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Introduction

Shape Optimization and Spectral Geometry are fields of mathematics where the main questions
are those of maximizing or minimizing, under some geometrical constraints, functionals defined
in certain classes of sets. These kind of problems are well known since the ancient times and
some of them finds its roots in the verses of Virgil:

The Kingdom you see is Carthage, the Tyrians, the town of Agenor;
But the country around is Libya, no folk to meet in war.
Dido, who left the city of Tyre to escape her brother,
Rules here - a long and labyrinthine tale of wrong
Is hers, but I will touch on its salient points in order...
Dido, in great disquiet, organized her friends for escape.
They met together, all those who harshly hated the tyrant
Or keenly feared him: they seized some ships which chanced to be ready...
They came to this spot, where today you can behold the mighty
Battlements and rising citadel of New Carthage,
And purchased a site, which was named "Bull’s Hide" after the bargain
By which they should get as much land as they could enclose with a bull’s hide.

Virgil - "The Aeneid"

According to Virgil’s epic poem the Aeneid, Dido, the queen of the Phoenician city of Tyre, was
forced to leave when her brother usurped the throne and murdered her husband, the king of the
reign. With many difficulties, she arrived in Libya, where she bargained with the king of the
local tribes to be given as much land as could be enclosed by the hide of a bull. Although this
could sound like a unfavorable agreement, the refugee princess managed to find a clever solution:
she cut the hide into very thin strips, tied them together into a rope, and looped it around a
plot of land by the shoreline in such a way as to maximize the area of her claim.

A AB Bshoreline shoreline

Carthage
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To this day, the so called Dido’s problem consists on finding a curve with fixed endpoints and
fixed length that encloses the maximum area between the curve and the line segment between
the two endpoints, and belongs to those inequalities that go under the name of isoperimetric in-
equalities. Namely, if we have a bounded open set Ω P Rn, the classical isoperimetric inequalities
states that

P pΩq ě nω
1
n
n |Ω|

1´ 1
n ,

where P pΩq denotes the Euclidean perimeter of Ω in Rn, |Ω| is the Lebesgue measure of Ω and ωn
is the Lebesgue measure of the unit ball. In particular the equality case holds if and only if Ω is
a ball, up to sets with zero capacity. Even though this problem was well known for thousands of
years, the first proofs in two dimensions were given in the nineteenth century by Steiner [127] and
Edler [57] and more complete proofs a century later by many other authors [12, 13, 14, 36, 90].
In the three dimensional space, early proofs were given by Tonelli [134], Schmidt [119, 120] and
Radò [114]. A rigorous, complete and elegant proof were given only by De Giorgi [46], almost 65
years ago, starting from a general definition of Perimeter.
With regard to Spectral Geometry in particular, the first conjecture goes back to the end of
the 19th Century and can be found in the famous book of Lord Rayleigh, The Theory of Sound
[115]. The author conjectured that, among all planar sets with fixed area, the disk minimizes
the first Dirichlet eigenvalue of the Laplace operator. Physically, this eigenvalue represents the
principal frequency of a vibrating membrane fixed at its boundary, so that if the conjecture was
true, "one could have heard" the shape of the circular drum. This problem was proved 50 years
later in two contemporary but independent works, one by Faber [63] and one by Krahn [93], and
it was completely solved later with the work of Pólya and Szegö [113]. Let Ω Ď Rn, with n ě 2,
be an open set with finite Lebesgue measure, the first Dirichlet-Laplacian eigenvalue is the least
positive λ such that

#

´∆u “ λu in Ω

u “ 0 on BΩ
(1)

admits non-trivial solutions in H1
0 pΩq. The classical result of Faber and Krahn for the first

Dirichlet eigenvalue λ1pΩq states that, among measurable domains with fixed measure, λ1p¨q is
minimized by a ball; in other words, the following scaling invariant inequality holds:

λ1pΩq|Ω|
2{n ě λ1pBq|B|

2{n, (2)

where by | ¨ | we denote the volume of a measurable set and by B a ball in Rn. Moreover, equality
holds in (2) if and only if Ω is equivalent to a ball.
Strictly related to the Dirichlet eigenvalue problem for the Laplacian, there is the torsion problem
of elasticity, known as Saint-Venant problem. Adhémar-Jean-Claude Barré de Saint-Venant was
a French mathematician and engineer, who devoted his studies to the resistence of materials
and to elasticity theory: he conjectured (see [47]) that among all cylindrical bars with constant-
shaped cross section and fixed measure, the one that maximized the torsional rigidity was the
bar with circular cross section. In n dimensions the torsional rigidity is nothing else that the
L1-norm of the unique and positive solution in H1

0 pΩq to the following problem
#

´∆u “ 1 in Ω

u “ 0 on BΩ,
(3)

where Ω P Rn is an open set with finite Lebesgue measure. Namely if uΩ is this unique solution,
known as torsion function, the torsional rigidity is defined as

T pΩq “

ˆ
Ω

uΩ dx.
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The conjecture was firstly proved in 1948 by Pólya [111] and successively by Davenport as
reported in [113]. Makai [101] in 1966 found another estimate and gave a more general proof of
it. Mathematically, the Saint-Venant conjecture is

T pΩq ď T pBq, (4)

where B is the ball having the same measure as Ω.
The study of these kind of problems gave rise to a series of other optimization questions, such as
other types of boundary conditions of the Laplacian or different operators, linear and non-linear.
It is worth mentioning the Laplacian eigenvalue problem with Neumann boundary condition; in
this case it makes sense to deal with a maximization problem. Let Ω Ď Rn be a bounded, open
and Lipschitz domain; the problem is

$

&

%

´∆u “ µu in Ω
Bu

Bν
“ 0 on BΩ,

(5)

where we denote by Bu{Bν the outer normal derivative of u on BΩ. In this case the first eigenvalue
µ1 is always zero and the associated eigenfunctions are the constant functions. The following
inequality was proved by Szegö in the plane [129] and then generalized in higher dimension
by Weinberger [140]. The so called Szegö-Weinberger inequality states that the first non-zero
Neumann eigenvalue µ2pΩq is maximized by a ball among domains with fixed measure, that is
equivalent to say that the following scaling invariant inequality holds:

µ2pΩq|Ω|
2{n ď µ2pBq|B|

2{n. (6)

The Faber-Krahn, Saint-Venant and Szegö-Weinberger are examples of isoperimetric inequal-
ities. The fact that balls can be characterized as the only sets for which equality holds leads
to ask if these inequalities are stable, i.e. if it is possible to improve them by adding a remain-
der term that measures the deviation of a set Ω from the spherical symmetry. These kind of
inequalities are known as quantitative isoperimetric inequalities. Starting from the quantitative
isoperimetric inequality proved in [72], several spectral quantitative isoperimetric inequalities
were proved, as for example the Faber-Krahn [20] and the Szegö-Weinberger [19] inequalities.

The aim of this thesis is to obtain analogous results in these directions for the eigenvalue
problem with different boundary conditions and for some operators of linear and non linear
type. In particular, we focus our study on Steklov and Robin boundary conditions, obtaining
isoperimetric inequalities as (1) and (5) in particular classes of sets and we obtain a quantitative
result in terms of the torsion, perimeter and measure.

In the first part of this thesis we focus on a problem concerning the maximization of the first
non-trivial Steklov-Dirichlet eigenvalue on the class of doubly connected domains. But before
going on, let us summarise what is a Steklov eigenvalue, introduced by the Russian mathematician
V. A. Steklov [128].
Let Ω Ă Rn, with n ě 2, be a bounded, connected, open set with Lipschitz boundary. A real
non-negative number σ ě 0 is called a Steklov eigenvalue if there exists u P H1pΩq with u ‰ 0
such that

$

&

%

∆u “ 0 in Ω,

Bu
Bν “ σu on BΩ.

(7)

The Steklov eigenvalues can be interpreted as the eigenvalues of the Dirichlet-to-Neumann op-
erator D : H1{2pΩq Ñ H´1{2pΩq which maps a function f P H1{2pΩq to Df “ BHf

Bn , where Hf is



8

the harmonic extension of f to Ω. For a survey concerning this topic we refer to [83]. As usual,
problem (7) is considered in the weak sense, that is, for every v P H1pΩq,

ˆ
Ω

∇u ¨∇v dx “ σ

ˆ
BΩ

u v dHn´1, (8)

where ¨ denotes the standard Euclidean scalar product andHn´1 denotes the pn´1q´dimensional
Hausdorff measure in Rn. In this framework, since the trace operator H1pΩq Ñ L2pBΩq is
compact (see [103], Theorem 6.2), it is known that the Steklov spectrum consists of a discrete
sequence diverging at infinity

0 “ σ0pΩq ď σ1pΩq ď σ2pΩq ď ¨ ¨ ¨ Õ `8. (9)

In particular, the first non-trivial Steklov eigenvalue of Ω has the following variational charac-
terization:

σ1pΩq “ min

$

’

’

&

’

’

%

ˆ
Ω

|∇v|2 dx
ˆ
BΩ

v2 dHn´1
: v P H1pΩqzt0u,

ˆ
BΩ

v dHn´1 “ 0

,

/

/

.

/

/

-

. (10)

If we take Ω “ BRpxq, where BRpxq is the ball of radius R centered at the point x, then

σ1pBRpxqq “
1

R
. (11)

Moreover, we know that σ1pBRpxqq has multiplicity n and the corresponding eigenfunctions are
uipxq “ xi, with i “ 1, . . . , n. Let us focus now our attention on shape optimization problems
concerning the first non trivial Steklov eigenvalue. In [141] the author considers the problem
of maximizing σ1pΩq in the plane, keeping the perimeter of Ω fixed. If Ω Ď R2 is a Lipschitz,
simply connected open set, the following inequality, known as Weinstock inequality, is proved

σ1pΩqP pΩq ď σ1pBRpxqqP pBRpxqq, (12)

where P pΩq denotes the Euclidean perimeter of Ω. In other words, inequality (12) states that,
among all planar, simply connected, open sets with prescribed perimeter, σ1pΩq is maximum for
the disk. Moreover, in [78], it is proved that (12) fails to be true in general in dimension n ą 2.
If we consider indeed the annulus Aε “ B1pxqzBεpxq, having that BRpxq is the ball of radius R
centered at x, with ε « 0, that is a simply connected set, the following reverse inequality holds,

σ1pAεqP pAεq
1

n´1 ą σ1pBRpxqqP pBRpxqqq
1

n´1 .

In [27], the authors generalize the Weinstock inequality (12) in any dimension, when restricting
to the class of convex sets. More precisely, if Ω Ď Rn is an open, bounded, convex set, then

σ1pΩqP pΩq
1

n´1 ď σ1pBRpxqqP pBRpxqq
1

n´1 (13)

and equality holds only if Ω is a ball.
Considering, instead, a volume constraint, in [23] the author proves that the first non-trivial

Steklov eigenvalue is maximized by balls, among sets with the same volume. More precisely, if
Ω Ď Rn, n ě 2, is an open bounded set with Lipschitz boundary, then

σ1pΩq|Ω|
1
n ď σ1pBRpxqq|BRpxq|

1
n , (14)
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where |Ω| denotes the Lebesgue measure of Ω and equality holds if and only if Ω is a ball. We
also observe that (13) and the classical isoperimetric inequality imply (14) for convex sets; so,
inequality (14) is weaker than (13) because it contains the volume, but it is more general because
it holds without geometric restrictions.

Chapter 2 deals with a different shape optimization problem in domains with a hole, involving
the Steklov boundary condition on the outer boundary and Dirichlet or Robin on the inner one.
Let Ω0 Ď Rn, n ě 2, be an open, bounded, connected set, with Lipschitz boundary such that
Br b Ω0, where Br is the open ball of radius r ą 0 centered at the origin. Let us set Ω :“ Ω0zBr;
then we study the following Steklov-Dirichlet boundary eigenvalue problem for the Laplacian:

$

’

’

&

’

’

%

∆u “ 0 in Ω

u “ 0 on BBr,
Bu

Bν
“ σpΩqu on BΩ0.

(15)

The study of the first eigenvalue of problem (15) leads to the following minimization problem:

σ1pΩq “ min
wPH1

BBr
pΩq

wı0

ˆ
Ω

|∇w|2 dx
ˆ
BΩ0

w2 dHn´1
, (16)

where H1
BBr
pΩq is the set of Sobolev functions on Ω that vanish on BBr. Notice also that the

value σ1pΩq is the optimal constant in the Sobolev-Poincaré trace inequality:

σ1pΩq||w||L2pBΩ0q ď ||∇w||H1
BBr

pΩq. (17)

We treat the following shape optimization issue:

Which sets maximize σ1p¨q among sets of the form Ω “ Ω0zBr, where Ω0 contains the fixed ball
Br and Ω has prescribed volume?

In the class of sets of the form BRpx0qzBr with BRpx0q being a ball containing Br, the maximizer
of σ1 is the spherical shell, that is the annulus when the balls are concentric (see [68]). This is
also proved in [138] and for more general spaces in [125].
We partially solve the problem of the optimality of σ1, restricting our study to two classes of
sets. Firstly we consider the class of nearly spherical sets, that are sets whose boundary can
be parametrized on the sphere by means of a Lipschitz function with a small W 1,8-norm; see
Definition 1.2 in Chapter 1. In second place, we study the existence of a maximizer and the
isoperimetric inequality when Ω is in the class of convex sets.
With regard to the first class, our result is the following and is contained in [106].

Theorem. Let Ω “ Ω0zBr, with Ω0 a nearly spherical set. Then

σ1pΩq ď σ1pAr,Rq, (18)

where Ar,R “ BRzBr, with R ą r ą 0, is the spherical shell with the same volume as Ω. Moreover
the equality in (18) holds if and only if Ω is a spherical shell.

So, we study the optimal shape for σ1pΩq when both the volume of the domain and the
radius of the internal ball are fixed. We also find some counterexamples showing that when
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only a volume constraint holds, then σ1 is not upper bounded, hence we cannot speak about
optimality. In order to prove the Theorem, we find K “ Kpn, |Ω|q ą 0, such that

σ1pAr,Rq ě σ1pΩq

ˆ

1`Kpn, |Ω|q

ˆ
Sn´1

v2pξq dHn´1

˙

.

In [75] we enlarge the class of nearly spherical sets to the one of convex sets. We prove the
existence of a maximizer among convex sets with fixed internal ball and fixed volume. Let ω ą 0
and r ą 0 be fixed, then by Arpωq we will denote the class of convex sets having measure ω and
containing the ball Br, that is

Arpωq :“
 

D “ KzBr, K Ď Rn open, bounded, convex : Br b K, |D| “ ω
(

.

The existence theorem is stated as follows

Theorem. Let ω ą 0 and r ą 0 be fixed. There exists a set E P Arpωq, such that

max
DPArpωq

σ1pDq “ σ1pEq.

In particular this theorem can be easily proved even when fixing the perimeter of Ω0 instead
of the volume. Moreover it can be generalized when we substitute any convex set in place of the
ball Br, fixing its inradius and the measure of Ω0.
The optimization result in this class is partial and is stated in the following

Theorem. Let r ą 0, Ω0 Ă Rn be an open, bounded and convex set, n ě 2, such that Br b
Ω0 Ď BR̄, where BR̄ is the ball centered at the origin with radius R̄ given by

R̄ “

$

’

&

’

%

re
?

2 if n “ 2

r

„

pn´1q`pn´2q
?

2pn´1q

n´1


1

n´2

if n ě 3.
(19)

Then, denoting by Ω “ Ω0zBr, the following inequality holds

σ1pΩq ď σ1pAr,Rq, (20)

where Ar,R is the spherical shell of radii r ă R having the same volume as Ω.

In [76] we replace the Dirichlet boundary condition with the Robin boundary condition. Let
Ω “ Ω0zBr, where Br is the ball centered at the origin with radius r ą 0 and Ω0 Ă Rn, n ě 2, is
an open, bounded set with Lipschitz boundary, such that Br b Ω0. We deal with the following
Steklov-Robin eigenvalue problem

$

’

’

’

’

’

&

’

’

’

’

’

%

∆u “ 0 in Ω

Bu

Bν
“ σu on BΩ0

Bu

Bν
` βu “ 0 on BBr,

where ν is the outer unit normal to BΩ and β ą 0 is a positive real parameter.
The aim of this paper is to study the first eigenvalue σβpΩq of (2.55) defined as

σβpΩq “ inf
vPH1pΩqzt0u

ˆ
Ω

|∇v|2 dx` β
ˆ
BBr

v2 dHn´1

ˆ
BΩ0

v2 dHn´1
.
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We prove that σβpΩq is actually a minimum, it is simple, and that the corresponding eigen-
functions have constant sign. Hence, also in this case, despite the Steklov condition, σβpΩq is
formally a Robin type eigenvalue.
When Ω is a spherical shell, that is Ω “ BRzBr, σβpΩq and the corresponding eigenfunctions
can be explicitly computed.
For sake of simplicity, here we will denote by σD the first Steklov-Dirichlet eigenvalue discussed
above. We observe that σβpΩq depends clearly also on β and we expect that for β Ñ 0 and
β Ñ 8 then σβpΩq goes to 0 and σDpΩq, respectively. In order to show this, we will prove
some estimates on σβpΩq in the spirit of the ones contained in [94] for the first Robin Laplacian
eigenvalue (see also [55] for a more general case). More precisely, let us define the following
quantities

µ1pΩq :“ inf
vPH1

pΩqzt0u´
BBr

v dHn´1
“0

´
Ω
|∇v|2 dx´
BΩ0

v2 dx
,

and

q1pΩq “ inf
∆w“0

wPH1
pΩqzH1

BBr
pΩq

ˆ
BBr

w2 Hn´1

ˆ
BΩ0

w2 Hn´1
,

We observe that µ1pΩq is the first nontrivial Steklov Laplacian eigenvalue in Ω. Then our result
is the following

Theorem. Let Ω0 Ă Rn be an open, bounded set with Lipschitz boundary and let Ω “ Ω0zBr,
where Br is the ball centered at the origin and with radius r such that Br b Ω0. Then the
following estimates hold

1

σβpΩq
ď

1

µ1pΩq
`

P pΩ0q

βP pBrq
,

and
1

σβpΩq
ď

1

σDpΩq
`

1

q1pΩq
,

where σβpΩq is the first Steklov-Robin eigenvalue of Ω, σDpΩq is the first Steklov-Dirichlet eigen-
value, µ1pΩq and q1pΩq are defined above, respectively.

As a consequence of the above estimates we can obtain the quoted asymptotic behaviour of
σβpΩq with respect to β in both case, when β either goes to zero or to infinity.

Chapter 3 is devoted to the study of two problems involving a Robin boundary condition:
one in the linear and the other one in the non linear case, but both of them gravitate around a
result à la Talenti proved in [2].
We start by recalling the Robin eigenvalue problem for the Laplacian. Let Ω be a bounded, open
subset of Rn, n ě 2, with Lipschitz boundary; its Robin eigenvalues related to the Laplacian are
the real numbers λ such that

$

&

%

´∆u “ λu in Ω

Bu
Bν ` αu “ 0 on BΩ

(21)

admits non trivial W 1,2pΩq solutions; α is an arbitrary real constant, which will be referred
to as boundary parameter of the Robin problem. We observe that for α “ 0 we obtain the
Neumann problem, for α “ `8 we formally obtain the Dirichlet problem and for λ “ 0 the
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Steklov problem; for this reason it can be considered as the most general eigenvalue problem for
the Laplace operator. For each fixed Ω and α there is a sequence of eigenvalues

λ1pα,Ωq ď λ2pα,Ωq ď ¨ ¨ ¨ Ñ `8

which depend on α. In particular, the first non trivial Robin eigenvalue of Ω is characterized by
the expression

λ1pα,Ωq “ min
uPW 1,2

pΩq
u‰0

ˆ
Ω

|∇u|2 dx` α

ˆ
BΩ

|u|2 dH1

ˆ
Ω

|u|2 dx

.

We refer to [91] for a collection of properties of the Robin Laplacian eigenvalues and the related
proofs.

We will always assume that α ą 0. We have the following Faber-Krahn type inequality, that
was proved in [16] in the planar case and was then generalized in [45] in any dimension. Let
Ω Ď Rn be a bounded and Lipschitz domain. Then,

λ1pα,Ωq ě λ1pα,Bq, (22)

where B is a ball such that |B| “ |Ω|. Equality holds if and only if Ω is a ball. The generalization
to the p-Laplacian is given in [44] and in [26]; this result was also shown to hold on general open
sets of finite measure, see [28].
As we said before, the authors Alvino, Nitsch and Trombetti studied in [2] a problem that was
for the first time introduced by Talenti [130]. He proved, via rearrangements arguments, that
the Schwarz symmetrization (see [92]) of the solution to problem

#

´∆u “ f in Ω

u “ 0 on BΩ,
(23)

with f P L2pΩq (non-negative and not identically zero) and Ω an open subset of Rn, is pointwise
bounded by the solution to the following symmetrized problem

#

´∆v “ f 7 in Ω7

v “ 0 on BΩ7,
(24)

with f 7 being the Schwarz decreasing rearrangement of f and Ω7 the ball centered at the origin
having the same measure as Ω.

Talenti, with his techniques, gave birth to a series of generalizations and results that still now
take his name. For instance see [4, 3, 131, 132] for generalizations to other kind of operators.
When we have Robin boundary conditions with positive parameter, problem (23) becomes

$

&

%

´∆u “ f in Ω
Bu

Bν
` βu “ 0 on BΩ.

(25)

To our knowledge, in literature, there are few comparison results à la Talenti for this kind of
problem. A result of this type has been proved only recently in [2], where they have highlighted
the importance of the dependence on the dimension of the space. The authors, in fact, managed
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to compare the Lorentz norm (see [98]) of the solution to problem (25) with that of the solution
to the symmetrized problem

$

&

%

´∆v “ f 7 in Ω7

Bv

Bν
` βu “ 0 on BΩ7,

(26)

where the exponents of these norms depend on the dimension of the space.
In particular they proved, for n ě 2, that

}u}Lp,1pΩq ď }v}Lp,1pΩ7q for all 0 ă p ď
n

2n´ 2
(27)

and
}u}L2p,2pΩq ď }v}L2p,2pΩ7q for all 0 ă p ď

n

3n´ 4
, (28)

with u solution to (25) and v to (26). Moreover, when f ” 1 in Ω and n “ 2, they showed that

u7pxq ď vpxq x P Ω7, (29)

and, for n ě 3, that

}u}Lp,1pΩq ď }v}Lp,1pΩ7q

}u}L2p,2pΩq ď }v}L2p,2pΩ7q,

for all 0 ă p ď n
n´2 .

With a different approach [29] proved that

}u}L1pΩq ď }v}L1pΩ7q.

A generalization of this result can be found in [5], where the authors consider the p-Laplacian.
The first part of Chapter 3 is dedicated to another nonlinear generalization, involving the
anisotropic Laplacian and that can be found in [116]. Let Ω Ă Rn be an open bounded set,
with Lipschitz boundary. Let us consider the following anisotropic problem with Robin bound-
ary conditions

$

’

&

’

%

´divpHp∇uqHξp∇uqq “ f in Ω

Hp∇uqHξp∇uq ¨ ν ` βHpνqu “ 0 on BΩ,
(30)

where f ě 0 (not identically zero) belongs to L2pΩq, H is a sufficiently smooth norm in Rn, ν is
the Euclidean outer unit normal to BΩ and β ą 0 is a positive real parameter.
A weak solution to problem (3.1) is a function u P H1pΩq that satisfies

ˆ
Ω

Hp∇uqHξp∇uq ¨∇ϕdx` β
ˆ
BΩ

HpνquϕdHn´1 “

ˆ
Ω

fϕ @ϕ P H1pΩq. (31)

We recall that the Wulff Shape centered in x0 P Rn of radius R is defined as follows

WRpx0q “ tx P Rn : H˝px´ x0q ă Ru,

where H˝ is the dual norm of H. In particular we will denote by W the Wulff Shape centered
at the origin of radius 1 (for the exact definitions, see (1.4)).
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The aim of the work is to estabilish a comparison result with the solution to the following
symmetrized problem

$

’

&

’

%

´divpHp∇vqHξp∇vqq “ f‹ in Ω‹

Hp∇vqHξp∇vq ¨ ν ` βHpνqv “ 0 on BΩ‹,
(32)

where f‹ is the convex symmetrization of f (see (1.4)) and Ω‹ is a set homothetic to the Wulff
Shape W such that |Ω‹| “ |Ω|.
In particular the main theorems are the following

Theorem. Let be n ě 2. If u and v are the solutions to problems (30) and (32) respectively,
then

}u}Lp,1pΩq ď }v}Lp,1pΩ‹q for all 0 ă p ď
n

2n´ 2
(33)

and
}u}L2p,2pΩq ď }v}L2p,2pΩ‹q for all 0 ă p ď

n

3n´ 4
. (34)

Theorem. Let n “ 2, f ” 1 in Ω. If u and v are the solutions to problems (30) and (32)
respectively. Then

u‹pxq ď vpxq x P Ω‹, (35)

where u‹ is the convex symmetrization of u.

Theorem. Let n ě 3 and f ” 1. If u and v are the solutions to problems (30) and (32)
respectively, then

}u}Lp,1pΩq ď }v}Lp,1pΩ‹q (36)

and
}u}L2p,2pΩq ď }v}L2p,2pΩ‹q, (37)

for all 0 ă p ď n
n´2 .

The second part of this Chapter, which is contained in [117], is the attempt to solve an open
problem left by the authors in [2]. Since the validity of (27),(28), we have that

}u}LppΩq ď }v}LppΩ7q, p “ 1, 2. (38)

Hence one may ask if (38) is still true for larger values of p in dimension 2 or if it is valid in every
dimension and value of p. The authors, though, found counterexamples of the untruthfulness of
these questions when n “ 2 and p “ 8, and when n “ 3 and p “ 2. This, together with (29),
led to the following open problems:

• u7 ď v in Ω7 for n ě 3 and f ” 1 ;

• }u}L1pΩq ď }v}L1pΩ7q for n ě 3 and f P L2pΩq.

In [117] we move the first steps in these directions.
In particular let us consider problem (25) with f ” 1 and Ω Ă Rn, n ě 2 a bounded C2,α and
simply connected open set.
We set

MpΩq “ }u}L8pΩq,



15

and for every p P r1,`8q we denote the following functional

FppΩq “

ˆ
Ω

|upxq|p dx “

ˆ
Ω

uppxq dx “ }u}pLppΩq.

We are interested in computing the shape derivative (see [85]) of these two functionals and prove
that the ball centered at the origin is a critical shape for them.
Namely, if Ω Ă Rn is a bounded C2,α simply connected open set, let us consider a first order
perturbation

Ωt “ p1Rn ` tV qpΩq,

with 1Rn being the identity function, V a C2,αpRn,Rnq vector field and t a small real number.
We are interested in the study of the limits (if they exist)

M 1pΩ, V q “ lim
tÑ0

MpΩtq ´MpΩq

t
(39)

and
F 1ppΩ, V q “ lim

tÑ0

FppΩtq ´ FppΩq

t
. (40)

If we denote by BR the ball centered at the origin in Rn with radius R ą 0, then problem (25)
becomes

$

’

&

’

%

´∆u “ 1 in BR
Bu

Bν
` βu “ 0 on BBR,

(41)

where ν “ x
R is the outer unit normal to the boundary. The main theorem is stated as follows

Theorem. The ball BR is a critical shape for the functionals MpΩq and FppΩq, p ě 1, i.e.

M 1pBR, V q “ F 1ppBR, V q “ 0,

where V is a C2,αpRn,Rnq vector field volume preserving of the first order and where M 1p¨, vq
and F 1pp¨, vq are the shape derivatives of M and Fp respectively.

For the precise definition of vector field volume preserving of the first order see Definition 3.1
in subsection 3.2.2.

Chapter 5 deals with a different problem from the ones discussed above. Indeed in our pa-
per [6] we study a generalization and find a quantitative result for Pólya’s inequality, that gives
an estimate from below of the torsion of a non-empty open, bounded and convex set, in terms
of its perimeter and measure.
In [112] the author proves that, among all bounded, open and convex planar sets, the following
inequality holds

T pΩqP 2pΩq

|Ω|
3 ě

1

3
(42)

and equality is asymptotically achieved by a sequence of thinning rectangles. An upper bound of
the same functional is given by Makai in [100] proves that among all bounded, open and convex
planar sets, it holds

T pΩqP 2pΩq

|Ω|
3 ď

2

3
, (43)
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which is sharp on a sequence of thinning triangles (for the exact definition of thinning domains
see Definition 1.17). Estimates (42) and (43) are generalized to the p´Laplacian in [65]. More
precisely, the authors prove that, in the class of bounded, open and convex planar sets,

1

q ` 1
ă
TppΩqP

qpΩq

|Ω|
q`1 ă

2q`1

pq ` 2qpq ` 1q
q “

p

p´ 1
, (44)

where the lower and the upper bounds hold asymptotically on a sequence of thinning rectangles
and on a sequence of thinning isosceles triangles, respectively. In [49] the authors generalize the
lower bound (44) in every dimensions, proving that, for bounded, open and convex sets Ω Ď Rn,
it holds

TppΩqP
qpΩq

|Ω|
q`1 ą

1

q ` 1
, (45)

and they extend such result also to the anisotropic case.
We also recall that in [22] the authors consider the functional

HkpΩq “
P pΩqT kpΩq

|Ω|αk
αk “ 1` k `

2k ´ 1

n

and prove that, among bounded, open and convex sets in Rn, this functional is bounded if and
only if k “ 1{2. More precisely, they prove the following:

1
?

