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Abstract

Multichannel radar systems must comply with very stringent operational re-
quirements, involving adaptive detection and estimation tasks, as well as the
ability to handle many tracks simultaneously without degrading search perfor-
mance when operating in interference environments. An essential role is hence
played by the detection of the target and its accurate localization. Therefore, this
PhD Thesis deals with the development of multichannel detection and estima-
tion algorithms for radar signal processing, presenting innovative architectures
for the joint target detection and angle estimation, tailored strategies to recover
performance in missing-data scenarios, as well as novel signal processing methods
developed for Frequency Diverse-Array Multiple Input Multiple Output (FDA-
MIMO) radars (also exploiting the polarimetric domain). After an overview of
the state of the art of modern multichannel radar systems, where some relevant
issues of practical interest are highlighted, the problem of joint radar target de-
tection and angle estimation is addressed in the context of a multichannel phased
array radar. Moreover, the estimation of a structured covariance matrix under
the missing-data context is tackled by means of the Expectation-Maximization
(EM) algorithm. Within the same setting, the problem of detecting a prospec-
tive target embedded in Gaussian interference with an unknown (but possibly
structured) covariance matrix is studied. After that, assuming a FDA-MIMO
radar operating in a background of Gaussian interference with known spectral
properties, a joint target angle and incremental range estimation architecture is
derived. Then, the target detection problem with a polarimetric FDA-MIMO
radar is investigated. The performance analysis of the proposed architectures
and the corresponding discussions are developed in terms of computational com-
plexity and detection performance and/or estimation accuracy. Moreover, for
comparison purposes, some counterparts available in the open literature as well
as theoretical benchmark limits are also considered, corroborating the effective-
ness of the considered strategies in some diverse simulated scenarios. Finally, the
advances described in this thesis work are summarized and discussed along with
emerging trends and issues to be addressed in the future.

Keywords: modern radar system, adaptive detection, ML estimation,
missing-data, FDA-MIMO, Polarimetric radar.



Sintesi in lingua italiana

I sistemi radar multicanale devono soddisfare requisiti operativi molto strin-
genti, che prevedono compiti di rivelazione adattiva e di stima, nonché la capacità
di gestire molteplici tracce senza compromettere le prestazioni di ricerca quando
si opera in presenza di interferenze. Un ruolo essenziale è quindi svolto dal pro-
cesso di rivelazione del bersaglio e dalla sua accurata localizzazione. Per questo
motivo, l’obiettivo di questa tesi di dottorato è la progettazione di algoritmi in-
novativi per l’elaborazione del segnale radar, sviluppando tecniche per rivelare il
bersaglio e fornire congiuntamente la relativa stima dell’angolo, strategie ad-hoc
per ristabilire le prestazioni in scenari con dati mancanti, nonché nuovi metodi di
elaborazione del segnale sviluppati per radar Frequency Diverse-Array Multiple
Input Multiple Output (FDA-MIMO), sfruttando anche il dominio polarimetrico.
Dopo una panoramica sullo stato dell’arte dei moderni sistemi radar multicanale,
in cui vengono evidenziate diverse problematiche di interesse pratico, viene studi-
ato il problema di rivelare il bersaglio e fornire contemporaneamente la sua stima
della direzione di arrivo utilizzando un radar multicanale phased array. Inoltre, è
affrontato il problema della stima di una matrice di covarianza strutturata in uno
scenario con dati mancanti, impiegando l’algoritmo Expectation-Maximization
(EM). Nello stesso contesto, è esaminato il problema della rivelazione di un
bersaglio immerso in un’interferenza Gaussiana con una matrice di covarianza
non nota, ma eventualmente strutturata. Successivamente, ipotizzando un radar
FDA-MIMO operante in un contesto di interferenza Gaussiana con proprietà spet-
trali note, viene proposto un algoritmo per la stima dell’angolo e della distanza
incrementale del bersaglio. Inoltre, viene analizzato il problema della rivelazione
adattiva del bersaglio con un radar FDA-MIMO polarimetrico assumendo dis-
turbo additivo Gaussiano con matrice di covarianza non nota. La progettazione
degli algoritmi proposti è rigorosamente descritta e corredata dall’analisi della
relativa complessità computazionale nonché dallo studio delle proprietà di con-
vergenza delle procedure di ottimizzazione impiegate. Infine, l’efficacia dei metodi
elaborati in questo lavoro di tesi è analizzata mediante simulazione numerica al
fine di studiare le prestazioni di rivelazione e/o l’accuratezza di stima. Com-
pletano l’analisi il confronto con alcune controparti disponibili nella letteratura
aperta nonché con benchmark teorici di riferimento. Conclude questo lavoro di



tesi un riepilogo dei problemi affrontati e delle strategie di elaborazione svilup-
pate evidenziando possibili sviluppi futuri che potrebbero essere perseguiti.

Parole chiave: sistema radar moderno, rivelazione adattiva, stima
ML, dati mancanti, FDA-MIMO, radar polarimetrico.
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Chapter 1
Introduction

Modern radar research and development efforts are de facto charac-
terized by a number of paramount keystones: namely, the evolution of
subsystems hardware capabilities, the development of complex algorithms
for specific radar signal processing tasks, as well as the design of novel
phased array geometries and architectures. In particular, a major mile-
stone within this technological trend is represented by Active Electroni-
cally Scanned Array (AESA) antennas which eventually enabled the use
of advanced techniques such as Digital Beamformer (DBF) and Space-Time
Adaptive Processing (STAP) for radar operations in hostile environments,
clutter mitigation, and the like.

Considering the current state of the art, multichannel phased array
radar systems must comply with very stressing operational requirements
demanding surveillance at specific ranges (sometimes with different up-
date rates depending on the different elevation sectors); tracking with vari-
able update rates (which can be different from those adopted for search
tasks), Three-Dimensional (3-D) target data measurements; the capabil-
ity to manage many tracks simultaneously without decreasing the search
performance, and the need to operate in clutter and jamming environ-
ments [95, 89, 100, 23]. To this end, agility in beam steering and adap-
tive DBF are key ingredients to cope with such challenges jointly with
advanced signal and data processing algorithms aimed at boosting radar
performance [45], [62]. At the root of all the aforementioned processes,
there is target detection and localization measurements within a 3-D co-
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ordinate system.
Target detection has been the subject of plenty of articles in the open

literature, mainly devoted to the development of adaptive detectors (as
well as to their analysis) capable of operating in the presence of undesired
disturbance, hostile interference, and clutter [2, 60, 75, 32, 21, 93, 87, 92,
15, 90, 39, 41]. Generally, to accomplish the detection task, at the design
stage the received signal (under the assumption of target presence and tak-
ing into account receiver linearity) is represented via the superposition of
the target echo and an interference-plus-noise contribution, which is usu-
ally modeled at baseband as the realization of a zero-mean Gaussian pro-
cess with an unknown and possibly structured covariance matrix. Besides,
the standard homogeneous radar environment assumption is often invoked
whereby a set of secondary (training) data, free of target contamination,
enables the estimation of the unknown interference covariance matrix and
the derivation of adaptive architectures [60, 93, 39, 75, 21, 87, 92].

Within this framework, the target detection problem is formulated in
terms of a binary statistical hypothesis test, whose optimal solution (in the
Neyman-Pearson sense) is given by the Likelihood Ratio Test (LRT) [105,
39, 59, 90]. However, the LRT requires perfect knowledge of the parameters
characterizing the likelihood function under the H0 (target absent) and H1

(target present) hypotheses, including their parameters related to either
the target characteristics or the interference covariance matrix. In practical
situations, such parameters are unknown and need to be estimated. This
results in the development of implementable receivers based on sub-optimal
approaches, such as the Generalized Likelihood Ratio (GLR), where the
unknowns are replaced by their Maximum Likelihood (ML) estimates [104,
59].

Once the presence of a target has been established within a Cell Under
Test (CUT), the estimation process of the target bearing could be accom-
plished by means of monopulse [79], generalized monopulse [81], or other
bespoke techniques, thus implementing detection and estimation as two
different signal processing tasks [120, 119]. Target parameter estimation
is an enduring signal processing problem that has always raised persistent
attention within the radar scientific community. Indeed, new threats de-
mand strict radar performance requirements as well as the development of
advanced algorithms capable of providing reliable estimates of the target
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position, even at the expense of an increased computational complexity.
With reference to the Direction of Arrival (DOA), it is well known that
phased array radars can achieve highly accurate angle estimation by pre-
cisely forming a beam in the desired direction [39, 105]. Nevertheless, it is
worth stressing that in a classic phased array radar system the beampattern
is dependent only on the angular direction [118, 76, 28, 98] whereas it is
not selective in the range domain. As a consequence, the range information
is not directly embedded in the beamforming process. To overcome this
drawback, a novel beam scanning array, referred to as Frequency Diverse-
Array (FDA), has been proposed [5, 108, 17]. Specifically, employing a
small frequency increment across adjacent array elements, the FDA in-
duces discrimination in both the angle and range domains. In other words,
FDA allows to glean jointly range and angle information. Moreover, the
mentioned extra flexibility of the FDA radar paves the way for its capital-
ization in several applications, such as cognitive target tracking [48] and
target localization [34]. Furthermore, FDA can be successfully applied to a
Multiple Input Multiple Output (MIMO) architecture leading to an FDA-
MIMO radar [96], where additional degrees-of-freedom become available by
separating the different transmitted waveforms with appropriate matched
filtering. Therefore, a range-angle-dependent transmit-receive beampat-
tern can be realized via the FDA-MIMO manifold structure. That is,
capitalizing the additional Degree of Freedom (DOF)s of an FDA-MIMO
radar in the range domain, the target angle and range can be simulta-
neously estimated due to the range-angle-dependent characteristic of the
FDA-MIMO steering vector.

To this end, it is worth mentioning that in multi channel radar architec-
tures most procedures have been designed under the ideal conditions that
all data at the output of the array are available. However, regardless of
the type of system being used, practical radar architectures are not devoid
of flaws and issues. In particular, measurement errors due to acquisition
equipment, random sensor failure [111] caused by impulsive noise [123],
range ambiguous echo returns affecting useful signal samples [91], as well
as reception failures (e.g., in distributed radar architecture [51, 46]), can
determine the lack of some observations. Therefore, missing sensor mea-
surements can arise in a variety of radar signal processing problems, for
instance, DBF, DOA estimation, interference cancellation, covariance esti-
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mation, and target detection. This implies developing specific procedures
to limit such a loss with respect to an ideal scenario where all measure-
ments are available.

Within this framework, this thesis presents contributions pertaining
to joint target detection and estimation architectures, innovative strate-
gies to recover from missing-data scenarios, and novel signal processing
methods developed for FDA-MIMO radars (also exploiting the polarimet-
ric domain). Accordingly, the rest of the dissertation is organized into
several chapters as follows.

• Chapter 2 deals with the problem of joint radar target detection
and angle estimation. To this end, after a tailored linearization pro-
cedure, the target steering vector is represented as the superposition
of the pointing direction term plus two contributions that account
for the directional cosines offsets with respect to the nominal array
steering. Based on this representation, target detection in the pres-
ence of interference is cast as a binary composite hypothesis testing
problem with a different number of unknowns under the two alter-
natives. In particular, under the target presence hypothesis, the
likelihood function exhibits dependence on the complex target am-
plitude, the interference covariance matrix, and the two-direction
cosine displacement parameters (accounting for the unknown target
location within the array mainbeam). This formulation paves the
way for the development of signal processing architectures that are
able to detect the target and, at the same time, determine its angu-
lar estimate. In this respect, the GLR Test (GLRT) criterion [39],
[59] is considered, which under the target presence hypothesis, after
concentration over the unknown interference covariance and target
complex amplitude, demands the solution of an optimization prob-
lem over the unknown direction offsets. For the special case of a
One-Dimensional (1-D) linear array, the problem is solved in closed
form by simply computing the roots of a second-order equation. For
the Two-Dimensional (2-D) planar array, the optimization becomes
more challenging and falls within the class of box-constrained frac-
tional quadratic problems. In this regard, two new solution methods
are proposed. The former provides the optimal solution and relies
on the use of the Dinkelbach’s algorithm [99, 33, 16]. The latter
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is an iterative fast-converging procedure based on a Coordinate De-
scent (CD) optimization [29]. However, in this last case, only con-
vergence to a stationary point can be claimed.

• Chapter 3 presents the problem of estimating a structured covari-
ance matrix under the missing-data context. First of all, the homo-
geneous Gaussian environment observation model with missing-data
is introduced capitalizing on a-priori information about the covari-
ance matrix structure and/or specific array configurations. Then, the
covariance matrix estimation process is formulated as an appropri-
ately constrained optimization problem that is in general difficult to
solve. Hence, an effective iterative solution technique, based on the
Expectation-Maximization (EM) algorithm [42, 105, 56, 114], is in-
troduced together with some convergence properties and rate of con-
vergence results. Each iteration of the algorithm (for very common
covariance structures of practical interest in radar signal processing
applications) involves only closed-form solutions for the unknowns.
As per the radar context, the developed theory is contextualized for a
beamforming application and for the problem of detecting the num-
ber of sources. The study leads to some efficient methods capable
of operating in the presence of missing-data with satisfactory perfor-
mance.

• In Chapter 4, leveraging the results proposed in Chapter 3, the
problem of target detection in Gaussian interference with an un-
known (but possibly structured) covariance matrix is addressed for
a missing-data context. The detection problem is formulated as a
composite hypothesis test characterized by different unknowns un-
der the two (i.e., H0, H1) hypotheses. In particular, a sub-optimal
GLRT architecture is designed as a feasible detector. Besides, a
variation of the conventional GLRT, i.e., the Adaptive Matched Fil-
ter (AMF) [93] test (also known as the Two-Step GLRT (2SGLRT)),
is derived as well. The 2SGLRT requires the ML Estimate (MLE)
of the covariance matrix under the H0 hypothesis (to be computed
from secondary data according to the method derived in Chapter 3)
and the MLE of the complex target echo amplitude (assuming that
the interference covariance matrix is known). However, the alterna-
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tive hypothesis (with reference to the GLRT receiver) involves the
joint MLE of the complex target echo amplitude and the covariance
matrix. To handle this challenging task, an EM-based framework is
proposed to determine optimized solutions to the maximization prob-
lem at hand with some quality guarantees. The resulting procedure
involves only closed-form expressions for the cases of unstructured
estimation and covariance matrix with a centro-Hermitian structure.
For the case of the covariance matrix with a more general struc-
ture, the plain EM leads to an optimization problem where closed-
form solutions are not available. Therefore, this case is addressed
using two EM variations, i.e., the Expectation-Conditional Maxi-
mization (ECM) and Multi-cycle EM (M-EM) techniques, requiring
the optimization of individual subsets of the unknowns at a given
iteration [77, 73, 97], each of them updated in closed-form for some
covariance structures of practical interest.

• Chapter 5 investigates the problem of joint target angle and incre-
mental range estimation using an FDA-MIMO radar in a background
of Gaussian interference with known spectral properties. At the de-
sign stage, the target parameters, i.e., angle, incremental range, and
echo-amplitude, are assumed unknown. Under the aforementioned
setup, the estimation problem is formulated starting from a single
data snapshot. Then, the ML estimator is derived maximizing the
likelihood function with respect to the unknown parameters. Fur-
thermore, to reduce the computational cost connected with the 2-D
grid search required by the implementation of the ML rule, three
approximated methods are considered:

– an iterative procedure based on the CD algorithm leveraging a
sequence of 1-D searches which arise alternating optimizations
over one specific variable while keeping the other one fixed;

– an adaptive monopulse approach that approximates the optimal
search exploiting real bias/slope correction values;

– a generalized monopulse procedure employing a complex slope
and bias correction aimed at minimizing the mean square value
of the noise error term.
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At the analysis stage, Cramér-Rao Lower Bound (CRLB) for the
angle and incremental range estimation via an FDA-MIMO radar is
derived.

• Starting from the framework proposed in Chapter 5, Chapter 6
deals with the target detection problem with a polarimetric FDA-
MIMO radar. In this context, the synthesis of adaptive detectors
is investigated taking into account a disturbance covariance matrix
with unknown spectral characteristics. At the design stage, the tar-
get detection problem is formulated as a binary hypothesis test where
the target parameters (i.e., angle, incremental range within the radar
cell [66, 67], and scattering matrix) along with the interference covari-
ance matrix are assumed unknown. Considering feasible detectors
(derived resorting to the GLRT and 2SGLRT criteria), the problems
at hand are tackled in a sub-optimal but effective way by means of
three specific techniques:

– the Linearized Array Manifold (LAM) method (proposed in
Chapter 2), which solves an equivalent optimization problem
leveraging a tailored linearization procedure. This entails rep-
resenting the target steering vector as the superposition of the
pointing direction term plus two contributions that account for
the actual angle and incremental range offsets with respect to
the nominal array steering;

– the Gradient Projection Method (GPM) [18], which iteratively
updates the unknown target location parameters, in the con-
centrated log-likelihood function under the alternative hypoth-
esis, along the current ascent direction. This is accomplished
by using either a constant stepsize or an adaptive one via the
backtracking procedure from an initial guess until a stationary
point is reached;

– the CD procedure [19], composed of an alternating sequence of
1-D searches (conducted over discretized intervals) with respect
to one target location parameter (either angle or incremental
range) while keeping the other fixed.

Finally, the bounded Constant False Alarm Rate (CFAR) property as
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well as the computational complexity of the aforementioned GLRT-
based detectors are discussed.

• Chapter 7 summarizes the advancements described in this thesis
work and highlights emerging trends and issues to be addressed in
the immediate future.



Chapter 2
Single-Pulse Simultaneous

Target Detection and Angle

Estimation in a Multichannel

Phased Array Radar

This chapter1 is focused on simultaneous target detection and angle
estimation with a multichannel phased array radar. Resorting to a lin-
earized expression for the array steering vector around the beam pointing
direction, the problem is formulated as a composite binary hypothesis test
where the unknowns, under the alternative hypothesis, include the target
directional cosines displacements with respect to the array nominal coarse
pointing direction. The problem is handled via the GLR criterion (both
one-step and two-step) where decision statistics leveraging the MLEs of
the parameters are compared with a detection threshold. If crossed, target
presence is declared and the MLEs of the aforementioned displacements
directly provide target angular position with respect to the pointing di-
rection. From the analytic point of view, ML estimation involves a con-
strained fractional quadratic optimization problem whose optimal solution

1©2020 IEEE. Reprinted, with permission, from A. Aubry, A. De Maio, S. Marano
and M. Rosamilia, “Single-Pulse Simultaneous Target Detection and Angle Estimation
in a Multichannel Phased Array Radar,” IEEE Transactions on Signal Processing, vol.
68, pp. 6649-6664, 2020.
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can be found via the Dinkelbach’s algorithm or approximated through a
fast-converging procedure based on a CD optimization. The performance
analysis of the proposed architectures as well as the corresponding discus-
sion is developed in terms of computational complexity, CFAR behavior,
detection performance, and angular estimation accuracy, also in compari-
son with some counterparts available in the open literature and theoretical
benchmark limits.

This chapter is organized as follows. Section 2.1 deals with problem
formulation. In Section 2.2, three procedures to solve the constrained op-
timization problem are developed. Section 2.3 addresses the performance
analysis and outlines comparisons for both detection and estimation tasks.
Finally, Section 2.4, summarizes conclusions and outlines possible future
research avenues.

2.1 Problem Formulation

Let us consider a radar system that collects spatial data via a narrow-
band planar array (see Fig. 2.1) composed of NM antennas. After down-
conversion, pulse compression, and fast-time sampling, the echo signal in-
duced by a prospective target located at range R, azimuth ✓0, and elevation
�0 with respect to array boresight, is given by

ap(u0, v0), (2.1)

where a is an unknown complex parameter accounting for target backscat-
tering and channel propagation effects, (u0, v0) indicates the target angular
location in the space of directional cosines [105], i.e.,

u0 = sin(✓0) cos(�0), v0 = sin(✓0) sin(�0), (2.2)

and p(u0, v0) denotes the spatial steering vector p(u, v) evaluated at (u0, v0).
For a Uniform Rectangular Array (URA)

p(u, v) = pu(u)⌦ pv(v), (2.3)

with
pu(u) = [e

j 2⇡

�0
x0u

, e
j 2⇡

�0
x1u

, . . . , e
j 2⇡

�0
xN�1u

]
T 2 C

N
, (2.4)
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Figure 2.1. Two dimensional symmetric planar array geometry with equi-
spaced antennas in the x and y directions. (R, ✓, �) are the polar coordinates
of target.

pv(v) = [e
j 2⇡

�0
y0v

, e
j 2⇡

�0
y1v

, . . . , e
j 2⇡

�0
yM�1v

]
T 2 C

M
, (2.5)

where (xi, yh), i = 0, . . . , N � 1, h = 0, . . . ,M � 1, are the positions2 of
the array elements and �0 is the radar operating wavelength.

Assuming the potential useful echo signal buried in Gaussian interfer-
ence with unknown spectral characteristics and supposing the availability
of K � N homogeneous secondary data (i.e., data vectors, free of useful
target returns, exhibiting the same spectral property as that from the cell
under test), the problem of detecting a target located at (✓0,�0), i.e., at

2For a URA, denoting by dx and dy the interelement spacing (usually given by �0/2)
along the x and y axes, respectively, if the reference system center is located in the
bottom-left corner

xi = dx i, i = 0, 1, . . . , N � 1, yh = dy h, h = 0, 1, . . . ,M � 1.

If instead the reference system center coincides with the array center, then

xi = dx

�
i�

�
N�1
2

��
, i = 0, 1, . . . , N � 1,

yh = dy

�
h�

�
M�1

2

��
, h = 0, 1, . . . ,M � 1.
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(u0, v0) in u�v space, can be formulated as the following composite binary
hypothesis testing problem

8
>>>><

>>>>:

H0 :

(
r = n

rk = nk k = 1, . . . ,K

H1 :

(
r = ap(u0, v0) + n

rk = nk k = 1, . . . ,K

, (2.6)

where the interference plus noise components n and nk, k = 1, . . . ,K, are
modeled as statistically independent, complex, zero-mean, circularly sym-
metric Gaussian random vectors with unknown positive definite covariance
matrix

M = E[nn
†
] = E[nkn

†
k], k = 1, . . . ,K. (2.7)

Two important remarks are now necessary.

1. The presented framework is developed using a URA, but it can be
easily generalized to deal with different types of array. Besides, for
the special case of a linear array, i.e., M = 1, the steering vector
(2.3) degenerates into (2.4).

2. The interference scenario with the assumptions in (2.7) defines the so
called “homogeneous environment”, well established and accepted in
radar detection-estimation literature being theoretically justified and
representative of many practical operative contexts [60, 93, 14, 101]
and also explained in many technical books [112, 45, 39].

2.1.1 Pointing Errors

An array steering direction is not usually aligned with the target DOA,
especially when the radar is in search mode. In order to account for this
mismatch, a specific model of the array steering vector is now developed,
leveraging a linearization of the array manifold around the transmit look-
direction (ū, v̄). Specifically, denoting by (�u,�v) the directional cosine
offset, i.e., �u = u0 � ū, �v = v0 � v̄, the target steering vector is
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approximated as

pa(�u,�v) = p(ū, v̄) +
@p(ū, v̄)

@u
�u+

@p(ū, v̄)

@v
�v, (2.8)

where the explicit dependence of the approximated steering vector on the
pointing direction is omitted to avoid unnecessary notational complica-
tions. Note that

@p(ū, v̄)

@u
=

@p(u, v)

@u

����
u=ū

v=v̄

= j
2⇡

�0

�
pu(ū)� [x0, x1, . . . , xN�1]

T
�
⌦ pv(v̄)

(2.9)
and

@p(ū, v̄)

@v
=

@p(u, v)

@v

����
u=ū

v=v̄

= j
2⇡

�0

pu(ū)⌦
�
pv(v̄)� [y0, y1, . . . , yM�1]

T
�

(2.10)
represent the partial derivatives with respect to u and v.

To assess the accuracy of the approximation in (2.8), Fig. 2.2 reports
the magnitude of the normalized correlation (mismatched angle cosine)
between the actual steering vector and the approximated one, i.e.,

|pa(�u,�v)
†
p(ū+�u, v̄ +�v)|

kpa(�u,�v)k kp(ū+�u, v̄ +�v)k , (2.11)

versus the directional cosines offsets. Specifically, assuming symmetric
array configurations, in Fig. 2.2(a) the 1-D case is analyzed, with N = 9

and ū = 0, whereas Fig. 2.2(b) refers to the 2-D scenario with M = 5, N =

5, ū = v̄ = 0. The results clearly highlight the ability of pa(�u,�v) to
describe accurately the actual steering vector as long as the target DOA
lies within the 3 dB beamwidth. Indeed, normalized correlation values
higher than 0.83 are achieved3 if |�u|  0.891/N and |�v|  0.891/M

where 0.891/N and 0.891/M represent the 3 dB single-side beamwidth of
a planar array pointing at the boresight direction.

Hereafter, to simplify notation, the nominal steering vector p(ū, v̄) is
indicated as p whereas the steering derivatives (at the pointing directions)

3Normalized correlation values larger than or equal to 0.95 are achieved in 1-D case
provided that |�u|  0.891/N .
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@p(ū, v̄)/@u and @p(ū, v̄)/@v are denoted by ṗu and ṗv, respectively. As
a result, equation (2.8) can be re-written as

pa(�u,�v) = p+H�✓, (2.12)

with H = [ṗu, ṗv] the Jacobian matrix, and �✓ = [�u,�v]
T 2 R

2. Note
that, for the special case of a linear array, the steering model boils down
to

pa(�u) = pu(ū) +
@p(ū)

@u
�u = p+ ṗu�u. (2.13)

Now, leveraging the useful signal model (2.12), the target detection
problem in the presence of pointing errors can be cast as

8
>>>><

>>>>:

H0 :

(
r = n

rk = nk k = 1, . . . ,K

H1 :

(
r = apa(�u,�v) + n

rk = nk k = 1, . . . ,K

, (2.14)

where pa(�u,�v) represents the approximated steering vector and the
entries of (�u,�v) indicate the unknown target direction cosines, with
|�u|  ↵, |�v|  �. The choice of the constraint levels ↵ and � must
reflect a compromise between DOA uncertainty and quality of the linear
approximation. A reasonable choice is the 3 dB single-side beamwidth.

Notably, by capitalizing the a-priori information on the sensing system,
namely the transmit beamwidth size, the feasible values of the unknowns
DOA displacements can be appropriately constrained, laying the ground
for an improved angular estimation.

2.2 System Design: Joint Detection and Angle

Estimation

The optimum solution to the hypotheses testing problem (2.14) (in the
Neyman-Pearson sense) is the LRT. However, its practical implementation
is precluded as the knowledge of the parameters �u, �v, a and M is
required. In detection theory jargon this means that a Uniformly Most
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Figure 2.2. Normalized correlation versus direction cosine offset, assuming
symmetric array: (a) 1-D case with N = 9 and ū = 0; (b) 2-D case with
N = M = 5 and ū = v̄ = 0. Dashed red lines delimitate the 3 dB beamwidth.

Powerful (UMP) test does not exist. Thus, to come up with a practically
implementable receiver, the GLR criterion is exploited, where the unknown
parameters are replaced by their ML estimates under each hypothesis.
Specifically, the following constrained GLRT decision rule is proposed

max
M ,a,

|�u|↵ |�v|�

fH1
(r, r1, . . . , rk|M , a,�✓)

max
M

fH0
(r, r1, . . . , rk|M)

H1

?
H0

T, (2.15)

where fH1
(·) and fH0

(·) represent the probability density functions of the
observations under the two hypotheses, and T is the detection threshold4

set to ensure a desired False Alarm Probability (Pfa). Besides, the AMF
version of (2.15) (also known as two-step GLRT because it can be obtained
computing the GLRT from the primary data vector (step 1) and then
substituting the ML estimate of the interference covariance matrix in place

4With a slight abuse of notation, the same symbol is used to denote the detection
threshold and its possible modifications introduced later, see, e.g., (2.18).
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of the exact one (step 2)) is considered

max
a,

|�u|↵ |�v|�

fH1
(r|M = K

�1
S, a,�✓)

fH0
(r|M = K�1S)

H1

?
H0

T1, (2.16)

where

S =

KX

k=1

rkr
†
k (2.17)

is proportional, via K, to the conventional secondary data sample covari-
ance matrix. The motivation for considering both (2.15) and (2.16) stems
from the observation that none of them can be a-priori claimed to be bet-
ter than the other.

Following the same line of reasoning as in [60] and [93], it is not difficult
to show that (2.15) and (2.16) can be cast respectively as

max
|�u|↵

|�v|�

1

1 + r†S�1r

��r†S�1
(p+H�✓)

��2

(p+H�✓)†S�1(p+H�✓)

H1

?
H0

T, (2.18)

and

max
|�u|↵

|�v|�

��r†S�1
(p+H�✓)

��2

(p+H�✓)†S�1(p+H�✓)

H1

?
H0

T1. (2.19)

Remarkably, once the presence of a target is declared, i.e., the decision
statistic on left hand side of (2.18) exceeds the detection threshold T , its
angular estimate is obtained as a by-product from the decision statistic
computation (2.18) and (2.19). Note that the evaluation of the decision
rule in (2.18) as well as in (2.19) involves a non-convex fractional quadratic
optimization problem. To handle it, different solution techniques are now
devised, which represent the main technical contribution of this work from
an optimization theory point of view. The 1-D case is studied in Subsec-
tion 2.2.1 whereas the 2-D case is analyzed in Subsection 2.2.2. Before
proceeding further, it is worth observing that the decision statistic in (2.18)
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is upper bounded by

t̂upper(r,S) = max
�✓2C2

1

1 + r†S�1r

��r†S�1
(p+H�✓)

��2
��S�1/2(p+H�✓)

��2 =

=

r
†
S

�1
HSD

⇣
H

†
SDS

�1
HSD

⌘�1

H
†
SDS

�1
r

1 + r†S�1r
,

with HSD = [p,H], namely,

max
|�u|↵

|�v|�

1

1 + r†S�1r

��r†S�1
(p+H�✓)

��2
��S�1/2(p+H�✓)

��2 < t̂upper(r,S). (2.20)

Being the probability density function of t̂upper(r,S), under the H0 hy-
pothesis, functionally independent of M , it follows that the decision rule
in (2.18) ensures the bounded CFAR property. Indeed, for any given up-
per bound to the desired false alarm probability, a universal threshold,
namely, just depending on the system parameters (i.e., pointing direction,
number of antennas, and sample support size), can be set in (2.18) to fulfill
the upper bound constraint. Leveraging (2.20), this property holds true
even if a sub-optimal maximization is performed in (2.18) and thus an ap-
proximated implementation of the decision statistic in (2.18) is considered.
Finally, following the same line of reasoning as before, it is not difficult to
show that the two-step detector (2.19) and its possible sub-optimal imple-
mentations, i.e., relying on sub-optimal solution techniques to handle the
involved maximization problem, still exhibit the bounded CFAR property.

2.2.1 Constrained GLRT Detector for 1-D Scenario

Handling the optimization problem involved in (2.18) and (2.19) for
the 1-D case is tantamount to solving

max
|�u|↵

(p+ ṗu�u)
†
S

�1
r r

†
S

�1
(p+ ṗu�u)

(p+ ṗu�u)† S�1(p+ ṗu�u)
. (2.21)

In order to proceed, let us define the “whitened” quantities

p̄ = S
�1/2

p, ˙̄pu = S
�1/2

ṗu, r̄ = S
�1/2

r, (2.22)
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and recast Problem (2.21) as

max
|�u|↵

(p̄+ ˙̄pu�u)
†
r̄ r̄

†
(p̄+ ˙̄pu�u)

(p̄+ ˙̄pu�u)† (p̄+ ˙̄pu�u)
. (2.23)

The following proposition establishes a procedure to obtain a closed-form
optimal solution to (2.23).

Proposition 1. An optimal solution �u
?

to (2.23) is

�u
?
= argmax

�u2{�u1,�u2}[B

(p̄+ ˙̄pu�u)
†
r̄ r̄

†
(p̄+ ˙̄pu�u)

(p̄+ ˙̄pu�u)† (p̄+ ˙̄pu�u)
, (2.24)

where �ui = (�1)
i
↵, i = 1, 2, and B is the finite set (whose cardinality

is at most 2) containing the real roots (with absolute value less than ↵) of

the quadratic equation

a
0
�u

2
+ b

0
�u+ c

0
= 0, (2.25)

with

a
0
=

���r̄† ˙̄pu

���
2

Re{p̄† ˙̄pu}� k ˙̄puk2Re{p̄†
r̄ r̄

† ˙̄pu}, (2.26)

b
0
= kp̄k2

���r̄† ˙̄pu

���
2

� k ˙̄puk2
���r̄†p̄

���
2

, (2.27)

c
0
= kp̄k2Re{p̄†

r̄ r̄
† ˙̄pu}�

���r̄†p̄
���
2

Re{p̄† ˙̄pu}. (2.28)

Proof. See Appendix A.2.

Exploiting the above results, it follows that the decision rule (2.18) for
the 1-D case, referred to in the following as GLRT-LAM, can be expressed
in closed form as

tGLRT-LAM =
1

1 + kr̄k2

���r̄†(p̄+ ˙̄pu
b�u

?
)

���
2

���p̄+ ˙̄pu
b�u?

���
2

H1

?
H0

T, (2.29)

where b�u
? is given by Proposition 1 (therein denoted by �u

?) and rep-
resents the output estimate of the target DOA displacement, provided
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that a detection is declared. The computational complexity required to
implement the GLRT-LAM is O(KN

2
), namely it is dominated by SCM

evaluation. Finally. the AMF counterpart to (2.29), denoted as GLRT-
LAM-AMF, is given by

tGLRT-LAM-AMF =

���r̄†(p̄+ ˙̄pu
b�u

?
)

���
2

���p̄+ ˙̄pu
b�u?

