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Introduction

This doctoral thesis deals with recent stability results for the onset of thermal
convection in single and double porosity materials, obtained through linear
and nonlinear stability analyses of the basic steady solution.
The onset of thermal convection for clear fluids and fluids saturating a porous
medium is a well known problem and it has been widely analysed by many
researchers, in the past as nowadays. When a horizontal layer of fluid (even-
tually saturating a porous material) is heated from below, a thermal bound-
ary layer of less dense and hot fluid develops and grows with time. At a
certain point, this boundary layer becomes unstable and breaks up, leading
convective motions in the fluid above.
The model describing fluid motions in porous media is a reaction-diffusion
dynamical system of P.D.Es and it is well suited for many applications in
different fields, such as geophysics (geothermal reservoirs, geological storage
of carbon dioxide), astrophysics (for example pore water convection within
carbonaceous chondrite parent bodies), engineering and industrial processes
(water treatment process, nuclear waste disposal, chemical reactor engineer-
ing, and the storage of heat-generating materials such as grain and coal) (see
[1] and reference therein). These applications constitute a driving force for
researchers to develop mathematical models in this area.
However, due to the growing need for man-made materials — e.g. ceram-
ics, high porosity metallic foams — for heat transfer problems, since the 90s
bi-disperse porous media have attracted the interest of many researchers, in
particular chemical engineers, physicists and mathematicians. Bi-disperse
porous media are dual porosity materials with a large number of practical
applications in industrial field (in order to design heat pipes and computer
chips [2], to understanding landslides or for the treatment of nuclear waste),
in geophysics (the stockpiled pieces of coal stockpiled are small, but the coal
itself contains small pores, moreover self-heating is a characteristic of these
piles, hence the analysis and the understanding of heat transfer in this kind
of materials is essential to avoid self-combustion [3]), biological and medi-
cal field (for instance engineered tissues for tissue regeneration, while brain,
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Introduction 6

bones, tumors are natural examples of dual porosity materials). Moreover,
it was demonstrated by Nield and Kuznetsov in [4] that convection occurs
at higher Rayleigh numbers in a dual porosity material with respect to an
equivalent single porosity medium, so the heat transfer due to the convective
fluid motion is delayed, for this reason dual porosity materials are better
suited for insulation problems and thermal management problems (such as
cooling of data centers).

In the modelling process for the derivation of the governing equations de-
scribing a physical phenomenon there is always room for improvement. With
the aim of improving the mathematical model describing bi-disperse convec-
tion to obtain even more realistic mathematical models useful for designing
man-made materials and engineered systems, great attention in this thesis
is devoted to anisotropic bi-disperse porous materials — for which macro-
permeability and micro-permeability are symmetric second-order tensors —
since anisotropy is a powerful tool to optimise heat transfer.
In particular, most of this thesis is dedicated to the analysis of the onset of
convection in rotating horizontal layers of bi-disperse porous media heated
from below. A driving force behind the analysis of fluid flows in rotating
porous materials is constituted by the applications of this kind of problems,
such as physiological processes in human body subject to rotating trajecto-
ries, geophysical problems, cooling of electronic equipment in rotating radars
and rotors, biomechanics, solidification and centrifugal casting of metals.
Keeping in mind these applications, the interactions between anisotropy, in-
ertial effects, high porosities and Coriolis effects are analysed, in order to
determine how these physical aspects affect the onset of convection and the
type of arising convective cells.
Later on, bi-disperse double-diffusive convection (which involves two diffus-
ing components — heat and mass — interacting with each other and is
relevant for chemical processes and engineering applications, e.g. nuclear
waste disposal) is studied: the model describing the onset of convection in
a horizontal layer of bi-disperse porous medium saturated by a binary fluid
mixture is investigated, taking into account the Coriolis effect and, alterna-
tively, anisotropy and Soret effects.

The final Chapters of this thesis are devoted to the description of new
stability results related to porous convection problems.
In particular, the thermodynamic consistency of the Oberbeck-Boussinesq
approximation is deeply discussed and, to the best of our knowledge, the
Darcy-Bénard problem for an extended-quasi-thermal-incompressible fluid is
studied for the first time. A more realistic constitutive equation for the fluid
density is employed — in the body force term due to gravity — in order to
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obtain more thermodynamically consistent instability results.
Finally, we perform linear instability and weakly nonlinear stability analyses
of the throughflow solution for a horizontal layer of fluid-saturated porous
medium heated from below and subject to a downward vertical net mass flow:
we refer to this physical set-up as the Sutton Problem. The goal is to study
the effect of the throughflow on the onset of convective instabilities and to
determine for which values of the strength of the throughflow a transition
from supercritical to subcritical instability happens.

In the following, we will give a more precise description of the organization
of this thesis.

Plan of the Thesis

The present thesis is divided into three parts and is organized as follows.
The First Part (Chapters 1 and 2) is devoted to the introductory theories
and the research context concerned with convection problems. The Second
Part (Chapters 3 – 7) deals with new stability results obtained for convection
in bi-disperse porous media. Finally, in the Third Part (Chapters 8 and 9),
recent results related to convection problems in single porosity media are
presented.

Since all the mathematical models described in this thesis have been sub-
jected to linear instability and nonlinear stability analyses of their respective
stationary basic solutions, Chapter 1 describes the theoretical foundation
of linear instability analysis and nonlinear stability analysis theory.

Chapter 2 is devoted to the description of the research context concerned
with thermal convection in single and double porosity materials. In primis,
the historical background of convection problems, in clear fluids and in fluid-
saturated porous media, is described. In secundis, bi-disperse porous media
are portrayed from a physical point view and the early refined mathemati-
cal models governing the evolutionary behaviour of the thermal conduction
solution in bi-disperse porous media are described. In particular, most of
this thesis concerns with the analysis of thermal convection in a rotating
horizontal layer of a bi-disperse porous medium heated from below, so the
theoretical significance and the practical applications of this kind of problems
are outlined.

In Chapter 3, thermal convection in a horizontally isotropic bi-disperse
porous medium uniformly heated from below is analysed. The combined ef-
fects of uniform vertical rotation and Brinkman law on the stability of the
steady state in a BDPM are investigated. Linear and nonlinear stability
analysis of the conduction solution is performed, and the coincidence be-
tween linear instability and nonlinear stability thresholds in the L2-norm is
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obtained.
Chapter 4 addresses the onset of thermal convection in a uniformly

rotating and horizontally isotropic bi-disperse porous medium, taking into
account inertia effects, hence considering the Vadasz term. Via linear insta-
bility analysis of the conduction solution, it is proved that the Vadasz term
allows the onset of convection via an oscillatory state but does not directly
affect convection via a stationary motion.

In Chapter 5, the onset of thermal convection in fully anisotropic rotat-
ing bidisperse porous media is investigated. The optimal result concerning
the coincidence between linear and nonlinear thresholds — with respect the
energy norm — is obtained.

Chapter 6 is devoted to the analysis of the onset of convection in a rotat-
ing layer of bi-disperse porous medium saturated by a binary fluid mixture.
Unlike the diffusion of heat, the diffusion of salt can take place only through
the fluid phase, so an additional physical effect has to be considered: the
Soret effect, that is the mass flux created by a temperature gradient. Linear
stability analysis of the conduction solution is performed in order to deter-
mine the instability thresholds for the onset of convection via a steady state
(stationary convection) and via an oscillatory state (oscillatory convection).
Nonlinear stability analysis is performed to obtain the global stability thresh-
old with respect to the L2−norm.

With the aim to improve the results found in Chapter 3 and to further
analyse the onset of bi-disperse double-diffusive convection, in Chapter 7
a rotating horizontal layer heated from below of anisotropic Brinkman bi-
disperse porous medium filled by an incompressible fluid binary mixture is
considered. Via linear instability analysis of the basic solution, we found
that convection can set in through stationary or oscillatory motions and the
critical Rayleigh numbers for the onset of stationary secondary flow (steady
convection) and overstability (oscillatory convection) are determined.

InChapter 8 the thermodynamic consistency of the Oberbeck-Boussinesq
approximation is discussed in detail and, to the best of our knowledge, the
Darcy-Bénard problem for an extended-quasi-thermal-incompressible fluid is
studied for the first time. Therefore, the linear analysis of the Darcy-Bénard
problem is performed in the class of extended-quasi-thermal-incompressible
fluids, introducing a factor β which describes the compressibility of the fluid
and plays an essential role in the instability results. In particular, in the
Oberbeck-Boussinesq approximation, a more realistic constitutive equation
for the fluid density is employed in order to obtain more thermodynamic
consistent instability results. Via linear instability analysis of the conduc-
tion solution, the critical Rayleigh-Darcy number for the onset of convection
is determined as a function of a dimensionless parameter β̂ proportional to
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the compressibility factor β, proving that β̂ enhances the onset of convective
motions.

The aim of Chapter 9 is to analyse the effect of a downward vertical net
mass flow on the type of instability occurring in a horizontal porous layer
saturated by a fluid heated from below. The validity of the principle of ex-
change of stabilities is proved, hence the linear instability analysis of the basic
steady flow is performed to determine the critical Rayleigh number for the
onset of steady convective instabilities. A weakly nonlinear stability analysis
is performed to determine disturbances that lead to subcritical instability. A
user-written code based on the shooting method — that takes advantage of
the Newton-Raphson scheme and of the fourth-order Runge-Kutta method
— is employed to solve the boundary value problems we face in both the
analyses.
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Nomenclature

c specific heat
d depth of the layer
TL lower temperature
TU upper temperature
CL lower salt concentration
CU upper salt concentration
µ dynamic fluid viscosity
µ̃ effective viscosity
ν kinematic fluid viscosity
%F fluid density
α thermal expansion coefficient
αC chemical expansion coefficient
ζ interaction coefficient
h thermal interaction coefficient
v seepage velocity (u, v, w)
C concentration
P pressure
G opposite pressure gradient
T temperature
t time
K permeability
k thermal conductivity
i, j,k unit vectors
ϕ macropores porosity
ε micropores porosity
ST Soret coefficient
β compressibility factor
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Nomenclature

u perturbation velocity
θ perturbation temperature
π perturbation pressure
γ perturbation concentration
ψ stream function
ε1 fraction of volume occupied by the fluid
a wavenumber
Ra Rayleigh number
C concentration Rayleigh number
S Soret number
T Taylor number
Da Darcy number
J Vadasz number
Le Lewis number
Pe Péclet number
H space of kinematically admissible solutions

Subscripts
f macropores related
p micropores related
F fluid related
sol solid matrix related
m porous medium related
C concentration related
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Chapter 1

Preliminaries on Stability
Theory

In convection problems, the instability threshold, above which convective
flows arise, is related to the critical value of the Rayleigh number, the di-
mensionless control parameter of the system. Therefore, the critical Rayleigh
number is determined in order to predict the onset of convective fluid motions.
In general, the prediction of the evolution in time of a physical phenomenon
is crucial for real world applications and is achieved through a qualitative
analysis of the mathematical model describing the evolutionary behaviour of
the phenomenon, when the explicit solution of the model cannot be deter-
mined [5].
Since the critical Rayleigh number for the onset of convection is found through
the stability analysis of the thermal basic solution, this Chapter is devoted to
the description of the fundamental theory regarding linear instability analysis
and nonlinear stability analysis of the basic solution a dynamical system.

1.1 Dynamical Systems and Stability Defini-
tions

Let F be a phenomenon taking place on a domain Ω ⊂ R3 and let ui(x, t),
with i = 1, . . . , n (n < ∞), (x, t) ∈ Ω × (0, T ), be the relevant quantities
describing the state of F . The vector u with components ui is the state
vector.
If it is possible to determine - usually experimentally - a function

F(x, t,u, ∂ui
∂xr

,
∂2uj
∂xr∂xs

, . . . ) i, j = 1, . . . , n; r, s = 1, 2, 3

13



Chapter 1. Preliminaries on Stability Theory 14

which describes the evolutionary behaviour in time of u, then the phe-
nomenon F is modelled by a P.D.E.

∂u
∂t

= F in Ω× (0, T ) (1.1)

whose initial and boundary conditions are

u(x, 0) = u0(x) x ∈ Ω
A(u,∇u) = û on ∂Ω× [0, T ]

(1.2)

respectively, where A is an assigned operator and û(x, t) is prescribed.
The problem (1.1)-(1.2) is called initial-boundary value problem (i.b.v.p) and
is the evolution equation of F . The space of functions X defined on Ω
satisfying the prescribed boundary conditions is called the state space of the
evolution equation. According to a classical definition of Hadamard, the
problem (1.1)-(1.2) is well-posed in X if (see [5, 6])

• there globally exists a solution,

• the solution is unique,

• the solution continuously depends on the data.

Let (X, d) and S(x, r) be a metric space and the open ball with radius r
centered in x, respectively. Let us introduce the following definitions.

Definition 1.1.1. A dynamical system on the metric space (X, d) is a map-
ping

v : (v0, t) ∈ X × R+ → v(v0, t) ∈ X
such that v(v0, 0) = v0

A solution u(u0, t) with u(u0, 0) = u0 to the problem (1.1)-(1.2) is a dynam-
ical system.

Definition 1.1.2. A motion of initial data v0 is a dynamical system v de-
fined as:

v(v0, ·) : t ∈ R+ → v(v0, t) ∈ X,
such that v(v0, 0) = v0.

Definition 1.1.3. If v(v0, t) = v0 ∀t ∈ R+, the motion v(v0, ·) is stationary
and v0 is an equilibrium point.
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Definition 1.1.4. A motion v(v0, ·) depends continuously on the initial data
if and only if

∀T, ε > 0, ∃δ(ε, T ) > 0 : d(v1,v0) < δ =⇒ d(v(v1, t),v(v0, t)) < ε, ∀t ∈ [0, T ],

or equivalently if

∀T, ε > 0, ∃δ(ε, T ) > 0 : v1 ∈ S(v0, δ) =⇒ v(v1, t) ∈ S(v(v0, t), ε), ∀t ∈ [0, T ].

Definition 1.1.5. A motion v(v0, ·) is Lyapunov stable (with respect to per-
turbations of the initial data) if and only if

∀ε > 0, ∃δ(ε) > 0 : d(v1,v0) < δ =⇒ d(v(v1, t),v(v0, t)) < ε, ∀t > 0,

or equivalently if

∀ε > 0, ∃δ(ε) > 0 : v1 ∈ S(v0, δ) =⇒ v(v1, t) ∈ S(v(v0, t), ε), ∀t > 0.

If the dynamical system v is linear (i.e. v is a linear operator of X on X,
∀t ∈ R+), the stability of every motion is determined by the stability of the
basic solution.
Introducing a generic perturbation at time t to the assigned basic motion
v(v0, ·):

u(u0, t) = v(v1, t)− v(v0, t),
the stability analysis of the basic motion is equivalent to the stability analysis
of the null solution of the associated perturbed system. Therefore, ‖ ·‖ being
the norm associated to the metric d, one obtains the following definition.

Definition 1.1.6. A motion v(v0, ·) is stable with respect to perturbations
of the initial data if and only if

∀ε > 0, ∃δ(ε) > 0 : ‖u0‖ < δ =⇒ ‖u(u0, t)‖ < ε, ∀t > 0,

or equivalently if

∀ε > 0, ∃δ(ε) > 0 : u0 ∈ S(0, δ) =⇒ u(u0, t) ∈ S(0, ε), ∀t > 0.

1.2 Lyapunov direct method
In the following Section, let us outline the direct method to study the stability
for an equilibrium point of a dynamical system.
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Definition 1.2.1. A function V : X → R is a Lyapunov function on a
subset I ⊂ X if V is continuous on I and non-increasing with respect to time
t along the solutions of a dynamical system v with initial data in I.

Let Fr (r > 0) be the set of functions ϕ : [0, r)→ [0,∞) continuous, strictly
increasing and such that ϕ(0) = 0.

Definition 1.2.2. Let u be a dynamical system on X and let O be an equilib-
rium point. If there exists for some r > 0 a Lyapunov function V on S(O, r)
such that

• V (O) = 0,

• ∃f ∈ Fr such that V (u) ≥ f(‖u‖), for u ∈ S(O, r),

then O is stable. Moreover, if

• ∃g ∈ Fr such that V̇ (u) ≤ −g(‖u‖), ∀u ∈ S(O, r),

then O is asymptotically stable.

If the Lyapunov function V is positive definite (V (O) = 0, V (u) > 0 for
u 6= 0) and there exists a positive constant c such that, along the solutions
of the system,

V̇ ≤ −cV
i.e.

V ≤ V (u0)e−ct

then the equilibrium point is asymptotically exponentially stable with respect
to the measure V .

Since the above definitions are given with respect to an assigned metric d,
the stability of a dynamic system is strictly dependent on the choice of the
adopted norm [5].

Remark 1.2.1. On a linear finite dimensional space X (like Rn) all norms
are equivalent. Hence, the stability of the basic solution does not depend on
the chosen norm. A phenomenon with an infinite number of degrees of free-
dom is modelled by a P.D.E. defined in a normed linear infinite dimensional
space (where all possible norms are not equivalent). Therefore, in this case
the stability is topologically dependent.

In the following Section, we will investigate how a proper choice of the norm
connects the linear and nonlinear stability analyses of the basic steady solu-
tion of a dynamical system [7, 8].
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1.3 Linear and Nonlinear Stability
Let H be a Hilbert space and let us consider in H a initial value problemut + Lu +N(u) = 0

u(x, 0) = u0(x)
(1.3)

where L is a linear operator (possibly unbounded), while N is a nonlinear
operator such that N(0) = 0, hence (1.3) admits the null solution.
Let us assume that

1. L is an operator with compact resolvent, i.e. L is densely defined and
closed, such that (L− λI)−1 is compact for some λ ∈ C;

2. the bilinear form associated with L is defined on a space H′ compactly
embedded in H;

3. the nonlinear operator N verifies the condition

(N(u),u) ≥ 0, ∀u ∈ D(N).

Theorem 1.3.1. Let L be a operator satisfying the assumption 1. Then the
spectrum of L is composed of at most a denumerable number of eigenvalues
{σn}n∈N with finite multiplicities (both algebraic and geometric) and they
cluster at infinity. Moreover, the eigenvalues of L are such that

Re(σ1) ≤ Re(σ2) ≤ · · · ≤ Re(σn) ≤ . . .

Definition 1.3.1. The null solution of system (1.3) is linearly stable if and
only if

Re(σ1) > 0.

Definition 1.3.2. The null solution of system (1.3) is nonlinearly stable is
and only if ∀ε > 0 ∃δ = δε such that

‖u0‖ < δ =⇒ ‖u‖ < ε

and ∃γ, with 0 < γ ≤ ∞, such that

‖u0‖ < γ =⇒ lim
t→∞
‖u(x, t)‖ = 0.

In particular, if γ = ∞, the null solution is unconditionally nonlinearly
stable.
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In general, L is not a symmetric operator, hence it can be decomposed
as L = L1 + L2, with L1 e L2 such that

• D(L2) ⊃ D(L1) = D(L);

• L1 is symmetric with compact resolvent;

• L2 is skew-symmetric and bounded in H′ .

L1 satisfies theorem 1.3.1, hence its eigenvalues {λn}n∈N are such that

λ1 ≤ λ2 ≤ · · · ≤ λn ≤ . . .

Let L1[Φ,Φ], Φ ∈ H′ , be the bilinear form associated with L1:

(L1Φ,Φ) = L1[Φ,Φ], ∀Φ ∈ D(L1).

Under the above conditions, the following theorems hold, see [7].

Theorem 1.3.2. Let Φ be a normalized eigenfunction associated with the
eigenvalue λ1, then

λ1 = L1[Φ,Φ] = min
Φ∈H′

L1[Φ,Φ]
‖Φ‖2 .

Theorem 1.3.3. Assuming
λ1 > 0,

the null solution (1.3) is nonlinearly stable.

We can conclude that the linear instability analysis deals with studying
the eigenvalue problem associated to L. The nonlinear stability analysis is
reduced to studying the eigenvalue problem associated to the symmetric part
L1 of L. When L2 = 0, i.e. the linear operator L - with compact resolvent
- is symmetric, the linear instability analysis a priori implies the nonlinear
stability of the basic solution, i.e. the linear analysis furnishes a necessary
and sufficient condition for the onset of instability.

1.4 Principle of Exchange of Stabilities
A steady fluid flow (or a solution to a partial differential equation) is asymp-
totically stable or unstable according as whether small superposed distur-
bances decay to zero or grow with time. The principle of exchange of
stabilities is said to hold if all non-decaying disturbances are non-oscillatory
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in time [9].

According to what is explained in the previous Section, let us consider the
linearised version of (1.3), i.e. ut+Lu = 0. If L is autonomous, it is possible
to look for solution u(x, t) = e−σtû(x), so σ ∈ C is the growth rate of the
system. Using this kind of solution, it follows −σe−σtû(x) + e−σtLû(x) = 0,
i.e. (L− σI)−1û(x) = 0. Solution u is stable - decays exponentially to zero
- if Re(σ) > 0.
Depending on the nature of the growth rate σ, the thermal convection can
arise via steady motions (steady convection) or oscillatory motions (oscil-
latory convection). States of marginal stability - which separates the sta-
ble state and the unstable one - are stationary if characterized by σ = 0,
i.e. Re(σ) = Im(σ) = 0, oscillatory if are characterized by Re(σ) = 0 i.e.
σ = i Im(σ). In the first case, the amplitude of a generic perturbation grow
(or is damped) aperiodically, so the transition from stability to instability
takes place via a marginal state via a stationary pattern of motions. When
the growth rate is purely imaginary, the perturbations are characterized by
oscillations of increasing (or decreasing) amplitude, this means that the in-
stability occurs through oscillatory motions with frequency Im(σ).
According to [10], the strong form of the principle of exchange of stabil-
ities holds if σ ∈ R. In this case, the marginal states are characterized by
σ = 0 and convection cannot occur through oscillatory motions. The weak
form of the principle of exchange of stabilities holds when from Im(σ) 6= 0
it follows Re(σ) < 0.



Chapter 2

Convection in Porous Media

2.1 Historical Background of Convection Prob-
lems in Clear Fluids and Porous Media

The first attempt to experimentally analyse the onset of thermal convection
in a horizontal layer of viscous incompressible clear fluid heated from be-
low is attributable in 1900 to the physicist Henry Bénard, in the paper [11].
Since the horizontal layer is uniformly heated from below, the fluid at bottom
of the layer is lighter then the fluid at the top, due to thermal expansion,
hence the temperature gradient maintained across the fluid layer is qualified
as adverse. The physical situation just described is of potential instability,
since the temperature and density gradients in the horizontal layer lead to
an unstable arrangement, and the resulting physical-mathematical problem
is known in literature as Bénard Problem. Because of the instability, the
fluid will rearrange itself in order to tend to the equilibrium, but this rear-
rangement is delayed by the fluid viscosity, therefore the adverse temperature
gradient has to reach a critical value for instability to arise. Moreover, in his
experiments, Bénard observed that, once instability occurs, the fluid orga-
nizes itself into a regular pattern of cells, called convection cells or periodicity
cells (see Figure 2.1).
The first refined mathematical analysis describing the Bénard Problem was
proposed in 1916 by the physicist John William Strutt (Lord Rayleigh), in
the paper [12]. Considering a horizontal layer of thickness d of incompressible
fluid in a reference frame Oxyz with unit vectors {i, j,k}, Lord Rayleigh per-
formed the stability analysis of the thermal conduction solution (stationary

20
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Figure 2.1: Bénard cells: a reproduction of one of Bénard’s original pho-
tographs [10].

motionless solution) to the following problem

∂v
∂t

+ v · ∇v = − 1
%0
∇p− [1− α(T − T0)]gk + ν∆v,

∇ · v = 0,
∂T

∂t
+ v · ∇T = κ∆T,

(2.1)

under the following boundary conditions

v · n = 0 on z = 0, d
T = TL on z = 0
T = TU on z = d

(2.2)

and
u = v = 0 on z = 0, d for rigid planes

∂u

∂z
= ∂v

∂z
= 0 on z = 0, d for stress-free planes

(2.3)

where TL > TU (since the layer is uniformly heated from below) and v =
(u, v, w), T, p are the kinematic, temperature and pressure fields, respectively,
κ = k/%0cp is the thermal conductivity coefficient, with %0 the fluid density
at the reference temperature T0, cp specific heat and k the coefficient of heat
conduction, ν = µ/%0 is the kinematic viscosity, with µ the fluid dynamic vis-
cosity, α denotes the thermal expansion coefficient and g = −gk is the gravity
(k being the unit vector in the vertical direction). To write the governing
equations (2.1), a Oberbeck-Boussinesq approximation has been employed,
acceptable in reference to buoyancy driven flows: the density is assumed to



Chapter 2. Convection in Porous Media 22

be constant except in the bouyancy force1, where it has a linear dependence
on the temperature field (and eventually on the concentration field, when a
salt dissolved in the fluid is considered).
Lord Rayleigh established that the instability threshold, above which the con-
vective fluid motion sets in, is related to a dimensionless control parameter,
the Rayleigh number:

Ra = gαβd4

κν

where β is the adverse temperature gradient. He found that the thermal
convection arises when Ra overcomes a certain threshold Rac. From a math-
ematical point of view, the critical value Rac is determined via the instability
analysis of the thermal conduction solution.
Concerning the linear instability, requiring that all the eigenvalues of the
linear operator have negative real part, one can find a threshold RaL such
that the condition Ra > RaL implies instability of the thermal conduction
solution and, consequently, the onset of thermal convection. The nonlinear
stability is topologically dependent. Introducing a suitable norm and choos-
ing properly a Lyapunov functional, one needs to determine the conditions
for which this functional is decreasing along the solutions of the nonlinear
system, these conditions give rise to the nonlinear threshold RaN(≤ RaL)
such that the condition Ra < RaN implies stability, i.e. if Ra < RaN con-
vection cannot occur. In order to have useful results for the applications, the
challenge is to find a norm for which RaN = RaL.
Furthermore, in many applications, the thermal convection can arise via
steady or oscillatory motions and convection is named steady or oscillatory
convection, respectively. As described in [10], states of marginal stability
— which separates the stable state and the unstable one — can be station-
ary or oscillatory. If the amplitude of a generic perturbation grow (or is
damped) aperiodically, the transition from stability to instability takes place
via a marginal state via a stationary pattern of motions. If the perturbations
are characterized by oscillations of increasing (or decreasing) amplitude, the
instability occurs through oscillatory motions with a definite characteristic
frequency. If instability arises via stationary motions, the instability sets in
as stationary cellular convection or secondary flow. If oscillatory motions
prevail, then one has overstability. As regards oscillatory convection, there
are many hand-made materials for which it is convenient that convection oc-
curs through an oscillatory state, since it may be useful that instability sets
in via a motion periodic in time.

1see Chapter 8 for further details and discussions.
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Due to the many applications for real world phenomena of porous ma-
terials, the problem of the onset of thermal convection was later studied for
a viscous incompressible fluid saturating a horizontal layer of porous medium,
by Horton and Rogers in [13] in 1945 and by Lapwood in the paper [14] in
1948, the resulting problem of the onset of convection in fluids saturating
porous media is indeed known in literature as the Horton-Rogers-Lapwood
Problem or, equivalently, as the Darcy-Bénard Problem.
As defined in [1], porous media are materials consisting of a solid matrix with
an interconnected void through which a fluid can flow, and the solid matrix
is either rigid or it undergoes small deformation. The fundamental physical
properties describing the behaviour of this kind of materials are:

• porosity, i.e. the ratio of the void space to the total volume of the
medium;

• permeability, which is a property of the matrix independent of the fluid
flowing through it and measures the flow conductivity in the porous
medium. The permeability is constant if the porous body is isotropic,
otherwise if the solid skeleton of the porous body presents a strong
anisotropy, the permeability is a second order tensor.

Fluid flows in porous media are efficiently described by the Darcy’s law,
which is an experimental law of proportionality between the flow rate and
the pressure gradient:

µ

K
v = −∇p.

According to the Darcy’s model, the boundary value problem describing the
evolutionary behaviour of the thermal conduction solution in a horizontal
layer of fluid-saturated porous medium, is [1]

µ

K
v = −∇p− %0[1− α(T − T0)]gk,

∇ · v = 0,

(%c)m
∂T

∂t
+ (%c)Fv · ∇T = κm∆T,

(2.4)

v · n = 0 on z = 0, d
T = TL on z = 0
T = TU on z = d

(2.5)

where
v = ϕV
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is the seepage velocity — defined via the Dupuit-Forchheimer relation, ϕ
and V being the porosity of the medium and the intrinsic average velocity,
respectively — while K denotes the permeability of the porous body. The
subscripts m and F refer to the medium and the fluid, respectively. For the
Horton-Rogers-Lapwood problem, the threshold phenomenon is related to
the Darcy-Rayleigh number:

Ra = %0αβd
2K(%c)F
κmµ

. (2.6)

It is well known that the critical Rayleigh number for clear fluids and the
critical Darcy-Rayleigh number for fluid saturated porous media — above
which cellular convective motion arises and below which all perturbations
decay exponentially to zero — are

RaBénard = 27
4 π

4, RaHRL = 4π2,

respectively, so let us point out that the presence of the solid skeleton en-
hances the convective heat transfer.

2.2 Description of Bi-disperse Porous Media
As defined in [15], a bi-disperse porous medium, also indicated by BDPM,
is a double porosity material characterized by a solid matrix with an inter-
connected void, but the solid skeleton has cracks or fissures in it. One of the
possible causes of fractures formation in the solid skeleton of natural porous
media is thermal stress, and this is one of the main reasons for which the
study of thermal convection and other temperature effects in a BDPM is
relevant. In particular, a BDPM is a compound of clusters of large particles
that are themselves agglomerations of smaller particles. Therefore, this kind
of materials are characterized by two different types of pores: macropores
between the clusters and micropores within them, the macropores are re-
ferred to as f-phase (meaning "fractured phase"), while the remainder of the
structure is referred to as p-phase (meaning "porous phase") [4].

A BDPM is characterized by two different permeabilities (Kf for the f-
phase and Kp for the p-phase) and two different porosities. In particular, let
ϕ be the porosity associated to the macropores, i.e. the ratio of the volume of
the macropores to the total volume of the saturated porous material, let ε be
the porosity associated to the micropores, i.e. the ratio of the volume of the
micropores to the volume of porous body which remains once the macropores
are removed, hence
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Figure 2.2: Sketch of a bi-disperse porous medium [4].

• (1− ϕ)ε is the fraction of volume occupied by the micropores,

• ϕ+ (1− ϕ)ε is the fraction of volume occupied by the fluid,

• (1− ε)(1− ϕ) is the fraction of volume occupied by the solid skeleton.

Figure 2.3: An example of a man made double porosity medium consisting of twelve
spheres. The pattern can be continued by adding more spheres appropriately. The micro
porosity is defined by the cylindrical holes in the spheres whereas the macro porosity is
defined by the gaps between the larger spheres. The spheres to the right represent a view
from the side of the material whereas the spheres to the left represent a view from the top
[16].

A theoretical key development is attributable to Nield and Kuznetsov in
[4, 17, 18]. They developed a refined model which employs different kinematic
fields vf and vp in the macropores and in the micropores, different pressures
pf and pp and different temperatures T f and T p (on the basis of the following
observation: while the steady state of conductive heat transfer implies local
thermal equilibrium, this LTE may not occur for a convection problem). In
particular, let Vf and Vp be the pore averaged velocities in the macro- and
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micropores, respectively. Then, the analogous seepage velocities are given by
the classical Dupuit-Forchheimer relation:

vf = ϕVf , vp = ε(1− ϕ)Vp.

Nield and Kuznetsov also supposed that the drag (per unit volume) is in-
creased by an amount ζ(vf − vp) for the f-phase and decreased by the same
amount for the p-phase, where ζ is an interaction coefficient between f-phase
and p-phase.
Let Oxyz be a reference frame with fundamental unit vectors i, j,k (k point-
ing vertically upward), the momentum equations developed by Nield and
Kuznetsov for a saturated BDPM occupying an horizontal layer L of thickness
d heated from below, according to the Darcy’s model and to the Oberbeck-
Boussinesq approximation, may be written as

∇pf = − µ

Kf

vf − ζ(vf − vp)+

+%Fgα
(

ϕ

ϕ+ ε(1− ϕ)T
f + ε(1− ϕ)

ϕ+ ε(1− ϕ)T
p
)
k

∇pp = − µ

Kp

vp − ζ(vp − vf )+

+%Fgα
(

ϕ

ϕ+ ε(1− ϕ)T
f + ε(1− ϕ)

ϕ+ ε(1− ϕ)T
p
)
k.

(2.7)

Let us point out that, considering the Darcy’s law, the pressure gradient is
an intrinsic quantity, hence the pressure is the pressure in the fluid. The
energy balance equations for the f-phase and the p-phase are

ϕ(%c)f
(
∂T f

∂t
+ vf · ∇T f

)
= ϕkf∆T f + h(T p − T f ),

(1− ϕ)(%c)p
(
∂T p

∂t
+ vp · ∇T p

)
= (1− ϕ)kp∆T p + h(T f − T p),

(2.8)

where h is a thermal interaction coefficient. In addition, the fluid is regarded
as incompressible in both the macro and micro parts of the BDPM, thus the
velocities fields satisfy the continuity equations

∇ · vf = 0, ∇ · vp = 0. (2.9)

To system (2.7)-(2.8)-(2.9) the following boundary conditions are appended

vs · n = 0, on z = 0, d, s = {f, p}
T (x, y, 0, t) = TL,

T (x, y, d, t) = TU ,

(2.10)
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with n the unit outward normal to the impermeable horizontal planes delim-
iting the layer and TL > TU , since the layer is heated from below.
Through numerical simulations applied to a bi-disperse porous medium con-
sisting of blocks of porous material which are themselves composed of smaller
microblocks, Imani and Hooman in [19] show that when the macropores are
relatively large compared to the micropores then one may assume the tem-
peratures of the solid skeleton match those of the fluid in the macro and
micropores, hence there is local thermal equilibrium. However, when large
temperature differences are expected in the macro and micropores (for ex-
ample when hot fluid is injected into a cold skeleton), the two temperatures
theory should be used.
From a mathematical point of view, when the LTE theory is employed, it is
possible to show that the principle of exchange of stabilities holds2 and that
the linear instability threshold and the global nonlinear one coincide. Thus,
linear instability theory correctly captures the onset of thermal convection
in a single temperature bi-disperse porous medium. As underlined in [20],
such a result when two temperatures are present has not been proved. Em-
ploying a single temperature in the micropores and in the macropores, i.e.
T f = T p = T , may suffices to represent many real situations (see for instance
[21, 22, 23, 24]) and the resulting mathematical model is consistent with
experiments related to heat transfer and thermal dispersion in bi-disperse
porous media. Hence, Gentile and Straughan in [25] proposed as governing
equations, describing the evolutionary behaviour of the thermal conduction
solution in a horizontal layer of single temperature BDPM, the following:

− µ

Kf

vf − ζ(vf − vp)−∇pf + %FαgTk = 0,

− µ

Kp

vp − ζ(vp − vf )−∇pp + %FαgTk = 0,

∇ · vf = 0,
∇ · vp = 0,

(%c)m
∂T

∂t
+ (%c)f (vf + vp) · ∇T = km∆T.