3
ď H 1

2
pΩq ď

2nn3n{2

ωn

ˆ

n

n` 2

˙
1
2

, (46)

where ωn is the Lebesgue measure of the unit ball. We note that, in the planar case, the lower
bound in (46) coincides with the one given in (42), while the upper bound is strictly larger than
the one given in (43). It is conjectured that, in the higher dimensional case, the upper bound is

H 1
2
pΩq ď n

ˆ

2

pn` 1qpn` 2q

˙
1
2

.

Moreover, we observe that the lower bound in (46) is asymptotically achieved by a sequence of
thinning cylinders.

Let Ω Ă Rn, n ě 2, be a non-empty, bounded, open and convex set and let p P p1,`8q. We
consider the Poisson equation for the p´Laplace operator, defined as

´∆pu :“ ´div
`

|∇u|p´2∇u
˘

,

with Dirichlet boundary condition:
#

´∆pupxq “ fpdpx, BΩqq in Ω

u “ 0 on BΩ,
(47)

where f : r0, RΩs Ñ r0,`8r is a continuous, non-increasing and not identically zero function,
dp¨, BΩq : Ω Ñ r0,`8r is the distance function from the boundary defined as

dpx, BΩq :“ inf
yPBΩ

|x´ y|

and RΩ is the inradius of Ω, i.e.
RΩ “ sup

xPΩ
dpx, BΩq.
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This class of functions, depending only on the distance, are the so called web functions, see as a
reference [42]. A function u PW 1,p

0 pΩq is a weak solution to (4.1) if and only if
ˆ

Ω

|∇upxq|p´2∇upxq∇ϕpxq dx “
ˆ

Ω

fpdpx, BΩqqϕpxq dx @ϕ PW 1,p
0 pΩq.

The pf, pq-torsional rigidity of Ω, that we denote by Tf,ppΩq, is defined as

Tf,ppΩq “ max
ϕPW 1,p

0 pΩq
ϕı0

ˆˆ
Ω

fpdpx, BΩqq |ϕpxq| dx

˙

p
p´1

ˆˆ
Ω

|∇ϕpxq|p dx
˙

1
p´1

(48)

and, if up PW
1,p
0 pΩq is the unique solution to (4.1), we have

Tf,ppΩq “

ˆ
Ω

fup dx.

For the sake of simplicity, when f ” 1 in Ω, we set TppΩq :“ T1,ppΩq and, if we are also in the
case p “ 2, we set T pΩq :“ T1,2pΩq.
The first result that we prove, following the method of proof used in [112] with the use of web
functions as test functions, is a lower bound for the pf, pq-torsional rigidity, which generalizes
the lower bound in (44).

Theorem. Let Ω be a non-empty, bounded, open and convex set of Rn, n ě 2, and let f :
r0, RΩs Ñ r0,`8r be a continuous and non-increasing function such that f ı 0. Then, it holds

Tf,ppΩq ě cp
µq`1
f pΩq

fp0qP qpΩq
, (49)

where
cp “

p´ 1

2p´ 1
, q “

p

p´ 1
,

and
µf pΩq “

ˆ
Ω

fpxq dx.

Moreover, the equality sign is asymptotically achieved by a sequence of thinning cylinders.

For the definition of thinning cylinder see subsection (1.3.2). We stress that both the estimate
and the constant in Theorem 4.1 are independent of the dimension of the space.

In the second part of the present paper, we focus our study on the case f ” 1 and n “ 2 and
we obtain some quantitative estimates. We define the following functional

FppΩq “
TppΩqP

qpΩq

|Ω|q`1
q “

p

p´ 1
, (50)

which is scaling invariant, since for every t ą 0

|tΩ| “ tn |Ω| , P ptΩq “ tn´1P pΩq

and
TpptΩq “ tn`qTppΩq.
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We can rewrite inequality (4.3), in the case f ” 1, as follows

FppΩq ě cp.

From Theorem 4.1 follows that along a sequence of thinning cylinders tΩlulPN, we have

FppΩlq
lÑ0
ÝÝÑ cp.

This leads to the following stability issue: if FppΩq is close to cp, can we say that Ω is close in
some sense to a cylinder? The following result gives us information on the nature of the geometry
of Ω: when FppΩq ´ cp is sufficiently small, the set Ω is a thin domain (see definition (1.7)).

The main novelty of the paper consists indeed in the following quantitative results of the
Pólya estimates (42) and the Pólya type lower bound in (44) by means of suitable deficits. For
completeness, we recall some standard references about isoperimetric quantitative results, see
for example [72, 71, 21, 18, 74, 106]. The main difference between these results and ours is that
the equality in Pólya’s estimates is achieved asymptotically for a sequence of thinning cylinders.
Hence, the proof of quantitative result must take into account that we do not have a minimum,
as in the classical isoperimetric stability results.

Theorem. Let Ω be a non-empty, bounded, open and convex set of Rn and let f ” 1. Then,

FppΩq ´ cp ě Kpn, pq

ˆ

wΩ

diampΩq

˙n´1

, (51)

where Kpn, pq is a positive constant depending only on p and the dimension of the space n. In
particular, in the case n “ 2, the exponent of the quantity

wΩ

diampΩq
is sharp.

We prove a second quantitative result in the case p “ n “ 2.

Theorem. Let Ω be a non-empty, bounded, open and convex set in R2, let f ” 1 and let p “ 2.
Then, there exists a positive constant K̃ such that

F2pΩq ´ c2 “
T pΩqP 2pΩq

|Ω|3
´

1

3
ě K̃

ˆ

|Ω 4Q|

|Ω|

˙3

, (52)

where Ω 4 Q denotes the symmetric difference between Ω and a rectangle Q with sides P pΩq{2
and wΩ containing Ω.
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Chapter 1

Preliminaries

1.1 Notations
Throughout this thesis, | ¨ | is the Euclidean norm in Rn and ¨ is the standard Euclidean scalar
product for n ě 2. Without ambiguity, the same symbol | ¨ | will denote the Lebesgue measure
Ln in Rn by Hk, for k P r0, nq, the k´dimensional Hausdorff measure in Rn. Moreover, we use
the following notation: BRpxq is the ball of Rn with radius R and centered at x, B is a generic
ball such that |B| “ 1. Let R1, R2 be such that 0 ă R1 ă R2, the spherical shell will be denoted
as follows:

AR1,R2 “ tx P Rn : R1 ă |x| ă R2u.

Moreover, we define ωn as the Lebesgue measure in Rn of the ball of radius 1, so that LnpBRpxqq “
ωnR

n and we denote by Sn´1 the unit sphere in Rn.
If Ω Ď Rn has Lipschitz boundary, for Hn´1´ almost every x P BΩ, we denote by νBΩpxq the

outward unit Euclidean normal to BΩ at x. Sometimes, when there is no possibility of confution,
in order to simplify the notation, we will use ν instead of νΩ.

1.2 General facts

1.2.1 Basic definitions
Let Ω Ď Rn be a bounded, open set and let E Ď Rn be a measurable set. We recall now the
definition of the perimeter of E in Ω, that is

P pE; Ωq “ sup

"ˆ
E

divϕ dx : ϕ P C8c pΩ;Rnq, ||ϕ||8 ď 1

*

.

The perimeter of E in Rn will be denoted by P pEq and, if P pEq ă 8, we say that E is a set
of finite perimeter. Some references for results relative to the sets of finite perimeter are for
example [99, 7]. We observe that a remarkable feature of this definition is that in this way the
perimeter is not affected by modifications on sets of measure 0. Moreover, if E has Lipschitz
boundary, we have that

P pEq “ Hn´1pBEq. (1.1)

In order to deduce properties, it is often very useful to approximate sets of finite perimeter with
smooth sets. Therefore, we give the following notion of convergence.

21



22

Definition 1.1. Let Ω Ď Rn be a bounded, open set, let pEjqj be a sequence of measurable sets
in Rn and let E Ď Rn be a measurable set. We say that pEjqj converges in measure in Ω to E,
and we write Ej Ñ E, if χEj Ñ χE in L1pΩq, or in other words, if limjÑ8 | pEj∆Eq X Ω| “ 0.

We also recall that the perimeter is lower semicontinuous with respect to the local convergence
in measure, that means, if the sequence of sets pEjq converges in measure in Ω to E, then

P pE; Ωq ď lim inf
jÑ8

P pEj ; Ωq.

As a consequence of the Rellich-Kondrachov theorem, the following compactness result holds and
its proof can be found for instance in [7, Theorem 3.39].

Proposition 1.1. Let Ω Ď Rn be a bounded, open set and let pEjqj be a sequence of measurable
sets of Rn, such that supj P pEj ; Ωq ă 8. Then, there exists a subsequence pEjkqk converging in
measure in Ω to a set E, such that

P pE; Ωq ď lim inf
kÑ8

P pEjk ; Ωq.

Another useful property concerning the sets of finite perimeter is stated in the next approxi-
mation result, see [7, Theorem 3.42].

Proposition 1.2. Let Ω Ď Rn be a bounded, open set and let E be a set of finite perimeter in
Ω. Then, there exists a sequence of smooth, bounded open sets pEjqj converging in measure in
Ω and such that limjÑ8 P pEj ; Ωq “ P pE; Ωq.

By their respectively definitions, we have that P pEq and |E| satisfy the following scaling
properties, for t ą 0,

P ptEq “ tn´1P pEq, |tE| “ tn|E|.

For completeness we recall the classical isoperimetric inequality, already discussed in the intro-
duction. We refer the reader, for example, to [104, 32, 37, 133] and to the original paper by De
Giorgi [46].

Theorem 1.3. Let E Ď Rn, n ě 2, a Borel set with finite Lebesgue measure, then

nω1{n
n |E|pn´1q{n ď P pEq (1.2)

and equality holds if and only if E is a ball.

1.2.2 Coarea Formula and applications
In this subsection we recall the Coarea Formula and some of its consequences, that can be found
in [62].

Theorem 1.4 (Coarea Formula). Let f : Rn Ñ Rm be a Lipschitz continuous function, with
n ě m. Then for each Ln-measurable set A Ă Rn,ˆ

A

Jf dx “

ˆ
Rm

Hn´mpAX f´1tyuq dy, (1.3)

where J denotes the Jacobian.

Theorem 1.5 (Change of variables Formula). Let f : Rn Ñ Rm be a Lipschitz continuous
function, with n ě m. Then for each Ln-summable function g : Rn Ñ R we have that g|f´1tyu is
Hn´m-summable for Lm-a.e. y andˆ

Rn
gJf dx “

ˆ
Rm

ˆ
f´1tyu

g dHn´m dy.
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Applications

As applications to the change of variables formula, we have the integrations over balls and over
level sets.

Theorem 1.6 (Integration over balls). Let g : Rn Ñ R be a Ln-summable function. Then
ˆ
Rn
g dx “

ˆ 8
0

ˆ
BBr

g dHn´1 dr.

In particular for r ą 0

d

dr

ˆˆ
Br

g dx

˙

“

ˆ
BBr

g dHn´1 L1 ´ a.e.

Theorem 1.7 (Integration over level sets). If f : Rn Ñ R is Lipschitz continuous.

1. Then ˆ
Rn
|∇f | dx “

ˆ 8
´8

Hn´1ptf “ tuqdt.

2. Assume also that ess inf |∇f | ą 0 and let g : Rn Ñ R be Ln-summable, then
ˆ
tfątu

g dx “

ˆ 8
t

ˆ
tf“su

g

|∇f |
dHn´1 ds.

3. In particular
d

dt

ˆ ˆ
tfątu

g dx

˙

“ ´

ˆ
tf“tu

g

|∇f |
dHn´1 L1 ´ a.e.

1.2.3 Trace and Friedrich inequalities

Here we recall some known inequalities that will be useful in the sequel. Let Ω be an open
bounded subset of Rn with Lipschitz boundary, then by the classical Sobolev trace inequality
(see [60]) we have that

}u}L2pBΩq ď C}u}H1pΩq, (1.4)

for some positive constant C ą 0. Moreover the embedding operator of H1pΩq into L2pBΩq is
compact.
Another important embedding theorem is a consequence of the so-called Friedrich’s inequality
(see for instance [67, 102] and for a more general case [41]). Let H1pΩ, BΩq the completion of
the set of functions in C8pΩq X CpΩ̄q which have weak gradient in L2pΩq, equipped with the
following pseudonorm (see [102] for the details)

}u}H1pΩ,BΩq “ }∇u}L2pΩq ` }u}L2pBΩq.

Fridrich’s inequality states that

}u}L2pΩq ď Cp}∇u}L2pΩq ` }u}L2pBΩqq (1.5)

for some positive constant C ą 0. Also in this case the embedding operator of H1pΩ, BΩq into
L2pΩq is compact (see Corollary 3, p. 392 in [102]).
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1.2.4 Gronwall’s Lemma
We will state Gronwall lemma (see [11, 82]) that will be useful in Chapter 3.

Lemma 1.8. (Gronwall) Let ξptq be a continuously differentiable function satysfing for some
non-negative constant C, the following differential inequality

τξ1pτq ď ξpτq ` C,

for all τ ě τ0 ą 0. Then we have

ξpτq ď τ
ξpτ0q ` C

τ0
` C

and
ξ1pτq ď

ξpτ0q ` C

τ0
,

for all τ ě τ0.

1.2.5 Lorentz Spaces
In this paragraph we recall the definition of Lorentz Space (for instance see [98]).
Let 1 ď p, q ď 8. A measurable function f : Ω Ñ Rn is in the Lorentz space Lp,qpΩq if and only
if the following norm

}f}Lp,qpΩq “

$

’

’

&

’

’

%

ˆˆ `8
0

pt
1
p |tx P Ω : |fpxq| ą tu|qq

dt

t

˙
1
q

q ă 8,

sup
tą0

t
1
p |tx P Ω : |fpxq| ą tu| q “ 8

is finite.
Let us notice that when p “ q then

Lp,qpΩq “ LppΩq,

i.e. when the exponents are equal, we have the well known Lebesgue Spaces.

1.2.6 Definition of nearly spherical sets and main properties
In this section we give the definition of nearly spherical sets and we recall some of their basic
properties (see for instance [18, 69, 70]). The usual definition is the following.

Definition 1.2. Let n ě 2. An open, bounded set E Ď Rn with the origin contained in E is
said a nearly spherical set parametrized by v if there exists v PW 1,8pSn´1q such that

BE “
 

y P Rn : y “ Rxp1` vpxqq, x P Sn´1
(

, (1.6)

where R is the radius of the ball having the same measure of E and ||v||W 1,8pSn´1q ď 1{2.

The perimeter and the volume of a nearly spherical set are given by

P pEq “

ˆ
Sn´1

p1` vpxqq
n´2

b

p1` vpxqq
2
` |∇τvpxq|2 dHn´1, (1.7)

|E| “
1

n

ˆ
Sn´1

p1` vpxqq
n
dHn´1, (1.8)
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1.3 Some properties of Convex sets

1.3.1 Hausdorff distance, support function and radial map

We recall here some properties of convex sets that we will use in this thesis. We recall the
definition of Hausdorff distance between two non-empty compact sets E,F Ă Rn, that is (see for
instance [122])

δHpE,F q “ inftε ą 0 : E Ă F `Bε, F Ă E `Bεu.

Note that, if E,F are both convex sets, then δHpE,F q “ δHpBE, BF q.
Let tEkukPN be a sequence of non-empty compact subsets of Rn, we say that Ek converges

to E in the Hausdorff sense and we denote

Ek
H
ÝÑ E

if and only if δHpEk, Eq Ñ 0 as k Ñ 8. Moreover, we say that tEkukPN converges in measure
to E, and we write Ek Ñ E, if χEk Ñ χE in L1pRnq, where χE and χEk are the characteristic
functions of E and Ek respectively.
In what follows we recall some properties of the convex bodies, i.e. compact convex sets without
empty interior. We again refer to [122] for further properties and the details.
We give now the definition of support function of a convex set.

Definition 1.3. Let K Ă Rn be a bounded convex set of Rn. The support function hK of K is
the function hK : Sn´1 Ñ R defined as follows

hKpxq “ sup
yPK

px, yq.

It is easy to see that the support function associated to a ball of radius R is constantly
equal to R. If the origin belongs to K then hK is non-negative and hKpxq ď diampKq for every
x P Sn´1.

Remark 1.9. Let K,C be two open, convex and bounded sets of Rn; the following relation
holds:

δHpC,Kq “ ||hC ´ hK ||L8pSn´1q

Definition 1.4. Let K Ă Rn be a bounded convex body such that the origin is an interior point
of K. The radial function of K is defined as follows

ρKpxq “ suptλ ě 0: λx P Ku, x P Sn´1, (1.9)

and it is a Lipschitz function. The radial map is the function rK : Sn´1 Ñ BK defined as

rKpxq “ xρKpxq. (1.10)

Then we can parametrize the boundary of every convex body containing the origin in this
way

BK “ tx ρKpxq, x P Sn´1u. (1.11)

Definition 1.5. We will define the minimum and the maximum distance of BK from the origin
as follows

Rm “ min
Sn´1

ρKpxq, RM “ max
Sn´1

ρKpxq. (1.12)
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Let now f : BK Ñ R be pn´ 1q´integrable. The following formula for the change of variable
given by the radial map holds:ˆ

BK

f dHn´1 “

ˆ
Sn´1

fprKpxqq
ρKpxq

hKpνKprKpxqqq
dHn´1, (1.13)

where νKprKpxqq is the outer unit normal to BK at the point rKpxq “ xρKpxq. We have (see for
example [122])

νKprKpxqq “
xρKpxq ´∇τρKpxq

a

pρKpxqq2 ` |∇τρKpxq|2
,

where by ∇τρK we denote the the component of ∇ρK tangential to Sn´1. So, we observe that
(1.13) is equivalent to

ˆ
BK

f dHn´1 “

ˆ
Sn´1

fprKpxqqpρKpxqq
n´1

d

1`

ˆ

|∇τρKpxq|

ρKpxq

˙2

dHn´1.

The following result holds (see for instance [38], [89], [122]).

Lemma 1.10. Let Kn and K be bounded convex bodies containing the origin for any n P N and
such that Kn Ñ K in the Hausdorff sense. For any n P t0, 1, 2, ...u, let hKn , ρKn be the support
function and the radial function Kn, respectively. Then the following statements hold

(i) Let hK be the support function of K then

sup
θPSn´1

|hKnpxq ´ hKpxq| Ñ 0.

(ii) Let ρK the radial function of K then

sup
xPSn´1

|ρKnpxq ´ ρKpxq| Ñ 0.

(iii) Let x P BK and xn P BKn, n P N, points where νKpxq and νKnpxnq are well defined and
such that

lim
nÑ8

xn “ x.

Then
lim
nÑ8

νKnpxnq “ νKpxq.

By (1.13), Lemma 1.10 and the Lebesgue’s convergence Theorem we immediately get

Theorem 1.11. Let Kn and K be bounded convex bodies containing the origin for any n P N
and such that Kn Ñ K in the Hausdorff sense. Let

fn : BKn Ñ R, f : BK Ñ R

be Hn´1 measurable functions such that

(i) there exists C ą 0 such that

}f}L8pBKq ď C, }fn}L8pBKnq ď C, @n P N

(ii) if xn P BKn is such that limnÑ8 xn “ x P BK, fn is defined in xn and

lim
nÑ8

fnpxnq “ fpxq.

Then
lim
nÑ8

ˆ
BKn

fnpxnq dHn´1 “

ˆ
BK

fpxq dHn´1.
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1.3.2 Inequalities on Convex sets
We conclude this paragraph by recalling some definition concerning convex sets and stating some
important inequality that connect different quantities of a convex body in Rn respectively.
Recall that the diameter diam Ω and the inradius RΩ of Ω are defined as

diam Ω “ sup
x,yPΩ

|x´ y|, (1.14)

RΩ “ sup
xPΩ

inf
yPBΩ

|x´ y|. (1.15)

By means of the support function of a convex set we can define the minimal width (or thickness)
of a convex set as follows

Definition 1.6. Let Ω a bounded, open and convex set of Rn, the width of Ω in the direction
y P R is defined as

ωΩpyq “ hΩpyq ` hΩp´yq

and the minimal width of Ω as

wΩ “ mintωΩpyq | y P Sn´1u.

Definition 1.7. Let Ωl be a sequence of bounded, open and convex sets of Rn. We say that Ωl
is a sequence of thinning domains if

wΩl

diampΩlq
lÑ0
ÝÝÑ 0. (1.16)

diampΩlq

wΩl

Ωl

In particular, if l ą 0 and C is a bounded, open and convex set of Rn´1 with unitary pn ´ 1q-
dimensional measure, then, if lÑ 0, the sequence

Ωl “ l´
1

n´1C ˆ

„

´
l

2
,
l

2



(1.17)

is called a sequence of thinning cylinders. Moreover, in the case n “ 2, the sequence (1.17) is
called sequence of thinning rectangles.

l
´ 1
n´1C

l

Ωl
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We recall the following estimate, which is proved in [15] in the planar case and is generalized
in [17] in every dimensions (see for instance also [54, 122]).

Proposition 1.12. Let Ω be a bounded, open and convex set of Rn with non-empty interior.
Then,

1

n
ď

|Ω|

P pΩqRΩ
ă 1. (1.18)

The upper bound is sharp on a sequence of thinning cylinders, while the lower bound is sharp,
for example, on balls. Moreover, for n “ 2, any circumscribed polygon, that is a polygon whose
incircle touches all the sides, verifies the lower bound with the equality sign.

In the planar case the following inequalities hold true (see as a reference [124, 123, 118]).

Proposition 1.13. Let Ω be a bounded, open and convex set of R2. Then,

2 ď
wΩ

RΩ
ď 3. (1.19)

The upper bound is achieved by equilateral triangles and the lower bound is achieved by disks.
Moreover,

pwΩ ´ 2RΩqP pΩq ď
2
?

3
w2

Ω, (1.20)

with equality holding for equilateral triangles, and

|Ω| ď RΩ pP pΩq ´ πRΩq , (1.21)

with equality holding for the stadii (convex hull of two identical disjoint balls).
Eventually,

2 diampΩq ă P pΩq ď π diampΩq, (1.22)

where the lower bound is asymptotically achieved by a sequence of thinning rectangles and the
upper bound by sets of constant width.

Moreover we recall the following inequality (see [59, 80, 121]):

P pEqn´1 ą ωn´1n
n´2 diampEq|E|n´2. (1.23)

1.3.3 Inner parallel sets
Let Ω be a bounded, open and convex set of Rn with non empty interior. The distance function
from the boundary is defined as

dpx, BΩq “ inf
yPBΩ

|x´ y| ,

and we will denote it by dp¨q. We remark that the distance function is concave, as a consequence
of the convexity of Ω.

The superlevel sets of the distance function

Ωt “ tx P Ω : dpxq ą tu, t P r0, RΩs (1.24)

are called inner parallel sets, where RΩ is the inradius and we use the following notations:

µptq “ |Ωt| , P ptq “ P pΩtq t P r0, RΩs. (1.25)
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By coarea formula (1.2.2), recalling that |∇d| “ 1 almost everywhere, we have

µptq “

ˆ
tdątu

dx “

ˆ
tdątu

|∇d|
|∇d|

dx “

ˆ RΩ

t

1

|∇d|

ˆ
td“su

dHn´1 ds “

ˆ RΩ

t

P psq ds;

hence, the function µptq is absolutely continuous, decreasing and its derivative is µ1ptq “ ´P ptq
almost everywhere. Moreover, it is possible to prove that the perimeter P ptq is non increasing
and absolutely continuous, as a consequence of the concavity of the distance function and the
Brunn-Minkowski inequality for the perimeter (see [122] as a reference).

Finally, let us consider the case n “ 2. For Ω a bounded, open and convex set of R2 with
nonempty interior the Steiner formulas for the inner parallel sets hold (see [8]):

P ptq ď P pΩq ´ 2πt @t P r0, RΩs, (1.26)

µptq ě |Ω| ´ P pΩqt` πt2 @t P r0, RΩs, (1.27)

equality holding in both (1.26) and (1.27) for the stadii (see [65]). From (1.26), we have that, if
Ω is a convex set, then

´P 1ptq ě 2π, (1.28)

with equality if Ω is a ball or a stadium.

1.4 Anisotropy and Convex symmetrization

1.4.1 Anisotropy
What follows can be found in [135]. Let H : Rn ÝÑ r0,`8s, n ě 2, be a C2pRnzt0uq convex
function that satisfies the following homogeneity property

Hptξq “ |t|Hpξq @ξ P Rn , @t P R, (1.29)

and such that
γ|ξ| ď Hpξq ď δ|ξ|, (1.30)

for some positive constants γ ď δ.
These properties guarantee that H is a norm in Rn. Indeed (1.30) guarantees that Hpξq “ 0 if
and only if ξ “ 0. It is homogeneous by (1.29) and the triangular inequality follows from the
convexity of the function H: if ξ, η P Rn, then

Hpx` yq

2
“ H

ˆ

x

2
`
y

2

˙

ď
Hpxq

2
`
Hpyq

2
.

Because of (1.29), we can assume that the set

K “ tξ P Rn : Hpξq ď 1u

is such that |K| is equal to the measure ωn of the unit sphere in Rn. We can define the support
function of K as

H˝pxq “ sup
ξPK

〈x, ξ〉 , (1.31)

where 〈¨, ¨〉 denotes the scalar product in Rn. H˝ : Rn ÝÑ r0,`8s is a convex, homogeneous
function in the sense of (1.29). Moreover H and H˝ are polar to each other, in the sense that

H˝pxq “ sup
ξ‰0

〈x, ξ〉
Hpξq
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and
Hpxq “ sup

ξ‰0

〈x, ξ〉
H˝pξq

.

H˝ is the support function of the set

K˝ “ tx P Rn : H˝pxq ď 1u.

The set W “ tx P Rn : H˝pxq ă 1u is the so-called Wulff shape centered at the origin. We set
kn “ |W|. More generally we will denote by WRpx0q the Wulff shape centered in x0 P Rn with
measure knRn the set RW ` x0, and WRp0q “WR.
H and H˝ satisfy the following properties:

Hξpξq ¨ ξ “ Hpξq, H˝ξ pξq ¨ ξ “ H˝pξq, (1.32)

HpH˝ξ pξqq “ H˝pHξpξqq “ 1 @ξ P Rnzt0u, (1.33)

H˝pξqHξpH
˝
ξ pξqq “ HpξqH˝ξ pHξpξqq “ ξ @ξ P Rnzt0u. (1.34)

If Ω Ă Rn is an open bounded set with Lipschitz boundary and E is an open subset of Rn, we
can give a generalized definition of perimeter of E with respect to the anisotropic norm as follows

PHpE,Ωq “

ˆ
B˚EXΩ

Hpνq dHn´1,

where B˚E is the reduced boundary of E (for the definition see [62]) and ν is its Euclidean outer
normal. Clearly, if E is open, bounded and Lipschitz, then the outer unit normal exists almost
everywhere and

PHpE,Rnq :“ PHpEq “

ˆ
BE

Hpνq dHn´1. (1.35)

By (1.30) we have that
γP pEq ď PHpEq ď δP pEq.

In [4, 135] it is shown that if u PW 1,1pΩq, then for a.e. t ą 0

´
d

dt

ˆ
tuątu

Hp∇uq dx “ PHptu ą tu,Ωq “

ˆ
B˚tuątuXΩ

Hp∇uq
|∇u|

dHn´1. (1.36)

Moreover an isoperimetric inequality for the anisotropic perimeter holds (for instance see [135,
34, 43, 64])

PHpEq ě nk
1
n
n |E|

1´ 1
n . (1.37)

1.4.2 Convex symmetrization
Let f : Ω ÝÑ r0,`8s be a measurable function. The decreasing rearrangement f˚ of f is defined
as follows

f˚psq “ inftt ě 0 : |tx P Ω : |fpxq| ą tu| ă su s P r0, |Ω|s,

which is the generalized inverse function of the distribution function of f . We define the convex
symmetrization f‹ of f as

f‹pxq “ f˚pknH
˝pxqnq x P Ω‹.

In particular it is well known that the functions f , f˚ and f‹ are equimeasurable, i.e.

|tf ą tu| “ |tf˚ ą tu| “ |tf‹ ą tu| t ě 0.
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As a consequence, if f P LppΩq, p ě 1, then f˚ P Lppr0, |Ω|sq, f‹ P LppΩ‹q and

}f}LppΩq} “ }f
˚}Lppr0,|Ω|sq “ }f

‹}LppΩ‹q.