���
2

H1

?
H0

T1, (2.30)

2.2.2 Constrained GLRT Detector for 2-D Scenario

For the 2-D array sensing scenario, the optimization problem to solve
boils down to

max
|�u|↵

|�v|�

(p+H�✓)
†
S

�1
r r

†
S

�1
(p+H�✓)

(p+H�✓)† S�1(p+H�✓)
, (2.31)

which can be equivalently expressed as

max
|�u|↵

|�v|�

(p̄+ H̄�✓)
†
r̄ r̄

†
(p̄+ H̄�✓)

(p̄+ H̄�✓)† (p̄+ H̄�✓)
, (2.32)

where p̄ and r̄ are defined in (2.22), whereas H̄ is given by

H̄ = S
�1/2

H. (2.33)

In the following, two optimization procedures are considered to handle
Problem (2.32), which allow to localize the target within the antenna beam
if its presence is declared. The former reaches the global optimum via
the Dinkelbach algorithm [99]. The latter relies on a CD method [19] and
converges to a stationary point without any theoretical guarantee to end up
in a global maximizer of Problem (2.32). The second possibly sub-optimal
approach exhibits in general a faster convergence than the Dinkelbach-
based procedure, which can be a valuable feature from a practical point of
view.
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Dinkelbach-based DOA displacements estimate

To obtain the global optimal solution to Problem (2.32), some results
from the fractional programming theory [99], [33], [16] are exploited, which
are summarized here in the form of a lemma.

Lemma 2.2.1. [99] Consider the fractional programming problem

max
x2S

Q(x) = N(x)/D(x), (2.34)

where S ✓ R
n

is a nonempty and compact set and N(x), D(x) : S !
R are continuous functions, with D(x) strictly positive. Then x

?
is an

optimal solution to (2.34) if and only if it maximizes

N(x)�Q(x
?
)D(x). (2.35)

Furthermore, the function

F (q) = max
x2S

N(x)� qD(x), q 2 R. (2.36)

is continuous, convex, and strictly decreasing on R with F (q) > 0 if q <

q
?
= Q(x

?
) and F (q) < 0 if q > q

?
. ⌅

Based on Lemma 2.2.1, an optimal solution to (2.34) can be found
determining the unique root of (2.36), possibly via the bisection method,
and computing the corresponding maximizer. This procedure, proposed
by Dinkelbach [99], is summarized in Algorithm 1. Evidently, Problem
(2.32) fulfils the conditions of Lemma 2.2.1 with

x = �✓ 2 R
2
, (2.37)

N(x) = (p̄+ H̄x)
†
r̄ r̄

†
(p̄+ H̄x), (2.38)

D(x) = (p̄+ H̄x)
†
(p̄+ H̄x), (2.39)

and
S = {x 2 R

2
: |x(1)|  ↵, |x(2)|  �}. (2.40)

In fact, the feasible set (2.40) is nonempty and compact, (2.38) and (2.39)
are continuous functions with (2.39) strictly greater than zero over S . As
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a result, Algorithm 1 can be applied to solve Problem (2.32), where step
4 becomes

�✓
?
n = argmax

�✓ 2 S
(p̄+ H̄�✓)

†
r̄ r̄

†
(p̄+ H̄�✓)

� qn (p̄+ H̄�✓)
†
(p̄+ H̄�✓).

(2.41)

The procedure devised to determine an optimal point �✓
?
n is summa-

rized in Algorithm 2 (analytical details are reported in Appendix A.3).
Specifically, in step 2, the candidate optimal solutions that lie within the
interior of the feasible set are determined. Besides, in steps 3 and 4 the
candidate optimal solutions belonging to the boundary of the feasible set,
i.e., the four edges of the box, are computed. Finally, Step 5 derives the
global optimal solution, selecting the best among all the obtained candi-
dates.

Note that F (0) > 0 and F (kr̄k2) < 0 with probability one5 provided
that NM > 3. As a consequence, the bisection method involved in Al-
gorithm 1 can be initialized with qlb = 0 and qub = kr̄k2 to solve Prob-
lem (2.32).

Now, denoting by b�✓
?
DO the DOA displacements estimated via Algo-

rithm 1 tailored to the problem at hand, the decision rule (2.18) becomes

tGLRT-LAM-DO =
1

1 + kr̄k2

���r̄†(p̄+ H̄ b�✓
?
DO)

���
2

���p̄+ H̄ b�✓
?
DO

���
2

H1

?
H0

T, (2.42)

which will be denoted hereafter as GLRT-LAM-DO. Finally, the AMF
version of (2.42), referred to as GLRT-LAM-DO-AMF, is given by

tGLRT-LAM-DO-AMF =

���r̄†(p̄+ H̄ b�✓
?
DO)

���
2

���p̄+ H̄ b�✓
?
DO

���
2

H1

?
H0

T1. (2.43)

5Both F (0) = argmax�✓ 2 S kr̄†(p̄ + H̄�✓)k2 = 0 and F (kr̄k2) =

argmax�✓ 2 S kr̄†(p̄ + H̄�✓)k2 � kr̄k2kp̄ + H̄�✓k2 = 0 force r̄ to lie in a spe-
cific subspace whose dimension is less than NM . This is an event that occurs with zero
probability.
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Algorithm 1 Dinkelbach’s Optimization (DO) Algorithm
Input: S ✓ R

n, N(x), D(x), qub, qlb and "DO.
Output: A solution x

? to (2.34).

1: set n = 0.

2: do

3: qn = (qlb + qub)/2;

4: find x
?
n = argmaxx2S {N(x)� qnD(x)};

5: let F (qn) = {N(x
?
n)� qnD(x

?
n)};

6: if F (qn) � 0 set qlb = qn, otherwise qub = qn;

7: n = n+ 1;

8: until F (qn) = 0 or (qub � qlb)/2 < "DO

9: output x
? = x

?
n.

GLRT-LAM-DO and GLRT-LAM-DO-AMF involve O(K(NM)
2
+Nit,b)

operations, where Nit,b is the number of iterations required by the bisection
algorithm to converge. In fact, the complexity of the Sample Covariance
Matrix (SCM) inverse computation is O(K(NM)

2
) and O(1) operations

are necessary at each execution of Algorithm 2.

Coordinate Descent DOA displacements estimate

Exploiting the CD framework, in this subsection another method is
proposed to handle Problem (2.32). The idea is to alternate between the
maximizations over each entry of �✓ = [�u,�v]

T, namely optimizing one
variable at a time while keeping the other fixed. Note that in the presence
of two blocks/variables the alternating update rule involved in the CD
approach is equivalent to the Maximum Block Improvement (MBI) pol-
icy [29]. As a result, any limit point of the sequence of solutions produced
by the CD procedure is a stationary point for Problem (2.32). In Algo-



2.2. System Design: Joint Detection and Angle Estimation 23

Algorithm 2 Solution to Problem (2.41)
Input: r̄, p̄, ˙̄pu,

˙̄pv, qn,↵,�.
Output: A solution �✓

?
n to (2.41).

1: let V = ?;

2: compute the unconstrained stationary point �✓1 of (2.41) (see equa-
tion (A.3)) and set

V = V [ {�✓1} \ S ;

3: restrict the objective of (2.41) to the right (left) edge of S , i.e.,
�u = ↵ (�u = �↵), and compute the corresponding stationary
point �✓2 (�✓3) (see equation (A.11)); hence, set

V = V [ {�✓2,�✓3};

4: restrict the objective of (2.41) to the upper (lower) edge of S , i.e.,
�v = � (�v = ��), and compute the corresponding stationary point
�✓4 (�✓5) (see equation (A.12)); hence, set

V = V [ {�✓4,�✓5};

5:
�✓

?
n = argmax

�✓ 2 V
N(�✓)� qnD(�✓),

where N(�✓) and D(�✓) are given in (2.38) and (2.39), respectively,
and V is a set with cardinality at most 5;

6: output �✓
?
n.
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Algorithm 3 CD Optimization (CDO) Algorithm
Input: r̄, p̄, ˙̄pu,

˙̄pv, qn,↵,�, "CDO.
Output: A solution b�✓

?
CDO to Problem (2.32).

1: set n = 0, �✓
(n)

= [�u
(n)

,�v
(n)

]
T
= 0,

p̄
(n)
�v = p̄+ ˙̄pv�v

(n),

obj(n) =
(p̄+ H̄�✓

(n)
)
†
r̄ r̄

†
(p̄+ H̄�✓

(n)
)

(p̄+ H̄�✓(n))† (p̄+ H̄�✓(n))
;

2: repeat

3: n = n+ 1;

4: �u optimization, i.e.,

�u
?
= argmax

|�u|↵

(p̄
(n�1)
�v + ˙̄pu�u)

†
r̄ r̄

†
(p̄

(n�1)
�v + ˙̄pu�u)

(p̄
(n�1)
�v + ˙̄pu�u)†(p̄

(n�1)
�v + ˙̄pu�u)

,

and set p̄
(n)
�u = p̄+ ˙̄pu�u

?;

5: �v optimization, i.e.,

�v
?
= argmax

|�v|�

(p̄
(n)
�u + ˙̄pv�v)

†
r̄ r̄

†
(p̄

(n)
�u + ˙̄pv�v)

(p̄
(n)
�u + ˙̄pv�v)†(p̄

(n)
�u + ˙̄pv�v)

,

and set p̄
(n)
�v = p̄+ ˙̄pv�v

?;

6: �✓
(n)

= [�u
?
,�v

?
]
T and

obj(n) =
(p̄+ H̄�✓

(n)
)
†
r̄ r̄

†
(p̄+ H̄�✓

(n)
)

(p̄+ H̄�✓(n))† (p̄+ H̄�✓(n))
;

7: until |obj(n) � obj(n�1)| < "CDO

8: output b�✓
?
CDO = �✓

(n).

rithm 3, the CD-based solution technique specific for Problem (2.32) is
reported. Note that the optimizations required at steps 4 and 5 can be per-
formed resorting to Proposition 1. Otherwise stated, closed-form optimal
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solutions are available. Leveraging the output b�✓
?
CDO of Algorithm 3,

the following approximated versions of (2.42) and (2.43), referred to as
GLRT-LAM-CDO and GLRT-LAM-CDO-AMF, are obtained

tGLRT-LAM-CDO =
1

1 + kr̄k2

���r̄†(p̄+ H̄ b�✓
?
CDO)

���
2

���p̄+ H̄ b�✓
?
CDO

���
2

H1

?
H0

T, (2.44)

and

tGLRT-LAM-CDO-AMF =

���r̄†(p̄+ H̄ b�✓
?
CDO)

���
2

���p̄+ H̄ b�✓
?
CDO

���
2

H1

?
H0

T1. (2.45)

The implementation of GLRT-LAM-CDO and GLRT-LAM-CDO-AMF
require O(K(NM)

2
+Nit,CD) operations, where Nit,CD denotes the num-

ber of iterations of the CD method up to convergence. Precisely O(K(NM)
2
)

are due to SCM and O(1) operations are necessary for each iteration of
the CD method.

2.3 Performance Analysis

This section is aimed at assessing the performance of the proposed
strategies for joint target detection and angle estimation in comparison
with some counterparts available in the open literature specifically designed
either for detection or DOA evaluation.

In the reported case studies the disturbance covariance matrix is mod-
eled as M = MJ + �

2
aI where �

2
a is the white noise power level (assumed

without loss of generality equal to 0 dB) and MJ refers to the jamming
signals covariance contribution. Specifically, denoting by JNB and JWB

the number of narrow-band and wide-band jammers, MJ = M1 + M2,
where

M1 =

JNBX

j=1

�
2

jpJ(uj , vj)pJ(uj , vj)
†
, (2.46)

with pJ(uj , vj) the steering vector and �
2

j the power of the j-th jammer,
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while

M2 =

JWBX

h=1

�̄
2

h
1

Bh

Z B
h

2

�B
h

2

pJ(uh, vh)pJ(uh, vh)
†
df (2.47)

with pJ(uh, vh), �̄
2

h, (uh, vh), and Bh, the steering vector, the power,
the DOA parameters, and the actual bandwidth associated with the h-th
interferer, respectively.

In the following, three different interfering environments are analyzed:

• Scenario 1: two narrow-band jammers located at u1 = v1 = 0.1 and
u2 = v2 = 0.3, with Jammer to Noise Ratio (JNR) given by JNR1 =

30 dB and JNR2 = 40 dB, respectively (�2

j = JNRj �
2
a, j = 1, 2).

• Scenario 2: one narrow-band jammer at u1 = v1 = 0.1, with JNR1 =

30 dB (�2

1
= JNR1 �

2
a), and one wide-band jammer (Bf = 0.3) at

u2 = v2 = 0.3 with JNR2 = 40 dB (�̄2

2
= JNR2 �

2
a).

• Scenario 3: two narrow-band jammers located at u1 = v1 = 0.2 and
u2 = v2 = 0.3, with JNR1 = 30 dB and JNR2 = 40 dB, respectively
(�2

j = JNRj �
2
a, j = 1, 2).

As already claimed, both detection and angle estimation capabilities of
the proposed processors are analyzed. As to the former, the metric used
to assess the performance is the Probability of Detection (PD) estimated
via standard Monte Carlo counting techniques over 104 independent trials.
The threshold is set in order to guarantee a Pfa of 10�4 and it is evaluated
using 100/Pfa independent trials. The decision statistics

tGLRT =

��r†S�1
p
��2

(1 + r†S�1r) p†S�1p
,

tAMF =

��r†S�1
p
��2

p†S�1p
,
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r
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�1
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†
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,
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S

�1
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†
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referred to as GLRT [60], AMF [93], Subspace Detector (SD) [63], and
SD-AMF [39], [87], respectively, are considered for comparison purposes.
GLRT and AMF detectors consider the nominal steering vector p as useful
signal directions (they usually operate in mismatched conditions and are
thus also referred to as mismatched detectors), while SD and SD-AMF
assume as useful signal directions those given by the columns of HSD.
Finally, to assess the limits of the proposed algorithms, the GLRT and the
AMF receivers with a perfect knowledge of the target DOA parameters
(indicated as GLRT-bench and AMF-bench, respectively) are included as
benchmarks.

In regard to the estimation performance, the Mean Square Error (MSE)
is considered as the figure of merit. Again, Monte Carlo counting tech-
niques are used to compute the MSE as

[MSE =
1

MC

MCX

i=1

����✓0 � b�✓i

���
2

, (2.48)

where MC = 10
4 indicates the number of Monte Carlo independent trials,

�✓0 2 R
2 is the actual DOA displacements vector and b�✓i refers to the

estimate provided at the i-th trial by a given technique. As performance
benchmark, the CRLB for DOA displacements (see Appendix A.4) is re-
ported too.

Two different simulation setups are considered in the following subsec-
tions to shed light on the performance limit of the proposed radar proces-
sors: a) linearized array manifold signal model; b) actual array manifold.
Finally, the Signal to Interference plus Noise Ratio (SINR) is defined as

SINR = |a|2p†
M

�1
p. (2.49)

2.3.1 Linearized Array Manifold Signal Model

The performance of a radar system equipped with either a 1-D or a 2-D
array pointing at the boresight direction is studied. The former employs
a Uniform Linear Array (ULA) with N = 16 and dx = �0/2. The latter
exploits a URA with N = M = 5 and dx = dy = �0/2; in both cases
the reference system is centered at the bottom-left corner. Within this
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Figure 2.3. Detection performance for a ULA with 16 antennas in Scenario
1 for different mismatches, assuming K = 32 and ↵ = 0.5. The actual DOA
displacement is drawn from a uniform distribution over [��,�]: (a) � = 0,
(b) � = 0.1, (c) � = 0.25, and (d) � = 0.5.

subsection, the data from the cell under test are modeled as

r = a (p+ ṗu�u+ ṗv�v) + n, (2.50)

namely according to the linearized array manifold6, in order to assess the
capabilities of the devised signal processing techniques under nominal de-
sign conditions.

Fig. 2.3 shows the PD curves for the 1-D case, assuming the interference
environment of Scenario 1, with K = 2N = 32 secondary data. Therein,

6In the 1-D case the useful signal contribution becomes r = a (p+ ṗu�u) + n.
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Figure 2.4. Estimation performance for a ULA with 16 antennas in Scenario
1 assuming ↵ = 0.2 and considering different sample support sizes, i.e., K =

[16, 32, 48,1], and several target locations: (a) �u = 0, (b) �u = 0.05, (c)
�u = 0.1, and (d) �u = 0.5.

the design parameter ↵ is set at 0.5. The actual DOA displacement is
drawn from a uniform distribution over [��,�] and each subfigure refers
to a specific value of �. Specifically, Fig. 2.3(a) considers � = 0, i.e., the
target is exactly matched to the array pointing direction, whereas Figs.
2.3(b), 2.3(c), and 2.3(d), consider � = 0.1, 0.25, and 0.5, respectively.

Inspection of the figures highlights that the GLRT-LAM detector ex-
hibits performance very close to the GLRT-bench and outperforms all the
other counterparts (including the AMF-bench) regardless of the operating
conditions. Besides, GLRT-LAM-AMF experiences a performance degra-
dation (about 0.5 dB at PD= 0.9, in the worst case) with respect to the
corresponding benchmark. However, it achieves higher PD levels than the
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Figure 2.5. Detection performance for a URA with 5 ⇥ 5 antennas, K =

50 secondary data, and different mismatch conditions, in Scenario 2. The
constraint parameters ↵ and � are set at 0.5. The target’s location (�u,�v) is
modeled as a pair of statistically independent uniform random variables in the
region [��1,�1]⇥ [��2,�2]: (a) (�1,�2) = (0, 0), (b) (�1,�2) = (0, 0.05),
(c) (�1,�2) = (0.05, 0.05), and (d) (�1,�2) = (0.5, 0.5).

mismatched detectors (of course apart from the case of � = 0) and the
subspace receivers in all the configurations, revealing the effectiveness of
the method to estimate the actual steering vector.

To assess the estimation capabilities of the proposed constrained MLE
b�u

? (see Proposition 1), the MSE versus SINR is displayed in Fig. 2.4
for different sample support sizes7, i.e., K = [16, 32, 48,1], and target
locations, i.e., �u 2 {0, 0.05, 0.1, 0.5}. In this case, ↵ = 0.2 and the

7K = 1 is tantamount to considering the exact covariance matrix.
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Figure 2.6. Estimation performance for a URA with 5 ⇥ 5 antennas in
Scenario 2 for different sample support sizes, i.e., K = [30, 50, 70,1] and
several target locations, i.e., (a) (�u,�v) = (0, 0), (b) (�u,�v) = (0, 0.05),
(c) (�u,�v) = (0.05, 0.05), and (d) (�u,�v) = (0.5, 0.5). Therein ↵ = � =

0.2. In Fig. (b) are also reported two box-and-whisker plots at 13 dB and 20
dB, respectively.

interfering setup of Scenario 1 is analyzed. Figs. 2.4(a), 2.4(b), 2.4(c), and
2.4(d) refer to �u = 0, �u = 0.05, �u = 0.1, and �u = 0.5, respectively.
As expected, the MSE curves decrease with the SINR and the higher K

the lower the estimation error (in the mean square sense), being better and
better the accuracy of interference covariance matrix estimate.

The results clearly show the effectiveness of the proposed estimator.
Indeed, in the high SINR regime, the performance becomes closer to the
CRLB benchmark as K increases; of course, this happens when the actual
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Figure 2.7. Detection performance for the actual array manifold assuming
the interfering environment of Scenario 3. Figs. (a) and (b) report detec-
tion performance for a symmetric ULA with 9 antennas with K = 18, target
location uniformly distributed over [��,�], and ↵ = �: (a) � = 0.0523

and (b) � = 0.891/N . Figs. (c) and (d) correspond to a symmetric URA
with 5 ⇥ 5 antennas, with K = 75, target location offset �u and �v mod-
eled as a pair of statistically independent uniformly distributed random vari-
ables over [��1,�1] and [��2,�2], respectively, and ↵ = �1, � = �2: (c)
�1 = �2 = 0.1 and (d) �1 = �2 = 0.891/5 = 0.1782.

target displacement belongs to the assumed uncertainty region. Other-
wise, see Fig. 2.4(d), the MSE curves reach an error-floor of (0.5� 0.2)

2
=

�10.4576 dB. In this last situation, the devised technique reaches the fea-
sible value closest to the actual target displacement, further corroborating
the estimation capabilities of the devised strategy. At low SINR, smaller
values than the CRLB benchmark are observed indicating that the pro-
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Figure 2.8. Estimation performance for a symmetric ULA with 9 antennas in
Scenario 3 assuming K = 1 and ↵ = 0.0523. The target is located at �u with
(a) �u = 0, (b) �u = 0.01745, (c) �u = �0.01745, and (d) �u = 0.02618.

posed estimator exhibits a bias under this SINR regime as well as an upper
bound to the mean square values induced by the enforced constraint. In-
deed, the MSE of the proposed estimator complies with

E[(✓̂ � ✓)
2
]  max[(✓ � ↵)

2
, (✓ + ↵)

2
], (2.51)

namely, the MSE exhibits a SINR-independent upper bound. On the con-
trary, equation (A.23) shows that the CRLB is unbounded above as the
SINR goes to zero. As a result, the performance of our estimator is always
better than the CRLB at low SINR. Similar considerations hold true for
the MSE behaviour at low SINR, in all the subsequent case studies. Fi-



34
Chapter 2. Single-Pulse Simultaneous Target Detection and Angle Estimation in a

Multichannel Phased Array Radar

nally, it is also worth noting that the box-and-whisker plots [103] of the
two estimation errors reported in Fig. 2.4(a), reveal the presence of a large
number of outliers (points above and below the black whiskers) at low
SINR. This behaviour provides a further explanation of the increasing de-
parture of the MSE curves from the CRLB when the SINR ranges in the
so called “below threshold region”.

Fig. 2.5 displays PD curves for the 2-D case, assuming K = 2MN = 50,
↵ = � = 0.5, and Scenario 2. Therein, the displacements vector (�u,�v)

is drawn from a uniform distribution over [��1,�1]⇥ [��2,�2]. Specif-
ically, Figs. 2.5(a), 2.5(b), 2.5(c), and 2.5(d) refer to (�1,�2) = (0, 0),
(�1,�2) = (0, 0.05), (�1,�2) = (0.05, 0.05), and (�1,�2) = (0.5, 0.5), re-
spectively. The results show the power of the GLRT-LAM-DO and GLRT-
LAM-CDO detector. Indeed, the two algorithms attain the same PD levels
with performance very close to the clairvoyant GLRT-bench, with a loss
smaller than 1 dB. Furthermore, apart from the case of (�1,�2) = (0, 0),
GLRT-LAM-DO and GLRT-LAM-CDO outperform the mismatched de-
tector with performance gains higher and higher as the actual DOA offset
region enlarges. Finally, they achieve PD levels higher than the SD in all
the configurations, revealing the capabilities of the new methods to benefit
from the underlying structure of the weights. Similar results are achieved
by the AMF version of the proposed detectors with respect to their relative
counterparts.

Fig. 2.6 reports the MSE versus SINR for different sample support
sizes, i.e., K = [30; 50; 75;1], and ↵ = � = 0.2, with reference to Sce-
nario 2. The target is located at (�u,�v) and Figs. 2.6(a), 2.6(b), 2.6(c),
and 2.6(d) refer to (�u,�v) = (0, 0), (�u,�v) = (0, 0.05), (�u,�v) =

(0.05, 0.05), and (�u,�v) = (0.5, 0.5), respectively. As already seen in the
1-D case, the MSE curves decrease with the SINR and the higher K the
lower the estimation error (in the mean square sense). In the high SINR
regime, the performance approaches the CRLB benchmark as K increases,
provided that the actual target displacement lies within the assumed un-
certainty region. However, it is also worth pointing out that the MSE lower
bound in the scenario of Fig. 2.6(d) is equal to (0.5�0.2)

2
+(0.5�0.2)

2
=

�7.4473 dB and coincides with the error-floor level achieved by the de-
vised techniques. Otherwise stated, in this case at high SINR the feasible
point closer to the actual target displacement vector is returned as es-
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timate. Besides, Fig. 2.6(c) outlines a departure of the MSE curves of
GLRT-LAM-CDO and GLRT-LAM-DO. Not surprisingly, they pinpoint
the limits of the sub-optimal optimization approach used in GLRT-LAM-
CDO with respect to the optimal one used in GLRT-LAM-DO. Finally,
the MSE behaviour at low SINR, where smaller values than the CRLB
benchmark are achieved, indicates the presence of a bias. As in the 1-D
case, the box-and-whisker plots for two operating SINR points, obtained
via GLRT-LAM-DO with K = 1 and reported in Fig. 2.6(b), confirm the
role played by the outliers in the departure of the MSE curves from the
CRLB.

Table 2.1. Computational Complexity of the considered processors.

Methods Computational Costs
GLRT O(KL

2
)

AMF O(KL
2
)

SD O(KL
2
)

SD-AMF O(KL
2
)

GLRT-LAM O(KN
2
)

GLRT-LAM-AMF O(KN
2
)

GLRT-LAM-DO O(K(NM)
2
+Nit,b)

GLRT-LAM-DO-AMF O(K(NM)
2
+Nit,b)

GLRT-LAM-CDO O(K(NM)
2
+Nit,CD)

GLRT-LAM-CDO-AMF O(K(NM)
2
+Nit,CD)

A computational complexity comparison between GLRT-LAM-DO and
GLRT-LAM-CDO is addressed in terms of the average number of iterations
involved in the computation of the decision statistics. Assuming as exit
condition "DO = 10

�5 and "CDO = 10
�5, the average number of iterations

over 100 trials, related to the simulation setup of Fig. 2.6(b), is given by
20 and 10 for GLRT-LAM-DO and GLRT-LAM-CDO, respectively. As a
consequence, GLRT-LAM-CDO exhibits a reduced computational burden
as compared with GLRT-LAM-DO, at the price of a slight performance
degradation. Finally, the computational complexity of all the analyzed
architectures is provided in Table 2.1, where L = N for the 1-D case
whereas L = NM , for the 2-D case of the GLRT, AMF, SD, and SD-AMF
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receivers. Table 2.1 emphasizes that the growth curve of the number of
operations with respect to the problem size is ruled by the law KL

2.

2.3.2 Actual Array Manifold

The considered radar system employs either a ULA of N = 9 elements
or a URA with 25 elements arranged in a 5 ⇥ 5 square matrix. For both
1-D and 2-D setup, the array points the beam in the boresight direction
and the spacing among the elements of the array is �0/2. Moreover, the
reference system center coincides with the center of the array. The useful
signal contribution is generated according to the actual array manifold,
i.e., the steering vector is

p(ū+�u, v̄ +�v), (2.52)

with ū = v̄ = 0.
For a comparative analysis in terms of angular estimation, the following

competitors are considered in the sequel:

• Adaptive Monopulse Procedure (AMP), referred to in the following
as A-Monopulse and reported in Appendix A.1 as Algorithm 13.

• MLE implementation via grid search (only in the 1-D case), defined
as follow

b�uML = argmax

�u2G

��r†S�1
p(ū+�u)

��2

p†(ū+�u)S�1p(ū+�u)
, (2.53)

where
G = {�↵+ i ↵/200, i = 0, . . . , 400}. (2.54)

For comparison purposes, the CRLB [105, p. 927, eq. 8.34] is also consid-
ered.

Fig. 2.7 presents detection performance both for the 1-D and 2-D sce-
narios. The former is considered in Figs. 2.7(a) and 2.7(b) under the
interfering setup described in Scenario 3 and assuming K = 18. The ac-
tual DOA displacement is drawn from a uniform distribution over [��,�],
where in Fig. 2.7(a) ↵ = � = sin(3⇡/180) = 0.0523 while in Fig. 2.7(b)
↵ = � = 0.891/9 = 0.099. The 2-D case is displayed in Figs. 2.7(c) and
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Figure 2.9. Estimation performance for a symmetric URA with 5 ⇥ 5 an-
tennas in Scenario 3 assuming K = 1, ↵ = 0.1,� = 0.1, and target lo-
cated at (�u,�v), with (a) (�u,�v) = (0, 0), (b) (�u,�v) = (0.0349, 0), (c)
(�u,�v) = (�0.01745, 0), and (d) (�u,�v) = (0.0349,�0.001218).

2.7(d) assuming K = 75 and the disturbance environment correspond-
ing to Scenario 3. The target location offsets �u and �v are modeled
as statistically independent random variable with �u ⇠ U(��1,�1) and
�v ⇠ U(��2,�2). Fig. 2.7(c) refers to ↵ = � = �1 = �2 = 0.1 and
Fig. 2.7(d) considers ↵ = � = �1 = �2 = 0.891/5 = 0.1782, respectively.
Otherwise stated, in all the figures the design parameters ↵ and � are
matched to actual DOA uncertainty.

Inspection of the results shows that the proposed one-step GLRT de-
tectors (GLRT-LAM for the 1-D case, GLRT-LAM-DO and GLRT-LAM-
CDO for the 2-D case) ensure a performance level very close to the clair-
voyant GLRT and outperform the counterparts for the considered simula-
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tion scenarios. Specifically, the PD curves of the GLRT-LAM and GLRT-
LAM-AMF almost overlap with the corresponding benchmark limits. For
the 2-D case, GLRT-LAM-DO and GLRT-LAM-CDO experience a slight
performance degradation lower than 1 dB at PD= 0.9 with respect to the
optimal receiver.

In Fig. 2.8 the DOA estimation capabilities of GLRT-LAM, A-Monopulse,
and MLE via grid search, are analyzed for the 1-D case, assuming K = 1,
↵ = 0.0523, and the interference environment of Scenario 3. Figs. 2.8(a),
2.8(b), 2.8(c), and 2.8(d) refer to �u = 0, �u = 0.01745, �u = �0.01745,
and �u = 0.02618, respectively. The exploration of the curves reveals
that GLRT-LAM outperforms the A-Monopulse for a wide range of SINR
values and provides estimation performance almost overlapped to that of
the MLE via grid search method up to a SINR of 20 dB, corroborating the
strength of the new devised method. Furthermore, the higher the SINR
the lower the MSE of all the estimators regardless of the setup (but for
the A-Monopulse in Fig. 2.8(d) at low SINR) and performance levels com-
parable with the CRLB benchmark are achieved at the high SINR regime.
In this respect, note that possible deviations from the CRLB of the MSE
curves (at high SINR) may arise due to the bias of the estimators. Indeed,
in the presence of a biased estimator, the general bound to consider is given
in [104, p. 147], which can be also lower than the conventional CRLB for
unbiased estimators.

Moreover, the GLRT-LAM and the MLE via grid search achieve MSE
values smaller than the CRLB at low SINR, reflecting the presence of a
bias in the estimators as well as the limit to the error imposed by the
constraint.

The estimation performance for the 2-D case of GLRT-LAM-DO, GLRT-
LAM-CDO, and A-Monopulse is analyzed in Fig. 2.9, considering K = 1,
↵ = 0.1, � = 0.1, where each subfigure refers to a specific target location
in the u� v plane. It can be observed that in all the reported case studies
GLRT-LAM-DO and GLRT-LAM-CDO achieve the same MSE values and
exhibit better estimation capabilities than the A-Monopulse (apart from
Fig. 2.9(b) where a slight loss appears), showing the benefits of the new sig-
nal processing strategies. Remarks similar to those made for Fig. 2.8 hold
true with reference to the comparison of the estimators with the CRLB
benchmark performance.
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Figure 2.10. Bias and variance for a URA with 5 ⇥ 5 elements in Scenario
3 assuming K = 1 and ↵ = � = 0.1. Dashed black ellipses refer to CRLB
limit, variances are shown with solid red ellipses whereas the bias vectors are
represented by solid blue arrows.

Finally, the average number of iterations (over 100 trials) required by
GLRT-LAM-DO and GLRT-LAM-CDO in order to converge is 20 and
10, respectively, assuming "DO = "CDO = 10

�5 and the simulation setup
of 2.9(b). These results confirm that Algorithm 3 is usually less demand-
ing than Algorithm 1, whilst ensuring satisfactory performance.

To further shed light on Algorithm 1 estimation performance, Fig. 2.10
displays the bias and variance ellipses granted by the proposed angle esti-
mator for a grid of 16 displacements between the actual pointing direction
and the array steering. The ellipses corresponding to the CRLB are also
reported for comparison purposes. The simulation assumes the interfer-
ence environment of Scenario 3, with K = 1. The results highlight that
for (u, v)-displacement in the left bottom corner of the grid (i.e., angle
directions far from the jamming DOAs) the variance and CRLB ellipses
match quite well. However, when displacements belongs to the upper right
corner of the grid, some departures of the variance ellipse from the CRLB
are experienced. Besides, as the pointing vector moves towards the jam-
ming DOA, also the bias of the estimator increases.
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2.3.3 Performance Analysis Employing Two-stage Proces-
sors

It is also worth pointing out that the proposed joint detection and
estimation strategies can be interpreted as two-stage architectures, where
first the target direction of arrival is estimated and then a bespoke adaptive
detector is applied. Therefore, in the following, the comparison with other
two-stage processors (in the sense of performing first the angle estimation
with a given technique and then exploiting the resulting estimate within a
decision statistic) is reported and discussed.

Specifically, two more terms of comparison, namely MON-KELLY and
MON-AMF detectors are now considered. These receivers capitalize the
monopulse angle estimate to predict the useful target steering vector of
Kelly’s and AMF’s detectors, respectively. Specifically, denoting by b✓?

NME =

[�̂uNME , �̂vNME ]
T the monopulse estimate of the DOA displacements

(obtained according to Algorithm 13), the decision statistics are for-
mally defined as

tMON-KELLY =

���r†S�1
p(ū+ �̂uNME , v̄ + �̂vNME)

���
2

(1 + r†S�1r)

���S�1/2 p(ū+ �̂uNME , v̄ + �̂vNME)

���
2

(2.55)
and

tMON-AMF =

���r†S�1
p(ū+ �̂uNME , v̄ + �̂vNME)

���
2

���S�1/2 p(ū+ �̂uNME , v̄ + �̂vNME)

���
2
. (2.56)

Fig. 2.11 shows PD versus SINR for the actual array manifold in Scenario
3 and with the threshold set in order to guarantee Pfa = 10

�4 (evaluated
using 100/Pfa independent trials). Figs. 2.11(a) and 2.11(b) report the
detection performance for a symmetric ULA with 9 antennas, K = 18,
target location uniformly distributed over [��,�], and ↵ = �: 2.11(a)
� = 0.0523 and 2.11(b) � = 0.891/N . Figs. 2.11(c) and 2.11(d) show the
detection performance for a symmetric URA with 5⇥5 antennas, assuming
K = 75 and target location offset vector (�u,�v) modeled as a uniform
random variable over [��1,�1]⇥[��2,�2], with ↵ = �1, � = �2: 2.11(c)
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Figure 2.11. Detection performance for the actual array manifold assum-
ing the interfering environment of Scenario 3. Figs. (a) and (b) consider a
symmetric ULA with 9 antennas, K = 18 and target location uniformly dis-
tributed over [��,�] with ↵ = �: (a) � = 0.0523 and (b) � = 0.891/N . Figs.
(c) and (d) correspond to a symmetric URA with 5 ⇥ 5 antennas, assuming
K = 75 and target location offset �u and �v modeled as a pair of statisti-
cally independent uniformly distributed random variables over [��1,�1] and
[��2,�2], respectively. Besides, ↵ = �1, � = �2: (c) �1 = �2 = 0.1 and
(d) �1 = �2 = 0.891/5 = 0.1782.