(2.11)

The nomenclature used for the previous equations is the following: x =
(x, y, z), vs = seepage velocity, ps = pressure, with s = {f, p} (f and p
referring to f-phase and p-phase, respectively), T = temperature, Ks = per-
meability for s = {f, p}, % = density, ζ = interaction coefficient between the
f-phase and the p-phase, g = −gk = gravity, µ = fluid viscosity, %F = refer-
ence constant density, α = thermal expansion coefficient, c = specific heat,

2i.e. convection can arise only via steady motions, see Section 1.4.
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cp = specific heat at a constant pressure, (%c)m = (1 − ϕ)(1 − ε)(%c)sol +
[ϕ + ε(1 − ϕ)](%c)F , km = (1 − ϕ)(1 − ε)ksol + ϕkf + ε(1 − ϕ)kp = thermal
conductivity (the subscript sol is referred to the solid skeleton).
Let us point out that in the case of single temperature BDPM, since the
macropores and micropores are saturated by the same fluid, we expect that
(%c)f = (%c)p = (%c)F [26].

2.2.1 Brinkman Bi-Disperse Porous Media
The momentum equations (2.7) for macro and micropores are derived ex-
tending the Darcy’s model to the dual porosity case. However, the original
model developed by Nield and Kuznetsov relates to Brinkman bi-disperse
porous media. In particular, they used Brinkman’s law in both micropores
and macropores in [18], accounting for the discussion on the dispersion in a
BDPM made by Moutsopolous and Koch in [27]. In [27] the authors proved
a good agreement between theoretical predictions end experimental mea-
surements when one consider a dilute array of large spheres in a Brinkman
medium and the flow around the large spheres is modeled using Brinkman’s
equation. Man-made materials for heat transfer industry such as metallic
foams have high porosity (close to one), hence, since the Brinkman model
is better suited for situations characterized by high fluid seepage velocities
and high porosities, Nield and Kuznetsov extended the Brinkman model for
porous media to the bi-disperse case and the coupled equations for the seep-
age velocities vf e vp are

G =
(
µ

Kf

)
vf + ζ(vf − vp)− µ̃f∆vf ,

G =
(
µ

Kp

)
vp + ζ(vp − vf )− µ̃p∆vp,

(2.12)

where G is the negative of the applied pressure gradient, µ is the fluid vis-
cosity, Kf e Kp are the permeabilities of the two phases, ζ is the interaction
coefficient between the macro and the micro phases and µ̃p e µ̃f are the ef-
fective (or Brinkman) viscosities in the two phases. Moreover, the effect of
quadratic (Forchheimer) drag was neglected, and the hydrodynamic interac-
tion between the two phases was modeled by the simplest possible expression.

It is possible to recover the Darcy’law from the Brinkman momentum
equations (2.12) by neglecting the laplacian of the seepage velocities vf and
vp. Therefore, equalling the right-hand sides of (2.12)1 and (2.12)2, one gets

vf
(
µ

Kf

+ 2ζ
)

= vp
(
µ

Kp

+ 2ζ
)
,
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hence, the kinematic fields for the f-phase and the p-phase are:

vf =

(
µ
Kp

+ 2ζ
)
G

µ2

KfKp
+ ζµ

(
1
Kf

+ 1
Kp

) ,

vp =

(
µ
Kf

+ 2ζ
)
G

µ2

KfKp
+ ζµ

(
1
Kf

+ 1
Kp

) .
We finally recover the Darcy’law

G = µ

K
v,

where the following positions were made:

v =ϕvf + (1− ϕ)vp,

K =ϕKf + (1− ϕ)Kp + 2(ζ/µ)KfKp

1 + (ζ/µ)(Kf +Kp)
.

We can conclude that the interaction coefficient ζ affects the permeability in
the f-phase and in the p-phase through ζ

µ
.

Let us point out that exchange of stabilities has not been proved in either
the Brinkman–Brinkman or Darcy–Darcy case when there are two tempera-
tures and so there is a possibility of oscillatory convection in addition to the
already observed stationary convection. Also, in [28] it has been proven that
the instability threshold for the onset thermal convection in the two tem-
perature bidispersive theory with Brinkman effects in both the macro and
micropores is less then the one obtained when Darcy effects in both phases
are considered.
In [20], Straughan and Gentile developed a macro-Brinkman-micro-Darcy
model, justified by envisaging a material with relatively large macropores,
i.e. a relatively large macroporosity.

2.3 Rotating Porous Media
As underlined by Nield and Bejan in [1] and Vadasz in [29, 30, 31, 32], the
applications of fluid flow through rotating packed beds can be drying process
or extraction of soluble components, for instance. More generally, since rota-
tion may affect the fluid flow through two mechanisms, the thermal buoyancy
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caused by centrifugal forces and the Coriolis force (or a combination of both)
[32], the study of fluid flow in rotating porous media is motivated by its
theoretical significance and practical applications in geophysics and in engi-
neering: geophysical problems such as flows in porous geological formations
subject to earth rotation and the flow of magma in the earth mantle close
to the earth crust, physiological processes in human body subject to rotat-
ing trajectories, cooling of electronic equipment in a rotating radar, cooling
of rotors of electric machines, cooling of turbo-machinery blades, food and
chemical processes, solidification and centrifugal casting of metals, rotating
machineries, petroleum industry, biomechanics, the electrocatalysis of the
oxygen reduction reaction in alkaline media on ultra-thin porous coating
rotating electrodes (see [23, 32, 33, 34] and the references therein). Since
bi-disperse porous media offer much more possibilities to design man-made
materials then single porosity media [20, 35, 36], convection and heat transfer
problems in rotating BDPM find many engineering or industrial applications
as well. For instance, in [21] Capone et al. analyse the influence of vertical
rotation on the onset of convection in a single temperature BDPM, according
to Darcy’s law, while [22] deals with the effect of horizontal isotropy on the
onset of convection in a uniformly rotating bi-disperse porous medium. The
experimental results and observations by Li et al. in [37] point out that the
development of fractures and microfractures controls the physical properties
and fluid productivity of reservoirs, and high-speed centrifugation enhances
oil production from fractured porous media.
The analysis of flow and heat transfer in rotating single or double porosity
materials can be applied to cooling devices, which are often constituted of
an heat pipe subject to rotation, hence the comprehension of how Coriolis
effects affect the heat transfer is relevant [32].

2.3.1 Hydrodynamics in a Rotating Layer
With the aim of analyse the onset of convection in a rotating horizontal
layer of fluid-saturated porous material, a rotating frame of reference has to
be considered and the Darcy’s model has to be extended in order to include
centrifugal and Coriolis effects.
The fluid motion is described with respect to two frames, a fixed inertial
frame Oξηζ and a rotating frame of reference Oxyz, such that z = ζ. In
particular, the rotating reference frame Oxyz has fundamental unit vectors
i, j,k (with k pointing vertically upward) and rotates about the vertical axis
z, with constant angular velocity Ω = Ωk.
The fluid motion is described as it appears to an observer at rest in the ro-
tating frame. In this rotating frame of reference, velocities and accelerations
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recognized by an observer at rest in it are obviously different with respect
to velocities and accelerations recognized by an observer at rest in the fixed
inertial frame. Therefore, the transformation related to these two reference
frames is governed by the following equations (see [10]):

x = ξ cos Ωt+ η sin Ωt,
y = −ξ sin Ωt+ η cos Ωt,
z = ζ,

(2.13)

According to (2.13), the equations of a generic vector q are:
q(0)
x = qξ cos Ωt+ qη sin Ωt,
q(0)
y = −qξ sin Ωt+ qη cos Ωt,
q(0)
z = qζ ,

(2.14)

where qξ, qη, qζ are the components of q in Oξηζ, while the superscript (0)
refers to the absolute components.
The first and second derivaties with respect to t of (2.13) are respectively
given by:

dx

dt
=
(
dξ

dt
cos Ωt+ dη

dt
sin Ωt

)
− Ω(ξ sin Ωt− η cos Ωt),

dy

dt
=
(
−dξ
dt

sin Ωt+ dη

dt
cos Ωt

)
− Ω(ξ cos Ωt+ η sin Ωt),

dz

dt
= dζ

dt
,

(2.15)



d2x

dt2
=
(
d2ξ

dt2
cos Ωt+ d2η

dt2
sin Ωt

)
+2Ω(−dξ

dt
sin Ωt+ dη

dt
cos Ωt)−Ω2x,

d2y

dt2
=
(
−d

2ξ

dt2
sin Ωt+ d2η

dt2
cos Ωt

)
+2Ω(−dξ

dt
cos Ωt− dη

dt
sin Ωt)−Ω2y,

d2z

dt2
= d2ζ

dt2
,

(2.16)

Regarding the velocity v of a fluid element, by virtue of (2.15) we have

vx = v(0)
x + Ωy,

vy = v(0)
y − Ωx,

vz = v(0)
z ,

(2.17)

i.e.
v = v(0) −Ω× x, (2.18)
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with x = (x, y, z). Hence, equations (2.16) are equivalent to

dvx
dt

=
(
dv(0)

x

dt

)(0)
+ 2Ωv(0)

y − Ω2x,

dvy
dt

=
(dv(0)

y

dt

)(0)
− 2Ωv(0)

x − Ω2y,

dvz
dt

=
(
dv(0)

z

dt

)(0)
,

(2.19)

that are, substituting v(0)
x and v(0)

y ,

(
dv(0)

x

dt

)(0)
= dvx

dt
− 2Ωvy − Ω2x,(dv(0)

y

dt

)(0)
= dvy

dt
+ 2Ωvx − Ω2y,(

dv(0)
z

dt

)(0)
= dvz

dt
.

(2.20)

Finally, we get (
dv(0)

dt

)(0)
= dv
dt

+ 2Ω× x− 1
2∇(|Ω× x|2), (2.21)

where 2Ω×x is the Coriolis acceleration and −1
2∇(|Ω×x|2) is the centrifugal

force.

2.3.2 Onset of Convection in Rotating Porous Layers
In the case of rotating clear fluids, it has been proved that oscillatory con-
vection occurs only for a certain range of Prandtl number Pr values [10] (i.e.
Pr < 1, Pr being defined as ν/α, with ν = µ/%F the kinematic viscosity and
α = k/(%c) is the thermal diffusivity). Instead, when a porous domain is con-
sidered, in paper [30] (where rotation and inertia effects are simultaneously
taken into account) Vadasz found that the onset of oscillatory convection is
not limited to a particular domain of Prandtl number values, in contrast with
the corresponding clear fluid case. Moreover, as underlined in [10] and [32],
when rotation is taken into account in clear fluids or in porous media heated
from below, the role of viscosity is inverted: the viscosity at high rotation
rates has a destabilizing effect on the onset of stationary convection, hence
the higher the viscosity the less stable is the fluid. On the other hand, it
has been demonstrated that rotation has a stabilizing effect on the onset of
convection, since the critical Rayleigh number Ra is an increasing function
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of the Taylor number T (non-dimensional representation of rotation rates,
hence it describes Coriolis and centrifugal effects on the onset of convection).
In the clear fluid case, one has

RaBénard = min
a2

(π2 + a2)3

a2 , Rac = min
a2

(π2 + a2)3 + π2T
a2 (2.22)

where Rac is the critical Rayleigh number for the onset of stationary convec-
tion in a rotating layer of fluid. When a porous domain is considered, one
gets

RaHRL = min
a2

(π2 + a2)2

a2 , Rap,c = min
a2

(π2 + a2)(π2 + a2 + π2T )
a2 (2.23)

where Rap,c is the critical Darcy-Rayleigh number for the onset of stationary
convection in a rotating fluid-saturated porous medium.

As regards rotating bi-disperse porous media, the instability threshold for the
onset of convection in a rotating horizontal layer of fluid-saturated isotropic
and single-temperature bi-disperse porous medium, according to Darcy’s law,
has been determined in [21] as follows:

RaL= min
a2∈R+

Λ{Γ2Λ2+γ1T 2[η2(1+γ1)2+(1+γ2)2+2η]π2Λ+γ4
1T 4π4η2}

a2{Γ(4+γ1+γ2)Λ+γ2
1T 2π2[η2γ1+γ2+(η−1)2]}

(2.24)
where Λ = π2 + a2 and

γ1 = µ

ζKf

, γ2 = µ

ζKp

, η = ϕ

ε
, Γ = γ1 + γ2 + γ1γ2.

Let us point out that (2.24) is an increasing function of the Taylor number
T , hence, as expected, the rotation acts to delay the onset of convection.
Moreover, as Kp → 0, ζ → 0 and ε→ 0 from (2.24) one recovers the critical
Rayleigh number for the single porosity case

Rap,c = min
a2

(π2 + a2)(π2 + a2 + π2T )
a2 .
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Chapter 3

Effect of anisotropy on the
onset of convection in rotating
bi-disperse Brinkman porous
media

The goal of this Chapter is to study the onset of thermal convection in a
horizontal isotropic bi-disperse porous medium uniformly rotating about a
vertical axis. Moreover, accounting for the discussion done in 2.2.1, the va-
lidity of the Brinkman law is assumed for both micropores and macropores.
Thermal convection and heat transfer problems in anisotropic single porosity
media — for which permeability is a symmetric second-order tensor — have
been widely studied due to the many examples of natural anisotropic porous
materials (such as rock strata or wood, which behaves very differently along
the grain to the way it does across the grain [2]) and the large number of
engineering applications, since anisotropic permeability is a powerful tool to
optimise heat transfer (see for instance [38, 39, 40] and references therein).
However, anisotropy in bi-disperse porous materials (where there is the pos-
sibility of different permeabilities in the vertical and horizontal directions in
both macropores and micropores) may have much more potentials due to
many possibilities to design man-made materials for heat transfer or insula-
tion problems, for oil recovery from underground reservoir, for nuclear waste
recovery and so on (see [25, 28, 35, 36] and references therein).
The results presented in the following Chapter are based on the paper [41]
with F. Capone and R. De Luca. The Chapter is organized as follows. In
Section 3.1 we introduce the mathematical model and, in order to study the
stability of the conduction solution, we introduce the dimensionless equa-
tions for the evolution (in time) of the perturbation fields. In Section 3.2

35



Chapter 3. Convection in an anisotropic rotating Brinkman BDPM 36

we perform the instability analysis of the conduction solution and we prove
the validity of the strong form of the principle of exchange of stabilities,
which means that if the convection sets in, it arises via a stationary state.
Section 3.3 deals with the nonlinear stability analysis of the conduction solu-
tion and the coincidence between instability and (global) nonlinear stability
thresholds in the L2−norm is proved. Numerical simulations concerning the
asymptotic behaviour of the instability threshold with respect to the mean-
ingful parameters of the model are performed in Section 3.4.

3.1 Mathematical model
Let Oxyz be a reference frame with fundamental unit vectors i, j,k (k point-
ing vertically upward). Let L be a bi-disperse porous layer of thickness d
uniformly heated from below and rotating about the vertical axis z, with
constant angular velocity Ω = Ωk. Let L be saturated by a homogeneous
incompressible fluid at rest state and let us assume the validity of the local
thermal equilibrium between the f-phase and the p-phase, i.e. T f = T p = T .
The saturated bi-disperse porous medium is also supposed to be horizontally
isotropic. Let the axes (x, y, z) be the principal axes of the permeability,
so the macropermeability tensor and the micropermeability tensor may be
written as

Kf = diag(Kf
x , K

f
y , K

f
z ) = Kf

z Kf∗,

Kp = diag(Kp
x, K

p
y , K

p
z ) = Kp

z Kp∗,

Kf∗ = diag(k, k, 1), Kp∗ = diag(h, h, 1)
where

k = Kf
x

Kf
z

=
Kf
y

Kf
z

, h = Kp
x

Kp
z

=
Kp
y

Kp
z
.

A Boussinesq approximation is used, whereby the density is constant except
in the buoyancy forces, which are linear in temperature. Taking into account
the Coriolis terms due to the uniform rotation of the layer about the ver-
tical axis z for the micropores and the macropores [21] and extending the
Brinkman model for a simple porous medium to BDPM [18], the relevant
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equations are:

vf =µ−1Kf ·
[
−ζ(vf−vp)−∇pf+%FαgTk− 2%FΩ

ϕ
k× vf+µ̃f∆vf

]
,

vp=µ−1Kp ·
[
−ζ(vp−vf )−∇pp+%FαgTk− 2%FΩ

ε
k× vp+µ̃p∆vp

]
,

∇ · vf = 0,
∇ · vp = 0,
(%c)mT,t + (%c)f (vf + vp) · ∇T = km∆T,

(3.1)

where
ps = P s − %F

2 |Ω× x|2, s = {f, p}

is the reduced pressure being x = (x, y, z), vs = seepage velocity, P s= pres-
sure, %= density, ζ = interaction coefficient between the f-phase and the
p-phase, g = −gk = gravity, µ = fluid viscosity, µ̃s = effective viscosity, %F
= reference constant density, α = thermal expansion coefficient, c = specific
heat, cp = specific heat at a constant pressure, (%c)m = (1−ϕ)(1−ε)(%c)sol+
ϕ(%c)f + ε(1−ϕ)(%c)p, km = (1−ϕ)(1− ε)ksol +ϕkf + ε(1−ϕ)kp = thermal
conductivity (the subscript sol is referred to the solid skeleton).
To (3.1) the following boundary conditions are appended

vs · n = 0 , s = {f, p} on z = 0, d,

T = TL , on z = 0 , T = TU , on z = d
(3.2)

where TL > TU .
The problem (3.1)-(3.2) admits the stationary conduction solution:

vf = 0, vp = 0, T = −βz + TL,

where β = TL − TU
d

is the temperature gradient. Denoting by {uf ,up, θ, πf , πp}
a perturbation to the steady solution, one recovers that the evolutionary sys-
tem governing the perturbation fields is given by

uf =µ−1Kf ·
[
−ζ(uf−up)−∇πf+%Fαgθk−

2%FΩ
ϕ

k× uf+µ̃f∆uf
]
,

up=µ−1Kp ·
[
−ζ(up−uf )−∇πp+%Fαgθk−

2%FΩ
ε

k× up+µ̃p∆up
]
,

∇ · uf = 0,
∇ · up = 0,
(%c)mθ,t + (%c)f (uf + up) · ∇θ = (%c)fβ(wf + wp) + km∆θ,

(3.3)
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where uf = (uf , vf , wf ), up = (up, vp, wp). Introducing the non-dimensional
parameters

x∗ = x
d
, t∗ = t

t̃
, θ∗ = θ

T̃
, us∗ = us

ũ
, πs∗ = πs

P̃
, for s = {f, p},

η = ϕ

ε
, σ = µ̃p

µ̃f
, γ1 = µ

Kf
z ζ
, γ2 = µ

Kp
z ζ
,

where the scales are given by

ũ = km
(%c)fd

, t̃ = d2(%c)m
km

, P̃ = ζkm
(%c)f

, T̃ =
√√√√ βkmζ

(%c)f%Fαg
,

and setting

T = 2%FΩKf
z

ϕµ
, Daf = µ̃fK

f
z

d2µ
, R =

√√√√βd2(%c)f%Fαg
kmζ

which are the Taylor number T , the Darcy number Daf and the thermal
Rayleigh number R, respectively, the resulting non-dimensional perturbation
equations, dropping all the asterisks, are

γ1(Kf )−1uf+(uf−up)=−∇πf+Rθk−γ1T k× uf+Dafγ1∆uf ,
γ2(Kp)−1up−(uf−up)=−∇πp+Rθk−ηγ1T k× up+Dafγ1σ∆up,
∇ · uf = 0,
∇ · up = 0,
θ,t + (uf + up) · ∇θ = R(wf + wp) + ∆θ,

(3.4)

under the initial conditions

us(x, 0) = us0(x) , πs(x, 0) = π0(x) , θ(x, 0) = θ0(x)

with ∇ · us0 = 0, s = {f, p}, and the stress-free boundary conditions [10]

uf,z = vf,z = up,z = vp,z = wf = wp = θ = 0 on z = 0, 1. (3.5)

Moreover, according to experimental results, let us assume that the pertur-
bation fields are periodic functions in the x, y directions and denote by

V =
[
0, 2π

l

]
×
[
0, 2π
m

]
× [0, 1]

the periodicity cell.
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3.2 Thermal instability of the conduction so-
lution

To analyse the onset of convection, i.e. to find the linear instability threshold
of the conduction solution, we consider the linear version of (3.4) and seek
for solutions in which uf ,up, θ, πf , πp have time dependence like eσt, i.e.
γ1(Kf )−1uf+(uf−up)=−∇πf+Rθk−γ1T k× uf+Dafγ1∆uf ,
γ2(Kp)−1up−(uf−up)=−∇πp+Rθk−ηγ1T k× up+Dafγ1σ∆up,
σθ = R(wf + wp) + ∆θ

(3.6)

Denoting by

∆1f = f,xx + f,yy , ∆m ≡ ∆∆ · · ·∆︸ ︷︷ ︸
m

, ωs3 = (∇× us) · k, s = {f, p}

a = γ1

k
+ 1 , b = γ2

h
+ 1

and defining the operators

A ≡ a−Dafγ1∆ , B ≡ b−Dafσγ1∆ , Ψ ≡ (AB − 1) (3.7)

the third components of curl and of double curl of (3.4)1,2 are respectively
given by Aω

f
3 − ω

p
3 = γ1T wf,z,

−ωf3 +Bωp3 = ηγ1T wp,z
(3.8)

and
−γ1

k
wf,zz−γ1∆1w

f−∆wf+∆wp=−R∆1θ+γ1T ωf3,z−Dafγ1∆2wf,

−γ2

h
wp,zz−γ2∆1w

p+∆wf−∆wp=−R∆1θ+ηγ1T ωp3,z−Dafγ1σ∆2wp.

(3.9)

Applying the operator B to (3.8)1, by virtue of (3.8)2, one has

Ψωf3 = γ1T Bwf,z + ηγ1T wp,z.

This equation, together with that one obtained by applying the operator Ψ
to (3.8)2, leads to 

Ψωf3 = γ1T Bwf,z + ηγ1T wp,z,

ΨBωp3 = γ1T Bwf,z + ηγ1T ABwp,z.
(3.10)
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Applying the operator Ψ to (3.9)1 and ΨB to (3.9)2, one gets

−aΨwf,zz − γ̂1Ψ∆1w
f + Ψ∆1w

p + Ψwp,zz =
−RΨ∆1θ + γ1T Ψωf3,z −Dafγ1Ψ∆2wf ,

−bΨBwp,zz − γ̂2ΨB∆1w
p + ΨB∆1w

f + ΨBwf,zz =
−RΨB∆1θ + ηγ1T ΨBωp3,z −Dafσγ1ΨB∆2wp,

(3.11)

with γ̂r = γr + 1, for r = 1, 2.
In view of (3.10), (3.11) can be written as

[−aΨ− (γ1T )2B]wf,zz − γ̂1Ψ∆1w
f + Ψ∆1w

p+
[Ψ− η(γ1T )2]wp,zz +Dafγ1Ψ∆2wf = −RΨ∆1θ,

[−bΨB − (ηγ1T )2AB]wp,zz − γ̂2ΨB∆1w
p + ΨB∆1w

f+
[ΨB − η(γ1T )2B]wf,zz +Dafσγ1ΨB∆2wp = −RΨB∆1θ.

(3.12)

Therefore, to find the linear instability threshold, we consider (3.6)3, (3.12)1
and (3.12)2, i.e.:

[−aΨ− (γ1T )2B]wf,zz − γ̂1Ψ∆1w
f + Ψ∆1w

p+
[Ψ− η(γ1T )2]wp,zz +Dafγ1Ψ∆2wf = −RΨ∆1θ,

[−bΨB − (ηγ1T )2AB]wp,zz − γ̂2ΨB∆1w
p + ΨB∆1w

f+
[ΨB − η(γ1T )2B]wf,zz +Dafσγ1ΨB∆2wp = −RΨB∆1θ,

σθ = R(wf + wp) + ∆θ.

(3.13)

Employing normal modes in (3.13), i.e. assuming the following representation
[10]

wf = W f
0 sin(nπz)ei(lx+my),

wp = W p
0 sin(nπz)ei(lx+my),

θ = Θ0 sin(nπz)ei(lx+my),

(3.14)
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W f
0 ,W

p
0 ,Θ0 being real constants, setting a2 = l2 + m2 and Λn = a2 + n2π2,

from (3.13) it turns out that

[
Λne(A1M+σfn2π2)+Λ2

ne(Meσ+B1)+fbn2π2+B1M+

e2Λ3
nA1+e3σΛ4

n

]
W f

0 +
[
−B1Λn−eA1Λ2

n−e2σΛ3
n+ηfn2π2

]
W p

0

−Ra2
[
B1 + eΛnA1 + e2σΛ2

n

]
Θ0 = 0,

[
Λn(eσn2π2ηf − bB1) + ηfn2π2b− Λ2

neC

−Λ3
ne

2σ(A1 + b)− Λ4
nσ

2e3
]
W f

0 +{
Λne(CN + η2fA1n

2π2) + Λ2
neσ[e(A1 + b)N + bB1 + eη2fn2π2]+

B1bN + e2Λ3
nσ(C + eσN) + Λ4

ne
3σ2(A1 + b) + Λ5

ne
4σ3+

η2fn2π2ab
}
W p

0 −Ra2
[
bB1+eΛnC+Λ2

ne
2σ(A1+b)+e3σ2Λ3

n

]
Θ0 =0,

RW f
0 +RW p

0 − (Λn + σ)Θ0 = 0,

(3.15)

where

A1 = σa+ b, B1 = γ1

k

γ2

h
+ γ1

k
+ γ2

h
, C = σ(2B1 + 1) + b

2
,

M = γ1

k
n2π2 + γ1a

2 + Λn, N = γ2

h
n2π2 + γ2a

2 + Λn,

e = Dafγ1, f = (γ1T )2.

(3.16)

Setting

h11 =Λne(A1M + σfn2π2) + Λ2
ne(Meσ +B1) + fbn2π2 +B1M+

e2Λ3
nA1 + e3σΛ4

n,

h12 =−B1Λn − eA1Λ2
n − e2σΛ3

n + ηfn2π2,

h13 =B1 + eΛnA1 + e2σΛ2
n,

h21 =Λn(eσn2π2ηf − bB1) + ηfn2π2b− Λ2
neC − Λ3

ne
2σ(A1 + b)− Λ4

nσ
2e3,

h22 =Λne(CN + η2fA1n
2π2) + Λ2

neσ[e(A1 + b)N + bB1 + eη2fn2π2]+
B1bN + e2Λ3

nσ(C + eσN) + Λ4
ne

3σ2(A1 + b) + Λ5
ne

4σ3 + η2fn2π2ab,

h23 =bB1 + eΛnC + Λ2
ne

2σ(A1 + b) + e3σ2Λ3
n,
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(3.15) can be written as
h11W

f
0 + h12W

p
0 −Ra2h13Θ0 = 0,

h21W
f
0 + h22W

p
0 −Ra2h23Θ0 = 0,

RW f
0 +RW p

0 − (Λn + σ)Θ0 = 0.
(3.17)

Requiring zero determinant for system (3.17), one gets

R2 = Λn + σ

a2
h11h22 − h12h21

h13h22 − h12h23 + h11h23 − h21h13
. (3.18)

The growth rate of the system is σ = σR + iσI , then (3.18) is

R2 = (Λn+σR)(h11h22−h12h21)
a2(h12h23−h13h22−h11h23+h21h13)

+ i
σI(h11h22−h12h21)

a2(h12h23−h13h22−h11h23+h21h13)

(3.19)

but the Rayleigh number R2 is real, therefore one obtains

σI
h11h22 − h12h21

a2(h12h23 − h13h22 − h11h23 + h21h13) = 0, (3.20)

where both numerator h11h22 − h12h21 and denominator h12h23 − h13h22 −
h11h23 +h21h13 are strictly positive. From (3.20) it follows necessarily σI = 0,
i.e. σ ∈ R and the strong form of the principle of exchange of stability holds:
oscillatory convection cannot arise. The smallest value of R2 which vanishes
the determinant of (3.17) for σ = 0 is the steady critical Rayleigh number
for the onset of instability, i.e.

R2
L = min

(n,a2)∈N×R+
f 2
L(n, a2) (3.21)

with
f 2
L(n, a2) = Λn

a2
(h11h22 − h12h21)

h13h22 − h12h23 + h11h23 − h21h13
. (3.22)

We have proved that: i) both numerator and denominator of (3.22) are
strictly positive; ii) the minimum of f 2

L with respect to n, by using numerical
computations, is attained at n = 1. Hence

R2
L = min

a2∈R+
f 2
L(1, a2). (3.23)

The minimum of f 2
L(1, a2) with respect to a2 is analysed in Section 3.4.
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Remark 3.2.1. Let us observe that:

i) if one assumes the validity of the Darcy’s law (Daf = 0), from (3.21)
one gets:

RL
2=min

n,a2

Λn

a2
B1MN−B1Λ2

n+η2f 2n4π4 + fn2π2(bN + η2aM + 2ηΛn)
B1(M +N + 2Λn) + fn2π2(aη2 − 2η + b)

(3.24)

which coincides with the critical threshold found in [22];

ii) if Daf = 0 and h = k = 1 (isotropic case), from (3.21) one obtains the
critical Rayleigh number found in [21], i.e.

R2
L=min

n,a2

Λn

a2
Γ2Λ2

n+γ2
1T 2n2π2Λn[η2(γ1 + 1)2+(γ2 + 1)2+2η]+γ4

1T 4n4π4η2

ΓΛn(γ1 + γ2 + 4) + γ2
1T 2n2π2[η2γ1 + γ2 + (η − 1)2]

where Γ = γ1γ2 + γ1 + γ2;

iii) if h=k=1, µ̃p = 0, in the limit as T → 0, i.e. assuming the validity of
the Brinkman’s law only in the momentum equation for the macropores
and in the absence of rotation, from (3.21) one obtains

R2= min
n,a2

Λ2
n

a2
γ1γ2 + γ1 + γ2 + e(γ2 + 1)Λn

eΛn + γ1 + γ2 + 4 (3.25)

and (3.25) coincides with the critical threshold found in [20].

3.3 Nonlinear stability of the conduction so-
lution

In order to study the nonlinear stability of the conduction solution, by virtue
of (3.7), since

Ψ ≡ ab− eA1∆ + e2σ∆2− 1 , ΨB ≡ bB1− eC∆ + e2σ(A1 + b)∆2− e3σ2∆3

(3.12) and (3.4)5 can be written as
L1w

f + L2w
p +RL3θ = 0,

M1w
f +M2w

p +RM3θ = 0,
θ,t + (uf + up) · ∇θ = R(wf + wp) + ∆θ,

(3.26)
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where the following differential operators have been defined

L1 ≡− aB1∂zz + e(aA1 + σf)∂zz∆− fb∂zz − γ̂1B1∆1 − aσe2∆2∂zz

+ γ̂1eA1∆∆1 − γ̂1e
2σ∆2∆1 + eB1∆2 − e2A1∆3 + e3σ∆4,

L2 ≡B1∆1 +B1∂zz − eA1∆2 + e2σ∆3 − ηf∂zz,
L3 ≡B1∆1 − eA1∆∆1 + e2σ∆2∆1

M1 ≡bB1∆− eC∆2 + e2σ(A1 + b)∆3 − e3σ2∆4 − bηf∂zz + eηfσ∆∂zz,
M2 ≡− b(bB1 + aη2f)∂zz + σebB1∆2 − γ̂2bB1∆1

+ e(bC + η2fA1)∆∂zz − e2σ[b(A1 + b) + η2f ]∆2∂zz + e3bσ∆3∂zz

+ γ̂2eC∆∆1 − γ̂2e
2σ(A1 + b)∆2∆1

+ γ̂2e
3σ2∆3∆1 − σe2C∆3 + σ2e3(A1 + b)∆4 − e4σ3∆5,

M3 ≡bB1∆1 − eC∆∆1 + e2σ(A1 + b)∆2∆1 − e3σ2∆3∆1.

To determine the nonlinear stability threshold, in order to evaluate the rota-
tion effect, it is not possible to proceed via a standard energy analysis, since
the Coriolis terms in the momentum equations are antisymmetric. For this
reason, we employ the differential constraint approach (see [38, 42, 43]) and
set

E(t) = 1
2‖θ‖

2, (3.27)

I(t) = (wf + wp, θ), D(t) = ‖∇θ‖2.

Retaining (3.26)1,2 as constraints, multiplying (3.26)3 by θ and integrating
over the periodicity cell, one gets

dE

dt
= RI −D ≤ −D

(
1− R

RE

)
, (3.28)

where
1
RE

= max
H∗

I

D
(3.29)

and

H∗ = {(wf , wp, θ) ∈ (H1)3|wf = wp = θ = 0 on z = 0, 1; periodic in x, y
with periods 2π/l, 2π/m;D <∞; verifying (3.26)1,2}

is the space of kinematically admissible solutions.
The variational problem associated to the maximum problem (3.29) is equiv-
alent to

1
RE

= max
H

I +
∫
V λ

′
g1 dV +

∫
V λ

′′
g2 dV

D
, (3.30)



Chapter 3. Convection in an anisotropic rotating Brinkman BDPM 45

where λ′(x) and λ′′(x) are Lagrange multipliers and

g1 = L1w
f + L2w

p +RL3θ, g2 = M1w
f +M2w

p +RM3θ,

H = {(wf , wp, θ) ∈ (H1)3|wf = wp = θ = 0 on z = 0, 1; periodic in x, y
with periods 2π/l, 2π/m, respectively;D <∞} .

Applying the Poincaré inequality, one obtains that D ≥ π2‖θ‖2, hence from
(3.28) it follows that the condition R < RE implies E(t)→ 0 at least expo-
nentially.

Remark 3.3.1. Multiplying (3.4)1 by uf , (3.4)2 by up, integrating over the
period cell V and adding the resulting equations one finds

γ1

∫
V

{
k−1[(uf )2+(vf )2]+(wf )2

}
dV +γ2

∫
V

{
h−1[(up)2+(vp)2]+(wp)2

}
dV

+‖uf − up‖2 = R(θ, wf + wp)−Dafγ1‖∇uf‖2 − σDafγ1‖∇up‖2.
(3.31)

Setting k̂ = max(k, 1) and ĥ = max(h, 1), by virtue of generalized Cauchy
inequality and Poincaré-like inequality, from (3.31) one obtains(
γ1

k̂
+2Dafγ1c1

)
‖uf‖2 +

(
γ2

ĥ
+2Dafγ1σc2

)
‖up‖2 ≤ R2

(
k̂

γ1
+ ĥ

γ2

)
‖θ‖2 (3.32)

where c1, c2 are positive constants depending on the domain V . By virtue
of (3.32), the condition R < RE also guarantees the exponential decay of uf
and up.