Moreover the Hardy-Littlewood inequality holds (see [92])

ˆ
Ω

|fpxqgpxq| dx ď

ˆ |Ω|
0

f˚psqg˚psq ds. (1.38)

So, if we consider g as the characteristic function of the set tx P Ω : upxq ą tu, for some
measurable function u : Ω Ñ R and t ě 0, then we get

ˆ
tuątu

fpxq dx ď

ˆ µptq

0

f˚psq ds, (1.39)

where, again, µptq is the distribution function of u.
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Chapter 2

Results about some eigenvalue
problem in annular domains

In this chapter we deal with the study of the first Steklov-Dirichlet eigenvalue for the Laplace
operator in a set with an internal spherical obstacle, which can be found in the articles [106, 75].
In the first part we prove, via a stability result, that the spherical shell locally maximizes the first
eigenvalue among nearly spherical sets, when both the volume and the internal ball are fixed.
In the second part we work in the class of convex sets. We prove the existence of a maximizer
when fixing measure and inradius of the inner ball, generalizing it even when the inner obstacle is
any convex set. Moreover we give new bounds for the first non-trivial Steklov-Dirichlet eigenvalue
in terms of geometric quantities related to the exterior convex set. Eventually we show a partial
result: the maximizer is a spherical shell when our set is contained in a ball centered at the origin
and with the radius that depends on the radius of the inner ball and the dimension of the space.

2.1 Introduction to the Steklov-Dirichlet problems and state
of art

Let Ω0 Ă Rn, n ě 2, be an open, bounded, connected set with Lipschitz boundary such that
BR1

b Ω0, where BR1
is the open ball of radius R1 ą 0 centered at the origin such that its

closure is strictly contained in Ω0 and let us set Ω :“ Ω0zBR1 .
Since we are studying a Steklov eigenvalue problem with a spherical obstacle, we need to introduce
the definition of a closed subspace of H1pΩq that incorporates the Dirichlet boundary condition
on BBR1

. We denote the set of Sobolev functions on Ω that vanish on BBR1
by

H1
BBR1

pΩq,

that is (see [58]) the closure in H1pΩq of the set of test functions

C8BBR1
pΩq :“ tu|Ω : u P C80 pRnq, sptpuq X BBR1

“ Hu.

We are dealing with the following boundary eigenvalue problem:
$

’

’

&

’

’

%

∆u “ 0 in Ω

u “ 0 on BBR1

Bu

Bν
“ σpΩq u on BΩ0,

(2.1)

33
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where ν is the outer normal to BΩ0.

Definition 2.1. The real number σpΩq and the function u P H1
BBR1

pΩq are, respectively, called
eigenvalue of (2.1) and eigenfunction associated to σpΩq, if and only if

ˆ
Ω

∇u∇ϕ dx “ σpΩq

ˆ
BΩ0

uϕ dHn´1pxq

for every ϕ P H1
BBR1

pΩq.

Furthermore, the first eigenvalue is variationally characterized by

σ1pΩq “ min
vPH1

BBR1
pΩq

vı0

Jrvs, (2.2)

where

Jrvs :“

ˆ
Ω

|∇v|2 dx
ˆ
BΩ0

v2 dHn´1
. (2.3)

We point out that the condition of being orthogonal to constants in L2pBΩq is not required,
unlike the classical Steklov eigenvalue (when R1 “ 0). Notice also that the value σ1pΩq is the
optimal constant in the Sobolev-Poincaré trace inequality:

σ1pΩq||v||L2pBΩ0q ď ||∇v||H1
BBR1

pΩq.

The spectrum of (2.1) is discrete and the sequence of eigenvalues can be ordered (see for instance
[1, 56, 105])

0 ă σ1pΩq ď σ2pΩq ď ¨ ¨ ¨ .

Furthermore, we will show in section (2.2) that the first eigenvalue is simple and the corresponding
eigenfunctions have constant sign (see also [56]).

When R1 “ 0, (2.1) is the classical Steklov-Laplacian eigenvalue problem. In this case, Wein-
stock in [142, 141] proved an isoperimetric inequality for the first non-trivial Steklov eigenvalue
in two dimensions. More precisely, he showed that among all simply connected sets of the plane
with prescribed perimeter, the disc maximizes the first non-trivial Steklov-Laplacian eigenvalue.
In [27] the authors proved that Weinstock inequality holds true in any dimension, provided they
restrict to the class of convex sets with fixed perimeter. In [24], it is proved that the ball is
still a maximizer for the first non-trivial Steklov eigenvalue among all bounded open sets with
Lipschitz boundary of Rn, n ě 2, with fixed volume. Stability and instability results are also
studied (for instance we refer to [19, 31, 74]).

When we consider a spherical hole with homegeneous Dirichlet boundary condition, that is
R1 ą 0, the Steklov-Dirichlet eigenvalue problem for the Laplacian (2.1) is substantially different.
The study of an eigenvalue problem on sets with a spherical hole is actually a topic of interest
and problem (2.1) has been considered by several authors (see for instance [56, 68, 88, 87, 138]).
We list here some mixed boundary condition eigenvalue problems on perforated domains: the first
eigenvalue of the p-Laplacian with external Robin and internal Neumann boundary condition,
when volume and external perimeter are fixed [109, 107]; the first eigenvalue of the p-Laplacian
with external Neumann and internal Robin boundary condition, when volume and internal pn´1q-
quermassintegral [86, 53] are fixed; the problem of optimally insulating a given domain [52]. We
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recall that in [9] is studied the Steklov-Dirichlet problem and some properties of the related
eigenvalue.
Finally, this kind of estimates has been obtained also for a more general class of equations,
involving the so called Finsler operator. We refer the reader, for example, to [48, 51, 50, 77, 108,
110].
When Ω0 “ BR2px0q is a ball centered at x0 with radius R2 ą R1, in [68, 138] it is proved
that σ1pΩq achieves the maximum when Ω is the spherical shell, that is when the two balls are
concentric.

2.2 Properties of the Eigenvalues and Eigenfunctions
We give now the definitions and some geometric properties of eigenvalues and eigenfunctions of
problem (2.1). For sake of simplicity we define

AR1
:“

#

Ω “ Ω0zBR1
: Ω0 Ă Rn open, bounded, connected,

with Lipschitz boundary, s.t.BR1
b Ω0

+

.

The following ensures the existence of minimizers of problem (2.2).

Proposition 2.1. Let R1 ą 0 and Ω P AR1
, then there exists a function u P H1

BBR1
pΩq achieving

the minimum in (2.2) and satisfying problem (2.1).

Proof. Let uk P H1
BBR1

pΩq be a minimizing sequence of (2.2) such that ||uk||L2pBΩ0q “ 1. Since
the minimum in (2.2) is positive, then there exists a constant C ą 0 such that Jruks ď C
for every k P N and therefore ||Duk||L2pΩq ď C. Moreover, a Poincaré inequality in H1

BBR1
pΩq

holds and this implies that tukukPN is a bounded sequence in H1
BBR1

pΩq. Therefore, there exist
a subsequence, still denoted by uk, and a function u P H1

BBR1
pΩq with ||u||L2pBΩ0q “ 1, such that

uk Ñ u strongly in L2pΩq, hence also almost everywhere, and Duk á Du weakly in L2pΩq. By
the compactness of the trace operator (see for example [96, Cor. 18.4]), uk converges strongly
to u in L2pBΩq and almost everywhere on BΩ to u. Then, by weak lower semicontinuity we have

lim
kÑ`8

Jruks ě Jrus.

Hence, the existence of a minimizer u P H1
BBR1

pΩq follows. Moreover, u is harmonic in Ω and so,
by strong maximum principle, it has constant sign on Ω.

Now we state the simplicity of the first eigenvalue of (2.1), following the idea in [61, Section
6.5.1].

Proposition 2.2. Let R1 ą 0 and Ω P AR1 , then the first eigenvalue σ1pΩq of (2.1) is simple,
that is all the associated eigenfunctions are scalar multiple of each other.

Proof. Let u, ũ be two non trivial weak solutions of the problem (2.1). Since, by Proposition 2.1,
we can assume that ũ is positive in Ω, then it is clear thatˆ

Ω

ũ dx ‰ 0.

So, we can find a real constant χ such thatˆ
Ω

pu´ χũq dx “ 0. (2.4)
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Since u´ χũ is still a solution of problem (2.1), then it is also non-negative (or non-positive) in
Ω. Therefore, (2.4) implies that u ” χũ in Ω and the simplicity of σ1pΩq follows.

It is worth noticing that the first nontrivial eigenvalue for the classical Steklov-Laplacian
problem (when R1 “ 0) on BR2 is 1{R2 and the corresponding eigenfunctions are the coordinate
axis xi, for i “ 1, .., n. This means that the first nontrivial eigenvalue has multiplicity n and this
makes a significant difference with problem (2.1), for which we proved that the simplicity holds.
On the other hand, it is easy to verify that both have the same scaling property:

σ1ptΩq “
1

t
σ1pΩq, @t ą 0. (2.5)

The first attempts to study the optimal shape of problem (2.1) has been done on spherical shells,
i.e. when Ω0 “ BR2 , for R2 ą R1 ą 0. We recall from [138], the explicit expression of the first
eigenfunction on the spherical shell AR1,R2 :

wprq “

$

’

&

’

%

ln r ´ lnR1 for n “ 2
ˆ

1

Rn´2
1

´
1

rn´2

˙

for n ě 3,
(2.6)

with r “ |x|. This function is radial, positive, strictly increasing and it is associated to the
following eigenvalue:

σ1pAR1,R2
q “

$

’

’

&

’

’

%

1

R2 log
´

R2
R1

¯ for n “ 2

n´2

R2

„

´

R2
R1

¯n´2
´1

 for n ě 3.
(2.7)

It is worth noting that, since problem (2.1) and the classical Steklov (R1 “ 0) have the same
scaling property (2.5), then the shape functional Ω Ñ |Ω|

1
N σ1pΩq is scaling invariant, as in the

classical case.

Remark 2.3. We point out that by (2.7), we have that σ1pAR1,R2
q is increasing with respect

to the radius of the inner ball, R1, that is

σ1pAR1,R2
q ă σ1pAr1,R2

q, if r1 ą R1

Moreover it holds
lim
R1Ñ0

σ1pAR1,R2
q “ 0, (2.8)

that is σ1pAR1,R2q tends to the first trivial Steklov eigenvalue of the Laplacian for R1 which goes
to zero. Finally we stress that an easy computation gives that σ1pAR1,R2

q is decreasing with
respect to the external radius R2, that is

σ1pAR1,R2q ă σ1pAr1,R̄q, if R̄ ă R2.

2.2.1 Upper bounds for σ1pΩq

We show an upper bound for σ1 depending only by the dimension n, by the measure of Ω and
by the radius of the internal ball R1.
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Proposition 2.4. Let R1 ą 0 and Ω P AR1 , then

σ1pΩq ď
2

nω
1
n
n

˜

ˆ

|Ω|

2ωn
`Rn1

˙1{n

´R1

¸2 |Ω|
1{n. (2.9)

Proof. Let R̄ ą 0 be such that |AR1,R̄| “ |Ω|{2, then R̄ depends only by the dimension n, the
measure |Ω| and R1, that is

R̄ “

ˆ

|Ω|

2ωn
`Rn1

˙1{n

.

Consider the function

ϕpxq “

$

’

&

’

%

|x| ´R1 if R1 ď |x| ď R̄;

R̄´R1 if |x| ě R̄.
(2.10)

We distinguish now two cases. Firstly, we assume that BR̄ b Ω0, i.e. d :“ distpBBR̄, BΩ0q ą 0.
By using (2.10) as test function in the Rayleigh quotient (2.3) and by the isoperimetric inequality,
we obtain

σ1pΩq ď
|Ω|

`

R̄´R1

˘2
P pΩ0q

ď
1

nω
1
n
n

`

R̄´R1

˘2
|Ω|

1
n . (2.11)

We consider now the case d “ 0, that is when the ball BR̄ is not strictly contained in Ω0.
Therefore, we divide the boundary of Ω0 in the two sets BintΩ0 and BextΩ0 that live, respectively,
inside and outside of BR̄. Using the test function (2.10) in the Raylegh quotient (2.3), we have

σ1pΩq ď
|Ω|´

BΩ0
|ϕ|2 dHn´1

ď
|Ω|

pR̄´R1q
2
´
BextΩ0

1 dHn´1
. (2.12)

We recall that a relative isoperimetric inequality with supporting set BR̄ holds (see as reference
e.g. [33, 40, 39]):

Hn´1pBextΩ0q ě n
´ωn

2

¯1{n
ˆ

|Ω0|

2

˙1´ 1
n

. (2.13)

By using (2.13) in (2.12), we have

σ1pΩq ď
2

nω
1
n
n pR̄´R1q

2
|Ω|

1
n . (2.14)

The conclusion follows by observing that the upper bound (2.14) is greater than (2.11).

Obviously σ1pΩq is bounded also when we fix the perimeter of Ω, that is equivalent to fix the
perimeter of Ω0, instead of the volume. Indeed by (2.9) and the isoperimetric inequality, we can
deduce the following upper bound

σ1pΩq ď
2V

1
n pΩq

nω
1
n
n

˜

ˆ

|Ω|

2ωn
`Rn1

˙
1
n

´R1

¸2 ď Cpnq
P

1
n´1 pΩ0q

R2
1

, (2.15)

where Cpnq is a positive constants that depends only on the dimension n.
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An upper bound for σ1pΩq for not spherical holes

We are able to prove an upper bound for σ1pΩq even in the case of a not spherical hole.
Let K Ă Rn be a convex set with non-empty interior such that K b Ω0 and let ΩK “ Ω0zK.
In this case, according to [58], the natural space of functions that we have to consider are
C8BKpΩKq and H

1
BKpΩKq. In particular the classical arguments of Calculus of Variations apply,

as in Proposition (2.1), and σ1pΩKq is well defined. Let us now assume that the volume |Ω| “ ω
and the inradius ρpKq “ r of K are fixed. Let us consider Ar,R the spherical shell with radii r
and R, where R is such that |Ar,R| “ |Ω|{2. So, we have

R̄ “

ˆ

|Ω|

2ωn
` r̄n

˙1{n

. (2.16)

We also consider the following test function ϕ : RnzK Ñ r0,8q:

ϕpxq “

#

dKpxq if 0 ď dKpxq ď R

R if dKpxq ě R
, (2.17)

where
dKpxq :“ inf

yPBK
||x´ y||.

and we denote by Kt the set

Kt “ tx P RnzK | dKpxq ă tu. (2.18)

We have now to distinguish two cases. If KR̄ b Ω, then, using the test function (2.17) in the
variational characterization, we have

σ1pΩq ď

ˆ
KR

|∇dKpxq|2 dx
ˆ
BΩ0

d2
Kpxq dHn´1

“
|KR|

R
2
P pΩ0q

ď
|Ω|

R
2
nωnω

1{n
n |Ω|1´1{n

“
|Ω|1{n

nω
1{n
n

´

|Ω|
2ωn

` rn
¯2{n

“ Cpn, r, |Ω|q,

where we have used the fact that |∇dKpxq| “ 1 a.e., the classical isoperimetric inequality and
(2.16).
Finally, let us consider the case when KR * Ω. We will use the following notations: BiΩ0 “

BΩ0 XKR and BeΩ0 “ BΩ0zB
iΩ0. Using as before the test function (2.17), we have

σ1pΩq ď

ˆ
KRXΩ

|∇dKpxq|2dx
ˆ
BiΩ0

d2
KpxqdHn´1 `

ˆ
BeΩ0

R̄2dHn´1
ď
|KR̄ X Ω|

R̄2|BeΩ0|

ď
2|Ω|

R̄2nω
1{n
n |Ω|1´1{n

“ 2Cpn, r̄, |Ω|q,

(2.19)

where we have used the relative isoperimetric inequality (2.13).
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2.2.2 Volume constraint on the spherical shells
We remark that, when a volume constraint for Ω holds, then the upper bound is still finite, when
R1 Ñ 0. On the other hand, when R1 Ñ8, the first eigenvalue cannot be upper bounded. This,
together with other examples that we are going to illustrate, motivates the study the optimality
of σ1 when another constraint holds, besides the volume one.

Let us consider the spherical shell AR1,R2
with the volume constraint:

|AR1,R2
| “ ωnpR

n
2 ´R

n
1 q “ ω.

We show that both in bidimensional case and in higher dimension, σ1 is not upper bounded in
the class of spherical shells of fixed volume.
Let n “ 2, then R2 “

`

R2
1 `

ω
π

˘
1
2 and, by (2.7), we have

σ1pAR1,R2
q “

1
`

R2
1 `

ω
π

˘
1
2 log

´

1` ω
πR2

1

¯
1
2

“
2

R1

´

1` ω
πR2

1

¯
1
2

log
´

1` ω
πR2

1

¯

.

Hence, for R1 big enough,

σ1pAR1,R2
q «

2

R1

´

1` ω
2πR2

1

¯

ω
πR2

1

“
2πR1

ω
´

1` ω
2πR2

1

¯

and so
lim

R1Ñ`8
σ1pAR1,R2

q “ `8.

Let n ě 3, then, R2 “

´

Rn1 `
ω
ωn

¯
1
n

and

σ1pAR1,R2q “
n´ 2

R1

´

1` ω
ωnRn1

¯
1
n

„

´

1` ω
ωnRn1

¯1´ 2
n

´ 1

 “

“
n´ 2

R1

„

´

1` ω
ωnRn1

¯1´ 1
n

´

´

1` ω
ωnRn1

¯
1
n

 .

Again, if R1 is big

σ1pAR1,R2q «
n´ 2

R1

”

1`
`

1´ 1
n

˘

ω
ωnRn1

´ 1´ 1
n

ω
ωnRn1

ı “
nωn
ω

Rn´1
1

and hence again
lim

R1Ñ`8
σ1pAR1,R2

q “ `8. (2.20)

Further, it is clear that, in any dimension, we have

lim
R1Ñ0`

σ1pAR1,R2q “ 0. (2.21)

The limiting results (2.20) and (2.21) motivate the fact that it is not enough to fix the volume
to study the first eigenvalue σ1. Indeed, when R1 is too big, it is not possible to find an upper
bound, and, on the other hand, when R1 is too small, the eigenvalue is trivial. We remark that,
in the class of sets of the form BR2

px0qzBR1
, with BR2

px0q being a ball containing BR1
, the

maximizer of σ1 is the spherical shell (see [68]).
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Spherical shell with fixed difference between radii.

It is clear now that we cannot study the shape optimization for σ1 when only a volume constraint
holds. On the other hand, it could be interesting to understand if we can study the shape
optimization for double connected domains, when only one geometric quantity is fixed. Here,
for example, we briefly study the behavior of the spherical shell when the distance between the
radii is fixed. Let d be a positive real number such that

R2 ´R1 “ d,

so that R2 “ R1 ` d and R2

R1
“ 1` d

R1
.

If n “ 2, then for R1 big enough, we have

σ1pAR1,R2
q “

1

pR1 ` dq log
´

1` d
R1

¯ «
R1

R1d` d2

and, hence,

lim
R1Ñ`8

σ1pAR1,R2
q “

1

d
.

If n ě 3, we have

σ1pAR1,R2
q “

n´ 2

pR1 ` dq

„

´

1` d
R1

¯n´2

´ 1



«
n´ 2

pR1 ` dq
”

1` pn´ 2q dR1
´ 1

ı “
R1

R1d` d2

and, hence,

lim
R1Ñ`8

σ1pAR1,R2q “
1

d
.

Furthermore, in any dimensions, we have

lim
R1Ñ0`

σ1pAR1,R2
q “ 0.

The case of R1 small is again trivial. On the other hand, σ1 is upper bounded for any value
of R2 by the reciprocal of the difference between the radii d. The fact that an uniform upper
bound holds for spherical shells when only the difference between the radii is fixed, suggests that
it could be interesting to study the shapes minizing σ1 in the class of double connected sets when
only the width is fixed.

2.3 Steklov-Dirichlet type problem on a perforated domain
for nearly spherical sets

In this Section we prove that the spherical shell is a local maximizer for the first eigenvalue of
(2.1) among nearly spherical sets with fixed volume, containing BR1

, for a fixed value R1 ą 0.
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2.3.1 Main result
We recall that, if Ω0 is a nearly spherical set, as in Definition 1.2, Chapter 1, its volume is given
by

|Ω0| “
1

n

ˆ
Sn´1

p1` vpξqq
n
dHn´1.

The class of nearly spherical sets has a peculiar importance in shape optimization theory, in
particular for stability results for spectral inequalities. We are considering sets Ω “ Ω0zBR1

beloging to AR1
with R1 ą 0, with Ω0 nearly spherical, and the main result is the following.

Theorem 2.5. Let n ě 2, R1 ą 0, ω ą 0 and let R2 ą R1 be such that |AR1,R2
| “ ω. There

exists ε “ εpn,R1, ωq ą 0 such that, for any Ω “ Ω0zBR1
belonging to AR1

, with Ω0 nearly
spherical set parametrized by v such that ||v||W 1,8 ď ε and |Ω| “ ω, then

σ1pΩq ď σ1pAR1,R2
q. (2.22)

Moreover the equality in (2.22) holds if and only if Ω is a spherical shell.

Let us remark that, in order to have BR1
b Ω0, we need to require that ε ď 1 ´ R1{R2

to verify that |y| ě R1, that is R2p1 ` vpξqq ě R1. Moreover, we observe that, since all the
quantities involved are translation invariant, the result in Theorem 2.5 holds also among nearly
spherical sets with fixed volume and containing a fixed internal ball.

Recalling the explicit expression (2.6) of the first eigenfunction w on the spherical shell AR1,R2
,

we define the weighted volume and the weighted perimeter as:

V pΩq :“

ˆ
Ω

|∇z|2 dx,

P pΩq :“

ˆ
BΩ0

z2 dx.

Furthermore, to simplify the notations, we set, for n “ 2,

hR2
ptq “ plnptR2q ´ lnR1q

2, (2.23)

fR2
ptq “

h1R2
ptq

2R2
“

a

hR2
ptq

ptR2q
(2.24)

and for n ě 3

hR2ptq “

ˆ

1

Rn´2
1

´
1

ptR2q
n´2

˙2

, (2.25)

fR2ptq “
h1R2

ptq

2R2
“

n´ 2

ptR2q
n´1

ˆ

1

Rn´2
1

´
1

ptR2q
n´2

˙

, (2.26)

where R2 is the radius of the ball with the same volume of Ω0 and t ě R1

R 2
. Now, we write the

Raylegh quotient (2.3) using the parametrization in (1.6).

Lemma 2.6. Let n ě 2, R1 ą 0, ω ą 0 and let R2 ą R1 be such that |AR1,R2
| “ ω. For any

0 ă ε ă 1 ´ R1{R2 and for any Ω “ Ω0zBR1
belonging to AR1

, with Ω0 nearly spherical set
parametrized by v such that ||v||W 1,8 ď ε and |Ω| “ ω, then

σ1pΩq ď
V pΩq

P pΩq
“

ˆ
Sn´1

fR2
p1` vpξqqp1` vpξqqn´1 dHn´1

ˆ
Sn´1

hR2
p1` vpξqqp1` vpξqqn´1

d

1`
|∇vpξq|2
p1` vpξqq2

dHn´1

. (2.27)
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Moreover if Ω “ AR1,R2
, then equality holds in (2.27) and σ1pAR1,R2

q “
fR2
p1q

hR2
p1q

.

Proof. From the variational characterization (2.2) of σ1pΩq, we have

σ1pΩq ď
V pΩq

P pΩq
“

ˆ
Ω

|∇z|2 dx
ˆ
BΩ0

z2 dHn´1
“

ˆ
BΩ0

Bz

Bν
z dHn´1

ˆ
BΩ0

z2 dHn´1
.

The conclusion follows using the change of variables in (1.6).

We recall the following result, whose proof can be found in [69].

Lemma 2.7. Let n ě 2 and R2 ą 0. There exists a constant C “ Cpnq ą 0 such that for any
0 ă ε ă 1 and for any v parametrizing a nearly spherical set Ω0 such that ||v||W 1,8 ď ε and
|Ω0| “ |BR2

|, then
ˇ

ˇ

ˇ

ˇ

p1` vqn´1 ´

ˆ

1` pn´ 1qv ` pn´ 1qpn´ 2q
v2

2

˙
ˇ

ˇ

ˇ

ˇ

ď Cεv2 on Sn´1,

1`
|∇v|2

2
´

d

1`
|∇v|2
p1` vq2

ď Cε
`

v2 ` |∇v|2
˘

on Sn´1,

ˇ

ˇ

ˇ

ˇ

ˆ
Sn´1

vpξq dHn´1 `
n´ 1

2

ˆ
Sn´1

v2pξq dHn´1

ˇ

ˇ

ˇ

ˇ

ď Cε}v}2L2 .

As a consequence of the analyticity of hR2
and fR2

, defined in (2.23)-(2.24)-(2.25)-(2.26), the
following Lemma holds.

Lemma 2.8. Let n ě 2 and 0 ă R1 ă R2. There exists K “ Kpn,R1, R2q ą 0 such that for
any 0 ă ε ă 1 and for any v parametrizing a nearly spherical set Ω0 such that ||v||W 1,8 ď ε and
|Ω0| “ |BR2

|, then
ˇ

ˇ

ˇ

ˇ

hR2
p1` vq ´ hR2

p1q ´ h1R2
p1qv ´ h2R2

p1q
v2

2

ˇ

ˇ

ˇ

ˇ

ď Kεv2 on Sn´1,

ˇ

ˇ

ˇ

ˇ

fR2
p1` vq ´ fR2

p1q ´ f 1R2
p1qv ´ f2R2

p1q
v2

2

ˇ

ˇ

ˇ

ˇ

ď Kεv2 on Sn´1.

Furthermore, this Poincaré inequality holds.

Lemma 2.9. (Poincaré inequality) Let n ě 2 and R2 ą 0, then there exists a positive constant
C “ Cpnq such that for any 0 ă ε ă 1 and for any function v parametrizing a nearly spherical
set Ω0 such that ||v||W 1,8 ď ε and |Ω0| “ |BR2

|, then

}∇v}2L2 ě pn´ 1qp1´ Cεq}v}2L2 .

Proof. The function v P L2pSn´1q admits a harmonic expansion (see e.g. [81, Chap. 3]), in the
sense that there exists a family of n-dimensional spherical harmonics tHjpξqujPN such that

vpξq “
`8
ÿ

j“0

cjHjpξq, ξ P Sn´1 with }Hj}L2pSn´1q “ 1,



43

where

cj “ xv,HjyL2pSn´1q “

ˆ
Sn´1

vpξqHjpξqdHn´1.

and Hj satisfying

∆Sn´1Hj “ jpj ` n´ 2qHj , @ j P N,

where ∆Sn´1 is the Laplace-Beltrami operator. Furthermore the following identities hold true

||v||2L2pSn´1q “

8
ÿ

j“0

c2j , (2.28)

||∇v||2L2pSn´1q “

8
ÿ

j“1

jpj ` n´ 2qc2j . (2.29)

Since H0 “ pnωnq
´ 1

2 , we have

|c0| “ pnωnq
´ 1

2

ˇ

ˇ

ˇ

ˇ

ˆ
Sn´1

vpξqdHn´1

ˇ

ˇ

ˇ

ˇ

ď

pnωnq
´ 1

2

ˇ

ˇ

ˇ

ˇ

ˆ
Sn´1

v2pξqdHn´1

ˇ

ˇ

ˇ

ˇ

ˆ

n´ 1

2
` Cε

˙

“ Cε}v}L2 ,

where the constant C has been renamed. Using this estimate, by (2.28) and (2.29), we have

}v}L2 “

8
ÿ

j“0

c2j “ c20 `
8
ÿ

j“1

c2j ď Cε}v}2L2 `

8
ÿ

j“1

c2j ,

and

}∇v}L2 “

8
ÿ

j“1

jpj ` n´ 2qc2j ě pn´ 1q
8
ÿ

j“1

c2j ě pn´ 1qp1´ Cεq}v}2L2 ,

which concludes the proof.

Now we give a key estimate for the main Theorem.

Proposition 2.10. Let n ě 2, R1 ą 0, ω ą 0 and let R2 ą R1 be such that |AR1,R2 | “ ω. There
exist two positive constants K ą 0 and 0 ď ε0 ă 1 ´ R1{R2, depending on n, R1 and ω only,
such that for any 0 ă ε ă ε0, for any Ω “ Ω0zBR1

belonging to AR1
, with Ω0 nearly spherical

set parametrized by v such that ||v||W 1,8 ď ε and |Ω| “ ω, then

V pΩ7qP pΩq ´ P pΩ7qV pΩq

nωn
“

“ fR2p1q

ˆ
Sn´1

hR2p1` vpξqqp1` vpξqq
n´1

d

1`
|∇vpξq|2
p1` vpξqq2

dHn´1

´hR2
p1q

ˆ
Sn´1

fR2
p1` vpξqqp1` vpξqqn´1 dHn´1 ě K

ˆ
Sn´1

v2 dHn´1.

