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Abstract

Microbial consortia constitute a promising solution to expand the complexity of the syn-

thetic gene circuits that can be engineered in living cells. However, being able to construct

robust, modular communities is a challenging task. In addition, due to the imbalances in

the growth rates between different members of the consortium, some populations in the

consortium can outgrow the others, leading to undesired phenomena, such as extinction,

undermining the correct operation of the system.

In this work we address both the problem of realizing reliable microbial consortia and the

challenge of regulating the relative numbers between subpopulations in the community to

their ensure stable, and long term coexistence. Specifically, we realize and validate biomolec-

ular feedback controllers distributed across populations within a microbial consortium to

achieve modular and robust regulation of a cell’s phenotype. These results are comple-

mented by the development of control architectures to shape the composition of a microbial

consortium.

The realisation of consortia with robust and consistent phenotype where it is possible to

decide an maintain a specified composition would enable engineering of complex functional-

ities in living cells. Potential applications include personalized cell therapies and on demand

production of chemicals, drugs and bio-fuels for pharmaceutical or commercial use.
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Chapter1

Introduction

Synthetic biology aims at engineering biomolecular systems to achieve new useful function-

alities [1]. Potential applications range from designing bacteria that can produce biofuels

or sense and degrade pollutants in the environment (like hydrocarbons and plastics), to im-

mune cells that can track and kill cancer cells, or that can release drugs at specific points

and conditions to avoid side effects (see [1] for references). This is made possible by de-

signing synthetic gene circuits with programmed functionalities and embedding them into

living cells. However, the level of complexity and the functions of such engineered genetic

circuits are limited by intrinsic factors in the host cells, such as excessive metabolic burden,

competition for limited resources and incompatible chemical reactions [2]. To overcome these

limitations, a promising strategy is to distribute the required functionalities among multiple

cell populations forming a microbial consortium, so that each cell strain embeds a smaller

subset of engineered gene networks [3, 4, 5, 6]. In this way, each cell population carries out a

specialised function and, by dividing labour with the others in the consortium, contributes

more efficiently to the achievement of the overall final goal.

However, engineering reliable and robust cellular communities remains a challenging task

[2]. Control Engineering, which aims at improving the stability, robustness, and performance

of physical systems, may provide an invaluable contribution towards the realization of reli-

able and robust modules. Specifically, using mathematical models to predict the interaction

between parts and applying concepts from control theory to guarantee desired static and

dynamic performance to the circuits, it is possible to drastically decrease the development

time of new multicellular systems and to increase their flexibility and modularity. In recent

years, research efforts have been focused on model-based design and implementation of bio-

chemical controllers to engineer robust and modular synthetic circuits carrying out desired

functions [7, 8, 9].
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In addition, the development of microbial consortia also presents a unique challenge;

cells expressing different genes might also grow and divide at different rates. In particular,

cells in the consortium, whose function is associated with a lower metabolic burden, will

grow faster, eventually becoming dominant over the other populations, thus compromising

the overall function of the consortium and giving rise to undesired spatiotemporal dynamics,

such as oscillations, or even extinction [10, 11]. Therefore, it is crucial to develop methods to

guarantee the stable coexistence between cell populations in a consortium by regulating and

maintaining their relative numbers to some desired level, adjusting them to the requirements

of the specific application of interest. This is possible, as suggested in [12], by using feedback

control algorithms able to sense the relative size of all the populations involved and respond

by applying appropriate stimuli to the cells to regulate their relative numbers. This problem

is known as ratiometric control of cell populations [12] as its overall goal is to achieve and

maintain a certain desired ratio between the size of the populations in the consortium, despite

differences in their growth rates, noise and perturbations.

This Thesis addresses the two main open problems limiting the expansion of synthetic

biology to a consortium level. Specifically, we engineer and validate in vivo a multicellular

controller for the development of robust, reliable consortia. Also, we propose two different

approaches to the problem of regulating numbers in bacterial populations, providing possible

solutions to the ratiometric control problem.

1.1 Outline of the Thesis

• In Chapter 2 we give a brief introduction on synthetic microbial consortia, describing

their constitutive components and the main approaches used for their development. In

addition, we discuss a promising approach to speed up their design and improve the

reliability of the designed consortia;

• In Chapter 3 we describe the three main approaches used to interface control theory and

synthetic biology, providing examples for each of them. For each approach, the main

advantages, limitations, and applications are expounded. The results of the literature

review appeared in a paper in Current Opinions in Systems Biology [13], written in

collaboration with prof. Diego di Bernardo1, Iacopo Ruolo1 and Sara Napolitano1;

• In Chapter 4 we propose a possible biological implementation of a multicellular biomolec-

ular feedback controller, where the control functionalities are distributed across differ-

ent populations comprising a microbial consortium. Furthermore, we engineer and

1 Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
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test in vivo the design, assessing the performance, reliability and robustness of the

architecture;

• In Chapter 5 we discuss possible applications and extensions of the multicellular feed-

back control described in Chapter 4. Firstly, we use the multicellular paradigm to

design and validate in silico a three strain microbial consortium where two controllers

decide the phenotype expressed by a reversible bistable memory element. Secondly,

we design and test in silico an extension of the multicellular controller, adding a third

population in the consortium that implements a Proportional action to improve the dy-

namical control performances. The results were reported in two journal papers [5, 14].

The former was written in collaboration with prof. Josep M. Olm2 and Davide Fiore3,

and the latter in collaboration with Davide Fiore3 and Vittoria Martinelli4;

• In Chapter 6 we address the problem of regulating the relative numbers of populations

within microbial consortia. We describe two alternative solutions: one uses external

stimuli to balance relative numbers in a mono-strain microbial consortium; the other

uses an embedded controller to regulate the growth rate of a single cellular population.

Both solutions appeared in journal papers published on the Journal of the Royal Society

Interface [15] and on the International Journal of Robust and Nonlinear Control [16],

respectively. The former was written in collaboration with Davide Fiore3, and the

latter with Davide Fiore3 and Virginia Fusco4;

• In Chapter 7 we summarize all the results elaborated in the Thesis and discuss open

problems and possible future work.

We complete the Thesis with three appendices. In the first we insert all the additional

information related to chapters 4-6. The second appendix contains an accurate description

of BSim, an agent based simulator we used to validate in silico the strategies presented in

this Thesis. In addition, we present three case studies where the simulation environment was

used to validate in silico the effectiveness of control and continuation algorithms. The re-

sults appeared in ACS Synthetic Biology [17, 18, 19]. [17] was written in collaboration with

Agostino Guarino4 and Davide Fiore3, [18] was written in collaboration with Dr.Barbara

Shannon5, Dr. Criseida Zamora6, Prof. Nigel J. Savery5, Prof. Lucia Marucci6 and Prof.

2 Institute of Industrial and Control Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
3 Department of Mathematics and Applications ’R. Caccioppoli’, University of Naples Federico II, Naples,

Italy
4 Department of Electrical Engineering and Information Technology, University of Naples Federico II,

Naples, Italy
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Claire S. Grierson7, and [19] was written in collaboration with Irene de Cesare6, Prof. Lucia

Marucci6 and Prof. Ludovic Renson8. Lastly, the third appendix includes the description of

an ad-hoc identification procedure developed to parametrize a model describing the spread

od Covid-19 in Italy, used to design distributed non-pharmaceutical interventions to limit

the spread of the pandemics. This research appeared in a journal paper in Nature Commu-

nications [20]. It was carried out with all the members of the SINCRO group4, with Prof.

Fabio della Rossa9, Dr. Davide Liuzza10 and Prof. Giovanni Russo11.

1.2 Publications

The research done during the duration of the PhD was published in the following papers:

1. Agostino Guarino, Davide Fiore, Davide Salzano, and Mario di Bernardo. Balancing

cell populations endowed with a synthetic toggle switch via adaptive pulsatile feedback

control. ACS synthetic biology, 9(4):793–803, 2020.

2. Barbara Shannon, Criseida G Zamora-Chimal, Lorena Postiglione, Davide Salzano,

Claire S Grierson, Lucia Marucci, Nigel J Savery, and Mario di Bernardo. In vivo

feedback control of an antithetic molecular-titration motif in escherichia coli using

microfluidics. ACS Synthetic Biology, 9(10):2617–2624, 2020.

3. Fabio Della Rossa*, Davide Salzano*, Anna Di Meglio*, Francesco De Lellis*, Marco

Coraggio, Carmela Calabrese, Agostino Guarino, Ricardo Cardona-Rivera, Pietro De

Lellis, Davide Liuzza, Francesco Lo Iudice, Giovanni Russo, Mario di Bernardo. A

network model of Italy shows that intermittent regional strategies can alleviate the

COVID-19 epidemic. Nature communications, 11(1), 1-9, 2020.

4. Davide Fiore, Davide Salzano, Enric Cristòbal-Cóppulo, Joseph M. Olm, Mario di

Bernardo. Multicellular feedback control of a genetic toggle-switch in microbial con-

sortia. IEEE Control Systems Letters, 5(1), 151-156, 2021.

5 School of Biochemistry, University of Bristol, United Kingdom.
6 Department of Engineering Mathematics, University of Bristol, United Kingdom.
7 School of Biological Sciences, University of Bristol, United Kingdom.
8 Department of Mechanical Engineering, Imperial College London, United Kingdom.
9 Department of Electronic, Information and Biomedical Engineering, Politecnico di Milano, Milan, Italy
10 ENEA, Fusion and Nuclear Safety Department, Frascati, Rome, Italy
11 Department of Information and Electrical Engineering and Applied Mathematics, University of Salerno,

Fisciano, Italy
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5. Iacopo Ruolo*, Sara Napolitano*, Davide Salzano, Mario di Bernardo, and Diego di

Bernardo. Control engineering meets synthetic biology: Foundations and applications.

Current Opinion in Systems Biology, 8:100397, 2021.

6. Virginia Fusco*, Davide Salzano*, Davide Fiore, and Mario di Bernardo. Embedded

control of cell growth using tunable genetic systems. International Journal of Robust

and Nonlinear Control, 2021.

7. Vittoria Martinelli*, Davide Salzano*, Davide Fiore, and Mario di Bernardo. Multi-

cellular PI control for gene regulation in microbial consortia. IEEE Control Systems

Letters, 6, 3373-3378, 2022.

8. Davide Salzano, Davide Fiore, and Mario di Bernardo. Ratiometric control of cell

phenotypes in monostrain microbial consortia. Journal of the Royal Society Interface,

19(192):20220335, 2022.

9. Irene de Cesare, Davide Salzano, Mario di Bernardo, Ludovic Renson, Lucia Marucci.

Control-Based Continuation: A New Approach to Prototype Synthetic Gene Networks.

ACS Synthetic Biology 2022 11 (7), 2300-2313, 2022.

* These authors contributed equally
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Chapter2

From engineered to Controlled
consortia

2.1 Key ingredients of microbial consortia

Microbial consortia require multiple populations to coexist and to coordinate their behavior

in order to achieve a common goal. Their design and implementation calls for engineering and

combining new gene regulatory networks to achieve cell-to-cell communication and regulate

the composition of the communities, as well as their collective behaviour [21].

2.1.1 Gene regulatory networks as building blocks

Synthetic gene regulatory networks (GRNs) are engineered genetic circuits that can alter the

phenotype of a target host [22]. They constitute the basic building blocks of any synthetic

biological system, as they are the mean to either modify or add functionalities in living cells

(Figure 2-1).

The earliest examples of Synthesized GRNs were a reversible memory mechanism [23] and

a genetic oscillator [24], dating from the early 2000’s. Since then, the functional complexity of

the systems that have been built increased significantly, going from simple circuits consisting

of a single module to more complex designs made of many interacting parts [25]. Specifically,

the increasing effort put in the characterization of biological components constituting the

GRNs and the advancements in technologies for their construction allowed for more and more

sophisticated architectures to be built, including communication elements that enabled both

different cells and strains to coordinate and to self organize in well shaped compositions.
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Figure 2-1: Fundamental elements of synthetic microbial consortia. The solid blue arrows
represent functional relationships/dependencies between different core elements. Specifi-
cally, Gene regulatory networks are the mean either to build communication mechanisms or
to construct ecological relationships, shaping the community composition. The Communi-
cation mechanisms are the functional modules required for the implementation of ecological
relationships among different cellular populations and can also be beneficial in the exchange
of information necessary to coordinate the community. Finally, Community composition
influences both the effectiveness of the communication protocols and the reliability of the
gene regulatory networks synthesized in the consortium.

2.1.2 Cell-to-Cell Communication

The passage from modules to systems was enabled by the rational engineering of synthetic

inter and intra-sepcies communication mechanisms. Cell-to-cell communication is what dis-

tinguishes single cell modules from multicellular systems. It enables the exchange of infor-

mation within and between cellular populations, as well as enabling the creation of metabolic

dependencies across populations in the consortium. Common communication mechanisms

exploited in synthetic biology are cross-feeding, quorum sensing, conjugation and toxin-

antitoxin systems [26].

Metabolic cross-feeding is based on the creation of metabolic cross-dependencies between

different cellular populations. An early example of a synthetic cross-feeding system was

presented by Shou et al. in [27]. Here, two yeast populations were made mutually dependent,

allowing each strain to produce a nutrient necessary for the other strain’s survival. It was

shown that mutual dependency between the populations guarantees coexistence of both
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strains. A similar effect can be obtained by using toxin-antitoxin systems. Specifically, it

is possible to entangle the faith of different species, allowing their survival only when both

the toxin and antitoxin are produced. In [28], a feedback control based approach, employing

a toxin-antitoxin mechanism, was designed to balance the numbers of individuals within a

consortium.

Instead, conjugation and quorum sensing are usually exploited when information about

the current state of one or more populations needs to be shared. Specifically, conjugation

allows for the exchange of specific information, in the form of DNA [29]. Quorum sensing,

on the other hand, enables sharing of population density-based information in the form of

small molecules. Among these two communication mechanisms, the most leveraged sensing

mechanism is quorum sensing. Using this mechanism, each cell broadcasts information about

its population density/state via the production of small molecules, eventually triggering a

response in other cells/populations. This mechanism can be used to orchestrate the collective

behaviour of a consortium, as done in [30]. Here, an oscillator was realized using two E. Coli

strains exchanging information about each other state using quorum sensing.

The development of communication mechanisms is crucial for the coordination of different

modules. In addition, the composition of multiple modules may require the engineering of

multiple orthogonal communication channels. However, the creation of such channels may be

challenging due to phenomena such as pathway cross-reactivity, the slowness of diffusion, the

need of very high cell densities for them to be effective, and the highly non-linear responses

of the protein sensors used to monitor these signals. Some works in the literature addressed

these key challenges. For example, in [31] the interaction between multiple quorum sensing

molecules was characterized and in [32] the spatial effects on quorum sensing signaling were

analysed in microfluidics.

2.1.3 Community Composition

Communication itself does not guarantee the formation of a consortium. The second funda-

mental ingredient is the possibility to regulate the composition of the communities, granting

coexistence, as well as the correct operation of the information exchange mechanism. This

can be achieved either by designing specific interaction patterns between different species in

the consortium or by manipulating the growth environment [26]. For example, membrane

separated culture environments can be used to preserve spatial separation between different

populations, allowing at the same time the exchange of small molecules required for the ex-

change of information. Other common environments apt for the culture of multiple species

are microfluidic platforms and chemostats architectures (Table 2-1). The former provides
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a controlled growth environment where small cell populations can be grown in exponential

phase [33]. Intead, turbidostats provide structures where large populations can be grown

[34]. However, none of these technologies can guarantee that the coculture is preserved for

a long time, even if some research to adapt chemostats and microfluidic platforms for long

term coexistence of microbial populations has been performed [35, 36, 37].

An alternative approach for the achievement of long term coexistence between popu-

lations in a consortium is constituted by the implementation of synthetic ecological rela-

tionships. Rationally engineering relationships such as prey-predation, commensalism and

competition allows communities to self regulate their relative population numbers [38].

2.2 Microbial Consortia orchestrate the collective be-

haviour of microbial communities

Synthetic biological systems have often limited functional complexity due to technological

and biological factors, such as metabolic burden, incompatible reactions and retroactivity

[39]. A possible solution to overcome these limitations is to engineer multicellular consortia,

whose aim is to orchestrate the collective behaviour of microbial communities. By distribut-

ing the functional complexity across multiple species, it is possible steer the communities to

a desired phenotype, auto balance population numbers, and achieve specific spatiotemporal

patterns (see Table 2-1 for examples).

Splitting the pathways among populations may address the problem of excessive metabolic

burden on the host organism, allowing for the construction of more complex synthetic path-

ways [40, 30, 41, 42]. For example, Chen et. al. [30] developed a multicellular oscillator using

two E. Coli strains, communicating using two orthogonal quorum sensing pathways. Here,

the oscillatory behaviour is obtained using an activator and a repressor strain. The activator

strain boosts its expression and the expression of genes in the other strain. Conversely, the

repressor strain inhibits both the expression of its characterizing gene and the one of the

other strain. It is shown that the combination of a positive and a negative feedback leads to

the emergence of oscillations. In this work, the co-culture is obtained by seeding accordingly

microfluidic devices with both strains. Note that, even if it is possible to allow for coexis-

tence for a period long enough to observe oscillations, coexistence between the two strains

cannot be maintained indefinitely.

Microbial consortia can be also a powerful tool to avoid reactions that are incompatible

either with the host organism or with other engineered modules. An example pathway split

to avoid incompatible reactions, as well as optimize the production of chemical compounds
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can be found in [43]. Here the production of Oxygenated taxanes is carried out using an E.

Coli and a S. Cereviciae stain. Specifically, the E. Coli strain is used to produce taxanes.

However, this organism is not able to oxigenate them, therefore an S. Cereviciae strain is

used to further process the taxanes, oxygenating them. In this architecture, each step of the

process hosted in the most suitable host, allowing for an increased production rate and a

modular optimization.

In both of the illustrated examples, coexistence between species is a fundamental require-

ment for a correct operation of the consortium. This can be achieved by designing specific

interaction patterns among the populations constituting the consortium [26, 44, 45, 46, 47,

48, 16]. For example, in [49] a prey predator interaction pathway was engineered, showing

how it can ensure the cohabitation of two species. Similar strategies have been also proposed

in [50] and [45]. Alternatively, it is possible to operate on the growth environment of the

populations to guarantee coexistence [12, 37, 51]. For example, in [37] the dilution rate of a

chemostat was regulated to shape the composition of a two population consortium.

For some applications, in addition to coexistence, it is desirable that cells are organized

in specific spatial patterns. This behaviour can emerge by designing ad-hoc interaction

between populations. One of the first examples where spatial patterns have been engineered

is proposed in [52], where a sender and a receiver strain communicate so as activation of

the receiver is possible only at intermediate distance from the senders, generating ring-like

spatial patterns. In [53] a review on the recent advancements on pattern formation achieved

using multicellular synthetic systems can be found.

2.3 Engineering microbial consortia by ad hoc biolog-

ical selection

Microbial consortia are complex systems, whose design, in the vast majority of the appli-

cations, involves the careful selection of the most suitable biological components and their

combination in an often ad hoc procedure.

The usual pipeline for the development of a microbial consortium starts with the construc-

tion of the intended genetic circuit by using available characterized biological parts. This

process requires a refinement procedure aimed at characterizing the interacting pathways

and optimizing the circuit being realized (Figure 2-2a). The refinement can be necessary

due to the insurgence of unexpected phenomena, revealed during the characterization of the

circuits. This process is iterated until no further re-engineering of the consortium is needed
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x = f(x,u,d)
y = g(x,u,d)

.

Design Construction Characterization

Design Modeling Construction Characterization

Figure 2-2: Design approaches for the the development of a microbial consortium. The top
panel represents the typical approach followed for the construction of a microbial consortium.
Starting form the biological design, the consortium is then constructed and testad in vivo. If
the in vivo calidation phase fails, then a re-deign of part or the entire consortium is needed
and the contruction and validation phases need to be performed again. Instead, the bottom
panel shows the design approach for a controlled consotium. First, a design based on control
theory is developed. Then a mathematical model is developed and the functionlaities are
tested in silico. If the design behaves as expected then the consotium is built and tested in
vivo. If not, a redesign of the scheme is performed and the model is adapted to the new
design.

for its optimal operation. The examples illustrated in section 2.2 follow this paradigm. In-

deed, in [43] a S. Cereviciae strain is engineered to oxigenate taxadiene and an E. Coli strain

responsible for taxadiene production and observed that the taxadiene production efficiency

was low. Hence, they refined the pathways by optimizing the interaction between species,

which resulted in an increased production of the compound.

The design approach described defines a simple and direct procedure for the in vivo im-

plementation and validation of synthetic microbial consortia. However, the process described

is highly specific, and even minor modifications of the required behaviour may require a full

re-engineering of the consortium.

2.4 From engineered to controlled microbial consortia

The core limitation of the current design methodology for the development of microbial con-

sortia is the ability to predict the behaviour of interacting characterized components and to
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engineer reliable and flexible modules. This issue can be addressed with the combined use of

mathematical models and control theory-based circuit designs. Specifically, when combining

biological parts together, it is usually hard to predict the response of the entire network.

This is because factors such as network interactions, feedback loops and local DNA sequence

contact can lead to the emergence of unexpected behaviours. For example, closing a loop

using a chain of three repressors results in oscillations in gene expressions [24]. To tackle this

problem it is possible to develop a mathematical framework and a set of dynamical models

to predict the response and the interactions of different characterized parts or modules. In

[54], a mathematical model was used to capture all the possible phenotype expressed at a

population level, aiding the authors to design experimental conditions without extensive in

vivo testing. The predictions devised culture conditions that guaranteed coexistence between

species and the correct operation of the consortium. The same could have been achieved

heuristically, without the use of a mathematical model. However, the design process would

have been slower, and it would not have been possible to predict the behaviour in conditions

different from the one tested.

The biggest challenge in the design of mathematical models for genetic networks lays

in their high complexity, in the inherent stochastic nature of the processes, and the spatial

distribution of the biological components [1]. Currently, the vast majority of the available

models rely on Ordinary Differential Equations (ODEs), and fewer of those models take

into account either stochasticity of the processes or the spatial dynamics of the biochemical

compounds involved in the protein synthesis (for more details see Table 2-1). The develop-

ment of mathematical models represent also an opportunity to test quickly the viability of

some designs, isolating the conceptual problems from the ones caused by an actual biologi-

cal construction. In addition, performing sensitivity analyses on the parameterized models

offers a way to estimate the robustness of the circuit design proposed, accounting for possi-

ble mismatches between the predicted dynamics and the biological response of the system.

For example, mathematical models have been used to develop and validate proof of concept

designs for the control of gene expression in a Genetic Toggle Switch either using a single

cell [55] and a multicellular [5] design.

The development of mathematical models and of a general mathematical framework to

deal with interacting cultures and gene regulatory networks can be invaluable to design pre-

dictable systems and to speed up the design process of both single cell modules and microbial

consortia. However, for the construction of reliable modules that can be used and combined

in complex architectures mathematical models alone do not suffice. We need some guid-

ing principle to devise structures robust to changes in internal and external perturbations.
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Feedback control systems allowed the construction of reliable and robust systems in many

application field [56] and many efforts have been put in place in the recent years into inter-

facing control theory with synthetic biology [57], leading to the emergence of a novel field

denoted as cybergenetics. With respect to the ad hoc selection of biological components, the

communities constructed using feedback controllers are more robust and reliable, making

them perfect modules for combination in larger systems. Also, the presence of a reference

signal to change the operating condition of the circuit increases the flexiblity of the designed

consortia.

The combination of control theory to find network topologies and of mathematical mod-

eling to predict the behavior of interacting circuits can drastically speed up the process of

developing microbial consortia and reduce the extension of modifications needed in case of

changes in the functional requirements for the consortium.

2.5 Discussion

Microbial consortia represent an outstanding tool to fully realize the potential of synthetic

biology [58]. However, their design is still complex and often an ad hoc process. A possible

solution to optimize the reliability and the speed of microbial consortia design process resides

in the use mathematical models and feedback control.

Mathematical models allow predict the behaviour of a community without the need of

building it. This can be translated in less refinement steps once the gene regulatory networks

have been assembled. Feedback control on the other hand can address the problem of the lack

of modularity and the problem of retroactivity [39]. Indeed, self-regulating genetic circuits

can constitute new building blocks thanks to their reliability and robustness, which can

turn invaluable for the implementation of complex, large scale synthetic microbial consortia.

Moreover, the ability of feedback control to reject disturbances and unmodelled dynamics is

perfect to tackle phenomena such as corss-reactivity and retroactivity, always present to a

certain extent in the development of synthetic communities.

The refinement of the mathematical framework and the implementation of feedback con-

trol strategies inside living cells open to a new paradigm in the design of microbial consortia,

paving the way for a faster construction of more robust and reliable communities. This in

turn will allow for the development of functionally more complex consortia, allowing their

employment in the bioproduction of materials at an industrial level and, possibly, in living

therapeutics at a clinical level.



2.5 Discussion 15

Description In vivo validation Modeling

A prey predator synthetic ecosystem [49] Chemostat ODE+white noise
AND gate with 2 populations [40] Plate ODE
cross-feeding in yeast populations [27] Plate No
Oscillator between 2 populations [30] Microfluidics ODE
Toggle switch over 2 populations [42] Microfluidics ODE
Stable coculture using lysis [54] Microfluidics ODE+PDE
Bioproduction with 2 hosts [43] Chemostat No
Resistance to mutation using 3 strains [59] Microfluidics ODE
Communication in Gram+ hosts [60] Plate No
XOR gate construction [41] Plate No
Pattern formation [52] Plate ODE
Methil Hilades production [61] liquid culture No
Isobuthanol production [62] Plate ODE
Population Regulation via dual feedback
control [63]

No ODE

Multicellular control strategy [64] No ODE+PDE(Diffusion)
Population composition Control [12] No SDE+PDE
Optimal differentiation for bioproduction
[65]

No ODE

Growth control using external inducers [46] Liquid culture ODE
Producton of ehanol [66] Batch ODE
Multicellular control strategy [67] No ODE
Growth control using graph theory [28] No ODE+PDE(Diffusion)
Differentiation control [68] No ODE
Oscillator between 2 populations [35] Microfluidics ODE
Coexistence regimes [69] No PDE
Synchronization of genetic clocks [70] Microfluidics ODE+PDE
Ecological relationships in microbial com-
munities [38]

Batch No

Environment control for co-cultures [71] Batch ODE
Multicellular XOR Gate [29] No SDE

Table 2-1: Examples of developed synthetic microbial consortia. The table highlights the
key finding of each consortium, the methods used for its in vivo characterization and the
mathematical models used to design or describe the behaviour of the community
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Chapter3

Cybergenetics: where control theory
meets synthetic biology

3.1 An introduction on cybergenetics

Control engineering aims to improve the stability, robustness, and performance of physical

systems. Its application to synthetic biology focuses on the design and implementation

of controllers to engineer robust and modular biomolecular circuits, carrying out desired

functions in the cell. The discipline at the interface between control engineering and synthetic

biology has been termed as cybergenetics [7]. The central tenet of cybergenetics is feedback

control, consisting of a plant (i.e. the biological process to be regulated) and a controller that

regulates its behavior, see Figure 3-1a. Specifically, the controller receives measures of the

plant output from the sensors, compares it with a reference signal, and computes the input to

be applied to the plant (via actuators) to decrease the mismatch between the sensed output

and the reference signal. The biological process (the plant) is usually abstracted as an input-

output dynamical system, whose dynamics is parametrised using experimentally observed

data (Figure 3-1b). The model is then used to design and numerically validate an appropriate

control strategy to steer its behaviour. The candidate control law is then implemented (as

biomolecular processes or a computer software) and experimentally tested. Three categories

of control strategies have been so far reported in synthetic biology: embedded, external and

multicellular controllers.

In the embedded strategy, the control action is exerted by a synthetic gene regulatory

network embedded within the same cell hosting the process to be controlled, as shown in

Figure 3-1c. In this way, cells can self regulate their phenotype. However, extra metabolic

burden may be introduced. In addition, when the control strategy is encoded within the same
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cell as the controlled process, the system lacks modularity as any change in the controller

design requires a complete re-engineering of the synthetic gene regulatory network.

A different approach is that of external control, as shown in Figure 3-1d, where a com-

puter is interfaced to the biological process in the cell with actuators (pumps, optoelectronic

devices, or syringes) to provide the control inputs to the cells. Here, with a minimal addi-

tional load on the host organism it is possible to achieve accurate and fast regulation of gene

expression, at a cost of the necessity for a tightly controlled growth environment.

A promising approach to release metabolic burden on host cells and make the controller

modular is represented by multicellular control, Figure 3-1e. In this architecture, two differ-

ent populations within the same cellular consortium co-exist, with one population encoding

the controller and the other the biological process to be controlled.

3.2 Embedded Control

The embedded controllers are characterized by having both the process and the controller

present within the same cell (Figure 3-2a). The controller is implemented as a synthetic gene

network in the cell, somewhat resembling the endogenous regulatory and signalling pathways

that have naturally evolved to control cell behaviour [7]. Embedded controllers can be used

to enhance the performance and robustness of synthetic genetic circuits to different intrinsic

and extrinsic perturbations (noise, parameter uncertainty, loading, fluctuations in nutrients)

[75]. Cells engineered with embedded controllers can be easily deployed also in large-scale

bioreactors, for example, to improve the production of molecules in industry. The biggest

hurdle in designing an embedded controller however is its practical realisability, that its

biological implementation, as there is currently no formal approach to go from an abstract

model of the controller to the set of biochemical reactions required to make it work. Recent

reviews on this control architecture can be found in [7, 75, 76].

Integral feedback control is among the most popular network topologies used for embed-

ded controllers. It belongs to the class of proportional integral derivative controllers (PID).

PID controllers are the most widely adopted controllers in all engineering fields because they

couple simplicity in implementation with a robust performance. In this type of controller,

the control error, that is the deviation of the output (e.g. protein level) from its desired

reference value is measured and summed over time, so that even small but persistent de-

viations can be sensed and used to deliver an appropriate control input to reestablish the

correct output value. As such, integral controllers ensure that the control error becomes zero

at steady-state, that is the output will be exactly equal to the reference value. This property

is referred to in biology as perfect adaptation. Integral controllers can thus be used in a cell
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Figure 3-1: control engineering in synthetic biology. (a) General feedback control archi-
tecture where a controller steers the behaviour of a plant adapting the control input to the
plant response. (b) Workflow for application of control theory to synthetic biology. (i) The
biological process is experimentally characterised in open-loop experiments. (ii) A dynami-
cal model is inferred from the acquired experimental data and used to test in silico different
control strategies. (iii) The control law is implemented (as biomolecular processes or a com-
puter software) and experimentally tested. (c) Embedded control: both the controller and
the process to be controlled are present within the same cell. (d) External control: the
control algorithm is implemented as a computer software and interfaced with cells by dedi-
cated actuators. (e) Multicellular control: two cell populations coexist in a consortium, with
one population embedded with a controller driving the second population harbouring the
biological process to be controlled.

to maintain the homeostasis of a biological process rendering it robust against intrinsic and

extrinsic perturbations.

Implementation of input-output integral controllers in living cells is currently the subject

of intense investigation. A genetic network for integral control was theoretically proposed

in [72] and named the ’antithetic’ controller (Figure 3-2b). The authors showed that un-

der a set of assumptions, including no degradation of the molecular species making up the

controller, this biomolecular circuit is capable to achieve perfect adaptation. The antithetic
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Figure 3-2: Embedded controllers. (a) Both the biological process and the controller are
present within the same cell as genetic networks. (b) The ‘antithetic’ integral feedback
controller [72] is an embedded controller requiring two species that mutually inactivate each
other through sequestration or other means. This controller can achieve perfect adaptation.
(c) Incoherent feedforward loop (iFFL) motif. This is a feedforward controller able to achieve
perfect adaptation and has been applied to control burden in mammalian cells. In both the
iFFLs, the input is represented by the cellular resources and the output by the mRNA or
protein level of the gene of interest. The repressor species is represented respectively
by either a microRNA [73] or an endoribonuclease [74].

controller has been implemented in E. coli [77, 8] by means of an highly affine sigma/anti-

sigma protein pair. More recently, the first synthetic implementation of integral feedback in

mammalian cells has been presented in a pre-print publication [78], where a sense-antisense

RNA pair is used in place of the sigma/anti-sigma pair used in bacteria. The operation

of this synthetic biomolecular closed-loop integral controller was further analysed [79, 80]

and a set of sufficient conditions under which such a biomolecular feedback controller has

the desired asymptotic performance was found to involve time-scale separation. This the-

oretical analysis was validated in bacterial cells [81] to accommodate physical constraints

on the implementation of integral control in cellular systems. Finally, Chevalier et al. [9]

proposed modifications of the antithetic controller to obtain also proportional and derivative
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controllers.

The ability of any integral controller to sum over time output deviations from its target

value in living cells is challenged by the fact that all biomolecules dilute as the cell grows, re-

sulting in a leaky integration thus causing the controller’s performance to degrade. However,

it has been mathematically proven that if the reactions implementing the integral controller

are all much faster than dilution, then the adaptation error due to integration leakiness

becomes negligible [82].

Embedded controllers could be game-changing in synthetic biology, but two main prob-

lems have to be solved before they can become the staple food of biomolecular engineers:

modularity and burden.

Modularity has been an unsolved issue in synthetic biology preventing the scaling up of

synthetic circuits because of undesired retroactivity effects. The concept of retroactivity has

been defined in the context of synthetic circuits that can be abstracted as an input-output

system: when the output is driving a downstream load, the behaviour of the upstream sys-

tem should be unchanged. However, this is usually not the case. For example, transiently

expressed genes can compete for limited transcriptional and translational resources promot-

ing the coupling of otherwise independent exogenous and endogenous genes [73]. Recently,

incoherent feedforward loop (iFFL) circuits were identified and engineered to mitigate gene

expression burden in mammalian cells using either natural and synthetic miRNA-based [73]

or an endoribonuclease-based feedforward loop [74] to adapt the expression level of a gene

of interest to significant resource loading (Figure 3-2c).

Further examples of synthetic circuits able to decouple the synthetic circuit from the

rest of the cell and thus offer some sort of modularity have been described: a family of

gene expression control systems was developed in Chinese Hamster Ovary (CHO) cells and

in human-iPS cells [83]. These include: (i) an incoherent feedforward circuit that exhibits

output tunability and robustness to plasmid take-up variation; (ii) a negative feedback circuit

that reduces the burden and provides robustness to transactivator dosage variability; and (iii)

a hybrid circuit that combines the previous two. A dCas9-based feedback-regulation system

that automatically adjusts the expression of a synthetic construct in response to burden was

also implemented in E. coli [84] ensuring robust growth. A regulator that adjusts dCas9

concentration based on sgRNAs’ demand, thus mitigating competition in CRISPRi-based

logic gates, was developed in E. coli [85].

Despite current progress and the notable successes here reported, some open challenges

remain. Embedded control must be customised to the cellular environment, which is a dy-

namic network among DNA, proteins, and metabolites. Such environment poses limitations
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Figure 3-3: Experimental platforms for the application of external control. (a) External
control platforms consist of four basic modules: (i) the controller, i.e. a computer algo-
rithm; (ii) the actuation system to provide the control input; (iii) cells, i.e. the
plant; and (iv) the sensor to measure the output. Each module can be implemented in
a variety of ways. (b) Cells need a suitable environment to grow. Either microfluidic devices
or turbidostats have been used for long term culture of cells in control applications. (c) A
variety of sensors can be used to measure the system output, which is usually proportional to
a fluorescent reporter protein. Usually microscopy is used in combination with a microfluidic
device, whereas flow-cytometry is preferred with turbidostats. Recently, in [86], microelec-
trods were used to measure the cellular impedance, considered as proxy of colony growth.
(d) Actuation includes changing the concentration of a specific inducer (microfluidic-based
input) or exposing the cells to light of a specific wavelength (optogenetic-based input). While
the first strategy can be used only on cells cultured in a microfluidic device, light can be
used both in the case of microfluidics and turbidostats.

on the level of sophistication that controllers can take, limitations that could be addressed

by overcoming the current main problems: limited resources, cell-cell heterogeneity, intrinsic

stochastic noise, context dependence, unknown or uncertain network topologies, metabolic

burden, and the latency of controlled variables.
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3.3 External Control

To overcome the current limitations of embedded control and to speed up the testing of

different control architectures, it is possible to perform in silico or external control. External

control is based on interfacing the biological process to be regulated with a computer in

which the control algorithm is implemented as a computer software. In silico control has

been applied over the years by means of different platforms, as summarized in Figure 3-

3 [87, 88, 89, 51, 90, 91].

To achieve external control of the cellular process, i.e. the plant, four basic modules are

required: controller, actuator, plant, and sensor, as shown in detail in Figure 3-3a. Cells

grow in a regulated environment such as a microfluidic device or a turbidostat (Figure 3-3b),

whereas the measurement system is usually either a microscope (Figure 3-3c) to image a

fluorescent reporter protein in cells grown in a microfluidic device [87, 89, 51, 90, 91], or a flow-

cytometer when cells are grown in turbidostats [88]. Alternatively, Din et al. [86], in place of

a fluorescent protein, used cellular impedance as system output to measure bacterial colony

growth. To this end, cells, grown both in turbidostat and in a customized microfluidic device,

are put in contact with microelectrodes able to measure cellular impedance, which is strictly

correlated with colony size. The actuation systems necessary to deliver the control input to

the cells (Figure 3-3d) are varied; the most common methods include syringes and pumps

to change the concentration of a chemical or a metabolite (microfluidic-based input) [87,

89, 91] or lasers and LEDs to expose cells to light of specific wavelengths (optogenetic-based

input) [88, 51, 90]. Chemical inputs have the advantage of being simple to implement and can

be biologically relevant (e.g. drugs, hormones, etc.). Optogenetic inputs require extensive

engineering of the cells to respond to light and may induce phototoxicity, but they offer

precise spatio-temporal modulation allowing input delivery at a single cell scale [90] through a

Digital Micromirror Device (DMD) projector. Moreover, in biotechnological applications, an

optogenetic input may be the only option as changing the concentration of a chemical input

may be very expensive or practically impossible in large biofermenters. Therefore, a growing

effort in developing robust optogenetics circuits is ongoing and it has been systematically

reviewed in [92, 93].

