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To Daria 
 
 

Fall in love with some activity, and do it! Nobody ever figures out 

what life is all about, and it doesn't matter. Explore the world. 

Nearly everything is really interesting if you go into it deeply 

enough.  

― Richard P. Feynman 
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Abstract 
Magnetic resonance imaging (MRI) represents a uniquely powerful tool 

for clinical and basic neuroscience, providing an invaluable window into 

the in vivo brain. 

In recent years, different MRI modalities have found their stable place in 

the clinical and/or research setting, leading to an ever-increasing number 

of brain imaging studies. 

In this context, machine learning has emerged as a powerful technique for 

recognizing patterns on high-dimensional MRI datasets. 

I present four different case studies in which brain MRI and 

statistical/machine learning methods are applied in different clinical 

populations to address specific research questions, including: (i) 

modelling brain MRI data using unsupervised machine learning to stratify 

patients with multiple sclerosis; (ii) building a model of healthy aging 

using deep learning and brain MRIs and testing whether patients 

with Fabry disease have older appearing brains compared to 

healthy subjects; (iii) analyzing MRI-based connectivity to study 

alterations of brain structural and functional networks in 

schizophrenia; (iv) using quantitative MRI to characterize brain 

iron and myelin changes in multiple sclerosis. 

 

Keywords: magnetic resonance imaging, machine learning, brain, 
multiple sclerosis, Fabry disease, schizophrenia. 
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Sintesi in lingua italiana 
L’imaging di risonanza magnetica (RM) rappresenta uno strumento 

fondamentale per le neuroscienze cliniche e di base, permettendo di 

“guardare” all’interno dell’encefalo in vivo in maniera non invasiva. 

Negli ultimi anni, diverse modalità di RM hanno trovato un ruolo stabile 

in ambito clinico e/o di ricerca, portando ad un numero sempre crescente 

di studi basati su imaging dell’encefalo.  

In questo contesto, il machine learning è emerso come uno strumento 

straordinariamente potente per modellare grandi collezioni di dati RM.  

Presento qui quattro diversi esempi di come RM dell’encefalo e metodi 

statistici/di machine learning possano essere applicati in popolazioni 

cliniche per rispondere a specifici quesiti di ricerca, che includono: (i) 

modellare dati di RM dell’encefalo utilizzando machine learning non 

supervisionato per stratificare pazienti con sclerosi multipla; (ii) costruire 

un modello di invecchiamento fisiologico utilizzando deep learning e RM 

dell’encefalo e testare se la malattia di Fabry incide sull’invecchiamento 

encefalico; (iii) analizzare dati RM di connettività cerebrale per studiare le 

alterazioni dei network strutturali e funzionali in soggetti con 

schizofrenia; (iv) utilizzare l’RM quantitativa per caratterizzare le 

alterazioni di ferro e mielina encefalici associati alla sclerosi multipla.  

 
 

Parole chiave: risonanza magnetica, machine learning, encefalo, sclerosi 
multipla, malattia di Fabry, schizofrenia. 
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Chapter 1 
Introduction 
Magnetic resonance imaging (MRI) represents a uniquely powerful tool 

for clinical and basic neuroscience, providing an invaluable window into 

the in vivo brain. 

MRI is intrinsically multiparametric, with different modalities that can be 

used to highlight different aspects of the brain’s structure and function. 

Structural MRI (sMRI) is typically used to show the gross anatomy of the 

brain: that is, mainly gray matter (GM), white matter (WM) and 

cerebrospinal fluid (CSF). Many varieties of structural imaging exist, each 

of which can highlight different aspects of brain anatomy, including 

pathological tissue. T1-weighted images are the most common structural 

images, used for getting good CNR (contrast-to-noise ratio) and tissue 

discrimination, especially in healthy subjects (HS). 

Diffusion MRI (dMRI) provides indirect information about local physical 

diffusion processes and axonal fiber directions. It can be used to examine 

the “wiring” of the brain (i.e., anatomical connectivity), as well as to 

investigate tissue microstructure. 

Functional MRI (fMRI) highlights dynamic changes in the brain in order 

to examine neuronal function. It provides a surrogate measure of 

neuronal activity by using the blood oxygenation level dependent (BOLD) 

effect, which is sensitive to changes of blood oxygenation in response to 

neuronal firing. 

Quantitative MRI (qMRI) goes beyond conventional MRI, which aims 

primarily at local image contrast, providing quantitative measurements of 



6 
 

specific physical parameters related to the nuclear spin of protons in 

water. These parameters carry information about the local microstructural 

environment of the protons (e.g., myelin), and can be used to directly 

characterize biological tissue microstructure.1 

In recent years, all these modalities have found their stable place in the 

clinical and/or research setting. Indeed, the maturation of in vivo 

neuroimaging has led to incredible quantities of digital information about 

the human brain. An increasing number of brain imaging studies have 

started to join the ranks of “big data” science, prompting the usage of 

novel image analysis and statistical methods for the investigation of high-

dimensional MRI datasets. 

In particular, machine learning (ML) has emerged as a powerful 

technique for recognizing patterns on medical images, driven also by the 

substantial increase in computational performance and the introduction 

of new algorithms.2 

Here, I will describe four different case studies in which brain MRI and 

statistical methods are applied in different clinical populations to address 

specific research questions. 

In Chapter 2, we will see how the unsupervised machine learning 

modelling of brain MRI data can be used to obtain a biologically and 

clinically meaningful stratification of patients with multiple sclerosis (MS). 

In Chapter 3, we will use deep learning to build a model of healthy 

aging from brain MRIs and test whether patients with Fabry 

disease (FD) have older appearing brains compared to HS. 

In Chapter 4, we will assess the impact of schizophrenia (SZ) on 

structural and functional MRI-based brain connectivity.  

In Chapter 5, we will use qMRI to characterize MS-related changes of 

brain iron and myelin and explore their clinical correlates. 
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Chapter 2 

Disease Modelling in Multiple 
Sclerosis 
2.1 Background and Rationale 

Brain MRI abnormalities in MS represent objective indicators of the 

patient’s biological status, reflecting pathogenetic mechanisms underlying 

disease evolution.3  

Although a massive body of evidence regarding the biological and clinical 

relevance of MRI biomarkers has been provided through the years by 

large-N research studies, their implementation in the single-subject 

setting and therefore in clinical practice remains challenging.4 Actually, 

MRI biomarkers exhibit high variance, resulting from both non disease-

related confounders (e.g. age, sex, other coexisting physiologic and 

pathologic conditions) and disease-related phenotypic and temporal 

heterogeneity, thus hampering the definition of absolute cut-points and 

limiting their utility for effective patient stratification.  

Over the years, technical advances and the emergence of imaging 

guidelines5,6 have led to the widespread availability of high-quality 

clinical MRI scans, including sequences with isotropic voxel resolution 

suitable for volumetric quantifications.7 Unfortunately, this goldmine of 

information remains largely unexploited due to the complexity of 

meaningfully modelling high-dimensional dataset and the frequent lack 

of associated data reliably reflecting the patients’ clinical status. 

Unsupervised ML techniques modelling disease progression based solely 
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on objective biomarker changes, without reliance on a priori clinical 

information or explicit biomarker thresholds, represent a valuable 

approach to overcome these issues.8 Recently, such methods have been 

applied to primary neurodegenerative disorders of the Central Nervous 

System8,9 and showed promising results when translated into the MS 

scenario with the aim to characterize the disease-specific sequence of 

clinical and MRI changes10,11 or to provide an MRI-driven definition of 

disease phenotypes.12 

Based on these premises, we applied a recently developed algorithm 

called Subtype and Staging Inference (SuStaIn), which identifies data-

driven subtypes characterized by distinct trajectories of biomarkers 

abnormality accumulation, to clinical MRI scans of a large single-center 

cohort of relapsing-remitting MS (RRMS) patients. We aimed to 

demonstrate that, based on a fine-grained volumetric mapping of 

different brain areas and MS lesions obtained from cross-sectional MRI 

visits, such approach would provide an accurate patient stratification 

which is both biologically reliable and prognostically meaningful in the 

light of longitudinal MRIs and long-term (10-year) motor and cognitive 

evaluations. 

2.2 Materials and Methods 

2.2.1 Participants 
In this monocentric retrospective study, brain MRI studies of patients 

with an MS diagnosis revised according to the 2010 McDonald criteria13 

and a relapsing-remitting (RR) course14 were screened for eligibility from 

the radiological and clinical research databases of the MS center of the 

University of Naples “Federico II”, containing data collected starting from 

October 2006. 

Brain MRI scans of HS from the same databases and an external 

population of RRMS patients from the University of Genoa were also 
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selected to develop norms for z-scores calculation and select MRI features. 

The study was conducted in compliance with the ethical standards and 

approved by the Ethics Committee “Carlo Romano” of the Host 

Institution. 

2.2.2 Clinical evaluation 
For all patients, clinical disability within one week from MRI was 

estimated using the Expanded Disability Status Scale (EDSS). Patients for 

whom a long-term clinical and neuropsychological evaluation was 

available were classified at follow-up (10±2years from baseline MRI) 

according to: (i) motor disability, ranging from 0 to 3 according to 

ambulation benchmarks corresponding to EDSS scores <4.0, ≥4.0 and 

<6.0, ≥6.0 and <7.0, ≥7.0;15 (ii) cognitive disability, ranging from 0 to 3 and 

corresponding to the number of impaired (below 1.5 SD age-, sex- and 

education-corrected normative values in the healthy population)16 tests at 

the Brief International Cognitive Assessment of Multiple Sclerosis 

(BICAMS) battery;17 (iii) transition to secondary progressive course.14 

2.2.3 MRI data acquisition and processing 
Exams were acquired on the same 3T scanner (Magnetom Trio, Siemens 

Healthineers) and included a 3D T1-weighted sequence (≤1mm isotropic 

voxel-size) for volumetric analyses and a T2-weighted FLAIR sequence 

for the quantification of total demyelinating lesion volume (TLV). 

Sequence parameters and image processing steps are detailed in the 

Supplemental Material. Briefly, for all participants, demyelinating lesions 

were automatically segmented, visually checked, and where needed 

manually adjusted on FLAIR images to compute TLV, while T1-weighted 

volumes were used for an atlas-based parcellation of gray matter (GM) 

into 116 regions defined by the Automated Anatomical Labeling (AAL) 

atlas.18 

2.2.4 Statistical Analysis 
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A flowchart summarizing data processing and analysis steps is depicted 

in Figure 2.1. 