�1 = �2 = 0.1 and 2.11(d) �1 = �2 = 0.891/5 = 0.1782.

The results clearly confirm the effectiveness of the new devised joint
detection and angle estimation procedures relying on Algorithms 1 and
3, with some detection performance improvement with respect to the con-
sidered heuristic two-stage counterparts.
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2.4 Conclusion

This chapter has considered simultaneous detection and target angle
localization for a multichannel phased array radar. Signal processing ar-
chitectures have been proposed which, after target detection, are able to
provide directly estimates of the target angular offsets from the array point-
ing direction. Two estimation procedures respectively based on the Dinkel-
bach’s algorithm and a CD method have been devised. The former provides
the optimal ML estimates of the unknown displacements. The latter gen-
erally exhibits a faster convergence than the former but the optimality of
the solution (in the ML sense) cannot be claimed. A comparative analysis
has been conducted with other techniques available in the open literature
which are either tailored for detection or target angle localization. Bench-
mark limits have been also considered. The results highlight the interplay
of the different design parameters and show that the new algorithms pro-
vide adequate performance, thus representing viable solutions for practical
implementations.



Chapter 3
Structured Covariance Matrix

Estimation with Missing-Data

via Expectation-Maximization

Structured covariance matrix estimation in the presence of missing-
(complex) data is addressed in this chapter1 with emphasis on radar signal
processing applications. In that regard, the array model for the missing-
data scenario is specified and the problem of computing the maximum
likelihood estimate of a structured covariance matrix is formulated. A
general procedure to optimize the observed-data likelihood function is de-
veloped resorting to the expectation-maximization algorithm. The corre-
sponding convergence properties are thoroughly established and the rate
of convergence is analyzed. The estimation technique is contextualized for
two practically relevant radar problems: beamforming and detection of the
number of sources. In the former case an adaptive beamformer leveraging
the EM-based estimator is presented; in the latter, detection techniques
generalizing the classic Akaike information criterion, minimum description
length, and Hannan–Quinn information criterion, are introduced. Numer-
ical results are finally presented to corroborate the theoretical study.

1©2021 IEEE. Reprinted, with permission, from A. Aubry, A. De Maio, S. Marano
and M. Rosamilia, “Structured Covariance Matrix Estimation With Missing-(Complex)
Data for Radar Applications via Expectation-Maximization,” IEEE Transactions on
Signal Processing, vol. 69, pp. 5920-5934, 2021.
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Summarizing, the main contributions of this chapter are:

a) the development of an EM-based technique for the estimation of
a structured covariance matrix in the presence of missing-(complex)
data, considering uncertainty sets of practical interest for radar signal
processing applications;

b) the study of the convergence properties for the resulting iterative
procedure according to B-stationarity, as well as the computation of
the convergence rate;

c) the application of the methodology to the context of two fundamental
radar problems, i.e., beamforming and detection of the number of
sources;

d) the presentation of numerical results aimed at corroborating the the-
oretical achievements.

The rest of the chapter is organized as follows. Section 3.1 introduces
the system model and defines some covariance matrix uncertainty sets
of practical relevance. Section 3.2 formulates the structured covariance
matrix estimation problem in the presence of missing-data and presents
tailored iterative solution methods leveraging possible a-priori structural
information. Besides, it addresses convergence issues about the proposed
techniques. In Section 3.3, the performance of the estimators is analyzed in
the context of adaptive beamforming and detection of number of sources.
Finally, Section 3.4 draws some conclusions and highlights possible future
research avenues.

3.1 Problem Formulation

Let us consider a radar system that collects spatial data via a narrow-
band array composed of N antennas and operating in the presence of noise
and interference, with unknown spectral characteristics. Let us suppose
that a set of spatial snapshots ri, i = 1, . . . ,K, modeled as Independent
and Identically Distributed (IID) zero-mean circularly symmetric Gaussian
random vectors (homogeneous environment) with unknown but structured
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covariance matrix, is available. Specifically

ri ⇠ CN(0,M), M 2 C ✓ H
N
++, i = 1, . . . ,K, (3.1)

where C denotes the subset of covariance matrices that can generate the
observables. Enforcing M to belong to C is tantamount to exploiting
some problem structure stemming from some a-priori knowledge about
the operating environment (i.e., the number and the DOAs of active jam-
mers, gathered via an Electronic Support Measurement (ESM) system [1]).
Moreover, the array geometry (i.e., uniform linear array or other regular
structures) [105] and the characteristics of the acquisition system (i.e.,
knowledge of the thermal noise level, or the available number of bits that
results in an upper bound to the covariance condition number) induce a
specific data covariance structure, to be wisely capitalized in order to boost
radar sensing capabilities.

Some practical examples of covariance matrix uncertainty sets are now
illustrated.

1. Structured covariance matrix with a lower bound on the white dis-
turbance power level [101, 7]

C =

8
<

:

M = �
2
nI + re

re ⌫ 0
�
2
n � �

2

, (3.2)

where re accounts for colored interference and clutter, �2
n > 0 is the

power of the white disturbance term, and �
2
> 0 is a known lower

bound on the white disturbance power.

2. Structured covariance matrix with a condition number constraint [10]

C =

8
>>><

>>>:

M = �
2
nI + re

re ⌫ 0
�
2
n � �

2

�max(M)

�min(M)
 Kmax

, (3.3)

where re, �
2
n, and �

2 are defined as in (3.2), whereas Kmax is an
upper bound to the covariance condition number.
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3. Structured covariance matrix with a rank constraint and a lower
bound on the white disturbance power level [58]

C =

8
>><

>>:

M = �
2
nI + re

re ⌫ 0
Rank(re)  r

�
2
n � �

2

, (3.4)

where re, �2
n, and �

2 are defined as in (3.2), whereas r is the maxi-
mum rank of re.

4. Structured covariance matrix with a rank constraint [105, 22]

C =

8
>><

>>:

M = �
2
nI + V SfV

†

V SfV
† ⌫ 0

Rank(V SfV
†
)  d

�
2
n > 0

, (3.5)

where d is an upper bound to Rank(V SfV
†
), �2

n is defined as in (3.2),
V is an N⇥d array manifold matrix (which can be modeled either as
a known or as an unknown parameter), Sf denotes the d⇥d diagonal
sources covariance matrix, whereas d  N is the number of sources.

5. Structured covariance matrix with a centro-Hermitian symmetry [26]

C =

⇢
M = JM

⇤
J

M ⌫ 0
, (3.6)

with J the N ⇥N permutation matrix given by

J =

2

6664

0 0 · · · 0 1

0 0 · · · 1 0

...
... . . . ...

...
1 0 · · · 0 0

3

7775
(3.7)

6. Structured covariance matrix with a Toeplitz structure [122, 47, 43,
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44]

C =

⇢
M 2 T

N

M ⌫ 0
, (3.8)

7. Structured covariance matrix with a Kronecker product structure [53,
110]

C =

8
>><

>>:

M = rA ⌦ rB

rA ⌫ 0
rB ⌫ 0
M ⌫ 0

, (3.9)

8. Structured real covariance matrix with a spectral symmetry [61, 27]

C =

⇢
M = M

T

M ⌫ 0
. (3.10)

Besides, any combination of the above uncertainty sets (corresponding to
their intersection) constitutes additional interesting examples.

The estimation problem (object of this chapter) demands a data model
endowed with the capability to handle missing-data arising from the lack of
some entries within specific spatial snapshots. To this end, each observed
snapshot is modeled as

yi = Airi, i = 1, . . . ,K, (3.11)

where Ai is the pi ⇥ N selection matrix, constructed by extracting from
I the pi  N rows corresponding to the available observations at the i-th
snapshot. In the following, the vectors ri and yi will be referred to as
complete and observed data, respectively.

3.2 Covariance Matrix Estimation Procedure

This section is devoted to the derivation of a covariance matrix esti-
mation procedure in the presence of missing-data accounting for model
structures via suitable constraints. The problem is of primary importance
for many applications in the field of radar signal processing [3, 109, 72, 71,
121, 106, 63, 38] and, in most cases, a ML estimator is usually demanded at
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least due to its favorable asymptotic properties. For the missing-data case,
the constrained ML estimate of the covariance matrix, given the observed-
data, can be formulated as

M̂(✓) = argmax

M(✓)2C
Ly(M(✓)|Y ,A1, . . . ,AK), (3.12)

with

Ly(M(✓)|Y ,A1, . . . ,AK) =�
KX

i=1

pi ln(⇡)�
KX

i=1

h
ln(det(AiM(✓)A

†
i ))

+tr{(AiM(✓)A
†
i )

�1
yiy

†
i }
i

(3.13)
the observed-data log-likelihood, Y = {y1, . . . ,yK} the set of observed-
data, and ✓ 2 R

V the vector of the unknown parameters defining the
underlying structure of M . This is tantamount to solving

✓̂ML = argmax

✓:M(✓)2C
Ly(✓|Y ,A1, . . . ,AK). (3.14)

Computing ✓̂ML (or equivalently M̂(✓)) is, in general, a difficult prob-
lem for which an analytic closed-form solution could not be available [24].
Besides, an optimization procedure based on a Multi-Dimensional Grid
Search (MDGS) in the unknown parameter space could be computation-
ally prohibitive. This motivates the interest toward iterative approximated
procedures characterized by a more affordable computational cost than ML
evaluation via MDGS.

3.2.1 EM Algorithm

EM is a widely adopted iterative technique to obtain approximate ML
estimates of parameters from incomplete-data2 [42, 105, 56]. The algo-
rithm is composed of two steps. In the former, referred to as expectation
(E) step, the conditional expectation of the complete-data likelihood, given

2In situations where direct access to the complete set of observations is not available,
part of the data are missing or, more in general, data undergo a many-to-one mapping
before becoming available to the observer.



3.2. Covariance Matrix Estimation Procedure 49

the observed-data and the current estimate of the parameters, is evaluated
(E-step score function). In the latter, referred to as the maximization (M)
step, the E-step score function (corresponding to current estimate of the
parameters) is maximized with respect to the unknowns. The EM starts
with an initial guess of the parameters, i.e., ✓(0), and iterates between E
and M steps. The procedure can also be interpreted as a minorization-
maximization optimization technique where the surrogate function stems
from the Jensen inequality [54]. With reference to the estimation problem
in (3.14), at the h-th iteration, the E-step consists in the evaluation of the
score function

Q

⇣
✓,✓

(h�1)

⌘
= E[Lr(✓)|Y ,A1, . . . ,AK ,M̂(✓

(h�1)
)], (3.15)

where

Lr(✓) =�K[N ln(⇡) + ln(det(M(✓))) + tr{M(✓)
�1

S}] (3.16)

is the complete-data log-likelihood,

S =
1

K

KX

i=1

rir
†
i (3.17)

is the SCM of the complete-data, and M̂(✓
(h�1)

) is the estimate of the
covariance matrix at the (h � 1)-iteration. Computing the conditional
expectation involved in (3.15) yields

Q(✓,✓
(h�1)

) =�K[N ln(⇡) + ln(det(M(✓))) + tr{M(✓)
�1⌃(h�1)}],

(3.18)
where

⌃(h�1)
=

1

K

KX

i=1

C
(h�1)

i (3.19)

is the sample mean of the conditional correlation matrices

C
(h�1)

i = E[rir
†
i |yi,Ai,M̂(✓

(h�1)
)], i = 1, . . . ,K. (3.20)
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A closed-form expression to

E[rir
†
i |yi,Ai,M ] = Ci, (3.21)

is given by (the interested reader may refer to Appendix B.1 for the detailed
derivation)

Ci =(A
†
iyi + Āi

†
µi)(A

†
iyi + Āi

†
µi)

†
+ Āi

†
GiĀi (3.22)

with Āi the N � pi ⇥N selection matrix complementary to Ai (obtained
removing from I the pi rows corresponding to Ai),

µi = ĀiMA
†
i (AiMA

†
i )

�1
yi (3.23)

and
Gi = ĀiMĀ

†
i � ĀiMA

†
i (AiMA

†
i )

�1
AiMĀ

†
i . (3.24)

After an E-step, an M-step is performed, corresponding to the maxi-
mization of the score function (3.18), namely the estimate of the parame-
ters is updated according to

✓
(h)

= argmax

✓:M(✓)2C
Q(✓,✓

(h�1)
). (3.25)

The following proposition outlines the main features of the sequence of
estimates.

Proposition 2. Provided that M(✓
(0)

) � 0, K � N , and C = B \H
N
++,

with B a closed set of H
N

, then

• M(✓
(h)

) � 0, for all h � 0 and Ly(M(✓
(h)

)|Y ,A1, . . . ,AK) is a

monotonically increasing sequence;

• if B 2 H
N
++ is a closed set of positive definite matrices, then M(✓

(h)
),

h � 0, is a bounded sequence and Ly(M(✓
(h)

)|Y ,A1, . . . ,AK), h �
0, converges to a finite value. Besides, supposing M(✓) a norm

coercive differentiable mapping, any limit point ✓
⇤

to ✓
(h)

is a B-

stationary point
3

[55, 85, 124, 115] to Problem (3.14).

3Substantially, a B-stationary point is any element of the feasible set with the prop-
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Algorithm 4 EM Covariance Matrix Estimation Procedure

Require: N , K, Y , A1, . . . ,AK , C , ✓(0), "1, "2.
Ensure: EM solution ✓̂ to Problem (3.14).

Initialization
h = 0;
P

(0)
= Ly(M(✓

(0)
)|Y ,A1, . . . ,AK);

repeat

1: h = h+ 1;

2: E-Step: Compute ⌃(h�1) given by (3.19);

3: M-Step: Find ✓
(h) using (3.25);

4: Compute P
(h) using (3.26);

until |P (h) � P
(h�1)| > "1 or k✓(h) � ✓

(h�1)k > "2;
Output ✓̂ = ✓

(h).

Proof. See Appendix B.2.

A summary of the EM procedure is reported in Algorithm 4, where,
leveraging the results of Proposition 2, the exit condition of the procedure
is set as |P (h) �P

(h�1)|  "1 or k✓(h) � ✓
(h�1)k  "2, where "1, "2 > 0 and

P
(h)

= Ly(M(✓
(h)

)|Y ,A1, . . . ,AK). (3.26)

Remark 1. Before proceeding further, a useful digression on the con-
vergence rate of Algorithm 4 is now in order. As shown in [42], assuming
that ✓(h) converges to the ML estimate ✓̂ML, then the rate of convergence
is ruled by the spectral radius ⇢(r

EM
) of the rate matrix

r
EM

= I � F

1

2

obsF
�1

EMF

1

2

obs, (3.27)

where
Fobs = �r✓rT

✓
Ly(✓)

��
✓=✓̂ML

(3.28)

erty that along any limiting feasible direction the objective function is locally not in-
creasing; please, see [55, 85, 124, 115] and Appendix B.2 for a rigorous definition.
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is the observed information matrix and

FEM = E
⇥
�r✓rT

✓
Lr(✓)|Y ,✓

⇤��
✓=✓̂ML

(3.29)

is the expected complete information matrix. The interested reader may
refer to Appendix B.3 for the computation of (3.28) and (3.29) with ref-
erence to (3.13) and (3.16).

Just to provide a study example, let us consider N = 10 and covariance
matrix belonging to (3.5). Denoting by v(✓0) the steering vector in the
direction of interest ✓0, the true parameters are V = [v(✓1),v(✓2)] with
✓1 = �7

� and ✓2 = 15
�, Sf = diag(�1,�2) with �1 = �2 = 10, and �

2
n = 1.

The presence of missing-data is emulated assuming that almost 37% of the
snapshots undergoes information loss mechanisms. As to the missing-data
pattern, the selection matrices obtained skipping the zero rows of

1. diag(1N � e1 � e3),

2. diag(1N � e2 � e5),

3. diag(1N � e4 � e7),

4. diag(1N � e6 � e8),

5. diag(1N � e9 � e10),

are cyclically used (according to the reported order) to choose the obser-
vations at the different snapshots experiencing missing-data.

Figs. 3.1 (a) and (b) display the average convergence rate and the av-
erage number of iterations, respectively, required by Algorithm 4 (with
"1 = "2 = 10

�7 and initialized using the observed-data sample covari-
ance matrix Sy) to achieve convergence, versus the number of snapshots.
Specifically, Sy = 1/K

PK
i=i ỹiỹ

†
i , with ỹi obtained by filling the missing

values of yi with zero-elements, i = 1, . . . ,K. The results rely on standard
Monte Carlo counting techniques over 100 independent trials.

Inspection of the figures outlines that a lower value of ⇢(rEM
) is asso-

ciated with a faster convergence of Algorithm 4.
In Fig. 3.1 (c), for a given trial, the distance between the ML estimate

and the EM solution at the h-th M-step, i.e., k✓(h)�✓̂MLk, is plotted versus
the number of iterations, assuming K = 40, 60, 80, 100. This analysis
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confirms that increasing the number of available snapshots the resulting
estimate of Algorithm 4 is closer and closer to ✓̂ML. Besides, a larger
sample support size K is connected with a smaller number of iterations
required for Algorithm 4 to converge, confirming the trend of Fig. 3.1
(b).
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Figure 3.1. Convergence rate analysis for the case study discussed in the
main text, with N = 10. Fig. (a) displays the average rate of convergence
versus the number of snapshots, while Fig. (b) displays the average number of
iterations versus the number of snapshots. The norm difference k✓(h) � ✓̂MLk
in dB versus the number of iterations for Algorithm 4 is reported in Fig. (c),
assuming K = 40, 60, 80, 100.

Remark 2. It is worth pointing out that the main advantage con-
nected with the use of an EM algorithm occurs when the optimization
involved in (3.25) is more tractable than the direct maximization of the
observed-data likelihood (3.14). It is clear that the crucial point to devise
an EM-based constrained covariance estimation procedure is the capability
to obtain an optimal solution to (3.25) with an affordable computational
effort. Besides, it is important to remark that different system constraints
generally induce distinct feasible sets that generally result in different so-
lutions ✓

(h). In particular, for the special case of unconstrained estima-



54
Chapter 3. Structured Covariance Matrix Estimation with Missing-Data via

Expectation-Maximization

tion [105],
M̂(✓

(h)
) = ⌃(h�1) (3.30)

is the maximizer of Q(✓,✓
(h�1)

) and therefore it constitutes the updated
estimate ✓

(h).
In the following subsections, two well-known radar applications are an-

alyzed in the missing-data scenario: adaptive beamforming and detection
of the sources number. In particular, each application is presented and the
underlying structured covariance matrix estimation problem is discussed.
Then, EM-based solution methods, leveraging problem structure at differ-
ent extents, are devised.

3.2.2 Adaptive Beamforming

Let us consider the Minimum Variance Distortionless Response (MVDR)
(also known as the Capon) beamformer [105]

w =
M

�1
v(✓0)

v(✓0)
†M�1v(✓0)

. (3.31)

In a practical scenario the covariance matrix must be estimated from
the incoming data leading to an adaptive weight vector. It is crystal clear
that obtaining an accurate estimate of the unknown interference covari-
ance matrix is a crucial task affecting the performance of the resulting
adaptive beamformer. In a typical case where a set of K � N secondary
data {ri}, i = 1, . . . ,K, is available, the unstructured ML estimate of
M is given by the SCM S (often with a diagonal loading), defined as
in (3.17) [105]. Therefore, S (or possibly a diagonally loaded version) is
employed in place of M in (3.31), obtaining the MVDR adaptive beam-
former.

Let us now focus on a missing-data context where the problem of com-
puting the ML estimate of the covariance matrix from the observed-data
is described in (3.12) and a viable estimation procedure is reported in
Algorithm 4. As a consequence, following the same guideline as in the
definition of the MVDR adaptive beamformer4, it is possible to gain adap-

4The analysis developed in the following can be also naturally extended to other
kinds of beamformers.
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tivity under the missing-data scenario using

wEM =
M̂

�1

EMv(✓0)

v(✓0)
†M̂�1

EMv(✓0)
, (3.32)

where M̂EM denotes the estimate of the covariance matrix obtained via
the EM procedure described in Algorithm 4.

As highlighted in the previous subsection, tailored solutions to the M-
step of Algorithm 4 can be devised under the assumption of M belonging
to a specific covariance matrix uncertainty set. In this respect, some case
studies are discussed in the following.

Unconstrained Estimation

The special case of unconstrained estimation has been described in
the previous subsection and a solution to the resulting M-step is given
by (3.30).

Constraint on the lower bound of the white noise power level

The Fast Maximum Likelihood (FML) procedure [101, 7] provides the
M-step solution when M belongs to the uncertainty set (3.2), i.e., a lower
bound on the thermal noise power level is a-priori available. Specifically,
denoting by U⇤⌃U

† the EigenValue Decomposition (EVD) of ⌃(h�1) and
by �̃v, v = 1, . . . , N its eigenvalues, at the M-step update under the un-
certainty set (3.2), is given by

M̂(✓
(h)

) = U⇤FMLU
†
, (3.33)

with
⇤FML = diag(�1,FML, . . . ,�N,FML) (3.34)

and �v,FML = max(�̃v, �
2
), v = 1, . . . , N .

Notably, this technique ensures that all the eigenvalues of M̂(✓
(h)

) are
greater than or equal to the lower bound on the power noise level. This is
tantamount to projecting (according to the Frobenius norm) ⌃(h�1) onto
the set of the positive definite matrices greater than or equal to �

2
I [7].
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Centro-Hermitianity constraint

In many scenarios of practical interests (standard rectangular, hexag-
onal, uniform circular or cylindrical array), the covariance matrix exhibits
a centro-Hermitian structure [105], which is equivalent to consider M be-
longing to (3.6). Capitalizing on the problem structure, the M-step solu-
tion can be obtained using the Forward-Backward (FB) averaged sample
covariance matrix procedure [105], resulting into

M̂(✓
(h)

) = ⌃FB, (3.35)

where
⌃FB =

1

2
(⌃(h�1)

+ J⌃(h�1)
⇤
J). (3.36)

Lower bound constraint on the white noise power level plus
Centro-Hermitianity

This is tantamount to considering the uncertainty set characterizing
the centro-Hermitian covariance matrices with a lower bound on the white
disturbance power level

C =

8
>><

>>:

M = �
2
nI + re

M = JM
⇤
J

re ⌫ 0
�
2
n � �

2

, (3.37)

where re, �2
n and �

2 are defined as in (3.2), whereas J is given by (3.7).
In this situation, denoting by UFB ⇤FB U

†
FB the EVD of ⌃FB defined

in (3.36), with ⇤FB = diag(�̃1,FB, . . . , �̃N,FB), it follows that the M-step
update is now given by

M̂(✓
(h)

) = UFB ⇤FML�FB U
†
FB, (3.38)

where
⇤FML�FB = diag(�1,FML�FB, . . . ,�N,FML�FB), (3.39)

with �v,FML�FB = max(�̃v,FB, �
2
), v = 1, . . . , N .

The overall procedure used to find the proposed adaptive Capon beam-
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Algorithm 5 Adaptive beamforming in the context of missing-data
Input: N , K, Y , A1, . . . ,AK , C , ✓(0), "1, "2.
Output: EM-based adaptive beamformer wEM .

1: find M̂EM via Algorithm 4 using the appropriate bespoke solu-
tion (3.30), (3.33), (3.35), (3.38) to the M-step;

2: compute wEM using (3.32);

3: output wEM .

former in the context of missing-data is summarized in Algorithm 5.

3.2.3 Detection of Number of Sources

Let us consider d uncorrelated narrow-band sources impinging the ar-
ray from distinct directions {✓s}, s = 1, . . . , d < N . After amplification,
down-conversion, and digital sampling, the i-th received complete spatial
snapshot ri is given by

ri = V si + ni, i = 1, . . . ,K, (3.40)

where V = [v(✓1),v(✓2), . . . ,v(✓d)] 2 C
N⇥d is the array manifold matrix

(assumed full-rank), si, i = 1, . . . ,K, are IID zero-mean Gaussian random
vectors of sources amplitudes (independent of each other) with powers �2

s ,
s = 1, . . . , d, respectively, and ni are IID zero-mean circularly symmetric
Gaussian random vectors with power �2

n, assumed statistically independent
from the sources.

For the case at hand, the covariance matrix of the received signal can
be assumed belonging to (3.5). Resorting to the EVD, the complete-data
covariance matrix takes on the convenient form

M =

dX

v=1

�v�v�
†
v +

NX

v=d+1

�v�v�
†
v, v = 1, . . . , N, (3.41)

where �v and �v, v = 1, . . . , N , denote the eigenvalues and the corre-
sponding eigenvectors of M , respectively, with �1 � �2 � . . .�d � �d+1 =
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�d+2 = . . .�N = �
2
n. As a consequence, denoting by �T

v,R and �T

v,I the
vectors of the real and imaginary components of �v, for a given d, the
vector of the unknown parameters (underlying the covariance structure) is
in one-to-one mapping with [105, p. 831]

✓d = [�1, . . . ,�d,�
2

n,�
T

1,R,�
T

1,I , . . . ,�
T

d,R,�
T

d,I ]
T
, (3.42)

which explicitly reveals the role of d in controlling the degrees of freedom
of the covariance matrix, where Ud = [�1,R + j�1,I , . . . ,�d,R + j�d,I ] is
such that U

†
d Ud = I.

The approach pursued in this subsection follows from [105, 3, 109, 50],
where a source number detection algorithm, based on a data-adaptive test
statistic plus a penalty function related to the degrees of freedom, is de-
vised. Specifically, denoting by

✓̂d,ML = [�̂1, . . . , �̂d, �̂
2

n, �̂
T

1,R, �̂
T

1,I , . . . , �̂
T

d,R, �̂
T

d,I ]
T (3.43)

the ML estimate of ✓d, the problem of detecting the number of sources can
be formulated as

d̂ = argmax

d=0,...,K1

Lr(✓̂d,ML)� T (d), (3.44)

where K1  N�1 is an upper bound to the number of sources, Lr(✓̂d,ML)

is the statistic given by the complete-data log-likelihood (3.16) evaluated
at ✓̂d,ML, and T (d) is a penalty term accounting for the number of free
parameters in the assumed model. In particular, taking the negative value
of Lr(✓̂d,ML) and dropping the terms functionally independent from d, the
following decision statistic is obtained [4]

L(d, �̂1, . . . , �̂N ) = K(N � d) ln

(
1

N�d

PN
v=d+1

�̂v

(
QN

v=d+1
�̂v)

1

N�d

)
. (3.45)
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Exploiting the above result, problem (3.44) is equivalently recast as5

d̂ = argmin

d=0,...,K1

L(d, �̂1, . . . , �̂N ) + p(d), (3.46)

where p(d) is a specific penalty function. In the following, three detec-
tion tests, Akaike Information Criterion (AIC) [3], Minimum Description
Length (MDL) [109], and Hannan–Quinn Information Criterion (HQC) [50],
are considered. Each test is characterized by a different penalty function
p(d); in particular

p(d) =

8
<

:

d(2N � d), AIC
1/2 [d(2N � d) + 1] lnK, MDL
[d(2N � d) + 1] ln(ln(K)) HQC

. (3.47)

Let us now frame the decision statistic in missing-data context. Ac-
cordingly, the criterion (3.44) can be modified as:

d̂ = argmax

d=0,...,K1

Ly(✓̂d,ML|Y ,A1, . . . ,AK)� T (d). (3.48)

This requires, for a given d, the computation of the ML estimate ✓̂d,ML

from the observed-data. To this end, a viable technique is represented by
Algorithm 4 applied to a covariance uncertainty set including the fixed
rank constraint in (3.5). Two relevant case studies are thus developed in
the following, providing tailored solutions to the M-step.

Fixed rank constraint

Let us exploit the knowledge that M belongs to (3.5). Specifically, for
a given d, the M-step at the h-th iteration is cast as

✓d
(h)

= argmax

✓d

Q

⇣
✓d,✓d

(h�1)

⌘
, (3.49)

5It is also worth pointing out that (3.46) can be generalized to the case of covariance
matrices with additional structured constraints.
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where ✓d is defined as in (3.42). The maximizer of Problem (3.49) is given
by [105]

✓d
(h)

= [�̃1, . . . , �̃d, �̃
2

n, �̃1,R, �̃1,I , . . . , �̃d,R, �̃d,I ]
T
, (3.50)

where �̃v and �̃v, v = 1, . . . , d are the d greatest eigenvalues and the
corresponding eigenvectors of ⌃(h�1), with �̃v,R, and �̃v,I the real and
imaginary components of �̃v, whereas

�̃
2

n =
1

N � d

NX

v=N�d

�̃v (3.51)

is the arithmetic mean of the N � d smallest eigenvalues of ⌃(h�1).

Exploiting the above results, the h-th estimate of the covariance matrix
is given by

M̂(✓d
(h)

) = U⇤SU
†
+ �̃

2

n I, (3.52)

where
⇤S = diag(�̃1 � �̃

2

n, . . . , �̃d � �̃
2

n), (3.53)

and
U = [�̃1, . . . , �̃d]. (3.54)

Hence, taking the negative value and dropping the constant terms of
the observed-data log-likelihood, the order estimate is given by

d̂EM = argmin

d=0,...,K1

Ly(✓̂d) + p(d), (3.55)

where

Ly(✓̂d) =

KX

i=1

ln(det(AiM̂(✓̂d)A
†
i )) + tr{(AiM̂(✓̂d)A

†
i )

�1
yiy

†
i } (3.56)

with ✓̂d the final estimate of Algorithm 4 and p(d) a specific penalty
function (3.47) related to the AIC, MDL or HQC tests.

The overall procedure to find the sources number in the context of
missing-data is summarized in Algorithm 6.



3.2. Covariance Matrix Estimation Procedure 61

Algorithm 6 Detection of number of sources in the context of missing-
data and fixed rank constraint
Input: N, K, Y , A1, . . . ,AK , ✓(0), K1, p(d), "1, "2.
Output: A solution d̂EM to Problem (3.48).

1: for d̃ = 0, . . . ,K1 do

a) compute the estimate ✓̂d̃ via Algorithm 4 using (3.50) as so-
lution to the M-step with d = d̃;

b) compute Ly(✓̂d̃) in (3.56) using the estimate ✓̂d̃.

end for

2: evaluate
d̂EM = argmin

d̃=0,...,K1

Ly(✓̂d̃) + p(d̃);

3: output d̂EM .

Rank constraint and centro-Hermitianity

Let us assume that the covariance matrix belongs to both the uncer-
tainty sets (3.5) and (3.6), i.e.

C =

8
>>>><

>>>>:

M = �
2
nI + V SfV

†

M = JM
⇤
J

V SfV
† ⌫ 0

Rank(V SfV
†
)  d

�
2
n > 0

, (3.57)

where V , Sf , d, and �
2
n are defined as in (3.5), whereas J is given by (3.7).

Therefore, for a given d, the maximizer of Q(✓,✓
(h�1)

) is given by [57]

✓
(h)
d,FB = [�̃1,FB, . . . , �̃d,FB, �̃

2

n,FB, �̃1,FB,R, �̃1,FB,I , . . . , �̃d,FB,R, �̃d,FB,I ]
T
,

(3.58)
where �̃v,FB and �̃v,FB, v = 1, . . . , d are the d greatest eigenvalues and

the corresponding eigenvectors of ⌃FB, defined as in (3.36), with �̃v,FB,R
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and �̃v,FB,I the real and imaginary components of �̃v,FB, respectively,
and

�̃
2

n,FB =
1

N � d

NX

v=N�d

�̃v,FB (3.59)

is the arithmetic mean of the N � d smallest eigenvalues of ⌃FB. As a
consequence,

M̂(✓̂d,FB) =

dX

v=1

(�̃v,FB � �̃
2

n,FB)�̃v,FB�̃
†
v,FB + �̃

2

n,FB I (3.60)

with ✓̂d,FB the resulting estimate of Algorithm 4.
Along the same line as the previous case, the statistic is computed for

each possible d, to get the order estimate

d̂EM�FB = argmin

d=0,...,K1

Ly(✓̂d,FB) +
1

2
p(d), (3.61)

where Ly(✓̂d,FB) is given by (3.56) evaluated in correspondence of the
estimate (3.60) and p(d) is one of the penalty functions in (3.47) [117].

3.3 Performance Analysis

In this section, the performance of the proposed estimation strategy,
framed in the context of adaptive beamforming and detection of number
of sources, is analyzed. For both applications it is considered a radar
system equipped with a ULA pointing in the bore-sight direction (✓0 = 0).
The array is composed of N = 20 antennas with inter-element spacing
dx = �/2, where � denotes the radar operating wavelength. Moreover,
two different values for the probability pm of missing an observation are
considered, i.e., pm = 0.1 or pm = 0.3. For a given pm, the selection
matrix Ai of the i-th snapshot is constructed from the diagonal matrix
Di whose diagonal entries are statistically IID Bernoulli random variables
with parameter 1 � pm, skipping rows containing all zeros. Besides, the
computation of the observed-data SCM Sy = 1/K

PK
i=i ỹiỹ

†
i is performed

employing ỹi = Diri, i = 1, . . . ,K.
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3.3.1 Adaptive Beamforming

The performance of the adaptive beamformer is analyzed in terms of
beampattern shape and normalized average Signal to Interference Power
Ratio (S/I) versus the number of snapshots. Standard Monte Carlo count-
ing techniques over 100 independent trials to compute the former perfor-
mance metric and 500 independent trials for the latter are used.