(2.30)
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Proof. Using Lemmata 2.7, 2.8, 2.9, we have

fR2p1q

ˆ
Sn´1

hR2p1` vpξqqp1` vpξqq
n´1

d

1`
|∇vpξq|2
p1` vpξqq2

dHn´1

´ hR2
p1q

ˆ
Sn´1

fR2
p1` vpξqqp1` vpξqqn´1 dHn´1

ě

ˆ
Sn´1

v
`

fR2
p1qh1R2

p1q ´ f 1R2
p1qhR2

p1q
˘

dHn´1

`

ˆ
Sn´1

v2

2
rfR2p1qh

2
R2
p1q ´ f2R2

p1qhR2p1q ` 2pn´ 1qpfR2p1qh
1
R2
p1q ´ f 1R2

p1qhR2p1qqs dHn´1

`

ˆ
Sn´1

fR2
p1qhR2

p1q
|∇v|2

2
dHn´1 ´ εK1}∇v}2L2 ,

(2.31)

where K1 is a positive constant. Let us set

Q1ptq :“ fR2
ptqh1R2

ptq ´ f 1R2
ptqhR2

ptq,

Q2ptq :“ fR2
ptqh2R2

ptq ´ f2R2
ptqhR2

ptq,

Q3ptq :“ fR2
ptqhR2

ptq,

In order to show (2.30), we need to prove

1. Q1p1q ą 0,

2. Q3p1q ą 0,

3. pn´ 1q rQ1p1q `Q3p1qs `Q2p1q ą 0.

Indeed, when (1), (2), (3) hold, then, by using Lemmata 2.7 and 2.9, the last term in (2.31) can
be estimated as

Q1p1q

ˆ
Sn´1

v dHn´1 ` p2pn´ 1qQ1p1q `Q2p1qq

ˆ
Sn´1

v2

2
dHn´1

`Q3p1q

ˆ
Sn´1

|∇v|2

2
dHn´1 ´ εK1}∇v}2L2

ě ´
n´ 1

2
Q1p1q

ˆ
Sn´1

v2 dHn´1 ´ εK2}v}
2
L2 `

ˆ

pn´ 1qQ1p1q `
Q2p1q

2

˙ ˆ
Sn´1

v2 dHn´1

`
n´ 1

2
Q3p1q

ˆ
Sn´1

v2 ´ εK3}v}
2
L2 ´ εK1}∇v}2L2

“
1

2
tpn´ 1qrQ1p1q `Q3p1qs `Q2p1qu }v}

2
L2

´ εK2}v}
2
L2 ´ εK3}v}

2
L2 ´ εK1}∇v}2L2

ě K}v}2L2 ´ εK4}v}
2
W 1,2pSn´1q,

where we denoted K “ 1
2 tpn´ 1q rQ1p1q `Q3p1qs `Q2p1qu ą 0 and K4 “ maxtK1,K2,K3u.

The proof concludes by choosing ε small enough.
It remains to prove (1), (2), (3) by distinguishing the bidimensional from the higher dimen-

sional case. We note that

Q1ptq “ f2
R2
ptq

„

hR2
ptq

fR2
ptq

1

“ 2Rf2
R2
ptq

„

hR2
ptq

h1R2
ptq

1

, (2.32)
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and

Q2ptq “ Q11ptq “
“

f2
R2
ptq

‰1

„

hR2
ptq

fR2
ptq

1

` f2
R2
ptq

„

hR2
ptq

fR2
ptq

2

. (2.33)

Case 1. Let be n “ 2. We observe that

hR2ptq

fR2
ptq

“ R2tplnptR2q ´ lnR1q,

is positive and strictly increasing, since it is a product of two strictly increasing positive functions.
Hence Q1ptq ą 0 and in particular

Q1p1q “
hR2

p1q

R2

´

a

hR2
p1q ` 1

¯

ą 0.

Moreover, it is clear that

Q3p1q “
hR2p1q

a

hR2p1q

R2
ą 0.

Let us now calculate all the terms in (2.33) and evaluate them for t “ 1. We have

„

hR2ptq

fR2
ptq

1

t“1

“ R2

´

a

hR2ptq ` 1
¯

t“1
“ R2

´

a

hR2p1q ` 1
¯

ą 0,

„

hR2
ptq

fR2ptq

2

t“1

“

ˆ

R2

t

˙

t“1

“ R2 ą 0

and

f2
R2
p1q “

hR2p1q

R2
2

ą 0,

“

f2
R2
ptq

‰1

t“1
“

„

2R2

ptR2q
3

´

a

hR2
ptq ´ hR2

ptq
¯



“
2

R2
2

´

a

hR2
p1q ´ hR2

p1q
¯

.

Summing up, estimate (3) follows by

Q1p1q`Q3p1q `Q2p1q “
hR2p1q

a

hR2p1q

R2
`
hR2p1q

R2
`
hR2p1q

a

hR2p1q

R2
`

2

a

hR2p1q

R2
´ 2

hR2p1q
a

hR2p1q

R2
`
hR2p1q

R2
“

2

R2
phR2

p1q `
a

hR2
p1qq ą 0.

Case 2. For n ě 3, from (2.32) we have

hR2
ptq

h1R2
ptq
“

ptR2q
n´1

2pn´ 2qR2

ˆ

1

Rn´2
1

´
1

ptR2q
n´2

˙

,

that is a strictly increasing function, since it is product of two strictly increasing and positive
functions. Hence Q1ptq ą 0 and, in particular

Q1p1q “
pn´ 1qpn´ 2q

Rn´1
2

hR2
p1q

a

hR2
p1q `

2pn´ 2q2

R2n´3
2

hR2
p1q ą 0.
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Moreover, it is easily seen that

Q3p1q “
n´ 2

Rn´1
2

hR2
p1q

a

hR2
p1q ą 0.

Eventually, we have

Q2p1q “
pn´ 2q3

R3n´3
2

a

hR2
p1q ´

pn´ 1q2pn´ 2q

Rn´1
2

hR2
p1q

a

hR2
p1q

`
pn´ 1qpn´ 2q2

Rn2
hR2

p1q
a

hR2
p1q `

pn´ 1qpn´ 2q2

R2n´2
2

hR2
p1q,

and therefore, it follows that pn´ 1q rQ1p1q `Q3p1qs `Q2p1q ą 0.

We use the previous result to give a stability result in a quantitative form.

Theorem 2.11. Let n ě 2, R1 ą 0, ω ą 0 and let R2 ą R1 be such that |AR1,R2 | “ ω. There
exist two positive constants K ą 0 and 0 ď ε0 ă 1 ´ R1{R2, depending on n, R1 and ω only,
such that for any 0 ă ε ă ε0, for any Ω “ Ω0zBR1

belonging to AR1
, with Ω0 nearly spherical

set parametrized by v such that ||v||W 1,8 ď ε, and |Ω| “ ω, then

σ1pAR1,R2q ě σ1pΩq

ˆ

1`Kpn,R1, ωq

ˆ
Sn´1

v2pξq dHn´1

˙

.

Proof. From Proposition 2.10 we know that there exists K ą 0 such that

P pAR1,R2qP pΩq

ˆ

V pAR1,R2
q

P pAR1,R2
q
´
V pΩq

P pΩq

˙

ě nωnK

ˆ
Sn´1

v2 dHn´1.

Then, we have

σ1pAR1,R2q “
V pAR1,R2

q

P pAR1,R2
q
ě
V pΩq

P pΩq
`

nωnK

ˆ
Sn´1

v2 dHn´1

P pAR1,R2qP pΩq

“
|Ω|

P pΩq

¨

˚

˚

˝

1`

nωnK

ˆ
Sn´1

v2 dHn´1

P pAR1,R2
q|Ω|

˛

‹

‹

‚

“
V pΩq

P pΩq

¨

˚

˚

˝

1`

K

ˆ
Sn´1

v2 dHn´1

hR2p1q

ˆ
Sn´1

fR2p1` vpξqqp1` vpξqq
n´1 dHn´1

˛

‹

‹

‚

ě
V pΩq

P pΩq

¨

˚

˚

˝

1`

K

ˆ
Sn´1

v2 dHn´1

nωn2n´1hR2p1qfR2p2q

˛

‹

‹

‚

ě σ1pΩq

ˆ

1`K

ˆ
Sn´1

v2 dHn´1

˙

,

where the second inequality follows by the fact that }v}W 1,8pSn´1q ď ε ă 1 and by the mono-
tonicity of fR2p¨q.

Eventually, the main result (Theorem 2.5) easily follows by Theorem 2.11. Moreover, if
Ω “ AR1,R2

, then the function v parametrizing the outer boundary is constantly equal to zero
and equality in (2.22) holds.
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2.4 Steklov-Dirichlet problem in the convex case

The aim of this subsection is twofold. First, we prove the existence of a maximum for σ1pΩq
in the class of sets Ω “ Ω0zBR1

, where Ω0 Ă Rn, n ě 2, is an open bounded and convex set
containing BR1

, when R1 and the measure of Ω are fixed. Actually, we prove this existence
result also when the hole is not spherical, but it is an open, convex set K b Ω0 with non-empty
interior. Our second aim is to find the shape of the maximum when the hole is spherical.
In particular we prove that the spherical shell is a maximizer for a suitable class of annular sets.
More precisely our main result is the following.

Theorem 2.12. Let R1 ą 0, Ω0 Ă Rn be an open, bounded and convex set, n ě 2, such that
BR1 b Ω0 Ď BR̄, where BR̄ is the ball centered at the origin with radius R̄ given by

R̄ “

$

’

&

’

%

R1e
?

2 if n “ 2

R1

„

pn´1q`pn´2q
?

2pn´1q

n´1


1

n´2

if n ě 3.
(2.34)

Then, denoting by Ω “ Ω0zBR1 , the following inequality holds

σ1pΩq ď σ1pAR1,R2
q, (2.35)

where AR1,R2
is the spherical shell of radii R1 ă R2 having the same volume as Ω.

We observe that the convexity assumption is not just technical but it is natural when dealing
with Steklov-Dirichlet eigenvalues (see [66]).

2.4.1 Upper and lower bounds for σ1pΩq and existence result

In this Section we prove an upper and lower bound for σ1pΩq in terms of Ri and Re, that are
the minimal and maximal distance from the origin of the outer boundary as defined in (1.12).
Then, we prove an existence results for a maximizer among convex sets with fixed inner ball and
fixed volume and we also generalize it in the case of a suitable not spherical hole.

Estimates in terms of Ri and Re

The proof follows the same idea used in [95] for the planar case and in [73, 137] for any dimension
to obtain a lower bounds for the first Steklov Laplacian eigenvalue.

Theorem 2.13. Let R1 ą 0 and Ω0 Ă Rn be an open bounded connected set with Lipschitz
boundary such that BR1 b Ω0 and let Ω “ Ω0zBR1 .

1

maxSn´1

´b

1` |∇τρ0|2

ρ2
0

¯

ˆ

1

RM

˙n´1

σ pAR1,Riq ď σ1pΩq ď

ˆ

1

Rm

˙n´1

σpAR1,Req, (2.36)

where Rm and RM are defined in (1.12), ρ0 is the radial function of Ω0 defined in (1.9), AR1,Ri

is the spherical shell with radii R1 and Ri.
Moreover, the equality case holds if and only if Ω is a ball BR centered at the origin of radius
R ą 0.
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Proof. Let u P H1
BBR1

pΩq. By using spherical coordinates and the notation introduced in Section
2

BΩ0 “ tx ρ0pxq, x P Sn´1u.

In this case we have
ˆ
BΩ0

u2 dHn´1 “

ˆ
Sn´1

u2

d

1`

ˆ

|∇τρ0pxq|

ρ0pxq

˙2

pρ0pxqq
n´1 dHn´1. (2.37)

Then we get

pRmq
n´1

ˆ
Sn´1

u2 dHn´1 ď

ˆ
BΩ0

u2 dHn´1 ď pRM q
n´1 max

Sn´1

˜

d

1`
|∇τρ0|

2

ρ2
0

¸ ˆ
Sn´1

u2 dHn´1.

(2.38)
We can parametrize Ω as

Ω “ ts P Rn : s “ x r, x P Sn´1, R1 ď r ď ρ0pxqu

by using spherical coordinates, where we denote by Rpyq “ ρ0pxpyqq, where x : y P U Ă Rn´1 Ñ

xpyq P Sn´1, is a standard parametrization of the boundary of the unit ball in Rn. Then we get
ˆ

Ω

|∇u|2 ds “
ˆ
U

ˆ Rpyq

R1

#

ˆ

Bu

Br

˙2

`
1

r2
|∇τu|

2

+

rn´1
a

g̃ dr dy, (2.39)

where
?
g̃ is the determinant of the matrix g̃ij , that is the standard metric on Sn´1 and ∇τu is

the component of ∇u tangential to Sn´1. Then we get

ˆ
U

ˆ Rm

R1

#

ˆ

Bu

Br

˙2

`
1

r2
|∇τu|

2

+

rn´1
a

g̃ dr dy,ď

ˆ
Ω

|∇u|2 ds ď

ď

ˆ
U

ˆ RM

R1

#

ˆ

Bu

Br

˙2

`
1

r2
|∇τu|

2

+

rn´1
a

g̃ dr dy, (2.40)

Using (2.79) and (2.81), we get

ˆ
U

ˆ Rm

R1

#

ˆ

Bu

Br

˙2

`
1

r2
|∇τu|

2

+

rn´1
a

g̃ dr dy,

pRM q
n´1 max

Sn´1

˜

d

1`
|∇τρ0|

2

ρ2
0

¸ ˆ
Sn´1

u2 dHn´1

ď

ˆ
Ω

|∇u|2 ds
ˆ
BΩ0

u2 dHn´1
ď

ď

ˆ
U

ˆ RM

R1

#

ˆ

Bu

Br

˙2

`
1

r2
|∇τu|

2

+

rn´1
a

g̃ dr dy,

pRmq
n´1

ˆ
Sn´1

u2 dHn´1
. (2.41)

The left hand side of (2.77) follows by choosing as u the first positive eigenfunction corresponding
to σ1pΩq, meanwhile the right hand side follows by choosing as u the first positive eigenfunction
corresponding to σ1pAR1,RM q.
Finally, we stress that the equality case implies that all the inequalities become equalities. Then
we have that ∇τρ0 “ 0 and ρ0pxq “ R, with R ą R1 constant.
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Remark 2.14. We observe that the lower bound in (2.77) gives that σ1pΩq ą 0 being R1 ą 0
fixed. Moreover, (2.77) also implies a continuity results: σ1pΩq Ñ 0 as R1 Ñ 0. It is worth
noticing that the estimate (2.77) also holds when Ω0 is starshaped.

The existence result

Inequality (2.9) ensures that the Steklov-Dirichlet eigenvalue σ1pΩq, defined in (2.2), is bounded
from above if the volume of Ω is fixed. In this section we prove the existence of a maximizer
among convex sets with fixed internal ball and fixed volume. Let ω ą 0 and R1 ą 0 be fixed,
then by AR1

pωq we will denote the class of convex sets having measure ω and containing the ball
BR1 , that is

AR1pωq :“
 

D “ KzBR1 , K Ď Rn open, bounded, convex : BR1 b K, |D| “ ω
(

.

The main theorem of this section is the following existence result.

Theorem 2.15. Let ω ą 0 and R1 ą 0 be fixed. There exists a set E P AR1
pωq, such that

max
DPAR1

pωq
σ1pDq “ σ1pEq.

Proof. The upper bound (2.9) implies that there exists M ą 0 such that

sup
DPAR1

pωq

σ1pDq “M ă `8.

Hence, there exists a sequence tEkukPN Ď AR1
pωq such that

lim
kÑ8

σ1pEkq “M.

In order to show the desired result, we need to prove the existence of a set E P AR1
pωq such that

Ek
H
ÝÑ E with σ1pEq “M .
Firstly we prove that, up to a subsequence, tEkukPN converges to a certain E P AR1

pωq in
the Hausdorff metric.

Being tEkukPN Ď AR1pωq then, for every k P N there exists a convex set E0,k, such that
BR1 b E0,k,

Ek “ E0,kzBR1

and
ω0 :“ |E0,k| “ ω ` ωnR

n
1 .

By the Blaschke selection Theorem and the continuity of the volume functional with respect to the
Hausdorff measure (see [122] as a reference), it is enough to show that tE0,kukPN is equibounded.

We proceed by contradiction assuming that

lim
kÑ`8

diampE0,kq “ `8. (2.42)

Inequality in Proposition 1.12 gives

RE0,k
ď

n|E0,k|

P pE0,kq
, (2.43)

where RE0,k
is the inradius of E0,k defined in (1.15).
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The assumption (2.42) and the inequality (1.23) imply that the right-hand side in (2.43)
tends to 0 as k Ñ `8, being |E0,k| fixed. Therefore, by (2.43), we have

lim
kÑ`8

RE0,k
“ 0,

which is in contradiction with
0 ă R1 ă RE0,k

.

Hence, the equiboundeness is proved and then tEkukPN converges up to a subsequence to a set
E P AR1

pωq in the Hausdorff metric. Hence, by the definition of AR1
pωq, there exists an open

bounded convex set E0 such that E “ E0zBR1
.

In order to complete the proof, we will prove that

M “ lim
k
σ1pEkq ď σ1pEq. (2.44)

Let u P H1
BBR1

pEq be the first positive eigenfunction associated to σ1pEq, such that

ˆ
BE0

u2 dHn´1 “ 1.

Hence, we have

σ1pEq “

ˆ
E

|∇u|2 dx.

By the extension theorem (see for instance [35, 126] for Lipschitz domains), we can extend u in
Rn obtaining a function ũ P H1

BBR1
pRnq such that ũ “ u, a.e. in E, and

}ũ}H1
BBR1

pRnq ď cpnq}u}H1
BBR1

pEq,

for some positive constant c “ cpnq. For every k P N we define uk as the restriction of ũ in Ek.
Using uk as a test function for σ1pEkq, we have

σ1pEkq ď

ˆ
Ek

|∇ũ|2 dx
ˆ
BE0,k

ũ2 dHn´1
. (2.45)

In order to get (2.44), we prove that the right-hand side in (2.45) converges to σ1pEq. We observe
that ˆ

Ek

|∇ũ|2 dx´
ˆ
E

|∇ũ|2 dx “
ˆ
Rn
pχEk ´ χEq |∇ũ|2 dxÑ 0, (2.46)

since Ek Ñ E in the Hausdorff metric and by the dominated convergence theorem.
In order to conclude the proof we have to prove

ˆ
BE0,k

ũ2 dHn´1 Ñ

ˆ
BE0

u2 dHn´1 “ 1. (2.47)

The equiboundedness of the sequence tE0,kukPN guarantees the existence of a ball BR centered
at the origin with radius R ą 0 such that E0,k Ă BR, for every k P N. Extending ũ to zero in
BR1

and by using an approximation argument, we can suppose that ũ P C8pBRq. Then (2.47)
follows by Theorem 1.11.
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Finally, passing to the limit in (2.45), by (2.46) and (2.47), we get (2.44), that is

M ď σ1pEq

and, consequently, we can conclude that

σ1pEq “M,

obtaining the desired claim.

Remark 2.16. We observe that the above existence result holds even when we consider ΩK “
Ω0zK, where K is a convex set with not empty interior strictly contained in Ω0. Indeed, by
using the upper bound (2.19), the proof can be done following line by line the one just discussed
in the case of a spherical hole.

2.4.2 Proof of the main result
In this section we give the proof of the main result. The idea is to take as test function in the
quotient (2.3) the eigenfunction of the spherical shell with the same measure as Ω. Before giving
the proof, we need a preliminary result.

Lemma 2.17. Let R1 ą 0 and let f be the function defined in s0,`8r as

fptq “

$

&

%

log2
´?

t
R1

¯?
t n “ 2

`

1
Rn´2

1

´ 1

t
n´2
n

˘2
t
n´1
n n ě 3.

Then, f is convex for every α´pnqRn1 ď t ď α`pnqR
n
1 , where

α˘pnq “

$

’

&

’

%

e˘2
?

2 n “ 2
„

pn´1q˘pn´2q
?

2pn´1q

n´1


n
n´2

n ě 3.

Proof. Let us begin with the bidimensional case. After an easy computation one can see that

f2ptq “
2´ log2

p
?
t{R1q

4t
?
t

,

which gives immediately the conclusion.
Now let us consider n ě 3. After some computations the second derivative of the function is

the following

f2ptq “ t
3
n´3

„

R4´2n
1

n

ˆ

1

n
´ 1

˙

t2´
4
n `

2R2´n
1

n

ˆ

1´
1

n

˙

t1´
2
n `

ˆ

3

n
´ 2

˙ˆ

3

n
´ 1

˙

.

If we call y “ t1´
2
n , the previous function is non-negative if and only if

gpyq “
R4´2n

1

n

ˆ

1

n
´ 1

˙

y2 `
2R2´n

1

n

ˆ

1´
1

n

˙

y `

ˆ

3

n
´ 2

˙ˆ

3

n
´ 1

˙

ě 0.

It is not difficult to check that the zeros of gpyq are

y˘ “ Rn´2
1

n´ 1˘ pn´ 2q
a

2pn´ 1q

n´ 1
.

Being y´ “ 0 for n “ 3 and y´ ă 0 for every n ě 4 it must be y´ ď y ď y`, which concludes
the proof.
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Now we can prove the main result.

Proof of the Theorem 2.12. Let us consider the fundamental solution w, given in (2.6), as a test
function in (2.2). Then,

σ1pΩq ď

ˆ
Ω

|∇w|2 dx
ˆ
BΩ0

w2 dHn´1
.

In order to prove the result we will show that
ˆ

Ω

|∇w|2 dx
ˆ
BΩ0

w2 dHn´1
ď

ˆ
AR1,R2

|∇w|2 dx
ˆ
BBR2

w2 dHn´1
“ σ1pAR1,R2

q. (2.48)

Since |∇w|2 is a non-negative radially symmetric decreasing function for any n ě 2, it co-
incides with its Schwarz symmetrization. Hence by the Hardy-Littlewood inequality [92, Th.
1.2.2], we haveˆ

Ω

|∇w|2 dx “
ˆ

Ω0

|∇w|2 dx´
ˆ
BR1

|∇w|2 dx

ď

ˆ
BR2

|∇w|2 dx´
ˆ
BR1

|∇w|2 dx “
ˆ
AR1,R2

|∇w|2 dx.
(2.49)

Hence, it remains to prove the following inequalityˆ
BΩ0

w2 dHn´1 ě

ˆ
BBR2

w2 dHn´1. (2.50)

Let ρ0 be the radial function of Ω0 defined in (1.9). By (1.11), BΩ0 can be represented as follows

BΩ0 “ tx ρ0pxq, x P Sn´1u,

with R1 ă ρ0pθq ď R̄ and R̄ defined in (2.34).
Firstly, let us consider the case n “ 2. If we denote by zpθq “ R2pθq “ ρ2

0pxpθqq, being |Ω0| “

|BR2 |, it holds

R2 “

d

1

2π

ˆ 2π

0

zpθqdθ. (2.51)

Moreover, we get

ˆ
BΩ0

w2 ds “

ˆ
BΩ0

plogp|x|q ´ logR1q
2
ds “

ˆ 2π

0

log2

ˆ

Rpθq

R1

˙

Rpθq

d

1`

ˆ

R1pθq

Rpθq

˙2

dθ

ě

ˆ 2π

0

log2

ˆ

Rpθq

R1

˙

Rpθq dθ “

ˆ 2π

0

log2

˜

a

zpθq

R1

¸

a

zpθq dθ

ě 2π log2

¨

˝

1

R1

d´ 2π

0
zpθqdθ

2π

˛

‚

d´ 2π

0
zpθqdθ

2π
“

“ 2πR2 log2

ˆ

R2

R1

˙

“

ˆ
BBR2

w2 ds,

(2.52)
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where, since ρ0pxq ď R̄, the last inequality follows by Lemma 2.17 and by Jensen’s inequality.
This conclude the proof of (2.50) in the bidimensional case.

Now, let us consider the case n ě 3 and we proceed in a similar way.
Moreover since

|Ω0| “
1

n

ˆ
Sn´1

ρn0 pxq dHn´1

and being |Ω0| “ |BR2
|, it holds

R2 “

ˆ

1

nωn

ˆ
Sn´1

zpxq dHn´1

˙
1
n

, (2.53)

where zpxq “ ρn0 pxq. Then, we have

ˆ
BΩ0

w2 dHn´1 “

ˆ
BΩ0

ˆ

1

Rn´2
1

´
1

|x|n´2

˙2

dHn´1

“

ˆ
Sn´1

ˆ

1

Rn´2
1

´
1

pρ0pxqqn´2

˙2

pρ0pxqq
n´1

d

1`

ˆ

∇τρ0pxq

ρ0pxq

˙2

dHn´1

ě

ˆ
Sn´1

ˆ

1

Rn´2
1

´
1

pzpxqq
n´2
n

˙2

pzpxqq
n´1
n dHn´1

ě nωn

„

1

Rn´2
1

´
nωn

`´
Sn´1 zpxq dHn´1

˘

n´2
n

2ˆ´
Sn´1 zpxq dHn´1

nωn

˙

n´1
n

“ nωn

ˆ

1

Rn´2
1

´
1

Rn´2
2

˙2

Rn´1
2 “

ˆ
BBR2

w2 dHn´1.

where last inequality follows by Lemma 2.17 and by Jensen’s inequality, being ρ0pxq ď R̄. This
gives (2.50) for n ě 3 and concludes the proof.

2.4.3 Some remarks about the perimeter constraint

The estimate (2.15) states that the first Steklov-Dirichlet eigenvalue is bounded from above also
when we keep the outer perimeter and the radius of the inner ball fixed. So, it is natural to
investigate if there exists a set which maximizes σ1pΩq in the following class

BR1
pκq :“

 

D “ KzBR1
, K Ă Rn, open, convex : BR1

b K, P pKq “ κ
(

,

where R1 ą 0 and κ ą nωnR
n´1
1 . Arguing as Theorem 2.15, we obtain the following existence

result under a perimeter constraint.

Theorem 2.18. Let κ ą nωnR
n´1
1 be fixed. There exists a set Ω P BR1pκq such that

sup
DPBR1

pκq

σ1pDq “ σ1pΩq.

Remark 2.19. We stress that inequality (2.49) continues to hold true even if we fix the perimeter
of Ω0. Indeed the isoperimetric inequality ensures that the ball BR2

centered at the origin and
having the same measure than Ω0 is contained in the ball centered at the origin and having the
same perimeter than Ω0.
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On the other hand we cannot prove, instead, the inequality (2.50) under the perimeter con-
straint in order to obtain that the spherical shell is still a maximum for σ1pΩq. Indeed, if we
proceed as in the proof of Theorem 2.12, for instance in the planar case, equation (2.51) has to
be replaced by the following inequality:

2πR2 “ P pBR2q “ P pΩ0q “

ˆ 2π

0

Rpθq

d

1`

ˆ

R1pθq

Rpθq

˙2

dθ ě

ˆ 2π

0

Rpθq dθ, (2.54)

where Rpθq “ ρ0pxpθqq Then, in the last step of (2.52), after using Jensen’s inequality, we do not
obtain the first Steklov-Dirichlet eigenvalue of the spherical shell, since (2.54) is not an equality.

In support of this fact, we give the following numerical counterexample obtained by using
™WxMaxima. We consider R1 “ 10´5 and Ω0 an ellipse with the same perimeter as AR1,1. Let
a and b the semi-axes of the ellipse. In order to compute the integral over the ellipse, we used
the formula P pΩ0q “ 2π

b

a2`b2

2 , which is an approximation by excess for the perimeter of the
ellipse. Here we have chosen b “ 1.1. We obtain

DpAR1,1q « 832, 820208 ą 828, 919156 « DpΩ0q,

where DpΩ0q “
´
BΩ0

w2ds and w is the fundamental solution defined in (2.6).
This means that we cannot study separately the numerator and denominator terms to obtain

inequality (2.35) under perimeter constraint.

2.5 The Steklov-Robin eigenvalue problem
Let Ω “ Ω0zBr. Here Ω0 Ă Rn, n ě 2, is an open, bounded, connected set with Lipschitz
boundary and Br is the ball of radius r ą 0 centered at the origin such that Br b Ω0. As we
said in the introduction we deal with the following Steklov-Robin eigenvalue problem

$

’

’

’

’

’

&

’

’

’

’

’

%

∆u “ 0 in Ω

Bu

Bν
“ σu on BΩ0

Bu

Bν
` βu “ 0 on BBr,

(2.55)

where ν is the outer unit normal to BΩ and β ą 0 is a positive real parameter.

Definition 2.2. A real number σpΩq and a function u P H1pΩq are, respectively, called eigenvalue
of (2.55) and associated eigenfunction to σpΩq, if and only if

ˆ
Ω

x∇u,∇ϕy dx` β
ˆ
BBr

uϕdHn´1 “ σpΩq

ˆ
BΩ0

uϕ dHn´1

for every ϕ P H1pΩq.

We study the first eigenvalue σβpΩq of (2.55) defined as (see Section 3 for the details)

σβpΩq “ inf
vPH1pΩqzt0u

ˆ
Ω

|∇v|2 dx` β
ˆ
BBr

v2 dHn´1

ˆ
BΩ0

v2 dHn´1
. (2.56)
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We prove that σβpΩq is a minimum, it is simple, and that the corresponding eigenfunctions have
constant sign.
Let us define the following quantities

µ1pΩq :“ inf
vPH1

pΩqzt0u´
BBr

v dHn´1
“0

´
Ω
|∇v|2 dx´
BΩ0

v2 dx
, (2.57)

and

q1pΩq “ inf
∆w“0

wPH1
pΩqzH1

BBr
pΩq

ˆ
BBr

w2 Hn´1

ˆ
BΩ0

w2 Hn´1
, (2.58)

We observe that µ1pΩq is the first nontrivial Steklov Laplacian eigenvalue in Ω. Then our result
is the following

Theorem 2.20. Let Ω0 Ă Rn be an open, bounded set with Lipschitz boundary and let Ω “

Ω0zBr, where Br is the ball centered at the origin and with radius r such that Br b Ω0. Then
the following estimates hold

1

σβpΩq
ď

1

µ1pΩq
`

P pΩ0q

βP pBrq
, (2.59)

and
1

σβpΩq
ď

1

σDpΩq
`

1

q1pΩq
, (2.60)

where σβpΩq is the first Steklov-Robin eigenvalue of Ω defined in (2.56), σDpΩq is the first Steklov-
Dirichlet eigenvalue defined in (2.2), µ1pΩq and q1pΩq are defined in (2.57) and (2.58), respec-
tively.