 
Figure 2.1. Workflow illustrating the main data processing and analysis 
steps. Volumes of demyelinating lesions and 116 atlas-defined gray matter 
regions were automatically segmented based on FLAIR-T2w and T1-w images, 
respectively. Then, the corresponding volumes were expressed as z-scores with 
reference to external populations of patients and healthy controls, that were also 
used to select the most altered MRI-derived volumes. Following feature selection, 
baseline MRI biomarkers entered the Subtype and Stage Inference (SuStaIn) 
algorithm, using 10-fold cross-validation to determine the optimal number of 
subtypes and the consistency of progression patterns. Models of up to a 
maximum of 4 subtypes with z-scores of 1, 2 or 3 for each biomarker were tested 
(excluding z-score events reached by fewer than 5% of the subjects), 
corresponding to interpretable levels of mild, moderate and severe abnormality 
(color coded from blue to red). The trained model was then fit on all training data 
and applied to longitudinal MRIs. Finally, the biological reliability and clinical 
relevance of the SuStaIn classification were assessed in the light of longitudinal 
MRI scans and clinical outcomes. 
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SuStaIn modelling 
SuStaIn is an unsupervised machine learning algorithm combining ideas 

from clustering and event-based modelling, which describes disease 

progression as the linear evolution of biomarkers along discrete levels of 

cumulative alteration, defined in terms of deviation from a reference 

norm (z-scores).8 It simultaneously estimates subgroups characterized by 

distinct patterns of biomarker evolution and the corresponding 

trajectories, providing a probabilistic assignment of each subject to a 

specific subtype and stage within a subtype. Methodological aspects of 

the SuStaIn algorithm are covered in Young et al.8 

Briefly, MRI-derived GM and lesion volumes were expressed as z-scores 

with reference to the HS group and the external RRMS population, 

respectively, with signs of the z-scores flipped when appropriate so that 

higher values always represented disease worsening. Baseline MRI scans 

were used as the training set, while longitudinal visits were reserved for 

the biological and clinical validation of the initial classification.8  

Only variables associated with a moderate to large (Cohen’s f>0.25) 

difference between MS patients and HC were selected and entered the 

SuStaIn algorithm. Models were evaluated using 10-fold cross-validation 

(CV) in the training cohort to estimate the optimal number of subtypes 

and the consistency of the subtype progression patterns: the number of 

subtypes maximizing the average out-of-sample log-likelihood across CV 

folds was preferred; the similarity of each subtype progression pattern 

across CV folds (CVS) was measured using the Bhattacharyya coefficient.8 

Finally, the resulting model was fitted on all subjects of the training 

cohort and applied to unseen longitudinal MRI scans to assign a probable 

subtype and stage to each MRI visit.  

Testing the biological reliability and clinical relevance of SuStaIn 
classification 
The stability of the SuStaIn subtypes over time was expressed with 
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Krippendorf’s α.19 To assess the rate of change in disease stage, we fit a 

multilevel linear regression model in which the SuStaIn stage was the 

dependent variable and follow-up time (nested within subjects) the 

predictor, with intercepts and slopes allowed to vary across subjects 

(random effects). The possible effect of baseline subtype and stage on the 

slope of longitudinal stage change was assessed by separately adding 

them (and the corresponding interactions with follow-up time) to the 

model and testing the significance of interaction terms. Similar models 

were set up for individual MRI-derived biomarkers. 

The clinical relevance of the SuStaIn classification was assessed in relation 

to both baseline EDSS and long-term clinical outcomes with 

ordinal/logistic regression (as appropriate) analyses, in which baseline 

subtype and stage and their interaction, age and sex were the 

independent variables. Follow-up time, baseline EDSS and disease-

modifying therapy were included as additional covariates for 

longitudinal analyses. 

Statistical analyses were carried out using the Statistical Package for 

Social Science (SPSSv25.0, IBM corp.). 

2.3 Results 

2.3.1 Participants 
Four hundred and twenty-five RRMS patients (baseline age: 35.9±9.9 

years; F/M: 301/124) were selected, corresponding to a total of 1129 MRI 

visits (2.7 MRI visits per patient, on average; range: 0 - 9), and a mean 

follow-up (FU) time of 2.1 years. 

MRI scans of 148 HS (age: 35.9±13.0 years; F/M: 77/71) were also 

selected, along with those of an external population of 80 MS patients 

(age: 40.4±11.9 years; F/M: 56/24). 

Demographic and clinical characteristics of the studied population are 

reported in Table 2.1. 
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 MS  HS MS  
(external site) 

Number of subjects 425 148 80 
Number of MRI 
scans 1129 148 80 

Age (y) 35.9±9.9 35.9±13.0 40.4±11.9 
Female Sex* 301 (70.8) 77 (52.0) 56 (70.0) 
DD (y) 12.7±8.3 - 10.3±7.4 
EDSS** 2.5 (2.0 - 3.5) - 2.0 (1.5 - 3.0) 
TLV (ml) 10.1±13.4 - 3.4±5.3 
WBV (ml) 1328.8±127.9 1385.1±147.4 1370.4±153.3 

* Data are the number of subjects, with percentages in parentheses. 
** Data are medians, with interquartile ranges in parentheses. 
Table 2.1. Demographic, clinical and MRI characteristics of the studied 
population. 
 

Long-term clinical outcomes were available for 178 patients (level of 

motor disability: 0=121, 1=35, 2=16, 3=6; level of cognitive disability: 0=81, 

1=42, 2=24, 3=31; transition to secondary progressive course: 29 subjects). 

2.3.2 SuStaIn model 
The volumes of 10 GM regions, including the bilateral anterior cingulate 

cortices, the right middle cingulate cortex, the bilateral insulae and cunei, 

the right putamen and the bilateral thalami, were associated with a 

moderate to large difference compared with the HC group and were thus 

fed into the SuStaIn algorithm along with TLV, for a total of 11 

biomarkers (Figure 2.2). 
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Figure 2.2. Results of the feature selection procedure. Gray matter regions 
whose volume survived the feature selection procedure (i.e. associated with a 
moderate to large effect size at the comparison with healthy controls) are 
presented, along with a lesion probability map (obtained by summing all the 
binary lesion masks and dividing by the number of patients, thresholded at 10% 
probability), all superimposed on axial slices of the average T1w volume in the 
standard space. Images are in radiological orientation. 
 
The two-subtype model yielded the highest average log-likelihood across 

CV folds (Figure 2.3) and was therefore chosen as the best fitting model 

for subsequent analyses.  

 
Figure 2.3. Results of the 10-fold cross-validation. For models with different 
number of subtypes, values of log-likelihood (LL) on the test data for each cross-
validation fold are presented (left panel), along with the corresponding average 
cross-validation information criterion (CVIC, defined as -2*LL) (right panel). 
 
When looking at the trajectories of brain damage progression in each 
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subtype, we designated them as follows: (1) the deep gray matter (DGM)-

first subtype (56% of subjects, n=238), characterized by the initial volume 

loss of subcortical gray matter structures followed by lesion accrual and 

cortical atrophy and (2) the cortex-first subtype (44% of subjects, n=187), 

characterized by cortical volume loss preceding DGM atrophy and lesion 

accumulation (Figure 2.4). 

 
Figure 2.4. Positional variance diagrams for the two MRI-driven 
subtypes. Each entry describes the probability for each biomarker of reaching the 
color-coded z-score at each SuStaIn stage. The colours represent the degree of 
abnormality based on the z-score level (blue=mild, z-score of 1; violet=moderate, 
z-score of 2; red=severe, z-score of 3), while the colour shade reflects the 
uncertainty associated with the corresponding biomarker event. 
 

Both progression patterns demonstrated high stability across CV folds, 

with CVS of 0.91±0.03 and 0.91±0.04 for the DGM-first and cortex-first 

subtypes, respectively (Figure 2.5). 
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Figure 2.5. Reproducibility of subtypes under cross-validation. The 
boxplots summarize the distribution of the similarity (Bhattacharyya coefficient) 
between subtypes estimated from each pair of cross-validation folds.  
 

Patients assigned to the two subtypes had comparable age, sex and whole 

brain volume (WBV), while the DGM-first subtype was associated with 

longer DD (p<0.001) and higher baseline EDSS score (p=0.004), SuStaIn 

stage (p=0.01) and TLV (p<0.001) (Table 2.2). 

  



17 
 

 DGM-first  
(56%, n=238) 

Cortex-first  
(44%, n=187) p-value*** 

Age (y) 35.9±10.1 35.9±9.5 0.98 
Female Sex* 160 (67.2) 141 (75.4) 0.36 
DD (y) 9.4±7.8 6.5±6.1 <0.001 
EDSS** 2.5 (2.0-3.5) 2.5 (2.0-3.0) 0.004 
SuStaIn stage 4 (1-12) 4 (1-8) 0.01 
TLV (ml) 14.0±15.1 5.5±8.9 <0.001 
WBV (ml) 1325.3±126.8 1333.0±129.5 0.65 

Unless otherwise indicated, data are expressed as mean±standard deviation. Between-
group differences were tested with either Student t (age and DD), Pearson Chi-square 
(sex), Kruskal-Wallis (EDSS and SuStaIn stage) or age-, sex- and TIV-corrected 
ANCOVA (TLV and WBV) tests.  
* Data are the number of subjects, with percentages in parentheses. 
** Data are medians, with interquartile ranges in parentheses. 
*** Significant between-group differences are reported in bold. 
Table 2.2. Demographic, clinical and MRI characteristics of the MRI-
driven subtypes. 
 

2.3.3 Biological reliability and clinical relevance 
Disease subtypes tended to be consistent over time (Krippendorf’s 

α=0.806; CI=0.752,0.821), with subtype stability increasing as the 

probability threshold for the baseline subtype assignment was raised at 

95% (177 subjects; α=0.990; CI=0.973, 0.998) or 99% (114 subjects; α=0.990; 

CI=0.973, 0.998).  

In patients who retained the initial subtype, there was a significant annual 

increase in disease stage (b=0.20; SE=0.05; CI=0.09, 0.30; p<0.001), 

supporting the biological reliability of SuStaIn’s staging, with no 

significant between-subtype difference (interaction term subtype*follow-

up time: b=-0.08; SE=0.11; CI=-0.29, 0.13; p=0.48). A significant 

moderation effect of baseline stage on the relationship between follow-up 

time and disease stage was observed (interaction term baseline 

stage*follow-up time: b=-0.05; SE=0.01; CI=-0.08, -0.02; p=0.001), 

corresponding to slopes getting flatter as the baseline stage increased and 

probably reflecting a plateau effect. 

When looking at individual MRI-derived biomarkers, all the GM volumes 
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significantly decreased over time (p≤0.03), with significant between-

group differences for the left thalamus, corresponding to greater 

longitudinal atrophy rates in the DGM-first subtype (interaction term 

subtype*follow-up time: b=0.05; SE=0.01; CI=0.02, 0.07; p=0.001), and 

significant plateau effects (the higher the baseline stage the flatter the 

slope of longitudinal changes) for the right thalamus (interaction term 

subtype*follow-up time: b=0.007; SE=0.003; CI=0.002, 0.013; p=0.006) and 

the right anterior cingulate cortex (interaction term subtype*follow-up 

time: b=0.002; SE=0.001; CI=0.001, 0.003; p=0.002). 

As for the relationship with clinical outcomes, baseline EDSS score was 

positively related with both SuStaIn stage (b=0.042; p<0.001) and the 

DGM-first subtype (b=-0.280; p=0.02), with baseline stage that also 

predicted long-term disability (b=0.030; p=0.007) and transition to SP 

course (b=0.079; p=0.03). Long-term cognitive impairment was associated 

with higher baseline stages (b=0.048; p<0.001), the DGM-first subtype 

(b=-0.442; p=0.005) and their interaction (b=-0.080; p=0.002). 

2.4 Discussion 

The ambition towards personalized medicine has stimulated increasing 

efforts to disentangle the inter-subject variability of neurological 

disorders, integrating information from different biomarkers to identify 

distinct underlying biological drivers (i.e. biotypes), up to the level of 

individual patients.20 In this work, we obtained a biologically consistent 

and prognostically relevant stratification of RRMS patients based on the 

unsupervised modeling of brain volumetric features derived from cross-

sectional MRI visits. 

