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Introduction

The phenomenon of thermal convection in a fluid saturating a porous medium has
been widely studied throughout last decades by many researchers because of several
applications in geophysical and engineering context. Most important applications
can be found in geothermal energy utilization, underground contaminant transport,
nuclear waste disposal, heat exchangers, thermal insulation and, more in general,
in problems on removal and storage of heat [1].

By porous medium we intend a material composed by a rigid solid matrix with
interconnected empty spaces (pores) through which the fluid flows. At microscopic
scale, because of the random pores’ distribution and dimension, the flow quantities
(velocity, pressure. . . ) are strongly irregular. On the other hand, at macroscopic
scale, these quantities become regular functions in space and time. Therefore,
a macroscopic approach seems to be more convenient. In this respect, we will
employ the Continuum Mechanics approach. According to this approach, the fluid
along with the solid is defined as a continuum whose properties are defined as
appropriate means over a volume, called representative elementary volume, such
that it is sufficiently large to include a significant number of pores and considerably
smaller than the macroscopic flow domain.

Thermal convection problems usually involve a horizontal porous layer saturated
by an incompressible fluid at rest and uniformly heated from below. A uniform
temperature gradient is imposed and maintained constant across the layer. Hence,
let S = R2 × [0, d] be the porous layer confined between the planes z = 0 and
z = d, and let TL and TU be the temperatures on the lower and upper plane,
respectively. When the fluid is at rest, heat spreads by conduction, i.e. without
involving the motion of matter. Because of heating from below, particles that are
close to the lower hotter plane expand and get lighter. Their density decreases and
the volume increases, so the module of the buoyancy force of Archimede grows and
these particles are pushed upward. But, the buoyancy force is initially balanced
by viscosity of the fluid and the gravitational force. Consequently, the fluid keeps
staying at rest and heat spreads by conduction. Nevertheless, this situation is
potentially unstable because of the mean temperature gradient β = TL−TU

d
. Once

β overcomes a critical value, the force of Archimede wins over the opposite forces,
the fluid motion begins and thermal convection occurs. Experiments show that,
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as soon as convection takes place, fluid organises himself in cells, called convective
cells, that are repeated periodically within the layer. Most importantly, the fluid
motion is the same in each cell. As a result, from a mathematical point of view, it
will be sufficient to analyse the fluid motion within a single cell.

If the regime where the fluid is motionless and heat propagates by conduction
is defined as basic steady solution, then the onset of convection is referred to as
the moment when the basic solution becomes unstable. A mathematical analysis
suggests that the onset of instability is related to a dimensionless number, called
Rayleigh number R. This number gives a measure of the destabilising effect of
the buoyancy over the stabilising effect of molecular diffusion of momentum. Then,
particularly, thermal convection occurs once the Rayleigh number overcomes a crit-
ical value. Hence, the aim is to determine the critical threshold of the Rayleigh
number beyond which instability occurs. Specifically, the study of thermal convec-
tion problems is devoted to determine necessary and sufficient conditions ensuring
the stability of the basic steady solution. To this aim, linear and nonlinear stability
analyses are performed. Nonlinear analysis provides a sufficient condition for the
stability of the basic solution, while linear analysis provides a sufficient condition
for instability to occur. The optimal result that one can get is the coincidence be-
tween the critical threshold RL for the linear instability and the critical threshold
RE for the nonlinear stability. Of course, this result is not granted and trivial. The
main limitation of the linear analysis is that it provides only information about the
fate of small perturbations to the basic state. Small-amplitude disturbances will
grow in time when R > RL, while they decay when R < RL. But this does not
necessarily mean that before the critical threshold there is no other configuration,
other than the basic state, where the amplitude of a generic disturbance grows in
time. When the coincidence between results from linear and nonlinear analyses is
obtained, we are sure that R < RE = RL is a necessary and sufficient condition
for the stability of the basic steady solution. Otherwise, a so-called subcritical
instability region exists, where we do not know what the fate of a perturbation is.

The first to study a thermal convection problem in porous media were Horton
and Rogers [2], followed independently by Lapwood [3]. In their papers, in order
to describe the fluid motion in presence of the porous medium, they considered
the model proposed by the engineer Henry Darcy in 1856. Experiments led on
the water supply in the Dijon fountain brought Darcy to formulate the following
relationship of proportionality between the gradient of pressure p and the so-called
seepage velocity v, namely the fluid velocity in presence of a porous medium:

v = −K
µ
∇p (1)

where K is the permeability of the medium and depends only on its geometry, while
µ is the dynamic viscosity of the fluid. Let us remark that in (1) body forces, such
as gravity, are neglected. In this thesis problems, gravity acts on the layer, so (1)
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will become:
µ

K
v = −∇p+ ρfg (2)

where ρf is the fluid density and g the gravity acceleration. Moreover, in chapters
5 and 7, the following extension of (2) will be employed:

ρfcα
∂v
∂t

= −∇p− µ

K
v + ρfg (3)

where cα is the acceleration coefficient.
In 1947, Brinkman proposed an alternative to the Darcy’s law, for cases where

the medium porosity is high. Mathematically, porosity ε is defined as the ratio
between the volume occupied by the empty space and the total volume of the
medium. Hence, for the Brinkman’s law to hold, one needs ε > 0.6. According to
this law, the constitutive equation is

∇p = − µ
K
v + µ̃∆v (4)

where µ̃ is the effective viscosity, different from the dynamic viscosity µ. The
introduction of the effective viscosity µ̃ leads to completely different results in
terms of the onset of thermal convection. An illuminating analysis in this respect
has been carried out by Rees in 2002 [4].

So far, we have described only equations to model the fluid motion in porous
media. To make a step towards the modelling of thermal convection problems
studied in the thesis, we need to add an equation both for the conservation of mass
and for the conservation of energy. The former reduces to

∇ · v = 0 (5)

because of the hypothesis of incompressible fluid, which will be employed in each
problem tackled in the thesis. While, defined T as the temperature of both fluid
and solid phases, the energy balance equation is

(ρc)m
∂T

∂t
+ (ρc)fv · ∇T = km∆T (6)

with
(ρc)m = (1− ε)(ρc)s + ε(ρcp)f
km = (1− ε)ks + εkf

(7)

where ρi is the density, ci the specific heat, ki the thermal conductivity, for i =
f, s,m. Subscripts f , s and m refer to fluid, solid and medium, respectively, while
(ρc)m and km are the overall heat capacity and the overall thermal conductivity per
unit volume of the medium, respectively. The assumptions that bring to formulate
Eq. (6) are the following:
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• the medium is isotropic

• heat conduction in solid and fluid takes place in parallel

• there is no net heat flux from one phase to the other, i.e. the phases are in
Local Thermal Equilibrium (LTE) (i.e. Tf = Ts = T )

Eq. (6) represents the first law of thermodynamics, which states, under appropriate
restrictions of small deformations, that the variation of internal energy of a ther-
modynamic system is the sum of two contributions: internal heat sources and heat
flux across the boundary. Hence,

dE

dt
= Q1 +Q2 (8)

where
E =

∫
C
ρcpT dC internal energy

Q1 =
∫
C
q′ dC heat source

Q2 =
∫
∂C

q · n dσ flux across the boundary

(9)

where q is the heat flux and n is the outward normal versor to the surface ∂C.
Specifically, Eq. (6) is obtained by neglecting heat source term (i.e. Q1 = 0) and
by assuming that the expression for the heat flux q is given by the Fourier’s law,
i.e.

q = −km∇T (10)

We refer to the problem modelled by Eqs. (2)-(5)-(6) as the Darcy-Bénard convec-
tion problem (or equivalently the Horton-Rogers-Lapwood problem). This problem
involves impermeable planes delimiting the porous layer and deals with the stability
of the steady conduction solution for which the fluid is at rest. On the other hand,
if those planes are permeable, under appropriate boundary conditions, this problem
admits a steady solution where the fluid moves with constant vertical velocity Q.
This motion is usually caused by a suction from the external of the layer, which then
leads to a net mass flow across the layer (throughflow). In this respect, we are going
to investigate the type of instability occurring in a horizontal fluid-saturated porous
layer uniformly heated from below and subject to a downward vertical throughflow.
The strength of the flow in the dimensionless problem is modelled by the Péclet
number

Pe = Qd

κ
(11)

where d is the depth of the layer and κ is the thermal diffusivity. When Pe is
large, the effect of the throughflow is to confine a significant thermal gradient in a
boundary layer close to the boundary towards which the throughflow is directed.
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Hence, the layer becomes isothermal almost everywhere except for in the boundary
layer whose thickness will be of order Pe−1. As consequence, the characteristic
length will be the thickness of the boundary layer rather than the depth of the
porous layer and the rescaled Rayleigh number will be smaller. Thus, the effect of
a large throughflow is stabilising. Hence, in the large-Pe limit, the layer appears to
mimic a region of infinite height and the problem becomes independent on the upper
boundary conditions. In this limit, we recover the problem studied by Wooding in
1960 [5], who was the first to study the stability of a vertical throughflow in a
porous medium. Later, Sutton in 1970 [6] studied the effect of throughflow with
finite Péclet number in a finite box and provided the variation of the Rayleigh
number with respect to the aspect ratio of the box. The analysis we performed
was motivated by the comparison between results obtained in [5] and the ones
obtained in the Darcy-Bénard problem. It is well known that in the Darcy-Bénard
problem subcritical instabilities are not possible. On the other hand, in [5] it has
been proved that subcritical instability may occur. Hence, we considered a problem
with a finite Péclet number, which approximates both the Darcy problem and the
Wooding problem in the limit cases, and decided to investigate for which value of
Pe the transition from supercritical to subcritical instability happens.

The assumption of LTE works very well in many physical situations, and in
particular in geophysical problems since usually, for that kind of problems, fluid and
rocks are involved and their thermal conductivities are pretty similar. Nevertheless,
there exist many practical industrial situations where LTE is not properly realistic.
Specifically, once the fluid velocity is sufficiently high, or as long as the solid thermal
conductivity is much different from the fluid one, the assumption of LTE is no
longer suitable to describe the physical phenomenon [7]. Applications are numerous
and can be found in processes involving quick heat transfer [8], metal foams and
in everyday technology such as microwave heating [9], heat exchangers [10] and
tube refrigerators (see [11] for more details). As a result, the hypothesis of Local
Thermal Non Equilibrium (LTNE) is employed to obtain more accurate results.
This assumption involves two different temperatures (one for the solid, one for the
fluid) so as to take into account heat exchanges between the phases. Hence, let
Tf be the fluid temperature and Ts the solid one, such that Tf /= Ts. Two energy
balance equations are needed:

(ρc)f

ε∂Tf
∂t

+ v · ∇Tf

 = εkf∆Tf + h(Ts − Tf )

(1− ε)(ρc)s
∂Ts
∂t

= (1− ε)ks∆Ts − h(Ts − Tf )

(12)

where h is interfacial convective heat transfer coefficient. The problem of thermal
convection in porous media in LTNE has been widely studied over the last years,
starting from [12, 13]. In [12], a linear analysis to determine the critical Rayleigh
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number and an asymptotic analysis to study the case of h → ∞ are performed.
In [13], instead, a nonlinear analysis is performed to show the coincidence between
the global nonlinear critical threshold and the linear one. Many authors studied
the LTNE effect in rotating and/or anisotropic porous media [14, 15, 16, 17, 18],
or when the porous medium is subject to a vertical throughflow [19, 20], and also
in non-horizontal porous layer [21, 22, 23, 24, 25].

What would change if we relaxed the hypothesis of isotropic medium? In nature,
real porous media are inevitably anisotropic at some scale. In some cases, the
anisotropy is noticeable only at microscopic scale, in some others it is visible at
macroscopic scale and it can affect significantly the fluid motion. Permeability is
the characteristic of a porous medium to be permeated by a fluid. Low permeability
would imply that the fluid struggles to permeate the porous medium. Such a
characteristic may vary depending on the direction. It may be greater in some
directions than in others. That is the case of sedimentary porous rocks, which
exhibit a higher permeability in the horizontal direction than in the vertical one,
because of their layered configuration [26]. Moreover, in industrial field, many
porous media are usually man-made so that they exhibit anisotropy not only in
their mechanical features, such as permeability, but also in thermal ones, such as
thermal conductivity. This is because these characteristics may be tuned in order
to suppress or promote the fluid motion and heat propagation across the medium
[27, 28, 29, 30, 31, 32]. Mathematically, when permeability is anisotropic, we need
to generalise the Darcy Eq. (1) in the following way:

µv = −K · ∇p (13)

where K is the permeability tensor, which is required to be invertible. On the
other hand, we need to generalise also the Fourier’s law (10) as long as thermal
conductivity is anisotropic. Coefficient km will be replaced by an invertible tensor.
In the following, anisotropy tensors will be diagonal and we refer to horizontal
isotropy (or light anisotropy) when values do not change on the horizontal plane;
to full anisotropy when values change depending on the three directions. Castinel
and Combarnous were the first to study the onset of convection in a porous layer
with anisotropic permeability in 1975 [33], followed by Epherre [34] in 1975, who
allowed for thermal conductivity to be anisotropic as well. In 1979, Kvernold and
Tyvand [35] extended these analyses by considering full anisotropic permeability
and thermal conductivity.

As far as the temperature propagation is concerned, so far we have employed
the constitutive Fourier’s law (10) both in (6) and in (12). The classical theory of
heat propagation is based on Eq. (10) which has been widely employed over the
years to model heat transport. By assuming that heat propagates by conduction
in (6), namely fluid is at rest (v = 0), we get a parabolic differential equation

(ρc)m
∂T

∂t
= km∆T (14)
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Looking at the solution of Eq. (14) an unpleasant behaviour arises: the so-called
"Fourier Heat Paradox". According to this paradox, a disturbance in temperature in
a bounded domain is felt instantly in the whole domain, namely heat spreads with
infinite velocity. In order to overcome this paradox, in 1948, Cattaneo proposed
the following alternative equation [36]:

τ
∂q
∂t

+ q = −k∇T (15)

where τ is the time lag required to establish steady heat conduction in a volume
element once a temperature gradient has been imposed across it. By employing
law (15), one gets the following hyperbolic heat equation:

τ
∂2T

∂t2
+ ∂T

∂t
= km

(ρc)m
∆T (16)

for which heat propagates with finite velocity c2 = km

(ρc)mτ
. As a result, the concept

of heat waves is introduced [37]. The phenomenon of heat propagation by a wave-
like motion is called “second sound“, recalling the propagation of pressure waves in
air (sound), and it becomes relevant once microscopic dimensions are taken into ac-
count. That is why the second sound mechanism is considered in many application
fields, such as in modern technology, where much small devices (metallic-like solids)
are involved. According to Pilgrim [38], the “hyperbolic description will become
increasingly important as device dimensions move even further into the deep sub-
micron regime”. For more details we refer to [39, 40, 41]. Straughan and Franchi
[42] in 1984 were the first to study the Bénard problem coupled to a hyperbolic
heat equation and analyse the effect of second sound on the onset of convection.
More recently, Straughan in [43] first studied the problem of convection in a porous
medium when Cattaneo’s law is employed to model heat propagation. Interesting
results are obtained once the assumption of LTNE is combined with the Catta-
neo’s law for heat conduction in the solid matrix, since in such a case convection
by means of oscillatory motions can occur [44, 45, 46, 47, 48, 49]. Specifically, in
[46] it has been first performed a nonlinear analysis for the onset of convection in
a model with LTNE. In this paper, second sound is considered only in the solid
phase, while Fourier’s law is retained in the fluid phase. This choice is motivated
by experimental results. It has been proved with good approximation that the
wave-like motion of heat appears greater in solids, especially in those involved in
porous metallic foams. We will follow the same assumption in chapter 6.

In this thesis, we are going to take into account the effect of rotation on the
onset of convection. Understanding thermal convection in rotating porous media is
a physical problem that finds many applications in industrial and engineering field,
specifically in centrifugal casting of metals or rotating machinery [50, 51, 52]. When
the porous layer rotates about the vertical axis, fluid particles are subject to the
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centrifugal and the Coriolis forces. Hence, the Darcy’s law needs to be modified.
The strong idea which allows to study the fluid motion in this configuration involves
a change of reference in order to study the problem in the rotating frame. As a
result, an additional term needs to added in the Darcy equation and a new pressure
needs to be defined, resulting in

−∇p = µ

K
v + 2Ωρ

ε
k× v (17)

where Ωk is the constant angular velocity and p is called reduced pressure. In 1984,
Palm and Tyvand [53] studied the problem of thermal convection in a porous layer
which rotates uniformly about the vertical axis with constant angular velocity.
They employed the Darcy model as in (17) to include the Coriolis term. They
discovered an important analogy showing that the onset of steady convection in a
rotating system is equivalent to the case of convection in an anisotropic stratified
porous layer. As pointed out in the remarkable paper [54], the analysis performed
in [53] excludes the possibility of overstability because a time-derivative term is not
considered in the Darcy’s law, as in (3). Such observation led Vadasz to study the
Coriolis effect coupled to the time-derivative term (see [54, 55, 56, 57]). In these
papers, the author proved that the presence of inertia term in a model for a rotating
porous medium leads to the occurrence of convection through oscillatory motions,
which are not allowed when the inertia term is neglected. Following the idea in the
papers mentioned above, we are going to investigate in this thesis the occurrence
of oscillatory convection in porous media in local thermal nonequilibrium. The
relevance of oscillating convective motions lies in cooling systems when, for example,
one is interested in a time modulated cooling down.

Another topic that caught our attention is the effect of depth-dependent vis-
cosity on the onset of convection in a fluid-saturated porous medium. What moti-
vated this study is the strong viscosity dependence on temperature and/or depth,
for many fluids [58, 59]. In several industrial problems, variations of viscosity with
temperature cannot be neglected. Main examples of such problems can be found in
geophysical context and in engineering field [58, 60, 61, 62, 63]. Actually, the cor-
relation between viscosity and temperature deeply depends on which fluid is taken
into account. In fact, viscosity of gases increases with temperature, while viscosity
of liquids shows the opposite behaviour [1, p. 253]. For example, viscosity of glyc-
erin decreases by three orders of magnitude for a 10◦C rise in temperature [9], while
viscosity of water changes more than 1 order of magnitude between 25◦C and 350◦C
[64]. Over the same temperature interval, water thermal conductivity exhibits only
a 1% change [65]. Actually, as stated in [66], for most Newtonian liquids thermal
conductivity is essentially constant over the temperature range in which viscosity
shows remarkable variations. For this reason, we are going to take into account only
viscosity variations. Over the years, thermal convection in variable viscosity fluids
has represented a topic of great interest for many researchers. Early studies on
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thermal convection in clear fluids with temperature-dependent viscosity are those
of Torrance and Turcotte in 1970 [58] and Palm et al. in 1967 [67]. Since then, such
a problem has been extensively investigated (see [59, 68, 69, 70, 71, 72, 73]). In
[58], the influence of strongly temperature- and/or depth-dependent viscosity has
been studied, with particular attention to convection in Earth’s mantle. In [59],
the conditional nonlinear stability is performed for a clear fluid whose viscosity de-
creases linearly with temperature. While in [70], a global nonlinear stability result
is obtained when viscosity shows a maximum. Nonlinear stability results have been
obtained also in [71], where viscosity shows exponential dependence on tempera-
ture, and in [72] where viscosity is a convex function of temperature. The problem
of thermal convection in variable viscosity fluids saturating a porous medium has
been widely investigated, as well (see [60, 64]). Nonlinear stability results have been
determined in [74] and [75]. While in [61] linear stability analysis of convection in
water-saturated porous medium is performed. At the best of our knowledge, natu-
ral convection in depth-dependent viscosity fluids in porous media in LTNE has not
received a proper attention so far, that is why we decided to undertake the study
shown in chapter 7. The LTNE model has been employed in [9], where the onset
of Darcy-Bénard convection is investigated for a temperature-dependent viscosity
fluid with quadratic density constitutive equation.

The outline of the thesis is the following: chapter 1 provides tools to study the
stability in the Lyapunov sense. The Lyapunov Direct Method is explained and
the connection between linear and nonlinear stability is pointed out. In chapter
2, the type of instability that occurs for a vertical downward throughflow in a
horizontal porous layer uniformly heated from below is studied. The validity of the
principle of exchange of stabilities implies that only steady convection can occur.
Particular attention is devoted to determine the critical value of the Péclet number
for which the transition from supercritical to subcritical instability occurs. To
this aim, weakly nonlinear analysis is performed and an original shooting method
coupled to the Newton-Raphson scheme is employed. Chapter 3 is devoted to
study the linear and nonlinear stability of the conduction solution in a rotating fully
anisotropic porous medium in LTNE. The strong form of the principle of exchange of
stabilities holds and the coincidence between linear and nonlinear results is proved.
In chapter 4, the effect of horizontal isotropy on the onset of convection in a rotating
porous medium in LTNE is studied. The fluid motion is described by the Brinkman
law. Nevertheless, we obtained the optimal result of coincidence between the linear
instability threshold and the global nonlinear one. Instead, in chapter 5, the effect
of Vadasz inertia term on the onset of convection in a rotating porous medium in
LTNE is studied. It is proved that the presence of this term may cause the onset of
oscillatory convection. Chapter 6 is devoted to analyse the effect of second sound,
modelled by the Cattaneo’s law, in a LTNE Darcy-Brinkman anisotropic porous
medium. The usage of hyperbolic temperature equation for the solid phase leads to
the possibility for oscillatory convection to occur. The nonlinear stability analysis
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is performed by employing the coupling parameter method. Finally, chapter 7
involves the onset of natural thermal convection in an anisotropic porous layer
in LTNE saturated by a fluid whose viscosity depends on the depth of the layer.
For this problem, we managed to obtain coincidence between linear and nonlinear
results, and, in order to determine the critical threshold for the Rayleigh number,
we implemented and employed the Chebyshev-tau method, which is able to solve
differential eigenvalue problems.
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Chapter 1

Stability Preliminaries

Let F be a physical phenomenon that one aims to describe and let D ⊂ R3 the
domain in which this phenomenon takes place. If u(x, t) is the vector that describes
the state of the phenomenon F , then one can model the physical phenomenon by
the following system of partial differential equations

∂u
∂t

= F ∀(x, t) ∈ D × (0, T ) (1.1)

where F = F
(
x, t,u,

∂ui
∂xr

,
∂2ui
∂xr∂xs

, . . .

)
is a vectorial function that describes the

behaviour of the time derivative of the state vector u(x, t). To system (1.1), the
following boundary and initial conditions are appendedu(x, 0) = u0 ∀x ∈ D

G(u,∇u) = û ∀(x, t) ∈ δD × [0, T ]
(1.2)

where G is a given operator, û an assigned vector and T a positive constant.
The boundary value problem (1.1)-(1.2) is the mathematical model describing the
evolution of F .

Now, the problem of finding a solution to the boundary value problem (1.1)-
(1.2) arises. The existence of a solution is assured, but determining explicitly such
a solution is not trivial. Hence, a qualitative analysis of the model is required in
order to get information on the behaviour of a solution.

During the second half of XIX century, Poincaré developed a qualitative study
for dynamical systems with the aim of providing estimates and highlight properties
of the state vector relative to the physical phenomenon in question. A key role in
this kind of study is played by the stability analysis. The major contribution to this
kind of analysis was given by the Russian mathematician Aleksandr Mikhailovich
Lyapunov who developed a pioneering approach to the stability analysis for non-
linear dynamical systems, in a period where the linearization method was widely
employed.

13
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In the present chapter, we will discuss the notion of stability in the sense of
Lyapunov, looking at both linear and nonlinear stability analyses.

1.1 Some definitions
Let (X, d) be a metric space where Sr(x) is a sphere with centre x and radius r
and let f be a dynamical system, i.e. the application

f : (v0, t) ∈ (X,R) −→ f(v0, t) ∈ X (1.3)

such that f(v0, 0) = v0. The following definitions hold:

Definition 1. A motion with initial data v0 is defined as the application:

v(v0, ·) : t ∈ R+ −→ v(v0, t) ∈ X (1.4)

where v(v0, 0) = v0.

If v(v0, t) = v0 ∀t ∈ R+, then the motion is stationary and v0 is called equilib-
rium.

Definition 2. A motion v(v0, ·) depends continuously on initial data if and only
if ∀ε > 0, ∀T > 0, ∃δ(ε, T ) > 0 such that

v1 ∈ Sδ(v0) =⇒ v(v1, t) ∈ Sε(v(v0, t) ) ∀t ∈ [0, T ] (1.5)

Stability in the Lyapunov sense extends to an upper unbounded interval the previ-
ous concept.

Definition 3. A motion v(v0, ·) is stable in the sense of Lyapunov if and only if:

∀ε > 0, ∃δ(ε) > 0 : v1 ∈ Sδ(v0) =⇒ v(v1, t) ∈ Sε(v(v0, t) ) ∀t > 0

Definition 4. A motion v(v0, ·) is unstable in the sense of Lyapunov if and only
if:

∃ε > 0 : ∀δ(ε) > 0, ∃t1 > 0 : v1 ∈ Sδ(v0) =⇒ v(v1, t1) /∈ Sε(v(v0, t1) )

Hence, stability with respect to perturbations on initial data is stronger than con-
tinuous dependence on initial data.

Definition 5. A motion v(v0, ·) is called an attractor over a set Y if

v1 ∈ Y =⇒ lim
t→∞

d[v(v0, t), v(v1, t)] = 0 (1.6)

14
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Definition 6. A motion v(v0, ·) is said to be asymptotically stable if it is stable
and, moreover, there exists δ1 > 0 such that v(v0, ·) is an attractor over Sδ1(v0).
Moreover, v(v0, ·) is said to be exponentially stable if there exist δ1 > 0, λ(δ1) >
0, M(δ1) > 0 such that:

v1 ∈ Sδ1(v0) =⇒ d[v(v1, t), v(v0, t)] ≤Me−λ t d[v1, v0], ∀t ∈ R+.

In particular, if δ1 = ∞, then v(v0, ·) is asymptotically exponentially globally
stable.

Given a basic motion v∗(v0, t), whose stability one wants to investigate, the stability
of v∗(v0, t) may be expressed in terms of the perturbation u(u0, t) = v(v1, t) −
v∗(v0, t) (u0 = v1 − v0). Then,

Definition 7. A basic motion v∗(v0, t) is said to be stable in the Lyapunov sense
if and only if:

∀ε > 0, ∃δ(ε) > 0 : u0 ∈ Sδ(0) =⇒ u(u0, t) ∈ Sε(0) ∀t > 0. (1.7)

where 0 is the origin of X.

As a result, in plain words, a given basic motion is stable if all perturbations that
are small initially remain small for all time, and it is unstable if at least one small
perturbation grows so much that it ceases to be small after some time.

From previous definitions, it emerges that the notion of stability in the Lyapunov
sense is related to the definition of distance and, as a consequence, in a normed
vector space, to the definition of norm. Specifically, when studying problems with
a finite number of degree of freedom, embedded in finite-dimensional spaces, the
concept of stability is independent on the chosen norm as in Rn all the norms are
equivalent.

On the other hand, for phenomena with infinite number of degree of freedom,
which are usually described by partial differential equations in infinite-dimensional
spaces, stability will depend on the chosen norm. For example, one could choose
‖u‖ = supu∈X |u| even though it is usually preferred the energy norm ‖u‖ =
(
∫
X |u|2dX)1/2. In this case, stability depends on the topology of the space X. For

a discussion about topology dependent stability see [76].

1.2 Lyapunov Direct Method
In 1893, Lyapunov developed a method, called direct method, to determine condi-
tions ensuring the stability of a solution of a nonlinear system of ordinary differential
equations. This method allows to get important information of solutions, although
they are not obtained explicitly. The basic idea on which the method is built in-
volves determining the sign of the time derivative of an auxiliary function (called
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Lyapunov function) evaluated along solutions of the differential system studied.
This method was recognized to be very powerful and it has been employed in the
qualitative theory for many years. Later, the idea of Lyapunov was applied suc-
cessfully to systems of partial differential equations. We introduce the fundamental
ideas of the direct method.
Definition 8. Let (1.3) be a dynamical system on the metric space (X, d). A
function V : X → R is said Lyapunov function on I ⊂ X if V ∈ C1(I) and V is a
nonincreasing function in time along the solutions of (1.3) with initial data in I.

By virtue of (1.7), the stability of a given basic motion can be studied through
the stability of the zero solution of the perturbed dynamical system. As a con-
sequence, we introduce the direct method to investigate the stability of the null
solution as basic state.