Unlike embedded controllers, external controllers can be very easily implemented as soft-

ware in a computer. The most utilized controllers for biomolecular processes are Relay con-

trollers [91, 94, 95, 96], proportional integral derivative (PID) controllers [87, 88, 89, 94, 17]

and Model Predictive Control (MPC) [87, 88, 51, 90, 91, 17, 97, 98] to regulate gene ex-

pression in bacteria, yeast, and mammalian cells. Alternative model-based controllers have
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also been presented, such as Zero Average Dynamics (ZAD) control [87] to control gene ex-

pression in yeast and reinforcement learning to control microbial co-cultures in bioreactors,

optimizing bioproduction despite the resource competition between the two species [99, 100].

External control has been successfully applied to steer gene expression, cell signaling,

and endogenous activity in increasingly complex cell systems, such as different types of

mammalian cells among which neurons and embryonic stem cells [91, 94, 95, 101], and to

key cellular processes, such as the cell-cycle [96] and the maintaining of an undifferentiated

state [17]. Indeed, Perrino et al. [96] were able to synchronize the cell cycle over a population

of budding yeast engineered to respond to an external stimulus in a certain phase. Guarino

et al. [17], instead, proposed and tested in silico different control strategies able to keep a

toggle switch in its unstable equilibrium point, demonstrating the feasibility of maintaining

cells in an undifferentiated state through cybergenetics tools. Finally, external control was

used also as a test-bed for multicellular control (see next section). With cell-in-the-loop,

indeed, Perkins et al. [102] emulated cell-to-cell signals calculated in silico from real-time

measurements using light.

External control has also been applied to study unknown biological mechanisms. For

example, Harrigan et al. [97] applied closed-loop optogenetic compensation (CLOC) to in-

vestigate the dynamics of endogenous cellular feedback loops, replacing them with their

synthetic light-inducible version and closing the loop externally with an MPC. With this

tool, the authors elucidated the time scales of the yeast pheromone response MAPK path-

way, which cannot be fully interrogated by compensation with static genetic alleles. Another

application of external control is the application of microfluidics-based feedback to precisely

control human α-synuclein expression in yeast cells [98], allowing the authors to quantita-

tively compare the effect of pathogenic mutations on the concentration-dependent formation

of α-synuclein aggregates, responsible for Parkinson Disease.

External control overcomes some of the difficulties encountered in embedded control, but

some obstacles still need to be bypassed. Here, the output measurement process remains the

key issue. Most of the time control and measurement of the same protein exploit fluorescent

reporters. Anyway, in most practical applications, an indirect measurement approach is

required, resulting in delayed, noisy, and uncertain measurements. Moreover, the problem

of scalability of external control to large bioreactors for industrial application is a major

hurdle.
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Figure 3-4: Multicellular control strategies can be invaluable to drive the behaviour of
microbial communities. They can be used to regulate the phenotipic expression in a target
population (a), to allow long term coexistence within microbial consortia (b) and to induce a
desirable collective behaviour for a community. (a) The feedback control functionalities are
split across two populations. The first, called controller, can sense the the state of a target
population and, comparing the measured state to a reference is able to provide a control
signal to steer the gene expression in the second population. The second population, called
target, implements an actuation system responsive to the controllers output and embeds
a plant to be controlled, whose state is signalled to the target population. (b) Feedback
control implemented across populations is capable of granting a balanced coexistence between
different populations inside a microbial consortium. (c) Multicellular control can be used to
induce a collective behaviour in microbial communities, such as patterning or control of cell
cycle.

3.4 Multicellular Control

In embedded control, the controller and the process to be controlled are in the same cell,

whereas in external control, the controller resides in a computer. An alternative approach,

which is recently gaining ground, is to move the controller to a different cell so that the con-

troller and the process to be controlled reside in two distinct cell populations. This approach,

called multicellular control, overcomes some of the limitations of embedded controllers: for

example, it reduces the metabolic burden introduced in the host organism and increases the

modularity of the developed architecture.

One of the recent steps in this direction was described in [103], where a proof of concept

design for a feedback control scheme split among two bacterial populations was developed

(Figure 3-4a). Here, a controller population is engineered to steer the behaviour of a target
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population. The controllers embed synthetic circuits to sense and control in real-time the

state of a process in the targets. The controller cells can also receive an external signal (e.g.

an inducer molecule) to set the desired reference level of the process output to be regulated in

the target cells. The communication between the two subgroups is realised by means of the

so-called quorum sensing mechanism, in which the cells produce and release in the growth

medium a molecule that serves as a proxy of their current state and that is sensed by the

other cells [104]. A mathematical model of the consortium was developed, showing in silico

the potential of the architecture for a reliable and robust regulation of gene expression. More

precisely, it was proved that the target population can be robustly controlled to a desired

state, without the need of engineering in it a complex and metabolically burdensome gene

regulatory network. Following this work, in [18] and [105] a biological implementation of the

controller population has been developed and characterised in vivo.

A critical requirement for a correct operation of a multicellular control architecture is

keeping the ratio between the two populations within an acceptable range (Figure 3-4b).

Strategies to tackle this problem have been recently proposed. For example, in [106] a lysis

mechanism is leveraged to ensure coexistence between three E. coli strains. A similar goal

was achieved in [44, 107] where a toxin-antitoxin based feedback control system is imple-

mented across two populations aiming at controlling the population size and composition

of a microbial community. A follow up work also investigates the role of spatial configura-

tion in the operation of this feedback control scheme [50]. A dual approach to achieve the

same goal was presented in the Ecolibrium project (2016 iGEM entry from Imperial College

London; URL: http://2016.igem.org/Team:Imperial_College) where the regulation is

achieved via a growth regulation protein. Control architectures distributed among members

of the same population have been also engineered to orchestrate the collective behaviour of

a microbial consortium (Figure 3-4c). As an example, in [108] a quorum sensing mechanism

is used to share knowledge across the population, allowing for a synchronized cell division

across members of the same population. Furthermore, synthetic consortia can be engineered

to implement a majority or minority sensing mechanism [48] or to exhibit oscillations across

members of the same [109] or different [110] populations. Finally, communication and group

knowledge can also be beneficial to control spatial patterns in microbial communities allowing

cells to self-organize in specific spatial patterns [102, 111, 32].

Multicellular control is limited by the complexity of its design and the lack of an in vivo

realisation of a consortium implementing this paradigm. Moreover, an open challenge is how

to ensure stable and long term co-existence of the two populations (controllers and targets).

http://2016.igem.org/Team:Imperial_College
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3.5 Discussion

We reviewed three classes of control strategies currently being researched in cybergenetics,

the emerging field combining synthetic biology with Control Theory. Specifically, we re-

viewed the key features, possible applications, advantages, and disadvantages of external,

embedded, and multicellular control strategies.

We showed that implementing biomolecular controllers it is possible to embed living cells

with the ability to autonomously regulate their phenotype in response to a reference signal.

However, the realisation of an entire feedback control loop inside a single cells can result in

an excessive metabolic load on the host organisms. A promising solution to overcome this

limitation is called multicellular control, where the desired functionalities are distributed

across populations comprising a microbial consortium.

The realisation of a multicellular control strategies could lead to the realisation of con-

trolled microbial communities, where each population robustly expresses a desired pheno-

type. This would enable the consortia to carry out complex tasks without overloading each

organism with burdensome gene networks.
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Chapter4

In-vivo validation of a multicellular
control architecture

The realization and validation of a multicellular control architecture in vivo requires splitting

the sensing, control and actuation functions across multiple cell populations by engineering

a closed-loop consortium able to exhibit a desired phenotype (e.g. fluorescence level) in a

robust manner. Inspired by the design proposed in [103], we designed a first population,

denoted as controllers, whose role is to sense the expression of the controlled gene in another

population, the targets, and produce, according to some control logic, a stimulus steering

the gene expression towards a desired level. The targets sense the controllers’ output and

in response modify the expression of the controlled gene, feeding back its level to the con-

trollers (Figure 4-1 a). Note that such architecture requires engineering two synthetic gene

pathways and also embedding an interface for the communication between the populations.

We implemented the communication interface using quorum sensing, a mechanism used by

bacteria to sense and respond to changes in their local population density.

4.1 Biological Implementation

The control logic, embedded in the controllers, is derived from the error computation module

(comparator) based on molecular titration proposed in [105] and characterized dynamically

in [18]. The system is a multi-input, single output device that uses two independent signals

to regulate the expression level of its output protein. It is constructed around an orthog-

onal pair of σ/anti-σ (σa) factors [112], which are molecules able to specifically regulate

the transcriptional activity of the p20 992 promoter through an antithetic titration motif.

The p20 992 promoter is placed upstream of the gene coding for LasI, responsible for the

production of the quorum sensing molecule 3-O-C12-HSL. The production of σ is controlled
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Figure 4-1: a Microbial consortium implementing a multicellular control architecture.
The two populations, i.e. controllers and targets, share information using orthogonal quorum
sensing channels (u and y), playing the role of the control input and the output of the process,
respectively. In addition, the controllers sense the external stimulus ref, used to set up the
reference of the feedback loop. b. Biological implementation of the multicellular control
architecture. Standard notation is used to denote promoters, genes, promotion/inhibition
relationships and quorum sensing molecules. The shaded area identify different functional
modules within each population.

by the IPTG inducible promoter plac-UV5, while the production of anti-σ is controlled by

the 3-O-C6-HSL inducible promoter plux. The plux promoter, together with the constitu-

tively expressed LuxR plays the role of a sensor, able to act as a proxy for the abundance

of the controlled protein in the targets. The 3-O-C-6-HSL, which is produced by the targets

proportionally to the amount of the controlled gene and used as its proxy, activates the

plux promoter with the aid of the constitutively expressed LuxR (Figure 4-1b). All proteins

are fused to a degradation tag (ssrA tag) [113], ensuring fast dynamics of expression. The

proposed control logic embeds an antithetic motif that has been shown to implement an

integral feedback controller with the ability to guarantee robust perfect adaptation [72, 8].

The targets can express a green fluorescent protein (GFP), whose expression level we aim

to regulate. The GFP coding gene is transcribed together with the luxI gene, responsible

for the production of the sensor molecule 3-O-C-6-HSL. The actuation module, designed to

regulate luxI and gfp expression levels, is realized by constitutively expressing LasR that,

binding to 3-O-C12-HSL (produced as output by the controllers), activates the plas promoter,
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placed upstream gfp and luxI. All the details on the plasmids and strains used in this chapter

can be found in section A.1.1.

The goal of the design is to make the two engineered populations cooperate so as to steer

and maintain the GFP expression in the targets to a desired setpoint level, which can be

changed by modifying the concentration of IPTG. Specifically, when GFP is overexpressed,

the excessive production of 3-O-C6-HSL should upregulate the production of anti-σ. In turn,

a reduction of the free available σ, should downregulate the production of LasI and 3-O-C12-

HSL production. As a consequence, the activity of pLas should be reduced, knocking down

the GFP expression levels. A similar mechanism should be triggered when GFP falls below

the desired level.

4.2 Controllers and targets can successfully communi-

cate

A fundamental requirement for the correct operation of the engineered microbial consortium

is for the interfaces between controllers and targets to be compatible. More precisely, we

need the output range of each population to be compatible with the input range of the

other. To this aim we first characterized the steady state response of both populations

using flow cytometry, which allows collection of morphological and fluorescence data at

a single cell resolution [114]. The controllers can be induced using IPTG and 3-O-C6-

HSL, which are used in the architecture as a reference signal and a proxy for the targets

state, respectively. We characterised their response to IPTG (3-O-C6-HSL) concentrations

ranging in the interval [0µM, 100µM ] ([0nM, 100nM ]). Note that, to measure the output

level of the controllers, we substituted LasI with a green fluorescent protein (see Figure

A-2). Increasing the concentration of the 3-O-C6-HSL had an inhibitory effect on the

average fluorescence of the controllers’ population, presumably due to the increase of the

production rate of anti-σ (Figure 4-2a). Specifically, we observed a decrease between 10 to

100 fold in fluorescence, depending on the IPTG concentration. Conversely, IPTG promoted

σ production, causing up to a 300 fold increase in average fluorescence when 100µM IPTG

is present, with respect to the case where no IPTG is added to the growth environment.

Similarly, we induced the targets using different 3-O-C12-HSL concentrations, analysing

their average fluorescence output after 3 h to derive their working range (for details on the

protocol used to induce the cells, see Section A.1.5). As expected, the inducer molecule

promotes plas activity, increasing the average fluorescence levels of the targets (Figure 4-2



32 4 In-vivo validation of a multicellular control architecture

a. b. c. d.

Figure 4-2: a: Average fluorescence of the controller population induced using different concentrations
of 3-O-C6-HSL and IPTG. b: Average fluorescence levels of the target population induced using increasing
levels of 3-O-C12-HSL. c: Average fluorescence levels of the targets grown in the controllers supernatant. d:
Average fluorescence levels of the controllers grown in the targets supernatant when no IPTG was provided
in the culture medium. The error bars in panels c and d are representative of the standard deviation among
n = 3 biological replicas.

b). More precisely, it produces up to a 14 fold increase in average fluorescence when 10µM

3-O-C12 HSL is added to the growth medium.

After we characterized the ranges where controllers and targets are sensitive to their

inputs, we tested their ability to induce one another by growing each population in the su-

pernatant obtained from a culture of the other strain. First, we observed the response of

the targets when grown in the medium where we previously cultured the controllers (see

Appendix A.1.6 for details on the protocol used). The controller population was able to

activate GFP production in the targets (Figure 4-2c). Moreover, inducing the controllers

with IPTG further increased the average fluorescence of the targets, while the addition of

3-O-C6-HSL in the controllers culture caused a reduction of the fluorescent reporter expres-

sion level, confirming that the concentration of 3-O-C12-HSL produced by the controllers is

compatible with the target’s dynamic range. Analogously, we induced the controllers with

the supernatant of the targets. Figure 4-2d highlights that the targets are producing 3-O-

C6-HSL at levels compatible with the controllers dynamical range. In detail, increasing the

concentration of 3-O-C12-HSL in the target cultures reduced the average GFP fluorescence

levels of the controllers. Note that in both communication tests, the replicates showed a

high variability in the amount of quorum sensing molecules, potentially as a result of their

different growth rates (data not shown) during the first incubation step. Such variability

caused a failure in proving statistical difference between the different conditions. However,

the average behavior and the qualitative response of each replica consistently suggested that

the communication architecture enabled exchange of information between the populations.
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4.3 Robust gene regulation is possible via a multicel-

lular feedback control architecture

As all the functional requirements for the architecture to work were met, we tested its ability

to regulate the GFP expression levels in the targets. The analysis has been conducted using

flow cytometry, where we can select and analyse the targets in the consortium by gating

cells using the appropriate fluorochrome (see A.1.4 for details on the gating strategy used).

The separation of the populations was possible thanks to the lack of overlap between the

controllers (not fluorescent) and targets (fluorescent) profiles (see Section A.1.4 for details

on the gating strategy).

We tested the regulation capability of the controllers by comparing the closed loop sys-

tem response with its open loop counterpart, where the sensing module (see Figure 4-1)

was removed to break the feedback loop. This was obtained by synthesizing alternative

controllers, denoted as open loop Controllers, missing the anti-σ plasmid (denoted as sensing

in Figure 4-1). The open loop controllers retain the components needed to modify the GFP

expression levels in the targets, however they miss the module required to adjust their output

in response to changes in the targets’ state. By mixing controllers and targets we observed

that the open loop architecture does not stabilize GFP during a 6 h time-course, as opposed

to the closed loop control architecture which is able regulate GFP expression levels in about

3 h. Details on the protocol used can be found in Section A.1.7.

The impossibility of regulating the fluorescence of the targets in open loop is due to

the lack of robustness of such architecture. Specifically, since the two strains bear different

metabolic loads, their growth rates are different and their relative numbers in the community

change continuously. Thus, since the open loop controllers are not able to counterbalance

the imbalances in sensing molecules created by the changes in the population densities, the

targets’ GFP levels will not settle to a steady state value. We further investigated this

phenomenon by analysing the 6 h response of the targets in open loop and closed loop

when different percentages of targets are present in the consortium. Those conditions were

obtained by inoculating cultures with different initial controllers/open loop controllers over

targets ratios and measuring the targets percentage and fluorescence levels in the consortium

after 6 h (more details in section A.1.8). We observed the controllers in closed loop to

consistently stabilize the targets around a constant desired GFP steady state expression

level, independently of the percentage of targets in the consortium at steady state. Instead,

in open loop the targets’ average fluorescence level decreased as the percentage of targets

increased (Figure 4-3 b). This is likely due to the level of 3-O-C12-HSL being produced,
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Figure 4-3: a. Normalized average fluorescence of the target population in open (blue)
and closed (red) loop when no IPTG is provided in the media. The values are normalized
on the steady state value reached in closed loop. b. Average fluorescence of the targets in
open (blue) and closed (red) loop when no IPTG is present in the media, plotted against the
targets percentage in the consortium. The data, collected after 6 h, are grouped according
to the targets percentage in 10 bins spanning from 0% to 100%. c. Average fluorescence
of targets in closed (top panel) and Open (bottom panel) loop in presence of additional
metabolic burden in the targets. Dashed lines and crosses represent average trajectories
and data points of experiments conducted using targets bearing additional burden, while
solid lines and dots are average trajectories and points obtained from targets without any
additional metabolic load. d. closed loop and open loop abstract representation. The open
loop system was obtained mixing controllers missing the anti-σ plasmid with the targets.
Instead, the closed loop system was assembled mixing full controllers with the targets. In
panels a. and b. the error bars represent the standard deviation of the distribution over
n = 3 biological replicas.

which is proportional also to the density of the controllers in the consortium, hence to their

percentage. We quantified the difference between open and closed loop steady states by

fitting the points in Figure 4-3b using a first order polynomial. The angular coefficient of

the line which best fitted the open loop data (blue dotted line in figure 4-3b) is -192, which

is 2.3 times bigger that the slope of the line fitting the closed loop steady states (blue dotted

line in figure 4-3b). This highlights that the percentage of targets in the consortium is twice

more influential on their average fluorescence in open loop then it is in closed loop. Hence,

this analysis highlights the necessity of a closed loop feedback control scheme to achieve a

robust regulation of gene expression.

We also tested robustness of the architecture to metabolic burden, which was shown to

be detrimental for the performance of bio-molecular controllers in [2]. The introduction of

an highly expressed gene can indirectly interact with the designed gene network by taking

up some of the shared transcriptional and translational resources of the cell. Specifically,

we increased the metabolic load on the targets by embedding an additional plasmid in the

target population, which constitutively expressed GP55.1, a protein involved in the inhibition

of DNA repair [115] (Figure A-3a) . This modification caused a 30% drop in the average
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a. b. c.

Figure 4-4: a. Implementation of a tunable output disturbance in the target population. b. Normalized
steady state average fluorescence of the circuit described in panel a in presence of different levels of 3-O-C12
and aTc. The steady state fluorescence was collected after 3 h. The values are normalized with respect
to the condition of maximal fluorescence corresponding to 10µM 3-O-C12 + 100 ng/mL aTc c. Average
fluorescence level of the targets described in panel a in closed loop (solid lines) and open loop(dashed lines)
in a 6 h timecourse experiment. The red, green and blue curve correspond to aTc concentrations of 0 ng/mL,
1 ng/mL and 10 ng/mL, respectively.

fluorescence in presence of 10µM 3-O-C12 with respect to targets not bearing the additional

load (Figure A-3b).

Adding the controller population we were able to reduce consistently the effect of metabolic

burden (Figure 4-3c). The average reduction of GFP expression levels at steady state with

respect to cells where no extra metabolic burden was added went from 30% to almost 10%.

In addition, the standard deviation between the perturbed and unperturbed scenarios were

comparable. Instead, in open loop we observed a 2.5 fold increase in the variability of the 6 h

response of the targets when the burden was introduced. However, the Average fluorescence

level had a similar relative shift with respect to the closed loop counterpart. This was due to

inevitable interference between the effect of metabolic burden and the fluorescence change

induced by the differences in the relative numbers between controllers and targets.

As an additional test of the robustness properties of the architecture, we implemented a

tunable disturbance in the output fed back by the target population (Figure 4-4a). Specifi-

cally, we added another copy of the lasI and GFP coding genes downstream of the inducible

promoter ptet, whose activity is repressed by the presence of TetR, which is constitutively

expressed. The repression exerted by TetR can be modulated by sequestration adding an-

hydrotetracycline (aTc) in the culture environment [89]. Note that this system works as

a disturbance in the signal fed back to the controllers, as the fluorescence signal and the

corresponding 3-O-C6 HSL production cannot be regulated by the action of the controller.

We tested the engineered disturbance system, confirming that by varying aTc levels we could

modulate the GFP over-expression at all levels of 3-O-C12 used, causing up to a two-fold

increase in GFP fluorescence when TetR inhibition was fully released (Figure 4-4b). How-
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ever, when we mixed targets and controllers, the feedback loop was not able to reject the

perturbation as we expected. By comparing the response of the closed loop system when

aTc 10 ng/mL was added to the environment to the case where the perturbation was not

present (0 ng/mL aTc), we noticed that the increase in fluorescent signal induced in open

and closed loop was comparable (Figure 4-4c). Hence, we concluded that the amplitude of

the perturbation was excessively high for our controllers to reject it.

4.4 Testing the tunability of the architecture

The final step towards the in vivo validation of our architecture was to assess the tunability

of the target fluorescence in response to changes in the reference value. Hence, we compared

the closed and open loop dynamic response providing 50 µM IPTG in the culture media.

This concentration was chosen as the controllers produced significantly more σ with respect

to the uninduced scenario (100 fold increase), and we had evidence that the communication

between controllers and targets still worked (Figure 4-2c). However, there was no statistical

difference between the open and closed loop target response when the consortium was grown

in presence of 50µM IPTG (Figure 4-5a, top panel). To identify the causes of the regulation

failure, we analysed the morphology of the cells in the consortium. Specifically, we gated the

cells analysed with flow cytometry based on their size and complexity (see section A.1.4 for

more details on the gating). We found out that the controllers morphology was altered in

presence of IPTG after 6 h of growth and that most of the population had abnormal size and

internal complexity greatly, which can be a sign of cells bearing an excessive metabolic load

[116] (Figure 4-5a, bottom panel). In addition, by analysing the response of controller cells

exhibiting such unhealthy morphology, we confirmed that they were exhibiting a different

phenotype (Figure A-4). We hypothesized that this toxic effect on the controllers was

induced by the excessive production of σ and anti-σ factors when cells reached a stationary

growth regime, as shown in [112].

We addressed this problem by growing cells so that they never transitioned to a stationary

growth phase, as in [112] it was shown that σ and anti-σ factors were not toxic during

exponential growth. Specifically, we used Chi.Bio, an open-source platform for continuous

cultures of microbial populations [117]. It allows a precise control of the culture density,

allowing cells to grow indefinitely at an exponential rate. We repeated the Timecourse

experiment using this platform and observed a much healthier morphology in the controllers

(Figure 4-5b, bottom panel). Details of the protocol used can be found in section A.1.9. In

this assay we normalized the data as the open and closed loop experiments were done on

different days using different colonies due to technical constraints. Indeed, when comparing
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Figure 4-5: a. Timecourse of the open (blue) and closed (red) loop architecture in a test tube, using
LB as growth medium. Top panel : Average fluorescence level of the targets. Bottom panel : Percentage
of healthy controllers in the consortium (i.e. controllers without abnormal morphology). b. Timecourse
of the open (blue) and closed (red) loop architecture in continuous culture (Chi.Bio), using LB as growth
medium. Top panel : Normalized Average fluorescence level of the targets. The normalization was done
with respect to the targets fluorescence at time 0 h. Bottom panel : Percentage of healthy controllers in the
consortium (i.e. controllers without abnormal morphology). c. Timecourse of the open (blue) and closed
(red) loop architecture in a test tube, using M9 as growth medium. Top panel : Average fluorescence level
of the targets. Bottom panel : Percentage of healthy controllers in the consortium (i.e. controllers without
abnormal morphology). In all panels vertical bars indicate the standard deviation between n = 3 biological
replicas.

the targets normalized average fluorescence in open loop and closed loop, we noticed that the

open loop settled to a lower value with respect to the closed loop. This was an artifact of the

normalization process. In detail, the normalization was carried out on the initial fluorescence

levels of the target population. However, as can be seen in Figure A-5a, the fluorescence of

the targets at time 0 h, corresponding to the expression level of an overnight culture, was

comparable with the fluorescence of targets induced with 10µM 3-O-C12 HSL for 3 h. This

phenomenon was due to the accumulation of GFP due to the absence of an active degradation

mechanism for the fluorescent reporter. We confirmed this hypothesis by culturing the

targets alone in the chemostat. We noticed that their fluorescence decreased over time

thanks to cell division which slowly allowed the population to get rid of the accumulated

protein (Figure A-5b). A possible solution to this accumulation phenomenon could have

been to grow targets and controllers overnight in a chemostat, so that the continous division

of cells avoids the excessive accumulation of stable proteins. However, this was not possible

due to the lack of additional chemostats.

As an alternative route to slow down cell growth and avoid them entering stationary

phase, we grew cells in a different medium, where the availability of nutrients was more

limited with respect to LB broth. More precisely, we cultured the cells in minimal media

(M9) (see section A.1.2 for details on the preparation of the media). In addition, to avoid

overgrowth and retain the small molecules produced by both controllers and targets, we
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diluted the consortium in its own supernatant after 6 h (the detailed protocol can be found

in section A.1.10). This adjustment revealed a difference in the response of the closed and

open system were statistically different after 8 h (p-value 7.9 10−7). However, the relative

difference we observed between the open and closed trajectories was very small (30%).

The results from these assays suggested that with the current implementation of the mul-

ticellular architecture we cannot tune the GFP expression levels in the targets in response

to IPTG. Possible causes for this phenomenon could be ascribed to the excessive overpro-

duction of σ in the controllers due to the basal expression of the plac-UV5 promoter and

to the accumulation of GFP in the targets due to the absence of any active degradation

mechanism.

4.5 Improvements to the Controller and target popu-

lations

Failing to prove that the architecture was capable of regulating GFP expression to different

levels, we modified the genetic circuits to improve the performance of the consortium. First,

we added a degradation tag to the fluorescent reporter expressed in the targets to avoid

accumulation of GFP overnight. Specifically, we fused an ssrA tagged lasI with GFP (Figure

4-6a). We chose this option so that the enzyme and the reporter were transcribed and

translated together, hence their expression levels were similar. This new version of the

targets proved to be inducible by 3-O-C-12 HSL, showing up to a 36 fold increase in average

fluorescence when induced with 10µM 3-O-C12 HSL for 6 h (Figure A-6a). In addition,

there was no significant difference between uninduced cells after 3 h and 6 h and cells

not expressing GFP, confirming the effectiveness of the degradation tag in avoiding GFP

accumulation (FigureA-6b). The insertion of the tag also drastically decreased the leakiness

of GFP, creating an overlap between the controllers and targets histograms using the FITC

filter (see section A.1.4 for more details on the filters used). For this reason, we engineered

a constitutively expressed RFP in the controllers (see section A.1.1 for the details of the

plasmid constructed), which enabled the distinction between the two populations within the

consortium using the PE-CF594 filter (see section A.1.4 for more details on the filters used).

We tested the performance of the new targets with the controllers in open and closed

loop. While the addition of the degradation tag completely avoided the accumulation of

GFP in the targets, we were still unable to see any difference between the two configurations

in presence of IPTG (Figure 4-6c). In addition, the difference between the fluorescence levels

reached at steady state in closed loop with and without IPTG were not statistically different
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Figure 4-6: a. Improved Multicellular control architecture. The controllers were modified by adding
a constitutively expressed red fluorescent protein, enabling a reliable distinction between the controllers
and the targets. The targets were modified by fusing the ssrA tagged luxI gene with the green fluorescent
reporter. b. Timecourse of the open (blue) and closed (red) loop architecture in absence of IPTG. Top
panel : Average fluorescence level of the targets. Bottom panel : Percentage of healthy controllers in the
consortium. c. Timecourse of the open (blue) and closed (red) loop architecture when 20µM IPTG were
present in the culture media. Top panel : Average fluorescence level of the targets. Bottom panel : Percentage
of healthy controllers in the consortium. In all panels vertical bars indicate the standard deviation between
n = 3 biological replicas.

(p-value 0.86), suggesting that the targets were expressing saturating levels of the fluorescent

reporter, making it hard to capture the differences between the open loop and closed loop

response. Therefore, we re-engineered the controllers to reduce the leakiness of the plac-UV5

promoter by adding an extra lac operator, which increased the repression efficiency of LacI

[118]. Mixing this version of the controllers with the original targets (where GFP and luxI

were not fused in a single protein), we found out that the targets both in closed and open

loop were able to settle to a steady state after 6 h, with the closed loop system settling down

faster than the open loop counterpart when 7µM IPTG were present in the growth media

(Figure 4-7f). In addition, targets fluorescence without any induction was comparable to

the steady state response of the targets mixed with controllers when no IPTG was present

in the culture media (Figure A-7), proving that the addition of the extra operator reduced

almost to zero the leakiness of the plac-UV5 promoter in the controllers.
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Figure 4-7: a-d. Steady state target fluorescence in open (blue) and closed (red) loop when in the culture
media was present 0µM (panel a), 3µM(panel b), 5µM (panel c) and 7µM (panel d) IPTG, respectively.
All steady state data were collected after 6 h growth in LB broth at 37◦C. e. Steady state comparison of
open loop (blue) and closed loop (red) steady states varying IPTG concentration in the culture environment.
Steady state fluorescence was collected after 6 h incubation in LB. f. Timecourse of the open (blue) and
closed (red) loop architecture when 7µM IPTG were present in the culture media. Top panel : Average
fluorescence level of the targets. Bottom panel : Percentage of healthy controllers in the consortium. All
panels represent results of a single experiment.

We tested the tunability of the response by mixing targets and controllers in LB with

increasing levels of IPTG. Different GFP steady states were reached between open and

closed loop architectures at all IPTG concentrations, with substantial differences when IPTG

concentration was lower than 8µM (Figure 4-7e). The closed loop system showed a linear

increase in GFP expression levels for IPTG ∈ [2µM, 8µM ], while targets in open loop

exhibited a sharp increase in fluorescence levels happening between 2µM and 3µM IPTG,

followed by a plateau in steady state fluorescence reached. The performance of the closed

loop control system degraded fast above 8µM IPTG, exhibiting an unexpected burst in GFP

steady state levels when 10µM IPTG were added to the culture media. This is likely due

to a saturation in the ability of IPTG to promote further the activity of plac-UV5. Finally,

we analysed the robustness of the architecture showing that the closed loop control system

exhibited a reduced sensitivity to variations in the targets percentage in the consortium.

However, as we increased IPTG concentration, the differences in 3-O-C12 levels caused by

imbalances in the relative numbers between the populations became less influential on the
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steady state fluorescence due to saturation. This was particularly evident in open loop for

IPTG concentrations higher than 3µM (Figure 4-7a-d).

These assays suggest that the new architecture can reliably and robustly regulate GFP

expression levels in the targets and that such regulation is tunable modulating the IPTG

concentration in the growth environment. However, further biological replicas are needed to

confirm the reproducibility of our findings.

4.6 Discussion

We presented a possible biological implementation of a multicellular control architecture

where the control functionalities are distributed across members of a microbial consortium.

After validating the individual constituents of the community, we tested by means of flow

cytometry the performance and the robustness of the architecture, confirming the ability

of the distributed feedback controller to robustly regulate gene expression in the targets

to a desired level. However, due to the toxic effect of the σ factor when overexpressed

in a stationary growth regime, we were unable to prove that such regulation was tunable

modulating IPTG concentration. Hence, we redesigned the circuit and collected preliminary

evidence that the new design could realize a reliable, robust and tunable regulation of gene

expression levels in the target population.

The validation of a multicellular feedback biomolecular controller would enable the im-

plementation of modules robustly expressing a desired phenotype that can be integrated

in larger systems to realize complex functionalities. In addition, the realisation of multi-

cellular controllers could pave the way for the control of cellular populations that cannot

be engineered, given the ability to realize appropriate interfaces between the wild type and

engineered organisms.
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Chapter5

Applications and extension of
Multicellular control

The realisation of a multicellular biomolecular controller paves the way for the realisation

of microbial communities carrying out complex functionalities. For example, in this chapter

we present a synthetic microbial consortium leveraging a multicellular control paradigm to

set the state of a bistable memory mechanism implemented using a genetic toggle switch.

In addition, aiming at improving further the dynamical performances achievable using mul-

ticellular controllers, we design and validate in silico a consortium implementing a modular

PI controller, where each bacterial population implements a different contribution to the

control signal.

5.1 Multicellular feedback control of a genetic Toggle

Switch in microbial consortia

In this section we present a possible application of the multicellular feedback control strategy

validated in chapter 4 for the control of a bistable memory element. The architecture involves

a consortium consisting of three cellular populations, in which the activity of one of them is

governed by the other two. Specifically, the state of a genetic toggle-switch endowed in one

of the populations, the targets, can be controlled by providing or removing a reference input

to the other two, the togglers, which communicate with the targets via orthogonal quorum

sensing molecules. In this way, additional functionalities can be toggled in the targets, as

required in a number of applications, e.g. production and secretion of some desired molecule

or drug in the environment [119, 120].

The relationship between the three cell populations in the consortium and their molecular

signals can be schematically represented (see Fig. 5-1) as a sequential logic circuit [121]. The



44 5 Applications and extension of Multicellular control

Figure 5-1: Representation as a sequential logic circuit of the relationship between the cell
populations and their molecular signals. The target receives ON commands (u1 = 1) only
when Ref = 1 AND y = 0, and OFF commands (u2 = 1) only when Ref = 0 AND y = 1. In
this way, the input signals u1 and u2 are equal to 1 only when there is disagreement between
Ref and y.

two controller cells sense the concentration in the environment of the reference signal, Ref,

and of the targets’ output, y, which is high (y = 1) only when the targets are active. The

controllers then generate two control signals, u1 and u2, according to the following logic

functions

u1 = Ref AND (NOT y), (5-1)

u2 = (NOTRef) AND y, (5-2)

so that the reference signal, can be used to toggle the switch in the targets.

In particular, a controller population, the activators, commands the activation of the

targets when, at the same time, it perceives the presence of a specific reference chemical

signal in the environment and the targets are inactive. The other controller population, the

deactivators, inhibits the activity of the targets when they are active and the reference signal

is no longer present in the environment. In this way, the targets are active only when the

reference signal is present in the environment.

The crucial challenge we address in this section is the abstract biological implementa-

tion of this novel multicellular control scheme. After proposing a possible realization of all
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Figure 5-2: Abstract biological implementation of the multicellular control of a genetic
toggle-switch. The togglers compare the concentrations of the signaling molecules R and
Qy using an antithetic motif and produce Qui

according to the logic functions (5-1)-(5-2).
This, in turn, diffuses inside the target and promotes the activation of Xi, which makes the
target change its state. Circles represent internal molecular species and polygons represent
signaling molecules diffusing in the cells.

the functions required, we model the three populations and investigate analytically how to

engineer the consortium parameters so as to guarantee its desired operation. We then pro-

vide in-silico experiments in BSim [122, 123], a realistic agent-based simulator of bacterial

populations, confirming the viability of the approach.

5.1.1 Multicellular control system

A schematic biological implementation of the multicellular control strategy we propose is

illustrated in Fig. 5-2. The superscripts e, t, a, d are used in the rest of the section to

denote quantities in the environment, in the target cells, in the activator cells or in the

deactivator cells, respectively.

As done in [4, 89], activation and repression of each species is governed by Hill functions
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with dissociation coefficient θ and exponent n. Moreover, we denote with α0
X and αX the

basal and maximal expression rates of species X, and with γv the degradation rate of a

species within a domain v.

Target population

We assume that the bistable memory regulating the activation of the target cells is imple-

mented by an inducible genetic toggle-switch [124, 89]. This genetic network consists of two

proteins, X1 and X2, each repressing the expression of the other, so that at steady state

only one is fully expressed. Without loss of generality, we assume full expression of X1 cor-

responds to the “active” state of the cell where some desired functionalities are turned on,

while full expression of X2 corresponds to its inactive state.

Here we focus on the problem of toggling the target population between the two states.

Other works in the literature have considered the alternative control problem of stabilizing

the toggle-switch about some intermediate expression levels of X1 and X2, see e.g. [125, 126,

127, 128]; a problem we do not address in this section.