In the reported case studies the disturbance covariance matrix is mod-
eled as M = MJ + �

2
aI, where �

2
a is the white noise power level (assumed

without loss of generality equal to 0 dB) and MJ is the jamming covari-
ance contribution. Specifically, denoting by JNB and JWB the number
of narrow-band and wide-band jammers (assumed separated in space),
MJ = M1 +M2, where [45]

M1 =

JNBX

l=1

�
2

l v(✓l)v(✓l)
†
, (3.62)

with

v(✓l) = [1, e
j 2⇡

�
dx sin(✓l), . . . , e

j(N�1)
2⇡

�
dx sin(✓l)]

T 2 C
N (3.63)

the steering vector in the direction ✓l of the l-th jammer and �
2

l the power
of the l-th jammer, while

M2 (n, m) =

JWBX

r=1

�̄
2

r sinc[0.5Bf r (n�m)⇣r]e
j(n�m)⇣r , (3.64)

with (n,m) 2 {0, . . . , N � 1}2 and ⇣r = ⇡ sin ✓r; moreover in (3.64), �̄2
r ,

✓r, and Bf r, represent the power, the DOA, and the fractional bandwidth
Br/f0 (with Br the actual bandwidth and f0 the carrier frequency) asso-
ciated with the r-th interferer. The sinc function appearing in (3.64) is
defined as sinc(x) = sin(x)/(x).

In the following, two different interfering environments are analyzed:

• Scenario 1: five narrow-band jammers located at ✓l = 10 + 10l

degrees, l = 1, . . . , 5 with JNR given by JNRl = 30 dB (�2

l =

JNRl �
2
a, l = 1, . . . , 5).
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Figure 3.2. Adaptive beamformer performance for a ULA with 20 antennas
in Scenario 1. Figs. (a) and (c) consider pm = 0.1 while Figs. (b) and (d)
consider pm = 0.3. Figs. (a) and (b) display the normalized average S/I
versus number of snapshots, while Figs. (c) and (d) display the resulting
beampattern with K = 60 (therein, the red-Xs along the ✓-axis denote the
sources directions).

• Scenario 2: five wide-band jammers (Bf = 0.03) located at ✓r = 10+

10r degrees, r = 1, . . . , 5 with JNRr = 30 dB (�2

j = JNRr �
2
a, r =

1, . . . , 5).

The performance of the adaptive beamformer, assuming either pm =
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Figure 3.3. Adaptive beamformer performance for a ULA with 20 antennas
in Scenario 2. Figs. (a) and (c) consider pm = 0.1 while Figs. (b) and (d)
consider pm = 0.3. Figs. (a) and (b) display the normalized average S/I
versus number of snapshots, while Figs. (c) and (d) display the resulting
beampattern with K = 60 (therein, the red-Xs along the ✓-axis denote the
sources directions).

0.1 or pm = 0.3, is analyzed in terms of normalized average S/I in Figs. 3.2(a),
3.2(b), 3.3(a), and 3.3(b). The resulting beampatterns (assuming K = 60),
are displayed in Figs. 3.2(c), 3.2(d), 3.3(c), and 3.3(d). In particular,
Figs. 3.2 and 3.3 refer to the interference environments of Scenario 1 and
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2, respectively.
The proposed strategy employs the EM procedure assuming the un-

certainty set (3.2) with the FML computed from Sy, used to initialize
the EM procedure. The beampattern and the normalized average S/I ob-
tained using the SCM of the complete-data (as well as its variant based on
FML) and the FML of Sy, are considered for comparison. As performance
benchmark, the clairvoyant beampattern, based on a perfect knowledge of
the covariance matrix, is reported too. A close inspection of the results
under the interference environment of Scenario 1 shows that for pm = 0.1

and K � N the performance of the proposed procedure comes closer and
closer to the complete-data FML whereas it exhibits for pm = 0.3 a slight
degradation in terms of normalized average S/I in the order of 1 dB for
K > N , with respect to the complete-data benchmark. The effectiveness
of the proposed algorithm is also confirmed by the more challenging inter-
ference environment of Scenario 2, where the performance is very close to
the complete-data FML for pm = 0.1 and experiences a maximum degrada-
tion, in terms of normalized average S/I, lower than 6 dB, for pm = 0.3 and
K � N . Nevertheless, for all the configurations, the S/I of the EM-based
beampattern approaches the complete-data performance as K increases
and this represents an indirect proof that the quality of the proved covari-
ance estimation procedure improves when more and more snapshots are
available for the estimation process.

As to the beampattern analysis, the inspection of the figures reveals
that the EM FML is able to correctly nullify the jammers while preserving
low side-lobes levels.

Finally, Fig. 3.4 compares the performance of EM FML and EM FML-
FB, highlighting the capability of FML-FB to benefit from the underlying
structure of the covariance matrix.

3.3.2 Detection of Number of Sources

In the following, equal-power signals impinging on the array from differ-
ent directions ✓v are considered. The values of the parameters involved in
the three analyzed scenarios, each related to a different number of sources,
are listed in Table 3.1.

Specifically, SSBW = 0.891/N denotes the 3dB Single-Side Beam-
Width (SSBW) of the considered ULA [112], whereas uv = sin(✓v) is the



3.3. Performance Analysis 67

Table 3.1. Simulation Parameters

d u1 = sin(✓1) u2 = sin(✓2) u3 = sin(✓3) u4 = sin(✓4)

2 �1/2 SSBW 1/2 SSBW
3 �1/2 SSBW 1/2 SSBW 3/2 SSBW
4 �1/2 SSBW 1/2 SSBW 3/2 SSBW �3/2 SSBW

target angular location of the v-th source in the space of directional co-
sine [105]. Therefore, the covariance matrix is modeled as M = MS+�

2
nI,

where �
2
n is the white noise power level (assumed without loss of generality

equal to 0 dB) and MS refers to the useful covariance contribution, given
by

MS = �
2

s

dX

v=1

v(✓v)v(✓v)
†
, (3.65)

with �
2
s the power of each signal of interest and v(✓v) is defined as in (3.63).

The metric used to assess the detection performance is the PD, namely
the probability that d̂ = d [105], which is estimated via standard Monte
Carlo counting techniques over 500 independent trials6. Moreover, the
Array Signal-to-Noise Ratio (ASNR) is defined as

ASNR = N
�
2
s

�2
n
. (3.66)

Finally, the detection algorithm assumes K = 100 and a maximum number
of sources equal to N/2 = 10.

The detection performance is reported in Fig. 3.5 assuming pm 2
{0.1, 0.3} and K = 100. In particular, denoting by d the actual num-
ber of sources, Figs. 3.5 (a), (b), and (c) assume d = 2, Figs. 3.5 (d), (e),
and (f) d = 3, whereas Figs. 3.5 (g), (h), and (i) d = 4. Moreover, Figs. 3.5
(a), (d), and (g) refer to AIC, Figs. 3.5 (b), (e), and (h) consider MDL
whereas Figs. 3.5 (c), (f), and (i) display HQC. The proposed strategy
employs the EM procedure assuming the uncertainty set (3.5) and consid-

6Notice that a rank-deficient Sy, due to a possible selection matrix configuration,
is a non-zero probability event. Such realizations are excluded from the Monte Carlo
trials.
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Figure 3.4. Normalized average S/I versus number of snapshots for a ULA
with 20 antennas. Fig. (a) considers Scenario 1 while Fig. (b) Scenario 2.

ering as a starting guess, at each trial, the SCM of 2N IID white zero-mean
circularly symmetric Gaussian random vectors of size N .

The results highlight that for pm = 0.1 the EM approach leads to a
performance very close to the complete-data case (with a loss smaller than
1 dB), and outperforms the basic approach of replacing the missing obser-
vations in the complete-data with zeros (dashed brown curves), in most of
the analyzed case. In fact, a close inspection of the curves shows that only
when d = 4, low ASNR, and with reference to the AIC (Fig. 3.5 (g)), the
basic approach performs better than EM-based technique. This results is
not surprising due to the overestimation behavior of the AIC [105]. Besides,
the basic strategy may not provide a monotonic behaviour with respect to
the ASNR, reflecting the reasonable larger and larger discrepancy between
the actual covariance matrix and that heuristically computed.

As expected, the EM-based order selection procedure experiences a
performance degradation at pm = 0.3, as compared with the complete-data
counterpart. Remarkably, the gap between the EM and the complete-data
curves, for pm = 0.3, is less than 3 dB in the worst case, whereas at the
high ASNR regime it is almost absent. As in the case pm = 0.1, EM-based
strategy outperforms the basic counterpart, with the only exception of AIC
with 4 sources, reported in Fig. 3.5 (g).
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Figure 3.5. Detection performance for a ULA with 20 antennas assuming
K = 100 and pm 2 {0.1, 0.3}. Figs. (a), (b), and (c) assume d = 2, Figs.
(d), (e), and (f) assume d = 3, whereas Figs. (g), (h), and (i) assume d = 4

equal-power signals impinging the array, respectively, with signal separation
corresponding to 0.891/N . Moreover, Figs. (a), (d), and (g) consider AIC,
Figs. (b), (e), and (h) consider MDL, whereas Figs. (c), (f), and (i) consider
HQC.

Finally, the detection performance using EM and EM-FB (both ini-
tialized, at each trial, with the SCM of 2N IID white zero-mean circularly
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Figure 3.6. Comparison of the PD using EM and EM-FB estimation strate-
gies for a ULA with 20 antennas assuming 3 equal-power signals impinging
the array with signal separation corresponding to 0.891/N . Figs. (a), (b), (c)
consider pm = 0.1, whereas pm = 0.3 is assumed in Figs. (d), (e), (f). Besides,
Figs. (a) and (d), Figs. (b) and (e), and Figs. (c) and (f) consider AIC, MDL,
and HQC, respectively.

symmetric Gaussian random vectors of size N) is compared in Fig. 3.6. In-
spection of the curves pinpoints that capitalizing on the centro-Hermitian
structure, EM-FB achieves higher PD levels than the unstructured EM
in all the considered scenarios, except for the AIC at high ASNR regime
where an expected saturation is experienced [105].

3.4 Conclusion

This chapter has considered the problem of structured covariance ma-
trix estimation in the presence of missing-(complex) data with special at-
tention to a radar signal processing background. After providing a sub-
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stantial motivation on the study and specifying some constraint sets of
particular interest for the covariance matrix, the missing-data model is
described assuming Gaussian observations. Hence, the ML covariance es-
timation problem is formulated as the maximization of the observed-data
log-likelihood. To circumvent the analytical difficulties which are usually
connected with the direct optimization of the mentioned function, an it-
erative maximization procedure based on the EM algorithm is developed
and its convergence properties are established. Besides, a closed-form ex-
pression is computed for the convergence rate. The theoretical results are
capitalized for some specific structural covariance models with reference to
two radar applications: adaptive beamforming and detection of the num-
ber of sources. General procedures are suggested to construct adaptive
beamformers and to detect the number of active sources in a collection of
snapshots when missing observations are present. At the analysis stage,
extensive numerical results have been discussed to show the effectiveness
of the bespoke strategies to handle missing-data scenarios.





Chapter 4
Adaptive Radar Detection in

the Presence of Missing-Data

This chapter1 addresses the problem of adaptive radar detection in a
context with missing-data where the complete observations (i.e., down-
stream information loss mechanisms) are characterized by homogeneous
Gaussian disturbance with an unknown but possibly structured covari-
ance matrix. The detection problem, formulated as a composite hypothesis
test, is tackled by resorting to sub-optimal design strategies, leveraging the
GLR criterion demanding appropriate MLEs of the unknowns under both
hypotheses. Capitalizing on some possible a-priori knowledge about the in-
terference covariance matrix structure, the optimization problems involved
in the MLE computation are handled by employing the EM algorithm or
its ECM and M-EM variants. At the analysis stage, the performance of the
devised architectures is assessed both via Monte Carlo simulations and on
measured data for some covariance matrix structures of practical interest.

The rest of the chapter is organized as follows. The data model and
target detection problem with missing-data are presented in Section 4.1.
In Section 4.2, the detection problem is addressed resorting to sub-optimal
design criteria, i.e., one-step and two-step GLR, which demand the opti-

1©2022 IEEE. Reprinted, with permission, from A. Aubry, V. Carotenuto, A. De
Maio, M. Rosamilia and S. Marano, “Adaptive Radar Detection in the Presence of
Missing-data,” IEEE Transactions on Aerospace and Electronic Systems, vol. 58, no.
4, pp. 3283-3296, Aug. 2022.
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mization of appropriate observed-data likelihood functions under the two
hypotheses. Hence, in Section 4.2, an EM-based framework is also de-
vised to tackle the resulting optimization problems and derive practical
detectors. The performance of the mentioned detectors is analyzed in Sec-
tion 4.3, whereas conclusions are drawn in Section 4.4.

4.1 Problem Formulation

Let us consider a radar system collecting spatial data via a linear ar-
ray composed of N antennas and operating in the presence of noise and
interference, with unknown spectral characteristics.

Under the ideal conditions of complete access to the set of space-time
observations, the problem of detecting a prospective target located at range
R and elevation ✓0 with respect to the array boresight (under the narrow-
band radar probing signal assumption), can be formulated as the following
composite binary hypothesis testing problem

8
>>>><

>>>>:

H0 :

(
r = n

ri = ni, i = 1, . . . ,K

H1 :

(
r = ↵p+ n

ri = ni, i = 1, . . . ,K

(4.1)

where r is the primary data, ↵ is an unknown complex parameter which
accounts for the target reflectivity and the channel propagation effects,
whereas p denotes the spatial steering vector evaluated at ✓0, which is
assumed known at the design stage. Besides, a set of secondary data
ri, i = 1, . . . ,K, free of the useful signal and with the same covariance
matrix as the primary data (homogeneous environment) [60, 93, 14, 101],
is supposed available. The interference plus noise components n and ni,
i = 1, . . . ,K, are modeled as IID zero-mean circularly symmetric Gaussian
random vectors, with unknown (but possibly structured) covariance matrix
given by

M(✓) = E[nn
†
] = E[nin

†
i ], i = 1, . . . ,K (4.2)

where ✓ denotes the vector of the unknowns parameterizing the structure
of M .
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Let us now frame the detection problem in a context with missing-
data caused by random failures of some array elements [123, 68, 111, 116]
or possible transmission-reception faults experienced by distributed radar
systems [51] or wirelessly networked aperstructure digital phased array
radars [46], etc. For the case at hand, the observed primary data is modeled
as

z = Ar (4.3)

where A is an appropriate p⇥N selection matrix; specifically, denoting by
1,2, . . . ,N�p 2 {1, . . . , N} the indices of the channels where a missing-
data occurs in the snapshot from the CUT, A is obtained from the N ⇥
N identity matrix, by deleting the rows indexed by (1,2, . . . ,N�p).
Similarly, each secondary observed snapshot can be modeled as

zi = Airi, i = 1, . . . ,K (4.4)

with Ai the pi ⇥ N selection matrix of the i-th snapshot which is de-
fined similarly to A. In the following, the vectors r, ri, i = 1, . . . ,K, and
z, zi, i = 1, . . . ,K, will be referred to as the complete and the observed

data, respectively. Accordingly, the variables p and pi indicate the number
of the actual available channels, i.e., the number of observed elements, in
the primary r and the i-th secondary snapshot ri, i = 1, . . . ,K, respec-
tively2.

Hence, leveraging the observed-data model in (4.3) and (4.4), the target
detection problem in the presence of missing-data can be cast as

8
>>>><

>>>>:

H0 :

(
z = An

zi = Aini, i = 1, . . . ,K

H1 :

(
z = ↵Ap+An

zi = Aini, i = 1, . . . ,K

(4.5)

where the unknowns are ✓ under H0 and ↵, ✓ under H1.

2From a physical point of view, the selection matrices A and Ai, associated with r

and ri, i = 1, . . . ,K, respectively, provide the components of the complete-data vectors
into the observed-data space. As a result, the number of rows p (pi) of the selection
matrix A (Ai) denotes the dimension of the complex space where the observed-data in
the considered (i-th secondary) snapshot lies.
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4.2 Design of Decision Rules

Pursuing the classical approach based on the Neyman-Pearson crite-
rion, the optimal decision statistic to the hypotheses testing problem (4.5),
i.e., maximizing PD for a given Pfa, could be devised. Unluckily, the re-
sulting LRT, relies on the complete knowledge of the Probability Density
Function (PDF)s under both hypotheses which requires a perfect knowl-
edge of the parameters ↵ and ✓, reasonably not available in practical sit-
uations. As a result, a UMP test for the aforementioned problem does
not exist. Hence, practically implementable receivers have to be designed
resorting to sub-optimal criteria, such as GLR, which demands the ML
estimation of the parameters under both hypotheses.

In this respect, it is worth pointing out that the existence of affordable
low-complexity optimal solutions to the optimization problems involved in
the estimation process under the two hypotheses is essential for the design
of practically implementable detectors. Unfortunately, quite often, closed-
form solutions are not available [24].

In light of the above considerations, the EM framework represents a
viable means to determine approximated MLE of the parameters from the
observed-data. Specifically, it alternates between an expectation (E)-step
(in which the conditional expectation of the more analytically tractable
complete-data likelihood is evaluated using the current estimate of the pa-
rameters) and a maximization (M)-step, in which the E-step score function
is optimized in order to update the estimates. The above steps are then
repeated until a convergence condition is achieved.

An iterative EM-based solution ✓̂EM,0 to the optimization problem
under H0 has been devised in [9]. More specifically, accounting for some
possible a-priori knowledge on the covariance matrix structure, estimator
devised in [9] involves only closed-form updates, at each iteration of the
procedure, for a wide class of covariance structures. Detailed analysis on
the convergence properties, as well as on the convergence rate, are also
provided in [9].

The work in [9], however, does not address the optimization problem
under H1, which is necessary to solve the detection problem (4.5). This
challenging step is here addressed, yielding an EM-based framework for
the joint estimation of ↵ and M . From an optimization theory point of
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view this represents the main innovation of this chapter.

4.2.1 Parameters estimation under H1

The EM procedure starts with an initial guess of the parameters, i.e.,
✓̄
(0)

= [↵
(0)

,✓
(0)

T
]
T, and iterates between the E-step and the M-step, until

convergence [42]. Specifically, at the h-th iteration, the E-step involves the
evaluation of the score function

Q

⇣
↵,✓|↵(h�1)

,✓
(h�1)

⌘

= E[Lr(↵,✓, H1)|z,Z,A,A1, . . . ,AK ,↵
(h�1)

,✓
(h�1)

, H1]

(4.6)

where

• Z = {z1, . . . , zK} is the set of observed secondary data;

• ↵
(h�1) and ✓

(h�1) are the estimates at the (h� 1)-th iteration;

• Lr(↵,✓, H1) is the complete-data log-likelihood given by

Lr(↵,✓, H1) =� (K + 1) [N ln(⇡) + ln(det(M(✓)))]

� tr
n
M(✓)

�1
[(r � ↵p)(r � ↵p)

†
+ S]

o (4.7)

• S =
PK

i=1
rir

†
i is proportional, via K, to the conventional secondary

data SCM.

Computing the conditional expectation involved in (4.6) yields (see
Appendix C.1 for details on the statistical expectation evaluation)

Q

⇣
↵,✓|↵(h�1)

,✓
(h�1)

⌘
= �(K + 1) [N ln(⇡) + ln(det(M(✓)))]

�tr
n
M(✓)

�1
[(µ

(h�1) � ↵p)(µ
(h�1) � ↵p)

†
+⌃(h�1)

]

o (4.8)

where (the detailed expression is provided in (C.6) and (C.7))

µ
(h�1)

= E[r|z,A,↵
(h�1)

,✓
(h�1)

, H1] (4.9)
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and (see (C.8)-(C.16) for the detailed derivation)

⌃(h�1)
=

 
KX

i=1

E[rir
†
i |zi,Ai,✓

(h�1)
]

!
� µ

(h�1)
µ
(h�1)

†

+ E[rr
†|z,A,↵

(h�1)
,✓

(h�1)
, H1].

(4.10)

After the computation of the E-step, the M-step is performed, i.e., the
score function (4.8) is maximized providing the following updated estimate
of the unknowns

⇣
↵
(h)

,✓
(h)
⌘
= argmax

↵, ✓:M(✓)2C
Q

⇣
↵,✓|↵(h�1)

,✓
(h�1)

⌘
. (4.11)

Still, as in the H0 case analyzed in Chapter 3, different solution strategies
to the optimization problem (4.11) are connected to diverse feasible sets C .
In this regard, some relevant cases of interest are analyzed in the following.

Unconstrained estimation

For this special and relevant case, the optimal solution to the M-step
is available in closed-form, i.e., [60]

↵
(h)

=
p
†
[⌃(h�1)

]
�1

µ
(h�1)

p† [⌃(h�1)]�1 p
(4.12)

and

M(✓
(h)

) =
(µ

(h�1) � ↵
(h)

p)(µ
(h�1) � ↵

(h)
p)

†
+⌃(h�1)

K + 1
. (4.13)

Centro-Hermitianity constraint

As already described in 3.2.2, Centro-Hermitian is a particular matrix
structure, commonly satisfied by covariance matrices encountered in many
radar signal processing applications, e.g., radar systems utilizing standard
rectangular, hexagonal, uniform circular, or cylindrical array [105]. En-
forcing this structure is tantamount to considering M belonging to the
constraint set (3.6).
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Following the same line of reasoning as in [25] and modeling p as a
persymmetric vector [74], i.e., p = Jp

⇤, the E-step (4.8) can be recast as

Q

⇣
↵,✓|↵(h�1)

,✓
(h�1)

⌘
=� (K + 1) [N ln(⇡) + ln(det(M(✓)))]

� tr
n
M(✓)

�1
[P +⌃(h�1)

FB ]

o (4.14)

where

P =
1

2

h
(µ

(h�1) � ↵p)(µ
(h�1) � ↵p)

†

+J

⇣
(µ

(h�1) � ↵p)(µ
(h�1) � ↵p)

†
⌘⇤

J

i (4.15)

and
⌃(h�1)

FB =
1

2

h
⌃(h�1)

+ J

⇣
⌃(h�1)

⌘⇤
J

i
(4.16)

which plays the role of a FB averaged estimator [105]. Expression (4.14)
allows the computation of the optimizers for the M-step in closed form as

↵
(h)

=
p
†
[⌃(h�1)

FB ]
�1

µ
(h�1)

p† [⌃(h�1)

FB ]�1 p

(4.17)

and

M̂(✓
(h)

) =
P

(h)
+⌃(h�1)

FB

K + 1
(4.18)

with

P
(h)

=
1

2

h
(µ

(h�1) � ↵
(h)
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(h�1) � ↵

(h)
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†
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(h�1) � ↵
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(4.19)

General structured covariance matrix

For the case of an arbitrary constraint set C , closed-form expressions
for the joint estimation of ↵ and ✓, as involved in each M-step, could not be
available. To this end, variations of the plain EM strategy are demanded,
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for which the resulting update step is easier to handle. Two relevant meth-
ods are analyzed in the following, i.e., the ECM and M-EM [77, 73] which
turn out to be very useful when the marginal optimization of the E-step
score function over a single or sub-groups of unknowns can be conducted in
closed form. In the former, which is a particular Generalized EM (GEM)
algorithm [77, 97], the E-step is given by (4.8), while the M-step demands
a sequence of Conditional Maximizations (CM), where in each of them a
parameter is optimized while the others are held fixed. Formally, the CM
over ↵ is cast as

↵
(h)

= argmax
↵

Q

⇣
↵,✓

(h�1) | ↵(h�1)
,✓

(h�1)

⌘
(4.20)

whose solution is given by (4.12), whereas

✓
(h)

= argmax

✓:M(✓)2C
Q

⇣
↵
(h)

,✓ | ↵(h�1)
,✓

(h�1)

⌘
(4.21)

is the CM related to the parameter vector ✓.

As to the M-EM procedure, each iteration consists of several “cycles”,
each focused on the optimization over a single parameter. Specifically, in
the m-th cycle of the i-th iteration, the m-th variable is updated by max-
imizing the E-step score function computed with respect to the currently
available parameters estimate. For the problem at hand, two cycles are
considered. In the first, the E-step is given by evaluating the score func-
tion (4.6) at the point (↵,✓

(h�1)
), i.e.,

Q

⇣
↵,✓

(h�1)|↵(h�1)
,✓

(h�1)
⌘
=

E[Lr(↵,✓
(h�1)

, H1)|z,Z,A,A1, . . . ,AK ,↵
(h�1)

,✓
(h�1)

, H1]

(4.22)

whereas the M-step yields

↵
(h)

= argmax
↵

Q

⇣
↵,✓

(h�1)|↵(h�1)
,✓

(h�1)

⌘
(4.23)

with the optimal solution provided by (4.12).

As to the second, the E-step is cast as the score function (4.6) evaluated
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at the point (↵
(h)

,✓) given the knowledge of ↵(h) and ✓
(h�1), i.e.,

Q

⇣
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(h)

,✓ | ↵(h)
,✓

(h�1)
⌘
=

E[Lr(↵
(h)

,✓, H1)|z,Z,A,A1, . . . ,AK ,↵
(h)

,✓
(h�1)
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while the M-step is given by

✓
(h)

= argmax

✓:M(✓)2C
Q

⇣
↵
(h)

,✓ | ↵(h)
,✓

(h�1)

⌘
. (4.25)

A case study is analyzed in the following.

Constraint on the lower bound of the white noise power level
Let us consider M belonging to the uncertainty set (3.2). Denoting by
U⇤⌃U

† the EVD of

⌃(h�1)

1
=

(µ
(h�1) � ↵

(h)
p)(µ

(h�1) � ↵
(h)

p)
†
+⌃(h�1)

K + 1

and by �̃v, v = 1, . . . , N , its eigenvalues, the FML procedure [101, 7] (see
also 3.2.2) provides the solution to the optimization problems (4.21) and
(4.25), i.e.,

M̂(✓
(h)

) = U⇤FMLU
† (4.26)

with
⇤FML = diag(�1,FML, . . . ,�N,FML) (4.27)

and �v,FML = max(�̃v, �
2
), v = 1, . . . , N .

Remark: Unitary invariant constraints. In many practical cases,
the covariance matrix belongs to the feasible set of covariance matrices
defined via unitary invariant continuous functions of the matrix entries [11].
Interestingly, many of these uncertainty sets can be described in terms of
convex functions of the covariance matrix eigenvalues, paving the way for
the development of tailored solutions to the ML estimation problems (4.21)
and (4.25). However, even for some non-convex uncertainty sets, efficient
algorithms can still be derived [11]. Uncertainty sets defined via unitary
invariant functions encompass those resulting from an upper bound on the
covariance condition number or a constraint on the maximum number of
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uncorrelated interfering sources, just to mention a few [11].

4.2.2 Decision rules

This subsection provides practical detectors stemming from3 the GLR [60]
and AMF [93] design criteria. Specifically, the following detectors are con-
sidered:

1. GLRT detector

⌧GLRT-EM =
fz(z,Z; ✓̄1,A,A1, . . . ,AK , H1)

fz(z,Z; ✓̄0,A,A1, . . . ,AK , H0)

H1

?
H0

T (4.28)

where fz(·) represents the likelihood function of the observations (un-
der the appropriate hypothesis), ✓̄0 = [0, ✓̂EM,0], ✓̄1 = [↵̂EM , ✓̂EM,1]

with ✓̂EM,0 and ✓̂EM,1 the estimates of ✓ under H0 and H1, respec-
tively, provided by the bespoke EM-based procedures, and T is an
appropriate detection threshold4 set to ensure a desired Pfa. Equa-
tion (4.28) is statistically equivalent to

⌧GLRT-EM =Lz(z,Z; ✓̄1,A,A1, . . . ,AK , H1)

� Lz(z,Z; ✓̄0,A,A1, . . . ,AK , H0)
H1

?
H0

T
(4.29)

where, for h = 0, 1,

Lz(z,Z; ✓̄h,A,A1, . . . ,AK ,Hh)

= log fz(z,Z; ✓̄h,A,A1, . . . ,AK ,Hh)

= �
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T

i )
�1

ziz
†
i }
i

(4.30)

3Notice that other sub-optimal criteria, such as Rao [36] and Wald [59] tests, can be
pursued as well.

4With a slight abuse of notation, the same symbol is used to denote the detection
threshold and its possible modifications introduced later, see, e.g., (4.29) and (4.31).
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with C0 = zz
† and C1 = (z � ↵̂EMAp)(z � ↵̂EMAp)

†.

2. AMF counterpart to (4.28), also referred to as 2SGLRT (it computes
the GLRT of the observed primary data over the parameter ↵ and
then substitutes in the resulting GLRT the estimate of the covariance
parameters obtained from the secondary data)

⌧AMF-EM =

����z
†
⇣
AM(✓̂EM,2)A

T

⌘�1

Ap

����
2

p†AT

⇣
AM(✓̂EM,2)A

T

⌘�1

Ap

H1

?
H0

T (4.31)

where ✓̂EM,2 indicates the estimate of ✓ obtained via the EM algo-
rithm fed by secondary data only.

4.3 Performance Analysis

In this section, the effectiveness of the detectors devised to counter-
act the presence of missing-data is assessed. Specifically, the observables
(subjected to downstream information loss mechanisms) are considered
gathered by a radar system employing a ULA pointing at the boresight di-
rection (✓0 = 0). The array comprises N = 16 antennas, unless otherwise
stated, separated by dx = �0/2, with �0 the radar operating wavelength.
For each complete-data snapshot, the information provided by the out-
put of L = 3 randomly selected channels is assumed missed. Therefore,
each selection matrix (including A of the primary data and Ai of the i-th
secondary data snapshot, i = 1, . . . ,K) is constructed removing, indepen-
dently from the other snapshots, L rows from the identity matrix, with
the subset of L indexes randomly picked up from {1, . . . , N} without re-
placement.

The performance of the detectors is analyzed in terms of PD estimated
via standard Monte Carlo counting techniques over 104 independent trials.
Besides, the detection thresholds of the receivers are set to guarantee Pfa =

10
�4 and are evaluated using 100/Pfa independent Monte Carlo trials.
In the reported case studies, the disturbance covariance matrix is mod-

eled as M = MJ+�
2
aI, where �2

a is the noise power level (assumed without
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Table 4.1. Simulation Parameters.

Parameter L dx ✓0 �
2
a JNR1 JNR2 ✓1 ✓2

Value 3 �0/2 0
�

1 30 dB 40 dB �10
�

15
�

loss of generality equal to 0 dB) and

MJ =

JNBX

l=1

�
2

l p(✓l)p(✓l)
† (4.32)

is the covariance contribution of JNB uncorrelated narrow-band jammers,
with

p(✓l) = [1, e
j 2⇡

�0
dx sin(✓l)

, . . . , e
j(N�1)

2⇡

�0
dx sin(✓l)

]
T 2 C

N (4.33)

the steering vector in the direction ✓l of the l-th jammer and �
2

l the power,
or JNR �

2

l /�
2
a, of the l-th jammer. Moreover, the complete-data SINR is

defined as [40]
SINR = |↵|2p†

M
�1

p. (4.34)

Finally, denoting by z̃ and z̃i, i = 1, . . . ,K, the observed primary and
secondary data snapshots with missing values replaced by zero-elements,
the devised EM-based estimation procedures are initialized with

↵
(0)

=
p
†
S

�1

1
z̃

p† S�1

1
p

(4.35)

and
M̂(✓

(0)
) = S1 (4.36)

where5
S1 = 1/K

PK
i=1

z̃iz̃
†
i . The values of the system parameters involved

in the analyzed case studies are summarized in Table 4.1.

5It is worth noting that some selection matrix configuration can lead, with non-zero
probability, to a rank-deficient S1. The considered Monte Carlo trials do not include
such realizations.
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4.3.1 Unconstrained estimation

Fig. 4.1 reports the PD curves of the devised EM-based detection strate-
gies6 versus SINR for the case of unconstrained interference covariance,
with K = 48 and K = 64 in Figs. 4.1(a) and 4.1(b), respectively. As
benchmarks, the GLRT and AMF detectors, with direct access to the
complete-data set, are included for comparison. Besides, two additional
heuristic counterparts, comprising the Kelly’s GLRT and AMF detectors
computed on a data set where the missing values are replaced by Linear
Interpolation (LI) (in the following referred to as GLRT-LI and AMF-LI,
respectively) are reported too (see Appendix C.2 for details).

The curves highlight that the devised procedures attain almost the
same PD levels, with performance comparable to the benchmarks, i.e., a
loss of 4 dB for K = 48 and smaller than 2 dB for K = 64 at PD = 0.9.
As expected, if the sample support size increases, higher PD levels can
be achieved, with performance closer and closer to the benchmarks. The
results reveal that for the considered unstructured case, the devised two-
step as strategy is an effective and less computational demanding detector
compared with the GLRT architecture. Indeed, it only requires the esti-
mation of the covariance matrix under H0. As to the LI-based methods,
they achieve PD levels far below the benchmarks, with a significant loss
in all the analyzed scenarios. This confirms the requirement to develop
appropriate detection procedures capable of dealing with missing-data.

4.3.2 Centro-Hermitianity constraint

Fig. 4.2 presents the detection performance of the proposed receivers
assuming the uncertainty set (3.6) for a symmetric ULA composed of N =

15 antennas, i.e.,

p(✓) = [e
j 2⇡

�0
x0 sin(✓)

, e
j 2⇡

�0
x1 sin(✓)

, . . . , e
j 2⇡

�0
xN�1 sin(✓)

]
T 2 C

N (4.37)

where xi = dx
�
i�

�
N�1

2

��
, i = 0, 1, . . . , N � 1.

Specifically, two different sample support sizes are considered, i.e.,
K = 30 in Fig. 4.2(a) and K = 45 in Fig. 4.2(b). For comparison purposes,

6For covariance regularization purposes, a diagonal loading of 10�2 is applied to
M(✓̂EM,0), M(✓̂EM,1), and M(✓̂EM,2).
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Figure 4.1. Detection performance for an ULA with N = 16 antennas and
unconstrained estimation. Different sample support sizes are considered, i.e.,
(a) K = 48 and (b) K = 64.

tailored GLRT and AMF detectors, leveraging the Centro-Hermitianity
(CH) structure for the estimation of the covariance matrix, are reported,
too. Specifically, those computed on the complete-data set serve as bench-
marks, whereas those evaluated on the observed-data set, with missing-
data replaced by appropriately interpolated values, are considered as coun-
terparts.

Inspection of the results shows that the proposed detectors ensure per-
formance levels close to the benchmark with a gap between the curves
less than 2 dB at PD = 0.9 and K = 30. This is an indirect proof
that capitalizing on the centro-Hermitian structure, accurate estimation
of the unknowns could be obtained under both hypotheses, resulting in
improved detection performance even with a reduced number of secondary
data. Besides, both the devised one-step and two-step strategies achieve
similar performance levels, with PD values closer and closer to the bench-
mark as K increases, further corroborating the effectiveness of the bespoke
detectors. Summarizing, the proposed detectors outperform all the con-
sidered (practically implantable) counterparts in the analyzed scenarios,
confirming the capabilities of the devised adaptive architectures to oper-
ate in contexts with missing-data and structured covariance matrix.
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Figure 4.2. Detection performance for a symmetric ULA with N = 15

antennas assuming the covariance matrix with a centro-Hermitian structure,
see (3.6). Different sample support sizes are considered, i.e., (a) K = 30 and
(b) K = 45.