Let X be a normed linear space and let Fr, r = cost > 0, the set of functions
ϕ : [0, r) → R+ that are continuous, strictly increasing and such that ϕ(0) = 0.
Hence, the Lyapunov direct method is summarized by the following theorems:
Theorem 1. Let u be a dynamical system on a normed space X and let O be an
equilibrium point. If V is a Lyapunov function on the open set Sr(O) with r > 0
such that

i) V (O) = 0;

ii) ∃f ∈ Fr : V (u) ≥ f(‖u‖), ∀u ∈ Sr(O)
then O is stable. In addition, if
iii) ∃g ∈ Fr : V̇ (u) ≤ −g(‖u‖), ∀u ∈ Sr(O)

then O is asymptotically stable.
Proof. See [76]

The following theorem holds as particular case of Theorem 1.
Theorem 2 (Lyapunov Lemma). Let u be a dynamical system on X and let O be
an equilibrium point. If V is the Lyapunov function on Sr(O) such that

V (O) = 0, V (u) > 0 ∀u /= O (1.8)

then the stability with respect to the measure V of perturbation is obtained. Plus, if
there exists a positive constant c such that the following inequality holds along the
solutions

V̇ ≤ cV (1.9)
then

V ≤ V (u0)e−ct (1.10)
i.e. the asymptotic exponential stability with respect to the measure V is obtained.
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Setting Σ(X,α) = {x ∈ X : V (x) < α}, the following theorem holds:

Theorem 3. Let u be a dynamical system on X ×R+ and let O be an equilibrium
point. If V is the Lyapunov function on the open set Ar = Sr(O) ∩ Σ(X, 0), with
r > 0, and

i) V (O) = 0;

ii) ∃g ∈ Fr : V̂ (u) ≤ −g[−V (u)], u ∈ Ar;

iii) Ar /= ∅, ∀ε > 0

then O is unstable.

Proof. See [76]

1.3 Stability Analysis

1.3.1 Linear Stability
Let H be a Hilbert space endowed with scalar product (·, ·) and associated norm
‖ · ‖. Let v∗(v0, t) be the basic motion and let u(u0, t) = v(v1, t) − v∗(v0, t) be
the perturbation arising after perturbing the basic motion at initial time. Let us
consider the following initial value problem

∂u
∂t

+ Lu +N(u) = 0
u(x, 0) = u0(x)

(1.11)

L being a linear operator, N a nonlinear one with N(0) = 0 so that (1.11) admits
the null solution. Let us assume that

i) L is a densely defined (i.e. D(L) dense in H), closed, with compact resolvent,
i.e. such that {λ ∈ C : ∃(L− λI)−1} is compact;

ii) the bilinear form associated with L is defined and bounded on a space H∗,
which is compactly embedded in H;

iii) the nonlinear operator N verifies the condition:

(N(u),u) ≥ 0 ∀u ∈ D(N) (1.12)

where D(N) is the domain of the operator N .
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To study the linear stability of the basic state, nonlinear terms are neglected in
(1.11), i.e. terms included in N(u). Hence, one obtains

∂u
∂t

+ Lu = 0
u(x, 0) = u0(x).

(1.13)

Under the hypotheses in (i), the following result holds

Theorem 4 (Kato 1976). The spectrum of the operator L consists entirely of an
at most denumerable number of eigenvalues {σn}n∈N with finite (both algebraic and
geometric) multiplicities and, moreover, such eigenvalues can cluster only at infin-
ity.

Since the operator L is autonomous, solutions are of this kind: u(x, t) =
ϕ(x)e−σt. As a result, the behaviour in time of perturbations u(x, t) is governed
by the sign of the real part of σ. In particular, if Re(σ) > 0 for all σ then the
zero solution is linearly stable; if Re(σ) < 0 for some σ then the solution is linearly
unstable. The eigenvalues, which satisfy the equation

Lϕ = σϕ (1.14)

are not necessarily real as the operator L is in general non-symmetric. Nevertheless,
the eigenvalues may be ordered in the following way:

Re(σ1) ≤ Re(σ2) ≤ · · · ≤ Re(σn) ≤ . . . (1.15)

Hence, since for the linear stability we need all the eigenvalues to be with positive
real part, the linear stability analysis reduces to studying the sign of Re(σ1). Hence,

Definition 9. The zero solution of (1.11) is linearly stable if and only if

Re(σ1) > 0 (1.16)

In problems that we are going to study in this thesis, σ1 will depend on the
dimensionless Rayleigh number R. Our aim is to determine the least value Rc for
which Re(σ1) = 0, namely, for which instability sets in. One also expects that
Re(σ1) > 0 if R < Rc and Re(σ1) < 0 if R > Rc.

Now, the aim is to investigate the connection between linear stability results
and nonlinear stability ones. We will see that a strong connection is obtained not
only when the operator L is symmetric but also when it is not. In the latter case,
the main contribution is to show that when the principle of exchange of stabilities
holds in a well defined sense, then the link between linear and nonlinear stability
is provided.
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Definition 10. The principle of exchange of stabilities holds if

Im(σ1) /= 0 =⇒ Re(σ1) < 0 (1.17)

The weak form of the principle is the following

Definition 11. The principle of exchange of stabilities is said to hold in the weak
sense if

Re(σ1) = 0 =⇒ Im(σ1) = 0 (1.18)

Finally, the strong form

Definition 12. The principle of exchange of stabilities holds in the strong form if
the spectrum of the linear operator L is subset of R.

Conditions in the previous definitions certainly happen when the operator L is
symmetric or symmetrizable.

In all these cases, at the criticality, σ1 is real and equal to zero. We say that
instability sets in as a secondary steady motion when σ1 = 0 at the criticality. On
the other hand, if σ1 is a pure imaginary number at the criticality, instability sets
in as an oscillatory motion. In this case, the principle of exchange of stabilities
does not hold and overstability is possible.

1.3.2 Nonlinear Stability
The aim of this section is to investigate the connection between the linear stability
results and the nonlinear stability ones. Let us recall the definition of nonlinear
stability:

Definition 13. The null solution of (1.11) is nonlinearly stable if and only if for
each ε > 0, there exists a δ = δ(ε) such that

‖u0‖ < δ ⇒ ‖u(t)‖ < ε (1.19)

and there exists γ ∈ (0,+∞] such that

‖u0‖ < γ ⇒ lim
t→∞
‖u(t)‖ = 0. (1.20)

If γ = ∞, the zero solution of (1.11) is said to be unconditionally nonlinearly
stable, otherwise, if γ <∞, the solution is conditionally stable.

The operator L is in general non-symmetric, but the following decomposition is
possible:

L = L1 + L2 (1.21)
where L1 is a symmetric operator with compact resolvent and L2 is a skew-symmetric
operator bounded in H∗. These two operators are such that D(L2) ⊃ D(L1) =
D(L).
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It turns out that L1 satisfies the hypotheses of Theorem 4. Moreover, because of
symmetry, eigenvalues {λn}n∈N associated with L1 are all real and may be ordered
as follows:

λ1 ≤ λ2 ≤ · · · ≤ λn ≤ . . . (1.22)
Let L1[ϕ, ϕ], with ϕ ∈ H∗, be the bilinear form associated with the operator L1,
i.e.

(L1ϕ, ϕ) = L1[ϕ, ϕ] ∀ϕ ∈ D(L1) (1.23)
then the following remark holds:
Remark 1. Let ϕ be an eigenfunction related to the eigenvalue λ1. Then

λ1 = min
ϕ∈H∗

L1[ϕ, ϕ]
‖ϕ‖2 . (1.24)

As a consequence, the following theorem holds:
Theorem 5. If λ1 > 0 then the zero zolution of (1.11) is unconditionally nonlin-
early stable.
Proof. See [65].

From previous arguments it follows that while the linear stability reduces to
studying the sign of eigenvalues related to the linear operator L, the nonlinear
stability involves the eigenvalues of the symmetric part L1 only.
Remark 2. If the skew-symmetric part L2 of L is zero, i.e. L = L1, then the linear
stability implies the nonlinear one and vice versa.

Let us assume that the strong form of the principle of exchange of stabilities 12
holds and the operator L is not symmetric. Moreover, let us assume that we are
able to provide a new scalar product < ·, · > for which L is symmetric and that the
bilinear form associated with L in the new scalar product admits the decomposition

L′[ϕ, ψ] = I(ϕ, ψ) +D(ψ, ψ) (1.25)
where I and D are symmetric, bounded bilinear forms in H∗,

I(ϕ, ϕ) ≤ C1|ϕ||ϕ|∗ ∀ϕ ∈ H∗

D(ϕ, ϕ) ≥ C|ϕ|∗|ϕ|∗
(1.26)

where C,C1 are positive constants. Although (1.12) is satisfied in the "old" scalar
product, it is not granted that it is satisfied also in the "new" one. In general, we
shall assume
∀ε > 0 ∃c = c(ε) : | < N(u),u > | ≤ εD(u,u) + c‖u‖α ∀u ∈ D(N), α > 2

(1.27)
or

| < N(u),u > | ≤ k‖u‖βD(u,u) ∀u ∈ D(N) and k, β > 0 (1.28)
Hence the following main result holds [77]:
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Theorem 6. Suppose definition 12 holds and (1.25)-(1.26) and either (1.27) or
(1.28) are satisfied. Then, if the null solution of (1.11) is linearly stable, it is also
asymptotically nonlinearly stable. In particular, there exist computable constants
A, γ, δ > 0 such that

‖u0‖2 < γ =⇒ ‖u(t)‖2 ≤ A‖u0‖2e−δt ∀t ≥ 0 (1.29)
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Chapter 2

A weakly nonlinear analysis of
vertical throughflow on
Darcy-Bénard convection

2.1 Introduction

In the present chapter, it is shown the first part of a joint work, soon to be pub-
lished, in collaboration with Prof. F. Capone, G. Massa and Dr. D. A. S. Rees.
It is investigated the type of instability occurring in a fluid-saturated horizontal
porous layer heated from below and subject to a downward vertical throughflow.
The main aim of the work is to determine conditions such that the onset of insta-
bility is subcritical. Linear instability analysis is performed to set the context for
the subsequent weakly nonlinear analysis. It turns out that subcriticality may be
expected once the Péclet number overcomes 3.1617. Moreover, subcritical instabil-
ity always occurs over ranges of wavenumber that do not contain the critical value,
for Pe /= 0.

The chapter is organised as follows. In section 2.2 the mathematical model
is described and the dimensionless form of the system is determined. Section 2.3
is devoted to the basic stationary solution and its behaviour in the small-Pe and
large-Pe limits. In section 2.4 the instability of the basic flow is analysed via linear
analysis. We proved the principle of exchange of stabilities and provide and discuss
the tenth order system of ODEs to determine the critical Rayleigh number for
the onset of instability. In section 2.5 the weakly nonlinear analysis is performed
in order to determine the Landau equation. From that equation, we are able to
determine conditions on the Péclet number and the wavenumber that may lead to
the onset of subcritical instability.
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2 – Darcy-Bénard convection with vertical throughflow

2.2 Mathematical model

Let us consider a fluid-saturated horizontal planar porous layer L = R × [0, d]
uniformly heated from below and let Ox∗z∗ be the reference frame. Let TL be the
fixed temperature at z∗ = 0 and let TU be the fixed temperature at z∗ = d where
TL > TU . The temperature, TU , is also regarded as being the reference temperature.
The two bounding surfaces are permeable and admit a constant downward vertical
throughflow of magnitude Q across the layer.

Figure 2.1: Depicting a horizontal porous layer

Let v∗, T ∗, p∗ be the velocity, temperature and pressure fields, respectively. The
governing system is derived by employing the Boussinesq approximation, i.e. the
fluid density ρ is constant in all terms of the governing equations, except for in
the buoyancy term. In this paper, we shall assume that ρ is linearly dependent on
temperature T ∗:

ρ(T ∗) = ρ0[1− α(T ∗ − TU)], (2.1)

where α is the thermal expansion coefficient and ρ0 is the fluid density at the
reference temperature TU .

Therefore, the governing equations, according to the Darcy’s model, are well
known to be, cf. [1],


µ

K
v∗ = −∇∗p∗ + ρ0αgT

∗k,

∇∗ · v∗ = 0,
(ρc)mT ∗,t∗ + (ρc)fv∗ · ∇∗T ∗ = k∇∗2T ∗,

(2.2)

where k is the overall thermal conductivity, K the permeability, µ the viscosity
of the fluid, g = −gk the gravitational acceleration, and c the specific heat. The
subscripts m and f refer to the porous medium and the fluid, respectively. The
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system (2.2) is completed by the following boundary conditions:

v∗ = −Qk on z∗ = 0, d,
T ∗ = TL on z∗ = 0,
T ∗ = TU on z∗ = d.

(2.3)

In order to write the non-dimensional versions of (2.2) and (2.3), we introduce
the following non-dimensional parameters:

x∗ = dx, v∗ = Uu, p∗ + ρ0αgTUz
∗ = Pp, T ∗ = θ(TL − TU) + TU , t∗ = τ̂ t,

(2.4)
where typical velocity, pressure and time scales are given by,

U = k

d(ρc)f
, P = kµ

K(ρc)f
, τ̂ = (ρc)md2

k
. (2.5)

In the above, the values, u = (u,w), θ and p are the dimensionless velocity, tem-
perature and pressure fields, respectively. The governing non-dimensional system
is, 

u = −∇p+ Raθ k,
∇ · u = 0,
θ,t + u · ∇θ = ∇2θ,

(2.6)

with the boundary conditions

w = −Pe on z = 0,1,
θ = 1 on z = 0,
θ = 0 on z = 1,

(2.7)

where
Ra = dρ0αg(TL − TU)K(ρc)F

µk
(2.8)

is the Darcy-Rayleigh number (hereinafter called the Rayleigh number), and

Pe = Q(ρc)Fd
k

(2.9)

is the Péclet number.

2.3 The basic state
The basic dimensionless solution of (2.6)-(2.7) is

ub = −Pek, θb = g(z), pb = p̄(z). (2.10)
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where

g(z) = e−Pez − e−Pe

1− e−Pe and p̄(z) = − Ra
1− e−Pe

(
e−Pez

Pe + e−Pez − 1
Pe

)
+ pb(0).

(2.11)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.2: Basic temperature profiles for the the quoted values of the Péclet number,
Pe.

We may begin our discussion of the basic state with the following remarks.

Remark 2.3.1. When the limit as Pe→ 0 is taken of the basic temperature profile,
θb, the well-known Darcy linear profile is recovered:

lim
Pe→0

θb(z) = 1− z. (2.12)

Remark 2.3.2. When the large-Pe limit is taken then

θb(z) ∼ e−Pe z. (2.13)

This means that the temperature field is confined to region of thickness of
O(Pe−1) at the lower surface.

Both of these extreme cases may be demonstrated easily from Eqs. (2.11), and
are confirmed in Figure 2.2, which also shows the detailed manner in which the
basic temperature profile varies with the magnitude the Péclet number, Pe.

As Pe increases from zero the upward conduction of heat from the lower sur-
face is counteracted increasingly by the externally-imposed downward advection.
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Therefore, for very large values of Pe, the layer appears to mimic a region of infinite
height because most of the layer is uniformly cold apart from the narrow thermal
boundary layer near z = 0. Therefore, for Pe� 1, we have an a priori expectation
that instabilities will be confined to this boundary layer which is where the basic
temperature gradient is destabilising. In the large-Pe limit, then, the problem es-
sentially becomes independent of the depth of the layer should 1/Pe be used as
an alternative characteristic nondimensional length. With such an approximation
we recover the Wooding problem [5]. Hence, if we wished to compare our large-
Pe results with those of Wooding, we should rescale the Rayleigh number to the
appropriate one for the Wooding problem, namely,

Raw = RaPe−1. (2.14)

2.4 Linear Instability Analysis
We shall now consider the onset of convection. Squire’s theorem may be shown
easily to hold, and therefore we may confine ourselves to the analysis of two-
dimensional perturbations. Let us introduce the stream function ψ such that
u = −ψ,z and w = ψ,x. Hence, system (2.6) becomes:∇2ψ = Ra θ,x,

θ,t + ψ,xθ,z − ψ,zθ,x = ∇2θ,
(2.15)

and the basic solution now takes the form,

ψb = −Pex, θb = g(z). (2.16)

By introducing a perturbation ψ̂, θ̂ to (2.16) the non-dimensional system arising
from (2.15) is ∇2ψ = Ra θ,x,

θ,t − Pe θ,z + g′(z)ψ,x + ψ,xθ,z − ψ,zθ,x = ∇2θ,
(2.17)

where the circumflexes have been dropped for notational convenience and where
primes denote ordinary derivatives with respect to z. System (2.17) will be solved
subject to the following boundary conditions:

ψ = θ = 0, on z = 0,1. (2.18)

Let us underline that the perturbation fields are Sobolev functions in W 2,2(V )
∀t ∈ R+, V being the periodicity cell, and they are periodic in the horizontal
direction with period 2π/k.

26



2 – Darcy-Bénard convection with vertical throughflow

The determination of the critical threshold for the Rayleigh number begins with
a linear stability analysis. The linear system associated with (2.17) is∇2ψ = Raθ,x,

θ,t − Pe θ,z + g′(z)ψ,x = ∇2θ.
(2.19)

Since this system and its boundary conditions are homogeneous with coefficients
that are independent of time, it is possible to look for solutions where the spatial
dependence may be separated from an exponential time-dependence. Let

ϕ(x, t) = ϕ̄(x)eσt ∀ϕ ∈ {ψ, θ} (2.20)

where σ is the exponential growth rate, so system (2.19) becomes:∇2ψ = Raθ,x,
σθ − Pe θ,z + g′(z)ψ,x = ∇2θ.

(2.21)

Theorem 2.4.1. The strong form of the principle of exchange of stabilties holds
for system (2.21)-(2.18), hence convection can occur only via steady motions.

Proof. Since the perturbation fields are periodic in the horizontal direction x,
(2.21)-(2.18) admits solution of the form:

ψ = −i ψ̄ eikx + c.c., θ = θ̄ eikx + c.c., (2.22)

where k is the wavenumber and ψ̄, θ̄ are complex functions. Hence, system (2.21)
becomes (dropping the bars)(D2 − k2)ψ = −Ra kθ,

σθ = Pe Dθ − g′(z)kψ + (D2 − k2)θ,
(2.23)

Equation (2.23)1 is equivalent to

Raθ = D2 − k2

−k
ψ := B−1(ψ) (2.24)

i.e.

ψ = RaB(θ) (2.25)
Using the above, system (2.23) becomesψ = RaB(θ),

σθ = Pe Dθ − g′(z)kRaB(θ) + (D2 − k2)θ,
(2.26)
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under the following boundary conditions:

θ(0) = θ(1) = ψ(0) = ψ(1) = 0. (2.27)

The linear operator associated to (2.26) is

L = D2 − k2 + PeD − g′kRaB(·) (2.28)

that is not symmetric with respect to the scalar product in L2(0,1). Therefore,
by virtue of a similarity transformation which symmetrizes the operator L, we will
show that the principle of exchange of stabilities holds. Let us employ the following
transformation

θ = M(z)ϕ := e−
Pe
2 zϕ (2.29)

hence,

Lθ = e−
Pe
2 z
[
D2ϕ−

(Pe2

2 + k2
)
ϕ− e

Pe
2 zg′kRaB(e−Pe

2 zϕ)
]

:= M L̂M−1θ, (2.30)

where the operator L̂ is defined as

L̂ = D2 − k2 − Pe2

2 − e
Pe
2 zg′kRaB(·) (2.31)

Via the transformation (2.29), we can now focus our attention on the following
problem ψ = RaB(e−Pe

2 zϕ),
σϕ = L̂ϕ,

(2.32)

with associated boundary conditions

ϕ(0) = ϕ(1) = ψ(0) = ψ(1) = 0. (2.33)

The operator L̂ is symmetric - hence its eingenvalues are all real - and the spectrum
of L̂ is contained in the spectrum of L [78]. Moreover, part of the spectrum of L
for which the eigenfunctions are in

{θ ∈ L2(0,1) | ePe
2 zθ ∈ L2(0,1)}

coincides with the spectrum of L̂ with respect to L2(0,1). Let us consider ϕ = e
Pe
2 zθ,

with θ ∈ L2(0,1) therefore

‖ϕ‖2
L2(0,1) ≤ ‖ePez‖L∞(0,1)‖θ‖2

L2(0,1) < +∞ (2.34)
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2 – Darcy-Bénard convection with vertical throughflow

so
ϕ ∈ L2(0,1), ∀ θ ∈ L2(0,1),

this means the spectra of L and L̂ coincide and the principle of exchange of stabil-
ities holds, i.e. convection can arise only via stationary motions.

By virtue of theorem 2.4.1, let us assume σ = 0 at the criticality. Therefore,
system (2.21) becomes ∇2ψ − Raθ,x = 0,

∇2θ + Pe θ,z − g′(z)ψ,x = 0,
(2.35)

Consequence of theorem 2.4.1 is that ψ̄ and θ̄ in (2.22) are real functions. Hence,
solutions in (2.22) reduce to

ψ = A F (z) sin kx, θ = A G(z) cos kx, (2.36)

where A is an arbitrary amplitude. Hence, from (2.35) we obtain a boundary value
problem consisting of two second order ODEs in z:F ′′ − k2F + Ra kG = 0,

G′′ − k2G+ PeG′ − kg′F = 0,
(2.37)

with the boundary conditions:

F (0) = 0, F (1) = 0, G(0) = 0, G(1) = 0. (2.38)

Nonzero solutions of this ordinary differential eigenvalue problem for Ra were guar-
anteed by the use of the fifth boundary condition,

G′(0) = nonzero constant, (2.39)

which is one of various ways of normalising the eigensolution. This extra condition
requires one further ordinary differential equation and, given that Ra is a constant,
we may supplement Eqs. (2.37) with

Ra′ = 0. (2.40)

The fifth order system, (2.37)-(2.40), was solved using the shooting method as
described in [79, 80, 12]. To summarise: the system was first reduced to first order
form consisting of five ODEs. However, only three initial conditions are given and
therefore the values of the two remaining ones (F ′(0) and Ra) were found by using
a Newton-Raphson iteration scheme which ensures that both the known boundary
conditions at z = 1 (F (1) = 0 and G(1) = 0) are satisfied. The classical fourth
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2 – Darcy-Bénard convection with vertical throughflow

order Runge-Kutta method was used as the basic solver, and it was found that
solutions were generally correct to between five and six decimal places.

The system (2.37)-(2.40) was found to provide a unimodal neutral curve, Ra(k),
with a unique minimum for all values of the Péclet number. The critical Rayleigh
number, Rac, is defined as being that value which corresponds to the minimum of
the neutral curve while the critical wavenumber, kc, is the corresponding wavenum-
ber where,

Rac = min
k∈R+

Ra(k) = Ra(kc). (2.41)

Accurate numerical values of Rac and kc need the system (2.37) to be replaced
by a suitable extended system that will fulfil Eq. (2.41). Therefore we solved the
following system:

F ′′ − k2F + Ra kG = 0,
G′′ − k2G+ PeG′ − kg′F = 0
Ra′ = 0,
F ′′1 − k2F1 − 2kF + Ra(G+ kG1) = 0,
G′′1 − k2G1 − 2kG+ PeG′1 − g′(F + kF1) = 0,
k′ = 0,

(2.42)

where F1 = F,k, G1 = G,k. The full set of boundary conditions is,

F = G = F1 = G1 = 0 for z = 0,1 and G′(0) = 1/π, G′1(0) = 0, (2.43)

where the specific value used here for G′(0) will be discussed in the following section,
while G′1(0) may take any value.

Figure 2.3 shows the neutral curves for values of the Péclet number varying
between Pe = 0 and Pe = 10 with unit increments. These were obtained by solving
the system (2.37)-(2.40). Also shown as small disks are the critical points (kc,Rac),
which were obtained by solving the system (2.42)-(2.43).

When Pe increases from zero, it is immediately apparent that Rac increases and
thus the system is stabilised increasingly. The corresponding critical wavenumber
also increases which means that the wavelength of the convecting pattern decreases.
As has already been mentioned, the basic temperature field becomes increasingly
confined to the lower part of the layer as Pe increases, and therefore disturbances
will be increasingly concentrated there. This is confirmed in Figure 2.4 where we see
that locations of the extreme values of both the streamfunction and the isotherms
descend as Pe increases. At the moderate value, Pe = 3, the cells still occupy
the full cavity but have clearly lost the up/down symmetry that is present when
Pe = 0. But when Pe = 10 both the flow and temperature fields are essentially
detached from the upper surface, and this becomes increasingly so as Pe increases
still further. The width of the convecting cells has now become proportional to the
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Figure 2.3: Neutral curves Ra(k) for increasing values of Pe. The circles show the
location of the minimum, Rac of each curve.

height of the thinning basic thermal boundary layer as we approach the large-Pe
asymptotic regime that is the Wooding problem.

Figures 2.5a and 2.5b show how the critical values of Rac and kc vary as Pe
increases. The respective values for the Darcy-Bénard problem are recovered when
Pe = 0, while the red dashes show the approach to the Wooding problem as Pe
increases for which

(kw,Raw) = (0.7589, 14.3522) ⇒ (kc,Rac) ∼ (0.7589,14.3522)Pe, (2.44)

where the numerical data was taken from [81] and confirmed by the present authors.
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Figure 2.4: Streamlines and isothermal for the quoted values of the Péclet number.

2.5 Weakly nonlinear analysis

It is well-known that the onset of convection for the Darcy-Bénard problem (Pe =
0) is supercritical for all wavenumbers ([82]) and so the primary aim here is to
determine whether or not this remains true in the presence of a vertical throughflow.
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Figure 2.5: The variation of (a) Rac and (b) kc with the Péclet number. In both cases
the dashed red line corresponds to the Wooding problem.

Therefore we shall undertake a weakly nonlinear analysis of the basic steady solution
(2.16) close to the onset of convection. Such an analysis allows us to determine the
so-called Landau equation which relates the amplitude of the most unstable mode
to the deviation of the Rayleigh number from its critical value. The coefficients
of the Landau equation will determine whether or not the onset of convection is
supercritical or subcritical.

Let us introduce a small parameter ε � 1 and perturb the critical Rayleigh
number by an O(ε2) amount [83], i.e. let

Ra = Ra0 + ε2Ra2 + . . . (2.45)

where Ra0 is a neutral value of the Rayleigh number arising from the linear analysis.
Given the proximity of the Rayleigh number to its critical value we will need to
define τ to be a suitably slow time scale, as follows,

τ = 1
2ε

2t, (2.46)

where the numerical factor was chosen so that the resulting Landau equation will
have solely unit coefficients when Pe = 0 and k = π. Hence system (2.17) becomes,∇2ψ = (Ra0 + ε2Ra2)θ,x,

∇2θ = 1
2ε

2θ,τ − Pe θ,z + g′(z)ψ,x + ψ,xθ,z − ψ,zθ,x.
(2.47)

The weakly nonlinear analysis proceeds by expanding the solution of (2.47) as a
power series in ε [79]: (

ψ

θ

)
=
∞∑
n=1

εn
(
ψn
θn

)
. (2.48)
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2 – Darcy-Bénard convection with vertical throughflow

The following analysis focuses on the first three orders of approximation arising
from the substitution of (2.48) into (2.47).

2.5.1 First order
At the first order of approximation, O(ε), the resulting equations coincide with the
linear system (2.35), i.e. ∇2ψ1 = Ra0θ1,x,

∇2θ1 = −Pe θ1,z + g′(z)ψ1,x,
(2.49)

for which we may choose the following solutionψ1 = A(τ)f1(z) sin kx,
θ1 = A(τ)g1(z) cos kx,

(2.50)

where A(τ) is the amplitude of the perturbation which evolves slowly in time.
Hence, upon substituting (2.50) in (2.49), we obtain (2.37) which can be solved as
already described in Section 2.4.

2.5.2 Second order
At the second order of approximation, O(ε2), the first self-interaction of the per-
turbation occurs. System (2.47) reduces to∇2ψ2 − Ra0θ2,x = 0,

∇2θ2 = −Pe θ2,z + g′(z)ψ2,x + ψ1,xθ1,z − ψ1,zθ1,x.
(2.51)

Since
ψ1,xθ1,z − ψ1,zθ1,x =A2k(f1g

′
1 cos2 kx+ f ′1g1 sin2 kx)

=1
2A

2k
[
f1g
′
1 + f ′1g1 + (f1g

′
1 − f ′1g1) cos 2kx

] (2.52)

we choose the following form as the solutions for (2.51),ψ2 = A2(τ)f2(z) sin 2kx,
θ2 = A2(τ)g0(z) + A2(τ)g2(z) cos 2kx.

(2.53)

Hence, the resulting system of ODEs is
f ′′2 − 4k2f2 + Ra02kg2 = 0,
g′′2 − 4k2g2 + Peg′2 − 2kg′f2 = 1

2k(f1g
′
1 − f ′1g1),

g′′0 + Pe g′0 = 1
2k(f1g

′
1 + f ′1g1),

(2.54)

where each of f2, g2 and g0 are zero at z = 0,1. Generally these equations may be
solved easily because the inhomogeneous terms are nonresonant.
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2.5.3 Third order
A further self-interaction appears in the O(ε3) system, which is∇2ψ3 = Ra0θ3,x + Ra2θ1,x,

∇2θ3 = 1
2θ1,τ − Pe θ3,z + g′(z)ψ3,x + ψ1,xθ2,z + ψ2,xθ1,z − ψ1,zθ2,x − ψ2,zθ1,x.