In order to determine the critical Rayleigh number R2
E by solving the

variational problem (3.30), we need to solve the associated Euler-Lagrange
equations given by

RE(wf + wp) +REL3λ
′ +REM3λ

′′ + 2∆θ = 0,
REθ + L1λ

′ +M1λ
′′ = 0,

REθ + L2λ
′ +M2λ

′′ = 0,
L1w

f + L2w
p +RL3θ = 0,

M1w
f +M2w

p +RM3θ = 0.

(3.33)

Eliminating the variable θ in (3.33) it turns out that
−R2

Ew
f−R2

Ew
p+(2∆L1−R2

EL3)λ′+(2∆M1 −R2
EM3)λ′′=0,

−R2
Ew

f−R2
Ew

p+(2∆L2−R2
EL3)λ′+(2∆M2−R2

EM3)λ′′=0,
(2∆L1−R2

EL3)wf+(2∆L2−R2
EL3)wp −R2

EL
2
3λ
′ −R2

EL3M3λ
′′=0,

(2∆M1−R2
EM3)wf+(2∆M2−R2

EM3)wp−R2
EL3M3λ

′−R2
EM

2
3λ
′′=0.

(3.34)
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By using (3.14)1 and (3.14)2 and choosing [42]

λ
′ = λ

′

0 sin(nπz)ei(lx+my),

λ
′′ = λ

′′

0 sin(nπz)ei(lx+my),
(3.35)

from (3.34) one obtains

−R2
EW

f
0 −R2

EW
p
0 + (−2Λnh11 +R2

Ea
2h13)λ′0+

(−2Λnh21 +R2
Ea

2h23)λ′′0 = 0,

−R2
EW

f
0 −R2

EW
p
0 + (−2Λnh12 +R2

Ea
2h13)λ′0+

(−2Λnh22 +R2
Ea

2h23)λ′′0 = 0,

(−2Λnh11 +R2
Ea

2h13)W f
0 + (−2Λnh12 +R2

Ea
2h13)W p

0

−R2
Ea

4h2
13λ

′
0 −R2

Ea
4h13h23λ

′′
0 = 0,

(−2Λnh21 +R2
Ea

2h23)W f
0 + (−2Λnh22 +R2

Ea
2h23)W p

0

−R2
Ea

4h13h23λ
′
0 −R2

Ea
4h2

23λ
′′
0 = 0.

(3.36)

Requiring a zero determinant for (3.36) we get

R2
E = R2

L,

hence we have the coincidence between the instability threshold and the
global nonlinear stability threshold with respect to the L2-norm (subcritical
instabilities do not exist).

3.4 Numerical results
In this section we numerically analyse the asymptotic behaviour of R2

L with
respect to parameters h, k, T 2, Daf in order to study the influence of per-
meability, rotation and Brinkman law on the onset of convection. As pointed
out in Section 3.2, in all the performed computations we set n = 1.
The tables 3.1 and 3.2 show that as h increases with k fixed, both critical
Rayleigh and wave numbers decrease, so it is easier for convection to sets
in and convection cells become wider; k increasing with h fixed leads to a
similar trend, but in this case the Rayleigh number decreases more slowly,
as we can see also from figure 3.1. These numerical simulations show that h
and k have a destabilizing effect on the onset of convection (see also figure
3.4).
Table 3.3 and figure 3.2 show an expected behaviour: the Brinkman term
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has a stabilizing effect on the onset of convection, i.e. as Daf increases, the
Rayleigh number increases and the system becomes more stable. Also, com-
paring the critical Rayleigh number R2

L in Table 3.4(a) for Daf = 0.001 with
that one in Table 3.4(b) for Daf = 1, the stabilizing effect of Daf arises.
The tables 3.4 − 3.5 and figures 3.3 display a similar trend, as the Taylor
number T 2 increases, the critical Rayleigh number increases, so the heat
transfer due to convection is inhibited and rotation has a stabilizing effect on
the onset of convection, as we expected. As T 2 increases, the wavenumber
a2 also increases and this means that convection cells become narrower.

R2
L a2

c h
326.5116 7.6377 0.1
211.6567 6.1968 0.5
190.6873 5.7021 1
171.6278 5.1756 5
169.0585 5.0986 10

Table 3.1: Critical Rayleigh and wave numbers for k = 1, η = 0.2, σ =
0.3, γ1 = 0.9, γ2 = 1.8, T 2 = 10, Daf = 1 at different h.

R2
L a2

c k
208.1330 6.2007 0.1
192.9895 5.7772 0.5
190.6873 5.7021 1
188.7616 5.6372 5
188.5154 5.6287 10

Table 3.2: Critical Rayleigh and wave numbers for h = 1, η = 0.2, σ =
0.3, γ1 = 0.9, γ2 = 1.8, T 2 = 10, Daf = 1 at different k.

R2
L a2

c Daf
56.3828 13.7917 0.001
100.9334 5.4036 0.5
169.0585 5.0986 1
716.2302 4.9566 5

Table 3.3: Critical Rayleigh and wave numbers for h = 10, k = 1, η = 0.2, σ =
0.3, γ1 = 0.9, γ2 = 1.8, T 2 = 10 at different Darcy numbers. A typical small
Darcy number is Daf = 0.001, while a typical Darcy number is Daf = 1 [4].
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Figure 3.1: (a): asymptotic behaviour of R2
L with respect to h for k = 1, η =

0.2, σ = 0.3, γ1 = 0.9, γ2 = 1.8, T 2 = 10, Daf = 1. (b): asymptotic behaviour
of R2

L with respect to k for h = 1, η = 0.2, σ = 0.3, γ1 = 0.9, γ2 = 1.8, T 2 =
10, Daf = 1.
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Figure 3.2: (a): steady instability thresholds at Daf = 1, 5 and h = 0.1, k =
1, T 2 = 10, η = 0.2, σ = 0.3, γ1 = 0.9, γ2 = 1.8. (b): steady instability
thresholds at h = 1, k = 0.1, T 2 = 10, η = 0.2, σ = 0.3, γ1 = 0.9, γ2 = 1.8.

Main results

The onset of thermal convection in an anisotropic BDPM, uniformly rotating
about a vertical axis and uniformly heated from below, was analysed accord-
ing to Brinkman law in both micropores and macropores. In particular, it
was proved that:
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(a) Daf = 0.001

R2
L a2

c T 2

52.2521 12.8790 0
52.7216 13.0444 0.1
54.5534 13.6882 0.5
56.7498 14.4563 1
71.7551 19.5421 5
86.7523 24.7523 10
211.5075 39.0022 100

(b) Daf = 1

R2
L a2

c T 2

323.9093 7.4974 0
323.9359 7.4988 0.1
324.0419 7.5046 0.5
324.1741 7.5118 1
325.2230 7.5685 5
326.5116 7.6377 10
346.4686 8.6407 100

Table 3.4: Critical Rayleigh and wave numbers for increasing Taylor numbers.
Table a: h = 0.1, k = 1, η = 0.2, σ = 0.3, γ1 = 0.9, γ2 = 1.8, Daf = 0.001.
Table b: h = 0.1, k = 1, η = 0.2, σ = 0.3, γ1 = 0.9, γ2 = 1.8, Daf = 1.

(a) h = 1, k = 0.1
R2
L a2

c T 2

206.8022 6.1510 0
206.8155 6.1515 0.1
206.8690 6.1535 0.5
206.9358 6.1560 1
207.4692 6.1760 5
208.1330 6.2007 10

(b) h = 0.1, k = 1
R2
L a2

c T 2

323.9093 7.4974 0
323.9359 7.4988 0.1
324.0419 7.5046 0.5
324.1741 7.5118 1
325.2230 7.5685 5
326.5116 7.6377 10

Table 3.5: Critical Rayleigh and wave numbers for increasing Taylor numbers.
Table a: h = 1, k = 0.1, η = 0.2, σ = 0.3, γ1 = 0.9, γ2 = 1.8, Daf = 1. Table
b: h = 0.1, k = 1, η = 0.2, σ = 0.3, γ1 = 0.9, γ2 = 1.8, Daf = 1.

• the strong form of the principle of exchange of stabilities holds and
hence, when convection occurs, it sets in through a stationary motion;

• the linear instability threshold and the global nonlinear stability thresh-
old in the L2−norm coincide: this is an optimal result since the stability
threshold furnishes a necessary and sufficient condition to guarantee the
global (i.e. for all initial data) nonlinear stability;

• the critical Rayleigh number for the onset of convection increases with
the Taylor number, i.e. rotation has a stabilizing effect on the onset of
convection;

• the critical Rayleigh number for the onset of convection increases with
the Darcy number, i.e. the Brinkman law has a stabilizing effect.
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Figure 3.3: (a): steady instability thresholds at T 2 = 0, 10, 100 and for h =
0.1, k = 10, Daf = 1, η = 0.2, σ = 0.3, γ1 = 0.9, γ2 = 1.8. (b): asymptotic
behavior of R2

L with respect to T 2 for h = 0.1, k = 1, η = 0.2, σ = 0.3, γ1 =
0.9, γ2 = 1.8, Daf = 0.001
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Figure 3.4: (a): steady instability thresholds at h = 0.1, 1, 10 and k =
1, T 2 = 10, η = 0.2, σ = 0.3, γ1 = 0.9, γ2 = 1.8, Daf = 1. (b): steady
instability thresholds at k = 0.1, 1, 10 and h = 1, T 2 = 10, η = 0.2, σ =
0.3, γ1 = 0.9, γ2 = 1.8, Daf = 1.



Chapter 4

The effects of Vadasz term,
anisotropy and rotation on
bi-disperse convection

The goal of the present Chapter is to analyse the combined effects of anisotropic
permeabilities, uniform rotation about a vertical axis and inertia on the onset
of thermal convection in an incompressible fluid saturating a single temper-
ature bi-disperse porous medium.
The Vadasz term effect has been largely analysed by many authors in single
porosity media (see for instance [39, 44, 45, 46]) since the Vadasz term has
a remarkable effect on the onset of convection in a rotating porous layer.
In this regard, a very interesting work is [30] by Vadasz, where the onset
of convection in a fluid-saturated porous medium that rotates about an axis
orthogonal to the layer in the direction of gravity, is investigated. Through
linear instability and weakly nonlinear techniques, the author finds out that
if the inertia term is taken into account in the momentum equation, convec-
tion may set in via oscillatory motions.
On the other hand, the effect of Vadasz term on the onset of bi-disperse con-
vection has been investigated by Straughan in [47] — where he considered
a fluid mixture saturating a BDPM — and by Capone and De Luca in [23],
which deals with an isotropic and rotating BDPM.
From a mathematical point of view, to analyse how inertia affects the onset
of convection, the Darcy’s model has to be extended with a time derivative
of the seepage velocity, that is an additional term that accounts for time
dynamics of the evolving values of the seepage velocity.

The present Chapter is based on the joint paper [48] with F. Capone and
is organized as follows. In Section 4.1 the mathematical model and the as-

51
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sociated perturbation equations are introduced. In Section 4.2 we perform
linear instability analysis of the thermal conduction solution, in particular,
we find out that the Vadasz term allows the onset of thermal convection
via an oscillatory state (named as oscillatory convection), but it does not
directly affect the onset of thermal convection via a steady state (named as
stationary convection). In Sections 4.2.1 and 4.2.2 we determine the critical
Rayleigh numbers for the onset of steady and oscillatory convection, respec-
tively. In Section 4.3 we perform numerical simulations in order to analyse
the behaviour of the instability thresholds with respect to fundamental pa-
rameters.

4.1 Statement of the Problem
Let Oxyz be a reference frame with fundamental unit vectors i, j,k and let us
assume that the plane layer L, of thickness d, of saturated bi-disperse porous
medium is uniformly heated from below and rotates about the vertical axis
z, let Ω = Ωk be the constant angular velocity of the layer. Furthermore, we
consider a single temperature bi-disperse porous medium, i.e. T f = T p = T .
We restrict our attention to the case in which the permeabilities of the sat-
urated bi-disperse porous medium are horizontally isotropic.
Let the axes (x, y, z) be the principal axes of the permeabilities, so the
macropermeability tensor and the micropermeability tensor may be written
as

Kf = diag(Kf
x , K

f
y , K

f
z ) = Kf

z Kf∗,

Kp = diag(Kp
x, K

p
y , K

p
z ) = Kp

z Kp∗,

Kf∗ = diag(k, k, 1),
Kp∗ = diag(h, h, 1),

where
k = Kf

x

Kf
z

=
Kf
y

Kf
z

,

h = Kp
x

Kp
z

=
Kp
y

Kp
z
.

Darcy’s model, with the Oberbeck-Boussinesq approximation, is employed,
in particular it is extended in both micropores and macropores in order to
include the Coriolis terms and is extended only in the macropores to include
the time derivative term of the macro seepage velocity (see [23, 47]). The
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equations describing the evolutionary behaviour of thermal convection in a
rotating horizontally isotropic bi-disperse porous medium are, cf. [23, 21],

%F ca
∂vf

∂t
=−µ(Kf )−1vf−ζ(vf−vp)−∇pf+%FαgTk− 2%FΩ

ϕ
k×vf ,

−µ(Kp)−1vp−ζ(vp−vf )−∇pp+%FαgTk− 2%FΩ
ε

k×vp = 0,

∇ · vf = 0,
∇ · vp = 0,

(%c)m
∂T

∂t
+(%c)f (vf+vp)·∇T =km∆T,

(4.1)

where
ps = P s − %F

2 |Ω× x|2, s = {f, p}

are the reduced pressures, x = (x, y, z), vs = seepage velocity for s = {f, p},
ζ = interaction coefficient between the f-phase and the p-phase, g = −gk
= gravity, µ = fluid viscosity, %F = reference constant density, α = thermal
expansion coefficient, c = specific heat, cp = specific heat at a constant
pressure, ca= acceleration coefficient, (%c)m = (1−ϕ)(1−ε)(%c)sol+ϕ(%c)f +
ε(1−ϕ)(%c)p, km = (1−ϕ)(1−ε)ksol+ϕkf+ε(1−ϕ)kp = thermal conductivity
(the subscript sol is referred to the solid skeleton).

To 4.1 the following boundary conditions are appended
vs · n = 0 on z = 0, d, for s = {f, p}
T = TL on z = 0, T = TU on z = d,

(4.2)

where TL > TU .

System (4.1)-(4.2) admits the stationary conduction solution:
vf = 0, vp = 0, T = −βz + TL,

where β = TL − TU
d

is the temperature gradient. Denoting by {uf ,up, θ, πf , πp}
a generic perturbation to the steady solution, the resulting perturbation
equations are

%F ca
∂uf

∂t
=−µ(Kf )−1uf−ζ(uf−up)−∇πf+%Fαgθk−

2%FΩ
ϕ

k×uf ,

−µ(Kp)−1up−ζ(up−uf )−∇πp+%Fαgθk−
2%FΩ
ε

k×up = 0,

∇ · uf = 0,
∇ · up = 0,

(%c)m
∂θ

∂t
+(%c)f (uf+up)·∇θ = (%c)fβ(wf + wp)+km∆θ.

(4.3)
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where uf = (uf , vf , wf ) and up = (up, vp, wp). The above system (4.3) may
be non-dimensionalized with the following non-dimensional parameters

x∗ = x
d
, t∗ = t

t̃
, θ∗ = θ

T̃
,

us∗ = us

ũ
, πs∗ = πs

P̃
, for s = {f, p}

η = ϕ

ε
, γ = Kf

z ζ

µ
, Kr = Kf

z

Kp
z
,

where the scales are given by

ũ = km
(%c)fd

, t̃ = d2(%c)m
km

, P̃ = µkm

(%c)fKf
z

, T̃ =
√√√√ βkmµ

(%c)f%FαgKf
z

.

The resulting non-dimensional perturbation equations, dropping all the as-
terisks, are

−J ∂uf

∂t
−(Kf )−1uf−γ(uf−up)−∇πf+Rθk−T k×uf = 0,

−Kr(Kp)−1up−γ(up−uf )−∇πp+Rθk−ηT k× up = 0,
∇ · uf = 0,
∇ · up = 0,
∂θ

∂t
+(uf + up) · ∇θ=wf + wp + ∆θ,

(4.4)

where the Taylor number T , the Vadasz number J and the Rayleigh number
R are

T = 2%FΩKf
z

ϕµ
, J = Kf

z %F cakm
µd2(%c)m

, R=

√√√√βd2(%c)f%FαgKf
z

kmµ
.

To system (4.4) the following initial and boundary conditions are appended:

us(x, 0) = us0(x), πs(x, 0) = πs0(x), θ(x, 0) = θ0(x),

with ∇ · us0 = 0, for s = {f, p}, and

wf = wp = θ = 0 on z = 0, 1. (4.5)

According to experimental results, the solutions are required to be periodic
in the horizontal directions x and y and in the sequel we will denote by

V =
[
0, 2π

l

]
×
[
0, 2π
m

]
× [0, 1]

the periodicity cell.



Chapter 4. Vadasz term, anisotropy, rotation for bi-disperse convection 55

4.2 Onset of convective flows
In order to determine the linear instability threshold of the thermal conduc-
tion solution, let us linearise system (4.4), i.e.

−J ∂uf

∂t
−(Kf )−1uf−γ(uf−up)−∇πf+Rθk−T k×uf = 0,

−Kr(Kp)−1up−γ(up−uf )−∇πp+Rθk−ηT k×up = 0,
∇ · uf = 0,
∇ · up = 0,
∂θ

∂t
= wf + wp + ∆θ.

(4.6)

Being system (4.6) autonomous, we seek solutions with time-dependence like
eσt, i.e.

us(t,x) = eσtus(x),
θ(t,x) = eσtθ(x),
πs(t,x) = eσtπs(x),

(4.7)

with σ ∈ C and s = {f, p}. By virtue of (4.7), (4.6) becomes

−Jσuf−(Kf )−1uf−γ(uf−up)−∇πf+Rθk−T k×uf = 0,
−Kr(Kp)−1up−γ(up−uf )−∇πp+Rθk−ηT k×up = 0,
∇ · uf = 0,
∇ · up = 0,
σθ = wf + wp + ∆θ.

(4.8)

Setting
ωs3 = (∇× us) · k, s = {f, p},

let us consider the third components of curl and of double curl of (4.8)1,2, i.e.
(Jσ + 1

k
+ γ)ωf3 − γωp3 − T

∂wf

∂z
= 0,

(Kr
1
h

+ γ)ωp3 − γωf3 − ηT
∂wp

∂z
= 0,

(4.9)
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and 

(Jσ+ 1
k

+γ)∂
2wf

∂z2 +(Jσ+1+γ)∆1w
f

−γ
(

∆1w
p+ ∂2wp

∂z2

)
−R∆1θ+T ∂ω

f
3

∂z
=0,

(Kr
1
h

+γ)∂
2wp

∂z2 +(Kr + γ)∆1w
p

−γ
(

∆1w
f+ ∂2wf

∂z2

)
−R∆1θ+ηT ∂ω

p
3

∂z
=0,

(4.10)

where ∆1 ≡ ∂2/∂x2 + ∂2/∂y2 is the horizontal laplacian. Solving (4.9) with
respect to ωf3 and ωp3, one obtains

ωf3 = B1

H
T ∂w

f

∂z
+ γ

H
ηT ∂w

p

∂z
,

ωp3 = γ

H
T ∂w

f

∂z
+ A1

H
ηT ∂w

p

∂z
,

(4.11)

where we set
A1 = Jσ + 1

k
+ γ,

B1 = Kr
1
h

+ γ,

H =
(
Jσ + 1

k

)(
Kr

1
h

+ γ
)

+Kr
1
h
γ.

Substituting the derivative with respect to z of (4.11) into (4.10), one gets

(
A1 + B1

H
T 2
)
∂2wf

∂z2 + A2∆1w
f − γ∆1w

p

+
(
γ

H
ηT 2 − γ

)
∂2wp

∂z2 −R∆1θ = 0,

(
γ

H
ηT 2 − γ

)
∂2wf

∂z2 − γ∆1w
f +B2∆1w

p

+
(
B1 + A1

H
η2T 2

)
∂2wp

∂z2 −R∆1θ = 0,

(4.12)
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with A2 = Jσ + 1 + γ, B2 = Kr + γ. Hence, considering (4.12)1,2 and (4.8)5
we get the following problem in wf , wp, θ

(
A1 + B1

H
T 2
)
∂2wf

∂z2 + A2∆1w
f − γ∆1w

p

+
(
γ

H
ηT 2 − γ

)
∂2wp

∂z2 −R∆1θ = 0,
(
γ

H
ηT 2 − γ

)
∂2wf

∂z2 − γ∆1w
f +B2∆1w

p

+
(
B1 + A1

H
η2T 2

)
∂2wp

∂z2 −R∆1θ = 0,

σθ = wf + wp + ∆θ.

(4.13)

According to the boundary conditions (4.5) and to the periodicity of the
perturbations fields, being {sin(nπz)}n∈N a complete orthogonal system for
L2([0, 1]), we seek for normal modes solutions

wf = W f
0 sin(nπz)ei(lx+my),

wp = W p
0 sin(nπz)ei(lx+my),

θ = Θ0 sin(nπz)ei(lx+my),

(4.14)

with W f
0 ,W

p
0 ,Θ0 real constants. Hence, employing normal modes solutions,

system (4.13) becomes

−
[(
A1 + B1

H
T 2
)
n2π2 + A2a

2
]
W f

0

+
[
γΛn −

γ

H
ηT 2n2π2

]
W p

0 +Ra2Θ0 = 0,[
γΛn −

γ

H
ηT 2n2π2

]
W f

0

−
[(
B1+A1

H
η2T 2

)
n2π2+B2a

2
]
W p

0 +Ra2Θ0 =0,

W f
0 +W p

0 −Θ0(Λn + σ) = 0,

(4.15)
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i.e. 

−
[
(Jσ + γ)Λn + Λk

n + B1

H
T 2n2π2

]
W f

0

+
[
γΛn −

γ

H
ηT 2n2π2

]
W p

0 +Ra2Θ0 = 0[
γΛn −

γ

H
ηT 2n2π2

]
W f

0 −
[
γΛn +KrΛh

n

+A1

H
η2T 2n2π2

]
W p

0 +Ra2Θ0 = 0,

W f
0 +W p

0 −Θ0(Λn + σ) = 0,

(4.16)

where a2 = l2 +m2 is the wavenumber and

Λn = n2π2 + a2, Λk
n = 1

k
n2π2 + a2, Λh

n = 1
h
n2π2 + a2.

Requiring zero determinant for (4.16), one obtains

R =Λn+σ
a2

1
H(Jσ+4γ)Λn+HΨ+ET 2n2π2

{
HJγσΛ2

n

+
[
γΛk

n+(Jσ+γ)KrΛh
n

]
HΛn+KrHΛk

nΛh
n

+MΛnT 2n2π2+η2T 4n4π4+NT 2n2π2
} (4.17)

where the following positions were made

Ψ = Λk
n +KrΛh

n,

M = γ2(η + 1)2 + η2
(
Jσ + 2γ + 1

k

)
Jσ + γ

(1
k
η2 +Kr

1
h

)
,

N = η2
(
Jσ + 1

k
+ γ

)
Λk
n +Kr

(
Kr

1
h

+ γ
)

Λh
n,

E = γ(η − 1)2 +Kr
1
h

+ η2
(
Jσ + 1

k

)
.

4.2.1 Stationary convective motions
In order to determine the instability threshold for the onset of steady con-
vection, let us set σ = 0 into (4.17). Then the critical Rayleigh number for
the onset of stationary convection is given by

RS = min
(n,a2)∈N×R+

Λn

a2
1

Q4γΛn+QΨ+EST 2n2π2

{
γΨQΛn+KrQΛk

nΛh
n

+MSΛnT 2n2π2+η2T 4n4π4+NST 2n2π2
}
,

(4.18)
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where
Q = γ

(
Kr

1
h

+ 1
k

)
+Kr

1
hk
,

MS = γ2(η + 1)2 + γ
(1
k
η2 +Kr

1
h

)
,

NS = η2
(1
k

+ γ
)

Λk
n +Kr

(
Kr

1
h

+ γ
)

Λh
n,

ES = γ(η − 1)2 +Kr
1
h

+ η2 1
k
,

the solution of (4.18) will be analysed through numerical simulations in Sec-
tion 4.3. Let us observe that

i) RS does not depend on J , and hence the Vadasz number does not
directly affect the onset of steady convection;

ii) Since ∂RS

∂T 2 > 0, as expected, rotation delays the onset of stationary
convection.

4.2.2 Oscillatory convective motions
In order to determine the oscillatory convection threshold, let us set σ = iσ1,
with σ1 ∈ R− {0}, and Γ = Kr

1
h

+ γ, so (4.17) becomes

R = Λn + iσ1

a2
f

g
, (4.19)

with

f =Λn

(
−Λh

nJ
2σ2

1ΓKr + γΨQ
)
− ΓJ2σ2

1γΛ2
n +KrΛh

nΛk
nQ

+ η2T 4n4π4 + ΛnT 2n2π2
[
γ2(η + 1)2 + γ

(1
k
η2 +Kr

1
h

)
− η2J2σ2

1

]
+
[
η2
(1
k

+ γ
)

Λk
n +KrΓΛh

n

]
T 2n2π2

+ Jiσ1

{
Λ2
nQγ + Λn

[
QKrΛh

n + γΨΓ

+ T 2n2π2η2
(

2γ + 1
k

)]
+KrΛh

nΛk
nΓ + η2Λk

nT 2n2π2
}
,

g =Λn(−J2σ2
1Γ + 4γQ) +QΨ

+ T 2n2π2
[
γ(η − 1)2 +Kr

1
h

+ η2 1
k

]
+ Jiσ1[Λn(Q+ 4γΓ) + ΨΓ + η2T 2n2π2].
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Hence, setting

a1 =ΛnγΨQ+KrΛh
nΛk

nQ+ η2T 4n4π4

+ ΛnT 2n2π2
[
γ2(η + 1)2 + γ

(1
k
η2 +Kr

1
h

)]
+
[
η2
(1
k

+ γ
)

Λk
n +KrΓΛh

n

]
T 2n2π2,

a2 =ΓγΛ2
n + ΛnΛh

nΓKr + ΛnT 2n2π2η2,

a3 =Λ2
nQγ + Λn

[
QKrΛh

n + γΨΓ + T 2n2π2η2
(

2γ + 1
k

)]
+KrΛh

nΛk
nΓ + η2Λk

nT 2n2π2,

b1 =4γQΛn +QΨ + T 2n2π2
[
γ(η − 1)2 +Kr

1
h

+ η2 1
k

]
,

b2 =ΛnΓ,
b3 =Λn(Q+ 4γΓ) + ΨΓ + η2T 2n2π2,

(4.20)

from (4.19) one gets

R = Λn + iσ1

a2
a1 − J2σ2

1a2 + iσ1Ja3

b1 − J2σ2
1b2 + iσ1Jb3

, (4.21)

and consequently

R= Λn(a+J2σ2
1a3b3)−σ2

1Jb+iσ1(a+J2σ2
1a3b3+ΛnJb)

a2[(b1−J2σ2
1b2)2+σ2

1J
2b2

3] , (4.22)

where
a = (a1 − J2σ2

1a2)(b1 − J2σ2
1b2),

b = a3(b1 − J2σ2
1b2)− b3(a1 − J2σ2

1a2).
Imposing the vanishing of the imaginary part of (4.22), i.e.

a+ J2σ2
1a3b3 + ΛnJb = 0, (4.23)

that is
J4a2b2σ

4
1−J2σ2

1[a2b1 + a1b2−a3b3+ΛnJ(a3b2−a2b3)]
+a1b1+ΛnJ(a3b1−b3a1) = 0,

(4.24)

the critical Rayleigh number for the onset of the oscillatory convection is
given by:

RO= min
(n,a2)∈N×R+

Λn[a+J2σ2
1a3b3]−σ2

1Jb

a2[(b1 − J2σ2
1b2)2 + σ2

1J
2b2

3] , (4.25)
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where σ2
1 is the positive root of (4.24). Let us point out that if

[a2b1+a1b2−a3b3+ΛnJ(a3b2−a2b3)]2−4a2b2[a1b1+ΛnJ(a3b1−b3a1)]<0, (4.26)

or if
a2b1 + a1b2 − a3b3 + ΛnJ(a3b2 − a2b3) < 0,
a1b1 + ΛnJ(a3b1 − b3a1) > 0,

(4.27)

oscillatory convection cannot occur. Due to its complicated algebraic form,
the minimization (4.25) will be numerically investigated in section 4.3.

Neglecting the Vadasz number, i.e. considering J = 0, from (4.17) it fol-
lows that σ is a real number and hence convection can arise only through a
stationary motion, according to the results found in [22].

4.3 Numerical simulations for the instability
thresholds

The aim of this section is to solve (4.18) and (4.25) and numerically describe
the asymptotic behaviour of the steady and oscillatory critical Rayleigh num-
bers with respect to T 2, J , k, h, in order to describe the influence of rotation,
Vadasz number, anisotropic macropermeability and anisotropic microperme-
ability on the onset of convection. Through numerical simulations, we showed
that the minimum of both (4.18) and (4.25) with respect to n is attained at
n = 1, hence let us define

fS(a2) = Λ1

a2
a1

b1
, (4.28)

and
fO(a2) = Λ1(a+ J2σ2

1a3b3)− σ2
1Jb

a2[(b1 − J2σ2
1b2)2 + σ2

1J
2b2

3] , (4.29)

where ai and bi, for i = 1, 2, 3, are now given by (4.20) for n = 1. As reported
in [49], there is a need for measurements of the double porosity parametersKr

and γ. In our numerical simulations we choseKr > 1 and η < 1 envisaging an
engineered bi-disperse porous medium with vertical macropermeability and
porosity of the p-phase greater then vertical micropermeability and porosity
of the f-phase, respectively. In particular, in all numerical simulations we
set {Kr = 1.5, γ = 0.8, η = 0.2}, in order to compare our numerical results
with those ones found in [23] and hence evaluate the effect of the anisotropic
permeability parameters. Varying k, h, T 2, J in turn we found some critical
values of these parameters for which oscillatory convection cannot occur. In
particular
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• from table 4.1(a), for large values of the Vadasz number (J = 10), we
find out that exists k∗ ∈ (0.53, 0.54) such that if k < k∗ convection
can arise only through stationary motion; for k ∈ (0.57, 0.58) there is
a switch from steady to oscillatory convection;

• table 4.1(b) shows that for large values of J and for increasing h, if
convection occurs, it can set in only via an oscillatory state;

• table 4.2(a) displays that there is a similar behaviour between the
small Vadasz number case (J = 0.5) and the large J case, but for
smaller J the threshold k∗∗ for which oscillatory convection cannot oc-
cur is higher, in particular there exists k∗∗ ∈ (0.82, 0.83) such that
if k < k∗∗ convection can arise only via stationary motion, while for
k ∈ (0.83, 0.84) there is a transition from steady to oscillatory convec-
tion;

• for small Vadasz number J , from table 4.2(b) we find a threshold h∗ ∈
(0.45, 0.46) such that if h < h∗ oscillatory convection cannot occur; for
h ∈ (0.49, 0.5) there is a reversal from steady to oscillatory convection;

• from tables 4.1 and 4.2 it arises that RO decreases for both increasing
k and h, hence, when convection occurs via oscillatory motion, the
system become more unstable at increasing permeability parameters;

• in tables 4.3(a) and 4.3(b) we have numerically confirmed that for J = 0
convection can arise only via a stationary motion, since RO doesn’t
exist. Moreover, in table 4.3(a), fixing {h = 0.1, k = 10, T 2 = 10},
since RS = 111.7045 and comparing RO with RS, it arises that for J ≥
0.11 convection can set in only via oscillatory motion. In table 4.3(b)
we have considered the case h >> k, fixing {h = 10, k = 0.1, T 2 = 10},
and we have numerically obtained that oscillatory convection cannot
arise;

• from table 4.3(a) we may remark that for h << k RO is a decreasing
function of J , as already observed in [23] for h = k = 1;

• from table 4.4(a) we notice that if h << k there exists a threshold
T 2∗ ∈ (2.09, 2.1) such that for T 2 < T 2∗ oscillatory convection cannot
arise and stationary convection sets in for T 2 up to 2.3, while for T 2 ∈
(2.3, 2.4) there is a switch from stationary to oscillatory convection;
from table 4.4(b) we recover the same behaviour shown in table 4.3(b);

• tables 4.4(a) and 4.4(b) numerically show off the stabilizing effect of
rotation on the onset of convection, since bothRS andRO are increasing
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functions with respect to T 2, as one is expected; in particular RO, if it
exists, has a slower increase with respect to T 2 than RS.

In figures 4.1 and 4.2 the instability thresholds at quoted values of the per-
meability parameters h and k are shown, for small and large Vadasz number
J , respectively. From figure 4.3 we may visualize the stabilizing effect of the
Taylor number T 2 on the onset of convection, in particular from figure 4.3(a)
two very different growth rates of the steady and of the oscillatory instability
thresholds arise. Figure 4.4 shows the destabilizing effect on the onset of os-
cillatory convection of the Vadasz number J . The numerical results of table
4.2 are graphically shown in figure 4.5, where steady and oscillatory insta-
bility thresholds are represented as functions of the anisotropic permeability
parameters k and h.
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Figure 4.1: Instability thresholds for quoted values of k and h and for T 2 =
10,J = 0.5, Kr = 1.5, η = 0.2, γ = 0.8. (a): h = 10, k = 0.1, (b): h = k = 1,
(c): h = 0.1, k = 10.
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Figure 4.2: Instability thresholds for quoted values of k and h and for T 2 =
10,J = 10, Kr = 1.5, η = 0.2, γ = 0.8. (a): h = 10, k = 0.1, (b): h = k = 1,
(c): h = 0.1, k = 10.

Main results

The onset of convection in a rotating and anisotropic bi-disperse porous
medium, taking into account the Vadasz term, was studied via linear in-
stability analysis. Let us remark that the Vadasz term allows the onset of
oscillatory convection, which is not present when the inertia is neglected (see
[22]). Moreover, if h = k = 1, i.e. confining ourselves to the isotropic case,
from (4.18) and (4.25) we recover the stationary and oscillatory thresholds
found in [23], respectively. Lastly, it was numerically investigated the rela-
tionship between the critical steady and oscillatory Rayleigh numbers and
the fundamental parameters h, k, T 2, J and we found out that:

• RS and RO are increasing functions of T 2;
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Figure 4.3: (a): Stationary and Oscillatory instability thresholds as functions
of the Taylor number T 2 for k = 10, h = 0.1, J = 0.5, Kr = 1.5, η = 0.2, γ =
0.8. (b): Oscillatory thresholds at quoted values of the Taylor number T 2

and for k = 10, h = 0.1, J = 0.5, Kr = 1.5, η = 0.2, γ = 0.8.
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Figure 4.4: (a): Oscillatory instability threshold as function of the Vadasz
number J for k = 10, h = 0.1, T 2 = 10, Kr = 1.5, η = 0.2, γ = 0.8. (b):
Oscillatory thresholds at quoted values of the Vadasz number J and for
k = 10, h = 0.1, T 2 = 10, Kr = 1.5, η = 0.2, γ = 0.8.

