Magnetic resonance imaging (MRI) represents a uniquely powerful tool
for clinical and basic neuroscience, providing an invaluable window into
the in vivo brain.

In recent years, different MRI modalities have found their stable place
in the clinical and/or research setting, leading to an ever-increasing
number of brain imaging studies.

In this context, machine learning has emerged as a powerful technique
for recognizing patterns on high-dimensional MRI datasets.

| present four different case studies in which brain MRI and
statistical/machine learning methods are applied in different clinical
populations to address specific research questions, including:

(i) modelling brain MRI data using unsupervised machine learning to
stratify patients with multiple sclerosis; (ii) building a model of healthy
aging using deep learning and brain MRIs and testing whether patients
with Fabry disease have older appearing brains compared to healthy
subjects; (iii) analyzing MRI-based connectivity to study alterations of
brain structural and functional networks in schizophrenia; (iv) using
guantitative MRI to characterize brain iron and myelin changes in

multiple sclerosis.
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To Daria

Fall in love with some activity, and do it! Nobody ever figures out
what life is all about, and it doesn't matter. Explore the world.
Nearly everything is really interesting if you go into it deeply
enough.

— Richard P. Feynman
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Abstract

Magnetic resonance imaging (MRI) represents a uniquely powerful tool
for clinical and basic neuroscience, providing an invaluable window into
the in vivo brain.

In recent years, different MRI modalities have found their stable place in
the clinical and/or research setting, leading to an ever-increasing number
of brain imaging studies.

In this context, machine learning has emerged as a powerful technique for
recognizing patterns on high-dimensional MRI datasets.

I present four different case studies in which brain MRI and
statistical/machine learning methods are applied in different clinical
populations to address specific research questions, including: (i)
modelling brain MRI data using unsupervised machine learning to stratify
patients with multiple sclerosis; (ii) building a model of healthy aging
using deep learning and brain MRIs and testing whether patients
with Fabry disease have older appearing brains compared to
healthy subjects; (iii) analyzing MRI-based connectivity to study
alterations of brain structural and functional networks in
schizophrenia; (iv) using quantitative MRI to characterize brain

iron and myelin changes in multiple sclerosis.

Keywords: magnetic resonance imaging, machine learning, brain,
multiple sclerosis, Fabry disease, schizophrenia.



Sintesi in lingua italiana

L'imaging di risonanza magnetica (RM) rappresenta uno strumento
fondamentale per le neuroscienze cliniche e di base, permettendo di
“guardare” all’interno dell’encefalo in vivo in maniera non invasiva.
Negli ultimi anni, diverse modalita di RM hanno trovato un ruolo stabile
in ambito clinico e/o di ricerca, portando ad un numero sempre crescente
di studi basati su imaging dell’encefalo.

In questo contesto, il machine learning ¢ emerso come uno strumento
straordinariamente potente per modellare grandi collezioni di dati RM.
Presento qui quattro diversi esempi di come RM dell’encefalo e metodi
statistici/di machine learning possano essere applicati in popolazioni
cliniche per rispondere a specifici quesiti di ricerca, che includono: (i)
modellare dati di RM dell’encefalo utilizzando machine learning non
supervisionato per stratificare pazienti con sclerosi multipla; (ii) costruire
un modello di invecchiamento fisiologico utilizzando deep learning e RM
dell’encefalo e testare se la malattia di Fabry incide sull’invecchiamento
encefalico; (iii) analizzare dati RM di connettivita cerebrale per studiare le
alterazioni dei network strutturali e funzionali in soggetti con
schizofrenia; (iv) utilizzare 1I'RM quantitativa per caratterizzare le

alterazioni di ferro e mielina encefalici associati alla sclerosi multipla.

Parole chiave: risonanza magnetica, machine learning, encefalo, sclerosi
multipla, malattia di Fabry, schizofrenia.
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List of Acronyms

The following acronyms are used throughout the thesis.

CSF CerebroSpinal Fluid

cv Cross-Validation

DGM Deep Gray Matter

dMRI diffusion MRI

EDSS Expanded Disability Status Scale
FC Funtional Connectivity

FD Fabry Disease

fMRI functional MRI

GM Gray Matter

HS Healthy Subjects

ML Machine Learning

MRI Magnetic Resonance Imaging
MS Multiple Sclerosis

qMRI quantitative MRI

RR Relapsing-Remitting

RS Resting-State

sMRI structural MRI

SC Structural Connectivity
SDMT Symbol Digit Modalities Test
SZ Schizophrenia

TLV Total Lesion Volume

T2-LL T2-Lesion Load

VBM Voxel Based Morphometry
VBQ Voxel Based Quantification
WBV Whole Brain Volume

WM White Matter
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Chapter

Introduction

Magnetic resonance imaging (MRI) represents a uniquely powerful tool
for clinical and basic neuroscience, providing an invaluable window into
the in vivo brain.

MRI is intrinsically multiparametric, with different modalities that can be
used to highlight different aspects of the brain’s structure and function.
Structural MRI (sMRI) is typically used to show the gross anatomy of the
brain: that is, mainly gray matter (GM), white matter (WM) and
cerebrospinal fluid (CSF). Many varieties of structural imaging exist, each
of which can highlight different aspects of brain anatomy, including
pathological tissue. T1-weighted images are the most common structural
images, used for getting good CNR (contrast-to-noise ratio) and tissue
discrimination, especially in healthy subjects (HS).

Diffusion MRI (dMRI) provides indirect information about local physical
diffusion processes and axonal fiber directions. It can be used to examine
the “wiring” of the brain (i.e., anatomical connectivity), as well as to
investigate tissue microstructure.

Functional MRI (fMRI) highlights dynamic changes in the brain in order
to examine neuronal function. It provides a surrogate measure of
neuronal activity by using the blood oxygenation level dependent (BOLD)
effect, which is sensitive to changes of blood oxygenation in response to
neuronal firing.

Quantitative MRI (qMRI) goes beyond conventional MRI, which aims

primarily at local image contrast, providing quantitative measurements of
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specific physical parameters related to the nuclear spin of protons in
water. These parameters carry information about the local microstructural
environment of the protons (e.g., myelin), and can be used to directly
characterize biological tissue microstructure.!

In recent years, all these modalities have found their stable place in the
clinical and/or research setting. Indeed, the maturation of in vivo
neuroimaging has led to incredible quantities of digital information about
the human brain. An increasing number of brain imaging studies have
started to join the ranks of “big data” science, prompting the usage of
novel image analysis and statistical methods for the investigation of high-
dimensional MRI datasets.

In particular, machine learning (ML) has emerged as a powerful
technique for recognizing patterns on medical images, driven also by the
substantial increase in computational performance and the introduction
of new algorithms.?

Here, I will describe four different case studies in which brain MRI and
statistical methods are applied in different clinical populations to address
specific research questions.

In Chapter 2, we will see how the unsupervised machine learning
modelling of brain MRI data can be used to obtain a biologically and
clinically meaningful stratification of patients with multiple sclerosis (MS).
In Chapter 3, we will use deep learning to build a model of healthy
aging from brain MRIs and test whether patients with Fabry
disease (FD) have older appearing brains compared to HS.

In Chapter 4, we will assess the impact of schizophrenia (SZ) on
structural and functional MRI-based brain connectivity.

In Chapter 5, we will use qMRI to characterize MS-related changes of

brain iron and myelin and explore their clinical correlates.
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Chapter

Disease Modelling in Multiple
Sclerosis

2.1  Background and Rationale

Brain MRI abnormalities in MS represent objective indicators of the
patient’s biological status, reflecting pathogenetic mechanisms underlying
disease evolution.?

Although a massive body of evidence regarding the biological and clinical
relevance of MRI biomarkers has been provided through the years by
large-N research studies, their implementation in the single-subject
setting and therefore in clinical practice remains challenging.# Actually,
MRI biomarkers exhibit high variance, resulting from both non disease-
related confounders (e.g. age, sex, other coexisting physiologic and
pathologic conditions) and disease-related phenotypic and temporal
heterogeneity, thus hampering the definition of absolute cut-points and
limiting their utility for effective patient stratification.

Over the years, technical advances and the emergence of imaging
guidelines®¢ have led to the widespread availability of high-quality
clinical MRI scans, including sequences with isotropic voxel resolution
suitable for volumetric quantifications.” Unfortunately, this goldmine of
information remains largely unexploited due to the complexity of
meaningfully modelling high-dimensional dataset and the frequent lack
of associated data reliably reflecting the patients’ clinical status.

Unsupervised ML techniques modelling disease progression based solely
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on objective biomarker changes, without reliance on a priori clinical
information or explicit biomarker thresholds, represent a valuable
approach to overcome these issues.® Recently, such methods have been
applied to primary neurodegenerative disorders of the Central Nervous
System3? and showed promising results when translated into the MS
scenario with the aim to characterize the disease-specific sequence of
clinical and MRI changes!01! or to provide an MRI-driven definition of
disease phenotypes.12

Based on these premises, we applied a recently developed algorithm
called Subtype and Staging Inference (SuStaln), which identifies data-
driven subtypes characterized by distinct trajectories of biomarkers
abnormality accumulation, to clinical MRI scans of a large single-center
cohort of relapsing-remitting MS (RRMS) patients. We aimed to
demonstrate that, based on a fine-grained volumetric mapping of
different brain areas and MS lesions obtained from cross-sectional MRI
visits, such approach would provide an accurate patient stratification
which is both biologically reliable and prognostically meaningful in the
light of longitudinal MRIs and long-term (10-year) motor and cognitive

evaluations.

2.2 Materials and Methods

2.2.1 Participants

In this monocentric retrospective study, brain MRI studies of patients
with an MS diagnosis revised according to the 2010 McDonald criteria?
and a relapsing-remitting (RR) course!* were screened for eligibility from
the radiological and clinical research databases of the MS center of the
University of Naples “Federico II”, containing data collected starting from
October 2006.

Brain MRI scans of HS from the same databases and an external

population of RRMS patients from the University of Genoa were also
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selected to develop norms for z-scores calculation and select MRI features.
The study was conducted in compliance with the ethical standards and
approved by the Ethics Committee “Carlo Romano” of the Host

Institution.