(2.55)

By employing solutions (2.50) and (2.53) and defining the partial differential oper-
ators L1 and L2 to be such that

L1(ψ3, θ3) = ∇2ψ3 − Ra0θ3,x,

L2(ψ3, θ3) = ∇2θ3 + Peθ3,z − g′(z)ψ3,x,
(2.56)

the resulting system is

L1(ψ3, θ3) = − Ra2Akg1 sin kx,
L2(ψ3, θ3) = 1

2Aτg1 cos kx

+ A3
{[
f1g
′
0 + 1

2(f1g
′
2 + 2f2g

′
1 + 2f ′1g2 + f ′2g1)

]
k cos kx

+ 1
2

[
f1g
′
2 + 2f2g

′
1 − 2f ′1g2 − f ′2g1

]
k cos 3kx

} (2.57)

Many of the inhomogeneous terms in (2.57) have the wavenumber, k, in the x-
direction and are therefore resonant because the partial differential operators on the
left hand side have eigensolutions with the same the same horizontal wavenumber.
This means that (2.57) cannot be solved unless a solvability condition involving
A, Aτ and Ra2 can be found. In many problems, particularly those which are
self-adjoint, it is usually quite straightforward to write down an integral solvability
condition for this purpose. The present system is not self-adjoint, but it remains
possible to obtain a solvability condition using numerical means. The manner in
which we accomplished this may be found in the Appendix, and it means that the
quantities Ra2A, A,τ and A3 need to balance in such a way that they satisfy the
Landau equation,

c1A,τ = Ra2A− c2A
3, (2.58)

where the values of c1 and c2 are obtained numerically. As a partial check on
the accuracy of the present analysis, the value G′(0) = 1/π in (2.43) and the 1/2
using for the definition of τ in (2.46) yield c1 = c2 = 1 when Pe = 0, k = π and
Ra = 4π2, a result that may be shown analytically. The value, c1, is found always
to be positive; we shall not discuss its value but we note that it is related to the
speed at which A varies and it may even be scaled out of Eq. (2.58) by a suitable
redefinition of τ .

Eq. (2.58) admits the steady solutions A = 0 and A = ±
√

Ra2/c2. The former
is a stable state when Ra2 < 0 and an unstable one when Ra2 > 0; these conclusions
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are consistent with the linear theory presented earlier. The nonzero solution exists
when both Ra2 and c2 have the same sign. Therefore positive values of c2 mean
that nonzero solutions arise when Ra2 > 0 and therefore the onset of convection is
supercritical in such cases. This property is shared with the Darcy-Bénard problem.
On the other hand, negative values of c2 means that steady nonzero solutions exist
only when Ra2 < 0, and so the bifurcation is subcritical (see [84, p. 21]). It is
already known that the onset of convection is subcritical for the Wooding problem,
Pe→∞ ([85]).
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Figure 2.6: Variation of c2 with Pe when k = kc(Pe).

Therefore the simplest a priori expectation is that the transition between a
supercritical onset and a subcritical one will take place at an intermediate value of
Pe, i.e. when the value of c2 changes sign. The detailed dependence of c2 on Pe is
shown in Figure 2.6, where one may see that c2 decreases from 1 as Pe increases
from zero, and that it changes sign when Pe = 3.1617. So far, we have been
considering the weakly nonlinear theory at the minimum in the neutral curves, i.e.
when Ra = Rac and k = kc, and therefore Pe = 3.1617 marks the global transition
between supercritical and subcritical onset subject to that restriction.

We shall now consider what happens at other points on the neutral curves by
computing the variation of c2 along each curve. Figure 2.7 shows a selection of
neutral curves where those portions which correspond to a supercritical instability
(c2 > 0) are rendered in black, while those which are subcritical (c2 < 0) are
rendered in red. Also shown are the neutral pairs, (kc,Rac), as the dotted line. In
the figure there are two clear boundaries which demarkate the edge of the region of
subcriticality at onset. For convenience we shall refer to these as the left and right
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Figure 2.7: Region of subcritical instability as Pe increases.

transitional loci.
Immediately, it is clear that all neutral curves, with the exception of when

Pe = 0, have some portion which corresponds to subcritical instability. Whenever
Pe < 3.1617 these sections of the neutral curve do not include the minimum.
Therefore the onset of convection in an unbounded domain will be supercritical.
But once Pe rises above 3.1617 onset will be subcritical. Clearly, if the domain is
bounded horizontally by insulated and impermeable boundaries, then the neutral
values of Ra will correspond to a set of discrete values of k. Then the issue of
whether onset is supercritical or subcritical will depend on which value of the
Rayleigh number is the smallest.

The right hand transitional locus corresponds to when c2 = 0 and this represents
a transition from subcriticality to supercriticality as k increases. However, the left
hand transitional locus marks the value of k where c2 has a simple pole. So as the
locus is approached from the left c2 → ∞ but as it is approached from the right
then c2 → −∞. A detailed examination of the intermediate solutions in the above
weakly nonlinear theory shows that the solutions for f2 and g2 in (2.54) become
infinite in magnitude as this boundary is approached. This marks a new resonance

37



2 – Darcy-Bénard convection with vertical throughflow

but it is one which involves forcing terms with the wavenumber, 2k. Indeed, this
left hand boundary is precisely where Ra(k) = Ra(2k) which is the source of the
resonance. Our conclusion for now is that the Landau equation given above is
inadequate in this isolated case and the nonlinear dynamics close to onset will
involve both wavenumbers as competing solutions.

Finally, we note that the left and right transitional loci merge when Pe = 0
which is where we recover the Darcy-Bénard problem. In this case there is no
resonance at all because the inhomogeneous terms in (2.54) have an odd symmetry
about z = 1

2 whereas the O(ε) eigensolutions are even. However, it is our intention
in a subsequent paper to break this symmetry weakly by allowing Pe = O(ε) in
magnitude; such a device will relegate the problematical resonance mentioned in
the previous paragraph to the O(ε3) equations and therefore it will be possible to
obtain a pair of coupled Landau equations for the amplitudes of the k-mode and
the 2k-mode.

2.6 Conclusions

We have studied the onset of convection in a fluid-saturated horizontal porous layer
heated from below and under the action of a uniform vertical throughflow. The
principle of exchange of stabilities has been proved to hold and a linear instability
analysis has been provided in order to set the context for the subsequent weakly
nonlinear analysis. The main aim of the weakly nonlinear analysis was to establish
whether or not the onset of convection is supercritical in all cases and, if not,
to determine those circumstances when subcriticality may be expected. Figure
2.7 gives the locus within which the onset of convection is subcritical. We found
that the onset of convection at the critical values will always be subcritical once
the Péclet number exceeds 3.1617, but that a subcritical onset always arises when
Pe /= 0 but only over ranges of wavenumber that do not contain the critical value.

We have already mentioned one possible extention to the present work where
we will consider what happens when Pe = O(ε). Another study which will supple-
ment the present work involves undertaking strongly nonlinear computations, one
aim for which will be to determine the depth of subcriticality of convective mo-
tion. This will enable us to provide a nonlinear stability curves to supplement the
present linear stability curves and to compare with energy-based methods. Such
an analysis already exists for the Wooding problem in [85] where that author found
that nonlinear onset takes place when,

Raw = 11.6132 and kw = 0.2867, (2.59)

which should be compared with the values given in (2.44).
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Appendix
Since (2.58) holds also for the stationary case, we can suppress the time derivative
term Aτ in system (2.57), obtaining

L1(ψ3, θ3) = − Ra2Akg1 sin kx,

L2(ψ3, θ3) = A3
{[
f1g
′
0 + 1

2(f1g
′
2 + 2f2g

′
1 + 2f ′1g2 + f ′2g1)

]
k cos kx

+ 1
2

[
f1g
′
2 + 2f2g

′
1 − 2f ′1g2 − f ′2g1

]
k cos 3kx

} (2.60)

The resulting system (2.60) admits the following solution

ψ3 = A3 f3(z) sin kx, θ3 = A3 g3(z) cos kx, (2.61)

Hence, substituting solution (2.61) in (2.60) and dividing both sides of the
equations by A3, we get

f ′′3 − k2f3 + Ra0kg3 = −
(

Ra2

A2

)
kg1 sin kx,

g′′3 − k2g3 + Peg′3 − g′(z)kf3 =
[
f1g
′
0 + 1

2(f1g
′
2 + 2f2g

′
1 + 2f ′1g2 + f ′2g1)

]
k cos kx

+ 1
2

[
f1g
′
2 + 2f2g

′
1 − 2f ′1g2 − f ′2g1

]
k cos 3kx

(2.62)
We then solved system (2.62) as an eigenvalue problem for Ra2/A

2 from which,
and given the form of (2.58), we may now say that

c2 = Ra2

A2 . (2.63)

A similar device was used to compute c1.
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Chapter 3

Optimal stability thresholds in a
rotating fully anisotropic porous
medium with LTNE

3.1 Introduction

In the present chapter, it is analysed the onset of convection in a fully anisotropic
porous medium in LTNE scheme, allowing for the Corolis force (see [86]). Linear
and nonlinear stability analyses of the conduction solution are performed. In par-
ticular, the coincidence between the global nonlinear stability threshold and the
linear instability threshold is proved. This means that a necessary and sufficient
condition for global nonlinear stability of conduction solution is obtained.

In section 3.2, we introduce the mathematical model and the dimensionless evo-
lution equations for perturbation fields to conduction solution in order to study the
stability of the motionless state. Then, in section 3.3, a detailed proof of the strong
form of the principle of exchange of stabilities is performed and the critical Rayleigh
number for the onset of (stationary) convection is determined, in a closed algebraic
form. Section 3.4 deals with the nonlinear stability analysis of the conduction
solution, with respect to the L2−norm. Finally, in section 3.5 numerical simula-
tions concerning the influence of rotation and anisotropy on the stability/instability
thresholds is analysed. We show that the increasing conductivity ratio γ has a
destabilizing effect on conduction. Mechanical anisotropy ξi (i = 1,2) has the same
effect, for ξj small (j /= i), while a slightly different behaviour is obtained when ξj
is high. Then we prove that increasing fluid and solid thermal conductivities delay
the onset of convection, as well as rotation. Moreover, the presence of anisotropy
forces the fluid in a two-dimensional motion. Convective cells are rolls aligned in x
or y direction, depending on the ratios between anisotropy parameters.
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3.2 Local thermal nonequilibrium model
Let us consider a horizontal porous layer of depth d, filled by an incompressible,
homogeneous fluid at rest. We assume that the medium is uniformly heated from
below and uniformly rotating about the vertical axis z (upward vertical) with con-
stant angular velocity Ω. Let TL be the temperature of the lower plane z = 0 and
let TU be the temperature of the upper plane z = d. In the local thermal non
equilibrium scheme (LTNE), denoting by Tf and Ts the fluid temperature and the
solid skeleton temperature, respectively, it turns out that

Ts = Tf = TL on z = 0, Ts = Tf = TU on z = d (TL > TU) . (3.1)

Moreover, we assume that the layer is anisotropic and we denote by K the
permeability tensor, and let Ds, Df be the thermal conductivity tensors of solid
phase and fluid phase, respectively. Assume that the principal axis (x, y, z) of the
permeability tensor are the same as the ones of conductivity tensor, one obtains

K = KzK∗ K∗ =

ξ1 0 0
0 ξ2 0
0 0 1

 ξ1 = Kx

Kz

ξ2 = Ky

Kz

Ds = κszD∗s D∗s =

ζ1 0 0
0 ζ2 0
0 0 1

 ζ1 = κsx
κsz

ζ2 =
κsy
κsz

Df = κfzD∗f D∗f =

η 0 0
0 η 0
0 0 1

 η = κfh
κfz

(3.2)

where, in particular, η is the thermal anisotropy parameter for the fluid phase.
The mathematical model, in the Oberbeck - Boussinesq approximation and

accounting for the Coriolis force due to the uniform rotation of the layer about the
vertical axis z is [11, 27, 17, 51]

v = µ−1K

−∇p+ ρfgαTfk−
2Ωρf
ε

k× v


∇ · v = 0
ε(ρc)fT f,t + (ρc)fv · ∇Tf = ε∇ · (Df · ∇Tf ) + h(Ts − Tf )
(1− ε)(ρc)sT s,t = (1− ε)∇ · (Ds · ∇Ts)− h(Ts − Tf )

(3.3)

where v, p, Ts and Tf are (seepage) velocity, reduced pressure, solid phase tem-
perature and fluid phase temperature, respectively; µ, ρf , ρs, g, α, Ω, ε, c, h are
dynamic viscosity, fluid density, solid density, gravity acceleration, thermal expan-
sion coefficient, angular velocity, porosity, specific heat and interaction coefficient,
respectively.
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3 – Optimal stability thresholds in a rotating porous medium with LTNE

To system (3.3) we append the following boundary conditions

Ts = Tf = TL on z = 0, Ts = Tf = TU on z = d,

v · n = 0 on z = 0, d
(3.4)

being n the unit outward normal to planes z = 0, d.
The system (3.3) admits the conduction solution m0:

m0 =
{
v̄ = 0 , T̄s = T̄f = −βz + TL , p̄ = −ρfgαβ

z2

2 + ρfgαTLz

}
(3.5)

where β = TL − TU
d

(> 0) is the adverse temperature gradient.
In order to study the stability of the steady solution (3.5), let us introduce the

following perturbation fields

vi = ui + v̄i Ts = ϕ+ T̄s Tf = θ + T̄f p = π + p̄ (3.6)

and the dimensionless quantities

xi = x̃id, t = t̃
εd

U
, π = π̃P, ui = ũiU, θ = θ̃T ′, ϕ = ϕ̃T ′ (3.7)

where

U = εκfz
(ρc)fd

, P = Uµd

Kz

, T ′ = βd

√√√√ κfzεµ

βgαKzρ2
fcfd

2 . (3.8)

The dimensionless equations for the perturbation fields, omitting all the tilde, are
K−1u = −∇π +Rθk− T k× u
∇ · u = 0
θ,t + u · ∇θ = Rw + η∆1θ + θ,zz +H(ϕ− θ)
Aϕ,t − ζ1ϕ,xx − ζ2ϕ,yy − ϕ,zz +Hγ(ϕ− θ) = 0

(3.9)

where ∆1 = ∂,xx + ∂,yy and

γ = εκfz
(1− ε)κsz

, A = (ρc)sκfz
(ρc)fκsz

, H = hd2

εκfz

R2 =
Kzρ

2
fcfd

2βgα

µεκfz
Rayleigh number , T = 2ΩρfKz

εµ
Taylor number.

To system (3.9) we append the following initial conditions

u(x,0) = u0(x) , π(x,0) = π0(x) , θ(x,0) = θ0(x) , ϕ(x,0) = ϕ0(x) (3.10)
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3 – Optimal stability thresholds in a rotating porous medium with LTNE

where ∇ · u0 = 0, and the following boundary conditions

w = θ = ϕ = 0 on z = 0,1. (3.11)

We assume that perturbation fields are periodic in x and y directions of periods
2π
ax

and 2π
ay

, respectively, and they belong toW 2,2(V ), ∀t ∈ R+ where V =
[
0, 2π
ax

]
×[

0, 2π
ay

]
× [0, 1] is the periodicity cell. Then we denote by (·, ·) and ‖ · ‖ the scalar

product on the Hilbert space L2(V ), and the related norm, respectively.

3.3 Principle of exchange of stabilities
In order to study the linear stability of m0, let us consider the linear version of
(3.9), i.e. 

K−1u = −∇π +Rθk− T k× u
∇ · u = 0
θ,t = Rw + η∆1θ + θ,zz +H(ϕ− θ)
Aϕ,t − ζ1ϕ,xx − ζ2ϕ,yy − ϕ,zz +Hγ(ϕ− θ) = 0

(3.12)

under the boundary conditions (3.11). Applying the curl to (3.12)1, one obtains
w,yξ2 − v,z = Rθ,yξ2 + T u,zξ2

u,z − w,xξ1 = −Rθ,xξ1 + T v,zξ1

v,xξ1 − u,yξ2 = T ξ1ξ2w,z

(3.13)

and deriving (3.13)1 by y, (3.13)2 by x and (3.13)3 by z, one gets
w,yyξ2 − v,zy = Rθ,yyξ2 + T u,zyξ2

u,zx − w,xxξ1 = −Rθ,xxξ1 + T v,zxξ1

v,xzξ1 − u,yzξ2 = T ξ1ξ2w,zz.

(3.14)

Subtracting (3.14)2 from (3.14)1 and then substituting the result in (3.14)3, it
follows that

ξ1w,xx + ξ2w,yy + w,zz = ξ1Rθ,xx + ξ2Rθ,yy − T 2ξ1ξ2w,zz. (3.15)

Let us consider now the autonomous system
ξ1w,xx + ξ2w,yy + w,zz + T 2ξ1ξ2w,zz − ξ1Rθ,xx − ξ2Rθ,yy = 0
θ,t −Rw − η∆1θ − θ,zz −H(ϕ− θ) = 0
Aϕ,t − ζ1ϕ,xx − ζ2ϕ,yy − ϕ,zz +Hγ(ϕ− θ) = 0

(3.16)
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3 – Optimal stability thresholds in a rotating porous medium with LTNE

and seek for solutions having the following time-dependence ([87]):
ϕ̂(t,x) = ϕ(x) eσt, ∀ϕ̂ ∈ (w, θ, ϕ) , σ ∈ C , (3.16) becomes

ξ1w,xx + ξ2w,yy + w,zz + T 2ξ1ξ2w,zz − ξ1Rθ,xx − ξ2Rθ,yy = 0
σθ −Rw − η∆1θ − θ,zz −H(ϕ− θ) = 0
Aσϕ− ζ1ϕ,xx − ζ2ϕ,yy − ϕ,zz +Hγ(ϕ− θ) = 0.

(3.17)

Let us multiply (3.17)1 by w∗, (3.17)2 once by ξ1θ
∗
,xx and once by ξ2θ

∗
,yy, (3.17)3

once by ξ1ϕ
∗
,xx and once by ξ2ϕ

∗
,yy, where the asterisks denote the complex conjugate,

accounting for the boundary conditions one obtains:

σ

[
ξ1‖θ,x‖2 + ξ2‖θ,y‖2 + Aξ1

γ
‖ϕ,x‖2 + Aξ2

γ
‖ϕ,y‖2

]
= −ξ1‖w,x‖2

− ξ2‖w,y‖2 − (1 + T 2ξ1ξ2)‖w,z‖2 − ξ1R

[
(θ,xx, w∗) + (w, θ∗,xx)

]

− ξ2R

[
(θ,yy, w∗) + (w, θ∗,yy)

]
− ξ1η‖θ,xx‖2 − ξ1η‖θ,xy‖2 − ξ1‖θ,xz‖2

−Hξ1

[
(ϕ,xx, θ∗) + (θ, ϕ∗,xx)

]
−Hξ1‖θ,x‖2 − ξ2η‖θ,xy‖2 − ξ2η‖θ,yy‖2

− ξ2‖θ,yz‖2 −Hξ2

[
(ϕ,yy, θ∗) + (θ, ϕ∗,yy)

]
−Hξ2‖θ,y‖2 − ζ1ξ1

γ
‖ϕ,xx‖2

− ζ2ξ1

γ
‖ϕ,xy‖2 − ξ1

γ
‖ϕ,xz‖2 −Hξ1‖ϕ,x‖2 − ζ1ξ2

γ
‖ϕ,xy‖2

− ζ2ξ2

γ
‖ϕ,yy‖2 − ξ2

γ
‖ϕ,yz‖2 −Hξ2‖ϕ,y‖2

(3.18)

and hence, since terms in (3.18) are real, then necessarily σ ∈ R. Therefore, the
strong form of the principle of exchange of stabilities holds, i.e. convection can
occur only through a steady motion.

In order to determine the critical Rayleigh number for the onset of convection,
by virtue of the principle of exchange of stabilities, setting σ = 0 in (3.17), one
obtains 

ξ1w,xx + ξ2w,yy + w,zz + T 2ξ1ξ2w,zz = ξ1Rθ,xx + ξ2Rθ,yy

η∆1θ + θ,zz −Hθ = −Rw −Hϕ
ζ1ϕ,xx + ζ2ϕ,yy + ϕ,zz −Hγϕ = −Hγθ.

(3.19)

Denoting
L ≡ ξ1∂,xx + ξ2∂,yy + ∂,zz + T 2ξ1ξ2∂,zz

L1 ≡ η∆1θ + ∂,zz −H
L2 ≡ ζ1∂,xx + ζ2∂,yy + ∂,zz −Hγ

(3.20)
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3 – Optimal stability thresholds in a rotating porous medium with LTNE

(3.19) becomes 
Lw = ξ1Rθ,xx + ξ2Rθ,yy

L1θ = −Rw −Hϕ
L2ϕ = −Hγθ.

(3.21)

Now, applying the operators L and L2 to (3.21)2 and substituting (3.21)1 and
(3.21)3 in the resulting equation, one leads

LL1L2θ = −R2ξ1(L2θ),xx −R2ξ2(L2θ),yy +H2γLθ. (3.22)

Splitting the operators L1 and L2, from (3.22) it follows that

(ζ1∂,xx + ζ2∂,yy + ∂,zz −Hγ)(η∆1 + ∂,zz)Lθ =
= (ζ1∂,xx + ζ2∂,yy + ∂,zz)HLθ
−R2(ξ1∂,xx + ξ2∂,yy)(ζ1∂,xx + ζ2∂,yy + ∂,zz)θ
+R2(ξ1∂,xx + ξ2∂,yy)Hγθ.

(3.23)

By virtue of the periodicity and of the boundary conditions (3.11)2, since the se-
quence {sin(nπz)}n∈N is a complete orthogonal system for L2([0,1]), accounting for
solutions of the form θ = Θ0 sin(nπz)ei(axx+ayy), (3.23) becomes

(−ζ1a
2
x − ζ2a

2
y − n2π2 −Hγ)(−ηa2

x − ηa2
y − n2π2)

(−ξ1a
2
x − ξ2a

2
y − n2π2 − T 2ξ1ξ2n

2π2) =
= (−ζ1a

2
x − ζ2a

2
y − n2π2)H(−ξ1a

2
x − ξ2a

2
y − n2π2 − T 2ξ1ξ2n

2π2)
−R2(−ξ1a

2
x − ξ2a

2
y)(−ζ1a

2
x − ζ2a

2
y − n2π2 −Hγ).

(3.24)

Setting A∗ = 1 + T 2ξ1ξ2 and

f(a2
x, a

2
y, n

2) =
ξ1a

2
x + ξ2a

2
y + n2π2A∗

ξ1a2
x + ξ2a2

y

·
[
ηa2

x + ηa2
y + n2π2 +

H(ζ1a
2
x + ζ2a

2
y + n2π2)

ζ1a2
x + ζ2a2

y + n2π2 +Hγ

]
,

(3.25)

from (3.24) it follows that the critical Rayleigh number RL for the onset of convec-
tion is given by

RL = min
(n2,a2

x,a
2
y)∈N×R+×R+

f(a2
x, a

2
y, n

2) (3.26)

and since f(a2
x, a

2
y, n

2) is strictly increasing with n2, this implies that the minimum
is attained at n2 = 1. Hence

RL = min
(a2

x,a
2
y)∈R+×R+

f(a2
x, a

2
y, 1). (3.27)
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3 – Optimal stability thresholds in a rotating porous medium with LTNE

Remark 3. Define
R0 = RL

π2 = min
(x̄,ȳ)∈R+×R+

f1(x̄, ȳ), (3.28)

where

f1(x̄, ȳ) = ξ1x̄+ ξ2ȳ + A∗

ξ1x̄+ ξ2ȳ

[
ηx̄+ ηȳ + 1 + H0(ζ1x̄+ ζ2ȳ + 1)

ζ1x̄+ ζ2ȳ + 1 +H0γ

]

x̄ = a2
x

π2 , ȳ =
a2
y

π2 , H0 = H

π2 .

(3.29)

Let us observe that:

i) in the case of horizontal isotropy, i.e. ξ1 = ξ2 and ζ1 = ζ2, the critical
Rayleigh number R0 given by (3.28) coincides with that one obtained in [17];

ii) in the absence of rotation (T 2 = 0) and if the porous medium is isotropic
(ξ1 = ξ2 = ζ1 = ζ2 = η = 1), then the critical Rayleigh number R0 coincides
with that one obtained in [12]. Moreover, in the hypothesis of local thermal
equilibrium (H0 → ∞), by simple calculations, the critical Rayleigh reverts
to the classical Rayleigh number for the isotropic porous medium in the local
thermal equilibrium ([27]);

iii) the stabilizing effect of fluid thermal conductivity on the onset of convection
is evident since the partial derivative of (3.29) with respect to η is strictly
positive.

3.4 Optimal stability result
In order to study the nonlinear stability of the conduction solution m0, let us
introduce the following Lyapunov functional

E(t) = ‖θ‖
2

2 + A‖ϕ‖2

2γ (3.30)

and define

D(t) = η‖∇1θ‖2 + ‖θ,z‖2 + ζ1

γ
‖ϕ,x‖2 + ζ2

γ
‖ϕ,y‖2 + 1

γ
‖ϕ,z‖2 +H‖θ − ϕ‖2

I(t) = (θ, w) .
(3.31)

Multiplying (3.9)3 by θ, (3.16)3 by ϕ, integrating over V and then adding the
resulting equations, we find out

dE

dt
= −D

(
1−R I

D

)
. (3.32)
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3 – Optimal stability thresholds in a rotating porous medium with LTNE

In order to capture the influence of rotation on the nonlinear stability analysis
of the conduction solution m0, we shall apply the differential constraint approach
[13, 22, 17]. To this end let us consider the following variational problem

1
RE

= max
H∗

I

D
(3.33)

with

H∗ = {(w, θ, ϕ) : w = θ = ϕ = 0 on z = 0,1; periodic in x and y

directions, with period 2π
ax
,
2π
ay

respectively; D <∞; verifying (3.16)1}
(3.34)

the space of the kinematically admissible perturbations.
The variational problem (3.33) is equivalent to

1
RE

= max
H

I +
∫
V λ g dV

D
(3.35)

where λ(x) is a Lagrange multiplier and

g(x) = ξ1w,xx + ξ2w,yy + w,zz + T 2ξ1ξ2w,zz − ξ1Rθ,xx − ξ2Rθ,yy

H = {(w, θ, ϕ) : w = θ = ϕ = 0 on z = 0,1; periodic in x and y

directions, with period 2π
ax
,
2π
ay

respectively; D <∞}.
(3.36)

By applying the Poincaré inequality in (3.31)1, it turns out that

D(t) ≥ π2a‖θ‖2 + b
π2

γ
‖ϕ‖2 (3.37)

where
a = min{η, 1} b = min{ζ1, ζ2, 1}. (3.38)

Then, from (3.32) by virtue of (3.37) , if R < RE one obtains:

dE

dt
≤ π2(R−RE)c

RE

E

where c ≤ min
{

2a, 2b
A

}
. Hence the condition R < RE implies the nonlinear, global

and exponential stability of m0, according to the following inequality

E(t) ≤ E(0) exp
[
π2(R−RE)c

RE

t

]
. (3.39)
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Remark 4. Multiplying (3.9)1 by u, integrating over V and applying the Cauchy-
Schwarz inequality, it turns out that

δ−1‖u‖2 ≤ ‖θ‖2. (3.40)

where δ = R2

2 max{ξ1, ξ2, 2}. Therefore, the condition R < RE implies the decay of
‖u‖, as well.

In order to determine the critical Rayleigh number RE, we solve the variational
problem (3.35). The Euler Lagrange equations are

θ + ξ1λ,xx + ξ2λ,yy + λ,zz + T 2ξ1ξ2λ,zz = 0
2[η∆1θ + θ,zz −H(θ − ϕ)] = ξ1R

2λ,xx + ξ2R
2λ,yy −Rw

ζ1ϕ,xx + ζ2ϕ,yy + ϕ,zz +Hγ(θ − ϕ) = 0
ξ1w,xx + ξ2w,yy + w,zz + T 2ξ1ξ2w,zz = ξ1Rθ,xx + ξ2Rθ,yy.

(3.41)

By virtue of (3.20), (3.41) becomes
LL1θ = −HLϕ−RLw
Lw = ξ1Rθ,xx + ξ2Rθ,yy

L2ϕ = −Hγθ.
(3.42)

Applying L2 to (3.42)1 and substituting (3.42)2 and (3.42)3 in the resulting equa-
tion, one obtains (3.22) and therefore RL = RE, i.e. the coincidence between the
global nonlinear stability threshold and the linear instability threshold, implying
the absence of subcritical instabilities. This is an optimal result since the condition
R < RE = RL is a necessary and sufficient condition to guarantee the stability of
m0.