The dynamical model of the toggle-switch can be given as

ẋ1 = α0
x1

+
αx1

1 +
(

x2

θx2

)nx2
− γt x1 + u1 (5-3)

ẋ2 = α0
x2

+
αx2

1 +
(

x1

θx1

)nx1
− γt x2 + u2 (5-4)

where the state variables x1 and x2 denote concentrations of molecules X1 and X2 inside the

cell and we assume u1 and u2 capture the effect of two inputs that can be used to toggle the

switch between one state and the other.

We assume that the parameters of the toggle-switch are chosen such that, in the absence

of external inputs, i.e. u1 = u2 = 0, the system is bistable [129], with well separated

equilibria and sufficient transversality of the nullclines [130]. Specifically, system (5-3)-(5-4)

admits two stable equilibria, xeq1 = [x̄1, x2] and x
eq
2 = [x1, x̄2], associated to high expression

of species X1 or X2, respectively. We also assume that there exists some positive value û1

(û2) such that, when u1 > û1 (u2 > û2) and u2 = 0 (u1 = 0), system (5-3)-(5-4) converges to

a unique equilibrium point corresponding to high expression of X1 (X2) and remains therein

when inputs are switched off.

As shown in Fig. 5-2, we associate each of the inputs of the toggle-switch (5-3)-(5-4) in

the targets to the concentration of a quorum sensing molecule coming from the activator
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and deactivator cells. Specifically, we capture the promoting action of the signaling molecule

Qui
on the expression of Xi by setting

ui = βi ·
(qtui

)nui

θ
nui
ui + (qtui

)nui

, i = 1, 2, (5-5)

where qtui
denotes the concentration of molecule Qui

inside the target cell, and βi, θui
and

nui
are the maximal promoter activity, activation and Hill coefficients, respectively.

In our design, target cells can signal their state to the other cells by means of another,

orthogonal, quorum sensing molecule Qy that is produced at a rate f t
y, assumed to be

proportional to X1 [4], that is

f t
y = ky x1, ky > 0. (5-6)

Hence, at steady state, when the cell is active, f t,ON
y = ky x̄1.

toggler populations

The two controllers implement the same logic circuits (Fig. 5-1) and therefore they also share

similar biological implementations. However, since the reference molecule R and signaling

molecule Qy have inverted roles, the biochemical reactions describing the activator and

deactivator cells are in general different. For the sake of brevity, we next describe only the

biological implementation of the deactivator cells in Fig. 5-2, which is directly taken from

[4].

The logic function (5-2) is realized in the deactivators by means of an antithetic motif.

Specifically, the expression of Z1 is regulated by two independent and competing species,

R and Qy; R represses Z1, while Qy activates Z1 and reacts with it forming the complex

Z1 :Qy. The control signal molecule Qu2 is produced through a synthesis process catalyzed

by Z2, which is promoted only by the active compound Z1 :Qy. As a result, Qu2 is produced

and released only when the concentration of R inside the deactivator cells is low while that

of Qy is high.

By denoting with z1 and z2 the concentrations of the species Z1 : Qy and Z2 in the

deactivators, their dynamics can be written as

ż1 =

(
α0
z1,r

+ αz1,r
θ
nr,z
r,z1

θ
nr,z
r,z1 + (rd)nr,z

)
·

(
α0
z1,q

+ αz1,q

(qdy )
nq,z

θ
nq,z
q,z1 + (qdy )

nq,z

)
− γd z1

ż2 =α0
z2
+ αz2 ·

znz
1

θnz
z1

+ znz
1

− γd z2
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The output signaling molecule Qu2 is produced through a synthesis process catalyzed by Z2,

and so at a rate fd
u2

proportional to the concentration of Z2, that is

fd
u2

= ku2 z2, ku2 > 0. (5-7)

Moreover, the substrates required to synthesize Qu2 are assumed to be in excess and therefore

this process does not directly affect Z2 [4].

Similarly, another antithetic motif is embedded in the activators so that, by denoting

with w1 and w2 the concentrations of the species W1 :R and W2 therein, their dynamics can

be written as

ẇ1 =

(
α0
w1,q

+ αw1,q
θ
nq,w
q,w1

θ
nq,w
q,w1 + (qay)

nq,w

)
·
(
α0
w1,r

+ αw1,r
(ra)nr,w

θ
nr,w
r,w1 + (ra)nr,w

)
− γaw1

ẇ2 =α0
w2

+ αw2 ·
wnw

1

θnw
w1

+ wnw
1

− γaw2

The activators will then generate a quorum sensing molecule Qu1 at a rate f a
u1

proportional

to the concentration of W2, that is

f a
u1

= ku1 w2, ku1 > 0. (5-8)

Intercellular communication

Intercellular communication between the three populations is realized by means of three pair-

wise orthogonal quorum sensing molecules, namely Qu1 , Qu2 and Qy, which are produced by

activators, deactivators and targets, respectively. For the sake of brevity, in what follows we

use the placeholder superscript j to denote concentrations of signaling molecules in a generic

cell type, where j = a for activators, j = d for deactivators and j = t for targets. The quorum

sensing molecules and the reference signal molecule R diffuse across the cell membrane of

the genetic cell of type j with diffusion rate ηj. The evolution of the concentrations of the

signaling molecules inside the generic cell of type j can then be given as

ṙj = ηj (re − rj)− γj rj

q̇ju1
= f j

u1
+ ηj (qeu1

− qju1
)− γj qju1

q̇ju2
= f j

u2
+ ηj (qeu2

− qju2
)− γj qju2

q̇jy = f j
y + ηj (qey − qjy)− γj qjy
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where the production functions f t
y, f

d
u2
, and f a

u1
are defined in (5-6), (5-7) and (5-8), f t

u1
=

fd
u1

= 0, f t
u2

= f a
u2

= 0, and f a
y = fd

y = 0.

The concentrations of the reference signal molecule and of the quorum sensing molecules

secreted by the three cell populations in the environment can be described by the following

set of ODEs:

ṙe = rin(t) + ηa∆ra,e+ ηd∆rd,e+ ηt ∆rt,e− γere

q̇eu1
= ηa∆qa,eu1

+ ηd∆qd,eu1
+ ηt ∆qt,eu1

− γe qeu1

q̇eu2
= ηa∆qa,eu2

+ ηd∆qd,eu2
+ ηt ∆qt,eu2

− γe qeu2

q̇ey = ηa∆qa,ey + ηd∆qd,ey + ηt ∆qt,ey − γe qey

where ∆rj,e := rj − re, j ∈ {a, d, t}, and ∆qj,eu1
, ∆qj,eu2

, and ∆qj,ey are defined similarly, and

the function rin(t) represents the concentration of the reference signal provided externally to

influence the cell behavior. In the above equations, γe and γj are the degradation rates in

the environment and in the generic cell of type j (assumed to be the same for all species for

the sake of simplicity).

5.1.2 Consortium engineering

Next, we show that, for the control loop to be effectively closed across the three populations,

the parameters characterizing each of the cell populations and the intercellular communica-

tion channels must fulfill a set of necessary conditions. In particular, a set of constraints

on the parameters can be derived by analyzing the model equations at steady state, assum-

ing that spatial effects are negligible and the number of cells in the three populations are

equally balanced, which implies ηj = η, for all j ∈ {a, d, t}. These assumptions will then be

relaxed in the next section where in-silico experiments are carried out also in the presence

of cell-to-cell variability and spatio-temporal effects.

Feedback loop pathways We start by making the realistic assumption that η ≫ γj,

j ∈ {a, d, t}, that is, the signaling molecules diffuse through the cellular membrane faster

then they are degraded. Hence, when the reference signal fed to the environment is constant

and large enough (i.e. rin(t) = rON
in = const.) and the target cells are not active (i.e. Qy is

not expressed), it is easy to verify that at steady state the concentrations of the signaling

molecules R and Qu1 reach the same value in every cells, that is, for all j ∈ {a, d, t} we have

r̄j = rON
in /Γ, q̄ju1

= ku1 w̄2/Γ, (5-9)
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where Γ := γe + γt + γa + γd, and w̄2 denotes the steady-state value of w2 when it is fully

expressed.

Analogously, for Qy and Qu2 , when the reference signal rin is absent (i.e. rin(t) = rOFF
in =

const.) and the target cells are initially active (i.e. Qy is expressed), at steady state, we have

for all j ∈ {a, d, t}

q̄jy = ky x̄1/Γ, q̄ju2
= ku2 z̄2/Γ, (5-10)

where, similarly, x̄1 and z̄2 denote the steady-state values of x1 and z2 when they are fully

expressed.

toggler cells To guarantee that the activators and deactivators implement at steady state

the logic functions (5-1)-(5-2), it is necessary that only the activators produce their control

signal when the concentrations in the cells of the reference molecule R and Qy are sufficiently

high and low, respectively. Therefore, it must hold that

θr,w1 ≪ r̄a and θr,z1 ≪ r̄d. (5-11)

Similarly, when the concentrations of R and Qy are sufficiently low and high, respectively,

then, in order that only the deactivators generate their control signal, it must hold that

θq,w1 ≪ q̄ay and θq,z1 ≪ q̄dy . (5-12)

Target cells In order for the signaling molecules coming from the controllers to toggle the

switch within the targets, the input functions (5-5) must be such that

βi > 2 ûi, i = 1, 2, (5-13)

and the concentrations of the quorum sensing molecules within the targets must be suffi-

ciently high, i.e.

θui
≪ q̄tui

, i = 1, 2, (5-14)

so that the control input is strong enough to trigger the transition from one state to the

other and render the toggle-switch monostable.
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Parameters’ constraints Substituting equations (5-9)-(5-10) in conditions (5-11), (5-12)

and (5-14), we obtain that, at steady state, the togglers can activate or deactivate the targets

in response to the presence or absence of the external reference signal rin(t), if the system

parameters satisfy (5-13) and the following conditions are satisfied:

Γ θr,w1 ≪ rON
in , Γ θr,z1 ≪ rON

in ,

Γ θq,w1 ≪ ky x̄1, Γ θq,z1 ≪ ky x̄1,

Γ θu1 ≪ ku1 w̄2, Γ θu2 ≪ ku2 z̄2.

Using similar arguments, it is also possible to obtain the lower bounds, yielding

rOFF
in ≪ Γ θr,w1 ≪ rON

in , rOFF
in ≪ Γ θr,z1 ≪ rON

in (5-15)

ky x1≪ Γ θq,w1≪ ky x̄1, ky x1≪ Γ θq,z1≪ ky x̄1 (5-16)

ku1 w2≪ Γ θu1 ≪ ku1 w̄2, ku2 z2≪ Γ θu2≪ ku2 z̄2 (5-17)

where x1, w2 and z2 denote the steady-state values of the corresponding species when they

are completely repressed.

The previous conditions represent a set of necessary conditions for the consortium to

exhibit its desired multicellular control functions.

Remark 1 Conditions (5-15)-(5-17) depend on steady-state values of x1, w2 and z2, which

in general would need to be estimated in-silico or quantified experimentally. However, at

the price of relaxing the bounds, conditions independent from these values can be obtained

by approximating Hill functions with step functions (i.e. by letting n → ∞) yielding x1 =

α0
x1
/γt, w2 = α0

w2
/γa, z2 = α0

z2
/γd, x̄1 = (α0

x1
+ αx1)/γ

t, w̄2 = (α0
w2

+ αw2)/γ
a and z̄2 =

(α0
z2
+ αz2)/γ

d.

5.1.3 In silico experiments

Agent-based simulations

To validate the effectiveness of our multicellular control design, we implemented a set of

in-silico experiments via BSim, a realistic agent-based simulator of bacterial populations

developed in [122, 123]. In so doing, we modeled a microfluidics chamber of dimensions

13.3µm×16.6µm×1µm and used BSim to take into account cell growth and division, spatial

effects, diffusion of the signaling molecules, cell-to-cell variability and geometric constraints

(details on the microfluidic chamber simulated can be found in section B.1). The nominal

values of the parameters used in simulations are reported in Table 5-1. They have been
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(a) (b) (c)

Figure 5-3: Evolution of the average (thick lines) and single cell (thin lines) values of the
concentrations of repressor proteins x1 (green) and x2 (red) in the target population (top
panel) when the reference signal rin(t) is switched from low to high and vice versa. The
middle panel shows the average values of the concentrations of quorum sensing molecules qtu1

(light blue) and qtu2
(dark blue) inside the target cells. The bottom panel shows the value of

re at the center of the chamber.

chosen in the ranges reported in [4, 128], and satisfying conditions (5-13) and (5-15)-(5-17).

Cell-to-cell variability was modeled by assigning a different set of parameters to daughter

cells when they split from their mothers. Namely, each of their parameters, say µ, was

drawn independently from a normal distribution centered at its nominal value µ̄ and with

coefficient of variation cv = 10%.

Figs. 5-3 and 5-4 show the results of a typical in-silico experiment where the toggler cells

(depicted in red and green) successfully flip the target cells from their active state (depicted

in blue) to their inactive state (depicted in black) and vice versa, following changes in the

reference signal rin. The amplitude and the duration of the reference pulse rin have been

heuristically set to 43 µM and 1140 min, respectively. (Tuning of the pulse features can also

be done by means of other methods, e.g. [131].)
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(a) (b) (c)

Figure 5-4: Snapshots of an agent-based simulation at different time instants (highlighted
in Fig. 5-3 with dashed vertical lines). Specifically, panel (a) corresponds to t = 120 min,
panel (b) to t = 1100 min and panel (c) to t = 2800 min. activator cells are shown in green,
deactivator cells in red and target cells are depicted in blue when they are active and in
black when they are inactive.

Robustness to parameter variations

Next, we performed numerical analysis in Matlab, in the illustrative case of no population

growth, to evaluate (i) how imbalances between populations affect the operation of the

consortium due to poor intercellular communication, and (ii) its robustness to parameters’

variations.

Fig. 5-5 shows the values at steady state of the ratio x1/x2 when the targets are switched

OFF (lower triangular panel) and ON (upper triangular panel), respectively, following the

application of the corresponding reference signal rin, as the ratios of the cell populations in

the consortium are being varied. In this scenario, we see that for a wide range of population

densities (black region for deactivators in panel (a), colored for activators in panel (b) of

Fig. 5-5), the togglers are effectively able to flip the state of the targets.

Finally, we tested robustness of our design when all parameters of targets, activators

and deactivators are perturbed from their nominal values. As shown in Fig. 5-6, even

in the presence of a consistent parameter mismatch (cv = 0.2), the togglers are able to

activate or deactivate a large fraction of the targets’ population. The activators showed

better performance than the deactivators due to different values of parameters βi considered

in the in-silico experiments (see Table 5-1).
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ρa

ρt
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x2

ρt

ρd
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Figure 5-5: Steady-state value of x1/x2 in response to switch commands, rOFF
in (lower

triangular panel a) and rON
in (upper triangular panel b), as the relative ratios of the three

populations are changed. Switch commands are applied with the targets starting from the
opposite state. The total cell population in the consortium is set to N = 50. For each
cell type ρj = Nj/N , j = {t, a, d}, is its relative ratio within the consortium, and such that
ρa + ρd + ρt = 1.

5.1.4 Discussion

We have presented a multicellular control solution to the problem of toggling a memory

mechanism in a target cell population. This confirms, by means of realistic agent-based

simulations, that the solution we propose is theoretically viable.

A possible future application for the described design could the controlled delivery of

active molecules or drugs synthesized by the targets when they are active. Indeed, the

consortium is designed so that the drug or active molecule of interest is only produced and

secreted when a specific reference chemical signal is perceived by the controller cells, while

the production is stopped when the reference is removed and the targets are deactivated. By

using a cancer biomarker as the reference signal, the togglers could then be used to activate

the targets to deliver chemotherapy drugs in situ only when the biomarker is detected in

the tissue, providing a multicellular feedback control alternative to the open-loop design
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S%

cv
Figure 5-6: Percentage of successfully switched targets (S%) in a balanced consortium
(Nt = Na = Nd = 17) as the coefficient of variation cv is varied. The bar plot in green (red)
represents the percentage at steady state of targets that, starting from OFF (ON) state,
are turned ON (OFF) following the reference input rin being switched to rON

in (rOFF
in ). For

each value of cv, the results of 100 simulations were averaged, each obtained by drawing
independently all cells’ parameters from normal distributions centered on their nominal
values, µ̄, and with standard deviation σ = cv · µ̄.

proposed in [120]. Also, if the reference signal were linked to the presence of some pollutant

in the environment, the controlled activation of the targets cells could be used to synthesize

active molecules for bioremediation when and where needed.

5.2 Multicellular PI

In chapter 4 we presented a possible in vivo implementation of a multicellular implementa-

tion of an antithetic integral feedback controller. Although integral control allows achieving

perfect robust adaptation, the dynamical performances as well as the accuracy and robust-

ness of the controller can be enhanced by the addition of proportional and derivative actions.

In this section, we first present a multicellular scheme of the PID controller inspired from the

embedded single-cell solution in [9]. Then, we focus on the implementation of P and PI con-

trollers within a microbial consortium comprising different cell populations communicating

through orthogonal quorum sensing molecules. After presenting abstract biological imple-
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Table 5-1: Nominal simulation parameters of the multicellular consortium
[µM/min] [µM]

α0
x1
, α0

x2
0.005 θx1 , θx2 2

αx1 , αx2 0.1083 θu1 , θu2 0.5
α0
z1,q

, α0
z1,r

0.0348 θr,z1, θq,z1 0.5

αz1,q, αz1,r 0.1305 θr,w1, θq,w1 0.5
α0
w1,q

, α0
w1,r

0.0348 θz1 , θw1 0.5

αw1,q, αw1,r 0.1305 [1/min]
α0
z2
, α0

w2
0.0016 γt 0.0092

αz2 , αw2 0.026 γd, γa, γe 0.0230
β1 0.09 η 2
β2 0.016 ky 0.03

n 2
ku1 0.06
ku2 0.06

mentations for each of the proposed strategies, we derive analytical conditions for tuning the

controller gains, providing insights on the biological parameters that most influence their

performance. We complement the theoretical derivations with a set of in silico experiments

carried out using the realistic agent-based microbial simulator BSim [122, 123].

The results of all the experiments confirm the effectiveness of the proposed multicellular

architectures whose in vivo implementation is the subject of ongoing research.

5.2.1 Multicellular PID control strategy

We propose to realize a distributed biological PID controller entrusting each action to a

different cellular population within a microbial consortium, see Fig. 5-7. Here, three cellular

populations, denoted as controllers, provide the proportional, integral and derivative actions,

respectively, implementing a biomolecular multicellular controller inspired by the classical

PID control strategy given by:

uPID(t) : = uP (t) + uI(t) + uD(t)

= kP e(t) + kI

∫ t

0

e(τ)dτ + kDė(t),
(5-18)

where kP , kI and kD are the proportional, integral and derivative gains, and e(t) is the

control error, which is a function of the measured output y(t) of the process Φ(t) under

control and the desired value Yd(t). The overall control signal uPID(t) computed by the

controllers is sensed by the target population hosting the process Φ(t), whose output y(t) is

fed back to the controllers closing the control loop.
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Figure 5-7: Schematic representation of a distributed biological PID controller. The three
controllers compare the reference signal Yd(t) with the output of the target population y(t),
and collectively compute the overall control signal uPID(t), closing the control loop and
regulating the process Φ(t).

Here, we present two biomolecular control architectures stemming from the full schematic

in Fig. 5-7; the former composed by one population implementing a Proportional (P) action

that controls the targets, and the latter in which an additional population is inserted in the

consortium to implement an integral (I) action (Fig. 5-8). For the sake of brevity, we leave

the study of other possible configurations for a future work. Obviously, because of the highly

nonlinear nature of biomolecular reactions the resulting controller will have a much more

cumbersome and nonlinear nature than the classical PID expressed in (5-18).

The communication between controllers and targets is realized by a pair of orthogonal

quorum sensing molecules Qu and Qx that act as proxies of the control input uPID(t) and

the measurement of the process state y(t), respectively, that are produced by the cells and

diffuse through their membranes into the environment.

Each controller population senses the control error e(t) by comparing the reference signal

Yd(t) with measurement of the output carried by the sensing quorum sensing molecule Qx.

It then contributes accordingly to the overall production of the quorum sensing molecule Qu

which delivers the control input affecting the target cells. Therein, the process Φ(t) can be

any network of genes that is directly affected by Qu and whose output is the expression of

some gene of interest. To close the loop, the process Φ(t) activates the production of Qx

that, by diffusing into the environment, can be sensed by the controllers.

Next, we derive the mathematical models of both schemes, describing the average dy-

namics of the populations, that is, the evolution of the concentrations of the chemical species
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Figure 5-8: Abstract implementation of a distributed biological PI controller. The output
of the process Φ(t) is the quorum sensing molecule Qx, produced proportionally to the target
gene Xc. Its input is the gene X1, which is actuated by the control quorum sensing molecule
Qu. Each controller population evaluates the control error e(t) by comparing the reference
signal Yd(t) and the process output carried by Qx, thus contributing to the overall production
of Qu. Circles represent internal molecular species, while polygons represent the signaling
molecules.

averaged over the entire consortium. We assume that all populations in the consortium are

equally balanced and that the total number of cells in the community is fixed. This also

implies that the molecules diffuse through the cell membrane with the same diffusion rate η.

These assumptions are later relaxed in Section 5.2.3 where in silico experiments are carried

out to evaluate the impact of cell-to-cell variability and spatio-temporal effects on the control

performance. Note that in in vivo experiments in microfluidics, after an initial growth phase

during which the cells occupy the entire chamber, as newborn cells push out older cells from

the chamber, their total number can be assume to be constant. The superscripts e, t, p, i,

are used in the rest of this section to refer to quantities in the environment, in the target

cells, in the proportional, or in the integral controller cells, respectively.

Mathematical modelling We assume that the output of the process Φ(t) is the quorum

sensing molecule Qx, produced proportionally to the target gene Xc, and that its input is

the gene X1, which is actuated by Qu (Fig. 5-8). The dynamics of the network hosted in

the target cells can be described by the following set of ODEs:

Ẋ1 = −γ1X1 + βuQ
t
u,

Ẋc = βcX1 − γcXc,
(5-19)
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where γ1 and γc are the degradation rates of the species X1 and Xc, respectively, and βc

and βu are activation rates, modeling the strength of the activation induced by transcription

factorsX1 and Qu [8, 132, 9]. The sensing molecule and process output Qx is produced by the

target cells as a function of the speciesXc (for the sake of simplicity we assume the production

of Qx is proportional to Xc). Hence, information about the target state is broadcast to the

other cells in the consortium by Qx diffusing into the environment with a dynamics assumed

here to be linear, as often done in literature [110]. Under these assumptions, the dynamics

of the sensing molecule in the targets can be modeled as:

Q̇t
x = βxXc + η(Qe

x −Qt
x)− γtQ

t
x, (5-20)

where βx is the activation rate due to Xc, η is the diffusion rate of the molecule Qx across

the cell membrane, and γt is the dilution rate of Qx in the target cells.

The proportional controller is implemented here as in [9] by means of an inhibitory action

whose strength is a nonlinear function depending on the output fed back from the targets

combined with an activation proportional to the amplitude of the reference signal. Namely,

we can describe the dynamics of the intracellular concentration Qp
u as:

Q̇p
u = βPYd

µPYd

µPYd+θPQp
x
+ η(Qe

u −Qp
u)− γpQ

p
u, (5-21)

where γp is the dilution rate of Qu inside the proportional controller cells, βP represents the

maximal production rate of the control molecule and plays the role of the proportional gain,

µP and θP are positive coefficients characterizing the control action [9]. It can be shown (see

[9] for details) that the first term in (5-21) embeds a nonlinear action that is function of the

control error eP (t) = µPYd − θPQ
p
x. Note that a possible biological implementation of this

action is also proposed in [9].

To implement the integral action, an antithetic motif [72] is embedded into the controller

population. This module uses a pair of chemical species, say Z1 and Z2, produced pro-

portionally to the reference signal Yd and to the sensing molecule Qx, respectively, able to

annihilate each other with a high affinity. The dynamics of the network embedded in this

population can then be described by the set of ODEs:

Ż1 = µIYd − γzZ1Z2,

Ż2 = θIQ
i
x − γzZ1Z2,

(5-22)

in which µIYd and θIQ
i
x are production rates, γz is the annihilation rate between Z1 and Z2,

which is assumed here for the sake of simplicity to be the only source of degradation for the

species Z1 and Z2, as also done in [8, 9] (dilution of Z1 and Z2 in (5-22) can also be considered
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[82] to describe a more realistic, non-ideal integrator). Following similar arguments to those

in [9], it can be shown that d
dt
(Z1 − Z2) is proportional to the control error, defined as

eI(t) = µIYd − θIQ
i
x.

The network described in (5-22) is complemented with the control molecule dynamics,

described as:

Q̇i
u = βIZ1 + η(Qe

u −Qi
u)− γiQ

i
u, (5-23)

where βI plays the role of the integral gain and all the other parameters have an analogous

meaning as those in (5-20).

Finally, the mathematical models are completed by adding ODEs describing the diffusion

dynamics of the quorum sensing molecules across the cell membranes. Specifically, under

the assumption that the two populations are balanced, the concentration of the molecules

into the environment is described by:

Q̇e
x =Mη

∑
j∈S(Q

j
x −Qe

x)− γeQ
e
x,

Q̇e
u =Mη

∑
j∈S(Q

j
u −Qe

u)− γeQ
e
u,

(5-24)

where S = {p, t} if the proportional controller population is the only present, while S =

{p, i, t} when the integral controller population is also added to the consortium, and M is

the number of cells in each population. The dynamics of the concentrations of Qx and Qu

inside those cells not directly producing them is given by:

Q̇h
x = η(Qe

x −Qh
x)− γhQ

h
x, h ∈ {p, i},

Q̇t
u = η(Qe

u −Qt
u)− γtQ

t
u.

(5-25)

5.2.2 Circuit Design

We derive some analytical conditions on the parameters of the genetic circuits which guaran-

tee successful regulation of the measured output Qx to the desired value. Towards this aim,

we first derive a reduced order model of the consortium dynamics and then, via a stability

analysis, we provide sufficient conditions that the biomolecular parameters must satisfy in

order for the consortium to operate correctly.

Assumptions and problem statement To derive simple, yet meaningful, analytical

conditions guiding the design of the controller populations, we make some realistic assump-

tions on the values of the parameters. Namely, we assume that (i) each population di-

vides at the same rate, implying that the dilution rates for all species are identical (i.e.

γp = γi = γt = γ1 = γc = γ); (ii) the degradation of each quorum sensing molecule in
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the external growth environment can be neglected, i.e. γe = 0; and (iii) the promoters

induced by the reference signal Yd and the sensing molecule Qx are the same in the propor-

tional and integral controllers, implying that µp = µi = µ and θp = θi = θ. Also, defining

ΓP := γt + γp + γe = 2γ and ΓPI := γt + γp + γi + γe = 3γ, we assume that:

Assumption 1 The quorum sensing molecules diffuse faster than they degrade, that is,

η ≫ ΓP when only proportional controller cells are present, or η ≫ ΓPI when both controller

populations are present.

Assumption 2 The annihilation process between the species Z1 and Z2 is fast enough, that

is, γz ≫ max{ α2

µY
, ΓPIα

µY
}, where α is a function of the model parameters defined as

α =
(

9γ4

βxβIβcβu
− βP θ

2βIµ

)−1

.

Note that in different models parameterized from in vivo experiments this assumption holds

(e.g., [110, 5]).

Given the assumptions above and defining the control error as:

e(t) := µYd − θy, (5-26)

where we defined the controlled output as y = Qt
x, the control problem is that of engineering

a microbial consortium comprising one or more controller populations so that at steady state

the output of the process in the target cells is robustly regulated to the desired value, that

is, limt→∞ e(t) = 0, with a transient response characterized by small overshoot and fast

convergence.

Multicellular P controller Under the assumptions made in Section 5.2.2 and quasi-

steady state assumption on the quorum sensing dynamics, when the targets are regulated by

controllers solely implementing a proportional control action, the dynamics of the consortium

can be approximated by the following reduced order model:

Ẋ1 = βuβPYd
µYd

ΓPµYd+θβxXc
− γX1,

Ẋc = βcX1 − γXc,
(5-27)

where the controlled output is defined as y = βx

ΓP
Xc (see Appendix A.2.1 for details). It

can be demonstrated that model (5-27) has a unique admissible equilibrium point, which is

always locally asymptotically stable. However, for the sake of brevity, the proof is omitted

here and reported in [14]. Moreover the steady-state error ess is given as:

ess =
1

2

(
3−

√
1 + βP

βcβuβxθ
µγ4

)
µYd, (5-28)



62 5 Applications and extension of Multicellular control

which nonlinearly depends on the value of the proportional gain βP and that can be made

closer to zero by selecting βP as:

β∗
P =

8µγ4

βcβuβxθ
. (5-29)

Indeed, if it were possible to select βP = β∗
P , we could have Qx = µYd

θ
at steady state, which

implies e(t) = 0. Note that such a choice would require perfect knowledge of the target

cells parameters which is unrealistic. We will therefore explore later in Section 5.2.3 how the

error varies for values of βP in a given range of interest and evaluate the effects of βP on the

dynamics of Qt
x, assessing the sensitivity of the control strategy to parameter mismatches or

uncertainties.

Multicellular PI controller A possible solution to overcome model uncertainties and

robustify the designed control system is to add a third population implementing an integral

control action. Under the same assumptions made in Section 5.2.2, the dynamics of the

resulting consortium comprising both the P and I controller populations can be approximated

by the following set of ODEs:

Ẋ1 = βu

[
βPYd

µYd

ΓPIµYd+θβxXc
+ βIζ1

ΓPI

]
− γX1,

Ẋc = βcX1 − γXc,

ζ̇1 = µYd − θQx,

(5-30)

where ζ1 = Z1 − Z2 and y = βxXc

ΓPI
. Details on the derivation of equation (5-30) are reported

in Appendix A.2.1. This dynamical system has a unique, non-negative equilibrium point if

the proportional gain is chosen such that:

βP ≤ 18γ4µ

βcβuβxθ
. (5-31)

Reaching this equilibrium point ensures that Qx = µYd

θ
, thus e(t) = 0. By carrying out a local

stability analysis, we found that the equilibrium point is locally asymptotically stable if the

value of the integral gain βI does not exceed a threshold dependent on the other parameters

including the proportional gain βP , that is:

βI <
βPγ

2µ
+

18γ5

βcβuβxθ
. (5-32)

Condition (5-32) gives insights on the biological elements that influence the performance of

the PI multicellular architecture. Specifically, choosing fast dividing cells (i.e. high values

for γ) or reducing of the strength of the promoters induced by the reference Yd and the

sensor molecule Qx can widen the range of values of βI that guarantee the correct operation

of the control consortium.
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5.2.3 In silico control experiments

To validate the proposed multicellular control architectures we carried out in silico ex-

periments in BSim [122, 123], an agent-based environment explicitly designed to simulate

bacterial populations. BSim allows to keep track of each cell in the consortium, simulating

both the dynamical processes hosted in the organism and the bio-mechanics of the cell. In

addition, the diffusion of the quorum sensing molecules, cell growth and division, and cell-

to-cell variability can be explicitly simulated together with realistic geometric constraints of

the host environment. In particular, BSim accurately simulates cells cultured in a micro-

environment such as a microfluidic device where nutrients are constantly provided, allowing

cells to grow in exponential phase (details on the simulation environment can be found in

section B.1). Here, we emulated a scaled version of the device described in [133, 12], that

is, a microfluidic chamber of dimensions 17µm× 15µm× 1µm, which can host around 100

cells. These dimensions were selected as a good trade-off between number of cells hosted and

computational burden. Unless otherwise stated, the growth and mechanical parameters were

selected as in [5], while the nominal values of the parameters in the network were chosen as

described in Appendix A.2.2.

Selecting βP = β∗
P , both control architectures showed good regulation capabilities of the

output species Qt
x over a period of 12000min at different set-point values (Fig. 5-9, blue

curves), with a settling time of about 500min for the proportional controller (Fig. 5-9a) and

about 700min for the PI controller (Fig. 5-9b). In all simulations βI was selected according

to (5-32). However, when βP cannot be tuned to match equation (5-29), the proportional

controller alone fails to regulate y to the desired value, showing increasingly higher value

of the steady-state errors as βP decreases. Instead, as expected, adding the integral control

action, the steady-state error is not sensitive to changes in the value of βP , as long as

(5-31)-(5-32) are satisfied.

Next, we tested the robustness of the control architectures with respect to imbalances

in the relative composition of the consortium. Indeed, despite the host cells being identical,

unavoidable asymmetries in the metabolic load on each population can cause their relative

numbers to change over time. Towards this aim, neglecting cell growth and division, we

varied the populations’ relative numbers defined as ρj =
Nj

N
, j ∈ {p, i, t}, where Nj is the

number of individuals belonging to the population j, while keeping constant the total number

N of cells in the chamber, and evaluating the percentage error at steady state defined as:

e% =
∣∣∣Qt

x,ss−Qd

Qd

∣∣∣× 100% =

∣∣∣∣ essµYd

∣∣∣∣× 100%, (5-33)
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Figure 5-9: Set-point tracking experiments in BSim: evolution in time of the average
concentration in the targets of the quorum sensing molecule Qt

x when they are controlled
by the proportional controllers only (panel a) and by a PI control action (panel b). The
control gains were selected as βP = {0.02, 0.03, 0.0414}min−1 (purple, yellow and blue line,
respectively) and βI = 0.0002min−1. The piece-wise constant reference signal µYd(t)/θ is
depicted as a dashed line. At t = 0min, Np = Nt = 9 or Np = Ni = Nt = 6 cells depending
on whether there is only proportional controller population or both controllers
were positioned at the center of the chamber along a horizontal stripe. The initial state for

each species was set to 0.

where ess is the control error (5-26) at steady state, Qt
x,ss is the value of Qt

x at steady state,

and Qd = µYd

θ
. Note that keeping N constant implies that ρp + ρi + ρt = 1.

Fig. 5-10 shows that the proportional controller alone works best when the populations

are close to balance, while exhibiting increasingly higher errors at steady state as imbalance

between controllers and targets increases, with a maximum error of 70% when the imbalance

is extreme (ρp < 0.1). Adding an integral contribution to the control action significantly

increases the architecture performance and robustness, with the relative error never exceed-

ing 30% even when the imbalance of the controllers and target populations’ numbers are

consistent.

Finally, we tested the effects of cell-to-cell variability on the overall control performance.

This heterogeneity in the response of the cells is mainly due to variations between plasmid

copy numbers among different individuals in a population, caused by a possibly uneven

distribution of the genetic material between cells after division. To model this effect, at each

cell division, the value of all parameters of the daughter cells were drawn from a normal

distribution centered at their nominal values µ with standard deviation σ = CV · µ, where
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Figure 5-10: Robustness to imbalances in the consortium composition: percentage error at
steady state (5-33) as the relative ratios of the three populations are changed. Cells move-
ment, growth and division are neglected in these BSim simulations. The initial population
was composed by N = 20, and the ratio ρj for j ∈ {p, i, t} is constrained to ρp + ρi + ρt = 1.
The reference signal is fixed to Yd = 60 nM, while the gains are chosen as βP = 0.0414min−1

and βI = 0.0002min−1.

CV is the coefficient of variation. The sensitivity of the control system was evaluated, as CV

increases, by computing the relative error with respect to the unperturbed scenario, defined

as:

∆e =
1

n

n∑
k=1

∣∣∣∣ ēk − ē0
ē0

∣∣∣∣ , (5-34)

where ēk and ē0 are the control errors, averaged over the last 5000 min, of the k-th exper-

iment and of a control experiment where CV = 0, respectively, and n is the total number

of experiments. We observed that both the P and the PI control architectures guarantee

small sensitivity to increasing levels of heterogeneity within the cellular populations with the

relative error never exceeding 10% (Fig. 5-11). However, the multicellular PI control archi-

tecture shows higher robustness with the steady-state error showing much smaller variations

under perturbation.

5.2.4 Discussion

We investigated analytically and numerically two multicellular architectures where a process

of interest, hosted in a target cell population, was regulated using a P or a PI control

law implemented across other populations in the consortium. We confirmed that robust

regulation is possible by means of agent-based simulations. Our evidence show that the

presence of an integral action is necessary for the regulation to a desired set point when it is
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Figure 5-11: Robustness to cell-to-cell variability: relative variation of error at steady-
state as the heterogeneity of the parameters increases, when the consortium is regulated by
P controllers only (blue bars) and PI controllers (orange bars). For each value of CV ∈
{0.05, 0.1, 0.15, 0.2, 0.25, 0.3} we performed n = 100 simulations drawing independently all
cells’ parameters from a normal distribution centered at their nominal value µ with standard
deviation σ = CV ·µ. The reference signal is fixed to Yd = 60 nM, while the gains are chosen
as βP = 0.0414min−1 and βI = 0.0002min−1. All simulations were performed for a total
time of 8000min, using a chamber of dimensions 5.7µm× 15µm× 1µm.

not possible to fine tune the parameters of the model. In addition, we showed that including

an integral action improves robustness both with respect to the consortium composition and

to parameter mismatches. However, the presence of a proportional action can be beneficial

to reduce the settling time of the targets and improving the overall transient response, as

shown in [9].



Chapter6

Control of consortium composition

Regulating the relative numbers between members of different sub-populations within a mi-

crobial consortium is fundamental to ensure its correct operation. To this purpose, in this

chapter we propose external controllers regulating the composition of a class of microbial

consortia characterized by the presence of a bistable memory mechanism. However, this

solution requires the modification of the growth environment to shape the consortium com-

position, which might be not feasible in some applications. Hence, we develop and present

also an embedded controller for the growth rate of a bacterial population, which constitutes

a first step towards the implementation of communities able to autonomously regulate their

composition in response to external stimuli.