2.22 Clinical evaluation

For all patients, clinical disability within one week from MRI was
estimated using the Expanded Disability Status Scale (EDSS). Patients for
whom a long-term clinical and neuropsychological evaluation was
available were classified at follow-up (10+2years from baseline MRI)
according to: (i) motor disability, ranging from 0 to 3 according to
ambulation benchmarks corresponding to EDSS scores <4.0, 24.0 and
<6.0, 26.0 and <7.0, 27.0;%5 (ii) cognitive disability, ranging from 0 to 3 and
corresponding to the number of impaired (below 1.5 SD age-, sex- and
education-corrected normative values in the healthy population)!¢ tests at
the Brief International Cognitive Assessment of Multiple Sclerosis

(BICAMS) battery; (iii) transition to secondary progressive course.l4

2.2.3 MRI data acquisition and processing

Exams were acquired on the same 3T scanner (Magnetom Trio, Siemens
Healthineers) and included a 3D T1-weighted sequence (S1mm isotropic
voxel-size) for volumetric analyses and a T2-weighted FLAIR sequence
for the quantification of total demyelinating lesion volume (TLV).
Sequence parameters and image processing steps are detailed in the
Supplemental Material. Briefly, for all participants, demyelinating lesions
were automatically segmented, visually checked, and where needed
manually adjusted on FLAIR images to compute TLV, while T1-weighted
volumes were used for an atlas-based parcellation of gray matter (GM)
into 116 regions defined by the Automated Anatomical Labeling (AAL)

atlas.18

2.24 Statistical Analysis



A flowchart summarizing data processing and analysis steps is depicted

in Figure 2.1.
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Figure 2.1. Workflow illustrating the main data processing and analysis
steps. Volumes of demyelinating lesions and 116 atlas-defined gray matter
regions were automatically segmented based on FLAIR-T2w and T1-w images,
respectively. Then, the corresponding volumes were expressed as z-scores with
reference to external populations of patients and healthy controls, that were also
used to select the most altered MRI-derived volumes. Following feature selection,
baseline MRI biomarkers entered the Subtype and Stage Inference (SuStaln)
algorithm, using 10-fold cross-validation to determine the optimal number of
subtypes and the consistency of progression patterns. Models of up to a
maximum of 4 subtypes with z-scores of 1, 2 or 3 for each biomarker were tested
(excluding z-score events reached by fewer than 5% of the subjects),
corresponding to interpretable levels of mild, moderate and severe abnormality
(color coded from blue to red). The trained model was then fit on all training data
and applied to longitudinal MRIs. Finally, the biological reliability and clinical
relevance of the SuStaln classification were assessed in the light of longitudinal
MRI scans and clinical outcomes.
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SuStaln modelling

SuStaln is an unsupervised machine learning algorithm combining ideas
from clustering and event-based modelling, which describes disease
progression as the linear evolution of biomarkers along discrete levels of
cumulative alteration, defined in terms of deviation from a reference
norm (z-scores).8 It simultaneously estimates subgroups characterized by
distinct patterns of biomarker evolution and the corresponding
trajectories, providing a probabilistic assignment of each subject to a
specific subtype and stage within a subtype. Methodological aspects of
the SuStaln algorithm are covered in Young et al.8

Briefly, MRI-derived GM and lesion volumes were expressed as z-scores
with reference to the HS group and the external RRMS population,
respectively, with signs of the z-scores flipped when appropriate so that
higher values always represented disease worsening. Baseline MRI scans
were used as the training set, while longitudinal visits were reserved for
the biological and clinical validation of the initial classification.®

Only variables associated with a moderate to large (Cohen’s {>0.25)
difference between MS patients and HC were selected and entered the
SuStaln algorithm. Models were evaluated using 10-fold cross-validation
(CV) in the training cohort to estimate the optimal number of subtypes
and the consistency of the subtype progression patterns: the number of
subtypes maximizing the average out-of-sample log-likelihood across CV
folds was preferred; the similarity of each subtype progression pattern
across CV folds (CVS) was measured using the Bhattacharyya coefficient.
Finally, the resulting model was fitted on all subjects of the training
cohort and applied to unseen longitudinal MRI scans to assign a probable
subtype and stage to each MRI visit.

Testing the biological reliability and clinical relevance of SuStaln
classification

The stability of the SuStaln subtypes over time was expressed with
11



Krippendorf’s a.? To assess the rate of change in disease stage, we fit a
multilevel linear regression model in which the SuStaln stage was the
dependent variable and follow-up time (nested within subjects) the
predictor, with intercepts and slopes allowed to vary across subjects
(random effects). The possible effect of baseline subtype and stage on the
slope of longitudinal stage change was assessed by separately adding
them (and the corresponding interactions with follow-up time) to the
model and testing the significance of interaction terms. Similar models
were set up for individual MRI-derived biomarkers.

The clinical relevance of the SuStaln classification was assessed in relation
to both baseline EDSS and long-term clinical outcomes with
ordinal/logistic regression (as appropriate) analyses, in which baseline
subtype and stage and their interaction, age and sex were the
independent variables. Follow-up time, baseline EDSS and disease-
modifying therapy were included as additional covariates for
longitudinal analyses.

Statistical analyses were carried out using the Statistical Package for

Social Science (SPSSv25.0, IBM corp.).

2.3 Results

2.3.1 Participants

Four hundred and twenty-five RRMS patients (baseline age: 35.9+9.9
years; F/M: 301/124) were selected, corresponding to a total of 1129 MRI
visits (2.7 MRI visits per patient, on average; range: 0 - 9), and a mean
follow-up (FU) time of 2.1 years.

MRI scans of 148 HS (age: 35.9+13.0 years; F/M: 77/71) were also
selected, along with those of an external population of 80 MS patients
(age: 40.4+11.9 years; F/M: 56/24).

Demographic and clinical characteristics of the studied population are

reported in Table 2.1.
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MS

MS HS (external site)
Number of subjects 425 148 80
Number of MRI 1129 148 30
scans
Age (y) 35.9+9.9 35.9+13.0 40.4+11.9
Female Sex* 301 (70.8) 77 (52.0) 56 (70.0)
DD (y) 12.7+8.3 - 10.3+7.4
EDSS** 25(20-35) - 2.0 (1.5-3.0)
TLV (ml) 10.1+13.4 - 3.4+5.3
WBYV (ml) 1328.8+127.9  1385.1+147.4  1370.4+153.3

* Data are the number of subjects, with percentages in parentheses.

** Data are medians, with interquartile ranges in parentheses.

Table 2.1. Demographic, clinical and MRI characteristics of the studied
population.

Long-term clinical outcomes were available for 178 patients (level of
motor disability: 0=121, 1=35, 2=16, 3=6; level of cognitive disability: 0=81,

1=42, 2=24, 3=31; transition to secondary progressive course: 29 subjects).

2.3.2 SuStaln model

The volumes of 10 GM regions, including the bilateral anterior cingulate
cortices, the right middle cingulate cortex, the bilateral insulae and cunei,
the right putamen and the bilateral thalami, were associated with a
moderate to large difference compared with the HC group and were thus
fed into the SuStaln algorithm along with TLV, for a total of 11

biomarkers (Figure 2.2).
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Figure 2.2. Results of the feature selection procedure. Gray matter regions
whose volume survived the feature selection procedure (i.e. associated with a
moderate to large effect size at the comparison with healthy controls) are
presented, along with a lesion probability map (obtained by summing all the
binary lesion masks and dividing by the number of patients, thresholded at 10%
probability), all superimposed on axial slices of the average T1w volume in the
standard space. Images are in radiological orientation.

The two-subtype model yielded the highest average log-likelihood across
CV folds (Figure 2.3) and was therefore chosen as the best fitting model

for subsequent analyses.
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Figure 2.3. Results of the 10-fold cross-validation. For models with different
number of subtypes, values of log-likelihood (LL) on the test data for each cross-
validation fold are presented (left panel), along with the corresponding average
cross-validation information criterion (CVIC, defined as -2*LL) (right panel).

When looking at the trajectories of brain damage progression in each
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subtype, we designated them as follows: (1) the deep gray matter (DGM)-
tirst subtype (56% of subjects, n=238), characterized by the initial volume
loss of subcortical gray matter structures followed by lesion accrual and
cortical atrophy and (2) the cortex-first subtype (44% of subjects, n=187),
characterized by cortical volume loss preceding DGM atrophy and lesion

accumulation (Figure 2.4).

DGM-first (f=0.56, n=238, CV5=0.91 £ 0.03) Cortex-first (f=0.44, n=187, CV5=0.91 £ 0.04)
T | | v T
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Figure 2.4. Positional variance diagrams for the two MRI-driven
subtypes. Each entry describes the probability for each biomarker of reaching the
color-coded z-score at each SuStaln stage. The colours represent the degree of
abnormality based on the z-score level (blue=mild, z-score of 1; violet=moderate,
z-score of 2; red=severe, z-score of 3), while the colour shade reflects the
uncertainty associated with the corresponding biomarker event.

Both progression patterns demonstrated high stability across CV folds,
with CVS of 0.91+0.03 and 0.91+0.04 for the DGM-first and cortex-first
subtypes, respectively (Figure 2.5).
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Figure 2.5. Reproducibility of subtypes under cross-validation. The
boxplots summarize the distribution of the similarity (Bhattacharyya coefficient)
between subtypes estimated from each pair of cross-validation folds.

Patients assigned to the two subtypes had comparable age, sex and whole
brain volume (WBV), while the DGM-first subtype was associated with
longer DD (p<0.001) and higher baseline EDSS score (p=0.004), SuStaln
stage (p=0.01) and TLV (p<0.001) (Table 2.2).
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DGM-first Cortex-first

(56%, n=238) (44%, n=187) p-value®™

Age (y) 35.9£10.1 35.949.5 0.98
Female Sex* 160 (67.2) 141 (75.4) 0.36

DD (y) 9.4+7.8 6.5+6.1 <0.001
EDSS** 2.5 (2.0-3.5) 2.5 (2.0-3.0) 0.004
SuStaln stage 4 (1-12) 4 (1-8) 0.01

TLV (ml) 14.0+£15.1 5.5+8.9 <0.001
WBYV (ml) 1325.3+126.8 1333.0+129.5 0.65

Unless otherwise indicated, data are expressed as meanxstandard deviation. Between-
group differences were tested with either Student t (age and DD), Pearson Chi-square
(sex), Kruskal-Wallis (EDSS and SuStaln stage) or age-, sex- and TIV-corrected
ANCOVA (TLV and WBYV) tests.

* Data are the number of subjects, with percentages in parentheses.

** Data are medians, with interquartile ranges in parentheses.

*** Significant between-group differences are reported in bold.

Table 2.2. Demographic, clinical and MRI characteristics of the MRI-
driven subtypes.

2.3.3 Biological reliability and clinical relevance

Disease subtypes tended to be consistent over time (Krippendorf's
a=0.806;, CI=0.752,0.821), with subtype stability increasing as the
probability threshold for the baseline subtype assignment was raised at
95% (177 subjects; a=0.990; CI=0.973, 0.998) or 99% (114 subjects; a=0.990;
CI=0.973, 0.998).

In patients who retained the initial subtype, there was a significant annual
increase in disease stage (b=0.20; SE=0.05; CI=0.09, 0.30; p<0.001),
supporting the biological reliability of SuStaln’s staging, with no
significant between-subtype difference (interaction term subtype*follow-
up time: b=-0.08; SE=0.11; CI=-0.29, 0.13; p=0.48). A significant
moderation effect of baseline stage on the relationship between follow-up
time and disease stage was observed (interaction term baseline
stage*follow-up time: b=-0.05; SE=0.01; CI=-0.08, -0.02; p=0.001),
corresponding to slopes getting flatter as the baseline stage increased and
probably reflecting a plateau effect.

