(X))] log2

N − (1−m(X))∑
A∈N (2|Ac| − 1)

.

Proof. Suppose m(X) = 0. We will prove that in this case that the upper bound is

EX∗d = −(N − 1) log2

N − 1∑
A∈N (2|Ac| − 1)

,

and that it is attained in correspondence of the fictitious BPA defined by

m(A) = 1− N − 1∑
B∈N (2|Bc| − 1)

(2|A
c| − 1), A ∈ N . (3.9)

We want to maximize

EXd = −
∑
A∈N

(1−m(A)) log2

1−m(A)

2|Ac| − 1

subject to the condition ∑
A∈N

m(A) = 1.

Note that we are not requiring any assumption about the sign of m(A). Then, the Lagrange

function can be defined as

(EXd)0 = −
∑
A∈N

(1−m(A)) log2

1−m(A)

2|Ac| − 1
+ λ

(∑
A∈N

m(A)− 1

)
.

Thus the gradient can be computed, and for A ∈ N we have

∂(EXd)0

∂m(A)
= log2

1−m(A)

2|Ac| − 1
+ log2 e+ λ = 0,
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where log2 e+ λ does not depend on m(A). By vanishing all the partial derivatives, it follows

1−m(A)

2|Ac| − 1
= K, A ∈ N ,

where K is a constant and so

m(A) = 1−K
(

2|A
c| − 1

)
, A ∈ N . (3.10)

By summing over A ∈ N , we get

1 =
∑
A∈N

(
1−K

(
2|A

c| − 1
))

,

and then

K =
N − 1∑

A∈N
(
2|Ac| − 1

) .
Therefore, by Equation (3.10) we deduce

m(A) = 1− N − 1∑
B∈N

(
2|Bc| − 1

) (2|A
c| − 1

)
, A ∈ N ,

i.e., Equation (3.9). Finally, for the Deng extropy related to this fictitious BPA, we get

EXd(m) = −
∑
A∈N

N − 1∑
B∈N

(
2|Bc| − 1

) (2|A
c| − 1

)
log2

N − 1∑
B∈N

(
2|Bc| − 1

)
= −(N − 1) log2

N − 1∑
A∈N (2|Ac| − 1)

= EX∗d

and the proof is completed.

3.3 Fractional Deng entropy and extropy

In recent years, great attention has been given to fractional calculus. For this reason, several

authors have studied various fractional entropies from the idea that they satisfy physical condi-

tions of stability. In order to obtain an analog of (2.5) in the context of Dempster-Shafer theory

of evidence, the concepts of fractional Deng entropy and fractional Deng extropy have been

introduced and studied in Kazemi, Tahmasebi, Buono and Longobardi [62]. In this section,

some of their properties will be pointed out.

Definition 3.1. Let m be a BPA on a FOD X. The Fractional Deng Entropy (FDEn) of m

is defined as

Eqd(m) =
∑

A⊆X:m(A)>0

m(A)

[
− log2

(
m(A)

2|A| − 1

)]q
, 0 < q ≤ 1. (3.11)
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Figure 3.1: Plot of Eqd(m2) in Example 3.5 as a function of q (left). Plot of Eqd(m) in Example

3.6 as a function of q (right).

Note that the fractional entropy and FDEn are identical when the BPA assigns a positive

mass only to singletons. Moreover, we remark that if there exists A ⊆ X such that m(A) > 0

and |A| > 1, we cannot evaluate the fractional entropy.

Example 3.5. Given a FOD X = {a, b, c}, for a mass function m1(a, b, c) = 1, we have

Eqd(m1) = [log2 7]q .

For another BPA m2(a) = m2(b) = m2(c) = m2(a, b) = m2(a, c) = m2(b, c) = m2(a, b, c) = 1
7 ,

we obtain

Eqd(m2) =
3

7
([log2 7]q + [log2 21]q) +

1

7
[log2 49]q. (3.12)

The plot of the FDEn in (3.12) as a function of q ∈ (0, 1] is given in Figure 3.1 (left). From

Figure 3.1 (left), it is seen that Eqd(m) is increasing in q and the maximum is achieved for

q = 1, i.e., when the FDEn reduces to Deng entropy.

Example 3.6. Assume that the FOD is X = {a1, a2, . . . , a20}. For a mass function m({a1, a2,

. . . , a10}) = 0.4, m({a11, a12, . . . , a20}) = 0.6, we obtain

Eqd(m) = 0.4

[
− log2

(
0.4

210 − 1

)]q
+ 0.6

[
− log2

(
0.6

210 − 1

)]q
.

The plot of this FDEn is given in Figure 3.1 (right). From Figure 3.1 (right), it is seen that

Eqd(m) is increasing in q, and the maximum is achieved when FDEn reduces to Deng entropy.

Example 3.7. Let us consider a FOD X = {a, b, c} and a BPA m such that m(a) = pa and

m(a, b) = ra, where ra = 1− pa. The FDEn is given by

Eqd(m) = pa [log2(1/pa)]
q + ra [log2(3/ra)]

q .
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Figure 3.2: Plot of Eqd(m) in Example 3.7 as a function of q for different values of pa.

In Figure 3.2, the plots of Eqd(m) for pa ∈ {0.01, 0.8, 0.99} are given. It is seen that for

pa = 0.01, pa = 0.80 and pa = 0.99, the plot of Eqd(m) is increasing, upside-down bathtub

shaped and decreasing, respectively.

In the above examples, it is seen that the function Eqd(m) cannot be a concave function, and

it can be increasing, decreasing and upside-down bathtub shape. Furthermore, the supremum

FDEn is achieved when q is near to the boundary of interval (0, 1]. Therefore, we can state

and prove the following theorem.

Theorem 3.2. Let m be a non-degenerate BPA on a FOD X and q ∈ (0, 1]. Then, the

supremum FDEn as a function of q is attained for q ∈ {0, 1} and the infimum is attained in

the extremes of interval (0, 1), or it is a minimum assumed in a unique q0 ∈ (0, 1).

Proof. By noting that for fixed x > 0 the function g(p) = xp is a convex function of p we

can conclude that the FDEn is a strictly convex function of q. Hence, we have three possible

scenarios. In the first one, the FDEn is strictly increasing in q and hence it assumes the

maximum value for q = 1, i.e., when it reduces to Deng entropy, and the infimum is 1 by

the normalization condition. In the second scenario, the FDEn is strictly decreasing; hence,

the supremum is 1 and the minimum is assumed for q = 1. In the third case, there is a

unique stationary point in (0, 1), it is an absolute minimum, whereas the supremum is given

by max{1, Ed(m)}.

In the following theorem, we study the maximum FDEn for a fixed value of q. This is

an important issue in the theory of measures of uncertainty, as remarked, for instance, in the

previous section.

Theorem 3.3. Let X be a FOD, q ∈ (0, 1] and m be a BPA, which assigns positive mass to
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each non-empty subset of X. The maximum FDEn is attained if the BPA m is defined as

m(A) =
2|A| − 1∑

B⊆X(2|B| − 1)
, A ⊆ X. (3.13)

Proof. For a fixed q ∈ (0, 1] the FDEn is given by (3.11) as

Eqd(m) =
∑
∅6=A⊆X

m(A)

[
− log2

(
m(A)

2|A| − 1

)]q
. (3.14)

We have to maximize (3.14) subject to the constraint (normalization condition)∑
∅6=A⊆X

m(A) = 1. (3.15)

In order to use the method of Lagrange multipliers, we have to compute the partial derivatives

of the function

Ẽqd =
∑
∅6=A⊆X

m(A)

[
− log2

(
m(A)

2|A| − 1

)]q
+ λ

 ∑
∅6=A⊆X

m(A)− 1


with respect to m(A). By differentiating Ẽqd with respect to m(A), it follows

∂Ẽqd
∂m(A)

=

[
− log2

(
m(A)

2|A| − 1

)]q
− q log2(e)

[
− log2

(
m(A)

2|A| − 1

)]q−1

+ λ

=

[
− log2

(
m(A)

2|A| − 1

)]q−1 [
−q log2(e)− log2

(
m(A)

2|A| − 1

)]
+ λ.

In order to vanish all the partial derivatives of Ẽqd, the ratio m(A)

2|A|−1
= K has to be invariant

with respect to A. In fact, the function

g(z) = [− log2(z)]q−1 [−q log2(e)− log2(z)]

is strictly decreasing in z ∈ (0, 1) since

g′(z) =
q log2(e)

z
[− log2(z)]q−2 [(q − 1) log2(e) + log2(z)]

and z < e1−q. Hence, by the constraint (3.15), we derive

K =
1∑

B⊆X(2|B| − 1)

and the BPA m, which maximizes the FDEn, is given in (3.13).

Example 3.8. Based on the result of Theorem 3.3, let us evaluate the maximum FDEn for a

FOD of cardinality 3, X = {a, b, c}. In this case, the BPA given in (3.13) is expressed as

m(a) = m(b) = m(c) =
1

19
,

m(a, b) = m(a, c) = m(b, c) =
3

19
, m(X) =

7

19
.

Then, the maximum FDEn is given by

Eqd(m) = [log2(19)]q.
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Figure 3.3: Plot of EXq
d(m)− Eqd(m) in Example 3.9 as a function of q.

Now, in analogy with FDEn, we introduce the definition of the fractional version of Deng

extropy (3.6) given in Kazemi, Tahmasebi, Buono and Longobardi [62].

Definition 3.2. Let m be a BPA on a FOD X. The Fractional Deng Extropy (FDEx) of m

is defined as

EXq
d(m) =

∑
A⊂X:m(A)>0

(1−m(A))

[
− log2

(
1−m(A)

2|Ac| − 1

)]q
, 0 < q ≤ 1. (3.16)

Example 3.9. Assume that the FOD is X = {a, b, c}. For a mass function m(a) = m(b) =

m(c) = 1
3 , the associated FDEn and FDEx are obtained as

Eqd(m) = [log2 3]q, EXq
d(m) = 2

[
log2

9

2

]q
.

In Figure 3.3, the plot of the difference EXq
d(m)−Eqd(m) is given. Note that EXq

d(m)−Eqd(m)

is an increasing function of q, and this function is greater than 1. Thus, for q ∈ (0, 1], the

FDEx is greater than the FDEn. Furthermore, EXq
d(m) is increasing in q and the maximum

is achieved for q = 1, i.e., when FDEx reduces to Deng extropy.

Example 3.10. Let us consider a FOD X = {a, b, c}. For a mass function m(a) = m(b) =

m(c) = m(a, b) = m(a, c) = m(b, c) = m(a, b, c) = 1
7 , we obtain

EXq
d(m) =

18

7
([log2 7− 1]q + [log2 7− log2 6]q) .

In Figure 3.4 (left), the plot of EXq
d(m) is given. One can see that as a function of q, it has a

convex parabolic shape and the maximum is achieved when it reduces to Deng extropy.

Example 3.11. Consider the FOD X = {a1, a2, . . . , a20}. For a mass function m({a1, a2,

. . . , a10}) = 0.4, m({a10, a11, . . . , a20}) = 0.6, we obtain

EXq
d(m) = 0.6

[
− log2

(
0.6

210 − 1

)]q
+ 0.4

[
− log2

(
0.4

210 − 1

)]q
.

In this case, FDEx and FDEn are equal, see Example 3.6.
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Figure 3.4: Plots of EXq
d(m) in Example 3.10 (left) and in Example 3.12 (right) as a function

of q.

Example 3.12. Given a FOD X = {a, b, c} and a BPA m such that m(a) = 0.9, m(a, b) = 0.01

and m(X) = 0.09, we have

EXq
d(m) = 0.1 [log2 30]q + 0.99

[
log2

100

99

]q
.

In Figure 3.4 (right), the plot of EXq
d(m) is given. Note that as a function of q, it has a convex

parabolic shape and that the maximum is achieved when q goes to zero.

Similar to FDEn, in the above examples, it is seen that the function EXq
d(m) cannot

be a concave function and it can be increasing, decreasing and upside-down bathtub shape.

Furthermore, the supremum FDEx is achieved when q is near the boundary of interval (0, 1].

The following theorem is readily obtained.

Theorem 3.4. Let m be a non-degenerate BPA on a FOD X and q ∈ (0, 1]. Then, the

supremum FDEx as a function of q is attained for q ∈ {0, 1} and the infimum is attained in

the extremes of interval (0, 1) or it is a minimum assumed in a unique q0 ∈ (0, 1).

Proof. The proof is similar to that of Theorem 3.2. In this case, the supremum is given by

max{N − 1 +m(X), EXd(m)}, where N is the number of focal elements different from X.

In analogy with Theorem 3.3, we obtain an upper bound for the maximum FDEx with a

fixed value of q.

Theorem 3.5. Let X be a FOD, q ∈ (0, 1] and let m be a BPA that assigns positive mass

to each non-empty subset of X. For a fixed value of m(X), an upper bound for the FDEx is

assumed in correspondence of the fictitious BPA m̃ such that m̃(X) = m(X) and

m̃(A) = 1− 2|X| − 3 +m(X)∑
∅6=B⊂X(2|Bc| − 1)

(
2|A

c| − 1
)
, ∅ 6= A ⊂ X. (3.17)



3. New measures of uncertainty in Dempster-Shafer theory of evidence 80

Proof. The proof is similar to the one given for Theorem 3.3. After establishing that 1−m(A)

2|Ac|−1
= K

has to be invariant with respect to A, in order to satisfy the condition of normalization, we get

1−m(A) = K
(

2|A
c| − 1

)
and, by summing over A ⊂ X

K =
2|X| − 3 +m(X)∑
∅6=A⊂X(2|Ac| − 1)

.

Hence, the BPA which maximizes the FDEx is given in (3.17). We remark that it is a fictitious

BPA, in the sense that m̃(A) may be negative for some subsets of X.

Example 3.13. Based on the result of Theorem 3.5, let us evaluate the upper bound for FDEx

in the case |X| = 3 with fixed m(X). There are three subsets of cardinality one and three of

cardinality two, and then the upper bound is given by

U = 3 · 3(5 +m(X))

12

[
− log2

(
5 +m(X)

12

)]q
+ 3 · 5 +m(X)

12

[
− log2

(
5 +m(X)

12

)]q
= (5 +m(X))

[
log2

(
12

5 +m(X)

)]q
.

3.4 Unified formulation of entropy

In this section, based on Balakrishnan, Buono and Longobardi [5], a general formulation of

entropy is proposed. It depends on two parameters and includes Shannon, Tsallis and fractional

entropy, all as special cases. This measure of information is named fractional Tsallis entropy.

Then, the corresponding entropy in the context of Dempster-Shafer theory of evidence is

proposed and referred to as fractional version of Tsallis-Deng entropy.

The fractional Tsallis entropy of X is defined as

Sqα(X) =
1

α− 1

N∑
i=1

pi(1− pα−1
i )(− log pi)

q−1, (3.18)

where α > 0, α 6= 1 and 0 < q ≤ 1. As mentioned above, a distinct advantage of this definition

is that it includes fractional, Tsallis and Shannon entropies, all as special cases.

Remark 3.1. The fractional Tsallis entropy in (3.18) is always non-negative. This is due to

the fact that 1 − pα−1
i is positive for α > 1 and negative for 0 < α < 1, and so the sum in

(3.18) has a definite sign and it is the same as that of α− 1.

Proposition 3.2. The fractional Tsallis entropy in (3.18) coincides with Tsallis entropy (2.4)

when q = 1.
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Figure 3.5: Relationships among different entropies in classical probability theory.

Proof. When q = 1, from (3.18) it follows

S1
α(X) =

1

α− 1

N∑
i=1

pi(1− pα−1
i ) =

1

α− 1

[
1−

N∑
i=1

pαi

]
= Sα(X),

as required.

Proposition 3.3. As α tends to 1, fractional Tsallis entropy converges to fractional entropy

(2.5).

Proof. Taking the limit as α tends to 1 in (3.18), and by using L’Hôpital’s rule, we obtain

lim
α→1

Sqα(X) = lim
α→1

1

α− 1

N∑
i=1

pi(1− pα−1
i )(− log pi)

q−1

= lim
α→1

N∑
i=1

pi
(
−pα−1

i

)
log pi(− log pi)

q−1

= lim
α→1

N∑
i=1

pαi (− log pi)
q =

N∑
i=1

pi(− log pi)
q = Hq(X),

as required.

Corollary 3.1. If both parameters of the fractional Tsallis entropy tend to 1, then the fractional

Tsallis entropy in (3.18) converges to Shannon entropy, i.e.,

lim
α,q→1

Sqα(X) = H(X).

To summarize the results given in Propositions 3.2 and 3.3 and Corollary 3.1, the relation-

ships among different kinds of entropies are depicted in the form of a schematic diagram, in

Figure 3.5.

Example 3.14. Let X be uniformly distributed over a support S of cardinality N . When N

changes, the values of fractional Tsallis entropy are computed for different choices of α and

q, and these are presented in Table 3.2. From Table 3.2, we observe that fractional Tsallis
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Table 3.2: Values of fractional Tsallis entropy as N changes, for different choices of q and α.

N q = 0.5, α = 0.5 q = 0.5, α = 2 q = 1, α = 2 q = 0.3, α = 0.75 q = 0.3, α = 1.5 q = 0.5, α = 5

2 0.9950 0.6006 0.5 0.9782 0.7571 0.2815

3 1.3968 0.6360 0.6667 1.1837 0.7914 0.2356

4 1.6986 0.6370 0.75 1.3182 0.7956 0.2115

5 1.9487 0.6306 0.8 1.4200 0.7923 0.1967

6 2.1657 0.6226 0.8333 1.5207 0.7868 0.1866

7 2.3596 0.6145 0.8571 1.5727 0.7807 0.1791

8 2.5359 0.6068 0.875 1.6336 0.7745 0.1733

9 2.6985 0.5997 0.8889 1.6877 0.7685 0.1686

10 2.8499 0.5931 0.9 1.7364 0.7628 0.1647

entropy does not always exhibit the same monotonic behavior as a function of N . For the

uniform distribution, the fractional Tsallis entropy is given by

Sqα

(
1

p
, . . . ,

1

p

)
=

1

α− 1

(
1− 1

Nα−1

)
(logN)q−1.

By treating N as continuous and upon differentiating with respect to N , we obtain

∂Sqα
∂N

=
(logN)q−2

Nα

1

α− 1

[
(α− 1) logN + (q − 1)(Nα−1 − 1)

]
sgn
=

1

α− 1

[
(α− 1) logN + (q − 1)(Nα−1 − 1)

]
. (3.19)

Then, by observing that

(α− 1) logN + (q − 1)(Nα−1 − 1) = logNα−1 + (q − 1)(Nα−1 − 1),

we see that we need to consider the function

ρ(v) = log v + (q − 1)(v − 1), v > 0,

which is increasing for v < 1
1−q . Here, v represents Nα−1 which is in (0, 1) for α ∈ (0, 1) and

greater than 2α−1 for α > 1. As 1
1−q > 1, with q ∈ (0, 1), ρ is increasing in (0, 1) and reaches

the maximum value for v = 1, that is, ρ(1) = 0. Hence, for α ∈ (0, 1), the sign in (3.19) is

given by the ratio of two negative quantities and so fractional Tsallis entropy is increasing in

N . For q = 1, it is easy to observe by (3.19) that it is increasing in N regardless of α. Finally,

for α > 1 and q ∈ (0, 1), there are two possible scenarios. In fact, the fractional Tsallis entropy

may be always decreasing in N , or simply definitely decreasing as seen in Table 3.2.

Theorem 3.6. The supremum of the fractional Tsallis entropy, as a function of q ∈ (0, 1],

is attained at one of the extremes of the interval, and the infimum is attained at one of the

extremes of the interval or it is a minimum at a unique q0 ∈ (0, 1).



3. New measures of uncertainty in Dempster-Shafer theory of evidence 83

Proof. The fractional Tsallis entropy is a convex function of q. Hence, it can be strictly

increasing, strictly decreasing or decreasing up to q0 ∈ (0, 1), and then increasing. In the first

case, the infimum is attained at 0 and the maximum at q = 1. In the second case, the minimum

is reached at q = 1 and the supremum at 0. In the last case, the minimum is attained at q0

and the supremum is reached at one of the extremes of the interval (0, 1).

3.4.1 Fractional version of Tsallis-Deng entropy

The fractional version of Tsallis-Deng entropy for a BPA m is defined as (see Balakrishnan,

Buono and Longobardi [5])

SDq
α(m) =

1

α− 1

∑
A⊆X:m(A)>0

m(A)

[
1−

(
m(A)

2|A| − 1

)α−1
](
− log

m(A)

2|A| − 1

)q−1

, (3.20)

where α > 0, α 6= 1, 0 < q ≤ 1. In analogy with the fractional Tsallis entropy, this is a general

expression of entropy as it includes several versions of entropy measure both in the context of

DST and in the classical probability theory viewpoint.

Remark 3.2. In analogy with Remark 3.1, fractional version of Tsallis-Deng entropy (3.20)

is non-negative too.

Proposition 3.4. When q = 1, the fractional version of Tsallis-Deng entropy in (3.20) is

equal to Tsallis-Deng entropy (3.5).

Proof. Upon taking q = 1 in (3.20), we conclude

SD1
α(m) =

1

α− 1

∑
A⊆X:m(A)>0

m(A)

[
1−

(
m(A)

2|A| − 1

)α−1
]

= SDα(m),

as required.

Proposition 3.5. As α tends to 1, the fractional version of Tsallis-Deng entropy in (3.20)

reduces to the fractional Deng entropy (3.11).

Proof. Upon letting α tend to 1 in (3.20), and by using L’Hôpital’s rule, it follows

lim
α→1

SDq
α(m) = lim

α→1

∑
A⊆X:m(A)>0

m(A)

[
−
(
m(A)

2|A| − 1

)α−1
](
− log

m(A)

2|A| − 1

)q−1

log
m(A)

2|A| − 1

= lim
α→1

∑
A⊆X:m(A)>0

m(A)

(
m(A)

2|A| − 1

)α−1(
− log

m(A)

2|A| − 1

)q
=

∑
A⊆X:m(A)>0

m(A)

(
− log

m(A)

2|A| − 1

)q
= Eqd(m),

as required.
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Fractional version of Tsallis-Deng Entropy

Tsallis-Deng Entropy

Fractional Deng Entropy

Deng Entropy

Fractional Tsallis Entropy

q = 1

α→ 1

α→
1

q = 1

q = 1, α→ 1

m
(A

)
>

0
⇒
|A
|=

1

Figure 3.6: Relationships among different entropies in DST (blue) and in classical probability

theory (yellow).

Corollary 3.2. When both parameters α and q in (3.20) tend to 1, the fractional version of

Tsallis-Deng entropy in (3.20) converges to Deng entropy (3.4), i.e.,

lim
α,q→1

SDq
α(m) = Ed(m).

Remark 3.3. If the BPA m is a discrete probability distribution, then for each focal element

|A| = 1; in this case, the fractional version of Tsallis-Deng entropy reduces to fractional Tsallis

entropy (3.18), i.e.,

SDq
α(m) =

1

α− 1

∑
A⊆X:m(A)>0

m(A)
[
1− (m(A))α−1

]
(− logm(A))q−1 = Sqα(X),

where X is a discrete random variable with probability vector m.

To summarize the results given in Propositions 3.4 and 3.5, Corollary 3.2 and Remark 3.3,

the relationships among different kinds of entropies are depicted in the form of a schematic

diagram, see Figure 3.6.

Theorem 3.7. The supremum of the fractional version of Tsallis-Deng entropy in (3.20), as

a function of q ∈ (0, 1], is attained at one of the extremes of the interval, and the infimum is

attained at one of the extremes of the interval or it is a minimum at a unique q0 ∈ (0, 1).

Proof. The proof is similar to that of Theorem 3.6 and is therefore omitted.

Example 3.15. Consider a frame of discernment X = {1, 2, . . . , 15} and a BPA m such that

m(3, 4, 5) = 0.05, m(6) = 0.05, m(A)=0.8, m(X) = 0.1. When A changes, the values of the

fractional version of Tsallis-Deng entropy in (3.20) are computed for different choices of α and

q, and these are presented in Table 3.3.
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Table 3.3: Values of the fractional version of Tsallis-Deng entropy as A changes, for different

choices of q and α.

A q = 0.5 q = 0.5 q = 1 q = 0.3 q = 0.3 q = 0.5

α = 0.5 α = 2 α = 2 α = 0.75 α = 1.5 α = 5

{1} 35.1571 0.4165 0.3571 2.3353 0.5823 0.2698

{1, 2} 34.0606 0.5881 0.7838 2.8415 0.7361 0.1929

{1, 2, 3} 34.8845 0.5590 0.9057 3.1505 0.7156 0.1556

{1, . . . , 4} 35.8694 0.5202 0.9545 3.4400 0.6793 0.1367

{1, . . . , 5} 37.1288 0.4854 0.9765 3.7409 0.6415 0.1244

{1, . . . , 6} 38.7866 0.4558 0.9870 4.0676 0.6056 0.1156

{1, . . . , 7} 41.0020 0.4310 0.9921 4.4306 0.5726 0.1087

{1, . . . , 8} 43.9887 0.4100 0.9946 4.8390 0.5428 0.1032

{1, . . . , 9} 48.0383 0.3921 0.9959 5.3023 0.5160 0.0986

{1, . . . , 10} 53.5510 0.3767 0.9965 5.8305 0.4919 0.0946

{1, . . . , 11} 61.0779 0.3633 0.9968 6.4350 0.4704 0.0913

{1, . . . , 12} 71.3801 0.3515 0.9970 7.1288 0.4512 0.0883

{1, . . . , 13} 85.5090 0.3411 0.9971 7.9267 0.4339 0.0857

{1, . . . , 14} 104.9202 0.3317 0.9971 8.8461 0.4183 0.0833

Example 3.16. In this example, we consider a well-known BPA defined for all A ⊆ X as

m∗(A) =
2|A| − 1∑

B⊆X
(
2|B| − 1

) ,
so that

m∗(A)

2|A| − 1
=

1∑
B⊆X

(
2|B| − 1

) = K,

where K ∈ (0, 1) is a constant. The interest of this BPA is due to the fact that it gives a

degree of belief to each non-empty subset of the frame of discernment and the mass of a focal

element depends only on its cardinality. Then, the fractional version of Tsallis-Deng entropy

can be evaluated for the BPA m∗ as

SDq
α(m∗) =

1

α− 1

∑
A⊆X

(
2|A| − 1

)
K
[
1−Kα−1

]
(− logK)q−1

=
1

α− 1

[
1−Kα−1

]
(− logK)q−1. (3.21)

It is a decreasing function in α since the partial derivative with respect to α of the function in

(3.21) has the same sign as that of the function

g(x) = x− 1− x log x

which is non-positive for each x > 0. Based on Proposition 3.5, α = 1 is a removable disconti-

nuity and then the supremum of SDq
α(m∗) is attained for α→ 0+ and it is given by

lim
α→0+

1

α− 1

[
1−Kα−1

]
(− logK)q−1 =

[
K−1 − 1

]
(− logK)q−1.
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3.5 Application to classification problems

In this section, the measures of uncertainty described in this chapter and Tsallis extropy given

in Chapter 2 are applied to classification problems. More precisely, two datasets are considered:

the Iris dataset and the wine dataset both given in [41]. We start with the classification

problems related to the Iris dataset. In the first example, we apply Tsallis extropy to define a

classification technique, see Balakrishnan, Buono and Longobardi [7].

Example 3.17. The objective is to classify among three classes of flowers: Iris Setosa (Se),

Iris Versicolor (Ve) and Iris Virginica (Vi). The dataset consists of 150 samples, with 50 in

each class. The characteristics measured for each flower are: the sepal length in cm (SL), the

sepal width in cm (SW), the petal length in cm (PL), the petal width in cm (PW) and the class

(one of Se, Ve and Vi). We select 40 samples for each kind of Iris and then we find a sample of

max-min value to generate a model of interval numbers, as shown in Table 3.4. Each element

of the dataset can be regarded as an unknown test sample. Suppose the selected sample data

is (6.1, 3.0, 4.9, 1.8, Vi).

Table 3.4: The interval numbers of the statistical model.

Item SL SW PL PW

Se [4.4,5.8] [2.3,4.4] [1.0,1.9] [0.1,0.6]

V e [4.9,7.0] [2.0,3.4] [3.0,5.1] [1.0,1.7]

V i [4.9,7.9] [2.2,3.8] [4.5,6.9] [1.4,2.5]

We then generate four discrete probability distributions using the method proposed by

Kang et al. [61] based on the similarity of interval numbers. Given two intervals A = [a1, a2]

and B = [b1, b2], their similarity S(A,B) is defined as

S(A,B) =
1

1 + γ D(A,B)
, (3.22)

where γ > 0 is the coefficient of support (we have used γ = 5), and D(A,B), the distance

between intervals A and B, is defined in [117] as

D2(A,B) =

[(
a1 + a2

2

)
−
(
b1 + b2

2

)]2

+
1

3

[(
a2 − a1

2

)2

+

(
b2 − b1

2

)2
]
. (3.23)

To generate probability distributions, the intervals given in Table 3.4 are used for interval

A and for interval B we use singletons given by the selected sample. For each one of the

four characteristics measured, we get three values of similarity and then we obtain a discrete

probability distribution by normalizing them (see Table 3.5). Then, we evaluate the Tsallis
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Table 3.5: Probability distributions based on Kang’s method.

SL SW PL PW

P(Se) 0.3058 0.2748 0.1391 0.1563

P(V e) 0.4148 0.3516 0.3801 0.3737

P(V i) 0.2794 0.3736 0.4808 0.4700

Table 3.6: Tsallis extropy for different choices of α.

SL SW PL PW

α = 0.5 0.8941 0.8965 0.8715 0.8759

α = 0.7 0.8560 0.8592 0.8267 0.8324

α = 1.5 0.7245 0.7291 0.6781 0.6871

α = 2 0.6564 0.6613 0.6050 0.6150

extropy of these probability distributions, as presented in Table 3.6, wherein we have used

different values for the parameter α (0.5, 0.7, 1.5 and 2).

We use the Tsallis extropies in Table 3.6 to generate other probability distributions. Ob-

serve that the higher the extropy, the higher the uncertainty, and so it would be reasonable

to give more weight to observations related to characteristics with lower Tsallis extropy. We

refer to the obtained Tsallis extropies as JSα(SL), JSα(SW ), JSα(PL), JSα(PW ). Due

to the monotonicity of the exponential function, we choose as baseline weight the function

w(x) = e−x, and we can then obtain the weights ω by normalization. For example, for the

sepal length, we obtain the weight as

ω(SL) =
e−JSα(SL)

e−JSα(SL) + e−JSα(SW ) + e−JSα(PL) + e−JSα(PW )
.

The values of the weights are listed in Table 3.7 for different choices of the parameter α. Then,

we determine a final probability distribution in the following way: for each kind of flower, we

have four probabilities, one for a specific characteristic; we multiply the probabilities given in

Table 3.5 by the corresponding weights and then sum the values relating to the same class.

For example, the probability of the class Iris Setosa is obtained as follows:

P(Se) = 0.3058 · ω(SL) + 0.2748 · ω(SW ) + 0.1391 · ω(PL) + 0.1563 · ω(PW ).

Thus, by choosing α = 0.5, we obtain the final probability distribution to be

P(Se) = 0.2182, P(V e) = 0.3800, P(V i) = 0.4018,
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Table 3.7: The weights for different choices of α.

ω(SL) ω(SW ) ω(PL) ω(PW )

α = 0.5 0.2476 0.2470 0.2533 0.2522

α = 0.7 0.2469 0.2461 0.2542 0.2528

α = 1.5 0.2450 0.2439 0.2567 0.2544

α = 2 0.2445 0.2433 0.2574 0.2548

and then the decision is that the selected flower belongs to the class with the higher probability,

Iris Virginica, i.e., we thus made the correct decision. In this manner, we tested all 150 samples

for different values of α, and observed that the overall recognition rate of this method based

on the Tsallis extropy to be 94.66%.

In the second example, we consider again the Iris dataset and apply Deng extropy to solve

the classification problem, see Buono and Longobardi [25]. Then, we make some comparisons

with the recognition rates obtained in Example 3.17.

Example 3.18. In this example, we consider a classification problem based on the dataset

studied in Example 3.17. We compare a method proposed by Kang et al. [61] with methods

based on the use of Deng extropy and Tsallis extropy. The Iris dataset is useful to introduce

the application of the generation of BPAs based on the Deng extropy in the classification of

the kind of flowers. In analogy with Table 3.4, by selecting 40 samples for each kind of Iris

and then by using the sample of max–min value, we generate a model of interval numbers, as

shown in Table 3.8. Suppose the selected sample data is (6.1, 3.0, 4.9, 1.8, Iris Virginica).

Table 3.8: The interval numbers of the statistical model.