Using the SuStaIn algorithm, two distinct MRI-driven subtypes were 

identified, with a latent pattern in which early DGM atrophy and T2 

lesion accumulation precede cortical atrophy separated from one in which 

cortical volume loss precedes DGM atrophy and lesion accrual. These 
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results are essentially in line with the recent work by Eshaghi et al.,12 with 

slight dissimilarities most probably due to the different choices of input 

features. Indeed, the apparent discrepancy in terms of the number of 

subtypes is most likely explained by the lack of MRI-derived measures of 

normal appearing white matter damage in our study, which limited the 

sensitivity to capture the phenotypic heterogeneity associated with extra-

lesional microstructural injury. 

On the other hand, the application of a more fine-grained brain 

parcellation scheme led to a more anatomically precise modelling of GM 

atrophy, highlighting regions most prominently involved in MS such as 

the thalami and anterior cingulate, insular, and visual cortices.10 

Interestingly, the fact that distinct disease subtypes remain 

distinguishable based on the patients’ MRIs even within a relatively 

clinically homogeneous population confirms the scarce correspondence 

between clinical and MRI-driven phenotyping, with the latter more 

closely reflecting disease-related pathogenic mechanisms.12  

Indeed, while patients assigned to the two subtypes did not significantly 

differ in terms of age, sex, or WBV, the DGM-first subtype was associated 

with higher DD, stage and TLV, consistent with the idea of distinct 

pathogenic mechanisms underpinning cortical and DGM atrophy.21–23 In 

particular, based on the closer association with TLV, subcortical GM 

might be more sensitive to the secondary effects of focal demyelination 

through anterograde/retrograde degeneration, with a prominent role of 

primary GM neuroinflammation and neurodegeneration in determining 

cortical atrophy.22–24 Also, the longer DD suggest an earlier diagnosis in 

patients of the DGM-first subtype, possibly reflecting a shorter prodromal 

phase.12,25   

The biological reliability of the MRI-driven classification was further 

confirmed by the analysis of longitudinal MRI scans, with high subtype 

stability and significant stage increase over time, reflecting actual 
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temporal progression of brain damage along the estimated paths. Also 

relevant in terms of biological consistency, moderation analyses 

suggested plateau effects in the longitudinal trajectories of SuStaIn stage 

and individual biomarkers (i.e. right thalamus and anterior cingulate 

cortex atrophy), in line with known temporal patterns of MS-related brain 

atrophy,26,27 with steeper thalamic shrinkage rates in the DGM-first 

subtype. 

When assessing the clinical relevance of the SuStaIn classification, higher 

baseline EDSS scores were independently associated with both higher 

stages, corresponding to more pronounced brain structural damage, and 

the DGM-fist subtype, a finding consistent with prior evidence pointing 

at the prominent role of subcortical GM (thalamic, in particular) atrophy 

in driving disability.28,29 

As for the prognostic meaning of the MRI-driven stratification, patients in 

a more advanced position along the damage progression trajectory were 

more likely to enter the clinically progressive phase in the long term, as 

well as to suffer greater degrees of motor and cognitive disability, with 

more severe cognitive impairment also independently associated with the 

DGM-first subtype. These findings further corroborate the idea that, 

although cross-sectional in nature, the baseline MRI-driven classification 

encodes relevant information about future disease evolution, also 

substantiating the role of subcortical GM atrophy as a relevant anatomical 

correlate of cognitive disability in MS.30,31 

Overall, the proposed approach provides insights into MS-related disease 

mechanisms, confirming and expanding the existing knowledge on MS 

physiopathology. But even more interestingly, it condenses this complex 

information at the patient level in simple and intuitive measures which 

are easily obtainable from single-visit conventional MRI scans and 

correlate with clinical measures of disease severity and progression. 

Contextualizing the information contained in individual brain MRIs in 
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the frame of disease patterns estimated in a reference population of MS 

patients, such stratification holds potential for effectively linking MS 

research to the single-subject setting, with relevant implications for both 

clinical trials and routine practice. 

Our work is not without limitations. While the monocentric nature of the 

study reduces the data heterogeneity related to scanner/centre effects, it 

also limits the model generalizability, prompting larger studies on 

multicentric datasets. Furthermore, increasing the sample size would also 

allow for a higher dimensional (and more accurate) representation of MS 

pathology, possibly including additional biomarkers from spinal cord 

imaging or from other advanced MRI techniques encoding relevant 

information about the brain microstructure (e.g. diffusion MRI, 

quantitative MRI)21,32 or function (e.g. functional MRI).32  

In conclusion, through the unsupervised modelling of volumetric features 

derived from brain MRI scans, we obtained a biologically reliable and 

prognostically meaningful single-visit classification of MS patients, 

potentially offering a powerful tool for subjects’ stratification in both trial 

design and clinical practice. 
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Chapter 3 
The Brain-Age Paradigm in 
Fabry Disease 
3.1 Background and Rationale 

FD (OMIM 301500) is a rare X-inherited lysosomal storage disorder 

characterized by the accumulation of catabolites in various cell types, 

resulting from the absent or markedly deficient activity of the enzyme α-

galactosidase A (α-Gal A) and leading to damage and loss of function of 

especially the kidney, heart and brain.33  

Involvement of the central nervous system is mainly characterized by 

vascular pathology, whose severity may greatly vary according to several 

factors, not all completely understood.34 However, while the 

recommended follow-up of patients with FD includes brain MRIs, an 

accurate evaluation of FD-related brain damage is hampered by the lack 

of quantitative imaging biomarkers,35 which also contributes to the 

uncertainty concerning the effect of recently introduced specific 

treatments on cerebral manifestations.36  

In the search for objective imaging-derived markers of brain health and 

pathology, the brain-age paradigm has emerged as a promising approach. 

Briefly, machine learning methods are used to model chronological age as 

a function of structural brain MRI scans in healthy people, and the 

resulting model of ‘normal’ brain aging is used for neuroimaging-based 

age prediction in unseen subjects.37 The extent to which each subject 

deviates from healthy brain-aging trajectories, expressed as the difference 
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between predicted and chronological age (brain-predicted age difference, 

brain-PAD), has been proposed as an index of structural brain health, 

sensitive to brain pathology in a wide spectrum of neurological and 

psychiatric disorders.38 

As a relevant example, brain-age predictions are influenced by the 

presence of white matter hyperintensities (WMH) and brain volumes, 

imaging features that are both sensitive to cerebral small vessel disease,39–

41 which is thought to be one of the main neurobiological mechanisms 

through which FD impacts brain health.34 

Here, we applied the brain-age paradigm to investigate neurological 

involvement in patients with FD. Our main aims were: i) to assess 

whether they have older-appearing brains compared to healthy controls 

(HC); ii) to validate brain-PAD as a measure of disease severity against 

other established clinical markers; iii) to explore the neuroimaging 

determinants of brain-age prediction in this condition. 

3.2 Materials and Methods 

3.2.1 Participants 
In this retrospective, cross-sectional study, part of a larger monocentric 

research framework on the involvement of the central nervous system in 

FD, patients with a genetic diagnosis were selected,42 along with age- and 

sex-comparable HS. To avoid the confounding effect of major 

cerebrovascular events, participants with a history of stroke or transient 

ischemic attacks were not included in this study. Additional exclusion 

criteria were age < 15 or > 65 years, and the presence of other relevant 

neurological, psychiatric or systemic conditions. 

Scores quantifying the involvement of nervous, renal and cardiac systems 

in FD patients were computed based on clinical variables recorded within 

1 month from the MRI and summed to obtain a cumulative measure of 

multi-organ damage severity, the total raw Fabry stabilization index 
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(FASTEX) score.43 

The study was conducted in compliance with ethical standards and 

approved by the local ethics committee. Written informed consent was 

obtained from all subjects according to the Declaration of Helsinki. 

3.2.2 MRI acquisition and preprocessing 
All MRI examinations were performed on the same 3T scanner 

(Magnetom Trio, Siemens Healthineers), equipped with an 8-channel 

head coil. The acquisition protocol included a structural T1-weighted 

(T1w) volume acquired using a 3D magnetization prepared rapid 

acquisition gradient echo (MPRAGE) sequence (TR = 1900 ms; TE = 3.4 

ms; TI = 900 ms; flip angle 9°; voxel size 1 x 1 x 1 mm3; 160 axial slices) 

and, for FD patients, a T2-weighted 3D fluid attenuated inversion 

recovery (FLAIR) sequence for the assessment of WMH (TR = 6000 ms; TE 

= 396 ms; TI = 2200 ms; Flip Angle = 120°; voxel size = 1 x 1 x 1 mm3; 160 

sagittal slices). 

For FD patients, WMH were automatically segmented on FLAIR images 

using Lesion Segmentation Tool (LST) 3.0.0 (www.statistical-

modelling.de/lst.html).  

We used the Computational Anatomy Toolbox (CAT12.8, 

http://www.neuro.uni-jena.de/cat) to segment T1w volumes into grey 

matter (GM), white matter (WM) and cerebrospinal fluid (CSF).  Then, 

following the preprocessing steps of voxel-based morphometry (VBM), 

GM and WM probability maps were normalized to a 1mm isotropic 

template in MNI space, modulated with the Jacobian determinant derived 

from the spatial normalization and smoothed using a 1mm full width at 

half maximum isotropic Gaussian kernel.44 

Summary volumetric measures of GM, WM, CSF, and total intracranial 

volume (TIV) were also generated, and brain parenchymal fraction (BPF) 

was computed as the ratio of brain volume to TIV. 
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3.2.3 Brain-age modelling 
A model of healthy brain aging was trained and evaluated on a large 

dataset (total N: 2160; male/female: 1293/867; mean age: 33, age range: 4-

86) comprising 3D T1-weighted brain scans of healthy subjects from 8 

publicly available sources.  

Raw T1w volumes underwent minimal preprocessing, including 

DICOM to NIfTI conversion, correction for intensity non-

uniformity with N4BiasFieldCorrection,45 rigid registration to the 

MNI152 space and resampling to 1.5 mm3 voxels, to ensure 

consistency of spatial orientation and resolution. Furthermore, 

images were additionally cropped to reduce the array size to 

118x142x118, and intensity-normalised by subtracting the image 

mean and dividing by the image standard deviation, using Project 

MONAI (https://docs.monai.io/en/stable/index.html). 

Our brain-age model was based on the DenseNet264 architecture,46 

adapted from the implementation available at Project MONAI 

(https://docs.monai.io/en/stable/_modules/monai/networks/nets/de

nsenet.html) by adding a linear regression layer for the prediction of a 

continuous variable and a 0.2 dropout rate after each dense layer to 

reduce the risk of overfitting. Briefly, DenseNet is a generalisation of the 

popular residual network (ResNet), which includes skip connections 

between internal neuron layers to overcome the vanishing gradient 

problem.47 As achieving the best possible performance was beyond the 

objectives of our study, we decided to use an “off-the-shelf” standard 

DenseNet264 configuration, rather than designing a custom architecture, 

to ensure reproducibility and ease of use. Modeling was performed with 

PyTorch 1.12.048 using one NVIDIA Tesla V100S 32 GB graphics 

processing unit (GPU). The Adam optimizer was used to update model 

weights during training, with the learning rate initially set to 1e-4 and 
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decaying linearly as described in Chen et al.,49 and additional L2 

regularization at a rate of 1e-5. The full dataset was randomly split into 

training (64%=1382), validation (16%=346) and test (20%=432) sets. The 

batch size was 20 and the model was trained for 300 epochs: model 

checkpoints were saved after each epoch, and the model with the lowest 

validation loss was used for testing. Mean absolute error (MAE) and 

coefficient of determination (R2) were used to quantify model 

performance. Lastly, age bias (i.e., underestimation of age in older 

subjects and vice versa) was statistically corrected as in de Lange et al.,50 

and the final model was applied to the internal cohort of FD patients and 

HC to generate brain-predicted ages and corresponding brain-PAD 

values.  