As a consequence of the above estimates we can obtain the quoted asymptotic behaviour of
σβpΩq with respect to β in both case, when β either goes to zero or to infinity.

2.5.1 Existence and basic properties of σβpΩq
In this subsection we define and study the main properties of the first Steklov-Robin Laplacian
eigenvalue in Ω “ Ω0zBr. Let σβpΩq be the following quantity

σβpΩq “ inf
vPH1

pΩq
vı0

Jrvs, (2.61)

where

Jrvs “

ˆ
Ω

|∇v|2 dx` β
ˆ
BBr

v2 dHn´1

ˆ
BΩ0

v2 dHn´1
(2.62)

and β is a positive parameter.
We observe that by (2.61) we immediately get

σβpΩq ď σDpΩq, (2.63)

where σDpΩq is the first Steklov-Dirichlet eigenvalue defined in (2.2). In the next result we prove
that σβpΩq is the first eigenvalue of problem (2.55) and we show some basic properties of σβpΩq
and its corresponding eigenfunctions.
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Theorem 2.21. Let n ě 2 and Ω “ Ω0zBr, where Ω0 is an open, bounded and connected set
with Lipschitz boundary in Rn and Br a ball centered at the origin of radius r ą 0 such that
Br b Ω0. Then σβpΩq is actually a minimum, that is

σβpΩq “ min
vPH1

pΩq
vı0

Jrvs, (2.64)

where Jrvs is defined in (2.62). Moreover σβpΩq is the first eigenvalue of (2.55), it is strictly
positive and any minimizer has constant sign.

Proof. Let us notice that the Rayleigh quotient Jrws defined in the previous proposition is always
non-negative and 0-homogeneous. Let us consider a minimizing normalized sequence tununPN
such that }un}L2pBΩ0q “ 1, i.e. limnÑ8 Jruns “ σβpΩq. By (2.63), Jruns ď σDpΩq, then by
Friedrich’s inequality (1.5), }un}L2pΩq is uniformly bounded from above. By the compactness
of the embedding H1pΩ, BΩq Ă L2pΩq, there exists a subsequence, still denoted by un, and a
function u P H1pΩq with ||u||L2pBΩ0q “ 1, such that un Ñ u strongly in L2pΩq, hence also
almost everywhere, and ∇un á ∇u weakly in L2pΩq. Moreover, by the compactness of the trace
embedding theorem (1.4), un converges strongly to u also in L2pBΩq and almost everywhere on
BΩ to u. Then, by weak lower semicontinuity we have

lim
nÑ`8

Jruns ě Jrus.

Hence the existence of a minimizer u P H1pΩq follows.

It is obvious the fact that σβpΩq ě 0. By contradiction let us suppose that σβpΩq “ 0. This
means that ˆ

Ω

|∇u|2 dx` β
ˆ
BBr

u2 dHn´1 “ 0.

It follows that }∇u}L2pΩq and }u}L2pBBrq are both zero. From the first we have that u is constant
a.e. in Ω and then it must be u ” 0 in Ω, which is an absurd. Therefore σβpΩq ą 0.
By classical arguments of Calculus of Variation it is easy to prove that (2.55) is the Euler-
Lagrange equation corresponding to (2.64). Here we write down the proof for completeness. Let
u P H1pΩq be minimum of the Rayleigh quotient (2.62) and let m P R its value, i.e. Jrus “ m.
Let us now consider the first variation of Jr¨s. If v P H1pΩq, we define the following function

fpεq “ Jru` εvs.

It is clear that fp0q “ m and in particular we have that
ˆ
BΩ0

u2 dHn´1 ¨ f 1p0q “ 2

ˆˆ
Ω

x∇u,∇vy dx` β
ˆ
BBr

uv dHn´1

˙ ˆ
BΩ0

u2 dHn´1

´

ˆˆ
Ω

|∇u|2 dx` β
ˆ
BBr

u2 dHn´1

˙ ˆ
BΩ0

uv dHn´1 “ 0

if and only if
´

Ω
x∇u,∇vy dx` β

´
BBr

uv dHn´1´
BΩ0

uv dHn´1
“

´
Ω
|∇u|2 dx` β

´
BBr

u2 dHn´1´
BΩ0

u2 dHn´1
“ m.

Since the relation written above is valid for every v P H1pΩq, the proposition is proved by
definition of weak solution.
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In particular it follows that σβpΩq is the smallest eigenvalue of problem (2.55). Indeed let us
suppose that v is another eigenfunction of (2.55) with corresponding eigenvalue σ̃. Then an
integration by parts gives

σβpΩq ď

´
Ω
|∇v|2 dx` β

´
BBr

v2 dHn´1´
BΩ0

v2 dHn´1
“

´
BΩ

Bu
Bν u dH

n´1 ` β
´
BBr

u2 dHn´1´
BΩ0

u2 dHn´1
“ σ̃.

It only remains to show that any minimizer has constant sign. If u be an eigenfunction corre-
sponding to σβpΩq, then Jrus “ Jr|u|s. This implies that u “ |u| on Ω and therefore u ě 0 on
Ω. By Harnack inequality (see [136, Thm 1.1]), u is strictly positive on Ω.

Next propositions concern the simplicity of σβpΩq and sign properties of the corresponding
eigenfunctions.

Proposition 2.22. σβpΩq is simple, which means that there exists a unique corresponding eigen-
function up to multiplicative constants.

Proof. Let us now suppose that v is another eigenfunction corresponding to σβpΩq. Since v ą 0
in Ω, it follows ˆ

Ω

v dx ‰ 0.

Hence there exists a positive number λ ą 0, such that
ˆ

Ω

pu´ λvq dx “ 0.

Since u´ λv is another eigenfunction corresponding to the same eigenvalue, it is necessary that
u “ λv in Ω, which proves the simplicity.

Proposition 2.23. Let n ě 2 and Ω “ Ω0zBr, where Ω0 is an open, bounded and connected
set with Lipschitz boundary in Rn and Br a ball centered at the origin of radius r ą 0 such that
Br b Ω0. Any nonnegative function v P H1pΩq that satisfies in the sense of definition (2.2)

$

’

’

’

’

’

&

’

’

’

’

’

%

∆u “ 0 in Ω

Bu

Bν
“ σu on BΩ0

Bu

Bν
` βu “ 0 on BBR,

(2.65)

is a first eigenfunction of (2.65), that is σ “ σβpΩq, and v “ u (up to multiplicative constants),
where u is the eigenfunction corresponding to the first eigenvalue σβpΩq.

Proof. Since u is a positive eigenfunction corresponding to σβpΩq, it satisfies
ˆ

Ω

|∇u|2 dx` β
ˆ
BBr

u2 dHn´1 “ σβpΩq

ˆ
BΩ0

u2 dHn´1. (2.66)

While if we consider as a test function for v, the function u2{pv ` εq, for some ε ą 0, we get
ˆ

Ω

„

2ux∇u,∇vy
v ` ε

´
u2|∇v|2

pv ` εq2



dx` β

ˆ
BBr

v

v ` ε
u2 dHn´1 “ σ

ˆ
BΩ0

v

v ` ε
u2 dHn´1. (2.67)
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If we subtract (2.66) by (2.67), since v{pv ` εq ă 1, we get

0 ď

ˆ
Ω

ˇ

ˇ

ˇ

ˇ

∇u´ u∇v
v ` ε

ˇ

ˇ

ˇ

ˇ

2

dx “

ˆ
Ω

„

|∇u|2´2ux∇u,∇vy
v ` ε

`
u2|∇v|2

pv ` εq2



dx

ď

ˆ
BΩ0

„

σβpΩq ´ σ
v

v ` ε



u2 dHn´1.

Passing to the limit as εÑ 0, we get

rσβpΩq ´ σs

ˆ
BΩ0

u2 dHn´1 ě 0.

Since σβpΩq is the smallest eigenvalue, the only possibility is that σ “ σβpΩq and by the simplicity
of the first eigenvalue, it must be v “ u up to multiplicative constants.

2.5.2 The first Steklov-Robin eigenvalue in the spherical shell
Let us consider now Ar,R “ BRzBr, where BR and Br are balls centered at the origin with
radii R ą r ą 0. Let β ą 0 be a positive real parameter and let us consider the Steklov-Robin
eigenvalue problem for the Laplacian in the spherical shell

$

’

&

’

%

∆u “ 0 in Ar,R
Bu
Bν ` βu “ 0 on BBr
Bu
Bν “ σu on BBR,

(2.68)

where ν is the outer unit normal to BAr,R.
We are going to compute the solutions to problem (2.68).

Theorem 2.24. The first Steklov-Robin eigenvalue of the problem (2.68) is

σβpAr,Rq

$

’

’

’

’

’

&

’

’

’

’

’

%

1
R

βr
`R log

R

r

n “ 2

n´ 2
n´ 2

β

ˆ

R

r

˙n´2

`R

„ˆ

R

r

˙n´2

´ 1


n ě 3,

(2.69)

and the corresponding eigenfunctions are the following

upxq “

$

’

’

&

’

’

%

log
|x|

r
`

1

βr
n “ 2

1

rn´2
´

1

|x|
n´2 `

n´ 2

β

1

Rrn´2
n ě 3.

(2.70)

Proof. Since the radial symmetry of the problem and the rotational invariance of the Laplacian,
we look forward to a solution which is of the type upxq “ vp|x|q “ vpsq, where s “ |x|. Computing
the Laplacian of v we get

v2 `
n´ 1

s
v1 “ 0,

which is equivalent to
psn´1v1q1 “ 0.
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So integrating twice we get

vpsq “

#

c1 log s` c2 n “ 2
c1
sn´2

` c2 n ě 3.
(2.71)

We are going to find the solution to (2.68) by using the boundary conditions on Br and BR. Let
us begin by the bidimensional case. Using the boundary condition we get the following system
in the unknown variables c1 and c2

#

´ c1
r ` βpc1 log r ` c2q “ 0

c1
R ´ σpc1 logR` c2q “ 0.

(2.72)

Since this is a homogeneous system, the only way not to have c1 “ c2 “ 0 is that

det

ˆ

´1{r ` β log r β
1{R´ σ logR ´σ

˙

“ 0.

From this we get that

σβpAr,Rq “
1

R
βr `R log R

r

.

Since this choice of σ, c1 and c2 must be linearly dependents. Hence if we chose c1 “ 1, by using
the second equation in (2.72) we have that

c2 “
1

σR
´ logR “

1

βr
` log

R

r
´ logR “

1

βr
´ log r.

Hence inserting c1 and c2 in (2.71), we have

upxq “ log
|x|

r
`

1

βr
.

In higher dimensions the system becomes
#

n´2
rn´1 c1 ` βp

c1
rn´2 ` c2q “ 0

´ n´2
Rn´1 c1 ´ σp

c1
Rn´2 ` c2q “ 0.

(2.73)

Proceding in the same way as before, we find that

σ “ σβpAr,Rq “
n´ 2

n´ 2

β

ˆ

R

r

˙n´2

`R

„ˆ

R

r

˙n´2

´ 1



.

Hence chosing c1 “ ´1

c2 “
1

Rn´2
`

n´ 2

σRn´1
“

1

rn´2
`
n´ 2

β

1

Rrn´2
,

and
upxq “

1

rn´2
´

1

|x|
n´2 `

n´ 2

β

1

Rrn´2
.

Eventually, in any dimension, with these choices of the constants c1, c2, the corresponding eigen-
functions do not change sign and so they must be eigenfunctions corresponding to the first
Steklov-Robin eigenvalue σβpAr,Rq.
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By the explicit form of σβpAr,Rq and the corresponding eigenfunctions in (2.69)-(2.70), we
deduce the following properties when we let vary β or the radii of the spherical shell.

• limβÑ0 σβpAr,Rq “ 0, and in particular

lim
βÑ0

σβpAr,Rq

β
“
P pBRq

P pBrq
. (2.74)

• Recalling the explicit value of the first Steklov-Dirichlet eigenvalue of spherical shells (see
[139, 75, 106]), we have

lim
βÑ8

σβpAr,Rq “ σDpAr,Rq. (2.75)

• Finally we have
lim
rÑ0

σβpAr,Rq “ lim
RÑ0

σβpAr,Rq “ 0, (2.76)

We will see in the next section that all of these behaviours will persist in the case of a generic
Ω.

2.5.3 Asymptotic estimates of σβpΩq with respect to β and r

In this section we will study the behaviour of σβpΩq when β and r vary.

Behaviour with respect to the inner radius

We will prove that (2.76) continues to hold for a general annular domain Ω by proving some
suitable estimates in terms of the radius of the hole. Indeed let us consider the spherical shell
Ar,Rm , where Rm is defined in (1.12), which is contained in Ω. If we choose as a test function in
the variational characterization of σβpΩq

ϕ “

#

vp|x|q inAr,Rm
vpRmq inΩzAr,Rm ,

where v is the first eigenfunction in Ar,Rm , then

σβpΩq ď σβpAr,Rmq.

As a consequence when r Ñ 0,
σβpΩq Ñ 0.

A natural question, now, is asking if we have a lower bound in terms of the first Steklov-Robin
eigenvalue of an opportune spherical shell. In the following result we prove that for starshaped
set is possible to have an optimal lower bound σβpΩq.

Theorem 2.25. Let r ą 0 and Ω0 Ă Rn be an open, bounded starshaped set such that Br b Ω0

and let Ω “ Ω0zBr. Then, it holds

σβpΩq ě
σβ pAr,Rmq

Rn´1
M maxSn´1

´b

1` |∇τρ0|2

ρ2
0

¯ , (2.77)

where Rm and RM are defined in (1.12), ρ0 is the radial function of Ω0 defined in (1.9) and
Ar,Rm is the spherical shell with radii r and Rm.
Moreover, the equality case holds if and only if Ω0 is also a ball BR centered at the origin of
radius R ą 0.
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Proof. We will follow an idea used in [95] for the planar case and in [73, 137] for any dimension.
Let u P H1pΩq By using spherical coordinates and the notation introduced in the preliminaries:

BΩ0 “ tx ρ0pxq, x P Sn´1u

and
BBr “ txr, x P Sn´1u.

The integrals over the boundaries BΩ0 and BBR of u2 become

ˆ
BΩ0

u2 dHn´1 “

ˆ
Sn´1

u2

d

1`

ˆ

|∇τρ0|

ρ0

˙2

pρ0q
n´1 dHn´1,

ˆ
BBR

u2 dHn´1 “ Rn´1

ˆ
Sn´1

u2 Hn´1. (2.78)

In particular we have

ˆ
BΩ0

u2 dHn´1 ď pRM q
n´1 max

Sn´1

˜

d

1`
|∇τρ0|

2

ρ2
0

¸ˆ
Sn´1

u2 dHn´1. (2.79)

We can parametrize

Ω “ ts P Rn : s “ x r̃, x P Sn´1, r̃ ď r̃ ď ρ0pxqu,

by using spherical coordinates, where we denote by Rpyq “ ρ0pxpyqq, and x : y P U Ă Rn´1 Ñ

xpyq P Sn´1 is a standard parametrization of the boundary of the unit ball in Rn. Then we get

ˆ
Ω

|∇u|2 ds “
ˆ
U

ˆ Rpyq

r

#

ˆ

Bu

Br̃

˙2

`
1

r̃2
|∇τu|

2

+

r̃n´1
a

g̃ dr̃ dy, (2.80)

where
?
g̃ is the determinant of the matrix g̃ij , that is the standard metric on Sn´1 and ∇τu is

the component of ∇u tangential to Sn´1. Therefore

ˆ
Ω

|∇u|2 ds ě
ˆ
U

ˆ Rm

r

#

ˆ

Bu

Br̃

˙2

`
1

r̃2
|∇τu|

2

+

r̃n´1
a

g̃ dr̃ dy, (2.81)

Combining (2.79), (2.78) and (2.81) and recalling (2.64), we get

σβpΩq ě

ˆ
U

ˆ Rm

r

#

ˆ

Bu

Br̃

˙2

`
1

r̃2
|∇τu|

2

+

r̃n´1
a

g̃ dr̃ dy ` βrn´1

ˆ
Sn´1

u2 dHn´1

pRM q
n´1 max

Sn´1

˜

d

1`
|∇τρ0|

2

ρ2
0

¸ ˆ
Sn´1

u2 dHn´1

ě

σβpAr,Rmq

pRM q
n´1 max

Sn´1

˜

d

1`
|∇τρ0|

2

ρ2
0

¸ . (2.82)

Finally, we stress that the equality case implies that all the inequalities become equalities.
So, we have that ∇τρ0 “ 0 and ρ0pxq “ R, with R ą R constant.
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Theorem 2.25 tells us that as long Ω0 is an open, bounded starshaped set, and r ą 0, then
σβpΩq remains away from zero. Is this property still true for any open, bounded set in Rn
with Lipschitz boundary? In general the answer is no, as showed in the following bidimensional
counterexample, that is contained in [79], that can be easily generalized in any dimension.

Counterexample 2.26. Let us consider a sequence of open, bounded and connected sets tΩεu Ă
R2 as follows

Ωε “ Bpx0q YRε Y pBpx1qzBrpx1qq.

Here

Rε “

ˆ

´
ε

2
,
ε

2

˙

ˆ

ˆ

´
ε3

2
,
ε3

2

˙

is a rectangle centered at the origin with sides of length ε and ε3 respectively, Bpx1q, Bpx2q are
two dimensional balls of radius 1 centered at the points x1 and x2, chosen such that the rectangle
Rε is well glued and eventually Brpx2q is a concentric ball in Bpx2q of radius 0 ă r ă 1.

Let us consider the following function

upx, yq “

$

&

%

sin

ˆ

2πx

ε

˙

inRε

0 elsewhere,

which is a continuous test function for the first Steklov-Robin eigenvalue.
Let us evaluate u in the numerator and denominator the Rayleigh quotient. The denominator
becomes

ˆ
BΩε

u2 dHn´1 “

ˆ
BRε

u2 dHn´1 “ 2

ˆ ε
2

´ ε
2

sin2

ˆ

2πx

ε

˙

dx

“ 4

ˆ ε
2

0

sin2

ˆ

4πx

ε

˙

dx “ 4

ˆ ε
2

0

1´ cos

ˆ

4πx

ε

˙

2
dx “ ε

Since

|∇u|2 “
ˆ

Bu

Bx

˙2

“

ˆ

2π

ε

˙2

cos2

ˆ

2πx

ε

˙

,

we have that the numerator is

ˆ
Ωε

|∇u|2 dx dy “
ˆ
Rε

|∇u|2 dx dy “
ˆ

2π

ε

˙2 ˆ ε3

2

´ ε
3

2

ˆ ε
2

´ ε
2

cos2

ˆ

4πx

ε

˙

dx dy

“ 2

ˆ

2π

ε

˙2

ε3

ˆ ε
2

0

1` cos

ˆ

4πx

ε

˙

2
dx “ 2π2ε2.

In this way, since u is zero on BBrpx2q, we get

σβpΩεq ď

ˆ
Ωε

|∇u|2 dx
ˆ
BΩε

u2 dHn´1
“ 2π2ε,
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and
σβpΩεq Ñ 0

as ε Ñ 0. We stress the fact that the same proof can be exhibited even in the Steklov-Dirichlet
case.

This counterexample gives us two information. The first is the one we already mentioned: if
Ω0 is not starshaped, the first eigenvalue could be arbitrarily close to zero. The second one is
that when Ω is not connected, then σβpΩq could be zero, even though r ą 0.

Behaviour with respect to β

In this section we will give the proof of the Theorem 2.20.

Proof of Theorem 2.20. Firstly we prove inequality (2.59). We observe that the claim is well
posed since, by proceeding analogously as in the existence theorem, µ1pΩq is positive. For any
w P H1pΩq, for simplicity, we will use the following notation

Dpwq :“

ˆ
Ω

|∇w|2 dx. (2.83)

Let u be a positive eigenfunction corresponding to σβpΩq. By the Minkowski inequality and the
definition of µ1pΩq we have

dˆ
BΩ0

u2 dHn´1 ď

dˆ
BΩ0

pu´ cq2 dHn´1 `
a

c2P pΩ0q ď

d

Dpuq

µ1pΩq
`
a

c2P pΩ0q,

where c is
c “

1

P pBrq

ˆ
BBr

u dHn´1, (2.84)

Squaring and using the arithmetic-geometric mean inequality, we have
ˆ
BΩ0

u2dHn´1 ď
Dpuq

µpr,Ω0q
` c2P pΩ0q ` 2

d

Dpuqc2P pΩ0q

µpr,Ω0q

“ Dpuq

ˆ

1

µ1pΩq
`

P pΩ0q

βP pBrq

˙

` c2βP pBrq

ˆ

1

µ1pΩq
`

P pΩ0q

βP pBrq

˙

“

ˆ

1

µ1pΩq
`

P pΩ0q

βP pBrq

˙

pDpuq ` c2βP pBrqq.

(2.85)

By (2.84) and Hölder inequality, we getˆ
BΩ0

u2dHn´1 ď

ˆ

1

µ1pΩq
`

P pΩ0q

βP pBrq

˙ˆ

Dpuq ` β

ˆ
BBr

u2 dHn´1

˙

“

ˆ

1

µ1pΩq
`

P pΩ0q

βP pBrq

˙ˆ

σβpΩq

ˆ
BΩ0

u2dHn´1

˙

,

(2.86)

which gives (2.57).
Now we prove inequality (2.60). Let u be the eigenfunction corresponding to σβpΩq, solution to
problem (2.55). Let us observe that u “ v ` h, where v and h solve the following problems

$

’

&

’

%

∆v “ 0 inΩ

v “ 0 on BBr
Bv
Bν “

Bu
Bν on BΩ0,

$

’

&

’

%

∆h “ 0 inΩ

h “ u on BBr
Bh
Bν “ 0 on BΩ0.
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It is easy to check that
ˆ

Ω

|∇u|2 dx “
ˆ

Ω

|∇v|2 dx`
ˆ

Ω

|∇h|2 dx. (2.87)

Then, proceeding as the proof of inequality (2.57), by applying Minkowski inequality and using
(2.87), (2.67) and (2.58), we get

dˆ
BΩ0

u2 Hn´1 ď

dˆ
BΩ0

v2 Hn´1 `

dˆ
BΩ0

h2 Hn´1

ď

d

1

σDpΩq
Dpuq `

d

1

q1pΩq

ˆ
BBr

u2 Hn´1.

Squaring both sides and applying the arithmetic-geometric mean inequality we have

ˆ
BΩ0

u2 dHn´1 ď
Dpuq

σDpΩq
`

1

q1pΩq

ˆ
BBr

u2 Hn´1 ` 2

d

Dpuq

σDpΩq

1

q1pΩq

ˆ
BBr

u2 Hn´1

ď
Dpuq

σDpΩq
`

Dpuq

βq1pΩq
`

1

q1pΩq

ˆ
BBr

u2 Hn´1 `
β

σDpΩq

ˆ
BBr

u2 Hn´1

“

ˆ

1

σDpΩq
`

1

βq1pΩq

˙ˆ

Dpuq ` β

ˆ
BBr

u2 Hn´1

˙

.

This gives (2.60).

Remark 2.27. We stress that a rough but meaningful estimate can be obtained choosing as a
test function in (2.64) the constant function. In this case we have the following upper bound

σβpΩq ď β
P pBrq

P pΩ0q
, (2.88)

which immediately gives that when β Ñ 0, then σβpΩq Ñ 0. However inequality (2.57) allows
us to show that, as in the radial case, it holds

lim
βÑ0

σβpΩq

β
“
P pBrq

P pΩ0q
. (2.89)

Indeed we have
P pBrq

P pΩ0q
ě
σβpΩq

β
ě

P pBrqµ1pΩq

P pΩ0qβ ` P pΩ0qµ1pΩq
, (2.90)

where the first inequality follows by (2.88) and the second by using (2.59). Taking in (2.90) the
limit for β which goes to zero one get (2.89).

Remark 2.28. We observe that inequality (2.60) gives

1

σβpΩq
´

1

σDpΩq
ď

1

βq1pΩq

which immediately implies that
lim
βÑ8

σβpΩq “ σDpΩq.



Chapter 3

Some results about the Robin type
boundary conditions in the linear
and non linear case

In this Chapter we focus our attention on varius problem involving a Robin boundary condition
type.
In Section 3.1 we prove a result à la Talenti for the solution to the anisotropic Laplacian with
Robin boundary condition. In particular we prove that the solution to the above mentioned
problem can be upper bounded by the solution to the symmetrized problem in terms of Lorentz
norm, and in more particular cases a pointwise estimate is found. Moreover a Bossel-Daners
inequality in the anisotropic case is proved in dimension 2.
In Section 3.2 we consider the Torsion problem with robin boundary condition in the linear case.
We compute the shape derivatives of the Lp and L8 of the torsion function and prove that the
ball is a critical shape for these functionals.

3.1 A comparison result à la Talenti for the anisotropic
Laplace eigenvalue problem with Robin boundary con-
dition

3.1.1 Definition of the Robin problem in the anisotropic case

Let Ω Ă Rn be an open bounded set, with Lipschitz boundary. Let us consider the following
anisotropic problem with Robin boundary conditions

$

’

&

’

%

´divpHp∇uqHξp∇uqq “ f in Ω

Hp∇uqHξp∇uq ¨ ν ` βHpνqu “ 0 on BΩ,
(3.1)

where f ě 0 (not identically zero) belongs to L2pΩq, H is a sufficiently smooth norm in Rn, ν is
the Euclidean outer unit normal to BΩ and β ą 0 is a positive real parameter.
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A weak solution to problem (3.1) is a function u P H1pΩq that satisfies
ˆ

Ω

Hp∇uqHξp∇uq ¨∇ϕdx` β
ˆ
BΩ

HpνquϕdHn´1 “

ˆ
Ω

fϕ @ϕ P H1pΩq. (3.2)

We recall that the Wulff Shape centered in x0 P Rn of radius R is defined as follows

WRpx0q “ tx P Rn : H˝px´ x0q ă Ru,

where H˝ is the dual norm of H. In particular we will denote by W the Wulff Shape centered
at the origin of radius 1 (for the exact definitions, see section (1.4)).

The aim is to estabilish a comparison result with the solution to the following symmetrized
problem

$

’

&

’

%

´divpHp∇vqHξp∇vqq “ f‹ in Ω‹

Hp∇vqHξp∇vq ¨ ν ` βHpνqv “ 0 on BΩ‹,
(3.3)

where f‹ is the convex symmetrization of f and Ω‹ is a set homothetic to the Wulff Shape W
such that |Ω‹| “ |Ω|.
In particular what we are going to prove are the following theorems.

Theorem 3.1. Let be n ě 2. If u and v are the solutions to problems (30) and (32) respectively,
then

}u}Lp,1pΩq ď }v}Lp,1pΩ‹q for all 0 ă p ď
n

2n´ 2
(3.4)

and
}u}L2p,2pΩq ď }v}L2p,2pΩ‹q for all 0 ă p ď

n

3n´ 4
. (3.5)

Theorem 3.2. Let n “ 2, f ” 1 in Ω. If u and v are the solutions to problems (30) and (32)
respectively. Then

u‹pxq ď vpxq x P Ω‹, (3.6)

where u‹ is the convex symmetrization of u.

Theorem 3.3. Let n ě 3 and f ” 1. If u and v are the solutions to problems (30) and (32)
respectively, then

}u}Lp,1pΩq ď }v}Lp,1pΩ‹q (3.7)

and
}u}L2p,2pΩq ď }v}L2p,2pΩ‹q, (3.8)

for all 0 ă p ď n
n´2 .

3.1.2 Existence, uniqueness and properties of the solution

In this subsection we want to prove that there exists a unique solution to problem (3.1) exists,
which is furthermore unique and non-negative.
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Existence

Let us consider the following energy functional

Erws “
1

2

ˆ
Ω

H2p∇wq dx` β

2

ˆ
BΩ

Hpνqw2 dHn´1 ´

ˆ
Ω

fw dx, w P H1pΩq. (3.9)

We notice that the Euler-Lagrange equations of this functional is (3.1), hence if Er¨s has minima,
there exists a solution to the considered problem.
Let us proceed with the classical Calculus of Variation method to prove the existence of a
minimum.
1) Lower bound. Let us prove that the functional (3.9) is lower bounded. From (1.30) and the
generalized Young’s inequality we have

Erus ě
γ2

2
}∇u}2L2pΩq `

βγ

2
}u}2L2pBΩq ´

ε

2
}u}2L2pΩq ´

1

2ε
}f}2L2pΩq

ě C1

ˆ

}∇u}2L2pΩq ` }u}
2
L2pBΩq

˙

´
ε

2
}u}2L2pΩq ´

1

2ε
}f}2L2pΩq

ě

ˆ

C2 ´
ε

2

˙

}u}2L2pΩq ´
1

2ε
}f}2L2pΩq.