3.5 Numerical results
This section will deal with the solution of Eq. (3.28). It will be analysed the
influence of parameters on the critical Rayleigh number. First of all, we would like
to point out the behaviour of function f1(x̄, ȳ) in (3.29). Fixed five parameters
(ξ1, ξ2, ζ1, ζ2, η) in f1(x̄, ȳ), once the following transformation is adopted

(ξ1, ξ2, ζ1, ζ2, η)→ (ξ2, ξ1, ζ2, ζ1, η), (3.43)

values initially assumed by x̄ are taken by ȳ and vice versa. Moreover, function
f1(x̄,0) will have the same graph as f1(0, ȳ). This behaviour is important because
by applying the previous transformation, the same results obtained for x̄ hold for
ȳ and vice versa.

48



3 – Optimal stability thresholds in a rotating porous medium with LTNE

Figure 3.1 shows the stabilizing effect of rotation on the onset of convection,
which is an expected physical behaviour. Moreover, taking into account (3.29),
one immediately proves that f1(x̄, ȳ) is an increasing function of T 2. In numerical
analysis, for the sake of simplicity, we confine ourselves in considering the case of
isotropic porous medium, i.e. ξ1 = ξ2 = ζ1 = ζ2 = η = 1. However, analogous
results are obtained when another set of these parameters is fixed.
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Figure 3.1: Critical Rayleigh number as function of the scaled inter-phase heat transfer
coefficient H0 for different values of Taylor number T with ξ1 = ξ2 = ζ1 = ζ2 = η = 1
and γ = 0.4
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Figure 3.2: Critical Rayleigh number as function of the scaled inter-phase heat transfer
coefficient H0 for different values of γ with ξ1 = ζ1 = 0.1, ξ2 = ζ2 = η = 1 and T 2 = 20

Note that in Figure 3.1 the critical Rayleigh number is taken as a function of
the scaled inter-phase heat transfer coefficient H0. As [27] pointed out, since this
quantity is not easily measured, we need to determine a range in which this param-
eter can vary. Starting from its definition H0 = h2d

εκfzπ2
, for reasonable combinations

of these parameters, H0 is assumed to vary between 0.01 and 106. It is well known
that rotation has a stabilizing effect on conduction. In particular, Figure 3.1 shows
that this effect of Taylor number is very pronounced for large values of H0, while it
is less remarkable for H0 ∼ 10−1. We would like to remark that for large values of
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Figure 3.3: Critical Rayleigh number as function of the scaled inter-phase heat transfer
coefficient H0 for different values of ξ1 with ξ2 = ζ2 = η = 1, ζ1 = 0.1, γ = 0.4 and
T 2 = 20
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Figure 3.4: Critical Rayleigh number as function of ξ1 with ζ1 = 0.1, ζ2 = ξ2 = η =
1, T 2 = 20, γ = 0.4, (a) H0 = 100, (b) H0 = 0.01

H0, each curve tends to become parallel to x axis. As shown in [27], this behaviour
represents the region of local thermodynamic equilibrium and it will characterize
the following images, as well.

In Figure 3.2, the destabilizing effect of the parameter γ on the onset of con-
vection is clear. For large values of H0, R0 is inversely proportional to γ, while
for small values of H0, the presence of γ is negligible. This kind of behaviour is
evident in Eq. (3.28) and it is reported in [27], as well. Physically, if h is large, i.e.
the heat exchange between the phases is high, increasing the fluid conductivity κfz
fosters the onset of convection.

Figures 3.3 shows the behaviour of the critical Rayleigh number as a function
of H0 for different values of ξ1. The behaviour for low values of H0 is similar to
the one for large values. In particular, R0 increases up to a certain value either
for H0 = 0.01 and H0 = 106. After this point, it starts decreasing towards a limit
value. The asymptotic trend is highlighted in Figures 3.4a-3.4b, where H0 = 100
and H0 = 0.01, respectively.
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3 – Optimal stability thresholds in a rotating porous medium with LTNE

Table 3.1: Significant values of R0, x̄ and ȳ depending on ξ1, with ξ2 = η = ζ2 = 1, ζ1 =
0.1

(a) H0 = 100

ξ1 R0 x̄ ȳ

0.20 34.6354 0 2.4519
0.30 43.6359 0 2.9776
0.39 51.3471 0 3.4167
0.40 50.7299 7.9758 0
0.41 50.6284 7.9648 0
0.45 50.2671 7.9257 0
0.50 49.8963 7.8854 0

(b) H0 = 0.01

ξ1 R0 x̄ ȳ

0.80 26.2973 0 4.1436
0.98 30.7327 0 4.5613
0.99 30.9769 0 4.5834
1 31.2207 4.6010 0.0043
1.01 31.2086 4.6043 0
1.05 31.1626 4.6001 0
1.10 31.1098 4.5954 0

Table 3.2: Significant values of R0, x̄ and ȳ depending on ξ2, with ξ1 = η = ζ1 = 1, ζ2 =
0.1

(a) H0 = 100

ξ2 R0 x̄ ȳ

0.20 34.6354 2.4519 0
0.30 43.6359 2.9776 0
0.39 51.3471 3.4167 0
0.40 50.7299 0 7.9758
0.41 50.6284 0 7.9648
0.45 50.2671 0 7.9257
0.50 49.8963 0 7.8854

(b) H0 = 0.01

ξ2 R0 x̄ ȳ

0.80 26.2973 4.1436 0
0.98 30.7327 4.5613 0
0.99 30.9769 4.5834 0
1 31.2207 0.0043 4.6010
1.01 31.2086 0 4.6043
1.05 31.1626 0 4.6001
1.10 31.1098 0 4.5954

Furthermore, in Tables 3.1-3.2, some significant values of R0 are reported in
order to show which is the critical anisotropy parameter beyond which R0 inverts
its trend, both for H0 = 100 and H0 = 0.01. In addition, note that the moment
in which R0 starts decreasing coincides with the one in which the periodicity cells
change their nature. Firstly, when ξ2 is fixed and ξ1 is increasing, they are rolls
aligned along x axis. Then they turn into rolls aligned along y axis. The opposite
transition occurs when transformation (3.43) is adopted, as shown in Table 3.2.
This phenomenon is physically admissible, as pointed out by [88]. Small values of
ξ1 imply that the fluid struggles to move in the x direction therefore the motion
has components along y and z axis. Whereas, greater values of ξ1 allow the fluid
to move easier in x direction, favouring the creation of rolls along y axis.

[35] found that the presence of anisotropic porous media yields a two-dimensional
fluid motion. Convective cells are rolls aligned in x or y direction, depending on
the ratios between anisotropy parameters. This fluid behaviour is preserved under

51



3 – Optimal stability thresholds in a rotating porous medium with LTNE

the hypothesis of local thermal non equilibrium.

Table 3.3: Significant values of R0, x̄ and ȳ depending on ξ1, with ξ2 = η = ζ1 = 1, ζ2 =
0.1

(a) H0 = 100

ξ1 R0 x̄ ȳ

2.20 86.4714 0 11.3535
2.30 89.5334 0 11.6095
2.40 92.5822 0 11.8606
2.41 92.8864 0 11.8854
2.42 96.3788 6.0680 0
2.43 96.3726 6.0676 0
2.50 96.3307 6.0649 0

(b) H0 = 0.01

ξ1 R0 x̄ ȳ

0.80 26.2972 0 4.1436
0.98 30.7327 0 4.5613
0.99 30.9767 0 4.5834
1 31.2207 0.0043 4.6010
1.01 31.2088 4.6043 0
1.05 31.1628 4.6002 0
1.10 31.1100 4.5954 0
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Figure 3.5: Critical Rayleigh number as function of the scaled inter-phase heat transfer
coefficient H0 for different values of ξ1 with ξ2 = η = ζ1 = 1, ζ2 = 0.1, γ = 0.4 and
T 2 = 20

The behaviour of critical Rayleigh number for different values of ξ1 changes once
the ratio ζ1

ζ2
is inverted. However, Figure 3.5 is similar to Figure 3.3.

Increasing ξ1 makes R0 grow up to a certain value, beyond which it starts
decreasing. Moreover, for small values of H0, inverting ζ1 and ζ2 affects neither the
shape of periodicity cells, which are firstly still rolls aligned along x axis, nor the
influence of ξ1 on R0. Table 3.3 shows what has been just pointed out.

Now, we decided to fix a direction in which the fluid fails to move easily. So we
assumed ξ2 = 0.1 and looked at the critical Rayleigh number as a function of ξ1. In
Figures 3.6a-3.6b the destabilizing effect of permeability is evident, for all H0, both
for ζ1 < ζ2 and ζ1 > ζ2. Recalling the definition of Rayleigh number, this kind of
behaviour is expected. Fixed the horizontal permeability parameters Kx and Ky,
decreasing values of vertical permeability Kz yield a decrease of Rayleigh number,
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3 – Optimal stability thresholds in a rotating porous medium with LTNE

(a)
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Figure 3.6: Critical Rayleigh number as function of H0 for different values of ξ1 with
η = 1, T 2 = 20, γ = 0.4 (a) ξ2 = ζ1 = 0.1, ζ2 = 1, (b) ξ2 = ζ2 = 0.1, ζ1 = 1

in agreement with findings of [27] in the case of horizontal isotropy. Furthermore,
increasing Kx will promote the horizontal motion, which increases the preferred
cells width and reduces the critical Rayleigh number, as also proposed by [89].

Now let us analyse how R0 varies with respect to the thermal anisotropy. Figure
3.7 shows clearly that ζ1 has a stabilizing effect on conduction if H0 is large. A
similar result is found by [27] in a simpler situation. Physically, increasing solid
conductivity implies that the solid matrix absorbs heat from the fluid more easily.
On the other hand, when H0 ∼ 10−1, the effect of ζ1 is negligible.
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Figure 3.7: Critical Rayleigh number as function of the scaled inter-phase heat transfer
coefficient H0 for different values of ζ1 with ξ1 = η = ζ2 = 1, ξ2 = 0.8, γ = 0.4 and
T 2 = 20

Tables 3.4a-3.4b represent a focus on the influence of solid thermal conductiv-
ity on the onset of convection. They are obtained when H0 = 100, but however
analogous results are valid for all large H0.

Note that the stabilizing effect of ζ1 is evident up to a certain value, beyond
which R0 is constant. This behaviour is direct consequence of the change of rolls
direction. Once the fluid motion occurs on the plane yz, i.e. rolls are aligned along
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3 – Optimal stability thresholds in a rotating porous medium with LTNE

x axis, modifying ζ1 does not produce any effect on the motion. Furthermore,
inverting the ratio ξ1

ξ2
does not modify the way ζ1 affects R0, as shown in Table

3.4b.
Table 3.4: (a) Significant values of R0 as function of ζ1 with ξ1 = η = ζ2 = 1, ξ2 =
0.8, H0 = 100. (b) Significant values of R0 as function of ζ1 with ξ2 = η = ζ2 = 1, ξ1 =
0.8, H0 = 100.

(a)

ζ1 R0 x̄ ȳ

1.30 95.8271 5.3503 0
1.31 96.2154 5.3556 0
1.39 99.2900 5.4055 0
1.40 99.4132 0 6.2639
1.41 99.4132 0 6.2639
1.50 99.4132 0 6.2639
1.60 99.4132 0 6.2639

(b)

ζ1 R0 x̄ ȳ

0.60 78.6021 6.3297 0
0.68 82.9496 6.2686 0
0.69 83.4862 6.2628 0
0.70 83.7592 0 5.2852
0.71 83.7592 0 5.2852
0.80 83.7592 0 5.2852
0.90 83.7592 0 5.2852
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Figure 3.8: Critical Rayleigh number as function of the scaled inter-phase heat transfer
coefficient H0 for different values of η with ξ1 = 1.6, ξ2 = ζ1 = ζ2 = 1, γ = 0.4 and
T 2 = 20

In Figure 3.8 the stabilizing effect of fluid thermal conductivity η is highlighted
for any H0. This behaviour is expected since we have shown previously that in-
creasing κfz fosters the onset of convection. Moreover, looking at the definition of
R0 in (3.28), it is evident that the critical Rayleigh number is directly proportional
to η.

3.6 Conclusions
Linear and nonlinear stability analyses of the conduction solution in a fluid satu-
rating an anisotropic porous layer under the effect of rotation, in local thermal non
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3 – Optimal stability thresholds in a rotating porous medium with LTNE

equilibrium, has been performed. In particular, the coincidence between the global
nonlinear stability threshold and the linear instability threshold has been proved.
Therefore, a necessary and sufficient condition for global nonlinear stability of con-
duction solution has been obtained. Moreover, we showed convection can occur
only through a steady motion as the principle of exchange of stabilities has been
proved to hold.

Given that the critical Rayleigh number is obtained in a closed form, we per-
formed a numerical analysis to highlight influence of parameters of the onset of
convection. We showed that the conductivity ratio γ destabilises the conduction.
Mechanical anisotropy ξi (i = 1,2) has the same effect, for ξj small (j /= i), while
a slightly different behaviour is obtained when ξj is high. In addition, we proved
that increasing values of fluid and solid thermal conductivities delay the onset of
convection. The same consequence is obtained when increasing the strength of
rotation.

Regarding the shape of cells arising with the onset of convection, we proved that
anisotropy forces the fluid in a two-dimensional motion. Convective cells are rolls
aligned in x or y direction, depending on the ratios between anisotropy parameters.
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Chapter 4

Thermal convection for a
Darcy-Brinkman rotating
anisotropic porous layer in local
thermal non-equilibrium

4.1 Introduction

This chapter is intended to investigate the onset of convection in a rotating high-
porosity medium, whose mechanical and thermal properties are horizontally isotropic,
under the LTNE assumption (see [90]). It is proved that only steady convection
is allowed, since the strong form of the principle of exchanges of stability holds,
via a linear instability analysis. The coincidence between the linear instability and
the global nonlinear stability thresholds is obtained with respect to the L2-norm.
The presence of a high-porosity medium is modelled by the Darcy number Da in
the dimensionless problem. It is proved that this number yields a delayed onset of
convection.

In section 4.2 the Darcy-Brinkman model is introduced and the dimensionless
system for perturbation fields is obtained. Section 4.3 is devoted to the proof
of the strong form of the principle of exchange of stabilities. Consequently, the
linear instability analysis is performed to determine the critical Rayleigh number
for the onset of steady convection analytically. In section 4.4 the nonlinear stability
analysis of the conduction solution is carried out to prove the coincidence between
the linear instability threshold and the global nonlinear stability threshold, with
respect to the L2− norm. While, section 4.5 deals with numerical simulations
that highlight the influence of rotation, anisotropy and the Da number on the
critical Rayleigh number. Permeability turns out to have a destabilising effect
on conduction. Whereas, thermal conductivities stabilise conduction, delaying the
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4 – Thermal convection in rotating porous layer in LTNE

onset of convection. Moreover, we prove that rotation has a stabilising effect on
conduction, as well as the thermal conductivities’ ratio γ.

4.2 Governing equations

Let us take into account a horizontal highly porous medium, whose depth is d,
saturated by an incompressible, homogeneous fluid at rest. The medium is assumed
evenly warmed up from below and rotating about the upward vertical axis z with
constant angular velocity Ω. As consequence, in addition to the gravitational field,
the Coriolis force acts on the medium. Moreover, we assume that the medium is
in local thermal non-equilibrium so that the heat exchange between fluid and solid
skeleton is allowed. We denote by TL the temperature of the lower plane z = 0
and by TU the temperature of the upper plane z = d, while we refer to the fluid
temperature with Tf and to the solid temperature with Ts. Then

Ts = Tf = TL on z = 0, Ts = Tf = TU on z = d (4.1)

with TL > TU .
Besides, we assume that the layer is lightly anisotropic, i.e. its features, such

as thermal conductivity and permeability, are homogeneous in the horizontal direc-
tion. This assumption allows us to write the permeability tensor K∗, the thermal
conductivity tensors of solid phase and fluid phase, D∗s and D∗f , respectively, in the
following way

K∗ = KzK K =

ξ 0 0
0 ξ 0
0 0 1

 ξ = KH

Kz

D∗s = κszDs Ds =

ζ 0 0
0 ζ 0
0 0 1

 ζ = κsH
κsz

D∗f = κfzDf Df =

η 0 0
0 η 0
0 0 1

 η = κfH
κfz

.

(4.2)

being the principal axis (x, y, z) of K∗ coinciding with the conductivity tensors’
ones. Since the medium porosity is high, a Darcy-Brinkman model is employed.
Accounting for the Oberbeck - Boussinesq approximation, starting from [27, 17],

57



4 – Thermal convection in rotating porous layer in LTNE

the model is

v = µ−1K∗ ·

−∇p+ ρfgαTfk−
2Ωρf
ε

k× v + µ̃∆v


∇ · v = 0
ε(ρc)fT f,t + (ρc)fv · ∇Tf = ε∇ · (D∗f · ∇Tf ) + h(Ts − Tf )
(1− ε)(ρc)sT s,t = (1− ε)∇ · (D∗s · ∇Ts)− h(Ts − Tf )

(4.3)

where v, p, Tf and Ts are (seepage) velocity, reduced pressure, fluid phase temper-
ature and solid phase temperature, respectively; µ̃, µ, ρf , ρs, c, g, α, Ω, ε, h are
effective and dynamic viscosity, fluid density, solid density, specific heat, gravity ac-
celeration, thermal expansion coefficient, angular velocity, porosity and interaction
coefficient, respectively. The following boundary conditions are coupled to (4.3)

Ts = Tf = TL on z = 0, Ts = Tf = TU on z = d,

v · n = 0 on z = 0, d
(4.4)

being n the unit outward normal to planes z = 0, d.
System (4.3) admits the following conduction solution m0:

m0 =
{
vb=0 , T̄s= T̄f =−βz+TL , pb=−ρfgαβ

z2

2 +ρfgαTLz+cost
}

(4.5)

where β = TL − TU
d

(> 0) is the adverse temperature gradient.
We are interested in studying the stability of the steady solution (4.5). Let

us introduce the following perturbation fields {u, θ, ϕ, π} so as to obtain a new
solution for (4.3)

v = u + vb Tf = θ + T̄f Ts = ϕ+ T̄s p = π + pb. (4.6)

Once the dimensionless quantities are introduced

xi = x∗i d, t = t∗
εd

U
, π = π∗P, ui = u∗iU, θ = θ∗T ′, ϕ = ϕ∗T ′ (4.7)

where

P = Uµd

Kz

, U = εκfz
(ρc)fd

, T ′ = βd

√√√√ κfzεµ

βgαKzρ2
fcfd

2 , (4.8)

the dimensionless system for the perturbation fields, omitting all the asterisks, is
K−1 · u = −∇π +Rθk− T k× u + Da∆u
∇ · u = 0
θ,t + u · ∇θ = Rw + η∆1θ + θ,zz +H(ϕ− θ)
Aϕ,t − ζ∆1ϕ− ϕ,zz +Hγ(ϕ− θ) = 0

(4.9)
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4 – Thermal convection in rotating porous layer in LTNE

where
γ = εκfz

(1− ε)κsz
, A = (ρc)sκfz

(ρc)fκsz
, H = hd2

εκfz

R2 =
Kzρ

2
fcfd

2βgα

µεκfz
Rayleigh number

Da = Kzµ̃

µd2 Darcy number , T = 2ΩρfKz

εµ
Taylor number.

To system (4.9) we append the following initial conditions

u(x,0)=u0(x) , θ(x,0)=θ0(x) , ϕ(x,0)=ϕ0(x) , π(x,0)=π0(x) (4.10)

where ∇ · u0 = 0, and the following stress-free boundary conditions

u,z = v,z = w = θ = ϕ = 0 on z = 0,1. (4.11)

In order to study the stability of the null solution of (4.9), let us assume that
perturbations are periodic in x and y directions with periods 2π

ax
and 2π

ay
, respectively.

Let
V =

[
0, 2π
ax

]
×
[
0, 2π
ay

]
× [0, 1] (4.12)

be the periodicity cell, we assume that perturbations belong to W 2,2(V ), ∀t ∈ R+

and they can be expanded as a Fourier series uniformly convergent in V .

4.3 Onset of steady convection
In order to perform a linear instability analysis, we rewrite (4.9)1 in a more conve-
nient form in which only relevant unknown fields appear. Hence, let us apply the
double curl and the curl to (4.9)1 and let us retain only the third component. The
resulting equations are multiplied by ξ so as to obtainξ∆1w + w,zz = ξR∆1θ + ξT (u,yz − v,xz) + ξDa∆∆w

(1− ξDa∆) (u,yz − v,xz) = −ξT w,zz
(4.13)

where (4.13)2 is consequence of a further derivation with respect to z. A single
equation is obtained once the operator (1− ξDa∆) is applied to (4.13)1 and (4.13)2
is substituted in the resulting equation. This procedure allows us to write the linear
version of (4.9) as follows

ξ∆1w + w,zz − ξ2Da∆∆1w − ξDa∆w,zz = ξR∆1θ+
−ξ2RDa∆∆1θ − ξ2T 2w,zz + ξDa∆∆w − ξ2Da2∆∆∆w

θ,t = Rw + η∆1θ + θ,zz +H(ϕ− θ)
Aϕ,t − ζ∆1ϕ− ϕ,zz +Hγ(ϕ− θ) = 0

(4.14)
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Since (4.14) is autonomous, we look for solutions whose time dependence is
separated from the temporal one, i.e.

ϕ̂(t,x) = ϕ(x) eσt ∀ϕ̂ ∈ (w, θ, ϕ) σ ∈ C (4.15)

By virtue of (4.15), (4.14) becomes
ξ∆1w + w,zz − ξ2Da∆∆1w − ξDa∆w,zz + ξ2RDa∆∆1θ+

−ξR∆1θ + ξ2T 2w,zz − ξDa∆∆w + ξ2Da2∆∆∆w = 0
σθ −Rw − η∆1θ − θ,zz −Hϕ+Hθ = 0
Aσϕ− ζ∆1ϕ− ϕ,zz +Hγϕ−Hγθ = 0

(4.16)

Then we denote by (·, ·) and ‖ · ‖ the scalar product on the Hilbert space
L2(V ), and the related norm, respectively. Let us multiply (4.16)1 by w∗

ξ
, (4.16)2

by (1− ξDa∆) ∆1θ
∗ and (4.16)3 by (1− ξDa∆) ∆1

ϕ∗

γ
, where the asterisks denote

the complex conjugate. By virtue of boundary conditions (4.11), integrating over
the periodicity cell V yields

−‖∇1w‖2 − ξ−1‖w,z‖2 − ξ Da‖∇∇1w‖2 −Da‖∇w,z‖2

−R (∆1θ, w
∗) + ξRDa (∆∆1θ, w

∗)− ξ T 2‖w,z‖2

−Da‖∇∇w‖2 − ξ Da2‖∇∇∇w‖2 =0

−σ‖∇1θ‖2 − σ ξ Da‖∇∇1θ‖2 −R (w,∆1θ
∗) + ξRDa (w,∆∆1θ

∗)
−η‖∆1θ‖2 − ξ η Da‖∇∆1θ‖2 − ‖∇1θ,z‖2 − ξ Da‖∇∇1θ,z‖2

−H (ϕ,∆1θ
∗) +HξDa (ϕ,∆∆1θ

∗)−H‖∇1θ‖2 − ξHDa‖∇∇1θ‖2 = 0

−A σ
γ
‖∇1 ϕ‖2 − A σ

γ
ξ Da‖∇∇1ϕ‖2 − ζ

γ
‖∆1ϕ‖2

− ξ Da ζ
γ
‖∇∆1ϕ‖2 − ξ Da

γ
‖∇∇1ϕ,z‖2 − 1

γ
‖∇1ϕ,z‖2 −H‖∇1ϕ‖2

−H ξ Da‖∇∇1ϕ‖2 −H (θ,∆1ϕ
∗) +H ξ Da (θ,∆∆1ϕ

∗) = 0

(4.17)

Since (ϕ,∆1θ
∗) = (∆1ϕ, θ

∗) and (ϕ,∆∆1θ
∗) = (∆∆1ϕ, θ

∗), (4.17) yields

σ
[
‖∇1θ‖2 + ξ Da‖∇∇1θ‖2 + A

γ
‖∇1 ϕ‖2 + A

γ
ξ Da‖∇∇1ϕ‖2

]
=

= −‖∇1w‖2 − ξ−1‖w,z‖2 − ξ Da‖∇∇1w‖2 −Da‖∇w,z‖2

−R [(∆1θ, w
∗) + (w,∆1θ

∗)] + ξ R Da [(∆∆1θ, w
∗) + (w,∆∆1θ

∗)]
− ξ T 2‖w,z‖2 −Da‖∇∇w‖2 − ξ Da2‖∇∇∇w‖2 − η‖∆1θ‖2

− ξ η Da‖∇∆1θ‖2 − ‖∇1θ,z‖2 − ξ Da‖∇∇1θ,z‖2

−H [(∆1ϕ, θ
∗) + (θ,∆1ϕ

∗)] +H ξ Da [(∆∆1ϕ, θ
∗) + (θ,∆∆1ϕ

∗)]
−H‖∇1θ‖2 − ξ H Da‖∇∇1θ‖2 − ζ

γ
‖∆1ϕ‖2 − ξ Da ζ

γ
‖∇∆1ϕ‖2

− 1
γ
‖∇1ϕ,z‖2 − ξ Da

γ
‖∇∇1ϕ,z‖2 −H‖∇1ϕ‖2 −H ξ Da‖∇∇1ϕ‖2

(4.18)
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4 – Thermal convection in rotating porous layer in LTNE

Every term in (4.18) is real, then necessarily σ is real as well. Thus, we have shown
the validity of the strong form of the principle of exchange of stabilities. Therefore,
convection can occur only through a steady motion.

Since our aim is to determine the critical Rayleigh number beyond which in-
stability occurs, we focus on the marginal state in (4.16). By virtue of principle of
exchange of stabilities, we set σ = 0 in (4.16) so as to obtain

ξ∆1w + w,zz − ξ2Da∆∆1w−ξDa∆w,zz−ξR∆1θ + ξ2RDa∆∆1θ+
ξ2T 2w,zz − ξDa∆∆w + ξ2Da2∆∆∆w = 0

−Rw − η∆1θ − θ,zz −Hϕ+Hθ = 0
−ζ∆1ϕ− ϕ,zz +Hγϕ−Hγθ = 0

(4.19)

Because of periodicity of perturbation fields, accounting for boundary conditions
(4.11) and since the sequence {sinnπz}n∈N is a complete orthogonal system for
L2([0,1]), we look for solution of (4.19) such that

f(x, y, z) =
+∞∑
n=1

f̄n(x, y, z) ∀f ∈ {w, θ, ϕ} (4.20)

where f̄n = f̃n(x, y) sin(nπz) and

∆1f̄n = −a2f̄n
∂2f̄n
∂z2 = −n2π2f̄n (a2 = a2

x + a2
y) (4.21)

where a is the wavenumber arising from spatial periodicity.
Let us define the following operators

L1 ≡ ξ∆1 + ∂,zz − ξ2Da∆∆1 − ξDa∆∂,zz + ξ2T 2∂,zz − ξDa∆∆+
+ ξ2Da2∆∆∆

L2 ≡ −η∆1 − ∂,zz +H

L3 ≡ −ζ∆1 − ∂,zz +Hγ

(4.22)

so that the system (4.19) becomes
L1w = (1− ξDa∆)Rξ∆1θ

L2θ = Rw +Hϕ

L3ϕ = Hγθ .

(4.23)

Now let us apply L1 and L3 to (4.23)2 so that

L1L2L3θ = RL3L1w +HL1L3ϕ . (4.24)

By substituting (4.23)1 − (4.23)3 in (4.24), we get

L1L2L3θ = R2L3 (1− ξDa∆) ξ∆1θ +H2γL1θ . (4.25)
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By splitting L3 in the first term, we obtain

L1L2 (−ζ∆1 − ∂,zz) θ + L1Hγ (−η∆1 − ∂,zz) θ =

= R2 (−ζ∆1 − ∂,zz +Hγ) (1− ξDa∆) ξ∆1θ . (4.26)
By splitting L2 in the first term in (4.3)

L1H (−ζ∆1 − ∂,zz) θ + L1 (−η∆1 − ∂,zz) (−ζ∆1 − ∂,zz +Hγ) θ =

= R2 (−ζ∆1 − ∂,zz +Hγ) (1− ξDa∆) ξ∆1θ . (4.27)
Let us substitute (4.20) in (4.3) and retain only the n-th component. Then, from
(4.3) [

−ξa2−n2π2−ξ2a2Daδn−ξn2π2Daδn−ξ2T 2n2π2−ξDaδ2
n−ξ2Da2δ3

n

]
[
H
(
ζa2 + n2π2

)
+
(
ηa2 + n2π2

) (
ζa2 + n2π2 +Hγ

)]
=

= −R2
(
ζa2 + n2π2 +Hγ

)
(1 + ξDa δn) ξa2

(4.28)

being δn = (a2 + n2π2).
From (4.28) it follows that the critical Rayleigh number for the onset of steady

convection is
RS = min

(n2,a2)∈N×R+
f(n2, a2) (4.29)

being

f(n2, a2) =
ξa2+n2π2+ξ2Da a2δn+ξDa n2π2δn+ξ2T 2n2π2+ξDa δ2

n+ξ2Da2δ3
n

(1 + ξDa δn) ξa2[
ηa2 + n2π2 +H

ζa2 + n2π2

ζa2 + n2π2 +Hγ

] (4.30)

We can easily remark that the minimum with respect to n2 is attained in n2 = 1,
since f(·, a2) is a strictly increasing function. Hence

RS = min
a2∈R+

[
ξa2 + π2 + ξDa δ2

ξa2 + ξ2T 2π2

(1 + ξDa δ) ξa2

]
·[

ηa2 + π2 +H
ζa2 + π2

ζa2 + π2 +Hγ

] (4.31)

where δ = (a2 + π2).
Let us remark that f(1, a2) is a strictly increasing function of T and η, therefore

the stabilizing effect of rotation and fluid thermal conductivity has been proved.
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4 – Thermal convection in rotating porous layer in LTNE

In particular, the effect of rotation on the onset of instability is expected since
the Coriolis force acts in the horizontal direction, discouraging the motion in the
vertical one.