• RO, if it exists, is a decreasing function of J ;

• comparing our results with those ones found in [23], anisotropic macrop-
ermeability and anisotropic micropermeability lead to higher steady
and oscillatory thresholds.
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Figure 4.5: Asymptotic behaviour of the steady and oscillatory instability
thresholds as functions of the anisotropic permeability parameters k and h.
(a): h = 1, T 2 = 10, J = 0.5, Kr = 1.5, η = 0.2, γ = 0.8. (b): k = 1, T 2 =
10, J = 0.5, Kr = 1.5, η = 0.2, γ = 0.8.
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(a)
RS RO a2

S a2
O k

55.5802 6 ∃ 15.0097 6 ∃ 0.1
46.4633 6 ∃ 15.4106 6 ∃ 0.5
46.7672 6 ∃ 15.4530 6 ∃ 0.53
46.8724 48.0833 15.4670 10.8010 0.54
46.9790 47.7998 15.4809 10.7872 0.55
47.0871 47.5233 15.4947 10.7733 0.56
47.1964 47.2537 15.5084 10.7596 0.57
47.3067 46.9906 15.5220 10.7459 0.58
47.5300 46.4833 15.5487 10.7186 0.6
51.9256 39.7591 15.9190 10.2433 1
66.8036 28.7339 15.6424 8.7834 5
70.3183 27.0015 15.3278 8.4389 10

(b)
RS RO a2

S a2
O h

146.5652 133.6558 22.0926 10.6720 0.01
88.7111 86.2352 26.9067 14.1899 0.1
56.9286 48.5663 18.8637 11.9393 0.5
51.9256 39.7591 15.9190 10.2433 1
54.1833 31.1656 13.6497 8.3863 5
57.0855 30.0809 13.6502 8.2253 10
61.7553 29.1760 13.8544 8.1706 100

Table 4.1: Critical steady and oscillatory Rayleigh numbers and wavenum-
bers for quoted values of k (a) and for quoted values of h (b). Table
a: h = 1, T 2 = 10, J = 10, Kr = 1.5, η = 0.2, γ = 0.8. Table b:
k = 1, T 2 = 10, J = 10, Kr = 1.5, η = 0.2, γ = 0.8.
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(a)
RS RO a2

S a2
O k

55.5802 6 ∃ 15.0097 6 ∃ 0.1
46.4633 6 ∃ 15.4106 6 ∃ 0.5
49.8064 6 ∃ 15.7735 6 ∃ 0.8
50.0286 6 ∃ 15.7914 6 ∃ 0.82
50.1389 50.2184 15.8001 13.4683 0.83
50.2488 49.9896 15.8085 13.4404 0.84
50.3581 49.7655 15.8168 13.4130 0.85
50.8960 48.7116 15.8553 13.2826 0.9
51.9256 46.8876 15.9190 13.0503 1
66.8036 32.1661 15.6424 10.6842 5
70.3183 30.0517 15.3278 10.2302 10

(b)
RS RO a2

S a2
O h

88.7111 6 ∃ 26.9067 6 ∃ 0.1
59.6059 6 ∃ 20.0551 6 ∃ 0.4
58.1248 6 ∃ 19.4148 6 ∃ 0.45
57.8653 58.3814 19.2980 15.3814 0.46
57.6164 57.9856 19.1847 15.3599 0.47
57.3777 57.6028 19.0746 15.2905 0.48
57.1486 57.2324 18.9676 15.2227 0.49
56.9286 56.8737 18.8637 15.1563 0.5
51.9256 46.8876 15.9190 13.0503 1
54.1833 36.1050 13.6497 10.4542 5
57.0855 34.4490 13.6502 10.1144 10

Table 4.2: Critical steady and oscillatory Rayleigh numbers and wavenum-
bers for quoted values of k (a) and for quoted values of h (b). Table
a: h = 1, T 2 = 10, J = 0.5, Kr = 1.5, η = 0.2, γ = 0.8. Table b:
k = 1, T 2 = 10, J = 0.5, Kr = 1.5, η = 0.2, γ = 0.8.
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(a) h << k

RO a2
O J

6 ∃ 6 ∃ 0
6 ∃ 6 ∃ 0.1

94.6887 27.8062 0.11
85.6326 23.1078 0.15
66.3568 13.5068 0.5
62.4493 11.8203 1
59.8788 10.9098 5
59.6123 10.8360 10
59.4095 10.7843 50
59.3849 10.7784 100

(b) h >> k

RO a2
O J

6 ∃ 6 ∃ 0
6 ∃ 6 ∃ 0.5
6 ∃ 6 ∃ 1
6 ∃ 6 ∃ 5
6 ∃ 6 ∃ 10
6 ∃ 6 ∃ 50
6 ∃ 6 ∃ 100

Table 4.3: Critical oscillatory Rayleigh numbers and wavenumbers for quoted
values of J for h << k (a) and for h >> k (b). Table a: fixing h = 0.1, k =
10, T 2 = 10, Kr = 1.5, η = 0.2, γ = 0.8, the critical Rayleigh number and
wavenumber for the steady convection are RS = 111.7045, a2

S = 32.4936,
respectively. Table b: for h = 10, k = 0.1, T 2 = 10, Kr = 1.5, η = 0.2, γ =
0.8.
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(a) h << k

RS RO a2
S a2

O T 2

37.9913 6 ∃ 8.8113 6 ∃ 0
61.7538 6 ∃ 17.9673 6 ∃ 2
62.5794 6 ∃ 18.2713 6 ∃ 2.09
62.6704 64.6393 18.3047 12.2819 2.1
63.5719 64.6626 18.6347 12.2984 2.2
64.4590 64.6858 18.9577 12.3149 2.3
65.3325 64.7090 19.2739 12.3313 2.4
66.1929 64.7321 19.5835 12.3477 2.5
84.6085 65.2968 25.6964 12.7489 5
111.7045 66.3568 32.4936 13.5068 10

(b) h >> k

RS RO a2
S a2

O T 2

39.6844 6 ∃ 8.8024 6 ∃ 0
43.4949 6 ∃ 10.0015 6 ∃ 5
47.0944 6 ∃ 11.0770 6 ∃ 10
100.1927 6 ∃ 22.9601 6 ∃ 100

Table 4.4: Critical steady and oscillatory Rayleigh numbers and wavenum-
bers for quoted values of T 2 for h << k (a) and for h >> k (b). Table
a: for h = 0.1, k = 10, J = 0.5, Kr = 1.5, η = 0.2, γ = 0.8. Table b: for
h = 10, k = 0.1, J = 0.5, Kr = 1.5, η = 0.2, γ = 0.8.



Chapter 5

The onset of thermal
convection in anisotropic and
rotating bidisperse porous
media

As reported in [35], bi-disperse porous media are increasingly important
in the chemical engineering field. Regarding anisotropic materials, while
anisotropic single porosity media have been widely studied by several au-
thors (see for example [38, 39, 40]), anisotropic bi-disperse porous materials
may have much more potentials, since they offer many possibilities to design
man-made materials for heat transfer or insulation problems, for oil recov-
ery from underground reservoir, for nuclear waste recovery and so on (see
[22, 20, 36] and references therein). Therefore, in the following Chapter we
allow fully anisotropic permeabilities in both f-phase and p-phase.
Envisaging a rotating machinery constituted by an engineered fully anisotropic
bi-disperse porous material, the aim of this Chapter is to analyse the onset
of thermal convection in an anisotropic bi-disperse porous medium uniformly
rotating about a vertical axis, through linear and nonlinear stability theory.
The present Chapter is based on the paper [50] with F. Capone and M.
Gentile and is organized as follows. The mathematical model and the asso-
ciated perturbation equations are introduced in Section 5.1. In Section 5.2
the strong version of the principle of exchange of stabilities is proved and the
linear instability analysis of the thermal conduction solution is performed,
to determine the steady instability threshold. In Section 5.3 the nonlinear
stability analysis of the thermal conduction solution is performed, proving
the coincidence between the linear and the nonlinear stability thresholds with
respect to the L2-norm. In Section 5.4, in order to analyse the influence of ro-
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tation and of anisotropic permeability on the onset of convection, numerical
simulations are presented.

5.1 Governing equations
Let Oxyz be a reference frame with fundamental unit vectors i, j,k (k point-
ing vertically upward) and let L be a layer of an anisotropic bi-disperse
porous medium, saturated by an homogeneous incompressible fluid heated
from below. Let us assume that the layer L – of thickness d – rotates about
the vertical axis z, with constant angular velocity Ω = Ωk and that the
temperature in the macropores (Tf ) and the temperature in the micropores
(Tp) are the same, i.e. T f = T p = T .
Let us assume that the axes (x, y, z) are the principal axes of the permeability
tensors in the macropores and in the micropores, hence:

Kf = diag(Kf
x , K

f
y , K

f
z ) = Kf

z Kf∗,

Kp = diag(Kp
x, K

p
y , K

p
z ) = Kp

z Kp∗,

Kf∗ = diag(k1, k2, 1), Kp∗ = diag(h1, h2, 1),
where

k1 = Kf
x

Kf
z

, k2 =
Kf
y

Kf
z

,

h1 = Kp
x

Kp
z
, h2 =

Kp
y

Kp
z
.

In the Oberbeque-Boussinesq approximation and extending the Darcy’s Law
in order to include the Coriolis term in the momentum equations for the mi-
cropores and the macropores, the governing equations for thermal convection
are [21, 35]:

vf = 1
µ

Kf ·
[
−ζ(vf−vp)−∇pf+%FαgTk− 2%FΩ

ϕ
k× vf

]
,

vp = 1
µ

Kp ·
[
−ζ(vp−vf )−∇pp+%FαgTk− 2%FΩ

ε
k× vp

]
,

∇ · vf = 0,
∇ · vp = 0,

(%c)m
∂T

∂t
+ (%c)f (vf + vp) · ∇T = km∆T.

(5.1)

where
ps = P s − %F

2 |Ω× x|2, s = {f, p}
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are the reduced pressures, x = (x, y, z), vs = seepage velocity for s = {f, p},
ζ = interaction coefficient between the f-phase and the p-phase, g = −gk
= gravity, µ = fluid viscosity, %F = reference constant density, α = thermal
expansion coefficient, c = specific heat, cp = specific heat at a constant
pressure, (%c)m = (1 − ϕ)(1 − ε)(%c)sol + ϕ(%c)f + ε(1 − ϕ)(%c)p, km = (1 −
ϕ)(1− ε)ksol +ϕkf + ε(1−ϕ)kp = thermal conductivity (the subscript sol is
referred to the solid skeleton).

To (5.1), the following boundary conditions are appended

vs · n = 0 on z = 0, d, s = {f, p}
T = TL on z = 0,
T = TU on z = d,

(5.2)

whit TL > TU .

The problem (5.1)− (5.2) admits the steady state (conduction solution):

vf = 0, vp = 0, T = −βz + TL, β = TL − TU
d

.

Defining {uf ,up, θ, πf , πp} a perturbation to the steady solution, the evolu-
tion equations for the perturbation fields are

uf = 1
µ

Kf ·
[
−ζ(uf−up)−∇πf+%Fαgθk−

2%FΩ
ϕ

k× uf
]
,

up = 1
µ

Kp ·
[
−ζ(up−uf )−∇πf+%Fαgθk−

2%FΩ
ε

k× up
]
,

∇ · uf = 0,
∇ · up = 0,

(%c)m
∂θ

∂t
+(%c)f (uf+up) · ∇θ=(%c)fβ(wf + wp)+km∆θ.

(5.3)

where uf = (uf , vf , wf ), up = (up, vp, wp). Using the following non-dimensional
parameters

x∗ = x
d
, t∗ = t

t̃
, θ∗ = θ

T̃
,

us∗ = us

ũ
, πs∗ = πs

P̃
, for s = {f, p},

η = ϕ

ε
, γ1 = µ

Kf
z ζ
, γ2 = µ

Kp
z ζ
,

where the scales are given by

ũ = km
(%c)fd

, t̃ = d2(%c)m
km

, P̃ = ζkm
(%c)f

, T̃ =
√√√√ βkmζ

(%c)f%Fαg
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and introducing the Taylor number T and the thermal Rayleigh number R,
respectively given by

T = 2%FΩKf
z

ϕµ
, R =

√
βd2(%c)f%Fαg

kmζ
,

the resulting non-dimensional perturbation equations, omitting all the aster-
isks, are

γ1(Kf )−1uf + (uf − up) = −∇πf +Rθk− γ1T k× uf ,
γ2(Kp)−1up − (uf − up) = −∇πp +Rθk− ηγ1T k× up,
∇ · uf = 0,
∇ · up = 0,
∂θ

∂t
+ (uf + up) · ∇θ = R(wf + wp) + ∆θ,

(5.4)

under the initial conditions

us(x, 0) = us0(x), πs(x, 0) = πs0(x), θ(x, 0) = θ0(x),

with ∇ · us0 = 0, for s = {f, p}, and the boundary conditions

wf = wp = θ = 0 on z = 0, 1. (5.5)

The above equations are defined in {(x, y, z, t) ∈ R4|z ∈ (0, 1), t > 0}.
In the sequel, we’ll suppose that the perturbation fields are periodic in the x
and y directions of period 2π

l
and 2π

m
, respectively, and we’ll denote by

V =
[
0, 2π

l

]
×
[
0, 2π
m

]
× [0, 1]

the periodicity cell.

5.2 Hydrodynamic instability
In this section we will perform linear instability analysis of the basic solution,
to this aim let us first linearise the perturbation equations (5.4), i.e.

γ1(Kf )−1uf + (uf − up) = −∇πf +Rθk− γ1T k× uf ,
γ2(Kp)−1up − (uf − up) = −∇πp +Rθk− ηγ1T k× up,
∇ · uf = 0,
∇ · up = 0,
∂θ

∂t
= R(wf + wp) + ∆θ,

(5.6)
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Since system (5.6) is autonomous, we seek solutions which have time-dependence
like eσt, i.e. solutions of form

us(t,x) = eσtus(x),
θ(t,x) = eσtθ(x),
πs(t,x) = eσtπs(x),

(5.7)

with σ ∈ C and s = {f, p}. By virtue of (5.7), (5.6) becomes
γ1(Kf )−1uf + (uf − up) = −∇πf +Rθk− γ1T k× uf ,
γ2(Kp)−1up − (uf − up) = −∇πp +Rθk− ηγ1T k× up,
σθ = R(wf + wp) + ∆θ.

(5.8)

i.e.: 

γ1

k1
uf + uf − up = −πfx + γ1T vf ,

γ1

k2
vf + vf − vp = −πfy − γ1T uf ,

γ1w
f + wf − wp = −πfz +Rθ,

γ2

h1
up + up − uf = −πpx + ηγ1T vp,

γ2

h2
vp + vp − vf = −πpy − ηγ1T up,

γ2w
p + wp − wf = −πpz +Rθ,

ufx + vfy + wfz = 0,
upx + vpy + wpz = 0,
σθ = Rwf +Rwp + ∆θ.

(5.9)

From system (5.9), one obtains

uf = 1
D

{
Hπpx + γ1T (L+ η)πfy + [L(b+ 1)− (c+ 1)]πfx + γ1T Nπpy

}
,

up = 1
D

{
Hπfx + γ1T (ηK + 1)πpy + [K(d+ 1)− (a+ 1)]πpx + γ1TMπfy

}
,

vf = 1
D

{
Gπpy − γ1T (L+ η)πfx + [L(a+ 1)− (d+ 1)]πfy − γ1TMπpx

}
,

vp = 1
D

{
Gπfy − γ1T (ηK + 1)πpx + [K(c+ 1)− (b+ 1)]πpy − γ1T Nπfx

}
,

(5.10)
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where A is the coefficients matrix of system (5.9)1,2–(5.9)4,5 and

a = γ1

k1
, b = γ1

k2
, c = γ2

h1
, d = γ2

h2
,

H = (b+ 1)(d+ 1)− 1− η(γ1T )2,

G = (a+ 1)(c+ 1)− 1− η(γ1T )2,

K = (a+ 1)(b+ 1) + (γ1T )2,

L = (d+ 1)(c+ 1) + η2(γ1T )2,

M = (d+ 1) + η(a+ 1),
N = (c+ 1) + η(b+ 1),
D = det(A) .

Hence, differentiating equations (5.10) with respect to z and equations (5.9)3–
(5.9)6 with respect to x and y, by virtue of the incompressibility conditions
(5.9)7–(5.9)8, differentiating with respect to z, i.e.

ufxz + vfyz = −wfzz,
upxz + vpyz = −wpzz,

(5.11)

one obtains the following system

a1w
f
xx + a2w

f
yy +Dwfzz + a3w

p
xx + a4w

p
yy + c1w

f
xy

−c1γ̂2w
p
xy +Ra5θxx +Ra6θyy +Rc1θxy = 0,

b1w
f
xx + b2w

f
yy + b3w

p
xx + b4w

p
yy +Dwpzz + c1γ̂1w

f
xy

−c1w
p
xy +Rb5θxx +Rb6θyy −Rc1θxy = 0,

σθ = Rwf +Rwp + ∆θ.

(5.12)
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where γ̂s = γs + 1, for s = 1, 2 and

a1 = H − γ̂1[L(b+ 1)− (c+ 1)],
a2 = G− γ̂1[L(a+ 1)− (d+ 1)],
a3 = −γ̂2H + L(b+ 1)− (c+ 1),
a4 = −γ̂2G+ L(a+ 1)− (d+ 1),
a5 = H + L(b+ 1)− (c+ 1),
a6 = G+ L(a+ 1)− (d+ 1),
b1 = −γ̂1H +K(d+ 1)− (a+ 1),
b2 = −γ̂1G+K(c+ 1)− (b+ 1),
b3 = H − γ̂2[K(d+ 1)− (a+ 1)],
b4 = G− γ̂2[K(c+ 1)− (b+ 1)],
b5 = H +K(d+ 1)− (a+ 1),
b6 = G+K(c+ 1)− (b+ 1),
c1 = γ1T (N −M).

By virtue of periodicity of perturbation fields in the horizontal directions x
and y, taking into account the boundary conditions (5.5), {sin(nπz)}n∈N is
a complete orthogonal system for L2([0, 1]), so let us employ normal modes
solutions [10]:

wf = W f
0 sin(nπz)ei(lx+my),

wp = W p
0 sin(nπz)ei(lx+my),

θ = Θ0 sin(nπz)ei(lx+my),

(5.13)

from (5.12) one obtains
h11W

f
0 + h12W

p
0 +Rh13Θ0 = 0,

h21W
f
0 + h22W

p
0 +Rh23Θ0 = 0,

RW f
0 +RW p

0 − (Λn + σ)Θ0 = 0.
(5.14)

where Λn = n2π2 + l2 +m2 and

h11 = a1l
2 + a2m

2 +Dn2π2 + c1lm,

h12 = a3l
2 + a4m

2 − c1γ̂2lm,

h13 = a5l
2 + a6m

2 + c1lm,

h21 = b1l
2 + b2m

2 + c1γ̂1lm,

h22 = b3l
2 + b4m

2 +Dn2π2 − c1lm,

h23 = b5l
2 + b6m

2 − c1lm.
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Finally, requiring a zero determinant for (5.14), one gets:

R2 = (Λn + σ)(h11h22 − h12h21)
h12h23 − h13h22 − h11h23 + h21h13

(5.15)

Setting σ = σR + iσI , (5.15) is

R2= (Λn+σR)(h11h22−h12h21)
h12h23−h13h22−h11h23+h21h13

+ i
σI(h11h22−h12h21)

h12h23−h13h22−h11h23+h21h13
(5.16)

Since the Rayleigh number R2 is real, one finally obtains

σI
h11h22 − h12h21

h12h23 − h13h22 − h11h23 + h21h13
= 0 (5.17)

where both numerator h11h22 − h12h21 and denominator h12h23 − h13h22 −
h11h23 + h21h13 are strictly positive. From (5.17) it follows

σI = 0 ⇒ σ ∈ R

and hence the strong version of the principle of exchange of stabilities holds:
if the convection sets in, it arises necessarily via a stationary motion (steady
convection). Therefore, the linear instability threshold for the onset of sta-
tionary convection is found imposing σ = 0 in (5.15):

R2
L = min

n,l,m

Λn(h11h22 − h12h21)
h12h23 − h13h22 − h11h23 + h21h13

(5.18)

The minimization (5.18) is numerically analysed in section 5.4.

Let us point out that

(i) assuming h1 = h2 = h, k1 = k2 = k (horizontally isotropic case) and
for T → 0, i.e. in absence of rotation, we get

R2
L = min

n,a2

Γ̂Λn

a2
a4ΓΓ̂−1 + n4π4 + a2n2π2K̂Γ̂−1

a2(4 + γ1 + γ2) + n2π2(γ1
k

+ γ2
h

+ 4)

where a2 = l2 +m2 and

K̂ =
[
γ1 + γ2 + γ1

k
+ γ2

h
+ γ1γ2

(1
k

+ 1
h

)]
,

Γ = γ1γ2 + γ1 + γ2,

Γ̂ = γ1

k
+ γ2

h
+ γ1

k

γ2

h
,

that coincides with the instability threshold found in [36];
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(ii) the case of a non-rotating layer of isotropic bi-disperse porous medium
(assuming hs = ks = 1 for s = 1, 2 and as T → 0) leads to

R2
L = min

n,a2

Λ2

a2
γ1γ2 + γ1 + γ2

γ1 + γ2 + 4

that is the same threshold found in [25].

5.3 Optimal result: coincidence between lin-
ear and nonlinear thresholds

In order to study the influence of rotation on the nonlinear stability of the
conduction solution, since the Coriolis terms in momentum equations are
antisymmetric, instead of applying the standard energy method, let us apply
the differential constraint approach (see [38, 42, 43]).
To this end, let us set

E(t) = 1
2‖θ‖

2,

I(t) = (wf + wp, θ),
D(t) = ‖∇θ‖2,

(5.19)

and by virtue of (5.4)5, one obtains

dE

dt
=
(
R
I

D
− 1

)
D . (5.20)

Setting
1
RE

= max
H∗

I

D
(5.21)

with
H∗ = {(wf , wp, θ) ∈ (H1)3|wf = wp = θ = 0 on z = 0, 1;

periodic in x, y with periods 2π/l, 2π/m;D <∞;
verifying (5.12)1,2}

the space of kinematically admissible solutions. The variational problem
(5.21) is equivalent to the following variational problem:

1
RE

= max
H

I +
∫
V λg1 dV +

∫
V ψg2 dV

D
, (5.22)
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where λ(x) and ψ(x) are Lagrange multipliers and

g1≡R−1(a1w
f
xx + a2w

f
yy +Dwfzz + a3w

p
xx + a4w

p
yy + c1w

f
xy − c1γ̂2w

p
xy)

+ a5θxx + a6θyy + c1θxy,

g2≡R−1(b1w
f
xx + b2w

f
yy + b3w

p
xx + b4w

p
yy +Dwpzz + c1γ̂1w

f
xy − c1w

p
xy)

+ b5θxx + b6θyy − c1θxy,

(5.23)

H = {(wf , wp, θ) ∈ (H1)3|wf = wp = θ = 0 on z = 0, 1;
periodic in x, y with periods 2π/l, 2π/m;D <∞}.

By virtue of Poincaré inequality, since

D ≥ π2‖θ‖2,

from (5.20) one obtains that condition R < RE guarantees the global non-
linear stability of the conduction solution with respect to the L2-norm, ac-
cording to the following remark and the following inequality

E(t) ≤ E(0) exp
[
R−RE

RE

t
]
.

Remark 5.3.1. Multiplying (5.4)1 by uf , (5.4)2 by up, integrating over the
period cell V and adding the resulting equations, one finds

γ1

∫
V

[ 1
k1

(uf )2+ 1
k2

(vf )2+(wf )2
]
dV +γ2

∫
V

[ 1
h1

(up)2+ 1
h2

(vp)2+(wp)2
]
dV

+ ‖uf − up‖2 = R(θ, wf + wp).
(5.24)

Setting k̂ = max(k1, k2, 1) and ĥ = max(h1, h2, 1) and using the generalized
Cauchy inequality on the right hand side of (5.24), one obtains

γ1

k̂
‖uf‖2 + γ2

ĥ
‖up‖2 ≤ R2

(
k̂

γ1
+ ĥ

γ2

)
‖θ‖2 (5.25)

and hence condition R < RE guarantees that ‖uf‖2 → 0 and ‖up‖2 → 0 as
t→∞, too.

In order to solve the variational problem (5.22), let us consider the associated



Chapter 5. Convection in a fully anisotropic rotating BDPM 81

Euler-Lagrange equations:

RE(a5λxx + a6λyy + c1λxy + b5ψxx + b6ψyy − c1ψxy)+2∆θ
+RE(wf + wp)=0,

REθ + a1λxx + a2λyy +Dλzz + c1λxy + b1ψxx + b2ψyy + c1γ̂1ψxy = 0,

REθ + a3λxx + a4λyy − c1γ̂2λxy + b3ψxx + b4ψyy +Dψzz − c1ψxy = 0,

a1w
f
xx + a2w

f
yy +Dwfzz + a3w

p
xx + a4w

p
yy + c1w

f
xy − c1γ̂2w

p
xy

+RE(a5θxx + a6θyy + c1θxy)=0,

b1w
f
xx + b2w

f
yy + b3w

p
xx + b4w

p
yy +Dwpzz + c1γ̂1w

f
xy − c1w

p
xy

+RE(b5θxx + b6θyy − c1θxy)=0.

(5.26)

Defining the operators

∆f ≡ a1∂xx + a2∂yy +D∂zz,

∆∗p ≡ a3∂xx + a4∂yy,

∆∗f ≡ b1∂xx + b2∂yy,

∆p ≡ b3∂xx + b4∂yy +D∂zz,

L1 ≡ a5∂xx + a6∂yy,

L2 ≡ b5∂xx + b6∂yy.

and taking 2∆ of (5.26)2,3,4,5, the Euler-Lagrange equations become

RE(wf + wp) +RE(L1λ+ c1λxy + L2ψ − c1ψxy) = −2∆θ,

2∆∆fλ+ 2c1∆λxy + 2∆∆∗fψ + 2c1γ̂1∆ψxy = −2RE∆θ,

2∆∆∗pλ− 2c1γ̂2∆λxy + 2∆∆pψ − 2c1∆ψxy = −2RE∆θ,

2∆∆fw
f + 2c1∆wfxy + 2∆∆∗pwp − 2c1γ̂2∆wpxy

+2REL1∆θ + 2REc1∆θxy = 0,

2∆∆∗fwf + 2c1γ̂1∆wfxy + 2∆∆pw
p − 2c1∆wpxy

+2REL2∆θ − 2REc1∆θxy = 0

(5.27)
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Eliminating variable θ and setting

M1 ≡ 2∆∆f + 2c1∆∂xy −R2
EL1 −R2

Ec1∂xy,

M2 ≡ 2∆∆∗f + 2c1γ̂1∆∂xy −R2
EL2 +R2

Ec1∂xy,

M3 ≡ 2∆∆∗p − 2c1γ̂2∆∂xy −R2
EL1 −R2

Ec1∂xy,

M4 ≡ 2∆∆p − 2c1∆∂xy −R2
EL2 +R2

Ec1∂xy,

N1 ≡ −RE(L1 + c1∂xy)2,

N2 ≡ −R2
E(L1 + c1∂xy)(L2 − c1∂xy),

N3 ≡ −R2
E(L2 − c1∂xy)2,

one obtains 
−R2

Ew
f −R2

Ew
p +M1λ+M2ψ = 0,

−R2
Ew

f −R2
Ew

p +M3λ+M4ψ = 0,
M1w

f +M3w
p +N1λ+N2ψ = 0,

M2w
f +M4w

p +N2λ+N3ψ = 0.

(5.28)

By employing normal modes solutions

wf = W f
0 sin(nπz)ei(lx+my),

wp = W p
0 sin(nπz)ei(lx+my),

(5.29)

and choosing [51, 42]

λ = λ0 sin(nπz)ei(lx+my),

ψ = ψ0 sin(nπz)ei(lx+my),
(5.30)

from (5.28) one obtains
−R2

EW
f
0 −R2

EW
p
0 +(2Λnh11+R2

Eh13)λ0+(2Λnh21+R2
Eh23)ψ0 =0,

−R2
EW

f
0 −R2

EW
p
0 +(2Λnh12+R2

Eh13)λ0+(2Λnh22+R2
Eh23)ψ0 =0,

(2Λnh11+R2
Eh13)W f

0 +(2Λnh12+R2
Eh13)W p

0 −R2
Eh

2
13λ0−R2

Eh13h23ψ0 =0,
(2Λnh21+R2

Eh23)W f
0 +(2Λnh22+R2

Eh23)W p
0 −R2

Eh13h23λ0−R2
Eh

2
23ψ0 =0.

(5.31)

Requiring a zero determinant for (5.31) we find

R2
E = R2

L,

and hence the global non linear stability threshold and the linear instability
threshold coincide and subcritical instabilities do not exist.
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5.4 Asymptotic behaviour of the instability
threshold and cell patterns

We now present numerical results to solve (5.18), in order to analyse the
asymptotic behaviour of R2

L with respect to T , hi, ki, for i = 1, 2, i.e. to
study the influence of rotation and anisotropic permeability on the onset of
convection. As regards the physical parameters, in all numerical simulations
we chose a set of values analogous to those ones fixed in [35], in order to
compare our results with those ones obtained in [35], to stress the influence
of rotation and anisotropy on the onset of convection.
In all the computations we performed, the minimum of R2

L with respect to
n is attained at n = 1. Each of the following tables and figures show the
stabilizing effect of rotation on the onset of convection.

R2
L l m T

342.0314 0.8681 2.9868 0
342.1650 0.8683 2.9874 0.1
355.1930 0.8845 3.0385 1
606.4105 1.2509 3.5844 5
1096.6 2.1500 2.5456 10
4476.3 4.4554 0 50
12228 6.2551 0 100

Table 5.1: Critical R2
L, l,m for increasing T and h1 = 10, h2 = 1, k1 =

0.1, k2 = 1, η = 0.2, γ1 = 10, γ2 = 50

R2
L l m T

216.7792 2.0756 0 0
219.6234 2.0991 0 0.1
416.4060 3.2100 0 1
594.6478 3.7883 0.9462 1.5
795.6823 4.2006 1.5401 2
1653 3.8717 2.8998 4
1808.9 2.4736 3.1779 4.5
1860.3 0 3.2761 5
1988.1 0 3.1874 10
3408.4 0 3.9766 100

Table 5.2: Critical R2
L, l,m for increasing T and h1 = 0.1, h2 = 1, k1 =

10, k2 = 1, η = 0.2, γ1 = 10, γ2 = 50
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Figure 5.1: (a): critical Rayleigh number R2
L as function of the Taylor number

T for h1 = 10, h2 = 1, k1 = 0.1, k2 = 1, η = 0.2, γ1 = 10, γ2 = 50. (b): critical
Rayleigh number R2

L as function of the Taylor number T for h1 = 0.1, h2 =
1, k1 = 10, k2 = 1, η = 0.2, γ1 = 10, γ2 = 50.

The table 5.1 shows that for large values of the Taylor number T and when
h1 >> k1, m becomes zero, this means that, as rotation increases, the con-
vection cells become rolls with the axis in the y-direction. The table 5.2
shows a transition from convection patterns as rolls along y-axis (m = 0 for
very small T ) to convection patterns as rolls along x-axis (l = 0), as the ro-
tation increases and for h1 << k1. For these physical values, the asymptotic
behaviour of R2

L with respect to T is shown in the figure 5.1. We can also
observe that, as T increases, R2

L increases more slowly when h1 << k1 then
h1 >> k1.
Let us point out that bi-dimensional convection cells (rolls along x-axis for
l = 0 and rolls along y-axis for m = 0) were already found in [35] as an
effect of anisotropic macropermeability and micropermeability in absence of
rotation.

From table 5.3, we numerically find out that for parameters {h1 = 1, h2 =
0.1, k1 = 1, k2 = 10, η = 0.2, γ1 = 2, γ2 = 0.2} the critical value ofm is mainly
zero, except for very small values of the Taylor number T ∈ [0, 3), for which
l and m are both non-zero, i.e. for very little rotation of the layer, three-
dimensional convection cells are expected.
As a matter of fact, the wavelengths in the x and y directions are x̂ = 2π

l
and

ŷ = 2π
m
. The condition ŷ/x̂ = 0 implies l = 0, this means that the convective

fluid motion occurs in the y and z directions (the solution is a function of
y and z), i.e. the convection cells are rolls in the x-direction. Instead, the
condition ŷ/x̂→∞ implies m = 0 and the convective fluid motion occurs in
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(a)
R2
L l m T

16.5555 3.1416 0.0334 0
16.5570 3.1415 0.0413 0.01
16.7028 3.1399 0.3139 0.1
19.7124 3.1420 1.3606 0.5
26.4272 3.2505 2.1111 1
42.8398 3.6375 2.1076 2
50.3892 3.8240 0.1504 2.5
54.2050 3.8079 0.0011 2.8
56.6389 3.8030 0 3
79.6444 3.9576 0 5
152.0288 4.8151 0 10
1815 10.0471 0 50
6581.4 14.1637 0 100

(b)
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Table 5.3: (a): critical R2
L, l,m for increasing T . (b): critical Rayleigh

number R2
L as function of the Taylor number T . For h1 = 1, h2 = 0.1, k1 =

1, k2 = 10, η = 0.2, γ1 = 2, γ2 = 0.2.

the x and z directions, so the cells are rolls in the y-direction [35].
Tables 5.4 − 5.5 exhibit the influence of anisotropy parameters for both

macropores and micropores on the onset of convection, and the values of
h1, h2, k1, k2 are fixed such that the permeability ratios in the macropores
and micropores are different, in particular we set {h1 = 3.3, h2 = 0.9, k1 =
0.2, k2 = 1.1} (see [35]) and we vary hs, ks for s = 1, 2 in turn to see how
each parameter affects the Rayleigh number. As in [35], we numerically find
out a very complex relationship between the macro and micro permeabil-
ity parameters and the critical Rayleigh and wave numbers. For increasing
h1, h2, k1, k2 we can see a similar trend, i.e. R2

L increases up to a maximum
before decreasing. From 5.3(a) and from 5.4(a) we can see a first transition
from rolls along x-axis to three-dimensional cells and then another transition
to rolls along y-axis, while 5.3(b) and 5.4(b) displays a mirror behaviour with
respect to 5.3(a) and 5.4(a), respectively.
In figure 5.2 the critical Rayleigh number R2

L is represented as function of the
Taylor number T for h1 = 0.1, 1, 5, 10 and the others parameters are fixed
as h2 = 0.9, k1 = 0.2, k2 = 1.1, η = 0.2, γ1 = 0.9, γ2 = 1.8, with the aim to
graphically analyse the values shown in table 5.3(a).

