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Introduction

Shape Optimization and Spectral Geometry are fields of mathematics where the main questions
are those of maximizing or minimizing, under some geometrical constraints, functionals defined
in certain classes of sets. These kind of problems are well known since the ancient times and
some of them finds its roots in the verses of Virgil:

The Kingdom you see is Carthage, the Tyrians, the town of Agenor;

But the country around is Libya, no folk to meet in war.

Dido, who left the city of Tyre to escape her brother,

Rules here - a long and labyrinthine tale of wrong

Is hers, but I will touch on its salient points in order...

Dido, in great disquiet, organized her friends for escape.

They met together, all those who harshly hated the tyrant

Or keenly feared him: they seized some ships which chanced to be ready...
They came to this spot, where today you can behold the mighty
Battlements and rising citadel of New Carthage,

And purchased a site, which was named "Bull’s Hide" after the bargain
By which they should get as much land as they could enclose with a bull’s hide.

Virgil - "The Aeneid"

According to Virgil’s epic poem the Aeneid, Dido, the queen of the Phoenician city of Tyre, was
forced to leave when her brother usurped the throne and murdered her husband, the king of the
reign. With many difficulties, she arrived in Libya, where she bargained with the king of the
local tribes to be given as much land as could be enclosed by the hide of a bull. Although this
could sound like a unfavorable agreement, the refugee princess managed to find a clever solution:
she cut the hide into very thin strips, tied them together into a rope, and looped it around a
plot of land by the shoreline in such a way as to maximize the area of her claim.

Carthage

A shoreline B A shoreline B



To this day, the so called Dido’s problem consists on finding a curve with fixed endpoints and
fixed length that encloses the maximum area between the curve and the line segment between
the two endpoints, and belongs to those inequalities that go under the name of isoperimetric in-
equalities. Namely, if we have a bounded open set €2 € R™, the classical isoperimetric inequalities
states that .\ )

P(Q) = nwy; Q7

where P(Q2) denotes the Euclidean perimeter of 2 in R™, || is the Lebesgue measure of  and w,
is the Lebesgue measure of the unit ball. In particular the equality case holds if and only if €2 is
a ball, up to sets with zero capacity. Even though this problem was well known for thousands of
years, the first proofs in two dimensions were given in the nineteenth century by Steiner [127] and
Edler [57] and more complete proofs a century later by many other authors [12, 13, 14, 36, 90].
In the three dimensional space, early proofs were given by Tonelli [134], Schmidt [119, 120] and
Rado [114]. A rigorous, complete and elegant proof were given only by De Giorgi [46], almost 65
years ago, starting from a general definition of Perimeter.
With regard to Spectral Geometry in particular, the first conjecture goes back to the end of
the 19th Century and can be found in the famous book of Lord Rayleigh, The Theory of Sound
[115]. The author conjectured that, among all planar sets with fixed area, the disk minimizes
the first Dirichlet eigenvalue of the Laplace operator. Physically, this eigenvalue represents the
principal frequency of a vibrating membrane fixed at its boundary, so that if the conjecture was
true, "one could have heard" the shape of the circular drum. This problem was proved 50 years
later in two contemporary but independent works, one by Faber [63] and one by Krahn [93], and
it was completely solved later with the work of Pdlya and Szego [113]. Let Q € R”, with n > 2,
be an open set with finite Lebesgue measure, the first Dirichlet-Laplacian eigenvalue is the least
positive A\ such that
—Au=Au in )
{ o
u=0 on 052

admits non-trivial solutions in H}(€). The classical result of Faber and Krahn for the first
Dirichlet eigenvalue A (2) states that, among measurable domains with fixed measure, A\;(-) is
minimized by a ball; in other words, the following scaling invariant inequality holds:

M(Q)IQP" = M(B)|BIP", (2)

where by |- | we denote the volume of a measurable set and by B a ball in R™. Moreover, equality
holds in (2) if and only if €2 is equivalent to a ball.
Strictly related to the Dirichlet eigenvalue problem for the Laplacian, there is the torsion problem
of elasticity, known as Saint-Venant problem. Adhémar-Jean-Claude Barré de Saint-Venant was
a French mathematician and engineer, who devoted his studies to the resistence of materials
and to elasticity theory: he conjectured (see [47]) that among all cylindrical bars with constant-
shaped cross section and fixed measure, the one that maximized the torsional rigidity was the
bar with circular cross section. In n dimensions the torsional rigidity is nothing else that the
L'-norm of the unique and positive solution in H} () to the following problem
{ éu 1 inQ 3)
u=20 on 012,

where €2 € R™ is an open set with finite Lebesgue measure. Namely if uq is this unique solution,
known as torsion function, the torsional rigidity is defined as

T(Q) = /Q uq da.



The conjecture was firstly proved in 1948 by Poélya [111] and successively by Davenport as
reported in [113]. Makai [101] in 1966 found another estimate and gave a more general proof of
it. Mathematically, the Saint-Venant conjecture is

T(Q) < T(B), (4)

where B is the ball having the same measure as 2.

The study of these kind of problems gave rise to a series of other optimization questions, such as
other types of boundary conditions of the Laplacian or different operators, linear and non-linear.
It is worth mentioning the Laplacian eigenvalue problem with Neumann boundary condition; in
this case it makes sense to deal with a maximization problem. Let 2 € R™ be a bounded, open
and Lipschitz domain; the problem is

—Au = pu in )

5
a—“:o on 052, (5)
ov

where we denote by du/0v the outer normal derivative of u on d€2. In this case the first eigenvalue
w1 is always zero and the associated eigenfunctions are the constant functions. The following
inequality was proved by Szegd in the plane [129] and then generalized in higher dimension
by Weinberger [140]. The so called Szegs-Weinberger inequality states that the first non-zero
Neumann eigenvalue p9(€2) is maximized by a ball among domains with fixed measure, that is
equivalent to say that the following scaling invariant inequality holds:

p2(Q)|QP" < pa(B)| B (6)

The Faber-Krahn, Saint-Venant and Szeg6-Weinberger are examples of isoperimetric inequal-
ities. The fact that balls can be characterized as the only sets for which equality holds leads
to ask if these inequalities are stable, i.e. if it is possible to improve them by adding a remain-
der term that measures the deviation of a set €2 from the spherical symmetry. These kind of
inequalities are known as quantitative isoperimetric inequalities. Starting from the quantitative
isoperimetric inequality proved in [72], several spectral quantitative isoperimetric inequalities
were proved, as for example the Faber-Krahn [20] and the Szego-Weinberger [19] inequalities.

The aim of this thesis is to obtain analogous results in these directions for the eigenvalue
problem with different boundary conditions and for some operators of linear and non linear
type. In particular, we focus our study on Steklov and Robin boundary conditions, obtaining
isoperimetric inequalities as (1) and (5) in particular classes of sets and we obtain a quantitative
result in terms of the torsion, perimeter and measure.

In the first part of this thesis we focus on a problem concerning the maximization of the first
non-trivial Steklov-Dirichlet eigenvalue on the class of doubly connected domains. But before
going on, let us summarise what is a Steklov eigenvalue, introduced by the Russian mathematician
V. A. Steklov [128].

Let 2 ¢ R™, with n = 2, be a bounded, connected, open set with Lipschitz boundary. A real
non-negative number ¢ > 0 is called a Steklov eigenvalue if there exists v € H*(2) with u # 0
such that

Au=0 in Q, o
7
%:Uu on 0f).

The Steklov eigenvalues can be interpreted as the eigenvalues of the Dirichlet-to-Neumann op-
erator D : HY2(Q) — H~'2(Q) which maps a function f € HY2(Q) to Df = YL where H is

on ?




the harmonic extension of f to Q. For a survey concerning this topic we refer to [83]. As usual,
problem (7) is considered in the weak sense, that is, for every v € H(Q),

/Vu~Vvdm:J/ uv dH" 1, (8)
Q oQ

where - denotes the standard Euclidean scalar product and H"~! denotes the (n—1)—dimensional
Hausdorff measure in R™. In this framework, since the trace operator H'(Q) — L2(02) is
compact (see [103], Theorem 6.2), it is known that the Steklov spectrum consists of a discrete
sequence diverging at infinity

0= 00(Q) < 01(Q) < 02(Q) < -/ +o0. 9)

In particular, the first non-trivial Steklov eigenvalue of €2 has the following variational charac-

terization:
/ |Vo|? da
01(Q) =min{ 2E—— : v e HY(Q)\{0}, / vdH" =0} . (10)
/ v? dH" ! o0
o

If we take Q = Bg(z), where Br(x) is the ball of radius R centered at the point z, then

(11)

S

o1(Br(z)) =

Moreover, we know that o1 (Bg(z)) has multiplicity n and the corresponding eigenfunctions are
ui(x) = x;, with ¢ = 1,...,n. Let us focus now our attention on shape optimization problems
concerning the first non trivial Steklov eigenvalue. In [141] the author considers the problem
of maximizing o1 () in the plane, keeping the perimeter of Q fixed. If Q < R? is a Lipschitz,
simply connected open set, the following inequality, known as Weinstock inequality, is proved

o1(Q)P(Q) < 01(Br(z)) P(Br(2)), (12)

where P(Q2) denotes the Euclidean perimeter of 2. In other words, inequality (12) states that,
among all planar, simply connected, open sets with prescribed perimeter, o1 () is maximum for
the disk. Moreover, in [78], it is proved that (12) fails to be true in general in dimension n > 2.
If we consider indeed the annulus A, = By (z)\Bc(z), having that Br(z) is the ball of radius R
centered at z, with € ~ 0, that is a simply connected set, the following reverse inequality holds,

0—1(145)13(145)ﬁ > Ul(BR(l'))P(BR(Z)))ﬁ

In [27], the authors generalize the Weinstock inequality (12) in any dimension, when restricting
to the class of convex sets. More precisely, if 2 € R™ is an open, bounded, convex set, then

1

o1 (QP(Q)7TT < o1 (Bg(x)) P(Bg(x)) ™ (13)

and equality holds only if 2 is a ball.

Considering, instead, a volume constraint, in [23] the author proves that the first non-trivial
Steklov eigenvalue is maximized by balls, among sets with the same volume. More precisely, if
Q < R", n > 2, is an open bounded set with Lipschitz boundary, then

71(Q)]Q]" < 01(Br(x))|Br(z)|*, (14)



where || denotes the Lebesgue measure of {2 and equality holds if and only if Q is a ball. We
also observe that (13) and the classical isoperimetric inequality imply (14) for convex sets; so,
inequality (14) is weaker than (13) because it contains the volume, but it is more general because
it holds without geometric restrictions.

Chapter 2 deals with a different shape optimization problem in domains with a hole, involving
the Steklov boundary condition on the outer boundary and Dirichlet or Robin on the inner one.
Let Qo € R™, n > 2, be an open, bounded, connected set, with Lipschitz boundary such that
B, € Qq, where B, is the open ball of radius 7 > 0 centered at the origin. Let us set Q := Qo\B,;
then we study the following Steklov-Dirichlet boundary eigenvalue problem for the Laplacian:

Au=0 in
u=20 on 0B, (15)
ou

i o(Q)u  on Q.

The study of the first eigenvalue of problem (15) leads to the following minimization problem:

/|Vw|2 dx
o1(Q) = min L —

)

wEHéBT(Q) 2 n—1

s W dH
00

(16)

where H}p () is the set of Sobolev functions on € that vanish on dB,. Notice also that the
value 01(f2) is the optimal constant in the Sobolev-Poincaré trace inequality:

o1 (Q)[wl|L2000) < Vwllaz, (@) (17)

We treat the following shape optimization issue:

Which sets mazimize o1(-) among sets of the form = Qo\B,., where Qo contains the fived ball
B, and Q has prescribed volume?

In the class of sets of the form Bg(z0)\B, with Bg(zo) being a ball containing B,., the maximizer
of o1 is the spherical shell, that is the annulus when the balls are concentric (see [68]). This is
also proved in [138] and for more general spaces in [125].

We partially solve the problem of the optimality of o7, restricting our study to two classes of
sets. Firstly we consider the class of nearly spherical sets, that are sets whose boundary can
be parametrized on the sphere by means of a Lipschitz function with a small W1®-norm; see
Definition 1.2 in Chapter 1. In second place, we study the existence of a maximizer and the
isoperimetric inequality when €2 is in the class of convex sets.

With regard to the first class, our result is the following and is contained in [106].

Theorem. Let Q = Qo\B,., with Qo a nearly spherical set. Then
Ul(Q) <o (Ar,R)v (18)

where A, g = BR\E, with R > r > 0, is the spherical shell with the same volume as Q). Moreover
the equality in (18) holds if and only if Q is a spherical shell.

So, we study the optimal shape for o1(2) when both the volume of the domain and the
radius of the internal ball are fixed. We also find some counterexamples showing that when
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only a volume constraint holds, then ¢y is not upper bounded, hence we cannot speak about
optimality. In order to prove the Theorem, we find K = K(n, |Q]) > 0, such that

v2(€) dH"—l) .

In [75] we enlarge the class of nearly spherical sets to the one of convex sets. We prove the
existence of a maximizer among convex sets with fixed internal ball and fixed volume. Let w > 0
and r > 0 be fixed, then by A, (w) we will denote the class of convex sets having measure w and
containing the ball B,., that is

A, (w) := {D = K\B,, K < R" open, bounded, convex: B, € K, |D| = w}.

oA k) > 01(9) (1 + K0 [

n—1

The existence theorem is stated as follows
Theorem. Let w > 0 and r > 0 be fized. There exists a set E € A,(w), such that

D) = E).
Dg&)fw)ﬂl( ) = o1(E)

In particular this theorem can be easily proved even when fixing the perimeter of Qg instead
of the volume. Moreover it can be generalized when we substitute any convex set in place of the
ball B,, fixing its inradius and the measure of ).

The optimization result in this class is partial and is stated in the following

Theorem. Let r > 0, Qo = R™ be an open, bounded and convexr set, n > 2, such thal B,
Qo S Bg, where Bg is the ball centered at the origin with radius R given by

reV? ifn=2
R= — 7= 19
[(n 1)+ (n—2)1/2(n 1)] ifn>3 (19)

n—1

Then, denoting by Q = Qo\B,., the following inequality holds
01(Q) < o1(ArR), (20)
where A, r 1is the spherical shell of radit r < R having the same volume as 2.

In [76] we replace the Dirichlet boundary condition with the Robin boundary condition. Let
Q = Qo\B,, where B, is the ball centered at the origin with radius » > 0 and Qo < R", n > 2, is
an open, bounded set with Lipschitz boundary, such that B, € Qy. We deal with the followmg
Steklov-Robin eigenvalue problem

Au=0 in Q
a—u =ou on 0
ov

ou

— +Bu=0 ondB,,
ov

where v is the outer unit normal to 02 and 8 > 0 is a positive real parameter.
The aim of this paper is to study the first eigenvalue og(€2) of (2.55) defined as

/|VU|2 dx+ﬁ/ v dH"

veHl(Q)\{O} / o2 dH
000

op(2) =
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We prove that og(€?) is actually a minimum, it is simple, and that the corresponding eigen-
functions have constant sign. Hence, also in this case, despite the Steklov condition, og(2) is
formally a Robin type eigenvalue.
When 2 is a spherical shell, that is @ = Bg\B,, 05(2) and the corresponding eigenfunctions
can be explicitly computed.
For sake of simplicity, here we will denote by op the first Steklov-Dirichlet eigenvalue discussed
above. We observe that o5(2) depends clearly also on 8 and we expect that for 5 — 0 and
B — oo then o5(2) goes to 0 and op(N2), respectively. In order to show this, we will prove
some estimates on og(2) in the spirit of the ones contained in [94] for the first Robin Laplacian
eigenvalue (see also [55] for a more general case). More precisely, let us define the following
quantities ,

w1 () = inf 7f9 Vel dx7

veH (Q\(0}  [aq, v2dT

faBT vdH""1=0
/ 'LU2 Hn—l
¢1(Q) = inf 208,

b
Aw=0 2 —1
weH (Q)\Hlp, () / w H"
Qo

and

We observe that () is the first nontrivial Steklov Laplacian eigenvalue in 2. Then our result
is the following

Theorem. Let Qy = R™ be an open, bounded set with Lipschitz boundary and let Q = Qy\B,,
where B, is the ball centered at the origin and with radius r such that B, € Qg. Then the
following estimates hold

1 1 P()
< +
os(Q) ~ m(Q)  BP(B)’

and
1 1 1

5@ S op@) " a )

where og(Q2) is the first Steklov-Robin eigenvalue of Q, op () is the first Steklov-Dirichlet eigen-
value, 11(2) and ¢1 () are defined above, respectively.

As a consequence of the above estimates we can obtain the quoted asymptotic behaviour of
03(£2) with respect to 8 in both case, when 3 either goes to zero or to infinity.

Chapter 3 is devoted to the study of two problems involving a Robin boundary condition:
one in the linear and the other one in the non linear case, but both of them gravitate around a
result & la Talenti proved in [2].

We start by recalling the Robin eigenvalue problem for the Laplacian. Let €2 be a bounded, open
subset of R™, n > 2, with Lipschitz boundary; its Robin eigenvalues related to the Laplacian are
the real numbers A such that
—Au=Au in )
(21)
‘(% +au=0 on df

admits non trivial W2(Q) solutions; « is an arbitrary real constant, which will be referred
to as boundary parameter of the Robin problem. We observe that for « = 0 we obtain the
Neumann problem, for & = +00 we formally obtain the Dirichlet problem and for A = 0 the
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Steklov problem; for this reason it can be considered as the most general eigenvalue problem for
the Laplace operator. For each fixed {2 and « there is a sequence of eigenvalues

)\1(0(,9) < )\2(0(,9) <--- >+

which depend on «. In particular, the first non trivial Robin eigenvalue of €2 is characterized by

the expression
/ |Vu)? dac+a/ lul? dH*
A, Q) =  min Q gt .
wH o IR

We refer to [91] for a collection of properties of the Robin Laplacian eigenvalues and the related
proofs.

We will always assume that o > 0. We have the following Faber-Krahn type inequality, that
was proved in [16] in the planar case and was then generalized in [45] in any dimension. Let
) < R™ be a bounded and Lipschitz domain. Then,

)\1(0&,9) = )\1(0(,3), (22)

where B is a ball such that | B| = |2|. Equality holds if and only if 2 is a ball. The generalization

to the p-Laplacian is given in [44] and in [26]; this result was also shown to hold on general open

sets of finite measure, see [28].

As we said before, the authors Alvino, Nitsch and Trombetti studied in [2] a problem that was

for the first time introduced by Talenti [130]. He proved, via rearrangements arguments, that

the Schwarz symmetrization (see [92]) of the solution to problem
{—Au =f in Q (23)

u=0 on 0,

with f € L?(Q) (non-negative and not identically zero) and € an open subset of R", is pointwise
bounded by the solution to the following symmetrized problem
—Av=ft in Of
v=f* in (24)
v=20 on 00,

with f# being the Schwarz decreasing rearrangement of f and Qf the ball centered at the origin
having the same measure as €.

Talenti, with his techniques, gave birth to a series of generalizations and results that still now
take his name. For instance see [4, 3, 131, 132] for generalizations to other kind of operators.
When we have Robin boundary conditions with positive parameter, problem (23) becomes

—Au = f in Q

25
a—u+ﬂu:O on 0. (25)
ov

To our knowledge, in literature, there are few comparison results a la Talenti for this kind of
problem. A result of this type has been proved only recently in [2], where they have highlighted
the importance of the dependence on the dimension of the space. The authors, in fact, managed
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to compare the Lorentz norm (see [98]) of the solution to problem (25) with that of the solution
to the symmetrized problem
—Av = ft in QF
0 26
l+6u=0 on 0N, (26)
ov
where the exponents of these norms depend on the dimension of the space.
In particular they proved, for n > 2, that

lullrr ) < lv]|Lpa(qey  forall 0 <p< (27)

2n — 2
and n
|wlL2p20) < H’UHLQp,Q(Qﬁ) forall 0 <p< EwaE (28)

with u solution to (25) and v to (26). Moreover, when f =1 in Q and n = 2, they showed that
w(z) <v(z) zeQf (29)
and, for n > 3, that

lulLra @) < [v]Lea(an

<
<

|l L2p.2(q) HUHLQP’Q(Qﬂ),

for all 0 < p < 75
With a different approach [29] proved that

lul 1) < V)L (2

A generalization of this result can be found in [5], where the authors consider the p-Laplacian.
The first part of Chapter 3 is dedicated to another nonlinear generalization, involving the
anisotropic Laplacian and that can be found in [116]. Let < R™ be an open bounded set,
with Lipschitz boundary. Let us consider the following anisotropic problem with Robin bound-
ary conditions

—div(H(Vu)H¢(Vu)) = f in Q

H(Vu)He(Vu)-v+ BH(v)u =0 on 09, (30)

where f > 0 (not identically zero) belongs to L?(Q2), H is a sufficiently smooth norm in R”, v is
the Euclidean outer unit normal to 02 and § > 0 is a positive real parameter.
A weak solution to problem (3.1) is a function u € H*(Q) that satisfies

/ H(Vu)H¢(Vu) - Veodzr + ﬁ/ Hw)updH" ™ = / feo Vo e HY(Q). (31)
Q ElY) Q
We recall that the Wulff Shape centered in zg € R™ of radius R is defined as follows

Wr(zg) = {x e R" : H°(z — z¢) < R},

where H® is the dual norm of H. In particular we will denote by W the Wulff Shape centered
at the origin of radius 1 (for the exact definitions, see (1.4)).
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The aim of the work is to estabilish a comparison result with the solution to the following
symmetrized problem

—div(H(Vv)He(Vv)) = f* in Q*

(32)
H(Vv)He(Vv) - v+ BH(v)v =0 on oQ*,

where f* is the convex symmetrization of f (see (1.4)) and Q* is a set homothetic to the Wulff
Shape W such that |Q*] = |Q].
In particular the main theorems are the following

Theorem. Let be n = 2. If u and v are the solutions to problems (30) and (32) respectively,
then

lullra(e) < [vlpra@sy  forall 0<p< (33)

n
2n — 2

and

HuHsz,z(Q) < HUHLQp,Q(Q*) forall 0<p< (34)

n
3n—4
Theorem. Letn = 2, f =1 in Q. If u and v are the solutions to problems (30) and (32)
respectively. Then

u*(x) <wv(z) zeQr, (35)

where u* is the convexr symmetrization of u.

Theorem. Let n > 3 and f = 1. If u and v are the solutions to problems (30) and (32)
respectively, then

[ull Lo ) < V] Lear (36)
and

lullL2e2 () < V] L2022 (02), (37)

forall0 <p< 5.

The second part of this Chapter, which is contained in [117], is the attempt to solve an open
problem left by the authors in [2]. Since the validity of (27),(28), we have that

lullr @) < [v] e, p=12. (38)

Hence one may ask if (38) is still true for larger values of p in dimension 2 or if it is valid in every
dimension and value of p. The authors, though, found counterexamples of the untruthfulness of
these questions when n = 2 and p = o0, and when n = 3 and p = 2. This, together with (29),
led to the following open problems:

e u!<vinQfforn>3and f=1;

o |ufriq) < [v]|pi(qs for n >3 and fe L*(Q).