Item SL SW PL PW

Se [4.4,5.8] [2.3,4.4] [1.0,1.9] [0.1,0.6]

V e [4.9,7.0] [2.0,3.4] [3.0,5.1] [1.0,1.7]

V i [4.9,7.9] [2.2,3.8] [4.5,6.9] [1.4,2.5]

Se, V e [4.9,5.8] [2.3,3.4] – –

Se, V i [4.9,5.8] [2.3,3.8] – –

V e, V i [4.9,7.0] [2.2,3.4] [4.5,5.1] [1.4,1.7]

Se, V e, V i [4.9,5.8] [2.3,3.4] – –

Four BPAs are generated with a method proposed by Kang et al. [61] based on the similarity
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of interval numbers given in (3.22). In order to generate BPAs, the intervals given in Table

3.8 are used as interval A and as interval B the singletons given by the selected sample are

employed. Again, we have chosen γ = 5. For each one of the four properties, we get seven

values of similarity and then we get a BPA by normalizing them (see Table 3.9). Hence, we

evaluate the Deng extropy of these BPAs, as shown in the bottom row of Table 3.9. We obtain

a combined BPA by using the Dempster rule of Combination (3.3). The type of unknown

sample is determined by the combined BPA. From Equation (3.1), we get the maximum value

of PPT. Hence, Kang’s method assigns to the sample the type Iris Versicolor and it does not

make the right decision.

Table 3.9: BPAs based on Kang’s method, Deng extropy and final fusion result.

Item SL SW PL PW Combined BPA

m(Se) 0.1098 0.1018 0.0625 0.1004 0.0059

m(V e) 0.1703 0.1303 0.1839 0.2399 0.4664

m(V i) 0.1257 0.1385 0.1819 0.3017 0.4656

m(Se, V e) 0.1413 0.1663 0.0000 0.0000 0.0000

m(Se, V i) 0.1413 0.1441 0.0000 0.0000 0.0000

m(V e, V i) 0.1703 0.1527 0.5719 0.3580 0.0620

m(Se, V e, V i) 0.1413 0.1663 0.0000 0.0000 0.0000

Deng extropy 5.2548 5.2806 5.1636 4.9477

Next, we use the Deng extropies given in Table 3.9 to generate other BPAs. We refer

to these extropies as EXd(SL), EXd(SW ), EXd(PL), EXd(PW ). We use these values as

significance of each sample property to evaluate the corresponding weight. For the sample

property sepal length we have

ω(SL) =
e−EXd(SL)

e−EXd(SL) + e−EXd(SW ) + e−EXd(PL) + e−EXd(PW )
.

We divide each weight by the maximum of the weights and use these values as discounting

coefficients to generate new BPAs, as shown in Equation (3.2), see Table 3.10. Again, a

combined BPA is obtained by using the Dempster rule of combination. The type of unknown

sample is determined by the combined BPA. Hence, the method based on the Deng extropy

can make the right recognition.

We tested all 150 samples and we get that the global recognition rate of the method based

on the Deng extropy is 94%. Then, we compare the results obtained with those based on

the method by Kang et al. [61] and with the ones obtained in Example 3.17 by using Tsallis

extropy, see Table 3.11.
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Table 3.10: The modified BPAs based on the Deng extropy and final fusion result.

Item SL SW PL PW Combined BPA

m(Se) 0.0808 0.0730 0.0504 0.1004 0.0224

m(V e) 0.1252 0.0934 0.1482 0.2399 0.4406

m(V i) 0.0925 0.0993 0.1465 0.3017 0.4451

m(Se, V e) 0.1039 0.1192 0.0000 0.0000 0.0000

m(Se, V i) 0.1039 0.1033 0.0000 0.0000 0.0000

m(V e, V i) 0.1252 0.1095 0.4608 0.3580 0.0919

m(Se, V e, V i) 0.3684 0.4023 0.1942 0.0000 0.0000

Table 3.11: The recognition rates of different methods.

Item Se Ve Vi Overall

Kang’s method 100% 96% 84% 93.33%

Method based on Deng extropy 100% 96% 86% 94%

Method based on Tsallis extropy 100% 98% 86% 94.66%

In the following example, we apply the fractional Tsallis-Deng entropy to the classification

problem for the Iris dataset, see Balakrishnan, Buono and Longobardi [5].

Example 3.19. Consider the Iris dataset analyzed in Examples 3.17 and 3.18. By using the

method of max-min values, the model of interval numbers is obtained and is presented in Table

3.12. Suppose the selected instance is (6.3, 2.7, 4.9, 1.8). It belongs to the kind Iris Virginica

and then our aim is to classify it correctly. Four BPAs, one for each attribute, are generated

by using the similarity of interval numbers as above. Without any additional information, the

final BPA is determined by giving the same weight to each attribute, i.e., by summing the four

values that are related to a focal element and then dividing by four. In this way, we get the

final BPA as presented in Table 3.13.

In order to discriminate among classes, we evaluate the PPT of singleton classes for the

BPA given in Table 3.13 and the results are

PPT (Se) = 0.1826, PPT (V e) = 0.4131, PPT (V i) = 0.4043.

Thus, the focal element with the highest PPT is the type Iris Versicolor, and would therefore

be our final decision, which is not the correct one in this case. We now try to improve the
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Table 3.12: The model of interval numbers.

Class SL SW PL PW

Se [4.3, 5.8] [2.3, 4.4] [1.0, 1.9] [0.1, 0.6]

V e [4.9, 7.0] [2.0, 3.4] [3.0, 5.1] [1.0, 1.8]

V i [4.9, 7.9] [2.2, 3.8] [4.5, 6.9] [1.4, 2.5]

Se, V e [4.9, 5.8] [2.3, 3.4] − −
Se, V i [4.9, 5.8] [2.3, 3.8] − −
V e, V i [4.9, 7.0] [2.2, 3.4] [4.5, 5.1] [1.4, 1.8]

Se, V e, V i [4.9, 5.8] [2.3, 3.4] − −

Table 3.13: Final BPA.

Class Final BPA

m(Se) 0.0872

m(V e) 0.1891

m(V i) 0.1861

m(Se, V e) 0.0759

m(Se, V i) 0.0643

m(V e, V i) 0.3215

m(Se, V e, V i) 0.1759

method by using the fractional version of Tsallis-Deng entropy in (3.20). Fix the values of

q = 0.5 and α = 0.5. The fractional version of Tsallis-Deng entropy of BPAs obtained by using

the similarity of interval numbers is then evaluated and the corresponding results are shown

in Table 3.14.

Since a greater value of SDq
α means a higher uncertainty, it is reasonable to give more

weight to the attributes with lower SDq
α. In this case, we define the weights by normalizing to

1 the exponential function of fractional versions of Tsallis-Deng entropies multiplied by minus

one. The weights so determined are reported in Table 3.15.

Based on the weights in Table 3.15, a weighted version of the final BPA is obtained, as

given in Table 3.16. Then, based on the weighted BPA in Table 3.16, we compute the PPT of

the singleton classes to be

PPT (1) = 0.1156, PPT (2) = 0.4360, PPT (3) = 0.4485.
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Table 3.14: Fractional versions of Tsallis-Deng entropies of BPAs based on similarity of interval

numbers.

Attribute SL SW PL PW

SDq
α 3.6184 3.7153 2.1226 2.0932

Table 3.15: The weights of attributes based on fractional version of Tsallis-Deng entropy.

Attribute SL SW PL PW

Weight 0.0912 0.0828 0.4069 0.4191

Thus, the focal element with the highest PPT is the type Iris Virginica, and would therefore

be our final decision, which is indeed the correct one in this case.

Table 3.16: Final weighted BPA.

Class Final Weighted BPA

Se 0.0825

V e 0.2050

V i 0.2194

Se, V e 0.0262

Se, V i 0.0224

V e, V i 0.4182

Se, V e, V i 0.0262

In Table 3.17, the recognition rates of the non-weighted method and methods based on

fractional version of Tsallis-Deng entropy are presented for different choices of q and α.

In the following two examples, we consider classification problems related to the wine

dataset. In the first example, the fractional Deng entropy and extropy are applied to define a

classification rule, see Kazemi, Tahmasebi, Buono and Longobardi [62].

Example 3.20. In this example, we apply FDEn and FDEx to a classification problem. We

analyze a dataset given in [41] about typical qualities of Italian wines. The dataset is composed

of 178 instances and, for each one, thirteen attributes are given. The instances of the dataset
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Table 3.17: The recognition rate for different choices of q and α.

Non-Weighted Method q α Fractional Tsallis-Deng Method

94% 0.5 0.5 96.67%

0.25 0.6 94.67%

0.8 0.75 96.67%

0.75 2 94%

1 5 94%

are divided into three classes of wine: class 1, class 2 and class 3. We use six attributes to

discriminate for each instance the correct class. In particular, the attributes involved in the

example are: Alcohol, Malic acid, Ash, OD280/OD315 of diluted wines (OD), Color intensity

(CI) and Proline. We use the method of max-min values to generate a model of interval

numbers. In particular, for a fixed attribute, we study the interval of variability in a single

class, and then we intersect the intervals of more classes. The model of interval numbers is

shown in Table 3.18.

Table 3.18: The model of interval numbers.

Class Alcohol Malic Acid Ash OD CI Proline

1 [12.850, 14.830] [1.3500, 4.0400] [2.0400, 3.2200] [2.5100, 4.0000] [3.5200, 8.9000] [680, 1680]

2 [11.030, 13.860] [0.7400, 5.8000] [1.3600, 3.2300] [1.5900, 3.6900] [1.2800, 6.0000] [278, 985]

3 [12.200, 14.340] [1.2400, 5.6500] [2.1000, 2.8600] [1.2700, 2.4700] [3.8500, 13.0000] [415, 880]

1, 2 [12.850, 13.860] [1.3500, 4.0400] [2.0400, 3.2200] [2.5100, 3.6900] [3.5200, 6.0000] [680, 985]

1, 3 [12.850, 14.340] [1.3500, 4.0400] [2.1000, 2.8600] − [3.8500, 8.9000] [680, 880]

2, 3 [12.200, 13.860] [1.2400, 5.6500] [2.1000, 2.8600] [1.5900, 2.4700] [3.8500, 6.0000] [415, 880]

1, 2, 3 [12.850, 13.860] [1.3500, 4.0400] [2.1000, 2.8600] − [3.8500, 6.0000] [680, 880]

Suppose the selected instance is (13.860, 1.5100, 2.6700, 3.1600, 3.3800, 410). By the dataset,

we know that the selected instance belongs to class 2, and our purpose is to classify it in the

right way. We generate six BPAs, one for each attribute, by using the method proposed by

Kang et al. [61] based on the similarity of interval numbers given in (3.22). Hence, for each

attribute, we get seven values of similarity and by normalizing them, we get six BPAs, as

reported in Table 3.19.

Without any additional information, we can evaluate a final BPA by giving the same weight

to each attribute, i.e., by summing the six values related to a focal element and then dividing

by six, see Table 3.20. Then, based on the BPA in Table 3.20, we evaluate the PPT of the
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Table 3.19: BPAs based on Kang’s method.

Class Alcohol Malic Acid Ash OD CI Proline

m(1) 0.1699 0.1685 0.1416 0.2700 0.0967 0.0623

m(2) 0.0715 0.1095 0.0897 0.1732 0.2088 0.1700

m(3) 0.1244 0.1083 0.1568 0.1126 0.0562 0.1877

m(1, 2) 0.1675 0.1685 0.1416 0.3168 0.1889 0.1187

m(1, 3) 0.1860 0.1685 0.1568 0.0000 0.0939 0.1368

m(2, 3) 0.1132 0.1083 0.1568 0.1273 0.1777 0.1877

m(1, 2, 3) 0.1675 0.1685 0.1568 0.0000 0.1777 0.1368

Table 3.20: Final BPA.

Class Final BPA

m(1) 0.1515

m(2) 0.1371

m(3) 0.1243

m(1, 2) 0.1837

m(1, 3) 0.1237

m(2, 3) 0.1452

m(1, 2, 3) 0.1345

classes obtaining

PPT (1) = 0.3500, PPT (2) = 0.3464, PPT (3) = 0.3036.

Hence, the focal element with the highest PPT is class 1, and it would be our final hypothesis

without making the correct decision.

Next, we try to improve the described method by using FDEn. Let us fix the value q = 0.6.

We evaluate the FDEn of BPAs given in Table 3.19 and then we obtain the results that are

listed in Table 3.21.

Since a higher value of FDEn means a higher uncertainty, we can give more weight to

the attributes with lower FDEn. In particular, we define the weights by normalizing to 1 the

reciprocal values of fractional Deng entropies. We obtain the weights presented in Table 3.22.

Based on the weights in Table 3.22, we get a weighted version of the final BPA, as shown
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Table 3.21: Fractional Deng entropies of BPAs in Table 3.19.

Attribute Alcohol Malic Acid Ash OD CI Proline

FDEn 2.2684 2.2658 2.2638 1.8801 2.2494 1.4378

Table 3.22: The weights of attributes based on FDEn.

Attribute Alcohol Malic Acid Ash OD CI Proline

Weight 0.1472 0.1473 0.1474 0.1775 0.1484 0.2322

in Table 3.23. Finally, based on the BPA in Table 3.23, we evaluate the PPT of the singleton

Table 3.23: Final weighted BPA.

Class Final Weighted BPA

m(1) 0.1474

m(2) 0.1411

m(3) 0.1293

m(1, 2) 0.1822

m(1, 3) 0.1210

m(2, 3) 0.1483

m(1, 2, 3) 0.1307

classes and we get

PPT (1) = 0.3426, PPT (2) = 0.3499, PPT (3) = 0.3075.

Hence, the focal element with the highest PPT is class 2, so it is our final hypothesis and we

make the correct decision. Along the same lines, we can use FDEx. In Table 3.24, we give

the recognition rates of the non-weighted method and methods based on FDEn and FDEx for

different choices of the parameter q.

In the last example, we consider the fractional Tsallis-Deng entropy to discriminate among

classes in the wine dataset, see Balakrishnan, Buono and Longobardi [5].

Example 3.21. In this example, we consider again the classification problem based on the

dataset about typical qualities of Italian wines described in Example 3.20. The model of interval
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Table 3.24: The recognition rates.

Non-Weighted Method q FDEn Method FDEx Method

93.26% 0.5 94.38% 93.26%

0.6 94.94% 93.26%

1 94.38% 93.26%

numbers is the one given in Table 3.18. Suppose the selected instance is (12.330, 1.1000, 2.2800,

1.6700, 3.2700, 680). It belongs to Class 2 and our aim is to classify it correctly. Six BPAs,

one for each attribute, are generated by using the method based on the similarity of interval

numbers proposed by Kang et al. [61]. For each attribute, we obtain seven values of similarity

and by normalizing them, six BPAs are computed and are presented in Table 3.25.

Table 3.25: BPAs based on Kang’s method.

Class Alcohol Malic Acid Ash OD CI Proline

m(1) 0.1008 0.1645 0.1180 0.1062 0.0977 0.0394

m(2) 0.1785 0.1153 0.1098 0.1455 0.2137 0.1084

m(3) 0.1381 0.1132 0.1635 0.3259 0.0575 0.1646

m(1, 2) 0.1445 0.1645 0.1180 0.1171 0.1859 0.1292

m(1, 3) 0.1191 0.1645 0.1635 0.0000 0.0949 0.1969

m(2, 3) 0.1745 0.1132 0.1635 0.3053 0.1751 0.1646

m(1, 2, 3) 0.1445 0.1645 0.1635 0.0000 0.1751 0.1969

Without any additional information, the final BPA is determined by giving the same weight

to each attribute, i.e., by summing the six values that are related to a focal element and then

dividing by six. In this way, we get the final BPA as presented in Table 3.26.

Now, based on the BPA in Table 3.26, the PPT of the singleton classes are computed and

the values which we obtain are

PPT (1) = 0.2846, PPT (2) = 0.3551, PPT (3) = 0.3603.

Thus, the focal element with the highest PPT is Class 3, and would therefore be our final

decision, which is not the correct one in this case.

Now, we try to improve the described method by using the fractional version of Tsallis-Deng

entropy in (3.20). Fix the values of q = 0.5 and α = 4. The fractional version of Tsallis-Deng
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Table 3.26: Final BPA.

Class Final BPA

m(1) 0.1045

m(2) 0.1452

m(3) 0.1605

m(1, 2) 0.1432

m(1, 3) 0.1232

m(2, 3) 0.1827

m(1, 2, 3) 0.1408

entropy of BPAs given in Table 3.25 is then evaluated and the corresponding results are listed

in Table 3.27.

Table 3.27: Fractional versions of Tsallis-Deng entropies of BPAs in Table 3.25.

Attribute Alcohol Malic Acid Ash OD CI Proline

SDq
α 0.2085 0.2058 0.2057 0.2464 0.2087 0.2032

Since a greater value of SDq
α represents a higher uncertainty, it is reasonable to give more

weight to the attributes with lower SDq
α. Specifically, we define the weights by normalizing

to 1 the reciprocal values of the fourth power of fractional versions of Tsallis-Deng entropies.

The weights so determined are reported in Table 3.28.

Table 3.28: The weights of attributes based on fractional version of Tsallis-Deng entropy.

Attribute Alcohol Malic Acid Ash OD CI Proline

Weight 0.1745 0.1838 0.1843 0.0895 0.1741 0.1938

Based on the weights in Table 3.28, a weighted version of the final BPA is obtained, as

given in Table 3.29. Then, based on the weighted BPA in Table 3.29, we compute the PPT of

the singleton classes as

PPT (1) = 0.2956, PPT (2) = 0.3533, PPT (3) = 0.3510.

Hence, the focal element with the highest PPT is Class 2, and would therefore be our final
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decision, which is indeed the correct one in this case.

Table 3.29: Final weighted BPA.

Class Final Weighted BPA

m(1) 0.1037

m(2) 0.1438

m(3) 0.1431

m(1, 2) 0.1451

m(1, 3) 0.1358

m(2, 3) 0.1711

m(1, 2, 3) 0.1542

In Table 3.30, the recognition rates of the non-weighted method and of the method based

on the fractional version of Tsallis-Deng entropy are presented for different choices of q and α.

Table 3.30: The recognition rates for different choices of q and α.

Non-Weighted Method q α Fractional Tsallis-Deng Method

93.26% 0.5 4 93.82%

0.6 3 93.82%

0.1 0.8 91.57%

1 5 93.26%



Chapter 4

Multivariate hazard rate functions

The hazard rate and the reversed hazard rate functions have been defined in the univariate

case in Chapter 1. In a similar way, these function can be defined for multivariate distribu-

tions. If a random vector is considered, it is of great interest to analyze the case in which its

components are interdependent. In this framework, two new versions of the hazard rate and

the reversed hazard rate functions find their collocation and will be presented in this chapter.

These functions are known as multivariate conditional hazard rate functions and multivariate

conditional reversed hazard rate functions where the word “conditional” is related to the fact

that they depend on something that is observed. The first ones have been defined by Shaked

and Shanthikumar [105, 107] whereas the second ones have been introduced and studied in

Buono, De Santis, Longobardi and Spizzichino [23].

4.1 Multivariate conditional hazard rate functions

The multivariate conditional hazard rate functions are useful tools to describe dependence

models. By regarding the components of the vector as the lifetimes of the components in a

system, their definition is related to the probability that one of the components fails immedi-

ately after a fixed time t given that it survived up to that time and given a dynamic observed

history. The dynamic observed history consists in which components failed before time t and

at what time their failures occur. Before analyzing the n-dimensional case, the bivariate case,

which was first studied by Cox [31], is presented.

4.1.1 The bivariate case

Let (X1, X2) be a non-negative and absolutely continuous random vector. It is clear that in

this case there are only two possible scenarios to take in consideration: X1 fails before than

X2 and vice versa. We remark that the absolutely continuity assumption guarantees that

P(X1 = X2) = 0 and then we have not to consider the case in which X1 and X2 assume the

99
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same value. Up to the random time X1:2, X1 and X2 have a proper hazard rate function but,

when the first failure occurs, the other random variable may change its hazard rate due to

the dependency. Hence, the following four functions are introduced and named multivariate

conditional hazard rate functions

λ1(t|∅) = lim
∆t→0+

1

∆t
P (X1 ≤ t+ ∆t|X1 > t,X2 > t) , t ≥ 0, (4.1)

λ2(t|∅) = lim
∆t→0+

1

∆t
P (X2 ≤ t+ ∆t|X1 > t,X2 > t) , t ≥ 0, (4.2)

λ1(t|2; t2) = lim
∆t→0+

1

∆t
P (X1 ≤ t+ ∆t|X1 > t,X2 = t2) , t ≥ t2 ≥ 0, (4.3)

λ2(t|1; t1) = lim
∆t→0+

1

∆t
P (X2 ≤ t+ ∆t|X1 = t1, X2 > t) , t ≥ t1 ≥ 0. (4.4)

As mentioned above, λ1(t|∅) and λ2(t|∅) describe the hazard of X1 and X2, respectively, when

they have both survived up to time t, whereas λ1(t|2; t2) describes the hazard of X1 at time t

given that it has survived up to time t and that X2 failed at a time t2 ≤ t. The interpretation

of λ2(t|1; t1) is analogous to that of λ1(t|2; t2).

Remark 4.1. If X1 and X2 are independent, then λ1(t|∅) = λ1(t|2; t2), for all t2 ≥ 0, and

they coincide with the univariate hazard rate function of X1, rX1(t), for all t ≥ 0. Analogously,

λ2(t|∅) = λ2(t|1; t1) = rX2(t), for all t1 ≥ 0 and t ≥ 0.

The multivariate conditional hazard rate functions can be determined by the joint proba-

bility density function f , the joint cumulative distribution function F and the joint survival

function F of (X1, X2) by the following relations

λ1(t|∅) =
− ∂
∂t1
F (t1, t)|t1=t

F (t, t)
, t ≥ 0, (4.5)

λ2(t|∅) =
− ∂
∂t2
F (t, t2)|t2=t

F (t, t)
, t ≥ 0, (4.6)

λ1(t|2; t2) =
f(t, t2)

− ∂
∂t2
F (t, t2)

, t > t2 ≥ 0, (4.7)

λ2(t|1; t1) =
f(t1, t)

− ∂
∂t1
F (t1, t)

, t > t1 ≥ 0. (4.8)

Conversely, it is possible to determinate the joint probability density function of (X1, X2) by

Equations (4.1)–(4.4) as

f(t1, t2) =



exp
(
−
∫ t1

0 (λ1(u|∅) + λ2(u|∅))du
)
λ1(t1|∅) exp

(
−
∫ t2
t1
λ2(u|1; t1)du

)
λ2(t2|1; t1),

if 0 ≤ t1 ≤ t2,

exp
(
−
∫ t2

0 (λ1(u|∅) + λ2(u|∅))du
)
λ2(t2|∅) exp

(
−
∫ t1
t2
λ1(u|2; t2)du

)
λ1(t1|2; t2),

if 0 ≤ t2 ≤ t1.
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In order to have a probability density function in the above relation, the functions λ1(·|∅), λ2(·|∅),
λ1(·|2; t2), λ2(·|1; t1) have to satisfy some conditions. More precisely, it is necessary that∫ +∞

0 λ1(u|∅) +λ2(u|∅)du = +∞,
∫ +∞
t1

λ2(u|1; t1)du = +∞ for all t1 > 0 and
∫ +∞
t2

λ1(u|2; t2)du

= +∞ for all t2 > 0. In the following example, the multivariate conditional hazard rate

functions of a well-known bivariate model are computed.

Example 4.1. Let us consider the Gumbel’s type I bivariate exponential distribution with

parameter θ ∈ [0, 1]. It has attracted the interest of researchers since it has a wide range

of applications including competing risks, extreme values, failure times, regional analyses of

precipitation, and reliability (see Nadarajah and Kotz [78]). The joint cumulative distribution

function is expressed as

F (x, y) = 1− e−x − e−y + e−(x+y+θxy), x, y ≥ 0,

and the joint density and survival functions are respectively given by

f(x, y) = e−(x+y+θxy) [(1 + θx)(1 + θy)− θ] ,

F (x, y) = e−(x+y+θxy).

Then, the multivariate conditional hazard rate functions can be evaluated as

λ1(t|∅) = 1 + θt, λ2(t|∅) = 1 + θt, (4.9)

λ1(t|2; t2) =
(1 + θt)(1 + θt2)− θ

1 + θt
, (4.10)

λ2(t|1; t1) =
(1 + θt)(1 + θt1)− θ

1 + θt
, (4.11)

where, since the two components are exchangeable, λ1(t|∅) = λ2(t|∅) and λ1(t|2; z) = λ2(t|1; z).

If θ = 0 the components are independent and exponentially distributed with mean 1 and all

the above functions are constantly equal to 1 as the (univariate) hazard rate function of the

standard exponential distribution.

4.1.2 The n-dimensional case

Let X1, . . . , Xn be non-negative random variables with an absolutely continuous joint distri-

bution. For a fixed index j ∈ [n] = {1, . . . , n} and I = {i1, . . . , ik} ⊂ [n] with j /∈ I, and

an ordered sequence 0 ≤ t1 ≤ · · · ≤ tk, the multivariate conditional hazard rate (m.c.h.r.)

function λj(t|i1, . . . , ik; t1, . . . , tk) is defined as follows [107]:

λj(t|i1, . . . , ik; t1, . . . , tk) = lim
∆t→0+

1

∆t
P
(
Xj ≤ t+ ∆t

∣∣∣∣Xi1 = t1, . . . , Xik = tk,min
h/∈I

Xh > t

)
.

(4.12)
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Furthermore, we use the notation

λj(t|∅) = lim
∆t→0+

1

∆t
P
(
Xj ≤ t+ ∆t

∣∣∣∣min
h∈[n]

Xh > t

)
= lim

∆t→0+

1

∆t
P (Xj ≤ t+ ∆t |X1:n > t) . (4.13)

From Equation (4.12), it readily follows that the function λj(t|i1, . . . , ik; t1, . . . , tk) describes

the hazard of Xj at time t given an observed history, from 0 to t, in which the failures of

components Xi1 , . . . , Xik have been observed at times t1, . . . , tk, respectively. Moreover, the

function λj(t|∅) in Equation (4.13) describes the hazard rate of Xj when all the components

assume a value greater than t and is generally known in literature as initial failure rate or

risk-specific failure rate.

Remark 4.2. If the random variables X1, . . . , Xn are independent, then the multivariate

conditional hazard rate functions degenerate into the classical hazard rate function, in the

sense that λj(t|i1, . . . , ik; t1, . . . , tk) = rj(t) for all t > 0 regardless of the indices i1, . . . , ik

and failure times t1, . . . , tk, where rj(·) is the hazard rate function of Xj . Furthermore, if the

random variables are exchangeable, the multivariate conditional hazard rate functions do not

depend on j and i1, . . . , ik but only on the cardinality of I = {i1, . . . , ik} and the failure times

t1, . . . , tk. Then, in the exchangeable case, Equations (4.12) and (4.13) become

λj(t|I; t1, . . . , tk) = λ(k)(t|t1, . . . , tk), λj(t|∅) = λ(0)(t),

for k = |I| ∈ {1, 2, . . . , n− 1} and 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ t.

As in the bivariate case, the joint probability density function of (X1, . . . , Xn) can be

determined and computed in terms of the multivariate conditional hazard rate functions. In

fact, for 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn, we have

fX1,...,Xn(t1, . . . , tn) = λ1(t1|∅) exp

−∫ t1

0

 n∑
j=1

λj(u|∅)

 du

 ·
· λ2(t2|1; t1) exp

−∫ t2

t1

 n∑
j=2

λj(u|1; t1)

 du

 · . . .
· λk+1(tk|1, . . . , k; t1, . . . , tk) exp

−∫ tk+1

tk

 n∑
j=k+1

λj(u|1, . . . , k; t1, . . . , tk)

 du

 · . . .
· λn(tn|1, . . . , n− 1; t1, . . . , tn−1) exp

[
−
∫ tn

tn−1

λn(u|1, . . . , n− 1; t1, . . . , tn−1)du

]
.

(4.14)
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Similar expressions hold when t1, . . . , tn are such that tπ(1) ≤ · · · ≤ tπ(n) for some permutation

π of the set {1, . . . , n}. For details on the proof of this expression, one may refer to Shaked

and Shanthikumar [105].

The multivariate conditional hazard rate functions are a useful tool to study the minimum

among dependent random variables as shown in De Santis et al. [33]. In that paper, the

authors proved that, for any vector of dependent random variables, the probabilities of the

events related to the behavior of the minimum are equal to the probabilities of the same events

for a vector of independent random variables. About the multivariate conditional hazard rate

functions, it is possible to state the following result.

Proposition 4.1. Let (X1, . . . , Xn) be a random vector with absolutely continuous joint dis-

tribution and m.c.h.r. functions λj(·|∅). Let Z1, . . . , Zn be independent random variables with

(univariate) hazard rate functions rj(·) such that

rj(t) = λj(t|∅).

Then, for any i ∈ [n] and for any Borel set B,

P(Xi = X1:n, X1:n ∈ B) = P(Zi = Z1:n, Z1:n ∈ B).

As a consequence of Proposition 4.1, in the particular case B = [0,+∞) it readily follows

P(Xi = X1:n) = P(Zi = Z1:n), i = 1, . . . , n.

Example 4.2. If X1, . . . , Xn are exchangeable, as stated in Remark 4.2, we have λj(t|∅) =

λ(0)(t), i.e., the random variables Z1, . . . , Zn in Proposition 4.1 are independent and identically

distributed. Then, as expected, it follows P(Xi = X1:n) = 1
n , i = 1, . . . , n.

4.2 Load-Sharing models

The multivariate conditional hazard rate functions are efficient tools to describe the joint dis-

tribution and they are also useful to study interesting models. In this section, some properties

of load-sharing models, and the corresponding time-homogeneous version, will be described.

These models are efficiently determined by some conditions on the m.c.h.r. functions. In fact,

if the m.c.h.r. functions do not depend on the failure times of the components, t1, . . . , t|I|

and on the order of i1, . . . , i|I|, then we have a Load-Sharing model. In this case, the current

hazard of a working component only depends on the time of evaluation t and on the set of

working components. Moreover, if in addition the m.c.h.r. functions do not depend also on

the time of evaluation t, then, they are constant functions, we talk about Time-Homogeneous

Load-Sharing models. In particular, Time-Homogeneous Load-Sharing models can be seen as
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a natural generalization of independent and exponentially distributed random variables. For

a review of general properties of Load-Sharing (LS) models and Time-Homogeneous Load-

Sharing (THLS) models see Ross [97], Schechner [102] and Spizzichino [110]. In the following,

the formal definitions of LS and THLS models are given.

Definition 4.1. Let (X1, . . . , Xn) be a random vector with absolutely continuous joint dis-

tribution. It is distributed according to a Load-Sharing model (LS) if, for any i1, . . . , ik

and j ∈ [n] r I, where I = {i1, . . . , ik}, there exist functions µj(t|I) such that, for all

0 ≤ t1 ≤ · · · ≤ tk ≤ t,
λj(t|i1, . . . , ik; t1, . . . , tk) = µj(t|I).

Furthermore, a load-sharing model is time-homogeneous (THLS) if there exist non-negative

numbers µj(I) and µj(∅) such that, for any t > 0,

µj(t|I) = µj(I),

λj(t|∅) = µj(∅).

Remark 4.3. Notice that the joint distribution of n independent and exponential variables

(non-necessarily identically distributed) is a special case of THLS.

Of course, under the assumption of a THLS model, the expression of the joint probability

density function given in Equation (4.14) simplifies considerably and reduces to

fX1,...,Xn(t1, . . . , tn) = µ1(∅) exp

−t1 n∑
j=1

µj(∅)

 · µ2({1}) exp

−(t2 − t1)
n∑
j=2

µj({1})

 ·
. . . · µk+1({1, . . . , k}) exp

−(tk+1 − tk)
n∑

j=k+1

µj({1, . . . , k})

 · . . .
· µn({1, . . . , n− 1}) exp [−(tn − tn−1)µn({1, . . . , n− 1})] ,

where t1 ≤ t2 ≤ · · · ≤ tn.

Dealing with a THLS model, the following quantities are of great interest

M(I) =
∑
h/∈I

µh(I),

ρj(I) =
µj(I)

M(I)
,

since they are very useful in the study of the order statistics of (X1, . . . , Xn) as stated in the

following proposition by Spizzichino [110].
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Proposition 4.2. Let (X1, . . . , Xn) be distributed according to a THLS model with parameters

µj(∅), µj(I) and let π be a fixed permutation of [n]. Then, for r = 1, 2, . . . , n− 1

P(X1:n = Xπ(1), . . . , Xr:n = Xπ(r)) =

ρπ(1)(∅)ρπ(2)({π(1)})ρπ(3)({π(1), π(2)}) · · · · · ρπ(r)({π(1), π(2), . . . , π(r − 1)})

and

P(X1:n = Xπ(1), . . . , Xn:n = Xπ(n)) =

ρπ(1)(∅)ρπ(2)({π(1)})ρπ(3)({π(1), π(2)}) · · · · · ρπ(n−1)({π(1), π(2), . . . , π(n− 2)}).