4.3.3 Lower bound of the white noise power level constraint

The performance of the devised detectors assuming a ULA with N = 16

antennas and the uncertainty set (3.2) is depicted in Fig. 4.3. Specifically,
Figs. 4.3(a) and 4.3(b) consider K = 24 and K = 48, respectively. The per-
formance of two GLRT detectors, using respectively the ECM and M-EM
for the estimation of the parameters under H1 hypothesis, are analyzed.
In addition, a tailored (covariance structure aware) two-step receiver, us-
ing the EM-based structured procedure devised in [9] for the covariance
matrix estimation under the H0 hypothesis and referred to in the follow-
ing as AMF-EM-FML, is also reported. Besides, the clairvoyant receiver,
based on a perfect knowledge of the covariance matrix, is considered as
benchmark.

The curves show that the devised architectures provide detection prob-
abilities quite close to the optimum, highlighting the capabilities of the pro-
posed detectors to leverage a-priori knowledge about the covariance matrix
structure to keep the loss due to missing-data. The results are in line with
the centro-Hermitian case and confirm the intuition that a-priori knowl-
edge exploitation represents a viable means to perform an improved adap-
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Figure 4.3. Detection performance for a ULA with N = 16 antennas assum-
ing the uncertainty set in (3.2). Different sample support sizes are considered,
i.e., (a) K = 24 and (b) K = 48.

tation process, especially in the presence of missing observations. More
specifically, for K = 24, the loss with respect to the clairvoyant is less
than 1 dB for the AMF-EM-FML and less than 2 dB for the two GLRT-
based receivers. Besides, as K increases, the loss reduces progressively
more and more, as depicted in Fig. 4.3(b).

4.3.4 Analysis on measured data

In this subsection, the performance of the devised detectors is analyzed
on the measured data set collected in [94]. Specifically, the test-bed used
for the acquisition process consists of

• a low-cost Software Defined Radio (SDR) coherent receiver made up
of four RTL-SDR dongles (based on the RTL2832U chipset manu-
factured by Realtek [102]) that share the same clock source;

• a standard personal computer, used to calibrate the devices and run
algorithms;

• a ULA comprising four dipole antennas with an inter-element space
of �0/2.
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Table 4.2. Targets Range and Angle Locations.

Range cell 30 40 78 85 120 145 180 245 280

Angle 7
�

9
�

9
�

8
�

9
�

9
�

8
�

7
�

9
�

The data recording process has been conducted in an anechoic chamber
using two SDR transmitters (each feeding a horn antenna with an azimuth
beamwidth of 90�, at the considered operating frequency 1 GHz) to mimic
the presence of two jammers occupying different spectral intervals and
located at ✓1 = 0.5

� and ✓2 = 14.5
�, respectively [6].

In [94], the data set have been used to validate the effectiveness of
the covariance matrix estimator proposed in [9] on measured data. Here,
the measured data set is used to validate the robustness to missing-data
endowed by the proposed detection strategies. To this end, 9 prospective
point-like targets causing echo returns with a SINR of 20 dB are syntheti-
cally simulated and injected in the dataset. The angle positions and ranges
of the considered targets are reported in Table 4.2. Furthermore, for the
analyzed case studies, the missing-data context is emulated considering a
missing element at the output of a channel (chosen at random) for each
observed snapshot.

Figs. 4.4 and 4.5 display the decision statistics of one-step and two-step
strategies versus time/range resolution cell index, for a window of 300 bins.
Besides, K snapshots, selected from a distinct but homogeneous temporal
window, are used as a secondary data set7. Fig. 4.4 report the behavior of
the considered detectors in the unstructured case, assuming K = 40. The
output of the GLRT-EM detector is depicted in Fig. 4.4(a), whereas the
output of the two-step counterpart strategy is shown in Fig. 4.4(b). In-
spection of the results clearly reveals the presence of the targets, with peak
levels higher than the interference-only floor level. Precisely, the GLRT-
EM exhibits peaks greater than the floor of 2 dB in the worst case, whereas
5 dB peak gains are reached by the AMF-EM. The results corroborate the
effectiveness of the proposed detectors highlighting their robustness on

7Notice that the choice of using secondary data from a tailored temporal window is
to ensure that the homogeneous environment assumption is met.
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Figure 4.4. Detection performance for a ULA with N = 4 antennas and
unconstrained estimation assuming K = 40 secondary data. Target locations
are indicated by black dotted lines.

measured data.

In Fig. 4.5, the analysis is conducted assuming a sample support size
of K = 24 and the covariance matrix belonging to the uncertainty set
in (3.2). Fig. 4.5(a) shows the one-step decision strategies based on the
ECM and M-EM methods (whose performance curves are substantially
overlapped), while the output of the AMF-EM-FML detector is illustrated
in Fig. 4.5(b).

As in the unstructured case, it is evident the presence of visible peaks
located in correspondence of the targets range. In particular, peak levels
greater than interference-only floor of at least 1 dB are reached by the two
GLRT detectors (apart from the target at 180 where the peak strength is
about 0.5 dB), whereas the AMF-EM-FML detector provides peak gains
larger than 5 dB. The results highlight that also on measured data reliable
detection performance can be obtained with a reduced number of secondary
data if bespoke a-priori structural knowledge is exploited, corroborating
the capabilities of the devised detection strategies also on a measured data
scenario.
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Figure 4.5. Detection performance for a ULA with N = 4 antennas assuming
the uncertainty set in (3.2) and K = 24 secondary data. Target locations are
indicated by black dotted lines.

4.4 Conclusion

In this chapter, adaptive detection architectures accounting for the
presence of missing-data, have been proposed. Specifically, the problem
of detecting a potential target echo return buried in Gaussian interfer-
ence with a possibly structured covariance is formulated as a composite
hypothesis test. The problem is handled via the GLR criterion, leading
to the design of one-step and two-step GLRT detectors, which require
the maximization of proper likelihood functions. Leveraging specific co-
variance structures, tailored estimation procedures relying upon the EM
framework are developed. Specifically, for some covariance structures of
practical interest, the optimization procedures involve only closed-form
solutions at each iteration. Conversely, the case of a quite arbitrary con-
straint set is addressed resorting to ECM and M-EM frameworks, yielding
more tractable optimization problems than classic EM strategy. The per-
formance of the devised detection strategies has been assessed via Monte
Carlo simulations for some a-priori structural covariance models. The re-
sults have highlighted the potentialities of the proposed detectors showing
a performance level comparable to the benchmarks, which assume access
to the entire set of observables. Besides, the effectiveness of the detectors
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has been validated on measured data, collected in a controlled environment
using an inexpensive four-channel receiver.



Chapter 5
Single-Snapshot Angle and

Incremental Range Estimation

for FDA-MIMO Radar

This chapter1 investigates the problem of angle and incremental range
(i.e., the target range offset with respect to the center of the cell under
test) estimation with an FDA-MIMO radar exploiting as observable a sin-
gle data snapshot. Starting from the observation that the ML estimation
entails a two-dimensional grid search over the parameters of interest, three
approximated ML techniques are designed resorting to the coordinate de-
scent algorithm and the adaptive monopulse criterion (employing either
real or complex slope/bias corrections). At the analysis stage, the esti-
mation performance of the proposed methods, including the tapered and
double-step monopulse versions, is assessed also in comparison with the
CRLB. Numerical results corroborate the effectiveness of the considered
estimation strategies in some diverse simulated scenarios.

The rest of the chapter is organized as follows. Section 5.1 presents the
signal model for FDA-MIMO radar. In Section 5.2, the single snapshot
angle and incremental range estimation problem is formulated. Besides,

1©2021 IEEE. Reprinted, with permission, from L. Lan, M. Rosamilia, A. Aubry,
A. De Maio and G. Liao, “Single-Snapshot Angle and Incremental Range Estimation
for FDA-MIMO Radar,” IEEE Transactions on Aerospace and Electronic Systems, vol.
57, no. 6, pp. 3705-3718, Dec. 2021.
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the ML estimator and the three aforementioned approximated methods are
introduced. The CRLB for angle and incremental range is computed in
Section 5.3, whereas performance analysis is addressed in Section 5.4. Fi-
nally, conclusions and possible future research developments are discussed
in Section 5.5.

5.1 Signal Model for FDA-MIMO Radar

5.1.1 Transmitted Signal Model

Let us consider a colocated FDA-MIMO radar consisting of M transmit
and N receive modules placed according to a ULA configuration in both
transmission and reception (see Fig. 5.1) [66]. A frequency increment
�f is introduced element-by-element in the transmit array with the first
array-element being the reference. Thus, the carrier frequency at the m-th
transmitting element is

fm = f0 + (m� 1)�f, m = 1, 2, · · · ,M, (5.1)

where f0 indicates the reference carrier. Each element transmits a specific
base-band phase-modulated pulse, which is composed of P subpulses, and
the resulting complex envelope of the radio frequency signal radiated by
the m-th element can be expressed as

sm(t) =

r
E

P
xm(t)e

j2⇡fmt
, 0  t  Tp, (5.2)

where E is the transmitted energy, Tp is the radar pulse duration, and

xm (t) =
1

p
⌧b

PX

p=1

'm (p)u


t� (p� 1) ⌧b

⌧b

�
, m = 1, 2, · · · ,M, (5.3)

⌧b =
Tp

P , u(t) is the asymmetric rect function, i.e., u(t) = 1 as long as
0  t  1 and zero elsewhere, and 'm(p) = e

j�m(p), with �m(p) 2 [0, 2⇡].



5.1. Signal Model for FDA-MIMO Radar 95

Transmit elements

d
M

0f 0f f+ 
( )0 1f M f+ − 

target

1 2 3

Receive elements

d
1 2 3 N

t

tR

t

Figure 5.1. Signal transmission and reception in FDA-MIMO radar.

5.1.2 Received Signal Model

For a point-like target with a constant Radar Cross-Section (RCS)
over the FDA-MIMO radar bandwidth, located in far-field at the angle ✓t

and range Rt (see Fig. 5.1) [64, 65], the complex envelope of the signal
received by the n-th radiating element (n = 1, 2, · · · , N) due to the signal
transmitted by the m-th antenna (m = 1, 2, · · · ,M) can be expressed
as [66]

ym,n(t) = �xm(t� ⌧m,n)e
j2⇡fm(t�⌧m,n) ⇡ �xm(t� ⌧0)e

j2⇡fm(t�⌧m,n),

(5.4)

where ⌧m,n =
2Rt�d(n�1) sin(✓t)�d(m�1) sin(✓t)

c is the round-trip propagation
time, � is the complex echo amplitude (accounting for the transmit ampli-
tude, phase, target reflectivity, and channels propagation effects), d is the
array’s inter-element spacing, and c is the speed of light. The approxima-
tion relies on the narrowband assumption, i.e., xm(t� ⌧m,n) ⇡ xm(t� ⌧0),
with ⌧0 =

2Rt

c the customary envelope time delay.
After the pre-processing of Fig. 5.2, it can be shown that, under some

mild technical conditions (see Appendix A of [66]), the received useful
samples from the CUT can be stacked to form a MN ⇥ 1-dimensional
vector

yS = �1b (✓t)⌦ [c (✓t)� a (�⌧)] = �1s(✓t,�⌧), (5.5)
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Figure 5.2. Signal processing at the receiver with multiple match-filtered
waveforms.

where

• s(✓t,�⌧) = b (✓t)⌦ [c (✓t)� a (�⌧)]2 C
MN with �⌧ the incremen-

tal delay w.r.t. the sampling time associated with the target range
cell [66];

• b (✓t) =

h
1, e

j2⇡ d

�0
sin(✓t)

, · · · , ej2⇡
d

�0
(N�1) sin(✓t)

iT

2 C
N denotes the

angle-dependent receive steering vector;

• c (✓t) = R
T
d (✓t) 2 C

M ;

• d (✓t) =

h
1, e

j2⇡ d

�0
sin(✓t)

, · · · , ej2⇡
d

�0
(M�1) sin(✓t)

iT

2 C
M is the angle

dependent transmit steering vector;

• R2 C
M⇥M denotes the transmit waveforms correlation matrix, i.e.,

Rm,l =
R Tp

0
xm (s)x

⇤
l (s)ds, (m,n) 2 {1, ...,M}2;

• a (�⌧) =
⇥
1, e

j2⇡�f�⌧ · · · , ej2⇡�f(M�1)�⌧
⇤T 2 C

M indicates the range-
dependent steering vector.
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5.2 Joint Angle-Range Estimation for FDA-MIMO

Radar

This section investigates parameters estimation in FDA-MIMO radar.
Let us assume the availability of a single data snapshot z 2 C

MN contain-
ing the superposition of the useful target signal and interference plus noise
contribution [35, 79], namely the vector of observables can be cast as

z = �1s(✓t,�⌧) + n, (5.6)

where n 2 C
MN is modeled as zero-mean complex circularly symmetric

Gaussian random vector, i.e., n ⇠ CN(0,Q) with Q 2 H
MN the positive

definite covariance matrix of the interference plus noise term. Therein, ✓t
and �⌧ describe the unknown angle and incremental range to be estimated,
respectively. Now, letting u = sin (✓t) (complying with |u|  1) and
� = 2�f�⌧ (satisfying |�|  �f

B ), s(✓t,�⌧) can be further expressed as

s(✓t,�⌧) = s(u, �) = b (u)⌦ [c (u)� a (�)] , (5.7)

where

• b (u) =

h
1, e

j2⇡ d

�0
u
, · · · , ej2⇡

d

�0
(N�1)u

iT

2 C
N ;

• c(u) = R
T
d(u) 2 C

M ;

• d(u) =

h
1, e

j2⇡ d

�0
u
, · · · , ej2⇡

d

�0
(M�1)u

iT

2 C
M ;

• a (�) =
⇥
1, e

j⇡� · · · , ej⇡(M�1)�
⇤T 2 C

M .

In the following subsections, the ML estimator of u and � is introduced
and three low complexity methods are proposed to approximate the com-
putation.

5.2.1 ML Estimation of u and �

In this subsection, the ML estimation problem is formalized as the
constrained maximization (w.r.t. the unknown parameters, i.e., �1, u and
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� [35]) of the likelihood function,

f(u, �,�1; z)=
1

⇡MN det (Q)
e
�[(z��1s(u,�))

†
Q

�1
(z��1s(u,�))] . (5.8)

This is equivalent to minimizing the following quadratic form

min
�12C,u2[�1,1],

�2[��f

B
,
�f

B
]

(z � �1s (u, �))
†
Q

�1
(z � �1s (u, �)). (5.9)

Now, concentrating (5.9) over �1 yields

�̂1 =
s
†
(u, �)Q

�1
z

s† (u, �)Q�1s (u, �)
. (5.10)

Hence, substituting (5.10) into the objective function of (5.9) as well
as dropping constant and irrelevant terms leads to

max

u2[�1,1],�2[��f

B
,�f

B
]

��s† (u, �)Q�1
z
��2

s† (u, �)Q�1s (u, �)
. (5.11)

Finally, the ML estimates of u and � can be obtained as maximizers of

P (u, �) = |w0
†
(u, �) z|2, (5.12)

where w0 (u, �) =
⇥
s
†
(u, �)Q

�1
s (u, �)

⇤� 1

2 Q
�1

s (u, �) 2 C
MN .

5.2.2 Approximated Methods for Range and Angle Esti-
mation

The ML rule can be practically implemented via a 2-D grid search.
To reduce the computational cost required by the foregoing procedure, it
is valuable to design approximated solution methods. To this end, this
section is focused on designing: 1) a CD algorithm; 2) AMPs.

Coordinate Descent Algorithm

An approximation of the optimal 2-D search involved in (5.12) is de-
veloped via the CD method. This leads to a sequence of 1-D searches
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obtained alternating between the optimization over each variable keeping
the other fixed. The problem of finding the maximizer of each 1-D search is
tackled using the grid search method where the feasible interval of interest
is discretized in a finite set of points. Specifically, the 1-D searches w.r.t.
u and � are respectively conducted over the discretized intervals Iu and
I�, defined as

Iu = {�1 +
2i

Nu
, i = 0, . . . , Nu} (5.13a)

and
I� = {��f

B
+

2i

N�

�f

B
, i = 0, . . . , N�}, (5.13b)

where (Nu + 1) and (N� + 1) are the number of discrete points considered
for the optimization over u and �, respectively. It is also worth pointing out
that it is not possible to establish a-priori which order of optimization leads
to the best estimate, i.e., first optimize u and then optimize �, or vice versa.
To overcome this problem, the CD-based algorithm considered herein is
applied twice, one for each possible initial search direction. Therefore,
among the two obtained solutions, the one that maximizes (5.12) is chosen
as estimate. The exit condition (for each updating policy) is set as Dn  "

with " > 0 and D
n
= |Pn � P

n�1|, where

P
n
= |(wn

)
†
z|2 (5.14)

indicates the objective function at the n-th iteration with

w
n
=

h
s
†
⇣
û
n
, �̂

n
⌘
Q

�1
s

⇣
û
n
, �̂

n
⌘i� 1

2

Q
�1

s

⇣
û
n
, �̂

n
⌘
. (5.15)

Letting u0 and �0 the nominal angle and range, the initial estimates
are chosen as û

0
= u0 and �̂

0
= �0. The resulting method is summarized

in Algorithm 7.

Note that in the presence of two blocks/variables, regardless of the ini-
tial search direction, the CD approach (starting from the second iteration)
coincides with the MBI policy [29]. Therefore, invoking the convergence
properties of MBI [29, 88, 12], any limit point resulting from Algorithm 7
is a stationary point to Problem (5.12), although convergence to the opti-
mal value cannot be claimed [19].
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Algorithm 7 FDA-CD
Require: u0, �0, z, Q, s, "
Ensure: A solution û, �̂ to (5.11).

Initialization: n = 0, û0 = u0, �̂0 = �0, P 0
= P (û

0
, �̂

0
)

repeat (optimization for initial search direction given by u)
1. Find û

n+1
= argmax

u2Iu

P (u, �̂
n
);

2. Find �̂
n+1

= argmax

�2I�

P (û
n+1

, �) and set P
n+1 as the corresponding

maximum value;
3. n = n+ 1;
until |Pn � P

n�1| > ";
Px = P

n ; ûx = û
n ; �̂x = �̂

n;
Initialization: n = 0

repeat (optimization for initial search direction given by �)
1. Find �̂

n+1
= argmax

�2I�

P (û
n
, �);

2. Find û
n+1

= argmax

u2Iu

P (u, �̂
n+1

) and set P
n+1 as the corresponding

maximum value;
3. n = n+ 1;
until |Pn � P

n�1| > ";
Py = P

n ; ûy = û
n ; �̂y = �̂

n;
if Px > Py then

Output û = ûx and �̂ = �̂x.
else

Output û = ûy and �̂ = �̂y.
end if

Leveraging the output of Algorithm 7 the estimates of u and � ob-
tained via the CD method are given by

uCD = û (5.16)

and
�CD = �̂. (5.17)
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Adaptive Monopulse Procedure

The CD method is still time-consuming because of the 1-D searches in-
volved during each iteration. To circumvent this drawback, in this subsec-
tion, the generalized monopulse approach is exploited [81] to approximate
the optimal search in (5.12). To this end, let

hAMP = h0+C (r � µ) , (5.18)

where hAMP = [uAMP, �AMP]
T 2 R

2 refers to the unknown parameters,

h0 = [u0, �0]
T 2 R

2, C =


Cxu Cx�

Cyu Cy�

�
2 R

2⇥2 denotes a slope correction

matrix, µ = [µx, µy]
T 2 R

2 represents a bias correction vector, and r =

[rx, ry]
T 2 R

2 refers to compressed measures, with rx and ry the monopulse
ratios defined as

rx = Re

(
d
†
xz

w†z

)
, (5.19a)

ry = Re

(
d
†
yz

w†z

)
. (5.19b)

In (5.19a) and (5.19b) w = Q
�1

s0 2 C
MN indicates the sum weight

vector with s0 = s(u0, �0), dx = Q
�1

su 2 C
MN and dy = Q

�1
s� 2 C

MN

the difference beam weights, w.r.t. u and �, respectively, where sh =
@s
@h

��
(u0,�0)

, h 2 {u, �}. Detailed expressions for su and s� are available in
Appendix D.1.
The matrix C and the vector µ are determined from the vector-valued
function M(u, �) 2 R

2,

M(u, �) = C (E [r]� µ) , (5.20)

forcing the conditions
M(u0, �0) = 0, (5.21)

and
C E

✓
@r

@u
,
@r

@�

◆�����
(u0,�0)

= I. (5.22)
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Under the Gaussianity assumption for the received data vector, the expec-
tation of the monopulse ratios involved in (5.20), i.e., E [r↵] ,↵ 2 {x, y},
can be expressed as2

E[r↵] =E

"
Re

(
d
†
↵z

w†z

)#

=E

"
Re

(
d
†
↵zz

†
w

w†zz†w

)#
= Re

(
d
†
↵E

⇥
zz

†⇤
w

w†E [zz†]w

)

=

|�1|2Re
n
d
†
↵ss

†
w

o
+Re

n
d
†
↵Qw

o

|�1|2w†ss†w +w†Qw
, ↵ 2 {x, y},

(5.23)

where s = s (u, �). For a sufficiently high value of |�1|2, the two terms
d
†
↵Qw and w

†
Qw, at the numerator and the denominator of (5.23), re-

spectively, can be disregarded. As a result, the bias E[r] = [E[rx], E[ry]]
T

correction values, fulfilling (5.21), can be approximated as

µ↵ ⇡ Re

(
d
†
↵s0

w†s0

)
,↵ 2 {x, y}. (5.24)

Besides, the slope correction matrix is computed according to (5.22),
i.e.,

C =


Cxu Cx�

Cyu Cy�

�
=

2

4
E
⇥
@rx
@u

⇤��
(u0,�0)

E
⇥
@rx
@�

⇤��
(u0,�0)

E

h
@ry
@u

i���
(u0,�0)

E

h
@ry
@�

i���
(u0,�0)

3

5
�1

, (5.25)

where E
⇥
@r↵
@h

⇤��
(u0,�0)

, with ↵ 2 {x, y}, h 2 {u, �}, is approximated as
(see [80, eq. 17])

E


@r↵

@h

�����
(u0,�0)

⇡
Re

n
d
†
↵shs

†
0
w + d

†
↵s0s

†
hw

o

|w†s0|2
� µ↵2Re

⇢
w

†
sh

w†s0

�
,

(5.26)

2The “mean” is computed performing the expectation, w.r.t. the denominator, of
conditional mean of the ratio given the denominator.
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Algorithm 8 FDA-AMP
Require: u0, �0, Q, s0, su, s�, z
Ensure: A solution ûAMP, �̂AMP to (5.11).

1. Compute w = Q
�1

s0, dx = Q
�1

su, and dy = Q
�1

s�;
2. Evaluate r↵ = Re

n
d
†
↵z

w†z

o
,↵ = x, y to obtain r = [rx, ry]

T;

3. Compute µ = [µx, µy]
T via (5.24) and C using (5.25);

4. Determine hAMP using (5.18);
5. Project the candidate solution hAMP onto [�1, 1]⇥ [��f

B ,
�f
B ] to get

an estimate ĥAMP complying with the problem constraints.
Output [ûAMP, �̂AMP]

T
= ĥAMP.

Summarizing, the AMP procedure is synthetically reported in Algorithm 8.
It is also worth pointing out that, as shown in [79], by further executing the
procedure, namely, re-applying the monopulse algorithm employing the es-
timates ûAMP and �̂AMP in place of the nominal u0 and �0, the potential
bias could be reduced, leading to some possible performance improvements.
More in details, the, second iteration of Algorithm 8 is performed using
as input ûAMP, �̂AMP,Q, sAMP, sAMP�u, sAMP��, z, where

• sAMP = s(ûAMP, �̂AMP) refers to the receive steering vector associ-
ated with the estimated direction and incremental range.

• sAMP�u, and sAMP�� denote the partial derivatives of s(u, �) w.r.t.
u and �, respectively computed at (ûAMP, �̂AMP).

The overall procedure will be referred to as the Double-Step Corrected
(DSC)-AMP and could be also potentially iterated multiple times. The
resulting estimates are denoted by ûDSC-AMP and �̂DSC-AMP, respectively.

AGMP-CC

As the generalized monopulse approach procedure in (5.18) assumes
real slope and bias correction, a more general procedure calls for a complex
slope and bias correction [84]. This is the rationale followed in this section
which is focused on the Adaptive Generalized Monopulse Procedure with
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Complex Correction (AGMP-CC), given by

hAGMP-CC = h0 +Re

n
Ĉ

†
(r̂ � µ̂)

o
, (5.27)

where hAGMP-CC = [uAGMP-CC �AGMP-CC]
T 2 R

2, h0 = [u0, �0]
T 2 R

2

denotes the nominal values of the unknowns, Ĉ 2 C
2⇥2 denotes a complex

slope correction matrix, µ̂ 2 C
2 indicates a bias correction vector, i.e.,

µ̂ = [µ̃x, µ̃y]
T with µ̃↵ =

d
†
↵s0

w†s0
, ↵ 2 {x, y} (obtained following the same

line of reasoning as in [84]), and r̂ 2 C
2 represents the complex monopulse

ratio vector, i.e., r̂ = [r̃x, r̃y]
T with

r̃↵ =
d
†
↵z

w†z
, ↵ 2 {x, y}. (5.28)

Now, substituting z = �1s + n into (5.28), and after some algebra
and approximations as in [84], the following equation involving the actual
unknowns, i.e., h = [u, �]

T, is obtained

(r̃ � µ̃) = B1(h� h0) + p1, (5.29)

where

• r̃ 2 C
4 represents the monopulse ratio vector whose entries are the

complex monopulse ratios and their complex conjugates, i.e., r̃ =

[r̂
T
, r̂

⇤T
]
T;

• µ̃ = [µ̂
T
, µ̂

⇤T
]
T2 C

4;

• B1 =

h
B̂

T
, B̂

⇤T
i
T

2 C
4⇥2 where B̂ =


Bxu Bx�

Byu By�

�
with B↵h =

d
†
↵shw

†
s0�d

†
↵s0w

†
sh

(w†s0)2
(↵ 2 {x, y}, h 2 {u, �});

• p1 = [p̂
T
, p̂

⇤T
]
T 2 C

4 where p̂ = [px, py]
T with p↵ =

d
†
↵p̃

�1w
†s
, ↵ 2

{x, y};

• p̃ = n�
⇣
w

†
n

w†s

⌘
s 2 C

MN .
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Equation (5.29) poses an important constraint on the matrix Ĉ, so as
to obtain in absence of noise and under the validity of (5.29) the exact
values of the parameters via (5.27), i.e.,

C
†
1
B1 = 2I. (5.30)

where C1 = [Ĉ; Ĉ
⇤
] 2 C

4⇥2.
After some algebra, (5.30) can be recast as

Re

n
Ĉ

†
B̂

o
= I. (5.31)

Hence, by substituting (5.31) and (5.29) into (5.27), it yields

hAGMP-CC � h0 = Re

n
Ĉ

†
(r̂ � µ̂)

o
= (h� h0) + Re

n
Ĉ

†
p̂

o
. (5.32)

It can be seen that the estimates hAGMP-CC will be closest to the true
value, i.e., h, when the noise term effect, i.e., Re

n
Ĉ

†
p̂

o
, is minimised.

Following [84], the mean square value of the noise error terms on the u

and � components, is minimized according to
8
><

>:

min

Ĉu

Ĉ
†
uz1Ĉu & min

Ĉ�

Ĉ
†
�z1Ĉ�

s.t. Re

n
Ĉ

†
B̂

o
= I,

(5.33)

where Ĉu 2 C
2, Ĉ� 2 C

2 denote the first and second columns of Ĉ and
the matrix z1 2 C

2⇥2 is constructed as [84]

z1 = ⌦†⇤⌦, (5.34)

where ⌦ = [dx,dy] 2 C
MN⇥2 and ⇤ = E

h
p̃0p̃

†
0

i
2 C

MN⇥MN with p̃0 =

p̃|
s=s0

= n�
⇣

w
†
n

w†s0

⌘
s0.

Standard optimization theory argumentation leads to the following ex-
pression for the optimal solution

Ĉopt = z
�1

1
B̂

⇣
Re

n
B̂

†
z
�1

1
B̂

o⌘�1

. (5.35)
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Algorithm 9 FDA-AGMP-CC
Require: u0, �0, Q, s0, su, s�, z
Ensure: A solution ûAGMP-CC, �̂AGMP-CC to (5.11) .

1. Compute w = Q
�1

s0, dx = Q
�1

su, and dy = Q
�1

s�;
2. Evaluate r̂ = [r̃x, r̃y]

T with r̃↵ given by (5.28);
3. Compute

• µ̂ = [µ̃x, µ̃y]
T with µ̃↵ =

d
†
↵s0

w†s0
, ↵ 2 {x, y}.

• B̂ =


Bxu Bx�

Byu By�

�
, with

B↵h =
d
†
↵shw

†
s0�d

†
↵s0w

†
sh

(w†s0)2
, ↵ 2 {x, y}, h 2 {u, �}.

• z1 according to (5.34).

• Ĉopt using (5.35).

4. Evaluate hAGMP-CC using (5.36);
5. Project hAGMP-CC onto [�1, 1] ⇥ [��f

B ,
�f
B ] to get an estimate

ĥAGMP-CC complying with the problem constraints.
Output [ûAGMP-CC, �̂AGMP-CC]

T
= ĥAGMP-CC .

Finally, the estimates of u and � can be obtained according to (5.27), i.e.,

hAGMP-CC =Re

⇢⇣
Re

n
B̂

†
z
�1

1
B̂

o⌘�1

B̂
†
z
�1

1
(r̂ � µ̂)

�
+ h0. (5.36)

The complete procedure for the AGMP-CC is provided in Algorithm 9.

Along the same line of reasoning followed to introduce the DSC-AMP
estimator, a refined version of the AGMP-CC procedure can be conceived
via a second execution of Algorithm 9, with inputs induced by ûAGMP-CC

and �̂AGMP-CC. This procedure will be denoted as the DSC-AGMP-CC and
ûDSC-AGMP-CC and �̂DSC-AGMP-CC indicate the resulting estimates.
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5.2.3 Discussion on the Computational Complexity

In this subsection, the assessment of the computational burden in-
volved by the proposed estimators is provided3. To this end, the following
equivalent expression of the objective function (5.12), that can be derived
according to the results of Appendix B of [66], is used for ML and CD
methods

P (u, �) =

��a(�)† v(u)
��

a(�)† T̂ (u) a(�)
, (5.37)

where
v(u) = c(u)� z̃(u) 2 C

M
, (5.38)

with

• z̃(u) =
PN

l=1
[b(u)]

⇤
l z̄l 2 C

M .

• z̄ = Q
�1

z = [z̄
T

1
, . . . , z̄

T

N ]
T 2 C

MN , z̄l 2 C
M

and
T̂ (u) = C

†
(u) T (u)C(u) 2 H

M
, (5.39)

with

• C(u) = diag(c(u)) 2 C
M⇥M .

• T (u) =
PN

k=1

PN
l=1

⇣
[b(u)]

⇤
l Q̃l,k[b(u)]k

⌘
.

• Q
�1

=

2

64
Q̃1,1 . . . Q̃1,N

... . . . ...
Q̃N,1 . . . Q̃N,N

3

75, where Q̃l,k 2 C
M⇥M , (l, k) 2 {1, . . . , N}2.

Therefore, given z̄ (which requires O((MN)
2
) operations), for any

given u (5.38) can be evaluated with a computational complexity O(MN).
Indeed, O(M) operations are needed in the Hadamard product, while the

3Without loss of generality, it is assumed that Q
�1 is pre-computed off-line. If

adaptive implementations of the proposed methods are considered, i.e., Q is estimated
resorting to secondary data, the term (MN)2K has to be added in the computational
complexity expressions, where K � MN is the size of the secondary data set.
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evaluation of z̃(u) involves O(MN) operations. Besides, the computa-
tional complexity connected with (5.39) is O((MN)

2
), where the main

task is the evaluation of T (u), demanding O((MN)
2
) operations.

ML estimator. Being the feasible set I given by the Cartesian
product of Iu and I�, the 2-D search is tantamount to performing Nu

1-D search, each at a given value of u, with � the optimization vari-
able. Exploiting (5.37), for T̂ (u) and v(u) given, each 1-D search re-
quires O(N�M

2
) operations. Hence, the overall computational complexity

is O(Nu((NM)
2
+N�M

2
), where (NM)

2 amounts for the computation of
T̂ (u) and v(u).

FDA-CD. At each iteration of the CD method, the 1-D searches
w.r.t. u and � require O(NuM

2
) and O(N�M

2
) operations, respectively,

provided that T̂ (u) and v(u) are pre-computed for each u 2 Iu. This last
task involves O(Nu(MN)

2
) operations. To proceed further, let us denote

by Nit,CD = Nit,CD,x +Nit,CD,y the total number of iterations of the CD
method, where Nit,CD,x and Nit,CD,y refer to the number of iterations
required by the first and second cycle, respectively (the former with initial
search direction given by u, the latter by �). Hence, the implementation of
FDA-CD requires O(Nu(MN)

2
+Nit,CD(Nu +N�)M

2
) operations, where

the first term is due the computation of T̂ (u) and v(u) for any u 2 Iu.
FDA-AMP and FDA-AGMP-CC. The evaluation of the terms w,

dx, and dy involved in step 1 of both FDA-AMP and FDA-AGMP-CC
is the most demanding task and requires O((NM)

2
) operations. Further-

more, as to FDA-AMP, O(NM) operations are connected with the compu-
tation of r, µ, and C, whereas O(1) operations are necessary to perform
steps 4 and 5. On the other hand, with reference to FDA-AGMP-CC,
O(NM) amounts for the computation of of r̂, µ̂, and B̂, while O((NM)

2
)

operations are necessary to determine z1. Besides, the evaluation of Ĉopt

as well as the execution of steps 4 and 5 need O(1) operations. This
implies that the computational complexity for both FDA-AMP and FDA-
AGMP-CC is O((NM)

2
).