In [117] we move the first steps in these directions.
In particular let us consider problem (25) with f =1 and Q2 < R", n > 2 a bounded C?® and
simply connected open set.
We set
M(Q) = |u] L= (0,
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and for every p € [1, +0) we denote the following functional

Ry = [ @ d = [ (@) de = Julf o

We are interested in computing the shape derivative (see [85]) of these two functionals and prove
that the ball centered at the origin is a critical shape for them.
Namely, if Q c R" is a bounded C%® simply connected open set, let us consider a first order
perturbation

Q= (LIpn +tV)(Q),

with 1g» being the identity function, V a C%*(R" R") vector field and ¢ a small real number.
We are interested in the study of the limits (if they exist)

M'(Q,V) = tlg% w (39)
and
F)(Q,V) = lim () - Q) (40)

t—0 t

If we denote by Bg the ball centered at the origin in R™ with radius R > 0, then problem (25)
becomes
—Au=1 in Br

0 41
o +pu=0 on 0Bg, (41)
ov

where v = % is the outer unit normal to the boundary. The main theorem is stated as follows

Theorem. The ball Br is a critical shape for the functionals M(Q) and F,(Q2), p > 1, i.e.
M'(Bg,V) = F,(Bgr,V) = 0,

where V is a C**(R™,R™) vector field volume preserving of the first order and where M'(-,v)
and F;(-,v) are the shape derivatives of M and F, respectively.

For the precise definition of vector field volume preserving of the first order see Definition 3.1
in subsection 3.2.2.

Chapter 5 deals with a different problem from the ones discussed above. Indeed in our pa-
per [6] we study a generalization and find a quantitative result for Polya’s inequality, that gives
an estimate from below of the torsion of a non-empty open, bounded and convex set, in terms
of its perimeter and measure.
In [112] the author proves that, among all bounded, open and convex planar sets, the following
inequality holds ,

TP 1 )
€ 3
and equality is asymptotically achieved by a sequence of thinning rectangles. An upper bound of
the same functional is given by Makai in [100] proves that among all bounded, open and convex
planar sets, it holds

T(Q)P?(Q)

2
<z, 43
P 2 (43)
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which is sharp on a sequence of thinning triangles (for the exact definition of thinning domains
see Definition 1.17). Estimates (42) and (43) are generalized to the p—Laplacian in [65]. More
precisely, the authors prove that, in the class of bounded, open and convex planar sets,

L _L@Pe) o

< - 44
¢r1° T Tt po1 (44)

where the lower and the upper bounds hold asymptotically on a sequence of thinning rectangles
and on a sequence of thinning isosceles triangles, respectively. In [49] the authors generalize the
lower bound (44) in every dimensions, proving that, for bounded, open and convex sets 2 € R”,
it holds
T,(Q)P1() - 1
Q! q+1

(45)

and they extend such result also to the anisotropic case.
We also recall that in [22] the authors consider the functional

P(T*(Q 2k —1
OT) o 1aks

Hy(Q) =

and prove that, among bounded, open and convex sets in R™, this functional is bounded if and
only if k = 1/2. More precisely, they prove the following:

1 QM 3n/2 n N
— < H.(Q) < ; 46
<y < T () (46)
where w,, is the Lebesgue measure of the unit ball. We note that, in the planar case, the lower
bound in (46) coincides with the one given in (42), while the upper bound is strictly larger than
the one given in (43). It is conjectured that, in the higher dimensional case, the upper bound is

Q) <n ((n+1)2(n+2)>

Moreover, we observe that the lower bound in (46) is asymptotically achieved by a sequence of
thinning cylinders.

Let Q < R™, n > 2, be a non-empty, bounded, open and convex set and let p € (1, +00). We
consider the Poisson equation for the p—Laplace operator, defined as

Nl=

H

Nl

—Apu = —div (|[Vu[P*Vu),

with Dirichlet boundary condition:

{ﬂ%mm=fuuﬁm> in 2 (47)
w=0 on 012,

where f : [0, Rq] — [0,+00[ is a continuous, non-increasing and not identically zero function,
d(-,09) : 2 — [0, +o0o[ is the distance function from the boundary defined as

d(w,09) := inf |z —y|

and Rq is the inradius of €2, i.e.

Rq = supd(z, 09).
ze)
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This class of functions, depending only on the distance, are the so called web functions, see as a
reference [42]. A function u € W, "*(2) is a weak solution to (4.1) if and only if

/Q\Vu(x)|p_2Vu(x)V<p($) dx=/ﬂf(d(a:,6§2))gp(x)dat Vo e W, P(Q).

The (f, p)-torsional rigidity of Q, that we denote by T ,(2), is defined as

(/) state.00 ot ac) ”

Tr () = max (48)

Wy () =
7 0 ( / V()| dac)
Q

and, if u, € W, P(Q) is the unique solution to (4.1), we have

Ty (22 / fup dx.

For the sake of simplicity, when f = 1 in , we set T,,(Q2) := T3 ,(Q) and, if we are also in the
case p = 2, we set T'(Q2) := T} o(Q).

The first result that we prove, following the method of proof used in [112] with the use of web
functions as test functions, is a lower bound for the (f,p)-torsional rigidity, which generalizes
the lower bound in (44).

Theorem. Let Q) be a non-empty, bounded, open and convex set of R™, n = 2, and let f :
[0, Rq] — [0, +00[ be a continuous and non-increasing function such that f # 0. Then, it holds

uH Q)

T:,(Q) = 49
f»P( ) Pf() ( ) ( )
where )
b= _ D
T 1T,
and

_ /Qf(:c) da

Moreover, the equality sign is asymptotically achieved by a sequence of thinning cylinders.

For the definition of thinning cylinder see subsection (1.3.2). We stress that both the estimate
and the constant in Theorem 4.1 are independent of the dimension of the space.
In the second part of the present paper, we focus our study on the case f =1 and n = 2 and
we obtain some quantitative estimates. We define the following functional
TP(Q)P () p

Fp(Q) = W q= Ifl’ (50)

which is scaling invariant, since for every ¢t > 0
[tQ] =t Q] P(Q) = t""'P(Q)

and
T,(tQ) = t" 9T, ().
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We can rewrite inequality (4.3), in the case f =1, as follows
Fp(Q2) = cp.
From Theorem 4.1 follows that along a sequence of thinning cylinders {{2;};cn, we have

Fp() E% ¢,

This leads to the following stability issue: if F,(Q2) is close to ¢,, can we say that Q is close in
some sense to a cylinder? The following result gives us information on the nature of the geometry
of Q: when F,(Q) — ¢, is sufficiently small, the set €2 is a thin domain (see definition (1.7)).

The main novelty of the paper consists indeed in the following quantitative results of the
Polya estimates (42) and the Polya type lower bound in (44) by means of suitable deficits. For
completeness, we recall some standard references about isoperimetric quantitative results, see
for example [72, 71, 21, 18, 74, 106]. The main difference between these results and ours is that
the equality in Polya’s estimates is achieved asymptotically for a sequence of thinning cylinders.
Hence, the proof of quantitative result must take into account that we do not have a minimum,
as in the classical isoperimetric stability results.

Theorem. Let Q) be a non-empty, bounded, open and conver set of R™ and let f = 1. Then,

5o = 6= Ko (s ) 1)

where K(n,p) is a positive constant depending only on p and the dimension of the space n. In

w
particular, in the case n = 2, the exponent of the quantity dig
iam

()

is sharp.

We prove a second quantitative result in the case p =n = 2.

Theorem. Let € be a non-empty, bounded, open and convex set in R2, let f =1 and let p = 2.
Then, there exists a positive constant K such that

TOQP2Q) 1 - [(IQAQ\?
]ﬂm@:<gj>3>KC|m@>, (52)

where Q A Q denotes the symmetric difference between Q0 and a rectangle Q with sides P(£2)/2
and wq containing 2.
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Chapter 1

Preliminaries

1.1 Notations

Throughout this thesis, | - | is the Euclidean norm in R™ and - is the standard Euclidean scalar
product for n > 2. Without ambiguity, the same symbol | - | will denote the Lebesgue measure
L™ in R™ by H*, for k € [0,n), the k—dimensional Hausdorff measure in R™. Moreover, we use
the following notation: Bg(z) is the ball of R™ with radius R and centered at z, B is a generic
ball such that |B| = 1. Let Ry, R be such that 0 < R; < Ra, the spherical shell will be denoted
as follows:

Apr,.r, = {z e R": Ry < |z| < Ra}.

Moreover, we define wy, as the Lebesgue measure in R™ of the ball of radius 1, so that L™ (Bg(z)) =
wnR™ and we denote by S*~! the unit sphere in R™.

If Q € R™ has Lipschitz boundary, for H"~!'— almost every x € 02, we denote by vpq () the
outward unit Euclidean normal to 02 at x. Sometimes, when there is no possibility of confution,
in order to simplify the notation, we will use v instead of vq.

1.2 General facts

1.2.1 Basic definitions

Let Q@ € R”™ be a bounded, open set and let E < R™ be a measurable set. We recall now the
definition of the perimeter of F in €2, that is

P(E;Q) = sup{/ divpdz : ¢ € CP(R™), |lello < 1}.
B

The perimeter of E in R™ will be denoted by P(FE) and, if P(FE) < o, we say that E is a set
of finite perimeter. Some references for results relative to the sets of finite perimeter are for
example [99, 7]. We observe that a remarkable feature of this definition is that in this way the
perimeter is not affected by modifications on sets of measure 0. Moreover, if E has Lipschitz
boundary, we have that

P(E) = H"(3E). (1.1)

In order to deduce properties, it is often very useful to approximate sets of finite perimeter with
smooth sets. Therefore, we give the following notion of convergence.

21
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Definition 1.1. Let Q@ < R” be a bounded, open set, let (E;); be a sequence of measurable sets
in R™ and let E € R™ be a measurable set. We say that (E;),; converges in measure in  to E,
and we write E; — E, if xg, — xg in L'(Q), or in other words, if lim;_,o, | (E;AE) n Q| = 0.

We also recall that the perimeter is lower semicontinuous with respect to the local convergence
in measure, that means, if the sequence of sets (E;) converges in measure in  to E, then

P(E;Q) < liminf P(E;; Q).
j—0
As a consequence of the Rellich-Kondrachov theorem, the following compactness result holds and
its proof can be found for instance in [7, Theorem 3.39].

Proposition 1.1. Let Q € R" be a bounded, open set and let (Ej)j be a sequence of measurable
sets of R™, such that sup; P(Ej;Q) < o0. Then, there exists a subsequence (Ej, ), converging in
measure in ) to a set E, such that

P(E;Q) < li]gn inf P(Ej, ;).
—0
Another useful property concerning the sets of finite perimeter is stated in the next approxi-
mation result, see [7, Theorem 3.42].

Proposition 1.2. Let Q@ € R" be a bounded, open set and let E be a set of finite perimeter in
Q. Then, there exists a sequence of smooth, bounded open sets (Ej)j COMVETging in measure in

Q and such that lim;_,o, P(E;; Q) = P(E;Q).

By their respectively definitions, we have that P(F) and |E| satisfy the following scaling
properties, for ¢ > 0,
P(tE) =t"'P(E), [tE| = t"|E|.
For completeness we recall the classical isoperimetric inequality, already discussed in the intro-

duction. We refer the reader, for example, to [104, 32, 37, 133] and to the original paper by De
Giorgi [46].

Theorem 1.3. Let E € R", n > 2, a Borel set with finite Lebesgue measure, then
nwt™| B|("=V/" < P(E) (1.2)

and equality holds if and only if E is a ball.

1.2.2 Coarea Formula and applications

In this subsection we recall the Coarea Formula and some of its consequences, that can be found
in [62].

Theorem 1.4 (Coarea Formula). Let f : R — R™ be a Lipschitz continuous function, with
n = m. Then for each L™-measurable set A < R",

/ Jfde = H (AN fHy)) dy, (1.3)
A R™

where J denotes the Jacobian.

Theorem 1.5 (Change of variables Formula). Let f : R® — R™ be a Lipschitz continuous
function, with n = m. Then for each L™-summable function g : R"™ — R we have that g| -1,y is
H" ™" -summable for L™-a.e. y and

/ gJfdx = / / gdH" ™™ dy.
R m f—l{y}
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Applications

As applications to the change of variables formula, we have the integrations over balls and over
level sets.

Theorem 1.6 (Integration over balls). Let g : R” — R be a L™-summable function. Then

0
/ gdx = / / gdH" dr.
Rn o JoB,
d n—1 1
— gdx | = gdH L —a.e.
dr \ /s, 2B,

Theorem 1.7 (Integration over level sets). If f : R™ — R is Lipschitz continuous.

In particular for r > 0

1. Then -
/ IV f|da = / HL (S = 1))t
Rn o

2. Assume also that essinf |V f| > 0 and let g : R" — R be L™-summable, then

* g 1
gdx =/ / —— dH" " ds.
~/{f>t} ¢ Jyp=sy VS
d (/ > / 9 -1 1
— gdx | = — —— dH" L —a.e.
dt\ s>y tr=ny V1]

1.2.3 Trace and Friedrich inequalities

3. In particular

Here we recall some known inequalities that will be useful in the sequel. Let 2 be an open
bounded subset of R™ with Lipschitz boundary, then by the classical Sobolev trace inequality
(see [60]) we have that

[ullz200) < Cllul @), (1.4)
for some positive constant C' > 0. Moreover the embedding operator of H(f2) into L?(0) is
compact.
Another important embedding theorem is a consequence of the so-called Friedrich’s inequality
(see for instance [67, 102] and for a more general case [41]). Let H(£2,0Q) the completion of
the set of functions in C®(Q) n C(Q) which have weak gradient in L?(Q), equipped with the
following pseudonorm (see [102] for the details)

|ull a1 ,00) = VUl L2y + [ul2(00)-
Fridrich’s inequality states that
lullrz) < C(|Vullzz) + [u]r2(a0)) (1.5)

for some positive constant C' > 0. Also in this case the embedding operator of H(f2, %) into
L?(Q) is compact (see Corollary 3, p. 392 in [102]).
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1.2.4 Gronwall’s Lemma
We will state Gronwall lemma (see [11, 82]) that will be useful in Chapter 3.

Lemma 1.8. (Gronwall) Let £(t) be a continuously differentiable function satysfing for some
non-negative constant C, the following differential inequality

T€(r) <&(7) + C,
for all T = 19 > 0. Then we have

g <AL e

70
and

EI(T) < 5(7—0) + C’

70

for all T = 1.

1.2.5 Lorentz Spaces

In this paragraph we recall the definition of Lorentz Space (for instance see [98]).
Let 1 < p,q < 0. A measurable function f : 2 — R" is in the Lorentz space LP*4(f2) if and only
if the following norm

e dt\ @
te Q: N = 7
e (/ Gleeasli@i=a0Y)  g<w
sup tH{z € 0 1) > 1) ‘=

is finite.
Let us notice that when p = ¢ then
LPA(Q) = LP(Q),

i.e. when the exponents are equal, we have the well known Lebesgue Spaces.

1.2.6 Definition of nearly spherical sets and main properties

In this section we give the definition of nearly spherical sets and we recall some of their basic
properties (see for instance [18, 69, 70]). The usual definition is the following.

Definition 1.2. Let n > 2. An open, bounded set £ < R™ with the origin contained in F is
said a nearly spherical set parametrized by v if there exists v € W1®(S"~1) such that

0E = {yeR": y = Rz(1+v(x)), zeS" '}, (1.6)
where R is the radius of the ball having the same measure of £ and ||v]|ypy1,0gn-1) < 1/2.

The perimeter and the volume of a nearly spherical set are given by

P(E) = /Sn_l (14 v(z))" 2 \/(1 +o(2)? + |Vou(z)|2 dH L, (1.7)

n

B - L /S (1 + v(@)" dH" ", (1.8)
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1.3 Some properties of Convex sets

1.3.1 Hausdorff distance, support function and radial map

We recall here some properties of convex sets that we will use in this thesis. We recall the
definition of Hausdorff distance between two non-empty compact sets E, F' < R"™, that is (see for
instance [122])

oy(E,F)=inf{e >0 : Ec F+ B., Fc E+ B.}.

Note that, if E, F are both convex sets, then 0y (E, F) = 04(0F, 0F).
Let {Ej}ren be a sequence of non-empty compact subsets of R", we say that Ej converges
to E in the Hausdorff sense and we denote

E. % E

if and only if éy(Fx, EF) — 0 as k — o0. Moreover, we say that {Fj}ren converges in measure
to F, and we write £, — E, if xg, — xg in Ll(R”), where xg and xg, are the characteristic
functions of E and Ej respectively.

In what follows we recall some properties of the convex bodies, i.e. compact convex sets without
empty interior. We again refer to [122] for further properties and the details.

We give now the definition of support function of a convex set.

Definition 1.3. Let K < R” be a bounded convex set of R™. The support function hx of K is
the function hgx: S*! — R defined as follows

hi(x) = sup(z,y).
yeK
It is easy to see that the support function associated to a ball of radius R is constantly

equal to R. If the origin belongs to K then hx is non-negative and hg (z) < diam(K) for every
reShL

Remark 1.9. Let K,C be two open, convex and bounded sets of R™; the following relation
holds:
0 (C,K) = ||lhc — hi|| Lo n-1)

Definition 1.4. Let K < R" be a bounded convex body such that the origin is an interior point
of K. The radial function of K is defined as follows

pr(x) =sup{fA=0: \ze K}, 2eS" (1.9)
and it is a Lipschitz function. The radial map is the function 75 : S"~! — 0K defined as
ric(@) = opi (@), (1.10)

Then we can parametrize the boundary of every convex body containing the origin in this
way
0K = {x px(z),x € S""'}. (1.11)

Definition 1.5. We will define the minimum and the maximum distance of K from the origin
as follows
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Let now f: 0K — R be (n — 1)—integrable. The following formula for the change of variable
given by the radial map holds:

n—1 _ ro pK(x) n—1
O S e e e ) R 1

where vi (rg (z)) is the outer unit normal to 0K at the point rx(z) = xpx (x). We have (see for
example [122])
iclra(a)) = — 2D = Voprel)
V(o (@))? + [Vopr (2)2
where by V,px we denote the the component of Vpg tangential to S*~!. So, we observe that
(1.13) is equivalent to

faH"! = f(TK(JS))(pK(ZE))nl\/l + <V7pK(x)|) dH™

oK sn—1 px ()

The following result holds (see for instance [38], [89], [122]).

Lemma 1.10. Let K,, and K be bounded convex bodies containing the origin for any n € N and
such that K, — K in the Hausdorff sense. For any n € {0,1,2,...}, let hg , pk, be the support
function and the radial function K, , respectively. Then the following statements hold

(i) Let hi be the support function of K then

sup |hg, (x) — hi(z)] — 0.
feSn—1

(i) Let px the radial function of K then

sup |px, (z) — px(z)| — 0.

reSn—1

(i1i) Let © € 0K and x, € 0K,, n € N, points where vk (x) and vk, (x,) are well defined and
such that

lim z, = .
n—0o0

Then

nlgréoul( (zn) = vi(x).

By (1.13), Lemma 1.10 and the Lebesgue’s convergence Theorem we immediately get

Theorem 1.11. Let K, and K be bounded convex bodies containing the origin for any n € N
and such that K, — K in the Hausdorff sense. Let

fn: 0K, >R, f:0K—>R
be H™ ! measurable functions such that

(i) there exists C' > 0 such that
Ifllz=ory < €y | falr=ok,) <C, VneN
(i) if x,, € 0K, is such that lim, o x, = x € 0K, f,, is defined in x,, and
T fo(x,) = f(x).
Then
lim f () dH™ 1 / fz)dH .

n=% JoK
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1.3.2 Inequalities on Convex sets

We conclude this paragraph by recalling some definition concerning convex sets and stating some
important inequality that connect different quantities of a convex body in R™ respectively.
Recall that the diameter diam 2 and the inradius R of  are defined as

diam Q = sup |z —yl, (1.14)
z,ye)

Rq = sup inf |z —yl. (1.15)
2e() YEOL

By means of the support function of a convex set we can define the minimal width (or thickness)
of a convex set as follows

Definition 1.6. Let 2 a bounded, open and convex set of R™, the width of € in the direction
y € R is defined as
wa(y) = ha(y) + ha(-y)

and the minimal width of 2 as

wo = min{wa(y) |y e S}
Definition 1.7. Let €); be a sequence of bounded, open and convex sets of R"™. We say that
is a sequence of thinning domains if

weo, -0
— 0 — 0. 1.16
diam(Ql) ( )

diam(€2;)

In particular, if I > 0 and C is a bounded, open and convex set of R"~! with unitary (n — 1)-
dimensional measure, then, if [ — 0, the sequence
1 1
Q=I0"1C —— = 1.17
l X |: 2a 2:| ( )

is called a sequence of thinning cylinders. Moreover, in the case n = 2, the sequence (1.17) is
called sequence of thinning rectangles.

Q

;‘4 |
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We recall the following estimate, which is proved in [15] in the planar case and is generalized
in [17] in every dimensions (see for instance also [54, 122]).

Proposition 1.12. Let Q2 be a bounded, open and convex set of R™ with non-empty interior.

Then,

1 1€

- < =<1 1.18
The upper bound is sharp on a sequence of thinning cylinders, while the lower bound is sharp,
for example, on balls. Moreover, for n = 2, any circumscribed polygon, that is a polygon whose

incircle touches all the sides, verifies the lower bound with the equality sign.
In the planar case the following inequalities hold true (see as a reference [124, 123, 118]).

Proposition 1.13. Let Q be a bounded, open and convex set of R%. Then,

we
2< o <3. 1.19
o (1.19)

The upper bound is achieved by equilateral triangles and the lower bound is achieved by disks.
Moreover,

2
(wg — 2Rq) P(Q) < ﬁwg, (1.20)
with equality holding for equilateral triangles, and
Q] < Ro (P(?) — 7Rq) (1.21)
with equality holding for the stadii (convex hull of two identical disjoint balls).
FEventually,
2diam(Q2) < P(Q2) < wdiam(9Q), (1.22)

where the lower bound is asymptotically achieved by a sequence of thinning rectangles and the
upper bound by sets of constant width.

Moreover we recall the following inequality (see [59, 80, 121]):

P(E)" ! > w,_1n""?diam(E)|E|" 2. (1.23)

1.3.3 Inner parallel sets

Let Q be a bounded, open and convex set of R" with non empty interior. The distance function
from the boundary is defined as

d(x,00) = inf |x —
(,00) = nf |z —yl,
and we will denote it by d(-). We remark that the distance function is concave, as a consequence

of the convexity of €.
The superlevel sets of the distance function

Q ={xe: dx) >t} t € [0, Rq] (1.24)
are called inner parallel sets, where R is the inradius and we use the following notations:

pt) =,  P(t)=P(Q)  tel0, Rl (1.25)
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By coarea formula (1.2.2), recalling that |Vd| = 1 almost everywhere, we have

w(t) = / de = / [vd| dx = /RQ L/ dH" ' ds = - P(s) ds;
(d>t} (=1} 1Vd| ¢ IVd| Jia—s ¢ ’

hence, the function u(t) is absolutely continuous, decreasing and its derivative is u/(t) = —P(t)
almost everywhere. Moreover, it is possible to prove that the perimeter P(¢) is non increasing
and absolutely continuous, as a consequence of the concavity of the distance function and the
Brunn-Minkowski inequality for the perimeter (see [122] as a reference).