In the above proposition, the case in which r is equal to n is separated by the others to

emphasize that, once chosen the first n − 1 order statistics on n components, the last one is

determined with probability equal to one.

In order to state the following result, let us denote by Λ(r) a vector (λ1, . . . , λr) ∈ Rr+ and by

GΛ(r)(t) the survival function of the random variable Sr =
∑r

s=1 Γs, where Γ1, . . . ,Γr are inde-

pendent random variables with exponential distribution of parameter λ1, . . . , λr, respectively.

Moreover, for π permutation of [n] and r ∈ [n], we place

Λ(r)(π) = (M(∅),M({π(1)}), . . . ,M({π(1), . . . , π(r − 1)})).

We have the following proposition by Spizzichino [110].

Proposition 4.3. Let (X1, . . . , Xn) be distributed according to a THLS model with parameters

µj(∅), µj(I). Then, for any t > 0 and j ∈ [n],

P(X1:n > t|X1:n = Xj) = exp(−tM(∅)),

and for any permutation π of [n] and k = 2, . . . , n,

P(Xk:n > t|X1:n = Xπ(1), . . . , Xk−1:n = Xπ(k−1), Xk:n = Xπ(k)) = GΛ(k)(π)(t). (4.15)

4.3 Multivariate conditional reversed hazard rate functions

In this section, we introduce the dual version of m.c.h.r. functions and THLS model, namely

the multivariate conditional reversed hazard rate functions and the reversed time-homogeneous

load-sharing model. The reversed multivariate conditional hazard rate functions extend the

one-dimensional notion of reversed hazard rate of a single non-negative random variable and

have a related role in the study of the behavior of the maximum value among inter-dependent

lifetimes. Moreover, the class of reversed load-sharing models can be seen as natural extensions

to the multivariate case of the univariate inverse exponential distributions. The results of this

section are based on Buono, De Santis, Longobardi and Spizzichino [23].
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Let us consider a vector of n non-negative random variables X1, . . . , Xn defined on the

same probability space (Ω,F ,P). Assume the joint probability distribution of X1, . . . , Xn is

absolutely continuous and so ties among X1, . . . , Xn have probability zero, i.e.,

P (X1:n < . . . < Xn:n) = 1. (4.16)

In the following definition, for any fixed positive number t, the set I must be interpreted as the

set of indices associated to the variables which take values greater than t. Correspondingly,

[n] r I is the set of indices of the variables which take values less than or equal to t.

Definition 4.2. For a vector (i1, . . . , ik), where i1 6= . . . 6= ik ∈ [n], let us set I ≡ {i1, . . . , ik} ⊂
[n]. For j /∈ I and an ordered sequence 0 ≤ t ≤ tk ≤ · · · ≤ t1 the multivariate conditional

reversed hazard rate (m.c.r.h.r.) function τj(t|I; t1, . . . , tk) is defined as follows:

τj(t|i1, . . . , ik; t1, . . . , tk) = lim
∆t→0+

1

∆t
P
(
Xj ≥ t−∆t

∣∣∣∣Xi1 = t1, . . . , Xik = tk, max
h∈[n]rI

Xh ≤ t
)
.

Furthermore, we use the notation

τj(t|∅) = lim
∆t→0+

1

∆t
P
(
Xj ≥ t−∆t

∣∣∣∣max
h∈[n]

Xh ≤ t
)

= lim
∆t→0+

1

∆t
P (Xj ≥ t−∆t |Xn:n ≤ t) .

When necessary to distinguish between different vectors of lifetimes, notations as τ
(X)
j (t|∅),

λ
(X)
j (t|∅) in place of τj(t|∅), λj(t|∅) and τ

(X)
j (t|i1, . . . , ik; t1, . . . , tk), λ

(X)
j (t|i1, . . . , ik; t1, . . . , tk)

in place of τj(t|i1, . . . , ik; t1, . . . , tk), λj(t|i1, . . . , ik; t1, . . . , tk) will be used.

Remark 4.4. If X1, . . . , Xn are independent, τj(t|i1, . . . , ik; t1, . . . , tk) does not depend on the

indices i1, . . . , ik and the times t1, . . . , tk, for j /∈ {i1, . . . , ik}. In this case, τj(t|i1, . . . , ik; t1, . . . ,
tk) coincides with the classical, univariate, reversed hazard rate function qj(t) of Xj .

The information contained in the family of the m.c.r.h.r. functions allows to analyze differ-

ent type of properties of the order statisticsX1:n, . . . , Xn:n of n random variablesX1, X2, . . . , Xn.

In particular, the knowledge of the m.c.r.h.r. functions will be relevant when studying the be-

havior of the maximum order statistic Xn:n.

Let us introduce some notations which will be useful in the following propositions. We

respectively denote by k(n),K(n), F(n), f(n), the past intensity function (the reversed hazard rate

function), the integrated past intensity function, the distribution function and the probability

density function of Xn:n. Namely,

k(n)(t) = lim
∆t→0+

1

∆t
P (Xn:n ≥ t−∆t |Xn:n ≤ t) , K(n)(t) =

∫ +∞

t
k(n)(s)ds,

F(n)(t) = e−K(n)(t), f(n)(t) = k(n)(t)e
−K(n)(t). (4.17)



4. Multivariate hazard rate functions 107

In view of the assumption of absolute continuity and following the analogy with the defi-

nition of the m.c.h.r. functions, we can define the following limits for j = 1, . . . , n

δj(t) = lim
∆t→0+

P(Xj = Xn:n|Xn:n ∈ (t−∆t, t]) = P(Xj = Xn:n|Xn:n = t) (4.18)

and we notice that
n∑
j=1

δj(t) = 1. (4.19)

Moreover,

k(n)(t)δj(t) = lim
∆t→0+

P(Xj = Xn:n, Xn:n ∈ (t−∆t, t])

P(Xn:n ∈ (t−∆t, t])

P(Xn:n ∈ (t−∆t, t])

∆t P(Xn:n ≤ t)

= lim
∆t→0+

P(Xj > t−∆t,Xn:n ≤ t)
∆t P(Xn:n ≤ t)

= τj(t|∅). (4.20)

By taking into account (4.19) and (4.20), and by performing an integration from t to +∞ we

immediately get the following result.

Proposition 4.4. For any t ≥ 0 we have

k(n)(t) =
n∑
j=1

τj(t|∅), K(n)(t) =

∫ +∞

t

n∑
j=1

τj(s|∅)ds. (4.21)

The role of the functions τ1(t|∅), . . . , τn(t|∅) in the study of the properties of the statistic

Xn:n is described by the following result.

Proposition 4.5. For any t ≥ 0 and j = 1, . . . , n, we have

P(Xj = Xn:n, Xn:n ≤ t) =

∫ t

0
τj(s|∅)e−K(n)(s)ds.

Proof. Taking into account (4.17), (4.18) and (4.20) we obtain

P(Xj = Xn:n, Xn:n ≤ t) =

∫ t

0
f(n)(s)P(Xj = Xn:n|Xn:n = s)ds

=

∫ t

0
k(n)(s)e

−K(n)(s)δj(s)ds =

∫ t

0
τj(s|∅)e−K(n)(s)ds,

that is the thesis.

As an immediate consequence of the previous proposition we note that, for j = 1, . . . , n,

the probability P(Xj = Xn:n, Xn:n ≤ t) only depends on the functions τ1(t|∅), . . . , τn(t|∅), and

the following result follows.

Proposition 4.6. Take n independent random variables Z1, . . . , Zn with reversed hazard rate

functions qj(t) and let (X1, . . . , Xn) be a vector with m.c.r.h.r. functions τ
(X)
j (t|∅) such that

τ
(X)
j (t|∅) = qj(t), j = 1, . . . , n. (4.22)

Then, for any j ∈ [n] and for any t ≥ 0

P(Xj = Xn:n, Xn:n ≤ t) = P(Zj = Zn:n, Zn:n ≤ t). (4.23)
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Proof. In view of independence, the m.c.r.h.r. functions τ
(Z)
j (t|∅) for the vector Z1, . . . , Zn

respectively coincide with the univariate reversed hazard rate functions qj(t). Then, the the-

sis follows immediately by applying Proposition 4.5 to both the vectors (X1, . . . , Xn) and

(Z1, . . . , Zn).

We also notice that the multivariate conditional reversed hazard rate functions τ
(X)
j ’s of

variables X1, . . . , Xn are strictly related to the m.c.h.r. functions λ
(Y)
j ’s of the variables Y1 =

1/X1, . . . , Yn = 1/Xn, as stated in the following proposition.

Proposition 4.7. Let X1, . . . , Xn be absolutely continuous random variables and let Yi = 1/Xi,

for i = 1, . . . , n. Then, we have

τ
(X)
j (t|∅) =

1

t2
λ

(Y)
j

(
1

t

∣∣∣∣ ∅) (4.24)

and, for j /∈ I = {i1, . . . , ik} ⊂ [n], 0 ≤ t ≤ tk ≤ · · · ≤ t1

τ
(X)
j (t|i1, . . . , ik; t1, . . . , tk) =

1

t2
λ

(Y)
j

(
1

t

∣∣∣∣ i1, . . . , ik; 1

t1
, . . . ,

1

tk

)
. (4.25)

Proof. The stated result can be obtained as follows

τ
(X)
j (t|∅) = lim

∆t→0+

1

∆t
P (Xj ≥ t−∆t |Xn:n ≤ t) = lim

∆t→0+

1

∆t
P
(

1

Yj
≥ t−∆t

∣∣∣∣Y1:n ≥
1

t

)
= lim

∆t→0+

1

∆t
P
(
Yj ≤

1

t−∆t

∣∣∣∣Y1:n ≥
1

t

)
= lim

∆t→0+

1

∆t
P
(
Yj ≤

1

t
+

∆t

t(t−∆t)

∣∣∣∣Y1:n ≥
1

t

)
= lim

∆t→0+

1

t(t−∆t)
· t(t−∆t)

∆t
P
(
Yj ≤

1

t
+

∆t

t(t−∆t)

∣∣∣∣Y1:n ≥
1

t

)
=

1

t2
λ

(Y)
j

(
1

t

∣∣∣∣ ∅) .
Similarly, for j /∈ I = {i1, . . . , ik} ⊂ [n], 0 ≤ t ≤ tk ≤ · · · ≤ t1

τ
(X)
j (t|i1, . . . , ik; t1, . . . , tk) = lim

∆t→0+

1

∆t
P
(
Xj ≥ t−∆t

∣∣∣∣Xi1 = t1, . . . , Xik = tk,max
h/∈I

Xh ≤ t
)

= lim
∆t→0+

1

∆t
P
(
Yj ≤

1

t−∆t

∣∣∣∣Yi1 =
1

t1
, . . . , Yik =

1

tk
,min
h/∈I

Yh ≥
1

t

)
=

1

t2
λ

(Y)
j

(
1

t

∣∣∣∣ i1, . . . , ik; 1

t1
, . . . ,

1

tk

)
.

4.3.1 Reversed Load-Sharing models

We start this section by reminding the definition of inverse exponential distribution. Let us

consider Y distributed as an exponential random variable, Y ∼ Exp(λ), then X = 1/Y ∼
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invExp(λ) is an inverse exponential random variable. For t > 0, the cdf, pdf and reversed

hazard rate function of X are respectively given by

FX(t) = F Y

(
1

t

)
= e−λ/t, fX(t) =

1

t2
fY

(
1

t

)
=
λ

t2
e−λ/t, qX(t) =

1

t2
rY

(
1

t

)
=
λ

t2
. (4.26)

The inverse exponential distribution and some of its generalizations have found many key

applications in several contexts, such as medicine, survival analysis of patients and of devices

(see [76, 90]). The following result is related to the behavior of the maximum Xn:n among

independent variables distributed according to inverse exponential distributions.

Proposition 4.8. Let X1, . . . , Xn be independent random variables, respectively distributed

according to inverse exponential distributions with parameters λ1, . . . , λn. Then, the following

identities hold:

P(Xn:n = Xj , Xn:n ≤ t) = P(Xn:n = Xj)P(Xn:n ≤ t), for any t > 0,

P(Xn:n = Xj) =
λj∑n
i=1 λi

,

P(Xn:n ≤ t) = e−
1
t

∑n
i=1 λi .

Proof. Consider the event (Xn:n ≤ t). In view of independence among variables, we have

P(Xn:n ≤ t) = P(X1 ≤ t, . . . ,Xn ≤ t) = P(X1 ≤ t) · · ·P(Xn ≤ t) = e−
1
t

∑n
i=1 λi .

Let us then consider the event (Xn:n = Xj , Xn:n ≤ t). By Proposition 4.5, we have

P(Xn:n = Xj , Xn:n ≤ t) = P(Xj ≤ t and Xj > Xi, i 6= j) =

∫ t

0

λj
s2
e−

λj
s P(Xi ≤ s, i 6= j)ds.

By taking into account the independence among X1, . . . , Xn, we then obtain

P(Xn:n = Xj , Xn:n ≤ t) =

∫ t

0

λj
s2
e−

λj
s

n∏
i=1,i 6=j

e−
λi
s ds =

∫ t

0

λj
s2

n∏
i=1

e−
λi
s ds =

λje
− 1
t

∑n
i=1 λi∑n

i=1 λi
.

Hence, the events (Xn:n ≤ t) and (Xn:n = Xj) are independent and so we get

P(Xn:n = Xj) =
λj∑n
i=1 λi

.

Remark 4.5. We highlight that Proposition 4.8 is analogous to a well known result concerning

with the minimum among variables and with exponential distributions. See e.g. Theorem 2.3.3

in [89]: Let Y1, . . . , Yn be independent random variables such that Yj ∼ Exp(λj), then

P(Y1:n = Yj , Y1:n > t) = P(Y1:n = Yj)P(Y1:n > t), for any t > 0,

P(Y1:n = Yj) =
λj∑n
i=1 λi

,

P(Y1:n > t) = e−
1
t

∑n
i=1 λi .
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We have preferred to provide a direct proof of Proposition 4.8, even though a proof can be

easily obtained from the above result. In fact, it is sufficient to remind that if X1, . . . , Xn

are independent and Xj ∼ invExp(λj), then Y1 = 1/X1, . . . , Yn = 1/Xn are independent and

Yj ∼ Exp(λj) and, furthermore, the following equivalences hold

Y1:n = Yj ⇔ 1/Xn:n = 1/Xj ⇔ Xn:n = Xj ,

Y1:n > t⇔ 1/Xn:n > t⇔ Xn:n <
1

t
.

Definition 4.3. We say that the random vector (X1, . . . , Xn) is distributed according to a

Reversed Load-Sharing model (RLS) if, for i1, . . . , ik ∈ [n], j /∈ I = {i1, . . . , ik}, the m.c.r.h.r.

functions τj(t|i1, . . . , ik; t1, . . . , tk) does not depend on the order of i1, . . . , ik and on t1, . . . , tk,

for all 0 ≤ t ≤ tk ≤ · · · ≤ t1, i.e.,

τj(t|i1, . . . , ik; t1, . . . , tk) = τj(t|I).

We now concentrate attention on a special subclass of reversed load sharing models. Let

us consider a vector (Y1, . . . , Yn) distributed according to a THLS model with parameters

µj(∅), µj(I). Then (X1, . . . , Xn), defined by Xj = 1/Yj , for j = 1, . . . , n, is such that the

m.c.r.h.r. functions are expressed, by using (4.24) and (4.25), as

τ
(X)
j (t|∅) =

1

t2
λ

(Y)
j

(
1

t

∣∣∣∣ ∅) =
1

t2
µj(∅),

τ
(X)
j (t|I) =

1

t2
λ

(Y)
j

(
1

t

∣∣∣∣ I) =
1

t2
µj(I). (4.27)

By recalling the formula of the reversed hazard rate in (4.26), we observe, in particular,

that the reversed m.c.h.r. functions of vectors of independent, inverse-exponentially distributed

random variables satisfy the identities in (4.27) and we give the following definition.

Definition 4.4. The random vector (X1, . . . , Xn) is distributed according to a Reversed Time

Homogeneous Load-Sharing model (RTHLS) if, it is a RLS and, in addition, for I ⊂ [n] and

j ∈ [n] r I, the m.c.r.h.r. functions are expressed as

τj(t|I) =
cj(I)

t2
,

where cj(I) ≥ 0.

We emphasize that the vector (X1, . . . , Xn) is distributed according to a RTHLS model if,

and only if, the vector (Y1, . . . , Yn) is distributed according to a THLS model, where Yj = 1/Xj ,

j = 1, . . . , n. Furthermore, the RTHLS models can be seen as natural generalizations of the

case of independent variables with inverse exponential distributions and, in particular, they
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inherit several remarkable properties of them. If (X1, . . . , Xn) follows a RTHLS model, then

we set, for j ∈ [n], I ⊂ [n], j /∈ I,

N(I) =
∑
h/∈I

ch(I) (4.28)

ηj(I) =
τj(t|I)∑
h/∈I τh(t|I)

=
cj(I)∑
h/∈I ch(I)

=
cj(I)

N(I)
. (4.29)

We note furthermore that the parameters cj (∅) , cj (I) of a RTHLS model for variables X1, . . . ,

Xn actually coincide with the parameters of the THLS model for the reciprocal variables

Yj = 1/Xj (j = 1, . . . , n), i.e.,

cj(∅) = µj(∅), cj(I) = µj(I). (4.30)

The following result points out the appropriate way to extend Proposition 4.8 from the inde-

pendent case to the case of RTHLS models.

Proposition 4.9. Let (X1, . . . , Xn) be distributed according to a reversed time-homogeneous

load-sharing model with parameters cj(I). Then, the following identities hold:

P(Xn:n = Xj , Xn:n ≤ v) = P(Xn:n = Xj)P(Xn:n ≤ v), for any v > 0,

P(Xn:n = Xj) = ηj (∅) ,

P(Xn:n ≤ v) = e−
N(∅)
v .

Proof. By applying Proposition 4.5 to the present case, we obtain

P(Xn:n = Xπ(n), Xn:n ≤ v) =

∫ v

0
τπ(n)(s|∅)e−

∫+∞
s

∑n
i=1 τi(w|∅)dwds

=

∫ v

0

cπ(n)(∅)
s2

e−
∫+∞
s

∑n
i=1 ci(∅)
w2 dwds =

∫ v

0

cπ(n)(∅)
s2

e−
∑n
i=1 ci(∅)
s ds

=
cπ(n)(∅)∑n
i=1 ci(∅)

e−
∑n
i=1 ci(∅)
v = ηπ(n)(∅)e−

N(∅)
v .

Now, we introduce the discrete random variables J1, . . . , Jn, where Jh = j if Xh:n = Xj .

Other basic aspects of RTHLS models can be better understood by writing, for k = 1, . . . , n, the

joint pdf fXn:n,...,Xk:n,Jn,...,Jk(tn, . . . , tk; jn, . . . , jk) of (Xn:n, . . . , Xk:n; Jn, . . . , Jk) with respect

to the product between the k-dimensional Lebesgue measure and an appropriate counting

measure. For t1 ≤ t2 ≤ · · · ≤ tn, we can write in this respect

fXn:n,...,Xk:n,Jn,...,Jk(tn, . . . , tk; jn, . . . , jk)

= fXn:n,Jn(tn; jn)×fXn−1:n,Jn−1(tn−1; jn−1|tn; jn)×· · ·×fXk:n,Jk(tk; jk|tn, . . . , tk+1; jn, . . . , jk+1).
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Taking into account both the meaning of the m.c.r.h.r. functions and the definition of

RTHLS models, the above equation takes the form

fXn:n,...,Xk:n,Jn,...,Jk(tn, . . . , tk; jn, . . . , jk)

=
cjn(∅)
t2n

exp

{
−
∫ +∞

tn

1

u2

n∑
i=1

ci(∅)

}
du×

cjn−1({jn})
t2n−1

exp

−
∫ tn

tn−1

1

u2

 ∑
i∈[n]\{jn}

ci({jn})

 du


× · · ·× cjk({jn, . . . , jk+1})

t2k
exp

−
∫ tk+1

tk

1

u2

 n∑
i∈[n]\{jn,...,jk+1}

ci({jn, . . . , jk+1})

 du

 . (4.31)

Hence, by using (4.28), we have

fXn:n,...,Xk:n,Jn,...,Jk(tn, . . . , tk; jn, . . . , jk)

=
cjn(∅)
t2n

exp

{
−
∫ +∞

tn

1

u2
N(∅)du

}
×
cjn−1({jn})

t2n−1

exp

{
−
∫ tn

tn−1

1

u2
N ({jn}) du

}
× . . .

×cjk({jn, . . . , jk+1})
t2k

exp

{
−
∫ tk+1

tk

1

u2
N ({jn, . . . , jk+1}) du

}
. (4.32)

4.3.2 Applications to the Inactivity Times of coherent systems

Let S be a coherent system whose components lifetimes X1, . . . , Xn are jointly distributed

according to a RTHLS model, let TS be the its lifetime and T̂v,S = v − TS its inactivity time

at time v. The purpose of this section is to compute the conditional probability

P(T̂v,S ≥ t|Xn:n ≤ v).

Namely, we look for the conditional distribution of the inactivity time of the system, conditional

on the detailed information that all the components are down at time v. In this perspective,

we will in particular employ the following results which are respectively dual to results valid

for the ordinary THLS models, as presented in [110] or to results presented in [33].

First of all notice that, in view of Proposition 4.9, the conditional distribution of the max-

imum order statistic Xn:n given the event (Xn:n = Xj) coincides with an inverse exponential

distribution whose parameter is N (∅). More precisely we can state the following result.

Proposition 4.10. We have, for any v > t > 0 and for any j ∈ [n]

P(v −Xn:n ≥ t|Xn:n = Xj , Xn:n ≤ v) = exp

(
− t N(∅)
v(v − t)

)
. (4.33)
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Proof. From Proposition 4.5 and Equations (4.28)–(4.29), we have

P(v −Xn:n ≥ t|Xn:n = Xj , Xn:n ≤ v) = P(Xn:n ≤ v − t|Xn:n = Xj , Xn:n ≤ v)

=
P(Xn:n ≤ v − t,Xn:n = Xj)

P(Xn:n ≤ v,Xn:n = Xj)
=

∫ v−t
0 τj(s|∅)e−

∫+∞
s

∑n
h=1 τh(w|∅)dwds∫ v

0 τj(s|∅)e
−
∫+∞
s

∑n
h=1 τh(w|∅)dwds

=
ηj(∅) exp

(
−N(∅)

v−t

)
ηj(∅) exp

(
−N(∅)

v

) = exp

(
− t N(∅)
v(v − t)

)
,

which completes the proof of (4.33).

Proposition 4.11. Let (X1, . . . , Xn) be distributed according to a reversed time homogeneous

load-sharing model with parameters cj(I), I ⊂ [n], j ∈ [n] r I. Let us fix v > 0. We have for

k = 1, . . . , n,

P(Xn:n = Xjn , Xn−1:n = Xjn−1 , . . . , Xk:n = Xjk , Xn:n ≤ v)

= ηjn(∅)ηjn−1({jn}) · · · ηjk({jn, jn−1, . . . , jk+1}) exp

{
−N(∅)

v

}
.

Proof. By plugging the identity ∫ b

a

A

u2
du = A

(
1

a
− 1

b

)
,

for 0 < a < b and A > 0, within formula (4.32), we can write

fXn:n,...,X1:n,Jn,...,J1(tn, . . . , t1; jn, . . . , j1) =
cjn(∅) · cjn−1({jn}) · . . . · cj1({jn, . . . , j2})

t2n · t2n−1 · . . . · t21
×

× exp

{
−
[
N(∅) 1

tn
+N({jn})

(
1

tn−1
− 1

tn

)
+ · · ·+N({jn, . . . , j2})

(
1

t1
− 1

t2

)]}
=
cjn(∅) · cjn−1({jn}) · . . . · cj1({jn, . . . , j2})

t2n · t2n−1 · . . . · t21
×

× exp

{
−
[

1

tn
[N(∅)−N({jn})] +

1

tn−1
[N({jn})−N({jn, jn−1})] + . . .

+
1

t2
[N({jn, . . . , j3})−N({jn, . . . , j2})] +

1

t1
N({jn, . . . , j2})

]}
.

By properly integrating the joint density function of (Xn:n, . . . , X1:n; Jn, . . . , J1) over the ap-

propriate domain, we get

P (Xn:n = Xjn , . . . , Xk:n = Xjk , Xn:n ≤ v)

= cjn(∅)·. . .·cjk({jn, . . . , jk+1})
∑

j1 6=... 6=jk−1 6=jk 6=jk+1 6=... 6=jn

cjk−1
({jn, . . . , jk})·. . .·cj1({jn, . . . , j2})×
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×
∫ v

0
dtn

∫ tn

0
dtn−1· · ·

∫ t2

0

1

t2n · t2n−1 · . . . · t21
exp

{
−
[

1

tn
[N(∅)−N({jn})] +

· · ·+ 1

t2
[N({jn, . . . , j3})−N({jn, . . . , j2})] +

1

t1
N({jn, . . . , j2})

]}
dt1

= cjn(∅)·. . .·cjk({jn, . . . , jk+1})
∑

j1 6=... 6=jk−1 6=jk 6=jk+1 6=... 6=jn

cjk−1
({jn, . . . , jk})·. . .·cj1({jn, . . . , j2})×

∫ v

0

exp
{
−
[

1
tn

[N(∅)−N({jn})]
]}

t2n
dtn· · ·

∫ t3

0

exp
{
−
[

1
t2

[N({jn, . . . , j3})−N({jn, . . . , j2})]
]}

t22
×

×
∫ t2

0

exp
{
− 1
t1
N({jn, . . . , j2})

}
t21

dt1.

Now, by taking into account the identity

∫ t2

0

exp
{
− 1
t1
N({jn, . . . , j2})

}
t21

dt1 =
exp

{
− 1
t2
N({jn, . . . , j2})

}
N({jn, . . . , j2})

,

we obtain

P (Xn:n = Xjn , . . . , Xk:n = Xjk , Xn:n ≤ v)

= cjn(∅)·. . .·cjk({jn, . . . , jk+1})
∑

j1 6=... 6=jk−1 6=jk 6=jk+1 6=... 6=jn

cjk−1
({jn, . . . , jk})·. . .·cj1({jn, . . . , j2})×

×
∫ v

0

exp
{
−
[

1
tn

[N(∅)−N({jn})]
]}

t2n
dtn· · ·

∫ t3

0

exp
{
− 1
t2

[N({jn, . . . , j2})
}

N({jn, . . . , j2}) · t22
dt2.

Continuing so on, it follows

P (Xn:n = Xjn , . . . , Xk:n = Xjk , Xn:n ≤ v) =
cjn(∅) · . . . · cjk({jn, . . . , jk+1})
N({jn}) · . . . ·N({jn, . . . , jk+1})

×

×
∑

j1 6=... 6=jk−1 6=jk 6=jk+1 6=... 6=jn

cjk−1
({jn, . . . , jk}) · . . . · cj1({jn, . . . , j2})

N({jn, . . . , jk}) · . . . ·N({jn, . . . , j2})
×

×
∫ v

0

exp
{
−
[

1
tn

[N(∅)−N({jn})]
]}

exp
{
− 1
tn
N({jn})

}
t2n

dtn

= cjn (∅) · ηjn−1({jn}) · . . . · ηjk ({jn, . . . , jk+1})
1

N(∅)
exp

{
−N(∅)

v

}

= ηjn (∅) · ηjn−1({jn}) · . . . · ηjk ({jn, . . . , jk+1}) exp

{
−N(∅)

v

}
.

Remark 4.6. As pointed out in [33], an important property of THLS models is the following:

conditioning on the event {Y1:n > t} the joint distribution of the residual lifetimes Yj − t,

j = 1, . . . , n, is the same of the original variables. By using this property, a different proof of

Proposition 4.11 based on THLS models is presented in [23].
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Denote by Gλ1,...,λr the survival function of the distribution obtained as convolution of r

exponential distributions with parameters λ1, . . . , λr, respectively. Also the next result can

easily be obtained by resorting to THLS models by recalling the notation introduced in (4.28).

Proposition 4.12. Let (X1, . . . , Xn) be distributed according to a reversed time-homogeneous

load-sharing model. We have, for any v > u > 0 and k = 1, . . . , n,

P (Xk:n < u|Xn:n = Xjn , . . . , Xk:n = Xjk , Xn:n ≤ v) = GN(∅),...,N({jn,...,jk+1})

(
1

u
− 1

v

)
.

(4.34)

Proof. Let us consider the variables Yj = 1/Xj , j = 1, . . . , n. Then, (Y1, . . . , Yn) follows

a THLS model with the same parameters of the RTHLS model associated to (X1, . . . , Xn).

Thus, we have

P (Xk:n < u|Xn:n = Xjn , . . . , Xk:n = Xjk , Xn:n ≤ v)

= P
(
Yn−k+1:n >

1

u

∣∣∣∣Y1:n = Yjn , . . . , Yn−k+1:n = Yjk , Y1:n >
1

v

)
= P

(
Yn−k+1:n >

1

u
− 1

v

∣∣∣∣Y1:n = Yjn , . . . , Yn−k+1:n = Yjk

)
= GN(∅),...,N({jn,...,jk+1})

(
1

u
− 1

v

)
,

where the last equality follows by Proposition 4 of [110].

Several properties about reliability characteristics of coherent systems can be obtained by

assuming a THLS model for the components’ lifetimes. In particular a special formula is

obtained for the computation of the survival function of the lifetime TS of a given system S,

in terms of appropriate convolutions of exponential distributions (see [110]). In the following,

we will show a dual result under the assumption of a RTHLS model.

Let us consider a system formed by n components C1, . . . , Cn, whose lifetimes are non-

negative random variables X1, . . . , Xn. Assume the joint probability distribution of X1, . . . , Xn

is absolutely continuous and so ties among X1, . . . , Xn have probability zero. Let us denote by

TS the lifetime of the system and by T̂v,S the inactivity time at time v, namely T̂v,S = v− TS .

Let Pn be the set of permutation of {1, . . . , n} and let Bk be the subset of Pn composed with

the elements π such that the event {Xn:n = Xπ(n), . . . , Xk:n = Xπ(k)} implies that the system

fails at the k-th failure at component level, i.e.

Bk = {π ∈ Pn : if Xn:n = Xπ(n), . . . , Xk:n = Xπ(k) then Ek},

where, for k = 1, . . . , n, Ek is the event Ek = {TS = Xk:n}. The events Ek are strictly

related to the structure of the system. They are also connected with the concepts of signature

(Definition 1.13) and dual signature (see [100] for further details).
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Proposition 4.13. Let S be a system formed by n components whose lifetimes are non-negative

random variables X1, . . . , Xn distributed according to a reversed time-homogeneous load-sharing

model and let T̂v,S be the inactivity time of the system at time v. We have, for 0 < t < v,

P(T̂v,S ≥ t|Xn:n ≤ v) =
n∑
k=1

∑
π∈Bk

GN(∅),...,N({π(n),...,π(k+1)})

(
t

v(v − t)

)
·

·ηπ(n)(∅) · · · ηπ(2)({π(n), π(n− 1), . . . , π(3)}).

Proof. Taking into account that {B1, . . . , Bn} is a partition of Pn, we write

P(T̂v,S ≥ t|Xn:n ≤ v) =
∑
π∈Pn

P(T̂v,S ≥ t|Xn:n = Xπ(n), . . . , X1:n = Xπ(1), Xn:n ≤ v)·

· P(Xn:n = Xπ(n), . . . , X1:n = Xπ(1)|Xn:n ≤ v)

=

n∑
k=1

∑
π∈Bk

P(TS ≤ v − t|Xn:n = Xπ(n), . . . , X1:n = Xπ(1), Xn:n ≤ v)·

· P(Xn:n = Xπ(n), . . . , X1:n = Xπ(1))

=
n∑
k=1

∑
π∈Bk

P(Xk:n ≤ v − t|Xn:n = Xπ(n), . . . , X1:n = Xπ(1), Xn:n ≤ v)·

· P(Xn:n = Xπ(n), . . . , X1:n = Xπ(1))

=
n∑
k=1

∑
π∈Bk

GN(∅),...,N({π(n),...,π(k+1)})

(
t

v(v − t)

)
·

· ηπ(n)(∅) · · · ηπ(2)({π(n), π(n− 1), . . . , π(3)}).

In the following, based on the result of Proposition 4.13, we give an example of evaluation

of the probability distributions of the inactivity times for two different systems.