An outline of the different steps of the brain-age modelling procedure is 

displayed in Figure 3.1. 

 
Figure 3.1. Outline of the brain-age modeling procedure. Minimally 
preprocessed T1-weighted images (A) are used as input for the training and the 
evaluation of a model for the prediction of chronological age based on a 3D 
DenseNet architecture (B). The model with the lowest validation loss is chosen, 
and performance is measured on the previously unseen cases of the test set (C). 
The final model is also applied to the target clinical population (D), composed of 
the internal cohort of FD patients and HS, to generate brain-predicted ages and 
corresponding brain-PAD values.  
 

3.2.4 Statistical analysis 
Unless otherwise specified, statistical analyses were carried out using the 

Statistical Package for Social Science (SPSSv25.0, IBM corp.), with a 

statistical significance level α = 0.05 and 95% confidence intervals (CI) and 
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p values computed using bootstrap with 1000 resamples. 

To assess possible between-group differences in terms of brain-PAD, we 

used one-way ANCOVA, controlling for the effects of age, age2 and sex 

and calculating estimated marginal means for the two groups. 

To validate brain-PAD as a measure of disease severity, we tested its 

association with the FASTEX score in a linear regression model including 

also age, age2 and sex. 

To investigate the neuroimaging determinants of brain-PAD in patients 

with FD, we used hierarchical linear regression analyses with age, age2 

and sex in the first block and WMH load or BPF in the second block. 

Similarly, age-, age2- and sex-adjusted associations with brain-PAD were 

tested at the voxel level with TIV-scaled, preprocessed GM and WM 

maps, using a nonparametric approach based on 5000 permutations 

applied to the general linear model51 via the Threshold Free Cluster 

Enhancement (TFCE) toolbox (http://www.neuro.uni-jena.de/tfce). The 

same analysis was repeated after adding the variables group (i.e., FD or 

HS) and group*brain-PAD interaction in the model, with this latter term 

intended to test the hypothesis that different voxel-wise patterns might 

influence brain-age prediction in the two groups. 

3.3 Results 

A total of 52 patients with FD were selected (40.6 ± 12.6 years; M/F: 

24/28), along with 58 HC (38.4 ± 13.4 years; M/F: 30/28). 

Demographic, clinical, and MRI characteristics of the studied population 

are available in Table 3.1. 
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 FD 
N = 52 

HS 
N = 58 

p value 
(FD vs HC) 

Age (y) 40.6 ± 12.6 38.4 ± 13.4 0.37 
Sex (M/F)1 24/28 30/28 0.56 
FASTEX score2    
Total score 6 (3 – 9) n.a. n.a. 
Nervous system score 2 (1 – 2)   
Renal system score 1 (1 – 3)   
Cardiac system score 2 (1 – 3)   
BPF  0.81 ± 0.03 0.82 ± 0.03 0.06 
WMH load (ml) 0.9 ± 3.7 n.a. n.a. 

Unless otherwise specified, data are expressed as mean ± standard 
deviation. Between-group differences were tested with either Student t 
(age and BPF) or chi-square (sex) tests. 
1 Expressed as number of subjects. 
2 Expressed as median, with interquartile range in parentheses. 
Table 3.1. Demographic, clinical, and MRI characteristics of all the 
subjects included in the study. 
 

The brain-age model achieved accurate out-of-sample age prediction (test 

set MAE = 4.01, R2 = 0.90). 

When looking at brain-PAD values in the internal cohort, there was a 

significant effect of the group variable after controlling for age, age2, and 

sex (F[1, 105] = 6.46, p = 0.01, partial η2 = 0.06), with FD patients showing 

higher values than HC (estimated marginal means 3.1 [95% CI = 1.0 – 5.3] 

vs -0.1 [95% CI = -1.9 – 1.4]) (Figure 3.2). 
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Figure 3.2. Brain-age prediction in the internal cohort and its relationship 
with disease status (FD vs HS) and the FASTEX score. In (A), presented are 
comparable-level axial slices from four example subjects (two per group) with 
extreme brain-PAD values. In (B), age, age2, and sex-adjusted estimated 
marginal means for the two groups, along with 95% bootstrap confidence 
intervals. In (C), scatterplot showing the relationship between brain-PAD values 
(age, age2, and sex-adjusted) and FASTEX score in patients with FD. 
 

Brain-PAD was significantly associated with the FASTEX score (B = 0.10 

[95% CI = 0.02 – 0.19]; standard error B = 0.04; p = 0.02), in a linear model 

including also age, age2 and sex (R2 = 0.41, p < 0.001) (Figure 3.2).  

As for the neuroimaging determinants of brain-PAD in FD patients, both 

higher WMH load (p = 0.01) and lower BPF (p = 0.001) were associated 

with older-appearing brains (Table 3.2).  
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  B (95% CI) SE B p 
Model 1     
Constant  10.48 (-6.00 – 35.60) 9.41 0.23 
Age  -0.12 (-1.19 – 0.71) 0.54 0.82 
Age2  -0.002 (-0.016 – 0.017) 0.007 0.75 
Sex  1.65 (-2.48 – 6.14) 2.13 0.45 
Model 2     
Constant  8.53 (-7.32 – 39.21) 8.85 0.29 
Age  0.04 (-0.94 – 0.73) 0.50 0.93 
Age2  -0.005 (-0.017 – 0.012) 0.006 0.43 
Sex  0.53 (-3.37 – 4.13) 2.04 0.80 
WMH load  0.85 (-2.35 – 6.78) 1.72 0.01 
Model 3     
Constant  148.47 (77.24 – 224.90) 36.81 0.001 
Age  -0.54 (-1.76 – 0.27) 0.54 0.30 
Age2  0.000 (-0.012 – 0.017) 0.007 0.96 
Sex  0.71 (-3.21 – 4.86) 1.91 0.73 
BPF  -153.50 (-236.42 – -73.24) 38.74 0.001 

R2 is 0.18 for Model 1, 0.32 (ΔR2 = 0.14) for Model 2, and 0.43 (ΔR2 = 0.25) 
for Model 3. 
Table 3.2. Results of the hierarchical linear regression analyses for the 
prediction of brain-PAD in FD patients. Confidence intervals, standard 
errors, and p values are based on 1000 bootstrap samples. 
 

Voxel-wise, we found a significant inverse correlation between brain-

PAD values and tissue volumes diffusely throughout the brain, with the 

greatest effect sizes observed at the level of the deep and periventricular 

WM (Figure 3.3).  
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Figure 3. Voxel-wise correlation between brain tissue volumes and brain-
PAD in patients with FD. (A) Effect size (-R, red to blue) and (B) thresholded 
statistical (-logp, yellow to red) maps are shown, superimposed on axial sections 
of a 3D T1-weighted template in standard space.   
 

The interaction analysis revealed no significant effect of group on the 

relationship between local tissue volumes and brain-PAD. 

3.4 Discussion 

By applying the brain-age paradigm in a relatively large cohort of 

patients with FD, we found that indeed FD has an effect on the brain-PAD 

metric, indicative of accelerated brain aging, correlating with FD-related 

multi-organ damage and influenced by both (global) brain volumes and 

WMH load.   

Notably, while we opted for an off-the-shelf standard network 

configuration, without focusing too much on hyperparameter tuning, the 

performance of the brain-age predictive model was not far from literature 

benchmarks.52,53 Also, the model of healthy brain aging was sensitive to 

FD-related brain pathology. 

Brain involvement in FD is thought to be mainly mediated by lysosomal 

deposition in endothelial cells, leading to microvascular (and sometimes 

macrovascular) manifestations that overlap those happening in common 

SVD and healthy aging.34 More ambiguity exists on the possibility of 

direct brain tissue damage through lysosomal deposition at the level of 
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other cell types (i.e., neuronal or glial cells). Interestingly, the 

accumulation of lysosomal storage bodies in a subset of resident 

microglia is a physiological process that linearly increases with aging and 

seems to be accelerated in lysosomal storage disorders, leading to 

premature neurodegeneration.54 

Taken together, these observations encourage the interpretation of FD as a 

form of accelerated brain aging, with brain-PAD as a possible marker of 

progressive brain damage. 

On the other hand, it is known that FD is also a disorder of 

neurodevelopment,55 and brain-age predictions can be heavily influenced 

by neurodevelopmental factors.56 

Unfortunately, disentangling the contributions of neurodevelopmental 

factors from ongoing pathological processes is not completely possible in 

the cross-sectional setting. Assuming that the neurodevelopmental 

component remains constant over time, longitudinal studies are 

warranted where brain-PAD deltas ideally depend solely on ongoing 

healthy/pathological aging phenomena. 

From the neuroimaging perspective, brain-PAD was influenced by WMH 

and (global) brain volumes, with no anatomical specificity other than the 

greatest effect sizes observed at the level of the deep and periventricular 

WM. Previous studies showed how brain-age prediction models are 

influenced by imaging features of small vessel disease, including WMH 

and GM volumes.39–41 Also, our findings are in line with the evidence that 

global brain volume, rather than atrophy of specific regions, drives brain-

age predictions.52,53 

Interestingly, numerous structural MRI study with more conventional 

approaches (i.e., voxel-based morphometry, ROI analyses), failed to 

reveal consistent structural changes in FD patients compared to HS,35,55,57 

partly because of the small effect sizes and sample sizes. On the other 

hand, brain-PAD might be a more sensitive marker of brain structural 
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health, outperforming conventional methods. 

Lastly, we found a significant association between brain-PAD and overall, 

multiorgan, clinical severity. Indeed, a not yet completely understood 

network of mutual interdependencies exists between brain age and other 

bodily “ages”,58,59 with the brain’s structural health being strongly 

impacted by cardiovascular and renal (mal)functioning. This relationship 

also supports the potential role of brain-PAD as a quantitative biomarker 

for disease monitoring in clinical settings, with particular reference to the 

assessment of treatment response. In fact, the efficacy of the recently 

introduced specific treatments on cerebral involvement has remained 

unclear so far, partly precisely because of the lack of objective 

neuroimaging measures. 