Finally, let us consider the case n = 2. For Q a bounded, open and convex set of R? with
nonempty interior the Steiner formulas for the inner parallel sets hold (see [8]):

P(t) < P(Q) —2mt  Vte 0, Rg], (1.26)
w(t) = Q| — P(Q)t+rt*  Vte |0, Rql, (1.27)

equality holding in both (1.26) and (1.27) for the stadii (see [65]). From (1.26), we have that, if
Q) is a convex set, then
—P'(t) = 2, (1.28)

with equality if  is a ball or a stadium.

1.4 Anisotropy and Convex symmetrization

1.4.1 Anisotropy

What follows can be found in [135]. Let H : R® — [0, +w], n > 2, be a C?(R™\{0}) convex
function that satisfies the following homogeneity property

H(t) = [t|H(§) VEeR™, VteR, (1.29)

and such that
Y€l < H(E) < 0l (1.30)

for some positive constants v < 4.

These properties guarantee that H is a norm in R™. Indeed (1.30) guarantees that H(§) = 0 if
and only if & = 0. It is homogeneous by (1.29) and the triangular inequality follows from the
convexity of the function H: if £, € R™, then

H(r +y) _H<x y) < H(z) H(y)

2 2+2 2+2

Because of (1.29), we can assume that the set
K= {eeR: H(E) < 1)

is such that | K| is equal to the measure w, of the unit sphere in R”. We can define the support
function of K as

H°(z) = sup (x, &), (1.31)
(eK

where (-,-) denotes the scalar product in R". H® : R" — [0, +o0] is a convex, homogeneous
function in the sense of (1.29). Moreover H and H® are polar to each other, in the sense that




30

and

H° is the support function of the set
K°={zxeR": H°(z) < 1}.

The set W = {x € R" : H°(x) < 1} is the so-called Wulff shape centered at the origin. We set
kn, = |W|. More generally we will denote by Wg(xo) the Wulff shape centered in g € R with
measure k, R™ the set RW + ¢, and Wr(0) = Wg.

H and H° satisfy the following properties:

He(§)- €= H(E), H{(E)-&=H(§), (1.32)
H(H¢(€)) = H°(He(§)) =1 V& e RM\{0}, (1.33)
HY(§)He(H¢ (§)) = H(§)He (He(£)) = € VE € R"\{0}. (1.34)

If Q < R" is an open bounded set with Lipschitz boundary and E is an open subset of R™, we
can give a generalized definition of perimeter of E with respect to the anisotropic norm as follows

Py(E,Q) = / H(v)dH" !,
O*¥EnQ

where 0* E is the reduced boundary of E (for the definition see [62]) and v is its Euclidean outer
normal. Clearly, if E is open, bounded and Lipschitz, then the outer unit normal exists almost
everywhere and

Py(E,R") := Py(E) = / H(v)dH™ . (1.35)
o)
By (1.30) we have that
vP(E) < Py(E) < 6P(E).
In [4, 135] it is shown that if u € W11(Q), then for a.e. t >0

_a
dt Jiusty

H(Vu)de = Py({u > t},0Q) = / H(Vu)

dH™ L. 1.36
0¥ {u>t}nQ ‘V’U,| ( )

Moreover an isoperimetric inequality for the anisotropic perimeter holds (for instance see [135,
34, 43, 64])

Py(E) = nkj |E|*"*. (1.37)

1.4.2 Convex symmetrization

Let f : Q —> [0, +o0] be a measurable function. The decreasing rearrangement f* of f is defined
as follows
FH(s) = inf{t = 0: [z e Q: |f(@)] > ) <5} se 0,00,

which is the generalized inverse function of the distribution function of f. We define the convex
symmetrization f* of f as
@) = fF(knH(2)") xeQ"

In particular it is well known that the functions f, f* and f* are equimeasurable, i.e.

{F >t =N >t = >t t=0
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As a consequence, if f € LP(Q), p = 1, then f* € LP([0,|Q]]), f* € LP(Q*) and

£ lze@ll = 1£* oo, 10 = 1" Lo (0r)-
Moreover the Hardy-Littlewood inequality holds (see [92])

12

/Q f@a@)ldr < [ () s (1.38)

So, if we consider g as the characteristic function of the set {r € Q : u(z) > t}, for some
measurable function u : 2 — R and ¢ > 0, then we get

n(t)
/ f(z)dx < / f*(s)ds, (1.39)
{u>t} 0

where, again, p(t) is the distribution function of w.
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Chapter 2

Results about some eigenvalue
problem in annular domains

In this chapter we deal with the study of the first Steklov-Dirichlet eigenvalue for the Laplace
operator in a set with an internal spherical obstacle, which can be found in the articles [106, 75].
In the first part we prove, via a stability result, that the spherical shell locally maximizes the first
eigenvalue among nearly spherical sets, when both the volume and the internal ball are fixed.

In the second part we work in the class of convex sets. We prove the existence of a maximizer
when fixing measure and inradius of the inner ball, generalizing it even when the inner obstacle is
any convex set. Moreover we give new bounds for the first non-trivial Steklov-Dirichlet eigenvalue
in terms of geometric quantities related to the exterior convex set. Eventually we show a partial
result: the maximizer is a spherical shell when our set is contained in a ball centered at the origin
and with the radius that depends on the radius of the inner ball and the dimension of the space.

2.1 Introduction to the Steklov-Dirichlet problems and state
of art

Let Qp < R™, n = 2, be an open, bounded, connected set with Lipschitz boundary such that
Bpr, € Qq, where Bp, is the open ball of radius R; > 0 centered at the origin such that its
closure is strictly contained in ¢ and let us set Q := Qy\Bg, -

Since we are studying a Steklov eigenvalue problem with a spherical obstacle, we need to introduce
the definition of a closed subspace of H!({) that incorporates the Dirichlet boundary condition
on 0BR,. We denote the set of Sobolev functions on € that vanish on 0Bg, by

H(%BRI (Q)7
that is (see [58]) the closure in H(Q) of the set of test functions

35, (Q):={ulq : we CF(R"), spt(u) N dBr, = J}.

aBnl

We are dealing with the following boundary eigenvalue problem:

Au=0 in Q
u=0 on 0Bg, (2.1)
ou

5 = o(Q) u  on 0,

33
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where v is the outer normal to 0€)g.
Definition 2.1. The real number ¢(£2) and the function u € H(%BRI (Q) are, respectively, called

eigenvalue of (2.1) and eigenfunction associated to o (), if and only if

VuVe dz = o(Q) / up dH"(z)
Qo

Q
1
for every ¢ € Hap, | (Q).
Furthermore, the first eigenvalue is variationally characterized by

o1(Q) = min  J[v], (2.2)
veHéBRl (©2)

v#£0

/ |Vv|? de
Q

/ v? dH"
Q0

We point out that the condition of being orthogonal to constants in L?(0f2) is not required,
unlike the classical Steklov eigenvalue (when R; = 0). Notice also that the value o1(Q) is the
optimal constant in the Sobolev-Poincaré trace inequality:

where

J[v] := (2.3)

a1 ()|l L2 60) < HVU||H;BR1 Q)"

The spectrum of (2.1) is discrete and the sequence of eigenvalues can be ordered (see for instance
[1, 56, 105])
0<01(Q) <02(Q) <--- .

Furthermore, we will show in section (2.2) that the first eigenvalue is simple and the corresponding
eigenfunctions have constant sign (see also [56]).

When R; =0, (2.1) is the classical Steklov-Laplacian eigenvalue problem. In this case, Wein-
stock in [142, 141] proved an isoperimetric inequality for the first non-trivial Steklov eigenvalue
in two dimensions. More precisely, he showed that among all simply connected sets of the plane
with prescribed perimeter, the disc maximizes the first non-trivial Steklov-Laplacian eigenvalue.
In [27] the authors proved that Weinstock inequality holds true in any dimension, provided they
restrict to the class of convex sets with fixed perimeter. In [24], it is proved that the ball is
still a maximizer for the first non-trivial Steklov eigenvalue among all bounded open sets with
Lipschitz boundary of R™, n > 2, with fixed volume. Stability and instability results are also
studied (for instance we refer to [19, 31, 74]).

When we consider a spherical hole with homegeneous Dirichlet boundary condition, that is
R; > 0, the Steklov-Dirichlet eigenvalue problem for the Laplacian (2.1) is substantially different.
The study of an eigenvalue problem on sets with a spherical hole is actually a topic of interest
and problem (2.1) has been considered by several authors (see for instance [56, 68, 88, 87, 138]).
We list here some mixed boundary condition eigenvalue problems on perforated domains: the first
eigenvalue of the p-Laplacian with external Robin and internal Neumann boundary condition,
when volume and external perimeter are fixed [109, 107]; the first eigenvalue of the p-Laplacian
with external Neumann and internal Robin boundary condition, when volume and internal (n—1)-
quermassintegral [86, 53] are fixed; the problem of optimally insulating a given domain [52]. We
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recall that in [9] is studied the Steklov-Dirichlet problem and some properties of the related
eigenvalue.

Finally, this kind of estimates has been obtained also for a more general class of equations,
involving the so called Finsler operator. We refer the reader, for example, to [48, 51, 50, 77, 108,
110].

When Qy = Bg,(zo) is a ball centered at xy with radius Ry > Ry, in [68, 138] it is proved
that o1(Q) achieves the maximum when € is the spherical shell, that is when the two balls are
concentric.

2.2 Properties of the Eigenvalues and Eigenfunctions

We give now the definitions and some geometric properties of eigenvalues and eigenfunctions of
problem (2.1). For sake of simplicity we define

An e Q= Qo\Bgr, : Qo < R"open, bounded, connected,
e with Lipschitz boundary, s.t.Br, € Qo '

The following ensures the existence of minimizers of problem (2.2).

Proposition 2.1. Let Ry > 0 and Q € Ag,, then there exists a function u € HO%BRI (Q) achieving
the minimum in (2.2) and satisfying problem (2.1).

Proof. Let uy € H(%BRI (©2) be a minimizing sequence of (2.2) such that ||ug||z2(a0,) = 1. Since
the minimum in (2.2) is positive, then there exists a constant C' > 0 such that J[ux] < C
for every k € N and therefore ||Dug||r2(q) < C. Moreover, a Poincaré inequality in H(%BRI Q)

holds and this implies that {uj}ren is a bounded sequence in Hr%BRl (Q). Therefore, there exist
a subsequence, still denoted by ug, and a function u € HolBRl (€2) with ||u| 12 (604) = 1, such that

uy, — u strongly in L?(Q), hence also almost everywhere, and Duy — Du weakly in L?*(2). By
the compactness of the trace operator (see for example [96, Cor. 18.4]), wuy converges strongly
to u in L?(09)) and almost everywhere on 02 to u. Then, by weak lower semicontinuity we have

lim J[ug] = J[u].

k0

Hence, the existence of a minimizer u € H} By, () follows. Moreover, u is harmonic in © and so,
1
by strong maximum principle, it has constant sign on 2. O

Now we state the simplicity of the first eigenvalue of (2.1), following the idea in [61, Section
6.5.1].

Proposition 2.2. Let Ry > 0 and 2 € Ag,, then the first eigenvalue o1(Q) of (2.1) is simple,
that is all the associated eigenfunctions are scalar multiple of each other.

Proof. Let u, @ be two non trivial weak solutions of the problem (2.1). Since, by Proposition 2.1,
we can assume that 4 is positive in €2, then it is clear that

/ﬂdx;éO.
Q

So, we can find a real constant x such that

/Q(u — x@)dz = 0. (2.4)
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Since u — x@ is still a solution of problem (2.1), then it is also non-negative (or non-positive) in
Q. Therefore, (2.4) implies that u = x@ in © and the simplicity of o1(2) follows.
O

It is worth noticing that the first nontrivial eigenvalue for the classical Steklov-Laplacian
problem (when R; = 0) on Bg, is 1/Ry and the corresponding eigenfunctions are the coordinate
axis x;, for ¢ = 1,..,n. This means that the first nontrivial eigenvalue has multiplicity n and this
makes a significant difference with problem (2.1), for which we proved that the simplicity holds.
On the other hand, it is easy to verify that both have the same scaling property:

o1 (192) — %UI(Q), vt > 0. (2.5)

The first attempts to study the optimal shape of problem (2.1) has been done on spherical shells,
i.e. when Q¢ = Bp,, for Ry > Ry > 0. We recall from [138], the explicit expression of the first
eigenfunction on the spherical shell Ag, g,:

Inr —1In R, for n =2

w(r) = ( 1 1> for =3, (2.6)

Rn—2 rn—2
1

with r = |z|. This function is radial, positive, strictly increasing and it is associated to the
following eigenvalue:
— for n =2
o ()
01 (ARl,Rz) = n—2 for n > 3. (27)

It is worth noting that, since problem (2.1) and the classical Steklov (R; = 0) have the same
scaling property (2.5), then the shape functional 2 — |Q|%01 (Q) is scaling invariant, as in the
classical case.

Remark 2.3. We point out that by (2.7), we have that o1(Ag, gr,) is increasing with respect
to the radius of the inner ball, Ry, that is

UI(ARl,Rz) <01(AT1,R2)7 if?“l >R1

Moreover it holds
lim Ul(ARl,Rg) = 0, (28)
Rl —0

that is 01 (AR, r,) tends to the first trivial Steklov eigenvalue of the Laplacian for Ry which goes
to zero. Finally we stress that an easy computation gives that o1(Ag, r,) is decreasing with
respect to the external radius R, that is

Ul(AR17R2)<01(Ar17R)7 ifR<R2.

2.2.1 Upper bounds for o,(f)

We show an upper bound for o1 depending only by the dimension n, by the measure of Q2 and
by the radius of the internal ball R;.
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Proposition 2.4. Let Ry > 0 and Q € Ag,, then

2
71(Q) < S (2.9)

1/n

1 Q

nwyy <<2|wr|L + R?) — R1>

Proof. Let R > 0 be such that [Ag z| = [€]/2, then R depends only by the dimension n, the

measure || and Ry, that is
R= 19 + R} .
~\ 2w, ! ’

Consider the function B
|:L‘| — Ry if R < |33| < R;

=4 _ _ 2.10
P@W=VR R it e > R (2.10)

We distinguish now two cases. Firstly, we assume that B € Qo, i.e. d := dist(0Bp, ) > 0.
By using (2.10) as test function in the Rayleigh quotient (2.3) and by the isoperimetric inequality,
we obtain
€ 1
- 5 S I C
(R—Ri)"P(Q)  nwi (R—Ry)

We consider now the case d = 0, that is when the ba_ll Bp is not strictly contained in .
Therefore, we divide the boundary of Qg in the two sets 0?*{)q and 0°**()y that live, respectively,
inside and outside of Bp. Using the test function (2.10) in the Raylegh quotient (2.3), we have

0'1(9) <

1
Sl (2.11)

2] 2]

o1(Q) < — < 75 —.
f(‘)gzo |<P|2 dH" ! (R - R1)2 fgeugo 1 dH"» !

(2.12)

We recall that a relative isoperimetric inequality with supporting set Bz holds (see as reference
e.g. [33, 40, 39]):

1—L
n—1(qext Wn i/n ‘QO‘ "
1Yo QO)>n(2) <2 . (2.13)
By using (2.13) in (2.12), we have
2 1
01(Q) < ———Q|~. (2.14)

nwi (R — Ry)?
The conclusion follows by observing that the upper bound (2.14) is greater than (2.11). O

Obviously o1(€?) is bounded also when we fix the perimeter of 2, that is equivalent to fix the
perimeter of Q, instead of the volume. Indeed by (2.9) and the isoperimetric inequality, we can
deduce the following upper bound

1

2V (Q) O P ()

[l * a RY

where C'(n) is a positive constants that depends only on the dimension n.

71(Q) < (2.15)
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An upper bound for 01(f2) for not spherical holes

We are able to prove an upper bound for o1(2) even in the case of a not spherical hole.

Let K — R™ be a convex set with non-empty interior such that K € Qg and let Qx = Qp\K.
In this case, according to [58], the natural space of functions that we have to consider are
C%(Q) and Hip (k). In particular the classical arguments of Calculus of Variations apply,
as in Proposition (2.1), and o1(Q2k) is well defined. Let us now assume that the volume |Q| = w
and the inradius p(K) =7 of K are fixed. Let us consider A; z the spherical shell with radii 7

and R, where R is such that |A; 5| = |Q]/2. So, we have

R= (QI + F”) Un. (2.16)

2w,

We also consider the following test function ¢ : R™\K — [0, 00):

d if 0 <dg(z) <R
o) = { (@) HOSdicw) SR (2.17)
R ifdg(x) =2 R
where
dic(w) = inf ||z —yll
and we denote by K; the set
K; = {r e R"\K | dg(z) < t}. (2.18)

We have now to distinguish two cases. If Kz € €, then, using the test function (2.17) in the
variational characterization, we have

|Vdg (z)|? dx
O’l(Q) < /KR _ |K§| < |Q|
/ 2(z) dH—t R P(Q) R onwawy Q-1
a0

‘Q|1/n _
= 7 = C(n,7,|Q]),
In (0] | =n
NWny, %, T T
where we have used the fact that |Vdg(z)| = 1 a.e., the classical isoperimetric inequality and

(2.16).
Finally, let us consider the case when Kz ¢ Q. We will use the following notations: Qg =
Q0 N Kz and 0°Qg = 0Q0\0"Qo. Using as before the test function (2.17), we have

|Vdg (x)]2dx
0'1(9) < /KR“Q < ‘KR N Q|
~ B ~ *2 e
/ A2 (z)dH " + / Rapr-t 10l (2.19)
i 0¢Qp
210
O a0,

T Repwl/M|q-um

where we have used the relative isoperimetric inequality (2.13).
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2.2.2 Volume constraint on the spherical shells

We remark that, when a volume constraint for €2 holds, then the upper bound is still finite, when
R; — 0. On the other hand, when R; — oo, the first eigenvalue cannot be upper bounded. This,
together with other examples that we are going to illustrate, motivates the study the optimality
of o1 when another constraint holds, besides the volume one.

Let us consider the spherical shell Ag, r, with the volume constraint:
|AR1,R2| = wn(Rg - R?) = w.

We show that both in bidimensional case and in higher dimension, ¢; is not upper bounded in
the class of spherical shells of fixed volume.
1
Let n = 2, then Ry = (R} + £)? and, by (2.7), we have
1
gl(ARl,R’z) = 1 T =
(B +2) log (14 25)" R (1+:5)

[\)

[N

log (1 + ﬂR%>
Hence, for R; big enough,

2 2T R
01(AR, R,) ~ = L

Rl (]' + 27:}'2%) %Rf w (1 + 271'wa)

and so

thﬁHJlroo 01 (ARI 7R2) = +00.

1

Let n = 3, then, Ry = (R’f + L)7 and

Wn,

n—2
Ul(ARlaRZ) = 1 1-2 =
R M [ " M
n—2

1—1
Rl[(”ﬁm) - (1+a)

3=
—_

Again, if R; is big

n—2 NWn,

O'l(ARth) ~ 1 w 1 = w /R;l_l
sl [1 + (1 - E) W R T 1- E%R?]
and hence again
lim o1(Ag, .r,) = +0. (2.20)

Ri—+0
Further, it is clear that, in any dimension, we have
R}Eﬁ 01<AR1,R2> = 0. (2.21)
The limiting results (2.20) and (2.21) motivate the fact that it is not enough to fix the volume
to study the first eigenvalue 7. Indeed, when R; is too big, it is not possible to find an upper
bound, and, on the other hand, when R; is too small, the eigenvalue is trivial. We remark that,

in the class of sets of the form Bg,(20)\Bg,, with Bgr,(zo) being a ball containing Bg,, the
maximizer of o7 is the spherical shell (see [68]).
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Spherical shell with fixed difference between radii.

It is clear now that we cannot study the shape optimization for ¢; when only a volume constraint
holds. On the other hand, it could be interesting to understand if we can study the shape
optimization for double connected domains, when only one geometric quantity is fixed. Here,
for example, we briefly study the behavior of the spherical shell when the distance between the
radii is fixed. Let d be a positive real number such that

Ry — Ry = d,

sothatRQ:Rl—l—dand%:l—&-R%.
If n = 2, then for Ry big enough, we have

o1 (A ) 1 Ry
1\AR,,Ry) = ~
1,112 (Rl—l—d)log(l‘f‘}%) R1d+d2
and, hence,
plim o1(An ) = 5
If n > 3, we have
n—2
g1 (ARth) = n—o
(Ry +d) [(1 + Ri) - 1]
n—2 Ry

~

(Ry+d) [1+ (n—2)4 —1] - Rid +d?

and, hence,
1

Rl oA ) = G

Furthermore, in any dimensions, we have

th_r)r%ﬁ 01 (AR1-,R2) =0.

The case of Ry small is again trivial. On the other hand, o; is upper bounded for any value
of Ry by the reciprocal of the difference between the radii d. The fact that an uniform upper
bound holds for spherical shells when only the difference between the radii is fixed, suggests that
it could be interesting to study the shapes minizing o; in the class of double connected sets when
only the width is fixed.

2.3 Steklov-Dirichlet type problem on a perforated domain
for nearly spherical sets

In this Section we prove that the spherical shell is a local maximizer for the first eigenvalue of
(2.1) among nearly spherical sets with fixed volume, containing Bp, , for a fixed value Ry > 0.
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2.3.1 Main result
We recall that, if )y is a nearly spherical set, as in Definition 1.2, Chapter 1, its volume is given
by
1
Sl = [ (rue)” an
n Jsn—1
The class of nearly spherical sets has a peculiar importance in shape optimization theory, in

particular for stability results for spectral inequalities. We are considering sets Q = Q\Bg,
beloging to Apg, with Ry > 0, with )y nearly spherical, and the main result is the following.

Theorem 2.5. Letn > 2, Ry > 0, w > 0 and let Ry > Ry be such that |AR, r,| = w. There
exists € = e(n, Ry,w) > 0 such that, for any Q = Qo\Bgr, belonging to Agr,, with Qo nearly
spherical set parametrized by v such that ||v||w1.= < e and |Q] = w, then

01(Q) < 01(AR, Ry)- (2.22)

Moreover the equality in (2.22) holds if and only if Q is a spherical shell.

Let us remark that, in order to have Br, € p, we need to require that ¢ < 1 — Ry1/Ry
to verify that |y| = Ry, that is Ro(1 + v(€)) = R;. Moreover, we observe that, since all the
quantities involved are translation invariant, the result in Theorem 2.5 holds also among nearly
spherical sets with fixed volume and containing a fixed internal ball.

Recalling the explicit expression (2.6) of the first eigenfunction w on the spherical shell Ag, g,,
we define the weighted volume and the weighted perimeter as:

V(Q) ::/Q|Vz|2dx,
e )

P(Q) := /moz dx.