Let us underline that the behaviour (increasing or decreasing) of the
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(a)
R2
L l m h1

72.0664 0 3.9779 0.1
80.3593 0 4.2133 0.5
87.5331 0 4.4002 1
99.4378 0.0023 4.6828 2.5
101.3657 1.8730 4.0969 3
101.9684 2.2477 3.7690 3.3
102.5416 3.0110 2.3960 5
101.6569 3.2416 1.0423 7
101.4029 3.2703 0.5478 7.5
101.1561 3.2772 0.0030 8
100.4043 3.2598 0 10
97.6476 3.1953 0 100

(b)
R2
L l m h2

77.2756 3.0012 0 0.1
93.7839 3.2485 0 0.5
97.2253 3.2919 0.0025 0.6
99.9532 3.0972 2.1071 0.7
101.9684 2.2477 3.7690 0.9
101.6923 1.4139 4.3715 1
98.0214 0 4.5583 1.5
92.1505 0 4.3049 5
90.7919 0 4.2441 10
89.5334 0 4.1871 100

Table 5.4: Critical R2
L, l,m for quoted values of h1 (a) and for quoted values of

h2 (b). Table a: h2 = 0.9, k1 = 0.2, k2 = 1.1, η = 0.2, γ1 = 0.9, γ2 = 1.8, T =
10. Table b: h1 = 3.3, k1 = 0.2, k2 = 1.1, η = 0.2, γ1 = 0.9, γ2 = 1.8, T = 10.

(a)
R2
L l m k1

58.9329 0 4.4430 0.05
77.3354 0 4.7150 0.1
91.5765 0.0028 4.7810 0.15
101.9684 2.2477 3.7690 0.2
106.2647 3.3934 0.3203 0.25
106.2066 3.4023 0 0.3
106.0864 3.4078 0 0.5
105.9929 3.4121 0 1
105.9159 3.4157 0 5
105.9061 3.4162 0 10

(b)
R2
L l m k2

66.4721 3.8969 0 0.1
87.3683 3.6711 0 0.3
96.2862 3.5414 0.0011 0.5
101.1517 2.7734 3.0504 0.8
101.9684 2.2477 3.7690 1.1
102.1598 1.5167 4.3633 2
101.8944 0.7318 4.6887 5
101.7847 0.3533 4.7594 8
101.7447 0.0135 4.7805 10
101.5976 0.0017 4.7825 100
101.5829 0.0016 4.7827 103

Table 5.5: Critical R2
L, l,m for quoted values of k1 (a) and for quoted values of

k2 (b). Table a: h1 = 3.3, h2 = 0.9, k2 = 1.1, η = 0.2, γ1 = 0.9, γ2 = 1.8, T =
10. Table b: h1 = 3.3, h2 = 0.9, k1 = 0.2, η = 0.2, γ1 = 0.9, γ2 = 1.8, T = 10.

critical Rayleigh number with respect to anisotropic parameters and the type
of arising cells (rolls in x or in y directions) strictly depend on the relationship
between the ratios k1

h1
and k2

h2
.
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Figure 5.2: Critical Rayleigh number R2
L as function of the Taylor number T

for h1 = 0.1, 1, 5, 10 and h2 = 0.9, k1 = 0.2, k2 = 1.1, η = 0.2, γ1 = 0.9, γ2 =
1.8.

In particular, when
k1

h1
>
k2

h2
⇒ m = 0, (5.32)

i.e. rolls in the x-direction are expected, while if

k1

h1
<
k2

h2
⇒ l = 0, (5.33)

so rolls in the y-direction will arise. To study this behaviour, in the fixed set
of parameters: {T = 10, η = 0.2, γ1 = 0.8, γ2 = 1.9}, we obtained Figures
5.3: in Figure 5.3(a) we fixed k2

h2
= 10 and assumed k1

h1
∈
[
0, k1

h1

]
, therefore we

chose k2 = 10, h1 = 0.1, h2 = 1 and k1 ∈ [0, 1], meanwhile in Figure 5.3(b) we
fixed k1

h1
= 10 and assumed k2

h2
∈
[
0, k1

h1

]
, choosing k1 = 10, h1 = 1, h2 = 0.1

and k2 ∈ [0, 1].
For a different set of values for the anisotropic parameters - i.e. h1 = 3.3, k1 =
0.2, k2 = 1.1 and h2 ∈ [0.2] - in Figures 5.4 we plotted the critical Rayleigh
number R2

L and the critical wave numbers l and m as functions of h2, and
we found that (i) R2

L increases up to a maximum before decreasing (ii) for
increasing h2, there is a transition from convection patterns as rolls along
y-axis (m = 0) to three-dimensional convection cells (l and m are both
non-zero) and then a transition from three-dimensional convection cells to
convection patterns as rolls along x-axis (l = 0).
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Figure 5.3: (a): Critical wave numbers l andm as function of k1. (b): Critical
wave numbers l and m as function of k2.
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Figure 5.4: (a): Critical Rayleigh number R2
L as function of h2. (b): Critical

wave numbers l and m as function of h2.

Main results

The onset of thermal convection in a horizontal layer of anisotropic BDPM,
uniformly rotating about a vertical axis and uniformly heated from below,
was analysed, according to Darcy’s law in both micropores and macropores.
In particular, it was proved that:

• the strong version of the principle of exchange of stabilities holds and
hence, when the convection arises, it sets in through a stationary mo-
tion;

• the linear instability threshold and the global nonlinear stability thresh-
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old in the L2−norm coincide: this is an optimal result since the stability
threshold furnishes a necessary and sufficient condition to guarantee the
global (i.e. for all initial data) nonlinear stability.

Moreover, the influence of the rotation and the influence of the anisotropy
on the onset of convection were numerically analysed.



Chapter 6

The onset of double diffusive
convection in a rotating
bi-disperse porous medium

As regards applicative implications of convection problems, to obtain even
more useful results in applications involving, for instance, food and chemical
processes, solidification and centrifugal casting of metals, rotating machiner-
ies, petroleum industry, biomechanics and geophysical problems, the presence
of one or more chemicals (salts) dissolved in the fluid has been largely anal-
ysed either in rotating clear fluids [34] or in rotating single porosity media
[52, 53]. The analysis of double-diffusive convection requires to suppose that
there is a salt dissolved in the fluid, so one considers simultaneous tempera-
ture and salt gradients, i.e. simultaneous mass diffusion and thermal diffusion
in a liquid mixture.
From a mathematical point of view, when a fluid mixture in a rotating layer
heated from below is considered, the competing effects of heating from below
(that has a destabilizing effect on the conduction solution) and of rotation
and salting from below (that both have a stabilizing effect) are challenging
to analyse, since rotation and salt concentration give rise to a skewsymmet-
ric part in the linear operator of the governing equations. Double diffusive
bi-dispersive convection was studied by Straughan in [49, 47], by Challoob
et al. in [54] under generalized boundary conditions, while Badday and Har-
fash in [3, 55] deal with bi-dispersive double diffusive convection, taking into
account chemical reaction effects. However, in the present Chapter we focus
our attention to double diffusive convection in a uniformly rotating single
temperature bi-disperse porous material.

Unlike the diffusion of heat, the diffusion of salt can take place only through

90
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the fluid phase, so there are two physical effects to consider: the Soret effect,
i.e. the mass flux created by a temperature gradient, and the Dufour effect,
i.e. the energy flux induced by a concentration gradient, but, according to
experimental results, the Dufour effect plays a minor role in comparison with
the Soret effect when a binary liquid mixture saturating a porous medium is
considered (see [56] and the references therein).
As defined in [57], the Soret effect, also known as thermodiffusion, is the mass
diffusion in a liquid mixture when a temperature gradient exists and is con-
stantly maintained across the multicomponent mixture, causing all species
to move. In response to a gradual and continuous migration of all particles
from the hot side to the cold side, following the direction of the heat flow,
a concentration gradient starts to develop within the mixture, which slows
down the migration of the species to the cold side and causes some of the
particles to move on the opposite direction. The contrast between thermal
and concentration forces causes the rearrangement of the species until the
final steady state. Some applications of the Soret effect are optimum oil
recovery from hydrocarbon reservoirs, fabrication of semiconductor devices
in molten metal and semiconductor mixtures, separation of species such as
polymers, manipulation of macromolecules such as DNA [57].
The present Chapter is based on the paper [58] with F. Capone and R. De
Luca and is organized as follows. In Section 6.1 the mathematical model and
the associated perturbation equations are introduced. In Section 6.2 we per-
form linear instability analysis of the thermal conduction solution and prove
that if ε1Le ≤ 1 the strong principle of exchange of stabilities holds. Hence,
in Sections 6.2.1 and 6.2.2 we determine the critical Rayleigh numbers for
the onset of steady and oscillatory convection, respectively. In Section 6.2.3
some mathematical aspects shared by the stationary and the oscillatory in-
stability thresholds are discussed. In Section 6.3 the differential constraint
approach is utilized to derive the global nonlinear instability threshold and
we found that there are regions of subcritical instabilities. In Section 6.4 we
perform some numerical simulations in order to analyse the behaviour of the
instability thresholds with respect to fundamental physical parameters.

6.1 Problem formulation
Let us consider a reference frame Oxyz with fundamental unit vectors i, j,k
(k pointing vertically upward) and a plane layer L = R2× [0, d] of saturated
bi-disperse porous medium that is uniformly and simultaneously heated and
salted from below, and that is filled by an incompressible Newtonian fluid.
Furthermore, we confine ourselves to the case of a single temperature bi-
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disperse porous material, so there is thermal equilibrium between the f-phase
and the p-phase, i.e. T f = T p = T . The layer L rotates about the vertical
axis with constant angular velocity Ωk, hence Darcy’s model is extended in
order to include Coriolis forces in the momentum equations in the macropores
and in the micropores. Moreover, a Boussinesq approximation is applied and
the density in the buoyancy force has a linear dependence on temperature
and concentration:

% = %F [1− α(T − T0) + αC(C − C0)],

α and αC being thermal and chemical expansion coefficients, respectively.
The governing equations for the onset of thermal convection in a uniformly
rotating bi-disperse porous medium heated and salted from below, taking
into account the Soret effect, are (cf. [21, 49])

− µ

Kf

vf−ζ(vf−vp)−∇pf+%FαgTk−%FαCgCk− 2%FΩ
ϕ

k× vf =0,

− µ
Kp

vp−ζ(vp−vf )−∇pp+%FαgTk−%FαCgCk− 2%FΩ
ε

k× vp=0,

∇ · vf = 0,
∇ · vp = 0,

(%c)m
∂T

∂t
+ (%c)F (vf + vp) · ∇T = km∆T,

ε1
∂C

∂t
+ (vf + vp) · ∇C = ε2∆C + S∆T,

(6.1)

where pf and pp are the reduced pressures, i.e.

ps = P s − %F
2 |Ω× x|2, s = f, p

x = (x, y, z), vs = seepage velocity for s = {f, p}, T = temperature field,
C = concentration field, ζ = interaction coefficient between the f-phase and
the p-phase, g = −gk = gravity, µ = fluid viscosity, %F = reference constant
density, Ks = permeability for s = {f, p}, c = specific heat, km = thermal
conductivity, ks = thermal conductivity for s = {f, p}, ksC = salt diffusivity
for s = {f, p}, S = ϕSfT + ε(1− ϕ)SpT , SsT = Soret coefficient for s = {f, p},

(%c)m = (1− ϕ)(1− ε)(%c)sol + ϕ(%c)f + ε(1− ϕ)(%c)p,
km = (1− ϕ)(1− ε)ksol + ϕkf + ε(1− ϕ)kp,
ε1 = ϕ+ ε(1− ϕ), ε2 = ϕkfC + ε(1− ϕ)kpC ,

where the subscript sol is referred to the solid skeleton. Let us remark that
in the case of single temperature BDPM, since macropores and micropores
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are saturated by the same fluid, we expect that (%c)f = (%c)p = (%c)F , hence
(%c)m = (1− ϕ)(1− ε)(%c)sol + [ϕ+ ε(1− ϕ)](%c)F [26] .

The boundary conditions associated to (6.1) are

vs · n = 0 on z = 0, d, for s = {f, p}
T = TL on z = 0, T = TU on z = d,
C = CL on z = 0, C = CU on z = d

(6.2)

where n is the unit outward normal to the impermeable horizontal planes
delimiting the layer. Moreover, since the layer of BDPM is heated and salted
from below, we assume TL > TU and CL > CU .

System (6.1)-(6.2) admits the the stationary thermosolutal conduction so-
lution

vf = 0, vp = 0, T = −βz + TL, C = −βCz + CL,

1
%F
ps(z) = g(−αβ + αCβC)z

2

2 + g(αTL − αCCL)z + ps(0), with s = {f, p}

where β = TL − TU
d

is the temperature gradient, βC = CL − CU
d

is the
concentration gradient and ps(0) are assigned constants, for s = {f, p}. In-
troducing a perturbation {uf ,up, θ, γ, πf , πp} to the steady solution, with
uf = (uf , vf , wf ) and up = (up, vp, wp), the arising perturbation equations
are

− µ

Kf

uf−ζ(uf−up)−∇πf+%Fαgθk−%FαCgγk− 2%FΩ
ϕ

k× uf =0,

− µ
Kp

up−ζ(up−uf )−∇πp+%Fαgθk−%FαCgγk− 2%FΩ
ε

k× up=0,

∇ · uf = 0,
∇ · up = 0,

(%c)m
∂θ

∂t
+ (%c)F (uf + up) · ∇θ = (%c)f (wf + wp)β + km∆θ,

ε1
∂γ

∂t
+ (uf + up) · ∇γ = (wf + wp)βC + ε2∆γ + S∆θ.

(6.3)
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Let us introduce the following non-dimensional parameters:

x∗ = x
d
, t∗ = t

t#
, θ∗ = θ

T# , γ
∗ = γ

C#

us∗ = us

U
, πs∗ = πs

P# , for s = {f, p}

η = ϕ

ε
, ξ = Kfζ

µ
, Kr = Kf

Kp

, A = (%c)m
(%c)F

where the scales are given by

U = km
(%c)Fd

, t# = d2(%c)m
km

, P# = kmµ

(%c)FKf

, T# = βd2U(%c)F
km

, C# = βCUd
2

ε2
,

and let us define the Lewis number Le, the non-dimensional Soret number
S, the Taylor number T , the Rayleigh number Ra and the Rayleigh number
for the salt field C, respectively given by

Le = km
ε2(%c)m

, S = ST#

ε2C# , T = 2%FΩKf

ϕµ
,

Ra = βd2(%c)F%FαgKf

µkm
, C = Kf%FαCgβCd

2

µε2
.

The dimensionless equations describing the evolutionary behaviour of the
perturbation fields, dropping all the asterisks, are

−uf − ξ(uf − up)−∇πf + Raθk− Cγk− T k× uf = 0,
−Krup − ξ(up − uf )−∇πp + Raθk− Cγk− ηT k× up = 0,
∇ · uf = 0,
∇ · up = 0,
∂θ

∂t
+ (uf + up) · ∇θ = wf + wp + ∆θ,

ε1Le
∂γ

∂t
+ ALe(uf + up) · ∇γ = wf + wp + ∆γ + S∆θ.

(6.4)

The initial conditions and the boundary conditions appended to system (6.4)
are

us(x, 0) = us0(x), πs(x, 0) = πs0(x), θ(x, 0) = θ0(x), γ(x, 0) = γ0(x)

with ∇ · us0 = 0, for s = {f, p}, and

wf = wp = θ = γ = 0 on z = 0, 1, (6.5)

respectively.
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Remark 6.1.1. With the aim to perform the stability analysis of the con-
duction solution to system (6.1)-(6.2), so of the null solution to (6.4)-(6.5),
let us denote by

V =
[
0, 2π

l

]
×
[
0, 2π
m

]
× [0, 1]

the periodicity cell, let us assume that ∀f ∈ {∇πs, us, vs, ws, θ, γ} for s =
{f, p}, f ∈ W 2,2(V ) ∀t ∈ R+, and that f is a periodic function in the x and
y directions of period 2π/l and 2π/m, respectively.

6.2 Double-diffusive convection: linear insta-
bility analysis

In order to study the linear instability of the thermal conduction solution,
let us consider the linear version of system (6.4) and seek for a solution
uf ,up, πf , πp, θ, γ with time dependence like eσt, with σ ∈ C, so we get

−uf − ξ(uf − up)−∇πf + Raθk− Cγk− T k× uf = 0,
−Krup − ξ(up − uf )−∇πp + Raθk− Cγk− ηT k× up = 0,
∇ · uf = 0,
∇ · up = 0,
σθ = wf + wp + ∆θ,
ε1Leσ γ = wf + wp + ∆γ + S∆θ.

(6.6)

Setting
ωs3 = (∇× us) · k, s = {f, p},

and taking the third component of curl of (6.6)1 and (6.6)2, we get
(ξ + 1)ωf3 − ξωp3 = T ∂w

f

∂z
,

(ξ +Kr)ωp3 − ξωf3 = ηT ∂w
p

∂z
,

(6.7)

i.e. 
ωf3 = Γ−1T

[
(ξ +Kr)

∂wf

∂z
+ ηξ

∂wp

∂z

]
,

ωp3 = Γ−1T
[
ξ
∂wf

∂z
+ η(ξ + 1)∂w

p

∂z

]
,

(6.8)
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where Γ = ξ + ξKr +Kr. Now, substituting the derivative with respect to z
of (6.8) in the third component of double curl of (6.6)1 and (6.6)2, that is

(1 + ξ)∆wf − ξ∆wp − Ra∆1θ + C∆1γ + T ∂ω
f
3

∂z
= 0,

(Kr + ξ)∆wp − ξ∆wf − Ra∆1θ + C∆1γ + ηT ∂ω
p
3

∂z
= 0,

(6.9)

where ∆1 = ∂2/∂x2 + ∂2/∂y2 is the horizontal Laplacian, we finally get the
following boundary value problem in wf , wp, θ, γ

(1 + ξ)∆wf−ξ∆wp−Ra∆1θ+C∆1γ+Γ−1T 2
[
(ξ+Kr)

∂2wf

∂z2 +ηξ ∂
2wp

∂z2

]
=0,

(Kr + ξ)∆wp−ξ∆wf−Ra∆1θ+C∆1γ+Γ−1ηT 2
[
ξ
∂2wf

∂z2 +η(ξ+1)∂
2wp

∂z2

]
=0

σθ = wf + wp + ∆θ,
ε1Leσ γ = wf + wp + ∆γ + S∆θ.

(6.10)

According to boundary conditions (6.5) and to the periodicity of the per-
turbations fields, being {sin(nπz)}n∈N a complete orthogonal system for
L2([0, 1]), we employ normal modes solutions in (6.10):

wf =
∞∑
n=1

W f
0n sin(nπz)ei(lx+my),

wp =
∞∑
n=1

W p
0n sin(nπz)ei(lx+my),

θ =
∞∑
n=1

Θ0n sin(nπz)ei(lx+my),

γ =
∞∑
n=1

Γ0n sin(nπz)ei(lx+my),

(6.11)

where W f
0n,W

p
0n,Θ0n,Γ0n are real constants. Consequently we get

[
(1+ξ)Λn+Γ−1T 2n2π2(ξ+Kr)

]
W f

0n+
[
−ξΛn+Γ−1T 2n2π2ηξ

]
W p

0n

− Raa2Θ0n + Ca2Γ0n = 0,[
−ξΛn+Γ−1T 2n2π2ηξ

]
W f

0n+
[
(Kr+ξ)Λn+Γ−1T 2n2π2η2(ξ+1)

]
W p

0n

− Raa2Θ0n + Ca2Γ0n = 0,
W f

0n +W p
0n − (Λn + σ)Θ0n = 0,

W f
0n +W p

0n − (Λn + ε1Leσ)Γ0n − SΛnΘ0n = 0.

(6.12)
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a2 = l2 +m2 being the wavenumber and Λn = n2π2 + a2. Setting

H1 = (1 + ξ)Λn + Γ−1T 2n2π2(ξ +Kr),
H2 = −ξΛn + Γ−1T 2n2π2ηξ

H3 = (Kr + ξ)Λn + Γ−1T 2n2π2η2(ξ + 1)

and requiring the determinant of (6.12) to be zero, we obtain

σ2ε1Le(H1H3 −H2
2 ) + σ[Λn(H1H3 −H2

2 )(1 + ε1Le)
+ (H1 − 2H2 +H3)a2(C − Raε1Le)]
+ Λ2

n(H1H3 −H2
2 )− a2Λn(H1 − 2H2 +H3)[Ra − C(1− S)] = 0,

(6.13)

hence

Ra= (Λn+σ)(Λn+ε1Leσ)(H1H3−H2
2 )+a2[ΛnC(1−S)+σC](H1−2H2+H3)

a2(H1 − 2H2 +H3)(Λn + ε1Leσ) (6.14)

Theorem 6.2.1. Condition ε1Le ≤ 1 implies the validity of the strong form
of the Principle of exchange of stabilities and, in this case, convection can
arise only via stationary motions.

Proof. Both roots of (6.13) are real if

[Λn(H1H3−H2
2 )(1+ε1Le)+(H1−2H2+H3)a2(C−Raε1Le)]2−

4ε1Le(H1H3−H2
2 ){Λ2

n(H1H3−H2
2 )−a2Λn(H1−2H2+H3)[Ra−C(1−S)]}≥0

(6.15)

i.e.

Λ2
n(H1H3 −H2

2 )2(1− ε1Le)2 + (C − ε1LeRa)2(H1 − 2H2 +H3)2a4+
2(H1−2H2+H3)(H1H3−H2

2 )a2Λn[(1−ε1Le)(ε1LeRa+C)+2SCε1Le]≥0
(6.16)

that is surely satisfied if ε1Le ≤ 1, since

H1 − 2H2 +H3 =Λn(1 +Kr + 4ξ) + Γ−1T 2n2π2[Kr + η2 + ξ(η − 1)2]
H1H3 −H2

2 =ΓΛ2
n + Γ−1T 2n2π2Λn[η2(ξ + 1)2 + 2ηξ2 + (ξ +Kr)2]

+ Γ−1T 4n4π4η2
(6.17)

are positive. Therefore

ε1Le ≤ 1 ⇒ σ ∈ R. (6.18)
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6.2.1 Steady convection threshold
When convective instability occurs via steady motions, the marginal state is
characterized by σ = 0, so from (6.14) we derive the critical Rayleigh number
for the onset of stationary convection:

RaS = min
(n,a2)

Λn

a2
ΓΛ2

n + Γ−1T 2n2π2ΛnA+ Γ−1T 4n4π4η2

Λn(1+Kr+4ξ)+Γ−1T 2n2π2[Kr+η2+ξ(η−1)2] +C(1−S) (6.19)

where A = η2(ξ + 1)2 + 2ηξ2 + (ξ + Kr)2. The minimum with respect to
n ∈ N is attained at n = 1, so the steady critical Rayleigh number is given
by

RaS = f(a2
c) + C(1− S), (6.20)

where

f(a2
c) = min

a2∈R+

Λ1

a2
ΓΛ2

1 + Γ−1T 2π2Λ1A+ Γ−1T 4π4η2

Λ1(1 +Kr + 4ξ) + Γ−1T 2π2[Kr + η2 + ξ(η − 1)2] (6.21)

Moreover, the minimum (6.21) is attained at the positive solution of the
fourth-order algebraic equations s(x) = 0, with x = a2 and

s(x) = h1x
4 + h2x

3 + h3x
2 + h4x+ h5,

where
h1 =Γ(1 +Kr + 4ξ),
h5 =−π8c1 · c2.

and
c1 = 1+Kr+4ξ+Γ−1KrT 2+Γ−1T 2[η2+ξ(η−1)2],

c2 = Γ+Γ−1T 2[2ξ2η+η2(1+ξ)2+(Kr+ξ)2+T 2η2].
As matter of fact, the equation s(x) = 0 admits at least one positive root
since

s(0) = h5 < 0 and lim
x→∞

s(x) = +∞.

Let us finally point out that in absence of rotation (i.e. for T → 0) from (6.19)
we recover the stationary threshold found in [49], while confining ourselves
to the case of a single component fluid (i.e. for C → 0), (6.19) coincides with
the instability threshold found in [21]. When the Soret effect is neglected
(i.e. for S → 0), one obtains that RaS = f(a2

c) + C.
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6.2.2 Oscillatory convection threshold
In order to determine the instability threshold for the onset of oscillatory
convection, the growth rate of the system σ needs to be purely imaginary,
hence let us consider σ = iσ1, with σ1 ∈ R− {0}, so (6.14) becomes

Ra = Re(Ra) + i Im(Ra) . (6.22)

whit

Re(Ra) = Λn(H1H3−H2
2 )

a2(H1−2H2+H3) +C(1− S)Λ2
n+ε1Leσ2

1C
Λ2
n+(ε1Leσ1)2

Im(Ra) =σ1

[
H1H3−H2

2
a2(H1−2H2 +H3) + ΛnC−Λnε1LeC(1−S)

Λ2
n+(ε1Leσ1)2

] (6.23)

Imposing the imaginary part Im(Ra) of (6.22) to vanish, we get

(H1H3−H2
2 )[Λ2

n+(ε1Leσ1)2]+a2(H1−2H2+H3)ΛnC(1−ε1Le+ε1LeS)=0. (6.24)

Hence, necessary conditions for the onset of oscillatory convection are

ε1Le > 1,
Λ2
n(H1H3 −H2

2 ) + a2(H1 − 2H2 +H3)ΛnC(1− ε1Le+ ε1LeS) < 0.
(6.25)

Consequently, the critical Rayleigh number for the onset of oscillatory con-
vection is

RaO= min
(n,a2)

Λn

a2
ΓΛ2

n+Γ−1T 2n2π2ΛnA+Γ−1T 4n4π4η2

Λn(1+Kr+4ξ)+Γ−1T 2n2π2[Kr+η2+ξ(η−1)2]B + C
ε1Le

(6.26)

where B =
(

1+ 1
ε1Le

)
, while the frequency of the oscillations is given by

σ2
1 = a2(H1 − 2H2 +H3)ΛnC(ε1Le− 1− ε1LeS)− Λ2

n(H1H3 −H2
2 )

(ε1Le)2(H1H3 −H2
2 ) (6.27)

Since the minimum of (6.26) with respect to n ∈ N is attained at n = 1, the
oscillatory critical Rayleigh number is given by

RaO = f(a2
c)
(

1 + 1
ε1Le

)
+ C
ε1Le

, (6.28)

or, equivalently,

RaO = RaS
(

1 + 1
ε1Le

)
+ C

[
S
(

1 + 1
ε1Le

)
− 1

]
, (6.29)
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hence, while the oscillatory Rayleigh number given by (6.28) does not depend
on the Soret number S, i.e. the Soret effect does not directly affect the
oscillatory instability threshold, from (6.29) one gets

S > ε1Le

ε1Le+ 1 ⇒ RaO > RaS (6.30)

and convection arises through stationary motions. As shown for the sta-
tionary threshold, in absence of rotation from (6.26) we recover the same
oscillatory instability threshold found in [49]. Let us remark that when a
binary mixture and the Soret effect are considered, convection can arise via
steady or oscillatory motions, while the principle of exchange of stabilities
was proved for the single component case, so, in that case, oscillatory con-
vection cannot occur (see [21]).

6.2.3 Remarks
Since

∂RaS
∂C

> 0 and ∂RaO
∂C

> 0,

the chemical component dissolved at the bottom of the layer has a stabilizing
effect on the onset of convection, i.e. it delays the onset of convection through
both stationary and oscillatory motions. Moreover,

∂RaS
∂T 2 > 0 and ∂RaO

∂T 2 > 0,

this means that rotation has a stabilizing effect on the onset of both steady
and oscillatory convection. As one is expected, both the rotation and the
dissolved solute act to stop heat transfer and fluid motion through convec-
tion.

From (6.20) and (6.28) one obtains

RaO > RaS ⇔ f(a2
c) > C[ε1Le(1− S)− 1], (6.31)

that is a necessary and sufficient condition for the onset of stationary con-
vection. Moreover, the steady and oscillatory instability thresholds (6.20)
and (6.28) are straight lines in the (C,Ra) plane, so for increasing C there is
a transition from steady to oscillatory convection in correspondence of the
intersection point

C∗ = f(a2
c)

ε1Le(1− S)− 1 (6.32)
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6.3 Differential constraint approach for non-
linear stability analysis

Let us consider the nonlinear system (6.10)1,2 and (6.4)5,6

(1+ξ)∆wf−ξ∆wp−Ra∆1θ+C∆1γ+Γ−1T 2
[
(ξ+Kr)

∂2wf

∂z2 +ηξ ∂
2wp

∂z2

]
=0,

(Kr+ξ)∆wp−ξ∆wf−Ra∆1θ+C∆1γ+Γ−1ηT 2
[
ξ
∂2wf

∂z2 +η(ξ+1)∂
2wp

∂z2

]
=0,

∂θ

∂t
+ (uf + up) · ∇θ = wf + wp + ∆θ,

ε1Le
∂γ

∂t
+ ALe(uf + up) · ∇γ = wf + wp + ∆γ + S∆θ.

(6.33)

The threshold for the nonlinear stability of the conduction solution will be
determined employing the differential constraint approach [42]. Therefore,
denoting by (·, ·) and ‖·‖ inner product and norm on the Hilbert space L2(V ),
respectively, let us set

E(t) = 1
2‖θ‖

2 + ε1Le
µ

2‖γ‖
2, (6.34)

I(t) = (wf +wp, θ) +µ(wf +wp, γ) +µS(∆θ, γ), D(t) = ‖∇θ‖2 +µ‖∇γ‖2,

where µ is a positive coupling parameter to be chosen. Retaining (6.33)1,2 as
constraints, integrating over the periodicity cell equation (6.33)3 multiplied
by θ and equation (6.33)4 multiplied by γ, adding the resulting equations
one gets

dE

dt
= I −D ≤ D (m− 1) , (6.35)

where
m = max

H∗
I

D
(6.36)

and

H∗ = {(wf , wp, θ, γ) ∈ (H1)4 | wf = wp = θ = γ = 0 on z = 0, 1; periodic in x, y
with periods 2π/l, 2π/m;D <∞; verifying (6.33)1,2}

is the space of kinematically admissible solutions.
Let us introduce the Lagrange multipliers λ′(x) and λ′′(x), hence, the maxi-
mum problem (6.36) is equivalent to

m = max
H

I +
∫
V λ

′
f1 dV +

∫
V λ

′′
f2 dV

D
, (6.37)
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where

f1 = M1w
f +M2w

p−Ra∆1θ+C∆1γ, f2 = M2w
f +M3w

p−Ra∆1θ+C∆1γ,

H = {(wf , wp, θ, γ) ∈ (H1)4 | wf = wp = θ = γ = 0 on z = 0, 1; periodic in x, y
with periods 2π/l, 2π/m, respectively;D <∞} ,

and the following operators were defined:

M1 ≡ (1 + ξ)∆ + Γ−1T 2(ξ +Kr)∂zz,
M2 ≡ −ξ∆ + Γ−1T 2ηξ∂zz,

M3 ≡ (Kr + ξ)∆ + Γ−1T 2η2(ξ + 1)∂zz.

Theorem 6.3.1. Condition m < 1 guarantees the global, nonlinear stability
of the stationary conduction solution with respect to the E−norm.

Proof. By virtue of Poincaré inequality, one obtains that D ≥ π2‖θ‖2 +
µπ2‖γ‖2, hence, if m < 1 from (6.35) it follows

Ė(t) ≤ D (m−1) ≤ π2α̂(m−1)E(t), =⇒ E(t) ≤ E(0) exp(π2α̂(m−1)t), (6.38)

with α̂ = min(1, 1/ε1Le), i.e. condition m < 1 implies E(t) → 0 at least
exponentially. Moreover, multiplying (6.4)1 by uf and (6.4)2 by up, one gets

(1 + ξ)‖uf‖2 − ξ(uf ,up) = Ra(θ, wf )− C(γ, wf ),
(Kr + ξ)‖up‖2 − ξ(uf ,up) = Ra(θ, wp)− C(γ, wp),

(6.39)

hence, by virtue of Cauchy-Schwarz inequality,

(1 + ξ)‖uf‖ − ξ‖up‖ ≤ ‖Raθ − Cγ‖,
(Kr + ξ)‖up‖ − ξ‖uf‖ ≤ ‖Raθ − Cγ‖.

(6.40)

Adding (6.40)1 and (6.40)2 one finally obtains

‖uf‖+Kr‖up‖ ≤ 2‖Raθ − Cγ‖, (6.41)

i.e. if m < 1 the seepage velocities uf and up exponentially go to zero, hence,
the global, nonlinear stability of the conduction solution with respect to the
E−norm is guaranteed.