When looking at individual MRI-derived biomarkers, all the GM volumes
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significantly decreased over time (p<0.03), with significant between-
group differences for the left thalamus, corresponding to greater
longitudinal atrophy rates in the DGM-first subtype (interaction term
subtype*follow-up time: b=0.05; SE=0.01; CI=0.02, 0.07; p=0.001), and
significant plateau effects (the higher the baseline stage the flatter the
slope of longitudinal changes) for the right thalamus (interaction term
subtype*follow-up time: b=0.007; SE=0.003; CI=0.002, 0.013; p=0.006) and
the right anterior cingulate cortex (interaction term subtype*follow-up
time: b=0.002; SE=0.001; CI=0.001, 0.003; p=0.002).

As for the relationship with clinical outcomes, baseline EDSS score was
positively related with both SuStaln stage (b=0.042; p<0.001) and the
DGM-first subtype (b=-0.280; p=0.02), with baseline stage that also
predicted long-term disability (b=0.030; p=0.007) and transition to SP
course (b=0.079; p=0.03). Long-term cognitive impairment was associated
with higher baseline stages (b=0.048; p<0.001), the DGM-first subtype
(b=-0.442; p=0.005) and their interaction (b=-0.080; p=0.002).

24 Discussion

The ambition towards personalized medicine has stimulated increasing
efforts to disentangle the inter-subject variability of neurological
disorders, integrating information from different biomarkers to identify
distinct underlying biological drivers (i.e. biotypes), up to the level of
individual patients.20 In this work, we obtained a biologically consistent
and prognostically relevant stratification of RRMS patients based on the
unsupervised modeling of brain volumetric features derived from cross-
sectional MRI visits.

Using the SuStaln algorithm, two distinct MRI-driven subtypes were
identified, with a latent pattern in which early DGM atrophy and T2
lesion accumulation precede cortical atrophy separated from one in which

cortical volume loss precedes DGM atrophy and lesion accrual. These
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results are essentially in line with the recent work by Eshaghi et al.,'? with
slight dissimilarities most probably due to the different choices of input
features. Indeed, the apparent discrepancy in terms of the number of
subtypes is most likely explained by the lack of MRI-derived measures of
normal appearing white matter damage in our study, which limited the
sensitivity to capture the phenotypic heterogeneity associated with extra-
lesional microstructural injury.

On the other hand, the application of a more fine-grained brain
parcellation scheme led to a more anatomically precise modelling of GM
atrophy, highlighting regions most prominently involved in MS such as
the thalami and anterior cingulate, insular, and visual cortices.1
Interestingly, the fact that distinct disease subtypes remain
distinguishable based on the patients” MRIs even within a relatively
clinically homogeneous population confirms the scarce correspondence
between clinical and MRI-driven phenotyping, with the latter more
closely reflecting disease-related pathogenic mechanisms.12

Indeed, while patients assigned to the two subtypes did not significantly
differ in terms of age, sex, or WBV, the DGM-first subtype was associated
with higher DD, stage and TLV, consistent with the idea of distinct
pathogenic mechanisms underpinning cortical and DGM atrophy.21-2 In
particular, based on the closer association with TLV, subcortical GM
might be more sensitive to the secondary effects of focal demyelination
through anterograde/retrograde degeneration, with a prominent role of
primary GM neuroinflammation and neurodegeneration in determining
cortical atrophy.222¢ Also, the longer DD suggest an earlier diagnosis in
patients of the DGM-first subtype, possibly reflecting a shorter prodromal
phase.12%

The biological reliability of the MRI-driven classification was further
confirmed by the analysis of longitudinal MRI scans, with high subtype

stability and significant stage increase over time, reflecting actual
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temporal progression of brain damage along the estimated paths. Also
relevant in terms of biological consistency, moderation analyses
suggested plateau effects in the longitudinal trajectories of SuStaln stage
and individual biomarkers (i.e. right thalamus and anterior cingulate
cortex atrophy), in line with known temporal patterns of MS-related brain
atrophy,20? with steeper thalamic shrinkage rates in the DGM-first
subtype.

When assessing the clinical relevance of the SuStaln classification, higher
baseline EDSS scores were independently associated with both higher
stages, corresponding to more pronounced brain structural damage, and
the DGM-fist subtype, a finding consistent with prior evidence pointing
at the prominent role of subcortical GM (thalamic, in particular) atrophy
in driving disability.282

As for the prognostic meaning of the MRI-driven stratification, patients in
a more advanced position along the damage progression trajectory were
more likely to enter the clinically progressive phase in the long term, as
well as to suffer greater degrees of motor and cognitive disability, with
more severe cognitive impairment also independently associated with the
DGM-first subtype. These findings further corroborate the idea that,
although cross-sectional in nature, the baseline MRI-driven classification
encodes relevant information about future disease evolution, also
substantiating the role of subcortical GM atrophy as a relevant anatomical
correlate of cognitive disability in MS.3031

Overall, the proposed approach provides insights into MS-related disease
mechanisms, confirming and expanding the existing knowledge on MS
physiopathology. But even more interestingly, it condenses this complex
information at the patient level in simple and intuitive measures which
are easily obtainable from single-visit conventional MRI scans and
correlate with clinical measures of disease severity and progression.

Contextualizing the information contained in individual brain MRIs in
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the frame of disease patterns estimated in a reference population of MS
patients, such stratification holds potential for effectively linking MS
research to the single-subject setting, with relevant implications for both
clinical trials and routine practice.

Our work is not without limitations. While the monocentric nature of the
study reduces the data heterogeneity related to scanner/centre effects, it
also limits the model generalizability, prompting larger studies on
multicentric datasets. Furthermore, increasing the sample size would also
allow for a higher dimensional (and more accurate) representation of MS
pathology, possibly including additional biomarkers from spinal cord
imaging or from other advanced MRI techniques encoding relevant
information about the brain microstructure (e.g. diffusion MRI,
quantitative MRI)232 or function (e.g. functional MRI).32

In conclusion, through the unsupervised modelling of volumetric features
derived from brain MRI scans, we obtained a biologically reliable and
prognostically meaningful single-visit classification of MS patients,
potentially offering a powerful tool for subjects” stratification in both trial

design and clinical practice.
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Chapter

The Brain-Age Paradigm in
Fabry Disease

3.1 Background and Rationale

FD (OMIM 301500) is a rare X-inherited lysosomal storage disorder
characterized by the accumulation of catabolites in various cell types,
resulting from the absent or markedly deficient activity of the enzyme a-
galactosidase A (a-Gal A) and leading to damage and loss of function of
especially the kidney, heart and brain.3?

Involvement of the central nervous system is mainly characterized by
vascular pathology, whose severity may greatly vary according to several
factors, not all completely understood.?* However, while the
recommended follow-up of patients with FD includes brain MRIs, an
accurate evaluation of FD-related brain damage is hampered by the lack
of quantitative imaging biomarkers,®> which also contributes to the
uncertainty concerning the effect of recently introduced specific
treatments on cerebral manifestations.3

In the search for objective imaging-derived markers of brain health and
pathology, the brain-age paradigm has emerged as a promising approach.
Briefly, machine learning methods are used to model chronological age as
a function of structural brain MRI scans in healthy people, and the
resulting model of ‘normal” brain aging is used for neuroimaging-based
age prediction in unseen subjects.3” The extent to which each subject

deviates from healthy brain-aging trajectories, expressed as the difference
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between predicted and chronological age (brain-predicted age difference,
brain-PAD), has been proposed as an index of structural brain health,
sensitive to brain pathology in a wide spectrum of neurological and
psychiatric disorders.3

As a relevant example, brain-age predictions are influenced by the
presence of white matter hyperintensities (WMH) and brain volumes,
imaging features that are both sensitive to cerebral small vessel disease,-
4 which is thought to be one of the main neurobiological mechanisms
through which FD impacts brain health.3

Here, we applied the brain-age paradigm to investigate neurological
involvement in patients with FD. Our main aims were: i) to assess
whether they have older-appearing brains compared to healthy controls
(HC); ii) to validate brain-PAD as a measure of disease severity against
other established clinical markers; iii) to explore the neuroimaging

determinants of brain-age prediction in this condition.

3.2 Materials and Methods

3.2.1 Participants

In this retrospective, cross-sectional study, part of a larger monocentric
research framework on the involvement of the central nervous system in
FD, patients with a genetic diagnosis were selected,*? along with age- and
sex-comparable HS. To avoid the confounding effect of major
cerebrovascular events, participants with a history of stroke or transient
ischemic attacks were not included in this study. Additional exclusion
criteria were age < 15 or > 65 years, and the presence of other relevant
neurological, psychiatric or systemic conditions.

Scores quantifying the involvement of nervous, renal and cardiac systems
in FD patients were computed based on clinical variables recorded within
1 month from the MRI and summed to obtain a cumulative measure of

multi-organ damage severity, the total raw Fabry stabilization index
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(FASTEX) score.*?
The study was conducted in compliance with ethical standards and
approved by the local ethics committee. Written informed consent was

obtained from all subjects according to the Declaration of Helsinki.

3.2.2 MRI acquisition and preprocessing

All MRI examinations were performed on the same 3T scanner
(Magnetom Trio, Siemens Healthineers), equipped with an 8-channel
head coil. The acquisition protocol included a structural T1-weighted
(Tlw) volume acquired using a 3D magnetization prepared rapid
acquisition gradient echo (MPRAGE) sequence (TR = 1900 ms; TE = 3.4
ms; TI = 900 ms; flip angle 9°; voxel size 1 x 1 x 1 mm3; 160 axial slices)
and, for FD patients, a T2-weighted 3D fluid attenuated inversion
recovery (FLAIR) sequence for the assessment of WMH (TR = 6000 ms; TE
= 396 ms; TI = 2200 ms; Flip Angle = 120° voxel size =1 x 1 x 1 mm3; 160
sagittal slices).

For FD patients, WMH were automatically segmented on FLAIR images
using Lesion Segmentation Tool (LST) 3.0.0 (www.statistical-
modelling.de/lst.html).

We used the Computational Anatomy Toolbox (CATI2.8,
http:/ /www.neuro.uni-jena.de/cat) to segment Tlw volumes into grey
matter (GM), white matter (WM) and cerebrospinal fluid (CSF). Then,
following the preprocessing steps of voxel-based morphometry (VBM),
GM and WM probability maps were normalized to a 1mm isotropic
template in MNI space, modulated with the Jacobian determinant derived
from the spatial normalization and smoothed using a Imm full width at
half maximum isotropic Gaussian kernel .44

Summary volumetric measures of GM, WM, CSF, and total intracranial
volume (TIV) were also generated, and brain parenchymal fraction (BPF)

was computed as the ratio of brain volume to TIV.
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3.2.3 Brain-age modelling

A model of healthy brain aging was trained and evaluated on a large
dataset (total N: 2160; male/female: 1293/867; mean age: 33, age range: 4-
86) comprising 3D T1l-weighted brain scans of healthy subjects from 8
publicly available sources.

Raw Tlw volumes underwent minimal preprocessing, including
DICOM to NIfTI conversion, correction for intensity non-
uniformity with N4BiasFieldCorrection,*> rigid registration to the
MNI152 space and resampling to 1.5 mm? voxels, to ensure
consistency of spatial orientation and resolution. Furthermore,
images were additionally cropped to reduce the array size to
118x142x118, and intensity-normalised by subtracting the image
mean and dividing by the image standard deviation, using Project
MONAI (https:/ /docs.monai.io/en/stable/index.html).