Furthermore, to simplify the notations, we set, for n = 2,

hr,(t) = (In(tRy) — In Ry)?, (2.23)
h/
frat) = 52(;) - 52;5“ (2.21)
and for n > 3
hp,(t) = (R;}_Q - (tR:)n_Q) , (2.25)

Wp,(t)  n—2 1 1
fry(t) = ;RQ = Ry (R?Q - (tRQ)n_2>, (2.26)

where Rj is the radius of the ball with the same volume of 0y and ¢t > %2. Now, we write the
Raylegh quotient (2.3) using the parametrization in (1.6).

Lemma 2.6. Letn > 2, Ry > 0, w > 0 and let Ry > Ry be such that |AR, r,| = w. For any
0 <e <1—Ri/Ry and for any Q = Qo\Bg, belonging to Agr,, with Qo nearly spherical set
parametrized by v such that ||v||wie < e and |Q] = w, then

fra(L+0(©) (1 + ()"~ dH" !
@) _ gnor , (2.27)

Q) . Vo)
/Sn_l hr, (1 +v(€) (1 +v(£)" "4 [1+ A+ ()2 dH" !

O'l(Q) <

<
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Moreover if Q = Ag, r,, then equality holds in (2.27) and 01(ARr,,r,) = ]{? 8))
2

Proof. From the variational characterization (2.2) of o1(f2), we have

0z -1
- V2| dx / —zdH"
(@) < 2 J - Joge

(Q) / Z2 danl / Z2 dr}_[nfl .
390 aQO

The conclusion follows using the change of variables in (1.6). O

We recall the following result, whose proof can be found in [69].

Lemma 2.7. Let n > 2 and Ry > 0. There exists a constant C = C(n) > 0 such that for any

0 < e < 1 and for any v parametrizing a nearly spherical set Qg such that ||v||w1.- < e and
|Q| = |Br,|, then

2
‘(1 + o)t — <1 +(n—1v+(n—1)(n— 2)2)‘ < Cev? on S"71,

vol? [ Vel

1
T FERSE

< Ce (v + |Vol*) onS™71,

n—1

n—1 2 n—1
/va(g)cm + 2 /Snilv(f)d’}-[

< OEHUHQLQ

As a consequence of the analyticity of hgr, and fg,, defined in (2.23)-(2.24)-(2.25)-(2.26), the
following Lemma holds.

Lemma 2.8. Letn > 2 and 0 < Ry < Ry. There exists K = K(n, Ry, R2) > 0 such that for
any 0 < e <1 and for any v parametrizing a nearly spherical set Qo such that ||v||wi.» < e and
|Qo| = |BR2‘, then

hiy (L4 v) — hp,(1) — b, (1)v — Y, (1) —=| < Kev? on S"7,

2

fro(L+v) — fr, (1) — fR,(L)v — fﬁQ(l)% < Kev? on S7L.

Furthermore, this Poincaré inequality holds.

Lemma 2.9. (Poincaré inequality) Let n = 2 and Ry > 0, then there exists a positive constant
C = C(n) such that for any 0 < e < 1 and for any function v parametrizing a nearly spherical
set Qo such that ||[v||wi.o < e and |Qo| = |Br,|, then

[Vo[Z2 = (n—1)(1 = Ce)|v]Z-.

Proof. The function v € L?(S"~!) admits a harmonic expansion (see e.g. [81, Chap. 3]), in the
sense that there exists a family of n-dimensional spherical harmonics {H;(§)} en such that

+0
v(€) = . ¢ H(€), £eS8"' with [Hj|pz@e) = 1,
j=0
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where
¢ = (0, Hy)pan 1) = /S IRGLAG

and H; satisfying
Agn—lHj =j(j+n—2)Hj, VjEN,

where Agn-1 is the Laplace-Beltrami operator. Furthermore the following identities hold true

(2.28)

I
s
EQN

<
Il
o

HUH%%S"*l)

i +n—2)ck

2 (2.29)

I
s

<
Il
Jut

IV0l[Z2(gn-1y

: 1
Since Hy = (nwy,)~ 2, we have

_1
|co| = (nwn)™2

/ v(€)dH™ | <

Sn—l

/ v?(€)dH" ! <n ; L + C’s) = Ce|v||re,
§n—1

where the constant C has been renamed. Using this estimate, by (2.28) and (2.29), we have

1
2

(nwy)

o8] o8] o8]
I S R 2 < el >
b
[v] L2 Z cj=cy+ Z cj < Ce|v|72 + 2 e
j=0 j

j=1 j=1
and
0 o0
||VUHL2:Z](j+n—2 G =(n-1) Zc (n—1)(1 - Ce)|v|3s,
j=1 j=1
which concludes the proof. O

Now we give a key estimate for the main Theorem.

Proposition 2.10. Letn > 2, Ry > 0, w > 0 and let R2 > Ry be such that |Ag, r,| = w. There
exist two positive constants K > 0 and 0 < g9 < 1 — R1/Rs, depending on n, Ry and w only,
such that for any 0 < & < g, for any Q = QO\BiR1 belonging to Ag,, with Qo nearly spherical
set parametrized by v such that ||v||wi.e < e and |Q| = w, then

V(QHP(Q) — P(OHTV(Q)

NWn,

[Vo(§)?
(1 +v())?

(1) [ (@) o ©) a2 K [ e

= D) [ B @)+ o)y 1+ - (2.30)
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Proof. Using Lemmata 2.7, 2.8, 2.9, we have

[Vo(§)?
(1+0(8)?

~hra(1) /S Fra(L+ ()1 + ()" " an" !

FruD) [ B o(@) 1+ o)y 1+ ant

> [ o ()i, (1) = fy (Db (1)) d
Sn—1
112
e [ U Db (1) = (s (1) + 20 = DD (1) = i, (Dl ()] a2

no1 2
2
T N e

- AR = e KA |V,

(2.31)

where K is a positive constant. Let us set

Q1(t) == fry ()N, () = fr, ()hR, (1),
Qa(t) == fro (DN, () = fR, (DI, (1),
Q3(t) := fr,(t)hR, (1),

In order to show (2.30), we need to prove

L. Ql(l) > Oa

2. Q3(1) > 0,

3. (n—1)[Q1(1) + Q3(1)] + Q=2(1) > 0.

Indeed, when (1), (2), (3) hold, then, by using Lemmata 2.7 and 2.9, the last term in (2.31) can
be estimated as

2
Q) [ van 2= 0@0) + Q1) [
2
£ Qu(1) /Sn_l Nl gyt e woiz,
S _n; 1Q1(1> /Snil V2 dH Y — Ko |u) 2. + ((n —-1)Q:1(1) + 6222(1)> /Sn,l 02 dH"1

n—1
5 Qat) [ v eKalulia - ek Vol
Sn—l

+

= 2 (= DIQ11) + Qs(1] + Qa(1)} ol
—els|uli: — eKslvli: — K1Vl
> Klvl72 — eKallv[fyr2gn-1y,
where we denoted K = 1 {(n—1)[Q1(1) + Q3(1)] + Q2(1)} > 0 and K, = max{K;, K>, K3}.
The proof concludes by choosing ¢ small enough.

It remains to prove (1), (2), (3) by distinguishing the bidimensional from the higher dimen-
sional case. We note that

a0 = 0| 125 | -2n0 |70 (2.32)
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and
th (t)

fRz (t)

i, (t) ]” . (2.33)

]/ ) [fR2<t)

Qalt) = Q40 - [ 73,00 |
Case 1. Let be n = 2. We observe that

h’Rz (t)
fR2 (t)

is positive and strictly increasing, since it is a product of two strictly increasing positive functions.
Hence Q1(t) > 0 and in particular

@) = "2 (Vi 1 +1) = 0

= Rgt(ln(th) —1In Rl),

Moreover, it is clear that
_ e, (D)v/ha, (1)
Ry

Let us now calculate all the terms in (2.33) and evaluate them for ¢ = 1. We have

> 0.

Q3(1)

and

(00 = | e (VA n ) | = 2 (VD - ha 0).
Summing up, estimate (3) follows by

Q1(1)+Qs(1) + Q2(1) = hR2(1)R2hR2<1) + hRéil) + th(l)R;LRz(l)Jr

h;;;(l) _ thz(l)thRz(l) I hlzil) — Rig(hRQ(l) +4/hgr,(1)) > 0.

2

Case 2. For n > 3, from (2.32) we have

hr,(t) (tRy)™ 1 < 1 1 >

W, (1) ~ 2(n—2)Ry \Ry™2  (iRg)"2

that is a strictly increasing function, since it is product of two strictly increasing and positive
functions. Hence @1 (¢) > 0 and, in particular

2(n —2)?

(n—1)(n—2)
R§n73

Ql(l) = Rnfl
2

th(l) th(l) + th(l) > 0.
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Moreover, it is easily seen that

Qs(1) = "o h, (/s (1) > .
2

Eventually, we have

Q2(1) = (n— 2)3«/hR2(1) _ whm(l) hr, (1)

—1)(n—2)? —1)(n—2)?
N R T
and therefore, it follows that (n — 1) [Q1(1) + Q3(1)] + Q2(1) > 0. O

We use the previous result to give a stability result in a quantitative form.

Theorem 2.11. Letn > 2, Ry > 0, w > 0 and let Ry > Ry be such that |Ag, r,| = w. There
exist two positive constants K > 0 and 0 < g9 < 1 — R1/Rs, depending on n, Ry and w only,
such that for any 0 < & < &g, for any Q = Q¢\Bg, belonging to Ag,, with Qo nearly spherical
set parametrized by v such that ||v||lw1.» < e, and |Q] = w, then

o1 (An ) = o1(9) (1 + K(n, Ry,w) /S V2(€) d”H”‘l) .

n—1
Proof. From Proposition 2.10 we know that there exists K > 0 such that

V(AR1;R2) (Q)
P(ARth) (Q)

P(Ag, r,)P(Q) ( - ; ) > nw, K v? dH" L

Sn—1

Then, we have

— _ nK 2 dan—l
oA ) = CAmm) V@) T o
e ?(ARth) - F(Q) P(ARl,RQ)P(Q)
nwnK U2 dHn_l
o [ S
P(Q) P(ARl,R2)|Q|
— K ,02 dHn—l
T@|,, -
PO ) [+ o) + () ane
Sn—1
_ K ’U2 d?_[n—l
V(Q) gn—1 < 9 _1>
> =1+ >0 (Q) 1+ K dH™ 1),
P(Q) nwn2n71hR2(1)fR2(2) 01( ) §n—1 v

where the second inequality follows by the fact that |v|y 1. -1y < & < 1 and by the mono-
tonicity of fg,(+). O

Eventually, the main result (Theorem 2.5) easily follows by Theorem 2.11. Moreover, if
Q = ARg, R,, then the function v parametrizing the outer boundary is constantly equal to zero
and equality in (2.22) holds.
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2.4 Steklov-Dirichlet problem in the convex case

The aim of this subsection is twofold. First, we prove the existence of a maximum for o1 (2)
in the class of sets Q = Q¢\Bg,, where Qy < R”, n > 2, is an open bounded and convex set
containing Bp,, when R; and the measure of ) are fixed. Actually, we prove this existence
result also when the hole is not spherical, but it is an open, convex set K € y with non-empty
interior. Our second aim is to find the shape of the maximum when the hole is spherical.

In particular we prove that the spherical shell is a maximizer for a suitable class of annular sets.
More precisely our main result is the following.

Theorem 2.12. Let By > 0, Qo < R™ be an open, bounded and convexr set, n = 2, such that
Bgr, € Qy S B, where Bf is the ball centered at the origin with radius R given by

Rleﬁ zfn =
R= e (e — (2.34
R1[< D+(n=2)y/3( 1)] — )

n—

Then, denoting by Q = Qo\BRr, , the following inequality holds
01(R) < 01(ARy,R2); (2.35)

where AR, r, is the spherical shell of radii Ri < Ro having the same volume as Q.

We observe that the convexity assumption is not just technical but it is natural when dealing
with Steklov-Dirichlet eigenvalues (see [66]).

2.4.1 Upper and lower bounds for o,(Q2) and existence result

In this Section we prove an upper and lower bound for o1(Q2) in terms of R; and R., that are
the minimal and maximal distance from the origin of the outer boundary as defined in (1.12).
Then, we prove an existence results for a maximizer among convex sets with fixed inner ball and
fixed volume and we also generalize it in the case of a suitable not spherical hole.

Estimates in terms of R; and R,

The proof follows the same idea used in [95] for the planar case and in [73, 137] for any dimension
to obtain a lower bounds for the first Steklov Laplacian eigenvalue.

Theorem 2.13. Let Ry > 0 and Qo < R™ be an open bounded connected set with Lipschitz
boundary such that Br, € Qo and let Q = Qo\Bg, -

1 ( 1 >n10'(AR1,Ri)<O'1(Q)< <1>nlg(ARhRﬁ), (2.36)

maxgn-1 (4 /1 + LTPQOP) R R
0

where Ry, and Ry are defined in (1.12), pg is the radial function of Qg defined in (1.9), Ag, g,
is the spherical shell with radii Ry and R;.

Moreover, the equality case holds if and only if Q is a ball Br centered at the origin of radius
R > 0.
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Proof. Let u e H} Br, (©). By using spherical coordinates and the notation introduced in Section
2
Qo = {x po(x),r e S"1}.

In this case we have

/mo u? dH" T = /Sni1 u? \/1 + (W)Q (po(z))"~tdH™ . (2.37)

Then we get

(Rp)" 2 g1 < 2 g1 n—1 |Vrpol® 2 n—1
m u < u® dH < (Rp)" ™ max 1+ 5 u® dH" .
Sn—1 Qo §n—1

S§n—1 po
(2.38)
We can parametrize €2 as

Q={seR":s=zr,2eS" " R <7< po()}

by using spherical coordinates, where we denote by R(y) = po(x(y)), where 2: y e U =« R~ —
x(y) € S"71, is a standard parametrization of the boundary of the unit ball in R™. Then we get

2 Fw) ou\* 1 2 n-1_/=
Q|Vu| ds = e 3 +r—2|VTu\ /g dr dy, (2.39)

where /g is the determinant of the matrix Jij, that is the standard metric on S*~! and V,u is
the component of Vu tangential to S*~!. Then we get

R 2

m 0 1
/ / (a“) + 5 Veul? p G dr dy, < / Vul? ds <
UJRy r r Q

<[ [ 0N Lig e bt ey, (2.40)
<)ot 5 | Veul® o gdrdy, (2.

Using (2.79) and (2.81), we get

Bim ow\? 1
L) {<a> W'VT“F}WWW’  \wutas
U J Ry < Q2

2 2 n—1
(Ra)" ! max( 1+ [Vpol ) / u? dH" /as) u”dH
Sn—1 §n—1 Y

0%
R ou\? 1
et i 2 n—1 ~
LG e
< .

(Rm)n—l / U2 dan—l
§n—1

<

(2.41)

The left hand side of (2.77) follows by choosing as u the first positive eigenfunction corresponding
to 01(2), meanwhile the right hand side follows by choosing as w the first positive eigenfunction
corresponding to o1(Agr, r,,)-

Finally, we stress that the equality case implies that all the inequalities become equalities. Then
we have that V,pg = 0 and po(z) = R, with R > R; constant. O



49

Remark 2.14. We observe that the lower bound in (2.77) gives that o1(€2) > 0 being Ry > 0
fixed. Moreover, (2.77) also implies a continuity results: 01(2) — 0 as Ry — 0. It is worth
noticing that the estimate (2.77) also holds when € is starshaped.

The existence result

Inequality (2.9) ensures that the Steklov-Dirichlet eigenvalue o1 (f2), defined in (2.2), is bounded
from above if the volume of € is fixed. In this section we prove the existence of a maximizer
among convex sets with fixed internal ball and fixed volume. Let w > 0 and R; > 0 be fixed,
then by Apg, (w) we will denote the class of convex sets having measure w and containing the ball
Bpg,, that is

Ag, (w) := {D = K\Bg,, K < R" open, bounded, convex : Bg, € K, |D| = w}.
The main theorem of this section is the following existence result.

Theorem 2.15. Let w > 0 and Ry > 0 be fized. There exists a set E € Ag, (w), such that

D) = E).
DAy D) = 71 (E)

Proof. The upper bound (2.9) implies that there exists M > 0 such that

sup o1(D) =M < +oo0.
DeAp, (w)

Hence, there exists a sequence {Ej}ren S Ag, (w) such that

lim o1(E)) = M.
k—0o0

In order to show the desired result, we need to prove the existence of a set E € Ag, (w) such that
Ej, 5 E with o1 (E) = M.
Firstly we prove that, up to a subsequence, {E}}ren converges to a certain F € Ag, (w) in
the Hausdorff metric.
Being {Er}ren S Ag, (w) then, for every k € N there exists a convex set Eyj, such that
Bgr, € Ey 1, -
Ey = Eox\Br,

and
wo = |E07k| = w +wnR?.

By the Blaschke selection Theorem and the continuity of the volume functional with respect to the
Hausdorff measure (see [122] as a reference), it is enough to show that {Ep x }ren is equibounded.
We proceed by contradiction assuming that

lim diam(Ey ) = +c0. (2.42)
k—+00
Inequality in Proposition 1.12 gives
n|Eo
R < -, 2.43
Eo,k P(Eo,k) ( )

where R, , is the inradius of Ep defined in (1.15).
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The assumption (2.42) and the inequality (1.23) imply that the right-hand side in (2.43)
tends to 0 as k — +0, being |Ey x| fixed. Therefore, by (2.43), we have

kll»rfoo R =0,
which is in contradiction with
0< Rl < REo,k'

Hence, the equiboundeness is proved and then {Ej}ren converges up to a subsequence to a set
E € Ag,(w) in the Hausdorff metric. Hence, by the definition of Ag, (w), there exists an open
bounded convex set Fy such that £ = EO\ERI.

In order to complete the proof, we will prove that

M = 1i]£n(71(Ek) < J1(E). (2.44)

Let u e HalBR1 (E) be the first positive eigenfunction associated to o1 (E), such that

/ w2 dHM = 1.
dEq

o1(E) =/ |Vu|? da.
E

By the extension theorem (see for instance [35, 126] for Lipschitz domains), we can extend u in
R™ obtaining a function u € H(%BRl (R™) such that @ = u, a.e. in F, and

Hence, we have

HﬁHH;BRl ®r) S C(”)\\U\\H;BRl (E)

for some positive constant ¢ = ¢(n). For every k € N we define uy as the restriction of @ in Ej.
Using uy, as a test function for o1 (E}y), we have

/ |Va|* do
Ey

/ a2 dH !
an,k

In order to get (2.44), we prove that the right-hand side in (2.45) converges to o1 (E). We observe
that

o1(E) < (2.45)

/ |Vil? do —/ Vil do = / (xE, —xg)|Vil? dz — 0, (2.46)
FE E R™

since Ey — E in the Hausdorff metric and by the dominated convergence theorem.
In order to conclude the proof we have to prove

/ @ dH" — u? dH" ™ = 1. (2.47)
aEO,k f)Eo

The equiboundedness of the sequence {Ep j}ren guarantees the existence of a ball B centered
at the origin with radius R > 0 such that Ey, < Bpg, for every k € N. Extending % to zero in
Bpg, and by using an approximation argument, we can suppose that @ € C*(Bgr). Then (2.47)
follows by Theorem 1.11.
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Finally, passing to the limit in (2.45), by (2.46) and (2.47), we get (2.44), that is
M <01 (E)

and, consequently, we can conclude that

obtaining the desired claim. O

Remark 2.16. We observe that the above existence result holds even when we consider Qg =
Qo\K, where K is a convex set with not empty interior strictly contained in €y. Indeed, by
using the upper bound (2.19), the proof can be done following line by line the one just discussed
in the case of a spherical hole.

2.4.2 Proof of the main result

In this section we give the proof of the main result. The idea is to take as test function in the
quotient (2.3) the eigenfunction of the spherical shell with the same measure as 2. Before giving
the proof, we need a preliminary result.

Lemma 2.17. Let Ry > 0 and let f be the function defined in ]0, +o0[ as

log? (%) Vit n=2
= 2 n—
A T

Then, f is convex for every a_(n)R} <t < ay(n)RY, where
et2Vv2 n=2

a+(n) = n— n— n— 7
+(n) [( 1)+ ( n_zim( 1)] n> 3

Proof. Let us begin with the bidimensional case. After an easy computation one can see that

f”(t) _ 2-1 itf/\g/%/Rl)’

which gives immediately the conclusion.
Now let us consider n > 3. After some computations the second derivative of the function is
the following

4—2n 2—n
() = t3—3[31 (1 - 1)t2—i 4 2 (1 - 1) =% (3 - 2) (3 - 1)]
n n n n n n

If we call y = t'=% , the previous function is non-negative if and only if

4—2n 2—n
g(y):Rl (1—1>y2+2R1(1—1>y+<3—2>(3—1)>0.
n n n n n n

It is not difficult to check that the zeros of g(y) are

14 (n—2)320n 1)
n—1 ’

-
y+ = R} ™2

Being y_ = 0 for n = 3 and y_ < 0 for every n > 4 it must be y_ < y < y, which concludes
the proof. O
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Now we can prove the main result.

Proof of the Theorem 2.12. Let us consider the fundamental solution w, given in (2.6), as a test
function in (2.2). Then,
/ |Vw|? da

/ w? dH™~ L
Qo

In order to prove the result we will show that

/ |Vwl|? d / [Vw[? da
Q < ARy, Ry

~
/ w? dH™ ! / w2 dH !
(‘)Qo (‘)BRQ

Since |Vw|? is a non-negative radially symmetric decreasing function for any n > 2, it co-
incides with its Schwarz symmetrization. Hence by the Hardy-Littlewood inequality [92, Th.
1.2.2], we have

/ |Vw|? da = / |Vwl|? dx—/ |Vwl|? dx
Q Qo Br,
</ |Vaw|? dx—/
BR2 Br

Hence, it remains to prove the following inequality

/ w? dH" ! > / w? dH" L. (2.50)
o OB,

Let po be the radial function of g defined in (1.9). By (1.11), 0 can be represented as follows
Qo = {x po(x),r e S" 1},

with Ry < po() < R and R defined in (2.34).
Firstly, let us consider the case n = 2. If we denote by z(0) = R%(0) = pZ(x(0)), being || =
| Bg,|, it holds

= UI(AR17R2)- (248)

(2.49)
|Vw|? do = / |Vw|? d.
Ry,Ro

1

1 27

Ry =4/ 5 i 2(6)do. (2.51)

Moreover, we get

[ s = [ ton(ie) tog 1) ds = /0%105 (&) o+ (g > ”

> /27r log? (R(e)) R(6) do = /27r log? <F> \/2(0) df

> 27 log?
= 27 R, log? ( 2> —/ w? ds,
Ry 2B,

(2.52)
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where, since pg(z) < R, the last inequality follows by Lemma 2.17 and by Jensen’s inequality.
This conclude the proof of (2.50) in the bidimensional case.
Now, let us consider the case n > 3 and we proceed in a similar way.