Example 4.3. Let us consider a coherent system S with three components X1, X2, X3. The

structure of the system in displayed in Figure 4.1 and its lifetime TS is described as

TS = max{X1,min{X2, X3}}.

Let X1, X2, X3 be distributed according to a RTHLS model with the parameters given as

follows: for j = 1, 2, 3 and i 6= j

cj (∅) = 1, cj ({i}) = 1, c2 ({1, 3}) = c3 ({1, 2}) = 1, c1 ({2, 3}) = ε,

where ε is a positive number, close to 0.

We want to apply the result of Proposition 4.13 to evaluate the distribution of the inactivity

time of the system. In order to do this, we need to establish how the partition {B1, B2, B3} of
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1

2 3

Figure 4.1: The structure of the system S in Example 4.3.

P3 is composed. Here, we have

B1 = ∅, B2 = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (3, 1, 2)}, B3 = {(2, 3, 1), (3, 2, 1)}.

Then, about the inactivity time of the system, we have

P(T̂v,S ≥ t|Xn:n ≤ v) =

3∑
k=2

∑
π∈Bk

GN(∅),...,N({π(3),...,π(k+1)})

(
t

v(v − t)

)
ηπ(3)(∅)ηπ(2)({π(3)})

=
∑
π∈B2

GN(∅),N({π(3)})

(
t

v(v − t)

)
ηπ(3)(∅)ηπ(2)({π(3)}) +

+
∑
π∈B3

GN(∅)

(
t

v(v − t)

)
· ηπ(3)(∅)ηπ(2)({π(3)}).

By recalling the identities (4.28)–(4.29), the related coefficients are described as follows. Re-

gardless of π ∈ P3, we have

N(∅) = 3, N({π(3)}) = 2, ηπ(3)(∅) = 1/3, ηπ(2)({π(3)}) = 1/2.

Then, we conclude

P(T̂v,S ≥ t|Xn:n ≤ v) = 4G3,2

(
t

v(v − t)

)
· 1

6
+ 2G3

(
t

v(v − t)

)
· 1

6

=
2

3
G3,2

(
t

v(v − t)

)
+

1

3
exp

(
−3

t

v(v − t)

)
.

Concerning the computation of the convolution of several exponential distributions one can of

course resort to a quite wide literature, see e.g. [1] and references therein.

With the same RTHLS model described above for the components’ lifetimes, we now switch

to the system S̃ dual of S (see Figure 4.2 for the structure), whose lifetime is

T
S̃

= min{X1,max{X2, X3}}.

In this case, the partition {B1, B2, B3} of P3 is given by

B1 = {(1, 2, 3), (1, 3, 2)}, B2 = {(2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}, B3 = ∅.
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1

2

3

Figure 4.2: The structure of the system S̃ in Example 4.3.

Hence, about the inactivity time of the system S̃, we have

P(T̂
v,S̃
≥ t|Xn:n ≤ v) =

∑
π∈B1

GN(∅),N({π(3)}),N({π(3),π(2)})

(
t

v(v − t)

)
ηπ(3)(∅)ηπ(2)({π(3)}) +

+
∑
π∈B2

GN(∅),N({π(3)})

(
t

v(v − t)

)
· ηπ(3)(∅)ηπ(2)({π(3)}).

The parameters of the form N(∅) and N({i}) (i = 1, 2, 3) have already been computed above.

For what concerns the parameters of the form N({i1, i2}), with i1 6= i2, the structure of this

system entails that we only need to consider N({2, 3}) = ε. Then, we get

P(T̂
v,S̃
≥ t|Xn:n ≤ v) = 2G3,2,ε

(
t

v(v − t)

)
· 1

6
+ 4G3,2

(
t

v(v − t)

)
· 1

6

=
1

3
G3,2,ε

(
t

v(v − t)

)
+

2

3
G3,2

(
t

v(v − t)

)
.



Chapter 5

Aging intensity functions

The aging intensity function is a useful tool to describe reliability properties of a random

variable. It is a function described in terms of the hazard rate, the probability density and

the survival functions and it can be applied in order to make comparisons among different

distributions. The aging intensity function does not characterize uniquely the distribution

and, in order to overcome this issue, a generalization has been introduced. Moreover, it is

possible to study and analyze a function dual to the aging intensity function, namely the

reversed aging intensity function, based on the reversed hazard rate function. The aim of this

chapter is twofold. First, based on the results in Buono, Longobardi and Szymkowiak [27],

a generalization of the reversed aging intensity function in introduced and studied. Then,

by using the m.c.h.r. functions studied in Chapter 4, an extension of the (univariate) aging

intensity function to the multivariate case is provided as presented in Buono [22].

5.1 Aging intensity and reversed aging intensity functions

The notion of aging intensity (AI) function has been introduced in [56] as the ratio of in-

stantaneous failure rate, or hazard rate, and a baseline failure rate. For a non-negative and

absolutely continuous random variable X with probability density function (pdf) f , survival

function F and hazard rate function r, the Aging Intensity (AI) function is defined as

L(t) =
r(t)

1
t

∫ t
0 r(x)dx

=
−tf(t)

F (t) logF (t)
, (5.1)

i.e., L(t) is the ratio of the instantaneous failure rate r(t) to the average failure rate in the

interval (0, t) and expresses the units average aging behavior. It analyzes the aging property

quantitatively, in the sense that the larger the aging intensity, the stronger the tendency of

aging. The survival function and the aging intensity function are strictly related each other.

More precisely, the failure rate function, or the survival function, uniquely determines the AI

119
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function but not conversely. The AI function of a non-negative random variable determines a

family of survival functions through the relation presented in the following theorem by [113].

Theorem 5.1. Let X be a non-negative and absolutely continuous random variable with sur-

vival function F and aging intensity function L. Then, F and L are related, for all a ∈ (0,+∞),

by the relation

F (t) = exp

[
log k exp

(∫ t

a

L(x)

x
dx

)]
, t ∈ (0,+∞),

where k = F (a). Moreover, a non-negative function L defined on (0,+∞), and such that, for

a fixed a ∈ (0,+∞), limt→0+
∫ a
t
L(x)
x dx = +∞, limt→+∞

∫ t
a
L(x)
x dx = +∞, determines a family

of absolutely continuous survival functions by the relation

F k(t) = exp

[
log k exp

(∫ t

a

L(x)

x
dx

)]
, t ∈ (0,+∞),

by varying the parameter k ∈ (0, 1) and it is the aging intensity function for such survival

functions.

There are several families of distributions in which the parameter k reduces to be one of

the model. For instance, if X follows the Weibull distribution, X ∼ W2(α, λ), with survival

function F (t) = exp (−λtα), t > 0, then the AI function is constant and expressed as L(t) = α.

Then, L(t) = α determines the subfamily of the family of the Weibull distributions with fixed

parameter α and varying parameter λ > 0. Based on these considerations, it is possible to

use the shape of an estimated aging intensity function in order to discover the underlying

distribution of some data. A survey of characterization results based on AI functions for

different types of Weibull distributions is presented in [49].

The evaluation of the AI function for some well known models is presented in [56] where it

is also introduced the notion of average aging intensity in order to study models characterized

by quasi-constant failure rate. Some properties of AI functions are presented in [79] where, in

particular, a new stochastic order (aging intensity order) based on the AI functions is defined.

More precisely, by observing that the larger the aging intensity, the stronger the tendency to

aging, a random variable X is said to be smaller than another random variable Y in the AI

order, denoted by X ≤AI Y , if LX(t) ≥ LY (t), for all t > 0. In the following theorem, some

equivalent conditions to the definition of aging intensity order are given.

Theorem 5.2. Let X and Y be non-negative and absolutely continuous random variables.

Then, the following conditions are equivalent:

(1) X ≤AI Y ;

(2) the ratio
∫ t
0 rX(x)dx∫ t
0 rY (x)dx

is increasing in t > 0;
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(3) the ratio logFX(t)

logFY (t)
is increasing in t > 0.

Furthermore, another important property of the aging intensity order is given by the fact

that if X is IFRA and Y is DFRA then X ≤AI Y .

The study of the aging intensity functions has been extended to some simply systems by

preserving the assumption of independence. In [18], the authors have proved that if X is

the lifetime of a series system formed by n independent components, then the aging intensity

function of X satisfies

min
1≤i≤n

LXi(t) ≤ LX(t) ≤ max
1≤i≤n

LXi(t),

where LXi(·) is the AI function of the i-th component. About parallel systems, they proved

that if X and Y are the lifetimes of parallel systems with n and m independent and identically

distributed components then, for n > m, X ≤AI Y . However, the possibility of considering

a mode of dependence among components is not yet foreseen and, in this perspective, the

necessity of defining a more general form of aging intensity functions emerges.

Another kind of aging intensity is known as reversed aging intensity (RAI) function, it

shares some properties with the aging intensity function and is based on the reversed hazard

rate function. The reversed aging intensity function L̆(t) is defined, for t > 0, as follows [96]

L̆(t) =
−tf(t)

F (t) logF (t)
=
−tq(t)

logF (t)
, (5.2)

and it is the analogous for the future of the aging intensity function. The reversed aging

intensity function can be expressed also in a different way by observing that the cumulative

reversed hazard rate function defined as

R̆(t) =

∫ +∞

t
q(x)dx = logF (t)

∣∣x→+∞
x=t

= − logF (t), (5.3)

can be treated as the total amount of failures accumulated after the time point t. Note that

this function has been already introduced in (2.55) with a different notation. Here we prefer

to use this different notation to be consistent with the other functions involved in this context.

So H̆(t) = 1
t R̆(t), being the proportion between the total amount of failures accumulated after

the time point t and the time t for which the unit has still survived, can be considered as the

baseline value of the reversed hazard rate. Then, (5.2) can be written as

L̆(t) =
tq(t)

R̆(t)
=

q(t)

H̆(t)
,

and so the reversed aging intensity function, defined as the ratio of the instantaneous reversed

hazard rate q to the baseline value of the reversed hazard rate H̆, expresses the units average

aging behavior: the higher the reversed aging intensity (it means the higher the instantaneous

reversed hazard rate, and the smaller the total amount of failures accumulated after the time
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point t), the weaker the tendency of aging. By using the reversed aging intensity function it

is possible to obtain a result analogous to Theorem 5.1, in the sense that there is a relation

between the cumulative distribution function and the reversed aging intensity function and a

reversed aging intensity function determines a family of absolutely continuous distributions.

The aging intensity function of X and the reversed aging intensity function of 1/X are

strictly connected by the following relation

LX

(
1

t

)
= L̆ 1

X
(t). (5.4)

Moreover, in analogy with the aging intensity order, in [96] it is defined an order based on

the comparison among reversed aging intensity functions, namely the reversed aging intensity

order. A random variable X is said to be less than or equal to Y in the reversed aging intensity

(RAI) order, X ≤RAI Y , if L̆X(t) ≤ L̆Y (t) for all t > 0. In analogy with Theorem 5.2, there

are equivalent conditions to this definition which are related to the cumulative reversed hazard

rates and cumulative distribution functions. The aging intensity order and the reversed aging

intensity order are strictly connected by the following theorem.

Theorem 5.3. Let X and Y be non-negative and absolutely continuous random variables.

Then, 1
X ≥RAI

1
Y ⇐⇒ X ≤AI Y .

5.1.1 Generalized aging intensity functions

It is important to remark that the aging intensity function and the reversed aging intensity

function do not determine uniquely the distribution. In order to overcome this problem, a new

version of aging intensity, known as generalized aging intensity function, has been defined and

studied by Szymkowiak [114].

Let X be a non-negative and absolutely continuous random variable with cdf F and pdf f ,

and let G be a strictly increasing cdf with pdf g. The G–generalized aging intensity function

of X is defined as

LG,F (t) =
tf(t)

g(G−1(F (t)))G−1(F (t))
.

A very interesting case, because it provides intuitive results, is the one in which the distribution

function G is the distribution function of a generalized Pareto distribution.

Definition 5.1. A random variable Xα follows a generalized Pareto distribution with param-

eter α ∈ R if the distribution function Wα is expressed as (see [92]):

Wα(t) =


1− (1− αt)

1
α , for

t > 0, if α < 0

0 < t < 1
α , if α > 0

1− exp(−t), for t > 0 if α = 0.
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Note that for α = 0 it is the distribution function of an exponential random variable with

parameter 1. From the distribution function it is possible to obtain the quantile and the

density function as

W−1
α (t) =


1
α [1− (1− t)α], for 0 < t < 1, if α 6= 0

− log(1− t), for 0 < t < 1, if α = 0

wα(t) =


(1− αt)

1−α
α , for

t > 0, if α < 0

0 < t < 1
α , if α > 0

exp(−t), for t > 0, if α = 0.

By using the generalized Pareto distribution, it is possible to define an interesting class

of generalized aging intensity functions. They are known as α–generalized aging intensity

functions and are defined by

Lα(t) =


αt(1−F (t))α−1f(t)

1−(1−F (t))α , for t > 0, if α 6= 0

−tf(t)
(1−F (t)) log(1−F (t)) , for t > 0, if α = 0.

(5.5)

As mentioned above, those functions are of great interest since, for α > 0, they determine the

distribution function uniquely as stated in the following theorem by Szymkowiak [114].

Theorem 5.4. Let X be a non-negative and absolutely continuous random variable with cdf

F and α–generalized aging intensity function Lα, with α > 0. Then, F and Lα are related by

the relation

F (t) = 1−
[
1− exp

(
−
∫ +∞

t

Lα,F (x)

x
dx

)] 1
α

, t ∈ (0,+∞).

Moreover, a non-negative function L defined on (0,+∞), and such that, for a fixed a ∈ (0,+∞),

limt→0+
∫ a
t
L(x)
x dx = +∞, limt→+∞

∫ t
a
L(x)
x dx < +∞, determines, for α > 0, a unique abso-

lutely continuous distribution function by the relation

F (t) = Wα

(
1

α
exp

(
−
∫ +∞

t

L(x)

x
dx

))
= 1−

[
1− exp

(
−
∫ +∞

t

L(x)

x
dx

)] 1
α

, t ∈ (0,+∞),

and it is the α–generalized aging intensity function for that cdf.

However, in the case α < 0, we have a result analogous to Theorem 5.1 and then also in that

case an α–generalized aging intensity function determines a family of distributions. Moreover,

it is possible to introduce stochastic orders based on the comparisons among α–generalized

aging intensity functions. These orders are known as α aging intensity orders and we have

X ≤αAI Y if, and only if, Lα,X(t) ≥ Lα,Y (t), ∀t ∈ (0,+∞).
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5.2 Generalized reversed aging intensity functions

In this section, the concept of generalized reversed aging intensity function is defined and some

of its properties are discussed. The results of this section are based on Buono, Longobardi and

Szymkowiak [27]. Let W0 be the distribution function of an exponential random variable with

parameter 1, W0(t) = 1 − exp(−t), t > 0 , so R̆(t) = W−1
0 (1 − F (t)), where R̆ is defined in

(5.3). In fact, W−1
0 (t) = − log(1− t) and then

W−1
0 (1− F (t)) = − logF (t) = R̆(t).

Replacing W0 by a strictly increasing cdf G with pdf g, it is possible to generalize the concepts

of reversed hazard rate function, cumulative reversed hazard rate function and reversed aging

intensity function. The generalization of the hazard rate function was introduced by Barlow

and Zwet [12, 13].

Definition 5.2. Let X be a non-negative and absolutely continuous random variable with

cdf F . Let G be a strictly increasing cdf with pdf g. We define the G–generalized cumulative

reversed hazard rate function, R̆G, the G–generalized reversed hazard rate function, qG, the

G–generalized reversed aging intensity function, L̆G, of X as

R̆G(t) = G−1(1− F (t)), (5.6)

qG(t) = −dR̆G(t)

dt
=

f(t)

g(G−1(1− F (t)))
, (5.7)

L̆G(t) =
tqG(t)

R̆G(t)
=

tf(t)

g(G−1(1− F (t)))G−1(1− F (t))
. (5.8)

Again, a very interesting generalization is the one in which G is the cdf of a generalized

Pareto distribution. Let X be a non-negative and absolutely continuous random variable with

cdf F and pdf f . Then, it is possible to determine the Wα–generalized cumulative reversed

hazard rate and the Wα–generalized reversed hazard rate functions:

R̆Wα(t) = W−1
α (1− F (t)) =


1
α [1− Fα(t)], for t > 0, if α 6= 0

− logF (t), for t > 0, if α = 0

qWα(t) = −dR̆α(t)

dt
= Fα−1(t)f(t), for t > 0.

For the sake of simplicity, those functions can be, respectively, indicated by R̆α, qα and we

can refer to them as the α–generalized cumulative reversed hazard rate function and the α–

generalized reversed hazard rate function. Note that the 1–generalized reversed hazard rate

function is equal to the density function. In fact, the density function gives a first rough

illustration of the aging tendency of the random variable by its monotonicity. Moreover, the

0–generalized reversed hazard rate function is equal to the usual reversed hazard rate function.
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From these functions, it is possible to introduce the α–generalized reversed aging intensity

function

L̆α(t) =
qα(t)

1
t R̆α(t)

=


αtFα−1(t)f(t)

1−Fα(t) , for t > 0, if α 6= 0

−tf(t)
F (t) logF (t) , for t > 0, if α = 0.

(5.9)

The α–generalized reversed aging intensity function describes the relationship between the

instantaneous value of the α–generalized reversed hazard rate function qα(t) and the baseline

value of the α–generalized reversed hazard rate function 1
t R̆α(t). The higher the α–generalized

reversed aging intensity function (it means the higher the actual value of the α–generalized

reversed hazard rate function with respect to its baseline value), the weaker the tendency of

aging. Moreover, the α–generalized reversed aging intensity function can be treated as the

elasticity (see [112]), except for the sign, of the α–generalized cumulative reversed hazard rate

function, i.e., it indicates how much the function R̆α changes if t changes by a small amount.

Remark 5.1. The 0–generalized reversed aging intensity function is equal to the usual reversed

aging intensity function. For α = 1, we have

L̆1(t) =
tf(t)

F (t)
,

i.e., it is the negative of the elasticity of the survival function F (they are equal in modulus).

For α = n ∈ N, we have

L̆n(t) =
ntFn−1(t)f(t)

1− Fn(t)
,

where the denominator is the survival function of the largest order statistic for a sample of n

IID variables, while the numerator is t multiplied by the density of this order statistic. So L̆n

can be considered as the negative of the elasticity for the survival function of the largest order

statistic. For α = −1, we have

L̆−1(t) =
−t(F (t))−2f(t)

1− (F (t))−1
=

tf(t)

F (t)(1− F (t))
,

and so

L̆−1(t) = tLORX(t) = L−1(t),

where LORX is the log-odds rate of X, see (1.9).

The next proposition analyzes the monotonicity of α–generalized reversed aging intensity

functions with respect to the parameter α.

Proposition 5.1. Let X be a non-negative and absolutely continuous random variable with

cdf F and pdf f . Then, the α–generalized reversed aging intensity function is decreasing with

respect to α ∈ R, ∀t ∈ (0,+∞).
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Proof. For some c ∈ (0, 1), consider the function hc(α) = αcα

1−cα , for α 6= 0. Then,

dhc(α)

dα
=
cα(1− cα + log cα)

(1− cα)2
.

That derivative is negative because cα ∈ (0,+∞) and the function k(t) = 1−t+log t is negative

for t > 0 and different from 1. In fact, k(1) = 0 and 1 is the maximum point for this function.

So hc is decreasing in (−∞, 0) ∪ (0,+∞). Defining the extension for continuity in 0 of hc,

hc(0) = lim
α→0

hc(α) = lim
α→0

αcα

1− cα
= lim

α→0

cα + αcα log c

−cα log c
= − 1

log c
,

it is possible to say that hc is decreasing in R.

Fixing c = F (t), with t > 0, and multiplying hF (t)(α) by the positive factor tf(t)
F (t) we get

that the function

tf(t)

F (t)
hF (t)(α) =


αtFα−1(t)f(t)

1−Fα(t) , if α 6= 0

−tf(t)
F (t) logF (t) , if α = 0

= L̆α(t)

is decreasing in α as t is fixed.

In the following theorem we show that, for α > 0, the distribution function of a non-

negative and absolutely continuous random variable is defined by the α–generalized reversed

aging intensity function and that, under some conditions, a function can be considered as the

α–generalized reversed aging intensity function for a unique random variable.

Theorem 5.5. Let X be a non-negative and absolutely continuous random variable with cdf

F and let L̆α be its α–generalized reversed aging intensity function with α > 0. Then, F and

L̆α are related, for all a ∈ (0,+∞), by the relationship

F (t) =

[
1− exp

(
−
∫ t

0

L̆α(x)

x
dx

)] 1
α

, t ∈ (0,+∞). (5.10)

Moreover, a function L̆ defined on (0,+∞) and satisfying, for a ∈ (0,+∞), the following

conditions:

(1) 0 ≤ L̆(t) +∞, for all t ∈ (0,+∞);

(2) limt→0+
∫ a
t
L̆(x)
x dx < +∞;

(3) limt→+∞
∫ t
a
L̆(x)
x dx = +∞;

determines, for α > 0, a unique absolutely continuous cdf F by

F (t) = 1−Wα

(
1

α
exp

(
−
∫ t

0

L̆(x)

x
dx

))

=

[
1− exp

(
−
∫ t

0

L̆(x)

x
dx

)] 1
α

, t ∈ (0,+∞), (5.11)

and it is the α–generalized reversed aging intensity function for that cdf.
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Proof. Fix the distribution function F with respective density function f , and put α > 0.

From the definition of L̆α it is possible to obtain

L̆α(x)

x
=
αFα−1(x)f(x)

1− Fα(x)
, x ∈ (0,+∞).

By integrating both members between 0 and t, we get∫ t

0

L̆α(x)

x
dx =

∫ t

0

αFα−1(x)f(x)

1− Fα(x)
dx = − log(1− Fα(t)),

therefore

1− Fα(t) = exp

(
−
∫ t

0

L̆α(x)

x
dx

)
,

and so we get (5.10).

Let L̆ be a function defined on (0,+∞) and satisfying, for a ∈ (0,+∞), the conditions

(1), (2), (3). We show that 1 −Wα

(
1
α exp

(
−
∫ t

0
L̆(x)
x dx

))
= F (t) defines a cdf of a non-

negative and absolutely continuous random variable. In fact, from (2) it follows limt→0+ F (t) =

0, whereas from (3) we obtain limt→+∞ F (t) = 1. Since Wα is increasing, α > 0 and the

exponential function is increasing, in order to show that it is an increasing function we have to

prove that −
∫ t

0
L̆(x)
x dx is a decreasing function in t, i.e.,

∫ t
0
L̆(x)
x dx is increasing in t, but this

is immediate since the integrand is non-negative and as t increases, the integration interval

widens. Since Wα, the exponential function, the multiplication for a scalar and the indefinite

integral t 7→
∫ t

0
L̆(x)
x dx are continuous functions, we have a continuous function. In order to

obtain the absolute continuity of F , it suffices to observe that the derivative

F ′(t) = − 1

α

[
1− exp

(
−
∫ t

0

L̆(x)

x
dx

)] 1
α
−1

exp

(
−
∫ t

0

L̆(x)

x
dx

)(
− L̆(t)

t

)

is non-negative in t > 0. Finally, F and L̆ are related by the same relationship found in the

first part of the theorem and so L̆ is the α–generalized reversed aging intensity function for

that cdf.

Remark 5.2. If L̆ is the α–generalized reversed aging intensity function, with α > 0, of a

non-negative and absolutely continuous random variable X, it satisfies conditions (1), (2), (3)

of Theorem 5.5. In fact, from (5.9) we observe that L̆ is non-negative for t ∈ (0,+∞) and we

have

lim
t→0+

∫ a

t

L̆(x)

x
dx = lim

t→0+

∫ a

t

αFα−1(x)f(x)

1− Fα(x)
dx = lim

t→0+
− log

1− Fα(a)

1− Fα(t)
< +∞,

lim
t→+∞

∫ t

a

L̆(x)

x
dx = lim

t→+∞

∫ t

a

αFα−1(x)f(x)

1− Fα(x)
dx = lim

t→+∞
− log

1− Fα(t)

1− Fα(a)
= +∞.
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If we have some data it is possible to obtain an estimation of both cdf and α–generalized

reversed aging intensity function. So it may happen that the shape of an α–generalized reversed

aging intensity function is easier to recognize than that of the cdf.

In analogy with Theorem 5.5, there is a similar result about α–generalized reversed aging

intensity functions with α < 0. Nevertheless, it is essentially different since in this case

the α–generalized reversed aging intensity does not determine a unique cdf but a family of

distributions, as in the classical case. The result is stated in the following theorem whose proof

is omitted being similar to that of Theorem 5.5.

Theorem 5.6. Let X be a non-negative and absolutely continuous random variable with cdf

F and let L̆α be its α–generalized reversed aging intensity function with α < 0. Then, F and

L̆α are related, for all a ∈ (0,+∞), by the relationship

F (t) =

[
1− (1− Fα(a)) exp

(
−
∫ t

a

L̆α(x)

x
dx

)] 1
α

, t ∈ (0,+∞). (5.12)

Moreover, a function L̆ defined on (0,+∞) and satisfying, for a ∈ (0,+∞), the following

conditions:

(1) 0 ≤ L̆(t) < +∞, for all t ∈ (0,+∞);

(2) limt→0+
∫ a
t
L̆(x)
x dx = +∞;

(3) limt→+∞
∫ t
a
L̆(x)
x dx = +∞;

determines, for α < 0 and k ∈ (0,+∞), a family of absolutely continuous distribution functions

Fk by

Fk(t) = 1−Wα

(
k exp

(
−
∫ t

a

L̆(x)

x
dx

))

=

[
1− kα exp

(
−
∫ t

a

L̆(x)

x
dx

)] 1
α

, t ∈ (0,+∞), (5.13)

and it is the α–generalized reversed aging intensity function for those distribution functions.

Remark 5.3. The expression Wα

(
k exp

(
−
∫ t
a
L̆(x)
x dx

))
depends only on the parameter k ∈

(0,+∞) being fictitious the dependence on a ∈ (0,+∞). In fact, replacing a by b ∈ (0,+∞)

we get

Wα

(
k exp

(
−
∫ t

b

L̆(x)

x
dx

))
= Wα

(
k exp

(
−
∫ a

b

L̆(x)

x
dx

)
exp

(
−
∫ t

a

L̆(x)

x
dx

))

= Wα

(
k1 exp

(
−
∫ t

a

L̆(x)

x
dx

))
,

where k1 = k exp
(
−
∫ a
b
L̆(x)
x dx

)
> 0.
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Remark 5.4. If L̆ is the α–generalized reversed aging intensity function, with α < 0, of a

non-negative and absolutely continuous random variable X, it satisfies conditions (1), (2), (3)

of Theorem 5.6. In fact, from (5.9) we observe that L̆ is non-negative for t ∈ (0,+∞) and we

have

lim
t→0+

∫ a

t

L̆(x)

x
dx = lim

t→0+

∫ a

t

αFα−1(x)f(x)

1− Fα(x)
dx = lim

t→0+
− log

1− Fα(a)

1− Fα(t)
= +∞,

lim
t→+∞

∫ t

a

L̆(x)

x
dx = lim

t→+∞

∫ t

a

αFα−1(x)f(x)

1− Fα(x)
dx = lim

t→+∞
− log

1− Fα(t)

1− Fα(a)
= +∞.

Remark 5.5. If L̆ is a function that satisfies conditions (1), (2), (3) of Theorem 5.6 then it

determines, for α = 0 and k ∈ (0,+∞), a family of absolutely continuous distribution functions

Fk by the relationship

Fk(t) = 1−W0

(
k exp

(
−
∫ t

a

L̆(x)

x
dx

))
= exp

[
−k exp

(
−
∫ t

a

L̆(x)

x
dx

)]
,

t ∈ (0,+∞), and it is the 0–generalized reversed aging intensity function (i.e., the reversed

aging intensity function) for these distribution functions. This follows from Corollary 4 in [113]

and by (5.4).

Example 5.1. Let us consider L̆α(t) = A > 0, for t > 0. It can be a constant α–generalized

reversed aging intensity function for α ≤ 0, since for α > 0 it does not satisfy the hypothesis of

Theorem 5.5. For α = 0 it determines a family of inverse two-parameter Weibull distributions

by

Fk(t) = exp

[
−k
(

1

t

)A]
, t ∈ (0,+∞), (5.14)

where k is a non-negative parameter. For α < 0, it determines a family of continuous distri-

butions by

Fk(t) =

[
1 + k

(
1

t

)A] 1
α

, t ∈ (0,+∞) (5.15)

where k is a non-negative parameter.

Example 5.2. Let us consider L̆α(t) = A + Bt, for t > 0 where A,B > 0. It can be a linear

α–generalized reversed aging intensity function for α ≤ 0, since for α > 0 it does not satisfy

the hypothesis of Theorem 5.5. For α = 0, it determines a family of continuous distributions

by

Fk(t) = exp

[
−k
(

1

t

)A
exp(−B t)

]
, t ∈ (0,+∞) (5.16)
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where k is a non-negative parameter. For α < 0, it determines a family of continuous distri-

butions by

Fk(t) =

[
1 + k

(
1

t

)A
exp(−B t)

] 1
α

, t ∈ (0,+∞) (5.17)

where k is a non-negative parameter.

Example 5.3. Let us consider L̆α(t) = Bx, for t > 0, where B > 0. It can be a linear

α–generalized reversed aging intensity function for α > 0 since it satisfies the hypothesis of

Theorem 5.5. It determines a unique continuous distribution function by

F (t) = [1− exp(−Bt)]
1
α , t ∈ (0,+∞), (5.18)

i.e., an exponentiated exponential distribution (see [53]). Note that for α = 1 this is the cdf of

an exponential random variable with parameter B. So if X has 1–generalized reversed aging

intensity function L̆1(t) = Bt, for t > 0 and B > 0, then X ∼ Exp(B).

5.2.1 α–generalized reversed aging intensity orders

In this section we study the family of the α–generalized reversed aging intensity orders. In the

following, we use the notation Lα,X to indicate the α–generalized aging intensity function of the

random variable X and L̆α,X to indicate the α–generalized reversed aging intensity function

of the random variable X. In the next proposition we show a useful relationship between Lα,X

and L̆α, 1
X

.

Proposition 5.2. Let X be a non-negative and absolutely continuous random variable and let
1
X be its inverse. Then, the following equality holds

Lα,X

(
1

t

)
= L̆α, 1

X
(t), t ∈ (0,+∞). (5.19)

Proof. We obtain an expression for the distribution function and the density function of the

random variable 1
X through X, for t > 0 we have

F 1
X

(t) = P
(

1

X
≤ t
)

= P
(
X ≥ 1

t

)
= 1− FX

(
1

t

)
,

f 1
X

(t) =
1

t2
fX

(
1

t

)
.

If α = 0, by (5.4) we have, for t > 0,

L̆0, 1
X

(t) = L̆ 1
X

(t) = LX

(
1

t

)
= L0,X

(
1

t

)
.

If α 6= 0, we have, for t > 0,

L̆α, 1
X

(t) =
αt(F 1

X
(t))α−1f 1

X
(t)

1− (F 1
X

(t))α
=
α1
t

(
1− FX

(
1
t

))α−1
fX
(

1
t

)
1− (1− FX

(
1
t

)
)α

= Lα,X

(
1

t

)
.
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Definition 5.3. Let X and Y be non-negative and absolutely continuous random variables

and let α be a real number. We say that X is smaller than Y in the α–generalized reversed

aging intensity order, X ≤αRAI Y , if and only if L̆α,X(t) ≤ L̆α,Y (t), ∀t ∈ (0,+∞).

In the next lemma we show a relationship between the αRAI order and the αAI order.

Lemma 5.1. Let X and Y be non-negative and absolutely continuous random variables and

let α be a real number. We have X ≤αRAI Y if, and only if, 1
X ≥αAI

1
Y .

Proof. We have X ≤αRAI Y if and only if L̆α,X(t) ≤ L̆α,Y (t), ∀t ∈ (0,+∞). By Proposition 5.2

this is equivalent to Lα, 1
X

(
1
t

)
≤ Lα, 1

Y

(
1
t

)
, ∀t ∈ (0,+∞), i.e., 1

X ≥αAI
1
Y .

Remark 5.6. For particular choices of the real number α we get some connections with other

stochastic orders. Obviously, the reversed aging intensity order coincides with the 0–generalized

reversed aging intensity order. For α = 1 we have shown in Remark 5.1 that L̆1,X(t) = trX(t),

so we get a relationship with the hazard rate order. In fact,

X ≤hr Y ⇔ rX(t) ≥ rY (t), ∀t > 0⇔ trX(t) ≥ trY (t),∀t > 0

⇔ L̆1,X(t) ≥ L̆1,Y (t), ∀t > 0⇔ X ≥1RAI Y.