In conclusion, we demonstrate how brain-PAD is a sensitive measure of 

FD-related neurological and systemic involvement, bearing potential as a 

candidate biomarker of disease severity in clinical practice. 
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Chapter 4 
Multimodal Brain Connectivity 
in Schizophrenia 
4.1 Background and Rationale 

SZ is a chronic, multifactorial psychiatric disorder that affects around 1% 

of the population, frequently leading to long-term functional impairment 

that impedes social and occupational integration.60 

Alongside positive and negative symptoms, cognitive dysfunction is a 

core feature of SZ, with verbal memory being one of the most 

prominently affected domains2.61 Indeed, verbal memory deficits often 

precede the onset of full-blown psychosis, tend to remain stable 

throughout the disease course, and are consistently among the best 

predictors of functional outcomes, thus representing an important 

treatment target.62 

From the neuroimaging perspective, in the search for biomarkers of SZ 

that could inform clinical decisions, attempts have been made to link 

verbal memory impairment to regional brain structural modifications, 

such as hippocampal volume loss63 or cortical thinning of the 

parahippocampal gyrus and the frontal cortex,64 or to altered task-related 

functional activation.65 

On the other hand, mapping symptoms to specific brain regions might be 

simplistic as we know by now that clinical functioning corresponds more 

closely to networks of connected regions, with regional deviations in 
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different locations potentially underlying the same clinical diagnosis due 

to dysfunction of common neural circuits.66 

Since the formulation of the disconnection hypothesis in the 1990s,67 

numerous studies have consolidated our understanding of SZ as a 

network disorder, demonstrating modifications of structural and 

functional brain networks, mostly independently of each other, and 

putting them in relation to cognition.68,69 

Nevertheless, results have often been conflicting, somehow failing to 

identify consistent imaging-based signatures of SZ and SZ-related 

cognitive dysfunction.70 While this is partly explained by the intrinsically 

heterogeneous genetic, neurobiological, and phenotypic profile of SZ,71 

methodological issues might also play a role, including the disparateness 

of image processing strategies and the focus on single modality networks, 

providing only a partial grasp of the brain complex organization. 

In this light, integrating different neuroimaging modalities holds the 

potential to enrich our understanding of the brain and its disorders, by 

informing us about how brain structure shapes brain function, how they 

are jointly impacted by disease, and which aspects are relevant for clinical 

functioning.72 

Here, using two complementary data-driven approaches (i.e., threshold-

free network-based statistics, TFNBS, and hybrid connectivity 

independent component analysis, connICA) for the analysis of diffusion 

(dMRI) and resting-state functional (RS-fMRI) MRI data, we explored 

joint modifications of structural and functional brain networks in patients 

with SZ, aiming to unveil the multimodal connectomics substrates of SZ-

related verbal memory impairment. 

4.2 Materials and Methods 

4.2.1 Participants 
In this prospective cross-sectional study, we recruited patients with SZ 



37 
 

diagnosed according to the DSM-5, along with age- and sex-comparable 

HS.  

Inclusion criteria for patients were: age between 18 and 60 years; disease 

duration > 2 years; no medication switch or dose changes in the last 6 

months (i.e., >10% baseline dose); no evidence of current or recent (3 

months) worsening of psychotic symptoms; absence of macroscopic brain 

structural anomalies or other major systemic, psychiatric or neurological 

disorders. 

Exclusion criteria for HS were: history of neurological, psychiatric or 

systemic conditions, current or lifetime substance or alcohol dependency, 

lifetime intake of psychotropic medication. 

The study was conducted in compliance with ethical standards and 

approved by the local ethics committee (protocol number: 195/19). 

Written informed consent was obtained from all subjects according to the 

Declaration of Helsinki, revised Hong Kong 1989. 

Clinical data were collected within one month from the MRI. 

Antipsychotic doses were transformed into chlorpromazine (CPZ) 

equivalents,73 while the severity of psychotic symptoms was measured 

using the Positive and Negative Syndrome Scale (PANSS).74 Additionally, 

verbal memory was assessed via the List Learning task, with raw data 

adjusted according to normative values of the Italian population.75 

Corrected scores were fitted into a 5-point scale to collect equivalent 

scores, based on which patients were classified as having impaired (VMI, 

score from 0 to 1), or preserved (VMP, score ≥ 2) verbal memory.75 

All subjects performed a 3T MRI brain scan on the same 3T scanner 

(Magnetom Trio, Siemens Healthineers, Erlangen, Germany), equipped 

with an 8-channel head coil. The acquisition protocol included: a T1-

weighted volume acquired using a 3D magnetization prepared rapid 

acquisition gradient echo (MPRAGE) sequence (TR = 1900 ms; TE = 3.4 

ms; TI = 900 ms; flip angle 9°; voxel size 1 x 1 x 1 mm3; 160 axial slices), 
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used as anatomical reference; diffusion weighted images acquired using a 

spin echo EPI sequence (TR = 7400 ms; TE = 88 ms; flip angle = 90°; voxel 

size = 2.2 × 2.2 × 2.2 mm3 with 64 directions at b = 1000 s/mm2 in addition 

to 9 b = 0 s/mm2), for the analysis of structural connectivity (SC); T2*-

weighted volumes acquired using a gradient echo EPI sequence (TR = 

2500 ms; TE = 50 ms; voxel size = 3 x 3 x 4 mm3; gap = 1 mm; 200 time 

points; 30 axial slices), for the analysis of functional connectivity (FC). 

4.2.2 MRI data processing 
Details of image processing pipelines are explained in the Supplementary 

Material. 

Structural MRI and brain parcellation 
Intensity nonuniformity-corrected, skull-stripped T1w volumes were 

used as anatomical reference throughout the diffusion and functional 

workflows. Additionally, through a registration-based procedure, the 

brain was parcellated into 100 cortical76 and 16 subcortical77 atlas-defined 

regions, used as a common set of nodes for the construction of 

connectivity matrices. Brain parcels are also associated with seven 

canonical cortical resting-state networks (RSNs) including the visual 

(VIS), somatomotor (SM), dorsal attention (DAN), ventral attention 

(VAN), limbic (L), control (CONT), and default mode (DMN) networks,78 

plus a network of subcortical regions (SUBC).  

Diffusion MRI and anatomical brain networks 
Preprocessing of dMRI data (including denoising, B1 field inhomogeneity 

correction, head motion, eddy current and susceptibility distortion 

correction and registration to the T1w volume) was performed using 

QSIPrep 0.14.3.79 From preprocessed DWI data, constrained spherical 

deconvolution-based probabilistic tractography was carried out using 

anatomical constraints to generate a 10 million streamlines whole-brain 

tractogram. Finally, weights for each streamline were calculated through 
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a filtering procedure and a 116 x 116 SC matrix was filled with the sums 

of weights of streamlines connecting each node’s pair. 

In addition, structural matrices were log10-transformed to better account 

for differences at different magnitudes and to make the distribution of 

edges’ weight more comparable to functional matrices. 

Resting-state functional MRI and functional brain networks 
Preprocessing of RS-fMRI data was performed using fMRIPrep 20.2.680 

and included head motion, susceptibility distortion and slice-timing 

correction, registration to the T1w volume and denoising to minimize the 

residual non-neuronal variability of functional data. 

Finally, mean “clean” BOLD time series were extracted from the atlas-

defined parcels, and, for each node’s pair, the Pearson correlation 

coefficient was computed and Fisher z-transformed to fill a 116 x 116 FC 

matrix. In addition, matrices were absolutized as inverse correlations may 

encode relevant information and most analysis strategies tend to neglect 

negative values. 

Statistical analyses 
Before entering second-level analyses, connectivity matrices were 

normalized using a singular-value decomposition approach to account for 

differences in average connectivity weight.81  

Unless otherwise specified, statistical analyses were performed using R 

(version 4.1.2) and RStudio (version 2021.09.1). 

TFNBS 

To assess the presence of statistically significant effects in connectivity 

matrices, we used a TFNBS approach,82 as implemented in MRtrix3’s 

connectomestats. Briefly, TFNBS combines NBS83 with threshold-free 

cluster enhancement,84 augmenting edge-wise statistics based on the 

strength of effects occurring in topologically neighboring network edges 

and obviating the need for the a priori definition of a component-defining 
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statistical threshold. A p-value can be ascribed to each TFNBS-enhanced 

edge and corrected for multiple comparisons across the connectome. 

F-tests were used for comparisons between subjects with SZ and HS and 

between VMI and VMP patients, with age and sex as nuisance variables. 

Five-thousands permutations were used, with a statistical significance 

level set at p<0.05 (FWER-corrected).  

Hybrid connICA 

To explore possible modifications of joint structural-functional 

connectivity patterns, we used a hybrid connICA approach85 

(https://engineering.purdue.edu/ConnplexityLab). Briefly, structural 

and functional networks are merged into a common hybrid matrix, which 

is fed into an ICA decomposition procedure to extract fundamental joint 

connectivity traits, estimated at group level, and subject-level projections, 

expressing the relative weight of each hybrid pattern in the individual 

connectivity profile.85 

Here, we applied PCA to compress and reduce the dimensionality of the 

data by keeping the principal components explaining 90% of the variance 

of the initial hybrid data. Next, ICA decomposition was applied by 

running the FastICA algorithm to obtain 10 independent components. To 

account for the non-deterministic nature of the FastICA procedure, we 

evaluated the robustness of the traits over 100 FastICA runs. A hybrid 

trait was considered robust when it appeared (correlation of 0.75 or 

higher across runs) in at least 75% of the runs and its representation 

consisted of the average across all its appearances over the 100 runs. 

Finally, individual weights for the identified robust components (RC) 

were adjusted for the effect of age and sex estimated in HS and compared 

between groups (SZ vs HS and, for SZ-related components, VMI vs VMP) 

using bootstrapped t-test with 1000 resamples, with a statistical 

significance level set at p<0.05 (FWER-corrected). 
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4.3 Results 

4.3.1 Participants 
A total of 49 patients with SZ were recruited (37.5 ± 9.7 years; M/F: 

34/15), along with 55 HC (42.4 ± 15.7 years; M/F: 30/25). 

Demographic and clinical characteristics of the studied population are 

available in Table 4.1. 

 SZ 
N = 49 

HS 
N = 55 

p value 
(SZ vs HS) 

Age (y) 37.5 ± 9.7 42.4 ± 15.7 0.06 
Sex (M/F)* 34/15 30/25 0.18 
Age of onset (y) 21.9 ± 6.8 n.a. n.a. 
Duration of illness (y) 14.7 ± 8.2 n.a. n.a. 
CPZ equivalents 453.3 ± 270.9 n.a. n.a. 
PANSS score    
Total 85.5 ± 17.2 n.a. n.a. 
Positive 19.2 ± 5.3 n.a. n.a. 
Negative 22.3 ± 5.9 n.a. n.a. 
General 44.0 ± 9.8 n.a. n.a. 

Unless otherwise indicated, data are expressed as mean±standard 
deviation. Between-group differences were tested with either Student t 
(age) or chi-square (sex) tests. 
* Expressed as number of subjects. 
Table 4.1. Demographic and clinical characteristics of all the subjects 
included in the study. 
 
Neuropsychological evaluation was performed for 48 patients, that were 

classified as either VMI (N = 26) or VMP (N = 22). The two subgroups did 

not significantly differ in terms of basic demographic and clinical 

variables (Table 4.2). 
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 VMI 
N = 26 

VMP 
N = 22 

p value 
(VMI vs VMP) 

Age (y) 35.7 ± 9.0 39.1 ± 10.3 0.24 
Sex (M/F)* 19/7 15/7 0.96 
Age of onset (y) 19.9 ± 6.3 22.6 ± 7.2 0.18 
Duration of illness (y) 14.4 ± 9.4 15.0 ± 7.0 0.81 
CPZ equivalents 503.0 ± 269.2 403.1 ± 272.3 0.21 
PANSS score    
Total 88.6 ± 18.9 82.14 ± 14.8 0.20 
Positive 20.3 ± 5.9 18.1 ± 4.3 0.15 
Negative 22.9 ± 6.7 21.7 ± 5.0 0.48 
General 45.4 ± 10.7 42.4 ± 8.5 0.29 

Unless otherwise indicated, data are expressed as mean±standard 
deviation. Between-group differences were tested with either Student t 
(age, age of onset, duration of illness, CPZ equivalents, PANSS scores) or 
chi-square (sex) tests. 
* Expressed as number of subjects. 
Table 2.2. Demographic and clinical characteristics of patients with 
impaired (VMI) or preserved (VMP) verbal memory. 
 