Our brain-age model was based on the DenseNet264 architecture,*
adapted from the implementation available at Project MONAI
(https:/ /docs.monai.io/en/stable/_modules/monai/networks/nets/de
nsenet.html) by adding a linear regression layer for the prediction of a
continuous variable and a 0.2 dropout rate after each dense layer to
reduce the risk of overfitting. Briefly, DenseNet is a generalisation of the
popular residual network (ResNet), which includes skip connections
between internal neuron layers to overcome the vanishing gradient
problem.#” As achieving the best possible performance was beyond the
objectives of our study, we decided to use an “off-the-shelf” standard
DenseNet264 configuration, rather than designing a custom architecture,
to ensure reproducibility and ease of use. Modeling was performed with
PyTorch 1.12.08 using one NVIDIA Tesla V100S 32 GB graphics
processing unit (GPU). The Adam optimizer was used to update model

weights during training, with the learning rate initially set to le-4 and
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decaying linearly as described in Chen et al.,* and additional L2
regularization at a rate of 1e-5. The full dataset was randomly split into
training (64%=1382), validation (16%=346) and test (20%=432) sets. The
batch size was 20 and the model was trained for 300 epochs: model
checkpoints were saved after each epoch, and the model with the lowest
validation loss was used for testing. Mean absolute error (MAE) and
coefficient of determination (R2?) were used to quantify model
performance. Lastly, age bias (i.e., underestimation of age in older
subjects and vice versa) was statistically corrected as in de Lange et al.,>
and the final model was applied to the internal cohort of FD patients and
HC to generate brain-predicted ages and corresponding brain-PAD
values.

An outline of the different steps of the brain-age modelling procedure is

displayed in Figure 3.1.
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Figure 3.1. Outline of the brain-age modeling procedure. Minimally
preprocessed T1-weighted images (A) are used as input for the training and the
evaluation of a model for the prediction of chronological age based on a 3D
DenseNet architecture (B). The model with the lowest validation loss is chosen,
and performance is measured on the previously unseen cases of the test set (C).
The final model is also applied to the target clinical population (D), composed of
the internal cohort of FD patients and HS, to generate brain-predicted ages and
corresponding brain-PAD values.

3.24 Statistical analysis
Unless otherwise specified, statistical analyses were carried out using the
Statistical Package for Social Science (SPSSv25.0, IBM corp.), with a

statistical significance level a = 0.05 and 95% confidence intervals (CI) and
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p values computed using bootstrap with 1000 resamples.

To assess possible between-group differences in terms of brain-PAD, we
used one-way ANCOVA, controlling for the effects of age, age? and sex
and calculating estimated marginal means for the two groups.

To validate brain-PAD as a measure of disease severity, we tested its
association with the FASTEX score in a linear regression model including
also age, age? and sex.

To investigate the neuroimaging determinants of brain-PAD in patients
with FD, we used hierarchical linear regression analyses with age, age2
and sex in the first block and WMH load or BPF in the second block.
Similarly, age-, age?- and sex-adjusted associations with brain-PAD were
tested at the voxel level with TIV-scaled, preprocessed GM and WM
maps, using a nonparametric approach based on 5000 permutations
applied to the general linear model' via the Threshold Free Cluster
Enhancement (TFCE) toolbox (http://www.neuro.uni-jena.de/tfce). The
same analysis was repeated after adding the variables group (i.e., FD or
HS) and group*brain-PAD interaction in the model, with this latter term
intended to test the hypothesis that different voxel-wise patterns might

influence brain-age prediction in the two groups.

3.3 Results

A total of 52 patients with FD were selected (40.6 £ 12.6 years; M/F:
24/28), along with 58 HC (38.4 +13.4 years; M/F: 30/28).
Demographic, clinical, and MRI characteristics of the studied population

are available in Table 3.1.
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FD HS p value
N =52 N =58 (FD vs HC)
Age (y) 40.6 £12.6 38.4+13.4 0.37
Sex (M/F) 24/28 30/28 0.56
FASTEX score?
Total score 6(3-9) n.a. n.a.
Nervous system score 2(1-2)
Renal system score 1(1-3)
Cardiac system score 2(1-3)
BPF 0.81£0.03 0.82+£0.03 0.06
WMH load (ml) 09+3.7 n.a. n.a.

Unless otherwise specified, data are expressed as mean + standard
deviation. Between-group differences were tested with either Student ¢
(age and BPF) or chi-square (sex) tests.

1 Expressed as number of subjects.

2Expressed as median, with interquartile range in parentheses.

Table 3.1. Demographic, clinical, and MRI characteristics of all the
subjects included in the study.

The brain-age model achieved accurate out-of-sample age prediction (test
set MAE = 4.01, R2 = 0.90).

When looking at brain-PAD values in the internal cohort, there was a
significant effect of the group variable after controlling for age, age?, and
sex (F[1, 105] = 6.46, p = 0.01, partial n2 = 0.06), with FD patients showing
higher values than HC (estimated marginal means 3.1 [95% CI = 1.0 - 5.3]
vs -0.1 [95% CI = -1.9 - 1.4]) (Figure 3.2).
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Group Healthy Control Healthy Control Fabry Disease Fabry Disease
Sex Male Female Male Female
Age (years) 420 465 39.1 6.0
Brain-Predicted age (years) 33.4 40.5 59.5 56.6
Brain-PAD (years) 86 -5.9 20.4 10.6
10
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Figure 3.2. Brain-age prediction in the internal cohort and its relationship
with disease status (FD vs HS) and the FASTEX score. In (A), presented are
comparable-level axial slices from four example subjects (two per group) with
extreme brain-PAD wvalues. In (B), age, age?, and sex-adjusted estimated
marginal means for the two groups, along with 95% bootstrap confidence
intervals. In (C), scatterplot showing the relationship between brain-PAD values
(age, age?, and sex-adjusted) and FASTEX score in patients with FD.

Brain-PAD was significantly associated with the FASTEX score (B = 0.10
[95% CI = 0.02 - 0.19]; standard error B = 0.04; p = 0.02), in a linear model
including also age, age? and sex (R2=0.41, p < 0.001) (Figure 3.2).

As for the neuroimaging determinants of brain-PAD in FD patients, both
higher WMH load (p = 0.01) and lower BPF (p = 0.001) were associated
with older-appearing brains (Table 3.2).
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B (95% CI) SEB p

Model 1

Constant 10.48 (-6.00 - 35.60) 941 0.23
Age -0.12 (-1.19 - 0.71) 0.54 0.82
Age? -0.002 (-0.016 - 0.017) 0.007 0.75
Sex 1.65 (-2.48 - 6.14) 2.13 0.45
Model 2

Constant 8.53 (-7.32 - 39.21) 8.85 0.29
Age 0.04 (-0.94 - 0.73) 0.50 0.93
Age? -0.005 (-0.017 - 0.012) 0.006 0.43
Sex 0.53 (-3.37 - 4.13) 2.04 0.80
WMH load 0.85 (-2.35 - 6.78) 1.72 0.01
Model 3

Constant 148.47 (77.24 - 224.90) 36.81 0.001
Age -0.54 (-1.76 - 0.27) 0.54 0.30
Age? 0.000 (-0.012 - 0.017) 0.007 0.96
Sex 0.71 (-3.21 - 4.86) 1.91 0.73
BPF -153.50 (-236.42 - -73.24) 38.74 0.001

R2 is 0.18 for Model 1, 0.32 (AR? = 0.14) for Model 2, and 0.43 (AR2 = 0.25)
for Model 3.

Table 3.2. Results of the hierarchical linear regression analyses for the
prediction of brain-PAD in FD patients. Confidence intervals, standard
errors, and p values are based on 1000 bootstrap samples.

Voxel-wise, we found a significant inverse correlation between brain-
PAD values and tissue volumes diffusely throughout the brain, with the
greatest effect sizes observed at the level of the deep and periventricular

WM (Figure 3.3).
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Figure 3. Voxel-wise correlation between brain tissue volumes and brain-
PAD in patients with FD. (A) Effect size (-R, red to blue) and (B) thresholded
statistical (-logp, yellow to red) maps are shown, superimposed on axial sections
of a 3D T1-weighted template in standard space.

The interaction analysis revealed no significant effect of group on the

relationship between local tissue volumes and brain-PAD.

3.4 Discussion

By applying the brain-age paradigm in a relatively large cohort of
patients with FD, we found that indeed FD has an effect on the brain-PAD
metric, indicative of accelerated brain aging, correlating with FD-related
multi-organ damage and influenced by both (global) brain volumes and
WMH load.

Notably, while we opted for an off-the-shelf standard network
configuration, without focusing too much on hyperparameter tuning, the
performance of the brain-age predictive model was not far from literature
benchmarks.5253 Also, the model of healthy brain aging was sensitive to
FD-related brain pathology.

Brain involvement in FD is thought to be mainly mediated by lysosomal
deposition in endothelial cells, leading to microvascular (and sometimes
macrovascular) manifestations that overlap those happening in common
SVD and healthy aging.3* More ambiguity exists on the possibility of

direct brain tissue damage through lysosomal deposition at the level of
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other cell types (i.e., neuronal or glial cells). Interestingly, the
accumulation of lysosomal storage bodies in a subset of resident
microglia is a physiological process that linearly increases with aging and
seems to be accelerated in lysosomal storage disorders, leading to
premature neurodegeneration.5

Taken together, these observations encourage the interpretation of FD as a
form of accelerated brain aging, with brain-PAD as a possible marker of
progressive brain damage.

On the other hand, it is known that FD is also a disorder of
neurodevelopment,’> and brain-age predictions can be heavily influenced
by neurodevelopmental factors.5

Unfortunately, disentangling the contributions of neurodevelopmental
factors from ongoing pathological processes is not completely possible in
the cross-sectional setting. Assuming that the neurodevelopmental
component remains constant over time, longitudinal studies are
warranted where brain-PAD deltas ideally depend solely on ongoing
healthy/pathological aging phenomena.

From the neuroimaging perspective, brain-PAD was influenced by WMH
and (global) brain volumes, with no anatomical specificity other than the
greatest effect sizes observed at the level of the deep and periventricular
WM. Previous studies showed how brain-age prediction models are
influenced by imaging features of small vessel disease, including WMH
and GM volumes.?-41 Also, our findings are in line with the evidence that
global brain volume, rather than atrophy of specific regions, drives brain-
age predictions.5253

Interestingly, numerous structural MRI study with more conventional
approaches (i.e., voxel-based morphometry, ROI analyses), failed to
reveal consistent structural changes in FD patients compared to HS,355557
partly because of the small effect sizes and sample sizes. On the other

hand, brain-PAD might be a more sensitive marker of brain structural
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health, outperforming conventional methods.