Moreover, it is easy to note that if Da = 0, (4.31) coincides with the result found
in [17] and [27]. While, for a low porous medium in absence of rotation, i.e. T = 0
and Da = 0, results coincide with the ones found in [14]. In addition, by assuming
that the layer is isotropic, i.e. ξ = η = ζ = 1, the critical Rayleigh number (4.31)
is the same as that one found in [12].

4.4 Nonlinear stability analysis
In this section we want to perform a nonlinear stability analysis of conduction
solution m0. The application of the energy method yields a loss of the rotation
term. Therefore, we employ a differential constraint approach ([17, 13]) in order to
capture the influence of rotation. Then, let us multiply (4.9)3 by θ and (4.9)4 by
ϕ and integrate over the periodicity cell V . By defining the Lyapunov functional
E(t)

E(t) = 1
2‖θ‖

2 + A

2γ ‖ϕ‖
2, (4.32)

the production term I(t)
I(t) = (θ, w) (4.33)

and the dissipation function D(t)

D(t) = η‖∇1θ‖2 + ‖θ,z‖2 + ζ

γ
‖∇1ϕ‖2 + 1

γ
‖ϕ,z‖2 +H‖ϕ− θ‖2 (4.34)

we find out that
dE

dt
= −D

(
1−R I

D

)
≤ −D

(
1− R

RE

)
(4.35)

where
1
RE

= max
H∗

I

D
(4.36)

with

H∗ = {(w, θ, ϕ) : w = θ = ϕ = 0 on z = 0,1; periodic in x and y

directions, with period 2π
ax
,
2π
ay

respectively; D <∞; verifying (4.16)1}
(4.37)

the space of the kinematically admissible perturbations. Eq. (4.35) tells us that
R < RE is a sufficient condition for the nonlinear stability of m0.
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4 – Thermal convection in rotating porous layer in LTNE

Let us define
g(x) = ξ∆1w + w,zz − ξ2Da∆∆1w − ξDa∆w,zz − ξR∆1θ+

ξ2RDa∆∆1θ + ξ2T 2w,zz − ξDa∆∆w + ξ2Da2∆∆∆w

H = {(w, θ, ϕ) : w = θ = ϕ = 0 on z = 0,1; periodic in x and y

directions, with period 2π
ax
,
2π
ay

respectively; D <∞}.

(4.38)

The variational problem (4.36) is equivalent to
1
RE

= max
H

I +
∫
V λ g dV

D
(4.39)

where λ(x) is a Lagrange multiplier.
By employing the Poincaré inequality in (4.34), we get

D(t) ≥ aπ2‖θ‖2 + b
π2

γ
‖ϕ‖2 (4.40)

being a = min{1, η} and b = min{1, ζ}. Hence, if R < RE, from (4.35) it turns out
that

dE

dt
≤ −

(
aπ2‖θ‖2 + b

π2

γ
‖ϕ‖2

)(
1− R

RE

)
≤ −π2

(
RE −R
RE

)
cE(t) (4.41)

where c = min
{

2a, 2b
A

}
. Eq. (4.41) yields the exponential decay of temperature

perturbation fields.
Now let us remark that, by multiplying (4.9)1 by u and by virtue of Cauchy-

Schwartz, we obtain the exponential decay of u, i.e.

‖u‖2 ≤ ξ∗R
2‖θ‖2 (4.42)

where ξ∗ = max{ξ, 1}.
Thus, we have shown that the condition R < RE implies the global nonlinear

and exponential stability of conduction solution m0.
Now let us solve the variational problem (4.39) to determine the critical Rayleigh

number RE. The Euler-Lagrange equations, together with the constraint equation,
are 

ξ∆1w + w,zz−ξ2Da∆∆1w−ξDa∆w,zz − ξRE∆1θ + ξ2T 2w,zz+
ξ2REDa∆∆1θ − ξDa∆∆w + ξ2Da2∆∆∆w=0

θ + ξ∆1λ+λ,zz−ξ2Da∆∆1λ− ξDa∆λ,zz+ξ2T 2λ,zz−ξDa∆∆λ+
+ξ2Da2∆∆∆λ=0

REw + ξ2R2
EDa∆∆1λ− ξR2

E∆1λ+ 2η∆1θ+2θ,zz+2H (ϕ− θ)=0
ζ∆1ϕ+ ϕ,zz −Hγ (ϕ− θ) = 0

(4.43)
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4 – Thermal convection in rotating porous layer in LTNE

Recalling the definitions in (4.22), (4.43) becomes
L1w = (1− ξDa∆)REξ∆1θ

L1λ = −θ
2L2θ = REw + 2Hϕ− (1− ξDa∆)R2

Eξ∆1λ

L3ϕ = Hγθ

(4.44)

By applying L1 to (4.44)3 and substituting (4.44)2 and (4.44)1, we obtain

− L1L2θ +HL1ϕ+REL1w = 0. (4.45)

The application of L3 to (4.45) leads to the following equation

− L1L2L3θ +HL1L3ϕ+REL3L1w = 0 (4.46)

which coincides with (4.24). As consequence, we have obtained the coincidence be-
tween the global nonlinear stability thresholdRE and the linear instability threshold
RS, implying the absence of subcritical instability region. This result allows us to
claim that the condition R < RE = RS is a necessary and sufficient condition for
the stability of m0, therefore in this respect the result is optimal.

4.5 Results and Discussion
In this section we would like to point out how parameters affect the onset of con-
vection. Given the complex expression obtained in (4.31) for the critical Rayleigh
number RS, it is not always easy to show analytically how parameters modify the
occurrence of instability. That is why the expression for the critical Rayleigh num-
ber (4.31) is analysed numerically for different values of parameters with the aim
of highlighting how they affect the onset of convection. In particular, we will show
the dependence of RS with respect to the Taylor number, permeability, thermal
conductivities and the Da number.

We would like to point out that results are reported as function of the inter-
phase heat transfer coefficient H. This parameter is not easily measurable, as
claimed in [27]. That is why we have decided to fix the range (10−2, 106) in which
H can vary and to show the influence of parameters on RS for any H.

Figure 4.1 shows the behaviour of the critical Rayleigh number RS for increasing
values of T . The stabilizing effect of rotation on the onset of convection is clear, for
any value of H, even though it is less remarkable when H → 0. This result is not
surprising since we have previously pointed out that the derivative of RS in (4.31)
with respect to T is strictly positive. Moreover, the stabilizing effect is expected
from a physical point of view since rotation acts on the fluid in the horizontal
direction, making the motion along the vertical axis more difficult.
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Figure 4.1: Critical Rayleigh number as function of the inter-phase heat transfer coef-
ficient H for different values of the Taylor number T with ξ = ζ = η = 0.5, γ = 0.4 and
Da = 2.
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Figure 4.2: Critical Rayleigh number as function of the inter-phase heat transfer coef-
ficient H for different values of the Da number Da with ξ = ζ = η = 0.5, γ = 0.4 and
T 2 = 20.

We would like to underline that both for small and large values of H, the curves
tend to become parallel to the x axis. The region where a plateau is reached repre-
sents the local thermal equilibrium situation and it will characterize the following
figures, as well. Physically, if H → 0, the solid phase is separated from the fluid
one and it ceases to affect the fluid thermal field. While, if H →∞, solid and fluid
temperature end up with being identical.

In Figure 4.2, the stabilizing effect of the Da number Da on conduction is
highlighted. Note that if Da = 0, results are valid for the classical Da model, as
pointed out previously. It is well known that when porosity ε tends to 1, the classical
Da model needs to be replaced by the Da-Brinkman model, for which Da /= 0. Since
the Da-Brinkman model is closer to a model describing the fluid motion in absence
of porous medium (clear fluid), for which it is common knowledge that the critical
Rayleigh number is greater than that one in a porous medium, result in Figure 4.2
is consistent.

In Figure 4.3a, the behaviour of RS with respect to permeability parameter ξ
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Figure 4.3: (a) Critical Rayleigh number (b) critical wavenumber as function of the
inter-phase heat transfer coefficient H for different values of ξ with ζ = η = 0.5, γ = 0.4,
T 2 = 20 and Da = 2.

is shown. The destabilizing effect of permeability is evident, for any values of H,
in agreement with findings of [27] and [14]. Recalling the definition of the Rayleigh
number, this kind of behaviour is expected, since R is directly proportional to
Kz. Physically, increasing KH eases the fluid motion in the horizontal direction,
implying an easier occurrence of instability. Figure 4.3b shows how cell dimension
changes for different values of permeability. In particular, when permeability in the
horizontal direction KH grows, periodicity cells get wider.
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Figure 4.4: (a) Critical Rayleigh number (b) critical wavenumber as function of the
inter-phase heat transfer coefficient H for different values of ζ with ξ = η = 0.5, γ = 0.4,
T 2 = 20 and Da = 10.

Now let us analyse how RS varies with respect to thermal conductivities. Figure
4.4a shows the stabilizing effect of solid thermal conductivity on conduction. The
growth of RS with ζ means that solid thermal conductivity delays the onset of
convection. Physically, the greater the solid thermal conductivity is the more easily
the solid matrix absorbs heat from the fluid. The delaying effect is evident for large
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4 – Thermal convection in rotating porous layer in LTNE

values of the inter-phase heat transfer coefficient H, while it is less remarkable for
smaller values of H. This is not surprising since, as already pointed out, when
H → 0 solid phase does not affect the fluid thermal field. This behaviour is evident
also in Figure 4.4b, where it is highlighted how cell dimension varies with respect
to ζ. In particular, for small values of H, the influence is negligible, while if H is
great, ζ promotes wider periodicity cells.

Analogous result is obtained when looking at the effect of the fluid thermal
conductivity parameter η on the periodicity cell dimension. Figure 4.5b shows that
η promotes wider periodicity cells, as well.
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Figure 4.5: (a) Critical Rayleigh number (b) critical wavenumber as function of the
inter-phase heat transfer coefficient H for different values of η with ξ = ζ = 0.5, γ = 0.4,
T 2 = 20 and Da = 10.
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Figure 4.6: Critical Rayleigh number as function of the inter-phase heat transfer coef-
ficient H for different values of γ with ξ = ζ = η = 0.5, T 2 = 20 and Da = 10.

The stabilizing effect of η is highlighted in Figure 4.5a, where for any H, RS

grows for increasing η. This behaviour is consistent with the analytical result for
which the derivative of RS in (4.31) with respect to η is strictly positive. From a
physical point of view, increasing κfz implies that heat flows easier in the vertical
direction within the fluid, fostering the onset of instability.

68



4 – Thermal convection in rotating porous layer in LTNE

The effect of κfz on the critical Rayleigh number is evident also by looking at
Figure 4.6, where the behaviour of RS with respect to the thermal conductivities’

ratio γ is shown. Since γ = εκfz
(1− ε)κsz

by definition, increasing κfz implies growing
γ, which yields a decrease for RS, i.e. a destabilizing effect, as shown in Figure 4.6.

4.6 Conclusions
The onset of convection in an anisotropic rotating porous medium with high poros-
ity in local thermal non-equilibrium has been studied. Only steady convection is
allowed, since we proved that the strong form of the principle of exchanges of sta-
bility holds. A detailed proof of that has been provided. The critical Rayleigh
number for the onset of steady convection is determined via the linear instability
analysis. Moreover, the global nonlinear stability has been studied and the en-
ergy method has been adopted. Coincidence between the linear instability and the
global nonlinear stability thresholds has been proved. This means that a necessary
and sufficient condition for the onset of convection has been obtained.

Numerical simulations have been required in order to highlight the influence of
parameters on the onset of convection. It has been pointed out that horizontally
isotropic permeability has a destabilising effect on conduction. This is because
increasing permeability eases the fluid motion, implying an easier occurrence of
instability. Whereas, anisotropic thermal conductivities stabilise conduction, de-
laying the onset of convection. Moreover, it has been shown that, as expected,
rotation and the Darcy number have a stabilising effect on conduction, as well as
the thermal conductivities’ ratio γ.
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Chapter 5

Effect of Vadasz term on the
onset of convection in a
Darcy-Brinkman anisotropic
rotating porous medium in LTNE

5.1 Introduction

This chapter is devoted to study the effect of the Vadasz inertia term on the onset of
convective motions for a Darcy-Brinkman model. The topic studied is the content
of a future publication in collaboration with Prof. F. Capone. Linear instability
analysis is performed to determine the critical Rayleigh number for the onset of
convection. The model analysed allows oscillatory convective motions to occur.
Indeed, at the criticality, both real and pure imaginary eigenvalues are possible.
As consequence, the critical Rayleigh numbers for the onset of both steady and
oscillatory convection are determined. Moreover, conditions for the non-existence
of oscillatory convection are provided.

The outline of the chapter is the following: section 5.2 is devoted to the math-
ematical model describing the fluid motion in presence of a rotating anisotropic
porous medium in LTNE. We determine the basic steady solution, whose stability
we are interested in and consequently we obtain the dimensionless system of pertur-
bations. In section 5.3, linear instability analysis is performed in order to determine
the critical Rayleigh numbers for both steady and oscillatory convection. Finally,
section 5.4 involves the study of the effect of anisotropic permeability, anisotropic
thermal conductivities, rotation, the Darcy number and, most importantly, the
Vadasz number on the onset of convection.

70



5 – Effect of Vadasz term on the onset of convection

5.2 Mathematical model
Let F be an incompressible fluid, initially at rest, saturating a horizontal porous
layer, whose depth is d, confined between two planes, z = 0 and z = d. We assume
the layer to be heated from below and we denote by TL the temperature of the lower
plane z = 0 and by TU the temperature of the upper plane z = d. In addition,
the layer rotates about the upward vertical axis z with constant angular velocity
Ω. Therefore, the Coriolis force affects the fluid motion within the porous medium,
together with gravitational and drag forces. Moreover, we assume that fluid and
solid phases are not in thermal equilibrium, namely heat exchanges between the
phases are allowed. Then, we refer to the fluid temperature with Tf and to the
solid temperature with Ts, by saying that the porous medium is in local thermal
non-equilibrium (LTNE). Then

Ts = Tf = TL on z = 0, Ts = Tf = TU on z = d (5.1)

with TL > TU .
In addition, the porous medium is horizontally isotropic, i.e. its features, such as

thermal conductivity and permeability, are homogeneous in the horizontal direction.
Let K∗ be the permeability tensor, D∗s and D∗f be the thermal conductivity tensors
of solid phase and fluid phase, respectively. By assuming that the principal axis
(x, y, z) of K∗ coincide with the conductivity tensors’ ones, it turns out (see [27, 17])

K = KzK∗ K∗ =

ξ 0 0
0 ξ 0
0 0 1

 ξ = KH

Kz

Ds = κszD∗s D∗s =

ζ 0 0
0 ζ 0
0 0 1

 ζ = κsH
κsz

Df = κfzD∗f D∗f =

η 0 0
0 η 0
0 0 1

 η = κfH
κfz

(5.2)

Since the problem at stake involves a porous medium with high porosity, a
more suitable Darcy-Brinkman model needs to be adopted (see [1]). Under these
hypotheses, starting from models proposed in [90, 15], the mathematical model is



ρfcav,t = −∇p− 2Ωρf
ε

k× v− µK−1 · v + ρfgαTfk + µ̃∆v

∇ · v = 0
ε(ρc)fT f,t + (ρc)fv · ∇Tf = ε∇ · (Df · ∇Tf ) + h(Ts − Tf )
(1− ε)(ρc)sT s,t = (1− ε)∇ · (Ds · ∇Ts)− h(Ts − Tf )

(5.3)
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where the Oberbeck-Boussinesq approximation is adopted and where v, p, Tf and
Ts are (seepage) velocity, reduced pressure, fluid phase temperature and solid phase
temperature, respectively; while µ, µ̃, ρf , ρs, c, g, α, ca, ε, Ω, h are dynamic and
effective viscosity, fluid density, solid density, specific heat, gravity acceleration,
thermal expansion coefficient, acceleration coefficient, porosity, angular velocity
and interaction coefficient, respectively.

The boundary conditions (5.4) are coupled to (5.3)

Ts = Tf = TL on z = 0, Ts = Tf = TU on z = d,

v · n = 0 on z = 0, d
(5.4)

where n is the unit outward normal to planes z = 0, d.
Model (5.3) admits the following steady solutionm0, which describes a situation

with fluid at rest and heat spreading by conduction,

m0 =
{
vb=0 , T̄s= T̄f =−βz+TL , pb=−ρfgαβ

z2

2 +ρfgαTLz+cost
}

(5.5)

where β = TL − TU
d

(> 0) is the adverse temperature gradient.
This paper is intended to investigate the stability of them0 solution with respect

to perturbations to initial data. Therefore, we introduce the following perturbation
fields {u, θ, ϕ, π} on seepage velocity, fluid and solid temperature and pressure,
respectively. The new solution of (5.3) will be

v = u + vb Tf = θ + T̄f Ts = ϕ+ T̄s p = π + pb. (5.6)

Let us introduce the dimensionless quantities

xi = x∗i d, t = t∗τ, π = π∗P, ui = u∗iU, θ = θ∗T ′, ϕ = ϕ∗T ′ (5.7)

where

τ = ρd2cα
µ

, P = Uµd

Kz

, U = εκfz
(ρc)fd

, T ′ = βd

√√√√ κfzεµ

βgαKzρ2
fcfd

2 , (5.8)

then, the dimensionless system for perturbation fields, omitting all the asterisks, is
K−1 · u + Va−1u,t = −∇π +Rθk− T k× u +Da∆u
∇ · u = 0
θ,t + u · ∇θ = Rw + η∆1θ + θ,zz +H(ϕ− θ)
Aϕ,t − ζ∆1ϕ− ϕ,zz +Hγ(ϕ− θ) = 0

(5.9)

where
γ = εκfz

(1− ε)κsz
, A = (ρc)sκfz

(ρc)fκsz
, H = hd2

εκfz
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R2 =
Kzρ

2
fcfd

2βgα

µεκfz
Rayleigh number, Da = Kzµ̃

µd2 Darcy number,

T = 2ΩρfKz

εµ
Taylor number, Va = cfd

2µ

Kzκ
f
zca

Vadasz number.

System (5.9) is coupled to the following initial conditions

u(x,0)=u0(x) , θ(x,0)=θ0(x) , ϕ(x,0)=ϕ0(x) , π(x,0)=π0(x) (5.10)

where ∇ · u0 = 0, and the following stress-free boundary conditions

u,z = v,z = w = θ = ϕ = 0 on z = 0,1. (5.11)

Let us assume that perturbations are periodic in x and y directions with periods
2π
ax

and 2π
ay

, respectively. Let

V =
[
0, 2π
ax

]
×
[
0, 2π
ay

]
× [0, 1] (5.12)

be the periodicity cell, it is assumed that perturbations belong toW 2,2(V ), ∀t ∈ R+

and they can be expanded as a Fourier series uniformly convergent in V .

5.3 Linear theory
In order to proceed to the linear instability analysis of the null solution of (5.9), we
take the curl and the double curl of (5.9)1. By retaining only the third component
of the resulting equations and by virtue of (5.9)2, defining ω = ω ·k with ω = ∇×u
vorticity, we get

ξ−1ω + Va−1ω,t = T w,z + Da∆ω
(ξ∆1 + ξVa−1∂,t∆1 + ∂,zz + ξVa−1∂,t∂,zz − ξDa∆∆)w =

= ξR∆1θ − ξT ω,z
(5.13)

where (5.13)2 has been multiplied by ξ. By applying a further derivation with
respect to z and by multiplying by ξ, Eq. (5.13)1 becomes(

1 + ξVa−1∂,t − ξDa∆
)
ω,z = ξT w,zz (5.14)

As a consequence, we can apply the operator (1 + ξVa−1∂,t − ξDa∆) to (5.13)2 and
plug (5.14) into the resulting equation so as to obtain(

ξ∆1 + ∂,zz + ξVa−1∂,t∆− ξDa∆∆
) (

1 + ξVa−1∂,t − ξDa∆
)
w =

= ξR∆1
(
1 + ξVa−1∂,t − ξDa∆

)
θ − ξ2T 2w,zz

(5.15)
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Hence, the linear version of model (5.9) becomes

(
ξ∆1 + ∂,zz + ξVa−1∂,t∆− ξDa∆∆

) (
1 + ξVa−1∂,t − ξDa∆

)
w =

= ξR∆1
(
1 + ξVa−1∂,t − ξDa∆

)
θ − ξ2T 2w,zz

θ,t = Rw + η∆1θ + θ,zz +H(ϕ− θ)
Aϕ,t − ζ∆1ϕ− ϕ,zz +Hγ(ϕ− θ) = 0

(5.16)

System (5.16) is autonomous, then solutions are such that the time dependence
is separated from the spatial one, i.e.

ϕ̂(t,x) = ϕ(x) eσt ∀ϕ̂ ∈ {w, θ, ϕ} σ ∈ C (5.17)

In addition, because of periodicity of perturbation fields, accounting for boundary
conditions (5.11) and since the sequence {sinnπz}n∈N is a complete orthogonal
system for L2([0,1]), we can look for solution of (5.16) such that

ϕ(x, y, z) =
+∞∑
n=1

ϕ̄n(x, y, z) ∀ϕ ∈ {w, θ, ϕ} (5.18)

where ϕ̄n = ϕ̃n(x, y) sin(nπz) and

∆1ϕ̄n = −a2ϕ̄n ∂,zzϕ̄n = −n2π2ϕ̄n (a2 = a2
x + a2

y) (5.19)

where a is the wavenumber arising from spatial periodicity.
Now, let us define the following operators

L ≡
(
ξ∆1 + ∂,zz + ξVa−1∂,t∆− ξDa∆∆

) (
1 + ξVa−1∂,t − ξDa∆

)
+ ξ2T 2∂,zz

L1 ≡ ∂,t − η∆1 − ∂,zz +H

L2 ≡ A∂,t − ζ∆1 − ∂,zz +Hγ
(5.20)

so that we can write (5.16) in the following way
Lw = ξR∆1 (1 + ξVa−1∂,t − ξDa∆) θ
L1θ = Rw +Hϕ

L2ϕ = Hγθ

(5.21)

In order to get a single equation in the unknown θ, let us apply the operator L1
and L2 to (5.21)1. Thus, one obtains

LL1L2θ = RL2Lw +HLL2ϕ (5.22)

which becomes

LL1L2θ = ξR2∆1
(
1 + ξVa−1∂,t − ξDa∆

)
L2θ +H2γLθ (5.23)
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by virtue of (5.21)2-(5.21)3. Then, we split L2 in the first term of (5.23)

LL1 (A∂,t − ζ∆1 − ∂,zz) θ +HγL (∂,t − η∆1 − ∂,zz) θ =
= ξR2∆1

(
1 + ξVa−1∂,t − ξDa∆

)
L2θ

(5.24)

and we split L1 in the first term of (5.24)

L (∂,t − η∆1 − ∂,zz)L2θ +HL (A∂,t − ζ∆1 − ∂,zz) θ =
ξR2∆1

(
1 + ξVa−1∂,t − ξDa∆

)
L2θ

(5.25)

From (5.25), we can determine the critical value for the Rayleigh number beyond
which either steady or oscillatory convection occurs. To this aim, we substitute
(5.17)-(5.18) in (5.25) and retain only the n-th component. As a consequence, we
obtain

[−ξa2 − n2π2 − ξDaδ2
n − ξ2Daδna2 − ξDan2π2δn − ξ2Da2δ3

n − ξ2T 2n2π2+
+ σξVa−1

(
−δn − ξa2 − n2π2 − 2ξDaδ2

n

)
− σ2ξ2Va−2δn]·[(

σ + ηa2 + n2π2
) (
Aσ + ζa2 + n2π2 +Hγ

)
+H

(
Aσ + ζa2 + n2π2

)]
=

= −ξR2a2
(
Aσ + ζa2 + n2π2 +Hγ

) (
1 + σξVa−1 + ξDaδn

)
(5.26)

being δn = a2 + n2π2.
Accounting for (5.26), one can simply deduce that the eigenvalue σ can assume

pure imaginary values, meaning that the principle of exchange of stabilities does
not hold. The illuminating paper by Vadasz [54] suggests that this is due to the
presence of the Vadasz inertia term in the momentum Eq. (5.9)1. For this reason,
we can claim that the Vadasz number (coupled to the action of rotation) allows
convection to arise either via oscillatory or steady motions .

It is well known that instability occurs once the eigenvalue crosses either the
axis of pure imaginary numbers or the zero value. Therefore, we set once σ = 0
and once σ = iω (ω ∈ R− {0}) in (5.26).