4.3.2 TFNBS 
When looking at possible SC differences, distributed alterations emerged 

in patients with SZ, with both decreased and increased integrity of 

anatomical connections compared to HC (Figure 4.1).  
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Figure 4.1. Network-based analysis of structural connectome between 
patients with SZ and HC. The thresholded statistical matrix is shown (A), 
along with a circular graph representation of supra-threshold edges (B) and a 
surface render of the corresponding nodal degrees (C). Throughout the panels, 
color encodes the direction of observed changes (in red: SZ < HC; in blue: SZ > 
HC). 
 

As for the analysis of FC, a relatively circumscribed pattern of reduced 

within- and between-network connectivity encompassing the VIS and SM 

networks was observed, along with stronger functional connections 

between the VIS and non-sensorimotor networks and within- and 

between- cortical association and subcortical networks (Figure 4.2).  

 
Figure 4.2. Network-based analysis of functional connectome between 
patients with SZ and HC. The thresholded statistical matrix is shown (A), 
along with a circular graph representation of supra-threshold edges (B) and a 
surface render of the corresponding nodal degrees (C). Throughout the panels, 
color encodes the direction of observed changes (in red: SZ < HC; in blue: SZ > 
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HC). 
 

Regarding the relationship between brain connectivity and verbal 

memory, no significant effects were detectable for SC, with only two 

edges of significant FC increase in VMI compared to VMP patients 

connecting the VIS network with the posterior hubs of the DAN 

bilaterally.  

4.3.3 Hybrid connICA 
When looking at hybrid structural-functional connectivity traits, we 

identified 4 RCs. One of these, RC4, mainly driven by the FC part and 

capturing the connectivity of the VIS network, was significantly less 

represented in patients with SZ, with reduced average weight compared 

to HCs (Cohen’s d = 0.828, p < 0.0001) (Figure 4.3).  

 
Figure 4.3. SZ-related hybrid structural-functional trait. The hybrid trait 4 
is shown, split in structural (A1) and functional (A2) connectivity matrices. To 
obtain an anatomical representation of the trait, nodal strength was computed on 
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the absolutized, thresholded (top 10% edges) hybrid matrix, and visualized onto a 
surface render of the brain (B). (C) Violin plot showing the distribution of the 
hybrid trait’s individual weights for SZ and HC subjects. 
 

For RC1, mainly mapping the connectivity of frontotemporal poles and 

deep GM regions, a weaker difference between SZ and HC subjects was 

observed (Cohen’s d = -0.403, p = 0.02, not significant after multiple 

testing correction). The remaining traits, mostly capturing the 

connectivity of the CONT network and the DMN, did not exhibit 

between-group differences. 

RC4 was also sensitive to verbal memory deficits, with VMI patients 

showing higher average weight compared to VMP ones (Cohen’s d = -

0.805, p = 0.01) (Figure 4.4). 

 
Figure 4.4. Association between hybrid trait 4 and verbal memory. Violin 
plot showing the distribution of the individual weights for the SZ-related 
structural-functional trait in VMI and VMP SZ patients. 
 

4.4 Discussion 

Using two complementary data-driven approaches, we investigated 

structural and functional brain networks in patients with SZ, both 
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separately and in conjunction, demonstrating widespread connectivity 

alterations and identifying deviations of the connectomic profile that 

might be specifically associated with verbal memory deficits. 

We found distributed modifications of anatomical connectivity compared 

to HCs, with mixed patterns of hypo- and hyperconnectivity, both within 

and between large-scale functional networks. 

Although the neurobiological basis of SC changes in SZ is not completely 

understood, also due to the possible effects of confounding factors like 

antipsychotic treatment, it is known that WM alterations are present from 

the prodromal to the chronic stages, with abnormal neurodevelopment 

representing the most plausible underlying mechanism.86 Interestingly, 

several lines of evidence pointed to alterations of oligodendrocytes 

number and function in patients with SZ, possibly influencing synaptic 

formation and ultimately leading to functional and clinical 

impairment.87,88 

In our sample, against the background of a widely deviating anatomical 

connectivity profile, a pattern of disrupted SC was observed 

encompassing prefrontal, parietal, and temporal regions subserving the 

DMN, as well as the hippocampi, which are also known to participate in 

the DMN.89 Indeed, the DMN is known to play a pivotal role in SZ,90 and 

anatomical connection deficits have been already demonstrated both 

between DMN nodes and between them and functionally anti-correlated 

networks,91,92 likely resulting from aberrant maturation93 and leading to 

functional reorganization.90 

On the other hand, some stronger structural connections in SZ patients 

compared to HCs were also observable, mainly mapping onto deep GM 

structures (primarily thalami and amygdalae), superior frontal gyri, 

paracentral lobules, and temporal poles.  

Indeed, evidence of increased anatomical connectivity in SZ has been 

reported multiple times,68 with more recent studies highlighting the 
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involvement of subcortical pathways, such as the thalamocortical 

connections94–96 and the medial forebrain bundle.97  

In line with some of these works, we found increased SC between the 

thalami and sensorimotor regions, coupling with a stronger FC between 

the same areas, which has been also previously reported.94,98 These 

observations are consistent with the hypothesis of thalamic dysfunction 

being a central neurobiological feature of the disease and contributing to 

psychotic symptomatology,99 given the crucial role of the thalami not only 

as a relay station of sensorimotor information, but also as a critical hub for 

multimodal processes integration.100 

From a functional standpoint, as expected, we found relatively 

widespread reorganization of large-scale brain networks in patients with 

SZ. 

We identified a pattern of decreased within- and between-network FC 

specifically involving the VIS and SM networks. Functional changes in 

cortical areas implicated in primary sensory and motor processing have 

been largely described in SZ,101 supposedly underlying not only 

psychomotor and basic perceptual alterations, but also impairment of 

higher-order functions through a bottom-up process.102,103 In keeping with 

this hypothesis, increased FC was also observed between the VIS and 

cortical association networks and subcortical regions, respectively. 

Stronger functional connections between visual regions and the DMN, 

responsible for introspection and self-referential processes,104 and “task-

positive” cortical regions (i.e., the CON and attention networks), 

generally involved in top-down control of goal-directed activities,104 are 

known features of SZ,105 possibly resulting from a failure of large-scale 

networks segregation during neurodevelopment.106 

These alterations, along with the observed FC increase between the VIS 

and the thalami, which has been previously implicated in attention 

impairment in SZ,98 may represent the neurobiological substrate of 
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aberrant sensory processing and integration, whose proper functioning 

relies on both voluntary shifts in directed attention, with efficient 

switching between unconscious and conscious visual perception,107 and 

coherent top-down prior expectations.108 

In this context, dysconnectivity of the CON and DAN, involved in 

visuospatial attention and exerting top-down modulation of context-

relevant information encoding,109 appears to play a central role, possibly 

feeding a positive feedback loop of abnormal perceptions and aberrant 

higher order cognitive processes.108 

Confirming the possible maladaptive role of the observed functional 

reorganization, a tiny cluster of increased FC between the VIS network 

and posterior hubs of the DAN bilaterally was associated with 

impairment of verbal memory in SZ patients. 

When investigating patterns of joint structural-functional connectivity, we 

identified a hybrid trait (RC4) that was significantly associated with SZ, 

mainly capturing VIS network-related FC.  

Reduced representation of this component in patients with SZ compared 

to HCs substantially matches the results of single-modality analyses, 

further suggesting that a deviating connectivity profile of sensorimotor 

networks might be a core connectomic feature of SZ. 

RC4 was also sensitive to verbal memory deficits, with a higher 

representation in VMI compared to VMP patients and a more 

conspicuous effect relative to single-modality network-based 

comparisons. 

Whereas the direction of observed changes could appear counterintuitive 

(RC4 is less represented in subjects with SZ compared to HCs, but more 

represented in VMI compared to VMP patients), a context-dependent 

non-monotonic behavior might be hypothesized for this feature, with the 

hybrid trait’s individual representation likely to have different 

(mal)adaptive roles according to the stage of the disease and the overall 
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connectomic profile.  

Again, this finding supports the theory that aberrant connectivity of areas 

involved in primary sensory processing might induce deficits that 

reverberate to higher cognitive functions through a bottom-up 

process.102,110,111 

Also, while it is clear that hybrid traits are dominated by variance in 

functional rather than structural edges, our results show that 

multivariate, multimodal approaches (compared to univariate, single-

modality) may yield increased sensitivity towards disease-related 

deviations from the healthy connectome and a closer correspondence 

between brain networks and clinical functioning, given their ability to 

capture higher-order connectivity patterns15. 

The present study is not without limitations. First, since the patients’ 

population was composed exclusively of chronic SZ subjects, we were not 

able to disentangle the possible effects of antipsychotic drugs on the 

observed brain networks’ changes (although the two SZ subgroups did 

not significantly differ in terms of CPZ equivalents), nor to infer the 

possible role of disease stage. Thus, future studies are warranted to 

confirm the findings in first-episode, treatment-naïve SZ patients and 

high-risk subjects. Furthermore, given the cross-sectional nature of the 

study, the causal relationship between brain networks’ changes and 

functional impairments could not be fully investigated, with longitudinal 

designs that would allow to assess the prognostic ability of connectomic 

modifications to predict clinical outcomes. 

In conclusion, while we are still far from a comprehensive understanding 

of the neural substrates of SZ and SZ-related cognitive dysfunction, using 

multimodal MRI we identified a symptom-specific connectomic signature 

of the disease. We suggest that aberrant connectivity of sensorimotor 

networks may be a core feature of SZ and a putative biomarker of verbal 

memory impairment, with potentially relevant clinical implications in 
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terms of disease monitoring and treatment targeting. 
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Chapter 5 
Quantitative MRI in Multiple 
Sclerosis 
5.1 Background and Rationale 

In MS, the physiopathological mechanisms behind atrophy accrual and its 

impact on disability have been investigated and confirmed by several 

independent groups.22 Nevertheless, the nature and clinical relevance of 

tissue microstructural abnormalities remain more elusive, partly because 

the coexistence of different pathological processes (demyelination, 

inflammation, axonal loss) represents a challenge for their 

characterization.112 In recent years, semi-quantitative and quantitative 

MRI methods have been developed to explore the nature of 

microstructural abnormalities, with particular interest in MS being 

devoted to the assessment of iron and myelin, as these might offer a 

glimpse into the neurodegenerative process and tissue repair 

capability.113,114 Indeed, although iron accrual has to be interpreted with 

caution given the confounding effect of concomitant tissue loss,115,116 iron 

depletion in WM and in WM-rich structures such as the thalamus likely 

results from oligodendrocytes dysfunction and damage, with reduced 

myelination capacity and trophic support leading to 

neurodegeneration.117 Among quantitative parameters, histological 

validation studies have confirmed the applicability of quantitative 

susceptibility mapping (QSM) for the assessment of iron content in the 

basal ganglia, where myelin intensities have almost no effect on 
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susceptibility.118 Within myelin rich structures such as WM and thalamus 

however, interpretation of susceptibility modifications are more 

challenging, as diamagnetic myelin and paramagnetic iron play opposite 

effects on susceptibility.  In these regions a susceptibility increase would 

be expression of iron accrual/demyelination, while a susceptibility 

decrease would be expression of iron depletion/increase in myelin 

content.  