6.1 Ratiometric control of cell phenotypes in monos-

train microbial consortia

In this section we consider a microbial consortium composed by reversible differentiable cells

[134], that is, cells that belong to the same strain and embed a genetic mechanism allowing

them to keep memory of past states and adapt their behaviour to external stimuli from the

environment, for example by activating/deactivating specific set of genes. Specifically, we

consider here the simplest case of cells that can switch between two states, mimicking a flip-

flop or binary memory element (Figure 6-1.a). The state of this bistable memory encodes

the current role played by the cells in the consortium, and therefore the set of genes they

are expressing at that moment. For example, a cell can use its resources either to produce

some molecule or to grow and divide sustaining the cell population number [6] (Figure 6-1.b,

top panel). Also, in the case of a genetic pathway divided into two parts, a cell can switch

from one state to the other so as to activate either two depending on the overall production
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levels in the consortium (Figure 6-1.b, bottom panel). We find that by endowing the cell

population with a reversible bistable system, an external control strategy can be used to

solve the ratiometric control problem. Specifically, by applying external stimuli to all the

cells in the consortium it is possible to switch some cells from one state to the other so as

to maintain the desired ratio. We show that this is possible in a number of different ways

(namely, by using relay and PI controllers) and provide stability analysis of the resulting

closed-loop system and exhaustive in silico validation of its performance and robustness. The

validation is conducted by means of agent-based simulations in BSim [122, 123], a powerful

platform for realistic in silico experiments in bacterial populations. As a representative

example we consider the realistic agent-based implementation of the proposed ratiometric

control strategy to enable cooperative bioproduction in microbial consortia, showing its

effectiveness and flexibility when cell growth, cell-to-cell variability and other effects are

appropriately modelled.

Although different approaches have been used to address the ratiometric control problem,

their results hold under different sets of assumptions than we use here. For example, in

[37] the authors considered a microbial consortium already comprising two different cell

strains, adjusting the dilution rate in a chemostat to regulate the relative numbers of the

populations in the consortium, while the platform developed in [51], although powerful, relies

on delivering a different control input to each cell and, in addition, all controlled cells are

cultured in spatially distinct environments. Moreover, in [135] a non-reversible, efficient

differentiation control mechanism has been proposed for the creation and maintenance of

cellular sub-populations in single strain microbial consortia, while a computer-controlled

optogenetic platform for the regulation of the ratio of two-strain E. coli community has

been recently presented in [136].
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a. b. c.

Role A Role B

Exogenous stimuli
response

Feedback
Control

A B

A B

Producer/Grower

Production of dimers

Figure 6-1: Microbial consortia composed of reversible differentiable cells can be balanced
in real-time by means of external feedback controllers to guarantee efficient labor division. (a)
Reversible differentiable cells can carry out different roles by activating/deactivating specific set of genes,
depending on which state of the internal bistable memory is currently active. Cells can change role in
response to exogenous stimuli from the environment, e.g., injection of inducer molecules or light. (b) Cells
can, for example, either grow and duplicate or produce some desired molecule (red exagons), or they can
produce two different molecules that react and produce the desired final bioproduct (green and red circular
sectors). (c) Cells expressing different genes grow also at different rates, and thus their coexistence can be
compromised. Feedback control algorithms can be employed to regulate in real-time the relative number of
cells in the two groups, so that a balance in the population numbers and in the expression of desired genes
is always guaranteed.
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a.

u < u′′u > u′

Bi(u) Ai(u)

u = 0

Ai Bi

b.

ϕη

0 η̂ ηi

2 1 3

u = 0

u = ū

ηi ≤ 0 0 < ηi < η̂ ηi ≥ η̂

Figure 6-2: Reversible cells can be switched from state A to B, and vice versa, by means of a
common external input. (a) The scalar dynamical system ẋi = ηixi−x3

i +u, with ηi > 0, has two stable
equilibrium points for u = 0, namely Ai and Bi, each one corresponding to one of the two possible roles the
cell can play in the consortium. A cell is controllable if by varying the input u in its interval of definition U ,
it can be moved from one group to the other and vice versa. That is, there exists an admissible value u′ ∈ U
(u′′ ∈ U) such that there is a unique positive (negative) stable solution to the equation ẋi = 0 when u > u′

(u < u′′). Full and empty dots represent stable and saddle equilibria, respectively. (b) Not all cells might
respond as desired due to their heterogeneity, captured here by different values of the parameter ηi (assumed
to be drawn from some probability distribution with density function ϕη, here sketched as Gaussian, just
for the sake of illustration). Only cells whose value of the parameter ηi is between 0 and η̂ are controllable
(Case 1), that is, they have two stable equilibria for u = 0 and a unique stable equilibrium for u = ±ū.
Others cells can either be memory-less, or monostable, that is, they have only one equilibrium point for all
values of u (Case 2), or can be unswitchable, having two stable equilibria for every u ∈ U , and therefore
cannot change role in the consortium (Case 3).
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6.1.1 Reversible differentiable cells can be controlled to a desired
state via a common exogenous input

The cells we consider here are assumed to embed some mechanism that can store the memory

of past events. Memory is a fundamental mechanism in cell decision making. Furthermore,

it is necessary in case we want to develop systems for living therapeutics [137]. In particular,

we suppose that cells can be switched between two different states by appropriate external

stimuli. The simplest model having the memory-like property (see Section A.3.1 for further

details) can be described by the following ordinary differential equation:

ẋi = ηixi − x3i + u, (6-1)

where u ∈ U ⊂ R is an input signal and is common to all cells.

In equation (6-1), xi ∈ X ⊂ R represents the macroscopic state, or role, of cell i and

the value of parameter ηi ∈ R is assumed to be different for all cells, accounting for their

heterogeneous responses to the common external input signal u. For positive values of ηi,

the equation ẋi = 0 with u = 0 has two stable, non-trivial solutions, one negative and

another positive, that we denote as Ai and Bi, respectively (Figure 6-2.a). These solutions

are the stable equilibrium points of the dynamical system described in (6-1) when no input

is applied. We define as RAi
= {xi : xi < 0} and RBi

= {xi : xi > 0} the regions of

attraction [138, Sec. 8.2] of Ai and Bi, respectively. Each cell will asymptotically converge

to either Ai or Bi depending on which region of attraction its initial condition belongs to.

Moreover, we denote by Nt the finite set of all cells in the consortium at time t and with

N(t) = |Nt| its cardinality, that is, the number of cells currently under observation (e.g.,

via a fluorescence microscope). Note that this number may vary in time as a consequence

of cell growth or death, or because of their removal (e.g., flush away) from the culture

chamber in which they are hosted. We define the sets At := {i ∈ Nt : xi(t) ∈ RAi
} and

Bt := {i ∈ Nt : xi(t) ∈ RBi
}, such that At∪Bt = Nt and At∩Bt = ∅, and denote with nA(t)

and nB(t) their cardinality. These two sets represent the group of cells in the consortium

that, at time instant t, in the absence of any control input u are expected to asymptotically

converge to Ai and Bi, respectively. Note that, as At and Bt form a partition of Nt, at any

time it holds that nA(t) + nB(t) = N(t).

We model cell-to-cell variability by assuming that the parameter ηi in (6-1) is drawn

randomly for each cell from the real interval [η, η] with some probability distribution (Figure

6-2.b). Also, we assume that the magnitude of the control input u is upper bounded by

some maximum value ū := maxu∈U |u|. In the presence of such a bound on the control signal,
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only cells whose parameter value ηi is smaller than the threshold value η̂ defined as

η̂ =
3

√
27 ū2

4
, (6-2)

can be switched from one state to the other by an admissible value of u, that is, u ∈ [−ū, ū].
We define cells fulfilling the condition ηi ∈ (0, η̂) as controllable cells. For details on the

derivation of η̂ see Section A.3.6.

All the cells not fulfilling this condition are instead uncontrollable because they are either

monostable – their parameters differing so much from their nominal values that their bistable

nature is lost – or unswitchable because their parameters exceed the threshold value (6-2).

In the former case ηi will be taking non-positive values in our model, that is, ηi ≤ 0, while

in the latter case ηi ≥ η̂.

Therefore all cells characterised by parameter values ηi ∈ (0, η̂), can be switched from

one state to the other by means of a common bounded external input u applied into the

environment. It is therefore possible to design, for such subset of controllable cells, some

feedback control law to automatically regulate their state and keep the balance in the consor-

tium between the two groups At and Bt to some desired level. As we are going to show next,

uncontrollable cells will contribute to a small residual error that can be precisely estimated

as a function of the upper bound ū on the control input and therefore appropriately taken

into account in the applications.

Note that even if model (6-1) is not a precise model of any existing bistable memory ele-

ment, it captures its essential bistable nature and can therefore provide valuable information

for the design of reliable and robust controllers able to solve the ratiometric control problem,

as we show in the rest of this work.
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a. b. c.

d. e. f.

Figure 6-3: Feedback control strategies are effective to balance two groups of controllable
reversible cells to 1:1 ratio (rd = 0.5). (a-c) Evolution of the error signal e(t) and of the control input
u(t) for (a) the first implementation of the relay controller (A-6), (b) the second implementation of the relay
controller (A-8), (c) the PI controller (A-10)-(A-11). (d-f) Distribution of the cells state at the beginning of
the simulation (t = 0a.u., grey histogram) and at steady state (t = 1a.u., green and red histograms), for (d)
the first implementation of the relay controller, (e) the second implementation of the relay controller, (f) the
PI controller. The green and red bars in panels (d-f) correspond to cells being in the region of attraction
of Ai and Bi, respectively. The maximum control input is set to ū = 5 and the gains of the PI controller
are set to kP = 30 and kI = 50. All cells (N = 400) have initial conditions xi(0) drawn from the normal
random distribution N (0, 4), and the parameters ηi are drawn with uniform distribution from the interval
[1, 5], therefore all cells are controllable, as no monostable (η > 0) and no unswitchable (η < η̂ ≈ 5.53) cells
are present in the population. (See also Figure A-8 for more simulations with different desired ratios rd.)
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6.1.2 Ratiometric control of cell populations can be achieved by
using external feedback strategies

The goal of ratiometric control is to regulate and maintain the relative ratios between the

number of cells in At and the number of cells in Bt, defined as

rA(t) =
nA(t)

N(t)
, rB(t) =

nB(t)

N(t)
. (6-3)

As by definition, rA(t) + rB(t) = 1 for all time, it suffices to control either rA or rB to

control the other. Without loss of generality, we assume the ratio r(t) to be controlled is

rB(t). Note that accurate measurement of each cell state is not needed. Indeed, if only

noisy measurement of the state of the cell is available, as long as it is possible to identify

the region of attraction the cell currently is in, the values of both rA and rB can still be

accurately quantified.

More formally, the objective of the ratiometric control problem can be stated as follows.

Objective 1 Given a consortium of reversible differentiable cells whose macroscopic dy-

namics can be described by (6-1) and a desired ratio rd ∈ [0, 1], design a feedback control law

u = u(t, x), where x = [x1, . . . , xN(t)]
⊤, such that at steady state the consortium is divided

into two cell groups whose ratio converges to some desired value, rd, that is,

r(t) → rd as t→ ∞. (6-4)

The previous statement can be also reformulated in terms of the control error signal e(t) :=

rd − r(t), by requiring that it goes to zero at steady state, that is, e∞ = 0, where e∞ :=

limt→∞ e(t). The definition of the control error does not guarantee per se that the cells

express the desired phenotype, as the cells whose state are near the unstable equilibrium

will not be producing the target compound at the desired rate. However, belonging to the

correct region of attraction guarantees that, after a transient time, the cells will converge to

the correct equilibrium, where the desired phenotype is expressed.

Notice that it is possible to guarantee the solution of the ratiometric control problem

as defined in (6-4) for any rd ∈ [0, 1] only if all cells in the consortium are controllable, as

described in Section 6.1.1. Indeed, if part of the population is not controllable, a residual

steady-state error might still be present (see Section 6.1.3 for details and an analytical

estimate of such residual error).

We present here two different feedback control strategies to solve the ratiometric con-

trol problem (see Figure 6-3), an on-off relay controller and a proportional-integral (PI)
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controller. Both solutions are easy to implement, robust, and often used in other control

applications of cell populations in microfluidic devices [139, 140, 125, 96] (see Section A.3.3).

Relay controllers (also known as bang-bang controllers) are simple yet effective feedback

control laws that, by comparing the current output of the process of interest with its desired

value, generate a piece-wise constant input signal ur(t) whose value belongs to a discrete set

Ur. Here, we propose the use of two alternative implementations of the relay controller, the

former where the control input can also be set to zero, i.e., U ′
r = {0, ū,−ū}, and the latter

where ur is always non-zero, i.e., U ′
r = {ū,−ū}.

In the ideal case where all cells are controllable, the first implementation of the relay

controller guarantees finite time convergence to zero of the error signal (Figure 6-3.a). The

second implementation instead can only guarantee bounded convergence of the error to zero

since the input signal cannot be turned off once the error reaches zero. Hence, when such an

implementation is adopted, the control input will continue to oscillate between its possible

values (Figure 6-3.b). As is common practice in applications where noise and uncertainties

are unavoidable, a dead-zone or a delay can be added in the control loop to avoid high

frequency oscillations of the control input that may cause excessive stress to cells and to

the actuation system [18]. The details of the proof of convergence for the proposed relay

controllers is reported in Section A.3.7.

An alternative strategy is the use of a PI controller that generates a control input uPI(t)

computed as the sum of one term proportional (P) to the error e(t) and an other proportional

to its integral (I) in time. In general, PI controllers guarantee zero regulation error at steady

state in the presence of constant output disturbances [141]. In our implementation, this

controller is complemented with a (anti-windup) reset condition that sets to zero the internal

state of the integrator whenever the error signal e(t) is equal to 0 or changes its sign (see

Section A.3.3). When all cells are controllable, this strategy was also proved to solve the

ratiometric control problem and guarantee convergence of the error to zero (Section A.3.7).

The evolution of the error signal e(t) under the action of the PI controller is reported

in Figure 6-3.c. The error converges to zero as expected and the control input uPI(t) also

settles to zero after a short transient, similarly to what observed in the first implementation

of the relay controller presented before.

Effective balancing of groups of reversible cells is also achieved by feedback control when

the goal is to achieve groups of different sizes, that is, for rd different from 0.5, e.g., equal to

0.75 or 0.25, corresponding to 1:3 and 3:1 ratios, respectively (Figure A-8). Notice that the

similarity of the plots for the relay and PI control actions in Figure A-8 are mainly due to

the different set point chosen in these simulations. Indeed, since the initial control error is
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bigger with respect to the case presented in the main text, the time needed for the integral

control action to saturate the control input is relatively low. When this happens, the control

actions generated by the relay and the PI controllers are identical.

The performance of the controller are also compared with open loop simulations where

no control is applied (Figure A-14). While using a closed loop control algorithm it is

possible to regulate the relative numbers at some desired value, independently of the initial

conditions, in the absence of any control action the error does not change over time and the

final configuration of the consortium will strongly depend on the initial conditions chosen

for the cellular population.
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a. b. c.

d. e. f.

Figure 6-4: Balance to 1:1 ratio is achieved with a residual steady-state error in the presence
of uncontrollable cells (rd = 0.5). (a-c) Evolution of the error signal e(t) and of the control input u(t)
for (a) the first implementation of the relay controller (A-6), (b) the second implementation of the relay
controller (A-8), (c) the PI controller (A-10)-(A-11). (d-f) Distribution of the cells’ state at the beginning of
the simulation (t = 0a.u., grey histogram) and at steady state (t = 3.0 a.u., green and red histograms), for
(d) the first implementation of the relay controller, (e) the second implementation of the relay controller, (f)
the PI controller. The green and red bars in panels d-f correspond to cells being in the region of attraction
of Ai and Bi, respectively. The maximum control input is set to ū = 5 and the gains of the PI controller
are set to kP = 30 and kI = 10. All cells (N = 400) have initial conditions xi(0) drawn from the normal
random distribution N (−2, 1), and the parameters ηi are drawn with uniform distribution from the interval
[−1, 14], therefore both monostable (η < 0) and unswitchable (η > η̂ ≈ 5.53) cells can be present in the
population. The steady-state errors observed in the in silico experiment are equal to (a) 0.05, (b) 0.0225,
and (c) 0.0825. Note that all the observed errors are below the theoretical upper bound on the control error
that can be estimated using (6-5) as er = e0r + eur ≈ 0.07 + 0.06 = 0.13 (depicted in the panels a-c as red
dashed lines). (See also Figure A-9 for more simulations with different desired ratios rd.)
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6.1.3 Robust bounded regulation of the ratio is still possible in
the presence of cell variability and physical constraints

When uncontrollable cells are present in the consortium, that is, cells that cannot be moved

from one group to the other in response to any admissible inputs, the ratiometric control

problem cannot be solved asymptotically, that is, we cannot guarantee that e∞ → 0 for

an arbitrary initial configuration of the consortium. However, we can still guarantee that

the absolute value of the steady-state error |e∞| will be upper bounded by some positive

quantity er, that is, |e∞| ≤ er. This effect is well illustrated in Figure 6-4, where it is shown

that, regardless of the control algorithm being used, the error e(t) approaches, but does not

converge exactly to, zero. The error bound at steady state will depend upon the interplay

between heterogeneity of the cells dynamics, and the constraints on the maximum input

value of ū that can be applied to the cells, as discussed in Section 6.1.1,.

The upper bound er can be estimated as being composed by two terms, that is,

er = e0r + eur , (6-5)

each related to the probability of finding one of the two types of uncontrollable cells (i.e.,

monostable and unswitchable, respectively) in the consortium (Figure 6-2). The first term,

denoted as e0r, is related to the fraction of monostable cells, associated to a non-positive value

of ηi, and so admitting only one stable equilibrium point for all values of u. For N → ∞,

where N is the number of cells in the population, assuming that the probability distribution

from where the parameters ηi are drawn is known, we can estimate e0r as

e0r = Pr[ηi ≤ 0], (6-6)

where Pr denotes the probability measure. The second term, denoted as eur , is related to

the fraction of unswitchable cells, that is, cells that are bistable but cannot be switched by

any admissible value of the control input u ∈ U . For a given upper bound input value ū,

the fraction of unswitchable cells can be estimated, for N → ∞, as the probability that the

parameter ηi is greater than η̂, that is, Pr[ηi > η̂]. Therefore, the residual error at steady

state due to this second type of uncontrollable cells can be quantified as

eur = max
{
0, Pr[ηi > η̂]− rd, Pr[ηi > η̂]− (1− rd)

}
. (6-7)

Equation (6-7) is derived assuming that all the unswitchable cells are in the wrong region

of attraction at the beginning of the simulation, which represents the worst case scenario.

Specifically, if either Pr[ηi > η̂]−rd > 0 or Pr[ηi > η̂]−(1−rd) > 0 it means that the amount
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of cells that need to be switched to achieve the control goal is greater than the number of

switchable cells in the consortium, meaning that there may be some steady state error. Note

that this value depends on the relationship between the desired ratio for that group (either

rd or 1− rd) and the number of unswitchable cells therein, because they affect the error only

when this number exceeds the desired value (see Section A.3.8 for details).

Similar results are observed also when the desired goal is to split the cell population

into groups of different sizes, e.g., with 3:1 or 1:3 ratios (Figure A-9), confirming that this

undesired effect is not due to the particular control strategy adopted or to the chosen desired

ratio.
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Figure 6-5: Controlled cooperative bioproduction of a dimer in microfluidic devices. (a)
Reversible differentiable cells are hosted in microfluidic chambers where they grow and produce a specific
molecule related to the corresponding active state of their internal memory. The current ratio of the two
cell groups in the chamber, and hence the production level of the corresponding monomers, is evaluated by
measuring with a fluorescence microscope the expression of reporter proteins in each cell. This information
is acquired by the feedback control algorithm that compares the current ratio r(t) to the desired ratio rd and
computes online the corresponding control inputs. Finally, these signals are sent to the cells by actuating
a pair of syringes connected to the microfluidic chambers and containing mixtures of growth medium and
inducer molecules. (b) The required reversible bistable memory mechanism is implemented by using an
inducible toggle-switch. Depending on which of the two repressor proteins, either LacI or TetR, is currently
expressed, the cell produces the corresponding monomer and the reporter protein (either M1 and RFP or
M2 and GFP, respectively). The state of the toggle-switch can be flipped by changing the concentration
of the inducer molecules aTc and IPTG in the microfluidic chamber (denoted as uaTc and uIPTG), which
diffuse through the cell membrane and bind to TetR and LacI, respectively.
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Figure 6-6: Cooperative production of two monomers to 1:1 population ratio can be achieved
by means of feedback ratiometric controllers in microfluidics. (a,d) Evolution in time of populations’
ratio rA (solid green line) and rB (solid red line) with their respective desired reference values in dashed
lines (rd = 0.5), (b,e) of the error signals eA (solid green line) and eB (solid red line), and (c,f) inducer
control signals uaTc (solid red line) and uIPTG (solid green line), normalised to their maximum values UaTc

and UIPTG, respectively. (a-c) Parameters of the relay control (A-41): UaTc = 60ng/mL, UIPTG = 0.5mM.
(d-f) Parameters of the PI controller (A-43): UaTc = 100 ng/mL, UIPTG = 1mM, kP,1 = 100, kP,2 =
1.5, kI,1 = 1.5, kI,2 = 0.05. Cells (about 200) in the simulated microfluidic chamber (with dimensions
40µm × 50µm × 1µm) have the same parameters’ value, and their evolution has been obtained using the
agent-based simulator BSim [122, 123] (See Section A.3.11 for further details on the simulator setup). (See
also Figure A-10 for more in silico experiments with different desired ratios rd.)
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6.1.4 Ratiometric control enables cooperative bioproduction in
microbial consortia

So far the analysis has been conducted by considering the scalar model (6-1) capturing the

macroscopic bistable nature of the cells considered in this paper. As we are going to show by

means of the representative application that follows, the behaviour captured by the reduced

model in (6-1) is qualitatively preserved also in more complex and realistic cell models

exhibiting the required memory-like property. Therefore, albeit simple, we demonstrate

that the model in (6-1) can be effectively used to design feedback control laws to solve the

ratiometric control problem in realistic applications.

As a representative case of study, we consider the agent-based in silico implementation

of ratiometric control for the bioproduction of protein dimers in microfluidic devices (Fig-

ure 6-5). In this scenario, according to its state (A or B), each cell in the consortium

produces either one of two monomers. By acting on the available control inputs, we want

to regulate the relative number of cells producing the two monomers so as to balance the

overall production of the resulting dimer.

We assume that the mechanism required by the E. coli cells to guarantee their correct

coordinated behaviour is implemented by means of an inducible genetic toggle-switch [124].

Specifically, we consider the circuits design presented in [125] and further analysed in [126,

127, 142, 143]. This genetic regulatory network consists of two repressor proteins, LacI and

TetR, both repressing each other’s promoter, so that only one protein is fully expressed at

any time. The expression level of the two repressor proteins can be flipped by changing the

concentration of two inducer molecules, aTc and IPTG. The former input, aTc, binds to

TetR, increasing the rate of production of LacI, and therefore causing the cell to converge

to the steady-state corresponding to high expression of LacI. Analogously, IPTG binds to

LacI, causing the commitment of the cell to a steady-state corresponding to high expression

of TetR.

The sixth order dynamical model of each cell is described in details in Section A.3.10, in

which the variables uaTc and uIPTG (as reported in Figure 6-5) denote the concentrations of

the inducer molecules in the growth medium of the microfluidic chambers and they represent

the control inputs that can be applied to all cells to change their production role in the

consortium

We further assume that the genes m1 and m2 encoding the two monomers of interest are

each transcribed together with the repressor genes lacI and tetR of the toggle-switch circuit.

So that, at steady state, each cell fully produces only one monomer at the time and at a

rate assumed to be proportional to the concentration of the corresponding repressor protein.
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Reporter genes of red and green fluorescent proteins (RFP and GFP) are also bound to

the repressor genes to monitor the current level of production of the monomers by using

fluorescence microscopy (Figure 6-5). Finally, we assume that the two monomers have equal

transcription and translation rates. Therefore, for the dimer to be produced at high rate,

the consortium must be split and maintained into two symmetric groups with a 1:1 ratio,

that is, we set rd = 0.5. Note that this assumption does not hinder the generality of the

framework presented, as different transcription and translation rates would simply require

the consortium to operate around a different setpoint, that we can reach and stabilise by

just modifying rd.

In the in silico experiments, we also take into account realistic physical and technological

constraints of a possible implementation in the microfluidic experimental platform described

in [139, 12]. The choice of such platform derives from its extensive use in the context of

external control [18, 51, 96]. Specifically, we consider constraints on (i) the possible classes

of input signals that can be generated by the actuators, (ii) an upper bound on the switching

frequency of the inputs to limit osmotic stress to the cells, (iii) a time delay accounting for

the time the chemical inducers take to flow from the reservoirs to the cell chambers, and

(iv) a safety lower bound on the sampling time of the measurements to avoid excessive

photo-toxicity (see Section A.3.11).

In silico control experiments have been conducted by using ad hoc implementations in

BSim [122, 123] of the two feedback control algorithms presented in Section 6.1.2 (see Sec-

tion A.3.12). To test the relay control strategy, we assumed that the actuation of the inputs

is realised using an ordinary T-junction [133], which allows only one inducer species at a

time to be injected into the microfluidic chambers. For the PI controller we assumed that

the actuation is realised by a Dial-A-Wave system, as described in [144]. This actuation

system is more advanced than the previous one as it allows mixtures of the two inducers

to be injected in different proportions into the chambers. Notice that, albeit two inducers

are needed to manoeuvre the state of the toggle-switch, they are constrained by our control

strategy either to be mutually exclusive (for the relay controller) or in a convex combina-

tion (for the PI controller), and therefore they can be viewed as being a single input (see

Section A.3.12). Both feedback control algorithms take into account the characteristics of

the experimental platform and in particular of the actuators. Full details about the control

algorithms and the technological constraints of the platform are reported in Section A.3.12.

Note that the constraints imposed to the control inputs by the platform chosen imply

that it would be impossible for our control algorithm to provide no control action at any
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given time instant. Therefore, the implementation in this context of a relay control algorithm

complemented with a null control action was not considered.

The agent-based simulations in BSim accurately capture cells’ reproduction, spatial dis-

tribution and geometry of the cells and of the microfluidic chambers, diffusion of chemicals

into the environment and, more importantly, flush-out of the cells from the chambers. Fur-

ther details on the stochastic simulation algorithm, geometry and other parameters used for

in silico experiments in BSim are reported in Section A.3.11.

We observed that both controllers can successfully regulate, after relatively short tran-

sients, the populations’ ratio to the desired value (Figure 6-6), which otherwise would have

converged to some value that strongly depends on the initial conditions of the cells (Fig-

ure A-15) The relay controller shows a faster response with more severe oscillations (Fig-

ure 6-6.a-c), while the PI controller presents a smoother but slower response with higher

accuracy at steady state (Figure 6-6.d-f). This is expected as it is well-known that the relay

control strategy is in general more robust to uncertainties and noise affecting the controlled

process but has poorer accuracy at steady state; the PI control strategy showing better

steady-state performance thanks to the presence of an integral action.

The difference in the performance of the two strategies is also seen by the different

actuation systems employed in our experiments. Indeed, the Dial-A-Wave system allows

for a finer regulation of the concentrations of the inducer molecules than the simpler (and

cheaper) T-junction, allowing better accuracy of the control system at steady state. Similar

performances are obtained also when the goal is changed to achieve different population

ratios, e.g., a 1:3 ratio or a 3:1 ratio (Figure A-10). These scenarios may correspond,

for example, to situations in which the two monomers have equal transcription rates but

different translation rates, requiring the consortium to be split into two asymmetric groups,

for efficient production of the dimer.

Besides biochemical noise, the fluctuations at steady state (Figure 6-6.a,d) are essentially

due to cells being flushed out of the microfluidic chamber as they grow and duplicate, and

they do not depend on the control parameters used, which might only affect the transient

response of the cell populations. These fluctuations are more relevant when cells are host in

a small chamber and becomes less significant as the size of the growth chambers increases.

Indeed, for the sake of simplicity, assuming the chamber to be a square of side ℓ, the magni-

tude ε of the fluctuations is proportional to 1/ℓ (see Section A.3.9), hence the fluctuations

increase as the chamber size decreases (see Figure A-11), and vice versa.

In addition to this, we assessed the robustness of the control algorithms to cell-to-cell

variability, modelled as variability between cells parameters. In detail, the numerical simu-
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lations confirmed that the ratiometric controllers presented here were also able to regulate

the relative numbers in this case, as shown in Figure A-12. The coefficient of variation was

selected to be CV = 0.2, similarly as done in previous works in the literature [4].

Another important factor determining the evolution of the relative numbers between

sub-populations in microbial communities is their generally different growth rates (assumed

so far to be identical for both phenotypes) due to different metabolic load. To test the

robustness of the designed algorithms to this issue, we assumed that over-expression of the

LacI pathway caused a reduction (of 50%) of the growth rate. We found out that even

when significant discrepancies in the growth rates are present, no divergence phenomena

was observed with the cells still splitting into two sub-populations with a steady-state error

that never exceeds 0.15 (see Figure A-13).

6.1.5 Discussion

We presented a general framework to guide the design of external feedback controllers for

phenotype regulation in microbial consortia. We showed that, by exploiting the memory-like

property of reversible differentiable cells, a single-strain cell population can be divided into

two groups, expressing different sets of genes, whose relative numbers, i.e., the ratio, can

be regulated by means of common exogenous inputs. Notice that, although the proposed

controllers can effectively regulate the ratio of the two subpopulations, it is not possible to

regulate the rate of convergence at which cells express the desired level of the phenotype

of interest, as this is determined by the inherent dynamics of the cells. Also, we wish to

highlight that ratiometric control of a population of reversible cells by means of a common

input signal is only made possible by the heterogeneity of their response to that input.

Indeed, heterogeneous reversible cells characterised by different parameter values switch at

different time instants when subject to the same input, and this is a crucial property that

allows their state to be controlled by an external feedback action. Stochastic effects, such

as biochemical noise or delays, can indeed facilitate the stabilisation of the reversible cells

into different groups, by amplifying the cell-to-cell variability, as it was demonstrated in

the in silico experiments we provided. Future developments might include a more in-depth

analytical investigation of their effect on the design and performance of feedback control

strategies designed to solve the ratiometric control problem.
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6.2 Embedded control of cell growth using tunable ge-

netic systems

As we stressed in the introduction to this chapter, channelling cell resources from biomass

production (i.e., cell growth and division) to protein production while preventing accu-

mulation of toxic by-products is key for the development of complex engineered genetic

circuits. [145, 146, 147, 148, 149] Specifically, the cell growth rate needs to be carefully

regulated in order to make the biomass density reach and maintain a desired reference value

so as to guarantee higher efficiency of the bioproduction process. This objective is generally

achieved by means of external systems controlling the density of the cell populations inside

the bioreactors.[150, 151, 37, 152, 153, 100] However, in scenarios where it is not possible to

modify the culture conditions either for cost or technological limitations, designing cellular

populations capable of self-regulating their growth rate by means of embedded genetic feed-

back mechanisms could be more suitable, providing intrinsic robustness to the bio production

process, e.g., preventing extinction or starvation.

A pioneering solution for the self-regulation of population density in single strain micro-

bial populations was developed in Ref [154] where a quorum sensing based mechanism is used

to self-limit the number of the cells. Alternative approaches involve engineering multiple mi-

crobial populations to achieve self-regulation of their relative numbers [47, 48, 46, 155, 156,

45] and in some cases also regulation of both the consortium size and composition.[44, 107]

In all previous work, the desired population densities are hard-wired into the design of the

synthetic gene regulatory networks. Hence, achieving a different working condition requires

re-engineering the entire consortium.

In this section, inspired by Ref [154], we present a genetic feedback strategy for popu-

lation control. Specifically, by means of a quorum sensing mechanism, which allows cells

to sense the population density, we render cells capable of self-regulating their own growth

rate by producing a growth inhibitor protein. The genetic controller governing this process

inside the cells is implemented by means of a tunable expression system (TES), recently

proposed in Refs [157, 158]. By exploiting this circuit, the production rate of the inhibitor

protein can be dynamically changed depending on the concentration of the quorum sensing

molecule present into the environment. In so doing, a feedback mechanism can be embedded

into the cells so that they become able to regulate their own relative numbers. Thanks to

its characteristic features, the TES provides additional flexibility to the control system by

allowing the desired set-point for the population density to be changed online according to
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Figure 6-7: Genetic feedback control of the cell population density. Left panel: Block dia-
gram representation of the population control strategy. The cell population can self-regulate
its growth rate by sensing its current density in the culture environment and comparing it
to a desired set-point. This comparison is realized by means of a tunable expression system
(TES), which allows its input-output relationship to be dynamically changed as a function
of the tuner signal, so that its output can modulate the production of a growth inhibitor
protein, closing the feedback loop. Right panel: Abstract biological implementation scheme
of the population control system. Each cell produces a quorum sensing molecule Q (green
hexagons) that diffuses into the environment and in the other cells. The molecule Q, propor-
tional to the population density, regulates the production of the species T, which, reacting
with the species S, acts as the tuner signal for the production of the complex C. The produc-
tion of the growth inhibitor protein P is activated by the complex C, thus closing the loop.
Notice that the rate of production of the species S can be either tuned offline or regulated
online to specify the desired set-point for the population density Nd.

some exogenous input, and to compensate for unavoidable inaccuracies in the offline tuning

of the system parameters, and uncertainties due to cell-to-cell variability.

After presenting the details of the proposed genetic controller, we analyze its steady-

state response by considering a simplified model obtained by averaging the dynamics over

the entire population assumed to grow in a culture tube. This allows us to analytically

derive an approximate relationship between some tunable parameter and the steady-state

population density that we then exploit for control design. Finally, the performance and

the robustness of the proposed control system are validated in silico by means of realistic

agent-based simulations performed in BSim, [122, 123] a platform to simulate microbial

populations which was originally designed for microfluidic experiments only and is adapted

here to simulate cells growing in test tube cultures.
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6.2.1 Population Control

The control strategy we present here consists of closing a feedback loop between the cell

population and its environment allowing the population to self-regulate its own density by

producing a growth inhibitor protein (Figure 6-7).

This is realized by comparing the concentration of a quorum sensing molecule, pro-

duced by the cells and diffusing into the environment, to some desired set-point value of

the population density. The concentration of such diffusing molecule into the environment is

proportional to the density of the population, therefore, regulating its concentration, directly

affects the number of cells into the environment.

The production of the growth inhibitor protein is activated by a genetic controller im-

plemented by means of a tunable expression system (TES) recently proposed in Ref [157]

(Figure 6-7, left panel). Specifically, this genetic circuit allows the input-output relationship

between the set-point value and the production rate of the inhibitor protein to be dynam-

ically changed in response to the concentration of the quorum sensing molecule. In this

way, the quorum sensing molecule acts as a tuner input affecting the production rate of the

inhibitor protein, closing the loop. Indeed, when the concentration of the quorum sensing

molecule into the environment increases (corresponding to a growth in population density),

the production rate of the inhibitor protein also increases and thus the population density

decreases. Vice versa, when the population density decreases, the production of the inhibitor

protein also decreases and the growth rate of the population increases again (Figure 6-7,

right panel).

Notice that the desired set-point value for the population density can be set either online

by means of external inputs, e.g., by changing the concentration of some inducer molecule in

the growth medium [159] or by applying light stimuli via optogenetics, [160, 161] or offline

by adequately tuning the parameters of the genetic controller.

Modeling We assume that the cells are cultured in an environment of volume V with

limited availability of nutrients, such as a test tube. We label with i, i = 1, . . . ,M(t), each

cell in the population, where M(t) : R≥0 7→ N is the total number of cells in the population

at time t. The dynamics of the genetic control system embedded in each cell i and depicted

in Figure 6-7, right panel, is described by a deterministic model we derived from the laws

of mass-action and Michaelis-Menten kinetics as the following set of ordinary differential
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equations:

dSi

dt
= αS

0 + αS(t)− κC+TiSi + κC−Ci − γSi (6-8)

dTi
dt

= αT
0 + αT Qn

i

Qn
i + θn

− κC+TiSi + κC−Ci − γTi (6-9)

dCi

dt
= κC+TiSi − κC−Ci − γCi (6-10)

dPi

dt
= κPCi − γPi (6-11)

dQi

dt
=
ρ0
Vc

+
η

Vc
(Qe −Qi)− γQi (6-12)

where the state variables Si, Ti, Ci, Pi denote, respectively, the concentrations inside cell i of

the toehold switch transcript S, the tuner sRNA T, the switch-sRNA complex C of the TES,

[157] and of the inhibitor protein P. Moreover, Qi and Qe denote the concentrations of the

quorum sensing molecule Q inside each cell i and into the external environment, respectively.

That is, Qi := qi/Vc and Qe := qe/Ve, where qi and qe denote the amount of molecules into

each cell with volume Vc and into the environment with volume Ve = V −M Vc, respectively.

For the sake of simplicity, in the above equations we assumed that all cells are identical and

all molecular species degrade, mostly because of dilution, following first-order kinetics with

rate γ. This simplifying assumption is commonly made in the literature to derive analytical

results that can be used to guide the following implementation of the real biological circuits.