Lastly, we found a significant association between brain-PAD and overall,
multiorgan, clinical severity. Indeed, a not yet completely understood
network of mutual interdependencies exists between brain age and other
bodily “ages”,% with the brain’s structural health being strongly
impacted by cardiovascular and renal (mal)functioning. This relationship
also supports the potential role of brain-PAD as a quantitative biomarker
for disease monitoring in clinical settings, with particular reference to the
assessment of treatment response. In fact, the efficacy of the recently
introduced specific treatments on cerebral involvement has remained
unclear so far, partly precisely because of the lack of objective
neuroimaging measures.

In conclusion, we demonstrate how brain-PAD is a sensitive measure of
FD-related neurological and systemic involvement, bearing potential as a

candidate biomarker of disease severity in clinical practice.
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Chapter

Multimodal Brain Connectivity
in Schizophrenia

4.1 Background and Rationale

SZ is a chronic, multifactorial psychiatric disorder that affects around 1%
of the population, frequently leading to long-term functional impairment
that impedes social and occupational integration.®

Alongside positive and negative symptoms, cognitive dysfunction is a
core feature of SZ, with verbal memory being one of the most
prominently affected domains2.6! Indeed, verbal memory deficits often
precede the onset of full-blown psychosis, tend to remain stable
throughout the disease course, and are consistently among the best
predictors of functional outcomes, thus representing an important
treatment target.o?

From the neuroimaging perspective, in the search for biomarkers of SZ
that could inform clinical decisions, attempts have been made to link
verbal memory impairment to regional brain structural modifications,
such as hippocampal volume loss®® or cortical thinning of the
parahippocampal gyrus and the frontal cortex,% or to altered task-related
functional activation.6>

On the other hand, mapping symptoms to specific brain regions might be
simplistic as we know by now that clinical functioning corresponds more

closely to networks of connected regions, with regional deviations in
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different locations potentially underlying the same clinical diagnosis due
to dysfunction of common neural circuits.

Since the formulation of the disconnection hypothesis in the 1990s,5”
numerous studies have consolidated our understanding of SZ as a
network disorder, demonstrating modifications of structural and
functional brain networks, mostly independently of each other, and
putting them in relation to cognition.t869

Nevertheless, results have often been conflicting, somehow failing to
identify consistent imaging-based signatures of SZ and SZ-related
cognitive dysfunction.”? While this is partly explained by the intrinsically
heterogeneous genetic, neurobiological, and phenotypic profile of SZ,
methodological issues might also play a role, including the disparateness
of image processing strategies and the focus on single modality networks,
providing only a partial grasp of the brain complex organization.

In this light, integrating different neuroimaging modalities holds the
potential to enrich our understanding of the brain and its disorders, by
informing us about how brain structure shapes brain function, how they
are jointly impacted by disease, and which aspects are relevant for clinical
functioning.”2

Here, using two complementary data-driven approaches (i.e., threshold-
free network-based statistics, TFNBS, and hybrid connectivity
independent component analysis, connICA) for the analysis of diffusion
(dMRI) and resting-state functional (RS-fMRI) MRI data, we explored
joint modifications of structural and functional brain networks in patients
with SZ, aiming to unveil the multimodal connectomics substrates of SZ-

related verbal memory impairment.

4.2 Materials and Methods

4.2.1 Participants

In this prospective cross-sectional study, we recruited patients with SZ
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diagnosed according to the DSM-5, along with age- and sex-comparable
HS.

Inclusion criteria for patients were: age between 18 and 60 years; disease
duration > 2 years; no medication switch or dose changes in the last 6
months (i.e.,, >10% baseline dose); no evidence of current or recent (3
months) worsening of psychotic symptoms; absence of macroscopic brain
structural anomalies or other major systemic, psychiatric or neurological
disorders.

Exclusion criteria for HS were: history of neurological, psychiatric or
systemic conditions, current or lifetime substance or alcohol dependency,
lifetime intake of psychotropic medication.

The study was conducted in compliance with ethical standards and
approved by the local ethics committee (protocol number: 195/19).
Written informed consent was obtained from all subjects according to the
Declaration of Helsinki, revised Hong Kong 1989.

Clinical data were collected within one month from the MRIL
Antipsychotic doses were transformed into chlorpromazine (CPZ)
equivalents,” while the severity of psychotic symptoms was measured
using the Positive and Negative Syndrome Scale (PANSS).7* Additionally,
verbal memory was assessed via the List Learning task, with raw data
adjusted according to normative values of the Italian population.”
Corrected scores were fitted into a 5-point scale to collect equivalent
scores, based on which patients were classified as having impaired (VMI,
score from 0 to 1), or preserved (VMP, score = 2) verbal memory.7>

All subjects performed a 3T MRI brain scan on the same 3T scanner
(Magnetom Trio, Siemens Healthineers, Erlangen, Germany), equipped
with an 8-channel head coil. The acquisition protocol included: a T1-
weighted volume acquired using a 3D magnetization prepared rapid
acquisition gradient echo (MPRAGE) sequence (TR = 1900 ms; TE = 3.4

ms; TI = 900 ms; flip angle 9°; voxel size 1 x 1 x 1 mm3; 160 axial slices),
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used as anatomical reference; diffusion weighted images acquired using a
spin echo EPI sequence (TR = 7400 ms; TE = 88 ms; flip angle = 90°; voxel
size = 2.2 x 2.2 x 2.2 mm3 with 64 directions at b = 1000 s/mm?2 in addition
to 9 b = 0 s/mma?), for the analysis of structural connectivity (SC); T2*-
weighted volumes acquired using a gradient echo EPI sequence (TR =
2500 ms; TE = 50 ms; voxel size = 3 x 3 x 4 mm?;, gap = 1 mm; 200 time

points; 30 axial slices), for the analysis of functional connectivity (FC).

4.2.2 MRI data processing
Details of image processing pipelines are explained in the Supplementary

Material.

Structural MRI and brain parcellation

Intensity nonuniformity-corrected, skull-stripped Tlw volumes were
used as anatomical reference throughout the diffusion and functional
workflows. Additionally, through a registration-based procedure, the
brain was parcellated into 100 cortical’e and 16 subcortical”” atlas-defined
regions, used as a common set of nodes for the construction of
connectivity matrices. Brain parcels are also associated with seven
canonical cortical resting-state networks (RSNs) including the visual
(VIS), somatomotor (SM), dorsal attention (DAN), ventral attention
(VAN), limbic (L), control (CONT), and default mode (DMN) networks,”®

plus a network of subcortical regions (SUBC).

Diffusion MRI and anatomical brain networks

Preprocessing of dMRI data (including denoising, B1 field inhomogeneity
correction, head motion, eddy current and susceptibility distortion
correction and registration to the Tlw volume) was performed using
QSIPrep 0.14.3.7 From preprocessed DWI data, constrained spherical
deconvolution-based probabilistic tractography was carried out using
anatomical constraints to generate a 10 million streamlines whole-brain

tractogram. Finally, weights for each streamline were calculated through
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a filtering procedure and a 116 x 116 SC matrix was filled with the sums
of weights of streamlines connecting each node’s pair.

In addition, structural matrices were logio-transformed to better account
for differences at different magnitudes and to make the distribution of

edges’ weight more comparable to functional matrices.

Resting-state functional MRI and functional brain networks
Preprocessing of RS-fMRI data was performed using fMRIPrep 20.2.68
and included head motion, susceptibility distortion and slice-timing
correction, registration to the TIw volume and denoising to minimize the
residual non-neuronal variability of functional data.

Finally, mean “clean” BOLD time series were extracted from the atlas-
defined parcels, and, for each node’s pair, the Pearson correlation
coefficient was computed and Fisher z-transformed to fill a 116 x 116 FC
matrix. In addition, matrices were absolutized as inverse correlations may
encode relevant information and most analysis strategies tend to neglect

negative values.

Statistical analyses

Before entering second-level analyses, connectivity matrices were
normalized using a singular-value decomposition approach to account for
differences in average connectivity weight.8!

Unless otherwise specified, statistical analyses were performed using R

(version 4.1.2) and RStudio (version 2021.09.1).

TENBS

To assess the presence of statistically significant effects in connectivity
matrices, we used a TFNBS approach,8? as implemented in MRtrix3’s
connectomestats. Briefly, TFNBS combines NBS$3 with threshold-free
cluster enhancement,* augmenting edge-wise statistics based on the
strength of effects occurring in topologically neighboring network edges

and obviating the need for the a priori definition of a component-defining
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statistical threshold. A p-value can be ascribed to each TFNBS-enhanced
edge and corrected for multiple comparisons across the connectome.

F-tests were used for comparisons between subjects with SZ and HS and
between VMI and VMP patients, with age and sex as nuisance variables.
Five-thousands permutations were used, with a statistical significance

level set at p<0.05 (FWER-corrected).

Hybrid connICA

To explore possible modifications of joint structural-functional
connectivity patterns, we wused a hybrid connlCA approachs®>
(https:/ /engineering.purdue.edu/ConnplexityLab). Briefly, structural
and functional networks are merged into a common hybrid matrix, which
is fed into an ICA decomposition procedure to extract fundamental joint
connectivity traits, estimated at group level, and subject-level projections,
expressing the relative weight of each hybrid pattern in the individual
connectivity profile.s>

Here, we applied PCA to compress and reduce the dimensionality of the
data by keeping the principal components explaining 90% of the variance
of the initial hybrid data. Next, ICA decomposition was applied by
running the FastICA algorithm to obtain 10 independent components. To
account for the non-deterministic nature of the FastICA procedure, we
evaluated the robustness of the traits over 100 FastICA runs. A hybrid
trait was considered robust when it appeared (correlation of 0.75 or
higher across runs) in at least 75% of the runs and its representation
consisted of the average across all its appearances over the 100 runs.
Finally, individual weights for the identified robust components (RC)
were adjusted for the effect of age and sex estimated in HS and compared
between groups (SZ vs HS and, for SZ-related components, VMI vs VMP)
using bootstrapped t-test with 1000 resamples, with a statistical
significance level set at p<0.05 (FWER-corrected).
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4.3 Results

4.3.1 Participants

A total of 49 patients with SZ were recruited (37.5 + 9.7 years; M/F:
34/15), along with 55 HC (42.4 £ 15.7 years; M/F: 30/25).

Demographic and clinical characteristics of the studied population are

available in Table 4.1.

SZ HS p value

N=49 N =55 (SZ vs HS)
Age (y) 37.5+£9.7 424 +15.7 0.06
Sex (M/F) 34/15 30/25 0.18
Age of onset (y) 219+638 n.a. n.a.
Duration of illness (y) 14.7 £8.2 n.a. n.a.
CPZ equivalents 453.3 +270.9 n.a. n.a.
PANSS score
Total 85.5+17.2 n.a. n.a.
Positive 19.2+53 n.a. n.a.
Negative 223+£59 n.a. n.a.
General 440938 n.a. n.a.

Unless otherwise indicated, data are expressed as meantstandard
deviation. Between-group differences were tested with either Student ¢
(age) or chi-square (sex) tests.

* Expressed as number of subjects.

Table 4.1. Demographic and clinical characteristics of all the subjects
included in the study.