Moreover since )
Q0] = */ pg () dH"
n Jsn—1

and being Q| = |Bg,|, it holds

) 3

where z(x) = p{j(x). Then, we have

/0Q0 w2 dH"! — /aQO (R%‘Q B |x|i2)2d7{n—l
L (R?12 - <po<x1>>n2)2<po(x>>"—1¢1 N (Vp(f)&(f)f gt

- /s <R§}2 N (Z(x)l)n;z )2(2(96))"”1 dp !
Nin 20 (0 (@) dH
R?lz : (Jgn-1 2(2) dHnl)nnz] (fs r(w)ndH >

1 1)°
= NWny, <7L—2 - 7’L—2) R;_l = / ’lU2 d?‘[ﬂil.
Rl R2 0BR,

where last inequality follows by Lemma 2.17 and by Jensen’s inequality, being po(z) < R. This
gives (2.50) for n > 3 and concludes the proof. O

= nwn[

2.4.3 Some remarks about the perimeter constraint

The estimate (2.15) states that the first Steklov-Dirichlet eigenvalue is bounded from above also
when we keep the outer perimeter and the radius of the inner ball fixed. So, it is natural to
investigate if there exists a set which maximizes o1(2) in the following class

Br, (k) :={D = K\Bg, , K = R", open, convex : Br, € K, P(K) =k},

where R; > 0 and x > nwnR?_l. Arguing as Theorem 2.15, we obtain the following existence
result under a perimeter constraint.

Theorem 2.18. Let & > nw, R}~ be fized. There exists a set Q € Br, (k) such that

sup  01(D) = 01(Q).
DEBRI (K,)

Remark 2.19. We stress that inequality (2.49) continues to hold true even if we fix the perimeter
of Q. Indeed the isoperimetric inequality ensures that the ball Br, centered at the origin and
having the same measure than )y is contained in the ball centered at the origin and having the
same perimeter than .
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On the other hand we cannot prove, instead, the inequality (2.50) under the perimeter con-
straint in order to obtain that the spherical shell is still a maximum for oq(€2). Indeed, if we
proceed as in the proof of Theorem 2.12, for instance in the planar case, equation (2.51) has to
be replaced by the following inequality:

2 / 27
21 Ry = P(Bg,) = P(Q0) = / 1 + R g d9 / (2.54)

where R(0) = po(x(0)) Then, in the last step of (2.52), after using Jensen’s inequality, we do not
obtain the first Steklov-Dirichlet eigenvalue of the spherlcal shell, since (2.54) is not an equality.

In support of this fact, we give the following numerical counterexample obtained by using
™WxMaxima. We consider Ry = 107° and Qg an ellipse with the same perimeter as AR, 1. Let
a and b the semi-axes of the ellipse. In order to compute the integral over the ellipse, we used
the formula P(Qg) = 274/ “2241’2, which is an approximation by excess for the perimeter of the
ellipse. Here we have chosen b = 1.1. We obtain

D(Arg, 1) ~ 832,820208 > 828,919156 ~ D(Qy),

where D() = fmo w?ds and w is the fundamental solution defined in (2.6).
This means that we cannot study separately the numerator and denominator terms to obtain
inequality (2.35) under perimeter constraint.

2.5 The Steklov-Robin eigenvalue problem

Let Q = Q¢\B,. Here Qy < R", n > 2, is an open, bounded, connected set with Lipschitz
boundary and B, is the ball of radius » > 0 centered at the origin such that B, € Qp. As we
said in the introduction we deal with the following Steklov-Robin eigenvalue problem

Au=0 in Q

ou

5, = 0u on 09 (2.55)
@ +pBu=0 ondB,,

ov

where v is the outer unit normal to 02 and 5 > 0 is a positive real parameter.

Definition 2.2. A real number o () and a function u € H*(2) are, respectively, called eigenvalue
of (2.55) and associated eigenfunction to o(2), if and only if

/<Vu, V) da +ﬁ/ upd M = U(Q)/ up dH"
Q 0B, 00

for every p € H(Q).
We study the first eigenvalue o5(€2) of (2.55) defined as (see Section 3 for the details)

|Vo|? do + ﬁ/ v dH"
Q OBy

Q) = inf . 2.56
75(8) veHll?Q)\{O} / o2 dHn! (2.56)
290
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We prove that o5(Q?) is a minimum, it is simple, and that the corresponding eigenfunctions have
constant sign.
Let us define the following quantities

Vol? d
p(@Q) = iof L”L“T (2.57)
veH (Q\(0}  [oq, v2dT
Jop, vdH" =0
and
/ ’LU2 anl
@ (Q) = inf 208 (2.58)

Aw=0 2 ,17
wEHl(Q)\H;BT(Q)/ wH"
Qo

We observe that u(€2) is the first nontrivial Steklov Laplacian eigenvalue in §2. Then our result
is the following

Theiorem 2.20. Let Qg = R™ be an open, bounded set with Lipschitz boundary and let =
Qo\B,., where B,. is the ball centered at the origin and with radius r such that B, € Qy. Then
the following estimates hold

1 1 P()
(@) S @ P, (2.59)

and
! L ! (2.60)

< + :

o5() o) @(®)

where og(§2) is the first Steklov-Robin eigenvalue of Q defined in (2.56), op(Q2) is the first Steklov-

Dirichlet eigenvalue defined in (2.2), u1(Q) and g1() are defined in (2.57) and (2.58), respec-
tively.

As a consequence of the above estimates we can obtain the quoted asymptotic behaviour of
03(£) with respect to 8 in both case, when 3 either goes to zero or to infinity.

2.5.1 Existence and basic properties of 03({2)

In this subsection we define and study the main properties of the first Steklov-Robin Laplacian
eigenvalue in Q = Qg\B,. Let 05(2) be the following quantity

o5(Q) = inf J[v], (2.61)

veH ()
v#0

/ |Vol? da:+ﬁ/ v dH"
o] = 22 OB,

where

(2.62)
/ v? dH" !
Qo
and [ is a positive parameter.
We observe that by (2.61) we immediately get
05(02) < op(), (2.63)

where op(Q) is the first Steklov-Dirichlet eigenvalue defined in (2.2). In the next result we prove
that o(2) is the first eigenvalue of problem (2.55) and we show some basic properties of o3(2)
and its corresponding eigenfunctions.
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Theorem 2.21. Let n = 2 and Q = Qo\B,., where Qg is an open, bounded and connected set
with Lipschitz boundary in R™ and B, a ball centered at the origin of radius v > 0 such that
B, € Qy. Then 05() is actually a minimum, that is
03(2) = min J[v], (2.64)
veH (Q)
v#0
where J[v] is defined in (2.62). Moreover o3(2) is the first eigenvalue of (2.55), it is strictly
positive and any minimizer has constant sign.

Proof. Let us notice that the Rayleigh quotient J[w] defined in the previous proposition is always
non-negative and 0-homogeneous. Let us consider a minimizing normalized sequence {uy}nen
such that [un|r200,) = 1, i.e. limp o J[un] = 05(2). By (2.63), J[u,] < op(2), then by
Friedrich’s inequality (1.5), |un|z2(q) is uniformly bounded from above. By the compactness
of the embedding H'(2,09) = L?(f2), there exists a subsequence, still denoted by u,, and a
function v € H'(Q) with ||ul|r2(50,) = 1, such that u, — u strongly in L?(Q), hence also
almost everywhere, and Vu,, — Vu weakly in L?(Q). Moreover, by the compactness of the trace
embedding theorem (1.4), wu, converges strongly to u also in L?(dQ) and almost everywhere on
0 to u. Then, by weak lower semicontinuity we have
lim J[u,] = J[u].

n—+00

Hence the existence of a minimizer u € H'(Q) follows.

It is obvious the fact that 05(Q2) > 0. By contradiction let us suppose that og(2) = 0. This

means that
/ |Vul|? dz +5/ w?dH" ! = 0.
Q 0B,

It follows that | Vul 2 (o) and |[uz2(sB,) are both zero. From the first we have that u is constant
a.e. in Q and then it must be v = 0 in Q, which is an absurd. Therefore og(£2) > 0.

By classical arguments of Calculus of Variation it is easy to prove that (2.55) is the Euler-
Lagrange equation corresponding to (2.64). Here we write down the proof for completeness. Let
u € HY(Q) be minimum of the Rayleigh quotient (2.62) and let m € R its value, i.e. J[u] = m.
Let us now consider the first variation of J[-]. If v € H(Q), we define the following function

f(e) = J[u+ ev].

It is clear that f(0) = m and in particular we have that

/ u?dH" - f(0) = 2</<Vu,Vv>dx +6/ uvd?—["l)/ u? dH™ !
Qo Q 0B G

- (/ |Vul? dx—l—ﬁ/ u? d?-{"_l)/ uwwdH" =0
Q 0B, Q0
if and only if

JolVu, Voyde + B [, uwodH" _ JoIVul?dz + 8 [, u?*dH"!
Joq, uwodH" ! Joq, urdH

=1m.

Since the relation written above is valid for every v € H'(f), the proposition is proved by
definition of weak solution.
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In particular it follows that () is the smallest eigenvalue of problem (2.55). Indeed let us
suppose that v is another eigenfunction of (2.55) with corresponding eigenvalue 6. Then an
integration by parts gives

_ fQ |Vo|? do + 6](93," v2dH ! _ fm %ud?{”fl + 6]&31, w2 dH !
= Joq, v dH ! Joq, u? dH !

=o0.

o5(%2)

It only remains to show that any minimizer has constant sign. If u be an eigenfunction corre-
sponding to (), then J[u] = J[|u|]. This implies that v = |u| on  and therefore u > 0 on
2. By Harnack inequality (see [136, Thm 1.1]), w is strictly positive on €.

O

Next propositions concern the simplicity of o5(£2) and sign properties of the corresponding
eigenfunctions.

Proposition 2.22. 03(1) is simple, which means that there exists a unique corresponding eigen-
function up to multiplicative constants.

Proof. Let us now suppose that v is another eigenfunction corresponding to c(£2). Since v > 0

in €, it follows
/ vdz # 0.
Q

Hence there exists a positive number A > 0, such that

/Q(u—/\v)dxzo.

Since u — Av is another eigenfunction corresponding to the same eigenvalue, it is necessary that
u = Av in €0, which proves the simplicity. O

Proposition 2.23. Let n > 2 and Q = Qy\B,., where Qq is an open, bounded and connected
set with Lipschitz boundary in R™ and B, a ball centered at the origin of radius r > 0 such that
B, € Q. Any nonnegative function v e H(Q) that satisfies in the sense of definition (2.2)

Au=20 in Q

ou

5, = 0u on 0% (2.65)
@ +pu=0 on 0Bg,

ov

is a first eigenfunction of (2.65), that is 0 = 0(2), and v = u (up to multiplicative constants),
where u is the eigenfunction corresponding to the first eigenvalue o5().

Proof. Since u is a positive eigenfunction corresponding to o5(f2), it satisfies

/Q\vuP dx+6/aB wdH" = 05(Q) /m u? dH™ L. (2.66)

While if we consider as a test function for v, the function u?/(v + €), for some ¢ > 0, we get

/ 2u(Vu, Vu) u?|Vol|?
Q v+e (v+¢)?

] dx + 8 L wzdHmt = a/ w? dH" . (2.67)
2

aBTU‘f'S QOU+€
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If we subtract (2.66) by (2.67), since v/(v +¢) < 1, we get

2 2 2
0< / dr — / ‘vu|2_2u<Vu,Vv> LU [Vl de
Q Q v+eE (U+€)2

v
< ) — 2 amrn—t.
/aao [06( ) UU+5]U

uVvu
v+ €

Vu—

Passing to the limit as € — 0, we get
[05(Q) — o] / W2 "1 > 0,
Elon

Since 05(12) is the smallest eigenvalue, the only possibility is that o = 05(2) and by the simplicity
of the first eigenvalue, it must be v = u up to multiplicative constants. O

2.5.2 The first Steklov-Robin eigenvalue in the spherical shell

Let us consider now A, p = BR\E, where Br and B, are balls centered at the origin with
radii R > r > 0. Let 8 > 0 be a positive real parameter and let us consider the Steklov-Robin
eigenvalue problem for the Laplacian in the spherical shell

Au =0 in AT,R
X 4+ Bu=0 ondB, (2.68)
WU _ gy on 0Bg,

ov

where v is the outer unit normal to 0A, g.
We are going to compute the solutions to problem (2.68).

Theorem 2.24. The first Steklov-Robin eigenvalue of the problem (2.68) is

1
_—t =2
R R "
Br + Rlog .
UB(AT,R) n—2 n>3 (269)
n—2/R n—2 R n—2 =
— + Rl — -1
B r r
and the corresponding eigenfunctions are the following
1
log m + Br n=2
r r
u(@) =4 1 1 -2 1 ; (2.70)

-~ +
rn—2 ‘x|n—2 B an72
Proof. Since the radial symmetry of the problem and the rotational invariance of the Laplacian,

we look forward to a solution which is of the type u(z) = v(|z|) = v(s), where s = |z|. Computing
the Laplacian of v we get

which is equivalent to
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So integrating twice we get

cilogs+cy n=2
v(s) —{ 161g ? (2.71)

ﬂ‘f'CQ n = 3.
S

We are going to find the solution to (2.68) by using the boundary conditions on B, and Bg. Let
us begin by the bidimensional case. Using the boundary condition we get the following system
in the unknown variables ¢; and co

{Crl + f(crlogr +c2) =0

2.72
%—a(cllogR—ch):O. ( )

Since this is a homogeneous system, the only way not to have ¢; = ¢o = 0 is that

—1/r+ Blogr B\ _
det(l/R—UlogR o) =

From this we get that
1
03(ArR) = v——.
p(4rr) % + Rlog %

Since this choice of o, ¢; and ¢ must be linearly dependents. Hence if we chose ¢; = 1, by using
the second equation in (2.72) we have that

1 1 R 1
02fﬁ—longE—klog?—longE—logr.

Hence inserting ¢; and ¢z in (2.71), we have
|| 1
=log — + —.
u(z) = log - -

In higher dimensions the system becomes

{,12_2101 + Btz +c2) =0 (2.73)

—pZ e —o(gis +c2) = 0.

Proceding in the same way as before, we find that

S

o=0p(AR) =

Hence chosing ¢; = —1

1 n—2 1 n—2 1

Rn—2 + ocRr—1 = pn—2 + B Ryrn—2’

Cy =

and
1 1 n—2 1

rn—2 B ‘mln—2 + 6 an72'

u(z) =

Eventually, in any dimension, with these choices of the constants ¢y, ¢o, the corresponding eigen-
functions do not change sign and so they must be eigenfunctions corresponding to the first
Steklov-Robin eigenvalue og(A, ). O
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By the explicit form of o3(A, g) and the corresponding eigenfunctions in (2.69)-(2.70), we
deduce the following properties when we let vary 8 or the radii of the spherical shell.

e limg_,g03(Ar,r) = 0, and in particular
P(Br)

. UB(AT,R) .
Jim ZEZE — SR (2.74)

e Recalling the explicit value of the first Steklov-Dirichlet eigenvalue of spherical shells (see
[139, 75, 106]), we have

lim op (A’I‘,R) = JD(A’I”,R)' (275)
B—0
e Finally we have
hH(l) GB(AT,R) = }l%imO O’/g(Ar’R) = O7 (276)

We will see in the next section that all of these behaviours will persist in the case of a generic

Q.

2.5.3 Asymptotic estimates of 03(2) with respect to 5 and r

In this section we will study the behaviour of o5(€2) when § and r vary.

Behaviour with respect to the inner radius

We will prove that (2.76) continues to hold for a general annular domain Q by proving some
suitable estimates in terms of the radius of the hole. Indeed let us consider the spherical shell
A, R,,, where Ry, is defined in (1.12), which is contained in Q. If we choose as a test function in
the variational characterization of o5(£2)

B v(|lz]) inArr,
v v(Ry,) InO\A, R,,,

where v is the first eigenfunction in A, g, , then

05() < 0p(Ang,,)-
As a consequence when r — 0,
og (Q) — 0.
A natural question, now, is asking if we have a lower bound in terms of the first Steklov-Robin

eigenvalue of an opportune spherical shell. In the following result we prove that for starshaped
set is possible to have an optimal lower bound o3(£2).

Theorem 2.25Jet r >0 and Qo < R™ be an open, bounded starshaped set such that B, €
and let Q = Qo\B,.. Then, it holds

05 (ArR,,)

Uﬁ(Q) = n—1 Vepol2\’
RM maXxXgn-—1 ( 1+ ;73)

(2.77)

where Ry, and Ry are defined in (1.12), po is the radial function of Qo defined in (1.9) and
Ay R, is the spherical shell with radii v and Ry, .

Moreover, the equality case holds if and only if Qg is also a ball Br centered at the origin of
radius R > 0.
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Proof. We will follow an idea used in [95] for the planar case and in [73, 137| for any dimension.
Let u € H*(Q2) By using spherical coordinates and the notation introduced in the preliminaries:

Qo = {x po(x),r e S" 1}

and
0B, = {xr, e S"71}.

The integrals over the boundaries 09y and dBg of u? become

2
/ W2 dH :/ W a1+ <VTP0> (po)" ' dH" 1,
0 sn-1 Po

/ u? dH" 1 :R”*l/ u? H L (2.78)
aBR §n—1
In particular we have
2
/ w? dH" T < (Ry)" 'max [ 4 [1+ ‘VTQ’(” / u? dH" L (2.79)
690 §n—1 pO sn—1

We can parametrize
Q={seR":s=af, 2eS" ' 7 <7<pyx)}

by using spherical coordinates, where we denote by R(y) = po(z(y)), and x: y e U =« R*1 —
x(y) € S*~! is a standard parametrization of the boundary of the unit ball in R”. Then we get

9 R(y) ou 2 1 9 S _
Q|Vu| ds = ; P +F—2|V7u| LN/ g dF dy, (2.80)

where /g is the determinant of the matrix g;;, that is the standard metric on S*~! and V,u is
the component of Vu tangential to S*~!. Therefore

R 2
m 1
|Vul? ds > / / { (%) + ~2|V7u|2} 1/ g dF dy, (2.81)
Q UJr or r

Combining (2.79), (2.78) and (2.81) and recalling (2.64), we get

Bom ou\? 1
L) ot o
9)2 UJr sn— .

o5( -
(Ra)™ ! max 1+% / u? dH" !
§n—1 po §n—1
A
UB( T)R'rn) . (282)
V. pol?
(RM)"lmax< 1+| §O>
Sn—l pO

Finally, we stress that the equality case implies that all the inequalities become equalities.
So, we have that V,.pg = 0 and po(z) = R, with R > R constant. O
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Theorem 2.25 tells us that as long €2 is an open, bounded starshaped set, and r > 0, then
03() remains away from zero. Is this property still true for any open, bounded set in R™
with Lipschitz boundary? In general the answer is no, as showed in the following bidimensional
counterexample, that is contained in [79], that can be easily generalized in any dimension.

Counterexample 2.26. Let us consider a sequence of open, bounded and connected sets {Q.} <
R2? as follows

Q. = B(xzo) v R: U (B(z1)\Br(1)).

€ € e &3
fie = (‘2’2) - <_2’2)

is a rectangle centered at the origin with sides of length € and € respectively, B(z1), B(x2) are
two dimensional balls of radius 1 centered at the points x1 and x2, chosen such that the rectangle
R, is well glued and eventually B, (x2) is a concentric ball in B(xs) of radius 0 <r < 1.

Here

Let us consider the following function
2
sin o in R,
u(z,y) = €
0 elsewhere,

which is a continuous test function for the first Steklov-Robin eigenvalue.
Let us evaluate u in the numerator and denominator the Rayleigh quotient. The denominator

becomes
3 2
/ wWdH ! = / w2dH ! = 2/ sin? (m) dx
09, OR. -£ €
drx
£ ) . H 1 —cos ( )
:4/ sin ()da:—él/ dr =¢
0 0 2
Since

ou\ 21\ 2 2mw
Vul?= (=) = (=) cos® [ == ),
[Vl <0$> ( £ ) ( £ )
we have that the numerator is

2 .2 e
/ |Vu|? da dy =/ |Vu|? do dy = (27T> /2 /2 cos? (47r:v> dx dy
Q. R. 2 -2 J- 2

5
dmx
- 2 % 1+ cos T
= 2<> 53/ —— — 7 dx = 2122
€ 0 2
In this way, since u is zero on 0B, (x2), we get

/ \Vu|? dx
Qe

op(Q) € —e——— = 1%,
/ w2 dH™ !
Q.
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and
O'ﬂ(QE) — 0

as € —> 0. We stress the fact that the same proof can be exhibited even in the Steklov-Dirichlet
case.

This counterexample gives us two information. The first is the one we already mentioned: if
Qo is not starshaped, the first eigenvalue could be arbitrarily close to zero. The second one is
that when 2 is not connected, then og(€2) could be zero, even though r > 0.
Behaviour with respect to

In this section we will give the proof of the Theorem 2.20.

Proof of Theorem 2.20. Firstly we prove inequality (2.59). We observe that the claim is well
posed since, by proceeding analogously as in the existence theorem, p;(Q) is positive. For any
w e H(Q), for simplicity, we will use the following notation

zxw);:AJVdex (2.83)

Let u be a positive eigenfunction corresponding to o5(€2). By the Minkowski inequality and the
definition of p;(Q2) we have

/ u?dHr—1 < / (u—c)2dH"1 ++/c2P(Q) < D(u) +4/c2P(Qyp),
a0 Io 11 ($2)

where c is )
c = U dHn_l, (2'84)
HMA&
Squaring and using the arithmetic-geometric mean inequality, we have
D D 2P(Q
/ u2dan—1 < (u) +C2P(Qo) +92 (U)C ( 0)
000 p(r, o) p(r, Qo)

_ D(u 1 P(Qo) 2 1 P(Q0) (2.85)
2 (i + Apcy) * 47 (e * 77(B9)

_ 1 P(Qo) u) 4 2
By (2.84) and Holder inequality, we get

/(mo utAH < (M}Q) - ﬁ];((g;;)r)» (D(U) th B, v d’}-{,"—l)
1
1(

- (o * pmy) (0@ L. ),
which gives (2.57).