[162, 142, 89]

The dynamics of the TES is described by equations (6-8)-(6-10). In (6-8), the toehold

switch S is transcribed with rate αS
0 + αS(t), where the value of the function αS(t) encodes

the desired set-point value for the population density, which will be assumed constant in the

rest of the paper, that is, αS(t) = αS, for all t > 0; this corresponds to solving a regulation

problem, typical in industrial applications in which the biomass density must be regulated

to some value such that the optimal production rate of the molecules of interest is reached.

In (6-9), the tuner sRNA T is transcribed with rate αT
0 +αT Qn

i

Qn
i +θn

, where θ is the activation

coefficient and n is the Hill coefficient, and finally in (6-10) the switch-sRNA complex C binds

and unbinds with rates κC+ and κC−, respectively. The inhibitor protein P, with dynamics

given in (6-11), is the output of the TES circuit and is produced at rate κPCi. Finally, the

quorum sensing molecule Q, whose dynamics is described in (6-12), is produced by each cell

with a constant rate ρ0, regulating the activation of the transcription of the tuner sRNA T,

and diffuses through the cell membrane with diffusion rate η, so that the evolution of the
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quorum sensing molecules into the environment is described by

dQe

dt
=

M∑
i=1

η

Ve
(Qi −Qe)− γeQe (6-13)

where γe is the external degradation rate.

In the following sections, we first present a simpler average model of the closed-loop

system allowing us to analyze the effects that a change of the reference parameter αS has

on the steady-state value of the population density. Then, we describe the results of an

exhaustive set of realistic in silico experiments performed by means of the agent-based

bacterial simulator BSim [123, 122] to validate the effectiveness of the proposed approach.

6.2.2 Steady-State Analysis

Model (6-8)-(6-13) can be recast to describe the average behavior of a populations of cells,

each embedding the genetic control system described in Section 6.2.1. Specifically, denote

with N(t) : R≥0 7→ R≥0 the density of the cell population growing in the volume V at time t,

that is, N(t) :=M(t)/V . The average model of the cell population dynamics can be derived

as (see Appendix A.4.1 for further details):

dS

dt
= αS

0 + αS − κC+TS + κC−C − γS (6-14)

dT

dt
= αT

0 + αT Qn

Qn + θn
− κC+TS + κC−C − γT (6-15)

dC

dt
= κC+TS − κC−C − γC (6-16)

dP

dt
= κPC − γP (6-17)

dQ

dt
= ρ0N − γeQ (6-18)

dN

dt
= kN

(
1− N

Nm

)
− dPN (6-19)

where the state variables S, T , C, P denote, respectively, the average concentrations of

molecules in each cell of the toehold switch transcript S, the tuner sRNA T, the switch-sRNA

complex C of the TES, and of the inhibitor protein P, while Q denotes the concentration

of quorum sensing molecule Q in the volume V , that is, Q := q/V , with q being the total

amount of Q in the culture volume. The notation and the meaning of the coefficients in

(6-14)-(6-18) are the same as in (6-8)-(6-12). Moreover, in equation (6-19), k denotes the

intrinsic growth rate of the population, Nm the carrying capacity, i.e., the maximum density
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the population can reach given the nutrients available, and d the growth inhibition rate due

to the protein P.

To derive a simple, yet meaningful analytical result, in what follows we substitute the Hill

function Qn

Qn+θn
in (6-15) with its piece-wise linear approximation; this approach is widely

employed in the literature to study the dynamics of genetic regulatory networks.[163, 164,

165] Specifically, assuming that the Hill function in (6-15) is not saturated, the activation

function of T due to Q can be approximated by its first-order approximation evaluated at

Q = θ, that is, Qn

Qn+θn
≈ (2−n)

4
+ n

4θ
Q, which reduces to Q

2θ
for n = 2. In this way, the average

model (6-14)-(6-19) allows us to obtain a very simple relationship at steady state between

the value of the population density, Nss := limt→∞N(t), and the reference parameter αS,

which is described by the following proposition.

Theorem 1 Under the assumption that the basal synthesis rates of the species S and T are

negligible, that is, αS
0 = αT

0 = 0, that n = 2, and that

αS ≪ γ2k

κPd
− γ

γ + κC−

κC+

, (6-20)

γ + κC−

κC+

<
γk

κPd
, (6-21)

αT ≫ 6γeθ

ρ0Nm

γ2k

κPd
, (6-22)

then the value of the population density Nss at steady state, normalized by the carrying

capacity Nm, can be approximated by

Nss

Nm

≈ −κPd
γ2k

αS + 1. (6-23)

Proof 1 The steady-state value Nss can be obtained more easily by considering the nondi-

mensional model of (6-14)-(6-19) (see Appendix A.4.2 for the complete details), setting the

time derivatives to zero and solving the resulting algebraic equations. Such equations have

only one admissible solution, the others being either the trivial solution or negative. The

unique positive solution can be computed to be:

Nss

Nm

= −(−aTaS + kC − 1)

2aT
+

√(
−aTaS + kC − 1

2aT

)2

+

(
−aS + kC

aT

)
, (6-24)
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where

aS = 1− ᾱS = 1− αS

γS0

(6-25)

aT = 1 + γ̄ᾱT = 1 +
Q0

2γeθS0

αT (6-26)

kC =
1 + κ̄C−

κ̄C+

=
1

S0

γ + κC−

κC+

(6-27)

with S0 = (γk)/(κPd) and Q0 = (Nmρ0)/γ being nondimensional parameters (see Ap-

pendix A.4.2). Now, if the system’s parameters satisfy the following conditions

aS > 0, (6-28a)

|kC | ≪ |aS|, (6-28b)

|kC − 1| ≪ |aSaT |. (6-28c)

equation (6-24) can be recast as

Nss

Nm

≈ aS
2

+

√(
−aS

2

)2
− aS
aT

=
aS
2

+
aS
2

√
1− 4

aTaS
. (6-29)

In addition to this, if

|aSaT | ≫ 4, (6-30)

equation (6-29) can be further simplified, yielding:

Nss

Nm

≈ aS
2

+
aS
2

= aS = −κPd
γ2k

αS + 1. (6-31)

The previous conditions (6-28a)-(6-28c) and (6-30) hold under the assumptions (6-20)-

(6-22). To see this, notice that, after some algebraic manipulations, inequality (6-28a) can

be rewritten as

αS <
γ2k

κPd
, (6-32)

while, noting that both aS and kC are positive, (6-28b) can be rewritten as kC ≪ aS and thus

we obtain

αS ≪ γ2k

κPd
− γ

γ + κC−

κC+

<
γ2k

κPd
. (6-33)

Therefore, under assumption (6-20), both the previous conditions (6-28a) and (6-28b) are

verified. Now, notice that assumption (6-21) implies that kC < 1, and so also that 0 <

|kC − 1| < 1. Therefore, conditions (6-28c) and (6-30) can be rewritten as

0 < |kC − 1| < 1 < 4 ≪ |aTaS| ≈ |aT |, (6-34)
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and thus both conditions (6-28c) and (6-30) are verified if

|aT | ≫ 4, (6-35)

where the last step on the right hand-side in (6-34) follows from the fact that condition (6-33)

implies that aS ≈ 1. Substituting (6-26) into the last condition we obtain

4 ≪
∣∣∣∣1 + Q0

2γeθS0

αT

∣∣∣∣ < 1 +
Q0

2γeθS0

αT , (6-36)

which is satisfied by assumption (6-22), thus completing the proof.

A more accurate relationship linking Nss and α
S can be obtained by means of a similar

analysis as done in Proposition 1, in the case that the basal production rates αS
0 and αT

S are

non-zero, that is,
Nss

Nm

≈ −κPd
γ2k

αS + 1− κPd

γ2k
αS
0 . (6-37)

Even if equation (6-37) has been obtained under several simplifying assumptions, it can be

observed from Figure 6-8, left panel, that it well approximates the input-output relation-

ship at steady state between Nss/Nm and αS of the original average model (6-14)-(6-19).

Specifically, provided that conditions (6-21) and (6-22) hold, the numerical predictions of

the average model overlap with those of the analytical approximation from (6-37) for values

of αS satisfying condition (6-20), which requires that αS ≪ 191 transcripts/h, for the values

of the parameters we considered in this work (see Table A-4). Moreover, when condition

(6-22) is not strictly satisfied, the range in which equation (6-37) gives a good approxima-

tion narrows, and the range of values at which N can be regulated also decreases, due to

the increasing effect of nonlinear terms that were neglected in the analysis. Therefore, con-

ditions (6-20)-(6-22) represent constraints on the parameters of the biological system that

the designer must satisfy when selecting the genetic components to implement the control

system.

Note that, although we assumed αS to be constant, Proposition 1 is still valid under the

assumption that the reference parameter is slowly varying w.r.t. the dynamics of the system.

Indeed, in this case the time-varying parameter can be considered as being frozen. [138] For

example, the reference parameter αS(t) can be taken as slowly varying when it is desired to

gently move the system from one constant working point to another.

By solving (6-37) for αS, we can obtain a useful expression to set the reference parameter

αS given the desired set-point of the population density at steady state, say Nd, that is,

αS
ref =

γ2k

κPd

(
1− Nd

Nm

)
− αS

0 . (6-38)
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Figure 6-8: Steady-state response of the population control system. Left panel: Steady-
state input-output relationship between the normalized cellular density Nss/Nm and the
reference parameter αS obtained for the average model (6-14)-(6-19) for different values of
αT , compared to equation (6-37) (dotted green line). Namely, αT has been selected equal
to its nominal value, 11400 (purple line), 1000 (blue line), 100 (yellow line), 10 (red line),
respectively. Notice that the linear function in (6-37) gives a good approximation of the
steady-state relationship for values of αS and αT satisfying (6-20) (i.e., αS ≪ 191) and
(6-22) (i.e., αT ≫ 540), respectively. Right panel: Steady-state values of the state variables
of the average model as functions of αS. All the steady-state curves were obtained by
integrating the average model, with nominal values of the parameters (see Table A-4), in
the time interval [0, 200 h] starting fromN(0) = 0.1Nm and the initial value of the other state
variables set to zero, by sampling αS in the interval [0, 500] with step 1. Nondimensional
parameters were set to S0 = T0 = C0 = 97, P0 = 242.5, Q0 = 43.152.

It can be noticed from the approximated expressions in (6-37) and (6-38) that the coefficient
κP d
γ2k

represents the static gain of the self-regulation process and its parameters play a crucial

role.

In the next section, after validating the proposed embedded control architecture in differ-

ent working conditions, we numerically investigate the robustness of our design with respect

to parameters’ perturbations using model (6-14)-(6-19).

6.2.3 In Silico Experiments

Agent-based simulations To validate the effectiveness of the proposed population con-

trol strategy and to verify the accuracy of the analytical results obtained in Section 6.2.2,

we implemented a set of in silico experiments by means of BSim, [122, 123] a realistic agent-

based simulator of bacterial populations. BSim allows to simulate cells’ dynamics by also

accounting for their spatial distribution and geometry, as well as for the spatio-temporal
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Figure 6-9: Set-point regulation experiments in BSim. Left panel: Time evolution of
the state variables of model (6-8)-(6-12), averaged over the whole population, and of the
population density N/Nm in the cases of no growth control (blue line) and with growth
control and desired set-point Nd equal to 0.25Nm (yellow line), 0.50Nm (red line), and
0.75Nm (green line). The values for the desired density of the bacterial population were
selected by choosing αs as in equation (6-38). Nondimensional parameters were set to S0 =
T0 = C0 = 97, P0 = 242.5, Q0 = 43.152. Right panel: Snapshots of the culture chamber at
steady state (color code correspond to the operating condition in the right panel). All cells
are assumed to be identical, that is, having all the parameters equal to their nominal values,
as reported in Table A-4. All simulations were initialized with a population of M = 10 cells
randomly arranged in the chamber, and the initial value of the state variables in (6-8)-(6-12)
set to zero.

diffusion of signaling molecules into the environment and into the cells. In addition, it is

also possible to simulate cell-to-cell variability, bio-mechanics, growth, division and death of

the cells.

We considered a bacterial population, endowed with the proposed genetic regulatory net-

works encoding our control strategy, growing into an environment with limited availability of

resources. Specifically, we assumed the culture environment to be a cube-shaped micro-vial

with edges set to 10µm, that can at most host a population of 145 cells (Figure 6-9, right

panel). This in order to strike a satisfactory trade-off between the computational cost of

the simulations and the number of cells in the population. The numerical routine in BSim

accounting for the cell growth dynamics was modified to replicate the typical logistic growth

of cell populations under limited resources (further details are reported in Appendix A.4.3).

The dynamics of each cell was implemented in BSim by using the agent-based model (6-8)-

(6-12), complemented by the cell growth dynamics defined in the Appendix A.4.3 (see equa-
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tions (A-58) and (A-62)). The nominal values of the parameters used in the simulations are

reported in Table A-4.

Set-point regulation We started by carrying out open-loop control experiments. As

expected, in the absence of an embedded controller, the cell population density reaches the

carrying capacity of the environment (Figure 6-9, left panel, blue line) with the cells filling

completely the cubic chamber, that is, Nss = Nm (Figure 6-9, right panel, top left chamber).

We then validated the proposed embedded genetic controller for three different set-points

of the population density Nd, namely 25%, 50% and 75% of the carrying capacity Nm,

assuming, to start with all the cells to be identical, that is, with all parameters being equal to

their nominal values (TableA-4). The reference parameter αS
ref , required to reach the desired

set-point Nd/Nm, was tuned according to the linear approximation in (6-38). In practice,

this can be achieved in vivo either by engineering it via an offline design or by means of an

additional external control loop (see for instance the external control of a tunable promoter

proposed in Ref [139]). The in silico experiments confirmed that, under nominal conditions,

the proposed control strategy allows the cells to self-regulate their density to the desired

set-points by dynamically adapting their growth rate (Figure 6-9). Moreover, as shown in

Figure 6-10, left panel, the control system was found to be robust to both sudden addition

or removal of cells from the chamber, being able to recover the desired set-point after a short

transient. Next we test its robustness to parameter variations.

Robustness to parameter variations We analyzed the sensitivity of the controlled cells

to variations of the parameters from their nominal values by running a series of simulations

in MATLAB on the average model (6-14)-(6-19). Specifically, we set the desired set-point to

50% of the carrying capacity, that is, Nd = 0.5Nm. Then, for any given parameter, say µ,

and for each value of the coefficient of variation CV , we ran 200 simulations by drawing each

time a parameter value from a normal distribution centered on its nominal value µ̄ and with

standard deviation σ = CV · µ̄, while keeping all the other parameters fixed to their nominal

values. For each value of the coefficient of variation CV we considered, we evaluated the

average percentage error at steady state over all the 200 simulations:

ē% =
1

200

200∑
j=1

∣∣∣∣N j
ss −Nd

Nd

∣∣∣∣ · 100%, (6-39)

where N j
ss is the density at steady state reached by the cell population in the j-th simulation

trial. The result of this analysis for CV = {0.05, 0.1, 0.15, 0.2} is reported in Figure 6-10,

right panel, showing that only a subset of parameters significantly affects the steady-state



6.2 Embedded control of cell growth using tunable genetic systems 97

Figure 6-10: Robustness analysis. Left panel: Robustness to impulsive disturbances. Time
evolution of the population density of the closed-loop agent-based system in BSim in the
presence of addition (at t = 70 h) and removal (at t = 140 h) of 15 cells (corresponding
to about 0.1Nm). Right panel: Robustness to parameter variations. Average percentage
error at steady state ē% of the average model (6-14)-(6-19) as a function of the variability
CV of the parameters’ value, for CV equal to 0.05 (yellow line), 0.1 (blue line), 0.15 (red
line) and 0.2 (green line). For each parameter, say µ, and each value of CV , the results
of 200 simulations were averaged, each obtained by drawing the value of µ from a normal
distribution centered on its nominal value µ̄ and with standard deviation σ = CV · µ̄, while
keeping all the other parameters fixed to their nominal values. All simulations were run
in MATLAB by setting the set-point Nd = 0.5Nm, initial density 0.1Nm, and on the time
interval [0, 80 h].

error with a maximal variation relative to the unperturbed case of up to about 16% when

CV = 0.2 for all parameters but γ which causes the largest variation (up to 30.44% for

CV = 0.2). These are the same parameters appearing in the linear approximations (6-23)

and (6-37), that is, the growth rate k, the death rate d, the rate of production of the growth

inhibitor protein κP , and the dilution rate γ.

Cell-to-cell variability Finally, cell-to-cell variability was modeled in BSim by assigning a

different set of values of the parameters to daughter cells when they split from their mothers.

We assumed that the heterogeneity in the response of the cells is essentially due to (i) the

different copy numbers of the artificial plasmids into the cells and (ii) the different effects

that the growth inhibitor protein P can have on the growth rate of each cell. Therefore, the

parameters we considered to be varied in the agent-based model (6-8)-(6-12), and growth

dynamics defined by (A-58) and (A-62), were αS
0 , α

T
0 , α

T , κP , ρ0, and the death rate d due

to P . Specifically, each of these parameters, say µ, was drawn independently from a normal
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Figure 6-11: Cell-to-cell variability. Average value and standard deviation of the percentage
error at steady state ē% of a heterogeneous population of cells (6-8)-(6-12), for the desired
set-point Nd equal to 0.25Nm (yellow), 0.30Nm (pink), 0.40Nm (blue), 0.50Nm (red), and
0.75Nm (green). Each point and its whiskers represent the average value and the standard
deviation of ē% evaluated over 100 simulation trials in BSim. For each simulation, the
parameters of mother and daughter cells were drawn independently from normal distributions
centered on their nominal values, µ̄, and with standard deviation σ = CV ·µ̄. All simulations
were initialized with a population of 10 cells, and the initial value of the state variables in
(6-8)-(6-12) set to zero.

distribution centered on its nominal value µ̄ and with standard deviation σ = CV · µ̄. From
the numerical experiments we observed that the average percentage error ē%, obtained over

100 simulation trials for each pair of values of the set-point Nd and coefficient of variation

CV , increases with the heterogeneity among the cells (i.e., larger CV ), with lower values

of the set-point Nd corresponding to higher sensitivity to cell-to-cell variability (Figure 6-

11). Assuming, for example, that a steady-state percentage error below the threshold of

30% is acceptable in practice, the proposed controller guarantees good performance in all

perturbed conditions when the reference set-point is greater than 0.4Nm, while exhibiting

larger deviations from the unperturbed case when the desired density goes below that value.

However, acceptable steady-state errors can be achieved when the desired set-point values

is smaller than 0.40NM if parameters remain closer to their nominal values. In all cases,

at the population level the cells exhibited very low variance over 100 trials, represented in

Figure 6-11 by very small whiskers at each point.
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6.2.4 Discussion

By engineering a tunable synthetic gene pathway, we were able to endow a cell popula-

tion with the ability of self-regulating its own density to some desired value. We used a

combination of analytical derivations and in silico experiments to test the performance and

robustness of the proposed control architecture showing its reliability and robustness to

parameter perturbations and cell-to-cell variability.

The growth control approach we presented can be used either to substitute external feed-

back control loops to guarantee growth regulations of cell populations in chemostats or to

robustify existing external feedback control strategies, providing some regulation capability

in the presence of critical failures of the sensing or actuation systems. In addition, the circuit

proposed can put the basis for the realisation of synthetic systems enabling long-term coex-

istence of different cell populations in microbial consortia for multicellular applications. As

such, the embedded control strategy we proposed can be used as an alternative solution pro-

viding a good trade-off between strategies allowing an online tuning of the consortium com-

position (by modifying the external environment), and strategies granting self-regulation of

the consortium composition without allowing for the consortium composition to be changed

dynamically.



100 6 Control of consortium composition



Chapter7

Conclusions and perspectives

The design of microbial consortia is a promising solution to expand the functional com-

plexity of synthetically engineered cells, as each cellular population implements a specific

functionality and cooperate with the others to achieve a common goal. To realize communi-

ties carrying out complex tasks it is necessary for each member of the consortium to robustly

express a specific phenotype and that all population coexist within the consortium.

In this Thesis, we addressed two crucial problems towards the design of reliable, robust

and modular microbial communities. One objective was to implement and validate in vivo

a distributed feedback control loop split across populations in a two strain consortium. The

other was to develop control strategies to shape the composition of a consortium, allowing

stable, and long term coexistence between different populations.

In Chapter 2, we emphasized the importance of synthetic microbial consortia to expand

the range of functionalities that is possible to embed in living cells. Also, we discussed

the importance of mathematical modeling to speed up circuit design and of control theory

to improve reliability and robustness of the realized communities. Then, we reviewed in

Chapter 3 the recent efforts made to interface control theory and synthetic biology. Here, we

introduced the idea of multicellular control, where the elements of a feedback control loop are

distributed among different populations comprising a microbial consortium. We highlighted

how this approach can alleviate the current limitations of embedded biomolecular controllers,

such as limited modularity and high metabolic load on the hosts. Although different in

silico proof-of-concept designs had been proposed in the literature (see e.g. [4, 67]), no

biological realisation of a consortium implementing such paradigm has been proposed. Hence,

in Chapter 4, we proposed and optimized the first in vivo biological implementation of a

consortium comprising a controller population that was able to regulate the expression of

a desired gene in a second population, the targets. We validated each component of the

architecture, showing that it is effectively possible to make the two populations communicate
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with each other. In addition, we provided evidence that the architecture enabled robust

regulation of gene expression in the targets, with the possibility of modulating the desired

output by modifying the concentration of IPTG in the culture environment. Building on

the biological design proposed in Chapter 4, in Chapter 5, we developed in silico the design

of a multicellular PI controller, devising design guidelines based on the analytical study of

a mathematical model of the consortium. We also developed multicellular controllers to

toggle the state of a bistable memory element using two controller populations that induce

activation or deactivation of an inducible genetic switch hosted in the third population.

The development of robust distributed multicellular controllers was complemented by

the investigation of solutions for the problem of regulating the relative numbers between

different populations within a microbial consortium. This was expounded in Chapter 6

where we developed external feedback controllers able to robustly stabilise a cell population

endowed with a genetic toggle-switch functioning as a bistable memory element, even in

the presence of realistic physical and technological constraints. In addition to this, in the

same chapter we presented a genetic embedded controller able to steer the density of a

bacterial population onto an arbitrary desired value, granting adaptation to loss or addition

of cells while keeping the density close to the desired value even in the presence of cell-to-cell

variability.

7.1 Open problems and perspectives

Although the work presented in this Thesis addressed crucial aspects for exploiting the

full potential of synthetic microbial consortia, some key problems remain open. The main

one is to realize systems enabling both robust control of gene expression and the reliable

regulation of the relative sizes of populations within the consortium. That could be achieved

by combining an external feedback loop regulating the size of each population within the

community, such as the one presented in Chapter 6, with an embedded multicellular strategy

such as the one described in Chapter 4. However, this solution requires a tightly controlled

environment to work, which may not be suitable in some applications. An alternative route

could be to design a single genetic controller that can also orchestrate the composition of

the community. Nonetheless, this solution requires embedding additional pathways inside

the controllers, adding extra metabolic load on the hosts.

Solving these problems would lead to the development of distributed feedback controllers

across microbial communities with a controlled composition and spatial distribution, which

is key to enable the construction of complex interacting communities, where each population

carries out a specific functionality [166]. Such microbes could be used in applications ranging
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from the integration of bacteria in the human gut microbiome to treat a class of diseases

[167] to engineering the soil microbiome to increase plant growth and health [168], and

bacteria-based production of fuels, which presents a promising source for sustainable energy

[21].



104 7 Conclusions and perspectives



Bibliography

[1] Domitilla Del Vecchio, Yili Qian, Richard M Murray, and Eduardo D Sontag. Future

systems and control research in synthetic biology. Annual Reviews in Control, 45:5–17,

2018.

[2] Domitilla Del Vecchio, Alexander J Ninfa, and Eduardo D Sontag. Modular cell biol-

ogy: retroactivity and insulation. Molecular systems biology, 4(1):161, 2008.

[3] Philip Bittihn, M Omar Din, Lev S Tsimring, and Jeff Hasty. Rational engineering

of synthetic microbial systems: from single cells to consortia. Current Opinion in

Microbiology, 45:92–99, 2018.

[4] Gianfranco Fiore, Antoni Matyjaszkiewicz, Fabio Annunziata, et al. In-silico analysis

and implementation of a multicellular feedback control strategy in a synthetic bacterial

consortium. ACS Synthetic Biology, 6(3):507–517, 2017.

[5] Davide Fiore, Davide Salzano, Enric Cristobal-Coppulo, Josep M Olm, and Mario

di Bernardo. Multicellular feedback control of a genetic toggle-switch in microbial

consortia. bioRxiv, 2020.

[6] Elise Weill-Duflos, Virgile Andreani, Chetan Aditya, Pierre Martinon, Gregory Batt,

Frederic Bonnans, and Jakob Ruess. Optimal control of an artificial microbial differ-

entiation system for protein bioproduction. In Proc. of the 2019 European Control

Conference, pages 2663–2668, 2019.

[7] M Khammash, Mario Di Bernardo, and Diego Di Bernardo. Cybergenetics: Theory

and methods for genetic control system. In 2019 IEEE 58th Conference on Decision

and Control (CDC), pages 916–926. IEEE, 2019.



106 BIBLIOGRAPHY

[8] Stephanie K Aoki, Gabriele Lillacci, Ankit Gupta, Armin Baumschlager, David Schwe-

ingruber, and Mustafa Khammash. A universal biomolecular integral feedback con-

troller for robust perfect adaptation. Nature, 570(7762):533–537, 2019. ** First im-

plementation of synthetic feedback controller in living cells, particularty in E. coli,

demonstrates tunability of the set point as well as robust perfect adaptation to a

constant disturbance.
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AppendixA

Supplementary material

A.1 Methodologies for in-vivo implementation of the

multicellular control

.

A.1.1 Strains and constructs

Escherichia coli strain TOP10 was used for all the cloning manipulations of this work.

Escherichia coli strain MG1655 (λ−, rph − 1)[169] was used for all the assays in this

work, and transformed with the plasmids constituting either the controllers or the tar-

gets. The controllers embed three plasmids: pVRa20 992 BS2 (medium copy number),

pVRc20 992 BS1 (medium copy number) and pVRb LasI (low copy number). The genes

constituting the essential core of the computation module (σ, anti-σ and lasI) are ssrA

tagged (AANDENYALAA) to ensure fast dynamics of expression and degradation.

Vector backbones were derived from plasmids pVRa20 992 and pVRc20 992 [112].

The pVRb lasI plasmid encodes the lasI gene, under the control of the p 20992 promoter,

and was was built in [105], together with the pVRb ssrA where the lasI was swapped with

a GFP and that was trasformed in the controllers for their input output characterisation.

The pVRa20 992 BS2 produces the σ factor proporionally to the IPTG concentration

present in the culture media. To construct the plasmid first the pVRa20 992 BS1 plas-

mid was obtained by standard restriction digestion and ligation procedure, by amplify-

ing the Sigma gene from the pLusB plasmid [105] with primers Sigma plus tag F and

Sigma plus tag F and cloning the PCR product in the pVRa 20 992 plasmid [112] after

NcoI/BamHI digestion. Then, the pLac promoter was substituted with the pLac-UV5 pro-

moter to obtain the pVRa20 992 BS2 plasmid. The construct was built by standard restric-
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tion digestion and ligation procedure, by amplifying the pLac-UV5 from the pVRa placASb Flag

plasmid [105] with primers PlacUV5 F and PlacUV5 R and cloning the PCR product in the

pVRa 20 992 BS1 plasmid after XbaI digestion.

The pVRc20 992 BS1 produces the anti-σ factor proportionally to the concentration of 3-

O-C6-HSL present in the culture media. The plasmid was constructed by standard restriction

digestion and ligation procedure, by amplifying the anti-σ from the pVRa placASb Flag

plasmid [105] with primers Anti Sigma plus tag F and Anti Sigma plus tag R and cloning

the PCR product in the pVRc 20 992 plasmid after BamHI/PstI digestion.

Also, the improved version of the controllers, where a second lac operator was introduced

upstream the plac UV5 promoter was transformed substituting the pVRa20 992 BS2 plas-

mid with the pVRa20 992 DS plasmid. The pVRa20 992 DS was constructed by Gibson

assembly after PCR amplification of the pVRa20 992 BS2 using primers Back extralac for

and Back extralac rev, and of the pVRbLacO1O1Del from [170] using the Ins extralac for

and Ins extralac rev primers.

Finally, the controllers expressing also a Red Fluorescent Protein were implemented by

substituting the pVRb lasI plasmid with the pVRb lasI RFP plasmid. The pVRb lasI RFP

was assembled using standard restriction digestion and ligation procedure, by amplifying a

synthetically generated RFP with primers RFP Afe for and RFP Nde rev and cloning the

PCR product in the pVRb lasI plasmid after AfeI/NdeI digestion.

The targets embedded the 3-O-C12-HSL inducible promoter plas driving the expres-

sion of a green fluorescent protein and of the luxI gene. They were transformed with the

p Las Lux GFP 3.0 plasmid. This plasmid was assembled by Gibson asseembly after PCR

amplification of the las composite device plasmid from [31] with p Las Lux GFP 3 0 fwd 20

and p Las Lux GFP 3 0 rev 20 primers, and of the luxI from pTeLu GFP constructed in

[105] with the luxI fwd and luxI rev primers. Finally, the targets with luxI fused with a

GFP were transformed with the p Las Lux GFP fusion plasmid, constructed via standard

restriction digestion and ligation procedure, by ligating a synthetically generated luxI GFP

fused protein with p Las Lux GFP 3.0 after digestion with AseI/BsrGI. All the primers

sequences and the sequences of the synthetic genes are reported in Tables A-1 and A-2,

respectively.

A.1.2 Chemicals

For all experiments, kanamycin (50 µg/mL), ampicillin (100 µg/mL) and chloramphenicol

(25 µg/mL) were added to the growth media. These antibiotics were supplied by Sigma-

Aldrich. 3-O-C6-HSL (N-(B-Ketocaproyl)-L-Homoserine Lactone from Sigma-Aldrich, cat #
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Primer Name Sequence (5’→3’)
Sigma plus tag F GAGGAGAAATACCATAATCC
Sigma plus tag R GTTTTATCAGACCGCTTC
placUV5 F TGGTTTCACATTCACCAC
placUV5 R GCTAGATCTAGAGAAATTGTTATCCGCTCACA
Anti Sigma plus tag F ATGTCATATGCCGCGATAGAGGAGGTAA
Anti Sigma plus tag R CTCTCATCCGCCAAAACA
Back extralac for CACCCCAGGCTTTA
Back extralac rev ATTCGGGATCGAGAT
Ins extralac for GAATTCCGATTCATTAATG
Ins extralac rev CGGAAGCATAAAGTGT
RFP Afe for TGATCGAGCGCTGATAAGTCCCTAACTTTTACAG

C
RFP Nde rev TGCTCACATATGGGACCAAAACGAAAAAAGGC
p Las Lux GFP 3 0 fwd 20 ACGCCCTTGCAGCGTAATAATACTAGAGAAAGAG

GAGAAATACTAGATGCG
p Las Lux GFP 3 0 rev 20 CTCTATCGCGGAAATTGACACTCGGCGTTATGTC

ATGAAG
luxI for TGTCAATTTCCGCGATAGAGGAG
luxI rev TTATTACGCTGCAAGGGCGTA

Table A-1: Names and sequences of the primers used for the cloning of the constructs used
in this study.

K3007) and 3-O-C12-HSL (N-(3-Oxododecanoyl)-L-homoserine lactone from Sigma-Aldrich,

cat # O9139) were dissolved in water, filter-sterilized and added to the LB growth medium

at the indicated concentrations. IPTG (Isopropyl β-D-1-thiogalactopyranoside, supplied by

Sigma-Aldrich, cat # I5502) was dissolved in water, filter-sterilized and added to LB medium

at the indicated concentrations. M9 salts were prepared by suspending in 1L of water 6g

Na2HPO4, 3g KH2PO4, 1g NH4Cl and 0.5g NaCl, then autoclaving the solution. M9 media

was obtained by supplementing 50 mL of M9 salts with 500 µl 20% casamino acids, 100 µl

1M MgSO4, 250 µl 0.1M CaCl2, 250 µl 50% glycerol and 5 µl 20 mg/ml thiamine.

A.1.3 Samples preparation and analysis using flow cytometry

At the end of each experiment, each sample (0.5 mL volume) was resuspended in 1xPBS and

diluted so as to achieve a final OD for the culture of 0.05. Each sample was then analysed

using a flow cytometer, and the results analysed using FlowJo.
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a. b. c. d.

Figure A-1: a. Density plot of events in the FSC-H,SSC-H plane. Red areas represent
zones of the plane with more events. The Polygons drawn represent events classified as
healthy cells (black), stressed cells (orange) and cellular debris (red). b. Density plot
healthy cells in the SSC-H,SSC-A plane. Red areas represent zones of the plane with more
events. The black polygon drawn is the gate used to select single cells against aggregates. c.
Histogram of single cells in the FITC-H (Green Fluorescence) channel. The two horizontal
gates highlights controllers and targets in the consortium. d. Comparison of the FITC-h
fluorescent profiles of controllers (red) and uninduced targets (blue).

A.1.4 Gating Strategy

The events recorded by a flow cytometer (BD LSRFortessa X-20 or Acea Novocyte) were first

gated in the forward scatter (FSC-H, proxy of cellular size), side scatter (SSC-H, proxy of

celllular complexity) plane. Here, the events were divided in three subpopulations: healthy

cells where size and complexity were in physiologiacal ranges [116], stressed cells where

the bacteria had increased size and complexity due to filamentation, and cellular debris

corresponding to events with high size with respect to their complexity (Figure A-1a). Sub-

sequently, healthy cells were gated in the SSC-H, SSC-A plane to select for single cells. In

detail, cells with comparable signals in the two channels were selected as single cells, whereas

events with much larger SSC-A were classified as cellular conglomerates and excluded from

the analysis (Figure A-1b). Finally, single cells were gated using the FITC-H (490 nm exci-

tation, 530/30 nm emission) channel to discriminate targets and controllers based on their

fluorescence levels. Specifically, cells with low FITC-H signal were classified as controllers

and cells having high FITC-H fluorescence were selected to be targets (Figure A-1c). Al-

ternatively, when controllers constitutively expressed RFP, events with a high signal in the

PE-CF594 (560 nm excitation, 610/20 nm emission filter, Red) channel were distinguished

as controllers while cells with low signal were designated as targets.
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Figure A-2: Schematic representation of the controllers used for the characterisation of their
input-output response. In this population the plasmid expressing lasI under the p 20 992
promoter was modified substituting lasI with a green fluorescent protein (GFP).

A.1.5 Induction protocol

Cells were cultured in 10 mL LB broth in 50 mL Falcons. Overnight cultures were diluted

1:500 in fresh sterile media supplemented with the inducer(s) at the specified concentration.

The culture was then incubated at 37◦C, shaking at 250rpm for 3h. Then, the samples were

prepared and analysed by flow cytometry. This protocol was used to obtain Figures 4-2a,b

and 4-4b.

A.1.6 Cell-cell communication assay

targets/controllers were diluted in 10 mL 1:500 from Overnight cultures in 10 mL LB broth

supplemented with the specified concentration of inducer(s). The culture was then incubated

at 37◦C, shaking at 250rpm for 3h. Past this time, the culture was spun at 3500rpm for 8’

at room temperature to pellet the cells. The supernatant was filtered using a 0.2µm filter

in a sterile tube and an overnight culture of the other population was diluted 1:500 in the

filtered media. The culture was finally incubated again for 3h at 37◦C, shaking at 250rpm.

Finally, culture 0.5 mL were sampled and analysed by flow cytometry. This protocol was

used to obtain the results shown in Figure 4-2c,d.

A.1.7 Time-courses in LB

Overnight cultures of targets and controllers were diluted in 35 mL LB supplemented with

the specified concentration of IPTG. The initial dilutions used for the populations were 1:600

and 1:3000, respectively. Both cultures were incubated at 37◦C, shaking at 250rpm for 6h.

Each hour, 5 mL of both cultures were mixed in a sterile 50 mL tube, which was then

incubated alongside the single strain cultures. After 6h, 0.5 mL of all mixed cultures were

sampled and analysed via flow cytometry. Note that the hours in Figures 4-3, 4-6 and 4-7
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refer to the how long targets and controllers have been mixed for, not to their incubation

time. This protocol was followed to retrieve the results portrayed in Figures 4-3a,c, 4-4c,

4-5a, 4-6b,c and 4-7f.

A.1.8 Consortium composition assay

Overnight cultures of targets and controllers were diluted in 10 mL LB using different tar-

gets:controllers ratios. Specifically, 15:1, 1:10, 1:8, 1:6, 1:5, 1:4, 1:3, 1:2, 1:1.5, 1:1 ratios

were used. The volume added of each population was computed so as to have a cell:media

dilution of 1:500. All cultures were incubated at 37◦C, shaking at 250rpm for 6h. After

the incubation 0.5 mL of each culture were sampled and analysed by flow cytometry. This

protocol was used in Figures 4-3b and 4-7a-d.

A.1.9 Chi.Bio timecourse

10 mL of overnight cultures of controllers and targets were mixed in a 30 mL sterile glass

tube. The protocol described in [171] was followed to set up the chemostat and calibrate the

optical density (OD) measurements. The reference OD was set to 1.0. Each hour 0.5 mL

from the continuous culture were sampled and stored at 4◦C until the end of the timecouse,

when all the samples were prepared and analysed by flow cytometry. This protocol was

followed to obtain Figures 4-5b and A-5b.