Neuropsychological evaluation was performed for 48 patients, that were
classified as either VMI (N = 26) or VMP (N = 22). The two subgroups did
not significantly differ in terms of basic demographic and clinical

variables (Table 4.2).
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VMI VMP p value

N =26 N=22 (VMI vs VMP)

Age (y) 35.7+9.0 39.1+10.3 0.24
Sex (M/F)* 19/7 15/7 0.96
Age of onset (y) 199+63 226+72 0.18
Duration of illness (y) 14.4+94 15.0+£7.0 0.81
CPZ equivalents 503.0+269.2 403.1+2723 021
PANSS score

Total 88.6 £18.9 82.14+14.8 0.20
Positive 20.3+5.9 18.1+£43 0.15
Negative 229+6.7 21.7+5.0 0.48
General 454 +10.7 424 %85 0.29

Unless otherwise indicated, data are expressed as meantstandard
deviation. Between-group differences were tested with either Student ¢
(age, age of onset, duration of illness, CPZ equivalents, PANSS scores) or
chi-square (sex) tests.

* Expressed as number of subjects.

Table 2.2. Demographic and clinical characteristics of patients with
impaired (VMI) or preserved (VMP) verbal memory.

4.3.2 TFNBS
When looking at possible SC differences, distributed alterations emerged
in patients with SZ, with both decreased and increased integrity of

anatomical connections compared to HC (Figure 4.1).
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Figure 4.1. Network-based analysis of structural connectome between
patients with SZ and HC. The thresholded statistical matrix is shown (A),
along with a circular graph representation of supra-threshold edges (B) and a
sutface render of the corresponding nodal degrees (C). Throughout the panels,
color encodes the direction of observed changes (in red: SZ < HC; in blue: SZ >
HC).

As for the analysis of FC, a relatively circumscribed pattern of reduced
within- and between-network connectivity encompassing the VIS and SM
networks was observed, along with stronger functional connections
between the VIS and non-sensorimotor networks and within- and

between- cortical association and subcortical networks (Figure 4.2).
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Figure 4.2. Network-based analysis of functional connectome between
patients with SZ and HC. The thresholded statistical matrix is shown (A),
along with a circular graph representation of supra-threshold edges (B) and a
surface render of the corresponding nodal degrees (C). Throughout the panels,
color encodes the direction of observed changes (in red: SZ < HC; in blue: SZ >
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HC).

Regarding the relationship between brain connectivity and verbal
memory, no significant effects were detectable for SC, with only two
edges of significant FC increase in VMI compared to VMP patients
connecting the VIS network with the posterior hubs of the DAN
bilaterally.

4.3.3 Hybrid connICA

When looking at hybrid structural-functional connectivity traits, we
identified 4 RCs. One of these, RC4, mainly driven by the FC part and
capturing the connectivity of the VIS network, was significantly less

represented in patients with SZ, with reduced average weight compared

to HCs (Cohen’s d = 0.828, p < 0.0001) (Figure 4.3).
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Figure 4.3. SZ-related hybrid structural-functional trait. The hybrid trait 4
is shown, split in structural (A1) and functional (A2) connectivity matrices. To
obtain an anatomical representation of the trait, nodal strength was computed on
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the absolutized, thresholded (top 10% edges) hybrid matrix, and visualized onto a
surface render of the brain (B). (C) Violin plot showing the distribution of the
hybrid trait’s individual weights for SZ and HC subjects.

For RC1, mainly mapping the connectivity of frontotemporal poles and
deep GM regions, a weaker difference between SZ and HC subjects was
observed (Cohen’s d = -0.403, p = 0.02, not significant after multiple
testing correction). The remaining traits, mostly capturing the
connectivity of the CONT network and the DMN, did not exhibit
between-group differences.

RC4 was also sensitive to verbal memory deficits, with VMI patients
showing higher average weight compared to VMP ones (Cohen’s d = -
0.805, p = 0.01) (Figure 4.4).

3 Cohen's d = -0.805, p = 0.0108

Weigths (z-scores)

Vh;IP Villl
Figure 4.4. Association between hybrid trait 4 and verbal memory. Violin

plot showing the distribution of the individual weights for the SZ-related
structural-functional trait in VMI and VMP SZ patients.

4.4 Discussion

Using two complementary data-driven approaches, we investigated

structural and functional brain networks in patients with SZ, both
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separately and in conjunction, demonstrating widespread connectivity
alterations and identifying deviations of the connectomic profile that
might be specifically associated with verbal memory deficits.

We found distributed modifications of anatomical connectivity compared
to HCs, with mixed patterns of hypo- and hyperconnectivity, both within
and between large-scale functional networks.

Although the neurobiological basis of SC changes in SZ is not completely
understood, also due to the possible effects of confounding factors like
antipsychotic treatment, it is known that WM alterations are present from
the prodromal to the chronic stages, with abnormal neurodevelopment
representing the most plausible underlying mechanism.8¢ Interestingly,
several lines of evidence pointed to alterations of oligodendrocytes
number and function in patients with SZ, possibly influencing synaptic
formation and ultimately leading to functional and clinical
impairment.87,88

In our sample, against the background of a widely deviating anatomical
connectivity profile, a pattern of disrupted SC was observed
encompassing prefrontal, parietal, and temporal regions subserving the
DMN, as well as the hippocampi, which are also known to participate in
the DMN.# Indeed, the DMN is known to play a pivotal role in SZ,% and
anatomical connection deficits have been already demonstrated both
between DMN nodes and between them and functionally anti-correlated
networks,?92 likely resulting from aberrant maturation?® and leading to
functional reorganization.”

On the other hand, some stronger structural connections in SZ patients
compared to HCs were also observable, mainly mapping onto deep GM
structures (primarily thalami and amygdalae), superior frontal gyri,
paracentral lobules, and temporal poles.

Indeed, evidence of increased anatomical connectivity in SZ has been

reported multiple times,®® with more recent studies highlighting the
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involvement of subcortical pathways, such as the thalamocortical
connections?-% and the medial forebrain bundle.?”

In line with some of these works, we found increased SC between the
thalami and sensorimotor regions, coupling with a stronger FC between
the same areas, which has been also previously reported.”*8 These
observations are consistent with the hypothesis of thalamic dysfunction
being a central neurobiological feature of the disease and contributing to
psychotic symptomatology,* given the crucial role of the thalami not only
as a relay station of sensorimotor information, but also as a critical hub for
multimodal processes integration.100

From a functional standpoint, as expected, we found relatively
widespread reorganization of large-scale brain networks in patients with
SZ.

We identified a pattern of decreased within- and between-network FC
specifically involving the VIS and SM networks. Functional changes in
cortical areas implicated in primary sensory and motor processing have
been largely described in SZ,01 supposedly underlying not only
psychomotor and basic perceptual alterations, but also impairment of
higher-order functions through a bottom-up process.102103 [n keeping with
this hypothesis, increased FC was also observed between the VIS and
cortical association networks and subcortical regions, respectively.
Stronger functional connections between visual regions and the DMN,
responsible for introspection and self-referential processes,'* and “task-
positive” cortical regions (i.e., the CON and attention networks),
generally involved in top-down control of goal-directed activities,'%* are
known features of SZ,195 possibly resulting from a failure of large-scale
networks segregation during neurodevelopment.106

These alterations, along with the observed FC increase between the VIS
and the thalami, which has been previously implicated in attention

impairment in SZ, may represent the neurobiological substrate of
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aberrant sensory processing and integration, whose proper functioning
relies on both voluntary shifts in directed attention, with efficient
switching between unconscious and conscious visual perception,?” and
coherent top-down prior expectations.108

In this context, dysconnectivity of the CON and DAN, involved in
visuospatial attention and exerting top-down modulation of context-
relevant information encoding,? appears to play a central role, possibly
feeding a positive feedback loop of abnormal perceptions and aberrant
higher order cognitive processes.108

Confirming the possible maladaptive role of the observed functional
reorganization, a tiny cluster of increased FC between the VIS network
and posterior hubs of the DAN bilaterally was associated with
impairment of verbal memory in SZ patients.

When investigating patterns of joint structural-functional connectivity, we
identified a hybrid trait (RC4) that was significantly associated with SZ,
mainly capturing VIS network-related FC.

Reduced representation of this component in patients with SZ compared
to HCs substantially matches the results of single-modality analyses,
further suggesting that a deviating connectivity profile of sensorimotor
networks might be a core connectomic feature of SZ.

RC4 was also sensitive to verbal memory deficits, with a higher
representation in VMI compared to VMP patients and a more
conspicuous  effect relative to single-modality network-based
comparisons.

Whereas the direction of observed changes could appear counterintuitive
(RC4 is less represented in subjects with SZ compared to HCs, but more
represented in VMI compared to VMP patients), a context-dependent
non-monotonic behavior might be hypothesized for this feature, with the
hybrid trait's individual representation likely to have different

(mal)adaptive roles according to the stage of the disease and the overall
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connectomic profile.

Again, this finding supports the theory that aberrant connectivity of areas
involved in primary sensory processing might induce deficits that
reverberate to higher cognitive functions through a bottom-up
prOCQSS.lOZ’llo’lll

Also, while it is clear that hybrid traits are dominated by variance in
functional rather than structural edges, our results show that
multivariate, multimodal approaches (compared to univariate, single-
modality) may yield increased sensitivity towards disease-related
deviations from the healthy connectome and a closer correspondence
between brain networks and clinical functioning, given their ability to
capture higher-order connectivity patterns’>.

The present study is not without limitations. First, since the patients’
population was composed exclusively of chronic SZ subjects, we were not
able to disentangle the possible effects of antipsychotic drugs on the
observed brain networks’ changes (although the two SZ subgroups did
not significantly differ in terms of CPZ equivalents), nor to infer the
possible role of disease stage. Thus, future studies are warranted to
confirm the findings in first-episode, treatment-naive SZ patients and
high-risk subjects. Furthermore, given the cross-sectional nature of the
study, the causal relationship between brain networks’ changes and
functional impairments could not be fully investigated, with longitudinal
designs that would allow to assess the prognostic ability of connectomic
modifications to predict clinical outcomes.

In conclusion, while we are still far from a comprehensive understanding
of the neural substrates of SZ and SZ-related cognitive dysfunction, using
multimodal MRI we identified a symptom-specific connectomic signature
of the disease. We suggest that aberrant connectivity of sensorimotor
networks may be a core feature of SZ and a putative biomarker of verbal

memory impairment, with potentially relevant clinical implications in
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terms of disease monitoring and treatment targeting.
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Chapter

Quantitative MRI in Multiple
Sclerosis

5.1 Background and Rationale

In MS, the physiopathological mechanisms behind atrophy accrual and its
impact on disability have been investigated and confirmed by several
independent groups.22 Nevertheless, the nature and clinical relevance of
tissue microstructural abnormalities remain more elusive, partly because
the coexistence of different pathological processes (demyelination,
inflammation, axonal loss) represents a challenge for their
characterization.’? In recent years, semi-quantitative and quantitative
MRI methods have been developed to explore the nature of
microstructural abnormalities, with particular interest in MS being
devoted to the assessment of iron and myelin, as these might offer a
glimpse into the neurodegenerative process and tissue repair
capability.113114 Indeed, although iron accrual has to be interpreted with
caution given the confounding effect of concomitant tissue loss,1511¢ jron
depletion in WM and in WM-rich structures such as the thalamus likely
results from oligodendrocytes dysfunction and damage, with reduced
myelination = capacity @ and  trophic = support leading to
neurodegeneration.’’” Among quantitative parameters, histological
validation studies have confirmed the applicability of quantitative
susceptibility mapping (QSM) for the assessment of iron content in the

basal ganglia, where myelin intensities have almost no effect on
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susceptibility.1® Within myelin rich structures such as WM and thalamus
however, interpretation of susceptibility modifications are more
challenging, as diamagnetic myelin and paramagnetic iron play opposite
effects on susceptibility. In these regions a susceptibility increase would
be expression of iron accrual/demyelination, while a susceptibility
decrease would be expression of iron depletion/increase in myelin
content.