Summarizing, the computational complexity connected with the im-
plementation (either non-adaptive or adaptive) of the devised estimators
is reported in Table 5.1. Before concluding this subsection, it is worth
observing that the ML procedure is the most demanding. In fact, it ex-
hibits a computational burden always higher than the monopulse-based
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Table 5.1. Computational complexity of the considered estimators.

Computational Costs
Methods Non-adaptive implementation Adaptive implementation

ML O(Nu((NM)
2
+N�M

2
)) O(Nu((NM)

2
+N�M

2
) + (NM)

2
K)

FDA-CD O(Nu(MN)
2
+Nit,CD(Nu +N�)M

2
) O(Nu(MN)

2
+Nit,CD(Nu +N�)M

2
+ (NM)

2
K)

FDA-AMP O((NM)
2
) O((NM)

2
K)

FDA-AGMP-CC O((NM)
2
) O((NM)

2
K)

procedures, and requires more operations than the CD method, as long as
NuN� > Nit,CD(Nu +N�), which is a condition always met in our numer-
ical experiments.

5.3 CRLB for FDA-MIMO radar

To shed light on the statistical efficiency of proposed estimators, the
CRLB for angle and incremental range is derived. Let us first define three
auxiliary vectors, i.e., ⇠ = Q

� 1

2s 2 C
MN , ⇠u = Q

� 1

2su 2 C
MN , and

⇠� = Q
� 1

2s� 2 C
MN . The CRLB for angle and incremental range is

derived assuming unknown �1.
In this respect, let us introduce the vector � 2 R

4 containing the real-
valued unknown parameters, u, �, �̄1 = Re{�1}, �̃1 = Im{�1}, i.e., � =

[u, �, �̄1, �̃1]
T. Hence, the CRLB for the unknown parameters is given by

the diagonal elements of D� = F
�1 2 R

4⇥4, where the Fisher Information
Matrix (FIM) F 2 R

4⇥4 can be computed via the Slepian-Bangs formula
[105, p. 927, eq. 8.34], which yields

F = 2Re

(✓
@�1s

@�T

◆†
Q

�1

✓
@�1s

@�T

◆)

= 2Re

⇢
[�1su,�1s�, s, js]

†
⇣
Q

� 1

2

⌘† ⇣
Q

� 1

2

⌘
[�1su,�1s�, s, js]

�

= 2Re

n
[�1⇠u,�1⇠�, ⇠, j⇠]

†
[�1⇠u,�1⇠�, ⇠, j⇠]

o
.

(5.40)

Hence, the FIM can be expressed in block form as

F = 2


F11 F12

F21 F22

�
, (5.41)
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where F11 2 R
2⇥2, F12 2 R

2⇥2, F21 2 R
2⇥2, and F22 2 R

2⇥2 are respec-
tively given by

F11 =

2

4
|�1|2k⇠uk2 |�1|2Re

n
⇠
†
u⇠�

o

|�1|2Re
n
⇠
†
u⇠�

o
|�1|2k⇠�k2

3

5 , (5.42a)

F12 =

2

4
Re

n
⇠
†
u⇠�

⇤
1

o
� Im

n
⇠
†
u⇠�

⇤
1

o

Re

n
⇠
†
�⇠�

⇤
1

o
� Im

n
⇠
†
�⇠�

⇤
1

o

3

5 , (5.42b)

F21 = F12
T (5.42c)

F22 = k⇠k2

1 0

0 1

�
. (5.42d)

Then, D� can be calculated as the inverse of F , i.e.,

D� = F
�1

=
1

2


G

�1

1
G2

G3 G
�1

4

�
, (5.43)

where

G1 = F11 � F12F
�1

22
F21

= |�1|2

2

664
k⇠uk2 �

���⇠†u⇠
���
2

k⇠k2 Re

n
⇠
†
u⇠�

o
�

Re

n
⇠
†
u⇠⇠

†
⇠�

o

k⇠k2

Re

n
⇠
†
u⇠�

o
�

Re

n
⇠
†
u⇠⇠

†
⇠�

o

k⇠k2 k⇠�k2 �
���⇠†

�
⇠

���
2

k⇠k2

3

775

= F11 � F12F
�1

22
F21 2 R

2⇥2
.

(5.44)
Hence, the CRLB for u and � (analytical details is reported in Appendix D.2)
are given by

Du =
|�1|2

2 det (G1)

0

B@k⇠�k2 �

���⇠†�⇠
���
2

k⇠k2

1

CA , (5.45)
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Table 5.2. Simulation Parameters of FDA-MIMO Radar

Parameter Symbol Value
transmit elements M 4
receive elements N 10

bandwidth B 1 MHz
frequency increment �f 0.5 MHz
nominal target angle u0 0

nominal target incremental range �0 0
possible angle of the target u � 0.891

2(N+M) , 0,
0.891

2(N+M)

possible incremental range of the target � ��f
2B ,��f

4B , 0,
�f
4B ,

�f
2B

angle of the coherent repeater 1 u1 5
0.891

(N+M)

incremental range of the coherent repeater 1 �1
�f
3B

angle of the coherent repeater 2 u2 �6
0.891

(N+M)

incremental range of the coherent repeater 2 �2 ��f
8B

and

D� =
|�1|2

2 det (G1)

0

B@k⇠uk2 �

���⇠†u⇠
���
2

k⇠k2

1

CA . (5.46)

5.4 Performance Analysis

In this section, numerical examples are provided to assess the perfor-
mance of the proposed methods to estimate the target incremental range
and angle of arrival with reference to an FDA-MIMO radar sensing sys-
tem. To this end, a transmit ULA with M = 4 elements and a receive
ULA with N = 10 elements, both pointing toward the boresight direction
(i.e., u0 = 0), are considered. Moreover, orthogonal baseband signals are
radiated, i.e., R = I, whereas the spacing among the antennas is set to
d = �0/2. Resorting to Monte Carlo technique, the performance of the
proposed methods is evaluated for both range and angle estimations. As
figure of merit, the Root Mean Square Error (RMSE) is considered, which
is computed as

\RMSEu =

vuut 1

MC

MCX

i=1

ku� ûik2, (5.47)
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and

\RMSE� =

vuut 1

MC

MCX

i=1

���� � �̂i

���
2

, (5.48)

where MC = 500 indicates the number of Monte Carlo independent trials, u
and � denote the actual DOA and incremental range of the target, whereas
ûi and �̂i are the estimates provided at the i-th trial by a given technique.

The performance of the CD, AMP, and AGMP-CC algorithms are
evaluated for several values of SINR, defined according to [40], as

SINR = |�1|2s†(u0, �0)Q�1
s(u0, �0). (5.49)

Besides, B = 1 MHz and �f = 0.5 MHz are considered, with the nominal
parameters values set as u0 = 0 and �0 = 0, respectively. Tapered version
of AMP and AGMP-CC, referred to as AMPt and AGMP-CCt, respec-
tively, are considered too. In particular, Taylor and Bayliss tapers [81],
both with SideLobe Level (SLL)= 30 dB and n̄ = 4, are used for sum
and difference beamforming, respectively, where n̄ indicates the number of
nearly constant-level sidelobes adjacent to the mainlobe. The DSC ver-
sions of AMP, AMPt, and AGMP-CCt algorithms, respectively denoted
as DSC-AMP, DSC-AMPt, and DSC-AGMP-CCt, are also included in
the reported analysis. Besides, since AGMP-CC is equivalent to AMP
when tapering is not applied [84], only the AMP and DSC-AMP curves
are displayed in the figures, without loss of generality. Finally, the CRLB
for both angle and incremental range estimation is used as performance
benchmarks.

In the following subsections, two different interference scenarios are
examined. In the former, the useful signal is buried in white Gaussian
noise; in the latter, white Gaussian noise plus two coherent repeaters, is
considered. The values of the parameters involved in the analyzed case
studies are listed in Table 5.2.

5.4.1 White Noise Interference Scenario

Within this subsection, the overall disturbance is assumed composed
of white Gaussian interference only. Therefore, its covariance matrix is
modeled as Q = �

2
nIMN , where �

2
n is the power level, assumed without
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Figure 5.3. Comparison of RMSE (dB) assuming white noise for some u

and �: (a) and (d) u = �0.891/(2(N + M)), � = ��f/(4B), (b) and (e)
u = 0, � = �f/(4B), (c) and (f) u = 0.891/(2(N +M)), � = �f/(2B). The
RMSE analysis w.r.t. u is reported in (a), (b), and (c), whereas that w.r.t. �

is reported in (d), (e), and (f).
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Figure 5.4. Bias and variance analysis assuming white noise for 15 different
pairs (u, �) and SINR = 20dB.

loss of generality equal to 0 dB.
Fig. 5.3 illustrates the RMSE versus SINR for three case studies assum-

ing different values of the true angles and incremental ranges of the target.
In particular, Figs. 5.3 (a) and (d) consider u = �0.891/(2(N +M)), � =

��f/(4B), Figs. 5.3 (b) and (e) assume u = 0, � = �f/(4B), while
Figs. 5.3 (c) and (f) suppose u = 0.891/(2(N +M)), � = �f/(2B). The
RMSE analysis w.r.t. u is reported in Figs. 5.3 (a), (b), and (c), whereas
that w.r.t. � in Figs. 5.3 (d), (e), and (f).

Inspection of the curves shows that the higher the SINR the lower the
RMSE of all the estimators. Besides, some of them achieve performance
levels comparable with the CRLB benchmark when the SINR is sufficiently
high, for all the considered scenarios. Specifically, both the angle and incre-
mental range estimates provided by the CD method are very close to their
true values. Similar results hold for the DSC-AMP, with RMSE curves
almost overlapped, especially for the high SINR regime, with those per-
taining to CD technique. The plots also highlight that the DSC versions
of the monopulse procedures outperform their corresponding single itera-
tion (i.e., without DSC) counterparts for all the range of SINR values and
all the considered experimental setups. Besides, the tapered procedures
exhibit a performance degradation w.r.t. the unweighted counterparts. In
particular, even with the further iteration, i.e., considering DSC-AMPt

and DSC-AGMP-CCt at high SINR values, the CRLB is not attained, in
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Figure 5.5. Comparison of RMSE (dB) for some u and �: (a) and (d) u =

0.891/(2(N +M)), � = ��f/(2B), (b) and (e) u = �0.891/(2(N +M)), � =

��f/(4B), (c) and (f) u = 0, � = 0, assuming two coherent repeaters, with
SINR = 30dB, located at u1 = 5(0.891/(N+M)) and u2 = �6(0.891/(N+M))

with incremental range of �1 = �f/(3B) and �2 = ��f/(8B), respectively.
The RMSE analysis w.r.t. u is reported in (a), (b), and (c), whereas that
w.r.t. � is reported in (d), (e), and (f).
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Figure 5.6. Bias and variance analysis for 15 different pairs (u, �) assuming
SINR = 20dB and two coherent repeaters, with SINR = 30dB, located at
u1 = 5(0.891/(N+M)) and u2 = �6(0.891/(N+M)) with incremental range
of �1 = �f/(3B) and �2 = ��f/(8B), respectively.

both u and � domains. Furthermore, at low SINR, smaller RMSE values
than the CRLB benchmark are observed indicating that all the proposed
estimators exhibit a bias under this SINR regime due to an upper bound
to the mean square error induced by the enforced constraint.

To further shed light on performance of the different procedures, Fig. 5.4
displays the bias and variance ellipses of the proposed estimators for a grid
of 15 points and SINR = 20dB. The ellipses corresponding to the CRLB
are also reported for comparison. The simulation assumes the same inter-
ference environment as in Fig. 5.3. The results reveal that the AMP (or
equivalently the AGMP-CC) method, as well as AMPt and AGMP-CCt,
exhibit a bias in both the u and � domains, with a much more marked ef-
fect on the � component. As expected, the bias is almost corrected by the
second iteration of the double-step implementation, i.e., DSC-AMP and
DSC-AGMP-CC, thus leading to a performance very close to the CRLB.
On the other hand, despite the second iteration, a small but noticeable
bias persists in both DSC-AMPt and DSC-AGMP-CCt. Therefore, the
bias and variance analysis confirms that all the tapered monopulse algo-
rithms experience a bias in both u and � domains, which is the main reason
for the deviations of these estimators from the CRLB (at high SINR). Fi-
nally, under this SINR regime, no bias is exhibited by the CD method with
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variance ellipses almost overlapped with CRLBs.

5.4.2 Coherent Repeaters In The Interference Scenario

The interference scenario considered in this subsection accounts for the
presence of two coherent signals at the same range ring as the target (this
can be the situation of stand-off or escort jamming configuration), with
SINR equal to 30 dB, impinging on the array from u1 = 5 (0.891/(N+M))

and u2 = �6 (0.891/(N +M)), with �1 = �f/(3B) and �2 = ��f/(8B),
respectively. As a consequence, for this specific environment, the interfer-
ence covariance matrix is modeled as Q = �

2
nIMN + �

2
c⌃c where �

2
n and

�
2
c are the noise and interferers powers4, respectively, with �

2
c/�

2
n = 30 dB.

Besides,

⌃c =

2X

i=1

s(ui, �i)s
†
(ui, �i), (5.50)

where s(ui, �i), ui, and �i are the steering vector, the angle and the incre-
mental range of the i-th coherent repeater, respectively.

The RMSE versus SINR is displayed in Fig. 5.5, where in each subfigure
different values of the true angle and incremental range of the target are
considered. In particular, Figs. 5.5 (a) and (d) refer to u = 0.891/(2(N +

M)), � = ��f/(2B), Figs. 5.5 (b) and (e) assume u = �0.891/(2(N +

M)), � = ��f/(4B), while Figs. 5.5 (c) and (f) consider u = 0, � = 0.
The RMSE analysis w.r.t. u is reported in Figs. 5.5 (a), (b), and (c),
whereas that w.r.t. � in Figs. 5.5 (d), (e), and (f). Inspection of the curves
highlights that the considered estimators exhibit performance behaviors
comparable to those obtained in the white noise only scenario. In other
words, the methods correctly estimate the parameters of a target located in
the main beam without experiencing significant performance degradation
due to possible coherent interference. In particular, the CD and DSC-AMP
procedures achieve similar RMSE levels with performance very close to
CRLB, at high SINR. Furthermore, the bias and variance analysis reported
in Fig. 5.6, for SINR = 20dB, does not show specific differences w.r.t. the
noise-only case, corroborating the effectiveness of the DSC technique to
reduce the bias and thus improve the performance.

4The white noise power level �2

n can be again assumed, without loss of generality,
equal to 0 dB.
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5.5 Conclusion

The problem of target angle and incremental range estimation with an
FDA-MIMO radar has been investigated using a single data snapshot. At
the design stage, three estimators, with lower computational complexity
than the 2-D grid search procedure required by the ML estimator, have
been devised. Firstly, a CD algorithm has been proposed, which reduces
the 2-D search to a sequence of 1-D problems alternating between the op-
timization over each variable while keeping the other fixed. Then, two
approximated estimators, i.e., the AMP leveraging real slope and bias cor-
rection and the AGMP-CC capitalizing complex slope and bias correction,
have been devised. The performance of the proposed estimators, also con-
sidering double-step and tapered versions, has been assessed in terms of
RMSE versus SINR. Comparisons with benchmark limits, along with an
extensive bias and variance analysis, have also been conducted. The results
(for both white and colored interference) have pinpointed the effectiveness
of the devised estimators to reliably estimate the angle and incremental
range of the target in all the considered case studies. In particular, the CD
method achieves a performance level very close to the theoretical CRLB
when the SINR is sufficiently high.



Chapter 6
Adaptive Target Detection

with Polarimetric FDA-MIMO

Radar

The problem of adaptive radar detection with a polarimetric FDA-
MIMO radar is addressed in this chapter1. At the design stage, the target
detection problem is formulated as a composite hypothesis test, with the
unknowns given by the target angle, incremental range (target displace-
ment with respect to the center of the occupied range cell), and scattering
matrix, as well as the interference covariance matrix. The formulated de-
tection problem is handled by resorting to sub-optimal design strategies
based on the GLR criterion. The resulting detectors demand, under the
H1 hypothesis, the solution of a box-constrained optimization problem for
which several iterative techniques, i.e., the LAM, the GPM, and the CD
algorithms, are exploited. At the analysis stage, the performance of the
proposed architectures, which ensure the bounded CFAR property, is eval-
uated via Monte Carlo simulations and compared with the benchmarks in
both white and colored disturbance.

The chapter is organized as follows. The signal model for the polari-
metric FDA-MIMO radar is presented in Section 6.1. In Section 6.2, the

1©2022 IEEE. Reprinted, with permission, from L. Lan, M. Rosamilia, A. Aubry,
A. De Maio, G. Liao and J. Xu, “Adaptive Target Detection with Polarimetric FDA-
MIMO Radar,” IEEE Transactions on Aerospace and Electronic Systems, 2022.
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detection problem for a polarimetric FDA-MIMO radar is formulated. Sec-
tion 6.3 investigates optimization strategies for the computation of GLRT-
based detectors and studies the bounded CFARness as well as the compu-
tational complexity of the derived algorithms. The performance analysis
is addressed in Section 6.4, whereas conclusions are drawn in Section 6.5.

6.1 Signal Model For Polarimetric FDA-MIMO

Radar

Let us consider a colocated FDA-MIMO radar consisting of M transmit
and N receive pairs of crossed dipoles, which are placed in a uniform linear
array configuration for both transmission and reception on the xy-plane
with array’s inter-element spacing equal to d (see Fig. 6.1). An elliptical
electromagnetic polarization for both the transmitted and received signals
[13] is considered. It is also assumed that a point-like target is located in
the far-field at the angle ✓t and range Rt in the yz-plane.

For the FDA configuration, a frequency increment �f is introduced
at each crossed dipole composing the transmit array, with the first one
being the reference. As a consequence, the carrier frequency at the m-th
(m = 1, . . . ,M) transmitting crossed dipole is [66]

fm = f0 + (m� 1)�f, m = 1, 2, . . . ,M, (6.1)

where f0 indicates the reference carrier. Besides, each element transmits a
specific base-band phase-modulated pulse composed of P subpulses. The
resulting complex envelope of the radio frequency signal radiated by the
m-th crossed dipole can be expressed as

sm(t) =

r
Et

P
xm(t)e

j2⇡fmt
, 0  t  Tp, (6.2)

with Et the transmitted energy, Tp the radar pulse duration, and

xm (t) =
1

p
⌧b

PX

p=1

'm (p)u


t� (p� 1) ⌧b

⌧b

�
, m = 1, . . . ,M, (6.3)
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where ⌧b =
Tp

P , u(t) is the asymmetric rect function, i.e., u(t) = 1 as long
as 0  t  1 and zero elsewhere, and 'm(p) = e

j�m(p), with �m(p) 2 [0, 2⇡]

the p-th entry of the phase code on the m-th transmit array element.
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Figure 6.1. Illustration of the polarimetric FDA-MIMO radar system.

6.1.1 Received Signal for Polarimetric FDA-MIMO radar

Let us consider the far-field target having a constant polarimetric scat-

tering matrix ⌃t =


⌃HH ⌃VH

⌃HV ⌃VV

�
2 C

2⇥2 over the FDA-MIMO radar

bandwidth, with ⌃rt, r, t 2 {H,V} the complex target scattering amplitude
assuming a polarization ‘t’ on transmit and a polarization ‘r’ on receive2.

As shown in Fig. 6.2, the H and V components received on the n-
th polarimetric-spatial channel, i.e., yn (t, ✓t) =

⇥
y
H
n (t, ✓t) , y

V
n (t, ✓t)

⇤T 2
C
2
, n = 1, . . . , N , are firstly multiplied by e

�j2⇡f0t, and then processed
through a bank of M matched filters hl(t) = x

⇤
l (�t) e

j2⇡�f(l�1)t (l =

1, . . . ,M). Moreover, after sampling at the range gate of interest and
under some mild technical conditions (see Appendix A of [66] for the single
polarization case), the received polarimetric signal from the target can be

2For co-polarized channels r = t, and for cross-polarized channels r 6= t. For a recip-
rocal medium (e.g., no Faraday rotation of polarization), ⌃VH = ⌃HV [91].
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Figure 6.2. Signal processing chain at the n-th polarimetric receiver with
multiple match-filters.

expressed as a 2MN ⇥ 1-dimensional vector

yS(✓t,�⌧) =
⇥
ỹ
T

1,1 (t
?
, ✓t) , . . . , ỹ

T

1,M (t
?
, ✓t) , . . . ,

ỹ
T

N,1 (t
?
, ✓t) , . . . , ỹ

T

N,M (t
?
, ✓t)

⇤T

= ↵⌦ (b (✓t)⌦ [c (✓t)� a (�⌧)])

= ↵⌦ s(✓t,�⌧),

(6.4)

where3

• t
?
= ⌧0 +�⌧ denotes the time instant when the data from the CUT

are collected, with �⌧ the unknown incremental delay w.r.t. the
sampling time associated with the target range cell [66] and ⌧0 =

2Rt

c
the envelope time delay, respectively;

• ỹn,l (t
?
, ✓t) =

h
ỹ
H

n,l (t
?
, ✓t) , ỹ

V

n,l (t
?
, ✓t)

i
T

2 C
2
, l = 1, . . . ,M, n =

1, . . . , N , is obtained by filtering the output of the n-th polarimetric
channels (after multiplication by e

�j2⇡f0t) with the l-th matched fil-
ter and sampling the resulting signal in the CUT;

• ↵ = ⌃te
p
(Et/P ) 2 C

2;

• e = [EH, EV]
T 2 C

2, with EH and EV the horizontal and vertical
components of the electric field impinging on the target, respectively;

3Note that the vector ↵ can be also expressed in terms of the polarization auxiliary
angle and phase difference [70, 78].
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• s(✓t,�⌧) = b (✓t) ⌦ [c (✓t)� a (�⌧)]2 C
MN the transmit-receive

steering vector;

• b (✓t) =

h
1, e

j2⇡ d

�0
sin(✓t)

, . . . , e
j2⇡ d

�0
(N�1) sin(✓t)

iT
2 C

N the angle-dependent
receive steering vector, with �0 =

c
f0

the reference carrier wavelength;

• c (✓t) = R
T
d (✓t) 2 C

M the angle-dependent transmit steering vec-
tor;

• R 2 C
M⇥M is the transmit waveforms correlation matrix, i.e., Rm,l =R Tp

0
xm (s)x

⇤
l (s)ds, (m, l) 2 {1, ...,M}2;

• d (✓t) =

h
1, e

j2⇡ d

�0
sin(✓t)

, . . . , e
j2⇡ d

�0
(M�1) sin(✓t)

iT
2 C

M the angle-dependent
transmit steering vector;

• a (�⌧) =
⇥
1, e

j2⇡�f�⌧
. . . , e

j2⇡�f(M�1)�⌧
⇤T 2 C

M the range-dependent
steering vector.

Furthermore, letting u = sin (✓t) and � = 2�f�⌧ (satisfying |�|  �f
B ),

s(✓t,�⌧) can be further expressed as [66, 67]

s(✓t,�⌧) = s(u, �) = b (u)⌦ [c (u)� a (�)] , (6.5)

where

• b (u) =

h
1, e

j2⇡ d

�0
u
, . . . , e

j2⇡ d

�0
(N�1)u

iT
2 C

N ;

• c(u) = R
T
d(u) 2 C

M ;

• d(u) =

h
1, e

j2⇡ d

�0
u
, . . . , e

j2⇡ d

�0
(M�1)u

iT
2 C

M ;

• a (�) =
⇥
1, e

j⇡�
. . . , e

j⇡(M�1)�
⇤T 2 C

M .

Hence, defining the steering matrix H(u, �) =


s(u, �) 0

0 s(u, �)

�
2 C

2MN⇥2,

the useful polarimetric target echo (6.4) can be recast as

yS(u, �) = ↵⌦ s(u, �) = H(u, �)↵. (6.6)
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6.2 Formulation of the Detection Problem for Po-

larimetric FDA-MIMO Radar

This section investigates the problem of detecting a prospective target
using a radar system equipped with a polarimetric FDA-MIMO. Let us
define the received observation vector from the CUT (under the target
presence) as r 2 C

2MN , which contains the superposition of the polari-
metric echo signal (6.6) of a prospective target and the interference plus
noise contribution [35, 79]. Therefore, it can be cast as

r = H(u, �)↵+m, (6.7)

where u, �, and ↵ are regarded as unknown parameters and m 2 C
2MN

is modeled as a zero-mean complex circularly symmetric Gaussian ran-
dom vector, i.e., m ⇠ CN(0,M), with M 2 H

2MN the positive def-
inite polarimetric covariance matrix of the interference plus noise term.
Let us also assume that a set of K � 2MN secondary data rk 2 C

2MN ,
k = 1, 2, . . . ,K, free of useful target returns and with the same spectral
characteristics as the interference from the CUT (homogeneous environ-
ment)4, i.e., E[rkr†k] = M , k = 1, 2, . . . ,K, is available. As a consequence,
the target detection problem can be formulated as a binary hypothesis test
where the null hypothesis H0 indicates the situation of target absence and
H1 represents the alternative, i.e.,

H0 :

(
r = m

rk = mk, k = 1, 2, . . . ,K

H1 :

(
r = H(u, �)↵+m

rk = mk, k = 1, 2, . . . ,K

. (6.8)

4It worth mentioning that often a data selection stage of the rk is also foreseen.
This preprocessing is aimed at censoring from the training set data vectors containing
possible outliers (sources of deviations from homogeneous assumption). The interested
reader can refer to [49, 20, 30].
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Notably, the joint PDFs of the observations under H0 and H1 are respec-
tively given by

f(r, r1, . . . , rK |M ;H0) =

⇢
1

⇡2MN det (M)
e
�tr{M�1

R0}
�K+1

(6.9a)

and

f(r, r1, . . . , rK |↵, u, �,M ;H1) =

⇢
1

⇡2MN det (M)
e
�tr(M�1

R1)

�K+1

,

(6.9b)

with R0 and R1 defined as

R0 =

rr
†
+

KP
k=1

rkr
†
k

K + 1
(6.10a)

and

R1 =

(r �H(u, �)↵)(r �H(u, �)↵)
†
+

KP
k=1

rkr
†
k

K + 1
. (6.10b)

Invoking the Neyman-Pearson framework [39], the optimal solution
to the hypothesis testing problem (6.8), i.e., the LRT, cannot be imple-
mented due to the unknowns ↵, u, �, and M . In this respect, some sub-
optimal and practically implementable architectures, based on the sub-
space GLRT [60] and 2SGLRT [93] frameworks, are proposed in subsec-
tion 6.2.1 and 6.2.2, respectively.

6.2.1 Detection with GLRT

In this subsection, the design of a detector based on subspace GLRT
framework [87] is investigated. In particular, the GLRT over the unknowns
computes the decision statistic

⇤GLRT =

max
↵,u2A ,�2B,M

f(r, r1, . . . , rK |↵, u, �,M ;H1)

max
M

f(r, r1, · · · , rK |M ;H0)
, (6.11)
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where, according to [67], A denotes the uncertainty set associated with u,
i.e., [�1, 1], and B that on �, i.e.,

h
��f

B ,
�f
B

i
.

Maximizing both the numerator and the denominator of (6.11) over
M yields (according to standard argumentation) [60]

⌧GLRT =
1 + r

†
S

�1
r

1 + min
↵,u2A ,�2B

(r �H(u, �)↵)†S�1 (r �H(u, �)↵)

H1

?
H0

⇠, (6.12)

where S =

KP
k=1

rkr
†
k 2 C

2MN⇥2MN and ⇠ denotes the detection threshold,

set to ensure the desired Pfa. Letting for notation simplicity H(u, �) = H,
replacing ↵ with its ML estimate yields

1 + r
†
S

�1
r

1 + r†S�1r � max
u2A ,�2B

g(u, �)

H1

?
H0

⇠, (6.13)

where5

g(u, �) = r
†
S

�1
H

h
H

†
S

�1
H

i�1

H
†
S

�1
r. (6.14)

Evidently, (6.13) is statistically equivalent to

⌧GLRT =
1

1 + r†S�1r
max

u2A ,�2B
g(u, �)

H1

?
H0

⇠. (6.15)

6.2.2 Detection with 2SGLRT

In this subsection, using the conventional approach of assuming the
interference covariance matrix known at the design stage, an AMF-like
detector (also known as the 2SGLRT) is derived. Precisely, the GLRT
decision statistic for known covariance matrix is given by [93]

⇤ =

max
↵,u2A ,�2B

f̄(r|↵, u, �,M ;H1)

f̄(r|M ;H0)
, (6.16)

5With some abuse of notation, the same ⇠ is used to denote the different detection
thresholds for both the GLRT and the 2SGLRT decision statistics (6.12), (6.13), (6.15),
(6.19), (6.20), (6.22), and (6.23).
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where
f̄(r|M ;H0) =

1

⇡2MN det (M)
e
�r

†
M

�1
r (6.17a)

and

f̄(r|↵, u, �,M ;H1) =
1

⇡2MN det (M)
e
�(r�H(u,�)↵)

†
M

�1
(r�H(u,�)↵)

.

(6.17b)

Hence, substituting the ML estimate of the unknown ↵, i.e.,

↵̂ =

h
H

†
M

�1
H

i�1

H
†
M

�1
r. (6.18)

into (6.16), the following decision rule is obtained

⌧2SGLRT = max
u2A ,�2B

r
†
M

�1
H

h
H

†
M

�1
H

i�1

H
†
M

�1
r

H1

?
H0

⇠. (6.19)

Finally, using the SCM M̂ =
1

KS in lieu of M yields

⌧2SGLRT = max
u2A ,�2B

g(u, �)

H1

?
H0

⇠. (6.20)

6.3 Optimization Problem (6.20)

This section is devoted to the development of some optimization strate-
gies to handle

max
u2A ,�2B

g(u, �), (6.21)

namely, to compute the ML estimate of the target location parameters un-
der the H1 hypothesis. To this end, let us preliminary observe that (6.21)
falls in the class of box-constrained optimization problems. Moreover,
an approximated solution based on a 2-D grid search is characterized by a
high and often impractical computational cost if the grid size is sufficiently
dense to get a close to optimum objective value. This motivates the design
of some optimization methods pursuing reduced-complexity sub-optimal
solutions. In this regard, three strategies are developed:
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1. the LAM procedure [8];

2. the GPM [18];

3. the CD Method [19].

Denoting by (û, �̂) the estimate of the unknowns using one of the afore-
mentioned LAM, GPM, and CD methods, it follows that the actual deci-
sion rules, based on the GLRT and 2SGLRT criteria, are given by

⌧GLRT =
1

1 + r†S�1r
g(û, �̂)

H1

?
H0

⇠ (6.22)

and

⌧2SGLRT = g(û, �̂)

H1

?
H0

⇠, (6.23)

respectively.

6.3.1 LAM Method

Resorting to the LAM approach proposed in Chapter 2, a sub-optimal
and approximated solution method to the optimization problem in (6.21)
is derived. To this end, let us observe that (6.21) is equivalent to

min
↵,u2A ,�2B

(r �H(u, �)↵)
†
S

�1
(r �H(u, �)↵), (6.24)

namely, given a maximizer u
?
1
, �

?
1

of (6.21), an optimal solution to (6.24)
is given by

↵
?
2 =

h
H(u

?
1, �

?
1)

†
S

�1
H(u

?
1, �

?
1)

i�1

H(u
?
1, �

?
1)

†
S

�1
r, (6.25a)

u
?
2 = u

?
1, (6.25b)

�
?
2 = �

?
1 . (6.25c)

In a similar manner, given the minimizer ↵
?
2
, u

?
2
, �

?
2

of (6.24), an optimal
solution to (6.21) is u

?
1
= u

?
2

and �
?
1
= �

?
2
.
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Now, given the nominal angle and incremental range ū and �̄, the actual
mismatch w.r.t. the true target parameters values can be accounted by
performing a tailored linearization of the array steering matrix H(u, �)

around ū and �̄. To this end, denoting by (�u,��) the angle and range
offsets, i.e., �u = u � ū, �� = � � �̄, the array steering matrix can be
approximated at the first order as

Ha(�✓) = Ha(�u,��)

' H(ū, �̄) +
@H(u, �)

@u

����
(ū,�̄)

�u+
@H(u, �)

@�

����
(ū,�̄)

��

= H̄ + H̄u�u+ H̄���,

(6.26)

with �✓ = [�u,��]
T 2 R

2. Detailed expressions for Hu =
@H(u,�)

@u and
H� =

@H(u,�)
@� are reported in Appendix E.1. Hence, resorting to the

linearization procedure, an optimized solution to (6.24) can be obtained
solving

min
↵,�✓2C

(r �Ha(�✓)↵)
†
S

�1
(r �Ha(�✓)↵), (6.27)

where C = [�,]⇥ [�⇢, ⇢], with  = 1 and ⇢ =
�f
B , is the nonempty and

compact feasible set6. In this respect, a CD-based procedure is proposed to
solve the optimization problem (6.27) by alternatively optimizing ↵ and
�✓ up to convergence. In the following, the analytical solutions to the
resulting optimization problems, at the h-th iteration, are derived.

a) Optimization w.r.t. ↵.

At the h-th iteration, the optimization problem w.r.t. ↵ is given by

min
↵

(r �Ha(�✓
(h�1)

)↵)
†
S

�1
(r �Ha(�✓

(h�1)
)↵), (6.28)

6Note that the accuracy of the approximation can be improved considering a partition
of the original feasible set C into D subsets, Ci, i = 1, . . . , D, and performing the
linearization of the steering matrix around different nominal points (ūi, �̄i), i = 1, . . . , D,
each associated to a specific uncertainty set Ci, i = 1, . . . , D.
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whose optimal solution is

↵
(h)

=

⇣
H

†
a

⇣
�✓

(h�1)

⌘
S

�1
Ha

⇣
�✓

(h�1)

⌘⌘�1

H
†
a

⇣
�✓

(h�1)

⌘
S

�1
r.

(6.29)

b) Optimization w.r.t. �✓.
At the h-th iteration, the optimization w.r.t. �✓ yields

min
|�u|

|��|⇢

(r � (H̄ + H̄u�u+ H̄���)↵
(h)

)
†
S

�1

(r � (H̄ + H̄u�u+ H̄���)↵
(h)

)

= min
�✓2C

(r̃ � H̃�✓)
†
S

�1
(r̃ � H̃�✓)

= min
�✓2C

(r̂ � Ĥ�✓)
†
(r̂ � Ĥ�✓),

(6.30)

where

• r̃ = r � H̄↵
(h);

• H̃ =
⇥
H̄u↵

(h)
, H̄�↵

(h)
⇤
;

• r̂ = S
�1/2

r̃;
• Ĥ = [ĥu, ĥ�] = S

�1/2
H̃.