For α = −1 we have shown in Remark 5.1 that L̆−1,X(t) = tLORX(t) = L−1,X(t), so we get a

connection with the log-odds rate order. In fact,

X ≤LOR Y ⇔ LORX(t) ≥ LORY (t), ∀t > 0⇔ tLORX(t) ≥ tLORY (t), ∀t > 0

⇔ L̆−1,X(t) ≥ L̆−1,Y (t),∀t > 0⇔ X ≥−1RAI Y.

Moreover, we have X ≥−1RAI Y ⇔ X ≤−1AI Y so they are dual relations. By Lemma 5.1 we

get the following series of equivalences

X ≤−1RAI Y ⇔
1

X
≤−1RAI

1

Y
⇔ X ≥−1AI Y ⇔

1

X
≥−1AI

1

Y
.

For α = n ∈ N, we have shown in Remark 5.1 that

L̆n,X(t) =
nt(FX(t))n−1fX(t)

1− (FX(t))n
= trXn:n(t),

so there is a connection with the largest order statistic and the hazard rate order. In fact

Xn:n ≤hr Yn:n ⇔ rXn:n(t) ≥ rYn:n(t),∀t > 0⇔ trXn:n(t) ≥ trYn:n(t), ∀t > 0

⇔ L̆n,X(t) ≥ L̆n,Y (t), ∀t > 0⇔ X ≥nRAI Y.

Proposition 5.3. Let X and Y be non-negative and absolutely continuous random variables

such that X ≤st Y , i.e., FX(t) ≥ FY (t) for all t > 0.
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(1) If there exists β ∈ R such that X ≤βRAI Y , then for all α < β we have X ≤αRAI Y ;

(2) If there exists β ∈ R such that X ≥βRAI Y , then for all α > β we have X ≥αRAI Y .

Proof. (1). From X ≤βRAI Y and Lemma 5.1 we have 1
X ≥βAI

1
Y . Moreover, from X ≤st Y we

get 1
X ≥st

1
Y so by Proposition 4 in [114] we obtain that ∀α < β 1

X ≥αAI
1
Y , i.e., X ≤αRAI Y .

The proof of part (2) is analogous.

Proposition 5.4. Let X and Y be non-negative and absolutely continuous random variables.

(1) If there exists β ∈ R such that for all α < β we have X ≥αRAI Y , then X ≥rh Y ;

(2) If there exists β ∈ R such that for all α > β we have X ≤αRAI Y , then X ≥st Y .

Proof. (1). From X ≥αRAI Y and Lemma 5.1 we have 1
X ≤αAI

1
Y , ∀α < β. So with the

use of Proposition 5 in [114] we obtain 1
X ≤hr

1
Y , i.e., X ≥rh Y . The proof of part (2) is

analogous.

Corollary 5.1. Let X and Y be non-negative and absolutely continuous random variables.

(1) X ≤st Y and X ≥LOR Y ⇒ X ≤αRAI Y for all α ∈ (−∞,−1);

(2) X ≤st Y and X ≤LOR Y ⇒ X ≥αRAI Y for all α ∈ (−1,+∞).

Proof. (1). We have X ≥LOR Y ⇔ X ≤−1RAI Y so the proof is completed with the use of

Proposition 5.3. The proof of part (2) is analogous.

5.2.2 Application of α–generalized reversed aging intensity function in data

analysis

It is a difficult task to recognize the lifetime data distribution by analyzing only the shapes of

their pdf and cdf estimators. But sometimes, the corresponding α–generalized reversed aging

intensity function for a properly chosen α can have a relatively simple form, and it can be

easily recognized with the use of the respective reversed aging intensity estimate.

For some distribution F with support (0,+∞), we obtain a natural estimator of the α–

generalized reversed aging intensity function

̂̆
Lα(t) =


α t f̂(t)[F̂ (t)]α−1

1−[F̂ (t)]α
for t > 0, α 6= 0

− t f̂(t)

F̂ (t) ln[F̂ (t)]
for t > 0, α = 0,

(5.20)

where f̂ denotes a non-parametric estimate of the unknown density function f and F̂ (t) =∫ t
0 f̂(x)dx represents the corresponding distribution function estimate. The proposed estima-

tion of the aging intensity function is possible if we assume that the data follow an absolutely
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continuous distribution with support (0,+∞) and if the non-parametric estimate of its den-

sity function exists. Moreover, larger sample sizes generally lead to increased precision of

estimation. We perform our study for both the generated and the real data.

In the following example we consider an application of the estimator (5.20) for α = −1

to verify the hypothesis that some simulated data come from the family of inverse log-logistic

distributions.

Example 5.4. Our goal is to check if a member of the inverse log-logistic distributions

invLLog(γ, λ) with the distribution function given by

Fγ,λ(t) =

[
1 +

(
λ

t

)γ]−1

, t ∈ (0,+∞), (5.21)

for some unknown positive parameters of the shape γ and the scale λ, is the parent distribution

of a random sample X1, . . . , XN .

From Example 5.1 we know that for distribution function (5.21), the −1–generalized re-

versed aging intensity function is constant and equal to L̆−1(t) = γ. So, we check if the

respective reversed aging intensity estimator (5.20) is indeed an accurate approximation of a

constant function. We use the following procedure to obtain N independent random variables

X1, . . . , XN with invLLog(γ, λ) lifetime distribution. First, we generate standard uniform ran-

dom variables U1, . . . , UN by using function random of MATLAB. Then, by applying the inverse

transform technique with Fγ,λ(t) =
[
1 +

(
λ
t

)γ]−1
, we get Yi = F−1

γ,λ(1−Ui) = λ
(

1
1−Ui − 1

)− 1
γ
,

i = 1, . . . , N , with the inverse log-logistic distribution invLLog(γ, λ). In this way, by applying

the function random with the seed= 88, we generate N = 1000 independent inverse log-logistic

random variables with the shape parameter γ = 4, and the scale parameter λ = 0.5. To cal-

culate the reversed aging intensity estimator (5.20), we apply a kernel density estimator [21],

given in MATLAB ksdensity function,

f̂(t) =
1

N h

N∑
j=1

K

(
t−Xj

h

)
, (5.22)

with a chosen normal kernel smoothing function and a selected bandwidth h = 0.05. Then,

the kernel estimator of the distribution function is equal to

F̂ (t) =
1

N

N∑
j=1

I

(
t−Xj

h

)
,

where I(t) =
∫ t
−∞K(x)dx. The obtained −1–generalized reversed aging intensity function

estimate (5.20) is

̂̆
L−1(t) =

t f̂(t)

F̂ (t)
[
1− F̂ (t)

] =
t 1
N h

∑N
j=1K

(
t−Xj
h

)
1
N

∑N
j=1 I

(
t−Xj
h

) [
1− 1

N

∑N
j=1 I

(
t−Xj
h

)] . (5.23)
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Figure 5.1: Density estimator f̂(x) for the data from Example 5.4 (left).
̂̆
L0(x) and adjusted

regression line for the data from Example 5.4 (right).

For our simulated data, the plot of the density estimator (5.22) is presented in Figure 5.1, left.

Analyzing the plot, it is not easy to decide if the density function belongs to the inverse log-

logistic family. We can observe that the plot of respective estimator (5.23) of −1–generalized

reversed aging intensity function
̂̆
L−1(t) (see Figure 5.1, right), oscillates around a constant

function, especially after removing few outlying values at the right-end. This gives us the

motivation to accept our hypothesis that an inverse log-logistic distribution is the parent

distribution of the generated sample.

To justify our intuitive decision, we propose to carry out the following more formal statis-

tical procedure. First, we calculate the least squares estimate of the intercept which for our

data is equal to γ̂ = 3.7990. Next, we put it into the log-likelihood function, and determine

maximum likelihood estimator (MLE) of parameter λ by maximizing it. The problem resolves

into finding the solution of the equation

N∑
i=1

1(
xi
λ

)γ̂
+ 1

=
N

2
,

that is λ̂ = 0.4957. Note that the estimators γ̂ and λ̂ based on the empirical −1–generalized

reversed aging intensity are quite precise (see Table 5.1).

Table 5.1: Parameters of invLLog(γ, λ)

γ λ

Theoretical parameters 4 0.5

Estimators 3.7990 0.4957

Finally, by the chi-square goodness-of-fit test we check if the data really fit the inverse

log-logistic distribution. For this purpose, we apply the function histogram, available in

MATLAB and group the data into k = 20 classes of observations lying into intervals [xj , xj+1) =

[xj , xj + ∆x), j = 1, . . . , k, of length ∆x = 0.21. The classes, together with their empirical
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frequencies Nj = Nj(X1, . . . , XN ) and theoretical frequencies based on the inverse log-logistic

distribution with parameters replaced by the estimators nj = N
[
F
γ̂,λ̂

(xj+1)− F
γ̂,λ̂

(xj)
]
, are

presented in Table 5.2.

Table 5.2: Grouped data and respective values of empirical and theoretical frequency

class [xj , xj+1) Nj nj

1 0.0000-0.2100 26 36.8543

2 0.2100-0.4200 322 310.6691

3 0.4200-0.6300 371 365.5653

4 0.6300-0.8400 150 168.0593

5 0.8400-1.0500 68 64.2263

6 1.0500-1.2600 29 26.5322

7 1.2600-1.4700 15 12.2550

8 1.4700-1.6800 5 6.2413

9 1.6800-1.8900 3 3.4409

10 1.8900-2.1000 3 2.0223

11 2.1000-2.3100 0 1.2522

12 2.3100-2.5200 1 0.8095

13 2.5200-2.7300 2 0.5425

14 2.7300-2.9400 1 0.3749

15 2.9400-3.1500 0 0.2660

16 3.1500-3.3600 0 0.1931

17 3.3600-3.5700 0 0.1430

18 3.5700-3.7800 0 0.1078

19 3.7800-3.9900 0 0.0826

20 3.9900-4.200 1 0.0641

Furthermore, with MATLAB function chi2gof we determine the value of chi-square statis-

tics χ2 = 9.3209 with ν = 7 degrees of freedom (automatically joining together the last twelve

classes with low frequencies) and the respective p-value, p = 0.2304. It means that for a given

significance level less than 0.2304 we do not reject the hypothesis that the considered data

follow the inverse log-logistic distribution.

Next, we present an example with real data. Analyzing its estimated α–generalized reversed

aging intensity we could assume that the data follow the adequate distribution.

Example 5.5. The real data (see Data Set 6.2 in [77]) concern failure times of 20 components:

0.067 0.068 0.076 0.081 0.084 0.085 0.085 0.086 0.089 0.098 0.098 0.114 0.114 0.115 0.121 0.125
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Figure 5.2: Kernel density estimator f̂ for the data from Example 5.5 (left).
̂̆
L0(x) and adjusted

regression line for the data from Example 5.5 (right).

0.131 0.149 0.160 0.485.

For the given data, the plot of the normal kernel density estimator [21], obtained by MAT-

LAB function ksdensity with a returned bandwidth h = 0.0147, is presented in Figure 5.2,

left. An analysis of the graph does not enable us to recognize the distribution of the data. To

identify the data distribution we propose to estimate the 0–generalized reversed aging intensity

by (5.20) ̂̆
L0(t) = − t f̂(t)

F̂ (t) ln[F̂ (t)]
, t ∈ (0,+∞).

The plot of the estimator
̂̆
L0(t), Figure 5.2, right, can be treated as oscillating around a linear

function, especially after removing one outlying value at the right-end. This motivates us to

state the hypothesis that data follow an inverse modified Weibull distribution (see Example

5.2) with distribution function

Fγ,λ,δ(t) = exp

[
−
(
λ

t

)γ
exp(−δ t)

]
, t ∈ (0,+∞), (5.24)

and 0–generalized reversed aging intensity function

L̆0(t) = δ t+ γ, t ∈ (0,+∞).

Moreover, we provide the following procedure. First, we determine the least squares estimates

γ̂ = 0.3441 and δ̂ = 31.6785 of the intercept and the slop of linear L̆0, respectively. Then we

determine MLE of parameter λ

λ̂ =

 N∑N
i=1

exp(−δ̂ xi)
(xi)γ̂

 1
γ̂

which maximizes the likelihood function. Here, we obtain λ̂ = 549.9663. Then, to check

if the data fit the inverse modified Weibull distribution we use (adequate for few data) the

Kolmogorov-Smirnov goodness-of-fit test (available in MATLAB function kstest), we deter-

mine statistics K = 0.1496 and p-value of the test equal to p = 0.7072. Then, for a given
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significance level less than 0.7072 we do not reject the hypothesis that the considered data

follow the inverse modified Weibull distribution.

5.3 Multivariate conditional aging intensity functions

In this section, the concept of aging intensity function is extended to the multivariate case

by the use of the multivariate conditional hazard rate functions. Some properties of these

functions are studied and a focus on the bivariate case is performed. Finally, the multivariate

conditional aging intensity functions are studied for the time-homogeneous load-sharing model

and a study on the comparison among surviving components in a system is provided. The

results of this section are given in Buono [22].

Based on the definition of multivariate conditional hazard rate functions, here we introduce

the multivariate conditional aging intensity functions. We observe that these functions will

depend on the dynamic history, observed up to the calendar time t, for the random vector

(X1, . . . , Xn). In particular, it is defined only for the components surviving at t and it depends

on the failure times of the components which have failed before t. The given definition entails

that the multivariate conditional aging intensity functions establish the tendency to aging of

random variables and allows us to make comparisons among surviving components at a fixed

time. Moreover, it is possible to observe that the tendency of aging of a component proceeds

continuously with the exception of the failure times of the other components when it may

undergo a sudden variation due to the stochastic dependence of components. Hence, it is of

great interest to study the continuity of multivariate conditional aging intensity functions.

Definition 5.4. Let (X1, . . . , Xn) be a random vector whose components are non-negative

random variables with an absolutely continuous joint distribution. For i1, . . . , ik ∈ [n], the

Multivariate Conditional Aging Intensity (MCAI) function is defined as

Lj(t|i1, . . . , ik; t1, . . . , tk) =
λj(t|i1, . . . , ik; t1, . . . , tk)

1
t

∑k
h=0

∫ th+1

th
λj(x|i1, . . . , ih; t1, . . . , ti)dx

(5.25)

where 0 ≡ t0 < t1 < t2 < · · · < tk < tk+1 ≡ t, j /∈ I = {i1, . . . , ik} and minl /∈I Xl > t. In the

case in which I = ∅, the MCAI fucntion can be expressed as

Lj(t|∅) =
λj(t|∅)

1
t

∫ t
0 λj(x|∅)dx

. (5.26)

Remark 5.7. If X1, . . . , Xn are independent, then MCAI functions reduce to the classical

aging intensity functions since in this case the multivariate conditional hazard rates are equal

to the hazard rates independently of I. In fact,

λj(t|i1, . . . , ik; t1, . . . , tk) = lim
∆t→0+

1

∆t
P
(
Xj ≤ t+ ∆t

∣∣∣∣Xi1 = t1, . . . , Xik = tk,min
h/∈I

Xh > t

)
= lim

∆t→0+

1

∆t
P (Xj ≤ t+ ∆t |Xj > t) = rj(t).



5. Aging intensity functions 138

Then, from (5.25), we get

Lj(t|i1, . . . , ik; t1, . . . , tk) =
rj(t)

1
t

∑k
i=0

∫ ti+1

ti
rj(x)dx

=
rj(t)

1
t

∫ t
0 rj(x)dx

= Lj(t).

In a similar manner, we get Lj(t|∅) = Lj(t).

In the following example, we present the computation of the MCAI functions Lj(t|∅) for

simply models characterized by multivariate conditional hazard rate functions λj(t|∅) propor-

tional to a power of t and we observe that the MCAI functions are independent of the constant

of proportionality.

Example 5.6. Let us evaluate the MCAI functions Lj(t|∅) for a model in which λj(t|∅) = at,

a > 0. From (5.26) we have

Lj(t|∅) =
at

1
t

∫ t
0 axdx

= 2,

and it is independent on a. Moreover, if λj(t|∅) = atb, where a, b > 0, then we get

Lj(t|∅) =
atb

1
t

∫ t
0 ax

bdx
= b+ 1,

that is again independent on a.

In the following proposition, we generalize the property shown in Example 5.6 concerning

the comparison between two models with proportional multivariate conditional hazard rate

functions. This circumstance can be interpreted as a generalization of the classical proportional

hazard rate model introduced in [31] about the univariate case. Generally, it is of interest to

consider distributions with proportional hazard rates to obtain models which preserve the

monotonicity properties of a fixed hazard rate function.

Proposition 5.5. Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two random vectors. If there

exists a constant a > 0 such that λ
(Y)
j (t|i1, . . . , ik; t1, . . . , tk) = aλ

(X)
j (t|i1, . . . , ik; t1, . . . , tk) for

all i1, . . . , ik, 0 < t1 < · · · < tk < t, j /∈ I = {i1, . . . , ik}, then

L
(X)
j (t|i1, . . . , ik; t1, . . . , tk) = L

(Y)
j (t|i1, . . . , ik; t1, . . . , tk). (5.27)

In the following proposition, we study the continuity of the MCAI functions associated to a

fixed component. The critical points are the ones in which the other components fail. In fact,

if we consider a time between two consecutive failures, the expression of the MCAI function

is given in (5.25) without changing the parameters and then its continuity is guaranteed by

the continuity of multivariate conditional hazard rate functions that is assured under the

assumption of absolutely continuous joint distribution.
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Proposition 5.6. Let (X1, . . . , Xn) be a random vector with non-negative components. Then,

for j /∈ I = {i1, . . . , ik},

lim
t→t+k

Lj(t|i1, . . . , ik; t1, . . . , tk) = lim
t→t−k

Lj(t|i1, . . . , ik−1; t1, . . . , tk−1)

if, and only if

λj(tk|i1, . . . , ik; t1, . . . , tk) = λj(tk|i1, . . . , ik−1; t1, . . . , tk−1).

Proof. From the definition of MCAI functions, we have

Lj(t|i1, . . . , ik; t1, . . . , tk)

=
tλj(t|i1, . . . , ik; t1, . . . , tk)∑k−1

r=0

∫ tr+1

tr
λj(x|i1, . . . , ir; t1, . . . , tr)dx+

∫ t
tk
λj(x|i1, . . . , ik; t1, . . . , tk)dx

,

Lj(t|i1, . . . , ik−1; t1, . . . , tk−1)

=
tλj(t|i1, . . . , ik−1; t1, . . . , tk−1)∑k−2

r=0

∫ tr+1

tr
λj(x|i1, . . . , ir; t1, . . . , tr)dx+

∫ t
tk−1

λj(x|i1, . . . , ik−1; t1, . . . , tk−1)dx
,

and then by taking the limits we obtain

lim
t→t+k

Lj(t|i1, . . . , ik; t1, . . . , tk) = =
tkλj(tk|i1, . . . , ik; t1, . . . , tk)∑k−1

r=0

∫ tr+1

tr
λj(x|i1, . . . , ir; t1, . . . , tr)dx

,

lim
t→t−k

Lj(t|i1, . . . , ik−1; t1, . . . , tk−1) =
tkλj(tk|i1, . . . , ik−1; t1, . . . , tk−1)∑k−1
r=0

∫ tr+1

tr
λj(x|i1, . . . , ir; t1, . . . , tr)dx

.

Then, the above limits coincide if, and only if,

λj(tk|i1, . . . , ik; t1, . . . , tk) = λj(tk|i1, . . . , ik−1; t1, . . . , tk−1).

From the above proposition, we can conclude that the jumps of the MCAI functions, i.e.,

changes in the aging tendency, may occur only at the failure times of other components.

The failure of a component may then produce a shock for a different component. However,

not necessarily a component is affected by the failure of another one. For instance, if the

components are independent the continuity of the MCAI functions is guaranteed also under

failures. In the following proposition, an expression for the size of the jump discontinuity is

given.

Proposition 5.7. Let (X1, . . . , Xn) be a random vector with non-negative components. Let

t1, . . . , tk be the failure times of the components i1, . . . , ik, respectively. Then, the size of the

jump discontinuity at tk of the MCAI function of component j /∈ I = {i1, . . . , ik}, is given by

Lj(tk|i1, . . . , ik; t1, . . . , tk)− Lj(tk|i1, . . . , ik−1; t1, . . . , tk−1)

=
λj(tk|i1, . . . , ik; t1, . . . , tk)− λj(i1, . . . , ik−1; t1, . . . , tk−1)

1
tk

∑k−1
r=0

∫ tr+1

tr
λj(x|i1, . . . , ir; t1, . . . , tr)dx

. (5.28)
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Proof. From the definition of MCAI functions, we have

Lj(tk|i1, . . . , ik; t1, . . . , tk)− Lj(tk|i1, . . . , ik−1; t1, . . . , tk−1)

=
λj(tk|i1, . . . , ik; t1, . . . , tk)

1
tk

∑k
r=0

∫ tr+1

tr
λj(x|i1, . . . , ir; t1, . . . , tr)dx

− λj(i1, . . . , ik−1; t1, . . . , tk−1)
1
tk

∑k−1
r=0

∫ tr+1

tr
λj(x|i1, . . . , ir; t1, . . . , tr)dx

,

hence, by observing that tk+1 is the point of evaluation of the MCAI function and then it

is equal to tk, the ratios in the above equation have a common denominator and the thesis

follows.

The result of Proposition 5.7 agrees with that of Proposition 5.6 since if λj(tk|i1, . . . , ik; t1,
. . . , tk) = λj(tk|i1, . . . , ik−1; t1, . . . , tk−1) then the size of the jump is zero. Moreover, from the

expression given in (5.28), it follows that the sign of the jump is determined by the difference

λj(tk|i1, . . . , ik; t1, . . . , tk)−λj(i1, . . . , ik−1; t1, . . . , tk−1), since the denominator in (5.28) is pos-

itive. Hence, the jump is upward if λj(tk|i1, . . . , ik; t1, . . . , tk) > λj(i1, . . . , ik−1; t1, . . . , tk−1),

i.e., if the failure of the component ik at time tk increases the hazard of component j, and

downward if λj(tk|i1, . . . , ik; t1, . . . , tk) < λj(i1, . . . , ik−1; t1, . . . , tk−1).

5.3.1 The bivariate case

In the applications, there are several situations in which a model can be described by two

random variables with a certain mode of dependence. Hence, it is of interest to specialize the

concept of MCAI functions for bivariate distributions. In the literature, it has been already

presented a definition of the bivariate aging intensity function (see [115]). We remark that

this definition is different from the one considered here since it is based on the failure rates

gradient defined in [57]. For a random vector (X1, X2) with joint survival function F (·, ·), the

failure rates gradient is defined as (r1(t1, t2), r2(t1, t2)) where

r1(t1, t2) = − ∂

∂t1
logF (t1, t2), r2(t1, t2) = − ∂

∂t2
logF (t1, t2). (5.29)

Hence, the bivariate aging intensity functions defined in [115] are

L1(t1, t2) =
r1(t1, t2)

1
t1

∫ t1
0 r1(x, t2)dx

, L2(t1, t2) =
r2(t1, t2)

1
t2

∫ t2
0 r1(t1, x)dx

. (5.30)

As one can see, the above definition does not take in account the possibility of observing a

dynamic history. In the following, based on [22], we extend the concept of bivariate aging

intensity by considering stochastic dependence and the possibility of observing a dynamic

history. For a random vector of dimension two, (X1, X2), we have to consider four aging

intensity functions depending on how many variables and which ones assume a value greater

than t. If X1 > t and X2 = t2 < t, we consider

L1(t|2; t2) =
tλ1(t|2; t2)∫ t2

0 λ1(x|∅)dx+
∫ t
t2
λ1(x|2; t2)dx

,
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if X2 > t and X1 = t1 < t, we have

L2(t|1; t1) =
tλ2(t|1; t1)∫ t1

0 λ2(x|∅)dx+
∫ t
t1
λ2(x|1; t1)dx

,

and if X1, X2 > t, we consider

Lj(t|∅) =
tλj(t|∅)∫ t

0 λj(x|∅)dx
, j = 1, 2.

In the case in which t1 ≥ t2, the joint pdf f(t1, t2) can be expressed in terms of the

multivariate conditional hazard rate functions as

f(t1, t2) = λ2(t2|∅)λ1(t1|2; t2) exp

[
−
∫ t2

0
(λ1(u|∅) + λ2(u|∅)) du−

∫ t1

t2

λ1(u|2; t2)du

]
. (5.31)

From (5.31) we get

log

(
f(t1, t2)

λ2(t2|∅)λ1(t1|2; t2)

)
= −

∫ t2

0
(λ1(u|∅) + λ2(u|∅)) du−

∫ t1

t2

λ1(u|2; t2)du,

and then∫ t2

0
λ1(u|∅)du+

∫ t1

t2

λ1(u|2; t2)du = −
[∫ t2

0
λ2(u|∅)du+ log

(
f(t1, t2)

λ2(t2|∅)λ1(t1|2; t2)

)]
,

where we can observe that the LHS is the denominator of L1(t|2; t2). Hence, we can express

L1(t|2; t2) in a different way as

L1(t|2; t2) =
−tλ1(t|2; t2)∫ t2

0 λ2(u|∅)du+ log
(

f(t,t2)
λ2(t2|∅)λ1(t|2;t2)

) . (5.32)

Then, by taking into account the relations among the multivariate conditional hazard rate

functions, the joint density function and the joint survival function (see (4.5)–(4.8)), the MCAI

function can be written as

L1(t|2; t2) =

tf(t,t2)
∂
∂t2

F (t,t2)∫ t2
0

− ∂
∂t2

F (u,t2)
∣∣∣
t2=u

F (u,u)
du+ log

(
F (t2, t2)

∂
∂t2

F (t,t2)

∂
∂v
F (t2,v)|

v=t2

) . (5.33)

In a similar manner, about L1(t|∅), we get the following expression

L1(t|∅) =
−t

∂
∂t1

F (t1,t)
∣∣∣
t1=t

F (t,t)∫ t
0

− ∂
∂t1

F (t1,u)
∣∣∣
t1=u

F (u,u)
du

. (5.34)

The above expressions in (5.33)–(5.34) are useful in the sense that they give the MCAI functions

without involving the m.c.h.r. functions which may be of difficult evaluation and they are based

only on the joint probability density and survival functions. In the following example, the

MCAI functions are obtained for a family of bivariate distributions by applying (5.33)–(5.34).



5. Aging intensity functions 142

0 1 2 3 4 5 6 7 8 9 10

t

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

L
1
(t

|
)

1 2 3 4 5 6 7 8 9 10

t

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

L
1
(t

|2
;1

)

Figure 5.3: Plot of L1(t|∅) (left) and L1(t|2; 1) (right) with θ = 0.25 (blue), 1/3 (red), 0.5

(yellow), 0.75 (violet) and 1 (green).

Example 5.7. Let us obtain the MCAI functions of a well-known bivariate distribution, the

Gumbel’s type I bivariate exponential distribution with parameter θ ∈ [0, 1] (see Example 4.1,

where the expression of the joint distribution, density and survival functions are given). About

the failure rates gradient (5.29), we have

r1(x, y) = 1 + θy, r2(x, y) = 1 + θx,

and then from (5.30) we obtain

L1(x, y) = 1, L2(x, y) = 1. (5.35)

Now, we aim to compute the bivariate aging intensity functions based on m.c.h.r. functions.

We use (5.33) to evaluate the aging intensity function L1(t|2; t2) and we get

L1(t|2; t2) =
−t [(1 + θt)(1 + θt2)− θ]

(1 + θt)
(
θt22
2 − t− θtt2 + log

(
1+θt
1+θt2

)) . (5.36)

If θ = 0 we are in the independent case and (5.36) reduces to L1(t|2; t2) = 1 as the aging

intensity function of the exponential distribution is equal to 1. By using (5.34) we can express

L1(t|∅) as

L1(t|∅) =
2(1 + θt)

2 + θt
. (5.37)

In Figure 5.3 we plot the aging intensity functions related to component 1 for different choices

of θ. For L1(t|2; t2) we choose the value t2 = 1 and so the function are plotted for t ≥ 1.
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The size of the jump at time t2 for the MCAI function of component 1 is given by

L1(t2|2; t2)− L1(t2|∅) =
−t2

[
(1 + θt2)2 − θ

]
(1 + θt2)

(
θt22
2 − t2 − θt

2
2

) − 2(1 + θt2)

2 + θt2

=
2[(1 + θt2)2 − θ]

(1 + θt2)(2 + θt2)
− 2(1 + θt2)

2 + θt2

=
−2θ

(1 + θt2)(2 + θt2)
,

i.e., it is a negative jump with the exception of the case θ = 0 in which there are the indepen-

dence and the continuity of the MCAI function.

5.3.2 Aging intensities for Load-Sharing models

In this section, we focus attention on a generalization of the time-homogeneous load-sharing

(THLS) models which was recently introduced in Foschi et al. [46].

Definition 5.5. Let (X1, . . . , Xn) be a random vector with absolutely continuous joint distri-

bution. It is distributed according to an Order Dependent Load-Sharing model (ODLS) if, for

any i1, . . . , ik ∈ [n] and j /∈ I = {i1, . . . , ik}, there exist functions µj(t|i1, . . . , ik) such that, for

all 0 ≤ t1 ≤ · · · ≤ tk ≤ t,

λj(t|i1, . . . , ik; t1, . . . , tk) = µj(t|ii . . . , ik).

Furthermore, an order dependent load-sharing model is time-homogeneous (ODTHLS) when

there exist non-negative numbers µj(i1, . . . , ik) and µj(∅) such that, for any t > 0 and any

j /∈ I,

µj(t|i1, . . . , ik) = µj(i1, . . . , ik),

λj(t|∅) = µj(∅).

Remark 5.8. If for any non-empty set I ⊂ [n] and any j /∈ I, the function µj(t|i1, . . . , ik) is

invariant under permutations of i1, . . . , ik, then the ODLS model reduces to a LS model. In the

same way, if for any non-empty set I ⊂ [n] and any j /∈ I the number µj(i1, . . . , ik) is invariant

under permutations of i1, . . . , ik, then the ODTHLS model reduces to a THLS model.

Let (X1, . . . , Xn) be distributed according to an ODTHLS model, then the MCAI functions

can be expressed as

Lj(t|i1, . . . , ik; t1, . . . , tk) =
tµj(i1, . . . , ik)∑k

h=0

∫ th+1

th
µj(i1, . . . , ih)dx

=
tµj(I)∑k

h=0(th+1 − th)µj(i1, . . . , ih)

=
tµj(i1, . . . , ik)

t1µj(∅) + (t2 − t1)µj(i1) + · · ·+ (tk − tk−1)µj(i1, . . . , ik−1) + (t− tk)µj(i1, . . . , ik)
.
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In the case in which X1:n > t we have to consider Lj(t|∅) that is given by

Lj(t|∅) =
µj(∅)

1
t tµj(∅)

= 1. (5.38)

Proposition 5.8. Lj(t|∅) = 1 for all t > 0, j = 1, . . . , n if, and only if, λj(t|∅) is constant for

all j with respect to t.

Proof. If λj(t|∅) is constant for all j, then we have shown in (5.38) that the MCAI functions

related to the empty set are constant and equal to 1. Conversely, let us suppose Lj(t|∅) = 1

for all t > 0, j = 1, . . . , n. Then, from (5.26) we have

λj(t|∅)
1
t

∫ t
0 λj(x|∅)dx

= 1

and so it follows

λj(t|∅) =
1

t

∫ t

0
λj(x|∅)dx.

By the mean value theorem for definite integrals we get λj(t|∅) = λj(t̃|∅), where t̃ ∈ (0, t).

Hence, λj(t|∅) cannot be strictly monotone in an arbitrary small interval and then it has to be

constant.

In the following theorem, a characterization of ODTHLS models is given in terms of MCAI

functions. In particular, in this case the MCAI functions are constant and equal to 1 or

hyperbolas.

Theorem 5.7. Let (X1, . . . , Xn) be a random vector with non-negative components. Then,

(X1, . . . , Xn) is distributed according to an ODTHLS model if, and only if, the MCAI functions

can be expressed as

Lj(t|∅) = 1,

Lj(t|i1, . . . , ik; t1, . . . , tk) =
t

(t− tk) + C(i1, . . . , ik; t1, . . . , tk)
,

where C(i1, . . . , ik; t1, . . . , tk) =
t1µj(∅)+(t2−t1)µj(i1)+···+(tk−tk−1)µj(i1,...,ik−1)

µj(I)
> 0 is constant with

respect to t.