Another quantitative parameter, which more closely reflects tissue myelin
content, is the longitudinal relaxation rate (R1). R1 is strongly associated
with both myelin and axon content,’® but, according to postmortem
analysis of brain tissue, it is primarily dependent on myelin content'? and
is among the most reliable myelin-sensitive MRI metrics.1* Beyond the
information that susceptibility and R1 changes (as proxies of iron and
myelin content) can provide on the nature of microstructural
abnormalities in MS, the clinical impact of such modifications remains
unclear for several reasons. First, previous studies applying iron and
myelin imaging in MS have mainly focused on global disability
outcomes,212 or have limited their investigation to selected regions of
interest.1212¢ Second, the fact that correlations with disability might be
driven by atrophy rather than modifications in iron and myelin per se has
been rarely investigated.!¢ Therefore, the goal of our work was to build
on previous findings by exploring the impact of R1 and susceptibility
changes on a wide range of disability outcomes (considering also manual
dexterity and cognitive function), while accounting for atrophy, which is
the main driver of disability accrual in MS and, as recently highlighted,
has a major impact on qMR measures.!16125 To this aim we conducted a
multi-parametric analysis of quantitative MR, together with brain
volumetry, to (i) characterize the topographical distribution of atrophy,
R1 and y changes in the MS brain and (ii) clarify their impact on both

cognitive and motor disability.
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5.2 Materials and Methods

5.2.1 Subjects

In this cross-sectional study, from February 2016 to January 2020, we
prospectively enrolled MS patients diagnosed according to the 2010-
McDonald criteria,’? along with age- and sex-comparable HS.

The study was conducted in compliance with ethical standards, approved
by the local Ethics Committee and written informed consent was obtained

from all subjects according to the Declaration of Helsinki.

5.2.2 Clinical and Neuropsychological Assessment

Within one week from the MRI, patients’ clinical disability was quantified
using the Expanded Disability Status Scale (EDSS) score,'2¢ with disease
course classified according to Lublin et all* At the same time, patients
were tested using the Symbol Digit Modalities Test (SDMT) to assess
cognitive processing speed, while ambulation and manual dexterity were
probed through the Timed 25-Foot Walk (T25FW) and the 9-Hole Peg
Test (9-HPT), respectively. SDMT scores were expressed as Z-scores with
reference to normative values in the healthy population, adjusting for age,
gender and education.’® Similarly, T25FW and 9-HPT scores were
referenced to normative values of an external population of MS patients'?”
and averaged to obtain a single composite measure of motor
performance. Z-scores were flipped, as appropriate, to have higher scores

always corresponding to better performances.

5.2.3 MRI data acquisition and preprocessing

All MRI exams were performed on the same 3T scanner (Magnetom Trio,
Siemens Healthineers) and included a 3D Tl-weighted sequence for
volumetric analyses, a 3D T2-weighted FLAIR sequence for T2-
hyperintense lesions detection and lesion load (T2-LL) quantification and
two spoiled gradient echo sequences for quantitative analyses.12® Details

about acquisition parameters and a thorough description of image
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preprocessing, including the computation of R1 and QSM maps, are
provided in previous publications,!28-132 while a flowchart summarizing

the main image processing and analysis steps is depicted in Figure 5.1.
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Figure 5.1. Workflow illustrating the main image processing and analysis
steps. Initially, quantitative maps were computed and mapped onto the
corresponding  T1-weighted wvolumes and demyelinating lesions were
automatically segmented on FLAIR images. For voxel-based analyses, T1-
weighted volumes were segmented into different tissue classes and normalized to
a Imm isotropic template in MNI space, with the estimated spatial
transformations also applied to quantitative maps. Before entering voxel-wise
statistical analyses, normalized gray matter and white matter probability maps
were modulated and smoothed, while normalized R1 and y maps were smoothed
via a tissue-weighted smoothing procedure to account for the partial volume
contribution of tissue density in each voxel. Using lesion and tissue class masks,
global brain volumes and median values of R1 and y in normal-appearing tissues
were also obtained.

Briefly, quantitative maps were mapped onto the corresponding T1-
weighted volumes, demyelinating lesions were automatically segmented
on FLAIR images via the Lesion Segmentation Tool (LST) toolbox
(www. statistical-modelling.de/Ist.html) and individual lesion probability
maps were used to fill lesions in T1-weighted images and binarized to

compute T2-LL.
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Subsequent processing steps were carried out following the voxel-based
morphometry (VBM)# and voxel-based quantification (VBQ)133
approaches: filled T1-weighted volumes were segmented into different
tissue classes and normalized to a Imm isotropic template in MNI space
via the standard pipeline implemented in the Computational Anatomy
Toolbox (CAT12, http://neuro.uni-jena.de/cat), with the estimated
spatial transformations also applied to quantitative maps. Finally,
normalized GM and WM probability maps were modulated and
smoothed using a Imm full width at half maximum (FWHM) isotropic
Gaussian kernel. Instead, normalized R1 and x maps were smoothed (1-
mm FWHM isotropic Gaussian kernel) via the tissue-weighted smoothing
procedure implemented in the hMRI toolbox (https://hmri-
group.github.io/hMRI-toolbox) to account for the partial volume
contribution of tissue density in each voxel, resulting in tissue-specific
smoothed quantitative maps in MNI space.

For each participant, total intracranial volume (TIV) was also estimated
and brain parenchymal, GM and WM fractions (BPf, GMf, WMf) were
computed. Additionally, individual normal-appearing GM and WM
masks were obtained and used to extract median values of R1 and ¥,
while study-specific GM and WM masks were generated to restrict voxel-
wise statistical comparisons in order to reduce possible spurious atrophy-
related effects on VBQ analyses, as well as to ensure that each voxel was

analyzed in only one subspace (i.e., GM or WM).

5.2.4 Statistical analysis

Unless otherwise specified, statistical analyses were carried out using the
Statistical Package for Social Science (SPSSv25.0, IBM corp.) with a
significance level a=0.05, and the Benjamini-Hochberg procedure was
adopted for controlling the false discovery rate (FDR). Before running

parametric analyses, assumptions of the linear model were preliminarily
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verified.

Between-group differences were tested with either Student t (age),
Pearson Chi-square (sex) or age- and sex-corrected ANCOVA (tissue
volumes and median R1 and y values) tests.

As for the VBM and VBQ analyses, normalized, modulated and smoothed
tissue probability maps, as well as normalized and smoothed R1 and y
maps, were statistically analyzed, separately for GM and WM, to assess
voxel-wise between-group differences using a nonparametric approach
based on 5000 permutations applied to the general linear model5! via the
Threshold Free Cluster Enhancement (TFCE) toolbox
(http:/ /www.neuro.uni-jena.de/tfce). Age, sex and TIV were included in
the model as confounding variables and previously generated explicit
GM and WM masks were used, with a cluster extent threshold k=100
voxels and significance level p<0.05 after correction for multiple
comparisons by controlling the family-wise error rate.

When significant between-group differences emerged at the voxel-based
analyses, relationships between clinical variables (i.e. EDSS, SDMT and
motor scores) and MRI metrics (tissue probability, R1, and x maps) were
assessed voxel-wise via the TFCE toolbox using regression models with
individual clinical scores as the dependent variables and explicit masks
restricting the analyses to areas of significant between-group differences.
Robust partial correlation analyses, using bootstrap with 5000 resamples,
were also carried out between clinical variables and global MRI metrics
(i.e. T2-LL and tissue volumes and median R1 and y values), correcting

for age, sex and TIV (for volumes only).

5.3 Results

5.3.1 Subjects

117 MS patients (85 relapsing-remitting, 22 secondary-progressive, 10
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primary-progressive; 40.6+11.9 years; F/M=85/32) were included in the
study, along with 53 HS (41.3+11.6 years; F/M=33/20). Mean disease
duration (DD) for MS patients was 12.7 years (SD: 8.3), with a median
EDSS score of 3.0 (interquartile range: 2.0 - 5.25) and a mean T2-LL of 6.2
ml (SD: 10.7). 110 patients (94.0%) were under immunomodulatory
treatment (32% with first line therapies: interferon, glatiramer acetate,
dimethyl fumarate, teriflunomide; 62% with second line therapies:
fingolimod, siponimod, natalizumab, alemtuzumab, ocrelizumab,
cladribine) at the time of the MRI.

Demographic and clinical characteristics of the studied population, along

with MRI-derived brain volumes and median R1 and yx values, are

reported in Table 5.1.
MS HS p-value***
(n=117) (n=53) (MS vs HC)
Age (y) 40.6£11.9 41.3+11.6 0.71
Female Sex* 85 (72.6%) 33 (62.3) 0.17
DMT 38/72/7
(first/second line/none)* (32.5/61.5/6.0%) i i
Disease Course 85/22/10
(RR/SP/PP)* (72.6/18.8/9.5%) i i
DD (y) 12.748.3 - -
EDSS** 3.0 (2.0-5.25) - -
Cognitive score -0.82+1.16 -
Motor score -0.03+0.86 -
T2-LL (ml) 6.2+10.7 - -
BPf (%) 78.3+4.2 81.0£2.9 <0.001
GMf (%) 43.9+2.8 453+2.4 <0.001
WMf (%) 34.4+2.6 35.7+2.0 <0.001
NAGM median R1 (Hz) ~ 0.66x0.06 0.70+0.06 0.002
NAWM median R1 (Hz) ~ 0.99+0.09 1.06+0.09 <0.001
NAGM median y (ppb) 2.84+1.81 2.44+1.67 0.19
NAWM median y (ppb) -9.47+2.58 -7.97+2.31 <0.001

Unless otherwise indicated, data are expressed as mean + SD. Between-
group differences were tested with either Student t (age), Pearson Chi-
square (sex) or age- and sex-corrected ANCOVA (MRI-derived measures)
tests.

* Data are the number of subjects, with percentages in parentheses.

** Data are medians, with interquartile ranges in parentheses.
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*** Significant between-group differences are reported in bold.
Table 5.1. Demographic, clinical and MRI characteristics of the studied
population.

5.3.2 Between-group comparisons

Compared to HS, MS patients had lower GM, WM and whole-brain
volume fractions (p-values<0.001 for all), along with lower median
NAGM R1 (p=0.002), NAWM R1 and x (p <0.001) values.