The following proposition provides an optimal point to (6.30).

Proposition 3. An optimal solution �✓
(h) to (6.30) is

�✓1 =

h
R{Ĥ†

Ĥ}
i�1

R{Ĥ†
r̂} (6.31)

if it is feasible. Otherwise, it can be computed as

�✓
(h)

= argmin

�✓2{�✓i}5i=2

(r̂ � Ĥ�✓)
†
(r̂ � Ĥ�✓), (6.32)

where �✓i, i = 2, . . . , 5 are candidate solutions given by

�✓2 = [,��
⇤
+]

T
, �✓3 = [�,��

⇤
�]

T
,

�✓4 = [�u
⇤
+, ⇢]

T
, �✓5 = [�u

⇤
�,�⇢]

T
,

(6.33)
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with

�u
⇤
± = min

 
,max

 
R{(r̂† � ĥ

†
�(±⇢)) ĥu}

kĥuk2
,�

!!
(6.34)

and

��
⇤
± = min

 
⇢,max

 
R{(r̂† � ĥ

†
u(±)) ĥ�}

kĥ�k2
,�⇢

!!
. (6.35)

Proof. See Appendix E.2.

A summary of the devised procedure to determine a solution to (6.27)
is reported in Algorithm 10, where the exit condition is set as |P (h) �
P

(h�1)| < "1, with "1 > 0 and

P
(h)

=(r �Ha(�✓
(h)

)↵
(h)

)
†
S

�1
(r �Ha(�✓

(h)
)↵

(h)
). (6.36)

Now, given the output of Algorithm 10, an estimate of the tar-
get angle and incremental range can be obtained as ũLAM = ū + �u

?

and �̃LAM = �̄ + ��
?, respectively, with �u

? and ��
? the resulting mis-

match estimates w.r.t. the nominal values ū and �̄, respectively. However,
[ũLAM, �̃LAM]

T could not be a feasible solution to (6.21). To this end, the
final estimate of the target location parameters undergoes a projection in
the feasible set by ĥLAM =

h
ûLAM, �̂LAM

i
T

= PC

⇣
[ũLAM, �̃LAM]

T

⌘
, where

PC is the projection operator onto the constraint set C , i.e.,

PC

⇣
[ũ, �̃]

T

⌘
=

"
min {max {ũ,�} ,}
min

n
max

n
�̃,�⇢

o
, ⇢

o
#
, ũ, �̃ 2 R. (6.37)

6.3.2 GPM

A procedure to tackle the maximization problem (6.21) is devised re-
sorting to an ascent direction method. Specifically, an estimate of h could
be computed iteratively via the projected gradient technique [18]. Ac-
cordingly, at the k-th iteration, an updated estimate is obtained moving
from the previously estimated point hk�1 along the current ascent direc-
tion (given by the gradient evaluated at hk�1) and then projecting the
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Algorithm 10 FDA-LAM
Input: r,S, ū, �̄,, ⇢, "1.
Output: ĥLAM.

1. Set h = 0, �✓
(h)

= [�u
(h)

,��
(h)

]
T
= 0,

P
(h)

= 1.

2. repeat

3. h = h+ 1;

4. Compute ↵
(h) via (6.29);

5. Compute �✓
(h) via Proposition 3;

6. Evaluate

P
(h)

= (r �Ha(�✓
(h)

)↵
(h)

)
†
S

�1
(r �Ha(�✓

(h)
)↵

(h)
)

7. until |P (h) � P
(h�1)| < "1.

8. �✓
?
= [�u

?
,��

?
]
T
= �✓

(h)

9. Output ĥLAM = PC

�
[ū+�u

?
, �̄ +��

?
]
T
�
.

resulting point onto the considered convex set C . Precisely,

hk = PC (hk�1 + ⌘kg4(hk�1)) , (6.38)

where

• h0 2 R
2 is the initial vector;

• hk�1 = [uk�1, �k�1]
T 2 R

2 with uk�1 and �k�1 the estimates at the
(k � 1)-th iteration;

• ⌘k the step size;

• g4(hk�1) =

h
@g(u,�)

@u ,
@g(u,�)

@�

i
T
����
(uk�1,�k�1)

the gradient of g(u, �) eval-

uated at uk�1 and �k�1 (see Appendix E.3 for its computation);
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• PC is defined as in (6.37).

Note that ⌘k can be either a constant stepsize ⌘̄ 2 (0,
2

L), with L the
smallest Lipschitz constant for g(h) = g(u, �), or chosen adaptively by
means of the backtracking procedure [18], i.e.,

⇢
⌘
cons

k = ⌘̄, constant stepsize
⌘
back

k = s�
ik , backtracking , (6.39)

where ik the smallest nonnegative integer satisfying

g(h̃
(ik))� g(hk�1) � ⇣s�

ik

����G 1

s�
i
k

(hk�1)

����
2

, (6.40)

with s > 0, ⇣ 2 (0, 1), and � 2 (0, 1) algorithm tuning parameters,

h̃
(ik) = PC

�
hk�1 + s�

ikg4(hk�1)
�

(6.41)

and
G{(h) = {


h� PC

✓
h+

1

{
g4(h)

◆�
(6.42)

the gradient mapping with { > 0.
Algorithm 11 summarizes the gradient projection procedure, where

the exit condition is set as khk � hk�1k < "2, with "2 > 0. Besides, the

resulting estimate is denoted by ĥGPM =

h
ûGPM, �̂GPM

i
T

.
Remark 1. Before concluding this subsection, the convergence of the

GPM is examined via the following lemma [18, Th. 9.14], reformulated for
the case of a maximization problem.

Lemma 6.3.1. Consider the optimization problem

P

(
max g(h)

s.t. h 2 C
, (6.43)

where g(h) 2 C
1,1
L is bounded above and C is a closed and convex set. Let

{hk}k�0 be the sequence generated by the GPM w.r.t. problem P using

either constant or adaptive (backtracking) stepsize. Then
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Algorithm 11 FDA-GPM
Input: r,S, ū, �̄, s,�, ⇣, "2.
Output: ĥGPM.

1. Set k = 0, hk = h0 = [ū, �̄]
T.

2. repeat

3. k = k + 1;

4. Update ⌘k using either a constant or adaptive (via backtracking
strategy) stepsize (6.39);

5. Compute hk via (6.38);

6. until khk � hk�1k < "2.

7. Output ĥGPM =

h
ûGPM, �̂GPM

i
T

= hk.

• the sequence {g(hk)}k�0 is nondecreasing and g(hk) > g(hk�1) un-

less hk�1 is a stationary point of P;

• any limit point h
?

of {hk}k�0 is a stationary point of P.

Exploiting the above result, the convergence of Algorithm 11 to a
stationary point of problem (6.21) is guaranteed, provided that g(u, �) 2
C

1,1
L (see Appendix E.4 for the detailed proof).

6.3.3 CD Method

The CD method [113, 19] is an iterative procedure that exploits a series
of 1-D searches, with one variable optimized at a time while keeping the
other constant. Precisely, the searches w.r.t. u and � are respectively
conducted over Iu and I� (corresponding to the discretized versions of A
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and B with (Nu + 1) and (N� + 1) points, respectively), defined as [67]

Iu =

⇢
�1 +

2i

Nu
, i = 0, . . . , Nu

�
(6.44a)

and
I� =

⇢
��f

B
+

2i

N�

�f

B
, i = 0, . . . , N�

�
. (6.44b)

Remarkably, since the order of the optimization could lead to different
solutions, both the instances of optimizing first u and then over �, and
first � and then over u, are implemented, with the optimal estimate chosen
between the resulting two solutions.

Denoting by g
k
= g

⇣
û
k
, �̂

k
⌘

and setting the nominal values as initial

estimates, i.e., û0 = ū and �̂
0
= �̄, u and � can be updated according to

Algorithm 12, where the exit condition is set as |gk � g
k�1| < "3, with

"3 > 0. Hence, the final solution using the CD method is obtained as
ĥCD =

h
ûCD, �̂CD

i
T

.
Note that for any initial search direction, i.e., along the u or � do-

main, the CD approach (starting from the second iteration) coincides with
the MBI policy [29]. Therefore, invoking the convergence properties of
MBI [29, 88, 12], any limit point resulting from Algorithm 12 (assuming
an exact optimization at each step) is a stationary point to Problem (6.21),
although its convergence to the optimal value cannot be claimed [19].

6.3.4 Bounded CFARness Analysis of the Derived Detec-
tors and Computational Complexities

In this subsection, the bounded CFAR property of the proposed detec-
tion architectures is studied. First of all, from (6.12) it is straightforward
to see that the GLRT decision statistic is upper bounded by a CFAR de-
tector, i.e.,

⌧GLRT  1 + r
†
S

�1
r = ⌧CFAR. (6.45)

Similarly, with reference to the 2SGLRT detector (6.20), the following
inequality applies, i.e.,

1 + ⌧2SGLRT  ⌧CFAR. (6.46)



136 Chapter 6. Adaptive Target Detection with Polarimetric FDA-MIMO Radar

Algorithm 12 FDA-CD
Input: r, S, ū, �̄, Iu, I�, "3.
Output: ĥCD.

1. Set k = 0, ûk = ū, �̂k = �̄, gk = g(û
k
, �̂

k
)

2. repeat (optimization for initial search direction given by u)

3. Find û
k+1

= argmax

u2Iu

g(u, �̂
k
);

4. Find �̂
k+1

= argmax

�2I�

g(û
k+1

, �) and set gk+1 as the corresponding

maximum value;

5. k = k + 1;

6. until |gk � g
k�1| < "3;

7. gx = g
k ; ûx = û

k ; �̂x = �̂
k;

8. Set k = 0;

9. repeat (optimization for initial search direction given by �)

10. Find �̂
k+1

= argmax

�2I�

g(û
k
, �);

11. Find û
k+1

= argmax

u2Iu

g(u, �̂
k+1

) and set gk+1 as the corresponding

maximum value;

12. k = k + 1;

13. until |gk � g
k�1| < "3;

14. gy = g
k ; ûy = û

k ; �̂y = �̂
k;

15. if gx > gy

16. Output ĥCD =

h
ûCD, �̂CD

i
T

= [ûx, �̂x]
T.

17. else

18. Output ĥCD =

h
ûCD, �̂CD

i
T

= [ûy, �̂y]
T.

19. end
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As a consequence, the devised decision architectures ensure the bounded
CFAR property, i.e.,

Pfa,GLRT =Pr(⌧GLRT > ⇠|H0)  Pr(⌧CFAR > ⇠|H0), (6.47)

and

Pfa,2SGLRT =Pr(⌧2SGLRT+1 > ⇠|H0)  Pr(⌧CFAR > ⇠|H0). (6.48)

Hence, for each considered decision strategies, it is always possible to set
a universal threshold ⇠ (based on just the system parameters) for which
Pr(⌧CFAR > ⇠|H0) achieves a desired upper bound P̄fa to the actual Pfa.
Evidently, this property holds true also for an approximated implemen-
tation of the decision statistics in (6.12) and (6.20), when possible sub-
optimal solution methods are employed to estimate the unknown target
parameters ↵, u, and �.

Finally, as long as the number of iterations involved in the three opti-
mization procedures keeps quite limited, the computational complexity is
dominated by the evaluation of the SCM S, which demands O

�
M

2
N

2
K
�

operations, regardless of the adopted optimization strategy.

6.4 Simulation Results

In this section, numerical examples are provided to evaluate the per-
formance of the proposed target detection methods for the polarimetric
FDA-MIMO radar. In the following, orthogonal baseband signals are as-
sumed, i.e., R = I.

The PD is used as figure of merit to assess the detection performance,
which is estimated resorting to 1000 independent Monte Carlo runs assum-
ing a Pfa = 10

�4. Besides, the detection thresholds are computed using
100/Pfa independent trials. The SINR is defined as

SINR = E[↵
†
H

†
M

�1
H↵] = �

2
tr{⌃tH

†
M

�1
H}, (6.49)

where E[↵↵
†
] = �

2⌃t, with ⌃t =


1 ✏t

p
�t

✏
⇤
t

p
�t �t

�
2 C

2⇥2 and � rules

the target strength, respectively. Besides, in the reported results it is as-
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Figure 6.3. Detection performance for white noise, assuming K = 320 and
the parameters of Table 6.1. Fig. (a) considers the GLRT-based detectors,
whereas Fig. (b) reports the 2SGLRT-based counterparts.

Table 6.1. Simulation Parameters of the FDA-MIMO Radar

Parameter Value Parameter Value
transmit elements M 4 receive elements N 10

bandwidth B 1 MHz frequency increment �f 0.5 MHz
angle of the target u

0.891
2(N+M) incremental range of the target � 0.6

�f
2B

nominal angle of the target ū 0 nominal incremental range of the target �̄ 0
target polarimetric parameter ✏t 0.28 target polarimetric parameter �t 1

sumed that ↵ ⇠ CN(0, �
2⌃t). The parameters involved in the simulations

are listed in Table 6.1, including both the nominal and the actual target
angle and incremental range.

Two benchmark detectors (devised assuming a perfect knowledge of H
and resorting to the GLRT and 2SGLRT decision statistics, respectively)
are considered for comparison purposes, i.e.,

⇤ben�GLRT(u, �) =
1

1 + r†S�1r
r
†
S

�1
H

h
H

†
S

�1
H

i�1

H
†
S

�1
r (6.50)

and

⇤ben�2SGLRT(u, �) = r
†
S

�1
H

h
H

†
S

�1
H

i�1

H
†
S

�1
r. (6.51)
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Besides, two additional decision strategies, respectively based on the GLRT
and 2SGLRT criteria and using the nominal values of u and � (thus referred
to as mismatched detectors), i.e.,

⇤mis�GLRT(ū, �̄) =
1

1 + r†S�1r
r
†
S

�1
H̄

h
H̄

†
S

�1
H̄

i�1

H̄
†
S

�1
r (6.52)

and

⇤mis�2SGLRT(ū, �̄) = r
†
S

�1
H̄

h
H̄

†
S

�1
H̄

i�1

H̄
†
S

�1
r. (6.53)

are also included. Moreover, the Single Polarization (SP) counterparts
of (6.50), (6.51), (6.52), and (6.53), exploiting the data received by the
HH channels, are also reported. Their decision statistics are respectively
given by

⇤ben�GLRT�SP =

��s† (u, �)S�1
r
��2

(1 + r†S�1r) s† (u, �)S�1s (u, �)
, (6.54)

⇤ben�2SGLRT�SP =

��s† (u, �)S�1
r
��2

s† (u, �)S�1s (u, �)
, (6.55)

⇤mis�GLRT�SP =

��s†
�
ū, �̄

�
S

�1
r
��2

(1 + r†S�1r) s†
�
ū, �̄

�
S�1s

�
ū, �̄

� , (6.56)

and

⇤mis�2SGLRT�SP =

��s†
�
ū, �̄

�
S

�1
r
��2

s†
�
ū, �̄

�
S�1s

�
ū, �̄

� . (6.57)

In the considered simulations, the parameters "1, "2, and "3, involved in
Algorithms 10, 11, and 12, respectively, are set as "1 = "2 = "3 = 10

�4.
For Algorithm 11, s = 1,� = 0.5, ⇣ = 0.5, whereas for Algorithm 12,
Nu = N� = 250. Additionally, 9 initial points (ū, �̄), picked up within the
constraint set C , i.e., {�1/2, 0, 1/2}⇥ {��f

2B , 0,
�f
2B } are used for the exe-

cution of the algorithms7. Then, the best achieved estimate in likelihood
sense is selected.

7It is worth noting that several feasible initial vectors can be employed for the exe-
cution of the algorithms to minimize the risk of being trapped in a local maximum.
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In the reported simulations, three different interference scenarios are
examined. In the first one, the useful signal is buried in white Gaussian
noise; in the last two, clutter disturbance is considered.

White noise interference case

Figs. 6.3(a) and 6.3(b) show the PD curves of the proposed detectors
(assuming K = 320 secondary data) in a scenario dominated by white
Gaussian noise, i.e., with the covariance matrix modeled as

M = �
2

nI 2 H
2MN

, (6.58)

where, without loss of generality, the noise power level �2
n is assumed to

be 0 dB.
Inspection of the figures highlights that the LAM detectors achieve the

best performance, with a loss w.r.t. the benchmarks of almost 1 dB at
PD = 0.9. Furthermore, the GPM and CD methods exhibit nearly an
identical behavior, with a gap smaller than 1 dB when compared with the
LAM curve. The results confirm both the capabilities of the considered
linearization technique to approximate the actual steering vector correctly
and of the iterative ascent algorithms to provide close-to-optimum solu-
tions to the optimization problem (6.21). A clear performance advantage
over the mismatched detectors (which rely on the nominal parameters to
derive the decision statistics) is highlighted, corroborating the effectiveness
of the proposed strategies. The plots also reveal that, at PD = 0.9, the
benchmark SP detectors experience a performance degradation w.r.t. the
full polarized counterparts of 7 dB for the GLRT-based detector and of 5
dB for the 2SGLRT one, pinpointing the advantage of the devised architec-
tures to leverage the polarimetric diversity. Finally, a direct comparison
between Figs. 6.3(a) and 6.3(b) does not reveal significant performance
differences between the GLRT and 2SGLRT methodologies.

Clutter interference case

In this situation, the useful target echo return is assumed buried in
clutter plus noise, with covariance matrix M 2 H

2MN modeled as

M = �
2

c⌃c ⌦Mc + �
2

nI, (6.59)
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Figure 6.4. Detection performance for a mixed clutter environment (see
Table 6.2) with ⇢c = 0.4, assuming K = 320 and the parameters of Table 6.1.
Fig. (a) considers the GLRT-based detectors, whereas Fig. (b) reports the
2SGLRT counterparts.
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Figure 6.5. Detection performance for a mixed clutter environment (see
Table 6.2) with ⇢c = 0.9, assuming K = 320 and the parameters of Table 6.1.
Fig. (a) considers the GLRT-based detectors, whereas Fig. (b) reports the
2SGLRT counterparts.

where �
2
c is the clutter power level, Mc 2 C

MN⇥MN is an exponentially-
shaped matrix with 1-lag correlation coefficient ⇢c accounting for the co-
variance between the returns from the same polarimetric channel, and
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Figure 6.6. Detection performance for a clutter trees environment (see Ta-
ble 6.2) with ⇢c = 0.9, assuming K = 320 and the parameters of Table 6.1.
Fig. (a) considers the GLRT-based detectors, whereas Fig. (b) reports the
2SGLRT counterparts.

⌃c =


1 ✏c

p
�c

✏
⇤
c

p
�c �c

�
2 C

2⇥2 indicates the clutter normalized polari-

metric scattering matrix. Besides, without loss of generality �
2
n = 0 dB is

assumed and a Clutter to Noise Ratio (CNR), i.e., CNR = �
2
c/�

2
n, of 30

dB is considered. Typical values of ✏c and �c for different clutter models
are summarized in Table 6.2 (see also [83, 82, 37]).

The detection performance for two different clutter environments and
a sample support size of8 K = 320 are reported in Figs. 6.4, 6.5, and
6.6. Specifically, assuming ⇢c = 0.4 and mixed clutter (see Table 6.2),
the PD versus SINR curves of the GLRT-based detectors are displayed
in Fig. 6.4(a), whereas the 2SGLRT counterparts are given in Fig. 6.4(b).
The results show that the proposed adaptive techniques achieve almost the
same detection performance in the high SINR regime, with a degradation,
w.r.t. the benchmarks, of 1 dB at PD = 0.9. Precisely, the LAM-based
and GPM-based detectors almost achieve the same (and closest to the opti-

8Notice that, although the use of K = 320 secondary data is rather unlikely in
practice, it allows for a good estimation of the covariance matrix. In this case, the
target detection performance of the considered algorithms can be accurately evaluated
without being affected by possible errors in the estimation of noise/interference, which
is the main goal of the presented investigation.
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mum) performance, with a very slight advantage over the CD counterparts.
This behavior represents a first confirmation of the effectiveness of the con-
sidered techniques to handle a challenging clutter-dominated scenario. On
the contrary, the mismatched detectors exhibit a clear performance degra-
dation w.r.t. the benchmarks, with a gap between the curves in the order
of 6 dB. A further inspection of the figures also highlights that, for this
challenging scenario, the SP detectors are not able to provide an adequate
detection performance, further corroborating the need to devise appropri-
ate detection strategies leveraging the polarimetric diversity techniques.

In Fig. 6.5, the same scenario as Fig. 6.4 but for ⇢c = 0.9, is considered.
Inspection of the figure reveals that the proposed detectors achieve almost
the same performance. Nonetheless, the mismatched detectors exhibit a
noticeable performance degradation in a clutter environment with ⇢ = 0.9

w.r.t. the ⇢ = 0.4 case, especially with reference to the GLRT configura-
tion. In this regard, it is worth analyzing the similarity ✓sim between the
true and the nominal array steering matrices, measured as

✓sim =
|tr{H̆t

†
H̆}|q

tr{H̆t
†
H̆t}

q
tr{H̆†

H̆}
, (6.60)

with H̆t = M
�1/2

H(u, �) and H̆ = M
�1/2

H(ū, �̄). Specifically, for the
case of ⇢ = 0.4, the similarity is ✓sim = 0.5715, whereas for the ⇢ = 0.9

scenario, ✓sim = 0.0930, which corroborates the larger performance loss
experienced by the mismatched detectors in the latter scenario w.r.t. the
former one.

In Fig. 6.6 an additional clutter model, i.e., clutter from trees (whose
parameters are reported in Table 6.2) with ⇢c = 0.9 is considered for
the interference simulation. Analysis of the curves highlights the absence
of noticeable differences when compared with the mixed clutter case of
Fig. 6.5.

In Fig. 6.7, the performance of the detectors is compared for differ-
ent sample support sizes in a scenario of mixed clutter interference with
⇢c = 0.9. In this regard, Figs. 6.7(a), 6.7(c), and 6.7(e) report the per-
formance of the GLRT-based detectors, whereas Figs. 6.7(b), 6.7(d), and
6.7(f) those related to the 2SGLRT-based strategies. Specifically, assuming
K = 320, K = 240, and K = 120 secondary data to estimate the covari-
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Table 6.2. Typical parameters for polarimetric clutter characterization [37]

Clutter Models �c ✏c ⇢c

Trees 0.89 0.64 0.9
Mixed 1.08 0.57 0.9

ance matrix, the case of LAM-based detectors is displayed in Figs. 6.7(a)
and 6.7(b), that of the GPM-based strategies in Figs. 6.7(c) and 6.7(d), and
the situation related to the CD-based detectors is analyzed in Figs. 6.7(e)
and 6.7(f). As expected, capitalizing on a larger number of secondary data
leads to a clear performance gain, owing to a better estimate of the covari-
ance matrix. Remarkably, even with a reduced sample support size, the
performance loss between the proposed receivers and the corresponding
benchmarks (either with K = 320, K = 240, or K = 120) remains almost
acceptable, with a gap smaller than 2 dB for PD = 0.9, for all the consid-
ered architectures. Besides, regardless of the number of secondary data,
all the proposed detectors achieve a better detection performance than the
SP benchmarks, stressing again the benefit of the polarimetric domain.

To summarize, the detectors based on either the LAM or GPM proce-
dures provide the best solutions (in terms of PD for a given Pfa) to the
target detection problem for all the analyzed case studies. Additionally,
the proposed methods exhibit substantially the same computational com-
plexity provided the number of iterations is small enough.

6.5 Conclusion

This chapter has considered the design of adaptive detectors for a po-
larimetric FDA-MIMO radar in a scenario characterized by the presence of
interference with unknown spectral properties. The detection problem, for-
mulated in terms of a binary hypothesis test, has been handled by resorting
either to the GLRT or to the 2SGLRT criterion, demanding the ML esti-
mation of the interference covariance matrix and, under the H1 hypothesis,
also of the unknown target parameters. To get computationally efficient
even though sub-optimal solutions to the resulting optimization problem,
three iterative strategies have been proposed. First, a procedure has been
developed leveraging a LAM technique, which capitalizes on the target lo-
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cation offsets w.r.t. the nominal array steering. Then, a GPM technique
has been considered, that iteratively updates the parameters according
to the gradient of the objective function. Finally, a CD approach has
been investigated, which sequentially optimizes one variable while keeping
the other fixed. Noticeably, the proposed detectors ensure the so-called
bounded CFAR property. At the analysis stage, the performance of the
receivers has been numerically assessed also in comparisons with bench-
marks. The results, for both white and clutter interference (either mixed
or trees), have pinpointed the effectiveness of the devised architectures to
provide a detection performance close to the clairvoyant structure. Fur-
thermore, a clear performance advantage over both mismatched detectors
and the single polarization counterparts has been underlined, corroborat-
ing the strength of the proposed detectors.
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Figure 6.7. Detection performance of the LAM, GPM, and CD methods for
different sample support sizes, i.e., K = 320, K = 240, K = 120, assuming a
mixed clutter environment (see Table 6.2) with ⇢c = 0.9 and the parameters of
Table 6.1. Figs. (a), (c), and (d) report the performance of the GLRT-based
decision statistics; Figs. (b), (d), and (f) that of the 2SGLRT rules.



Chapter 7
Conclusions

This dissertation considered the design of novel signal processing ar-
chitectures for either multichannel phased array or FDA-MIMO radars
operating in an adverse environment characterized by the presence of dif-
ferent kinds of interference.

In particular, in the context of a radar system equipped with a multi-
channel phased array (ULA or URA), Chapter 2 presented the problem
of simultaneous target detection and angle estimation. The approach pur-
sued in this work relied on the idea of approximating the steering vector
of the received echo signal via the LAM at the nominal array looking di-
rection, with a resulting functional dependency of the array manifold on
the directional cosine offset. This paved the way for single-pulse spatial
processing aimed at providing simultaneous target detection and angle
estimation. Considering fast architectures for real time operations, the
resulting processing can be implemented for every search beam of a mul-
tifunction phased array radar. Otherwise, it can be employed in a target
confirmation phase where, after a first detection is triggered by a standard
detector, one needs to confirm the target presence (thus lowering the Pfa)
and provide angle estimates. At the analysis stage, the new GLRT-based
signal processing architectures were compared with classic detectors such
as Kelly’s GLRT, AMF, and SD, in terms of detection performance. Be-
sides, the MSEs of the angular estimates were compared with the CRLB,
ML, and adaptive monopulse. The results highlighted that the bespoke
new methodology is a very effective candidate to solve the problem of joint
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target detection and angular estimation, providing close-to-optimum de-
tection performance and high quality angular estimates in many scenarios
of practical relevance for modern phased array radars.

In Chapter 3, an EM-based technique was devised for the estimation
of a structured covariance matrix in the presence of missing data, con-
sidering uncertainty sets of practical interest for radar signal processing
applications. The convergence properties for the resulting iterative pro-
cedure was studied along with the computation of the convergence rate.
Then, the derived methodology was applied to the context of two funda-
mental radar problems, i.e., beamforming and detection of the number of
sources. Finally, numerical results were presented aimed at corroborating
the theoretical achievements.

Chapter 4 investigated the target detection problem in a missing-data
context comprising Gaussian interference with an unknown and possibly
structured covariance matrix. Therefore, under the assumption of a given
structure (known a-priori) of the unknown interference covariance matrix,
a GLR-based detector was devised. The implementation of this approach
included the MLE of the unknown parameters under both detection hy-
potheses, which were addressed by EM-based procedures. At the analysis
stage, the performance of the devised detectors was assessed in terms of
PD versus SINR on both simulated and measured data. This latter eval-
uation was critical for validating the robustness of the proposed detection
strategies on real data, including potential mismatches (due to hardware
imperfections) that were not taken into account at the design stage. For
comparison purposes, two additional detectors were considered. The for-
mer was a benchmark that assumed direct access to the complete-data set,
whereas the latter replaced the missing values via linear interpolation.

Chapter 5 considered the problem of joint target angle and incre-
mental range estimation using an FDA-MIMO radar in Gaussian inter-
ference with known spectral properties. Specifically, an ML estimator for
the unknown target parameters (i.e., angle, incremental range, and echo-
amplitude) was derived leveraging three approximated methods: the CD,
the adaptive monopulse, and the generalized monopulse. At the analy-
sis stage, the CRLB for the angle and incremental range estimation via an
FDA-MIMO radar were derived. The RMSEs of the estimates versus input
SINR were provided. Moreover, an extensive bias and variance analysis
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was developed to show the effectiveness of the considered approximated
estimation methods (also including tapered and double-step versions of
the monopulse procedures).

Chapter 6 addressed the target detection problem with a polarimet-
ric FDA-MIMO radar, leveraging the methodology studied in Chapter 5.
In particular, two practical detection architectures were derived resorting
to the GLRT and the 2SGLRT criteria. However, their implementation
demanded the solution of an optimization problem involving the concen-
trated log-likelihood functions under the target presence hypothesis. Con-
sidering feasible detectors, three strategies were devised, namely, LAM
method, GPM, and CD procedure. At the analysis stage, the detection
performance of the proposed architectures was evaluated in white noise
and clutter (mixed or trees) environment and compared with both bench-
mark and mismatched receivers. These cases rely on the true and nominal
target location parameters, respectively. The results highlighted that the
proposed radar architectures can achieve a better PD than their counter-
parts (also including the single polarization receiver), thus representing a
viable solution for practical implementations.

Future research efforts include the following points:

• The extension of the LAM approach, derived in Chapter 2, to
account for some deviations from the proposed homogeneous dis-
turbance model. For example, non-Gaussian interference, the oc-
currence of clutter discretes and/or multiple targets (including false
targets) within a specific range cell, as well as the design of alter-
native decision criteria such as the Wald test [59, 107, 69] possibly
accounting for rejection of signals outside a specific region in the u�v

space [86, 15].

• The application of the methodology developed in Chapter 3 for a
time processing background where some pulses of the received train
may experience unwanted sporadic radio frequency interference. This
means that some slow time samples from some given range cells are
missed and the lack of this data has to be properly accounted for at
the signal processing design stage.

• The derivation of bespoke detectors, based on the framework studied
in Chapter 4, accounting for distributed (range-spread) targets, as



well as the generalization of the architectures devised in Chapter 4
to partially homogeneous and heterogeneous environments (also in-
cluding other covariance structures of practical relevance). Moreover,
it would be of great interest to consider the case of a multistatic radar
where different sensors observe the same scene whereby the missing-
data are diverse from sensor to sensor.

• The design of estimators for an FDA-MIMO radar, tailored for spe-
cific jammer and/or clutter scenarios, as well as the extension of the
approach developed in Chapter 5 to the case of multiple targets
via compressed sensing techniques. Furthermore, the analysis of the
architectures derived in Chapter 5 on real FDA-MIMO radar data
represents definitely another research topic of primary concern.

• Finally, the study of additional decision strategies to tackle the detec-
tion problem analyzed in Chapter 6, according to other sub-optimal
criteria (e.g., Rao [36] and Wald [59] tests), as well as the extension
of the framework proposed in Chapter 6 to different scenarios in-
cluding compound Gaussian disturbance [31], structured interference
covariance matrix, and the case of extended targets occupying mul-
tiple range cells.
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Appendix to Chapter 2

A.1 Adaptive Monopulse Estimation Algorithm

In Algorithm 13 the steps involved in the derivation of the Adaptive
Monopulse Estimator proposed in [79] are summarized.

Algorithm 13 Adaptive Monopulse Estimation Algorithm [79, 112]
Input: r, S, p, ṗu, ṗv.
Output: DOA estimate b✓?

NME .

1: let rx = Re

n
ṗ
†
uS

�1
r

p†S�1r

o
and ry = Re

n
ṗ
†
vS

�1
r

p†S�1r

o
;

2: compute the components of the bias correction

µx =
Re

n
ṗ
†
uS

�1
p

o

p†S�1p
, and µy =

Re

n
ṗ
†
vS

�1
p

o

p†S�1p
;

3: compute Fu = 2rx � 2µx, Fv = 2ry � 2µy;

Fuu = 2µ
2
x � 2

ṗ
†
uS

�1
ṗu
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2
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4: output b✓?
NME = �

✓
Fuu Fuv
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⇤
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◆�1✓
Fu
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◆
.
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A.2 Proof of Proposition 1

Proof. Since (2.23) is a continuous function and [�↵,↵] a compact set,
Weierstrass Theorem [19] ensures the existence of a maximizer. Candidate
optimal solutions are the boundary points, i.e., �↵,↵, as well as the fea-
sible points satisfying the first order optimality condition, i.e., nulling the
derivative of the objective function. Computing the derivative of (2.23)
and setting it to zero, the second-order polynomial in (2.25) is obtained.
Hence, in the worst case, the optimal solution to Problem (2.23) has to
be searched among four points, i.e., the roots of (2.25) and the boundary
points �↵ and ↵.

A.3 Solution to Problem (2.41)

Being the objective function in (2.41) continuous and the feasible set
non-empty and compact, the existence of a global maximizer is guaranteed
by Weierstrass Theorem [19]. Furthermore, the objective function is con-
tinuously differentiable. As a result, any optimal solution �✓

? is either a
feasible stationary point, i.e., �✓

? 2 S and satisfies the first order opti-
mality condition, or it belongs to the boundary of the feasible set.

The stationary points of the objective function in (2.41) are obtained
by nulling the objective gradient, namely by solving the equation

r
h
(p̄+ H̄�✓)

†
(r̄ r̄

† � qnI)(p̄+ H̄�✓)

i
= 0. (A.1)

After some straightforward calculations, equation (A.1) can be expressed
as

Re

n
H̄

†
(r̄ r̄

† � qnI)p̄

o
+Re

n
H̄

†
(r̄ r̄

† � qnI)H̄

o
�✓ = 0 (A.2)
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implying that1 the unique stationary point is

�✓1 = �Re
�1

n
H̄

†
(r̄ r̄

† � qnI)H̄

o
Re

n
H̄

†
(r̄ r̄

† � qnI)p̄

o
, (A.3)

which is a candidate optimal solution if it is also feasible for (2.41), i.e.
�✓1 2 S .

Let us now focus on the study of the objective function restricted to
the boundary of S , determining, for each edge, the maximizer.

Case A. Left and right edges (�u = ±↵).