Now we prove inequality (2.60). Let u be the eigenfunction corresponding to o5(f2), solution to
problem (2.55). Let us observe that u = v + h, where v and h solve the following problems

(2.86)

Av=0 1inQ Ah=0 inQ
v=0 on 0B, h=u on 0B,
L= 2 on0Qy, 9 —0  ondQ.
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It is easy to check that

/|vu|2 d:c:/ |Vol? dm—i—/ IVh|? dz. (2.87)
Q Q Q

Then, proceeding as the proof of inequality (2.57), by applying Minkowski inequality and using
(2.87), (2.67) and (2.58), we get

/ u2 anl < / ,02 anl + / h2 anl
aQO OQO 890
1 1
<4 | ——=D(u) + —/ u? H L
\/ oy \/ 2@ Lo,

Squaring both sides and applying the arithmetic-geometric mean inequality we have

_ D(u) 1 _ D(u) 1
w? dH" ! < + / u?H 2 / u2 Hn—1
/mu op(Q2) @ (9) 0B, op () 1(2) 0B,
1 2 n—1 B / 2 n—1
< + + u“H + u“H
op())  Bu(Q) () /é’Br op(Q) Jop,
1

- (o * 7)) (P05 o W),

This gives (2.60).
O

Remark 2.27. We stress that a rough but meaningful estimate can be obtained choosing as a
test function in (2.64) the constant function. In this case we have the following upper bound

P(B,)
o3(Q) < , 2.88
5(Q) < B PQy) (2.88)
which immediately gives that when 5 — 0, then 03(2) — 0. However inequality (2.57) allows

us to show that, as in the radial case, it holds

- 0s(Q) _ P(By)
lim =2 = S (2.89)

Indeed we have
P(Br) _ op(Q) P(B,)p ()

P(Q) ~ B T P(Q)B+ P(Qo)u ()
where the first inequality follows by (2.88) and the second by using (2.59). Taking in (2.90) the
limit for 8 which goes to zero one get (2.89).

(2.90)

Remark 2.28. We observe that inequality (2.60) gives

S S
o5(Q)  op(Q) ~ Bar(Q)

which immediately implies that
lim 03(R) = op(Q).

B—0



Chapter 3

Some results about the Robin type
boundary conditions in the linear
and non linear case

In this Chapter we focus our attention on varius problem involving a Robin boundary condition
type.

In Section 3.1 we prove a result a la Talenti for the solution to the anisotropic Laplacian with
Robin boundary condition. In particular we prove that the solution to the above mentioned
problem can be upper bounded by the solution to the symmetrized problem in terms of Lorentz
norm, and in more particular cases a pointwise estimate is found. Moreover a Bossel-Daners
inequality in the anisotropic case is proved in dimension 2.

In Section 3.2 we consider the Torsion problem with robin boundary condition in the linear case.
We compute the shape derivatives of the LP and L® of the torsion function and prove that the
ball is a critical shape for these functionals.

3.1 A comparison result a la Talenti for the anisotropic
Laplace eigenvalue problem with Robin boundary con-
dition

3.1.1 Definition of the Robin problem in the anisotropic case

Let © < R™ be an open bounded set, with Lipschitz boundary. Let us consider the following
anisotropic problem with Robin boundary conditions

—div(H (Vu)He(Vu)) = f in Q

(3.1)
H(Vu)He(Vu)-v+ BH(v)u =0 on 09,

where f > 0 (not identically zero) belongs to L?(2), H is a sufficiently smooth norm in R”, v is
the Euclidean outer unit normal to d€2 and 8 > 0 is a positive real parameter.

65
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A weak solution to problem (3.1) is a function u € H*(f2) that satisfies

/ H(Vu)He(Vu) -Veodr+ 8 | H@)updH" ' = / feo Vo e HY(Q). (3.2)
Q o0 Q
We recall that the Wulff Shape centered in xy € R™ of radius R is defined as follows

Wr(zg) = {x e R" : H°(z — z¢) < R},

where H® is the dual norm of H. In particular we will denote by W the Wulff Shape centered
at the origin of radius 1 (for the exact definitions, see section (1.4)).

The aim is to estabilish a comparison result with the solution to the following symmetrized
problem

—div(H(Vv)H¢(Vv)) = f* in O

H(Vv)He(Vv)-v+ BH()v =0 on dQ*, (3:3)

where f* is the convex symmetrization of f and Q* is a set homothetic to the Wulff Shape W
such that |Q*] = |Q].
In particular what we are going to prove are the following theorems.

Theorem 3.1. Let ben = 2. If u and v are the solutions to problems (30) and (32) respectively,
then

[ulzra) < lolirisy  forall 0<p<g (3.4)

n—2

and

HuHsz,z(Q) < ”UHL2P~2(Q*) forall 0<p< (3.5)

n
3n—4"

Theorem 3.2. Letn =2, f =1 in Q. If u and v are the solutions to problems (30) and (32)
respectively. Then

u*(z) <v(z) TeQr, (3.6)
where u* is the conver symmetrization of u.

Theorem 3.3. Letn = 3 and f = 1. If u and v are the solutions to problems (30) and (32)
respectively, then

lullra o) < [v]zea(an (3.7)
and
Jull 2n2(0) < 0] p2n2(, (3.8)

for all0 < p < 5.

3.1.2 Existence, uniqueness and properties of the solution

In this subsection we want to prove that there exists a unique solution to problem (3.1) exists,
which is furthermore unique and non-negative.
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Existence

Let us consider the following energy functional

Elw] = %/QHQ(Vw)dx—i-g mH(u)deH”_l—/wadx7 we HY(Q). (3.9)

We notice that the Euler-Lagrange equations of this functional is (3.1), hence if E[-] has minima,
there exists a solution to the considered problem.

Let us proceed with the classical Calculus of Variation method to prove the existence of a
minimum.

1) Lower bound. Let us prove that the functional (3.9) is lower bounded. From (1.30) and the
generalized Young’s inequality we have

2
Y By € 1
Elu] > ?HVUH%?(Q) + 7“““%2(052) - 5”“”%2(9) - ngH%m)
€ 1
> (19uls + Wl ) = Sl = 5211 e
€ 1
> (Ca- 5 )t - 521 e

In the last inequality we have used a Poincaré inequality with trace term (see for instance
[25, 30, 96]). Here Cy = C2(8,, ). If we choose € small enough, then

1
Elu] > _%Hf”%?(sz) > —©.
We have proved in this way that the functional is bounded from below. Let us denote by

= inf Elw]. 3.10
mi= ot Fll (3.10)

and let {u;} = H'(Q) be a minimizing sequence, i.e.

lim Efug] = m.

k—00
We can suppose that Fug] < m + 1 for all k € N.
2) Compactness and lower semicontinuity. Using again (1.30) and the generalized Young’s
inequality, we have

2
v By € 1
m+1= ?HvukHQLQ(Q) + (2 - 2) lun 2y — 2*6||f\|%2(9)

ol € 1
= 3“VWH%2(Q) - 5”“16“%2(9) + 03HUk||2L2(Q) - Z‘Lﬂ‘%ﬁ(ﬂ)a

. . . 2 €
Choosing € small enough and calling C3 = min(%-, %’ -5

- m+ 1 1 9
|kl o) < N + m”f”m(ﬂ) < .

Hence {uy} is bounded in H'(£2), so there exists a subsequence {uy,} < {uy} that converges
weakly in H'(Q) and strongly in L?(f) to a function u € H'(). To simplify the notation let us
continue to call the subsequence as {uy}.
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By the strict convexity of the functions t — t? and H? it is straightforward to prove that the
functional E[u] is weakly lower semicontinuous, i.e.

liminf Elug] = E[u] = m.
k—o0

This proves that E[u] = m and v is a minimum.

Uniqueness and non-negativeness

Let us prove now that the minimum of (3.9) is unique. If u,v € H(Q), by the strict convexity
of the funcion H? we know that if ¢ € [0, 1], then

H?*(tVu + (1 — t)Vo) < tH*(Vau) + (1 — t)H*(Vv). (3.11)
The equality occurs if and only if ¢t = 0 or ¢ = 1. Analogously
[tu+ (1 —t)v]* <tu® + (1 —t)?, te[0,1]. (3.12)

Let u € H'(Q) be a minimizer of (3.9) and let us suppose that there exists another minimizer
v e HY(Q), such that u # v. Hence E[u] = E[v] = m. Let us denote by w = u + v and choose
t =1, then by (3.11) and (3.12)

E[w]<@+@=m

This fact contraddicts the minimality of u and so the minimum must be unique.

Let us now show the non-negativeness of the solution. Let u be the unique minimum of (3.9),
namely F[u] = m. If we consider |u|, by (1.29), we get

H2(V|u|) = H2(|Z|Vu> — H2(Vu).

Hence
1
B[] = f/ H?(V|ul) do + ﬁ/ H)Jul? i —/ flul da
2 Ja 2 Joa Q
:m+/f(u—|u|)dx:m+2/ fu <m.
Q {u<0}
By the uniqueness of the minimizer we have u = |u| in . Eventually u > 0 in Q.

The anisotropic radial case

Let us consider the following one dimensional problem

) = f) e 0R)
v'(0) =0 (3.13)
v'(R) + Bu(R) =0,

Integrating the first equation in (3.13), calling ¢ = k,t", we get

1

Tnfl

1
nk,rn—1

r kpr™
’U/(?") = / tn_lf*(kntn) dt +Cy = — / f*(t~> dt + Cy.
0 0
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Since v'(0) = 0, C; = 0. By denoting § = k,s", another integration gives

r 1 kns™ o
=— _— *(t)dtds + Cy =
v(r) /0 /0 @) dtds + Cy

nk,sn—1
knT‘n 1 s ~ ~
—/ f/ f*(t)dtds + Cs.
0 n2kn 52w J0

From v'(R) + Sv(R) = 0 we compute Cs, hence

knpr™ 3
U(r)=—A Y [ iy dids+

2 , 2
n2kr§2—% Jo

k., R" 1 3 1 k,R™
o *Edfd§+7/ *(7) di.
/ e | s e [ @

Therefore

k., R™ 5 k,R™
o(r) = /k Y [ pe@mdigs s — L /0 F4(0) di. (3.14)

2 _
AT ngkjﬁl 527% 0 Bnkan 1

Now it is easy to check that the function v(x) = v(H°(z)) is a H'(Q*) solution to problem (3.3),
where Q* is the Wulff Shape centered at the origin with radius R. In this way, by the uniqueness
of the solution, we have shown that the unique solution to problem (3.3) is radially symmetric
with respect to anisotropic norm and its value on the boundary is given by

1 kn R™ L

Remark 3.4. We stress that if f = 1 in Wg, then by (3.14) the solution to problem (3.3) can
be written explicitly as follows

v(z) =v(H°(z)) = 5% + %(R2 — H°(2)?). (3.15)

The solution is a paraboloid with respect to the anisotropic norm. Morover if H is the euclidean
norm in R™, we are back to the classical torsion problem (or Saint Venant problem) with Robin
boundary conditions, whose radial solution is a concave paraboloid.

Level sets and distribution functions

If u is a solution to problem (3.1), we define

Uy ={zxeQ:ux) >t}

for a non-negative real number ¢t > 0. It is clear that if t < wupi,, then Uy = Q and that if
t > Umax, then Uy = . With unin and upax we have denoted the minimum and the maximum
of u in Q. We will denote by

U™ = Q n oUy, Ut = 00 1 U, (3.16)
the interior and exterior boundaries of U; with respect to €2, and by

u(t) = (U] (3.17)
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the distribution function of w.
If v is solution to problem (3.3), for ¢ = 0, we define

={reQ (@) >1}, o) = Vi

the superlevel sets and the distribution function of v, respectively. Furthermore, for 0 < ¢t < vy,
Vi = Q, while for vy <t < Umax, the superlevel sets V; are Wulff shapes homothetic to Q* and
strictly contained in it. Again, vy, and vyax are the minimum and the maximum of v in Q*.

3.1.3 Main results

To prove the main results we will use the Gronwall lemma (see subsection (1.2.4)) and prove two
others lemmata that will have a central importance for what will follow.

Lemma 3.5. Let u and v be the solutions to problems (3.1) and (3.3) respectively. Then for
a.e. t >0 we have

2 ne 1 H (t)
o0 = (~ow+5 [ o) [Trees e
B Jovet u 0
and
o o 1 H w(t)
wiin0* < (w05 [ A ae) [Tgas e
B Jougs u 0
Proof. Let t,h > 0 and let us consider the following test function in H'(£2)
0 u<t
op(@)="u—t t<u<t+h
h u=t+ h.
Substituting this in (3.2) we have
/ H(Vu)He (V) - Vda + B H)(u — tyu i
U\Uiyn AUP\U S,

+ Bh /aU H)udH" ! = /U f(u—t)dz+h fdz.

t+h t\Ut+n Utsn

Applying (1.32) in the first integral, dividing by h and applying the Coarea Formula (see (1.2.2)),
we have for a.e. t >0

t+h 2
/ / A VW) ggn1 g 4 8 HW)(u — tyudH !
ouint |VU| QU QU
+ﬁ/ V)udH" ! _1 f(u—t)dx+/ fdz.
Ut h U\Ut+n Uttn

Passing to the limit for h — 01 we have

2
/ H (Vu) dH" ' + 3 Hw)udH" ! = / fdx.
oUint ‘VU| aUtext U,
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Let us set

o) = {H(Vu) on AUint (3:20)

Bu on U™,

We want to end the proof using the anisotropic version of the isoperimetric inequality and to this
aim it is necessary to write properly the anisotropic peremeter of U;. Because of the regularity
of 00 we know that oUZ" is sufficiently regular and a normal vector can be defined. Since
ue HY(Q) and f e L3(Q), oU™ may not have any good regularity property. By (1.36) we can
write for a.e. ¢ >0

H(Vu
Py = [ A gt [ e ae,
oujnt [Vl Clopad

where v is the outer unit normal to . If we set

H(Vu) Arrd
Ulnt
h(z) =4 V4l o % (3.21)
H(v) on OUFY,

then
Py (Uy) = / h(x) dH™ L.
U,
Furthermore we note that

h(z)g(x)dH" ' = fdx. (3.22)
ouU, U;

Therefore by Schwarz inequality, (3.22) and Hardy-Littlewood inequality, we have for a.e. t > 0

< [, Mgty an- 1(/[].“ L ﬂ/w ) 1)

7 l ( ) n—1 u(®) * d
< ( w(t) + B Joype " dH )/0 f*(s)ds.
Hence, by (1.37)

2 s n(t)
n’ky p(t) " ( ﬁ/cht d’H” 1)/0 f*(s)ds.

If we do the same computations, replacing v with u, all the previous inequalities become equalities
and we have (3.18).
In particular, if f =1 in 2, we have

n2kh p(t) 5 < —/ () + 1 / Aw) dH" (3.23)
/8 ouext u
and ) o
2k (1) = —¢/(t) + —/ ﬂd%”*. (3.24)
B Joups
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Remark 3.6. Let us notice that upin < Umin. Indeed, being the level sets of v homothetic to

Q*, then, using (3.1), (3.3) and the isoperimetric inequality

1
Vmin P (QF) = Hw)v(z)dH" ' = —= H(Vv)He(Vv) - vdH" !

o0 B Joq
1 . 1 1 n—1

= <[ ey = 21 fler) = —5 [ H(VuHe(Vu) -vdH
B B B Jao

_ / H(w)u() dH™ > uminPir(Q) > tmin P (7).
o0

As a consequence for all 0 < ¢t < vy;, we have that

u(t) < 6(t) = [9.

Lemma 3.7. For all t > vy, we have

/otT (/Wmam ffiﬁ dH"”) dr = % /0 sy ds
I (faufm e dH’”) i [ o

Proof. By Fubini’s Theorem and using (3.1), we have that

I </5Uf“ w Wl) =], </0W) Z(:))W) e

and

Hwu(z) o,y 1 19
=/69Td7-[ =%/0 f*(s)ds.

Analogously,

By monotonicity of the integral we have that for ¢ > 0

[ o) (], 2o

and if ¢ = vyin, then 0V; n 0Q* = . Hence

and we have (3.28), (3.27).

(3.25)

(3.26)

(3.27)

(3.28)
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2
Proof of Theorem 3.1. Let 0 < p < 5" and let us denote K,, = n%k; . Let us multiply (3.19)
by tu(t)", where n = % — 2222 > (), and integrate from 0 to 7 = vyin

/OT Kntu(t)r dt < /OT —u’(t)t,u(t)"(/ou(t) *(s) ds) dt +
;/OT Mt)ﬁ(/wfxt Z((:)) dH" ! /OW) f*(s) ds> dt
</ ' —tu(t)”< / " o) ds) du(t) + 2%'3( / " s ds)i

where we applied Lemma 3.7 and the fact that u(t) is a monotone non increasing function.

l w
By setting F(I) = / w"/ f*(s) ds dw and integrating by parts the first and last members in
0

this chain of inequalities we have

T 1
T))+T/ Knu(t);dté/ dt+/ /Knu v drdt
0

Qln 12
+|2,B|2</ f(s)ds)
By applying Lemma 1.8, with

&0 = [ Fuoas [ f Kt drdi,

12| 2
C = |295|;7 (/ F*(s) ds) and 7o = Umin, We have that
0
e [ wuteaes (7 F) a
min 0
. " l ) (3.29)
+/0 /0 Kpu(r) drdt—l—w(/ f (s)ds) >
Analogously
/ Kob(t)} i = - ( | Fema
min \ /0 (3.30)

// Kno(r)F drdt + 252(/9 7(s) ds>2>.

By (3.25) and (3.26), then we can compare directly the righthand sides of (3.29) and (3.30). So

+/0 Knu(t)s dtgF(¢(7))+/0 Ky o(t)
/0 () dt</0 (t)7

For 7 — +00 we have
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which is (3.4).
Now we want to prove (3.5). In order to obtain this result let us pass to the limit as 7 — oo in
the following inequality:

/OT Kntu(t)% dt < /OT tu(t)”( OIQI *(s) ds) du(t) + |2Qﬂ|;7< 0|Q 1*(s) ds)z.

After an integration by parts we get

/OOO Kntu(t)%dt < /OOO F(u(t))dt + |295|: (/Q f*(S)ds>2.

On the other hand

2

/Ooo Kot(t)F dt = /00O Fo(t)) dt + g;: (/'Q' £4(s) ds) :

it remains to show that " "
/0 Plu(t)) dt < /0 F((t)) dt. (3.31)

2n—2

To this aim we multiply (3. 19 by tF(u(t )=, Since F()I~% is a non-decreasing
Hit))p

function in [, when 0 < p < <3 4, we can integrate from 0 to 7 = vy to obtain

/ TKntFm(t)) < [ttty P (o) ( / " ds) au(t)
5 oo [ e (/ o) ds )
< /OT tu(t)WF(ﬂ(t))</ou(t) f*(s) ds) du(?)

i ([ o) [ B
< / " ante) R0 / 72(5)ds) dutt)

2n 2
|2

9] 2
252 <0 f*(s)ds),

Q ,77 ‘Q‘ 2
where, again, we applied (3.7). Now, if we call C = F(\Q|)| 2|52 ( *(s) ds> and set
0
!
J(l) = / T F </ F*( ds) dw, integrating by parts the first and last member of the
0

previous chain of inequalities, we have

/ K, F(u(t)dt + 7J(u / /KF dzdr+/OTJ(,u(t))dt+C’.
/ / KoF(n dzdr—s—/OTJ(,u(t))dt,

+ F(|2])

Setting



(0]

and applying 1.8 with 79 = vmin we deduce that

/KF dt+J(())<Umm</vmm/KF )) dz dr

/Ovm'" J(ult ))dt+0)

This inequality holds as an equality when we have ¢ in place of u, so as before

/KF )t + J(u /KF ) dt + J(6(8)).

For 7 — oo we have (3.5), which concludes the proof. O

Proof of Theorem 3.2. Multiplying by ¢ > 0 inequality (3.23) and integrating from 0 to 7 = vpin,
we have that

T Q|
2koT? < / prdt+ 12
? 0 wo 262"
Here we applied Lemma 3.7. Analogously for (3.24)
€2
ko 7> —/ —¢'(t tdt+262

Then

/Ot(—du(t))Z/O t(—do(t)),

for every 7 = vpin. Integrating by parts

w(r) < (1) 7= Vnin (3.32)
Since Umin < Umin, inequality (3.32) holds for ¢ = 0 and the claim is proved. O
Proof of Theorem 3.3. Let 0 < p < . Let us multiply (3.23) by tu(t)", where n = %_an >0,

and integrate from 0 to 7 = vy,
4 1 i 1 (7 H(v) 1
Kntutpdté/ —u (O)tp(t)" dt + = /mt”/ dH"
) ok as [y g [wor [
T n
0 ouext u(w)

g/OT—//(t) ()"dt+|2;: </0 tp(t)" dp(t) +

[l

242

2
where, again, K,, = nk;;, in the third inequality we applied Lemma 3.7, and in the last the fact
that u(t) is a monotone non increasing function.
1
[+t
By setting G(I) = w' =
y setting G() = [’ = T

and integrating by parts the first and last members in this

0
chain of inequalities we have

Tt 1 |+t
+7‘/ K,tu(t) / G(u dt—i—/ / K,u(t)r drdt + ORE
o Jo
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By applying Lemma 1.8, with

- [ ewwyas [ f Kot dr

Q7+
C = 257 and Ty = Upin, We have that
e [ wut i ([T G a
_— Q |n+1 (3.33)
/ / Ku(r v drdt + >
Analogously
e [ woa= ([ Gowar
i (3.34)

o+
/ /Kn(b Pdrdt+ Y >

By (3.25) and (3.26), we compare directly the righthand sides of (3.33) and (3.34). So

+/O Kopu(t)® dt<G(¢(r))+/0 Kno(t)
/O u(t)? dt</0 o(t)

which is (3.7). Now we want to prove (3.8). In order to obtain this result let us pass to the limit
as 7 — o0 in the following inequality:

T 1 T ‘Q|n+1
Knptu(t)r dt < —tp(t)" du(t) + :
0 0 232

For 7 — +00 we have

After an integration by parts we get
K, G(u(t))d 2
t t .
/ Ht / T

Koto(t)7 d oy + A
/ nt(t)? dt = / S

On the other hand

So we need just to show that

/ " Gut) dt < / " Gl dt. (3.35)
0 0

To this aim we multiply (3.23) by tG (u(£))u(t)~ "+ . Since G(I)I="=" is a non decreasing function
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in [, we can integrate from 0 to 7 = vy, to obtain
T T e
/ K@uﬁ@«ﬂ)dt<l/’4¢u@> = Gult)) da(t)

/ tG(p / Md?—t"‘ldt
6 oUst U

g/o —tu(t)”" G(p ())du()+;G|Q| |Q|_7/ /U e

i
262

2 !
[ 5 and set J(I) = /w_%G(w)dw,

integrating by parts the first and last member of the prev1ous chain of inequalities, we have

/KG ) dt + 7 (u //KG dzdr+/oTJ(u(t))dt+C.

/ / KoGly dzdr+/0TJ(u(t))dt7

and applying (1.8) with 79 = v, we deduce that

/ KnG(u(t)) dt + J(u(7)) < Umn(// K G(u(2)) dz dr
[mm T(u(t)) dt, +0)

This inequality holds as an equality when we have ¢ in place of u, so as before

</”_wu>%?a<<»wu>+aam>
0

where, again, we applied (3.7). Now, if we call C' = G(|Q|)

Setting

/KG ))dt + J(p /KG ))dt + J(B(t)).