Proof. If (X1, . . . , Xn) is distributed according to an ODTHLS model, then Lj(t|∅) = 1 and

Lj(t|i1, . . . , ik; t1, . . . , tk)

=
tµj(i1, . . . , ik)

t1µj(∅) + (t2 − t1)µj(i1) + · · ·+ (tk − tk−1)µj(i1, . . . , ik−1) + (t− tk)µj(i1, . . . , ik)

=
t

(t− tk) +
t1µj(∅)+(t2−t1)µj(i1)+···+(tk−tk−1)µj(i1,...,ik−1)

µj(i1,...,ik)

,
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and then, by letting C(i1, . . . , ik; t1, . . . , tk) =
t1µj(∅)+(t2−t1)µj(i1)+···+(tk−tk−1)µj(i1,...,ik−1)

µj(i1,...,ik) , we get

the result.

Conversely, by Proposition 5.8, if Lj(t|∅) = 1 for all t > 0, j = 1, . . . , n, then λj(t|∅) = µj(∅)
is constant for all j. Let us now consider the case in which |I| = 1. We have

Lj(t|i; t1) =
tλj(t|i; t1)∫ t1

0 λj(x|∅)dx+
∫ t
t1
λj(x|i; t1)dx

=
tλj(t|i; t1)

t1µj(∅) +
∫ t
t1
λj(x|i; t1)dx

,

and then by the assumptions

tλj(t|i; t1)

t1µj(∅) +
∫ t
t1
λj(x|i; t1)dx

=
t

(t− t1) + C(i; t1)
. (5.39)

From (5.39), we get

(t− t1)λj(t|i; t1) + C(i; t1)λj(t|i; t1) = t1µj(∅) +

∫ t

t1

λj(x|i; t1)dx, (5.40)

and, by differentiating both sides of (5.40) with respect to t, we obtain

λj(t|i; t1) + λ′j(t|i; t1) + C(i; t1)λ′j(t|i; t1) = λj(t|i; t1),

that is equivalent to

(1 + C(i; t1))λ′j(t|i; t1) = 0. (5.41)

By observing that C(i; t1) > 0, in order to satisfy (5.41), λj(t|i; t1) has to be constant, λj(t|i; t1)

= µj(i). Moreover, if in (5.40) we take the limit t→ t+1 we get

C(i; t1) =
t1µj(∅)
µj(i)

.

By induction, we consider the case in which |I| > 1 and obtain

tµj(i1, . . . , ik)

t1µj(∅) + (t2 − t1)µj(i1) + · · ·+ (tk − tk−1)µj(i1, . . . , ik−1) +
∫ t
tk
λj(x|i1, . . . , ik; t1, . . . , tk)dx

=
t

(t− tk) + C(i1, . . . , ik; t1, . . . , tk)
.

By following the same steps of the case |I| = 1, we conclude that λj(t|i1, . . . , ik; t1, . . . , tk) has

to be constant,

λj(t|i1, . . . , ik; t1, . . . , tk) = µj(i1, . . . , ik),

C(i1, . . . , ik; t1, . . . , tk) =
t1µj(∅) + (t2 − t1)µj(i1) + · · ·+ (tk − tk−1)µj(i1, . . . , ik−1)

µj(i1, . . . , ik)
.
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1
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Figure 5.4: The structure of the system S.

It is of interest to study what happens for the MCAI functions of surviving components

in the failure time of other ones. From Proposition 5.7, the sign of the size of the jump

for ODTHLS model is determined by the difference µj(i1, . . . , ik) − µj(i1, . . . , ik−1), and, in

particular, the continuity of the MCAI function is given by the condition µj(i1, . . . , ik) =

µj(i1, . . . , ik−1).

In the following, we show an application of MCAI functions by considering coherent systems

whose lifetimes are distributed according to ODTHLS models. We use the MCAI functions to

make comparisons among surviving components and to discover which component ages faster

than the others.

Let us consider a coherent system S formed by three components X1, X2, X3. The structure

of the system is displayed in Figure 5.4 and the lifetime TS is described as

TS = min{X1,max{X2, X3}}.

Let us suppose that the component 2 failed at time t1 and that at time t > t1 the components

1 and 3 are still working, i.e., the system is still working. Moreover, (X1, X2, X3) is distributed

according to an ODTHLS model and the parameters of interest are expressed as

µ1(∅) = 2, µ3(∅) = 1, µ1(2) = 2, µ3(2) = 2.

The aging intensity functions of components 1 and 3 at time t are expressed as

L1(t|2; t1) =
2

1
t [2t1 + 2(t− t1)]

= 1,

L3(t|2; t1) =
2

1
t [t1 + 2(t− t1)]

=
2t

2t− t1
.

Then, we have

L3(t|2; t1) > L1(t|2; t1)⇔ 2t

2t− t1
> 1⇔ 2t > 2t− t1 ⇔ t1 > 0,

and so the component 3 suffers more than 1 the failure of component 2 by aging faster.

Moreover, we can observe that the MCAI function of component 1 is constantly equal to 1 and

hence continuous also at time t1, in fact µ1(∅) = µ1(2). Furthermore, since µ3(2) > µ3(∅), we

expect an upward jump for the MCAI function of component 3 at time t1, that is

L3(t1|2; t1)− L3(t1|∅) =
2t1

2t1 − t1
− 1 = 1.
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Figure 5.5: The structure of the system S∗.

We can perform comparisons among surviving components without fixing the values of

parameters. In this case, about the aging intensities, we have

L1(t|2; t1) =
tµ1(2)

µ1(∅)t1 + µ1(2)(t− t1)
,

L3(t|2; t1) =
tµ3(2)

µ3(∅)t1 + µ3(2)(t− t1)
.

Then, we can compare the aging intensities as

L3(t|2; t1) > L1(t|2; t1) ⇔ tµ3(2)

µ3(∅)t1 + µ3(2)(t− t1)
>

tµ1(2)

µ1(∅)t1 + µ1(2)(t− t1)

⇔ µ3(2)

µ3(∅)t1 + µ3(2)(t− t1)
>

µ1(2)

µ1(∅)t1 + µ1(2)(t− t1)

⇔ µ3(∅)t1 + µ3(2)(t− t1)

µ3(2)
<
µ1(∅)t1 + µ1(2)(t− t1)

µ1(2)

⇔ µ3(∅)t1
µ3(2)

+ (t− t1) <
µ1(∅)t1
µ1(2)

+ (t− t1)

⇔ µ3(∅)
µ3(2)

<
µ1(∅)
µ1(2)

.

We can observe that the comparison is not dependent on t1 and t. As we will see with a further

example, when we compare the aging intensities of ODTHLS components the dependence of

t is always lost whereas if the number of failed components is greater than one, the times of

failure will be involved in the comparisons.

Let us consider a coherent system S∗ formed by four components X1, X2, X3, X4, with

structure displayed in Figure 5.5, and whose lifetime TS∗ is described as

TS∗ = min{max{X1, X2},max{X3, X4}}.

Suppose that the component 2 failed at time t1, the component 4 failed at time t2 > t1 and

that at time t > t2 the components 1 and 3 are still working, that is TS∗ > t. Moreover,

(X1, X2, X3, X4) is distributed according to an ODTHLS model. The aging intensity functions

of components 1 and 3 at time t are given as

L1(t|2, 4; t1, t2) =
tµ1(2, 4)

µ1(∅)t1 + µ1(2)(t2 − t1) + µ1(2, 4)(t− t2)
,

L3(t|2, 4; t1, t2) =
tµ3(2, 4)

µ3(∅)t1 + µ3(2)(t2 − t1) + µ3(2, 4)(t− t2)
.
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Then, the aging intensities can be compared as

L3(t|2, 4; t1, t2) > L1(t|2, 4; t1, t2)

⇔ µ3(2, 4)

µ3(∅)t1 + µ3(2)(t2 − t1) + µ3(2, 4)(t− t2)
>

µ1(2, 4)

µ1(∅)t1 + µ1(2)(t2 − t1) + µ1(2, 4)(t− t2)

⇔ t1
µ3(∅)
µ3(2, 4)

+ (t2 − t1)
µ3(2)

µ3(2, 4)
< t1

µ1(∅)
µ1(2, 4)

+ (t2 − t1)
µ1(2)

µ1(2, 4)
.



Chapter 6

Predicting future failure times from

censored data

One of the most relevant topics in Probability and Statistics during the last decades has been

the use of censored data. When in a study one works with a sample of several lifetimes, it

is common to have censored data, i.e., just the exact values of the first r failures (or survival

times). The other values are censored (type II censored data). This approach is of interest

both in Survival and Reliability studies. An interesting review of the different situations about

ordered and censored data was made in Cramer [32].

Several tools have been developed to use censored data. Also, some procedures have been

studied to predict the unknown future failure times by using the exact values of the r early

failures. The main results can be seen in [9, 15, 44] and in the references therein. Recently,

Barakat et al. [10] and Bdair and Raqab [16] proposed two methods based on different pivotal

quantities for samples of independent and identically distributed (IID) lifetimes with a common

mixture of two exponential distributions.

In this chapter, we extend these results considering the IID case with the more general

Proportional Hazard Rate (PHR) Cox model and also the case of dependent samples. In

both cases, to provide such predictions we will use quantile regression (QR) techniques that

can also be used to get prediction bands for them, see [64, 84]. The results are given in

Navarro and Buono [83]. Then, some properties of the order dependent time-homogeneous

load-sharing model are proposed and an algorithmic procedure to simulate samples from this

model is explained. The problem of the predictions of the future failure times in a sample from

censored data is analyzed for this model (see Buono and Navarro [28]).

149
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6.1 Predictions by using quantile regression

6.1.1 Independent data

Let X1, . . . , Xn be a sample of independent and identically distributed (IID) random variables

with a common absolutely continuous distribution function F and with a probability density

function (pdf) f . Let F be the reliability (or survival) function and let X1:n < · · · < Xn:n be

the associated ordered data (order statistics).

Consider X1, . . . , Xn as lifetimes (or survival times) of some items. In practice, sometimes

we just have the first r early failure times X1:n, . . . , Xr:n for some r < n. Then, we want to

predict the remaining lifetimes Xr+1:n, . . . , Xn:n from the early failures.

The results obtained in this section are based on the following proposition extracted from

Bdair and Raqab [16] and the well known Markov property of the order statistics (see [4]).

Proposition 6.1. Let Wr,s:n = F (Xs:n)/F (Xr:n) for 1 ≤ r < s ≤ n. Then the distributions

of the conditional random variables (Wr,s:n|X1:n = x1, . . . , Xr:n = xr) and (Wr,s:n|Xr:n = xr)

coincide with a beta distribution of parameters n− s+ 1 and s− r.

Proof. The distributions coincide from Theorem 2.4.3 in [4]. From expression (2.4.3) in that

book (p. 23), the pdf of (Xs:n|Xr:n = xr) is

fs|r:n(xs|xr) = c

(
F (xr)− F (xs)

F (xr)

)s−r−1(
F (xs)

F (xr)

)n−s
f(xs)

F (xr)

for 1 ≤ r < s ≤ n and xr < xs, where c is the normalizing constant. On the other hand, if G

is the reliability function of (Wr,s:n|Xr:n = xr), we get

G

(
F (xs)

F (xr)

)
= P

(
Wr,s:n >

F (xs)

F (xr)

∣∣∣∣Xr:n = xr

)
= P

(
F (Xs:n)

F (Xr:n)
>
F (xs)

F (xr)

∣∣∣∣Xr:n = xr

)
= P (Xs:n < xs|Xr:n = xr) .

Therefore, its pdf g = −G′ satisfies

g

(
F (xs)

F (xr)

)
f(xs)

F (xr)
= fs|r:n(xs|xr)

and so, by using the preceding expression for fs|r:n, we obtain

g(w) = c(1− w)s−r+1wn−s

for 0 < w < 1. Therefore, (Wr,s:n|Xr:n = xr) has a beta distribution with parameters n− s+ 1

and s− r.

It is possible to use the preceding proposition to get the median regression curve to estimate

Xs:n from Xr:n = x (or from X1:n = x1, . . . , Xr:n = xr) as stated in the following proposition.
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Proposition 6.2. The median regression curve to estimate Xs:n from Xr:n = x is

m(x) = F
−1 (

q0.5F (x)
)
, (6.1)

where q0.5 is the median of a beta distribution with parameters n− s+ 1 and s− r.

Proof. From the expressions obtained in the proof of Proposition 6.1 we get that

P (Xs:n < xs | Xr:n = xr) = 0.5

is equivalent to

G

(
F (xs)

F (xr)

)
= 0.5,

where G is the reliability function of a beta distribution with parameters n− s+ 1 and s− r.
This expression leads to F (xs) = q0.5F (xr). Therefore, the first expression is equivalent to

xs = F
−1

(q0.5F (xr)) which gives the expression for the median regression curve.

Along the same lines, it is possible to determine quantile predictions bands for these pre-

dictions by using the quantiles of a beta distribution. If we want to get a prediction interval

of size γ = β−α, where α, β, γ ∈ (0, 1) and qα and qβ are the respective quantiles of the above

beta distribution, we use that

P
(
F
−1 (

qβF (x)
)
≤ Xs:n ≤ F

−1 (
qαF (x)

)
|Xr:n = x

)
= γ. (6.2)

For instance, the centered 90% prediction band is obtained with β = 0.95 and α = 0.05 as

C90 =
[
F
−1 (

q0.95F (x)
)
, F
−1 (

q0.05F (x)
)]
.

Sometimes it is preferred to use bottom (or lower) prediction bands starting at Xr:n = x. For

example, the bottom 90% prediction band is obtained with β → 1 and α = 0.1 as

B90 =
[
x, F

−1 (
q0.1F (x)

)]
.

As it will be pointed out in the examples, these prediction bands represent better the uncer-

tainty in the prediction of Xs:n from Xr:n. In particular, the area of these bands will increase

with s − r. We recall that the quantiles qz of a beta distribution (including the median)

are available in many statistical programs (for example, in R, qz is obtained with the code

qbeta(z,a,b), with a = n− s+ 1 and b = s− r in our case).

In the following proposition the exponential distribution is characterized in terms of its

quantile regression curves. In fact, it is the unique distribution with quantile regression curves

that are lines with slope equal to one.
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Proposition 6.3. Let X be a non-negative and absolutely continuous random variable with

survival function F and mα(x) = F
−1

(qαF (x)) quantile regression curve of order α. Then,

mα(x) = x+ cα (6.3)

for all x > 0 and α ∈ (0, 1) if, and only if, X is exponentially distributed, where cα is a constant

depending on α.

Proof. Suppose X is exponentially distributed with parameter λ. Then, F (x) = e−λx and

F
−1

(x) = − 1
λ log x. Therefore, the quantile regression curve of order α is given by

mα(x) = F
−1

(qαF (x)) = F
−1
(
qαe
−λx
)

= x− 1

λ
log qα.

Conversely, suppose Equation (6.3) holds. By choosing x = 0, we get F
−1

(qα) = cα, or,

equivalently, qα = F (cα). By applying F to both sides of (6.3), it readily follows

F (x) =
F (x+ cα)

qα
,

that is

P(X > x) =
P(X > x+ cα)

P(X > cα)
= P(X > x+ cα|X > cα),

for all x > 0, i.e., the memoryless property which characterizes the exponential distribution.

In practice, the common reliability function F is unknown. Sometimes, it can be estimated

from historical data sets by using non-parametric estimators. In these cases, we just replace

in the preceding expressions the exact unknown reliability function F with its estimation. In

other cases, we may have a model for it. Consider F θ with an unknown parameter θ. We can

use X1:n = x1, . . . , Xr:n = xr to estimate θ. The associated likelihood function is

`(θ) =
n!

(n− r)!
F
n−r
θ (xr)

r∏
i=1

fθ(xi)

(see, e.g., [4] or (5) in [16]). By maximizing this function we obtain a good estimation for θ.

Assume the Proportional Hazard Rate (PHR) Cox model with F θ = F
θ
0, where F 0 is a

known baseline reliability function and θ > 0 is an unknown risk parameter. Then,

`(θ) =
n!

(n− r)!
θrF

(n−r)θ
0 (xr)

r∏
i=1

F
θ−1
0 (xi)

r∏
i=1

f0(xi)

and so L(θ) = log `(θ) can be written as

L(θ) = K + r log θ + (n− r)θ logF 0(xr) + (θ − 1)

r∑
i=1

logF 0(xi),
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where K is a constant with respect to θ. Hence, its derivative is

L′(θ) =
r

θ
+ (n− r) logF 0(xr) +

r∑
i=1

logF 0(xi)

and the maximum likelihood estimator (MLE) for θ is

θ̂ =
r

−(n− r + 1) logF 0(xr)−
∑r−1

i=1 logF 0(xi)
. (6.4)

Thus, to get the predictions and the prediction bands for Xs:n, we just replace in the preceding

expressions F with F
θ̂
.

Some well known distributions are included in the PHR model. For example, if F 0(t) = e−t

for t ≥ 0 (Exponential model), then (6.4) leads to

θ̂ =
r

(n− r + 1)xr +
∑r−1

i=1 xi
. (6.5)

Analogously, the mean µ = 1/θ can be estimated by

µ̂ =
1

θ̂
=
n− r + 1

r
xr +

1

r

r−1∑
i=1

xi

(a well known result, see e.g. [32]). Along the same lines, F 0(t) = 1/(1 + t) for t ≥ 0 (Pareto

type II model), leads to

θ̂ =
r

(n− r + 1) log(1 + xr) +
∑r−1

i=1 log(1 + xi)
. (6.6)

Finally, note that the prediction regions obtained from different quantiles can be used to

get bivariate box plots and fit tests for the assumed reliability function F (or F θ), see [81].

For example, to get equal expected values, we consider the regions:

R1 =
[
x, F

−1 (
q0.75F (x)

)]
, R2 =

[
F
−1 (

q0.75F (x)
)
, F
−1 (

q0.50F (x)
)]
,

R3 =
[
F
−1 (

q0.50F (x)
)
, F
−1 (

q0.25F (x)
)]
, R4 =

[
F
−1 (

q0.25F (x)
)
,+∞

]
.

We remark that if F is correct, then P(Xs:n ∈ Ri|Xr:n = x) = 1/4 for i = 1, 2, 3, 4.

If we have many values for Xr:n and Xs:n, we could consider these regions for these fixed

values of r, s and n. If we just have some values from a sample of size n, we could consider the

regions for different values of r and s or use resampling methods. In all these cases we use the

Pearson statistic

T =

4∑
i=1

(Oi − Ei)2

Ei
,

where Oi and Ei are the observed and expected data in each region, being Ei = N/4 if we

have N data and we assume that F is correct (null hypothesis). Under this assumption, the

asymptotic distribution of T as N → +∞ is a chi-squared distribution with 3 degrees of

freedom (2 if we use the MLE of the parameter θ). Under this null hypothesis, the associated

P-value will be P(χ2
3 > T ). Some illustrative examples will be provided later.
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6.1.2 Dependent data

Assume that we have a sample X1, . . . , Xn of identically distributed (ID) random variables with

a common distribution function F and that the data might have some kind of dependency.

Usually, the dependency is due to the fact that they share the same environment (for example,

when they are components of the same system). The dependency will be modeled with a

copula function C that is used to write their joint distribution by Sklar’s theorem as

F(x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn) = C(F (x1), . . . , F (xn))

for all x1, . . . , xn. See Nelsen [88] and Durante and Sempi [42] for the main properties of

copulas.

We assume that F is absolutely continuous and we again consider the ordered data X1:n <

· · · < Xn:n obtained from X1, . . . , Xn. Suppose we just have the first r data X1:n < · · · < Xr:n

and we want to predict Xs:n for s > r.

Under dependency, the order statistics do not satisfy the Markov property, i.e., the dis-

tributions of (Xs:n|X1:n = x1, . . . , Xr:n = xr) and (Xs:n|Xr:n = xr) do not coincide. To get

bivariate plots, we will use the second one and will predict Xs:n from Xr:n = x for r < s. The

other data can just be used to estimate the unknown parameters in the model. In this case,

we might have unknown parameters both in F and in C.

To get the predictions, we will use a distortion representation for the joint distribution of

the random vector (Xr:n, Xs:n) as proposed in [84]. We remark that the results for the case

n = 2, r = 1 and s = 2 (paired ordered data) were obtained there. Here, the procedure is

similar but, the expressions obtained for n = 4 will be more complicated. They are based on

the following two facts.

The first one is that there exists a distortion function D (which depends on r, s, n and C),

such that the joint distribution Gr,s:n of (Xr:n, Xs:n) can be written as

Gr,s:n(x, y) = P(Xr:n ≤ x,Xs:n ≤ y) = Dr,s:n(F (x), F (y))

for all x, y. The distortion function Dr,s:n is a continuous bivariate distribution function with

support included in the set [0, 1]2. This representation is similar to the classical copula repre-

sentation but here Dr,s:n is not a copula and F does not coincide with the marginal distributions

(i.e., the distributions of Xr:n and Xs:n).

The second fact is that, from the results obtained in [84], we can obtain the median re-

gression curve and the associated prediction bands to predict Xs:n from Xr:n. The result can

be stated as follows (see Proposition 7 in [84]). We use the notation ∂iDr,s:n for the partial

derivative of Dr,s:n with respect to its ith variable.

Proposition 6.4. If we assume that both F and Dr,s:n are absolutely continuous, then the
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conditional distribution of Xs:n given Xr:n = x is

Gs|r:n(y|x) =
∂1Dr,s:n(F (x), F (y))

∂1Dr,s:n(F (x), 1)
(6.7)

for x < y such that ∂1Dr,s:n(F (x), v) > 0 and limv→0+ ∂1Dr,s:n(F (x), v) = 0.

Sometimes, it is better to use the reliability functions instead of the distribution functions

and we have similar results for them. The joint reliability function of X1, . . . , Xn can be written

as

F(x1, . . . , xn) = P(X1 > x1, . . . , Xn > xn) = Ĉ(F (x1), . . . , F (xn))

for all x1, . . . , xn, where F = 1 − F and Ĉ is another copula called survival copula. Ĉ can

be obtained from C (and vice versa). Analogously, the joint reliability function of Gr,s:n of

(Xr:n, Xs:n) can be written as

Gr,s:n(x, y) = P(Xr:n > x,Xs:n > y) = D̂r,s:n(F (x), F (y)) (6.8)

for all x, y. The distortion function D̂r,s:n is also a continuous bivariate distribution function

with support included in the set [0, 1]2. It depends on r, s, n and C (or Ĉ). From this expression,

the conditional reliability function can be obtained as expressed in the following proposition.

Proposition 6.5. If we assume that both F and D̂r,s:n are absolutely continuous, then the

conditional reliability function of Xs:n given Xr:n = x is

Gs|r:n(y|x) =
∂1D̂r,s:n(F (x), F (y))

∂1D̂r,s:n(F (x), 1)
(6.9)

for x < y such that ∂1D̂r,s:n(F (x), v) > 0 and limv→0+ ∂1D̂r,s:n(F (x), v) = 0.

The preceding expressions can be used to solve the general case in which we want to predict

Xs:n from Xr:n for 1 ≤ r < s ≤ n. To show the procedure, we choose different cases for n = 4.

In all these cases we assume that the joint distribution of (X1, X2, X3, X4) is exchangeable

(EXC), that is, it does not change if we permute them. This is equivalent to the assumption

that they are ID and C (or Ĉ) is exchangeable. In the first case, we choose r = 1 and s = 2.

Proposition 6.6. If both F and Ĉ are absolutely continuous and Ĉ is EXC, then the condi-

tional reliability function of X2:4 given X1:4 = x is

G2|1:4(y|x) =
∂1Ĉ(F (x), F (y), F (y), F (y))

∂1Ĉ(F (x), F (x), F (x), F (x))
(6.10)

for all x < y such that ∂1Ĉ(F (x), F (x), F (x), F (x)) > 0 and limv→0+ ∂1Ĉ(F (x), v, v, v) = 0.
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Proof. The joint reliability function G1,2:4 of (X1:4, X2:4) satisfies

G1,2:4(x, y) = P(X1:4 > x,X2:4 > y) = P(X1:4 > x)

for all x ≥ y, where

P(X1:4 > x) = P(X1 > x,X2 > x,X3 > x,X4 > x) = Ĉ(F (x), F (x), F (x), F (x)).

Analogously, for x < y, we get

G1,2:4(x, y) = P(X1:4 > x,X2:4 > y) = P(X1:4 > x, max
i=1,...,r

XPi > y)

= P (∪ri=1({XPi > y} ∩ {X1:4 > x})) ,

where XPi = minj∈Pi Xj and P1, . . . , Pr are all the minimal path sets of X2:4 (see, for instance,

[82], p. 23). In this case they are all the subsets of {1, 2, 3, 4} with cardinality 3, and so

r =
(

4
3

)
= 4. Hence, by applying the inclusion-exclusion formula and by using the exchangeable

assumption we get

G1,2:4(x, y) =

4∑
i=1

P (XPi > y,X1:4 > x)−
∑
i<j

P
(
XPi∪Pj > y,X1:4 > x

)
+
∑
i<j<k

P
(
XPi∪Pj∪Pk > y,X1:4 > x

)
− P (XP1∪P2∪P3∪P4 > y,X1:4 > x)

= 4P (X1 > x,X2 > y,X3 > y,X4 > y)− 3P (X1 > y,X2 > y,X3 > y,X4 > y)

= 4Ĉ
(
F (x), F (y), F (y), F (y)

)
− 3Ĉ

(
F (y), F (y), F (y), F (y)

)
for x < y. Therefore, (6.8) holds for

D̂1,2:4(u, v) =

{
Ĉ(u, u, u, u) for 0 ≤ u ≤ v ≤ 1;

4Ĉ(u, v, v, v)− 3Ĉ(v, v, v, v) for 0 ≤ v < u ≤ 1.

Hence

∂1D̂1,2:4(u, v) =

{
4∂1Ĉ(u, u, u, u) for 0 ≤ u ≤ v ≤ 1;

4∂1Ĉ(u, v, v, v) for 0 ≤ v < u ≤ 1.

Finally, we use (6.9) to get (6.10).

In the following propositions, we provide the expressions for the other cases. As the proofs

are similar, they are omitted. Note that in Proposition 6.10 we use (6.7) instead of (6.9).

Proposition 6.7. If both F and Ĉ are absolutely continuous and Ĉ is EXC, then the condi-

tional reliability function of X3:4 given X1:4 = x is

G3|1:4(y|x) =
3∂1Ĉ(F (x), F (x), F (y), F (y))− 2∂1Ĉ(F (x), F (y), F (y), F (y))

∂1Ĉ(F (x), F (x), F (x), F (x))
(6.11)

for all x < y such that ∂1Ĉ(F (x), F (x), F (x), F (x)) > 0 and limv→0+ 3∂1Ĉ(F (x), F (x), v, v)−
2∂1Ĉ(F (x), v, v, v) = 0.
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Proposition 6.8. If both F and Ĉ are absolutely continuous and Ĉ is EXC, then the condi-

tional reliability function of X4:4 given X1:4 = x is

G4|1:4(y|x) =
A4|1:4(x, y)

∂1Ĉ(F (x), F (x), F (x), F (x))
, (6.12)

for all x < y such that ∂1Ĉ(F (x), F (x), F (x), F (x)) > 0 and limy→+∞A4|1:4(x, y) = 0, where

A4|1:4(x, y) = 3∂1Ĉ(F (x), F (x), F (x), F (y))− 3∂1Ĉ(F (x), F (x), F (y), F (y))

+ ∂1Ĉ(F (x), F (y), F (y), F (y)).

Proposition 6.9. If both F and Ĉ are absolutely continuous and Ĉ is EXC, then the condi-

tional reliability function of X4:4 given X2:4 = x is

G4|2:4(y|x) =
A4|2:4(x, y)

∂1Ĉ(F (x), F (x), F (x), 1)− ∂1Ĉ(F (x), F (x), F (x), F (x))
(6.13)

for all x < y such that ∂1Ĉ(F (x), F (x), F (x), 1) − ∂1Ĉ(F (x), F (x), F (x), F (x)) > 0 and

limy→+∞A4|2:4(x, y) = 0, where

A4|2:4(x, y) = 2∂1Ĉ(F (x), F (x), F (y), 1)− 2∂1Ĉ(F (x), F (x), F (x), F (y))

− ∂1Ĉ(F (x), F (y), F (y), 1) + ∂1Ĉ(F (x), F (x), F (y), F (y)).

Proposition 6.10. If both F and C are absolutely continuous and C is EXC, then the condi-

tional distribution function of X4:4 given X3:4 = x is

G4|3:4(y|x) =
∂1C(F (x), F (x), F (x), F (y))− ∂1C(F (x), F (x), F (x), F (x))

∂1C(F (x), F (x), F (x), 1)− ∂1C(F (x), F (x), F (x), F (x))
,

for all x < y such that ∂1C(F (x), F (x), F (x), 1)− ∂1C(F (x), F (x), F (x), F (x)) > 0.

Now, we show how to get predictions from more than one early failures. If we want to

predict X3:4 from X1:4 = x and X2:4 = y, we need a distortion representation for their joint

reliability function as

G1,2,3(x, y, t) = P(X1:4 > x,X2:4 > y,X3:4 > t) = D̂(F (x), F (y), F (t)),

where F is the common reliability function of X1, X2, X3, X4. Then their joint pdf is

g1,2,3(x, y, t) = f(x)f(y)f(t) ∂1,2,3D̂(F (x), F (y), F (t)),

where f = −F ′. Analogously, the joint reliability function of X1:4 and X2:4 is

G1,2(x, y) = P(X1:4 > x,X2:4 > y) = D̂(F (x), F (y), 1)

and their joint pdf

g1,2(x, y) = f(x)f(y) ∂1,2D̂(F (x), F (y), 1).
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Hence, the pdf of (X3:4|X1:4 = x,X2:4 = y) is

g3|1,2(t|x, y) =
g1,2,3(x, y, t)

g1,2(x, y)
= f(t)

∂1,2,3D̂(F (x), F (y), F (t))

∂1,2D̂(F (x), F (y), 1)

and the reliability function is

G3|1,2(t|x, y) =
∂1,2D̂(F (x), F (y), F (t))

∂1,2D̂(F (x), F (y), 1)
,

for x < y < t, whenever ∂1,2D̂(F (x), F (y), 1) > 0 and limv→0+ ∂1,2D̂(F (x), F (y), v) = 0. If the

survival copula Ĉ is EXC, then

D̂(u, v, w) = 12Ĉ(u, v, w,w)− 12Ĉ(u,w,w,w)− 6Ĉ(v, v, w,w) + 7Ĉ(w,w,w,w)

and

∂1,2D̂(u, v, w) = 12Ĉ(u, v, w,w),

for 1 > u > v > w > 0. Analogously,

D̂(u, v, 1) = 4Ĉ(u, v, v, v)− 3Ĉ(v, v, v, v)

and

∂1,2D̂(u, v, 1) = 12Ĉ(u, v, v, v),

for 1 > u > v > 0. Hence,

G3|1,2(t|x, y) =
∂1,2Ĉ(F (x), F (y), F (t), F (t))

∂1,2Ĉ(F (x), F (y), F (y), F (y))
(6.14)

for x < y < t such that ∂1,2Ĉ(F (x), F (y), F (y), F (y)) > 0 and

lim
t→+∞

∂1,2Ĉ(F (x), F (y), F (t), F (t)) = 0.

The prediction is obtained by solving (numerically) G3|1,2(t|x, y) = 0.5 for given values of x

and y. The prediction intervals are obtained in a similar manner.

Proceeding as above we can also obtain the expression to predict X4:4 from X1:4 = x and

X2:4 = y as

G4|1,2(t|x, y) =
2∂1,2Ĉ(F (x), F (y), F (y), F (t))− ∂1,2Ĉ(F (x), F (y), F (t), F (t))

∂1,2Ĉ(F (x), F (y), F (y), F (y))
(6.15)

for x < y < t such that ∂1,2Ĉ(F (x), F (y), F (y), F (y)) > 0 and

lim
t→+∞

2∂1,2Ĉ(F (x), F (y), F (y), F (t))− ∂1,2Ĉ(F (x), F (y), F (t), F (t)) = 0.
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6.1.3 Examples

First, we illustrate the IID case with simulated samples.

Example 6.1. We simulate a sample of size n = 20 from a standard exponential distribution.

The ordered (rounded) sample values obtained are

0.00599 0.02454 0.04600 0.07663 0.08168 0.14609 0.24391 0.72400 1.30312 1.37244

1.37962 1.54357 1.71278 2.22949 2.24561 2.56783 2.61441 2.80786 3.90280 7.68743

If we want to predict X2:20 from X1:20 by assuming that F is known (or that it is estimated

from a preceding sample), we use the quantile regression curve given in (6.1)

m(x) = F
−1

(q0.5F (x)) = x− log(q0.5) = x+ 0.03648

where q0.5 = 0.96418 is the median of a beta distribution with parameters n− s+ 1 = 19 and

s− r = 1. Thus, we get the prediction for X2:20 as

X̂2:20 = m(X1:20) = m(0.00599) = 0.00599 + 0.03648 = 0.04247.