Another quantitative parameter, which more closely reflects tissue myelin 

content, is the longitudinal relaxation rate (R1). R1 is strongly associated 

with both myelin and axon content,119 but, according to postmortem 

analysis of brain tissue, it is primarily dependent on myelin content120 and 

is among the most reliable myelin-sensitive MRI metrics.114 Beyond the 

information that susceptibility and R1 changes (as proxies of iron and 

myelin content) can provide on the nature of microstructural 

abnormalities in MS, the clinical impact of such modifications remains 

unclear for several reasons. First, previous studies applying iron and 

myelin imaging in MS have mainly focused on global disability 

outcomes,121,122 or have limited their investigation to selected regions of 

interest.123,124 Second, the fact that correlations with disability might be 

driven by atrophy rather than modifications in iron and myelin per se has 

been rarely investigated.116 Therefore, the goal of our work was to build 

on previous findings by exploring the impact of R1 and susceptibility 

changes on a wide range of disability outcomes (considering also manual 

dexterity and cognitive function), while accounting for atrophy, which is 

the main driver of disability accrual in MS and, as recently highlighted, 

has a major impact on qMR measures.116,125  To this aim we conducted a 

multi-parametric analysis of quantitative MR, together with brain 

volumetry, to (i) characterize the topographical distribution of atrophy, 

R1 and ꭓ changes in the MS brain and (ii) clarify their impact on both 

cognitive and motor disability. 
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5.2 Materials and Methods 

5.2.1 Subjects 
In this cross-sectional study, from February 2016 to January 2020, we 

prospectively enrolled MS patients diagnosed according to the 2010-

McDonald criteria,13 along with age- and sex-comparable HS. 

The study was conducted in compliance with ethical standards, approved 

by the local Ethics Committee and written informed consent was obtained 

from all subjects according to the Declaration of Helsinki. 

5.2.2 Clinical and Neuropsychological Assessment 
Within one week from the MRI, patients’ clinical disability was quantified 

using the Expanded Disability Status Scale (EDSS) score,126 with disease 

course classified according to Lublin et al.14 At the same time, patients 

were tested using the Symbol Digit Modalities Test (SDMT)16 to assess 

cognitive processing speed, while ambulation and manual dexterity were 

probed through the Timed 25-Foot Walk (T25FW) and the 9-Hole Peg 

Test (9-HPT), respectively. SDMT scores were expressed as Z-scores with 

reference to normative values in the healthy population, adjusting for age, 

gender and education.16 Similarly, T25FW and 9-HPT scores were 

referenced to normative values of an external population of MS patients127 

and averaged to obtain a single composite measure of motor 

performance. Z-scores were flipped, as appropriate, to have higher scores 

always corresponding to better performances.    

5.2.3 MRI data acquisition and preprocessing 
All MRI exams were performed on the same 3T scanner (Magnetom Trio, 

Siemens Healthineers) and included a 3D T1-weighted sequence for 

volumetric analyses, a 3D T2-weighted FLAIR sequence for T2-

hyperintense lesions detection and lesion load (T2-LL) quantification and 

two spoiled gradient echo sequences for quantitative analyses.128 Details 

about acquisition parameters and a thorough description of image 



54 
 

preprocessing, including the computation of R1 and QSM maps, are 

provided in previous publications,128–132 while a flowchart summarizing 

the main image processing and analysis steps is depicted in Figure 5.1. 

 
Figure 5.1. Workflow illustrating the main image processing and analysis 
steps. Initially, quantitative maps were computed and mapped onto the 
corresponding T1-weighted volumes and demyelinating lesions were 
automatically segmented on FLAIR images. For voxel-based analyses, T1-
weighted volumes were segmented into different tissue classes and normalized to 
a 1mm isotropic template in MNI space, with the estimated spatial 
transformations also applied to quantitative maps. Before entering voxel-wise 
statistical analyses, normalized gray matter and white matter probability maps 
were modulated and smoothed, while normalized R1 and χ maps were smoothed 
via a tissue-weighted smoothing procedure to account for the partial volume 
contribution of tissue density in each voxel. Using lesion and tissue class masks, 
global brain volumes and median values of R1 and χ in normal-appearing tissues 
were also obtained. 
 

Briefly, quantitative maps were mapped onto the corresponding T1-

weighted volumes, demyelinating lesions were automatically segmented 

on FLAIR images via the Lesion Segmentation Tool (LST) toolbox 

(www.statistical-modelling.de/lst.html) and individual lesion probability 

maps were used to fill lesions in T1-weighted images and binarized to 

compute T2-LL. 
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Subsequent processing steps were carried out following the voxel-based 

morphometry (VBM)44 and voxel-based quantification (VBQ)133 

approaches: filled T1-weighted volumes were segmented into different 

tissue classes and normalized to a 1mm isotropic template in MNI space 

via the standard pipeline implemented in the Computational Anatomy 

Toolbox (CAT12, http://neuro.uni-jena.de/cat), with the estimated 

spatial transformations also applied to quantitative maps. Finally, 

normalized GM and WM probability maps were modulated and 

smoothed using a 1mm full width at half maximum (FWHM) isotropic 

Gaussian kernel. Instead, normalized R1 and χ maps were smoothed (1-

mm FWHM isotropic Gaussian kernel) via the tissue-weighted smoothing 

procedure implemented in the hMRI toolbox (https://hmri-

group.github.io/hMRI-toolbox) to account for the partial volume 

contribution of tissue density in each voxel, resulting in tissue-specific 

smoothed quantitative maps in MNI space. 

For each participant, total intracranial volume (TIV) was also estimated 

and brain parenchymal, GM and WM fractions (BPf, GMf, WMf) were 

computed. Additionally, individual normal-appearing GM and WM 

masks were obtained and used to extract median values of R1 and χ, 

while study-specific GM and WM masks were generated to restrict voxel-

wise statistical comparisons in order to reduce possible spurious atrophy-

related effects on VBQ analyses, as well as to ensure that each voxel was 

analyzed in only one subspace (i.e., GM or WM). 

5.2.4 Statistical analysis 
Unless otherwise specified, statistical analyses were carried out using the 

Statistical Package for Social Science (SPSSv25.0, IBM corp.) with a 

significance level α=0.05, and the Benjamini-Hochberg procedure was 

adopted for controlling the false discovery rate (FDR). Before running 

parametric analyses, assumptions of the linear model were preliminarily 
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verified. 

Between-group differences were tested with either Student t (age), 

Pearson Chi-square (sex) or age- and sex-corrected ANCOVA (tissue 

volumes and median R1 and ꭓ values) tests.  

As for the VBM and VBQ analyses, normalized, modulated and smoothed 

tissue probability maps, as well as normalized and smoothed R1 and ꭓ 

maps, were statistically analyzed, separately for GM and WM, to assess 

voxel-wise between-group differences using a nonparametric approach 

based on 5000 permutations applied to the general linear model51 via the 

Threshold Free Cluster Enhancement (TFCE) toolbox 

(http://www.neuro.uni-jena.de/tfce). Age, sex and TIV were included in 

the model as confounding variables and previously generated explicit 

GM and WM masks were used, with a cluster extent threshold k=100 

voxels and significance level p<0.05 after correction for multiple 

comparisons by controlling the family-wise error rate.  

When significant between-group differences emerged at the voxel-based 

analyses, relationships between clinical variables (i.e. EDSS, SDMT and 

motor scores) and MRI metrics (tissue probability, R1, and ꭓ maps) were 

assessed voxel-wise via the TFCE toolbox using regression models with 

individual clinical scores as the dependent variables and explicit masks 

restricting the analyses to areas of significant between-group differences. 

Robust partial correlation analyses, using bootstrap with 5000 resamples, 

were also carried out between clinical variables and global MRI metrics 

(i.e. T2-LL and tissue volumes and median R1 and ꭓ values), correcting 

for age, sex and TIV (for volumes only). 

 

5.3 Results 

5.3.1 Subjects 
117 MS patients (85 relapsing-remitting, 22 secondary-progressive, 10 
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primary-progressive; 40.6±11.9 years; F/M=85/32) were included in the 

study, along with 53 HS (41.3±11.6 years; F/M=33/20). Mean disease 

duration (DD) for MS patients was 12.7 years (SD: 8.3), with a median 

EDSS score of 3.0 (interquartile range: 2.0 - 5.25) and a mean T2-LL of 6.2 

ml (SD: 10.7). 110 patients (94.0%) were under immunomodulatory 

treatment (32% with first line therapies: interferon, glatiramer acetate, 

dimethyl fumarate, teriflunomide; 62% with second line therapies: 

fingolimod, siponimod, natalizumab, alemtuzumab, ocrelizumab, 

cladribine) at the time of the MRI. 

Demographic and clinical characteristics of the studied population, along 

with MRI-derived brain volumes and median R1 and χ values, are 

reported in Table 5.1. 

 MS 
(n=117) 

HS 
(n=53) 

p-value*** 
(MS vs HC) 

Age (y) 40.6±11.9 41.3±11.6 0.71 
Female Sex* 85 (72.6%) 33 (62.3) 0.17 
DMT  
(first/second line/none)* 

38/72/7 
(32.5/61.5/6.0%) - - 

Disease Course 
(RR/SP/PP)* 

85/22/10 
(72.6/18.8/9.5%) - - 

DD (y) 12.7±8.3 - - 
EDSS** 3.0 (2.0 - 5.25) - - 
Cognitive score -0.82±1.16 -  
Motor score -0.03±0.86 -  
T2-LL (ml) 6.2±10.7 - - 
BPf (%) 78.3±4.2 81.0±2.9 <0.001 
GMf (%) 43.9±2.8 45.3±2.4 <0.001 
WMf (%) 34.4±2.6  35.7±2.0 <0.001 
NAGM median R1 (Hz) 0.66±0.06 0.70±0.06 0.002 
NAWM median R1 (Hz) 0.99±0.09 1.06±0.09 <0.001 
NAGM median χ (ppb) 2.84±1.81 2.44±1.67 0.19 
NAWM median χ (ppb) -9.47±2.58 -7.97±2.31 <0.001 

Unless otherwise indicated, data are expressed as mean ± SD. Between-
group differences were tested with either Student t (age), Pearson Chi-
square (sex) or age- and sex-corrected ANCOVA (MRI-derived measures) 
tests.  
* Data are the number of subjects, with percentages in parentheses. 
** Data are medians, with interquartile ranges in parentheses. 
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*** Significant between-group differences are reported in bold. 
Table 5.1. Demographic, clinical and MRI characteristics of the studied 
population. 
 
 
 

5.3.2 Between-group comparisons 
Compared to HS, MS patients had lower GM, WM and whole-brain 

volume fractions (p-values≤0.001 for all), along with lower median 

NAGM R1 (p=0.002), NAWM R1 and χ (p ≤0.001) values. 

At the voxel-based analyses (Figure 5.2), MS patients showed massive 

clusters of reduced volume compared to HC, extensively encompassing 

both supra- and infra-tentorial GM and WM, with local maxima located 

in the bilateral thalami and fornices, respectively (p-values <0.001).  