A.1.10 M9 Timecourse experiments

Overnight cultures of controllers and targets were mixed in a 1:5 ratio in 10 mL M9 media

supplemented with the specified IPTG concentration, so as to have an overall dilution of

1:1000. The culture was then incubated at 37◦C, shaking at 250rpm for 6h. After each

hour, 0.5 mL were sampled from the culture and stored at 4◦C. After 6h cells were spun at

3500rpm for 8’ at room temperature. The supernatant was filtered, the cells resuspended in

fresh media and diluted 1:500 in their supernatant. The diluted culture was then incubated

for additional 6h. At the end of the timecourse all cells were prepared and analysed by flow

cytometry. This protocol was used to retrieve Figure 4-5c.
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Figure A-3: a. Targets bearing extra metabolic load. A burdensome protein (GP55.1)
was constitutively expressed in the target population. b. Comparison of the FITC-H(green
channel) fluorescent profiles of targets with (red) and without (blue) the additional metabolic
load.

a. b. c.

Figure A-4: a. FITC-H (greeen) fluorescent profile of controllers with stressed morphology
when induced with 100µM IPTG and 50nM 3-O-C6 HSL. b. Density plot of events in the
FSC-H,SSC-H plane. Red areas represent zones of the plane with more events. The black
polygons drawn are the gate used to discriminate healthy and stressed cells. c. FITC-
H (greeen) fluorescent profile of controllers with healthy morphology when induced with
100µM IPTG and 50nM 3-O-C6 HSL.
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Gene Name Sequence (5’→3’)
RFP GATAAGTCCCTAACTTTTACAGCTAGCTCAGTCC

AGGTATTATGCTAGCCTGAAGCTGTCACCG-
GATG TGCTTTCCGGTCTGATGAGTCCGTGAG-
GACGAAA CAGCCTCTACAAATAATTTTGTT-
TAATACTAGAG AAAGAGGGGAAATACTAGatg-
gtttccaagggcg aggaggataacatggctatcattaaagagttcat
gcgcttcaaagttcacatggagggttctgttaac ggtcacgagttcgagatc-
gaaggcgaaggcgagg gccgtccgtatgaaggcacccagaccgccaaact
gaaagtgactaaaggcggcccgctgccttttgcg tgggacatcctgagcc-
cgcaatttatgtacggtt ctaaagcgtatgttaaacacccagcggatatccc
ggactatctgaagctgtcttttccggaaggtttc aagtgggaacgcgtaat-
gaattttgaagatggtg gtgtcgtgaccgtcactcaggactcctccctgca
ggatggcgagttcatctataaagttaaactgcgt ggtactaattttc-
catctgatggcccggtgatgc agaaaaagacgatgggttgggaggcgtc-
tagcga acgcatgtatccggaagatggtgcgctgaaaggc gaaat-
taaacagcgcctgaaactgaaagatggcg gccattatgacgctgaagt-
gaaaaccacgtacaa agccaagaaacctgtgcagctgcctggcgcgtac
aatgtgaatattaaactggacatcacctctcata atgaagattatacgatcg-
tagagcaatatgagcg cgcggagggtcgtcattctaccggtggcatggat
gagctgtacaaataaCTCGGTACCAAATTCCAGA AAA-
GAGGCCTCCCGAAAGGGGGGCCTTTTTTCGT
TTTGGTCC

luxI-GFP fusion gtattgtctatgcctattaatgaacagtttaaaaaa gcagtcttaaatgcagc-
gaacgacgaaaattACGCC CTTGCAGCGggcggtggctccg-
gcggtggtagtggt ggcatgcgtaaaggagaagaacttttcactggagtt
gtcccaattcttgttgaattagatggtgatgttaat gggcacaaattttct-
gtcagtggagagggtgaaggt gatgcaacatacggaaaacttaccct-
taaatttatt tgcactactggaaaactacctgttccatggccaaca cttgt-
cactactttcggttatggtgttcaatgcttt gcgagatacccagatcatat-
gaaacagcatgacttt ttcaagagtgccatgcccgaaggttatgtacaggaa
agaactatatttttc

Table A-2: Names and sequences of the gene commercially synthesiszed for this study.
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Figure A-5: a. Comparison of the FITC-H fluorescent profiles between uninduced targets
cultured overnight (red) and for 6h (orange) with targets induced with 1µM 3-O-C12 for
3h. b. Time evolution of an overnight target culture in Chi.Bio. The vertical lines represent
the standard deviation between samples over n = 2 biological replicas.

a. b.

Figure A-6: a. Comparison of the FITC-H fluorescent profiles between uninduced targets
cultured for 3h (red) and 6h (orange) with the fluorescent profile of cells not expressing GFP.
b. Steady state average fluorescence of targets uninduced and induced with 10µM 3-O-C12
HSL. The fluorescence was collected after 6h incubation in LB.
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Figure A-7: Comparison of the FITC-H fluorescent profiles between uninduced targets and
the steady state profile of targets in Closed Loop when no IPTG was present in the growth
environment.
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A.2 Supplementary material for the development of a

Multicellular PI control architecture

A.2.1 Derivation of the reduced order models

Under the conditions presented in Section 5.2.2, the dynamics of the microbial consortium

comprising three populations and described by equations (5-19)-(5-25) can be further sim-

plified making a quasi-steady state assumption on the dynamics of the quorum sensing

molecules, that is, by imposing Q̇j
k = 0, with k ∈ {u, x} and j ∈ {t, p, i, e}. Under Assump-

tion 1, substituting their steady-state values in Q̇e
x = 0 and Q̇e

u = 0 we obtain that:

Qe
u = 1

ΓPI
·
(
βPYd

µPYd

µPYd+θPQp
x
+ βIZ1

)
,

Qe
x = βxXc

ΓPI
.

(A-1)

Then, by substituting (A-1) in Q̇j
k = 0, where k ∈ {x, u} and j ∈ {p, i, t}, and leveraging

again that η ≫ ΓPI , we obtain Qt
u ≈ Qp

u ≈ Qi
u ≈ Qe

u, and Qt
x ≈ Qp

x ≈ Qi
x ≈ Qe

x. We

then define those two quantities as Qu and Qx and substitute their steady state values in

equations (5-19) and (5-22).

A.2.2 Nominal biochemical parameters

The nominal biochemical parameters used in the BSim simulations are chosen as: βu =

0.06min−1, βx = 0.03min−1, γ = 0.023min−1, η = 2min−1 (taken from [5]); βc = 0.1min−1,

µ = 1min−1, θ = 0.3min−1, γz = 0.01 nM−1min−1 (taken from [9]).

A.3 Supplementary material for the development ra-

tiometric control

A.3.1 Memory-like property

We assume that the macroscopic behaviour of any cell in the consortium we wish to control

can be modelled in the domain of interest by a dynamical system of the form

ż = g(z, w), (A-2)

with g : Z × W 7→ Z being a smooth vector field, z ∈ Z ⊂ Rd the state variables and

w ∈ W ⊂ Rm the exogenous input variables, representing, for instance, the concentrations of

chemical species inside the cell and those of control inducer molecules into the environment,
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respectively. We assume that stochastic effects, such as fluctuations due to biochemical

reactions, do not significantly alter the behaviour of the system at steady state; that is, the

region of attraction of any stable equilibrium point of the dynamical system ż = g(z, w) is

large enough so that stochastic noise does not cause undesired switch from one equilibrium

point to another.

As discussed in the Introduction and in Section 6.1.1, we are interested to robustly

regulate the behaviour of reversible cells, in particular we focus our attention to a specific

class of cells whose dynamics satisfy the following fundamental property.

Definition 1 Consider a dynamical system of the form

ż = f(z, α), (A-3)

where z ∈ Z and the parameter α ∈ I ⊂ R depends on some exogenous input signal w ∈ W,

that is, α = α(w). We say that system (A-3) is memory-like if:

• There exists some ᾱ such that the system ż = f(z, ᾱ) has two stable equilibria and an

unstable equilibrium. Furthermore, the regions of attraction of the two stable equilibria

form a partition of Z.

• There exist two values α̂1 and α̂2 such that for α < α̂1∪α > α̂2 the system ż = f(z, ᾱ)

has a single equilibrium point whose region of attraction is the whole Z.

A.3.2 Event-driven modelling of the control error evolution

Here we derive an event-driven model for the evolution of the control error e(t) = rd − r(t),

presented in Section 6.1.2. Recall that the finite set of all cells in the consortium and its

cardinality at time t are denoted byNt andN(t), respectively. Now, we denote with Ei
A→B(t

′)

the event at time instant t = t′, corresponding to when the state xi of cell i ∈ Nt enters

the region of attraction of the equilibrium point Bi, that is, xi(t) ∈ RBi
for t ∈ [t′, t′ + ε],

and xi(t) /∈ RBi
for t ∈ [t′ − ε, t′), where ε is a small positive real number. Likewise, we

denote by Ei
B→A(t

′′) the event at time instant t = t′′, corresponding to when the state of cell

i ∈ Nt enters the region of attraction of Ai. Specifically, for solutions to dynamical system

(6-1) with u = 0 and ηi > 0, an event Ei
A→B occurs when the state of cell i, xi, crosses zero

and becomes positive, while an event Ei
B→A occurs when xi becomes negative. In this case

the threshold at zero is defined by the unstable equilibrium point at the origin dividing the

regions of attraction of Ai and Bi. Moreover, we denote by EA→B (EB→A) the sets of all

events Ei
A→B (Ei

B→A) occurring for all i at any time t, and we denote by E the set of all

events occurring in the population, that is, E := EA→B ∪ EB→A.
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To derive the discrete (event-driven) dynamics of the control error e(t), we make the

following standing assumptions:

Assumption 3 At any time t only one event in E can occur, that is, there exists a unique

i ∈ Nt such that either Ei
A→B or Ei

B→A, but not both, occurs at time t.

Assumption 4 The number of cells in the host chamber is assumed to be constant, that is,

N(t) = N , for all t.

Assumption 3 implies that any two events in E cannot occur simultaneously. Assumption 4

follows from the fact that, after a short transient from the beginning of the experiment, cells

grow occupying the entire host chamber. From this time on, cells exceeding the maximum

capacity of the chamber are flushed out. Therefore, the number of cells in the chamber can be

assumed with a good approximation to be constant (except for a small, negligible oscillation

due to flush-out, further discussed in Section A.3.9). Note that Assumption 4 is true not

only in case of a finite dimensional microfluidic device. Indeed, in industrial applications

where chemostats are employed to maintain the density of the microbial culture to constant

levels, it is reasonable to assume that also the number of cells is constant. However, in

the case of large-scale cell co-cultures such as when the experiments are run in bioreactors,

since measuring the fluorescence levels of each individual in the consortium can become not

feasible as the number of cells increases the method we propose will need to be adapted, for

example by measuring the average fluorescence in the whole population.

Then, there exists a sequence of discrete time instants {tk}k∈N, each one corresponding

to the occurrence of an event in E and such that tk+1 = tk + ∆tk, where ∆tk > 0 is the

time interval between two consecutive events occurring at time tk and tk+1. respectively.

Moreover, from Assumption 4 it follows that the functions nA(t) and nB(t), defining the

number of cells converging to either Ai or Bi, respectively, are piece-wise constant functions,

that is, nA(t) = nA(tk), and nB(t) = nB(tk), ∀t ∈ [tk, tk+1). Since nA(t) and nB(t) are

constrained by the relation nA(t) + nB(t) = N , for all t, for the sake of brevity, we will refer

to n(t) := nB(t) only; nA(t) being given by N − nB(t).

That said, being n(t) the number of cells in the region of attraction of Bi at time t, we

can write the following discrete-time update law:

n(tk+1) =

{
n(tk) + 1, if an event in EA→B occurs

n(tk)− 1, if an event in EB→A occurs
(A-4)

As a consequence, since e(t) = rd − n(t)
N

, we have that when an event in EA→B occurs, then

e(tk+1) = rd −
n(tk+1)

N
=

(
rd −

n(tk)

N

)
− 1

N
= e(tk)−

1

N
.
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A similar reasoning holds when an event in EB→A occurs. Therefore, the discrete-time

dynamics of the control error can be expressed as:

e(tk+1) =

{
e(tk)− 1

N
, if an event in EA→B occurs

e(tk) +
1
N
, if an event in EB→A occurs

(A-5)

A.3.3 Implementation details of the proposed feedback control
algorithms and error dynamics

Here we discuss the design of the control strategies proposed to solve the ratiometric control

problem, namely, the relay controller and the PI controller.

A.3.4 Relay control algorithm.

A relay controller is a feedback control law that generates a piece-wise constant input ur(t)

by comparing an output measured from the plant to some desired reference value rd. The

input ur(t) takes value from a finite set of real values Ur, generally composed by only two

values, one chosen such that the control error e(t) = rd − r(t) decreases when e(t) > 0, and

the other such that it increases when e(t) < 0.

We have considered two implementations of the relay controller. Specifically, the first

implementation includes a control shutdown condition when e(t) = 0, and the second one

does not.

Formally, the first implementation of the relay control input is defined as:

u′r(t) =


ū, e(t) > 0

0, e(t) = 0

−ū, e(t) < 0

(A-6)

The value ū > 0 is chosen such that (ideally) all cells are controllable, that is, for u′r = ū

(u′r = −ū), the equation ηixi − x3i + u′r = 0 has a unique stable solution, namely x̄i = Bi(ū)

(x̄i = Ai(ū)), for all i such that ηi > 0. This guarantees that when e(t) > 0 (i.e., rB(t) <

rd), the next event occurring must belong to EA→B, forcing the error to decrease, that is,

e(tk+1) = e(tk) − 1
N
. Likewise, when e(t) < 0 (i.e., rB(t) > rd), u

′
r = −ū implies that the

next event occurring belongs to EB→A, and so e(tk+1) = e(tk) +
1
N
. Moreover, notice that,

when no control is applied (i.e., u′r = 0), each cell will converge to either Ai or Bi, depending

on its current state, without any other event in E having to occur. Therefore, the shutdown

condition ensures that, if there exists a t∗ such that e(t∗) = 0, then e(t) = 0 for all t ≥ t∗.
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Combining (A-6) and (A-5), the discrete-time update law for the control error becomes:

e(tk+1) =


e(tk)− 1

N
, if e(tk) > 0

e(tk), if e(tk) = 0

e(tk) +
1
N
, if e(tk) < 0

(A-7)

The previous discrete map can also be rewritten as e(tk+1) = e(tk)− 1
N
sgn(e(tk)).

The second implementation of the relay control input, without the shutdown condition,

is defined as:

u′′r (t) =

{
ū, e(t) ≥ 0

−ū, e(t) < 0
(A-8)

In this case it is not possible to ensure that the error remains equal to zero indefinitely. By

using a similar reasoning as before, (A-5) can be recast as:

e(tk+1) =


e(tk)− 1

N
, if e(tk) > 0

− 1
N
, if e(tk) = 0

e(tk) +
1
N
, if e(tk) < 0

(A-9)

A.3.5 PI control algorithm.

The control input of the PI controller is defined as:

uPI(t) = kPe(t) + kIz(t), (A-10)

ż(t) = e(t), z(0) = 0, (A-11)

with kP and kI being positive constants. This control action is complemented with a (anti-

windup) reset condition that sets the internal state z of the integrator to zero whenever the

error becomes 0 or changes its sign. Furthermore, to take into account constraints on the

actuation system of the experimental platform, the control input signal uPI is assumed to be

saturated at ū and −ū.
The control algorithm guarantees that when e(t) > 0 the control input uPI(t) is positive

and d
dt
uPI(t) > 0. So, uPI(t) will increase and reach some positive value û such that, for at

least one cell, the equation ηixi − x3i + u = 0 with u = û and ηi > 0 has a unique solution,

namely Bi(û). The cell will be attracted by this stable equilibrium point and, therefore,

there will exist a time instant t′ such that, for all t ≥ t′, uPI(t) ≥ û and an event in EA→B

will occur. A similar reasoning holds in the case e(t) < 0. Hence, it directly follows that the

discrete-time update law for the control error e(t) under the PI control law is the same as

in (A-7).
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A.3.6 Derivation of η̂

In this section we show how the expression of η̂ in (6-2) was derived. The quantity η̂

represents the limit value of ηi such that the equation ẋi = 0 with ηi > 0 and u = ū, where

ū = maxu∈U |u|, has a unique solution. That is, any cell whose behaviour can be described

by (6-1) with ηi > η̂, cannot be switched from Ai to Bi, or vice versa, by any input value

u ∈ U , because it always admits at least two solutions and it is therefore uncontrollable.

To this aim, we have to characterise the bifurcation points at which two equilibrium

points of (6-1) coalesce and disappear [172], under variations of the control input u and of

the parameters ηi. The position of the limit points can be easily obtained as:

(x+LP , u
+
LP ) =

(√
ηi
3
,−
√

4η3i
27

)
(A-12)

(x−LP , u
−
LP ) = −(x+LP , u

+
LP ) (A-13)

Hence, equation ẋi = 0 admits at least two solutions if its parameters and the control input

satisfy the relationship

−
√

4η3i
27

< u <

√
4η3i
27

(A-14)

Therefore, it is easy to verify from (A-14) that, given the maximum value of the control

input ū, the threshold value η̂ over which a cell becomes uncontrollable is

η̂ :=

(
27ū2

4

) 1
3

(A-15)

A.3.7 Proof of convergence of the proposed controllers

Here we prove that the feedback control algorithms we proposed ensure finite time conver-

gence to the desired cell ratio and hence solve the ratiometric control problem stated in

Section 6.1.2. To this aim we conduct a convergence analysis on the error map ek+1 = f(ek),

where f : D → D, with f being defined in (A-7) or (A-9), and D is the domain of defi-

nition of the error signal ek. Specifically, we consider some positive definite scalar function

V : D → R, and we prove convergence of ek to some invariant set by assessing the negative

definiteness of the increment function ∆V := V (f(ek))− V (ek) for every point outside this

invariant set.

Notice that the domain of definition D is finite, indeed, from the definition of the control

error signal, that is, e(t) := rd − r(t) = 1
N
(nd − n(t)), and from the fact that nd = N · rd
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is an integer constant and n(t) is integer-valued function taking values in the finite set

{0, 1, 2, . . . , N}, we have that

D :=

{
−1, . . . ,− 2

N
,− 1

N
, 0,

1

N
,
2

N
, . . . , 1

}
. (A-16)

Relay control algorithm (A-6). To prove convergence of the error signal e to 0, let us

consider the function V (e) = e2. Using the discrete-time map in (A-7), we have that

∆V = Vk+1 − Vk = e2k+1 − e2k = e2k −
2

N
|ek|+

1

N2
− e2k = − 1

N2
(2N |ek| − 1). (A-17)

The increment ∆V is negative definite everywhere except in the points such that

|ek| ≤ 1/(2N), (A-18)

therefore any solution whose initial condition is outside this set converges towards it. Since

the only possible value of ek in D satisfying (A-18) is 0, we can therefore conclude that the

error signal ek converges to 0.

Relay control algorithm (A-8). From (A-9) it directly follows that the error dynamics

does not admit any fixed point. However, a period-2 cycle exists whose stability we are going

to prove by considering the second iterate of the error map in (A-9):

ek+2 =


ek − 2

N
, if ek ≥ 1

N

ek, if ek ∈ {0,− 1
N
}

ek +
2
N
, if ek ≤ − 2

N

(A-19)

The periodic orbit of the first iterate map (A-9) corresponds to the pair of fixed points

located in 0 and −1/N of the second iterate map (A-19).

Let us consider the function V (e) = |e|. By using the second iterated map in (A-19) and

taking into account (A-16) we have:

V (ek+2) =


ek − 2

N
, if ek ≥ 2

N
1
N
, if ek =

1
N

−ek, if ek ∈ {0,− 1
N
}

−ek − 2
N
, if ek ≤ − 2

N

(A-20)

Hence, after some algebra we can write:

∆V = V (ek+2)− V (ek) =

{
− 2

N
, if |ek| ≥ 2

N

0, if ek = {0,− 1
N
, 1
N
}

(A-21)
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Therefore, we can conclude that all solutions converge to the set where ∆V = 0, that is,

such that |ek| ≤ 1/N , or, equivalently, to the set {− 1
N
, 0, 1

N
}. Now, by using the second

iterate map (A-19), we can easily verify that in the set {− 1
N
, 0, 1

N
} there are two fixed

points, namely − 1
N

and 0. Therefore, these two fixed points correspond to period-2 cycles

for the first iterated map (A-9). More precisely, both points correspond to the same cycle

M = {− 1
N
, 0}, indeed, by applying (A-9) we have that − 1

N
7→ 0 and 0 7→ − 1

N
. This proves

that the error signal globally converges to the period-2 cycle M .

PI control algorithm (A-10)-(A-11). In this case the discrete-time map describing the

dynamics of the control error is also defined by (A-7). Therefore, the proof of convergence

for the PI controller is the same as that of the first implementation of the relay controller

(A-6) presented earlier on.

Finite time convergence. We complete our proof that the regulation happens in finite

time by showing that when e(t) ̸= 0 the time interval ∆tk between consecutive events is

finite. Assuming without loss of generality that the control error right after an event in E
occurred to be positive, say e(t+k ) > 0, there will exist a time instant t̄ > tk after that the

control input u is such that, for at least one cell, the equation ηixi − x3i + u = 0 with ηi > 0

has a unique positive solution, namely Bi(u) > 0. This solution is globally asymptotically

stable for the solution xi(t), that is, limt→∞ xi(t) = Bi(u). Hence, since xi(t) is a continuous

function in time, there will exist a finite time instant tk+1 such that xi(t
−
k+1) < 0 and

xi(t
+
k+1) > 0, meaning that an event in EA→B occurred. A similar reasoning holds when

e(tk) < 0. Combining this result with the observation that the number of events needed to

converge to the desired ratio is finite due to the finite cardinality of D, we can conclude that

the time needed to reach steady state is finite.

A.3.8 Derivation of eur

Here we illustrate how the expression of eur in (6-7) was obtained. The quantity eur is an

upper bound on the residual steady-state error due to the presence of unswitchable cells, i.e.,

bistable cells that cannot be toggled by any admissible value of the control input u. The

maximum value of this quantity can be estimated by considering the worst case scenarios

in which all these uncontrollable cells are initially in one region of attraction and therefore

cannot be moved to the other one by any admissible values of u.

Without loss of generality, assume that all uncontrollable cells are initially in the region

of attraction of their equilibrium point Bi and recall that rd denotes the desired ratio of
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cells converging to Bi at steady state. Denoting with ru the ratio between the number

of uncontrollable cells and the whole cell population, we have that if ru ≤ rd, that is, the

number of uncontrollable cells does not exceed the desired number in Bi, then uncontrollable

cells do not cause any problem because we do not need to move any of them from where

they are. Therefore, in this case, e∞ = 0. On the other hand, if ru > rd, the fraction of

uncontrollable cells exceeding the desired ratio, that is, ru − rd, will determine an error at

steady state, that is, |e∞| ≤ ru − rd. A similar argument can be stated for the dual scenario

in which all uncontrollable cells are initially in the region of attraction of Ai. Recalling that

in this case we want the ratio of cells converging to Ai to be equal to (1− rd), the residual

error at steady state in this scenario will satisfy |e∞| ≤ ru − (1− rd) .

From the previous analysis and exploiting that, for a high number of cells, ru can be

estimated as the probability of ηi begin greater that η̂, we finally obtain that

eur = max
{
0,Pr[ηi > η̂]− rd,Pr[ηi > η̂]− (1− rd)

}
. (A-22)

where Pr denotes the probability measure.

A.3.9 Noise magnitude due to flush-out effects

The fluctuations in the steady-state response of the closed-loop system (see for example

Figure 6-6) are mostly due to cells flowing out of the microfluidic chamber as they grow.

The magnitude ε of this noise is indeed proportional to the ratio between the flow rate Q

of cells exiting the chamber and the total number N of cells therein. That is, ε ∝ Q/N ,

where Q = v · A; being A the cross-section area of the chamber apertures and v the flow

velocity, that depends on the cell growth rate. Without loss of generality, assume that, as

is usual in microfluidic applications, cells in the chamber are organised in a single-layer and

that, on average, the area occupied by a rod-shaped E. Coli cell can be approximated by a

rectangle of base w and height h. Moreover, let us assume that the chamber has a square

geometry with side ℓ with two open sides, as in Figure 6-5, and that all cells leave the

chamber longitudinally. Then, the flow rate Q can be approximated as Q ≈ v · 2ℓ
w
. Moreover,

the total number of cells in the chamber is N = ℓ2/(w ·h). Therefore, in conclusion, we have

that

ε ∝ Q

N
=
v · 2ℓ

w
ℓ2

w·h

= 2 v · h
ℓ
,

that is, the magnitude of the noise is inversely proportional to the size of the culture cham-

ber. We validated the formula numerically by comparing the noise levels between chambers
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of different sizes (compare Figure 6-6 and Supplemental Figure A-11). Specifically, we ob-

served that, as expected, the average variation of the ratios at steady state in the chamber

40µm × 50µm wide (0.009) was three times lower than the one in a chamber where both

the dimensions were scaled down to a third (0.03) (see also Supplemental Video 2).

Note that when the cells under observation flow out of the field of view from all the four

sides of the chamber (a common situation when higher magnification factors are used on the

microscope), the same result still holds but multiplied by a factor of 2.

A.3.10 Mathematical model of the inducible toggle-switch

In this section we present the details of the mathematical model used to describe the time

evolution of proteins’ concentration in the inducible toggle-switch. The model of the toggle-

switch we consider here was originally developed and parameterised from experimental data

in [125], and it was further analysed in [126, 127, 173, 143].

The model captures the pseudo-reactions describing transcription

∅ hL(TetR,aTc)−−−−−−−−→ mRNALacI, (A-23)

∅ hT(LacI,IPTG)−−−−−−−−−→ mRNATetR, (A-24)

where

hL(TetR, aTc) := κm0
L +

κmL

1 +

(
[TetR]
θTetR

· 1

1+
(

[aTc]
θaTc

)ηaTc

)ηTetR
, (A-25)

hT(LacI, IPTG) := κm0
T +

κmT

1 +

(
[LacI]
θLacI

· 1

1+
(

[IPTG]
θIPTG

)ηIPTG

)ηLacI
, (A-26)

those describing translation

mRNALacI

κP
L−→ mRNALacI + LacI, (A-27)

mRNATetR

κP
T−→ mRNATetR + TetR, (A-28)

and those related to dilution/degradation

mRNALacI

gmL−→ ∅, (A-29)

mRNATetR

gmT−→ ∅, (A-30)

LacI
gpL−→ ∅, (A-31)

TetR
gpL−→ ∅. (A-32)
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κm0
L 0.3045 counts min−1 gpL 0.0165 min−1

κm0
T 0.3313 counts min−1 gpT 0.0165 min−1

κmL 13.01 counts min−1 θLacI 124.9
κmT 5.055 counts min−1 ηLacI 2.00
κpL 0.6606 a.u. −1 min−1 θTetR 76.40
κpT 0.5098 a.u. −1 min−1 ηTetR 2.152
kaTc 0.04 min−1 θaTc 35.98
kIPTG 0.04 min−1 ηaTc 2.00
gmL 0.1386 min−1 θIPTG 0.2926
gmT 0.1386 min−1 ηIPTG 2.00
kℓ 0.12 min−1

Table A-3: Values of the parameters of the cell population models (taken from [125]). kℓ
defines the rate at which the length of a bacterium grows in BSim, chosen as in [123].

The repressive action of LacI and TetR on each other is captured in (A-25)-(A-26) by means
of Hill functions (with parameters θs and ηs). Likewise, the repressions of aTc on TetR
and of IPTG on LacI are both described by another Hill function nested in the previous
two. In the above pseudo-reactions, the parameters κm0

L/T, κ
m
L/T, κ

p
L/T, g

m
L/T, g

p
L/T are basal

transcription, transcription, translation, mRNA degradation and protein degradation rates,
respectively. Note that all dilution rates were set based on estimates of cell cycle times. The
value of these parameters are reported in Table A-3. The pseudo-reactions listed above can
be used to obtain the following deterministic model of the inducible toggle-switch:

d

dt
mRNALacI = κm0

L +
κm
L

1 +

(
[TetR]
θTetR

· 1

1+
(

[aTc]
θaTc

)ηaTc

)ηTetR
− gmL mRNALacI (A-33)

d

dt
mRNATetR = κm0

T +
κm
T

1 +

(
[LacI]
θLacI

· 1

1+
(

[IPTG]
θIPTG

)ηIPTG

)ηLacI
− gmT mRNATetR (A-34)

d

dt
[LacI] = κp

L mRNALacI − gpL [LacI] (A-35)

d

dt
[TetR] = κp

T mRNATetR − gpT [TetR] (A-36)

where the quantities mRNALacI,mRNATetR denote abundance of the chemical species in a
cell while variables in the form [ · ] denote concentrations of molecules inside each cell (see
[125] for further details about the mathematical model).

The model is complemented by also taking into account the diffusion of aTc and IPTG
across the cell membrane:

d

dt
[aTc] = kaTc (uaTc − [aTc]) , (A-37)

d

dt
[IPTG] = kIPTG (uIPTG − [IPTG]) , (A-38)

where the parameters kaTc/IPTG are diffusion rates, whose values are reported in Table A-3.



148 A Supplementary material

A.3.11 Agent-based simulations in BSim

BSim is an agent-based simulator explicitly designed for the simulation of bacterial popula-
tions [122, 123]. In this environment the chemicals’ spatial distribution and the bio-mechanics
of the cells are also considered. Specifically, it is possible to mimic a microfluidic platform,
where cells grow and move, and where chemicals diffuse into the environment.

The BSim implementation presented in [123] has been extended here to include also
stochastic simulations of the biochemical processes taking place inside the cells. Specifically,
we implemented the SDE-based algorithm presented in [174]. Formally, for each cell we
solved a system of equations of the form

dx = S · F(x, t)dt+ S · diag(F(x, t))dw+∆(x)dt, (A-39)

where x =
[
mRNALacI,mRNATetR, [LacI], [TetR], [aTc], [IPTG]

]⊤
is the state vector, w

is a vector of independent standard Wiener processes, S = [s1, . . . , s6] is the stoichiometry
matrix and F(x) = [a1(x), . . . , a6(x)]

⊤, where aj(x) is the propensity function of the j-
th pseudo-reaction defined as in Section A.3.10. Notice that the term ∆(x)dt models the
diffusion dynamics of chemicals across the cell membrane, assumed to be deterministic.

The microfluidic platform we considered consists of a microfluidic device, a microscopy, a
computer and an actuation system. The microfluidic device contains a chamber where cells
are trapped and grow. Specifically, we simulated the microfluidic chip described in [109],
where the growth chambers’ dimensions are 40µm× 30µm× 1µm. This allows bacteria to
grow only in a mono-layer structure. The chamber is connected to two perfusion channels,
which bring nutrients and inducers to the cellular population. The flow of the fluids sent to
the chambers is governed by two syringes, each one containing a mixture of growth media
and one inducer. By adjusting the relative height of the syringes, it is possible to change
the amount of inducers delivered to the cells. The architecture is completed by a computer,
controlling the syringes depending on the output of a control algorithm, and a microscopy,
necessary to take images whose analysis results in the computation of the error.

The bio-mechanical parameters of the cells (i.e., cells’ growth rate) have been set as in
[123]. In addition, as also done in [5, 123], at each cell division we assumed the cell contents
to be equally divided in the mother and daughter cell, resulting in both having the same
state that the mother had the moment right before the division occurred.

Moreover, we have taken into account the following realistic constraints on the experi-
mental platform [18] :

1. the state of the cells cannot be measured more often than 5min, to avoid excessive
photo-toxicity;

2. there is a time delay of 40 s on the actuation of the control inputs due to the time that
the flow of the chemical inducers takes to reach the chambers in the microfluidic chip
where cells are hosted;

3. the minimum time interval between two consecutive control inputs cannot be smaller
than 15min, to limit excessive osmotic stress on the cells;
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4. the maximum duration of any experiment cannot exceed 24 hours (1440 min), to avoid
substantial cell mutations during the experiments.

A.3.12 Realistic in silico implementation of the controllers

The specific implementation of the microfluidic device we adopted also introduces constraints
on the possible classes of input signals u(t) = [uaTc(t), uIPTG(t)]

⊤ that can be generated by
the actuators. We consider two possible implementations:

1. a T-junction, which limits uaTc and uIPTG to be mutually exclusive and with fixed
amplitudes, that is, u is either equals to [UaTc, 0]

⊤, or to [0, UIPTG]
⊤;

2. a Dial-A-Wave (DAW) system [144], which constraints uaTc and uIPTG to be in a convex
combination. Namely, given uaTc ∈ [0, UaTc] we have

uIPTG =

(
1− uaTc

UaTc

)
UIPTG (A-40)

In the above equations, UaTc and UIPTG denote the concentrations of the inducers in the
reservoirs, and we assume that they can be varied at the beginning of the experiments in the
intervals [0, 100] and [0, 1], respectively. The upper bounds for UaTc and UIPTG are selected
to avoid excessive stress on cells and are the same as those used in vivo in [125].

Furthermore, to meet the specific dynamical features of the genetic toggle-switch imple-
menting the required bistable memory mechanism in reversible differentiable cells (Section
6.1.4), we propose modified versions of the ideal relay controller and the PI controller pro-
posed in Section 6.1.2.

When considering an inducible toggle-switch the boundaries of the regions of attraction
for each stable equilibrium strongly depend on the parameters chosen for the model and, even
knowing them with absolute precision for each cell in a deterministic setting, the presence
of noise could cause cells to change region of attraction. Hence, it is not possible to define
precise boundaries between the regions of attraction of the equilibrium points Ai and Bi

for each cell. For this reason, we define conservative estimation of the regions of attraction
common to all cells. Specifically, we defined At := {i ∈ Nt : 2LacIi(t) < TetRi(t)} and
Bt := {i ∈ Nt : LacIi(t) > 2TetRi(t)}, where LacIi and TetRi denote the concentrations of
the molecules inside the i-th cell. Moreover, since in reality the union of these two sets does
not cover the entire set Nt of cells in the consortium, cells not belonging to At and Bt are
in an uncertain state. We define this uncertain set of cells as Ct := {i ∈ Nt : i /∈ At, i /∈ Bt}
and denote with nC(t) = |Ct| its cardinality at time t. For this reason, the error signals eA
and eB are not complementary (i.e., eA(t) ̸= −eB(t)) and we need to consider both in the
design of the control actions.

Relay controller. The relay controller consists of two mutually exclusive inputs with
fixed amplitudes, which are applied to the system depending on the current value of the
error signals eA(t) and eB(t). Specifically, at any time t, it is applied the input that causes
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max{|eA(t)|, |eB(t)|} to decrease. More formally, the control input u(t) = [uaTc(t), uIPTG(t)]
⊤

is chosen as

u(t) =

{
u1, |eB(t)| ≥ |eA(t)|
u2, |eB(t)| < |eA(t)|

, (A-41)

where

u1 =

{
[0, UIPTG]

⊤ , eB(t) ≤ 0

[UaTc, 0]
⊤ , eB(t) > 0

, u2 =

{
[UaTc, 0]

⊤ , eA(t) ≤ 0

[0, UIPTG]
⊤ , eA(t) > 0

. (A-42)

In this way, when eB > 0 (eB ≤ 0) a high value of aTc (IPTG) is applied, that, by promoting
LacI (TetR), causes eB to decrease (increase). Similar arguments hold for eA.

PI controller. The PI controller is implemented using a Dial-A-Wave system [144]. It
consists of two control actions, each acting to decrease either of the control errors. Formally,
we have:

uaTc(t) = kP,1eB(t) + kI,1

∫ t

0

eB(τ)dτ −
(
kP,2eA(t) + kI,2

∫ t

0

eA(τ)dτ

)
(A-43)

where kP,j and kI,j, j = 1, 2, are the proportional and integral control gains. Note that, due
to the constraints on the actuation system, uIPTG is defined by (A-40).

Moreover, to improve performance, the control algorithm is complemented with an anti-
windup scheme (that sets to zero the internal state of the integrator whenever the error
signals are equal to 0 or change sign) and a dynamic saturation, empirically tuned, defined
as: {

uaTc ∈ [0, 50] , if |eB| < |eA|
uaTc ∈ [0, 100] , otherwise

(A-44)

Note that the choice of uIPTG follows from the above and Equation (A-40).

Tuning of the control parameters. The control parameters UaTc, UIPTG, and gains kP,j
and kI,j, j = 1, 2, in Equations (A-42) and (A-43) used have been empirically selected by
means of preliminary in silico experiments in MATLAB on the closed-loop system consisting
of 30 cells whose dynamics is described by (A-39). The same value of the control parameters
have been then used in all the experiments conducted in BSim. From an experimental view-
point, a better tuning of the control gains might be possible once the model is parameterised
from real data so as to provide an in silico benchmark better representative of the in vivo
implementation of the controller under investigation. The numerical values used in each
simulation are reported in the caption of the relative figure.
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a. b. c.

d. e. f.

g. h. i.

j. k. l.