5.3.1 Steady convection
In order to determine the critical Rayleigh number for steady convection, we set
σ = 0 in (5.26) so as to obtain

R2 = F (n2, a2) =

= (1 + ξDaδn) (ξa2 + n2π2 + ξDaδ2
n) + ξ2T 2n2π2

ξa2 (1 + ξDaδn)[
ηa2 + n2π2 +H

ζa2 + n2π2

ζa2 + n2π2 +Hγ

] (5.27)
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Starting from (5.27), the critical threshold RS is determined by solving the mini-
mum problem

RS = min
(n2,a2)∈N×R+

F (n2, a2) (5.28)

Since F (n2, a2) is a strictly increasing function with respect to n2, the critical
threshold is

RS = min
a2∈R+

F (1, a2) (5.29)

Let us remark that

• RS does not depend on the Vadasz number Va. This means that steady
convection is not affected by inertia effects. Indeed, the critical threshold RS

coincides with the steady threshold found by [90];

• if the porous medium is isotropic, i.e. ξ = η = ζ = 1, the critical threshold
RS is the same as that one found by [15];

• if the medium porosity is low, namely the Brinkmann model is no longer
suitable to describe the fluid motion (i.e. Da = 0), RS coincides with the
steady threshold determined by [91], where the authors studied the Darcy
model. In addition, if the medium is isotropic, RS reduces to the threshold
found by [92];

• it is straightforward to notice that RS is a strictly increasing function with
respect to T and η, which implies that rotation and fluid thermal conductivity
have a delaying effect on the onset of convection. Physical meaning of this
behaviour is pointed out in Section 5.4;

• since the derivative of F (1, a2) with respect to ξ is

∂ξF (1, a2) = ξ2
(
T 2 −Da2δ2

)
− 2ξDaδ − 1 (5.30)

being δ = a2 + π2, the behaviour of RS with respect to ξ depends on T .
In particular, if T = 0, the derivative is negative. Such a result proves
analytically the stabilising effect of permeability on the onset of convection
in absence of rotation.
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5.3.2 Oscillatory convection
In order to determine the critical Rayleigh number for oscillatory convection, we
set σ = iω (ω ∈ R− {0}) in (5.26)

R2 = G(n2, a2) =

= (1 + iωξVa−1 + ξDaδn) (ξa2 + n2π2 + ξDaδ2
n + iωξVa−1δn) + ξ2T 2n2π2

ξa2 (1 + iωξVa−1 + ξDaδn)[
iω + ηa2 + n2π2 +H

Aiω + ζa2 + n2π2

Aiω + ζa2 + n2π2 +Hγ

] (5.31)

The Rayleigh number is a real number, that is why the imaginary part in (5.31)
has to be set equal to zero. By doing so, set ω∗ = ω2, the following equation arises

J1ω
2
∗ + J2ω∗ + J3

a2
[
(δζ + γH)2 + A2ω∗

]
Vaξ

[
ω∗ξ2 + (Va+ DaδnVaξ)2

] = 0 (5.32)

which provides a condition for the existence of oscillatory convection, where

J1 =A2ξ2
[
Hξδn + Va

(
ξa2 + n2π2 + δ2

nξDa
)

+ ξδn
(
ηa2 + n2π2

)]
J2 =A2Va2{ξ(Daδnξ + 1)2

[
a2Va+ δn(DaδnVa+ δη +H)

]
+

π2n2
[
Va(Daδnξ + 1)

(
Daδnξ + T 2ξ2 + 1

)
− T 2ξ3(δη +H)

]
}+

AγH2Vaξ2
[
ξ
(
a2 + Daδ2

n

)
+ π2n2

]
+ ξ2(δζ + γH)

{ξ
[
Va
(
a2 + Daδ2

n

)
(δζ + γH) + δnδη(δζ + γH) + δnδζH

]
+

π2n2Va (δζ + γH)}
J3 =Va2γH2{AVa(Daδnξ + 1)[ξ

(
a2 + Daδ2

n

)
(Daδnξ + 1) +

π2n2
(
Daδnξ + T 2ξ2 + 1

)
]+

γ[ξ(Daδnξ + 1)2
(
a2Va+ δn(DaδnVa+ δη)

)
+

π2n2
(
Va(Daδnξ + 1)

(
Daδnξ + T 2ξ2 + 1

)
− δηT 2ξ3

)
]}+

Va2δ2
ζ{ξ(Daδnξ + 1)2

[
a2Va+ δn(DaδnVa+ δη +H)

]
+

π2n2
[
Va(Daδnξ + 1)

(
Daδnξ + T 2ξ2 + 1

)
− T 2ξ3(δη +H)

]
}+

Va2δζγH{ξ(Daδnξ + 1)2
[
2a2Va+ δn(2DaδnVa+ 2δη +H)

]
+

π2n2
[
2Va(Daδnξ + 1)

(
Daδnξ + T 2ξ2 + 1

)
− T 2ξ3(2δη +H)

]
}

(5.33)

and
δη = ηa2 + n2π2

δζ = ζa2 + n2π2 (5.34)
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Let us notice that, since J1 is always positive, oscillatory convection cannot occur
when either

J2
2 − 4J1J3 < 0 (5.35)

or J2 > 0
J3 > 0

(5.36)

Once the positive root of (5.32) has been determined, it is substituted in (5.31) and
the critical Rayleigh number for the onset of oscillatory convection is determined
by solving the following minimum problem:

RO = min
(n2,a2)∈N×R+

G1(n2, a2, ω2(n2, a2))|ω2=ω2
c

(5.37)

ω2
c being such that Im(G(n2, a2, ω2

c (n2, a2))) = 0, and

G1
(
n2, a2, ω2(n2, a2)

)
= Re

(
G
(
n2, a2, ω2(n2, a2)

))
=[

δζH + δη(δζ + γH)− Aω2
] [
−Aω2ξ + (δζ + γH)Va(1 + Daδnξ)

]
[
−δnω2ξ2 + n2π2T 2Va2ξ2 + Va2(1 + Daδnξ)

(
n2π2 + ξa2 + Daδ2

nξ
)]

+[ [
δζH + δη(δζ + γH)− Aω2

]
Vaξ

(
δn + n2π2 + a2ξ + 2Daδ2

nξ
)

[AVa+ (δζ + γH + ADaδnVa)ξ] + [δζ + γH + A(δη +H)]Vaξ(
δn + n2π2 + a2ξ + 2Daδ2

nξ
) [
Aω2ξ − (δζ + γH)Va(1 + Daδnξ)

]
+

[δζ + γH + A(δη +H)] [AVa+ ξ(δζ + γH + ADaδnVa)][
−δnω2ξ2 + n2π2T 2Va2ξ2 + Va2(1 + Daδnξ)(n2π2 + ξa2 + Daδ2

nξ)
] ]

ω2

a2
[
(δζ + γH)2 + A2ω2

]
Vaξ

[
ω2ξ2 + (Va+ DaδnVaξ)2

]

(5.38)

We would like to remark that if (5.32) admits two positive roots, then both of
them are plugged into (5.31) and the lowest threshold arising from the two is the
critical value we were looking for.

Accounting for the physical meaning ofRO, we have to prove thatG1 (n2, a2, ω2(n2, a2))
is positive. First, we write G1 as follows so that it is easier to understand where
this functions lives:

G1
(
n2, a2, ω2(n2, a2)

)
= Λ1ω

3
∗ + Λ2ω

2
∗ + Λ3ω∗ + Λ4

Λ5ω2
∗ + Λ6ω∗ + Λ7

(5.39)
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where
Λ1 =− A2δξ3

Λ2 = a2A2δηVaξ
3 + a2A2HVaξ3 − A2Da2δ3Va2ξ3 + A2Daδ2δηVaξ

3+
A2Daδ2HVaξ3 − 2A2Daδ2Va2ξ2 − A2δVa2ξ + π2A2δηn

2Vaξ2+
π2A2Hn2Vaξ2 + π2A2n2T 2Va2ξ3 − AδγH2ξ3 − δδ2

ζξ
3−

2δδζγHξ3 − δγ2H2ξ3

Λ3 =Va

{
A2Va2(δη +H)(Daδξ + 1){ξ(a2 + Daδ2)(Daδξ + 1)+

π2n2
(
Daδξ + T 2ξ2 + 1

)
}+

ξ(δζ + γH)
[
ξ2
(

(a2 + Daδ2)[δη(δζ + γH) + δζH]−

Va(δζ + γH)(Da2δ3 − π2n2T 2)
)
− δVa(δζ + γH)+

ξ

(
π2n2[δη(δζ + γH) + δζH]− 2Daδ2Va(δζ + γH)

)]
−

AγH2Vaξ
[
ξ2
(
Da2δ3 − π2n2T 2

)
+ 2Daδ2ξ + δ

] }
Λ4 =Va3(Daδξ + 1)(δζ + γH) [δη(δζ + γH) + δζ ][

(ξa2 + Daδ2ξ)(Daδξ + 1) + π2n2
(
Daδξ + T 2ξ2 + 1

)]
Λ5 = a2A2Vaξ3

Λ6 = a2Vaξ
[
A2(DaδVaξ + Va)2 + ξ2(δζ + γH)2

]
Λ7 = a2Va3ξ(Daδξ + 1)2(δζ + γH)2

(5.40)

It is straightforward to notice that the denominator is always positive, as well as
Λ4, while Λ1 < 0. Despite we know nothing about the sign of Λ2 and Λ3, we
can say that G1 lives in the first quarter for any ω2 ∈ [0, ω̄2], where ω̄2 such that
G1(n2, a2, ω̄2) = 0. Numerically, it is easy to notice that the following systemIm(G(n2, a2, ω2(n2, a2))) = 0

G1(n2, a2, ω2(n2, a2)) = 0
(5.41)

does not admit any solution ω2(n2, a2). Furthermore, and most importantly, numer-
ical simulations show that ω2

c (n2, a2) < ω̄2(n2, a2), ∀(n2, a2). Hence, G1(n2, a2, ω2
c (n2, a2)) >

0, ∀(n2, a2).

Remark 5. If T = 0, from (5.33) it turns out that J2, J3 > 0. Hence, by virtue of
(5.36), conditions for the existence of oscillatory convection are not satisfied and
only steady convection can occur.
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Remark 6. If Va→∞, by performing the limit in (5.32), it turns out that (5.32)
admits only negative solution. As a consequence, only steady convection can occur
and the analysis is the same as the one presented in [90].

5.4 Numerical results
Given the complex expression of the critical thresholds, both for oscillatory and
steady convection, a numerical analysis is required in order to draw the attention
on how parameters affect the onset of instability. In particular, in this section, we
will point out the effect of rotation, the Darcy number and anisotropic permeability
and thermal conductivities on the motionless steady state. A particular attention
will be paid to the effect of Vadasz inertia term, which can cause the onset of
convection via oscillatory motion, as already pointed out.

Before proceeding to the analysis, let us underline that, due to its complexity, it
is not possible to solve analytically the minimum problem (5.37)-(5.38). Numerical
simulations show that the minimum for G1(n2, a2, ω2

c (n2, a2)) with respect to n2 is
attained in n2 = 1, for a completely arbitrary choice of parameters. That is why
we can reduce our analysis to the following minimum problem

RO = min
a2∈R+

G1(1, a2, ω2
c (1, a2)) (5.42)

Once RO has been determined, we can define the critical Rayleigh number Ra as

Ra = min{RS, RO} (5.43)

If Ra = RS (Ra = RO), convection can occur through steady (oscillatory) motions.
In order to show the influence of parameters on the critical Rayleigh number

Ra, we adopt the same procedure as done in [86, 27], namely we report the critical
threshold as function of the inter-phase heat transfer coefficient H. This parameter,
which is defined byH = hd2

εκfz
, is not always easily measured. That is why we need to

introduce a range of values between which H can vary. Starting from its definition,
(10−2, 106) is a reasonable interval.

Figures 5.1a-5.1b show the influence of rotation on RS and RO, respectively. The
delaying effect of rotation on the onset of convection comes out. We have previously
shown analytically that the critical threshold RS for steady convection increases
with T , so the result in Figure 5.1a is expected. In addition, what Figures 5.1a-
5.1b show is physically reasonable because in the momentum Eq. (5.9)1 the term
due to rotation has only horizontal component, namely rotation acts horizontally
on the fluid motion, discouraging the motion in the vertical direction. We managed
to prove that, when T = 0, conditions for the existence of oscillatory convection
are not satisfied. As a consequence, in Figure 5.1b, if T = 0, the plot of RO does
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Figure 5.1: Critical Rayleigh number as function of the inter-phase heat transfer co-
efficient H for different values of the Taylor number T with ξ = ζ = η = 1, γ = 0.5,
A = 0.01, Va = 10 and Da = 0.01.
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Figure 5.2: Critical Rayleigh number as function of the inter-phase heat transfer coeffi-
cient H for different values of permeability ξ with ζ = η = 1, γ = 0.5, A = 0.01, Va = 10,
T 2 = 50 and Da = 0.01.

not appear. This result is in agreement with results in [16] and, in addition, it
is expected since the inertia term leads to the occurrence of oscillatory convection
only when coupled to the rotation term, as already pointed out [54].

In Figures 5.2a-5.2b the behaviour of RS and RO with respect to permeability
ξ is shown. It is evident the different influence of ξ on the onset of oscillatory
and steady convection. Increasing the horizontal permeability makes the onset of
oscillatory motions easier, discouraging the onset of steady ones. Actually, since
we managed to determine the derivative ∂ξF (1, a2), we proved analytically that
the behaviour of RS with respect to ξ depends on T . The destabilizing effect of
ξ on the onset of steady convection has been proved analytically if T = 0. While
if T /= 0, ξ keeps on encouraging the onset of instability, but, unlike the previous
case, oscillatory motions are preferred instead of steady ones, as shown in Figure
5.3. In Table 5.1, the behaviour of the critical Rayleigh number Ra with respect to
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Figure 5.3: Critical Rayleigh number as function of the permeability parameter ξ with
ζ = η = 1, γ = 0.5, H = 100, A = 0.01, Va = 10, T 2 = 50 and Da = 0.01.

(a) T 2 = 50

ξ RO RS

0.30 @ 558.6386
0.42 @ 624.7509
0.43 725.4627 629.9432
0.48 660.8735 654.8910
0.49 649.7135 659.6715
0.70 494.7303 744.5317

(b) T 2 = 0

ξ RS ≡ Ra

0.30 207.4724
0.35 190.6250
0.40 177.5048
0.50 158.2614
0.60 144.7119
0.70 134.5796

Table 5.1: Critical Rayleigh number Ra for different values of ξ with ζ = η = 1,
A = 0.01, γ = 0.5, H = 100, Da = 0.01, Va = 10, (a) T 2 = 50 (b) T = 0.

ξ is shown, both with and without rotation. In particular, in Table 5.1a, the values
of Ra are bold. While in Table 5.1b, given the absence of oscillatory convection,
Ra coincides with RS.

Figures 5.4a-5.4b show the effect of solid thermal conductivity on the onset of
convection. In both Figures, increasing values of ζ yields growing critical thresholds.
This result is physically reasonable since the greater solid thermal conductivity is,
the more easily solid matrix absorbs heat from fluid, implying a delay in the onset of
convection. Moreover, when H → 0, the effect of solid thermal conductivity is less
remarkable. Assuming that H goes to zero means that heat exchange between fluid
and solid is forbidden, that is why changing the solid thermal conductivity param-
eter ζ does not affect the critical threshold for the onset of convection. Analogous
results were obtained in [90].

In Figure 5.5, the stabilizing effect of ζ on the onset of instability is evident, as
well as the existence of a transition point ζT before which thermal convection occurs
through steady motions and beyond which it arises through oscillatory motions.

Figures 5.6a-5.6b show the behaviour of RS and RO with respect to variations
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Figure 5.4: Critical Rayleigh number as function of the inter-phase heat transfer coeffi-
cient H for different values of the solid thermal conductivity parameter ζ with ξ = η = 1,
γ = 0.5, A = 0.01, Va = 10, T 2 = 50 and Da = 0.01.
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Figure 5.5: Critical Rayleigh number as function of the solid thermal conductivity
parameter ζ with ξ = 0.5, η = 1, γ = 0.5, H = 100, A = 0.01, Va = 10, T 2 = 50 and
Da = 0.01.

of the fluid thermal conductivity parameter η. This parameter has a stabilizing
effect on conduction, delaying the onset of convection. Result in Figure 5.6a is in
agreement with the analytical result pointed out in Section 5.3. From a physical
point of view, increasing κfz , which implies by definition a decreasing η, allows heat
to spread in the vertical direction within the fluid more easily, encouraging the
onset of convection. We would like to point out that in Figure 5.6b, conditions
(5.35)-(5.36) for the non-existence of oscillatory convection are verified for some
values of H and η, for the set of parameters chosen. As a consequence it is not
possible to plot RO for any H and η in Figure 5.6b.

In Figure 5.7, it is highlighted the existence of a threshold value for η. Once
η overcomes this critical value, convection occurs through oscillatory motion (i.e.
Ra ≡ RO). Before this value, only steady convection can arise (Ra ≡ RS).
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Figure 5.6: Critical Rayleigh number as function of the inter-phase heat transfer coef-
ficient H for different values of the fluid thermal conductivity parameter η with ξ = 0.5,
ζ = 1, γ = 0.5, A = 0.01, Va = 10, T 2 = 50 and Da = 0.01.
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Figure 5.7: Critical Rayleigh number as function of the solid thermal conductivity
parameter η with ξ = 0.5, ζ = 1, γ = 0.5, H = 100, A = 0.01, Va = 10, T 2 = 50 and
Da = 0.01.

The effect of κfz on the critical Rayleigh number is highlighted in Figures 5.8a-
5.8b, as well. From these Figures, the destabilising effect of γ on the critical thresh-
olds comes up and, as consequence, since by definition γ is proportional to κfz ,
increasing κfz encourages the onset of instability.

In order to capture the influence of Da on Ra as best as we can, we decided
not to plot RS and RO as functions of H. Instead, we report the behaviour of the
critical threshold for a fixed H. In Figure 5.9, a parabolic behaviour of RS and the
existence of a value of Da beyond which RO does not exist are evident. Nevertheless,
the critical threshold Ra for the onset of instability exhibits an increasing trend
with respect to Da, as shown in Table 5.2 where Ra is bold. When considering the
Darcy-Brinkman model, which is closer to a model for clear fluids (in absence of
porous medium), we would expect the critical Rayleigh number to get closer to the
critical value for clear fluids. It is well known that the critical value for clear fluids
is greater than the one for fluids in presence of porous medium (i.e. the presence
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Da RO RS

0.001 296.9241 957.2011
0.04 697.7111 782.9615
0.05 796.2326 783.4380
0.06 895.7849 786.0607
0.07 996.6127 790.1571
0.08 @ 795.3360
0.10 @ 808.0355
0.20 @ 896.0463
0.30 @ 1004.8

Table 5.2: Critical Rayleigh number Ra for different values of Da with ξ = ζ = η = 1,
A = 0.01, γ = 0.5, H = 100, Va = 10, T 2 = 50.
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Figure 5.8: Critical Rayleigh number as function of the inter-phase heat transfer co-
efficient H for different values of the diffusivity ratio γ with ξ = ζ = η = 1, A = 0.01,
T 2 = 50, Va = 10 and Da = 0.01.

of a porous medium eases the onset of instability). Hence, result in Figure 5.9 is
reasonable.

The influence of the Vadasz number Va on the onset of convection is highlighted
in Figure 5.10. In this case, we report only the behaviour of RO since, as shown
in (5.29), RS does not depend on Va. In Figure 5.10, the stabilising effect of Va is
clear. For some values of Va and H it is not possible to plot RO since conditions
for the existence of oscillatory convection are not satisfied.

A focus on the behaviour of Ra with respect to Va, for a fixed H, is given in
Figure 5.11, where it is shown that increasing Vadasz number makes the critical
threshold increase at least up to a certain value, beyond which the critical Rayleigh
number is constant and convection arises through steady motion. If Va→∞, as we
have pointed out in Remark 6, oscillatory convection cannot occur. In fact, looking
at model (5.9), when Va→∞, the inertia term disappears and model (5.9) reduces
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Figure 5.9: Critical Rayleigh number as function of the Darcy number Da with ξ = η =
ζ = 1, γ = 0.5, H = 100, A = 0.01, Va = 10 and T 2 = 50.

to that one studied in [90] for which the principle of exchange of stabilities holds
and convection occurs only through steady motion. On the other hand, if Va→ 0,
the inertia term strongly affects the model and instability occurs earlier, through
oscillatory motion. As a result, the inertia term encourages the onset of convection
and such a result is not surprising. Indeed, we can write by definition Va = Pr

Da ca
,

where Pr = µ̃cf

κfz
is the Prandtl number and ca is inversely proportional to ε [1].

Then, it immediately follows that if porosity ε→ 0, i.e. the medium becomes less
porous, then Va→ 0 and the critical Rayleigh number decreases, which is expected
as the presence of a porous medium has a destabilising effect on conduction, as
already pointed out.
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Figure 5.10: Critical Rayleigh number as function of the inter-phase heat transfer
coefficient H for different values of the Vadasz number Va with ξ = 0.5, η = ζ = 1,
γ = 0.5, A = 0.01, T 2 = 50 and Da = 0.01.
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Figure 5.11: Critical Rayleigh number as function of the Vadasz number Va with
ξ = 0.5, η = ζ = 1, γ = 0.5, H = 100, A = 0.01, Va = 10, T 2 = 50 and Da = 0.01.

5.5 Conclusions
The study undertaken in this chapter was devoted to investigate the effect of the
inertia term in the momentum equation of a Darcy-Brinkman model on the onset
of convective motions. In this chapter, we performed a linear instability analysis to
show that the presence of the Vadasz term leads to different physical phenomena.
Specifically, the presence of inertia term makes the onset of convection possible
via either oscillatory or steady motions. Moreover, we proved analytically that the
Vadasz term does not affect steady convection, namely we recovered same results
as in [90]. Conditions for the non-existence of oscillatory convective motions were
determined numerically because of the high complexity of the critical Rayleigh
number expression.

In addition, we studied the effect of parameters on the onset of both steady
and oscillatory convective motions. We proved analytically that the influence of
anisotropic permeability ξ on steady convection depends on the Taylor number T ,
while numerically we showed the stabilising effect of rotation, thermal conductivities
(both fluid and solid one) and of the Darcy number Da on the onset of instability.
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Chapter 6

Onset of convection in LTNE
Darcy-Brinkman anisotropic
porous layer: Cattaneo effect in
the solid

6.1 Introduction

In the present chapter, results from [44] are shown. The influence of second sound
phenomenon on the onset of convection in a highly porous medium in LTNE
regime, exhibiting horizontal isotropy in permeability and thermal conductivity,
is investigated. In particular, we assume the second sound effect is greater in
solids: hence, we use Cattaneo’s law to describe the heat flux only in the solid
phase, while Fourier’s law is retained and used to model the flux in the fluid phase
([37, 39, 40, 41]). Linear and nonlinear analyses for the stability of conduction
solution for the problem at stake are performed. It is proved that the employ-
ment of Cattaneo’s law as governing equation for heat flux in solid can lead to the
occurrence of oscillatory convection.

In section 6.2, the mathematical model is introduced. Then, the dimensionless
system governing the evolution of perturbation fields related to conduction solution
is obtained. In section 6.3, the instability analysis is performed and the critical
threshold beyond which thermal convection occurs is determined. We prove that
the onset of steady convection is not affected by the thermal relaxation time and
we determine conditions for the non-existence of oscillatory convection. Section 6.4
is devoted to the global nonlinear stability analysis of the conduction solution by
employing the energy method with the L2-norm. Finally, in section 6.5, numerical
simulations (related to two cases of practical interest) are carried out in order to
focus the attention on the influence of second sound, inter-phase heat transfer,

88



6 – Convection in porous medium with Cattaneo effect in the solid

permeability and thermal conductivity on the onset of instability. It is proved
that, if the thermal relaxation time τ appearing in the dimensionless number τ̂ is
great, oscillatory convection is the dominant mechanism. While, when τ goes to
zero, only steady convection can arise. Analogous considerations are valid when
taking into account the effect of Sg, given the proportionality between τ̂ and Sg.
Moreover, since RS and RO are increasing functions of Da, the Darcy number has
a stabilizing effect on the onset of convection. It turns out that permeability ξ
has a destabilising effect on the onset of convection, while both fluid (η) and solid
(ζ) thermal conductivities have a stabilising effect. Periodicity cell gets wider for
increasing values of ξ and η, while a mixed behaviour is highlighted with respect
to ζ. Moreover, the influence of inter-phase heat transfer coefficient H is analysed.
The existence of a transition value HT and a mixed influence, depending on ζ, on
periodicity cell dimension is highlighted.

6.2 Statement of the problem
Let F be an incompressible fluid at rest saturating the horizontal porous layer
R2 × [0, d], uniformly heated from below. Let TL be the temperature of the lower
plane and let TU be the temperature of the upper plane, with TL > TU . Under the
assumption of LTNE, defining by Tf the temperature of fluid phase and by Ts the
temperature of solid phase, we suppose

Tf = Ts = TL on z = 0,
Tf = Ts = TU on z = d.

(6.1)

We assume that the temperature Ts in solid phase satisfies Cattaneo’s law, while
the temperature Tf in fluid phase satisfies Fourier’s law.

Furthermore, horizontal isotropy in permeability, fluid and solid thermal con-
ductivity, as well, is considered [35]. Hence, by setting K the permeability tensor
and Df and Ds the thermal conductivity tensors of fluid and solid phase, respec-
tively, by assuming that they share the same principal axis (x, y, z), they can be
written in diagonal form, i.e.

K = KzK̃ K̃ =

ξ 0 0
0 ξ 0
0 0 1

 ξ = Kx

Kz

= Ky

Kz

Ds = κszD̃s D̃s =

ζ 0 0
0 ζ 0
0 0 1

 ζ = κsx
κsz

=
κsy
κsz

Df = κfz D̃f D̃f =

η 0 0
0 η 0
0 0 1

 η = κfx
κfz

=
κfy

κfz
.

(6.2)
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For the problem at stake, accounting for highly porous materials, the Darcy-
Brinkman model, by employing the Oberbeck-Boussinesq approximation, is the
following [1, 46]

µ

K
v = −∇p+ ρfαTfgk + µ̃∆v

∇ · v = 0

ε(ρc)f
∂Tf
∂t

+ (ρc)fv · ∇Tf = ε∇ · (Df∇Tf ) + h(Ts − Tf )

(1− ε)(ρc)s
∂Ts
∂t

= −(1− ε)∇ ·Q− h(Ts − Tf )

τ
∂Q
∂t

= −Q−Ds∇Ts

(6.3)

where v, p, Ts, Tf and Q are (seepage) velocity, pressure, solid phase temperature,
fluid phase temperature and heat flux in the solid phase, respectively; µ, µ̃, ρf ,
ρs, g, α, ε, c, h, τ are dynamic viscosity, effective viscosity, fluid density, solid
density, gravity acceleration, thermal expansion coefficient, porosity, specific heat,
interaction coefficient and solid thermal relaxation time, respectively.

To system (6.3) we append the following boundary conditions

Ts = Tf = TL on z = 0, Ts = Tf = TU on z = d,

v · n = 0 on z = 0, d
(6.4)

being n the unit outward normal to planes z = 0, d.
The steady conduction solution of (6.3) is

m0 = {vb = 0, T fb = T sb = −βz + TL, pb(z), Qb = κszβk} (6.5)

where β = TL − TU
d

(> 0) is the adverse temperature gradient and pb(z) is solution
of

dp

dz
= −ρfαβgz + ρfαgTL . (6.6)

To study the stability of m0, let (u, θ, ϕ, π,q) be the perturbation fields to
seepage velocity, fluid temperature, solid temperature, pressure and heat flux, re-
spectively. The evolution equations of (u, θ, ϕ, π,q) are:

µ

K
u = −∇π + ρfαθgk + µ̃∆u

∇ · u = 0

ε(ρc)f
∂θ

∂t
+ (ρc)fu · ∇θ = (ρc)fβw + ε∇ · (Df∇θ) + h(ϕ− θ)

(1− ε)(ρc)s
∂ϕ

∂t
= −(1− ε)∇ · q− h(ϕ− θ)

τ
∂q
∂t

= −q−Ds∇ϕ.

(6.7)

90



6 – Convection in porous medium with Cattaneo effect in the solid

Let us introduce the dimensionless quantities

xi = x̃id, t = t̃
εd

U
, π = π̃P, ui = ũiU,

θ = θ̃T ′, ϕ = ϕ̃T ′, qi = q̃iQ
∗ (6.8)

where

P = µUd

Kz

, U = εκfz
d(ρc)f

, T ′ =

√√√√ εκfzµβ

ρ2
fcfgαKz

, Q∗ = κszT
′

d
. (6.9)

Omitting the tilde, the dimensionless system for perturbation fields is


u
K

= −∇π +Rθk + Da∆u

∇ · u = 0
∂θ

∂t
+ u · ∇θ = Rw +∇ · (Df∇θ) +H(ϕ− θ)

A
∂ϕ

∂t
= −∇ · q−Hγ(ϕ− θ)

τ̂
∂q
∂t

= −q−Ds∇ϕ

(6.10)

with

τ̂ = Sg κfz
4µcf

, H = hd2

εκfz
, γ = εκfz

(1− ε)κsz
, A = (ρc)sκfz

(ρc)fκsz
,

R2 =
Kzρ

2
fcfd

2βgα

µεκfz
, Da = µ̃Kz

µd2 , Sg = 4τµ
ρfd2

(6.11)

where R2, Da and Sg are, respectively, the Rayleigh number, the Darcy number
and the Straughan number [93].

By defining q = ∇·q and applying the divergence operator to Eq. (6.10)5, from
(6.10) one obtains



u
K

= −∇π +Rθk + Da∆u

∇ · u = 0
∂θ

∂t
+ u · ∇θ = Rw +∇ · (Df∇θ) +H(ϕ− θ)

A
∂ϕ

∂t
= −q −Hγ(ϕ− θ)

τ̂
∂q

∂t
= −q −∇ · (Ds∇ϕ) .

(6.12)
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Moreover, by applying the operator τ ∂
∂t

+ 1 to (6.12)4 and substituting (6.12)5 in
the resulting equation, we get

u
K

= −∇π +Rθk + Da∆u

∇ · u = 0
∂θ

∂t
+ u · ∇θ = Rw +∇ · (Df∇θ) +H(ϕ− θ)

A

(
τ̂
∂

∂t
+ 1

)
∂ϕ

∂t
= ∇ · (Ds∇ϕ)−Hγ

(
τ̂
∂

∂t
+ 1

)
(ϕ− θ).

(6.13)

To system (6.13) we append the following initial conditions

u(x,0) = u0(x) , π(x,0) = π0(x) , θ(x,0) = θ0(x) , ϕ(x,0) = ϕ0(x)
(6.14)

where ∇ · u0 = 0, and the following boundary conditions (stress-free)

∂u

∂z
= ∂v

∂z
= w = θ = ϕ = 0 on z = 0,1. (6.15)

On denoting by

V =
[
0, 2π
ax

]
×
[
0, 2π
ay

]
× [0, 1] (6.16)

the periodicity cell, and assuming that perturbations are periodic in x and y

directions, with periods 2π
ax

and 2π
ay

, respectively, we will assume that, ∀f ∈

{u, θ, ϕ,∇π},

f : (x, t) ∈ V × R+ → f(x, t) ∈ R, f ∈ W 2,2(V ) ∀t ∈ R+

and that it can be expanded in a Fourier series uniformly convergent in V .

6.3 Instability analysis
Let us consider the linear version of the system (6.13), i.e.



u
K

= −∇π +Rθk + Da∆u

∇ · u = 0
∂θ

∂t
= Rw +∇ · (Df∇θ) +H(ϕ− θ)

A

(
τ̂
∂

∂t
+ 1

)
∂ϕ

∂t
= ∇ · (Ds∇ϕ)−Hγ

(
τ̂
∂

∂t
+ 1

)
(ϕ− θ).