In the last inequality we have used a Poincaré inequality with trace term (see for instance
[25, 30, 96]). Here C2 “ C2pβ, γ,Ωq. If we choose ε small enough, then

Erus ě ´
1

2ε
}f}2L2pΩq ą ´8.

We have proved in this way that the functional is bounded from below. Let us denote by

m :“ inf
wPH1pΩq

Erws. (3.10)

and let tuku Ă H1pΩq be a minimizing sequence, i.e.

lim
kÑ8

Eruks “ m.

We can suppose that Eruks ď m` 1 for all k P N.
2) Compactness and lower semicontinuity. Using again (1.30) and the generalized Young’s
inequality, we have

m` 1 ě
γ2

2
}∇uk}2L2pΩq `

ˆ

βγ

2
´
ε

2

˙

}uk}
2
L2pΩq ´

1

2ε
}f}2L2pΩq

ě
γ2

2
}∇uk}2L2pΩq ´

ε

2
}uk}

2
L2pΩq ` C3}uk}

2
L2pΩq ´

1

2ε
}f}2L2pΩq,

Choosing ε small enough and calling C3 “ minpγ
2

2 ,
βγ
2 ´

ε
2 q then

}uk}H1pΩq ď
m` 1

C3
`

1

2εC3
}f}2L2pΩq ă 8.

Hence tuku is bounded in H1pΩq, so there exists a subsequence tukju Ă tuku that converges
weakly in H1pΩq and strongly in L2pΩq to a function u P H1pΩq. To simplify the notation let us
continue to call the subsequence as tuku.
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By the strict convexity of the functions t ÝÑ t2 and H2 it is straightforward to prove that the
functional Erus is weakly lower semicontinuous, i.e.

lim inf
kÑ8

Eruks ě Erus “ m.

This proves that Erus “ m and u is a minimum.

Uniqueness and non-negativeness

Let us prove now that the minimum of (3.9) is unique. If u, v P H1pΩq, by the strict convexity
of the funcion H2 we know that if t P r0, 1s, then

H2pt∇u` p1´ tq∇vq ď tH2p∇uq ` p1´ tqH2p∇vq. (3.11)

The equality occurs if and only if t “ 0 or t “ 1. Analogously

rtu` p1´ tqvs2 ď tu2 ` p1´ tqv2, t P r0, 1s. (3.12)

Let u P H1pΩq be a minimizer of (3.9) and let us suppose that there exists another minimizer
v P H1pΩq, such that u ‰ v. Hence Erus “ Ervs “ m. Let us denote by w “ u ` v and choose
t “ 1

2 , then by (3.11) and (3.12)

Erws ă
Erus

2
`
Ervs

2
“ m.

This fact contraddicts the minimality of u and so the minimum must be unique.

Let us now show the non-negativeness of the solution. Let u be the unique minimum of (3.9),
namely Erus “ m. If we consider |u|, by (1.29), we get

H2p∇|u|q “ H2

ˆ

u

|u|
∇u

˙

“ H2p∇uq.

Hence

Er|u|s “
1

2

ˆ
Ω

H2p∇|u|q dx` β

2

ˆ
BΩ

Hpνq|u|2 dHn´1 ´

ˆ
Ω

f |u| dx

“ m`

ˆ
Ω

fpu´ |u|q dx “ m` 2

ˆ
tuď0u

fu ď m.

By the uniqueness of the minimizer we have u “ |u| in Ω. Eventually u ě 0 in Ω.

The anisotropic radial case

Let us consider the following one dimensional problem
$

’

&

’

%

´ 1
rn´1 pr

n´1v1prqq1 “ f˚pknr
nq r P p0, Rq

v1p0q “ 0

v1pRq ` βvpRq “ 0,

(3.13)

Integrating the first equation in (3.13), calling t̃ “ knt
n, we get

v1prq “ ´
1

rn´1

ˆ r

0

tn´1f˚pknt
nq dt` C1 “ ´

1

nknrn´1

ˆ knr
n

0

f˚pt̃q dt̃` C1.
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Since v1p0q “ 0, C1 “ 0. By denoting s̃ “ kns
n, another integration gives

vprq “ ´

ˆ r

0

1

nknsn´1

ˆ kns
n

0

f˚pt̃q dt̃ ds` C2 “

´

ˆ knr
n

0

1

n2k
2
n
n s̃2´ 2

n

ˆ s̃

0

f˚pt̃q dt̃ ds̃` C2.

From v1pRq ` βvpRq “ 0 we compute C2, hence

vprq “ ´

ˆ knr
n

0

1

n2k
2
n
n s̃2´ 2

n

ˆ s̃

0

f˚pt̃q dt̃ ds̃`

ˆ knR
n

0

1

n2k
2
n
n s̃2´ 2

n

ˆ s̃

0

f˚pt̃q dt̃ ds̃`
1

βnknRn´1

ˆ knR
n

0

f˚pt̃q dt̃.

Therefore

vprq “

ˆ knR
n

knrn

1

n2k
2
n
n s̃2´ 2

n

ˆ s̃

0

f˚pt̃q dt̃ ds̃`
1

βnknRn´1

ˆ knR
n

0

f˚pt̃q dt̃. (3.14)

Now it is easy to check that the function vpxq “ vpH˝pxqq is a H1pΩ‹q solution to problem (3.3),
where Ω‹ is the Wulff Shape centered at the origin with radius R. In this way, by the uniqueness
of the solution, we have shown that the unique solution to problem (3.3) is radially symmetric
with respect to anisotropic norm and its value on the boundary is given by

vpRq “
1

βnknRn´1

ˆ knR
n

0

f˚pt̃q dt̃ ě 0.

Remark 3.4. We stress that if f ” 1 in WR, then by (3.14) the solution to problem (3.3) can
be written explicitly as follows

vpxq “ vpH˝pxqq “
R

βn
`

1

2n
pR2 ´H˝pxq2q. (3.15)

The solution is a paraboloid with respect to the anisotropic norm. Morover if H is the euclidean
norm in Rn, we are back to the classical torsion problem (or Saint Venant problem) with Robin
boundary conditions, whose radial solution is a concave paraboloid.

Level sets and distribution functions

If u is a solution to problem (3.1), we define

Ut “ tx P Ω : upxq ą tu

for a non-negative real number t ě 0. It is clear that if t ď umin, then Ut “ Ω and that if
t ą umax, then Ut “ H. With umin and umax we have denoted the minimum and the maximum
of u in Ω. We will denote by

BU int
t “ ΩX BUt, BU ext

t “ BΩX BUt (3.16)

the interior and exterior boundaries of Ut with respect to Ω, and by

µptq “ |Ut| (3.17)
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the distribution function of u.
If v is solution to problem (3.3), for t ě 0, we define

Vt “ tx P Ω‹ : vpxq ą tu, φptq “ |Vt|

the superlevel sets and the distribution function of v, respectively. Furthermore, for 0 ď t ď vmin,
Vt “ Ω, while for vmin ă t ă vmax, the superlevel sets Vt are Wulff shapes homothetic to Ω‹ and
strictly contained in it. Again, vmin and vmax are the minimum and the maximum of v in Ω‹.

3.1.3 Main results

To prove the main results we will use the Gronwall lemma (see subsection (1.2.4)) and prove two
others lemmata that will have a central importance for what will follow.

Lemma 3.5. Let u and v be the solutions to problems (3.1) and (3.3) respectively. Then for
a.e. t ą 0 we have

n2k
2
n
n φptq

2n´2
n “

˜

´φ1ptq `
1

β

ˆ
BUext

t

Hpνq

u
dHn´1

¸ˆ µptq

0

f˚psq ds (3.18)

and

n2k
2
n
n µptq

2n´2
n ď

˜

´µ1ptq `
1

β

ˆ
BUext

t

Hpνq

u
dHn´1

¸ˆ µptq

0

f˚psq ds. (3.19)

Proof. Let t, h ą 0 and let us consider the following test function in H1pΩq

ϕhpxq “

$

’

&

’

%

0 u ď t

u´ t t ă u ď t` h

h u ě t` h.

Substituting this in (3.2) we have
ˆ
UtzUt`h

Hp∇uqHξp∇uq ¨∇u dx` β
ˆ
BUext

t zBUext
t`h

Hpνqpu´ tqu dHn´1

` βh

ˆ
BUext

t`h

Hpνqu dHn´1 “

ˆ
UtzUt`h

fpu´ tqdx` h

ˆ
Ut`h

f dx.

Applying (1.32) in the first integral, dividing by h and applying the Coarea Formula (see (1.2.2)),
we have for a.e. t ą 0

1

h

ˆ t`h

t

ˆ
BU int

τ

H2p∇uq
|∇u|

dHn´1 dτ `
β

h

ˆ
BUext

t zBUext
t`h

Hpνqpu´ tqu dHn´1

` β

ˆ
BUext

t`h

Hpνqu dHn´1 “
1

h

ˆ
UtzUt`h

fpu´ tqdx`

ˆ
Ut`h

f dx.

Passing to the limit for hÑ 0` we have
ˆ
BU int

t

H2p∇uq
|∇u|

dHn´1 ` β

ˆ
BUext

t

Hpνqu dHn´1 “

ˆ
Ut

f dx.
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Let us set

gpxq “

#

Hp∇uq on BU int
t

βu on BU ext
t .

(3.20)

We want to end the proof using the anisotropic version of the isoperimetric inequality and to this
aim it is necessary to write properly the anisotropic peremeter of Ut. Because of the regularity
of BΩ we know that BU ext

t is sufficiently regular and a normal vector can be defined. Since
u P H1pΩq and f P L2pΩq, BU int

t may not have any good regularity property. By (1.36) we can
write for a.e. t ą 0

PHpUtq “

ˆ
BU int

t

Hp∇uq
|∇u|

dHn´1 `

ˆ
BUext

t

Hpνq dHn´1,

where ν is the outer unit normal to Ω. If we set

hpxq “

$

&

%

Hp∇uq
|∇u|

on BU int
t

Hpνq on BU ext
t ,

(3.21)

then
PHpUtq “

ˆ
BUt

hpxq dHn´1.

Furthermore we note that ˆ
BUt

hpxqgpxq dHn´1 “

ˆ
Ut

f dx. (3.22)

Therefore by Schwarz inequality, (3.22) and Hardy-Littlewood inequality, we have for a.e. t ą 0

P 2
HpUtq “

ˆˆ
BUt

hpxq dHn´1

˙2

“

˜ˆ
BUt

a

hpxqgpxq

d

hpxq

gpxq
dHn´1

¸2

ď

ˆ
BUt

hpxqgpxq dHn´1

˜ˆ
BU int

t

1

|∇u|
dHn´1 `

1

β

ˆ
BUext

t

Hpνq

u
dHn´1

¸

ď

˜

´µ1ptq `
1

β

ˆ
BUext

t

Hpνq

u
dHn´1

¸ ˆ µptq

0

f˚psq ds.

Hence, by (1.37)

n2k
2
n
n µptq

2n´2
n ď

˜

´µ1ptq `
1

β

ˆ
BUext

t

Hpνq

u
dHn´1

¸ˆ µptq

0

f˚psq ds.

If we do the same computations, replacing v with u, all the previous inequalities become equalities
and we have (3.18).
In particular, if f ” 1 in Ω, we have

n2k
2
n
n µptq

n´2
n ď ´µ1ptq `

1

β

ˆ
BUext

t

Hpνq

u
dHn´1, (3.23)

and
n2k

2
n
n φptq

n´2
n “ ´φ1ptq `

1

β

ˆ
BUext

t

Hpνq

u
dHn´1. (3.24)
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Remark 3.6. Let us notice that umin ď vmin. Indeed, being the level sets of v homothetic to
Ω‹, then, using (3.1), (3.3) and the isoperimetric inequality

vminPHpΩ
‹q “

ˆ
BΩ‹

Hpνqvpxq dHn´1 “ ´
1

β

ˆ
BΩ‹

Hp∇vqHξp∇vq ¨ ν dHn´1

“
1

β
}f‹}L1pΩ‹q “

1

β
}f}L1pΩq “ ´

1

β

ˆ
BΩ

Hp∇uqHξp∇uq ¨ ν dHn´1

“

ˆ
BΩ

Hpνqupxq dHn´1 ě uminPHpΩq ě uminPHpΩ
‹q.

(3.25)

As a consequence for all 0 ă t ă vmin we have that

µptq ď φptq “ |Ω|. (3.26)

Lemma 3.7. For all t ě vmin we have

ˆ t

0

τ

ˆˆ
BVτXBΩ‹

Hpνq

vpxq
dHn´1

˙

dτ “
1

2β

ˆ |Ω|
0

f˚psq ds (3.27)

and ˆ t

0

τ

˜ˆ
BUext

τ

Hpνq

upxq
dHn´1

¸

dτ ď
1

2β

ˆ |Ω|
0

f˚psq ds (3.28)

Proof. By Fubini’s Theorem and using (3.1), we have that

ˆ 8
0

τ

˜ˆ
BUext

τ

Hpνq

upxq
dHn´1

¸

dτ “

ˆ
BΩ

˜ˆ upxq

0

Hpνq

upxq
τ dτ

¸

dHn´1

“

ˆ
BΩ

Hpνqupxq

2
dHn´1 “

1

2β

ˆ |Ω|
0

f˚psq ds.

Analogously, ˆ 8
0

τ

ˆˆ
BVτXBΩ‹

Hpνq

vpxq
dHn´1

˙

dτ “
1

2β

ˆ |Ω|
0

f˚psq ds.

By monotonicity of the integral we have that for t ě 0

ˆ t

0

τ

˜ˆ
BUext

τ

Hpνq

upxq
dHn´1

¸

dτ ď

ˆ 8
0

τ

˜ˆ
BUext

τ

Hpνq

upxq
dHn´1

¸

dτ

and if t ě vmin, then BVt X BΩ‹ “ H. Hence

ˆ t

0

τ

ˆˆ
BVτXBΩ‹

Hpνq

vpxq
dHn´1

˙

dτ “

ˆ 8
0

τ

ˆˆ
BVτXBΩ‹

Hpνq

vpxq
dHn´1

˙

dτ,

and we have (3.28), (3.27).
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Proof of Theorem 3.1. Let 0 ă p ď n
2n´2 and let us denote Kn “ n2k

2
n
n . Let us multiply (3.19)

by tµptqη, where η “ 1
p ´

2n´2
n ě 0, and integrate from 0 to τ ě vmin

ˆ τ

0

Kntµptq
1
p dt ď

ˆ τ

0

´µ1ptqtµptqη
ˆˆ µptq

0

f˚psq ds

˙

dt `

1

β

ˆ τ

0

tµptqη
ˆˆ

BUext
t

Hpνq

upxq
dHn´1

ˆ µptq

0

f˚psq ds

˙

dt

ď

ˆ τ

0

´tµptqη
ˆˆ µptq

0

f˚psq ds

˙

dµptq `
|Ω|η

2β2

ˆˆ |Ω|
0

f˚psq ds

˙2

,

where we applied Lemma 3.7 and the fact that µptq is a monotone non increasing function.

By setting F plq “
ˆ l

0

wη
ˆ w

0

f˚psq ds dw and integrating by parts the first and last members in

this chain of inequalities we have

τF pµpτqq ` τ

ˆ τ

0

Knµptq
1
p dt ď

ˆ τ

0

F pµptqq dt`

ˆ τ

0

ˆ t

0

Knµptq
1
p dr dt

`
|Ω|η

2β2

ˆˆ |Ω|
0

f˚psq ds

˙2

By applying Lemma 1.8, with

ξpτq “

ˆ τ

0

F pµptqq dt`

ˆ τ

0

ˆ t

0

Knµptq
1
p dr dt,

C “
|Ω|η

2β2

ˆˆ |Ω|
0

f˚psq ds

˙2

and τ0 “ vmin, we have that

F pµpτqq `

ˆ τ

0

Knµptq
1
p dt ď

1

vmin

ˆˆ vmin

0

F pµptqq dt

`

ˆ vmin

0

ˆ t

0

Knµprq
1
p dr dt`

|Ω|η

2β2

ˆ ˆ |Ω|
0

f˚psq ds

˙2˙

.

(3.29)

Analogously

F pφpτqq `

ˆ τ

0

Knφptq
1
p dt “

1

vmin

ˆˆ vmin

0

F pφptqq dt

`

ˆ vmin

0

ˆ t

0

Knφprq
1
p dr dt`

|Ω|η

2β2

ˆˆ |Ω|
0

f˚psq ds

˙2˙

.

(3.30)

By (3.25) and (3.26), then we can compare directly the righthand sides of (3.29) and (3.30). So

F pµpτqq `

ˆ τ

0

Knµptq
1
p dt ď F pφpτqq `

ˆ τ

0

Knφptq
1
p dt

For τ Ñ `8 we have ˆ 8
0

µptq
1
p dt ď

ˆ 8
0

φptq
1
p dt,
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which is (3.4).
Now we want to prove (3.5). In order to obtain this result let us pass to the limit as τ Ñ 8 in
the following inequality:

ˆ τ

0

Kntµptq
1
p dt ď

ˆ τ

0

´tµptqη
ˆˆ |Ω|

0

f˚psq ds

˙

dµptq `
|Ω|η

2β2

ˆˆ |Ω|
0

f˚psq ds

˙2

.

After an integration by parts we get
ˆ 8

0

Kntµptq
1
p dt ď

ˆ 8
0

F pµptqq dt`
|Ω|η

2β2

ˆˆ |Ω|
0

f˚psq ds

˙2

.

On the other hand
ˆ 8

0

Kntφptq
1
p dt “

ˆ 8
0

F pφptqq dt`
|Ω|η

2β2

ˆˆ |Ω|
0

f˚psq ds

˙2

,

it remains to show that ˆ 8
0

F pµptqq dt ď

ˆ 8
0

F pφptqq dt. (3.31)

To this aim we multiply (3.19) by tF pµptqqµptq´
2n´2
n . Since F plql´

2n´2
n is a non-decreasing

function in l, when 0 ă p ď n
3n´4 , we can integrate from 0 to τ ě vmin to obtain

ˆ τ

0

KntF pµptqq dt ď

ˆ τ

0

´tµptq´
2n´2
n F pµptqq

ˆˆ µptq

0

f˚psq ds

˙

dµptq

`
1

β

ˆ τ

0

tF pµptqqµptq´
2n´2
n

ˆ
BUext

t

Hpνq

u
dHn´1

ˆˆ µptq

0

f˚psq ds

˙

dt

ď

ˆ τ

0

´tµptq´
2n´2
n F pµptqq

ˆˆ µptq

0

f˚psq ds

˙

dµptq

`
1

β
F p|Ω|q|Ω|´

2n´2
n

ˆˆ |Ω|
0

f˚psq ds

˙ ˆ τ

0

t

ˆ
BUext

t

Hpνq

u
dHn´1 dt

ď

ˆ τ

0

´tµptq´
2n´2
n F pµptqq

ˆˆ µptq

0

f˚psq ds

˙

dµptq

` F p|Ω|q
|Ω|

2n´2
n

2β2

ˆ ˆ |Ω|
0

f˚psq ds

˙2

,

where, again, we applied (3.7). Now, if we call C “ F p|Ω|q
|Ω|

2n´2
n

2β2

ˆˆ |Ω|
0

f˚psq ds

˙2

and set

Jplq “

ˆ l

0

w´
2n´2
n F pwq

ˆ ˆ w

0

f˚psq ds

˙

dw, integrating by parts the first and last member of the

previous chain of inequalities, we have

τ

ˆ τ

0

KnF pµptqq dt` τJpµpτqq ď

ˆ τ

0

ˆ r

0

KnF pµpzqq dz dr `

ˆ τ

0

Jpµptqq dt` C.

Setting

ξpτq “

ˆ τ

0

ˆ r

0

KnF pµpzqq dz dr `

ˆ τ

0

Jpµptqq dt,
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and applying 1.8 with τ0 “ vmin we deduce that
ˆ τ

0

KnF pµptqq dt` Jpµpτqq ď
1

vmin

ˆˆ vmin

0

ˆ r

0

KnF pµpzqq dz dr

`

ˆ vmin

0

Jpµptqq dt` C

˙

.

This inequality holds as an equality when we have φ in place of µ, so as before
ˆ τ

0

KnF pµptqq dt` Jpµptqq ď

ˆ τ

0

KnF pφptqq dt` Jpφptqq.

For τ Ñ8 we have (3.5), which concludes the proof.

Proof of Theorem 3.2. Multiplying by t ě 0 inequality (3.23) and integrating from 0 to τ ě vmin,
we have that

2k2τ
2 ď

ˆ τ

0

´µ1ptqt dt`
|Ω|

2β2
.

Here we applied Lemma 3.7. Analogously for (3.24)

2k2τ
2 “

ˆ τ

0

´φ1ptqt dt`
|Ω|

2β2
.

Then ˆ τ

0

tp´dµptqq ě

ˆ τ

0

tp´dφptqq,

for every τ ě vmin. Integrating by parts

µpτq ď φpτq τ ě vmin. (3.32)

Since umin ď vmin, inequality (3.32) holds for t ě 0 and the claim is proved.

Proof of Theorem 3.3. Let 0 ă p ď n
n´2 . Let us multiply (3.23) by tµptqη, where η “ 1

p´
n´2
n ě 0,

and integrate from 0 to τ ě vmin

ˆ τ

0

Kntµptq
1
p dt ď

ˆ τ

0

´µ1ptqtµptqη dt`
1

β

ˆ τ

0

tµptqη
ˆ
BUext

t

Hpνq

upxq
dHn´1

ď

ˆ τ

0

´µ1ptqtµptqη dt`
|Ω|η

β

ˆ τ

0

t

ˆ
BUext

t

Hpνq

upxq
dHn´1

ď

ˆ τ

0

´µ1ptqtµptqη dt`
|Ω|η`1

2β2
ď

ˆ τ

0

´tµptqη dµptq `
|Ω|η`1

2β2

where, again, Kn “ n2k
2
n
n , in the third inequality we applied Lemma 3.7, and in the last the fact

that µptq is a monotone non increasing function.

By setting Gplq “
ˆ l

0

wη “
lη`1

η ` 1
and integrating by parts the first and last members in this

chain of inequalities we have

τGpµpτqq ` τ

ˆ τ

0

Kntµptq
1
p dt ď

ˆ τ

0

Gpµptqq dt`

ˆ τ

0

ˆ t

0

Knµptq
1
p dr dt`

|Ω|η`1

2β2
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By applying Lemma 1.8, with

ξptq “

ˆ τ

0

Gpµptqq dt`

ˆ τ

0

ˆ t

0

Knµptq
1
p dr dt,

C “
|Ω|η`1

2β2
and τ0 “ vmin, we have that

Gpµpτqq `

ˆ τ

0

Knµptq
1
p dt ď

1

vmin

ˆ ˆ vmin

0

Gpµptqq dt

`

ˆ vmin

0

ˆ t

0

Knµprq
1
p dr dt`

|Ω|η`1

2β2

˙

.

(3.33)

Analogously

Gpφpτqq `

ˆ τ

0

Knφptq
1
p dt “

1

vmin

ˆˆ vmin

0

Gpφptqq dt

`

ˆ vmin

0

ˆ t

0

Knφprq
1
p dr dt`

|Ω|η`1

2β2

˙

.

(3.34)

By (3.25) and (3.26), we compare directly the righthand sides of (3.33) and (3.34). So

Gpµpτqq `

ˆ τ

0

Knµptq
1
p dt ď Gpφpτqq `

ˆ τ

0

Knφptq
1
p dt

For τ Ñ `8 we have ˆ 8
0

µptq
1
p dt ď

ˆ 8
0

φptq
1
p dt,

which is (3.7). Now we want to prove (3.8). In order to obtain this result let us pass to the limit
as τ Ñ8 in the following inequality:

ˆ τ

0

Kntµptq
1
p dt ď

ˆ τ

0

´tµptqη dµptq `
|Ω|η`1

2β2
.

After an integration by parts we get

ˆ 8
0

Kntµptq
1
p dt ď

ˆ 8
0

Gpµptqq dt`
|Ω|η`1

2β2
.

On the other hand ˆ 8
0

Kntφptq
1
p dt “

ˆ 8
0

Gpφptqq dt`
|Ω|η`1

2β2
.

So we need just to show that
ˆ 8

0

Gpµptqq dt ď

ˆ 8
0

Gpφptqq dt. (3.35)

To this aim we multiply (3.23) by tGpµptqqµptq´
n´2
n . Since Gplql´

n´2
n is a non decreasing function
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in l, we can integrate from 0 to τ ě vmin, to obtain
ˆ τ

0

KntGpµptqq dt ď

ˆ τ

0

´tµptq´
n´2
n Gpµptqq dµptq

`
1

β

ˆ τ

0

tGpµptqqµptq´
n´2
n

ˆ
BUext

t

Hpνq

u
dHn´1 dt

ď

ˆ τ

0

´tµptq´
n´2
n Gpµptqq dµptq `

1

β
Gp|Ω|q|Ω|´

n´2
n

ˆ τ

0

t

ˆ
BUext

t

Hpνq

u
dHn´1 dt

ď

ˆ τ

0

´tµptq´
n´2
n Gpµptqq dµptq `Gp|Ω|q

|Ω|
2
n

2β2
,

where, again, we applied (3.7). Now, if we call C “ Gp|Ω|q
|Ω|

2
n

2β2
and set Jplq “

ˆ l

0

w´
n´2
n Gpwq dw,

integrating by parts the first and last member of the previous chain of inequalities, we have

τ

ˆ τ

0

KnGpµptqq dt` τJpµpτqq ď

ˆ τ

0

ˆ r

0

KnGpµpzqq dz dr `

ˆ τ

0

Jpµptqq dt` C.

Setting

ξptq “

ˆ τ

0

ˆ r

0

KnGpµpzqq dz dr `

ˆ τ

0

Jpµptqq dt,

and applying (1.8) with τ0 “ vmin we deduce that
ˆ τ

0

KnGpµptqq dt` Jpµpτqq ď
1

vmin

ˆˆ vmin

0

ˆ r

0

KnGpµpzqq dz dr

`

ˆ vmin

0

Jpµptqq dt,`C

˙

.

This inequality holds as an equality when we have φ in place of µ, so as before
ˆ τ

0

KnGpµptqq dt` Jpµptqq ď

ˆ τ

0

KnGpφptqq dt` Jpφptqq.

For τ Ñ8 we have (3.35), which concludes the proof.

3.1.4 Application to PDE’s: Bossel-Daners inequality

Let Ω be a bounded and smooth open set in Rn. Let us denote by ν the outer unit normal to
BΩ and let β ą 0 be a positive real number. It is well known that for the following Laplacian
eigenvalue problem with Robin boundary conditions

$

&

%

´∆u “ λpΩqu in Ω
Bu

Bν
` βu “ 0 on BΩ,

a Faber-Krahn type inequality for the first eigenvalue holds. It is famous under the name of
Bossel-Daners inequality and it reads as follows

λ1,βpΩq ě λ1,βpΩ
7q,
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where Ω7 is the ball centered at the origin with the same measure as Ω. Equality holds if and
only if Ω is a ball.
Let us consider now the anisotropic case. If f “ λpΩqu, then (3.1) can be written in this way

$

’

&

’

%

´divpHp∇uqHξp∇uqq “ λpΩqu in Ω

Hp∇uqHξp∇uq ¨ ν ` βHpνqu “ 0 on BΩ.
(3.36)

The variational characterization for the first eigenvalue is

λ1,βpΩq “ min
wPH1pΩqzt0u

Jrus, (3.37)

where

Jrus “

ˆ
Ω

H2p∇uq dx` β
ˆ
BΩ

u2Hpνq dHn´1

ˆ
Ω

u2 dx

. (3.38)

In [48] the authors proved a Bossel-Daners type inequality for the anisotropic p-Laplacian prob-
lem. Indeed, they proved that

λ1,βpΩq ě λ1,βpΩ
‹q, (3.39)

where Ω‹ is the set homothetic to the Wulff Shape having the same measure as Ω. In particular
the equality case holds if and only if Ω is a set homothetic to the Wulff Shape.
In this section we want to give an alternative proof of (3.39) in the planar case, using the results
found in the previous section.

Corollary 3.8. Under the hypothesis of Theorem 3.1 we have that

λ1,βpΩq ě λ1,βpΩ
‹q.

Proof. Let u be the first anisotropic Robin eigenfunction associated to λ1,βpΩq. Then u is solution
to problem

$

’

&

’

%

´divpHp∇uqHξp∇uqq “ λ1,βpΩqu in Ω

Hp∇uqHξp∇uq ¨ ν ` βHpνqu “ 0 on BΩ.
(3.40)

Let z be the solution to the symmetrized problem
$

’

&

’

%

´divpHp∇zqHξp∇zqq “ λ1,βpΩqu
‹ in Ω‹

Hp∇zqHξp∇zq ¨ ν ` βHpνqz “ 0 on BΩ‹.
(3.41)

By theorem 3.2, we know that
ˆ

Ω

u2 dx “

ˆ
Ω‹
pu‹q2 dx ď

ˆ
Ω‹
z2 dx.