Let us define p̄±↵ = p̄ ± ↵ ˙̄pu. The restriction of (2.41) to �u = ±↵,
yields

max
|�v|�

(p̄±↵ + ˙̄pv�v)
†
(r̄ r̄

† � qnI)(p̄±↵ + ˙̄pv�v). (A.4)

The expression appearing in (A.4) can be written as the following quadratic
function

⇢
0
�v

2
+ 2⌧

0
±�v + ⌫

0
±, (A.5)

where

⇢
0
= ˙̄p

†
v(r̄ r̄

† � qnI) ˙̄pv, (A.6)

⌧
0
± = Re{ ˙̄p†

v(r̄ r̄
† � qnI)p̄±↵}, (A.7)

⌫
0
± = p̄

†
±↵(r̄ r̄

† � qnI)p̄±↵. (A.8)

Now, if ⇢0 < 0, (A.4) is a convex optimization problem and the optimal
solution is

�v
?
± = min(�,max(�⌧

0
±/⇢

0
,��)), (A.9)

1To avoid unnecessary complications, it is assumed that the matrix
Re{H̄† �

r̄ r̄
† � qnI

�
H̄} is full-rank. The rank-deficient event never occurred in

our Monte Carlo trials.
However, it is straightforward to account for this situation too. Specifically, if (A.2)

admits a solution, the unique candidate optimal solution is a maximizer of the one-
dimensional optimization problem resulting from the restriction of (2.41) to the line
�✓ = � Re{H̄† �

r̄ r̄
† � qnI

�
p̄} with � 2 R the optimization variable. An optimized

�✓1 = �? Re{H̄† �
r̄ r̄

† � qnI
�
p̄} can be obtained following the approach developed to

determine boundary maximizers (see Case A and Case B).
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otherwise2

�v
?
± = �⌧

0
±/|⌧ 0±|. (A.10)

Hence, the two candidate optimal solutions associated with the right and
left edges are given by

�✓2 = [↵,�v
?
+] and �✓3 = [�↵,�v

?
�]. (A.11)

Case B. Upper and lower edges (�v = ±�).

Denoting by p̄±� = p̄ ± � ˙̄pv and following the same line of reasoning
as for Case A, the candidate optimal solutions take the form

�✓4 = [�u
?
+,�] and �✓5 = [�u

?
�,��], (A.12)

where,
�u

?
± = min(↵,max(�⌧
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00
,�↵)), (A.13)

with

⌧
00
± = Re{ ˙̄p†

u(r̄ r̄
† � qnI)p̄±�}, (A.14)

otherwise3

�u
?
± = ↵⌧

00
±/|⌧ 00±|. (A.15)

Based on the above results, a closed form optimal solution to (2.41) is

�✓
?
= argmax

�✓2{�✓i}5i=1
\S

(p̄+ H̄�✓)
†
r̄ r̄

†
(p̄+ H̄�✓)

� qn (p̄+ H̄�✓)
†
(p̄+ H̄�✓).

(A.16)

A.4 CRLB Derivation

In the following, the CRLB evaluation for the estimation of the pa-
rameters �u and �v is conducted, assuming either the linearized model
pa = p+ ṗu�u+ ṗv�v or the actual manifold p(ū+�u, v̄ +�v). Here-
after, ṗu and ṗv denote the first order derivative with respect to �u and

2If ⌧ 0
± = 0, �v?± = � can be considered without loss of generality.

3If ⌧ 00
± = 0, �u?

± = ↵ can be considered without loss of generality.



A.4. CRLB Derivation 155

�v, respectively, of the considered steering vector model evaluated at the
actual DOA offsets. The vector of the unknown parameters ⇥ is parti-
tioned as follows:

⇥ = [⇥u,⇥w]
T
, (A.17)

where
⇥u = [ar, ai]

T (A.18)

contains the unwanted (nuisance) parameters (signal complex amplitude)
and

⇥w = �✓ =

⇢
�u, (1-D)

[�u,�v]
T
, (2-D) (A.19)

contains those of interest.
Resorting to the Slepian–Bangs formula [105, p. 927, eq. 8.34], the

FIM can be written as a block partitioned matrix

J(⇥) =


J⇥u⇥u

(⇥) J⇥u⇥w
(⇥)

J⇥w⇥u
(⇥) J⇥w⇥w

(⇥)

�
, (A.20)

where
J⇥u⇥u

(⇥) = 2p
†
a(�✓)M

�1
pa(�✓)I2, (A.21)

J⇥u⇥w
(⇥) =

8
>>>><

>>>>:

2Re

⇢
(ap

†
a(�✓)M

�1
ṗu)


1

�j

��
(1-D)

2Re

8
<
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1

�j

� "
ap

†
a(�✓)M

�1
ṗu

ap
†
a(�✓)M

�1
ṗv

#T9=

; (2-D)
, (A.22)

and

J⇥w⇥w
(⇥) =

8
><

>:

2|a|2ṗ†
uM

�1
ṗu (1-D)

2|a|2
"

ṗ
†
uM

�1
ṗu Re{ṗ†

uM
�1

ṗv}
Re{ṗ†

uM
�1

ṗv} ṗ
†
vM

�1
ṗv

#
(2-D)

.

(A.23)
Finally, the CRLB for the parameters of interest is

CCR(⇥w) =
⇥
J⇥w⇥w

(⇥)� J⇥w⇥u
(⇥)J

�1

⇥u⇥u
(⇥)J⇥u⇥w

(⇥)
⇤�1

.

(A.24)
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B.1 Proof of (3.22)

Following the same line of reasoning as in [56], for any i 2 {1, . . . ,K}

Ci = E[rir
†
i |Airi,M ] = B

T

i E[Birir
†
iB

T

i |Airi,M ]Bi, (B.1)

where
Bi = [A

T

i Ā
T

i ]
T (B.2)

which satisfies
B

T

i Bi = I. (B.3)

To provide a closed form expression to Ci, let us observe that

E[Birir
†
iB

T

i |Airi,M ]

= E
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Āiri

� h
r
†
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†
i r

†
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i
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†
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†
i Ā

†
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†
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†
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#
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#
(B.4)

=

2

4
yiy

†
i yiE

h
r
†
i Ā

†
i |Airi,M

i

E
⇥
Āiri|Airi,M

⇤
y
†
i E

h
Āirir

†
i Ā

†
i |Airi,M

i

3
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=

"
yiy

†
i yiµ

†
i

µiy
†
i E

h
Āirir

†
i Ā

†
i |Airi,M

i
#
,

where
µi = E

⇥
Āiri|Airi,M

⇤
= ĀiMA

†
i (AiMA

†
i )

�1
yi (B.5)

and

E

h
Āirir

†
i Ā

†
i |Airi,M

i

= Gi + ĀiMA
†
i (AiMA

†
i )

�1
yiy

†
i (AiMA

†
i )

�1
AiMĀ

†
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(B.6)

with
Gi = ĀiMĀ

†
i � ĀiMA

†
i (AiMA

†
i )

�1
AiMĀ

†
i . (B.7)

Exploiting the above results, it follows that

Ci =B
T

i E[Birir
†
iB

T

i |Airi,M ]Bi
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iĀiMĀ
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†
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Finally, after some algebraic manipulations,

Ci = (A
†
iyi + Āi

†
µi)(A

†
iyi + Āi

†
µi)

†
+ Āi

†
GiĀi (B.8)

⌅

B.2 Proof of Proposition 2

This Appendix is organized in two parts: in Subsection B.2.1 the proof
of the first item of Proposition 2 is provided, whereas Subsection B.2.2
deals with second claim.
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B.2.1 Proof of the first item

As first step toward the proof, let us observe that a maximizer to
Problem (3.25) exists, provided that ⌃(h�1) � 0. Indeed, according to
[24], if ⌃(h�1) � 0 there exist two positive constants a and b such that
Problem (3.25) is equivalent to

8
>>><

>>>:

max
M

� ln(det(M))� tr{M�1⌃(h�1)}
s.t. M 2 C

�min(M) � a

tr{M}  b

(B.9)

and any optimal solution ✓̄ to (3.25) must comply with �min(M(✓̄)) � a

and tr{M(✓̄)}  b. As a result, being C \ {M ⌫ 0 : �min(M) �
a} \ {M ⌫ 0 : tr{M}  b} a compact set of positive definite matrices,
Problem (B.9) admits a global optimal solution M

? � 0, due to Weier-
strass Theorem, and any optimal solution is positive definite. Finally, since
M

? 2 C , there exists ✓
? such that M

?
= M(✓

?
), i.e., ✓(h)

= ✓
? solves

Problem (3.25) and the M-step at the h-th iteration is well-defined, being
M̂(✓

(h)
) � 0.

Let us now show that

⌃(h�1)
=

1

K
E[DD

†|Y , {Ai}Ni=1,M̂(✓
(h�1)

)] � 0,

almost surely if M̂(✓
(h�1)

) � 0 and K � N , where D = [r1, . . . , rK ] 2
C
N,K . To this end, note that the random matrix D conditioned on Y is full

rank with probability one, for any (but for a zero-measure set) realization
of Y . As a consequence, for any v 2 C

N , the random variable (conditioned
on Y )

v
†
⇣
DD

†
⌘
v
†
|Y ,{Ai}Ni=1

,M̂(✓(h�1))

is greater than zero with probability one, which implies

1

K
E[DD

†|Y , {Ai}Ni=1,M̂(✓
(h�1)

)] � 0.

Thus, it follows that M̂(✓
(0)

) � 0 ensures M̂(✓
(h)

) � 0 for all h � 1,
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namely the M-step is well defined for all h � 1, because of

M̂(✓
(h�1)

) � 0 ) ⌃(h�1) � 0 ) M̂(✓
(h)

) � 0, 8h � 1.

Finally, the monotonically increasing behavior of the observed-data like-
lihood function results from the well known properties of EM iterations
[42]. The first item of the proposition is thus proved.

B.2.2 Proof of the second item

Before proceeding with the proof, let us introduce the definitions of
Bouligand tangent cone and B-stationary point [55, 85].

Definition 1. Given a set Z ✓ R
M , the Bouligand tangent cone

TZ (z0) of Z at z0 2 Z , is defined as

TZ (z0) =
�
d 2 R

M
: there exist two sequences z

(k) 2 Z ! z0

and ⌧
(k) 2 R

++ ! 0 such that d = limk!1
z
(k)�z0

⌧ (k)

o

Definition 2. Given an optimization problem

P

(
max
z

f(z)

s.t. z 2 Z ✓ R
M

(B.10)

a feasible solution z
? 2 Z is a B-stationary point to Problem P if

lim
⌧1#0

f(z
?
+ ⌧1d)� f(z

?
)

⌧1
 0, 8d 2 TZ (z

?
) (B.11)

In a nutshell, the Bouligand tangent cone generalizes the concept of feasible
directions emanating from a point, allowing the extension of the station-
arity notion (via the B-stationarity) to a broader class of optimization
problems.

Let us now focus on the convergence of Ly(✓
(h)|Y ,A1, . . . ,AK) and
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M̂(✓
(h)

). In this respect, note that

Ly(✓|Y ,A1, . . . ,AK)

= �
KX

i=1

ln(det(AiM(✓)A
†
i ))� tr{(AiM(✓)A

†
i )

�1
yiy

†
i }

 �
KX

i=1

pi ln(�min(AiM(✓)A
†
i ))�

kyik2

tr{AiM(✓)A
†
i}

 �
KX

i=1

pi ln(�min(M(✓)))� kyik2

tr{M(✓)}

where the last inequality stems from the Eigenvalue Interlacing Theorem
[52]. Hence, being C a closed set of positive definite matrices, it follows
that

min
M2C

�min(M) = � > 0,

which entails

Ly(✓|Y ,A1, . . . ,AK)  �
 

KX

i=1

pi

!
log(�)�

KX

i=1

kyik2

tr{M(✓))} (B.12)

As a result, the log-likelihood diverges to �1 as tr{M} ! +1 and,
following the same line of reasoning as that leading to the equivalent for-
mulation of the M-step in (B.9), an optimal solution M̂(✓̂ML) � 0 to
Problem (3.14) exists. Now, since Ly(M(✓

(h)
)|Y ,A1, . . . ,AK) defines an

increasing sequence of values

1. Ly(✓
(h)|Y ,A1, . . . ,AK) converges to a finite value, as it is bounded

above by Ly(M̂(✓̂ML)|Y ,A1, . . . ,AK)

2. M(✓
(h)

), h � 1 is a bounded sequence, due to (B.12) and kMkF 
tr(M).

Let now us assess the convergence properties of ✓(h), h � 1. To proceed
further, observe that ✓

(h), h � 1, is a bounded sequence, being M(✓) a
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norm coercive mapping1. Hence, let ✓
? be a limit point of ✓

(h), h � 1,
whose existence is ensured by the boundedness of ✓(h), h � 1. Owing to
the interpretation of the EM procedure as a minorization-maximization
optimization technique [54], it can be shown that ✓

? is a global optimal
solution to

argmax

✓:M(✓)2C
Q(✓,✓

?
) (B.13)

Indeed, denoting by g(✓) = Ly(✓|Y ,A1, . . . ,AK)�Q(✓,✓), it follows that

Ly(✓|Y ,A1, . . . ,AK) = Q(✓,✓) + g(✓), 8✓
Ly(✓|Y ,A1, . . . ,AK) � Q(✓,✓1) + g(✓1), 8✓, 8✓1

and

Q

⇣
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⌘
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⌘
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⌘
= Q

⇣
✓
(i(h+1)),✓

(i(h+1))
⌘
+ g

⇣
✓
(i(h+1))

⌘

(B.14)
where i(h) indexes the subsequence extracted by ✓

(h) that converges to ✓
?,

i.e., ✓(i(h)) ! ✓
?, as h ! 1. Now, since Q(✓,✓1) + g(✓1) is a continuous

function with respect to (✓,✓1),

Q(✓,✓
?
) + g(✓

?
)  Q(✓

?
,✓

?
) + g(✓

?
).

As a consequence, since ✓
? is a global optimal solution to Problem

(B.13) and Q(✓,✓
?
)+g(✓

?
) is a differentiable function with respect to ✓ in

a neighborhood of ✓? (being it the composition of differentiable functions
and M(✓

?
) � 0), it follows that ✓

? is a B-stationary point to Problem
(B.13) [55, 85], namely

lim
⌧#0

Q(✓
?
+ ⌧d,✓

?
)�Q(✓

?
,✓

?
)

⌧
 0, 8d 2 TF (✓

?
) (B.15)

1A mapping M(·) : x 2 R
M2 ! M(x) 2 C

M1,M1 is said norm coercive if kxk ! 1
implies kM(x)kF ! 1.
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where TF (✓
?
) is the Bouligand tangent cone of F = {✓ : ✓ 2 C } at ✓

?.

Finally, being Ly(✓|Y ,A1, . . . ,AK) a differentiable function in a neigh-
borhood of ✓?, leveraging Lemma 2 in [12] it holds true

lim
⌧#0

Ly(✓
?
+ ⌧d|Y ,A1, . . . ,AK)� Ly(✓

?|Y ,A1, . . . ,AK)

⌧
=

lim
⌧#0

Q(✓
?
+ ⌧d,✓

?
)�Q(✓

?
,✓

?
)

⌧
, 8d,

which implies that ✓
? is a B-stationary point to Problem (3.14).

B.3 Derivation of (3.28) and (3.29)

In the following, closed-form expression of FEM and Fobs are derived
with reference to (3.13) and (3.16). In this respect, note that the (l,m)-th
element of FEM = E

⇥
�r✓rT

✓
Lr(✓)|Y ,✓

⇤��
✓=✓̂ML

is given by

FEM (l,m) = E


�@

2Lr(✓)

@✓l@✓m
|Y ,✓

�����
✓=✓̂ML

, (B.16)

where (l,m) 2 {1, . . . , V }2 and Lr(✓) is the complete-data log-likelihood
given by (3.16). Furthermore,

�@
2Lr(✓)
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2
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+K

@
2tr

�
M(✓)

�1
S
 

@✓l@✓m
, (B.17)

with S given in (3.17), whereas [105, A.393]

@
2
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⇢
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� (B.18)

and [105, A.391], [105, A.392]
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Therefore,
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Finally, substituting the above equation into (B.16) leads to
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Let us now derive the expression of Fobs. The (l,m)-th element of Fobs =
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with [105, A.393]

@
2
ln(det(Mi(✓̂ML)))

@✓l@✓m

= tr
⇢
�Mi(✓̂ML)

�1
@Mi(✓)

@✓l
Mi(✓̂ML)

�1
@Mi(✓)

@✓m
+Mi(✓̂ML)

�1
@
2
Mi(✓)

@✓l@✓m

�

(B.23)



166 Appendix B. Appendix to Chapter 3

and [105, A.391], [105, A.392]
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Exploiting the above results,
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with (l,m) 2 {1, . . . , V }2 and Mi(✓̂ML) = AiM(✓̂ML)A

†
i .
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C.1 Closed-form expression of the score function (3.18)

Let us first rewrite equation (3.16) as

Lr(↵,✓, H1) = �(K + 1) [N ln(⇡) + ln(det(M(✓)))]
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(C.1)

It follows that
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where
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and

⌃(h�1)
= X

(h�1) � µ
(h�1)

µ
(h�1)

†
+ E[rr

†|z,A,↵
(h�1)

,✓
(h�1)

, H1]. (C.4)

To proceed further, let us denote

B = [A
T
Ā

T
]
T (C.5)

where Ā is the N � p ⇥ N selection matrix complementary to A (ob-
tained removing from I the p rows not removed in the definition of A)
and B

T
B = I. Hence [56],

µ
(h�1)

= B
T
E[Br|z,A,↵

(h�1)
,✓

(h�1)
, H1]

= B
T
[z

T
, ⇣

(h�1)
T

]
T

(C.6)

where

⇣
(h�1)

=E[Ār|z,A,↵
(h�1)

,✓
(h�1)

, H1]

=ĀM(✓
(h�1)

)A
T
(AM(✓

(h�1)
)A

T
)
�1

(z � ↵
(h�1)

Ap) + ↵
(h�1)

Āp.

(C.7)

Besides,

E[rr
†|z,A,↵

(h�1)
,✓

(h�1)
, H1]

= B
T
E[Brr

†
B

T|z,A,↵
(h�1)

,✓
(h�1)

, H1]B.

(C.8)

As to the expectation term,

E[Brr
†
B

T|z,A,↵
(h�1)

,✓
(h�1)

, H1]

=

"
zz

†
z⇣

(h�1)
†

⇣
(h�1)

z
†

E
⇥
Ārr

†
Ā

T|z,A,↵
(h�1)

,✓
(h�1)

, H1

⇤
#

(C.9)

where

E

h
Ārr

†
Ā

T|z,A,↵
(h�1)

,✓
(h�1)

, H1

i
= G+ ⇣

(h�1)
⇣
(h�1)

† (C.10)
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with

G =ĀM(✓
(h�1)

)Ā
T � ĀM(✓

(h�1)
)A

T

(AM(✓
(h�1)

)A
T
)
�1

AM(✓
(h�1)

)Ā
T
.

(C.11)

Therefore,

B
T
E[Brr

†
B

T|z,A,↵
(h�1)

,✓
(h�1)

, H1]B

= A
T
zz

†
A+ Ā

T
⇣
(h�1)

z
†
A+A

T
z⇣

(h�1)
†
Ā

+ Ā
T
(G+ ⇣

(h�1)
⇣
(h�1)

†
)Ā

= (A
T
z + Ā

T
⇣
(h�1)

)(A
T
z + Ā

T
⇣
(h�1)

)
†
+ Ā

T
GĀ.

(C.12)

Finally, denoting by Āi the N � pi ⇥N selection matrix defined similarly
to Ā, equation (C.3) can be recast as

X
(h�1)

=

KX

i=1

C
(h�1)

i (C.13)

where

C
(h�1)

i =(A
T

i + Āi
T
�i)ziz

†
i (A

T

i + Āi
T
�i)

†
+ Āi

T
GiĀi (C.14)

with

�i = ĀiM(✓
(h�1)

)A
T

i (AiM(✓
(h�1)

)A
T

i )
�1 (C.15)

and

Gi = ĀiM(✓
(h�1)

)Ā
T

i � �iAiM(✓
(h�1)

)Ā
T

i . (C.16)

C.2 Detailed expressions for LI-based detectors

In order to formally define the adopted LI procedure, let us observe
that given two vectors (x1, y1) and (x2, y2) belonging to R

2, the equation
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of the line connecting these two points is

y = y1 +
(y2 � y1)

x2 � x1
(x� x1). (C.17)

Hence, the value at a point x
⇤ can be predicted via interpolation as

y
⇤
= y1 +

(y2 � y1)

x2 � x1
(x

⇤ � x1). (C.18)

For the case at hand, based on the location x̂ of the missing element within
the snapshot, the two points (x1, y1) and (x2, y2) with closest spatial lo-
cations to x̂ are used to interpolate the value at point x̂. For the two
special cases when x̂ is located at the beginning (the end) of the array,
the sample points are chosen as the first two (last two) elements of the
observed-data snapshot, respectively. Moreover, due to complex-valued
nature of the data, each missing element is estimated by linearly inter-
polating real and imaginary components separately. Then, denoting by
ži 2 C

N
, i = 1, . . . ,K, the interpolated secondary data snapshot, the fol-

lowing detectors, based on the GLR and AMF criteria, respectively, can
be implemented, i.e.,

⌧GLRT�LI =
1

1 + z†
�
AŠAT

��1
z

���z† �
AŠA

T
��1

Ap

���
2

p†AT
�
AŠAT

��1
Ap

(C.19)

and

⌧AMF-LI =

���z† �
AŠA

T
��1

Ap

���
2

p†AT
�
AŠAT

��1
Ap

(C.20)

where Š =
PK

i=1
ži ž

†
i .



Appendix D
Appendix to Chapter 5

D.1 Expressions of the su and s�

According to (5.7), the first derivatives of s w.r.t. u and �, evaluated
respectively at u0 and �0, can be calculated as

su =
@s

@u

����
(u0,�0)

=
@b (u)

@u

����
u0

⌦ [c (u0)� a (�0)]

+ b (u0)⌦
"
@c (u)

@u

����
u0

� a (�0)

#
,

(D.1)

and
s� =

@s
@�

��
(u0,�0)

= b (u0)⌦

c (u0)� @a(�)

@�

���
�0

�
, (D.2)

where
@b (u)

@u

����
u0

= j2⇡
d

�0

ETb (u0) , (D.3)

@c (u)

@u

����
u0

=
@
�
R

T
d(u)

�

@u

�����
u0

= R
T
@d (u)

@u

����
u0

= j2⇡
d

�0

R
T
ERd(u0),

(D.4)

@a (�)

@�

����
�0

= j⇡ERa (�0) , (D.5)
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with ER = diag
�
[0, 1, ...,M � 1]

T
�

and ET = diag
�
[0, 1, ..., N � 1]

T
�
.

D.2 Computations of Du and D�

Let us consider

V = F12F
�1

22
F21 = k⇠k�2


V11 V12

V12 V22

�
2 R

2⇥2
, (D.6)

The entries of V are given by

V11 = Re
2

n
⇠
†
u⇠�

⇤
1

o
+ Im

2

n
⇠
†
u⇠�

⇤
1

o
= |�1|2

���⇠†u⇠
���
2

, (D.7a)

V12 = Re

n
⇠
†
u⇠�

⇤
1

o
Re

n
⇠
†
⇠��1

o
+ Im

n
⇠
†
u⇠�

⇤
1

o
Im

n
⇠
†
⇠��1

o

= Re

n
⇠
†
u⇠�

⇤
1⇠

†
⇠��1

o
= |�1|2Re

n
⇠
†
u⇠⇠

†
⇠�

o
,

(D.7b)

V22 = Re
2

n
⇠
†
�⇠�

⇤
1

o
+ Im

2

n
⇠
†
�⇠�

⇤
1

o
= |�1|2

���⇠†�⇠
���
2

. (D.7c)

Hence, G1 is derived as

G1 = F11 � V =


G11 G12

G12 G22

�
, (D.8)

with

G11 = |�1|2k⇠uk2 �
|�1|2

k⇠k2
���⇠†u⇠

���
2

, (D.9)

G12 = |�1|2Re
n
⇠
†
u⇠�

o
� |�1|2

k⇠k2 Re

n
⇠
†
u⇠⇠

†
⇠�

o
, (D.10)

and

G22 = |�1|2k⇠�k2 �
|�1|2

k⇠k2
���⇠†�⇠

���
2

. (D.11)
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As a result, the CRLB for u and � is the diagonal elements of 1

2
G

�1

1
, which

have been provided in (5.45) and (5.46), respectively, where

G
�1

1
=

1

det (G1)


G22 �G12

�G21 G11

�

=
|�1|2

det (G1)

2

664
k⇠�k2 �

���⇠†
�
⇠

���
2

k⇠k2 �Re

n
⇠
†
u⇠�

o
+

Re

n
⇠
†
u⇠⇠

†
⇠�

o

k⇠k2

�Re

n
⇠
†
u⇠�

o
+

Re

n
⇠
†
u⇠⇠

†
⇠�

o

k⇠k2 k⇠uk2 �
���⇠†u⇠

���
2

k⇠k2

3

775

(D.12)
with det (G1) = G11G22 �G12G21.
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E.1 Expressions for Hu and H�

Denoting by su2 C
MN and s�2 C

MN the derivative functions of s(u, �)
w.r.t. u and �, respectively, they are given by [67]

su =
@s(u, �)

@u
=

@b (u)

@u
⌦ [c (u)� a (�)]

+ b (u)⌦

@c (u)

@u
� a (�)

� (E.1)

and

s� =
@s(u, �)

@�
= b (u)⌦


c (u)� @a (�)

@�

�
, (E.2)

where

• @b(u)
@u = j2⇡

d
�0
ETb (u);

• @c(u)
@u = j2⇡

d
�0
R

T
ERd(u);

• @a(�)
@� = j⇡ERa (�).

with

• ET = diag
�
[0, 1, ..., N � 1]

T
�
2 R

N⇥N ;
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• ER = diag
�
[0, 1, ...,M � 1]

T
�
2 R

M⇥M .

Therefore,

Hu =


su 0
0 su

�
(E.3)

and
H� =


s� 0
0 s�

�
, (E.4)

E.2 Proof of Proposition 3

Proof. The existence of the global minimizer of (6.30) is guaranteed by
the Weierstrass theorem [19], being the objective function (6.30) continu-
ous and the feasible set C non-empty and compact. Besides, the stationary
points of the objective function in (6.30) are obtained by nulling the ob-
jective gradient, namely by solving the equation

r�✓

h
(r̂ � Ĥ�✓)

†
(r̂ � Ĥ�✓)

i
= 0. (E.5)

After some algebra, equation (E.5) can be expressed as

R{Ĥ†
r̂}�R{Ĥ†

Ĥ}�✓ = 0, (E.6)

meaning that the unique stationary point is obtained as

�✓1 =

h
R{Ĥ†

Ĥ}
i�1

R{Ĥ†
r̂}. (E.7)

Remarkably, if it is feasible, i.e., �✓1 2 C , it is the optimal solution to the
optimization problem (6.30). Otherwise, an optimal solution can be found
restricting the objective function to the boundaries of C and determining,
for each edge, the corresponding minimizer.

Case C. Left and right edges (�u = ±).

Denoting by r̂± = r̂ � ĥu(±), the optimization problem (6.30), re-
stricted to �u = ±, boils down to

min
|��|⇢

(r̂± � Ĥ���)
†
(r̂± � Ĥ���). (E.8)
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The objective function of (E.8) can be written as

a
0
��

2 � 2b
0
± �� + c

0
±, (E.9)

where
a
0
= kĤ�k2, (E.10a)

b
0
± = R{r̂†±ĥ�}, (E.10b)

c
0
± = kr̂±k2. (E.10c)

Since a
0
> 0, (E.8) is a convex optimization problem, whose optimal solu-

tion is given by
��

⇤
± = min(⇢,max(b

0
±/a

0
,�⇢)). (E.11)

Therefore, the two candidate optimal solutions associated with the right
and left edges are given by

�✓2 = [,��
⇤
+] (E.12)

and
�✓3 = [�,��

⇤
�]. (E.13)

Case D. Upper and lower edges (�� = ±⇢).

Similarly to the Case A, denoting by r̂±⇢ = r̂� ĥ�(±⇢), the candidate
optimal solutions associated with the superior and inferior edges are given
by

�✓4 = [�u
⇤
+, ⇢] (E.14)

and
�✓5 = [�u

⇤
�,�⇢], (E.15)

where
�u

⇤
± = min(,max(b

00
±⇢/a

00
,�)) (E.16)

with
a
00
= kĥuk2, (E.17a)

b
00
±⇢ = R{r̂†±⇢ĥu}. (E.17b)

As a consequence, an optimal solution to the optimization problem (6.30)
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is given by

�✓
(h)

= argmin

�✓2{�✓i}5i=1

(r̂ � Ĥ�✓)
†
(r̂ � Ĥ�✓). (E.18)

E.3 Computation of g4(u, �)

Denoting by r̄ = S
� 1

2r 2 C
2MN and Ȟ = S

� 1

2H 2 C
2MN⇥2, g(u, �)

can be rewritten as

g(u, �) = r̄
†
Ȟ

h
Ȟ

†
Ȟ

i�1

Ȟ
†
r̄ = r̄

†
P̄Ȟ r̄ (E.19)

where P̄Ȟ = Ȟ
⇥
Ȟ

†
Ȟ
⇤�1

Ȟ
† 2 C

2MN⇥2MN .
Therefore, the first derivatives of g(u, �) w.r.t. u and �, are given

by [Eq. A.394, [105]]

@g(u, �)

@x
= r̄

†@P̄Ȟ

@x
r̄ , x 2 {u, �}, (E.20)

where

• @P̄
Ȟ

@x = P̄
?
Ȟ
ȞxȞ

†
+

⇣
P̄

?
Ȟ
ȞxȞ

†
⌘†

with Ȟx = S
�1/2

Hx 2 C
2MN⇥2,

x 2 u, � ;

• P̄
?
Ȟ

= I � P̄Ȟ 2 C
2MN⇥2MN .

As a consequence, the gradient of g(u, �) is given by

g4(u, �) =


@g(u, �)

@u
,
@g(u, �)

@�

�
T

. (E.21)

E.4 Proof of g(u, �) 2 C
1,1

L

Before proceeding with the proof, let us first introduce the following
lemma [18], which provides a sufficient condition for a function to be in
C

1,1
L .
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Lemma E.4.1. Let f(x) belongs to C
2

with f44(x) its Hessian matrix;

if there exists L > 0 such that kf44(x)k  L holds true for any x 2 R
n
,

then f(x) 2 C
1,1
L .

Therefore, in order to exploit the above result, in the following, the
function g(u, �) is proved to fulfill the conditions required by Lemma E.4.1.
To this end, let us report again, for easy of reference, the detailed expres-
sion of s(u, �), i.e.,

s(u, �) = b(u)⌦ [c(u)� a(�)]2 C
MN (E.22)

with

b(u) =

h
1, e

j2⇡ d

�0
u
, . . . , e

j2⇡ d

�0
(N�1)u

iT

2 C
N
, (E.23a)

c(u) = R
T
d(u) 2 C

M
, (E.23b)

d(u) =

h
1, e

j2⇡ d

�0
u
, . . . , e

j2⇡ d

�0
(M�1)u

iT

2 C
M
, (E.23c)

a(�) =

h
1, e

j⇡�
. . . , e

j⇡(M�1)�
i
T

2 C
M
. (E.23d)

From equations (E.23), it is straightforward to see that b(u), c(u),
d(u), and a(�) belong to C

2 and hence s(u, �) belongs to C
2. Therefore,

assuming S � 0, which occurs almost surely being K � 2MN ,

g(u, �) = r
†
S

�1
H

h
H

†
S

�1
H

i�1

H
†
S

�1
r (E.24)

belongs to C
2 since

H = H(u, �) =


s(u, �) 0

0 s(u, �)

�
2 C

2MN⇥2 (E.25)

belongs to C
2 and it is full rank.

Then, it can be verified that kg44(u, �)k is continuous and periodic,
with

g44 =


guu(u, �) gu�(u, �)

g�u(u, �) g��(u, �)

�
,
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since kAk is a continuous function w.r.t. A 2 H
N and the second deriva-

tives of g(u, �), i.e., gxy(u, �), x, y 2 {u, �} are continuous and periodic
functions with period Tu = �0/d and T� = 2 along u and � directions,
respectively (see Appendix E.5). Therefore, invoking the Weierstrass the-
orem [19],

kg44(u, �)k  max
u2[0,Tu],�2[0,T� ]

kg44(u, �)k = L < 1. (E.26)

E.5 Proof that the second derivatives of g(u, �) are

periodic functions

This Appendix is composed of two parts: first, s(u, �) and g(u, �) are
proved to be periodic functions. Then, the periodicity of the first and
second order derivatives of g(u, �) is analyzed.

From equations (E.23), it is easy to verify that s(u, �) is a periodic
function with period Tu and T� along u and � directions, respectively,
being

• b(u) periodic with period Tu;

• d(u) and c(u) periodic with period Tu;

• a(�) periodic with period T�.

As a consequence, g(u, �) shares the same periodicity as s(u, �).
Now, the periodicity of the first and second order derivatives can be

established resorting to the following lemma.

Lemma E.5.1. Let f(x, y) : R
2 ! R be a continuous, derivable, and

periodic function with period Tx and Ty along the x and y directions,
respectively. Then, fx(x, y) =

@f(x,y)
@x and fy(x, y) =

@f(x,y)
@y are periodic

functions with the same periodicities as f(x, y).
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Proof. Denoting by x1 = x+N1Tx and y1 = y +N2Ty, with N1, N2 2 N,

fx(x1, y1) = fx(x+N1Tx, y +N2Ty)

= lim
h!0

f(x+N1Tx + h, y +N2Ty)� f(x+N1Tx, y +N2Ty)

h

= lim
h!0

f(x+ h, y)� f(x, y)

h
= fx(x, y).

Therefore, fx(x, y) is periodic as f(x, y). Along the same line, it is straight-
forward to prove that fy(x, y) shares the same periodicity as f(x, y).

Exploiting the above result, gu(u, �) and g�(u, �) are periodic functions
with the same period as g(u, �). Then, resorting again to Lemma E.5.1,
guu(u, �) and gu�(u, �), as well as g�u(u, �) and g��(u, �), share the same
periodicity as gu(u, �) and g�(u, �), respectively. As a result, the first and
second order derivatives of g(u, �) are periodic functions as g(u, �).
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