(6.17)
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By taking the third component of the double curl of (6.17)1, one obtains:

ξ∆1w + ∂2w

∂z2 = ξR∆1θ + ξDa∆∆w
∂θ

∂t
= Rw + η∆1θ + ∂2θ

∂z2 +H(ϕ− θ)

A

(
τ̂
∂

∂t
+ 1

)
∂ϕ

∂t
= ζ∆1ϕ+ ∂2ϕ

∂z2 −Hγ
(
τ̂
∂

∂t
+ 1

)
(ϕ− θ)

(6.18)

where ∆1 = ∂2

∂x2 + ∂2

∂y2 .
Since system (6.18) is autonomous, we can seek solutions for which

f ′(x, y, z, t) = f(x, y, z) eσt ∀f ′ ∈ {w, θ, ϕ}. (6.19)

Substituting (6.19), (6.18) becomes

ξ∆1w + ∂2w

∂z2 = ξR∆1θ + ξDa∆∆w

σθ = Rw + η∆1θ + ∂2θ

∂z2 +H(ϕ− θ)

(τ̂σ + 1)(Aσ +Hγ)ϕ = ζ∆1ϕ+ ∂2ϕ

∂z2 +Hγ(τ̂σ + 1)θ.

(6.20)

Accounting for boundary conditions (6.15) and the periodicity of the perturbation
fields in the horizontal direction, since the sequence {sinnπz}n∈N is a complete
orthogonal system for L2([0,1]), the solution of (6.20) can be expanded as

f(x, y, z) =
+∞∑
n=1

f̄n(x, y, z) ∀f ∈ {w, θ, ϕ} (6.21)

where f̄n = f̃n(x, y) sin(nπz) and

∆1f̄n = −a2f̄n
∂2f̄n
∂z2 = −n2π2f̄n (6.22)

with a2 = a2
x + a2

y.
Let us define the following operators

L1 ≡ ξ∆1 + ∂2

∂z2 − ξDa∆∆

L2 ≡ σ − η∆1 −
∂2

∂z2 +H

L3 ≡ Aσ +Hγ

L4 ≡ τ̂σ + 1.

(6.23)
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Then, (6.20) becomes 
L1w = ξR∆1θ

L2θ = Rw +Hϕ

L5ϕ = HγL4θ

(6.24)

where L5 ≡ L4L3 − ζ∆1 −
∂2

∂z2 .
By applying L5 and L1 to (6.24)2 and substituting (6.24)1-(6.24)3 in the resulting

equation, one obtains

L5L1L2θ = ξR2L5∆1θ +H2γL1L4θ . (6.25)

Splitting L2 in (6.25), it follows that

L1L5

(
σ − η∆1 −

∂2

∂z2

)
θ +HL1L5θ = ξR2L5∆1θ +H2γL1L4θ (6.26)

from which, splitting L5 only in the second term, one recovers

L1L5

(
σ − η∆1 −

∂2

∂z2

)
θ +HL1

(
L4Aσ − ζ∆1 −

∂2

∂z2

)
θ +H2γL1L4θ =

= ξR2L5∆1θ +H2γL1L4θ .

(6.27)

Substituting (6.21) in (6.27) and retaining only the n-th component, we get

R2 = ξa2 + n2π2 + ξDa (a2 + n2π2)2

ξa2

[
σ + ηa2+

n2π2 +H
(στ̂ + 1)Aσ + ζa2 + n2π2

(στ̂ + 1)(Aσ +Hγ) + ζa2 + n2π2

]
.

(6.28)

6.3.1 Steady convection
In order to determine the critical Rayleigh number for the onset of steady convec-
tion, let us set σ = 0 in (6.28) and hence

RS = min
(n2,a2)∈N×R+

f(n2, a2) (6.29)

where

f(n2, a2) = ξa2 + n2π2 + ξDa (a2 + n2π2)2

ξa2[
ηa2 + n2π2 +H

ζa2 + n2π2

Hγ + ζa2 + n2π2

]
.

(6.30)
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Since f(n2, a2) is an increasing function of n2, it attains its minimum at n2 = 1,
hence

RS = min
a2∈R+

f(1, a2). (6.31)

The absence of τ̂ in (6.31) implies that RS does not depend on the solid thermal
relaxation time. As consequence, second sound, allowed in heat propagation in
solid, does not affect the occurrence of steady convection.

Let us remark that, if the porous medium is isotropic, i.e. ξ = η = ζ = 1, (6.31)
becomes

RS = min
a2∈R+

(a2 + π2)2 (1 + Da(a2 + π2))
a2

[
H(1 + γ) + a2 + π2

Hγ + a2 + π2

]
. (6.32)

which coincides with the result found in [94].
Moreover, let us observe that, when Da → 0, namely in absence of effective

viscosity µ̃, (6.31) coincides with the result found in [14].

6.3.2 Oscillatory convection
It is well known that oscillatory convection arises once the eigenvalue σ is pure
imaginary.

Setting σ = iω with ω ∈ R− {0} in (6.28), we obtain

R2 = g̃(n2, a2) = ξa2 + n2π2 + ξDa (a2 + n2π2)2

ξa2

[
iω + ηa2+

n2π2 +H
(iωτ̂ + 1)Aiω + ζa2 + n2π2

(iωτ̂ + 1)(Aiω +Hγ) + ζa2 + n2π2

]
.

(6.33)

Since R2 is a real number, defining ω∗ = ω2, the condition for the existence of
oscillatory convection is the following

J1 ω
2
∗ + J2 ω∗ + J3 = 0 (6.34)

where
J1 = A2 τ̂ 2

J2 = A2 +H2γ2τ̂ 2 − 2Aτ̂a2ζ − 2An2τ̂π2 + AH2γτ̂ 2

J3 = H2γ2 − τ̂π2H2n2γ − τ̂H2γa2ζ + AH2γ+
2π2Hn2γ + 2Hγa2ζ + π4n4 + 2π2n2a2ζ + a4ζ2.

(6.35)

Let us remark that, since J1 is positive, oscillatory convection cannot occur when
either

J2
2 − 4J1J3 < 0 (6.36)
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or J2 > 0
J3 > 0.

(6.37)

Once (6.34) is solved with respect to ω2, the critical Rayleigh number for the
onset of oscillatory convection is obtained by substituting the positive solution of
(6.34) in (6.33), i.e.

RO = min
(n2,a2)∈N×R+

g(n2, a2, ω2(n2, a2)) (6.38)

being

g(n2, a2, ω2(n2, a2)) = ξa2 + n2π2 + Daξ (a2 + n2π2)2

ξa2A1[
A1
(
ηa2 + n2π2

)
+B1A2 + AHω2 (A+Hγτ̂)

] (6.39)

where
A1 = A2

2 + ω2 (A+H γ τ̂)2

A2 = H γ + a2 ζ + n2 π2 − Aω2 τ̂

B1 = H
(
a2 ζ + n2 π2

)
− AH ω2 τ̂ .

(6.40)

Let us remark that when τ̂ = 0, from (6.35) it turns out that J1 = 0 and
J2, J3 > 0, and hence, by virtue of (6.37), oscillatory convection cannot arise.
Hence, we can claim that the second sound phenomenon in solid phase can imply
the existence of instability by means of oscillatory motion.

For the Eq. (6.38) to make sense, we need to assure g(n2, a2, ω2(n2, a2)) > 0.
However, this condition is simply verified since the term B1A2 + AH2 ω2 γ τ̂ is
strictly positive.

Remark 7. We remark that, by comparing f(n2, a2) with g(n2, a2), the following
necessary condition for the onset of steady convection holds:

H <
A2 (1 + ω2τ̂ 2)
γτ̂ 2n2π2 . (6.41)

Remark 8. Let us underline that on accounting for (6.30)-(6.31) and (6.38)-(6.39)
it arises that RS and RO are increasing functions of Da and hence that the Darcy
number has a stabilizing effect on the onset of convection.

6.4 Global nonlinear stability
In order to study the nonlinear stability of m0, we use the energy method following
the non-standard procedure adopted in [46].
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To this end, let us multiply (6.10)1 by u, (6.10)3 by θ, (6.10)4 by ϕ and (6.10)5 by
q and then integrate over the periodicity cell V . By virtue of boundary conditions
(6.15), the resulting equations are

R(θ, w)− ‖u‖
2

ξ
− ‖v‖

2

ξ
− ‖w‖2 −Da‖∇u‖2 = 0

1
2
d

dt
‖θ‖2 = R(w, θ)− η

∥∥∥∥∥∂θ∂x
∥∥∥∥∥

2

− η
∥∥∥∥∥∂θ∂y

∥∥∥∥∥
2

−
∥∥∥∥∥∂θ∂z

∥∥∥∥∥
2

+H(θ, ϕ)−H‖θ‖2

A

2
d

dt
‖ϕ‖2 = Hγ(θ, ϕ)− (∇ · q, ϕ)−Hγ‖ϕ‖2

τ̂

2
d

dt

(
1
ζ

(‖qx‖2+‖qy‖2)+‖qz‖2
)

=−1
ζ

(‖qx‖2+‖qy‖2)−‖qz‖2−(∇ϕ, q)

(6.42)

where q = (qx, qy, qz), while (·, ·) and ‖ · ‖ are the scalar product and the norm on
L2(V ), respectively.

By adding (6.42)3 to (6.42)4 and multiplying by ζ, we obtain

d

dt

(
Aζ

2 ‖ϕ‖
2 + τ̂

2
(
‖qx‖2 + ‖qy‖2

)
+ τ̂ ζ

2 ‖qz‖
2
)

=

Hγζ(θ, ϕ)− ‖qx‖2 − ‖qy‖2 − ζ‖qz‖2 −Hγζ‖ϕ‖2.

(6.43)

Now, we perform (6.42)2 + λ1(6.42)1 + λ2(6.43) in order to derive

dE(t)
dt

= RI −D − λ2
(
‖qx‖2 + ‖qy‖2

)
− λ2ζ‖qz‖2 (6.44)

where the energy functional is

E(t) = τ̂λ2

2
(
‖qx‖2 + ‖qy‖2 + ζ‖qz‖2

)
+ Aζλ2

2 ‖ϕ‖2 + ‖θ‖
2

2 (6.45)

while the dissipation function and the production term are, respectively

D(t) = Hγζλ2‖ϕ‖2 + η

∥∥∥∥∥∂θ∂x
∥∥∥∥∥

2

+ η

∥∥∥∥∥∂θ∂y
∥∥∥∥∥

2

+
∥∥∥∥∥∂θ∂z

∥∥∥∥∥
2

+λ1‖u‖2

ξ
+ λ1‖v‖2

ξ
+ λ1‖w‖2 + λ1Da‖∇u‖2 (6.46)

I(t) = (1 + λ1)(θ, w) + H

R
(1 + λ2γζ)(θ, ϕ). (6.47)

Now let us define
1
RN

= max
H

I

D
(6.48)
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with

H = {(u, θ, ϕ) ∈ W 2,2(V ) : w = θ = ϕ = 0 on z = 0,1; periodic in

x and y directions,with period 2π
ax
,
2π
ay

respectively; D <∞}
(6.49)

the space of the kinematically admissible perturbations. Hence, (6.44) yields

dE

dt
≤ −D

(
1− R

RN

)
−
(
‖qx‖2 + ‖qy‖2

)
− ζ‖qz‖2. (6.50)

As consequence, R < RN is a sufficient condition for the stability of m0. In this
respect, let us define

α = 1− R

RN

> 0 (6.51)

and applying the Poincarè inequality, we obtain

D(t) ≥ λ2Hγζ‖ϕ‖2 +
(
η∗π2 +H

)
‖θ‖2 (6.52)

being η∗ = min{η, 1}. Hence,

dE

dt
≤ −αλ2Hγζ‖ϕ‖2 − α

(
η∗π2 +H

)
‖θ‖2

−
(
‖qx‖2 + ‖qy‖2

)
− ζ‖qz‖2 ≤ −cE(t)

(6.53)

where c = min
{

2αHγ
A

, 2α (η∗π2 +H) , 2
τ̂

}
. Eq. (6.53) yields the exponential decay

of the energy functional E(t), implying the global stability of m0 with respect to
E(t).

Remark 9. Let us remark that, from (6.42)1, by applying the Poincarè inequality
and Cauchy Schwarz inequality, one obtains

‖u‖2 ≤ ξ2
∗R

2

1 + 2ξ∗Daπ2‖θ‖
2 (6.54)

being ξ∗ = max{ξ, 1} and hence the decay of ‖θ‖2 implies the decay of ‖u‖2, too.

Now, in order to find the global nonlinear stability threshold RN , let us solve
the variational problem (6.48). The Euler-Lagrange equations related to (6.48) are

(1 + λ1)Rθk + 2Daλ1∆u− 2λ1

ξ
ui− 2λ1

ξ
vj− 2λ1wk = ∇l

(1 + λ1)Rw +H (1 + λ2γζ)ϕ+ 2η ∂
2θ

∂x2 + 2η ∂
2θ

∂y2 + 2∂
2θ

∂z2 − 2Hθ = 0

(1 + λ2γζ) θ − 2λ2γζϕ = 0

(6.55)
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where l(x) is a Lagrange multiplier. By retaining the third component of the double
curl of (6.55)1 and by recalling that ∇ · u = 0, we obtain
− (1 + λ1)R∆1θk− 2Daλ1∆∆u + 2λ1

ξ

∂2w

∂z2 + 2λ1∆1w = 0

(1 + λ1)Rw +H (1 + λ2γζ)ϕ+ 2η ∂
2θ

∂x2 + 2η ∂
2θ

∂y2 + 2∂
2θ

∂z2 − 2Hθ = 0

(1 + λ2γζ) θ − 2λ2γζϕ = 0

(6.56)

The nonlinear stability threshold is then given by

RN = max
(λ1,λ2)∈R2

min
(n2,a2)∈N×R+

h(λ1, λ2, n
2, a2) (6.57)

where, accounting for (6.56),

h(λ1, λ2, n
2, a2) =

4
[
ξDaλ1 (a2 + n2π2)2 + λ1 (ξa2 + n2π2)

]
ξa2 (1 + λ1)2[

ηa2 + n2π2 +H

(
1− (1 + λ2γζ)2

4λ2γζ

)]
.

(6.58)

Hence, we find

RN = min
(n2,a2)∈N×R+

h

(
1, 1
γζ
, n2, a2

)
= min

(n2,a2)∈N×R+
h1(n2, a2) (6.59)

where

h1(n2, a2) = ξDa (a2 + n2π2)2 + (ξa2 + n2π2)
ξa2

(
ηa2 + n2π2

)
. (6.60)

From (6.30), (6.39) and (6.60) it follows that

h1(n2, a2) < f(n2, a2) ∀(n2, a2) ∈ N× R+

h1(n2, a2) < g(n2, a2) ∀(n2, a2) ∈ N× R+ (6.61)

and hence
RN < min{RS, RO} (6.62)

Moreover, accounting for (6.59) and (6.60), it arises that RN is an increasing func-
tion of Da and η, while it decreases with ξ. In addition, when H → 0, conditions
for the existence of RO are not satisfied and the difference

f(n2, a2)− h1(n2, a2) = H(ζa2 + n2π2)
Hγ + ζa2 + n2π2 (6.63)

tends to zero. This is an expected result since assuming that fluid and solid do not
exchange heat between each other makes the system (6.18)1-(6.18)2 self-adjoint.
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6.5 Results and Discussion
In this section, we furnish numerical simulations in order to analyse the influence
of second sound, interaction coefficient and anisotropy of the medium on the onset
of convection.

First of all, let us underline that, due to the complexity of RO given by (6.38)-
(6.40), we have not been able to prove that the critical oscillatory threshold is
achieved for n = 1, while all the numerical simulations we have performed have
verified this. For this reason, in the following, we will assume:

RO = min
a2∈R+

g(1, a2, ω2(1, a2)). (6.64)

As done in [48], and previously in [46], all the computations are confined to
two cases of great interest, namely oxide of aluminium (Al2O3) and copper (CuO)
materials, because of their real-life employment in heat exchangers. Specifically,
figures will be delivered for the case of copper oxide, while tables will show results
for both materials. In Table 6.1 the diffusivity ratio and the weighted conductivity
ratio are collected for both materials.

Al2O3 CuO

AAl2O3 = 1.4210−2 ACuO = 8.664× 10−4

γAl2O3 = 7.33710−3 γCuO = 6.403× 10−4

Table 6.1: Diffusivity ratio A and weighted conductivity ratio γ for oxide of aluminium
(Al2O3) and copper (CuO).
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Figure 6.1: RO and RS as functions of τ̂ with A = ACuO, γ = γCuO, ξ = 1, η = 1,
ζ = 1, Da = 10 and H = 200.

In Figure 6.1, the critical Rayleigh number behaviour with respect to the dimen-
sionless parameter τ̂ , defined in (6.11)1, which depends on the thermal relaxation
time τ , the depth of the layer d and the fluid thermal diffusivity, is shown. Let
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6 – Convection in porous medium with Cattaneo effect in the solid

us underline that, due to proportionality between τ̂ and Sg, analogous results are
obtained on studying the effect of Sg on the critical Rayleigh number. The steady
threshold RS, defined in (6.31), is not affected by τ̂ . That is why its value is con-
stant in Figure 6.1. On the other hand, RO exhibits a decreasing behaviour with
respect to τ̂ , which allows us to claim that, when τ̂ /= 0, oscillatory convection can
occur.

Of course, when τ̂ goes to zero, we would expect to obtain the same results
found by assuming the validity of Fourier’s law in solid phase, too. In fact, by
assuming τ̂ = 0 and comparing results with those ones found in [95], it arises an
excellent agreement, as shown in Table 6.2.

(a) [95]

H RS ac

0.01 39.4992 3.1423
0.1 39.6779 3.1494
100 72.3411 3.2706
1000 78.1924 3.1568

(b) Present study

H RS ac

0.01 39.4992 3.1423
0.1 39.6779 3.1494
100 72.3411 3.2706
1000 78.1924 3.1568

Table 6.2: Comparison of critical Rayleigh number RS and square root of critical wave
number ac for different value of H with ξ = η = ζ = 1, Da = 10−6 and γ = 1.

(a)

τ̂ RO RS

0.2 @ 86511
0.4 @ 86511
0.5 98029 86511
0.6 65415 86511
1 34342 86511
2 19084 86511

(b)

τ̂ RO RS

0.2 @ 34484
0.3 @ 34484
0.4 30693 34484
0.5 22124 34484
1 12974 34484
2 9609 34484

Table 6.3: (a) Values of RO and RS for different values of τ̂ with A = ACuO, γ = γCuO,
ξ = 1, η = 1, ζ = 1, Da = 10 and H = 200. (b) Values of RO and RS for fixed values of
τ̂ with A = AAl2O3 , γ = γAl2O3 , ξ = 1, η = 1, ζ = 1, Da = 10 and H = 70.

Moreover, by reading Tables 6.3a-6.3b, performed computations did not find
oscillatory convection for τ̂ lower than a certain value τ̂c.

The behaviour of RS and RO with respect to the inter-phase heat transfer
coefficient has been analysed numerically. From Figure 6.2a and by reading Table
6.4a, it arises that RS is an increasing function of H while RO is a decreasing
function of H.
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Figure 6.2: (a) RO and RS as functions of H with A = ACuO, γ = γCuO, ξ = 1, η = 1,
ζ = 1, Da = 10 and τ̂ = 0.5.
(b) RO and RS as functions of H for ξ = 0.5 (continuous and dashed lines), ξ = 1
(dashdotted and dotted lines) with A = ACuO, γ = γCuO, η = 1, ζ = 1, Da = 10 and
τ̂ = 0.5.

(a)

H RO a2
cO RS a2

cS

198 @ @ 85727 9.0661
198.7 @ @ 86001 9.0681
198.8 101140 2.3693 86041 9.0684
204.6 88512 2.8169 88315 9.0851
204.7 88338 2.8239 88355 9.0854
205 87825 2.8444 88472 9.0862

(b)

H RO a2
cO RS a2

cS

60 @ @ 30676 7.9212
60.5 @ @ 30867 7.9288
60.7 @ @ 30944 7.9318
60.8 30013 2.9743 30982 7.9333
61 29654 3.0315 31058 7.9363
62 28103 3.2958 31440 7.9510

Table 6.4: (a) Values of RO and RS and respective critical wave numbers for different
values of H with A = ACuO, γ = γCuO, ξ = 1, η = 1, ζ = 1, Da = 10 and τ̂ = 0.5. (b)
Values of RO and RS and respective critical wave numbers for different values of H with
A = AAl2O3 , γ = γAl2O3 , ξ = 1, η = 1, ζ = 1, Da = 10 and τ̂ = 0.5.

Moreover, Figure 6.2a finds out the existence of a critical value HT for which
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Figure 6.3: a2
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cS as functions of H for ζ = 0.1 (continuous and dashed lines),
ζ = 1 (dashdotted and dotted lines) with A = ACuO, γ = γCuO, ξ = 1, η = 1, Da = 10
and τ̂ = 10.
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Figure 6.4: RO and RS as functions of ξ with A = ACuO, γ = γCuO, η = 1, ζ = 2,
Da = 10, H = 224.5 and τ̂ = 0.5.

convection moves from a steady motion to an oscillatory one. HT depends on the
fixed parameters. In fact, for example, Figure 6.2b shows that HT gets lower for
increasing values of ξ.

In Figure 6.3, we find out that the oscillatory wave number acO exhibits a
different behaviour with respect toH depending on ζ, while the steady wave number
acS does not change. In particular, acS exhibits an increasing behaviour with respect
to H.

In Figure 6.4 the behaviour of the critical Rayleigh number with respect to
permeability ξ is highlighted. Although setting a precise value for the inter-phase
heat transfer coefficient H is not significant since this quantity is usually not easily
measured ([27]), assuming fixed H is useful to determine the influence of ξ on the
onset of convection. Both the steady and oscillatory critical thresholds exhibit a
decreasing behaviour with respect to ξ. Hence, increasing ξ implies a reduction of
the critical Rayleigh number, namely convection is promoted in place of conduction.
Physically, due to definition of ξ, increasing the horizontal permeability eases the
fluid motion in the horizontal direction, implying that instability is reached more
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(a)

ξ RO a2
cO RS a2

cS

0.5 96749 2.3474 96590 9.1869
0.6 96539 2.3460 96503 9.1721
0.7 96389 2.3451 96441 9.1616
0.8 96276 2.3443 96394 9.1536
1 96118 2.3433 96329 9.1425
2 95803 2.3413 96198 9.1202

(b)

ξ RO a2
cO RS a2

cS

0.5 13081 5.0769 92026 8.6496
0.6 13062 5.0695 91938 8.6350
0.7 13048 5.0642 91875 8.6246
0.8 13038 5.0602 91828 8.6168
1 13023 5.0546 91762 8.6058
2 12995 5.0434 91630 8.5838

Table 6.5: (a) Values of RO and RS and respective critical wave numbers for different
values of ξ with A = ACuO, γ = γCuO, η = 1, ζ = 2, Da = 10, H = 224.5 and τ̂ = 0.5.
(b) Values of RO and RS and respective critical wave numbers for different values of ξ
with A = AAl2O3 , γ = γAl2O3 , η = 1, ζ = 2, Da = 10, H = 224.5 and τ̂ = 0.5.
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Figure 6.5: (a) RO and RS as functions of η with A = ACuO, γ = γCuO, ξ = 2, ζ = 1,
Da = 10, H = 205 and τ̂ = 0.5.
(b) RO and RS as functions of ζ with A = ACuO, γ = γCuO, ξ = 1, η = 2, Da = 10,
H = 205 and τ̂ = 0.5.

easily. Furthermore, in Tables 6.5a-6.5b it is evident that periodicity cell gets
wider for increasing values of ξ, since the critical wave number shows a decreasing
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(a)

η RO a2
cO RS a2

cS

0.5 86746 2.8491 86519 9.4177
0.6 86909 2.8478 86891 9.3427
0.7 87072 2.8464 87260 9.2699
0.8 87234 2.8449 87626 9.1993
1 87559 2.8422 88351 9.0641
2 89181 2.8282 91837 8.4856

(b)

η RO a2
cO RS a2

cS

0.5 11033 6.1772 81112 8.8716
0.6 11289 6.0143 81464 8.8027
0.7 11540 5.8653 81812 8.7358
0.8 11786 5.7281 82159 8.6707
1 12267 5.4836 82844 8.5461
2 14494 4.6317 86147 8.0104

Table 6.6: (a) Values of RO and RS and respective critical wave numbers for different
values of η with A = ACuO, γ = γCuO, ξ = 2, ζ = 1, Da = 10, H = 205 and τ̂ = 0.5. (b)
Values of RO and RS and respective critical wave numbers for different values of η with
A = AAl2O3 , γ = γAl2O3 , ξ = 2, ζ = 1, Da = 10, H = 205 and τ̂ = 0.5.

behaviour.

From Figures 6.5a-6.5b it arises that RS and RO are increasing functions of η
and ζ, even though the influence of ζ on the steady threshold is rather unremark-
able. The influence of these parameters is physically admissible since increasing
thermal conductivity encourages heat transfer. In particular, large values of solid
conductivity imply that the solid matrix absorbs heat from the fluid more easily.
While, looking at the definition of η, when κfz grows, η decreases and convection
is promoted because the upward heat transfer within the fluid is encouraged. On
the other hand, the influence of η on periodicity cell size is similar to the influence
of ξ. As shown in Tables 6.6a-6.6b, the critical wave number exhibits a decreasing
behaviour. While ζ has a mixed effect on periodicity cell size, as pointed out in
Tables 6.7a-6.7b. Firstly, when convection occurs via oscillatory motion, ζ makes
the critical wave number decrease. While, after the transition point, the critical
wave number inverts its behaviour.
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(a)

ζ RO a2
cO RS a2

cS

0.5 66973 4.4291 91798 8.5104
0.7 75752 3.6524 91878 8.5071
1 89452 2.8305 91971 8.5058
1.1 @ @ 9.1996 8.5059
1.4 @ @ 9.2061 8.5069
1.6 @ @ 9.2096 8.5081
2 @ @ 9.2153 8.5108

(b)

ζ RO a2
cO RS a2

cS

0.5 26058 4.2986 33516 6.9534
0.9 31700 2.9538 33648 6.9449
1 33260 2.7088 33674 6.9446
1.1 @ @ 33699 6.9446
1.2 @ @ 33721 6.9450
1.6 @ @ 33796 6.9485
2 @ @ 33854 6.9537

Table 6.7: (a) Values of RO and RS and respective critical wave numbers for different
values of ζ with A = ACuO, γ = γCuO, ξ = 1, η = 2, Da = 10, H = 205 and τ̂ = 0.5. (b)
Values of RO and RS and respective critical wave numbers for different values of ζ with
A = AAl2O3 , γ = γAl2O3 , ξ = 1, η = 2, Da = 10, H = 60 and τ̂ = 0.5.

6.6 Conclusions
Linear and nonlinear stability analyses of the conduction solution in an anisotropic
highly porous layer in local thermal non-equilibrium has been performed. We
proved the Cattaneo’s law as governing equation for heat flux in solid can lead
to the occurrence of oscillatory convection. Indeed, it has been proved that, if the
dimensionless parameter τ̂ is great, oscillatory convection is the dominant mecha-
nism. On the other hand, when τ̂ goes to zero, only steady convection can arise. In
addition, we pointed out that the critical Rayleigh number for steady convection
does not depend on τ̂ , meaning that Cattaneo’s law does not affect the onset of
steady convection. Moreover, we proved the stabilising effect the Darcy number on
the onset of convection as RS and RO are increasing functions of Da.

Both steady and oscillatory critical thresholds are determined in a closed form
and numerical analysis has been performed in order to highlight the influence of
second sound effect, inter-phase heat transfer and anisotropy of the medium on
the onset of instability. We showed the destabilising effect of horizontal isotropic
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permeability ξ on the onset of convection, while the opposite effect of both fluid
(η) and solid (ζ) thermal conductivities is pointed out.
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Chapter 7

Natural convection in a fluid
saturating an anisotropic porous
medium in LTNE: effect of
depth-dependent viscosity

7.1 Introduction

In the present chapter, results obtained in the paper [96] are shown. Linear and
nonlinear stability analyses of the conduction solution of the Vadasz-Darcy model
describing the motion of a depth-dependent viscosity fluid in anisotropic porous
medium in LTNE are performed. Linear instability analysis leads to a generalised
eigenvalue problem which can be solved by means of the Chebyshev-tau method
coupled with the QZ algorithm. Nonlinear stability analysis is carried out by em-
ploying the energy method. The optimal result of coincidence between the linear
instability threshold and the global nonlinear stability threshold is obtained. More-
over, it is proved that fluid viscosity decreasing with depth leads to lower values of
the Rayleigh number, i.e. is has a destabilising effect on the onset of convection.
Physically, viscosity drag reduces with depth, namely the fluid meets fewer obsta-
cles to its motion. Comparing results with those ones found under LTE assumption
in [60], we are able to remark that the presence of LTNE makes the influence of
variable viscosity more intense.