So, by Cauchy-Schwarz inequality we have
ˆ

Ω‹
u‹z dx ď

ˆ
Ω‹
z2 dx, (3.42)
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Eventually if we multiply the first equation in (3.41) by z, integrating on Ω‹ and applying (3.42)
we get

λ1,βpΩq “

ˆ
Ω‹
H2p∇zq dx` β

ˆ
BΩ‹

z2Hpνq dHn´1

ˆ
Ω‹
u‹z dx

ě

ˆ
Ω‹
H2p∇zq dx` β

ˆ
BΩ‹

z2Hpνq dHn´1

ˆ
Ω‹
z2 dx

ě λ1,βpΩ
‹q.

3.1.5 Conclusions and open problems
As in typhe euclidean case, we have proved that these comparison results depend on the dimension
of the space. In particular if we are in the hypothesis of theorem 3.1, when n “ 2, then

}u}L1pΩq ď }v}L1pΩ‹q,

and
}u}L2pΩq ď }v}L2pΩ‹q.

Therefore a question arises spontaneously. Is it true that

}u}LppΩq ď }v}LppΩ‹q (3.43)

for all values of p? In dimension 2 the answer is negative for large values of p. Next example will
show that (3.43) is untrue when p “ 8 and n “ 2.

Example 1. Let Ω be the union of two disjoint bidimensional Wulff shapes W and Wr, with
radii 1 and r respectively. If we choose β “ 1

2 and f such that it is constantly 1 in W and
constantly zero in Wr, then the solutions to problem (3.1) and (3.3) can be explicitly computed.
In particular it is possible to prove that there exitsts a positive constant c such that

}u}L8pΩq ´ }v}L8pΩ‹q “ cr2 ` opr2q.

Proof. Considering problem (3.1), since f ” 1 in W and f ” 0 in Wr, then u must be radial in
W and u|Wr “ 0. In particular by considering problem (3.13) with β “ 1{2, it is easy to check
that in W, denoting by t “ H˝pxq, the solution is as in (3.15)

uptq “ 1`
1

4
p1´ t2q. (3.44)

Let us now compute the solution to the symmetrized problem (3.3). Since |Ω| “ |Ω‹| we have
that the radius r‹ of the Wulff Shape Ω‹ is given by

r‹ “
a

1` r2.

Looking at (3.13), we have to solve the following problem
$

’

’

’

&

’

’

’

%

ptv1ptqq1 “ ´t p0, 1s,

ptv1ptqq1 “ 0 r1, r‹q,

v1p0q “ 0,

v1pr‹q ` 1
2vpr

‹q “ 0.
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When t P p0, 1s, then

tv1ptq “ ´
t2

2
` c1.

Since v1p0q “ 0, c1 “ 0. Hence integrating

vptq “ ´
t2

4
` c2.

If t P r1, r‹q, then
tv1ptq “ c3.

Imposing the continuity of the derivative in 1 we get c3 “ ´1{2. An integration gives

vptq “ ´
1

2
log t` c4.

The Robin boundary condition allows us to compute c4 indeed

´
1

2r‹
´

1

4
log r‹ `

c4
2
“ 0,

and consequently

c4 “
1

r‹
`

1

2
log r‹.

We have
vptq “ ´

1

2
log t`

1

r‹
`

1

2
log r‹.

Imposing the continuity in 1 of the solution we can compute c2

c2 “
1

4
`

1

r‹
`

1

2
log r‹.

Hence, if we denote by cpr‹q “
1

r‹
`

1

2
log r‹, the solution to the symmetrized problem is

vptq “

$

’

&

’

%

´
t2

4
`

1

4
` cpr‹q r0, 1s,

´
1

2
log t` cpr‹q r1, r‹s.

Let us note that in p0, 1s we have

vptq “ uptq ´ 1` cpr‹q.

Eventually

}v}L8pΩ‹q “ }v}L8pWq “ }u´ 1` cpr‹q}L8pWq “ }u}L8pΩq ´ 1` cpr‹q.

Expanding cpr‹q in Taylor series we get

cpr‹q “ p1` r2q´
1
2 `

1

2
logp1` r2q

1
2 “ 1´

r2

2
`
r2

4
` opr2q “ 1´

r2

4
` opr2q.

In this way we have

}u}L8pΩq ´ }v}L8pΩ‹q “
r2

4
` opr2q.
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Now someone could ask if (3.43) can be true when n ě 3. Next counterexample will show its
untruthfulness when n “ 3 and p “ 2.

Example 2. If we consider Ω, β and f as in the example 1 in the corresponding three-dimensional
case, then, in the hypothesis of theorem 3.1, the solutions to problem (3.1) and (3.3) can be ex-
plicitly computed. It is possible to prove that there exists a positive constant d such that

}u}L2pΩq ´ }v}L2pΩ‹q “ dr3 ` opr3q.

Proof. As in the previous example it easy to compute the solution to problem (3.1). If we denote
by t “ H˝pxq, then it is given by

uptq “

$

&

%

2

3
`

1

6
p1´ t2q inW,

0 inWr.
. (3.45)

From the condition |Ω| “ |Ω‹|, we find the radius r‹ of the Wulff Shape Ω‹ which is given by
r‹ “ p1 ` r3q

1
3 . Following exactly the same computations as in 1, we find the solution to the

symmetrized problem, and it is

vptq “

$

’

&

’

%

uptq ´
1

3
` qpr‹q r0, 1s,

1

3t
` qpr‹q r1, r‹s,

(3.46)

where
qpr‹q “

2

3r‹2
´

1

3r‹
.

A Taylor series expansion gives us

r‹α “ p1` r3q
α
3 “ 1`

α

3
r3 ` opr3q, α P R;

qpr‹q “
2

3p1` r3q
2
3

´
1

3p1` r3q
1
3

“
1

3
´
r3

3
` opr3q,

so that

vptq “

$

’

&

’

%

uptq ´
r3

3
` opr3q r0, 1s,

2

3
` oprq r1, r‹s.

(3.47)

Therefore, recalling that k3 is the three dimensional measure of the unitary Wulff Shape W, we
get

}v}2L2pΩ‹q “

ˆ
W

ˆ

u´
r3

3

˙

dx`
4

9
|Wr‹zW| ` opr3q

“ }u}2L2pΩq `
2

3
r3

ˆ
W
u dx`

4

9
k3r

3 ` opr3q

“ }u}2L2pΩq ´
22

45
k3r

3 `
4

9
k3r

3 ` opr3q

“ }u}2L2pΩq ´
2

45
k3r

3 ` opr3q.
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Hence we have proved the desired result, since

}u}2L2pΩq ´ }v}
2
L2pΩ‹q “

2

45
k3r

3 ` opr3q.

A problem that is still open is the following

Open Problem 1. In the hypothesis of theorem 3.1, (3.43) is true for p “ 1 and n ě 3?

If we now consider the theorem 3.2, we have proved that when n “ 2 and f ” 1 in Ω, then

u‹pxq ď vpxq x P Ω‹. (3.48)

In doing so, another question arises:

Open Problem 2. In the hypothesis of theorem 3.2, is (3.48) true even when n ě 3?

3.2 Shape derivative of the Lp and the L8 norms of the
Robin Torsion function

3.2.1 An introduction to the problem
Let Ω Ă Rn, n ě 2, be a bounded C2,α and simply connected open set. Let us consider the
following torsion problem with Robin boundary conditions

$

’

&

’

%

´∆u “ 1 in Ω

Bu

Bν
` βu “ 0 on BΩ,

(3.49)

where ν stands for the outer unit normal to BΩ and β ą 0 is a positive real number. A weak
solution to (3.49) is a function u P H1pΩq which satisfies

ˆ
Ω

∇u∇φdx` β
ˆ
BΩ

uφ dHn´1 “

ˆ
Ω

φ, @φ P H1pΩq.

It is well known that the solution to problem (3.49) is unique and positive whenever BΩ is
sufficiently smooth.
Let us recall the functionals we want to study and the the definitions of their shape derivatives.
We will denote the L8 and Lp shape functionals as follows

MpΩq “ }u}L8pΩq,

and for every p P r1,`8q

FppΩq “

ˆ
Ω

|upxq|p dx “

ˆ
Ω

uppxq dx “ }u}pLppΩq,

where u is solution to (3.49).
As already said in the introduction, let Ω Ă Rn be a bounded C2,α simply connected open set
and let us consider a first order perturbation

Ωt “ p1Rn ` tV qpΩq,
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with 1Rn being the identity function, V a C2,αpRn,Rnq vector field and t a small real number.
We want to study the limits (if they exist)

M 1pΩ, V q “ lim
tÑ0

MpΩtq ´MpΩq

t
(3.50)

and

F 1ppΩ, V q “ lim
tÑ0

FppΩtq ´ FppΩq

t
. (3.51)

What we want to prove is the following

Theorem 3.9. The ball BR is a critical shape for the functionals MpΩq and FppΩq, p ě 1, i.e.

M 1pBR, V q “ F 1ppBR, V q “ 0,

where V is a C2,αpRn,Rnq vector field volume preserving of the first order and where M 1p¨, vq
and F 1pp¨, vq are the shape derivatives of M and Fp respectively.

3.2.2 Shape derivative: some definitions and computations

Here we give some preliminary definitions and results that the reader can find in [10] and [85].
We point out that in this and next subsection, we will use the Einstein summation convention
for the repeated indexes.
Let Ω Ă Rn be a bounded and simply connected open set. We consider a family of perturbations
tΩtut of the form

Ωt “ ty “ x` tV pxq : x P Ω, t small enoughu, (3.52)

where V is a C2,αpRn,Rnq vector field.
The Jacobian matrix of the transformation

y :“ ypt,Ωq “ x` tV pxq, x P Ω, t small (3.53)

is
Dy “ I ` tDV ,

where I is the identity matrix and pDV qij “
BVi
Bxj

. By Jacobi’s formula, for small t, the Jacobian
determinant is given by

Jptq “ 1` tdiv V. (3.54)

It is clear that for t small enough, Jptq « 1, so ypt,Ωq is a diffeomorphism and in this case we
can consider its inverse transformation xpyq.
In particular we can write the measure of Ωt in terms of the perturbations defined before

|Ωt| “

ˆ
Ω

Jptq dx “ |Ω| ` t

ˆ
Ω

div V dx.

Definition 3.1. ypt,Ωq is said to be volume preserving of the first order if
ˆ

Ω

div V dx “ 0.
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Let w P H1pΩtq and let us consider the following energy functional

EpΩt, wq “
ˆ

Ωt

|∇ywpy, tq|
2 dy ´ 2

ˆ
Ωt

wpy, tq dy ` β

ˆ
BΩt

w2py, tq dσt, (3.55)

where with ∇y we denoted the gradient operator with respect to y and dσt is the surface element
of Ωt.
A critical point u P H1pΩtq of (3.55) satisfies the Euler-Lagrange equations
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∆yupy, tq ` 1 “ 0 in Ωt

Bu

Bνt
py, tq ` βupy, tq “ 0 on BΩt,

(3.56)

where ∆y is the Laplacian operator with respect to y and νt is the outer normal to BΩt.
We want to transform the integrals in (3.55) in integrals onto Ω and BΩ. Indeed by a change of
variables, using the inverse function xpyq (which exists for small t), we get

EpΩ, uq “
ˆ

Ω

Bu

Bxi
px` tV pxq, tq

Bu

Bxj
px` tV pxq, tq

Bxi
Byk

Bxj
Byk

Jptq dx

´ 2

ˆ
Ω

upx` tV pxq, tqJptq dx` β

ˆ
BΩ

u2px` tV pxq, tqmptq dσ.

. (3.57)

Here mptq is the index of deformation when passing from dσ to dσt (with dσ being the surface
element of Ω). If we define the tangential divergence of the vector field V as follows

divBΩ V :“ div V ´ ν ¨DV ν, (3.58)

then, up to first order terms, mptq can be approximated by (See [10], section 2.2.2)

mptq “ 1` tdivBΩ V. (3.59)

If we denote by
ũptq :“ upx` tV pxq, tq (3.60)

and

A “ pAijptqq :“
Bxi
Byk

Bxj
Byk

Jptq, (3.61)

we can write (3.57) in a more concise form

Eptq :“

ˆ
Ω

∇ũptqA∇ũptq dx´ 2

ˆ
Ω

ũptqJptq dx` β

ˆ
BΩ

ũ2ptqmptq dσ. (3.62)

If we simplify one more time the notations and indicate by

LA “
B

Bxj
pAijptq

B

Bxi
q (3.63)

and

BνA “ νiAijptq
B

Bxj
, (3.64)
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then the transformed function ũptq solves the Eulero-Lagrange equations
$

’

&

’

%

LAũptq ` Jptq “ 0 in Ω

BνA ũptq ` βmptqũptq “ 0 on BΩ.
(3.65)

A key role will be played by (3.60). If we expand it in a neighbourhood of t “ 0 we have

ũptq “ ũp0q ` t 9̃up0q ` optq.

We remark that the dot notation stands for the derivative with respect to t. In particular the
first two coefficients will be

ũp0q :“ upxq (3.66)

and

9̃up0q “

„

d

dt
ũptq



t“0

“

„

Bũ

Bt
ptq ` V pxq ¨∇ũptq



t“0

“
Bũ

Bt
p0q ` V ¨∇u.

(3.67)

Definition 3.2. We will call shape derivative of ũ, and it will be denoted by u1, the following
function

u1pxq :“
Bũ

Bt
p0q. (3.68)

Hence we can write (3.67) in this way

9̃up0q “ u1 ` V ¨∇u. (3.69)

Besides the expansion of ũptq, it will be helpful to write the taylor series of some other of the
function seen until now. Next Lemma will collect all the necessary coefficients of the expansions
just mentioned

Lemma 3.10. We have that

1q Jp0q “ 1, 2q 9Jp0q “ div V,

3q mp0q “ 1, 4q 9mp0q “ divBΩ V,

5q ũp0q “ upxq, 6q 9̃up0q “ u1 ` V ¨∇u,

7q Aijp0q “ δij , 8q 9Aijp0q “ div V δij ´
BVi
Bxj

´
BVj
Bxi

.

(3.70)

Proof. To compute 1q, 2q, 3q, 4q it is sufficient to differentiate (3.54) and (3.59) and evaluate for
t “ 0. 5q and 6q are given by (3.66) and (3.69) respectively.
Some more effort will be needed for the matrix A, defined in (3.61). Remembering that the
Jacobian matrix of the transformation ypt,Ωq is

Dy “ I ` tDV ,

if t is small enough, we have

Bxi
Byk

“ pD´1
y qik “ pI ` tDV q

´1
ik

“ pI ´ tDV ` optqqik “ δik ´ t
BVk
Bxi

` optq.
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This allows us to obtain
Aijp0q “ δikδjk “ δij

and

9Aijp0q “

„

Bxi
Byk

Bxj
Byk

9Jptq `

ˆ

d

dt

Bxi
Byk

˙

Bxj
Byk

Jptq `
Bxi
Byk

ˆ

d

dt

Bxj
Byk

˙

Jptq



t“0

“ divV δij ´
BVi
Bxj

´
BVj
Bxi

.

We want to find the equations that are solved by u1 in BR and on its boundary.

3.2.3 An equation for u1 in BR

Let us consider problem (41). It is well known that it admits a unique and positive solution,
given by

upxq “
R

βn
`

1

2n
pR2 ´ |x|2q, (3.71)

which is a radial and strictly concave function, whose maximum and minimum are achieved in 0
and on BBR respectevely. More precisely

umax “ up0q “
R

βn
`
R2

2n
, umin “ upRq “

R

βn
. (3.72)

In order to prove next proposition, it will be useful to keep in mind the gradient and the Hessian
matrix of (3.71). The gradient is

∇upxq “ ´x
n
. (3.73)

In particular, if x P BBR, being ν “ x
R the outer unit normal to the boundary of BR, then

∇upxq “ ´R
n
ν,

Bu

Bν
“ ´

R

n
. (3.74)

The Hessian matrix is clearly negative definite and it is given by

Hessupxq “ ´
I

n
, (3.75)

where I is the identity matrix.

Proposition 3.11. Let V be a C2,αpRn,Rnq vector field and R ą 0 a positive real number. The
function u1 solves the following boundary value problem in the ball with radius R

$
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∆u1 “ 0 in BR

Bu1

Bν
` βu1 “

ˆ

1` βR

n

˙

pV ¨ νq on BBR,
(3.76)

where ν is the outer unit normal to BBR.
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Proof. If we differentiate the first equation in (3.65) with respect to t and evaluate for t “ 0, we
obtain

LAp0q 9̃up0q ` L 9Ap0qũp0q `
9Jp0q “ 0.

It will be helpful to write explicitly LA and L 9A. By applying Lemma 3.10 we have

B

Bxj

ˆ

δij
B

Bxi

˙ˆ

u1 ` Vk
Bu

Bxk

˙

`
B

Bxj

ˆ

BVk
Bxk

δij
B

Bxi
´
BVj
Bxi

B

Bxi
´
BVi
Bxj

B

Bxi

˙

u`
BVk
Bxk

“ 0.

Hence

B

Bxj

ˆ

Bu1

Bxj
`

B

Bxj

ˆ

Vk
Bu

Bxk

˙˙

`
B

Bxj

ˆ

BVk
Bxk

Bu

Bxj
´
BVj
Bxi

Bu

Bxi
´
BVi
Bxj

Bu

Bxi

˙

`
BVk
Bxk

“ 0.

Renaming the indexes k

B2u1

Bx2
j

`
B2Vi
Bx2

j

Bu

Bxi
` 2

BVi
Bxj

B2u

BxjBxi
` Vi

B3u

B2xjBxi

`
B2Vi
BxjBxi

Bu

Bxj
`
BVi
Bxi

B2u

Bx2
j

´
B2Vj
BxjBxi

Bu

Bxi

´
BVj
Bxi

B2u

BxjBxi
´
B2Vi
Bx2

j

Bu

Bxi
´
BVi
Bxj

B2u

BxjBxi
`
BVi
Bxi

“ 0.

Considering that pHessupxqqij “
B

2u
BxjBxi

“ 0 whenever i ‰ j and the fact that B
2u
Bx2
j
“ ∆u “ ´1,

we have
Bu1

Bx2
j

`
B2Vi
BxjBxi

Bu

Bxj
´

B2Vj
BxjBxi

Bu

Bxi
“ 0.

Eventually, by Schwarz Theorem, we obtain ∆u1 “ 0 in BR.
If we now differentiate the boundary conditions in (3.65) and evaluate them for t “ 0, then

BνAp0q
9̃up0q ` Bν 9Ap0q

ũp0q ` β 9mp0qũp0q ` βmp0q 9̃up0q “ 0. (3.77)

Let us compute every term in the previous equation. Considering the boundary conditions
satisfied by u, Lemma (3.10) and (3.74) we get

BνAp0q
9̃up0q “

Bu1

Bν
`
B

Bν
pV ¨∇uq “ Bu1

Bν
´
R

n
∇pV ¨ νq ¨ ν,

Bν 9Ap0q
ũp0q “

Bu

Bν
div V ´ ν ¨DV∇u´∇u ¨DV ν

“ ´
R

n
div V `

2R

n
ν ¨DV ν,

β 9mp0qũp0q “ βudivBBRV “
R

n
divV ´

R

n
ν ¨DV ν,

βmp0q 9̃up0q “ βu1 ` βV ¨∇u “ βu1 ´
Rβ

n
V ¨ ν.
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Substituting in (3.77) we have

Bu1

Bν
` βu1 “

R

n
∇pV ¨ νq ¨ ν ´ R

n
ν ¨DV ν `

βR

n
V ¨ ν.

Now
R

n
∇pV ¨ νq “ R

n
ν ¨DV ν `

1

n
V ¨ ν.

Hence
Bu1

Bν
` βu1 “

1

n
V ¨ ν `

βR

n
V ¨ ν “

ˆ

1` βR

n

˙

pV ¨ νq.

As a consequence of the previous proposition, we deduce that

Corollary 3.12. If V P C2,αpRn,Rnq is a vector field volume preserving of the first order, then
the solution u1 to (3.76) is a function with zero mean value in BR, that is

ˆ
BR

u1 dx “

ˆ
BBR

u1 dσ “ 0.

Proof. Let us integrate the first equation in (41)

0 “

ˆ
BR

∆u1 dx “

ˆ
BR

divp∇u1q dx “
ˆ
BBR

Bu1

Bν
dσ. (3.78)

Since V is volume preserving of the first order
ˆ
BR

div V dx “

ˆ
BBR

V ¨ ν dσ “ 0. (3.79)

So integrating the second equation on the boundary, by (3.78) and (3.79)

ˆ
BBR

u1 dσ “
1

β

ˆ

1` βR

n

˙ˆ
BBR

V ¨ ν dσ “ 0.

In conclusion, being u1 a harmonic function, by the mean value theorem
ˆ
BR

u1 dx “
R

n

ˆ
BBR

u1 dσ “ 0.

3.3 Main results

The shape derivative u1, solution to problem (3.76) will play a central role to prove the desired
results.
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3.3.1 Shape derivative of the L8-norm
We prove the next result following the proof that can be found in [84].

Theorem 3.13. Let BR be a ball centered at the origin with radius R ą 0. Then for every
C2,αpRn,Rnq vector field V , the shape derivative of M at BR in any direction V exists and it is
given by

M 1pBR, V q “ u1p0q,

where 0 is the maximum point of (3.71) and u1 is the solution to (3.76).

Proof. Let us perturb the ball BR as we have seen in the previous section

BR,t “ ty “ x` tV pxq : x P BR, t small enoughu,

and consider problem (3.56), with BR,t in place of Ωt.
Being x “ 0 the unique maximum point of (3.71), then ∇up0, 0q “ 0. On the other hand, by the
strict concavity of the torsion function u on BR, the matrix

Dy∇up0, 0q “ Hessup0q

is invertible, since Hessu is negative definite. Hence by the implicit function theorem, in a
neighbourhood of the origin and for t small enough, there exists a unique yt such that ∇upyt, tq “
0. Moreover the function t ÝÑ yt is differentiable and yt must be a maximum, so MpBR,tq “
upyt, tq.
We want to prove that

lim
tÑ0

MpBR,tq ´MpBRq

t
“ u1p0q,

where

MpBR,tq ´MpBRq

t
“
upyt, tq ´ up0, 0q

t

“
upyt, tq ´ up0, tq

t
`
up0, tq ´ up0, 0q

t
.

By the differentiability of the map t ÝÑ up¨, tq and the the fact that ∇up0, 0q “ 0, we have

lim
tÑ0

up0, tq ´ up0, 0q

t
“

d

dt
rup0, tqst“0 “ u1p0q ` V p0q ¨∇up0, 0q “ u1p0q.

Furthermore, by the differentiability of t ÝÑ yt, by Lagrange theorem on the segment r0, yts, the
mean value property of ∇up¨, tq and the regularity of up¨, tq, we get

upyt, tq ´ up0, tq

t
“ ∇upξt, tq

yt
t

“

˜

1

|Brpξtq|

ˆ
Brpξtq

∇upy, tq dy

¸

yt
t
,

with ξt a suitable point in r0, yts. Hence

lim
tÑ0

upyt, tq ´ up0, tq

t
“ ∇up0, 0q

„

dyt
dt



t“0

“ 0.

This conclude the proof.
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Corollary 3.14. The ball is a critical shape for the functional M , for every V P C2,αpRn,Rnq
which is volume preserving of the first order, i.e.

M 1pBR, V q “ u1p0q “ 0.

Proof. As a consequence of Lemma 3.12 and Theorem 3.13, applying the mean value theorem,
we have that

M 1pBR, V q “ u1p0q “
1

nωnRn´1

ˆ
BBR

u1pxq dσ “
1

ωnRn

ˆ
BR

u1 dx “ 0.

3.3.2 Shape derivative of the Lp-norm

Next theorem will be a straightforward computation of the shape derivative of the functional
FppΩq.

Theorem 3.15. For every C2,αpRn,Rnq vector field V , the shape derivative of Fp at Ω in any
direction V exists and it is given by

F 1ppΩ, V q “ p

ˆ
Ω

up´1u1 dx`

ˆ
BΩ

uppV ¨ νq dσ,

where u1 is the shape derivative of u, solution to problem (3.49), and ν is the outer unit normal
to BΩ.

Proof. Let u be the solution to the perturbed problem
$
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´∆yupy, tq “ 1 in Ωt

Bu

Bνt
py, tq ` βupy, tq “ 0 on BΩt,

where Ωt is the perturbed domain defined in (3.52). Then

FppΩtq “

ˆ
Ωt

uppy, tq dy “

ˆ
Ω

ũpptqJptq dx,

with ũptq “ ũpx` tV pxq, tq and Jptq the Jacobian determinant as in (3.54).
Then it is possible to differentiate under the sign of integral and

d

dt
FppΩtq “

d

dt

ˆ
Ω

ũpptqJptq dx “

ˆ
Ω

d

dt
rũpptqJptqs dx

“ p

ˆ
Ω

ũp´1ptq 9̃uptqJptq dx`

ˆ
Ω

ũpptq 9Jptq dx.

Evaluating this derivative for t “ 0

„

d

dt
FppΩtq



t“0

“ p

ˆ
Ω

ũp´1p0q 9̃up0qJp0q dx`

ˆ
Ω

ũpp0q 9Jp0q dx.
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Applying Lemma (3.10), we get

F 1ppΩ, V q “ p

ˆ
Ω

up´1u1 dx` p

ˆ
Ω

up´1V ¨∇u dx`
ˆ

Ω

updiv V dx

“ p

ˆ
Ω

up´1u1 dx` p

ˆ
Ω

up´1V ¨∇u dx`
ˆ
BΩ

uppV ¨ νq dσ

´ p

ˆ
Ω

up´1V ¨∇u dx “ p

ˆ
Ω

up´1u1 dx`

ˆ
BΩ

uppV ¨ νq dσ.

When Ω “ BR, we can use the symmetry properties of (3.71) and the property of u1 to be a
zero mean function, to prove that

Corollary 3.16. The ball BR centered at the origin with radius R ą 0 is a critical shape for the
functional Fp, for every 1 ď p ă `8 and every vector field V P C2,αpRn,Rnq which is volume
preserving of the first order, i.e.

F 1ppBR, V q “ 0.

Proof. By previous theorem we know that

F 1ppBR, V q “ p

ˆ
BR

up´1u1 dx`

ˆ
BBR

uppV ¨ νq dσ.

Being u constant on the boundary and V a vector field volume preserving of the first order
ˆ
BBR

uppV ¨ νq dσ “ upmin

ˆ
BBR

pV ¨ νq dσ “ upmin

ˆ
BR

div V “ 0,

where umin “ upRq “ R
βn . By corollary 3.14, we know that u1p0q “ 0 and so by the mean value

theorem, we have that ˆ
BBr

u1pxq dHn´1 “ u1p0qnωnr
n´1 “ 0,

for every r P r0;Rs. Eventually, applying the Coarea Formula

p

ˆ
BR

up´1u1 dx “ p

ˆ
BR

ˆ

R

βn
´

1

2n
pR2 ´ |x|2q

˙p´1

u1 dx

“ p

ˆ R

0

ˆ

R

βn
´

1

2n
pR2 ´ r2q

˙p´1 ˆ
BBr

u1pxq dσ dr “ 0.

Hence
F 1ppBR, V q “ 0.
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Chapter 4

Sharp and quantitative estimates for
the p´Torsion of convex sets

In this Chapter we consider the pf, pq´torsional rigidity for the Poisson problem with Dirichlet
boundary conditions, denoted by Tf,ppΩq. Firstly, we prove a Pólya type lower bound for Tf,ppΩq
in any dimension; then, we consider the planar case and we provide two quantitative estimates
in the case f ” 1. The following is contained in [6].

4.1 Introduction
Let Ω Ă Rn, n ě 2, be a non-empty, bounded, open and convex set and let p P p1,`8q. We
consider the Poisson equation for the p´Laplace operator, defined as

´∆pu :“ ´div
`

|∇u|p´2∇u
˘

,

with Dirichlet boundary condition:
#

´∆pupxq “ fpdpx, BΩqq in Ω

u “ 0 on BΩ,
(4.1)

where f : r0, RΩs Ñ r0,`8r is a continuous, non-increasing and not identically zero function,
dp¨, BΩq : Ω Ñ r0,`8r is the distance function from the boundary defined as

dpx, BΩq :“ inf
yPBΩ

|x´ y|

and RΩ is the inradius of Ω. This class of functions, depending only on the distance, are the so
called web functions, see as a reference [42].
A function u PW 1,p

0 pΩq is a weak solution to (4.1) if and only ifˆ
Ω

|∇upxq|p´2∇upxq∇ϕpxq dx “
ˆ

Ω

fpdpx, BΩqqϕpxq dx @ϕ PW 1,p
0 pΩq.

The pf, pq-torsional rigidity of Ω, that we denote by Tf,ppΩq, is defined as

Tf,ppΩq “ max
ϕPW 1,p

0 pΩq
ϕı0

ˆˆ
Ω

fpdpx, BΩqq |ϕpxq| dx

˙

p
p´1

ˆˆ
Ω

|∇ϕpxq|p dx
˙

1
p´1

(4.2)
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and, if up PW
1,p
0 pΩq is the unique solution to (4.1), we have

Tf,ppΩq “

ˆ
Ω

fup dx.