Figure A-8: Feedback control strategies are effective to balance two asymmetric groups of
controllable reversible cells to 1:3 ratio (rd = 0.75) and 3:1 ratio (rd = 0.25). (a-c, g-i) Evolution
of the error signal e(t) and of the control input u(t) for (a, g) the first implementation of the relay controller
(A-6), (b, h) the second implementation of the relay controller (A-8), (c, i) the PI controller (A-10)-(A-11).
(d-f, j-l) Distribution of the cells state at the beginning of the simulation (t = 0a.u., grey histogram) and
at steady state (t = 1.0 a.u., green and red histograms), for (d, j) the first implementation of the relay
controller, (e, k) the second implementation of the relay controller, (f, l) the PI controller. Desired ratios
are set to (a-f) rd = 0.75 (1:3 ratio) and (g-l) rd = 0.25 (3:1 ratio). The green and red bars in panels d-f
and j-l correspond to cells in the region of attraction of Ai and Bi, respectively. The maximum control input
is set to ū = 5 and the gains of the PI controller has been set to kP = 30 and kI = 10. All cells (N = 400)
have initial conditions xi(0) drawn from the normal random distribution N (0, 4), and the parameters ηi are
drawn with uniform distribution from the interval [1, 5], therefore all cells are controllable, as no monostable
(η > 0) and no unswitchable (η < η̂ ≈ 5.53) cells are present in the population.
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a. b. c.

d. e. f.

g. h. i.

j. k. l.

Figure A-9: Balance to asymmetric ratios is achieved with a residual steady-state error in
the presence of uncontrollable cells. (a-c, g-i) Evolution of the error signal e(t) and of the control input
u(t) for (a, g) the first implementation of the relay controller (A-6), (b, h) the second implementation of
the relay controller (A-8), (c, i) the PI controller (A-10)-(A-11). (d-f, j-l) Distribution of the cells state at
the beginning of the simulation (t = 0a.u., grey histogram) and at steady state (t = 3.0 a.u., green and red
histograms), for (d, j) the first implementation of the relay controller, (e, k) the second implementation of
the relay controller, (f, l) the PI controller. Desired ratios are set to (a-f) rd = 0.75 (1:3 ratio) and (g-l)
rd = 0.25 (3:1 ratio). The green and red bars in panels d-f and j-l correspond to cells in the region of
attraction of Ai and Bi, respectively. The maximum control input is set to ū = 5 and the gains of the PI
controller are set to kP = 30 and kI = 10. All cells (N = 400) have initial conditions xi(0) drawn from the
normal random distribution N (−2, 1), and the parameters ηi are drawn with uniform distribution from the
interval [−1, 14], therefore both monostable (η < 0) and unswitchable (η > η̂ ≈ 5.53) cells can be present
in the population. The steady-state errors observed in the in silico experiment are equal to (a) 0.265, (b)
0.235, (c) 0.265, and (g-i) 0. Note that all the observed errors are below the theoretical upper bound on
the control error estimated using (6-5) as er = e0r + eur ≈ 0.07+ 0.31 = 0.38. (depicted in the panels a-c and
g-i as red dashed lines). The lower steady-state error observer in panels g-i with respect to that in panels
a-c is due to the initial conditions of the uncontrollable cells, already exhibiting the right phenotype and
therefore they are already belonging to the set they should be in, and do not affect the steady-state error.



A.3 Supplementary material for the development ratiometric control 153

a.

d.

b.

e.

c.

f.

R
el
ay

co
n
tr
ol
le
r

P
I
co
n
tr
ol
le
r

g. h. i.

j. k. l.

R
el
ay

co
n
tr
ol
le
r

P
I
co
n
tr
ol
le
r

Figure A-10: Cooperative production of two monomers to asymmetric population ratios
can be achieved by means of feedback ratiometric controllers in microfluidics. (a, d, g, j)
Evolution in time of populations’ ratio rA (solid green line) and rB (solid red line) with their respective
desired reference values in dashed lines, (b, e, h, k) of the error signals eA (solid green line) and eB (solid
red line), and (c, f, i, l) inducer control signals uaTc (solid red line) and uIPTG (solid green line), normalised
to their maximum values UaTc and UIPTG, respectively. Desired ratios are set to (a-f) rd = 0.75 (1:3 ratio)
and (g-l) rd = 0.25 (3:1 ratio). (a-c, g-i) Parameters of the relay control (A-41): UaTc = 60ng/mL,
UIPTG = 0.5mM. (d-f, j-l) Parameters of the PI controller (A-43): UaTc = 60ng/mL, UIPTG = 0.5mM,
kP,1 = 60, kP,2 = 0.75, kI,1 = 1.5, kI,2 = 0.05. Cells (about 200) in the simulated microfluidic chamber (with
dimensions 40µm× 50µm× 1µm) have the same parameters’ value, and their evolution has been obtained
using the agent-based simulator BSim [122, 123].
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Figure A-11: Cooperative production of two monomers to 1:1 population ratio can still
be achieved in smaller growth chambers. Larger noise fluctuations due to cells flowing out of the
microfluidic chambers are expected in this situation. (a,d) Evolution in time of populations’ ratio rA (solid
green line) and rB (solid red line) with their respective desired reference values in dashed lines (rd = 0.5),
(b,e) of the error signals eA (solid green line) and eB (solid red line), and (c,f) inducer control signals
uaTc (solid red line) and uIPTG (solid green line), normalised to their maximum values UaTc and UIPTG,
respectively. (a-c) Parameters of the relay control (A-41): UaTc = 60ng/mL, UIPTG = 0.5mM. (d-f)
Parameters of the PI controller (A-43): UaTc = 100 ng/mL, UIPTG = 1mM, kP,1 = 100, kP,2 = 1.5,
kI,1 = 1.5, kI,2 = 0.05. The simulated microfluidic chamber (with dimensions 13.3µm × 16.7µm × 1µm)
can host a cell population of about 30 cells. All simulations were obtained using the agent-based simulator
BSim [122, 123]. (See also Supplemental Video 2.)



A.3 Supplementary material for the development ratiometric control 155

a.

d.

b.

e.

c.

f.

R
el
ay

co
n
tr
ol
le
r

P
I
co
n
tr
ol
le
r

Figure A-12: Cooperative production of two monomers to 1:1 population ratio can be
achieved in a heterogeneous cell population by means of feedback ratiometric controllers in
microfluidics. (a,d) Evolution in time of populations’ ratio rA (solid green line) and rB (solid red line)
with their respective desired reference values in dashed lines (rd = 0.5), (b,e) of the error signals eA (solid
green line) and eB (solid red line), and (c,f) inducer control signals uaTc (solid red line) and uIPTG (solid
green line), normalised to their maximum values UaTc and UIPTG, respectively. (a-c) Parameters of the
relay control (A-41): UaTc = 60ng/mL, UIPTG = 0.5mM. (d-f) Parameters of the PI controller (A-43):
UaTc = 100 ng/mL, UIPTG = 1mM, kP,1 = 100, kP,2 = 1.5, kI,1 = 1.5, kI,2 = 0.05. The simulated mi-
crofluidic chamber (with dimensions 40µm × 50µm × 1µm) can host a cell population of about 200 cells.
Each time a cell divides, the parameters of the daughter are drawn from a normal distribution centred in
the nominal value, and with variance equal to its 20%. All simulations were obtained using the agent-based
simulator BSim [122, 123].
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Figure A-13: Cooperative production of two monomers to 1:1 population ratio can also be
achieved when the expression of the two proteins is associated to different metabolic burdens.
(a,d) Average steady-state error in dependence of the relative growth rate difference when expressing different
phenotypes. The steady-state error ess is computed as the average error over the last 60 minutes of the
simulation (lasting 1440min). The relative growth rate difference is computed as (gn − gp)/gn, where gn is
the nominal growth rate and gp is the reduced growth rate induced by assuming additional metabolic burden
posed by overexpressing LacI. (b,c,e,f) Top panel: evolution in time of populations’ ratios rA (solid green
line) and rB (solid red line), with the desired reference values depicted with a dashed line (rd = 0.5); bottom
panel: inducer control signals uaTc (solid red line) and uIPTG (solid green line), normalised to their maximum
values UaTc and uIPTG, respectively. (a-c) Parameters of the relay control (A-41): UaTc = 60ng/mL,
UIPTG = 0.5mM. (d-f) Parameters of the PI controller (A-43): UaTc = 100 ng/mL, UIPTG = 1mM,
kP,1 = 100, kP,2 = 1.5, kI,1 = 1.5, kI,2 = 0.05. Cells (about 200) in the simulated microfluidic chamber (with
dimensions 40µm × 50µm × 1µm) have the same parameters’ value, but their growth rate changes when
LacI is expressed. Specifically, relative growth rate differences equal to 0.1 and 0.5 have been chosen for the
in silico experiments reported in panels (b,e) and (c,f), respectively. The cells’ evolution has been obtained
using the agent-based simulator BSim [122, 123].
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Figure A-14: In the absence of any control input, the cells described by equation (6-1)
converge to some bimodal distribution whose relative numbers of cells in each mode depend
on the initial conditions of the cells. (a,b) Evolution in time of the error signal e(t) and the control
input fed to the population. The desired set-point for the error (e = 0) is depicted as a dashed grey line.
(c,d) Distribution of the cells state at the beginning of the simulation (t = 0 a.u., grey histogram) and at
steady state (t = 3 a.u., green and red histograms). The initial conditions xi(0) of all cells (N = 400) are
drawn from the normal distributions N(0, 4) and N(−2, 1), respectively for panels a,c and b,d, while the
parameters ηi are drawn from a uniform distribution in the interval [1, 5].
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d. e. f.

a. b. c.

Figure A-15: In the absence of any feedback control action the cell population does not
converge to the desired ratio, but to some other value that depends on the initial conditions.
(a,d) Evolution in time of populations’ ratio rA (solid green line) and rB (solid red line), with the desired
reference values depicted with a dashed lines (rd=0.5). (b,e) Evolution in time of the control errors eA (solid
green line) and eB (solid red line). (c,f) Inducer control signals uaTc(solid red line) and uIPTG (solid green
line), normalised to their maximum values UaTc and uIPTG, respectively. Cells (about 200) in the simulated
microfluidic chamber (with dimensions 40µm × 50µm × 1µm) have the same parameters’ value, and their
evolution has been obtained using the agent-based simulator BSim. The initial conditions of the cells, that
is, the values of mRNALacI , mRNATetR, [LacI] and [TetR] at the beginning of the in silico experiments
were drawn from a uniform distributions in the intervals [3, 9], [3, 9], [150, 450], [200, 600] for panels a-c, and
[6, 18], [3, 9], [300, 900], [200, 600] for panels d-f. The concentration of the inducer molecules at the beginning
of the simulation inside each cell was set to 0.
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A.4 Supplementary material for TES

A.4.1 Derivation of the aggregate model

The first part of the model, equations (6-14)-(6-17), follows immediately from the assumption
that the average concentrations follow the same dynamics described in (6-8)-(6-11) for all
cells in the population.

Equation (6-18) can be obtained by noticing that (6-12) can be rewritten as

η (Qi −Qe) = ρ0 − γqi −
dqi
dt
, (A-45)

that substituted into (6-13) gives

dqe
dt

=
M∑
i=1

(
ρ0 − γqi −

dqi
dt

)
− γeqe, (A-46)

which in turns can be rewritten as

d

dt

(
qe +

M∑
i=1

qi

)
= ρ0M −

(
γeqe +

M∑
i=1

γqi

)
. (A-47)

Now, noting that, by definition, q := qe +
∑M

i=1 qi, i.e., q is the total amount of molecule Q
into the external environment and into all the cells, and that, when considering a constant
volume V , only degradation must be considered, that is, γ = γe, we obtain

dq

dt
= ρ0M − γeq, (A-48)

that, by dividing both sides by V and by using N = M/V , yields (6-18). Finally, equation
(6-19) follows by assuming the typical logistic growth dynamics for the cell population in a
limited environment, with the term −dPN capturing the slowdown effect of the inhibitor
protein P on the growth rate of the cells, similarly to what was reported in Ref [154].

A.4.2 Nondimensional model

Model (6-14)-(6-19), with the first-order approximation of the Hill function, can be nondi-
mensionalized to obtain a simpler model with less parameters by rescaling time as τ = γt
and introducing the following dimesionless variables:

S̄ =
S

S0

, T̄ =
T

T0
, C̄ =

C

C0

,

P̄ =
P

P0

, Q̄ =
Q

Q0

, N̄ =
N

Nm

,

(A-49)

with

S0 = T0 = C0 =
γk

κPd
, P0 =

k

d
, Q0 =

Nmρ0
γ

. (A-50)
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Table A-4: Nominal vaules of the systems’ parameters.

Parameter Value Unit Reference

αS
0 5.316 tr h−1 [157]
αS variable tr h−1 -
αT
0 13.4 tr h−1 [157]
αT 11400 tr h−1 [157]
κC+ 1.542 co tr−1 h−1 [157]
κC− 0.4032 co−1 tr h−1 [157]
κP 5 nM co−1h−1 [154]
ρ0 595.2 nM µm3 h−1 -
γ 2 h−1 [154]
γe 2 h−1 [154]
η 120 µm3 h−1 -
θ 20 nM -
n 2 - [157]
k 0.97 h−1 [154]
d 4 10−3 nM−1 h−1 [154]
Nm 0.145 CFU µm−3 -
Vc 5.5 µm3 -

The units of measurement tr, co and CFU stand for transcripts, complexes, and colony-
forming units, respectively.

Thus, a nondimensional model of (6-14)-(6-19) can be obtained as:

dS̄

dτ
= ᾱS − κ̄C+T̄ S̄ + κ̄C−C̄ − S̄ (A-51)

dT̄

dτ
= ᾱT Q̄− κ̄C+T̄ S̄ + κ̄C−C̄ − T̄ (A-52)

dC̄

dτ
= κ̄C+T̄ S̄ − κ̄C−C̄ − C̄ (A-53)

dP̄

dτ
= C̄ − P̄ (A-54)

dQ̄

dτ
= N̄ − 1

γ̄
Q̄ (A-55)

dN̄

dτ
= k̄N̄(1− N̄)− d̄P̄ N̄ (A-56)

where

ᾱS =
αS

γS0

, ᾱT =
Q0α

T

2γθS0

, γ̄ =
γ

γe
,

κ̄C+ =
S0κC+

γ
, κ̄C− =

κC−

γ
, d̄ = k̄ =

k

γ
,

(A-57)

are positive nondimensional parameters.
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A.4.3 Logistic growth dynamics in BSim

The typical rod-shaped geometry of E. coli bacteria is modeled in BSim by considering for
each cell a cylinder with radius r = 0.5µm and length L having a semi-sphere with the same
radius r attached to both bases. Cells have a random initial length drawn with uniform
distribution from the interval [0.7, 1.3] µm, and their growth is implemented by assuming
that the length L of each cell grows by following a logistic dynamics of the form:

dL

dt
= kLL

(
1− L

Lmax

)
, (A-58)

where Lmax denotes the maximum cell length, set to 5.625µm, and kL denotes the growth
rate. Cell division occurs when the length of the cell reaches the critical threshold[123]
Lth = 4.5µm. As a consequence, the time needed for the division to occur, that is, the
doubling time of the population, given the initial length of a bacterium L0, is defined as:

tdL = − 1

kL
ln

[(
Lmax

Lth

− 1

)
1

Lmax

L0
− 1

]
. (A-59)

Note that, in the original implementation in BSim, tdL does not depend on the population
density N , hence population will grow exponentially at a constant rate. Therefore, in order
for the population density N to follow a logistic growth rate in BSim, it is necessary to make
kL depending directly on N . To this aim, we assume that the doubling time of the cell length
tdL is equal to the doubling time of the population density, whose dynamics is described by:

dN

dt
= kN

(
1− N

Nm

)
− dPN, (A-60)

so that the doubling time of the population density can be derived as:

tdN =
ln(2)

k
(
1− N

Nm

)
− dPN

. (A-61)

Finally, by equating the two doubling times, tdN and tdL, we obtain the desired relationship
between kL and N as:

kL(N,P ) :=
k
(
1− N

Nm

)
− dPN

ln(2)
ln

[
Lth(Lmax − L0)

L0(Lmax − Lth)

]
, (A-62)

which was implemented to carry out the agent-based simulations reported in our research.
Notice that, according to (A-62), the growth rate kL can also become negative due to the
effect of the inhibitor protein P, causing the cell length to shrink. When the length becomes
smaller than 0.5µm, the cell is assumed to be dead, and it is therefore removed from the
chamber.
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AppendixB

Agent-based simulations of bacteria in
BSim

B.1 Introduction

Having a realistic environment for the simulation of bacterial populations and their growth
environment is essential for testing in silico proof of concept designs for sythetic biologi-
cal circuits, partially filling the gap between modeling and in vivo experiments. BSim was
desveloped in [122] and updated with new functionalities in [123] as an agent-based simula-
tor explicitly designed for the simulation of bacterial populations. In this environment we
can accurately model the environment where bacteria grow, simulating diffusion and decay
processes of all the chemical species present. In addition, it is possible to explicitly account
for cells’ bio-mechanics, including their movement and division.

We extended the environment original implementation, presented in [123], to include the
noise deriving from the intrinsic stocasticity of biochemical processes taking place inside the
cells. Specifically, we implemented the SDE-based algorithm presented in [174]. Formally,
for each cell we solved a system of equations of the form

dx = S · F(x, t)dt+ S · diag(F(x, t))dw+∆(x)dt, (B-1)

where x is the state vector, containing all the species constituting the GRN hosted in the cell,
w is a vector of independent standard Wiener processes, S = [s1, . . . , s6] is the stoichiometry
matrix associated to the Gene Network and F(x) = [a1(x), . . . , a6(x)]

⊤, where aj(x) is
the propensity function of the j-th pseudo-reaction. Notice that there is an additional
term ∆(x)dt that models the the diffusion dynamics of chemicals across the cell membrane,
assumed to be deterministic.

The growth environment we simulated consists of a microfluidic device, a microscopy, a
computer and an actuation system. The microfluidic device contains a chamber where cells
are trapped and grow, which is connected to two perfusion channels that bring nutrients and
inducers to the cellular population. The flow of the fluids sent to the chambers is governed by
two syringes, each one containing a mixture of growth media and one inducer. By adjusting
the relative height of the syringes, it is possible to change the amount of inducers delivered to
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the cells. The architecture is completed by a computer, controlling the syringes depending
on the output of a control algorithm, and a microscopy, necessary to take images whose
analysis results in the computation of the error.

The nature of this platform imposed some technological constraints on the simulations:

1. The state of the cells cannot be measured more often than 5min, to avoid excessive
photo-toxicity;

2. There is a time delay of 40 s on the actuation of the control inputs due to the time
that the flow of the chemical inducers takes to reach the chambers in the microfluidic
chip where cells are hosted;

3. The minimum time interval between two consecutive control inputs cannot be smaller
than 15min, to limit excessive osmotic stress on the cells;

In this appendix we describe three case studies where the BSim extension we developed
was used both to validate proof of concept designs for external control of bacterial popula-
tions [142, 19] and to support the design and implementation of in vivo feedback control of
an error comparation module in E. Coli [18].

B.2 Balancing cell populations endowed with a syn-

thetic toggle switch via adaptive pulsatile feedback

control

The problem of controlling cells endowed with a genetic toggle switch around its unstable
equilibrium has been recently highlighted as a benchmark problem in synthetic biology. It
has been shown that a carefully selected periodic forcing can balance a population of such
cells in an undifferentiated state. The effectiveness of these control strategies, however, can
be hindered by the presence of stochastic perturbations and uncertainties typically observed
in biological systems and is therefore not robust.

To solve this problem and balance a toggle switch population, modelled as described in
section A.3.10, we designed a feedback (closed-loop) control approach that is based on using
two mutually exclusive periodic inputs of aTc and IPTG of period T and duty cycle dk,
where k indices the inputs in time. The algorithm is able to select their amplitudes and
adapt and change online their duty-cycle to achieve the desired control goal.

In particular, we adopted an external control strategy [25] that can be implemented in
microfluidics via a fluorescence microscope and actuated syringes as described in the previous
section. The feedback control algorithms adapt the duty-cycle dk of the periodic inputs as
a dynamic function of the current cell behavior, measured via the fluorescence microscope.
Specifically, we implemented two feedback control actions:

• a proportional-integral (PI-PWM) controller that drives a pulse width modulation
block;

• a Model Predictive Controller (MPC) that selects the input duty-cycle dynamically by
optimizing a desired cost function.
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Feedback control strategies

PI-PWM controller. The controller evaluates, at every time instant tk = k T , k ∈ N>0,
the duty-cycle dk by adding a correction δdk to the reference value dref returned by a Model
Based Inversion algorithm, based on analytical approximations made in [126] (Figure B-1a).
Specifically, dref is computed using the curve of equilibria ΓūaTc,ūIPTG

of the average model,
which is parameterized in terms of the duty cycle and the amplitude pulse waves. The Model
Based Inversion algorithm also uses a projector Π to projext the desired setpoint and the
current state on ΓūaTc,ūIPTG

. (for more details see [142]).
Thus, the duty-cycle is evaluated online by the PI controller as dk = dref + δdk, k ∈ N>0,

where δdk is computed as:

δdk = kP e
π
k + kI

k∑
j=0

eπj

with initial condition d0 = dref , and where kP, kI are the gains of the PI controller and eπk is
the error computed projecting the current stae on the equilibria cureve using Π.

Specifically, the nonlinear projector Π computes at the end of each period the error eπk
as the length of the arc on the curve of equilibria ΓūaTc,ūIPTG

between the projections on the
curve of the desired mean value (or setpoint) x̄ref and the current measured mean value over
a time period T computed as

⟨xk⟩ =
1

T

∫ (k+1)T

kT

x(τ) dτ.

The projections of these two points are denoted as x̂ref and ⟨x̂k⟩, respectively.
Because of the highly nonlinear and uncertain nature of the model, the tuning of the PI

gains was carried heuristically via extensive numerical simulations in MATLAB.
Note that the projected error eπk being equal to 0 (i.e. ∥⟨x̂k⟩ − x̂ref∥ = 0) does not

necessarily correspond to zero regulation error of the mean state value ⟨xk⟩ onto x̄ref , that is
∥⟨xk⟩ − x̄ref∥ = 0. Indeed, at steady-state the line connecting these two points is orthogonal
to the curve ΓūaTc,ūIPTG

but its length may not be zero. This residual error at steady-state
can be made smaller by computing more curves ΓūaTc,ūIPTG

in the database.
Model Predictive Controller (MPC). MPC strategies have been widely applied in the
field of synthetic biology [175], demonstrating their effectiveness also for in-vivo experiments
[140]. The controller chooses, at each sampling time tk = k T , the duty-cycle dk to be applied
in the next control cycle (of duration T ), by solving an online optimization problem on a finite
prediction horizon interval of length Tp = N T , with N ∈ N (Figure B-1b). Specifically, at
each step k, the algorithm finds the sequence of duty-cycles {d0, d1, . . . , dN−1} of length N
that minimize the cost function Jk, defined as

Jk({d0, d1, . . . , dN−1}) =
N−1∑
i=0

∫ (k+1+i)T

(k+i)T

e(t, di) dt,

where e(t, d) is the weighted relative squared error defined as

e(t, di) = KLacI

(
LacI(t,di)−LacIref

LacIref

)2
+KTetR

(
TetR(t,di)−TetRref

TetRref

)2
,
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in which LacI(t, di) and TetR(t, di) are the solution of the deterministic dynamical model
(A-33) when PWM pulsatile signals with duty-cycle di are applied as inputs to the system.
In order to make the control action robust to uncertainties and noise, only the first element
d0 of the sequence is used by the controller, that is, dk = d0.

The optimization problem is solved at each step by using the genetic algorithms [176] tool-
box available in MATLAB, which also generates the sequences of duty-cycles {d0, d1, . . . , dN−1},
such that di ∈ [0, 1].

Figure B-1: Block diagrams of proposed feedback control strategies. (a) PI-PWM control strategy. Given
the setpoint for the average model x̄ref , two actions regulate the parameters of the PWM inputs that feed
the system. The feedforward action is composed by the Model Based Inversion that evaluates the amplitudes
ūaTc and ūIPTG and the nominal value of the duty-cycle dref . The nonlinear projector Π and a proportional-
integral controller compose the feedback loop. At each time period tk = k T , the nonlinear projector Π
evaluates the projection error eπk that is minimized by a PI controller that evaluates the correction δdk to
be added to dref . (b) MPC control strategy. At each discrete time step k, the MPC finds the sequence of
duty-cycles {d0, d1, . . . , dN−1} that minimizes the cost function Jk over the prediction horizon Tp = N T .
Then, only the first element is selected (dk = d0) and the corresponding pulsatile control signals are applied
to the biological system in the time interval [tk, tk + T ].
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Agent-based validation of the control algorithms

In this context, with a view towards the in-vivo implementation, we validated via agent-based
simulations the performance of both control strategies. To this aim we conducted in-silico
experiments with BSim 2.0, an advanced agent-based simulator of bacterial populations
[122, 123] that is able to replicate realistic phenomena such as cell growth, spatial diffusion,
variability in cell geometry, and flush-out of the cells from the microfluidic chamber (see
Section B.1 for further details).

Figure B-2 shows the results of the agent-based simulations confirming the effectiveness
and viability of the strategies for in-vivo experiments. We see that both strategies are
effective in controlling the mean value of the toggle switch response to the desired value
despite the presence of perturbations and uncertainties.

In general, we find that in the deterministic case the MPC – often used in control ap-
plications in synthetic biology [140] – guarantees better performance in terms of dynamic
regulation; the overshoot and transient duration being significantly lower than those observed
with the other strategy. Moreover, the MPC achieves also better steady-state regulation of
the setpoint with respect to the PI-PWM controller over 18 periods (corresponding to 72
hours, considered to be realistic for in-vivo control applications).
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Figure B-2: Agent-based simulation in BSim 2.0. (a) Response of the cells controlled by using the
PI-PWM strategy. PI gains were set to kP = 0.0101 and kI = 0.0401. Top panel: evolution over time of
LacI; the dashed line representing the setpoint LacIref = 750, while lighter lines the evolution of the state
for each cell in the simulation, and the darker solid line the mean trajectory computed over the population,
evaluated through a moving window of period T . Middle panel: evolution over time of TetR; the dashed
line representing the setpoint TetRref = 300, lighter lines are the evolution of the state for each cell in the
simulation, while the dark solid line represents the evolution of the mean trajectory across the population in
the period, evaluated using a moving window of period T . Bottom panel: evolution of the duty-cycle over
time. (b) Response of the cells controlled by using the MPC strategy. MPC cost function parameters were
set to KLacI = 1, KTetR = 4, while the prediction horizon is N = 3. We considered E. coli cells growing in a
single chamber of a “mother machine”-like microfluidic device [177]: the simulations start with a single cell
located at the bottom of the chamber; as the cell grows and duplicates, it pushes outside of the chamber
new cells exceeding the maximum capacity of the chamber (around 10 cells). The total simulation time is 72
hours with T = 240min. The reference values provided by the Model Based Inversion algorithm and used
in both simulations are ūaTc = 35, ūIPTG = 0.35, and dref = 0.4.
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B.3 Control-Based Continuation of an inducible Tog-

gle switch

Mathematical modelling is widely used within synthetic biology design-build-test-learn cy-
cles. In the context of engineered gene regulatory networks, models can both support the
design phase (indicating the parameter space which allows the emergence of the desired dy-
namics, such as oscillations), and the testing upon experimental implementation. Moreover,
modelling is currently the only way in synthetic biology to study the relationship between
physical parameters variations and bifurcations; the latter represent stability boundaries
where qualitative and quantitative changes to the system’s dynamics occur.

The derivation of biochemical models can however be challenging, both in terms of model
structure (which depends on underlying hypothesis on the system), and parameter identifica-
tion and validation (which can be troublesome in the case of incomplete/noisy experimental
datasets). Model uncertainties will inevitably result in misleading conclusions [178, 179]. As
a consequence, the design and testing of engineering synthetic biochemical circuits that per-
form as intended is extremely difficult, unless various design, build, test and learn iterations
are performed [76]

Control-Based Continuation (CBC) is a general and systematic method to carry out the
bifurcation analysis of physical experiments that does not rely on a mathematical model and
thus overcomes the uncertainty introduced when identifying bifurcation curves indirectly
through modelling and parameter estimation.

Control Based Continuation algortithm

CBC retrieves stable and unstable invariant solutions of a dynamical system through the
application of an external control action. In order to acquire the bifurcation diagram, the
controller must not modify the position in the parameter space of the uncontrolled system’s
invariant solutions. For example, the equilibria of a controlled system are in general different
from the one of the uncontrolled system and, to recover the response of the underlying
uncontrolled system of interest, CBC seeks a control signal that decays asymptotically to
zero, i.e.,

lim
t→∞

u(x(t), xref ) ≡ 0 (B-2)

where x ∈ R is the system’s state, xref ∈ R is the control reference signal and t is time.
Although the control signal is asymptotically converging to zero, it is synthetized in order
to stabilise local dynamics of the system such that unstable equilibria become stable and
hence detectable forward in time. A control strategy that satisfies (B-2) is called noninvasive
and does not modify the system’s equilibrium positions in the parameter space. Finding a
noninvasive control signal usually requires finding the right reference input (xref ) for the
controller such that (B-2) is satisfied, while the solution of interest is stabilised.
When the control input can be chosen as the bifurcation parameter of interest, the method-
ology can be significantly simplified as the control signal is only required to settle to a
constant value. Indeed, when this condition is achieved, the non-zero constant control signal
can be viewed as a mere shift in the bifurcation parameter value. In this section, Control



170 B Agent-based simulations of bacteria in BSim

Based Continuation will be used to infer the bifurcation diagram of a Genetic Toggle switch
described by the model introduced in section A.3.10 using IPTG as a control input and
bifurcation parameter.

The algorithm applied for control-based continuation can be briefly summarized in the
following steps:

1. Set a new control reference. A reference value xref = TetR∗ is used to evaluate
the error (the difference between the measured TetR and the reference target), and it
is given to the controller. The range where the reference is picked normally covers the
minimum and maximum expression of the protein of interest, but it can be modified
according to the need.

2. Compute the control action. Depending on the control strategy, the proportional
controller evaluates the control action depending on the state of the system.

3. Feed the control action to the system. The computed control action u is fed to
the system for 5 minutes continuously, as it is considered to be the minimum sampling
time for measurements and actuation in an hypothetical microfluidics/microscopy ex-
perimental set-up. After 5 minutes, the system output is measured and a new error is
computed. Steps 2 and 3 are repeated until the process is considered at steady state.

4. Check for steady state. The initial implementation of the algorithm considers
the system at steady state after a fixed amount of time ( set to 9h and 55min ).
The algorithm allows a variable time for steady state computation. In this case, to
compute the steady state of TetR and IPTG, the slope of the linear curve fitting the
last 12 samples after 3 hours of simulation is calculated for both the error and the
control signals (where the slope corresponds to the angle the curve makes with respect
to the x− axis). If the computed value is below a user-defined tolerance, the system
is assumed at steady state. Otherwise, the simulation continues and the steady state
is checked every new sample, until the slope is sufficiently small. A threshold is set on
both the error and the control slopes, which may vary between a deterministic and a
stochastic simulation.

5. Acquire the steady state. The steady state values of TetR and IPTG (TetR and
IPTG) are saved as the average value computed over the last 12 samples of each signal,
and the algorithm goes back to step 1.

All steps are repeated until enough steady states are collected, or until the range of output
and parameter values has been covered. An initial guess is given as initial state for the
algorithm to start with.

The control algorithm chosen to complement the CBC algorithm were a proportional
controller and an MPC algorithm.

The proportional controller, formally described as

u = Kp(xref(t)− x(t)), (B-3)
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delivers a control action proportional to the mismatch between the measured output and the
reference set point. For the toggle switch, the error signal is computed by subtracting the
measured output to the control reference (TetR∗ − TetR), while the control input delivered
is the IPTG concentration.

The Model predictive control is a control scheme based on two main features: prediction
and optimization. At each step, a model reproducing the process behaviour is used to predict
the process outputs to given input signals. The input minimizing a cost function is then
computed using an optimization algorithm and fed to the controlled process. We chose a
linear model to reproduce behaviours we expect from the real process. A further requirement
for the prediction procedure is the process current state which, if not fully measurable, can
be estimated using a Kalman filter. Further details on the system used for the preditction,
the estimation process and the optimization algoritm used can be found in [19].

Agent based validation

To validate the CBC algorithm in a relistic simulation environment we used BSim, the
Java-based bacteria simulator described in section B.1. We implemented single cell control
considering the stochastic model described by Equations (A-39).

In figures B-3 B, B-4 B representative examples of TetR and IPTG trajectories are
shown. The bifurcation curves that are obtained, shown in Fig. B-3 A and B-4 A, are
comparable with the bifurcation curve numerically computed using the nominal values of
the system. However, we observed worse control performances with respect to the MPC for
the proportional controller in BSim. This is mainly due to additional factors introduced in
simulations. Specifically, the cells biomechanics and their flush out from the microfluidic
chamber are simulated, as well as the chemicals’ spatial distribution and diffusion that in-
troduce additional delay in the control input delivery. Additionally, in BSim we explicitly
simulated an actuation delay due to the time the media takes to be delivered to the cells
within the microfluidic device. All these factors might contribute to the performances ex-
hibited by the proportional controller. A similar result when using more realistic simulation
environments was also found in [17], where the authors showed that the performance of a
PI controller considerably deteriorated when the algorithm was tested on an agent based
model, while an MPC algorithm was able to maintain similar performance.
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Figure B-3: CBC with P controller applied to the stochastic toggle switch model (A-39)
in BSim. A) Density plot of equilibrium curve measured using CBC. Reference equilibrium
curve obtained using numerical continuation (- -). B) Time evolution of one simulation of
TetR and the control reference signal TetR∗ (–). C) Time evolution of IPTG (i.e. control
signal). Parameter values: kp = 0.0016 and aTc = 25ngmL−1.

Figure B-4: CBC with MPC applied to the stochastic toggle switch model (A-39) in BSim.
A) Density plot of equilibrium curve measured using CBC. Reference equilibrium curve
obtained using numerical continuation (- -). B) Time evolution of one simulation of TetR
and the control reference signal TetR∗ (–). C) Time evolution of IPTG (i.e. control signal).
Parameter values: γ = 0.3 and aTc = 25ngmL−1.



B.4 In Vivo Feedback Control of an Antithetic Molecular Titration Motif in Escherichia coli Using
Microfluidics 173

B.4 In Vivo Feedback Control of an Antithetic Molec-

ular Titration Motif in Escherichia coli Using Mi-

crofluidics

Molecular titration modules have been highlighted as a fundamental component for the
implementation of feedback controllers in living cells. Sequestration mechanisms can be used
as effective error computation modules for the implementation of in vivo feedback control of
living cells and have been previously evaluated in silico [55] and confirmed experimentally
[105]. More specifically, these modules can be used to compare some desired reference input
of interest with a signal related to the phenotype one wishes to control, so as to provide an
error signal that the molecular control device can use to regulate its behaviour.

The crucial role played by molecular titration motifs for feedback control of cells neces-
sitates a more thorough study of their properties and dynamic response. In this section we
present the in vivo external feedback control of an engineered E. coli population endowed
with the gene regulatory network shown in Figure B-5a. The controller is implemented in
microfluidics by closing the loop through an inducible promoter controlled by an antithetic
σ/anti-σ module that is driven by an external reference input (see Figure B-5b).

In this context we developed a mathematical model that supported the development of
a relay controller guarantee reliable and tunable regulation of gene expression levels.

Benchmark molecular titration module

We implemented our previously designed biological system [105] as a benchmark to test
the dynamic response of an error computation module - a comparator - based on molecular
titration [112]. The system is a multi-input, single output device that uses two independent
signals to regulate the expression level of a target protein of interest. It is based around an
orthogonal σ/anti-σ pair able to specifically regulate the activity of the p 20992 promoter
through antithetic behaviour[112] (Figure B-5A). The cell-cell communication molecule 3-
O-C6-HSL (AHL) [180] and the chemical inducer Isopropyl β-D-1-thiogalactopyranoside
(IPTG) were used as external inputs to control the system. The p 20992 promoter was
placed upstream of the superfolder GFP (sfGFP) protein. sfGFP was chosen for its fast
maturation time of in the order of minutes [181]. Production of σ 20 992 was controlled by
the AHL inducible promoter plux, whilst the production of the anti-σ 20 992 was controlled
by the IPTG inducible promoter plac-UV5. This system works on the basis that free anti-
σ can bind to σ, preventing it from recruiting RNA polymerase to the p 20992 promoter
for the expression of GFP. Therefore, the level of GFP expression will be proportional to
the amount of free σ available, and to the difference between the two signals (AHL and
IPTG). All proteins were fused to a degradation tag (ssrA tag) to ensure the fast dynamics
of expression from the system [182].
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Figure B-5: A) Biological design of the molecular titration system. GFP output from the system
is dependent on the concentrations of IPTG and AHL, which control the relative levels of anti-σ and σ
respectively. This in turn determines the level of p20 992 activity and GFP expression. B) Schematic of
the control platform. An inverted fluorescence microscope is used to capture the fluorescence (y) of the
cells. Images are segmented to quantify the average fluorescence (y). The error (e) between the desired
fluorescence value and the actual output is then evaluated and used to decide if the input should be provided
to the cells or removed (û). The actuation system is then instructed to either deliver or remove inducers(s)
from the microfluidic device accordingly. A schematic of where the cells are cultured inside the microfluidics
device is also included. Pink boxes indicate cells inside the controlled chamber, blue boxes indicate the
locations of cells in uncontrolled chambers. The exact positioning of these chambers varied between different
experiments.