For 7 — oo we have (3.35), which concludes the proof. O

3.1.4 Application to PDE’s: Bossel-Daners inequality

Let €2 be a bounded and smooth open set in R™. Let us denote by v the outer unit normal to
0 and let 8 > 0 be a positive real number. It is well known that for the following Laplacian
eigenvalue problem with Robin boundary conditions

—Au=AQ)u inQ
0
aj +Bu=0 on 0f,
a Faber-Krahn type inequality for the first eigenvalue holds. It is famous under the name of
Bossel-Daners inequality and it reads as follows

A1p(9) = A1 p(Q9),
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where QF is the ball centered at the origin with the same measure as Q. Equality holds if and
only if  is a ball.
Let us consider now the anisotropic case. If f = A(Q)u, then (3.1) can be written in this way

—div(H(Vu)He(Vu)) = A(Q)u  in Q

3.36
H(Vu)He(Vu) -v+ BH(v)u =0 on 0. (3:36)

The variational characterization for the first eigenvalue is
M) = min  J[u], (3.37)

weH' (Q)\{0}

where
/ H?*(Vu)dx + B w?H(v)dH" !
u] = 22 o4 . (3.38)

/u2 dx
Q

In [48] the authors proved a Bossel-Daners type inequality for the anisotropic p-Laplacian prob-
lem. Indeed, they proved that

Il

A1,a(Q) = A (), (3.39)

where * is the set homothetic to the Wulff Shape having the same measure as 2. In particular
the equality case holds if and only if 2 is a set homothetic to the Wulff Shape.

In this section we want to give an alternative proof of (3.39) in the planar case, using the results
found in the previous section.

Corollary 3.8. Under the hypothesis of Theorem 3.1 we have that
A1,5(02) = A 5(029).

Proof. Let u be the first anisotropic Robin eigenfunction associated to A1 g(€2). Then u is solution
to problem

—div(H(Vu)He(Vu)) = A1 g(Qu  in Q

3.40
H(Vu)H¢(Vu) v+ BH(w)u=0 on oS (3.40)
Let z be the solution to the symmetrized problem
—div(H(V2)He(Vz)) = M g(Q)u*  in QO
(3.41)

H(V2)He(Vz)-v+BH()z=0  on 0Q*.

By theorem 3.2, we know that

/ugdx:/ (u*)gd:cé/ 22 da.
Q * *

So, by Cauchy-Schwarz inequality we have

/ u*zdmé/ 22 dz, (3.42)
* Q*
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Eventually if we multiply the first equation in (3.41) by z, integrating on Q* and applying (3.42)
we get

H?*(Vz) dm+ﬁ/ dH"*
A1p(Q) = =
/ u*zdx
H?(Vz) dm—&-ﬁ/ v)dH" !
> = App(€0).
/ 22 dx
o

3.1.5 Conclusions and open problems

As in typhe euclidean case, we have proved that these comparison results depend on the dimension
of the space. In particular if we are in the hypothesis of theorem 3.1, when n = 2, then

HU”L1 @ < HUHLl(Q*
and
HU||L2(Q) < HUHLQ(Q")'
Therefore a question arises spontaneously. Is it true that
lullze) < [vlLeer (3.43)

for all values of p? In dimension 2 the answer is negative for large values of p. Next example will
show that (3.43) is untrue when p = o0 and n = 2.

Example 1. Let © be the union of two disjoint bidimensional Wulff shapes W and W,, with
radit 1 and r respectively. If we choose B = = and f such that it is constantly 1 in W and
constantly zero in W, , then the solutions to pmblem (3.1) and (3.3) can be explicitly computed.
In particular it is possible to prove that there exitsts a positive constant ¢ such that

ull e ) — [Vl Lo ey = er® + o(r?).

Proof. Considering problem (3.1), since f =1 in W and f = 0 in W,., then u must be radial in
W and wulyy, = 0. In particular by considering problem (3.13) with 8 = 1/2, it is easy to check
that in W, denoting by ¢ = H°(x), the solution is as in (3.15)

1
1(1 —t%). (3.44)

Let us now compute the solution to the symmetrized problem (3.3). Since || = |2*| we have
that the radius 7* of the Wulff Shape Q* is given by

r*=/1+7r2

Looking at (3.13), we have to solve the following problem

u(t) =1+
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When t € (0,1], then

2
t'(t) = —— +c1.
(t) 5 T
Since v'(0) = 0, ¢; = 0. Hence integrating
2
v(t) =——+c
(t) 7 Te
If t € [1,r*), then
' (t) = c3.
Imposing the continuity of the derivative in 1 we get ¢3 = —1/2. An integration gives

1
u(t) = —3 logt + cq4.
The Robin boundary condition allows us to compute ¢4 indeed

1 1 C4
~ T logr* 4 4
o 1087 T3

=0,

and consequently
1 1
cy = — + s logr”.
r 2

We have
(t) 110 t+1+110 *
v(t) = —= — 4+ = r*.
2 & r* 2 &

Imposing the continuity in 1 of the solution we can compute ¢y

1
o=~ +—+ -logr”.
r

1 1
Hence, if we denote by c(r*) = — + 3 log r*, the solution to the symmetrized problem is
r

z + ! +c(r*) [0,1]
i n c(r s 4y
1
—§logt+c(r*) [1,7*].

Let us note that in (0, 1] we have
v(t) =u(t) — 14 c(r*).
Eventually
[Vl @) = IvlLe=owy = lu =1+ c(r™)|Leow) = [ul Lo @) =1+ (7).
Expanding ¢(r*) in Taylor series we get

7,2 T2 2

log(l+73)2 =1— — +

*:1 27% T
c(r’)=(1+7r*)"2+ 5 1

N |

In this way we have

T
|ull Loy = [vlLe ey = — + o(r?).
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Now someone could ask if (3.43) can be true when n > 3. Next counterexample will show its
untruthfulness when n = 3 and p = 2.

Example 2. If we consider Q, 5 and f as in the example 1 in the corresponding three-dimensional
case, then, in the hypothesis of theorem 3.1, the solutions to problem (3.1) and (3.3) can be ex-
plicitly computed. It is possible to prove that there exists a positive constant d such that

lullz2) — [vl2@r = dr® + o(r®).

Proof. As in the previous example it easy to compute the solution to problem (3.1). If we denote
by t = H°(x), then it is given by

+—(1—t%) inW,

inW,.

| =

2
ut)=+3 (3.45)
0

From the condition || = |Q2*], we find the radius r* of the Wulff Shape Q* which is given by
r* = (1+ 7"3)%. Following exactly the same computations as in 1, we find the solution to the
symmetrized problem, and it is

U(t) -5t q(r*) [07 1]a
o(t) =1 4 3 (3.46)
& +alr) [1.r7],
where 5 )
0(r") =55~ 55
A Taylor series expansion gives us
= (1+7r%)% =1+%r3+0(r3), aeR;
N 2 1 1 73 3
r)= - =5 — 5 to(r),
) = S0 mE  3aa 3 )
so that
u(t) — ﬁ + o(r?) [0,1]
v(t) =< 4 3 T (3.47)
3 + o(r) [1,7*].

Therefore, recalling that k3 is the three dimensional measure of the unitary Wulff Shape W, we
get

rs 4 —
HUH%,Q(Q*) = / (U — 3> dzx + §|W7-*\W| + 0(7’3)
w
2 2 3 4 3 3
= [ul 72 + 37 udx + —ksr® + o(r?)
3w 9
22 4 .
= ||u||2L2(Q) - Ekgrg + §k37"3 + o(r®)

2
= ||u||2L2(Q) - Ekgr?’ + o(r®).
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Hence we have proved the desired result, since

2 .
HUH2L2(Q) - HUHQL%Q*) = Eksr‘s +o(r?).

A problem that is still open is the following
Open Problem 1. In the hypothesis of theorem 3.1, (3.43) is true forp =1 and n > 3¢

If we now consider the theorem 3.2, we have proved that when n = 2 and f =1 in €2, then
u*(z) <v(x) ze Q. (3.48)
In doing so, another question arises:

Open Problem 2. In the hypothesis of theorem 8.2, is (3.48) true even when n = 37

3.2 Shape derivative of the L? and the L”* norms of the
Robin Torsion function

3.2.1 An introduction to the problem

Let Q < R™, n > 2, be a bounded C?*® and simply connected open set. Let us consider the
following torsion problem with Robin boundary conditions

—Au=1 in 0

ou (3.49)

— +pfu=0 on 09,
ov

where v stands for the outer unit normal to 02 and 5 > 0 is a positive real number. A weak
solution to (3.49) is a function v € H'(Q) which satisfies

/QVuV¢dx+B/muqﬁd’H,"_1 = /qu, Vo e HY(Q).

It is well known that the solution to problem (3.49) is unique and positive whenever 0 is
sufficiently smooth.

Let us recall the functionals we want to study and the the definitions of their shape derivatives.
We will denote the L® and LP shape functionals as follows

M(Q) = |u] L= (0,
and for every p € [1, +0)
Ry = [ u@)P do = [ w(a)de = ulf o,

where u is solution to (3.49).
As already said in the introduction, let © — R™ be a bounded C%® simply connected open set
and let us consider a first order perturbation

O = (Lpn + tV)(9),
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with 1g» being the identity function, V a C*(R",R") vector field and ¢ a small real number.
We want to study the limits (if they exist)

M'(Q,V) = lim w (3.50)
and
Fy(Q,V) = lim w (3.51)

What we want to prove is the following
Theorem 3.9. The ball Bg is a critical shape for the functionals M(2) and F,(Q2), p = 1, i.e.
M'(Bg,V) = F,(Bgr,V) =0,

where V is a C*%(R™,R") vector field volume preserving of the first order and where M'(-,v)
and F;(-,v) are the shape derivatives of M and F, respectively.

3.2.2 Shape derivative: some definitions and computations

Here we give some preliminary definitions and results that the reader can find in [10] and [85].
We point out that in this and next subsection, we will use the Einstein summation convention
for the repeated indexes.

Let Q < R™ be a bounded and simply connected open set. We consider a family of perturbations
{Q:}+ of the form

O ={y=x+tV(z): 2 e Q,tsmall enough}, (3.52)

where V is a C%%(R",R") vector field.
The Jacobian matrix of the transformation

y:=yt,Q) =z +tV(x), ze€, tsmall (3.53)
is
D, =1 +1tDy,
i

where [ is the identity matrix and (Dv)ij = (,,;/'%. By Jacobi’s formula, for small t, the Jacobian
UL
determinant is given by

J(t) =1+ tdivV. (3.54)

It is clear that for t small enough, J(¢) ~ 1, so y(t, ) is a diffeomorphism and in this case we
can consider its inverse transformation z(y).
In particular we can write the measure of {2; in terms of the perturbations defined before

|Qt|=/J(t)das=\Q|+t/dide:c.
Q Q

Definition 3.1. y(¢,Q) is said to be volume preserving of the first order if

/didex = 0.
Q
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Let w e H'(Q;) and let us consider the following energy functional

£ w) = /Q IV w(y, ) dy — 2 / w(y, ) dy + B /m Wy, 1) do, (3.55)

t

where with V,, we denoted the gradient operator with respect to y and doy is the surface element
of Qt-
A critical point u € H*(£2;) of (3.55) satisfies the Euler-Lagrange equations

Ayu(y,t) +1=0 in €,

Z 3.56
a@: (y,t) + Pu(y,t) =0 on 08, ( )
+

where A, is the Laplacian operator with respect to y and v, is the outer normal to €.
We want to transform the integrals in (3.55) in integrals onto 2 and 0. Indeed by a change of
variables, using the inverse function z(y) (which exists for small t), we get

Ox; 0z
Yk OYx

E(Q,u) = /Q j;‘ (@4 V(@) )L (o + 1V (2), ) J(t) da

oz (3.57)
- 2/ we + 1V (@), 0T de + 8 | w2 + V() ym(t) do.
Q o0

Here m(t) is the index of deformation when passing from do to do; (with do being the surface
element of Q). If we define the tangential divergence of the vector field V as follows

divoaqV :=divV — v - Dyv, (3.58)

then, up to first order terms, m(t) can be approximated by (See [10], section 2.2.2)

m(t) =1+ tdiveg V. (3.59)
If we denote by
a(t) = u(z + tV(x),t) (3.60)
and 5
ox; 0
A= Al t = ! J 5 3.61

we can write (3.57) in a more concise form

Et) := / Va(t)AVa(t) de — 2/ a(t)J(t) de + B/ a?(t)m(t) do. (3.62)
Q Q oQ
If we simplify one more time the notations and indicate by
0 0
Ly=—(A;;(t)=— .
2= g a7 (363)
and
0

(}VA = ViAij (t) (364)

bl
6$j
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then the transformed function @(¢) solves the Eulero-Lagrange equations

Lau(t) + J(t) =0 in O

Ov,u(t) + Bm(t)u(t) =0 on 0€. (3.65)

A key role will be played by (3.60). If we expand it in a neighbourhood of ¢ = 0 we have
a(t) = @(0) + tu(0) + oft).

We remark that the dot notation stands for the derivative with respect to t. In particular the
first two coefficients will be

@(0) := u(x) (3.66)
and
20 = | La _|oa 2) - Vi
=[] L 0+ V-7 o] o
= E(O) + V. Vu.

Definition 3.2. We will call shape derivative of @, and it will be denoted by u/, the following
function

ot
/ = —
u'(x) : 3 (0). (3.68)
Hence we can write (3.67) in this way
aw(0) = v/ +V - Vu. (3.69)

Besides the expansion of @(t), it will be helpful to write the taylor series of some other of the
function seen until now. Next Lemma will collect all the necessary coefficients of the expansions
just mentioned

Lemma 3.10. We have that

1) J(0) =1, 2) J(0)=divV,

3) m(0) =1, 4) m(0) = diveq V,

5 @(0) =u(z), 6) w0)=u+V-Vu, (3.70)
7) Aij (0) = (Sij, 8) A” (0) = div V(Sl‘j - % - ZZJ

Proof. To compute 1),2),3),4) it is sufficient to differentiate (3.54) and (3.59) and evaluate for
t =0. 5) and 6) are given by (3.66) and (3.69) respectively.

Some more effort will be needed for the matrix A, defined in (3.61). Remembering that the
Jacobian matrix of the transformation y(t, (1) is

Dy, =1+tDy,

if ¢ is small enough, we have

&xi

@ = (.D_l)ik = (I"‘tDV),;Cl

Y

Vi
8:@

= (I —tDv +o(t))ik = dir — t + o(t).
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This allows us to obtain
A;j(0) = birdjk = bi

and

. 0x; 0x; - d 0x; \ Ox; ox; (d Ox;

A;:(0) = g 4 | = ) LI+ | ==L ) J(t
1) [ayk Yk ®) (dtayk)ayk ®) OYr (dt@yk) ()]t=0

v, oV

= di i — — — .
WV, ox; 0z

We want to find the equations that are solved by v’ in Bg and on its boundary.

3.2.3 An equation for v’ in Bp

Let us consider problem (41). It is well known that it admits a unique and positive solution,
given by
R 1
u(z) = — + —(R? — |z]?), 3.71
@) = 5 + 5 (B = [2f?) (371)
which is a radial and strictly concave function, whose maximum and minimum are achieved in 0
and on 0Bp respectevely. More precisely

R R? R
—67”4‘%, Umin—u(R)—%'

In order to prove next proposition, it will be useful to keep in mind the gradient and the Hessian
matrix of (3.71). The gradient is

Umax = U(O) (372)

(3.73)

<
£
&
I
38

In particular, if x € dBg, being v = £ the outer unit normal to the boundary of Bg, then

R ou R
\V/ - _ = 3.74
u@)=—"v,  S= (3.74)
The Hessian matrix is clearly negative definite and it is given by

I
Hess, (z) = - (3.75)

where I is the identity matrix.

Proposition 3.11. Let V be a C**(R",R") vector field and R > 0 a positive real number. The
Jfunction v’ solves the following boundary value problem in the ball with radius R

Au' =0 mn BR

/
a—u—kﬂu’: <1+BR> (V-v) on 0Bg, (3.76)
ov n

where v is the outer unit normal to 0BR.
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Proof. If we differentiate the first equation in (3.65) with respect to ¢ and evaluate for ¢t = 0, we

obtain ) )
LA(O)ﬂ(O) + LA(O)ﬂ(O) + J(0) =0.

It will be helpful to write explicitly L4 and L ;. By applying Lemma 3.10 we have

0 0 , ou
7z, (‘5@) (“ ! Vkau)

0 (Viy 0 OV; 0 OVi 0 Ve _
oxj\ oz 7 ox; Ox; dx;  Oxj Ow; oz
Hence
o [ ou 0 ou
(5 o ()
O (M Wi W), M
ox; \ Oxy 0x;  dx; dx;  Oxj duy oz

Renaming the indexes k

0%/ 62‘/1-8711 Vi 0%u _ Pu
ox?  0x3 dw; 0wy dwjox; 02w

J
0%V, ou oV; 03%u GQVJ— ou

Ow;0m; 0x; | Ows 022 Owyow; O
v, u *V, ou oV, J*u ov;

dx; O0x;0x; 696? dr; Oz 0xjdr;  Ox; -

0.

Considering that (Hess,(z));; = Zu_ _ () whenever i # j and the fact that 3272_‘ = Au = —1,

0xj0x; o
we have
ou’ 0%V, du 2V, ou
0x%  Qwjdr; dr;  Jw;dr; O

Eventually, by Schwarz Theorem, we obtain Au’ = 0 in Bg.
If we now differentiate the boundary conditions in (3.65) and evaluate them for ¢ = 0, then

Onriy@(0) + 0, a(0) + Brn(0)a(0) + Am(0)i(0) = 0. (3.77)

vao) U Vi

Let us compute every term in the previous equation. Considering the boundary conditions
satisfied by u, Lemma (3.10) and (3.74) we get

S o' 0 ou’ R
a,/A(O)U(O) = 87 + g(v . VU) = E — gV(V . Z/) ‘v,
_ ou ..
GUA(O)U(O) =% divV —v-DyVu —Vu-Dyv

= fﬁdivV + @1/ - Dyv,
n n
PN . R . R
B (0)a(0) = fudivep,V = —divV — —v - Dy,
n n

Bm(0)u(0) = fu’ + BV - Vu = fu’ — %ﬁV ‘.
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Substituting in (3.77) we have

a—u—f—ﬂu’:EV(V~1/)~V—EV~DVV+B—RV-I/.
ov n n n
Now
1
EV(V'V)Iﬁll’DVqu*V'V.
n n n
Hence
o’ 1 R 1 R
u-&—ﬁu'—V-u—f—ﬁV-l/—( *+5 )(V-I/).
ov n n n

As a consequence of the previous proposition, we deduce that

Corollary 3.12. If V € C%%(R™,R") is a vector field volume preserving of the first order, then
the solution v’ to (3.76) is a function with zero mean value in Bg, that is

/ u’dx=/ u' do = 0.
Br 0BR

Proof. Let us integrate the first equation in (41)

/
0=/ Audz= / div(Vu') dz = / e, (3.78)
Br Br &

Br 51/

Since V is volume preserving of the first order

/dide:zc=/ V.vdo =0. (3.79)
BR aBR

So integrating the second equation on the boundary, by (3.78) and (3.79)

/ u’d0=1<1+ﬂR>/ V.-vdo = 0.
0BRr 5 n 0BRr

In conclusion, being u’ a harmonic function, by the mean value theorem

/ u'dmzﬁ/ v do = 0.
Br n JoBr

3.3 Main results

The shape derivative v, solution to problem (3.76) will play a central role to prove the desired
results.
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3.3.1 Shape derivative of the L*-norm
We prove the next result following the proof that can be found in [84].

Theorem 3.13. Let Br be a ball centered at the origin with radius R > 0. Then for every
C?%(R™,R™) vector field V, the shape derivative of M at Bg in any direction V exists and it is
given by

M'(Bg,V) = u/(0),

where 0 is the mazimum point of (3.71) and u’ is the solution to (3.76).

Proof. Let us perturb the ball Br as we have seen in the previous section
Br,={y=x+tV(x):z € Bpg, t small enough},

and consider problem (3.56), with Br; in place of ;.
Being 2 = 0 the unique maximum point of (3.71), then Vu(0,0) = 0. On the other hand, by the
strict concavity of the torsion function u on Bg, the matrix

D,Vu(0,0) = Hess,(0)

is invertible, since Hess, is negative definite. Hence by the implicit function theorem, in a
neighbourhood of the origin and for ¢ small enough, there exists a unique y; such that Vu(ys,t) =
0. Moreover the function ¢ — y; is differentiable and y; must be a maximum, so M(Bg,) =
U(yt, t) .

We want to prove that

M(B - M(B
%in(l) ( R,t)t ( R) — u/(0)7

where

M(Bprs) = M(Br)  u(ys,t) —u(0,0)
t t
u(ye, t) — u(0,1) N u(0,t) — u(0,0).
t t

By the differentiability of the map ¢ — w(-,¢) and the the fact that Vu(0,0) = 0, we have

u(0,t) —u(0,0) d

lim = 2 [u(0.1)],_g = v/(0) + V(0) - Vu(0,0) = u(0).

t—0 t
Furthermore, by the differentiability of t — g, by Lagrange theorem on the segment [0, y;], the

mean value property of Vu(-,t) and the regularity of u(-,t), we get

u(ye,t) = u(0,1)

. Vu(. )%

t)dy
<|B | / (&) >
with & a suitable point in [0,y;]. Hence

tim 40D =00 _ 0,0 [dyt] -0
t—0 t dt -0

This conclude the proof. O
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Corollary 3.14. The ball is a critical shape for the functional M, for every V e C%%(R"™ R")
which is volume preserving of the first order, i.e.

M'(Bg,V) =4/(0) = 0.
Proof. As a consequence of Lemma 3.12 and Theorem 3.13, applying the mean value theorem,

we have that

1

1
M'(Bg,V) =4 (0) = ———— "(z) do = "dx = 0.
(B V) = 0) = oy [ w@ydo = o [ e

3.3.2 Shape derivative of the L”-norm

Next theorem will be a straightforward computation of the shape derivative of the functional
F, ().

Theorem 3.15. For every C*(R"™,R") vector field V, the shape derivative of F, at ) in any
direction V' exists and it is given by

FI(Q.V) :p/

uP~ ' do + / uP(V - v)do,
Q o0

where u' is the shape derivative of u, solution to problem (3.49), and v is the outer unit normal
to 0f.

Proof. Let u be the solution to the perturbed problem

—Ayu(y,t) =1 in
@(:%t) + ﬁu(:%t) =0 on th
th

where ; is the perturbed domain defined in (3.52). Then

R = [ wtyay = [ @@ s

Q

with a(t) = a(x + tV(x),t) and J(t) the Jacobian determinant as in (3.54).
Then it is possible to differentiate under the sign of integral and

%Fp(gt) - %/ﬂﬁp(t)(](t) dx:/Q%[W(t)J(t)] dz

=p/ @ @) a(t)J(t) de + | aP(t)J(t) da.
Q Q

Evaluating this derivative for ¢ = 0

Q

[jtFp(Qt)]to _ /Q @1(0)i(0).7(0) dar + / (0).7(0) da.
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Applying Lemma (3.10), we get

F;(Q,V)zp/upflu'derp/ upflv-Vuder/updiVde

Q Q Q
=p/ upflu'derp/ up71V~Vudx+/ uP(V -v)do
Q Q o2

fp/ up*1V~Vudac=p/u”*1u’d:c+/ uP(V - v) do.
Q Q o0

O

When Q = Bg, we can use the symmetry properties of (3.71) and the property of u’ to be a
zero mean function, to prove that

Corollary 3.16. The ball Bg centered at the origin with radius R > 0 is a critical shape for the
functional F,, for every 1 < p < +o0 and every vector field V € C**(R™,R™) which is volume
preserving of the first order, i.e.