At the voxel-based analyses (Figure 5.2), MS patients showed massive
clusters of reduced volume compared to HC, extensively encompassing
both supra- and infra-tentorial GM and WM, with local maxima located

in the bilateral thalami and fornices, respectively (p-values <0.001).

Volume

lagp (MS < HC)

5
I
)
o

Figure 5.2. Results of the between-group voxel-wise comparisons. A lesion
probability map (LPM), obtained by summing all the binary lesion masks and
dividing by the number of patients to give a lesion probability at each voxel, is
presented (with a 5% probability threshold, upper left panel), along with clusters
of significant between-group difference in terms of volume (upper right panel),
R1 and y (lower panels) values for both the MS>HC (red-yellow) and MS<HC
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(blue-light blue) contrasts, all superimposed on axial sections of the average T1-
weighted volume in the MNI space. For Volume, R1 and y maps, pooled results
of the GM and WM analyses are shown. Images are in radiological orientation.

Similarly widespread clusters of reduced R1 values emerged in MS
patients, extending well beyond the distribution of visible T2-
hyperintense lesions and peaking in the corpus callosum, periventricular
WM and thalami (p-values <0.001). As for the analysis of QSM images,
MS patients showed several clusters of reduced y values compared to HC,
involving the bilateral cerebral WM (particularly the frontal sections of
the corpus callosum, corona radiata, superior longitudinal fasciculus and
cingulum - p-values <0.001), the midbrain (p=0.001), the bilateral pulvinar
and right thalamic ventral lateral nucleus (p-values <0.001), along with
small clusters of increased y values in the left body of the caudate nucleus
(p=0.004) and the right anterior cingulate (p=0.005) and superior frontal
(p=0.02) gyri.

Effect size (Cohen’s d) maps of between-group differences in terms of
regional volume, R1 and x values (obtained from permutation-based T

statistics estimated in TFCE toolbox) are also presented in Figure 5.3.

Volume

Figure 5.3. Effect size maps of between-group differences. Effect size
(Cohen’s d) maps of between-group differences in terms of volume, R1 and y
values (from left to right) are presented, superimposed on axial sections of the
average T1-weighted volume in the MNI space. Positive effect size values refer to
the MIS<HC contrast. For Volume, R1 and y maps, pooled results of the GM and
WM analyses are shown. Images are in radiological orientation.

5.3.3 Relationship between MRI metrics and clinical status

When looking at the relationship with clinical variables, whole brain and
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GM volumes were positively associated with motor performance (r=0.245,
p=0.009 and r=0.241, p=0.01, respectively), with T2-LL and global GM
volume correlating with cognitive processing speed (r=-0.255, p=0.006
and r=0.234, p=0.01, respectively) and more weakly with clinical
disability (r=0.200, p=0.03 and r=-0.203, p=0.03, respectively, not
surviving multiple comparisons correction). No significant correlations

emerged between clinical status and median R1 and x values of both

NAGM and NAWM (Table 5.2).
| EDSS | SDMT Motor score
Global MRI metrics®
o[ 0.200 (0.033, 0.407) -0.255 (-0.360, -0.151) -0.164 (-0.324, -0.029)
0.03* 0.006 0.09

Whole Brain -0.161 (-0.356, 0.024) 0.177 (0.011, 0.339) 0.245 (0.078, 0.413)
volume 0.09 0.06 0.009

-0.203 (-0.370, -0.027) 0.234 (0.075, 0.386) 0.241 (0.089, 0.381)
GM volume 0.03* 0.01 0.01

-0.061 (-0.246, 0.112) 0.057 (-0.158, 0.257) 0.153 (-0.016, 0.332)
WM wolume 0.52 0.55 0.11
NAGM -0.136 (-0.313, 0.053) 0.076 (-0.094, 0.250) 0.039 (-0.132, 0.210)
median R1 0.15 0.42 0.68
NAWM -0,158 (-0.331, 0.030) 0.167 (-0.009, 0.338) 0.118 (-0.042, 0.278)
median R1 0.10 0.08 0.22
NAGM 0.007 (-0.187, 0.196) -0.019 (-0.201, 0.167) -0.022 (-0.224, 0.193)
median 0.94 0.84 0.82
NAWM -0.084 (-0.291, 0.140) -0.030 (-0.200, 0.141) 0.136 (-0.049, 0.303)
median 0.38 0.75 0.15

Significant results are in bold.
a Correlations with clinical scores are corrected for age, sex and TIV (for
volumes only).
* Not significant after FDR correction.

Table 5.2. Correlations between clinical and MRI-derived variables.
Results are expressed as correlation coefficients (r) with 95% bias-corrected and
accelerated bootstrap confidence intervals in parentheses (first row) and
corresponding p-values (second row).

To allow for a precise anatomical localization of the effects of interest,
associations with clinical variables were also tested at the voxel level

(Figure 5.4): thalamic volume was related both negatively with clinical

60



disability (p=0.001) and positively with cognitive processing speed
(p=0.001) and motor performance (p=0.01), with additional positive
correlations between the SDMT score and GM volume in the right basal
ganglia and posterior insula (p-values<0.04) and between motor
performance and infratentorial WM volume at the level of the medial
lemnisci and cerebellar peduncles (p=0.01). Furthermore, a large cluster of
significant association between the SDMT score and R1 values emerged,
extensively involving the (mainly posterior) periventricular WM and
peaking around the right posterior thalamic radiation (p reaching 0.01),
while x values in the frontal sections of the cingulum and corona radiata
were related both negatively with EDSS (p reaching <0.001) and

positively with motor performance (p reaching 0.003).

Volume
EDSS g,% %

Volume

Volume

ST

Motor
score

N N * &
5

Figure 5.4. Results of the voxel-wise correlations with clinical variables.
Clusters of significant association between MRI metrics and EDSS, SDMT and
motor (from top to bottom) scores are presented, superimposed on sagittal,
coronal and axial (from left to right) sections of the average T1-weighted volume
in the MINI space. Images are in radiological orientation.
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54 Discussion

Notwithstanding the many advances witnessed in the field of tissue
microstructure in MS, none of the available MR techniques is solely
affected by a specific pathological aspect, which advocates for the
application of multi-parameter approaches to improve our understanding
of microstructural damage.’3* Here, we applied a multi-parameter
analysis of volumetry and quantitative MRI to address the following
questions: (i) what is the topography of iron and myelin changes assessed
via susceptibility and relaxometry in MS? and (ii) are the observed
changes clinically relevant?

As per the first question, MS patients showed a widespread R1 decrease
across GM and WM regions, associated to substantially more limited
modifications in susceptibility and to an atrophy pattern mainly
involving deep GM, posterior and infratentorial regions. The observed R1
reduction throughout the WM was likely driven by changes in
macromolecular tissue content (i.e. myelin), and, to a lesser extent, by iron
levels.’® Indeed, pathological descriptions documented demyelination
not only in the context of lesions, but also in normal-appearing WM, 13¢
with iron depletion in remyelinated plaques!!® also possibly contributing,
to a lesser extent, to R1 reduction. The R1 voxel-wise analysis confirms
and expands previous findings reporting R1 decrease in multiple WM
tracts in MS compared to HS,'* with no specific regional preference.13
Similarly, the parallel susceptibility decrease in several WM regions
confirms histopathological data reporting iron depletion in normal-
appearing WM,118 and adds on a recent study reporting a decrease in
susceptibility within the cingulum in a relatively small group of
patients.’38 Indeed, our larger sample size and the application of a voxel-

wise approach likely explains the increased sensitivity to the detection of
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between-group differences. Nevertheless, given previous
histopathological data reporting significant decrease of iron in
oligodendrocytes and myelin within normal-appearing WM,17 the
limited spatial extension of the observed susceptibility reduction is
somehow surprising. A possible explanation could be that, as myelin and
iron exert opposite effects on susceptibility, our ability to investigate
tissues characterized by concomitant presence of demyelination and iron
depletion remains intrinsically limited.

In GM, the observed R1 reduction was associated with decreased
susceptibility in the thalamus and small clusters of increased
susceptibility in the caudate nucleus and cortical areas. While R1 in the
cortex and thalamus can be considered a reliable marker of myelin
content,® in the basal ganglia it is highly influenced by iron
concentration.’® The observation that the thalamus undergoes structural
modifications similar to those observed in WM, with demyelination
associated with iron depletion, confirms recent findings21115116140 and can
be explained by its peculiar anatomical structure. Likewise, our findings
of small areas of increased susceptibility in the cortex and caudate
nucleus are in line with recent reports, suggesting that susceptibility
increase in MS deep GM, originally interpreted as demyelination and iron
accrual,’2112¢ is mainly accounted for by atrophy rather than actual
increase in iron content.115116

As per the clinical meaning of microstructural abnormalities, R1 changes
seem to reflect the impact of focal lesions, with the cluster holding
significant correlation with cognitive performance peaking in the
periventricular region, in overlap with focal demyelination, likely causing
disconnection of distributed networks responsible for the control of high-
level functions. On the other hand, susceptibility and atrophy, reflecting
oligodendrocyte and axonal damage, significantly contributed to global

and motor disability. Our analysis confirmed not only the central role of
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thalamic atrophy as meaningful correlate of disability in MS,2 but also
the relevance of cerebellar WM damage in driving motor impairment.14!
Beyond these confirmations, we identified a correlation between
susceptibility reduction and disability that might add another layer to our
understanding of the pathological mechanisms sustaining clinical
impairment in MS. Indeed, if susceptibility decrease is expression of
oligodendrocyte damage,'” the consequent reduction of the tissue repair
capability, depending upon oligodendrocyte activity, would contribute to
the manifestation of clinical deficits. On the other hand, cognitive
performance was related to deep GM atrophy and R1 abnormalities
mostly overlapping the distribution of focal WM lesions. Such overlap,
together with the correlation identified between lesion load and SDMT,
suggests that, rather than microstructural damage, GM atrophy and
disconnection sustained by focal lesions remain the main predictors of
cognitive dysfunction in MS.142

Our work is not without limitations. First, our assessment was conducted
on the entire GM and WM rather than the normal-appearing tissue.
However, when comparing extra-lesional median R1/susceptibility
values at group level, we identified significant differences, demonstrating
that microstructural abnormalities also affect normal-appearing tissue.
Additionally, the voxel-based analysis clearly demonstrated that such
modifications are not spatially restricted to areas affected by T2
hyperintense lesions, as R1/susceptibility alterations are not only present
where lesion have higher probability to occur, but are also identified
within normal-appearing tissue. Finally, although our clinical evaluation
included motor and cognitive assessments, and our approach allowed for
a multifaceted exploration of tissue abnormalities, we are still far from a
comprehensive characterization of the structural substrate underpinning
clinical disability in MS.

In conclusion, we confirmed the presence of widespread and clinically
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relevant demyelination, expressed by R1 decrease, and atrophy in MS. In
addition, our findings suggest that also the more limited modifications of
tissue susceptibility are clinically meaningful, possibly adding
information on oligodendrocyte dysfunction and damage to the ones

provided by demyelination and atrophy estimation.
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