 
Figure 5.2. Results of the between-group voxel-wise comparisons. A lesion 
probability map (LPM), obtained by summing all the binary lesion masks and 
dividing by the number of patients to give a lesion probability at each voxel, is 
presented (with a 5% probability threshold, upper left panel), along with clusters 
of significant between-group difference in terms of volume (upper right panel), 
R1 and ꭓ (lower panels) values for both the MS>HC (red-yellow) and MS<HC 
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(blue-light blue) contrasts, all superimposed on axial sections of the average T1-
weighted volume in the MNI space. For Volume, R1 and ꭓ maps, pooled results 
of the GM and WM analyses are shown. Images are in radiological orientation. 
 

Similarly widespread clusters of reduced R1 values emerged in MS 

patients, extending well beyond the distribution of visible T2-

hyperintense lesions and peaking in the corpus callosum, periventricular 

WM and thalami (p-values <0.001). As for the analysis of QSM images, 

MS patients showed several clusters of reduced ꭓ values compared to HC, 

involving the bilateral cerebral WM (particularly the frontal sections of 

the corpus callosum, corona radiata, superior longitudinal fasciculus and 

cingulum - p-values <0.001), the midbrain (p=0.001), the bilateral pulvinar 

and right thalamic ventral lateral nucleus (p-values <0.001), along with 

small clusters of increased ꭓ values in the left body of the caudate nucleus 

(p=0.004) and the right anterior cingulate (p=0.005) and superior frontal 

(p=0.02) gyri. 

Effect size (Cohen’s d) maps of between-group differences in terms of 

regional volume, R1 and χ values (obtained from permutation-based T 

statistics estimated in TFCE toolbox) are also presented in Figure 5.3. 

  
Figure 5.3. Effect size maps of between-group differences. Effect size 
(Cohen’s d) maps of between-group differences in terms of volume, R1 and χ 
values (from left to right) are presented, superimposed on axial sections of the 
average T1-weighted volume in the MNI space. Positive effect size values refer to 
the MS<HC contrast. For Volume, R1 and χ maps, pooled results of the GM and 
WM analyses are shown. Images are in radiological orientation. 
 

5.3.3 Relationship between MRI metrics and clinical status 
When looking at the relationship with clinical variables, whole brain and 
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GM volumes were positively associated with motor performance (r=0.245, 

p=0.009 and r=0.241, p=0.01, respectively), with T2-LL and global GM 

volume correlating with cognitive processing speed (r=-0.255, p=0.006 

and r=0.234, p=0.01, respectively) and more weakly with clinical 

disability (r=0.200, p=0.03 and r=-0.203, p=0.03, respectively, not 

surviving multiple comparisons correction). No significant correlations 

emerged between clinical status and median R1 and χ values of both 

NAGM and NAWM (Table 5.2). 

 EDSS SDMT Motor score 
Global MRI metricsa 

T2-LL 0.200 (0.033, 0.407) 
0.03* 

-0.255 (-0.360, -0.151) 
0.006 

-0.164 (-0.324, -0.029) 
0.09 

Whole Brain 
volume 

-0.161 (-0.356, 0.024) 
0.09 

0.177 (0.011, 0.339) 
0.06 

0.245 (0.078, 0.413) 
0.009 

GM volume -0.203 (-0.370, -0.027) 
0.03* 

0.234 (0.075, 0.386) 
0.01 

0.241 (0.089, 0.381) 
0.01 

WM volume -0.061 (-0.246, 0.112) 
0.52 

0.057 (-0.158, 0.257) 
0.55 

0.153 (-0.016, 0.332) 
0.11 

NAGM 
median R1 

-0.136 (-0.313, 0.053) 
0.15 

0.076 (-0.094, 0.250) 
0.42 

0.039 (-0.132, 0.210) 
0.68 

NAWM 
median R1 

-0,158 (-0.331, 0.030) 
0.10 

0.167 (-0.009, 0.338) 
0.08 

0.118 (-0.042, 0.278) 
0.22 

NAGM 
median χ 

0.007 (-0.187, 0.196) 
0.94 

-0.019 (-0.201, 0.167) 
0.84 

-0.022 (-0.224, 0.193) 
0.82 

NAWM 
median χ 

-0.084 (-0.291, 0.140) 
0.38 

-0.030 (-0.200, 0.141) 
0.75 

0.136 (-0.049, 0.303) 
0.15 

Significant results are in bold. 
a Correlations with clinical scores are corrected for age, sex and TIV (for 
volumes only). 
* Not significant after FDR correction. 
Table 5.2. Correlations between clinical and MRI-derived variables. 
Results are expressed as correlation coefficients (r) with 95% bias-corrected and 
accelerated bootstrap confidence intervals in parentheses (first row) and 
corresponding p-values (second row). 
 

To allow for a precise anatomical localization of the effects of interest, 

associations with clinical variables were also tested at the voxel level 

(Figure 5.4): thalamic volume was related both negatively with clinical 
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disability (p=0.001) and positively with cognitive processing speed 

(p=0.001) and motor performance (p=0.01), with additional positive 

correlations between the SDMT score and GM volume in the right basal 

ganglia and posterior insula (p-values<0.04) and between motor 

performance and infratentorial WM volume at the level of the medial 

lemnisci and cerebellar peduncles (p=0.01). Furthermore, a large cluster of 

significant association between the SDMT score and R1 values emerged, 

extensively involving the (mainly posterior) periventricular WM and 

peaking around the right posterior thalamic radiation (p reaching 0.01), 

while χ values in the frontal sections of the cingulum and corona radiata 

were related both negatively with EDSS (p reaching <0.001) and 

positively with motor performance (p reaching 0.003). 

 
Figure 5.4. Results of the voxel-wise correlations with clinical variables. 
Clusters of significant association between MRI metrics and EDSS, SDMT and 
motor (from top to bottom) scores are presented, superimposed on sagittal, 
coronal and axial (from left to right) sections of the average T1-weighted volume 
in the MNI space. Images are in radiological orientation. 
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5.4 Discussion 

Notwithstanding the many advances witnessed in the field of tissue 

microstructure in MS, none of the available MR techniques is solely 

affected by a specific pathological aspect, which advocates for the 

application of multi-parameter approaches to improve our understanding 

of microstructural damage.134 Here, we applied a multi-parameter 

analysis of volumetry and quantitative MRI to address the following 

questions: (i) what is the topography of iron and myelin changes assessed 

via susceptibility and relaxometry in MS? and (ii) are the observed 

changes clinically relevant? 

As per the first question, MS patients showed a widespread R1 decrease 

across GM and WM regions, associated to substantially more limited 

modifications in susceptibility and to an atrophy pattern mainly 

involving deep GM, posterior and infratentorial regions. The observed R1 

reduction throughout the WM was likely driven by changes in 

macromolecular tissue content (i.e. myelin), and, to a lesser extent, by iron 

levels.135 Indeed, pathological descriptions documented demyelination 

not only in the context of lesions, but also in normal-appearing WM,136 

with iron depletion in remyelinated plaques118 also possibly contributing, 

to a lesser extent, to R1 reduction. The R1 voxel-wise analysis confirms 

and expands previous findings reporting R1 decrease in multiple WM 

tracts in MS compared to HS,114 with no specific regional preference.137 

Similarly, the parallel susceptibility decrease in several WM regions 

confirms histopathological data reporting iron depletion in normal-

appearing WM,118 and adds on a recent study reporting a decrease in 

susceptibility within the cingulum in a relatively small group of 

patients.138 Indeed, our larger sample size and the application of a voxel-

wise approach likely explains the increased sensitivity to the detection of 
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between-group differences. Nevertheless, given previous 

histopathological data reporting significant decrease of iron in 

oligodendrocytes and myelin within normal-appearing WM,117 the 

limited spatial extension of the observed susceptibility reduction is 

somehow surprising. A possible explanation could be that, as myelin and 

iron exert opposite effects on susceptibility, our ability to investigate 

tissues characterized by concomitant presence of demyelination and iron 

depletion remains intrinsically limited.  

In GM, the observed R1 reduction was associated with decreased 

susceptibility in the thalamus and small clusters of increased 

susceptibility in the caudate nucleus and cortical areas. While R1 in the 

cortex and thalamus can be considered a reliable marker of myelin 

content,139 in the basal ganglia it is highly influenced by iron 

concentration.116 The observation that the thalamus undergoes structural 

modifications similar to those observed in WM, with demyelination 

associated with iron depletion, confirms recent findings21,115,116,140 and can 

be explained by its peculiar anatomical structure. Likewise, our findings 

of small areas of increased susceptibility in the cortex and caudate 

nucleus are in line with recent reports, suggesting that susceptibility 

increase in MS deep GM, originally interpreted as demyelination and iron 

accrual,121,124 is mainly accounted for by atrophy rather than actual 

increase in iron content.115,116 

As per the clinical meaning of microstructural abnormalities, R1 changes 

seem to reflect the impact of focal lesions, with the cluster holding 

significant correlation with cognitive performance peaking in the 

periventricular region, in overlap with focal demyelination, likely causing 

disconnection of distributed networks responsible for the control of high-

level functions. On the other hand, susceptibility and atrophy, reflecting 

oligodendrocyte and axonal damage, significantly contributed to global 

and motor disability. Our analysis confirmed not only the central role of 
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thalamic atrophy as meaningful correlate of disability in MS,28 but also 

the relevance of cerebellar WM damage in driving motor impairment.141 

Beyond these confirmations, we identified a correlation between 

susceptibility reduction and disability that might add another layer to our 

understanding of the pathological mechanisms sustaining clinical 

impairment in MS. Indeed, if susceptibility decrease is expression of 

oligodendrocyte damage,117 the consequent reduction of the tissue repair 

capability, depending upon oligodendrocyte activity, would contribute to 

the manifestation of clinical deficits. On the other hand, cognitive 

performance was related to deep GM atrophy and R1 abnormalities 

mostly overlapping the distribution of focal WM lesions. Such overlap, 

together with the correlation identified between lesion load and SDMT, 

suggests that, rather than microstructural damage, GM atrophy and 

disconnection sustained by focal lesions remain the main predictors of 

cognitive dysfunction in MS.142  

Our work is not without limitations. First, our assessment was conducted 

on the entire GM and WM rather than the normal-appearing tissue. 

However, when comparing extra-lesional median R1/susceptibility 

values at group level, we identified significant differences, demonstrating 

that microstructural abnormalities also affect normal-appearing tissue. 

Additionally, the voxel-based analysis clearly demonstrated that such 

modifications are not spatially restricted to areas affected by T2 

hyperintense lesions, as R1/susceptibility alterations are not only present 

where lesion have higher probability to occur, but are also identified 

within normal-appearing tissue. Finally, although our clinical evaluation 

included motor and cognitive assessments, and our approach allowed for 

a multifaceted exploration of tissue abnormalities, we are still far from a 

comprehensive characterization of the structural substrate underpinning 

clinical disability in MS. 

In conclusion, we confirmed the presence of widespread and clinically 
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relevant demyelination, expressed by R1 decrease, and atrophy in MS. In 

addition, our findings suggest that also the more limited modifications of 

tissue susceptibility are clinically meaningful, possibly adding 

information on oligodendrocyte dysfunction and damage to the ones 

provided by demyelination and atrophy estimation. 
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