Remark 6.3.1. If RaE is the critical value of the Rayleigh number such that
m = 1, condition m < 1 is equivalent to condition Ra < RaE.
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The Euler-Lagrange equations associated to (6.37) are

M1w
f +M2w

p − Ra∆1θ + C∆1γ = 0,
M2w

f +M3w
p − Ra∆1θ + C∆1γ = 0,

θ + µγ +M1λ
′ +M2λ

′′ = 0,
θ + µγ +M2λ

′ +M3λ
′′ = 0,

wf + wp + µS∆γ − Ra(∆1λ
′ + ∆1λ

′′) + 2∆θ = 0,
µ(wf + wp) + µS∆θ + C(∆1λ

′ + ∆1λ
′′) + 2µ∆γ = 0,

(6.42)

Employing normal modes representation in (6.42):

wfn = W f
0n sin(nπz)ei(lx+my),

wpn = W p
0n sin(nπz)ei(lx+my),

θn = Θ0n sin(nπz)ei(lx+my),

γn = Γ0n sin(nπz)ei(lx+my),

λ
′

n = λ
′

0n sin(nπz)ei(lx+my),

λ
′′

n = λ
′′

0n sin(nπz)ei(lx+my),

(6.43)

the global nonlinear stability threshold with respect to the E−norm is found
requiring zero determinant for the system

H1W
f
0n +H2W

p
0n − Raa2Θ0n + Ca2Γ0n = 0,

H2W
f
0n +H3W

p
0n − Raa2Θ0n + Ca2Γ0n = 0,

Θ0n + µΓ0n −H1λ
′
0n −H2λ

′′
0n = 0,

Θ0n + µΓ0n −H2λ
′
0n −H3λ

′′
0n = 0,

W f
0n +W p

0n − µSΛnΓ0n + Raa2(λ′0n + λ
′′
0n)− 2ΛnΘ0n = 0,

µ(W f
0n +W p

0n)− µSΛnΘ0n − Ca2(λ′0n + λ
′′
0n)− 2µΛnΓ0n = 0,

(6.44)

a2 = l2 + m2 being the wavenumber, while Λn = a2 + n2π2. Hence, one
obtains the stability condition

Ra < RaE (6.45)

where the critical nonlinear Rayleigh number is found to be

RaE =max
µ

min
n,a2

2
√

(H1H3−H2
2 )ΛnX

√
1+µ(1−S)+µSΛn(H1H3−H2

2 )−Y
µa2(H1 − 2H2 +H3) (6.46)
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where X = Ca2(H1− 2H2 +H3) + Λn(H1H3−H2
2 ) and Y = Ca2(H1− 2H2 +

H3)+2Λn(H1H3−H2
2 ). The maximum of (6.46) with respect to µ is attained

at
µc = Ca2(H1 − 2H2 +H3)

Λn(H1H3 −H2
2 )(1− S)

consequently

RaE = min
n,a2

Λn

a2
ΓΛ2

n + Γ−1T 2n2π2ΛnA+ Γ−1T 4n4π4η2

Λn(1 +Kr + 4ξ) + Γ−1T 2n2π2[Kr + η2 + ξ(η − 1)2] (6.47)

In conclusion, we obtained that RaE = f(a2
c) and

RaE < min(RaS,RaO),

therefore, there are regions of subcritical instabilities. However, for S → 1
the coincidence between the stationary threshold RaS and the global nonlin-
ear threshold RaE is achieved, even though the dependence of the instability
thresholds on the concentration field is lost.
Let us observe that the nonlinear stability threshold RaE coincides with the
stability threshold obtained when the Soret effect is not taken into account,
therefore, if Ra < RaE, the thermal conduction solution is uncondition-
ally stable, regardless of what value C has and no matter of whether the
Soret effect is taken into account or not, hence, the global nonlinear stability
threshold obtained by the energy (6.34) is affected only by rotation and the
stabilizing effect of the concentration gradient on the onset of convection is
not achieved. Let us remark that condition (6.31) becomes

RaO > RaS ⇐⇒ RaE > C[ε1Le(1− S)− 1] (6.48)

6.4 Numerical analysis of the stability results
The purpose of this Section is to numerically investigate the asymptotic be-
haviour of steady and oscillatory thresholds (6.20) and (6.28) with respect to
the meaningful parameters of the model. Since our thresholds are consistent
with those ones found in [49], let us fix {ξ = 0.1, Kr = 1.5, η = 1.5, ε1Le =
55.924} in the following simulations.

For high concentrations of the dissolved chemical component, convection sets
in through oscillatory motions, indeed in Figure 6.1(a) the linear dependence
of the Rayleigh number on the chemical Rayleigh number is depicted, and, for
the chosen set of parameters, the critical value of the concentration Rayleigh
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number for which there is a switch from stationary to oscillatory convection
is C∗ = 4.0839.
In Tables 6.1(a) and 6.1(b) the stabilizing effect of rotation on the onset of
convection is displayed, for low salt concentration - cfr. 6.1(a) - and for high
salt concentration - cfr. 6.1(b).
Table 6.3 and Figure 6.1(b) show the stabilizing effect of salt concentration
on the onset of convection and, in particular, as C increases, the increasing
of RaO is slower than the increasing of RaS and, as already observed, for
C∗ = 4.0839 there is the switch from steady to oscillatory convection.
While the Soret effect does not directly affect the oscillatory instability
threshold, as already pointed out, its increasing leads to a decreasing of
the thermal critical stationary Rayleigh number, so the Soret effect has a
inhibiting effect on the onset of stationary convection (see Tables 6.2 and
Figure 6.2(b)).
On the other hand, ε1Le does not directly affect the steady instability thresh-
old but has a destabilizing effect on the onset of oscillatory convection (see
Figure 6.2(a)).
The condition (6.31) gives us a prediction of the type of motions through
which convection will arise and it is tested in Table 6.4, in particular Table
6.4(a) shows that for ε1Le ≤ 1 the necessary conditions for the onset of oscil-
latory convection are not satisfied, so convection can arise only via stationary
motions.
In Figures (6.3)(a) and (6.3)(b) the steady and oscillatory thresholds and
the global nonlinear threshold are depicted for quoted values of the Soret
number, in particular for S = 1 the coincidence between RaE and RaS is
depicted in (6.3)(b).

Main results

In the present Chapter the onset of convection in a bi-disperse porous layer,
filled by an incompressible fluid mixture, that uniformly rotates about a
vertical axis and that is simultaneously heated and salted from below, was
studied. Taking into account the Soret effect, via linear instability analy-
sis it was determined that convection can set in via stationary or oscillatory
motions, and that the critical thermal Rayleigh numbers for the onset of con-
vection and the concentration Rayleigh number have a linear dependence on
each other. Moreover, both rotation and salt concentration have a stabilizing
effect on the onset of steady and oscillatory convection. Through differential
constraint approach, the global nonlinear stability threshold was determined
and it was found that regions of possible subcritical instabilities are present.
Numerical simulations were performed in order to test the theoretical proven
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(a) C = 1
RaS RaO a2

c T 2

24.3232 24.2671 9.8696 0
29.9262 29.9703 12.0674 0.5
35.1123 35.2491 13.9204 1
70.9153 71.6923 24.0472 5
110.6114 112.0982 32.5315 10
719.9107 732.2926 98.4287 100

(b) C = 5
RaS RaO a2

c T 2

26.3232 24.3386 9.8696 0
31.9262 30.0418 12.0674 0.5
37.1123 35.3206 13.9204 1
72.9153 71.7638 24.0472 5
112.6114 112.1697 32.5315 10
721.9107 732.3641 98.4287 100

Table 6.1: Critical steady and oscillatory Rayleigh numbers and critical
wavenumber at low concentration (C = 1) (a) and at high concentra-
tion (C = 5) (b) for quoted values of the Taylor number T 2. Table a:
ξ = 0.1, Kr = 1.5, η = 1.5, ε1Le = 55.924,S = 0.5, C = 1. Table b:
ξ = 0.1, Kr = 1.5, η = 1.5, ε1Le = 55.924,S = 0.5, C = 5.

results.
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(a) C = 1
RaS S

111.0114 0.1
110.6114 0.5
110.1114 1

(b) C = 5
RaS S

114.6114 0.1
112.6114 0.5
110.1114 1

Table 6.2: Steady instability thresholds at low concentration (C = 1) (a) and
at high concentration (C = 5) (b) and for quoted values of the Soret number
S (b). Table a: ξ = 0.1, Kr = 1.5, η = 1.5, ε1Le = 55.924, T 2 = 10, C = 1.
Table b: ξ = 0.1, Kr = 1.5, η = 1.5, ε1Le = 55.924, T 2 = 10, C = 5.
In the first case, RaO = 112.0982, in the second one, RaO = 112.1697, while
a2
c = 32.5315.

RaS RaO C
110.1114 112.0803 0
110.3614 112.0893 0.5
110.6114 112.0982 1
112.1114 112.1519 4
112.1533 112.1533 4.0839
112.1614 112.1537 4.1
112.3614 112.1608 4.5
112.6114 112.1697 5

Table 6.3: Critical steady and oscillatory Rayleigh numbers as functions of
the concentration Rayleigh number. ξ = 0.1, Kr = 1.5, η = 1.5, ε1Le =
55.924, T 2 = 10,S = 0.5.
a2
c = 32.5315.
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(a)
RaO C(ε1Le(1− S)− 1) ε1Le
6 ∃ -3.8000 0.1
6 ∃ -3 0.5
6 ∃ -2 1

129.1300 8 6
121.5225 16 10
115.8170 36 20
112.3936 96 50
112.1519 107.8480 55.924
112.0133 116 60
111.7416 136 70
111.2525 196 100

(b)
RaS RaO C(ε1Le(1− S)− 1) C

110.3614 112.0893 13.4810 0.5
110.6114 112.0982 26.9620 1
111.1114 112.1161 53.9240 2
111.8614 112.1429 94.3670 3.5
112.1114 112.1519 107.8480 4
112.3614 112.1608 121.3290 4.5
112.6114 112.1697 134.8100 5

Table 6.4: (a) Oscillatory thresholds at quoted values of ε1Le, while
C = 4,S = 0.5. For these values, the critical steady Rayleigh number is
RaS = 112.1114. (b) Steady and oscillatory thresholds at quoted values of
the chemical Rayleigh number C, while ε1Le = 55.924,S = 0.5.
The other physical parameters are fixed as ξ = 0.1, Kr = 1.5, η = 1.5, T 2 =
10, and, for this set of parameters, the critical wavenumber is a2

c = 32.5315,
while f(a2

c) = 110.1114.



Chapter 6. Double-diffusive convection in rotating BDPM 109

0 1 2 3 4 5

110

110.5

111

111.5

112

112.5

113

R
S

R
O

(a)

20 25 30 35 40 45 50

a
2

108

110

112

114

116

118

120

f S
(a

2
),

f O
(a

2
) 

  
  
  
 

(b)

Figure 6.1: (a) Critical steady and oscillatory Rayleigh numbers plotted as
functions of the concentration Rayleigh number. (b): Steady and oscillatory
thresholds for quoted values of the concentration Rayleigh number. The
other parameters are fixed as ξ = 0.1, Kr = 1.5, η = 1.5, ε1Le = 55.924, T 2 =
10,S = 0.5.
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Figure 6.2: (a): Oscillatory thresholds for quoted values of ε1Le for ξ =
0.1, Kr = 1.5, η = 1.5, C = 5, T 2 = 10,S = 0.5. (b): Stationary thresholds
for quoted values of the Soret number S for ξ = 0.1, Kr = 1.5, η = 1.5, ε1Le =
55.924, T 2 = 10, C = 5.
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Figure 6.3: The steady and oscillatory thresholds and the global nonlinear
threshold are plotted for quoted values of the Soret number. The other
parameters are fixed as ξ = 0.1, Kr = 1.5, η = 1.5, ε1Le = 55.924, T 2 =
10, C = 5.



Chapter 7

The combined effects of
rotation and anisotropy on
double diffusive bi-disperse
convection

In the previous Chapter, we described how a salt dissolved at the bottom
of the bi-disperse porous layer affects the onset of convective motions: we
found that double-diffusive convection requires higher critical values of the
Rayleigh number to set in with respect to those ones required by the onset
of convection for a single component fluid, and we also found that there is a
possibility for convection to arise via oscillatory motions.
As already explained, dual porosity materials represent an effective tool to
design man-made materials for heat transfer problems and this is the reason
why the analysis of anisotropic bi-disperse porous media is relevant, since a
proper use of anisotropy leads to an optimization of the heat transfer. With
this in mind, the aim of the present Chapter is to improve the results found in
Chapter 3 — envisaging a rotating machinery constituted by an engineered
anisotropic bi-disperse porous material [36, 59] — and further analyse the
onset of bi-disperse double-diffusive convection: we assume that the rotating
horizontal layer heated from below is occupied by an anisotropic BDPM filled
by an incompressible fluid binary mixture. The present Chapter, based on
the the joint work [60] with F. Capone and R. De Luca, is organized as fol-
lows. In Section 7.1 the mathematical model is presented and the equations
governing the evolutionary behaviour of the perturbation to the thermosolu-
tal conduction solution are derived. In Section 7.2 linear instability analysis
is performed to find the instability thresholds for the onset of steady and os-
cillatory double-diffusive convection. In Section 7.3 the instability thresholds

111
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are numerically analysed in order to display the influence of the fundamental
physical parameters on the onset of convection.

7.1 Mathematical set-up
Let us consider a reference frame Oxyz with fundamental unit vectors i, j,k
(k pointing vertically upward) and a horizontal layer L = R2× [0, d] occupied
by a bi-disperse porous medium saturated by an incompressible fluid binary
mixture at rest state and uniformly heated from below. Moreover, the layer
L rotates about the vertical axis z, with constant angular velocity Ω = Ωk.
Let us assume the local thermal equilibrium hypothesis - between the f-
phase and the p-phase - i.e. T f = T p = T [25]. Furthermore, the fluid-
saturated bi-disperse porous medium is horizontally isotropic. Hence, as in
Chapter 3, if the axes (x, y, z) are the principal axes of the permeability, the
macropermeability tensor and the micropermeability tensor are

Kf = diag(Kf
x , K

f
y , K

f
z ) = Kf

z Kf∗,

Kp = diag(Kp
x, K

p
y , K

p
z ) = Kp

z Kp∗,

Kf∗ = diag(k, k, 1), Kp∗ = diag(h, h, 1)
where

k = Kf
x

Kf
z

=
Kf
y

Kf
z

, h = Kp
x

Kp
z

=
Kp
y

Kp
z
.

To derive the governing system, a Boussinesq approximation is employed: the
density is constant except in the buoyancy forces due to the gravity g = −gk,
where it has a linear dependence on temperature and concentration fields,
i.e.

% = %F [1− α(T − T0) + αC(C − C0)],
α and αC being the thermal and the salt expansion coefficient, respectively,
while %F is the fluid density at the reference constant temperature T0 and
concentration C0.
In order to take into account the Coriolis terms due to the uniform rotation
of the layer about z for the micropores and the macropores, we extend the
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Brinkman model, obtaining the following governing system:

vf=1
µ
Kf ·

[
−ζ(vf−vp)−∇pf+%FαgTk−%FαCgCk− 2%FΩ

ϕ
k× vf+µ̃f∆vf

]
,

vp=1
µ
Kp ·

[
−ζ(vp−vf )−∇pp+%FαgTk−%FαCgCk− 2%FΩ

ε
k× vp+µ̃p∆vp

]
,

∇ · vf = 0,
∇ · vp = 0,
(%c)mT,t + (%c)F (vf + vp) · ∇T = km∆T,

ε1
∂C

∂t
+ (vf + vp) · ∇C = ε2∆C

(7.1)

where
ps = P s − %F

2 |Ω× x|2, s = f, p

are the reduced pressures, with x = (x, y, z), vs is the seepage velocity for
s = {f, p}, T and C are the temperature and concentration fields, ζ is an
interaction coefficient between the f-phase and the p-phase, µ is the fluid
viscosity, µ̃s is the effective fluid viscosity, c is the specific heat, ks is the
thermal conductivity for s = {f, p}, ksC = salt diffusivity for s = {f, p},

(%c)m = (1− ϕ)(1− ε)(%c)sol + ϕ(%c)f + ε(1− ϕ)(%c)p,
km = (1− ϕ)(1− ε)ksol + ϕkf + ε(1− ϕ)kp,
ε1 = ϕ+ ε(1− ϕ), ε2 = ϕkfC + ε(1− ϕ)kpC .

To (7.1) the following boundary conditions are appended

vs · n = 0 , s = {f, p} on z = 0, d,
T = TL , on z = 0 , T = TU , on z = d

C = CL , on z = 0 , C = CU , on z = d

(7.2)

where n is the unit outward normal to the impermeable horizontal planes
delimiting the layer and TL > TU , CL > CU , since the layer is uniformly and
simultaneously heated and salted from below.
The problem (7.1)-(7.2) admits the stationary motionless solution (thermoso-
lutal conduction solution):

vf = 0, vp = 0, T = −βz + TL, C = −βCz + CL,

where β = TL − TU
d

is the temperature gradient, while βC = CL − CU
d

is
the concentration gradient. To perform the stability analysis of the basic
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solution, let us introduce a generic perturbation {uf ,up, θ, γ, πf , πp} to the
steady conduction solution, so the evolutionary equations governing the per-
turbation fields are:

uf= 1
µ
Kf ·

[
−ζ(uf−up)−∇πf+%Fαgθk−%FαCgγk−2%FΩ

ϕ
k× uf+µ̃f∆uf

]
,

up= 1
µ
Kp ·

[
−ζ(up−uf )−∇πp+%Fαgθk−%FαCgγk− 2%FΩ

ε
k× up+µ̃p∆up

]
,

∇ · uf = 0,
∇ · up = 0,
(%c)mθ,t + (%c)F (uf + up) · ∇θ = (%c)Fβ(wf + wp) + km∆θ,

ε1
∂γ

∂t
+ (uf + up) · ∇γ = βC(wf + wp) + ε2∆γ

(7.3)

where uf = (uf , vf , wf ), up = (up, vp, wp). To derive the dimensionless per-
turbed system, let us introduce the non-dimensional parameters

x∗ = x
d
, t∗ = t

t̃
, θ∗ = θ

T̃
, γ∗ = γ

C̃
, us∗ = us

ũ
, πs∗ = πs

P̃
, for s = {f, p},

η = ϕ

ε
, σ = µ̃p

µ̃f
, γ1 = µ

Kf
z ζ
, γ2 = µ

Kp
z ζ
, A = (%c)m

(%c)F
,

where the scales are given by

ũ= km
(%c)fd

, t̃ = d2(%c)m
km

, P̃ = ζkm
(%c)f

, T̃ =
√√√√ βkmζ

(%c)f%Fαg
, C̃= km

(%c)F

√
βCζ

ε2%FαCg
,

and let us define the Lewis number Le, the Taylor number T , the Darcy num-
ber Daf , the thermal Rayleigh number Ra, the chemical Rayleigh number
C,

Le = km
ε2(%c)m

, T = 2%FΩKf
z

ϕµ
, Daf = µ̃fK

f
z

d2µ
,

Ra =

√√√√βd2(%c)f%Fαg
kmζ

, C =

√√√√βCd
2%fαCg

ε2ζ
,

respectively. The resulting non-dimensional perturbation equations, drop-
ping all the asterisks for notational convenience, are

γ1(Kf )−1uf+(uf−up)=−∇πf+Raθk−Cγk−γ1T k× uf+Dafγ1∆uf ,
γ2(Kp)−1up−(uf−up)=−∇πp+Raθk−Cγk−ηγ1T k× up+Dafγ1σ∆up,
∇ · uf = 0,
∇ · up = 0,
θ,t + (uf + up) · ∇θ = Ra(wf + wp) + ∆θ,

ε1Le
∂γ

∂t
+ A Le(uf + up) · ∇γ = C(wf + wp) + ∆γ

(7.4)
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under the initial conditions

us(x, 0) = us0(x) , πs(x, 0) = πs0(x) , θ(x, 0) = θ0(x) , γ(x, 0) = γ0(x)

with ∇ · us0 = 0, s = {f, p}, and the stress-free boundary conditions [10]

uf,z = vf,z = up,z = vp,z = wf = wp = θ = γ = 0 on z = 0, 1. (7.5)

Remark 7.1.1. According to experimental results, let us assume the pertur-
bation fields being periodic functions in the horizontal directions x, y of period
2π/l and 2π/m, respectively, and let us denote by

V =
[
0, 2π

l

]
×
[
0, 2π
m

]
× [0, 1]

the periodicity cell. Moreover, let us assume that ∀f ∈ {∇πs, us, vs, ws, θ, γ}
for s = {f, p}, f ∈ W 2,2(V ) ∀t ∈ R+.

7.2 Onset of instability
To determine the linear instability threshold for the onset of double diffusive
convection, we linearise system (7.4) and seek for solutions uf ,up, θ, γ, πf , πp
with time dependence like eσt:
γ1(Kf )−1uf+(uf−up)=−∇πf+Raθk−Cγk−γ1T k× uf+Dafγ1∆uf ,
γ2(Kp)−1up−(uf−up)=−∇πp+Raθk−Cγk−ηγ1T k× up+Dafγ1σ∆up,
σθ = Ra(wf + wp) + ∆θ
ε1Leσ = C(wf + wp) + ∆γ

(7.6)

Let us denote by

∆1f = f,xx + f,yy , ∆m ≡ ∆∆ · · ·∆︸ ︷︷ ︸
m

, ωs3 = (∇× us) · k, s = {f, p}

a = γ1

k
+ 1 , b = γ2

h
+ 1

and define the following operators

A ≡ a−Dafγ1∆ , B ≡ b−Dafσγ1∆ , Ψ ≡ (AB − 1). (7.7)

We compute the third components of curl and of double curl of (7.4)1,2, that
are given by Aω

f
3 − ω

p
3 = γ1T wf,z,

−ωf3 +Bωp3 = ηγ1T wp,z
(7.8)
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and
−γ1

k
wf,zz−γ1∆1w

f−∆wf+∆wp=−Ra∆1θ+C∆1γ,+γ1T ωf3,z−Dafγ1∆2wf,

−γ2

h
wp,zz−γ2∆1w

p+∆wf−∆wp=−Ra∆1θ+C∆1γ,+ηγ1T ωp3,z−Dafγ1σ∆2wp,
(7.9)

respectively. Applying the operator B to (7.8)1, by virtue of (7.8)2, we get

Ψωf3 = γ1T Bwf,z + ηγ1T wp,z.

Then, applying the operator Ψ to (7.8)2, one obtains
Ψωf3 = γ1T Bwf,z + ηγ1T wp,z,

ΨBωp3 = γ1T Bwf,z + ηγ1T ABwp,z.
(7.10)

Applying the operator Ψ to (7.9)1 and ΨB to (7.9)2, we obtain

−aΨwf,zz − γ̂1Ψ∆1w
f + Ψ∆1w

p + Ψwp,zz =
−RaΨ∆1θ + CΨ∆1γ + γ1T Ψωf3,z −Dafγ1Ψ∆2wf ,

−bΨBwp,zz − γ̂2ΨB∆1w
p + ΨB∆1w

f + ΨBwf,zz =
−RaΨB∆1θ + CΨB∆1γ + ηγ1T ΨBωp3,z −Dafσγ1ΨB∆2wp,

(7.11)

with γ̂r = γr + 1, for r = 1, 2. In view of (7.10), (7.11) can be written as

[−aΨ− (γ1T )2B]wf,zz − γ̂1Ψ∆1w
f + Ψ∆1w

p+
[Ψ− η(γ1T )2]wp,zz +Dafγ1Ψ∆2wf = −RaΨ∆1θ + CΨ∆1γ,

[−bΨB − (ηγ1T )2AB]wp,zz−γ̂2ΨB∆1w
p + ΨB∆1w

f+
[ΨB − η(γ1T )2B]wf,zz +Dafσγ1ΨB∆2wp = −RaΨB∆1θ + CΨB∆1γ.

(7.12)

Consequently, we consider (7.6)3,4, (7.12)1 and (7.12)2, i.e.:

[−aΨ− (γ1T )2B]wf,zz − γ̂1Ψ∆1w
f + Ψ∆1w

p+
[Ψ− η(γ1T )2]wp,zz +Dafγ1Ψ∆2wf = −RaΨ∆1θ + CΨ∆1γ,

[−bΨB − (ηγ1T )2AB]wp,zz − γ̂2ΨB∆1w
p + ΨB∆1w

f+
[ΨB − η(γ1T )2B]wf,zz +Dafσγ1ΨB∆2wp = −RaΨB∆1θ + CΨB∆1γ,

σθ = Ra(wf + wp) + ∆θ,

ε1Leσ = C(wf + wp) + ∆γ.

(7.13)
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Let us employ normal modes solutions in (7.13) [10]:

ws = W s
0 sin(nπz)ei(lx+my), s = {f, p}

θ = Θ0 sin(nπz)ei(lx+my),

γ = Γ0 sin(nπz)ei(lx+my),

(7.14)

W f
0 ,W

p
0 ,Θ0,Γ0 being real constants, so from (7.13) it turns out that

[
Λne(A1M+σfn2π2)+Λ2

ne(Meσ+B1)+fbn2π2+B1M+

e2Λ3
nA1+e3σΛ4

n

]
W f

0 +
[
−B1Λn−eA1Λ2

n−e2σΛ3
n+ηfn2π2

]
W p

0

−Raa2
[
B1 + eΛnA1 + e2σΛ2

n

]
Θ0 + Ca2

[
B1 + eΛnA1 + e2σΛ2

n

]
Γ0 = 0,

[
Λn(eσn2π2ηf − bB1) + ηfn2π2b− Λ2

neC

−Λ3
ne

2σ(A1 + b)− Λ4
nσ

2e3
]
W f

0 +{
Λne(CN + η2fA1n

2π2) + Λ2
neσ[e(A1 + b)N + bB1 + eη2fn2π2]+

B1bN + e2Λ3
nσ(C + eσN) + Λ4

ne
3σ2(A1 + b) + Λ5

ne
4σ3+

η2fn2π2ab
}
W p

0 −Raa2
[
bB1+eΛnC+Λ2

ne
2σ(A1+b)+e3σ2Λ3

n

]
Θ0

+Ca2
[
bB1+eΛnC+Λ2

ne
2σ(A1+b)+e3σ2Λ3

n

]
Γ0 =0,

RaW f
0 + RaW p

0 − (Λn + σ)Θ0 = 0,

CW f
0 + CW p

0 − (Λn + ε1Leσ)Γ0 = 0,

(7.15)

where a2 = l2 +m2 and Λn = a2 + n2π2, while e = Dafγ1, f = (γ1T )2 and

A1 = σa+ b, B1 = γ1

k

γ2

h
+ γ1

k
+ γ2

h
, C = σ(2B1 + 1) + b

2
,

M = γ1

k
n2π2 + γ1a

2 + Λn, N = γ2

h
n2π2 + γ2a

2 + Λn.

(7.16)
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Setting

h11 =Λne(A1M + σfn2π2) + Λ2
ne(Meσ +B1) + fbn2π2 +B1M+

e2Λ3
nA1 + e3σΛ4

n,

h12 =−B1Λn − eA1Λ2
n − e2σΛ3

n + ηfn2π2,

h13 =B1 + eΛnA1 + e2σΛ2
n,

h21 =Λn(eσn2π2ηf − bB1) + ηfn2π2b− Λ2
neC − Λ3

ne
2σ(A1 + b)− Λ4

nσ
2e3,

h22 =Λne(CN + η2fA1n
2π2) + Λ2

neσ[e(A1 + b)N + bB1 + eη2fn2π2]+
B1bN + e2Λ3

nσ(C + eσN) + Λ4
ne

3σ2(A1 + b) + Λ5
ne

4σ3 + η2fn2π2ab,

h23 =bB1 + eΛnC + Λ2
ne

2σ(A1 + b) + e3σ2Λ3
n,

(7.15) can be written as
h11W

f
0 + h12W

p
0 − Raa2h13Θ0 + Ca2h13Γ0 = 0,

h21W
f
0 + h22W

p
0 − Raa2h23Θ0 + Ca2h23Γ0 = 0,

RaW f
0 + RaW p

0 − (Λn + σ)Θ0 = 0,
CW f

0 + CW p
0 − (Λn + ε1Leσ)Γ0 = 0.

(7.17)

To get a non-trivial solution, we require zero determinant for system (7.17),
finding:

Ra2 = Λn + σ

a2
h11h22 − h12h21

h13h22 − h12h23 + h11h23 − h21h13
+ C2 Λn + σ

Λn + ε1Leσ
(7.18)

The growth rate is σ = σR + iσI , so (7.18) is

Ra2 = Re(Ra2) + i Im(Ra2), (7.19)

where the real part and the imaginary part are respectively given by

Re(Ra2)= (Λn+σR)(h11h22−h12h21)
a2(h12h23−h13h22−h11h23+h21h13)

+C2 (Λn + σR)(Λn + ε1LeσR) + ε1Leσ
2
I

(Λn + ε1LeσR)2 + (ε1LeσI)2 ,

Im(Ra2)=σI

[
h11h22−h12h21

a2(h12h23−h13h22−h11h23+h21h13)

+C2 Λn(1− ε1Le)
(Λn + ε1LeσR)2 + (ε1LeσI)2

]
.

(7.20)
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Theorem 7.2.1. If ε1Le ≤ 1, the strong form of the principle of exchange
of stabilities holds, i.e. oscillatory convection cannot arise.
Proof. Let us underline that, after several algebraic computations, it can
checked that h11h22−h12h21 and h12h23−h13h22−h11h23 +h21h13 are strictly
positive. Since Ra2 is a real number, the imaginary part of (7.19) has to
vanish:

σI

{
(h11h22−h12h21)[(Λn+ε1LeσR)2+(ε1LeσI)2]

+C2a2(h12h23−h13h22−h11h23+h21h13)Λn(1−ε1Le)
}

= 0.
(7.21)

Under the assumption ε1Le ≤ 1, from (7.21) it necessarily follows σI = 0,
i.e. σ ∈ R.
Remark 7.2.1. If we confine ourselves to the case of a single component fluid
(i.e. for C2 → 0), we actually recover the model describing the evolution-
ary behaviour of a fluid-saturated anisotropic Brinkman bi-disperse porous
medium, rotating about the vertical axis, already analysed in Chapter 3. In
particular, (7.19) becomes

Ra2 = (Λn+σR)(h11h22−h12h21)
a2(h12h23−h13h22−h11h23+h21h13)

+ i
σI(h11h22−h12h21)

a2(h12h23−h13h22−h11h23+h21h13)

(7.22)

therefore
σI

h11h22 − h12h21

a2(h12h23 − h13h22 − h11h23 + h21h13) = 0, (7.23)

From (7.23) it follows σI = 0, i.e. σ ∈ R and the strong form of the principle
of exchange of stabilities holds, under no additional hypotheses. Therefore,
when there is no concentration gradient, convection can set in only through
stationary motions.

7.2.1 Stationary secondary flow
The marginal state for stationary convective instabilities is reached for σ = 0
(σR = 0, σI = 0), so from (7.18) we derive the critical Rayleigh number for
the onset of stationary convection:

Ra2
S = min

(n,a2)∈N×R+

Λn

a2
h11h22−h12h21

h12h23−h13h22−h11h23+h21h13
+ C2 (7.24)

As already pointed out, if we consider a single component fluid (i.e. for
C2 → 0), (7.24) coincides with the instability threshold (3.21).
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7.2.2 Overstability threshold
The marginal state for oscillatory convection is characterized by σ = iσI ,
(σI ∈ R− {0}, σR = 0), so from (7.18) and (7.21) it follows

Ra2
O= min

(n,a2)∈N×R+

Λn

a2
h11h22−h12h21

h12h23−h13h22−h11h23+h21h13
+C2 Λ2

n+ε1Leσ2
I

Λ2
n+(ε1LeσI)2 (7.25)

where the frequency of the oscillations σI is given by

σ2
I=
a2(h12h23−h13h22−h11h23+h21h13)ΛnC2(ε1Le−1)−Λ2

n(h11h22−h12h21)
(ε1Le)2(h11h22−h12h21) (7.26)

Therefore, the linear instability threshold for the onset of oscillatory convec-
tion is

Ra2
O= min

(n,a2)∈N×R+

Λn

a2
h11h22−h12h21

h12h23−h13h22−h11h23+h21h13

(
1+ 1

ε1Le

)
+ C2

ε1Le
(7.27)

Let us underline that the relation between the steady and the oscillatory
thresholds is given by

Ra2
O = Ra2

S

(
1 + 1

ε1Le

)
− C2, (7.28)

so for increasing C2, i.e. for high salt concentrations, convection will arise
via oscillatory motions.

7.3 Influence of the fundamental physical pa-
rameters on the onset of instability

Due to the complicated algebraic form of the instability thresholds (7.24) and
(7.27), we perform numerical simulations via Matlab software in order to out-
line how rotation, Brinkman model, anisotropy and concentration gradient
affect the onset of convection, i.e. to outline the influence of the fundamental
parameters T 2, Daf , h, k, C2 on the steady and oscillatory instability thresh-
olds (7.24) and (7.27), respectively. In the following simulations, we employ
the following set of parameters: {η = 0.2, σ = 0.3, γ1 = 0.9, γ2 = 1.8, ε1Le =
55.924} (see [49, 59, 36, 23]).
We numerically obtained that the minimum (7.24) and (7.27) with respect
to n is attained at n = 1 and in Figure 7.1 the neutral curves are shown,
where we set

f 2
S(a2) = Λ1

a2
h11h22−h12h21

h12h23−h13h22−h11h23+h21h13
+ C2,

f 2
O(a2) = Λ1

a2
h11h22−h12h21

h12h23−h13h22−h11h23+h21h13

(
1 + 1

ε1Le

)
+ C2

ε1Le
.

(7.29)
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In Figures 7.2(a) and 7.2(b) the steady and oscillatory Rayleigh numbers
Ra2

S and Ra2
O are depicted as functions of the Taylor number T 2, we can

conclude that the instability thresholds are increasing functions with respect
to T 2, so the rotation of the layer has a stabilizing effect on the onset of
double-diffusive convection. In particular, the instability thresholds are rep-
resented for a low concentration Rayleigh number C2 in Figure 7.2(a) and for
a high concentration Rayleigh number in Figure 7.2(b): when the concentra-
tion gradient in the layer is low, convection sets in via stationary motions,
but when the concentration gradient is high, oscillatory convection arises.
The asymptotic behaviour of the instability thresholds with respect to the
Rayleigh number for the salt field is clearly depicted in Figure 7.3: both Ra2

S

and Ra2
O are linear and increasing function of C2, so (i) when a salt dissolved

at the bottom of the layer is considered, the convection is delayed, (ii) for
increasing concentration Rayleigh numbers, double-diffusive convection oc-
curs via oscillatory motions.
In Tables 7.1(a) and 7.1(b) the combined effects of anisotropy and the Brinkman
model on the onset of double-diffusive convection are depicted. In particu-
lar, the critical steady and oscillatory Rayleigh numbers Ra2

S and Ra2
O are

shown for increasing quoted values of the Darcy number Daf when the mi-
cropermeability parameter h is lower - Table 7.1(a) - and higher - 7.1(b) -
than the macropermeability parameter k. Both critical steady and oscilla-
tory Rayleigh numbers increase as the Darcy number increases, i.e. Daf has
a stabilizing effect on the onset of convection. Moreover, for very law Daf ,
oscillatory convection occurs, while as Daf increases, there is a switch from
oscillatory to steady convection. Let us finally observe that when h << k,
the instability thresholds are larger then the ones for the case h >> k, so
when the micropermeability parameter is larger then the macropermeability
parameter, the onset of convection is facilitated. This behaviour is depicted
also in Figures 7.4(a) and 7.4(b).

(a) h << k

R2
S R2

O Daf
106.1926 103.0914 0.001
408.1480 410.4462 1
1615.8 1639.7 5

(b) h >> k

R2
S R2

O Daf
54.0168 49.9827 0.001
369.6938 371.3044 1
1560 1582.9 5

Table 7.1: (a): Critical steady and oscillatory Rayleigh numbers for increas-
ing Darcy number Daf for h = 0.1, k = 10. (b): Critical steady and oscilla-
tory Rayleigh numbers for increasing Darcy number Daf for h = 10, k = 0.1.
The other parameters are T 2 = 10, C2 = 5.
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Figure 7.1: Neutral curves for h = 0.1, k = 10, T 2 = 10, Da = 0.001, C2 = 5.
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Figure 7.2: (a): Asymptotic behaviour of Ra2
S and Ra2

O with respect to T 2

for h = 0.1, k = 10, C = 1.5, Da = 0.001. (b): asymptotic behaviour of Ra2
S

and Ra2
O with respect to T 2 for h = 0.1, k = 10, C = 5, Da = 0.001.