Section 7.2 is devoted to the formulation of the mathematical model describ-
ing the motion of a depth-dependent viscosity fluid in presence of an anisotropic
porous medium, in LTNE regime. In this Section, the basic steady solution and the
dimensionless model governing the evolution of perturbation fields are determined.
In section 7.3, the instability analysis is performed in order to determine the gener-
alised eigenvalue problem which is solved by means of the Chebyshev-tau method
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coupled to the QZ algorithm. In section 7.4, the global nonlinear stability analysis
of the conduction solution is carried out by employing the energy method. Finally,
in section 7.5, numerical results are reported, with particular attention devoted
to the influence of variable viscosity, mechanical and thermal anisotropy, weighted
conductivity ratio and interaction coefficient on the onset of instability.

7.2 Physical set-up

Figure 7.1: Horizontal porous layer

Let us take into account a horizontal porous layer, whose depth is d, saturated by
an incompressible fluid F initially at rest. We choose a cartesian frame of reference
(x, y, z), being the z-axis vertically upward. A uniform temperature gradient is
imposed and maintained across the medium. Let TL be the temperature on the
lower plane z = 0 delimiting the layer and let TU be the temperature on the upper
plane z = d. We assume the layer to be heated from below, i.e. TL > TU . Moreover,
the hypothesis of local thermal non-equilibrium holds for the porous medium at
stake, i.e. the heat exchange between solid matrix and fluid is allowed. Based on
this assumption, we need to define two different temperatures, one for the fluid
phase, another for the solid one. Let us denote by Tf the temperature of the fluid
phase and by Ts the temperature of the solid phase. Then, by virtue of previous
considerations,

Ts = Tf = TL on z = 0; Ts = Tf = TU on z = d (7.1)

with TL > TU .
The porous medium exhibits some anisotropic properties. Specifically, perme-

ability and solid thermal conductivity are horizontally isotropic. Let K be the
permeability tensor and let Ds be the solid thermal conductivity one. By assuming
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that both tensors share the same principal axis (x, y, z), they can be written in
diagonal form, i.e.

K = KzK∗ K∗ =

ξ 0 0
0 ξ 0
0 0 1

 ξ = KH

Kz

Ds = κszD∗s D∗s =

ζ 0 0
0 ζ 0
0 0 1

 ζ = κsH
κsz

(7.2)

In addition, we allow viscosity to be strongly dependent on temperature, at
least at the steady state where temperature linearly increases with depth [65].
As consequence, we assume the following behaviour of viscosity with respect to z
[60, 58]:

µ(z) = µ0f(z), f(z) = ec
′(z− d

2 ) (7.3)
being µ0 and c′ positive constants.

Under previous assumptions, by employing the Oberbeck-Boussinesq approxi-
mation, the Vadasz-Darcy model is [9]

ρfcav,t = −∇p′ + ρfαgTfk− µ(z)K−1v
∇ · v = 0
ερfcfTf ,t + ρfcfv · ∇Tf = εκf∆Tf + h(Ts − Tf )
(1− ε)ρscsTs,t = (1− ε)∇ · (Ds∇Ts)− h(Ts − Tf )

(7.4)

where v, p, Tf and Ts are (seepage) velocity, pressure, fluid phase temperature and
solid phase temperature, respectively; while µ(z) is the fluid viscosity according to
(7.3); κf , ρf , ρs, cf , cs, g, α, ca, ε, h are fluid thermal conductivity, fluid and solid
density, specific heat of fluid and solid phase, gravity acceleration, thermal expan-
sion coefficient, acceleration coefficient, porosity, angular velocity and interaction
coefficient, respectively.

The following boundary conditions are coupled to (7.4)

Ts = Tf = TL on z = 0, Ts = Tf = TU on z = d,

v · n = 0 on z = 0, d
(7.5)

where TL > TU and n is the unit outward normal to planes z = 0, d
The basic steady solution of (7.4) is:

m0 =
{
vb=0 , Tsb=Tf b=−βz+TL , pb=−ρfgαβ

z2

2 +ρfgαTLz+cost
}

(7.6)

where β = TL−TU

d
(> 0) is the adverse temperature gradient.
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In order to study the stability of m0, let us introduce the perturbation fields
(u, θ, ϕ, π) to velocity field, fluid temperature field, solid temperature field and
pressure field, respectively.

After introducing perturbations to initial data, the following solution of (7.4)
arises:

v = u + vb Tf = θ + Tf b Ts = ϕ+ Tsb p′ = p+ pb (7.7)
Once the following dimensionless quantities are defined

xi = x∗i d, t = t∗
d2ρfcf
κf

, p = p∗P, ui = u∗iU, θ = θ∗T ′, ϕ = ϕ∗T ′ (7.8)

where
P = Uµ0d

Kz

, U = εκf
ρfcfd

, T ′ = βd

√
κfεµ0

βgαKzρ2
fcfd

2 , (7.9)

omitting all asterisks, we obtain the following dimensionless model governing the
evolution of perturbation fields:

1
Va

u,t = −∇p+Rθk− f(z)K−1u

∇ · u = 0
θ,t + u · ∇θ = Rw + ∆θ +H(ϕ− θ)
Aϕ,t = ζ∆1ϕ+ ϕ,zz −Hγ(ϕ− θ)

(7.10)

being f(z) = ec(z−
1
2 ), c = c′d, ∆1 = ∂,xx + ∂,yy and where

A = ρscsκf
ρfcfκsz

, γ = εκf
(1− ε)κsz

, H = hd2

εκf
,

R2 =
Kzρ

2
fcfd

2βgα

µ0εκf
, Va = cfd

2µ0

Kzκfca

(7.11)

are diffusivity ratio, weighted conductivity ratio, inter-phase heat transfer coeffi-
cient, Rayleigh number and Vadasz number, respectively.

To (7.10) we add the initial conditions:

u(x,0)=u0(x) , θ(x,0)=θ0(x) , ϕ(x,0)=ϕ0(x) , p(x,0)=p0(x) (7.12)

where ∇ · u0 = 0, while the boundary conditions are

w = θ = ϕ = 0 on z = 0,1. (7.13)

Let
V =

[
0, 2π
ax

]
×
[
0, 2π
ay

]
× [0, 1] (7.14)
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be the periodicity cell and let us define (·, ·) and ‖ · ‖ inner product and norm on
L2(V ), respectively. Perturbations are assumed to be periodic in x and y directions
with periods 2π

ax
and 2π

ay
, respectively. Moreover, ∀g ∈ {u, θ, ϕ, p},

g : (x, t)∈V × R+→g(x, t)∈R, g∈W 2,2(V ) ∀t∈R+

and g can be expanded in a Fourier series uniformly convergent in V .

7.3 Linear instability and Chebyshev-tau method
In order to perform the linear instability analysis of m0, let us consider the linear
version of (7.10), i.e.



1
Va

u,t = −∇p+Rθk− f(z)K−1u

∇ · u = 0
θ,t = Rw + ∆θ +H(ϕ− θ)
Aϕ,t = ζ∆1ϕ+ ϕ,zz −Hγ(ϕ− θ)

(7.15)

that can be written as
N
∂

∂t
F (x, t) = MF (x, t) (7.16)

being F = (u, v, w, π, θ, ϕ), N with all zero entries and such that diag(N) =(
1
Va
, 1
Va
, 1
Va
, 0, 1, A

γ

)
and

M =



−f(z)
ξ

0 0 − ∂
∂x

0 0
0 −f(z)

ξ
0 − ∂

∂y
0 0

0 0 −f(z) − ∂
∂z

R 0
− ∂
∂x

− ∂
∂y

− ∂
∂z

0 0 0
0 0 R 0 ∆−H H

0 0 0 0 H ζ
γ
∆1 + 1

γ


(7.17)

It is straightforward to notice that the spatial operator M related to (7.15) is
symmetric with respect to L2-scalar product. As consequence, its spectrum involves
only real numbers and the strong version of the principle of exchange of stabilities
holds.

Moreover, system (7.15) is autonomous. Hence, we can look for solutions such
that

ϕ′(x, t)=ϕ(x) eσt ∀ϕ′∈{w, θ, ϕ, p}. (7.18)
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Substituting (7.18) in (7.15), we get

σ

Va
u = −∇p+Rθk− f(z)K−1u

∇ · u = 0
σθ = Rw + ∆θ +H(ϕ− θ)
Aσϕ = ζ∆1ϕ+ ϕ,zz −Hγ(ϕ− θ)

(7.19)

In order to determine the critical threshold of the Rayleigh number for the onset
of instability, we focus on the marginal state in (7.19). Accounting for the principle
of exchange of stabilities, we set σ = 0 in (7.19) so that

0 = −∇p+Rθk− f(z)K−1u
∇ · u = 0
0 = Rw + ∆θ +H(ϕ− θ)
0 = ζ∆1ϕ+ ϕ,zz −Hγ(ϕ− θ)

(7.20)

By applying the double curl to (7.20)1 and retaining only the third component,
from (7.20) one gets:

ξR∆1θ − f ′(z)w,z − f(z)(ξ∆1w + w,zz) = 0
Rw + ∆θ +H(ϕ− θ) = 0
ζ∆1ϕ+ ϕ,zz −Hγ(ϕ− θ) = 0

(7.21)

where prime denotes ordinary derivative with respect to z.
Because of periodicity of perturbations, unknown fields in (7.21) can be written

as:
ϕ(x, y, z) =

+∞∑
n=1

ϕ̄n(x, y, z) ∀ϕ ∈ {w, θ, ϕ} (7.22)

where
∆1ϕ̄n=−a2ϕ̄n (7.23)

with a2 =a2
x+a2

y.
Now, let us substitute (7.22) in (7.21) and retain only the n-th component.

Hence, by denoting D ≡ d
dz

and D2 ≡ d2

dz2 , (7.21) becomes
(D2 − ξa2)wn + cDwn = −f−1(z)ξa2Rθn

(D2 − a2 −H) θn = −Rwn −Hϕn
(D2 − ζa2 −Hγ)ϕn = −Hγθn

(7.24)

which will be solved subject to the boundary conditions

w = θ = ϕ = 0 on z = 0,1. (7.25)
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System (7.24) represents an eigenvalue problem of ordinary differential equations,
where R is the eigenvalue. Starting from (7.24) one can determine the function
λ(a2) which describes how R depends on a2. As consequence, the critical Rayleigh
number for the onset of stationary instability is given by

RL = min
a2∈R+

λ(a2) (7.26)

In order to solve the eigenvalue problem (7.24), we employ the Chebyshev-tau
method coupled with the QZ algorithm. This numerical procedure takes advantage
of the orthogonality of Chebyshev polynomials with respect to the scalar product

〈f, g〉 =
∫ 1

−1

fg√
1− z2

dz f, g ∈ L2(−1,1) (7.27)

and many of their properties such as a recursive formula for multiplication between
two polynomials, i.e.

2TrTq = Tr+q + T|r−q| (7.28)
We will not go into further details of this numerical method, but we are going

to give the main ideas to carry out this procedure. For more details, interested
readers can refer to [65, 97, 98, 99, 100].

Let Tk, k ∈ N, the k-th Chebyshev polynomial. Solution of (7.24) can be
expanded as finite series of Chebyshev polynomials, i.e.

wn =
N+2∑
k=0

WkTk(z), θn =
N+2∑
k=0

ΘkTk(z), ϕn =
N+2∑
k=0

ΦkTk(z) (7.29)

We substitute (7.29) into (7.24) and then we take the inner product with Tk, k =
0, . . . , N , on the weighted Chebyshev polynomial space. In such a way, we manage
to write system (7.24) as a generalised eigenvalue problem

Ax = RBx (7.30)

where x = (W0,W1, . . . ,WN ,Θ0,Θ1, . . . ,ΘN ,Φ0,Φ1, . . . ,ΦN)T ,

A =

D
2 − ξa2I + cD 0 0

0 D2 − (a2 +H)I HI
0 HγI D2 − (ζa2 +Hγ)I

 (7.31)

and

B =

 0 −ξa2F ∗ 0
−I 0 0
0 0 0

 (7.32)

being D2, D the Chebyshev representation of d2

dz2 and d
dz
, respectively, I the identity

matrix and F ∗ the matrix representation of function f−1(z).

114



7 – Convection in depth-dependent viscosity fluid

For coding purpose, we work with k = 1, . . . , N . Then, the above matrices are
3N × 3N , and F ∗ is N × N . When the exponential function f−1(z) can be well
approximated by a second order polynomial, matrix F ∗ is computed by means of
the following recursive formula

F ∗i,i = 1 + c

2 + 3c2

8 , F ∗i,i+1 = − c2

(
1 + c

2

)
,

F ∗i,i+2 = c2

8 , for i = 1, . . . , N − 2

F ∗i,i−1 = − c2

(
1 + c

2

)
for i = 2, . . . , N

F ∗i,i−2 = c2

8 for i = 3, . . . , N

F ∗2,1 = −c
(

1 + c

2

)
, F ∗3,1 = c2

4 , F ∗2,2 = 1 + c

2 + c2

2

(7.33)

The eigenvalue problem (7.30)-(7.32) is then solved by the QZ algorithm which
provides eigenvalues with no trouble. In Section 7.5 we show numerical results.

7.4 Optimal nonlinear stability result
This section is devoted to develop a nonlinear stability analysis for the conduction
solution m0, in order to determine sufficient condition for its stability.

We perform the scalar multiplication of (7.10)1 by u, (7.10)3 by θ and (7.10)4
by ϕ, and then we integrate over the periodicity cell V . The sum of the resulting
equations can be written as

d

dt
E(t) = RI −D (7.34)

where
E(t) = ‖u‖

2

2Va + ‖θ‖
2

2 + A‖ϕ‖2

2γ Lyapunov Function

I(t) = 2(θ, w) Production term

D(t) = ‖∇θ‖2 +H‖θ − ϕ‖2 + ζ

γ
‖∇1ϕ‖2 + 1

γ
‖ϕ,z‖2

+
∫
V

(
f(z)u

2

ξ
+ f(z)v

2

ξ
+ f(z)w2

)
dV Dissipation term

(7.35)

Starting with (7.34), by defining

1
RE

= max
H

I

D
(7.36)
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where
H = {(u, θ, ϕ) : w = θ = ϕ = 0 on z = 0,1; periodic in x and y

directions, with period 2π
ax
,
2π
ay

respectively; ∇ · u = 0; D <∞},
(7.37)

we obtain
dE

dt
= −D

(
1−R I

D

)
≤ −D

(
1− R

RE

)
(7.38)

By employing the Poincaré inequality in (7.35)3, we get

D(t) ≥ π2‖θ‖2 + π2ζ∗

γ
‖ϕ‖2 + ξ∗e−

c
2‖u‖2 (7.39)

being ξ∗ = min{1, ξ−1} and ζ∗ = min{1, ζ}. Hence, (7.38)-(7.39) yield the expo-
nential decay of the energy function E(t). In fact, by virtue of (7.39), inequality
(7.38) becomes

dE

dt
≤ −

(
1− R

RE

)(
π2‖θ‖2 + π2ζ∗

γ
‖ϕ‖2 + ξ∗e−

c
2‖u‖2

)

≤ −
(

1− R

RE

)
kE(t)

(7.40)

where k = min
{

2π2,
2π2ζ∗

A
, 2ξ∗e− c

2Va

}
, from which

E(t) ≤ exp
{
−k

(
1− R

RE

)
t
}

(7.41)

By virtue of (7.41), as long as R < RE, perturbation fields on seepage velocity,
fluid and solid temperature decay exponentially in time. Thus, we have proved
that R < RE is a sufficient condition for the global nonlinear and exponential
stability of the conduction solution m0.

Now, let us proceed to determine the critical threshold RE. With this aim, we
write the Euler-Lagrange equations by solving the variational problem (7.36), i.e.

REθk−
(
f u
ξ
, f v

ξ
, fw

)
= ∇ω

REw + ∆θ +H (ϕ− θ) = 0
ζ∆1ϕ+ ϕ,zz −Hγ (ϕ− θ) = 0

(7.42)

where ω is a Lagrange multiplier arising from the incompressibility of u. System
(7.42) coincides with (7.20). As consequence, we manage to obtain the coincidence
between the global nonlinear stability thresholdRE and the linear instability thresh-
old RL. As a result, condition R < RE is not only sufficient, but also necessary for
the stability of m0.
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7.5 Numerical results
In the present section, we report results obtained once the generalised eigenvalue
problem (7.30) and the subsequent minimum problem (7.26) have been solved.
Given the coincidence between linear and nonlinear threshold, we denote by R2

c the
critical Rayleigh number beyond which thermal convection occurs.

The aim of this section is to highlight the influence of variable viscosity, thermal
and mechanical anisotropy, weighted conductivity ratio and interaction coefficient
on the onset of convection. Let us remark that, since the interaction heat transfer
coefficient H cannot be easily measured, we set a range in which H can vary.
According to the choice done in [90, 27], H ∈ (10−2, 106). As consequence, the
critical Rayleigh number is plotted as function of H in every picture throughout
the section.
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Figure 7.2: Critical Rayleigh number as function of H for different values of c with
ξ = 1.5, ζ = 5, γ = 1.

[60] H →∞

c a2
c([60]) R2

c([60]) a2
c

R2
cγ

γ+1

0 9.873 39.478 9.87 39.478
1 10.104 39.220 10.10 39.226
2 10.826 38.357 10.84 38.419
3 12.172 36.681 12.17 36.699
4 14.326 34.005 14.33 34.048
5 17.608 30.336 17.58 30.357

Table 7.1: Comparison between the critical wavenumber a2
c([60]) and the critical thresh-

old R2
c([60]) shown in Table 3 in [60] and the critical wavenumber a2

c and the rescaled
critical threshold R2

cγ
γ+1 obtained in the present paper when H →∞, γ = 1, ξ = 1, ζ = 1.

It may be observed that the effect of variable viscosity on the critical Rayleigh
number is substantial. As shown in Figure 7.2, as c increases, R2

c decreases for
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H →∞ H = 100

c a2
c

R2
cγ

γ+1 a2
c R2

c

0 9.87 39.478 10.70 72.34
1 10.10 39.226 10.99 71.75
2 10.84 38.419 11.96 70.07
3 12.17 36.699 13.72 66.00
4 14.33 34.048 17.03 60.11
5 17.58 30.357 22.64 52.21

Table 7.2: Comparison between the critical wavenumber a2
c and the rescaled critical

threshold R2
cγ

γ+1 obtained when H → ∞ (i.e. LTE regime) and the critical wavenumber
a2
c and the critical threshold R2

c obtained when H = 100 (i.e. LTNE regime), with
γ = 1, ξ = 1, ζ = 1.

every choice of the interaction coefficient H, namely the onset of convection gets
easier. This result is physically reasonable and in agreement with what stated in
[64], i.e. fluids whose viscosity near the hot boundary is lower than everywhere else
in the layer are more likely to become unstable sooner.
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Figure 7.3: Comparison between neutral stability curve RC (black line) obtained via
Chebyshev-tau method set c = 0 and neutral stability curve RA (red dashed line) obtained
analytically in [101], where ξ = 1, ζ = 1, H = 104, γ = 1.

Let us remark that, as H → ∞, fluid and solid phases can be treated as a
single phase since they exchange heat so rapidly that they have nearly identical
temperature. As consequence, we recover the regime of LTE. Whereas, when H →
0, fluid instability is not affected by the properties of the solid matrix. As pointed
out in [12], the respective mathematical problem are identical, except for a rescaling
of the Rayleigh number. Table 7.1 shows the coincidence between results delivered
in [60] under the assumption of LTE and results obtained in the present paper for
H → ∞, after rescaling the Rayleigh number. In addition, one can notice that in
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Figure 7.4: Critical Rayleigh number as function of H for different values of ξ with
c = 1, ζ = 5, γ = 1.

the first line in Table 7.1, where c = 0, we recovered the classical Rayleigh number
4π2 for the Darcy-Benard problem.
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Figure 7.5: Critical Rayleigh number as function of H for different values of ζ with
c = 1, ξ = 1.5, γ = 1.

The decreasing trend of R2
c with respect to increasing c, i.e. a higher gradient

of viscosity across the layer, depends strongly on H. So, we analyse the behaviour
of R2

c both for high values of H (for which the LTE regime holds [12]) and for
H = 100 (for which the LTNE regime holds). In Table 7.2 one can notice that the
decreasing trend of R2

c is less remarkable for H → ∞ rather than for H = 100,
even though the critical threshold for the LTE case is always lower than the one in
LTNE. Such a result suggests that the effect of variable viscosity on the onset of
convection is less intense under the assumption of LTE rather than in the case of
LTNE. Similar result has been pointed out in [9].

When c = 0, function f(z) = 1, i.e. viscosity is constantly equal to µ0, the
value assumed in the middle of the layer. In case of isotropic porous medium, by
assuming c = 0 we would expect to recover the same results found in [101]. In
Figure 7.3 we compare results delivered in the present paper by the Chebyshev-tau
method with the analytical expression of the critical Rayleigh number found in
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Figure 7.6: Critical Rayleigh number as function of H for different values of γ with
c = 1, ξ = 1.5, ζ = 5.

[101]. The two neutral curves are perfectly overlapped. In fact, one can compute
the absolute error, which is 1.85× 10−10 at the most.

In Figure 7.4, the influence of mechanical anisotropy on the critical Rayleigh
number is shown. The destabilising effect of increasing permeability on the con-
duction solution is clear. The Rayleigh number decreases with ξ for any H, in
agreement with findings in [90, 27, 14, 102]. This result is physically admissible.
Based on definition (7.2)1, increasing ξ is due to an increase in the horizontal per-
meability KH , which means that the fluid is allowed to move easier and easier in
the horizontal direction. Thus, resistance to fluid motion reduces and the advective
transport enhances [26].

On the other hand, solid thermal conductivity has a stabilising effect on m0,
delaying the onset of convection. In Figure 7.5 such a behaviour is evident, specifi-
cally for large values of H. If κsH grows, the onset of convection is delayed because
the solid matrix easily absorbs heat from the fluid. Actually, when H goes to zero,
solid thermal conductivity affects weakly the onset of convection. This result is
in agreement with what is found in [90] and it is physically reasonable since small
values of H imply that the heat exchange between fluid and solid phases occurs so
slowly that the solid matrix does not manage to absorb enough heat to cool down
the fluid.

The onset of convection is encouraged by increasing values of the weighted con-
ductivity ratio γ, as shown in Figure 7.6. Increasing values of κf lead to an increas-
ing γ, which imply a reduction of R2

c , i.e. a destabilising effect. This behaviour is
expected from a mathematical point of view, since looking at the Rayleigh number
definition in (7.11)4 we can notice that R2 is inversely proportional to κf .

7.6 Conclusions
A qualitative study of the onset of convection in a depth-dependent viscosity fluid
saturating an anisotropic porous medium in LTNE is performed. A Vadasz-Darcy
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model is employed to describe the fluid motion for the problem at stake. We
performed the linear instability analysis of the conduction solution as first approach
to the problem. That analysis yielded a generalised eigenvalue problem which was
solved by means of the Chebyshev-tau method coupled with the QZ algorithm.
The energy method has been employed to study the nonlinear stability of the basic
state. The optimal result of coincidence between the linear instability threshold
and the global nonlinear stability threshold is obtained.

Viscosity decreasing exponentially with depth has a destabilising effect on the
onset of convection, leading to lower values of the critical Rayleigh number. In
fact, viscosity drag reduces with depth, namely the fluid meets fewer obstacles to its
motion. Moreover, comparing results with those ones found under LTE assumption
in [60], we can remark that the presence of LTNE makes the influence of variable
viscosity more intense. Applications can be found in oil cooling systems in hydraulic
units that involve heat exchangers. Within the heat exchanger, maintaining the
oil cold is important in order to preserve its characteristics and proper operating
conditions. Findings in the chapter show that the effect on the onset of convection
of replacing a kind of oil with another with a different law of viscosity is greater
under the LTNE hypothesis than under the LTE one. A practical example is given
by two oils, i.e. SAE 10W-60 and SAE 0W-30, whose values of kinematic viscosity
ν are shown in Table (see [103]). If the aim is to inhibit convection, a greater
Rayleigh number is achieved if SEA 0W-30 is preferred to SAE 10W-60.

T [◦C] νSAE 10W-60[mm2/s] νSAE 0W-30[mm2/s]
0 1684.4 550.23
10 831.44 291.93
20 448.10 167.29
40 161.73 66.803

Furthermore, we proved the destabilising effect of both mechanical anisotropy
and the weighted conductivity ratio, other than the stabilising effect of thermal
anisotropy.
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In the present thesis, we took a journey through some main problems of thermal
instability in porous media. The undertaken qualitative studies aim to determine
the critical value for the characteristic dimensionless parameter (Raylegih number)
that captures the physics of the problem. In addition, our aim was to assess the de-
pendence of the critical Rayleigh number on parameters characterising the models.
To first approach a stability analysis of the basic steady solution, we performed a
linear analysis, which gives information about the fate of small-amplitude distur-
bances. We managed to obtain the critical threshold of the Rayleigh number for
the onset of convection either analytically or via numerical schemes. Specifically,
we implemented and employed the Chebyshev-tau method or the shooting method
to solve the differential eigenvalue problem arising from the linear analysis. In
addition, in order to obtain a sufficient condition for the stability of the steady so-
lution, we needed to perform a nonlinear analysis. This study involves a Lyapunov
functional and takes advantage of the Direct Method of Calculus of Variations that
ensures the existence of maximum of a functional. Via nonlinear stability analysis,
we determined the critical Rayleigh number RE such that the condition R < RE is
sufficient for the nonlinear stability of the conduction solution. The optimal result
that one could get in this respect is the coincidence between the linear and nonlinear
thresholds. In case the coincidence is not achieved, a subcritical instability region
exists, where we cannot say anything about the future behaviour of perturbations.
In the second chapter, with the aid of the weakly nonlinear analysis, we were able
to determine under which conditions subcritical instability may occur for the prob-
lem at stake. Specifically, we studied the onset of convection in a fluid saturating
a horizontal porous layer subject to a downward net mass flow (throughflow). The
strength of the throughflow in the dimensionless version is modelled by the Péclet
number Pe. We proved the stabilising effect of the downward throughflow on the
onset of instability and we determined the threshold for Pe beyond which subcritical
instability may occur.

The majority of the thesis is devoted to investigate the onset of convection
in porous media under the hypothesis of local thermal nonequilibrium (LTNE).
According to this assumption, two different temperatures are defined (one for the
fluid phase, one for the solid matrix) implying that two energy balance equations are
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needed to close the system involving the Darcy’s law and the continuity equation.
The LTNE assumption has been widely employed over the last years ever since
Banu and Rees [12] studied the problem for the first time.

Throughout the doctoral program, starting from [12], we tried to cover as much
as possible a good variety of physical set-ups where thermal convection in porous
media may be modelled in LTNE regime. Models studied in the thesis arise to
describe practical industrial and engineering situations. Indeed, in these contexts,
one aims to remove or storage heat by managing the onset of convection. Ways
to achieve this aim involve the usage of man-made porous media that either ex-
hibit anisotropy in mechanical and/or thermal features or are subject to external
mechanical agents such as rotations or suctions. More in detail, we have shown
how permeability and thermal conductivity of the medium that depend on the
direction affect the onset of thermal convection. In particular, we have noticed
that horizontal isotropic permeability favours the onset of convection facilitating
the fluid motion in the horizontal direction and resulting in wider convective cells.
On the other hand, anisotropic thermal conductivity has the opposite effect, given
that heat in the fluid is dispersed and absorbed more easily in the solid matrix.
Nevertheless, wider periodicity cells arise within the fluid.

As far as anisotropic porous medium is concerned, we studied also the case
when permeability and thermal conductivity change value depending on the three
directions (full anisotropy). In this setting, when convection takes place, we found
that the fluid is divided in so-called convective rolls aligned in x or y directions
depending on the ratio between anisotropy parameters. Hence, we proved that full
anisotropy leads to bi-dimensional fluid motion.

Moreover, we studied the occurrence of thermal convection in rotating porous
media that find many applications in rotating machinery. The action of rotation is
described mostly by the Coriolis force that affects the fluid motion in the horizontal
direction. Indeed, in our models we proved mathematically the delaying effect of
rotation on the onset of convection.

Very interesting topics have been touched when the Cattaneo’s law is employed
to describe the heat transfer in the solid matrix and when a depth-dependent vis-
cosity fluid saturates the porous medium. The former assumption has been proved
to lead to the possibility for oscillatory convection to occur. We proved analytically
that steady convection is not affected by the introduction of the thermal inertia
term, while oscillatory convection is favoured when the weight of this parameter
increases. The latter assumption on the fluid viscosity results in a more easily oc-
currence of thermal convection. Indeed, we proved that convective cells are more
likely to arise in a fluid whose viscosity decreases significantly with temperature.
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