B.4 In Vivo Feedback Control of an Antithetic Molecular Titration Motif in Escherichia coli Using
Microfluidics 175

Open-loop system response and in silico modelling

Our existing mathematical model previously developed for batch culture simulations[105]
was parameterized to reflect the conditions of our microfluidics experiments. We started
by characterizing experimentally the response of the molecular titration system to time-
varying external inputs. We showed that the microfluidic platform can maintain bacterial
population growth, and that the GFP fluorescence of the cells can be varied as a function
of the external IPTG and AHL signals. The experimental data was used to parameterize a
computational model of the titration module proposed in our earlier work[105]. Model fitting
and predictions were found to match the in vivo observations, confirming the viability of
the computational model we derived for control system design and in silico validation. The
model is described as a set of Ordinary Differential Equations (ODE) as follows:

˙[GFP ] = χ0,GFP +
χ1,GFP [σ]

nσ

Knσ
σ + [σ]nσ

− f(X)[GFP ]− γP,GFP [GFP ]

˙[σ] = χ0,σ +
χ1,σ[A]

nA

KnA
A + [A]nA

− k+σ:σa
[σ][σa] + k−[σ : σa]− f(X)[σ]− γσ[σ]

˙[σa] = χ0,σa +
χ1,σa [I]

nI

KnI
I + [I]nI

− k+σ:σa
[σ][σa] + k−[σ : σa]− f(X)[σa]− γσa [σa]

˙[σ : σa] = k+σ:σa
[σ][σa]− k−[σ : σa]− f(X)[σ : σa]− γσ:σa [σ : σa]

(B-4)

whose dependent variables model the concentrations in time of mature GFP [GFP],
free σ factor [σ], free anti-σ [σa ] and the σ:anti-σ complex [σ:σa]. Their dynamics are
determined by production, dilution, and degradation terms. In the model, the dynamics of
mRNA transcription was assumed to be faster than the translation process, and a quasi-
steady-state approximation of mRNA dynamics was therefore applied. Also, the dynamics
of intracellular mRNAs are described through saturating Hill curves parameterized by the
concentration of an input, AHL ([A]) or IPTG ([I]), or an RNA polymerase sigma subunit
[σ], a half-maximal activation concentration (Kσ,KA, and KI) and a Hill coefficient (nσ, nA

and nI). Parameters χ0,i and χ1,i are the basal and maximal rate of production of protein
species i; γP,GFP , γσ, γσa and γσ:σa are the rates of dilution of GFP, σ, anti-σ and the σ:σa
complex, respectively; k+σ:σa

and k−σ:σa
are the association and dissociation rate of the σ:σa

complex formation.
In Equation (4), the function f(X) = YD

ce+X
captures the competition between available

ssrA tag for available proteases, where X=[σ]+[σa ]+[σ:σa ]+[GFP] is the total number of
ssrA tagged proteins present in the system, YD defines the maximum value of enzymatic
degradation, and ce defines the half activation threshold.

Closed loop control experiments

Using the in silico model, we designed external closed loop control experiments in which the
aim was to keep GFP fluorescence at a fixed set-point or track a time-varying signal. These
experiments were first performed in silico and then experimentally in vivo. AHL (10−2mM)



176 B Agent-based simulations of bacteria in BSim

Figure B-6: GFP expression across the cell population (y in green). The simulations were
performed with a constant input of 10-2 mM AHL. The desired GFP fluorescence was set to
A) 50% of the dynamic range of fluorescence (yref in dashed grey) for the length of the control
experiment. B) For the first 400 mins of the experiment, the desired GFP fluorescence was
set to 40% of the dynamic range of fluorescence, which was then switched to 80% for the
remaining 400 mins (yref in dashed grey). The input signal (10-1 mM IPTG in red), was
delivered to the cells when the error (e, in blue) between the desired GFP value and the
actual GFP was negative. The control input was removed when the calculated error was
positive. A calibration phase was performed prior to control start, see [18]. The integral
square error (ISE) for experiment A = 7.79 and for experiment B = 18.15. The standard
error of the mean of y (SEM) is represented by the shaded region in lighter green.
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was continually supplied to the cells to maintain production of the σ factor, while IPTG was
used as a control input (for the generation of anti-σ factor) by switching between 0 mM and
10−1 mM.

Prior to the control start in both in silico experiments and in vivo experiments, a cali-
bration phase was performed to calculate the minimum and maximum relative fluorescence
values exhibited by the cells at steady state for each of the conditions. To implement feed-
back control, we used a simple yet effective relay (ON/OFF) control strategy to modulate
the amount of IPTG provided to the cells as a function of the mismatch, say e(t), between
the reference signal (r) and the system fluorescence output (GFP)[183]. Specifically, we set:

u =

{
Umax ife(t) < 0

Umin ife(t) > 0
(B-5)

where u(t) is the IPTG input to cells set to Umax = 10−1 mM or Umin = 0mM. We
chose a relay control strategy as its simplicity enabled ease of implementation and was
sufficient to provide a proof of concept that our device could be controlled in real-time using
a microfluidics platform.

To determine the feasibility of our control strategy, we first performed in silico stochastic
simulations of the planned in vivo closed loop experiments. We embedded the ODE model
into the agent-based simulator BSim[123] to recapitulate dynamics in the microfluidic device
and account for cell division, input diffusion and cell-to-cell variability. Two different closed
loop control experiments were simulated: 1) set-point regulation of GFP to 50% of its
dynamic range (Figure B-6a), and 2) signal tracking, where the reference value changed
from 40% to 80% mid-way through the experiment (Figure B-6b). We used ISE (the integral
square error, see [18] for further details) as a metric to evaluate the performance of the control
strategy; ISE penalises big variations in time of the mismatch providing a reliable assessment
of control performance. For both control goals, we observed that the GFP output was driven
to the desired level after the first 50 minutes of the experiment and successfully tracked the
desired value for the rest of the experiment, with oscillations around the set-point due to
the chosen control algorithm. The in silico experiments also showed that the ISE for both
regulation and tracking experiments remained relatively low (ISE = 7.79 for regulation and
ISE = 18.15 for tracking), confirming the effectiveness of the control strategy.

Proven the feasibility of the control algorithm, in vivo control experiments were con-
ducted to demonstrate that the performances predicted in silico were met in microfluidic
experiments. Further details on the in vivo experiments can be found in [18].
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AppendixC

A network model of Italy shows that
intermittent regional strategies can
alleviate the COVID-19 epidemic

Regionalism is an integral part of the Italian constitution. Each of Italy’s twenty adminis-
trative regions is independent on Health and oversees its own share of the Italian National
Health service. The regional presidents and their councils can independently take their own
actions, strengthening or, at times, weakening national containment rules. Previous studies
have modelled the spread of the epidemics and its evolution in the country at the national
level[184, 185, 186], and some have looked at the effects of different types of containment and
mitigation strategies [187, 188, 189]. Limited work [190, 191, 192, 193, 194, 195, 196] has
taken into account the spatial dynamics of the epidemic but, to the best of our knowledge, no
previous paper in the literature has explicitly taken into consideration the pseudo-federalist
nature of the Italian Republic and its strong regional heterogeneity when it comes to health
matters, hospital capacity, economic costs of a lockdown and the presence of inter-regional
people’s flows.

In this study, we investigate the whole of the country as a network of regions, each
modelled with different parameters. The goal is to identify if and when measures taken
by the Italian government had an effect at both the national, but most importantly, at
the regional level. Also, we want to uncover the effects on the epidemic spread of regional
heterogeneity and inter-regional flows of people and use control theoretic tools to propose
and assess differentiated interventions at the regional level to reopen the country and avoid
future recurrent epidemic outbreaks.

As aggregate models of the COVID-19 epidemic cannot capture these effects, to carry
out our study we derived and parameterized from real data a network model of the epidemics
in the country (see Figure C-1a), where each of the 20 regions is a node and links model
both proximity flows and long-distance transportation routes (ferries, train, planes).

In this context we will describe an ad hoc identfication algorithm used to parameterize the
model from real data. The parametrized model was used in [20] to evaluate the effectiveness
of the national lockdown strategy implemented by the Italian government and to show that
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a b

Index Region Index Region
1 Abruzzo 11 Lombardy
2 Aosta Valley 12 Marche
3 Apulia 13 Molise
4 Baslicata 14 Piedmont
5 Calabria 15 Sardinia
6 Campania 16 Sicily
7 Emilia 17 Tuscany
8 Friuli-Venezia 

Giulia
18 Trentino-Alto 

Adige
9 Lazio 19 Umbria
10 Liguria 20 Veneto

Figure C-1: Schematic diagram of the network model structure and representative regional
parameters. a. Representative graph of the network model structure used in the paper.
Only a subset of all links is shown for the sake of clarity. Solid lines represent proximity
links, dashed lines long distance transportation routes (air, train, road), dotted lines show
major ferry routes between insular regions and the Italian mainland. b. Table of the Italian
region names and their positions in the graph.

regional feedback interventions, where each of the twenty regions strengthens or weakens local
mitigating actions (social distancing, inflow/outflow control) as a function of the saturation
of their hospital capacity, can be beneficial in mitigating possible outbreaks and in avoiding
recurrent epidemic waves while reducing the costs of a nationwide lockdown.

C.1 Model formulation

To capture the regional diversity of the response to the epidemic in Italy, we derive a network
model of Italy where each node represents a different region and links capture fluxes of
people among the regions (see Fig. C-1a). Using a data-driven compartmental modelling
approach, a set of ODEs is obtained describing the dynamics of six different compartments
in each region (Susceptibles, Infected, Hospitalized, Quarantined, Deceased and Recovered);
data analysis being used to define flows among compartments.

As a regional model of the COVID-19 epidemic spread, we use the compartmental model,
which we found from data analysis and identification trials to be the simplest model structure
able to capture the real data. Specifically, we constructed the model by testing how different
configurations of the links between its compartments affected the model ability to capture
the available data. We found that the structure we propose was the best compromise between
model simplicity and its ability to capture the data.
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The full model equations describing the dynamics of susceptible (Si), infected (Ii), quar-
antined (Qi), hospitalized (Hi), recovered (Ri) and deceased (Di) are:

Ṡi =− ρiβ
SiIi
Ni

İi =ρiβ
SiIi
Ni

− αiIi − ψiIi − γIi

Q̇i =αiIi − κHi Qi − ηQi Qi + κQi Hi

Ḣi =κ
H
i Qi + ψiIi − ηHi Hi − ζiHi − κQi Hi

Ḋi =ζiHi

Ṙi =γIi + ηQi Qi + ηHi Hi

(C-1)

where β and γ are the infection and recovery rate, respectively, which are assumed to be
the same for all regions as COVID-19 is transmitted from person to person and there is no
parasite vector or evidence of environmental parameters significantly altering its infection
rate, ρi ∈ [0, 1] is a parameter modelling the effects of social distancing measures in the i-th
region, αi is the rate of infected that are detected and quarantined, ψi is the rate of infected
that needs to be hospitalized, ηQi is the rate of quarantined who recover, ηHi is the fraction of
hospitalized who recover, κQi is the rate of hospitalized that is transferred to home isolation,
κHi is the rate of quarantined who need to be hospitalized, and ζi is the mortality rate that
was shown from data analysis to be a function of the ratio between Hi and the maximum
number, say TH

i , of patients that can be treated in ICU at the hospitals in i-th region. Ni is
the actual population in the i-th region, i.e. the resident population without those removed
because quarantined, hospitalized, deceased or recovered.

Extending previous approaches for modelling Dengue fever in Brazil [197], we obtain the
national network model of the COVID-19 epidemic in Italy as a network of twenty regions
(see FigureC-1) interconnected by links modelling commuter flows and major transportation
routes among them.

The network model of Italy we adopt in this study is, for i = 1, . . . , 20,
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Ṡi =−
M∑
j=1

M∑
k=1

ρjβϕijSi
ϕkj(t)Ik
Np

j

İi =
M∑
j=1

M∑
k=1

ρjβϕijSi
ϕkj(t)Ik
Np

j

− αiIi − ψiIi − γIi

Q̇i =αiIi − κHi Qi − ηQi Qi + κQi Hi

Ḣi =κ
H
i Qi + ψiIi − ηHi Hi − ζ

(
Hi

TH
i

)
Hi − κQi Hi

Ḋi =ζ

(
Hi

TH
i

)
Hi

Ṙi =γIi + ηQi Qi + ηHi Hi

Np
i =

M∑
k=1

ϕki(t) (Sk + Ik +Rk)

(C-2)

where in addition to the parameters and states described above, we included the fluxes
ϕij(t) between regions; ϕij(t) : R → [0, 1] denoting the ratio of people from region i inter-
acting with those in region j at time t, such that

∑M
j=1 ϕij(t) = 1. More details on the fluxes

definition and estimation can be found in [20]. Note that, as a result of the identification
procedure illustrated in Section C.2, in equations (C-2) the mortality rate ζ is expressed as a
function of the saturation of the regional health systems whose expression is given in Section
C.2.

C.2 Identification

The resulting model is then parameterized using a predictor-corrector algorithm applied to
both a national aggregate model and to each of the twenty regional models, identifying the
time points at which parameter values present significant changes. Specifically, we divided
the model parameterization into two stages. Firstly, we estimated from the available data
the parameters of each of the twenty regional models; then, we use publicly available mobility
data in Italy to estimate the fluxes among the regions (see [20] for details on fluxes estimates).

The identification procedure assume that, for each region, the parameters of the model re-
main constant over n time windows, but neither their number n nor their durations δ1, . . . , δn
are assumed to be known a priori. Therefore, the identification procedure detects at the same
time the breakpoints t1, . . . , t(n − 1) when notable parameters’ changes are detected and,
within each time-window, estimates the parameter values as those that best capture the
trend of the available data.

The model used to carry out the identification of regional or national parameters is a
discretized version of the model of the epidemic spread in each area of interest, which can
be rewritten from model (C-2) for each region (i = 1,. . . ,20) as (dropping the subscripts to
the parameters for notational convenience):
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nom min max nom min max nom min max nom min max nom min max nom min max nom min max nom min max nom min max nom min max nom min max nom min max

our model SIQHRD variable 0.122 1 0.4 0.4 0.4 0.114 0.049 0.159 0.044 1E-15 0.089 0.07 0.07 0.07 0.033 8.68E-11 0.092 0.006 1.82E-15 0.079 0.045 8.26E-14 0.1 0.018 0.01 0.037 0.016 1E-19 0.32 0.02 0.006 0.029 0.78 0.195 2.272
[S6] SEPIAHQRD - - - 0.301 0.273 0.33 - - - 0.099 0.093 0.104 0.087 0.077 0.094 0.148 0.13986 0.156 - - - - - - 0.07 0.063 0.073 0.07 0.063 0.073 0.041 0.037 0.045 3.6 3.49 3.84
[S3] SIDARTHE - - - - - - - - - - - - 0.034 - - 0.017 - - 0.027 - - - - - - - - 0.017 - - 0.01 - - - - -
[S14] SIR - - - - 0.26 0.315 - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 4
[S15] SIQR - - - 0.373 - - - - - 0.067 - - - - - - - - - - - - - - - - - - - - - - - - - -
[S4] SIRD - - - - - - - 0.143 0.348 - - - - - - - - - - - - - - - - - - - - - - - - - - -
[S16] - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 4
Mean, min, max → - - - 0.337 0.26 0.373 - 0.143 0.348 0.083 0.067 0.104 0.061 0.034 0.094 0.083 0.017 0.156 0.027 0.027 0.027 - - - 0.07 0.063 0.073 0.043 0.017 0.073 0.026 0.01 0.045 3.6 2 4
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Figure C-2: Comparison between the parameter’s values we used in our work and those
used in other papers proposing national models for the COVID-19 epidemic in Italy that
recently appeared in the literature. Notice that, unfortunately, often it is not possible to pin
down a specific parameter in a different model that clearly corresponds to one of ours, and
vice-versa. This is because of the different meaning that compartments have in the models
and the dynamics of people between the compartments which do not always overlap in an
unambiguous manner. When we had to use a time constant, say τ , to determine the value
of a parameter, say k, we set k = 1/τ .

Ŝ(t+ 1) =Ŝ(t)− ρβ
Ŝ(t)Î(t)

Ni(0)− Q̃(t)− H̃(t)− D̃(t)

Î(t+ i) =Î(t) + ρβ
Ŝ(t)Î(t)

Ni(0)− Q̃(t)− H̃(t)− D̃(t)
− τ Î(t)− γÎ(t)

Ĉ(t+ i) =C̃(t) + τ Î(t)

Q̂(t+ 1) =Q̃(t)αÎ(t)− κHQ̃(t)− ηQQ̃(t) + κQH̃(t)

Ĥ(t+ 1) =H̃(t) + κHQ̃(t) + ψÎ(t)− ηHH̃(t)− ζH̃(t)− κQH̃(t)

D̂(t+ 1) =D̃(t) + ζH̃(t)

R̂O(t+ 1) =R̃O(t) + ηQQ̃(t) + ηHH̃(t)

(C-3)

where measured quantities are denoted by a tilde and estimated state variables by a hat
and τ := α+ψ. Here, Ci = Qi+Hi+Di+R

O
i represents the total number of cases detected

in region i as daily announced by the Protezione Civile.
As also noted in other previous work[185, 198], identification of SIR and SIR-modified

models is highly non-convex and hence the optimization landscape is scattered with local
minima that must be avoided as not being admissible. To mitigate this problem, we identified
from the literature admissible intervals for the parameter values (see Figure C-2) in order to
reduce the feasible search space for the optimization algorithm and provide it with reasonable
initial guesses. Note that, β and ρ always appear as a product in the model, therefore, only
their product can be identified. Hence, we fixed β to an intermediate value of 0.4 from
those reported in the literature [185], where the estimates for β range from 0.301 [185], 0.373
[199], and 0.315 [187] to a much higher value of 1.12 [200]. When β models the transmission
rate for documented infections, it can become larger than 1, capturing the fact that the
new infected can get the disease from undetected infected individuals [200]. Setting β = 0.4
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in our model roughly scales the parameter ρ between 0 and 1, making apparent the effect
of the social distancing rules imposed during the lockdown. Moreover, since γ represents
the flux of infected people that recover without having any symptoms, thus connecting two
compartments that cannot be measured, we chose to fix this rate at 1/14 days−1 . This
choice constitutes a conservative approximation of the value reported in recent work[192]
where the longest estimate of the infectious period for an asymptomatic infected (counting
from as soon as the contagion occurs) is 12.93 days. Note that in other works[185] an even
higher choice of 29.41 days is used. Altogether, the unknown parameters left to be estimated
are [I(0), ρ, τ, α, ηQ, ηH , κH , κQ, ζ] both at the national and regional level.

It is possible to observe that, exploiting the available data, the predictor can be split into
two parts so that two different algorithms can then be used to estimate the parameters of each
part. An ad hoc identification algorithm estimates the parameters {τ, I(0), ρ}, considering
the equations describing S, I and C, and automatically detects the breakpoints where notable
parameter changes occur. Instead, an ordinary least squares method is used to identify the
parameters of the remaining Equations. Note that, as the actual number of infected is
not known, we include the number of infected at the beginning of each time window as a
parameter to be estimated by the algorithm used for the nonlinear part. The identification
described next is repeated for each of the 20 regions and, for the sake of completeness, to
parameterize a national aggregate model.

Step 1: Online Identification of the estimation breakpoints and the parame-
ters τ, I(0), ρ in each time window. We start by identifying the parameters’ vector
θ := [I(0), ρ, τ ] exploiting equations describing S, I and C in Equation (C-3) of the main
text and the time series of the number of cases C̃ collected for Ttot consecutive days, starting
from the day when 10 deceased and 10 recovered were first reported in the area of interest.
In particular, an ad hoc optimization algorithm (described below and implemented in MAT-
LAB) is used to find breakpoints tj and the values of the parameters’ vector θ̂ that minimize
the cumulative squared prediction error in each window, defined as:

SSE(θ̂, tj, tj+1) =

tj+1∑
t=tj

∥∥∥C̃(t, θ))− Ĉ(t, θ))
∥∥∥2 (C-4)

with j = 0, 1, 2, . . . , n− 1.
We use the following recursive procedure:

1. Set the initial time t0 as the first day in which the first 10 deaths and 10 recovered
were reported in the area (region or nation).

2. Assume the initial guess for the width of the window to be T = [(2p+ 1)/d], where p
is the number of parameters to be identified and d the number of measured variables.

3. Estimate the parameters over the entire window to obtain

θ̂ = min
θ̂
SSE(θ̂, t0, t0 + T )
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4. Divide the window into two intervals and estimate the parameters over each subsample
obtaining the two estimates

θ̂a = min
θ̂a

SSE(θ̂a, t0, t0 + T/2) and θ̂b = min
θ̂b

SSE(θ̂b, t0 + T/2, t0 + T )

subject to the continuity constraints reported In Table C-1.

5. Perform a Chow statistical test:

F =
(T − 2p)(σ − (σa + σb))

p(σa − σb)
≈ F{p,T−2p}

where
σ = SSE(θ̂, t0, t0 + T ),

σa = SSE(θ̂a, t0, t0 + T/2),

σb = SSE(θ̂b, t0 + T/2, t0 + T ),

with null hypothesis H0 : {θ̂1 = θ̂2} and critical p-value p∗ = 10−5.

6. Then:

6.1. if F{p,T−2p} > p∗, the null hypothesis cannot be rejected, and the parameters
are considered constant in the time-window T. Then, the length of the current
window is increased by setting T=T+1, and steps 3, 4 and 5 are repeated;

6.2. if F{p,T−2p} ≤ p∗ the null hypothesis is rejected, and then the next breakpoint t1
is selected as

t1 = argmaxF{p,T−2p}(F )

and the parameter set θ̂ that minimizes SSE(θ̂, t0, t1) is selected as the set that
best fits the data over the window (t0, t1), whose duration is therefore δ1 := t1−t0.

7. If t1 = Ttot the algorithm is stopped, otherwise starting from t1 steps 2-7 are repeated
to find the next breakpoint and the new set of parameters best estimating the data in
the next window until the end of the available datapoints.

Step 2: Offline refinement of the identification process. At the end of the process we
will have the set of breakpoints tj and the parameters set in each of the windows (tj, t(j+1))
best fitting the data. As the number of windows can be large given the variability in the
available data, we refine the estimation results as follows to estimate the minimal number
of windows able to capture qualitatively the trend of the real data.

In particular, once the window breakpoints are obtained at the end of step 1, any two
consecutive windows of duration say δj, δ(j + 1) are merged into one larger window of size
δj + δ(j + 1) if one of the two following conditions is verified:

1. The window size of the first window is less than 5 days.
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Constraint Description

0.9Îj ≤ Îj+1 ≤ 1.1Îj Continuity constraint on the number of infected at the national
level from window j to window j+1.

LB ≤ Îj+1
i ≤ UB

LB = 0.9Îji − 0.1Îj

UB = 1.1Îji + 0.1Îj

Continuity constraint on the number of infected at the regional
level. The constraints are relaxed by 10% of the national es-
timated infected to account for the fact that in estimating the
region parameter we are neglecting the influx of infected from
other regions.

κ̂Q ≤ 0.1 κ̂H ≤ 0.1 We assume that the daily number of people hospitalized from
quarantine and discharged but still positive (and vice versa) is
no higher than 10% of the total.

0.7τ j ≤ αj + ψj ≤ 1.3τ j We assume τ̂i = α̂i+ψ̂i does not differ from the national estimate
τ̂ of more than 30%.

ηQ,j+1 = ηQ,j We assume the recovery rate of those quarantined at home re-
mains the same from a time window to the next as this param-
eter is likely to be time-invariant. In any case, removing this
constraint, we observed no significant change of this parameter
from a time window to the next.

Table C-1: Set of parameters constraints enforced by the ordinary least square algorithm
used for Step 3 and in the nonlinear identification procedure (Steps 1 and 2).

2. The relative variation of the sum τ + ρ as estimated in each of the two windows is less
than 5%, i.e.

(τ + ρ)j+1 − (τ + ρ)j

(τ + ρ)j
≤ 0.05

where j denotes the window to which the parameter estimates refers to.

If two windows are merged, then the parameters are estimated again on the entire merged
window and the procedure is iterated once more in case condition 2 is still verified.

As a final refinement step, we heuristically explore the effect on the fitting of perturbing
the breakpoints within ±5 days from their estimated value. As a representative example,
the results of the fitting procedure for the national aggregate model are shown in Table C-2
and depicted in Figure C-3. The same procedure is repeated to parametrize each of the 20
regional models.

As the key use of the identified model is to validate the intermittent mitigation strategies
we propose in the paper, it is crucial to check whether the proposed method overfits the
data, thus worsening the model prediction ability. To provide a representative validation of
our estimation approach, we report in Figure S10 the time evolution of the total number
of detected cases at the national level predicted by the model in each time window. It is
possible to see that using just 30% of the datapoints from all the available data (shown as
red circles), the model predictions (solid bluelines) fit well the rest of the data in each time
window both before and after the windows are merged as a result of step 2 with a maximum
prediction error of 10000 units.
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a b

Figure C-3: a. Comparison between model estimates and data collected with time widows
identified at the end of Step 1 of the parameter identification process. b. Comparison
between model estimates and data collected with the merged time widows obtained after
step 2. In both panels the estimated number of cases estimated by the model Ĉ(blue solid
line) is compared with the available datapoints C̃(shown as red circles).

Step 3: Identifying the parameters ηH , ηQ, ψ, α, κH , κQ, ζ. For each of the time win-
dows identified in Step 2, using the time series I(t) estimated from the equations parametrized
in Step 1, and considering that equations describing Q,H,D,R in model (C-3) of the predic-
tor are linear with respect to the parameters, we use an ordinary constrained least squares
method, with constraints given in Table C-1 to compute the remaining parameters.

The comparison between the model predictions and the available data is depicted in
Figure C-4 and Figure C-5. Values of all estimated parameters at the end of the process
are given in Table C-4 for each region where in the last column the regional net reproduction
numbers are computed as R0,i = ρiβ/(αi+ψi+γ) in each time window. Already in the earliest
windows it is possible to see the effects of the first measures taken by the government that
date back to February 23rd and March 4th. Indeed, estimates of R(0, i) in the first windows
are lower than the value between 3 and 4 estimated in the literature. Taking Lombardy as a
representative example and carrying out our identification procedure on the first 7 days (from
February 24th to March 1st), yields an estimate of R0 = 3.37, for that region, confirming
that the social distancing measures adopted by the government started taking effect around
the beginning of March. Note that we enforce continuity of the trajectory between different
time windows by imposing soft constraints in the optimization problems (see Table C-1) so
that the result of the simulation in the previous time window constrains the dynamics in the
next one. The apparent discontinuity between time-windows that can be observed in the
parameter values given in Table C-4 is typical of all predictor-corrector algorithms where
after a certain number of prediction steps the actual data points are used to correct the final
predictions and restart over the next period. This is standard in systems and control theory
(e.g. Kalman predictor and n-step ahead predictors).

Figure C-6 shows the distribution of the regional social distancing parameters over time
depicting the effects of the national lockdown at the regional level.
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ρ I0 If ηQ ηH ζ α ψ κH κQ ti R0,i

Step 1
*0.965 1200 11580 0.028 0.045 0.023 0.020 0.050 0.000 0.000 24-2-20 2.76
*0.958 11580 18805 0.028 0.013 0.024 0.018 0.059 0.027 0.049 05-3-20 2.61
†0.774 18805 43814 0.028 0.017 0.029 0.034 0.042 0.000 0.000 08-3-20 2.11
†0.607 43814 65971 0.028 0.019 0.029 0.048 0.025 0.100 0.000 14-3-20 1.70
†0.331 65971 56726 0.028 0.008 0.032 0.053 0.037 0.099 0.100 19-3-20 0.83
‡0.533 56726 59229 0.028 0.002 0.029 0.061 0.042 0.045 0.054 25-3-20 1.24
‡0.234 59229 44109 0.028 0.000 0.027 0.049 0.043 0.056 0.100 27-3-20 0.58
‡0.374 44109 17980 0.028 0.000 0.018 0.023 0.085 0.001 0.088 01-4-20 0.84

Step2
*0.937 1200 16639 0.028 0.029 0.022 0.018 0.053 0.000 0.000 24-2-20 2.64
†0.646 16639 78621 0.028 0.014 0.032 0.018 0.074 0.000 0.100 07-3-20 1.59
‡ 0.298 78621 26392 0.028 0.000 0.020 0.019 0.055 0.000 0.080 23-3-20 0.82

Table C-2: Parameters of the aggregate national model before and after Step 2. Parameters
values are given before and after merging the time windows. Symbols at the beginning of
each row denote parameters from windows that are then merged in Step 2 of the identification
procedure. Note that, because of the nonlinear nature of the model, parameter values in the
merged windows (after step 2) can exceed the ranges of the separate windows obtained in
step 1.

ζi as a function of the occupancy of ICU beds in each region. Observing the data
and the identified parameters in Table C-4, we noticed a significant correlation between the
mortality rate in each time window and the congestion of the ICU system in that region.

Specifically, we found that:

ζi = f(H̄i) = ζIC0 + ζIC1 H̄i

where ζIC0 and ζIC1 are coefficients to be estimated, while H̄i is the estimated average conges-
tion of the hospitals in each time-window, defined as the average ratio between the number
of hospitalized subjects and the number of available beds in ICU in that region, say TH

i
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Figure C-4: Identification of the regional models - Steps 1,2. Comparison of each of the
regional model predictions for the total number (expressed in thousands of people) of detected
cases in each region (solid magenta line) against the available data points. Parameters are
set to the values estimated at the end of Steps 2 carried out for each region. Vertical black
lines denote the breakpoints from one estimation window to the next.
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Figure C-5: Comparison of each of the regional model predictions of the total number
(expressed in thousands of people) of recovered (green), quarantined (magenta), hospitalized
(red), deceased (black) and recovered (green) in each region against the available data points
(plotted as circles of the same colour). Parameters are set to the values estimated at the
end of Step 3 carried out for each region. Vertical black lines denote the breakpoints from
one estimation window to the next.
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Figure C-6: Distribution of the social distancing parameter ρi in the different detected
estimation windows. The black line is the LS-interpolant of the National data reported in
Table C-4

Figure C-7: Each point is the value of ζi estimated for a given region in each time window.
It is plotted against the average number of hospitalized in each time window over the total
number of ICU beds available in the same time window. Here, R2 = 0.280, p = 2.47 · 10−4,
45 observations, and 43 DOF. Normality of the residuals has been tested with the Lilliefors
test (p-value 0.12). The function is saturated at both ends, i.e. at 0 and at the value 0.029
for H̄i ≥ 10.
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(obtained by linearly interpolating the number of ICU beds at the beginning of the
year, reported on the web-page of the Italian Ministry of Health, and those reported by the
Italian Government at the end of the national lockdown). From a qualitative viewpoint, this
assumption can be explained by the fact that the quality of the care hospitals can provide
degrades as the health system becomes more and more under stress. Each point in Figure
C-7 is the value of ζi estimated for a given region in each time window, plotted against the
number of H̄i in the corresponding region averaged in the time window. As illustrated in
Figure C-7, a least square linear fitting yields ζIC0 = 0.016,ζIC1 = 0.00069. The function is
then saturated at both ends, i.e. at 0 and at the value 0.029 for H̄i ≥ 10.

Remark on the ad-hoc identification method in the context of the existing lit-
erature As in other available methods in the literature (quasi-linearization, Finite Differ-
ences, Integration of Data and Smooth-the-Data methods) that cannot rely on analytical
solutions of the model equations, we carried out the identification by using some approxi-
mating solution of the model predictions. Here, we integrated numerically the model using
a Runge-Kutta algorithm and took the solution as a piecewise differentiable approximation
of its true solutions (rather than other approximating solutions adopted in existing methods
that we found unsuitable in our case). We then incorporated techniques from the literature
to find the breakpoints, that is, the points in time where the parameters change significantly,
as the Chow test. Overall, our method is therefore in line with the others available in the
literature but is fine tuned and adapted to the specific case of interest, also to render its use
possible online, i.e. as new datapoints become available.
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Region ρ I0 If ηQ ηH ζ α ψ κH κQ ti R0

Abruzzo 0,485 944 1083 0,010 0,003 0,026 0,029 0,051 0,005 0,099 21-3-20 1,29
0,321 1083 747 0,010 0,000 0,022 0,025 0,049 0,000 0,087 25-3-20 0,89
0,194 847 210 0,010 0,019 0,014 0,078 0,003 0,005 0,000 14-4-20 0,51

Aosta 0,283 425 262 0,010 0,096 0,036 0,062 0,016 0,028 0,000 30-3-20 0,77
0,122 262 41 0,010 0,260 0,011 0,062 0,000 0,079 0,000 14-4-20 0,37

Apulia 0,590 1300 1732 0,010 0,000 0,016 0,028 0,047 0,100 0,100 24-3-20 1,62
0,278 1732 530 0,010 0,004 0,015 0,022 0,051 0,002 0,078 28-3-20 0,78

Basilicata 0,177 90 26 0,010 0,060 0,006 0,037 0,021 0,025 0,025 11-4-20 0,55
Calabria 0,272 384 49 0,015 0,000 0,012 0,042 0,059 0,005 0,079 28-3-20 0,63
Campania 0,467 1231 1816 0,018 0,000 0,022 0,014 0,064 0,000 0,100 19-3-20 1,26

0,221 2231 234 0,018 0,000 0,011 0,067 0,019 0,006 0,040 30-3-20 0,57
Emilia 0,725 1418 7246 0,029 0,000 0,038 0,020 0,089 0,000 0,100 06-3-20 1,62

0,400 7246 4467 0,029 0,000 0,023 0,059 0,062 0,000 0,045 20-3-20 0,84
0,362 4467 1881 0,029 0,031 0,017 0,063 0,050 0,000 0,017 06-4-20 0,79

Friuli 0,450 900 1717 0,028 0,022 0,028 0,032 0,034 0,000 0,100 14-3-20 1,32
0,202 1717 376 0,028 0,049 0,029 0,044 0,007 0,004 0,000 28-3-20 0,67

Lazio 0,713 722 1689 0,015 0,003 0,013 0,018 0,081 0,000 0,062 13-3-20 1,69
0,483 1689 1995 0,015 0,012 0,012 0,029 0,076 0,055 0,100 21-3-20 1,11
0,330 1995 732 0,015 0,008 0,007 0,024 0,066 0,039 0,100 30-3-20 0,82

Liguria 0,643 900 1933 0,037 0,010 0,040 0,030 0,070 0,100 0,062 12-3-20 1,52
0,398 2126 1053 0,037 0,010 0,023 0,012 0,092 0,000 0,100 21-3-20 0,92

Lombardy 0,727 1799 289000,010 0,053 0,033 0,009 0,092 0,000 0,040 27-2-20 1,69
0,303 289006731 0,010 0,029 0,024 0,018 0,056 0,000 0,027 19-3-20 0,84

Marche 0,231 1906 1206 0,010 0,080 0,016 0,022 0,047 0,009 0,000 05-4-20 0,66
0,133 1178 311 0,010 0,007 0,011 0,000 0,057 0,002 0,068 16-4-20 0,42

Molise 0,217 120 13 0,013 0,000 0,012 0,067 0,018 0,000 0,043 02-4-20 0,56
Piedmont 0,398 6527 7244 0,022 0,000 0,019 0,010 0,073 0,000 0,100 23-2-20 1,05

0,363 7244 4588 0,022 0,014 0,021 0,021 0,071 0,000 0,100 07-4-20 0,90
Sardinia 0,296 618 487 0,013 0,000 0,022 0,064 0,017 0,026 0,100 24-3-20 0,78

0,216 487 60 0,013 0,038 0,021 0,066 0,017 0,015 0,063 02-4-20 0,56
Sicily 0,402 1025 952 0,015 0,000 0,016 0,048 0,055 0,034 0,100 23-3-20 0,93

0,293 952 271 0,015 0,000 0,009 0,017 0,068 0,012 0,100 02-4-20 0,75
Trentino 0,406 2305 2867 0,029 0,000 0,035 0,048 0,024 0,001 0,000 17-3-20 1,14

0,291 2867 2261 0,029 0,000 0,032 0,032 0,038 0,004 0,100 26-3-20 0,83
0,226 2261 802 0,029 0,035 0,023 0,081 0,006 0,002 0,000 07-4-20 0,58
0,201 802 368 0,029 0,320 0,018 0,073 0,017 0,060 0,100 24-4-20 0,50

Tuscany 0,552 1675 2666 0,012 0,000 0,017 0,031 0,086 0,014 0,100 16-3-20 1,18
0,353 2932 1690 0,012 0,000 0,014 0,046 0,062 0,000 0,093 26-3-20 0,79
0,317 1690 482 0,012 0,064 0,019 0,063 0,055 0,001 0,008 12-4-20 0,68

Umbria 0,134 794 19 0,010 0,141 0,008 0,089 0,000 0,052 0,000 26-3-20 0,34
Veneto 0,807 848 3538 0,031 0,000 0,018 0,062 0,052 0,000 0,100 06-3-20 1,75

0,520 3538 5089 0,031 0,000 0,019 0,078 0,044 0,000 0,039 16-3-20 1,08
0,336 5089 1749 0,031 0,000 0,019 0,054 0,048 0,002 0,100 28-3-20 0,78

Table C-4: Values of estimated parameters for each region at the end of the identification process.
Dates are given corresponding to breakpoints between estimation windows that are automatically detected
by the estimation procedure we proposed. Regional net reproduction number are reported in the last column
clearly showing the increasing effect of the national lockdown measures taken by the government on March
8th, 2020.
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