Main results

In this Chapter, the onset of convection in a rotating horizontal layer of
anisotropic bi-disperse porous material simultaneously heated and salted
from below was analysed. We determined the instability thresholds for the
onset of double-diffusive convection via steady and oscillatory motions. More-
over, we proved the validity of the principle of exchange of stabilities under
the assumption ε1Le ≤ 1, so in this case only stationary convection can oc-
cur. Numerical simulations were performed in order to analyse the behaviour
of the instability thresholds with respect to the fundamental parameters, in
particular we found that rotation and concentration gradient act to delay the
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5 10 15 20 25 30

a
2

0

20

40

60

80

100

120

140

160

180

200

f S
(a

2
) 

, 
f O

(a
2
)

f
S
(a2) h<<k

f
O

(a2) h<<k

f
S
(a2) h>>k

f
O

(a2) h>>k

(a) Daf = 0.001

2 4 6 8 10 12 14 16 18 20

a
2

350

400

450

500

550

600

650

700

f S
(a

2
) 

, 
f O

(a
2
)

f
S
(a2) h<<k

f
O

(a2) h<<k

f
S
(a2) h>>k

f
O

(a2) h>>k

(b) Daf = 1

Figure 7.4: (a): Neutral curves at Daf = 0.001. (b): Neutral curves at
Daf = 1.
The other parameters are T 2 = 10, C2 = 5. The case h << k is h = 0.1, k =
10, while the case h >> k is h = 10, k = 0.1

onset of convection.
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Chapter 8

Oberbeck-Boussinesq
Approximation and
Compressibility effect

When dealing with thermal convection problems, a Newtonian and homoge-
neous incompressible fluid (eventually saturating a horizontal layer of porous
material) is usually considered. However, this is an approximation of the real
phenomenon, since perfectly incompressible fluids do not exist in nature and,
moreover, when the process is not isothermal, the notion of incompressibility
is not well defined, see [61]. From a mathematical point of view, the pressure
for a compressible fluid is a constitutive function, while the pressure for an
incompressible fluid is a Lagrange multiplier that comes from the constraint
of incompressibility. To study and compare the mathematical results and
solutions of both compressible and incompressible media, we will consider
the pressure p and the temperature T as thermodynamic variables, therefore
V = V (p, T ) and ε = ε(p, T ) are the constitutive equations for the specific
volume V = 1

%
(% being the fluid density) and the internal energy of the

system ε [62].
According to Müller, see [63], an incompressible fluid can be defined as a
medium whose constitutive equations depend only on temperature T and
not on pressure p, in particular:

% = %(T ), ε = ε(T ). (8.1)

Nevertheless, as pointed out by Gouin et al. in [64], Müller proved that
the definition (8.1) is compatible with the entropy principle only if the den-
sity is a constant function %(T ) = %0. On assuming constant fluid density,
no buoyancy-driven convective instabilities are allowed. However, according
to experimental observations, fluids expand when heated and a theoretical
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assumption such as the very widely employed Oberbeck-Boussinesq approx-
imation (see [65, 66]) — which consists in setting constant the density of
the fluid in all terms of the governing equations except in the body force
term due to gravity — is actually reasonable. Therefore, in order to ac-
count for the experimental validity of the problem and its thermodynamic
consistency, Gouin et. al in [64] defined a new class of fluids, the "quasi-
thermal-incompressible fluids", modifying the constitutive equations (8.1): a
quasi-thermal-incompressible fluid is a medium for which the only equation
independent of the pressure p among all the constitutive equations is the fluid
density. For such class of fluids, the constitutive equations (8.1) become:

% = %(T ), ε = ε(p, T ). (8.2)

Using the above definition, the authors proved that a quasi-thermal-incom-
pressible fluid tends to be perfectly incompressible, in the sense of Müller,
when the following estimate for the pressure holds:

p� cp
|V ′|

= %2cp
|%′|

(8.3)

where cp is the specific heat capacity at constant pressure. In convection
problems, there are no sharp temperature variations and, since the temper-
ature variation usually does not exceed 10K, the density variation is of 1%,
see [10], therefore the Oberbeck-Boussinesq approximation is coherently em-
ployed. When one does not expect large differences in temperature, one may
assume the fluid density in the body force term has a linear dependence on
temperature:

%(T ) = %0[1− α(T − T0)], (8.4)
where %0 is the fluid density at the reference temperature T0, while α is the
thermal expansion coefficient, defined as:

α = VT
V

V being the specific volume and VT the partial derivative of V with respect
to temperature T . When (8.4) is assumed, the estimate (8.3) becomes:

p� pcr = cp%0

α
, (8.5)

The critical pressure value pcr gives a limit of validity for the Oberbeck-
Boussinesq approximation and due to estimate (8.5), Gouin et. al concluded
that a quasi-thermal-incompressible fluid is experimentally similar to a per-
fectly incompressible fluid.
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Later on, with the aim of proposing a more realistic model for fluid dynamics
problems, Gouin and Ruggeri in [61] introduced the definition of extended-
quasi-thermal-incompressible fluid by which they modified the Oberbeck-
Boussinesq approximation as follows:

%(p, T ) = %0[1− α(T − T0) + β(p− p0)], (8.6)

where p0 is the reference pressure, while β is the compressibility factor defined
as

β = −Vp
V
,

with Vp the partial derivative of the volume with respect to the pressure.
Moreover, the Authors carried out a detailed analysis of the thermodynamic
stability, proving that the compressibility factor has a lower bound, namely:

β > βcr = α2TV

cp
(> 0). (8.7)

It is possible to evaluate the order of magnitude of both critical pressure pcr
and compressibility factor βcr, (8.5) and (8.7) in the case of liquid water (see
[67]), since:

T0 = 293 K, p0 = 105 Pa, V0 = 10−3 m3/kg, %0 = 103 kg/m3,

cp = 4.2 · 103 J/kg K, α = 207 · 10−6/K,

they assume the following values:

pcr = 2 · 1010 Pa = 2 · 105 atm and βcr = 3 · 10−12/Pa.

Remark 8.0.1. Since bi-disperse porous media find a large number of appli-
cations in industrial sectors, let us evaluate the critical pressure pcr for some
relevant fluids related to those fields, see [68]:

• Gasoline: T0 =15◦C, %0 =715−780 kg/m3, cp=2.22·103 J/kg K, α=
950 · 10−6/K, hence pcr = 1.67 · 109 Pa.

• Kerosene: T0 =15◦C, %0 =775−840 kg/m3, cp=2.01·103 J/kg K, α=
990 · 10−6/K, hence pcr = 1.57 · 109 Pa.

Those values of the critical pressures are actually very large with respect to
usual pressure conditions. We can conclude that for very large pressures no
body can be approximated as perfectly incompressible, for usual pressures the
incompressibility model is both experimentally and theoretically valid and it
is compatible with the principles of thermodynamics.
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In [69] the extended approximation was employed for the linear insta-
bility analysis of the conduction solution for the classical Bénard problem,
and the Authors proved via linear instability analysis the destabilizing effect
of a dimensionless parameter β̂, proportional to the positive compressibility
factor β, on the onset of convection.
To the best of our knowledge, there is a lack of investigations on the onset
of convective motions in porous media assuming the definition of extended-
quasi-thermal-incompressible fluid. This lack motivated the following Sec-
tions, whose results are based on [70], joint work with G. Arnone, F. Capone
and R. De Luca. In Section 8.1 we derive the mathematical model describ-
ing the onset of convection for the Darcy-Bénard problem employing an
extended-quasi-thermal-incompressible fluid, while in Section 8.2 we perform
a linear instability analysis of the thermal conduction solution. In Section 8.3
we analyse the asymptotic behaviour of the critical Rayleigh-Darcy number
Ra with respect to the dimensionless compressibility factor β̂, proving the
destabilizing effect of β̂ on the onset of convective instabilities.

8.1 Compressibility effect on Darcy porous
convection

Let us consider a reference frame Oxyz with fundamental unit vectors {i, j,k}
(k pointing vertically upwards) and a horizontal layer L = R2× [0, d] of fluid-
saturated porous medium. To derive the governing equations for the seepage
velocity v, the temperature field T and the pressure field p, let us employ
the modified Oberbeck-Boussinesq approximation, see [69]:

• the fluid density % is constant in all terms of the governing equations
(i.e. % = %0), except in the buoyancy term;

• in the body force term, the constitutive law for the fluid density is given
by

%(T ) = %0[1− α(T − T0) + β(p− p0)], (8.8)
with α and β the thermal expansion coefficient and the compressibility
factor, respectively, defined as

α = VT
V
, β = −Vp

V
,

• ∇ · v = 0 and D : D ≈ 0.
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Therefore, the mathematical model, according to Darcy’s law, is the following

µ

K
v = −∇p− %0[1− α(T − T0) + β(p− p0)]gk,

∇ · v = 0,

%cV

(
∂T

∂t
+ v · ∇T

)
= χ∆T,

(8.9)

where µ,K, χ, cV are fluid viscosity, permeability of the porous body, thermal
conductivity and specific heat at constant volume, respectively.
To system (8.9) the boundary conditions are appended, i.e.:

v · k = 0 on z = 0, d
T = TL on z = 0
T = TU on z = d

∇p · k + %0dβg p = 0 on z = 0, d

(8.10)

with TL > TU , since the layer is heated from below. Assuming the reference
temperature T0 = TL, system (8.9)-(8.10) admits the following stationary
conduction solution

vb = 0, Tb(z) = TL −
TL − TU

d
z,

pb(z) = 1
βd

+
[ 1
β
− α(TL − TU)

β2%0gd

]
(e−%0gβz − 1)− α(TL − TU)

βd
z.

(8.11)

Let (u, θ, π) be a perturbation to the basic solution, so the equations govern-
ing the perturbation fields are

µ

K
u = −∇π + %0αgθk− %0βgπk,

∇ · u = 0,
∂θ

∂t
+ u · ∇θ = TL − TU

d
u · k + k∆θ,

(8.12)

where k = χ
%cV

is the thermal diffusivity. Let us introduce the following scales

π = Pπ∗, u = Uu∗, θ = T#θ∗, t = τt∗, x = dx∗,

where:
P = µk

K
, U = k

d
, T# = TL − TU , τ = d2

k
.
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Therefore, the corresponding dimensionless system of equations, omitting all
the stars, is the following:

u = −∇π + Raθk− β̂πk,
∇ · u = 0,
∂θ

∂t
+ u · ∇θ = w + ∆θ,

(8.13)

where u = u · i and w = u · k and

Ra = %0αgd(TL − TU)K
µk

, β̂ = %0dgβ

are the Rayleigh-Darcy number and the dimensionless compressibility factor,
respectively.

To system (8.13) we add the following boundary conditions

w = θ = ∇π · k + β̂π = 0 on z = 0, 1 (8.14)
and initial conditions

u(x, 0) = u0(x), π(x, 0) = π0(x), θ(x, 0) = θ0(x). (8.15)

Accounting for (8.13)2, taking the divergence of (8.13)1, system (8.13) be-
comes: 

∆π + β̂
∂π

∂z
= Ra∂θ

∂z
,

u = −∇π + Raθk− β̂πk,
∂θ

∂t
+ u · ∇θ = w + ∆θ.

(8.16)

Remark 8.1.1. In the sequel, we will focus on bi-dimensional perturbations
in the plane (x, z) and assume the perturbations fields π,u, θ to be periodic
functions in the horizontal direction x with period 2π

ax
, ax being the wavenum-

ber. Without loss of generality, in the sequel we will assume that the wave-
length is 1, so 2π

ax
= 1 (see [69, 71]) and we will consider the periodicity cell

V given by:
V = [0, 1]× [0, 1].

Moreover, with ‖ · ‖ and 〈·, ·〉 we will denote norm and scalar product on
L2(V ), respectively.
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8.2 Fourier method for linear instability anal-
ysis

To perform the linear instability analysis of the basic solution, let us consider
the linear version of (8.16):

∆π + β̂
∂π

∂z
= Ra∂θ

∂z
,

u = −∇π + Raθk− β̂πk,
∂θ

∂t
= w + ∆θ,

(8.17)

together with boundary conditions:

w = θ = 0 and ∂π

∂z
= −β̂π on z = 0, 1 (8.18)

By virtue of the Robin boundary condition (8.18) on the pressure, it is pos-
sible to choose:

π = e−β̂zΠ(x, z, t). (8.19)
Therefore equation (8.17)1 becomes:

∆Π− β̂ ∂Π
∂z

= Raeβ̂z ∂θ
∂z
, (8.20)

and the Robin boundary conditions ∂π
∂z

= −β̂π becomes the Neumann con-
dition given by:

∂Π
∂z

= 0 z = 0, 1 (8.21)

Introducing the stream function Φ such that

u = −∂Φ
∂z

, w = ∂Φ
∂x

(8.22)

and considering the curl of (8.17)2 projected on the y-axis, one obtains:

∆Φ = Ra∂θ
∂x
− β̂e−β̂z ∂Π

∂x
. (8.23)
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Hence, to perform the linear instability analysis of the conduction solution,
we consider the following system:

∆Π− β̂ ∂Π
∂z

= Raeβ̂z ∂θ
∂z
,

∆Φ = Ra∂θ
∂x
− β̂e−β̂z ∂Π

∂x
,

∂θ

∂t
= ∂Φ
∂x

+ ∆θ,

(8.24)

to which we add the boundary conditions:

θ = ∂Π
∂z

= ∆Φ = 0 on z = 0, 1. (8.25)

By virtue of (8.25), since system (8.24) is linear, we assume normal mode
solutions:

θ(x, z, t)=
∞∑

m,n=0
[A1

mn(t) cos(2πmx) sin(πnz)+A2
mn(t) sin(2πmx) sin(πnz)],

Π(x, z, t)=
∞∑

m,n=0
[B1

mn(t) cos(2πmx) cos(πnz)+B2
mn(t) sin(2πmx) cos(πnz)],

∆Φ(x, z, t)=
∞∑

m,n=0
[C1

mn(t) cos(2πmx) sin(πnz)+C2
mn(t) sin(2πmx) sin(πnz)].

(8.26)

In order to get zero mean value on V , we assume (m,n) ∈ N×N0. Applying
the laplacian operator to (8.24)3 and by virtue of (8.26), one obtains:



∑
m,n

[B1
mn cos(2πmx)+B2

mn sin(2πmx)][−αmn cos(nπz)+β̂nπ sin(nπz)]

=Ra
∑
m,n

nπ[A1
mn cos(2πmx)+A2

mn sin(2πmx)]eβ̂z cos(nπz),

∑
m,n

[C1
mn cos(2πmx)+C2

mn sin(2πmx)] sin(nπz)

=
∑

m,n=0
2πm

{
Ra[−A1

mn sin(2πmx)+A2
mn cos(2πmx)] sin(πnz)

−β̂e−β̂z[−B1
mn sin(2πmx)+B2

mn cos(2πmx)] cos(nπz)
}
,

∑
m,n

−αmn[(Ȧ1
mn+αmnA1

mn) cos(2πmx)+(Ȧ2
mn+αmnA2

mn) sin(2πmx)]sin(nπz)

=
∑
m,n

2πm[−C1
mn sin(2πmx)+C2

mn cos(2πmx)] sin(nπz),

(8.27)
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where αmn = (2πm)2+(πn)2 and Ȧimn = dAimn
dt

. From (8.27)3, it immediately
follows that

C1
mn = αmn

2πm(Ȧ2
mn + αmnA

2
mn),

C2
mn = − αmn2πm(Ȧ1

mn + αmnA
1
mn).

(8.28)

Let us multiply (8.27)1 by cos(kπz) and integrate with respect to z ∈ (0, 1),
therefore we get:

∑
m,n

[B1
mn cos(2πmx)+B2

mn sin(2πmx)]
[
−αmn

∫ 1

0
cos(nπz) cos(kπz)dz+β̂nπ

∫ 1

0
sin(nπz) cos(kπz)dz

]
=

∑
m,n

Ra nπ[A1
mn cos(2πmx)+A2

mn sin(2πmx)]
∫ 1

0
eβ̂z cos(nπz) cos(kπz)dz

(8.29)

namely:

∑
m,n

[B1
mn cos(2πmx) +B2

mn sin(2πmx)]
[
−1

2αmkδnk + β̂Fnk

]
=

Ra
∑
m,n

[A1
mn cos(2πmx) + A2

mn sin(2πmx)] β̂2Lnk(β̂)
(8.30)

with:

Fnk =


0 if n = k

n2((−1)n+k − 1)
(k − n)(k + n) if n 6= k

Lnk(β̂) = nπ(eβ̂(−1)k+n − 1)
(

1
π2(k + n)2 + β̂2

+ 1
π2(k − n)2 + β̂2

)
.

(8.31)
Setting

Dmnk(β̂) = δnk + β̂


−2n
αmk

( 1
n− k

+ 1
n+ k

)
if n+ k odd

0 if n+ k even
(8.32)
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by virtue of linearity, from (8.30) one obtains

∞∑
n=0

Bi
mnDmnk(β̂) = −Raβ̂

αmk

∞∑
n=0

AimnLnk(β̂), i = 1, 2. (8.33)

Let us remark that the N × N matrix Dm is invertible since it is strictly
diagonally dominant for small β̂ (see [72]). Moreover, through a fixed point
argument, an estimate on the compressibility factor β̂ guaranteeing the in-
vertibility of the matrix Dm for all N ∈ N is obtained. The following theorem
holds.

Theorem 8.2.1. If

β̂ <
π2

2c (8.34)

with c = 1
8[2π coth(2π) + 1], then the matrix Dm is invertible for all N ∈ N.

Proof. Let us consider the basis functions:

ϕimn(x, z) =
cos(2πmx) cos(nπz) if i = 1

sin(2πmx) cos(nπz) if i = 2
(8.35)

which are the eigenfunctions of the Laplace operator:

∆ϕimn = −αmnϕimn, (8.36)

αmn = 4π2m2 + π2n2 being the eigenvalues. Since:

bmn := ‖ϕimn‖2 =


1
2 n = 0
1
4 otherwise

(8.37)

defining γmn =
√
αmnbmn, the following normalization can be introduced:

ψimn = ϕimn
γmn

. (8.38)

Equation (8.24)1 can be written in terms of (8.38) as:

−
∑
i=1,2
m,n

Bi
mn(−∆ψimn)− β̂

∑
i=1,2
m,n

Bi
mn

∂ψimn
∂z

=
∑
i=1,2
m,n

eβ̂zRaAimn
∂ψimn
∂z

. (8.39)
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If we multiply (8.39) by ψjlr and integrate on V we obtain:

−
∑
i=1,2
m,n

Bi
mn

〈
∇ψimn,∇ψ

j
lr

〉
− β̂

∑
i=1,2
m,n

Bi
mn

〈
∂ψimn
∂z

, ψjlr

〉
=
∑
i=1,2
m,n

F i,j
mnlr (8.40)

where:

F i,j
mnlr = eβ̂zRaAimn

〈
∂ψimn
∂z

, ψjlr

〉
. (8.41)

From (8.35) and (8.38), it follows that:

〈
∂ψimn
∂z

, ψjlr

〉
= 1
γmnγlr

〈
∂ϕimn
∂z

, ϕjlr

〉

= − δijδml
γmn γlr

n

2


1

n+r + 1
n−r se n+ r ≥ 1 odd

0 otherwise

(8.42)

and equation (8.40) becomes:

−Bj
lr + β̂

∑
i |m,n

n+r≥1 odd

Bi
mn

n

2
δijδml
γmnγlr

( 1
n+ r

+ 1
n− r

)
−
∑
i|m,n

F i,j
mnlr = 0. (8.43)

Now, let us introduce the following continuous functions:

P :B∈RN 7−→−Bj
lr+β̂

∑
i|m,n

n+r≥1 odd

Bi
mn

n

2
δijδml
γmnγlr

( 1
n+r+ 1

n−r

)
−
∑
i|m,n

F i,j
mnlr∈RN

G :B∈RN 7−→ β̂
∑
i|m,n

n+r≥1 odd

Bi
mn

n

2
δijδml
γmnγlr

( 1
n+r + 1

n−r

)
−
∑
i|m,n

F i,j
mnlr ∈ RN

(8.44)

so the algebraic system (8.43) - equivalent to system (8.33) - can be written as
P(B) = 0. Let us observe that the invertibility of Dm is equivalent to prove
that system (8.43) admits a nontrivial solution, moreover, B is a solution of
(8.43) if and only if B is a fixed point of G:

P(B) = 0 ⇐⇒ G(B) = B. (8.45)
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The existence of a fixed point for G is guaranteed by the Leray–Schauder
theorem, provided that:

{B ∈ RN | B = λG(B), 0 ≤ λ ≤ 1} ⊂ BR(0), (8.46)
BR(0) being a ball of radius R > 0 centered in 0, hence:

{B∈RN |B=λG(B), 0 ≤ λ ≤ 1}{⊃B :={B∈RN |B = λG(B), λ>1}. (8.47)

If B ∈ B, then λB + (1− λ)B = λG(B), i.e. (1− λ)B = λP(B), therefore:

1− λ
λ
|B|2 = P(B) ·B, (8.48)

| · | being the standard euclidean norm. Therefore, from (8.46) and (8.48) we
can state that the proof of the existence of a fixed pointy for G is equivalent
to prove that:

P(B) ·B =−
∑
l,r

(Bj
lr)2+ β̂

2
∑

i|m,n,r
n+r≥1 odd

Bi
mnB

i
mr

1
γmnγmr

(
n

n+r+ n

n−r

)

−
∑

i|m,n,l,r
F i,j
mnlrB

i
lr

(8.49)

is negative for |B| > R. For notational convenience let us set:

B̃i
mnr = Bi

mn

γmr
and B̃i

mrn = Bi
mr

γmn
(8.50)

and, hence, from (8.49) we have:

1
2

∑
i|m,n,r

n+r≥1 odd

B̃i
mnrB̃

i
mrn

(
n

n+ r
+ n

n− r

)
=: I + J. (8.51)

Therefore:

I=
∑

i|m,n,r
n+r≥1 odd

B̃i
mnrB̃

i
mrn

n

n+r =
∑
i|m

n even, r odd

B̃i
mnrB̃

i
mrn

n

n+r+
∑
i|m

n odd, r even

B̃i
mnrB̃

i
mrn

n

n+r

=
∑
i|m

n even, r odd

B̃i
mnrB̃

i
mrn

n

n+r+
∑
i|m

n even, r odd

B̃i
mnrB̃

i
mrn

r

n+r =
∑
i|m

n even, r odd

B̃i
mnrB̃

i
mrn,

(8.52)
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and similarly with J

J=
∑

i|m,n,r
n+r≥1 odd

B̃i
mnrB̃

i
mrn

n

n− r
=

∑
i|m

n even, r odd

B̃i
mnrB̃

i
mrn

n

n− r
+

∑
i|m

n odd, r even

B̃i
mnrB̃

i
mrn

n

n−r

=
∑
i|m

n even, r odd

B̃i
mnrB̃

i
mrn

n

n−r
+

∑
i|m

n even, r odd

B̃i
mnrB̃

i
mrn

r

n−r
=

∑
i|m

n even, r odd

B̃i
mnrB̃

i
mrn.

(8.53)

By virtue of (8.52) and (8.53), Cauchy-Schwarz and Young inequalities and

since γ2
mn ≥

4π2 + n2π2

4 , from (8.51) it follows:

∑
i|m

n even, r odd

B̃i
mnrB̃

i
mrn =

∑
i

n even, r odd

B̃i
·,nr · B̃i

·,rn ≤
∑
i

n even, r odd

|B̃i
·,nr| |B̃i

·,rn|

≤ 1
2

 ∑
i

n even, r odd

|B̃i
·,nr|2 +

∑
i

n even, r odd

|B̃i
·,rn|2



= 1
2

 ∑
i | m

n even, r odd

|Bi
mn|2

γ2
mr

+
∑
i | m

n even, r odd

|Bi
mr|2

γ2
mn


≤ 2

[ ∑
i | m
n even

|Bi
mn|2

∑
r odd

1
4π2+r2π2

+
∑
i | m
r odd

|Bi
mr|2

∑
n even

1
4π2+n2π2

]

≤ 2
π2

 ∑
i | m
n even

|Bi
mn|2 +

∑
i | m
r odd

|Bi
mr|2

∑
n

1
4 + n2

= 2
π2 |B|

2∑
n

1
4 + n2 = 2

π2 |B|
2c,

(8.54)

where c = 1
8[2π coth(2π) + 1]. Finally, from (8.49) and (8.54) one gets:

P(B) ·B ≤ −|B|2 + β̂c
2
π2 |B|

2 +K|B|, (8.55)

with K = |F |. Therefore, for |B| > R := K/(1− β̂c2π−2) and if

β̂ <
π2

2c (8.56)
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it follows P(B) ·B < 0.

Solving system (8.33), we get component-wise the same relation for the
coefficients B1

mj and B2
mj, i.e. for i = 1, 2:

Bi
mj = −Raβ̂

αmk

∞∑
n,k=0

AimnLnk(β̂)[Dm(β̂)]−1
kj . (8.57)

Now, let us substitute (8.28) and (8.57) in (8.27)2, obtaining:

∞∑
m,j=0

[ αmj2πm(Ȧ2
mj+αmjA2

mj) cos(2πmx)− αmj
2πm(Ȧ1

mj+αmjA1
mj) sin(2πmx)] sin(jπz)

=
∞∑

m,j=0
2πm

{
Ra[−A1

mj sin(2πmx) + A2
mj cos(2πmx)] sin(πjz)

− β̂e−β̂z
[Raβ̂
αmj

∞∑
n,k=0

A1
mnLnk(β̂)[Dm(β̂)]−1

kj sin(2πmx)

− Raβ̂
αmj

∞∑
n,k=0

A2
mnLnk(β̂)[Dm(β̂)]−1

kj cos(2πmx)
]

cos(jπz)
}

(8.58)
Let us multiply (8.58) by sin(hπz) and integrate with respect to z ∈ (0, 1),
therefore we get:

∞∑
m,j=0

[
αmj
2πm(Ȧ2

mj+αmjA2
mj) cos(2πmx)− αmj

2πm(Ȧ1
mj+αmjA1

mj) sin(2πmx)
]∫ 1

0
sin(jπz) sin(hπz)dz

=
∞∑

m,j=0
2πm

{
Ra[−A1

mj sin(2πmx) + A2
mj cos(2πmx)]

∫ 1

0
sin(πjz) sin(hπz)dz

− β̂
[Raβ̂
αmj

∞∑
n,k=0

A1
mnLnk(β̂)[Dm(β̂)]−1

kj sin(2πmx)

− Raβ̂
αmj

∞∑
n,k=0

A2
mnLnk(β̂)[Dm(β̂)]−1

kj cos(2πmx)
] ∫ 1

0
e−β̂z cos(jπz) sin(hπz)dz

}
(8.59)
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Hence:
∞∑
m=0

[
αmh
2πm(Ȧ2

mh+αmhA2
mh) cos(2πmx)− αmh

2πm(Ȧ1
mh+αmhA1

mh) sin(2πmx)
]

=
∞∑
m=0

2πmRa[−A1
mh sin(2πmx) + A2

mh cos(2πmx)]

−
∞∑
m=0

β̂2Ra2πm
∞∑

j,n,k=0

1
αmj

A1
mnLnk(β̂)[Dm(β̂)]−1

kj Njh(β̂) sin(2πmx)

+
∞∑
m=0

β̂2Ra2πm
∞∑

j,n,k=0

1
αmj

A2
mnLnk(β̂)[Dm(β̂)]−1

kj Njh(β̂) cos(2πmx)

(8.60)

with

Njh(β̂) = π(1− e−β̂(−1)h+j)
(

h+ j

π2(h+ j)2 + β̂2
+ h− j
π2(h− j)2 + β̂2

)
. (8.61)

By the linear independence of the sinus and cosinus functions with respect
to the variable x, we get, for i = 1, 2:

αmh
2πm(Ȧimh+αmhAimh) =2πmRaAimh+

β̂2Ra2πm
∞∑

j,n,k=0

1
αmj

AimnLnk(β̂)[Dm(β̂)]−1
kj Njh(β̂).

(8.62)

Equations (8.62) are first order ODEs with respect to time t. To get a unique
solution, system (8.62) decouples and let Aimh be the only non-vanishing coef-
ficient, which satisfies the following first-order ordinary differential equation:

Ȧimh + αmhA
i
mh =4π2m2

αmh
Ra Aimh+

β̂2Ra4π2m2

αmh
Aimh

∞∑
j,k=0

1
αmj
Lhk(β̂)[Dm(β̂)]−1

kj Njh(β̂)
(8.63)

together with the initial conditions on Aimh that can be derived from (8.15)3
and (9.48)1. Setting

Gmh(β̂) = 4π2m2

αmh

∞∑
j,k=0

1
αmj
Lhk(β̂)[Dm(β̂)]−1

kj Njh(β̂), (8.64)



Chapter 8. Oberbeck-Boussinesq Approx. and Compressibility effect 140

(8.63) is equivalent to

Ȧimh + Aimh

[
αmh − Ra4π2m2

αmh
− β̂2Ra Gmh(β̂)

]
= 0, (8.65)

whose solution can be easily computed to be:

Aimh(t) = γe

(
−αmh+Ra 4π2m2

αmh
+β̂2Ra Gmh(β̂)

)
t
, (8.66)

γ being a constant depending on the initial conditions. We obtain that the
perturbation fields (9.48) have an exponential dependence on time t, so let
us define the generalized eigenvalue σmh:

σmh = −αmh + Ra4π2m2

αmh
+ β̂2Ra Gmh(β̂). (8.67)

8.3 Results and discussion
Remark 8.3.1. Let us first underline that the eigenvalues (8.67) are real
∀ m,h. Therefore, the strong principle of exchange of stabilities holds and
convection can arise only via stationary motions.

Remark 8.3.2. In the limit case β̂ → 0 (i.e. according to the classical
Oberbeck-Boussinesq approximation), (8.67) becomes

σmh = −αmh + Ra4π2m2

αmh
, (8.68)

so, requiring the eigenvalue σmh to be positive, we get

−αmh + Ra4π2m2

αmh
> 0. (8.69)

Therefore, convection arises if the Rayleigh-Darcy number is greater than the
critical value

Rac = min
m,h

[(2πm)2 + (hπ)2]2
4π2m2 . (8.70)

The minimum (8.70) is obtained for h = 1 and m∗ = 1
2 , so the classical

result is recovered, i.e. the critical wavenumber is (2πm∗)2 = π2, while the
critical Rayleigh-Darcy number is:

Rac = 4π2. (8.71)
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According to (8.67), the marginal instability threshold is given setting
σmn = 0, i.e.

Ra
(4π2m2

αmh
+ β̂2Gmh(β̂)

)
− αmh = 0, (8.72)

so, when the horizontal layer of porous medium is saturated by an extended-
quasi-thermal-incompressible fluid, the critical Rayleigh-Darcy number for
the onset of convection is given by:

RaL = inf
m,h

α2
mh

4π2m2 + β̂2αmhGmh(β̂)
. (8.73)

In order to analyse the influence of the dimensionless compressibility factor
β̂ on the onset of convection, we numerically solved (8.73) for quoted values
of β̂, under the restriction (8.34) found in Theorem 8.2.1.
We found that the function Gmh is always positive and the dimensionless
compressibility factor β̂ has a destabilizing effect on the onset of convective
flows: the behaviour of the critical Rayleigh-Darcy number with respect to
β̂ is decreasing (see Figures 8.1 – 8.2) and

RaL < Rac ∀ β̂ > 0. (8.74)
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Figure 8.1: Critical Rayleigh-Darcy number RaL as function of the compress-
ibility factor β̂.
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Figure 8.2: Neutral curves for quoted values of the compressibility factor β̂.

Concluding remarks

To the best of our knowledge, in this Chapter the Darcy-Bénard problem for
an extended-quasi-thermal-incompressible fluid has been studied for the first
time. We determined the instability threshold for the onset of convection
via linear instability analysis of the conduction solution: through a closed
algebraic form, we showed that the critical Rayleigh-Darcy number depends
on the dimensionless compressibility factor β̂ and we rigorously proved that
β̂ has a destabilizing effect. Moreover, in the limit case β̂ → 0 (i.e. according
to the classical Oberbeck-Boussinesq approximation), the critical threshold
for the Darcy-Bénard problem 4π2 is recovered.



Chapter 9

A weakly nonlinear analysis of
vertical throughflow on
Darcy-Bénard convection

In Chapter 2, convection problems in clear fluids and porous media saturated
by incompressible fluids have been described. These problems attracted the
attention of many researchers, in the past as nowadays, due to the many
applications in geophysics and engineering fields [1, 10]. However, there is a
lack of comprehensive analyses describing the onset of convection in a hori-
zontal layer of porous media heated from below when a downward net mass
flow is considered across the layer.
In many applications — such as geothermal energy extraction, oil recovery
process in petroleum industry, insulation of reactor vessels, in situ coal gasi-
fication and packed bed reactors — control of convective instability plays an
important role [73], and one way to control the onset of convective motions
in the layer is considering a throughflow [74].
In general, the effect of throughflow is rather complex. In [1] the authors
described a throughflow as a net mass flow and explained that, when the
strength of the throughflow is large, the effect is to confine significant ther-
mal gradients to a thermal boundary layer at the boundary toward which
the throughflow is directed. Not only the temperature profile is altered, but
also the perturbation equations, where contributions arise from the interac-
tion between temperature and velocity [74]. In this Chapter, we are going
to study the onset of instability in a horizontal fluid-saturated porous layer
heated from below subject to the action of a suction. Planes delimiting the
layer are permeable and injection of fluid on the top and removal at the
bottom take place. Thus, the basic velocity will have a constant downward
vertical profile. We are going to refer to this problem as Sutton Problem,

143
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since she was the first researcher to analyse the problem of Darcy-Bénard
convection under the action of net throughflow. In particular, in [75] Sutton
studied the onset of convection in a porous channel in order to determine how
the critical Rayleigh number is affected by the strength of the thourghflow for
different values of the aspect ratio. The Sutton problem, in its dimensionless
form, is affected by the Péclet number, which is directly proportional to the
strength of the throughflow. As the Péclet number goes to zero, the problem
reduces to the Darcy-Bénard problem. On the other hand, for very large
Péclet number, the problem reduces to the Wooding problem [76] (named as
such in [77]). The latter shares some features with the Darcy-Bénard prob-
lem with the main difference of a background vertical fluid motion. Such a
motion causes a thermal boundary layer to form naturally. A huge amount of
heat is confined in that boundary layer close to the bottom of the horizontal
porous layer. Consequently, the fluid convective motion will take place far
from the upper plane delimiting the layer and boundary conditions on this
plane will not affect the motion. Hence, with a good approximation, the
layer appears to be of infinite height.
In the Darcy-Bénard problem the onset of instability is well-known to be
supercritical, while in the Wooding problem it turns out to be subcritical. It
seems reasonable to imagine a transition from one problem to another for in-
creasing Péclet number. Hence, what motivated the derivation of the results
presented in the present Chapter is the wish of understanding how the tran-
sition happens and determining the Péclet number beyond which the onset of
instability is no longer supercritical. To study the transition, a weakly non-
linear stability analysis of the basic steady solution is performed. According
to this analysis we investigate the behaviour of the basic solution close to on-
set of convection. A weakly nonlinear analysis for the Darcy-Bénard problem
was easily performed analytically, but when dealing with more complicated
systems, the analysis of the dynamic of the system is performed employing
numerical methods [78, 79].
The present Chapter is based on a joint future publication with F. Capone,
J.A. Gianfrani and D.S.A. Rees and is organised as follows. In Section 9.1
the mathematical model is described and the dimensionless form of the sys-
tem is determined along with the basic stationary solution, determined and
discussed in Section 9.2. In Section 9.3 the principle of exchange of stabili-
ties is proved and the instability of the basic flow is analysed by the linear
instability analysis. We provide and discuss the tenth order system of ODEs
to determine the critical Rayleigh number for the onset of instability. In
Section 9.4 the weakly nonlinear analysis is performed in order to determine
the Landau equation, which is then numerically solved. In the last Section
of the Chapter, the obtained results are collected and the future perspective
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Figure 9.1: Depicting a horizontal porous layer

are presented.