FZ’,(B r, V) =0.

Proof. By previous theorem we know that

F/(Bp, V) =p /

upflu'der/ uP(V - v) do.
BR aBR

Being u constant on the boundary and V' a vector field volume preserving of the first order
/ uP(V -v)do = ufnin/ (V-v)do = ufmn/ divV =0,
0BRr 0BRr Br
where umin = u(R) = B%' By corollary 3.14, we know that «/(0) = 0 and so by the mean value

theorem, we have that
/ o () dH ™ = o/ (0)nw,r™ ! = 0,
0B,

for every r € [0; R]. Eventually, applying the Coarea Formula

-1
p/ up_lu'dx:p/ E—L(R2—\alc|2) ’ u' dx
Br Br /877/ 2n

’ i ! 2 2 ! ’ _
:p/o (BnQn(R r)> /[’}Bru(:c)dodr_(),

F!(Bgr,V) = 0.

Hence
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Chapter 4

Sharp and quantitative estimates for
the p—Torsion of convex sets

In this Chapter we consider the (f, p)—torsional rigidity for the Poisson problem with Dirichlet
boundary conditions, denoted by T ,(€2). Firstly, we prove a Polya type lower bound for T’ ,(£2)
in any dimension; then, we consider the planar case and we provide two quantitative estimates
in the case f = 1. The following is contained in [6].

4.1 Introduction

Let Q < R™, n > 2, be a non-empty, bounded, open and convex set and let p € (1,4+0). We
consider the Poisson equation for the p—Laplace operator, defined as

—Ayu = —div (|Vu['*Vu),

with Dirichlet boundary condition:

{—Apu(x) = f(d(z,09)) inQ (4.1)
w=0 on 082,

where f : [0, Rq] — [0,+400[ is a continuous, non-increasing and not identically zero function,
d(-,09) : Q — [0, +00[ is the distance function from the boundary defined as

d(e,22) = inf |z =]

and Rq is the inradius of €. This class of functions, depending only on the distance, are the so
called web functlons see as a reference [42].
A function u € W0 (Q) is a weak solution to (4.1) if and only if

/\w )P 2Vu(x)Ve(x dx—/f Yo(z)de Yo e W, ().

The (f, p)-torsional rigidity of 2, that we denote by T ,(2), is defined as

(/) state. o) ot ar ”

Ty p() = max (4.2)

WP (Q) T
([ mewr )
Q
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and, if u, € W, ?(Q) is the unique solution to (4.1), we have

Tf P / fup dx.

For the sake of simplicity, when f =1 in Q, we set T,,(Q2) := T3 ,(€2) and, if we are also in the
case p = 2, we set T(Q) := T3 2(2). We recall that the quantities T'(Q2) and T,(Q2) are usually
called, respectively, torsional rigidity and p—torsional rigidity and so, by analogy, we have chosen
the above terminology for T’ ,,(2).

In section 4.2 we prove the following

Theorem 4.1. Let  be a non-empty, bounded, open and conver set of R™, n = 2, and let
f:[0,Rq] — [0,+[ be a continuous and non-increasing function such that f # 0. Then, it

holds o
q
Ky Q)
Tr () =2 cp——, 4.3
fap( ) Cpf( )Pq(Q) ( )
where
e Pl g= L
Pop—1’ p—1’
and

Moreover, the equality sign is asymptotically achieved by a sequence of thinning cylinders.

In the second part, we focus our study on the case f = 1 and n = 2 and we obtain some
quantitative estimates. We define the following scaling invariant functional

1y (Q)P(I (Q) p

Q) = =
]:P( ) |Q|q+1 q pfl

(4.4)

We can rewrite inequality (4.3), in the case f =1, as follows
Fp(Q2) = cp.
From Theorem 4.1 follows that along a sequence of thinning cylinders {{2;};cn, we have

-0

Fp(Su) — cp.

This leads to the following stability issue: if F,(12) is close to ¢,, can we say that  is close in
some sense to a cylinder? The following result gives us information on the nature of the geometry
of : when F,(Q) — ¢, is sufficiently small, the set {2 is a thin domain, in the sense that the ratio
wq/diam(Q?) is small. In section 4.3 we prove the following theorems:

Theorem 4.2. Let Q) be a non-empty, bounded, open and convex set of R™ and let f = 1. Then,

Fp(§) —¢p = K(n,p) (%)n_l (4.5)

diam(

where K (n,p) is a positive constant depending only on p and the dimension of the space n. In

particular, in the case n = 2, the exponent of the quantity T s sharp.

e
iam(Q)
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We prove a second quantitative result in the case p =n = 2.

Theorem 4.3. Let € be a non-empty, bounded, open and convex set in R2, let f =1 and let
p = 2. Then, there exists a positive constant K such that

TOP2Q) 1 - /[|1QAQN\*
}'z(Q)—02=7( &)P( )—3>K(| |Q|Q> 7

(4.6)

where Q A Q denotes the symmetric difference between Q0 and a rectangle Q with sides P(Q)/2
and wq containing 2.

4.2 A Podlya type estimate for the (f,p)-torsional rigidity

In this Section we prove Theorem 4.1. Since the proof is quite long, we split it in two parts:
firstly we prove inequality (4.3) and, then, we prove its sharpness.

Step 1: proof of inequality (4.3) in Theorem 4.1

Proof. Let us choose in the variational characterization (4.2) ¢(x) = g(d(z)) as a test function,
where g is a positive and non-decreasing function in W'?([0, Rq]) such that g(0) = 0. Then, by

coarea formula (1.3),
R

Qf(d(x,aﬂ))w(x)dw: ; f(t)g(t)P(t) dt (4.7)

and .
/Q V() dx = /0 g () P(t) dt. (4.8)

By (4.2), (4.7) and (4.8) we have

P

Rq p—1
( / F(Hg(t)P (1) dt)
Tf,p(Q) = . 1 - (4-9)

Rq p—1
( /0 g7 (H)P(t) dt)

Now, if we define the following measure

iy (E) = [E f(d(x)) d.

we have "
ppt) = pp() = /Q fld(z)) dw = t f(s)P(s)ds, (4.10)
and, since f(s)P(s) is a decreasing function, we get
us(t) < (Ra — )£ (1) P(). (4.11)

From (4.10), we have
—py(t) = f(t)P(t) a.e. t € [0, Rq]. (4.12)
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Using (4.7), (4.12) and integrating by parts, we obtain

Ro Rq Rq
Qmmmmwﬁ=fﬁ mmmww=A o (B)pp (1) .

0

Consequently, (4.9) becomes

We can choose

and we observe that g € WP ([0, Rq]), since, using (4.11), we have

Rq N 1 1 _p_
g(t) < / (Ro —s)»1 f(s)77 ds < | fll7=' RG " € LP([0, Rq)),
0
g < |fl7= Rs " e LP([0, Ro]).

So, we have

R Pfﬁl R 21)?%11 /
cpp @) p—1 P (u @)
Typ(2) = /0 P db=—5 /0 FOPE ) dt. (4.13)

Let us set ¢, = (p —1)/(2p — 1). Since f(s) is a non-negative and non-increasing function,
integrating by parts in (4.13), we get

Ro (4 ()Y Wi |
T 2 Q) = —Cp D dt = —Cp D
)= /0 f(t)P7= (t) ' f(t) P (t)

R S U P P 414
c,,/o - (f(t)P (t)+p_1f(t)P (t)P(t)> dt (4.14)

c ,ufpi1 (Q) p Rq ufp—l (t) .
>pﬂmﬁﬂwn+p&anﬂ ey L

where in the last inequality we use (4.11) and the fact that P’(¢) < 0. Now, since f(s) is
non-increasing, we obtain the desired estimate

Ty p() = cpf(O)Pp%(m- (4.15)
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Step 2: proof of the sharpness of (4.3)

Proof. We prove that inequality (4.3) is sharp and that the optimum is asymptotically achieved
by the sequence of thinning cylinders §2; with unitary measure, as defined in (1.17), that is

1 1
Q=110 x (—2, 2>

where C' < R™"! is a bounded, open and convex set with unitary n — l-measure. It is easy to
verify that, for n > 3,

P(Q) = 2H" (1771 0) + I 201”1 C
) ( , : @ ) (4.16)
=207t + [T HT2(00),

and we observe that, in the case n = 2, we have that H"~2(0C) = 2.
Let u be the solution to the following p-torsion problem

—Apu =1 in
u=0 on 0€),

such that

/ udr = T,(),
Q

and let us consider the following function, depending only on the last component x, of x € R™,

v(z) = 1%1 l(;) - |a:n|p”1] ;

Ay =1 in Yy
v=0 on 09;.

satisfying

The comparison principle, see [97], ensures that u < v in €; and, as a consequence,

Tp(Ql):/ uda:g/ vdr =
o o
1 _P_
-1 2 I\r1t _p_
N L/ ! / () — || 7T | don dH
p JrwieJoL | \2
) " : (4.17)
=2 pilfl/ ) — a5 " | da,
p 0 2
2p—1
l —

By (4.17) and (4.16), we have

T,(Q) P77 () < 2¢,07L (;) B (21—1 + zﬁw—Q(aO))ﬁ = (1 + ?H”*(@O)) .
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Now, since f(z) < f(0), we have that, for every bounded, open and convex set 2,
Trp(Q) < ST (0)TH(9). (4.18)

It follows that ’ ’ ’
Ty () P71 () < f777(0)T, () PP ()

P

. I 1 (4.19)
< ¢, f71(0) (1 + 27{“(&0)) .

Moreover we observe that, if f never vanishes, we can use its monotonicity property to bound
iy from below in the following way:

1 (Q) = /Q f(d()) dz > f(Ra)|€Y,

obtaining
%§;% 0 iﬁjf
Ty () > o) B (4:20)
F0) P ()

Joining (4.20) and (4.19), we obtain
_P_

_p_ _p_ ZW%T _ Pt
<1}m<90f”’16h><<%fp1<0><1+:z'”" %6c?> '

2p—1

Jfr (I%Qz)
f(0)

Cp

Eventually, passing to the limit when [ — 0, observing that lliH(l) Rq, = 0 and that f is continuous,
we have

Ty () P71 () — ¢, f771(0).
O

Remark 4.4. If we assume that f : [0, Rq] — [0, +00[ is a function in L*([0, Rq]), then, using
the variational characterization (4.2) and the result (45) proved in [49], we have

2p—1

| >
P(Q)7 T

Ts () = ( inf f(t))pplTp(Q) > ( inf ]f(t)>pp1 p

(4.21)
te[0,Rq] te[0,Rq

and the sharpness of (4.21) can be proved in an analogous way as in (4.3).

4.3 The quantitative results

Proof of Theorem 4.2

Proof. Let us start by proving (4.5) in the case n = 2. If f =1, (4.14) becomes

¥ p [T a0\
Tp(Q)>cpPp%(Q) +cpp71/0 <P(t)> (—P'(t)) dt. (4.22)
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Joining (1.18), (1.19), (1.28) and (4.22), we have that

2p—1

LOPE©Q) _p PO [0\
Q7= Py Q7= /0 (P(t)) (CF()dt

Pri(Q) [fe 2p—1
il p ( 1) / (R —t)»= T dt
0

2p

Z —5 -
271 2p— 1|5

o (p—1)p  Rq <RQP(Q)>?5

T2t (3p—-2)2p -1 P(Q) \ Q)

N (P—Vp  Rg

T 255 (3p—2)(2p— 1) P(Q)’

Hence, by applying (1.22) and (1.19) we get

we

Fp()) —cp = K(2ap)m7

(4.23)

where
(p—1)p
27°13(3p — 2)(2p — 1)
We now prove that the exponent of this ratio is sharp. In order to do that, since we have proved
(4.23), we only need to find a sequence {§;};en of convex sets with fixed measure such that

K(2,p) :=

e _
dlam(Ql) /‘FP(QI) Cp,

for some positive constant M. Let 0 <! < 1, we consider the following rectangle

11 1
= (_2121> " (‘2’2)

and we notice that its inradius and area are R, = é and || = 1. Let u be the unique solution
to

—Apu=1 in

u=20 on 0§

and let us consider the following function

o) =2 [(é) —|y|p’11],

{—Av =1 in

which solves

v=0 on 09;.

The comparison principle gives v < v in €; and

Tp(Ql)Z/Q upd:cé/Q vdz.
l l

P

1\ 7T
/ vdr = ¢ (> .
o) 2

Arguing as in (4.17), we have
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On the other hand, the perimeter of the rectangle is given by
2
P(u) = 7 (1+17)

and its Taylor expansion with respect to [ > 0 is

D

P (Q) = (?)pﬁl (1+ 12)% = (?)pl (1 + ;%112 - 0([2)> .

Using (1.19) and (1.22), we get

I\ =T /9 501
T,(Q)P71() —cp < cp | = A (= R QR o(i*) ) —¢p
2 l p—1
P p  Ro,
<2 <1
Cpp—l chp—lP(Ql)
< e, p we,

p — 1 diam(£2;)
and this concludes the proof in dimension n = 2.
Let us now prove (4.5) in dimension n > 2. If we choose f =1, (4.14) becomes

2p—1
—1

Q% p [\,
cpP&(Q)+cpp_1/O <P(t>> (—P'(1)) dt. (4.24)

As a consequence of the Alexandrov-Fenchel inequality and the isoperimetric inequality for the
quermassintegrals (see [122]), we have

T,(Q) >

(P
_P'(t) = nln—1)wi " (()> . (4.25)
n
Hence, combining (4.25) and (4.24), we have
p j2 2p—1
TP () Pw«b/%<mw)w s
DEITCY) s np) Y mny P dt. 4.26
|Q‘ 2pp:11 Cp C(n p) |Q‘ 2pp711 0 P(t) ( ) ( )
Moreover, from (1.18), we obtain that
P(t) = nwn(Rq — )"}, (4.27)

and so, using (4.27) in (4.26), we get

T, (Q) P (Q Pi(Q) [Be o
BT s oS [ (o -3
0

>
2p—1 P =
o= o=
RoP(Q)) *7 Ry e
-t (F )
9] P(Q)
If we combine (4.28) with (1.18), with the following estimate (that can be found in [15]):
Vn + 2
wo n even
2n + 2
Rq >
n odd,

1
W
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and with

n—1

> diam(Q)" 1,

n

< n P E—
P&) < nw <2n—|—2

we finally get

Tp(Q)P’)%(Q) wao nt
|Q| 2pp:11 CZJ > C(Tl,p) dlam(Q) .

O

Remark 4.5. As far as the sharpness of (4.5) in the case n > 2, we conjecture that the sharp
exponent is 1 as in the planar case. Indeed, the minimizing sequence {;} satisfies

_p_ waO
T,() P71 () — ¢p ~ C ol
p( l) ( l) CP dlam(Ql)
Remark 4.6. As already remarked in the introduction, inequality (4.23) gives an information
on the set 2. Indeed, if

Fp(Q) —¢p

is small, then the ratio between wq and diam(2) has to be necessarily small, i.e. {2 must be a
thin domain. Moreover, inequality (4.23) tells us also that the infimum of F,(2) is not achieved
among bounded, open and convex sets. Assuming by contradiction that there exists a bounded,
open and convex set ) such that

]:P(Q) = cpa

we have that
_Y0 . veso,
diam(€2)

which is impossible.

Theorem 4.2 only tells us that any minimizing sequence of F,(-) is a sequence of thinning
domains. On the other hand, Theorem 4.3 gives us more precise information on the geometry of
such minimizing sequence.

Proof of Theorem 4.3

Proof. Let Q be a bounded, open and convex set with nonempty interior in R? and let us consider
a rectangle @ of sides P(2)/2 and wq containing 2. Such a rectangle exists, since it is enough
to choose the shorter side of ) parallel to the direction of wg and to recall the lower bound in
(1.22) (see Figure 4.3).
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Now, let ¢ > 0 be such that

1 w2 o?
— = 0 4.2
43 . 6 23 . 33 K2(2) O ( 9)
1 T O 2 o2
- - = 0; 4.30
33.6 48K(2)) 2°5-3K?%(2) (4.30)
T T o 4
- >, 4.31
1 23K 3 (3
where K(2) is a constant defined in (?7?). If
T(Q)P3(Q) 1
B St/ LA S
|€2]° 3
then, by (1.19) and (1.18), we have
QL0 (P ) (3508,
1] 2192 2 19
So, it follows that
2 3
TOPAQ) 1o, o (IR0
|3 37 23 23 19]
On the other hand, let us assume that
T(QP?(Q) 1
_— - = . 4.32
By Theorem 4.2, we have that
wo 1 [T(QP?(Q) 1 o
< — o <= 4.33
diam(Q) ~ K(2) [ BE 3| T K@) (4.33)
and we observe that, by the choice of o made in (4.29)-(4.31), a ball cannot satisfy (4.32).
Now, arguing as in (4.13) with f =1 and p = 2, we know that
Rqo 2
t
T7(Q) > m®) gy (4.34)
0 (t)

P2(Q
We set p = L — 19| and pr = P(Q) — 2nRq and we observe that they are both strictly

positive by the isoperimetric inequality and the monotonicity of the perimeter, respectively.
Using inequalities (1.26) and (1.27) in (4.34), we have that

Ra . T 2)2
T(Q)P*(Q) = P*(Q) /0 (= P(];()ta;rt S
R (P(2) —2mt)* ([ P2(Q) 2
“PO ) P@)am ( i _( - |Q|>> ' (4.35)
Rq — 2 3 ’ |
e | (W — o (P(Q) - 2nt) + P(Q)met> «

2 4 4 -
= (e e i s (1T ) )
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and, using Newton’s formula and the Taylor series for the logarithm, we get
P%(Q) — p% = 4TRqP(Q) — 47°R3;
PY(Q) — pg = 8TRqP*(Q) — 247 R P*(Q) + 321° RS, P(Q) — 167 R;

0 @ 2 p2 3p3 4 p4
~log _ 2w Rq _ Zl 2w Rq > 2w Rq n 21 R§, n § T Ry, n 47 RQ.
P(Q) i \ P(Q) P(Q)  P2(Q) 3P3(Q) P

(4.36)

i=1

By (4.36) and (4.35), dividing by |€2|* and subtracting 1/3, we have

2;(13(9)39 _ 1)3 - @T <|Q| (Q)RQ)

1 2 I z?l 3 R

As an intermediate step we want to prove the following inequality:

;(W_1)3+ l”*f (191~ 3 P@a)

4, R} 3 1/ P(Q)Rq 3
3T P ] <|Q|4 (Q)R”> 6( o] 1)’

that, combined with (4.37), implies

TQPQ) 1 _ 1 (P(Q)RQ ~ 1>3

QF 376\ [«

TQP(Q) 1
o’ s (4.37)

(4.38)

(4.39)

where we choose the constant 1/6 as an arbitrary constant less then 1/3. In particular, (4.38) is
equivalent to

5 (P@Ra -0 ol (10 S P@)Ra) +

42R3
3" P(Q)

o1 (101 - S P@Ra) = 0. (140)

In order to prove (4.40), we distinguish three cases:

3
1) if 9] = iP(Q)RQ, then (4.40) is trivial, since the left hand side is the sum of positive
quantities;

2) if ;P(Q)RQ <9 < ZP(Q)RQ, using (1.19), (1.22), (4.29) and (4.33), we have

3
§(PRa - (al)” + 1[0 (9] - 2P@)Ra ) + 372 20 (10 - SP(@) R0
1 212 RZ
> PR, <43 6 33P2(S;2)>

1 2 w2
> P3(Q)R? - ‘ L
(@)Fq (43-6 23 - 3% diam?(Q)

. 1 w2 o2
> P*(Q)R} - > 0.
PQ)Rg (43 .6 23.33 K2(2)> 0
(4.41)
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3) if %P(Q)RQ <9 < %P(Q)RQ7 arguing as before, we have

L P@)Ra —10)° + xB2 100 (10 - 2P@) R ) + 22T 10/ (o)~ 2P Ry
6 @ 3 37 P(Q) 4
1 7T weo w2 w3
> p3 L B o
1 T O w2 o2
3 3 (_+ T o >
> PR, (33 6 48K(2) 2°-3 K2(2)) >0

(4.42)

So, we have proved the intermediate step (4.39). Now, by combining (4.39) and (1.20), we deduce

2 3 273
r@r@ 1.1 [P(Q)RQ - 1] > 1 [P(Q)w" —1- 1“}9] . (4.43)
Q2 3761 19 61 29 V319
Using (1.21), (1.20), (4.33) and (4.31), we have
2
P(Q)wQ_1>P(Q)RQ_1>WR?2>7T(u)Q_ wh )
219 € Q7 121\ 2 V3P(Q)
_wh(m_m wo 7w wh
19 \4 V3P(Q) 3P(Q)?
_wh(m w wo (4.49)
Q] \4 23 diam(Q)
S o <7T _ WU)
“ 1o \4 23K(?2)
)
3v3 19
Finally, by combining (4.43) and (4.44), we get the conclusion
TQ)P2(Q) 1 _1[PQR, 1°_ ~[lQAaQ]?
e = o LS | 4 . 4.45
376 [ ¥ )
O

The next remark shows that a sequence of thinning triangles is not sharp for (4.5) and this
is the reason for which we need Theorem 4.3 to obtain more precise information.

Remark 4.7. Let us consider a sequence of isosceles triangles 7; of base L and height [ such
that |7;| = 1.

-9
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If we compute (4.39) on the sequence T; and we use (1.18), we get, for every [,

T(T)PAT) 1 _ 1 (P(Tz)RTz B 1)3 1
T3 376

and, so, the quantity on the left-hand side of (4.46) is bounded away from zero.
Remark 4.8. We point out that

P()Rq 1 >K|QAQ|

1€ Tl

in (4.45) is a quantitative version of the inequality in the right hand side of (1.18).

4.4 Open Problems

We conclude by listing the following open problems:

e We believe that the exponent 3 in the inequality (4.6) is not sharp: we expect it to be 1.
We clarify that in Example (3).

e We conjecture that the sharp exponent in (4.5) in the case n > 2 is 1 (see Remark 4.5).

e The results contained in Theorem 4.3 could be studied in higher dimension and extended
to the (f,p)-torsional rigidity. Our proof cannot be adapted to higher dimension because
in dimension n > 2 we do not have any more Steiner formulas for inner parallel sets (1.26)
and (1.27).

1 1 l

33 X ~3'3 be a sequence of rectangles of measure 1. It is pos-
sible to give an explicit upper bound to the functional Fo(§;). Hence, following the computations
in (4.17), we have

Example 3. Let Q; = (

.FQ(Q[) —Cy < 2[2.
Considering the rectangle Q with sides P(£)/2 and wq containing €, that is

1402 1412 L1
Q: - ) X T a'a |
21 2l 2°2

it is straightfoward to compute

|QAQ| = 212
Hence, we have

> K |QAQ° = K%,
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