The real value is X2:20 = 0.02454. The 90% and 50% prediction intervals for this prediction

are obtained from (6.2) as C90 = [0.00869, 0.16366] and C50 = [0.02113, 0.07895]. The real

value belongs to both the intervals.

To see better what happens with these predictions we simulate N = 100 predictions of this

kind, that is, 100 samples of size 20. The data are plotted in Figure 6.1, left. There we can see

that the prediction bands represent very well the dispersion of the majority of data (except

some extreme values). In this sample, C50 contains 51 values and C90 contains 90 while 5

values are above the upper limit and 5 are below the bottom limit. Of course, if we test H0 : F

is correct vs H0 : F is not correct, by using the four regions R1, R2, R3, R4, we get the observed

values: 25, 30, 21, 24 and the T statistic value is

T =
(25− 25)2

25
+

(30− 25)2

25
+

(21− 25)2

25
+

(24− 25)2

25
= 1.68.

Thus, the P-value P = P(χ2
3 > 1.68) = 0.64139 leads to the acceptance of the exponential

distribution (as expected). In practice, it is not easy to perform this test because we need the

first two values of several samples with the same size (n = 20 in this example).

We do the same in Figure 6.1, right, with n = 20, r = 12 and s = 13. About the initial

sample, the prediction for X13:20 = 1.71278 from X12:20 = 1.54357 obtained with the median

curve

m(x) = F
−1

(q0.5F (x)) = x− log(q0.5) = x+ 0.08664

is m(1.54357) = 1.63021, where q0.5 = 0.91700 is the median of a beta distribution with

parameters n − s + 1 = 8 and s − r = 1. The prediction intervals for this prediction are
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Figure 6.1: Scatterplots of a simulated sample from (Xr:n, Xs:n) for n = 20, r = 1 and s = 2

(left) and r = 12 and s = 13 (right) for the exponential distribution in Example 6.1 jointly

with the theoretical median regression curves (red) and 50% (dark grey) and 90% (light grey)

prediction bands.

C90 = [1.549986, 1.918041] and C50 = [1.579534, 1.716861]. Both intervals contain the real

value. The 100 repetitions of this case are plotted in Figure 6.1, right. We remind that for

the exponential distribution all the curves are lines with slope one (Proposition 6.3). Here, we

have 92 values in C90, 56 in C50 and 8 values out of C90 (4 above and 4 below). The T statistic

is 2.24 and its associated P-value 0.52411 leads again to accept the (real) distribution F .

The predictions will be worse for more distant future values (i.e., the dispersion will be

greater). To show this, in Figure 6.2 we plot the prediction bands for r = 12, s = 14 (left) and

s = 20 (right). However, of course, the coverage probabilities of these regions will be the same.

The predictions obtained in the initial sample are X̂14:20 = 1.76813 and X̂20:20 = 4.03254, with

prediction intervals C90 = [1.59107, 2.17974] and C90 = [2.70722, 6.59642], respectively. The

real values are X14:20 = 2.22949 and X20:20 = 7.68743 and both are out of the interval C90.

In Figure 6.3 we plot the predictions for Xs:20 (red line) jointly with the limits of the 90%

(dashed blue lines) and 50% (continuous blue line) prediction intervals in the initial simulated

sample from X12:20 (left) for s = 13, . . . , 20 and from the preceding data Xs−1:20 (right) for

s = 2, . . . , 20. In the left plot 2-out-of-8 exact points do not belong to the 90% prediction

intervals while 5 are out of the 50% prediction intervals (the expected values are 8 · 0.1 = 0.8

and 8 · 0.5 = 4, respectively). In the right plot 4-out-of-19 points do not belong to 90%

prediction intervals while 11 do not belong to the 50% prediction intervals (we expect 1.9 and

9.5, respectively).

In practice, we do not know the exact distribution. If we just assume the exponential model

F (t) = e−θt for t ≥ 0, with an unknown parameter θ > 0, we can use (6.5) to estimate θ. With
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Figure 6.2: Scatterplots of a simulated sample from (Xr:n, Xs:n) for n = 20, r = 12 and

s = 14 (left) and s = 20 (right) for the exponential distribution in Example 6.1 jointly with

the theoretical median regression curves (red) and 50% (dark grey) and 90% (light grey)

prediction bands.
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Figure 6.3: Predictions (red) for Xs:n from Xr:n for n = 20, r = 12 and s = 13, . . . , 20 (left)

and r = 1, . . . , 19 and s = r + 1 (right) for the exponential distribution in Example 6.1. The

black points are the exact values and the blue lines are the limits for the 50% (continuous

lines) and the 90% (dashed lines) prediction intervals.
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Figure 6.4: Predictions (red) for Xs:n from Xr:n for n = 20, r = 12 and s = 13, . . . , 20 (left) and

r = 12, . . . , 19 and s = r+ 1 (right) for the exponential distribution in Example 6.1 estimating

θ at Xr:20. The black points are the exact values and the blue lines are the limits for the 50%

(continuous lines) and the 90% (dashed lines) prediction intervals.

the above sample and r = 12 we get

θ̂ =
12

9X12:20 +
∑11

i=1Xi:20

= 0.62188.

The exact value is θ = 1. Replacing the exact reliability function F (t) = e−t with F
θ̂
(t) =

e−0.62188t, we can obtain predictions for Xs:20 from X12:20 as above. For example, for s = 13 we

get the prediction X̂13:20 = 1.6829 for X13:20 = 1.71278. The estimated prediction intervals are

Ĉ90 = [1.55388, 2.14572] and Ĉ50 = [1.60140, 1.82222] and both contain the exact value. Since

we have estimated the parameter, we do not know the exact coverage probabilities for these

intervals. The predictions from X12:20 for Xs:20 and s = 13, . . . , 20 are plotted in Figure 6.4,

left. The blue lines represent the prediction intervals. Note that all the exact values belong to

the 90% intervals (dashed blue lines) and that three of them do not belong to the 50% intervals

(continuous blue lines).

We do the same in Figure 6.4, right, but, in this case, Xr+1:20 is predicted from all the pre-

ceding values X1:20, . . . , Xr:20 for r = 12, . . . , 19 which are used to estimate θ. The estimations

obtained for θ and the predictions for Xs:20 are given in Table 6.1. Note that the estimations

for θ are similar. The MLE for θ from the complete sample (which is not available under our

assumptions) is θ̂ = 20/(X1 + · · ·+X20) = 0.6113249 which is very similar to our estimations

for r ≥ 12 (although the exact value is θ = 1). In practice, when we work with real data, the

stability of these predictions might confirm the assumed parametric model. Note that all the

exact values belong to the 90% prediction intervals while 4 do not belong to the 50% prediction

intervals (as expected). Surprisingly, the estimations obtained from X12:20 seem to be better
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Table 6.1: Predicted values X̂r+1:n and centered prediction intervals C50 = [lr, ur] and C90 =

[Ln, Un] for Xr+1:n from Xr:n in a standard exponential distribution; θ̂ is the estimate of θ at

Xr:n for r = 12, . . . , 19.

r θ̂ Lr lr X̂r+1:n Xr+1:n ur Ur

12 0.62188 1.55388 1.60140 1.68290 1.71278 1.82222 2.14572

13 0.62954 1.72442 1.77807 1.87007 2.22949 2.02736 2.39258

14 0.57692 2.24431 2.31260 2.42974 2.24561 2.62998 3.09493

15 0.61567 2.26227 2.33906 2.47078 2.56783 2.69595 3.21877

16 0.61599 2.58865 2.68459 2.84915 2.61441 3.13047 3.78366

17 0.64982 2.640723 2.76198 2.96997 2.80786 3.32553 4.15110

18 0.67312 2.845958 3.02155 3.32274 3.90280 3.83762 5.03313

19 0.65673 3.980903 4.34085 4.95825 7.68743 6.01370 8.46438

than that obtained from the preceding values but it has to be pointed out that the lengths of

the intervals in the first case are greater than the ones obtained in the second.

In the following example we analyze a real data set by assuming that the original (not

ordered) data values are independent (the ordered values are always dependent).

Example 6.2. Let us study the real data set considered in [16]. They represent ordered

lifetimes of 20 electronic components. The complete sample is

0.03 0.12 0.22 0.35 0.73 0.79 1.25 1.41 1.52 1.79

1.80 1.94 2.38 2.40 2.87 2.99 3.14 3.17 4.72 5.09

Assume that we just know the first 12 failure times and that we want to predict the future

failures. If we assume an exponential distribution with unknown failure rate θ, then we estimate

it from (6.5) as

θ̂ =
r

(n− r + 1)xr +
∑r−1

i=1 xi
=

12

9 · 1.94 + 0.03 + · · ·+ 1.8
= 0.43684.

From this value we obtain the predictions and prediction intervals given in Figure 6.5, left.

For example, the prediction for X13:20 = 2.38 is X̂13:20 = 2.13834 with prediction intervals

C90 = [1.95468, 2.797216] and C50 = [2.02232, 2.33668]. The exact value belongs to C90 but

not to C50. The predictions for the last values are not very good. However, all the exact values

belong to the 90% prediction intervals and only 4 out of 8 of them do not belong to the 50%

prediction intervals (as expected). Note that this plot is similar to the plot obtained in Figure

6.3, left, with a sample of size 20 from an exponential distribution. If we count the data in
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Figure 6.5: Predictions (red) for Xs:n from Xr:n for n = 20, r = 12 and s = 13, . . . , 20 (left)

and s = r+ 1 and r = 1, . . . , 11 (right) for the real data set in Example 6.2 estimating θ under

an exponential model. The black points are the exact values and the blue lines are the limits

for the 50% (continuous lines) and the 90% (dashed lines) prediction intervals.

the four regions R1, R2, R3, R4, we get the observed data 3, 3, 1, 1 and the Pearson T statistic

value is

T =
(3− 2)2

2
+

(3− 2)2

2
+

(1− 2)2

2
+

(1− 2)2

2
= 2.

We can approximate its distribution with a chi-squared distribution with 2 degrees of freedom

(since we have estimated a parameter), and then its associated P-value is P(χ2
2 > 2) = 0.36788.

So the exponential model cannot be rejected with the complete sample (by using this test).

To check the model with the first 12 values we could estimate θ and predict Xr+1:20 from

Xr:20 for r = 1, . . . , 11. The predictions can be seen in Figure 6.5, right. The estimations for

θ are
1.66667 0.86580 0.72993 0.63291 0.40323 0.45113

0.35461 0.36664 0.38894 0.38300 0.41969 0.43684

These estimations are stable from r = 5 to r = 12. The MLE estimation with the complete

sample is θ̂ = 0.51666. As we can see in the figure the predictions are accurate. Two and

six exact points do not belong to the 90% and 50% prediction intervals, respectively. These

numbers are close to the expected values (0.1 · 11 = 1.1 and 0.5 · 11 = 5.5). So the exponential

model cannot be rejected by using these first 12 values (the P-value obtained with the four

regions is 0.20374).

In the same framework, assume a Pareto type II distribution with unknown parameter θ.

Then, we estimate it from (6.6) as

θ̂ =
r

(n− r + 1) log(1 + xr) +
∑r−1

i=1 log(1 + xi)
= 0.74311.
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Figure 6.6: Predictions (red) for Xs:n from Xr:n for n = 20, r = 12 and s = 13, . . . , 20 (left)

and s = r+ 1 and r = 1, . . . , 11 (right) for the real data set in Example 6.2 estimating θ under

a Pareto type II model. The black points are the exact values and the blue lines are the limits

for the 50% (continuous lines) and the 90% (dashed lines) prediction intervals.

From this value we obtain the predictions and prediction intervals given in Figure 6.6, left.

The prediction obtained with the Pareto model for X13:20 = 2.38 is X̂13:20 = 2.30358. The

predictions for the last values are very bad. In fact, 4 of the exact values do not belong to the

90% prediction interval and only 1 of them belongs to the 50% prediction interval. If we count

the data in the four regions R1, R2, R3, R4, we get the observed data 7, 0, 1, 0 and the Pearson

T statistic value is

T =
(7− 2)2

2
+

(0− 2)2

2
+

(1− 2)2

2
+

(0− 2)2

2
= 17.

By using a chi-squared distribution with 2 degrees of freedom, the P-value is P(χ2
2 > 17) =

0.00020 and so the Pareto type II model is rejected with the complete sample. Let us see what

happens if we check the model with the first 12 values by estimating θ and predicting Xr+1:20

from Xr:20 for r = 1, . . . , 11. The predictions can be seen in Figure 6.6, right. The estimations

obtained for θ are

1.61099 0.91625 0.80597 0.73482 0.53125 0.60464

0.53333 0.57068 0.61839 0.63802 0.70023 0.74311

In the figure, we can see that one and seven exact points do not belong to the 90% and 50%

prediction intervals, respectively. In this case, the P-value obtained with the four regions is

0.06843 and the Pareto type II model can be rejected by using these 12 values.

Now, we consider an example of four dependent data values. They can represent the values

in a small sample but they could also be the lifetimes of the four engines in a plane, i.e., a case

in which it is very important to predict the future failure times.
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Example 6.3. First we consider the case r = 1, s = 2 and n = 4, i.e., we want to predict X2:4

from X1:4 = x. Assume that (X1, X2, X3, X4) has the following Farlie-Gumbel-Morgenstern

(FGM) survival copula

Ĉ(u1, u2, u3, u4) = u1u2u3u4 + θu1u2u3u4(1− u1)(1− u2)(1− u3)(1− u4) (6.16)

for u1, u2, u3, u4 ∈ [0, 1] and θ ∈ [−1, 1]. The independent case is obtained when θ = 0. Then,

∂1Ĉ(u1, u2, u3, u4) = u2u3u4 + θu2u3u4(1− 2u1)(1− u2)(1− u3)(1− u4)

and

lim
v→0+

∂1Ĉ(F (x), v, v, v) = lim
v→0+

v3 + θ(1− 2F (x))v3(1− v)3 = 0

for all x. Hence, from (6.10), we get

G2|1:4(y|x) =
F

3
(y) + θF

3
(y)F 3(y)(1− 2F (x))

F
3
(x) + θF

3
(x)F 3(x)(1− 2F (x))

for all x ≤ y such that F
3
(x) + θF

3
(x)F 3(x)(1− 2F (x)) > 0.

Unfortunately, we cannot obtain an explicit expression for its inverse. However, we can plot

the level curves of this function to get the plots of the median regression curve (level 0.5) and

the limits of the centered prediction regions C90 (levels 0.05, 0.95) and C50 (levels 0.25, 0.75).

They are plotted in Figure 6.7, left, jointly with the values obtained from 100 samples of size

n = 4 from a standard exponential distribution and a FGM survival copula with θ = 1. The

(rounded) ordered values obtained in the first sample are

0.07086 0.32313 0.88360 1.66760.

The method used to generate these sample values will be explained in Remark 6.1. Note

that the data values are perfectly represented by these prediction regions. In the plot we also

provide the curves for θ = 0 (green lines) and θ = −1. As we can see the changes are really

minor since the FGM copula gives a weak dependence relation. The curves might be more

different in other dependence models (copulas).

Now, assume that the parameters in the model are unknown. Taking into account the

preceding comments, instead of estimating θ, we could just plot the curves for the extremes

values θ = −1, 1. The exact curves will be between them. So we just need to estimate the

parameter λ = 1 of the exponential distribution. For this purpose, in practice, we have just

the sample minimum X1:4. Its reliability function is

F 1:4(t) = Ĉ(F (t), F (t), F (t), F (t)) = F
4
(t) + θF

4
(t)F 4(t)
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Figure 6.7: Predictions (red) for Xs:n from Xr:n for n = 4, r = 1 and s = 2 for θ = −1, 0, 1 (left)

jointly with the values (black point) from 100 simulated samples from a standard exponential

distribution and a FGM survival copula with θ = 1 (see Example 6.3). The blue lines represent

the limits for the 50% (continuous lines) and the 90% (dashed lines) prediction intervals. The

green lines are the curves for the independent case. In the right plot we have the curves

when the mean of the exponential distribution is estimated from the minimum X1:4 in the first

sample.

for t ≥ 0. Hence, if F (t) = exp(−t/µ) with µ = 1/λ, then the mean of X1:4 is

E(X1:4) =

∫ +∞

0
(e−4t/µ + θe−4t/µ(1− e−t/µ)4)dt

=

∫ +∞

0
(1 + θ)e−4t/µ − 4θe−5t/µ + 6θe−6t/µ − 4θe−7t/µ + θe−8t/µdt

= µ

(
1 + θ

4
− 4θ

5
+ θ − 4θ

7
+
θ

8

)
.

Therefore, µ can be estimated by

µ̂ =
X1:4

θ + 1+θ
4 −

4θ
5 −

4θ
7 + θ

8

.

For θ = 1, we get µ̂ = 3.94366X1:4 and for θ = −1, µ̂ = 4.05797X1:4. In our first simulated

sample, we obtain the value X1:4 = 0.07086 and so µ̂ ∈ [0.27945, 0.28755]. As we are assuming

that θ is unknown, we can use the average of these two estimations to approximate µ with

0.2835. By using this value, we get the curves plotted in Figure 6.7, right. Although the

estimation for µ = 1 is very bad (since we just have one data point) and the curves are far

from the exact ones (plotted in Figure 6.7, left), note that the value X2:4 belongs to the 90%

prediction interval obtained from X1:4.

Along the same lines and by using the same copula, we can consider other cases. If we
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Figure 6.8: Predictions (red) for Xs:n from Xr:n for n = 4, r = 1, s = 3 (left) and s = 4 (right)

for θ = 1 jointly with the values (black point) from 100 simulated samples from a standard

exponential distribution and a FGM survival copula with θ = 1 (see Example 6.3). The blue

lines represent the limits for the 50% (continuous lines) and the 90% (dashed lines) prediction

intervals.

want to predict X3:4 from X1:4 = x, by using (6.11), we get

G3|1:4(y|x) =
A3|1:4(x, y)

F
3
(x) + θF

3
(x)F 3(x)(1− 2F (x))

for all x ≤ y such that F
3
(x) + θF

3
(x)F 3(x)(1− 2F (x)) > 0, where

A3|1:4(x, y) = 3F (x)F
2
(y) + 3θF (x)F

2
(y)F (x)F 2(y)(1− 2F (x))

− 2F
3
(y)− 2θF

3
(y)F 3(y)(1− 2F (x)).

As in the preceding case, we plot the level curves of this function to get the plots of the

median regression curve (level 0.5) and the limits of the centered prediction regions C90 (levels

0.05, 0.95) and C50 (levels 0.25, 0.75). They are plotted in Figure 6.8, left, jointly with the

values from 100 samples of size n = 4 from a standard exponential distribution and a FGM

survival copula with θ = 1. Here, we do not plot also the curves for θ = 0 and θ = −1 since

the changes are again really minor.

Furthermore, if we want to predict X4:4 from X1:4 = x, by using (6.12), we get

G4|1:4(y|x) =
A4|1:4(x, y)

F
3
(x) + θF

3
(x)F 3(x)(1− 2F (x))

for all x ≤ y such that F
3
(x) + θF

3
(x)F 3(x)(1− 2F (x)) > 0, where

A4|1:4(x, y) = 3F
2
(x)F (y) + 3θF

2
(x)F (y)F 2(x)F (y)(1− 2F (x))− 3F (x)F

2
(y)

− 3θF (x)F
2
(y)F (x)F 2(y)(1− 2F (x)) + F

3
(y) + θF

3
(y)F 3(y)(1− 2F (x)).
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Figure 6.9: Predictions (red) for Xs:n from Xr:n for n = 4, r = 1 and s = 2, 3, 4 (left) jointly

with the exact values (black points) from a simulated samples from a standard exponential

distribution and an FGM survival copula with θ = 1 (see Example 6.3). The blue lines represent

the limits for the 50% (continuous lines) and the 90% (dashed lines) prediction intervals. In

the right plot we can see the predictions for X3:4 and X4:4 from X1:4 and X2:4.

We plot the level curves of this function to get the plots of the median regression curve and

the limits of the centered prediction regions C90 and C50. They are given in Figure 6.8, right,

jointly with the values from 100 samples of size n = 4 from a standard exponential distribution

and a FGM survival copula with θ = 1. Again, we do not plot the curves for θ = 0 and θ = −1

since the changes are really minor.

Proceeding as above, we can predict X2:4, X3:4 and X4:4 by using the median regression

curve and we can obtain the limits of the centered prediction regions C90 and C50. In the first

sample, the prediction obtained for X2:4 = 0.32313 from X1:4 = 0.70086 is X̂2:4 = 0.29708 with

prediction intervals C50 = [0.16582, 0.51384] and C90 = [0.08788, 0.98928]. Analogously, the

prediction for X3:4 = 0.88360 from X1:4 = 0.70086 is X̂3:4 = 0.79118 with prediction intervals

C50 = [0.48511, 1.21566] and C90 = [0.22238, 2.07476]. Finally, the prediction for X4:4 =

1.6676 from X1:4 is X̂4:4 = 1.64681 with prediction intervals C50 = [1.05428, 2.46201] and

C90 = [0.50708, 4.14529]. In Figure 6.9, left, we plot these predictions (red) for X2:4, X3:4, X4:4

from X1:4 jointly with the exact values (black points) in the first simulated sample from a

standard exponential distribution and a FGM survival copula with θ = 1.

We can use more than one data point to predict future failures. We can predict X3:4 from

X1:4 = 0.07086 and X2:4 = 0.32313 by using (6.14). With the FGM copula we get

G3|1,2(t|x, y) =
1 + θ(1− 2F (x))(1− 2F (y))F 2(t)

1 + θ(1− 2F (x))(1− 2F (y))F 2(y)
· F

2
(t)

F
2
(y)

for x < y ≤ t. By solving G3|1,2(t|x, y) = 0.5 we get the prediction X̂3:4 = 0.70208 for
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X3:4 = 0.8836. Analogously, we obtain the prediction intervals C50 = [0.47975, 1.07961] and

C90 = [0.3509, 1.93089]. In a similar way, we can predict X4:4 = 1.58455 from X1:4 and X2:4 by

using (6.15) obtaining X̂4:4 = 1.58455, C50 = [1.02971, 2.38660] and C90 = [0.57592, 4.06791].

The predictions are plotted in Figure 6.9, right.

Remark 6.1. Let us see how to generate a sample (U1, U2, U3, U4) from the survival cop-

ula Ĉ. Then, the sample from (X1, X2, X3, X4) with a common reliability F is obtained as

(F (U1), F (U2), F (U3), F (U4)). The joint distribution function of (U1, U2, U3, U4) is given in

(6.16). Then, its joint pdf is

ĉ(u1, u2, u3, u4) = 1 + θ(1− 2u1)(1− 2u2)(1− 2u3)(1− 2u4)

for u1, u2, u3, u4 ∈ (0, 1). The joint distribution function of (U1, U2, U3) is

Ĉ1,2,3(u1, u2, u3) = Ĉ(u1, u2, u3, 1) = u1u2u3

and so its joint pdf is ĉ1,2,3(u1, u2, u3) = 1 for u1, u2, u3 ∈ (0, 1). They are IID and can be

simulated just as independent uniform random variables. The conditional pdf of U4 given

U1 = u1, U2 = u2, U3 = u3 is obtained as

ĉ4|1,2,3(u4 | u1, u2, u3) = ĉ(u1, u2, u3, u4)

for u1, u2, u3, u4 ∈ (0, 1). Therefore, its distribution function is

Ĉ4|1,2,3(u4 | u1, u2, u3) =

∫ u4

0
ĉ(u1, u2, u3, z)dz

=

∫ u4

0
(1 + θ(1− 2u1)(1− 2u2)(1− 2u3)(1− 2z))dz

= u4 + θ(1− 2u1)(1− 2u2)(1− 2u3)(u4 − u2
4)

for u4 ∈ [0, 1]. To get its inverse function we solve Ĉ4|1,2,3(u4 | u1, u2, u3) = q, for 0 < q < 1,

which leads to

Ĉ−1
4|1,2,3(q | u1, u2, u3) =

1 +A−
√
A2 + 1 + 2A(1− 2q)

2A

when A 6= 0, where A = θ(1−2u1)(1−2u2)(1−2u3) (the other solution of the quadratic equation

does not belong to the interval [0, 1]). In the simulation, as U1, U2, U3 are independent random

numbers in (0, 1), the event A = 0 has probability zero.

6.1.4 Simulation study

In this section we show a simulation study to estimate the coverage probabilities of the pre-

diction regions when we estimate the parameter in the PHR model for samples of IID random

variables.
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Table 6.2: Number of Xs:20 in Ĉ90 and Ĉ50 by varying s and N in the exponential model.

Ĉ90 Ĉ50
H
HHH

HHHH
s

N
500 1000 10000 500 1000 10000

13 446 890 8869 259 512 4875

14 449 890 8705 233 483 4665

20 426 853 8309 210 441 4236

Table 6.3: Number of Xs:20 in Ĉ90 and Ĉ50 by varying s and N in the Pareto type II model.

Ĉ90 Ĉ50
HH

HHH
HHH

s

N
500 1000 10000 500 1000 10000

13 439 880 8812 247 472 4841

14 435 858 8711 251 491 4787

20 414 838 8373 202 416 4260

First, assume the exponential model with parameter θ = 1, F (t) = e−t for t ≥ 0. We

generate N samples of size 20 and, by supposing that the parameter θ > 0 is unknown, we use

X12:20 to predict Xs:20, s = 13, 14, 20. For each sample we use (6.5) with r = 12 to estimate

θ, and we obtain θ̂j , j = 1, . . . , N . Replacing the exact survival function F (t) = e−t with

F
θ̂j

(t) = e−θ̂j , j = 1, . . . , N , we can obtain predictions for Xs:20 from X12:20 for each simulated

sample. Our purpose is to estimate the coverage probabilities for the estimated prediction

intervals Ĉ90 and Ĉ50 varying s and N . The results are listed in Table 6.2.

Furthermore, we perform the same study by choosing as baseline distribution for the PHR

model the Pareto type II distribution, F (t) = 1/(1 + t)θ for t ≥ 0. We choose θ = 2. For each

sample we use (6.6) with r = 12 to estimate θ, and we obtain θ̂j , j = 1, . . . , N . Replacing the

exact survival function F (t) = 1/(1 + t)2 with F
θ̂j

(t) = 1/(1 + t)θ̂j , j = 1, . . . , N , we obtain

predictions for Xs:20 from X12:20 for each simulated sample. The results about the coverage

probabilities of the estimated prediction intervals are given in Table 6.3. In both cases, the

coverage probabilities are a little bit below of the expected values (for the exact model),

especially when we predict the last value X20:20 from X12:20. Note that in both models, we

have some extreme upper values (especially in the Pareto model).
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6.2 Order dependent Load-Sharing models

In this section, some properties of load-sharing and time-homogeneous load-sharing models are

extended to the order dependent version proposed in Foschi et al. [46] and recalled in Definition

5.5. Then, two objectives are pursued. Firstly, a method for simulating samples from the

proposed models is discussed and an algorithmic procedure is proposed. Secondly, a study on

the predictions of future values from these models is performed. The analysis about predictions

is carried out by assuming different levels of knowledge about the sample. Confidence intervals

are obtained as well by using convolutions of exponential distributions. Finally, it is explored

the problem of predicting the lifetime of a coherent system whose components are distributed

according to an order dependent time-homogeneous load-sharing model. The results of this

section are given in Buono and Navarro [28].

Under the assumption of an ODTHLS model, the expression of the joint probability density

function given in Equation (4.14) simplifies considerably and reduces to

f(t1, . . . , tn) = µ1(∅) exp

−t1 n∑
j=1

µj(∅)

 · µ2(1) exp

−(t2 − t1)
n∑
j=2

µj(1)

 ·
. . . · µk+1(1, . . . , k) exp

−(tk+1 − tk)
n∑

j=k+1

µj(1, . . . , k)

 · . . .
· µn(1, . . . , n− 1) exp [−(tn − tn−1)µn(1, . . . , n− 1)] ,

for t1 ≤ t2 ≤ · · · ≤ tn. Similar expressions hold when t1, . . . , tn are such that tπ(1) ≤ · · · ≤ tπ(n)

for some permutation π of the set {1, . . . , n}.
Dealing with an ODTHLS model, the following quantities are of great interest

M(i1, . . . , ik) =
∑

h/∈{i1,...,ik}

µh(i1, . . . , ik), (6.17)

ρj(i1, . . . , ik) =
µj(i1, . . . , ik)

M(i1, . . . , ik)
, (6.18)

since they are useful in the study of the order statistics of (X1, . . . , Xn) as stated in the following

version of Proposition 4.2 adapted here to the general model.

Proposition 6.11. Let (X1, . . . , Xn) be distributed according to an ODTHLS model with pa-

rameters µj(∅), µj(i1, . . . , ik) and let π be a fixed permutation of [n]. Then, for r = 1, 2, . . . , n−1

P(X1:n = Xπ(1), . . . , Xr:n = Xπ(r)) =

ρπ(1)(∅)ρπ(2)(π(1))ρπ(3)(π(1), π(2)) · . . . · ρπ(r)(π(1), . . . , π(r − 1))
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and

P(X1:n = Xπ(1), . . . , Xn:n = Xπ(n)) =

ρπ(1)(∅)ρπ(2)(π(1))ρπ(3)(π(1), π(2)) · . . . · ρπ(n−1)(π(1), . . . , π(n− 2)).

Proof. The proof follows by the product rule of probability and in analogy with [110]. There,

the parameters as ρπ(k)(π(1), . . . , π(k−1)) are independent of the order of the indices π(1), . . . ,

π(k − 1), but all the passages still hold by considering them as an ordered sequence. For

instance, ρπ(k)(π(1), . . . , π(k − 1)) is related to the behavior of the k-th order statistic, given

that X1:n = Xπ(1), . . . , Xk−1:n = Xπ(k−1), and the importance of the order of the indices

emerges.

In order to state the following result, let us denote by Λ(r) a vector (λ1, . . . , λr) ∈ Rr+
and by GΛ(r)(t) the survival function of the random variable Sr =

∑r
s=1 Γs, where Γ1, . . . ,Γr

are independent random variables with exponential distributions of parameters (hazard rates)

λ1, . . . , λr, respectively. Moreover, for π permutation of [n] and r ∈ [n], we place

Λ(r)(π) = (M(∅),M(π(1)), . . . ,M(π(1), . . . , π(r − 1))).

Then, we have the following proposition which is the adapted version to the ODTHLS model

of Proposition 4.3.

Proposition 6.12. Let (X1, . . . , Xn) be distributed according to an ODTHLS model with pa-

rameters µj(∅) and µj(i1, . . . , ik). Then, for any t > 0 and j ∈ [n],

P(X1:n > t|X1:n = Xj) = exp(−tM(∅)),

and for any permutation π of [n] and k = 2, . . . , n,

P(Xk:n > t|X1:n = Xπ(1), . . . , Xk−1:n = Xπ(k−1), Xk:n = Xπ(k)) = GΛ(k)(π)(t). (6.19)

To prove Proposition 6.12, an important property of interarrival times of ODTHLS models

follows. In fact, in [110] it is observed that conditioning on the event (X1:n = Xπ(1), . . . ,

Xk:n = Xπ(k)), the interarrival times X1:n, X2:n − X1:n, . . . , Xk:n − Xk−1:n can be seen as

independent random variables, exponentially distributed with parameters M(∅),M(π(1)), . . . ,

M(π(1), . . . , π(k−1)), respectively. By using this fact, we can prove the following results which

are key tools for predictions and simulations.

Remark 6.2. From Proposition 6.12 it readily follows the independence of the events (X1:n >
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t) and (X1:n = Xj). In fact

P(X1:n > t) =
n∑
j=1

P(X1:n = Xj)P(X1:n > t|X1:n = Xj)

= exp(−tM(∅))
n∑
j=1

P(X1:n = Xj)

= exp(−tM(∅)).

Furthermore, we note that M(∅),M(π(1)), . . . , M(π(1), . . . , π(k − 1)) do not depend on π(k)

and then the interarrival times X1:n, X2:n−X1:n, . . . , Xk:n−Xk−1:n, can be seen as independent

random variables, exponentially distributed with parameters M(∅),M(π(1)), . . . , M(π(1), . . . ,

π(k − 1)), respectively, given (X1:n = Xπ(1), . . . , Xk−1:n = Xπ(k−1)). Hence, under this condi-

tioning event, from (6.19) the distribution of Xk:n is a convolution of k exponential distribu-

tions.

6.2.1 Simulation of ODTHLS model

Let (X1, . . . , Xn) be a random vector satisfying the ODTHLS model with parameters µj(∅)
and µj(i1, . . . , ik), I = {i1, . . . , ik} ⊂ [n] and j /∈ I. There are n! ways to order the variables

X1, . . . , Xn and, for each one, the probability that such an order corresponds to the sequence

given by the order statistics is given in Proposition 6.11. These probabilities depend on the

parameters of the model, hence, once they are fixed, it is possible to choose one of the per-

mutations by a random generation. For instance, it is possible to simulate the random choice

between all the permutations by generating a uniform number in (0, 1).