9.1 The Sutton Problem
Let us consider a fluid-saturated horizontal planar porous layer L = R× [0, d]
uniformly heated from below and let Ox∗z∗ be the reference frame. Let TL
be the fixed temperature at z∗ = 0 and let TU be the fixed temperature at
z∗ = d, where TL > TU . The temperature TU is also regarded as being the
reference temperature. The two bounding surfaces are permeable and admit
a constant downward vertical throughflow of magnitude Q across the layer.
Let v∗, T ∗, p∗ be the velocity, temperature and pressure fields, respectively.
The governing system is derived by employing the Boussinesq approximation
- the fluid density % is constant in all terms of the governing equations, except
for in the buoyancy term - and we shall assume that % is linearly dependent
on temperature T ∗:

%(T ∗) = %0[1− α(T ∗ − TU)], (9.1)

where α is the thermal expansion coefficient and %0 is the fluid density at the
reference temperature TU . Therefore, the governing equations, according to
the Darcy’s model, are well known to be, cf. [1],

µ

K
v∗ = −∇∗p∗ + %0αgT

∗k,

∇∗ · v∗ = 0,
(%c)mT ∗,t∗ + (%c)fv∗ · ∇∗T ∗ = k∇∗2T ∗,

(9.2)

where k is the overall thermal conductivity, K the permeability, µ the vis-
cosity of the fluid, g = −gk the gravitational acceleration, and c the specific
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heat. The subscripts m and f refer to the porous medium and the fluid,
respectively. The system (9.2) is completed by the following boundary con-
ditions:

v∗ = −Qk on z∗ = 0, d,
T ∗ = TL on z∗ = 0,
T ∗ = TU on z∗ = d.

(9.3)

In order to write the non-dimensional versions of (9.2) and (9.3), we introduce
the following non-dimensional parameters:

x∗=dx, v∗=Uu, p∗+%0αgTUz
∗=Pp, T ∗=θ(TL−TU)+TU , t∗= τ̂ t, (9.4)

where typical velocity, pressure and time scales are given by,

U = k

d(%c)f
, P = kµ

K(%c)f
, τ̂ = (%c)md2

k
. (9.5)

In the above, the values u = (u,w), θ and p are the dimensionless velocity,
temperature and pressure fields, respectively.
The governing non-dimensional system is,

u = −∇p+ Raθ k,
∇ · u = 0,
θ,t + u · ∇θ = ∇2θ,

(9.6)

with the boundary conditions

w = −Pe on z = 0, 1,
θ = 1 on z = 0,
θ = 0 on z = 1,

(9.7)

where
Ra = d%0αg(TL − TU)K(%c)F

µk
(9.8)

is the Darcy-Rayleigh number (hereinafter called the Rayleigh number), and

Pe = Q(%c)Fd
k

(9.9)

is the Péclet number.
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9.2 The basic state
The basic dimensionless solution of (9.6)-(9.7) is

ub = −Pek, θb = g(z), pb = p(z). (9.10)

where

g(z)= e−Pez−e−Pe

1−e−Pe and p(z)=− Ra
1−e−Pe

(
e−Pez

Pe +e−Pez− 1
Pe

)
+pb(0) (9.11)
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Figure 9.2: Basic temperature profiles for the quoted values of the Péclet
number, Pe.

We may begin our discussion of the basic state with the following remarks.

Remark 9.2.1. When the limit as Pe→ 0 is taken of the basic temperature
profile, θb, the well-known Darcy linear profile is recovered:

lim
Pe→0

θb(z) = 1− z. (9.12)

Remark 9.2.2. When the large-Pe limit is taken then

θb(z) ∼ e−Pe z. (9.13)

This means that the temperature field is confined to region of thickness of
O(Pe−1) at the lower surface.
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Both of these extreme cases may be demonstrated easily from Eqs. (9.11),
and are confirmed in Figure 9.2, which also shows the detailed manner in
which the basic temperature profile varies with the magnitude the Péclet
number, Pe.

As Pe increases from zero the upward conduction of heat from the lower
surface is counteracted increasingly by the externally-imposed downward ad-
vection. Therefore, for very large values of Pe, the layer appears to mimic a
region of infinite height because most of the layer is uniformly cold apart from
the narrow thermal boundary layer near z = 0. Therefore, for Pe � 1, we
have an a priori expectation that instabilities will be confined to this bound-
ary layer which is where the basic temperature gradient is destabilising. In
the large-Pe limit, then, the problem essentially becomes independent of the
depth of the layer and 1/Pe should be used as an alternative characteristic
nondimensional length. With such an approximation we recover the Wood-
ing problem [76]. Hence, if we wished to compare our large-Pe results with
those of Wooding, we should rescale the Rayleigh number to the appropriate
one for the Wooding problem, namely,

Raw = RaPe−1. (9.14)

9.3 Linear instability analysis
We shall now consider the onset of convection. Squire’s theorem may be
shown easily to hold, and therefore we may confine ourselves to the analysis
of two-dimensional perturbations. Let us introduce the stream function ψ
such that u = −ψ,z and w = ψ,x. Hence, system (9.6) becomes:∇2ψ = Ra θ,x,

θ,t + ψ,xθ,z − ψ,zθ,x = ∇2θ,
(9.15)

and the basic solution now takes the form,

ψb = −Pex, θb = g(z). (9.16)

By introducing a perturbation ψ̂, θ̂ to (9.16), the non-dimensional system
arising from (9.15) is∇2ψ = Ra θ,x,

θ,t − Pe θ,z + g′(z)ψ,x + ψ,xθ,z − ψ,zθ,x = ∇2θ,
(9.17)

where the circumflexes have been dropped for notational convenience and
where primes denote ordinary derivatives with respect to z. System (9.17)
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will be solved subject to the following boundary conditions:

ψ = θ = 0, on z = 0, 1. (9.18)

Let us underline that the perturbation fields are Sobolev functions inW 2,2(V )
∀t ∈ R+, V being the periodicity cell, and they are periodic in the horizontal
direction with period 2π/k.

The determination of the critical threshold for the Rayleigh number be-
gins with a linear stability analysis. The linear system associated with (9.17)
is ∇2ψ = Raθ,x,

θ,t − Pe θ,z + g′(z)ψ,x = ∇2θ.
(9.19)

Since this system and its boundary conditions are homogeneous with co-
efficients that are independent of time, it is possible to look for solutions
where the spatial dependence may be separated from an exponential time-
dependence. Let

ϕ(x, t) = ϕ(x)eσt ∀ϕ ∈ {ψ, θ} (9.20)
where σ is the exponential growth rate, so system (9.19) becomes:∇2ψ = Raθ,x,

σθ − Pe θ,z + g′(z)ψ,x = ∇2θ.
(9.21)

Theorem 9.3.1. The strong form of the principle of exchange of stabilties
holds for system (9.21)-(9.18), hence convection can occur only via steady
motions.

Proof. Since the perturbation fields are periodic in the horizontal direction
x, (9.21)-(9.18) admits solution of the form:

ψ = −i ψ eikx + c.c., θ = θ eikx + c.c., (9.22)

where k is the wavenumber and ψ, θ are complex functions. Hence, system
(9.21) becomes (dropping the bars)(D2 − k2)ψ = −Ra kθ,

σθ = Pe Dθ − g′(z)kψ + (D2 − k2)θ,
(9.23)

Equation (9.23)1 is equivalent to

Raθ = D2 − k2

−k
ψ := B−1(ψ) (9.24)
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i.e.

ψ = RaB(θ) (9.25)
Using the above, system (9.23) becomesψ = RaB(θ),

σθ = Pe Dθ − g′(z)kRaB(θ) + (D2 − k2)θ,
(9.26)

under the following boundary conditions:

θ(0) = θ(1) = ψ(0) = ψ(1) = 0. (9.27)
The linear operator associated to (9.26) is

L = D2 − k2 + PeD − g′kRaB(·) (9.28)
that is not symmetric with respect to the scalar product in L2(0, 1). There-
fore, by virtue of a similarity transformation which symmetrizes the operator
L, we will show that the principle of exchange of stabilities holds. Let us
employ the following transformation

θ = M(z)ϕ := e−
Pe
2 zϕ (9.29)

hence,

Lθ = e−
Pe
2 z
[
D2ϕ−

(Pe2

2 +k2
)
ϕ− e

Pe
2 zg′kRaB(e−Pe

2 zϕ)
]

:= M L̂M−1θ, (9.30)

where the operator L̂ is defined as

L̂ = D2 − k2 − Pe2

2 − e
Pe
2 zg′kRaB(·) (9.31)

Via the transformation (9.29), we can now focus our attention on the follow-
ing problem ψ = RaB(e−Pe

2 zϕ),
σϕ = L̂ϕ,

(9.32)

with associated boundary conditions

ϕ(0) = ϕ(1) = ψ(0) = ψ(1) = 0. (9.33)
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The operator L̂ is symmetric - hence its eingenvalues are all real - and the
spectrum of L̂ is contained in the spectrum of L [80]. Moreover, part of the
spectrum of L for which the eigenfunctions are in

{θ ∈ L2(0, 1) | ePe
2 zθ ∈ L2(0, 1)}

coincides with the spectrum of L̂ with respect to L2(0, 1). Let us consider
ϕ = e

Pe
2 zθ, with θ ∈ L2(0, 1) therefore

‖ϕ‖2
L2(0,1) ≤ ‖ePez‖L∞(0,1)‖θ‖2

L2(0,1) < +∞ (9.34)
so

ϕ ∈ L2(0, 1), ∀ θ ∈ L2(0, 1),
this means the spectra of L and L̂ coincide and the principle of exchange of
stabilities holds, i.e. convection can arise only via stationary motions.

By virtue of theorem 9.3.1, let us assume σ = 0 at the criticality. There-
fore, system (9.21) becomes∇2ψ − Raθ,x = 0,

∇2θ + Pe θ,z − g′(z)ψ,x = 0,
(9.35)

Consequence of theorem 9.3.1 is that ψ and θ in (9.22) are real functions.
Hence, solutions in (9.22) reduce to

ψ = A F (z) sin kx, θ = A G(z) cos kx, (9.36)

where A is an arbitrary amplitude. Hence, from (9.35) we obtain a boundary
value problem consisting of two second order ODEs in z:F ′′ − k2F + Ra kG = 0,

G′′ − k2G+ PeG′ − kg′F = 0,
(9.37)

with the boundary conditions:

F (0) = 0, F (1) = 0, G(0) = 0, G(1) = 0. (9.38)

Nonzero solutions of this ordinary differential eigenvalue problem for Ra were
guaranteed by the use of the fifth boundary condition,

G′(0) = nonzero constant, (9.39)
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which is one of various ways of normalising the eigensolution. This extra
condition requires one further ordinary differential equation and, given that
Ra is a constant, we may supplement equations (9.37) with

Ra′ = 0. (9.40)

The fifth order system, (9.37)-(9.40), was solved using the shooting method as
described in [81, 82, 83]. To summarise: the system was first reduced to first
order form consisting of five ODEs. However, only three initial conditions
are given and therefore the values of the two remaining ones (F ′(0) and Ra)
were found by using a Newton-Raphson iteration scheme which ensures that
both the known boundary conditions at z = 1 (F (1) = 0 and G(1) = 0)
are satisfied. The classical fourth order Runge-Kutta method was used as
the basic solver, and it was found that solutions were generally correct to
between five and six decimal places.

The system (9.37)-(9.40) was found to provide a unimodal neutral curve,
Ra(k), with a unique minimum for all values of the Péclet number. The crit-
ical Rayleigh number, Rac, is defined as being that value which corresponds
to the minimum of the neutral curve while the critical wavenumber, kc, is
the corresponding wavenumber where,

Rac = min
k∈R+

Ra(k) = Ra(kc). (9.41)

Accurate numerical values of Rac and kc need the system (9.37) to be replaced
by a suitable extended system that will fulfil Eq. (9.41). Therefore we solved
the following system:

F ′′ − k2F + Ra kG = 0,
G′′ − k2G+ PeG′ − kg′F = 0
Ra′ = 0,
F ′′1 − k2F1 − 2kF + Ra(G+ kG1) = 0,
G′′1 − k2G1 − 2kG+ PeG′1 − g′(F + kF1) = 0,
k′ = 0,

(9.42)

where F1 = F,k, G1 = G,k. The full set of boundary conditions is,

F = G = F1 = G1 = 0 for z = 0, 1 and G′(0) = 1/π, G′1(0) = 0, (9.43)

where the specific value used here for G′(0) will be discussed in the following
section, while G′1(0) may take any value.

Figure 9.3 shows the neutral curves for values of the Péclet number vary-
ing between Pe = 0 and Pe = 10 with unit increments. These were obtained
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Figure 9.3: Neutral curves Ra(k) for increasing values of Pe. The circles
show the location of the minimum, Rac of each curve.

by solving the system (9.37)-(9.40). Also shown as small disks are the critical
points (kc,Rac), which were obtained by solving the system (9.42)-(9.43).

When Pe increases from zero, it is immediately apparent that Rac in-
creases and thus the system is stabilised increasingly. The corresponding
critical wavenumber also increases which means that the wavelength of the
convecting pattern decreases. As has already been mentioned, the basic tem-
perature field becomes increasingly confined to the lower part of the layer as
Pe increases, and therefore disturbances will be increasingly concentrated
there. This is confirmed in Figure 9.4 where we see that locations of the
extreme values of both the streamfunction and the isotherms descend as Pe
increases. At the moderate value, Pe = 3, the cells still occupy the full
cavity but have clearly lost the up/down symmetry that is present when
Pe = 0. But when Pe = 10 both the flow and temperature fields are essen-
tially detached from the upper surface, and this becomes increasingly so as
Pe increases still further. The width of the convecting cells has now become
proportional to the height of the thinning basic thermal boundary layer as
we approach the large-Pe asymptotic regime that is the Wooding problem.

Figures 9.5(a) and 9.5(b) show how the critical values of Rac and kc
vary as Pe increases. The respective values for the Darcy-Bénard problem
are recovered when Pe = 0, while the red dashes show the approach to the
Wooding problem as Pe increases for which

(kw,Raw) = (0.7589, 14.3522) ⇒ (kc,Rac) ∼ (0.7589, 14.3522)Pe, (9.44)
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Figure 9.4: Streamlines and isothermal for the quoted values of the Péclet
number.
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where the numerical data was taken from [84] and confirmed by the present
authors.
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Figure 9.5: The variation of (a) Rac and (b) kc with the Péclet number. In
both cases the dashed red line corresponds to the Wooding problem.

9.4 Weakly nonlinear analysis
It is well-known that the onset of convection for the Darcy-Bénard problem
(Pe = 0) is supercritical for all wavenumbers ([85]) and so the primary aim
here is to determine whether or not this remains true in the presence of a ver-
tical throughflow. Therefore we shall undertake a weakly nonlinear analysis
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of the basic steady solution (9.16) close to the onset of convection. Such an
analysis allows us to determine the so-called Landau equation which relates
the amplitude of the most unstable mode to the deviation of the Rayleigh
number from its critical value. The coefficients of the Landau equation will
determine whether or not the onset of convection is supercritical or subcrit-
ical. Let us introduce a small parameter ε � 1 and perturb the critical
Rayleigh number by an O(ε2) amount [86], i.e. let

Ra = Ra0 + ε2Ra2 + . . . (9.45)

where Ra0 is a neutral value of the Rayleigh number arising from the linear
analysis. Given the proximity of the Rayleigh number to its critical value we
will need to define τ to be a suitably slow time scale, as follows,

τ = 1
2ε

2t, (9.46)

where the numerical factor was chosen so that the resulting Landau equation
will have solely unit coefficients when Pe = 0 and k = π. Hence system
(9.17) becomes,∇2ψ = (Ra0 + ε2Ra2)θ,x,

∇2θ = 1
2ε

2θ,τ − Pe θ,z + g′(z)ψ,x + ψ,xθ,z − ψ,zθ,x.
(9.47)

The weakly nonlinear analysis proceeds by expanding the solution of (9.47)
as a power series in ε [81]: (

ψ

θ

)
=
∞∑
n=1

εn
(
ψn
θn

)
. (9.48)

The following analysis focuses on the first three orders of approximation
arising from the substitution of (9.48) into (9.47).

9.4.1 First order
At the first order of approximation, O(ε), the resulting equations coincide
with the linear system (9.35), i.e.∇2ψ1 = Ra0θ1,x,

∇2θ1 = −Pe θ1,z + g′(z)ψ1,x,
(9.49)

for which we may choose the following solutionψ1 = A(τ)f1(z) sin kx,
θ1 = A(τ)g1(z) cos kx,

(9.50)
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where A(τ) is the amplitude of the perturbation which evolves slowly in
time. Hence, upon substituting (9.50) in (9.49), we obtain (9.37) which can
be solved as already described in Section 9.3.

9.4.2 Second order
At the second order of approximation, O(ε2), the first self-interaction of the
perturbation occurs. System (9.47) reduces to∇2ψ2 − Ra0θ2,x = 0,

∇2θ2 = −Pe θ2,z + g′(z)ψ2,x + ψ1,xθ1,z − ψ1,zθ1,x.
(9.51)

Since
ψ1,xθ1,z − ψ1,zθ1,x =A2k(f1g

′
1 cos2 kx+ f ′1g1 sin2 kx)

=1
2A

2k
[
f1g
′
1 + f ′1g1 + (f1g

′
1 − f ′1g1) cos 2kx

] (9.52)

we choose the following form as the solutions for (9.51),ψ2 = A2(τ)f2(z) sin 2kx,
θ2 = A2(τ)g0(z) + A2(τ)g2(z) cos 2kx.

(9.53)

Hence, the resulting system of ODEs is
f ′′2 − 4k2f2 + Ra02kg2 = 0,
g′′2 − 4k2g2 + Peg′2 − 2kg′f2 = 1

2k(f1g
′
1 − f ′1g1),

g′′0 + Pe g′0 = 1
2k(f1g

′
1 + f ′1g1),

(9.54)

where each of f2, g2 and g0 are zero at z = 0, 1. Generally these equations
may be solved easily because the inhomogeneous terms are nonresonant.

9.4.3 Third order
A further self-interaction appears in the O(ε3) system, which is

∇2ψ3 = Ra0θ3,x + Ra2θ1,x,

∇2θ3 = 1
2θ1,τ − Pe θ3,z + g′(z)ψ3,x

+ψ1,xθ2,z + ψ2,xθ1,z − ψ1,zθ2,x − ψ2,zθ1,x.

(9.55)

By employing solutions (9.50) and (9.53) and defining the partial differential
operators L1 and L2 to be such that

L1(ψ3, θ3) = ∇2ψ3 − Ra0θ3,x,

L2(ψ3, θ3) = ∇2θ3 + Peθ3,z − g′(z)ψ3,x,
(9.56)
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the resulting system is

L1(ψ3, θ3) = − Ra2Akg1 sin kx,
L2(ψ3, θ3) = 1

2Aτg1 cos kx

+ A3
{[
f1g
′
0 + 1

2(f1g
′
2 + 2f2g

′
1 + 2f ′1g2 + f ′2g1)

]
k cos kx

+ 1
2

[
f1g
′
2 + 2f2g

′
1 − 2f ′1g2 − f ′2g1

]
k cos 3kx

} (9.57)

Many of the inhomogeneous terms in (9.57) have the wavenumber k in the x-
direction and are therefore resonant because the partial differential operators
on the left hand side have eigensolutions with the same horizontal wavenum-
ber. This means that (9.57) cannot be solved unless a solvability condition
involving A, Aτ and Ra2 can be found. In many problems, particularly those
which are self-adjoint, it is usually quite straightforward to write down an
integral solvability condition for this purpose. The present system is not
self-adjoint, but it remains possible to obtain a solvability condition using
numerical means. The manner in which we accomplished this may be found
in the Appendix to this Chapter, and it means that the quantities Ra2A, A,τ
and A3 need to balance in such a way that they satisfy the Landau equation,

c1A,τ = Ra2A− c2A
3, (9.58)

where the values of c1 and c2 are obtained numerically. As a partial check
on the accuracy of the present analysis, the value G′(0) = 1/π in (9.43) and
the 1/2 using for the definition of τ in (9.46) yield c1 = c2 = 1 when Pe = 0,
k = π and Ra = 4π2, a result that may be shown analytically. The value,
c1, is found always to be positive; we shall not discuss its value but we note
that it is related to the speed at which A varies and it may even be scaled
out of Eq. (9.58) by a suitable redefinition of τ . Equation (9.58) admits
the steady solutions A = 0 and A = ±

√
Ra2/c2. The former is a stable

state when Ra2 < 0 and an unstable one when Ra2 > 0; these conclusions
are consistent with the linear theory presented earlier. The nonzero solution
exists when both Ra2 and c2 have the same sign. Therefore positive values of
c2 mean that nonzero solutions arise when Ra2 > 0 and therefore the onset
of convection is supercritical in such cases. This property is shared with the
Darcy-Bénard problem. On the other hand, negative values of c2 means that
steady nonzero solutions exist only when Ra2 < 0, and so the bifurcation is
subcritical (see [87, p. 21]). It is already known that the onset of convection is
subcritical for the Wooding problem, Pe→∞ ([88]). Therefore the simplest
a priori expectation is that the transition between a supercritical onset and
a subcritical one will take place at an intermediate value of Pe, i.e. when
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Figure 9.6: Variation of c2 with Pe when k = kc(Pe).

the value of c2 changes sign. The detailed dependence of c2 on Pe is shown
in Figure 9.6, where one may see that c2 decreases from 1 as Pe increases
from zero, and that it changes sign when Pe = 3.1617. So far, we have
been considering the weakly nonlinear theory at the minimum in the neutral
curves, i.e. when Ra = Rac and k = kc, and therefore Pe = 3.1617 marks the
global transition between supercritical and subcritical onset subject to that
restriction.

We shall now consider what happens at other points on the neutral curves
by computing the variation of c2 along each curve. Figure 9.7 shows a selec-
tion of neutral curves where those portions which correspond to a supercriti-
cal instability (c2 > 0) are rendered in black, while those which are subcritical
(c2 < 0) are rendered in red. Also shown are the neutral pairs, (kc,Rac), as
the dotted line. In the figure there are two clear boundaries which demarkate
the edge of the region of subcriticality at onset. For convenience, we shall
refer to these as the left and right transitional loci.
Immediately, it is clear that all neutral curves, with the exception of when
Pe = 0, have some portion which corresponds to subcritical instability.
Whenever Pe < 3.1617 these sections of the neutral curve do not include
the minimum. Therefore the onset of convection in an unbounded domain
will be supercritical, but once Pe rises above 3.1617, onset of convection will
be subcritical. Clearly, if the domain is bounded horizontally by insulated
and impermeable boundaries, then the neutral values of Ra will correspond
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Figure 9.7: Region of subcritical instability as Pe increases.

to a set of discrete values of k. Then the issue of whether onset is supercrit-
ical or subcritical will depend on which value of the Rayleigh number is the
smallest.
The right hand transitional locus corresponds to when c2 = 0 and this repre-
sents a transition from subcriticality to supercriticality as k increases. How-
ever, the left hand transitional locus marks the value of k where c2 has a
simple pole. So as the locus is approached from the left c2 → ∞ but as it
is approached from the right then c2 → −∞. A detailed examination of the
intermediate solutions in the above weakly nonlinear theory shows that the
solutions for f2 and g2 in (9.54) become infinite in magnitude as this bound-
ary is approached. This marks a new resonance but it is one which involves
forcing terms with the wavenumber, 2k. Indeed, this left hand boundary is
precisely where Ra(k) = Ra(2k) which is the source of the resonance. Our
conclusion for now is that the Landau equation given above is inadequate
in this isolated case and the nonlinear dynamics close to onset will involve
both wavenumbers as competing solutions. Finally, we note that the left
and right transitional loci merge when Pe = 0 which is where we recover the
Darcy-Bénard problem. In this case there is no resonance at all because the
inhomogeneous terms in (9.54) have an odd symmetry about z = 1

2 whereas
the O(ε) eigensolutions are even. However, it is our intention in a subse-
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quent and future work to break this symmetry weakly by allowing Pe = O(ε)
in magnitude; such a device will relegate the problematical resonance men-
tioned in the previous paragraph to the O(ε3) equations and therefore it will
be possible to obtain a pair of coupled Landau equations for the amplitudes
of the k-mode and the 2k-mode.

9.5 Main results and future perspective
We studied the onset of convection in a fluid-saturated horizontal porous
layer heated from below and under the action of a uniform vertical through-
flow. A linear instability analysis has been provided in order to set the
context for the subsequent weakly nonlinear analysis and the principle of ex-
change of stabilities has been proved, hence the instability threshold for the
onset of steady convection has been analysed. The main aim of the weakly
nonlinear analysis was to establish whether or not the onset of convection is
supercritical in all cases and, if not, to determine those circumstances when
subcriticality may be expected. Figure 9.7 gives the locus within which the
onset of convection is subcritical. We found that the onset of convection at
the critical values will always be subcritical once the Péclet number exceeds
3.1617, but that a subcritical onset always arises when Pe 6= 0 but only over
ranges of wavenumber that do not contain the critical value.
We have already mentioned one possible extention to the present work where
we will consider what happens when Pe = O(ε).
Another study which will supplement the present work involves undertaking
strongly nonlinear computations, one aim for which will be to determine the
depth of subcriticality of convective motion. This will enable us to provide
a nonlinear stability curves to supplement the present linear stability curves
and to compare with energy-based methods. Such an analysis already ex-
ists for the Wooding problem in [88] where that author found that nonlinear
onset takes place when,

Raw = 11.6132 and kw = 0.2867, (9.59)

which should be compared with the values given in (9.44).
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Appendix
Since (9.58) holds also for the stationary case, we can suppress the time
derivative term Aτ in system (9.57), obtaining

L1(ψ3, θ3) = − Ra2Akg1 sin kx,

L2(ψ3, θ3) = A3
{[
f1g
′
0 + 1

2(f1g
′
2 + 2f2g

′
1 + 2f ′1g2 + f ′2g1)

]
k cos kx

+ 1
2

[
f1g
′
2 + 2f2g

′
1 − 2f ′1g2 − f ′2g1

]
k cos 3kx

} (9.60)

The resulting system (9.60) admits the following solution

ψ3 = A3 f3(z) sin kx, θ3 = A3 g3(z) cos kx, (9.61)

Hence, substituting solution (9.61) in (9.60) and dividing both sides of the
equations by A3, we get

f ′′3 − k2f3 + Ra0kg3 = −
(

Ra2

A2

)
kg1 sin kx,

g′′3−k2g3+Peg′3−g′(z)kf3 =
[
f1g
′
0+ 1

2(f1g
′
2+2f2g

′
1+2f ′1g2+f ′2g1)

]
k cos kx

+ 1
2

[
f1g
′
2+2f2g

′
1−2f ′1g2−f ′2g1

]
k cos 3kx

(9.62)

We then solved system (9.62) as an eigenvalue problem for Ra2/A
2 from

which, and given the form of (9.58), we may now say that

c2 = Ra2

A2 . (9.63)

A similar device was used to compute c1.



Conclusions

The onset of convection has been considerably investigated since convective
flows are recognised as one of the most prevalent fluid motions in nature,
and the mathematical model describing the onset of buoyancy-driven thermal
convection is recognised as a powerful tool to model and design man-made
materials and engineered systems. In this doctoral thesis, new stability results
related to the onset of convection in porous layers are collected. The focus of
the majority of this thesis is on bi-disperse convection, since the mathemat-
ical models for dual porosity materials are efficient for thermal management
problems and to describe the behaviour of high porosity metallic foams, ce-
ramics, engineered tissues, tumors, fractured porous media.
To better model the above materials, we studied anisotropic dual porosity
materials, finding that anisotropic permeabilities have a remarkable effect
on the type of arising convective cells: when a fully anisotropic material is
considered, the fluid organizes itself into rolls in the horizontal directions, in
particular, for increasing rotation rates of the layer and for increasing values
of the anisotropic parameters, we found a transition from convection patterns
as rolls along the y-axis (the convective fluid motion occurs in the x and z
directions) to rolls in the x-direction (the convective fluid motion occurs in
the y and z directions).

Regarding rotating layers of bi-disperse porous media, through linear in-
stability and nonlinear stability analyses of the conduction solution, we found
a confirmation that the critical Rayleigh number Ra is an increasing function
of the Taylor number T (the dimensionless representation of rotation rates,
so it describes Coriolis and centrifugal effects on the onset of convection):
rotation has a stabilizing effect on the onset of convection, i.e. increasing
rotation rates act to stop the convective heat transfer and delay the onset of
convective fluid motion. Besides, when a single component fluid saturating
an anisotropic bi-disperse porous rotating layer is considered, we achieved
an optimal stability result: the linear instability threshold and the nonlinear
stability one coincide, so the linear theory completely captures the onset of
convective fluid motions.
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Moreover, we found that when dealing with a rotating anisotropic bi-disperse
porous medium, convection can arise only as a steady secondary motion, but
when inertia effects are considered too, the convective patterns can even-
tually set in through oscillatory motions with a definite frequency, meaning
that the amplitude of a generic perturbation grows periodically.

As regards double-diffusive convection in a rotating bi-disperse porous
layer, we considered a binary fluid mixture, i.e. a salt is dissolved at the bot-
tom of the bi-disperse porous layer, this means that there are simultaneous
mass and thermal diffusions. Unlike the diffusion of heat, the diffusion of salt
can take place only through the fluid phase, so an additional physical effect
has to be considered: the Soret effect, that is the mass flux created by a
temperature gradient. Later, to further improve the results we found related
to rotating anisotropic bi-disperse porous layers, and to further investigate
double-diffusive convection, we considered also an anisotropic Brinkman bi-
disperse porous medium saturated by a binary fluid mixture.
We found that when a fluid mixture is considered, convection can arise via
stationary or oscillatory motions, since the principle of exchange of stabilities
holds only under appropriate assumptions on the physical parameters of the
problem (i.e. ε1Le ≤ 1). While heating from below has a destabilizing effect
on the stability of the thermosolutal conduction solution, we confirmed that
rotation and the solute dissolved from below have a stabilizing effect on the
onset of convective flows, meaning that the critical steady and oscillatory
Rayleigh numbers (RaS and RaO) are increasing function with respect to the
Taylor number T and the concentration Rayleigh number C.
Moreover, in the isotropic case, we performed a nonlinear stability analysis
of thermosolutal conduction solution and we found a region of subcritical
instabilities, since the linear instability threshold and the global nonlinear
stability threshold do not coincide. However, for the Soret number S that
goes to 1, the coincidence between the stationary threshold and the global
nonlinear threshold is achieved, even though the dependence of the instability
thresholds on the concentration field gets lost. Also, the nonlinear stability
threshold RaE coincides with the stability threshold obtained when the Soret
effect is not taken into account, therefore, if Ra < RaE, the thermal conduc-
tion solution is unconditionally stable, regardless of what value C has and
no matter of whether the Soret effect is taken into account or not, hence,
the global nonlinear stability threshold is affected only by rotation and the
stabilizing effect of the concentration gradient on the onset of convection is
not achieved.

We found a region of subcritical instabilities also for the Sutton Problem.
We considered an horizontal layer of fluid-saturated porous medium bounded
by permeable boundaries, and injection of fluid on the top and removal at
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the bottom take place, so the layer is subject to a constant downward vertical
throughflow. The dynamic of the dimensionless system depends on the Péclet
number Pe, a non-dimensional number directly proportional to the strength
of the throughflow. Via linear instability analysis of the throughflow solu-
tion, we proved that the critical Rayleigh number is an increasing function
of Pe, so the downward net mass flow has a stabilizing effect on the onset of
convection, i.e. the throughflow acts to delay the onset of convective insta-
bilities. Furthermore, we found that the Sutton Problem is a transitioning
problem between the Darcy-Bénard Problem and the Wooding Problem: as
the Péclet number goes to zero, the problem reduces to the Darcy-Bénard
problem — whose convective instabilities are well known to be supercritical
— while for very large Péclet number, the problem reduces to the Wooding
problem — for which the onset of instability is subcritical. As the Péclet
number increases, the temperature field is confined to a region of thickness
O(Pe−1) close to the bottom surface, so most of the layer is uniformly cold
apart from the thermal boundary layer at the bottom, i.e. for high Pe the
flow and temperature fields are essentially detached from the upper surface
and the layer appears to mimic a region of infinite height.
Therefore, with the aim of determine for which value of the Péclet number
this transition happens, we performed a weakly nonlinear stability analysis of
the basic throughflow solution and determined a critical value of Pe beyond
which the onset of convection is no longer supercritical.

Finally, the onset of convection in an horizontal layer of porous medium
heated from below saturated by an extended-quasi-thermal-incompressible
fluid was investigated, with the aim of analysing the thermodynamic consis-
tency of the Oberbeck-Boussinesq approximation and to obtain more ther-
modynamic consistent stability results. Revising the Oberbeck-Boussinesq
approximation, we employed a modified constitutive equation for the fluid
density in body force term due to gravity, allowing the fluid to be slightly
compressible: the fluid density is assumed as a function of the temperature
field and the pressure field. Via the linear instability analysis of the thermal
conduction solution, we rigorously determined in closed algebraic form the
critical Rayleigh number RaL and analysed its behaviour with respect to di-
mensionless parameter β̂ directly proportional to the compressibility factor
β̂: we proved that RaL is a decreasing function with respect to β̂, i.e. allowing
the fluid to be slightly compressible, the onset of convection is enhanced.
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