For the sake of simplicity, when f ” 1 in Ω, we set TppΩq :“ T1,ppΩq and, if we are also in the
case p “ 2, we set T pΩq :“ T1,2pΩq. We recall that the quantities T pΩq and TppΩq are usually
called, respectively, torsional rigidity and p´torsional rigidity and so, by analogy, we have chosen
the above terminology for Tf,ppΩq.
In section 4.2 we prove the following

Theorem 4.1. Let Ω be a non-empty, bounded, open and convex set of Rn, n ě 2, and let
f : r0, RΩs Ñ r0,`8r be a continuous and non-increasing function such that f ı 0. Then, it
holds

Tf,ppΩq ě cp
µq`1
f pΩq

fp0qP qpΩq
, (4.3)

where
cp “

p´ 1

2p´ 1
, q “

p

p´ 1
,

and
µf pΩq “

ˆ
Ω

fpxq dx.

Moreover, the equality sign is asymptotically achieved by a sequence of thinning cylinders.

In the second part, we focus our study on the case f ” 1 and n “ 2 and we obtain some
quantitative estimates. We define the following scaling invariant functional

FppΩq “
TppΩqP

qpΩq

|Ω|q`1
q “

p

p´ 1
. (4.4)

We can rewrite inequality (4.3), in the case f ” 1, as follows

FppΩq ě cp.

From Theorem 4.1 follows that along a sequence of thinning cylinders tΩlulPN, we have

FppΩlq
lÑ0
ÝÝÑ cp.

This leads to the following stability issue: if FppΩq is close to cp, can we say that Ω is close in
some sense to a cylinder? The following result gives us information on the nature of the geometry
of Ω: when FppΩq´ cp is sufficiently small, the set Ω is a thin domain, in the sense that the ratio
wΩ{diampΩq is small. In section 4.3 we prove the following theorems:

Theorem 4.2. Let Ω be a non-empty, bounded, open and convex set of Rn and let f ” 1. Then,

FppΩq ´ cp ě Kpn, pq

ˆ

wΩ

diampΩq

˙n´1

, (4.5)

where Kpn, pq is a positive constant depending only on p and the dimension of the space n. In
particular, in the case n “ 2, the exponent of the quantity

wΩ

diampΩq
is sharp.
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We prove a second quantitative result in the case p “ n “ 2.

Theorem 4.3. Let Ω be a non-empty, bounded, open and convex set in R2, let f ” 1 and let
p “ 2. Then, there exists a positive constant K̃ such that

F2pΩq ´ c2 “
T pΩqP 2pΩq

|Ω|3
´

1

3
ě K̃

ˆ

|Ω 4Q|

|Ω|

˙3

, (4.6)

where Ω 4 Q denotes the symmetric difference between Ω and a rectangle Q with sides P pΩq{2
and wΩ containing Ω.

4.2 A Pólya type estimate for the pf, pq-torsional rigidity

In this Section we prove Theorem 4.1. Since the proof is quite long, we split it in two parts:
firstly we prove inequality (4.3) and, then, we prove its sharpness.

Step 1: proof of inequality (4.3) in Theorem 4.1

Proof. Let us choose in the variational characterization (4.2) ϕpxq “ gpdpxqq as a test function,
where g is a positive and non-decreasing function in W 1,ppr0, RΩsq such that gp0q “ 0. Then, by
coarea formula (1.3), ˆ

Ω

fpdpx, BΩqqϕpxq dx “

ˆ RΩ

0

fptqgptqP ptq dt (4.7)

and ˆ
Ω

|∇ϕpxq|p dx “
ˆ RΩ

0

g1pptqP ptq dt. (4.8)

By (4.2), (4.7) and (4.8) we have

Tf,ppΩq ě

˜ˆ RΩ

0

fptqgptqP ptq dt

¸

p
p´1

˜ˆ RΩ

0

g1pptqP ptq dt

¸
1
p´1

. (4.9)

Now, if we define the following measure

µf pEq “

ˆ
E

fpdpxqq dx,

we have

µf ptq :“ µf pΩtq “

ˆ
Ωt

fpdpxqq dx “

ˆ RΩ

t

fpsqP psq ds, (4.10)

and, since fpsqP psq is a decreasing function, we get

µf ptq ď pRΩ ´ tqfptqP ptq. (4.11)

From (4.10), we have
´µ1f ptq “ fptqP ptq a.e. t P r0, RΩs. (4.12)
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Using (4.7), (4.12) and integrating by parts, we obtain

ˆ RΩ

0

fptqgptqP ptq dt “ ´

ˆ RΩ

0

gptqµ1f ptq dt “

ˆ RΩ

0

g1ptqµf ptq dt.

Consequently, (4.9) becomes

Tf,ppΩq ě

˜ˆ RΩ

0

g1ptqµf ptq dt

¸

p
p´1

˜ˆ RΩ

0

g1pptqP ptq dt

¸
1
p´1

.

We can choose

gptq “

ˆ t

0

ˆ

µf psq

P psq

˙1{pp´1q

ds

and we observe that g PW 1,ppr0, RΩsq, since, using (4.11), we have

gptq ď

ˆ RΩ

0

pRΩ ´ sq
1
p´1 fpsq

1
p´1 ds ď }f}

1
p´1

L8 R
p
p´1

Ω P Lppr0, RΩsq,

g1ptq ď }f}
1
p´1

L8 R
1
p´1

Ω P Lppr0, RΩsq.

So, we have

Tf,ppΩq ě

ˆ RΩ

0

µ
p
p´1

f ptq

P
1
p´1 ptq

dt “ ´
p´ 1

2p´ 1

ˆ RΩ

0

pµ
2p´1
p´1

f ptqq1

fptqP
p
p´1 ptq

dt. (4.13)

Let us set cp “ pp ´ 1q{p2p ´ 1q. Since fpsq is a non-negative and non-increasing function,
integrating by parts in (4.13), we get

Tf,ppΩq ě ´cp

ˆ RΩ

0

pµ
2p´1
p´1

f ptqq1

fptqP
p
p´1 ptq

dt “ ´cp
µ

2p´1
p´1

f ptq

fptqP
p
p´1 ptq

∣∣∣∣∣
RΩ

0

`

´ cp

ˆ RΩ

0

µ
2p´1
p´1

f ptq

f2ptqP
2p
p´1 ptq

ˆ

f 1ptqP
p
p´1 ptq `

p

p´ 1
fptqP

1
p´1 ptqP 1ptq

˙

dt

ě cp
µ

2p´1
p´1

f pΩq

fp0qP
p
p´1 pΩq

`
cp

P
p
p´1 pΩq

ˆ RΩ

0

µ
2p´1
p´1

f ptq

f2ptq
p´f 1ptqq dt,

(4.14)

where in the last inequality we use (4.11) and the fact that P 1ptq ď 0. Now, since fpsq is
non-increasing, we obtain the desired estimate

Tf,ppΩq ě cp
µ

2p´1
p´1

f pΩq

fp0qP
p
p´1 pΩq

. (4.15)
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Step 2: proof of the sharpness of (4.3)

Proof. We prove that inequality (4.3) is sharp and that the optimum is asymptotically achieved
by the sequence of thinning cylinders Ωl with unitary measure, as defined in (1.17), that is

Ωl “ l´
1

n´1C ˆ

ˆ

´
l

2
,
l

2

˙

where C Ď Rn´1 is a bounded, open and convex set with unitary n ´ 1-measure. It is easy to
verify that, for n ě 3,

P pΩlq “ 2Hn´1pl´
1

n´1Cq ` lHn´2pBpl´
1

n´1Cqq

“ 2l´1 ` l
1

n´1Hn´2pBCq,
(4.16)

and we observe that, in the case n “ 2, we have that Hn´2pBCq “ 2.
Let u be the solution to the following p-torsion problem

#

´∆pu “ 1 in Ωl

u “ 0 on BΩl,

such that ˆ
Ωl

u dx “ TppΩlq,

and let us consider the following function, depending only on the last component xn of x P Rn,

vpxq “
p´ 1

p

«

ˆ

l

2

˙

p
p´1

´ |xn|
p
p´1

ff

,

satisfying
#

´∆pv “ 1 in Ωl

v ě 0 on BΩl.

The comparison principle, see [97], ensures that u ď v in Ωl and, as a consequence,

TppΩlq “

ˆ
Ωl

u dx ď

ˆ
Ωl

v dx “

“
p´ 1

p

ˆ
l
´ 1
n´1C

ˆ l
2

´ l
2

«

ˆ

l

2

˙

p
p´1

´ |xn|
p
p´1

ff

dxn dHn´1

“ 2
p´ 1

p
l´1

ˆ l
2

0

«

ˆ

l

2

˙

p
p´1

´ x
p
p´1
n

ff

dxn

“ 2
p´ 1

p

„

1´
p´ 1

2p´ 1



l´1

ˆ

l

2

˙

2p´1
p´1

“ 2cpl
´1

ˆ

l

2

˙

2p´1
p´1

.

(4.17)

By (4.17) and (4.16), we have

TppΩlqP
p
p´1 pΩlq ď 2cpl

´1

ˆ

l

2

˙

2p´1
p´1 ´

2l´1 ` l
1

n´1Hn´2pBCq
¯

p
p´1

“ cp

˜

1`
l
n
n´1

2
Hn´2pBCq

¸

p
p´1

.
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Now, since fpxq ď fp0q, we have that, for every bounded, open and convex set Ω,

Tf,ppΩq ď f
p
p´1 p0qTppΩq. (4.18)

It follows that
Tf,ppΩlqP

p
p´1 pΩlq ď f

p
p´1 p0qTppΩlqP

p
p´1 pΩlq

ď cpf
p
p´1 p0q

˜

1`
l
n
n´1

2
Hn´2pBCq

¸

p
p´1

.
(4.19)

Moreover we observe that, if f never vanishes, we can use its monotonicity property to bound
µf from below in the following way:

µf pΩq “

ˆ
Ω

fpdpxqq dx ě fpRΩq|Ω|,

obtaining

Tf,ppΩq ě cp
f

2p´1
p´1 pRΩq|Ω|

2p´1
p´1

fp0qP
p
p´1 pΩq

. (4.20)

Joining (4.20) and (4.19), we obtain

cp
f

2p´1
p´1 pRΩlq

fp0q
ď Tf,ppΩlqP

p
p´1 pΩlq ď cpf

p
p´1 p0q

˜

1`
l
n
n´1

2
Hn´2pBCq

¸

p
p´1

.

Eventually, passing to the limit when lÑ 0, observing that lim
lÑ0

RΩl “ 0 and that f is continuous,
we have

Tf,ppΩlqP
p
p´1 pΩlq ÝÑ cpf

p
p´1 p0q.

Remark 4.4. If we assume that f : r0, RΩs Ñ r0,`8r is a function in L8pr0, RΩsq, then, using
the variational characterization (4.2) and the result (45) proved in [49], we have

Tf,ppΩq ě

ˆ

inf
tPr0,RΩs

fptq

˙

p
p´1

TppΩq ě

ˆ

inf
tPr0,RΩs

fptq

˙

p
p´1

cp
|Ω|

2p´1
p´1

P pΩq
p
p´1

(4.21)

and the sharpness of (4.21) can be proved in an analogous way as in (4.3).

4.3 The quantitative results

Proof of Theorem 4.2

Proof. Let us start by proving (4.5) in the case n “ 2. If f ” 1, (4.14) becomes

TppΩq ě cp
|Ω|

2p´1
p´1

P
p
p´1 pΩq

` cp
p

p´ 1

ˆ RΩ

0

ˆ

µptq

P ptq

˙

2p´1
p´1

p´P 1ptqq dt. (4.22)
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Joining (1.18), (1.19), (1.28) and (4.22), we have that

TppΩqP
p
p´1 pΩq

|Ω|
2p´1
p´1

´ cp ą cp
p

p´ 1

P
p
p´1 pΩq

|Ω|
2p´1
p´1

ˆ RΩ

0

ˆ

µptq

P ptq

˙

2p´1
p´1

p´P 1ptqq dt

ě
π

2
p
p´1

p

2p´ 1

P
p
p´1 pΩq

|Ω|
2p´1
p´1

ˆ RΩ

0

pRΩ ´ tq
2p´1
p´1 dt

ě
π

2
p
p´1

pp´ 1qp

p3p´ 2qp2p´ 1q

RΩ

P pΩq

ˆ

RΩP pΩq

|Ω|

˙

2p´1
p´1

ě
π

2
p
p´1

pp´ 1qp

p3p´ 2qp2p´ 1q

RΩ

P pΩq
.

Hence, by applying (1.22) and (1.19) we get

FppΩq ´ cp ě Kp2, pq
wΩ

diampΩq
, (4.23)

where
Kp2, pq :“

pp´ 1qp

2
p
p´1 3p3p´ 2qp2p´ 1q

.

We now prove that the exponent of this ratio is sharp. In order to do that, since we have proved
(4.23), we only need to find a sequence tΩlulPN of convex sets with fixed measure such that

M
wΩl

diampΩlq
ě FppΩlq ´ cp,

for some positive constant M . Let 0 ă l ă 1, we consider the following rectangle

Ωl “

ˆ

´
1

2l
,

1

2l

˙

ˆ

ˆ

´
l

2
,
l

2

˙

and we notice that its inradius and area are RΩl “
l
2 and |Ωl| “ 1. Let u be the unique solution

to
#

´∆pu “ 1 in Ωl

u “ 0 on BΩl

and let us consider the following function

vpyq “
p´ 1

p

«

ˆ

l

2

˙

p
p´1

´ |y|
p
p´1

ff

,

which solves
#

´∆v “ 1 in Ωl

v ě 0 on BΩl.

The comparison principle gives u ď v in Ωl and

TppΩlq “

ˆ
Ωl

up dx ď

ˆ
Ωl

v dx.

Arguing as in (4.17), we have ˆ
Ωl

v dx “ cp

ˆ

l

2

˙

p
p´1

.
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On the other hand, the perimeter of the rectangle is given by

P pΩlq “
2

l

`

1` l2
˘

and its Taylor expansion with respect to l ą 0 is

P
p
p´1 pΩlq “

ˆ

2

l

˙

p
p´1

`

1` l2
˘

p
p´1 “

ˆ

2

l

˙

p
p´1

ˆ

1`
p

p´ 1
l2 ` opl2q

˙

.

Using (1.19) and (1.22), we get

TppΩlqP
p
p´1 pΩlq ´ cp ď cp

ˆ

l

2

˙

p
p´1

ˆ

2

l

˙

p
p´1

ˆ

1`
p

p´ 1
l2 ` opl2q

˙

´ cp

ď 2cp
p

p´ 1
l2 ď 16cp

p

p´ 1

RΩl

P pΩlq

ď 4cp
p

p´ 1

wΩl

diampΩlq

and this concludes the proof in dimension n “ 2.
Let us now prove (4.5) in dimension n ą 2. If we choose f ” 1, (4.14) becomes

TppΩq ě cp
|Ω|

2p´1
p´1

P
p
p´1 pΩq

` cp
p

p´ 1

ˆ RΩ

0

ˆ

µptq

P ptq

˙

2p´1
p´1

p´P 1ptqq dt. (4.24)

As a consequence of the Alexandrov-Fenchel inequality and the isoperimetric inequality for the
quermassintegrals (see [122]), we have

´P 1ptq ě npn´ 1qω
1

n´1
n

ˆ

P ptq

n

˙

n´2
n´1

. (4.25)

Hence, combining (4.25) and (4.24), we have

TppΩqP
p
p´1 pΩq

|Ω|
2p´1
p´1

´ cp ě cpn, pq
P

p
p´1 pΩq

|Ω|
2p´1
p´1

ˆ RΩ

0

ˆ

µptq

P ptq

˙

2p´1
p´1

P ptq
n´2
n´1 dt. (4.26)

Moreover, from (1.18), we obtain that

P ptq ě nωnpRΩ ´ tq
n´1, (4.27)

and so, using (4.27) in (4.26), we get

TppΩqP
p
p´1 pΩq

|Ω|
2p´1
p´1

´ cp ě cpn, pq
P

p
p´1 pΩq

|Ω|
2p´1
p´1

ˆ RΩ

0

pRΩ ´ tq
2p´1
p´1 `n´2

dt

“ Cpn, pq

ˆ

RΩP pΩq

|Ω|

˙

2p´1
p´1 Rn´1

Ω

P pΩq

(4.28)

If we combine (4.28) with (1.18), with the following estimate (that can be found in [15]):

RΩ ě

$

’

’

’

’

&

’

’

’

’

%

wΩ

?
n` 2

2n` 2
n even

wΩ
1

2
?
n

n odd,
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and with

P pΩq ď nωn

ˆ

n

2n` 2

˙

n´1
2

diampΩqn´1,

we finally get

TppΩqP
p
p´1 pΩq

|Ω|
2p´1
p´1

´ cp ě Cpn, pq

ˆ

wΩ

diampΩq

˙n´1

.

Remark 4.5. As far as the sharpness of (4.5) in the case n ą 2, we conjecture that the sharp
exponent is 1 as in the planar case. Indeed, the minimizing sequence tΩlu satisfies

TppΩlqP
p
p´1 pΩlq ´ cp « C

wΩl

diampΩlq
.

Remark 4.6. As already remarked in the introduction, inequality (4.23) gives an information
on the set Ω. Indeed, if

FppΩq ´ cp

is small, then the ratio between wΩ and diampΩq has to be necessarily small, i.e. Ω must be a
thin domain. Moreover, inequality (4.23) tells us also that the infimum of FppΩq is not achieved
among bounded, open and convex sets. Assuming by contradiction that there exists a bounded,
open and convex set Ω̃ such that

FppΩ̃q “ cp,

we have that
wΩ̃

diampΩ̃q
ă ε @ε ą 0,

which is impossible.

Theorem 4.2 only tells us that any minimizing sequence of Fpp¨q is a sequence of thinning
domains. On the other hand, Theorem 4.3 gives us more precise information on the geometry of
such minimizing sequence.

Proof of Theorem 4.3

Proof. Let Ω be a bounded, open and convex set with nonempty interior in R2 and let us consider
a rectangle Q of sides P pΩq{2 and wΩ containing Ω. Such a rectangle exists, since it is enough
to choose the shorter side of Q parallel to the direction of wΩ and to recall the lower bound in
(1.22) (see Figure 4.3).

diampΩq
wΩ

Ω

P pΩq{2
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Now, let σ ą 0 be such that

1

43 ¨ 6
´

π2

23 ¨ 33

σ2

K2p2q
ě 0; (4.29)

1

33 ¨ 6
´

π

48

σ

Kp2qq
´

π2

25 ¨ 3

σ2

K2p2q
ě 0; (4.30)

π

4
´

π

2
?

3

σ

Kp2q
ě

4

3
?

3
, (4.31)

where Kp2q is a constant defined in (??). If

T pΩqP 2pΩq

|Ω|3
´

1

3
ě σ,

then, by (1.19) and (1.18), we have

|Q4 Ω|

|Ω|
“

ˆ

P pΩqwΩ

2 |Ω|
´ 1

˙

ď

ˆ

3

2

P pΩqRΩ

|Ω|
´ 1

˙

ď 2.

So, it follows that
T pΩqP 2pΩq

|Ω|3
´

1

3
ě

σ

23
23 ě

σ

23

ˆ

|Q4 Ω|

|Ω|

˙3

.

On the other hand, let us assume that

T pΩqP 2pΩq

|Ω|3
´

1

3
ă σ. (4.32)

By Theorem 4.2, we have that

wΩ

diampΩq
ď

1

Kp2q

„

T pΩqP 2pΩq

|Ω|3
´

1

3



ă
σ

Kp2q
, (4.33)

and we observe that, by the choice of σ made in (4.29)-(4.31), a ball cannot satisfy (4.32).
Now, arguing as in (4.13) with f ” 1 and p “ 2, we know that

T pΩq ě

ˆ RΩ

0

µ2ptq

P ptq
dt. (4.34)

We set ρ “
P 2pΩq

4π
´ |Ω| and pR “ P pΩq ´ 2πRΩ and we observe that they are both strictly

positive by the isoperimetric inequality and the monotonicity of the perimeter, respectively.
Using inequalities (1.26) and (1.27) in (4.34), we have that

T pΩqP 2pΩq ě P 2pΩq

ˆ RΩ

0

p|Ω| ´ P pΩqt` πt2q2

P pΩq ´ 2πt
dt

“ P 2pΩq

ˆ RΩ

0

1

P pΩq ´ 2πt

˜

pP pΩq ´ 2πtq
2

4π
´

ˆ

P 2pΩq

4π
´ |Ω|

˙

¸2

dt

“ P 2pΩq

ˆ RΩ

0

˜

pP pΩq ´ 2πtq
3

p4πq2
´

ρ

2π
pP pΩq ´ 2πtq `

ρ2

P pΩq ´ 2πt

¸

dt

“
P 2pΩq

2π

ˆ

P 4pΩq ´ p4
R

4p4πq2
´

ρ

4π

`

P 2pΩq ´ p2
R

˘

´ ρ2 log

ˆ

1´
2πRΩ

P pΩq

˙˙

,

(4.35)
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and, using Newton’s formula and the Taylor series for the logarithm, we get

P 2pΩq ´ p2
R “ 4πRΩP pΩq ´ 4π2R2

Ω;

P 4pΩq ´ p4
R “ 8πRΩP

3pΩq ´ 24π2R2
ΩP

2pΩq ` 32π3R3
ΩP pΩq ´ 16π4R4

Ω;

´ log

ˆ

1´
2πRΩ

P pΩq

˙

“

8
ÿ

i“1

1

i

ˆ

2πRΩ

P pΩq

˙i

ě
2πRΩ

P pΩq
`

2π2R2
Ω

P 2pΩq
`

8

3

π3R3
Ω

P 3pΩq
`

4π4R4
Ω

P 4pΩq
.

(4.36)

By (4.36) and (4.35), dividing by |Ω|3 and subtracting 1{3, we have

T pΩqP 2pΩq

|Ω|
3 ´

1

3
ě

1

3

ˆ

P pΩqRΩ

|Ω|
´ 1

˙3

` π
R2

Ω

|Ω|
2

ˆ

|Ω| ´
2

3
P pΩqRΩ

˙

`
4

3
π2 R3

Ω

P pΩq |Ω|
2

ˆ

|Ω| ´
3

4
P pΩqRΩ

˙

.

(4.37)

As an intermediate step we want to prove the following inequality:

1

3

ˆ

P pΩqRΩ

|Ω|
´ 1

˙3

` π
R2

Ω

|Ω|
2

ˆ

|Ω| ´
2

3
P pΩqRΩ

˙

`
4

3
π2 R3

Ω

P pΩq |Ω|
2

ˆ

|Ω| ´
3

4
P pΩqRΩ

˙

ě
1

6

ˆ

P pΩqRΩ

|Ω|
´ 1

˙3

,

(4.38)

that, combined with (4.37), implies

T pΩqP 2pΩq

|Ω|3
´

1

3
ě

1

6

ˆ

P pΩqRΩ

|Ω|
´ 1

˙3

, (4.39)

where we choose the constant 1{6 as an arbitrary constant less then 1{3. In particular, (4.38) is
equivalent to

1

6

`

P pΩqRΩ´|Ω|
˘3
`πR2

Ω |Ω|

ˆ

|Ω| ´
2

3
P pΩqRΩ

˙

`
4

3
π2 R3

Ω

P pΩq
|Ω|

ˆ

|Ω| ´
3

4
P pΩqRΩ

˙

ě 0. (4.40)

In order to prove (4.40), we distinguish three cases:

1) if |Ω| ě
3

4
P pΩqRΩ, then (4.40) is trivial, since the left hand side is the sum of positive

quantities;

2) if
2

3
P pΩqRΩ ď |Ω| ă

3

4
P pΩqRΩ, using (1.19), (1.22), (4.29) and (4.33), we have

1

6

`

P pΩqRΩ ´ |Ω|
˘3
` πR2

Ω |Ω|

ˆ

|Ω| ´
2

3
P pΩqRΩ

˙

`
4

3
π2 R3

Ω

P pΩq
|Ω|

ˆ

|Ω| ´
3

4
P pΩqRΩ

˙

ě P 3pΩqR3
Ω

ˆ

1

43 ¨ 6
´

2π2

33

R2
Ω

P 2pΩq

˙

ě P 3pΩqR3
Ω

ˆ

1

43 ¨ 6
´

π2

23 ¨ 33

w2
Ω

diam2
pΩq

˙

ě P 3pΩqR3
Ω

ˆ

1

43 ¨ 6
´

π2

23 ¨ 33

σ2

K2p2q

˙

ě 0.

(4.41)
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3) if
1

2
P pΩqRΩ ď |Ω| ă

2

3
P pΩqRΩ, arguing as before, we have

1

6

`

P pΩqRΩ ´ |Ω|
˘3
` πR2

Ω |Ω|

ˆ

|Ω| ´
2

3
P pΩqRΩ

˙

`
4

3
π2 R3

Ω

P pΩq
|Ω|

ˆ

|Ω| ´
3

4
P pΩqRΩ

˙

ě P 3pΩqR3
Ω

ˆ

1

33 ¨ 6
´

π

48

wΩ

diampΩq
´

π2

25 ¨ 3

w2
Ω

diam2
pΩq

˙

ě P 3pΩqR3
Ω

ˆ

1

33 ¨ 6
´

π

48

σ

Kp2q
´

π2

25 ¨ 3

σ2

K2p2q

˙

ě 0.

(4.42)

So, we have proved the intermediate step (4.39). Now, by combining (4.39) and (1.20), we deduce

T pΩqP 2pΩq

|Ω|3
´

1

3
ě

1

6

„

P pΩqRΩ

|Ω|
´ 1

3

ě
1

6

„

P pΩqwΩ

2|Ω|
´ 1´

1
?

3

w2
Ω

|Ω|

3

. (4.43)

Using (1.21), (1.20), (4.33) and (4.31), we have

P pΩqwΩ

2 |Ω|
´ 1 ě

P pΩqRΩ

|Ω|
´ 1 ě π

R2
Ω

|Ω|
ě

π

|Ω|

ˆ

wΩ

2
´

w2
Ω?

3P pΩq

˙2

“
w2

Ω

|Ω|

ˆ

π

4
´

π
?

3

wΩ

P pΩq
`
π

3

w2
Ω

P pΩq2

˙

ě
w2

Ω

|Ω|

ˆ

π

4
´

π

2
?

3

wΩ

diampΩq

˙

ě
w2

Ω

|Ω|

ˆ

π

4
´

π

2
?

3

σ

Kp2q

˙

ě
4

3
?

3

w2
Ω

|Ω|

(4.44)

Finally, by combining (4.43) and (4.44), we get the conclusion

T pΩqP 2pΩq

|Ω|3
´

1

3
ě

1

6

„

P pΩqRΩ

|Ω|
´ 1

3

ě K̃

„

|Q4 Ω|

|Ω|

3

. (4.45)

The next remark shows that a sequence of thinning triangles is not sharp for (4.5) and this
is the reason for which we need Theorem 4.3 to obtain more precise information.

Remark 4.7. Let us consider a sequence of isosceles triangles Tl of base L and height l such
that |Tl| “ 1.

t

l

L

a θ
2

π
2
´ θ

Tl
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If we compute (4.39) on the sequence Tl and we use (1.18), we get, for every l,

T pTlqP 2pTlq
|Tl|3

´
1

3
ě

1

6

ˆ

P pTlqRTl
|Tl|

´ 1

˙3

“
1

6
(4.46)

and, so, the quantity on the left-hand side of (4.46) is bounded away from zero.

Remark 4.8. We point out that

P pΩqRΩ

|Ω|
´ 1 ě K

|Q4 Ω|

|Ω|
,

in (4.45) is a quantitative version of the inequality in the right hand side of (1.18).

4.4 Open Problems
We conclude by listing the following open problems:

• We believe that the exponent 3 in the inequality (4.6) is not sharp: we expect it to be 1.
We clarify that in Example (3).

• We conjecture that the sharp exponent in (4.5) in the case n ą 2 is 1 (see Remark 4.5).

• The results contained in Theorem 4.3 could be studied in higher dimension and extended
to the pf, pq-torsional rigidity. Our proof cannot be adapted to higher dimension because
in dimension n ą 2 we do not have any more Steiner formulas for inner parallel sets (1.26)
and (1.27).

Example 3. Let Ωl “

ˆ

´
1

2l
,

1

2l

˙

ˆ

ˆ

´
l

2
,
l

2

˙

be a sequence of rectangles of measure 1. It is pos-

sible to give an explicit upper bound to the functional F2pΩlq. Hence, following the computations
in (4.17), we have

F2pΩlq ´ c2 ď 2l2.

Considering the rectangle Q with sides P pΩlq{2 and wΩ containing Ωl, that is

Q “

ˆ

´
1` l2

2l
,

1` l2

2l

˙

ˆ

ˆ

´
l

2
,
l

2

˙

,

it is straightfoward to compute
|Ωl∆Q| “ 2l2.

Hence, we have

2 ě
F2pΩlq ´ c2
|Ωl∆Q|

ě K̃ |Ωl∆Q|
2
“ K̃ l4.
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