Suppose the permutation π is randomly selected according to these probabilities. Hence,

we have X1:n = Xπ(1), . . . , Xn:n = Xπ(n). Then, by Proposition 6.12, given that the minimum

is assumed in Xπ(1), it is distributed as an exponential random variable with parameter M(∅).
Actually, from Remark 6.2 we note that, by the properties of ODTHLS models, the distribution

of the minimum is not affected by which is the random variable in which it is assumed. Then, it

is possible to simulate the minimum by a random generator of an exponential random variable

with parameter M(∅).
Let k be a natural number between 2 and n and suppose we have already simulated

X1:n, . . . , Xk−1:n. Now, by using that conditioning on the event (X1:n = Xπ(1), . . . , Xk−1:n =

Xπ(k−1)), the interarrival times X1:n, X2:n−X1:n, . . . , Xk:n−Xk−1:n can be seen as independent

random variables, exponentially distributed with parameters M(∅),M(π(1)), . . . , M(π(1), . . . ,

π(k − 1)), respectively, the interarrival time Xk:n − Xk−1:n can be simulated by generating

an exponential number with parameter M(π(1), . . . , π(k − 1)). Then, the simulation of Xk:n

is given by summing this exponential number with the simulation of Xk−1:n obtained in the

previous step.
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We want to emphasize that, once the permutation is fixed, the interarrival times can be

generated all at the same time. If we denote by Zj , j ∈ [n], the j-th interarrival time, i.e.,

Z1 = X1:n, Z2 = X2:n −X1:n, . . . , Zn = Xn:n −Xn−1:n obtained for the permutation π, then

the simulation of the k-th order statistic is given as Xk:n =
∑k

j=1 Zj . Finally, by using the

permutation π, the simulated values for X1, . . . , Xn are obtained as Xπ(1) = X1:n, . . . , Xπ(n) =

Xn:n.

The algorithm procedure can be summarized as follows.

Algorithm 6.1.

Step 1. Choose π according to the probabilities given in Proposition 6.11.

Step 2. Simulate n independent exponential distributions Z1, . . . , Zn with respective parameters

M(∅),M(π(1)), . . . , M(π(1), . . . , π(n− 1)).

Step 3. Compute Xk:n = Z1 + · · ·+ Zk, for k = 1, . . . , n.

Step 4. Compute Xπ(k) = Xk:n, for k = 1, . . . , n.

Note that this algorithm can also be applied to simulate samples from THLS models since

they are particular models of ODTHLS ones. Let us see an example.

Example 6.4. Let (X1, X2, X3) be distributed according to an ODTHLS model with param-

eters defined as follows

µ1(∅) = 1, µ1(2) = 2, µ1(3) = 1, µ1(2, 3) = µ1(3, 2) = 3,

µ2(∅) = 2, µ2(1) = 1, µ2(3) = 3, µ2(1, 3) = µ2(3, 1) = 2,

µ3(∅) = 2, µ3(1) = 2, µ3(2) = 1, µ3(1, 2) = µ3(2, 1) = 2.

We note that it is also a THLS model since µi(j, k) = µi(k, j) for all distinct i, j and k. Hence,

from (6.17) and (6.18) we have

M(∅) = 5, M(1) = 3, M(2) = 3, M(3) = 4,

M(1, 2) = M(2, 1) = 2, M(1, 3) = M(3, 1) = 2, M(2, 3) = M(3, 2) = 3,

from which

ρ1(∅) =
1

5
, ρ2(∅) =

2

5
, ρ3(∅) =

2

5
, ρ2(1) =

1

3
, ρ3(1) =

2

3
,

ρ1(2) =
2

3
, ρ3(2) =

1

3
, ρ1(3) =

1

4
, ρ2(3) =

3

4
,

and, naturally,

ρ1(2, 3) = ρ1(3, 2) = ρ2(1, 3) = ρ2(3, 1) = ρ3(1, 2) = ρ3(2, 1) = 1.
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For n = 3 there are six possible permutations and from Proposition 6.11 the corresponding

probabilities are given as

P(X1:3 = X1, X2:3 = X2, X3:3 = X3) =
1

15
,

P(X1:3 = X1, X2:3 = X3, X3:3 = X2) =
2

15
,

P(X1:3 = X2, X2:3 = X1, X3:3 = X3) =
4

15
,

P(X1:3 = X2, X2:3 = X3, X3:3 = X1) =
2

15
,

P(X1:3 = X3, X2:3 = X1, X3:3 = X2) =
1

10
,

P(X1:3 = X3, X2:3 = X2, X3:3 = X1) =
3

10
.

By generating a uniform number in (0, 1) and accordingly to the probabilities given above,

the permutation (2, 1, 3) is chosen. Hence, three exponential numbers are generated with

parameters M(∅) = 5, M(2) = 3, and M(2, 1) = 2, respectively. In this way, the simulated

interarrival times are 0.17166, 0.14498, 0.25606 and then the simulated values of the order

statistics of our model are, respectively, 0.17166, 0.31663 = 0.17166 + 0.14498, 0.57270 =

0.31663 + 0.25606. Finally, since we have fixed the permutation (2, 1, 3), these values represent

a simulation of X2, X1 and X3, respectively.

6.2.2 Predictions

Let (X1, . . . , Xn) follow an ODTHLS model with parameters µj(∅) and µj(i1, . . . , ik), I =

{i1, . . . , ik} ⊂ [n] and j /∈ I. Let us suppose to know the values and the variables corre-

sponding to X1:n, X2:n, . . . , Xk:n, for k < n. Our first purpose is to predict the next fail-

ure time Xk+1:n. As observed above under this model, given (X1:n = Xπ(1), . . . , Xk:n =

Xπ(k), Xk+1:n = Xπ(k+1)), the interarrival times X1:n, X2:n−X1:n, . . . , Xk:n−Xk−1:n, Xk+1:n−
Xk:n can be seen as independent random variables, exponentially distributed with parame-

ters M(∅),M(π(1)), . . . , M(π(1), . . . , π(k − 1)),M(π(1), . . . , π(k)), respectively. Hence, con-

ditioning on our information, the interarrival time Zk+1 = Xk+1:n −Xk:n is exponential with

parameter M(π(1), . . . , π(k)) and its value can be estimated by its median. If we denote

by mM(π(1),...,π(k)) = log 2
M(π(1),...,π(k)) the median of an exponential distribution with parameter

M(π(1), . . . , π(k)), then the estimation of Xk+1:n is given by

X̂k+1:n = m(tk) = tk +mM(π(1),...,π(k)) = tk +
log 2

M(π(1), . . . , π(k))
,

where tk is the value assumed for the k-th order statistic. An alternative way of predicting

Xk+1:n is based on the mean of the exponential distribution with parameter M(π(1), . . . , π(k))
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and this prediction is obtained as

X̃k+1:n = tk +
1

M(π(1), . . . , π(k))
.

Here, we prefer to use the prediction given by the median since we are interested in constructing

confidence intervals for our predictions. In fact, if we want to get a confidence γ = β − α,

where α, β, γ ∈ (0, 1) and qα and qβ are the respective quantiles of the exponential distribution

with parameter M(π(1), . . . , π(k)), then we use that

P
(
tk + qα ≤ Xk+1:n ≤ tk + qβ|X1:n = Xπ(1), . . . , Xk:n = Xπ(k) = tk

)
= γ.

For example, the centered 90% confidence band is obtained with β = 0.95 and α = 0.05 as

C90 = [tk + q0.05, tk + q0.95] =

[
tk −

log(0.95)

M(π(1), . . . , π(k))
, tk −

log(0.05)

M(π(1), . . . , π(k))

]
.

Note that the prediction m(tk) always belongs to that interval.

In a different scenario, we suppose to know how the realizations of the variables are ordered

up to a certain index, for instance k, without knowing the assumed values. Hence, we have

information just about π(1), . . . , π(k), but not on t1, . . . , tk, and our purpose is to predict

Xk+1:n. Two reasonable ways of predicting it are given by estimating each interarrival time

through the median or the mean and then provide the estimate of Xk+1:n as

X̂k+1:n = mM(∅) +mM(π(1)) + · · ·+mM(π(1),...,π(k)), (6.20)

X̃k+1:n =
1

M(∅)
+

1

M(π(1))
+ · · ·+ 1

M(π(1), . . . , π(k))
, (6.21)

where the first is the prediction based on the median and the second on the mean. Moreover,

by observing that

Xk+1:n = X1:n + (X2:n −X1:n) + · · ·+ (Xk+1:n −Xk:n),

another option to predict Xk+1:n is to obtain the median of the convolution given above,

i.e., the convolution of k + 1 independent exponential distributions with parameters M(∅),
M(π(1)), . . . ,M(π(1), . . . , π(k)). Note that the mean of that convolution coincides with (6.21).

Now, let us suppose k < n−1 and that our purpose is to predict Xk+2:n. By the assumptions

of the model, the value of Xk+2:n will depend on which path will be traversed to move from

Xk:n to Xk+2:, i.e., on which of the n − k available alternatives will be assumed for Xk+1:n.

For j /∈ {π(1), . . . , π(k)}, we have

P(Xk+1:n = Xj |X1:n = Xπ(1), . . . , Xk:n = Xπ(k)) = ρj(π(1), . . . , π(k)). (6.22)

Proceeding as above, we can predict the value of Xk+1:n, namely X̂k+1:n. Then, by using this

value and the median regression, we can predict the value of Xk+2:n in n−k different ways de-

pending on which variable is the (k+1)-th order statistic. Hence, for each j /∈ {π(1), . . . , π(k)},
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we obtain a prediction of Xk+2:n, namely X̂
(j)
k+2:n. Finally, based on (6.22), the final prediction

of Xk+2:n is obtained by the weighted mean of all n− k predictions as

X̂k+2:n =
∑

j /∈{π(1),...,π(k)}

ρj(π(1), . . . , π(k))X̂
(j)
k+2:n,

or, equivalently, since the values ρj(π(1), . . . , π(k)) sum to one,

X̂k+2:n = X̂k+1:n +
∑

j /∈{π(1),...,π(k)}

ρj(π(1), . . . , π(k))mM(π(1),...,π(k),j)

= X̂k+1:n +
∑

j /∈{π(1),...,π(k)}

ρj(π(1), . . . , π(k))
log 2

M(π(1), . . . , π(k), j)
.

We remark that the above prediction can be done also in terms of the mean. In order to set a

different prediction and to obtain the related confidence bands, we state the following result.

Proposition 6.13. Let (X1, . . . , Xn) follow an ODTHLS model with parameters µj(∅) and

µj(i1, . . . , ik), I = {i1, . . . , ik} ⊂ [n] and j /∈ I. Let π be a fixed permutation of [n] and

k < n− 1. Then,

P(Xk+2:n −Xk:n > t|X1:n = Xπ(1) = t1, . . . , Xk:n = Xπ(k) = tk)

=
∑

j 6=π(1),...,π(k)

ρj(π(1), . . . , π(k))G
Υ

(k)
j (π)

(t), (6.23)

where G
Υ

(k)
j (π)

(t) is the survival function of the random variable Y1 +Y2, being Y1 and Y2 inde-

pendent random variables with exponential distributions of parameters (hazard rates) M(π(1),

. . . , π(k)) and M(π(1), . . . , π(k), j), respectively.

Proof. The result follows by the law of total probability and by Proposition 6.12 observing that

Xk+2:n −Xk:n can be seen as the sum of two independent interarrival times, Xk+2:n −Xk:n =

(Xk+2:n −Xk+1:n) + (Xk+1:n −Xk:n) with exponential distributions.

Conditioning on the observed history, the interarrival time Xk+2:n −Xk:n is a mixture of

n−k distributions which are sums of two independent exponential distributions, not necessarily

with the same parameters. We refer for example to (4.8) and (4.9) in [87] for the analytical

expressions of the survival functions of such distributions, see also [98] p. 299. In particular,

it is necessary to distinguish between the case in which the exponential distributions have

the same parameter or not. If Y1 and Y2 are independent and exponentially distributed with

parameters λ and µ, λ 6= µ, then the survival function of Y = Y1 + Y2 is

F Y (t) =
µ

µ− λ
e−λt − λ

µ− λ
e−µt, (6.24)

for t ≥ 0. In the case λ = µ, the survival function of Y is given, for t ≥ 0, as

F Y (t) = (1 + λt)e−λt. (6.25)
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The median of such distributions can also be a good prediction for Xk+2:n. Numerical

methods should be used to get that median from (6.23). Then, if we want to get a confidence

γ = β − α, where α, β, γ ∈ (0, 1) and qα and qβ are the respective quantiles of the distribution

given in Proposition 6.13, we use that

P
(
tk + qα ≤ Xk+2:n ≤ tk + qβ|X1:n = Xπ(1), . . . , Xk:n = Xπ(k), Xk:n = tk

)
= γ.

Remark 6.3. By proceeding in this way, it is possible to estimate each Xs:n for s > k. As

seen above, with the increase of s there will be more terms in the convolutions. In particular,

by supposing to know in which variables are assumed X1:n, . . . , Xk:n and the corresponding

values, the estimation of Xs:n will be based on the sum of (n−k)!
(n−s+1)! terms. Moreover, it is

also possible to construct confidence bands by giving a result similar to Proposition 6.13. In

this case, we will need distributions constructed as the sum of s− k independent exponential

distributions. Such distributions have been studied in [1].

Example 6.5. Let us consider the ODTHLS model given in Example 6.4 and suppose that

the realization of the sample is the one that we have simulated there, i.e., X1 = 0.31663,

X2 = 0.17166 and X3 = 0.57270. Suppose we just know X1:3 = X2 = 0.17166 and we want to

predict X2:3 and X3:3. Proceeding as described above, the mean and the median predictions

of X2:3 = 0.31663 are

X̃2:3 = X1:3 +
1

M(2)
= 0.50499

and

X̂2:3 = m(X1:3) = X1:3 +
log 2

M(2)
= 0.40270,

respectively. Furthermore, we obtain the centered 90% and 50% confidence bands as

C90 =

[
X1:3 −

log(0.95)

M(2)
, X1:3 −

log(0.05)

M(2)

]
= [0.18875, 1.17023]

and C50 = [0.26755, 0.63375]. In this case, the exact value of X2:3 belongs to both regions.

Once X2:3 has been predicted, proceeding as described above, also X3:3 can be predicted. In

this case the prediction of X3:3 = 0.57270 is given by

X̂3:3 = X̂2:3 + ρ1(2)
log 2

M(2, 1)
+ ρ3(2)

log 2

M(2, 3)
= 0.40270 +

2

3
· log 2

2
+

1

3
· log 2

3
= 0.71077.

From Proposition 6.13 we get a different prediction for X3:3. We have

G3|1(t) = P(X3:3 −X1:3 > t|X1:3 = X2 = 0.17166) = ρ1(2)GY1,1+Y1,2(t) + ρ3(2)GY2,1+Y2,2(t),

where Y1,1 and Y1,2 are independent and exponentially distributed with parameters M(2) = 3

and M(2, 1) = 2, respectively, and Y2,1 and Y2,2 are independent and exponentially distributed
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Figure 6.10: Predictions (red) for Xs:3 from X1:3 for s = 2, 3 jointly with the exact values

(black points) for a simulated sample from an ODTHLS model (see Example 6.5). The blue

lines represent the limits for the 50% (continuous lines) and the 90% (dashed lines) confidence

intervals (left). Scatterplots of a simulated sample from (X1:3, X2:3), for the case X1:3 = X2,

for the ODTHLS model in Example 6.5 jointly with the theoretical median regression curve

(red) and 50% (dark grey) and 90% (light grey) confidence bands (right).

with parameters M(2) = 3 and M(2, 3) = 3, respectively. Hence, by referring to the analytical

expressions in (6.24) and (6.25), we obtain

G3|1(t) = ρ1(2)
M(2)e−M(2,1)t −M(2, 1)e−M(2)t

M(2)−M(2, 1)
+ ρ3(2)(1 +M(2)t)e−M(2)t,

where the second term is related to the sum of two independent exponential distributions

with the same parameter M(2) = M(2, 3) = 3. Hence, by solving G3|1(t) = 0.5 we obtain a

prediction for the difference X3:3 −X1:3 that is 0.64409, from which

X̂3:3 = t1 + 0.64409 = 0.81575.

By resolving G3|1(t) = α, for α = 0.05, 0.25, 0.75, 0.95, we obtain the 90% and 50% centered

confidence bands as C90 = [0.30639, 2.04858] and C50 = [0.53811, 1.21520]. Observe that

X3:3 = 0.57270 belongs to both regions. In Figure 6.10, left, we plot these predictions (red)

for X2:3, X3:3 from X1:3 jointly with the exact values (black points) and the confidence bands.

To see better what happens with these predictions we simulate N = 300 predictions of this

kind, that is, 300 samples of size 3. Let us consider the case in which we predict X2:3 from

X1:3. In order to give the results in a more readable way, we group them in three classes based

on which is the component corresponding to the minimum order statistic. The data are plotted

in Figures 6.10, right, and 6.11. There we can see that the confidence bands represent very

well the dispersion of the majority of data (except some extreme values). In these samples,
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Figure 6.11: Scatterplots of a simulated sample from (X1:3, X2:3) for the ODTHLS model in

Example 6.5 jointly with the theoretical median regression curves (red) and 50% (dark grey)

and 90% (light grey) confidence bands for the case X1:3 = X1 (left) and X1:3 = X3 (right).

the minimum is assumed in X1, X2 and X3 for 52, 122 and 126 times, respectively. These

values are consistent with the expected ones given by ρ1(∅) · 300 = 60, ρ2(∅) · 300 = 120 and

ρ3(∅) · 300 = 120. If the minimum is assumed in X1, C50 contains 24 data and C90 contains 45

while 4 data are above the upper limit and 3 are below the bottom limit. If the minimum is

assumed in X2, C50 contains 69 data and C90 contains 109 while 6 data are above the upper

limit and 7 are below the bottom limit. If the minimum is assumed in X3, C50 contains 58

data and C90 contains 112 data while 7 data are above the upper limit and 7 are below the

bottom limit. Note that the confidence bands depend on which component fails first.

Now, suppose we know the minimum is assumed by X2 and we have no information about

its value. Then, as described in (6.20) and (6.21), the predictions for the first and the second

order statistics based on the median (left) and the mean (right) are given by

X̂1:3 =
log 2

M(∅)
= 0.13863, X̃1:3 =

1

M(∅)
= 0.2,

X̂2:3 =
log 2

M(∅)
+

log 2

M(2)
= 0.36968, X̃2:3 =

1

M(∅)
+

1

M(2)
= 0.53333.

Moreover, the prediction of X2:3 can be obtained also by the median of the convolution X1:3 +

(X2:3 − X1:3). In fact, given that X1:3 = X2, these interarrival times are independent and

exponential with parameters M(∅) = 5 and M(2) = 3 and the survival function of their

convolution is given by (6.24). The median of such a distribution can be numerically computed

and gives another prediction for X2:3 as 0.44139. Of course, if we use the mean we get again

the value 0.53333.

Furthermore, if we know that the first and the second order statistics are assumed in

X2 and X1, respectively, the maximum X3:3 can be predicted by the median and the mean,
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respectively, as

X̂3:3 =
log 2

M(∅)
+

log 2

M(2)
+

log 2

M(2, 1)
= 0.71625,

and

X̃3:3 =
1

M(∅)
+

1

M(2)
+

1

M(2, 1)
= 1.03333.

In addition, we can obtain the prediction of X3:3 based on the convolution Y = X1:3 + (X2:3−
X1:3)+(X3:3−X2:3), given that X1:3 = X2, X2:3 = X1. The interarrival times are independent

and have exponential distributions with parameters M(∅) = 5, M(2) = 3 and M(2, 1) = 2.

The survival function of this convolution can be obtained by specializing the result of [1] to

the case of three exponential distributions with different parameters and it is expressed, for

t ≥ 0, as

GY (t) =
M(2)M(2, 1)

(M(2)−M(∅))(M(2, 1)−M(∅))
e−M(∅)t

+
M(∅)M(2, 1)

(M(∅)−M(2))(M(2, 1)−M(2))
e−M(2)t

+
M(∅)M(2)

(M(∅)−M(2, 1))(M(2)−M(2, 1))
e−M(2,1)t. (6.26)

The median of such a distribution can be numerically computed and gives another prediction

for X3:3 as X∗3:3 = 0.90225. Note that GY can also be used to get the confidence intervals for

that prediction. We have C90 = [0.26708, 2.24684] and C50 = [0.57337, 1.35021]. The exact

value 0.57270 belongs to C90 but does not belong to C50.

Next, suppose we have even less information and we just know that the first and the second

order statistics are assumed by X1 and X2 but we have not the possibility to establish which

one is X1:3 or X2:3. There are two possible scenarios corresponding to the permutations (1, 2, 3)

and (2, 1, 3). Conditioning on the information X3:3 = X3, it follows

P(X1:3 = X1, X2:3 = X2|X3:3 = X3) =
1

5
,

P(X1:3 = X2, X2:3 = X1|X3:3 = X3) =
4

5
.

Thus, the predictions for the first, second and third order statistics are obtained as

X̂1:3 =
log 2

M(∅)
= 0.13863,

X̂2:3 =
log 2

M(∅)
+

1

5
· log 2

M(1)
+

4

5
· log 2

M(2)
= 0.36968,

X̂3:3 =
log 2

M(∅)
+

1

5

(
log 2

M(1)
+

log 2

M(1, 2)

)
+

4

5

(
log 2

M(2)
+

log 2

M(2, 1)

)
= 0.71625.

In this case, we have obtained the same predictions of the case in which we know that X1:3 = X2

and X2:3 = X1, but this is only due to the assumptions M(1) = M(2) and M(1, 2) = M(2, 1)
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and the same holds for the predictions based on the mean or on the convolutions. In fact, if we

consider the same model except for µ3(1, 2) = 3 (which implies M(1, 2) = 3 6= M(2, 1) = 2),

then the median prediction of X3:3 knowing that X1:3 = X2 and X2:3 = X1 is still 0.71625,

but without knowing which one between X1 and X2 is the minimum and which one the second

order statistic, the prediction of X3:3 becomes X̂3:3 = 0.69315. Under these assumptions, the

mean prediction of X3:3 is X̃3:3 = 1.

Finally, we obtain a prediction based on convolutions by giving a weight of 0.2 and 0.8,

respectively, to the medians of the convolutions of independent and exponential distributions

with parameters M(∅) = 5,M(1) = 3,M(1, 2) = 3 and M(∅) = 5,M(2) = 3,M(2, 1) = 2.

The survival function of the latter is equal to the one given in (6.26), whereas the former has

a different expression since two of the three parameters coincide. In particular, from [1], the

convolution of three independent exponential distributions of parameters M(∅),M(1),M(1)(=

M(1, 2)) has the following survival function, for t ≥ 0,

G(t) =
M(1)2

(M(1)−M(∅))2
e−M(∅)t − M(∅)M(1)

(M(∅)−M(1))2
e−M(1)t

+
M(∅)M(1)

M(∅)−M(1)
te−M(1)t +

M(∅)
M(∅)−M(1)

e−M(1)t, (6.27)

and its median is 0.76649. Hence, the prediction for X3:3 based on the convolutions is given as

X∗3:3 =
1

5
· 0.76649 +

4

5
· 0.90225 = 0.87510.

Moreover, a different prediction for X3:3 can be obtained by using the median of the mixture

of the survival functions given in (6.26) and (6.27) with 0.8 and 0.2 as weights, respectively.

The prediction obtained in this way is X∗3:3 = 0.87229 and its advantage is that we can give

the confidence regions. The centered 90% and 50% confidence bands are [0.25848, 2.17710] and

[0.55452, 1.30560], respectively. Note that the exact value X3:3 = 0.57270 belongs to both the

regions.

In the following example, we analyze the problem of the predictions dealing with an

ODTHLS model for which we need to estimate the parameters.

Example 6.6. Let (X1, X2, X3) be distributed according to an ODTHLS model with param-

eters defined as follows

µ1(∅) = 1, µ1(2) = 2, µ1(3) = 1, µ1(2, 3) = 3, µ1(3, 2) = 1,

µ2(∅) = 2, µ2(1) = 1, µ2(3) = 3, µ2(1, 3) = 2, µ2(3, 1) = 1,

µ3(∅) = 2, µ3(1) = 2, µ3(2) = 1, µ3(1, 2) = 2, µ3(2, 1) = 1.

Hence, we have

M(∅) = 5, M(1) = 3, M(2) = 3, M(3) = 4,

M(1, 2) = 2, M(2, 1) = 1, M(1, 3) = 2, M(3, 1) = 1, M(2, 3) = 3, M(3, 2) = 1.
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Suppose we do not know the parameters of the model and we have historical data related to

N = 300 samples. For those samples we know how X1, X2 and X3 are ordered and their

values. Then, we can estimate the parameters of the model through the values of interarrival

times. Since the minimum is distributed as an exponential distribution with parameter M(∅),
it can be estimated as

M̂(∅) =
N∑N

i=1X
(i)
1:3

= 5.19128,

where X
(i)
1:3 is the minimum in the i-th sample.

In order to estimate the other parameters, we need to group the data by the corresponding

permutation. Let π1 = (1, 2, 3), π2 = (1, 3, 2), π3 = (2, 1, 3), π4 = (2, 3, 1), π5 = (3, 1, 2)

and π6 = (3, 2, 1) and define Pj as the set of the observed samples ordered according to πj ,

j = 1, 2, . . . , 6.

By recalling Z2 = X2:3 −X1:3, the estimations of M(1), M(2) and M(3) are obtained as

M̂(1) =
|P1 ∪ P2|∑
i∈P1∪P2

Z
(i)
2

= 2.48951,

M̂(2) =
|P3 ∪ P4|∑
i∈P3∪P4

Z
(i)
2

= 3.34077,

M̂(3) =
|P5 ∪ P6|∑
i∈P5∪P6

Z
(i)
2

= 4.10161.

Finally, about the parameters M(h, k), h, k = 1, 2, 3, h 6= k, by using Z3 = X3:3 − X2:3, we

have

M̂(1, 2) =
|P1|∑
i∈P1

Z
(i)
3

= 2.67262, M̂(1, 3) =
|P2|∑
i∈P2

Z
(i)
3

= 2.11041,

M̂(2, 1) =
|P3|∑
i∈P3

Z
(i)
3

= 0.96048, M̂(2, 3) =
|P4|∑
i∈P4

Z
(i)
3

= 3.89834,

M̂(3, 1) =
|P5|∑
i∈P5

Z
(i)
3

= 0.91519, M̂(3, 2) =
|P6|∑
i∈P6

Z
(i)
3

= 0.82732.

Suppose we know everything about the first and second order statistics, i.e., the value and

the corresponding component, and we want to predict the maximum order statistic. Then, we

can predict the interarrival time by using the quantile regression with the estimated parameters

M(h, k). We repeat this procedure for the 300 samples and the results are presented in Figure

6.12 where they are grouped by the different permutations. In order to compare with the

predictions based on the fully knowledge of the model, in the figures it is also plotted the

theoretical median regression line, whereas the theoretical confidence bands are omitted for

the readability of the plots. Moreover, since the parameters have been estimated, here the

theoretical coverage percentage of the confidence bands is not exactly 50% or 90% and we refer
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Table 6.4: Percentage of exact data in Ĉ
πj
90 and Ĉ

πj
50 , j ∈ {1, . . . , 6}, and weighted average in

Example 6.6.

Real coverage in πj Ĉ
πj
90 Ĉ

πj
50

j = 1 88.23% 64.70%

j = 2 97.14% 51.43%

j = 3 89.77% 54.54%

j = 4 97.06% 32.35%

j = 5 85.71% 45.71%

j = 6 90.11% 47.25%

Weighted average 91.00% 49.00%

to them as Ĉ
πj
50 and Ĉ

πj
90 , j ∈ {1, . . . , 6}. The percentage of exact data in these regions are

listed in Table 6.4.

In the last example, we consider a coherent system whose components are distributed

according to an ODTHLS model and, by using the observed hystory, we obtain predictions for

the lifetime of the system.

Example 6.7. Let us consider a coherent system formed by four components X1, X2, X3, X4

and whose lifetime T is described as

T = min{max{X1, X2},max{X3, X4}},

with structure displayed in Figure 6.13. Suppose (X1, X2, X3, X4) is distributed according to

an ODTHLS model and assume that X1:4 = X1 = t1. We want to predict the lifetime of the

system. The parameters of the model are (we give just the ones interesting for our purposes)

µ1(∅) = 4, µ2(∅) = 1, µ3(∅) = 1, µ4(∅) = 2,

µ2(1) = 1, µ2(1, 3) = 2, µ2(1, 4) = 2, µ2(1, 3, 4) = 2, µ2(1, 4, 3) = 3,

µ3(1) = 3, µ3(1, 2) = 3, µ3(1, 4) = 3, µ3(1, 2, 4) = 1, µ3(1, 4, 2) = 2,

µ4(1) = 2, µ4(1, 2) = 3, µ4(1, 3) = 1, µ4(1, 2, 3) = 3, µ4(1, 3, 2) = 2.

By knowing the first failure and the structure of the system, we deduce that T will be equal

to the second order statistic if it is assumed by X2 whereas it will be the third order statistic

if the second failure is assumed by X3 or X4. Hence, we obtain a prediction for the lifetime

of the system by using the predictions of the second and third order statistics appropriately

weighted. More precisely, from Proposition 6.11, the weight for the prediction of the second

order statistic will be

P(X2:4 = X2|X1:4 = X1) = ρ2(1) =
µ2(1)

µ2(1) + µ3(1) + µ4(1)
=

1

6
.
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Figure 6.12: Scatterplots of a simulated sample from (X2:3, X3:3) for the ODTHLS model in

Example 6.6 jointly with the median regression curves (red) and 50% (dark grey) and 90%

(light grey) confidence bands obtained by estimating the parameters and with the theoretical

median regression curve (green).
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Figure 6.13: The structure of the system in Example 6.7.

About the third order statistic, we have to consider two different predictions, one for the case

X2:4 = X3 and one for X2:4 = X4. The corresponding weights are

P(X2:4 = X3|X1:4 = X1) = ρ3(1) =
1

2
,

P(X2:4 = X4|X1:4 = X1) = ρ4(1) =
1

3
.

Hence, the prediction for the lifetime of the system is obtained as

T̂ = ρ2(1) · X̂2:4 + ρ3(1) · X̂(3)
3:4 + ρ4(1) · X̂(4)

3:4 ,

where X̂
(j)
3:4 , j = 3, 4, denotes the prediction of the third order statistic given (X1:4 = X1 =

t1, X2:4 = Xj).

Consider the following (simulated) realization of the sample

X1:4 = X1 = 0.10728, X2:4 = X3 = 0.17977, X3:4 = X2 = T = 0.35048, X4:4 = X4 = 0.99044.

Suppose we know only X1:4 = X1 = 0.10728, hence, by proceeding as described above we

obtain

X̂2:4 = t1 +
log 2

M(1)
= 0.22281, M(1) = µ2(1) + µ3(1) + µ4(1) = 6,

X̂
(3)
3:4 = X̂2:4 +

log 2

M(1, 3)
= 0.45386, M(1, 3) = µ2(1, 3) + µ4(1, 3) = 3,

X̂
(4)
3:4 = X̂2:4 +

log 2

M(1, 4)
= 0.36144, M(1, 4) = µ2(1, 4) + µ3(1, 4) = 5,

from which it follows the prediction for T = 0.35048 as

T̂ =
1

6
· 0.22281 +

1

2
· 0.45386 +

1

3
· 0.36144 = 0.38454.

If the system does not fail at X2:4, i.e. the second order statistic is assumed by X3 or X4,

and we just know that t2 = X2:4 = 0.17977, then the prediction for the lifetime of the system

will be

T̂ = t2 +
3

5
· log 2

M(1, 3)
+

2

5
· log 2

M(1, 4)
= 0.37385,
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or, by using the median of the mixture of two exponential distributions with parametersM(1, 3)

andM(1, 4) and weights 0.6 and 0.4, respectively, T̂ = 0.36645. If we also know thatX2:4 = X3,

then the prediction will be

T̂ = t2 +
log 2

M(1, 3)
= 0.41082.

In both cases we can obtain confidence bands for the predictions. In the first one, we

have a mixture of two exponential distributions and in the second one an exponential dis-

tribution with parameter 3. The confidence bands in the first case, for T̂ = 0.36645, are

C90 = [0.19329, 1.04527] and C50 = [0.25621, 0.56174], and in the second case, for T̂ = 0.41082,

we have C90 = [0.19687, 1.17835] and C50 = [0.27566, 0.64187].
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